

Hooper Foundation Accossion

SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 71, NUMBER 1
 SMITHSONIAN
 PHYSICAL TABLES

REPRINT OF SEVENTH REVISED EDITION

PREPARED BY
FREDERICK E. FOWLE
AID, SMITHSONIAN ASTROPHYSICAL OBSERVATORY

(Publication 2539)

CITY OF WASHINGTON
PUBLISHED BY THE SMITHSONIAN INSTITUTION

ADVERTISEMENT.

In connection with the system of meteorological observations established by the Smithsonian Institution about 1850, a series of meteorological tables was compiled by Dr. Arnold Guyot, at the request of Secretary Henry, and the first edition was published in 1852. Though primarily designed for meteorological observers reporting to the Smithsonian Institution, the tables were so widely used by physicists that it seemed desirable to recast the work entirely. It was decided to publish three sets of tables, each representative of the latest knowledge in its field, and independent of one another, but forming a homogeneous series. The first of the new series. Meteorological Tables, was published in 1893, the second, Geographical Tables, in 1894, and the third. Physical Tables, in 1896. In 1909 yet another volume was added, so that the series now comprises: Smithsonian Meteorological Tables, Smithsonian Geographical Tables, Smithsonian Physical Tables, and Smithsonian Mathematical Tables.

The fourteen years which had elapsed in igio since the publication of the first edition of the Physical Tables, prepared by Professor Thomas Gray, had brought such changes in the material upon which the tables must be based that it became necessary to make a radical revision for the fifth and sixth revised editions published in igIo and 1914. The latter edition was reprinted thrice. For the present seventh revision extended changes have been made with the inclusion of new data on old and new topics.

Charles D. Walcott, Secretary of the Smithsonian Institution.

[^0]
PREFACE TO 7тн REVISED EDITION.

The present edition of the Smithsonian Physical Tables entails a considerable enlargement. Besides the insertion of new data in the older tables, about 170 new tables have been added. The scope of the tables has been broadened to include tables on astrophysics, meteorology, geochemistry, atomic and molecular data, colloids, photography, etc. In the earlier revisions the insertion of new matter in a way to avoid renumbering the pages resulted in a somewhat illogical sequence of tables. This we have tried to remedy in the present edition by radically rearranging the tables; the sequence is now, - mathematical, mechanical, acoustical, thermal, optical, electrical, etc.

Many suggestions and data have been received: from the Bureau of Standards, - including the revision of the magnetic, mechanical, and X-ray tables, - from the Coast and Geodetic Survey (magnetic data), the Naval Observatory, the Geophysical Laboratory, Department of Terrestrial Magnetism, etc.; from Messrs. Adams of the Mount Wilson Observatory, Adams of the Geophysical Laboratory (compressibility tables), Anderson (mechanical tables), Dellinger, Hackh, Humphreys, Mees and Lovejoy of the Eastman Kodak Co. (photographic data), Miller (acoustical data), Van Orstrand, Russell of Princeton (astronomical tables), Saunders, Wherry and Lassen (crystal indices of refraction), White, Worthing and Forsythe and others of the Nela Research Laboratory, Zahm (aeronautical tables). To all these and others we are indebted for valuable criticisms and data. We will ever be grateful for further criticisms, the notification of errors, and new data.

Frederick E. Fowle.
Astrophysical Observatory, Smithsonian Institution, May, 1919.

NOTE TO REPRINT OF 7 7 тн REVISED EDITION.

Opportunity comes with this reprint to insert in the plates a number of corrections as well as some newer data. Gratitude is especially due to Messrs. Wherry and Smith of the Bureau of Chemistry, Department of Agriculture, for suggestions.

Frederick E. Fowle.

TABLE OF CONTENTS.

Introduction: units of measurement, dimensional and conversion formulae, standards: . xxiii
General discussion, xxiii; Fundamental units, xxiii; Derived units, xxiv; Conversion factors and dimensional formulae, xxv; Dimensional reasoning, xxv .
Dimensional formulae: xxvi
Geometrical and mechanical units, xxvi; Heat units, xxviii; Electric and mag- netic units, xxix; Electrostatic system, xxx; Electromagnetic system, xxxi.
Fundamental standards: xxxiii
Standards of length, xxxiv; Standards of mass, xxxiv; Standards of time, xxxiv; Standards of temperature, xxxiv.
Numerically different systems of units: xxxv
Proposed systems of units (table I), xxxv; Gaussian systems, xxxv; Practical electromagnetic system, xxxvi; International electric units, xxxvi.
The standards of the International Electric Units: xxxviiiResistance, xxxviii: Mercury standards, xxxviii; Secondary standards, xxxix;Resistance standards in practice, xxxix; Absolute ohm, xxxix.
Current, xl: Silver voltameter, xl; Resistance standards used in currentmeasurements, xli; Absolute ampere, xli.
Electromotive force, xli: International volt, xli; Weston normal cell, xli; Portable Weston cell, xliii; Absolute and semi-absolute volts, xliii.
Quantity of electricity, xliv: Standards, xliv.
Capacity, xliv.
Inductance, xliv: Inductance standards, xliv.
Power and energy, xlv: Watt, xlv; Standards and measurement, xlv.
Magnetic units, xlv: Table II. - The ordinary and ampere-turn units xlvi.
TABLE PAGE

1. Spelling and abbreviations of common units of weight and measure 2
2. Fundamental and derived units, conversion factors 3
(a) Fundamental units 3
(b) Derived units 3
3. Tables for converting U. S. weights and measures:
(I) Customary to metric 5
(2) Metric to customary 6
4. Miscellaneous equivalents U.S. and metric weights and measures 75. Equivalents of metric and British imperial weights and measures:
(I) Metric to imperial 8
(2) Multiples, metric to imperial 9
(3) Imperial to metric 10
(4) Multiples, imperial to metric II
Mathematical Tables
5. Derivatives and integrals 12
6. Series 13
7. Mathematical constants 14
8. Reciprocals, squares, cubes and square roots of natural numbers 15
9. Logarithms, 4-place, 1000-2000 24
ir. Logarithms, 4-place 26
10. Antilogarithms, 4 -place 28
11. Antilogarithms, 4-place, $0.9000-1.0000$ 30
12. Circular (trigonometric) functions, arguments (${ }^{\circ}$, , $)$. 32
13. " " " (radians) 37
14. Logarithmic factorials, n !, $\mathrm{n}=\mathrm{I}$ to 100 40
15. Hyperbolic functions 41
16. Factorials, 1 to 20 47
17. Exponential functions 48
18. Values of $e^{x^{2}}$ and $e^{-x^{2}}$ and their logarithms 54
19. " " $e^{\frac{\pi}{4} x}$ " $e^{-\frac{\pi}{4} x}$ " 55
20. " " $e^{\sqrt{\frac{\pi}{4}} x^{2}} e^{-\sqrt{\frac{\pi}{4}} x}$ " " 55
21. " " e^{x} " e^{-x} " " " , x fractional 56
22. Least squares: probability integral, argument $h x$ 56
23. x / r 57
24. values of $0.6745 \sqrt{1 /(n-\mathrm{I})}$ 57
" " $0.6745 \sqrt{\mathrm{I} / n(n-\mathrm{I})}$ 58
25.

" " $0.8453 \sqrt{\mathrm{I} / n(n-\mathrm{I})}$ 58
28.
58
29. " " $0.8453\{\mathrm{I} / n \sqrt{n-1}\}$
59
30. formulae
60
31. Inverse probability integral, diffusion integral
62
32. Logarithms of gamma function, n between I and 2
64
33. Values for the first seven zonal harmonics, $\theta=0^{\circ}$ to $\theta=90^{\circ}$
66
34. Cylindrical harmonics, oth and ist orders, $x=0$ to $3.5,6$-place.
68
35. $x=4$ to ${ }^{5} 5,4$-place
68
36. (a) ist ten roots cylindrical harmonic of zeroth order $=0$
68
(b) " fifteen"68
37. Values for $\int_{0}^{\frac{\pi}{2}}\left(1-\sin ^{2} \theta \sin ^{2} \Phi\right)^{ \pm \frac{1}{2}} d \Phi$; argument θ; also logs 69
38. Moments of inertia, radii of gyration, corresponding weights 70
39. International atomic weights, valencies 71
40. Volume of glass vessel from weight of its volume of $\mathrm{H}_{2} \mathrm{O}$ or Hg 72
41. Reductions of weighings in air to vacuo 73
42. Reductions of densities in air to vacuo 73

Mechanical Properties
43. Introduction and definitions 74
44. Ferrous metals and alloys: Iron and iron alloys 75
45. " " " " carbon steels 76
46. " " " " heat treatments 76
47. " " " " alloy steels 77
48. " " " " steel wire, specification values 78
49. " " " " " " experimental values . . . 78
50. " " " " semi-steel 78

5I. " " " " steel wire rope, specification values ... 79
52. " " " " plow-steel rope, " " . . . 79
53. " " " " steel wire rope, experimental values . . 79
54. Aluminum, miscellaneous . 80
55. Aluminum: (a) sheet, experimental values 80
(b) " specification values 8I
56. Aluminum alloys . 8I
57. Copper: miscellaneous experimental values 82
58. " rolled, experimental values 82
59. " wire, specification values, hard-drawn 82
60. " " medium hard-drawn 83

6I. " " soft or annealed 83
62. " plates . 83
63. Copper alloys: nomenclature 83
64. " " copper-zinc alloys or brasses 84
copper-tin " " bronzes. 84
65. " " three or more metals 85
66. Miscellaneous alloys . 88
67. " metals: tungsten; zinc; white metal 89
68. Cement and concrete: (a) cement 90
" " " (b) cement and cement mortars 90
(c) concrete 9I
69. Stone and clay products: (a) American building stones 92
" " " " (b) Bavarian building stones 92
" " " " (c) American building bricks 93
" " " " (d) brick piers, terra-cotta piers 93
(e) various bricks 93
70. (a) Sheet rubber . 94
(b) Leather belting . 94

7I. Manilla rope . 95
72. Woods: hardwoods, metric units 96
73. " conifers, metric units 97
74. Woods: hardwoods, English units 98
75. " conifers, English units 99
76. Rigidity Modulus 100
77. Variation of moduli of rigidity with the temperature 100
78. Interior friction, variation with the temperature IOI
79. Hardness IOI
8o. Relative hardness of the elements IOI
8r. Poisson's ratio IOI
82. Elastic moduli of crystals, formulae 102
83. ". " " " numerical results 103
Compressibility of Gases
84. Compressibility of O , air, N, H, different pressures and temperatures 104
85. " " ethylene at 104
86. Relative gas volumes at various pressures, H, N, air, $\mathrm{O}, \mathrm{CO}_{2}$ 104
87. Compressibility of carbon dioxide, pressure-temperature variation 105
88. " " gases, values of 105
89. " " air and oxygen between 18° and $22^{\circ} \mathrm{C}$ 105
90. Relation between pressure, temperature and volume of sulphur dioxide 106
91. " " ammonia 106
92. Compressibility of liquids 107
93. " " solids 108
Densities
94. Specific gravities corresponding to the Baumé scale 109
95. Densities of the solid and liquid elements IIO
96. " " various woods II2
97. " " " solids 113
98. " " " alloys 114
99. " " " natural and artificial minerals 115
100. " " molten tin and tin-lead eutectic 115
1or. Weight in grams per square meter of sheet metal 116
102. " " various common units of sheet metal in6
103. Densities of various liquids 117
104. Density of air-free water between 0° and $41^{\circ} \mathrm{C}$ 118
105. Relative volume of water between 0° and $40^{\circ} \mathrm{C}$ 119
106. Density and volume of water, -10° to $250^{\circ} \mathrm{C}$ 120
107. " " " " mercury, -10° to $360^{\circ} \mathrm{C}$ 121
108. Density of aqueous solutions of salts, bases and acids 122
io9. " " " ethyl alcohol, temperature variation 124
iro. " " " methyl alcohol, cane-sugar, sulphuric acid. 126
iII. " " various gases 127
112. Volume of gases, - values of $\mathbf{x}+0.00367 t$:(a) for values of t between 0° and $10^{\circ} \mathrm{C}$ byo. 1° steps128
(b) " " "" " -90° and $+1990^{\circ} \mathrm{C}$ by 10° steps 129
(c) logarithms for t between -49° and $399^{\circ} \mathrm{C}$ by r° steps I30
(d) " " " " $+400^{\circ}$ and $1990^{\circ} \mathrm{C}$ by 10° steps 132
113. Density of moist air: $h / 760, h$ from 1 to 9 I33
114. " " " " $\log h / 760, h$ from 80 to 800 133
115. $0.378 e$ in equation $h=B-0.378 e$ I35
116. Maintenance of air at definite humidities I35
117. Pressure of mercury and water columns I36
Barometric Tables
118. Reduction of barometer to standard temperature I37
rig. " " " " gravity, in. and mm, altitude term 138
120. " " " " latitude $45^{\circ}, 0^{\circ}$ to 45°, mm 139
121. " " " " " " 45° to 90°, mm 140
122. 0° to 45°, inches 141
123. " " " " " " 45° to 90°, inches 142
124. Correction to barometer for capillarity, mm and inches 143
125. Volume of mercury meniscus in mm^{3} 143
126. Barometric pressure corresponding to the boiling point of water: (a) metric scale 144
(b) inch scale 144
127. Determination of heights by the barometer 145
Acoustics
128. Velocity of sound in solids 146
129. " " " " liquids and gases 147
130. Musical scales 148
131. " " 148
132. Fundamental tone, its harmonics and equal tempered scale 149
133. Relative strength of the partials of musical instruments 149
134. Characteristics of the vowels 149
135. Miscellaneous sound data 149
Aerodynamics
136. Kinetics of bodies in resisting medium, Stokes law 150
137. Flow of gas through tubes 150
138. Air pressure, large square normal planes, various speeds 151
139. Correction factor for small square normal planes 151
140. Effect of aspect ratio 152
14I. Ratios of pressures on inclined and normal planes 152
142. Skin friction 152
143. Variation of air resistance with aspect and angle I53
144. " " " " " shape and size 153
145. " " " ". " " " " and speed 153
146. Friction I 54
147. Lubricants 154
148. Lubricants for cutting tools 154
Viscosity
149. Viscosity of fluids and solids, general considerations 155
150. " " water in centipoises, temperature variation 155
151. " " ethyl-alcohol-water mixtures, temperature variation 155
152. " and density of sucrose aqueous solutions, temp. variation 156
153. " " " " glycerol 156
154. " " " " castor oil, temperature variation 156
155. " of miscellaneous liquids 157
156. " " organic liquids 158
157. Specific viscosity of solutions, density and temperature variation 159
158. " " " " atomic concentrations, $25^{\circ} \mathrm{C}$ 163
159. Viscosity of gases and vapors 164
160. " " " " " : temperature and pressure variation 165
161. Diffusion of an aqueous solution into pure water 166
162. " " vapors 167
163. " " gases and vapors 168
164. " metals into metals 168
165. Solubility of inorganic salts in water, temperature variation 169
166. " " a few organic salts in water, temperature variation 170
167. " " gases in water 170
168. " " change of, produced by uniform pressure 171
169. Absorption of gases by liquids 172
170. Capillarity and surface tension, water and alcohol in air 173
171. " " " " miscellaneous liquids in air 173
172. " " " " aqueous solutions of salts 173
173. " " " " liquids-air, -water, -mercury 174
174. " " " " " liquids at solidifying point 174
175. thickness of soap films 174
Vapor Pressures
176. Vapor pressures of elements 175
177. and rates of evaporation, $\mathrm{Mo}, \mathrm{W}, \mathrm{Pt}$ 175
178. " " organic liquids 176
179. of ethyl alcohol 178
180. " " " methyl alcohol 178
181. (a) carbon disulphide 179
(b) chlorobenzene 179
(c) bromobenzene 179
(d) aniline 179
(e) methyl salicylate 180
(f) bromonaphthalene 180
(g) mercury 180
182. Vapor pressure of solutions of salts in water 181
183. Pressure of saturated water vapor over ice, low temperatures 183
184. " " " " " " water, low temperatures 183
185. " " " " " " " 0° to $374^{\circ} \mathrm{C}$ 183
186. Weight in g per m^{3} of saturated water vapor 185
187. Weight in grains per ft^{3} of saturated water vapor 185
188. Pressure of aqueous vapor in atmosphere, various altitudes 185

189.

sea-level 186
190. Relative humidity, arguments, vapor pressure and dry temperature 187

191.

wet and dry thermometers 189
Thermometry
192. Stem correction for thermometers, centigrade 190
193. Jena glass, 0° to $360^{\circ} \mathrm{C}$ 190
194. " " " " " " 0° " " " 19I
195. normal, 0° to $100^{\circ} \mathrm{C}$ I9I
196. Gas and mercury thermometers, formulae 192
197. Comparison of hydrogen and $16^{\text {III }}$ thermometers, 0° to $100^{\circ} \mathrm{C}$ 192
198. $59^{\text {III }} \quad$ " $\quad 0^{\circ}$ " $100^{\circ} \mathrm{C}$. 192
199.$-35^{\circ} \mathrm{C}$.192
200. Comparison of air and $16^{\text {III }}$ thermometers, 0° to $300^{\circ} \mathrm{C}$ 193
201. $59^{\text {III }} \quad$ " 100° to $200^{\circ} \mathrm{C}$ 193
202. " " hydrogen and various mercury thermometers 194
203. " " air and high temperature ($59{ }^{\text {III }}$) mercury thermometer 194
204. " H, toluol, alcohol, petrol ether, pentane thermometers 194
205. Platinum resistance thermometry 195
206. Thermodynamic scale; temperature of ice point, Kelvin scale 195
207. Standard points for the calibration of thermometers 195
208. Calibration of thermo-element, $\mathrm{Pt}-\mathrm{Pt} \cdot \mathrm{Rh}$ 196
209. Cu-constantan. 196
210. Mechanical equivalent of heat, summary to 1900 (Ames) 197
21I. " " " " best value 197
212. Conversion factors, work units 197
213. English and American horse power, altitude and latitude variation 197
Melting and Boiling Points
214. Melting points of the chemical elements 198
215. Boiling points of the chemical elements 199
216. Melting points, effect of pressure 200
217. Freezing point of water, effect of pressure 200
218. Boiling point, effect of pressure 200
219. Inorganic compounds, melting and boiling points, densities 201
220. Organic compounds, melting and boiling points, densities: 203
(a) Paraffin series 203
(b) Olefine series 203
(c) Acetylene series 204
(d) Monatomic alcohols 204
(e) Alcoholic ethers 204
(f) Ethyl ethers 204
(g) Miscellaneous 205
221. Melting points of various mixtures of metals 206
222. 206
223. Low-melting-point alloys 206
224. Transformation and melting points, minerals and eutectics 207
225. Lowering of freezing points by salts in solution 208
226. Raising of boiling points by salts in solution 210
227. Freezing mixtures 211
228. Critical temperatures, pressures, volumes, densities of gases 212
Thermal Conductivity
229. Thermal conductivity of metals and alloys 213
230. " " insulators, high temperatures 214
231. " " various substances 214
232. " " building materials 215
233. " " various insulators 216
234. . " water and salt solutions 216
235. " " organic liquids 217
236. " " gases 217
237. Diffusivities 217
Expansion Coefficients
238. Linear expansion of the elements 218
239. " " " miscellaneous substances 219
240. Cubical expansion of solids 220
241. " " " liquids 221
242. " " " gases 222
Specific Heats
243. Specific heats of elements. 223
244. Heat capacities, true and mean specific heats, and latent heats of fusion of the metallic elements, 0° to $1600^{\circ} \mathrm{C}$ 225
245. Atomic heats, atomic volumes, specific heats at $50^{\circ} \mathrm{K}$, elements 226
246. Specific heats of various solids. 227
247. " " " water and mercury 227
248. " " " various liquids 228
249. " heat of saturated liquid ammonia, -50° to $+50^{\circ} \mathrm{C}$ 228
250. Heat contents of saturated liquid ammonia, -50° to $+50^{\circ} \mathrm{C}$ 228
251. Specific heats of minerals and rocks 229
252. " " (true and mean) of silicates, 0° to $1400^{\circ} \mathrm{C}$ 229
253. .". " of gases and vapors, also c_{p} / c_{v} 230
Latent Heats
254. Latent heats of vaporization 231
255. " " " " formulae 232
256. " " " " ammonia 232
257. "Latent heat of pressure variation" of liquid ammonia 232
258. Latent and total heats of vaporization of elements, - theoretical 233
259. Properties of saturated steam 234
260. Latent heats of fusion 240
Heats of Combustion, Formation, etc.
261. Heats of combustion of some carbon compounds 241
262. " " " " miscellaneous compounds 241
263. Heat values and analyses of various fuels: (a) coals and coke 242
(b) peats and woods 242
(c) liquid fuels 242
(d) gases 242
264. Chemical and physical properties of explosives 243
265. Additional data on explosives 244
266. Ignition temperatures of gaseous mixtures 244
267. Explosive decomposition, ignition temperatures 244
268. Flame temperatures 244
269. Thermochemical data: heats of formation from elements 245
270 . " " " " " of ions 246
271. " " " " neutralization. 246
272. " " " ." dilution of sulphuric acid 246
Radiation
273. Radiation formulae and constants for perfect (black-body) radiator 247
${ }^{274}$. " in calories for perfect radiator, various temperatures 247
275. " distribution in spectrum for various temperatures 247
276. Black-body spectrum intensities, 50° to $20000^{\circ} \mathrm{K}$ 248
277. Relative emissive powers of various bodies for total radiation 249
278. Emissivities of metals and oxides 249
279. 249
280. Temperature scale for tungsten, - color, black-body and true tem- peratures 250
28I. Color minus brightness temperature for carbon 250
Cooling by Radiation, Conduction, and Convection
282. Cooling by radiation and convection: ordinary pressures 251
283. " " " " " different pressures 251
284. Cooling by radiation and convection: very small pressures 252
285. " " " " temperature and pressure effect 252
286. Conduction of heat across air spaces, ordinary temperatures 253
287. Convection of heat in air at ordinary temperatures 253
288. " and conduction of heat by gases at high temperatures: 254
(a) s as function of a / B 254
(b) ϕ in watts per cm . as $f\left(T^{\circ} \mathrm{K}\right)$ 254
289. Heat losses from incandescent filaments: 255
(a) Wires of platinum sponge 255
(b) " " bright platinum 255
The Eye and Radiation
290. Spectral variation of sensitiveness as function of intensity (Lumina- tion intensities under various circumstances) 256
291. Threshold sensibility as related to field brightness 256
292. Heterochromatic threshold sensibility 257
293. Contrast or photometric sensibility 257
294. Glare sensibility 257
295. Rate of adaptation of sensibility 257
296. Apparent diameter of pupil and flux density at retina 258
297. Relative visibility of radiation of different wave-lengths 258
298. Miscellaneous eye data: physiological; persistence of vision; sensi- bility to small differences of color; flicker 258
Photometric Tables
299. Photometric definitions and units 259
300. " standards 260
301. Intrinsic brightness of various light sources 260
302. Visibility of white lights 260
303. Brightness, Crova wave-length, mechanical equivalent of light 261
304. Luminous and total intensity and radiant luminous efficiency of a black-body; minimum energy necessary for light sensation 261
305. Color of light emitted by various sources 261
306. Efficiency of various electric lights 262
Photographic Data
307. Numerical constants characteristic of a photographic plate 263
308. Relative speeds of various photographic materials 263
309. Variation of resolving power with plate and developer 263
310. Photographic efficiencies of various lights 264
3II. Relative intensification of various intensifiers 264
Spectrum Wave-lengths
312. Wave-lengths of the Fraunhofer lines 265
313. Standards: Red cadmium line, $76 \mathrm{~cm}, 15^{\circ} \mathrm{C}$, Angstroms 266
314. Standards: International secondary Fe arc standards, Angstroms 266
315. " International secondary Fe arc standards, Angstroms 266
316. " Neon wave-lengths 266
317. " International tertiary Fe arc standards, Angstroms 267
318. Reduction of wave-lengths in air to standard conditions: 268
(a) $\left(d-d_{0}\right) / d_{0} \times$ 1000; $B, 60$ to $78 \mathrm{~cm}, t, 9^{\circ}$ to $35^{\circ} \mathrm{C}$ 268
(b) $\delta=\lambda_{0}\left(n_{0}-n_{0}{ }^{\prime}\right)\left(d-d_{0}\right) / d_{0}$ 268
319. Spectra of the elements 269
320. Spectrum lines of the elements (Kayser) '270
321. Standard solar wave-lengths (Rowland) 272
322. Spectrum series, general discussion 275
323. " limits of some of the series 276
324. " first terms and vibration differences 276
Indices of Refraction
325. Indices of refraction of glass (American) 277
326. Dispersion of glasses of Table 325 277
327. Indices of refraction of glasses made by Schott and Gen, Jena 278
328. Dispersion of Jena glasses 278
329. Changes of indices for $\mathrm{I}^{\circ} \mathrm{C}$ change for some Jena glasses 278
330. Index of refraction of rock-salt in air 279
331. Change of indices for $\mathrm{I}^{\circ} \mathrm{C}$ change for rock-salt 279
332. Index of refraction of silvine (potassium chloride) in air 279
333. " fluorite in air 280
334. Change of indices for $\mathrm{I}^{\circ} \mathrm{C}$ change for fluorite 280
335. Index of refraction of iceland spar $\left(\mathrm{CaCO}_{3}\right)$ in air 280
336. " " " " nitroso-dimethyl-aniline 280
337. " quartz $\left(\mathrm{SiO}_{2}\right)$ 28I
338. Indices of refraction for various alums 28I
339. " " refraction: Selected isotropic minerals 282
340. " " " Miscellaneous isotropic solids 283
34I. Selected uniaxial minerals (positive) 284
" " " " " (negative) 284
342. Miscellaneous uniaxial crystals 285
343. Selected biaxial minerals (a) positive 286
" ". " (b) negative 287
344. Miscellaneous biaxial crystals 289
345. Liquefied gases, oils, fats, waxes 289
346. Liquids relative to air 290
347 . Solutions of salts and acids relative to air 291
348. Gases and vapors 292349. " " " Air, $15^{\circ} \mathrm{C}, 76 \mathrm{~cm}$; also corrections for reduc-ing wave-lengths and frequencies in air to vacuo (see Table 318) . 293350. Media for microscopic determinations of refractive indices: liquidswith $n_{D}(0.589 \mu)=1.74$ to 1.87294
351. Media for microscopic determinations of refractive indices: resin-like substances, $n_{D}(0.589 \mu)=1.88$ to 2.10 294
352. Media for microscopic determinations of refractive indices: perma- nent standard resinous media, $n_{D}=1.546$ to 1.682 294
353. Optical constants of metals 295
354. 296
Reflecting Power
355. Reflecting power of metals (see Table 359) 296
356. Light reflected when incident light is normal to transparent medium 297
357. " " " n is near unity or equals $\mathrm{I}+d n, i=0^{\circ}$ to 90°. 297
358. " " " $n=1.55, i=0^{\circ}$ to 90°, polarization percentages. 297
359. Reflecting power of metals (see Table 355) 298
360. Percentage diffuse reflection from various substances 298
361. Reflecting power of pigments, $\lambda=0.44 \mu$ to 0.70μ 299
362. Infra-red diffuse reflecting power of dry pigments 299
363. Reflecting power of powders (white light) 300
364. Variation of reflecting power of matt and silvered surfaces with angle 300
365. Infra-red reflectivity of tungsten, temperature variation 300
Transmissive Powers
366. Transmissibility of radiation by dyes, $\lambda=0.44 \mu$ to 0.70μ 301
367. 302
368 . " " " " " " 0.280 to 0.644μ 302
369. " by Jena ultra-violet glasses, 0.280 to 0.397μ 302
370 . " of radiation by glasses (American) 0.5 to 5.0μ 303
371. " by same glasses for various lights 304
372. " of radiation by substances of Tables 330 to 338 305
373. Color screens (Landolt) 306
374. " " (Wood) 306
375. " " (Jena glasses) 307
376. Transmissibility of radiation by water, $\lambda=0.186 \mu$ to 0.945μ 307
377. Transmission percentages of radiation by moist air, 0.75μ to 20μ 308
378. Long-wave absorption by gases, 23μ to 314μ 309
379. Properties with wave-lengths $108 \pm \mu$:
(a) Percentage reflection 309
(b) Percentage transparency 309
(c) Transparency of black absorbers, 2μ to $\mathbf{1 0} 8 \mu$ 309
380. Rotation of plane of polarized light by solutions 310
381. " " " " " " sodium chlorate and quartz 310
382. Electrical equivalents 311

Electromotive Powers

383. Data for voltaic cells: (a) double-fluid cells 312
(b) single-fluid cells 313
(c) standard cells 313
(d) secondary cells 313
384. Contact potential differences, solids with liquids and liquids with liquids in air 314
385. Contact potential differences between metals in salt solutions 316
386. Thermoelectric power of metals 317
387. " " alloys 318
388. against platinum. 319
389. ". " " " of platinum-rhodium alloys 319
390. pressure effect 320
391. Peltier and Thomson heats, pressure effects 320
392. Peltier effect 321
393. " " Fe-constantan, $\mathrm{Ni}-\mathrm{Cu}, 0^{\circ}$ to $560^{\circ} \mathrm{C}$ 32 I
394. " electromotive force in millivolts 322
395. The tribo-electric series 322
Electrical Resistance
396. Auxiliary table for computing wire resistances. 322
397. Resistivity of metals and some alloys, temperature coefficients 323
398. Resistance of metals under pressure, temperature coefficients 326
399. Resistance of mercury and manganin under pressure 326
400. Conductivity and resistivity of miscellaneous alloys 327
401. Conducting power of alloys, temperature coefficients 328
402. Allowable carrying capacity of rubber-covered copper wires 329
403. Resistivities at high and low temperatures 330
404. Volume and surface resistivity of solid dielectrics 331
405. Variation of resistance of glass and porcelain with temperature 332
(a) Temperature coefficients for glass, porcelain and quartz 33^{2}
Wire Tables
406. Tabular comparison of wire gages 333
407. Introduction; mass and volume resistivity of copper and aluminum 334
408. Temperature coefficients of copper 335
409. Reduction to standard temperature, copper 335
410. Annealed copper wire table, English units, B. \& S. gage 336
411. Metric units, B. \& S. gage 339
412. Hard-drawn aluminum wire table, English units, B. \& S. gage 342
413. Metric units, B. \& S. gage 343
414. Ratio of alternating to direct current resistances for copper wire 344
415. Maximum diameter of wires for high-frequency-alternating-to-direct- current ratio of $\mathrm{I} . \mathrm{or}$ 344
Electrolysis
416. Electrochemical equivalents 345
417. Conductivity of a few dilute solutions 346
418. Electrochemical equivalents and densities of nearly normal solutions 346
419. Specific molecular conductivity of solutions 347
420. " " " " limiting values 348
42 I. " " . ". " temperature coefficient 348
421. Equivalent conductivity of salts, acids, bases in solution 349
422. " some additional salts in solution 351
423. " conductance of separate ions 352
424. Hydrolysis of ammonium acetate and ionization of water 352
Dielectric Strength
425. Steady potential for spark in air, ball electrodes 353
426. Alternating potential for spark in air, ball electrodes 353
427. Steady and alternating potential for longer sparks in air 354
428. Effect of pressure of the gas on the dielectric strength 354
429. Dielectric strength of various materials 355
430. Potential in volts for spark in kerosene 355
Dielectric Constants
431. Specific inductive capacity of gases, atmospheric pressure 356
432. Variation of dielectric constant with the temperature (gases) 356
433. " " " " " " pressure (gases) 357
434. Dielectric constant of liquids 357
435. " " " liquids, temperature coefficients 359
436. " " " liquefied gases 359
437. " " " standard solutions for calibration 360
438. " " " solids 360
439. " " " crystals 361
Wireless Telegraphy
44r. Wave-lengths, frequencies and oscillation constants 362
440. Antennae resistances for various wave-lengths and heights 364
441. Dielectric properties of non-conductors 364
Magnetic Properties
442. Definitions and general discussion 365
443. Composition and magnetic properties of iron and steel (old data) 367
444. Magnetic properties of iron and steel 368
445. Cast iron in intense fields 368
446. Corrections for ring specimens 368
447. Magnetic properties of various types of iron and steel 369
448. " " " a specimen of very pure iron ($0.017 \% \mathrm{C}$) 369
449. " " " electrical sheets 369
450. " American magnet steel 370
451. " " " a ferro-cobalt alloy 370
452. " " " a ring sample transformer steel, weak field 370
453. " " " iron in very weak fields 370
454. Permeability of some specimens of Table 445 37 I
455. Magnetic properties of soft iron at 0° and $100^{\circ} \mathrm{C}$ 37 I
456. " " " steel at \circ° and $100^{\circ} \mathrm{C}$ 37 I
457. Magnetism and temperature, critical temperature 372
458. Temperature variation for paramagnetic substances 372
459. " effect on susceptibility of diamagnetic elements 372
460. " " " " paramagnetic elements 372
461. Magnetic properties of cobalt at 0° and $100^{\circ} \mathrm{C}$ 373
462. nickel " " " " " 373
463. " " " magnetite 373
464. " " " Lowmoor wrought iron 373
465. " " " Vicker's tool steel 373
466. " " " Hadfield's manganese steel 373
467. " " " saturation values for steels 373
468. Demagnetizing factors for rods 374
469. 374
470. Dissipation of energy in cyclic mangetization, Steinmetz constant 375
471. Energy losses in transformer steels 376
472. Magnetic susceptibility 377
Magnetto-optic Rotation
473. Magneto-optic rotation, general discussion 378
474. solids, Verdet's constant 379
475. liquids, Verdet's constant 380
476. salt and acid water solutions 381
477. gases, Verdet's constant 382
478. Verdet's and Kundt's constants 382
48i. Values of Kerr's constant 383
479. Dispersion of Kerr effect 383
480. 383
Various Magnetic Effects
481. Resistance of metals, variation in transverse magnetic field (Bi) 384
482. Increase of resistance in transverse magnetic field (Ni) 384
483. Change of resistance of various metals in magnetic field 384
484. Transverse galvanomagnetic and thermomagnetic effects 385
485. Variation of Hall constant with temperature 385

Cathode and Canal Rays

489. Cathode and canal rays 386
490. Speed of cathode rays 386
491. Cathodic sputtering 386
Röntgen (X-Rays) Rays
492. X-rays, general properties 387
493. Röntgen secondary rays 387
494. Corpuscular rays 388
495. Intensity of X-rays; ionization 388
496. Mass absorption coefficients, λ / d 389
497. Absorption coefficients of characteristic radiations in gases 389
498. X-ray spectra and atomic numbers 390
(a) K-series 390
(b) L-series 391
(c) M-series 39^{2}
(d) Tungsten X-ray spectrum 392
499. X-ray absorption spectra and atomic numbers 393
Radioactivity
500. Relative phosphorescence excited by radium 394
501. The production of a particles (Helium) 394
502. Heating effect of radium and its emanation 394
503. Stopping powers of various substances for α rays 395
504. Absorption of β rays by various substances 395
j05. " " γ rays by various substances 395
505. Table of miscellaneous properties 396
506. Total number of ions produced by the α, β, and γ rays 398
507. Amount of radium emanation 398
508. Vapor pressure of the radium emanation in cm of Hg 398
509. References to spectra of radioactive substances 398
Molecular, Atomic and Ionic Data
5 II. Molecular velocities 399
510. " free paths, collision frequencies and diameters 399
511. Cross sections and lengths of some organic molecules 400
512. Size of diffracting units in crystals 400
513. Electrons; Rutherford atom; Bohr atom; Magnetic field of atom 401
514. Electron emission from hot metals 403
515. Photo-electric effect 403
516. Ionizing potentials, resonance potentials, single line spectra 403
517. Contact (Volta) potentials 404
(a) Electron affinity of the elements 404
(b) Voltage of electrolytic cells 404
518. Ionic mobilities and diffusions, - ionic mobilities 405
52I. Diffusion coefficients 405

Colloids

522. General properties of colloids 406
523. Molecular weights of colloids 406
524. Brownian movement 406
525. Adsorption of gas by finely divided particles 407
526. Heats of adsorption 407
527. Molecular heats of adsorption and liquefaction 407
528. Miscellaneous constants, atomic, molecular, etc. 408
529. Radiation wave-length limits 408
530. Periodic system of the elements (Mendelejeff) 409
531. Atomic numbers 409
532. Periodic system of the elements and radioactive isotopes (Hackh) 410
Astronomical Data
533. Stellar spectra and related characteristics 4II
534. The Harvard spectrum classification 4II
535. Apex and velocity of solar motion 4II
536. Motion of the stars 412
537. Distances of the stars 4I2
538. Brightness of the stars 4I3
539. Masses and densities 413
540. Miscellaneous astronomical data 414
54r. The first-magnitude stars 415
541. Wolf's observed sun-spot numbers, 1750 to 1917 415
542. Length of degrees on the earth's surface 416
543. Equation of time 416
544. Planetary data 416
545. Numbers and equivalent light of the stars 417
546. Albedos 417
547. Duration of sunshine 417
548. The solar constant. 418
549. Solar spectrum energy and its transmission through the atmosphere 418
550. Intensity of solar energy in various sections of spectrum 418
551. Distribution of brightness (radiation) over the solar disk 418
552. Transmission of radiation through moist and dry air (see Table 376) 4I9
553. Brightness of sky at altitudes of 1730 m and sea-level 4IS,
554. Relative distribution in normal spectrum of sun and sky light 419
555. Air masses 419
556. Relative intensity of solar radiation for various months 420
Meteorological Data
557. Mean monthly and yearly temperatures for representative stations 420
558. The earth's atmosphere, variation with latitude, miscellaneous 42 I
possible of the complex relationships involving them. Further it seems desirable that the units should be extensive in nature. It has been found possible to express all measurable physical quantities in terms of five such units: ist, geometrical considerations - length, surface, etc., - lead to the need of a length; 2nd, kinematical considerations - velocity, acceleration, etc., -introduce time; 3rd, mechanics - treating of masses instead of immaterial points - introduces matter with the need of a fundamental unit of mass; 4th, electrical, and $5^{\text {th }}$, thermal considerations require two more such quantities. The discovery of new classes of phenomena may require further additions.

As to the first three fundamental quantities, simplicity and good use sanction the choice of a length, L, a time interval, T, and a mass, M. For the measurement of electrical quantities, good use has sanctioned two fundamental quantities, - the dielectric constant, K, the basis of the "electrostatic" system and the magnetic permeability, μ, the basis of the "electromagnetic" system. Besides these two systems involving electrical considerations, there is in common use a third one called the "international" system which will be referred to later. For the fifth, or thermal fundamental unit, temperature is generally chosen. ${ }^{1}$

Derived Units. - Having selected the fundamental or basic units, - namely, a measure of length, of time, of mass, of permeability or of the dielectric constant, and of temperature, - it remains to express all other units for physical, quantities in terms of these. Units depending on powers greater than unity of the basic units are called "derived units." Thus, the unit volume is the volume of a cube having each edge a unit of length. Suppose that the capacity of some volume is expressed in terms of the foot as fundamental unit and the volume number is wished when the yard is taken as the unit. The yard is three times as long as the foot and therefore the volume of a cube whose edge is a yard is $3 \times 3 \times 3$ times as great as that whose edge is a foot. Thus the given volume will contain only $\mathrm{I} / 27$ as many units of volume when the yard is the unit of length as it will contain when the foot is the unit. To transform from the foot as old unit to the yard as new unit, the old volume number must be multiplied by $1 / 27$, or by the ratio of the magnitude of the old to that of the new unit of volume. This is the same rule as already given, but it is usually more convenient to express the transformations in terms of the fundamental units directly. In the present case, since, with the method of measurement here adopted, a volume number is the cube of a length-number, the ratio of two units of volume is the cube of the ratio of the intrinsic values of the two units of length. Hence, if l is the ratio of the magnitude of the old to that of the new unit of length, the ratio of the corresponding units of volume is l^{3}. Similarly the ratio of two units of area would be l^{2}, and so on for other quantities.

[^1]Conversion Factors and Dimensional Formulae. - For the ratios of length, mass, time, temperature, dielectric constant and permeability units the small bracketed letters, $[l],[m],[t],[\theta],[k]$, and $[\mu]$ will be adopted. These symbols will always represent simple numbers, but the magnitude of the number will depend on the relative magnitudes of the units the ratios of which they represent. When the values of the numbers represented by these small bracketed letters as well as the powers of them involved in any particular unit are known, the factor for the transformation is at once obtained. Thus, in the above example, the value of l was $I / 3$, and the power involved in the expression for volume was 3 ; hence the factor for transforming from cubic feet to cubic yards was l^{3} or $1 / 3^{3}$ or $\mathrm{I} / 27$. These factors will be called conversion factors.

To find the symbolic expression for the conversion factor for any physical quantity, it is sufficient to determine the degree to which the quantities length, mass, time, etc., are involved. Thus a velocity is expressed by the ratio of the number representing a length to that representing an interval of time, or $[L / T]$, and acceleration by a velocity number divided by an interval-of-time number, or $\left[L / T^{2}\right]$, and so on, and the corresponding ratios of units must therefore enter in precisely the same degree. The factors would thus be for the just stated cases, $[l / t]$ and $\left[l / t^{2}\right]$. Equations of the form above given for velocity and acceleration which show the dimensions of the quantity in terms of the fundamental units are called dimensional equations. Thus $[E]=\left[M L^{2} T^{-2}\right]$ will be found to be the dimensional equation for energy, and $\left[M L^{2} T^{-2}\right]$ the dimensional formula for it. These expressions will be distinguished from the conversion factors by the use of bracketed capital letters.

In general, if we have an equation for a physical quantity,

$$
Q=C L^{a} M^{b} T^{c},
$$

where C is a constant and L, M, T represent length, mass, and time in terms of one set of units, and it is desired to transform to another set of units in terms of which the length, mass, and time are L_{i}, M_{i}, T_{l}, we have to find the value of $L_{l} / L, M_{l} / M, T_{l} / T$, which, in accordance with the convention adopted above, will be l, m, t, or the ratios of the magnitudes of the old to those of the new units.
Thus $L_{1}=L l, M_{1}=M m, T_{1}=T t$, and if Q_{1} be the new quantity number,

$$
\begin{aligned}
Q_{1} & =C L_{,}{ }^{a} M_{,}^{b} T_{c}^{c}, \\
& =C L^{a} l^{c} M^{b} m^{b} T^{c} t^{c}=Q l^{a} m^{b} t^{c},
\end{aligned}
$$

or the conversion factor is $\left[l^{a} m^{b} c^{c}\right]$, a quantity precisely of the same form as the dimension formula [$\left.L^{a} M^{b} T^{c}\right]$.

Dimensional equations are useful for checking the validity of physical equations. Since physical equations must be homogeneous, each term appearing in them must be dimensionally equivalent. For example, the distance moved by a uniformly accelerated body is $s=v_{0} t+\frac{1}{2} a t^{2}$. The corresponding dimensional equation is $[L]=[(L / T) T]+\left[\left(L / T^{2}\right) T^{2}\right]$, each term reducing to $[L]$.

Dimensional considerations may often. give insight into the laws regulating physical phenomena. ${ }^{1}$ For instance Lord Rayleigh, in discussing the intensity
${ }^{1}$ See "On Physically Similar Systems; Illustrations of the Use of Dimensional Equations." E. Buckingham, Physical Review, (2) 4, p. 345, 1914.

Absolute Force of a Center of Attraction, or "Strength of a Center," is the intensity of force at unit distance from the center, and is the force per unit mass at any point multiplied by the square of the distance from the center. The dimensional formula is $\left[F L^{2} M^{-1}\right]$ or $\left[L^{3} T^{-2}\right]$.

Modulus of Elasticity is the ratio of stress intensity to percentage strain. The dimensional of percentage strain, a length divided by a length, is unity. Hence the dimensional formula of a modulus of elasticity is that of stress intensity [$M L^{-1} T^{-2}$].
Work is done by a force when the point of application of the force, acting on a body, moves in the direction of the force. It is measured by the product of the force and the displacement. The dimensional formula is $[F L]$ or $\left[M L^{2} T^{-2}\right]$.

Energy. - The work done by the force produces either a change in the velocity of the body or a change of its shape or configuration, or both. In the first case it produces a change of kinetic energy, in the second, of potential energy. The dimensional formulae of energy and work, representing quantities of the same kind, are identical [$\left.M L^{2} T^{-2}\right]$.

Resilience is the work done per unit volume of a body in distorting it to the elastic limit or in producing rupture. The dimensional formula is $\left[M L^{2} T^{-2} L^{-3}\right]$ or $\left[M L^{-1} T^{-2}\right]$.
Power or Activity is the time rate of doing work, or if W represents work and P power, $P=d w / d t$. The dimensional formula is $\left[W T^{-1}\right]$ or $\left[M L^{2} T^{-3}\right]$, or for problems in gravitation units more conveniently $\left[F L T^{-1}\right]$, where F stands for the force factor.

Exs. - Find the number of gram-cms in one ft.-pd. Here the units of force are the attraction of the earth on the pound and the gram of matter. (In problems like this the terms "grams" and "pd." refer to force and not to mass.) The conversion factor is [$f l$], where f is 453.59 and l is 30.48 . The answer is $453.59 \times 30.48=13825$.

Find the number of ft .-poundals in 1000000 cm -dynes. Here $m=1 / 453.59, l=1 / 30.48$, $t=1 ; m l^{2} t^{-2}=1 / 453.59 \times 30.48^{2}$, and $10^{6} m l^{2} t^{-2}=10^{6} / 453.59 \times 30.48^{2}=2.373$.

If gravity produces an acceleration of $32.2 \mathrm{ft} . / \mathrm{sec}$. $/ \mathrm{sec}$., how many watts are required to make one horse-power? One horse-power is 550 ft .-pds. per sec., or $550 \times 32.2=177 \mathrm{IO} \mathrm{ft}$.-poundals per second. One watt is 10^{7} ergs per sec., that is, 10^{7} dyne-cms per sec. The conversion factor is [$m l^{2} t^{-3}$], where m is $453.59, l$ is 30.48 , and t is r , and the result has to be divided by 10^{7}, the number of dyne-cms per sec. in the watt. $17710 m^{2} t^{-3} / 10^{7}=17710 \times 453.59 \times 30.48^{2} / 10^{7}$ $=746.3$.

HEAT UNITS.

Quantity of Heat, measured in dynamical units, has the same dimensions as energy $\left[M L^{2} T^{-2}\right]$. Ordinary measurements, however, are made in thermal units, that is, in terms of the amount of heat required to raise the temperature of a unit mass of water one degree of temperature at some stated temperature. This involves the unit of mass and some unit of temperature. If we denote temperature numbers by θ, the dimensional formula for quantity of heat, H, will be $[M \theta]$. Unit volume is sometimes used instead of unit mass in the measurement of heat, the units being called thermometric units. The dimensional formula now changed by the substitution of volume for mass is [$\left.L^{3} \theta\right]$.

Specific Heat is the relative amount of heat, compared with water as standard substance, required to raise unit mass of different substances one degree in temperature and is a simple number.

Coefficient of Thermal Expansion of a substance is the ratio of the change of length per unit length (linear), or change of volume per unit volume (voluminal), to the change of temperature. These ratios are simple numbers, and the change of temperature varies inversely as the magnitude of the unit of temperature. The dimensional formula is $\left[\theta^{-1}\right]$.

Thermal Conductivity, or Specific Conductance, is the quantity of heat, H, transmitted per unit of time per unit of surface per unit of temperature gradient. The equation for conductivity is therefore $K=H / L^{2} T \theta / L$, and the dimensional formula $[H / \theta L T]=\left[M L^{-1} T^{-1}\right]$ in thermal units. In thermometric units the formula becomes $\left[L^{2} T^{-1}\right]$, which properly represents diffusivity, and in dynamical unjts [$M L T^{-3} \theta^{-1}$].

Thermal Capacity is mass times the specific heat. The dimensional formula is $[M]$.

Latent Heat is the quantity of heat required to change the state of a body divided by the quantity of matter. The dimensional formula is $[M \theta / M]$ or $[\Theta]$; in dynamical units it is $\left[L^{2} T^{-2}\right]$.

Note. - When θ is given the dimensional formula $\left[L^{2} T^{-2}\right]$, the formulae in thermal and dynamical units are identical.

Joule's Equivalent, J, is connected with the quantity of heat by the equation $M L^{2} T^{-2}=J H$ or $J M \Theta$. The dimensional formula of J is $\left[L^{2} T^{-2} \theta^{-1}\right]$. In dynamical units J is a simple number.

Entropy of a body is directly proportional to the quantity of heat it contains and inversely proportional to its temperature. The dimensional formula is $[M \theta / \theta]$ or $[M]$. In dynamical units the formula is $\left[M L^{2} T^{-2} \Theta^{-1}\right]$.

Exs. - Find the relation between the British thermal unit, the large or kilogram-calorie and the small or gram-calorie, sometimes called the "therm." Referring all the units to the same temperature of the standard substance, the British thermal unit is the amount of heat required to warm one pound of water $\mathrm{I}^{\circ} \mathrm{C}$, the large caloric, a kilogram of water, $\mathrm{I}^{\circ} \mathrm{C}$, the small calorie or therm, I gram, $\mathrm{I}^{\circ} \mathrm{C}$. (I) To find the number of kg-cals. in one British thermal unit. $m=.45359, \theta=5 / 9 ; m \theta=.45359 \times 5 / 9=.25199$. (2) To find the number therms in one kg-cal. $m=1000$, and $\theta=1 ; m \theta=1000$. (3) Hence the number of small calories or therms in one British thermal unit is $1000 \times .25199=251.99$.

ELECTRIC AND MAGNETIC UNITS.

A system of units of electric and magnetic quantities requires four funaamental quantities. A system in which length, mass, and time constitute three of the fundamental quantities is known as an "absolute" system. There are two absolute systems of electric and magnetic units. One is called the electrostatic, in which the fourth fundamental quantity is the dielectric constant, and one is called the electromagnetic, in which the fourth fundamental quantity is magnetic permeability. Besides these two systems there will be described a third in common use called the "international" system.

In the electrostatic system, unit quantity of electricity, Q, is the quantity which exerts unit mechanical force upon an equal quantity a unit distance from it in a vacuum. From this definition the dimensions and the units of all the other electric and magnetic quantities follow through the equations of the mathematical theory of electromagnetism. The mechanical force between two quantities of electricity in any medium is

$$
F=\frac{Q Q^{\prime}}{K r^{2}},
$$

where K is the dielectric constant, characteristic of the medium, and r the distance between the two points at which the quantities Q and Q^{\prime} are located. K is the fourth quantity entering into dimensional expressions in the electrostatic system. Since the dimensional formula for force is $\left[M L T^{-2}\right]$, that for Q is

The electromagnetic system is based upon the unit of the magnetic pole strength. The dimensions and the units of the other quantities are built up from this in the same manner as for the electrostatic system. The mechanical force between two magnetic poles in any medium is

$$
F=\frac{m m^{\prime}}{\mu r^{2}}
$$

in which μ is the permeability of the medium and r is the distance between two poles having the strengths m and $m^{\prime} . \mu$ is the fourth quantity entering into dimensional expressions in the electromagnetic system. It follows that the dimensional expression for magnetic pole strength is $\left[M^{\frac{1}{2}} L^{\frac{3}{3}} T^{-1} \mu^{\frac{1}{2}}\right]$.
The symbols K and μ are sometimes omitted in the dimensional formulae so that only three fundamental quantities appear. There are a number of objections to this. Such formulae give no information as to the relative magnitudes of the units in the two systems. The omission is equivalent to assuming some relation between mechanical and electrical quantities, or to a mechanical explanation of electricity. Such a relation or explanation is not known.

The properties K and μ are connected by the equation $\mathrm{I} / \sqrt{K \mu}=v$, where v is the velocity of an electromagnetic wave. For empty space or for air, K and μ being measured in the same units, $I / \sqrt{K \mu}=c$, where c is the velocity of light in vacuo, $3 \times 10^{10} \mathrm{~cm}$ per sec. It is sometimes forgotten that the omission of the dimensions of K or μ is merely conventional. For instance, magnetic field intensity and magnetic induction apparently have the same dimensions when μ is omitted. This results in confusion and difficulty in understanding the theory of magnetism. The suppression of μ has also led to the use of the "centimeter" as a unit of capacity and of inductance; neither is physically the same as length.

ELECTROSTATIC SYSTEM.

Quantity of Electricity has the dimensional formula [$M^{\frac{1}{3}} L^{\frac{3}{2}} T^{-1} K^{\frac{1}{2}}$], as shown above.

Electric Surface Density of an electrical distribution at any point on a surface is measured by the quantity per unit area. The dimensional formula is the ratio of the formulae for quantity of electricity and for area or $\left[M^{\frac{1}{3}} L^{-\frac{1}{2}} T^{-1} K^{\frac{1}{2}}\right]$.

Electric Field Intensity is measured by the ratio of the force on a quantity of electricity at a point to the quantity of electricity. The dimensional formula is therefore the ratio of the formulae for force and electric quantity or $\left[M L T^{-2} / M^{\frac{1}{2}} L^{\frac{3}{2}} T^{-1} K^{\frac{1}{2}}\right]$ or $\left[M^{\frac{1}{2}} L^{-\frac{1}{2}} T^{-1} K^{-\frac{1}{2}}\right]$.

Electric Potential and Electromotive Force. - Change of potential is proportional to the work done per unit of electricity in producing the change. The dimensional formula is the ratio of the formulae for work and electrical quantity or $\left[M L^{2} T^{-2} / M^{\frac{1}{2}} L^{\frac{3}{2}} T^{-1} K^{\frac{1}{2}}\right]$ or $\left[M^{\frac{1}{2}} L^{\frac{1}{2}} T^{-1} K^{-\frac{1}{2}}\right]$.

Capacity of an Insulated Conductor is proportional to the ratio of the quantity of electricity in a charge to the potential of the charge. The dimensional formula is the ratio of the two formulae for electric quantity and potential or $\left[M^{\frac{1}{2}} L^{\frac{3}{2}} T^{-1} K^{\frac{1}{2}} / M^{\frac{1}{2}} L^{\frac{1}{2}} T^{-1} K^{-\frac{1}{2}}\right]$ or $[L K]$.

Specific Inductive Capacity is the ratio of the inductive capacity of the substance to that of a standard substance and therefore is a number.

Electric Current is quantity of electricity flowing past a point per unit of time. The dimensional formula is the ratio of the formulae for electric quantity and for time or $\left[M^{\frac{1}{2}} L^{\frac{3}{2}} T^{-1} K^{\frac{1}{2}} / T\right]$ or $\left[M^{\frac{1}{2}} L^{\frac{3}{2}} T^{-2} K^{\frac{1}{2}}\right]$.

Electrical Conductivity, like the corresponding term for heat, is quantity per unit area per unit potential gradient per unit of time. The dimensional formula is $\left[M^{\frac{1}{2}} L^{\frac{1}{2}} T^{-1} K^{\frac{1}{2}} / L^{2}\left(M^{\frac{1}{2}} L^{\frac{1}{2}} T^{-1} K^{-\frac{1}{3}} / L\right) T\right]$ or $\left[T^{-1} K\right]$.

Resistivity is the reciprocal of conductivity. The dimensional formula is [T K ${ }^{-1}$].

Conductance of any part of an electric circuit, not containing a source of electromotive force, is the ratio of the current flowing through it to the difference of potential between its ends. The dimensional formula is the ratio of the formulae for current and potential or $\left[M^{\frac{1}{2}} L^{\frac{3}{2}} T^{-2} K^{\frac{1}{2}} / M^{\frac{1}{2}} L^{\frac{1}{2}} T^{-1} K^{-\frac{1}{2}}\right]$ or $\left[L T^{-1} K\right]$.

Resistance is the reciprocal of conductance. The dimensional formula is $\left[L^{-1} T K^{-1}\right]$.

Exs. - Find the factor for converting quantity of electricity expressed in ft.-grain-sec. units to the same expressed in c.g.s. units. The formula is [$m^{\frac{1}{2}} l^{\frac{3}{2}} t^{-1} k^{\frac{1}{2}}$], in which $m=0.0648$, $l=30.48, t=\mathrm{I}, k=\mathrm{I}$; the factor is $0.0648 \frac{1}{3} \times 30.48^{3}$, or 42.8 .

Find the factor required to convert electric potential from mm-mg-sec. units to c.g.s. units. The formula is $\left[m^{\frac{1}{l} l} \frac{l}{2} t^{-1} k^{-\frac{1}{2}}\right]$, in which $m=0.00 \mathrm{I}, l=0.1, t=1, k=1$; the factor is $0.001^{\frac{1}{2}}$ $\times 0 . \mathrm{I}^{\frac{1}{2}}$, or o.or.

Find the factor required to convert electrostatic capacity from ft.-grain-sec. and specificinductive capacity 6 units to c.g.s. units. The formula is $[l k]$ in which $l=30.48, k=6$; the factor is 30.48×6, or 182.88 .

ELECTROMAGNETIC SYSTEM.

Many of the magnetic quantities are analogues of certain electric quantities. The dimensions of such quantities in the electromagnetic system differ from those of the corresponding electrostatic quantities in the electrostatic system only in the substitution of permeability μ for K.
ence standards are accurately compared copies, not necessarıy duplicates, of the primaries for use in the work of standardizing laboratories and the production of working standards for everyday use.

Standard of Length. - The primary standard of length which now almost universally serves as the basis for physical measurements is the meter. It is defined as the distance between two lines at $0^{\circ} \mathrm{C}$ on a platinum-iridium bar deposited at the International Bureau of Weights and Measures. This bar is known as the International Prototype Meter, and its length was derived from the "métre des Archives," which was made by Borda. Borda, Delambre, Laplace, and others, acting as a committee of the French Academy, recommended that the standard unit of length should be the ten-millionth part of the length, from the equator to the pole, of the meridian passing through Paris. In 1795 the French Republic passed a decree making this the legal standard of length, and an arc of the meridian extending from Dunkirk to Barcelona was measured by Delambre and Mechain for the purpose of realizing the standard. From the results of that measurement the meter bar was made by Borda. The meter is now defined as above and not in terms of the meridian length; hence subsequent measures of the length of the meridian have not affected the length of the meter.

Standard of Mass. - The primary standard of mass now almost universally used as the basis for physical measurements is the kilogram. It is defined as the mass of a certain piece of platinum-iridium deposited at the International Bureau of Weights and Measures. This standard is known as the International Prototype Kilogram. Its mass is equal to that of the older standard, the "kilogram des Archives," made by Borda and intended to have the same mass as a cubic decimeter of distilled water at the temperature of $4{ }^{\circ} \mathrm{C}$.

Copies of the International Prototype Meter and Kilogram are possessed by the various governments and are called National Prototypes.

Standard of Time. - The unit of time universally used is the second. It is the mean solar second, or the 86400th part of the mean solar day. It is founded on the average time required for the earth to make one rotation on its axis relatively to the sun as a fixed point of reference.

Standard of Temperature. - The standard scale of temperature as adopted by the International Committee of Weights and Measures (I887) depends on the constant-volume hydrogen thermometer. The hydrogen is taken at an initial pressure at $0^{\circ} \mathrm{C}$ of one meter of mercury, $0^{\circ} \mathrm{C}$, sea-level at latitude 45°. The scale is defined by designating the temperature of melting ice as \circ° and of condensing steam as 100° under standard atmospheric pressure. This is known as the Centigrade scale (abbreviated C).

A scale independent of the properties of any particular substance, and called the thermodynamic, or absolute scale, was proposed in 1848 by Lord Kelvin. In it the temperature is proportional to the average kinetic energy per molecule of a perfect gas. The temperature of melting ice is taken as 273.13°, that of the boiling point, 373.13°. The scale of the hydrogen thermometer varies from it only in the sense that the behavior of hydrogen departs from that of a perfect gas. It is customary to refer to this scale as the Kelvin scale (abbreviated K).

NUMERICALLY DIFFERENT SYSTEMS OF UNITS.

The fundamental physical quantities which form the basis of a system for measurements have been chosen and the fundamental standards selected and made. Custom has not however generally used these standards for the measurement of the magnitudes of quantities but rather multiples or submultiples of them. For instance, for very small quantities the micron (μ) or one-millionth of a meter is often used. The following table ${ }^{1}$ gives some of the systems proposed, all built upon the fundamental standards already described. The centi-meter-gram-second (cm-g-sec. or c.g.s.) system proposed by Kelvin is the only one generally accepted.

Table 1.
PROPOSED SYSTEMS OF UNITS.

	Weber • and Gauss	Kelvin c.g.s.	$\begin{gathered} \text { Moon } \\ \text { r} 89 \mathrm{r} \end{gathered}$	Giorgi MKS (Prim. Stds.)	France r9I4	B. A. Com., 1863	Practical (B. A. Com., 1873)	Strout r89
Length	mm	cm	dm	m	m	m	$10^{9} \mathrm{~cm}$	$10^{9} \mathrm{~cm}$
Mass	mg	g	Kg	Kg	$10^{6} \mathrm{~g}$	g	$10^{-11} \mathrm{~g}$	$10^{-9} \mathrm{~g}$
Time	sec.							

Further the choice of a set of fundamental physical quantities to form the basis of a system does not necessarily determine how that system shall be used in measurements. In fact, upon any sufficient set of fundamental quantities, a great many different systems of units may be built. The electrostatic and electromagnetic systems are really systems of electric quantities rather than units. They were based upon the relationships $F=Q Q^{\prime} / K r^{2}$ and $m m^{\prime} / \mu r^{2}$, respectively. Systems of units built upon a chosen set of fundamental physical quantities may differ in two ways: (г) the units chosen for the fundamental quantities may be different; (2) the defining equations by which the system is built may be different.

The electrostatic system generally used is based on the centimeter, gram, second, and dielectric constant of a vacuum. Other systems have appeared, differing from this in the first way, - for instance using the foot, grain and second in place of the centimeter, gram and second. A system differing from it in the second way is that of Heaviside which introduces the factor 4π at difierent places than is usual in the equations. There are similarly several systems of electromagnetic units in use.

Gaussian Systems. - "The complexity of the interrelations of the units is increased by the fact that not one of the systems is used as a whole, consistently for all electromagnetic quantities. The 'systems' at present used are therefore combinations of certain of the systems of units.

[^2] quent matter in this introduction is based upon this circular.
"Some writers ${ }^{1}$ on the theory of electricity prefer to use what is called a Gaussian system, a combination of elec trostatic units for purely electrical quantities and electromagnetic units for magnetic quantities. There are two such Gaussian systems in vogue, - one a combination of c.g.s. electrostatic ånd c.g.s electromagnetic systems, and the other a combination of the two corresponding Heaviside systems.
"When a Gaussian system is used, caution is necessary when an equation contains both electric and magnetic quantities. A factor expressing the ratio between the electrostatic and electromagnetic units of one of the quantities has to be introduced. This factor is the first or second power of c, the number of electrostatic units of electric charge in one electromagnetic unit of the same. There is sometimes a question as to whether electric current is to be expressed in electrostatic or electromagnetic units, since it has both electric and magnetic attributes. It is usually expressed in electrostatic units in the Gaussian system."

It may be observed from the dimensions of K given in Table 1 that $[\mathrm{I} / K \mu]$ $=\left[L^{2} / T^{2}\right]$ which has the dimensions of a square of a velocity. This velocity was found experimentally to be equal to that of light, when K and μ were expressed in the same system of units. Maxwell proved theoretically that $\mathrm{I} / \sqrt{K \mu}$ is the velocity of any electromagnetic wave. This was subsequently proved experimentally. When a Gaussian system is used, this equation becomes $c / \sqrt{K \mu}$ $=\%$ For the ether $K=\mathrm{I}$ in electrostatic units and $\mu=\mathrm{I}$ in electromagnetic units. Hence $c=v$ for the ether, or the velocity of an electromagnetic wave in the ether is equal to the ratio of the c.g.s. electromagnetic to the c.g.s. electrostatic unit of electric charge. This constant c is of primary importance in electrical theory. Its most probable value is 2.9986×10^{10} centimeters per second.

[^3]The International Electric Units. - The units used in practical measurements, however, are the "International Units." They were derived from the "practical" system just described, or as the latter is sometimes called, the "absolute" system. These international units are based upon certain concrete standards presently to be defined and described. With such standards electrical comparisons can be more accurately and readily made than could absolute measurements in terms of the fundamental units. Two electric units, the international ohm and the international ampere, were chosen and made as nearly equal as possible to the ohm and ampere of the "practical" or "absolute" system.

[^4]This system of units, sufficiently near to the "absolute" system for the purpose of electrical measurements and as a basis for legislation, was defined as follows:
" r . The International Ohm is the resistance offered to an unvarying electric current by a column of mercury at the temperature of melting ice, r4-452I grams in mass, of a constant cross-sectional area and of a length of ro6.300 centimeters.
" 2 . The International Ampere is the unvarying electric current which, when passed through a solution of nitrate of silver in water, in accordance with specification II attached to these Resolutions, deposits silver at the rate of 0.00111800 of a gram per second.
" 3. The International Volt is the electrical pressure which, when steadily applied to a conductor the resistance of which is one international ohm will pro.duce a current of one international ampere.
"4. The International Watt is the energy expended per second by an unvarying electric current of one international ampere under the pressure of one international volt."

In accordance with these definitions, a value was established for the electromotive force of the recognized standard of electromotive force, the Weston normal cell, as the result of international coöperative experiments in 1910. The value was I .0183 international volts at $20^{\circ} \mathrm{C}$.

The definitions by the 1908 International Conference supersede certain definitions adopted by the International Electrical Congress at Chicago in 1893. Certain of the units retain their Chicago definitions, however. They are as follows:
"Coulomb. As a unit of quantity, the International Coulomb, which is the quantity of electricity transferred by a current of one international ampere in one second.
"Farad. As a unit of capacity, the International Farad, which is the capacity of a condenser, charged to be a potential of one international volt by one international coulomb of electricity.
"Joule. As a unit of work, the Joule, which is equal to 10^{7} units of work in the c.g.s. system, and which is represented sufficiently well for practical use by the energy expended in one second by an international ampere in an international ohm.
"Henry. As the unit of induction, the Henry, which is the induction in a circuit when the electromotive force induced in this circuit is one international volt, while the inducing current varies at the rate of one ampere per second."
"The choice of the ohm and ampere as fundamental was purely arbitrary. These are the two quantities directly measured in absolute electrical measurements. The ohm and volt have been urged as more suitable for definition in terms of arbitrary standards, because the primary standard of electromotive force (standard cell) has greater simplicity than the primary standard of current (silver voltameter). The standard cell is in fact used, together with resistance standards, for the actual maintenance of the units, rather than the silver voltameter and resistance standards. Again, the volt and ampere have some claim
for consideration for fundamental definition, both being units of quantities more fundamental in electrical theory than resistance."

For all practical purposes the "international" and the "practical" or "absolute" units are the same. Experimental determination of the ratios of the corresponding units in the two systems have been made and the mean results are given in Table 382. These ratios represent the accuracy with which it was possible to fix the values of the international ohm and ampere at the time they were defined (London Conference of 1908). It is unlikely that the definitions of the international units will be changed in the near future to make the agreement any closer. An act approved July 12, 1894, makes the International units as above defined the legal units in the United States of America.

THE STANDARDS OF THE INTERNATIONAL ELECTRICAL UNITS.

RESISTANCE
Resistance. - The definition of the international ohm adopted by the London Conference in 1908 is accepted practically everywhere.

Mercury Standards. - Mercury standards conforming to the definition were constructed in England, France, Germany, Japan, Russia and the United States. Their mean resistances agree to about two parts in 100,000. To attain this accuracy, elaborate and painstaking experiments were necessary. Tubes are never quite uniform in cross-section; the accurate measurement of the mass of mercury filling the tube is difficult, partly because of a surface film on the walls of the tube; the greatest refinements are necessary in determining the length of the tube. In the electrical comparison of the resistance with wire standards, the largest source of error is in the filling of the tube. These and other sources of error necessitated a certain uniformity in the setting up of mercury standards and at the London Conference the following specifications were drawn up:

SPECIFICATION RELATING TO MERCURY STANDARDS OF RESISTANCE.

The glass tubes used for mercury standards of resistance must be made of a glass such that the dimensions may remain as constant as possible. The tubes must be well annealed and straight. The bore must be as nearly as possible uniform and circular, and the area of cross-section of the bore must be approximately one square millimeter. The mercury must have a resistance of approximately one ohm.

Each of the tubes must be accurately calibrated. The correction to be applied to allow for the area of the cross-section of the bore not being exactly the same at all parts of the tube must not exceed 5 parts in ro,000.

The mercury filling the tube must be considered as bounded by plane surfaces placed in contact with the ends of the tube.

The length of the axis of the tube, the mass of mercury the tube contains, and the electrical resistance of the mercury are to be determined at a temperature as near to $0^{\circ} \mathrm{C}$ as possible. The measurements are to be corrected to $\circ^{\circ} \mathrm{C}$.

For the purpose of the electrical measurements, end vessels carrying connections for the current and potential terminals are to be fitted on to the tube. These end vessels are to be spherical in shape (of a diameter of approximately four centimeters) and should have cylindrical pieces attached to make connections with the tubes. The outside edge of each end of the tube
is to be coincident with the inner surface of the corresponding end vessel. The leads which make contact with the mercury are to be of thin platinum wire fused into glass. The point of entry of the current lead and the end of the tube are to be at opposite ends of a diameter of the bulb; the potential lead is to be midway between these two points. All the leads must be so thin that no error in the resistance is introduced through conduction of heat to the mercury. The filling of the tube with mercury for the purpose of the resistance measurements must be carried out under the same conditions as the filling for the determination of the mass.

The resistance which has to be added to the resistance of the tube to allow for the effect of the end vessels is to be calculated by the formula

$$
A=\frac{0.80}{1063 \pi}\left(\frac{\mathrm{I}}{r_{1}}+\frac{\mathrm{I}}{r_{2}}\right) \mathrm{ohm},
$$

where r_{1} and γ_{2} are the radii in millimeters of the end sections of the bore of the tube.
The mean of the calculated resistances of at least five tubes shall be taken to determine the value of the unit of resistance.

For the purpose of the comparison of resistances with a mercury tube the measurements shall be made with at least three separate fillings of the tube.

Secondary Standards. - Secondary standards, derived from the mercury standards and used to give values to working standards, are certain coils of manganin wire kept in the national laboratories. Their resistances are adjusted to correspond to the unit or its decimal multiples or submultiples. The values assigned to these coils are checked from time to time with the similar coils of the other countries. The value now in use is based on the comparison made at the U.S. Bureau of Standards in IgIo and may be called the "igio ohm." Later measurements on various mercury standards checked the value then used within 2 parts in 100,000 . Thus the basis of resistance measurement is maintained not by the mercury standards of a single laboratory, but by all the mercury standards of the various national laboratories; it is furthermore the same in all countries, except for very slight outstanding discrepancies due to the errors of measurement and variations of the standards with time.

Resistance Standards in Practice. - In ordinary measurements, working standards of resistance are usually coils of manganin wire (approximately 84 per cent $\mathrm{Cu}+\mathrm{I} 2$ per cent $\mathrm{Mn}+4$ per cent Ni). They are generally used in oil which carries away the heat developed by the current and facilitates regulation and measurement of the temperature. The best type is inclosed in a sealed case for protection against atmospheric humidity. Varying humidity changes the resistance of open coils often to several parts in 10,000 higher in summer than in winter. While sealed I ohm and o.I ohm coils may remain constant to about I part in 100,000.

Absolute Ohm. - The absolute measurement of resistance involves the precise determination of a length and a time (usually an angular velocity) in a medium of unit permeability. Since the dimensional formula of resistance in the electromagnetic system is $[L \mu / T]$, such an absolute measurement gives R not in $\mathrm{cm} / \mathrm{sec}$. but in $\mathrm{cm} \times \mu / \mathrm{sec}$. The definitions of the ohm, ampere and volt by the 1908 London conference tacitly assume a permeability equal to unity. The relation of the international ohm to the absolute ohm has been measured in different ways involving revolving coil, revolving disk, and alternate current methods. Probably the most accurate determination was made
in 1913 by F. E. Smith of the National Physical Laboratory of England, using a modification of the Lorentz revolving disk method. His result was
x international ohm $=\mathrm{I} .0005^{2} \pm 0.00004$ absolute ohms,
or, in other words, while one international ohm is represented by a mercury column 106.300 cm long as specified above, one absolute ohm requires a similar column 106.245 cm long. Table 305 of the 6th revised edition of these tables contains data relative to the various determinations of the ohm.

CURRENT.

The Silver Voltameter. - The silver voltameter is a concrete means of measuring current in accordance with the definition of the international ampere. As used for the realization of the international ampere "it consists of a platinum cathode in the form of a cup holding the silver nitrate solution, a silver anode partly or wholly immersed in the solution, and some means to prevent anode slime and particles of silver mechanically detached from the anode from reaching the cathode. As a standard representing the international ampere, the silver voltameter includes also the chronometer used to measure time. The degree of purity and the mode of preparation of the various parts of the voltameter affect the mass of the deposit. There are numerous sources of error, and the suitability of the silver voltameter as a primary standard of current has been under investigation since 1893 . Differences of as much as o.r per cent or more may be obtained by different procedures, the larger differences being mainly due to impurities produced in the electrolyte (by filter paper, for instance). Hence, in order that the definition of current be precise, it must be accompanied by specifications for using the voltameter."

The original specifications were recognized to be inadequate and an international committee on electrical units and standards was appointed to complete the specifications. It was also recognized that in practice standard cells would replace secondary current standards so that a value must be fixed for the electromotive force of the Weston normal cell. This was attempted in ig10 at the Bureau of Standards by representatives of that institution together with one delegate each from the Physikalische-Technische Reichanstalt, The National Physical Laboratory and the Laboratoire Central d'Electricité. Voltameters from all four institutions were put in series under a variety of experimental conditions. Standard Weston cells and resistance standards of the four laboratories were also intercompared. From the joint comparison of standard cells and silver voltameters particular values were assigned to the standard cells from each laboratory. The different countries thus have a common basis of measurement maintained by the aid of standard cells and resistance standards derived from the international voltameter investigation of 1910.

It was not found possible to draw up satisfactory and final specifications for the silver voltameter. Provisional specifications were submitted by the U. S. Bureau of Standards and more complete specifications have been proposed in correspondence between the national laboratories and members of the inter-
national committee since 1910, but no agreement upon final specifications has yet been reached.

Resistance Standards Used in Current Measurements. - Precise measurements of currents require a potentiometer, a standard cell and a resistance standard. The resistance must be so designed as to carry the maximum current without undue heating and consequent change of resistance. Accordingly the resistance metal must have a small temperature resistance coefficient and a sufficient area in contact with the air, oil, or other cooling fluid. It must have a small thermal electromotive force against copper. Manganin satisfies these conditions and is usually used. The terminals of the standard must have sufficient contact area so that there shall be no undue heating at contacts. ${ }^{1}$ It must be so designed that the current distribution does not depend upon the mode of connection to the circuit.

Absolute Ampere. - The absolute ampere ($\mathrm{Io}^{-1} \mathrm{c}$.g.s. electromagnetic units) differs by a negligible amount from the international ampere. Since the dimensional formula of the current in the electromagnetic system is $\left[L^{\frac{1}{2}} M^{\frac{1}{2}} / T \mu^{\frac{1}{2}}\right]$ which is equivalent to $\left[F^{\frac{1}{2}} / \mu^{\frac{1}{1}}\right]$, the absolute measurement of current involves fundamentally the measurement of a force in a medium of unit permeability. In most measurements of high precision an electrodynamometer has been used of the form known as a current balance. A summary of the various determinations will be found in Table 293 of the 6th Revised Edition of these tables.

The best value is probably the mean of the determinations made at the U. S. Bureau of Standards, the National Physical Laboratory and at the University of Gröningen, which gives

$$
\text { I international ampere }=0.9999 \mathrm{I} \text { absolute ampere } .
$$

The separate values were $0.9999^{2}, 0.99988$ and 0.99994 , respectively. "The result may also be expressed in terms of the electrochemical equivalent of silver, which, based on the 'r910 mean voltameter,' thus equals 0.00111810 g per absolute coulomb. By the definition of the international ampere, the value is $0.001 r 1800 \mathrm{~g}$ per international coulomb."

ELECTROMOTIVE FORCE.

International Volt. - "The international volt is derived from the international ohm and ampere by Ohm's law. Its value is maintained by the aid of the Weston normal cell. The national standardizing laboratories have groups of such cells, to which values in terms of the international ohm and ampere have been assigned by international experiments, and thus form a basis of reference for the standardization of the standard cells used in practical measurements."

Weston Normal Cell. - The Weston normal cell is the standard used to maintain the international volt and, in conjunction with resistance standards, to maintain the international ampere. The cell is a simple voltaic combination
${ }^{1}$ See "Report to the International Committee on Electrical Units and Standards," 1912, p. 199. For the Bureau of Standards investigations see Bull. Bureau of Standards, 9, pp. 209, 493; 10, p. 475, 1912-14; 13, p. 147, 1915; 9, p. 151, 1912: 13, pp. 447. 479, 1916.
difference which exists between the terminals of a resistance of one international ohm when the latter carries a current of one absolute ampere. The emf of the Weston normal cell may be taken as i.or821 semi-absolute volts at $20^{\circ} \mathrm{C}$.

QUANTITY OF ELECTRICITY.

The international unit of quantity of electricity is the coulomb. The faraday is the quantity of electricity necessary to liberate I gram equivalent in electrolysis. It is equivalent to 96,500 coulombs.

Standards. - There are no standards of electric quantity. The silver voltameter may be used for its measurement since under ideal conditions the mass of metal deposited is proportional to the amount of electricity which has flowed.

CAPACITY.

The unit generally used for capacity is the international microfarad or the one-millionth of the international farad. Capacities are commonly measured by comparison with standard capacities. The values of the standards are determined by measurement in terms of resistance and time. The standard is some form of condenser consisting of two sets of metal plates separated by a dielectric. The condenser should be surrounded by a metal shield connected to one set of plates rendering the capacity independent of the surroundings. An ideal condenser would have a constant capacity under all circumstances, with zero resistance in its leads and plates, and no absorption in the dielectric. Actual condensers vary with the temperature, atmospheric pressure, and the voltage, frequency, and time of charge and discharge. A well-constructed air condenser with heavy metal plates and suitable insulating supports is practically free from these effects and is used as a standard of capacity.

Practically air condenser plates must be separated by m m or mort and so cannot be of great capacity. The more the capacity is increased by approaching the plates, the less the mechanical stability and the less constant the capacity. Condensers of great capacity use solid dielectrics, preferably mica sheets with conducting plates of tinfoil. At constant temperature the best mica condensers are excellent standards. The dielectric absorption is small but not quite zero, so that the capacity of these standards with different methods of measurement must be carefully determined.

INDUCTANCE.

The henry, the unit of self-inductance, is also the unit of mutual inductance. The henry has been known as the "quadrant" and the "secohm." The length of a quadrant or quarter of the earth's circumference is approximately $10^{9} \mathrm{cms}$. and a henry is $10^{9} \mathrm{cms}$. of inductance. Secohm is a contraction of second and ohm; the dimensions of inductance are $[T R]$ and this unit is based on the second and ohm.

Inductance Standards. - Inductance standards are measured in international units in terms of resistance and time or resistance and capacity by alternate-
current bridge methods. Inductances calculated from dimensions are in absolute electromagnetic units. The ratio of the international to the absolute henry is the same as the ratio of the corresponding ohms.

Since inductance is measured in terms of capacity and resistance by the bridge method about as simply and as conveniently as by comparison with standard inductances, it is not necessary to maintain standard inductances. They are however of value in magnetic, alternating-current, and absolute electrical measurements. A standard inductance is a circuit so wound that when used in a circuit it adds a definite amount of inductance. It must have either such a form or so great an inductance that the mutual inductance of the rest of the circuit upon it may be negligible. It usually is a wire coil wound all in the same direction to make self-induction a maximum. A standard, the inductance of which may be calculated from its dimensions, should be a single layer coil of very simple geometrical form. Standards of very small inductance, calculable from their dimensions, are of some simple device, such as a pair of parallel wires or a single turn of wire. With such standards great care must be used that the mutual inductance upon them of the leads and other parts of the circuit is negligible. Any inductance standard should be separated by long leads from the measuring bridge or other apparatus. It must be wound so that the distributed capacity between its turns is negligible; otherwise the apparent inductance will vary with the frequency.

POWER AND ENERGY.

Power and energy, although mechanical and not primarily electrical quantities, are measurable with greater precision by electrical methods than in any other way. The watt and the electric units were so chosen in terms of the c.g.s. units that the product of the current in amperes by the electromotive force in volts gives the power in watts (for continuous or instantaneous values). The international watt, defined as "the energy expended per second by an unvarying electric current of one international ampere under an electric pressure of one international volt," differs but little from the absolute watt.

Standards and Measurements. - No standard is maintained for power or energy. Measurements are always made in electrical practice in terms of some of the purely electrical quantities represented by standards.

MAGNETIC UNITS.

C.G.S. units are generally used for magnetic quantities. American practice is fairly uniform in names for these units: the c.g.s. unit of magnetomotive force is called the "gilbert," of reluctance, the "oersted," following the provisional definitions of the American Institute of Electrical Engineers (i894). The c.g.s. unit of flux is called the "maxwell" as defined by the 1900 Paris conference. The name "gauss" is used unfortunately both for the unit of induction (A.I.E.E. 1894) and for the unit of magnetic field intensity or magnetizing force. "This double usage, recently sanctioned by engineering societies, is based upon the mathematical convenience of defining both induction and magnetizing force
as the force on a unit magnetic pole in a narrow cavity in the material, the cavity being in one case perpendicular, in the other parallel, to the direction of the magnetization: this definition however applies only in the ordinary electromagnetic units. There are a number of reasons for considering induction and magnetizing force as two physically distinct quantities, just as electromotive force and current are physically different."

In the United States "gauss" has been used much more for the c.g.s. unit of induction than for the unit of magnetizing force. The longer name of "maxwell per cm^{2} " is also sometimes used for this unit when it is desired to distinguish clearly between the two quantities. The c.g.s. unit of magnetizing force is usually called the "gilbert per cm."

A unit frequently used is the ampere-turn. It is a convenient unit since it eliminates 4π in certain calculations. It is derived from the "ampere turn per cm." The following table shows the relations between a system built on the ampere-turn and the ordinary magnetic units. ${ }^{1}$

Table II.
THE ORDINARY AND THE AMPERE-TURN MAGNETIC UNITS.

Quantity		Ordinary magnetic units.	Ampere-turn units.	Ordinary units in I ampereturn unit
Magnetomotive force	\mathfrak{F}	Gilbert	Ampere-turn	$4 \pi / 10$
Magnetizing force	H	Gilbert per cm.	Ampere-turn per cm.	$4 \pi / 10$
Magnetic flux	Φ	Maxwell	Maxwell	I
Magnetic induction	B	$\left\{\begin{array}{l}\text { Maxwell per } \\ \mathrm{cm} .^{2} \text { Gauss }\end{array}\right.$	$\left\{\begin{array}{l}\text { Maxwell per cm. }{ }^{2} \\ \text { Gauss }\end{array}\right.$	I
Permeability	μ			1
Reluctance	R	Oersted	$\left\{\begin{array}{l}\text { Ampere-turn per } \\ \text { Maxwell }\end{array}\right.$	$4 \pi / 10$
Magnetization intensity	J		Maxwell per cm. ${ }^{2}$	I/ 4π
Magnetic susceptibility	κ		Maxwell	$\mathrm{I} / 4 \pi$
Magnetic pole strength	m		Maxwell	I/ 4π

[^5]
PHYSICAL TABLES

Table 1.

SPELLING AND ABBREVIATIONS OF THE COMMON UNITS OF WEIGHT AND MEASURE.

The spelling of the metric units is that adopted by the International Committee on Weights and Measures and given in the law legalizing the metric system in the United States (1866). The period is omitted after the metric abbreviations but not after those of the customary system. The exponents " 2 " and " 3 " are used to signify area and volume respectively in the metric units. The use of the same abbreviation for singular and plural is recommended. It is also suggested that only small letters be used for abbreviations except in the case of A. for acre, where the use of the capital letter is general. The following list is taken from circular 87 of the U. S. Bureau of Standards.

Unit.	Abbreviation.	Unit.	Abbreviation.
acre	A	kilogram	kg
are	a	kiloliter	kl
avoirdupois	av.	kilometer	km
barrel	bbl.	link	li.
board foot	bd. ft.	liquid	liq.
bushel	bu.	- liter	1
carat, metric	c	meter	m
centare	ca	metric ton	t
centigram		micron	μ
centiliter	cl	mile	mi.
centimeter	cm	milligram	mg
chain	ch.	milliliter	ml
cubic centimeter	cm^{3}	millimeter	mm
cubic decimeter	dm^{3}	millimicron	$\mathrm{m} \mu$
cubic dekameter	dkm^{3}	minim	$\min \text {. or } m$
cubic foot cubic hectometer	$\begin{aligned} & \text { cu. ft. } \\ & \mathrm{hm}^{3} \end{aligned}$	ounce ounce, apothecaries'	oz. ${ }_{\text {oz. ap. or }}$
cubic inch	cu. in.	ounce, avoirdupois	oz. av.
cubic kilometer	km^{3}	ounce, fluid	fl. oz.
cubic meter	m^{3}	ounce, troy	oz. t.
cubic mile	cu. mi.	peck	pk.
cubic millimeter		pennyweight pint	dwt.
decigram	dg	pound	lb.
deciliter		pound, apothecaries'	lb. ap.
decimeter	dm	pound, avoirdupois	lb. av.
decistere	ds	pound, troy	lb. t.
dekagram	dkgr	quart	qt.
dekaliter		rod	rd.
dekameter	dkm	scruple, apothecaries'	s. ap. or $Э$
dekastere	dks	square centimeter	cm^{2}
dram dram, apothecaries'	dr. dr. ap. or 3	square chain	sq. ch.
dram, apothecaries dram, avoirdupois	dr. ap. or 5 dr. av.	square decimeter square dekameter	dkm^{2}
dram, fluid	fl. dr.	square foot	sq. ft.
fathom	fath.	square hectometer	hm^{2}
foot	ft .	square inch	sq. in.
firkin		square kilometer	km^{2}
furlong	fur.	square meter	
gallon	gal.	square mile	sq. mi.
grain	gr.	square millimeter	mm^{2}
gram		square rod	sq. rd.
hectare	ha	square yard	sq. yd.
hectogram	hg	stere	
hectoliter	hl	ton	tn.
hectometer	hm	ton, metric	
hogshead	hhd.	troy	t.
hundredweight inch	cwt. in.	yard	yd.

Conversion Factors.

To change a quantity from one system of units to another: substitute in the corresponding conversion factor from the following table the ratios of the magnitudes of the old units to the new and multiply the old quantity by the resulting number. For example: to reduce velocity in miles per hour to feet per second, the conversion factor is $l t^{-1} ; l=5280 / 1, t=3600 / \mathrm{I}$, and the factor is $5280 / 3600$ or $\mathbf{1} 467$. Or we may proceed as follows: e. g., to find the equivalent of I c.g.s. unit of angular momentum in the pd.ft.m. unit, from the Table $1 \mathrm{~g} \mathrm{~cm}^{2} / \mathrm{sec} .=x \mathrm{lb} . \mathrm{ft}^{2} / \mathrm{min}$, where x is the factor sought. Solving, $x=1 \mathrm{~g} / \mathrm{lb} . \times \mathrm{cm}^{2} / \mathrm{ft.}^{2} \times \mathrm{min} . / \mathrm{sec} .=1 \times .002205 \times .0010-6$ $\times 60=.0001425$.

The dimensional formulæ lack one quality which is needed for completeness, an indication of their vector characteristics; such characteristics distinguish plane and solid angle, torque and energy, illumination and brightness.

(a) Fundamental Units.

The fundamental units and conversion factors in the systems of units most commonly used are: Length $[l]$; Mass $[\mathrm{m}]$; Time $[t]$; Temperature $[\theta]$; and for the electrostatic system, Dielectric Constant [k]; for the electromagnetic system, Permeability [μ]. The formulae will also be given for the International System of electric and magnetic units based on the units length, resistance [r], current [i], and time.
(b) Derived Units.

Name of unit. (Geometrical and dynamical.).				Name of units. (Heat and light.)				
	x	y	z		x	${ }^{\text {y }}$	=	-
Area, surface	-	2	-	Quantity of heat:				
Volume..	-	3	-	thermal units......	1	\bigcirc	\bigcirc	1
Angle...	-	。	-	thermometric units. dynamical units	${ }^{\circ}$	3	-	$\stackrel{1}{\circ}$
Solid angle.	-	-	-					
Curvature..	-	-1	-	Coefficient of thermal				
Angular velocity	-	-	-1	expansion........	-	-	-	-
Linear velocity.	-	1	-1	Thermal conductivity:				
Angular acceleration..	-	-	-2	thermal units.......	1	-1	-1	-
Linear acceleration...	-	I	-2	thermometric units or diffusivity....	。	2	-1	
Density.	1	-3	-	dynamical units....	I	${ }_{1}$	-3	-1
Moment of inertia......	$\stackrel{1}{\circ}$	2	-2	Thermal capa	I	-	-	-
Momentum.	1	1		Latent heat:				
Moment of momentum.	I	2	-I	thermal units:	-	-	\bigcirc	${ }^{1}$
Angular momentum.	1	2	-1	dynamical units.	-	2	-2	-
Force............	1	1	-2	Joule's equivalent....	-	2	-2	I
Moment of couple, torque.............		2	-2	Entropy:				
Work, energy...........	I	2	${ }_{-2}$	heat in thermal units	1	-	-	-
				heat in dynamical units..........				
Power, activity..	I	${ }_{-1}^{2}$	-3 -2		1	2	-2	1
Modulus of elasticity....	1	-I	-2	Luminous intensity....	-	-	-	${ }^{1}$ *
Compressibility	-I	I		Illumination...........	\bigcirc	-2	\bigcirc	${ }_{1}{ }^{*}$
Resilience.		-1	-2	Visibility.	1	-2	3	${ }_{1}{ }^{*}$
Viscosity.	I	-	-	Luminous efficiency.	-	-2	3	${ }^{1} *$

[^6]TABLE 2 (continued).
FUNDAMENTAL AND DERIVED UNITS.
Conversion Factors.
(b) Derived Units.

[^7]TABLES FOR CONVERTING U. S. WEIGHTS AND MEASURES.*
(1) CUSTOMARY TO METRIC.

LINEAR.					CAPACITY.				
	Inches to millimeters.	Feet to meters.	Yards to meters.	$\begin{gathered} \text { Miles } \\ \text { to } \\ \text { kilometers. } \end{gathered}$		Fluid drams to miltiliters or cubic centimeters.	$\begin{gathered} \text { Fluid } \\ \text { ounces } \\ \text { to } \\ \text { milliliters. } \end{gathered}$	Liquid quarts to liters.	Gallons to liters.
1	25.4001	0.304801	0.914402	1.60935	I	3.70	29.57	0.94633	3.78533
2	508001	0.609601	1.828804	3.21869	2	7.39	59.15	1. 89267	7.57066
3	76.2002	0.914402	2.743205	4.82804	3	11.09	88.72	2.83900	I 1.35600
4	101.6002	1.219202	3.657607	6.43739	4	14.79	118.29	3.78533	15.14133
5	127.0003	1. 524003	4.572009	8.04674	5	18.48	147.87	4.73167	18.92666
6	152.4003	1.828804	5.486411	9.65608	6	22.18	177.44	5.67800	22.71199
7	177.8004	2.133604	6.400813	11.26543	7	25.88	207.01	6.62433	26.49733
8	203.2004	2.438405	7.315215	12.87478	8	29.57	236.58	7.57066	30.28266
9	228.6005	2.743205	8.229616	14.48412	9	33.27	266.16	8.51700	34.06799
SQUARE.					WEIGHT.				
	Square inches to square centimeters.	Square feet to square decimeters.	Square yards to square meters.	Acres to hectares.		Grains to millygrams.	Avoirdupois ounces to grams.	Avoirdupois pounds to kilograms.	Troy ounces to grams.
1	6.452	9.290	0.836	0.4047	1	64.7989	28.3495	0.45359	31.10348
2	12.903	18.581	1. 672	0.8094	2	129.5978	56.6991	0.90718	62.20696
3	19.355	27.871	2.508	1.2141	3	194.3968	85.0486	1.36078	93.31044
4	25.807	37.16I	$3 \cdot 345$	1.6187	4	259.1957	113.3981	ェ.81437	124.41392
5	32.258	46.452	4.181	2.0234	5	323.9946	141.7476	2.26796	155.51740
6	38.710	55.742	5.017	2.428 I	6	388.7935	170.0972	2.72155	186.62088
7	45.16I	65.032	5.853	2.8328	7	453.5924	198.4467	3.17515	217.72437
8	51.613	74.323	6.689	3.2375	8	518.3913	226.7962	3.62874	248.82785
9	58.065	83.613	$7 \cdot 525$	3.6422	9	583.1903	255.1457	4.08233	279.93133
CUBIC.					1 Gunter's chain $=20.1168$ meters. I sq. statute mile $=259.000$ hectares. 1 fathom $=1.829$ meters. I nautical mile $=1853.25$ meters. 1 foot $=0.304801$ meter. 1 avoir. pound $=453.5924277$ grams. 15432.35639 grains $=1.000$ kilogram.				
	Cubic inches to cubic centimeters.	Cubic feet to cubic meters.	Cubic yards to cubic meters	Bushels to hectoliters.					
I	16.387	0.02832	0.765	0.35239					
2	32.774	0.05663	1.529	0.70479					
3	49.161	0.08495	2.294	1.05718					
4	65.549	0.11327	3.058	1.40957					
5	81.936	0.14159	3.823	1.76196					
6	98.323	0.16990	$4 \cdot 587$	2.11436					
7	114.710	0. 19822	$5 \cdot 352$	2.46675					
8	131.097	0.22654	6.116	2.81914					
9	147.484	0.25485	6.88 I	3.17154					

According to an executive order dated April 15, 1893, the United States yard is defined as $3600 / 3937$ meter, and the avoirdupois pound as $1 / 2.20462$ kilogram.

I meter (international prototype) $=1553164.13$ times the wave-length of the red Cd. line. Benoit, Fabry and Perot. C. R. 144, t 7007 differs only in the decimal portion from the measure of Michelson and Benoit 14 years earlier.

The length of the nautical mile given above and adopted by the U. S. Coast and Geodetic Survey many years ago, is defined as that of a minute of arc of a great circle of a sphere whose surface equals that of the earth (Clarke's Spheroid of 1866).

* Quoted from sheets issued by the United States Burean of Standards.

Smithsonian tables.

TABLES FOR CONVERTING U. S. WEIGHTS AND MEASURES.
(2) METRIC TO CUSTOMARV.

By the concurrent action of the principal governments of the world an International Bureau of Weights and Measures has been established near Paris. Under the direction of the International Committee, two ingots were cast of pure platinum-iridium in the proportion of 9 parts of the former to I of the latter metal. From one of these a certain number of kilograms were prepared, from the other a definite number of meter bars. These standards of weight and length were intercompared, without preference, and certain ones were selected as International prototype standards. The others were distributed by lot, in September, 8889 , to the different governments, and are called National prototype standards. Those apportioned to the United States were received in 1890 , and are kept at the Bureall of Standards in Washington, D. C.

The metric system was legalized in the United States in 1866.
The International Standard Meter is derived from the Mètre des Archives, and its length is defined by the distance between two lines at \circ° Centigrade, on a platinum-iridium bar deposited at the International Bureau of Weights and Measures.

The International Standard Kilogram is a mass of platinum-iridium deposited at the same place, and its weight in vacuo is the same as that of the Kilngram des Archives.

The liter is equal to the quantity of pure water at $4^{\circ} \mathrm{C}(760 \mathrm{~mm} . \mathrm{Hg}$. pressure) which weighs y kilogram and $=$ t.006027 cu. dm. (Trav. et Mem. Bureau Intern. des P. et M. 14, 1910, Benoit.)
(For other equivalents than those below, see Table 3.)

LINEAR MEASURES.

I mil (.001 in.) $=25.4001 \mu$
x in. $=.000015783$ mile
r hand $(4 \mathrm{in})=.10.16002 \mathrm{~cm}$
m link $(.66 \mathrm{ft}$. $)=20.11684 \mathrm{~cm}$
I span. (9 in.) $=22.86005 \mathrm{~cm}$
1 fathom $(6 \mathrm{ft}$. $)=1.828804 \mathrm{~m}$
1 rod (25 links) $=5.029210 \mathrm{~m}$
I chain (4 rods) $=20.11684 \mathrm{~m}$
I light year $\left(9.5 \times 10^{12} \mathrm{~km}\right)=5.9 \times 10^{12}$ miles
I par sec $\left(31 \times 10^{12} \mathrm{~km}\right)=19 \times 10^{12}$ miles
${ }_{6}^{\frac{1}{4}} \mathrm{in} .=.397 \mathrm{~mm} \quad \frac{1}{32} \mathrm{in} .=.794 \mathrm{~mm}$
$\frac{1}{16} \mathrm{in} .=1.588 \mathrm{~mm} \quad \frac{1}{8} \mathrm{in} .=3.175 \mathrm{~mm}$
$\frac{1}{4} \mathrm{in} .=6.350 \mathrm{~mm} \quad \frac{1}{2} \mathrm{in} .=12.700 \mathrm{~mm}$
I Ångström unit $=.0000000001 \mathrm{~m}$
I micron $(\mu)=.00000$ I $\mathrm{m}=.00003937 \mathrm{in}$.
I millimicron $(\mathrm{m} \mu)=.000000001 \mathrm{~m}$
I $\mathrm{m}=4.970960$ links $=1.0936 \mathrm{II}$ yds.
$=.198838 \mathrm{rod}=.0497096$ chain

SQUARE MEASURES.

r sq. link (62.7264 sq. in. $)=404.6873 \mathrm{~cm}^{2}$ I sq. rod $(625$ sq. links $)=25.29295 \mathrm{~m}^{2}$
I sq. chain (r 6 sq. rods) $=404.6873 \mathrm{~m}^{2}$
I acre (io sq. chains) $=4046.873 \mathrm{~m}^{2}$
I sq. mile $(640$ acres $)=2.589998 \mathrm{~km}^{2}$
. $\mathrm{km}^{2}=.3861006$ sq. mile
I $\mathrm{m}^{2}=24.7104$ sq. links $=10.76387$ sq. ft .
$=.039537$ sq. rod. $=.00247104$ sq. chain

CUBIC MEASURES.

r board foot ($\mathrm{I} 44 \mathrm{cu} . \mathrm{in}$) $=2359.8 \mathrm{~cm}^{3}$
r cord ($\mathrm{r} 28 \mathrm{cu} . \mathrm{ft}$.) $=3.625 \mathrm{~m}^{3}$

CAPACITY MEASURES.

$\mathrm{I} \operatorname{minim}(\mathrm{m})=.0616102 \mathrm{ml}$
iff. dram $(60 \mathrm{~m})=3.6966 \mathrm{r} \mathrm{ml}$
i fl. oz. (8 fl. dr.) $=1.80469 \mathrm{cu} . \mathrm{in}$. $=29.5729 \mathrm{ml}$
1 gill (4 fl.oz.) $=7.21875 \mathrm{cu} . \mathrm{in} .=118.292$ ml
r liq. pt. $(28.875 \mathrm{cu} . \mathrm{in})=..473167 \mathrm{l}$
r liq. qt. $(57.75 \mathrm{cu} . \mathrm{in})=$.
I gallon (4 qt., 23r cu. in.) $=3.785332 \mathrm{l}$
I dry pt. $(33.6003 \mathrm{I} 25 \mathrm{cu} . \mathrm{in})=..550599 \mathrm{l}$
I dry qt. $(67.200625 \mathrm{cu} . \mathrm{in}$. $)=$ r.IOI 198 l
r pk. (8 dry qt., 537.605 cu . in. $)=8.809581$
r bu. $(4$ pk., $2150.42 \mathrm{cu} . \mathrm{in})=.35.2383 \mathrm{l}$
r firkin (9 gallons) $=34.06799 \mathrm{l}$
r liter $=.264178$ gal. $=$ I.05671 liq. qt. $=33.8147 \mathrm{fl} . \mathrm{oz} .=270.518 \mathrm{fl} . \mathrm{dr}$. $1 \mathrm{ml}=16.23 \mathrm{II}$ minims .
$\mathrm{Idkl}=18.620 \mathrm{dry} \mathrm{pt} .=9.08 \mathrm{IO} 2 \mathrm{dry}$ qt.
$=\mathrm{I} .13513 \mathrm{pk} .=.28378 \mathrm{bu}$.

MASS MEASURES.

Avoirdupois weights.
1 grain $=.064798918 \mathrm{~g}$
I dram av. $(27.34375 \mathrm{gr})=.1.771845 \mathrm{~g}$
1 oz av. (16 dr. av. $)=28.349527 \mathrm{~g}$
I pd. av. ($16 \mathrm{oz} . \mathrm{av}$. or 7000 gr .)
$=14.583333 \mathrm{oz}$. ap. (5) or oz. t.
$=1.2152778$ or $7000 / 5760 \mathrm{pd}$. ap or t .

$$
=453.5924277 \mathrm{~g}
$$

I $\mathrm{kg}=2.20462234 \mathrm{I}$ pd. av.
$\mathrm{Ig}=15.432356 \mathrm{gr} .=.5643833 \mathrm{av} . \mathrm{dr}$.
$=.03527396$ av. oz.
I short hundred weight (ioo pds.)
$=45.359243 \mathrm{~kg}$
I long hundred weight (112 pds.)
$=50.802352 \mathrm{~kg}$
I short ton (2000 pds.)
$=907.18486 \mathrm{~kg}$
I long ton (2240 pd .)
$=1016.04704 \mathrm{~kg}$
I metric ton $=0.98420640$ long ton
$=1.1023112$ short tons

Troy weights.

I pennyweight (dwt., 24 gr .) $=1.555174 \mathrm{~g}$; gr., oz., pd. are same as apothecary

A pothecaries' wieights.

I gr. $=64.7989 \mathrm{I} 8 \mathrm{mg}$
I scruple (Э, 20 gr .) $=1.2959784 \mathrm{~g}$
1 dram (3. 3, Э) $=3.887935 \mathrm{I} \mathrm{g}$
Ioz ($\overline{3}, 8$ 3) $=31.10348 \mathrm{I} \mathrm{g}$
I pd ($\mathrm{I} 2 \mathrm{~J}, 5760 \mathrm{gr}$. $)=373.24177 \mathrm{~g}$
$1 \mathrm{~g}=15.432356 \mathrm{gr} .=0.771618$ Э
$=0.2572059 \overline{5}_{\overline{3}}=.03215074$ 年
$\mathrm{r} \mathrm{kg}=32.150742 \overline{\mathrm{~J}}=2.679228 \mathrm{jpd}$.
I metric carat $=200 \mathrm{mg}=3.0864712 \mathrm{gr}$.
U. S. $\frac{1}{2}$ dollar should weigh 12.5 g and the smaller silver coins in proportion.

* Taken from Circular 47 of the U.S. Bureau of Standards, 1915, which see for more complete tables.

Table 5.

EQUIVALENTS OF METRIC AND BRITISH IMPERIAL WEIGHTS AND MEASURES.*

(1) METRIC TO IMPERIAL.
(For U.S. Weights and Measures, see Table 3.)

LINEAR MEASURE.

$\underset{(.001 \mathrm{~m} .)}{\mathrm{millimeter}}(\mathrm{mm}) \quad.\}=0.03937 \mathrm{in}$. i centimeter (.or m.) $=0.39370$ "
I decimeter (. Im) = 3.9370 I "
I Meter (m.) . . . $=\left\{\begin{array}{c}39.370113 \mathrm{ft} \\ 3.280843 \mathrm{ft} \\ 1.09361425\end{array}\right.$
I dekameter \} . = 10.936 I 4 "
(I om.)
$\left.\begin{array}{c}\text { ı hectometer } \\ \text { (100 m.) }\end{array}\right\} . \quad .=109.361425$
$\underset{(\mathrm{I}, 000 \mathrm{~m} .)}{\mathrm{I} \text { kilometer }}\} . .=0.62137$ mile.
$\underset{\substack{\text { (Io,000 m.) }}}{\text { myriameter }}\} . .=6.21372$ miles.
I micron $=0.001 \mathrm{~mm}$.

SQUARE MEASURE.

isq. centimeter . . $=0.1550 \mathrm{sq}$. in.
$\left.\begin{array}{l}\text { I sq. decimeter } \\ \text { (ioo sq. centm.) }\end{array}\right\}=15.500 \mathrm{sq}$. in.
I sq. meter or centi- $\}=\{10.7639$ sq. ft.
are (ioo sq. dcm.) $\}=\{$ i.1960 sq. yds.
I ARE (I 00 sq . m.) $=119.60 \mathrm{sq}$. yds.
$\left.\begin{array}{c}\text { I hectare (} 100 \mathrm{ares} \\ \text { or } 10,000 \mathrm{sq} . \mathrm{m} .)\end{array}\right\}=\quad 2.4711$ acres.

CUBIC MEASURE.

I cub. centimeter
(c.c.) $(\mathrm{r}, \infty 00$ cubic $\}=0.06 \mathrm{I} \circ$ cub. in. millimeters)
I cub. decimeter
$\left.\begin{array}{l}\left.\begin{array}{l}\text { (c.d.) (i,000 cubic } \\ \text { centimeters) }\end{array}\right\}=6 r .024 \text { "" } \quad \text { " }{ }^{\text {cub. decimeter }}\end{array}\right\}$
$\left.\begin{array}{c}\text { I CUB. METER } \\ \text { or stere }\end{array}\right\} . \quad .=\{35 \cdot 3148 \mathrm{cub} . \mathrm{ft}$. $\underset{(\mathrm{r}, 000 \text { c.d. })}{\text { or stere }}\} .=\left\{\begin{array}{r}35.3 \mathrm{I} 48 \mathrm{cub} . \mathrm{ft} . \\ \mathrm{I} .307954 \mathrm{cub} . \mathrm{yds} .\end{array}\right.$

MEASURE OF CAPACITY.

$\left.\begin{array}{l}\text { I mililiter (ml.) }(.001 \\ \text { liter) }\end{array}\right\}=0.0610$ cub. in.

1 deciliter (. 1 liter) $. \quad=0.176$ pint.
I Liter ($\mathrm{I}, 000$ cub.
centimeters or I $\}=1.75980$ pints.
cub. decimeter)
I dekaliter (ıoliters) . = 2.200 gallons.
I hectoliter (100 ") . = 2.75 bushels.
a kiloliter ($\mathrm{I}, 000$ ") . = 3.437 quarters.

APOTHECARIES' MEASURE.

I cubic centi- $\quad 0.035^{20}$ fluid ounce. meter $\quad(\mathrm{I}\}=\{0.28 \mathrm{r} 57$ fluid drachm. gram w't) \quad t 5.43236 grains weight.
I cub. millimeter $=0.01693 \mathrm{minim}$.

AVOIRDUPOIS WEIGHT.

I milligram (mgr.) . . = o.01 543 grain.
I centigram (.01 gram.) $=0.15432$
I decigram (.I ") $=1.54324$ grains.
I GRAM $=15.43236$
I dekagram (io gram.) $=5.64383$ drams.
i hectogram (100 ") $=3.52739 \mathrm{oz}$.
I KILOGRAM ($\mathrm{I}, 000$ " $)=\left\{\begin{array}{l}2.2046223 \mathrm{lt} \\ \mathrm{I} 5432.3564\end{array}\right.$
I KILOGRAM (1,000) $=\left\{\begin{array}{r}15432.3564 \\ \text { grains. }\end{array}\right.$
I myriagram (I o kilog.) $=22.04622 \mathrm{lbs}$.
I quintal (100 ") $=1.96841 \mathrm{cwt}$.
I millier or tonne $\}$
($\mathrm{I}, 000$ kilog.) $\} \cdot .=0.9842$ ton.

TROY WEIGHT.

I gram $\cdot \quad=\left\{\begin{array}{l}0.03215 \text { oz. Troy. } \\ 0.64301 \text { pennyweight. } \\ 15.43236 \text { grains. }\end{array}\right.$

APOTHECARIES' WEIGHT.
I GRAM $\cdot \cdots=\left\{\begin{array}{c}0.25721 \text { drachm. } \\ 0.77162 \text { scruple. } \\ 15.43236 \text { grains. }\end{array}\right.$

Note.-The Meter is the length, at the temperature of $n^{\circ} \mathrm{C}$., of the platinum-iridium bar deposited at the International Bureau of Weights and Measures at Sèvres, near Paris, France.

The present legal equivalent of the meter is 39.370 ± 13 inches, as above stated.
The Kilogram is the mass of a platinum-iridium weight deposited at the same place.
The Liter contains one kilogram weight of distilled water at its maximum density ($4^{\circ} \mathrm{C}$.), the barometer being at ; 60 millimeters.
*In accordance with the schedule adopted under the Weights and Measures (metric system) Act, 1897 .

EQUIVALENTS OF METRIC AND BRITISH IMPERIAL WEICHTS AND MEASURES.
(2) METRIC TO IMPERIAL.
(For U.S. Weights and Measures, see Table 3.)

LINEAR MEASURE.					MEASURE OF CAPACITY.				
	$\begin{aligned} & \text { Millimeters } \\ & \text { to } \\ & \text { inches. } \end{aligned}$	$\begin{gathered} \text { Meters } \\ \text { to } \\ \text { feet. } \end{gathered}$	Meters to yards.	Kilometers to miles.		Liters to pints	$\begin{aligned} & \text { Dekaliters } \\ & \text { to } \\ & \text { gallons } \end{aligned}$	$\begin{aligned} & \text { Hectoliters } \\ & \text { to } \\ & \text { busuels. } \end{aligned}$	Kiloliters to quarters.
I	0.03937011	3.2808 .4	1.09361	0.62137	I	1.75980	2.19975	2.74969	3.43712
2	0.07874023	6.56169	2.18723	1.24274	2	$3 \cdot 51961$	4.3995 I	$5.4993{ }^{\text {S }}$	6.87423
3	0.11811034	9.84253	3.28084	1.86412	3	5.27941	6.59926	8.24908	10.31135
4	0.15748045	13.12337	4.37446	2.48549	4	7.03921	8.79902	10.99877	13.74846
5	0.19685056	16.4042 I	$5 \cdot 46807$	3.10686	5	8.79902	10.99877	13.74846	17.1855^{8}
6	0.23622068	19.68506	6.56169	3.72823	6	10.55882	13.19852	16.49815	20.62269
7	0.27559079	22.96590	7.65530	4.34960	7	12.31862	15.39828	19.24785	24.05981
8	- 31496090	26.24674	8.74891	4.97097	8	14.07842	17.59803	21.99754	27.49692
9	0.35433102	29.52758	9.84253	$5 \cdot 59235$	9	15.83823	19.79778	24.74723	30.93404
SQUARE MEASURE.					WEIGHT (Avoirdupois).				
	Square centimeters to square mehes.	Square meters to square feet.	Square meters to square yards.	Hectares to acres.		Milligrams to grains.	Kilograms to grains.	Kilograms to pounds.	$\begin{aligned} & \text { Quintals } \\ & \text { to } \\ & \text { hundred- } \\ & \text { weights. } \end{aligned}$
1	0. 15500	10.76393	I. 19599	2.4711	1	0.01543	I 5432.356	2.20462	1.96841
2	0.31000	21.52786	2.39198	4942 I	2	0.03086	30864.713	4.40924	3.9 .3633
3	0.46500	32.29179	$3 \cdot 58798$	7.4132	3	0.04630	46297.069	6.61387	5.90524
4	0.62000	43.05572	4.78397	9.8842	4	0.06173	61729.426	8.81849	7.87365
5	0.77500	53.81965	5.97996	12.3553	5	0.07716	77161.782	11.0231I	9.84206
6	0.93000	64.58357	7.17595	14.8263	6	0.09259	92594.138	13.22773	11.81048
7	1.08500	75.34750	8.37194	17.2974	7	0.10803	108026.495	15.43236	13.77889
8	1.24000	8611143	9.56794	19.7685	8	0.12346	123458.851	17.63698	15.74730
9	1.39501	96.87536	10.76393	22.2395	9	0.13889	138891.208	19.84160	17.71572
CUBIC MEASURE.				Apothecaries' Measure.	Avoirdupors (cont.)		Troy Weight.		Apothecaries' Weight.
	Cubic decimeters to cubic inches.	Cubic meters to cubic feet.	Cubic meters to cubic yards.	Cub. centimeters to fluid drachms.		Milliers or tonnes to tons.	Grams to ounces Troy.	Granis to pennyweights.	Grams to scruples.
1	61.02390	35.31476	1. 30795	0.28157	I	0.98421	0.03215	0.64301	0.77162
2	122.04781	70.62952	2.61591	0.56314	2	1.96841	0.06430	1.28603	1.54324
3	183.07171	105.94428	3.92386	0.84471	3	2.95262	0.09645	I. 92904	2.31485
4	244.09561	141.25904	5.23182	1.12627	4	3.93683	0.12860	2.57206	3.08647
5	305.11952	176.57379	6.53977	1.40784	5	4.92103	0. 16075	3.21507	3.85809
6	366.14342	211.88855	7.84772	1.6894 I	6	5.90524	0.19290	3.85809	4.62971
7	427.16732	247.20331	9.15568	1.97098	7	6.88944	0.22506	4.50110	5.40132
8	488.19123	282.51807	10.46363	2.25255	8	7.87365	0.25721	5.14412	6.17294
9	549.21513	317.83283	11.77159	2.53412	9	8.85786	0.28936	5.78713	6.94456

Smithsonian Tables.

LINEAR MEASURE.

I inch $=\{25.400$ milli-
I foot (I 2 in .) . $=0.304 \mathrm{So}$ meter.
I YARD (3 ft. .).$=0.914399$ "
I pole ($5 \frac{1}{2} \mathrm{yd}$.) . $=5.0292$ meters.
$\left.\begin{array}{c}\text { I chain (22 yd. or } \\ \text { Ioo links) }\end{array}\right\}=20.1168$ "
I furlong (220 yd .) $=201.168$ "
I mile (1,760 yd. $)=\left\{\begin{array}{l}1.6093 \text { kilo. } \\ \text { meters. }\end{array}\right.$

SQUARE MEASURE.

$$
\text { I rood }(40 \text { perches })=\quad 10.117 \text { ares. }
$$

$$
\text { I ACRE }(4840 \text { sq. yd. })=0.40468 \text { hectare. }
$$

$$
\text { i sq. mile }(640 \text { acres })=\{259.00 \text { hectares. }
$$

CUBIC MEASURE.

I cub. inch $=16.387$ cub. centimeters.
$\left.\begin{array}{l}\text { I cub. foot } \\ \text { cub. in.) }\end{array}\right)=\left\{\begin{array}{c}0.028317 \text { cub. me- } \\ \text { ter, or } 28.317 \\ \text { cub. decimeters. }\end{array}\right.$
$\begin{aligned} & \begin{array}{l}\text { CUB. YARD } \\ \text { cub. ft.) }\end{array}\end{aligned}(27\}=0.76455$ cub. meter.

APOTHECARIES' MEASURE.

$\left.\begin{array}{l}\text { I gallon (8 pints or } \\ \text { 160 fluid ounces })\end{array}\right\}=4.545963$ I liters.
I fluid ounce, f 3 $\}=\{28.4123$ cubic (8 drachms) $\}=\left\{\begin{array}{c}\text { centimeters. }\end{array}\right.$
I fluid drachm, f $\left.\begin{array}{c}\text { (} 60 \text { minims } \text {) }\end{array}\right\}=\left\{\begin{array}{c}3.5515 \text { cubic } \\ \text { centimeters. }\end{array}\right.$ $\left.\underset{\text { grain weight) }}{\operatorname{minim}, \mathrm{m}_{\text {(0.9rit }}}\right\}\left\{=\left\{\begin{array}{c}0.05919 \mathrm{cubic} \\ \text { centimeters. }\end{array}\right.\right.$
Note. - The Apothecaries' gallon is of the same capacity as the 1 mperial gallon.

$$
\begin{aligned}
& \text { I square inch . } \quad=\left\{\begin{array}{l}
6.45 \mathrm{I} 6 \mathrm{sq.} \text {. cen- } \\
\text { timeters. }
\end{array}\right. \\
& \text { I sq. ft. (} 144 \mathrm{sq} . \mathrm{in} .)=\left\{\begin{array}{c}
9.2903 \text { sq. } \text {. deci } \\
\text { meter. }
\end{array}\right. \\
& \text { meters. } \\
& \text { I SQ. } \operatorname{YaRD}(9 \mathrm{sq} . \mathrm{ft} .)=\left\{\begin{array}{c}
0 . \mathrm{Sj}_{\mathrm{j}} \mathrm{rI26} \mathrm{~s} \\
\text { meters. }
\end{array}\right. \\
& \text { I perch (} \left.30 \frac{1}{4} \text { sq. yd. }\right)=\left\{\begin{array}{c}
25.293 \text { sq. me- } \\
\text { ters. }
\end{array}\right.
\end{aligned}
$$

```
MEASURE OF CAPACITY.
I gill . . . . . . \(=\mathbf{I} .42\) deciliters.
I pint ( 4 gills) . . \(=0.568\) liter.
I quart ( 2 pints) . . \(=1.136\) liters.
I Gallon ( 4 quarts) \(=4.545963^{1}\) ""
I peck (2 galls.) . . \(=9.092\)
I bushel ( 8 galls.) . \(=3.637\) dekaliters.
I quarter ( 8 bushels) \(=2.909\) hectoliters.
```


AVOIRDUPOIS WEIGHT.

${ }^{1}$ grain . . . $=\left\{\begin{array}{c}64.8 \mathrm{~m} \mathrm{i} 11 \\ \text { grams. }\end{array}\right.$
I 'ram $=1.772$ grams.
r ounce (16 dr.) . . $=28.350$
1 pouxir(16 oz. or $\}=0.45359243$ kilogr.
istone ($\mathrm{I}+\mathrm{lb}$.) . $=6.350 \quad$ "
$\begin{aligned} & \text { I quarter (} 28 \mathrm{lb} .) \\ & \text { I hundredweight }\end{aligned} .=\begin{gathered}12.70 \\ 50.80\end{gathered}$
$\left.\underset{(\text { II } 2 \mathrm{lb} .)}{ }{ }^{\text {I hundredweight }}\right\}=\left\{\begin{array}{c}50.80 \\ 0.50 \text { So quintal. } " . ~\end{array}\right.$ I ton (20 cwt.) $=\left\{\begin{array}{l}\text { I.01 } 60 \text { tonnes } \\ \text { or rion } 6 \text { k:lo- } \\ \text { grams. }\end{array}\right.$

TROY WEIGHT.

$\left.\begin{array}{c}\text { Troy ounce }(480 \\ \text { frains avoir.) }\end{array}\right\}=3$ 1.1035 grams. I pemimweight $(24\}=1.5552$ " grains)
Notr. - The Troy grain is of the same weight as the Avoirdupois grain.

APOTHECARIES' WEIGHT.

I ounce (8 drachms) $=31.1035$ grams.
$\underset{\text { ples) }}{\text { I drachm, }} 3 \mathrm{i}$ (3 scru- $\}=3.888$
$\begin{aligned} & \text { I scruple, } \\ & \text { grains) }\end{aligned} 9^{i}(20\}=1.296 \quad$ " grains)
Note. - The Apothecaries' ounce is of the same weight as the Troy ounce. The Apothecaries' grain is also of the same weight as the Avoirdupois grain.

Note. - The Yard is the length at 62° Fahr., marked on a bronze bar deposited with the Board of Trade.
The Pound is the weight of a piece of platinum weighed in vacuo at the temperature of $o^{\circ} \mathrm{C}$., and which is also deposited with the Board of Trade.

The Gailon contaius to lb . weight of distilled water at the temperature of 62° Fahr., the barometer being at 30 inches.

EQUIVALENTS OF BRITISH IMPERIAL AND METRIC WEIGHTS AND MEASURES.
(4) IMPERIAL TO METRIC.
(For U.S. Weights and Measures, see Table 3.)

	LINEAR MEASURE.			
		$\begin{gathered} \text { Feet } \\ \text { to } \\ \text { meters. } \end{gathered}$	$\begin{gathered} \text { Yards } \\ \text { to } \\ \text { meters. } \end{gathered}$	Miles to kile. meters.
1	2.539998	0.30480	0.91440	1.60934
2	5.079996	0.60960	1.82880	3.21869
3	7.619993	0.91440	2.74320	4.82803
4	10.159991	1.21920	3.65760	6.43737
5	12.699989	1.52400	4.57200	8.0467 I
6	15.239987	1.82880	5.48640	9.65606
7	17.779984	2.13360	6.400 So	I 1. 26540
8	20.319982	2.43840	$7 \cdot 31519$	12.87474
9	22.3599 So	2.74320	8.22959	14.48 .40 S

SQUARE MEASURE.

	$\begin{gathered} \text { Square } \\ \text { inches } \\ \text { to square } \\ \text { centimeters. } \end{gathered}$	Square feet to square decimeters.	Square yards to square meters.	Acres to hectares.
I	6.45159	9.29029	0.83613	0.40 .468
2	12.90318	18.58058	1.67225	0.80937
3	19.35477	27.87056	2.50835	1.21405
4	25.50636	37.16115	$3 \cdot 34450$	1.61874
5	32.25794	46.45144	4.18063	2.02342
6	$3^{8.70953}$	55.74173	5.01676	2.42SII
7	45.16112	65.03201	5.85288	2.83279
S	51.61271	74.32230	6.68901	3.23745
9	58.06430	83.61259	7-52513	3.642 I 6

CUBIC MEASURE.

	Cubic inches to cubic centimeters.	Cubic feet to cubic meters.	Cubic yards to cubic meters.	Fluid drachms to cubic centi- meters.
	16.38702	0.02832	0.76455	.3 .55153
2	32.77404	0.05663	1.52911	7.10307
3	49.16106	0.08495	2.29366	10.65460
4	65.54808	0.11327	3.05821	14.20613
5	81.93511	0.14158	3.82276	17.75767
6	98.32213	0.16990	4.58732	21.30920
7	114.70915	0.19822	5.35187	24.86074
8	131.09617	0.22653	6.11642	28.41227
9	147.48319	0.25485	6.88098	31.96380

LINEAR MEASURE.

Smithsonian Tables.

MEASURE OF CAPACITY.

	Quarts to liters.	Gallons to liters.	Bushels to dekaliters.	Quarters to hectoliters.
	1.13649	4.54596	3.63677	2.90942
2	2.27298	9.09193	7.27354	5.81883
3	3.40947	13.63789	10.9103 I	8.72825
4	4.54596	15.18385	14.54708	11.63767
5	5.68245	22.72982	18.18385	14.54708
6	6.81894	27.27578	21.82062	17.45650
7	7.95544	31.82174	25.45739	20.36591
8	9.09193	36.36770	29.09416	23.27533
9	10.22842	40.91367	32.73093	26.18475

WEIGHT (Avolrdupors).

	Grains to milligrams.	Ounces to grams.	Pounds to ki:ugrams.	Hundred. weights to quintals.
I	64.79892	28.34953	0.45359	$0.50 \mathrm{SO2}$
2	I 29.59784	56.69905	0.90718	1.01605
3	$19+39675$	85.045°	1.36078	1.52407
4	259.19567	113.39811	1.81437	2.03209
5	323.99459	141.74763	2.26796	2.54012
6	388.79351	170.09716	2.72155	3.04814
7	453.59243	198.44669	3.17515	3.55616
3	518.39135	226.79621	3.62874	4.06419
9	583.19026	255.14574	4.0 S 233	$4 \cdot 57221$

* See also accompanying table of derivatives. For example : $\int \cos . x d x=\sin . x+$ constant.

$$
\begin{align*}
(x+y)^{n}=x^{n}+\frac{n}{1} \cdot x^{n-1} y+\frac{n(n-1)}{2!} x^{n-2} y^{2}+\ldots \\
\frac{n(n-1) \ldots(n-m+1)}{m!} x^{n-m} y^{m}+\ldots \tag{2}
\end{align*}
$$

$(\mathrm{I} \pm x)^{n}=\mathrm{I} \pm n x+\frac{n(n-\mathrm{I}) x^{2}}{2!} \pm \frac{n(n-\mathrm{I})(n-2) x^{2}}{3!}+\ldots+\frac{(\pm \mathrm{I})^{k} n!x^{k}}{(n-k)!k!}+\ldots\left(x^{2}<\mathrm{I}\right)$ $(\mathrm{I} \pm x)^{-n}=\mathrm{I} \mp n x+\frac{n(n+\mathrm{I})}{2!} x^{2} \mp \frac{n(n+1)(n+2) x^{3}}{3!}+\ldots$

$$
\begin{equation*}
(\mp \mathrm{I}) k^{\frac{(n+k-1}{} \frac{1}{} x^{k}}(n-1)!k! \tag{2}
\end{equation*}
$$

$(1 \pm x)^{-1}=1 \mp x+x^{2} \mp x^{3}+x^{4} \mp x^{5}+\ldots$
$(1 \pm x)^{-2}=1 \mp 2 x+3 x^{2} \mp 4 x^{3}+5 x^{4} \mp 6 x^{5}+\ldots$
($x^{2}<1$)

$$
\begin{array}{rlr}
f(x+h) & =f(x)+h f^{\prime}(x)+\frac{h^{2}}{2!} f^{\prime \prime}(x)+\ldots+\frac{h^{n}}{n!} f^{(n)}(x)+\ldots & \begin{array}{r}
\text { Taylor’s } \\
\text { series. }
\end{array} \\
f(x) & =f(o)+\frac{x}{1} f^{\prime}(o)+\frac{x^{2}}{2!} f^{\prime \prime}(o)+\ldots \frac{x^{n}}{n!} f(n)(o)+\ldots & \text { Maclaurin's } \\
\text { series. }
\end{array}
$$

$$
e=\lim \left(\mathrm{I}+\frac{\mathrm{I}}{n}\right)^{n}=\mathrm{I}+\frac{\mathrm{I}}{\mathrm{I}!}+\frac{\mathrm{I}}{2!}+\frac{\mathrm{I}}{3!}+\frac{\mathrm{I}}{4!}+\ldots
$$

$$
\begin{equation*}
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
a^{x}=\mathrm{I}+x \log a+\frac{(x \log a)^{2}}{2!}+\frac{(x \log a)^{3}}{3!}+\ldots \tag{2}
\end{equation*}
$$

$$
\left.\left.\left.\begin{array}{rl}
\log x & =\frac{x-1}{x}+\frac{1}{2}\left(\frac{x-1}{x}\right)^{2}+\frac{1}{3}\left(\frac{x-1}{x}\right)^{3}+\ldots \\
& =(x-1)-\frac{1}{2}(x-1)^{2}+\frac{1}{3}(x-1)^{3}-\ldots \\
& =2\left[\frac{x-1}{x+1}+\frac{1}{3}\left(\frac{x-1}{x+1}\right)^{3}+\frac{1}{5}(x-1\right. \tag{x>0}\\
x+1
\end{array}\right)^{5}+\ldots\right]\right] .
$$

$\log (1+x)=x-\frac{1}{2} x^{2}+\frac{1}{3} x^{3}-\frac{1}{4} x^{4}+\ldots$.

$$
\sin x=\frac{1}{2 i}\left(e^{2 x}-e^{-1 x}\right)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\ldots
$$

$$
\left(x^{2}<x\right)
$$

$$
\begin{array}{ll}
\cos x=\frac{1}{2}\left(e^{2 x}+e^{-i x}\right)=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots=\mathrm{I}-\operatorname{versin} x & \left(x^{2}<x\right) \\
\tan x=x+\frac{x^{3}}{3}+\frac{2 x^{5}}{15}+\frac{17 x^{7}}{3^{1} 5}+\frac{62}{2835} x^{9}+\ldots & \left(x^{2}<\frac{\pi^{2}}{4}\right) \tag{2}
\end{array}
$$

$\sin ^{-1} x=\frac{\pi}{2}-\cos ^{-1} x=x+\frac{x^{3}}{6}+\frac{1}{2} \cdot \frac{3}{4} \cdot \frac{x^{5}}{5}+\frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \cdot \frac{x^{7}}{7}+\ldots$
$\tan ^{-1} x=\frac{\pi}{2}-\cot .^{-1} x=x-\frac{1}{3} x^{3}+\frac{1}{5} x^{5}-\frac{1}{7} x^{7}+\cdots$

$$
\begin{equation*}
=\frac{\pi}{2}-\frac{1}{x}+\frac{1}{3 x^{3}}-\frac{1}{5 x^{5}}+\ldots \tag{2}
\end{equation*}
$$

$\sinh x=\frac{1}{2}\left(e^{x}-e^{-x}\right)=x+\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\frac{x^{7}}{7!}+\cdots$

$$
\begin{aligned}
& \cosh x=\frac{1}{2}\left(e^{x}+e_{n}^{-x}\right)=1+\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\frac{x^{6}}{6!}+\ldots \\
& \tanh x=x-\frac{1}{3} x^{3}+\frac{2}{15} x^{5}-\frac{17}{315} x^{7}+\ldots \\
& \sinh ^{-1} x=x-\frac{1}{2} \frac{x^{3}}{3}+\frac{1}{2} \cdot \frac{3}{4} \cdot \frac{x^{5}}{5}-\frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \frac{x^{7}}{7}+\ldots \\
& =\log 2 x+\frac{1}{2} \frac{1}{2 x^{2}}-\frac{1}{2} \frac{3}{4} \frac{1}{4 x^{4}}+\frac{1}{2} \frac{3}{4} \frac{5}{6} \frac{1}{6 x^{6}}-\ldots \\
& \left(x^{2}<\infty\right) \\
& \left(x^{2}<1\right) \\
& \left(x^{2}>1\right) \\
& \cosh ^{-1} x=\log 2 x-\frac{1}{2} \frac{1}{2 x^{2}}-\frac{1}{2} \frac{3}{4} \frac{1}{4 x^{4}} \cdots-\frac{1}{2} \frac{3}{4} \frac{5}{6} \frac{1}{6 x^{6}}-\ldots \\
& \tanh ^{-1} x=x+\frac{1}{3} x^{3}+\frac{1}{5} x^{5}+\frac{1}{7} x^{7}+\cdots \\
& \operatorname{gd} x=\phi=x-\frac{1}{6} x^{3}+\frac{1}{24} \cdot x^{5}-\frac{61}{5040} x^{7}+\ldots \\
& \text { (} x \text { small) } \\
& =\frac{\pi}{2}-\operatorname{sech} . x-\frac{1}{2} \frac{\operatorname{sech}^{3} x}{3}-\frac{3}{2} \frac{3}{4} \frac{\operatorname{sech}^{5} x}{5}-\ldots \\
& \text { (} x \text { large) } \\
& x=\mathrm{gd}^{-1} \phi=\phi+\frac{1}{6} \phi^{3}+\frac{1}{24} \phi^{5}+{ }_{5040}^{61} \phi^{7}+\ldots \\
& f(x)=\frac{1}{2} \mathrm{~b}_{0}+\mathrm{b}_{1} \cos \frac{\pi x}{c}+\mathrm{b}_{2} \cos \frac{2 \pi x}{c}+\ldots \\
& +a_{1} \sin \frac{\pi x}{c}+a_{2} \cos \frac{2 \pi x}{c}+\ldots(-c<x<c) \\
& \mathrm{a}_{m}=\frac{1}{c} \int_{-c}^{+c} f(x) \sin \frac{m}{c} \frac{\pi x}{c} d x \\
& \mathrm{~b}_{m}=\frac{\mathrm{I}}{c} \int_{-c}^{+c} f(x) \cos { }_{c}^{m \pi} d x
\end{aligned}
$$

TABAE 8.-MATHEMATICAL CONSTANTS.

$e=2.7182818285$	$\begin{gathered} \text { Numbers. } \\ \pi=3.145926536 \end{gathered}$	$\begin{gathered} \text { Logarithms. } \\ 0.4971498727 \end{gathered}$
$e^{-1}=0.3678794412$	$\pi^{2}=9.8696044011$	0.9942997454
$\mathrm{M}=\log _{10} 0^{\circ}=0.4342944819$	$\frac{1}{\pi}=0.3183098862$	9.50285.01273
$(\mathrm{M})^{-1}=\log _{e} 10=2.3025^{8} 50930$	$\sqrt{ } \pi=1.7724538509$ $\sqrt{ } \pi$	0.2485749363
$\log _{10} \log _{100}=9.6377843113$	$\frac{\sqrt{\pi}}{2}=0.8862269255$	9.9475449407
$\log _{10} 2=0.3010299957$	$\frac{1}{\sqrt{ } \pi}=0.5641895835$	9.7514250637
$\log _{e} 2=0.6931471806$	$\frac{2}{\sqrt{\pi}}=1.1283791671$	0.0524550593
$\log _{10} x=$ M. $\log _{e} x$	$\sqrt{\frac{\pi}{2}}=1.2533141373$	0.0980599385
$\log _{B} x=\log _{e} x \cdot \log _{B} e$	$V^{\frac{2}{\pi}}=0.7978845608$	9.9019400615
$=\log _{e} x \div \log _{e} \mathrm{~B}$	$\frac{\pi}{4}=0.785398_{1} 634$	9.8950898814
$\log _{e} \pi=1.1447298858$	$\frac{\sqrt{\pi}}{4}=0.44311 \quad 34627$	$9.6465^{1} 49450$
$\rho=0.4769362762$	$\frac{4}{3} \pi=4.1887902048$	0.62208 \$6093
$\log \rho=9.6784603565$	$\frac{e}{V \pi}=1.0844375514$	0.0352045477

VALUES OF RECIPROCALS, SQUARES, CUBES, SQUARE ROOTS, OF NATURAL NUMBERS.

n	1000. $\frac{1}{11}$	n^{2}	n^{3}	$\sqrt{ } 1$	n	$1000 . \frac{1}{n}$	n^{2}	n^{3}	$\sqrt{ } \times$
10	100.000	100	1000	3.1623	65	15.3846	4225	274625	8.0623
11	90.9091	121	1331	$3 \cdot 3166$	66	15.1515	4356	287496	8.1240
12	83.3333	144	1728	$3 \cdot 4641$	67	14.9254	4489	300763	8.1854
13	76.9231	169	2197	3.6056	68	14.7059	4624	314432	8.2462
14	71.4286	196	2744	3.7417	69	14.4928	4761	328509	8.3066
15	66.6667	225	3375	3.8730	70	14.2857	4900	343000	8.3666
16	62.5000	256	4096	4.0000	71	14.0845	5041	357911	8.4261
17	58.8235	289	4913	4.1231	72	13.8889	5184	373248	8.4853
18	$55 \cdot 5556$	324	5832	4.2426	73	13.6986	5329	389017	8.5440
19	52.6316	361	6859	$4 \cdot 3589$	74	13.5135	5476	405224	8.6023
20	50.0000	400	Sooo	4.4721	75	13.3333	5625	421875	8.6603
21	47.6190	44 I	9261	4.5826	76	13.1579	5776	438976	8.7178
22	$45.45+5$	484	10648	4.6904	77	12.9870	5929	456533	8.7750
23	43.4783	$5 \div 9$	12167	4.7958	78	12.8205	6084	474552	8.8318
24	41.6667	576	$13^{82} 4$	4.8990	79	12.6582	6241	493039	8.8882
25	40.0000	625	15625	5.0000	80	12.5000	6400	512000	8.9443
26	38.4615	676	17576	5.0990	81	12.3457	6561	531441	9.0000
27	37.0370	729	19683	5.1962	82	12.1951	6724	551368	9.0554
28	35.7143	784	21952	5.2915	83	12.0482	6889	571787	9.1504
29	34.4828	841	24389	$5 \cdot 3852$	84	11.9048	7056	592704	9.1652
30	33.3333	900	27000	5.4772	85	11.7647	7225	614125	9.2195
31	32.2581	961	29791	5.5678	86	1 I .6279	7396	636056	9.2736
32	31.2500	1024	32768	5.6569	87	11.4943	7569	658503	9.3274
33	30.3030	1089	35937	5.7446	88	11.3636	7744	681472	9.3808
34	29.4118	1156	39304	5.8310	89	11.2360	7921	704969	9.4340
35	28.5714	1225	42875	5.9161	90	11.1111	Sioo	729000	9.4868
36	27.7778	I 296	46656	6.0000	91	10.9890	828I	753571	9.5394
37	27.0270	1 369	50653	6.0828	92	10.8696	8464	778688	9.5917
38	26.3158	1444	54872	6.1644	93	10.7527	8649	804357	9.6437
39	25.6410	152 I	59319	6.2450	94	10.6383	8836	830584	9.6954
40	25.0000	1600	64000	6.3246	95	10.5263	9025	S57375	9.7468
41	24.3902	I681	68921	6.4031	96	10.4167	9216	884736	9.7980
42	23.8095	1764	74088	6.4807	97	10.3093	9409	912673	9.8489
43	23.2558	1849	79507	6.5574	98	$10.20+1$	9604	941192	9.8995
44	22.7273	1936	S5I84	6.6332	99	10.1010	980 I	970299	9.9499
45	22.2222	2025	91125	6.7082	100	10.0000	10000	1000000	10.0000
46	2 I .7391	2116	97336	6.7823	101	9.90099	10201	1030301	10.0499
47	21.2766	2209	103823	6.8557	102	9.80392	10.104	106ı 208	10.0995
48	20.8333	2304	110592	6.9282	103	9.70874	10609	1092727	10.1489
49	20.4082	2401	117649	7.0000	104	9.61538	10816	I 124864	10.1980
50	20.0000	2500	125000	7.0711	105	9.52381	11025	1157625	10.2470
51	19.6078	2601	${ }_{1} 32651$	7.1414	106	9.43396	11236	1191016	10.2956
52	19.2308	2704	140608	7.2111	107	$9 \cdot 34579$	11449	1225043	10.3441
53	18.8679	2809	148877	7.2801	108	9.25926	11664	1259712	10.3923
54	18.5185	2916	I 57464	$7 \cdot 3485$	109	9.17431	11881	1295029	10.4403
55	18.1818	3025	166375	7.4162	110	9.09091	12100	1331000	10.4881
56	17.8571	3136	175616	7.4833	111	9.00901	12321	1367631	10.5357
57	17.5439	3249	185193	7.5498	112	8.92857	12544	1404928	10.5830
58	17.2414 16.9492	3364	195112	7.6158	113	8.84956	12769	1442897	10.6301
59	16.9492	3481	205379	7.6811	114	8.77193	12996	1481544	10.6771
60	16.6667	3600	216000	7.7460	115	8.69565	13225	1520875	10.7238
61	16.3934	3721	226981	7.8102	116	8.62069	13456	1560896	10.7703
62	16.1290 15.8730	3844	238328 250047	7.8740	117 118	8.54701	13689	1601613	10.8167
63 64	15.8730 15.6250	3969 4096	250047 262144	7.9373 8.0000	118 119	8.47458 8.40336	13924 14161	1643032 1685159	10.8628
64	15.6250	4096	262144	8.0000	119	8.40336	14161	1685159	10.9087

TABLE 9 (continued).
VALUES OF RECIPROCALS, SQUARES, CUBES, SQUARE ROOTS, OF NATURAL NUMBERS.

n	1000. ${ }_{n}^{1}$	n^{2}	n^{8}	$\sqrt{ } \times$	n	$1000 \cdot \frac{1}{n}$	n^{2}	n^{3}	$\sqrt{ } 1$
120	8.33333	14400	1728000	10.9545	175	5.71429	30625	5359375	13.2288
12	8.26446	14641	1771561	11.0000	176	5.68182	30976	5451776	13.2665
122	8.19672	14884	1815848	I 1.0454	177	5.64972	31329	5545233	${ }^{1} 3.3041$
123	8.13008	15129	1860867	11.0905	178	5.61798	31684	5639752	I 3.3417
124	8.06452	15376	1906624	I 1.1355	179	$5 \cdot 58659$	32041	5735339	1 3.3791
125	8.00000	15625	1953125	II.1803	180	5.55556	32400	5S32000	13.4164
126	7.93651	15876	2000376	11.225°	181	5.52486	32761	5929741	13.4536
127	7.87402	16129	2048383	11.2694	182	5.49451	33124	6028568	13.4907
128	7.81250	16384	2097152	11.3137	183	5.46448	33489	6128487	13.5277
129	7.75194	16641	2146689	11.3578	184	5.43478	33856	6229504	I 3.5647
130	7.69231	16900	2197000	II. 4018	185	$5 \cdot 40541$	34225	6331625	13.6015
131	7.63359	17161	2248091	11.4455	186	$5 \cdot 37634$	34596	6434856	13.6382
132	7.57576	17424	2299968	11.4891	187	5.34759	34969	6539203	13.6748
133	7-51880	17689	2352637	11.5326	188	5.31915	35344	6644672	13.7113
134	7.46269	I 7956	2406104	11.575^{8}	189	5.29101	3572 I	6751269	13.7477
135	7-40741	18225	2460375	11.6190	190	5.26316	36100	6859000	13.7840
136	$7 \cdot 35294$	18496	2515456	11.6619	191	5.23560	36481	6967871	13.8203
137	7.29927	18769	2571353	11.7047	192	5.20833	36864	7077888	13.8564
138	7.24638	19044	2628072	11.7473	193	5.18135	37249	7189057	13.8924
139	7.19424	1932 I	2685619	11.7898	194	5.15464	37636	7301384	13.9284
140	7.14286	19600	2744000	11.8322	195	5.12821	38025	7414875	13.9642
141	7.09220	1988 I	2 SO 322 I	I 1.8743	196	5.10204	38416	7529536	14.000
142	7.04225	20164	2863288	11.9164	197	5.07614	38809	7645373	14.0357
143	6.99301	20449	2924207	11.9583	198	5.05051	39204	7762392	14.0712
144	6.94444	20736	2985984	12.0000	199	5.02513	39601	7880599	14.1067
145	6.89655	21025	3048625	12.0416	200	500000	40000	8000000	I4.142I
146	6.84932	21316	3112136	12.0830	201	4.97512	40401	8120601	14.1774
147	6.80272	21609	3176523	12.1244	202	4.95050	40804	8242408	14.2127
148	6.75676	21904	3241792	12.1655	203	4.92611	41209	8365427	14.2478
149	6.71141	22201	3307949	12.2066	204	4.90196	41616	8489664	14.2829
150	6.66667	22500	3375000	12.2474	205	4.87805	42025	8615125	14.3178
151	6.62252	22801	3442951	12.2882	206	4.85437	42436	8741816	14.3527
152	6.57895	23104	3511808	12.3288	207	4.83092	42849	8869743	14.3875
I 53	6.53595	23409	3581577	12.3693	208	4.80769	43264	8998912	14.4222
154	6.4935 I	23716	3652264	12.4097	209	4.78469	4368 I	9129329	14.4568
155	6.45161	24025	3723875	12.4499	210	4.76190	44100	9261000	
${ }^{1} 56$	6.41026	24336	3796416	12.4900	211	4.73934	44521	9393931	14.5258
157	6.36943	24649	3869893	I 2.5300	212	4.71698	44944	9528128	14.5602
158	6.32911	24964	3944312	12.569 S	213	4.69484	45369	9663597	14.5945
159	6.28931	2528 I	4019679	12.6095	214	4.67290	45796	9800344	14.6287
160	6.25000	25600	4096000	12.6491	215	4.65116	46225	9938375	14.6629
161	6.21118	25921	4173281	12.6886	216	4.62963	46656	10077696	14.6969
162	6.17284	26244	4251528	12.7279	217	4.60829	47089	10218313	14.7309
163	6.1 3497	26569	4330747	12.7671	218	4.58716	47524	10360232	14.7648
164	6.09756	26896	4410944	12.8062	219	4.56621	47961	10503459	14.7986
165	6.06061	27225		12.845^{2}	220		48400	10648000	14.8324
166	6.02410	27556	4574296	12.8841	221	4.52489	48841	10793861	14.8661
167	5.98802	27889	4657463	12.9228	222	4.50450	49284	10941048	14.8997
168	5.95238	28224	4741632	12.9615	223	4.48430	49729	11089567	I 4.9332
169	5.91716	28561	4826809	13.0000	224	4.46429	50176	11239424	14.9666
170	5.88235	28900	4913000	13.0384	225	4.44444	50625	11390625	15.0000
171	5.84795	29241	5000211	13.0767	226	442478	51076	11543176	15.0333
172	5.81395	29584	5088448	13.1149	227	4.40529	51529	11697083	15.0665
173 174	5.78035	29929	5177717	13.1529	228	4.38596	51984	11852352	15.0997
174	5.74713	30276	5268024	13.1909	229	4.3668 I	52441	12008989	15.1327

VALUES OF RECIPROCALS, SQUARES, CUBES, AND SQUARE ROOTS, OF NATURAL NUMBERS.

n	$1000 . \frac{1}{n}$	n^{2}	n^{3}	$\checkmark n$	n	$1000 \cdot{ }_{n}^{1}$	n^{2}	n^{3}	\sqrt{n}
230	4.34783	52900	12167000	15.1658	285	3.50877	81225	23149125	16.8819
231	4.32900	53361	12326391	15.1987	286	3.49650	81796	23393656	16.9115
232	4.31034	53824	12487168	I 5.23I 5	287	$3 \cdot 48432$	82369	23639903	16.9411
233	4.29185	54289	12649337	I 5.2643	288	3.47222	82944	23887872	16.9706
234	4.27350	54756	I2812904	I 5.297 I	289	$3 \cdot 46021$	83521	24137569	17.0000
235	4.25532	55225	12977875	I 5.3297	290	3.44828	84100	24389000	17.0294
236	4.23729	55696	13144256	15.3623	291	343643	8.4681	24642171	17.0587
237	4.21941	56169	I 3312053	15.3948	292	3.42466	85264	24897088	17.0880
238	4.20168	56644	13481272	15.4272	293	3. 41297	85849	25153757	17.1172
239	4.18410	57121	13651919	15.4596	294	$3 \cdot 40136$	86436	25412184	17.1464
240	4.16667	57600	13824000	15.4919	295	$3 \cdot 38983$	87025	25672375	17.1756
241	4.14938	58081	13997521	15.5242	296	$3 \cdot 37838$	87616	25934336	17.2047
242	4.13223	58564	14172488	${ }^{1} 5.5563$	297	$3 \cdot 36700$	88209	26198073	17.2337
243	4.11523	59049	14348907	15.5885	298	3.35570	88804	26463592	17.2627
244	4.09836	59536	14526784.	15.6205	299	$3 \cdot 34448$	S940I	26730899	17.2916
245	4.08163	60025	14706125	15.6525	300	$3 \cdot 33333$	90000	27000000	17.3205
246	4.06504	60516	14886936	15.6844	301	$3 \cdot 32226$	90601	27270901	$17 \cdot 3494$
247	4.04858	6 r 009	I 5069223	15.7162	302	3-31126	91204	27543608	17.3781
248	4.03226	61504	15252992	15.7480	303	$3 \cdot 30033$	91809	27818127	17.4069
249	4.01606	62001	15438249	15.7797	304	3.28947	92416	28094464	17.4356
250	4.00000	62500	15625000	15.8114	305	3.27869	93025	28372625	17.4642
251	3.98406	63001	15813251	15.8430	306	3.26797	93636	28652616	17.4929
252	3.96825	63504	16003008	15.8745	307	3.25733	94249	28934443	17.5214
253	3.95257	64009	16194277	15.9060	308	3. 2.4675	94864	29218112	17.5499
254	3.93701	64516	16387064	I 5.9374	309	3.23625	95.481	29503629	17.5784
255	3.92157	65025	16581375	15.9687	310	3.22581	96100	29791000	17.6068
256	3.90625	65536	16777216	16.0000	311	3.21543	96721	30080231	17.6352
257	3.89105	66049	16974593	16.0312	312	3.20513	97344	3037.1328	17.6635
258	3.87597	66564	17173512	16.0624	313	3.19489	97969	30664297	17.6918
259	3.86100	67081	17373979	16.0935	314	3.18471	98596	30959144	17.7200
260	3.84615	67600	17576000	16.1245	315	3.17460	99225	31255875	17.7482
261	3.83142	68121	17779581	16.1555	316	3.16456	99856	31554496	17.7704
262	3.81679	68644	17984728	16.1864	317	3.15457	100489	31855013	17.8045
263	3.80228	69169	18191447	16.2173	318	3.14465	101124	32157432	17.8326
264	3.78788	69696	18399744	16.248 I	319	3.13480	101761	32461759	17.8606
265	3.77358	70225	18609625	16.2788	320	3.12500	102400	32768000	17.8885
266	3.75940	70756	18821096	16.3095	321	3.1156	103041	33076161	17.9165
267	3.74532	71289	19034163	16.3401	322	310559	103684	33386248	17.9444
268	3.73134	71824	19248832	163707	323	3.09598	104329	33698267	17.9722
269	3.71747	72361	19465109	16.4012	324	3.08642	104976	34012224	18.0000
270	3.70370	72900	19683000	16.4317	325	3.07692	105625	34328125	18.0278
271	3.69004	73441	19902511	16.4621	326	3.06748	106276	34645976	18.0555
272	367647	73984	20123648	16.4924	327	3.05810	106929	34965783	18.0831
273	3.66300	74529	20346417	16.5227	328	3.04878	107584	35287552	18.1108
274	3.64964	75076	20570824	16.5529	329	3.03951	108241	35611289	18.1384
275	3.63636	75625	20796875	16.5831	330	3.03030	108900	35937000	18.1659
276	3.62319	76176	21024576	16.6132	331	3.02115	109561	36264601	I8.1934
277	3.61011	76729	21253933	16.6433	332	3.01205	110224	36594368	18.2209
278	3.59712	77284	21484952	16.6733	333	3.00300	$1 \mathrm{IOS89}$	36926037	18.2483
279	$3 \cdot 58423$	77841	21717639	16.7033	334	2.99401	I 11556	37259704	18.2757
280	3.57143	78400	21952000	16.7332	335	2.98507	I 12225		18.3030
281	3.55872	78961	22188041	16.7631	336	2.97619	112896	3793.3056	18.3303
282	$3 \cdot 54610$	79524	22425768	16.7929	337	2.96736	11.3569	38272753	18.3576
283	3.53357	80089	22665187	16.8226	338	2.95858	II 4244	38614472 38958219	$18.3^{8} 48$
284	3.52113	80656	22906304	16.8523	339	2.94985	I I 492 I	38958219	18.4120

VALUES OF RECIPROCALS, SQUARES, CUBES, AND SQUARE ROOTS

 OF NATURAL NUMBERS.| n | 1000. $\frac{1}{n}$ | n^{2} | n^{3} | \sqrt{n} | n | 1000. $\frac{1}{n}$ | n^{2} | n^{3} | $\sqrt{ } \times$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 340 | 2.94118 | 115600 | 39304000 | 18.4391 | 395 | 2.53165 | 156025 | 61629875 | 19.8746 |
| 341 | 2.93255 | $1162 S$ I | 39651821 | 18.4662 | 396 | 2.52525 | 156816 | 62099136 | 19.8997 |
| 342 | 2.92398 | 116964 | 40001688 | 18.4932 | 397 | 2.51889 | 157609 | 62570773 | 19.9249 |
| 343 | 2.91545 | I 17649 | 40353607 | 18.5203 | 398 | 2.51256 | 158404 | 63044792 | 19.9499 |
| 344 | 2.90698 | 118336 | 40707584 | 18.5472 | 399 | 2.50627 | I 59201 | 63521199 | 19.9750 |
| 345 | 2.89855 | 119025 | 41063625 | 18.5742 | 400 | 2.50000 | 160000 | 64000000 | 20.0000 |
| 346 | 2.89017 | 119716 | 41421736 | 18.6011 | 401 | 2.49377 | 160801 | 64481201 | 20.0250 |
| 347 | 2.88184 | 120409 | 41781923 | 18.6279 | 402 | 2.48756 | 161604 | 64964808 | 20.0499 |
| 348 | 2.87356 | 121104 | 42144192 | $18.654{ }^{3}$ | 403 | 2.48139 | 162409 | 65450827 | 20.0749 |
| 349 | 2.86533 | 121801 | 42508549 | 18.68 I 5 | 404 | 2.47525 | 163216 | 65939264 | 20.0998 |
| 350 | 2.85714 | 122500 | 42875000 | 18.7083 | 405 | 2.46914 | 164025 | 66430125 | 20.1246 |
| 351 | 2.84900 | 123201 | 43243551 | 18.7350 | 406 | 2.46305 | 164836 | 66923416 | 20.1494 |
| 352 | 2.84091 | 123904 | 43614208 | 18.7617 | 407 | 2.45700 | 165649 | 67419143 | 20.1742 |
| 353 | 2.83286 | 124609 | 43986977 | 18.7883 | 408 | 2.45098 | 166464 | 67917312 | 20.1990 |
| 354 | 2.82486 | 125316 | 44361864 | 18.8149 | 409 | 2.44499 | 167281 | 68417929 | 20.2237 |
| 355 | 2.81690 | 126025 | 44738875 | 18.8414 | 410 | 2.43902 | 168100 | 68921000 | 20.2485 |
| 356 | 2.80899 | 126736 | 45^{118016} | 18.8680 | 411 | 2.43309 | 16892 I | 69426531 | 20.2731 |
| 357 | 2.80112 | 127449 | 45499293 | 18.8944 | 412 | 2.42718 | 169744 | 69934528 | 20.2978 |
| 358 | 2.79330 | 128164 | 45852712 | 18.9209 | 413 | 2.42131 | 170569 | 70444997 | 20.3224 |
| 359 | 2.7855^{2} | 128881 | 46268279 | 18.9473 | 414 | 2.41546 | 171396 | 70957944 | 20.3470 |
| 360 | 2.77778 | 129600 | 46656000 | 18.9737 | 415 | 2.40964 | 172225 | 71473375 | 20.3715 |
| 361 | 2.77008 | 130321 | 4704588 I $^{\circ}$ | 19.0000 | 416 | 2.40385 | 173056 | 71991296 | 20.3961 |
| 362 | 2.76243 | 131044 | 47437928 | 19.0263 | 417 | 2.39808 | 173889 | 72511713 | 20.4206 |
| 363 | 2.75482 | 131769 | 47832147 | 19.0526 | 418 | 2.39234 | 174724 | 73034632 | 20.4450 |
| 364 | 2.74725 | 132496 | 48228544 | 19.0788 | 419 | 2.38663 | 175561 | 73560059 | 20.4695 |
| 365 | 2.73973 | 133225 | 48627125 | 19.1050 | 420 | 2.38095 | 176400 | 74088000 | 20.4939 |
| 366 | 2.73224 | 1 33956 | 49027896 | 19.1311 | 42 I | 2.37530 | 177241 | 74618461 | 20.5183 |
| 367 | 2.72480 | 134689 | 49430863 | 19.1572 | 422 | 2.36967 | 178084 | 75151448 | 20.5426 |
| 368 | 2.71739 | ${ }^{1} 35424$ | 49836032 | 19.1833 | 423 | 2.36407 | 178929 | 75686967 | 20.5670 |
| 369 | 2.71003 | 136161 | 50243409 | 19.2094 | 42.4 | 2.35849 | 179776 | 76225024 | 20.5913 |
| 370 | 2.70270 | I 36900 | 50653000 | 19.2354 | 425 | 2.35294 | 180625 | 76765625 | |
| 371 | 2.69542 | 137641 | 51064811 | 19.2614 | 426 | 2.34742 | 181476 | 77308776 | 20.6398 |
| 372 | 2.68817 | 138384 | 51478848 | 19.2873 | 427 | 2.34192 | 182329 | 77854483 | 20.6640 |
| 373 | 2.68097 | 139129 | 51895117 | 19.3132 | 428 | 2.33645 | 183184 | 78402752 | 20.6882 |
| 374 | 2.67380 | I 39876 | 52313624 | 19.3391 | 429 | 2.33100 | 184041 | 78953589 | 20.7123 |
| 375 | 2.66667 | 140625 | 52734375 | 19.3649 | 430 | 2.32558 | 184900 | 79507000 | |
| 376 | 2.65957 | 141376 | 53157376 | 19.3907 | 431 | 2.32019 | 185761 | 80062991 | 20.7605 |
| 377 | 2.65252 | 142129 | 53582633 | 19.4165 | 432 | 2.3148 r | 186624 | 80621568 | 20.7846 |
| 378 | 2.64550 | 142884 | 54010152 | 19.4422 | 433 | 2.30947 | 187489 | 81182737 81746504 | 20.8087 20.8327 |
| 379 | 2.63852 | 143641 | 54439939 | 19.4679 | 434 | 2.30415 | 188356 | 81746504 | 20.8327 |
| 380 | 2.63158 | 144400 | 54872000 | 19.4936 19.5192 | 435 | | 189225 190096 | | 20.8567 20.8806 |
| 381 | 2.62467 | 145161 | 55306341 | 19.5192 | 436 | 2.29358 | 190096 | 82881856 83453453 | 20.8806 20.9045 |
| 382 | 2.61780 | 145924 | 55742968 | 19.5448 | 437 | 2.28833 | 190969 | 83453453 84027672 | 20.9045 20.9284 |
| 383 | 2.61097 | 146689 | 56181887 | 19.5704 | 438 | 2.28311 | 191844 | 84027672 84604519 | 20.9284 20.9523 |
| 384 | 2.60417 | 147456 | 56623104 | 19.5959 | 439 | 2.27790 | 192721 | 84604519 | 20.9523 |
| 385 | 2.59740 | 148225 | 57066625 | 19.6214 | 440 | 2.27273 | 193600 | 85184000 | 20.9762 |
| 386 | 2.59067 | 148996 | 57512456 | 19.6469 | 441 | 2.26757 | 194481 | 85766121 | 21.0000 |
| 387 | 2.58398 | 149769 | 57960603 | 19.6723 | 442 | 2.26244 | 195364 | 86350888 86938307 | 21.0238 |
| 388 | 2.57732 | 150544 | 58411072 | 19.6977 | 443 | 2.25734 | 196249 | 86938307 8752834 | 21.0476 21.0713 |
| 389 | 2.57069 | 151321 | 58863869 | 19.7231 | 444 | 2.25225 | 197136 | 87528384 | 21.0713 |
| 390 | 2.56410 | 152100 | 59319000 | 19.7484 | 445 | 2.24719 | 198025 | 88121125 | 21.0950 |
| 391 | 2.55754 | I 5288I | 59776471 | 19.7737 | 446 | 2.24215 | 198916 | 88716536 | 21.1187 |
| 392 | 2.55102 | ${ }^{1} 53664$ | 60236288 | 19.7990 | 447 | 2.23714 | 199809 | 89314623 | 21.1424 |
| 393 | 2.54453 | I 54449 | 60698457 | 19.8242 | 448 | 2.23214 | 200704 | 89915392 90518849 | 21.1660 21.1896 |
| 394 | 2.53807 | 155236 | 61162984 | 19.8494 | 449 | 2.22717 | 201601 | 90518849 | 21.1896 |

VALUES OF RECIPROCALS, SQUARES, CUBES, AND SQUARE ROOTS
OF NATURAL NUMBERS.

n	1000. $\frac{1}{n}$	n^{2}	n^{3}	$\sqrt{ } n$	n	$1000 . \frac{1}{n}$	n^{2}	n^{3}	$\checkmark n$
450	2.22222	202500	91125000	21.2132	505	1.98020	255025	128787625	22.4722
451	2.21729	203401	91733851	21.2368	506	1. 97628	256036	129554216	22.4944
452	2.21239	204304	92345408	21.2603	507	1.97239	257049	130323843	22.5167
453	2.20751	205209	92959677	21.2838	508	1.96850	258064	131096512	22.5389
454	2.20264	206116	93576664	21.3073	509	1.96464	259081	131872229	22.5610
455	2.19780	207025	94196375	21.3307	510	1.96078	260100	132651000	22.5832
456	2.19298	207936	94818816	21.3542	511	I. 95695	261121	133432831	22.6053
457	2.18818	208849	95443993	21.3776	512	1.95312	262144	134217728	22.6274
458	2.18341	209764	96071912	21.4009	513	1.94932	263169	I 35005697	22.6495
459	2.17865	21068I	96702579	21.4243	514	1.94553	264196	I 35796744	22.6716
460	2.17391	211600	97336000	21.4476	515	1.94175	265225	1 36590875	22.6936
461	2.16920	212521	97972181	21.4709	516	1.93798	266256	137388096	22.7156
462	2.16450	213444	98611128	21.4942	517	1.93424	267289	138188413	22.7376
463	2.15983	214369	99252847	21.5174	518	1.93050	268324	138991832	22.7596
464	2.15517	215296	99897344	21.5407	519	I. 92678	269361	I 39798359	22.7816
465	2.15054	216225	100544625	21.5639	520	1. 92308	270400	140608000	22.8035
466	2.14592	217156	101194696	21.5870	521	I.91939	271441	141420761	22.8254
467	2.14133	218089	101847563	21.6102	522	1.9157 I	272484	142236648	22.8473
468	2.13675	219024	102503232	21.6333	523	I.91205	273529	143055667	22.8692
469	2.13220	219961	103161709	21.6564	524	1.90840	274576	143877824	22.8910
470	2.12766	220900	103823000	21.6795	525	1.90476	275625	144703125	22.9129
47 I	2.12314	221841	104487111	21.7025	526	1.90114	276676	145531576	22.9347
472	2.11864	222784	105154048	21.7256	527	I. 89753	277729	146363183	22.9565
473	2.11416	223729	105823817	21.7486	528	I. 89394	278784	147197952	22.9783
474	2.10970	224676	106496424	21.7715	529	1.89036	279841	148035889	23.0000
475	2.10526	225625	107171875	21.7945	530	1.88679	280900	148877000	23.0217
476	2.10084	226576	107850176	21.8174	531	1.88324	281961	149721291	23.0434
477	2.09644	227529	108531333	21.8403	532	1.87970	283024	I 50568768	23.0651
478	2.09205	228484	109215352	21.8632	533	1. 87617	284089	151419437	23.0868
479	2.08768	229441	109902239	21.8861	534	1.87266	285156	152273304	23.1084
480	2.08333	230400	110592000	21.9089	535	1.86916	286225	${ }^{1} 53130375$	23.1301
481	2.07900	231361	III284641	21.9317	536	1. 86567	287296	I 53990656	23.1517
482	2.07469	232324	111980168	21.9545	537	1.86220	288369	154854153	23.1733
483	2.07039	233289	I 1 2678587	21.9773	538	1. 85874	289444	155720872	23.1948
484	2.06612	234256	113379904	22.0000	539	1.855^{29}	290521	I 56590819	23.2164
485	2.06186	235225	114084125	22.0227	540	1.85185	291600	I 57464000	23.2379
486	2.05761	236196	11479125^{6}	22.0454	541	1. 84843	292681	15834042 I	23.2594
487	2.05339	237169	115501303	22.0681	542	1.84502	293764	159220088	23.2809
488	2.04918	238144	116214272	22.0907	543	1.84162	294849	160103007	23.3024
489	2.04499	239121	116930169	22.1133	544	1. 83824	295936	160989184	23.3238
490	2.04082	240100	117649000	22.1359	545	1. 83486	297025	161878625	23.3452
491	2.03666	241081	118370771	22.1585	546	1.83150	298116	162771336	23.3666
492	2.03252	242064	119095488	22.1811	547	1.82815	299209	163667323	23.3880
493	2.02840	243049	119823157	22.2036	548	1. 82482	300304	164566592	23.4094
494	2.02429	244036	120553784	22.2261	549	1.82149	301401	165469149	23.4307
495	2.02020	245025	121287375	22.2486	550	1.8ı8ı8	302500	166375000	23.452 I
496	2.01613	246016	122023936	22.2711	551	I. 81488	303601	167284151	23.4734
497	2.01207	247009	122763473	22.2935	552	ı. SII 59	304704	168196608	23.4947
498	2.00803	248004	123505992	22.3159	553	1.80832	305809	169142377	23.5160
499	2.00401	249001	124251499	22.3383	554	1.80505	306916	170031464	23.5372
500	2.00000	250000	125000000	22.3607	555	1.80180	308025	170953875	23.5584
501	1.99601	251001	125751501	22.3830	556	1. 79856	309136	171879616	23.5797
502	1.99203	252004	126506008	22.4054	557	1.79533	310249	172808693	23.6008
503	1.98807	253009	127263527	22.4277	558	1.79211	311364	173741112	23.6220
504	r.98413	254016	128024064	22.4499	559	1.78891	31248r	174676879	23.6432

Smithsonian Tables.

VALUES OF RECIPROCALS, SQUARES, CUBES, AND SQUARE ROOTS OF NATURAL NUMBERS.

n	1000. $\frac{1}{n}$	n^{2}	n^{3}	$\sqrt{ } 1$	n	1000. $\frac{1}{n}$	n^{2}	n^{3}	$\sqrt{ } \times$
560	1.78571	313600	175616000	23.6643	615	1.62602	378225	232608375	24.7992
561	1.78253	314721	176558481	23.6854	616	1.62338	379456	233744896	24.8193
562	1.77936	315844	177504328	23.7065	617	1.62075	380689	234885113	24.8395
563	1.77620	316969	178453547	23.7276	618	1.61812	3^{81924}	236029032	24.8596
564	1.77305	318096	179406144	23.7487	619	1.6155^{1}	383161	237176659	24.8797
565	1.76991	319225	180362125	23.7697	620	1.61290	384400	238328000	24.8998
566	1.76678	320356	181321496	23.7908	621	1.61031	$3^{8} 5641$	239483061	24.9199
507	1.76367	321489	182284263	23.8118	622	1.60772	386884	240641848	24.9399
568	1.76056	322624	153250432	23.8328	623	1.60514	388129	241804367	24.9600
569	1.75747	323761	184220009	23.8537	624	1.60256	389376	242970624	24.9800
570	1.75439	324900	185193000	23.8747	625	1.60000	390625	244140625	25.0000
57 I	1.75131	326041	186169411	23.8956	626	1. 59744	391876	245314376	25.0200
572	1.74825	327184	187149248	23.9165	627	1.59490	393129	246491883	25.0400
573	1.74520	328329	188132517	23.9374	628	1.59236	394384	247673152	25.0599
574	1.74216	329476	189119224	23.9583	629	1.58983	395641	248858189	25.0799
575	1.73913	330625	190109375	23.9792	630	1.58730	396900	250047000	25.0998
576	1.73611	331776	191102976	24.0000	631	1.58479	398161	251239591	25.1197
577	1.73310	332929	192100033	24.0208	632	1.58228	399424	252435968	25.1396
578	1.73010	334084	193100552	24.0416	633	1.57978	400689	253636137	25.1595
579	1.72712	335241	194104539	24.0624	634	1. 57729	401956	254840104	25.1794
580	1.72414	336400	195112000	24.0832	635	1.57480	403225	256047875	25.1992
581	1.72117	337561	196122941	24.1039	636	1.57233	404496	257259456	25.2190
582	1.71821	33 S724	197137368	24.1247	637	1. 56986	405769	258474853	25.2389
583	1.71527	3398S9	198155287	24.1454	638	1.56740	407044	259694072	25.2587
584	1.71233	341056	199176704	24.166I	639	I. 56495	408321	260917119	25.2784
585	1.70940	342225	200201625	24.1868	640	I. 56250	409600	262144000	25.2982
586	1.70648	343396	201230056	24.2074	641	1.56006	410881	263374721	25.3180
587	1.70358	344569	202262003	24.2281	642	1.55763	412164	264609288	25.3377
588	1.70068	345744	203297472	24.2487	643	1.5552 I	413449	265847707	25.3574
589	1.69779	346921	204336469	24.2693	644	1.55280	414736	267089984	25.377^{2}
590	1. 69492	348100	205379000	24.2899	645	1. 55039	416025	268336125	25.3969
591	1.69205	349281	206425071	24.3105	646	I. 54799	417316	269586136	25.4165
592	1.68919	350464	207474688	24.3311	647	1. 54560	418609	270840023	25.4362
593	1. 68634	351649	208527857	24.3516	648	1.54321	419904	272097792	25.4558
594	1.68350	352836	209584584	24.3721	649	1.54083	421201	273359449	25.4755
595	1. 68067	354025	210644875	24.3926	650	I. 53846	422500	274625000	25.4951
596	1. 67785	355216	211708736	24.4 I 31	651	1.53610	423801	275894451	25.5147
597	1.67504	356409	212776173	24.4336	652	1. 53374	425104	277167808	25.5343
598	1.67224	357604	213847192	24.4540	653	1.53139	426409	278445077	25.5539
599	1.66945	358801	214921799	24.4745	654	1.52905	427716	279726264	25.5734
600	1. 66667	360000	216000000	24.4949	655	1. 52672	429025	281011375	25.5930
601	1.66389	361201	217081801	24.5153	656	I. 52439	430336	282300416	25.6125
602	1.66113	362404	218167208	24.5357	657	1.52207	431649	283593393	25.6320
603	1. 65837	363609	219256227	24.5561	658	1.51976	432964	284890312	25.6515
604	1. 65563	364816	220348864	24.5764	659	1.51745	43428 I	286191179	25.6710
605	1. 65289	366025	221445125	24.5967	660	I. 51515	435600	287496000	25.6905
606	1. 65017	367236	222545016	24.6171	661	1.51286	436921	288804781	25.7099
607	I. 64745	368449	223648543	24.6374	662	1. 51057	438244	290117528	25.7294
608	1.64474	369664	224755712	24.6577	663	1.50830	439569	291434247	25.7488
609	1.64204	370881	225866529	24.6779	664	1.50602	440896	292754944	25.7682
610	1.63934	372100	226981000	24.6982	665	1. 50376	442225	294079625	25.7876
611	1. 63666	37332 I	228099131	24.7184	666	1. 50150	443556	295408296	25.8070
612	1.63399	374544	229220928	24.7386	667	I. 49925	444889	296740963	25.8263
613	1.63132	375769	230346397	24.7588	668	1.49701	446224	298077632	25.8457
614	1.62866	376996	231475544	24.7790	669	1.49477	447561	299418309	25.8650

VALUES OF RECIPROCALS, SQUARES, CUBES, AND SQUARE ROOTS OF NATURAL NUMBERS.

n	1000. $\frac{1}{n}$	n^{2}	n^{3}	$\downarrow n$	n	1000. $\frac{1}{n}$	n^{2}	n^{3}	$\checkmark n$
670	I. 49254	448900	300763000	25.8844	725	I.3793I	525625	381078125	26.9258
671	1.49031	450241	302111711	25.9037	726	1.37741	527076	382657176	26.9444
672	1.48810	451584	303464448	25.9230	727	1. 37552	52 S 529	384240583	26.9629
673	I. 48588	452929	304821217	25.9422	728	1.37363	529984	385828352	26.9815
674	1. 48368	454276	306182024	25.9615	729	1. 37174	53144 I	387420489	27.0000
675	I. 48148	455625	307546875	25.9808	730	1.36986	532900	389017000	27.0185
676	1.47929	456976	308915776	26.0000	731	I. 36799	534361	390617891	27.0370
677	1.47710	458329	310288733	26.0192	732	1.36612	535824	392223168	27.0555
678	1.47493	459684	311665752	26.0384	733	1. 36426	537289	393832837	27.0740
679	1.47275	461041	313046839	26.0576	734	1. 36240	538756	395446904	27.0924
680	I. 47059	462400	314432000	26.0768	735	1.36054	540225	397065375	27.1 109
681	1.46843	463761	315821241	26.0960	736	1.35870	541696	398688256	27.1293
682	1. 46628	465124	317214568	26.1151	737	1.35685	543169	400315553	27.1477
683	I. 46413	466489	318611987	26.1343	738	1.3550I	544644	401947272	27.1662
684	I.46199	467856	320013504	26.1534	739	1.35318	546121	403583419	27.1846
685	1.45985	469225	321419125	26.1725	740	I. 35135	547600	405224000	27.2029
686	1.45773	470596	322828856	26.1916	741	1. 34953	549081	406869021	27.2213
687	I. 45560	471969	324242703	26.2107	742	1.34771	550564	408518488	27.2397
688	I. 45349	473344	325660672	26.2298	743	1. 34590	552049	410172407	27.2580
689	1.45138	474721	327082769	26.2488	744	1. 34409	553536	411830784	27.2764
690	I. 44928	476100	328509000	26.2679	745	I. 34228	555025	413493625	27.2947
691	1.44718	477481	329939371	26.2869	746	1. 34048	556516	415160936	27.3130
692	1. 44509	478864	331373888	26.3059	747	1.33869	558009	416832723	27.3313
693	1.44300	480249	332812557	26.3249	748	1.33690	559504	418508992	$27 \cdot 3496$
694	1.44092	481636	334255384	26.3439	749	1.3351I	561001	420189749	27.3679
695	1. 43885	483025	335702375	26.3629	750	1. 33333	562500	421875000	27.3861
696	1. 43678	484416	337153536	26.3818	751	-. 33156	564001	423564751	27.4044
697	1. 43472	485809	338608873	26.4008	752	1. 32979	565504	425259008	27.4226
698	1. 43266	487204	340368392	26.4197	753	1. 32802	567009	426957777	27.4408
699	1.43062	488601	341532099	26.4386	754	I. 32626	568516	428661064	27.4591
700	I. 42857	490000	343000000	26.4575	755	1. 32450	570025	430368875	27.4773
701	I. 42653	491401	344472101	26.4764	756	I. 32275	571536	432081216	27.4955
702	1.42450	492804	$3459+8408$	26.4953	757	1. 32100	573049	433798093	27.5136
703	I. 42248	494209	347428927	26.5141	758	1.31926	574564	435519512	27.5318
704	I. 42045	495616	348913664	26.5330	759	1.31752	57608 I	437245479	27.5500
705	I. 41844	497025	350402625	26.5518	760	1.31579	577600	438976000	27.5681
706	1.41643	498436	351895816	26.5707	761	1.31406	579121	440711081	27.5862
707	I. 41443	499849	353393243	26.5895	762	1.31234	580644	442450728	27.6043
708	I. 41243	501264	354894912	26.6083	763	1.31062	582169	444194947	27.6225
709	I. 41044	502681	356400829	26.6271	764	1.30890	583696	445943744	27.6405.
710	I. 40845	504100	357911000	26.6458	765	1.30719	585225	447697125	27.6586
711	I. 40647	50552 I	359425431	26.6646	766	1.30548	586756	449455096	27.6767
712	1.40449	506944	360944128	26.6833	767	1.30378	588289	451217663	27.6948
713	I. 40252	508369	362467097	26.7021	768	I. 30208	589824	452984832	27.7128
714	1.40056	509796	363994344	26.7208	769	1.30039	591361	454756609	27.7308
715	I. 39860	511225	365525875	26.7395	770	1. 29870	592900	456533000	27.7489
716	I. 39665	512656	367061696	26.7582	771	1.29702	594441	458314011	27.7669
717	1. 39470	514089	368601813	26.7769	772	I. 29534	595984	460099648	27.7849
718	I. 39276	515524	370146232	26.7955	773	I. 29366	597529	461889917	27.8029
719	1.39082	516961	371694959	26.8142	774	1.29199	599076	463684824	27.8209
720	1.38889	518400	373248000	26.8328	775	1.29032	600625	465484375	27.8388
721	1. 38696	519841	374805361	26.8514	776	I. 28866	602176	467288576	27.8568
722	1.38504	521284	376367048	26.8701	777	I. 28700	603729	469097433	27.8747
723	I. 383 I 3 r .38 I 22	522729 524176	377933067 379503424	26.8887	778	I. 28535	605284	470910952	27.8927
724	1.38122	524176	379503424	26.9072	779	1.28370	606841	472729139	27.9106

Smithsonian Tables.

TABLE 9 (continued).

VALUES OF RECIPROCALS, SQUARES, CUBES, AND SQUARE ROOTS OF NATURAL NUMBERS.

n	1000. ${ }^{1}$	n^{2}	n^{3}	$\sqrt{ }{ }^{\prime}$	n	1000. ${ }_{n}$	n^{2}	n^{8}	$\sqrt{ } n$
780	1.28205	608400	474552000	27.9285	835	1.19760	697225	582182875	28.8964
781	1.280 .41	609961	476379541	27.9464	836	1.19617	698896	584277056	28.9137
782	1.27877	611524	478211768	27.9643	837	I.19474	700569	586376253	28.9310
783	1.27714	6130089	480048687	27.9821	838	1.19332	702244	588.450472	28.9482
784	1.27551	614656	481890304	28.0000	839	1.19190	703921	590589719	28.9655
785	1.27389	616225	483736625	28.0179	840	1.19048	705600	592704000	28.9828
786	1.27226	617796	485587656	28.0357	841	1.18906	707281	594823321	29.0000
787	1.27065	619369	457443403	28.0535	842	1.18765	708964	596947688	29.0172
788	1.26904	620944	489303872	28.0713	843	1.18624	710649	599077107	29.0345
789	1.26743	622521	491169069	28.0891	844	I. 18483	712336	601211584	29.0517
790	1.26582	624100	493039000	28.1069	845	1.18343	714025	603351125	29.0689
791	1.26422	625681	494913671	28:12.47	846	1.18203	715716	605495736	29.0861
792	1.26263	627264	496793088	28.1425	847	1.18064	717409	607645423	29.1033
793	1.26103	628849	498677257	28.1603	848	1.17925	719104	609800192	29.1204
794	I. 25945	630436	500566184	28.1780	S49	1.17786	720801	6ı1960049	29.1376
795	1. 25786	632025	502459875	28.1957	850	I. 17647	722500	614125000	29.1548
796	1.25628	633616	504358336	28.2135	8_{51}	1.17509	724201	616295051	29.1719
797	1. 2547 I	635209	506261573	28.2312	852	1.17371	725904	618470208	29.1890
798	1.25313	636804	508169592	28.2489	853	I. 17233	727609	620650477	29.2062
799	1.25156	638401	510082399	28.2666	854	1.17096	729316	622835864	29.2233
800	1.25000	640000	512000000	28.2843	855	I. 16959	731025	625026375	29.2404
SoI	1. 24844	641601	513922401	28.3019	856	1.16822	732736	627222016	29.2575
802	1. 24688	643204	515849603	28.3196	857	I. 16686	734449	629422793	29.2746
803	1.24533	644809	517781627	28.3373	858	1.16550	736164	631628712	29.2916
804	1. 24378	646416	519718464	28.3549	859	1.16414	73788 I	633839779	29.3087
805	1.24224	648025	521660125	2 S .3725	860	1.16279	739600	636056000	29.3258
806	1. 24069	649636	523606616	28.3901	861	1.16144	741321	638277381	29.3428
807	1.23916	651249	525557943	28.4077	862	1.16009	743044	640503928	29.3598
808	1.23762	652864	527514112	28.4253	863	I.15875	744769	642735647	29.3769
809	1.23609	65448 I	529475129	28.4429	864	1.15741	746496	644972544	29.3939
810	1.23457	656100	531441000	28.4605	865	I. 15607	748225	647214625	29.4109
811	1.23305	657721	533411731	28.4781	866	I.I 5473	749956	649461896	29.4279
812	1.23153	659344	535387328	28.4956	867	I. I 5340	751589	651714363	29.4449
8 I 3	1.23001	660969	537367797	28.5132	868	1.15207	753424	653972032	29.4618
814	I. 22850	662596	539353144	28.5307	869	I.I 5075	755161	656234909	29.4788
815	1. 22699	664225	541343375	28.5482	870	I.I4943	756900	658503000	29.4958
816	1.22549	665856	543338496	28.5657	871	1.14811	758641	660776311	29.5127
817	1.22399	667489	545338513	28.5832	872	I.14679	760384	663054848	29.5296
818	1. 22249	669124	547343432	28.6007	873	1.14548	762129	665338617	29.5466
. 819	1.22100	670761	549353259	28.6182	874	1.14416	763876	667627624	29.5635
820	1.21951	672400	551368000	28.6356	875	I. 14286	765625	669921875	29.5804
821	1.21803	674041	553387661	28.6531	876	1.14155	767376	672221376	29.5973
822	1.21655	675684	555412248	28.6705	877	I.14025	769129	674526133	29.6142
823	1.21507	677329	557441767	28.6880	878	1.13895	770884	676836152	29.6311
824	1.21359	678976	559476224	28.7054	879	I. 13766	772641	679151439	29.6479
825	1.21212	680625	561515625	28.7228	880	1.13636	774400	681472000	29.6648
826	1.21065	682276	563559976	28.7402	881	I.13507	776161	683797841	29.6816
827	1. 20919	683929	565609283	28.7576	882	I.13379	777924	686128968	29.6985
828	1.20773	685584	567663552	28.7750	883	1.13250	779689	688465387	29.7153
829	1.20627	687241	569722789	28.7924	884	1.13122	781456	690807104	29.7321
830	I. 20482	688900	571787000	28.8097	885	I.I2994	783225	693154125	29.7489
831	1.20337	69056 I	573856191	28.8271	886	1.12867	784996	695506456	29.7658
832	I. 20192	692224	575930368	28.8444	887	1.12740	786769	697864103	29.7825
833 834	I. 20048	693889	578009537	28.8617	888	1.12613	788544	700227072	29.7993
834	1.19904	695556	580093704	28.8791	889	I.12486	790321	702595369	29.8161

VALUES OF RECIPROGALS, SQUARES, CUBES, AND SQUARE ROOTS OF NATURAL NUMBERS.

n	$1000 . \frac{1}{12}$	n^{2}	n^{3}	$\downarrow n$	n	1000. ${ }_{n}$	n^{2}	n^{3}	$\checkmark n$
890	I. 12360	792100	704969000	29.8329	945	1.05820	893025	843908625	30.7409
891	1.12233	793881	707347971	29.8496	946	I. 05708	894916	846590536	30.757 I
892	1.12108	795664	709732288	29.8664	947	I. 05597	896809	849278123	30.7734
893	1.11982	797449	712121957	29.8831	948	I. 05485	898704	851971392	30.7896
894	1.11857	799236	714516984	29.8998	949	I. 05374	900601	854670349	30.8058
895	1.11732	801025	716917375	29.9166	950	1.05263	902500	857375000	30.8221
896	1.11607	802816	719323136	29.9333	951	1.05152	904401	860085351	30.8383
897	1.11483	S04609	721734273	29.9500	952	1.05042	906304	862801408	30.8545
898	I.11359	806404	724150792	29.9666	953	1. 04932	908209	865523177	30.8707
899	I.11235	808201	726572699	29.9833	954	1.04822	910116	868250664	30.8869
900	1.11111	810000	729000000	30.0000	955	1.04712	912025	870983875	30.9031
901	1.10988	8ıi80ı	731432701	30.0167	956	1.04603	913936	873722816	30.9192
902	1.10865	813604	733870808	30.0333	957	1.04493	915849	876467493	30.9354
903	1.10742	815409	736314327	30.0500	958	1.04384	917764	879217912	30.9516
904	1.10619	817216	738763264	30.0666	959	1.04275	91.968 I	881974079	30.9677
905	1.10497	819025	741217625	30.0832	960	1.04167	921600	884736000	30.9839
906	1.10375	820836	743677416	30.0998	961	1.0405^{8}	923521	887503681	31.0000
907	I. 10254	822649	746142643	30.11 64	962	1.03950	925444	890277128	3 I .0161
908	1.10132	824464	748613312	30.1330	963	1.03842	927369	893056347	31.0322
909	I.100II	826281	751089429	30.1496	964	1.03734	929296	895841344	31.0483
910	1.09890	-828100	753571000	30.1662	965	I. 03627	931225	898632125	31.0644
911	1.09769	829921	756058031	30.1828	966	1.03520	933156	901428696	31.0805
912	I. 09649	831744	758550528	30.1993	967	1.03413	935089	904231063	31.0966
913	1.09529	833569	761048497	30.2159	968	1.03306	937024	907039232	31.1127
914	1.09409	835396	763551944	30.2324	969	1.03199	938961	909853209	31.1288
915	1.09290	837225	766060875	30.2490	970	1.03093	940900	912673000	31.1448
916	1.09170	839056	768575296	30.2655	971	1.02987	942841	915498611	31.1609
917	I. 09051	840889	771095213	30.2820	972	1.02881	944784	918330048	31.1769
918	1.08932	842724	773620632	30.2985	973	1.02775	946729	921167317	31.1929
919	1.08814	844561	776151559	30.3150	974	1.02669	948676	924010424	31.2090
920	1.08696	846400	778688000	30.3315	975	1.02564	950625	926859375	31.2250
921	1. 08578	848241	781229961	30.3480	976	I. 02459	952576	929714176	31.2410
922	1.08460	850084	783777448	30.3645	977	1.02354	954529	932574833	31.2570
923	1.08342	851929	786330467	30.3809	978	I.02249	956484	935441352	31.2730
924	1.08225	853776	788889024	30.3974	979	1.02145	958441	93 ¢ 3 I 3739	31.2890
925	1.08108	855625	791453125	30.4138	980	1.02041	960400	941192000	31.3050
926	1.07991	857476	794022776	30.4302	981	1.01937	962361	944076141	31.3209
927	1.07875	859329	796597983	30.4467	982	1.01833	964324	946966168	31.3369
928	1.07759	86II84	799178752	30.4631	983	1.01729	966289	949862087	31.3528
929	1.07643	863041	So17650S9	30.4795	984	1.01626	968256	952763904	31.3688
930	1.07527	864900	So4357000	30.4959	985	1.01523	970225	955671625	31.3847
931	1.07411	866761	806954491	30.5123	986	1.01420	972196	958585256	31.4006
932	1.07296	868624	809557568	30.5287	987	1.01317	974169	961504803	31.4166
933	1.07181	870489	S12166237	30.5450	988	I.OI215	976144	964430272	3 I .4325
934	1.07066	872356	814780504	30.5614	989	1.OIII2	978121	967361669	31.4484
935	1.06952	874225	817400375	30.5778	990	1.01010	9Soroo	970299000	31.1643
936	1.06838	876096	820025856	30.5941	991	1.00908	9820 I	973242271	31.4802
937	1.06724	877969	822656953	30.6105	992	1.00806	984064	976191488	31.4960
938	1.06610	879844	825293672	30.6268	993	1.00705	986049	979146657	31.5119
939	1.06496	881721	827936019	30.6431	994	1.00604	988036	982107784	31.5278
940	1.06383	883600	830584000	30.6594	995	1.00503	990025	985074875	31.5436
941	1.06270	885481	833237621	30.6757	996	1.00402	992016	988047936	31.5595
942	1.06157	887364	835896888	30.6920	997	I. 00301	994009	991026973	31.5753
943	1.06045	889249	${ }_{8} 38561807$	30.7083	998	1.00200	996004	994011992	3 I .5911
944	1.05932	891136	841232384	30.7246	999	1.00100	998001	997002999	31.6070

Smithsonian Tables.

LOGARITHMS.

\mathbf{N}.	0	1	2	3	4	5	6	7	8	9	10
100	0000	0004	0009	0013	0017	0022	0026	0030	0035	0039	0043
101	0043	0048	0052	0056	0060	0065	0069	0073	0077	0082	0086
102	0086	0090	0095	0099	OIO3	0107	OIII	OII 6	0120	0124	0128
103	OI 28	OI 33	-137	O14 1	OI 45	OI 49	O1 54	OI 58	0162	or66	0170
104	or 70	O175	OI79	0183	0187	OI9I	OI95	Or99	0204	0208	0212
105	0212	0216	0220	0224	0228	0233	0237	0241	0245	0249	0253
106	0253	0257	0261	0265	0269	0273	0278	0282	0286	0290	0294
107	0294	0298	0302	0306	0310	0314	0318	0322	0326	0330	0334
108	0334	0338	0342	-346	-350	0354	-358	0362	0366	0370	0374
109	0374	0378	0382	-386	0390	0394	0398	0402	0406	0410	0414
110	0414	0418	0422	0426	0430	04.34	0438	0441	0445	0449	0453
III	0453	0457	046I	0465	0469	0473	0477	048I	0484	0488	0492
112	0492	0496	0500	0504	0508	0512	0515	0519	0523	0527	0531
113	0531	O535	0538	0542	0546	0550	0554	0558	0561	0565	0569
114	0569	0573	0577	0580	0584	0588	0592	0596	0599	0603	0607
115	0607	0611	06I 5	0618	0622	0626	0630	0633	0637	0641	0645
116	0645	0648	0652	0656	0660	0663	0667	067 I	0674	0678	0682
117	0682	0686	0689	0693	0697	0700	0704	0708	0711	0715	0719
118	0719	0722	0726	0730	0734	0737	0741	0745	0748	0752	0755
119	0755	0759	0763	0766	0770	0774	0777	078 I	0785	0788	0792
120	0792	0795	0799	0803	0806	0810	0813	08i7	0821	0824	0828
121	0828	0831	0835	0839	0842	0846	0849	0853	0856	0860	0864
122	0864	0867	0871	0874	0878	0881	-8S 5	o888	0892	0896	0899
123	0899	0903	0906	0910	0913	0917	0920	0924	0927	0931	0934
124	0934	0938	0941	0945	0948	0952	0955	0959	0962	0966	0969
125	0969	0973	0976	0980	0983	0986	0990	0993	0997	1000	1004
126	1004	1007	1011	IOI 4	1017	1021	1024	1028	1031	1035	1038
127	1038	1041	1045	1048	1052	1055	1059	1062	1065	1069	1072
128	1072	1075	1079	1082	1086	1089	1092	1096	1099	1103	1106
129	1106	1109	III3	I I 16	1119	1123	1126	I 129	1133	1136	1139
130	1139	1143	II 46	I 149	1153	1156	II 59	1163	1166	1169	1173
${ }^{1} 31$	1173	1176	1179	1183	1186	1189	I 193	1196	1199	1202	1206
132	1206	1209	1212	1216	1219	1222	1225	1229	1232	1235	1239
133	1239	1242	1245	1248	1252	1255	I 258	1261	1265	1268	1271
134	127 I	1274	1278	1281	1284	1287	1290	1294	1297	1300	1303
135	1303	1307	1310	1313	1316	1319	1323	1326	1329	1332	1335
136	I 335	1339	1342	I 345	1348	1351	I 355	1358	1361	1 364	1367
137	1367	1370	I 374	1377	1380	1383	I 386	I 389	1392	I 396	1399
138	I 399	1402	1405	1408	1411	1414	1418	142 I	1424	1427	1430
139	1430	1433	1436	1440	1443	1446	$1449{ }^{-}$	1452	1455	1458	1461
140	1461	1464	1467	1471	1474	1477	1480	1483	1486	1489	1492
141	1492	1495	1498	1501	1504.	1508	1511	1514	1517	1520	1523
142	I 523	1526	1529	1532	1535	1538	1541	I 544	1547	I 550	I 553
143	1553	I 556	I 559	1562	1565	1569	1572	1575	I 578	I 581	I 584
144	1584	1587	1590	I 593	1596	I 599	1602	1605	1608	1611	1614
145	1614	1617	1620	1623	1626	1629	1632	1635	1638	1641	1644
146	1644	1647	1649	1652	1655	1658	1661	1664	1667	1670	1673
147	1673	1676	1679	1682	1685	1688	1691	1694	1697	1700	1703
148	1703	1706	1708	1711	1714	1717	1720	1723	1726		1732
149	1732	1735	1738	1741	1744	1746	1749	1752	1755	75^{8},	1761

Smithsonian Tables.

LOGARITHMS.

N.	0	1	2	3	4	5	6	7	8	9	10
150	1761	1764	1767	1770	1772	1775	1778	1781	1784	1787	1790
151	1790	1793	1796	1798	1801	1804	1807	1810	1813	1816	1818
152	1818	182 I	1824	1827	1830	1833	1836	1838	184 1	1844	1847
I 53	1847.	1850	1853	1855	1858	1861	1864	1867	1870	1872	1875
I 54	1875	1878	1881	1884	1886	1889	1892	1895	1898	1901	1903
155	1903	1906	1909	1912	1915	1917	1920	1923	1926	1928	1931
156	1931	1934	1937	1940	1942	1945	1948	1951	1953	1956	1959
157	1959	1962	1965	1967	1970	1973	1976	1978	1981	1984	1987
158	1987	1989	1992	1995	1998	2000	2003	2006	2009	2011	2014
159	2014	2017	2019	2.022	2025	2028	2030	2033	2036	2038	2041
160	2041	2044	2047	2049	2052	2055	2057	2060	2063	2066	2068
161	2068	2071	2074	2076	2079	2082	2084	2087	2090	2092	2095
162	2095	2098	2101	2103	2106	2109	2111	2114	2117	2119	2122
163	2122	2125	2127	2130	2133	2135	2138	2140	2143	2146	2148
164	2148	2151	2154	2156	2159	2162	2164	2167	2170	2172	2175
165	2175	2177	2180	2183	2185	2188	2191	2193	2196	2198	2201
166	2201	2204	2206	2209	2212	2214	2217	2219	2222	2225	2227
167	2227	2230	2232	2235	2238	2240	2243	2245	2248	2251	2253
168	2253	2256	2258	2261	2263	2266	2269	2271	2274	2276	2279
169	2279	2281	2284	2287	2289	2292	2294	2297	2299	2302	2304
170	2304	2307	2310	2312	2315	2317	2320	2322	2325	2327	2330
171	2330	2333	2335	2338	2340	2343	2345	2348	2350	2353	2355
172	2355	2358	2360	2363	2365	2368	2370	2373	2375	2378	2380
173	2380	2383	2385	2388	2390	2393	2395	2398	2400	2403	2.405
174	2405	2408	2410	2413	2415	2418	2420	2423	2425	2428	2430
175	2430	2433	2435	2438	2445	2443	2445	2448	2450	2453	2455
176	2455	2458	2460	2463	2465	2467	2470	2472	2475	2477	2480
177	2480	2482	2485	2487	2490	2492	2494	2497	2499	2502	2504
178	2504	2507	2509	2512	2514	2516	2519	2521	2524	2526	2529
179	2529	2531	2533	2536	2538	2541	2543	2545	2548	2550	2553
180	2553	2555	2558	2560	2562	2565	2567	2570	2572	2574	2577
181	2577	2579	2582	2584	2586	2589	2591	2594	2596	2598	2601
182	2601	2603	2605	2608	2610	2613	2615	2617	2620	2622	2625
183	2625	2627	2629	2632	2634	2636	2639	2641	2643	2646	2648
184	2648	2651	2653	2655	2658	2660	2662	2665	2667	2669	2672
185	2672	2674	2676	2679	2681	2683	2686	2688	2690	2693	2695
186	2695	2697	2700	2702	2704	2707	2709	2711	2714	2716	2718
187	2718	2721	2723	2725	2728	2730	2732	2735	2737	2739	2742
188	2742	2744	2746	2749	2751	2753	2755	2758	2760	2762	2765
189	2765	2767	2769	2772	2774	2776	2778	2781	2783	2785	2788
190	.2788	2790	2792	2794	2797	2799	2801	2804	2806	2808	2810
191	2810	2813	2815	2817	2819	2822	2824	2826	2828	2831	2833
192	2833	2835	2838	2840	2842	2844	2847	2849	2851	2853	2856
193	2856	2858	2860	2862	2865	2867	2869	2871	2874	2876	2878
194	-2878	2880	2882	2885	2887	2889	2891	2894	2896	2898	2900
195	2900	2903	2905	2907	2909	2911	2914	2916	2918	2920	2923
196	2923	2925	2927	2929	2931	2934	2936	29.38	2940	2942	2945
197	2945	2947	2949	2951	2953	2956	2958	2960	2962	2964	2967
198	2967	2969	2971	2973	2975	2978	2980	2982	2984	2986	2989
199	2989	2991	2993	2995	2997	2999	3002	3004	3006	3008	3010

Smithsonian Tables.

Table 11.
LOGARITHMS.

\mathbf{N}	0	1	. 2	3	4	5	6	7	8	9	P. P.				
											1	2	3	4	5
10	0000	0043	0086	0128	0170	0212	0253	0294	0334	0374	4	8	12	17	21
11	0414	0453	0492	0531	0569	0607	0645	0682	0719	0755	4	8	11	15	19
12	0792	0828	0864	0899	0934	0969	1004	1038	1072	1106	3	7	10	14	17
13	1139	1173	1206	1239	1271	1303	1335	1367	1399	1430	3	6	10	13	16
14	1461	1492	1523	1553	1584	1614	1644	1673	1703	1732	3	6	9	12	15
15	1761	1790	1818	1847	1875	1903	1931	1959	1987	2014	3	6	8	II	14
16	2041	2068	2095	2122	2148	2175	2201	2227	2253	2279	3	5	8	11	13
17	2304	2330	2355	2380	2405	2430	2455	2480	2504	2529	2	5	7	10	12
18	2553 2788	2577 2810	2601	2625 2856	2648	2672	2695	2718	2742	2765	2	5	7	9	12
19	2788	2810	2833	2856	2878	2900	2923	2945	2967	2989	2	4	7	9	II
20	3010	3032	3054	3075	3096	3118	$3^{1} 39$	3160	318I	3201	2	4	6	8	II
21	3222	3243	3263	3284	3304	3324	3345	3365	3385	3404	2	4	6	8	10
22	3424	3444	3464	3483	3502	3522	3541	3560	3579	3598	2	4	6	8	10
23	3617	3636	3655	3674	3692	3711	3729	3747	3766	3784	2	4	5	7	9
24	3802	3820	3838	3856	3874	3892	3909	3927	3945	3962	2	4	5	7	9
25	3979	3997	4014	4031	4048	4065	4082	4099	4116	4133	2	3	5	7	9
26	4150	4166	4183	4200	4216	4232	4249	4265	4281	4298	2	3	5	7	8
27	4314	4330	4346	4362	4378	4393	4409	4425	4440	4456	2	3	5	6	8
28	4472 4624	4487	4502	4518 4669	4533	4548	4564	4579	4594	4609	2	3	5	6	8
29	4624	4639	4654	4669	4683	4698	4713	4728	4742	4757	1	3	4	6	7
30	4771	4786	4800	4814	4829	4843	$4 S_{57}$	4871	4886	4900	I	3	4	6	7
31	4914	4928	4942	4955	4969	4983	4997	5011	5024	5038	I	3	4	6	7
32	5051	5065	5079	5092	5105	5119	5132	5145	5159	5172	1	3	4	5	7
33	5185	5198	52 II	5224	5237	5250	5263	5276	5289	5302	I	3	4	5	6
34	5315	5328	5340	5353	5366	5378	5391	5403	5416	5428	I	3	4	5	6
35	5441	5453	5465	5478	5490	5502	5514	5527	5539	5551	I	2	4	5	6
36	5563	5575	5587	5599	5611	5623	5635	5647	5658	5670	I	-	4	5	6
37	5682	5694	5705	5717	5729	5740	5752	5763	5775	5786	1	2	3	5	6
38	5798	5809	5821	5832	5843	5855	5866	5877	5888	5899	1	2	3	5	6
-39	59 II	5922	5933	5944	5955	5966	5977	5988	5999	6010	1	2	3	4	6
40	6021	6031	6042	6053	6064	6075	6085	6096	6107	6117	I	2	3	4	5
41	6128	${ }_{61} 3^{8}$	6149	6160	6170	6180	6191	6201	6212	6222	I	2	3	4	5
42	6232	6243	6253	6263	6274	6284	6294	6304	6314	6325	I	2	3	4	5
43	6335	6345	6355	6365	6375	6385	6395	6405	6415	6425	I	2	3	4	5
44	6435	6444	6454	6464	6474	6484	6493	6503	6513	6522	1	2	3	4	5
45	6532	6542	6551	6561	6571	6580	6590	6599	6609	6618	1	2	3	4	5
46	6628	6637	6646	6656	6665	6675	6684	6693	6702	6712	I	2	3	4	5
47	6721	6730	6739	6749	6758	6767	6776	6785	6794	6803	1	2	3	4	5
48	6812	682 I	6830	6839	6848	6857	6866	6875	6884	6893	1	2	3	4	4
49	6902	6911	6920	6928	6937	6946	6955	6964	6972	6981	1	2	3	4	4
50	6990	6998	7007	7016	7024	7033	7042	7050	7059	7067	1	2	3	3	4
51	7076	7084	7093	7101	7110	7118	7126	7135	7143	7152	1	2	3	3	4
52	7160	7168	7177	7185	7193	7202	7210	7218	7226	7235	1	2	2	3	4
53	7243	7251	7259	7267	7275	7284	7292	7300	7308	7316	1	2	2	3	4
54	7324	7332	7340	7348	7356	7364	7372	7380	7388	7396	1	2	2	3	4

Emithsonian Tables.

LOGARITHMS.

N.	0	1	2	3	4	5	6	7	8	9	P. P.				
											1	2	3	4	5
55	7404	7412	7419	7427	7435	7443	7451	7459	7466	7474	1	2	2	3	4
56	7482	7490	7497.	7505	7513	7520	7528	7536	7543	7551	1	2	2	3	4
57	7559	7566	7574	7582	7589	7597	7604	7612	7619	7627	1	2	2	3	4
58	7634	7642	7649	7657	7664	7672	7679	7686	7694	7701	I	1	2	3	4
59	7709	7716	7723	7731	7738	7745	7752	7760	7767	7774	I	I	2	3	4
60	7782	7789	7796	7803	7810	7818	7825	7832	7839	7846	I	1	2	3	4
61	7853	7860	7868	7875	7882	7889	7896	7903	7910	7917	1	1	2	3	4
62	7924	7931	7938	7945	7952	7959	7966	7973	7980	7987	I	1	2	3	3
63	7993	8000	8007	8014	8021	8028	8035	8041	8048	8055	I	1	2	3	3
64	8062	8069	8075	8082	8089	8096	8102	8109	8116	8122	1	1	2	3	3
65	8129	8136	8142	8149	8 I 56	8162	8169	8176	8182	8189	I	1	2	3	3
66	8195	8202	8209	8215	8222	8228	8235	8241	8248	8254	I	1	2	3	3
67	8261	8267	8274	8280	8287	8293	8299	8306	8312	8319	I	1	2	3	3
68	8325	833 I	8338	8344	835 I	8357	8363	8370	8376	8382	I	1	2	3	3
69	8388	8395	8401	8407	8414	8420	8426	8432	8439	8445	I	1	2	3	3
70	8451	8457	8463	8470	8476	8482	8488	8494	8500	8506	1	I	2	2	3
71	8513	8519	8525	8531	8537	8543	8549	8555	8561	8567	1	1	2	2	3
72	8573	8579	8585	8591	8597	8603	8609	8615	8621	8627	I	1	2	2	3
73	8633	8639	8645	8651	8657	8663	8669	8675	8681	8686	I	I	2	2	3
74	8692	8698	8704	8710	8716	8722	8727	8733	8739	8745	I	1	2	2	3
75	8751	8756	8762	8768	8774	8779	8785	8791	8797	8802	I	1	2	2	3
76	8808	8814	8820	8825	8831	8837	8842	8848	8854	8859	I	I	2	2	3
77	8865	8871	8876	8882	8887	8893	8899	8904	8910	8915	1	I	2	2	3
78	8921	8927	8932	8938	8943	8949	8954	8960	8965	8971	I	I	2	2	3
79	8976	8982	8987	8993	8998	9004	9009	9015	9020	9025	I	I	2	2	3
80	9031	9036	9042	9047	9053	9058	9063	9069	9074	9079	I	I	2	2	3
81	9085	9090	9096	9101	9106	9112	9117	9122	9128	9133	I	1	2	2	3
82	9138	9143	9149	9154	9159	9165	9170	9175	9180	9186	1	I	2	2	3
83	9191	9196	9201	9206	9212	9217	9222	9227	9232	9238	I	1	2	2	3
84	9243	9248	9253	9258	9263	9269	9274	9279	9284	9289	I	I	2	2	3
85	9294	9299	9304	9309	9315	9320	9325	9330	9335	9340	I	1	2	2	3
86	9345	9350	9355	9360	9365	9370	9375	9380	9385	9390	1	I	2	2	3
87	9395	9400	9405	9410	9415	9420	9425	9430	9435	9440	0	1	1	2	2
88	9445	9450	9455	9460	9465	9469	9474	9479	9484	9489	0	1	1	2	2
89	9494	9499	9504	9509	9513	95IS	9523	9528	9533	9538	0	I	1	2	2
$\bigcirc 90$	9542	9547	9552	9557	9562	9566	9571	9576	9581	9586	0	1	1	2	2
91	9590	9595	9600	9605	9609	9614	9619	9624	9628	9633	-	1	1	2	2
92	,9638	9643	9647	9652	9657	9661	9666	9671	9675	9680	0	1	I	2	2
93	9685	9689	9694	9699	9703	9708	9713	9717	9722	9727	0	1	1	2	2
94	9731	9736	9741	9745	9750	9754	9759	9763	9768	9773	0	1	1	2	2
95	9777	9782	9786	9791	9795	9800	9 SO 5	9809	9814	9818	0	1	1	2	2
96	9823	9827	9832	9836	9841	9845	9850	9854	9859	9863	0	I	I	2	2
97	9868	9872	9877	9881	9886	9890	9894	9899	9903	9908	\bigcirc	I	1	2	2
98	9912	9917	9921	9926	9930	9934	9939	9943	9948	9952	0	I	1	2	2
99	9956	9961	9965	9969	9974	9978	9983	9987	9991	9996	0	1	1	2	2

Smithsonian Tables.

ANTILOGARITHMS.

	0	1	- 2	3	4	5	6	7	8	9	P. P.				
											1	2	3	4	5
. 00	1000	1002	1005	1007	1009	1012	1014	1016	1019	1021	0	0	1	1	1
. OI	1023	1026	1028	1030	1033	1035	1038	1040	1042	1045	-	0	1	1	1
. 02	1047	1050	1052	1054	1057	1059	1062	1064	1067	1069	-	\bigcirc	I	1	1
. 03	1072	1074	1076	1079	1081	1084	1086	1089	109I	1094	-	\bigcirc	1	I	I
. 04	1096	1099	1102	1104	1107	1109	1112	III4	1117	III9	\bigcirc	I	1	1	1
. 05	1122	1125	1127	1130	1132	1135	1138	1140	1143	1146	\bigcirc	1	1	1	1
. 06	1148	1151	1153	1156	1159	1161	1164	1167	1169	1172	\bigcirc	1	1	1	1
. 07	1175	1178	1180	1183	1186	1189	1191	1194	1197	1199	\bigcirc	1	I	1	1
. 08	1202	1205	1208	1211	1213	1216	1219	1222	1225	1227	\bigcirc	1	1	1	1
. 09	1230	1233	1236	1239	1242	1245	1247	1250	1253	1256	\bigcirc	1	I	1	1
. 10	1259	1262	1265	1268	1271	1274	1276	1279	1282	1285	0	1	1	I	1
. 11	1288	1291	1294	1297	1300	1303	1306	1309	1312	1315	\bigcirc	1	1	1	2
. 12	${ }^{1} 318$	1321	1324	1327	1330	1334	1337	1340	1343	1346	\bigcirc	1	1	1	2
. 13	1349	1352	1355	1358	1361	1365	1368	1371	1374	1377	0	1	1	1	2
. 14	I 380	1384	1387	1390	1393	1396	1400	1403	1406	1409	0	1	1	1	2
. 15	1413	1416	1419	1422	1426	1429	1432	1435	1439	1442	\bigcirc	1	1	I	2
. 16	144.5	1449	1452	1455	1459	1462	I 466	1469	1472	1476	\bigcirc	1	1	1	2
.17	1479	1483	1486	1489	1493	1496	1500	1503	1507	1510	0	1	1	1	2
.18	1514	1517	1521	1524	1528	1531	1535	1538	1542	1545	0	1	1	1	2
. 19	1549	1552	1556	1560	1563	I 567	1570	1574	1578	1581	0	I	1	1	2
. 20	1585	1589	1592	1596	1600	1603	1607	1611	1614	1618	0	1	1	1	2
. 21	1622	1626	1629	1633	1637	1641	1644	1648	1652	1656	0	1	1	2	2
. 22	1660	1663	1667	1671	1675	1679	1683	1687	1690	1694	\bigcirc	1	1	2	2
. 23	1698	1702	1706	1710	1714	1718	1722	1726	1730	1734	0	I	1	2	2
. 24	1738	1742	1746	1750	1754	1758	1762	1766	1770	1774	-	1	1	2	2
. 25	1778	1782	1786	1791	1795	I799	1803	1807	1811	1816	0	1	1	2	2
. 26	1820	1824	1828	1832	1837	1841	1845	1849	1854	1858	0.	1	1	2	2
. 27	1862	1866	1871	1875	1879	1884	1888	1892	1897	1901	\bigcirc	I	I	2	2
. 28	1905	1910	1914	I919	1923	1928	1932	1936	1941	1945	-	I	1	2	2
. 29	1950	1954	1959	1963	1968	1972	1977	1982	1986	- 1991	0	1	1	2	2
. 30	1995	2000	2004	2009	2014	2018	2023	2028	2032	2037	0	I	I	2	2
. 31	2042	2046	2051	2056	2061	2065	2070	2075	2080	2084	-	I	1	2	2
. 32	2089	2094	2099	2104	2109	2113	2118	2123	2128	2133	\bigcirc	1	1	2	2
. 33	2138	2143	2148	2153	2158	2163.	2168	2173	2178	2183	0	1	1	2	2
$\cdot 34$	2188	2193	2198	2203	2208	2213	2218	2223	2228	2234	I	1	2	2	3
. 35	2239	2244	2249	2254	2259	2265	2270	2275	2280	2286	1	1	2	2	3
. 36	2291	2296	2301	2307	2312	2317	2323	2328	2333	2339	1	I	-	2	3
. 37	2344	2350	2355	2360	2366	2371	2377	2382	2388	2393	I	1	2	2	3
- 38	2399	2404	2410	2415	2421	2427	2432	2438	2443	2449	1	I	2	2	3
. 39	2455	2460	2466	2472	2477	2483	2489	2495	2500	2506	1	1	2	2	3
. 40	2512	2518	2523	2529	2535	2541	2547	2553	2559	2564	I	1	2	2	3
. 41	2570	2576	2582	2588	2594	2600	2606	2612	2618	2624	I	1		2	3
.42	2630	2636	2642	2649	2655	2661	2667	2673	2679	2685	I	1	2	2	$\stackrel{3}{3}$
- 43	2692	2698	2704	2710	2716	2723	2729	2735	2742	2748	I	1	2	3	3
.44	2754	2761	2767	2773	2780	2786	2793	2799	2805	2812	1	1	2	3	3
. 45	2818	2825	2831	2838	2844	2851	2858	2864	2871	2877	1	1	2	3	3
. 46	2884	2891	2897	2904	291I	2917	2924	2931	2938	2944	I	1	2	3	3
- 47	2951	2958	2965	2972	2979	2985	2992	2999	3006	3013	I	I	2	3	3
. 48	3020	3027	3034	3041	3048	3055	3062	3069	3076	3083 3155	1	1	2	3	4
-49	3090	3097	3105	3112	3119	3126	3133	3141	3148	3155	1	1	2	3	4

Smithsonian Tables.

ANTILOGARITHMS.

	0	1	2	3	4	5	6	7	8	9	P. P.				
											1	2	3	4	5
. 50	3162	3170	3177	3184	3192	3199	3206	3214	3221	3228	I	1	2	3	4
. 51	3236	3243	3251	3258	3266	3273	3281	3289	3296	3304	I	2	2	3	4
. 52	3311	3319	3327	3334	3342	3350	3357	3365	3373	3381	I	2	2	3	4
. 53	3388	3396	3404	3412	3420	3428	3436	3443	3451	3459	I	2	2	3	4
. 54	3467	3475	3483	3491	3499	3508	3516	3524	3532	3540	I	2	2	3	4
. 55	3548	3556	3565	3573	358r	3589	3597	3606	3614	3622	1	2	2	3	4
. 56	3631	3639	3648	3656	3664	3673	3681	3690	3698	3707	I	2	3	3	4
. 57	3715	3724	3733	3741	3750	3758	3767	3776	3784	3793	I	2	3	3	4
. 58	$3802{ }^{\circ}$	3811	3819	3828	3837	3846	3855	3864	3873	3882	I	2	3	4	4
. 59	3890	3899	3908	3917	3926	3936	3945	3954	3963	3972	I	2	3	4	5
. 60	3981	3990	3999	4009	4018	4027	4036	4046	4055	4064	I	2	3	4	5
.61 .62	4074 4169	4083	4093	4102	4111	4121	4130	4140	4150	4159	I	2	3	4	5
. 62	4169	4178	4188	4198	4207	4217	4227	4236	4246	4256	I	2	3	4	5
. 63	4266	4276	4285	4295	4305	4315	4325	4335	4345	4355	I	2	3	4	5
. 64	4365	4375	4385	4395	4406	4416	4426	4436	4446	4457	I	2	3	4	5
. 65	4467	4477	4487	4498	4508	4519	4529	4539	4550	4560	I	2	3	4	5
. 66	4571	4581	4592	4603	4613	4624	4634	4645	4656	4667	I	2	3	4	5
. 67	4677	4688	4699	4710	4721	4732	4742	4753	4764	4775	1	2	3	4	5
. 65	4786	4797	4808	4819	4831	4842	4853	4864	4875	4887	I	2	3	4	6
. 69	4898	4909	4920	4932	4943	4955	4966	4977	4989	5000	I	2	3	5	6
. 70	5012	5023	5035	5047	5058	5070	5082	5093	5105	5117	I	2	4	5	6
. 71	5129	5140	5152	5164	5176	5188	5200	5212	5224	5236	I	2	4	5	6
. 72	5248	5260	5272	5284	5297	5309	5321	5333	5346	5358	I	2	4	5	6
. 73	5370	5383	5395	5408	5420	5433	5445	5458	5470	5483	I	3	4	5	6
. 74	5495	5508	552 I	5534	5546	5559	5572	$55^{8} 5$	5598	5610	I	3	4	5	6
.75 .76	5623	5636 5768	5649	5662	5675 5808	5689	5702	5715	5728	5741	I	3	4	5	7
.76 .77	5754 5888	5768	5781 5916	5794 5929	5808	5821	5834 5970	5848	5861	5875 6012	I	3	4	5	7 7
.78 .78	6026	6039	6053	6067	6943	6957	5970 6109	6124	5998 6138	6152	I	3	4	5	7
. 79	6166	6180	6r94	6209	6223	6237	6252	6266	6281	6295	I	3	4	6	7
. 80	6310	6324	6339	6353	6368	6383	6397	6412	6427	6442	I	3	4	6	7
. 81	6457	6471	6486	6501	6516	6531	6546	6561	6577	6592	2	3	5	6	8
. 82	6607	6622	6637	6653	6668	6683	6699	6714	6730	6745	2	3	5	6	8
. 83	6761	6776	6792	6808	6823	6839	6855	6871	6887	6902	2	3	5	6	8
. 84	6918	6934	6950	6966	6982	6998	7015	7031	7047	7063	2	3	5	6	8
. 85	7079	7096	7112	7129	7145	7161	7178	7194	7211	7228	2	3	5	7	8
. 86	7244	7261	7278	7295	7311	7328	7345	7362	7379	7396	2	3	5	7	8
. 87	7413	7430	7447	7464	7482	7499	7516	7534	7551	7568	2	3	5	7	9
. 88	7586	7603	7621	7638	7656	7674	7691	7709	7727	7745	2	4	5	7	9
. 89	7762	7780	7798	7816	7834	7852	7870	7889	7907	7925	2	4	5	7	9
. 90	7943	7962	7980	7998	8017	8035	8054	8072	SogI	8ilo	2	4	6	7	9
.91	8128	8147	8166	8185	8204	8222	8241	8260	8279	8299	2	4	6	8	9
. 92	8318	8337	8356	S375	8395	8414	8433	8453	8472	8492	2	4	6	8	10
. 93	8511 8710	8531 8730	8551 8750	8570 8770	8590 8790	8610 8810	8630 8831	8650 8851	8670 8872	8690 8892	2	4	6	8	10
.94	8710	8730	8750	8770	8790	88ı0	8831	8851	8872	8892	2	4	6	8	10
. 95	8913	8933	8954	8974	8995	9016	9036	9057	9078	9099	2	4	6	8	10
. 96	9120	9141	9162	9183	9204	9226	9247	9268	9290	9311	2	4	6	8	II
. 97	9333	9354	9376	9397	9419	944 I	9462	9484	9506	9528	2	4	7	9	II
. 98	9550	9572	9594	9616	9638	9661	9683	9705	9727	9750	2	4	7	9	II
. 99	9772	9795	9817	9840	9863	9886	9908	9931	9954	9977	2	5	7	9	11

Smithsonian Tables.

	0	1	2	3	4	5	6	7	8	9	10
. 900	7943	7945	7947	7949	7951	7952	7954	7956	7958	7960	7962
. 901	7962	7963	7965	7967	7969	7971	7973	7974	7976	7978	7980
. 902	7980	7982	7984	7985	7987	7989	7991	7993	7995	7997	7998
. 903	7998	8000	8002	8004	8006	So08	8009 8028	8011	8013	8015	8017
. 904	8017	8019	8020	S022	8024	8026		8030	8032	8033	8035
. 905	8035	8037	8039	8041	8043	8045	8046	8048	8050	8052	8054
. 906	So54	So56	8057	8059	8061	8063	8065	8067	8069	So70	8072
. 907	8072	8074	8076	8078	8080	8082	8084	8085	8087	8089	8091
. 908	So91	8093	8095	8097	8098	8100	8102	8104	8106	8108	8110
. 909	Silo	8111	8113	8115	8117	8119	SI2I	8123	8125	8126	8128
. 910	S128	8130	8132	8134	8136	8138	8140	8141	8143	8145	8147
.911	8147	8149	8151	8153	8155	8156	8158	8160	8162	8164	8166
. 912	8166	8168	8170	8171	8173	8175	8177	8179	8181	8183	8185
.913	8185	8187	8188	8190	8192	8194	8196	8198	8200	8202	8204
. 914	8204	8205	8207	8209	82II	8213	8215	8217	8219	8221	8222
. 915	S222	8224	8226	8228	8230	8232	8234	8236	8238	8239	8241
. 916	8241	8243	8245	8247	8249	8251	8253	8255	8257	8258	8260
. 917	8260	8262	8264	8266	8268	8270	8272	8274	8276	8278	8279
.918	8279	8281	8283	8285	8287	8289	8291	8293	8295	8297	8299
.919	8299	8300	8302	8304	8306	8308	8310	8312	8314	8316	8318
. 920	8318	8320	8321	8323	8325	8327	8329	8331	8333	8335	8337
. 921	8337	8339	8341	8343	8344	8346	8348	8350	8352	8354	8356
. 922	8356	8358	8360	8362	8364	8366	8368	8370	8371	8373	8375
. 923	8375	8377	8379	${ }_{8}^{831}$	8383	8385	8387	8389	8391	8393	8395
. 924	8395	8397	8398	8400	8402	8404	8406	8408	8410	8412	8414
. 925	8414	8416	8418	8420	8422	8424	8426	8428	8429	8431	8433
. 926	8433	8435	8437	$8+39$	8441	8443	8445	8447	8449	8451	8453
. 927	8453	8455	8457	8459	8461	8463	8464	8466	8468	8470	8472
. 928	8472	8474	${ }_{8}^{8} 476$	8478	8480	8482	8484	8486	8488	8490	8492
. 929	8492	8494	8496	8498	8500	8502	8504	8506	8507	8509	8511
. 930	8511	8513	8515	8517	8519	8521	8523	8525	8527	8529	8531
. 931	8531	8533	8535	8537	8539	8541	8543	8545	8547	8549	8551
. 932	8551	8553	8555	8557	8559	8561	8562	8564	8566	8568	8570
-933	8570	8572	8574			8580 8600	8582 8602	${ }_{8}^{854}$	8586 8606	8588 8608	- 590
. 934	8590	859?	8594	8596	8598	8600	8602	8604	8606	8608	8610
. 935	8610	8612	8614	8616	8618	8620	8622	8624	8626	8628	8630
. 936	8630	8632	8634	8636	8638	8640	8642	8644	8646	8648	8650
. 937	8650	8652	8654	8656	8658	8660	8662	8664	8666	8668	8670
. 938	8670	8672	8674	8676	8678	8680	8682	8684	8686	8688	8690
. 939	8690	8692	8694	8696	8698	8700	8702	8704	8706	8708	8710
. 940	8710	8712	8714	8716	8718	8720	8722	8724	8726	8728	8730
.941	8730	8732	8734	8736	8738	8740	8742	8744	8746	8748	8750
. 942	8750	8752	8754	8756	8758	8760	8762	8764	8766	8768	8770
. 943	8770	8772	8774	8776	8778	8780	8782	8784	8786	8788	8790
. 944	8790	8792	8794	8796	8798	8800	8802	8804	8806	8808	8810
. 945	88 ı	8813	8815	8817	8819	8821	8823	8825	8827	8829	8831
. 946	8831	8833	8835	8837	8839	8841	8843	8845	8847	8849	8851
. 947	8851 8872	8853 8874	8855 8876	8857 8878	8859 8880	8861 8882	8863 8884	8865 8886	8867 8888	8870 8890	8872 8892 88
. 949	8892	8894	8896	8898	8900	8902	8904	8906	8908	8910	8913

Table 13 (continued).
ANTILOGARITHMS.

	0	1	2	3	4	5	6	7	8	9	10
. 950	8913	8915	8917	8919	8921	8923	8925	8927	8929	8931	8933
. 951	S933	8935	8937	8939	8941	8943	8945	8947	8950	8952	8954
. 952	8954	8956	8958	8960	8962	8964	8966	8968	S970	8972	8974
. 953	8974	8976	8978	8980	8983	8985	8987	8989	8991	8993	8995
. 954	8995	8997	8999	9001	9003	9005	9007	9009	9012	9014	9016
. 955	9016	9018	9020	9022	9024	9026	9028	9030	9032	9034	9036
. 956	9036	9039	9041	9043	9045	9047	9049	9051	9053	9055	9057
. 957	9 C 57	9059	9061	9064	9066	9068	9070	9072	9074	9076	9078
. 958	9078	9080	9082	9084	9087	9089	9091	9093	9095	9097	9099
. 959	9099	9101.	9103	9105	9108	9110	9112	9114	9116	9118	9120
. 960	9120	9122	9124	9126	9129	9131	9133	9135	9137	9139	9141
.961	9141	9143	9145	9147	9150	9152	9154	9156	9158	9160	9162
. 962	9162	9164	9166	9169	9171	9173	9175	9177	9179	9181	9183
. 963	9183	9185	9188	91.90	9192	9194	9196	9198	9200	9202	9204
. 964	9204	9207	9209	92 II	9213	9215	9217	9219	922 I	9224	9226
. 965	9226	9228	9230	9232	9234	9236	9238	9241	9243	9245	9247
. 966	9247	9249	9251	9253	9256	9258	9260	9262	9264	9266	9268
. 967	9268	9270	9273	9275	9277	9279	9281	9283	9285	9288	9290
. 968	9290	9292	9294	9296	9298	9300	9303	9305	9307	9309	9311
. 969	9311	9313	9315	9318	9320	9322	9324	9326	9328	9330	9333
. 970	9333	9335	9337	9339	9341	9343	9345	9348	9350	9352	9354
. 971	9354	9356	9358	936 I	9363	9365	9367	9369	9371	9373	9376
. 972	9376	9378	9380	9382	9384	9386	9389	9391	9393	9395	9397
. 973	9397	9399	9402	9404	9406	9408	9410	9412	9415	9417	9419
. 974	9419	942 i	9423	9425	9428	9430	9432	9434	9436	9438	9441
. 975	9441	9443	9445	9447	9449	9451	9454	9456	9458	9460	9462
. 976	9462	9465	9467	9469	9471	9473	9475	9478	9480	9482	9484
. 977	9484	9486	9489	9491	9493	9495	9497	9499	9502	9504	9506
. 978	9506	9508	9510	9513	9515	9517	9519	9521	9524	9526	9528
. 979	9528	9530	9532	9535	9537	9539	9541	9543	9546	9548	9550
980	9550	9552	9554	9557	9559	9561	9563	9565	9568	9570	9572
. 98 I	9572	9574	9576	9579	9581	9583	9585	9587	9590	9592	9594
. 982	9594	9596	9598	9601	9603	9605	9607	9609	9612	9614	9616
.983	9616	9618	9621	9623	9625	9627	9629	9632	9634	9636	9638
.984	9638	9641	9643	9645	9647	9649	9652	9654	9656	9658	966 I
. 985	9661	9663	9665	9667	9669	9672	9674	9676	9678	968 I	9683
. 986	9683	9685	9687	9689	9692	9694	9696	9698	9701	9703	9705
. 987	9705	9707	9710	97 I 2	9714	9716	9719	9721	9723	9725	9727
. 988	9727	9730	9732	9734	9736	9739	9741	9743	9745	9748	9750
. 989	9750	9752	9754	9757	9759	976 I	9763	9766	9768	9770	9772
. 990	9772	9775	9777	9779	9781	9784	9786	9788	9790	9793	9795
.991	9795	9797	9799	9802	9804	9806	9808	98 II	$9{ }^{8} \mathrm{I} 3$	9815	9817
. 992	9817	9820	9822	9824	9827	9829	9831	9833	9836	9838	9840
. 993	9840	9842	9845	9847	9849	985 I	9854	9856	9858	9861	9863
. 994	9863	9865	9867	9870	9872	9874	9876	9879	9881	9883	9886
. 995	9886	9888	9890	9892	9895	9897	9899	9901	9904	9906	9908
. 996	9908	991 I	9913	9915	9917	9920	9922	9924	9927	9929	9931
. 997	993 I	9933	9936	9938	9940	9943	9945	9947	9949	9952	9954
. 998	9954	9956 9979	9959 9982	9961 9984	9963 9986	9966 9988	9968 999 I	9970 9993	9972 9995	9975 9998	9977 0000
. 999	9977	9979	9982	9984	9986	9988	9991	9993	9995	9998	0000

Smithsonian Tables.

CIRCULAR (TRIGONOMETRIC) FUNCTIONS.

(Taken from B. O. Peirce's "Short Table of Integrals," Ginn \& Co.)

		SINES.		COSINES.		TANGENTS.		COTANGENTS.		$90^{\circ} 00^{\prime}$	
		Nat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.		
0.0000	$0^{\circ} 0^{\prime}$. 0000	∞	1.0000	0.0000	. 0000	∞	\cdots	∞		1. 5708
0.0029	10	. 0029	7.4637	1.0000	. 0000	. 0029	7.4637	343.77	2.5363	50	I. 5679
0.0058	20	.0058	. 7648	1.0000	. 0000	. 0058	. 7648	171.89	. 2352	40	I. 5650
0.0087	30	. 0087	. 9408	1.0000	. 0000	. 0087	. 9409	I 14.59	.0591	30	I. 562 I
0.0116	40	. 0116	S.0658	. 9999	. 0000	. 1116	8.0658	85.940	1.9342	20	1.5592
0.0145	50	. 0145	. 1627	. 9999	. 0000	. 0145	. 1627	68.750	. 8373	10	1.5563
0.0175	$\mathrm{I}^{\circ} 0^{\prime}$. 0175	8.2419	. 9998	9.9999	. 0175	8.2419	57.290	1.758 I	$89^{\circ} 00^{\prime}$	I. 5533
0.0204	10	. 0204	. 3088	. 9998	. 9999	. 0204	. 3089	49.104	. 6911	50	I. 5504
0.0233	20	. 0233	. 3668	. 9997	. 9999	. 0233	-3669	42.964	. 6331	40	I. 5475
0.0262	30	. 0262	.4179	. 9997	. 9999	. 0262	. 4181	38.188	. 5819	30	I. 5446
0.029I	40	.0291	.4637	. 9996	. 9998	.0291	.4638	34.368	. 5362	20	I. 5417
0.0320	50	.0320	. 5050	. 9995	. 9998	. 0320	. 5053	31.242	. 4947	10	I. 5388
0.0349	$2^{\circ} 00^{\prime}$. 0349	8.5428	-9994	9.9997	. 0349	8.543 I .	28.636	1.4569	$88^{\circ} 0^{\prime}$	I. 5359
0.0378	10	. 0378	. 5776	. 9993	. 9997	. 0378	. 5779	26.432	. 422 I	50	1.5330
0.0407	0	. 0407	. 6097	. 9992	. 9996	. 0407	.6101	24.542	. 3899	40	1.53301
0.0436	30	. 0436	. 6397	. 9990	. 9996	. 0437	. 6401	22.904	. 3599	30	1.5272
0.0465	40	. 0465	. 6677	. 9989	. 9995	. 0466	. 6682	21.470	-3318	20	1. 5243
0.0495	50	. $0+49$. 6940	. 9988	. 9995	. 0495	. 6945	20.206	- 3055	0	1.5213
0.0524	$3^{\circ} 0^{\prime}$. 0523	8.7188	. 9986	9.9994	. 0524	8.7194	19.081	1.2806	$87^{\circ} 00^{\prime}$	I. 5184
0.0553	10	. 0552	. 7423	. 9985	. 9993	. 0553	. 7429	18.075	. 2571	50	1.5155
0.0582	20	.0581	. 7645	.9983	. 9993	.0582	.7652	17.169	. 2348	40	1.5126
0.0611	30	. 0610	.7857	. 9981	. 9992	. 0612	.7865	16.350	. 2135	30	1. 5097
0.0640	40	. 0640	. 8059	. 9980	.999I	. 0641	. 8067	15.605	. 1933	20	1. 5068
0.0669	50	. 0669	.8251	. 9978	. 9990	. 0670	.826I	14.924	.1739	10	1.5039
0.0698	$4^{\circ} 00^{\prime}$. 0698	8.8436	. 9976	9.9989	. 0699	8.8446	14.301	1.1554	$86^{\circ} 00^{\prime}$	1. 5010
0.0727	10	. 0727	.8613	. 9974	. 9989	. 0729	. 8624	13.727	.1376	50	1.4981
0.0756	20	. 0756	. 8783	. 9971	. 9988	. 0758	. 8795	13.197	. 1205	40	1. 4952
0.0785	30	. 0785	. 8946	. 9969	. 9987	. 0787	. 8960	12.706	. 1040	30	I. 4923
0.0814	40	.08I4	. 9104	. 9967	. 9986	.0816	.9118	12.251	. 0882	20	1.4893
0.0844	50	. 0843	. 9256	. 9964	. 9985	. 0846	. 9272	11.826	. 0728	10	1.4864
0.0873	$5^{\circ} 00^{\prime}$. 0872	8.9403	. 9962	9.9983	. 0875	8.9420	11.430	1.0580	$85^{\circ} 00^{\prime}$	I. 4835
0.0902	10	. 0901	. 9545	. 9959	. 9982	. 0904	. 9563	11.059	. 0437	50	1.4806
0.0931	20	. 0929	. 9682	. 9957	.998I	. 0934	. 9701	10.712	.0299	40	1.4777
0.0960	30	. 0958	.9816	. 9954	. 9980	. 0963	.9836	10.385	. 0164	30	1.4748
0.0989	40	. 0987	. 9945	. 9951	. 9979	. 0992	. 9966	10.078	. 0034	20	1.4719
0.1018	50	. 1016	9.0070	. 9948	. 9977	. 1022	9.0093	9.7882	0.9907	10	1.4690
0.1047	$6^{\circ} 00$. 1045	9.0192	. 9945	9.9976	. 1051	9.0216	9.5144	0.9784	$84^{\circ} 0^{\prime}$	I. 4661
0.1076	10	.1074	. 0311	. 9942	. 9975	. 1080	.0336	9.2553	. 9664	50	1.4632
0.1105	20	. 1103	. 0426	. 9939	. 9973	. 11110	. 0453	9.0098	. 9547	40	1.4603
0.1134	30	.1132	. 0539	. 9936	. 9972	. 1139	. 0567	8.7769	. 9433	30	I. 4574
0.1164	40	.1161	. 0648	. 9932	. 9971	. 1169	. 0678	8.5555	.9322	20	1.4544
0.1193	50	. 1190	. 0755	. 9929	. 9969	. 1198	. 0786	8.3450	.9214	10	1.4515
0.1222	$7^{\circ} 00^{\prime}$		9.0859	. 9925	9.9968	. 1228	9.089 I	8.1443	0.9109	$83^{\circ} 0^{\prime}$	I. 4486
0.1251	10	. 1248	.0961	. 9922	. 9966	. 1257	. 0995	7.9530	. 9005	50	I. 4457
0.1280	20	. 1276	. 1060	.9918	. 9964	. 1287	. 1095	7.7704	. 8904	40	1.4428
0.1309	30	. 1305	. 1157	. 9914	. 9963	.1317	. 1194	7.5958	. 8806	30	I. 4399
0.1338	40	. 1334	.1252	. 9911	. 9961	. 1346	.1291	7.4287	. 8709	20	I.4370
0.1367	50	. 1363	. 1345	. 9907	. 9959	. 1376	. 1385	7.2687	.86I 5	10	I. 4341
0.1396	$8^{\circ} 00^{\prime}$.1392	9.1436	. 9903	9.9958	. 1405	9.1478	7.1154	0.8522	$82^{\circ} 00^{\prime}$	I. 4312
0.1425	10	.142I	. 1525	. 9899	. 9956	. 1435	. 1569	6.9682	.843I	50	1.4283
0.1454	20	.1449	.1612	. 9894	. 9954	. 1465	.1658	6.8269	.8342	40	1.4254
0.1484	30	.1478	.1697	. 9890	. 9952	. 1495	.1745	6.6912	. 8255	30	1.4224
0.1513	40	.1507	.1781	. 9888	. 9950	. 1524	.1831	6.5606	8169 8085	20	1.4195
0.1542	50	.1536	. 1863	.988I	. 9948	. 1554	.1915	6.4348	. 8085	10	1.4166
0.1571	$9^{\circ} 00^{\prime}$. 1564	9.1943	. 9877	9.9946	. 1584	9.1997	6.3138	0.8003	$81^{\circ} 00^{\prime}$	1.4137
		Nat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.	空	
		COSINES.		SINES.		COTANGENTS.		TANGENTS.			

Table 14 (continued).
CIRCULAR (TRIGONOMETRIC) FUNCTIONS.

		SINES.		COSINES.		TANGENTS.		COTANGENTS.		$81^{\circ}{ }^{\circ}{ }^{\prime}$	
		Nat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.		
0.1571	$9^{\circ} 00^{\prime}$. 1564	9.1943	. 9877	9.9946	.1584	9.1997	6.3138	0.8003		1.4137
0.1600	10	. 1593	. 2022	. 9872	. 9944	.1614	. 2078	6.1970	. 7922	50	1.4108
0.1629	20	. 1622	. 2100	. 9868	. 9942	. 1644	. 2158	6.0844	.7842	40	1. 4079
0.1658	30	. 1650	. 2176	.9863	. 9940	. 1673	. 2236	5.9758	.7764	30	1.4050
0.1687	40	.1679	. 2251	.9858	.9938	.1703	.2313	5.8708	.7687	20	1.4021
0.1716	50	.1708	. 2324	. 9853	.9936	. 1733	. 2389	5.7694	.7611	10	1. 3992
0.1745	$10^{\circ} 0^{\prime}$.1736	9.2397	. 9848	9.9934	.1763	9.2463	5.6713	0.7537	$80^{\circ} 00^{\prime}$	1.3963
0.1774	10	. 1765	. 2468	. 9843	. 9931	. 1793	. 2536	$5 \cdot 5764$. 7464	50	1.3934
0.1804	20	. 1794	. 2538	. 9838	. 9929	. 1823	. 2609	5.4845	. 7391	40	1.3904
0.1833	30	.1822	. 2606	. 9833	. 9927	.1853	. 2680	$5 \cdot 3955$. 7320	30	I. 3875
0.1862	40	.1851	. 2674	. 9827	. 9924	. 1883	. 2750	$5 \cdot 3093$. 7250	20	I. 3846
0.1891	50	. 1880	. 2740	. 9822	. 9922	.1914	.2819	5.2257	.7181	10	1.3817
0.1920	$\mathrm{II}^{\circ} \mathrm{OO}{ }^{\prime}$. 1908	9.2806	.9816	9.9919	. 1944	9.2887	5.1446	0.7113	$79^{\circ} 00^{\prime}$	I. 3788
0.1949	10	. 1937	. 2870	.98II	. 9917	. 1974	. 2953	5.0658	. 7047	50	I. 3759
0.1978	20	. 1965	. 2934	. 9805	. 9914	. 2004	. 3020	4.9894	. 6980	40	I. 3730
0.2007	30	. 1994	. 2997	. 9799	.9912	. 2035	. 3085	4.9152	.6915	30	1.3701
0.2036	40	. 2022	.3058	. 9793	$\cdot .9909$. 2065	.3149	4.8430	. 6851	20	I. 3672
0.2065	50	. 2051	-3119	. 9787	. 9907	. 2095	.3212	4.7729	. 6788	10	I. 3643
0.2094	$12^{\circ} \mathrm{OO}{ }^{\prime}$. 2079	9.3179	.9781	9.9904	. 2126	9.3275	4.7046	0.6725	$8^{\circ} 00^{\prime}$	I. 3614
0.2123	10	. 2108	. 3238	. 9775	.9901	. 2156	. 3336	4.6382	. 6664	50	1.3584
0.2153	20	. 2136	- 3296	. 9769	. 9899	. 2186	- 3397	4.5736	. 6603	40	I. 3555
0.2182	30	. 2164	. 3353	.9763	. 9896	. 2217	- 3458	4.5107	.6542	30	1.3526
0.2211	40	. 2193	. 3410	. 9757	. 9893	. 2247	-3517	4.4494	.6483	20	I. 3497
0.2240	50	. 2221	-3466	. 9750	. 9890	. 2278	-3576	$4 \cdot 3897$. 6424	10	I. 3468
0.2269	$13^{\circ} 0^{\prime}$. 2250	9.3521	. 9744	9.9887	. 2309	9.3634	4.3315	0.6366	$77^{\circ} 0^{\prime}$	1.3439
0.2298	10	. 2278	. 3575	:9737	. 9884	. 2339	. 3691	4.2747	. 6309	50	1.3410
0.2327	20	. 2306	. 3629	. 9730	. 988 I	. 2370	- 3748	4.2193	. 6252	40	1.3381
0.2356	30	. 2334	- 3682	. 9724	.9878	. 2401	-3804	4.1653	. 6196	30	I. 3352
0.2385	40	. 2363	- 3734	. 9717	.9875	. 2432	- 3859	4.1126	. 6141	20	1.3323
0.2414	50	. 2391	. 3786	. 9710	.9872	. 2462	-3914	4.0611	. 6086	10	1.3294
0.2443	$14^{\circ} 0^{\prime}$. 2419	9.3837	. 9703	9.9869	. 2493	9.3968	4.0108	0.6032	$76^{\circ} 00^{\prime}$	1. 3265
0.2473	10	. 2447	. 3887	. 9696	. 9866	. 2524	. 4021	3.9617	. 5979	50	1.3235
0.2502	20	. 2476	- 3937	. 9689	. 9863	. 2555	.4074	3.9136	. 5926	40	1.3206
0.253 I	30	. 2504	- 3986	. 968 I	.9859	. 2586	.4127	3.8667	. 5873	30	1.3177
0.2560	40	. 2532	. 4035	. 9674	. 9856	. 2617	. 4178	3.8208	. 5822	20	1.3148
0.2589	50	. 2560	.4083	. 9667	.9853	. 2648	.4230	3.7760	. 5770	10	1.3119
0.2618	$15^{\circ} 00^{\prime}$. 2588	9.4130	. 9659	9.9849	. 2679	9.4281	3.7321	0.5719	$75^{\circ} \mathrm{OO}$	I. 3090
0.2647	10	. 2616	. 4177	. 9652	. 9846	.2711	$.4331$	3.6891	. 5669	50	1.3061
0.2676	20	. 2644	.4223	. 9644	. 9843	. 2742	. 4381	3.6470	. 5619	40	1.3032
0.2705	30	. 2672	. 4269	. 9636	. 9839	. 2773	. 4430	3.6059	. 5570	30	1.3003
0.2734	40	. 2700	. 4314	. 9628	.9836	. 2805	.4479	3.5656	. 5521	20	1.2974
0.2763	50	. 2728	.4359	.962 I	.9832	.2836	.4527	3.5261	. 5473	10	1. 2945
0.2793	$16^{\circ} 00^{\prime}$.2756	9.4403	.9613	9.9828	. 2867	9.4575	3.4874	0.5425	$74^{\circ} \mathrm{OO}$	1.2915
0.2822	10	.2784	. 4447	.9605	.9825	. 2899	. 4622	3.4495	. 5378	50	1.2886
0.2851	20	. 2812	.449I	. 9596	.982I	. 293 I	.4669	3.4124	. 5331	40	I. 2857
0.2880	30	. 2840	.4533	. 9588	$\cdot .9817$. 2962	.4716	3.3759	. 5284	30	1.2828
0.2909	40	. 2868	.4576	. 9580	.9814	. 2994	.4762	$3 \cdot 3402$. 5238	20	1.2799
0.2938	50	. 2896	.4618	. 9572	.9810	. 3026	. 4808	$3 \cdot 3052$. 5192	10	1.2770
0.2967	$17^{\circ} 00^{\prime}$. 2924	9.4659	. 9563	9.9806	. 3057	9.4853	3.2709	0.5147	$73^{\circ} 00 \prime$	1.2741
0.2996	10	. 2952	. 4700	. 9555	. 9802	. 3089	. 4898	3.237 I	. 5102	50	1.2712
0.3025	20	. 2979	.4741	. 9546	. 9798	-3121	.4943	3.2041	. 5057	40	1.2683
0.3054	30	- 3007	. 4781	. 9537	. 9794	. 3153	. 4987	3.1716	. 5013	30	1.2654
0.3083	40	.3035	. 4821	. 9528	. 9790	. 3185	. 5031	3.1397	. 4969	20	1.2625
0.3113	50	- 3062	.4861	. 9520	. 9786	. 3217	. 5075	3.1084	.4925	10	1.2595
0.3142	$18^{\circ} 00^{\prime}$. 3090	9.4900	.9511	9.9782	. 3249	9.5118	3.0777	0.4882	$72^{\circ} 00^{\prime}$	I. 2566
		Nat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.)	
		CoS	INES		ES.		AN-	TANG	ENTS	R10	穴苋

Smithsonian Tables.

CIRCULAR（TRIGONOMETRIC）FUNCTIONS．

$\begin{aligned} & \text { 家苋 } \\ & \text { 品 } \end{aligned}$		SINES．		COSINES．		TANGENTS．		COTANGENTS．		$72^{\circ} 00^{\prime}$	1.2566
		Nat．	Log．	Nat．	Log．	Nat．	Log．	Nat．	Log．		
0.3142	$18^{\circ} 00^{\prime}$	－ 3090	9.4900	． 9511	9.9782	． 3249	9．5118	3.0777	0.4882		
0.3171	10	．3118	.4939	． 9502	． 9778	－3281	．516I	3.0475	． 4839	50	1.2537
0.3200	20	－3145	． 4977	． 9492	． 9774	． 3314	． 5203	3.0178	． 4797	40	1． 2508
0.3229	30	． 3173	－ 5015	． 9483	． 9770	－ 3346	． 5245	2.9887	． 4755	30	1.2479
0.3258	40	． 3201	． 5052	． 9474	.9765	． 3378	． 5287	2.9600	． 4713	20	I． 2450
0.3287	50	－3228	－ 5090	． 9465	． 9761	－3411	． 5329	2.9319	．467 I	10	1.2421
0.3316	$19^{\circ} 00^{\prime}$	． 3256	9．5126	． 9455	9.9757	． 3443	9.5370	2.9042	0.4630	$71^{\circ} 00^{\prime}$	1.2392
0.3345	10	． 3283	． 5163	． 9446	． 9752	． 3476	． 54111	2.8770	． 4589	50	1.2363
0.3374	20	．3311	． 5199	． 9436	． 9748	－3508	－5451	2.8502	． 4549	40	1.2334
0.3403	30	－3338	． 5235	． 9426	． 9743	－354 1	－5491	2.8239	． 4509	30	1.2305
0.3432	40	－ 3365	． 5270	.9417	． 9739	－3574	． 5531	2.7980	． 4469	20	1.2275
0.3462	50	． 3393	． 5306	． 9407	． 9734	． 3607	． 5571	2.7725	． 4429	10	1.2246
0.3491	$20^{\circ} 00^{\prime}$	． 3420	9．5341	． 9397	9.9730	． 3640	9．5611	2.7475	0.4389	$70^{\circ} 00^{\prime}$	1.2217
0.3520	10	－ 3448	． 5375	.9387	． 9725	． 3673	． 5650	2.7228	． 4350	50	1.2188
0.3549	20	－ 3475	－ 5409	． 9377	． 9721	． 3706	． 5689	2.6985	．4311	40	1.2159
0.3578	30	． 3502	． 5443	． 9367	．9716	． 3739	． 5727	2.6746	． 4273	30	1.2130
0.3607	40	． 3529	． 5477	． 9356	． 9711	． 3772	． 5766	2.6511	． 4234	20	1.2101
0.3636	50	－3557	． 5510	． 9346	． 9706	． 3805	． 5804	2.6279	．4196	10	1.2072
0.3665	$21^{\circ} 0^{\prime \prime}$	． 3584	9.5543	． 9336	9.9702	． 3839	9.5842	2.6051	0.4158	$69^{\circ} 00^{\prime}$	1.2043
0.3694	IO	－3611	． 5576	.9325	． 9697	． 3872	． 5879	2.5826	． 412 I	50	1.2014
0.3723	20	． 3638	． 5609	.9315	.9692	－ 3906	． 5917	2.5605	.4083	40	1． 1985
0.3752	30	． 3665	． 5641	． 9304	． 9687	． 3939	． 5954	2.5386	． 4046	30	1.1956
0.3782	40	． 3692	.5673	． 9293	． 9682	． 3973	． 5991	2.5172	.4009	20	1．1926
0.3811	50	． 3719	． 5704	． 9283	． 9677	． 4006	． 6028	2.4960	． 3972	10	1．1897
0.3840	$22^{\circ} 0^{\prime}$	． 3746	9.5736	． 9272	9.9672	． 4040	9.6064	2.4751	0.3936	$68^{\circ}{ }^{\circ}{ }^{\prime}$	I． 1868
0.3869	10	－ 3773	． 5767	． 9261	． 9667	． 4074	． 6100	2.4545	． 3900	50	I． 1839
0.3898	20	． 3800	． 5798	． 9250	． 9661	.4108	．6136	2.4342	． 3864	40	1.1810
0.3927	30	． 3827	． 5828	． 9239	． 9656	.4142	． 6172	2.4142	－3828	30	1.1781
0.3956	40	.3854	． 5859	． 9228	． 9651.	． 4176	． 6208	2.3945	． 3792	20	1．1752
0.3985	50	． 3881	． 5889	． 9216	． 9646	． 4210	． 6243	2.3750	． 3757	IO	1.1723
0.4014	$23^{\circ} 00^{\prime}$	－ 3907	9．5919	． 9205	9.9640	． 4245	9.6279	2.3559	0.3721	$67^{\circ} 00^{\prime}$	1.1694
0.4043	10	－ 3934	－ 5948	． 9194	.9635	． 4279	.6314	2.3369	． 3686	50	1.1665
0.4072	20	－3961	． 5978	． 9182	． 9629	.4314	． 6348	2.3183	－ 3652	40	1.1636
0.4102	30	－ 3987	． 6007	．9171	． 9624	－4348	.6383	2.2998	． 3617	30	1． 1606
0.4131	40	． 4014	． 6036	．9159	．9618	.4383	.6417	2.2817	$\cdot 3583$	20	$\text { 1. } 1577$
0.4160	50	． 4041	． 6065	．9147	.9613	． 4417	.6452	2.2637	． 3548	10	1.1548
0.4189	$24^{\circ} 0^{\prime}$	． 4067	9.6093	． 9135	9.9607	． 4452	9.6486	2.2460	0.3514	$66^{\circ} 00^{\prime}$	I．1519
0.4218	10	． 4094	．612I	．9124	． 9602	． 4487	． 6520	2.2286	． 3480	50	1.1490
0.4247	20	． 4120	．6149	．9112	． 9596	． 4522	.6553	2.2113	． 3447	40	1.146 I
0.4276	30	． 4147	． 6177	.9100	． 9590	． 4557	.6587	2.1943	.3413	30	1.1432
0.4305	40	.4173	． 6205	． 9088	． 9584	． 4592	． 6620	2.1775	． 3380	20	1.1403
0.4334	50	． 4200	． 6232	． 9075	． 9579	． 4628	． 6654	2.1609	． 3346	10	1.1374
0.4363	$25^{\circ} 00^{\prime}$	． 4226	9.6259	． 9063	9.9573	． 4663	9.6687	2.1445	0.3313	$65^{\circ}{ }^{\circ} 0^{\prime}$	1.1345
0.4392	10	． 4253	． 6286	．9051	． 9567	． 4699	． 6720	2.1283	． 3280	50	I．1316
0.4422	20	． 4279	． 6313	． 9038	． 9561	． 4734	． 6752	2.1123	－3248	40	1.1286
0.4451	30	． 4305	． 6340	． 9026	． 9555	． 4770	． 6785	2.0965	－3215	30	1.1257
0.4480	40	．4331	． 6366	． 9013	． 9549	． 4806	．6817	2.0809	－3183	20	1.1228
0.4509	50	． 4358	． 6392	． 9001	．9543	． 4841	． 6850	2.0655	．3150	10	1.1199
0.4538	$26^{\circ} 00^{\prime}$	． 4384	9.6418	． 8988	9.9537	． 4877	9.6882	2.0503	0.3118	$64^{\circ} \mathrm{OO}$	1.1170
0.4567	10	． 4410	． 6444	． 8975	． 95330	． 4913	． 6914	2.0353	$\cdot 3086$	50	I．1141
0.4596	20	.4436	． 6470	． 8962	． 9524	． 4950	． 6946	2.0204	－ 3054	40	1.1112
0.4625	30	． 4462	． 6495	． 8949	．9518	． 4986	． 6977	2.0057	－ 3023	30	1.1083
0.4654	40	$.4488$.6521	． 8936	.9512	$.5022$.7009	1.9912	． 2991	20	1.1054
0.4683	50	． 4514	． 6546	． 8923	． 9505	－50．59	． 7040	1.9768	． 2960	10	1.1025
0.4712	$27^{\circ} 00^{\prime}$	． 4540	9.6570	． 8910	9.9499	． 5095	9.7072	1.9626	0.2928	$63^{\circ}{ }^{\circ}{ }^{\prime}$	1.0996
		Nat．	Log．	Nat．	Log．	Nat．	Log．	Nat．	Log．	¢1	
		COSI	NES．	SIN	NES．	$\begin{aligned} & \text { COT } \\ & \text { GEN } \end{aligned}$	$\begin{aligned} & \text { rAN- } \\ & \text { NTS. } \end{aligned}$	TANG	ENTS．		«K

TABLE 14 (continued).
CIRCULAR (TRIGONOMETRIC) FUNCTIONS.

$\begin{aligned} & \frac{1}{8} \dot{8} \\ & \sum_{4}^{2} \end{aligned}$		SINES.	COSINES.	TANGENTS.	COTANGENTS.	$63^{\circ} 00^{\prime}$	
		Nat. Log.	Nat. Log.	Nat. Log.	Nat. Log.		
0.4712	$27^{\circ} 00^{\prime}$. 45409.6570	. 89109.9499	. 50959.7072	1.96260 .2928		1.0996
0.4741	10	. 4566.6595	. 8897 . 9492	.5132 .7103	1.9486 .2897	50	1.0966
0.4771	20	. 4592.6620	. 8884 . 9486	$.5169 \quad .7134$	1.9347 . 2866	40	1.0937
0.4800	30	.4617 . 6644	. 8870.9479	.5206 .7165	1.9210 .2835	30	1.0908
0.4829	40	.4643 . 6668	.8857 . 9473	.5243 .7196	1.9074 .2804	20	1.0879
0.4858	50	.4669 .6692	. 8843 . 9466	.5280 .7226	1.8940 .2774	10	1.0850
0.4887	$28^{\circ} 00^{\prime}$. 46959.6716	. 88299.9459	$\begin{array}{ll}.5317 & 9.7257\end{array}$	1.88070 .2743	$62^{\circ} 00^{\prime}$	I. 0821
0.4916	10	.4720 . 6740	.8816 .9453	. 5354 .7287	1.8676 .2713	50	1.0792
0.4945	20	. 4746 . 6763	.8802 .9446	. 5392 .7317	1.8546 . 2683	40	1.0763
0.4974	30	.4772 6787	. 8788 .9439	.5430	1.8418 . 2652	30	1.0734
0.5003	40	.4797 .6810	. 8774 .9432	. 5467 . 7378	1.8291 . 2622	20	1.0705
0.5032	50	.4823 .6833	. 8760.9425	.5505 .7408	1.8165 . 2592	10	1.0676
0.5061	$29^{\circ} 00^{\prime}$.4848 9.6856	. 8746 . 9.9418	. 5543 9.7438	$\begin{array}{lll}1.8040 & 0.2562\end{array}$	$61^{\circ} \mathrm{O}{ }^{\prime}$	1.0647
0.5091	10	. 4874 . 6878	. 8732.9411	. 5581	1.7917 .2533	50	1.0617
0.5120	20	.4899 .6901	. 8718.9404	.5619 .7497	1.7796 .2503	40	1.0588
0.5149	30	.4924, 6923	. 8704.9397	. 5658 . 7526	1.7675 . 2474	30	1.0559
0.5178	40	.4950 .6946	. 8689.9390	.5696 .7556	1.7556 . 2444	20	1.0530
0.5207	50	. 4975.6968	. 5675.9383	. 5735 .7585	1.7437 .2415	10	I. 0501
0.5236	$30^{\circ} 00^{\prime}$. 50009.6990	. 86609.9375	. 57749.7614	1.73210 .2386	$60^{\circ} 00^{\prime}$	1.0472
0.5265	10	.5025 . 7012	. 8646 . 9368	.5812	1.7205 . 2356	50	1.0443
0.5294	20	$.5050 \cdot 7033$. 8631 .9361	.5851 .7673	1.7090 .2327	40	1.0414
0.5323	30	.5075 .7055	. 8616.9353	. 5890 .7701	1.6977 . 2299	30	1.0385
0.5352	40	.5100 .7076	. 8601.9346	.5930 .7730	1.6864 . 2270	20	1.0356
0.5381	50	. 5125 .7097	.8587 .9338	. $5969 \quad .7759$	1.6753 .2241	10	1.0327
0.5411	$31^{\circ} 00^{\prime}$. 51509.7118	. 85729.933 I	. 60097.7788	1.66430 .2212	$59^{\circ} 00^{\prime}$	1.0297
0.5440	10	.5175 .7139	. 8557.9323	. 6048 .7816	$1.6534-2184$	50	1.0268
0.5469	20	.5200 .7160	.8542 .9315	. 6088 .7845	1. 6426 .2155	40	1.0239
0.5498	30	. 5225 .718I	. 8526 -9308	. 6128 .7873	1.6319 .2127	30	1.0210
0.5527	40	.5250 .7201	. 8511.9300	.6168 .7902	1.6212 .2098	20	1.0181
-. 5556	50	. 5275 .7222	. 8496.9292	.6208 .7930	1.6107 . 2070	10	1.0152
0.5585	$32^{\circ} 00^{\prime}$	-5299 9.7242	$.8480 \quad 9.9284$	6249 9.7958	1.60030 .2042	$5^{8}{ }^{\circ} 00^{\prime}$	1.0123
0.5614	10	. 5324 .7262	$.8465 \quad .9276$. 6289.7986	1.5900 .2014	50	1.0094
0.5643	20	. 5348 .7282	. 8450.9268	. 6330 . 8014	I. 5798 . 1986	40	1.0065
0.5672	30	.5373 .7302	.8434 .9260	. 6371 . 8042	I. 5697 . 1958	30	1.0036
0.5701	40	. 5398 . 7322	.8418 . 9252	. 6412 . 8070	1.5597 . 1930	20	1.0007
0.5730	50	. 5422.7342	. 8403.9244	. 6453 . 8097	1.5497 . 1903	10	0.9977
0.5760	$33^{\circ 00}{ }^{\prime}$. 5446 9.7361	. 83878	. 6494 9:8125	I. 53990.1875	$57^{\circ} \mathrm{O} 0^{\prime}$	$0.99+8$
0.5789	10	. 5471 I .7380	. 8371 I 9228	.6536 .8153	1.5301 .1847	50	0.9919
0.5818	20	.5495 .7400	. 8355 .9219	. 6577 .8180	1.5204 . 1820	40	0.9890
0.5847	30	.5519 .7419	. 8339 .9211	. 6619 . 8208	1.5108 . 1792	30	0.9861
0.5876	40	.5544 .7438	.8323 .9203	.6661 . 8235	$1.5013 \quad .1765$	20	0.9832
0.5905	50	. 5568 .7457	. 8307.9194	. 6703.8263	1.4919 .1737	10	0.9803
0.5934	$34^{\circ} 00^{\prime}$. 55929.7476	. 82909.9186	. 67459.8290	1.48260 .1710	$5^{6}{ }^{\circ} 0^{\prime}$	0.9774
0.5963	34	. 5616 .7494	. 8274 .9177	. 6787	1.4733 .1683	50	0.9745
0.5992	20	$.5640 \quad .7513$. 8258 . 9169	$.6830 \quad .8344$	1.4641	40	0.9716
0.6021	30	. 5664 .7531	.8241 9160	.6873 . 837 I	1.4550 . 1629	30	0.9687
0.6050	40	.5688 .7550	. 8225 .9151	.6916 . 8398	I. 4460 . 1602	20	0.9657
0.6080	50	. 5712 . 7568	. 8208 .9142	. 6959.8425	1.4370 . 1575	10	0.9628
0.6109	$35^{\circ} 00^{\prime}$. 57369.7586	.8192 9.9134	.70029 .8452	1.428 I	$55^{\circ} 0^{\prime}$	0.9599
0.6138	10	$.5760 \quad .7604$. $8175 \quad .9125$.7046 .8479	1.4193 .1521	50	0.9570
0.6167	20	$.5783 \quad .7622$.8158 .9116	$.7089 \quad .8506$	1.4106 .1494	40	0.9541
0.6196	30	.5807 . 7640	$\begin{array}{ll}.8141 & .9107\end{array}$	$.7133-8533$	1.4019 .1467	30	0.9512
0.6225	40	. 583 ll	.8124 .9098	.7177	$1.3934-1441$	20	0.9483
0.6254	50	.5854 .7675	8107 .9089	7221858	1.3848 . 1414	10	0.9454
0.6283	$36^{\circ} 00^{\prime}$	$\begin{array}{ll}.5878 & 9.7692\end{array}$	8090 9.9080	$\begin{array}{lll}.7265 & 9.8613\end{array}$	1.37640 .1387	$54^{\circ} 00^{\prime}$	0.9425
		Nat. Log.	Nat. Log.	Nat. Log.	Nat. Log.		
		COSINES.	SINES.	COTANGENTS.	TANGENTS.		¢

Smithsonian Tables.

TABLE 14 (continued).
CIRCULAR (TRIGONOMETRIC) FUNCTIONS.

		SINES.		COSINES.		TANGENTS.		COTANGENTS.			
		Nat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.		
0.6283	$36^{\circ} 00^{\prime}$.5878	9.7692	. 8090	9.9080	.7265	9.8613	1. 3764	0.1387	$54^{\circ} 00^{\prime}$	0.9425
0.6312	10	. 5901	. 7710	. 8073	. 9070	. 7310	. 8639	r. 3680	.1361	50	0.9396
0.634 I	20	. 5925	. 7727	. 8056	. 9061	. 7355	. 8666	I. 3597	. 1334	40	0.9367
0.6370	30	. 5948	. 7744	. 8039	.9052	. 7400	. 8692	1.3514	- 308	30	0.9338
0.6400	40	. 5972	.7761	. $\mathrm{SO2} 1$. 9042	. 7445	. 8718	1.3432	. 1282	20	0.9308
0.6429	50	. 5995	. 7778	. 8004	. 9033	. 7490	. 8745	1.3351	. 1255	10	0.9279
0.6458	$37^{\circ} 00^{\prime}$. 6018	9.7795	. 7986	9.9023	. 7536	9.8771	1.3270	0.1229	$53^{\circ}{ }^{\circ} 0^{\prime}$	0.9250
0.6487	10	. 6041	.7811	.7969	. 9014	. 7581	. 8797	1.3190	. 1203	50	0.9221
0.6516	20	. 6065	. 7828	.7951	. 9004	. 7627	. 8824	1.3111	.ri76	40	0.9192
0.6545	30	. 6088	. 7844	. 7934	. 8995	.7673	. 8850	I. 3032	.1150	30	0.9163
0.6574	40	.61II	.7861	. 7916	. 8985	. 7720	. 8876	I. 2954	. 1124	20	0.9134
0.6603	50	.6134	. 7877	.7898	. 8975	. 7766	. 8902	1. 2876	.1098	10	0.9105
0.6632	$38^{\circ} 00^{\prime}$. 6157	9.7893	.7880	9.8965	. 7813	9:8928	1.2799	0.1072	$5^{\circ}{ }^{\circ} 0^{\prime}$	0.9076
0.666I	10	.6180	.7910	. 7862	. 8955	. 7860	. 8954	1.2723	. 1046	50	0.9047
0.6690	20	. 6202	. 7926	. 7844	. 8945	. 7907	. 8980	I. 2647	. 1020	40	0.9018
0.6720	30	. 6225	.794I	. 7826	. 8935	. 7954	. 9006	1. 2572	. 0994	30	0.8988
0.6749	40	. 6248	. 7957	. 7808	. 8925	. 8002	.9032	1.2497	. 0968	20	0.8959
0.6778	50	. 6271	. 7973	. 7790	. 8915	. 8050	. 9058	1.2423	. 0942	10	0.8930
0.6807	$39^{\circ} 0^{\prime}$. 6293	9.7989	. 7771	9.8905	. 8098	9.9084	1. 2349	0.0916	$51^{\circ} \mathrm{OO}$	0.8901
0.6836	10	. 6316	. 8004	. 7753	. 8895	. 8146	.9110	1.2276	.0890	50	0.8872
0.6865	20	. 6338	. 8020	. 7735	. 8884	.8195	. 9135	1.2203	. 0865	40	0.8843
0.6894	30	. 6361	. 8035	.7716	. 8874	. 8243	-9161	1.2131	. 0839	30	0.88 r 4
0.6923	40	.6383	. 8050	. 7698	. 8864	. 8292	.9187	1.2059	.0813	20	0.8785
0.6952	50	. 6406	. 8066	. 7679	. 8853	. 8342	. 9212	1.1988	. 0788	10	0.8756
0.698 I	$40^{\circ} 00^{\prime}$. 6428	9.8081	. 7660	9.8843	.8391	9.9238	r.1918	0.0762	$50^{\circ} 00^{\prime}$	0.8727
0.7010	10	. 6450	. 8096	. 7642	. 8832	. 844 I	.9264	1.1847	. 0736	50	0.8698
0.7039	20	. 6472	.8111	. 7623	.8821	. 8491	. 9289	1.1778	. 07 I I	40	0.8668
0.7069	30	. 6494	.8125	.760.4	.88ı0	. 8541	. 9315	1.1708	. 0685	30	0.8639
0.7098	40	. 6517	.8140	. 7585	. 8800	. 8591	. 934 I	1.1640	. 0659	20	0.8610
0.7127	50	. 6539	.81 55	. 7566	. 8789	. 8642	. 9366	1.1571	. 0634	10	0.8581
0.7156	$4 \mathrm{I}^{\circ} 00^{\prime}$.6561	9.8169	. 7547	9.8778	. 8693	9.9392	I. 1504	0.0608	$49^{\circ} 00^{\prime}$	0.855^{2}
0.7185	10	. 6583	.8184	. 7528	. 8767	. 8744	. 9417	1.1436	. 0583	50	0.8523
0.7314	20	. 6604	. 8198	. 7509	. 8756	. 8796	. 9443	1.1369	. 0557	40	0.8494
0.7243	30	. 6626	.8213	. 7490	. 8745	. 8847	. 9468	I. 1303	.0532	30	0.8465
0.7272 0.7301	40	. 6648	.8227 .8241	. 7470	. 8733	. 8899	. 9494	I. 1237	. 0506	20	0.8436
0.7301	50	. 6670	. 8241	.745	. 8722	. 8952	.9519	1.1171	.0481	10	0.8407
0.7330	$42^{\circ} 00^{\prime}$.669r	9.8255	.743I	. 9.8711	-9004	9.9544	I.I 106	0.0456	$8^{\circ} 00^{\prime}$	0.8378
0.7359	10	. 6713	. 8269	.7412	. 8699	.9057	. 9570	I. 1041	. 0430	50	0.8348
0.7389	20	. 6734	. 8283	. 7392	. 8688	-9110	. 9595	1.0977	.0405	40	0.8319
0.7418	30	. 6756	. 8297	. 7373	. 8676	.9163	. 9621	1.0913	.0379	30	0.8290
0.7447	40	. 6777	.83II	. 7353	. 8665	. 9217	.9646	1.0850	. 0354	20	$0.826 \mathbf{I}$
0.7476	50	. 6799	. 8324	. 7333	. 8653	. 9271	. 9671	1.0786	. 0329	10	0.8232
0.7505	$43^{\circ} 00^{\prime}$. 6820	9.8338	.7314	9.864 I	. 9325	9.9697	1.0724	0.0303	$47^{\circ} \mathrm{O} 0^{\prime}$	0.8203
0.7534	10	. 6841	. 8351	. 7294	. 8629	. 9380	. 9722	1.0661	. 0278	50	0.8174
0.7563	20	. 6862	. 8365	. 7274	. 8618	. 9435	. 9747	1.0599	.0253	40	0.8145
0.7592	30	. 6884	. 8378	. 7254	. 8606	. 9490	- 9772	1.0538	. 0228	30	0.8116
0.7621	40	. 6905	.8391	. 7234	.8594 8582	. 9545	. 9798	1.0477	. 0202	20	0.8087
0.7650	50	. 6926	. 8405	. 7214	. 8582	. 9601	.9823	1.0416	. 0177	10	0.8058
0.7679	$44^{\circ} 0^{\prime}$. 6947	9.8418	.7193	9.8569	.9657	9.9848	1.0355	0.0152	$46^{\circ} 00^{\prime}$	0.8029
0.7709	10	. 6967	. 8431	. 7173	. 8557	. 9713	. 9874	I. 0295	. 0126	50	0.7999
0.7738	20	. 6988	. 8444	. 7153	. 8545	. 9770	.9899	1.0235	. 0101	40	0.7970
0.7767	30	. 7009	. 8457	. 71133	.8532	. 9827	. 9924	1.0176	. 0076	30	0.7941
0.7796	40	. 7030	. 8469	.7112	. 8520	. 9884	. 9949	1.0117	.0051	20	0.7912
0.7825	50	. 7050	. 8482	.7092	. 8507	. 9942	.9975	1.0058	. 0025	10	0.7883
0.7854	$45^{\circ} 00^{\prime}$.7071	9.8495	.7071	9.8495	1.0000	0.0000	1.0000	0.0000	$45^{\circ} \mathrm{O}{ }^{\prime}$	0.7854
		Nat.	Log.	Nat	Log.	Nat.	Log.	Nat.	Log.		
		COSI	NES.		ES.	COT	$\begin{aligned} & \text { CAN- } \\ & \text { NTS } \end{aligned}$	TANG	ENTS.	Aㅚㅚ	

TABLE 15.
CIRCULAR (TRIGONOMETRIC) FUNCTIONS.

岂	SINES.		COSINES.		TANGENTS		COTANGENTS.		
	Nat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.	
0.00	0.00000	- ∞	1.00000	0.00000	∞	-	∞	∞	00 ${ }^{\circ} 0{ }^{\prime}$
. 01	. 01000	7.99999	0.99995	9.99998	0.01000	8.00001	99.997	1. 99999	OO 34
. 02	. 02000	8.30100	. 99980	.99991	. 02000	. 30109	49.993	.69891	OI 09
. 03	. 03000	. 47706	. 99955	. 99980	. 03001	-47725	33.323	- 52275	OI 43
. 04	. 03999	. 60194	. 99920	. 99965	. 04002	. 60229	24.987	.39771	0218
0.05	0.04998	8.69879	0.99875	9.99946	0.05004	8.69933	19.983	1.30067	$02^{\circ} 5^{\prime \prime}$
. 06	. 05996	. 77789	. 99820	. 99922	. 06007	. 77867	16.647	. 22133	0326
. 07	. 06994	. 84474	. 99755	. 99894	. 07011	. 84581	14.262	. 15419	04 OI
. 08	. 07991	. 90263	. 99680	. 99861	.08017	. 90402	12.473	. 09598	0435
. 09	. 08988	. 95366	. 99595	. 99824	. 09024	. 95542	11.081	. 04458	0509
0.10	0.09983	8.99928	0.99500	9.99782	0.10033	9.00145	9.9666	0.99855	$05^{\circ} 44^{\prime}$
. I 1	. 10978	9.04052	. 99396	. 99737	. 11045	. 04315	9.0542	. 95685	0618
. 12	. 11971	.07814	. 99281	. 99687	. 12058	. 08127	8.2933	.91873	0653
. 13	. 12963	. 11272	.99156	. 99632	. 13074	.11640	7.6489	.88360	0727
. 14	. 13954	. 14471	. 99022	. 99573	. 14092	. 14898	7.0961	.85102	08 or
0.15	0.14944	9.17446	0.98877	9.995^{10}	0.15114	9.17937	6.6166	0.82063	$0^{\circ} 8^{\circ} 6^{\prime}$
. 16	. 15932	. 20227	. 98723	. 99442	.16138	. 20785	6.1966	. 79215	09 IO
.17	. 16918	. 22836	. 98558	. 99369	.17166	. 23466	5.8256	.76534	0944
. 18	. 17903	. 25292	. 98384	. 99293	.18197	. 26000	5.4954	. 74000	1019
. 19	. 18886	.27614	. 98200	.99211	. 19232	. 28402	5.1997	. 71598	1053
0.20	0.19867	9.29813	0.98007	9.99126	0.20271	9.30688	4.9332	0.69312	$\mathrm{II}^{\circ}{ }_{2} 8^{\prime}$
. 21	. 20846	. 31902	. 97803	. 99035	. 21314	. 32867	4.6917	. 67133	1202
. 22	. 21823	. 33891	. 97590	. 98940	. 22362	-34951	4.4719	. 65049	$\begin{array}{ll}12 & 36\end{array}$
. 23	. 22798	. 35789	. 97367	.9884I	. 23414	-36948	4.2709	.63052	1311
. 24	. 23770	. 37603	.97134	.98737	. 24472	. 38866	4.0864	.61134	1345
0.25	0.24740	9.39341	0.96891	9.98628	0.25534	9.40712	3.9163	0.59288	$14^{\circ} 19^{\prime}$
. 26	. 25708	. 41007	. 96639	. 98515	. 26602	.42491	3.7592	. 57509	1454
. 27	. 26673	. 42607	. 96377	. 98397	. 27676	.44210	3.6133	. 55790	1528
. 28	. 27636	.44147	.96106	. 98275	. 28755	. 45872	3.4776	. 54128	1603
. 29	. 28595	. 45629	. 95824	.98148	. 2984 I	.47482	$3 \cdot 3511$.52518	1637
0.30	0.29552	9.47059	0.95534	9.98016	0.30934	9.49043	3.2327	0.50957	${ }_{17} 7^{\circ} \mathrm{II}^{\prime}$
.31	. 30506	. 48438	. 95233	. 97879	. 32033	.50559	3.1218	. 4944 I	1746
. 32	-31457	. 4977 I	. 94924	. 97737	-33139	- 52034	3.0176	-47966	1820
. 33	- 32404	. 51060	. 94604	. 97591	. 34252	. 53469	2.9195	.46531	1854
. 34	-33349	. 52308	. 94275	. 97440	$\cdot 35374$. 54868	2.8270	.45132	1929
0.35	0.34290	9.53516	0.93937	9.97284	0.36503	9.56233	2.7395	0.43767	$20^{\circ} \mathrm{O}^{\prime}$
. 36	. 35227	. 54688	. 93590	. 97123	. 37640	. 57565	2.6567	. 42435	2038
. 37	. 36162	. 55825	. 93233	. 96957	.38786	. 58868	2.5782	.41132	2112
. 38	. 37092	. 56928	. 92866	. 96786	. 39941	. 60142	2.5037	-39858	2146
. 39	. 38019	. 58000	.92491	. 96610	.41105	.61390	2.4328	. 38610	22 21
0.40	0.38942	9.59042	0.92106	9.96429	0.42279	9.62613	2.3652	0.37387	$22^{\circ} 55^{\prime}$
. 41	-39861	. 60055	.91712	. 96243	. 43463	. 63812	2.3008	-36188	2329
. 42	.40776	.61041	.91309	. 96051	. 44657	. 64989	2.2393	-35011	2404
. 43	. 41687	. 62000	. 90897	. 95855	. 45862	. 66145	2.1804	. 33855	2438
. 44	.42594	. 62935	. 90475	. 95653	. 47078	.67282	2.1241	-32718	2513
0.45	0.43497	9.63845	0.90045	9.95446	0.48306	9.68400	2.0702	0.31600	$25^{\circ} 47^{\prime}$
. 46	. 44395	. 64733	. 89605	.95233	.49545	- 69500	2.0184	. 30500	2621
. 47	. 45289	. 65599	. 89157	. 95015	. 50797	.70583	1.9686	. 29417	2656
. 48	.46178 .47063	. 66443	.88699 .88233	.94792 .94563	.52061 .53339	.71651 .72704	1.9208 1.8748	.28349 .27296	2730 2804
. 49	.47063	. 67268	. 88233	$\cdot 94563$. 53339	.72704	1.8748	. 27296	2804
050	0.47943	9.68072	0.87758	9.94329	0.54630	9.73743	1. 8305	0.26257	$28^{\circ} 39^{\prime}$

CIRCULAR (TRIGONOMETRIC) FUNCTIONS.

$$	SINES. ${ }^{\circ}$		COSINES.		TANGENTS		COTANGENTS.		$\begin{aligned} & \text { win } \\ & \text { M1 } \\ & \text { Mr } \\ & 0 \\ & \text { M } \\ & \end{aligned}$
	Nat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.	
0.50	0.47943	9.68072	0.87758	9.94329	0.54630	9.73743	I. 8305	0.26257	$28^{\circ} 39^{\prime}$
. 51	. 48818	. 68858	. 87274	. 94089	. 55936	. 74769	. 7878	.2523I	2913
. 52	. 49688	. 69625	. 86782	. 93843	. 57256	. 75782	.7465	. 24218	2948
. 53	- 50553	. 70375	.86281	.93591	. 58592	. 76784	. 7067	. 23216	3022
. 54	-514 4	.71108	. 8577 I	. 93334	- 59943	. 77774	. 6683	. 22226	3056
0.55	0.52269	9.71824	0.85252	9.93071	0.61311	9.78754	1.6310	0.21246	$31^{\circ} 3 \mathrm{I}^{\prime}$
. 56	. 53119	. 72525	. 84726	.92801	. 62695	. 79723	. 5950	. 20277	3205
. 57	. 53963	.73210	. 84190	.92526	.64097	. 80684	. 5601	. 19316	3240
. 58	. 54802	. 73880	. 83646	. 92245	.65517	. 81635	. 5263	.18365	3314
. 59	. 55636	.74536	. 83094	.91957	. 66956	. 82579	. 4935	.1742 I	3348
0.60	0.56464	9.75177	0.82534	9.91663	0.68414	9.83514	I. 4617	0.16486	$34^{\circ} 23^{\prime}$
. 61	. 57287	. 75805	. 81965	.91363	. 69892	. 84443	. 4308	. 15557	3457
. 62	.58104	.76420	. 81388	. 91056	. 71391	. 85364	. 4007	. 14636	3531
. 63	.589:4	. 77022	.80803	. 90743	.72911	. 86280	-3715	. 13720	3606
. 64	- 59720	.77612	. 80210	. 90423	. 74454	. 87189	-343I	. 28811	3640
0.65	0.60519	9.78I89	0.79608	9.90096	0.76020	9.88093	I.3154	0.11907	$37^{\circ} \mathrm{I} 5^{\prime}$
. 66	.61312	. 78754	. 78999	. 89762	.77610	. 88992	. 2885	. 11008	3749
. 67	. 62099	.79308	.78382	. $89+22$. 79225	. 89886	. 2622	. 10114	38.23
. 68	. 62879	.79851	. 77757	. 89074	. 80866	. 90777	. 2366	. 09223	3858
. 69	. 63654	.80382	.77125	. 88719	. 82534	.91663	. 2116	. 08337	3932
0.70	0.64422	9.80903	0.76484	9.88357	0.84229	9.92546	1.1872	0.07454	$40^{\circ} 06^{\prime}$
. 71	. 65183	. 81414	.75836	. 87988	. 85953	. 93426	. 1634	. 06574	4041
. 72	. 65938	. 81914	. 75181	. 87611	. 87707	.94303	. 1402	. 05697	4115
. 73	. 66687	.82404	. 74517	. 87226	. 89492	.95178	. 1174	. 04822	4150
. 74	. 67429	. 82885	.73847	. 86833	.91309	.96051	. 0952	. 03949	4224
0.75	0.68164	9.83355	0.73169	9.86433	0.93160	9.96923	1.0734	0.03077	$42^{\circ} 5^{\prime \prime}$
. 76	. 68892	. 83517	. 72484	. 86024	. 95045	. 97793	.0521	. 02207	4333
. 77	. 69614	. 84269	. 71791	. 85607	. 96967	. 98662	.0313	. 01338	4407
. 78	.70328 .71035	. 847 I 3	.71091	. 85182	. 98926	9.99531	1.0109	. 00469	4441
. 79	. 71035	. 85147	.70385	. 84748	1.0092	0.00400	0.99084	9.99600	4516
0.80	0.71736	9.85573	0.69671	9.84305	1.0296	0.01268	0.97121	9.98732	$45^{\circ} 5^{\prime}$
.81	. 72429	. 85991	. 68950	. 83853	. 0505	. 02138	.95197	. 97862	4625
. 82	.73115	. 86400	. 68222	. 83393	. 0717	.03008	.93309	. 96992	4659
. 83	.73793	. 86802	. 67488	. 82922	. 0934	.03879	.91455	.9612	4733
. 84	. 74464	. 87195	. 66746	. 82443	.1156	. 04752	. 89635	$\cdot 95248$	4808
0.85	0.75128	9.87580	0.65998	9.81953	1.1383	0.05627	0.87848	9.94373	$48^{\circ}{ }^{2} 2^{\prime}$
. 86	. 75784	. 87958	. 65244	.81454	. 1616	.06504	. 86091	. 93496	4916
. 87	.76433	. 88328	. 64483	. 80944	.1853	. 07384	. 84365	.92616	49 51
. 88	.77074	. 88691	. 63715	. 80424	. 2097	. 08266	. 82668	-91734	5025
. 89	. 77707	. 89046	.6294I	. 79894	. 2346	.09153	. 80998	. 90847	5100
0.90	0.78333	9.89394	0.62161	9.79352	1. 2602	0.10043	0.79355	9.89957	$51^{\circ} 34^{\prime}$
. 91	. 78950	. 89735	.61375	. 78799	. 2864	. 10937	. 77738	. 89063	5208
. 92	. 79560	. 90070	. 60582	.78234	. 3133	.11835	. 76146	.88165	5243
. 93	. 80162	.90397	. 59783	. 77658	- 3409	. 12739	. 74578	. 87261	5317
. 94	. 80756	.90717	. 58979	. 77070	$\cdot 3692$.13648	. 73034	.86352	53 51
	0.81342	9.91031	0.58168	9.76469	1. 3984	0.14563	0.71511	9.85437	$54^{\circ} 26^{\prime}$
. 96	.81919	.91339	. 57352	. 75855	. 4284	. 15484	. 70010	. 84516	5500
. 97	. 82489	.91639	. 56530	. 75228	. 4592	.16412	. 68531	. 83588	5535
. 98	.83050 .83603	.91934	. 55702	.74587 .73933	. 4910	.17347 .18289	. 6707 I	.82653 .8 I 7 II	$56 \quad 09$ 5643
. 99	. 83603	. 92222	- 54869	. 73933	. 5237	.18289	.6563I	.81711	5643
1.00	0.84147	9.92504	0.54030	9.73264	1. 5574	0.19240	0.64209	9.80760	$57^{\circ} \mathrm{I} 8^{\prime}$

Smithsonian Tables.

TAble 15 (continued).
CIRCULAR (TRIGONOMETRIC) FUNCTIONS.

	SINES.		COSINES.		TANGENTS.		COTANGENTS.		
	Nat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.	
1.00	0.84147	9.92504	0.54030	9.73264	1. 5574	-. 19240	0.64209	9.80760	$57^{\circ} 18^{\prime}$
. 01	. 84683	. 92780	. 53186	. 72580	. 5922	. 20200	. 62806	. 79800	5752
. 02	. 85211	. 93049	. 52337	.71881	. 6281	. 21169	. 61420	.7883I	5827
. 03	. 85730	.93313	. 51482	.71165	. 6652	. 22148	. 60051	.77852	59 O1
. 04	. 86240	.9357 I	. 50622	.70434	.7036	.23137	. 58699	.76863	5935
1.05	0.86742	9.93823	0.49757	9.69686	1.7433	0.24138	0.57362	9.75862	$60^{\circ} 10^{\prime}$
. 06	. 87236	. 94069	. 48887	. 68920	. 7844	. 25150	. 56040	. 74850	6044
. 07	. 87720	.94310	. 48012	.68135	. 8270	. 26175	. 54734	.73825	6118
. 08	.88ı 96	. 94545	. 47133	. 67332	. 8712	. 27212	. 53441	. 72788	6153
. 09	. 88663	. 94774	. 46249	.66510	.9171	. 28264	. 52162	.71736	6227
1.10	0.89121.	9.94998	0.45360	9.65667	1.9648	0.29331	0.50897	9.70669	$63^{\circ} \mathrm{O} 2^{\prime}$
. 11	. 89570	. 95216	. 44466	. 64803	2.0143	. 30413	. 49644	. 69587	6336
. 12	-90010	. 95429	. 43568	. 63917	. 0660	-31512	. 48404	. 68488	6410
. 13	. 9044 I	. 95637	. 42666	. 63008	.1 198	. 32628	. 47175	. 67372	6445
. 14	.90863	. 95839	.41759	. 62075	. 1759	.33763	. 45959	. 66237	6519
1.15	0.91276	9.96036	0.40849	9.61118	2.2345	0.34918	0.44753	9.65082	$65^{\circ} 53^{\prime}$
. 16	. 91680	. 96228	. 39934	.60134	. 2958	. 36093	. 43558	. 63907	6628
. 17	. 92075	.96414	-39015	. 59123	. 3600	-37291	. 42373	. 62709	6702
. 18	.92461	. 96596	.38092	.58084	.4273	-38512	.41199	.61488	6737
.19	. 92837	. 96772	. 37166	. 57015	. 4979	-39757	.40034	$.602+3$	68 I I
1.20	0.93204	9.96943	0.36236	9.55914	2.5722	0.41030	0.38878	9.58970	$68^{\circ} 45^{\prime}$
. 21	. 93562	.97110	- 35302	. 54780	. 6503	. 42330	. 37731	. 57670	6920
. 22	. 93910	. 9727 I	. 34365	. 53611	.7328	. 43660	. 36593	. 56340	6954
.23	. 94249	. 97428	- 33424	- 52406	. 8198	. 45022	- 35463	- 54978	7028
. 24	-94578	. 97579	. 32480	.51161	.9119	.46418	-3434 ${ }^{\text {I }}$. 53582	7103
1.25	0.94898	9.97726	0.31532	9.49875	3.0096	0.47850	0.33227	9.52150	$71^{\circ} 37^{\prime}$
. 26	. 95209	. 97868	. 30582	. 48546	.1133	. 49322	.32121	. 50678	7212
. 27	. 95510	. 98005	. 29628	. 47170	. 2236	. 50835	-3102 I	.49165	7246
. 28	.95802	.98137	.28672	. 45745	.3413	. 52392	. 29928	. 47608	7320
. 29	.96084	. 98265	. 27712	.44267	.4672	- 53998	. 28842	.46002	7355
1. 30	0.96356	9.98388	0.26750	9.42732	3.6021	0.55656	0.27762	9.44344	$74^{\circ} 29^{\prime}$
. 31	.966ı 8	.98506	. 25785	.41137	. 747 I	. 57369	. 26687	. 42631	7503
- 32	.96872	. 98620	. 24818	-39476	.9033	- 59144	. 25619	. 40856	7538
- 33	.97115	.98729	.23848	- 37744	4.0723	. 60984	.24556	.39016	7612
- 34	. 97348	.98833	. 22875	. 35937	. 2556	.62896	.23498	.37104	7647
I. 35	0.97572	9.98933	0.21901	9.34046	4.4552	0.64887	0.22446	9.35113	$77^{\circ} 21^{\prime}$
- 36	. 97786	. 99028	. 20924	-32064	. 6734	. 66964	. 21398	. 33036	7755
- 37	.97991	.99119	. 19945	.29983	.9131	.69135	. 20354	-30865	7830
- 38	.98185	-99205	.IS964	.27793	5.1774	.71411	.19315	.28589	7904
. 39	.98370	. 99286	. 17981	. 25482	. 4707	.73804	. 8279	.26196	7938
I. 40	0.98545	9.99363	0.16997	9.23036	5.7979	0.76327	0.17248	9.23673	$80^{\circ} 13^{\prime}$
. 41	.98710	. 99436	. 16010	. 20440	6.1654	.78996	. 16220	. 21004	8047
. 42	. 98865	. 99504	. 15023	.17674	6.5811	. 81830	.15195	.18170	S1 22
. 43	. 99010	. 99568	.14033	.14716	7.0555	. 84853	.14173	. 15147	8156
. 44	.99146	. 99627	. 3042	.11536	7.6018	. 88092	. 13155	. 11908	8230
1.45	0.99271	9.99682	0.12050	9.08100	8.2381	0.91583	0.12139	9.08417	$83^{\circ} 05^{\prime}$
.46	. 99387	. 99733	. 11057	. 04364	8.9886	.95369	. 11125	. 04631	8339
. 47	. 99492	. 99779	. 10063	. 00271	9.8874	. 99508	. 10114	. 00492	S+13
. 48	. 999588	.99821	. 09067	8.95747 .00692	10.983	1.04074	.09105	8.95926	$\mathrm{S}_{4} 48$
. 49	. 99674	.99858	.0807 I	.90692	12.350	.09166	.08097	. 90834	8522
I. 50	0.99749	9.99891	0.07074	8.84965	14.10I	1.14926	0.07091	8.85074	$85^{\circ} 57^{\prime}$

Smithsonian Tables.

TABLE 15 (continued), Oircular (Trigonometric) Functions.

	SINES.		COSINES.		TANGENTS.		COTANGENTS.		
	Nat.	Log	Nat.	Log	Nat.	Log.	Nat.	Log.	
1.50	0.99749	9.99891	0.07074	8.84965	14.101	I. 14926	0.07091	8.85074	$85^{\circ} 57^{\prime}$
. 51	.99SI 5	. 99920	. 06076	.78361	16.428	.21559	. 06087	.78441	8631
.52	.9987 1	. 99944	. 05077	.70565	19.670	. 29379	. 05084	.70621	8705
. 53	. 99917	. 99964	. 04079	. 61050	24.498	-38914	. 04082	. 61086	8740
. 54	. 99953	. 99979	. 03079	.48843	32.461	. 51136	.0308I	.43864	8814
1.55	0.9997 S	9.99991	0.02079	8.31796	48.078	1.68195	0.02080	8.31805	$88^{\circ} 49^{\prime}$
. 56	0.99994	9.99997	. 01080	8.03327	92.621	I. 9667 I	. 01080	8.03329	S9 23
. 57	1.00000	0.00000	.00080	6.90109	1255.8	3.09891	. 00080	6.90109	8957
. 5^{8}	0.99996	9.99998	-. 000920	$7.96396 n$	108.65	2.03603	-. 000920	$7.96397 n$	9032
. 59	0.99982	9.99992	-. 01920	S.28336n	52.067	1.71656	-.01921	$8.28344 n$	9106
1.60	0.99957	9.9998 I	-0.02920	$8.46538 n$	34.233	1. 53444	-0.02921	8.46556 n	$91^{\circ} 40^{\prime}$

$90^{\circ}=1.5707963$ radians.

TABLE 16.-Logarithmic Factorials.
Logarithms of the products $1.2 .3 . \ldots . . n, n$ from I to 100 .
See Table 18 for Factorials I to 20.
See Table 32 for log. $\Gamma(n+1)$, values of n between I and 2 .

n	$\log (n!)$	n	$\log (n!)$	n	$\log (n!)$	n.	$\log (n!)$
1	0.000000	26	26.605619	51	66.190645	76	111.275425
1	0	0.301030	27	28.036983	52	67.906648	77
113.161916							
3	0.778151	28	29.484141	53	69.630924	78	115.054011
4	1.380211	29	30.946539	54	71.363318	79	116.951638
5	2.079181	30	32.423660	55	73.103681	80	118.854728
6	2.857332	31	33.915022	56	74.851869	81	120.763213
7	3.702431	32	35.420172	57	76.607744	82	122.677027
8	4.605521	33	36.938686	58	78.371172	83	124.596105
9	5.559763	34	38.470165	59	80.142024	84	126.520384
10	6.559763	35	40.014233	60	81.920175	85	128.449803
11	7.601156	36	41.570535	61	83.705505	86	130.384301
12	8.680337	37	43.138737	62	85.497896	87	132.323821
13	9.794280	38	44.718520	63	87.297237	88	134.268303
14	10.940408	39	46.309585	64	89.103417	89	136.217693
15	12.116500	40	47.911645	65	90.916330	90	138.171936
16	13.320620	41	49.524429	66	92.735874	91	140.130977
17	14.551069	42	51.147678	67	94.561949	92	142.094765
18	15.806341	43	52.781147	68	96.394458	93	144.063248
19	17.085095	44	54.424599	69	98.233307	94	146.036376
20	18.386125	45	56.077812	70	100.078405	95	148.014099
21	19.708344	46	57.740570	71	101.929663	96	149.996371
22	21.050767	47	59.412668	72	103.786996	97	151.983142
23	22.412494	48	61.093909	73	105.650319	98	153.974368
24	23.792706	49	62.784105	74	107.519550	99	155.970004
25	25.190646	50	64.483075	75	109.394612	100	157.970004

u	sinh. u		cosh. u		tanh. u		coth. u		gd u
	Nat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.	
0.00	0.00000	- ∞	1.00000	0.00000	0.00000	$-\infty$	∞	∞	$0^{\circ} 0^{\prime}$
. 01	. 01000	8.00001	. 00005	. 00002	. 01000	7.99999	100.003	2.00001	- 34
. 02	. 02000	. 30106	. 00020	. 00009	. 02000	8.30097	50.007	1.69903	109
. 03	. 03000	. 47719	. 00045	. 00020	. 02999	. 47699	33.343	1.52301	I 43
. 04	. 04001	. 60218	. 00080	. 00035	.03998	. 60183	25.013	1.39817	217
0.05	0.05002	8.69915	1.00125	0.00054	0.04996	8.6986I	20.017	1.30139	252
. 06	. 06004	.7784 I	. 00180	. 00078	. 05993	.77763	16.687	. 22237	326
. 07	. 07006	. 84545	. 00245	. 00106	. 06989	. 84439	14.309	. 15561	400
. 08	. 08009	. 90355	. 00320	.001 39	. 07983	. 90216	12.527	. 09784	435
. 09	. 09012	.95483	. 00405	. 00176	. 08976	. 95307	II.14I	. 04693	509
0.10	0.10017	9.00072	1.00500	0.00217	0.09967	8.99856	10.0333	I.00144	543
. 11	. 11022	. 04227	. 00606	. 00262	. 10956	9.03965	9.1275	0.96035	617
.12	. 12029	. 08022	. 0072 I	. 00312	. 11943	. 07710	8.3733	. 92290	652
.13	.13037	. 11517	. 00846	. 00366	. 12927	.1115 ${ }^{\text {I }}$	7.7356	. 88849	726
. 14	.14046	.14755	. 00982	. 00424	. 13909	. 14330	7.1895	.85670	800
0.15	0.15056	9.17772	1.OI 127	0.00487	0.14889	9.17285	6.7166	0.82715	834
. 16	. 16068	. 20597	. 01283	. 00554.	. 5865	. 20044	6.3032	. 79956	9 OS
.17	. 17082	. 23254	. 01448	. 00625	.16838	. 22629	5.9389	-7737 ${ }^{\text {I }}$	942
.18	.18097	. 25762	. 01624	. 00700	.17808	. 25062	5.6154	.74938	1015
.19	.1915 5	.28136	.01810	. 00779	. 18775	. 27357	$5 \cdot 3263$.72643	IO 49
0.20	0.20134	9.30392	1.02007	0.00863	-. 19738	9.29529	5.0665	0.7047 I	1123
. 21	.21155	-32541	. 02213	. 00951	. 20697	-31590	4.8317	. 68410	II 57
.22	. 22178	-34592	. 02430	. 01043	.21652	-33549	4.6186	. 6645 I	1230
.23	. 23203	- 36555	. 02657	. 01139	. 22603	-35416	4.4242	.64584	1304
. 24	.2423I	. 38437	. 02894	. 01239	. 23550	. 37198	4.2464	. 62802	1337
0.25	0.25261	9.40245	1.03141	0.01343	0.24492	9.38902	4.0830	0.61098	14 II
. 26	. 26294	. 41986	. 03399	. 01452	. 25430	. 40534	3.9324	. 59466	1444
. 27	. 27329	.43663	. 03667	. 01564	. 26362	-42099	3.7933	. 57901	1517
. 28	. 28367	. 45282	. 03946	.0168I	. 27291	.43601	3.6643	- 56399	1550
.29	. 29408	.46847	. 04235	.orsor	.28213	.45046	$3 \cdot 5444$	-54954	1623
0.30	0.30452	9.48362	1.04534	0.01926	0.29131	9.46436	3.4327	0.53564	1656
.31	. 31499	. 498.30	. 04344	. 02054	. 30044	. 47775	. 3285	. 52225	1729
$\cdot 32$. 32549	. 51254	.05164	. 02187	-30951	-49067	. 2309	- 50933	I8 02
$\cdot 33$. 33602	. 52637	. 05495	. 02323	. 31852	.50314	. 1395	. 49686	1834
. 34	.34659	. 5398 I	. 05836	. 02463	-32748	.51518	. 0536	.48482	1907
0.35	0.35719	9.55290	1.06188	0.02607	0.33638	9.52682	2.9729	0.47318	1939
$\cdot \cdot 36$.36783	. 56564	. 06550	.02755	-34521	$.53 \mathrm{So9}$. 8968	.46191	2012
- 37	-37850	. 57807	. 06923	.02907	-35399	. 54899	. 8249	-45101	2044
- 38	. 38921	. 59019	. 07307	.03063	-3627I	. 55956	. 7570	. 44044	2116
- 39	. 39996	. 60202	. 07702	. 03222	.37136	. 56980	. 6928	. 43020	2148
0.40	0.41075	9.61358	1.08107	0.03385	0.37995	9.57973	2.6319	0.42027	2220
. 41	. 42158	. 62488	.08523	.03552	. 38847	. 58936	. 5742	. 41064	2252
.42	. 43246	.63594	. 08950	. 03723	- 39693	.59871	. 5193	. 40129	$23 \quad 23$
. 43	. 44337	.64677	. 09388	. 03897	. 40532	. 60780	. 4672	. 39220	2355
- 44	: 45434	. 65738	.09837	. 04075	.41364	. 61663	. 4175	.38337	2426
0.45	0.46534	9.66777	1. 102970	. 04256	0.42190	9.62521	2.3702	0.37479	2457
. 46	. 47640	. 67797	. 10768	. 04441	. 43008	. 63355	.3251	. 36645	$25 \quad 28$
. 47	. 48750	. 68797	. 11250	.04630	. 43820	.64167	. 2821	. 35833	2559
.48	. 49865	. 69779	. 11743	. 04822	. 44624	. 64957	.2409	-35043	2630
. 49	. 50984	. 70744	. 12247	. 05018	. 45422	.65726	. 2016	- 34274	27 or
0.50	0.52110	9.71692	1.12763	0.05217	0.46212	9.66475	2.1640	0.33525	27 31

Table 17 (continued).
HYBERBOLIC FUNCTIONS.

u	sinh. u		cosh. u		tanh. u		coth. u		gd u
	Nat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.	
0.50	0.52110	9.71692	1.12763	0.05217	0.46212	9.66475	2.1640	0.33525	$27^{\circ} 3^{1}{ }^{\prime}$
. 51	. 53240	. 72624	. 13289	.05419	. 46995	. 67205	. 1279	. 32795	2802
. 52	. 54375	. 73540	. 13827	. 05625	. 47770	. 67916	. 0934	-32084	$28 \quad 32$
. 53	. 55516	. 74442	. 14377	.05834	. 48538	.68608	. 0602	. 31392	2902
. 54	- 56663	. 75330	. 14938	.06046	. 49299	. 69284	. 0284	. 30716	2932
- . 55	0.57815	9.76204	1.15510	0.06262	0.50052	9.69942	1.9979	0.30058	3002
.56	. 58973	.77065	. 16094	.06481	. 50798	.70584	. 9686	.29416	3032
. 57	. 60137	.77914	. 16690	. 06703	.51536	. 71211	. 9404	.28789	3 I or
. 58	.61307	.78751	. 17297	. 06929	. 52267	.71822	.9133	.28178	$3 \mathrm{I} 3^{1}$
. 59	. 62483	.79576	.17916	.07157	. 52990	.72419	. 8872	.27581	3200
0.60	0.63665	9.80390	1.18547	0.07389	0.53705	9.73001	1. 8620	0.26999	3229
.6I	. 64854	. 81194	. 19189	. 07624	. 54413	. 73570	. 8378	. 26430	3258
. 62	. 66049	. 81987	. 19844	.07861	. 55113	. 74125	.8I45	.25875	3327
63	. 67251	. 82770	. 20510	.08102	. 55805	. 74667	. 7919	. 25333	3355
. 64	.68459	. 83543	.21189	.08346	. 56490	.75197	.7702	. 24803	3424
0.65	0.69675	9.84308	1.21879	0.08593	0.57167	9.75715	1.7493	0.24285	3452
. 66	. 70897	. 85063	. 22582	.08843	. 57836	. 76220	. 7290	. 23780	3520
. 67	. 72126	. 85809	. 23297	. 09095	. 58498	. 76714	. 7095	. 23286	3548
. 68	.73363	. 86548	. 24025	.09351	. 59152	. 77197	. 6906	. 22803	3616
. 69	. 74607	. 87278	. 24765	. 09609	. 59798	.77669	. 6723	.2233 I	3644
0.70	0.75858	9.88000	1.25517	0.09870	0.60437	9.78130	1.6546	0.21870	3711
. 71	. 77117	. 88715	. 26282	.10134	.61068	.78581	. 6375	. 21419	3738
.72	. 78384	. 89423	. 27059	. 10401	.61691	. 79022	. 6210	. 20978	3805
. 73	. 79659	.90123	.27849	. 10670	. 62307	. 79453	. 6050	. 20547	3832
. 74	. 80941	.90817	.28652	.10942	. 62915	.79875	.5895	. 20125	3859
0.75	0.82232	9.91504	1.29468	0.11216	0.635^{15}	9.80288	1.5744	0.19712	3926
. 76	. 83530	.92185	. 30297	. 11493	. 64108	. 80691	. 5599	.19309	39 52
. 77	. 84838	. 92859	. 31139	.11773	. 64693	. 81086	. 5458	.18914	4019
. 78	. 86153	. 93527	. 31994	. 12055	. 6527 I	. 81472	. 5321	. 18528	4045
. 79	. 87478	.94190	. 32862	. 12340	. 65841	. 81850	.5188	.18150	4111
0.80	0.88811	9.94846	1.33743	0.12627°	0.66404	9.82219	1.5059	0.17781	4137
. 81	.901 52	. 95498	. 34638	. 12917	. 66959	. 82581	. 4935	. 17419	4202
. 82	.91503	. 96144	. 35547	. 13209	. 67507	. 82935	.4813	.17065	4228
. 83	. 92863	.96784	. 36468	. 13503	.68048	. 83281	. 4696	. 16719	4253
. 84	. 94233	. 97420	. 37404	.13800	.6858 I	. 83620	. 4581	.16380	4318
0.85	0.95612	9.98051	1.38353	0.14099	0.69107	9.83952	1.4470	0.16048	4343
. 86	. 97000	. 98677	. 39316	. 14400	. 69626	. 84277	. 4362	. 15723	44 o8
. 87	. 98398	. 99299	. 40293	. 14704	.70137	. 84595	. 4258	. 15405	4432
. 88	. 99806	. 99916	. 41284	. 15009	. 70642	. 84906	.4156	. 15094	4457
. 89	1.01224	0.00528	. 42289	. 55317	. 71139	. 85211	. 4057	. 14789	4521
0.90	1.02652	0.01137	1. 43309	0.15627	0.71630	9.85509	1.3961	0.14491	4545
. 91	. 04090	. 01741	. 44342	. 15939	. 72113	. 85801	. 3867	. 14199	$46 \quad 09$
. 92	. 05539	. 02341	. 45390	.16254	. 72590	. 86088	. 3776	. 13912	4633
. 93	. 06998	. 02937	.46453	. 16570	. 73059	. 86368	. 3687	. 13632	4656
. 94	. 08468	. 03530	. 47530	. 16888	.73522	. 86642	. 3601	. 13358	4720
0.95	1.09948	0.04119	1.48623	0.17208	0.73978	9.86910	1. 3517	0.13090	
. 96	. 11440	.04704	. 49729	.17531	. 74428	. 87173	. 3436	. 12827	4806
. 97	. 12943	. 05286	. 50851	.17855	. 74870	. 87431	. 3356	. 12569	4829
. 98	. 14457	. 05864	. 51988	.18181	.75307	. 87683	-3279	.12317	4851
.99	. 5988	. 06439	. 5314 I	.18509	.75736	. 87930	. 3204	. 12070	4914
1.00	1.17520	0.07011	1. 54308	0.18839	0.76159	9.88172	1.3130	0.11828	4936

TABLE 17 (continued). HYPERBOLIC FUNCTIONS.

u	sinh. u		cosh. u		$\tanh . \mathrm{u}$		coth u		gd u
	Nat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.	
1.00	I.17520	0.07011	1. 54308	0.18839	0.76159	9.88172	1.3130	0.11828	$49^{\circ} 36^{\prime}$
. 01	. 19069	. 07580	. 55491	.19171	. 76576	. 88409	. 3059	. 11591	4958
. 02	. 20630	. 08146	- 56689	. 19504	.76987	. 88642	.2989	. 11358	5021
. 03	. 22203	.08708	. 57904	.19839	.77391	. 88869	. 2921	. 11131	5042
. 04	. 23788	. 09268	. 59134	. 20176	.77789	.89092	. 2855	. 10908	5104
1.05	1.25386	0.09825	1.60379	0.20515	0.78181	9.89310	1.2791	0.10690	5126
. 06	. 26996	.10379	.61641	. 20855	. 78566	. 89524	. 2728	. 10476	5147
. 07	.28619	. 10930	. 62919	.21197	. 78946	. 89733	. 2667	. 10267	5208
. 08	. 30254	. 11479	. 64214	. 21541	. 79320	. 89938	. 2607	. 10062	5229
. 09	. 31903	. 12025	. 65525	.21886	. 79688	.90139	. 2549	.09861	5250
1.10	1. 33565	0.12569	1.66852	0.22233	0.80050	9.90336	1. 2492	0.09664	53 II
. 11	. 35240	.13111	. 68196	. 22582	. 80406	. 90529	. 2437	. . 0947 I	53 31
. 12	-36929	. 13649	. 69557	. 22931	. 80757	. 90718	.2383	. 09282	5352
.13	. 38631	. 14186	. 70934	. 23283	.81102	.90903	.2330	. 09097	54 I 2
.14	. 40347	. 14720	. 72329	.23636	.8I44I	.91085	. 2279	. 08915	5432
1.15	1.42078	0.15253	1.73741	0.23990	0.81775	9.91262	1.2229	0.08738	5452
. 16	. 43822	. 15783	. 75171	. 24346	. 82104	. 91436	. 2180	.08564	55 II
.17	-45581	. 16311	.76618	. 24703	. 82427	.91607	.2132	. 08393	553 I
.18	. 47355	.16836	. 78083	. 25062	. 82745	.91774	. 2085	. 08226	5550
.19	. 49143	.17360	.79565	.25422	. 83058	.9193 ${ }^{3}$. 2040	. 08062	5609
1.20	1. 50946	0.17882	1.81066	0.25784	0.83365	9.92099	I. 1995	0.07901	5629
. 21	. 52764	.18402	. 82584	.26146	. 83665	. 92256	. 1952	. 07744	5647
. 22	. 54598	. 18920	. 84121	. 26510	. 83965	.92410	. 1910	. 07590	5706
.23	. 56447	. 19437	. 85676	. 26876	. $8+258$.92561	. 1868	. 07439	5725
. 24	. 58311	.19951	. 87250	.27242	. 84546	. 92709	. 1828	.07291	5743
1.25	1.60192	0.20464	1.88842	0.27610	0.84828	9.92854	1.1789	0.07146	5802
. 26	. 62088	. 20975	. 90454	. 27979	. 85106	. 92996	. 175°	. 07004	5820
. 27	. 64001	$.214 S^{5}$.92084	.28349	. 85380	.93135	.1712	. 06865	5838
. 28	. 65930	.21993	. 93734	.28721	. 85648	.93272	.1676	. 06723	5855
. 29	. 67876	. 22499	.95403	.29093	. 85913	. 93406	.1640	. 06594	59 I 3
1.30	1.69838	0.23004	1.97091	0.29467	0.86172	9.93537	1.1605	0.06463	
$\cdot 31$.71818	. 23507	. 98800	. 29842	. 86428	. 93665	. 1570	. 06335	5948
- 32	.73814	. 24009	2.00528	. 30217	. 86678	.93791	. 1537	. 06209	6005
. 33	.75828	.24509	. 02276	. 30594	. 86925	.93914	. 1504	.06086	6022
- 34	. 77860	. 25008	. 04044	. 30972	. 87167	. 94035	. 1472	. 05965	6039
1.35	1.79909	0.25505	2.05833	0.31352	0.87405	9.94154	1.1441	0.05846	6056
$\cdot 36$.81977	. 26002	. 07643	. 31732	. 87639	. 94270	. 1410	. 05730	6113
. 37	. 84.4062	.26496	. 09473	.32113	. 87869	. 94384	.1381	.05616	6129
. 38	. 86166	. 26990	.11324	. 32495	.8S095	. 94495	.1351	. 05505	6145
$\cdot 39$.88289	.27482	. 13196	. 32878	. 88317	.94604	.1323	. 05396	6202
1. 40	1.90430	0.27974	2.15090	0.33262	0.88535	9.94712	1.1295	0.05288	6218
.41	.92591	.28464	. 17005	. 33647	. 88749	.94817	. 1268	.05183	6234
.42	. 94770	.28952	.18942	. 34033	. 88960	. 94919	.1241	.0508I	6249
. 43	. 96970	. 29440	. 20900	. 34420	. 89167	. 95020	.1215	.04980	6305
. 44	.99188	. 29926	.22881	.34807	. 89370	.95119	.1189	.0488I	6320
1.45	2.01427	0.30412	2.24884	0.35196	0.89569	9.95216	1.1165	0.04784	6336
. 46	. 03686	. 30896	. 26910	. 35585	. 89765	.95311	.1140	. 04689	63 51
. 47	. 05965	-31379	. 28958	. 35976	. 89958	. 95404	. 1116	. 04596	6406
. 48	. 08265	-31862	. 31029	$\cdot 36367$. 90147	. 95495	.1093	. 04505	6421
. 49	. 10586	-32343	.33123	.36759	.90332	.95584	. 1070	.04416	6436
1.50	2.12928	0.32823	2.35241	$0.37{ }^{151}$	0.90515	9.95672	1. 1048	0.0432 S	6451

HYPERBOLIC FUNCTIONS.

u	sinh. u		cosh. u		tanh. u		coth. u		gd. u
	Nat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.	
1.50	2.12928	0.32823	2.35241	0.37151	0.90515	9.95672	I.1048	0.04328	$64^{\circ}{ }_{51}{ }^{\prime}$
. 51	. 15291	. 33303	. 37382	. 37545	. 90694	. 95758	. 1026	. 04242	$65 \quad 05$
. 52	. 17676	-33781	- 39547	- 37939	. 90870	. 95842	. 1005	. 04158	6520
. 53	. 20082	. 34258	. 41736	. 38334	. 91042	. 95924	. 0984	. 04076	6534
. 54	. 22510	- 34735	-43949	- 38730	. 91212	. 96005	. 0963	. 03995	6548
1.55	2.24961	0.35211	2.46186	0.39126	0.91379	9.96084	I. 0943	0.03916	$66 \quad 02$
. 56	. 27434	. 35686	. 48448	. 39524	.91542	.96162	. 0924	. 03838	6616
. 57	. 29930	. 36160	. 50735	-39921	. 91703	. 96238	. 0905	. 03762	6630
. 58	-32449	. 36633	. 53047	. 40320	. 91860	. 96313	. 0886	. 03687	6643
- 59	-34991	. 37105	-55384	.40719	. 92015	. 96386	. 0868	.03614	$66 \quad 57$
1.60	2.37557	0.37577	2.57746	0.41119	0.92167	9.96457	1.0850	0.03543	67 10
.61	40146	. 38048	. 60135	. 41520	. 92316	. 96528	. 0832	. 03472	$67 \quad 24$
. 62	. 42760	. 38518	. 62549	. 41921	. 92462	. 96597	. 0815	. 03403	$67 \quad 37$
. 63	. 45397	. 38987	. 64990	. 42323	. 92606	. 96664	. 0798	. 03336	6750
	. 48059	-3945	. 67457	. 42725	-92747	.96730	. 0782	.03270	$68 \quad 03$
1.65	2.50746	0.39923	2.69951	0.43129	0.92886	9.96795	1.0766	0.03205	$68 \quad 15$
. 66	. 53459	. 40391	. 72472	. 43532	. 93022	. 96858	. 0750	.03142	68 28
. 67	. 56196	. 40857	. 75021	-43937	.93155	. 96921	. 0735	. 03079	$68 \quad 41$
. 68	. 58959	.41323	. 77596	-44341	. 93286	. 96982	. 0720	. 03018	$68 \quad 53$
. 69	. 61748	. 41788	. 80200	-44747	. 93415	. 97042	. 0705	. 02958	$69 \quad 05$
1.70	2.64563	0.42253	2.82832	0.45153	0.93541	9.97100	1.0691	0.02900	6918
. 71	. 67405	. 42717	. 85491	. 45559	. 93665	.97158	. 0676	. 02842	6930
. 72	. 70273	. 43180	. 88180	. 45966	. 93786	. 97214	. 0663	. 02786	6942
. 73	. 73168	. 43643	. 90897	. 46374	-93906	-97269	. 0649	. 02731	$69 \quad 54$
.74	.76091	. 44105	. 93643	. 46782	. 94023	. 97323	. 0636	. 02677	$70 \quad 05$
1.75	2.79041	0.44567	2.96419	0.47191	0.94138	9.97376	1.0623	0.02624	$70 \quad 17$
. 76	. 82020	. 45028	. 99224	. 47600	. 94250	. 97428	. 0610	. 02572	$70 \quad 29$
. 77	. 85026	-45488	3.02059	. 48009	.94361	. 97479	. 0598	. 02521	7040
. 78	. 88061	-45948	. 04925	. 48419	. 94470	. 97529	. 0585	. 02471	$70 \quad 51$
. 79	.91125	. 46408	. 07821	. 48830	. 94576	. 97578	. 0574	. 02422	7103
1.80	2.94217	0.46867	3. 10747	0.49241	0.94681	9.97626	1.0562	0.02374	7114
. 81	. 97340	. 47325	. 13705	. 49652	. 94783	. 97673	. 0550	. 02327	$71 \quad 25$
. 82	3.00492	. 47783	. 16694	- 50064	-94884	. 97719	. 0539	. 022281	$\begin{array}{ll}71 & 36 \\ 71 & 46\end{array}$
. 83	. 03674	. 48241	.19715 .22768	. 50476	-94983	. 97764	. 0528	. 02236	7146
	. 06886							. 02	715
I. 85	3.10129	0.49154	3.25853	0.51302	0.95175	9.97852	1.0507	0.02148	7208
. 86	.1.3403	. 49610	. 28970	. 51716	. 95268	. 97895	. 0497	. 02105	72
. 87	. 16709	. 50066	-32121	. 52130	-95359	. 97936	. 0487	. 02064	72
. 88	. 20046	. 50521	- 35305	. 52544	-95449	. 97977	. 0477	. 02023	$72 \quad 39$
. 89	. 23415	. 50976	- 38522	. 52959	-95537	.98017	. 0467	. 01983	$72 \quad 49$
1.90	3.26816	0.51430	3.41773	0.53374	0.95624	9.98057	1.0458	0.01943	7259
.91	${ }^{-} .30250$. 51884	. 45058	. 53789	. 95709	. 98095	. 0448	. 01905°	73 09
. 92	- 33718	. 52338	- 48378	. 54205	. 95792	.98133	. 0439	.01867	$\begin{array}{ll}73 & 19\end{array}$
. 93	-37218	. 52791	. 51733	. 54621	. 95873	.98170	. 0430	.01830	$73 \quad 29$
. 94	-40752	. 53244	-551.23	. 55038	. 95953	. 98206	. 0422	. 01794	$73 \quad 39$
1.95	3.44321	0.53696	3.58548	0.55455	0.96032	9.98242	1.0413	0.01758	73
. 96	. 47923	. 54148	. 62009	. 555872	. 966109	. 988276	. 0405	. 01724	$73 \quad 58$
. 97	. 51561	- 54600	. 65507	- 56290	. 96685	. 983111	. 0397	. 01689	74
. 98	-55234	. 55051	. 69041	. 56707	. 96259	. 98344	. 0389	. 01656	$\begin{array}{ll}74 & 17\end{array}$
. 99	. 58942	- 55502	. 72611	. 57126	. $9633{ }^{1}$. 98377	. 0381	. 01623	$74 \quad 26$
2.00	3.62686	0.55953	3.76220	0.57544	0.96403	9.98409	1.0373	0.01591	$74 \quad 35$

TABLE 17 (continued).
HYPERBOLIC FUNCTIONS.

u	sinh. u		cosh. u		tanh. u		coth. u.		gd. u
	Nat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.	
2.00	3.62686	0.55953	3.76220	0.57544	0.96403	9.98409	1.0373	0.01591	$74^{\circ} 35^{\prime}$
. 01	. 66466	. 56403	. 79865	. 57963	. 96473	. 98440	. 0366	. 01560	7444
. 02	. 70283	. 56853	. 83549	. 58382	. 96541	. 9847 I	. 0358	. 01529	7453
. 03	.74138	. 57303	. 87271	. 58802	. 96609	. 98502	. 0351	. 01498	7502
. 04	. 78029	. 57753	.91032	-59221	. 96675	.98531	. 0344	. 01469	75 II
2.05	3.81058	0.58202	3.94832	0.59641	0.96740	9.98560	1. 0337	0.01440	7520
. 06	. 85926	. 58650	. 9867 I	. 60061	. 96803	.98589	. 0330	.01411	7528
. 07	. 89932	. 59099	4.02550	. 60482	. 96865	. 98617	. 0324	. 01383	7537
. 08	. 93977	- 59547	. 06470	. 60903	. 96926	. 98644	. 0317	. 13356	7545
. 09	.9806I	. 59995	. 10430	.6I324	. 96986	. 9867 I	.0311	. 01329	7554
2.10	4.02186	0.60443	4.14431	0.61745	0.97045	9.98697	1. 0304	0.01303	7602
. 11	. 06350	. 60890	. 18474	. 62167	. 97103	. 98723	. 0298	. 01277	7610
. 12	. 10555	.61337	. 22558	. 62589	.971 59	.98748	. 0292	. 01252	7619
. 13	.14801	.61784	. 26685	.63011	. 97215	.98773	. 0286	. 01227	$76 \quad 27$
.14	. 19089	.6223I	-30855	. 63433	. 97269	. 98798	.028I	. 01202	7635
2.15	4.23419	0.62677	4.35067	0.63856	0.97323	9.98821	1.0275	0.01179	7643
. 16	.27791	.63123	. 39323	. 64278	. 97375	. 98845	. 0270	. 01155	7651
	. 32205	. 63569	. 43623	. 64701	. 97426	. 98868	. 0264	. 011132	7658
.I8	. 36663	. 64015	. 47967	.65125	. 97477	. 98890	. 0259	. 01110	7706
.19	. 41165	. 64460	. 52356	. 65548	. 97526	.98912	. 0254	. 01088	$77 \quad 14$
2.20	4.457 II	0.64905	4.56791	0.65972	0.97574	9.98934	1.0249	0.01066	7721
. 21	. 50301	. 65350	. 61271	. 66396	. 97622	. 98955	. 0244	.01045	$77 \quad 29$
. 22	. 54936	. 65795	. 65797	. 66820	. 97668	. 98975	. 0239	. 01025	$77 \quad 36$
.23	. 59617	. 66240	. 70370	. 67244	. 97714	. 98996	. 0234	.01004	7744
.24	. 64344	. 66684	. 74989	. 67668	. 97759	.99016	. 0229	. 00984	77 51
2.25	4.69117	0.67128	4.79657	0.68093	0.97803	9.99035	1. 0225	0.00965	$77 \quad 58$
. 26	. 73937	. 67572	. 84372	. 68518	.97846	. 99054	. 0220	. 00946	7805
. 27	. 78804	. 68016	.891 36	. 68943	. 97888	. 99073	. 0216	. 00927	78 12
. 28	. 83720	. 68459	. 93948	. 69368	. 97929	.99091	. 0211	. 00909	7819
. 29	. 88684	. 68903	.98810	. 69794	. 97970	.99109	. 0207	.00891	$78 \quad 26$
2.30	4.93696	0.69346	5.03722	0.70219	0.98010	9.99127	1.0203	0.00873	7833
. 31	. 98758	. 69789	. 08684	. 70645	. 98049	. 99144	. 0199	.00856	7840
.32	5.03870	.70232	. 13697	. 71071	. 98087	.9916I	. 0195	.00839	7846
- 33	. 09032	. 70675	. 18762	.71497	.98124	.99178	. 0191	. 00822	7853
- 34	. 14245	.71117	.23878	.71923	.98161	.99194	. 1818	.00806	7900
2.35	5.19510	0.71559	5.29047	0.72349	0.98197	9.99210	I.OI84	0.00790	7906
. 36	. 24827	. 72002	-34269	. 72776	.98233	.99226	. 0180	. 00774	7913
- 37	. 30196	. 72444	. 39544	.73203	. 98267	. 99241	. 0176	. 00759	7919
. 38	. 35618	.72885	. 44873	.73630	. 9830 I	. 99256	. 0173	.00744	7925
- 39	.41093	.73327	. 50256	.74056	. 98335	. 9927 I	.0169	. 00729	793^{2}
2.40	5.46623	0.73769	$5 \cdot 55695$	0.74484	0.98367	9.99285	1.0166	0.00715	7938
. 41	. 52207	.74210	. 61189	.74911	. 98400	. 99299	. 0163	.00701	7944
.42	. 57847	.74652	. 66739	.75338	. 98431	. 99313	. 0159	. 00687	7950
. 43	. 63542	.75093	.72346	.75766	. 98462	. 99327	. Or 56	. 00673	7956
. 44	. 69294	.75534	. 78010	.76194	. 98492	. 99340	. 1153	. 00660	8002
2.45	5.75103	0.75975	5.83732	0.76621	0.98522	9.99353	1.0150	0.00647	So os
. 46	. 80969	.76415	. 89512	.77049	. 98551	. 99366	. 0147	. 00634	8014
. 47	.86893	.76856	. 953352	. 77477	.98579	. 99379	.oI44	. 0062 I	8020
.48	. 92876	.77296	6.01250	. 77906	. 98607	-99391	. 0141	. 00609	8026
. 49	.98918	. 77737	. 07209	.78334	.98635	. 99403	. 0138	. 00597	So 3I
2.50	6.05020	0.78177	6.13229	0.78762	0.9866I	9.99415	1.0136	0.00585	8o 37

Smithsonian tables.

TABLE 17 (continued).
HYPERBOLIC FUNCTIONS.

1	sinh. u		cosh. u		tanh. u		coth. u		gd. u
	Nat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.	
2.50	6.05020	0.78177	6.13229	0.78762	0.98661	9.99415	1.0136	0.00585	$80^{\circ} \quad 37^{\prime}$
. 51	.11183	.78617	. 19310	.79191	. 98688	. 99426	. 0133	. 00574	8042
. 52	. 17407	. 79057	. 25453	.79619	. 98714	. 99438	. 0130	. 00562	8048
. 53	. 23692	. 79497	.31658	. 80048	. 98739	. 99449	. 0128	. 00551	So 53
. 54	-30040	. 79937	-37927	. 80477	. 98764	. 99460	. 0125	. 00540	$80 \quad 59$
2.55	6.36451	0.80377	6.44259	0.80906	0.98788	9.99470	1.0123	0.00530	81
. 56	. 42926	.80816	- 50656	.81 335	.98812	.99481	. 0120	.00519	81 10
. 57	. 49464	. 81256	. 57118	.81764	.98835	.99491	. 0118	. 00509	8 I 15
. 58	. 56068	. 81695	. 63646	.82194	. 98858	.9950 I	. 0115	. 00499	8120
. 59	. 62738	.82134	. 70240	. 82623	.98881	. 99511	. 0113	. 00489	81 25
2.60	6.6947 .3	0.82573	6.76901	0.83052	0.98903	9.99521	1.0111	0.00479	8 I 30
. 61	. 76276	.83c12	. 83629	. 83482	.98924	. 99530	.0109	. 00470	8 I 35
. 62	. 83146	. 83451	. 90426	. 83912	. 98946	. 99540	.0107	. 00460	8140
.63	. $900{ }^{5} 5$. 83890	. 97292	. 84341	. 98966	. 99549	. 0104	.00451	81 45
. 64	.97092	. 84329	7.04228	. 84771	.98987	. 99558	.0102	. 00442	8I 50
2.65	7.04169	0.84768	7.11234	0.85201	0.99007	9.99566	1.0100	0.00434	8 I 55
. 66	.11317	. 85206	. 18312	. 85631	. 99026	. 99575	. 0098	. 00425	8200
. 67	. 18536	. 85645	. 25461	. 86061	. 99045	. 99583	.0096	. 00417	8205
. 68	.25S27	. 86083	. 32683	. 86492	. 99064	. 99592	. 0094	. 00408	8209
. 69	-33190	.86522	-39978	. 86922	. 99083	. 99600	. 0093	. 00400	$82 \quad 14$
2.70	7.40626	0.86960	7.47347	0.87352	0.99101	9.99608	1.0091	0.00392	$82 \quad 19$
. 71	.48137	. 87398	. 5479 I	. 87783	.99118	. 99615	.0089	.00385	$82 \quad 23$
. 72	- 55722	. 87836	. 62310	. 88213	.99136	. 99623	. 0087	. 00377	8228
.73	.63383	. 88274	. 69905	. 88644	.99153	. 9963 I	. 0085	. 00369	8232
. 74	.7112	.88-12	. 77578	. 89074	.99170	.99638	. 0084	.00362	8237
2.75	7.78935	0.89150	7.85328	0.89505	0.99186	9.99645	1.0082	0.00355	8241
. 76	. 86828	. 89588	. 93157	. 89936	. 99202	. 99652	. 0080	.00348	8245
. 77	. 94799	. 90026	8.01065	. 90367	-99218	. 99659	. 0079	.00341	8250
.78	8.02849	. 90463	. 09053	. 90798	.99233	. 99666	. 0077	.00334	8254
. 79	. 10980	.90901	. 17122	.91229	. 99248	.99672	. 0076	. 00328	8258
2.80	8.19192	0.91339	8.25273	0.91660	0.09263	9.99679	1.0074	0.0032 I	$83 \quad 02$
.81	. 27486	. 91776	. 33506	.92091	. 99278	. 99685	. 0073	.00315	8307
. 82	. 35862	.92213	.41823	.92522	. 99292	. 99691	. 0071	. 00309	83 II
. 83	. 44322	.92651	. 50224	-92953	. 99306	. 99698	. 0070	. 00302	8315
. 84	. 52867	. 93088	. 58710	. 93385	. 99320	.99704	. 0069	. 00296	8319
2.85	8.61497	0.93525	8.67281	0.93816	0.99333	9.99709	1.0067	0.00291	$83 \quad 23$
. 86	.70213	.93963	. 75940	. 94247	. 99346	. 99715	. 0066	. 00285	$83 \quad 27$
. 87	. 79016	. 94400	. 84686	. 94679	. 99359	. 99721	. 0065	. 00279	83.31
. 58	. 87907	. 94837	. 93520	.95110	. 99372	. 99726	. 0063	. 00274	$83^{\circ} 34$
. 89	.96887	.95274	9.02444	. 95542	. 99384	.99732	. 0062	. 00268	$83 \quad 38$
2.90	9.05956	0.957 I I	9.11458	0.95974	0.99396	9.99737	1.0061	0.00263	8342
.91	.15116	. 96148	. 20564	. 96405	. 99408	. 99742	. 0060	. 00258	8346
.92	. 24368	.96584	. 29761	. 96837	. 99420	. 99747	.0058	. 00253	8350
. 93	. 33712	. 97021	. 39051	. 97269	. 99531	. 99752	. 0057	. 00248	8353
. 94	. 43149	. 97458	. 48436	. 97701	. 99443	. 99757	. 0056	. 00243	8357
2.95	9.52681	0.97895	9.57915	0.98133	0.99454	9.99762	1.0055	0.00238	8400
. 96	. 62308	.9833I	. 67490	. 98565	. 99464	. 99767	. 0054	. 00233	84
. 97	. 72031	. 98768	. 77161	. 98997	. 99475	. 9977 I	. 0053	. 00229	84
. 98	.81851	. 99205	. 86930	. 99429	. 99485	.99776	. 0052	. 00224	84 II
. 99	.91770	.9964 I	. 96798	.99861	. 99496	.99780	. 0051	. 00220	$84 \quad 15$
3.00	10.01787	1.00078	10.06766	1.00293	0.99505	9.99785	1.0050	0.00215	$84 \quad 18$

Smithsonian tables.

HYPERBOLIC FUNCTIONS.

u	sinh. u		cosh. u		tanh. u		coth. u		gd. u
	Nat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.	
3.0	10.0179	1.00078	10.0677	1.00293	0.99505	9.99785	1.0050	0.00215	$84^{\circ} \mathrm{I} 8^{\prime}$
. 1	11.0765	. 04440	11.1215	.04616	. 99595	. 99824	. 0041	. 00176	8450
. 2	12.2459	. 08799	I 2.2866	. 08943	. 99668	. 99856	. 0033	.00144	8520
. 3	1 3.5379	.13155	13.5748	. 13273	. 99728	. 99882	. 0027	. 00118	8547
. 4	14.9654	. 17509	14.9987	. 17605	. 99777	.99903	. 0022	. 00097	86 II
$3 \cdot 5$	16.5426	1.21860	16.5728	1.21940	0.99818	9.9992 I	1.001S	0.00079	8632
. 6	18.2855	. 26211	18.3128	. 26275	. 99851	. 99935	.0015	. 00065	8652
$\cdot 7$	20.2113	. 30559	20.2360	. 30612	. 99878	. 99947	. 0012	. 00053	8710
. 8	22.3394	. 34907	22.3618	.34951	. 99900	. 99957	.0010	. 00043	8726
. 9	.24.69II	- 39254	24.7113	-39290	. 99918	. 99964	. 0008	. 00036	87 4I
4.0	27.2899	1.43600	27.3082	1.43629	0.99933	9.99971	1.0007	0.00029	8754
. I	30.1619	. 47946	30.1784	. 47970	. 99945	. 99976	. 0005	. 00024	8806
. 2	33.3357	. 52291	33.3507	. 52310	. 99955	.99980	. 0004	. 00020	8817
-3	36.8431	.56636	36.8567	. 56652	. 99963	. 99984	. 0004	. 00016	88 88
. 4	40.7193	.60980	40.7316	. 60993	. 99970	.99987	. 0003	. 00013	8836
4.5	45.0030	1.65324	45.0141	1. 65335	0.99975	9.99989	1.0002	0.00011	8844
. 6	49.7371	. 69668	49.7472	. 69677	. 99980	.99991	. 0002	. 00009	88 51
.7	54.9690	.74012	54.9781	.74019	.99983	. 99993	. 0002	. 00007	8857
. 8	60.7511	.78355	60.7593	.78361	. 99986	. 99994	.0001	. 00006	8903
. 9	67.1412	. 82699	67.1486	. 82704	.99989	.99995	.0001	. 00005	8909
5.0	74.2032	1. 87042	74.2099	1.87046	0.99991	9.99996	1.0001	0.00004	89 I 4

TABLE 18.-Factorials.
See Table 16 for logarithms of the products 1.2.3. . . . n from I to 100.
See Table 32 for log. $\Gamma(n+1)$ for values of n between 1.000 and 2.000 .

n	$\frac{1}{n!}$	$n:=1.2 \cdot 3 \cdot 4 \cdots n$	n
I	1.	1	I
2	0.5	2	2
3	. 1666666666666666666666667	6	3
4	.04166 66666666666666666667	24	4
5	. 0083333333333333333333333	120	5
6	0.00138 88888888888888888889	720	6
7	.00019 84126 98412 69841 26984	5040	7
8	.00002 48015873015873015873	40320	8
9	.00000 27557319223985890653	362880 368800	9
10	.00000 02755731922398589065	3628800	10
II	0.0000000250521083854417188	39916800	1 I
12	. 0000000020876756987868099	4790 O1600	12
13	.00000 00001 60590438.3682161	6227020800	13
14	. 00000000001147707455977297	87178291200	14
15	.00000 0000000764 71637 31820	1307674368000	15
16	0.0000000000000477947733239	2092 27898 88000	16
17	. 0000000000000028114572543	355687428096000	${ }^{1} 7$
18	. 0000000000000001561920697	6402373705728000	18
19	. 0000000000000000082206352	121645100408832000	19
20	.00000 00000 00000 00041 10318	243290200 8ı766 40000	20

Table 19.
EXPONENTIAL FUNCTION.

x	$\log _{10}(e x)$	ex	- x	x	$\log _{10}(e x)$	ex	e^{-x}
0.00	0.00000	1.0000	1.000000	0.50	0.21715	1. 6487	0.606531
. 01	. 00434	. 0101	0.990050	. 51	. 22149	. 6653	. 600496
. 02	. 00869	. 0202	.980199	. 52	.22583	. 6820	.594521
. 03	.01303	. 0305	. 970446	. 53	. 23018	. 6989	. 588605
. 04	. 01737	. 0408	.960789	. 54	. 23452	.7160	. 582748
0.05	0.02171	1.0513	0.951229	0.55	0.23886	1.7333	0.576950
.o6	. 02606	. 0618	. 941765	. 56	. 24320	.7507	. 571209
. 07	. 03040	. 0725	. 932394	. 57	. 24755	. 7683	. 565525
.OS	. 03474	.0833	.923116	. 58	. 25189	. 7860	-559898
. 09	. 03909	. 0942	.913931	. 59	. 25623	. 8040	. 554327
0.10	0.04343	1.1052	0.904837	0.60	0.26058	1.8221	0.548812
. 11	. 04777	. 1163	. 895834	.61	. 26492	. 8404	.543351
. 12	.05212	. 1275	. 886920	. 62	. 26926	. 8589	. 537944
. 13	. 05646	. 1388	. 878095	. 63	.27361	. 8776	. 532592
. 14	.06080	. 1503	. 869358	. 64	. 27795	. 8965	. 527292
0.15	0.06514	1.1618	0.860708	0.65	0.28229	1.9155	0.522046
.16	. 06949	. 1735	. 85.52144	. 66	. 28663	. 9348	. 516851
.17	.07383	.1853	. 843665	. 67	. 29098	. 9542	. 511709
. 18	:07817	. 1972	. 835270	. 68	. 29532	. 9739	. 506617
. 19	. 08252	. 2092	. 826959	. 69	. 29966	.9937	. 501576
0.20	0.08686	1.2214	0.818731	0.70	0.30401	2.0138	0.496585
21	.09120	. 2337	. 810584	. 71	. 30835	. 0340	. 491644
. 22	. 09554	. 2461	. 802519	. 72	. 31269	. 0544	.486752
. 23	. 09989	. 2586	.794534	. 73	. 31703	. 0751	.481909
. 24	. 10423	.2712	.786628	. 74	. 32138	. 0959	-477114
0.25	0.10857	1.2840	0.778801	0.75	0.32572	2.1170	0.472367
. 26	. 11292	. 2969	.771052	. 76	. 33006	. 1383	. 467666
.27	. 11726	. 3100	.763379	. 77	- 33441	. 1598	. 463013
. 28	.12160	-3231	. 755784	. 78	. 33875	.1815	. 458406
. 29	.12595	. 3364	. 748264	. 79	-34309	. 2034	.453845
0.30	0.13029	1.3499	0.740818	0.80	0.34744	2.2255	0.449329
. 31	. 13463	. 3634	. 733447	. 81	. 35178	. 2479	. 444858
$\cdot 32$. 3897	-3771	. 726149	. 82	. 35612	. 2705	. 440432
. 33	. 14332	. 3910	. 718924	. 83	- 36046	. 2933	. 436049
. 34	. 14766	. 4049	.711770	. 84	. 36481	. 3164	. 431711
0.35	0.15200	1.4191	0.704688	0.85	0.36915	2.3396	0.427415
. 36	. 15635	. 4333	. 697676	. 86	. 37349	. 3632	.423162
- 37	. 16069	. 44777	.690734 .683865	. 87	. .37784 .38218	- 3869	. 418952
- 39	. 16937	. 4770	. 677057	. 89	${ }^{-} .38652$.4351	. 410656
0.40	0.17372	1.4918	0.670320	0.90	0.39087	2.4596	0.406570
. 41	. 17806	. 5068	. 663650	.91	-39521	. 4843	. 402524
. 42	. 18240	. 5220	. 657047	. 92	. 39955	. 5093	-398519
. 43	. 18675	. 5373	. 650509	.93	. 40389	. 5345	-. 394554
. 44	.19109	. 5527	. 644036	. 94	. 40824	. 5600	-390628
0.45	0. 19543	1. 5683	0.637628	0.95	0.41258	2.5857	0.386741
. 46	. 19978	. 584 l	. 631284	. 96	. 41692	. 6117	-382893
. 47	. 20412	. 6000	. 625002	. 97	. 42127	. 6379	-379083
. 48	. 20846	. 6161	. 618783	. 98	. 42561	. 6645	-3753II
. 49	.21280	. 6323	. 612626	. 99	. 42995	. 6912	-371577
0.50	0.21715	1.6487	0.606531	1.00	0.43429	2.7183	0.367879

EXPONENTIAL FUNCTION.

x	$\log _{10}\left(e^{x}\right)$	e^{x}	e^{-x}	x	$\log _{10}\left(e^{x}\right)$	e^{x}	e^{-x}
1.00	0.43429	2.7183	0.367879	1.50	0.65144	4.4817	0.223130
. 01	. 43864	. 7456	. 364219	. 51	. 65578	. 5267	.220910
. 02	. 44298	. 7732	. 360595	. 52	. 66013	. 5722	. 218712
. 03	. 44732	.8011	- 357007	. 53	. 66447	. 6182	. 216536
. 04	.45167	. 8292	-353455	-54	.6688I	. 6646	. 214381
1.05	0.45601	2.8577	0.349938	1. 55	0.67316	4.7115	0.212248
. 06	. 46035	. 8864	. 346456	. 56	-. 67750	. 7588	.210136
. 07	. 46470	.9154	-343009	. 57	. 68184	. 8066	. 208045
. 08	. 46904	. 9447	. 339596	. 58	.68619	. 8550	. 205975
. 09	-47338	. 9743	. 336216	. 59	. 69053	. 9037	. 203926
1.10	0.47772	3.0042	0.332871	1.60	0.69487	4.9530	0.201897
. 11	. 48207	. 0344	$\cdot 329559$. 61	. 6992 I	5.0028	. 199888
. 12	. 48641	. 0649	. 326280	. 62	. 70356	.0531	. 197899 .
. 13	. 49075	. 0957	. 323033	. 63	. 70790	.1039	. 195930
. 14	.49510	. 1268	-3198ı9	. 64	. 71224	. 1552	.193980
1.15	0.49944	3.1582	0.316637	土. 65	0.71659	5.2070	0.192050
.16	. 50378	.18999	. 313486	. 66	. 72093	. 2593	.190139
.17	-50812	. 2220	. 310367	. 67	. 72527	. 3122	. 188247
. 18	-51247	. 2544	- 307279	. 68	.72961	. 3656	. 186374
. 19	. 51681	. 2871	. 304221	. 69	.73396	.4195	. 184520
1.20	0.52115	3.3201	0.301194	1.70	0.73830	5.4739	0.182684
. 21	. 52550	- 3535	.298197	. 71	. 74264	. 5290	. 180866
. 22	-52984	-3872	. 295230	.72	. 74699	. 5845	. 179066
. 23	-53418	.4212	. 292293	. 73	. 75133	. 6407	. 177284
. 24	. 53853	. 4556	. 289384	. 74	. 75567	. 6973	. 175520
1.25	0.54287	$3 \cdot 4903$	0.286505	1.75	0.76002	5.7546	0.173774
. 26	. 54721	. 5254	. 283654	. 76	. 76436	. 8124	.172045
.27	. 55155	. 5609	. 280832	. 77	. 76870	. 8709	.170333
. 28	. 55590	. 5966	. 278037	. 78	. 77304	. 9299	.168638
. 29	. 56024	.6328	. 27527 I	.79	. 77739	. 9895	. 166960
1.30	0.56458	3.6693	0.272532	1.80	0.78173	6.0496	0.165299
. 31	. 56893	. 7062	. 269820	.81	. 78607	.1104	. 163654
. 32	. 57327	. 7434	. 267135	. 82	. 79042	. 1719	. 162026
.33	.5776I	.7810	. 264477	. 83	. 79476	. 2339	. 160414
. 34	.58195	.8190	.261846	. 84	. 79910	. 2965	. 588817
I. 35	0.58630	3.8574	0.259240	1. 85	0.80344	6.3598	0. 157237
. 36	. 59064	. 8962	. 256661	. 86	. 80779	. 4237	. 155673
-37	- 59498	. 9354	. 254107	. 87	. 81213	.4883	.154124
. 38	. 59933	. 9749	.251579	. 88	. 81647	. 5535	. 152590
- 39	. 60367	4.0149	. 249075	. 89	. 82082	.6194	.151072
1.40	0.60801	4.0552	0.246597	1.90	0.82516	6.6859	0.149569
. 41	.61236	. 0960	.244143	. 91	. 82950	.7531	. 148080
. 42	.61670	. 1371	. 241714	. 92	. 83385	. 8210	. 146607
. 43	. 62104	.1787	.239309	. 93	. 83819	.8895	.145148
. 44	. 62538	. 2207	. 236928	.94	. 84253	. 9588	. 143704
	0.62973	4.2631	0.234570		0.84687	7.0287	
. 46	. 63407	. 3060	. 232236	. 96	. 85122	. 0993	. 140858
. 47	. 63841	- 3492	. 229925	. 97	. 85556	.1707	. 139457.
. 48	.64276	- 3929	.227638	. 98	. 85990	. 2427	. 138069
. 49	. 64710	.437 I	. 225373	. 99	. 86425	-3155	. 136695
1. 50	0.65144	$4 \cdot 4817$	0.223130	2.00	0.86859	$7 \cdot 3891$	-. 135335

Smithsonian Tables.

EXPONENTIAL FUNCTION.

x	$\log _{10}\left(e^{x}\right)$	e^{x}	e^{-x}	x	$\log _{10}\left(e^{x}\right)$	${ }^{x}$	${ }^{-x}$
2.00	0.86859	$7 \cdot 3891$	0.135335	2.50	1.08574	12.182	0.082085
. 01	. 87293	. 4633	. 133989	. 51	. 09008	. 305	.081268
. 02	. 87727	. 5383	. 132655	. 52	. 09442	. 429	. 080460
. 03	. 88162	. 6141	. 131336	. 53	. 09877	. 554	. 079659
. 04	. 88596	. 6906	. 130029	. 54	.103 I I	. 680	. 078866
2.05	0.89030	7.7679	0.128735	2.55	1.10745	12.807	0.078082
. 06	. 89465	. 8460	. 127454	. 56	. 11179	. 936	. 077305
. 07	. 89899	. 9248	. 126186	. 57	.11614	13.066	. 076536
. 08	.90333	8.0045	. 124930	. 58	.12048	. 197	. 075774
. 09	. 90768	. 0849	. 123687	. 59	.12482	. 330	. 075020
2.10	0.91202	8.1662	0.122456	2.60	1.12917	13.464	0.074274
. 11	. 91636	. 2482	. 121238	. 61	. 13351	. 599	. 073535
. 12	. 92070	. 3311	. 120032	. 62	. 13785	.736	. 072803
13	. 92505	. 4149	. 118837	.63	. 14219	. 874	. 072078
. 14	. 92939	. 4994	. 117655	. 64	. 14654	14.013	. 071361
2.15	0.93373	8.5849	0.116484	2.65	1.15088	14.154	0.070651
.16	. 93808	. 6711	. 115325	. 66	. 15522	. 296	. 069948
. 17	. 94242	.758	. 114178	. 67	. 15957	. 440	. 069252
. 18	. 94676	. 8463	. 113042	. 68	. 16391	. 585	. 068563
. 19	.951 10	.9352	.111917	. 69	. 16825	.732	.067881
2.20	0.95545	9.0250	0.110803	2.70	1.17260	14.880	0.067206
. 21	. 95979	. 1557	.109701	. 71	.17694	15.029	. 066537
. 22	. 96413	. 2073	. 108609	. 72	. 18128	.180	. 065875
. 23	. 96848	. 2999	. 107528	.73	.18562	. 333	. 065219
. 24	. 97282	- 3933	. 106459	. 74	. 18997	.487	. 064570
2.25	0.97716	9.4877	-. 105399	2.75	1.19431	15.643	0.063928
. 26	. 98151	. 5831	. 104350	. 76	. 19865	. 800	. 063292
. 27	. 98585	. 6794	. 103312	. 77	. 20300	. 959	. 062662
. 28	. 99019	.7767	.102284	. 78	. 20734	16.119	. 062039
. 29	. 99453	. 8749	. 101266	. 79	.21168	.28I	.06142I
2.30	0.99888	9.9742	0.100259	2.80	1.21602	16.445	0.060810
. 31	1.00322	10.074	.099261	.81	. 22037	. 610	. 060205
. 32	. 00756	.176	. 098274	. 82	. 22471	. 777	. 059606
. 33	. 01191	. 278	. 097296	. 83	. 22905	. 945	.059013
. 34	. 01625	. 381	.096328	. 84	. 23340	17.116	. 058426
2.35	- 1.02059	10.486	0.095369	2.85	1.23774	17.288	0.057844
. 36	. 02493	. 591	. 094420	. 86	. 24208	. 462	. 057269
. 37	. 02928	. 697	. 09348 I	. 87	. 24643	. 637	. 056699
. 38	. 03362	. 805	. 092551	. 88	. 25077	.814	. 055135
. 39	. 03796	. 913	. 091630	. 89	.255 ${ }^{1}$. 993	. 055576
2.40	1.04231	11.023	0.090718	2.90	1.25945	18.174	0.055023
.41	. 04665	. 34	. 089815	.91	. 26380	-357	. 054476
. 42	. 05099	. 246	. 088922	. 92	. 26814	-541	. 053934
. 43	. 05534	. 359	. 088037	. 93	. 27248	. 728	. 053397
. 44	. 05968	. 473	.08716ז	. 94	. 27683	.916	. 052866
	1.06402	11.588	0.086294		1.28117	19.106	0.052340
. 46	. 06836	. 705	. 085435	. 96	. 28551	. 298	. 051819
. 47	. 07271	. 82.2	. 084585	. 97	. 28985	. 492	. 051303
. 48	. 07705	. 941	. 083743	. 98	. 29420	. 688	. 050793
. 49	.08139	12.061	. 082910	. 99	. 29854	. 886	. 050287
2.50	1.08574	12.182	0.082085	3.00	1.30288	20.086	0.049787

Smithsonian Tables.

EXPONENTIAL FUNCTION.

x	$\log _{10}(e x)$	ex	e^{-x}	x	$\log _{10}(e x)$	$e x$	e^{-x}
3.00	1.30288	20.086	0.049787	$3 \cdot 50$	1.52003	33.115	0.030197
. 01	. 30723	.287	. 049292	. 51	. 52437	. 448	. 029897
. 02	-31157	-491	.04880I	. 52	-52872	.784	. 029599
. 03	. 31591	. 697	. 048316	. 53	. 53306	34.124	. 029305
. 04	. 32026	.905	. 047835	. 54	-53740	. 467	. 029013
3.05	1. 32460	21.115	0.047359	3.55	1. 54175	34.813	0.028725
. 06	. 32894	-328	. 046888	. 56	. 54609	35.163	. 028439
. 07	. 33328	- 542	.04642I	- 57	- 55043	. 517	.028I 56
. 08	.33763	. 758	. 045959	. 58	. 55477	. 874	. 027876
. 09	-34197	. 977	. 044502	- 59	. 55912	36.234	. 027598
3.10	1.34631	22.198	0.045049	3.60	1. 56346	36.598	0.027324
. 11	. 35066	. 421	. 044601	.61	. 56780	. 966	. 027052
.12	-35500	. 646	. 044157	. 62	. 57215	$37 \cdot 338$. 026783
. 13	-35934	. 874	. 043718	. 63	. 57649	. 713	. 026516
. 14	. 36368	23.104	. 043283	. 64	. 58083	38.092	. 026252
3.15	1.36803	23.336	0.042852	3.65	1.58517	38.475	0.025991
. 16	. 37237	. 571	.042426	. 66	. 58952	.861	. 025733
.17	-37671	. 807	. 042004	. 67	. 59386	39.252	. 025476
. 18	.38106	24.047	. 041586	. 68	. 59820	. 646	. 025223
. 19	. 38540	. 288	.041172	. 69	. 60255	40.045	. 024972
3.20	1.38974	24.533	0.040762	3.70	1.60689	40.447	0.024724
. 21	-39409	. 779	. 040357	. 71	. 61123	. 854	. 024478
. 22	-39843	25.028	. 039955	.72	.61 558	41.264	. $02+234$
. 23	. 40277	. 280	. 039557	. 73	.61992	. 679	. 023993
. 24	.407 II	. 534	.039164	.74	. 62426	42.098	. 023754
3.25	1.41146	25.790	0.038774	3.75	1.62860	42.521	0.023518
. 26	.41580	26.050	. 038388	. 76	. 63295	. 948	. 023284
. 27	. 42014	-3II	.038006	. 77	. 63729	43.380	. 023052
. 28	. 42449	. 576	. 037628	.78	. 64163	. 816	.022823
. 29	.42883	. 843	. 037254	.79	. 64598	44.256	. 022596
$3 \cdot 30$	1.43317	27.113	0.036883	3.80	1.65032	44.701	0.022371
. 31	.43751	.385	.036516	. 81	. 65466	45.150	.022148
- 32	.44186	. 660	.036153	. 82	. 65900	. 604	.021928
. 33	. 44620	. 938	. 035793	. 83	. 66335	46.063	. 021710
. 34	. 45054	28.219	. 035437	. 84	. 66769	. 525	. 021494
$3 \cdot 35$	1.45489	28.503	0.035084	3.85	1.67203		0.021280
. 36	. 45923	. 789	. 034735	. 86	. 67638	47.465	. 021068
- 37	. 46357	29.079	. 034390	. 87	. 68072	. 942	.020S58
- 38	. 46792	. 371	. 034047	. 88	. 68506	48.424	. 020651
-39	. 47226	. 666	. 033709	. 89	.68941	.911	. 020445
3.40	1.47660	29.964	0.033373	3.90	1. 69375	49.402	0.020242
.41	-48094	30.265	. 033041	.91	. 69809	. 899	.020041
. 42	. 48529	. 569	. 032712	. 92	.70243	50.400	. 019841
. 43	. 48963	. 877	.032387	. 93	. 70678	. 907	.OI9644
. 44	. 49397	31.187	. 032065	. 94	.71112	51.419	. 019448
3.45	I. 49832	31.500	0.031746		1.71546		
. 46	. 50266	. 17	.031430	. 96	.71981	52.457	$.019063$
-47	. 50700	32.137	. 031117	. 97	.72415	.985	. 188873
.48 .49	.51134 .51569	. 460	. 030807	. 98	. 72849	53.517	. 018686
. 49	. 51569	.786	.030501	. 99	.73283	54.055	.018500
$3 \cdot 50$	1.52003	33.115	0.030197	4.00	1.73718	54.598	0.018316

EXPONENTIAL FUNCTION.

\boldsymbol{x}	$\log _{10}\left(e^{x}\right)$	e^{x}	e^{-x}	\boldsymbol{x}	$\log _{10}\left(e^{x}\right)$	e^{x}	e^{-x}
4.00	1.73718	54.598	0.018316	4.50	1.95433	90.017	0.011109
. 01	.74152	55.147	.OI8133	. 51	. 95867	. 922	. 010998
. 02	.74586	.701	. 017953	. 52	. 96301	91.836	. 010889
. 03	. 75021	56.261	. 017774	. 53	. 96735	92.759	.010781
. 04	. 75455	. 826	. 017597	. 54	. 97170	93.691	. 010673
4.05	1.75889	57.397	0.017422	4.55	1.97604	94.632	0.010567
. 06	. 76324	. 974	. 017249	. 56	. 98038	95.583	. 010462
. 07	. 76758	58.557	. 017077	. 57	. 98473	96.544	. 010358
. 08	. 77192	59.145	.016907	. 58	. 98907	97.514	. 010255
. 09	.77626	. 740	. 016739	. 59	. 99341	98.494	. 010153
4.10	1.7806I	60.340	0.016573	4.60	1.99775	99.484	0.010052
. 11	. 78495	. 947	. 016408	.6I	2.00210	100.48	. 009952
. 12	. 78929	61.559	. 016245	. 62	. 00644	101.49	. 009853
.13	. 79364	62.178	. 016083	. 63	.01078	102.51	. 009755
. 14	. 79798	. 803	. 015923	. 64	.OI513	103.54	. 009658
4.15	1. 80232	63.434	0.015764	4.65	2.01947	104.58	0.009562
.16	. 80667	64.072	. 115608	. 66	.02381	105.64	$.009466$
. 17	. 81 il 101	. 715	. 015452	. 67	. 02816	106.70	. 009372
. 18	.81 535	65.366	. 015299	. 68	. 03250	107.77	. 009279
. 19	.81969	66.023	.015146	. 69	. 03684	108.85	.009187
4.20	1. 82404	66.686	0.014996	4.70	2.04118	109.95	0.009095
. 21	. 82838	67.357	. 014846	. 71	. 04553	111.05	. 009005
. 22	. 83272	68.033	. Or 4699	.72	. 04987	112.17	.008915
. 23	. 83707	. 717	. 014552	.73	. 05421	113.30	. 008826
. 24	.84141	69.408	. 014408	. 74	. 05856	114.43	. 008739
4.25	1. 84575	70.105	0.014264	4.75	2.06290	115.58	0.008652
. 26	. 85009	. 810	. 014122	. 76	. 06724	116.75	. 008566
. 27	. 85444	71.522	.OI3982	. 77	. 07158	117.92	. 008480
. 28	. 85878	72.240	. 013843	.78	. 07593	119.10	. 008396
. 29	. 86312	. 966	. 013705	. 79	. 08027	120.30	. 008312
$4 \cdot 30$	1.86747	73.700	0.013569	4.80	2.08461	121.51	0.008230
.31	. 87181	74.440	. 113434	. 81	.08896	122.73	.008148
.32	. 87615	75.189	. 013300	. 82	.09330	123.97	. 008067
. 33	.88050	. 944	. 013168	. 83	. 09764	125.21	. 007987
. 34	. 88484	76.708	. 013037	. 84	. 10199	126.47	. 007907
$4 \cdot 35$	1.88918	77.478	0.012907	4.85	2.10633	127.74	0.007828
. 36	. 89352	78.257	.012778	. 86	. 11067	129.02	. 007750
. 37	. 89787	79.044	. 012651	. 87	.11501	130.32	. 007673
. 38	.90221	79.838	. 012525	. 88	. 11936	131.63	. 007597
. 39	. 90655	80.640	. 012401	. 89	. 12370	132.95	. 007521
4.40	1.91090	8 I .451	0.012277	4.90	2.12804	134.29	0.007447
. 41	.91524	82.269	. 012155	.91	.13239	135.64	. 007372
. 42	. 91958	83.096	. 012034	. 92	. 13673	137.00	. 007299
. 43	. 92392	.931	.OII914	. 93	.14107	138.38	. 007227
. 44	. 92827	84.775	. 011796	. 94	.14541	139.77	. 007155
	1.93261	85.627	0.011679		2.14976	141.17	0.007083
. 46	. 93695	86.488	. 011562	. 96	. 15410	142.59	. 007013
. 47	. 94130	87.357	. 0111447	. 97	. 5844	144.03	.006943
.48	. 94564	88.235	. 011333	. 98	.16279	145.47	.006874
. 49	. 94998	89.12I	.OII22I	. 99	.16713	146.94	.006806
$4 \cdot 50$	1.95433	90.017	0.011109	5.00	2.17147	148.41	0.006738

EXPONENTIAL FUNCTION.

\boldsymbol{x}	$\log _{10}\left(e^{x}\right)$	e^{x}	e^{-x}	x	$\log _{10}\left(e^{x}\right)$	e^{x}	e^{-x}
5.00	2.17147	148.41	0.006738	5.0	2.17147	148.41	0.006738
. OI	. 17582	149.90	. 006671	I	. 21490	164.02	. 006097
. 02	.18016	151.41	. 006605	2	.25833	181.27	. 005517
. 03	.18450	152.93	. 006539	$\cdot 3$	-30176	200.34	. 004992
. 04	. 18884	I 54.47	. 006474	. 4	-34519	221.41	. 004517
5.05	2.19319	${ }_{1} 56.02$	0.006409	$5 \cdot 5$	2.38862	244.69	0.004087
. 06	. 19753	157.59	. 006346	. 6	. 43205	270.43	. 003698
. 07	. 20187	159.17	. 006282	. 7	. 47548	298.87	. 003346
. 08	. 20622	160.77	. 006220	. 8	. 51891	330.30	. 003028
. 09	. 21056	162.39	.006I 58	. 9	. 56234	365.04	. 002739
5.10	2.21490	164.02	0.006097	6.0	2.60577	403.43	0.002479
. 11	. 21924	165.67	.006036	. 1	. 64920	445.86	. 002243
. 12	. 22359	167.34	. 005976	2	. 69263	492.75	. 002029
. 13	. 22793	169.02	. 005917	$\cdot 3$.73606	$544 \cdot 57$. 001836
. 14	. 23227	170.72	. 005858	. 4	.77948	601.85	. 001662
5.15	2.23662	172.43	0.005799	6.5	2.82291	665.14	0.001503
. 16	. 24096	174.16	. 005742	. 6	. 86634	735.10	. 001360
. 17	. $2453{ }^{\circ}$	175.91	. 005685	.7	. 90977	8 I 2.41	. 001231
. .18	. 24965	177.68	. 005628	. 8	. 95320	897.85	.OOIII4
. 19	. 25399	179.47	. 005572	$\cdot 9$. 99663	992.27	.001008
5.20	2.25833	181127	0.005517	7.0	3.04006	1096.6	0.000912
. 21	. 26267	183.09	. 005462	. I	. 08349	1212.0	. 000825
. 22	. 26702	184.93	. 005407	. 2	. 12692	1339.4	. 000747
.23	. 27136	186.79.	. 005354	$\cdot 3$.17035	1480.3	. 000676
. 24	.27570	188.67	. 005300	. 4	.21378	1636.0	.0006I I
5.25	2.28005	190.57	0.005248	$7 \cdot 5$	3.25721	1808.0	0.000553
. 26	. 28439	192.48	. 005195	. 6	. 30064	1998.2	. 000500
. 27	. 28873	194.42	.005144	.7	. 34407	2208.3	. 000453
. 28	. 29307	196.37	.005092	. 8	. 38750	2440.6	. 000410
. 29	. 29742	198.34	. 005042	. 9	. 43093	$2697 \cdot 3$. 000371
$5 \cdot 30$	2.30176	200.34	0.004992	8.0	3.47436	2981.0	
$\cdot 31$. 30610	202.35	. 004942	. 1	. 51779	3294.5	. 000304
$\cdot 32$	-31045	204.38	. 004893	. 2	-56121	3641.0	. 000275
. 33	-31479	206.44	. 004844	- 3	. 60464	4023.9	. 000249
. 34	-31913	208.51	. 004796	. 4	. 64807	4447.I	. 000225
$5 \cdot 35$	2.32348	210.61	0.004748	8.5	3.69150	4914.8	0.000203
. 36	. 32782	212.72	. 004701	. 6	. 73493	5431.7	. 000184
. 37	. 33216	214.86	. 004654	.7	.77836	6002.9	. 000167
. 38	. 33650	217.02	.004608	. 8	. 82179	6634.2	. 000151
. 39	. 34085	219.20	. 004562	. 9	. 86522	7332.0	.000136
$5 \cdot 40$	2.34519	221.41	0.004517	9.0	3.90865	8ro3.r	0.000123
. 41	- 34953	223.63	. 004472	. 1	. 95208	$8955 \cdot 3$. 000112
. 42	-35388	225.88	. 004427	. 2	.99551	9897.1	.000IOI
. 43	-35822	228.15	. 004383	$\cdot 3$	4.03894	10938.	.000091
. 44	. 36256	230.44	. 004339	. 4	. 08237	12088.	.000083
5.45	2.36690	232.76	0.004296	$9 \cdot 5$	4.12580	13360.	0.000075
. 46	. 37125	235.10	. 004254	. 6	. 16923	14765.	. 000068
. 47	. 37559	237.46	. 004211	.7	. 21266	16318.	.00006I
. 48	. 37993	239.85	. 004169	. 8	.25609	18034.	. 000055
. 49	. 38428	242.26	. 004128	-9	. $2995{ }^{2}$	19930.	. 000050
5.50	2.38862	244.69	0.004087	10.0	$4 \cdot 34294$	22026.	0.000045

EXPONENTIAL FUNCTIONS.
Value of e^{2} and $e^{-x^{2}}$ and their logarithms.

x	r^{2}	$\log e^{x^{2}}$	$e^{-x^{2}}$	$\log e^{-x^{2}}$
0.1	$1 . \mathrm{OIOI}$	0.00434	0.99005	İ. 99566
2	1.0408	01737	96079	98263
3	1.0942	03909	91393	96091
4	1.1735	06949	85214	93051
5	1.2840	10857	77880	89143
0.6	1.4333	-. 15635	0.69768	$\overline{\mathrm{I}} .84365$
	1.6323	21280	61263	78720
8	I. 8965	27795	52729	72205
9	2.2479	35178	44486	64822
1.0	2.7183	43429	36788	5657 I
1.1	$3 \cdot 3535$	0.52550	0.29820	İ. 47450
2	4.2207	62538	23693	37462
3	5.4195	73396	18452	26604
4	7.0993	85122	14086	14878
5	9.4877	97716	10540	02284
1.6	1. 2936×10	I.1II79	0.77305×10^{-1}	$\overline{2.88821}$
7	1.7993 "	25511	55576	74489
8	2.5534	40711	39164 "	59289
9	3.6966	56780	27052 "	43220
2.0	5.4598 "	73718	18316	26282
2.1	8.2269 "	1.91524	$0.12155 \times$	2. 2.08476
2	1.2647×10^{2}	2.10199	79071×10^{-2}	$\overline{3} .89801$
3	1.9834 "	29742	50418 "،	70258
4	3.1735	50154	$3 \mathrm{5II}$ "،	49846
5	5.1801 "	71434	19305	28566
2.6	8.6264 "	2.93583	$0.11592 \times$	3'.06417
7	1.4656×10^{3}	3.10601	68233×10^{10}	4.83399
8	2.5402 "	40487	39367 ":	59513
9	4.49 I 8 "	65242	22263 "	34758
3.0	8.103I "	90865	12341 "	09135
3.1	1.4913×10^{4}	4.17357	$0.67055 \times 10^{10}{ }^{-4}$	- $\overline{5} .82643$
2	2.8001 "	44718	35713 "	55282
3	$5.3637 \times{ }^{\text {" }}$	72947	I8644 $\times{ }^{\text {" }}$	27053
4	${ }_{1.0482 \times 10}{ }_{10}{ }^{5}$	5.02044	$95402 \times 10^{10} 9$	6.97956
5	2.0898 "	32011	$47^{8} 5 \mathrm{I}$ "	67989
3.6	4.2507	5.62846	0.23526 "	6.37154
	$8.8205 \times{ }^{\text {" }}$	94549	11337 " ${ }^{\text {" }}$	-05451
8	${ }_{1} .8673 \times 1{ }^{10}$	6.27121	53553×10^{-6}	7.72879
9	4.0329 "	60562	24796 "	39438
4.0	8.886 I I	94871	11254 "	05129
4.1	1.9975×10^{7}		0.50062×10^{-7}	8.69951
2	$4.5809 \times$	66095	$21830 \times{ }^{\text {a }}$	-33905
3	1.0718×10^{8}	8.03010	93303×10^{10}	9.96990
4	2.5582 "	40794	39089 ،	59206
5	6.2296 "	79446	16052 。"	20554
4.6	1.5476×10^{9}	9.18967	0.64614×10^{-9}	10.81033
	3.9225	59357	$25494 \text { " }$	-40643
8	1.0142 $\times 1{ }^{10} 10$	10.00614	98595×10^{-10}	11.99386
9	2.6755	42741	37376	57259
5.0	7.2005 "	85736	13888 "	14264

Smithsonian Tables.

EXPONENTIAL FUNCTIONS.
Values of $e^{\frac{\pi}{4} x}$ and $e^{-\frac{\pi}{4} x}$ and their logarithms.

\boldsymbol{x}	$e^{\frac{\pi}{4} x}$	$\log e^{\frac{\pi}{4} x}$	$e^{-\frac{\pi}{4} x}$	$\log e^{-\frac{\pi}{4} x}$
1	2.1933	0.34109	0.45594	T. 65891
2	4.8105	. 68219	. 20788	-31781
3	${ }_{1} .0551 \times 10$	1.02328	$.94780 \times 10^{-1}$	2. 97672
4	2.3141 "	- 36438	.43214 "	. 63562
5	5.0754 "	. 70547	.19703 "	. 29453
6	1.1132×10^{2}	2.04656	0.89833×10^{-2}	$\overline{3} \cdot 95344$
7 8	2.4415 5.3	. 3^{8766}	. $40957{ }^{\text {c }}$. 61234
8	$5.3549 \times$. 72875	.18674 "	. 27125
${ }_{10}^{9}$		3.06985	$._{.85144} \times 10{ }^{10}{ }^{-3}$	4.93015 .58006
11	5.6498 "	3.75203	0.17700 "	4.24797
12	1.2392×10^{4}	4.09313	. 80700×10^{-4}	5.90687
13	2.7178 "	. 43422	.36794 "	. 56578
14	5.9610 "	. 77532	.16776 "	. 22468
15	${ }_{1.3074 \times 10}$	5.11641	$.76487 \times 10^{-5}$	6.88359
16	2.8675 "	5.45751	$0.3+873$ "	$\overline{6} .54249$
17	6.2893 "	. 79860	.15900 "	- 20140
18	${ }^{1.3794 \times 10}{ }^{6}$	6.13969	$.72+95 \times 10^{10}{ }^{-6}$	$\overline{7} .86031$
19 20	3.0254 6.6356	.48079 .82188	. 33053 "	. 51921

Table 22.

EXPONENTIAL FUNCTIONS.

Values of $e^{\frac{\sqrt{ } \bar{\pi}}{4} x}$ and $e^{-\frac{\sqrt{\pi} x}{4} x}$ and their logarithms.

\boldsymbol{x}	$e^{\frac{\sqrt{\pi}}{4} x}$	$\log e^{\frac{\sqrt{ } \pi}{4} x}$	$e^{-\frac{\sqrt{4} x}{4}}$	$\log e^{-\frac{\sqrt{\pi}}{x} x}$
1	1. 5576	0.19244	0.64203	-1. 80756
2	2.4260	-38488	. 41221	.61512
3	3.7786	. 57733	. 26465	. 42267
4	5.8853	. 76977	.16992	.23023
5	9.1666	. 96221	. 10909	. 03779
6	14.277	I.15465	0.070041	$\overline{2} .84535$
7	22.238	. 34709	. 044968	. 65291
8	34.636	- 53953	. 028871	. 46047
9	53.948	.73198	.o18536	.26802
10	84.027	. 92442	. 011901	. 07558
11	130.88	2.11686	0.0076408	$\overline{3} .88314$
12	203.85	. 30930	. 0049057	. 69070
13	317.50	. 50174	. 0031496	. 49826
14	494.52	. 69418	. 0020222	-30582
15	770.24	. 88663	. 0012983	. 11337
16	1199.7	3.07907	0.00083355	4.92093
17	1868.6	. 27151	. 00053517	. 72849
18	2910.4	. 46395	. 00034360	. 53605
19	4533.1	. 65639	. 00022060	-34361
20	7060.5	.84883	. 00014163	.15117

Tables 23 and 24.
EXPONENTIAL FUNCTIONS AND LEAST SQUARES.
TABLE 23.-Exponential Functions.
Value of e^{x} and e^{-x} and their logarithms.

x	e^{x}	$\log e^{x}$	e^{-x}	x	ι^{x}	$\log e^{x}$	e^{-x}
1/64	1.0157	0.00679	0.98450	1/3	1.3956	0.14476	0.71653
1/32	.0317	. 01357	. 96923	$1 / 2$. 6487	.21715	. 60653
1/16	. 0645	. 02714	. 9394 I	3/4	2.1170	. 32572	. 47237
$1 / 10$. 1052	. 04343	.90484	1	. 7183	. 43429	$\cdot 36788$
I/9	. 1175	. 04825	. 89484	5/4	3.4903	- 54287	. 28650
$1 / 8$	I.1331	0.05429	0.88250	3/2	4.4817	0.65144	0.22313
$1 / 7$.1536	. 06204	. 86688	7/4	5.7546	.76002	. 17377
1/6	.1814	.07238	. 84648		7.3891	. 86859	. 13534
1/5	.2214	. 08686	. 81873	9/4	$9 \cdot 4877$. 97716	. 10540
I/ 4	.2840	. 10857	. 77880	5/2	12.1825	1.08574	. 08208

TABLE 24.-Least Squares.
Values of $\mathrm{P}=\frac{2}{\sqrt{\pi}} \int_{o}^{h x} e^{-(h x)^{2}} d(h x)$.
This table gives the value of P , the probability of an observational error having a value positive or negative equal to or less than x when h is the measure of precision, $\mathrm{P}=\frac{2}{\sqrt{\pi}} \int_{o}^{h x} e^{-(h x)^{2}}$ $d(h x)$. For values of the inverse function see the table on Diffusion.

$h x$	0	1	2	3	4	5	6	7	8	9
0.0		. 01128	. 02256	. 03384	. 0451 I	. 05637	. 06762	. 07886	. 09008	. 10128
. I	. 11246	. 12362	. 13476	. 14587	. 15695	. 16800	. 17901	. 18999	. 20094	. 21184
. 2	. 22270	. 23352	. 24430	. 25502	. 26570	. 27633	. 28690	. 29742	. 30788	. 31828
$\cdot 3$. 32863	. 33891	. 34913	- 35928	. 36936	37938	.38933	. 3992 I	. 40901	. 41874
. 4	. 42839	. 43797	. 44747	-45689	. 46623	. 47548	. 48466	. 49375	- 50275	.51167
0.5	. 52050	. 52924	- 53790	. 54646	. 55494	. 56332	. 57162	. 57982	. 58792	-59594
. 6	. 60386	.61168	. 61941	. 62705	. 63459	. 64203	. 64938	. 65663	. 66378	. 67084
. 7	. 67780	. 68467	. 69143	.69810	. 70468	.71116	. 71754	.72382	. 73001	. 73610
. 8	. 74210	.74800	. 75381	.75952	. 76514	.77067	.77610	.78144	. 78669	. 79184
. 9	.79691	. 80188	. 80677	.81156	. 81627	. 82089	. 82542	. 82987	. 83423	. 83851
1.0	. 84270	. 8468 r	. 85084	. 85478	. 85865	. 86244	. 86614	. 86977	. 87333	.87680
. 1	. 88021	. 88353	. 88679	. 88997	. 89308	. 89612	.89910	. 90200	.90484	. 90761
. 2	.9103I	. 91296	.91553	.91805	.92051	. 92290	. 92524	.92751	. 92973	. 93190
$\cdot 3$.93401	.93606	.93807	. 94002	.94191	. 94376	. 94556	. 94731	. 94902	. 95067
-4	. 95229	.95385	. 95538	. 95686	.95830	. 95970	. 96105	. 96237	. 96365	. 96490
1.5	.96611	. 96723	. 9684 I	. 96952	. 97059	. 97162	. 97263	-97360	. 97455	. 97546
. 6	. 97635	. 97721	.97804	. 97884	. 97962	. 98038	.981ı0	.98181	. 98249	. 98315
. 7	. 98379	. 98441	.98500	. 98558	. 98613	. 98667	. 98719	. 98769	.98817	. 98864
. 8	. 98909	. 98952	. 98994	. 99035	. 99074	.991II	. 99147	.99182	. 99216	. 99248
. 9	. 99279	. 99309	. 99338	. 99366	. 99392	. 99418	. 99443	. 99466	. 99489	.99511
2.0	. 995.32	. 99552	. 99572	.99591	. 99609	. 99626	. 99642	. 99658	. 99673	. 99688
. 1	. 99702	. 99715	. 99728	. 99741	. 99753	. 99764	. 99775	. 99785	. 99795	. 99805
. 2	. 99814	. 99822	. 9983 I	. 99839	. 99846	. 99854	. 99861	. 99867	. 99874	. 99880
$\cdot 3$. 99886	.99891	. 99997	. 99902	. 99906	.9991 I	. 99915	. 99920	. 99924	. 99928
. 4	.99931	. 99935	. 99933^{8}	. 9994 I	. 99944	. 99947	. 99950°	. 99952	. 99955	. 99957
2.5	. 99959	. 99961	. 99963	. 99965	. 99967	. 99969	.9997 I	. 99972	. 99974	. 99975
. 6	. 99976	. 99978	. 99979	. 99988	.9998I	. 99982	. 99983	. 99984	. 99985	. 99986
. 7	. 99987	. 99987	. 99988	. 99989	. 99989	. 99990	. 99991	- 99991	. 99992	. 99992
. 8	. 99992	. 99993	. 99993	. 99994	. 99994	. 99994	. 99995	. 99995	. 99995	. 99996
. 9	. 99996	. 99996	. 99996	. 99997	. 99997	. 99997	. 99997	. 99997	. 99997	. 99998
3.0	.99998	. 99999	. 99999	1.00000						

Taken from a paper by Dr. James Burgess 'on the Definite Integral $\frac{2}{\sqrt{ } \pi} \int_{0}^{t} e^{-t^{2}} d t$, with Ex. tended Tables of Values.' Trans. Roy. Soc. of Edinburgh, vol. xxxix, i900, p. 257.

LEAST SQUARES.
This table gives the values of the probability P , as defined in last table, corresponding to different values of x / r where r is the "probable error." The probable error r is equal to $0.47694 / \mathrm{h}$.

$\frac{\boldsymbol{x}}{\boldsymbol{r}}$	0	1	2	3	4	5	6	7	8	9
0.0	. 00000	. 00538	. 01076	.016I4	. 02152	. 02690	. 03228	. 03766	. 04303	. 0.4840
0.1	. 05378	. 05914	.06451	. 06987	. 07523	. 08059	.08594	.09129	. 09663	. 10197
0.2	.10731	. 11264	. 11796	. 12328	. 12860	13391	. 1392 I	. 14451	. 14980	. 15508
0.3	. 16035	.16562	. 17088	.17614	.18ı38	. 18662	.19185	. 19707	. 20229	. 20749
0.4	. 21268	.21787	. 22304	.22821	. 23336	. 23851	. 24364	. 24876	. 25388	. 25898
0.5	. 26407	. 26915	. 2742 I	. 27927	. 28431	. 28934	. 29436	. 29936	- 30435	- 30933
0.6	. 31430	. 31925	. 32419	.3291 1	. 33402	. 33892	-34380	-34866	$\cdot 35352$	- 35835
0.7	$\cdot 36317$	$\cdot 36798$. 37277	- 37755	-38231	-38705	-39178	-39649	-401 I8	. 40586
0.3	. 41052	.41517	. 41979	. 42440	. 42899	. 43357	.43813	.44:67	-44719	. 45169
0.9	.45618	. 46064	. 46509	.46952	. 47393	. 47832	. 48270	. 48705	. 49139	. 49570
1.0	- 50000	- 50428	. $50 \mathrm{~S}_{53}$	-51277	. 51699	. 52119	. 52537	. 52952	. 53366	. 53778
1.1	. 54188	. 54595	. 55001	. 55404	. 55806	. 56205	. 56602	. 56998	. 57391	. 57782
1.2	.58171	. 58558	. 58942	. 59325	. 59705	. 60083	. 60460	. 60833	. 61205	. 61575
1.3	. 61942	. 62308	. 6267 I	. 63032	.63391	. 63747	. 64102	. 64454	. 64804	.65152
1.4	. 65498	. 65841	. 66182	. 6652 I	. 66858	.67193	. 67526	.67856	. 68184	. 68510
1.5	. 68833	. 69155	. 69474	. 69791	. 70106	.70419	. 70729	. 71038	. 71344	. 71648
1.6	. 71949	.72249	. 72546	. 72841	.73134	. 73425	. 73714	. 74000	. 74285	. 74567
1.7	.74847	.75124	. 75400	.75674	. 75945	. 76214	.76481	.76746	. 77009	. 77270
1.8	.77528	. 77785	.78039	.78291	. 78542	. 78790	.79036	. 79280	. 79522	. 79761
I. 9	. 79999	. 80235	. 80469	. 80700	. 80933	.81158	. 81383	. 81607	. 81828	. 82048
2.0	. 82266	. 8248 I	. 82695	. 82907	. 83117	. 83324	. 83530	. 83734	. 83936	. 84137
2.1	. 84335	.84531	. 84726	. 84919	. 85109	. 85298	. 85486	. 8567 I	. 85854	. 86036
2.2	. 86216	. 86394	. 86570	. 86745	. 86917	. 87088	. 87258	. 87425	. 87591	. 87755
2.3	. 87918	. 88078	. 88237	. 88395	. 88550	. 88705	. 88857	. 89008	. 89157	. 89304
2.4	. 89450	. 89595	. 89738	. 89879	.90019	.90157	. 90293	.90428	. 90562	. 90694
2.5	. 90825	-90954	. 91082	. 91208	.91332	.91456	.91578	. 91698	.91817	. 91935
2.6	. 9205^{1}	.92266	. 92280	. 92392	. 92503	.92613	. 92721	. 92828	. 92934	. 93038
2.7	.93I41	. 93243	. 93344	.93443	.9354	.93638	. 93734	.93828	. 93922	-9.4014
2.8	.94105	.94195	. 94284	. 9437 I	. 94445	$\cdot 94543$. 94627	-947 I I	. 94793	. 94874
2.9	. 94954	$\cdot 95033$.9511 1	$\cdot 95187$	$\cdot 95263$	-9533 ${ }^{\circ}$. 95412	$\cdot 95484$	-95557	.95628
	0	1	2	3	4	5	6	7	8	9
3	. 95698	. 96346	.96910	. 97397	. 97817	.98ı 76	. 98482	.98743	. 98962	. 99147
4	. 99302	. 99431	. 99539	99627	. 99700	. 99760	. 99808	. 99848	. 99859	. 99905
5	. 99926	. 99943	. 99956	. 99966	. 99974	. 99980	. 99985	-99988	. 99991	. 99993

Table 26.
LEAST SQUARES.
Values of the factor $0.6745 \sqrt{\frac{1}{n-1}}$.
This factor occurs in the equation $r_{\mathrm{s}}=0.6745 \sqrt{\frac{\sum v^{2}}{n-1}}$ for the probable error of a single observation, and other similar equations.

\boldsymbol{n}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$
$\mathbf{0 0}$			0.6745	0.4769	0.3894	0.3372	0.3016	0.2754	0.2549	0.2385
10	0.2248	0.2133	.2034	.1947	.1871	.1803	.1742	.1686	.1636	.1590
20	.1547	.1508	.1472	.1438	.1406	.1377	.1349	.1323	.1298	.1275
30	.1252	.1231	.1211	.1192	.1174	.1157	.1140	.1124	.1109	.094
40	.1080	.1066	.1053	.1041	.1029	.1017	.1005	.0994	.0984	.0974
50	0.0964	0.0954	0.0944	0.0935	0.0926	0.0918	0.0909	0.0901	0.0893	0.0886
60	.0878	.0871	.0864	.0857	.0850	.0843	.0837	.0830	.0824	.0818
70	.0812	.0806	.0800	.0795	.0789	.0784	.0779	.0774	.0769	.0764
80	.0759	.0754	.0749	.0745	.0740	.0736	.0727	.0727	.0723	.07199
90	.0715	.0711	.0707	.0703	.0699	.0696	.0692	.0688	.0685	.0681

8 mithsonian Tables.

TAble 27.-LEAST SQUARES.
Values of the factor $0.6745 \sqrt{\frac{1}{u(u-1)}}$.
This factor occurs in the equation $r_{0}=0.6745 \sqrt{\frac{\Sigma v^{2}}{u(n-1)}}$ for the probable error of the arithmetic mean.

| $\boldsymbol{n}=$ | | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{0 0}$ | | | 0.469 | 0.2754 | 0.1947 | 0.1508 | 0.1231 | 0.1041 | 0.0901 | 0.0795 |
| 10 | 0.0711 | 0.0643 | .0587 | .0540 | .0500 | .0465 | .0435 | .0409 | .0386 | .0365 |
| 20 | .0346 | .0329 | .0314 | .0300 | .0287 | .0275 | .0265 | .0255 | .0245 | .0237 |
| 30 | .0229 | .0221 | .0214 | .0208 | .0201 | .0196 | .0190 | .0185 | .0180 | .0175 |
| 40 | .0171 | .0167 | .0163 | .0159 | .0155 | .0152 | .0148 | .0145 | .0142 | .0139 |
| 50 | 0.0136 | 0.0134 | 0.0131 | 0.0128 | 0.0126 | 0.0124 | 0.0122 | 0.0119 | 0.0117 | 0.01155 |
| 60 | .0113 | .0111 | .0110 | .0108 | .0106 | .0105 | .0103 | .0101 | .0100 | .0098 |
| 70 | .0097 | .0096 | .0094 | .0093 | .0092 | .00911 | .0089 | .0088 | .0087 | .0086 |
| 80 | .0085 | .0084 | .0083 | .0082 | .0081 | .0080 | .0079 | .0078 | .0077 | .0076 |
| 90 | .0075 | .0075 | .0074 | .0073 | .0072 | .0071 | .0071 | .0070 | .0069 | .0068 |

TABLE 28. - LEAST SQUARES.

$$
\text { Values of the factor } 0.8453 \sqrt{\frac{1}{n(n-1)}} \text {. }
$$

This factor occurs in the approximate equation $r=0.8453 \sqrt{\frac{\sum v^{2}}{n(n-1)}}$ for the probable error of a single observation.

	$=$	1	2	3	4	5	6	7	8	9
00			0. 5978	0.3451	0.2440	0.1890	0.1543	0.1304	0.1130	0.0996
10	0.0891	0.0806	. 0736	. 0677	. 0627	. 0583	. 0546	. 0513	. 0483	. 0457
20	. 0434	. 0412	. 0393	. 0376	. 0360	. 0345	. 0332	.0319	. 0307	. 0297
30	. 0287	. 0277	. 0268	. 0260	. 0252	. 0245	. 0238	. 0232	. 0225	. 0220
40	. 0214	. 0209	. 0204	. 0199	. 0194	. 0190	. 0186	. 0182	. 0178	. 0174
50	0.0171	0.0167	0.0164	0.0161	0.0158	0.0155	0.0152	0.0150	0.0147	0.0145
60	. 0142	. 0140	.OI37	.OI35	. 0133	. 0131	. 0129	. 0127	. 0125	. 0123
70	. 0122	. 0120	. 0118	. 0117	. 1115	. 0113	. 1112	. 0111	. 0109	. 0108
80	. 0106	. 0105	. 0104	. 0102	. 0101	. 0100	. 0099	.0098	. 0097	. 0096
90	. 0094	. 0093	. 0092	.0091	.0090	.0089	. 0089	.0088	. 0087	. 0086

TAble 29. - LEAST SQUARES.
Values of $0.8453 \frac{1}{n \sqrt{n-1}}$.
This factor'occurs in the approximate equation $r_{0}=0.8453 \frac{\Sigma \nu}{n \sqrt{n-1}}$ for the probable error of the arithmetical mean.

	=	1	2	3	4	5	6	7	8	9
00			0.4227	0.1993	0.1220	0.0845	0.0630	0.0493	0.0399	0.0332
10	0.0282	0.0243	. 0212	. 0188	. 0167	. 0151	. 0136	. 0124	. 0114	. 0105
20	. 0097	. 0090	. 0084	. 0078	. 0073	. 0069	. 0065	.006I	. 0058	. 0055
30	. 0052	. 0050	. 0047	. 0045	. 0043	.004I	. 0040	.00,38	. 0037	. 0035
40	. 0034	. 0033	.0031	. 0030	. 0029	. 0028	. 0027	. 0027	. 0026	. 0025
50	0.0024	0.0023	0.0023	0.0022	0.0022	0.0021	0.0020	0.0020	0.0019	0.0019
60	. 0018	. 0018	. 0017	. 0017	. 0017	. 0016	. 0016	. 0016	. 0015	. 0015
70	. 0015	.0014	. 0014	. 0014	.0013	. 0013	. 0013	.0013	. 0012	. 0012
80	. 0012	. 0012	. 0011	. 0011	. 0011	. 011	.0011	. 0010	. 0010	. 010
90	. 0010	. 0010	. 0010	. 0009	. 0009	. 0009	. 0009	. 0009	. 0009	. 0009

Observation equations :

$$
\begin{aligned}
& a_{1} z_{1}+b_{1} z_{2}+\ldots l_{1} z_{q}=M_{1} \text {, weight } p_{1} \\
& a_{2} z_{1}+b_{2} z_{2}+\ldots \cdot l_{2} z_{q}=M_{2} \text {, weight } p_{2} \\
& a_{n} z_{1}+b_{n} z_{2}+\ldots . i_{n} z_{q}=M_{n}, \text { weight } p_{n} .
\end{aligned} .
$$

Auxiliary equations:

$$
\begin{aligned}
& {[\mathrm{paa}]=p_{1} a_{1}^{2}+p_{2} a_{2}^{2}+\cdots p_{n} a_{n}^{2}} \\
& {[\mathrm{pab}]=p_{1} a_{1} b_{1}+p_{2} a_{2} b_{2}+\cdots p_{n} a_{n 1} b_{n}} \\
& {[p a M]=p_{1} a_{1} \dot{M}_{1}+\ddot{p}_{2} a_{2} \dot{M}_{2}+\cdots \dot{p}_{n} a_{n} \dot{M}_{n}}
\end{aligned}
$$

Normal equations:

$$
\begin{aligned}
& {[\text { paa }] z_{1}+[\text { pab }] z_{2}+\cdots[\text { pal }] z_{q}=[\text { paM }]} \\
& {[\text { pab }] z_{1}+[\text { pbb }] z_{2}+\cdots[\text { pbl }] z_{q}=[\text { pbM }]} \\
& {[\text { pla }] z_{1}+[\text { plb }] z_{2}+\cdots \cdot[\text { pll }] z_{q}=[\text { plM }] .}
\end{aligned}
$$

Solution of normal equations in the form,

$$
\begin{aligned}
\mathrm{z}_{1} & =\mathrm{A}_{1}[\mathrm{paM}]+\mathrm{B}_{1}[\mathrm{pbM}]+\cdots \mathrm{L}_{1}[\mathrm{plM}] \\
\mathrm{z}_{2} & =\mathrm{A}_{2}[\mathrm{paM}]+\mathrm{B}_{2}[\mathrm{pbM}]+\cdots \cdot \mathrm{L}_{2}[\mathrm{plM}] \\
\mathrm{z}_{\mathrm{q}} & =\mathrm{A}_{\mathrm{n}}[\mathrm{paM}]+\mathrm{B}_{\mathrm{n}}[\mathrm{pbM}]+\cdots \cdot \mathrm{L}_{\mathrm{n}}[\mathrm{plM}]
\end{aligned}
$$

gives :

$$
\begin{aligned}
& \text { weight of } z_{1}=\mathrm{p}_{\mathrm{z}_{1}}=\left(\mathrm{A}_{1}\right)^{-1} ; \text { probable error of } \mathrm{z}_{1}=\frac{\mathrm{r}}{\sqrt{\mathrm{p}_{z_{1}}}} \\
& \text { weight of } \mathrm{z}_{2}=\mathrm{pz}_{2}=\left(\mathrm{B}_{2}\right)^{-1} ; \text { probable error of } \mathrm{z}_{2}=\frac{\mathrm{r}^{2}}{\sqrt{\mathrm{p}_{z_{2}}}} \\
& \text { • } \cdot \cdot \cdot \cdot \cdot \cdot \cdot \\
& \text { weight of } \mathrm{z}_{\mathrm{q}}=\mathrm{p}_{z_{\mathrm{q}}}=\left(\mathrm{L}_{\mathrm{n}}\right)^{-1} ; \text { probable error of } z_{\mathrm{q}}=\frac{\cdot}{\sqrt{\mathrm{p}_{\mathrm{z}_{\mathrm{q}}}}}
\end{aligned}
$$

wherein

$$
\begin{aligned}
\mathrm{r} & =\text { probable error } \text { of observation of weight unity } \\
& =0.6745 \sqrt{\frac{\Sigma p v^{2}}{n-q}} \cdot \text { (q unknowns.) }
\end{aligned}
$$

Arithmetical mean, n observations:

$$
\begin{aligned}
& r=0.6745 \sqrt{\frac{\Sigma v^{2}}{n-1}}=\frac{0.8453 \Sigma v}{\sqrt{n(n-1)}} . \quad \begin{array}{r}
\text { (approx.) }=\text { probable error of ob- } \\
\text { servation of weight unity. }
\end{array} \\
& r_{0}=0.6745 \sqrt{\frac{\Sigma v^{2}}{n(n-1)}}=\frac{0.8453 \Sigma v}{n \sqrt{n-1}} . \quad \text { (approx.) = probable error } \\
& \text { of mean. }
\end{aligned}
$$

Weighted mean, n observations:

$$
\mathrm{r}=0.6745 \sqrt{\frac{\Sigma \mathrm{pv}^{2}}{\mathrm{n}-\mathrm{I}}} ; \mathrm{r}_{\mathrm{o}}=\frac{\mathrm{r}}{\sqrt{\Sigma \mathrm{p}}}=0.6745 \sqrt{\frac{\Sigma \mathrm{pv}^{2}}{(\mathrm{n}-\mathrm{I}) \Sigma \mathrm{p}}}
$$

Probable error (R) of a function (Z) of several observed quantities z_{1}, z_{2}, \ldots whose probable errors are respectively, $\left.r_{1}, r_{2}, \ldots, \ldots\right)$

$$
\mathrm{R}^{2}=\binom{\partial Z}{\partial Z_{1}}^{2} \mathrm{r}_{1}^{2}+\left(\frac{\partial Z}{\partial Z_{2}}\right)^{2} \mathrm{r}_{2}^{2}+\ldots
$$

Examples:

$$
\begin{array}{ll}
\mathrm{Z}=\mathrm{z}_{1} \pm \mathrm{z}_{2}+\cdots \\
\mathrm{Z}=\mathrm{Az}_{1} \pm \mathrm{Bz}_{2} \pm \cdots \\
\mathrm{Z}=\mathrm{z}_{1} \mathrm{z}_{2} . & \mathrm{R}^{2}=\mathrm{r}_{1}^{2}+\mathrm{r}_{2}^{2}+\cdots \\
\mathrm{R}^{2}=\mathrm{A}^{2} \mathrm{r}_{1}^{2}+\mathrm{B}^{2} \mathrm{r}_{2}^{2}+\cdots \\
\mathrm{R}^{2}=\mathrm{z}_{1}^{2} \mathrm{r}_{2}^{2}+\mathrm{z}_{2}{ }^{2} \mathrm{r}_{1}^{2} .
\end{array}
$$

Table 31.
 DIFFUSION.

Inverse * values of $v / c=1-\frac{2}{\sqrt{\pi}} \int_{0}^{q} e^{-q^{2}} d q$
$\log x=\log (2 q)+\log \sqrt{\overline{k t} .} \quad t$ expressed in seconds.
$\begin{array}{lc}=\log \delta+\log \sqrt{k t .} & t \text { expressed in days. } \\ =\log \gamma+\log \sqrt{k t .} & \text { "" " years. }\end{array}$
$k=$ coefficient of diffusion. \dagger
$c=$ initial concentration.
$v=$ concentration at distance x, time t.

v / c	$\log 2 q$	29	$\log \delta$	δ	$\log \gamma$	γ
0.00	$+\infty$	∞	$+\infty$	$+\infty$	∞	∞
. O	0.56143	3.6428	3.02970	1070.78	4.31098	20463.
. 02	. 51719	3.2900	2.98545	967.04	. 26674	1848 I .
. 03	.48699	3.0690	. 95525	902.90	. 23654	17240.
. 04	. 46306	2.9044	.93132	853.73	. 21261	16316.
0.05	0.44276	2.7718	2.91102	814.74	4.19231	I 557 I .
. 06	. 42486	2.6598	.89311	78 r .83	. 17440	14942.
. 07	. 40865	2.5624	. 87691	753.20	. 15820	14395.
. 08	. 39372	2.475^{8}	.86198	727.75	. 14327	13908.
. 09	- 37979	2.3977	. 84804	704.76	. 12933	13469.
0.10	0.36664	2.3262	2.83490	683.75	4.11619	13067.
. 11	. 35414	2.2602	. 82240	$66+36$.10369	12697.
. 12	-34218	2.1988	. 81044	646.31	. 09173	12352.
.13	. 33067	2.1413	.79893	629.40	. 08022	12029.
. 14	. 31954	2.087 I	. 78780	613.47	. 06909	11724.
0.15	0.30874	2.0358	2.77699	598.40	4.05828	11436.
. 16	. 29821	1.9871	. 76647	584.08	. 04776	II 162.
.17	. 28793	1.9406	.75619	570.41	. 03748	1090.
. 18	. 27786	1.8961	.74612	$557 \cdot 34$. 02741	10652.
. 19	. 26798	1.8534	. 73624	544.80	. 01753	10412.
0.20	0.25825	I. SI 24	2.72651	532.73	4.00780	IOI8I.
. 2 I	. 24866	1.7728	.71692	521.10	3.99821	9958.9
. 22	. 23919	1.7346	. 70745	509.86	. 98874	9744. I
. 23	. 22983	1.6976	.69808	498.98	. 97937	9536.2
. 24	. 22055	1.6617	.68880	488.43	. 97010	9334.6
0.25	0.21134	1.6268	2.67960	478.19	3.96089	9138.9
. 26	. 20220	I. 5930	. 67046	468.23	. 95175	8948.5
. 27	.19312	1.5600	.661 37	458.53	. 94266	S763.2
. 28	. 18407	1.5278	. 65232	449.08	. 93361	S582.5
. 29	. 17505	I. 4964	.64331	439.85	.92460	8406.2
0.30	0.16606	I. 4657	2.63431	430.84	3.91560	8233.9
. 31	. 5708	1.4357	. 62533	422.02	. 90662	8065.4
$\cdot 32$.14810	1.4064	. 61636	413.39	. 89765	7900.4
. 33	.13912	1.3776	. 60738	404.93	. 88867	7738.8
. 34	.13014	I. 3494	. 59840	396.64	. 87969	7580.3
0.35	O.121I4	1.3217	2.58939	388.50	3.87068	7424.8
. 36	. 11211	I. 2945	. 58037	380.51	. 86166	7272.0
$\cdot 37$.10305	1. 2678	-57131	372.66	. 85260	7122.0
$\cdot 38$. 09396	I. 2415	. 56222	364.93	. 84351	6974.4
. 39	. 08482	1.2157	-55308	$357 \cdot 34$. 83437	6829.2
0.40	0.07563	1.1902	2.54389	349.86	3.82518	6686.2
$\cdot 41$. 06639	1.1652	. 53464	342.49	. 81593	6545.4
.42	. 05708	1.1405	. 52533	335.22	. 80662	6406.6
. 43	. 04770	1.1161	. 51595	328.06	.79724	6269.7
. 44	. 03824	1.0920	. 50650	320.99	. 78779	6134.6
0.45	0.02870	1.0683	2.49696	314.02	3.77825	6001.3
.46	. 01907	I. 0449	. 48733	307.13	. 76862	5869.7
. 47	. 00934	1.0217	. 47760	300.33	.75889	$5739 \cdot 7$
.48	9.99951	0.99886	. 46776	293.60	. 74905	5611.2
. 49	. 93956	0.97624	-45782	286.96	.7391 I	5484.I
0.50	9.97949	0.95387	2.44775	280.38	3.72904	5358.4

\dagger Kelvin, Mathematical and Physical Papers, vol. III. p. 428 ; Becker, Am. Jour. of Sci. vol. III. 1897, p. 280 .
*For direct values see table 24.
Smithsonian Tables.

DIFFUSION.

v / c	$\log 2 q$	$2 q$	$\log \delta$	δ	$\log \gamma$	γ
0.50	9.97949	0.95387	2.44775	280.38	3.72904	5358.4
. 51	. 96929	. 93174	. 43755	273.87	. 71884	5234.1
. 52	. 95896	.90983	. 42722	267.43	. 70851	5111.0
. 53	. 94848	. 88813	. 41674	261.06	. 69803	4989.I
. 54	. 93784	. 86665	. 40610	254.74	. 68739	4868.4
0.55	9.92704	0.84536	2.39530	248.48	3.67659	4748.9
. 56	.91607	. 82426	. 38432	242.28	.66561	4630.3
. 57	. 90490	. 80335	-37316	236.13	. 65445	4512.8
. 58	. 89354	. 78260	-36180	230.04	. 64309	4396.3
. 59	.88197	. 76203	$\cdot 35023$	223.99	.63152	4280.7
0.60	9.87018	0.74161	2.33843	217.99	3.61973	4166.1
. 61	. 85815	.72135	. 32640	212.03	. 60770	4052.2
. 62	. 84587	.70124	.31412	206.12	. 59541	3939.2
. 63	. 83332	.68126	-30157	200.25	. 58286	3827.0
. 64	. 82048	. 66143	. 28874	19.42	. 57003	3715.6
0.65	9.80734	0.64172	2.27560	188.63	3.55689	3604.9
. 66	. 79338	. 62213	. 26214	182.87	. 54343	3494.9
. 67	.7S008	. 60266	. 24833	177.15	. 52962	3385.4
. 68	. 76590	.58331	. 23416	171.46	. 51545	3276.8
. 69	.751.33	. 56407	. 21959	165.80	. 50088	3168.7
0.70	9.73634	0.54493	2.20459	160.17	3.48588	306I.r
. 71	. 72089	. 52588	.18915	I 54.58	. 47044	2954.2
.72	. 70495	- 50694	.17321	149.01	-45450	2847.7
. 73	. 68849	-48808	. 15675	143.47	.43804	2741.8
. 74	.67146	-4693I	- 13972	I 37.95	-42101	2636.4
0.75	9.65381	0.45062	2.12207	132.46	3.40336	2531.4
. 76	. 63550	-43202	. 10376	126.99	-38505	2426.9
. 77	. 61646	. 41348	.0847 1	121.54	-36600	2322.7
. 78	. 59662	. 39502	. 06487	II6.11	-34616	2219.0
. 79	. 57590	. 37662	. 04416	110.70	-32545	2115.7
0.80	9.55423	0.35829	2.02249	105.31	3.30378	2012.7
. 8 I	. 53150	.34001	I. 99975	99.943	.28104	1910.0
. 82	. 50758	-32180	. 97584	94.589	. 25713	1807.7
.83	. 48235	$\cdot 30363$.95061	89.250	.23190	1705.7
. 84	. 45564	.28552	.92389	83.926	.20518	1603.9
0.85	9.42725	0.26745	I. 8955 I	78.615	3.17680	I 502.4
. 86	. 39695	. 24943	. 8652 I	73.317	. 14650	1401.2
. 87	-36445	.23145	. 83271	68.032	. 11400	1300.2
. 88	-32940	.21350	. 79766	62.757	. 07895	1199.4
. 89	.29135	. 19559	. 75961	57.492	3.04090	1098.7
0.90	9.24972	0.17771	1.71797	52.236	2.99926	998.31
.91	. 20374	. 15986	. 67200	46.989	. 95329	898.03
. 92	. 15239	. 14203	. 62065	41.750	.90194	797.89
. 93	. 09423	.12423	. 56249	36.516	. 43378	697.88
. 94	9.02714	. 10645	. 49539	31.289	. 77668	597.98
0.95	8.94783	0.08868	1.41609	26.067	2.69738	$49^{8.17}$
. 96	. 85082	. 07093	- 31907	20.848	. 60036	398.44
. 97	. 72580	.05319	. 19406	15.633	.47535	298.78
. 98	.54965 .24859	.0 .3545 .01773	.01791 0.71684	10.421 5.21007	$\begin{array}{r}.29920 \\ \hline .09813\end{array}$	199.16 99.571
. 99	.24559	. 01773	0.71684	5.21007	I. 99813	99.571
1.00	$-\infty$	0.00000	$-\infty$	0.00000	$-\infty$	0.000

Smithsonian Tables.

Table 32.
GAMMA FUNCTION.*
Value of $\log \int_{0}^{\infty} e^{-z} x^{n-1} d x+10$.
Values of the logarithms + ro of the "Second Eulerian Integral" (Gamma function) $\int_{0}^{\infty} e^{-x} x^{n-1} d x 0 \log \Gamma(n)+10$ for values of n between x_{1} and 2 . When n has values not lying between 1 and 2 the value of the $f 1$ nction can be readily calculated from the equation $\Gamma(n+1)=n \Gamma(n)=n(n-1) \ldots(n-r) \Gamma(n-r)$.

n	0	1	2	3	4	5	6	7	8	9
1.00	9.99	97497	95001	92512	90030	87555	85087	82627	80173	77727
I. OI	75287	72855	70430	6801 I	65600	63196	60798	58.08	56025	53648
1.02	51279	48916	46561	44212	41870	395.35	37207	34886	32572	30265
1.03	27964	25671	23384	21104	18831	16564	14305	12052	09806	07567
1.04	05334	03108	00889	$\overline{98677}$	$\overline{96471}$	$\overline{94273}$	92080	89895	87716	85544
1.05	9.9883379	SI 220	79068	76922	74783	72651	70525	68406	66294	64188
1.06	62089	59996	57910	55830	53757	51690	49630	47577	45530	43489
1.07	41455	39428	37407	35392	33384	31382	29387	27398	25415	23439
1.08	21469	19506	17549	15599	13655	11717	09785	07860	0594 I	04029
1.09	02123	00223	98329	96442	$\underline{94561}$	92686	90818	88956	87100	85250
1.10	9.9783407	81570	79738	77914	76095	74283	72476	70676	68882	67095
I. I I	65.313	63538	61768	60005	58248	56497	54753	53014	51281	49555
I.I2	47834	46120	44411	42709	41013	39323	37638	35960	34288	32622
1.13	30962	29308	27659	26017	24381	22751	21126	19508	17896	16289
1.14	14689	13094	11505	09922	08345	06774	05209	03650	02096	00549
1.15	9.9699007	97471	95941	94417	92898	91386	89879	88378	86883	85393
1.16	83910	82432	80960	79493	78033	76578	75129	73686	72248	70816
1.17	. 69390	67969	66554	65145	63742	62344	60952	59566	58185	56810
1.18	55440	54076	52718	51366	50019	48677	4734 I	46011	44687	43368
1.19	42054	40746	39444	$3^{81} 47$	36856	35570	34290	33016	31747	30483
1.20	9.9629225	27973	26725	25484	24248	23017	21792	20573	19358	18150
1.21	16946	15748	14556	13369	12188	$\underline{11011}$	09841	08675	07515	06361
1.22	05212	0.4068	02930	01796	00669	99546	98430	97318	96212	95111
1.23	594015	92925	91840	90760	89685	88616	87553	86494	85441	S4393
1.24	83350	82313	81280	80253	79232	78215	77204	76198	75197	74201
1.25	9.957321 .1	72226	71246	70271	69301	68337	67377	66423	65474	64530
1.26	63592	62658	61730	60806	59888	58975	58067	57165	56267	55374
1.27	54487	53604	52727	51855	50988	50126	49268	48416	47570	46728
1.28	45891	45059	44232	43410	42593	41782	40975	40173	39376	38585
1.29	37798	37016	36239	35467	34700	33938	33181	32429	31682	30940
1.30	9.9530203	29470	28743	28021	27303	26590	25883	25180	24482	23789
1.31	23100	22417	21739	21065	20396	19732	19073	18419	17770	17125
1.32	16.485	${ }^{1} 5850$	15230	14595	I 3975	13359	12748	12142	11541	10944
1.33	10353	09766	09184	08606	08034	07466	06903	06344	05791	05242
1.34	04698	04158	03624	03094	02568	02048	OI 532	O102I	00514	00012
1.35	9.9499515	99023	98535	98052	97573	97100	96630	96166	95706	95251
I. 36	94800	94355	93913	93477	93044	92617	92194	91776	91362	90953
1.37	90549	90149	89754	89363	88977	88595	88218	87846	87478	87115
1.38	86756	86402	86052	85707	85366	85030	84698	84371	84049	83731
1.39	83417	83108	S2803	82503	82208	8ı916	81630	81 348	81070	80797
1.40	9.9480528	80263	80003	79748	79497	79250	79008	78770	78537	78308
1.41	78084	77864	77648	77437	77230	77027	76829	76636	76446	76261
1.42	76081	75905	75733	75565	75402	75243	75089	74939	74793	74652
I. 43	74515	74382	74254	74130	74010	73894	73783	73676	73574	73476
I. 44	73382	73292	73207	73125	73049	72976	72908	72844	72784	72728

[^8]
Smithsonian Tables.

GAMMA FUNCTION.

$\boldsymbol{\sim}$	0	1	2	3	4	5	6	7	8	9
1.45	9.9472677	72630	72587	72549	72514	72484	72459	724.37	72419	72406
1.46	72397	72393	72392	72396	72404	72416	72432	72452	72477	72506
I. 47	72539	72576	72617	72662	72712	72766	72824	72886	72952	73022
I. 48	73097	73175	73258	73345	73436	$7353{ }^{\text {I }}$	73630	73734	73841	73953
I. 49	74068	74188	74312	74440	74572	74708	74848	74992	75141	75293
1.50	9.9475449	75610	75774	75943	76116	76292	76473	76658	76847	77040
1.51	- 77237	$774{ }^{-}$	77642	77851	78064	78281	78502	78727	78956	79189
1.52	79426	79667	79912	S0161	80414	80671	80932	81196	81465	81738
1.53	82015	82295	82580	82868	83161	83457	83758	84062	84370	84682
1.54	84998	S5318	85642	85970	86302	86638	86977	87321	87668	88019
1.55	9.9488374	88733	89096	89463	89834	90208	90587	90969	91355	91745
1. 56	92139	92537	92938	93344	93753	94166	94583	95004	95429	95857
1.57	96289	96725	97165	97609	98056	98508	98963	99422	99885	00351
1.58	500822	01296	01774	02255	02741	03230	03723	04220	04720	05225
I. 59	05733	06245	06760	07280	07803	08330	08860	09395	09933	10475
1.60	9.9511020	11569	12122	12679	13240	I 3804	14372	14943	I 5519	16098
1.61	16680	17267	17857	1845 I	19048	19649	20254	20862	21475	22091
1.62	22710	23333	23960	24591	25225	25863	26504	27149	27798	28451
1.63	29107	29766	30430	31097	31767	32442	33120	33801	34486	35175
1.64	35867	36563	37263	37966	38673	39383	40097	40815	41536	42260
1.65	9.9542989	43721	44456	45195	45938	46684	47434	48187	48944	49704
1.66	50468	51236	52007	52782	53560	54342	55127	55916	56708	57504
1.67	58303	59106	59913	60723	61536	62353	63174	63998	64825	65656
1.68 I. 69	66491	67329 75001	68170 -6777	69015	69864	70716	71571	72430	73293	74159
1.69	75028	75901	76777	77657	78540	79427	So317	8I2II	82108	83008
1.70	9.9583912	84820	85731	86645	87563	88484	89409	90337	21268	22203
1.71	93I4I	94083	95028	95977	96929	97884	98843	99805	00771	01740
1.72	602712	03688	0.4667	05650	06636	07625	08618	09614	1061 3	11616
1.73	12622	13632	14645	15661	1668 I	17704	18730	19760	20793	21830
1.74	22869	23912	24959	26009	27062	28118	29178	30241	31308	32377
1.75	9.9633451	34527	35607	36690	37776	38866	39959	41055	42155	43258
1.76	44364	45473	46586	47702	48821	49944	51070	52199	53331	54467
1.77	55606	56749	57894	59043	60195	61350	62509	63671	64836	66004
1.78	67176	68351	69529	70710	71895	73082	74274	75468	76665	77866
1.79	79070	80277	81488	82701	83918	S5138	86361	87588	S88IS	90051
1.80	9.9691287	92526	93768	95014	96263	97515	98770	00029	$\underline{1291}$	02555
I. 81	703823	05095	06369	07646	08927	IO211	11498	12788	14082	15375
I. 82	16678	17981	19287	20596	21908	23224	24542	25864	27189	28517
1.83	29848	31182	32520	33860	35204	36551	37900	39254	40610	41969
1.84	43331	44697	46065	47437	48812	50190	51571	52955	54342	55733
1.85	9.9757126	58522	59922	61325	62730	64139	65551	66966	68384	69805
1.86	71230	72657	74087	75521	76957	78397	79839	81285	82734	84186
1. 87	S5640	87098	88559	90023	91490	92960	94433	95909	97389	98871
1.88	800356	O1844	03335	04830	06327	07827	09331	10837	12346	13859
ז. 89	15374	16893	18414	19939	21466	22996	24530	26066	27606	29148
1.90	9.9830693	32242	33793	35348	36905	38465	40028	41595	43164	44736
I.91	46311	47890	4947 I	51055	52642	54232	55825	5742 I	59020	60621
1.92	62226	${ }_{6} 6834$	65445	${ }^{6} 7058$	68675	70294	71917	73542	75170	76802
1.93	78436	80073	81713	83356	85002	86651	88302	S9957	$\underline{91614}$	23275
1.94	94938	96605	98274	99946	01621	03299	04980	06663	08350	10039
1.95	9.9911732	13427	15125	16826	18530	20237	21947	23659	25375	27093
I. 96	28815	30539	32266	33995	35728	37464	39202	40943	42688	44435
1.97	46155	47937	49693	51451	53213	54977	56744	58513	60286	62062
I. 98	63840	65621	67405	69192	70982	72774	$7457{ }^{\circ}$	76368	78169	79972
I. 99	8ı779	83588	85401	87216	89034	90854	92678	94504	96333	98165

Smithsonian Tables.

ZONAL SPHERICAL HARMONICS.*

Degrees	P_{1}	P_{2}	P_{3}	P_{4}	P_{5}	P_{6}	P_{7}
0	+1.0000	+1.0000	+1.0000	+1.0000	+1.0000	+1.0000	+1.0000
1	. 9998	. 9995	.9991	. 9985	. 9977	. 9968	. 9957
2	. 9994	.9982	. 9963	. 9939	. 9909	. 9872	. 9830
3	. 9986	. 9959	.9918	. 9863	. 9795	. 9714	. 9620
4	. 9976	. 9927	. 9854	. 9758	. 9638	. 9495	. 9329
5	+0.9962	+ 0.9886	+ 0.9773	+0.9623	+0.9437	+0.9216	+0.8962
6	. 9945	.9836	. 9674	. 9459	.9194	. 8881	. 8522
7	. 9925	. 9777	. 9557	. 9267	.89II	. 8492	. 8016
8	. 9903	. 9709	. $9+23$. 9048	.8589	. 8054	. 7449
9	.9877	.9633	. 9273	. 8803	. 8232	. 7570	. 6830
10	+0.9848	+0.9548	+0.9106	+0.8532	+0.7840	+0.7045	+0.6164
11	.98i6	. 9454	. 8923	. 8238	. 7417	. 6483	. 5462
12	. 978 I	. 9352	. 8724	.7920	. 6966	.5891	. 4731
13	. 9744	. 9241	. 8511	. 7582	. 6489	.5273	. 3980
14	.9703	.9122	.8283	. 7224	. 5990	. 4635	-3218
15	+0.9659	+0.8995	+0.8042	+ 0.6847	+0.5471	+0.3983	+0.2455
16	.9613	. 8860	.7787	. 6454	. 4937	. 3323	+ .1700
17	.9563	. 8718	.7519	. 6046	. 4391	. 2661	+ .0961
18	. 9511	. 8568	. 7240	. 5624	. 3836	. 2002	+ . 0248
19	. 9455	. 8410	. 6950	. 5192	. 3276	.1353	-. 0433
20	+0.9397	+0.8245	+ 0.6649	+0.4750	+0.2715	+0.0719	-0.1072
21	.9336	. 8074	. 6338	. 4300	. 2156	+ .0106	. 1664
22	. 9272	.7895	. 6019	- 3845	. 1602	-.0481	. 2202
23	. 9205	. 7710	. 5692	.3386	. 1057	-.1038	. 2680
24	.9135	.7518	. 5357	. 2926	. 0525	- . 1558	. 3094
25	$+0.9063$	+0.7321	+0.5016	+0.2465	+0.0009	-0.2040	-0.344I
26	. 8988	.7117	. 4670	. 2007	- . 0489	. 2478	. 3717
27	. 8910	. 6908	.4319	. 1553	-. 0964	. 2869	. 3922
28	. 8829	. 6694	. 3964	. 1105	-.1415	-3212	. 4053
29	. 8746	. 6474	. 3607	. 0665	-. 1839	. 3502	.4143
30	+0.8660	+0.6250	+0.3248	+0.0234	-0.2233	-0.3740	-0.4102
31	. 8572	. 6021	.2887	-. .0185	. 2595	. 3924	. 4022
32	. 8480	. 5788	. 2527	-.0591	. 2923	. 4053	. 3877
33	. 8387	. 5551	. 2167	- . 0982	- 3216	.4127	-3671
34	. 8290	. 5310	.1809	-.1357	- 3473	.4147	. 3409
35	+0.8192	+0.5065	+0.1454	-0.1714	--0.3691	-0.4114	-0.3096
36	. 8090	. 4818	. 1102	.2052	. 3871	. 4031	.2738
37	. 7986	.4567	. 0755	. 2370	. 4011	. 3898	.2343
38	. 7880	. 4314	. 0413	. 2666	.4112	. 3719	.1918
39	.777 I	. 4059	. 0077	. 2940	.4174	- 3497	. 1470
40	+0.7660	+0.3802	-0.0252	-0.3190	-0.4197	-0.3236	-0.1006
41	. 7547	. 3544	. 0574	. 3416	.4181	. 2939	-. 0535
42	.7431	-3284	.0887	. 3616	.4128	. 2610	-. 0064
43	.7314	. 3023	. 1191	. 3791	. 4038	. 2255	+.0398
44	.7193	.2762	.1485	- 3940	. 3914	. 1878	+.0846
45	+0.7071	+ 0.2500	-0.1768	-0.4063	-0.3757	-0.1484	+0.1271
46	. 6947	.2238	. 2040	. 4158	$.3568$	-.1078	. 1667
47	. 6820	. 1977	. 2300	.4227	. 3350	-. .0665	. 2028
48	. 6691	.1716	. 2547	. 4270	. 3105	-.0251	. 2350
49	.6561	.1456	.2781	. 4286	.2836	+.0161	. 2626
50	+ 0.6428	+0.1198	-0.3002	-0.4275	-0.2545	+ 0.0564	+0.2854

* Calculated by Mr. C. E. Van Orstrand for this publication.

Smithsonian Tables.

Table 33 (continued).
ZONAL SPHERICAL HARMONICS.

Degrees	P_{1}	P_{2}	P_{3}	P_{4}	P_{5}	P_{6}	P_{7}
50	+0.6428	+0.1198	-0.3002	-0.4275	-0.2545	+0.0564	+0.2854
51	. 6293	. 0941	. 3209	.4239	. 2235	. 0954	. 3031
52	. 6157	. 0686	. 3401	.4178	.1910	.1326	-3154
53	. 6018	. 0433	. 3578	. 4093	. 1571	. 1677	. 3221
54	.5878	. 0182	. 3740	- 3984	. 1223	. 2002	. 3234
55	$+0.5736$	-0.0065	-0.3886	-0.3852	-0.0868	+ 0.2297	+0.3191
56	- 5592	.0310	. 4016	. 3698	-. 0509	. 2560	. 3095
57	- 5446	. 0551	.4131	. 3524	-. 0150	.2787	. 2947
58	- 5299	. 0788	. 4229	-3331	$+.0206$. 2976	. 2752
59	.5150	.1021	.4310	-3119	+.0557	.3125	.2512
60	+0.5000	-0.1250	-0.4375	-0.2891	+0.0898	+0.3232	+0.2231
61	. 4848	. 1474	. 4423	. 2647	. 1229	. 3298	. 1916
62	. 4695	. 1694	. 4455	. 2390	. 1545	. 3321	. 1572
63	. 4540	.1908	. 447 I	. 2121	. 1844	. 3302	. 1203
64	. 4384	.2117	. 4470	.1841	. 2123	- 3240	.0818
65	+ 0.4226	-0.2321	-0.4452	-0.1552	+0.2381	+0.3138	+0.0422
66	. 4067	.2518	. 4419	. 1256	.2615	. 2997	+ .0022
67	. 3907	. 2710	. 4370	. 0955	. 2824	.2819	- . 0375
68	. 3746	. 2895	. 4305	. .0651	. 3005	. 2606	-. .0763
69	. 3584	. 3074	. 4225	. 0344	. 3158	.2362	-. .1135
70	+0.3420	-0.3245	-0.4130	-0.0038	+0.3281	+0.2089	-0.1485
71	.3256	.3410	. 4021	+ .0267	. 3373	. 1791	. 1808
72	- 3090	. 3568	. 3898	. 0568	- 3434	. 1472	. 2099
73	. 2924	. 3718	.3761	. 0864	$\cdot 3463$.1136	.2352
74	. 2756	. 3860	.3611	. 1153	.3461	. 0788	.2563
75	+ 0.2588	-0.3995	-0.3449	+0.1434	+0.3427	+0.0431	-0.2730
76	. 2419	.4122	. 3275	.1705	. 3362	$\pm .0070$	$.2850$
77	. 2250	.4241	-3090	.1964	. 3267	- . 0290	. 2921
78	. 2079	. 4352	.2894	. 2211	-3143	- . 0644	. 2942
79	. 1908	. 4454	. 2688	. 2443	. 2990	-. 0990	. 2913
80	+0.1736	-0.4548	-0.2474	+0.2659	+ 0.2810	-0.1321	-0.2835
8 I	.1564	. 4633	. 2251	. 2859	. 2606	.1635	. 2708
82	. 1392	. 4709	. 2020	. 3040	. 2378	. 1927	.2536
83 84	.1219 .1045	.4777	.1783	.3203	.2129	.2193	.2321
84	. 1045	.4836	. 1539	. 3345	.1861	. 2431	. 2067
	$+0.0872$	-0.4886	-0.1291	+0.3468	+0.1577	-0.2638	-0.1778
86	$.0698$.4927	.1038	.3569	. 1278	.2810	. 1460
87	.0523	.4959	. 0781	. 3648	. 0969	. 2947	. 1117
88	. 0349	.4982	.0522	. 3704	. 0651	-3045	. 0755
89	. 0175	. 4995	. 0262	-3739	. 0327	$\cdot 3105$. 0381
90	+0.0000	-0.5000	-0.0000	$+0.375^{\circ}$	+ 0.0000	-0.3125	-0.0000

smithsonian tables.

CYLINDRICAL HARMONICS OF THE OTH AND 1st ORDERS
Values when $n=0$ and I of the Bessel function $J_{n}(x)$

$$
=\frac{x^{n}}{2^{n} \Gamma(n+1)}\left\{1-\frac{x^{2}}{2^{2}(n+1)}+\frac{x^{4}}{2^{4} 2!(n+1)(n+2)} \ldots\right\} . \quad J_{1}(x)=-J_{0}^{\prime}(x)=\frac{d J_{0}(x)}{d x} .
$$

x	$J_{0}(x)$	$J_{1}(x)$	x	J_{0}	$J_{1}(x)$	x	$J_{0}(x)$	$J_{1}(x)$	x	$J_{0}(x)$	$J_{1}(x)$
. 00	unity	zero	. 50	. 938470	. 242268	1.00	. 765198	. 440051	1.50	. 511828	. 557937
. O	. 999975	. 005000	. 51	. 936024	. 246799	. OI	.760781	. 443286	. 51	. 506241	. 559315
. 02	. 999900	. 010000	. 52	. 933534	. 251310	. 02	. 756332	. 446488	. 52	. 500642	. 560653
. 03	. 999775	. 014998	-53	. 930998	. 255803	. 03	-751851	. 449658	. 53	. 495028	.561951
. 04	.999600	. 019996	. 54	.928418	. 260277	. 04	. 747339	.452794	- 54	. 489403	. 563208
. 05	. 999375	. 024992	. 55	. 925793	. 264732	1.05	. 742796	. 455897	1.55	. 483764	. 564424
. 06	. 999100	. 029987	. 56	. 923123	. 269166	. 06	. 73822 I	. 458966	. 56	.478114	. 565600
. 07	. 998775	. 034979	$\cdot 57$. 920410	.273581	. 07	.7336ı6	. 462001	. 57	. 472453	. 566735
. 0	. 998401	. 039968	. 58	.917652	. 277975	. 08	. 72898 I	. 465003	. 58	. 466780	. 567830
. 09	.997976	. 044954	. 59	.914850	. 282349	. 09	. 724316	. 467970	. 59	.461096	. 568883
. 1	. 997502	. 049938	. 60	.912005	. 286701	1.10	. 719622	. 470902	1.60	. 455402	. 569896
. 11	. 996977	. 054917	. 61	. 909116	. 291032	. II	. 714898	. 473800	. 61	. 449698	. 570868
. 1	. 996403	.059892	. 62	.005184	. 295341	. 12	. 710146	.476663	. 62	. 443985	. 571798
. 13	. 995779	. 064863	. 63	.903209	. 299628	. 13	. 705365	. 479491	. 63	. 438262	. 572688
. 14	.995106	. 069829	. 64	.900192	. 303893	14	. 700556	.482284	. 64	. 43253 I	. 573537
. 1	. 99438	. 07478	. 65	.897132	.308135	1.15	. 695720	. 48504 I	1.65	. 426792	. 574344
. 1	. 993610	. 079744	. 66	. 894029	-312355	6	. 690856	. 487763	. 66	. 421045	. 575111
. 17	. 992788	. 084693	. 67	. 890885	-316551	.17	. 685965	. 490449	. 67	.415290	. 575836
. 18	.991916	.089636	. 68	. 887698	- 320723	. 18	.681047	. 493098	. 68	. 409528	. 576520
. 19	.990995	. 094572	. 69	. 884470	. 32487 I	. 19	.676103	. 495712	. 69	. 403760	. 577163
. 20	. 99	. 099501	. 70	.88I 201	. 328996	1.20	. 671133	. 498289	1.70	. 397985	. 577765
. 21	. 989005	. 104422	. 71	. 877890	. 333096	. 21	.6661 37	. 500830	. 71	- 392204	. 578326
. 2	. 987937	. 109336	. 72	. 874539	-337170	. 22	.66ı 116	. 503334	. 72	- 386418	. 578845
. 23	.9868I9	.11424	. 73	. 871147	.341220	. 23	. 656071	.505801	. 73	. 380628	. 579323
. 24	.985652	.199138	. 74	. 867715	- 345245	. 24	. 651000	. 50823 I	. 74	- 37483^{2}	. 579760
. 25	. 984436	. 124026	. 75		. 349244	1.25	. 645906	. 510623	1.75	. 369033	. 580156
. 26	.983171	. 128905	. 76	. 860730	. 353216	. 26	. 640788	. 512979	. 76	. 363229	. 580511
. 27	.981858	. 133774	. 77	. 857178	. 357163	. 27	. 635647	.515296	. 77	. 357422	. 580824
. 2	. 980496	. 138632	. 78	. 853587	-361083	. 28	. 630482	.517577	.78	-351613	.581096
. 29	.979085	.143481	. 79	. 849956	. 364976	. 29	. 625295	.519819	. 79	. 345801	.581327
. 30	. 977	. 148319	. 80	. 846287	. 368842	1.30	. 620086	. 522023	1.80	- 339986	$.581517$
. 31	.97611	. 153146	. 81	. 842580	. 372681	-31	.614855	. 524189	. 8 r	. 334170	. 581666
. 32	.974563	. 157961	. 82	. 838834	. 376492	. 32	. 609602	. 526317	. 82	- 328353	-581773
. 33	. 972960	. 162764	. 83	. 835050	. 380275	. 33	. 604329	. 528407	. 83	- 322535	.581840
. 34	.971308	. 167555	. 84	.831228	. 384029	- 34	. 599034	. 530458	. 84	. 316717	.581865
. 35		. 172334	. 85	. 827369	. 387755	1.35	. 593720	. 532470	1.85	. 310898	$.58 \mathrm{I} 849$
-36	.96786I	. 177100	. 86	. 823473	. 391453	. 36	. 588385	. 534444	. 86	-305080	. 581793
. 37	. 966067	.181852	. 87	.81954 I	. 395121	- 37	- 583031	. 536379	. 87	. 299262	-581695
. 38	. 964224	.186591	. 88	.815571	. 398760	. 38	- 577658	. 538274	. 88	. 293446	-581557
. 39	. 962335	.191316	. 89	.8II565	. 402370	. 39	. 572266	. 540131	. 89	. 286631	.581377
. 40	.9603	. 196027	. 90	. 807524	. 405950	1.40	. 566855	. 541948	1.90	.281819	.581157
. 41	. 958414	. 200723	. 91	. 803447	. 409499	. 41	. 561427	. 543726	. 91	. 276008	. 580896
. 42	. 956384	.205403	. 92	. 799334	.413018	. 42	-555981	. 545464	. 92	. 270201	. 580595
. 43	. 954306	. 210069	$\cdot 93$. 795186	.416507	. 43	-550518	. 547162	$\cdot 93$. 264.397	. 580252
. 44	.952183	. 214719	. 94	.791004	. 419965	. 44	. 545038	. 548821	-94	. 258596	. 579870
. 45	.950012	. 219353	. 95	.786787	. 423392	1.45	. 53954 I	. 55044 I	1.95	. 252799	. 579446
. 46	. 947796	. 223970	. 96	. 782536	. 426787	. 46	. 534029	. 552020	. 96	. 247007	. 578983
. 47	. 945533	. 22857 I	. 97	. 778251	.430151	. 47	-528501	. 553559	- 97	. 241220	. 578478
. 48	. 943224	. 233154	.98	. 773933	. 433483	-48	- 522958	. 555059	.98	.235438	. 577934
. 49	. 940870	. 237720	. 99	. 769582	.436783	. 49	.517400	. 556518	. 99	. 229661	. 577349
. 50	. 938470	. 242268	1.00	.765198	. 440051	1.50	. 511828	. 557937	2.00	.223891	. 576725

CYLINDRICAL HARMONICS OF THE OTh AND 1st ORDERS.
$J_{1}(x)=-J_{0^{\prime}}(x)$. Other orders may be obtained from the relation, $J_{n+1}(x)=\frac{2 n}{x} J_{n}(x)-J_{n-1}(x)$.
$J_{-n}(x)=(-1)^{n} J_{n}(x)$.

x	$J_{0}(x)$	$J_{1}(x)$	x	$J_{0}(x)$	$J_{1}(x)$	x	$J_{0}(x)$	$J_{1}(x)$	x	$J_{0}(x)$	$J_{1}(x)$
2.00	. 2238891	. 576725	2.50	-. 048384	. 497094	3.00	-. 260052	- 339059	3.50	-380128	.I37378
. Or	. 218127	. 576060	. 51	-. 053342	. 494606	. OI	-. 263424	-335319	. 51	-.381481	.133183
. 0	. 212370	. 575355	. 52	-. 058276	. 492086	. 02	-. 26675^{8}	.331563	. 52	-.382791	. 128989
. 03	. 206620	. 574611	. 53	-. 063184	. 489535	.03	-. 270055	-327789	. 53	-. 384060	. 124795
. 04	. 200878	. 573827	. 54	-. 068066	. 486953	. 04	-. 273314	. 323998	. 54	$-.385287$. 120601
2.05	. 195143	. 573003	2.55	-. 072923	. 484340	3.05	-. 276535	320191	3.55	$-.386472$.116408
. 06	. 189418	572139	. 56	-.077753	.481696	-6	-. 279718	. 316368	. 56	$-.387615$. 112216
. 07	. 183701	.571236	. 57	-.082557	.47902 1	. 07	-. 282862	. 312529	. 57	-.388717	.108025
. 08	.177993.	. 570294	. 58	-.087333	-476317	. 08	-. 285968	. 308675	. 58	$-.389776$.103836
. 09	. 172295	-5693 I3	. 59	-.092083	. 473582	. 09	-. 289036	. 304805	. 59	-. 390793	. 099650
2.10	. 166607	. 568292	2.60	-. 096805	4708I8	3.10	-. 292064	. 30092 I	3.60	-.391769	. 095466
. 11	. 160929.	. 567233	. 61	-.IOI499	. 468025	. 11	$-.295054$	297023	. 61	$-.392703$.091284
. 12	. 555262	. 566134	. 62	-.106I65	. 465202	. 12	-. 298005	. 293110	. 62	-. 393595	. 087106
.13	. 149607	. 564997	. 63	-.110803	. 462350	.13	-.300916	. 289184	. 63	-. 394445	.08293I
. 14	. 143963	. 56382 I	. 64	-.115412	. 459470	. 14	$-.303788$	$.285244$. 64	$-.395^{253}$. 078760
2.15	. 138330	. 562607	2.65	-.II9992	. 45656 I	3.15	$-.306621$		3.65	$-.396020$. 074593
6	. 132711	. 561354	. 66	-. 124543	. 453625	. 16	-.309414	. 277326	. 66	-. 396745	. 07043 I
. 17	. 127104	. 560063	. 67	-. 129065	. 450660	. 17	-.312168	. 273348	. 67	-. 397429	. 066274
. 18	. 121509	. 558735	. 68	-. 133557	-447668	. 18	-.31488I	. 269358	. 68	-.398071	. 062122
. 19	.II5929	. 557368	. 69	-.138018	. 444648	. 19	-.317555	. 265356	. 69	-.39867I	. 057975
2.20	. 110362	. 555963	2.70	-.I42449	. 441601	3.20	-.320188	. 261343	3.70	-. 399230	. 053834
. 21	. 104810	. 55452 I	. 71	-. 146850	. 438528	. 21	-.322781	. 257319	. 71	-. 399748	. 049699
. 22	. 099272	. 55304 I	. 72	-. 151220	. 435428	. 22	-. 325335	. 253284	. 7	-. 400224	. 04557 I
.23	. 093749	-551524	. 73	-. 155559	. 432302	.23	-. 327847 .	. 249239 .	. 73	-. 400659	. 041450
. 24	. 088242	. 549970	. 74	-. 59866	. 429150	. 24	-.330319	. 245184	. 74	-.401053	.037336
2.25	. 082750	. 548378	2.75	-.164141	. 425972	3.25	-.332751.		3.75	-. 401406	. 033229
. 26	. 077274	. 546750	. 76	-.168385	. 422769	. 26	$-.335142$. 237046	. 76	-.401718	.02913I
. 27	. 071815	. 545085	. 77	-. 172597	-41954	. 27	-.337492	. 232963	. 77	-.401989	. 025040
.28	. 066373	. 543384	. 78	-. 176776	. 416288		-.339801.	. 228871	.78	$-.402219$.020958
. 29	. 060947	-541646	. 79	-.180922	.41301 I	. 29	-.342069.	.22477I	. 79	$-.402408$. 016885
2.30	. 055540	. 539873	2.80	-.185036	. 409709	3.30	-.344296	. 220663	3.80	-. 402556	. 012821
. 31	. 050150	. 538063	. 8 I	-.189117	. 406384	. 31	-. 346482	. 216548	. 8 I	-. 402664	.008766
- 32	. 044779 .	. 536217	. 82	-.193164	-403035	- 32	-.348627	. 212425	. 82	-. 402732	. 004722
- 33	.039426	- 534336	. 83	-.197177	-399662	$\cdot 33$	-.35073 1 .	. 208296	. 83	-. 402759	. 000687
- 34	.034092	-532419	. 84	-.201157.	. 396267	- 34	-.352793	. 204160	. 84	$-.402746$	-.003337
2.35	. 028778 .	. 530467	2.85	-. 205102	- 392849	3.35	-.354814	. 200018	3.85	-.402692	-. 007350
-36	.023483.	-528480	. 86	-.209014	- 389408	. 36	-.356793.	. 195870	. 86	-. 402599	-. O11352
-37	. 018208	. 526458	. 87	-. 212890	. 385945		-.358731.	.191716	. 87	-. 402465	-. O1 5343
. 38	. 012954.	-524402	. 88	-.216733.	-38246I	. 38	-.360628	.187557	. 88	-.402292	-. 019322
. 39	. 007720	. 5223 I I	. 89	-. 220540	. 378955	- 39	-.362482 .	. 183394	. 89	-.402079	-. 023289
2.40	. 002508	. 520185	2.90	224312	-375427	3.40	-. 364296	. 779226	3.90	-.401826	-. 027244
. 41	-.002683	-518026	-9	-. 228048	-371879		-. 366067.	. 175054	. 91	-.401534	$-.031186$
	-.007853	. 515833	-92	-. 231749	-368311		-. 367797 .	. 170878	. 92	-. 401202	-.035115
$\cdot 43$. 013000	. 513606	. 93	$-.235414$	$.364722$		$-.369485 \mid$	$.166699$. 93	-.400832	-.039031
	25	-5 I 1346	. 94	-. 239043	-361113	. 44	$-.371 \mathrm{I} 3 \mathrm{I}$.162516	. 94	$-.400422$	-. 042933
2.	-. 023227	-509052	2.95	-. 242636	. 357485	3.45	-. 372735	. 15833 I	3.95	-. 399973	-. 04682 I
	-. 028306	. 506726	. 96	-.246193	. 353837	. 46	-. 374297 .	.154144	. 96	-. 399485	-. 050695
.47	-.033361	-504366	. 97	-. 249713	-350170	. 47	$-.375818$. 149954	. 97	-. 398959	-. 054555
. 48	-. 038393	-501974	. 98	$-.253196$	-346484	$.48$	$-.377296$	$.145763$. 98	$-.398394$	-. 058400
. 49	43401	. 499550	-99	-. 256643	-342781	. 49	-. 378733 .	.141571	. 99	-.397791	-. 062229
2.50	$-.048384$. 497094	3.00	$-.260052$. 339059	3.50	-.380128	. 137378	4.00	-.397150	. 066043

TABLE 35. - 4-place Values for $x=4.0$ to 15.0 .

x	$J_{0}(x)$	$J_{1}(x)$	x	$J_{0}(x)$	$J^{\prime}(x)$
4.0	- - . 3972	-. 0660		-. 1939	+. 1613
,	1 -.3887	$-.1033$		-. 2090	. 1395
	-. 3766	-. I386		-. 2218	. 1166
3	$3-.3610$	-. 1719		$-.2323$. 0928
. 4	$4-.3423$	-. 2028	. 9	-. 2403	. 0684
	$5-.3205$	-. 23 II	10.0	-. 2459	. 0435
. 6	6-. 2961	-. 2566	-	-. 2490	+. 0184
	7-. 2693	-. 279 I	. 2	-. 2496	-. 0066
	8-. 2404	$-.2985$		-. 2477	-.0313
. 9	9-. 2097	-. 3147	. 4	-. 2434	-. 0555
5.0	- - 1776	-. 3276	10.5	-. 2366	$-.0789$
.	I - . 4443	-. 3371	. 6	-. 2276	-. IOI 2
. 2	-. 1103	-. 3432	. 7	-. 2164	-. 1224
$\cdot 3$	3-.0758	-. 3460		-. 2032	-. 1422
4	4-.0412	-. 3453	. 9	-. 1881	-. 1603
$5 \cdot 5$	5-.0068	-. 3414	1.0	-. 1712	-. I768
. 6	+ +.0270	-. 3343	1	-. I5 28	-. 1913
. 7	7 . 0599	-. 324 I	-	-. 1330	-. 2039
. 8	8.0917	-.3110	$\cdot 3$	- . II 21	-. 2143
-9	9 . 1220	-. 2951		-. 0902	-. 2225
6.0	- . 1506	-. 2767	II 5	-. 0677	-. 2284
. I	. 1773	-. 2559	. 6	-. 0446	-. 2320
. 2	2.2017	-. 2329		-. 0213	-. 2333
- 3	3.2238	-. 208I	. 8	20	-. 2323
. 4	4.2433	18	. 9	. 0250	-. 2290
6.5	5 . 2601	-. 1538	12.0	. 0477	-. 2234
. 6	6 . 2740	-. 1250	. 1	. 0697	-. 2157
- 7	7.285 I	-. 0953	. 2	. 0908	-. 2060
. 8	8.2931	-. 0652	- 3	. 1108	- . 1943
. 9	9 . 298I	-. 0349	. 4	. 1296	-. 1807
7.0	- .3001	-. 0047	12.5	. 1469	-. 1655
. I	. 2991	+.0252	. 6	. 1626	-. 1487
. 2	2 . 2951	. 0543	. 7	. 1766	-. I307
- 3	3.2882	. 0826	. 8	. 1887	-. III4
. 4	4.2786	. 1096	. 9	. 1988	-. 0912
$7 \cdot 5$	5 . 2663	. 1352	13.0	. 2069	-. 0703
. 6	6.2516	. 1592	. 1	. 2129	-. 0489
- 7	7 . 2346	.18I3	. 2	. 2167	-. 027 I
. 8	8 . 2154	. 2014	$\cdot 3$. 2183	-.0052
-9	9 . 1944	. 2192	. 4	. 2177	+.0166
8.0	- 1717	. 2346	13.5	. 2150	. 0380
. 1	1.1475	. 2476	. 6	. 2101	. 0590
. 2	. 1222	. 2580	- 7	. 2032	. 0791
- 3	3 .0960	. 2657	. 8	. 1943	. 0984
. 4	4.0692	. 2708	. 9	. 1836	. 1165
8.5	5 .0419	. 2731	14.0	. 1711	. 1334
. 6	$6 . .0146$. 2728	. 1	. 1570	. 1488
	$7-.0125$. 2697	. 2	. 1414	. 1626
	8-.0392	. 2641	. 3	. 1245	. 1747
	9-.0653	. 2559	. 4	. 1065	. 1850
	-0-.0903	. 2453	14.5	. 0875	. 1934
	$1-.1142$. 2324	. 6	. 0679	. 1999
	$2-.1367$. 2174	. 7	. 0476	. 2043
	$3-.1577$. 2004	. 8	. 0271	. 2066
	$4-.1768$. 1816	. 9	. 0064	. 2069
$9 \cdot 5$	$5-.1939$. 1613	I5.0	-. 0142	. 2051

TABLE 36. - Roots.
(a) ist Io roots of $J_{0}(x)=0$

Higher roots may be calculated to better than I part in 10,000 by the approximate formula
$R_{m}=R_{m-1}+\pi$
$R_{1}=2.404826$
$R_{2}=5.520078$
$R_{3}=8.653728$
$R_{4}=$ II. 791534
$R_{5}=14.930918$
$R_{6}=18.071064$
$R_{7}=21.211637$
$R_{8}=24.352472$
$R_{9}=27.493479$
$R_{10}=30.634606$
(b) Ist I_{5} roots of $J_{1}(x)=\frac{d J_{0}(x)}{d x}=0$ with corresponding values of maximum or or minimum values of $J_{6}(x)$.

No. of root (n)	Root $=x_{n}$.	$J_{0}\left(x_{n}\right)$.
I	3.831706	-. 402759
2	7.015587	$+.300116$
3	10.173468	-. 249705
4	13.323692	+.218359
5	16.470630	-. 196465
6	19.615859	+. 180063
7	22.760084	-. 167185
8	25.903672	+.156725
9	29.046829	-. 148011
10	32.189680	+. 140606
II	35.332308	-. I342II
12	38.474766	+.128617
13	41.617094	-. 123668
14	44.759319	+.119250
15	47.901461	-. II5274

Higher roots may be obtained as under (a).
Notes. $y=J_{n}(x)$ is a particular solution of Bessel's equation,

$$
x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+\left(x^{2}-n^{2}\right) y=0
$$

The general formula for $J_{n}(x)$ is
or

$$
\begin{aligned}
J_{n}(x) & =\sum_{0}^{\infty} \frac{(-1)^{s} x^{n+2 s}}{2^{n+2 s} \pi s} \pi(n+s) \\
& =\sum_{0}^{\infty} \frac{(-1)^{8} x^{n+2 s}}{2^{n+2 s} s!(n+s)!}
\end{aligned}
$$

when n is an integer and
and

$$
J_{n+1}(x)=\frac{2 n}{x} J_{n}(x)-J_{n-1}(x),
$$

$$
J_{1}(x)=\frac{d J_{0}(x)}{d x}
$$

$$
J_{-n}(x)=(-\mathrm{I})^{n} J_{n}(x)
$$

Tables 35 to 36 are based upon Gray and Matthews' reprints from Dr. Meissel's tables. See also Reports of British Association, 1907-1916.

ELLIPTIC INTEGRALS.

Values of $\int_{0}^{\frac{\pi}{2}}\left(1-s \sin ^{2} \theta \sin ^{2} \phi\right)^{ \pm \frac{1}{2}} d \phi$.
This table gives the values of the integrals between o and $\pi / 2$ of the function $\left(1-\sin ^{2} \theta \sin ^{2} \phi\right)^{ \pm \frac{1}{2}} d \phi$ for different val.
ues of the modulus corresponding to each degree of θ between o and 90 .

θ	$\int_{0}^{\frac{\pi}{2}} \frac{d \phi}{\left(1-\sin ^{2} \theta \sin ^{2} \phi^{\frac{1}{2}}\right.}$		$\int_{0}^{\bullet \frac{\pi}{2}}\left(\mathrm{I}-\sin ^{2} \theta \sin ^{2} \phi\right)^{\frac{1}{2}} d \phi$		θ	$\int_{0}^{\frac{\pi}{2}} \frac{d \phi}{\left(1-\sin ^{2} \theta \sin ^{2} \phi\right)^{\frac{2}{2}}}$		$\int_{0}^{\frac{\pi}{2}}\left(1-\sin ^{2} \theta \sin ^{2} \phi\right)^{\frac{1}{3}} d \phi$	
	Number.	Log.	Number.	Log.		Number.	Log.	Number.	Log.
0°	1.5708	0.196120	I. 5708	0.196120	45°	I. 854 I	0.268127	I. 3506	0.130541
1	5709	196153	5707	196087	6	8691	271644	3418	127690
2	5713	196252	5703	195988	7	8848	275267	3329	124788
3	5719	196418	5697	195822	8	9011	279001	3238	121836
4	5727	196649	5689	195591	9	9180	282848	3147	I 18836
5°	1. 5738	0.196947	I. 5678	0.195993	50°	I. 9356	0.28681 I	I. 3055	0.115790
6	5751	197312	5665	194930	1	9539	290895	2963	I 12698
7	5767	197743	5649	194500	2	9729	295101	2870	109563
8	5785	198241	5632	194004	3	9927	$299+35$	2776	106386
9	5805	198806	5611	193442	4	2.0133	303901	2681	103169
10°	1.5828	0.199438	1. 5589	0.192815	55°	2.0347	0.308504	1. 2587	0.099915
1	5854	200137	5564	192121	6	0571	313247	2492	096626
2	5882	200904	5537	191362	7	0804	318138	2397	093303
3	5913	201740	5507	190537	8	1047	323182	2301	089950
4	5946	202643	5476	189646	9	1300	328384	2206	086569
15°	1.598I	0.203615	1. 5442	0.188690	60°	2.1565	0.333753	1.2111	0.083164
6	6020	204657	5405	187668	I	1842	339295	2015	079738
7	6061	205768	5367	18658 I	2	2132	345020	1920	076293
8	6105	206948	5326	185428	3	2435	350936	1826	072834
9	6151	208200	5283	184210	4	2754	357053	1732	069364
20°	1.6200	0.209522	I. 5238	0.182928	65°	2.3088	0.363384	1.1638	0.065889
I	6252	210916	5191	181580	6	3439	369940	1545	062412
2	6307	212382	5141	180163	7	3809	376736	1453	058937
3	6365	213921	5090	178691	8	4198	383787	1362	055472
4	6426	215533	5037	177150	9	4610	391112	1272	-52020
25°	1. 6490	0.217219	I.498I	0.175545	70°	2.5046	0.398730	I. 1184	0.048589
6	6557	218981	4924	173876	I	5507	406665	1096	$045{ }^{183}$
7	6627	220818	4864	172144	2	5998	$4149+3$	1011	041812
8	6701	222732	4803	170348	3	652 I	423596	0927	038481
9	6777	224723	4740	168489	4	7081	432660	0844	035200
30°	1. 6858	0.226793	1. 4675	0.166567	75°	2.7681	0.442176	1.0764	0.031976
1	6941	228943	4608	164583	6	8327	452196	0686	028819
2	7028	231173	4539	162537	7	9026	462782	0611	025740
3	7119	233485	4469	160429	8	9786	474008	0538	022749
4	7214	235880	4397	158261	9	3.0617	485967	0468	019858
35°	1.7312	0.238359	I. 4323	0.156031	80°	3.1534	0.498777	I. 0401	0.017081
6	7415	240923	4248	I 53742	1	2553	512591	0338	OI 4432
7	7522	243575	4171	151393	2	3699	527613	0278	OII927
8	7633	246315	4092	148985	3	5004	544120	0223	009584
9	7748	249146	4013	146519	4	6519	562514	0172	007422
40°	I. 7868	0.252068	I. 393 I	0. 143995	85 ${ }^{\circ}$	3.8317	0.583396	1. 0127	0.005465
1	7992	255085	3849	141414	6	4.0528	607751	0086	003740
2	8122	258197	3765	138778	7	3387	637355	0053	002278
3	8256	261406	3680	136086	8	7427	676027	0026	001121
4	8396	264716	3594	133340	9	5.4349	735192	0008	000326
45°	I. 8541	0.268127	I. 3506	0.130541	90°	∞	∞	1.0000	

MOMENTS OF INERTIA, RADII OF GYRATION, AND WEIGHTS.

In each case the axis is supposed to traverse the centre of gravity of the body. The axis is one of symmetry. The mass of a unit of volume is v.

Body.	Axis.	Weight.	Moment of Inertia I_{0}.	Square of Radius of Gyration ρ_{0}^{2}.
Sphere of radius r	Diameter	$\frac{4 \pi z u r^{3}}{3}$	$\frac{8 \pi z u r^{5}}{15}$	$\frac{2 r^{2}}{5}$
Spheroid of revolution, polar axis $2 a$, equatorial diameter $2 r$	Polar axis	$\frac{4 \pi w a r^{2}}{3}$	$\frac{8 \pi w a r^{4}}{\text { I5 }}$	$\frac{2 r^{2}}{5}$
Ellipsoid, axes $2 a, 2 b, 2 c$	Axis 2a	$\frac{4 \pi w a b c}{3}$	$\frac{4 \pi z v a b c\left(b^{2}+c^{2}\right)}{15}$	$\frac{b^{2}+c^{2}}{5}$
Spherical shell, external radius r, internal r^{\prime}	Diameter	$\frac{\begin{array}{c} 3 \\ 4 \pi \pi\left(r^{3}-r^{\prime 3}\right) \end{array}}{3}$	$\frac{\begin{array}{c} I 5 \\ \\ 8 \pi w\left(r^{5}-r^{\prime 5}\right) \end{array}}{I 5}$	$\frac{2\left(r^{5}-r^{\prime 5}\right)}{5\left(r^{3}-r^{\prime 3}\right)}$
Ditto, insensibly thin, radius r, thickness $d r$	Diameter	$4 \pi z u r^{2} d r$	$\frac{8 \pi w r^{4} d r}{3}$	$\frac{2 r^{2}}{3}$
Circular cylinder, length $2 a$, radius r	Longitudinal axis $2 a$	$2 \pi w a r^{2}$	$\pi w a r^{4}$	$\frac{r^{2}}{2}$
Elliptic cylinder, length $2 a$, transverse axes $2 b, 2 c$	Longitudinal axis $2 a$	$2 \pi z w a b c$	$\frac{\pi w a b c\left(b^{2}+c^{2}\right)}{2}$	$\frac{b^{2}+c^{2}}{4}$
Hollow circular cylinder, length $2 a$, external radius r, internal r^{\prime}	Longitudinal axis $2 a$	$2 \pi w a\left(r^{2}-r^{\prime 2}\right)$	$\pi w a\left(r^{4}-r^{4}\right)$	$\frac{r^{2}+r^{\prime 2}}{2}$
Ditto, insensibly thin, thickness $d r$	Longitudinal axis $2 a$	4π ruardr	$4 \pi w a r^{3} d r$	r^{2}
Circular cylinder, length $2 a$, radius r	Transverse diameter	$2 \pi w a r^{2}$	$\frac{\pi z a r^{2}\left(3 r^{2}+4 a^{2}\right)}{6}$	$\frac{r^{2}}{4}+\frac{a^{2}}{3}$
Elliptic cylinder, length $2 a$, transverse axes $2 a, 2 b$	Transverse axis $2 b$	$2 \pi w a b c$	$\frac{\pi w a b c\left(3 c^{2}+4 a^{2}\right)}{6}$	$\frac{c^{2}}{4}+\frac{a^{2}}{3}$
Hollow circular cylinder, length $2 a$, external radius r, internal r^{\prime}	Transverse diameter	$2 \pi \tau v a\left(r^{2}-r^{\prime 2}\right)$	$\frac{\pi z a}{6}\left\{\begin{array}{c} 3\left(r^{4}-r^{\prime 4}\right) \\ +4 a^{2}\left(r^{2}-r^{\prime 2}\right) \end{array}\right\}$	$\frac{r^{2}+r^{\prime 2}}{4}+\frac{a^{2}}{3}$
Ditto, insensibly thin, thickness $d r$	Transverse diameter	4π wardr	$\pi w a\left(2 r^{3}+\frac{4}{3} a^{2} r\right) d r$	$\frac{r^{2}}{2}+\frac{a^{2}}{3}$
Rectangular prism, dimensions $2 a, 2 b, 2 c$	Axis $2 a$	Swabc	$\frac{8 w a b c\left(b^{2}+c^{2}\right)}{3}$	$\frac{b^{2}+c^{2}}{3}$
Rhombic prism, length $2 a$, diagonals $2 b, 2 c$	Axis $2 a$	$4 w a b c$	$2 w a b c\left(b^{2}+c^{2}\right)$	$\frac{b^{2}+c^{2}}{6}$
Ditto	Diagonal $2 b$	$4 w a b c$	$\frac{2 w a b c\left(c^{2}+2 a^{2}\right)}{3}$	$\frac{c^{2}}{6}+\frac{a^{2}}{3}$

(Taken from Rankine.)

For further mathematical data see Smithsonian Mathematical Tables, Becker and Van Orstrand (Hyperbolic, Circular and Exponential Functions); Functionentafeln, Jahnke und Emde (xtgx, $x^{-1} \operatorname{tgx}$, Roots of Transcendental Equations, $a+b i$ and $r^{\vartheta i}$, Exponentials, Hyperbolic Functions, $\int_{0}^{x} \frac{\sin u}{u} d u, \int_{x}^{+\infty} \frac{\cos u}{u} d u, \int_{\infty}^{-x} \frac{e^{-u}}{u} d u$, Fresnel Integral, Gamma Function, Gauss Integral $\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-x^{2}} d x$, Pearson Function $e^{-\frac{1}{2} \pi \nu} \int_{0}^{\pi} \sin r \mathrm{e}^{\nu x} d x$, Elliptic Integrals and Functions, Spherical and Cylindrical Functions, etc.). For further references see under Tables, Mathematical, in the IIthed. Encyclopædia Britannica. See also Carr's Synopsis of Pure Mathematics and Mellor's Higher Mathematics for Students of Chemistry and Physics.
Smithsonian tables.

Table 39.
INTERNATIONAL ATOMIC WEIGHTS. VALENCIES.
The International Atomic Weights are quoted from the report of the International Committee on Atomic Weights (Journal American Chemical Society, 39, 42, p. 9, 1920).

Substance.	Symbol.	Relative atomic wt. Oxygen $=16$.	Valency.	Substance.	Symbol.	Relative atomic wt. Oxygen $=16$.	Valency.
Aluminum	Al	27.1	3.	Mercury	Hg	200.6	I, 2.
Antimony	Sb	120.2	3, 5.	Molybdenum	Mo	96.0	4,6.
Argon.	A	39.9	0.	Neodymium	Nd	144.3	3.
Arsenic	As	74.96	3, 5.	Neon	Ne	20.2	0.
Barium	Ba	1 37.37	2.	Nickel	Ni	58.68	2,3 .
Bismuth	Bi	208.0	3, 5.	Niton(Raeman-	Nt .	222.4	-
Boron	B	10.9	3.	Nitrogen	N	14.008	3, 5.
Bromine	Br	79.92	1.	Osmium	Os	190.9	6,8.
Cadmium	Cd	112.40	2.	Oxygen	O	16.00	2.
Cæsium	Cs	132.81	I.	Palladium	Pd	106.7	2, 4 .
Calcium	Ca	40.07	2.	Phosphorus	P	31.04	3, 5 .
Carbon	C	12.005	4.	Platinum	Pt	195.2	2, 4.
Cerium	Ce	140.25	3, 4.	Potassium	K	39.10	1.
Chlorine	${ }^{\mathrm{Cl}}$	35.46	I.	Praseodymium	Pr	140.9	3.
Chromium	Cr	52.0	2, 3, 6.	Radium	Ra	226.0	2.
Cobalt	Co	58.97	2, 3 .	Rhodium	Rh	102.9	3.
Columbium	Cb	93.1	5.	Rubidium	Rb	85.45	1.
Copper	Cu	63.57	I, 2.	Ruthenium	Ru	101.7	6, 8.
Dysprosium	Dy	162.5	3.	Samarium	Sa	150.4	3.
Erbium	Er	167.7	3.	Scandium	Sc	45.1	3.
Europium	Eu	152.0	3.	Selenium	Se	79.2	2, 4, 6.
Fluorine	F	19.0	1.	Silicon	Si	28.3	
Gadolinium	Gd	157.3	3.	Silver	Ag	107.88	1.
Galliumı	Ga	70.1	3.	Sodium	Na	23.00	1.
Germanium	Ge	72.5	4.	Strontium	Sr	87.63	2.
Glucinum	Gl	9.1	2.	Sulphur	S	32.06	2, 4, 6 .
Gold	Au	197.2	I, 3 .	Tantalum	Ta	181.5	
Helium	He	4.00	o.	Tellurium	Te	127.5	2, 4, 6.
Holmium	Ho	163.5	3.	Terbium	Tb	159.2	
Hydrogen	H	1.008	1.	Thallium	Tl	204.0	1,3.
Indium	In	114.8		Thorium	Th	232.15	4.
Iodine	I	126.92	I.	Thulium	Tm	168.5	3.
Iridium	Ir	193.1	4.	Tin	Sn	118.7	2, 4 .
Iron	Fe	55.84	2, 3 .	Titanium	'Ti	48.I	4.
Krypton	Kr	82.92	o.	Tungsten Uranium	W	184.0	6. $4,6$.
Lanthanum	La	139.0	3.				
Lead	Pb	207.20	2, 4 .	Vanadium	V	51.0	3, 5 .
Lithium	Li	6.94	I.	Xenon	Xe	130.2	0.
Lutecium		175.0	3.	Ytterbium:	Yb	173.5	3.
Magnesium	$\mathrm{Mg}^{\mathrm{Mg}}$	24.32	2.	Yttrium	Yt	89.33	3.
Manganese	Mn	54.93	2, 3, 7 .	Zinc Zirconium	Zn Zr	$\begin{aligned} & 65 \cdot 37 \\ & 90.6 \end{aligned}$	2.

Smithsonian Tables.

VOLUME OF A GLASS VESSEL FROM THE WEIGHT OF ITS EQUIVALENT VOLUME OF MERCURY OR WATER.

If a glass vessel contains at $t^{\circ} \mathrm{C}, P$ grammes of mercury, weighed with brass weights in air at 760 mm . pressure, then its volume in c. cm .
at the same temperature, $t,: V=P R=P \frac{p}{d}$,
at another temperature, $t_{1},: V=P R_{1}=P p / d\left\{\mathrm{I}+\gamma\left(t_{1}-t\right)\right\}$
$p=$ the weight, reduced to vacuum, of the mass of mercury or water which, weighed with brass weights, equals 1 gram ;
$d=$ the density of mercury or water at $t^{\circ} \mathrm{C}$,
and $\gamma=0.000025$, is the cubical expansion coefficient of glass.

$\begin{aligned} & \text { Temper- } \\ & \text { ature } \end{aligned}$	WATER.			MERCURY.		
	${ }^{*}$.	$R_{1}, t_{1}=10^{\circ}$.	$R_{1}, t_{1}=20^{\circ}$.	R.	$R_{1}, t_{1}=10^{\circ}$.	$R_{1}, t_{1}=20^{\circ}$.
0°	1.001192	1.001443	1.001693	0.0735499	0.0735683	0.0735867
1	1133	1358	1609	5633	5798	5982
2	1092	1292	I 542	5766	5914	6098
3	1068	1243	1493	5900	6029	6213
4	1060	1210	1460	6033	6144	6328
5	1068	1193	1443	6167	6259	6443
6	1.001092	1.001192	1.001442	0.0736301	0.0736374	0.0736558
	1131	1206	1456	6434	6490	6674
8	1184	1234	1485	6568	6605	6789
9	1253	1277	1527	6702	6720	6904
10	${ }^{1} 333$	1333	1584	6835	6835	7020
11	1.001428	1.001 403	1.001 653	0.0736969	0.0736951	0.0737135
12	1536	1486	1736	7103	7066	7250
13	1657	1582	1832	7236	7181	7365
14	1790	1690	1940	7370	7297	7481
15	1935	ISIO	2060	7504	7412	7596
16	1.002092	1.001942	1.002193	0.0737637	0.0737527	0.0737711
17	2261	2086	2337	- 7771	7642	7826
18	2441	22.15	2491	7905	7757	7941
19	2633	2407	2658	So39	7872	8057
20	2835	2584	2835	8172	7988	8172
21	1.003048	1.002772	1.003023	0.0738306	0.0738103	0.0738288
22	3271	2970	3220	8440	8218	8403
23	3504	3178	3429	8573	8333	8518
24	3748	3396	3647	8707	8449	8633
25	4001	3624	3875	8841	8564	8748
26	1.004264	1.003862	I.004113	0.0738974	0.0738679	0.0738864
27	4537	4110	4361	9108	8794	8979
28	4818	4366	4616	9242	8910	9094
29	5110	4632	4884	9376	9025	9210
30	5410	4908	5159	9510	9140	9325

Taken from Landolt, Börnstein, and Meyerhoffer's Physikalisch-Chemische Tabellen.

Smithsonian Tables.

REDUCTIONS OF WEIGHINGS IN AIR TO VACUO.
table 41.
When the weight M in grams of a body is determined in air, a correction is necessary for the buoyancy of the air equal to $M \delta\left(\mathrm{I} / \mathrm{d}-\mathrm{I} / \mathrm{d}_{1}\right)$ where $\delta=$ the density (wt . of Icm in grams $=0.0012$) of the air during the weighing, d the density of the body, d_{1} that of the weights. δ for various barometric values and humidities may be determined from Tables 153 to 155. The following table is computed for $\delta=0.0012$. The corrected weight $=\mathrm{M}+\mathrm{kM} / \mathrm{r} 000$.

Density of body weighed d.	Correction factor, k .			Density of body weighed d.	Correction factor, k .		
	Pt. Ir. weights $\mathrm{d}_{1}=2 \mathrm{t} .5$.	Brass weights 8.4 .	Quartz or A. weights 2.65.		$\begin{gathered} \text { Pt. Ir. } \\ \text { weights } \\ \mathrm{d}_{1}=2 \mathrm{I} .5 . \end{gathered}$	Brass weights 8.4 .	$\begin{aligned} & \text { Quartz or } \\ & \text { Al. weights } \\ & 2.65 \text {. } \end{aligned}$
. 5	+2.34	+ 2.26	+1.95	1.6	$+0.69$	+0.6r	$+0.30$
. 6	+1.91	+ 1.86	+1.55	1.7	$+.65$	+ 56	+.25
$\cdot 7$	+1.66	$+1.57$	+1.26	1.8	+ . 62	$+.52$	$+.2 \mathrm{I}$
.75	+1.55	+1.46	+1.15	1.9	$+.58$	$+.49$	+ .18
. 80	+1.44	+1.36	+1.05	2.0	+ . 54	$+.46$	+.15
. 85	$+1.36$	+1.37	+ 0.96	2.5	+ +.43	+ 34	$+.03$
. 90	+1.28	+1.19	+ . 88	3.0	+ . 34	+. 26	-. 05
. 95	+1.21	+1.12	$+.88$	4.0	+ .24	$+.16$	-. 15
1.00	+1.14	+1.06	-. 75	6.0	+.14	+..06	-. 25
I.I	+1.04	+ 0.95	-. 64	8.0	$+. .09$	+ . O	-. 30
1.2	+0.94	+ . 86	. 55	10.0	$+.06$	-. .02	-. 33
1.3	$+.87$	$+.78$	- . 47	15.0	$+. .03$	- . 06	-. 37
1.4	-. .8o	+ .71	-. 40	20.0	$+.004$	-.08	-. 39
1.5	+.75	$+.66$	-. 35	22.0	-.001	- . 09	-. 40

TABLE 42.-Reductions of Densities in Air to Vacuo.

(This correction may be accomplished through the use of the above table for each separate weighing.)

If s is the density of the substance as calculated from the uncorrected weights, S its true density, and L the true density of the liquid used, then the vacuum correction to be applied to the uncorrected density, s, is 0.0012 ($\mathrm{I}-\mathrm{s} / \mathrm{L}$).

Let $\mathrm{W}_{\mathrm{s}}=$ uncorrected weight of substance, $\mathrm{W}_{l}=$ uncorrected weight of the liquid displaced by the substance, then by definition, $\mathrm{s}=\mathrm{LW}_{\mathrm{s}} / \mathrm{W}_{1}$. Assuming D to be the density of the balance of weights, $\mathrm{V}_{\mathrm{s}}\{\mathrm{I}+0.0012(\mathrm{I} / \mathrm{S}-\mathrm{I} / \mathrm{D})\}$ and $\mathrm{W}_{1}\{1+0.0012(1 / \mathrm{L}-\mathrm{I} / \mathrm{D})\}$ are the true weights of the substance and liquid respectively (assuming that the weighings are made under normal atmospheric corrections, so that the weight of I cc. of air is 0.0012 gram).
Then the true density $\mathrm{S}=\frac{\mathrm{W}_{\mathrm{s}}\{\mathrm{I}+0.0012(\mathrm{I} / \mathrm{S}-\mathrm{I} / \mathrm{D})\}}{\mathrm{W}_{1}\{\mathrm{I}+0.0012(\mathrm{I} / \mathrm{L}-\mathrm{I} / \mathrm{D})\}} \mathrm{L}$.
But from above $\mathrm{W}_{\mathrm{s}} / \mathrm{W}_{1}=\mathrm{s} / \mathrm{L}$, and since L is always large compared with 0.0012 ,

$$
\mathrm{S}-\mathrm{s}=0.0012(\mathrm{r}-\mathrm{s} / \mathrm{L}) .
$$

The values of $0.0012(1-s / L)$ for densities up to 20 and for liquids of density 1 (water), 0.852 (xylene) and 13.55 (mercury) follow:
(See reference below for discussion of density determinations).

Density of substance s.	Corrections.			Density of substance s	Corrections.	
	$\mathrm{L}=\mathrm{I}$ Water.	$\begin{aligned} & \mathrm{L}=0.852 \\ & \text { Xylene. } \end{aligned}$	$\begin{aligned} & \mathrm{L}=13.55 \\ & \text { Mercury. } \end{aligned}$		$\mathrm{L}=\mathrm{I}$ Water.	$\begin{aligned} & L=13.55 \\ & \text { Mercury. } \end{aligned}$
0.8	$+0.00024$	-	-	II.	-0.0120	$+0.0002$
0.9	$+.00012$	-	-	12.	-.0132	+ .0001
1.	0.0000	-0.0002	+0.0011	13.	-. .0144	0.0000
2.	-.OOI 2	-.0016	$+.0010$	14.	-. .OI 56	0.0000
3.	-. .0024	-. .0030	$+.0009$	15.	-. .0168	-. .0001
4.	- . 0036	-. .0044	+ .0008	16.	-. .0180	-. 0002
5.	-. .0048	-. .0058	+ .0008	17.	-. .OI92	-. .0003
6.	-. .0060	-. 0073	+.0007	18.	-. .0204	-. .0004
7.	-. 0072	-. 0087	$+.0006$	19.	-. .0216	-. .0005
8.	-..0084	-.oror	$+.0005$	20.	-. 0228	-. .0006
9.	-. .0096	-.OII5	$+.0004$			
10.	-..0108	-.0129	+..0003			

* Compiled from various sources by Harvey A. Anderson, C.E., Assistant Engineer Physicist, U. S. Bureau of Standards.

The mechanical properties of most materials vary between wide limits; the following figures are given as being representative rather than what may be expected from an individual sample. Figures denoting such properties are commonly given either as specification or experimental values. Unless otherwise shown, the values below are experimental. Credit for information included is due the U. S. Bureau of Standards; the Am. Soc. for Testing Materials; the Soc. of Automotive Eng.; the Motor Transport Corps, U.S. War Dept.; the Inst. of Mech. Eng.; the Inst. of Metals; Forest Products Lab.; Dept. of Agriculture (Bull. 556); Moore's Materials of Engineering; Hatfield's Cast Iron; and various other American, English and French authorities.

The specified properties shown are indicated minimums as prescribed by the Am. Soc. for Testing Materials, U. S. Navy Dept., Panama Canal, Soc. of Automotive Eng., or Intern. Aircraft Standards Board. In the majority of cases, specifications show a range for chemical constituents and the average value only of this range is quoted. Corresponding average values are in general given for mechanical properties. In general, tensile test specimens were 12.8 mm (0.505 in .) diameter and 50.8 mm (2 in .) gage length. Sizes of compressive and transverse specimens are generally shown accompanying the data.

All data shown in these tables are as determined at ordinary room temperature, averaging $20^{\circ} \mathrm{C}$ ($68^{\circ} \mathrm{F}$.). The properties of most metals and alloys vary considerably from the values shown when the tests are conducted at higher or lower temperatures.

The following definitions govern the more commonly confused terms shown in the tables. In all cases the stress referred to in the definitions is equal to the total load at that stage of the test divided by the original cross-sectional area of the specimen (or the corresponding stress in the extreme fiber as computed from the flexure formula for transverse tests).

Proportional Limit (abbreviated P-limit). - Stress at which the deformation (or deflection) ceases to be proportional to the load (determined with extensometer for tension, compressometer for compression and deflectometer for transverse tests).

Elastic Limit. - Stress which produces a permanent elongation (or shortening) of o.oor per cent of the gage length, as shown by an instrument capable of this degree of precision (determined from set readings with extensometer or compressometer). In transverse tests the extreme fiber stress at an appreciable permanent deflection.

Yield Point. - Stress at which marked increase in deformation (or deflection) of specimen occurs without increase in load (determined usually by drop of beam or with dividers for tension, compression or transverse tests).

Ultimate Strength in Tension or Compression. - Maximum stress developed in the material during test.
Modulus of Rupture. - Maximum stress in the extreme fiber of a beam tested to rupture, as computed by the empirical application of the flexure formula to stresses above the transverse proportional limit.

Modulus of Elasticity (Young's Modulus). - Ratio of stress within the proportional limit to the corresponding strain, - as determined with an extensometer. Note: All moduli shown are obtained from tensile tests of materials, unless otherwise stated.

Brinell Hardness Numeral (abbreviated B. h. n.). - Ratio of pressure on a sphere used to indent the material to be tested to the area of the spherical indentation produced. The standard sphere used is a romm diameter hardened steel ball. The pressures used are 3000 kg for steel and 500 kg for softer metals, and the time of application of pressure is 30 seconds. Values shown in the tables are based on spherical areas computed in the main from measurements of the diameters of the spherical indentations, by the following formula:

$$
\text { B. h. n. }=P \div \pi t D=P \div \pi D\left(D / 2-\sqrt{D^{2} / 4-d^{2} / 4}\right)
$$

$P=$ pressure in $\mathrm{kg}, t=$ depth of indentation, $D=$ diameter of ball, and $d=$ diameter of indentation, - all lengths being expressed in mm . Brinell hardness values have a direct relation to tensile strength, and hardness determinations may be used to define tensile strengths by employing the proper conversion factor for the material under consideration.

Shore Scleroscope Hardness. - Height of rebound of diamond pointed hammer falling by its own weight on the object. The hardness is measured on an empirical scale on which the average hardness of martensitic high carbon steel equals roo. On very soft metals a "magnifier" hammer is used in place of the commonly used "universal" hammer and values may be converted to the corresponding "universal" value by multiplying the reading by ${ }_{7}^{4}$. The scleroscope hardness, when accurately determined, is an index of the tensile elastic limit of the metal tested.

Erichsen Value. - Index of forming quality of sheet metal. The test is conducted by supporting the sheet on a circular ring and deforming it at the center of the ring by a spherical pointed tool. The depth of impression (or cup) in mm required to obtain fracture is the Erichsen value for the metal. Erichsen standard values for trade qualities of soft metal sheets are furnished by the manufacturer of the machine corresponding to various sheet thicknesses. (See Proc. A. S. T. M. 17, part 2, p. 200, 1917.)

Alloy steels are commonly used in the heat treated condition, as strength increases are not commensurate with increases in production costs for annealed alloy steels. Corresponding strength values are accordingly shown for annealed alloy steels and for such steels after having been given certain recommended heat treatments of the Society of Automotive Engineers. The heat treatments followed in obtaining the properties shown are outlined on the pages immediately following the tables on steel. It will be noted that considerable latitude is allowed in the indicated drawing temperatures and corresponding wide variations in physical propertics may be obtained with each heat treatment. The properties vary also with the size of the specimens heat treated. The drawing temperature is shown with the letter denoting the heat treatment, wherever the information is available.

TABLE 44. - Ferrous Metals and Alloys - Iron and Iron Alloys.

Metal.	믈.		可: :				Hardness.		
							rine	Sclero-	
	Tension. $\mathrm{kg} / \mathrm{mm}^{2}$		Tension $\mathrm{lb} / \mathrm{in}^{2}$		Per cent.		kg	scope.	
Iron									
Electrolytic* (remelt): as forged....	34.0	38.5	48,500	55,000		83.0	$95{ }^{\dagger}$	18	
	12.5	27.0	18,000	38,000	52.0	87.0	$75 \dagger$		
Gray cast \ddagger (19 mm diam. bars) . . .	ndet.	$\left\{\begin{array}{l}17.5 \\ 26.5\end{array}\right.$	indet.	$\left\{\begin{array}{l}25,000 \\ 38,000\end{array}\right.$	negli	gible	$\left\{\begin{array}{l}100 \\ 150\end{array}\right.$	$\left\{\begin{array}{l}24 \\ 40\end{array}\right.$	
Malleable cast, American (after Hatfield)	\{ 14.0	$\{24.5$	20,000	\{35,000	$\{15.0$	$\{15.0$			
	31.5	40.0	45,000	\{57,000	$\{4.5$	4.5	-	-	
European (after Am. Malleable Castings Ass.) (run of 24 successive heats, 1919)§ Commercial wrought.	19:0	(29.5	27,000	$\{42,000$	6.0	\{ 6.0	-	-	
	\{28.0	\{45.5	40,000	\{65,000	$\{2.0$		-		
	-	40.8	-	58,000	21.6	-	-	-	
	$\left\{\begin{array}{l}19.5\end{array}\right.$	$\{34.0$	$\{28,000$	$\{48,000$	$\{40.0$	$\{45.0$		$\left\{\begin{array}{l}25 \\ \hline\end{array}\right.$	
Silicon alloys\|	Si 0.01 : as forged...	22.5	37.0	[32,000	[53,000	30.0	35.0		30
	29.5	31.5	41,800	45,200	35.0	78.0	-		
(Melted in vacuo) ann. $970^{\circ} \mathrm{C}$ (Note: C max. o.or per cent)	11.0	24.5	16,000	34,900	53.0	81.5	-	-	
(Note: C max. o.or per cent) Si 1.71 : as forged...	48.0	53.5	68,100	76,300	37.0	82.0	-	-	
Si 4.40 annealed $970^{\circ} \mathrm{C}$.	25.0	38.0	35,800	54,200	50.0	90.6	-	-	
Si 4.40 : as forged. . annealed $970^{\circ} \mathrm{C}$	66.0	74.0	94,000	105,000	6.0	$7 \cdot 5$	-	-	
	51.0	64.5	72,900	91,600	24.0	25.1		-	
Aluminum alloys \mathbb{T} Al 0.00 : as forged	35.5	38.5	50,700	54,700	26.0	84.3	-	-	
(Melted in vacuo) ann. $1000^{\circ} \mathrm{C}$ (Note: C max. o.or per cent)	12.5	24.5	17,600	34,900	60.0	93.5			
Al 3.08: as forged	48.0	54.5	68,200	77,500	21.	76.4	-	-	
A1 6.24 : as forged	22.5	37.5	31,800	53,400	51.0	85.3	-	-	
	54.5	60.5	77,700	86,000	28.0	74.7	-	-	
,	$37 \cdot 5$	49.0	53,400	69,800	27.0	55.5			

Composition, approximate:
Electrolytic, C 0.0125 per cent; other impurities less than 0.05 per cent.
Cast, gray: Graphitic, $\mathrm{C} 3.0, \mathrm{Si} 1.3$ to $2.0, \mathrm{Mn} 0.6$ to 0.9, S max. o.1, P max. I.2.
A. S. T. M. Spec. A48 to 18 allows S max. o.ro, except S max. o.1 2 for heavy castings.

Malleable: American "Black Heart," C 2.8 to 3.5, Si 0.6 to 0.8 , Mn max. $0.4, \mathrm{~S}$ max. 0.07 , P max. 0.2 .
European "Steely Fracture," C 2.8 to 3.5, Si 0.6 to 0.8, Mn 0.15, S max. 0.35, P max. 0.2.
Compressive Strengths [Specimens tested: 25.4 mm (I in .) diam. cylinders 76.2 mm (3 in.) long].
Electrolytic iron $56.5 \mathrm{~kg} / \mathrm{mm}^{2}$ or $80,000 \mathrm{ib} / \mathrm{in}^{2}$.
Gray and malleable cast iron 56.5 to $84.5 \mathrm{~kg} / \mathrm{mm}^{2}$ or 80,000 to $120,000 \mathrm{lb} / \mathrm{in}^{2}$.
Wrought iron, approximately equal to tensile yield point (slightly above P-limit).
Density:
Electrolytic iron............. $7.8 \mathrm{~g} / \mathrm{cm}^{3}$ or $487 \mathrm{lb} / \mathrm{ft}^{3}$ Malleable iron............... $7.6 \mathrm{~g} / \mathrm{cm}^{3}$ or $474 \mathrm{lb} / \mathrm{ft}^{3}$
Cast iron..................... $7.2 \mathrm{~g} / \mathrm{cm}^{3}$ or $449 \mathrm{lb} / \mathrm{ft}^{3}$ Wrought iron................. $7.85 \mathrm{~g} / \mathrm{cm}^{3}$ or $490 \mathrm{lb} / \mathrm{ft}^{3}$
Ductility: - Normal Erichsen values for good trade quality sheets, 0.4 mm (0.0156 in .)

Modulus of elasticity in tension and compression:
Electrolytic iron.... $17,500 \mathrm{~kg} / \mathrm{mm}^{2}$ or $25,000,000 \mathrm{lb} / \mathrm{in}^{2}$ Malleable iron... $17,500 \mathrm{~kg} / \mathrm{mm}^{2}$ or $25,000,000 \mathrm{lb} / \mathrm{in}^{2}$
Cast iron......... $10,500 \mathrm{~kg} / \mathrm{mm}^{2}$ or $15,000,000 \mathrm{lb} / \mathrm{in}^{2}$ Wrought iron.... $\mathrm{I}_{7}, 500 \mathrm{~kg} / \mathrm{mm}^{2}$ or $25,000,000 \mathrm{lb} / \mathrm{in}^{2}$
Modulus of elasticity in shear:
Electrolytic iron...... $7030 \mathrm{~kg} / \mathrm{mm}^{2}$ or $10,000,000 \mathrm{lb} / \mathrm{in}^{2}$ Cast iron $\ldots . . .8850 . \mathrm{kg} / \mathrm{mm}^{2}$ or $12,000,000 \mathrm{lb} / \mathrm{in}^{2}$ Wrought iron...................... $7030 \mathrm{~kg} / \mathrm{mm}^{2}$ or $10,000,000 \mathrm{lb} / \mathrm{in}^{2}$
Scleroscope hardness values shown are as determined with the Shore Universal hammer.
Strength in Shear:

Electrolytic (remelt)
P-limit............... $\quad 8.4 \mathrm{~kg} / \mathrm{mm}^{2}$ or $12,000 \mathrm{lb} / \mathrm{in}^{2}$
Ultimate strength...... $21.1 \mathrm{~kg} / \mathrm{mm}^{2}$ or $30,000 \mathrm{lb} / \mathrm{in}^{2}$
Transverse strength, from flexure formula:
Gray cast iron
". Modulus of rupture, $33.0 \mathrm{~kg} / \mathrm{mm}^{2}$ or $47,000 \mathrm{lb} / \mathrm{in}^{2}$
"Arbitration Bar," 31.8 mm (I $\frac{1}{4} \mathrm{in}$.) diameter, or 304.8 mm (I 2 in .) span; minimum central load at rupture 1130 to 1500 kg (2500 to 3300 lb .); minimum central deflection at rupture 2.5 mm (0.1 in), (A.S. T. M. Spec. A 48-18).

* Properties of Swedish iron (impurities less than r per cent) approximate those of electrolytic iron.
\dagger These two values of B. h. n. only are as determined at 500 kg pressure.
\ddagger U.S. Navy specifies minimum tensile strength of $14.1 \mathrm{~kg} / \mathrm{mm}^{2}$ or $20,000 \mathrm{lb} / \mathrm{in}^{2}$.
§ Averages for a U. S. foundry.
|| From T. D. Yensen, University of Illinois, Engr. Exp. Station, Bulletin No. 83, 1915 (shows Si 4.40 as alloy of maximum strength).

I From T. D. Yensen, University of Illinois, Engr. Exp. Station, Bulletin No. 95, 1917.
Smithsonian Tables.

MECHANICAL PROPERTIES OF MATERIALS.

TABLE 45. - Carbon Steels - Commercial Experimental Values.

S. A. E. (Soc. of Automotive Eng., U. S. A.) classification scheme used as basis for steel groupings. First two digits S. A. E. Spec. No. show steel group number, and last two (or three in case of five figures) show carbon content in hundredths of one per cent.

The first lines of properties for each steel show values for the rolled or forged metal in the annealed or normalized condition. Comparative heat-treated values show properties after receiving modified S. A. E. heat treatment as shown below (Table 46). The P-limit and ductility of cast steel average slightly lower and the ultimate strength io to 15 per cent higher than the values shown for the same composition steel in the annealed condition. The properties of rolled steel (raw) are approximately equal to those shown for the annealed condition, which represents the normalized condition of the metal rather than the soft annealed state.

The data for heat-treated strengths are average values for specimens for heat treatment ranging in size from $\frac{1}{2}$ to $I^{\frac{1}{2}}$ in. diameter. The final drawing or quenching temperature for the properties shown is indicated in degreas C with the heat treatment letter, wherever the information is available. In general, specimens were drawn near the lower limit of the indicated temperature range.

Structural Steel: Rolled: S max. 0.05; P-Bess. max. o.10; -O-H. max. 0.06
Tension: Yield Point min. $=0.5$ ultimate; ultimate $=38.7$ to $45.7 \mathrm{~kg} / \mathrm{mm}^{2}$ or 55,000 to $65,000 \mathrm{lb} / \mathrm{in}^{2}$ with $22 \% \mathrm{~min}$. elongation in 50.8 mm (2 in.).

* Average carbon contents: steel castings, C 0.30 to 0.40 ; structural steel, C 0.15 to 0.30 (mild carbon or medium hard steel).

TABLE 46. - Explanation of Heat Treatment Letters used in Table of Steel Data.

Motor Transport Corps Modified S. A. E. Heat Treatments for Steels. (S. A. E. Handbook, Vol. i, pp. 9 d and 9 e , 1915, q. v. for alternative treatments.)

Heat Treatment A. - After forging or machining (1) carbonize at a tomperature between 870 and $930^{\circ} \mathrm{C}$. (1600 and $1700^{\circ} \mathrm{F}$.); (2) cool slowly; (3) reheat to 760 to 820 C . (1400 to $1500^{\circ} \mathrm{F}$.) and quench in oil.

Heat Treatment D. - After forging or machining: (1) heat to 820 to $840^{\circ} \mathrm{C}$. (1500 to $1550^{\circ} \mathrm{F}$.) ; (2) quench; (3) reheat to 790 to $820^{\circ} \mathrm{C}$. (1450 to $1500^{\circ} \mathrm{F}$.); (4) quench; (5) reheat to 320 to $650^{\circ} \mathrm{C}$. (600 to $1200^{\circ} \mathrm{F}$.) and cool slowly.

Heat Treatment F. - After shaping or coiling: (1) heat to 775 to $800^{\circ} \mathrm{C}$. (1425 to $1475^{\circ} \mathrm{F}$.); (2) quench; (3) reheat to 200 to $480^{\circ} \mathrm{C}$. (400 to $900^{\circ} \mathrm{F}$.) in accordance with degree of temper required and cool slowly.

Heat Treatment H. - After forging or machining: (I) heat to 820 to $840^{\circ} \mathrm{C}$. (1500 to $1550^{\circ} \mathrm{F}$.); (2) quench; (3) reheat to 230 to $650^{\circ} \mathrm{C}$. (450 to $1200^{\circ} \mathrm{F}$.) and cool slowly.

Heat Treatment L. - After forging or machining: (1) carbonize at a temperature between 870 and $950^{\circ} \mathrm{C}$. (1600 and $1750^{\circ} \mathrm{F}$.), preferably between 900 and $930^{\circ} \mathrm{C}$. (1650 and 1700 F .); (2) cool slowly in carbonizing material; (3) reheat to 790 to $820^{\circ} \mathrm{C}$. (1450 to $1500^{\circ} \mathrm{F}$.); (4) quench; (5) reheat to 700 to $760^{\circ} \mathrm{C}$. (1300 to $1400^{\circ} \mathrm{F}$.); (6) quench; (7) reheat to 120 to $260^{\circ} \mathrm{C}$. (250 to 500 F .) and cool slowly.

Heat Treatment M. - After forging or machining: (I) heat to 790 to $820^{\circ} \mathrm{C}$. (1450 to $1500^{\circ} \mathrm{F}$.); (2) quench; (3) reheat to between 260 and $680^{\circ} \mathrm{C}$. (500 and $1250^{\circ} \mathrm{F}$.) and cool slowly.

Heat Treatment P. - After forging or machining: (I) heat to 790 to $820^{\circ} \mathrm{C}$. (I 450 to $1500^{\circ} \mathrm{F}$.); (2) quench; (3) reheat to 750 to $770^{\circ} \mathrm{C}$. (1375 to $1425^{\circ} \mathrm{F}$.); (4) quench; (5) reheat to 260 to $650^{\circ} \mathrm{C}$. (500 to $1200^{\circ} \mathrm{F}$.) and cool slowly.

Heat Treatment T. - After forging or machining: (1) heat to 900 to $950^{\circ} \mathrm{C}$. (1650 to $1750^{\circ} \mathrm{F}$.); (2) quench; (3) reheat to 260 to $700^{\circ} \mathrm{C}$. (500 to $1300^{\circ} \mathrm{F}$.) and cool slowly.

Heat Treatment U. - After forging: (I) heat to 830 to $870^{\circ} \mathrm{C}$. (1525 to $1600^{\circ} \mathrm{F}$.), hold half an hour; (2) cool slowly; (3) reheat to 900 to $930^{\circ} \mathrm{C}$. (1650 to $1700^{\circ} \mathrm{F}$.); (4) quench; (5) reheat to 180 to $290^{\circ} \mathrm{C}$. (350 to $550^{\circ} \mathrm{F}$.) and cool slowly.

Heat Treatment V. - After forging or machining. (1) heat to 900 to $950^{\circ} \mathrm{C}$. (1650 to $1750^{\circ} \mathrm{F}$.); (2) quench; (3) reheat to between 200 and $650^{\circ} \mathrm{C}$. (400 and $1200^{\circ} \mathrm{F}$.) and cool slowly.

EDITOR's Note: Oil quenching is recommended wherever the instructions specify "quench," inasmuch as the data in the table are taken from tests of automobile parts which must resist considerable vibration and which are usually small in section. The quenching medium must always be carefully considered.
Smithsonian tables.

MECHANICAL PROPERTIES.
TABLE 47. - Alloy Steels - Commercial Experimental Values.

General Note. - Table on steels after Motor Transport Corps, Metallurgical Branch of Engineering Division, Table No. 88.

Maximum allowable P 0.045 or less, maximum allowable S 0.05 or less
Silicon contents were not determined by Motor Transport Corps in preparing table, except for silico-manganese steels. Compressive strengths:

For all steels approx. equal to yield point in tension (slightly above P-limit).
Density:
Steel weighs about $7.85 \mathrm{~g} / \mathrm{cm}^{3}$ or $490 \mathrm{lb} / \mathrm{ft}^{3}$
Ductility, Erichsen values:
0.75 mm (0.029 in .) thick, low carbon soft annealed sheet (B. S.), depth of indentation 12.0 mm or 0.472 in .
I. 30 mm (0.050 in .) thick, low carbon soft annealed sheet (B.S.), depth of indentation 12.5 mm or 0.492 in .

Modulus of elasticity in tension and compression:
For all steels approx. $21,000 \mathrm{~kg} / \mathrm{mm}^{2}=30,000,000 \mathrm{lb} / \mathrm{in}^{2}$.
Modulus of elasticity in shear:
For all steels approx. $8400 \mathrm{~kg} / \mathrm{mm}^{2}=12,000,000 \mathrm{lb} / \mathrm{in}^{2}$.
Scleroscope hardness values shown are as determined with the Shore Universal hammer.
Strength in shear:
P-limit and ultimate strength each about 70 per cent corresponding tensile values.

Smithsonian Tables.

TABLE 48．－Steel Wire－Specification Values．

（After I．A．S．B．Specification 3Si2，Sept．，1917，for High－strength Steel Wire．）
S．A．E．Carbon Steel，No．1050 or higher number specified（see Carbon steels above）．Steel used to be manufac－ tured by acid open－hearth process，to be rolled，drawn，and then uniformly coated with pure tin to solder readily．

American B．and S wire gage．	Diameter．		Req＇d twists in 203.2 mm or 8 in ．	Weight．		Req＇d bends thru 90°	Spec．minimum tensile strength．			
	mm	in．		kg／room	$\begin{gathered} \mathrm{lb} / \mathrm{Ioo} \\ \mathrm{ft} . \end{gathered}$		kg	lb．	$\mathrm{kg} / \mathrm{mm}^{2}$	$\mathrm{lb} / \mathrm{in}^{2}$
6	4． 115	0.162	16	10.44	7.01	5	2040	4500	154	219，000
7	3.665	． 144	19	8.28	$5 \cdot 56$	6	1680	3700	161	229，000
8	3.264	． 129	21	6.55	4.40	8	1360	3000	164	233，000
9	2.906	． 114	23	5.21	3.50	9	1135	2500	172	244，000
10	2.588	． 102	26	4.12	2.77	II	910	2000	172	244，000
11	2.305	．091	30	3.28	2.20	14	735	1620	179	254，000
12	2.053	．08I	33	2.60	I． 74	17	590	1300	177	252，000
13	I． 828	． 072	37	2.06	I． 38	21	470	1040	179	255，000
14	I． 628	． 064	42	I． 64	I．IO	25	375	830	18 I	258，000
15	1.450	.057	47	I． 30	0.87	29	300	660	182	259，000
16	1． 291	．051	53	I． 03	0.69	34	245	540	I86	264，000
17	I． 150	． 045	60	0.8 I	0.55	42	195	425	188	267，000
18	1.024	． 040	67	0.65	0.43	52	155	340	190	270，000
19	0.912	． 036	75	0.51	0.34	70	125	280	193	275，000
20	0.812	． 032	85	0.41	0.27	85	100	225	197	280，000
2 I	0.723	． 028	96	0.32	0.22	105	80	175	200	284，000

Note．－Number of 90° bends specified above to be obtained by bending sample about 4.76 mm （ 0.188 in ．）radius， alternately，in opposite directions．
（Above specification corresponds to U．S．Navy Department Specification 22W6，Nov．1，1916，for tinned，galvan－ ized or bright aaroplane wire．）

TABLE 49．－Steel Wire－Experimental Values．
（Data from tests at General Electric Company laboratories．）＂Commercial Steel Music Wire（Hardened）．＇

Diameter．		Ultimate strength．	
mm	in．	kg／m	$\mathrm{lb} / \mathrm{in}^{2}$
12.95	0.051	226.0	321，500
11.70	． 046	249.0	354，000
9.15	． 036	253.0	360，000
7.60	． 030	260.0	370，000
6.35	． 025	262.0	372，500
4．55＊	． 018	265.5	378，000
2．55＊＊	． 010	386.5	550，000
1.65 4.55	． .018	527.0 49.2	750,000 70,000

＊For 4.55 mm wire drawn cold to indicated sizes．$\quad \dagger$ For 4.55 mm （ 0.018 in．）wire annealed in H_{2} at $850^{\circ} \mathrm{C}$ ．

TABLE 50．－Semi－steel．

Test results at Bureau of Standards on $155-\mathrm{mm}$ shell，Jan． 1919.
Microstructure－matrix resembling pearlitic steel，embedded in which are flakes of graphite．
Composition－Comb．Co．60 to 0．76，Mn 0．88，Po．42 to 0.43 ， S 0.077 to 0.088 ， Si 1.22 to 1．23，graphitic C 2.84 to 2.94 ．

Metal．			官	㝕至			菏		Hardness．	
									Brinell （B） 3000 kg	Sclero－ scope．
	Tension $\mathrm{kg} / \mathrm{mm}^{2}$		Tension $\mathrm{lb} / \mathrm{in}^{2}$		Compression $\mathrm{kg} / \mathrm{mm}^{2}$		Compression $\mathrm{lb} / \mathrm{in}^{2}$			
Semi－steel：										
Graph．C 2.85	7.9	19.8	11，200	28，200	24.3	72.6	34，500	103，000	176	－
Graph．C ${ }^{2} .92$ Comb． C 0.60	4.2	14.9	6，000	21，200	18.3	61.4	26，000	87，300	170	－

Tension specimens $12.7 \mathrm{~mm}(0.5 \mathrm{in}$ ．）diameter， $50.8 \mathrm{~mm}(2 \mathrm{in}$ ．）gage length；elorgation and reduction of area negligible．

Compression specimens 20.3 mm （ 0.8 in ．）diameter， 61.0 mm （ 2.4 in ．）long；failure occurring in shear．
Tension set readings with extensometer showed elastic limit of $2.1 \mathrm{~kg} / \mathrm{mm}^{2}$ or $3000 \mathrm{lb} / \mathrm{in}^{2}$ ．
Modulus of elasticity in tension－ $9560 \mathrm{~kg} / \mathrm{mm}^{2}$ or $13,600,000 \mathrm{lb} / \mathrm{in}^{2}$ ．
Smithsonian Tables．

Cast steel wire to be of hard crucible steel with minimum tensile strength of $155 \mathrm{~kg} / \mathrm{mm}^{2}$ or $220,000 \mathrm{lb} / \mathrm{in}^{2}$ and minimum elongation of 2 per cent in 254 mm (10 in.).

Plow steel wire to be of hard crucible steel with minimum tensile strength of $183 \mathrm{~kg} / \mathrm{mm}^{2}$ or 260,000 $\mathrm{lb} / \mathrm{in}^{2}$ and minimum elongation of 2 per cent in 254 mm (10 in .)

Annealed steel wire to be of crucible cast steel, annealed, with minimum tensile strength of $77 \mathrm{~kg} / \mathrm{mm}^{2}$ or $110,000 \mathrm{lb} / \mathrm{in}^{2}$ and minimum elongation of 7 per cent in 254 mm (10 in .).

Type A: 6 strands with hemp core and 19 wires to a strand ($=6 \times 19$), or 6 strands with hemp core and 18 wires to a strand with jute, cotton or hemp center.
Type B: 6 strands with hemp core, and 12 wires to a strand with hemp center.
Type C: 6 strands with hemp core, and 14 wires to a strand with hemp or jute center.
Type AA: 6 strands with hemp core, and 37 wires to a strand ($=6 \times 37$) or 6 strands with hemp core and 36 wires to a strand with jute, cotton or hemp center.

Description.	Diameter.		Approx. weight.		Minimum strength.	
	mm	in.	kg/m	$\mathrm{lb} / \mathrm{ft}$	kg	1 l .
Galv. cast steel, Type A	$9 \cdot 5$	$\frac{3}{8}$	0.31	0.2I	3,965	8,740
"6 " " ${ }^{\text {6 }}$ "	12.7	$\frac{1}{2}$	0.55	0.37	6,910	15,230
" "	25.4	1	2.23	1. 50	27,650	60,960
"alv cast steel, Typ	38.1	$1{ }^{1}$	5.06	3.40	63,485	I39,960
Galv. cast steel, Type AA.	9.5	$\frac{3}{8}$	0.35	0.22	3,840	8,460
	12.7	$\frac{1}{2}$	0.58	- 0.39	7,410	16,330
" ${ }^{\text {، }}$ " 6 " 6 " 6	25.4	${ }_{1}$	2.23	1. 50	27,650	60,960
" " " ${ }^{\text {" }}$	38.1	$\mathrm{I}^{\frac{1}{2}}$	5.28	$3 \cdot 55$	59,735	1 31,690
Galv. cast steel, Type ${ }_{6}$ B	9.5	$\frac{3}{8}$	0.25	-.17	2,995	6,600
	12.7	$\frac{1}{2}$	0.42	0.28	5,210	11,500
" " " " "	25.4	I	I. 68	1.13	20,890	46,060
Galv cast steel Type C	38.1	$1{ }^{1}$	3.94	2.65	47,965	105,740
Galv. cast steel, Type C	25.4	${ }_{\text {I }}^{1}$	I. 59	1.07	18,825	41,500
	41.3	15 8 3	4.35	2.92	51,575	113,700
Galv. plow steel, Type ${ }_{6}{ }_{6}$	$\begin{array}{r}9.5 \\ \hline 12.7\end{array}$	$\frac{3}{8}$ $\frac{1}{2}$	0.31	0.21	4,690	10,340
"، "، ، ${ }^{\text {، }}$ " ${ }^{\text {، }}$	12.7	$\frac{1}{2}$	0.55	0.37	8,165	18,000
" ، " ،	25.4 36.4	${ }^{7}$	2.23	1.50	32,675	72,040
Galv. plow steel, Type Ȧ	36.5	${ }_{\substack{1 \\ \frac{1}{6} 6}}$	4.66	3.13	69,140	152,430
"6. plow steel, Type Ax	9.5 +2.7	$\frac{1}{2}$	-. 58	0.32	8,750	19,300
" ${ }^{\text {" }}$ " ${ }^{\text {a }}$	25.4	1	2.35	1. 58	32,250	71,100
" " ، ${ }^{\text {6 }}$	41.3	I^{5}	6.18	4.15	83,010	183,000

TABLE 52. - Plow Steel Hoisting Rope (Bright).

(After Panama Canal Specification No. 302, 1912.)
Wire rope to be of best plow steel grade, and to be composed of 6 strands, 19 wires to the strand, with hemp center. Wires entering into construction of rope to have an elongation in 203.2 mm or 8 in . of about $2 \frac{1}{2}$ per cent.

Diameter.		Spec. minimum strength.		Diameter.		Spec. minimum strength.	
mm	in.	kg	lb .	mm	in.	kg	lb .
9.5	$\frac{3}{8}$	5,2i5	1 1,500	38.1	$\mathrm{I}^{\frac{1}{2}}$	74,390	164,000
12.7	$\frac{1}{2}$ 3	9,070	20,000	50.8	2	127,000	280,000
19.0	$\frac{3}{4}$	20,860	46,000	63.5	$2 \frac{1}{2}$	207,740	458,000
25.4	I	34,470	76,000	69.9	$2 \frac{3}{4}$	249,350	550,000

TABLE 53. - Steel-wire Rope - Experimental Values.
(Wire rope purchased under Panama Canal Spec. 302 and tested by U. S. Bureau of Standards, Washington, D. C.)

Description and analysis.	Diameter.		Ultimate strength.		Ultimate strength (net area).	
	mm	in.	kg	1 b .	$\mathrm{kg} / \mathrm{mm}^{2}$	$\mathrm{lb} / \mathrm{in}^{2}$
Plow Steel, 6 strands \times i9 wires						
C 0.90, S 0.034, P 0.024, Mn $0.48, \mathrm{Si} 0.172$..	50.8	2	137,900	304,000	129.5	184,200
Plow Steel, 6 strands $\times 25$ wires			-	304,000		
C 0.77, S 0.036, P 0.027, Mn 0.46 , Si $0.152 \ldots$	69.9	$2 \frac{3}{4}$	314,800	694,000	151.2	214,900
Plow Steel, 6×37 plus 6×19 C 0.58, S 0.032, P 0.033, Mn $0.41, \mathrm{Si} 0.160$.	82.6	$3^{\frac{1}{4}}$	392,800	866,000	132.2	187,900
Monitor Plow Steel, 6×6 m plus						
$6 \times$ 19, C 0.82, S 0.025, P o.019, Mn 0.23, Si o.169..............	82.6	$3^{\frac{1}{4}}$	425,000	937,000	142.5	202,400

Recommended allowable load for wire rope running over sheave is one fifth of specified min. strength.

TABLE 54.- Aluminum.

Metal, approx. composition, per cent.	Condition.	Density or weight.		葆		$\stackrel{\ddot{E}}{\stackrel{E}{E}}$				Hardness.		
		$\begin{array}{\|l\|l\|} \hline \text { gm } & \text { ler } \\ \text { per } & \text { lb.per } \\ \mathrm{ft}^{3} \end{array}$			Tension, $\mathrm{kg} / \mathrm{mm}^{2}$		Tension, lb./in ${ }^{2}$		Per cent.			
Aluminum: Av. Al 99.3 Imp., Fe and Si. . .	Cast, sand at 700° C...... . Cast, sand and heat treated Ann. $500^{\circ} \mathrm{C}$, air cooled Cast, chill Sheet, ann. Sheet, hard. Bars, hard Wire, hard.	2.57										
			160.5	6.0 to	8.0 to	8,500 to	12,000 to					
				7.0	9.8	10,000	14,000	15	22		5	
		-	-	-	8.9 to	-	12,600 to	28 to	30 to	25 to	4 to	
		-	-	-	9.6	-	13,600		22		5	
		2.57 2.69	160.5 168.0	6.0 6.0	9.0 9.0	8,000	13,000 13,500		25.c		5	
		2.70	168.5	14.0	21.0	20,000	13,500			二	14	
		2.70	168.5	15.0	23.0	22,000	33,000		35.0		-	
		2.70	168.5	21.0	28.0	30,000	40,000					

Compressive strength: cast, yield point $13.0 \mathrm{~kg} / \mathrm{mm}^{2}$ or $18,000 \mathrm{lb} / \mathrm{in}^{2}$; ultimate strength 47.0 $\mathrm{kg} / \mathrm{mm}^{2}$ or $67,000 \mathrm{lb} / \mathrm{in}^{2}$.

Modulus of elasticity: cast, $6900 \mathrm{~kg} / \mathrm{mm}^{2}$ or $9,8 \mathrm{IO}, 000 \mathrm{lb} / \mathrm{in}^{2}$ at $17^{\circ} \mathrm{C}$.

TABLE 55.- Aluminum Sheet.
(a) Grade A (Al min. 99.0) Experimental Erichsen and Scleroscope Hardness Values.
[From tests on No. 18 B. \& S. Gage sheet rolled from 6.3 mm (0.25 in .) slab. Iron Age v. ror, page 950].

Heat treatment annealed.	Thickness, mm	Indentation, mm	Scleroscope hardness.
None (as rolled).	1.08	6.83	4.0
($200^{\circ} \mathrm{C}, 2$ hours	1.09	8.86	8.0
(a) $300^{\circ} \mathrm{C}, 2$ hours	1. 07	10.17	4.5
(a) $400^{\circ} \mathrm{C}, 2$ hours	1.08	9.40	4.5
(a) $200^{\circ} \mathrm{C}, 30 \mathrm{~min}$.	1.07	7.97 0.80	11.8
(a) $400^{\circ} \mathrm{C}, 30 \mathrm{~min}$.		9.80	. 5

(b) Specification Values. - (1) Cast: U. S. Navy 49 Al, July 1, 1915; Al min. 94, Cu max. 6, Fe max. 0.5, Si max. 0.5, Mn max. 3.

Minimum tensile strength $12.5 \mathrm{~kg} / \mathrm{mm}^{2}$ or $18,000 \mathrm{lb} / \mathrm{in}^{2}$ with minimum elongation of 8 per cent in 50.8 mm (2 in .).
(2) Sheet, Grade A: A. S. T. M. 25 to 18 T; Al min. 99.0; minimum strengths and elongations.

Gage, sheet thicknesses.			Temper, No. hardness.	Tensile strength.		Elong. in 50.8 mm or 2 in . per cent.	Sheets of temper No. I to withstand being bent double in any direction and hammered flat; temper No. 2 to bend 180° about radius equal to thickness without cracking.
(B. \& S.)	mm	in.		$\mathrm{kg} / \mathrm{mm}^{2}$	$\mathrm{lb} / \mathrm{in}^{2}$		
12 to 16 incl.	2. 052 to	0.0808 to	$\begin{cases}1 & \text { Soft, Ann }\end{cases}$	8.8	12,500	30	
	1.293		3 Hard	12.5 15.5	18,000 22,000	7	
17 to	1. 152 to	. 0453 to	I Soft, Ann.	8.8	12,500	20	
22 incl.	0.643	. 0253	2 Half-hard	12.5	18,000	5	
			3 Hard	17.5	25,000	2	
23 to 26 incl.	$\begin{aligned} & 0.574 \text { to } \\ & 0.404 \end{aligned}$	$\begin{aligned} & .0226 \text { to } \\ & .0159 \end{aligned}$	$\left\{\begin{array}{l}\text { 1 Soft, Ann. } \\ 2 \text { Half-hard }\end{array}\right.$	$\begin{array}{r}8.8 \\ 12.5 \\ \hline 2.5\end{array}$	12,500 18,000	10 5	
			${ }_{3}$ Hard	12.5 21.0	30,000	5	

Note. - Tension test specimen to be taken parallel to the direction of cold rolling of the sheet. Smithsonian tables.

ALUMINUM ALLOY．

Alloy，approx． composition per cent．	Condition， per cent reduction．	Density or weight．				:			烒	Hard	ness．
		$\underset{\mathrm{cm}^{3}}{\mathrm{gm} /}$	$\begin{aligned} & \mathrm{lb} / \mathrm{ft}^{3} \end{aligned}$	Tension， $\mathrm{kg} / \mathrm{mm}^{2}$		Tension， $\mathrm{lb} / \mathrm{in}^{2}$		per cent．			
Aluminum－Copper． $\mathrm{Al}_{98 \mathrm{Cu} \text { I Imp．max．} \mathrm{I}}$	Cast，chill．．．．	－	二	5．3	10.5	7，500	$\left\lvert\, \begin{aligned} & 15,000 \\ & 30,000\end{aligned}\right.$	24.0	34.0	－	二
	Rolled， 70% Cast，chill． Rolled， 70% ． Cast，chill． Rolled， 70% ． Cast，sand．．．	二	二	$\begin{array}{r} 19.0 \\ 8.1 \\ 25.0 \end{array}$	$1 \begin{aligned} & 21.0 \\ & 13.7 \\ & 28.8\end{aligned}$	$\begin{aligned} & 27,000 \\ & \text { I 1,500 } \end{aligned}$		12．0	21.0		
$\mathrm{Al}_{96} \mathrm{Cu}_{3}$ Imp．max．I										－	－
$\mathrm{Al}_{94} \mathrm{Cu} 5$ Imp．max． I		二	二	$\begin{aligned} & 25.0 \\ & 10.0 \end{aligned}$	$1 \begin{aligned} & 28.8 \\ & 15.0\end{aligned}$	$\begin{aligned} & 35,000 \\ & 14,500 \end{aligned}$	$\begin{aligned} & 41,000 \\ & 21,500 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 7.0 \end{aligned}$	14.0	－	二
Al 92 Cu 8 ：Alloy No．		2.88	180	$\begin{aligned} & 23.0 \\ & 7.7 \text { to } \\ & 10.5 \end{aligned}$	$\left\lvert\, \begin{aligned} & 27.0 \\ & 10.5 \text { to } \\ & 16.2 \end{aligned}\right.$	$\begin{aligned} & 33,000 \\ & \text { II, }, 000 \text { to } \end{aligned}$	$\left\|\begin{array}{l} 38,000 \\ 15,000 \text { to } \\ 23,000 \end{array}\right\|$	6.0	－	－	
Al 92 Cul 8：Alloy No． 12．．．．．．．．．．．． Al						$\begin{aligned} & \text { I1 ,000 to } \\ & 15,000 \end{aligned}$		${ }_{\text {None }}$	None		${ }_{18}^{13}$ to
	Cast＊	2.9	181		12.7	－	18,000		－		
Copper，Magnesium．	Cast at $700^{\circ} \mathrm{C}$ ．	2．9		3.2 to	0.6 to	4，500 to		2.0 to	0.5 to		${ }_{18}^{17}$ tc
	Ann． 500°	2.8			13.3 17.3	6,500 6,500	18，900	${ }^{\circ} \mathrm{O}$	${ }^{\circ} \mathrm{I}$.		
Duralumin or	Ann．．		174	$\begin{array}{r} 4.0 \\ 25.0 \\ 53.0 \end{array}$	$\left\lvert\, \begin{aligned} & 12.0 \\ & 42.0 \\ & 56.0 \end{aligned}\right.$	$\begin{aligned} & 35,100 \\ & 75,400 \end{aligned}$	$\begin{aligned} & 59,500 \\ & 79,600 \end{aligned}$	21.14.0	$\begin{aligned} & 29.5 \\ & 13.2 \end{aligned}$	－	－
	Rolled 70										
	tr＇d \dagger	－	－	23.4	39.0	$\left\lvert\, \begin{aligned} & 13,400 \\ & 33,400 \end{aligned}\right.$	$55,300$	25.5	26.0	－	－
Copper，Manganese．	Cast，chill			10．0．	14.0	14，300	20，300	5.0	－		
$\mathrm{Al}^{96} \mathrm{Cu} 2 \mathrm{Mn}_{2}$	Rolled， 20 mm	2.8		19.0	27.0	27，100	38，200	16.0	28.0		
$\mathrm{Al}_{96} \mathrm{Cu} 3 \mathrm{Mn}$	Cast，chill		${ }^{175}$		19.0	16，200		14.0			
Naval Gun Factory	Cast，sand			$15 \frac{1.3}{14.0}$		19，500	$\begin{aligned} & 20,000 \\ & 27,800 \end{aligned}$	12.0			
		－	－				18，000	$\left\lvert\, \begin{array}{r} 12.0 \\ 8.0 \end{array}\right.$	－	－	
max． $3 . \ldots \ldots$	Mini			－	12.7	－					－
Copper，Nickel，Mg Mn	ast	-	$\begin{aligned} & - \\ & - \end{aligned}$	$3.5 \text { to }$	17.9 to		25，500 to	6.0 to	8.5 to	54 to	9 to
					$\left\lvert\, \begin{aligned} & 23.2 \\ & 14.5\end{aligned}\right.$		$\left\lvert\, \begin{aligned} & 33,000 \\ & 20,600 \text { to } \end{aligned}\right.$	$\begin{gathered} 1.5 \\ 6.0 \text { to } \end{gathered}$			25
Copper，Nickel Mn	Cast at $700^{\circ} \mathrm{C}$ ．	－	二	9.8		14，000			$\begin{aligned} & \text { r.O } \\ & \text { II.O to } \end{aligned}$		
$\mathrm{Al}_{94.2} \mathrm{Cu}_{3} \mathrm{Ni} 2 \mathrm{Mn}$ o．8．					21.4		30，50	1.0	2.0	91	27
Magnesium：${ }_{\text {Magnalium }}{ }^{\text {Al }} 05 \mathrm{Mg}$		$\begin{aligned} & 2.5 \\ & 2.4 \text { to } \end{aligned}$	$\begin{aligned} & 156 \\ & 150 \text { to } \\ & 160 \\ & 160 \end{aligned}$	5.6	$15.5 \text { to }$	8，000	$\begin{aligned} & 22,000 \\ & 42,000 \text { to } \end{aligned}$				
$\mathrm{Al}_{77-98, \mathrm{Mg}}^{23-2 . .}$	Cast，ch							7.0	8.5	二	二
							I4，900	21.0	36.0	－	
Nickel ${ }^{\text {Al }} 97 \mathrm{Ni} 2 . . .$.	$\left\{\begin{array}{l}\text { Cast，chill } \ldots \\ \text { Drawn，cold } . . \\ \text { Rolled，hot．} \\ \text { Cast，chill } \\ \text { Drawn，cold } \ldots \\ \text { Rolled，hot．}\end{array}\right.$		二		$\begin{aligned} & 11.0 \\ & 16.0 \\ & 10 \end{aligned}$	5，800					
		二				$\begin{aligned} & \text { 19,700 } \\ & \text { I 1,900 } \end{aligned}$	$\begin{aligned} & 22,700 \\ & 18,200 \end{aligned}$	$\left\lvert\, \begin{aligned} & 13.0 \\ & 28.0 \end{aligned}\right.$	$\begin{aligned} & 37.0 \\ & 52.0 \end{aligned}$	－	二
		－	二	$\begin{array}{r} 14.0 \\ 8.0 \\ 6.0 \end{array}$	$\begin{aligned} & 15.0 \\ & 20.0 \end{aligned}$	$\left\lvert\, \begin{array}{r} 9,000 \\ 22,900 \end{array}\right.$	$\begin{aligned} & 21,700 \\ & 27,900 \end{aligned}$	9.08.0	11.024.0	二 二	
Al 95 Ni 5.				$\begin{array}{r} 6.0 \\ 16.0 \end{array}$							－
					16.0	13，500	22，300	22.0	36.0		
Al 93.5 Ni 5.5 Cu r	Cast，chill			7.0	17.0	10，700	24，800	6.0	8.0		
$\mathrm{Al}_{91.5} \mathrm{Ni}_{4.5} \mathrm{Cu}_{4}$.	Cast，chill			7.0	18.0	9，900	25，200	4.0	5.0		
$\mathrm{Al}_{92} \mathrm{Ni} 5_{5} 5 \mathrm{Cu} 2$	Drawn，co	－	－	22.0	27.0	31，700	37，800	8.0	15.0		
Zinc，Copper：			－	$\begin{aligned} & 4.7 \\ & 4.4 \\ & 9.8 \\ & 9.8 \end{aligned}$	22.0	18，200	31，500	16.0	24.0		
Al 88.6 Cu 3		－			$\begin{aligned} & 18.5 \\ & 20.2 \\ & 24.7 \\ & 29.0 \end{aligned}$	$\begin{array}{r} 6,700 \\ 6,200 \\ \text { I4,00 } \\ \text { I4, } 4,00 \end{array}$		8.0	7.5	50	10
	Ann． $500^{\circ} \mathrm{C}$ ．${ }^{\text {c }}$		－				$28,800$	8.0	7.5	50	10
Al 8 I .1 Cu 3 Zn 15.9.	Cast at $700^{\circ} \mathrm{C}$ ．	3.1	193				$35,100$	2.0	2.0	74	15
							$41,200$	4.0	4.0	70	r 5

[^9]| Metal and approx. composition. Per cent. | Condition. | Density or weight. | | | | Tension, $\mathrm{lb} / \mathrm{in}^{2}$ | | | | Hardness. | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | | |
| | | $\underset{\mathrm{cm}^{3}}{\mathrm{gm} /}$ | $\begin{aligned} & \mathrm{lb} / \\ & \mathrm{ft}^{3} \end{aligned}$ | | | | | | |
| Copper: | Ann. $200^{\circ} \mathrm{C} . . .$. . | 8.89 | 555 | 6.0 | 27.0 | 8,50010,000 | 38,000 | | 50.060.0 | | 7 |
| Cu 99.6...... . | Cast. | 8.85 | 552 | 7.0 | 18.0 | | | 50.0 20.0 | | 80 | |
| Rolled. | \% Hard, 40% reduct | 8.89 | 555 | 14.0 | 35.0 | 20,000 | $\begin{aligned} & 50,000 \\ & 35,000 \end{aligned}$ | 5.0 | 8.060.0 | 94 | 6 |
| Rolled. | Ann. at $500^{\circ} \mathrm{C}$. ${ }^{\circ}$ | 8.90 | 556 | indet. | 25.0 | | | 50.0 | | | |
| | reduct....... | - | - | 26.0 | 35.0 | 37,000 | 50,000 | 9.0 | - | - | 18 |
| Cu 99.9*...... | No Ann. (96% reduction)....... . | - | - | - | $47 \cdot 3$ | 37,00 | 67,400 | 0.8 | 64.5 | - | - |
| | Ann. $750^{\circ} \mathrm{C}$ after drawing cold. | - | - | - | 21.9 | - | 31,200 | 0.8 24.5 | 64.5 76.0 | - | - |
| Cu 99.9†....... | Drawn hot (64% reduction)..... | - | - | - | 33.0 | - | 46,800 | 4.3 | 70.5 | - | - |

* Wire drawn cold from 3.18 mm (0.125 in .) to 0.64 mm (0.025 in.) Bull. Am. Inst. Min. Eng., Feb., 1919.
\dagger Wire drawn at $150^{\circ} \mathrm{C}$ from 0.79 mm (0.031 in .) to 0.64 mm (0.025 in .) (Jeffries, loc. cit.).
Compression, cast copper, Ann. 15.9 mm (0.625 in .) diam. by 50.8 mm (2 in.) long cylinders.
Shortened 5 per cent at $22.0 \mathrm{~kg} / \mathrm{mm}^{2}$ or $31,300 \mathrm{lb} / \mathrm{in}^{2} \mathrm{log}_{6}$.

$$
\begin{array}{lllllll}
" 10 & \text { 10 } & \text { " } & \text { " } & 29.0 \mathrm{~kg} / \mathrm{mm}^{2} & \text { " } & 4 \mathrm{r}, 200 \mathrm{lb} / \mathrm{in}^{2}
\end{array} \text { " }
$$

Shearing strength, cast copper $21.0 \mathrm{~kg} / \mathrm{mm}^{2}$ or $30,000 \mathrm{lb} / \mathrm{in}^{2}$
Modulus of elasticity, electrolytic $12,200 \mathrm{~kg} / \mathrm{mm}^{2}$ or $17,400,000 \mathrm{lb} / \mathrm{in}^{2}$
"" "" " cast $7,700 \mathrm{~kg} / \mathrm{mm}^{2}$ or $11,000,000 \mathrm{lb} / \mathrm{in}^{2}$
drawn, hard $12,400 \mathrm{~kg} / \mathrm{mm}^{2}$ or $17,600,000 \mathrm{lb} / \mathrm{in}^{2}$
TABLE 58. - Rolled Copper - Specification Value.
Specification values: U. S. Navy Dept., 47 C 2 , minimums for rolled copper, -Cu min. 99.5

Description, temper and thickness.	Tensile strength.		Elong. in 50.8 or 2 in . - per cent.
	$\mathrm{kg} / \mathrm{mm}^{2}$	$\mathrm{lb} / \mathrm{in}^{2}$	
Rods, bars, and shapes:			
Soft..	21.0	30,000	25
Hard: to $9.5 \mathrm{~mm}\left(\frac{3}{8} \mathrm{in}\right.$.) incl. .	35.0	50,000	10
Hard: 9.5 mm to 25.4 mm (I in.)	31.5	45,000	12
Hard: 25.4 mm to 50.8 mm (2 in .)	28.0	40,000	15
Hard: over 50.8 mm (2 in.).	24.5	35,000	20
Sheets and plates: Soft.	21.0 to 28.0	30,000 to 40,000	
Hard.	24.5	30,00,	18

TABLE 59. - Copper Wire - Specification Values.
Specific Gravity 8.89 at $20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)$.
Copper wire: Hard Drawn (and Hard-rolled flat copper of thicknesses corresponding to diameters of wire) Specification values. (A.S. T. M. Bi-15, and U. S. Navy Dept., 22 W3, Mar. 1, 1915.)

Diameter.		Minimum tensile strength.		Maximum elongation, per cent in 254 mm (10 in .).
mm	in.	$\mathrm{kg} / \mathrm{mm}^{2}$	$\mathrm{lb} / \mathrm{in}^{2}$	
11.68	. 460	34.5	49,000	2.75
10.41	. 410	35.9	51,000	3.25
9.27	. 365	37.1	52,800	2.80
8.25	. 325	38.3	54,500	2.40
7.34 6.55	. 289	39.4 40.5	56,100 57,600	2.17 1.98
5.82	. 229	4 I .5	59,000	1.79
5.18			60,100	in 1524 mm (60 in.$)$
${ }_{4.62}$.204 .182	42.2 43.0	60,100	1.24 1.18
4.12	. 162	43.7	62,100	1.14
3.66	. 144	44.3	63,000	1.09
3.25	. 128	44.8	63,700	1.06
2.90	. 114	45.2	64,300	1.02
2.59	. 102	45.7	64,900	$1 . \infty$
2.31	.09r	46.0	65,400	0.97
2.06 1.83	. 081	46.2 46.3	65,700 65,900	0.95 0.92
I. 63	. 064	46.5	66,200	0.92 0.90
1.45	. 057	46.7	66,400	-. 89
1.30	. 051	46.8	66,600	0.87
1.14	. 045	47.0	66,800 67,000	0.86 0.85
1.02	. 040	47.1	67,000	0.85

P-limit of hard-drawn copper wire must average 55 per cent of ultimate tensile strength for four largest sized wires in table, and 60 per cent of tensile strength for smaller sizes.
Smithsonian Tables.

TABLE 60. - Copper Wire - Medium Hard-drawn.
(A. S. T. M. $\mathrm{B}_{2}-15$) Minimum and Maximum Strengths.

Diameter.		Tensile strength.				Elongation, minimum per cent in 254 mm ($\mathrm{Io} \mathrm{in),}$.
		Minimum.		Maximum.		
mm	in.	$\mathrm{kg} / \mathrm{mm}^{2}$	$1 \mathrm{l} / \mathrm{in}^{2}$	$\mathrm{kg} / \mathrm{mm}^{2}$	$\mathrm{lb} / \mathrm{in}^{2}$	
11.70	0.460	29.5	42,000	34.5	49,000	3.75
6.55	.258	33.0	47,000	38.0	54,000	$\begin{gathered} 2.50 \\ \text { in } 1524 \mathrm{~mm}(60 \mathrm{in} .) \end{gathered}$
4.12	. 162	34.5	49,000	39.5	56,000	1.15
2.59	. 102	35.5	50,330	40.5	57,330	1.04
1.02	. 040	37.0	53,000	42.0	60,000	0.88

Representative values only from table in specifications are shown above. P-limit of medium hard-drawn copper averages 50 per cent of ultimate strength.

TABLE 61. - Copper Wire - Soft or Annealed.
(A. S. T. M. B3-15) Minimum Values.

Diameter.		Minimum tensile strength.		Elongation in 254 mm (10 in.), per cent.
mm	i:.	$\mathrm{kg} / \mathrm{mm}^{2}$	$\mathrm{lb} / \mathrm{i} \mathrm{n}^{2}$	
II. 70 to 7.37	0.460 to 0.290	$25 \cdot 5$	36,000	35
7.34 to 2.62	0.289 to 0.103	26.0	37,000	30
2.59 to 0.53	0.102 to 0.021	27.0	38,500	25
0.51 to 0.08	0.020 to 0.003	28.0	40,000	20

Note. - Experimental res.lts show tensile strength of concentric-lay copper cable to approximate 90 per cent of combined strengths of wires forming the cable.

TABLE 62. - Copper Plates.
(A. S. T. M. Bir-18) for Locomotive Fire Boxes. Specification Values.

Minimum requirements.	Tensile strength.		Elong. in 203.2 mm (8 in.), per cent.
	$\mathrm{kg} / \mathrm{mm}^{2}$	$1 \mathrm{~b} / \mathrm{in}^{2}$	
Copper, Arsenical, As $0.25-0.50$ Impurities, max. 0.12........ Copper Non-arsenical:	22.0	31,000	35
Impurities, max. O.I2	21.0	30,000	30

Note. - Copper to be fire-refined or electrolytic, hot-rolled from suitable cakes.
TABLE 63.- Copper Alloys.
The general system of nomenclature employed has been to denominate all simple copperzinc alloys as brasses, copper-tin alloys as bronzes, and three or more metals alloys composed primarily of either of these two combinations as alloy brasses or bronzes, e.g., "Zinc bronze" for U.S. Government composition " G " Cu 88 per cent, Sn ro per cent, Zn 2 per cent. Alloys of the third type noted above, together with other alloys composed mainly of copper, have been called copper alloys, with the alloying elements other than minor impurities listed as modifying copper in the order of their relative percentages.
In some instances, the scientific name used to denote an alloy is based upon the deoxidizer used in its preparation, which may appear either as a minor element of its composition or not at all, e.g., phosphor bronze.

Commercial names are shown below the scientific names. Care should be taken to specify the chemical composition of a commercial alloy, as the same name frequently applies to widely varying compositions.

TABLE 64．－Copper－zinc Alloys or Brasses；Tin Alloys or Bronzes．

Metal and approx． composition， per cent．	Condition．	Density or weight．		㵄		茄				Har	dness．
		$\frac{\mathrm{gm}}{\mathrm{cm}^{3}}$	$\frac{\mathrm{lb}}{\mathrm{ft}^{3}}$	Tension， $\mathrm{kg} / \mathrm{mm}^{2}$		Tension， $1 \mathrm{~b} / \mathrm{in}^{2}$		Per cent．		［．	辰
Brass： Cu 90 Zn го†．											
	$\left\{\begin{array}{l}\text { Sand cast．．．．} \\ \text { Cold rolled，}\end{array}\right.$	－	－	－	20.0 39.0	二	29，000＊	22 ＊	－	60	－ 20
	Cold rolled，soft．	8.7	543	－	26.0	－	37，000＊	40＊	70	47	10
$\mathrm{Cu} 80, \mathrm{Zn} 20 \ddagger$.	$\left\{\begin{array}{l}\text { Sand cast．．．．} \\ \text { Cold rolled，hard }\end{array}\right.$	－	－	－	25.0 53.0	－	35，000	31	32	－ 75	－
	Cold rolled，soft．	8.6	537	－	29.0	－	42，000＊	50＊	85	75 46	12
$\mathrm{Cu} 70, \mathrm{Zn} 30$ ． Cu 66 Zn 34 Std． sheet ．．．．．．．．	Sand cast．．．．．．	8.4	52.4	－	28.0	－	40，000	35 ＊		37	－
	Cold rolled，hard	8.5	530	－	42.0	－	60，000	5＊	－	758	26
	Cold rolled，soft．	8.4	524	－	34.0	－	48，000＊	50＊	85	45	12
$\mathrm{Cu} 60, \mathrm{Zn} 40 .$.Muntz metal．．	Sand cast．．．．．	－	－	15.5	32.2	21，800	45，800	15	22	－	－
	Cold rolled，hard	18.4	522	31.5	49.0	45，000	70，000	30	50	－	－
Bronze： Cu 97．7，Sn 2．3．											
	Cast．	－	－	6.0	19.5	8，500	28，000	20	－	－	－
	（Rolled	－	－	7.6	34.0	10，800	48，000	55	75		－
Cu 90，Sn 10．．．	$\left\{\begin{array}{ccc}\text { Cast or } & \text { gun } \\ \text { bronze or } & \text { bell } \\ \text { metal．} \ldots . & .\end{array}\right.$	8.78	548	7.2	23.0	10，300	33，000	10	－	－	23
$\mathrm{Cu} 80, \mathrm{Sn} 20 .$.	Cast．．．．．．．．．．．	8.81	550	7.1	22.5	10，100	32，000	1.5	－	－	－
Cu 70，Sn 30．．．	Cast．．．．．．．．．．．	8.84	552	1.4	5.0	2，000	7，000	0.5		－	－

Compressive Strengths，Brasses：
$\mathrm{Cu} 90, \mathrm{Zn}$ 10，cast $21.0 \mathrm{~kg} / \mathrm{mm}^{2}$ or $30,000 \mathrm{lb} / \mathrm{in}^{2}$ $\mathrm{Cu} 80, \mathrm{Zn} 20$ ，cast $27.4 \mathrm{~kg} / \mathrm{mm}^{2}$ or $39,000 \mathrm{lb} / \mathrm{in}^{2}$ $\mathrm{Cu} 70, \mathrm{Zn} 30$ ，cast $42.0 \mathrm{~kg} / \mathrm{mm}^{2}$ or $60,000 \mathrm{lb} / \mathrm{in}^{2}$ $\mathrm{Cu} 60, \mathrm{Zn} 40$ ，cast $52.5 \mathrm{~kg} / \mathrm{mm}^{2}$ or $75,000 \mathrm{lb} / \mathrm{in}^{2}$ $\mathrm{Cu} 50, \mathrm{Zn} 50$ ，cast $77.0 \mathrm{~kg} / \mathrm{mm}^{2}$ or $110,000 \mathrm{lb} / \mathrm{in}^{2}$

Modulus of elasticity，－cast brass，－average $9100 \mathrm{~kg} / \mathrm{mm}^{2}$ or $13,000,000 \mathrm{lb} / \mathrm{in}^{2}$
Erichsen values：Soft slab， 1.3 mm （ 0.05 in．）thick，no rolling，depth of impression 13.8 mm （ 0.55 in ．）．
Hard sheet， I .3 mm ，rolled 38% reduction，depth of impression 7.3 mm （ 0.29 in. ）．
Hard sheet， 0.5 mm ，rolled 60% reduction，depth of impression 3.7 mm （ 0.15 in ．）．
Compressive Ultimate Strengths，Cast Bronzes：
$\mathrm{Cu} 97.7, \mathrm{Sn} 2.3$ to $24.0 \mathrm{~kg} / \mathrm{mm}^{2}$ or $34,000 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{Cu} 90, \mathrm{Sn} 10$ to $39.0 \mathrm{~kg} / \mathrm{mm}^{2}$ or $56,000 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{Cu} 80, \mathrm{Sn} 20$ to $83.0 \mathrm{~kg} / \mathrm{mm}^{2}$ or $118,00 \mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{Cu} 70, \mathrm{Sn} 30$ to $105.0 \mathrm{~kg} / \mathrm{mm}^{2}$ or $150,000 \mathrm{lb} / \mathrm{in}^{2}$

Specification value，A．S．T．M．，B ${ }_{22-18}$ T，for specimen $=$ cylinder $645 \mathrm{sq} . \mathrm{mm}(\mathrm{r} \mathrm{sq} . \mathrm{in}$ ．）area， 25.4 mm （ I in ．） long．

Cu $80, \mathrm{Sn} 20$ ：minimum compressive elastic limit $=17.0 \mathrm{~kg} / \mathrm{mm}^{2}$ or $24,000 \mathrm{lb} / \mathrm{in}^{2}$
Modulus of elasticity for bronzes varies from $7000 \mathrm{~kg} / \mathrm{mm}^{2}$ or $10,000,000 \mathrm{lb} / \mathrm{in}^{2}$ to $10,000 \mathrm{~kg} / \mathrm{mm}^{2}$ or $15,500,00$ or $\mathrm{lb} / \mathrm{in}^{2}$
＊Values marked thus are S．A．E．Spec．values．（See S．A．E．Handbook，Vol．I，p．13a，rev．December， 1913.
\dagger Red metal．\ddagger Low brass or bell metal．
8 A．S．T．M．Spec．Brg－18T requires B．h．n．of $51-65 \mathrm{~kg} / \mathrm{mm}^{2}$＠ 5000 kg pressure for $70: 30$ annealed sheet brass．

Foot notes to Table 65，Page 85.

[^10]
Smithsonian Tableg．

Table 65.
MECHANICAL PROPERTIES.
TABLE 65. - Copper Alloys - Three (or more) Components.

For Footnotes see page 84.

TABLE 65. - Copper Alloys - Three (or more) Components.

Bronze, Phosphor: spring wir2, hard-drawn or hard-rolled (U. S. Navy Spec. 22 W5, Dec. 1, 1915). Cu 94 , Sn min. $4.5, \mathrm{Zn} \max 0.3$, Fe max. $0.1, \mathrm{~Pb}$ max. $0.2 . \mathrm{P} 0.05$ to 0.50 ; max. elong. in $203 \mathrm{~mm}(8 \mathrm{in})=$.4 per cent.

Diameter (group limits).	Min. tensile strength.		Diameter (group limits).		Min. tensile strength.	
	kg/mm ${ }^{2}$	$\mathrm{lb} / \mathrm{in}^{2}$	mm	in.	$\mathrm{kg} / \mathrm{mm}^{2}$	$\mathrm{lb} / \mathrm{in}^{2}$
Up to 1.59 mm or 0.0625 in . Over 1.59 mm to 3.17 mm (0.125 in .)...	85.0	$\begin{aligned} & 135,000 \\ & 125,000 \end{aligned}$	to 6.35 to 9.52	$\begin{aligned} & \text { to } 0.250 \\ & \text { to } 0.375 \end{aligned}$	77.5 74.0	$\begin{aligned} & 110,000 \\ & 105,000 \end{aligned}$

* Specification Values, Rolled Brass, $\mathrm{Cu}_{62}, \mathrm{Zn}_{37}, \mathrm{Sn} 1$, min. properties after U. S. Navy Spec., 1918 .
\dagger Specification Values: Jan. 3, 1916, Vanadium Bronze Castings, Cu 6r, $\mathrm{Zn} 38, \mathrm{Sn}$ max. I (incl. V). Mimima.
\ddagger Compressive P-limit $15.5 \mathrm{~kg} / \mathrm{mm}^{2}$ or $22,000 \mathrm{lb} / \mathrm{in}^{2}$
8 Compressive P-limit $10.5 \mathrm{~kg} / \mathrm{mm}^{2}$ or ${ }_{15,000} \mathrm{lb} / \mathrm{in}^{2}$ and 28 per cent set for $70 \mathrm{~kg} / \mathrm{mm}^{2}$ or $100,000 \mathrm{lb} / \mathrm{in}^{2}$
i| Ulimate compressive strength, $54.2 \mathrm{~kg} / \mathrm{mm}^{2}$ or $77,100 \mathrm{lb}^{2} \mathrm{in}^{2}(\mathrm{Cu} 76, \mathrm{Sn} 7, \mathrm{~Pb} 13, \mathrm{Zn} 4)$.
TI Compressive P-limit 8.8 to $9.1 \mathrm{Ikg} / \mathrm{mm}^{2}$ or 12,500 to $13,000 \mathrm{lb} / \mathrm{in}^{2}$, and 34 to 35 per cent set for $70 \mathrm{~kg} / \mathrm{mm}^{2}$
** Compression: ultimate strength $49.5 \mathrm{~kg} / \mathrm{mm}^{2}$ or $70,500 \mathrm{lb} / \mathrm{in}^{2}$
\# Modulus of Elasticity: (I) $12,200 \mathrm{~kg} / \mathrm{mm}^{2}$ or $17,300,000 \mathrm{lb} / \mathrm{in}^{2}$; (2) $10,500 \mathrm{~kg} / \mathrm{mm}^{2}$ or $14,900,000 \mathrm{lb} / \mathrm{in}^{2}$
\ddagger Compressive P-limit 17.6 to $28.1 \mathrm{~kg} / \mathrm{mm}^{2}$ or 25,000 to $40,000 \mathrm{lb} / \mathrm{in}^{2}$ and 6 to ro per cent set for $70 \mathrm{~kg} / \mathrm{mm}^{2}$ or $100,000 \mathrm{lb} / \mathrm{in}^{2}$ load.

Specification Values: U. S. Navy 46 B sc, Mar. 1, 1917, Cu 85 to $90, \mathrm{Sn} 6$ to 11, Zn max. 4: Cast, Grade 1. - Im-
purities max. 0.8 ; min. tensile strength $31.6 \mathrm{~kg} / \mathrm{mm}^{2}$ or $45,000 \mathrm{lb} / \mathrm{in}^{2}$ with 20 per cent elong. in 50.8 mm (2 in .).
II Grade 2.-Impurities max. $1.6 ; \min$. tensile strength $21.1 \mathrm{~kg} / \mathrm{mm}^{2}$ or $30,000 \mathrm{lb} / \mathrm{in}^{2}$ with 15 per cent elong. in 50.8 mm (2 in .).

88 Specification Values: U. S. Navy 46B 14b, Mar. 1, 1916, Cu min. 94, Sn min. 3.5, P o.50, rolled or drawn.
ifil Minimum yield points specified: for P-limits assume 66 per cent of valuea chown.

MECHANICAL PROPERTIES.

TABLE 65. - Copper Alloys - Three (or more) Components.

* Gov't. Bronze: $\mathrm{Cu} 88, \mathrm{Sn} 10, \mathrm{Zn} 2$ (values shown are averages for 30 specimens from five foundries tested at the Bureau of Standards).

Compressive P-limit $10.5 \mathrm{~kg} / \mathrm{mm}^{2}$ or $15,000 \mathrm{lb} / \mathrm{in}^{2}$ with 29 per cent set for $70 \mathrm{~kg} / \mathrm{mm}^{2}$ or $100,000 \mathrm{lb} / \mathrm{in}^{2}$ load.
\ddagger Values from same series of tests as first values for " $88-10-2$," averages for 26 specimens from five foundries tested at Bureau of Standards.
§ Compressive P-limit $9.1 \mathrm{xg} / \mathrm{mm}^{2}$ or $13,000 \mathrm{lb} / \mathrm{in}^{2}$ with 34 per cent set for $70 \mathrm{~kg} / \mathrm{mm}^{2}$ or $100,000 \mathrm{lb} / \mathrm{in}^{2} \mathrm{load}$.
|| Specification minimums: U. S. Navy 46 Br 7 , Dec. 2, I918, for hot-rolled aluminum bronze, Cu 85 to 87 , Al 7 to $9, \mathrm{Fe} 2.5$ to 4.5 . Specification values under P-limit are for yield point.

TTwo and six tenths per cent increase in strength up to 762 mm (30 in .) width. load.

+ Compressive P-limit: cast, 12.7 to $14.1 \mathrm{~kg} / \mathrm{mm}^{2}$ or 18,000 to $20,000 \mathrm{lb} / \mathrm{in}^{2}$ with 13 to 15 per cent set at $700 \mathrm{~kg} / \mathrm{mm}^{2}$ or $100,000 \mathrm{lb} / \mathrm{in}^{2}$ load.
$\ddagger \ddagger$ Modulus of elasticity $14,800 \mathrm{~kg} / \mathrm{mm}^{2}$ or $21,150,000 \mathrm{lb} / \mathrm{in}^{2}$
88 Compressive P-limit $8.4 \mathrm{~kg} / \mathrm{mm}^{2}$ or ${ }^{12,000 ~ l b / \mathrm{in}^{2}}$ with 36 per cent set for $70.3 \mathrm{~kg} / \mathrm{mm}^{2}$, or $100,000 \mathrm{lb} / \mathrm{in}^{2} \mathrm{load}$.
II $\|$ High values are after Jean Escard "'L'Aluminum dans L'Industrie," Paris, 1918. Compressive P-limit 13.5

TABLE 66. - Miscellaneous Metals and Alloys.

Antimony: Modulus of Elasticity $7960 \mathrm{~kg} / \mathrm{mm}^{2}$ or $\mathrm{II}_{1,320,000 \mathrm{lb} / \mathrm{in}^{2} \text { (Bridgman). }}^{\text {I }}$

* Compressive strength: cast and annealed, $86.0 \mathrm{~kg} / \mathrm{mm}^{2}$ or $122,000 \mathrm{lb} / \mathrm{in}^{2}$.

Comm'c'l. comp., C 0.06 , cast, tensile, ultimata, $42.8 \mathrm{~kg} / \mathrm{mm}^{2}$ or $61,000 \mathrm{lb} / \mathrm{in}^{2}$, with 20 per cent elongation in 50.8 or 2 in . Compression, ultimate $123.0 \mathrm{~kg} / \mathrm{mm}^{2}$ or $175,000 \mathrm{lb} / \mathrm{in}^{2}$

Stellite, $\mathrm{Co} 59.5, \mathrm{MO}{ }_{22.5}, \mathrm{Cr} 10.8, \mathrm{Fe} 3 . \mathrm{I}, \mathrm{Mn} 2.0, \mathrm{C} 0.9, \mathrm{Si} 0.8$. Brinell hardness 512 at 3000 kg .
\dagger Modulus of elasticity, cast or rolled, $492 \mathrm{~kg} / \mathrm{mm}^{2}$ or $700,000 \mathrm{lb} / \mathrm{in}^{2}$; drawn hard $703 \mathrm{~kg} / \mathrm{mm}^{2}$ or $\mathrm{I}, 000,000 \mathrm{lb} / \mathrm{in}^{2}$
\ddagger For compressive test data on lead-base babbitt metal, see table following zinc.
8 Modulus of elasticity $15,800 \mathrm{~kg} / \mathrm{mm}^{2}$ or $22,500,000 \mathrm{lb} / \mathrm{in}^{2}$.
II Specification values, U. S. Navy, Monel metal, Ni min. 60 , $\mathrm{Cu} \min .23, \mathrm{Fe}$ max. 3.5, Mn max. 3.5, C + Si max. .8, Al max. o.5.
\& Values shown are subject to slight modifications dependent on shapes and thicknesses.
** Values are for yield point.
\# Compressive strength: cast, $4.5 \mathrm{~kg} / \mathrm{mm}^{2}$ or $6,400 \mathrm{lb} / \mathrm{in}^{2}$
Modulus of elasticity: cast av. $2,810 \mathrm{~kg} / \mathrm{mm}^{2}$ or $4,000,000 \mathrm{lb} / \mathrm{in}^{2}$; rolled av. $40 \pi .0 \mathrm{~kg} / \mathrm{mm}^{2}$ or $5,700,000 \mathrm{lb} / \mathrm{in}^{2}$

Table 67.
MECHANICAL PROPERTIES．
TABLE 67．－Miscellaneous Metals and Alloys．
（a）Tungsten and Zinc．

Metal or alloy approx． comp． per cent．	Condition．	Density or weight．		号		$\begin{aligned} & \text { 品 } \\ & \text { 品 } \end{aligned}$				Hardness．	
		$\begin{aligned} & \mathrm{gm} \\ & \text { per } \\ & \mathrm{cm}^{3} \end{aligned}$	$\begin{aligned} & \text { lb. } \\ & \text { per } \\ & \mathrm{ft}^{3} \end{aligned}$	Tension， $\mathrm{kg} / \mathrm{mm}^{2}$		Tension， $\mathrm{lb} / \mathrm{in}^{2}$		Per cent			竒号苞
Tungsten， W 99.2 ＊	$\left(\begin{array}{l}\text { Ingot sintered，} \\ \mathrm{D}=5.7 \mathrm{~mm} \text { or } 0.22 \mathrm{in} . \\ \text { Swaged rod，} \\ \mathrm{D}=0.7 \mathrm{~mm} \text { or } 0.03 \mathrm{in} . \\ \text { Drawn hard，} \\ \text { D }\end{array}\right.$	18.0	1124	－	12.7 151.0	－	18,000 215,000	0.0	0.0 28.0	－	－
	$\left\{\begin{array}{ccc} \mathrm{D}=0.029 & \mathrm{~mm} & \text { or } \\ 0.001414 i n & \\ \text { 0wnoed and drawn } \end{array}\right.$	－	－		415.0	－	590，000	－	65.0	－	－
	$\left\|\begin{array}{c} \text { Swaged and drawn hot } \\ 97.5 \% \text { reductiont... } \\ \text { Same as above and } \end{array}\right\|$	－	－	－	164．0	－	233，500	3.2	14.0	－	－
	$\left(\begin{array}{l}\text { equiaxed at } 200{ }^{\circ} \mathrm{C} \\ \text { in } \mathrm{H}_{2} \ddagger \ldots \ldots \ldots \ldots \ldots\end{array}\right.$	－	－		118.0		168，000	0.0	0.0	－	－
Zinc，§Zn：	$\left\{\begin{array}{l}\text { Cast．．．．．．．．．．．．．．．．．} \\ \text { Coarse crystailine．．．．} \\ \text { Fine crystalline．．．．．．} \\ \text { Rolled（with grain or } \\ \text { direction of roilling）．} \\ \text { Rolled（across grain or } \\ \text { direction of rolling）．} \\ \text { Drawn hard．．．．．．．．}\end{array}\right.$	7.0	437	（Impurities Pb, Fe and Cd ）				－	－	－	－
		二	－		2.8 8.4		$\underset{\text { 12，000 }}{4,000}$	二	二	$4_{48}^{42} \text { to }$	$\begin{aligned} & 8 \text { to } \\ & \text { 10 } \end{aligned}$
		－	－	2.0	19.0	2，900	27，000	－	－	－	－
		－	－	4.1	25.3	5，800	36，000	－	－	－	－
		7.1	443		7.0		10，000				

＊Commercial composition for incandescent electric lamp filaments containing thoria（ ThO_{2} ）approx．o． 75 per cent after Z Jeffries Am．Inst．Min．Eng．Bulletin 138，June， 1918.
\dagger After Z Jefiries Am．Inst．Min．Eng．Bulletin 149，May，I919
\ddagger Ordinary annealing treatment makes W brittle，and severe working，below recrystallization or equiaxing tempera－ ture，produces ductility W rods which have been worked and recrystallized are stronger than sintered rods．The equiaxing temperature of worked tungsten，with a $5-\mathrm{min}$ ．exposure，varies from $2200^{\circ} \mathrm{C}$ for a work rod with 24 per cent reduction，to $1350^{\circ} \mathrm{C}$ tor a fine wire with 100 per cent reduction．Tungsten wire， $\mathrm{D}=0.635 \mathrm{~mm}$ or 0.025 in ．
§ Compression on cylinder 25.4 mm （ 1 in ．）by 65.1 mm （ 2.6 in ．），at 20 per cent deformation：
For spelter（cast zinc）free from Cd，av． $17.2 \mathrm{~kg} / \mathrm{mm}^{2}$ or $24,500 \mathrm{lb} / \mathrm{in}^{2}$ ．
For spelter with Cd 0．26，av． $27.4 \mathrm{~kg} / \mathrm{mm}^{2}$ or $39,000 \mathrm{lb} / \mathrm{in}^{2}$ ．（See Proc．A．S．T．M．，Vol．13，pl．19．）
Modulus of rupture averages twice the corresponding tensile strength．
Shearing strength：rolled，averages $13.6 \mathrm{~kg} / \mathrm{mm}^{2}$ or $194,000 \mathrm{lb} / \mathrm{in}^{2}$ ．
Modulus of elasticity：cast， $7,750 \mathrm{~kg} / \mathrm{mm}^{2}$ or $11,025,000 \mathrm{lb} / \mathrm{in}^{2}$
Modulus of elasticity．rolled， $8450 \mathrm{~kg} / \mathrm{mm}^{2}$ or $\mathrm{I} 2,000000 \mathrm{lb} / \mathrm{in}^{2}$ ．（Moore，Bulletin 52，Eng．Exp．Sta．Univ．of Ill．）
（b）White Metal Bearing Alloys（Babbitt Metal）．
A．S．T．M．vol．xviii，I，p． 49 I.
Experimental permanent deformation values from compression tests on cylinders 31.8 mm （ $1_{\frac{1}{4}} \mathrm{in}$ ．）diam．by 63.5 mm （ $2 \frac{1}{2} \mathrm{in}$ ．）long，tested at $21^{\circ} \mathrm{C}$（ $70^{\circ} \mathrm{F}$ ．）（Set readings after removing loads．）

$\begin{array}{\|l} \text { Al- } \\ \text { loy } \\ \text { No } \end{array}$	Formula， per cent．				Pouring temp．		Weight．		Permanent deformation＠ $21^{\circ} \mathrm{C}$						Hardness．			
					$\begin{aligned} & (@) 454 \mathrm{~kg} \\ & =1000 \mathrm{lb} . \end{aligned}$	$\begin{aligned} & @ 2268 \mathrm{~kg} \\ & =5000 \mathrm{lb} . \end{aligned}$		$\begin{aligned} & \text { @) } 4536 \mathrm{~kg} \\ & \stackrel{10,000 \mathrm{lb} .}{ } \end{aligned}$										
	Sn		Cu	Pb			C	F．	$\mathrm{g} / \mathrm{cm}^{3}$			lb．／ft ${ }^{3}$	mm	in．	mm	in．	mm	in．
	Tin Base．																	
${ }_{2}$ 2	89.0	7.5	4.5 35	二	432	808	7.34 7.39	46 x	． 0.000	0．0000	． 0.025	－0．0010	0.380 .305	0.0150 .0120	28.6 28.3	12.8 12.7		
3	83.3	8.3	8.3	－	491	916	7.46	465	． 025	． 0010	． 114	． 0045	． 180	． 070	34.4	15.7		
4 5	75.0 65.0	12.0		10.0	360 350	680	7.52 7.75	469 484	． 013	． .0005	． 064	． 0025	.230 .230	．0090	29.6	12.8 It． 8		
		Lead B	Base．															
6	20.0	15.0	1.5	63.5	337	638	9.33	582	． 038	． 0015	． 127	． 0050	． 457	． 0180	24.3	II．I		
7	10.0	15.0		75.0	329	625	9.73	607	． 025	． 010	． 127	． 0050	． 583	． 0230	24.1	11.7		
		15.0		80.0	329	625	10.04		． 051	． 0020	． 229	． 0090	1.575	． 0620	20.9	10.3		
${ }^{9}$	5.0	10.0	－	85.0	319	616	10.24	640	． 102	． 0040	． 305	． 0120	2.130	． 0840	19.5	8.6		
11		15.0	二	83．0	325	625 625	10.07	629 642	.025 .025	． 0010	． 254	． .10100	3.910 3.020	． 1540	17.0	8.9		
12	－	10.0	－	90.0	334	634	10.67	666	0.064	0.0025	0.432	0.0170	7.240	0.2850	14.3	6.9 6.4		

[^11]Smithsonian Tables．

MECHANICAL PROPERTIES.
table 68. - Cement and Concrete.

(a) Cement.

Cement: Specification Values (A.S. T. M. C9 to 17, Сio to o9, and C9 to 16T).
Minimum strengths based on tests of $645 \mathrm{~mm}^{2}$ ($\mathrm{I} \mathrm{in}^{2}$) cross section briquettes for tension, and cylinders $50.8 \mathrm{~mm}(2 \mathrm{in}$.) diameter by 101.6 mm (4 in .) length for compression. Mortar, composed of 1 part cement to 3 parts Ottawa sand by volume; specimens kept in damp closet for first 24 hours and in water from then on until tested.

Cement (r: 3 mortar tested).	Specific gravity.	Age, days.	Tension.		Compression.	
			$\mathrm{kg} / \mathrm{mm}^{2}$	$\mathrm{lb} / \mathrm{in}^{2}$	$\mathrm{kg} / \mathrm{mm}^{2}$	$\mathrm{lb} / \mathrm{in}^{2}$
Std. Portland.	3.10	7	0.16	200	0.85	1,200
White Portland.	3.07	28	. 24	300	1.60	2,000
Natural Av.	2.85	${ }_{8}^{7}$. 03	50	-	-
Natural.	-	28	0.09	125	-	-

(b) Cement and Cement Mortars.

Cement and Cement Mortars. - Bureau of Standards Experimental Values. Compressive Strengths of Portland cement mortars of uniform plastic consistency. Data from tests on $50.8 \mathrm{~mm}(2 \mathrm{in}$.) cubes stored in water. Sand: Potomac River, representative concrete sand.

Cement.	Sand.	Water, per cent.	Age, days.	Compressive strength.	
Proportions by volume.				$\mathrm{kg} / \mathrm{mm}^{2}$	$\mathrm{lb} / \mathrm{in}^{2}$
I	\bigcirc	30.0	728	4.20	5,970
				6.40	9,120
I	I	16.0	728	3.10	4,440
				4.75	6,750
I	2	13.6	7	2.05	2,900
			28	3.10	4,440
I	3	13.9	728	I. 25	1,780
				2.05	2,890
I	9	I5. I	728	-. 10	120
				O. 15	200

Note. - (From Bureau of Standards Tech. Paper 58.) Neat cement briquettes mixed at plastic consistency (water 2 I per cent) show $0.52 \mathrm{~kg} / \mathrm{mm}^{2}$ or $740 \mathrm{lb} / \mathrm{in}^{2}$ tensile strength at 28 days' age;
I Cement: 3 Ottawa sand-mortar briquettes, mixed at plastic consistency (water 9 per cent) show $0.28 \mathrm{~kg} / \mathrm{mm}^{2}$ or $400 \mathrm{lb} / \mathrm{in}^{2}$ tensile strength at 28 days' age.

Smithsonian Tables.

TABLE 68 (continued).
(c) Concrett.

Concrete: Compressive strengths. Experimental values for various mixtures. Results compiled by Joint Committee on Concrete and Reinforced Concrete. Final Report adopted by the Committee July 1, 1916. Data are based on tests of cylinders 203.2 mm (8 in .) diameter and 406.4 mm (x 6 in .) long at 28 days age. American Standard Concrete Compressive Strengths.

Aggregate.	Units.	Mix.				
		1:3	1: $4 \frac{1}{2}$	1: 6	1:731	1:9
Granite, trap rock. Gravel, hard limestone and hard sandstone.	$\mathrm{kg} / \mathrm{mm}^{2}$	$2 \cdot 3$	2.0	I. 5	1.3	1.0
	$\mathrm{lb} / \mathrm{in}^{2}$	3300	2800	2200	1800	1400
	$\mathrm{kg} / \mathrm{mm}^{2}$	2.1	1.8	1.4	I. 1	0.9
	$\mathrm{lb} / \mathrm{in}^{2}$	3000	2500	2000	1600	1300
Soft limestone and soft sandstone.	$\mathrm{kg} / \mathrm{mm}^{2}$	I. 5	1.3	I.I	0.8	0.7
	$\mathrm{lb} / \mathrm{in}^{2}$	2200	1800	1500	1200	1000
Cinders.	$\mathrm{kg} / \mathrm{mm}^{2}$	0.6	0.5	0.4	0.4	0.3
	$\mathrm{lb} / \mathrm{ln}^{2}$	800	700	600	500	400

Note. - Mix shows ratio of cement (Portland) to combined volume of fine and coarse aggregate (latter as shown).

Committee recommends certain fractions of tabular values as safe working stresses in reinforced concrete design, which may be summarized as follows:
Bearing, 35 per cent of compressive strength;
Compression, extreme fiber, 32.5 per cent of compressive strength;
Vertical shearing stress 2 to 6 per cent of compressive strength, depending on reinforcing;
Bond stress, 4 and 5 per cent of compressive strength, for plain and deformed bars, respectively.
Modulus of Elasticity to be assumed as follows:

| For concrete with strength. | | Assume modulus of elasticity. | |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{kg} / \mathrm{mm}^{2}$ | $\mathrm{lb} / \mathrm{in}^{2}$ | $\mathrm{~kg} / \mathrm{mm}^{2}$ | $\mathrm{lb} / \mathrm{in}^{2}$ |
| up to 0.6 | up to 800 | 530 | 750,000 |
| 0.6 to 1.5 | 800 to 2200 | 1400 | $2,000,000$ |
| I .5 to 2.0 | 2200 to 2900 | 1750 | $2,500,000$ |
| over 2.0 | over 2900 | 2100 | $3,000,000$ |

(See Joint Committee Report, Proc. A. S. T. M. v. XVII, 1917, p. 201.)

Edrtor's Note. - The values shown in the table above are probably fair values for the compressive strengths of concretes made with average commercial material, although higher results are usually obtained in laboratory tests of specimens with high grade aggregates. Observed values on $1: 2: 4$ gravel concrete show moduliof elasticity up to $3 \times 60 \mathrm{~kg} / \mathrm{mm}^{2}$ or $4,500,000 \mathrm{lb} / \mathrm{in}^{2}$ and compressive strengths to $4.2 \mathrm{~kg} / \mathrm{mm}^{2}$ or $6000 \mathrm{lb} / \mathrm{in}^{2}$

Tensile strengths average ro per cent of values shown from compressive strengths.
Shearing strengths average from 75 to 125 per cent of the compressive strengths; the larger percentage representing the shear of the leaner mixtures (for direct shear, Hatt gives 60 to 80 per cent of crushing strength).
Compressive strengths of natural cement concrete average from 30 to 40 per cent of that of Portland cement concrete of the same proportioned mix.
Transverse strength: modulus of rupture of $1: 2 \frac{1}{2}: 5$ concrete at r and 2 months equal to one sixth crushing strength at same age (Hatt).
Weight of granite, gravel and limestone, $\mathrm{I}: 2: 4$ concretes averages about $2.33 \mathrm{~g} / \mathrm{cm}^{3}$ or $145 \mathrm{lb} / \mathrm{ft}^{3}$; that of cinder concrete of same mix is about $1.85 \mathrm{~g} / \mathrm{cm}^{3}$ or $115 \mathrm{lb} / \mathrm{ft}^{3}$

> Concrete, 1:2:4 Mix, Compressive Strengths at Various Ages.

Experimental Values: one part cement, two parts Ohio River sand and four parts of coarse aggregate as shown. Compressive tests madeon 203.2 mm (8 in .) diameter cylinders, 406.4 mm (I 6 in .) long. (After Pittsburgh Testing Laboratory Results. See Rwy Age, vol. 64, Jan. 18, 1918, pp. 165-166.)

Note. - Maximum and minimum test results varied about 5 per cent above or below average values shown above. Smithsonian Tables.

TABLE 69．－Stone and Clay Products．

Stone．	Weight， average．		Compression． Ultimate strength．			Flexure． Modulus ofrupture．			Shear． Ulimate strength			Flexure， modulus of elasticity		
			Average．			Average．			Average．			Average．		
	$\stackrel{\square}{E}$	$\stackrel{3}{3}$	耍	$\stackrel{\square}{\square}$			号		\％	\＃			$\mathrm{lb} / \mathrm{in}^{2}$	
Granite．．	2.6	165		20，200			1600	30	I． 60				7，500，000	25
Marble．．	2.7	170	8.85	12，600	25	I． 05	1500	50	0.90	1300	25		8，200，000	50
Limestone	2.6	160	6.30	9，000	95	0.85	1200	100	I． 00	1400	45	5900	8，400，000	65
Sandstone．		I35	8.80	12，500		I． 05	1500	55	I． 20	1700	45	2300	3，300，000	100
＊Values based on tests of American building stones from upwards of twenty－five localities， made at Watertown（Mass．）Arsenal（Moore，p．184）．Each value shown under＂Range＂ is one half the difference between maximum and minimum locality averages expressed as a percentage of the average for the stone．														

（b）Strength and Stiffness of Bavarian Building Stone．＊

Stone．	Weight， average．		Compression． Ultimate strength．			Flexure． Modulus of rupture．			Shear． Ultimate Strength．\dagger			Flexure． Modulus of elasticity．		
			Average．			Average．			Average．			Average．		
	$\frac{\pi}{8}$	$\frac{\cong}{3}$	$\begin{aligned} & \text { \# } \\ & \frac{1}{g} \\ & \text { Eq } \end{aligned}$	$\stackrel{\text { E }}{\text { ¢ }}$		首 B B	$\xrightarrow{\text { an }}$		\％ E E B	$\stackrel{\ddot{E}}{\cong}$		$\begin{aligned} & \text { In } \\ & E \\ & \text { n } \end{aligned}$	$\mathrm{lb} / \mathrm{in}^{2}$	
Granite．．	2.66	165	13.70	19，500		0.90	1300	5	1．00	1420	\bigcirc	1600	2，300，000	30
Marble \ddagger.	2.16	135	5.60	8，000	15	0． 30	450	－	0.45	620	50	3450	4，900，000	
Limestone	2.48	${ }^{155}$	8．10	II，500	5	т．ro	1550	45	0.60	870	20	2350	3，350，000	90
Sandstone	2.30	145	8.10	11，500	75	0.45	650	55	0．50	680	35	2500	3，550，000	35

＊Values based on careful tests by Bauschinger，＂Communications，＂Vol．ıо．
\dagger Shearing strength determined perpendicular to bed of stone．
\ddagger Values are for Jurassic limestone．

General Notes．－i．Later transverse strength（flexure）tests on Wisconsin building stones （Johnson＇s＂Materials of Construction，＂1918 ed．，p．255）show moduli of rupture as follows： Granite， 1.90 to $2.75 \mathrm{~kg} / \mathrm{mm}^{2}$ or 2710 to $3910 \mathrm{lb} / \mathrm{in}^{2}$ ；limestone， 0.80 to $3.30 \mathrm{~kg} / \mathrm{mm}^{2}$ or 1160 to $4660 \mathrm{lb} / \mathrm{in}^{2}$ ；sandstone， 0.25 to $0.95 \mathrm{~kg} / \mathrm{mm}^{2}$ or 360 to $1320 \mathrm{lb} / \mathrm{in}^{2}$ ．

2．Good slate has a modulus of rupture of $4.90 \mathrm{~kg} / \mathrm{mm}^{2}$ or $7000 \mathrm{lb} / \mathrm{in}^{2}$（loc．cit．，p．257）．

[^12]| Brick - description. | $\begin{gathered} \text { Absorption } \\ \text { average } \\ \text { per cent. } \end{gathered}$ | Compression. Min. ult. strength. | | Flexure.
 Min. modulus rupture | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | $\mathrm{kg} / \mathrm{mm}^{2}$ | $\mathrm{lb} / \mathrm{in}^{2}$ | $\mathrm{kg} / \mathrm{mm}^{2}$ | $\mathrm{lb} / \mathrm{in}^{2}$ |
| Class A (Vitrified). . | 5 | 3.50 | 5000 | 0.65 | 900 |
| Class B (Hard burned). | 12 | 2.45 | 3500 | 0.40 | 600 |
| Class C (Common firsts) | 18 | 1.40 | 2000 | 0.30 | 400 |
| Class D (Common). | - | 1.05 | 1500 | 0.20 | 300 |

* After A. S. T. M. Committee C-3, Report 1913, and University laboratories' tests for Committee $\mathrm{C}-3$ (Johnson, p. 28I).
(d) Strength in Compression of Brick Piers and of Terra-cotta Block Piers.

Tabular values are based on test data from Watertown Arsenal, Cornell University, U. S. Bureau of Standards, and University of Ill. (Moore, p. 185).

Brick or block used.	Mortar.	Compression.* Av. ult. strength.	
		$\mathrm{kg} / \mathrm{mm}^{2}$	$\mathrm{lb} / \mathrm{in}^{2}$
Vitrified brick.	I part P. \dagger cement $: 3$ parts sand.	1.95	2800
Pressed (face) brick.	x part P. cement $: 3$ parts sand	r. 40	2000
Pressed (face) brick.	I part lime: 3 parts sand.	1.00	1400
Common brick.	I part P. cement : 3 parts sand.	0.70	1000
Common brick	I part lime : 3 parts sand.	0.50	700
Terra-cotta brick	x part P. cement : 3 parts sand.	2.10	3000

[^13](e) Strength of Compression of Various Bricks.

Reasonable minimum average compressive strengths for other types of brick than building brick are noted by Johnson, "Materials of Construction," pp. 289 ff ., as follows:

Brick.	$\mathrm{kg} / \mathrm{mm}^{2}$	$\mathrm{lb} / \mathrm{in}^{2}$
sand-lime	2.10	3000
sand-lime (German)	I. 53	2 L 0 (av. 255 tests)
paving	5.60	8000
acid-refractory	0.70	1000
silica-refractory	1.40	2000

The specific gravity of brick ranges from I .9 to 2.6 (corresponding to 120 to $\mathrm{I} 60 \mathrm{lb} / \mathrm{ft}^{3}$).
Building tile: hollow clay blocks of good quality, - minimum compressive strength: $0.70 \mathrm{~kg} / \mathrm{mm}^{2}$ or $1000 \mathrm{lb} / \mathrm{in}^{2}$. Tests made for A. S. T. M. Committee C-io (A. S. T. M. Proc. XVII, I, p. 334) show compressive strengths ranging from 0.45 to $8.70 \mathrm{~kg} / \mathrm{mm}^{2}$ or 640 to $12,360 \mathrm{lb} / \mathrm{in}^{2}$ of net section, corresponding to 0.05 to $4.20 \mathrm{~kg} / \mathrm{mm}^{2}$ or 95 to 6000 $\mathrm{lb} / \mathrm{in}^{2}$ of gross section. Recommended safe loads (Marks, "Mechanical Engineers' Handbook," p. 625) for effective bearing parts of hollow tile: hard fire-clay tiles $0.06 \mathrm{~kg} / \mathrm{mm}^{2}$ or $80 \mathrm{lb} . / \mathrm{in}^{2}$; ordinary clay tiles $0.04 \mathrm{~kg} / \mathrm{mm}^{2}$ or $60 \mathrm{lb} / \mathrm{in}^{2}$; porous terracotta tiles $0.03 \mathrm{~kg} / \mathrm{mm}^{2}$ or $40 \mathrm{lb} / \mathrm{in.}^{2}$ The specific gravity of tile ranges from 1.9 to 2.5 corresponding to a weight of 120 to $155 \mathrm{lb} / \mathrm{ft}^{3}$.

Table 70.
MECHANICAL PROPERTIES.
TABLE 70. - Rubber and Leather.
(a) Rubber, - Sheet.*

Grade.	Ultimate strength.				Ult, elongation.		Set. \ddagger	
	Longitudinal. \dagger		Transverse.		Longit.	Transv.	Longit.	Transv.
	kg/mm ${ }^{2}$	$\mathrm{lb} / \mathrm{in}^{2}$	$\mathrm{kg} / \mathrm{mm}^{2}$	$\mathrm{lb} / \mathrm{in}^{2}$	per cent.		per cent.	
I	1.92	2730	1.8I	2575	630	640	II. 2	$7 \cdot 3$
2	1. 45	2070	1.43	2030	640	670	6.0	5.0
3	0.84	1200	0.89	1260	480	555	22.1	16.3
4	1.30	1850	I. 20	1700	410	460	34.0	24.0
5	0.48	690	0.36	510	320	280	27.5	25.0
6	0.62	880	0.48	690	315	315	$34 \cdot 3$	25.9

* Data from Bureau of Standards Circular 38.
\dagger Longitudinal indicates direction of rolling through the calendar.
\ddagger Set measured after 300 per cent elongation for I minute with I minute rest.
The specific gravity of rubber averages from 0.95 to I .25 , corresponding to an average weight of 60 to $80 \mathrm{lb} / \mathrm{ft}^{3}$.

Four-ply rubber belts show an average ultimate tensile strength of 0.63 to $0.65 \mathrm{~kg} / \mathrm{mm}^{2}$ or 890 to $930 \mathrm{lb} . / \mathrm{in}^{2}$ (Benjamin), and a working tensile stress of 0.07 to $0.11 \mathrm{~kg} / \mathrm{mm}^{2}$ or 100 to 150 $\mathrm{lb} . / \mathrm{in}^{2}$ is recommended (Bach).

> (b) Leather, - Belting.

Oak tanned leather from the center or back of the hide:
$\underset{\text { (Marks, p. } 622 \text {) }}{\text { Minimum tensile strengths of belts }}\left\{\begin{array}{l}\text { single } 2.8 \mathrm{~kg} / \mathrm{mm}^{2} \text { or } 4000 \mathrm{lb} . / \mathrm{in}^{2} \\ \text { double } 2.5 \mathrm{~kg} / \mathrm{mm}^{2} \text { or } 3600 \mathrm{lb} . / \mathrm{in}^{2}\end{array}\right.$
Maximum elongation for one hour application of $\{$ single 13.5 per cent $1.6 \mathrm{~kg} / \mathrm{mm}^{2}$ or $2250 \mathrm{lb} . / \mathrm{in}^{2}$ stress $\quad\left\{\begin{array}{l}\text { double } 12.5 \text { per cent. }\end{array}\right.$

Modulus of elasticity of leather varies from an average value of $12.5 \mathrm{~kg} / \mathrm{mm}^{2}$ or $17,800 \mathrm{lb} / \mathrm{in}^{2}$ (new) to $22.5 \mathrm{~kg} / \mathrm{mm}^{2}$ or $32,000 \mathrm{lb} . / \mathrm{in}^{2}$ (old).
Chrome leather has a tensile strength of 6.0 to $9.1 \mathrm{~kg} / \mathrm{mm}^{2}$ or 8500 to $12,900 \mathrm{lb} / \mathrm{in}^{2}$.
The specific gravity of leather varies from 0.86 to r .02 , corresponding to a weight of 53.6 to $63.6 \mathrm{lb} . / \mathrm{ft}^{3}$.

MECHANICAL PROPERTIES.

TABLE 71. - Manila Rope.
Manila Rope, Weight and Strength - Specification Values. From U. S. Government Standard Specifications adopted April 4, 1918.

Rope to be made of manila or Abaca fiber with no fiber of grade lower than U. S. Government Grade I, to be three-strand, ${ }^{*}$ medium-laid, with maximum weights and minimum strengths shown in the table below, lubricant content to be not less than 8 nor more than 12 per cent of the weight of the rope as sold.

Approximate diameter.		Circumference.		Maximum net weight.		Minimum breaking strength.	
mm	in.	mm	in.	kg/m	$\mathrm{lb} / \mathrm{ft}$.	kg	lb .
6.3	$\frac{1}{4}$	19.1	$\frac{3}{4}$	0.029	0.0196	320	700
7.9	${ }^{5}$	25.4	1	0.044	0.0286	540	1,200
9.5	$\frac{3}{8}$	28.6	I $\frac{1}{8}$	0.061	0.0408	660	1,450
II.I	$\frac{7}{16}$	31.8	$1{ }^{\frac{1}{4}}$	0.080	0.0539	790	1,750
II. 9	$\frac{1}{3} \frac{5}{2}$	34.9	$1 \frac{3}{8}$	0.095	0.0637	950	2,100
12.7	$\frac{3}{2}$	38.1	$1 \frac{1}{2}$	-. 109	0.0735	1, i Io	2,450
14.3	$\frac{9}{16}$	44.5	1 ${ }^{\frac{3}{4}}$	-. 153	0.1029	1,430	3,150
15.9	$\frac{5}{8}$	50.8	2	-. 195	0.1307	ェ,8ı0	4,000
19.1	$\frac{3}{4}$	57.2	$2 \frac{1}{4}$	0.24 I	-.16I7	2,220	4,900
20.6	${ }_{1}^{13}$	63.5	$2 \frac{1}{2}$	0. 284	0.1911	2,680	5,900
22.2	$\frac{7}{8}$	69.9	$2 \frac{3}{4}$	0.328	0.2205	3,170	7,000
25.4	1	76.2	3	0. 394	0. 2645	3,720	8,200
27.0	I 16	82.6	$3^{\frac{1}{4}}$	0.459	0.3087	4,310	9,500
28.6	$1 \frac{1}{8}$	88.9	$3^{\frac{1}{2}}$	0.525	-. 3528	4,990	11,000
31.8	$\mathrm{I}^{\frac{1}{4}}$	95.2	$3^{\frac{3}{4}}$	0.612	0.4115	5,670	12,500
$33 \cdot 3$	${ }_{1}{ }_{16}^{5}$	IOI. 6	4	0.700	0.4703	6,440	14,200
34.9	$1{ }^{3}$	108.0	$4^{\frac{1}{4}}$	0.787	-. 5290	7,260	16,000
38.1	$1 \frac{1}{2}$	114.3	$4^{\frac{1}{2}}$	0.875	0. 5879	7,940	17,500
39.4	$\mathrm{I}_{19}{ }^{9}$	120.7	$4^{\frac{3}{4}}$	0.984	0.6615	8,840	19,500
41.2	15	127.0	5	1.094	-. 7348	9,750	21,500
$44 \cdot 5$	I ${ }^{3}$	140.0	$5^{\frac{1}{2}}$	1.312	-.88ı8	11,550	25,500
50.8	2	I 52.4	6	I. 576	1.059	13,610	30,000
52.4	$2 \frac{1}{16}$	165.1	$6 \frac{1}{2}$	1.823	I. 225	15,420	34,000
57.2	$2 \frac{1}{4}$	177.8	7	2.144	$1.44{ }^{1}$	17,460	38,500
63.5	$2 \frac{1}{2}$	190.5	$7 \frac{1}{2}$	2.450	I. 646	19,730	43,500
66.7	$2 \frac{5}{8}$	203.2	8	2.799	1.88 r	22,220	49,000
73.0	$2 \frac{7}{8}$	215.9	81 $\frac{1}{2}$	3.136	2. 107	24,940	55,000
76.2	3	228.6	9	$3 \cdot 543$	2.38 I	27,670	61,000
79.4	$3 \frac{1}{8}$ 。	241.3	$9^{\frac{1}{2}}$	3.936	2.645	30,390	67,000
82.5	$3{ }^{\frac{1}{4}}$	254.0	10	4.375	2.940	33,1 10	73,000

* Four-strand, medium-laid rope when ordered may run up to 7% heavier than three-strand rope of the same size, and must show 95% of the strength required for three-strand rope of the same size.

Common and botanical name.	Specific gravity, oven-dry, based on		Static bending.			Impact bending.		Compression.			Shear.	Tension.	Hardness.	
						$\underbrace{\text { En }}_{\substack{\text { En }}}$		Parallel to grain.			$\begin{aligned} & \text { Parallel to grain } \\ & \text { ult. st. } \mathrm{kg} / \mathrm{mm}^{2} \end{aligned}$		Load to $\frac{1}{2}$ imbed II. 3 mm d. ball	
	vol. when green.	vol. ovendry.				$\frac{:-3}{1}$		limit kg /	nm^{2}				$\begin{gathered} \text { end } \\ \mathbf{k g} \end{gathered}$	$\begin{aligned} & \text { side } \\ & \text { kg } \end{aligned}$
1	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Alder (Al	0.37	0.43	2.65	4.55	8.30	5.60	0.56	1. 85	2.10	0.22	0.54	0.27	250	20
Ash, black. (Fraxinus nigra)	0.46	0.53	1.85	4.20	720	5.10	0.8 I	1.15	1. 60	0.31	0.61	0.35	270	250
Ash, white (forest grown) (Fraxinus americana)	0.52	0.60	3.45	6.4	950	8.25	0.91	2.30	2.70	0.57	0.89	0.44	455	401
Ash, white (second growth) (Fraxinus americana)	0.58	0.71	4.30	7.60	1150	9.70	1.19	2.70	2.90	0.56	r. 13	0. 56	515	490
Aspen. (Populus tremuloides)	0.36	0.42	2.05	$3 \cdot 75$	590	4.85	0.71	1.10	1.50	0.14	0.44	0.13	120	145
Basswood............. (Tilia americana)	0.33	0.40	1.90	3.50	725	$4 \cdot 35$	0.43	1.20	1. 55	0.15	0.43	0.20	125	115
Beech. (Fagus atropunicea)	0.54	0.66	3.15	5.80	875	7.30	1.02	1.80	2.30	0.43	0.85	0.56	430	370
Birch, paper. (Betula papyrifera)	0.47	0.60	2.05	4.10	710	$5 \cdot 50$	1.14	1.20	1. 55	0.21	-. 56	0.27	180	220
Birch, yellow. (Betula lutea)	0.54	0.66	3.25	6.05	1080	8.25	1.02	1.90	2.40	0.32	0.78	0.34	370	340
Butternut.................. . . (Juglans cinerea)	0.36	0.40	2.05	3.80	680	5.15	0.61	1.40	1.70	0.19	-. 53	0.30	185	175
Cherry, black. (Prunus serotina)	0.47	0. 53	2.95	5.65	920	7.20	0.84	2.10	2.50	0.31	0.80	0.40	340	300
Chestnut................... . . (Castanea dentata)	0.40	0.46	2.20	3.95	655	5.55	-.6I	I. 45	1.75	0.27	0.56	0.30	240	190
Cottonwood. (Populus deltoides)	0.37	0.43	2.05	3.75	710	5.05	0. 53	1.25	1. 60	0.17	0.48	0.29	175	155
Cucumber tree............. . (Magnolia acuminata)	0.44	0.52	2.95	5.20	1100	6.55	0.76	1.95	2.20	0.29	0.70	0.31	270	235
Dogwood (flowering)...... (Cornus florida)	0.64	0.80	3.40	6.20	830	5.00	1.47	-	2.55	0.73	1.07	-	640	640
Elm, cork. (Ulmus rasemosa)	0.58	0.66	3.25	6.70	840	7.75	I. 27	2.00	2.70	-0. 53	0.89	0.47	445	450
Elm, white. (Ulmus americana)	0.44	0.54	2.55	4.85	725	5.70	0.86	1.60	2.00	0.28	0.65	0.39	275	250
Gum, blue. (Eucalyptus globulus)	0.62	0.80	5.35	7.85	1430	10.00	1.02	3.40	3.70	0.72	1.09	0.45	595	610
Gum, cotton. (Nyssa aquatica)	0.46	0.52	2.95	5.15	740	6.30	0.76	1.95	2.40	0.42	0.84	0.42	365	320
Gum, red. (Liquidambar styraciflua)	0.44	0.53	2.60	4.80	810	7.05	0.84	1.70	1.95	0.32	0.75	0.36	285	235
Hickory pecan............. (Hicoria pecan)	0.60	0.69	3.65	6.90	960	8.65	1.35	2.15	2.80	0.63	1.04	0.48	575	595
Hickory, shagbark (Hicoria ovata)	0.64	-	4.15	7.75	1105	10.10	1.88	2.40	3.20	0.70	0.93	-	-	-
Holly, American (Ilex opaca)	0. 50	0.61	2.40	4.55	630	6.25	1.30	1.40	1.85	0.43	0.80	0.43	390	360
Laurel, mountain (Kalmia latifolia)	0.62	0.74	4.10	5.90	650	7.20	0.8I	-	3.00	0.78	1.18	-	635	590
Locust, black. (Robinia pseudacacia)	0.66	0.71	6.20	9.70	1300	12.90	I. 12	4.40	4.80	1.OI	1.24	0.54	740	715
Locust, honey. (Gleditsia triacanthos)	0.60	0.67	3.95	7.20	910	8.30	1.20	2.35	3.10	1.00	I. 17	0.66	655	630
Magnolid (evergreen)...... (Magnolia foetida)	0.46	0.53	2.55	4.80	780	6.20	1.37	1. 55	1.90	0.42	0.73	0.43	355	335
Maple, silver. (Acer saccharinum)	0.44	0.51	2.20	4.10	660	4.80	0.74	I. 35	1.75	0.32	0.74	0.39	305	270
Maple, sugar........ (Acer saccharum)	0.56	0.66	3.50	6.40	1040	8.50	0.91	2.20	2.80	0.53	0.97	0.54	455	415
Oak, canyon live.......... . (Quercus chrysolepsis)	0.70	0.84	4.45	7.45	945	7.90	1. 20	2.85	$3 \cdot 30$	1.04	1.20	0.63	720	715
Oak, red................... . . (Quercus rubra)	0.56	0.65	2.60	5.40	910	7.30	1.04	1.65	2.25	0.51	0.79	0. 52	465	430°
Oak, white. \qquad (Quercus alba)	0.60	0.71	3.30	5.85	880	7.55	1.07	2.10	2.50	0.59	0.88	0.54	510	480
Persimmon................. . (Diospyros virginiana)	0.64	0.78	3.95	7.05	965	8.50	I. 04	2.15	2.95	0.78	1.03	0.54	565	580
Poplar, yellow. (Liriodendron tulipifera)	0.37	0.42	2.25	3.95	850	5.65	0.43	1.40	1.80	0.22	0.56	0.32	190	155
 (Platanus occidentalis)	0.46	0.54	2.30	4.60	745	6.20	0.84	1.70	2.00	0.32	0.71	0.44	320	275
Walnut, black. (Juglans nigra)	0.51	0.56	3.80	6.70	1000	8.40	0.94	2.55	3.05	0.42	0.86	0.43	435	410
Willow, black.............. . (Salix nigra)	0.34	0.41	1.25	2.75	395	3.60	0.91	0.70	1.05	0.15	0.44	0.30	160	165

Common and botanical name．	Specific gravity， oven－dry， based on		Static bending．			Impact bend－ ing．		Compression			Shear	Ten－ sion．	Hardness．	
				$\begin{aligned} & \text { 关 } \\ & \text { 을 } \\ & \frac{0}{7} 60 \end{aligned}$				$\begin{aligned} & \mathrm{Pa} \\ & \text { to } \end{aligned}$	$\begin{aligned} & \text { allel } \\ & \text { rain. } \end{aligned}$					do bed mm all
	when green．	oven－ dry．	$\frac{B}{A}$	发鹪		$\frac{\tilde{A}}{A}$	Ny	$\frac{\operatorname{limi}}{\mathrm{k}}$					$\begin{gathered} \text { end } \\ \mathrm{kg} \end{gathered}$	side kg
	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Cedar，incense． \qquad （Libocedrus decurrens）	0.35	0.36	2.75	$4 \cdot 35$	590	5.15	0.43	2.00	2.20	0.32	0.53	0.20	260	175
Cedar，Port Orford，．．．．．．	0.41	0.47	2.75	4.80	1055	6.55	0.64	2.10	2.30	0.27	0.62	0.17	255	220
（Chamaecyparis lawsoniana） Cedar，western red．．．．．．．． （Thuja plicata）	0.31	0.34	2.30	3.65	670	5.05	0.43	1.75	2.00	0.22	0.51	0.15	195	I18
Cedar，white （Thuja occidentalis）	0.29	0.32	r． 85	2.95	450	3.75	0.38	1.00	1． 40	0.20	0.44	0.17	145	104
Cypress，bald． \qquad （Taxodium distichum）	0.41	0.47	2.80	4.80	835	5.60	0.61	2.20	2.45	0.33	0.58	0.20	215	175
Fir，amabilis． （Abies amabilis）	0.37	0.42	2.75	4.45	915	5.50	0.53	1.70	2.00	0.22	0.47	0.17	165	140
Fir，balsam． （Abies balsamea）	0.34	0.41	2.10	3.45	675	4.85	0.41	－1． 55	1.70	0.15	0.43	0.23	135	135
Fir，Douglas（I）．． （Pseudotsuga taxifolia）	0.45	0.52	3.50	$5 \cdot 50$	Irio	6.60	0.63	2.40	2.80	0.37	0.64	0.14	230	215
Fir，Douglas（2）．．．．．．．．．．． （Pseudotsuga taxifolia）	0.40	0.44	2.55	4.50	830	6.45	0.51	1.80	2． 10	0.32	0.62	0.25	205	I80
Fir，grand．．．．．．．．．．．．．．．． （Abies grandis）	0.37	0.42	2.55	$4 \cdot 30$	915	5.70	－． 56	1.90	2.10	0.24	0.53	0．16	190	165
Fir，noble． （Abies nobilis）	0.35	0.41	2.40	4.00	900	5.55	0． 5 r	1.70	1.90	0.22	0.49	－． 13	135	II5
Fir，white． （Abies concolor）	0.35	0.44	2.75	4.20	795	5.05	0.46	1.85	1.95	0.31	0.51	－．18	175	150
Hemlock，eastern． （Tsuga canadensis）	0.38	0.44	2.95	4.70	790	5.55	0.51	1.90	2.30	0.35	0.62	0.18	230	185
Hemlock，western （Tsuga heterophylla）	0.38	0.43	2.40	4.30	835	5.50	0.51	r． 60	2.05	0.25	0.57	0．18	245	195
Larch，western． （Larix occidentalis）	0.48	0.59	3.25	5.25	950	6.60	0.6 r	2.30	2.70	0.39	0.65	0．16	215	205
Pine，Cuban． （Pinus heterophylla）	－． 58	0.68	3.95	${ }^{\circ} 6.20$	II 50	7.95	0.94	2.80	3.15	0.41	0.72	0.20	260	285
Pine，loblolly． （Pinus taeda）	0.50	0.59	3.10	$5 \cdot 30$	970	6.70	0.8 r	2.00	2.50	0.39	0.63	0.20	I85	205
Pine，lodgepole． （Pinus contorta）	0.38	0.44	2.10	3.85	760	5.05	0．51	I． 50	1． 85	0.22	0.49	0.15	145	150
Pine，longleaf ．．．．．．．．．．．．．． （Pinus palustris）	0.55	0.64	3.80	6.10	I150	7.60	0.86	2.70	3.10	0.42	0.75	0.20	250	270
Pine，Norway \qquad （Pinus resinosa）	0.44	0.51	2.60	4.50	970	5.35	0.71	1.75	2.20	0.25	0.55	0.13	165	155
Pine，pitch． （Pinus rigida）	0.47	0． 54	2.60	4.70	790	6.40	0.74	1.50	2.15	0.36	0.67	0.25	210	220
Pine，shortleaf． （Pinus echinata）	0.50	0.58	3.15	5.65	1020	7.90	0.99	2.50	2.70	0.34	0.63	0.23	220	255
Pine，sugar．．．．．．．．．．．．．． （Pinus lambertiana）	0.36	0.39	2.30	3.75	685	4.70	0.43	1.65	1.85	0.25	0.50	0．19	150	145
Pine，western white．．．．．．． （Pinus monticola）	0.39	0.45	2.45	4.00	935	5.35	0.58	1.95	2.15	0.21	0.50	－． 18	150	150
Pine，western yellow．．．．．．． （Pinus ponderosa）	0.38	0.42	3.20	3.65	710	$4 \cdot 70$	0.48	1.45	I． 75	0.24	0.48	0． 20	140	145
Pine，white． （Pinus strobus）	0.36	0.39	2.40	3.75	750	4.55	0.46	1.65	1.90	0.22	0.45	0.18	135	135
Spruce，red． （Picea rubens） \qquad	0.48	0.41	2.40	4.00	830	5.05	0.46	1.65	1.95	0.25	0.54	0.15	190	160
Spruce，Sitka ．．．．．．．．．．．． （Picea sitchensis）	0.34	0.37	2.10	3.85	830	5.05	0.74	1.60	1.85	0.23	0.55	0．16	195	170
Tamarack．．．．．．．．．．．．．．．．．．．．	0.49	0.56	2.95	5.05	875	$5 \cdot 50$	0.71	2.20	2.45	0.34	0.65	－． 18	180	170
Yew，western． \qquad （Taxus brevifolia）	0.60	0.67	4.55	7． 10	695	9.20	0.97	2.40	3.25	0.73	I． 14	0.32	610	520

Note．－The data above are extracted from tests on one hundred and twenty－six species of wood made at the Forest Products Laboratory，Madison，Wisconsin．Bulletin 556 records results of tests on air－dry timber also，but only dita on green timber are shown， as the latter are bascd on a larger number of tests and on tests which are not influenced by variations in moisture conteat．The strength of dry material usually exceeds that of green material，but allowable working stresses in design should be bas，d on strengths of green timber，inasmuch as the increase of strength due to drying is a variable，uncertain factor and likely to be offset by defects． All test specimens were two inches square，by lengths as shown．

Column Notes．－2，Locality where grown，－see Tables 74 and 75；3，Moisture includes all matter volatile at $100^{\circ} \mathrm{C}$ expressed as per cent of ordinary weight；5，Weight，air dry is for wood with 12 percent moisture；for density，see metric unit tables 72 and 73；6－10， 762 mm （ 30 in ．）long specimen on 7 Ir .2 mm （ 28 in ．）span，with load at center．

Nore. - Results of tests on sixty-eight species; test specimens, small clear pieces, 2 by 2 inches in section, 30 inches long tor bending; others, shorter. Tested in a green condition. Data taken from Bulletin 556, Forest Service, U. S. Dept. of Agriculture, containing data on 130,000 tests. See pages 97 and 99 for explanation of columns.
Smithsonian Tables.

Column Notes (continued). - (7) recommended allowable working stress (interior construction): $\frac{1}{5}$ tabular value; experimental results on tests of air-dry timber in small clear pieces average 50 per cent higher; kiln-dry, double tab. lar values; (10) repeated falls of $50-\mathrm{lb}$. hammer from increasing heights; $11-12,203.2-\mathrm{mm}(8 \mathrm{in}$.$) long specimen loaded on ends with deformations$
measured in a $152.4-\mathrm{mm}$ (6 in .) gage length; (12) allowable working stress $\frac{1}{2}$ tabular crushing strength; (13) $152.4-\mathrm{mm}(6 \mathrm{in}$.) long block loaded on its side with a central bearing area of $2580.6-\mathrm{mm}^{2}\left(4 \mathrm{in}^{2}\right)$ allowable working stress, $\frac{3}{3}$ tabular value. (14) $50.8-\mathrm{mm}$ by $50.8-\mathrm{mm}$ (2 in .) projecting lip sheared from block; allowable working stress, $\frac{1}{8}$ tabular value; (15) $63.5-\mathrm{mm}$ ($2 \frac{1}{2}$ in.) specimen with $25.4-\mathrm{mm}$ (I in.) free loaded length; allowable working stress, $\frac{1}{}$ tabular value. ${ }^{(16-17)}$) for values in lbs. multiply values of metric tables by 2.2 .

TABLE 76.-Rigidity Modulus.

If to the four consecutive faces of a cube a tangential stress is applied, opposite in direction on adjacent sides, the modulus of rigidity is obtained by dividing the numerical value of the tangential stress per unit area (kg. per sq. mm.) by the number representing the change of angles on the non-stressed faces, measured in radians.

Substance.	Rigidity	Reference.	Substance.	Rigidity Modulus.	Reference.
Aluminum . .	3350	14	Quartz fibre	2888	20
". cast	2550	5	- ".	2380	21
Brass . .	3550	10	Silver	2960	5
\cdots.	3715	11	"	2650	10
. cast, $60 \mathrm{Cu}+12 \mathrm{Sn}$	3700	5	" ${ }^{\prime}$. . . .	2566	16
Bismuth, slowly cooled	12.40	5	" hard-drawn	2816	II
Rronze, cast, $\mathrm{SS} \mathrm{Cu}+12 \mathrm{Sn}$.	4060	5	Steel	8290	16
Cadmium, cast	2450	5	" cast	7458	15
Copper, cast	47 SO	5	" cast, coarse gr. . .	8070	5
"	4213	18	${ }^{\text {" }}$ cin, silver- cast ${ }^{\text {a }}$. . . .	7872 1730	11
". ${ }^{\text {c }}$ - . . .	4450 4664	10	Tin, cast	1730 1543	5 19
Gold .	2850	5	Zinc	3880	5
-	3950	14	'*	3820	19
Iron, cast	5210	5	Platinum	6630	16
"	6706	15	"	6220	22
"	7975	10	Glass . .	2350	-
"	6940	7	- • - . -	2730	-
"	Sios	16	Clay rock . . .	1770	23
" . . .	7505	14	Granite . .	1280	23
Magnesium, cast	1710	5	Marble . .	1190	23
Nickel - . .	7820	5	Slate	2290	23
l'hosphor bronze	4359	11			
Keferences $1-16$, see Table $4 S$. 17 Gratz, W'ied. Am. 28, 1886. 18 Savart, Pogy. Am. 16, 1820. 19 Kiewiet, Diss. (iouttingen, 1886. 20 Threlfall, Philos. Mag. (5) 30, 1890.			21 Boys, Philos. Mag. (5) 30, 1890. 22 Thomson, Lord Kelvin. 23 Gray and Milne. 24 Adams-Coker, Carnegie Publ. No. 46, 1906.		

TABLE 77. - Variation of the Rigidity Modulus with the Temperature.
$n_{t}=n_{0}\left(\mathrm{r}-a t-\beta t^{2}-\gamma t^{3}\right)$, where $t=$ temperature Centigrade.

[^14]TABLE 78.—Interior Friction at Low Temperatures.
C is the damping coefficient for infinitely small oscillations; T , the period of oscillation in seconds; N, the second modulus of elasticity. Guye and Schapper, C. R. 150, p. 963, 1910.

Substance Length of wire in cm. Diameter in mm....	$\begin{gathered} \mathrm{Cu} \\ 22 \cdot 5 \\ .6+3 \end{gathered}$	Ni 22.2 .4 II	$\begin{gathered} \mathrm{Au} \\ 22 \cdot 3 \\ .609 \end{gathered}$	$\begin{gathered} \mathrm{Pd} \\ 22.2 \\ \cdot 553 \end{gathered}$	$\begin{gathered} \mathrm{Pt} \\ 23.0 \\ .8 \mathrm{I} 2 \end{gathered}$	$\begin{gathered} \mathrm{Ag} \\ 17.2 \\ .60 \mathrm{I} \end{gathered}$	$\begin{aligned} & \text { Quartz } \\ & 17.3 \\ & .612 \end{aligned}$
$100^{\circ} \mathrm{C} \quad \mathrm{C}$	24.1	I. 34	27.5	1.67	2.98	55.8	-
T	2.3815	3.83 IS	3.010 S	2.579	I.I43s	1.808 s	-
$\mathrm{N} \times 10^{-11}$	3.32	$7 \cdot 54$	2.55	5.08	5.77	2.71	-
$0^{\circ} \mathrm{C} \quad \mathrm{C}$	5.88	. 417	4.82	1.25	4.60	7.19	4.69
	2.336 s	3.754 s	2.969 s	2.571 IS	I. 133 S	1.759 s	I. 408 s
$\mathrm{C}^{\mathrm{N} \times 10^{-11}}$	3.45	7.85	2.62	5.12		2.87	2.26
$-195^{\circ} \mathrm{C} \quad \mathrm{C}$	3.64	. 556	6.36	. 744	3.02	I. 64	1.02
$\mathrm{T}_{\text {T }}$	$2.274{ }^{\text {s }}$	$3 \cdot 577 \mathrm{~s}$	2.902 s	2.552 s	I.IIIS	I. 694 s	I. 425 s
$\mathrm{N} \times 10^{-11}$	3.64	8.65	2.74	5.19	6.10	3.18	2.20

TABLE 79.—Hardness.

Agate	7.	Brass	3-4.	Iridosmium	7.	Sulphur	1.5-2.5
Alabaster	1.7	Calamine		Iron	4-5.	Stibnite	2.
Alum	2-2.5	Calcite	3.	Kaolin	1.	Serpentine	3-4.
Aluminum	2.	Copper	2.5-3.	Loess (0°)	0.3	Silver	2.5-3.
Amber	2-2.5	Corundum	9.	Magnetite	6.	Steel	5-8.5
Andalusite	$7 \cdot 5$	Diamond	10.	Marble	3-4.	Talc	1.
Anthracite	2.2	Dolomite	3.5-4.	Meerschaum	2-3.	Tin	1.5
Antimony	$3 \cdot 3$	Feldspar	6.	Mica	2.8	Topaz	8.
Apatite	5.	Flint	7.	Opal	4-6.	Tourmaline	7.3
Aragonite	3.5	Fluorite	4.	Orthoclase	6.	Wax (0°)	0.2
Arsenic	$3 \cdot 5$	Galena	2.5	Palladium	4.8	Wood's metal	3.
Asbestos	5.	Garnet	7.	Phosphorbronze	4.		
Asphalt	1-2.	Glass	4.5-6.5	Platinum	$4 \cdot 3$		
Augite	6.	Gold	$2.5-3$.	Platin-iridium	6.5		
Barite	$3 \cdot 3$	Graphite	$0.5-1$.	Pyrite	6.3		
Beryl	7.8	Gypsum	1.6-2.	Quartz	7.		
Bell-metal	4.	Hematite	6.	Rock-salt	2.		
Bismuth	2.5	Hornblende	$5 \cdot 5$	Ross' metal	2.5-3.0		
Boric acid	3.	Iridium	6.	Silver chloride	1.3		

From Landolt-Bornstein-Meyerhoffer Tables: Auerbachs, Winklemann, Handb. der Phys. 189 r.
TABLE 80.-Relative Hardness of the Elements.

C	10.0	Ru	6.5	Cu	3.0	Au	2.5	Sn	I .8	Li	0.6
B	9.5	Mn	5.0	Sb	3.0	Te	2.3	Sr	I .8	P	0.5
Cr	9.0	Pd	4.8	Al	2.9	Cd	2.0	Ca	I .5	K	0.5
Os	7.0	Fe	4.5	Ag	2.7	S	2.0	Ga	I .5	Na	0.4
Si	7.0	Pt	4.3	Bi	2.5	Se	2.0	Pb	1.5	Rb	0.3
Ir	6.5	As	3.5	Zn	2.5	Mg	2.0	In	1.2	Cs	0.2

Rydberg, Zeitschr. Phys Chem 33, 1900
TABLE 81.-Ratio, p, of Transverse Contraction to Longitudinal Extension under Tensile Stress. (Poisson's Ratio.)

Metal	Pb	Au	Pd	Pt	Ag	Cu	Al	Bi	Sn	Ni	Cd	Fe
$\boldsymbol{\rho}$	0.45	0.42	0.39	0.39	0.38	0.35	0.34	0.33	0.33	0.31	0.30	0.28

From data from Physikalisch-Technischen Reichsanstalt, 1907.
ρ for: marbles, 0.27 ; granites, 0.24 ; basic-intrusives, 0.26 ; glass, 0.23 . Adams-Coker, 1906 .

The formule were deduced from experiments made on rectangular prismatic bars cut from the crystal. These bars were subjected to cross bending and twisting and the corresponding Elastic Moduli deduced. The symbols ${ }^{\boldsymbol{a}} \beta \boldsymbol{\beta}, a_{1} \beta_{1} \gamma_{1}$ and $a_{2} \beta_{2} \gamma_{2}$ represent the direction cosines of the length, the greater and the less transverse dimensions of the prism with reference to the principal axis of the crystal. \mathbf{E} is the modulus for extension or compression, and T is the modulus for torsional rigidity. The moduli are in grams per square centimeter.

Barite.

$$
\begin{aligned}
& \frac{10^{10}}{\mathrm{E}}=16.13 \alpha^{4}+18.51 \beta^{1}+10.42 \gamma^{4}+2\left(35.75 \beta^{2} \gamma^{2}+15.21 \gamma^{2} \alpha^{2}+5.88 \alpha^{2} \beta^{2}\right) \\
& \frac{10^{10}}{T^{1}}=69.52 \alpha^{4}+117.66 \beta^{4}+116.46 \gamma^{4}+2\left(20.16 \beta^{2} \gamma^{2}+S_{\left.5.29 \gamma^{2} \alpha^{3}+127.35 \alpha^{2} \beta^{2}\right)}^{2}\right.
\end{aligned}
$$

Beryl (Emerald).

$$
\begin{aligned}
& \frac{10^{10}}{\mathrm{E}}=4.325 \sin ^{1} \phi+4.619 \cos ^{3} \phi+13.32 S \sin ^{2} \phi \cos ^{2} \phi \dot{\varphi} \\
& \frac{10^{10}}{\mathrm{~T}}=15.00-3.675 \cos ^{4} \theta_{2}-17.536 \cos ^{2} \phi \cos ^{2} \varphi_{1}
\end{aligned}\left\{\begin{array}{l}
\text { where } \phi \phi_{1} \phi_{2} \text { are the angles which } \\
\text { the length, breadth, and thickness } \\
\text { of the specimen make with the } \\
\text { principal axis of the crystal. }
\end{array}\right.
$$

Fluorite.

$$
\begin{aligned}
& \frac{10^{10}}{\mathrm{E}}=13.05-6.26\left(\alpha^{4}+\beta^{i}+\gamma^{4}\right) \\
& \frac{10^{13}}{\mathrm{~T}}=58.04-50.05\left(\beta^{\prime} \gamma^{\prime}+\gamma^{\prime 2} \alpha^{\prime 2}+\alpha^{\prime 2} \beta^{\prime}\right)
\end{aligned}
$$

Pyrite.

$$
\begin{aligned}
\frac{10^{10}}{\mathrm{E}} & =5.08-2.24\left(\alpha^{1}+\beta^{\prime}+\gamma^{4}\right) \\
\frac{10^{13}}{\mathrm{~T}} & =18.60-17.95\left(\beta^{\prime} \gamma^{2}+\gamma^{\prime} \alpha^{\prime}+\alpha^{\prime 2} \beta^{\prime}\right)
\end{aligned}
$$

Rock salt.

$$
\begin{aligned}
& \frac{10^{10}}{\mathrm{E}}=33.48-9.66\left(\alpha^{4}+\beta^{4}+\gamma^{1}\right) \\
& \frac{10^{10}}{\mathrm{~T}}=154.58-77.28\left(\beta^{\prime} \gamma^{\prime}+\gamma^{\prime \prime} \alpha^{2}+\alpha^{\prime 2} \beta^{\prime}\right)
\end{aligned}
$$

Sylvite.

$$
\begin{aligned}
& \frac{10^{10}}{\mathrm{E}}=75.1-48.2\left(\alpha^{4}+\beta^{1}+\gamma^{4}\right) \\
& \frac{10^{10}}{\mathrm{~T}}=306.0-192.8\left(\beta^{2} \gamma^{2}+\gamma^{2} \alpha^{2}+\alpha^{2} \beta^{3}\right)
\end{aligned}
$$

Topaz.

$$
\begin{aligned}
\frac{10^{10}}{\mathrm{E}} & =4.341 \alpha^{4}+3.460 \beta^{4}+3.771 \gamma^{4}+2\left(3.879 \beta^{2} \gamma^{2}+2.856 \gamma^{2} \alpha^{2}+2.39 \alpha^{2} \beta^{2}\right) \\
\frac{10^{10}}{\mathrm{~T}} & =14.88 \alpha^{4}+16.54 \beta^{4}+16.45 \gamma^{4}+30.89 \beta^{2} \gamma^{2}+40.89 \gamma^{2} \alpha^{2}+43.51 \alpha^{2} \beta^{2}
\end{aligned}
$$

Quartz.

$$
\begin{aligned}
& \frac{10^{11}}{E^{10}}=12.734\left(1-\gamma^{2}\right)^{2}+16.693\left(1-\gamma^{2}\right) \gamma^{2}+9.705 \gamma^{4}-8.460 \beta \gamma\left(3 \alpha^{2}-\beta^{2}\right) \\
& \left.\frac{10^{10}}{T}=19.665+9.060 \gamma_{2}^{2}+22.984 \gamma^{2} \gamma_{1}^{2}-16.920\left[\left(\gamma \beta_{1}+\beta \gamma_{1}\right)\left(3 \alpha \alpha_{1}-\beta \beta_{1}\right)-\beta_{2} \gamma_{2}\right)\right]
\end{aligned}
$$

*These formulx are taken from Voigt's papers (Wied. Ann. vols. 3r, 34, and 35).

Smitheonian Tables.

Table 83.
 ELASTICITY OF CRYSTALS.

IO3

Some particular values of the Flastic Moduli are here given. Under \mathbf{E} are given moduli for extension or compression in the directions indicated by the subscripts and explained in the notes, and under T the moduli for torsional rigidities round the axes similarly indicated. Moduli in grams per sq. cm.
(a) Isometric System.*

Substance.	$\mathrm{E}_{\boldsymbol{a}}$	E_{b}	\mathbf{E}_{c}	T_{a}	Authority.
Fluorite	1473×10^{6}	1008×10^{6}	910×10^{6}	345×10^{6}	Voigt. \dagger
Pyrite	3530×10^{6}	2530×10^{6}	2310×10^{6}	1075×10^{6}	
Rock salt .	419×10^{6}	349×10^{6}	303×10^{6}	${ }^{129} \times 10^{6}$	
"	403×10^{6}	339×10^{6}	-	-	Koch. \ddagger
	401×10^{6}	209×10^{6} 196	-	$655 \times 10^{\text {5 }}$	
Sodium chlorate	372×10^{6} 405×10^{6}	196×10^{6} 319×10^{6}	-	655×10^{6}	Voigt. Koch.
Potassium alum .	181×10^{6}	199×10^{6}	-	-	Beckenkamp.§
Chromium alum	161×10^{6}	177×10^{6}	-	-	
Iron alum .	186×10^{6}	-	-	-	"

(/) Orthorhombic System.||

In the Monoclinic System, Coromilas (Zeit. fïr Kryst. vol. i) gives Gypsum $\left\{\begin{array}{l}\mathbf{E}_{\max }=887 \times 10^{6} \text { at } 21.9^{\circ} \text { to the principal axis. } \\ \mathbf{E}_{\min }=313 \times 10^{6} \text { at } 75.4^{\circ} \text { "" " }\end{array}\right.$ Mica $\left\{\mathrm{E}_{\max }=2213 \times 10^{6}\right.$ in the principal axis. $\left\{\mathrm{E}_{\min }={ }^{1} 554 \times 10^{6}\right.$ at 45° to the principal axis.

In the Hexagonal System, Voigt gives measurements on a beryl crystal (emerald). The subscripts indicate inclination in degrees of the axis of stress to the principal axis of the crystal.

$$
\begin{aligned}
& \mathrm{E}_{0}=2165 \times 10^{66}, \quad \mathrm{E}_{45}=1796 \times 10^{6}, \quad \mathrm{E}_{90}=2312 \times 10^{6}, \\
& \mathrm{~T}_{0}=667 \times 10^{6}, \quad \mathrm{~T}_{90}=883 \times 10^{6} . \quad \text { The smallest cross dimension of the } \\
& \text { prism experimented on (see Table 82), was in the principal axis for this last case. }
\end{aligned}
$$

In the Rhombohedral System, Voigt has measured quartz. The subscripts have the same meaning as in the hexagonal system.

$$
\begin{array}{ll}
\mathrm{E}_{0}=1030 \times 10^{6}, & \mathrm{E}_{-45}=1305 \times 10^{6}, \quad \mathrm{E}_{+45}=850 \times 10^{6}, \quad \mathrm{E}_{90}=785 \times 10^{6}, \\
\mathrm{~T}_{0}=508 \times 10^{6}, & \mathrm{~T}_{90}=348 \times 10^{6} .
\end{array}
$$

Baumgarten \mathbb{T} gives for calcite

$$
\mathrm{E}_{0}=501 \times 10^{9} . \quad \mathrm{E}_{-45}=441 \times 10^{6}, \quad \mathrm{E}_{+45}=772 \times 10^{6}, \quad \mathrm{E}_{90}=790 \times 10^{6} .
$$

[^15]
Smithsonian Tables.

Tables 84-86
COMPRESSIBILITY OF GASES.
TABLE 84.-Relative Volumes at Various Pressures and Temperatures, the volumes at $0^{\circ} \mathrm{C}$ and at 1 atmosphere being taken as 1000000 .

Atm.	Oxygen.			Air.			Nitrogen.			Hydrogen.		
	\bigcirc	$99^{\circ} \cdot 5$	$199^{\circ} \cdot 5$	0°	$99^{\circ} \cdot 4$	$200^{\circ} \cdot 4$	\circ°	$99^{\circ} \cdot 5$	199.6	\bigcirc	$99^{\circ} \cdot 3$	$200^{\circ} \cdot 5$
100	9265	-	-	9730	-	-	9910	-	-			
200	4570	7000	9095	5050	7360	9430	5195	7445	9532	5690	7567	9420
300	3208	4843	6283	3658	5170	6622	3786	5301	6715	4030	5286	6520
400	2629	$3^{8} 30$	4900	3036	4170	5240	3142	4265	5331	3207	4147	5075
500	2312	3244	4100	2680	3565	4422	2780	3655	4515	2713	3462	4210
600	2115	2867	3570	2450	3180	3883	2543	3258	3973	2387	3006 2680	3627 3212
700	1979	2610	3202	2288	2904	3502	2374	2980	3589 3300	2149	2680	3212
800	1879	2417	2929	2168	2699	3219	2240	2775 2616	3300 3085	1972 1832		2900
900	1800	2268	2718	2070	2544	3000	2149	2616	3085	1832 1720	2244	26
1000	1735	2151	-	1992	2415	2828	2068	-	-	1720	2093	

Amagat: C. R. 111, p. 878, 1800 ; Ann. chim. phys. (6) 29, pp. 68 and 505, 1893.

TABLE 85.-Ethylene.
$p v$ at $0^{\circ} \mathrm{C}$ and $1 \mathrm{~atm} .=\mathrm{I}$.

Atm.	0°	10°	200	30°	40°	60°	80°	100°	$137^{\circ} .5$	$198^{\circ} .5$
46	-	0.562	0.684	-	-	-	-	-	-	-
48	-	0.508	-	-	-	-	-	-	-	-
50	0.176	0.420	0.629	0.731	0.814	0.954	1.077	1.192	1.374	$\mathbf{1 . 6 5 2}$
52	-	0.240	0.598	-	-	-	-	-	-	-
54	-	0.229	0.561	-	-	-	-	-	-	-
56	-	0.227	0.524	-	-	-	-	-	-	-
100	0.310	0.331	0.360	0.403	0.471	0.668	0.847	1.005	1.247	$\mathbf{1 . 5 8 0}$
150	0.441	0.459	0.485	0.515	0.551	0.649	0.776	0.924	1.178	1.540
200	0.565	0.585	0.610	0.638	0.669	0.744	0.838	0.946	1.174	1.537
300	0.806	0.827	0.852	0.878	0.908	0.972	1.048	1.133	1.310	1.628
500	1.256	1.280	1.308	1.337	1.367	1.431	1.500	1.578	1.721	1.985
1000	2.289	2.321	2.354	2.387	2.422	2.493	2.566	2.643	2.798	-

Amagat, C. R. 111 , p. 871, 1890; 116, p. 946, 1893.

TABLE 86.-Relative Gas Volumes at Various Pressures.

The following table, deduced by Mr. C. Cochrane, from the PV curves of Amagat and other observers, gives the relative volumes occupied by various gases when the pressure is reduced from the value given at the head of the column to I atmosphere:

$\begin{gathered} \text { Gas. } \\ \left(\text { Temp. }=16^{\circ} \mathrm{C} .\right) . \end{gathered}$	Relative volume which the gas will occupy when the pressure is reduced to atmospheric from					
	1 atm .	50 atm .	100 atm .	120 atm .	150 atm .	200 atm .
"Perfect" gas	I	50	100	120	150	200
Hydrogen ..	I	48.5	93.6	111.3	136.3	176.4
Nitrogen .	I	50.5	100.6	120.0	147.6	190.8
Air .	I	50.9	IOI. 8	121.9	150.3	194.8
Oxygen	1	-	105.2	-	-	212.6
Oxygen (at $0^{\circ} \mathrm{C}$.) Carbon dioxide.	I	52.3	107.9	${ }^{128.6}$	161.9	218.8
Carbon dioxide.	I	69.0	477^{*}	485*	498*	515*

* Carbon dioxide is liquid at pressures greater than 90 atmospheres.

Smithsonian Tables.

COMPRESSIBILITY OF GASES.

table 87.-Carbon Dioxide.

Pressure in meters of mercury.	Relative values of $p v$ at -										
	$18^{\circ} .2$	$35^{\circ} \cdot 1$		$40^{\circ} \cdot 2$	$50^{\circ} .0$	60 ${ }^{\circ}$.	$70^{\circ} .0$			$90^{\circ} .0$	$100^{\circ} .0$
30	liquid	2360		2460	2590	2730	2870			3120	3225
50		1725750		1900	2145	2330	2525			2845	2980
80	625			825	1200	1650	1975			2440	2635
110	825	930		980	1090	1275	1550			2105	2325
140	1020	1120		1175	1250	1360	1525			1950	2160
170	1210	1310		1360	1430	1520	1645			1975	2135
200	1405	1500		1550	1615	1705	1810			2075	2215
230	1590	1690		1730	1800	1890	1990			2210	2340
260	1770	1870		1920	1985	2070	2166			2375	2490
290	1950	2060		$\begin{aligned} & 2100 \\ & 2280 \end{aligned}$	2170	2260	2340			2550	2655
320	2135	2240			2360	2440	2525			2725	2830
Atm	Relative values of $p v ; p v$ at $o^{\circ} \mathrm{C}$. and \mathbf{x} atm. $=\mathbf{1}$.										
	\circ°	10°	20°	30°	40°	60°	80°	100°	137°	198°	258°
50	0.105	0.114	0.680	0.775	0.750	0.984	1.096	1.206	1.380	-	-
100	0.202	0.213	0.229	0.255	0.309	0.661	0.873	1.030	1.259	1. 582	I. 847
150	0.295	0.309	0.326	0.346	0.377	0.485	0.68 I	0.878	1.159	1.530	1.818
300	0.559	0.578	0.599	0.623	0.649	0.710	0.790	0.890	1.108	I. 493	1. 820
500	0.891	0.913	0.938	0.963	0.990	I. 054	I. 124	1.201	1.362	1. 678	-
1000	1.656	1.685	1.716	1.748	1.780	1. 848	1.921	1.999		-	-

Amagat, C. R. 111, p. 871, 1890; Ann. chim. phys. (5) 22, p. 353, 1881; (6) 29, pp. 68 and 405, 1893.

TABLE 88. - Compressibility of Gases.

Gas.	$\frac{p . v .\left(\frac{1}{2} \mathrm{~atm} .\right)}{p_{0} v_{0}(\mathrm{I} \text { atm.) }}$.	$\frac{1}{p \cdot v .} \frac{d(p . v .)}{d p}$ $=a$.	t	$\mathrm{t}^{\boldsymbol{a}} \mathrm{o}$	$\begin{aligned} & \mathrm{Density} \\ & \stackrel{\text { Den }}{ }{ }^{322,{ }^{\circ} \mathrm{C}} \\ & \mathrm{P} \mathrm{com}^{\mathrm{cm}} \mathrm{C} \end{aligned}$	Density. Very small pressure.
O_{2}	1.00038	-.00076	$11.2{ }^{\circ}$	-. 00094		32.
H_{2}	0.99974	+.00052	10.7	+.00053	2.015 (160)	2.0173
N_{2}	1.00015	-. 00030	14.9	-. 000056	28.005	28016
CO	1.00026	-. 00052	13.9	-. 00081	28.000	28.003
CO_{2}	I. 00279	-. 0055	15.0	-. 00668	44.268	44.014
$\mathrm{N}_{2} \mathrm{O}$	1.00327	-. 00654	11.0	-. 00747	44.285	43.996
Air	I. 00026	-. 00046	11.4	-	-	
NH_{3}	${ }^{1.006 .32}$			-	-	-

Rayleigl, Zeitschr. Phys. Chem. 52, p. 705, 1905.

TABLE 89. - Compressibility of Air and Oxygen between 18° and $22^{\circ} \mathrm{C}$.
Pressures in meters of mercury, $p v$, relative.

Air	p $p v$	24.07 26968	34.90 26908	$\begin{array}{r} 45.24 \\ 26791 \end{array}$	$\begin{array}{r} 55.30 \\ 26789 \end{array}$	$\begin{array}{r} 64.00 \\ 26778 \end{array}$	$\begin{array}{r} 72.16 \\ 26792 \end{array}$	$\begin{aligned} & 8_{4.22} \\ & 26840 \end{aligned}$	$\begin{array}{r} 101.47 \\ 27041 \end{array}$	$\begin{aligned} & 214.54 \\ & 29585 \end{aligned}$	$\begin{aligned} & 304.04 \\ & 32488 \end{aligned}$
O_{2}	p p	24.07 26843	34.89 26614	-	55.50 26.85	64.07 26050	72.15 25858	$\begin{array}{r} 84.19 \\ 25745 \end{array}$	$\begin{array}{r} \text { ior. } 06 \\ 25639 \end{array}$	$\begin{array}{r} 214.52 \\ 26536 \end{array}$	$\begin{gathered} 303.03 \\ 28756 \end{gathered}$

TABLE 90.-Sulphur Dioxide.
Original volume $1000 n 0$ under one atmosphere of pressure and the temperature of the experiments as indicated at the top of the different columns.

	Corresponding Volume for Experiments at Temperature -			Volume.	Pressure in Atmospheres for Experiments at Temperature -		
	5^{8}. 0	$99^{\circ} .6$	$183^{\circ} \cdot 2$		$58^{\circ} .0$	$99^{\circ} .6$	$183^{\circ} .2$
10	8560	9.440	-				
12	6360	7800	-	10000	-	9.60	-
14	40.40	6420	-	9000	9.60	10.35	-
16	-	5310	-	8000			
18	-	4405	-	8000	10.40	1155	-
20	-	4030	-	7050	11.55	13.05	-
24 28 28	-	3345 2780	3 I 0	6000	12.30	14.70	-
32	-	2305	2640	5000	13.15	16.70	-
36	-	1935	2260	4000	14.00	20.15	-
40	-	1450	20.40	3500	14.40	23.00	-
50	-	-	1640	3000	4.40	23.00 26.40	29.10
60 70	-	-	1375 1130	2500	-		
So	-	-	930			30.15	
90	-	_	790	2000	-	35.20	40.95
100	-	-	680	1500	-	39.60	55.20
120	-	-	545	1000	-	-	76.00
140 160	-	-	430 325	500	-	-	117.20

TABLE 91. - Ammonia.
Original volume roooso under one atmosphere of pressure and the temperature of the experiments as indicated at the top of the different columns.

	Corresponding Volume for Experiments at Temperature -			Volume.	Pressure in Atmospheres for Experiments at Temperature -			
	$46^{\circ} .6$	99.6	$183^{\circ} .6$		$30^{\circ} .2$	$46^{\circ} .6$	$99^{\circ} .6$	183°.o
10	9500	-	-	10000	8.85	9.50		-
12.5	7245	7635	-	9000	9.60	10.45		-
15	5880	6305		8000	10.40	11.50		-
20	-	4645	4875	8000	10.40	11.50	12.00	-
25	-	3560	3835	7000	11.05	13.00	13.60	-
30	-	2875	3185	6000	1 t .80	14.75	I 5.55	-
35 40	-	2440	2680	5000	12.00	16.60	18.60	19.50
40 45	-	2080 1795	2345 2035	4000	-	18.35	22.70	24.00
50	-	1490	1775	3500	-	18.30	25.40	27.20
55	-	1250	I 590	3000	-	-	29.20	31.50
60 70	-	975	1450 1245	2500	-	-	34.25	37.35
80	-	-	1245 1125	2000	-	-	41.45	$45 \cdot 50$
90	-	-	1035	1500	-	-	49.70	58.00
100	-	-	950	1000	-	-	59.65	93.60

[^16]Emithsonian Tables.

COMPRESSIBILITY OF LIQUIDS.

At the constant temperature t, the compressibility $\beta=\left(\mathrm{I} / V_{0}\right)(d V / d P)$. In general as P increases, β decreases rapidly at first and then slowly; the change of β with t is large at low pressures but very small at pressures above 1000 to 2000 megabars. I megabar $=0.987$ atmosphere $=10^{6}$ dyne/ cm^{2}.

Substance.					Substance.	$\begin{aligned} & \cup \\ & 0 \\ & \dot{\circ} \\ & \underset{H}{0} \end{aligned}$			
Acetone. ${ }^{6}$	14202040	23			Ethyl ether, ct'd...		1,000	61	I
		500	6I	I				10	I
6		1,00c	52	1	Ethyl iodide.	20	200	81	I6
"		12,000	9	I	66	20	400	69	16
	1	123	88	10	666.	20	500	64	I
" iso...	20	200	84	16	66	20	,	50	I
6 6 iSo...		400	70	16	$66 \quad 6$	20	1 2,000	8	I
6 6	20	500	61	I	Gallium.	30	300	$3 \cdot 67$	6
6. 6		1,000	46	I	Glycerine	15	5	32	12
" 6		1 2,000	8	I	Hexane.	20	200	II 7	16
66		12,000	8	1	،	20	400	9 I	16
Benzene		5	89	2, 3	Kerosene.	20	500	55	I
"	17	200	77	16		20	1,000	45	1
6	20	400	67	16	6	20	12,000	8	I
Bromine		200	56	16	،	20	1 2,000	S	13
${ }_{6}$	20	400	51	r6	Merc	20	300	3.95	7
Butyl alcohol, iso..	13	8	97	2		22	500	3.97	S
66 6 iso..	20	200	81	16	66	22	1,000	3.91	8
" 6 iso..	20	200	64	16	6	2	12,000	2.37	8
" 6 iso..	20	500	56	I	Methyl alcohol	15	23	103	10
6 66 iso..		1,000	46	1	66 6	20	200	95	16
6 6 iso..	20	12,000	8	1	66 6	20	4	80	16
Carbon bisulphide..	r6	12,00 2 I	86	10	66	20	500	65	I
	20	500	57	I	66 66	20	1,000	54	I
66 c6	20	1,000	48	I	6 6	20	I 2,000	S	1
66	20	1,000	4	1	Nitric acid.	20	12,000	32	I4
	20	12,000	85	16	Cils: Almon'	-	17	32	14
Carb_{6}. tetrachoride.		200 400	85 73	I6	Cils: Amon	I5	5	53 46	12 12
	20	400	73	16	Castor	15	5	46	12
Chloroform.	20	200	83	16	Linsecd	I5	5	51	12
		400	70	16	Oilve.	15	5	55	12
Dichlorethylsulfide.	3232	1,000	3424	55	Rape-seed.... Phosph. trichloride.	20	-	5)	15
						10	250	71	1 I
Ethyl acetate.			103	10		20	うวะ	03	I
" 6	3		90	16	$\begin{array}{llll}66 & 6 & \cdot\end{array}$		1,000	47	I
66		200400	75	I6			:2,000	S	I
Cthyl alcohol.	20				"6 "6 .				
	14	23500	100	10	Propyl alcohol, n...	23	200	$\begin{aligned} & -7 \\ & 67 \end{aligned}$	10
	20			I		20	400		16
66	23	r $\begin{array}{r}500 \\ 1,000 \\ 12,000\end{array}$	548	1		25		67	I
" ${ }^{6}$......					" ${ }^{6}$	20		47	1
Ethyl bromide....	20	\|r $\begin{array}{r}12,000 \\ 200 \\ 400\end{array}$	10082	16	6 6 (n?).	20	12,000	7	1
	20			16	Toluenc.	$2 \bigcirc$	200	74	10
66	20	500	70	I		ว	40	64	I6
66		1,000	548	1	Turpentine.	2	4	-4	15
	20			1		20	-	,4	15
Ethyl chloride.....	I 20	12,000		1	Turpentine.	20	13	4)	II
		\|r $\begin{array}{r}23 \\ 500\end{array}$	8 $\times 51$	10	Wat	20	200	43	16
	15		IO2	I		23	400	41	I6
66	20	1,000	66	I	6	20	500	39	4
" ${ }^{6}$	20	12,000	8		6	0	500	38	4
Ethyl ether.	$\begin{aligned} & 25 \\ & 20 \end{aligned}$	23500	18884	$\begin{array}{r} 10 \\ \mathrm{I} \end{array}$	6		1000	33	4
6 6					6	40	12,000	33 9	4
					Xylene, meti	20	200	69	I6
					${ }^{6}$	20	400	60	16

For references, see page 108.

COMPRESSIBILITY OF SOLIDS,

If V is the volume of the material under a pressure P megabars and V_{0} is the volume at atmospheric pressure, then the compressibility $\beta=-\left(\mathrm{I} / V^{\circ}\right)\left(d V^{\gamma} / d P\right)$. Its unit is $\mathrm{cm}^{2} /$ megadynes (reciprocal megabars). $10^{6 / \beta}$ is the bulk modulus in absolute units (dynes $/ \mathrm{cm}^{2}$). The following values of β, arranged in order of increasing compressibility, are for $P=0$ and room temperature. 1 megabar $=10^{6}$ dynes $=1.013 \mathrm{~kg} / \mathrm{cm}^{2}=0.987$ atmosphere.

Substance.		Bulk modulus. dynes $/ \mathrm{cm}^{2}$ $\times 1 \mathrm{ol}^{12}$	Reference.	Substance.	Compres unit vol. per mega- bar $\times 10^{6}$	Bulk modulus. $\underset{\times 10^{12}}{\substack{\text { dynes } \\ \times 1 \mathrm{~cm}^{2}}}$	Reference.
Tungsten	0.27	3.7	2	Plate glass.	2.23	0. 45	4
(inoron.	0.3 0.32	3.15	2	Thallium..	${ }_{2.3}^{2.27}$	0.44 0.43	${ }_{2}{ }^{2}$
Platinum	-. 38	2.6	2	Antimony.	2.4	-. 42	
Nickel.	0.43	2.3	2	Quartz.	2.7	-. 37	1
Molybdenum	\bigcirc	2.2	2	${ }_{\text {Magnesium }}$	2.9	-. 34	2
Tantalum.	-. 53	${ }^{1.9}$	${ }_{2}^{2}$	Bismuth.	3.0	-.33	${ }_{2}$
Iron....	0.54 0.60	${ }_{1.6}^{1.9}$	3	Silica glass.	3.1	-. 32	I
Gold.	0.60	1. 67	I, 2	Sodium chloride...	4.12	0.24	1
Pyrite.	0.7	1. 4	4	Arsenic. .	4.5	0.22	2
Copper..	-. 75	1. 33	1		5.7	0.175	${ }_{6}$
Manganese	0.84 0.80	I. ${ }_{\text {r }}^{19}$	${ }_{1}^{2}$	Potassium chiorice	7.4 9.0	0.135 0.111	2
Chromium	-. 0.9	I. r 2		Phosphorus (red)..	9.2	-.1709	2
Silver.	-. 99	I. Or	1, 2	Selenium.........	${ }_{12}^{12.0}$	0.083	2
Mg. silicate, crys.	1.03	0.97	4	Sulphur.	${ }^{12.9}$	0.078	2
Aluminum......	1. 33	0.75	r-3	Iodine..	13.0	0.077	2
Calcite.	r. 39	0.72	1	Sodium........ie.	15.6	0.064	2
Zinc.	1. 74	0.57 0.53 0.53	I	Phosphorus (white) Potassium.......	${ }^{20.5}$	0.049 0.032	2
Gailium.........	Y. 89 2.09	0.53 0.48 0.48		Potassium.........	31.7 40.0	0.032 0.025	$\stackrel{2}{2}$
Cadmium........	${ }_{2.17}$	0.48 0.46	I, 2	Calcium	6 r .0	0.016	2

Note. - Winklemann, Schott, and Straulel (Wied Ann. 6r, 63, r897, 68, 1899) give the following coefficients (among others) for various Jena glasses in terms of the volume decrease divided by the increase of pressure expressed in kilograms per square millimeter:

No.	Glass.	Compressibility.	No.	Glass.	Compressibility.
665		7520	2154	Kalibleisilicat.	3660
1299	Barytborosilicat.	5800	S 208	Heaviest Bleisilicat.	3550
16 273	Natronkalkzinksilicat	4530 3790	($\begin{array}{r}500 \\ \hline 196\end{array}$	Very Heavy Bleisilicat.........	3510 3470

The following values in $\mathrm{cm}^{2} / \mathrm{kg}$ of $10^{6} \times$ Compressibility are given for the corresponding temperatures by Grüneisen, Ann. der Phys. 33, p. 65, 1910.

$$
\begin{aligned}
& \mathrm{Al} \text { - } 19 \mathrm{r}^{\circ}{ }^{\circ} \text {, } \mathrm{I} .32 ; 17^{\circ}{ }^{\circ}, \mathrm{I} .46 ; 125^{\circ}, \text { 1.70. } \\
& \mathrm{Cu} \text { - } 191^{\circ}, 0.72 ; 17^{\circ}, 0.77 ; 165^{\circ}, 0.83 \text {. } \\
& \mathrm{Pt}-189^{\circ}, 0.37 ; 17^{\circ}, 0.39 ; 164^{\circ}, 0.40 \text {. } \\
& \mathrm{Fe}=190^{\circ}, 0.61 ; 18^{\circ}, 0.63 ; 165^{\circ}, 0.67 . \\
& \mathrm{Ag} \text { - } 19 \mathrm{I}^{\circ}, 0.7 \mathrm{I} ; 16^{\circ} ; 0.76 ; 166^{\circ}, 0.86 \text {. } \\
& \mathrm{Pb} \text { - } 19 \mathrm{I}^{\mathrm{o}},\left({ }_{(2.5)}\right)_{14}{ }^{\circ},(3.2) \text {. }
\end{aligned}
$$

References to Table 92, p. 107:
(1) Bridgman, Pr. Am. Acad. 49, r, 1913 ;
(2) Roentgen, Ann. Phys. 44, 1, 1891;
(3) Pagliani-Palazzo, Mem. Acad. Lin. 3, 18, 1883 ;
(4) Bridgman, Pr. Am. Acad. 48, 341, 1912 ;
(5) Adams, Williamson, J. Wash. Acad. Sc. 9, Jan. 19, 1919;
(6) Richards, Boyer, Pr. Nat. Acad. Sc. 4, 389, 19IS;
(7) Richards, J. Am. Ch. Soc. $37,1646,1915$;
(8) Bridgman, Pr. Am. Acad. 47, 38r, 1911 ;
(9) Amagat, C. R. 73, 143, $\mathbf{1 8 7 2}$;
(10) Amagat, C. R. 68, 1170 , 1869;
(iI) Amagat, Ann. chim. phys. 29, 68, 505, 1893;
(12) de Metz, Ann. Phys. 41, 663, 1800 ;
(13) Adams, Williamson, Johnston, J. Am. Chem. Soc.
(14) Colla 27, 1919;
(14) Colladon, Sturm, Ann. Phys. 12, 39, 1828;
(15) Quincke, Ann. Phys. 19, 40r, 1883 ;
(16) Kichards et al. J. Am. Ch. Soc. 34, 988, 1912.

References to Table 93, p. 108:

(r) Adams, Williamson, Johnston, J. Am. Ch. Soc. 4r, 39, 1919;
(2) Richards, ibid. 37, 1646, 1915;
(3) Bridgman, Pr. Am. Acad. 44, 279, 1909; 47, 366, 1911;
(4) Adams, Williamson, unpublished;
(5) Richards, Boyer, Pr. Nat. Acad. Sc. 4, 388, 1918;
(6) Voigt, Ann. Phys. 31, 1887; 36, 1888.

SPECIFIC GRAVITIES CORRESPONDING TO THE BAUMÉ SCALE.
The specific gravities are for $15.56^{\circ} \mathrm{C}\left(60^{\circ} \mathrm{F}\right)$ referred to water at the same temperature as unity For specific gravities less than unity the values are calculated from the formula:

$$
\text { Degrees Baumé }=\frac{140}{\text { Specific Gravity }}-130 .
$$

For specific gravities greater than unity from:

$$
\text { Degrees !3aumé }=145-\frac{145}{\text { Specific Gravity }} .
$$

Specific Gravities less than 1 .

Specific Gravity.	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
	Degrees Baumé.									
0.60	103.33	99.5I	95.8 I	92.22	88.75	85.38	S2.12	78.95	75.88	72.90
. 70	70.00	67.18	64.44	61.78	59.19	56.67	54.21	51.82	49.49	47.22
. 80	45.00	42.84	40.73	38.68	36.67	34.71	32.79	30.92	29.09	27.30
. 90	25.56	23.85	22.17	20.54	18.94	17.37	I 5.83	14.33	12.86	I I .41
1.00	10.00									

Specific Cravities greater than 1 .

Specific Gravity.	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
	Degrees Baumé.									
1.00	0.00	1.44	2.84	4.22	$5 \cdot 58$	6.91	8.21	9.49	10.74	11.97
1.10	13.18	14.37	I 5.54	16.68	17.81	18.91	20.00	21.07	22.12	23.15
1.20	24.17	25.16	26.15	27.11	28.06	29.00	29.92	30.83	31.72	32.60
1.30	33.46	34.31	35.15	35.98	36.79	37.59	38.38	39.16	39.93	40.68
1.40	41.43	42.16	42.89	43.60	44.31	45.00	45.68	46.36	47.03	47.68
1.50	48.33	48.97	49.60	50.23	50.34	51.45	52.05	52.64	53.23	53.80
1.60	54.38	54.94	55.49	56.04	56.58	57.12	57.65	58.17	58.69	59.20
1.70	59.71	60.20	60.70	61.18	61.67	62.14	62.61	63.08	63.54	63.99
1.80	64.44	64.89	65.33	65.76	66.20	66.62				

Smithsonian Tables.
N. B. The density of a specimen may depend considerably on its state and previous treatment.

Element.	Physical State.	Grams per cu. cm.*	Temperature ${ }^{\circ} \mathrm{C} . \dagger$	Authority.
Aluminum	commercial h'd d'n wrought	$\begin{aligned} & 2.70 \\ & 2.65-2.80 \end{aligned}$	20°	Wolf, Dellinger, 1910
Antimony	vacuo-distilled	6.618	20	Kahlbaum, 1902.
"	ditto-compressed amorphous	6.691 6.22	20	Hérard.
Argon	liquid	1. 3845	183 -18	Baly-Donnan.
Arsenic	crystallized	1.4233 5.73	$\begin{array}{r}\text { r } \\ -189 \\ \hline 14\end{array}$	
${ }^{\text {a }}$	amorph. br.-black	3.70		Geuther.
$\stackrel{\square}{ }$	yellow	3.88		Linck.
Barium		3.78		Guntz.
Bismuth	solid	9.70-9.90		
"	electrolytic vacuo-distilled	9.747 9.781	20	Classen, 1890. Kahlbaum, 1902.
"	liquid	10.00	271	Vincentini-Omodei.
" ${ }^{\text {c }}$	solid	9.67	271	
Boron	crystal	2.535		Wigand. Moissan.
Bromine	liquid	3.12		Richards-Stull.
Cadmium	cast	8.54-8.57		
"	wrought	${ }_{8} 8.678$		Kahlb
"	solid	8.37	318	Vincentini-Omodei.
" ${ }^{\text {c }}$	liquid	7.99	318	" "
Cæsium		1.873	20	Richards-Brink.
Calcium		1.54		Brink.
Carbon	diamond graphite	3.52 2.25		Wigand.
Cerium	electrolytic	6.79		Muthmann-Weiss.
	pure	7.02		" "
Chlorine Chromium	liquid	I. 507 $6.52-6.73$	- 33.6	Drugman-Ramsay.
	pure	6.92	20	Moissan.
Cobalt		8.71	1	Tilden, Ch. C. 1898.
Columbium		8.4	15	Muthmann-Weiss.
Copper	cast	8.30-8.95		
"	annealed wrought	${ }_{8.85}^{8.89} 8$	20	Dellinger, 1911
"	hard drawn	8.89		" "
"	vacuo-distilled	8.9326	20	Kahlbaum, 1902.
"	ditto-compressed	8.9376	20	" ${ }^{\text {c }}$
Erbium	liquid	8.217		Roberts-Wrightson.
Erbium Fluorine	liquid	4.77		St. Meyer, Z. Ph. Ch. 37.
Gallium	. T quid	1.14 5.93	-200 23	de Boisbaudran.
Germanium		5.46	20	Winkler.
Glucinum		1.85		Humpidge.
Gold	cast	19.3		
"	wrought	19.33		
"	vacuo-distifled	18.88	20	Kahlbaum, 1902.
Helium	liquid		-269	Onnes, 1908.
Hydrogen Indium	liquid	$\begin{aligned} & 0.070 \\ & 7.28 \end{aligned}$	-252	Dewar, Ch. News, 1904. Richards.

*To reduce to pounds per cu . ft . multiply by 62.4 .
\dagger Where the temperature is not given, ordinary atmospheric temperature is understood.
Compiled from Clarke's Constants of Nature, Landolt-Börnstein-Meyerhoffer's Tables, and other sources. Where no authority is stated, the values are mostly means from varions sources.

DENSITY IN GRAMS PER CUBIC CENTIMETER OF THE ELEMENTS, LIQUID OR SOLID.

Element.	Physical State	Grams per cu. cmi.*	Temperature ${ }^{\circ} \mathrm{C} . \dagger$	Authority.
Iridium		22.42	17	Deville-Debray
Iodine		4.940	20	Richards-Stull
Iron	pure	7.85-7.88		
"	gray cast	7.03-7.13		
"	white cast	7.58-7.73		
"	wrought	$7.80-7.90$		
،	liquid	688		Roberts-Austen
"	steel	7.60-7.80		
Krypton	liquid	2.16	-146	Ramsay-Travers
Lanthanum		6.15		Muthmann-Weiss
Lead	vacuo-distilled	11.342	20	Kahlbaum, 1902
"	ditto-compressed	I 1. 347	20
"	solid	11.005	325	Vincentini-Omodei
"	liquid	10.645	325	,
"		10.597	400°	Day, Sosman, Hostetter,
"	'،	10.078	850°	1914
Lithium		0.534	20	Richards-Brink, '07.
Magnesium		1.741		Voigt
Manganese		7.42		Prelinger
Mercury	liquid	13.596	\bigcirc	Regnault, Volkmann
		13.546	20	
"	"	13.690	-38.8	Vincentini-Omodei
"	solid	14.193	-38.8	Mallet
"		14.383	-188	Dewar, 1902
Molybdenum		9.01		Moissan .
Neodymium		6.96		Muthmann-Weiss
Nickel		8.60-3.90		
Nitrogen	liquid	0.810 0.854	$\begin{array}{r} \text {-I95 } \\ -205 \end{array}$	$\underset{64}{ }$ Baly-Donnan, ${ }_{6} 902$
Osmium		22.5		Deville-Debray
Oxygen Palladium	liquid	1.14 12.16	-184	Richards-Stull
Phosphorus \ddagger	white	12.16 1.83		Richards-Stull
Phosphorus 7	red	2.20		
"	metallic	2.34	15	Hittorf
Platinum		21.37	20	Richarcls-Stult
Potassium		0.870	20	Richards-Brink, '07
"،	solid liquid	0.851	62.1	Vincentini-Omodei
Præsodymium		6.475	62.1	Muthmann-Weiss
Rhodium		12.44		Holborn Henning
Rubidium		- 1.532	20	Richards-Brink, '0才
Ruthenium		12.06	-	Toby
Samarium		7.7-7.8		Muthmann- Weiss
Selenium		4.3-48		
Silicon	cryst. amorph.	2.42 2.35	20	Richards-Stull-Brink Vigoroux
Silver	cast	$\xrightarrow{2.35} 10.42-10.53$	15	Vigoroux
"	wrought	10.6		
"	vacuo-distilled	10.492	20	
"	ditto-compressed	10.503	20	
"'	liquid	9.51		Wrightson ,
Sodium		0.9712		Richards-Brink, 'ō
"	solid liquid	0.9519	97.6	Vincentini-Omodei
"		1.0066	-188	1)ewar
Strontium		2.50-2.58		Matthiessen
Sulphur	liquid	$\begin{aligned} & 2.0-2.1 \\ & 1.8 \text { II } \end{aligned}$	113	Vincentini-Omodei

II2 TABLES 95 (continued) AND 96. DENSITY OF VARIOUS SUBSTANCES.
TABLE 95 (continued). - Density in grams per cubic centimeter and pounds per cublo foot of the elements, liquid or solid.

Element.	Physical State.	Grams per $\mathrm{cu} . \mathrm{cm}$.	Temperature ${ }^{\circ} \mathrm{C}$.	Authority.
Tantalum		16.6		
Tellurium	crystallized	6.25		
،	amorphous	6.02	20	Beljankin.
Thallium		11.86		Richards-Stull.
Thorium		12.16	17	Bolton.
Tin	white, cast	7.29		Matthiessen.
،	" wrought	$7 \cdot 30$		
"	"، crystallized	6.97-7.1S		
"	"' solid	7.184	226	Vincentini-Omodei
"	liquid	6.99	226	" See Table 65
" ${ }^{\text {Titanium }}$	gray	5.8		
Titanium		4.5	18	Mixter.
Tungsten		18.6-19.1		
Uranium		18.7	I 3	Zimmermann.
Vanadium		5.69		Ruff-Martin.
Xenon	liquid	3.52	109	Ramsay-Travers.
Yttrium		3.80		St. Meyer.
Zinc	cast	7.04-7.16		
"	wrought	7.19		
"	vacuo-distilled	6.92	20	Kablbaum, 1902.
"	ditto-compressed liquid	7.13 6.48	20	Roberts-Wrightson.
Zirconium		6.44		

TABLE 96. - Density in grams per cubic centimeter and in pounds per cubic foot of different kinds of wood.
The wood is supposed to be seasoned and of average dryuess.

Wood.	Grams per cubic centimeter.	Pounds per cubic foot.	Wood.	Grams per cubic centimeter.	Pounds per cubic foot.
Alder	$0.42-0.65$	26-42	Hazel	$0.60-0.80$	37-49
Apple	0.66-0.84	4^{1-52}	Hickory	0.60-0.93	$37-5^{8}$
Ash	$0.65-0.85$	40-53	Holly	0.76	
Bamboo	$0.31-0.40$	19-25	Iron-bark	1.03	64
Basswood. See Linden.			Juniper	0.56	35
Beech	0.70-0.90	43-56	Laburnum	0.92	57
Blue gum	1.00	62	Lancewood	0.68-1.00	42-62
Birch	$0.51-0.77$	32-48	Lignum vita	1.17-1.33	$73-83$
Box	0.95-1.16	59-72	Linden or lime-tree	0.32-0.59	20-37
Bullet-tree	1.05	65	Locust	0.67-0.71	42-44
Butternut	0.38	24	Logwood	. 91	57
Cedar	0.49-0.57	30-35	Mahogany, Honduras	0.66	41
Cherry	$0.70-0.90$	43-56	" Spanish	0.85	53
Cork	0.22-0.26	14-16	Maple	$0.62-0.75$	39-47
Dogwood	0.76		Oak	$0.60-0.90$	37-56
Ebony Elm	$1.11-1.33$ $0.54-0.60$	69-83	lear-tree	$0.61-0.73$	38-45
Fir or Pine, American	0.54-0.60	34-37	Plum-tree Poplar	$0.66-0.78$ $0.35-0.5$	$41-49$ $22-31$
White	0.35-0.50	22-31	Satinwood	0.95	
" Larch	$0.50-0.56$	$31-35$	Sycamore	$0.40-0.60$	24-37
" Pitch	0.83-0.85	52-53	Teak, Indian	0.66-0.88	41-55
" \quad Red	$0.48-0.70$	30-44	" African	0.98	
" Scotch	$0.43-0.53$	27-33	Walnut	0.64-0.70	40-43
" Spruce	0.48-0.70	30-44	Water gum	1.00	62
Greenheart ellow	$0.37-0.60$ $0.93-1.04$	$23-37$ $58-65$	Willow	0.40-0.60	24-37

* Where the temperature is not given, ordinary atmospheric temperature is understood.

Smithsonian Tables.

DENSITY IN GRAMS PER CUBIC CENTIMETER AND POUNDS PER CUBIC

 FOOT OF VARIOUS SOLIDS.N. B. The density of a specimen depends considerably on its state and previous treatment; especially is this the case with porous materials.

Material.	Grams per $\mathrm{cu} . \mathrm{cm}$.	Pounds per cu. foot.	Material.	Grams per cu. cm.	Pounds per cu. foot.
Agate	$2.5-2.7$	1 56-168	Gum arabic	1.3-1.4	80-85
Alabaster :			Gypsum	$2.31-2.33$	144-145
Carbonate	2.69-2.78	168-173	Hematite	4.9-5.3	306-330
Sulphate	2.26-2.32	141-145	Hornblende	3.0	187
Albite	2.62-2.65	163-165	Ice	0.917	57.2
Amber	1.06-I.1 1	66-69	Ilmenite	4.5-5.	280-310
Amphiboles	2.9-3.2	180-200	Ivory	1.83-1.92	114-120
Anorthite	$2.74{ }^{-2.76}$	$171-172$	Labradorite	$2.7-2.72$	168-170
Anthracite	1.4-1. ${ }^{\text {- }}$	87-112	Lava : basaltic	2.8-3.0	175-185
Asbestos	2.0-2.8	125-175	trachytic	2.0-2.7	125-168
Asphalt	1.1-1.5	69-94	Leather: dry	0.86	54
lasalt	2.4-3.1	150-190	greased	I. 02	64
Beeswax	$0.96-0.97$	60-6I	Lime : mortar	1.65-1.78	103-11 I
Beryl	2.69-2.7	168-168	slaked	1.3-1.4	81-87
Biotite	2.7-3.1	170-190	Limestone	2.68-2.76	167-171
Bone	1.7-2.0	106-125	Litharge :		
Brick	1.4-2.2	87-137	Artificial	9.3-9.4	580-585
Butter	0.86-0.87	53-54	Natural	7.8-8.0	490-500
Calamine	4.1-4.5	$255-280$	Magnetite	4.9-5.2	306-324
Caoutchouc	0.92-0.99	57-62	Malachite	3.7-4.I	231-256
Celluloid	1.4	87	Marble	2.6-2.84	160-177
Cement, set	2.7-3.0	170-190	Meerschaum	0.99-1.28	62-80
Chalk	1.9-2.8	118-175	Mica	2.6-3.2	165-200
Charcoal: oak		35-28	Muscovite	$2.76-3.00$	$172-225$
pine	$0.28-0.44$	18-28	Ochre	3.5	218
Chrome yellow	6.00	374	Oligoclase	2.65-2.67	$165-167$
Chromite	4.32-4.57	270-285	Olivine	3.27-3.37	204-210
Cinnabar	8.12	507	Opal	2.2	
Clay	1.8-2.6	122-162	Orthoclase	$2.58-2.61$	161-163
Coal, soft	1.2-I.5	75-94	Paper	$0.7-1.15$	44-72
Cocoa butter	0.89-0.91	56-57	Paraffin	0.87-0.91	54-57
Coke	1.0-1.7	62-105	Peat	0.84	52
Copal	1.04-1.14	65-71	Pitch	1.07	67
Corundtum	3.9-4.0	245-250	Porcelain	2.3-2.5	$143-156$
Diamond:			Porphyry	2.6-2.9	162-181
Anthracitic Carbonado	1. 66 $3.01-3.25$	104 $188-203$	Pyrite	$4.95-5.1$ 2.65	309-318
Diorite ${ }^{\text {Carbonado }}$	$3.01-3.25$ 2.52	$188-203$ 157	Quartz	2.65 2.73	165 170
Dolomite	2.84	177	Resin	1.07	67
Ebonite	1.15	72	Rock salt	2.18	136
Emery	4.0	250	Rutile	6.00-6.5	374-406
Epidote	3.25-3.5	203-218	Sandstone	$2.14-2.36$	$134-147$
Feldspar	2.55-2.75	159-172	Serpentine	2.50-2.65	$156-165$
Flint	2.63	164	Slag, furnace	2.0-3.9	125-240
Fluorite	3.18	198	Slate	$2.6-3 \cdot 3$	162-205
Gamboge	1.2	75	Soapstone	2.6-2.8	162-175
Garnet	3.15-4.3	197-268	Starch	I. 53	95
Gas carbon	I. 88	117	Sugar	1.61	100
Gelatine	1.27	180	Talc	2.7-2.8	168-174
Glass: common	2.4-2.8	150-175	Tallow	0.91-0.97	57-60
flint	2.9-5.9	180-370	Topaz	3.5-3.6	219-223
Glue	1.27	So	Tourmaline	3.0-3.2	190-200
Granite	2.6.4-2.76	${ }_{165-172}$	Zircon	$4.68-4.70$	292-293
Graphite	$2.30-2.72$	14i-170			

DENSITY IN GRAMS PER CUBIC CENTIMETER AND POUNDS PER CUBIC FOOT OF VARIOUS ALLOYS.

SMITMSONIIN TABLES.

Table 99.-DENSITIES OF VARIOUS NATURAL AND ARTIFICIAL MINERALS.

(See also Table 97.)

References: i, Larsen 1909; 2, Day and Shepherd; 3, Shepherd and Rankin, 1909; 4, Allen and White, 1909 ; 5, Allen, Wright and Clement, I906; 6, Day and Allen, 1905; 7, Washington and Wright, i910; 8, Merwin, I9II ; 9, Johnston and Adams, i9I ; 10, Allen and Crenshaw, 1912; 11, Wright, 1908.

All the data of this table are from the Geophysical Laboratory, Washington.

Table 100.- DENSITIES OF MOLTEN TIN AND TIN-LEAD EUTECTIC.

Temperature	$250^{\circ} \mathrm{C}$	300°	400°	500°	600°	900°	1200°	1400°	1600°
Molten tin	6.982	6.943	6.875	6.814	6.753	6.578	6.399	6.280	6.162
37 pts. $\mathrm{Pb}, 63$, Sn.*	8.01 I	7.965	7.879	7.800	7.73 I	-	-	-	-

* Melts at 181. Day and Sosman, Geophysical Laboratory, unpublished.

For further densities inorganic substances see table $\begin{array}{cc}219 & 219 . \\ \text { organic } & 220 .\end{array}$

TABLE 101. - Weight of Sheet Metal. (Metric Measure.)
This table gives the weight in grams of a plate one meter square and of the thickness stated in the first column.

Thickness in thou- sandths of a cm.	Iron.	Copper.	Brass.	Aluminum.	Platinum.	Gold.	Silver.	
\mathbf{y}		78.0	89.0	85.6	26.7	215.0	193.0	105.0
$\mathbf{1}$	156.0	178.0	171.2	53.4	430.0	386.0	210.0	
2	234.0	267.0	256.8	80.1	6450	579.0	315.0	
3	312.0	356.0	342.4	106.8	860.0	772.0	420.0	
4	390.0	445.0	428.0	133.5	1075.0	965.0	525.0	
5								
6	468.0	534.0	513.6	160.2	1290.0	1158.0	630.0	
7	546.0	623.0	599.2	186.9	1505.0	1351.0	735.0	
8	624.0	712.0	684.8	213.6	1720.0	1544.0	840.0	
9	702.0	801.0	770.4	240.3	1935.0	1737.0	945.0	
10	780.0	890.0	856.0	267.0	2150.0	1930.0	1050.0	

TABLE 102. - Weight of Sheet Metal. (British Measure.)

DENSITY OF LIQUIDS.

Density or mass in grams per cubic centimeter and in pounds per cubic foot of various liquids.

Smithsonian Tables.

[Under standard pressure (76 cm), at every tenth part of a degree of the international hydrogen scale from 0° to 41° C, in grams per milliliter ${ }^{1}$]

Degrees grade.	Tenths of Degrees.										Mean Differ ences.
	0	1	2	3	4	5	6	7	8	9	
\bigcirc	0.999 S681	S747	8812	S875	8936	8996	9053	9109	9163	9216	+ 59
1	9267	9315	9363	9403	9452	9494	9534	9573	9610	9645	$+\quad 41$ $+\quad 24$
2	9679	9711	974 I	9769	9796	9821	9844	9866	9887	9905	+24 $+\quad 8$
3	9922	9937	9951	+9962	*9973	-9981	*9988	*9994	*9998	*0000	
4	1.0000000	*9999	*9996	*9992	*9986	*9979	*9970	*9960	*9947	*9934	8
5	0.9999919	9902	9884	9864	9842	9819	9795	9769	9742	9713	- 24
6	9682	9650	9617	9582	9545	9507	9468	9427	9385	9341	- 39
7	9296	9249	9201	9151	9100	9048	8994	8938	8881	8823	- 53
8	S764	8703	8641	8577	8512	8445	8377	8308	8237	8165	-67
9	So9I	Sol 7	7940	7863	7784	7704	7622	7539	7455	7369	- 8I
10	7282	7194	7105	7014	6921	6826	6729	6632	6533	6432	-95
11	6331	6228	6124	6020	5913	5805	5696	5586	5474	5362	-108
12	52.48	5132	5016	4898	4780	4660	4538	4415	4291	4166	-121
13	4040	3912	3784	3654	3523	3391	3257	3122	2986	2850	-133
14	2712	2572	243 I	2289	2147	2003	1858	1711	1564	1416	-145
15	1266	III4	0962	oSo9	0655	0499	0343	O185	0026	*9865	-156
16	0.9989705	9542	9378	9214	9048	888I	8713	8544	8373	8202	-168
17	8029	7856	7681	7505	7328	7150	697 I	6791	6610	6427	-178
18	6244	6058	5873	5686	5498	5309	5119	4927	4735	4541	-190
19	4347	4152	3955	3757	3558	3358	3158	2955	2752	2549	-200
20	2343	2137	1930	1722	1511	1301	1090	0878	0663	0449	-211
21	0233	0016	*9799	*9580	*9359	*9139	*8917	*8694	*8470	*8245	-221
22	0.9978019	7792	7564	7335	7104	6873	6641	6408	6173	5938	-232
23	5702	5466	5227	4988	4747	4506	4264	402 I	3777	3531	-242
24	3286	3039	2790	2541	2291	2040	1788	1535	1280	1026	-252
25	0770	0513	0255	*9997	*9736	*9476	*92I4	*8951	*8688	*8423	-261
26	0.9968158	7892	7624	7356	7087	6817	6545	6273	6000	5726	-271
27	5451	5176	4898	4620	4342	4062	3782	3500	3218	2935	-280
28	2652	2366	2080	1793	1505	1217	0928	0637	0346	0053	-289
29	0.9959761	9466	9171	8876	S 579	8282	7983	7684	7383	7083	-298
30	6780	6478	6174	5869	5564	5258	4950	4642	4334	4024	-307
31	3714	3401	* 3089	2776 $*$	2462 $* 9276$	2147 $* 8$	1832 $* 8630$	+1515	1198 $*$	* 880	-315
32	0561	0241	*9920	*9599	*9276	*8954	*8630	*8304	*7979	$*_{7} 653$	-324
33	0.9947325	6997	6668	6338	6007	5676	5345	5011	4678	4343	-332
34	4007	3671	3335	2997	2659	2318	1978	1638	1296	0953	-340
35	0610	0267	*9922	*9576	*9230	*8883	*8534	*8186	*7837	*7486	-347
36	0.9937136 3585	6784	6432	6078	5725	5369	5014	4658	4301	3943	-355
37 38	3585 0.9929960	3226	2866	2505 8859	2144 8490	${ }_{1}^{1782}$	1419	1055	0691	0326	-362
38 39	0.9929960 6263	9593 5800	9227 5516	8859 5140	8490 4765	8120	7751	7380	7008	6636	-370 -377
39	6263	5890	5516	5140	4765	4389	4011	3634	3255	2876	-377
40 41	2497 0.9918661	2116	1734	1352	0971	0587	0203	*9818	*9433	*9047	-384

${ }^{1}$ According to P. Chappuis, Bureau international des Poids et Mesures, Travaux et Mémoires, 13; 1907.

[^17]VOLUMEIN CUBIC CENTIMETERS AT VARIOUS TEMPERATURES OF A CUBIC CENTIMETER OF WATER FREE FROM AIR AT THE TEMPERATURE OF MAXIMUM DENSITY. 0° TO $40^{\circ} \mathrm{C}$.

Hydrogen Thermometer Scale.

$\underset{\text { C. }}{\text { Temp. }}$. 0	. 1	. 2	-3	. 4	- 5	. 6	. 7	. 8	-9
\bigcirc	1.000132	125	118	112	106	100	095	089	084	079
1	073	069	064	059	055	051	047	043	039	035
2	032	029	026	023	020	018	0.6	013	OII	009
3	008	006	005	004	003	002	001	001	000	Q00
4	000	000	00	OOI	0 OI	002	003	004	005	007
5	008	010	012	Or 4	016	OI 8	021	023	026	029
6	032	035	039	042	046	050	054	058	062	066
7	070	075	080	085	090	095	101	106	112	118
8	124	130	137	142	149	156	162	169	176	184
9	${ }^{191}$	198	206	214	222	230	238	246	254	263
10	272	281	290	299	308	317	327	337	347	357
11	367	377	388	398	409	420	430	441	453	464
12	476	487	499	511	522	534	547	559	57 I	584
13	596	609	623	636	649	661	675	688	702	715
14	729	743	757	772	786	800	815	830	844	859
15	873	890	905	920	935	951	967	983	998	${ }^{1} 15{ }^{*}$
16	1.001031	047	063	080	097	113	130	147	164	182
17	198	216	233	252	269	287	305	323	341	358
18	378	396	415	433	452	47 I	490	510	529	548
19	568	588	606	626	646	667	687	707	728	748
20	769	790	811	832	853	874			938	9^{60}
21	981	002*	024*	046*	068*	091*	113 *	135*	I 58*	181*
22	1.002203	226	249	271	295	319	342	364	389	412
23	436	459	483	507	532	556	581	605	629	654
24	679	704	729	754	779	804	829	854	879	905
	932	958	. 983	010*	036*	061*	088*	$115{ }^{*}$	141*	168*
26	1.003195	221	- 248	275	302	330	357	384	412	439
	467	495	523	550	579	607	635	663	692	720
28	749	776	806	836	865	893	922	951	98 I	OII* ${ }^{*}$
29	1.00404 1	069	100	129	160	189	220	250	280	310
30	341	371	403	432	464	494	526	557	588	619
31	651	682	713	744*		808	840	872		${ }^{936}$
32	968	001* ${ }^{*}$	033*	066*	098*	132*	163*	197*	229*	263*
33	1.005296			395	427 768	461	496	530 871	562 904	597 940
34	631	665	698	73^{2}	768	802	836	87 I	904	940
35	975	009*	044*	078*	II 5*	150*	185*	219*	255*	290*

Reciprocals of the preceding table.

Smithsonian tables.

table 106.
DENSITY AND VOLUME OF WATER.
$-10^{\circ} \mathrm{TO}+250^{\circ} \mathrm{C}$.
The mass of one cubic centimeter at $4^{\circ} \mathrm{C}$. is taken as unity.

Temp. C.	Density.	Volume.	Temp. C.	Density.	Volume.
-10°	0.99815	1.00186	$+35^{\circ}$	0.99406	1.00598
-9	- 843	157	36	371	633
-8	- 869	131	37	336	669
-7	892	108	38	3300	706
-6	912	088	39	263	743
-5	0.99930	1.00070	40	0.99225	1.00782
-4	945	055	41	- 187	821
-3	958	042	42	147	861
-2	970	031	43	107	901
-1	979	021	44	066	943
+0	0.99987	1.00013	45	0.99025	1.00985
1	993	007	46	0.98982	1.01028
2	997	003	47	940	072
3	999	∞)	48	896	116
4	1.00000	1.00000	49	852	162
5	0.99999	1.00001	50	0.98807	1.01207
6	997	003	51	762	254
7	993	007	52	715	301
8	988	012	53	669	349
9	981	$\bigcirc 19$	54	621	398
10	0.99973	1.00027	55	0.98573	1.01448 705
11	963	037	60	324	705
12	952	048	65	$\begin{array}{r}059 \\ \hline\end{array}$	-979
13	940	060	70	0.97781	1.02270
14	927	073	75	489	576
15	0.99913	1.00087	80	0.97183	1.02899
16	897	-103	85	0.96865	1.03237
17		120	90	534	590
18	862	138	95	192	959
19	843	157	100	0.95838	1.04343
20	0.99823	1.00177	110	0.9510	1.0515
21	802	198	120	. 9434	1.0601
22	780	220	130	. 9352	1.0693
23	757	244	140	. 9264	1.0794
24	733	268	150	.9173	1.0902
25	0.99708	1.00293	160	0.9075	1.1019
26	682	320	170	. 8973	1.1145
27	655	347	180	. 8866	1.1279
28	627	37.5	190	. 8750	1.1429
29	598	404	200	. 8628	1.1590
30	0.99568	1.00434	210	0.850	
31	537	465	220	. 837	1.195
32	506	497	2.30	. 823	1.215
33	473	530	240	. 809	1.236
34	440	563	250	. 794	1.259

[^18]DENSITY OF MERCURY
Density or mass in grams per cubic centimeter, and the volume in cubic centimeters of one gram of mercury.

Temp. C.	Mass in grams per $\mathrm{cu} . \mathrm{cm}$.	Volume of 1 gram in cu. cms.	Temp. C	Massin grams per $\mathrm{cu} . \mathrm{cm}$.	Volume of 1 gram in cu. cms.
-10°	13.6198	0.0734225	30°	13.5213	0.0739572
	61736148	4358	31	$\begin{aligned} & 5189 \\ & 5164 \end{aligned}$	$\begin{aligned} & 9705 \\ & 9839 \end{aligned}$
		4492	32		
	6124	4626	33	5140	$\begin{aligned} & 9839 \\ & 9973 \end{aligned}$
	6099	4759	34	5116	40107
-5	13.6074	0.0734893	35	$13 \cdot 5091$	0.0740241
-4	6050	5026	36	5066	0374
-3	6025	5160	37	5042	0508
-2	6000	5293	38	5018	0642
-I	5976	5427	39	4994	0776
-0	I3.595 1	0.0735560	40	13.4969	0.0740910
I	5926	5694	50	4725	2250
2	5901	5828	60	4482	3592
3	5877	5961	70	4240	4936
4	5852	6095	80	3998	6282
56	$13 \cdot 5827$	0.07362286362	90	13.3723	$\begin{array}{r} 0.074763 \mathrm{I} \\ 898 \mathrm{I} \end{array}$
	5803		100110	$\begin{aligned} & 3515 \\ & 3279 \end{aligned}$	
7	5778	6496			$\begin{array}{r} 8981 \\ 50305 \end{array}$
8	5754	6629	110 120	$\begin{aligned} & 3279 \\ & 3040 \end{aligned}$	1653
9	5729	6763	130	2801	3002
10	13.5704	0.0736893	140	13.2563	
II	5680	7030	150	r 2326	$\begin{array}{r} 5454 \\ 5708 \end{array}$
12	5655	7164	160170	2090	7064
13	5630	7298		1853	8422
14	5606	7431	170 180	1617	9784
15	13.5581	0.0737565	190	13.1381	0.0761149
16	5557	7699	200	I145	0.0761149 2516 3886
17	5532	7832	210	0910	38865260
18	5507	7966	220	0677	
19	5483	8100	230	0440	6637
20	13.5458	0.0738233	240	13.0206	0.0768017
21	5434	8367	250	12.9972	$\begin{aligned} & 9402 \\ & 7090 \end{aligned}$
22	5409	8501	260	9738	
23	5385	8635	270280	$\begin{aligned} & 9504 \\ & 9270 \end{aligned}$	2182
24	5360	8768			3579
25	13.5336	0.0738902	290	12.9036	0.0774979
26	531 I	90.36	300	8803	
27	5287	9170	310	8569	6385 7795
28	5262	9304	$\begin{aligned} & 320 \\ & 330 \end{aligned}$	$\begin{aligned} & 8336 \\ & 8 \mathrm{IO} 2 \end{aligned}$	9210
29	5238	9437			80630
30	13.5213	0.073957 I	340 350 360	$\begin{array}{r} 12.7869 \\ 7635 \\ 7402 \end{array}$	$\begin{array}{r} 0.0782054 \\ 3485 \\ 492 \mathrm{I} \end{array}$

Based upon Thiesen und Scheel, Tätigkeitber. Phys.-Techn. Reichsanstalt, 1897-1898; Chappuis, Trav. Bur. Int. 13, 1903. Thiesen, Scheel, Sell; Wiss. Abh. Phys.-Techn. Reichsanstalt 2, p. 184, 1895, and 1 liter $=1.000027 \mathrm{cu} . \mathrm{dm}$.

The following table gives the density of solutions of various salts in water. The numbers give the weight in grams per cubic centimeter. For brevity the substance is indicated by formula only.

Substance.	Weight of the dissolved substance in 100 parts by weight of the solution.										Authority.
	5	10	15	20	25	30	40	50	60		
$\mathrm{K}_{2} \mathrm{O}$	1.047	1.098	1.153	1.214	1.284	1.354	1.503	1. 659	1.809	15.	Schiff.
KOH	1.040	1.082	I.127	1.176	1.229	1.286	1.410	1.538	1.666	15.	
$\mathrm{Na}_{2} \mathrm{O}$	1.073	I.144	1.218	1.284	1.354	1.421	1.557	1.689	1.829	15.	"
NaOH	1.05 S	1.114	I.169	1.224	1.279	1.331	1.436	I. 539	1.642	15.	"
NH_{8}.	0.978	0.959	0.940	0.924	0.909	0.896	-		-	16.	Carius.
$\mathrm{NH}_{4} \mathrm{Cl}$	1.015	1.030	1.044	1.058	1.072	-	-	-	-	15.	Gerlach.
KCl .	1.031	1.065	1.099	I.135	-	-	-	-	-	15.	"
NaCl .	1.035	1.072	1.110	1.150	1.191	-	-	-	-	15.	"
LiCl .	1.029	1.057	1.OS 5	1.116	1.147	1.181	1.255	-	-	15.	"
CaCl_{2}	$1.04{ }^{1}$	1.086	1.132	1.18I	1.232	1.286	1.402	-	-	15.	/6
$\mathrm{CaCl}_{2}+6 \mathrm{H}_{2} \mathrm{O}$	1.019	1.040	1.061	1.083	1.105	1.128	1.176	I. 225	1.276	18.	Schiff.
AlCl_{3}	1.030	1.072	1.111	1.153	1. 196	1.24 I	I. 340	-	-	15.	Gerlach.
$\mathrm{MgCl}_{2} \cdot{ }^{\circ}$	1.041	I. 085	1.130	1.177	1.226	1.278	-	-	-	15.	"
$\mathrm{MgCl}_{2}+6 \mathrm{H}_{2} \mathrm{O}$	1.014	1.032	1.049	1.067	1.085	1.103	1.141	1.183	1.222	24.	Schiff.
ZnCl_{2}	1.043	1.089	1.135	1.184	1.236	1.289	1.417	1.563	1.737	19.5	Kremers.
CdCl_{2}	1.043	1. 087	1.138	1.193	1.254	1.319	1.469	1.653	1. 887	19.5	"
$\mathrm{SrCl}_{2} \cdot{ }^{\text {- }}$	1.044	I. 092	1.143	1.198	1.257	1.321	-	,	-	15.	Gerlach.
$\mathrm{SrCl}_{2}+6 \mathrm{H}_{2} \mathrm{O}$	1.027	I. 053	1.082	1.111	1.042	I. 174	1.242	1.317	-	15.	،
BaCl_{2}	1.045	1.094	1.147	1.205	1.269	-	-		-	15.	"'
$\mathrm{BaCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$	1.035	1.075	1.119	1.166	1.217	1.273	-	-	-	2 I .	Schiff.
CuCl_{2}	1.044	1.091	1.155	1.221	1.291	1.360	1.527	-	-	17.5	Franz.
NiCl_{2}	1.048	1.098	1.157	1.223	1.299	-	,	-	-	17.5	"
HgCl_{2}	1.041	1.092		-	-					20.	Mendelejeff.
$\mathrm{Fe}_{2} \mathrm{Cl}_{6}$	1.041	1.086	1.130	1.179	1.232	1.290	1.413	1.545	1.668	17.5	Hager.
PtCl_{4}.	1.046	1.097	1.153	1.214	1.285	1.362	1.546	1.785	-		Precht.
$\mathrm{SnCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$	1.032	1.067	1.104	1.143	1.185	1.229	1.329	1.444	1.580	15.	Gerlach.
$\mathrm{SnCl}_{4}+5 \mathrm{H}_{2} \mathrm{O}$	1.029	1.058	1.089	1.122	1.157	1.193	1.274	1. 365	1. 467	15.	
Libr	1.033	1.070	1.111	I. 5 5	1.202	1.252	1.366	I. 498	-	19.5	Kremers.
KBr	1.035	1.073	1.114	1.157	1.205	1.254	1.364		-	19.5	"
NaBr	1.038	1.078	1.123	1.172	1.224	1.279	I. 40 S	1.563	-	19.5	"
MgPr_{2}	1.041	1.085	I. 135	1.189	1.245	1.308	1.449	1.623	-	19.5	"
ZnBr_{2}	1.043	1.091	1.144	1.202	1.263	1. 328	1.473	1. 648	1.873	19.5	"
CdBr_{2}	1.041	1.088	1.139	1.197	1.258	1. 324	1.479	1.678	1873	19.5	"
CaBr_{2}	1.042	1.087	1.137	1.192	2.250	1.313	I. 459	I. 639	-	19.5	"
BaBr_{2}	1.043	1.090	1.142	I. 199	1.260	1.327	1.483	1.683	-	19.5	"
$\mathrm{SrBr}_{\mathrm{KI}}$	1.043	1.089	1.140	1.198	1.260	1.328	1.489	1.693	1.953	19.5	"
KII	1.036 1.036	1.076	1.118	1.164	1.216	1.269	1.394	I. 544	1.732	19.5	"
NaI	1.036	1.077	1.122	1.170	1.222	1.278	1.412	1.573	1.775	19.5	"
ZnI_{2}	1.030	1.050	1.126	1.177	1.232	1.292	1.430	I. 598	1.80 S	19.5	"
ZnI_{2}	1.043	1.089	1.138	1.194	1.253	1.316	1.467	I. 648	1.873	19.5	"
CdI_{2}.	1.042	1.086	1.136	1.192	1.251	1.317	1.474	1.678	-	19.5	"
MgI_{2}.	1.041	1.086	1.137	1.192	1.252	1.318	1.472	1.666	1.913	19.5	"
CaI_{2}.	1.042	1.088	1.138	1.196	1.258	1.319	I. 475	1.663	1.908	19.5	"
SrI_{2} -	1.043	1.089	1.140	1.198	1.260	1.328	1.489	1.693	1.953	19.5	"
BaI_{2}.	1.043	1.089	1.141	1.199	1.263	1.331	1.493	1.702	1.968	19.5	"
NaClO_{3}.	1.035	1.068	1.106	1.145	1.188	1.233	1. 329	-	-	19.5	"
NaHrO_{3}.	1.039	1.081	1.127	1.176	1.229	1.287	-	-	-	19.5	"
NaNO_{8} -	1.031 1.031	1.064	1.099	1.135 1.140	1.180	-	-	1	-	15.	Gerlach.
AgNO_{3}. .	1.044	1.090	1.140	1.195 1.1	1.255	1.222 1.322	1.313 1.479	1.416	1.918	15.2 15.	Kohlrausch.

DENSITY OF AQUEOUS SOLUTIONS.

Substance.	Weight of the dissolved substance in 800 parts by weight of the solution.									$\stackrel{\dot{\Delta}}{\stackrel{\Delta}{E}}$	Authority.
	5	10	15	20	25	30	40	50	60		
$\mathrm{NH}_{4} \mathrm{NO}$	1.020	1.041	1.063	1.085	1.107	1.131	1.178	1.229	1.282	17.5	Gerlach.
$\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}$	1.048	1.095	I. 146	1.201	1.263	1.325	1.456	I. 597	-	17.5	Franz.
$\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}+6 \mathrm{H}_{2} \mathrm{O}$,	1.054	-	1.113	-	1.178	1.250	I. 329	-	14.	Oudemans.
$\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ -	1.037	1.075	I.II8	1.162	I. 211	1.260	1.367	1.482	1.604	17.5	Gerlach.
$\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$	1.044	1.093	I.I 43	1.203	I. 263	1.328	I. 47 I	-	-	17.5	Franz.
$\mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}$	1.039	1.083	I. 129	I. 179	-	-	-	-	-	19.5	Kremers.
$\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$	1.043	1.091	I.I43	I. 199	1. 262	1.332	-	-	-	17.5	Gerlach.
$\mathrm{Cd}\left(\mathrm{NO}_{3}\right)_{2}$	1.052	1.097	I.I 50	1.212	1.283	I. 355	1. 536	1. 759	-	17.5	Franz.
$\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2}$	1.045	1.090	1.I37	I.192	1.252	1.318	I. 465			17.5	
$\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2}$	1.045	1.090	I.I 37	1.192	1.252	I. 318	I. 465		-	17.5	
$\mathrm{Fe}_{2}\left(\mathrm{NO}_{3}\right)_{6}$	1.039	1.076	1.117	1.160	1.210	I.261	1.373	1.496	1.657	17.5	" ${ }^{\text {c }}$
$\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}+6 \dot{\mathrm{H}}_{2} \mathrm{O}$	I. 1.018	1.038	1.060	1.082	1.105	I.I29	I. 179	1.232	1.657	21	Schiff.
$\mathrm{Mn}\left(\mathrm{NO}_{3}\right)_{2}+6 \mathrm{H}_{2} \mathrm{O}$	1.025	1.052	1.079	I.IOS	1.138	1.169	I. 235	1. 307	1.386	8	Oudemans.
$\mathrm{K}_{2} \mathrm{CO}_{3} \cdot \cdot \cdot \cdot \cdot$	1.044	1.092	1.141	1.192	1.245	I. 300	I. 417	I. 543		15	Gerlach.
$\mathrm{K}_{2} \mathrm{CO}_{3}+2 \mathrm{H}_{2} \mathrm{O}$	1.037	1.072	1.110	1.150	1.191	1.233	1. 320	I.415	1.511	15.	"
$\mathrm{Na}_{2} \mathrm{CO}_{3} \mathrm{IOH}_{2} \mathrm{O}$	1.019	1.038	1.057	1.077	1.098	I. 118	-	-	-	15.	Schiff
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$	1.027	i. 055	1.084	I.153	I.142	I. 170	1.226	1.287	-	19.	Schiff.
$\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$	1.045	1.096	I.150	1.207	1.270	I. 336	I. 489			18.	Hager.
$\mathrm{FeSO}_{4}+7 \mathrm{H}_{2} \mathrm{O}$	1.025	1.053	1.081	I.III	I.141	1.173	1.238	-	-	17.2	Schiff.
MgSO_{4} -	1.051	1.104	1.161	1.221	1.284				-	15	Gerlach.
$\mathrm{MgSO}_{4}+7 \mathrm{H}_{2} \mathrm{O}$.	1.025	1.050	1.075	1.101	1.129	1.155	1.215	1.278	-	15.	"
$\mathrm{Na}_{2} \mathrm{SO}_{4}+1 \mathrm{IOH}_{2} \mathrm{O}$	1.019	1.039	1.059	1.08I	1.102	I. 124				15.	
$\mathrm{CuSO}_{4}+5 \mathrm{H}_{2} \mathrm{O}$.	1.03 I	1.064	1.098	1.134	1.173	1.213	-	-	-	IS'.	Schiff.
$\mathrm{MnSO}_{4}+4 \mathrm{H}_{2} \mathrm{O}$.	1.031	1.064	1.099	1.1 35	1.174	1.214	1.303	1. 398	-	15.	Gerlach.
$\mathrm{ZnSO}_{4}+7 \mathrm{H}_{2} \mathrm{O}$.	1.027	I. 057	1.089	1.122	1.156	I.191	1.269	1.351	I. 443	20.5	Schiff.
$\begin{gathered} \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot \mathrm{~K}_{2} \mathrm{SO}_{4} \\ +24 \mathrm{H}_{2} \mathrm{O} \end{gathered}$	1.026	I. 045	1.066	1. 088	I.II2	1.141	-	-	-	17.5	ranz.
$\begin{gathered} \mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot \mathrm{~K}_{2} \mathrm{SO}_{4} \\ +24 \mathrm{H}_{2} \mathrm{O} \end{gathered}$	1.016	1.033	1.051	1.073	1.099	I. 126	1.188	1.287	1.454	17.5	"
$\begin{gathered} \mathrm{MgSO}_{4}+\mathrm{K}_{2} \mathrm{SO}_{4} \\ +6 \mathrm{H}_{2} \mathrm{O} \end{gathered}$	1.032	I. 06	1.101	I. 138	.	-	-	-	-	15.	Schiff.
$\begin{aligned} & \left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}+ \\ & \mathrm{FeSO}_{4}+6 \mathrm{H}_{2} \mathrm{O} \end{aligned}$	1.028		1.090	1.122	I. 54	1.191	-		-	-	،
$\mathrm{K}_{2} \mathrm{CrO}_{4}$ - . . .	1.039	1.082	1.127	I. 174	I. 225	1.279	1.397	-		19.5	'
$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$	1.03	1.071	I.108	-	-	-	-	-	-	19.5	ne
$\mathrm{Fe}(\mathrm{Cy})_{6} \mathrm{~K}_{4}$	028	1.059	1.092	1.126	-					15.	chiff
$\mathrm{Fe}(\mathrm{Cy})_{6} \mathrm{~K}_{3}$.	1.025	1.053	1.070	I. II 3	-	-	-	-	-	13	
$\mathrm{Pb}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}+$	1.031	1.06	I. 100	I. 137	1.177	1.220	I.3I 5	I. 426	-	15.	erlac
$\begin{gathered} 2 \mathrm{NaOH}+\mathrm{As}_{2} \mathrm{O}_{5} \\ +24 \mathrm{H}_{2} \mathrm{O} \end{gathered}$	1.020	1.04	1.066	I.089	I.II	1.140	1.194		-	14	Schiff.
	5	10	15	20	30	40	60	80	1 co		
SO_{3}	1.040	1.084	1.132	1.179	1.277	1.389	1.564	1.8.40	-	I 5.	Brineau.
SO_{2}	I. 013	1.028	1.045	1.063	-	-		I. 506	-	4.	Schiff. Kolb
$\mathrm{N}_{2} \mathrm{O}_{5}$.	1.033	1.069	I. 104	I.I. 41	1.217	1. 294	1.422	1.506	-	15.	
$\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{6}$	1.021	1.047	1.070	I. 096	I. 150	1.207		-		15.	Gerlach.
$\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7}$	1.018	1.038	1.058	1.079	1.123	1.170	1.273	-	-	15.	
Cane suga	1.019	1.039	1. 060	1.082	I.129	1.178	1.289	-	-	17.5	Kolb
HCl .	1.025	1.050	1.075	I. IOI	1.151	1. 200	-	-	-	15.	Kolb.
HBr	1.035	1.073	1.114	I. 158	1.257	I. 376	-	-	-	14.	Topso
$\mathrm{HI}^{\text {- }}$	1.037	1.077	1.118	I. 165	1.271	I. 400		-	1.838	13.	Kolb.
$\mathrm{H}_{2} \mathrm{SO}_{4}$	1.032	1.069	1.106	b. 145	1.223	1.307	1.501	1.732	1.838	15.	Kolb.
$\mathrm{H}_{2} \mathrm{SiF}_{6}$	I. 040	1.082	1.127	I.174	1.273	1.38	1.676	-	-	17.5	
$\mathrm{P}_{2} \mathrm{O}_{5}+\mathrm{O}_{5}+\mathrm{H}_{2}$	1.035	1.077	1.119 L 108	I.167	1.271	I. 385 I. 264	1.676 1.438	-	-	17.5 15. 15.	Hager. Schiff.
$\mathrm{P}_{2} \mathrm{O}_{5}+3 \mathrm{H}_{2} \mathrm{O}$. HNO_{8}.	1.027 1.028	I. 057 I. 056	I. 086 I.08S	1.119 1.119 1.029	1.188 I. 184	1.264 I. 250	1.438 I. 373	1.459	1. 528	15.	Schiff.
${ }_{\text {C2 }} \mathrm{H}_{4} \mathrm{O}_{2}$. ${ }^{\text {- }}$	1.028 I.007	1.056 I.OI 4	1.02 I	1.028	I.O4I	1.052	I. 068	¢. 075	I. 055	15.	Oudemans.

DENSITIES OF MIXTURES OF ETHYL ALCOHOL AND WATER IN GRAMS

 PER MILLILITER.The densities in this table are numerically the same as specific gravities at the various temperatures in terms of water at $4^{\circ} \mathrm{C}$. as unity. Based upon work done at U. S. Bureau of Standards. See Bulletin Bur. Stds. vol. 9, no. 3; contains extensive bibliography; also Circular r9, 1913.

Per cent $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ by weight	Temperatures.						
	$10^{\circ} \mathrm{C}$.	$15^{\circ} \mathrm{C}$.	$20^{\circ} \mathrm{C}$.	$25^{\circ} \mathrm{C}$.	$30^{\circ} \mathrm{C}$.	$35^{\circ} \mathrm{C}$.	$40^{\circ} \mathrm{C}$.
0	0.99973	0.99913	0.99823	0.99708	0.99568	0.99406	0.99225
1	785	725	636	520	379	217	034
2	602	542	453	336	194	031	. 98846
3	426	365	275	157	014	. 98849	663
4	258	195	103	.98984	. 98839	672	485
5	098	032	. 98938	817	670	501	311
6	.98946	.98877	780	656	507	335	142
7	801	729	627	500	347	172	. 97975
8	660	584	478	346	189	009	808
9	524	442	331	193	031	.97846	641
10	393	304	187	043	. 97875	685	475
11	267	171	047	.97897	723	527	312
12	145	041	. 97910	753	573	371	150
13	026	.97914	775	611	424	216	. 96989
14	.97911	790	643	472	278	063	829
15	800	669	514	334	133	.96911	670
16	692	552	387	199	. 96990	760	512
17	583	433	259	062	844	607	352
18	473	313	129	. 96923	697	452	- 189
19	363	191	. 96997	782	547	294	023
20	252	068	864	639	395	134	. 95856
21	139	.96944	729	495	242	. 95973	687
22	024	818	592	348	087	809	516
23	. 96907	689	453	199	. 95929	643	343
24	787	55^{8}	312	048	769	476	168
25	665	424	168	. 95895	607	306	. 94991
26	539	287	020	738	442	133	810
27 28	406	144	-95867	576	272	. 94955	625
28 29	268	. 95996	710	410	098	774	438
29	125	844	548	241	. 94922	590	248
30	. 95977	686	382	067	741	403	055
31	823	524	212	. 94890	557	214	. 93860
32	665	357	038	709	370	021	662
33	502	186	. 94860	525	180	.93825	461
34	334	OII	679	337	. 93986	626	257
35 36	162 .94986	.94832	494	146	790	425	${ }^{051}$
36	. 94986	650	306	. 93952	591	221	. 92843
37	805	464	114	756	390	016	634
38 39	620	273	.93919	556	186	. 92808	422
39	431	079	720	353	. 92979	597	208
40	238	.93882	518	148	770	385	. 91992
41	${ }^{2} 42$	682	314	. 92940	558	170	774
42	. 93842	478	$\begin{array}{r}107 \\ \hline 8\end{array}$	729	344	. 91952	554
43	639	271	.92897	516	128	733	332
44	433	062	685	301	.91910	513	108
45	226	.92852	472	085	692	291	. 90884
46	$\begin{array}{r}017 \\ \hline 88\end{array}$	640	257	.91868	472	069	. 660
47 48	.92806 593	426 211	041 .91823	649	250	. 90845	434
48 49	593 379	211 .91995	.91823	429	028	621	-207
49	379	. 91995	604	208	.90805	396	. 89979
50	162	776	384	.90985	580	168	750

DENSITY OF MIXTURES OF ETHYL ALCOHOL AND WATER IN GRAMS
PER MILLILITER.

Per cent $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ by weight	Temperature.						
	$10^{\circ} \mathrm{C}$.	$15^{\circ} \mathrm{C}$.	$20^{\circ} \mathrm{C}$.	$25^{\circ} \mathrm{C}$.	$30^{\circ} \mathrm{C}$.	$35^{\circ} \mathrm{C}$.	$40^{\circ} \mathrm{C}$.
50	0.92162	0.91776	0.91384	0.90985	0.90580	0.90168	0.89750
51	.91943	555	160	760	353	. 89940	519
52	723	333	.90936	534	125	710	288
53	502	110	711	307	. 89896	479	056
54	279	. 90885	485	079	667	248	. 88823
55	055	659	258	.89850	437	016	589
56	.9083 I	433	031	621	206	.88784	356
57	607	207 8	. 89803	392	. 88975	552	122
58	381	. 89980	574	162	744	319	. 87888
59	154	752	344	.88931	512	085	653
60	. 89927	523	113	699	278	. 87851	417
61	698	293	. 88882	466	044	6I5	180
62	468	062	650	233	. 87809	379	. 86943
63	237	. 88830	417	. 87998	574	142	705
64	006	597	183	763	337	. 86905	466
65	. 88774	364	. 87948	527	100	667	227
66	541	${ }^{13} 3$	713	291	. 86863	429	. 85987
67	308	. 87895	477	054	625	190	747
68	074	660	241	.868I7	387	. 85950	507
69	.87839	424	004	579	148	710	266
70	602	187	. 86766	340	. 85908	470	025
71	365	. 86949	527	100	667	228	. 84783
72	127	710	287	. 85859	426	. 84986	540
73	. 86888	470	047	618	${ }^{184}$	743	297
74	648	229	. 85806	376	. 84941	500	053
75	408	. 85988	564	${ }_{8}^{134}$	698	257	.83809
76	168	747	322	.84891	455	013	564
77	. 85927	505	\bigcirc	647	${ }^{211}$. 83768	319
78	685	262	. 84835	403	. 83966	523	074 828
79	44^{2}	018	590	158	720	277	. 82827
80	197	. 84772	344	. 8391 I	473	029	578
81	. 84950	525	096	664	224	. 82780	329
82	702	277	. 83848	415	. 82974	530	079 8828
83	453	028	599	$\begin{array}{r}164 \\ \hline\end{array}$	724	279	.81828
84	203	. 83777	348	. 82913	473	027	576
85	83951	525	${ }_{8}^{095}$	660	220 81965	.81774	322 067
86	697	271	. 82840	405	. 81965	519 262	067 80811
87 88	44 I	OI 4	583	148 8.888	708	262	.80811
88	181	. 82754	323	.81888	448	${ }_{8}^{003}$	552
89	.82919	492	062	626	186	. 80742	291
90	654	227	.81797	362	. 80922	478	028
91	386	.81959	529	094	655	211	.79761
92	114	688	257	. 80823	384	.7994I	491
93	. 81839	413	. 80983	549	111	669	220 78947
94	561	134	705	272	. 79835	393	. 78947
	278	. 80852	424	.79991	555		670 388
96	. 80991	566	$\begin{array}{r}138 \\ \hline 89\end{array}$	706	271 7898	.78831	388 100
97 98	698	274	. 79846	415	.78981	542	100 .77806
98 99	399 094	.79975 670	547 243	117 .78814	684 382	247 .77946	77806 507
99	094	670	243	-7884	302	. 7946	
100	. 79784	360	. 78934	506	075	641	203

Table 110.
DENSITIES OF AQUEOUS MIXTURES OF METHYL ALCOHOL, CANE SUGAR, OR SULPHURIC ACID.

$\underset{\text { Per cent }}{\text { by weight }} \begin{array}{c}\text { wof } \\ \text { of } \\ \text { substance. }\end{array}$	Methyl Alcohol. $\text { I } \frac{15^{\circ}}{4^{\circ}} \mathrm{C} .$	$\begin{gathered} \text { Cane } \\ \text { Sugar. } \\ \text { 20 } \end{gathered}$	Sulphuric Acid. $\mathrm{D} \frac{20^{\circ}}{4^{\circ}} \mathrm{C}$	Per cent by weight of	Methyl $\mathrm{D} \frac{15^{\circ}}{4^{\circ}} \mathrm{C}$	$\begin{gathered} \text { Cane } \\ \substack{\text { Sugar. } \\ 20^{\circ}} \end{gathered}$	$\begin{aligned} & \text { Sulphuric } \\ & \text { Acid. } \\ & \text { D } \frac{200^{\circ}}{4^{\circ}} \mathrm{C} . \end{aligned}$
-	0.99913	0.998234	0.99823	50	0.91852	1.229567	I. 39505
1	. 99727	1.002120	1.00506	51	. 91653	1.235085	1.40487
2	. 99543	1.006015	1.01178	52	. 91451	1. 24064 I	I.4148I
3	. 99370	1.009934	1.01839	53	. 91248	1. 246234	1.42487
4	. 99198	1.013881	1.02500	54	.91044	1.251866	I. 43503
	. 99029	1.017854	1.03168	55	. 90839	1.257535	1.44530
6	. 98864	1.021855	1.03843	56	. 90631	1. 263243	1.45568
7	. 98701	1.025885	1.04527	57	. 90421	1. 268989	1.46615
8	. 98547	I.029942	1.05216	58	. 90210	1.274774	1.47673
9	. 98394	1.034029	1.05909	59	. 89996	1.280595	1.48740
10	. 98241	1.038143	1.06609	60	. 89781	1.286456	1.49818
11	. 98093	1.042288	1. 07314	61	. 89563	1.292354	1. 50904
12	. 97945	1.046462	1.08026	62	. 89341	1.298291	1.51999
13	. 97802	1.050665	1.08744	63	. 89117	1. 304267	1.53102
14	. 97660	1.054900	1. 09468	64	. 88890	1.310282	${ }^{1.54213}$
15	. 97518	I. 059165	1.10199	65	. 88662	1.316334	1.55333
16	. 97377	1.063460	I.10936	66	. 88433	1.322425	1.56460
17	. 97237	1.067789	1.11679	67	. 88203	I. 328554	1.57595
18	. 97006	1.072147	1.12428	68	. 87971	1.334722	1.58739
19	. 96955	1.076537	1.13183	69	. 87739	1.340928	1. 59890
20	.96814	1.080959	I.1 3943	70	. 87507	1.347174	1. 61048
21	. 96673	1.085414	I. 14709	71	. 87271	1.353456	1.62213
22	. 96533	1.089900	1.15480	72	. 87033	1. 359778	1. 63384
23	. 96392	1.094420	1.16258	73	. 86792	I. 366139	1.64560
24	. 96251	1.098971	1.17041	74	. 86546	I. 372536	1.6573 ${ }^{8}$
25	. 96108	1.103557	1.17830	75	. 86300	1.378971	1.66917
26	. 95963	I. 108175	1.18624	76	. 86051	I. 385446	1.68095
		I.11282S	1.19423		. 85801	1. 391956	I. 69268
28	. 95668	I.117512	1.20227	78	. 85551	1. 398505	1.70433
29	. 95518	I.122231	1.21036	79	. 85300	1.405091	1.71585
30	. 95366	I. 126984		So	. 85048	1.411715	1.72717
31	.95213	1.131773	I. 22669	81	. 84794	1.418374	1.73827
3^{2}	. 95056	I. 136596	1.23492	82	. 84536	1.425072	I. 74904
33	. 94896	1.141453	1.24320	83	. 84274	1.431807	I. 75943
34	. 94734	1.146345	1.25154	84	. 84009	1.438579	1.76932
	. 94570	1.151275	1.25992	85	. 83742	I.445388	1.77860
36	. 94404	I.156238	1.26836	86	. 83475	1.452232	1.78721
37	. 94237	1.161236	1.27685	87	. 83207	1.459114	1.79509
38	. 94067	1.166269	1.28543	88	. 82937	1.466032	1.80223
39	. 93894	1.171340	1.29407	89	. 82667	1.472986	1.80864
40	. 933720	I.176447	1.30278	90	. 82396	1.479976	1.81438
41	. 93543	1.181592	1.31157	91	.82124	1.487002	1.81950
42	. 93365	I.186773	I. 32043	92	.81849	1.494063	1.82401
43	. 93185	I.191993	I. 32938	93	. 81568	1. 501158	1.82790
44	.93001	1.197247	1.33843	94	.81285	I. 508289	1.83115
	.92815	1.202540	I. 34759		. 80999	1.515455	1. 83368
46	. 92627	1.207870	1.35686	96	. 80713	1.522656	I. 83548
47	. 92436	1.213238	I. 36625	97	. 80428	1.529891	1.83637
48	. 92242	1.218643	1.37574	98	.80ı43	1.537161	I. 83605
49	. 92048	1.224086	I. 38533	99	. 79859	1.544462	
50	. 91852	1.229567	1.39505	100	. 79577	1.551800	

(i) Calculated from the specific gravity determinations of Doroschevski and Rozhdestrenski at $15^{\circ} / 15^{\circ}$ C.; J. Russ., Phys. Chem. Soc., 41, p. 977, 1909.
(2) According to Dr. F. Plato; Wiss. Abh. der K. Normal-Eichungs-Kommission, 2, p. I 53, 1900.
(3) Calculated from Dr. Domke's table; Wiss. Abh. der K. Normal-Eichungs-Kommission, 5, p. I31, 1900.

TABLE 111.
DENSITY OF GASES
The following table gives the density as the weight in grams of a liter (normal liter) of the gas at $0^{\circ} \mathrm{C}, 76 \mathrm{~cm}$ pressure and standard gravity (sea-level, 45° latitude), the specific gravity referred to dry, carbon-dioxide-free air and to pure oxygen, and the weight in pounds per cubic foot. Dry, carbon-dioxide-free air is of remarkably uniform density; Guye, Kovacs and Wourtzel found maximum variations in the density of only 7 to 8 parts in 10,000. For highest accuracy pure oxygen should be used as the standard gas for specific gravities. Observed densities are closely proportional to the molecular weights.

Gas.	Formula.	Weight of normal liter in grams.	Specific gravity.		Pounds per cubic foot.	Refer.
			Air $=1$	$\mathrm{O}_{2}=\mathrm{I}$		
Air.	-	I. 2930	1.0000	0.9048	0.08072	I
Acetylene.	$\mathrm{C}_{2} \mathrm{H}_{2}$	I. 1791	0.9119	0.8251	0.07361	2
Ammonia.	NH_{3}	0.7708	- 0.596 I	0.5394	0.04812	3
Argon.	A	1.7809	I. 3773	I. 2462	0.11118	3
Bromine	Br_{2}	7.14	5.52	5.00	0.446	4
Butane.	$\mathrm{C}_{4} \mathrm{H}_{10}$	2.594	2.006	I.815	-.1619	4
Carbon dioxide.	CO_{2}	1. 9768	I. 5289	1.3833	0.12341	3
Carbon monoxide	CO	I. 2504	0.967 I	0.8750	0.07806	3
Chlorine.	Cl_{2}	3.22 I	2.491	2.254	0.2011	3
Coal gas.	-	$\left\{\begin{array}{l}0.41 \text { to } \\ 0.96\end{array}\right.$	$\left\{\begin{array}{l}0.32 \text { to } \\ 0.74\end{array}\right.$	$\left\{\begin{array}{l}0.29 \text { to } \\ 0.67\end{array}\right.$	$\left\{\begin{array}{l}0.026 \text { to } \\ 0.060\end{array}\right.$	-
Cyanogen	$\mathrm{C}_{2} \mathrm{~N}_{2}$	2.323	r. 797	1.626	0.1450	4
Ethane. .	$\mathrm{C}_{2} \mathrm{H}_{6}$	r. 3562	r. 0489	0.9490	0.08467	5
Ethylene.	$\mathrm{C}_{2} \mathrm{H}_{4}$	I. 2609	0.9752	0.8823	0.07872	2
Fluorine.	F_{2}	r. 70	I. 31	I. 19	0.106	6
Helium.	He	-. 1785	0.1381	O. 1249	0.OIII5	14
Hydrobromic acid.	HBr	3.616	2.797	2.530	0. 2257	4
Hydrochloric acid.	HCl	1. 6398	I. 2682	I. 1475	0.10237	3
Hydrofluoric acid.	HF	0.922	0.713	0.645	0.0576	8
Hydrogen.	H_{2}	0.08987	0.06950	0.06289	0.005610	9
Hydrogen sulphide	$\mathrm{H}_{2} \mathrm{~S}$	1. 538	1.189	I. 076	0.09602	3
Krypton......	$\stackrel{\mathrm{Kr}}{ }$	3.708	2.868	2.595	0.2315	7
Methane.	CH_{4}	0.7168	-. 5544	0.5016	0.04475	5
Methyl chloride.	$\mathrm{CH}_{3} \mathrm{Cl}$	2.304	1.782	1.612	-. 1438	10
Methyl ether.	$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$	2.110	1.632	1. 477	-.1317	10
Neon..	Ne	0.9002	0.6962	0.6299	0.05620	7
Nitrogen.	N_{2}	I. 2507	0.9673	0.8752	0.07808	3
Nitric oxide.	NO	1. 3402	I. 0365	0.9378	0.08367	3
Nitrous oxide.	$\mathrm{N}_{2} \mathrm{O}$	r. 9777	I. 5296	1. 3839	0.12347	3
Oxygen..	${ }^{\mathrm{O}_{2}}$	r. 42905	I. 1052	I. 0000	0.089214	11
Propane.	$\mathrm{C}_{3} \mathrm{H}_{8}$	2.0196	I. 5620	1.4132	0.12608	12
Steam at $100^{\circ} \mathrm{C}$	$\mathrm{H}_{2} \mathrm{O}$	0.598	0.462	0.418	0.0373	13
Sulphur dioxide.	$\underset{\mathrm{X}}{\mathrm{SO}}$	2.9266 5.851	2.2634 4.525	2.0479	0.18270	3
Xenon..	X	5.85I	$4 \cdot 525$	4.094	0.3653	7

References: (i) Guye, Kovacs, Wourtzel, Jour. chim. phys., io, p. 332, 1912; (2) Stahrfoss, Arch. Sc. phys. et nat., IV, 28, p. 384, 1909; (3) Guye, Jour. chim. phys., 5, p. 203, 1907 (contains review of best determinations and indicates most probable values); (4) Computed; (5) Baume and Perrot, Jour. chim. phys., 7, p. 369, 1909; (6) Moissan, C. R., I38, 1904; (7) Watson, Jour. Chem. Soc., 97, p. 833, 1910; (8) Thorpe, Hambley, Jour. Chem. Soc., 53, p. 765, 1888; (9) Morley, Smithsonian Contributions to Knowledge, i895; (ıо) Baume, Jour. chim. phys., 6, p. 1, 1908; (iI) Germann, Jour. of Phys. Chem., 19, p. 437, 1915; (12) Timmermans, C. R., 158, p. 789, 1914; (I3) Peabody's Steam Tables, 1909; (I4) Taylor, Phys. Rev., 10, p. 653, 1917.

Values of $1+.00367 \boldsymbol{t}$.

The quantity $\mathrm{i}+.00367 t$ gives for a gas the volume at t° when the pressure is kept constant, or the pressure at t° when the volume is kept constant, in terms of the volume or the pressure at 0°.
(a) This part of the table gives the values of $\mathrm{x}+.00367 t$ for values of t between 0° and $10^{\circ} \mathrm{C}$. by tenths of a degree.
(b) This part gives the values of $1+.00367 t$ for values of t between -90° and $+1990^{\circ}$ C. by 10° steps.

These two parts serve to give any intermediate value to one tenth of a degree by a simple computation as follows:- In the (b) table find the number corresponding to the nearest lower temperature, and to this number add the decimal part of the number in the (a) table which corresponds to the difference between the nearest temperature in the (b) table and the actual temperature. For example, let the temperature be $682^{\circ} .2$:

We have for 680 in table (b) the number 3.49560
And for 2.2 in table (a) the decimal00807
Hence the number for 682.2 is 3.50367
(c) This part gives the logarithms of $1+.00367 t$ for values of t between -49° and $+399^{\circ} \mathrm{C}$. by degrees.
(d) This part gives the logarithms of $x+.00367 t$ for values of t between 400° and 1990° C. by 10° steps.
(a) Values of $1+.00367 t$ for Values of t between 0° and $10^{\circ} \mathrm{C}$. by Tenths of a Degree.

t	0.0	0.1	0.2	0.3	0.4
0	1.00000	1.00037	1.00073	1.00110	1.00147
1	. 00367	. 00404	. 00440	. 00477	. 00514
2	. 00734	. 00771	. 00807	. 00844	.0088I
3	. 01101	.01138	. 01174	. 01211	. 01248
4	-.Or 468	. 01505	. 01541	. 01578	.OI6I 5
5	1.01835	1.01872	1.01908	1.01945	1.01982
6	. 02202	. 02239	. 02275	. 02312	. 02349
7	. 02569	. 02606	. 02642	. 02679	. 02716
8	. 02936	. 02973	. 03009	. 03046	. 03083
9	. 03303	. 03340	. 03376	. 03413	. 03450
t	0.5	0.6	0.7	0.8	0.9
0	1.00184	1.00220	I. 00257	I. 00294	1.00330
1	. 00550	. 00587	. 00624	.0066I	. 00697
2	. 00918	. 00954	. 00991	. 01028	. 01064
3	. 01284	. 01321	. 01358	. 11395	.0143I
4	.01652	. 01688	.OI725	. 01762	. 01798
		1.02055	1.02092	1.02129	1.02165
6	. 02386	. 02422	. 02459	. 02496	. 02532
7	. 02752	. 02789	. 02826	. 02863	. 02899
8	.03120	.03156	. 03193	. 03290	. 03266
9	. 03486	. 03523	. 03560	. 03597	. 03633

Emithsonian Tables.

Table 112. (continwed).
VOLUME OF GASES.
(b) Values of $1+.00367 t$ for Values of t between -90° and $+1990^{\circ} \mathrm{O}$. by 10° Steps.

t	00	10	20	30	40
-000	1.00000	0.96330	0.92660	0.88990	0.85320
+000	1.00000	1.03670	1.07340	1.11010	1.14680
100	1.36700	1.40370	1.44040	1.47710	1.51380
200	1.73400	1.77070	1.80740	1.84410	1.88080
300	2.10100	2.13770	2.17440	2.21110	2.24780
400	2.46800	2.50470	2.54140	2.57810	2.61480
500	2.83500	2.87170	2.90840	2.94510	2.98180
600	3.20200	3.23870	3.27540	$3 \cdot 31210$	3.34880
700	$3 \cdot 56900$	3.60570	3.64240	3.67910	3.71580
800	3.93600	3.97270	4.00940	4.04610	4.08280
900	$4 \cdot 30300$	4.33970	$4 \cdot 37640$	4.41310	4.44980
1000	4.67000	4.70670	4.74340	4.78010	4.81680
1100	5.03700	5.07370	5.11040	5.14710	5.18380
1200	5.40400	5.44070	5.47740	5.51410	5.55080
1300	5.77100	5.80770	5.84440	5.88110	5.91780
1400	6.13800	6.17470	6.21140	6.24810	6.28480
1500	6.50500	6.54170	6.57840	6.61510	6.65180
1600	6.87200	6.90870	6.94540	6.98210	7.01880
1700	7.23900	7.27570	7.31240	7.34910	7.38580
1800	7.60600	7.64270	7.67940	7.71610	7.75280
1900	7.97300	8.00970	8.04640	8.08310	8.11980
2000	8.34000	8.37670	8.41340	8.45010	8.48680
t	50	60	70	80	90
-000	0.81650	0.77980	0.74310	0.70640	0.66970
+000	1.18350	1.22020	1.25690	1.29360	1.33030
100	1.55050	1.58720	1.62390	1.66060	1.69730
200	1.91750	1.95420	1.99090	2.02760	2.06430
300	2.28450	2.32120	2.35790	2.39460	2.43130
400	2.65150	2.68820	2.72490	2.76160	2.79830
500	3.01850	3.05520 -	3.09190	3.12860	3.16530
600	3.38550	3.42220	3.45890	3.49560	3.53230
700	3.75250	3.78920	3.82590	3.86260	3.89930
800	4.11950	4.15620	4.19290	4.22960	4.26630
900	4.48650	4.52320	4.55990	4.59660	4.63330
1000	4.85350	4.89020	4.92690	4.96360	5.00030
1100	5.22050	5.25720	5.29390	5.33060	5.36730
1200	$5 \cdot 58750$	5.62420	5.66090	5.69760	5.73430
1300	5.95450	5.99120	6.02790	6.06460	6.10130
1400	6.32150	6.35820	6.39490	6.43160	6.46830
1500	6.68850	6.72520	6.76190	6.79860	6.83530
1600	7.05550	7.09220	7.12890	7.16560	7.20230
1700	7.42250	7.45920	7.49590	7.53260	7.56930
1800	7.78950	7.82620	7.86290	7.89960	7.93630
1900	8.15650	8.19320	8.22990	8.26660	8.30330
2000	8.52350	8.56020	8.59690	8.63360	8.67030

(c) Logarithms of $1+.00367 \boldsymbol{t}$ for Values

t	0	1	2	3	4	Mean diff. per degree.
-40	İ.931051	İ. 929179	I. 927299	İ.925410	I. 923513	1884
-30	. $94934{ }^{\text {I }}$. 947546	. 945744	. 943934	. 942117	1805
- 20	. 966892	. 965169	. 963438	. 961701	. 959957	1733
-10	.983762	.982104	. 980440	. 978769	. 977092	1667
-	0.000000	.998403	.996801	. 995192	. 993577	1605
+ 0	0.000000	0.001591	0.003176	0.004755	0.006329	1582
10	. 015653	. 017188	. 018717	. 020241	. 021760	1526
20	. 030762	.032244	.033721	.035193	.036661	1474
30	. 045362	. 0.46796	. 048224	. 049648	.051068	1426
40	.059488	.06c875	. 062259	. 063637	.065012	1381
50	0.073168	0.074513	0.075853	0.077190	0.078522	1335
60	.08643I	. 087735	.089036	. 090332	. 091624	1299
70	. 099301	.100567	.101829	.103088	. 104344	1259
So	. 111800	. 113030	.114257	.115481	. 116701	1226
90	. 123950	.125146	.126339	. 127529	.128716	1191
100	0. 135768	0.136933	0.138094	0.139252	0.140408	1158
110	. 147274	. 248408	. 149539	.150667	. 151793	1129
120	. 158483	. 159588	. 160691	. 161790	.162887	1 IOI
130	.169410	. 170488	.171563	.172635	.173705	1074
140	.18006S	.181120	.182169	.183216	. 184260	1048
150	0.190472	-.191498	0.192523	0.193545	0.194564	1023
160	. 200632	. 201635	. 202635	. 203634	. 204630	1000
170	. 210559	. 211540	. 212518	. . 213494	. 214468	976
180	. 220265	. 221224	. 222 ISo	. 223135	.224087	956
190	. 229759	.230697	.231633	.232567	. 233499	935
200	0.239049	0.239967	0.24088_{4}	0.241798	0.242710	916
210	. 248145	. 249044	. 249942	. 250837	. 251731	897
220	.257054	. 257935	.258814	.259692	. 260567	878
230	.265734	. 2666.48	. 267510	. 268370	. 269228	861
240	. 274343	.275189	.276034	.276877	. 277719	844
			0.284395	0.285222	0.286048	828
260	$\text { . } 290969$	$.291784$. 292597	. 293409	. 294219	813
270	. 299049	. 299849	-300648	. 301445	. 302240	798
280	-306982	- 307768	. 30855	-309334	. 310115	784
290	-314773	-315544	.3163I4	. 317083	. 317850	769
300	0.322426	0.323184	0.323941		0.325450	756
310	- 329947	$.330692$. 331435	. 332178	. 332919	743
320	- 337339	.338072	. 338803	. 339533	. 340262	$73{ }^{\circ}$
330 340	$.344608$	- 345329	-346048	. 346766	- 347482	719
340	-351758	-352466	. 353174	-353880	- 354585	707
	0.358791	0.359488				
360	.365713	$.366399$	- 367084	. 367768	$.36845 \mathrm{I}$	684
370 380	.372525 .379233	. 373201	. 373875	. 374549	. 375221	674
380 390	. 379233	-379898	-380562	-381225	$.381887$	664
390	-385439	-386494	. 387148	.387801	. 388453	654

Smithsonian Tables.

GASES.
of t between -49° and $+399^{\circ}$ C. by Degrees.

t	5	6	7	8	9	Mean diff. per degree.
-40	1. 1.21608	İ. 919695	1. 917773	IT. 915843	İ. 913904	1926
30	. 940292	. 938460	. 936619	. 93477 I	. 932915	1845
20	.958205	-956447	.95468I	. 952909	.951129	1771
10	. 975409.	. 973719	. 972022	.970319	. 968609	1699
-0	. 991957	. 990330	. 988697	. 987058	. 985413	1636
+ 0	0.007897	0.009459	0.011016	0.012567	0.014113	1554
10	. 023273	. 024781	. 026284	. 027782	. 029274	1500
20	. 038123	. 039581	. 041034	. 042481	. 043924	1450
30	. 052482	.053893	. 055298	. 056699	.058096	1402
40	.066382	.067748	.069109	. 070466	. 071819	1359
50	0.079847	0.081174	0.082495	0.083811	0.085123	1315
60	. 092914	. 094198	. 0954486	$.096765$	$.098031$	1281
70	.105595	. 106843	. 108088	. 109329	. 110566	1243
80 90	.117917 .129899	.119130 .131079	.120340 .132256	.121547 .133430	.122750 .134601	1210 1175
100	0.141559	0.142708	0.143854	0.144997	0.146137	1144
110	. 152915	. 154034	. 155151	. 156264	. 157375	1115
120	. 163981	. 164072	.166161	. 167246	. 168330	1087
130	.174772	.175836	. 176898	-177958	. 179014	1060
140	. 185301	. 186340	. 187377	.188411	. 189443	1035
150	0.195581	0.196596	0.197608	0.198619	0.199626	1011
160	. 205624	. 206615	. 207605	. 208592	. 209577	988
170	. 215439	. 216409	. 217376	. 218341	.219304	966
180	. 225038	. 225986	. 226932	. 227876	. 228819	946
190	. 234429	. 235357	.236283	. 237207	.238129	925
200	0.243621	0.244529	0.245436	0.24634 I	0.247244	906
210	. 252623	. 253512	. 254400	. 255287	. 256172	887
220	.261441	. 262313	.263184	. 264052	. 264919	870
230	. 270085	. 270940	. 271793	. 272644	.273494	853
240	. 278559	. 279398	.280234	.281070	.281903	836
250	0.286872	0.287694	0.288515	0.289326	0.290153	820
260	. 295028	. 295835	. 296640	. 297445	. 298248	805
270	. 303034	-303827	-304618	-305407	-306196	790
280	-310895	-311673	-312450	-313226	-314000	776
290	. 318616	-319381	-320144	. 320906	-321667	763
300	0.326203	0.326954	0.327704	0.328453	0.329201	750
310	. 333659	-334397	. 335135	. 335871	. 336606	737
320	. 340989	-341715	-342441	- 343164	-343887	724
330	-348198	. 348912	. 349624	$\cdot 350337$	-351048	713
340	. 355289	-355991	-356693	-357394	-358093	701
350	0.362266	0.362957	-. 363648	0.364337		
360	. 369132	. 360813	- 370493	.371171 .377000	. .371849 .38567	678 668
370 380	- 3758582	- 376562	$\begin{array}{r}.377232 \\ .383688 \\ \hline\end{array}$	$.377900$		668
380 390	.382548 .389104	.383208 .389754	.383868 .390403	.384525 .391052	.385183 .391699	658 648

Emithsonian Tables.

TABLE 112 (continued).
VOLUME OF GASES.
(d) Logarithms of $1+.00367 t$ for Values of t between 400° and $1990^{\circ} \mathrm{O}$. by 10° Steps.

t	00	10	20	30	40
400	0.392345	0.398756	0.405073	0.411300	0.417439
500	0.452553	0.458139	0.463654	0.469100	0.474479
600	. 505421	. 510371	. 515264	. 520103	. 524889
700	. 552547	. 556990	.56ı388	. 565742	.570052
800	. 595055	. 599086	. 603079	. 607037	. 610958
900	. 633771	. 637460	. 641117	. 644744	. 648341
1000	0.669317	0.672717	0.676090	0.679437	0.682759
1100	. 702172	.705325	.708455	.711563	.714648
1200	. 732715	. 735655	.738575	.741475	. 744356
1300	.761251	. 764004	. 766740	.769459	. 772160
1400	.788027	.790616	.793190	. 795748	.798292
1500	0.813247	0.815691	0.818120	0.820536	0.822939
1600	. 837083	. 839396	. 841697	. 843986	. 846263
1700	.859679	. 861875	. 864060	. 866234	. 868398
1800	.881156	. 883247	. 885327	. 887398	. 889459
1900	. 901622	.903616	. 905602	. 907578	. 909545
t	50	60	70	80	90
400	0.423492	0.429462	0.435351	0.441161	0.446894
500 600	0.479791	0.4850 .40	0.490225	0.495350	
600	. 529623	- 534305	. 538938	- 543522	. 548058
700	. 574321	$\cdot 578548$. 582734	. 586880	. 590987
800	. 614845	.618696	. 622515	. 626299	. 630051
900	.651908	. 655446	. 658955	. 662437	. 665890
1000	0.686055	0.689327	0.692574	0.695797	0.698996
1100	. 717712	. 720755	. 723776	. 726776	.729756
1200	. 747218	.750061	. 752886	. 755692	. 758480
1300	. 774845	. 777514	.780166	. 782802	.785422
1400	.800820	. 803334	. 805834	.808319	.810790
1500	0.825329	0.827705	0.830069	0.832420	0.834758
1600	. 848528	. 850781	. 853023	. 855253	. 857471
1700	.870550	. 872692	. 874824	. 876945	. 879056
1800	. 891510	. 893551	. 895583	. 897605	. 899618
1900	-911504	-913454	. 915395	.917327	.919251

Smithsonian Tables.

Tables 113-114.

RELATIVE DENSITY OF MOIST AIR FOR DIFFERENT PRESSURES AND HUMIDITIES.

TABLE 113.-Values of $\frac{h}{760}$, from $h=1$ to $h=9$, for the Computation of Different Values of the Ratio of Actual to Normal Barometrio Pressure.
This gives the density of moist air at pressure h in terms of the same air at normal atmosphere pressure. When air contains moisture, as is usually the case with the atmosphere, we have the following equation for pressure term: $h=B-0.378 e$, where e is the vapor pressure, and B the corrected barometric pressure. When the necessary psychrometric observations are made the value of e may be taken from Table 189 and then 0.378 e from Table 115, or the dew-point may be found and the value of 0.378 e taken from Table 115.

Examples of Use of the Table.
To find the value of $\frac{h}{760}$ when $h=754 \cdot 3$

To find the value of $\frac{h}{760}$ when $h=5.73$

$$
\begin{aligned}
& h=5 \text { gives .oo65789 }
\end{aligned}
$$

TABLE 114. - Values of the logarithms of $\frac{h}{760}$ for values of h between 80 and 340.
Values from 8 to 80 may be got by subtracting I from the characteristic, and from 0.8 to 8 by subtracting 2 from the characteristic, and so on.

\boldsymbol{h}	Values of $\log \frac{h}{760}$.									
	0	1	2	3	4	5	6	7	8	9
80	1. 02228	I. 02767	I. 03300	İ. 03826	I. 04347	I. 0486 I	I. 05368	I. 0.05871	I. 06367	İ.06858
90	. 07343	. 07823	. 08297	. 08767	.09231	.09691	. 10146	. 10596	. 11041	. 11482
100	I.11919	I. 12351	I. 12779	I. 13202	I. 13622	I.I 4038	I. 14449	I.14857	I. 15261	I. 15661
110	. 16058	. 16451	. 16840	. 17226	.17609	. 17988	.18364	. 18737	.19107	. 19473
120	. 19837	. 20197	. 20555	. 20909	. 21261	.216II	. 21956	. 22299	. 22640	. 22978
130	. 23313	. 23646	. 23976	. 24304	. 24629	. $2495{ }^{2}$. 25273	. 25591	.25907	. 26220
140	.26531	. 26841	.27147	. 2745^{2}	. 27755	. 28055	. 28354	. 28650	. 28945	. 29237
150	І. 29528	I. 29816	1.30103	I. 30388	I. 3067 I	1. 30952	1.3123I	I. 31509	- 1.31784	I. 32058
160	. 32331	-32601	. 32870	.33137	. 33403	. 33667	. 33929	. 34190	- 34450	- 34707
170	- 34964	-35218	-3547 1	$\cdot 35723$	-35974	- 36222	-36470	-36716	-36961	. 37204
180	- 37446	- 37686	- 37926	$\cdot 38164$	-38400	. 38636	. 38870	-39128	- 39334	-39565
190	-39794	. 40022	. 40249	. 40474	. 40699	. 40922	.41144	.41365	. 41585	. 418
200	I. 42022	$\overline{\mathrm{I}} .42238$	I. 42454	1. 42668	I. 42882	I. 43094	I. 43305	I. 43516	I. 43725	I. 43933
210	. 44141	. 44347	. 44552	. 44757	. 44960	. 45162	. 45364	. 45565	. 45764	. 45963
220	.46161	. 46358	-46554	. 46749	. 46943	.47137	-47329	-47521	. 47712	. 47902
230	. 48091	-48280	. 48467	. 48654	. 48840	. 49025	. 49210	- 49393	. 49576	. 49758
240	. 49940	. 50120	. 50300	. 50479	-50658	. 50835	.51012	. 51188	. 51364	. 51539
250	1.51713	I. 51886	I. 52059	I. 52231	I. 52402	1. 52573	I. 52743	1. 52912	I. 53081	$\overline{\mathrm{I}} .53249$
260	. 53416	. 53583	. 53749	. 53914	. 54079	. 54243	. 54407	. 54570	. 54732	. 54894
270	. 55055	. 55216	- 55376	- 55535	. 55694	. 55852	. 56010	. 56167	. 56323	. 56479
280	- 56634	- 56789	-56944	. 578097	. 57250	-57403	. 57555	- 57707	- 57858 .59340	. 58008
290	-58158	-58308	. 58457	. 58605	. 58753	. 58901	- 59048	-59194	- 59340	-59486
300	I. 59631	I. 59775	I. 59919	- 1.60063	I. 60206	- 1.60349	- 6.60491	I. 60632	I. 60774	- 1.60914
310 320	. 61055	.61195 .62569	.61334 .62704	.61473 .62839	.61611	.61750 .63107	. 61887	. 62025	.62161	.62298 .63638
320 330	.62434 .63770	.62569 .63901	.62704 .64032	.62839 .64163	.62973 .64293	.63107 .64423	.63240 .64553	.63373 .64682	. 63506	.63638 .64939
330 340	. 65067	. 65194	. 6532 l	. 65448	. 6.65574	. 657421	. 65826	. $6595{ }^{2}$. 66077	. 66201

TABLE 114 (continued).
DENSITY OF AIR.

Values of logarithms of $\frac{h}{760}$ for values of h between 350 and 800 .

h	Values of $\log \frac{h}{760}$.									
	0	1	2	3	4	5	6	7	8	9
350	I. 66325	$\overline{\mathrm{I}} .66449$	I. 66573	İ. 66696	I. 66819	İ. 66941	1. 67064	- 1.67185	$\overline{\mathrm{I}} .67307$	I. 67428
360	. 67549	. 67669	. 67790	. 67909	. 68029	.68148	. 68267	. 68385	. 68503	. 6862 I
370	. 68739	. 68856	. 68973	. 69090	. 69206	.69322	. 69437	. 69553	. 69668	. 69783
380	. 69597	.70011	.70125	. 70239	. 70352	.70465	.70577	.70690	. 70802	.70914
390	.71025	.71136	. 71247	.7135S	.71468	.71578	.71688	. 71798	. 71907	.72016
400	1.72125	1.72233	1.7234	-1.72449	- 1.72557	-1.72664	$\overline{\mathrm{I}} .72771$	- 1.72878	- 1.72985	- 7.73091
410	. 73197	.73303	. 73408	.73514	.73619	.73723	.73828	. 73932	.74036	.74140
420	.74244	. $7+347$. $74+50$. 74553	.74655	.74758	.74860	. 74961	.75063	.75164
430	. 75265	. 75366	.75467	. 75567	. 75668	. 75768	. 75867	. 75967	. 76066	.76165
440	.76264	.76362	.76461	.76559	.76657	.76755	.76852	. 76949	. 77046	.77143
450	1.77240	- 1.77336	1.77432	- 7.77528	- 1.77624	1.77720	- 1.77815	$\overline{1} .77910$	İ.78005	İ.78100
460	.7S194	. 78289	. 78383	. 78477	.7S570	.78664	. 78757	. 78850	. 78943	. 79036
470	.79128	.79221	.79313	.79405	. 79496	. 79588	. 79679	. 79770	.79861	.79952
480	. 50043	. 80133	. 80223	. 80313	. 80403	. 80493	. 80582	. 80672	. 80761	. 80850
490	. $5093{ }^{\text {S }}$. 81027	.SIII 5	.81203	.81291	. 81379	. 81467	. 81554	.81642	.81729
500	I. SISI6	I. 81902	I. 81989	İ. 82075	$\overline{\mathrm{I}} .82162$	I. 82248	İ. 82334	İ. 82419	İ. 82505	İ. 82590
510	. 82676	. 82761	. 82846	. 82930	. 83015	. 83099	. 83184	. 83268	. 83352	. 83435
5こ0	. 83519	. 83602	. 83686	. 83769	. 83852	. 83935	. 84017	. 84100	. 84182	. 84264
530	. 84346	. 54428	. 84510	. 84591	. 84673	. 84754	. 84835	. 84916	. 84997	. 85076
540	. 85158	.85238	. 85319	. 85399	. 85479	. 85555^{8}	.85638	. 85717	. 85797	. 85876
550	İ. S_{5955}	$\overline{1} .86034$	İ.86113	İ.86191	- 1.86270	1. 86348	1. 86426	I. 86504	İ. 86582	İ. 86660
560	. 86737	. 86815	.86892	. 86969	. 87047	. 87123	. 87200	. 87277	. 87353	. 87430
570	. 87506	. 87582	. 87658	. 87734	. 87810	. 87885	. 87961	. 88036	. 88111	. 88186
580	.88261	.88336	.8841I	. 88486	. 88560	. 88634	. 88708	. 88782	. 88856	. 88930
590	. 89004	. 89077	. 8915 I	. 89224	. 89297	. 89370	. 89443	. 89516	. 89589	.89661
600	İ. 89734	İ.89806	I. 89878	İ. 89950	I. 90022	I. 90004	1. 90166	I. 90238	1. 90309	I. 90380
610	. 90452	. 90523	. 90594	. 90665	. 90735	. 90806	. 90877	. 90947	:91017	.91088
620	-91158	-91228	.91298	.91367	. 91437	.91507	.91576	. 91645	.91715	.91784
630	. 91853	. 91922	.91990	. 92059	.92128	.92196	.92264	. 92333	. 92401	. 92469
640	.92537	. 92604	. 92672	. 92740	.92807	.92875	. 92942	. 93009	. 93076	.93143
650	İ. 93210	1. 93277	I. 9334.3	I. 93410	- 2.93476	İ. 93543	I. 93609	1. 93675	1. 93741	I. 93807
660	.93873	.93939	-94004	. 94070	.94135	-94201	. 94266	-9433I	. 94396	.94461
670	. 94526	-94591	. 94656	-94720	-94785	. 94449	.94913	. 94978	. 95042	.95106
680	. 95170	. 95233	. 95297	.95361	. 95424	. 95488	.95551	.95614	.95677	. 95741
690	.95804	.95866	. 95929	. 95992	. 96055	.9617 7	.96180	. 96242	. 96304	. 96366
700	1. 96428	- 1.96490	1. 9655^{2}	T. 96614	1.96676	1.96738	- 1.96799	1.96861	1. 96922	1. 96983
710	. 97044	. 97106	. 97167	. 97228	. 97288	. 97349	. 97410	. 97471	. 97531	. 97592
720	.97652	. 97712	-97772	. 97832	.97892	. 97951	. 98012	. 98072	. 98132	.98191
730	-99251	.98310	. 98370	. 98429	.98488	.98547	. 98606	. 98665	. 98724	. 98783
740	-98842	. 98900	. 98959	.99018	. 99076	.99134	-99193	.9925I	. 99309	. 99367
750	I. 99425	-1.99483	I. 199540	1. 99598	1.99656	I. 99713	1.99771	I. 99828	I. 99886	I. 99942
760	0.00000	0.00057	0.00114	0.00171	0.00228	0.00285	0.00342	0.00398	0.00455	0.00511
770 780	. 00568	.00624	. 00680	. 00737	. 00793	. 00849	.00905	. 00961	. 01017	. 01072
780	. 01128	. 01184	. 01239	. 01295	. 01350	. 01406	. 01461	.01516	. 01571	. 01626
790	. 01685	. 01736	.01791	. 01846	. 01901	. 01955	. 02010	. 02064	.02119	.02173

This table gives the humidity term $0.378 e$, which occurs in the equation $\delta=\delta_{0} \frac{h}{760}$ $=\delta_{0} \frac{B-0.378 e}{760}$ for the calculation of the density of air containing aqueous vapor at pressure e; δ_{0} is the density of dry air at normal temperature and barometric pressure, B the observed barometric pressure, and $h=B-0.378 e$, the pressure corrected for humidity. For values of $\frac{760}{h}$, see Table 113. Temperatures are in degrees Centigrade, and pressures in millimeters of mercury.

Dew point.	Vapor pressure (ice).	$0.378 e$	Dew point.		$0.378 e$	Dew point.		0. 378 e
C	m	mm	$\underset{\mathrm{C}}{\mathrm{C}}$	mm	mm		mm	mm
-50°	0.029	0.01	0°	4.58	1.73	30°	31.86	12.0
-45	0.054	0.02	1	$4 \cdot 92$	I. 86	31	33.74	12.8
-40	0.096	0.04	2	5.29	2.00	32	35.70	13.5
-35	-. 169	0.06	3	5.68	2.15	33	37.78	14.3
-30	0.288	0. 11	4	6.10	2.31	34	39.95	15.1
-25	0.480	-. 18	5	6.54	2.47	35	42.23	16.0
24	0. 530	0.20	6	7.01	2.66	36	44.62	16.9
23	0.585	0.22	7	7.51	2.84	37	47.13	17.8
22	0.646	0.24	8	8.04	3.04	38	$49 \cdot 76$	18.8
21	0. 712	0.27	9	8.61	3.25	39	52.51	19.8
-20	0. 783	0.30	10	9.21	3.48	40	55.40	20.9
19	0. 862	0.33	II	9.85	$3 \cdot 72$	41	58.42	22.I
18	0.947	-0.36	12	10.52	3.98	42	61.58	$23 \cdot 3$
17	1.041	0.39	13	II 1.24	4.25	43	64.89	24.5
16	1.142	0.43	14	11.99	4.53	44	68.35	25.8
-15	I. 252	0.47	15	12.79	4.84	45	71.97	27.2
14	1. 373	0.52	16	13.64	5.16	46	75.75	28.6
13	1. 503	0.57	17	14.54	$5 \cdot 50$	47	79.70	30.1
12	I. 644	0.62	18	15.49	5.85	48	83.83	31.7
11	I. 798	0.68	19	16.49	6.23	49	88. 14	$33 \cdot 3$
-10	I. 964	0. 74	20	17.55	6.63	50	92.6	35.0
9	2.144	0.8 I	21	18.66	7.06	51	97.3	36.8
8	2.340	0.88	22	I9.84	7.50	52	102.2	38.6
	2.550	0.96	23	21.09	7.97	53	107.3	40.6
6	2.778	1. 05	24	22.40	8.47	54	II 2.7	42.6
-5	3.025	I. 14	25	23.78	8.99	55	118.2	44.7
4	3.291	I. 24	26	25.24	9.54	56	124.0	46.9
3	$3 \cdot 578$	1.35	27	26.77	10.12	57	130.0	49.1
2	3.887	I. 47	28	28.38	10.73	58	136.3	5 F .5
1	4.220	1. 60	29	30.08	11.37	59	142.8	54.0
0	$4 \cdot 580$	I. 73	30	31.86	12.04	60	149.6	56.5

* Table quoted from Smithsonian Meteorological Tables.

TABLE 116. - Maintenance of Air at Definite Humidities.
Taken from Stevens, Phytopathology, 6, 428, 1916; see also Curtis, Bul. Bur. Standards, 1 I, 359, 1914; Dieterici, Ann. d. Phys. u. Chem., 50, 47, 1893. The relative humidity and vapor pressure of aqueous vapor of moist air in equilibrium conditions above aqueous solutions of sulphuric acid are given below.

Density of acid sol.	Relative humidity.	Vapor pressure.		Density of acid sol.	Relative humidity.	Vapor pressure.	
		$20^{\circ} \mathrm{C}$	$30^{\circ} \mathrm{C}$			$20^{\circ} \mathrm{C}$	$30^{\circ} \mathrm{C}$
		mm	mm			mm	$\begin{gathered} \mathrm{mm} \\ 18.4 \end{gathered}$
1.00	100.0	17.4	31.6	I. 30	$5 \cdot 3$		
1.05 I. 10	97.5	17.0 16.3	30.7 29.6	I. 35	47.2	6.3	15.0
I. 10	93.9 88.8	16.3 15.4	29.6 28.0	1.40 1.50	37.1 18.8	6.5 3.3	11.9 6.0
1. 20	80.5	14.0	25.4	1.60	8.5	1. 5	2.7
1. 25	70.4	12.2	22.2	1.70	3.2	0.6	1.0

PRESSURE OF COLUMNS OF MERCURY AND WATER.

British and metric measures. Correct at $0^{\circ} \mathrm{C}$. for mercury and at $4^{\circ} \mathrm{C}$. for water.

Metric Measure.			British Measure.		
$\begin{gathered} \text { Cms. of } \\ \mathrm{Hg} . \end{gathered}$	Pressure in grams per sq. cm.	Pressure in pounds per sq. inch.	$\begin{gathered} \text { Inches of } \\ \text { Hg. } \end{gathered}$	Pressure in grams per sq. cm.	Pressure in pounds per sq. inch.
1	1 3.5956	0. 193376	1	34.533	0.491 74
2	27.1912	0.386752	2	69.066	0.982348
3	40.7868	0.580128	3	103.598	1.473522
4	54.3824	0.773504	4	138.131	1.964696
5	67.9780	0.966880	5	172.664	2.455870
6	81.5736	I. 160256	6	207.197	2.947044
7	95.1692	1.353632	7	241.730	3.438218
8	108.7648	1. 547008	8	276.262	3.929392
9	122.3604	1.740384	9	310.795	$4 \cdot 420566$
10	135.9560	1.933760	10	$345 \cdot 328$	4.911740
Cms. of $\mathrm{H}_{2} \mathrm{O}$.	Pressure in grams per sq. cm.	Pressure in pounds per sq. inch.	Inches of $\mathrm{H}_{2} \mathrm{O}$.	Pressure in grams per $\mathrm{sq} . \mathrm{cm}$.	Pressure in pounds per sq. inch.
1	1	0.0142234	1	2.54	0.036127
2	2	0.0284468	2	5.08	0.072255
3	3	0.0426702	3	7.62	0.108382
4	4	0.0568936	4	10.16	0.144510
5	5	0.0711170	5	12.70	0.180637
6	6	0.0853404	6	15.24	0.216764
7	7	0.0995638	7	17.78	0.252892
8	8	0.1137872	8	20.32	0.289019
9	9	0.1280106	9	22.86	0.325147
10	10	0.1422340	10	25.40	0.361274

Smithsonian Tables.

Corrections for brass scale and English measure.		Corrections for brass scale and metric measure.		Corrections for glass scale and metric measure.	
Height of barometer in inches.	in inches for temp. F.	Height of barometer in mm.	in mm. for temp. C.	Height of barometer in mm .	in mm. for temp. C.
15.0	0.00135	400	0.0651	50	
16.0	. 00145	410	. 0668	100	0.0086 .0172
17.0	. 0151	420	. 0684	150	. 0258
17.5	. 0158	430	. 0700	200	. 0345
18.0	.00163	440	. 0716	250	.043I
18.5	.00167	450	.0732	300	. 0517
19.0	.00172	460	. 0749	350	. 0603
19.5	.00176	470	. 0765		
20.0	0.00181	480	. 0781	400	0.0689
20.5	.00185	490	. 0797	450 500	. 0775
21.0	.00190	500	0.0813	520	. 0895
21.5	.00194	510	. 0830	540	. 0930
22.0	.00199	520	. 0846	560	. 0965
22.5	. 00203	530	. 0862	580	. 0999
23.0	. 00208	540	. 0878		
23.5	. 00212	550	. 0894	600	0.1034
		560	.0911	610	. 1051
24.0	0.00217	570	. 0927	620	. 1068
24.5	. 00221	580	. 0943	630	.1085
25.0	. 00226	590	. 0959	640	.1103
25.5 26.0	. 00231			650	. 1120
26.0 26.5	. 000236	600 610	0.0975 .0992	660	. 1137
27.0	. 00245	620	. 1008	670	O. 1154
27.5	. 00249	630	. 1024	680	.1172
		640	. 1040	690	.1189
28.0	0.00254	650	.1056	700	. 1206
28.5	. 00258	660	. 1073	710	. 1223
29.0	. 00263	670	.1089	720	. 1240
29.2	.00265	680	. 1105	730	. 125^{8}
29.4	. 00267	- 690	. 112 I		
29.6	. 00268			740	0.1275
29.8	. 00270	700	0.1137	750	.1292
30.0	. 00272	710	. 1154	760	. 1309
		720	. 1170	770	. 1327
30.2	0.00274	730	.II86	780	. 1344
30.4 30.6	. 00276	740	. 1202	790 800	.1361
30.6 30.8	. 00277	750	. 1218	800	. 1378
30.8 31.0	. 00279	760	.1235 .1251	850	
31.2	. 00283	780	. 1267	900	.1564 .1551
31.4	. 00285	790	. 1283	950	.1639
31.6	. 00287	800	. 1299	1000	.1723

[^19]
REDUCTION OF BAROMETER TO STANDARD GRAVITY.

Free-air Altitude Term. Correction to be subtracted.

The correction to reduce the barometer to sea-level is $\left(g_{1}-g\right) / g \times B$ where B is the barometer reading and g and g_{1} the value of gravity at sea-level and the place of observation respectively. The following values were computed for free-air values of gravity g_{1} (Table 565). It has been customary to assume for mountain stations that the value of $g_{1}=$ say about $\frac{\pi}{3}$ the free-air value, but a comparison of modern determinations of g_{1} in this country shows that little reliance can be placed on such an assumption. Where g_{1} is known its value should be used in the above correction term. (See Tables 566 and 567 . Similarly for the latitude term, see succeeding tables, the true value of g should be used if known; the succeeding tables are based on the theoretical values, Table 565.)

Height above sea-level.	$g_{1}-g$	Observed height of barometer in millimeters.										
		400	450	500	550	600	650	700	750	800		
meters.												
100	0.031	Correction in mm to be subtracted for height above sea-level in first column and barometer reading in the top line.						. 02	. 02	. 02	-	-
200	0.062							. 04	. 05	. 05	-	-
300	0.093							. 07	. 07	. 07	-	-
400	-. 123						-	. 09	. 10	. 10	-	-
500	-. 154	-		-				. 11	. 12	. 13	-	-
600	0. 185	-	-		-	-	. 12	. 13	. 14	-	-	-
700	-. 216	-	-	-	-	-	. 14	. 15	. 16	-	-	-
800	0. 247	-	-	-	-	-	. 16	. 18	. 19	-	-	-
900	0. 278	-	-	二	-	-	. 18	. 20	. 22	-	-	-
1000	0.309	-	-		. 18	. 19	. 20	. 22	. 24	-	-	-
1100	0.339	-	-	-	. 19	. 21	. 22	. 24	-	-	-	-
1200	0.370	-	-	-	. 21	. 23	. 24	. 26	-	-	-	-
1300	0.401	-	-	-	. 22	. 24	. 26	. 29	-	-	-	-
1400	0.432	-	-	-	. 24	. 26	. 28	. 31	-	-	-	-
1500	0.463	-	-	. 24	. 26	. 28	. 30	. 33	-	-	-	-
1600	0.494	-	-	. 25	. 28	. 30	. 32	-	-	-	-	-
1700	0.525	-	-	. 27	. 30	. 32	- 34	-	-	-	-	-
1800	-. 555	-	-	. 28	. 31	. 34	. 36	-	-	. 020	. 0463	15000
1900	0. 586	-	-	. 30	. 33	. 36	. 39	-	-	. 019	. 0447	14500
2000	0.617	-	. 28	. 31	. 34	. 38	. 41	-	. 021	. 019	. 0432	14000
2100	0.648	-	. 30	. 33	. 36	. 40	-	-	. 021	. 018	. 0416	13500
2200	0.679	-	. 31	. 35	. 38	. 41	-	-	. 020	. 017	. 0401	13000
2300	0.710	-	. 32	. 36	. 40	. 43	-	. 021	. 019	. 017	. 0386	12500
2400	0.740	-	. 34	. 38	. 42	$\begin{aligned} & .45 \\ & .47 \end{aligned}$	-	. 021	. 018	. 016	. 0370	12000
2500	0.771	. 31	. 35	. 39	. 43		-	. 020	. 018	. 015	. 0355	11500
2600	0.802	. 33	. 37	. 41	-	.47	. 021	. 019	. 017	. 015	. 0339	11000
2700	0.833	. 34	. 38	. 42	-	-	. 020	. 018	. 016	. 014	. 0324	10500
2800	0.864	. 35	. 40	. 44	-		. 019	. 017	. 015	. 013	. 0308	10000
2900	0.895	. 36	. 41	. 46	-		. 018	. 016	. or 5	. 013	. 0293	9500
3000	0. 926	. 38	. 42	. 47	-	$\begin{aligned} & .020 \\ & .019 \end{aligned}$. 017	. 016	. 014	. OL 2	. 0278	9000
3100	0.957	. 39	. 4.4	-	-	$\begin{aligned} & .019 \\ & .018 \end{aligned}$. 016	. 015	. 013	-	. 0262	8500
3200	0. 988	. 40	. 46	-	-	$\begin{aligned} & .018 \\ & .017 \end{aligned}$. 015	. 014	. 12	-	. 0247	8000
3300	1.019	. 42	. 47	-	. 017	. 016	. 014	. 013	-	-	. 0231	7500
3400	I. 049	. 43	. 48	-	. 016	. 015	. 013	. 012	-	-	. 0216	7000
3500	1.080	. 44	. 49	-	. 015	. 014	. 012	. OII	-	-	. 0200	6500
3600	I.III	. 45		-	. 014	. 013	. 011	-	-	-	. 0185	6000
3700	1.142	. 46	-	-	. 013	$\begin{aligned} & .012 \\ & .011 \end{aligned}$. OII	-	-	-	. 0170	5500
3800	I. 173	. 48	-	. OI 2	. OII			-	-	-	. 0154	5000
3900	I. 204	. 49	-	. 011	. 010	. 011	. 010	-	-	-	. 0139	4500
4000	I. 235	. 50	-	. 010	. 009	. .009	-				. 0123	4000
-	-	-	. 003	. .08	. 007	$.007$$\qquad$	Corrections in in. to be subtracted for height above sea-level in last column and barometer reading in bottom line.				. 0092	3000
-	-	. 006	. 005	. 005	. 004						. 0062	2000
		. 003			-						. 0031	1000
												feet.
		30	28	26	24	22	20	18	16	14		
		Observed height of barometer in inches.										sea-level

Smithsonian Tables.

REDUCTION OF BAROMETER TO STANDARD GRAVITY.* metric measures.
From Latitude 0° to 45°, the Correction is to be Subtracted.

Smithsonian Tables

REDUCTION OF BAROMETER TO STANDARD GRAVITY.* METRIC MEASURES.

From Latitude 46° to 90°, the Correction is to be Added.

REDUCTION OF BAROMETER TO STANDARD GRAVITY.*

 ENGLISH MEASURES.From Latitude 0° to 45°, the Correction is to be Subtracted.

Latitude.	19	20	21	22	23	24	25	26	27	28	29	30
0	Inch.	Inch	Inch.	Inch.	nc	nc	Inc	Inch.	Inch.	Inch.	Inch	
5									. 071			
6	0.050	0.052	0.055	0.058	0.060	0.063	0.066	0.068	0.071	0.073	0.076	
7	0.049	0.052	0.055	0.057	0.060	0.062	0.065	0.068	0.070	0.073	0.075	8
8	0.049	$0 \cdot 052$	0.054	0.057	0.059	0.062	0.064	0.067	0.070	0.072	0.075	0.077
9	0.048	0.05 I	0.054	0.056	0.059	0.061		0.066	0.069	0.071	0.074	0.076
10												
11	0.047	0.050	0.052	0.055	0.057	0.060	0.062	0.065	0.067	0.070	0.072	0.075
12	0.047	0.049	0.051	0.054	0.056	0.059	0.061	0.064	0.066	0.069	0.071	0.074
13	0.046	0.048	0.051	0.053	0.055	0.058	0.060	0.063	0.065	0.068	0.070	0.072
14	0.045	0.047	0.050	0.052	0.055	0.057	0.059	0.062	0.064	0.066	0.06	0.07 I
15				51			.	.	.	-0.065	-0.067	. 070
16	0.043	0.046	0.048	0.050	0.052	0.055	0.057	0.059	0.062	0.064	0.066	0.068
17	0.042	0.045	0.047	0.049	0.051	0.053	0.056	0.058	0.060	0.062	0.065	0.067
18	0.041	0.044	0.046	0.048	0.050	0.052	0.054	0.057	0.059	0.061	0.063	0.065
19	0.040	0.042	0.045	0.047	0.049	0.05 I	0.053	0.055	0.057	0.059	0.06	0.064
20		0.041	-0.043	0.045					0.056	0.058	0.060	062
21	0.038	0.040	0.042	0.044	0.046	0.048	0.050	0.052	0.054	0.056	0.058	0.060
22	0.037	0.039	0.041	0.043	0.045	0.047	0.049	0.050	0.052	0.054	0.056	. 058
23	0.036	0.038	0.039	0.041	0.043	0.045	0.047	0.049	0.051	0.053	0.054	0.056
24	0.034	0.036	0.038	0.040	0.0	0.043	0.045	0.047	0.049	0.051	0.052	0.054
25												
26	0.032	0.033	0.035	0.037	0.038	0.040	0.	0.043	0.045	0.047	0.048	0.050
27	0.030	0.032	0.033	0.035	0.03	0.038	0.040	0.041	0.043	0.045	0.046	0.048
28	0.029	0.030	0.032	0.033	0.035	0.036	0.038	0.039	0.041	0.043	0.044	0.046
29	0.027	0.029	0.030	0.032	0.033	0.035	0.036	0.037	0.039	0.040	0.042	
30	0.026											
31	0.024	0.026	0.027	0.028	0.030	0.031	0.032	0.033	0.035	0.036	0.037	0.038
32	0.023	0.024	0.025	0.026	0.028	0.029	0.030	0.031	0.032	0034	0.035	0.036
33	0.021	0.022	0.023	0.025	0.026	0.027	0.028	0.029	0.030	0.031	0.032	0.034
34	0.020	0.021	0.022	0.023	0.024	0.025	0.026	0.027	0.028	0.029	0.030	0.031
35	-0.018	.										
36	0.016	0.017	18	0.019	. 020	. 02 I	0.0	0.0	0.023	0.024	0.02	26
37	0.015	0.015		0.017	0.018	0.019	0.01	0.020	0.021	0.022	0.022	. 023
38	0.013	0.014	0.014	0.015	0.016	0.016	0.017	0.018	0.018	0.019	0.020	20
39	0.011	0.012	0.012	0.013	0.014	0.014	0.015	0.015	0.016	0.017	0.017	
	-0.0	-0.010	-0.01 1	0.011	0.012			.	0.014	O.O1	0.01	0.015
40	0.008	0.008	0.009	0.009	0.009	0.010	0.010	0.011	0.01 I	0.012	0.012	. 012
42	0.006	0.006	0.007	0.007	0.007	0.008	0.008	0.008	0.009	0.009	0.009	0.010
43	0.004	0.005	0.005	0.005	0.005	0.005	0.006	0.006	0.006	0.006	0.007	
44	0.003	0.003	3	3	0.003	3	3	0.004	0.004	0.004	0.004	
	0.00	0.00	. 00	-0.00I	-0.00		-0.00	-0.0	.	0.00	O.001	0.001

Smithsonian Tables.

REDUCTION OF BAROMETER TO STANDARD GRAVITY.*

 ENGLISH MEASURES.From Latitude 46° to 90° the Correction is to be Added.

Latitude.	19	20	21	22	23	24	25	26	27	28	29	30
45	In	Inch.	Inch.		Inch				Inch	Inch.	Inch.	Inch.
				OI	. 001	01	+0.001	+0.001	+0.001	+0.001	+0.001	OI
47	0.003	0.003	0.003	0.003	0.003	0.003	0.003	004	0.004	0.004	0.004	0.004
48	0.004	. 005	0.005	0.005	0.005	0.006	0.006	0.006	0.006	0.006	0.007	0.007
49	. 0	. 006	0.007	0.007	0.007	0.008	0.008	0.008	0.009	0.009	0.009	0.010
50	0.008	0.008	0.000	0.009	0.010	o.	0.010	0.01 I	0.011	0.012	0.012	12
51	,	,	0.011	-0.011								5
52	0.011	0.012	0.012	0.013	0.014	0.014	0.015	0.015	0.016	0.016	0.017	0.018
53	0.013	14	0.014	0.015	.	0.016	0.017	0.018	. 018	0.019	.	0
54	0.015	0.015	0.016	0.017	0.0	0.019	0.019	0.020	0.021	0.022	0.0	0.023
	0.016	0.017	0.018	0.019	0.020	0.021	0.02 I	0.022	0.023	0.024	0.025	0.026
56	+0.018	.	0.020	0.023	. 022	0.023	.	.	0.020	0.026	0.027	28
57	20	0.02 I	0.022	0.023	0.024	0.025	0.026	0.027	0.028	0.029	0.030	0.031
58	0.021	0.022	0.023	. 025	0.02	0.027	0.028	0.029	0.030	0.03 I	0.032	0.033
$\begin{aligned} & 59 \\ & 60 \end{aligned}$	0.023	0.024	0.025	0.026	0.028	0.029	0.030	0.031	0.032	0.033	0.035	0.036
	0.024	0.026	0.027	0.028	0.029	0.031	0.032	0.033	0.034	0.036	0.037	0.038
61	0.026	O.	0.028	0.030	0.031	0.033	0.034	-	0.037	0.038	+0.039	0.041
62	0.027	0.029	0.030	0.032	0.033	0.034	0.036	0.037	0.039	0.040	0.042	0.043
63	0.029	0.030	0.032	0.033	0.035	0.036	0.038	0.039	0.041	0.042	0.044	0.045
64	0.030	0.032	0.033	0.035	0.036	0.038	0.040	0.04 I	0.043	0.044	0.046	0.047
65	0.031	0.033	0.035		0.038	0.040	0.041	0.043	0.045	0.046	0.048	0.050
66	+0.03	O.03	0.03			+0.041				0	+0.050	52
67	0.034	0.036	0.038	0.039	0.041	0.043	0.04	0.047	0.048	0.050	. 052	. 054
68	0.035	0.037	0.039	0.041	0.043	0.045	0.046	0.048	0.050	0.052	0.054	0.056
69	0.036	0.038	0.040	0.042	0.044	0.046	0.048	0.050	0.052	0.054	0.056	
70	0.038	0.040			0.046	0.048	0.050	0.052	0.053	0.055	0.057	0.059
71											0.059	0.06 I
72	0.040	0.042	0.044	0.046	0.048	0.050	0.052	0.054	0.057	0.059	0.06 i	0.063
73	0.041	9.043	0.045	0.047	0.049	0.05	0.054	0.056	0.058	0.060	0.062	0.064
74	0.042	0.044	0.046	0.048	0.051	0.053	0.055	0.057	0.059	0.062	0.064	0.066
75	0.043	0.045	0.047	0.049	0.052	0.054	0.056	0.058	0.061	0.063		
76	+0.044	+0.046	+0.048	+0.050							0.066	0.069
77	0.0 .44	0.047	0.049	0.051	0.054	0.056	0.058	0.061	0.063	0.065	0.068	0.070
78	0.045	0.047	0.050	0.052	0.055	0.057	0.059	0.062	0.064	0.066	0.069	
$\begin{aligned} & 79 \\ & 80 \end{aligned}$	0.046	0.048	0.05 I	0.053	0.055	0.058	0.060	0.063	0.065		0.070	0.072
80 81	0.046 +0.047	$\begin{array}{r} 0.049 \\ +0.049 \end{array}$	$0.05 \mathrm{I}$	0.054	0.056	0.059	0.061	0.063	0.066	0.068	0.07 I	0.073
82	0.047											
83	0.048	0.050	0.053	0.056	0.058	0.061	0.06	0.066	0.068			0.076
84	0.048	0.051	0.053	0.056	0.059	0.061	0.064	0.066	0.060	0.071	0.074	0.076
85	0.049	0.05 I	0.054	0.056	0.059	0.061	0.064	0.067	0.069	0.072	0.074	0.077
	. 04	+0.052		+0.057	+0.060	+0.062				+0.073		-0.078

[^20]
Smithsonian Tables.

Tables 124-125.
TABLE 124.- Correction of the Barometer for Capillarity.*
I. Metric Measure.

Diameter of tube in mm .	Height of Meniscus in Millimeters.							
	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8
	Correction to be added in millimeters.							
4	0.83	1.22	I. 54	1.98	2.37	-	-	-
5	. 47	0.65	0.86	1.19	1.45	1.80	-	-
6	. 27	. 41	. 56	0.78	0.98	1.21	1.43	-
7	. 18	. 28	. 40	. 53	. 67	0.82	0.97	1.13
8	-	. 20	. 29	. 38	. 46	. 56	. 65	0.77
9	-	. 15	. 21	. 28	. 33	. 40	.46	. 52
10	-	-	. 15	. 20	.25	. 29	. 33	. 37
11	-	-	. 10	. 14	. 18	. 21	.24	. 27
12	-	-	. 07	. 10	. 13	. 15	. 18	. 19
13	-	-	. 04	. 07	. 10	. 12	. 13	. 14

2. British Measure.

Diameter of tube in inches.	Height of Meniscus in Inches.							
	. 01	. 02	. 03	. 04	. 05	. 06	- . 07	. 08
	Correction to be added in inches.							
. 15	0.024	0.047	0.069	0.092	0.116	-	-	-
. 20	. 11	. 022	. 033	. 045	. 059	0.078	-	-
. 25	. 006	. 012	. 019	. 028	. 037	. 047	0.059	-
. 30	. 004	. 008	.or 3	. 018	. 023	. 029	. 035	0.042
. 35	-	. 005	. 008	. 012	.OI 5	. 018	. 022	.026
. 40	-	. 004	. 006	. 008	. 010	. 012	. 014	. 016
. 45	-	-	. 003	. 005	. 007	. 008	. 010	. 012
. 50	-	-	. 002	. 004	.005	. 006	. 006	. 007
.55	-	-	. 001	. 002	. 003	. 004	. 005	. 005

* The first table is from Kohlrausch (Experimental Physics), and is based on the experiments of Mendelejeff and Gutkowski (Jour. de Phys. Chem. Geo. Petersburg, I_{77}, or Wied. Beib. r_{77}). The second table has been calculated from the same data by conversion into inches and graphic interpolation.

TABLE 125. - Volume of Mercury Meniscus in Cu. Mm.

Height of meniscus.	Diameter of tube in mm.										
	14	15	16	17	18	19	20	21	22	23	24
mm. I .6		185	214	245	280	318	356	398	444	492	541
1.8	181	211	244	281	320	362	407	455	507	560	616
2.0	206	240	278	319	362	409	460	513	571	631	694
2.2	233	271	313	35^{8}	406	459	515	574	637	70.4	776
2.4	262	303	350	400	454	511	573	639	708	781	859
2.6	291	338	388	444	503	565	633	706	782	862	948

144

BAROMETRIC PRESSURES CORRESPONDING TO THE TEMPERATURE OF THE BOILING POINT OF WATER.

Useful when a boiling-point apparatus is used in the determination of heights. Copied from the Smithsonian Meteorological Tables, 4th revised edition.
(A) METRIC UNITS.

${ }_{\text {chem- }}^{\text {Terature. }}$. 0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9
C	mm .	mm.	mm.	mm	mm .	mm.	mm .	65. 58	mm.	mm.
80°	355.40	356.84	358.28	359.73	361.19	362.65	364. 11	365.58	367.06	368.54
8 8	370.03	371.52	373.01	374.51	376.02	377.53	379.05	380.57	382.09	383.62
82	385.16	386.70	388.25	389.80	391.36	392.92	394.49	396.06	397.64	399.22
83	400.8 I	402.40	404.00	405.61	407.22	408.83	410.45	412.08	413.71	415.35
84	416.99	418.64	420.29	421.95	423.61	425.28	426.95	428.64	430.32	432.01
85	433.7 I	435.41	437.12	438.83	440.55	442.28	444.01	445.75	447.49	449.24
86	450.99	452.75	454.5I	456.28	458.06	459.84	461.63	463.42	465.22	467.03
87	468.84	470.66	472.48	474.31	476.14	477.99	479.83	481. 68	483.54	485.41
88	487.28	489.16	491.04	492.93	494.82	496.72	498.63 518.04	500.54 520.01	502.46	504.39
89	506.32	508.26	510.20	512.15	514.11	516.07	518.04	520.01	52 l . 99	523.98
90	525.97	527.97	529.98	531.99	534.01	536.04	538.07	540.11	542.15	544.21
91	546.26	$5+8.33$	550.40	552.48	554.56	556.65	558.75	560.85	562.96	565.08
92	567.20	569.33	571.47	573.61	575.76	577.92	580.08	582.25	584.43	586.61 608.82 631
93	588.80 61 I .08	591.00 613.35	593.20 615.62	595.41 617.90	597.63 620.19	599.86 622.48	602.09 624.79	604.33 627.09	606.57 629.41	608.82 631.73
94	611.08	613.35	615.62	617.90	620.19	622.48	624.79	627.09	629.41	63 I .73
95	634.06	636.40	638.74	64 I .09	643.45	645.82	648.19	650.57	652.96	655.35
96	657.75	660.16	662.58	665.00	657.43	669.87	672.32	674.77	677.23	679.70
97	682.18	684.66	687.15	689.65	692.15	694.67	697.19	699.71	702.25	704.79
98	707.35	709.90	712.47	715.04	717.63	720.22	722.81	725.42	728.03	730.65
99	733.28	635.92	738.56	741.21	743.87	740.54	749.22	751.90	754.59	757.29
100	760.00	762.72	765.44	768.17	770.91	773.66	776.42	779.18	781.95	784.73

(B) ENGLISH UNITS.

Tem-	. 0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9
F.	Inc	Inches.	Inches.	Inches.	Inches.	Inc	Inches.	Inches.	Inches.	Inc
185°	17.075	17.112	17.150	17.187	17.224	17.262	17.300	17.337	17.375	17.413
186	17.450	17.488	17.526	$17 \cdot 564$	17.602	17.641	17.679	17.717	17.756	17.794
187	17.832	17.87 I	17.910	17.948	17.987	18.026	18.065	18.104	18.143	18.182
188	18.221 18.618	18.261 18.658	18.300	18.340	18.379	18.419	18.458	18.498	18.538	18.578
189				18.738	18.778	18.818	18.859	18.899	18.940	18.980
190	19.021	19.062	19.102	19.143	19.184	19.225	19.266	19.308	19.349	
191	19.43 I	19.473	19.514	19.556	19.598	19.639	19.681	19.723	19.765	19.807
192	19.849	19.892	19.934	19.976	20.019	20.061	20.104	20.146	20.189	20.232
193	20.275	20.318	20.361	20.404	20.447	20.490	20.533	20.577	20.620	20.664
194	20.707	20.75 I	20.795	20.839	20.883	20.927	20.97 I	21.015	21.059	21.103
195	21.148	21.192	21. 237	21.282	21.326	21.371	21.416	21.46r	21.506	21.55I
196	21.5971	21.642	21.687	21.733	21.778	21.824	21.870	21.915	21.961	22.007
197	22.053	22.099	22.145	22.192	22.238	22.284	22.331	22.377	22.424	22.47 I
198	22.517	22.564	22.61 I	22.658	22.706	22.752	22.800	22.847	22.895	22.942
199	22.990	23.038	23.085	23.133	23.181	23.229	23.277	23.325	23.374	23.422
200	23.470	23.519	23.568	23.616	23.665	23.714	23.763	23.812	23.861	23.910
201	23.959	24.009	24.058	24.108	24.157	24.207	24.257	24.307	24.357	24.407
202	24.457	24.507	24.557	2.608	24.658	24.709	24.759	24.810	24.861	24.912
203	24.963 25.478	25.014 25.530	$\left\lvert\, \begin{aligned} & 25.065 \\ & 25.582\end{aligned}\right.$	25.116 25.634	25.168 25.686	25.219 25.738	25.271	25.322	25.374	25.426
04	25.478	25.530	$25 \cdot 582$	25.634	25.686	25.738	25.791	25.843	25.896	25.948
205 206	26.001 26.534	26.054 26.587	26.107 26.641	26.160 26.695	26.213	26.266	26.319	26.373	26.426	26.480
206	26.534 27.075	26.587	27.18	26.695 27.239	26.749 27.294	26.803	26.857	26.912	26.966	27.021
208	27.626	27.681	27.184 27.737	27.2		27.349 27.904	27.404 27.060	27.460 28.016	27.515	27.570
209	28.185	28.242	28.298	28.355	28.412	28.469	28.526	28.583	28.640	28.697
210	28.754	28.812	28.869	28.927	28.985	29.042	29.100	29.158	29.216	
211	29.333	29.391	29.450	29.508	29.567	29.626	29.685	29.744	29.803	29.862
212	29.92 30.51	29.98 I	30.040	30.100	30.159 30.761	30.219	30.279	30.339	30.399	30.459

DETERMINATION OF HEIGHTS BY THE BAROMETER.

> Formula of Babinet : $Z=C \frac{B_{0}-B}{B_{0}+B}$.
> C (in feet) $=52494\left[\mathrm{I}+\frac{t_{0}+t-6_{4}}{900}\right]$ English measures.
> C (in meters) $=16000\left[1+\frac{2\left(t_{0}+t\right)}{1000}\right]$ metric measures.

In which $Z=$ difference of height of two stations in feet or meters.
$B_{0}, B=$ barometric readings at the lower and upper stations respectively, corrected for all sources of instrumental error.
$t_{0}, t=$ air temperatures at the lower and upper stations respectively.
Values of C.

English Measures.			Metric Measures.		
$\frac{1}{2}\left(t_{0}+t\right)$.	C	$\log C$	$\frac{1}{2}\left(t_{0}+t\right)$.	C	$\log C$
Fahr.	Feet.		Cent.	Meters.	
10°	49928	4.69834	-10°	15360	4.I8639
15	50511	. 70339	-8	I 5488	. 19000
			-6	I 5616	. 19357
20	51094	4.70837	-4	I 5744	. 19712
25	51677	. 71330	-2	15872	. 20063
30	52261	4.71818	0	16000	4.20412
35	52844	. 72300	+2	16128	. 20758
40			4	16256 16384	. 211101
40 45	53428 54011	4.72777 .73248	8	16512	. 21780
50	54595	4.737 I 5	10	16640	4.22115
55	55178	.74177	12	16768	. 22448
			14	16896	. 22778
60	55761	4.74633	16	17024	.23106
65	56344	. 75085	18	17152	.23431
70	56927	4.75532	20	17280	4.23754
75	5751 I	. 75975	22	17408	. 2.4075
			24	17536	. 24393
80 85	58094 58677	4.76413 .76847	26 28	17664 17792	.24709 .25022
5	50677	-76847	-8	17792	. 2502
90	59260	4.77276	30	17920	4.25334
95	59844	. 77702	32	18048	. 25643
			34	18176	. 25950
100	60427	4.78123	36	18304	. 26255

Values only approximate. Not good for great altitudes. A more accurate formula with corresponding tables may be found in Smithsonian Meteorological Tables.

Smithsonian Tables.

VELOCITY OF SOUND IN SOLIDS.

The velocity of sounds in solids varies as $\sqrt{E / \rho}$, where E is Young's Modulus of elasticity and ρ the density. These constants for most of the materials given in this table vary through a somewhat wide range, and hence the numbers can only be taken as rough approximations to the velocity which may be obtained in any particular case. When temperatures are not marked, between 10° and 20° is to be understood.

Substance.	Temp. C.	Velocity in meters per second.	Velocity in feet per second.	Authority.
	-			Masson.
Brass		3500	11480	Various.
Cadmium .	-	2307	7570	Masson. "
Cobalt . . .	-	4724	$\begin{array}{r} 15500 \\ 11670 \end{array}$	
Copper . . .	20	3560		Wertheim.
"	100	3290	10800	
" ${ }^{\text {Gold (saft) }}$.	200	2950	9690	
Gold (soft) . .	20	1743	$\begin{aligned} & 5717 \\ & 6890 \end{aligned}$	Various.
Iron and soft steel	-	5000	16410	
Iron . . .	20	5130	16820	Wertheim.
"	100	5300	17390	
"	200	4720	15480	"
" cast steel	20	4990	16360	"
" " "	200	4790	15710	"
Lead.	20	1227	4026	" ${ }^{\text {c }}$
Magnesium	-	4602	15100	Melde.
Nickel	-	4973	16320	Masson.
Palladium .	-	3150	10340	Various.
Platinum	20	2690	8815	Wertheim.
*	100	2570	8437	
Silver	200 20	2460	8079	"
"	100	2640	8553 8658	"
Tin .	-	2500	8200	Various.
Zinc .	-	3700	12140	
Various: Brick	-	3652	11980	Chladni.
Clay rock	-	3480	11420	Gray \& Milne.
Cork	-	500	1640	Stefan.
Granite Marble	-	3950	12960	Gray \& Milne.
Paraffin .		3810	12500	
Plate	15	1304	4280 14800	Warburg.
Tallow .	16	4510	14800 1280	Gray \& Milne. Warburg.
Tuff	-	2850	9350	Gray \& Milne.
Glass . . from	-	5000	16410	Various.
Ivory $\{$ to	-	6000	19690	
Ivory ${ }^{\text {Vulcanized }}$ rubber ${ }^{\text {a }}$	-	3013	9886	Ciccone \& Campanile.
(black) $\}$	50	54	177	Exner.
"، " (red) .	\bigcirc	69	226	"
" " "	70	34	111	"
Wax	17	880	2890	Stefan.
Woods: " ${ }^{\text {" }}$ -	28	441	1450	
Woods: Ash, along the fibre .	-	4670	15310	Wertheim.
" across the rings	-	1390	4570	"
"* along the rings	-	1260	4140	"
Beech, along the fibre	-	3340	10960	"
" across the rings	-	1840	6030	
" along the rings	-	1415	4640	"
Elm, along the fibre	-	4120	13516	"
" across the rings	-	1420	4665	"
Fir, along the rings	-	1013	3324	"
Fir, along the fibre .	-	4640	15220	"
Maple "،	-	4110	13470	"
Oak "،	-	3850	12620	"
Pine	-	3320	10900	"
Poplar "	-	4280	14050	,
Sycamore '،	-	4460	14640	

VELOCITY OF SOUND IN LIQUIDS AND GASES.

For gases, the velocity of sound $=V_{\gamma} \mathrm{P} / \rho$, where P is the pressure, ρ the density, and γ the ratio of specific heat at constant pressure to that at constant volume (see Table 253). For moderate temperature changes $V_{t}=V_{0}(I+a t)$ where $a=0.00367$. The velocity of sound in tubes increases with the diameter up to the free-air value as a limit. The values from ammonia to methane inclusive are for closed tubes.

The pitch relations between two notes may be expressed precisely (i) by the ratio of their vibration frequencies; (2) by the number of equally-tempered semitones between them (E. S.); also, less conveniently, (3) by the common logarithm of the ratio in (1); (4) by the lengths of the two portions of the tense string which will furnish the notes; and (5) in terms of the octave as unity. The ratio in (4) is the reciprocal of that in (1); the number for (5) is $1 / 12$ of that for (2); the number for (2) is nearly 40 times that for (3).

Table 130 gives data for the middle octave, including vibration frequencies for three standards of pitch: $\mathrm{A}_{3}=435$ double vibrations per second, is the international standard, and was adopted by the American Piano Manufacturers' Association. The "just-diatonic scale" of C-major is usually deduced, following Chladni, from the ratios of the three perfect major triads reduced to one octave, thus:

Other equivalent ratios and their values in E. S. are given in Table 131. By transferring D to the left and using the ratio $10: 12: 15$ the scale of A-minor is obtained, which agrees with that of C-major except that $D=262 / 3$. Nearly the same ratios are obtained from a series of harmonics beginning with the eighth; also by taking 12 successive perfect or Pythagorean fifths or fourths and reducing to one octave. Such calculations are most easily made by adding and subtracting intervals expressed in E. S. The notes needed to furnish a just major scale in other keys may be found by successive transpositions by fifths or fourths as shown in Table 131. Disregarding the usually negligible difference of 0.02 E . S., the table gives the 24 notes to the octave required in the simplest enharmonic organ; the notes fall into pairs that differ by a comma, 0.22 E . S. The line " mean tone" is based on Dom Bedos', rule for tuning the organ (1746). The tables have been checked by the data in Ellis' Helmholtz's "Sensations of Tone."

TABLE 130.

Note.	Interval.		Ratios.		Logarithms.		Number of double Vibrations per second.					
	Just.	Tem. pered.	Just.	Tem. pered.	Just.	Tempered.	Just.	Just.	Just.	Tem-pered-	Tempered.	Tempered.
C_{8}	E. S.	E. S.	1.00	1.00000 1.05926	. 0000	$\begin{aligned} & .00000 \\ & .02509 \end{aligned}$	256	264	258.7	258.7 274.0	261.6 277.2	271.1 287.3
D_{3}	2.04	2	1.125	1. 12246	. 05115	. 05017	288	297	291.0	290.3	293.7	$304 \cdot 3$
		3		1.18921 1.25992		.07526 .10034				307.6 325.9	311.1 329.6	322.4 341.6
F_{3}	3.86 4.98	4	1.25 1.33	1.25992 1.33484	.09691 .12494	.10034 .12543	320 341	330 352	323.4 344.9	$325 \cdot 9$ $345 \cdot 3$	329.6 349.2	341.6 361.9
		6		1.41421		. 15051				365.8	370.0	383.4
G_{8}	7.02	7	1. 50	1.49831	. 17609	. 17560	384	396	388	387.5	392.0	406.2
		8		1.58740		20069				410.6	415.3	430.4
A_{3}	8.84	9	1.67	1.68179	.22185	. 22577	426.7	440	431.1	435.0	440.0	456.0
		10		1.78180 1.88775		.25086 .27594				460.9 488.3	446.2	483.1
C_{3}	10.88 12.00	112	1.875 2.00	1.88775 2.00000	.27300 .30103	. 27594	480 512	495 528	485.0 517.3	$488 \cdot 3$ $517 \cdot 3$	493.9 523.2	511.8 542.3

TABLE 131.

TABLE 132. - A Fundamental Tone, Its Harmonics (Overtones) and the Nearest Tone of the Equal-tempered Scale.

Note. - Overtones of frequencies not exact multiples of the fundamental are sometimes called inharmonic partials.

TABLE 133. - Relative Strength of the Partials in Various Musical Instruments.

The values given are for tones of medium loudness. Individual tones vary greatly in quality and, therefore, in loudness.

Instrument.	Strength of partials in per cent of total tone strength.											
	1	2	3	4	5	6	7	8	9	10	II	12
Tuning fork on box..	100	-	-		-	-	-	-	-	-	-	-
Flute.	66	24	4	6	-	-	-	-	-	-	-	-
Violin, A string	26	25	9	10	27	I	\bigcirc	2	-	-	-	-
Oboe.	2	2	4	29	35	14	4	2	3	4	1	0
Clarinet.	12	-	10	3	5	-	8	18	15	18	5	6
Horn.	36	26	17	7	4	3	2	1	1	1	1	1
Trombone.........	6	II	35	12	8	II	6	4	3	2	1	1

TABLE 134. - Characteristics of the Vowels.

The larynx generates a fundamental tone of a chosen pitch with some 20 partials, usually of low intensity. The particular partial, or partials, most nearly in unison with the mouth cavity is greatly strengthened by resonance. Each vowel, for a given mouth, is characterized by a particular fixed pitch, or pitches, of resonance corresponding to that vowel's definite form of mouth cavity. These pitches may be judged by whispering the vowels. It is difficult to sing vowels true above the corresponding pitches. The greater part of the energy or loudness of a vowel of a chosen pitch is in those partials reinforced by resonance. The vowels may be divided into two classes, - the first having one characteristic resonance region, the second, two. The representative pitches of maximum resonance of a mouth cavity for selected vowels in each group are given in the following table.

TABLE 135.- Miscellaneous Sound Data.

Koenig's temperature coefficient for the frequency (n) of forks is nearly the same for all pitches. $n_{t}=$ $n_{0}\left(\mathrm{I}-0.00011 t^{\circ} \mathrm{C}\right)$, Ann. d. Phys. 9, p. 408 , 1880 .

Vibration frequencies for continuous sound sensations are practically the same as for continuous light sensation, 10 or more per second. Helmholtz' value of 32 per sec. may be taken as the flicker value for the ear. Moving pictures use 16 or more per sec. For light the number varies with the intensity.

Pitch limits of voice: 60 to 1200 vibrations per second.
Piano pitch limits: 27.2 to 4138.4 v . per sec. (over 7 octaves).
Organ pitch limits: 16 (32 ft . pipe), sometimes 8 (64 ft .) to 4 I 38 ($\mathrm{r} \frac{1}{2} \mathrm{in}$.) (9 octaves).
Ear can detect frequencies of 20,000 to $30,000 \mathrm{v}$. per sec. Koenig, by means of dust figures, measured sounds from steel forks with frequencies up to 00,000 .

The quality of a musical tone depends solely on the number and relative strength of its partials (simple tones) and probably not at all on their phases.

The wave-lengths of sound issuing from a closed pipe of length L are $4 L, 4 L / 3,4 L / 5$, etc., and from an open pipe, $2 L, 2 L / 2,2 L / 3$, etc. The end correction for a pipe with a flange is such that the antinode is $0.82 \times$ radius of pipe beyond the end; with no flange the correction is $0.57 \times$ radius of pipe.

The energy of a pure sine wave is proportional to $n^{2} A^{2}$; the energy per cm^{3} is on the average $2 \rho \pi^{2} U^{2} A^{2} / \lambda^{2}$; the energy passing per sec. through $\mathrm{I} \mathrm{cm}^{2}$ perpendicular to direction of propagation is $2 \rho \pi^{2} U^{3} A^{2} / \lambda^{2}$; the pressure is $\frac{1}{2}(\gamma+\mathrm{r})$ (average energy per cm^{3}); where n is the vibration number per sec., λ the wave-length, A the amplitude, V the velocity of sound, ρ the density of the medium, γ the specific heat ratio. Altberg (Ann. d. Phys. II, p. 405, 1903) measured sound-wave pressures of the order of 0.24 dynes $/ \mathrm{cm}^{2}=0.00018 \mathrm{~mm} \mathrm{Hg}$.

Kinetics of Bodies in Resisting Medium.

The differential equation of a body falling in a resisting medium is $d u / d t=g-k u^{2}$. The velocity tends asymptotically to a certain terminal velocity, $V=\sqrt{g / k}$. Integration gives $u=$ $V \cdot \tanh (g t / V), x=\frac{V^{2}}{g} \log \cosh \left(g t / V^{\prime}\right)$ if $u=x=t=0$.
When body is projected upwards, $d u / d t=-g-k u^{2}$, and if u_{0} is velocity of projection, then $\tan ^{-1} u / V=\tan ^{-1}\left(u_{0} / V\right)-g t / V, x=\left(V^{2} / 2 g\right) \log \left(V^{2}+u_{0}^{2}\right)\left(V^{2}+u^{2}\right)$. The particle comes to rest when $t=(V / g) \tan ^{-1}\left(u_{0} / V\right)$ and $x=\left(V^{2} / 2 g\right) \log \left(\mathrm{I}-u_{0}{ }^{2} / V^{2}\right)$.

For small velocities the resistance is more nearly proportional to the velocity.
Stokes' Law for the rate of fall of a spherical drop of radius a under gravity g gives for the velocity, v,

$$
v=\frac{2 g a^{2}}{9 \eta}(\sigma-\rho),
$$

where σ and ρ are the densities of the drop and the medium, η the viscosity of the medium. This depends on five assumptions: (1) that the sphere is large compared to the inhomogeneities of the medium; (2) that it falls as in a medium of unlimited extent; (3) that it is smooth and rigid; (4) that there is no slipping of the medium over its surface; (5) that its velocity is so small that the resistance is all due to the viscosity of the medium and not to the inertia of the latter. Because of 5 , the law does not hold unless the radius of the sphere is small compared with $\eta / v \rho$ (critical radius). Arnold showed that a must be less than 0.6 this radius.

If the medium is contained in a circular cylinder of radius R and length L, Ladenburg showed that the following formula is applicable (Ann. d. Phys. 22, 287, 1907, 23, 447, 1908):

$$
V=\frac{2}{9} \frac{g a^{2}(\sigma}{\eta(\mathrm{I}+2 \cdot 4 a / R)} \frac{-\rho)}{(\mathrm{I}+3 \cdot \mathrm{I} a / L)}
$$

As the spheres diminish in size the medium behaves as if inhomogeneous because of its molecular structure, and the velocity becomes a function of l / a, where l is the mean free path of the molecules. Stokes' formula should then be modified by the addition of a factor, viz.:

$$
v_{1}=\frac{2}{9} \frac{g a^{2}}{\eta}(\sigma-\rho)\left\{1+\left(0.864+0.29 e^{-1.25(a / l))} \frac{l}{a}\right\}\right.
$$

(See chapter V, Millikan, The Electron, 1917 ; also Physical Review 15, p. 545, 1920.)

TABLE 137. - Flow of Gases through Tubes.*

When the dimensions of a tube are comparable with the mean free path (L) of the molecules of a gas, Knudsen (Ann. der Phys. 28, 75, 199, 1908) derives the following equation correct to 5% even when $D / L=0.4: Q$, the quantity of gas in terms of $P V$ which flows in a second through a tube of diameter D, length l, connecting two vessels at low pressure, difference of pressure $P_{2}-P_{1}$, equals $\left(P_{2}-P_{1}\right) / W \sqrt{\rho}$ where ρ is the density of the gas at one bar (1 dyne $/ \mathrm{cm}^{2}$) $=(\mathrm{mo}-$ lecular weight $) /\left(83.15 \times 10^{6} 7\right)$ and W; which is of the nature of a resistance, $=2.3941 / / D^{3}+$ 3.184/ D^{2}. The following table gives the cm^{3} of air and H at a bar which would flow through different sized tubes, difference of pressure I bar, room temperature.

$l=1 \mathrm{~cm}$.	$D=1 \mathrm{~cm}$.	$W=5.58$	$Q, \mathrm{~cm}^{3}$ of air, 5200.	cm^{8} of $H_{2}, 19700$.
10	1	27.1	1070.	4050.
1	0.1	2710.	10.7	40.5
10	0.1	24300.	1.20	3.60

Knudsen derives the following equation, equivalent to Poiseuille's at higher, and to the above at lower pressures:
$Q=\left(P_{2}-P_{1}\right)\left\{a P+b\left(1+c_{1} P\right) /\left(1+c_{2} P\right)\right\}$ where $a=\pi D^{4} / \mathbf{1} 28 \eta l$ (Poiseuille's constant) $; b=$ $1 / W \sqrt{\rho} \bar{\rho}$, (coefficient of molecular flow); $c_{1}=\sqrt{\rho} D / \eta ;$ and $c_{2}=1.24 \sqrt{\bar{\rho}} D / \eta ; \eta=$ viscosity coefficient. The following are the volumes in cm^{3} at i bar, $20^{\circ} \mathrm{C}$, that flow through tube, $D=1 \mathrm{~cm}$, $l=10 \mathrm{~cm}, P_{2}-P_{1}=1$ bar, average pressure of P bars:

$$
\begin{array}{cccccc}
P=10.6 & Q=13,000,000 . & P=5 . & Q=1026 . & P=1 . & Q=1044 . \mathrm{cm}^{8} \\
100 . & 2,227 . & 4 . & 1024 . & 0.1 & 1065 . \\
10 . & 1,058 . & 3 . & 1025 . & 0.01 & 1070 .
\end{array}
$$

When the velocity of flow is below a critical value, F (density, viscosity, diameter of tube), the stream lines are parallel to the axis of the tube. Above this critical velocity, V_{o}, the flow is turbulent. $V_{0}=\mathrm{k} \eta$ pr for small pipes up to about 5 cm diameter, wherc K is a constant, and r the tube radius. When these are in cgs units, k is 10^{3} in round numbers. Below V_{c} the pressure drop along the tube is proportional to the velocity of gas flow; above it to the square of the velocity.

[^21]TAbles 138-139.

AERODYNAMICS.

TABLE 138. - Air Pressures upon Large Square Normal Planes at Different Speeds through the Air.

The resistance F of a body of fixed shape and presentation moving through a fluid may be written

$$
F=\rho L^{2} V^{2} f(L V / \nu)
$$

in which ρ denotes the fluid density, ν the kinematic viscosity, L a linear dimension of the body, V the speed of translation. In general f is not constant, even for constant conditions of the fluid, but is practically so for normal impact on a plane of fixed size. In the following, ρ is taken as $1.230 \mathrm{~g} / \mathrm{l}\left(.0768 \mathrm{lbs} . / \mathrm{ft}^{3}\right)$.

The mean pressure on thin square plates of I.I m^{2} (I2 ft^{2}), or over, moving normally through air of standard density at ordinary transportation speeds may be written $P=.0060 v^{2}$ for P in kg per m^{2} and v in km per hour, or $P=.0032 v^{2}$ for P in lbs. per ft^{2} and v in miles per hour. The following values are computed from this formula. For smaller areas the correction factors as given in the succeeding table (Table 139) derived from experiments made at the British National Physical Laboratory, may be applied.

Units: the first of each group of three columns gives the velocity; the second, the corresponding pressure in $\mathrm{kg} / \mathrm{m}^{2}$ when the first column is taken as km per hour; the third in $\mathrm{pds} / \mathrm{ft}{ }^{2}$ when in miles per hour.

Velocity.	Pressure.		Velocity.	Pressure.		Velocity.	Pressure.		Velocity.	Pressure.	
	Metric.	English.		Metric.	English.		Metric.	English.		Metric.	English.
10	0.60	0.32	40	9.60	5.12	70	29.4	15.7	100	60.0	32.0
15	0.73	0.39	4 I	10.09	5.38	71	30.2	${ }^{16.1}$	IOI	6 I .2	32.6
12	0.86	0.46	42	10.58	5.64	72	31.1	16.6	102	62.4	33.3
13	1.01	-. 54	43	11.09	5.92	73	32.0	17.0	103	63.7	33.9
14	1. 18	0.63	44	11.6	6.20	74	32.8	17.5	104	64.9	34.6
15	1.35	0.72	45	12.1	6.48	75	33.7	18.0	105	66.1	35.3
16	I. 54	0.82	46	12.7	6.77	76	34.7	18.5	106	67.4	36.0
17	$\underline{1.73}$	0.92	47	13.3	7.07	77	35.6	19.0	107	68.7	36.6
18	1.94	1.04	48	13.8	7.37	78	36.5	19.5	108	70.0	37.2
19	2.17	1.16	49	14.4	7.68	79	37.4	20.0	109	71.3	38.0
20	2.40	I. 28	50	15.0	8.00	80	38.4	20.5	110	72.6	38.7
21	2.65	I. 41	51	15.6	8.32	8 I	39.4	21.0	III	73.9	39.4
22	2.90	I. 55	52	16.2	8.65	82	40.3	21.5	112	75.3	40.1
23	3.17	1. 69	53	16.9	8.99	83	$4 \mathrm{4} \cdot 3$	22.0	I13	76.6	40.9
24	3.46	1.84	54	17.5	9.33	84	42.3	22.6	114	78.0	41.6
25	3.75 4.06	2.00	55	18.1	9.68		43.3	23.1	115	79.3	42.3
26	4.06	2.16	56	18.8	10.04	86	44.4	23.7	116	80.8	43.1
27	4.37	2.33	57	19.5	10.40	87	45.4	24.2	117	82.1	43.7
28	4.70	2.51	58	20.2	10. 76	88	46.4	24.8	118	83.5	44.6
29	5.05	2.69	59	20.9	II. 14	89	47.5	25.4	119	84.9	45.3
30	5.40	2.88	60	21.6	11.52	90	48.6	25.9	120	86.4	46.1
31	5.77	3.08	61	22.3	11.91	9 I	49.7	26.5	121	87.8	46.8
32	6.14	3.28	${ }_{6}^{62}$	23.0	12.3	92	50.8	27.1	122	89.3	47.6
33	6.54	3.48	63	23.8	12.7	93	51.9	27.7	123	90.8	48.4
34	6.93	3.70	64	24.6	13.1	94	53.0	28.3	124	92.2	49.2
35 36	7.35	3.92 4.15	65	25.4 26.2	13.5 13.9	95 96	54.2	28.9	125	93.7	50.0 50.8
36	7.74	4.15	66	26.2	13.9	96	55.3	29.5	126	95.3	50.8
37 38	8.22 8.66	4.38 4.62	67 68	26.9 27.7	14.4 14.8 1.8	97 98	56.5 57.6	30.7 30.7 3.7	127 128	96.8 98.4	51.6 52.5
39	9.12	4.87	69	28.6	I5.2	99	58.8	31.7 31.4	128 129	98.4 98.7	52.5 53.2

TABLE 139. - Correction Factor for Small Square Normal Planes.
The values of Table 138 are to be multiplied by the following factors when the area of the surface is less than about $1 \mathrm{~m}^{2}$ ($\mathrm{I} 2 \mathrm{ft}^{2}$).

Metric.				English.			
Area. m ${ }^{2}$	Factor.	Area. m²	Factor.	Area. ft ${ }^{2}$	Factor.	Area. ft^{2}	Factor
0.03	0.845	5.0	0.969	0.03	0.842	5.0	0. 968
0.10	0.859	6.0	0.975	-. 10	0.857	6.0	0.973
0.50	0.884	7.0	0.979	0.50	0.884	7.0	0.977
0.75	-. 890	8.0	0.984	0.75	0.889	8.0	0.981
1. 00	0.898	9.0	0.989	$1 . \infty$	0.896	9.0	0.986
2.00	0.919	10.0	0.993	2.00	0.917	10.0	-. 990
3.00	0.933	11.0	0.999	3.00	0.930	11.0	-0.994
$4 . \infty$	0.950	12.0	1.000	4.00	0.943	12.0	1.000

Smithsonian Tables.

TABLE 140. - Effect of Aspect Ratio upon Normal Plane Pressure (Eiffel).
The mean pressure on a rectangular plane varies with the "aspect ratio," a name introduced by Langley to denote the ratio of the length of the leading edge to the chord length. The effect of aspect ratio on normally moving rectangular plates is given in the following table, derived from Eiffel's experiments.

TABLE 141. - Ratio of Pressures on Inclined and Normal Planes.
The pressure on a slightly inclined plane is proportional to the angle of incidence a, and is given by the formula $P_{a}=c \cdot P_{90} \cdot a$. The value of c, which is constant for incidences up to about 12°, is given for various aspect ratios. The angle of incidence is taken in degrees.

TABLE 142. - Skin Friction.

The skin friction on an even rectangular plate moving edgewise through ordinary air is given by Zahm's equation,

$$
\begin{aligned}
& F\left(\mathrm{~kg} / \mathrm{m}^{2}\right)=0.00030\left\{A\left(\mathrm{~m}^{2}\right)\right\}^{0.93}\{V(\mathrm{~km} / \mathrm{hr})\}^{1.86} \mathrm{in} \text { metric units } \\
& F\left(\mathrm{pds} . / \mathrm{ft}{ }^{2}\right)=0.0000082\left\{A\left(\mathrm{ft}{ }^{2}\right)\right\}^{0.93}\{V(\mathrm{ft} . / \mathrm{sec} .)\}^{1.86},
\end{aligned}
$$

where A is the surface area and V the speed of the plane. The following table gives the friction per unit area on one side of a plate.

Speed.	Skin friction. Kg per sq. m. Plane.		Speed.		Skin friction. Lbs. per sq. ft. Plane.	
$\mathrm{km} / \mathrm{hr}$.	I m long.	32 m long.	miles/hr.	ft . $/ \mathrm{sec}$.	ff . long.	32 ft . long.
5	0.0059	0.0047	5	$7 \cdot 3$	0.00033	0.00026
10	0.0217	0.0171	10	14.7	0.0012 I	0.00095
15	0.0464	0.0364	15	22.0	0.00258	0.00202
20	0.079	0.062	20	29.3	0.00439	0.00345
25	O. 122	0.095	25	36.7	0.0068	0.00530
30	-. 169	-. 133	30	44.0	0.0094	0.0074
40	-. 288	0.225	40	58.7	0.0160	0.0125
50	0.439	0.346	50	$73 \cdot 3$	0.0244	0.0192
60	0.616	0.482	60	88.0	0.0342	0.0268
70	0.82	0.64	70	102.7	0.0455	0.0357
80	I. 06	0.83	80	117.3	0.0587	0.0461
90	1. 31	1.03	90	132.0	0.073	0.0572
100	I. 58	I. 24	100	146.7	0.088	0.069
110	I. 89	I. 49	110	161.2	0.105	0.083
120	2.20	I. 73	120	175.8	0. 122	0.096
125	2.39	1.87	125	183.4	-. 133	-. 104
130	2.56	2.01	130	190.5	-. 142	O. 112
135	2.68	2.10	135	197.8	-. 149	-. 117
140	2.94	2.31	140	205.4	-. 164	-. 128
145	3.15	2.47	145	212.5	-. 175	-. 137
150	$3 \cdot 37$	2.65	150	220.0	-. 188	-. 147

Tables 143-145.

 AERODYNAMICS.The following tables, based on Eiffel, show the variation of the resistance coefficient K, with the angle of impact i, the aspect (ratio of leading edge to chord length), shape and velocity V in the formula

$$
R\left(\mathrm{~kg} / \mathrm{m}^{2}\right)=K S\left(\mathrm{~m}^{2}\right)\{V(\mathrm{~m} / \mathrm{sec} .)\}^{2}
$$

The value of K for $\mathrm{km} /$ hour would be 0.77 times greater.
TABLE 143. - Variation of Air Resistance with Aspect and Angle.

Size of plane.	Aspect.	Values of i.								Max. ratio.	
		6°	10°	20°	30°	40°	45°	60°	75°	Value.	i.
		Values of $K i / K_{90}$.									
$15 \times 90 \mathrm{~cm}$.	$\frac{1}{6}$. 07	. 13	. 40	0.67	0.92	1.08	1.07	1. 03	1.07	60
$15 \times 45 \mathrm{~cm}$.	$\frac{1}{3}$. II	. 21	. 51	-. 89	1. 20	1.22	1.06	1.02	1.22	45
$25 \times 25 \mathrm{~cm}$..	1	. 20	. 36	. 80	I. 24	I. 17	1.08	1.03	1.02	1. 46	38
$30 \times 15 \mathrm{~cm}$.	2	. 26	. 43	. 91	0.72	0.79	0.82	0.90	0.97	0.91	20
$45 \times 15 \mathrm{~cm}$..	3	. 31	. 50	. 77	0.77	0.84	0.88	0.94	0.99	0.77	20
$90 \times 15 \mathrm{~cm}$.	6	. 37	. 58	. 70	0.78	0.84	0.88	0.93	0.98	0.69	15
$90 \times 10 \mathrm{~cm}$.	9	. 45	. 62	. 73	0.80	0.85	0.88	0.94	0.99		-

TABLE 144. - Variation of Air Resistance with Shape and Size.

Cylinder, base \perp to wind:
Diameter of base, 30 cm
Diameter of base, 15 cm

Length.	0 cm	$1 R^{*}$	$2 R^{*}$	$4 R^{*}$	$6 R^{*}$	$8 R^{*}$	$14 R^{*}$
$K=$.0675	.068	.055	.050	-	-	-
$K=$.066	.066	.055	.051	.051	.0515	.059

Cylinder, base || to wind: diameter base, 15 cm , length, $60 \mathrm{~cm} \mathrm{~K}=.040^{\circ}$ Cylinder, base |l to wind: diameter base, 3 cm , length, $100 \mathrm{~cm} K=.060$ Cone, angle 60°, diam. base, 40 cm , point to wind, solid
$K=.032$ Cone, angle 30°, diam. base, 40 cm , point to wind, solid
$K=.021$ Sphere, 25 cm diam.
Hemisphere, same diam., convex to wind
Hemisphere, same diam., concave to wind
$K=.011$

Sphero-conic body, diam, 20 cm , cone 20° point forward Sphero-conic body, diam., 20 cm , cone 20°, point to rear Cylinder, 120 cm long, spherical ends to wind
$K=.021$

The wind velocity for the values of this table was $10 \mathrm{~m} / \mathrm{sec}$.
Tables I43 and I44 were taken from "The Resistance of the Air and Aviation," Eiffel, translated by Hunsaker, igrz.

* In the case of these cylinders the percentages due to skin friction are $2,3,6,8$, ri and 16 per cent respectively, excluding the disk.

TABLE 145. - Variation of Air Resistance with Shape, Size and Speed.

This table shows the peculiar drop in air resistance for speeds greater than 4 to 12 meters per second. Another change occurs when the velocity approaches that of sound.

Shape.		Values of K.									
Shape.	Speed, m/sec.	4	6	8	10	12	14	16	20	32	
Sphere, 16.2 cm diameter		33	030	. 028	. 027	. 02	. 009	0095	010	OII	
Sphere, 24.4 cm diameter		. 025	. 025	. 021	. 013	. 010	. 10	. 010	. 010	. 010	
Sphere, 33 cm diameter . .		. 023	. 017	. 012	. 010	. 010	. 010	. OII	. 012	. 012	
Concave cup, 25 cm dia		. 090	. 090	. 089	. 087	. 087	. 088	. 089	. 095	. 100	
Convex cup, 25 cm diam		. 027	. 022	. 021	. 022	. 022	. 021	. 020	. 019	. 018	
Disk, 25 cm diameter071	. 070	. 070	. 070	. 070	. 070	. 070	. 070	. 068	
Cylinderelementto wind, $d=15 \mathrm{~cm}, l=15.0$. 043	. 042	. 037	. 030	. 025	. 022	02	. 022	. 022	
element $\frac{1}{\text { to wind, }} 30$ l 30.0		. $0+45$. 032	. 027	. 023	. 024	. 025	. 025	. 025	. 023	
element \perp to wind, $\quad 15$. 035	. 034	. 032	. 031	. 031	. 031	. 030	.030	. 030	
element \perp to wind, 15 I 52.0		. 038	. 037	. 036	. 032	. 030	. 028	. 027	. 025	. 025	
element \perp to wind, element \|	to wind,	522.5	. 042	. 041	. 038	. 034	. 031	. 028	. 025	. 022	. 020
	105.0	. 069	. 061	. 057	. 055	. 053	.052	.051	.051	. 050	
Spherical ends,	20.0	. 024	. 022	. 019	. 018	. 018	. 018	. 017	. 016	. 015	

Taken from "Nouvelles Recherches sur la résistance de l'air et l'aviation," Eiffel, 1914.
Smithsonian Tables.

The required force F necessary to just move an object along a horizontal plane $=f N$ where N is the normal pressure on the plane and f the "coefficient of friction." The angle of repose $\Phi(\tan \Phi=F / N)$ is the angle at which the plane must be tilted before the object will move from its own weight. The following table of coefficients was compiled by Rankine from the results of General Morin and other authorities and is sufficient for ordinary purposes.

Material.						f	$1 / f$	ϕ
						.25-.50	4.00-2.00	14.0-26.5
						.20 $.50-.60$	$\stackrel{5.00}{2.00-1.67}$	11.5 $26.5-31.0$
						.24-. 26	4.17-3.85	$13.5-14$
						. 20	5.00	II. 5
						.20-. 25	5.00-4.00	I 1.5-14.0
						. 53	1. 89	28.0
						. 33	3.00	18.5
						.27-.38	3.70-2.86	1 5.0-19.5
						. 56	$\begin{array}{r}1.79 \\ \hline 2.78\end{array}$	29.5
						- 36	2.78	20.0
						.23	$4 \cdot 35$	13.0
						. 15	6.67	8.5
						.15-.20	$6.67-5.00$ 3.33	8.5-11.5
						$\stackrel{.3}{.0} 7^{-.08}$	$3 \cdot 33$ $14.3-12.50$	16.5 $4.0-4.5$
						. 05	$14.3-12.50$ 20.00	$4.0-4.5$ 3.0
						.03-.036	33.3-27.6	1.75-2.0
						. 20	5.00	11.5
						. 107	9.35	6.1
						.30-.70	3.33-1.43	16.7-35.0
						About 40	2.50	22.0
						$.60-.70$.74	1. $67-1.43$ 1.35	33.0-35.0
						. 51	1.35 1.96	36.5 27.0
						.33	3.00	18.25
						.25-1.00	4.00-1.00	14.0-45.0
						. $3^{8-.} 75$	2.63-1. 33	21.0-37.0
						1.00	1.00	45.0
						. 31	3.23	17.0
						.81-I.11	1.23-0.9	$39.0-48.0$

[^22]
TABLE 147. - Lubricants.

The best lubricants are in general the following: Low temperatures, light mineral lubricating oils. Very great pressures, slow speeds, graphite, soapstone and other solid lubricants. Heavy pressures, slow speeds, ditto and lard, tallow and other greases. Heavy pressures and high speeds, sperm oil, castor oil, heavy mineral oils. Light pressures, high speeds, sperm, refined petroleum olive, rape, cottonseed. Ordinary machinery, lard oil, tallow oil, heavy mineral oils and the heavier vegetable oils. Steam cylinders, heavy mineral oils, lard, tallow. Watches and delicate mechanisms, clarified sperm, neat's-foot, porpoise, olive and light mineral lubricating oils.

TABLE 148. - Lubricants For Cutting Tools.

Material.	Turning.	Chucking.	Drilling.	Tapping Milling	Reaming.
Tool Steel, Soft Steel, Wrought iron Cast iron, brass Copper Glass	dry or oil dry or soda water dry or soda water dry dry turpentine or kerosene	oil or s. w. soda water soda water dry dry	oil oil or s. w. oil or s. w. dry dry	$\begin{aligned} & \text { oil } \\ & \text { oil } \\ & \text { oil } \\ & \text { dry } \\ & \text { dry } \end{aligned}$	lard oil lard oil lard oil dry mixture

Mixture $=1 / 3$ crude petroleum, $2 / 3$ lard oil. \quad Oil $=$ sperm or lard.
Tables 147 and 148 quoted from "Friction and Lost Work in Machinery and Mill Work," Thurston, Wiley and Sons.
Smithsonian Tables.

TABLE 149. - Viscosity of Fluids and Solids.

The coefficient of viscosity of a substance is the tangential force required to move a unit area of a plane surface with unit speed relative to another parallel plane surface from which it is separated by a layer a unit thick of the substance. Viscosity measures the temporary rigidity it gives to the substance. The viscosity of fluids is generally measured by the rate of flow of the fluid through a capillary tube the length of which is great in comparison with its diameter. The equation generally used is

$$
\mu, \text { the viscosity, }=\frac{\gamma \pi g d^{4} t}{I 28 Q(l+\lambda)}\left(h-\frac{m v^{2}}{g}\right),
$$

where γ is the density $\left(\mathrm{g} / \mathrm{cm}^{3}\right), d$ and l are the diameter and length in cm of the tube, Q the volume in cm^{3} discharged in t sec., λ the Couette correction which corrects the measured to the effective length of the tube, h the average head in cm, m the coefficient of kinetic energy correction, $m v^{2} / g$, necessary for the loss of energy due to turbulent in distinction from viscous flow, g being the acceleration of gravity ($\mathrm{cm} / \mathrm{sec} / \mathrm{sec}$), v the mean velocity in cm per sec. (See Technologic Paper of the Bureau of Standards, 100 and 112, Herschel, 1917-1918, for discussion of this correction and λ.)

The fluidity is the reciprocal of the absolute viscosity. The kinetic viscosity is the absolute viscosity divided by the density. Specific viscosity is the viscosity relative to that of some standard substance, generally water, at some definite temperature. The dimensions of viscosity are $M L^{-1} T^{-1}$. It is generally expressed in cgs units as dyne-seconds per cm^{2} or poises.

The viscosity of solids may be measured in relative terms by the damping of the oscillations of suspended wires (see Table 78). Ladenburg (Igo6) gives the viscosity of Venice turpentine at 18.3° as 1300 poises; Trouton and Andrews (1904) of pitch at $0^{\circ}, 51 \times 10^{10}$, at $15^{\circ}, 1.3 \times 10^{10}$; of shoemakers' wax at $8^{\circ}, 4.7 \times 10^{6}$; of soda glass at 575°, II $\times \mathrm{IO}^{12}$; Deeley (IgO 8) of glacier ice as $12 \times \mathrm{IO}^{13}$.

TABLE 150. - Viscosity of Water in Centipoises. Temperature Variation.
Bingham and Jackson, Bulletin Bureau of Standards, 14, 75, 1917.

${ }^{\circ} \mathrm{C}$.	Viscosity. cp	${ }^{\circ} \mathrm{C}$.	Vis- cosity. cp	${ }^{\circ} \mathrm{C}$.	Viscosity. cp	${ }^{\circ} \mathrm{C}$.	Viscosity. cp	${ }^{\circ} \mathrm{C}$.	$\begin{aligned} & \text { Vis- } \\ & \text { cosity. } \\ & \text { cp } \end{aligned}$	${ }^{\circ} \mathrm{C}$.	$\begin{aligned} & \text { Vis- } \\ & \text { cosity. } \\ & \text { cp } \end{aligned}$	${ }^{\circ} \mathrm{C}$.	Viscosity. cp
\bigcirc	1.7921	10	1. 3077	20	1.0050	30	0.8007	40	0.6560	50	0.5494	60	0.4688
I	1.7313	11	1.2713	21	0.9810	31	0.7840	41	0.6439	51	0.5404	65	0.4355
2	1. 6728	12	I. 2363	22	0.9579	32	0.7679	42	0.632 I	52	-. 5315	70	0.4061
3	x.619x	13	I. 2028	23	0.9358	33	0.7523	43	0.6207	53	0. 5229	75	0.3799°
4	1.5674	14	1.1709	24	0.9142	34	0.737I	44	0.6097	54	-. 5146	80	0.3565
5	1. 5188	15	r. 1404	25	0.8937	35	0.7225	45	0. 5988	55	0. 5064	85	0.3355
6	I. 4728	16	I. 1111	26	0.8737	36	0.7085	46	0.5883	56	0.4985	90	0.3165
7	I. 4284	17	I. 0828	27	0.8545	37	0.6947	47	O. 5782	57	0.4907	95	
8	1.3860	18	I. 0559	28	0.8360	38	0.6814	48	-0.5683	58	0.4832	100	-. 28388
9	1.3462	19	1.0299	29	0.8180	39	0.6685	49	0. 5588	59	0.4759	153.	0.181 *

TABLE 151. - Viscosity of Alcohol-water Mixtures in Centipoises. Temperature Variation.

${ }^{\circ} \mathrm{C}$.	Percentage by weight of ethyl alcohol.												
	\bigcirc	IO	20	30	39	40	45	50	60	70	80	90	100
\bigcirc	I. 792	3.311	5.319	6.94	7.25	7.14	6.94	6.58	5.75	4.762	3.690	2.732	1.773
5	T. 519	2.577	4.065	5.29	5.62	5.59	5.50	5.26	4.63	3.906	3.125	2.309	I. 623
10	1. 308	2.179	3.165	4.05	4.39	4.39	4.35	4.18	3.77	3.268	2.710	2.101	1. 466
15	I. 140	1.792	2.618	3.26	3.52	3.53	3.51	3.44	3.14	2.770	2.309	1.802	1.332
20	1.005	1. 538	2.183	2.71	2.88	2.91	2.88	2.87	2.67	2.370	2.008	1.610	I. 200
25	0.894	I. 323	x.815	2.18	2.35	2.35	2.39	2.40	2.24	2.037	1.748	1.424	1.096
30	0.801	I. 160	$\underline{1.553}$	1.87	2.00	2.02	2.02	2.02	1.93	1.767	I. 531	I. 279	1.003
35	0.722	1.006	I. 332	1. 58	1.71	1.72	1.73	1.72	1. 66	1. 529	I. 355	I. 147	0.914
40	0.656	0.907	I. 160	1. 368	1.473	1.482	I. 495	1. 499	I. 447	1.344	I. 203	1. 035	-. 834
45	0.599	0.812	1.015	I. 189	I. 284	I. 289	1.307	1.294	1.271	r.189	1.081	0.939	0.764
50	0.549	0.734	0.907	1.050	1.124	1.132	1. 148	I. 155	1.127	1.062	0.968	0.848	0.702
60	0.469	0.609	0.736	0.834	0.885	0.893	0.907	0.913	0.902	0.856	0.789	0.704	0. 592
70	0.406	0.514	0.608	0.683	0.725	0.727	0.740	0.740	0.729	0.695	0.650	0.589	0.504
80	0.356	0.430	0.505	0.567	0.598	0.601	0.609	0.612	0.604				

TABLE 152．－Viscosity and Density of Sucrose in Aqueous Solution．
See Scientific Paper 298，Bingham and Jackson，Bureau of Standards，1917，and Technologic Paper 100，Herschel，Bureau of Standards， 1917.

Tempera－ ture．	Viscosity in centipoises．				Density $d_{4}{ }^{t}$ ．			
	Per cent sucrose by weight．				Per cent sucrose by weight．			
	－	20	40	60	\bigcirc	20	40	60
$0^{\circ} \mathrm{C}$	1.7921	3．804	14.77	238.	0.99987	1． 08546	1． 18349	I． 29560
5	1．5188	3.154	11.56	156.	－． 99999	I． 08460	1．18192	I． 29341
10	1．3077	2.652	9.794	109.8	0.99973	1． 08353	1． 18020	I． 29117
15	I． 1404	2.267	7.468	74.6	－．99913	1．08233	1． 17837	I． 28884
20	1.0050	I． 960	6.200	56.5	0.99823	1.08094	1． 17648	I． 28644
30	0． 8007	1． 504	$4 \cdot 382$	33.78	0.99568	1.07767	1． 17214	1． 28144
40	0.6560	I． 193	3.249	21.28	0.99225	1.07366	1． 16759	1． 27615
50	0． 5494	0.970	2.497	14.01	0.98807	I． 06898	I． 16248	1． 27058
60	0． 4688	0.808	I． 982	9.83	0.98330	1．06358	I． 15693	I． 26468
$\begin{aligned} & 70 \\ & 80 \end{aligned}$	0． 4061	0.685	I． 608	7.15				
	0.3565	0.590	1.334	5.40	Densities due to Plato．			

TABLE 153．－Viscosity and Density of Glycerol in Aqueous Solution（ $20^{\circ} \mathrm{C}$ ）．

Glycerol．	Den－ sity． $\mathrm{g} / \mathrm{cm}^{3}$	Viscos－ ity in centi－ poises．	$100 \times$ Kine－ matic viscos－ ity．	$\stackrel{\%}{\%}$ erol.	$\begin{gathered} \text { Den- } \\ \text { sity. } \\ \mathrm{g} / \mathrm{cm}^{3} \end{gathered}$	Viscos－ ity in centi－ poises．	$\begin{array}{\|c\|} \hline \text { 1oo } X \\ \text { Kine- } \\ \text { matic } \\ \text { viscos- } \\ \text { ity. } \end{array}$	$\begin{aligned} & \% \\ & \text { Glyc- } \\ & \text { erol. } \end{aligned}$	Den－ sity． $\mathrm{g} / \mathrm{cm}^{3}$	Viscos－ ity in centi－ poises．	$100 \times$ Kine－ matic viscos－ ity．
5	1． 00098	1． 181	1.170	35	1． 0855	3．115	2.870	65	I． 1662	14.51	12.44
10	1．0217	1． 364	1．335	40	1.0989	3.791	3.450	70	I． 1797	21.49	18.22
15	1． 0337	I． 580	I． 529	45	I． 1124	4.692	4．218	75	I． 1932	33.71	28.25
20	I． 0461	1．846	1．765	50	1． 1258	5.908	5．248	80	I． 2066	$55 \cdot 34$	45.86
25	1． 0590	2.176	2.055	55	I． 1393	7.664	6.727	85	I． 2201	102.5	84.01
30	I． 0720	2.585	2.411	60	I． 1528	10.31	8.943	90	I． 2335	207.6	168.3

The kinematic viscosity is the ordinary viscosity in cgs units（poises）divided by the density．
TABLE 154．－Viscosity and Density of Castor Oil（Temperature Variation）．

${ }^{\circ} \mathrm{C}$	N			${ }^{\circ} \mathrm{C}$	苞范范		管言	${ }^{\circ} \mathrm{C}$				${ }^{\circ} \mathrm{C}$			
5	． 9707	37.6	38.7	14	． 9645	16.61	17.22	23	． 9583	7.67	8.00	32	． 9520	3.94	4.14
6	． 9700	34.5	35.5	15	． 9638	15.14	15.71	24	． 9576	7.06	7.37	33	． 9513	3.65	3.84
7	． 9693	31.6	32.6	I6	． 9631	13.80	14.33	25	． 9569	6.51	6.80	34	． 9506	3.40	$3 \cdot{ }^{8}$
8	． 9686	28.9	29.8	17	． 9624	12.65	13．14	26	． 9562	6.04	6.32	35	． 9499	3.16	$3 \cdot 33$
9	． 9679	26.4	27.3	18	． 9617	11.62	12.09	27	． 9555	5.61	5.87	36	． 9492	2.94	3.10
10	． 9672	24.2	25.0	19	． 9610	10.71	II．I5	28	． 9548	5.21	5.46	37	． 9485	2.74	2.89
11	． 9665		22.8	20	． 9603	9.86	10.27	29	． 9541	4.85	5.08	38	． 9478	2.58	2.72
12	.9659	20． 1	20.8	21	． 9596	9.06		30	． 9534	$4 \cdot 51$	4.73	39	． 9471	2.44	2.58
13	．96．52	18.2	18.9	22	． 9589	8.34	8.70	31	． 9527	4.21	4.42	40	． 9464	2.31	2.44

Tables 153 and 154，taken from Technologic Paper 112，Bureau of Standards，1918．Glycerol data due to Archbutt，Deeley and Gerlach；Castor Oil to Kahlbaum and Räber．See preceding table for definition of kinematic viscosity．Archbutt and Deeley give for the density and viscosity of castor oil at $65.6^{\circ} \mathrm{C}, 0.9284$ and 0.605 ，respectively；at $100^{\circ} \mathrm{C}, 0.9050$ and 0.169 ．
SMITHSONIAN TABLES．

VISCOSITY OF LIQUIDS.
Viscosities are given in cgs units, dyne-seconds per cm^{2}, or poises.

Liquid.	${ }^{\circ} \mathrm{C}$	Viscosity.	Reference.	Liquid.	${ }^{\circ} \mathrm{C}$	Viscosity.	Reference
Acetaldehyde.	0.	0.00275	1	* Dark cylinder	37.8	7.324	10
,	10.	0.00252 0.00231	I	*"Extra L. L. ${ }^{\text {\% }}$.	100.8 37.8	0.341 11.156	10
Air	-192.3	0.00172	2		37.8 100.0	11.156 0.451	10
Anilin	20.	0.04467	3	Linseed . $925 \ddagger$	30.	0.331	9
	60.	0.0156	3	" . $922 .$.	50.	0.176	9
Bismuth	285.	0.0161	4	" ${ }^{\text {ar }}$	90.	0.071	9
	365.	0. 0146	4	Olive .9195	10.	1. 38	1
Copal lac Glycerine	${ }_{22}^{22.8}$	4.80 42.2	5		15.	1.075	11
Glycerine	2.8 14.3	42.2 13.87	6	" ${ }^{\text {، }} 919065$	20. 30.	0.840 0.540	11
" ${ }^{\text {a }}$,	20.3	8.30	6	"، . 9000	40.	-. 363	II
80.31 H	26.5	4.94	6	"، . 8935	50.	-. 258	11
"، $80.3 \mathrm{I} \% \mathrm{H}_{2} \mathrm{O} .$.	8.5	1.021	6	. 8800	70.	-. 124	11
" $64.05 \% \mathrm{H}_{2} \mathrm{O} .$.	8.5	0.222	6	\dagger Rape.	15.6	1.118	10
" ${ }^{\text {\% }}$, $49.79 \% \mathrm{H}_{2} \mathrm{O} .$.	8.5	0.092	6		37.8	0.422	10
Hydrogen, liquid	-	0.00011	2		100.0	-0.080	10
Menthol, solid.	14.9 34.9	2×10^{12} 0.069	7	" ${ }^{\text {a }}$ (another)	15.6 100.0	1.176 0.085	10
Mercury	- 20.	0.018	8	Soya bean . $919 \pm$	100.0 30.0	0.085 0.406	10
	-.	0.01661	4	"، " . 915.	50.0	-. 206	9
,	20.	0.01547	4	" " . 906	90.0	0.078	9
	34.	0.01476	4	† Sperm.	15.6	0.420	10
"	98.	0.01263	4		37.8	0. 185	10
"	193.	0.01079	4		100.0	0.046	10
Oils:	299.	0.00975	4	Paraffins: Pentane.	21.0	0.0026	12
Dogfish-liver ${ }_{6} .923 \ddagger \ldots$	30.	0.414	9	Hexane.	23.7	0.0033	12
"، " . 918.	50.	0. 211	9	Heptane	24.0	0.0045	12
" " . 908	90.	0.080	9	Octane.	22.2	0.0053	12
Linseed . 925.	30.	-0.331	9	Nonane	22.3	0.0062	12
" 922	50.	0.176	9	Decane.	22.3	0.0077	12
		0.071		Undecane.	22.7	0.0095	12
* Spindle oil ${ }_{\text {c/ }} 885$	15.6	0.453	10	Dodecane	23.3	0.0126	12
	37.8	0.162	10	Tridecane.	23.3	0.0155	12
	100.0	0.033	10	Tetradecane	21.9	0.0213	12
* Light machinery				Pentadecane	22.0	0.0281	12
	15.6	1. 138	10	Hexadecane	22.2	-. 0359	12
* Light marhinery....	37.8	-. 342	10	Phenol.	18.3	0. 1274	13
* "Solar red" engine..	100.0 15.6	0.049 1.915	10	Sulphur	90.0 170.	0.0126 320.0	13
	37.8	0.496	10		180.	550.0	14
	100.0	-0.058	10	,	187.	560.0	14
* " Bayonne" engine..	15.6	2.172	10	"	200.	500.0	14
	37.8	0.572	10	"	250.	104.0	14
*	100.0	0.063	10	"	300.	24.0	14
*" Queen's red" engine	15.6	2.995	10	"	340.	6.2	14
	37.8	0.711	10	,	380.	2.5	14
	100.0	0.070	10	,	420.	1.13	14
* " Galena" axle oil ..	15.6	4.366	10		448.	0.80	14
	37.8	- 0.909	10	\dagger Tallow	66.	0.176	10
* Heavy machinery ...	15.6	6.606	10		100.	0.078	10
	37.8	1. 274 2.406	10	Zinc.	280.	0.0168	4
* Filtered cylinder....	37.8 100.0	2.406 0.187	10	.	357. 389.	0.0142 0.0131	
* Dark cylinder......	37.8	4.224	10				
	100.0	0. 240	10				

* American mineral oils; based on water as . 01028 at $20^{\circ} \mathrm{C}$. \dagger Based on water as per ist footnote. \ddagger Densities.

References: (1) Thorpe and Rodger, 1894-7; (2) Verschaffelt, Sc. Ab. 1917; (3) Wijkander, 1879; (4) Plüss. Z. An. Ch. 93, 1915; (5) Metz, C. R. 1903; (6) Schöttner, Wien. Ber. 77, 1878, 79, 1879; (7) Heydweiller, W. Ann. 63, 1897; (8) Koch, W. Ann. 14, 1881; (9) White, Bul. Bur. Fish. 32, 1912; (10) Archbutt-Deeley, Lubrication and Lubricants, 1912; (II) Higgins, Nat. Phys. Lab. II, 1914; (12) Bartolli, Stracciati, 1885-6; (13) Scarpa, 1903-4; (I4) Rotinganz, Z. Ph. Ch. 62, Igo8.

VISCOSITY OF LIQUIDS.

Compiled from Landolt and Börnstein, 1912. Based principally on work of Thorpe and Rogers, 1894-97. Viscosity given in centipoises. One centipoise $=0.01$ dyne-second per cm^{2}.

Liquid.	Viscosity in centipoises.								
	Formula.	$0^{\circ} \mathrm{C}$	$10^{\circ} \mathrm{C}$	$20^{\circ} \mathrm{C}$	$30^{\circ} \mathrm{C}$	$40^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$	$100^{\circ} \mathrm{C}$
Acids: Formic	$\mathrm{CH}_{2} \mathrm{O}_{2}$	solid	2.247	1. 784	I. 460	I. 219	1.036	. 780	. 549
Acetic.	$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$	solid	solid	I. 222	I. 040	0.905	-. 796	. 631	. 465
Propioni	$\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{2}$	1.52 I	I. 289	I. 102	0.960	-. 845	-. 752	. 607	. 459
Butyric	$\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$	2.286	I. 85 I	I. 540	I. 304	I . 120	0.975	. 760	-55I
i-Butyric	$\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$	1.887	I. 568	1.318	I. I 29	0.980	0.862	. 683	501
Alcohols: Methy	$\mathrm{CH}_{4} \mathrm{O}$	-.817	0.690	-. 596	0. 520	0.456	0.403	-	-
Ethyl *	$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$	1.772	I . 466	I. 200	I. 003	-. 834	0. 702	. 510	-
Allyl	$\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$	2.145	I. 705	1. 363	I. 168	0.914	-. 763	- 553	-
Propy	$\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$	3.883	2.918	2.256	I. 779	I. 405	I. 130	. 760	-
i-Propy	$\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$	4.565	3.246	2.370	I. 757	I. 33 I	1.029	. 646	-
Butyric	$\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$	5.186	3.873	2.948	2.267	1. 782	I. 411	. 930	540
i-Butyri	$\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$	8.038	$5 \cdot 548$	3.907	2.864	2.122	1.611	-	. 527
Amyl, op. a	$\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}$	11.129	7.425	5.092	$3 \cdot 594$	2.607	1.937	-	. 610
Amyl, op. inac	$\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}$	8.532	6.000	4.342	3.207	2.415	I. 851	-	. 632
Aromatics: Benz	$\mathrm{C}_{6} \mathrm{H}_{6}$	0.906	0. 763	-. 654	-. 567	-. 498	0. 444	. 359	-
Toluene	$\mathrm{C}_{7} \mathrm{H}_{8}$	0.772	0.671	-. 590	-. 525	0.471	0.426	. 354	. 278
Ethylbenzo	$\mathrm{C}_{8} \mathrm{H}_{10}$	0.877	0. 761	0.669	-. 594	-. 53 I	0.479	. 397	. 310
Orthoxylene	$\mathrm{C}_{8} \mathrm{H}_{10}$	I. 105	-. 937	0.810	-. 709	0.627	-. 560	. 45^{8}	. 352
Metaxylen	$\mathrm{C}_{8} \mathrm{H}_{10}$	0.806	0.702	0.620	-. 552	0.497	0.451	- 375	. 296
Paraxylene	$\mathrm{C}_{8} \mathrm{H}_{10}$	solid	0.738	0.648	-. 574	0.513	0.463	- 383	- 300
Bromides: Ethyl	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}$	0.487	0.44 I	0.402	0. 368	-	-	-	-
Propy	$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{Br}$	0.651	-. 582	-. 524	0.475	0.433	0.397	. 338	-
i-Propy	$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{Br}$	0.6 II	-. 545	-. 489	0.443	0.403	-. 368	-	-
Allyl.	$\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{Br}$	0.626	0. 560	-. 504	-. 458	0.419	-. 384	. 328	-
Ethylen	$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Br}$	2.438	2.039	I. 721	I. 475	I. 286	1. 131	. 903	678
Bromine.	${ }^{\mathrm{Br}}$	1. 267	I . 120	I. 005	0.911	0.830	-. 761	-	-
Chlorides: Prop	$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{Cl}$	0.442	-. 396	-. 359	-. 326	0. 299	-	-	-
Allyl.	$\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{Cl}$	0.413	-. 372	-. 337	0. 307	0. 282	-	-	-
Ethylen	$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}$	I. I32	0.966	-. 838	-. 736	0.652	0. 584	479	-
Chlorof	CHCl_{3}	0.706	-. 633	-. 571	-. 519	0.474	0.435	-	-
Carbon-tetra	CCl_{4}	I. 35 I	I. 138	0.975	-. 848	0. 746	0.662	. 534	-
Ethers: Diethyl	$\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$	-. 294	0. 268	-. 245	0. 223	-	-	-	-
Methyl-propyl	$\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$	-.314	-. 285	0. 260	-. 237	1	-	-	-
Ethyl-prop	$\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}$	0.402	0. 360	-. 324	-. 294	0. 268	0. 245	-	-
Dipropyl	$\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O}$	-. 544	-. 479	-. 425	-.381	-. 344	0.311	-	-
Esters: Methylformate	$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$	0.436	-. 391	-. 355	-. 325			-	-
Ethylformate	$\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$	0.510	-. 454	-. 408	-. 369	0.336	0.308	-	-
Methylacet	$\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{2}$	0.484	-. 431	-. 388	-. 35^{2}	-. 320	0. 293	-	-
Ethylaceta	$\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$	0. 5^{82}	- 512	0. 455	-. 407	-. 367	-. 333	. 279	-
Iodides: Methy	$\mathrm{CH}_{3} \mathrm{I}$	0.606	-. 548	0. 500	0. 460	0.424	-	-	-
Ethy	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{I}$	0.727	0.654	-. 592	- . 540	O. 495	0. 456	. 391	-
Propy	$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{I}$	0.944	0.833	-. 744	0. 669	-. 607	-. 552	. 466	- 371
Paraffines: Pentane	$\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{I}$	0.936	0.826	-. 734	0.660	-. 597	-. 544	. 458	365
i-Pentane.	$\mathrm{C}_{5} \mathrm{H}_{12}$	0.289 0.284	0. 262	0. 240	0. 220	-			
Hexan	$\mathrm{C}_{6} \mathrm{H}_{14}$	0.401	0.360	-. 326	0. 296	0.271	0.248		
i-He	$\mathrm{C}_{6} \mathrm{H}_{14}$	0.376	-. 338	-. 306	-. 279	-. 254	0.233	-	-
Heptan	$\mathrm{C}_{7} \mathrm{H}_{16}$	0.524	0.465	-. 416	-. 375	-. 341	-. 310	. 262	-
i-Hepta	$\mathrm{C}_{7} \mathrm{H}_{16}$	0.48 I	0. 428	-. 384	-. 347	-. 315	-. 288	. 243	-
Sulphide	$\mathrm{C}_{8} \mathrm{H}_{18}$	0.706	0.616	-. 542	0.483	-. 433 -	-.391	. 324	.252
Sulphides: Ethyl.	CS_{2}	0.438	0. 405	0. 376	0. 352	0. 330			-
Turpentine \dagger	${ }_{4}$	0.563 2.248	O. 501	0.450	0.407	-. 309	-. 338	287	
					1.27	1.071	-. 92	. 7	

[^23]Smithsonian Tables.

VISCOSITY OF SOLUTIONS.

This table is intended to show the effect of change of concentration and change of temperature on the viscosity of solutions of salts in water. The specific viscosity $\times 100$ is given for two or more densities and for several temperatures in the case of each solution. μ stands for specific viscosity, and t for temperature Centigrade.

Salt.	Percentage by weight of salt in solution.	Density	μ	t	μ	t	μ	t	μ	t	Authority.
$\underset{"}{\mathrm{BaCl}_{2}}$	7.60	-	77.9	10	44.0	30	35.2	50	-	-	Sprung.
	15.40	-	86.4	"	56.0	${ }^{6}$	39.6	\%	-	_	"،
	24.34	-	100.7	"	66.2	"	47.7	"	-	-	'
$\underset{\sim}{\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}}$	2.98	1.027	62.0	15	51.1	25	42.4	35	34.S	45	Wagner.
	5.24	1.051	68.1		54.2		44.1		36.9		
$\begin{gathered} \mathrm{CaCl}_{2} \\ " 6 \\ " 6 \end{gathered}$	15.17	-	110.9	10	71.3	30	50.3	50	-	-	Sprung.
	31.60	-	272.5	"	177.0		124.0		-	-	
	39.75	-	670.0	"	379.0	"	245.5	"	-	-	"
	44.09	-	-	-	593.1	"	363.2	،	-	-	"
$\underset{"}{\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}}$	$17 \cdot 55$	1.171	93.8	15	74.6	25	60.0	35	49.9	45	Wagner.
	30.10	1.274	144.1		I 12.7	،	90.7	"	75.1	"	
	40.13	1.386	242.6	"	217.1	"	I 56.5	"	128.1	"	"
$\underset{6}{\mathrm{CdCl}_{2}}$	11.09	1.109	77.5	15	60.5	25	49.1	35	40.7	45	"
	16.30	1.18I	88.9	،	70.5		57.5	"	47.2	،	،
	24.79	1. 320	104.0	"	80.4	"	64.6	"	53.6	"	"
$\underset{"}{\mathrm{Cd}(\underset{\mathrm{NO}}{3}})_{2}$	7.81	1.074	61.9	15	50.1	25	4 I .1	35	34.0	45	"
	15.71	I. 159	71.8	،	58.7		48.8	6	41.3		"
	22.36	1.241	85.1	"	69.0	"	57.3	،	47.5	"	\%
CdSO_{4}"	7.14	1.068	78.9	I5	6ı. 8	25	$49 \cdot 9$	35	41.3	45	"
	14.66	1.159	96.2	،	72.4	،	58.1	${ }_{6}$	48.8	،	"
	22.01	1.268	120.8	"	9 I .8	"	73.5	"	60.1	"	"
CoCl_{2}	7.97	1.081	83.0	15	65.1	25	53.6	35	44.9	45	"
	14.86	1.161	III. 6	،	85.1	،	73.7	،	58.8	. 6	"
	22.27	1.264	161.6	"	126.6	"	101.6	"	85.6	"	'
$\underset{" ،}{\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2}}$	8.28	1.073	$74 \cdot 7$	I 5	57.9	25	48.7	35	39.8	45	"
	15.96	1.144	87.0	، 6	69.2	،	55.4	"	44.9		"
	24.53	1.229	110.4	"	88.0	"	71.5	"	59.1	"	"
$\underset{\text { " }}{\mathrm{CoSO}_{4}}$	7.24	1.086	86.7	I5	68.7	25	55.0	35	45.I	45	"
	14.16	I.I 59	117.8	"	95.5	،	76.0		61.7	\%	،
	21.17	1.240	193.6	"	146.2	"	113.0	"	89.9	"	"
$\underset{\text { CuCl }}{2}$	12.01	I. 104	87.2	I 5	67.8	25	55.1	35	45.6	45	"
	21.35	I. 215	121.5	،	95.8	،	77.0	.	63.2		"
	33.03	1.331	178.4	*	137.2	"	107.6	"	87.1	،	"
$\underset{،}{\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}}$	18.99	1.177	97.3	15	76.0	25	61.5	35	51.3	45	"
	26.68	I. 264	126.2	${ }^{6}$	98.8	"	80.9	3.6	68.6	"	"
	46.71	1. 536	382.9	"	283.8	"	$215 \cdot 3$	"	172.2	"	"
CuSO_{4}	6.79	I. 055	79.6	15	61.8	25	49.8	35	4 I .4	45	"
	12.57	1.115	98.2	،	74.0	،	59.7	."	52.0	"	"
	17.49	1.163	124.5	"	96.8	"	75.9	"	61.8		"
HCl	8.14	1.037	71.0	15	57.9	25	$48 \cdot 3$	35	40. I	45	"
	16.12	1.084	80.0	،	66.5	،	56.4	3.	48.1	،	"
	23.04	I. 114	9 I .8	"	79.9	"	65.9	"	56.4	"	"
HgCl_{2}	0.23	1.002	-	-	58.5	20	46.8	30	38.3	40	"
	$3 \cdot 55$	1.033	76.75	10	59.2	"	46.6	"	38.3	"	،

VISCOSITY OF SOLUTIONS.

Salt.	Percentage by weight of salt in solution.	Density.	μ	t	μ	t	μ	t	μ	t	Authority.
HNO_{3}	8.37	ı. 067	66.4	15	54.8	25	45.4	35	37.6	45	Wagner.
	12.20	1.116	69.5	،	57.3	"	47.9	3	40.7	4	Wagner.
	28.31	1.178	So. 3	"	65.5	"	54.9	"	46.2	"	"
	7.87	1.065	77.8	15	61.0	25	50.0	35	41.7	45	"
	15.50	1.130	95.1		75.0	"	60.5	\%	49.8	"	"
	23.43	1.200	122.7	"	95.5	"	$77 \cdot 5$	،	$64 \cdot 3$	،	"
KCi	10.23	-	70.0	10	46.1	30	33.1	50	-	-	Sprung.
	22.21	-	70.0	"	48.6	"	36.4	"	-	-	"
$\begin{gathered} \mathrm{KBr} \\ " \\ \hline \end{gathered}$	14.02	-	67.6	10	44.8	30.	32.1	50	-	-	"
	23.16	-	66.2	"	44.7		33.2	"	-	-	"
	34.64	-	66.6	"	47.0	"	35.7	"	-	-	"
$\underset{، ~}{\mathrm{KI}}$	8.42	-	69.5	10	44.0	30	31.3	50	-	-	"
	17.01	-	65.3	"	42.9		3 I .4		-	-	"
"	33.03	-	61.8	"	42.9	"	32.4	"	-	-	"
	45.98	-	63.0	"	45.2	"	$35 \cdot 3$	"	-	-	"
"	54.00	-	68.8	"	48.5	"	37.6	"	-	-	"
KClO_{3}	$3 \cdot 51$	-	71.7	10	44.7	30	31.5	50	-	-	"
	5.69	-		"	45.0	"	3 I .4	"	-	-	"
$\underset{\text { " }}{\mathrm{KNO}_{3}}$	6.32	-	70.8	10	44.6	30	3 I .8	50		-	"
	12.19	-	68.7	"	44.8	"	32.3	"	-	-	"
	17.60	-	68.8	"	46.0	"	33.4	"	-	-	"
$\mathrm{K}_{2} \mathrm{SO}_{4}$	5.17	-	77.4	10	48.6	30	$34 \cdot 3$	50	-	-	*
	9.77	-	81.0	"	52.0		36.9	،	-	-	"
$\mathrm{K}_{2} \mathrm{CrO}_{4}$	11.93	-	75.8	10	62.5	30	41.0	40	-	-	"
	19.61	-	85.3	،	68.7	،	47.9	"	-	-	"
	24.26	1.233	97.8	"	74.5	"	54.5	"	-	-	
	32.78	-	109.5	"	88.9	"	62.6	"	-	-	Sprung.
$\underset{4}{\mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}}$		1.032		10		20		30			
	6.97	$\text { I. } 049$	73.1	"	56.4	"	$45 \cdot 5$	"	$37 \cdot 7$	\%	66
LiCl"	7.76	-	96.1	10	59.7	30	41.2		-		
	13.91	-	121.3	"	75.9	،	52.6	"	-	-	${ }_{\text {Sprung }}$
	26.93	-	229.4	"	142.1	"	98.0	"	-	-	"
$\underset{\text { "، }}{\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}}$	18.62	1.102	99.8	15	8 I .3	25	66.5	35	56.2	45	Wagner.
	34.19	1.200	213.3	،	164.4	،	132.4	\%	109.9	"	"
	39.77	1.430	317.0	"	250.0	"	191.4	"	158.1	"	"
$\underset{\text { "، }}{\mathrm{MgSO}_{4}}$		-		10	59.0	30	40.9	50	-	-	
	9.50	-	130.9	"	77.7	"	53.0	"	-	-	${ }_{\text {Sprang }}$
	19.32	-	302.2	"	166.4	"	106.0	"	-	-	
$\underset{\text { " }}{\mathrm{MgCrO}_{4}}$	12.31	1.089	111.3	10	84.8	20	67.4	30	55.0	40	Slotte.
	21.86	1.164	167.1	"	125.3	"	99.0	"	79.4	"	S ${ }^{\text {cte }}$
	27.71	1.217	232.2	"	I7 2.6	"	133.9	"	106.6	"	"
$\underset{\text { ¢ }}{\mathrm{MnCl}_{2}}$		1.096	92.8	15				35			
	15.65	1.196	130.9	"	104.2	"	84.0	،	68.7	،	
	30.33	1.337	256.3	"	193.2	"	155.0	"		"	"
	40.13	I. 453	$537 \cdot 3$	،	393.4	"	300.4	"	246.5	"	

Smithsonian Tables.

VISCOSITY OF SOLUTIONS.

Salt.	Percentage by weight solution. shun.	Density.	${ }^{\mu}$	t	${ }^{\mu}$	t	${ }^{\mu}$	t	${ }^{\mu}$	t	Authority.
$\mathrm{Mn}\left(\underset{\text { (}}{ } \mathrm{NO}_{3}\right)_{2}$	18.31	I. 148	96.0							45	Wagner.
"	29.60 49.31	$\begin{aligned} & 1.323 \\ & 1.506 \end{aligned}$	$\begin{aligned} & 167.5 \\ & 396.8 \end{aligned}$	"،	$\begin{aligned} & 126.0 \\ & 301.1 \end{aligned}$	$\ddot{ }$	$\begin{aligned} & 104.6 \\ & 221.0 \end{aligned}$	"	88.6 188.8	،	
MnSO_{4}	11.45	I.147	129.4	${ }_{1}^{15}$	98.6	25	78.3	35	63.4	45	"
"	18.80 22.08	1.251 I. 306	228.6 66 r .8	"	172.2 474.3	"	1 37.1 347.9	"	107.4 266.8	"'	"
NaCl	7.95	-	82.4	Io	52.0	30	31.8	50	-	-	Sprung.
"	14.3 I	-	94.8	"	60.1	"	36.9	"	-	-	"،
"	23.22	-	¢ 28.3	"	79.4	"		"	-	-	"
$\mathrm{NaBr}^{\text {a }}$		-		${ }^{10}$	48.7	30				-	"
	18.58	-	82.6		53.5	"	38.2	"	-	-	"
		-		"		"			-	-	"
NaI	8.83	-	73.1	10	46.0	30	32.4			-	"
"	17.15	-	73.8	"	47.4	"	33.7	"	-	-	"
"	35.69 55.47	-	86.0 157.2	"	55.7 96.4	"	40.6 66.9	"	-	-	"،
	$55 \cdot 47$	-	157.2				66.9		-	-	"
NaClO_{3}	11.50	-	78.7	10		30		50	-	-	"
"	20.59 33.54	-	88.9 121.0	"	56.8 75.7	"	40.4 53.0		-	-	"
NaNO_{3}	7.25	-	75.6	10	47.9	30	33.8	50	-	-	"
"	12.35	-	81.2	"	51.0	3	36.1	"	-	-	"
"	18.20	-	87.0	"	55.9	"	39.3	"	-	-	"
"	31.55	-	121.2	"	76.2	"	53.4	"	-	-	"
$\mathrm{Na}_{2} \mathrm{SO}_{4}$	4.98	-	96.2	10	59.0	30	40.9	50	-	-	"
"	9.50	-	130.9	"	77.7		53.0	"	-	-	"
	14.03 19.32	-	$\begin{aligned} & 187.9 \\ & 302.2 \end{aligned}$	"	107.4 166.4	"	71.1 106.0	"	-	-	"
$\mathrm{Na}_{2} \mathrm{CrO}_{4}$	5.76	1.058	85.8	10	66.6	20		30	43.8	40	Slotte.
	10.62	1.112	103.3	"	79.3	"	63.5		52.3		
"	14.81	1.164	127.5	"	97.I	"	$77 \cdot 3$	"	63.0	"	"
$\mathrm{NH}_{4} \mathrm{Cl}$	3.67	-	71.5	10	45.0	30	31.9	50	-	-	Sprung.
"	8.67	-	69.1	"	45.3		32.6		-	-	"
"	15.68	-	67.3	"	46.2	"	34.0	"،	-	-	"
"	23.37	-	67.4	"	47.7	"	36.1	"	-	-	"
${ }_{\text {NH4 }}{ }_{4} \mathrm{Br}$	15.97	-	65.2	10	43.2	30	31.5	50	-	-	"
	25.33 36.88	-	62.6	"	43.3	"	32.2	"	-	-	"
"	36.88	-	62.4	"	44.6	"	$34 \cdot 3$	"	-	-	"
$\mathrm{NH}_{4} \mathrm{NO}_{3}$	5.97	-	69.6	${ }^{10}$	$44 \cdot 3$	30	3 3 .6	50	-	-	"
	12.19	-	66.8	"	$44 \cdot 3$		31.9		-	-	"
"	27.08 37.22	-	67.0	"	47.7	"	34.9 38.8	"	-	-	"
".	$\begin{aligned} & 37.22 \\ & 49.83 \end{aligned}$	-	71.7 81.1	"	51.2 63.3	"	38.8 48.9	"	-	-	"
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$	8.10	-	107.9	10	52.3	30	37.0	50	-	-	"
	15.94 25.51	-	$\begin{aligned} & 120.2 \\ & 148.4 \end{aligned}$	"	60.4 74.8	"	43.2 54.1	"	-	-	"

Smithsonian Tables.

Salt.	Percentage by weight of salt in solution.	Density.	${ }^{\mu}$	t	μ	t	${ }^{\mu}$	t	${ }^{\mu}$	t	Authority.
$\underset{\text { (} \left.\mathrm{NH}_{4}\right)_{2} \mathrm{CrO}_{4}}{\text { "، }}$	10.52	1.063	79.3	10	62.4	20		-	42.4	40	Slotte.
	19.75 28.04	I.120 I.173	88.2 101.1	"	70.0 80.7	"	57.8 60.8	$3{ }^{\circ}$	$\begin{aligned} & 48.4 \\ & 56.4 \end{aligned}$	-	"
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$"	6.85	1.039	72.5	10	56.3	20	45.8	30	38.0	40	"
	13.00	1.078	72.6	"	57.2	"	46.8	"	39.1		"
	19.93	I. 126	77.6	"	58.8	"	48.7	"	40.9	"	"
$\begin{gathered} \mathrm{NiCl}_{2} \\ " \end{gathered}$	11.45	I. 109	90.4	15		25		35	48.2	45	Wagner.
	22.69 30.40	1.226 I. 337	140.2 229.5	،	$\begin{aligned} & 109.7 \\ & 171.8 \end{aligned}$	"	87.8 139.2	"	72.7 111.9	"	"
$\underset{"}{\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2}}$	16.49	1.136	90.7	15	70.1	25	57.4	35	48.9	45	"
	30.01	I. 278	${ }_{1} 135.6$		105.9		85.5		70.7 152		"
	40.95	I. 388	222.6	"	169.7	"			152.4	"	
NiSO_{4}	10.62	1.092	94.6	15	73.5	25	60.1	35	49.8	4.5	"
	18.19 25.35	1.198 1.314	154.9 298.5	،	119.9 224.9	"	99.5 173.0	"	75.7 152.4	"	"
$\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$	17.93	1.179	74.0	${ }_{1}^{15}$	$59 \cdot 1$	${ }^{25}$	48.5	35	$40 \cdot 3$	45	"
	32.22	1.362	91.8		72.5		59.6		50.6		"
$\underset{\text { "، }}{\mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}}$	10.29	1.088	69.3	${ }^{1} 5$		${ }^{25}$		335		45	
	21.19 32.61	I.124 I. 307	87.3 116.9		$\begin{aligned} & 69.2 \\ & 93 \cdot 3 \end{aligned}$	"	57.8 76.7	"	48.1 62.3		"
ZnCl_{2}	15.33	1.146	93.6	15	72.7	25	57.8	35	48.2	45	"
	23.49	1.229	111.5		86.6		69.8	،	57.5		"
	33.78	1.343	151.7	"	117.9	"	90.0	"	72.6	"	"
$\begin{gathered} \mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2} \\ \text { "، } \end{gathered}$	15.95	I.115	80.7	${ }_{1} 15$				35		45	
	30.23 44.50	I.229 I.437	104.7 167.9	"	85.7 130.6	""	69.5 105.4	"	57.7 87.9	"	"
$\begin{gathered} \mathrm{ZnSO}_{4} \\ \text { "، } \end{gathered}$	7.12	I. 106	97.1	${ }^{1} 5$	79.3	25	62.7	35	51.5	45	"
	16.64	1.195	156.0	"	118.6		94.2		73.5	"	"
	23.09	1.281	232.8	"	177.4	"	135.2	"	108.1	"	"

Smithsonian Tables.

Table 158.
SPECIFIC VISCOSITY.*.

Dissolved salt.	Normal solution.		$\frac{1}{2}$ normal.		4 normal.		$\frac{1}{8}$ normal.		Authority.
	產		芴 ¢ ¢						
Acids : $\mathrm{Cl}_{2} \mathrm{O}_{3}$	1.0562	1.012	1.0283	1.003	I. 0143	1.000	1.0074	0.999	Reyher.
HCl	1.0177	1.067	1.0092	1.034	1.0045	1.017	1.0025	1.009	
HClO_{3}	1.0485	1.052	I. 0244	1.025	1.0126	1.014	I. 0064	1.006	
HNO_{3}	1.0332	1.027	1.0168	I.OII	1.0086	1.005	1.0044	1.003	" ${ }^{\text {c }}$
$\mathrm{H}_{2} \mathrm{SO}_{4}$	1.0303	1.090	I. 1254	1.043	1.0074	1.022	1.0035	1.008	Wagner.
Aluminium sulphate	1.0550	1.406	1.0278	1.178	1.0138	1.082	I. 0068	1.038	"
Barium chloride . .	1.0884	1.123	1.0441	1.057	1.0226	1.026	I.OI 14	1.013	"
" nitrate ${ }^{\text {. }}$			1.0518	1.044	1.0259	1.021	1.0130	1.008	"
Calcium chloride	1.0446	I.I 56	1.0218	1.076	I. 0105	1.036	1.0050	1.017	
nitrate	1.0596	1.117	1.0300	1.053	I.OI 51	1.022	1.0076	1.008	"
Cadmium chloride	1.0779	1.I34	I. 0394	1.063	1.0197	1.031	1.0098	1.020	"
" nitrate	1.0954	1.165	1.0479	1.074	I. 0249	1.038	I.OII9	1.018	"
" sulphate.	1.0973	1.348	1.0487	1.157	1.0244	1.078	1.0120	1.033	"
Cobalt chloride .	1.0571	1.204	1.0286	1.097	I. 0144	1.048	1.0058	1.023	'
" nitrate	1.0728	1.166	1.0369	1.075	I. 1.184	1.032	1.0094	I. 1.18	"
" sulphate	1.0750	1. 354	1.0383	1.160	I.OI93	1.077	1.0110	1. 040	*
Copper chloride	1.0624	1.205	1.0313	1.098	1.01 5^{8}	1.047	1.0077	1.027	"
"، nitrate	1.0755	1.179	1.0372	1.080	1.0185	1.040	1.0092	1.018	"
" sulphate	1.0790	1.358	1.0402	1.160	1.0205	1.080	I. 0103	1.038	"
Lead nitrate .	1.1380	I.IOI	0.0699	1.042	1.0351	1.017	I. 0175	1.007	"
	1.0243	1.142	1.0129	1.066	1.0062	1.031	1.0030		
" sulphate	I. 0453	1.290	1.0234	1.137	I.OII 5	1.065	1.0057	1.032	"
Magnesium chloride	1.1375	1.201	I. 1.188	1.094	1.0091	I. 044	1.0043	1.021	"
" nitrate.	1.0512	1.171	1.0259	1.082	1.01 30	1.040	1.0066	1.020	"
" sulphate	1.0584	1.367	1.0297	1.164	I. 0152	1.078	1.0076	1.032	
Manganese chloride	1.0513	1. 209	I. 0259	1.098	I.OI 25	1.048	1.0063	1.023	"
" nitrate .	1.0690	I.183	1.0349	1.087	1.0174	1.043	1.0093	1.023	"
" sulphate	1.0728	I. 364	1.0365	1.169	1.0179	1.076	1.0087	1.037	
Nickel chloride	1.0591	1.205	1.0308	1.097	I.OI 44	1.044	1.0067	1.021	
": nitrate.	1.0755	1.180	1.0381	I. 084	1.0192	1.042	1.0096	I.OI9	"
" sulphate. .	1.0773	1.361	1.0391	1.16I	1.0198	1.075	1.0017	1.032	"
Potassium chloride .	1.0466	0.987	1.0235	0.987	1.0117	0.990	I. 0059	0.993	"
" chromate	1.0935	1.113	1.0475	I. 053	I.024I	1.022	1.0121	1.012	"
" nitrate	1.0605	0.975	1.0305	0.982	I.0161	0.987	1.0075	0.992	"
" sulphate	1.0664	I.IO5	1.0338	1.049	1.0170	1.021	1.0084	1.008	
Sodium chloride.	1.0401	1.097	1.0208	1.047	1.0107	1.024	1.0056	I. 123	Reyher.
" ${ }^{\text {a }}$ bromide.	1.0786	1.064	1.0396	1.030	1.0190	1.015	1.0100	1.008	
" chlorate	1.0710	1.090	1.0359	1.042	I.OI80	1.022 1.012 1.026	1.0092 1.0071	1.012 1.007	"
"، nitrate	1.0554 1.1386	1.065	1.0281 1.0692	1.026	I.OI 41 I.O34	1.012	1.0071 1.0173	1.007 1.000	Wagner.
Strontium chloride	1.0676	I.I4I	1.0336	1.067	1.0171	1.034	1.0084	1.014	"
" nitrate	1.0822	I.II 5	1.0419	1.049	1.0208	1.024	1.0104	I.OII	
Zinc chloride	1.0590	1.189	1.0302	1.096	1.0152	1.053	1.0077	1.024	"
" nitrate.	I. 0758	1.164	1.0404	1.086	I.0191	1.039	1.0096	1.019	
" sulphate. .	1.0792	1.367	1.0402	1.173	I.OI98	1.082	1.0094	1.036	"

[^24]The values of μ given in the table are 10^{6} times the coefficients of viscosity in C. G. S. units.

Substance.	$\xrightarrow{\text { Temp }}$	μ	Reference.	Substance.	${ }_{\text {comp }}^{\text {Temp }}$		Reference.
Acetone.	18.0	78.	1	Ether	16.1	73.2	I
Air*	-21.4	163.9	2		36.5	79.3	1
	0.0	173.3	2	Ethyl chloride.	-.	93.5	4
*	15.0	180.7	2	Ethyl iodide.	72.3	216.0	3
*	99.1	220.3	2	Ethylene.	0.0	96.1	2
.	182.4	255.9	2	Helium.	0.0	189.1	5
'	302.0	299.3	2		15.3	196.9	5
Alcohol, Methyl	66.8	135.	3	،	66.6	234.8	5
Alcohol, Ethyl. .	78.4	142 .	3	"	184.6	269.9	5
Alcohol, Propyl,				Hydrogen.	-20.6	8 8 .9	2
norm............	97.4	142.	3		0.0	86.7	10
Alcohol, Isopropyl. .	82.8	162.	3	"	15.	88.9	2
Alcohol, Butyl,norm.	116.9	143.	3	"	99.2	105.9	2
Alcohol, Isobutyl. .	108.4	144.	3	" 6	182.4	121.5	2
Alcohol, Tert. butyl.	82.9	160.	3	'6	302.0	139.2	2
Ammonia....	0.0	96.	4	Krypton.	15.0	246.	II
	20.0	108.	4	Mercury.	270.0	$489 . \dagger$	8
Argon	0.0	210.4	5		300.0	$532 . \dagger$	8
	14.7	220.8	5	"6	330.0	$582 . \dagger$	8
،	17.9	224. I	5	"6	360.0	$627 . \dagger$	8
,	99.7	273.3	5	" .	390.0	$671 . \dagger$	8
" ...	183.7	322.1	5	Methane.	20.0	120.1	4
Benzene	-.	70.	ro	Methyl chloride	0.0	98.8	2
	19.0	79.	6		15.0	105.2	2
	100.0	118.	6	" ${ }^{6}$	302.0	213.9	2
Carbon bisulphide	16.9	92.4	I	Methyl iodide.	44.0	232.	3
Carbon dioxide. .	-20.7	129.4	2	Nitrogen.	-2I. 5	156.3	7
	0.	142.	10		\bigcirc.	166.	10
" ${ }^{4}$	15.0	145.7	2	"	10.9	170.7	7
" ${ }^{\text {" }}$	99.1	186. I	2	"	53.5	189.4	7
" ${ }^{\text {a }}$	182.4	222.1	2	Nitric oxide.	\bigcirc.	179.	10
"6 " ...	302.0	268.2	2	Nitrous oxide.	0.	138.	10
Carbon monoxide.	0.0	163.0	10	Oxygen.	-	189.	10
	20.0	184.0	4		15.4	195.7	7
Chlorine.	0.0	128.7	4	Water Vap	$53 \cdot 5$	215.9	7
	20.0	147.0	4	Water Vapor	0.0	90.4	1
Chloroform	0.0	95.9	I		16.7	96.7	1
	17.4	102.9	1		100.0	132.0	9
،	61.2	189.0	3	Xenon.	15.	222.	II
Ether.	0.0	68.9	I				

8 Koch, Wierl. Ann. 14, 1881, 19, 1883.
I Puluj, Wien. Ber. 69 (2), 1874.
2 Breitenbach, Ann. Phys. 5, 1901.
3 Steudel, Wied. Ann. 16, 1882
4 Graham, Philos. Trans. Lond. 1846, III.
5 Schultze, Ann. Phys. (4), 5, 6, 1901.
6 Schumann, Wied. Ann. 23, 1884.

9 Meyer-Schumann, Wied. Ann. 13, 188ı. io Jeans, assumed mean, 1916.
II Rankine, 1910.
12 Vogel (Eucken, Phys. Z. 14, 1913). For summaries see: Fisher, Phys. Rev. 24, 1904; Chapman, Phil. Tr. A. 211 , ıgıI; Gilchrist, Phys. Rev. I, 1913. Schmidt, Ann. d. Phys. 30, 1909.

* Gilchrist's value of the viscosity of air may be taken as the most accurate at present available. His value at $20.2^{\circ} \mathrm{C}$ is $\mathrm{I} .812 \times 10^{-4}$. The temperature variation given by Holman (Phil. Mag. 1886) gives $\mu=1715.50 \times 10^{-7}\left(1+.00275 t-.000000344^{2}\right)$. See Phys. Rev. I, 1913. Millikan (Ann. Phys. 4I, 759, 1913) gives for the most accurate value $\mu_{t}=0.00018240$ -$0.000000493(23-t)$ when $(23>1>12)$ whence $\mu_{20}=0.0001809 \pm 0.1 \%$. For μ_{0} he gives 0.0001711.
\dagger The values here given were calculated from Koch's table (Wied. Ann. 19, p. 869, 1883) by the formula $\mu=489[1+746(t-270)]$.
Smithsonian tables.

VISCOSITY OF GASES.

Variation of Viscosity with Pressure and Temperature.

According to the kinetic theory of gases the coefficient of viscosity $\mu=\frac{1}{c}(\rho \bar{c} l), \rho$ being the density, \bar{c} the average velocity of the molecules, l the average path. Since l varies inversely as the number of molecules per unit volume, ρl is a constant and μ should be independent of the density and pressure of a gas (Maxwell's law). This has been found true for ordinary pressures; below $\frac{1}{60}$ atmosphere it may fail, and for certain gases it has been proved untrue for high pressures, e.g., CO_{2} at 33° and above 50 atm . See Jeans, "Dynamical Theory of Gases."
\bar{c} depends only on the temperature and the molecular weight; viscosity should, therefore, increase with the pressures for gases. \bar{c} varies as the \sqrt{T}, but μ has been found to increase much more rapidly. Meyer's formula, $\mu_{i}=\mu_{0}(\mathrm{x}+a t)$, where a is a constant and μ_{0} the viscosity at $0^{\circ} \mathrm{C}$, is a convenient approximate relation. Sutherland's formula (Phil. Mag. 3I, 1893).

$$
\mu_{t}=\mu_{o} \frac{273+C}{T+C}\left(\frac{T}{273}\right)^{\frac{3}{2}},
$$

is the most accurate formula in use, taking in account the effect of molecular forces. It holds for temperatures above the critical and for pressures following approximately Boyle's law. It may be thrown into the form $T=K T^{\frac{3}{2}} / \mu-C$ which is linear in terms of T and $T^{\frac{3}{2}} / \mu$, with a slope equal to K and the ordinate intercept equal to $-C$. See Fisher, Phys. Rev. 24, 1907, from which most of the following table is taken. Onnes (see Jeans) shows that this formula does not represent Helium at low temperatures with anything like the accuracy of the simpler formula $\mu=\mu_{0}(T / 273 \cdot \mathrm{I})^{n}$.

The following table contains the constants for the above three formulae, T being always the absolute temperature, Centigrade scale.

Gas.	C	$\times{ }^{K}{ }_{10}{ }^{7}$	a	$n *$	Gas.	C	$\times{ }^{K}{ }_{10^{7}}$	a	n^{*}
Air.	124	150	-	. 754	Hydrogen.	72	66	-	. 69
Argon	172	206	-	.819	Krypton.	188	-	-	-
Carbon mo-					Neon.	252	-	-	-
noxide.	102	135	. 00269	. 74	Nitrogen.	I IO	143	. 00269	. 74
Carbon dioxide	240	158	. 00348	. 98	Nitrous oxide,				
Chloroform	454	159	-	-	$\mathrm{N}_{2} \mathrm{O}$.	313	172	. 00345°	. 93
Ethylene.	226	106	. 00350	-	Oxygen.	131	176	-	. 79
Helium.	80	148	-	. 683	Xenon.	252	-	-	-
Helium.	-	-	-	. 647					

*The authorities for n are: Air, Rayleigh; Ar, Mean, Rayleigh, Schultze; $\mathrm{CO}, \mathrm{CO}_{2}, \mathrm{~N}_{2}$, $\mathrm{N}_{2} \mathrm{O}$, von Obermayer; Helium, Mean, Rayleigh, Schultze; 2 d value, low temperature work of Onnes; $\mathrm{H}_{2}, \mathrm{O}_{2}$, Mean, Rayleigh, von Obermayer.

Smithsonian Tables.

DIFFUSION OF AN AQUEOUS SOLUTION INTO PURE WATER.
If k is the coefficient of diffusion, $d S$ the amount of the substance which passes in the time $d t_{\text {, }}$ at the place x, through q sq. cm . of a diffusion cylinder under the influence of a drop of concentration $d c / d x$, then

$$
d S=-k q \frac{d c}{d x} d t
$$

k depends on the temperature and the concentration. c gives the gram-molecules per liter. The unit of time is a day.

Substance.	c	t°	k	密	Substance.	c	t°	k	
Bromine .	0.1	12.	0.8	1	Calcium chloride	0.864	8.5	0.70	4
Chlorine.		12.	1.22			1.22	9.	0.72	
Copper sulphate	"	17.	0.39	2	"، "،	0.060	9.	0.64	"
Glycerine		10.14	0.357	3	Copper sulphate	0.047	9.	0.68	"
Hydrochloric acid Iodine	"	12.	2.21 (0.5)	2	Copper sulphate	1.95 0.95	17.	0.23 0.26	$\stackrel{2}{ }$
Iodine ${ }^{\text {I }}$ Nitric acid		12. 19.5	(0.5) 2.07	1		0.95 0.30	17.	0.26 0.33	"
Potassium chloride	"	17.5	1.38	2	" ${ }^{\text {a }}$.	0.005	17.	0.47	"
" hydroxide		13.5	1.72	2	Glycerine	$2 / 8$	10.14	0.354	3
Silver nitrate		12.	0.985	2		6/8	10.14	0.345	"
Sodium chloride		15.0	0.94	2		10/8	10.14	0.329	"
Urea		14.8	0.97	3		14/8	10.14	0.300	"
Acetic acid	0.2	13.5	0.77	4	Hydrochloric acid	4.52	11.5	2.93	$\stackrel{4}{4}$
Barium chloride Glycerine	"	$8 .$	0.66 3.55	4		3.16 0.945	II. II.	2.67 2.12	"،
Sodium actetate	"	12.	0.67	5	" "	0.945 0.387	II.	2.02	"
" chloride		15.0	0.94	2	". " .	0.250	11.	1.84	"
Urea		14.8	0.969	3	Magnesium sulphate	2.18	5.5	0.28	4
Acetic acid	1.0	12.	0.74	6		0.541	5.5	0.32	
Ammonia		15.23	I. 54	7		3.23	10.	0.27	"
Formic acid	"	12.	0.97		Potassium hydroxide	0.402	10.	0. 34	"
Glycerine		10.14	0.339	3	Potassium hydroxide	0.75	12.	1.72	6
Hydrochloric acid .	"	12.	2.09	6		0.49	12.	1.70	
Magnesium sulphate Potassium bromide.		7.	0.30	4	" nitrate	0.375	12.	1.70	"
"" hydroxide	"	12.	1.13 1.72	6	tra	3.9 1.4	17.6 17.6	0.89 1.10	"
Sodium chloride	"	15.0	0.94	2	" " .	0.3	17.6	I. 26	"
"		14.3	0.964	3	" " .	0.02	17.6	1.28	"
"، hydroxide		12.	1.11	$\stackrel{2}{2}$	sulphate	0.95	19.6	0.79	"
Su"ar. iodide		10.	0.80	8	" " .	0.28	19.6	0.86	"
Sugar ${ }^{\text {S }}$. ${ }^{\text {a }}$,		12.	0.254	6	" "	0.05	19.6	0.97	"
Sulphuric acid		12.	1.12	6	Silver nitrate	0.02	19.6	1.01	"
Zinc sulphate . Acetic acid		14.8 12.	0.236 0.69	9	Silver nitrate	3.9 0.9	12.	0.535 0.88	"
Calcium chloride	".0	10.	0.68	8	" ، .	0.9 0.02	12.	1.035	
Cadmium sulphate	"	19.04	0.246	9	Sodium chloride	2/8	14.33	I. 013	3
Hydrochloric acid	"	12.	2.21		" ${ }^{\text {c }}$.	4/8	14.33	0.996	"
Sodium iodide	"	Io.	0.90	8	" "	$6 / 8$	14.33	0.980	2
Sulphuric acid		12.	1.16	6	" " .	10/8	14.33	0.948	"
Zinc acetate		18.05	0.210	9	Sulphuric acid	$14 / 8$	14.33	0.917 2	"
Acetic acid		${ }_{12 .}^{0.04}$	0.120 0.68 0	$\underline{9}$	Sulphuric acid ${ }_{\text {"، }}$	9.85 4.85		2.36 1.90	$\stackrel{2}{\prime}$
Potassium carbonate	3 ،	10.	0.60	-	" ،	2.85	18.	1.90 1.60	"
" hydroxid		12.	1.89	6	" "	0.85	18.	1.34	"
Acetic acid ${ }^{\text {a }}$	4.0	12.	0.66		" "	0.35	18.	1.32	"
Potassium chloride .-		10.	1.27	8	" ". .	0.005	18.	I. 30	"
${ }^{1}$ Euler, Wied. Ann.		1897.			awalki,	n. 5	894		
2 Thovert, C. R. 133, 1901; 134, 1902.									
3 Heimbrodt, Diss. Leipzig, 1903. 7 Abegg, Zeitschr. Phys. Chem. II, 1893.									
4 Scheffer, Chem. Ber. 15, 1882; 16, 1883;					; 8 Schuhmeister, W	. Be	79 (2)	, 1879.	

DIFFUSION OF VAPORS.

Coefficients of diffusion of vapors in C. G. S. units. The coefficients are for the temperatures given in the table and a pressure of 76 centimeters of mercury.*

[^25]Smithsonian Tables.

TABLE 163. - Coefficients of Diffusion for Various Gases and Vapors.*

Gas or Vapor diffusing.	Gas or V'apor diffused into.	$\begin{aligned} & \text { Temp. } \\ & \circ \mathrm{C} . \end{aligned}$	Coefficient of Diffusion.	Authority:
Air	Hydrogen . .	\bigcirc	0.661	Schulze.
*	Oxygen	\bigcirc	0.1775	Obermayer.
Carbon dioxide	Air	\bigcirc	0.1423	Loschmidt. Waitz
"، "،	Carbon monoxide	\bigcirc	0.1360 0.1405	Waitz. Loschmidt.
" ${ }^{\text {a }}$	"، "	\bigcirc	0.1314	Obermayer.
" " . .	Hydrogen .	\bigcirc	0.5437	
" " . . .	Methane . .	\bigcirc	0.1465	"
" ${ }^{\text {c }}$	Nitrous oxide . . .	\bigcirc	0.0983	Loschınidt.
" " .	Oxygen	\bigcirc	0.1802	
Carbon disulphide	Air. .	0	0.0995	Stefan.
Carbon monoxide	Carbon dioxide . .	\bigcirc	0.1314	Obermayer.
" ${ }^{\text {" }}$	Ethylene	\bigcirc	0.101	
" "\% . . .	Hydrogen	\bigcirc	0.6422	Loschmidt.
"، "،	Oxygen	\bigcirc	0.1802 0.1872	Obermayer.
Ether .	Air .	-	0.0827	Stefan.
"	Hydrogen . . .	\bigcirc	0.3054	
Hydrogen .	Air	\bigcirc	0.6340	Obermayer.
"	Carbon dioxide ${ }^{\text {a }}$	\bigcirc	0.5384	
*	Ethane monoxide	\bigcirc	0.6483	"
"	Ethylene	\bigcirc	0.4593 0.4863	"
"	Methane	\bigcirc	0.6254	"
"	Nitrous oxide . .	\bigcirc	0.5347	"
"	Oxygen . . .	-	0.6788	"
Nitrogen . .	" . . .	\bigcirc	0.1787	"
Oxygen	Carbon dioxide . . .	-	0.1357	
"	Hydrogen	\bigcirc	$\begin{aligned} & 0.7217 \\ & 0.1710 \end{aligned}$	Loschmidt. Obermayer.
Sulphur dioxide .	Nitrogen -	-	0.1710 0.4828	Loschmidt.
Water	Air . .	8	0.2390	Guglilemo.
"	" ${ }^{\text {c }}$ -	I8	$\begin{aligned} & 0.2475 \\ & 0.8710 \end{aligned}$	

* Compiled for the most part from a similar table in Landolt \& Börnstein's Phys. Chem. Tab.

TABLE 164:- Diffusion of Metals into Metals.

$\frac{d v}{d t}=k \frac{d^{2} v}{d x}$; where x is the distance in direction of diffusion; v, the degree of concentration of the diffusing metal ; t, the time ; k, the diffusion constant $=$ the quantity of metal in grams diffusing through a sq. cm. in a day when unit difference of concentration (gr. per $\mathrm{cl} . \mathrm{cm}$.) is maintained between two sides of a layer one cm . thick.

Diffusing Metal.	Dissolving Metal	Temperature ${ }^{\circ} \mathrm{C}$.	k.	Diffusing Metal.	Dissolving Metal.	Temperature ${ }^{\circ} \mathrm{C}$.	k.
Gold .	Lead	555	3.19	Platinum .	Lead	492	1. 69
" .	"	492	3.00	Lead .	Tin.	555	3.18
" .	" 6	251	0.03	Rhodium.	Lead .	550	3.04
"	"	200	0.008	Tin .	Mercury	I5	1.22*
"	"	165	0.004	Lead .	"	15	1.0*
"	Bismuth	100	0.00002	Zinc -	"	15	1.0*
"	Bismuth	555	4.52	Sodium .		15	0.45*
	Tin .	555	4.65	Potassium	"	15	0.40*
Silver .	"	555	4.14	Gold	"	15	0.72*

From Roberts-Austen, Philosophical Transactions, 187A, p. 383, 1896.
*These values are from Guthrie.

Table 165.

SOLUBILITY OF INORGANIC SALTS IN WATER; VARIATION WITH THE TEMPERATURE.

The numbers give the number of grams of the anhydrous salt soluble in 1000 grams of water at the given temperatures.

Salt.	Temperature Centigrade.										
	\bigcirc	10°	20°	30°	40°	50°	60°	70°	80°	90°	100°
AgNO_{3}	1150	1600	2150	2700	3350	4000	4700	5500	6500	7600	2100
$\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$	313	335	362	404	457	521	591	662	731	808	891
$\mathrm{Al}_{2} \mathrm{~K}_{2}\left(\mathrm{SO}_{4}\right)_{4}{ }^{\text {a }}$	30			84			248	-		-	1540
$\mathrm{Al}_{2}\left(\mathrm{NH}_{4}\right)_{2}\left(\mathrm{SO}_{4}\right)_{4}$	26	45	66	91	124	I 59	211	270	352	-	
$\mathrm{B}_{2} \mathrm{O}_{3}$.	11	15	22		40		62		95		157
BaCl_{2}	316	333	357	382	408	436	464	494	524	556	588
$\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$	50	70	92	116	142	171	203	236	270	306	342
CaCl_{2}	595	650	745	1010	1153		1368	1417	1470	1527	1590
CoCl_{2}	405	450	500	565	650	935	940	950	960		1030
$\mathrm{CsCl}^{\text {. }}$	1614	1747	1865	1973	2080	2185	2290	2395	2500	2601	2705
CsNO_{3}	93	I49	230	339	472	644	838	1070	1340	1630	1970
$\mathrm{Cs}_{2} \mathrm{SO}_{4}$	1671	1731	1787	1841	1899	1949	1999	2050	2103	2149	2203
$\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$	818		1250		1598		1791		2078		-
CuSO_{4}	149	-		255	295	336	390	457	535	627	735
FeCl_{2}.	-	-	685		-	820			1040	1050	1060
$\mathrm{Fe}_{2} \mathrm{Cl}_{6}$	744	819	918	-	-	3151	-	-	5258	-	5357
FeSO_{4}	156	208	264	330	402	486	550	560	506	430	
HgCl_{2}	43	66	74	8	+96	${ }_{-13}$	139 860 1	173	243	371	540 1050
K^{Br}.	540	-	650		760	-	860	-	955		1050
$\mathrm{K}_{2} \mathrm{CO}_{3}$	1050			II 40	1170	121	1270	1330	1400	1470	1560
${ }^{\mathrm{KCl}}$ -	285	312	343	373	401	429	455	483	510	538	566
KClO_{3}	33	50	71	101	145	197	260	325	396	475	560
$\mathrm{K}_{2} \mathrm{CrO}_{4}$.	589	609	629	650	670	690	710	730	751	77 I	791
$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$	50	85	131		292		505		730	-	1020
KHCO_{3}.	225	277	332	390	453 1600	522 1680	600			10	O
$\mathrm{KNO}_{3}{ }^{\text {a }}$	1279 133	+ 209	+ 416	$\begin{array}{r} \\ 458 \\ \hline\end{array}$	$\begin{array}{r} \\ 6 \\ \hline\end{array}$	855	1099	1380	1690	2040	2460
$\mathrm{KOH}^{\text {, }}$	970	1030	II20	1260	1360	1400	1460	1510	I 590	1650	1780
$\mathrm{K}_{2} \mathrm{PtCl}_{6}$.	7	9	11	14	18	22	26	32	38	45	52
$\mathrm{K}_{2} \mathrm{SO}_{4}$	74	92	111	130	148	165	$1 \mathrm{~S}_{2}$	198	214	228	241
LiOH	127	127	128	129	130	133	${ }^{1} 38$	144	153	-	175
MgCl_{2}	528	535	545	-	575	-	610		660	-	730
$\mathrm{MgSO}_{4} \cdot$ - (7aq)	260	309	356	409	456		-	-	612		
${ }^{\text {" }}$ - \cdot (6aq)	408	422	439	453		504	550	596	642	689	738
$\mathrm{NH}_{4} \mathrm{Cl}{ }_{-} \cdot$	297	333	372	414	45^{8}	504	55^{2}	${ }^{6} 2$	${ }^{656}$	${ }^{71}$	773
NH4 ${ }^{\text {NHCO}}$	119 1183	159	210	270 2418	2970	- ${ }^{-} 40$?	4300?	5130?	5800	7400	8710
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$.	706	730	754	780	810	¢ 84	880	916	953	992	1033
NaBr .	795	845	903		1058	1160	1170	-	1185		1205
$\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}$	-	16	-	39		105	200	244	314	408	523
$\mathrm{Na}_{2} \mathrm{CO}_{3}$ - . (roaq)	71	126	214	409							
" . . ${ }^{\text {(7aq) }}$	204	263	335	435	(raq)	475	464	458	452	452	452
$\stackrel{\mathrm{NaCl}}{ }$	356	357	358	360	${ }^{363}$	367	371	375	380	385	$\begin{array}{r}391 \\ 2040 \\ \hline 180\end{array}$
NaClO_{3}.	820	890	990	-	1235	-	1470		1750		2040
$\mathrm{Na}_{2} \mathrm{CrO}_{4}$	317	502	900		960	1050	1150		1240 3860		
$\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ NaHCO	1630 69	1700 82	1800 96	1970 III	2200 127	2480 145	2830 164	${ }^{32} 30$			
$\mathrm{Na}_{2} \mathrm{HPO}_{4}$	25	39	93	241	639		-	949	-	-	988
NaI .	1590	1690	1790	1900	2050	2280	2570	-	2950	-	3020
NaNO_{3}	730	805	880	962	1049	II40	1246	1360	1480	1610	1755

Compiled from Landolt-Börnstein-Meyerhoffer's Physikalisch-chemische Tabellen.
Smithsonian Tables.

TABLE 165 (concluded) - Solnbility of Inorganic Salts in Water; Variation with the Temperature.
The numbers give the number of grams of the anhydrous salt soluble in 1000 grams of water at the given temperatures.

Salt.	Temperature Centigrade.										
	\circ°	10°	20°	30°	40°	50°	60°	70°	80°	90°	$10{ }^{\circ}$
NaOH	420	515	1090	1190	1290	1450	1740	-	3130	-	
$\mathrm{Na}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$.	32	39	62	99	135	174	220	255	300		
$\mathrm{Na}_{2} \mathrm{SO}_{3} \cdot . . .$.	141	-	287	-	495		-			-	330
${ }^{\mathrm{Na}_{2} \mathrm{SO}_{4}}$. . (roaq)	50 196	$\begin{array}{r} 90 \\ 305 \end{array}$	194	400	$\} 482$	468	455	445	437	429	427
$\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. . .	525	610	700	847	1026	1697	2067	-	2488	2542	2660
NiCl_{2}.		600	640	680	720	760	810	-			
NiSO_{4}	272	- 6	- 8	425	-	502	548	594	632	688	776
${ }_{\mathrm{PbBr}}^{2} \mathrm{O} \mathrm{NO}_{3}$	5	6	8	12	${ }^{1} 5$	20	24	28	33	-	48
$\mathrm{RbCl}^{\mathrm{Pb}\left(\mathrm{NO}_{3}\right.}$	365 770	444 844	523	607	694 1035	787 1093	880 1155	${ }_{1214}^{977}$	1272	1174	1270 1389
RbNO_{3}	195	330	533	813	1167	1556	2000	2510	3090	3750	4520
$\mathrm{Rb}_{2} \mathrm{SO}_{4}$	364	426	482	535	585	631	674	714	750	787	818
SrCl_{2}.	442	483	539	600	667	744	831	896	924	962	1019
SnI_{2}			10	12	14	17	21	25	30	34	40
$\underset{\mathrm{Sr}}{\left(\mathrm{NO}_{3}\right)_{2}} \cdot \cdots \cdot$	395	549	708	876	913	926	940	956	97^{2}	990	1011
$\mathrm{Th}\left(\mathrm{SO}_{4}\right)_{2}$. . ${ }^{(9 \mathrm{aq})}$	7	10	14	20	$3{ }^{30}$	51 25	16	-		-	
TlCl 4 aq$)$	- 2	2	3	5	40	8	10	13	16	20	-
TlNO_{3}	39	62	96	143	209	304	462	695	1110	2000	4140
$\mathrm{Tl}_{2} \mathrm{SO}_{4}$.	27	37	49	62	76	92	109	127	146	165	
$\mathrm{Yb}_{2}\left(\mathrm{SO}_{4}\right)_{3}$	442		-	-	06	-	${ }^{104}$	72	69	58	47
$\mathrm{ZnSO}_{3}^{\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}}$	948	-	-	-	2069	-68	-	-	- 86	020	$\overline{-8}$

TABLE 166. - Solubility of a Few Organic Salts in Water; Variation with the Temperature.

Salt.	\circ°	10°	20°	30°	40°	50°	60°	70°	80°	90°	100°
$\mathrm{H}_{2}\left(\mathrm{CO}_{2}\right)_{2}$	36	53	102	159	228	321	445	635	978	1200	-
$\mathrm{H}_{2}\left(\mathrm{CH}_{2} . \mathrm{CO}_{2}\right)_{2}$	28	45	69	106	162	244	358	511	708	-	1209
Tartaric acid	1150	1260	1390	1560	1760	1950	2180	2440	2730	3070	3430
Racemic "	92	140	206	291	433	595	783	999	1250	1530	1850
$\underset{\mathrm{KH}\left(\mathrm{HCO}_{2}\right)}{ } \mathrm{C}_{4} \mathrm{H}^{\text {a }}$	2900	-	3350	-	3810		4550	32	5750		7900 69
$\mathrm{KH}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{6}\right)$	3	4		9	13	18	24	32	45	57	69

TABLE 167.-Solubility of Gases in Water; Variation with the Temperature.
The table gives the weight in grams of the gas which will be absorbed in 1000 grams of water when the partial pressure of the gas plus the vapor pressure of the liquid at the given temperature equals 760 mm .

Gas.	\bigcirc	10°	20°	30°	40°	50°	60°	70°	80°
O_{2}	. 0705	.0551	. 0443	. 0368	.03II	. 0263	. 022 I	. 0181	. 0135
H_{2}	. 0192	. 0174	. 0160	.00147	.00138	.00129	. 0118	. 00102	. 00079
N_{2}	. 0293	. 0230	. 0189	.016I	.or 39	. 0121	. 0105	. 0089	. 0069
Br_{2}	431.	248.	148.	94.	62.	40.	28.	18.	11.
Cl_{2}	-	9.97	7.29	5.72	4.59	3.93	3.30	2.79	2.23
CO_{2}	3.35	2.32	1.69	I. 26	0.97	0.76	0.58		-
$\mathrm{H}_{2} \mathrm{~S}$	7.10	$5 \cdot 30$	3.98	-	-	,	-	-	-
NH_{3}	987.	689.	535.	422.	-	-	-	-	-
SO_{2}	228.	162.	113.	78.	54.	-	-	-	-

Compiled from Landolt-Börnstein-Meyerhoffer's Physikalisch-chemische Tabellen.
Smithsonian Tables.

CHANGE OF SOLUBILITY PRODUCED BY UNIFORM PRESSURE.*

	$\mathrm{CdSO}_{4} 8 / 3 \mathrm{H}_{2} \mathrm{O}$ at 25°		$\mathrm{ZnSO}_{4.7} \mathrm{H}_{2} \mathrm{O}$ at 25°		Mannite at 24.05°		NaCl at ${ }_{24 .} .00^{\circ}$	
1	76.80	-	57.95	-	20.66	-	$35 \cdot 90$	-
500	78.01	$+1.57$	57.87	-0.14	21.14	+2.32	36.55	+1.81
1000	78.84	$+2.68$	57.65	-0.52	21.40	$+3.57$	37.02	+3.12
1500	-	-	-	-	21.64	+4.72	37.36	$+4.07$

* E. Cohen and L. R. Sinnige, Z. physik. Chem. 67, p. 432, 1909; 69, p. 102, r909. E. Cohen, K. Inouye and C. Euwen, ibid. 75, p. 257, 1911. These authors give a critical résumé of earlier work along this line.

Smithsonian Tables.

ABSORPTION OF GASES BY LIQUIDS.*

Temperature Centigrade. t	Absorption Cobfficients, a_{t}, for Gases in Water.								
	Carbon dioxide. CO_{2}		Carbon monoxide. CO	$\underset{\mathrm{H}}{\text { Hydrogen. }}$	$\underset{\mathrm{N}}{\text { Nitrogen. }}$			Nitrous oxide. $\mathrm{N}_{2} \mathrm{O}$	Oxygen.
0 5 10 15 20 25 30 40 50 100	1.7 1.4 1.18 1.00 0.9 0.7 0.5 0.2		$\begin{array}{r} 0.0354 \\ .0315 \\ .0282 \\ .0254 \\ .0232 \\ .0214 \\ .0200 \\ .0177 \\ .0161 \\ .0141 \end{array}$	$\begin{array}{r} 0.02110 \\ .02022 \\ .01944 \\ .01875 \\ .01809 \\ .01745 \\ .01690 \\ .01644 \\ .01608 \\ .01600 \end{array}$	$\begin{array}{r} 0.02399 \\ .02134 \\ .01918 \\ .01742 \\ .01599 \\ .01481 \\ .01370 \\ .01195 \\ .01074 \\ .01011 \end{array}$	0.07 .06 .05 .05 .04 .04 .04 .03 .03 .02		1.048 0.8778 0.7377 0.6294 0.5443 $-$ -	0.04925 .04335 .03456 .03137 .02874 .02646 .02316 . 02080 .01690
Temperature Centigrade. t	Air.		$\underset{\mathrm{NH}_{3}}{\underset{\text { Ammonia }}{ }}$	$\underset{\mathrm{Cl}}{\text { Chlorine. }}$	$\begin{gathered} \text { Ethylene. } \\ \mathrm{C}_{3} \mathrm{H}_{4} \end{gathered}$	Methane. CH_{4}	Hydrogen $\underset{\mathrm{H}_{2} \mathrm{~S}}{\substack{\text { sulphide }}}$		Sulphur dioxide. SO_{2}
0 5 10 15 20 25	0.02 .02 .019 .01 .01		1174.6 971.5 840.2 756.0 683.1 610.8	$\begin{aligned} & 3.036 \\ & 2.808 \\ & 2.585 \\ & 2.388 \\ & 2.156 \\ & \text { 1.950 } \end{aligned}$	$\begin{array}{r} 0.2563 \\ .2153 \\ .1837 \\ .1615 \\ .1488 \end{array}$	0.05 .04 .04 .039 .03 .02		4.371 3.965 3.586 3.233 2.905 2.604	$\begin{aligned} & 79.79 \\ & 67.48 \\ & 56.65 \\ & 47.28 \\ & 39.37 \\ & 32.79 \end{aligned}$
orption Coefficients, α_{t}, for Gases in Alcohol, $\mathrm{C}_{2} \mathrm{H}_{5}$									
Centigrade. t	Carbon dioxide. CO_{3}	Ethylene. $\mathrm{C}_{2} \mathrm{H}_{4}$	e. Methane. CH_{4}	$\underset{\mathrm{H}}{\text { Hydrogen. }}$	$\underset{\mathrm{N}}{\mathrm{Nitrogen}}$	Nitric oxide. NO	$\begin{aligned} & \text { Nitrous } \\ & \text { oxide. } \\ & \mathrm{N}_{2} \mathrm{O} \end{aligned}$	Hydrogen sulphide. $\mathrm{H}_{2} \mathrm{~S}$	Sulphur dioxide. SO_{2}
\bigcirc	4.329	$3 \cdot 595$	0.5226	0.0692	0.1263	0.3161	4.190	17.89	328.6
5	3.8913.514	3.323	. 5086	. 0685	.1241	. 2998	3.838	-14.78	251.7
10		3.086	. 4953	. 0679	. 1228	. 2861	3.525	511.99	190.3
15	$\begin{aligned} & 3 \cdot 514 \\ & 3 \cdot 199 \end{aligned}$	2.882	. 4828	. 0673	.1214	. 2748	3.215	$5 \quad 9.54$	144.5
20	$\begin{aligned} & 3.199 \\ & 2.946 \end{aligned}$	$\begin{aligned} & 2.713 \\ & 2.578 \end{aligned}$. 4710	. 0667	. 1204	. 2659	3.015	$5 \quad 7.41$	114.5
25	2.946 2.756		$\cdot 4598$. 0662	.1196	. 2595	2.819	-5.62	99.8

*This table contains the volumes of different gases, supposed measured at $0^{\circ} \mathrm{C}$. and 76 centimeters' pressure, which unit volume of the liquid named will absorb at atmospheric pressure and the temperature stated in the first column. The numbers tabulated are commonly called the absorption coefficients for the gases in water, or in alcohol, at the temperature t and under one atmosphere of pressure. The table has been compiled from data published by Bohr \& Bock, Bunsen, Carius, Dittmar, Hamberg, Henrick, Pagliano \& Emo, Raoult, Schönfeld, Setschenow, and Winkler. The numbers are in many cases averages from several of these authorities.

Note. - The effect of increase of pressure is generally to increase the absorption coefficient. The following is approximately the magnitude of the effect in the case of ammonia in alcohol at a temperature of $23^{\circ} \mathrm{C}$. :

$$
\left\{\begin{array}{lllll}
P=45 \mathrm{cms} . & 50 \text { cms. } & 55 \mathrm{cms} . & 60 \mathrm{cms} . & 65 \mathrm{cms} \\
a_{23}=69 & 74 & 79 & 84 & 88
\end{array}\right.
$$

According to Setschenow the effect of varying the pressure from 45 to 85 centimeters in the case of carbonic acid in water is very small.

8 mithsonian Tables.

TABLE 170. - Water and Alcohol in Contact with Air.

Temp.	Surface tension in dynes per centimeter.		Temp. C.	Surface tension in dynes per centimeter.		$\begin{gathered} \text { Temp. } \\ \text { C. } \end{gathered}$	Surface tension in dynes per centimeter.
	Water.	Ethyl alcohol.		Water.	Ethyl alcohol.		Water.
0°	75.6	$23 \cdot 5$	40°	70.0	20.0	80°	64.3
5	74.9	23.1	45	69.3	19.5	85	63.6
10	74.2	22.6	50	68.6	19.1	90	62.9
15	73.5	22.2	55	67.8	18.6	95	62.2
20	72.8	21.7	60	67.1	18.2	100	61.5
25	72.1	21.3	65	66.4	17.8	-	-
30	71.4	20.8	70	65.7	17.3	-	-
35	70.7	20.4	75	65.0	16.9	-	-

TABLE 171. - Miscellaneous Liquids in Contact with Air.

Liquid.	$\begin{gathered} \text { Temp. } \\ \text { C.O. } \end{gathered}$	Surface tension in dynes per centimeter.	Authority.
Aceton	16.8	$23 \cdot 3$	Ramsay-Shields.
Acetic acid.	17.0	30.2	Average of various.
Amyl alcohol . .	15.0	24.8	
Benzole . . .	15.0	28.8	'
Butyric acid .	15.0	28.7	Q "
Carbon disulphide	20.0	30.5	Quincke.
Chloroform	20.0	28.3	Average of various.
Ether . .	20.0	18.4	
Glycerine . .	17.0	63.14	Hall.
$\underset{\text { Hexane . . . }}{ }$	0.0 68.0	2 I .21	Schiff.
Mercury	18.0	520.0	Average of various.
Methyl alcohol	15.0	24.7	"
Olive oil .	20.0	34.7	
Petroleum .	20.0	25.9	Magie.
Propyl alcohol	5.8 97.1	25.9 18.0	Schiff.
Toluol .	97.1 15.0	18.0	،
"	109.8	18.9	"
Turpentine .	21.0	28.5	A verage of various.

TABLE 172. -Solutions of Salts in Water. \dagger

Salt in solution.	Density.	$\begin{gathered} \text { Temp. } \\ \mathbf{C} .{ }^{\circ} . \end{gathered}$	Tension in dynes per cm .
BaCl_{2}	1.2820	15-16	81. 8
	1.0497	$15-16$	77.5
CaCl_{2}	1.3511	19	95.0
	1.2773	19	90.2
HCl	1.1190	20	73.6
"	1.0887	20	74.5
K	1.0242	20	75.3
KCl	1.1699	$15-16$	82.8
"	I.101I	$15-16$	80.1
"	1.0463	$15-16$	78.2
MgCl_{2}	1.2338	15-16	90.1
	1.1694	$15-16$	85.2
"	1.0362	15-16	78.0
NaCl	I.1932	20	S5.8
"	1.1074	20	80.5
"	1.0360	20	77.6
$\mathrm{NH}_{4} \mathrm{Cl}$	1.0758	16	84.3
"	1.0535	16	81.7
"	1.0281	16	78.8
SrCl_{2}	1.3114	15^{-16}	85.6
	1.1204	15-16	79.4
K ${ }^{\text {cos }}$	1.0567	$15-16$	77.8
$\mathrm{K}_{2} \mathrm{CO}_{3}$	1.3575	15^{-16}	90.9
"	1.1576	$15-16$	8 I .8
$\mathrm{Na}_{2} \mathrm{CO}_{3}$	1.0400	$15-16$	77.5
$\mathrm{Na}_{2} \mathrm{CO}_{3}$	1.1329	14^{-15}	79.3
	1.0605	14^{-15}	77.8
KNO_{3}	1.0283 1.1263	$14-15$ 14	77.2 78.9
"	1.0466	14	77.6
NaNO_{3}	1.3022	12	83.5
	I.I3II	12	80.0
CuSO_{4}	1.1775	$15-16$	78.6
${ }^{6}{ }^{\text {CO}}$	1. 0276	$15-16$	77.0
$\mathrm{H}_{2} \mathrm{SO}_{4}$	1. 8278	15	63.0?
"	I. 4453	15	79.7
$\mathrm{K}_{5} \mathrm{SO}_{4}$	1.2636	${ }^{1} 5$	79.7
$\mathrm{K}_{2} \mathrm{SO}_{4}$	1.0744	$15-16$	78.0
${ }^{\text {\% }} \mathrm{SO}_{4}$	1.0360	15-16	77.4
MgSO_{4}	1.2744	${ }^{1} 5-16$	83.2
	1.0680	$15-16$	77.8
$\mathrm{Mn}_{2} \mathrm{SO}_{4}$	1.1119	${ }^{1} 5-16$	79.1
	1.0329	15-16	$77 \cdot 3$
$\underset{\text { '60 }}{ } \mathrm{ZnSO}_{4}$	1.3981	$15-16$	
"	$\begin{aligned} & 1.2830 \\ & 1.1030 \end{aligned}$	$\begin{aligned} & 15-16 \\ & 15-16 \end{aligned}$	So. 7 77.8

[^26]| Liquid. | | | | | Specific gravity. | Surface tension in dynes per centimeter of liquid in contact with - | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | Air. | Water. | Mercury. |
| Water | | | | | 1.0 | 75.0 | 0.0 | (392) |
| Mercury | | . | | | 13.543 | 513.0 | 392.0 | |
| Bisulphide of carbon | | | | . | 1.2687 | 30.5 | 41.7 | (387) |
| Chloroform . . | | | | - | 1.4878 | (31.8) | 26.8 | (415) |
| Ethyl alcohol | | | | | 0.7906 | (24.1) | 8.6 | 364 |
| Olive oil . | | - | - | | 0.9136 | 34.6 | 18.6 | 317 |
| Turpentine . . | | | . | . | 0.8867 | 28.8 | 11.5 | 241 |
| Petroleum . . | | | | . | . 7977 | 29.7 | (28.9) | 271 |
| Hydrochloric acid . . | | . | - | . | 1.10 | (72.9) | - | (392) |
| Hyposulphite of soda solution | . | . | - | . | 1.1248 | 69.9 | - | 429 |

TABLE 174. - Surface Tension of Liquids at Solidifying Point. \dagger

Substance.			Temperature of solidification. Cent. ${ }^{\circ}$	Surface tension in dynes per centimeter	Substance.			Temperature of solidification. Cent. ${ }^{\circ}$	Surface tension in dynes per centimeter.
Platinum	-		2000	1691	Antimony		-	432	249
Gold	.		1200	1003	3orax .		.	1000	216
Zinc	.		360	877	Carbonate of	soda	-	1000	210
Tin	.		230	599	Chloride of	sodium	-	-	116
Mercury	.		-40	588	Vater	0	$87.9 \ddagger$
Lead	.		330	457	Selenium	- .	-	217	71.8
Silver	.	.	1000	427	Sulphur			111	42.1
Bismuth	-		265	I 390	Posphorus		.	43	42.0
Potassium Sodium	.	.	58 90	371 258	Wax	. .		68	34.1

TABLE 175. - Tension of Soap Films.
Elaborate measurements of the thickness of soap films have been made by Reinold and Rucker.\| They find that a film of oleate of soda solution containing I of soap to 70 of water, and having 3 per cent of KNO_{3} added to increase electrical conductivity, breaks at a thickness varying between 7.2 and 14.5 micro-millimeters, the average being 12.1 micromillimeters. The film becomes black and apparently of nearly uniform thickness round the point where fracture begins. Outside the black patch there is the usual display of colors, and the thickness at these parts may be estimated from the colors of thin plates and the refractive index of the solution.

When the percentage of KNO_{3} is diminished, the thickness of the black patch increases. For example, $\quad \mathrm{KNO}_{3}=3 \quad 1 \quad 0.5 \quad 0.0$ Thickness $=12.413 .514 .5 \quad 22.1$ micro-mm.
A similar variation was found in the other soaps.
It was also found that diminishing the proportion of soap in the solution, there being no KNO_{3} dissolved, increased the thickness of the film.

I part soap to 30 of water gave thickness 21.6 micro-mm.
I part soap to 40 of water gave thickness 22.1 micro- mm .
I part soap to 60 of water gave thickness 27.7 micro-mm.
I part soap to 80 of water gave thickness 29.3 micro-mm.

* This table of tensions at the surface separating the liquid named in the first column and air, water or mercury as stated at the head of the last three columns, is from Quincke's experiments (Pogg. Ann. vol. 139, and Phil. Mag. 1871). The numbers given are the equivalent in dynes per centimeter of those obtained by Worthington from Quincke's results (Phil. Mag. vol. 20, 1885) with the exception of those in brackets, which were not corrected by Worthington ; they are probably somewhat too high, for the reason stated by Worthington. The temperature was about $20^{\circ} \mathrm{C}$.
\dagger Quincke, " Pogg. Ann." vol. 135, p. 663.
\ddagger It will be observed that the value here given on the authority of Quincke is much higher than his subsequent measurements, as quoted above, give.
" "Proc. Koy. Soc." 1877, and "Phil. Trans. Koy. Soc." 1881, 1883, and 1893.
Note. - Quincke points out that substances may be divided into groups in each of which the ratio of the surface tension to the density is nearly constant. Thus, if this ratio for mercury be taken as unit, the ratio for the bromides and iodides is about a half: that of the nitrates, chlorides, sugars, and fats, as well as the metals, lead, bismuth, and antimony, about i; that of water, the carbnnates, sulphates, and probably phosphates, and the metals platinum, gold, silver, cadmium, tin, and copper, 2 ; that of zinc, iron, and palladium, 3 ; and that of sodium, 6 .

TABLE 176. - Vapor Pressure of Elements.

TABLE 177. - Vapor Pressure and Rate of Evaporization.

${ }^{\circ} \mathrm{K}$	$\underset{\text { mm }}{\text { Mo }}$	$\underset{\mathrm{mm}}{\mathrm{W}}$	$\underset{\substack{\text { Evaporation rate. } \\ \mathrm{g} / \mathrm{cm}^{2} / \mathrm{sec} .}}{ }$		Platinum.		
			Mo	w	${ }^{\text {K }}$	mm	$\mathrm{g} / \mathrm{cm}^{2} / \mathrm{sec}$.
180020002200240026002800300032003500	0.08643 0.06789 0.04396 $0 . \mathrm{O}_{2} \mathrm{IO} 27$ 0.0160 $\left.\begin{array}{c}3800^{3} \\ 760 \mathrm{~mm}\end{array}\right\}$		-. $\mathrm{O}_{10} 863$ 0.07100 0. 06480 0. $\mathrm{O}_{3} \mathrm{I} 79$ 0. $\mathrm{O}_{2} \mathrm{I} 8 \mathrm{I}$		1000	0.017324	-. 019832
					1200	0.012111	0.014260
					1400	-0.09188	- 0.01401
					1600	0.07484	- 0.9966
					1800	-. 0.350	-0.07667
					2000	$0^{0.0 .03107}$	-. 0.5195
					4180	760 mm	
							ay, Phys.
						1913; 4,	

$p=K . T^{-\frac{1}{2}} e^{-\lambda_{0} / R T}$ dynes $/ \mathrm{cm}^{2}$. Egerton, Phil. Mag. 33, p. 33, 1917.
$\mathrm{Zn}, \lambda_{0}=3.28 \times \mathrm{IO}^{4} ; K=1.17 \times \mathrm{IO}^{14} \mathrm{Cd}, \lambda_{0}=2.77 \times \mathrm{IO}^{4} ; K=5.27 \times \mathrm{IO}^{13}$ $\mathrm{Hg}, \lambda_{0}=1.60 \times 10^{4} ; \quad=3.72 \times 10^{13}$ (Knudsen)

VAPOR PRESSURES.

The vapor pressures here tabulated have been taken, with one exception, from Regnault's results The vapor pressure of Pictet's fluid is given on his own authority. The pressures are in centimeters of mercury.

Tem-perature Cent.	$\begin{gathered} \text { Acetone. } \\ \mathrm{C}_{5} \mathrm{H}_{6} \mathrm{O} \end{gathered}$	$\begin{gathered} \text { Benzol. } \\ \mathrm{C}_{6} \mathrm{H}_{6} \end{gathered}$	Carbon bisul${ }^{\text {phide. }}$	Carbon tetraCCl_{4}	Chloro${ }_{\mathrm{CHCl}}^{3}$ CH:	$\begin{gathered} \text { Ethyl } \\ \text { alcchol. } \\ \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O} \end{gathered}$	$\begin{gathered} \text { Ethyl } \\ \begin{array}{c} \text { Ether. } \\ { }_{4}{ }_{4} \mathrm{H}_{10} \mathrm{O} \end{array} \end{gathered}$	$\begin{gathered} \text { Ethyl } \\ \begin{array}{c} \text { bromide. } \\ \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br} \end{array} \\ \hline \end{gathered}$	Methyl alcohol. $\mathrm{CH}_{4} \mathrm{O}$	Turpentine. $\mathrm{C}_{10} \mathrm{H}_{6}$
-25°	-	-	-	-	-	-		4.41	41	-
-20	-	. 58	4.73	. 98	-	.33	6.89	5.92	. 63	
-15	-	. 88	6.16	1.35		. 51	8.93	7.81	. 93	
10		1.29	7.94	1.85		. 65	11.47	10.15	1.35	
-5	-	1.83	10.13	2.48		.91	14.61	13.06	1.92	
0	-	2.53	12.79	3.29	5.97	1.27	18.44	16.56	2.68	. 21
5	-	3.42	16.00	4.32		1.76	23.09	20.72	3.69	
10	-	4.52	19.85	5.60	10.05	2.42	28.68	25.74	5.01	. 29
15		5.89	24.41	7.17		$3 \cdot 30$	$35 \cdot 36$	31.69	6.71 8.87	
20	17.96	7.56	29.80	9.10	16.05	4.45	43.28	38.70	8.87	. 44
25	22.63	9.59	36.11	11.43	20.02	5.94	52.59	46.91	11.60	
30	28.10	12.02	43.46	14.23	24.75	7.85	63.48	56.45	15.00	. 69
35	34.52	14.93	51.97	17.55	30.35	10.29	76.12	67.49	19.20	
40	42.01	18.36	61.75	21.48	36.93	13.37	90.70	80.19	24.35	1.08
45	50.75	22.41	72.95	26.08	44.60	17.22	107.42	94.73	30.61	
50	62.29	27.14	85.71	31.44	53.50	21.99	126.48	111.28	38.17	1.70
55	72.59	32.64	100.16	37.63	63.77	27.86	148.11	130.03	47.22	
60	86.05	39.01	116.45	44.74	75.54	35.02	172.50	151.19	57.99	2.65
65	101.43	46.34	134.75	52.87	88.97	43.69	199.89	174.95	70.73 8	
70	118.94	54.74	${ }^{1} 55.2 \mathrm{I}$	62.11	104.21	54.11	230.49	201.51	85.71	4.06
75	138.76 16.10	64.32	177.99 203.25	72.57 84.33	121.42 140.76	66.55 81.29	264.54 302.28	231.07 263.86	103.21 123.85	6.13
8	161.10 186.18	75.19 87.46	203.25 231.17	84.33 97.51	140.76 162.41	86.59 98.64	343.95	300.06	147.09	
90	214.17	101.27	261.91	112.23	186.52	118.93	389.83	339.89	174.17	9.06
95	245.28	116.75	296.63	128.69	213.28	142.51	440.18	383.55	205.17	
100	279.73	134.01	332.51	146.71	242.85	169.75	495.33	431.23	240.51	13.11
105	317.70	153.18	372.72	166.72	275.40	201.04	555.62	483.12	280.63	
110	359.40	174.44	416.41	188.74	311.10	236.76	621.46	539.40		18.60
115	405.00	197.82	463.74	212.91	350.10	277.34	693.33	600.24 66.80	376.98	25.70
120	454.69	223.54	514.88	239.37	392.57	323.17	771.92	665.80	434.18	25.70
125	508.62	251.71	569.97	268.24	438.66	374.69	-	736.22	498.05	-
130	566.97	282.43	629.16	299.69	488.51	432.30	-	811.65	569.13	34.90
135	629.87	315.85	692.59	333.86	542.25	496.42	-	892.19	647.93	-
140	697.44	352.07	760.40	370.90	600.02	567.46	-	977.96	733.71 830.89	46.40
145	-	391.21	832.69	411.00	661.92	645.80	-	-	830.89	
150	-	$433 \cdot 37$	909.59	454.31	728.06	731.84	-	-	936.13	60.50
155	-	478.65	-	501.02	798.53	825.92	-	-	-	68.60
160	-	527.14	-	$551.3{ }^{\text {I }}$	873.42	-	-	-	-	77.50
165	-	568.30	-	${ }_{6}^{605.38}$	952.78	-	-	-	-	-
170	-	634.07	-	663.44	-	-	-	-	-	-

Bmithsonian Tables.

VAPOR PRESSURES.

Tem-perature, Centigrade.	$\underset{\mathrm{NH}_{3}}{\text { Ammonia. }}$	Carbon dioxide. CO_{2}	Ethyl chloride. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$	Ethyl iodide. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{I}$	Methyl chloride. $\mathrm{CH}_{3} \mathrm{Cl}$	Methylic ether. $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$	Nitrous oxide. $\mathrm{N}_{2} \mathrm{O}$	Pictet's fluid. $64 \mathrm{SO}_{2}+$ $44 \mathrm{CO}_{2}$ by weight	Sulphur dioxide. SO_{2}	Hydrogen $\underset{\mathrm{H}_{2} \mathrm{~S}}{\substack{\text { sulphide. } \\ \hline}}$
-30°	86.6I	-	11.02	-	57.90	57.65	-	58.52	28.75	-
-25	110.43	1300.70	14.50	-	71.78	71.61	1569.49	67.64	$37 \cdot 38$	374.93
-20	139.21	1514.24	18.75	-	88.32	88.20	1758.66	74.48	47.95	443.85
-I5	173.65	1758.25	23.96	-	107.92	107.77	1968.43	89.68	60.79	519.65
-10	214.46	2034.02	30.21	-	130.96	130.66	2200.80	101. 84	76.25	608.46
-5	264.42	2344.13	37.67	-	I 57.87	${ }^{1} 57.25$	2457.92	121.60	94.69	706.60
0	318.33	2690.66	46.52	4.19	189.10	187.90	2742.10	139.08	116.51	820.63
5	383.03	3075.38	56.93	5.41	225.11	222.90	3055.86	167.20	142.11	949.08
10	457.40	3499.86	69.11	6.92	266.38	262.90	3401.91	193.80	171.95	1089.63
15	543.34	3964.69	83.26	8.76	313.41	307.98	3783.17	226.48	206.49	1244.79
20	638.78	4471.66	99.62	11.00	366.69	358.60	4202.79	258.40	246.20	1415.15
25	747.70	5020.73	118.42	13.69	426.74	415.10	4664.14	297.92	291.60	1601.24
30	870.10	5611.90	139.90	16.91	494.05	477.80	5170.85	338.20	343.18	1803.53
35	1007.02	6244.73	164.32	20.71	569.1 I	-	6335.98	383.80	401.48	2002.43
40	1159.53	6918.44	191.96	25.17	-	-	-	434.72	467.02	2258.25
45	1328.73	7631.46	223.07	30.38	-	-	-	478.80	540.35	2495.43
50	1515.83	-	257.94	36.40	-	-	-	521.36	622.00	2781.48
55	1721.98	-	266.84	43.32	-	-	-	5	712.50	3069.07
60	1948.21	-	340.05	51.22	-	-	-	-	812.38	3374.02
65	2196.51	-	387.85	-	-	-	-	-	922.14	3696.15
70	$2467 \cdot 55$	-	440.50	-	-	-	-	-	-	$4035 \cdot 3^{2}$
75	2763.00	-	498.27	-	-	-	-	-	-	-
80	3084.3I	-	561.41	-	-	-	-	-	-	-
85	3433.09	-	630.16	-	-	-	-	-	-	-
90	3810.92	-	704.75	-	-	-	-	-	-	-
95	4219.57	-	785.39	-	-	-	-	-	-	-
100	4660.82	-	872.28	-	-	-	-	-	-	-

Smithsonian Tables.

TABLE 179, - Vapor Pressure of Ethyl Alcohol.*

	$0{ }^{\circ}$	$1{ }^{\circ}$	2°	$3{ }^{\circ}$	4	$5{ }^{\circ}$	6°	$7{ }^{\circ}$	8°	9°
	Vapor pressure in millimeters of mercury at $\mathrm{o}^{\circ} \mathrm{C}$.									
0°	12.24	13.18	14.15	15.16	16.21	17.31	18.46	19.68	20.98	22.34
10	23.78	25.31	27.94	28.67	30.50	32.44	34.49	36.67	38.97	41.40
20	44.00	${ }^{+6.66}$	49.47	52.44	55.56	58.86	62.33	65.97	69.80	73.83
30	78.06	82.50	87.17	92.07	97.21	102.60	108.24	114.15	120.35	126.86
40	133.70	140.75	148.10	155.80	163.80	172.20	181.00	190.10	199.65	209.60
50	220.00	230.80	242.50	253.80	265.90	278.60	291.85	305.65	319.95	334.85
60	350.30	366.40	$3{ }^{3} 3.10$	400.40	418.35	437.00	456.35	476.45	497.25	518.85
70	541.20	${ }_{564} 65$	588.35	613.20	638.95	665.55	693.10	721.55	751.00	781.45

From the formula $\log p=a+b \alpha^{t}+c \boldsymbol{\beta}^{t}$ Ramsay and Young obtain the following numbers. \dagger

TABLE 180.- Vapor Pressure of Methyl Alcohol. \ddagger

	0°	$1{ }^{\circ}$	2°	3°	4°	5°	6°	7°	8°	9°
	Vapor pressure in millimeters of mercury at $\mathrm{o}^{\circ} \mathrm{C}$.									
$0{ }^{\circ}$	29.97	31.6	33.6	35.6	37.8	40.2	42.6	45.2	47.9	50.8
10	53.8	57.0	60.3	63.8	67.5	71.4	$75 \cdot 5$	79.8	84.3	89.0
20	94.0	99.2	104.7	110.4	I 16.5	122.7	I 29.3	136.2	143.4	151.0
30	158.9	167.1	175.7	184.7	194.I	203.9	214.1	224.7	235.8	$247 \cdot 4$
40	259.4	271.9	285.0	298.5	312.6	327.3	342.5	358.3	374.7	391.7
50	409.4	427.7	446.6	466.3	486.6	507.7	529.5	552.0	$575 \cdot 3$	599.4
60	$624 \cdot 3$	650.0	676.5	703.8	732.0	761.1	$791 . \mathrm{I}$	822.0	5 S	5

[^27]VAPOR PRESSURE.*
Carbon Disulphide, Chlorobenzene, Bromobenzene, and Aniline.

Temp.	$0{ }^{\circ}$	$1{ }^{\circ}$	2°	3°	4°	$5{ }^{\circ}$	6°	$7{ }^{\circ}$	8°	$9{ }^{\circ}$
(a) Carbon Disulphide.										
$0{ }^{\circ}$	127.90	133.85	140.05	146.45	153.10	160.00	167.15	174.60	182.25	190.20
10	198.45	207.00	215.80	224.95	234.40	244.15	254.25	264.65	275.40	286.55
20	298.05	309.90	322.10	334.70	347.70	361.10	374.95	389.20	403.90	419.00
30	434.60	450.65	467.15	484.15	501.65	519.65	538.15	557.15	576.75	596.85
40	617.50	638.70	660.50	682.90	705.90	729.50	753.75	778.60	804.10	830.25
(b) Chlorobenzene.										
20°	8.65	9.14	9.66	10.21	10.79	11.40	12.04			14.17
30	14.95	15.77	16.63	17.53	18.47	19.45	20.48	21.56	22.69	23.87
40	25.10	26.38	27.72	29.12	30.58	32.10	33.69	$35 \cdot 35$	37.08	38.88
50	40.75	42.69	44.72	46.84	49.05	51.35	53.74	56.22	58.79	61.45
60	64.20	67.06	70.03		76.30	79.60	83.02	86.56	90.22	94.00
70	97.90	101.95	106.10	110.41	114.85	119.45	124.20	129.10	134.15	139.40
80	144.80	150.30	156.05	161.95	168.00	174.25	181.70	187.30	194.10	201.15
90	208.35	215.80	223.45	231.30	239.35	247.70	256.20	265.00	274.00	283.25
100	292.75	302.50	312.50	322.80	333.35		355.25	366.65	378.30	390.25
110	402.55	415.10	427.95	441.15	454.65	468.50	482.65	497.20	512.05	527.25
120	542.80 718.95	558.70 738.65	$\begin{aligned} & 575.05 \\ & 758.80 \end{aligned}$	591.70	608.75	$\underset{-}{626.15}$	$643 \cdot 95$	662.15	680.75	699.65
(c) Bromobenzene.										
40°	-	-	-	-	-	12.40	${ }^{1} 3.06$	${ }^{1} 3.75$	14.47	15.22
50	16.00	16.82	17.68	18.58	19.52	20.50	21.52	22.59	23.71	24.88
60	26.10	27.36	28.68	30.06	31.50	33.00	34.56	36.18	37.86	39.60
70	41.40	43.28	45.24	47.28	49.40	51.60	53.88	56.25	58.71	61.26
80	63.90	6.64	69.48	7242 10788	75.46	78.60	81.84	85.20	88.68	92.28
90	96.00	99.84	103.80	107.88	112.08	116.40	120.86	125.46	130.20	135.08
100	140.10	145.26				167.40				
10	198.70	205.48	212.44	219.58	226.90	234.40	242.10	250.00	255.10	266.40
120	274.90	283.65	292.60	301.75	311.15	320.80	330.70	340.80	351.15	361.80
130	372.65	383.75	395.10	406.70	418.60	430.75	443.20	455.90	468.90	482.20
140	495.80	509.70	523.90	538.40	553.20	568.35	583.85	599.65	615.75	632.25
150	649.05	666.25	683.80	701.65	719.95	738.55	757.55	776.95	796.70	816.90
(d) Aniline.										
80°	18.80	19.78	20.79	21.83	22.90	24.00	25.14	26.32	27.54	28.80
90	30.10	31.44	32.83	34.27	35.76	37.30	38.90	40.56	42.28	44.06
100	45.90	47.80	49.78	51.84	53.98	56.20	58.50	60.88	63.34	65.88
110	68.50	71.22	74.04	76.96	79.98	83.10	86.32	89.66	93.12	96.70
120	100.40	104.22	108.17	112.25	116.46	120.80	125.28	129.91	${ }_{1} 134.69$	1 39.62
130	144.70	149.94	155.34	160.90	166.62	172.50	178.56	184.80	191.22	197.82
140	204.60	211.58	218.76	226.14	233.72	241.50	249.50	257.72	266.16	274.82
150	283.70	292.80		311.75	321.60	331.70				374.60
160	386.00	397.65	409.60	421.80	434.30	447.10	460.20	473.60	487.25	501.25
170	515.60	530.20	545.20	560.45	576.10	592.05	608.35	625.05	642.05	659.45
180	677.15	695.30	713.75	732.65	751.90	771.50	-		-	-

* These tables of vapor pressures are quoted from results published by Ramsay and Young (Jour. Chem. Soc. vol. 47). The tables are intended to give a series suitable for hot-jacket purposes.
Smithsonian Tables.

Methyl Salicylate, Bromonaphthalene, and Mercury.

Temp. C.	0°	$1{ }^{\circ}$	$2{ }^{\circ}$	3°	4°	6°	6°	$7{ }^{\circ}$	8°	9°
(e) Methyl Salicylate.										
70°	2.40	2.58	2.77	2.97	3.18	3.40	3.62	3.85	4.09	$4 \cdot 34$
So	4.60	4.87	5.15	5.44	5.74	6.05	6.37	6.70	7.05	$7 \cdot 42$
	7.80			9.06	$9 \cdot 52$	9.95	10.44	10.95	$11.4{ }^{5}$	12.03
100	12.60	13.20	13.82	14.47	15.15	15.85	16.58	17.34	18.13	18.95
110	19.80	20.68	21.60	22.55	23.53	24.55	25.61	26.71	27.85	29.03
120	30.25	31.52	32.84	34.21	35.63	37.10	38.67	40.24	41.84	$43 \cdot 54$
130	$45 \cdot 30$	47.12	49.01	50.96	52.97	55.05	57.20	59.43	61.73	64.10
140	66.55	69.08	71.69	74.38	77.15	80.00	82.94	85.97	89.09	92.30
150	95.60	99.00	102.50	106.10	109.80	113.60	117.51	121.53	125.66	129.90
160	134.25	${ }_{1} 38.72$	143.31	148.03	152.88	${ }^{1} 57.85$	162.95	168.19	173.56	179.06
170	I 84.70	190.48	196.41	202.49	208.72	215.10	221.65	228.30	235.15	242.15
180	249.35	256.70	264.20	271.90	279.75	287.80	296.00	304.48	313.05	32 I .85
190	330.85	340.05	349.45	359.05	368.85	378.90	389.15	399.60	410.30	421.20
200	432.35	443.75	$455 \cdot 35$	467.25	479.35	491.70	504.35	517.25	530.40	543.80
210	557.50	571.45	585.70	600.25	615.05	630.15	$645 \cdot 55$	661.25	677.25	693.60
220	710.10	727.05	$744 \cdot 35$	761.90	779.85	798.10				
(f) Bromonaphthalene.										
110°	3.60	3.74	3.89	4.05	4.22	4.40	$4 \cdot 59$	4.79	5.00	5.22
120	5.45	5.70	5.96	6.23	6.51	6.80	7.10	7.42	7.76	8.12
130	8.50	8.89	9.29	9.71	10.15	10.60	11.07	11.56	12.07	12.60
140	13.15	13.72	14.31	14.92	15.55	16.20	16.87	17.56	18.28	19.03
150	19.80	20.59	21.41	22.25	23.11	24.00	24.92	25.86	26.83	27.83
160	28.85	29.90	30.98	32.09	33.23	34.40	35.60	36.83	38.10	39.41 I
170	. 40.75	42.12	$43 \cdot 53$	44.99	46.50	48.05	49.64	51.28	52.96	54.68
180	56.45	58.27	60.14	62.04	64.06	66.10	68.19	70.34	72.55	74.82
190	77.15	79.54	81.99	84.51	87.10	89.75	92.47	95.26	98.12	101.05
200	104.05	107.12	110.27	113.50	116.81	I 20.20	123.67	127.22	130.86	134.59
210	138.40	142.30	146.29	150.38	I 54.57	I 58.85	163.25	167.70	172.30	176.95
220	181.75	186.65	191.65	196.75	202.00	207.35	212.80	218.40	224.15	230.00
230	235.95	242.05	248.30	254.65	261.20	267.85	274.65	281.60	288.70	295.95
240	303.35	310.90	318.65	326.50	334.55	342.75	351.10	359.65	368.40	$377 \cdot 30$
	386.35	395.60	405.05	414.65	424.45	434.45	444.65	455.00	465.60	476.35
260	487.35	498.55	509.90	521.50	533.35	$545 \cdot 35$	557.60	570.05	582.70	595.60
270	608.75	622.10	635.70	649.50	663.55	677.85	692.40	707.15	722.15	737.45
(g) Mercury.										
	123.92	126.97		133.26	136.50	139.81	143.18	146.61	150.12	153.70
280	157.35	161.07	164.86	168.73	172.67	176.79	180.88	185.05	189.30	193.63
290	198.04	202.53	207.10	211.76	216.50	221.33	226.25	23 r .25	236.34	24 I. 53
300	246.81	252.18	257.65	263.21	268.87	274.63	280.48	286.43	292.49	298.66
310	304.93	311.30	317.78	324.37	331.08	337.89	344.81	351.85	359.00	366.28
320	373.67	381.18	388.81	396. 56	404.43	412.44	420.58	428.83	437.22	445.75
330 340	454.41 548.64	463.20 558.87	472.12 569.25	481.19	490.40	499.74	509.22	518.85	528.63	538.56
340	548.64	558.87	569.25	579.78	590.48	601.33	612.34	623.51	634.85	646.36
$\begin{array}{r} 350 \\ 360 \end{array}$	$\begin{aligned} & 658.03 \\ & 784.3 \mathrm{I} \end{aligned}$	669.86	68ı. 86	694.04	706.40	718.94	731.65	$744 \cdot 54$	757.61	770.87

Table 182.
VAPOR PRESSURE OF SOLUTIONS OF SALTS IN WATER.*
The first column gives the chemical formula of the salt. The headings of the other columns give the number of gram-molecules of the salt in a liter of water. The numbers in these columns give the lowering of the vapor pressure produced by the salt at the temperature of boiling water under 76 centimeters barometric pressure.

[^28] Phys." ch. 2, 42, 1886.

VAPOR PRESSURE OF SOLUTIONS OF SALTS IN WATER.

Substance.		0.5	1.0	2.0	3.0	4.0	5.0	6.0	8.0	10.0
MgSO_{4}	-	6.5	12.0	24.5	$47 \cdot 5$					
MgCl_{2}.	.	16.8	39.0	100.5	183.3	277.0	377.0			
$\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$	- .	17.6	42.0	101.0	174.8					
$\mathrm{MgBr}{ }_{2}$	-	17.9	44.0	I 15.8	205.3	298.5				
$\mathrm{MgH}_{2}\left(\mathrm{SO}_{4}\right)_{2}$	-	18.3	46.0	116.0						
MnSO_{4}	- .	6.0	10.5	21.0						
MnCl_{2}.	- .	15.0	34.0	76.0	122.3	167.0	209.0			
$\mathrm{NaH}_{2} \mathrm{PO}_{4}$.	10.5	20.0	36.5	51.7	66.8	82.0	96.5	126.7	157.1
NaHSO_{4}	. .	10.9	22.1	$47 \cdot 3$	75.0	100.2	126.1	148.5	189.7	231.4
NaNO_{3}	. .	10.6	22.5	46.2	68.1	90.3	111.5	131.7	167.8	198.8
NaClO_{3}	- .	10.5	23.0	48.4	73.5	98.5	123.3	$147 \cdot 5$	196.5	223.5
$\left(\mathrm{NaPO}_{3}\right)_{6}$	- .	1 I .6								
NaOH	. .	11.8	22.8	48.2	$77 \cdot 3$	107.5	139.1	172.5	243.3	314.0
NaNO_{2}	- -	I 1.6	24.4	50.0	75.0	98.2	122.5	146.5	I89.0	226.2
$\mathrm{Na}_{2} \mathrm{HPO}_{4}$	-	12.1	23.5	43.0	60.0	78.7	99.8	122.I		
NaHCO_{3}	- .	12.9	24.1	48.2	77.6	102.2	127.8	152.0	198.0	239.4
$\mathrm{Na}_{2} \mathrm{SO}_{4}$	- .	12.6	25.0	48.9	74.2					
NaCl .	- .	12.3	25.2	52.1	80.0	111.0	143.0	176.5		
NaBrO_{3}	. .	12.1	25.0	54.I	SI. 3	108.8	136.0			
NaBr	. .	12.6	25.9	57.0	89.2	124.2	159.5	197.5	268.0	
NaI	- .	12.1	25.6	60.2	99.5	I 36.7	$177 \cdot 5$	221.0	301.5	370.0
$\mathrm{Na}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$	\cdots	13.2	22.0							
$\mathrm{Na}_{2} \mathrm{CO}_{3}$. .	14.3	27.3	53.5	80.2	111.0				
$\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$	- •	14.5	30.0	65.8	105.8	146.0				
$\mathrm{Na}_{2} \mathrm{WO}_{4}$	- .	14.8	33.6	7 I .6	I 15.7	162.6				
$\left.\mathrm{Na}_{3} \mathrm{PO}\right)_{4}$	- \cdot	16.5	30.0	52.5						
$\left(\mathrm{NaPO}_{3}\right)_{3}$ $\mathrm{NH}_{4} \mathrm{NO}_{3}$	\cdot.	17.1 12.8 18	36.5 22.0	42.1	62.7	82.9	103.8	121.0	152.2	180.0
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SiFl}_{6}$. .	11.5	25.0	44.5						
$\mathrm{NH}_{4} \mathrm{Cl}$ -	- .	12.0	23.7	45.1	69.3	94.2	118.5	I 38.2	179.0	213.8
$\mathrm{NH}_{4} \mathrm{HSO}_{4}$.	- .	I I. 5	22.0	46.8	71.0	$94 \cdot 5$	118.	139.0	181.2	218.0
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$.	. .	11.0	24.0	46.5	69.5	93.0	117.0	141.8		
$\mathrm{NH}_{4} \mathrm{Br}$	- .	11.9	23.9	48.8	74.1	99.4	121.5	145.5	190.2	228.5
$\mathrm{NH}_{4} \mathrm{I}$.	- .	12.9	25.1	49.8	78.5	104.5	132.3	I 56.0	200.0	$243 \cdot 5$
NiSO_{4}	- .	5.0	10.2	21.5						
NiCl_{2}.	. .	16. 1	37.0	86.7	147.0	212.8				
$\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2}$	- -	16.1	$37 \cdot 3$	9 I .3	156.2	235.0				
$\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$. .	12.3	23.5	45.0	63.0					
$\mathrm{Sr}_{\mathrm{Sr}}\left(\mathrm{SO}_{3}\right)_{2}$	- \cdot	7.2	20.3	47.0						
$\mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}$	- .	15.8	31.0	64.0	97.4	I 31.4				
SrCl_{2}.	- .	16.8	38.8	91.4	I 56.8	223.3	281.5			
SrHr_{2}.	. .	17.8	42.0	IOI.I	179.0	267.0				
ZnSO_{4}	- .	4.9	10.4	21.5	42.1	66.2				
$\mathrm{ZnCl}_{2}{ }^{\text {a }}$	- .	9.2	18.7	46.2	75.0	107.0	153.0	195.0		
$\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}$.	- .	16.6	39.0	93.5	I 57.5	223.8				

Smithsonian Tables.

TABLES 183-185.
PRESSURE OF SATURATED AQUEOUS VAPOR.
The following tables for the pressure of saturated aqueous vapor are taken principally from the Fourth Revised Edition (1918) of the Smithsonian Meteorological Tables.

TABLE 183. - At Low Temperatures, -69° to $0^{\circ} \mathrm{C}$ over Ice.

Temp.	0	1	2	3	4	5	6	7	8	9
	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm
-60	0.008	0.007	0.006	0.005	0.004	0.004	0.003	0.003	0.003	0.002
-50	0.020	0.026	0.023	0.020	0.017	0.015	0.013	0.012	0.010	0.009
-40	0.096	0.086	0.076	0.068	0.060	0.054	0.048	0.042	0.037	0.033
-30	0.288	0.259	0.233	0.209	0.188	0.169	0.15 I	0.135	0.12 I	0.108
-20	0.783	0.712	0.646	0.585	0.530	0.480	0.434	0.392	0.354	0.319
-10	1.964	1.798	1.644	1.503	1.373	1.252	1.142	1.04 I	0.947	0.86 I
-0	4.580	4.220	3.887	3.578	3.29 I	3.025	2.778	2.550	2.340	2.144

TABLE 184.-At Low Temperatures, -16° to $0^{\circ} \mathrm{C}$ over Water.

Temp.	0	I	2	3	4	5	6	7	8	9
	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm
-10°	2.144	1.979	1.826	1.684	1.55 I	1.429	1.315	-	-	-
-0°	4.579	4.255	3.95^{2}	3.669	3.404	3.158	2.928	2.712	2.509	2.32 I

TABLE 185. - For Temperatures 0° to $374^{\circ} \mathrm{C}$ over Water.

Temp.	. 0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	-9
	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm
0°	4.580	4.614	4.647	4.68 I	4.715	4.750	4. 784	4.819	4.854	4.889
1	4.924	4.960	4.996	5.032	5.068	5.105	5.142	5.179	5.216	5.254
2	5.291	$5 \cdot 329$	$5 \cdot 368$	5.406	5.445	5.484	$5 \cdot 523$	5.562	5.602	5.642
3	5.682	5.723	5.763	5.804	5.846	5.887	5.929	5.971	6.013	6.056
4	6.098	6.14 I	6.185	6.228	6.272	6.316	6.361	6.406	6.450	6.496
5	6.541	6.587	6.633	6.680	6.726	6.773	6.820	6.868	6.916	6.964
6	7.012	7.061	7.110	7.159	7.209	7.259	7.309	7.360	7.410	$7 \cdot 462$
7	7.513	$7 \cdot 565$	7.617	7.669	7.722	7.775	7.828	7.882	7.936	7.991
8	8.045	8.100	8.156	8.211	8.267	8.324	8.380	8.437	8.494	8.552
9	8.610	8.669	8.727	8.786	8.846	8.906	8.966	9.026	9.087	9.148
10	9.21	9.27	9.33	9.40	9.46	9.52	9.59	9.65	9.72	9.78
11	9.85	9.91	9.98	10.04	10. 11	10. 18	10. 25	10.31	10.38	10. 45
12	10.52	10.59	10.66	10.73	10.80	10.87	10.94	II. 02	11.09	II. I6
13	II 124	11.31	11. 38	II. 46	II 1.53	II. 61	I 1.68	I 1 . 76	II . 84	II. 92
14	II. 99	12.07	12. 15	12.23	12.31	12.39	12.47	12.55	12.63	12.71
15	12.79	12.88	12.96	13.04	13.13	I3. 21	13.30	13.38	13.47	$13 \cdot 56$
16	13.64	13.73	13.82	13.91	14.00	14.08	14.17	14.26	14.36	14.45
17	14.54	14.63	14.73	14.82	14.91	15.01	15.10	15.20	15.29	15.39
18	15.49	15.58	15.68	15.78	15.88	15.98	16.08	16.18	16.28	16.39
19	16.49	16.59	16.70	16.80	16.91	17.01	17.12	17.22	17.33	17.44
20	17.55	17.66	17.77	17.88	17.99	18. 10	18.21	18.32	I8. 44	18. 55
21	18.66	18.78	18.90	19.01	19.13	19.25	19.36	19.48	19.60	19. 72
22	19.84	19.96	20.09	20.21	20.33	20.46	20.58	20.71	20.83	20.96
23	21.09	21.22	21.34	21.47	21.60	21.73	21.87	22.00	22.13	22.26
24	22.40	22.53	22.67	22.80	22.94	23.08	23.22	$23 \cdot 36$	23.50	23.64
25	23.78	23.92	24.06	24.21	$24 \cdot 35$	24.50	24.64	24.79	24.94	25.09

TABLE 185. - For Temperatures 0° to $374^{\circ} \mathrm{C}$ over Water.

Temperature.	. 0	. I	. 2	. 3	. 4	. 5	6	. 7	. 8	- 9
	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm
25°	23.78	23.92	24.06	24.21	24.35	24.50	24.64	24.79	24.94 26.46	25.09 26.61
26	25.24	25.38	25.54	25.69	25.84	25.99 27.56	26.14 27.72	26.30 27.80	26.46 28.05	26.61 28.22
27	26.77	26.92	27.08	27.24	27.40	27.56	27.72 29.39	27.89 29.56	28.05	28.22
28	28.38	28.55	28.71	28.88	29.05	29.22	29.39	29.56	29.73	29.90
29	30.08	30.25	30.43	30.60	30.78	30.96	31.14	31.32	31.50	31.68
30	31.86	32.04	32.23	32.41	32.60	32.79	32.97	33.16	33.35	33.54
31	33.74	33.93	34.12	$34 \cdot 32$	34.51	34.71	34.91	35.10	35.30	35.50
32	35.70	35.91	36.11	36.32	36.52	36.73	36.94	37.14	37.35	37.56
33	37.78	37.99	38.20	38.42	38.63	38.85	39.06	39.28	39.50	39.72
34	39.95	40.17	40.39	40.62	40.85	41.07	41.30	41.53	41.76	41.99
35	42.23	42.46	42.70	42.93	43.17	43.418	43.65	43.89	44.13	$44 \cdot 37$
36	44.62	44.86	45.11	45.36	45.61	45.86	46.11	46.36	46.62	46.87
37	47.13	47.38	47.64	47.90	48.16	48.43	48.69	48.95	49.22	49.49
38	49.76	50.02	50.30	50.57	50.8 .4	51.12	51.39	51.67	51.95	52.23
39	52.51	52.79	53.08	53.36	53.65	53.94	54.23	54.52	54.81	55.10
40	55.40	55.69	55.99	56.29	56.59	56.89	57.19	57.50	57.80	58.11
4 I	58.42	58.73	59.04	59.35	59.66	59.98	60.30	60.62	60.94	6 I .26
42	61.58	61.90	62.23	62.56	62.89	63.22	63.55	63.88	64.22	64.55
43	64.89	65.23	65.57	65.91	66.26	66.60	66.95	67.30	67.64	68.00
44	68.35	68.70	69.06	69.42	69.78	70.14	70.50	70.87	71.23	71.60
45	71.97	72.34	72.71	73.09	73.46	73.84	74.22	74.60	74.98	75.36
46	75.75	76.14	76.53	76.92	77.31	77.70	78.10	78.50	78.90	79.30
47	79.70	80.11	80.51	80.92	81.33	81.74	82.16	82.57	82.99	83.41
48	83.83	84.25	84.68	85.10	85.53	85.96	86.39	86.83	87.26	87.70
49	88.14	88.58	89.02	89.47	89.92	90.36	90.82	91.27	91.72	92.18
	0.	1.	2.	3.	4.	5.	6.	7.	8.	9.
50	92.6	97.3	102.2	107.3	112.7	118.2	124.0	130.0	136.3	142.8
60	149.6	156.6	16.4 .0	171.6	179.5	187.8	196.3	205.2	214.4	224.0
70	233.9	244.2	254.9	266.0	277.4	289.3	301.6	314.4	327.6	341.2
80	355.4	370.0	385.2	400.8	417.0	433.7	451.0	468.8	487.3	506.3
90	526.0	5.46 .3	567.2	588.8	611.1	634.1	657.8	682.2	707.4	733.3
100	760.0	787.5	815.9	845.0	875.1	906.0	937.8	970.5	1004.2	1038.8
110	1074	1111	1149	1187	1227	1268	1310	1353	1397	1442
120	1489	1536	1585	1636	1687	1740	1794	1850	1907	1965
130	2025	2086	2149	2214	2280	2347	2416	2487	2559	2633
1.40	2709	2786	2866	2947	3030	3115	3201	3290	3381	3473
150	3568	3665	3763	3864	3967	4072	4180	4290	4402	4516
160	4632	4751	4873	4997	5123	5252	5383	5518	5654	5794
170	5936	6080	6228	6378	6532	6688	6847	7009	7174	7342
180	7513	7688	7865	80.46	8230	8417	8608	8802	8999	9200
190	9.404	9612	9823	10040	10260	10480	10700	10940	11170	11410
200	11650	11890	12140	12400	12650	12920	13180	13450	13730	14010
210	14290	14580	14870	15160	15470	15770	16080	16400	16720	17040
220	17370	17710	18050	18390	18740	19100	19450	19820	20190	20560
230	20950	21.330	21720	22120	22520	22930	23350	23770	24190	24620
240	25060	25500	25950	26410	26870	27340	27810	28290	28780	29270
250	29770	30280	30790	31310	31830	32360	32900	33450	34000	34560
260	35130	35700	36280	36870	37470	38070	38680	39300	39920	40560
270	41200	41840	42500	43160	4.38 .40	$4+520$	45200	45900	46600	47320
280	480.40	48760	49500	50250	51000	51770	52540	53.320	54110	54910
290	55710	56530	57360	58190	59040	59890	60750	61620	62510	63400
300	64.300	65210	66130	67060	68000	68960	69920	70890	71870	72860
310	73870	74880	75910	769.40	77990	79050	80120	81200	82290	83390
320	8.4500	856.30	86760	87910	89070	90250	91430	92630	938.40	95060
330	96290	97530	98790	100060	101350	102640	103950	105280	106600	108000
340	109300	110700	112100	113500	I 14900	116300	117800	119200	I 20700	122200
350	123700	125200	126800	128300	129900	131400	133000	134600	136300	137900
360	139600	141200	142900	14.4600	1.46300	148100	149800	151600	153400	155200
370	157000	158800	160700	102600	164400	-	-	-	-	-

TABLES 186-188.
TABLE 186. - Weight in Grams of a Cubic Meter of Saturated Aqueous Vapor.

Temp.	0°	\mathbf{I}°	2°	3°	4°	5°	6°	7°	8°	9°
-20°	0.894	0.816	0.743	0.677	0.615	0. 559	0.508	0. 461	0.418	0.378
-10	2. 158	1.983	1.820	1.671	1. 531	1.403	1. 284	I. 174	1.073	0.980
-	4.847	4.482	4.144	3.828	3.534	3.261	3.006	2.770	2.551	2.347
$+0^{\circ}$	4.847	5.192	5.559	5.947	6.36 c	6.797	7.261	7.751	8.271	8.821
+10	9.401	10.015	10.664	11.348	12.070	12.832	13.635	14.482	15.373	16.311
+20	17.300	18.338	19.430	20.578	21.783	23.049	24.378	25.771	27.234	28.765
$+30$	30.371	32.052	33.812	35.656	37.583	39.599	41.706	43.908	46.208	48.609

For higher temperatures, see Table 259.

TABLE 187. - Weight in Grains of a Cubic Foot of Saturated Aqueous Vapor.

Temp.	0°	I°	2°	3°	4°	5°	6°	7°	8°	9°
-20°	0.167	0. 158	0. 150	0.141	0. 134	0. 126	0.119	0.112	-. 106	0. 100
-10	0. 286	0.272	0.258	-. 244	0. 232	0. 220	0. 208	-. 197	0. 187	0.176
- 0	0. 479	0.455	0.433	0.41 I	- 0.391	0.371	0.353	0.335	0. 318	0.302
$+0^{\circ}$	0.479	0.503	0.529	0. 556	-. 584	0.613	0.644	0.676	0.709	0.744
$+10$	0.780	0.818	0.858	0. 900	O. 943	0.988	1. 035	1. 084	1.135	1. 189
$+20$	I. 244	1.301	1.362	1.425	1.490	I. 558	1.629	1.703	1. 779	r. 859
$+30$	1.942	2.028	2.118	2. 200	2. 286	2.375	2.466	2.560	2.658	2.759
+40	2.863	2.970	3.082	3. 196	3.315	3.436	3.563	3.693	3.828	3.965
+50	4. 108	4.255	4.407	4. 564	4.725	4.891	5.062	5.238	5.420	5.607
+60	5.800 8.066	5.999 8.329	6.203 8.600	6.413 8.870	6.630 0.165	6.852	7.082	7.317 10.072	7.560 10	7.809
+70 +80	8.066 II 1.056	8.329 11.401	8.600 11.756	8.879 12.121	$\begin{array}{r}9.165 \\ 12.494 \\ \hline\end{array}$	9.460 12.878	9.761 13.272	10.072 13.676	10.392 14.000	10.720 14.515
+90	14.951	15.400	15.858	16.328	16.810	17.305	17.812	18.330	18.863	19.407
$10{ }^{\circ}$	19.966	20.538	21.123	21.723	22.337	22.966	23.611	24.271	24.946	25.636
110	26.343	27.066	27.807	28.563	29.338	30. 130	30.940	31.768	32.616	33.482

Tables are abridged from Smithsonian Meteorological Tables, fourth revised edition.

TABLE 188. - Pressure of Aqueous Vapor in the Atmosphere.

For various altitudes (barometric readings).

The first column gives the depression of the wet-bulb temperature t_{1} below the air temperature t. The value corresponding to the barometric height at the altitude of observation is to be subtracted from the vapor pressure corresponding to the wet-bulb temperature taken from Table 185. The temperature corresponding to this vapor pressure taken from Table 185 is the dew point. The wet bulb should be ventilated about 3 meters per second. For sea-level use Table 189. Example: $t=35^{\circ}, t_{1}=30^{\circ}$, barometer 74 cm . Then $3 \mathrm{I} .83-2.46=29.37 \mathrm{~mm}=$ aqueous vapor pressure; the dew point is $28.6^{\circ} \mathrm{C}$.

Abridged from Smithsonian Meteorological Tables, 1907.

$t^{\circ}-t_{1}$	Barometric pressure in centimeters.													
	74	72	70	68	66	64	62	60	58	56	54	52	50	48
	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm
I°	0.50	0.48	0.47	0.46	0.44	0. 43	0.42	0.40	0.39	0.38	0.36	0.35	0.34	0.32
2	0.98	0.96	0.93	0.90	0.88	0.85	0.82	-. 80	0. 77	0.75	0.72	0.69	0.67	0.64
3	1. 47	1.43	I. 39	1.35	1.32	I. 28	I. 24	1. 20	I. 15	1.12	1. 08	I. 04	I. 00	0.96
4	1.97	1.91	1. 86	I. 8 I	1.75	I. 70	I. 65	I. 60	1. 54	I. 49	1. 44	I. 38	I. 33	I. 28
5	2.46	2.39	2.32	2.26	2. 19	2.13	2.06	1. 99	1.93	1.86	1.80	1.73	I. 66	1.60
6	2.95	2.87	2.79	2.71	2.6 .3	2.55	2.47	2.39	2.32	2.24	2. 16	2.08	2.00	1.92
7	3.45	3.36	3.26	3.17	3.08	2.99	2.89	2.80	2.71	2.61	2.52	2.43	2.33	2.24
8	3.95	3.84	3.73	3.63	3.53	3.42	3.31	3.20	3.10	2.99	2.88	2.78	2.67	2.56
9	4.44	4.32	4.21	4.09	3.97	3.85	3.73	3.61	$3 \cdot 49$	$3 \cdot 37$	3.25	3.13	3.00	2.88
10	4.94	4.81	4.68	4.54	4.41	4.28	4.14	4 . OI	3.88	3.74	3.61	3.48	3.34	3.21
II	5.44	$5 \cdot 30$	5.15	5.00	4.86	4.71	4.56	4.42	4.27	4.12	3.97	3.83	3.68	3.53
12	5.94	5.78	5.62	5.46	5.30	5.14	4.98	4.82	4.66	4.50	$4 \cdot 34$	4.18	4.02	3.85
13	6.45	6.27	6.10	5.92	5.75	5.57	5.40	5.23	5.05	4.88	4.70	4.53	4.36	4.18
14	6.95	6.76	6.58	6.39	6.20	6.01	5.83	5.64	5.45	5.26	5.07	4.88	4.70	4.51
15	7.46	7.26	7.06	6.85	6.65	6.45	6.25	6.05	5.85	5.64	5.44	5.24	5.04	4.84
16	7.96	7.75	7.54	$7 \cdot 32$	7.11	6.89	6.68	6.46	6.24	6.03	5.81	5.60	$5 \cdot 38$	5.17
17	8.47	8.24	8.02	$7 \cdot 79$	7.56	7.33	7.10	6.87	6.64	6.41	6.18	5.95	5.72	5.50

This table gives the vapor pressure corresponding to various values of the difference $t-t_{1}$ between the readings of dry and wet bulb thermometers and the temperature t_{1} of the wet bulb thermometer．The difference $t-t_{1}$ is given by two－degree steps in the top line，and $t 1$ by degrees in the first column．Temperatures in Centigrade degrees，vapor pressures in millimeters of mercury are used throughout the table．The table was calculated for barometric pressure B equal to 76 centimeters．A correction is given for each centimeter at the top of the columns．Ventilating velocity of wet thermometer about 3 meters per second．

t_{1}	$\begin{aligned} & t-t_{1} \\ &=0\end{aligned}$	2°	4°	6°	8°	10°	12°	14°	16°	18°	20°	Differ－ ence for
Corrections for B per cm		． 013	． 026	． 040	． 053	． 066	． 079	． 092	． 106	． 119	． 132	$\underset{i-i_{1}}{0.18}$
－10	1.96	0.97		－	－	Example．						0.050
－9	2.14	I． 15	0.16			$t=17.2 ; t_{1}=10.0 ; B=74.5 \mathrm{~cm}$						0.050
－8	2.34	I． 35	0.35	－	－							0.050
$=7$ -6	2．55	1． 56	0.66			$t-t_{1}=7.20 .0, B=74.5 \mathrm{~cm}$						0.050
－ 6	2.78	1.78	0.79			From table： $6.17-12 \times 0.050=5.57$ For B ，I． $5 \times .048=107$						0.050
5	3.02	2.03	1.03	0.03	－	Hence $p \times .05$						0.050
－4	3.29	2.29	1． 29	0.29						$=5.64$		0.050
－ 3	3.58	2.58	1． 58	－． 58	二							0.050
1 -1	3.89 4.22	2.89 3.22	1.89 2.22	0.88 1．21	0.21			－	－	－	二	0.050
\bigcirc	4． 58	3.58	2.57	1． 57	0． 57	二	－	二	二	二	二	0.0500.050
1	4.92	3.92	2.92	I． 91	－．91							
2	5.29	4.29	3.28	2.27 2.66	1.27	0.26	－	二	二．	－	－	$\begin{aligned} & 0.050 \\ & 0.050 \end{aligned}$
3 4	5.68 6.10	4.68 5.09	3.67 4.08	2.66 3.07	1.66 2.07	0.65 I． 06	－0．05	二	－	二	二	
5	6.54	5.53	4.52	3.5 I	2.51	1． 50	0.49	－	二	二	二	0.0500.050
6	7.01	6.00	4.99	3.98	2.97	I． 96	0.95		－			
7	7.51 8.04 8.61	6.50 7.03	5.49 6.02	4.48 5	3.47 4.00	2.46	I． 45	0.43		－		0.050
8	8.04 8.61	7.03 7.60	6.02 6.58	5.01 5.57	4.00 4.56	$\begin{aligned} & 2.98 \\ & 3.54 \end{aligned}$	$\begin{aligned} & 1.97 \\ & 2.53 \end{aligned}$	1． 52 1	0.50	二	－	
10	9.21	8.20	7.18	6.17	5.15	4.14	3.12	2.11	1.09	0.08	二	0.050
11	9.85	8.83	7.81	6.80	5.78	4.77	3.12 3.75	2.73	1.72	0．78		0.051
12	10.52	9.50	8.49	7.47	6.45	5.446.146.14	$\begin{aligned} & 4.42 \\ & 5.13 \end{aligned}$	$\begin{aligned} & 3.40 \\ & 4.1 I \end{aligned}$	$\begin{aligned} & 2.38 \\ & 3.09 \end{aligned}$	$\underline{1} 37$	$\begin{aligned} & 0.35 \\ & 1.05 \end{aligned}$	0.051
13	II． 24	10． 22	9.20	8． 18	7.16					2.072.82		$\begin{aligned} & 0.051 \\ & 0.051 \end{aligned}$
14	11.99	10.97	9.95	8.93	7.91	6.90	5.88	4.86	$\begin{aligned} & 3.09 \\ & 3.84 \end{aligned}$		$\begin{aligned} & 1.05 \\ & 1.80 \end{aligned}$	
15	12.79	11.77	10.75	9．73	8.71	7.69	6.67	5.656.49	4.63	3.61	2.59	0.051
16	13.64	12.62	11.60	10.58	9.96	$\begin{array}{r} 8.53 \\ 9.42 \end{array}$			5.66.476.36	4.655.335	$\begin{array}{r} 3.43 \\ 4.31 \\ \hline \end{array}$	0.051
17	14.54	13.52	12.49	11.47	10.45			6．497.388.32				
18	15.49	14.46	13.44	12.42	11.39	I0． 37II． 36	$\begin{array}{r} 9.34 \\ 10.34 \end{array}$		7.308.29	6.277.26	5.256.24	$\begin{aligned} & 0.05 \mathrm{I} \\ & 0.05 \mathrm{I} \end{aligned}$
19	16.49	15.46	14.44	13.41	12.39			$\begin{aligned} & 8.32 \\ & 9.3 \mathrm{I} \end{aligned}$				
20	17.55	16.52	15.50	14.47	13.44	12.42	11.39	10． 36	9.34	8.31	7.29	0.051
21	18.66	17.64	16．6r	15.58	14.56	$\begin{aligned} & 13.53 \\ & 14.70 \end{aligned}$	$\begin{aligned} & 12.50 \\ & 13.67 \end{aligned}$	$\begin{aligned} & 11.47 \\ & 12.64 \end{aligned}$	$\begin{aligned} & 10.45 \\ & 1.62 \end{aligned}$	9.4210.59	$\begin{array}{r} 8.39 \\ 10.57 \end{array}$	$\begin{aligned} & 0.051 \\ & 0.051 \end{aligned}$
22	19.84	18.82	17.79	16.76	15.73							
23	21.09	20.06	19.03	18.00	16.97	$\begin{aligned} & 15.94 \\ & 17.24 \end{aligned}$	14.9116.21	$\begin{aligned} & 13.88 \\ & 15.18 \end{aligned}$	$\begin{aligned} & 12.85 \\ & 14.15 \end{aligned}$	$\begin{aligned} & 11.82 \\ & 13.12 \end{aligned}$	$\begin{aligned} & 10.79 \\ & 12.09 \end{aligned}$	$\begin{aligned} & 0.051 \\ & 0.05 \mathrm{I} \end{aligned}$
24	22.40	21.37	20.34	19．31	18.27							
25	23.78	22.75	21.71	20.68	19.65	18.62	17.59	16.56	15.52	14.49	I3．46	0.052
26	25.24	24.20	23.17	22.14	21.10	$\begin{aligned} & 20.07 \\ & 21.60 \\ & 23.20 \end{aligned}$	$\begin{aligned} & 19.04 \\ & 20.56 \\ & 22.17 \end{aligned}$	$\begin{aligned} & 18.00 \\ & 19.53 \\ & 21.13 \end{aligned}$	$\begin{aligned} & 16.97 \\ & 18.49 \\ & 20.10 \end{aligned}$	$\begin{aligned} & 15.94 \\ & 17.46 \end{aligned}$	14.90	$\begin{aligned} & 0.052 \\ & 0.052 \end{aligned}$
27 28	26.77	25.73	24.70	23.66	22.63						16.42	
28	28.38	27.34	26.31	25.27	24.24					$\begin{aligned} & 19.06 \\ & 20.75 \end{aligned}$	$\begin{aligned} & 18.02 \\ & 19.71 \end{aligned}$	$\begin{aligned} & 0.052 \\ & 0.052 \end{aligned}$
29	30.08	． 29.04	28.00	26.97	25.93	$\begin{aligned} & 23.20 \\ & 24.89 \end{aligned}$	23.86	$\begin{aligned} & 21.13 \\ & 22.82 \end{aligned}$	$\begin{aligned} & 20.10 \\ & 21.78 \end{aligned}$			
30	31.86	30.82	29.78	28.75	27.71	26.67	25.63	24.60	23.56	22.52	21.48	0.052
31	33.74	32.70	31.66	30.62	29.58	$\begin{aligned} & 28.54 \\ & 30.50 \\ & 32.57 \end{aligned}$	$\begin{aligned} & 27.50 \\ & 29.46 \\ & 31.53 \end{aligned}$	$\begin{aligned} & 26.46 \\ & 28.42 \\ & 30.49 \end{aligned}$	$\begin{aligned} & 25.42 \\ & 27 \cdot 38 \end{aligned}$	24.38	23.34	$\begin{aligned} & 0.052 \\ & 0.052 \end{aligned}$
32	35.70			32.58	31.54					26.34	25.30	
33 34	37.78 39.95	36.73 38.90	35.69 37.86	34.65 36.82	33.61 35.78				$\begin{aligned} & 29.44 \\ & 3 \mathrm{I} .6 \mathrm{I} \end{aligned}$	$\begin{aligned} & 28.40 \\ & 30.57 \end{aligned}$	27.36	$\begin{aligned} & 0.052 \\ & 0.052 \end{aligned}$
34	39.95	38.90	37.86	36.82	35.78	$\begin{aligned} & 32.57 \\ & 34.73 \end{aligned}$	31.53 33.69	$\begin{aligned} & 30.49 \\ & 32.65 \end{aligned}$			29.52	
35	42.23	41． 18	40.14	39．10	38.05	37.01	35.97	34.92	33.88	32.83	31.79	0.052
36 37	44.62 47.13	43.57 46.08	42.53	41.43	40.44	39.40	38.35	37.31	36． 26	35.22	34.17	0.052
37 38	47.13 49.76	46.08 48.71	45.04 47.66	43.99	42.94	41.90	40.85	39.81	38.76	37.71	36.67	0.052
39	49.76 52.51	48.71 51.46	47.60 50.41	46.61 49.37	45.57 48.32	44.52 47.27	43.47 46.22	42.43 45.17	44．38	40.33 43.08	39.29 42.03	0.052 0.052
40	55.40	54.35	53.30	52.25	51.20	50.15	49． 10	48.05	47.00	45.95	44.00	0.052

Emithsonian Tables．

Table 190.
RELATIVE HUMIDITY.
Vertical argument is the observed vapor pressure which may be computed from the wet and drybulb readings through Table 188 or 189 . The horizontal argument is the observed air temperature (dry-bulb reading). Based upon Table 43, p. 142, Smithsonian Meteorological Tables, 3 d Revised Edition, 1907.

Smithsonian Tables.

	Air Temperatures, dry bulb, ${ }^{\circ}$ Cenigrade.
	${ }^{20} 210$
1 2 2	cccccccccccccccccccccccccc
$\begin{array}{r} 5 \\ 6 \\ 7 \\ 7 \\ \hline 9 \end{array}$	
$\begin{aligned} & 10 \\ & 11 \\ & 12 \\ & 13 \\ & 14 \end{aligned}$	
$\begin{aligned} & 15 \\ & 16 \\ & 17 \\ & 18 \end{aligned}$	
$\begin{aligned} & 20 \\ & 21 \\ & 20 \\ & 23 \\ & 20 \end{aligned}$	
$\begin{aligned} & 25 \\ & 26 \\ & 26 \\ & 28 \\ & 29 \end{aligned}$	
$\begin{aligned} & 30 \\ & 31 \\ & 32 \\ & 33 \\ & 33 \\ & 34 \end{aligned}$	
	- - - - - 999489
36 37	
${ }_{39}^{38}$	
${ }_{41}^{40}$	-969086
41 42 43	
${ }_{44}^{4}$	-999489
45	- 9698
${ }_{48}^{47}$	
50 52 51 5	$\begin{aligned} & 93 \\ & 995 \end{aligned}$
54	こ こ - - - - - - - -99
55	- - - -

MITHSONIAN TABLES.

Tables 190 (concluded), 191.
TABLE 190 (concluded).-Relative Humidity.
(Data from 20° to $60^{\circ} \mathrm{C}$. based upon Table 185).

Vapor Pressure mm.	Air Temperatures, dry bulb, ${ }^{\circ}$ Centigrade.																				
	40°	41°	42	43°	44°	45°	46°	47	48°	49°	50	51°	52°	53.	54.	55			58.	590	600
5	9			8	7	7		6	6	6	5	5	5	5	4	4			4	4	3
10	18	17	16	15	15	14	13	13	12	11	11	10	10	9	9	8			7	7	7
15	27	26	24	23	22	21	20	19	18	17	16	15	15	14	13	13	12		11	10	10
20	36	34	33	31	29	28	26	25	24	23	22	21	20	19	18	17	16	15	15	14	13
25	45	43	41	39	37	35	33	31	30	28	27	26	24	23	22	21	20	19	18	18	17
30	54	51	49	46	44	42	40	38	36	34	32	3 I	29	28	27	25	24	23	22	21	20
35	63		57	54	51	49	46	44	42	40	38	36	34	33	31	30	28		26	25	23
40			65	62	59	56	53	50	48	45	43	41	39	37	36	34	32	31	29	28	27
45 50		77	73 81	69	66	63	59	57	54	5 I	49	46	44	42	40	38	36		33	32	30
50		86	81	77	73	70	66	63	60	57	54	51	49	47	44	42	40		37	35	33
55	99	94	89	85	81	76	73	69	66	62	59		54	51	49	46	44		40	39	37
60	-		98	93	88	83	79	75	72	68	65	62	60	56	53	51	48		44	42	40
65	-				95	90	86	82	78		70	67	64	61	58	55	52			46	43
70	-					97	92	88	84		76		68	65	62	59	56		51	49	47
75							99	94	90		81	77	74	70	67	64	60		55	53	50
80	-	-	-	-	-	-		100	96	91	86	82	78	75	71	68	64		59	56	54
85 90	-	-	-	-	-	-	-			97	92	87	84	79	75	72	69		62	60	57
$\begin{aligned} & 90 \\ & 95 \end{aligned}$			mm.	57°	58	59		-	-		97	93	88	84		76	73		66	63	60
100	-		125	96	92	88	84				-	9	98	93	89	. 85	${ }_{81}$	73	73	70	67
105	-		130	100	95	91	87	-	-	-	-			98	93		85			74	70
110	-		135	-	99	95	90	-	-	-	-	-	-			93	89		81	77	74
115	-		140	-		98	94			-	-	-				97			84	81	77
120	-		145	-	-	-	97			-	-	-	-							84	80
125	-		150	-	-		100	-	-	-	-	-	-	-	-	-	-	96	92	88	84

TABLE 191, - Relative Humldity.

This table gives the relative humidity direct from the difference between the reading of the dry ($t{ }^{\circ} \mathrm{C}$.) and the wet ($t_{1}{ }^{\circ}$ C.) thermometer. It is computed for a barometer reading of $\overline{\xi 6 \mathrm{~cm} \text {. The wet thermometer should be ventilated }}$ about 3 meters per second. From manuscript tables computed at the U.S. Weather Bureau.

t°	Depression of wet-bulb thermometer, $\mathrm{t}^{0}-\mathrm{t}_{1}{ }^{\circ}$.																
	$0.2{ }^{\circ}$	$0.4{ }^{\circ}$	$0.6{ }^{\circ}$	$0.8{ }^{\circ}$	1.0°	$1.2{ }^{\circ}$	$1.4{ }^{\circ}$	$1.6{ }^{\circ}$	$1.8{ }^{\circ}$	$2.0{ }^{\circ}$	2.50	$3.0{ }^{\circ}$	$3.5{ }^{\circ}$	$4.0{ }^{\circ}$	$4.5{ }^{\circ}$	$5.0{ }^{\circ}$	5.50
-15	90	91	72	62	53	44	35	25	16	7	-	-	-	-	-	-	-
	92	85	77	69	62	54	47	39	32	25	7	-	-	-	-	-	-
-9	94	88	81 85	75	70	62	56	50	44	39	23	25	-	$\overline{2}$	-	-	-
-6 -3	95 96	89 91	85 87	80 82	74 78	69 74	64 69	69	54 64	49 59	36 46	25 36	13 26	17	7	-	-
0	96	92	89	85	81	78	74	71	67	64	55	46	38	29	21	13	6
+3	97	94	$9{ }^{1}$	87	84	81	78	75	72	69	62	54	46	40	32	25	18
	0.5°	1.0°	1.5°	$2.0{ }^{\circ}$	$2.5{ }^{\circ}$	$3.0{ }^{\circ}$	$3.5{ }^{\circ}$	$4.0{ }^{\circ}$	$4.5{ }^{\circ}$	5.0°	6.0°	7.0°	$8.0{ }^{\circ}$	$9.0{ }^{\circ}$	10.0	11.0	12.0
+3	92	84	76	69	62	54	46	40	32	25	12	-	-	-	-	-	-
+6	94	87	80	73	66	60	54	47	41	35	23	11	12	$\bar{\square}$	-	-	-
+9 +12	94	88	82	76	70	65	59	53	48	42	32	22	12	3	-	-	-
+12	94	89	84	78	73	68	63	58	53	48	38	30	21	12	4	-	-
$+15$	95	90	85	80	76	71	66	62	58	53	44	36	28	20	13	4	-
+18	95	90	86	82	78	73	69	65	61	57	49	42	35	27	20	13	3
+21	96	91	87	83	79	75	71	67	64	60	5.3	46	39	32	26	19	13
$+24$	96	92	88	85	81	77	74	70	66	63	56	49	43	37	31	26	21
+27	96	93	90	86	82	79	76	72	68	65	59	53	47	41	36	31	26
+30	96	93	90	86	82	79	76	73	70	67	61	55	50	44	39	35	30
$+33$	96	93	90	86	83	80	77	74	71	68	63	57	52	47	42	37	33
+36 +39	97	93	90	87 88	84 8	81 82	78	75	72	70	6_{4}	57	54	50	45	41	36
+39	97	94	91	88	85	82	79	76	74	71	66	61	56	52	47	43	39

THERMOMETER THREAD.

When the temperature of a portion of a thermometer stem with its mercury thread differs much from that of the bulb, a correction is necessary to the observed temperature unless the instrument has been calibrated for the experimental conditions. This stem correction is proportional to $n \beta(T-t)$, where n is the number of degrees in the exposed stem, β the apparent coefficient of expansion of mercury in the glass, T the measured temperature, and t the mean temperature of the exposed stem. For temperatures up to $100^{\circ} \mathrm{C}$, the value of β is for Jena ${ }^{16} 6^{\mathrm{III}}$ or Greiner and Friedrich resistance glass, 0.0001_{59}, for Jena $59^{\mathrm{II}}, 0.000164$, and when of unknown composition it is best to use a value of about 0.000155 . The formula requires a knowledge of the temperature of the emergent stem. This may be approximated in one of three ways: (r) by a "fadenthermometer" (see Buckingham, Bulletin Bureau of Standards, 8, p. 239, 1912); (2) by exploring the temperature distribution of the stem and calculating its mean temperature; and (3) by suspending along the side of, or attaching to the stem, a single thermometer. Table 192 is taken from the Smithsonian Meteorological Tables, Tables 193-195 from Rimbach, Z. f. Instrumentenkunde, 10, p. 153,1890 , and apply to thermometers of Jena or resistance glass.

TABLE 192. - Stem Correction for Centigrade Thermometers.
Values of $0.000155 n(T-t)$.

n	($T-t$).							
	10°	20°	30°	40°	50°	60°	70°	80°
$10^{\circ} \mathrm{C}$	0.02	0.03	0.05	0.06	0.08	0.09	0.11	0.12
20	0.03	0.06	0.09	0. 12	-. 16	-. 19	0.22	0.25
30	0.05	0.09	-. 14	-. 19.	0.23	0. 28	0. 33	0.37
40	0.06	0. 12	-.19	0. 25	0. 31	0.37	0.43	0.50
50	0.08	0.16	0.23	0.31	-. 39	0.46	0. 54	0.62
60	0.09	O. 19	0. 28	0.37	0.46	0.56	0.65	0.74
	O. 11	0. 22	0.33	0.43	-. 54	0.65	0.76	0.87
80	0.12	0.25	0.37	0. 50	0.62	0.74	0.87	0.99
90	0. 14	0. 28	0.42	0. 56	0. 70	0.84	0.98	I. 12
100	-. 16	0.31	0.46	0.62	0.78	0.93	1.08	I. 24

TABLE 193. - Stem Correction for Thermometer of Jena Glass (0° to $\mathbf{3 6 0}{ }^{\circ}$ C).
Degree length 0.9 to 1.1 mm; $t=$ the observed temperature; $t^{\prime}=$ that of the surrounding air 1 dm . away; $n=$ the length of the exposed thread.

CORRECTION FOR TEMPERATURE OF MERCURY IN THERMOMETER STEM (continued).

TABLE 194. - Stem Correction for Thermometer of Jena Glass ($\mathbf{0}^{\circ}-\mathbf{3 6 0}{ }^{\circ}$ C).
Degree length I to 1.6 mm ; $t=$ the observed temperature ; $t^{\prime}=$ that of the surrounding air one dm. away; $u=$ the length of the exposed thread.

\boldsymbol{n}	Correction to be added to Thermometer Rbading.*										
	t - t^{\prime}										n
	70°	80°	90°	100°	120°	140°	160°	180°	200°	220°	
10°	0.02	0.03	0.05	0.07	0.11	0.17	0.21	0.27	0.33	0.38	10°
20	0.13	0.15	0.18	0.22	0.29	0.38	0.46	0.53	0.61	0.67	20
30	0.24	0.28	0.33	0.39	0.48	0.59	0.70	0.78	0.88	0.97	30
40	0.35	0.41	0.48	0.56	0.68	0.82	0.94	I. 04	I.16	1.28	40
50	0.47	0.53	0.62	0.72	0.88	1.03	1.17	I. 31	I. 44	1.59	50
60	0.57	0.66	0.77	0.89	1.09	1.25	1.42	I. 58	1.74	1.90	60
70	0.69	0.79	0.92	1.06	1.30	I. 47	1.67	I. 86	2.04	2.23	70
80	0.80	0.91	1.05	1.21	1.52	I. 71	I. 94	2.15	2.33	2.55	80
90	0.91	1.04	1.19	1.38	1.73	1.96	2.20	2.42	2.64	2.89	90
100	1.02	1.18	I. 35	1.56	I. 97	2.18	2.45	2.70	2.94	3.23	100
110	-	-	-	1. 78	2.19	2.43	2.70	2.98	3.26	$3 \cdot 57$	110
120	-	-	-	1.98	2.43	2.69	2.95	3.26	$3 \cdot 58$	3.92	120
130	-	-	-	-	2.68	2.94	3.20	3.56	3.89	4.28	130
140	-	-	-	-	2.92	3.22	3.47	3.86	4.22	4.64	140
150	-	-	-	-	-	-	3.74	4.15	4.56	5.01	150
160	-	-	-	-	-	-	4.00	4.46	4.90	$5 \cdot 39$	160
170	-	-	-	-	-	-	4.27	4.76	5.24	5.77	170
180	-	-	-	-	-	-	4.54	5.07	$5 \cdot 59$	6.15	180
190	-	-	-	-	-	-		$5 \cdot 38$	5.95	6.54	190
200	-	-	-	-	-	-	-	$5 \cdot 70$	6.30	6.94	200
210	-	-	-	-	-	-	-	-	6.68	$7 \cdot 35$	210
220	-	-	-	-	-	-	-	-	7.04	7.75	220

* See Hovestadt's "Jena Glass" (translated by J. D. and A. Everett) for data on changes of thermometer zeros.

TABLE 195. - Stem Correction for a so-called Normal Thermometer of Jena Glass ($0^{\circ}-100^{\circ} \mathbf{C}$).
Divided into tenth degrees; degree length about 4 mm .

Correction to be added to the Reading t.												
n	$t-t^{\prime}$											
	30°	35°	40°	45°	50°	55°	60°	65°	70°	75°	80°	85°
10	0.04	0.04	0.05	0.05	0.05	0.06	0.06	0.07	0.08	0.09	0.10	0.10
20	0.12	0.12	0.13	0.14	0.15	0.16	0.17	O.I 8	0.19	0.20	0.22	0.23
30	0.21	0.22	0.23	0.24	0.25	0.25	0.27	0.29	0.31	0.33	0.35	0.37
40	0.28	0.29	0.31	0.33	0.35	0.37	0.39	0.41	0.43	0.45	0.48	0.51
50	0.36	0.38	0.40	0.42	0.44	0.46	0.48	0.50	0.53	0.57	0.61	0.65
60	0.45	0.48	0.51	0.53	- 0.55	0.57	0.60	0.63	0.66	0.69	0.73	0.78
	5	-	,	.	-	0.66	0.69	0.71	0.75	0.81	0.87	0.92
80	-	-	-	-	-	-	0.76	0.81	0.87	0.93	1.00	I. 06
90	-	-	-	-	-	-	-	0.92	0.99	1.06	1.13	1.20
100	-	-	-	-	-	-	-	-	1.10	I.18	1.26	1.34

Smithsonian Tables.

THERMOMETERS.

TABLE 196. - Gas and Mercury Thermometers.

- If $t_{\mathrm{H}}, t_{\mathrm{N}}, t_{\mathrm{CO} 2}, t_{16}, i_{69}, t_{\mathrm{T}}$, are temperatures measured with the hydrogen, nitrogen, carbonic acid, 16 III, $59{ }^{\text {III }}$, and "verre dur " (Tonnelot), respectively, then

$$
\begin{aligned}
& t_{\mathrm{H}}-t_{\mathrm{T}}=\frac{(\mathrm{I} 00-t) t}{100^{2}}\left[-0.61859+0.004735 \mathrm{I} . t-0.00001 \mathrm{I} 577 . t^{2}\right]^{*} \\
& t_{\mathrm{N}}-t_{\mathrm{T}}=\frac{(100-t) t}{100^{2}}\left[-0.5554 \mathrm{I}+0.0048240 . t-0.000024807 . t^{2}\right]^{*} \\
& t_{\mathrm{C} 02}-t_{\mathrm{T}}=\frac{(100-t) t}{100^{2}}\left[-0.33386+0.0039910 . t-0.000016678 . t^{2}\right]^{*} \\
& t_{\mathrm{H}}-t_{16}=\frac{(100-t) t}{100^{2}}\left[-0.67039+0.004735 \mathrm{I} . t-0.00001 \mathrm{I} 577 . t^{2}\right] \dagger \\
& t_{\mathrm{H}}-t_{59}=\frac{(100-t) t}{100^{2}}\left[-0.31089+0.0047351 . t-0.00001 \mathrm{I} 577 . t^{2}\right]^{2} \dagger
\end{aligned}
$$

* Chappuis ; Trav. et Mém. du Bur. internat. des Poids et Mes. 6, 1888.
\dagger Thiesen, Scheel, Sell; Wiss. Abh. d. Phys. Techn. Reichanstalt, 2, 1895 ; Scheel; Wied. Ann. 58, 1896; D. Mech. Ztg. 1897.

TABLE 197. $t_{H}-t_{16}$ (Hydrogen $\left.-16^{\text {III }}\right)$.

	\bigcirc	$1{ }^{\circ}$	2°	3°	4°	5°	6°	7°	8°	9°
0°	. $000{ }^{\circ}$	-. 007°	-. 013°	$-.019^{\circ}$	$-.025^{\circ}$	-.031 ${ }^{\circ}$	-. 036°	-. 042°	-. 047°	$-.051^{\circ}$
10	-. 056	-.06I	-. 065	-. 069	-. 073	-. 077	-. 080	-. 084	-. 087	-. 090
20	-. 093	-. 096	-. 098	-. 101	-. 103	-. 105	-. 107	-. 109	-. 110	-. 112
30	-. 113	-.114	-.115	-. 116	-.117	-.118	-.119	-.119	一.119	-. 120
40	-. 120	-.120	-.120	-.120	-. 119	-.119	-. 118	-. 118	-.117	-. 116
50	-.116	一.115	-.114	-.II3	-. 111	-.110	-. 109	-. 107	-. 106	-.104
60	-. 103	-.101	-. 099	-. 097	-. 096	-. 094	-. 092	-. 090	-. 087	-. 085
70	-. 083	-.08I	-. 078	-. 076	-. 074	-. 071	-. 069	-. 066	-. 064	-.06I
80	-. 0.08	-. 0.086	-. 053	-. 050	-. 048	-. 045	-. 042	-. 039	-. 036	-. 033
90	-. 030	-. 027	-. 024	-.021	-. 018	-. 015	-. 012	-. 009	-. 0.06	-. 003
100	. 000									

TABLE 198. $t_{H}-t_{59}$ (Hydrogen $-59{ }^{I I I}$).

	\bigcirc°	1°	2°	3°	4°	5°	6°	7°	8°	9°
0°	. $000{ }^{\circ}$	$-.003^{\circ}$	-. 006°	$-.009^{\circ}$	-. 011°	$-.014^{\circ}$	-. 016°	-. 018°	-. $020{ }^{\circ}$	-.022 ${ }^{\circ}$
10	-. 024	-. 025	-. 027	-. 028	-. 030	-.031	-. 032	-. 033	-. 034	-. 035
20	-. 035	-.036	-. 036	-. 037	-. 037	$-.037$	-. 038	-. 038	-. 038	$-.038$
30	-. 038	-. 037	-. 037	$-.037$	$-.037$	-. 036	-. 036	-. 035	-. 035	-. 034
40	-. 034	-. 033	-. 032	-. 032	-.031	-. 030	-. 029	-. 028	-. 028	-. 027
50	-. 026	-. 025	-. 024	-.023	-. 022	-.021	-. 020	-.019	-. 018	-. 017
60	-.016	-. 015	-. 015	-.014	-. 013	-. 012	-. 011	-. 010	-.009	-. 008
70	-. 008	-. 007	-.006	-.005	-. 005	-. 004	-.003	-.003	-.002	-.001
80	-.001	-. 001	. 000	. 000	+.001	+.001	+.001	+.002	+.002	+.002
90 100	+.002	+.002	+.002	+.002	$+.002$	$+.002$	+.001	+.001	+.001	. 000
100	. 000									

TABLE 199. (Hydrogen - 16 ${ }^{\text {III }}$), (Hydrogen - $69^{\text {III }}$).

	-5°	-10°	-15°	-20°	-25°	-30°	-35°
$t_{1}-t_{16}$ $t_{\mathrm{H}}-\mathrm{t}_{59}$	$+0.04^{\circ}$ $+0.02^{\circ}$	$+0.08^{\circ}$ $+0.04^{\circ}$	$+0.13^{\circ}$ $+0.07^{\circ}$	$+0.19^{\circ}$ $+0.10^{\circ}$	$+0.25^{\circ}$ $+0.14^{\circ}$	$+0.32^{\circ}$ $+0.18^{\circ}$	$+0.40^{\circ}$ $+0.23^{\circ}$

All compiled from Landolt-Börnstein-Meyerhoffer's Physikalisch-chemische Tabellen.
Smithsonian Tables.

AIR AND MERCURY THERMOMETERS．

TABLE 200．$t_{A I R}-t_{16}$ ．（AIr $\left.-16{ }^{I I I}.\right)$

${ }^{\circ} \mathrm{C}$ ．	$\bigcirc{ }^{\circ}$	r°	2°	3°	$4{ }^{\circ}$	$5{ }^{\circ}$	6°	$7{ }^{\circ}$	80	$9{ }^{\circ}$
\bigcirc	． 000	－． 006	－． 012	－． 017	－． 02	－． 027	－． 032	－． 037	－．041	－． 045
10	－． 049	－． 053	－． 057	－． 061	－． 065	－． 068	－． 071	－． 074	－． 077	－． 080
20	－． 083	－． 086	－． 089	－． 091	－． 093	－． 095	－． 097	－． 099	－．ior	02
30	－． 103	－． 104	－． 105	－． 106	－． 107	－． 108	－． 109	－． 1110	－． 110	10
40	－．110	二．110	二．111	二．111	－．110	二．110	－．110	－． 109	－ 109	8
60	二．107	－． 107	－．106	－． 1092	－．104	－． 0.088	－．102	二．101	－．100	-.098 -.080
70	－． 078	－． 076	－． 074	－． 072	－． 070	－． 067	－． 065	－． 062	－． 060	－． 057
80	－． 054	－． 052	－． 049	－． 047	－． 044	－．04I	－． 039	－． 036	－． 034	－． 031
90	－． 028	－． 025	－． 023	． 020	－． 017	－． 010	－． 011	－． 009	－． 006	－． 003
\bigcirc	． 000	＋． 003	＋．006	＋． 008	＋．ori	$+.014$	＋．017	＋．019	＋． 022	＋． 025
110	＋． 028	＋．030	＋．033	＋． 035	＋．038	＋．041	＋． 043	＋．046	＋． 048	＋．050
120	＋－053	＋．055	＋．057	＋．060	＋．062	＋．064	＋．066	＋． 068	＋．070	＋．072
130	＋． 074	＋． 076	＋．078	＋． 080	＋．08I	＋．083	＋． 084	＋． 086	＋．087	＋．089
140	＋． 090	＋．091	＋．092	＋． 093	＋．094	＋．095	＋． 096	＋． 096	＋．097	＋． 097
150	＋． 098	＋．098	＋． 098	＋． 099	＋．099	＋． 099	＋．098	＋．098	＋．098	＋． 097
160	＋． 097	＋．096	＋． 095	＋． 094	＋．093	$+.092$	＋．090	＋．089	＋． 088	＋． 086
170	＋． 084	＋．082	＋． 080	＋． 078	＋．076	＋． 073	＋．07I	＋． 068	＋．065	＋．062
180	＋． 059	＋．055	＋．052	＋． 048	＋． 045	＋．041	＋．037	＋．033	＋． 028	＋．023
190	＋．019	＋．o14	＋．009	＋．004	－． 001	－． 007	－． 013	－． 019	－． 025	－．031
200	－． 038	－． 045	－．05I	－． 058	－． 066	－． 073	－． 080	－． 088	－． 096	－． 105
210	－．113	－． 122	－． 130	－． 139	－． 148	－． 158	． 168	－． 177	－． 187	－． 198
220	－． 208	－． 219	－． 230	－． 241	－． 252	－． 264	－． 275	－． 287	－． 300	－．312
230	－． 325	－． 338	－351	－． 365	－． 378	－． 392	－． 407	－． 421	－． 436	－． 450
240	－． 466	－． 481	－． 497	－． 513	－． 529	－． 546	－． 562	－． 579	－． 597	－．614
250	－． 032	－． 650	－． 668	－． 687	－． 706	－． 725	－． 745	－． 765	－． 785	－． 805
260 270	－． 825	－． 846	－． 867	－． 889	－．911	－． 933	－． 955	－．978	－1．001	－1．025
280	－I．301	－1．328	－1．356	－ 1.384	－1．412	－I．440	－1．469	－1．498	－1．528	－1．558
290	－1．588	－1．618	－1．649	－r．680	－1．711	－1．743	－1．776	－1．808	－I．841	－r．874
300	－1．908									

Note：See Circular 8，Bureau of Standards relative to use of thermometers and the various precautions and corrections．

TABLE 201．$t_{\text {AIR }}-t_{59}$ ．（AII -59 III．$)$

${ }^{\circ} \mathrm{C}$ ．	0°	I°	$2{ }^{\circ}$	3°	4°	5°	6°	$7{ }^{\circ}$	8°	9°
100	． 000	． 000	． 000	． 000	． 000	． 000	． 000	． 000	． 000	． 000
110	． 000	． 000	． 000	－． 0001	－．001	－．001	－．001	－．001	－． 002	－． 002
120	－． 002	－． 002	－． 002	－． 002	－． 002	－． 003	－．003	－． 003	－． 004	－． 004
130	－． 004	－． 004	－． 005	－． 005	－． 006	－． 006	－． 006	－． 007	－． 007	－． 008
140	－． 008	－． 008	－．009	－． 009	－． 010	－． 010	－． 011	－． 011	－． 012	－．012
150	－． 013	－． 013	－． 014	－． 015	－．016	－．016	－． 016	－． 017	－． 018	－．019
160	－．019	－． 020	21	－．02I	－． 022	－． 023	－． 024	－． 025	－． 026	－． 027
170	－． 028	－． 029	$-.030$	－．031	－． 032	－． 033	－． 034	－． 035	－． 037	－．038
180	－． 039	－． 040	－．041	－． 043	－． 044	－． 045	$-.046$	－． 048	$-.049$	－．051
190 200	-.052 -.067	－． 053	－． 055	－．056	－． 057	－． 059	－． 060	－． 062	－． 064	－． 066

Smithsonian Tables．

GAS, MERCURY, ALCOHOL, TOLUOL, PETROLETHER, PENTANE, THERMOMETERS.

TABLE 202. - $t^{\text {H}} t_{\text {M }}$ (Hydrogen-Mercury).

Temperature, C.	Thuringer Glass.	Verre dur. Tonnelot. \dagger	Resistance Glass.*	English Crystal Glass.	Choisy-leRoi.*	$122^{\text {III.** }}$	Nitrogen Thermometer. $\mathrm{T}_{\mathrm{H}}-\mathrm{T}_{\mathrm{x}} . \dagger$	$\begin{aligned} & \mathrm{CO}_{2} \text { Ther- } \\ & \text { mometer- } \\ & \mathrm{T}_{\mathrm{H}}-\mathrm{T}_{\mathrm{CO}_{2}} \cdot \dagger \end{aligned}$
-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc
\bigcirc	. 000	. 000	. 000	. 000	. 000	. 000	. 000	. . 000
10	-. 075	-.052	-. 066	-. 008	-. 007	-. 005	-. 006	-. 025
20	-. 125	-.035	-.108	-.001	-. 004	-. 006	-. 010	-. 043
30	-. 5^{66}	-. 102	-.131	+.017	+.004	-. 002	-. 011	-. 054
40	-. 168	-. 107	-. 140	$+.037$	$+.014$	+.001	-. 011	-. 059
50	-. 166	-. 103	-. 135	$+.057$	$+.025$	+.004	-. 009	-. 059
60	-. 150	-. 090	-.119	$+.073$	$+.033$	$+.008$	-. 005	-. 053
70	-. 124	-. 072	-. 095	$+.079$	+.037	$+.009$	-.001	-. 044
80	-. 088	-. 050	-. 068	$+.070$	$+.032$	$+.007$	$+.002$	-. 031
90	-. 0.47	$-.026$	-. 034	+.046	+.022	+.006	$+.003$	-.016
100	. 000	. 000	. 000	. 000	. 000	. 000	. 000	. 000

* Schlösser, Zt. Instrkde. 21, 1901.
\dagger Chappuis, Trav. et mém. du Bur. Intern. des Poids et Mes. 6, 1888.

TABLE 203. - Comparison of Air and High Temperature Mercury Thermometers.
Comparison of the air thermometer with the high temperature mercury thermometer, filled under pressure and made of $59^{\text {III }}$ glass.

Air.	59^{III}.	Air.	$59^{\mathrm{III} .}$
0	0	0	0
0	0.	375	385.4
100	100.	400	412.3
200	200.4	425	440.7
300	$304 . \mathrm{I}$	450	469.1
325	330.9	475	498.0
350	$358 . \mathrm{I}$	500	527.8

Mahlke, Wied. Ann. 1894.

TABLE 204. - Comparisoil of Hydrogen and Other Thermometers.
Comparison of the hydrogen thermometer with the toluol, alcohol, petrolether, and pentane thermometers (verre dur).

Hydrogen.	Toluol.*	Alcohol I.*	Alcohol II.*	Petrolether.t	Pentane. \ddagger
0	0	0	0	0	0
0	0.00	0.00	0.00	-	0.00
-10	-8.54	-9.31	-9.44	-	-9.03
-20	-16.90	-18.45	-18.71	-	-17.87
-30	-25.10	-27.44	-27.84	-	-26.55
-40	-33.15	-36.30	-36.84	-35.04	
-50	-41.08	-45.05	-45.74	-42.6	-4.3 .36
-60	-480	-53.71	-54.55	-	-51.50
-70	-56.63	-	-	-	-51
-100	-	-	-	-80.2	-82.46
-150	-	-	-113.0	-116.87	
-200	-	-140.7	-146.84		

* Chappuis, Arch. sc. phys. (3) 18, 1892.
\dagger Holborn, Ann. d. Phys. (4) 6, 1901.
\ddagger Rothe, unpublished.
All compiled from Landolt-Börnstein-Meyerhoffer's Physikalisch-chemische Tabellen.
Smithsonian Tables.

Tables 205-207.

Callendar has shown that if we define the platinum temperature, pt, by pt $=100\left\{\left(\mathrm{R}-\mathrm{R}_{0}\right)\right.$ $\left./\left(\mathrm{R}_{100}-\mathrm{R}_{0}\right)\right\}$, where R is the observed resistance at $\mathrm{t}^{\circ} \mathrm{C}$., R_{0} that at $\mathrm{O}^{\circ}, \mathrm{R}_{100}$ at 100°, then the relation between the platinum temperature and the temperature t on the scale of the gas thermometer is represented by $\mathrm{t}-\mathrm{pt}=\delta\{\mathrm{t} / \mathrm{I} 00-\mathrm{I}\} \mathrm{t} / \mathrm{I} 00$ where δ is a constant for any given sample of platinum and about 1.50 for pure platinum (impure platinum having higher values). This holds good between - 23° and 450° when δ has been determined by the boiling point of sulphur (445°.)
See Waidner and Burgess, Bul. Bureau Standards, 6, p. 149, 1909. Also Bureau reprints 224, 143 and 149.

TABLE 206.-Thermodynamic Temperature of the Ice Point, and Reduction to Thermodynamic Scale.

$$
\text { Mean }=273.13^{\circ} \mathrm{C} . \text { (ice point) } .
$$

For a discussion of the various values and for the corrections of the various gas thermometers to the thermodynamic scale see Buckingham, Bull. Bureau Standards, 3, p. 237, 1907.

Scale Corrections for Gas Thermometers.

Temp. C°.	Constant pressure $=100 \mathrm{~cm}$.			Constant vol., $\mathrm{p}_{0}=100 \mathrm{~cm}, \mathrm{t}_{0}=\mathrm{O}^{\circ} \mathrm{C}$		
	He	H	N	He	H	N
-240°	-	+1.0	-	$+0.02$	+0.18	-
- 200	+0.13	+ . 26	-	+. OI	+ .06	-
- 100	$+.04$	$+.03$	+0.40	. 000	+ .010	+0.06
- 50	$+.012$	$+.02$	+.12	. 000	+.004	+ . 02
+ 25	-. 003	-. 003	-. 020	. 000	. 000	-. 006
$+50$	-. 003	-. 003	-. 025	. 000	. 000	-. 006
+ 75	-. 003	-. 003	-. 017	. 000	. 000	-. 004
+150	$+.007$	$+.01$	$+.04$	+.000	$+.001$	+.01
$+200$	+ . OI	$+.02$	+.11	. 000	+.002	$+.04$
$+450$	$+.1$	+0.04	$+.5$	0.00	+0.01	$+.2$
$+1000$	+0.3	-	+1.7	-	-	+.7
+1500	-	-	+3.	-	-	+1.3

See also Appendix, p. 438.

TABLE 207.—Standard Points for the Calibration of Thermometers.

Substance.	Point.	Atmosphere.	Crucible.	Temperatures.	
				Nitrogen Scale.	Thermodynamic.
Water	boiling, 760 mm .	air	-	$\begin{gathered} { }^{\circ} \mathrm{C} . \\ 100.00 \end{gathered}$	$\begin{gathered} \circ \\ 100.00 \end{gathered}$
Naphthalene	${ }_{\text {boiling, }} 760 \mathrm{~m}$ ،	"	-	218.0	218.0
Benzophenone	" " "	-	-	305.85 ± 0.1	305.9
Cadmium	melting or solidify.	air	graphite	320.8 ± 0.2	320.9
Zinc	" ${ }^{\text {a }}$	"		419.3 ± 0.3	419.4
Sulphur	boiling, 760 mm .	-	-	444.45 ± 0.1	444.55
Antimony	melting or solidify.	CO_{6}	graphite	$629.8=0.5$	630.0 658.7
Aluminum	solidification	"		$658.5=0.6$	658.7
Silver	melting or solidify.	"	"	960.0 1062.4	
Copper	" "	"	'6	$1082.6=0.8$	
$\mathrm{Li}_{2} \mathrm{SiO}_{8}$	melting	air	platinum	1201.0 于 1.0	
Diopside, pure	"	"		${ }_{1} 391.2 \pm 1.5$	
Nickel	melting or solidify.	H and N	magnesia and Mg. aluminate	1452.3 ± 2.0	
Cobalt	" " "	"	magnesia	1489.8 ± 2.0	
Palladium	" "	air		${ }^{1} 549.2=2.0$	
Anorthite, pure	melting	"	platinum		
Platinum				$\begin{array}{ll} 1752 . & \pm 5 . * \\ 1755 . & \pm 5 . t \end{array}$	

*Thermoelectric extrapolation. †Optical extrapolation.
(Day and Sosman, Journal de Physique, 1912. Mesure des témperatures élevées.) A few additional points are: H, boils - 252.6°; O, boils - 182.7°; CO_{2}, sublimes - 78.5°; Hg . freezes - 38.87°; Alumina melts 2000°; Tungsten melts 3400°.

TABLE 208. - Standard Calibration Curve for Pt. - Pt. Rh. (10\% Rh.) Thermo-Element.
Giving the temperature for every 100 microvolts. For use in conjunction with a deviation curve determined by calibration of the particular element at some of the following fixed points:

Water	boiling-pt.	100.0217.95	643 mv .		melting-pt.		960.2	$\underset{\substack{911 \text { Imv. } \\ \text { 10296 }}}{ }$
Naphthalene			1585	Gold			1062.6	
Tin	melting-pt.	231.9	1706	Copper	"	"	1082.8	10534
Benzophenone	boiling-pt.	305.9	2365	$\mathrm{Li}_{2} \mathrm{SiO}_{3}$	"	"	1201.	11941
Cadmium	melting-pt.	320.9	2503	Diopside	"	"	1391.5	14230
Zinc	" "	419.4	3430	Nickel	"	"	1452.6	14973
Sulphur	boiling-pt.	444.55	3672					
Antimony	melting-pt.	630.0	5530	Palladium	"		1549.5	18144
Aluminum	" ${ }^{\text {" }}$	658.7	5827	Platinum		"	1755.	

TABLE 209. - Standard Calibration Curve for Copper - Constantan Thermo-Element.
For use in conjunction with a deviation curve determined by the calibration of the particular element at some of the following fixed points:

Water, boiling-point, $100^{\circ}, 4276$ microvolts; Naphthalene, boiling-point, $217.95,10248 \mathrm{mv}$.; Tin, melting-point, 231.9, 11009 mv .; Benzophenone, boiling-point, 305.9 , 15203 mv .; Cadmlum, melting-point, 320.9 , 16083 mv .

Tables 210-213.
MECHANICAL EQUIVALENT OF HEAT.
TABLE 210.—Summary of Older Work.
Taken from J. S. Ames, L'équivalent mécanique de la chaleur, Rapports présentés au congrès international du physique, Paris, $\mathbf{I} 900$.
Reduced to Gram-calorie at $20^{\circ} \mathrm{C}$. (Nitrogen thermometer).

JouleRowlandGriffithsSchuster-GannonCallendar-Barnes	4.169×10^{7} ergs.		*		
			4.169×10^{7} ergs.		
	4.181	" ،	4.181	"	
	4.192	"	4.184	"	،
	4.189	" "	4.18 I	"	"
	4.186	" "	4.178	"	"

* Admitting an error of 1 part per 1000 in the electrical scale. The mean of the last four then gives
1 gram ($20^{\circ} \mathrm{C}$) oalorie $=4.181 \times 10^{7}$ ergs. See next table.
1 gram ($15^{\circ} \mathrm{C}$.) calorie $=4.185 \times 10^{7}$ ergs assuming sp. ht. of water at $20^{\circ}=0.9990$.

TABLE 211.-(1915.) Best Value, Electrical and Mechanical Equivalents of Heat.

Since the preparation of Dr. Ames' Paris report, considerable work has been done on the mechanical equivalent of heat, including recomputations from the older measurements using better walues for some of the electrical relations, etc. Taking all the available material into account the U.S. Bureau of Standards has adopted, provisionally, the relation

1 ($\mathbf{2 0}{ }^{\circ} \mathrm{C}$.) gram-calorie $=4.183$ international electric joules.

No exact comparison between the results of electrical equivalent and mechanical equivalent of heat measurements can be made without exact knowledge of the relations between the international and absolute electrical units. A recent absolute measurement of absolute resistance by F . E. Smith of the National Physical Laboratory of England indicates a difference of one part in 2000 between the international and absolute ohms. Pending the general acceptance of some definite figure for this relation it is useless to fix upon a single value to use for " J " better than about one part in a thousand. The value

4.183 international joules = probably 4.184 mechanical joules.

This value is made the basis of the following table.
TABLE 212.-Conversion Factors for Units of Work.

	Joules.	Foot-pounds.	Kilogrammeters.	$\begin{gathered} 20^{\circ} \\ \text { Calories. } \end{gathered}$	British thermal units.	Kilowatt-hours.
1 Joule .	1	$0.7376 \dagger$	$0.1020 \dagger$	0.2390	0.0009476	0.2778×10^{-6}
1 Foot-pound . $=$	1.356*	I	0.1383	0.3240^{*}	$0.001285 *$	$0.3766 \times 10^{-6 *}$
I Kilogram-meter $=$	9.807*	7.233		2.344*	0.009293*	$2.724 \times 10^{-6 *}$
I $20^{\circ} \mathrm{Calorie}$. $=$	4.184	$3.086 \dagger$	$0.4267 \dagger$	I	0.003965	1.162×10^{-6}
unit I Kilowatt-hour .	1055.	$778.3 \dagger$ 2655000		252.2 860300.	$\stackrel{\text { I }}{341 \mathrm{I}}$.	$\underset{\mathrm{I}}{0.0002931}$

The value used for g is the standard value, 980.665 cm . per sec. per sec. $=32.174$ feet per sec. per sec.
*The values thus marked vary directly with "g.",
\dagger The values thus marked vary inversely with "g." For values of " g " see Tables 565-56\%.
TABLE 213.-Value of the English and American Horsepower (746 watts) in Local Foot-pounds and Kilogram-meters per Second at Various Altitudes and Latitudes.

Altitude,	Kilogram-meters per second.					Foot-pounds per second.				
	Latitude.					Latitude.				
	0°	30°	45°	60°	90°	0°	30°	45°	60°	90°
0 km .	76.275	76.175	76.074	75.973	75.873			550.24		548.79
1. 5 *	76.297	76.197	76.095	75.995	75.895	551.86	551.13	550.41	549.68	548.95
$3.0{ }^{\circ}$	76.320	76.220	76.119	76.018	75.918	552.03	551.30	550.57	549.85	549.12

Smithsonian Tables.

The metals in heavier type are often used as standards.
The melting points are reduced as far as possible to a common (thermodynamic) temperature scale. This scale is defined in terms of Wien's law, with C_{2} taken as 14,350 , and on which the melting point of platinum is $1755^{\circ} \mathrm{C}$ (Nernst and Wartenburg, 1751 ; Waidner and Burgess, 1753; Day and Sosman, 1755; Holborn and Valentiner, 1770; see C. R. 148, p. 1177, 1909). Above $1100^{\circ} \mathrm{C}$, the temperatures are expressed to the nearest $5^{\circ} \mathrm{C}$. Temperatures above the platinum point may be uncertain by over $50^{\circ} \mathrm{C}$.

Element.	Melting point. ${ }^{\circ} \mathrm{C}$	Remarks.	Element.	Melting point. $0^{\circ} \mathrm{C}$	Remarks.
Aluminum.	658.7	Most samples	Manganese. .	- 87	Burgess-Waltenberg.
		give 657 or less (Burgess).	Mercury . . . Molybdenum	-38.87 2535	ne
Antimony	630.0	Ranısay-Travers	Neodymium. Neon Nickel	2535 840 ?	(Muthmann-Weiss.)
				-253?	
Argon.	-188			1452	Day, Sosman, Bur-
Arsenic	850				gess, Waltenberg.
Barium	850	(Guntz.)	Niobium	1700 ?	
Beryllium..	1280		Nitrogen	-2II	(Fischer-Alt.)
Bismuth. . .	271	Adjusted.	Osmium	About 2700	(Waidner-Burgess, unpublished.)
Boron	2200-2500?	$\begin{array}{ll} \text { Range: } \quad 320.7- \\ 320.9 \end{array}$	Oxygen	-218	
Bromine	-7.3		Palladium. .	1549 ± 5	(Waidner-Burgess, Nernst-Wartenburg, Day and Sosman.)
Cadmium..	320.9				
Cæsium....	26	Range: 26.37^{-}	Phosphorus.. Platinum.	$44 \cdot 2$	
Calcium	810	Adjusted.			See Note.
Carbon	(>3500)	Sublimes.	Potassium.	62.3	
Cerium. . .	640		Praseodymium.	940	Muthmann-Weiss.)
Chlorine. . . Chromium	-101. 5	(Olszewski.)	Radium.....	700	
			Rhodium. .	1950	(Mendenhall-Inger-
Chromium.		Burgess-Waltenberg.	Rubidium...	38	
Cobalt. . .	1480	Burgess-Waltenberg.	Ruthenium. Samarium.	2450?	Muthman
			Scandium.	?	
Copper....	1083 ± 3	Mean, Holborn-Day, Day-Clement.	Selenium.	217-220	
			Silicon	1420	Adjusted.
			Silver	960.5	Adjusted.
Erbium.... Fluorine.			Sodium.	$97 \cdot 5$	
	-223	(Moissan-Dewar.)	Strontium.	$\left(\begin{array}{ll}S_{i} & 112.8\end{array}\right.$	
			Sulphur.....	$\left\{\begin{array}{llll} S_{i i} & 1 & 19.2 \\ S_{i i i} & 106.8 \end{array}\right.$	Various Forms. See Landolt-Börnstein.
Gallium. .	30. I				
Germanium	958	Adjusted.	Tantalum...	2900	Adjusted from Waid-ner-Burgess $=2910$.
Gold. .	1063.0				
Helium.	<-271				
Hydrogen.	-259		Tellurium	452	Adjusted.
Iodine.	${ }^{155}$	(Thiel.)	Thallium...	302	
	113.5	Range: 112-115.	Thorium....	$\begin{aligned} & >1700 \\ & <\text { Mo } \end{aligned}$	v. Wartenburg.
Iridium. . .	2350?		Tin	$23 \mathrm{I} .9 \pm .2$	
			Titanium. .	1795	Burgess-Waltenberg.
Iron	1530	Burgess-Waltenberg.	Tungsten...	3400	Adjusted.
Krypton...	-169				
Lanthanum	810?	(MuthmannWeiss.)	Uranium....	<1850	
Lead	327 ± 0.5	Weiss.)	Vanadium...	1720	Burgess-Waltenberg. Ramsay.
			Ytterbium. .		
			Yttrium	1490	
Lithium...	186	(Kahlbaum.)	Zinc.	419.4	
Magnesium	651	(Grube) in clay crucibles, 635 .	Zirconium...	1700?	Troost.

BOILING-POINTS OF THE CHEMICAL ELEMENTS.

Element.	Range.	Boiling. ${ }^{\text {point }}{ }^{\circ} \mathrm{C}$	Observer; Remarks.
	-	-	
Aluminum	-	1800.	Greenwood, Ch. News, 100, 1909.
Antimony	-	1440.	
Argon	-	-186. 1	Ramsay-Travers, Z. Phys. Ch. 38, 1901.
Arsenic	449-450		Gray, sublimes, Conechy. ${ }^{\text {Black, sublimes, Engel, C. R }}$
*	280-310	>360.	(ellow, sublimes.
Barium	-	-	Borls in vacuo, Guntz, 1903.
Bismuth	1420-1435	1430.	Barus, 1894; Greenwood, 1. c.
Boron			Volatilizes without melting in electric arc.
Bromine	59-63	61.1	Thorpe, 1880; van der Plaats, 1886.
Cadmium	-	778.	Berthelot, 1902.
Cæsium	-	670.	Ruff-Johannsen.
Carbon	-	3600.	Conputed, Violle, C. R. 120, 1895. Volatilizes without melting in electric oven. Moisson.
Chlorine	-	-33.6	Regnault, 1863 :
Chromium	-	2200.	Greenwood, Ch. News, 100, 1909.
Copper	2100-2310	2310.	" 1.c.
Fluorine	-	-187.	Moisson-Dewar, C. R. 136, 1903.
Helium Hydrogen	252.5-252.8	-267.	Computed, Tracers Ch. News, 86, 1902. Mean
Iodine		>200.	
Iron	-	2450.	Greenwood, 1. c.
Krypton	-	-151.7	Ramsay, Ch. News, 87, 1903.
Lead	-	1525.	Greenwood, 1. c.
Lithium	-	1400.	Ruff-Johannsen, Ch. Ber. 38, 1905.
Magnesium	-	1120.	Greenwood, 1 c.
Manganese	-	1900.	
Mercury	-	357.	Crafts; Regnault.
Molybdenum	-	3620.	Langmuir, Mackay, Phys. Rev. 1914.
Nieon	-	-239.	Dewar, 1901.
Nitrogen	-195.7-194.4	-195.	Mean.
Oxygen	${ }^{-182.5-182.9}$	-182.7	Troost C. R 126, 1898.
Phosphorus	287-290	$\begin{array}{r} -119 . \\ 288 . \end{array}$	Troost. C. R. 126, 1898.
Platinum	-	3910.	Langmuir, Mackay, Phys. Rev. 1914.
Potassium	667-757	712.	Perman; Ruff-Johannsen.
Rubidium		696.	Ruff-Johannsen.
Selenium	664-694	690.	
Silver	-	1955.	Greenwood, 1. c.
Sodium	742-757	750.	Perman; Ruff-Johannsen.
Sulphur	444.7-445	444.7	Mean.
Tellurium	-	1390.	Deville-Troost, C. R. 91, 1880.
Thallium	-	1280.	v. Wartenberg, 25 Anorg. Ch. 56, 1908
Tin	-	2270.	Greenwood, 1.c.
Tungsten	-	5830.	Langmuir. Phys. Rev. 1913.
Xenon	-	-109.1	Ramsay, Z. Phys, Ch. 44. 1903.
Zinc	916-9+2	930.	

Smithsonian Tables.

Substance.	Melting point at $1 \mathrm{~kg} / \mathrm{sq} . \mathrm{cm}$	Highest experimental pressure: kg/sq. cm	$\begin{gathered} d t / d p \\ \text { at } \mathrm{I} \mathrm{~kg} / \mathrm{sq} . \mathrm{cm} . \end{gathered}$	$\begin{gathered} \Delta t \text { (observed) } \\ \text { for } \\ 1000 \mathrm{~kg} / \mathrm{sq} . \mathrm{cm} \end{gathered}$	Reference
Hg .	-38.85	12,000	0.00511	5.1 ${ }^{*}$	1
K.	59.7	2,800	0.0136	13.8	2
Na .	97.62	12,000	0.00860	+12.3 \dagger	4
Bi.	271.0	12,000	-0.00342	$-3 \cdot 5 \dagger$.	4
Sn	231.9	2,000	0.00317	3.17	3
Bi.	270.9	2,000	-0.00344	-3.44	3
Cd.	320.9	2,000	0.00609	6.09	3
Pb .	327.4	2,000	0.00777	7.77	3

* Δt (observed) for $10,000 \mathrm{~kg} / \mathrm{sq} . \mathrm{cm}$ is 50.8°.
$\dagger \mathrm{Na}$ melts at 177.5° at $12,000 \mathrm{~kg} / \mathrm{cm}^{2}$; K at 179.6°; Bi at 218.3°; Pb at 644°. Luckey obtains melting point for tungsten as follows: 1 atme, $3623^{\circ} \mathrm{K} ; 8,3594 ; 18,3572 ; 28,3564$. Phys. Rev. 1917.
References: (1) P. W. Bridgman, Proc. Am. Acad. 47, pp. 391-96, 416-19, 1911; (2) G. Tammann, Kristallisieren und Schmelzen, Leipzig, 1903, pp. 98-99; (3) J. Johnston and L. H. Adams, Am. J. Sci. 31, p. 516, 1911; (4) P. W. Bridgman, Phys. Rev. 6, I, 1915.

A large number of organic substances, selected on account of their low melting points, have also been investigated: by Tammann, loc. cit.; G. A. Hulett, Z. physik. Chem. 28, p. 629, 1899; F. Körber, ibid., 82, p. 45, 1913; E. A. Block, ibid., 82, p. 403, 1913; Bridgman, Phys. Rev. 3, 126, 1914; Pr. Am. Acad. 51, 55, 1915; 51, 581, 1916; 52, 57, 1916; 52, 91, 1916. The results for water are given in the following table.

TABLE 217. - Effect of Pressure on the Freezing Point of Water (Bridgman ${ }^{*}$).

Pressure: \dagger	Frezzing point.	Phases in Equilibrium.
1	0.0	Ice I - liquid.
1,000	-8.8	Ice I - liquid.
2,000	-20.15	Ice I - liquid.
2,115	-22.0	Ice I - ice III - liquid (triple point).
3,000	- 18.40	Ice III - liquid. liquid (triple point)
3,530	-17.0	Ice III- ice V - liquid (triple point).
4,000	-13.7 $-\quad 1.6$	Ice V - liquid.
6,380	+ 0.16	Ice V-ice VI - liquid (triple point).
8,000	12.8	Ice VI - liquid.
12,000	37.9	Ice VI - liquid.
16,000	57.2	Ice VI- liquid.
20,000	73.6	Ice VI - liquid.

* P. W. Bridgman, Proc. Am. Acad. 47, pp. 441-558, 1912.
\dagger I atm. $=1.033 \mathrm{~kg} / \mathrm{sq} . \mathrm{cm}$.
TABLE 218. - Effect of Pressure on Boiling Point.*

Metal.	Pressure.	${ }^{\circ} \mathrm{C}$	Metal.	Pressure.	${ }^{\circ} \mathrm{C}$	Metal.	Pressure.	${ }^{\circ} \mathrm{C}$
Bi	10.2 cm Hg .	I 200	Ag	26.3 cm Hg .	1780	Pb	20.6 cm Hg .	1410
Bi	25.7 cm Hg .	1310	Cu	10.0 cm Hg .	1980	Pb	6.3 atme.	1870
Bi	6.3 atme.	1740	Cu	25.7 cm Hg .	2180	Pb	11.7 atme.	2100
Bi	11.7 atme.	1950	Sn	10. 1 cm Hg .	1970	Zn	11.7 atme.	1230
Bi	16.5 atme.	2060	Sn	26.2 cm Hg .	2100	Zn	21. 5 atme.	1280
Ag	10.3 cm Hg .	1660	Pb	10.5 cm Hg .	1315	Zn	53.0 atme.	1510

[^29]Table 219.
DENSITIES AND MELTING AND BOILING POINTS OF INORGANIC COMPOUNDS.

Substance.	Chemical formula.	Density about $20^{\circ} \mathrm{C}$	Melting point C		Boiling point C	Pressure mm	完
Aluminum chloride.	AlCl_{3}	-	190.	1	$183 .{ }^{\circ}$	752	I
"، nitrate	$\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}+9 \mathrm{H}_{2} \mathrm{O}$	-	72.8	2	134. *	75	-
oxide.	$\mathrm{Al}_{2} \mathrm{O}_{3}$	4.00	2050.	28	-	-	-
Ammonia. .	NH_{3}	-	-75.	3	-33.5	760	7
Ammonium nitrate	$\mathrm{NH}_{4} \mathrm{NO}_{3}$	1. 72	165.	-	210.*	7	7
" sulphate...	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$	1.77	140.	4		-	-
" phosphite..	$\mathrm{NH}_{4} \mathrm{H}_{2} \mathrm{PO}_{3}$	1.77	123.	5	I50.*	-	-
Antimony trichloride...	SbCl_{3}	3.06	73.	-	223.	760	-
" pentachloride	SbCl_{5}	2.35	3.	II	102.	68	14
Arsenic trichloride	AsCl_{3}	2.20	-18.	8	I30. 2	760	23
Arsenic hydride	AsH_{3}	-	-113.5	6	-54.8	760	6
Barium chloride	BaCl_{2}	3.86	960.	II	-	,	-
" nitrate	$\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$	3.24	575.	24	-	-	-
" perchlorate	$\mathrm{Ba}\left(\mathrm{ClO}_{4}\right)_{2}$	-	505.	10	-	-	
Bismuth trichloride	BiCl_{3}	4.56	232.5	-	440.	760	-
Boric acid.	$\mathrm{H}_{3} \mathrm{BO}_{3}$	I. 46	185.	-	-	-	-
" anhydride	$\mathrm{B}_{2} \mathrm{O}_{3}$	1.79	577.	-	-	-	-
Borax (sodium borate)..	$\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}$	2.36	741.	27	-	-	-
Cadmium chloride	CdCl_{2}	4.05	560.	25	$900 \pm$	-	9
"6 nitrate.	$\mathrm{Cd}\left(\mathrm{NO}_{3}\right)_{2}+4 \mathrm{H}_{2} \mathrm{O}$	2.45	59.5	2	132.	760	4
Calcium chloride	CaCl_{2}	2.26	774.0	-	-	-	-
" chloride	$\mathrm{CaCl}_{2}+6 \mathrm{H}_{2} \mathrm{O}$	I. 68	29.6	-	-	-	-
" nitrate	$\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$	2.36	499.	24	-*	-	-
" nitrate	$\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}+4 \mathrm{H}_{2} \mathrm{O}$	I. 82	42.3	26	132.*	-	-
oxide	CaO	$3 \cdot 3$	2570.	28		-	-
Carbon tetrachlori	CCl_{4}	I. 59	-24.	22	76.7	760	23
" trichloride	$\mathrm{C}_{2} \mathrm{Cl}_{6}$	1.63	184.	-	-	-	
" monoxide	CO	-	-207.	6	-190.	760	6
" dioxide.	CO_{2}	I. 56	-57.	3	-80.	subl.	-
" disulphide	CS_{2}	I. 26	-110.	I 3	46.2	760	-
Chloric (per) acid	$\mathrm{HClO}_{4}+\mathrm{H}_{2} \mathrm{O}$	I. 8 I	50.	15	-	-	-
Chlorine dioxide	ClO_{2}	-	-76 .	3	$9 \cdot 9$	731	21
Chrome alum.	$\mathrm{KCr}\left(\mathrm{SO}_{4}\right)_{2}+\mathrm{I}_{2} \mathrm{H}_{2} \mathrm{O}$	I. 83	89.	16	-	-	-
" nitrate.	$\mathrm{Cr}_{2}\left(\mathrm{NO}_{3}\right)_{6}+18 \mathrm{H}_{2} \mathrm{O}$		37.	2	170.	760	2
Chromium oxide	$\mathrm{Cr}_{2} \mathrm{O}_{3}$	5.04	1990.	28	- *	-	-
Cobalt sulphate	CoSO_{4}	3.53	97.	16	880.*	-	-
Cupric chloride. .	CuCl_{2}	3.05	498.	9		-	-
Cuprous chloride	$\mathrm{Cu}_{2} \mathrm{Cl}_{2}$	3.7	42 I .	-	1000 *	760	9
Cupric nitrate.	$\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+3 \mathrm{H}_{2} \mathrm{O}$	2.05	114.5	2	170.*	760	2
Hydrobromic acid	HBr		-86.7	3	-68.7	760	-
Hydrochloric acid	HCl	-	-III. 3	17	-83. 1	755	17
Hydrofluoric acid	HFl	0.99	-92.3	6	-36.7	755	17
Hydriodic acid	HI		-51.3	17	-35.7	760	
Hydrogen peroxid	$\mathrm{H}_{2} \mathrm{O}_{2}$	1.5	-2.		80.2	47	20
"6 phosphid	PH_{3}	-	-132.5	6	-	-	-
" sulphide	$\mathrm{H}_{2} \mathrm{~S}$	-	-86.	3	-62.		-
Iron chloride	FeCl_{3}	2.80	301.	-	-	-	-
" nitrate	$\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}+9 \mathrm{H}_{2} \mathrm{O}$	1. 68	47.2	2	--	-	-
* sulphate.	$\mathrm{FeSO}_{4}+7 \mathrm{H}_{2} \mathrm{O}$	1.90	64.	16	-	-	-
Lead chloride	PbCl_{2}	5.8	500.	9	$900 \pm$	760	-
" metaphosphate	$\mathrm{Pb}\left(\mathrm{PO}_{3}\right)_{2}$	-	800.	9	-	-	-
Magnesium chloride	MgCl_{2}	2.18	708.	9	-	-	-
" oxide.	MgO	3.4	2800.	28	-	-	-
" nitrate	$\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}+6 \mathrm{H}_{2} \mathrm{O}$	I. 46	90.	2	143.	760	2
" sulphate	$\mathrm{MgSO}_{4}+5 \mathrm{H}_{2} \mathrm{O}$	1. 68	150.	16	-	-	-
Manganese chloride.	$\mathrm{MnCl}_{2}+4 \mathrm{H}_{2} \mathrm{O}$	2.01	87.5	I9	106.	760	19
" nitrate.	$\mathrm{Mn}\left(\mathrm{NO}_{3}\right)_{2}+6 \mathrm{H}_{2} \mathrm{O}$	1.82	26.	2	129.	760	2
" sulphate	$\mathrm{MnSO}_{4}+5 \mathrm{H}_{2} \mathrm{O}$	2.09	54.	16	-	-	-
Mercurous chloride.	$\mathrm{Hg}_{2} \mathrm{Cl}_{2}$	7.10	450 *	-	-	-	-
Mercuric chloride.	HgCl_{2}	5.42	282.	-	305.	-	-

(1) Friedel and Crafts; (2) Ordway; (3) Faraday; (4) Marchand; (5) Amat; (6) Olszweski; (7) Gibbs; (8) Baskerville; (9) Carnelly; (ro) Carnelly and O'Shea; (11) Ruff; (13) Wroblewski and Olszewski; (14) Anschütz; (15) Roscoe; (16) Tilden; (17) Ladenburg; (18) Staedel; (19) Clarke, Const. of Nature; (20) Bruhl; (2I) Schacherl; (22) Tammann; (23) Thorpe; (24) Ramsay; (25) Lorenz; (26) Morgan; (27) Day; (28) Kanolt.

Substance．	Chemical formula．	$\begin{aligned} & \text { Density, } \\ & \text { about } \\ & 20^{\circ} \mathrm{C} \end{aligned}$	$\underset{\substack{\text { Melting } \\ \text { (}}}{\text { Moint }}$	$\begin{aligned} & \text { 言 } \\ & \text { 薄 } \end{aligned}$	$\begin{gathered} \text { Boiling } \\ \text { point } \\ \text { C } \end{gathered}$	$\begin{aligned} & \text { Pres- } \\ & \text { sure } \\ & \mathrm{mm} \end{aligned}$	宮
Nickel car	$\mathrm{C}_{4} \mathrm{O}_{4}$	1.32	－25．	1	$43 .{ }^{\circ}$	760	－
nitr	$\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2}+6 \mathrm{H}_{2} \mathrm{O}$	2.05	56.7	2	136.7	760	2
＂oxide	$\stackrel{\mathrm{NiO}}{\mathrm{NiSO}_{4}}$	6.69	－	－	－	-	－
＂\％sulph	$\mathrm{NiSO}_{4}+7 \mathrm{H}_{2} \mathrm{O}$ HNO_{3}	1.98 1.52	－42．	3	．	\％	16
Nitric acid．．．	$\mathrm{N}_{2} \mathrm{O}_{5}$	1.52 1.64	-42 30	$\begin{aligned} & 4 \\ & 5 \end{aligned}$	48.	760	16 9
＂${ }^{\text {a }}$＊	NO	1.27	－167．	－	－ 153.	760	6
peroxid	$\mathrm{N}_{2} \mathrm{O}_{4}$	I． 49	－9．6	8	21.6	760	－
Nitrous anhyd	$\mathrm{N}_{2} \mathrm{O}_{3}$	1． 45	－III．	7	3.5	760	－
＂oxide	$\mathrm{N}_{2} \mathrm{O}$		－102．4	8	－89．8	760	8
Phosphoric acid（ortho）．	$\mathrm{H}_{3} \mathrm{PO}_{4}$	1.88	$40 \pm$				－
Phosphorous acid．．．．．	$\mathrm{H}_{3} \mathrm{PO}_{3}$	1． 65	72.	－	－		
Phosphorus trichloride．．	PCl_{3}	1．61	－111．8	10	76.	760	19
＂oxychloride ．${ }^{\text {disulphide．}}$	POCl_{3}	1.68	＋1．3		108.	760.	
＂pentasulphide	$\mathrm{P}_{2} \mathrm{P}_{5}$	－	297.			760	
＂sesquisulphide	$\mathrm{P}_{4} \mathrm{~S}_{3}$	2.00	16	13	40	760	－
＂trisulphide	$\mathrm{P}_{2} \mathrm{~S}_{3}$	－	＝	14	490.	760	25
Potassium carbonate	$\mathrm{K}_{2} \mathrm{CO}_{3}$	2.29	．	－	49	0	25
＂chlorate	KClO_{3}	2.34	3	15			
＂chroma	$\mathrm{K}_{2} \mathrm{CrO}_{4}$	2.72	975.	17	－		
＂، cyanide	KCN	1． 52	red h＇t	－	－	－	
＂perchlora	KClO_{4}	2.52	610.	15	$410 . \dagger$	760	
＂chlorid	KCl	1． 99	772.		1500.	760	－
＂، nitrate ．．．．．．．	KNO_{3}	2.10	341.	－	$400 . \dagger$		－
＂، acid phosphate	$\mathrm{KH}_{2} \mathrm{PO}_{4}$	2.34	96.	3			
Silver chloride．．．．．．．．．	AgCl	$5 \cdot 56$	205.				
nitrate	AgNO_{3}	4.	218	－			
perchlorat	AgClO_{4}	－	486	18			
＂phosphate	$\mathrm{Ag}_{3} \mathrm{PO}_{4}$	6.37	849	15	－		
＂metaphosp	AgPO_{3}	－	482.	15	－		－
＂sulphate	$\mathrm{Ag}_{2} \mathrm{SO}_{4}$	5.45	$655 \pm$	－	$1085 . \dagger$	\square	－
Sodium chloride	NaCl	2.17	800.	11	1490.	760	－
＂hydroxide	NaOH	2．I	318.	27	－	－	
＂nit	NaNO_{3}	2． 26	315.		$380 . \dagger$		
＂chlor	NaClO_{3}	2.48	248.	28	\dagger		
＂${ }^{\text {carbona }}$	NaClO_{4}	－	482.	18			
carbonat	$\mathrm{Na}_{2} \mathrm{CO}_{3}+10$	2.48	852.	－	\dagger		
＂phosphate	$\mathrm{Na}_{2} \mathrm{HPO}_{4}+\mathrm{I}_{2} \mathrm{H}_{2} \mathrm{O}$	I． 54	34	－			
＂metaphosphate．	NaPO_{3}	2．48	617.	15			
pyrophosphate	${ }^{\mathrm{Na}_{4} \mathrm{P}_{2} \mathrm{O}_{7}}$	2.45	970	30			
＂، phosphite	$\left(\mathrm{H}_{2} \mathrm{NaPO}_{3}\right)_{2}+5 \mathrm{H}_{2} \mathrm{O}$	－	42	20			
＂${ }^{\text {chulphate }}$	$\mathrm{Na}_{2} \mathrm{SO}_{4}$	2.67	884.	II	－		
＂Sulphate．	$\mathrm{Na}_{2} \mathrm{SO}_{4}+10 \mathrm{H}_{2} \mathrm{O}$	I． 46	32.38	17	\dagger		
Sulphur hyposulphite	$\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}+{ }_{5} \mathrm{H}_{2} \mathrm{O}$	1． 73	48.16	－		－	
Sulphur dioxide	SO_{2}	－	-76 ．	－	－10．	760	－
Sulphuric acid	${ }_{\text {2 }} \mathrm{H}_{2} \mathrm{SO}_{4}$	1． 83	10.4	21	338.	760	22
acid	$\mathrm{I}_{2} \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}$ $\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}$	－	－0． 5	22	－		－
＂acid（py	$\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}$						
Sulphur trioxide．	SO_{3}	1.91	16.8	22			
Tin，stannic chloride．	SnCl_{4}	2.28	－33．		114.		
＂stannous chloride	SnCl_{2}		250.	24	605.	760	$\underline{1}$
Zinc chlorid	7 nCl	2.91	365.	29	710.	760	－
＂chlor	$\mathrm{ZnCl}_{2}+3 \mathrm{H}_{2} \mathrm{O}$		6.5	26	－	－	－
＂، nitrate	$\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}+6 \mathrm{H}_{2} \mathrm{O}$	2.06	36.4	3	13 I ．	760	2
sulpha	$\mathrm{ZnSO}_{4}+7 \mathrm{H}_{2} \mathrm{O}$	2.02	50.	3			－

[^30]
DENSITIES, MELTING-POINTS, AND BOILING-POINTS OF SOME ORGANIC COMPOUNDS.

N.B. - The data in this table refer only to normal compounds.

Substance.	Formula	Temp.	Den- sity.	Melting point	Boiling-point.	Authority
(a) Paraffin Series: $\mathrm{C}_{n} \mathrm{H}_{2 n+2}$.						
Methane*	CH_{4}	-164.	0.415	-184.	-165.	Olszewski, Young.
Ethanet .	$\mathrm{C}_{2} \mathrm{H}_{6}$,	. 446	-171.4	-93.	Ladenburg, "
Propane . . .	$\mathrm{C}_{3} \mathrm{H}_{8}$	-	. 536	-195.	-45.	Young, Hainlen.
Butane .	$\mathrm{C}_{4} \mathrm{H}_{10}$	\bigcirc	. 60	-135.	1.	Butlerow, Young.
Pentane.	$\mathrm{C}_{5} \mathrm{H}_{12}$	\bigcirc	. 647	-131.	36.3	Thorpe, Young.
Hexane -	$\mathrm{C}_{6} \mathrm{H}_{14}$	17.	. 663	-94.	69.	Schorlemmer.
Heptane.	$\mathrm{C}_{7} \mathrm{H}_{16}$	-	. 701	-97.	98.4	Thorpe, Young.
Octane -	$\mathrm{C}_{8} \mathrm{H}_{18}$	-	. 719	-56.6	125.5	
Nonane .	$\mathrm{C}_{9} \mathrm{H}_{20}$	\bigcirc	.733	-51.	150.	Krafft.
Decane -	${ }_{\substack{\mathrm{C}_{11} \mathrm{H}_{22} \\ \mathrm{H}_{24} \\ \\ \text { d }}}$	-	. 745	- 31.	173.	"،
Undecane -	${ }_{\substack{\text { C }}}^{\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{H}_{26}}$	\bigcirc	.756 .765	-26.	195.	"
Tridecane	$\mathrm{C}_{13} \mathrm{H}_{28}$	-	. 77 I	-6.	234.	"
Tetradecane	$\mathrm{C}_{14} \mathrm{H}_{30}$	4.	. 775	5.	25.	"
Pentadecane	$\mathrm{C}_{15} \mathrm{H}_{32}$	10.	. 776	10.	270.	"
Hexadecane	$\mathrm{C}_{16} \mathrm{H}_{34}$	18.	. 775	18.	287.	"
Heptadecane	$\mathrm{C}_{17} \mathrm{H}_{36}$	22.	. 777	22.	303.	"
Octadecane	$\mathrm{C}_{18} \mathrm{H}_{38}$	28.	. 777	28.	317.	"
Nonadecane	$\mathrm{C}_{19} \mathrm{H}_{40}$	32.	. 777	32.	330.	"
Eicosane. -	$\mathrm{C}_{20} \mathrm{H}_{42}$	37.	. 778	37.	121.8	"
Heneicosane Docosane.	${ }_{\text {C }} \mathrm{C}_{21} \mathrm{H}_{44}$	40.	.778 .778	44.	129.8	"
Tricosane -	$\mathrm{C}_{22} \mathrm{C}_{23} \mathrm{H}_{48}$	44.	.778 .779	44.	136.58	"
Tetracosane	$\mathrm{C}_{24} \mathrm{H}_{50}$	51.	. 779	5 I.	243.7	"
Heptacosane .	$\mathrm{C}_{27} \mathrm{H}_{56}$	60.	. 780	60.	172.8	"
Pentriacontane	$\mathrm{C}_{31} \mathrm{H}_{64}$	68.	. 781	68	199.8	"
Dicetyl . . .	$\mathrm{C}_{32} \mathrm{H}_{66}$	70.	. 781	70.	205.8	"
Penta-tria-contane	$\mathrm{C}_{35} \mathrm{H}_{72}$	75.	. 782	75.	$331 . \ddagger$	"
- (b) Olefines, or the Ethylene Series : $\mathrm{C}_{n} \mathrm{H}_{2 n}$.						
Ethylene	$\mathrm{C}_{2} \mathrm{H}_{4}$	-	0.610	- 169.	-103.	
Propylene . . Butylene.	$\mathrm{C}_{\mathrm{C}_{3} \mathrm{H}_{6}}^{\mathrm{C}_{4} \mathrm{H}_{8}}$	-13.5	. 635	-180.	-50.2	Ladenburg, Krïgel. Sieben.
Amylene	$\mathrm{C}_{5} \mathrm{H}_{10}$	-	.	-	36.	Wagner or Saytzeff.
Hexylene	$\mathrm{C}_{6} \mathrm{H}_{12}$	\bigcirc	. 76	-	69.	W reden or Znatowicz.
Heptylene	$\mathrm{C}_{7} \mathrm{H}_{14}$	19.5	. 703	-	96.-99.	Morgan or Schorlemmer.
Octylene. .	$\mathrm{C}_{8} \mathrm{H}_{16}$	17.	. 722	-	122.-123.	Möslinger.
Nonylene	$\mathrm{C}_{9} \mathrm{H}_{18}$	20.	. 767	-	140.-142.	Beilstein, " Org. Chem."
Decylene .	${ }^{\mathrm{C}} \mathrm{C}_{10} \mathrm{H}_{20}$	-	-	-	175.	" " "
Undecylene	$\mathrm{C}_{11} \mathrm{H}_{22}$	20.	.773	-	$196 .-197$	
Dodecylene .	$\mathrm{C}_{12} \mathrm{C}_{13} \mathrm{H}_{24}$	-31.	. 795	-31.	212.-214.	
Tridecylene ${ }^{\text {Tetradecylene. }}$	${ }^{\mathrm{C}_{13} \mathrm{H}_{26}}$	15.	.774 .794	-	233. $127 . \ddagger$	Bernthsen. Krafft.
Pentadecylene.	$\mathrm{C}_{15} \mathrm{H}_{30}$	-	. 814	-	247.	Bernthsen.
Hexadecylene .	$\mathrm{C}_{16} \mathrm{H}_{32}$	4.	. 792	4.	$155 . \ddagger$	Krafft, Mendelejeff, etc.
Octadecylene .	$\mathrm{C}_{18} \mathrm{H}_{36}$	18.	. 791	18.	179. \ddagger	Krafft.
Eicosylene . .	${ }_{\text {C }}^{20} \mathrm{C}_{27} \mathrm{H}_{40}$	\bigcirc	${ }^{.871}$	58.	390.-400.	Reilstein, "Org. Chem." Bernthsen.
Melene .	$\mathrm{C}_{30} \mathrm{H}_{60}$	-	-	62.	-	

[^31] ORGANIC COMPOUNDS.

(e) Alcoholic ethers: $\mathrm{C}_{n} \mathrm{H}_{2 n+2} \mathrm{O}$.

Dimethyl ether	$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$	-	-	-	-23.6	Erlenmeyer, Kreichbaumer.
Diethyl ether .	$\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$	4.	0.731	- II7	$+34.6$	Regnault, Olszewski.
I ipropyl ether	$\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O}$	\bigcirc.	. 763	-	+90.7	Zander and others.
Di-iso-propyl ether.	$\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O}$	0.	. 743	-	69.	"
Di-n-butyl ether . . .	$\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{O}$	O.	.784	-	141.	Lieben, Rossi, and others.
Di-sec-butyl ether	$\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{O}$	21.	. 756	-	121	Kessel.
Di-iso-butyl "	$\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{O}$	15.	. 762	-	122.	Reboul.
Ii-iso-amyl "	$\mathrm{C}_{10} \mathrm{H}_{22} \mathrm{O}$	-.	. 799	-	170.-175.	Wurtz.
Di-sec-hexyl " .	$\mathrm{C}_{12} \mathrm{H}_{26} \mathrm{O}$	-	-	-	203.-208.	Erlenmeyer and Wanklyn.
Di-norm-octyl".	$\mathrm{C}_{16} \mathrm{H}_{34} \mathrm{O}$	17.	. 805	-	280.-282.	Moslinger.

(f) Ethyl ethers: $\mathrm{C}_{n} \mathrm{H}_{2 n+2}$ ().

Ethyl-methyl ether	$\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$	O.	0.725	-	11.	Wurtz, Williamson.
" propyl "	$\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}$	20.	0.739	-	63.-64.	Chancel, Brühl.
"، iso-propyl ether	$\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}$	0.	. 745	-	54.	Markownikow.
" norm-butyl ether	$\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O}$	-.	. 769	-	92.	Lieben, Rossi.
" iso-butyl ether	$\mathrm{C}_{6} \mathrm{II}_{14} \mathrm{O}$	-	. 751	-	78.-80.	Wurtz.
" iso-amyl ether	$\mathrm{C}_{7} \mathrm{H}_{16} \mathrm{O}$	18.	. 764	-	I12.	Williamson and others.
" norm-hexyl ether	$\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{O}$	-	-	-	I $34 .{ }^{-1} 37$.	Lieben, Janeczek.
" norm-heptyl ether	$\mathrm{C}_{9} \mathrm{H}_{26} \mathrm{O}$	16.	-790	-	165.	Cross.
" norm-octyl ether	$\mathrm{C}_{10} \mathrm{H}_{22} \mathrm{O}$	17.	. 794	-	182.-184.	Moslinger.

[^32](g) Miscellaneous.

Substance	Chemical formula.	Density tempera	and ture.	Melting point C	Boiling point C	Authority.
Acetic acid	$\mathrm{CH}_{3} \mathrm{COOH}$	1. 115	0°	16.7	118.5	Young, 'o9
Acetone.	$\mathrm{CH}_{3} \mathrm{COCH}_{3}$	0.812	\bigcirc	-94.6	56.1	
Aldehyde.	$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$	0.806	\bigcirc	-120.	+20.8	
Aniline.	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$	1.038	0	-8.	183.9	
Beeswax.		$0.96 \pm$		62.		
Benzoic acid.	$\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{2}$	I. 293	4	12 I .	249.	
Benzene . . .	$\mathrm{C}_{6} \mathrm{H}_{6}$	0.879	20	5.48	80.2	Richards
Benzophenone	$\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{CO}$	1.090	50	48.	305.9	HolbornHenning
Butter..		0.86-7		$30 \pm$		
Camphor.	$\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}$	0.99	10	176.	209.	
Carbolic acid....	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$	1.060	21	43.	182.	
Carbon bisulphide " tetrachlor-	CS_{2}	I. 292	\bigcirc	-110.	46.2	
ide.......	CCl_{4}	1. 582	21	-30.	76.7	Young
Chlorbenzene	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$	I. III	15	-40.	132.	
Chloroform.	CHCl_{3}	1. 257	\bigcirc	-65.	61.2	
Cyanogen .	$\mathrm{C}_{2} \mathrm{~N}_{2}$			-35.	-21.	
Ethyl bromide	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}$	1.45	15	-117.	38.4	
" chloride	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$	0.918	8	-141.6	14.	
" ether.	$\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$	-. 736	\bigcirc	- II8.	34.6	
" iodide	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{I}$	1.944	14	-	72.	
Formic acid.	HCOOH	I. 242	\bigcirc	8.6	100.8	
Gasolene .		$0.68 \pm$		-	70-90	
Glucose .	$\mathrm{CHO}(\mathrm{HCOH})_{4} \mathrm{CH}_{2} \mathrm{OH}$	1. 56		146.	-	
Glycerine	$\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}_{3}$	I. 269	-	20.	290.	
Iodoform.	CHI_{3}	4.01	25	119.	-	
Lard.				$29 \pm$	-	
Methyl chloride..	$\mathrm{CH}_{3} \mathrm{Cl}$	0.992	-24	-103.6	-24. 1	
Methyl iodide....	$\mathrm{CH}_{3} \mathrm{I}$	2. 285	15	-64.	$42 \cdot 3$	
Naphthalene . . .	$\mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{C}_{4} \mathrm{H}_{4}$	I. 152	15	80.	218.	HolbornHenning
Nitrobenzene.	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{2} \mathrm{~N}$	1. 212	$7 \cdot 5$	5.	211.	
Nitroglycerine . . .	$\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{9}$	1.60		-	-	
Olive oil.........		0.92		$20 \pm$	$300 \pm$	
Paraffin wax, soft.	${ }_{2} \mathrm{H}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	1. 68		$\begin{gathered} 190 . \\ 38-52 \end{gathered}$	350-390	
" " hard		-		52-56	390-430	
Pyrogallol.	$\mathrm{C}_{6} \mathrm{H}_{3}(\mathrm{OH})_{3}$	1. 46	40	133.	293.	
Spermaceti.		0.95	15	$45 \pm$	-	
Starch .	$\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{5}$	1. 56		none	-	
Sugar, cane..... .	$\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$	1. 588	20	160.	-	
Stearine........	$\left(\mathrm{C}_{18} \mathrm{H}_{35} \mathrm{O}_{2}\right)_{3} \mathrm{C}_{3} \mathrm{H}_{5}$	0.925	65	71.	-	
Tallow, beef . . .		0.94	15	27-38	-	
" mutton..		0.94	15	32-4I	-	
Tartaric acid.	$\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{6}$	I. 754		170.	-	
'Toluene.	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}$	0.882	∞	-92.	110.31	Richards
Xylene (o)	$\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{3}\right)_{2}$	0.863	20	-28.	142.	
" ${ }^{\prime}$ (m).....	$\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{3}\right)_{2}$	0.864	20	54.	140.	
" (p).....	$\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{3}\right)_{2}$	0.86I	20	15.	138.	

Metals.	Melting-points, $\mathrm{C}^{\text {O }}$.											¢
	Percentage of metal in second column.											
	\% \%	10\%	20\%	30%	40\%	50\%	60\%	70\%	80\%	90\%	100\%	
Pb . Sn .	326	295	276	262	240	220	190		200	215		7
B1.	322	290			179	145	126 600	168 480	205	4	268	7 8
Te.	322 328	710 460	790	880	917 620	760 650	600 705	480 775	-410 840	425	446	8
Ag.	328	460 360	545 420	590 400	620 370	650 330	705 290	775 250	840 200	905 130	959	9 13
Cu .	326	870	920	925	945	950	955	985	1005	1020	1084	2
Sb.	326	250	275	330	395	440	490	525	560	600	632	16
Al. Sb .	650	750	840	925	945	950	970	1000	1040	1010	${ }_{632}$	17
Cu .	650	630	600	560	540	580	610	755	930	1055	1084	18
Au.	655 650	675 625	740 615	800 600	855 590	915 580	${ }_{5}^{975}$	1025 570	1055 650	675 750	1062	10
Ag Zn.	650 654	625 640	615 620	600 600	590 580	580 560	5575	570 510	650 475	750 425	954 419	17
Fe .	653	860	1015	1110	1145	1145	1220	1315	1425	1500	1515	3
Sn .	650	645	-635	625	620	605	590	570	560	540	232	17
Sb . Bi .	632	610	590	575	555	54°	520	470	405	330	268	16
Ag.	${ }^{3} 3^{\circ}$	595	570	545	520	500	505	545	680	850	959	9
Sn .	622	600	570	525	4 So	430	395	350	310	255	232	19
Zn .	632	555	510	540	570	565	540	525	510	470	419	17
Ni. Sn.		1380	1290	1200	1235		1305	1230	1060	800	232	17
Na . Bi .	96	425	520	590	645	690	720	730	715	570	268	${ }^{2} 3$
Cd.	96	125	185	245	285	325	330	340	360	390	322	13
Cd. Ag.	322	420	520	610	700	760	805	850	895	940	954	17
T1.	32 I	300	285	270	262	258	245	230	210	235	302	14
Zn .	322	280	270	295	313	327	340	355	370	390	419	18
$\mathrm{Au} . \mathrm{Cu}$.	1063	910	890	895	905	925	975	1000	1025	1060	1084	4
Ag.	1064	1062	106r	1058	1054	1049	1039	1025	1006	982	963	5
$\stackrel{\mathrm{Pr}}{ }$	1075	1125	1190	1250	1320	1380	1455	1530	1610	1685	1775	20
K. Na.	62	17.5	-10	-3.5	5	11	26	41	58		97.5	15
H.	-		-	-	-	90	110	135	162	265		13
Tl.	62.5	133	165	188	205	215	220	240	280	305	301	14
Cu . Ni.	1080	1180	1240	1290	1320	1335	1380	1410	${ }^{1430}$	1440	1455	17
Ag.	1082	1035	990	945	910	870 680	830	788	814	875	960	9
Sn .	1084	1005	890	755	725	680 880	630 820	580	530	440 580	232	12
Ag. ${ }_{\mathrm{Zn}}^{\mathrm{Zn}}$.	1084	1040 850 8	995	930	900	880	820 630	780 610	700	580	419	6
${ }^{\text {Sn }}$.	959	870		705 630		495	450	420	375	300	${ }_{232}$	9
Na . Hg .	96.5	90	80	70	60	45	22	55	95	215	-	13

: Means, Landolt-Börnstein-Roth Tabellen.
2 Friedrich-Leroux, Metal. 4, 1907.
3 Gwyer, Zs. Anorg. Ch. 57, 1908.
4 Means, L.-B.-R. Tabellen.
Roberts-Austen Chem. News, 87, 2, 1903 .
Shepherd J. ph. ch. 8, 1904.
Kapp, Diss., Königsberg, ıgor.
Fay and Gilson, Trans. Am. Inst. Min. Eng. Nov. 1901.

Heycock and Neville, Phil. 'Trans. 189 A, 1897. 194 A, $201,1900$.

11 Heycock and Neville, J. Chem. Soc. 71, 1897.
12 " " Phil. Trans. 202A, 1, 1903.
${ }_{13}$ Kurnakow, Z. Anorg. Chem. 23, 439, 1900.
14 " "، "، "، 30, 86, 1902.
16 Roland-Gosselin, Bul. Soc. d'Encour. (5) 1, 1896.
17 Gautier, "" "، "" (5) $\mathbf{1}$,
18 Le Chatelier, " " " (4) 10, 573, 1895.

19 Reinders, Z. A norg. Chem. 25, 113, 1896.
20 Erhard and Schertel, Jahrb. Berg-u. Hüttenw. Sachsen. 1879, 17.

TABLE 222. - Alloy of Lead, Tin, and Bismuth.

	Per cent.									
Lead. . .	32.0	25.8	25.0	43.0	33.3	10.7	50.0	35.8	20.0	70.9
Tin Bismuth. . .	15.5 52.5	19.8	15.0 60.0	14.0	33.3	23.1	3.3 .0	52.1	60.0	9.1
Bismuth . . .	52.5	54.4	60.0	43.0	33.3	66.2	17.0	12.1	20.0	20.0
Solidification at	96°	1010	125°	128°	145°	148°	161°	181°	182°	234°

Charpy, Soc. d'Encours, Paris, 1 gox.
TABLE 223. - Low Melting-point Alloy.

	Per cent.						
Cadmium . .	10.8	10.2	14.8	13.1	6.2	7.1	6.7
${ }_{\text {Tin }}^{\text {Lead }}$. . . .	14.2 24.9	14.3	7.0	13.8	9.4	-	-
Bismuth . . .	24.9 50.1	25.1 50.4	26.0 52.2	24.3 48.8	$\begin{aligned} & 34.4 \\ & 50.0 \end{aligned}$	$\begin{aligned} & 39 \cdot 7 \\ & 53 \cdot 2 \end{aligned}$	$\begin{aligned} & 43 \cdot 4 \\ & 49 \cdot 9 \end{aligned}$
Solidification at	65.5°	67.5°	68.5°	68.5°	$76.5{ }^{\circ}$	$89.5{ }^{\circ}$	95°

Drewitz, Diss. Rostock, 1902.
All conipiled from Landolt-Börnstein-Meyerhoffer's Physikalisch-chemische Tabellen.

Table 224.
TRANSFORMATION AND MELTING TEMPERATURES OF LIME-ALUMINASILICA COMPOUNDS AND EUTECTIC MIXTURES.
The majority of these determinations are by G. A. Rankin. (Part unpublished.)

The accuracy of the melting-points is 5 to ro units. Geophysical Laboratory. See also Day and Sosman, Am. J. of Sc. xxxi, p. 34I, 19 II.

LOWERING OF FREEZING-POINTS BY SALTS IN SOLUTION.

In the first column is given the number of gram-molecules (anhydrous) dissolved in 1000 grams of water; the second contains the molecular lowering of the freezing-point ; the freezing-point is therefore the product of these two columns. After the chemical formula is given the molecular. weight, then a reference number.

$\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$, 331.0: 1, 2.0	$0.0500 \quad 3.47^{\circ}$	$0.4978 \quad 2.02^{\circ}$	$\mathrm{MgCl}_{2}, 95.26: 6,14 .$
$0.0003625 .5{ }^{\circ}$.10003 .42	81122.01	$0.0100 \quad 5.1^{\circ}$
.001204 5.30	. 2000 3.32	1.5233 2.28	$.0500 \quad 4.98$
. 002805 5.17	. 500 3.26	$\mathrm{BaCl}_{2}, 208.3$: 3, 6, 13.	$.1500 \quad 4.96$
. $005570 \quad 4.97$	$1.000 \quad 3.14$	$0.00200 \quad 5.5^{\circ}$. 3000 5.186
. 017374.69	$\mathrm{LiNO}_{3}, 69.07$: 9.	. 004985.2	. 60995.69
. $5015 \quad 2.99$	0.0398 3.4 ${ }^{\circ}$.01005 .0	KCl, 74.60: 9, 17-19.
$\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}, 26 \mathrm{r} .5$: 1.	.16713 .35	$.0200 \quad 4.95$	$0.02910 \quad 3.54^{\circ}$
$0.0003835 .6{ }^{\circ}$.4728 3.35	.048054 .80	. $05845 \quad 3.46$
.001259 5.28	$1.0164 \quad 3.49$	$.100 \quad 4.69$.112 3.43
.002681 5.23	$\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}, 342.4$: 10.	$.200 \quad 4.66$. $3139 \quad 3.41$
. 0054225.13	0.0131	. 500 4.82	.476 3.37
. 0083525.04	. 0261 4.9	$.586 \quad 5.03$	$1.000 \quad 3.286$
$\mathrm{Cd}\left(\mathrm{NO}_{3}\right)_{2},{ }^{236.5}$: 3.	.0543 4.5	. 750 5.2	$1.989 \quad 3.25$
0.00298 5.4	.1086	$\mathrm{CdCl}_{2}, 183 \cdot 3: 3,14 .$	3.2693 .25
. 006895.25	. 217 3 383	$0.00299 \quad 5.0^{\circ}$	$\mathrm{NaCl}, 58.50$: $3,20,12,16$.
. 01997 5.18	$\mathrm{CdSO}_{4}, 208.5$: $1,1 \mathrm{I}$.	. 006904.8	- $0.003993 .7^{\circ}$
. $04873 \quad 5.15$	$0.000704 \quad 3.35^{\circ}$. $0200 \quad 4.64$. $01000 \quad 3.67$
$\mathrm{AgNO}_{3}, 167.0: 4,5$. 0026853.05	.054I 4.1I	. 02213.55
0.1506 3.32°	OII5I 2.69 03120 2.42	. 0818 3.93	. 04949 3.51
.5001 2.96	.03120 2.42	$\begin{array}{ll}.214 & 3.39\end{array}$. 10815
. $8645 \quad 2.87$.1473 2.13	.4293 .03	$.2325 \quad 3.42$
1.749 2.27	.4129 1.80	. 858 2.71	. 4293 3.37
2.953 I. 85	. $7501 \quad 1.76$	$\begin{array}{ll}1.072 & 2.75\end{array}$	$\begin{array}{ll}.700 & 3.43\end{array}$
$\begin{array}{ll}3.856 & 1.64 \\ 0.0560 & 3.82\end{array}$			$\mathrm{NH}_{4} \mathrm{Cl}, 53.52$: 6, 15.
$\begin{array}{rr}0.0560 & 3.82 \\ .1401 & 3.58\end{array}$	$\begin{array}{cc}\mathrm{K}_{2} \mathrm{SO}_{4}, 174.4: 3,5,6,10,12 . \\ 0.00200 & 5.4\end{array}$	$\begin{array}{ll} 1,1,035 \cdot 3 \cdot 9 \\ 0.0350 \end{array} \quad 4.9^{\circ}$	$\begin{array}{cc} \mathrm{NH}_{4} C, 53.52: 0 \\ 0.0100 \end{array}$
$\begin{array}{ll}.1401 & 3.58 \\ .3490 & 3.28\end{array}$	$\begin{array}{rr}0.00200 & 5.4 \\ .00398 & 5.3\end{array}$. 33374	. 02003.56
	$\begin{array}{ll}.00398 & 5 \cdot 3 \\ .00865 & 4.9\end{array}$. 3380 (4.92	$.0350 \quad 3.50$
KN3, 0.0100	.0200 4.9 .00	.7149 5.32	.1000 .2000 3.43
. 0200 3.5	. 0500 4.60	CoCl_{2}, 129.9: 9.	$\begin{array}{ll}0000 & 3.396 \\ 000 & 3.393\end{array}$
. 0500 3.41	.1000 4.32	0.0276	$\begin{array}{ll}.4000 & 3.393 \\ .7000 & 3.41\end{array}$
.100 3.31	4.07	.10944 .9	
. 200 3.19	. 454 3.87	$\begin{array}{ll}.2369 & 5.03 \\ .4399 & 5.30\end{array}$	
$\begin{array}{ll}.250 & 3.08 \\ .500 & 2.04\end{array}$	$\mathrm{CuSO}_{4}, 159.7 \mathrm{l}^{\text {a }}$: $1,4,11$. 0.00286	$\begin{array}{ll}.4399 & 5.30 \\ .538 & 5.5\end{array}$	0.00992 3.7° .0455 3.5
$\begin{array}{ll}.500 & 2.94 \\ .750 & 2.81\end{array}$	$\begin{array}{rr}0.000286 & 3.3 \\ .000843 & 3.15\end{array}$		$\begin{array}{ll}.0455 & 3 \cdot 5 \\ .09952 & 3.53\end{array}$
1.0002 .66	.002279 3.03		.2474 3.50
NaNO ${ }_{3}, 85.09: 2,6,7$. 0066702.79	. $05028 \quad 4.85$. 5012 3.61
$0.0100 \quad 3.6{ }^{\circ}$. $01463 \quad 2.59$. 10064.79	. $7939 \quad 3.71$
. 0250 3.46	.1051 2.28	. 5077 5.33	$\mathrm{BaBr}_{2}, 297.3$: 14.
. 505003.44	. 20741.95	.946 5.3	$0.100 \quad 5.1^{\circ}$
. 2000 3.345	. 4043 l I. 84	$2.432 \quad 8.2$.150
.500 3.24	. 8898 1.76	3.46911 .5	. 200 5.00
.5015 $5 \cdot 30$	$\mathrm{MgSO}_{4}, 120.4: 1,4,11$.	$3.829 \quad 14.4$. 500 5.18
$1.000 \quad 3.15$	0.000675	0.0478 - 5.2	$\mathrm{Br}_{3}, 267.0: 9$.
$1.0030 \quad 3.03$. 002381 3.10	. 533 4.91	0.0078 1.4 ${ }^{0}$
NH4 $\mathrm{NO}_{3}, 80.1 \mathrm{II}: 6,8$.	. 01263 2.72	.331 5.15	. 0559 I.2
$0.01003 .6{ }^{\circ}$. 0580	. $612 \quad 5.47$.1971 .07
. 0250 3.50	.2104 2.23	.998	.4355 $\quad 1.07$

1 Hausrath, Ann. Phys. 9, 1902.
2 Leblanc-Noyes, Z. Phys. Ch. 6, 1890.
3 Jones, Z. Phys. Ch. 11, $1893 \cdot$
${ }_{4}$ Raoult, Z. Plys. Ch. 2, 1888.
5 Arrhenius, Z. Phys. Ch. 2, 1888.
6 Loomis. Wied. Ann. 57, 1896.
7 Jones, Am. Chem. J. 27, 1902.
8 Jones-Caldwell, Am. Chem. J. 25, 1901.
9 Biltz, Z. Phys. Ch. 40, 1902.
Jones-Mackay, Am. Chem. J. 19, 1897.
Compiled from Landolt-Börnstein-Meyerhoffer's Physikalisch-chemische Tabellen.

LOWERING OF FREEZING-POINTS BY SALTS IN SOLUTION (continued).

$\mathrm{CdBr}_{2}, 272.3: 3,14$.	KOH, 56.16: $1,15,23$.	$\mathrm{Na}_{2} \mathrm{SiO}_{3}, \mathbf{1 2 2 . 5}$: 15.	$0.472 .20{ }^{\circ}$
$0.003245 .1^{\circ}$	$0.003523 .60^{\circ}$	$0.01052 \quad 6.4^{\circ}$. 944 2.27
. 007184.6	. 007703.59	. 052395.86	1.6202 .60
$\begin{array}{ll}.03627 & 3.84\end{array}$. 020023.44	.1048 5.28	$(\mathrm{COOH})_{2}, 90.02: 4,15$.
.0719 3.39	.050063 .43	.20994 .66	0.01002
.1122 3.18	. 10013	. 5233 3.99	. 02005 3.19
$.220 \quad 2.96$.20033 .424	$\mathrm{HCl}, 36.46$:	.050193 .03
$\begin{array}{ll}.440 & 2.76\end{array}$	$\begin{array}{ll}230 & 3.50\end{array}$	$1-3,6,13,18,22 .$. $1006 \quad 2.83$
. $800 \quad 2.59$	${ }_{4} .465 \quad 3.57$	$0.003053 .68^{\circ}$. 20222.64
	$\mathrm{CH}_{3} \mathrm{OH}, 32.03: 24,25$. 0.0100 \% 1.8	$\begin{array}{ll}.00695 & 3.66 \\ .0100 & 3.6\end{array}$	$.366 \quad 2.56$
$\begin{array}{cl}0.0242 & 5.1^{\circ} \\ .0817 & 5.1\end{array}$	$\begin{array}{rr}0.0100 & 1.80 \\ .0301 & 1.82\end{array}$	$\begin{array}{ll}.0100 & 3.6 \\ .01703 & 3.59\end{array}$	
. $2255 \quad 5.27$. 2018 I.8II	$.0500 \quad 3.59$	$\mathrm{C}_{3} \mathrm{H}_{5}(\mathrm{OH})_{3}, 92.06: 24,25$.
. 60035.89	1.046	.1025 3.56	$\begin{array}{rl}0.0200 & 1.86 \\ .1008 & 1.86\end{array}$
$\mathrm{CaBr}_{2}, 200.0$: 14.	3.41	$\begin{array}{ll}.2000 & 3.57 \\ .3000 & 3612\end{array}$.2031 1.85
0.0871	$6.200 \quad 1.944$	$\begin{array}{ll}.3000 & 3.612 \\ .464 & 3.68\end{array}$. 535 I.91
.1742 5.18	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}, 46.04$:	$\begin{array}{ll}.464 & 3.6 \\ .516 & 3.79\end{array}$	$2.40 \quad 1.98$
$\begin{array}{ll}.3484 & 5.30 \\ .5226 & 5.64\end{array}$.5103	$5.24 \quad 2.13$
	. 004993 I. 67	1.0324 .10	$\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{O}, 74.08$: 24
	. 0100 ll	1.500 4.42	$0.01001 .6{ }^{\circ}$
$\begin{array}{ll}0.0517 & 5.4 \\ .103\end{array}$. 028921.707	$2.000 \quad 4.97$	$.0201 \quad 1.67$
$\begin{array}{ll}.103 & 5.16 \\ .207 & 5.26\end{array}$. 0705 I.85	2.11504 .52	$.1011 \quad 1.72$
$\begin{array}{ll}.207 & 5.26 \\ .517 & 5.85\end{array}$. 2922 1.829	3.0006	$.2038 \quad 1.702$
-517 5.85	. 2024 I.832	$3.053 \quad 4.90$	Dextrose, 180.1 : 24, 30.
$\mathrm{KBr}, 119.1 \mathrm{I}$: 9, 21.	. 52521.834	4.065	$0.0198 \quad 1.84^{\circ}$
$0.03053 .61{ }^{\circ}$	$1.0891 \quad 1.826$	$4657 \quad 6.19$	$.0470 \quad 1.85$
$\begin{array}{ll}.1850 \\ .680 r & 3.49\end{array}$	$1.760 \quad 1.83$	$\mathrm{HNO}_{3}, 63.05: 3,13,15$.	.1326 1.87
$\begin{array}{ll}.680 r & 3.30 \\ .200\end{array}$	3.901	$0.02004 \quad 3.55^{\circ}$.4076 - 1.894
$\begin{array}{ll}.250 & 3.78 \\ .500 & 3.56\end{array}$	7.91 - 2.02	. 050153	1.1021 .921
-500 3.	11.1I 2.12	.0510 3.71	Levulose, 180.1: $24,25$.
$\mathrm{CdI}_{2}, 366.1 \mathrm{I}$: 3, 5, 22.	18.76 I.8ı	. 10043.48	$0.0201 \quad 1.87^{\circ}$
$0.00210 \quad 4.5^{\circ}$	0.0173 I.80	$.1059 \quad 3.53$	$.2050 \quad 1.871$
. 006264.0	. 0778 1.79	. 2015 3.45	. 554 2.01
. $02062 \quad 3.52$	$\mathrm{K}_{2} \mathrm{CO}_{3}, 138.30$: 6	$.250 \quad 3.50$	1.384
. 04857 2.70	$0.01005 .1{ }^{\circ}$. 500 3.62	2.77 3.04
. $1360 \quad 2.35$. $0200 \quad 4.93$	1.0003 .80	$\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}, 342.2 \mathrm{I}$ I, 24, 26.
. 33312.13	. 0500 4.71	2.000 4.17	$0.000332 \quad 1.90^{\circ}$
$\begin{array}{ll}.684 & 2.23 \\ .888 & 2.51\end{array}$.100 4.54	$3.000 \quad 4.64$.001410 1.87
. 888 2.51	. 200 4.39	$\mathrm{H}_{3} \mathrm{PO}_{2}$, 66.0: 29.	. $009978 \quad 1.86$
$\mathrm{KI}, 166.0$: 9, 2.3	$\mathrm{Na}_{2} \mathrm{CO}_{3}, 106.10: 6$.	$0.1260 \quad 2.90^{\circ}$. 0201 1.88
$0.0651 \quad 3.5^{\circ}$	$0.01005 .11^{\circ}$. 2542 2.75	.1305 I.SS
$\begin{array}{ll}.2782 & 3.50 \\ .6030 & 3.42\end{array}$. 0200 4.93	$\begin{array}{ll}.5171 & 2.59 \\ 1.071 & 2.45\end{array}$	$\mathrm{H}_{2} \mathrm{SO}_{4}, 98.08 \text { : }$
$\begin{array}{ll}.6030 & 3.42 \\ 1.003 & 3.37\end{array}$	$\begin{array}{ll}.0500 & 4.64 \\ .1000 & 4.42\end{array}$		$0.00+6 \mathrm{I}^{13,20,31-33 .} 4.8^{\circ}$
$\mathrm{SrI}_{2}, 34 \mathrm{I} .3$: 22.	. 2000 4.17	$0.0745 \quad 3.0^{\circ}$	$\begin{array}{ll}.0100 & 4.49\end{array}$
$0.0545 .1^{\circ}$	$\mathrm{Na}_{2} \mathrm{SO}_{3}, 126.2$: 28.	. 12412.8	. 0200 4.32
. 108 5.2	0.1044 4.51°	.2482 2.6	.0461 4.10
. 216 5.35	. $3397 \quad 3.74$	$1.00 \quad 2.39$.1003 .96
. 327 5.52	.7080 $\quad 3.38$	$\mathrm{H}_{3} \mathrm{PO}_{4}$, 98.0: 6, 22.	.2003 .85
$\mathrm{NaOH}, 40.06$: 15.	$\mathrm{Na}_{2} \mathrm{HPO}_{4}$, 142.1: $22,29$.	$0.0100 \quad 2.8^{\circ}$. 400 3.9S
$0.020023 .45^{\circ}$	0.010015	. 02002.68	$1.000 \quad 4.19$
. $05005 \quad 3.45$.020034 .84	. $0500 \quad 2.49$	$1.500 \quad 4.96$
.1001 3.41	.050084 .60	.1000 2.36	$2.000 \quad 5.65$
. 20003.407	. 10024.34	. 20002.25	$2.500 \quad 6.53$

1-20 See page 217 .
21 Sherrill, Z. Phys. Ch. 43, 1903.
22 Chambers-Frazer, Am. Ch. J. 23, 1900.
23 Noyes-Whitney, Z. Phys. Ch. 15, 1894°
24 Loomis, Z. Phys. Ch. 32, 1900.
25 Abegg, Z. Phys. Ch. 15, 1894.
26 Nernst-Abegg, Z. Phys. Ch. $15,1894$.

27 Pictet-Altschul, Z. Phys. Ch. 16, 1895.
28 Barth, Z. Phys. Ch. 9, iSg2.
29 Petersen, Z. Phys. Ch. II, 1893.
30 Roth, Z. Phys. Ch. 43, 1903.
31 Wildermann, Z. Phys, Ch. 15, 1894.
32 Jones-Carroll, Am. Ch. J. 28, 1902.
33 Jones-Murray, Am. Ch. J. 30, 1903.

RISE OF BOILING-POINT PRODUCED BY SALTS DISSOLVED IN WATER.*

This table gives the number of grams of the salt which, when dissolved in 100 grams of water, will raise the boil-ing-point by the amount stated in the headings of the different columns. The pressure is supposed to be 76 centimeters.

Salt.		$1^{\circ} \mathrm{C}$.	2°	3	4°	5	7°	10°	15°	20°	$25{ }^{3}$
$\begin{aligned} & \mathrm{BaCl}_{2}+2 \mathrm{H}_{2} \mathrm{O} . \\ & \mathrm{CaCl} \\ & \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{H}_{2} \mathrm{O} \\ & \mathrm{KOH} \\ & \mathrm{KC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} . \end{aligned}$		15.0	3 I .1	$47 \cdot 3$	63.5	(71.6 gives $4^{0} .5$ rise of temp.)					
		6.0	I 1.5	16.5	21.0	25.0	32.0	$4 \mathrm{I} \cdot 5$	55.5	69.0	84.5
		12.0	25.5	39.5	53.5	68.5	101.0	152.5	240.0	331.5	$443 \cdot 5$
		4.7	$9 \cdot 3$	13.6	$17 \cdot 4$	20.5	26.4	34.5	47.0	57.5	67.3
		6.0	12.0	18.0	24.5	31.0	44.0	63.5	98.0	134.0	171.5
KCl		9.2	16.7	23.4	29.9	36.2	48.4	(57.4 g	ves a ris	ise of 8	
$\mathrm{K}_{2} \mathrm{CO}_{3}$		II. 5	22.5	32.0	40.0	47.5	60.5	78.5	103.5	127.5	152.5
KClO_{3}		13.2	27.8	44.6	62.2						
KI		15.0	30.0	45.0	60.0	74.0	99.5	I 34.	185.0 (220 give	es $18^{\circ} \cdot 5$)
KNO_{3}		15.2	31.0	47.5	64.5	82.0	120.5	188.5	$33^{8.5}$		
$\mathrm{K}_{2} \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{6}+\frac{1}{2} \mathrm{H}_{2} \mathrm{O}$		18.0	36.0	54.0	72.0	90.0	126.5	182.0	284.0		
$\mathrm{KNaC}_{4} \mathrm{H}_{4} \mathrm{O}_{6}+\dot{+}$		17.3	34.5	51.3	68.1	84.8	119.0	171.0	272.5	390.0	510.0
$\mathrm{KNaC}_{4} \mathrm{H}_{4} \mathrm{O}_{6}+4 \mathrm{H}_{2} \mathrm{O}$		25.0	53.5	84.0	I 18.0	157.0	266.0	554.0	5510.0		
LiCl		3.5	7.0	10.0	12.5	I 5.0	20.0	26.0	35.0	42.5	50.0
$\mathrm{LiCl}+2 \mathrm{H}_{2} \mathrm{O}$		6.5	13.0	19.5	26.0	32.0	44.0	62.0	92.0	123.0	160.5
$\mathrm{MgCl}_{2}+6 \mathrm{H}_{2} \mathrm{O}$		I 1.0	22.0	33.0	44.0	55.0	77.0	I 10.0	170.0	241.0	$334 \cdot 5$
$\mathrm{MgSO}_{4}+7 \mathrm{H}_{2} \mathrm{O}$		41.5	87.5	138.0	196.0	262.0					
$\underset{\mathrm{NaOH}}{\mathrm{NaCl}}$.		$4 \cdot 3$	8.0	11.3	14.3	17.0	22.4	30.0	41.0	5 I .0	60.1
		6.6	12.4	17.2	21.5	25.5	33.5	(40.7 gi	ives 80.8	8 rise)	
NaNO_{3}		9.0	18.5	28.0	38.0	48.0	68.0	99.5	I 56.0	222.0	
$\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+3 \mathrm{H}_{2} \mathrm{O}$		14.9	30.0	46.1	62.5	79.7	I 18.1	194.0	480.06	6250.0	
		14.0	27.0	39.0	49.5	59.0	77.0	104.0	152.0	214.5	311.0
		17.2	34.4 44.4	51.4 68.2	68.4	85.3 121.3					
$\mathrm{Na}_{2} \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{6}+2 \mathrm{H}_{2} \mathrm{O}$.		21.4	44.4	68.2	93.9	121.3	183.0	$(237 \cdot 3 \mathrm{~g}$	gives 8°.	. 4 rise)	
$\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}+5 \mathrm{H}_{2} \mathrm{O}$.		23.8	50.0	78.6	108. 1	139.3	216.0	400.0	1765.0		
$\mathrm{Na}_{2} \mathrm{CO}_{3}+10 \mathrm{H}_{2} \mathrm{O}$		34. 1	86.7	177.6	369.4	1052.9					
$\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}+10 \mathrm{H}_{2} \mathrm{O}$. 3		39.	93.2	254.2	898.5	(5555.5	gives	0.5 rise			
$\begin{aligned} & \mathrm{NH}_{4} \mathrm{Cl} \\ & \mathrm{NH}_{4} \mathrm{NO}_{3} \end{aligned}$		6.5	12.8	19.0	24.7	29.7	39.6	56.2	88.5		
		10.0	20.0	30.0	41.0	52.0	74.0	108.0	172.0	248.0	337.0
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$	I	I 5.4	30.1	44.2	58.0	71.8	99.1	(115	gives 10	08.2)	
$\mathrm{SrCl}_{2}+6 \mathrm{H}_{2}$	2	20.0	40.0	60.0	8 I .0	103.0	150.0	234.0	524.0		
$\mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}$	2	24.0	45.0	63.6	8 I .4	97.6			524		
$\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{6}$, ${ }^{\text {d }}$	1	17.0	34.4	52.0	70.0	87.0	123.0	177.0	272.0	374.0	484.0
$\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7}+\mathrm{H}_{2} \mathrm{O}$	I	19.0	40.0	62.0	86.0	112.0	169.0	262.0	540.0 I	I316.0	50000.0
		29.0	58.0	87.0	116.0	145.0	208.0	320.0	553.0	952.0	
Salt.	40°		0°	80°	100^{2}	120°	140°	160°	180°	200°	240°
CaCl_{2}	137.5		2.0	314.0							
KOH	92.5		1.7	${ }^{1} 52.6$	185.0	219.8	263.1	312.5	375.0	- 444.4	623.0
NaOH	93.5		0.8	230.0	345.0	526.3	800.0	1333.0	2353.0	6452.0	
$\mathrm{NH}_{4} \mathrm{NO}_{3}$	682.0	137	0.0	2400.0	4099.0	8547.0	∞				
$\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{6}$	980.0	377	4.0	(infinit	gives	170)					

[^33]Smithsonian Tables.

FREEZING MIXTURES.*

Column 1 gives the name of the principal refrigerating substance, A the proportion of that substance, B the proportion of a second substance named in the column, C the proportion of a third substance, D the temperature of the substances before mixture, E the temperature of the mixture, F the lowering of temperature, G the temperature when all snow is melted, when snow is used, and H the amount of heat absorbed in heat units (small calories when A is granis). Temperatures are in Centigrade degrees.

Substance.	A	B	C	D	E	F	G	H
$\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ (cryst.)	85	$\mathrm{H}_{2} \mathrm{O}-\mathrm{I} 00$	-	10.7	-4.7	I 5.4	-	-
$\mathrm{NH}_{4} \mathrm{Cl}$.	30		-	13.3	-5.1	18.4	-	-
NaNO_{3}. - .	75	"	-	13.2	-5.3	18.5	-	-
$\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ (cryst.) .	110	"	-	10.7	-8.0	18.7	.-	-
KI. -	140	"	-	10.8	- 11.7	22.5	-	-
CaCl_{2} (cryst.)	250	"	-	10.8	-12.4	23.2	-	-
$\mathrm{NH}_{4} \mathrm{NO}_{3}$.	60	"	-	I 3.6	- 13.6	27.2	-	-
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ - .	25	" 50	$\mathrm{NH}_{4} \mathrm{NO}_{3}-25$	-	-	26.0	-	-
$\mathrm{NH}_{4} \mathrm{Cl}$. . .	25	" "	" ،	-	-	22.0	-	-
CaCl_{2}. .	25	"	"	-	-	20.0	-	-
KNO_{3} -	25	"	$\mathrm{NH}_{4} \mathrm{Cl}-25$	-	-	20.0	-	-
$\mathrm{Na}_{2} \mathrm{SO}_{4}$	25	" "		-	-	19.0	-	-
NaNO_{3}.	25	"	" "	-	-	17.0	-	-
$\mathrm{K}_{2} \mathrm{SO}_{4}$. .	10	Snow 100	-	- I	- I. 9	0.9	-	
$\mathrm{Na}_{2} \mathrm{CO}_{3}$ (cryst.)	20	" "	-	I	-2.0	1.0	-	-
KNO_{3}. .	13	"	-	- I	-2.85	1.85	-	-
CaCl_{2} - .	30	" "	-	- I	- 10.9	9.9	-	-
$\mathrm{NH}_{4} \mathrm{Cl}$. -	25	"	-	- I	- 15.4	14.4	-	-
$\mathrm{NH}_{4} \mathrm{NO}_{3}$	45	"	-	- I	-16.75	15.75	-	-
NaNO_{3}.	50	"	-	- I	-17.75	16.75	-	-
NaCl .	33	"	-	- I	- 21.3	20.3	-	-
	1	" 1.097	-	- I	- 37.0	36.0	- 37.0	0.0
	1	" 1.26	-	- I	- 36.0	35.0	- 30.2	17.0
$\begin{aligned} & \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O} \\ & \left(66.1 \% \mathrm{H}_{2} \mathrm{SO}_{4}\right) \end{aligned}$	I	 1.38	-	- I	- 35.0	34.0	-25.0	27.0
	1	" 2.52	-	- I	- 30.0	29.0	- 12.4	133.0
	I	" $4 \cdot 32$	-	- I	- 25.0	24.0	-7.0	273.0
	1	" 7.92	-	- I	- 20.0	19.0	-3.1	553.0
	I	${ }^{6} 13.08$	-	- I	-16.0	I 5.0	-2.1	967.0
	1	" 0.35	-	\bigcirc	-	-	0.0	52.1
	I	" . 49	-	\bigcirc	-	-	- 19.7	49.5
	1	" .61	-	0	-	-	- 39.0	40.3
$\mathrm{CaCl}_{2}+6 \mathrm{H}_{2} \mathrm{O}$	1	6 .70	-	0	-	-	- $54.9{ }^{\dagger}$	30.0
	I	" 61	-	\bigcirc	-	-	-40.3	46.8
	1	" 1.23	-	\bigcirc	-	-	- 21.5	88.5
	1	" 2.46	-	\bigcirc	-	-	-9.0	192.3
	1	" 4.92	-	\bigcirc	-	-.	-4.0	392.3
Alcohol at 4°	77	" 73	-	0	- 30.0	-	-	-
Alcohol at 4 \{		CO_{2} solid	-	-	- 72.0	-	-	-
Chloroform . .	-	" "	-	-	- 77.0	-	-	-
Ether ${ }^{\text {c }}$	-	"، ${ }^{\prime}$	-	-	-77.0	-	-	-
Liquid SO_{2}.	-	" "	-	-	-82.0	-	-	-
N $\mathrm{NH}_{4} \mathrm{NO}_{3} \quad . \quad\{$	1	$\mathrm{H}_{2} \mathrm{O}-.75$	-	20	5.0	-	-	33.0
	1	" 94	-	20	-4.0	-	-	21.0
	1	" ${ }^{\text {c }}$	-	10	-4.0	-	-	34.0
	1	"	-	5	-4.0	-	-	40.5
	1	Snow "	-	\bigcirc	-4.0	-	-	122.2
	I	$\mathrm{H}_{2} \mathrm{O}-1.20$	-	10	- 14.0	-	-	17.9
	I	Snow "	-	\bigcirc	- 14.0	-	-	129.5
	1	$\mathrm{H}_{2} \mathrm{O}-\mathrm{I} .3 \mathrm{I}$	-	10	$-17.5 \dagger$	-	-	10.6
	I	Snow "	-	\bigcirc	$-17.5 \dagger$	-	-	131.9
	1	$\mathrm{H}_{2} \mathrm{O}-3.61$	-	10	-8.0	-	-	0.4
	1	Snow "	-	\bigcirc	-8.0	-	-	327.0

[^34] Tollinger.
\dagger Lowest temperature obtained.

Smithsonian Tables.

$\boldsymbol{\theta}=$ Critical temperature.
$P=$ Critical pressure in atmospheres.
$\phi=$ Critical volume referred to volume at 0° and 76 centimeters pressure.
$d=$ Critical density in grams per cubic centimeter.
a, b, Van der Waals constants in $\left(p+\frac{a}{v^{2}}\right)(v-b)=r+a t$.

Substance.	θ	P	ϕ	d	$\mathrm{a} \times{ }_{10}{ }^{5}$	$\mathrm{b} \times 10^{6}$	Observer
Air	-140.0	39.0	-	-	257	1560	1
Alcohol ($\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$) .	243.6	62.76	0.00713	0.288	2407	3769	2
" ($\mathrm{CH}_{4} \mathrm{O}$) .	239.95	78.5	-	-	1898	2992	3
Ammonia . .	130.0	115.0	-	-	798	1606	4
Argon	-117.4	52.9	-	-	259	1348	5
Benzene	288.5	47.9	-	0.305	3726	5370	3
Bromine .	302.2		0.00605	1.18	1434	2020	6
Carbon dioxide .	31.2	73.	0.0044	0.46	717	1908	-
" monoxide.	-141.1	35.9	-	-	275	1683	7
" disulphide	273.	72.9	0.0090	-	2316	3430	8
Chloroform . .	260.0	54.9	.	-	2930	4450	9
Chlorine .	141.0	83.9	-	-	1157	2259	4
" .	146.0	93.5	-	-	1063	2050	10
Ether	197.0	35.77	0.01584	0.208	3496	6016	11
"	194.4	35.61	0.01344	0.262	3464	6002	3
Ethane -	32.1	49.0	-	-	1074	2848	12
Ethylene . .	- 9.9	51.1	-	-	886	2533	-
Helium . .	<-268.0	2.3	-	-	5	700	13
Hydrogen .	-240.8	14.	-	-	42	880	14
"، chloride.	51.25	86.0	-	01	692	1726	15
" sulphide	52.3	86.0	-	0.61	697 888	1731	4
" sulphide.	100.0 -62.5	88.7	-	-	888	1926	1
Krypton Methane	-62.5	54.3 54.9	-	-	462 376	1776	5
Methane	-81.8 -95.5	54.9 50.0	-	-	376 357	1557 1625	1
Neon :	<-205.0	29.	-	-	3	-	5,13
Nitric oxide (NO) .	-93.5	71.2	-	-	257	1160	1
Nitrogen " monoxide	-146.0	35.0	-	0.44	259	1650	I
$\left(\mathrm{N}_{2} \mathrm{O}\right)$		75.0	0.0048	0.41	720	1888	4,17
Oxygen -	-118.0	50.0	0.0058	0.6044	273	1420	
Sulphur dioxide	${ }^{1} 55.4$	78.9	0.00587	0.49	1316	2486	
Water . .	358.1 374.	217.5	0.001874	0.429 -	1089	${ }_{1} \overline{3}^{-}$	$\begin{array}{r} 6 \\ 16 \end{array}$

(1) Olszewski, C. R. 98, 1884; 99, 1884; 100, 1885; Beibl. 14, 1890; Z. Phys. Ch. 16, 1893.
(2) Ramsay-Young, Tr. Roy. Soc. $177,1886$.
(3) Young, Phil. Mag. 1900.
(4) Dewar, Phil. Mag. 18, 1884 ; Ch. News, 84, 1901.
(5) Ramsay, Travers, Phil. Trans. 16, 17, 1901.
(6) Nadejdine, Beibl.9, 1885.
(7) Wroblewski, Wied. Ann. 20, 1883 ; Stz. Wien. Ak. 9I, 1885.
(9) Sajotschewsky, Beibl. 3, 1879.
(10) Knietsch, Lieb. Ann. 259, 1890.
(iI) Batelli, Mem. Torino (2), 41, 1890.
(12) Cardozo, Arch. sc. phys. 30, 1910.
(13) Kamerlingh-Onnes, Comno. Phys. tab. Leiden, 1908, 1909, Proc. Amst. II, 1908, C. R. 147, 1908.
(14) Olszewski, Ann. Phys. 17, 1905.
(15) Ansdell, Chem. News, 41, 1880.
(16) Holborn, Baumann Ann. Phys. 31, 1910
(17) Cailletet, C. R. 102, 1886; 104, 1887.
(8) Batelli, 1890.

[^35]
Smithsonian Tables.

CONDUCTIVITY FOR HEAT, METALS AND ALLOYS.
The coefficient k is the quantity of heat in small calories which is transmitted per second through a plate one centimeter thick per square centimeter of its surface when the difference of temperature between the two faces of the plate is one degree Centigrade. The coefficient k is found to vary with the absolute temperature of the plate, and is expressed approximately by the equation $k_{t}=k_{0}\left[\mathrm{I}+a\left(t-t_{0}\right)\right] . \quad k_{0}$ is the conductivity at t_{0}, the lower temperature of the bracketed pairs in the table, k_{t} that at temperature t, and a is a constant. k_{t} in g-cal. per degree C per sec. across cm cube $=0.239 \times k_{t}$ in watts per degree C per sec. across cm cube.

Substance	$t^{\circ} \mathrm{C}$	k_{t}	a		Substance.	$t^{\circ} \mathrm{C}$	k_{t}	a		
$\begin{array}{rr\|} \text { Aluminum. }_{6} & -. . \\ - \end{array}$	$\begin{array}{r} -160 \\ 18 \\ 100 \end{array}$	-. 514 0.480 0.492	$+.$	I	Mercury . . .		$\left.\begin{array}{l}0.0148 \\ 0.0189\end{array}\right\}$	$+.0055$		
				2					6	
					Molybdenum Nickel.			-	1	
	400		$+.0020$	3	Nickel. ¢	-160 18	O. 1420	-	2	
		0.885	$+.0014$	3		(r 18	-.1380	$-.00032$	3	
	600	$\left.\begin{array}{l} 1.01 \\ .0442 \\ 0.0396 \end{array}\right\}$								
Antim			$-.00104$	4		200	-.1325	$-.00095$		
Bism	100	$\left\{\begin{array}{l} 0.025 \\ 0.0194 \\ 0.0167 \end{array}\right\}$			"		0.064		3	
				5		1000		-. 00047		
			-.0021		Palladium.. ${ }_{\text {". }}$	$\begin{array}{\|r\|} \hline 1200 \\ 18 \end{array}$	$\left.\begin{array}{l} 0.058 \\ 0.1683 \end{array}\right\}$	+.0010		
Brass	-16	$\begin{aligned} & 0.181 \\ & 0.260 \end{aligned}$		I		$\begin{array}{r}100 \\ 18 \\ \hline 18\end{array}$	0.182			
					Platinum.		o. 1664			
,		O. 204	$+.0024$	4			-.173.3		2	
		-. 246	+.0015	4	$\mathrm{Pt} 10 \% \mathrm{Ir} .$.		0.074	+.0002	6	
Cadmium,pure 66	$\left\lvert\, \begin{array}{r} -160 \\ 18 \\ 100 \end{array}\right.$	$0.239$$0.222\}$		I			$\begin{aligned} & 0.072 \\ & 0.060 \end{aligned}$	$+.0002$		
									1	
		$\left.\begin{array}{l} 0.215 \\ 0.0540 \\ 0.0640 \end{array}\right\}$	$\left\|\begin{array}{l} -.00038 \\ +.00227 \end{array}\right\|$	2	Platinoid.. Potassium.\qquad	$\begin{array}{r\|r} 18 & 0 \\ 5.0 & 0 \end{array}$	$\left.\begin{array}{r} 232 \\ .216 \end{array}\right\}$	-.0013		
Constantan	18					57.40	0.216			
(60 Cu+40 Ni)			\sim	2		$\begin{array}{r} 17 \\ -160 \\ -10 \end{array}$	0.210	-.0010	6	
Copper,* pure.	-160 18	$\left\{\begin{array}{l} 1.079 \\ 0.918 \\ 0.908 \end{array}\right\}$		1			$\left.\begin{array}{l}\text { 0. } 998 \\ \text { r. } 006 \\ 0.992\end{array}\right\}$	$-$		
"			$\left\lvert\, \begin{aligned} & -.00013 \\ & +.0027 \end{aligned}\right.$	2		$\begin{array}{r\|r} 18 & 1 \\ 100 & 1 \end{array}$			I	
German sil		0.070		6	Sodium.	$\begin{array}{r\|r} 5.7 & 0 \\ 88.10 \end{array}$	$\left.\begin{array}{\|}0.321 \\ 0.288\end{array}\right\}$		2	
Gold.			$\left\lvert\, \begin{aligned} & -.00007 \\ & +.0003 \end{aligned}\right.$					-.0012		
Graphi		$\begin{aligned} & 0.705 \\ & 0.037 \end{aligned}$		6	Tantalum...	17	-. 130	-.0001		
Iridium	$\begin{array}{r\|r} 17 & 0 . \\ 18 & 0 . \\ 100 & 0 . \end{array}$	$\left\{\begin{array}{l} 0.141 \\ 0.161 \\ 0.15 I \end{array}\right\}$	$\begin{aligned} & +.0003 \\ & -.0005 \end{aligned}$	8		$\begin{aligned} & 1700 \\ & 1900 \\ & 2100 \end{aligned}$	$\left.\begin{array}{l}\text { o. } 174 \\ \text { o. } 186 \\ \text {-. } 198\end{array}\right\}$	$+.00032$		
Iron, \dagger pur			$\left\lvert\, \begin{aligned} & -.0005 \\ & -.0008 \end{aligned}\right.$		"					
Iron, wrought				2					9	
Iron, wrought	$\left.\begin{array}{r\|r\|r}-160 & 0.152 \\ 18 & 0.144 \\ 100 & 0.143 \\ 18 & 0.108 \\ 100 & 0.107\end{array}\right\}$				Tin. pure.	$\begin{array}{r} 0 \\ 100 \\ -160 \end{array}$	$\left.\begin{array}{l}\text { o. I55 } \\ \text { o. } 145 \\ \text { o. 192 }\end{array}\right\}$	-. 00069		
" ." .										
" ${ }^{\text {" }}$ steel, $\mathrm{I} \%$										
			-.0001	2	Tungsten....	17	0.476	-.0001		
Lead	$\left\{\begin{array}{r} -160 \\ 10 \\ 108 \\ 0 \text { to } \\ 100 \\ -160 \\ 18 \\ 100 \end{array}\right.$	$\left\{\begin{array}{l\|l} 0.092 \\ 8 & 0.083 \\ 0.081 \end{array}\right\}$		$\begin{gathered} - \\ -.0001 \\ - \\ -.0026 \end{gathered}$		Tungsten.	$\begin{aligned} & 1600 \\ & 2000 \end{aligned}$			$+.00023$
									10	
			$\left.\begin{array}{l}0.272 \\ 0.294 \\ 0.313\end{array}\right\}$							
Magnesium...						" ...	24002800	+.00016	0	
								+.00016	$\begin{aligned} & 7 \\ & 1 \\ & \hline \end{aligned}$	
Manga			1		Wood's allo	6	-. 319			
			2		Zinc, pure.	-160	0. 278			
					" ، .	18 100	$\left.\begin{array}{l}0.2653 \\ 0.2619\end{array}\right\}$	-. 00016	2	

References: (1) Lees, Phil. Trans. 1908; (2) Jaeger and Diesselhorst, Wiss. Abh. Phys. Tech. Reich. 3, 1900; (3) Angell, Phys. Rev. 19II; (4) Lorenz; (5) Macchia, 1907; (6) Barratt, Pr. Phys. Soc. 1914; (7) H. F. Weber, 1879; (8) Hornbeck, Phys. Rev. 1913; (9) Worthing, Phys. Rev. 1914; (io) Worthing, Phys. Rev. 1917.

[^36]TABLE 230. - Thermal Conductivity at High Temperatures.
(See also Table 229 for metals; k in gram-calories per degree centigrade per second across a centimeter cube.)

Material.	Temperature, ${ }^{\circ} \mathrm{C}$	k	皆	Material.	Tempera$\stackrel{\text { ture, }}{\circ} \mathrm{C}$	k	¢
Amorphous carbon...	37-163	.028-.003	I	Brick: Carborundum	150-1200	. $0032-.027$	3
	170-330	.027-.004	I	Building	15-1100	. 0018 -.0038	3
	${ }^{240-523}$.020-.003	I	Terra-cotta	125-1220	. $0032-.0054$	3
	283-597 $100-360$	$.011-.004$.089	1	Fire-clay....	$125-1220$ $100-1125$. $003{ }^{2-.0054}$	3 3 3
	100-751	. 124	2	Graphite...	300-700	. 024	3
	100-842	- 129	2	Magnesia....	50-1130	. $0027-.0072$	3
Graphite (artificial)...	100-390	. 338	2		100-1000	. 002 -. 0033	3
	100-546	.324 .306	2	Granite. .	100	. $0045-0050$	4
	100-720	- 306	$\stackrel{2}{2}$		200	. $0043-.0097$	4
	$100-914$ $30-2830$.291 .162	2	Limestone.	50 40	. 004046 -. 0057	4 4
	2800-3200	. 002	I		100	.0039-.0049	4
	${ }^{90-110}$. $55-.45$	$\underline{1}$		${ }^{350}$. $00322-.0035$	4
	180-120	. $44^{-.} 34$	${ }^{1}$	Porcelain (Sèvres)...	165-1055	.0039-.0047	3
	500-700	.3I-. 22	1	Stoneware mixtures.	70-1000	. $0029^{-.} .0053$	3

References: (i) Hansen, Tr. Am. Electrochem. Soc. 16, 329, 1909; (2) Hering, Tr. Am. Inst. Elect. Eng. 1910; (3) Bul. Soc. Encouragement, 111, 879, 1909; Electroch. and Met. Ind. 7, 383, 433, 1909; (4) Poole, Phil. Mag. 24, 45, 1912; see also Clement, Egy, Eng. Exp. Univers. Ill. Bull. 36, 1909; Dewey, Progressive Age, 27, 772, 1909; Woolson, Eng. News, 58, 166, 1907, heat transmission by concretes; Richards, Met. and Chem. Eng. 11, 575, 1913. The ranges in values under 1 do not depend on variability in material but on possible errors in method; reduced from values expressed in other units.

TABLE 231. - Thermal Conductivity of Various Substances.

Substance, temperature.	k_{t}	Reference.	Substance, temperature.	k_{t}	Refer ence.	
Aniline BP $183{ }^{\circ} \mathrm{C} .,-160$.	.000112	1	Naphthalene MP $79{ }^{\circ} \mathrm{C} .,-160 . .$.	. 0013	1	
Carbon, gas..............	. 010	-	Naphthalene M P $79^{\circ} \mathrm{C}$., o........	. 00081	1	
Carbon, graphite	. 012	-	Naphthol- β, MP $122^{\circ} \mathrm{C} .,-160$.	. 00068	1	
Carborundum.	. 00050	2	Naphthol, \circ...................	. 00062	1	
Concrete, cinder	. 00081	-	Nitrophenol, MP $114{ }^{\circ} \mathrm{C}$., -160..	. 00106	1	
stone.	. 0022	3	Nitrophenol, 0.0 .1 00065	1	
Diatomaceous ea	. 00013	4	Paraffin MP $54{ }^{\circ} \mathrm{C}$., - 16	. 00062	1	
Earth's crust	. 004	$-$	Paraffin, o....	. 00059	1	
Fire-brick.	. 00028	4	Porcelain..	. 0025		
Fluorite, - 190	. 093	5	Quartz \perp to axis, -190	. 0586	5	
Fluorite, o.	. 025	5		. 0173	5	
Glass: window	. 0025			. 0133	5	
crown, O35\%2,	. 0118	5	Quartz \|	to axis,	. 0325	5
crown, 03572, o .	. 00280	5	Rock salt, o..	. 0167	5	
crown, 03572,10	. 00324	5	Rock salt, 30.	. 0150	5	
h'vy fint 0165 ,	. 00081	5	Rubber, vulcanized,	. 00033	5	
h'vy fint $0165,0$.	. 00170	5	Rubber, O .	.00037	5	
Glycerine, -160........	. 00077	${ }_{5}$	Sand, white, dry	.00045	6	
Granite..	. 0053	6	Sandstone, dry	. 0055	6	
Ice, -160	. 0066	1	Sawdust...	.00012	-	
Ice, 0.	. 050	1	Slate \perp to cleavage	. 0034	6	
Iceland spar, -19	. 038	5	Slate \|	to cleavage.	. 0060	6
Iceland spar, o	. 0103	5	Snow, fresh, dens. $=0.1 \mathrm{rr}$. 00026	7	
Lime.	. 00029	4	Snow, old.	. 0012	7	
Limestones, calcite	. 0047 to	6	Soil, average, sl't	. 0037		
Marbles, dolomite	. .056	$\stackrel{6}{-}$	Soil, very dry...	. 0037	5	
Mica..............	. 0018	$\stackrel{7}{6}$	Sulphur, rhombic	.00070 .00022	5 8	
Micaceous \\| to cleavage	. 0044	6	Vulcanite.	. 00087	9	

References: (1) Lees, Tr. R. S. 1905; (2) Lorenz; (3) Norton; (4) Hutton, Blard; (5) Eucken, Ann. d. Phys., 191I; (6) Herschel, Lebour, Dunn, B. A. Committee, 1879; (7) Jansson, 1904; (8) Melmer, I9II; (9) Stefan.

THERMAL CONDUCTIVITIES OF INSULATING MATERIALS.
Conductivity in g -cal. flowing in I sec . through plate Icm thick per cm^{2} for $\mathrm{I}^{\circ} \mathrm{C}$ difference of temperature.

Material.	Conduc tivity.	Density. $\mathrm{g} / \mathrm{cm}^{3}$	Remarks.
Air.	0.00006	-	Horizontal layer, heated from above.
Calorox	0.000076	0.064	Fluffy, finely divided mineral matter.
Hair felt	0.000085	0.27	
Keystone hair	0.000093	0. 30	Felt between layers of bldg. paper.
Pure wrool.	0.000084	-. 107	Firmly packed.
" "	0.000084	0.102	
" "	0.000090	0.061	Loosely packed.
	0.000101	0.039	Very loosely packed.
Cotton wool	0.00010		Firmly packed.
Insulite Linofelt	0.000102	I. 9	Pressed wood-pulp - rigid, fairly strong.
Linofelt.........	0.000103	0.18	Vegetable fibers between layers of paper soft and flexible.
Corkboard (pure)	0.000106	0.18	
Eel grass.	0.00011	0.25	Inclosed in burlap.
Flaxlinum.	0.000113	-. 18	Vegetable fibers - firm and flexible.
Fibrofelt.	0.000113	-. 18	
Rock cork.	0.000119	0.33	Rock wool pressed with binder, rigid.
Balsa wood	0.00012	0. 12	Very light and soft.
Waterproof lith	0.00014	0.27	Rock wool, vegetable fiber and binder, not flexible.
Pulp board.	0.00015	-	Stiff pasteboard.
Air cell $\frac{1}{2}$ in. thick	0.000154	0.14	Corr. asbestos paper with air space.
Air cell I in. thick	0.000165	0.14	
Asbestos paper.	0.00017	-. 50	Fairly firm, but easily broken.
Infusorial earth, block..	0.00020	0.69	
Fire-felt, sheet.........	0.000205	0.42	Asbestos sheet coated with cement, rigid.
Fire-felt, roll	0.00022	0.68	Soft, flexible asbestos.
Three-ply regal roofing.	0.00024	0.88	Flexible tar roofing.
Asbestos mill board....	0.00029	0.97	Pressed asbestos, firm, easily broken.
Woods, kiln dried: Cypress......			
Cypress...	0.00023	0.46	
White pine	0.00027	0.50	
Mahogany.	0.00031	0. 55	
Oak.....	0.00035	0.61	
Hard maple	0.00038	0.71	
Asbestos wood, sanded..	0.00093	1.97	Asbestos and cement, very hard, rigid.

Dickinson and van Dusen, Am. Soc. Refrigerating Eng. J. 3, Sept. 1916.

Smithsonian tables.

TABLE 233. - Various Substances.

k_{t} is the heat in gram-calories flowing in I sec. through a plate I cm . thick per $\mathrm{sq} . \mathrm{cm}$. for $\mathrm{I}^{\circ} \mathrm{C}$ drop in temperature.

Substance.	Density.	${ }^{\circ} \mathrm{C}$.	$\mathrm{k}_{\text {t }}$	Substance.	k_{6}	Authority.
Asbestos fiber	0.201	500	.00019	Asbestos paper	0.00043) Lees-Chorl-
85\% magnesia asbestos.	. 216	$\left\{\begin{array}{l}100 \\ 500\end{array}\right.$.00016	Blotting paper Portland cement		$\}$ ton.
Cotton 021	500 100	.00017	Cork, $\mathrm{t}, \mathrm{o}^{\circ} \mathrm{C}$.0007?	Forbes.
"	. 101	"	.000071	Chalk. ${ }^{\text {F }}{ }^{\circ}$. 0020	$\} \begin{aligned} & \text { H, L, D, } \\ & \text { see p. } 205 .\end{aligned}$
Eiderdown	$.0021$	150	.00015	$\underset{\text { Glass, mean }}{\text { Ebonite, }{ }^{\text {a }} \text { (} 9^{\circ} \text {. . . }}$.ooo37	
		f 100	.000074	Ice. .	. 0057	Neumann.
Lampblack, Cabot number 5	.193	$\{500$. 000107	Leather, cow-hide	.00042	
Quartz, mesh 200	1.05	[$\begin{array}{r}500 \\ 200\end{array}$		Linen . chamois. .	.00015	$\} \begin{aligned} & \text { Lees-Chorl- } \\ & \text { ton. }\end{aligned}$
Poplox, popped $\mathrm{Na}_{2} \mathrm{SiO}_{3}$	0.093	$\left\{\begin{array}{l}200 \\ 500\end{array}\right.$.000091	Silk000095	
Wool fibers .	. 015	100 3	.000118 .000085	Caen stone, limestone Free stone, sandstone	. 0043	\} H, L, D.
" "	.192		. 000054			

Left-hand half of table from Randolph, Tr. Am. Electroch. Soc. XXI ., p. 550, 1912; k_{t} (Randolph's values) is mean conductivity between given temperature and about $10^{\circ} \mathrm{C}$. Note effect of compression (density). The following are from Barratt Proc. Phys. Soc., London, 27, 81, 1914.

Substance.	Density.	k_{t}		Substance.	Density.	k_{t}	
		at $20^{\circ} \mathrm{C}$.	at $100^{\circ} \mathrm{C}$.			at $20^{\circ} \mathrm{C}$.	at $100^{\circ} \mathrm{C}$.
			. 00109	Boxwood .		. 00036	.00041
Carbon, gas	1.42	.0085	. 0095	Greenheart .	1.08	. 00112	. 00110
Ebonite .	1.19	. 00014	.00013	Lignumvitæ.	1.16	.00060	.00072
Fiber, red -	1.29	.00112	.00119	Mahogany .			
Glass, soda -	2.59	. 00172		Oak. . ${ }^{\text {W }}$	0.65	.00058	. 00061
Silica, fused.	2.17	00237	. 00255	Whitewood .	0.58	. 00041	. 00045

The following values are from unpublished data furnished by C. E. Skinner of the Westinghouse Co., Pittsburgh, Penn. They give the mean conductivity in gram-calories per sec. per cm . cube per ${ }^{\circ} \mathrm{C}$. when the mean temperature of the cube is that stated in the table. Resistance in thermal ohms (watts $/ \mathrm{inch} 2 / \mathrm{inch} /{ }^{\circ} \mathrm{C}$.) $=\frac{1}{10.6}$ conductivity.

Substance.	Grans. per cm^{3}.	Conductivity.					Safe temp.
		$10{ }^{\circ} \mathrm{C}$.	$200^{\circ} \mathrm{C}$.	$300^{\circ} \mathrm{C}$.	$400^{\circ} \mathrm{C}$.	$50{ }^{\circ} \mathrm{C}$.	
Air-cell asbestos .	0.232	0.00034	0.00043	0.00050	-	-	320
Cork, ground 168	.00015	.00019	-	-	,	180
Diatomit -00032	.00037	0.00042	0.00046	600
	- 506	. 00034	.00032	.00040	-	-	
" " h'd pressed blocks	. 328	.00030	.00029	.00033	.00036	二	400
$\underset{\text { Magnesium carbonate . . . }}{\text { Vitribestos }}$. 450	.00023	.00025	.00025	-	-00102	300 600
Vitribestos 362	.00049	.00066	. 00079	.00090	.00102	600

TABLE 234.- Water and Salt Solutions.

Substance.	${ }^{\circ} \mathrm{C}$.	k_{t}	Authority.	Solution in water.	Density.	${ }^{\circ} \mathrm{C}$.	k_{t}	Authority.
Water	$\begin{array}{r} \circ \\ 11 \\ 25 \\ 20 \end{array}$	0.00150 .00147 .00136.0143 0143		CuSO_{4}	1.160	4.4	0.00118	H. F. Weber.
				$\underset{\mathrm{NaCl}}{\mathrm{KCl}}$		13. 4.4	.00116 .0015	Graetz.
				${ }^{\text {NaCl }}$	${ }^{1.178}$	4.4 26.3	. 0.0115	H. F. Weber.
				$\mathrm{H}_{2} \mathrm{SO}_{4}$	1.054	20.5	.00126	Chree.
					1.180	21.	.00130	
				$\underset{4}{ } \mathrm{ZnSO}_{4}$	1.134 1.136	4.5 4.5	.00118 .0015	\} H. F. Weber.
					1.136	4.5	. 00115	

TABLE 235．－Thermal Conductivity of Organic Liquids．

Substance．	${ }^{\circ} \mathrm{C}$	$k t$	宮	Substance．	${ }^{\circ} \mathrm{C}$	k_{t}	亗	Substance．	${ }^{\circ} \mathrm{C}$	k_{t}	荙
Acetic acid．．．．．	（ $\begin{gathered}9-15 \\ 11 \\ 11\end{gathered}$	． 03472	1	Carbon disulphide．	－	． 03387	3	Oils：olive．．	－	． 03395	4
		．0352	2	Chloroform．．．．．．		． 03288	1			． 03425	4
＂، ethyl．		．0346	2	Ether．．．．．．．．．．．	9－15	． 03303	I	Toluene．．．	O	． 03349	32
Aniline	－	． 03345	3		25 13	．0368	5	Xylene．．．	25	． 03343	
Benzene	9－15	． 03333	1	＂turpentine．．	13	．03325	5				

References：（1）H．F．Weber；（2）Lees；（3）Goldschmidt；（4）Wachsmuth；（5）Graetz．

TABLE 236．－Thermal Conductivity of Gases．

The conductivity of gases，$k_{t}=\frac{1}{2}(9 \gamma-5) \mu C_{v}$ ，where γ is the ratio of the specific heats，C_{p} / C_{v} ，and μ is the viscosity coefficient（Jeans，Dynamical Theory of Gases，19r6）．Theoretically k_{t} should be independent of the density and has been found to be so by Kundt and Warburg and others within a wide range of pressure below one atm．It increases with the temperature．

Gas．	$t^{\circ} \mathrm{C}$	k_{t}	Ref．	Gas．	$t^{\circ} \mathrm{C}$	$k t$	Ref．	Gas．	$t^{\circ} \mathrm{C}$	k_{t}	Ref．
Air＊．．．	－191	0.0000180	1	CO_{2}	100	0.0000496	1	Hg	203	－． 0000185	3
		0.0000566	1	$\mathrm{C}_{2} \mathrm{H}_{4}$	\bigcirc	0.0000395	2	N_{4}	－191	0.0000183	1
	100	0.0000719	$\underline{1}$	${ }_{6}$	－193	0.000146	1	＂	\bigcirc	0.0000568	I
${ }_{6}{ }_{6}$	－183	0.0000142	1	＂	\bigcirc	0.000344	4	O_{2}	100	0.0000718	I
＂	100	0．0000388	I	H_{2}	100 -102	0．000398	I		－191	0.0000172	$\underline{1}$
CO	100	0.000509	1	\％	－192	0．000416	4	＂	100	0．0000570	1
CO_{2}	－78	0.0000219	I	＂	100	0.000499	1	NO	8	0.000046	2
	－	0.0000332	I	CH_{4}	－	0.0000720	4	$\mathrm{N}_{2} \mathrm{O}$	－	0.0000353	4

References：（1）Eucken，Phys．Z．12，1911；（2）Winkelmann，1875；（3）Schwarze，1903；（4）Weber， 1917.
${ }^{*}$ Air： $\mathrm{k}_{0}=5.22\left(\mathrm{ro}^{-5}\right)$ cal． $\mathrm{cm}^{-1} \mathrm{sec}^{-1}$ deg． $\mathrm{C}^{-1} ; 5.74$ at 22^{0} ；temp．coef．$=.0029$ ；Hercus－Laby，Pr．R．Soc．A95， 190，1919．

TABLE 237．－Diffusivities．

The diffusivity of a substance $=h^{2}=k / c \rho$ ，where k is the conductivity for heat，c the specific heat and ρ the density （Kelvin）．The values are mostly for room temperatures，about $18^{\circ} \mathrm{C}$ ．

Material．	Diffusivity．	Material．	Diffusivity．
Aluminum	0.826	Coal．	0.002
Antimony	－． 139	Concrete（cinder）	0.0032
Bismuth．	0．0678	Concrete（stone）	0．0058
Brass（yellow） Cadmium．．．	0.339 0.467	Concrete（light slag）	0.006 0.0017
Copper．	I． 133	Ebonite．．．．．．	0.0010
Gold．	1．182	Glass（ordinary）	0.0057
Iron（wrought，also mild	－． 173	Granite．	0.0155
Iron（cast，also 1% carbo	－．12I	Ice．	0.0112
Lead．	0.237	Limestone．	0.0092
Magnesium	0.883	Marble（white）	0.0090
Mercury	0．0327	Paraffin．	0.00098
Nickel．	0．152	Rock material（earth aver	0.0118
Palladium	－． 240	Rock material（crustal roc	－． 0064
Platinum	0． 243	Sandstone．	－． 0133
Silver．	1.737	Snow（fresh）．	0.0033
Tin．	－0．407	Soil（clay or sand，slightly	0.005
Zinc	0． 402	Soil（very dry）	0．0031
Air．．	0．179	Water．	0．0014
Asbestos（loose）．．．］ Brick（average fire）	0.0035 0.0074	Wood（pine，cross grain）．	0.00068 0.0023
Brick（average building）	0.0050		

Taken from An Introduction to the Mathematical Theory of Heat Conduction，Ingersoll and Zobel， 1913.

LINEAR EXPANSION OF THE ELEMENTS.

In the heading of the columns t is the temperature or range of temperature; C is the coefficient of linear expansion; A_{1} is the authority for $C ; M$ is the mean coefficient of expansion between \circ° and $100^{\circ} \mathrm{C}$; \boldsymbol{a} and β are the coefficients in the equation $l_{t}=l_{0}\left(\mathrm{I}+a_{t}+\beta_{t^{2}}\right)$, where l_{0} is the length at $\circ^{\circ} \mathrm{C}$ and l_{t} the length at $t^{\circ} \mathrm{C} ; A_{2}$ is the authority for a, β, and M. See footnote for Molybdenum and Tungsten.

References: (1) Fizeau; (2) Calvert, Johnson and Lowe; (3) Chatelier; (4) Henning; (5) Dittenberger; (6) Matthiessen; (7) Andrews; (8) Holborn-Day; (9) Benoit; (io) Pisati and De Franchis; (11) Hagen; (I2) Spring; (13) Day and Sosman; (14) Griffiths; (I5) Dorsey; (16) Grüneisen.

Tungsten: $\left(L-L_{0}\right) / L_{0}=4.44 \times 10^{-6}(T-300)+45 \times{ }^{10} 0^{-11}(T-300)^{2}+2.20 \times 10^{-13}(T-300)^{3} . L_{0}=$ length at $300^{\circ} \mathrm{K}$. Coefficient at $300^{\circ} \mathrm{K}=4.44 \times 10^{-6} ; 1300^{\circ} \mathrm{K}, 5.19 \times 10^{-6} ; 2300^{\circ} \mathrm{K}, 7.26 \times 10^{-6}$. Worthing, Phys. Rev. 1917.

Molybdenum: $L_{t}=L_{0}\left(\mathrm{I}+5.15 t \times 10^{-6}+0.00570 t^{2} \times 10^{-6}\right)$, for 19° to $-\mathrm{r}_{42^{\circ}} \mathrm{C} ; \quad=L_{0}\left(\mathrm{r}+5.01 t \times 10^{-6}+\right.$ $0.001386^{2} \times 10^{-6}$), for 19° to $+305^{\circ} \mathrm{C}$; Schad and Hidnert, Phys. Rev. $190^{\circ} 9$.
The Holborn-Day and Sosman data are for temperatures from 20° to $1000^{\circ} \mathrm{C}$. The Dittenberger, 0° to $600^{\circ} \mathrm{C}$.

Smithsonian Tables

LINEAR EXPANSION OF MISCELLANEOUS SUBSTANCES.

The coefficient of cubical expansion may be taken as three times the linear coefficient. t is the temperature or range of temperature, C the coefficient of expansion, and A. the authority

Substance.	t	$C \times 1{ }^{4}$	A.	Substance.	t	$C \times 104$	A.
Brass:							
Cast.	0-100	-. 1875	1	Platinum -silver:			
Wire.		-. 1930	1	${ }^{1} \mathrm{Pt}+{ }_{2} \mathrm{Ag}$.	0-100	0.1523	
. $\mathrm{Cu}+27.7 \mathrm{Zn}+$.1783-. 193	2	Porcelain	20-790	0.0413	19 20
$\begin{aligned} & 71.5 \mathrm{Cu}+27.7 \mathrm{Zn}+ \\ & 0.3 \mathrm{Sn}+0.5 \mathrm{~Pb} . . \end{aligned}$	40	0. 1859	3	Quartz: Bayeux..	1000-1400	0.0553	
${ }^{71} \mathrm{Cu}+29 \mathrm{Zn} . \ldots$.	$0-100$	0. 1906	4	Parallel to axis...	--80	0.0797	6
Bronze:					-190 to + 16	0.0521	21
${ }_{3} \mathrm{Cu}+\mathrm{ISn}$.	16.6-100	0. 1844	5	Perpend. to axis...	--80	-.1337	6
				Quartz glass ${ }_{\text {a }}$	-190 to +16 16 to 500	-0.0026	13 26 26
" " "	16.6-350	0.2116	5	" " \quad. .	16-1000	0.0057 0.0058	26 26
				Rock salt.	40	0.4040	3
				Rubber, hard......	\bigcirc°	0.691	27
$86.3 \mathrm{Cu}+9.7 \mathrm{Sn}+$	16.6-957	0. 1737	5	Speculum metal.	-160	0.300 0.1933	27
$4 \mathrm{Zn} \mathrm{C}_{\mathrm{u}}+\ldots \ldots \ldots$.	40	0.1782	3	Topaz:	-100	0.1933	
$\underset{2.2}{97.6} \mathrm{Cu}+\mathrm{Sn}+$ hard	$0-80$	0.1713	6	Parallel to lesser			
${ }_{0.2}^{2.2} \mathrm{P}$		0.1708	6	horizontal axis...	"	0.083	8
Caoutchouc..	- ${ }^{-}$	0.657-0.686	2	horizontal axis...	،	0.0836	8
Constantan.	16.7-25.3	0.770	7	Parallel to vertical	"		8
Ebonite. .	25.3-35.4	- 0.1523		Tourmaline:		0.0472	8
Fluor spar: CaF_{2}	-100	-. 1950	8	Parallel to longi-			
German silver.......		0. 1836	8	tudinal axis...	"	0.0937	8
Gold-platinum:	"	0. 1523	4	Parallel to horizon-	"	0.0773	8
Gold-copper:		0.1523	4	Type metal.	16.6-254	0. 0.1952	8
${ }_{2} \mathrm{Au}+{ }_{\mathrm{r}} \mathrm{Cu}$	"	0.1552	4	Vulcanite.	O-18	0.6360	22
Glass:				Wedgwood ware. .	--100	0.0890	5
Tube	"،	0.0833	1	Wood:			
	"	0.0828	9	Parallel to fiber:			
Plate.	"	0.0891	10	Ash....	"	0.0951	23
Crown (mean)	50-60	0.0897	10	Beech..	2:34	0.0257	24
	50-60	0.0954	1 I	Chestnut		0.0649	24
Flint		0.0788	II	Elm.	"	0.0565	24
	--100	0.08 r	12	Mahogany	،	0.0361 0.0638	24 24 24
mometer ${ }_{\text {a }}$				Oak....	"	0.03492	24 24
$1^{\prime \prime} 59^{\text {III }} \ldots$	"	0.058	12	Pine	"	0.0541	24
"	- rer to + 16	0.424	13	Walnut.	"	0.0658	24
Gutta percha.	20	1.983	14	Across the fiber:			
Ice. . .	- 20 to - 1	-. 51	15	Beech.	"	0.614	24
Iceland spar:				Chestnut	"	-. 325	24
Parallel to axis.....	--80	$0.263 \mathrm{I}^{\circ}$	6	Elm.	"	0.443	24
Perpendicular to axis		0.0544	6	Mahogany		0.404	24
Lead-tin (solder)				Maple.	"	-0.484	24
${ }_{2} \mathrm{~Pb}+1 \mathrm{Sn}$..	--100	0. 2508	1	Oak.	"	- 544	24
Magnalium.	12-39	0. 238	16	Pine..		- 3.341	24
Manganin.	-	-. 18 r	-	Walnut	"	-0.484	24
Marble.............	15-100	0.117	17	Wax: White	10-26	2.300	25
Paraffin.		1. 0662 I. 3030		"، "،	26-31	3.120 4.860	25 25
	$16-38$ $38-49$	I. 3030 4.7707	18 18		$\begin{aligned} & 31-43 \\ & 43-57 \end{aligned}$	4.860 15.227	25 25
Platinum-iridium $10 \mathrm{Pt}+\mathrm{IIr} . \ldots \ldots .$	40	0.0884	3				

References:

(1) Smeaton.
(2) Various.
(3) Fizeau.
(4) Matthiessen
(5) Daniell.
(6) Benoit.
(7) Kohlrausch.
(8) Pfaff.
(9) Deluc.
(ı) Lavoisier and Laplace
(xi) Pulfrich.
(12) Schott.
(13) Henning.
(I4) Russner.
15) Mean
(ı6) Stadthagen.
(17) Fröhlich.
(ı8) Rodwell.
(19) Braun.
(20) Deville and Troost.
(2I) Scheel.
(22) Mayer.
(23) Glatzel.
(24) Villari.
(25) Kopp.
(26) Randall
(27) Dorsey.

CUBICAL EXPANSION OF SOLIDS.

If v_{2} and v_{1} are the volumes at t_{2} and t_{1} respectively, then $v_{2}=v_{1}(1+C \Delta t), C$ being the coefficient of cubical expansion and Δt the temperature interval. Where only a single temperature is stated C represents the true coefficient of cubical expansion at that temperature.*

Substance	t or Δt	$C \times 1{ }^{4}$	Authority.
Antimony . .	0-100	0.3167	Matthiessen
Beryl	$0-100$	0.0105	Pfaff
Bismuth	0-100	0.3948	Matthiessen
Copper	0-100	0.499^{8}	
Diamond	40	0.0354	Fizeau
Emerald	40	0.0168	
Galena	$0-100$	0.558	Pfaff
Glass, common tube . .	0-100	0.276	Regnault
" hard . Jena, borosilicate	$0-100$	0.214	
59 IlI . . .	20-100	0.156	Scheel
" pure silica . .	0-80	0.0129	Chappuis
Gold	0-100	0.4411	Matthiessen
Ice	-20-1	1.1250	Brunner
Iron	0-100	0.3550	Dulong and Petit
Lead	0-100	0.8399	Matthiessen
Paraffin	20	5.88	Russner
Platinum . . .	0-100	0.265	Dulong and Petit
Porcelain, Berlin . .	20	0.0814	Chappuis and Harker
Potassium chloride .	$0-100$	1. 094	Playfair and Joule
" nitrate .	0-100	1.967	
" sulphate .	20	1.0754	Tutton
Quartz	0-100	0.3840	Pfaff
Rock salt . .	50-60	1.2120	Pulfrich
Rubber	20	4.87	Russner
Silver	0-100	0.5831	Matthiessen
Sodium - . . .	20	2.1364	E. Hazen
Stearic acid. .	$33.8-45 \cdot 5$	8.1	Kopp
Sulphur, native . .	$13.2-50.3$	2.23	" ${ }^{\text {a }}$
Tin	0-100	0.6889	Matthiessen
Zinc . .	$0-100$	0.8928	,

* For tables of cubical expansion complete to $\mathbf{1 8 7 6}$, see Clark's Constants of Nature, Smithsonian Collections, 289.

CUBICAL EXPANSION OF LIQUIDS.
If V_{o} is the volume at 0° then at t° the expansion formula is $V_{t}=V_{o}\left(\mathrm{I}+\alpha t+\boldsymbol{\beta} t^{2}+\boldsymbol{\gamma}^{3}\right)$. The table gives values of α, β and $\boldsymbol{\gamma}$ and of C, the true coefficient of cubical expansion, at 20° for some liquids and solutions. Δt is the temperature range of the observation and A the authority.

Liquid.	Δt	$a 10^{3}$	$\beta{ }^{10}{ }^{6}$	$\gamma 10^{8}$	$\begin{gathered} C 1^{3} \\ \text { at } 20^{\circ} \end{gathered}$	A
Acetic acid	16-107	1.0630	0.12636	1.0876	1.07 I	3
Acetone	--54	1. 3240	3.8090	-0.87983	1.487	3
Alcohol :						
Amyl	-15-80	0.9001	0.6573	1.1845^{8}	0.902	$4^{\text {a }}$
Ethyl, 30\% by vol. . .	18-39	0.2928	10.790	-1. 1.87	-	6
" 50% "، .	--39	0.7450	1.85	0.730	-	6
" 99.3% " .	27-46	1.012	2.20	-	1.12	6
" 500 atmo. press. .	0-40	0.866	-	-		1
" 3000 " " Methyl	0-40	0.524	1.3635	-	-	1
Methyl	0-61	1.1342	1.3635	0.8741	1. 199	5 5
Benzene .	I I-8i	1.17626	1.27776	0.80648	1.237	5 a
Calcium chloride : $5.8 \% \text { solution . . }$	18-25	0.07878	4.2742	-	0.250	7
40.9\% " . .	$17-24$	0.42383	0.8571	-	0.458	7
Carbon disulphide . .	-34-60	I. 13980	1.37065	1.91225	1. 218	4 a
500 atmos. pressure	--50	0.940	-	-	-	1
3000 " "	--50	0.581	-	-	-	1
Carbon tetrachloride	$0-76$	1.18384	0.89881	1.35135	1.236	4 b
Chloroform	--63	1.10715	4.66473	-1.74328	1.273	4 b
Ether	-15-38	1.51324	2.35918	4.00512	1. 656	4a
Glycerine	-	0.4853	0.4895	-	0. 505	- 8
Hydrochloric acid: 33.2% solution		0.4460				
Mercury	$0-33$ $0-100$	0.4460 0.18182	0.215 0.0078	-	0.455 0.18186	9 13
Olive oil . .	-	0.6821	I.1405	-0.539	0.721	10
Pentane.	--33	1.4646	3.09319	1.6084	1.608	14
Potassium chloride : 24.3% solution	16-25	0.2695	2.080	-	0.353	7
Phenol	36-1.57	0.8340	0.10732	0.4446	I. 090	II
Petroleum : Density $0.8467 . .$.	24-120	0.8994	1. 396	-	0.955	12
Sodium chloride : 20.6% solution	0-29	0.3640	1. 237	-	0.414	9
Sodium sulphate: 24% solution	11-40	0.3599	1.258	-	0.410	9
Sulphuric acid: 10.9% solution.	O-30	0.2835	2.580	-	0.387	9
100.0\% . .	$0-30$	0.5758	-0.432	-	0.558	9
Turpentine .	-9-106	0.9003	1.9595	-0.44998	0.973	5b
Water .	--33	-0.06427	8.5053	-6.7900	0.207	13

Authorities.

1. Amagat: C. R. 105, p. 1120 ; 1887.
2. Thorpe : Proc. Roy. Soc. 24, p. 283; 1876.
3. Zander: Lieb. Ann. 225, p. 109; 1884
4. Pierre: a. Lieb. Ann. 56, p. 139; 1845.
b. Lieb. Ann. 80, p. 125 ; 1851 .
5. Kopp : a. Lieb. Ann. 94, p. 257 ; 1855.
b. Lieb. Ann. 93, p. $129 ; 1855$.
6. Recknagel : Sitzber. bayr. Ak. p. 327, 2 Abt.; 1866.
7. Irecker: Wied. Ann. 34, p. 952; i888.
8. Emo: Ber. Chem. Ges. 16, 1857 ; 1883 .
9. Marignac: Lieb. Ann., Supp. VIII, p. 335 ; 1872.
10. Spring: Bull. Brux. (3) 3, p. 33^{1}; 1882.
11. Pinette: Lieb. Ann. 243, p. 32 ; 1888.
12. Frankenheim: Pogg. Ann. 72, p. 422; 1847.
13. Scheel: Wiss. Abh. Reichsanstalt, 4, p. i; 1903.
14. Thorpe and Jones: J. Chem. Soc. 63, p. 273; 1893.

Coefficients of Expansion of Gases.
Pressures are given in centimeters of mercury.

Coefficient at Constant Volume.				Coefficient at Constant Pressure.										
Substance.	Pressure cm.	$\begin{gathered} \text { Coeffi- } \\ \substack{\text { cient } \\ \times \\ \text { too. }} \end{gathered}$	\%	Substance.	Pressure cin.	$\begin{gathered} \text { Coeffi- } \\ \text { ceint } \\ \times \\ 100 . \end{gathered}$								
Air	. 6	-3		Air	76.									
	1.3	. 3717	"		257.	. 3603	3							
"	10.0	. 3663	"	" $0^{\circ}-100^{\circ}$	100.1	. 36728	2							
	25.4	. 36580	"	Hydrogen $0^{\circ}-100^{\circ}$	100.0	. 36600	"							
	75.2	- 36660	"		200 Atm.	. 332	$\stackrel{9}{4}$							
$0^{\circ}-100^{\circ}$	100.1	. 36744	2		400 "	. 295	"							
	76.0	- 3665	3		600	. 261	"							
	200.0 2000	- 3690		Carbon dioxide	${ }^{800}$. 242	\%							
"	10000.		"	Carbon dioxide	${ }_{51}^{76.8}$	-3710	3							
Argon	51.7	. 3668	4	" $0^{\circ}-40^{\circ}$	51.8	. 371								
Carbon dioxide	76.0	. 3685	3	" $0^{\circ}-100$	51.8	-37073								
" " .	1.8	. 36753	1	" $0^{\circ}-20$	99.8	. 37602	"							
" "	5.6	. 36641	"	" " $0^{\circ}-100^{\circ}$	99.8	. 37410	"							
" "، ${ }^{\circ}$	74.9	. 37264	"	" $\bigcirc^{\circ}-20^{\circ}$	137.7	. 37972	"							
" " $0^{\circ}-20^{\circ}$	51.8	. 36985	$\stackrel{2}{1}$	" " ${ }^{\circ} 0^{\circ}-100^{\circ}$	137.7	. 37703	"							
" " " $0^{\circ}-40^{\circ}$	51.8	- 36972	"	" " ${ }^{\circ}{ }^{\circ}-7.5^{\circ}$	2621.	.1097	6							
"، "، $0^{\circ}-100^{\circ}$	51.8	$.36981$	"	" " $64^{\circ}-100^{\circ}$	2621.	. 6574								
"، "، $0^{\circ}-20^{\circ}$	99.8	. 37335	"	Carbon monoxide.	76.	. 3669	3							
"، " ${ }^{\circ} 0^{\circ}-100^{\circ}$	99.8	. 37262	"	Nitrous oxide	76.	-3719								
" "	100.0	- 37248	5	Sulphur dioxide	76.	- 3903								
Carbon monoxide Helium .	76. 56.7		3		98.	-3980								
Hydrogen $16^{\circ}-132^{\circ}$	56.7 .0077	- 30328	6	0°	76. 76.	.4187 .4189	${ }_{10}$							
"، $15^{\circ}-132^{\circ}$. 025	. 3623	"	Water- ${ }^{\text {vapor }}$, $0^{\circ}-162^{\circ}$	76.	. 4071	"							
${ }^{12^{\circ}-185^{\circ}}$. 47	- 3656		apor $0^{\circ}-200^{\circ}$	76.	. 3938	"							
" .	${ }_{\text {II. }} .93$		I	$10^{\circ}-247^{\circ}$	76.	. 3799								
	76.4													
" $0^{\circ}-100^{\circ}$	100.0	. 36626		Thomson has given, Encyc. Brit. "Heat," the following for the calculation of the expansion, E, between 0° and $100^{\circ} \mathrm{C}$. Expansion is to be taken as the change of volume under constant pressure: $\begin{array}{ll} \text { Hydrogen, } & E=.3662(1-.00049 \mathrm{~V} / \tau), \\ \text { Air, } & E=.3662(\mathrm{I}=.0026 \mathrm{~V} / v) \text {, } \\ \text { Oxygen, } & \mathrm{F}=.3662(\mathrm{I}=.0032 \mathrm{~V} / v) \text {, } \\ \text { Nitrogen, } & E=.3662=.03 \mathrm{~V} / \mathrm{V} / v) \text {, } \\ \mathrm{CO}_{2} & E=.3662(1-.0164 \mathrm{~V} / v) . \end{array}$ V / v is the ratio of the actual density of the gas at $0^{\circ} \mathrm{C}$ to what it would have at $0^{\circ} \mathrm{C}$ and ${ }_{1}$ Atm. pressure.										
Nitrogen $13^{\circ}{ }^{\circ}{ }^{1} 32^{\circ}$. 06	. 3021	6											
"، $9^{\circ}-133^{\circ}$. 53	. 3290												
$0^{\circ}-20$ $0^{\circ}-100$	100.2		$\stackrel{2}{6}$											
			6											
		. 36082 .4161												
	$\begin{aligned} & .25 \\ & .51 \end{aligned}$. 3984												
		.3831	"											
	1.9 .3668 .3													
	18.5	. 36681												
	$\begin{aligned} & 76 . \\ & 76 . \\ & 76 . \end{aligned}$													
		$\begin{aligned} & .3676 \\ & .3845 \end{aligned}$												
I Meleander, Wied. Beibl. 14, 1890; Wied. Ann. 47, 1892. 2 Chappuis, Trav. Mem. Bur. Intern. Wts. Meas. $13,1903$. 3 Regnault, Ann. chim. phys. (3) 5, 1842. 4 Keunen-Randall, Proc. R. Soc. 59, 1896. 5 Chappuis, Arch. sc. phys. (3), 18, 1892. 6 Baly-Ramsay, Phil. Mag. (5), 38, 1894 - 7 Andrews, Proc. Roy. Soc. 24, iS76. 8 Meleander, Acta Soc. Fenn. 19, 1891. 9 Amagat. C. R. iri, iSgo. ı Hirn, Théorie méc. chaleur, 1862.														

SPECIFIC HEAT OF THE CHEMICAL ELEMENTS.

Element.	Range* of temperature, ${ }^{\circ} \mathrm{C}$	Specific heat.	Refer ence.	Element.	$\underset{{ }_{\mathrm{C}}}{\text { Range }} \text { tof of }$	Specific heat.	Reference.
Aluminum.	-240.6*	. 0092	45	Cobalt.	500	. 1452	18
	-190.0	. 0889	45		1000	. 204	18
" ${ }^{\prime}$........	-73.0	. 190	46	"،	-182 to +15	. 0822	19
" $\quad . . .$.	-190 to -82	- 1466	47	Copper \dagger.	$15-100$ -249.5	1030 .0035	19
"	-76 to -1 +16 to	.1962 .2122	47 48	Copper \dagger.........	-249.5 -223	. 0035	45
"	+16 to +304	. 2250	48	"	-185	. 0532	45
"	-250	. 1428	1	"	-63	. 0865	46
"	\bigcirc	. 2089	1	"، \quad..........	+25	. 0917	44
"	100	. 2226	1	، ${ }^{\text {a }}$,	76 84	. 0937	$5 \mathrm{5I}$
"	500	.2382 .2739	1	"	100	. 09342	51 2
Ant	16-100	. 2122	43	" ${ }^{\prime}$	362	. 0997	51
Antimony	15	. 0489	2	"،	900	. 1259	20
"	100	. 0503	2	"	[15-238	. 0951	43
Arsenic, gray	-200	. 0520	2 3	" $\quad .$.	-181 to 13 $23-100$. 0868	21 21
Arsenic, black	-100	.0861	3	Gallium, liquid.	12 to 113	. 080	22
Barium...	-185 to +20	. 068	4	" ${ }^{\text {colid. }}$	12-23	. 079	22
Bismuth.	-186	. 0284	5 6	Germanium.......	\%-100	. 0737	23
"	${ }_{75}$.0301 .0300	6	Gold..............	$\underset{\substack{185 \\ \text {-10 } \\ 0-100}}{ }$.033	24
"	20-100	. 0302	7	Indium.	--100	. 0570	13
" fluid	280-380	. 0363	8	Iodine.	-90 to +17	. 0485	49
Boron.	- 100	. 307	9		-rig to -80	. 0454	49
" $\quad .$.	-19 r to -78 -76 to 0	. 0707	47	Iridium	-186 to ${ }^{-98}$.0541	25 26
Bromine, solid	-78 to -20	. 0843	10	"	18-100	. 0323	26
" solid	-192 to -80	. 0702	49	Iron	-223	. 0176	46
" fluid	13-45	. 107	19		-163	. 0622	46
Cadmium.	-223	. 0308	46		-63	.096r	46
"	-173	. 0478	46	" cast	+37	. 1092	46
" ${ }^{\text {a }}$,	-75	. 05333	46 2	" wrought.	$20-100$ $15-100$.1189	27 28
"'	100	. 0570	2	" wrought.	1000-1200	. 1989	28
"	200	. 0594	2	" wrought.	500	.176	28
Ca'	300	.0617	2	" hard-drawn..	O-18	. 0986	29
Casium.	$\stackrel{\text { O-26 }}{-185}$. 0482	12	" hard-drawn.	20-100	. 1146	29
Calcium.	-185 to ${ }_{0-18 \mathrm{I}}+20$. 157	4	" ،............	-185 to +20	. 0958	4
Carbon, graphite	$\stackrel{0-181}{-191}$ to -79	.170 .0573	13 47		0 to +200 0 to +300	$\begin{array}{r}1175 \\ .1233 \\ \hline\end{array}$	53 53
" ${ }^{\text {" }}$	-76 to -o	. 1255	47	"	- to +400	. 1282	53
" "	-50	. 114	14	,	- to +500	. 1338	53
" "،	+11	. 160	14		- to +600	. 1396	53
" "،	977	. 467	14		- to +700	. 1487	53
	$\left\{\begin{array}{l}1730 \\ -244\end{array}\right.$.50 .005	52 50	،	\circ to +800 0 to +900	1597 .1544 .154	53
Acheson	$\left\{\begin{array}{l}-244 \\ -186\end{array}\right.$. .027	50	"	- to +1000	- 1644 .1557 .	53 53
Carbon, diamond..	-50	. 0635	47	" ${ }^{\text {a }}$.	- to +iroo	. 1534	53
	+11	. 113	47	Lanthanum	-100	. 0448	15
" "	985	. 459	47	Lead.	-250	. 0143	46
Cerium.......	- 100	. 0448	15		- 236	. 0217	46
Chlorine, liquid.	--24	. 2262	16	"	-193	. 0276	46
Chromium...	-200	. 0666	17		-73	. 0295	46
،	0	. 1039	17		15	. 0299	2
*	100	.1121 .1872	17 17		100 300	.0311	2
	-185 to +20	. 086	4	" fluid.	310	. 0356	30

* When one temperature is given, the "true" specific heat is indicated, otherwise the "mean" specific heat.
$\dagger 0.3834+0.00020(t-25)$ intern. j per g degree $=0.0917+0.000048(t-25)$ cal20 per g degree. ${ }^{(G)}{ }^{(G r i f f i t h} \mathrm{t}_{\mathrm{t}}$ 1913.)

Smithsonian Tables.

*When one temperature is given, the "true" specific heat is indicated, otherwise the "mean" specific heat. See page 226 for references.

Smithsonian tables.

HEAT CAPACITIES. TRUE AND•MEAN SPECIFIC HEATS. AND

LATENT HEATS AT FUSION.

The following data are taken from a research and discussion entitled "Die TemperaturWärmeinhaltskurven der technisch wichtigen Metalle," Wüst, Meuthen und Durrer, Forschungsarbeiten herausgegeben vom Verein Deutscher Ingenieure, Springer, Heft 204, I918.
(a) There follow the constants of the equation for the heat capacity: $W=a+b t+c t^{2}$; for the mean specific heat: $s=a t^{-1}+b+c t$; and for the true specific heat: $s^{\prime}=b+2 c t$; also the latent heats at fusion. (See also Table 243, pp. 223-224.)

Element.	$\begin{aligned} & \text { Tempera- } \\ & \text { ture } \\ & \text { range. } \\ & \text { of } \end{aligned}$	a	b	$c \times 10^{6}$	$\left.\begin{gathered} \text { La- } \\ \text { tent } \\ \text { heat. } \\ \text { cal./g } \end{gathered} \right\rvert\,$	Element.	$\begin{gathered} \text { Tempera- } \\ \text { ture } \\ \text { range. } \\ \circ \end{gathered}$	a	b	$c \times 10^{6}$	Latent heat cal./g
$\begin{aligned} & \mathrm{Cr} \\ & \mathrm{Mo} \\ & \mathrm{~W} \\ & \mathrm{Pt} \\ & \mathrm{Sn} \end{aligned}$	0-1500	-	0. 10233	33.47	-	Ag	--961	-	0.05725	5.48	26.0
	$0-1500$	-	0.06162	10.99	-		961-r300	53.17	0.00710	28.30	-
	$0-1500$	-	0.03325	1.07	-	Au	--1064	-	0.03171	I. 30	15.9
	--1500	-	0.03121	3.54	-		1064-1300	26.35	0.01420	8.52	-
	0-232		0.06829	-	13.8	Cu	-0-1084	-	-. 10079	3.05	41.0
	232-1000	14.33	0.07020	-18.30	-		1084-1300	130.74	-. 04150	65.6	
Bi	0-270	-	0.03141	5.22	10.2	Mn	-0-1070	.	-. 12037	25.41	36.6
	270-1000	10.31	0.03107	5.41	-		1130-1210	-7.41	O. 17700	-	24.14*
Cd	c-321	6.30	0.05550	6.28 6.37	10.8	Ni	$1230-1250$ $0-320$	3.83	O. 19800	52.40	56.1
Pb	$321-1000$ $0-327$	- 6.	0.03591	-11.47	$5 \cdot 47$		330-1451	0.4 I	-. 1293 I	-	1.33*
	327-1000	6.07	0.02920	3.30	5		1451-1520	50.21	-.13380	-	-
Zn	--419		0.08777	43.48	23.0	Co	0-950	50.	-.09119	40.77	58.2
	419-1000	14.34	0.13340	-16.10			1100-1478	22.00	-. 11043	14.57	14.70*
Sb	0-630		0.05179	3.00	38.9		1478-1600	57.72	-. 14720		
	630-1000	39.42	0.05090	2.96		Fe	0-725		-. 10545	56.84	
Al	-0-657		0. 22200	38.57	94.0		785-919	-1.63	-. 1592	-	
	657-1000	102.39	0.21870	24.00			919-1404	18.31	o. 14472	0.05	6.67^{*}
							1405-1528	-77.18	-. 21416	-	1.94*
							$1528-1600$	70.03	-. 15012	-	-

* Allotropic heat of transformation: $\mathrm{Mn}, 1070-1130^{\circ}$; Ni, $320-330^{\circ}$; $\mathrm{Co}, 950-1100^{\circ}$; Fe , $725-785^{\circ} ; 919^{\circ} \pm \mathrm{I} ; 1404.5^{\circ} \pm 0.5$.
(b) True Specific Heats.

${ }^{\circ} \mathrm{C}$	Pb	Zn	Al	Ag	Au	Cu	Ni	Fe	Co	Quartz.
$0^{\circ} \mathrm{C}$	0.0359	0.0878	O. 2220	0.0573	0.0317	O. 1008	O. 1095	O. 1055	0.0912	-
100	0.0336	-. 0965	-. 2297	-. 0583	0.0320	O. 1014	0. 1200	- . 1168	0.0993	0. 2372
200	0.0313	-. 1052	-. 2374	-. 0594	0.0322	O. 1020	O. 1305	-. 1282	- . 1073	-. 2416
300	0.0290	-. 1139	-. 2451	0.0605	0.0325	O. 1026	O. 1409	-. 1396	- I I 54	0. 2460
400	0.0266	-. 1226	-. 2529	0.0616	-. 0328	O. 1032	O. I 294	-. 1509	O. I 235	0. 2504
500	0.0259	-. 1173	-. 2606	0.0627	-. 0330	-. 1038	-. 1294	-. 1623	-. I316	-. 2548
600	0.0252	O. II4 1	-. 2683	-. 0638	-. 0333	O. 1045	O. 1294	-. 1737	- I 396	0. 2592
700	0.0246	-. 1109	-. 2523	0.0649	-. 0335	-. 1051	-. 1295	O. 1850	-. $1477{ }^{\circ}$	-. 2636
800	0.0239	-. 1076	-. 2571	0.0660	-. 0338	-. 1057	-. 1295	-. 1592	-. 1558	-. 2680
900	0.0233	-. 1044	-. 2619	0.0671	0.0341	-. 1063	O. 1295	-. I592	- I639	0. 2724
1000	0.0226	O. 1012	0. 2667	0.0637	-. 0343	-. 1069	-. 1295	-. 1448	-	-. 2768
1100	-	-	-	0.0694	0.0329	-. 1028	O. 1296	- I 4488	O. 1424	0. 2812
I 200	-	-	-	0.0750	0.0346	-. 1159	-. 1296	- 1448	-. 1454	-. 2856
1300	-	-	-	0.0807	0.0364	-. 129 I	-. 1296	- I 449	-. 1483	O. 2900
1400	-	-	-	-	-	-	O. 1296	- I 1449	-. 1512	-. 2944
1500	-	-	-	-	-	-	-. 1338	O. 2142	-. 1472	-. 2988
1600	-	-	-	-	-			-. 15010	0.1472	

For more elaborate tables and for all the elements in upper table, see original reference.

The atomic and specific heats are due to Dewar, Pr. Roy. Soc. 89A, 168, 1913.

$\begin{gathered} \text { Ele- } \\ \text { ment. } \end{gathered}$	$\begin{gathered} \text { Specific } \\ \text { heat } \\ -223^{\circ} \mathrm{C} . \end{gathered}$	$\left\lvert\, \begin{gathered} \text { Atomic } \\ \text { heat } \\ -223{ }^{\circ} \mathrm{C} . \end{gathered}\right.$	Atomic volume.	Ele-	$\begin{gathered} \text { Specific } \\ \text { heat } \\ -223^{\circ} \mathrm{C} . \end{gathered}$	$\left\|\begin{array}{c} \text { Atomic } \\ \text { heat } \\ -223^{\circ} \mathrm{C} . \end{array}\right\|$	Atomic volume.	Ele- ment.	$\begin{array}{\|c\|} \text { Specific } \\ \text { heat } \\ -223^{\circ} \mathrm{C} . \end{array}$	$\left\lvert\, \begin{gathered} \text { Atomic } \\ \text { heat } \\ -223^{\circ} \mathrm{C} . \end{gathered}\right.$	Atomic volume
Li	0. 1924	1.35	13.0	Cr	0.0142	0.70	7.6	Sn	0.0286	3.41	20.3
G1	0.0137	0.125	4.9	Mn	0.0229	1.26	7.4	Sb	0.0240	2.89	18.2
B	12	0.24	4.5	Fe	0.0175	0.98	7.	I	0.0361	4.59	25.7
C*	0.0137	0.16	5	Ni	0.0208	1.22	6.7	Te	0.0288	3.68	21.2
C \dagger	0.0028	0.03	3.4	Co	0.0207	1.22	6.8	Cs	0.0513	6.82	71.0
Na	0.1519	3.50	23.6	Cu	0.0245	I. 56	7.1	Baq	0.0350	4.80	36.6
Mg	0.0713	1. 74	14.1	Zn	0.0384	2.52	9.2	La	0.0322	4.60	22.6
$\mathrm{Al}^{\text {a }}$	0.0413	1.12	10.0	As	0.0258	1.94	15.9	Ce	0.0330	4.64	20.3
Si \ddagger	0.0303	0.86	14.2	Se	0.0361	2.86	18.5	W	0.0095	1.75	9.8
Si §	0.0303	0.77	11.4	$\stackrel{\mathrm{Br}}{ }$	0.0453	3.62	24.9	Os	0.0078	I. 49	8.5
P				$\mathrm{Rb}^{\mathrm{Rb}}$	0.0711	6.05	55.8	$\mathrm{Ir}_{\text {Pt }}$	0.0099	1.92	8.6
yel	0.0774	2.40	17.0	$\mathrm{Sr} \mathrm{Sr}^{\text {Zr }}$	0.0550	4.82 2.38	34.5 24	$\stackrel{\mathrm{Pt}}{\mathrm{Au}}$	0.0135	2.63	9.2
red	0.0431	I. 34		Mo	0.0241	2.88 I. 36	34.8 0.3	${ }^{\mathrm{Hg}}$	0.0160	3.16	10.2
S	0.0546	1.75	16.	Ru	0.0109	1.11 1.15	9.0	Ti	0.0232 0.0235	4.65 4.80	14.8 17.2
$\mathrm{Cl}^{\mathrm{Cl}}$	0.0967	3.43	24.6	Rh	-. 0134	1.38	8.5	Pb	0.0240	4.96	18.3
K	0. 1280	5.01	44.7	Pd	0.0190	2.03	9.	Bi	0.0218	4.54	21.3
Ca	0.0714	2.86	25.9	${ }^{\mathrm{Ag}}$	0.0242	2.62	10.2	Th	0.0197	4.58	21.1
Ti	0.0205	0.99	10.7	Cd	0.0308	3.46	13.0	U	0.0138	$3 \cdot 30$	12.8

* Graphite. \dagger Diamond. \ddagger Fused. § Crystallized. II Impure.

References to Table 243:
(r) Bontschew.
(2) Naccari, Atti Torino, 23, 1887-88.
(3) Wigand, Ann. d. Phys. (4) 22, 1907.
(4) Nordmeyer-Bernouli, Verh. d. phys. Ges. 9, 1907; 10, 1908.
(5) Giebe, Verh. d. phys. Ges. 5, 1903.
(6) Lorenz, Wied. Ann. 13, 188 I.
(7) Stücker, Wien. Ber. 114, 1905.
(8) Person, C. R. 23, 1846; Ann. d. chim. (3) 21,$1847 ; 24,1848$.
(9) Moisson-Gautier, Ann. chim. phys. (7) 17, 1896.
(10) Regnault, Ann. d. chim. (3) 26, 1849; $63,1861$.
(ii) Andrews, Pog. Ann. 75, 1848.
(12) Eckardt-Graefe, Z. Anorg. Ch. 23, 1900.
(13) Bunsen, Pogg. Ann. 141, 1870; Wied. Ann. 31, 1887.
(14) Weber, Phil. Mag. (4) $49,1875$.
(15) Hillebrand, Pog. Ann. 158, 1876.
(16) Knietsch.
(17) Adler, Beibl. 27, 1903.
(18) Pionchon, C. R. 102-103, 1886.
(19) Tilden, Phil. Trans. (A) 201, 1903.
(20) Richards, Ch. News, 68, 1893.
(21) Trowbridge, Science, 8, 1898.
(22) Berthelot, Ann. d. chim. (5) 15, 1878.
(23) Pettersson-Hedellius, J. Pract. Ch. 24, 1881.
(24) Violle, C. R. 85,$1877 ; 87,1878$.
(25) Regnault, Ann. d. chim (2) 73, 1840; (3) 63,1861 .
(26) Behn, Wied. Ann. 66, 1898; Ann. d. Phys. (4) I, 1900.
(27) Schmitz, Pr. Roy. Soc. 72, 1903.
(28) Nichol, Phil. Mag. (5) 12, 1881.
(29) Hill, Verh. d. phys. Ges. 3, 1901.
(30) Spring, Bull. de Belg. (3) 11, 1886; 29, 1895.
(31) Laemmel, Ann. d. Phys. (4) 16, 1905.
(32) Barnes-Cooke, Phys. Rev. 16, 1903.
(33) Wiegand, Fort. d. Phys. 1906.
(34) Tilden, Pr. Roy. Soc. 66, 1900; 71, 1903; Phil. Trans. (A) 194, 1900; 20I, 1903.
(35) White, Phys. Rev. 12, 436, 1918.
(36) Dewar, Ch. News, 92, 1905.
(37) Kopp, Phil. Trans. London, 155, 1865.
(38) Nilson, C. R. 96, 1883.
(39) Nilson-Pettersson, Zt. phys. Ch. 1, 1887.
(40) Mache, Wien, Ber. 106, 1897.
(41) Blümcke, Wied. Ann. 24, 1885.
(42) Mixter-Dana, Lieb Ann. 169, 1873.
(43) Magnus, Ann. d. Phys. 31, 1910.
(44) Harper, Bull. Bureau of Stds. in, p. 259, 1914.
(45) Nernst, Lindemann, i910, igif.
(46) Nernst, Dewar.
(47) Kosef, Ann. d. Phys. 36, 191 .
(48) Magnus, Ann. d. Phys. 31, 1910.
(49) Estreicher, Straniewski, 1912.
(50) Nernst, Ann. d. Phys. 36, 395, 1911.
(51) King, Phys. Rev. 11, 1918.
(52) Worthing, Phys. Rev. 12, 1918.
(53) Harker, Pr. Phys. Soc. London, 19, 703, 1905; Fe .01; C .02; Si .03; S .04; P, Mn trace.

TABLE 246.-Specific Heat of Various Solids.

Solic.	Temperature ${ }^{\circ} \mathrm{C}$.	Specific heat.	Authority.
Alloys:			
Bell metal.	15-98	0.0858	R
Brass, red.	0	. 08991	L
" yellow	0	. 08831	
$80 \mathrm{Cu}+20 \mathrm{Sn}$.	14-98	. 0862	R
$88.7 \mathrm{Cu}+11.3 \mathrm{Al}$	20-100	. 10432	Ln
	0-100	. 09464	T
Lipowitz alloy: $24.97 \mathrm{~Pb}+10.13 \mathrm{Cd}+50.66 \mathrm{Bi}$			M
14.24 Sn	100-150	. 0426	$\stackrel{1}{6}$
Rose's alloy : $27.5 \mathrm{~Pb}+48.9 \mathrm{Bi}+23.6 \mathrm{Sn}$	-77-20	.0356	S
Wood's "lloy : $2_{25.85} . \dot{\mathrm{Pb}}+6.99 \mathrm{C} \mathrm{C}+{ }_{52.43 \mathrm{Bi}}$	20-89	. 0552	
, +14.73 Sn . . .	5-50	. 0352	M
" " (fluid)	100-150	. 0.426	
Miscellaneous alloys:			
$17.5 \mathrm{Sb}+29.9 \mathrm{Bi}+18.7 \mathrm{Zn}+33.9 \mathrm{Sn}$	20-99	.05657	R
$37.15 \mathrm{Sb}+62.9 \mathrm{~Pb}$	10-98	. 03880	
39.9 Pb $+60.1{ }_{6} \mathrm{Bi}$	16-99	. 03165	P
" ${ }^{\text {، }}$ (fluid)	144-358	. 03500	
$63.7 \mathrm{~Pb}+36.3 \mathrm{Sn}$	12-99	. 04073	R
$46.7 \mathrm{~Pb}+53.3 \mathrm{Sn}$	10-99	. 04507	
$63.8 \mathrm{Bi}+36.2 \mathrm{Sn}$	20-99	. 04001	"
$46.9 \mathrm{Bi}+53.1 \mathrm{Sn}$	20-99	. 04504	
Gas coal . . .	20-1040	.3145	
Glass, normal thermometer \% $^{\prime \prime}$	19-100	. 1988	
" French hard thermometer		. 1869	Z
"، crown .	10-50	. 161	H M
Ice . ${ }^{\text {" }}$.	$\xrightarrow{10-50}$.117 .146	D
Ic	-78--188	. 285	
	-18--78	.463	" T
India rubber (Para)	?-100	. 48 I	G T
Mica . . .	20	. 10	
Paraffin	$-20-+3$. 3768	R W
"،	$-19-+20$. 5251	
"	0-20	. 6939	
" ${ }^{\text {a }}$	35-40	. 622	B
Vulcanite fluid	60-63	. 712	
Vulcanite	$\xrightarrow{20-100}$. 3327	AM

TABLE 247.-Specific Heat of Water and of Mercury.

Specific Heat of Water.							Specific Heat of Mercury.			
Temperature, ${ }^{\circ} \mathrm{C}$.	Barnes.	Rowland.	BarnesRegnault.	Temperature, ${ }^{\circ} \mathrm{C}$.	Barnes	BarnesRegnault.	Temperature, ${ }^{\circ} \mathrm{C}$.	Specific Heat.	Temperature, ${ }^{\circ} \mathrm{C}$.	Specific Heat.
-5	1.0155	-	-	60	0.9988	0.9994	0	0.03346	90	0.03277
0	1.0091	1.0070	1.0094	65	. 9994	1.0004	5	. 03340	100	. 03269
$+5$	1.0050	1.0039	1.0053	70	1.0001	1.0015	10	. 03335	110	. 03262
10	1.0020	1.0016	1.0023	80	1.0014	1.0042	15	. 03330	120	. 03255
15	1.0000	1.0000	1.0003	90	1.0028	1.0070	20	. 03325	130	. 03248
20	0.9987	.9991	0.9990	100	1.0043	1.0ior	25	. 03320	140	. 03241
25	. 9978	. 9989	. 998 r	120	-	1.0162	30	. 03316	150	. 0324
30	. 9973	. 9990	. 9976	140	-	1.0223	35	. 03312	170	. 0322
35	. 9971	. 9997	. 9974	160	-	1.0285	40	. 03308	190	. 0320
40	. 9971	1.0006	. 9974	180	-	1.0348	50	. 03300	210	. 0319
45	. 9973	1.0018	. 9976	200	-	1.0410	60	. 03294	-	-
50	. 9977	1.0035	. 9980	220	-	1.0476	70	. 03289	-	-
55	.9982	1.0045	.9985	-	-	-	80	.03284	-	-

Barnes's results: Phil. Trans. (A) 199, 1902 ; Phys. Rev. 15, 1902; 16, 1903. (H thermometer.)
Bousfield, Phil. Trans. A 21s, p. 199, 1911. Barnes-Regnault's as revised by Peabody ; Steam Tables.
The mercury data from 0° C to 80 , Barnes-Cooke (H thermometer); from 90° to 140 , mean of Winklemann, Naccari and Milthaler (air thermometer); above 14°, mean of Narcari and Milthaler.

TABLE 248. - Specific Heat of Various Liquids.

Liquid.	$\begin{aligned} & \text { Temp. } \\ & \hline \text { C. } \end{aligned}$	Spec. heat.		Liquid.	$\stackrel{\text { Temp. }}{\text { Comp. }}$	Spec. heat.	Authority
Alcohol, ethy	-20		R	Ethyl ether	\bigcirc	-. 529	R
	-	0. 548		Glycerine. \therefore	15-50	-. 576	E
" ${ }^{6}$.	40	$\bigcirc .648$	"	$\mathrm{KOH}+30 \mathrm{H}_{2} \mathrm{O} \ldots \ldots$.	18	-. 876	TH
Alcohol, methyl	5-10	0. 590	"	" $+100{ }^{\circ}$	18	-. 975	
"6, ،	I $5-20$	0.601	"	$\mathrm{NaOH}+50 \mathrm{H}_{2} \mathrm{O}$	18	-. 942	"
Anilin	15	0.514	G	" + 100	18	0.983	"
	30	0.520		$\cdot \mathrm{NaCl}+10 \mathrm{H}_{2} \mathrm{O}$	18	-. 791	"
	50	0.529	I-D	" $+200{ }^{\prime \prime}$	18	0.978	"
Benzole, $\mathrm{C}_{6} \mathrm{H}$	10	0. 340	$\mathrm{H}-\mathrm{D}$	Naphthalene, $\mathrm{C}_{10} \mathrm{H}_{8}$	80-85	-. 396	B
	40	$0: 423$			90-95	0.409	
CaCl_{2}, sp. gr. $\mathrm{C}_{6} \mathrm{H}_{6}$.	65 -15	0.482 0.764	DMG	Nitrobenzole	14	0.350 0.362	A
$\mathrm{CaCl}_{2}, \mathrm{Sp}_{6} \mathrm{~g} . \mathrm{gr}_{6} \mathrm{I} .1$	- I5	0.764 0.775	DMG	Oils: castor	28		W
" "6 "	+20	0.787	"	citron	5.4	0.438	HW
" '6 "، r. 20	-20	0.695	"	olive	6.6	0.47 I	
" " " ${ }^{\text {" }}$	\bigcirc	0.712	"	sesame	-	0.387	W
" ،	+20	0.725	"	turpenti	\bigcirc	0.411	R
" " "6 I.26	-20	0.65 I	"	Petroleum.	21-58	0.511	Pa_{6}
	\bigcirc	0.663	"		17.5	0.980	
" " ${ }^{6}$	+20	0.676	Pa		17.5	0.938	،
$\mathrm{CuSo}_{66}+50 \mathrm{H}_{2} \mathrm{O}$	$12-\mathrm{I} 5$	0. 848	Pa	" " ${ }^{\text {a }}$, " 1.0463 .	17.5	0.903	"
$" \mathrm{c}$ + 200 "	12-14	0.951		Toluol, $\mathrm{C}_{6} \mathrm{H}_{8}$	10	0. 364	H-D
" ${ }^{\prime}+400$ "	$13-17$	0.975	،		65	0.490	،
Diphenylamine, $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N} .$			B	$\mathrm{ZnSO}_{4}+50 \mathrm{H}$	85 $20-52$	0. 534	Ma
Cl_{2}	65	0.482	${ }_{6}$	${ }^{6}+200{ }^{\prime \prime}$	20-52	0.952	Ma

References: (A) Abbot; (B) Batelli; (E) Emo; (G) Griffiths; (DMG) Dickinson, Mueller, and George; (H-D) de Heen and Deruyts; (Ma) Marignac; (Pa) Pagliani; (R) Regnault; (Th) Thomsen; (W) Wachsmuth; (Z) Zouloff; (HW) H. F. Weber.

TABLE 249. - Specific Heat of Liquid Ammonia under Saturation Conditions.
Expressed in Calories ${ }_{20}$ per Gram per Degree C. Osborne and van Dusen, Bul. Bureau of Standards, igi8.

Temp.	-	I	2	3	4	5	6	7	8	9
-40	1.062	1.061	1.060	1.059	I. 058	1. 058	1. 057	I. 056	1.055	1.055
-30	1.070	1. 069	1.068	I. 067	1. 066	I. 065	1. 064	1.064	1.063	1.062
-20	1.078	1.077	1.076	1.075	I. 074	I. 074	1.073	1.072	1.071	1.070
-10	1.088	1.087	1.086	1.085	1.084	1.083	1.082	I.08I	1.080	1.079
- 0	1.099	1.098	1.097	1. 096	I. 094	I. 093	I. 092	1.091	1.090	1.089
+ 0	1.099	I. 100	1. IOI	1. 103	I. 104	I. 105	1. 106	1. 108	1. 109	1.110
+10	I. II 2	I. II 3	I. II4	I. II6	I. 117	I. II8	I. 120	1.122	1.123	1.125
+20	I. 126	I. 128	I. 129	I. 131	I. 132	I. I34	I. I36	I. 137	I. I39	1.141
$+30$	I. 142	I. 144	I. 146	I. 148	I. 150	I. 152	I. I54	I. 156	I. 158	I. 160
+40	1. 162	I. 164	I. 166	I. 169	I. 171	I. 173	I. 176	1. 178	I. 18 I	1.183

TABLE 250. - Heat Content of Saturated Liquid Ammonia,
Heat content $=H=\epsilon+p v$, where ϵ is the internal or intrinsic energy. Osborne and van Dusen, Bul. Bureau of Standards, 1918.

$$
\begin{array}{l|l|c|c|c|c|c|c|c|c|c|c}
\text { Temperature } \ldots & -50^{\circ} & -40^{\circ} & -30^{\circ} & -20^{\circ} & -10^{\circ} & 0^{\circ} & +10^{\circ} & +20^{\circ} & +30^{\circ} & +40^{\circ} & +50^{\circ} \\
H=\epsilon+p v \ldots . & -53.8 & -43.3 & -32.6 & -21.8 & -11.0 & 0.0 & +11.1 & +22.4 & -33.9 & -45.5 & -57.4
\end{array}
$$

SPECIFIC HEATS OF MINERALS AND ROCKS.
TABLE 251.-Specific Heat of Minerals and Rocks.

Substance;	Temperature ${ }^{\circ} \mathrm{C}$.	Specific Heat.	Refer ence.	Substance.	Temperature ${ }^{\circ} \mathrm{C}$.	Specific Heat.	Reference.
Andalusite	0-100	0.1684	1	Rock-salt	13-45	0.219	6
Anhydrite, CaSO_{4}	0-100	. 1753	1	Serpentine -	16-98	. 2586	2
Apatite . .	$15-99$. 1903	2	Siderite	9-98	. 1934	4
Asbestos	20-98	. 195	3	Spinel .	$15-47$. 194	6
Augite	20-98	.1931	3	Talc	20-98	. 2092	3
Barite, BaSO_{4}	10-98	. 1128	4	Topaz . ${ }^{\text {a }}$	0-100	. 2097	1
Beryl .	1 5-99	. 1979	2	Wollastonite ${ }^{\text {- }}$	19-51	.178	6
Borax, $\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}$ fused	16-98	. 2382	4	Zinc blende, ZnS .	0-100	.I 146	1
Calcite, CaCO_{3}.	0-50	. 1877	I	Zircon .	21-51	.132	6
" ${ }^{\prime}$	--100	. 2005	I	Rocks:			
" "	--300	. 2204	1	Basalt, fine, black	12-100	. 1996	6
Cassiterite SnO_{2}	16-98	. 0933	4	"	20-470	. 199	9
Chalcopyrite	1 5-99	. 1291	2	" "، "	470-750	. 243	9
Corundum	9-98	. 1976	4	" " "	750-880	. 626	9
Cryolite, $\mathrm{Al}_{2} \mathrm{~F}_{6} .6 \mathrm{NaF}$	16-99	. 2522	2	" " "	880-1190	$\cdot 323$	9
Fluorite, CaF_{2}	$15-99$. 2154	4	Dolomite	20-98	. 222	3
Galena, PbS .	0-100	. 0466	5	Gneiss	17-99	.196	10
Garnet .	16-100	. 1758	2	" .	17-213	. 214	10
Hematite, $\mathrm{Fe}_{2} \mathrm{O}_{3}$	I 5-99	. 1645	2	Granite	12-100	. 192	7
Hornblende .	20-98	. 1952	3	Kaolin .	20-98	. 224	3
Hypersthene	20-98	. 1914	3	Lava, Aetna	23-100	. 201	II
Labradorite	20-98	. 1949	3	" "	31-776	. 259	II
Magnetite	18-45	. 156	6	Kilauea	25-100	. 197	II
Malachite, $\mathrm{Cu}_{2} \mathrm{CO}_{4} \mathrm{H}_{2} \mathrm{O}$	1 5-99	. 1763	2	Limestone	$15-100$.216	12
Mica (Mg)	20-98	.206I	3	Marble	0-100	. 21	-
" (K)	20-98	. 2080	3	Quartz sand	20-98	.191	3
Oligoclase	20-98	. 2048	3	Sandstone .		. 22	-
Orthoclase	$15-99$. 1877	2				
Pyrolusite, MnO_{2} -	17-48	. 159	6	1 Lindner. 6	p.	Barto	
Quartz, $\mathrm{SiO}_{6}{ }_{6}$.	12-100	.188	7	2 Oeberg. 7	y.	Mora	
* ${ }^{\text {a }}$	350	$\begin{array}{r} .1737 \\ .2786 \end{array}$	8	3 Ulrich. 8	nchon.		
	$\stackrel{300-1200}{ }$. 305	8	4 Regnault. 9 R	berts-A u Weber.	en, Rüc	ker.

Compiled from Landolt-Börnstein-Meyerhoffer's Physikalisch-chemische Tabellen.
TABLE 252.-Specific Heats of Silicates.

Silicate.	Mean specific heats. $\mathrm{o}^{\circ} \mathrm{C}$ to				True specific heats. at				
	100°	500°	900°	1400°	$0^{\circ} \mathrm{C}$	100°	500°	1000°	${ }^{1300}$
Albite	. 1948	. 2363	. 2561	-	. 178	. 211	. 263	. 294	-
"" glass . ${ }^{\text {a }}$.	. 1977	.2410	. 2640	731		-	-		-
Amphibole, Mg. silicate	. 2033	.2461	. 2661	.2731*	. 185	. 219	. 279	. 304	-
Andesine glass	. 2040	.2474 .2330	. 2525			-	265	-	-
Andesine glass	. 1925	${ }^{2} 330$. 2525	-	-	-	. 265	-	
Anorthite .	. 1901	. 2296	02481	. 2674	. 174	. 205	. 260	. 286	. 318
" ${ }_{\text {Cristas }}$. 1883	. 2305		-					
Cristobalite	. 1883	. 2426	. 2568	. 2680				8	
Diopside . ${ }^{\text {c }}$. 1924	. 2314	. 2500	. $2604{ }^{\dagger}$. 176	. 207	. 262	.284	
Microcline ${ }^{\text {chass }}$.1939 .1871	.2332 .2262		-			. 258	- 279	
" glass	-1919	. 2321	. 24514	-2598*	. 171	. 201	. 258	. 279	-
Pyroxene	. 2039	. 2484	,	-	-	-	-		-
Quartz .	. 1868	. 2379	. 2596	.2640*	. 168	. 204	. 294	. 285	-
Silica glass	. 1845	. 2302	. 2512	-	. 166	. 202	. 266	. 29	
Wollastonite .		-	. 2344	-	-	-	-	-	-
" $\quad \begin{aligned} & \text { glass } \\ & \text { pseudo }\end{aligned}$.1852 .1844	. 22206	. 2324	${ }^{-2448}$. 171	. 197	. 243	. 262	- B^{272}

Substance.	Range of temp.	$\begin{gathered} \text { Sp. ht. } \\ \text { constant } \\ \text { pres- } \\ \text { sure. } \end{gathered}$	Authority.	$\begin{gathered} \text { Range } \\ \text { of } \\ \text { temp. } \end{gathered}$	$\begin{array}{\|l\|} \text { Mean } \\ \text { ratio of } \\ \text { specific } \\ \text { heats. } \\ C_{p} / C_{v} . \\ \hline \end{array}$	Authority.
Acetone, $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$	26-110	0.3468	Wiedemann.			
Air	$-30-10$	-. 2377	Regnault.	-70	I. 4011	Moody.
	20-440	0.2375 0.2366		-79.3	I. 405	Koch, 1907.
"	$\begin{aligned} & 20-440 \\ & 20-630 \end{aligned}$	$\left\|\begin{array}{l} 0.2366 \\ 0.2429 \end{array}\right\|$	Holborn and Austin.	-79.3 0	2.333 I. 828	" ${ }^{200}$ atm
	20-800	0. 2430		500	I. 399	Fürstenau.
Alcohol, $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$	108-220	0.4534	Regnault.	53	I. 133	Jaeger.
	-	-		100	I. 134	Stevens.
$\mathrm{CH}_{3} \mathrm{OH}$	101-223	0.4580	Regnault.	100	I. 256	
Ammonia	$23-100$ $27-200$	0.5202 0.5356	Wiedemann.	$\stackrel{-}{100}$	I. 3172 I. 2770	Wüllner.
Argon.	$27-200$ $20-90$	0.5350 0.1233	Dittenberger.	100	1.2770 I .667	Niemeyer.
Benzene, $\mathrm{C}_{6} \mathrm{H}$	34-115	-. 2990	Wiedemann.	20	I. 403	Pagliani.
	35-180	0.3325		60	1.403	
" ${ }^{\text {B }}$	116-218	0. 3754	Regnault.	99.7	I. 105	Stevens.
Bromine	83-228	0.0555		20-388	1. 293	Strecker.
Carbon dioxide, ${ }_{\text {" }} \mathrm{CO}_{2}$	-28-+7 $15-100$	$\begin{aligned} & 0.1843 \\ & 0.2025 \end{aligned}$	"	4-II	1. 2995	Lummer and Pringsheim.
"	11-214	0.2169	W."	\bigcirc	1.3003	Moody, 1912.
"، monoxide, CO..	23-99	-. 2425	Wiedemann.	\bigcirc	1.403	Wüllner.
" disulphide, CS_{2}. .	$26-198$ $86-190$	0.2426 0.1596	Regnault.	100	I. 395 I. 205	Beyme.
Chlorine........	16-343	-.1125	Strecker.	3-67	1.336 1. 236	Martini.
Chloroform, CHCl_{3}	27-118	o.1441	Wiedemann.	22-78	I. 102	Beyme.
	28-189	-.1489		99.8	I. 150	Stevens.
Ether,	69-224	0.4797	Regnault.	42-45	I. 029	Müller.
	25-111	0.4280	Wiedemann.	12-20	1.024	Low, 1894.
Helium.......		-	-	\bigcirc	I. 64	Mean, Jeans.
Hydrochloric acid, ${ }_{\text {c }}$ "	$13-100$ $22-214$	O. 1940 O. 1867	Strecker. Regnault.	20 100	I. 389	Strecker.
Hydrog	-28-+	3.3996		4-16	1.400	Lummer and
	12-198	$3 \cdot 4090$	W."			Pringsheim.
" sulphide,	$21-100$ $20-206$	3.4100	Wiedemann.		I. 419	Hartmann.
Krypton...........	20-20	$0.245^{\text {I }}$	Regnault.	9	I. 324 I. 666	apstick.,
Mercury.	-	-	-	310	I. 666	Kundt and Warburg
Methane, C	18-208	-. 5929	Regnault.	II-30	1.316	Müller.
Neon.	-	-		19	1. 642	Ramsay, '12
Nitrogen	--200	O. 2438	Regnault.	-	1.41	Cazin.
	20-440	O. 2419	Holborn and	-	I. 405	Masson.
"	20-630	0. 2464	Austin.			
Nitric oxide,	20-80 13	0.2497 0.2317 1.625	Regnault.			'
Nitrogen tetroxide, $\mathrm{NO}_{6}{ }^{\text {2 }}$	27-67	1. 625	Berthelot and	-	1. 1.35	Natanson
"، "	27-150	I. 115	Olger.			
Nitrous oxide, N_{2}	$27-280$ $16-207$	0.05 0.2262	Regnaul			
	26-103	0. 2126	Wiedemann.	100	1. 272	
	27-206	-0.2241			I. 324	Leduc, '98.
Oxy	$13-207$	0. 2175	Regnault.	5-14	I. 3977	Lummer and
	20-440	O. 2240	Holborn and			Pringsheim.
Sulphur dioxide, $\mathrm{SO}^{\text {a }}$	16-202	0.2300 0.1544	Regnault.		I. 256	Müller.
Water vapor, $\mathrm{H}_{4} \mathrm{O}$	\bigcirc	-0. 4655	Thiesen.	78	I. 274	Beyme.
	100	0.42 I		94	I. 33	Jaeger.
	180	0. 51		100	1. 305	Makower.
Xenon.	-		-	19	1. 666	Ramsay,' 12.

LATENT HEAT OF VAPORIZATION.
The temperature of vaporization in degrees Centigrade is indicated by t, the latent heat in large calories per kilogram or in small calories or therms per gram by r; the total heat from \circ° C , in the same units by H. The pressure is that due to the vapor at the temperature t.

Substance.	Formula.	$t^{\circ} \mathrm{C}$	r	${ }^{H}$	Authority.
Acetic acid.	$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$	$118{ }^{\circ}$	84.9	-	Ogier.
Air	-	-	50.97	-	Fenner-Richtmyer.
Alcohol: Amyl	$\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}$	131	120	-	Schall.
Ethyl	$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$	78. I	205	255	Wirtz.
	،	-	236	236	Regnault.
"	/6	50	-	264	
"	,	100	-	267	/6
		150	-	285	
Methyl.	$\mathrm{CH}_{4} \mathrm{O}$	64.5	267	307	Wirtz.
,	،	\bigcirc	289	289	Ramsay and Young.
"	"	50	-	274	"6 "6
"	"	100	-	246	"، ، ،
"	،	15	-	152	" ${ }^{6}$ "
'،	"	238.5	-	+44.2	" 6 "
Aniline.	$\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}$	r84	110	4	Mean.
Benzene.	$\mathrm{C}_{6} \mathrm{H}_{6}$	80.1	92.9	127.9	Wirtz.
Bromine.	Br	61	45.6	-	Andrews.
Carbon dioxide, solid.	CO_{2}	-	-	138.7	Favre.
"6 ${ }^{6}$ 6 ${ }^{\text {6 }}$ 6،	'6	-25	72.23	-	Cailletet and Mathias.
" ${ }^{\text {6 }}$	"	0	57.48	-	Mathias
" 6 "	"	12.35	44.97	-	${ }^{\text {Mathas. }}$
"6 "	"	29.85	14.4	-	"
" " "	"	30.82	3.72	-	"
" disulphide.	CS_{2}	46.1	83.8	94.8	Wirtz.
		\bigcirc	90	90	Regnault.
" 6	"	100	-	100.5	
"	${ }^{6}$	140	-	102.4	"
Chloroform .	CHCl_{3}	60.9	58.5	72.8	Wirtz.
Ether.	$\mathrm{C}_{4} \mathrm{H}_{610} \mathrm{O}$	$34 \cdot 5$	88.4	107	
/		34.9	90.5	-	Andrews.
6	"	-	94	94	Regnault.
"	'6	50	-	II5.1	
		120	-	140	
Ethyl bromide	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}$	38.2	60.4	-	Wirtz.
" chloride	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$	12.5	-	98	Regnault.
" iodide	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{I}$	71	47	-	Mean.
Heptane.	$\mathrm{C}_{7} \mathrm{H}_{16}$	90	77.8	-	Young.
Hexane.	$\mathrm{C}_{6} \mathrm{H}_{14}$	70	79.2	-	
Iodine	I	-	23.95	-	Favre and Silbermann.
Mercury	Hg	357.	65	-	Mean.
Nitrogen	N_{2}	-195.6	47.65	-	Alt.
Octane.	$\mathrm{C}_{8} \mathrm{H}_{18}$	1 JO	70.0	-	Young.
Oxygen	O_{2}	-182.9	50.97	-	Alt.
Pentane.	$\mathrm{C}_{5} \mathrm{H}_{12}$	30	85.8	-	Young.
Sulphur	S	316	362.0	-	Person.
Sulphur dioxide	SO_{6}	0 30	91.2 80.5	-	Cailletet and Mathias.
" ${ }^{\text {a }}$	"	65	68.4	-	،
Toluene	$\mathrm{C}_{7} \mathrm{H}_{8}$	III	86.0	-	Mean.
Turpentine	$\mathrm{C}_{10} \mathrm{H}_{10}$	159.3	74.04	-	Brix.

LATENT HEAT OF VAPORIZATION.

TABLE 255. - Formulae for Latent and Total Heats of Vapors.
$r=$ latent heat of vaporization at $t^{\circ} \mathrm{C} ; B=$ total heat from fluid at \circ° to vapor at $t^{\circ} \mathrm{C}$. T° refers to K elvin scale. Same units as preceding table.

Acetone, $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$.	$H=140.5+0.36644 t-0.000516 t^{2}$	-3° to 147°	R
	$\begin{aligned} R & =140.5+0.33356 t+0.00055358 t^{2} \\ & =139.9+0.2381\end{aligned}$	-3 147	W.
	$r=139.9-0.27287 t+0.000157 \mathrm{I}^{2}$	-3 147	W
Benzene $\mathrm{C}_{6} \mathrm{H}_{6}$	$H=109.0+0.24429 t-0.00013152^{2}$	$7{ }^{7} \quad 215$	R
Carbon dioxide	$r^{2}=118.485(3 \mathrm{I}-t)-0.4707(3 \mathrm{1}-t)^{2}$	$\begin{array}{rr}-25 & 31 \\ -6 & 143\end{array}$	C
Carbon bisulphide, $\mathrm{CS}_{2} \ldots$	$H=90.0+0.14601 t-0.0004123 t^{2}$	$\begin{array}{ll}-6 & 143 \\ -6 & \text { I }\end{array}$	R
	$H=89.5+0.16993 t-0.0010161 r^{2}+0.05342 t^{3}$	$\begin{array}{ll}-6 & 143 \\ -6 & 143\end{array}$	W
Carbon tetrachloride, CCl_{4}.	$r=89.5-0.06530 t-0.0010976 t^{2}+0.03342 t^{3}$ $H=52.0+0.14625 t-0.000172 t^{2}$	$\begin{array}{rr}-6 & 143 \\ 8 & 163\end{array}$	W
	${ }_{H}=52.9+0.17867 t-0.0009599 t^{2}+0.053733 t^{3}$	$8 \quad 163$	W
	$r=51.9-0.01931 t-0.0010505 t^{2}+0.053733 t^{3}$	$8 \quad 163$	W
Chloroform, $\mathrm{CHCl}_{\text {che...... }}$	$H=67.0+0.1375 t$	$5 \quad 159$	R
	$H=67.0+0.147 \mathrm{r} 6 t-0.0000937 t^{2}$	$\begin{array}{ll}-5 & 159 \\ -59\end{array}$	W
	$r=67.0-0.08519 t-0.0001444 t^{2}$	-5 159	W
Ether, $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$	$H=94.0+0.45000 t-0.0005556 t^{2}$	4121	R
	$r=94.0-0.07900 t-0.0008514 l^{2}$	-4 121	R
Molybdenum	$r=177000-2.5 T(\mathrm{cal} / \mathrm{g}$-atom)	-	A
Nitrogen, $\mathrm{N}_{2} \ldots$	$r=68.85-0.2736 T+0.928(36.4-t)^{2}$		${ }_{\text {A }}$
Nitrous oxide, N	$r=69.67-0.2080 T$	-	A
Platinum.	$r=128000-2.5 T$ ($\mathrm{cal} / \mathrm{g}$-atom)		L
Sulphur dioxide	$r=91.87-0.3842 t-0.000340 t^{2}$		M
Tungsten	$r=217800-1.8 T\left(\mathrm{cal} / \mathrm{g}\right.$-atom) ${ }^{\text {a }}$		L
Water, H_{2}	$H=638.9+0.3745(t-100)-0.00099(t-100)^{2}$ $r=94.210(365-t)^{0.31249} \quad$ (See Table 259)	- 100	H

TABLE 256.-Latent Heat of Vaporization of Ammonia.
CALORIES PER GRAM.

${ }^{\circ} \mathrm{C}$	\bigcirc	I	2	3	4	5	6	7	8	9
-40	331.7	332.3	333.0	333.6	334.3	334.9	335.5	336.2	336.8	337.5
-30	324.8	325.5	326.2	326.9	327.6	328.3	329.0	329.7	330.3	331.0
-20	317.6	318.3	319.1	319.8	320.6	32 I .3	322.0	322.7	323.4	324.1
10	309.9	310.7	311.5	312.2	313.0	313.8	314.6	315.3	316.1	316.8
- 0	301.8	302.6	303.4	304.3	305.1	305.9	306.7	307.5	308.3	309.1
+o	301.8	300.9	300.1	299.2	298.4	297.5	296.6	295.7	294.9	294.0
+10	293.1	292.2	291.3	290.4	289.5	288.6	287.6	286.7	285.7	284.8
$+20$	283.8	282.8	281.8	280.9	279.9	278.9	277.9	276.9	275.9	274.9
$+30$	273.9	272.8	271.8	270.7	269.7	268.6	267.5	266.4	265.3	264.2
+40	263.1	262.0	260.8	259.7	258.5	257.4	256.2	255.0	253.8	252.6

Osborne and van Dusen, Bul. Bureau Standards, 14, p. 439, 1918.

TABLE 257. - "Latent Heat of Pressure Variation" of Liquid Ammonia.

When a fluid undergoes a change of pressure, there occurs a transformation of energy into heat or vice versa, which results in a change of temperatura of the substance unless a like amount of heat is abstracted or added. This change expressed as the heat so transformed per unit change of pressure is the "latent heat of pressure variation." It is expressed below as Joules per gram per $\mathrm{kg} / \mathrm{cm}^{2}$. Osborne and van Dusen, loc. cit., p. 433, 19 r 8 .

LATENT AND TOTAL HEATS OF VAPORIZATION OF THE ELEMENTS.

The following table of theoretical values is taken from J. W. Richards, Tr. Amer. Electrcch. Soc. 13, p. 447, 1908. They are computed as follows: $8 T_{m}(8=$ mean value atomic specific heat, Dulong-Petit constant, 0° to $T^{\circ} \mathrm{K}, T_{m}=$ melting point, Kelvin scale) plus $2 T_{m}$ (latent heat of fusion is approximately $2 T_{m}$, J. Franklin Inst. 1897) plus $10\left(T_{b}-T_{m}\right)$ (specific heat of liquid metals is nearly constant and equal to that of the solid at $T_{m}, T_{b}=$ boiling point, Kelvin scale) plus ${ }_{23} T_{b} \quad(23=$ Trouton constant; latent heat of vaporization of molecular weight in grams is approximately 23 times $\left.T_{b}\right)=33 T_{b}$. Total heat of vapor when raised from $273^{\circ} \mathrm{K}$ $\left(0^{\circ} \mathrm{C}\right.$) equals $33 T_{b}-1700$ (mean value of Dulong-Petit constant between 0° and $273^{\circ} \mathrm{K}$ is 1700). Heats given in small calories per gram.

Element.	${ }^{\circ}{ }^{T b}$	${ }_{23} \mathrm{~Tb}$	Latent heat of vapori zation.	$\begin{gathered} 33 T_{b}- \\ 1700 \end{gathered}$	Total heat vapor $\underset{273^{\circ} \mathrm{K}}{\substack{\text { from } \\ \hline}}$ $273^{\circ} \mathrm{K}$	Element.	${ }^{\text {o }}$ Tb	${ }_{23} \mathrm{~Tb}_{6}$	Latent heat of vaporization.	$\begin{gathered} 33 T_{b}- \\ 1700 \end{gathered}$	Total heat of vapor from $273^{\circ} \mathrm{K}$
Hg	630	14,500	72	19,100	96	Rh	2773	63,800	620	90,000	870
K	993	22,800	590	31,100	800	Ru	2790	64,100	630	90,000	880
Cd	1050	24,200	230	33,000	310	Au	2800	64,500	330	91,000	460
Na	1170	27,000	1170	37,000	1610	Pd	2810	64,600	610	91,000	850
Zn	1200	27,700	430	38,000	580	Ir	2820	64,800	340	91,300	470
In	1270	29,300	-	40,300	-	Os	2870	66,000	350	93,000	490
Mg	1370	31,600	1320	43,600	1820	U	3170	73,000	305	103,000	430
Te	1660	38,200	300	54,900	430	Mo	3470	80,000	830	II3,000	1180
Bi	1710	39,300	190	56,400	270	W	3970	91,400	500	129,000	700
Sb	1870	43,100	360	60,000	510	H_{2}	20	460	230	-	-
Tl	1970	45,400	220	63,400	310	N_{2}	77	1,770	63	-	-
Pb	2070	47,700	230	66,700	320	O_{2}	85	1,960	61	-	-
Ag	2310	53,000	490	74,600	690	Cl_{2}	251	5,780	8 I	-	-
Cu	2370	54,500	860	76,600	1210	Br_{2}	33 I	7,600	48	-	-
Sn	2440	56,100	480	78,800	670	I_{3}	447	10,300	27	-	
Mn	2470	56,500	1030	79,500	1440	P_{3}	560	13,000	138	-	-
Ni	2690	59,800	1010	84,000	1420	As_{3}	723	16,600	74	-	-
Cr	2640	60,700	1170	85,400	1640	Se_{3}	963	22,100	94	-	-
Fe	2690	62,000	IIIO	87,200	1560	B_{2}	3970	91,000	4200	-	-
Pt	2720	62,600	320	88,000	450	C_{2}	3970	91,000	3800	-	
Ti	2750	63,200	1320	89,000	I850						

Smithsonian Tables.

Metrio and Common Units.

Reprinted by permission of the author and publishers from "Tables of the Properties of Steam," Cecil H. Peabody, Sth edition, rewritten in 1909. Calorie used is heat required to raise i Kg . water from 15° to $16^{\circ} \mathrm{C}$. B. T. U. is heat required to raise 1 pd. water from 62° to $63^{\circ} \mathrm{F}$. Mechanical Equiv. of heat used, $77^{8} \mathrm{ft}$. pds. or $427 \mathrm{~m} . \mathrm{Kg}$. Specific heats, see Barnes-Kegnault-Peabody results, p. 227. Heat of Liquid, q. heat required to raise i Kg. (i lb.) to corresponding temperature from on C . Heat of vaporization, r . heat required to vaporize $\mathrm{I}_{\mathrm{Kg}} \mathrm{Kg}$. I lb .) at corresponding temperature to dry saturated vapor against corresponding pressure; see Henning, Ann. der Phys., 21, p. 849, 1906. Total Heat, H=r+q, see Davis, T'r. Am. Soc. Mech. Eng., 1908.

	Pressure.			Heat of the Liquid.		Heat of Vaporization.		Heat Equivalent of Internal Work.		
	Mm. of Mercury. p.	$\begin{gathered} \text { Kg. } \\ \underset{\text { per sq. }}{\text { p. }} \text { p. } \\ \text { p. } \end{gathered}$	$\begin{aligned} & \text { Pds. } \\ & \text { per sq. in. } \\ & \text { p. } \end{aligned}$	Calories. q.	$\begin{gathered} \text { B. T } \\ \text { q. } \end{gathered}$	Calories. r.	$\begin{gathered} \text { B. T. U. } \\ \mathrm{r} . \end{gathered}$	Calories. ρ.	$\begin{aligned} & \text { B. T. U. } \\ & \quad \rho . \end{aligned}$	
0	4.579	0.00623	0.0886	0.00	0.0	595.4	1071.7	565.3	1017.5	32.0
5	6.541	.00859	. 1265	5.04	9.1	592.8	1067.1	562.2	1011.9	41.0
10	9.205	. 01252	.1780	10.06	18.1	590.2	1062.3	559.0	1006.2	50.0
15	12.779	. 01737	. 2471	15.06	27.1	587.6	1057.6	555.9	1000.5	59.0
20	17.51	. 0238 SI	$\cdot 3386$	20.06	36.1	584.9	1052.8	552.7	994.8	68.0
25	23.69	. 03221	.4581	25.05	45. I	582.3	1048.1	$549 \cdot 5$	989.1	77.0
30	31.71	. 0431 I	$\bigcirc 132$	30.04	54.1	579.6	1043.3	546.3	983.4	86.0
35	42.02	. 05713	.8126	35.03	63.1	576.9	1038.5	543.1	977.6	95.0
40	55.13	. 07495	1.0661	40.02	72.0	574.2	1033.5	539.9	971.7	104.0
45	71.66	. 09743	1.385^{8}	45.00	81.0	571.3	1028.4	536.5	965.7	113.0
50	92.30	. 12549	1.7849	49.99	90.0	568.4	1023.2	533.0	959.6	122.0
55	117.85	. 16023	2.279	54.98	99.0	565.6	1018.1	539.7	953.5	131.0
60	149.19	. 20284	2.885	59.97	108.0	562.8	1013.1	526.4	$947 \cdot 5$	140.0
65	187.36	. 2547	3.623	64.98	117.0	559.9	1007.8	523.0	941.3	149.0
70	$233 \cdot 53$. 3175	$4 \cdot 516$	69.98	126.0	556.9	1002.5	519.5	935.0	158.0
75	289.0	-3929	$5 \cdot 589$	74.99	${ }^{1} 35.0$	554.0	997.3	516.0	928.8	167.0
80	355.1	. 4828	6.867	80.01	144.0	55 I .1	991.9	512.6	922.6	176.0
85	433.5	.5894	8.383	85.04	153.1	54.1	986.5	509.1	916.3	185.0
90	525.8	.7149	10.167	90.07	162.1	544.9	980.9	505.4	909.9	194.0
91	546.1	.7425	10.560	91.08	163.9	544.3	979.8	504.7	908.5	195.8
92	567.1	. 7710	10.966	92.08	165.7	543.7	978.7	504.0	907.2	197.6
93	588.7	. 8004	11.384	93.09	167.5	543.1	977.6	$503 \cdot 3$	906.0	199.4
94	611.0	. 8307	II.8I 5	94.10	169.3	542.5	976.5	502.6	904.7	201.2
95	634.0	. 8620	12.260	95.11	171.2	541.9	975.4	501.9	903.4	203.0
96	657.7	. 8942	12.718	96.12	173.0	541.2	974.2	501.1	902.1	204.8
97	682.1	. 9274	13.190	97.12	174.8	540.6	973.1	500.4	900.8	206.6
98	$707 \cdot 3$. 9616	13.678	98.13	176.6	539.9	971.9	499.6	899.4	208.4
99	$733 \cdot 3$. 9970	14.180	99.14	178.5	539.3	970.8	498.9	898.2	210.2
100	760.0	1.0333	14.697	100.2	180.3	538.7	969.7	498.2	896.9	212.0
101	787.5	1.0707	15.229	101.2	182.1	538.1	968.5	$497 \cdot 5$	895.5	213.8
102	815.9	1.1093	15.778	102.2	183.9	537.4	$967 \cdot 3$	496.8	894.1	215.6
103	845.1	I. 1490	16.342	103.2	185.7	536.8	966.2	496.1	892.9	217.4
104	875.1	1.1898	16.923	104.2	187.6	536.2	965. I	$495 \cdot 4$	891.6	219.2
105	906.1	1.2319	17.522	105.2	189.4	535.6	964.0	494.7	890.3	221.0
106	937.9	1.2752	18.137	106.2	191.2	534.9	962.8	493.9	889.0	222.8
107	970.6	1.3196	18.769	107.2	193.0	534.2	96 I .6	493.1	887.6	224.6
108	1004.3	1.3653	19.420	108.2	194.8	533.6	960.5	492.4	886.3	226.4
109	1038.8	1.4123	20.089	109.3	196.7	5.32 .9	959.3	49 I .6	885.0	228.2
110	$1074 \cdot 5$	1.4608	20.777	110.3	198.5	532.3	958.1	490.9	883.6	230.0
1112	1111.1	1.5106	21.486	111.3	200.3	531.6	956.9	490.2	882.3	231.8
112	1148.7	1.5617	22.214	112.3	202.1	530.9	955.7	489.4	880.9	233.6
113	1187.4	1.614 .4 1.6654	22.962	113.3	203.9	530.3	$954 \cdot 5$	488.7	879.5	235.4
114	1227.1	1.6654	23.729	114.3	205.8	529.6	953.3	487.9	878.2	237.2
115	1267.9	1.7238	24.518	115.3	207.6	528.9	952.1	487.1	876.8	239.0
116	1309.8	1.7808	25.328	116.4	209.4	528.2	950.8	486.3	875.4	240.8
117 118	1332.8 1397.0	1.8393 I .8993	26.150	117.4	211.2	527.5	$949 \cdot 5$	485.5	873.9	242.6
118	1397.0	1.8993	27.015	118.4	213.0	526.9	948.4	484.8	872.6	24.4 .4
119	1442.4	I.961 1	27.893	119.4	214.9	526.2	$947 \cdot 2$	484.0	871.3	246.2

Table 259 (continued).
PROPERTIES OF SATURATED STEAM.

Metric and Common Units.

If a is the reciprocal of the Mechanical Equivalent of Heat, p the pressure, s and σ the specific volumes of the liquid and the saturated vapor, $s-. \sigma$, the change of volume, then the heat equivalent of the external work is Apu $=$ $\mathrm{Ap}(\mathrm{s}-\sigma)$. Heat equivalent of internal work, $\rho=\mathrm{r}-\mathrm{Apu}$. For experimental sp. vols. see k noblauch, linde and Klebe, Mitt. über Forschungarbeiten, 21, p. 33, 1905. Entropy $=\mathrm{SdQ} / \mathrm{T}$, where $\mathrm{dQ}=$ amount of heat added at absolute temperature T. For pressures of saturated steam see Holborn and Henning, Ann. der Plyys. 26, p. 833, 1908; for temperatures above $205^{\circ} \mathrm{C}$. corrected from Regnault.

	Heat Equivalent of External W ork.		Entropy of the Liquid.	Entropy of Evaporation.	Specific Volume.		Density.		
	Calories.	B.T.U.			Cubic Meters per Kilogram.	Cubic Feet per Pound.	Kilograms per Cubic Meter.	Pounds per Cubic Foot.	
t	Apu.	Apu.	θ	$\stackrel{\mathrm{r}}{\mathrm{T}}$	s	s	1 s	$\begin{aligned} & 1 \\ & 8 \end{aligned}$	
\bigcirc	30.1	54.2	0.0000	2.1504	206.3	3304.	0.00485	0.000303	32.0
5	30.6	55.2	. 0183	2.1320	I 47. I	2356.	.00680	. 000424	41.0
10	31.2	56.1	.0361	2.0850	106.3	1703.	. 00941	. 000587	50.0
15	31.7	57.1	. 0537	2.0396	77.9	1248.	. 01283	.000801	59.0
20	32.2	58.0	. 0709	I. 9959	57.8	926.	. 01730	. 001080	68.0
25	32.8	59.0	. 0878	1.9536	43.40	695.	. 02304	. 001439	77.0
30	$33 \cdot 3$	59.9	. 1044	1.9126	32.95	528.	. 03035	. 001894	86.0
35	33.8	60.9	. 1207	1. 8728	25.25	404.7	. 03960	. 002471	95.0
40	34.3	61.8	. 1368	I. 834 I	19.57	313.5	.0511	.003190	104.0
45	34.8	62.7	.1526	1.7963	I 5.25	244.4	.0656	.004092	113.0
50	35.4	63.6	. 1682	1.7597	12.02	192.6	.0832	. 00519	122.0
55	35.9	64.6	.1835	1.7242	9.56	153.2	. 1046	. 00653	131.0
60	36.4	65.6	. 1986	1. 6899	7.66	122.8	. 1305	. 00814	140.0
65	36.9	66.5	.2135	1. 6563	6.19	99.2	.1615	. 01008	149.0
70	37.4	67.4	. 2282	1.6235	5.04	80.7	. 1984	. 01239	158.0
75	38.0	68.5	. 2427	I. 5918	4.130	66.2	.2421	. 01510	167.0
So	38.5	69.3	. 2570	1. 5609	3.404	54.5	. 2938	. 01835	176.0
85	39.0	70.2	. 2711	1. 5307	2.824	45.23	. 3541	. 02211	185.0
90	39.5	71.0	. 2851	1.5010	2.358	37.77	. 424 I	. 02648	194.0
91	39.6	71.3	. 2879	1.495^{2}	2.275	36.45	. 4395	. 02743	195.8
92	39.7	71.5	. 2906	1.4894	2.197	35.19	. 4552	. 02842	197.6
93	39.8	71.6	. 2934	1. 4836	2.122	34.00	. 47 I 3	. 02941	199.4
94	39.9	71.8	. 2961	1.4779	2.050	32.86	.4878	. 03043	201.2
95	40.0	72.0	.2989	1.4723	I. 980	31.75	. 505	.03149	203.0
96	40.1	72.1	. 3016	I. 4666	1.913	30.67	. 523	. 03260	204.8
97	40.2	72.3	- 3043	1.4609	1.849	29.63	. 541	. 03375	206.6
98	40.3	72.5	. 3070	1.4552	1.787	28.64	. 560	. 03492	208.4
99	40.4	72.6	. 3097	I. 4496	1.728	27.69	. 579	.03611	210.2
100	40.5	72.8	-3125	I. 4441	1.671	26.78	. 598	. 03734	212.0
101	40.6	73.0	-3152	1.4386	1.617	25.90	. 618	. 03861	213.8
102	40.6	73.2	. 3179	I. 4330	1. 564	25.06	.639	. 03990	215.6
103	40.7	$73 \cdot 3$. 3205	I. 4275	1.514	24.25	.661	W. 04124	217.4
10.4	40.8	73.5	. 3232	I. 4220	1.465	23.47	. 683	. 04261	219.2
105	40.9	73.7	. 3259	1.4165	1.419	22.73	.705	. 04400	221.0
106	41.0	73.8	- 3286	1.4111	1. 374	22.01	.728	. 04543	222.8
107	41.1	74.0	- 3312	1.4057	1.33 I	21.31	. 751	. 04692	224.6
108	41.2	74.2	. 3339	1.4003	I. 289	20.64	. 776	. 04845	226.4
109	41.3	74.3	. 3365	I. 3949	1.248	19.99	. 801	. 0500	228.2
110	41.4	74.5	-3392	I. 3895	1.209	19.37	. 827	. 0516	230.0
111	41.4	74.6	. 3418	1.3842	1.172	18.77	. 853	. 0533	231.8
112	41.5	74.8	. 3445	1.3789	I. 136	18.20	. 880	. 0550	233.6
113	41.6	75.0	-347 1	I. 3736	I.IOI	17.64	. 908	. 0567	235.4
114	41.7	75.1	- 3498	I. 3683	1.068	17.10	.936	. 0585	237.2
115	41.8	$75 \cdot 3$. 3524	1.3631	1.036	16.59	. 965	. 0603	239.0
116	41.9	75.4	. 3550	1.3579	1.005	16.09	. 995	.0622	240.8
117	42.0	75.6	- 3576	1.3527	0.9746	15.61	1. 026	. 0641	242.6
118	42.1	75.8	. 3602	I. 3475	0.9460	15.16	1.057	. 0659	244.4
119	42.2	75.9	. 3628	1.3423	0.9183	14.72	1.089	. 0679	246.2

Metric and Common Units.

	Pressure			Heat of the Liquid.		$\begin{gathered} \text { Heat of } \\ \text { Vaporization. } \end{gathered}$		Heat Equivalent of Internal Work.		
		Kg. per sq. cm. p.	Pds. per sq. in. p.	Calories.	B. T. U. q	Calories.	B. T. U.	Calories	B. T. U.	
120	1489	2.024	28.79	120.4	216.7	525.6	946.0	483.4	870.0	248.0
121	1537	2.089	29.72	121.4	218.5	524.9	944.8	482.6	868.6	24.8
122	${ }_{1} 586$	2.156	30.66	122.5 123.5	220.4 222.2	524.2 523.5	$943 \cdot 5$ 942.3	481.0	865.8	251.6 253.4
123	1636 1685	2.224 2.29 .4	31.64 32.64	123.5 124.5	222.2 224.1	523.5 522.8	942.3 941.0	481.0 480.2	86.1 864.3	253.4 255.2
125	1740	2.366	33.66	125.5	225.9	522.1	939.9	479.4	863.0	257.0
126	1795	2.440	334.71	126.5	227.7	521.4	938.6	478.6	861.6	258.8
127	1850	2.516	35.78	127.5	229.5	520.7	937.3	477.8	860.2	260.6
128	1907	2.593	36.88	128.6	231.4	520.0	936.1	477.0	858.8	262.4
129	1966	2.673	38.01	129.6	$233 \cdot 3$	519.3	934.8	476.3	857.4	264.2
130	2026	2.754	39.17	I 30.6	235.1	518.6	933.6	475.5	856.0	266.0
${ }_{13}{ }^{1}$	2087	2.837	40.36	131.6	236.9	517.9	932.3	474.7	854.6	267.8
132	2150	2.923	41.57	132.6	238.7 20.6	517.3 516.6	$93 \mathrm{Pr.1}$	474.0	853.2 851.8	269.6
133	2214	3.010	42.81 44.09	133.7 134.7	2.40 .6 242.4	516.6 515.9	929.8 928.5	473.3 472.5	851.8 850.4	271.4 273.2
134	2280	3.100	44.09	134.7	242.4	515.9	928.5	472.5		273.2
	2348	3.192	45.39	135.7	244.2	515.1	927.2	471.6	848.9	275.0
136	2416	3.285	46.73	136.7	246.0	514.4	925.9	470.8	847.5	276.8
137	2487	$3 \cdot 3^{82}$	48.10	137.7	247.9	513.7	924.6	470.1	846.1	278.6
138	2560	$3 \cdot 480$	49.50	138.8	249.7	513.0	923.3	469.3	844.6	280.4
${ }^{1} 39$	2634	3.581	50.93	139.8	251.6	512.3	922.1	468.5	$843 \cdot 3$	282.2
140	2710	3.684	52.39	140.8	253.4	511.5	920.7	467.6	841.8	284.0
141	2787	3.789	53.89	141.8	255.3	510.7	919.3	466.8	840.2	285.8
142	2866	3.897	55.43	142.8	257. I	510.1	918.1	466.1	838.9	287.6
143	2948	4.008	57.00	143.9	259.0	509.3	916.7	$465 \cdot 3$	837.4	289.4
144	3030	4.121	58.60	144.9	260.8	508.6	915.4	464.4	835.9	291.2
145	3115	4.236	60.24	145.9	262.7	507.8	914.1	463.6	834.5	293.0
146	3202	4.354	61.92	146.9	264.5	507.1	912.8	462.8	833.1	294.8
147	3291	4.474	63.64	148.0	266.4	506.4	911.5	462.0	831.6	296.6
148	3381	4.597 4.723	65.39 67.18	149.0	268.2 270.1	505.6 504.9	910.1 908.8	46 r .2 460.4		298.4 300.2
149	3474	4.723	67.18	150.0	270.1	504.9	908.8	460.4	828.7	300.2
150	3569	4.852	69.01	151.0	271.9	504.1	907.4	459.5	827.2	302.0
151	3665	4.984	70.88	152.1	273.8	503.4	906.1	458.7	825.7	303.8
${ }_{1}{ }^{5}$	3764	5.118	72.79	153.1	275.6	502.6	904.7	457.9	824.2	305.6
153	3865	5.255	74.74	154.1	$277 \cdot 4$	501.9	903.3	457.I	82.7	307.4
${ }^{1} 54$	3968	$5 \cdot 395$	76.73	${ }^{1} 55.1$	279.2	501.1	901.9	456.3	821.2	309.2
	4073	5.538	78.76	156.2	$28 \mathrm{I} . \mathrm{I}$	500.3	900.5		819.6	
156	4181	5.684	80.84	157.2	283.0	499.6	899.2	454.6	818.2	312.8
157	4290	5.833	82.96	158.2	284.8	498.8	897.8	453.8	816.7	314.6
${ }_{158}^{15}$	4402	5.985	85.12	159.3	286.7	498.1	896.5	453.0	815.3	316.4
${ }^{1} 59$	4517	6.141	87.33	160.3	288.5	$497 \cdot 3$	895.1	$45^{2.1}$	813.7	318.2
160	4633	6.300	89.59	16 I .3	290.4	496.5	893.7	451.2	812.2	320.0
161	4752	6.462	91.89	162.3	292.2	495.7	892.3	450.4	810.7	321.8
162	4874	6.628	94.25	163.4	294.1	494.9	890.9	449.5	809.2	323.6
163	4998	6.796	96.65	164.4	295.9	494.2	889.5	448.7	807.7	325.4
164	5124	6.967	99.09	165.4	297.7	$493 \cdot 4$	888.1	447.9	806.2	327.2
165	5253	7.142	101. 6	166.5	299.6	492.6	886.7	447.0	804.7	329.0
165	5384	7.320	104.1	167.5	301.5	491.9	885.4	446.3	803.3	330.8
167 168	5518 5655	7.502 7.688	106.7 109.4	168.5	303.3 305.1	491.1	883.9 882.5	445.4 444.6	801.7 800.1	332.6 334.4
169	5794	7.877	112.0	170.6	307.0	498.3 489.5	881.0	444.6	800.1 798.5	334.4 336.2

PROPERTIES OF SATURATED STEAM.
Matric and Common Units.

	Heat Equivalent of External Work.		Entropy of the Liquid. θ.	Entropy of Evaporation.$\frac{\mathrm{r}}{\mathbf{T}}$	Specific Volume.		Density.		
	Calories.	B. T. U.			Cubic Meters per Kilogram.	Cubic Feet per Pound.	Kilograms per Cubic Meter.	Pounds per Cubic Foot.	
	Apu.	Apu.			s.	s.	${ }_{8}^{1 .}$	${ }_{8}^{1 .}$	
120	42.2	76.0	0.3654	1. 3372	0.8914	14.28	1.122	0.0700	248.0
121	42.3	76.2	. 3680	I.3321	. 8653	13.86	I. 156	. 0721	249.8
122	42.4	76.4	. 3705	1. 3269	. 8401	13.46	1.190	. 0743	251.6
123	42.5	76.5	. 3731	I. 3218	.8I 58	13.07	I. 226	. 0765	253.4
124	42.6	76.7	. 3756	1.3167	. 7924	12.69	1.262	. 0788	255.2
125	42.7	76.8	. 3782	1.3117	.7698	12.33	1.299	. 0811	257.0
126	42.8	77.0	. 3807	1.3067	. 7479	11.98	1.337	. 0835	258.8
127	42.9	77.1	-3833	1.3017	. 7267	11.64	1. 376	. 0859	260.6
128	43.0	77.3	. 3858	1.2967	. 7063	11.32	1. 416	. 0883	262.4
129	43.0	$77 \cdot 4$	-3884	1.2917	. 6867	11.00	1. 456	.0909	264.2
130	43.1	77.6	- 3909	1. 2868	. 6677	10.70	1. 498	. 0935	266.0
131	43.2	77.7	- 3934	1.2818	. 6493	10.40	1.540	.0961	267.8
132	$43 \cdot 3$	77.9	- 3959	1.2769	.6315	10.12	I. 583	. 0988	269.6
133	$43 \cdot 3$	78.0	- 3985	1.2720	. 6142	9.839	1. 628	. 1016	271.4
134	$43 \cdot 4$	78.1	. 4010	1.2672	. 5974	9.569	I. 674	.1045	273.2
135	$43 \cdot 5$	78.3	. 4035	1.2623	. 5812	9.309	1.721	. 1074	275.0
136	43.6	78.4	. 4060	I. 2574	.5656	9.060	1.768	. 1104	276.8
137	43.6	78.5	. 4085	1.2526	. 5506	8.820	ı. 816	. I 34	278.6
138	43.7	78.7	.4110	1.2479	. 5361	8.587	1.865	. 1165	280.4
139	43.8	78.8	.4135	1.2431	. 5219	8.360	1.916	. 1196	282.2
140	$43 \cdot 9$	78.9	.4160	1.2383	.5081	8.140	1.968	. 1229	284.0
141	43.9	79.1	.4185	I. 2335	. 4948	7.926	2.021	.1262	285.8
142	44.0	79.2	. 4209	I. 3288	. 4819	7.719	2.075	. 1296	287.6
143	44.0	79.3	. 4234	1.2241	. 4694	$7 \cdot 519$	2.130	.1330	289.4
144	44.2	79.5	. 4259	1.2194	. 4574	$7 \cdot 326$	2.186	.1365	291.2
145	44.2	79.6	.4283	I. 2147	. 4457	7.139	2.244	. 1401	293.0
146	44.3	79.7	. 4307	1.2100	-4343	6.957	2.303	. 1437	294.8
147	44.4	79.9	. 4332	1.2054	.4232	6.780	2.363	. 1475	296.6
148	44.4	80.0	. 4356	1.2008	.4125	6.609	2.424	.1513	298.4
149	44.5	80.1	. 4380	1.1962	. 4022	6.443	2.486	. $155{ }^{2}$	300.2
150	44.6	80.2	. 4405	1.1916	-392I	6.282	2.550	. 1592	302.0
151	44.6	80.4	. 4429	1.1870	. 3824	6.126	2.615	.1632	303.8
152	44.7	So. 5	. 4453	1.1824	. 3729	5.974	2.682	.1674	305.6
153	44.8	80.6	. 4477	1.1778	.3637	5.826	2.750	.1716	307.4
154	44.8	80.7	. 4501	1.1733	. 3548	5.683	2.818	.1759	309.2
155	44.9	80.9	-4525	1.1688	. 3463	$5 \cdot 546$	2.888	.1803	311.0
156	45.0	81.0	-4549	I. 1644	. 3380	5.413	2.959	.1847	312.8
157	45.0	8 I .1	. 4573	I. 1599	-3298	$5 \cdot 282$	3.032	. 1893	314.6
158	45.1	81.2	. 4596	1.1554	-3218	5.154	$3 \cdot 108$. 1940	316.4
159	45.2	81.4	. 4620	1.1509	-3140	5.029	3.185	. 1988	318.2
160	$45 \cdot 3$	8 I .5	.4644	I.1465	. 3063	4.906	3.265	. 2038	320.0
161	$45 \cdot 3$	Si. 6	. 4668	1.142 I	. 2989	4.789	$3 \cdot 345$. 2088	321.8
162	45.4	8 I .7	.4692	1.1377	. 2920	4.677	$3 \cdot 425$. 2138	323.6
163	45.5	8 8 .8	.4715	1.1333	.2855	4.571	$3 \cdot 503$. 2188	325.4
164	45.5	8 I .9	. 4739	1.1289	.2792	4.469	$3 \cdot 582$.2238	327.2
165	45.6	82.0	.4763	1.1245	.2729	$4 \cdot 368$	3.664	.2289	329.0
166	45.6	82.1	. 4786	1.1202	.2666	4.268	3.751	. 2343	330.8
167	45.7	82.2	. 4810	1.1159	.2603	4.168	3.842	. 2399	332.6
168 :	45.7	82.4	.4833	I. 1115	. 2540	4.070	3.937	. 2457	$334 \cdot 4$
169	45.8	82.5	.4857	1.1072	.248o	3.975	4.032	.2516	336.2

Metric and Common Units.

	Pressure.			Heat of the Liquid.		Heat of Vaporization.		Heat Equivalent of Internal Work.		
	Mm. of Mercury. p.	Kg. per sq. cm. p.	Pds. per sq. in. p.	Calories. q.	B. T. U. q.	Calories.	B. T. U.	Calories.	B. T. U. p.	
170	5937	8.071	11.4 .8	171.6	308.9	488.7	879.6	$442 . \mathrm{S}$	797.0	338.0
171	6081	8.268	117.6	172.6	310.7	487.9	878.3	441.9	795.6	339.8
172	6229	8.469	120.4	173.7	312.6	487.1	876.9	441.1	794. 1	341.6
173	6379	8.673	123.4	174.7	314.5	486.3	875.4	440.2	792.5	3.33 .4
174	6533	8.852	126.3	175.7	$3^{16.3}$	485.5	873.9	439.4	790.9	345.2
175	6689	9.094	129.4	176.8	318.2	484.7	872.4	438.5	789.3	347.0
176	68.48	9.310	132.4	177.8	320.0	483.9	871.0	437.7	787.8	348.8
177	7010	9.53 .1	135.6	178.8	321.8	483.1	869.5	436.8	786.2	350.6
178	7175	9.755	138.8	179.9	323.7	482.3	868.1	436.0 435.0	784.7 783.1	352.4 354.2
179	7343	9.983	142.0	I 80.9	325.6	48 I .4	866.6	435.0	783.1	354.2
1 So	7514	10.216	1.45 .3	181.9	327.5	480.6	865.1	434.2	781.5	356.0
$1 \mathrm{~S}_{1}$	7688	10.453	148.7	183.0	329.3	479.8	863.6	$433 \cdot 3$	779.9	357.8
182	7866	10.695	152.1	184.0	331.2	479.0	862.2	432.5	778.4	3.59 .6
183	8046	10.940	155.6	185.0	333.0	478.2	S00.7	43 I .6	776.9	361.4
$1 \mathrm{~S}_{4}$	S230	II.IS9	159.2	186.1	334.9	477.4	859.2	430.8	$775 \cdot 3$	363.2
185	8417	11.44	162.8	187.1	336.8	476.6	857.7	429.9	773.7	365.0
186	8603	11.70	166.5	188.1	338.6	475.7	856.3	429.0	772.2	366.8
187	8 SO 2	1 I .97	170.2	189.2	3.40 .5	474.8	854.7	428.0	770.5	368.6
188	8999	12.24	174.0	190.2	342.4	474.0	853.2	427.2	768.9	370.4
189	9200	12.51	177.9	191.2	344.2	473.2	851.7	426.3	767.4	372.2
190	9.404	12.79	18ı. 8	192.3	346.1	472.3	850.2	425.4	765.8	374.0
191	9612	13.07	185.9	193.3	347.9	471.5	848.7	424.5	764.2	375.8
192	9823	13.36	190.0	194.4	349.8	470.6	S47.1	423.6	762.5	377.6
193	10038	13.65	194.1	195.4	351.7	469.8	845.6	422.8	761.0	379.4
194	10256	${ }^{1} 3.94$	198.3	196.4	353.5	468.9	844.1	421.9	759.4	381.2
195	10.480	14.25	202.6	197.5	355.4	468.1	842.5	421.0	757.7	383.0
196	10700	14.55	207.0	198.5	$357 \cdot 3$	467.2	841.0	420.1	756.1	384.8
197	10930	14.87	211.4	199.5	359.2	466.4	839.5	419.2	754.6	386.6
198	11170	15.18	216.0	200.6	361.1	465.6	838.0	418.4	753.0	388.4
199	11410	15.51	220.6	201.6	362.9	$46+7$	836.4	417.4	751.3	390.2
200	11650	15.84	225.2	202.7	364.8	463.8	834.8	416.5	749.7	392.0
201	11890	16.17	223.0	203.7	366.7	462.9	833.3	415.6	748.1	393.8
202	12140	16.51	234.8	204.7	368.5	462.1	831.8	414.8	746.6	395.6
203	12400	16.85	239.7	205.8	370.4	461.2	830.2	413.8	744.9	397.4
204	12650	17.20	244.7	206.8	372.3	460.3	S28.6	412.9	$743 \cdot 3$	399.2
205	12920	17.56	249.8	207.9	374.1	459.4	827.0	412.0	741.6	401.0
206	13180	17.92	254.9	208.9	376.0	$45^{8.6}$	825.4	411.1	740.0	402.8
207	13450	18.29	260.1	210.0	377.9	457.7	823.8	410.2	738.3	404.6
208	13730	18.66	265.4	211.0	379.8	456.8	822.2	409.3	736.7	406.4
209	14010	19.04	270.8	212.0	331.6	455.9	820.6	408.4	735.I	408.2
210	14290	19.43	276.3	213.1	383.5	455.0	819.1	407.5	733.6	410.0
211	14580	19.82	281.9	214.1	385.4	454.1	817.4	406.6	731.9	411.8
212	1.4870	20.22	287.6	215.2	387.3	453.2	815.8	405.7	730.2	413.6
213	15170	20.62	293.3	216.2	389.2	452.4	814.3	404.9	728.7	415.4
214	15470	21.03	299.2	217.3	391.1	451.5	812.7	404.0	727.1	417.2
215	15780	21.45	305.1	218.3	392.9	450.6	SII.O	403. 1	725.4	419.0
216	16090	21.88	311.1	219.3	394.8	449.6	809.3	402.1	723.7	420.8
217	16410	22.31	317.3	220.4	396.7	448.7	807.7	401.2	722.1	422.6
218	16730	22.74	323.5	221.4	398.5	447.8	806.1	400.3	720.5	424.4
219	17060	23.19	329.8	222.5	400.4	446.9	804.5	399.4	718.9	4262
220	17390	23.64	336.2	223.5	402.3	446.0	802.9	398.5	717.3	428.0

Table 253 (continued).
PROPERTIES OF SATURATED STEAM.
Metric and Common Units.

	Heat Equivalent of External Work.		Entropy of the Liquid. θ.	Entropy of Evaporation.$\frac{\mathrm{r}}{\mathrm{~T}}$	Specific Volume.		Density.		
	Calories.	B. T. U.			Cubic Meters per Kilogram.	Cubic Feet per Pound.	Kilograms per Cubic Meter.	Pounds per Cubic Foot.	
	Apu.	Apu.			s.	s.	$\frac{1}{8}$	$\frac{1}{8} \cdot$	
170	$45 \cdot 9$	82.6	0.4880	I. 1029	0.2423	3.883	4.127	0.2575	. 338.0
171	46.0	82.7	. 4903	1.0987	. 2368	3.794	4.223	. 2636	339.8
172	46.0	82.8	. 4926	1.0944	. 2314	3.709	4.322	. 2696	341.6
173	46. 1	82.9	. 4949	1.0901	. 2262	3.626	4.42 I	. 2758	343.4
174	46.1	83.0	. 4972	1.0859	. 2212	$3 \cdot 545$	4.52 I	. 2821	345.2
175	46.2	83.1	. 4995	1.0817	. 2164	3.467	4.621	. 2884	347.0
176	46.2	83.2	. 5018	1.0775	. 2117	$3 \cdot 391$	4.724	. 2949	348.8
177	46.3	$83 \cdot 3$. 5041	1.0733	. 2072	$3 \cdot 318$	4.826	.3014	350.6
178	46.3	83.4	. 5064	1.0691	. 2027	3.247	4.933	-3080	352.4
179	46.4	83.5	. 5087	1. 0649	.1983	3.177	5.04	. 3148	354.2
180	46.4	83.6	. 5110	1.0608	.194 I	3.109	5.15	. 3217	356.0
181	46.5	83.7	. 5133	1.0567	.1899	3.041	5.27	. 3288	357.8
182	46.5	83.8	. 5156	1.0525	.1857	2.974	$5 \cdot 38$. 3362	359.6
183 184	46.6 46.6	83.8	. 5178	1.0484	.1817	2.911	5.50	- 3435	361.4
184	46.6	83.9	. 5201	1.0443	.1778	2.849	5.62	. 3510	363.2
185	46.7	$8_{4.0}$. 5224	1.0403	. 1740	2.787	5.75	. 3588	365.0
186	46.7	84.1	. 5246	1.0362	. 1702	2.727	5.88	- 3667	366.8
187	46.8	84.2	. 5269	1.0321	. 1666	2.669	6.00	. 3746	368.6
188	46.8	84.3	.5291	1.0280	.1632	2.614	6.13	. 3826	370.4
189	46.9	$84 \cdot 3$. 5314	1.0240	. 1598	2.560	6.26	. 3906	372.2
190	46.9	84.4	. 5336	1.0200	. 1565	2.507	6.39	. 3989	3740
191	47.0	84.5	. 5358	1.0160	. 1533	2.456	6. 52	. 4072	375.8
192	47.0	84.6	. 5381	1.0120	.1501	2.405	6.66	. 4158	377.6
193	47.0	84.6	. 5403	1.0080	.1470	2.355	6.80	.4246	379.4
194	47.0	84.7	. 5426	1.0040	. 1440	2.306	6.94	.4336	381.2
195	47.1	84.8	. 5448	1.0000	. 1411	2.259	7.09	. 4426	383.0
196	47.1	84.9	. 5470	0.9961	. 1382	2.214	7.23	. 4516	384.8
197	47.2	84.9	. 5492	. 9982	. 1354	2.169	$7 \cdot 38$. 4610	386.6
198	47.2	85.0	. 5514	. 9882	. 1327	2.126	7.53	. 4704	388.4
199	$47 \cdot 3$	85.1	. 5536	. 9843	. 1300	2.083	7.69	. 4 SOI	390.2
200	$47 \cdot 3$	85.1	. $555{ }^{8}$. 9804	. 1274	2.04 I	7.84	. 4900	392.0
201	$47 \cdot 3$	85.2	. 5580	. 9765	. 1249	2.001	8.00	. 4998	393.8
202	$47 \cdot 3$	85.2	. 5602	. 9727	. 1225	1.962	8.16	. 510	395.6
203	$47 \cdot 4$	85.3	. 5624	. 9688	. 1201	1.923	8.33	. 520	397.4
204	$47 \cdot 4$	85.3	. 5646	. 9650	. 1177	1.885	8.50	.531	399.2
205	47.4	85.4	. 5668	.9611	. 1153	I. 847	8.67	-541	401.0
206	47.5	85.4	. 5690	. 9572	. 1130	1.810	8.85	-552	402.8
207	47.5	85.5	. 5712	. 9534	. 1108	1.774	9.03	. 564	404.6
208	$47 \cdot 5$	85.5	. 5733	. 9496	.1086	1.739	9.21	. 575	406.4
209	$47 \cdot 5$	85.5	. 5755	. 9458	.1065	1.705	9.39	. 587	408.2
210	47.5	85.5	- 5777	. 9420	. 1044	1.673	9.58	. 598	410.0
211	47.5	85.5	. 5799	. 9382	.1024	1. 640	9.77	. 610	411.8
212	$47 \cdot 5$	85.6	. 5820	. 9344	.1004	1. 608	9.96	. 622	413.6
213	$47 \cdot 5$	85.6	.5842	. 9307	. 0984	1.577	10.16	. 634	415.4
214	$47 \cdot 5$	85.6	.5863	.9269	. 0965	I. 546	10.36	. 647	417.2
215	47.5	85.6	. 5885	. 9232	. 0947	1.516	10.56	. 660	419.0
216	$47 \cdot 5$	85.6	. 5906	. 9195	.0928	I. 486	10.78	. 673	420.8
217 218	47.5	85.6	. 5927	.9157	.0910	1.458	10.99	. 686	422.6
218 219	$47 \cdot 5$ 47.5	85.6 85.6	. 5948	.9120	.0893	1.430	11.20	. 699	424.4
219	$47 \cdot 5$	85.6	-5969	. 9084	. 0876	1.403	11.41	.713	426.2
220	$47 \cdot 5$	85.6	. 5991	. 9047	. 0860	1.376	11.62	. 727	428.0

LATENT HEAT OF FUSION.

This table contains the latent heat of fusion of a number of solid substances in large calories per kilogram or small calories or therms per gram. It has been compiled principally from Landolt and Börnstein's tables. C indicates the composition, T the temperature Centigrade, and H the latent heat.

Substance.	c	T	H	Authority.
Alloys: $30.5 \mathrm{~Pb}+69.5 \mathrm{Sn}$	PbSn_{4}	183	17.	Spring.
$36.9 \mathrm{~Pb}+63.15 \mathrm{Sn}$	PbSn_{3}	179	15.5	
$\begin{aligned} & \text { 63.7Pb+ } \\ & 77.8 \mathrm{~Pb}\end{aligned}+22.2 \mathrm{Sn}$.	$\mathrm{PbS}_{2} \mathrm{Pn}$	177.5 176.5	11.6	,
Britannia metal, ${ }^{77.8 \mathrm{Sn}+\mathrm{IPb}}$	$\mathrm{Pb}_{2} \mathrm{Sn}$	176.5 236	28.54	Ledebur.
Rose's alloy, $24 \mathrm{~Pb}+27.3 \mathrm{Sn}+48.7 \mathrm{Bi}$	-	98.8	6.85	Mazzotto.
Wood's alloy $\left\{\begin{array}{l}25.8 \mathrm{~Pb}+14.7 \mathrm{Sn} \\ +52.4 \mathrm{Bi}+7 \mathrm{Cd}\end{array}\right\}$	-	75.5	8.40	"
Aluminum	Al	658.	76.8	Glaser.
Ammonia	NH_{3}	-75.	108.	Massol.
Benzene .	$\mathrm{C}_{6} \mathrm{H}_{6}$	5.4	30.6	Mean.
Bromine	Br	-7.3	16.2	Regnault.
Bismuth .	Bi	268	12.64	Person.
Cadmium	${ }^{\mathrm{Cd}}$	320.7	13.66	"
Calcium chloride . .	$\mathrm{CaCl}_{2}+6 \mathrm{H}_{2} \mathrm{O}$	28.5	40.7	Mean
Copper . .	$\mathrm{Cu}^{\text {c }}$	1083	42.	Mean.
Iron, Gray cast . . .	-	-	23.	Gruner.
" Shite" . .	-	-	33.	"
Iodine	I	-	11.71	Favre and Silbermann.
Ice	$\mathrm{H}_{2} \mathrm{O}$	-	79.63	\{ Dickinson, Harper, Osborne. \dagger
"	"	\bigcirc	79.59	Smith. \ddagger
" (from sea-water).	$\left\{\begin{array}{c}\mathrm{H}_{2} \mathrm{O}+3.535 \\ \text { of solids }\end{array}\right\}$	-8.7	54.0	Petterson.
Lead .	Pb	327	5.36	Mean.
Mercury	Hg	-39	2.82	Person.
Naphthalene . . .	$\mathrm{C}_{10} \mathrm{H}_{8}$	79.87	35.62	Pickering.
Nickel -	Ni	1435	4.64	Pionchon.
Palladium .	Pd	1545	36.3	Violle.
Phosphorus	P	44.2	4.97	Petterson.
Platinum	Pt	1755	27.2	Violle.
Potassium . .	K	62	15.7	Joannis.
Potassium nitrate	KNO_{3}	333.5	48.9	Person.
Phenol	$\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}$	25.37	24.93	Petterson.
Paraffin	-	52.40	35.10	Batelli.
Silver	Ag	961	21.07	Person.
${ }_{\text {Sodium }}{ }_{\text {nitrate }}$.	$\underset{\substack{\mathrm{Na} \\ \mathrm{NaNO}_{3}}}{ }$	97 305.8	31.7 64.87	Joannis.
" phosphate	$\left\{\begin{array}{c}\mathrm{NaNO}_{3} \mathrm{Na}_{2} \mathrm{HPO}_{4} \\ +{ }_{2} \mathrm{H}_{2}\end{array}\right\}$	305.8 36.1	64.87 66.8	،
Spermaceti .	$\left\{\underset{-}{+12 \mathrm{H}_{2} \mathrm{O}}\right\}$	43.9	36.98	Batelli.
Sulphur .	S	115	36.97 9.37	Person.
$\mathrm{Tin}^{\text {d }}$	Sn	232	14.0	Mean.
Wax (bees)	-	61.8	42.3	"
Zinc	Zn	419	28.13	"

[^37]Smithsonian tables.

TABLE 261. - Heat of Combustion of Some Carbon Compounds.

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Compound. \& Formula. \& Kg. cal. per g mol. \& Kg. cal. per g \& Compound. \& Formula. \& Kg. cal. per g- \& Kg. cal per g

\hline Paraffins: \& \& \& \& Alcohols: \& \& \&

\hline Methane, g \& CH_{4} \& $214 p$ \& 13.30 \& Methyl, 1 \& $\mathrm{CH}_{4} \mathrm{O}$ \& 170p \& 5.31p

\hline Ethane, g \& $\mathrm{C}_{2} \mathrm{H}_{6}$ \& $371 p$ \& 12.40 \& Ethyl, 1 \& $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$ \& $327 p$ \& 7.10p

\hline Propane, \& $\mathrm{C}_{3} \mathrm{H}_{8}$ \& $528 p$ \& $12.0 p$ \& n-propyl, \& $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$ \& 483 p \& $8.00 p$

\hline i-Butane, g - ${ }^{\text {dexane, }}$, \& $\mathrm{C}_{4} \mathrm{C}_{6} \mathrm{H}_{14}$ \& $687 p$
$995 p$ \& $11.8 p$
$11.6 v$ \& n-buty \& $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$
$\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}$ \& $644 p$ \& 8.680

\hline n -Heptane, \& $\mathrm{C}_{7} \mathrm{H}_{16}$ \& 11390 \& $11.4 p$ \& Ethers: \& \& $788 p$ \& 8.96p

\hline n-Octane, \& $\mathrm{C}_{8} \mathrm{H}_{18}$ \& 1315 p \& 11.50 \& Dimethyl, g \& $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$ \& 346p \& 7.60 p

\hline Dekane, 1 \& $\mathrm{C}_{10} \mathrm{H}_{22}$ \& 1626p \& 11.40 \& Diethyl, v \& $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$ \& 6600 \& $8.92 p$

\hline Olefines: \& \& \& \& Ethyl-methyl, \& $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}$ \& $506 p$ \& 8.43p

\hline Ethylene, g \& $\mathrm{C}_{2} \mathrm{H}_{4}$ \& $343 p$ \& $12.2 p$ \& Acids: \& \& \&

\hline Propylene, i \& $\mathrm{C}_{3} \mathrm{H}_{6}$ \& 496p \& II. 80
II $6 p$ \& Formic, \& $\mathrm{CH}_{2} \mathrm{O}_{2}$ \& 62p \& 1.3570

\hline i-Butylene, \& $\mathrm{C}_{4} \mathrm{H}_{8}$
$\mathrm{C}_{5} \mathrm{H}_{10}$ \& $651 p$
$804 p$ \& $11.6 p$
$11.5 p$ \& Asetic, 1. \& $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$
$\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{2}$ \& 210p \& 3.490

\hline Ampxylene, 1 \& ${ }^{\mathrm{C}_{6} \mathrm{CH}_{12}{ }^{\text {c }}}$ \& $804 p$
$962 p$ \& $11.5 p$
II. 40 \& Propionic, \& $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{2}$
$\mathrm{C}_{4} \mathrm{O}_{2}$ \& $368 p$
$525 p$ \& 4.960
5.950

\hline Acetylene, g. \& $\mathrm{C}_{2} \mathrm{H}_{2}$ \& $313 p$ \& $12.0 p$ \& Lactic, 1 \& $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{8}$ \& 3300 \& 5.960
3.660

\hline Trimethylene, g \& $\mathrm{C}_{3} \mathrm{H}_{6}$ \& $503 p$ \& II.9p \& \& \& \&

\hline Benzene, 1. \& $\mathrm{C}_{6} \mathrm{H}_{6}$ \& $78 \mathrm{I} p$ \& 10.0p \& Cellulose, s \& $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{5}$ \& 680 \& 4. 580

\hline Benzene, g \& $\mathrm{C}_{6} \mathrm{H}_{6}$ \& 788p \& $10.1 p$ \& Dextrine, \& $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{10}$ \& 414 \& -

\hline Naphthalene, \& $\mathrm{C}_{10} \mathrm{H}_{8}$ \& $1235 p$ \& $9.6 v$ \& Glycerine, \& $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}_{3}$ \& 397 \& 4.32

\hline Toluene, 1.. \& $\mathrm{C}_{7} \mathrm{CH}_{8}$ \& 937p \& 10.20 \& Phenol, 1. \& \& 735 \& 7.8 x

\hline \& CHCl_{3} \& 70
$253 p$ \& 3.280 \& Sugar, cane \& $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$
$\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{5}$ \& 1353

685 \& 3.950

\hline Carbon disulphide
Methyl-chloride, 8 \& ${ }_{\mathrm{CH}}^{\mathrm{CH}}{ }_{3} \mathrm{Cl}$ \& 253p
$169 p$ \& $3.28 v$
$3.26 p$ \& Starch, \& ${ }_{\text {C6 }}^{\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{CO}_{5}}$ \& 685
1353 \& 4.23
$9.02 p$

\hline Ethyl-chloride, v \& $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$ \& $332 p$ \& 5.10p \& Urea, 1. \& $\mathrm{CO}\left(\mathrm{NH}_{2}\right)_{2}$ \& ${ }_{152}$ \& | 2.53 |
| :--- |
| $2.02 p$ |

\hline
\end{tabular}

$0, p$, following the heats of combustion, signify at constant volume and pressure respectively. When referred to constant pressure, the values are 0.58 Kg -cal. greater (at about $18^{\circ} \mathrm{C}$) for each condensed gaseous molecule. The values are means from various observers. The combustion products are gaseous CO_{2}, liquid water, etc.

TABLE 262. - Heat of Combustion- Miscellaneous.

Substance.	Small calories per g substance.	递	Substance.	Small calories per g substance.	華
Asphalt.	9530	1	Oils: petroleum:		
Butter.	9200	-	crude.	11500	2
Carbon: amorphous	8080	2	light.	10000	2
charcoal.	8100 7860	2	heav	10200	${ }^{2}$
graphite.		3	rape..	9500 10000	
Copper (to CuO).	590	5	Paraffin (to $\mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O} \mathrm{i}$)	11140	6
Dynamite, 75\%.	1290	4	Parafin (to $\mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O} \mathrm{g}$).	10340	6
Egg, white of.	5700	$-$	Pitch.	8400	-
Egg, yolk of.	8100	-	Sulphur, rhombic	2200	2
Fats, animal	9500	2	Sulphur, monoclinic	22.40	5
Hemoglobin	5900	$\overline{-}$	Tallow.	9500	8
$\xrightarrow{\text { Hydrogen }}$ (to $\mathrm{Fe}_{2} \mathrm{O}_{3}$)	33900 1582	$\stackrel{2}{-}$		4170 4210	8
Magnesium (to MgO)	15080	-	oak, $13 \% \mathrm{H}_{2} \mathrm{O}$..	3990	8
Oils: cotton-seed.	9500 9300	-	pine, $\mathbf{1} 2 \% \mathrm{H}_{2} \mathrm{O}$	4420	8
	9300 9400	2			

References: (1) Slossen, Colburn; (2) Mean; (3) Berthellot; (4) Roux, Sarran; (5) Thomsen; (6) Stohmann; (7) Gibson; (8) Gottlieb.

* $\mathrm{C}_{2} \mathrm{H}_{\mathrm{f}}$. Data from the Geological Survey, Poole's The Calorific Power of Fuels, and for natural gas from Snelling (Van Nostrand's Chemical Annual).

CHEMICAL AND PHYSICAL PROPERTIES OF FIVE DIFFERENT CLASSES OF EXPLOSIVES．

Explosive．										
			为宫兑	E゙	免 ${ }^{\text {a }}$		$\begin{aligned} & \dot{\mathscr{E}} \\ & \stackrel{y}{E} \\ & \stackrel{y}{\mid c} \end{aligned}$	告		先
（A）Forty－per－cent nitro－ glycerin dynamite	1.22	1221.4	8235	227＊	4688	． 358	24.63	12	$\begin{aligned} & 88.4 \\ & 79.7 \\ & 14.5 \end{aligned}$	25
（B）FFF black blasting powder	1.25	789.4	4817	$\begin{aligned} & 374^{\dagger} \\ & 458^{*} \end{aligned}$	$469.4!$	925.	54.32	－	$\begin{array}{r} 154.4 \\ 126.9 \\ 4.1 \end{array}$	25
（C）Permissible explo－ sive；nitroglycerin class	1.10	760.5	5912	301＊	3008	． 47 I	27.79	4	$\begin{array}{r} 103.9 \\ 65.1 \\ 15.4 \end{array}$	1000
（D）Permissible explo－ sive；ammonium nitrate class	0.97	992.8	7300	279＊	3438 §	.483	25.68	I	$\begin{aligned} & 89.8 \\ & 27.5 \\ & 75 \cdot 5 \end{aligned}$	800
（E）Permissible explo－ sive；hydrated class	1． 54	6ı0．6	6597	434＊	2479	.338	17.49	3	$\begin{aligned} & 86.1 \\ & 56.0 \\ & 33.0 \end{aligned}$	$\begin{gathered} \text { Over } \\ 1000 \end{gathered}$
Chemical Analyses．										
（A）Moisture M 0.91 Nitroglycerin ．										

TABLE 265. - Additional Data on Explosives.

Explosive. (Ref. Young, Nature, 102, 216, 1918.)	Vol. gas per g in $\mathrm{cc}=\boldsymbol{V}$	Calories $\stackrel{\text { per }}{=} Q$	$\begin{gathered} \text { Coefficient } \\ =Q V \\ \div 1000 \end{gathered}$	Coefficient $G P=1$	Calculated Temperature Q/C C, sp. ht. gases $=0.24$
	cc				
Gunpowder.....................	280	738	207	1	$2240^{\circ} \mathrm{C}$
Nitroglycerine .	741	1652	1224	6	6880
Nitrocellulose, $13 \% \mathrm{~N}_{2} \ldots \ldots \ldots \ldots$	923	931	859	$4 \cdot 3$	3876
Cordite, Mk. I. (NG, 57 ; NC, 38 ; Vaseline, 5)	871	1242	1082	5.2	5175
Cordite, MD (NG, 30; NC, 65; Vaseline, 5)...	888	1031	915	$4 \cdot 4$	4225
Ballistite (NG, 50; NC, 50; Stabilizer, 5)	817 877	1349 810	1102	$5 \cdot 3$	5621
Picric acid (Lyddite)	877	810	710	3.4	3375

Shattering power of explosive $=$ vol. gas per $\mathrm{g} \times$ cals. $/ \mathrm{g} \times V_{d} \times$ density where V_{d} is the velocity of detonation.
Trinitrotoluene: $V_{d}=7000 \mathrm{~m} / \mathrm{sec}$. Shattering effect $=.87$ picric acid.
Amatol (Ammonium nitrate + trinitrotoluene, TNT): $V_{d}=4500 \mathrm{~m} / \mathrm{sec}$.
Ammonal (Ammonium nitrate, TNT, Al): $1578 \mathrm{cal} / \mathrm{g} ; 682 \mathrm{cc}$ gas; $V_{d}=4000 \mathrm{~m} / \mathrm{sec}$.
Sabulite (Ammonium nitrate, 78, TNT 8, Ca silicide 14): about same as ammonal.
TABLE 266. - Ignition Temperatures Gaseous Mixtures.
Ignition temperature taken as temperature necessary for hot body immersed in gas to cause ignition; slow combination may take place at lower temperatures. McDavid, J. Ch. Soc. Trans. 111, 1003, 1917. Gases were mixed with air. Practically same temperatures as with O_{2} (Dixon, Conrad, loc. cit. 95, 1909).

Benzene and air	$1062^{\circ} \mathrm{C}$	Ether and air.	$1033{ }^{\circ} \mathrm{C}$
Coal gas and air	878	Ethylene and air.	1000
CO and air...	931	Hydrogen and air	747

TABLE 267. - Time of Heating for Explosive Decomposition.

Temperature ${ }^{\circ} \mathrm{C}$.	170	${ }^{180}$	190	200	220	Ignition temperature.	
Time.	sec.	ec.	sec.	sec.	sec.	${ }^{\circ} \mathrm{C} \dagger$	${ }^{\circ} \mathrm{C} \ddagger$
ck powder						440	
Smokeess powder A	coich	$\substack{195 \\ 130}_{\substack{\text { a }}}$	${ }^{130}$	45	${ }_{25}^{23}$	\{300	二
Cellulid Pyroxylin.:	${ }_{870}^{170}$	${ }_{165}^{60}$	${ }_{6} 7$	21 56	$\stackrel{9}{8}$	300	二
Cellulid **......	${ }_{n}^{160}$	150 340 10	60 240	5is	30	590	450
Parlor matches Cotton wool...	n	$\stackrel{n}{n}$	$\stackrel{n}{n}$	590	480	\bigcirc	

n, failure to explode in twenty minutes. * The decomposition of nitrocellulose in celluloid commences at about $100^{\circ} \mathrm{C}$; above that the heat of decomposition may raise the mass to the ignition point if loss of heat is prevented. Above 170°, decomposition occurs with explosive violence as with nitrocellulose. Rate of combustion is 5 to 10 times that of poplar, pine, or paper of the same size and conditions.
\dagger Measured by contact with porcelain tube of given temperature. Average.
\ddagger Measured by contact with molten lead. Average.
Taken from Technologic Paper of Bureau of Standards, No. 98, 1917.
TABLE 268. - Flame Temperatures.
Measures made with optical pyrometer by Féry, J. de Phys. (4) 6, 1907.

Alcohol, with NaCl .	$1705^{\circ} \mathrm{C}$	Hydrogen flame.	$1900^{\circ} \mathrm{C}$
Bunsen flame, no air	1712	Hydrogen-oxygen	
Bunsen flame, $\frac{1}{2}$ air.	1812	Acetylene burner.	2458
Bunsen flame, full air.............	1871	Acetylene-oxygen.	3000
Illuminating gas-oxygen.	2200	Cooper-Hewlit Hg	3500

THERMO-CHEMISTRY. CHEMICAL ENERGY DATA.

The total heat generated in a chemical reaction is independent of the steps from initial to final state. Heats of formation may therefore be calculated from steps chemically impracticable. Chemical symbols now represent the chemical energy in a gram-molecule or mol(e); treat reaction equations like algebraic equations: $\mathrm{CO}+\mathrm{O}=\mathrm{CO}_{2}+68 \mathrm{Kg}$-cal; subtract $\mathrm{C}+2 \mathrm{O}=\mathrm{CO}_{2}$ +97 Kg -cal, then $\mathrm{C}+\mathrm{O}=\mathrm{CO}+29 \mathrm{Kg}$-cal. We may substitute the negative values of the formation heats in an energy equation and solve $\mathrm{MgCl}_{2}+2 \mathrm{Na}=2 \mathrm{NaCl}+\mathrm{Mg}+\mathrm{x} \mathrm{Kg}$-cal; $-15 \mathrm{I}=-196+\mathrm{x} ; \mathrm{x}=45 \mathrm{Kg}$-cal. Heats of formation of organic compounds can be found from the heats of combustion since burned to $\mathrm{H}_{2} \mathrm{O}$ and CO_{2}. When changes are at constant volume, energy of external work is negligible; also generally for solid or liquid changes in volume. When a gas forms a solid or liquid at constant pressure, or vice versa, it must be allowed for. For N mols of gas formed (disappearing) at $\mathrm{T}_{\mathrm{K}}{ }^{\circ}$ the energy of the substance is decreased (increased) by $0.002 \cdot \mathrm{~N} \cdot \mathrm{~T}_{\mathrm{K}} \mathrm{Kg}$-cal. $\mathrm{H}_{2}+\mathrm{O}=\mathrm{H}_{2} \mathrm{O}+67.5 \mathrm{Kg}$-cal. at $18^{\circ} \mathrm{C}$. at constant volume ; $\frac{1}{2}\left(2 \mathrm{H}_{2}+\mathrm{O}_{2}-2 \mathrm{H}_{2} \mathrm{O}=135.0+0.002 \times 3 \times 29 \mathrm{I}=136.7\right)=68.4 \mathrm{Kg}$-cal.

The heat of solution is the heat, + or 一, liberated by the solution of 1 mol of substance in so much water that the addition of more water will produce no additional heat effects. Aq. signifies this amount of water; $\mathrm{H}_{2} \mathrm{O}$, one mol. ; $\mathrm{NH}_{3}+\mathrm{Aq}=\mathrm{NH}_{4} \mathrm{OH} \cdot \mathrm{Aq} .+8 \mathrm{Kg}$-cal.

TABLE 269. (a). Heats of Formation from Elements in Kilogram Calories. At ordinary temperatures.

Compound.	Heat of Formation.	Compound.	Heat of Formation.	Compound.	Heat of Formation.	Compound.	Heat o Forma tion.
$\mathrm{Al}_{2} \mathrm{O}_{3}$	380.	HgO	21.4	KCl	105.7	$\mathrm{Li}_{2} \mathrm{SO}_{4}$	334.2
$\mathrm{Ag}_{2} \mathrm{O}$	6.5	$\mathrm{Na}_{2} \mathrm{O}$	100.	LiCl	93.8	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$	283.
BaO	126.	$\mathrm{Nd}_{2} \mathrm{O}_{3}$	435.	MgCl_{2}	151.0	$\mathrm{Na}_{2} \mathrm{SO}_{4}$	328.3
BaO_{2}	142.	${ }_{\mathrm{PiO}}{ }^{\text {N }}$	57.9	MnCl_{2}	112.3	MgSO_{4}	301.6
$\mathrm{Bi}_{2} \mathrm{O}_{3}$	${ }^{1} 38$.	$\mathrm{P}_{2} \mathrm{O}_{5} \mathrm{sgs}$	370.	$\stackrel{\mathrm{NaCl}}{ }{ }^{\text {a }}$	97.8	PbSO_{4}	216.2
CO am	29.0	PbO	50.3	NdCl_{3}	250.	$\mathrm{Tl}_{2} \mathrm{SO}_{4}$	221.0
$\mathrm{CO}^{\text {di }}$	26.1	PbO_{2}	62.4	$\mathrm{NH}_{4} \mathrm{Cl}$	76.3	ZnSO_{4}	229.6
$\mathrm{CO}_{2} \mathrm{am}$	97.0	$\mathrm{Pr}_{2} \mathrm{O}_{3}$	412.	NiCl_{2}	74.5	CaCO_{3}	270.
$\mathrm{CO}_{2} \mathrm{CO} \mathrm{Cr}_{2} \mathrm{dr}$	94.8 94.3	${ }^{\mathrm{Rb}_{2} \mathrm{O}} \mathrm{SO}_{2} \mathrm{rh}$ sgg	89.2 70.	PbCl_{2}	83.4	CuCO_{3}	143.
$\mathrm{CO}_{2} \mathrm{Ci}$	94.3 152.	${ }_{\text {S }} \mathrm{SO}_{2}$ rh sgg	70. 191.0	${ }_{\mathrm{PtCl}}^{4}$	40.5 60.4	$\mathrm{FeCO}_{3} \mathrm{FeCO}_{3}$	179. 280.
CeO_{2}	225.	SnO	66.9	SnCl_{2}	80.8	MgCO_{3}	267.
$\mathrm{Cl}_{2} \mathrm{O} \mathrm{g}$	-16.5	SnO_{2} cr	137.5	SnCl_{4}	128.	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	272.
CoO am	50.5	SrO_{2}	135.	SrCl_{2}	185.	ZnCO_{3}	194.
CoO cr	57.5	ThO_{2}	326.	ThCl ${ }_{6}$	300.	AgNO_{3}	28.7
$\mathrm{Co}_{3} \mathrm{O}_{4}$	193.4	$\mathrm{TiO}_{2} \mathrm{am}$	215.6	TICl	48.6	$\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$	209.
CrO_{3}	140.	TiO_{2} cr	218.4	RbCl	105.9	$\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} 6 \mathrm{H}_{2} \mathrm{O}$	92.9
$\mathrm{Cs}_{2} \mathrm{O}$	91.3	TlO_{2}	42.2	ZnCl_{2}	97.3	$\mathrm{HNO}_{3} \mathrm{gggl}$	41.6
$\mathrm{Cu}_{2} \mathrm{O}$	42.3	WO_{2}	131.	$\mathrm{HBrglg}^{\text {r }}$	8.6	KNO_{3}	119.2
CuO	37.2	WO_{3}	194.	$\mathrm{NH}_{4} \mathrm{Br}$	66.	LiNO_{3}	112.
FeO	65.7	ZnO	85.2	HI gsg	-6.2	$\mathrm{NH}_{4} \mathrm{NO}_{3}$	88.3
$\mathrm{Fe}_{2} \mathrm{O}_{3}$	196.5	AgCl	29.2	HF ggg	38.	NaNO_{3}	111.0
$\mathrm{Fe}_{3} \mathrm{O}_{4}$	270.8	$\mathrm{Ag}_{2} \mathrm{Cl}$	29.5	$\mathrm{Ag}_{2} \mathrm{~S}$	3.3	TlNO_{3}	58.2
$\mathrm{H}_{2} \mathrm{O} \mathrm{ggl}$	68.4	AlCl_{3}	161.4	${ }^{\mathrm{CS}_{2} \mathrm{sgg}}$	-26.0	$\mathrm{CH}_{4} \mathrm{sgg}$	20.
$\mathrm{H}_{2} \mathrm{O}_{2} \mathrm{ggl}$	46.8	$\mathrm{AuCl}_{\mathrm{y}}$	5.81	$\mathrm{CaS}^{\text {a }}$	90.8	$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{Hgg}$	25.
$\xrightarrow{\mathrm{HgO}}$	22.2 21.4	$\mathrm{AuCl}_{3 \mathrm{y}}^{\mathrm{A}}{ }^{\text {y }}$	${ }^{22.8}$	${ }_{\left(\mathrm{Cu}_{2} \mathrm{~S}\right.} \mathrm{NH}_{2} \mathrm{~S}$	66.2 18.3	$\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{sgg}$ HCN digsgg	-53.
$\mathrm{K}_{2} \mathrm{O}$	9 r.	BiCl_{3}	90.6	$\mathrm{CuS}^{\text {Cus }}$	18.3 I 4.6	$\mathrm{NH}_{3} \mathrm{ggg}{ }^{\text {reg }}$	- 12.5
$\mathrm{La}_{2} \mathrm{O}_{3}$	447.	$\mathrm{CCl}_{4} \mathrm{am}$	21.0	$\mathrm{H}_{2} \mathrm{~S}$ gsg	2.73	$\mathrm{Ca}(\mathrm{OH})_{2}$	23 .
LiO_{2}	141.6	CaCl_{2}	187.	$\mathrm{K}_{2} \mathrm{~S}$	103.4	$\mathrm{NH}_{4} \mathrm{OH}$	88.8
MgO	143.6	CdCl_{2}	93.2	MgS	79.4	NaOH	102.
MnO	90.8	CoCl_{2}	76.5	$\mathrm{Na}_{2} \mathrm{~S}$	89.3	$\mathrm{Na} \cdot \mathrm{H}_{2} \mathrm{O} \cdot \mathrm{Aq}-\mathrm{H}$	44.**
MnO_{2}	123.	CuCl_{2}	51.5	$\stackrel{\mathrm{PbS}}{ }$	19.3	$\frac{1}{2}\left(2 \mathrm{Na} \cdot \mathrm{O} \cdot \mathrm{H}_{2} \mathrm{O}\right)$	68.*
$\mathrm{Mn}_{3} \mathrm{O}_{4}$	325.	$\mathrm{CuCl}^{\text {a }}$	34.1	CaSO_{4}	262.	$\frac{1}{2}\left(\mathrm{Na}_{2} \mathrm{O} \cdot \mathrm{H}_{2} \mathrm{O} \cdot \mathrm{Aq}\right)$	30.*
MoO_{2}	143.	FeCl_{2}	82.1	CuSO_{4}	111.5		103.5
${ }^{\mathrm{MoO}_{3}} \mathrm{~N}_{2} \mathrm{O}$ ggg	174. -18.2	$\underset{\mathrm{GlCl}}{3}$	${ }^{96.0}$		${ }_{\text {1293 }}^{19}$	$\mathrm{K} \cdot \mathrm{H}_{2} \mathrm{O} \cdot \mathrm{Aq}-\mathrm{H}$	45.**
$\stackrel{N}{1}_{\mathrm{N}_{2} \mathrm{O} \mathrm{Oggg}}^{\mathrm{NO} \mathrm{ggg}}$	-18.2	$\mathrm{ClCl}_{2}{ }_{\mathrm{HCl}}{ }^{\text {gl }}$	155. 22.	$-\mathrm{SO}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$	$\stackrel{21.3}{175 .}$		69.**
NO_{2}	-8.1	$\mathrm{HgCl}^{\text {b }}$	$3 \mathrm{I} \cdot 3$	HgSO_{4}	165.		$35 \cdot 5$
$\mathrm{Na}_{2} \mathrm{O}_{4}$	- 2	HgCl_{2}	$53 \cdot 3$	$\mathrm{K}_{2} \mathrm{SO}_{4}$	344.3		

$\mathrm{am}=$ amorphous ; di = diamond; $\mathrm{gr}=$ graphite $; \mathrm{cr}=$ crystal ; $\mathrm{g}=$ gas ; $\mathrm{l}=$ liquid; $\mathrm{s}=$ solid; $\mathrm{y}=$ yellow (gold);

HEATS OF FORMATION OF IONS IN KILOGRAM-CALORIES.

+ and - signs indicate signs of ions and the number of these signs the valency. For the ionisation of each gram-molecule of an element divide the numbers in the table by the valency, e. g., $9.03 \mathrm{gr} . \mathrm{Al}=9.03 \mathrm{gr} . \mathrm{Al}++40.3 \mathrm{Kg} . \mathrm{cal}$. When a solution is of such dilution that further dilution does not increase its conductivity, then the heats of formation of substances in such solutions may be found as follows: $\mathrm{FeCl}_{2} \mathrm{Aq}=+22.2+2 \times 39.1=100.4 \mathrm{Kg}$. cal. $\mathrm{CuSO}_{4} \mathrm{Aq}=-15.8$ $+214.0=198.2 \mathrm{Kg}$. cal.

TABLE 271,-Heats of Neutralization in Kilogram-Calories.

The heat generated by the neutralization of an acid by a base is equal, for each gram-molecule of water formed, to 13.7 Kg . cal. plus the heat produced by the amount of un-ionized salt formed, plus the sum of the heats produced in the completion of the ionizations of the acid and the base. (See also p. 209).

Base.	$\mathrm{HCl} \cdot \mathrm{aq}$	$\mathrm{HNO}_{3} \cdot \mathrm{aq}$	$\mathrm{H}_{2} \mathrm{SO}_{4} \cdot \mathrm{aq}$	HCN•aq	$\mathrm{CH}_{3} \mathrm{COOH} \cdot \mathrm{aq}$	$\mathrm{H}_{2} \cdot \mathrm{CO}_{3} \cdot \mathrm{aq}$
KOH ${ }^{\text {aq }}$	13.7	13.8	15.7	2.9	$13 \cdot 3$	10.1
$\mathrm{NaOH} \cdot \mathrm{aq}$	13.7	13.7	15.7	2.9	13.3	10.2
$\mathrm{NH}_{4} \mathrm{OH} \cdot \mathrm{aq}$	12.4	12.5	14.5	1.3	12.0	8.
$\frac{1}{2} \mathrm{Ca}(\mathrm{OH})_{2} \cdot \mathrm{aq}$	14.0	13.9	15.6	3.2	13.4	9.5
${ }_{1}^{\frac{1}{2} \mathrm{Zn}(\mathrm{OH})_{2} \cdot \mathrm{aq}}$	9.9	9.9	11.7	8.1	8.9	$5 \cdot 5$
${ }_{2} \mathrm{Cu}(\mathrm{OH})_{2} \cdot \mathrm{aq}$	$7 \cdot 5$	$7 \cdot 5$	9.2	-	6.2	

TABLE 272.-Heat of Dilution, $\mathrm{H}_{2} \mathrm{SO}_{4}$.
In Kilogram-calories by the dilution of one gram-molecule of sulphuric acid by m gram-molecules of water.

mg. Cal. . .	1 6.38	2 9.42	$\stackrel{3}{3} 11.14$	${ }_{1}^{5} 3.11$	19 16.26	49 16.68	99 16.86	199 17.06	$\begin{aligned} & 399 \\ & 17 \cdot 31 \end{aligned}$	${ }^{1} 599$

[^38]TABLES 273-275.
RADIATION CONSTANTS.

table 273.-Radiation Formulæ and Constants for Perfect Radiator.

The radiation per sq. cm. from a "black body" (exclusive of convection losses) at the temperature T° (absolute, \mathbf{C}) to one at t° is equal to

$$
J=\sigma\left(T^{4}-t^{4}\right) \quad \text { (Stefan-Boltzmann); }
$$

where $\sigma=1.374 \times \mathrm{ro}^{-12}$ gram-calories per second per sq. centimeter.

$$
\begin{aligned}
& =8.26 \times 10^{-11} \quad " \quad " \quad \text { " minute } \\
& =5.75 \times 10^{-12} \text { watts per sq. centimeter. }
\end{aligned}
$$

The distribution of this energy in the spectrum is represented by Planck's formula:

$$
J_{\lambda}=C_{1} \lambda^{-5}\left[e^{\frac{C_{2}}{\lambda T}}-\mathrm{I}\right]^{-1}
$$

where $J \lambda$ is the intensity of the energy at the wave-length λ (λ expressed in microns, μ) and c is the base of the Napierian logarithms.
$C_{1}=9.226 \times 10^{3}$ for J in $\frac{\text { gram. cal. }}{\text { sec. } \mathrm{cm}^{2} .^{2}}=3.86 \times 10^{4}$ for J in $\frac{\text { watts }}{\mathrm{cm}^{2}}$
$C_{2}=14350$ for λ in μ
$J_{\max }=3.11 \times 10^{-16} T^{5}$ for J in $\frac{\text { gram. cal. }}{\text { see. cm. }}=\mathrm{I} .30 \times 10^{-15} T^{5}$ tor J in $\frac{\text { watts }}{\mathrm{cm}^{2}}$
$\lambda_{\text {max }} T=2910$ for λ in μ
$\mathrm{h}=$ Planck's unit $=$ elementary "Wirkungs quantum" $=6.83 \times 1 \mathrm{o}^{-27} \mathrm{ergs}$. sec.
$\mathrm{k}=$ constant of entropy equation $=1.42 \times 10^{-16}$ ergs./degrees.
TABLE 274. - Radiation in Gram-Calories per 24 Hours per sq. cm. from a Perfect Radiator at $t^{\circ} \mathbf{C}$ to an absolutely Cold Space ($-273^{\circ} \mathrm{C}$).
Computed from the Stefan-Boltzmann formula.

| $t^{\circ} \mathrm{C}$ | J | $t^{\circ} \mathrm{C}$ | J | $t^{\circ} \mathrm{C}$ | J | $t^{\circ} \mathrm{C}$ | J | $t^{\circ} \mathrm{C}$ | J | $t^{\circ} \mathrm{C}$ | J |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -273 | 0 | -120 | 65 | -10 | 571 | +12 | 787 | +34 | 1059 | +56 | 1400 |
| -220 | 1 | -110 | 84 | -8 | 588 | +14 | 808 | +36 | 1087 | +58 | 1430 |
| -210 | 2 | -100 | 107 | -6 | 606 | +16 | 831 | +38 | 1115 | +60 | 1470 |
| -200 | 3 | -90 | 134 | -4 | 625 | +18 | 855 | +40 | 1145 | +70 | 1650 |
| -190 | 5 | -80 | 165 | -2 | 643 | +20 | 879 | +42 | 1174 | +80 | 1850 |
| -180 | 9 | -70 | 201 | 0 | 662 | +22 | 903 | +44 | 1204 | +90 | 2070 |
| -170 | 13 | -60 | 245 | +2 | 682 | +24 | 928 | +46 | 1234 | +100 | 2310 |
| -160 | 19 | -50 | 294 | +4 | 701 | +26 | 953 | +48 | 1265 | +200 | 5960 |
| -150 | 27 | -40 | 350 | +6 | 722 | +28 | 979 | +50 | 1298 | +1000 | 313×10^{8} |
| -140 | 38 | -30 | 416 | +8 | 744 | +30 | 1005 | +52 | 1330 | +2000 | 318×10^{4} |
| -130 | 50 | -20 | 488 | +10 | 765 | +32 | 1032 | +54 | 1363 | +5000 | 921×10^{5} |

TABLE 275. - Valnes of J_{λ} for Various Temperatures Centigrade.
Ekholm, Met. Z. 1902, used $C_{1}=8346$ and $C_{2}=14349$, and for the unit of time the day.
For 100°, the values for $\mathrm{J} \lambda$ have been multiplied by 10 , for the other temperatures by 100 .

λ	$7=10{ }^{\circ} \mathrm{C}$	$30^{\circ} \mathrm{C}$	$15^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	$-30^{\circ} \mathrm{C}$	$-80^{\circ} \mathrm{C}$	λ	$100^{\circ} \mathrm{C}$	$30^{\circ} \mathrm{C}$	$15^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	$-30^{\circ} \mathrm{C}$	$-80^{\circ} \mathrm{C}$
μ 2	I	0	\bigcirc	\bigcirc	\bigcirc	0	${ }_{18}^{\mu}$	511	2961	2557	2175	1491	623
3	80	41	18	7	1	\bigcirc	19	443	2626	2281	1954	1363	594
4	469	508	272	138	27	1	20	386	2329	2034	1754	1242	561
5	1047	1777	1085	628	172	8	21	337	2068	1816	1574	1129	527
6	1526	3464	2296	1454	493	39	22	295	1840	1622	1413	1026	494
7	1768	4954	348 I	2353	931	105	23	259	1639	1448	1270	931	460
8	1810	5928	4352	3088	1372	203	24	228	1462	1298	1141	846	428
9	1724	6382	4834	3646	1730	316	25	202	1307	1165	1028	768	398
10	1573	6386	4979	3781	1971	426	26	179	1170	1047	926	698	369
II	1398	6127	4833	3798	2098	520	28	142	947	850	757	579	317
12	1225	5712	4633	3676	2114	592	30	114	771	696	623	482	272
13	1063	5222	4300	3467	2090	640	40	44	311	285	259	209	130
14	918	4713	3930	3215	2004	666	50	20	146	135	124	102	67
15	792	4220	3556	2944	1889	673	60	10	77	72	66	55	38
16	683	3759	3198	2674	1760	663	80	4	27	25	24	20	14
17	590	3340	2862	2417	1626	649	100	2	12	1 I	10	9	7

Smithsonian Tables.

Values of J_{λ} using for $C_{1}, 9.23 \times 10^{3}, C_{2}, 14350$., λ in μ. If the figures given for J_{λ} are plotted in cms as ordinates to a scale of abscissac of 1 cm to 1μ, then the area in cm^{2} between the smooth curve through the resulting points and the axis of abscissae is equivalent to the radiation in calories per sec. from $\mathbf{I ~ c m}{ }^{2}$ of a black body at the corresponding temperature, radiating to absolute zero. The intensities when radiating to a body at a lower temperature may be obtained by subtracting the intensities corresponding to the lower temperature from those of the higher. The nature of the black-body formula is such that when λT is small, a small change in C_{2} produces a great change in J_{λ}; e.g. when $C_{3} / \lambda T$ is 100 or 10 , the change is 100 and io fold respectively; as λT increases, the change becomes proportional; e.g., when $C_{2} / \lambda T$ is less than 0.05 , the change in J_{λ} is proportional to the change in C_{2}.

λ	$50^{\circ} \mathrm{K}$.	$100^{\circ} \mathrm{K}$.	$150^{\circ} \mathrm{K}$.	$200^{\circ} \mathrm{K}$.	$250^{\circ} \mathrm{K}$.	$273{ }^{\circ} \mathrm{K}$.	$300^{\circ} \mathrm{K}$.	$373^{\circ} \mathrm{K}$.	$400^{\circ} \mathrm{K}$.	$500^{\circ} \mathrm{K}$.	$600^{\circ} \mathrm{K}$.
μ	-	. 0583	. 0372	. 0276	. 0201	. 0181	. 0161	. 0122	. 01124	. 0831	. 0638
1.5	-	. 08838	.0372 .0242	. 0172	. 0133	. 0127	. 0102	. 088	. 0749	. 0558	. $0_{3} \mathrm{I}_{43}$
2.0	. O 59 I	. 0282	. 0185	. 0137	. O O I	. 0911	. 0712	. 0513	. 0546	. 03168	. 00184
2.5	. 047 I	. 0221	. 0142	. 0103	. 0710	. 077	. 0646	. 0419	. 0450	. 0397	. 0066
3.0	. 0409	. 0196	. 0125	. 062	. 0618	. 069	. 0545	. 03102	. 03242	. 00265	. 0131
3.5	. 0344	. 0163	. 0102	. 072	. 0813	. 055	. 0420	. 0329	. 03620	. 00482	. 0189
4.0	. 0306	. 0142	. 094	. 0614	. 0552	. 04.48	. 0457	. $0_{3} 60$. 00115	. 00690	. 0229
5.0	. 0243	. 0111	. 0714	. 0517	. 0430	. 048	. $\mathrm{O}_{3} 2 \mathrm{I}$. 00134	. 00226	. 00952	. 0249
6.0	. 02019	. 0105	. 0614	. 058	. 048	. 0318	. 0341	.00195	. 00301	. 01001	. 0224
7.0	. 01883	. 096	. 066	. 0419	. 0315	. 0330	. 0359	. 00225	. 00328	. 00925	. 0186
8.0	. 01672	. 085	. 0518	. 0436	. 0322	. 0339	. 0371	. 00232	. 00321	. 00801	. 0149
9.0	. 01422	. 0718	. 0538	. 0454	. 0327	. 0345	. 0377	. 00220	. 00295	. 00672	. 0118
10.0	. 01331	. 0754	. 0565	. 0471	. 0330	. 0348	..$_{37} 8$. 00201	. 00262	. 00554	. 00929
12.0	. 01115	. 0624	. 0413	. 0894	. 033 I	. 0347	. 0370	. 00157	. 00196	. 00374	. 00585
14.0	. 0102 I	. 0661	. 0418	. 04102	. 0329	. 0341	. 0358	. 00117	. 00144	. 00254	. 00380
16.0	. 0914	O5II	. 0422	. 04100	. 0325	. 0334	. 0.046	. 0387	. 00105	. 00176	. 00254
18.0	. 0957	. 0517	. 0424	. 0492	. $\mathrm{O}_{3} 2 \mathrm{I}$. 0328	. 03368	. 03653	. 03760	. 00124	. 00176
20.0	. 0816	. 0522	. 0424	. 0482	. $\mathrm{O}_{3} \mathrm{I} 7$. 03224	. 03290	. 03493	. 03575	. 03902	. 00125
25.0	. 0897	. 0530	. 042 I	. 0457	. 03122	. $\mathrm{O}_{3} \mathrm{I} 3 \mathrm{I}$. 03164	. 03258	. 03295	. 03439	.03589
30.0	. 0726	. 0532	. 0416	. 0438	. 0466	. 0479	. 0497	. 03146	. 03164	. 03237	. 03311
40.0	. 0769	. 0526	. 059	-1.0418	. 04282	. 0433	. 04391	. 04558	. 04620	. 04858	. 03110
50.0	. 0795	. 0518	. 0551	. 0592	. 04150	. 04158	. 04184	. 04255	. 0428 I	. 04381	. 04482
75.0	. 0787	. 0667	. 0515	. 0524	. 05338	. 05383	. 05436	. 05580	. 05634	. 05834	. 04103
100.0	. 0755	. 0629	. 0657	. 0688	. 05119	. 05134	. 03150	. 05197	. 05214	. 05277	. 05342

λ	$\begin{gathered} 800^{\circ} \\ \mathrm{K} . \end{gathered}$	$\begin{gathered} 1000^{\circ} \\ \mathrm{K} . \end{gathered}$	$\begin{aligned} & \text { I } 500^{\circ} \\ & \mathrm{K} . \end{aligned}$	$\begin{gathered} 2000^{\circ} \\ \mathrm{K} . \end{gathered}$	$\begin{gathered} 3000^{\circ} \\ \mathrm{K} . \end{gathered}$	$\begin{aligned} & 4000^{\circ} \\ & \mathrm{K} . \end{aligned}$	$\begin{gathered} 5000^{\circ} \\ \mathrm{K} . \end{gathered}$	$\begin{gathered} 6000^{\circ} \\ K . \end{gathered}$	$\begin{gathered} 8000^{\circ} \\ \text { K. } \end{gathered}$	$\begin{gathered} \text { 10000º } \\ \mathrm{K} . \end{gathered}$	$\begin{gathered} 20000^{\circ} \\ \mathrm{K} . \end{gathered}$
μ 0.1	-	-	-	0.0226	0.01115		0.0331	0.038			
. 2	-	-	-	O	0.0012	0.46	15.4	184.	3660.	22100.	820000.
0.3	-	-	-	0.0315	0.44	24.2	263.	1310.	9640.	31000.	3820000.
0.4	-			-. 0145	5.75	115.	690.	2280.	10300.	25600.	180000.
0.5	-	-	-	-. 172	20.6	226.	952.	2490.	8400.	17800.	92300.
0.6	-	. 0548	0.014	0.757	40.8	301.	1000.	2240.	6290.	I1950.	51460.
0.7	. 0640	. 0468	0.064	1.93	59.3	328.	925.	1860.	4590.	8110.	30700.
0.8	. 0551	. 00045	-. 180	3.58	71.5	321.	800.	1490.	3350.	5620.	19400.
0.9	. 0434	. 0183	0.378	$5 \cdot 35$	77.3	295.	671.	1177.	2470.	3980.	12820.
1.0	. 00015	. 00538	0.645	7.06	77.8	262.	554.	928.	1842.	2880.	8800.
1.5	. 0775	. 0848	2.07	10.25	52.2	122.	210.	309.	527.	758.	1980.
2.0	. 0367	. 221	2.43	8.19	29.0	57.6	90.2	125.	198.	275.	668.
2.5	. 0719	. 305	2.10	5.68	16.4	29.5	43.9	58.9	90.1	121.9	284.
3.0	. 0964	. 320	I. 64	3.82	9.66	16.4	23.7	31.1	46.4	61.9	140.7
3.5	. 1050	. 296	1. 22	2.60	6.02	9.84	13.8	17.9	26.3	34.7	$77 \cdot 3$
4.0	. 1027	. 256	0.907	r. 80	3.90	6.20	8.59	II. 0	15.9	20.9	45.9
5.0	. 0839	. 178	-. 511	0.923	1.84	2.81	3.81	4.81	6.84	8.89	19.15
6.0	. 0629	. 119	0.302	-. 514	0.973	I. 45	I. 935	2.42	3.40	4.39	9.34
7.0	. 0459	.08II	-. 188	0.307	0.560	0.820	I. 165	1. 348	1.88	2.41	5.09
8.0	. 0335	. 0562	-. 122	-. 194	0.344	0.498	0.653	-. 808	I. 20	I. 43	3.00
9.0	. 0247	. 0398	0.0824	-. 128	0. 223	0.319	0.416	0.513	0.709	0.90	1.87
10.0	. 0184	. 0288	0.0575	0.0880	0.151	0.214	0.278	0.342	0.470	-. 598	I. 24
12.0	. 01072	. 0160	0.0304	0.0553	0.0757	0. 107	-. 1373	0. 168	0.230	0.292	0.602
14.0	. 00660	. 0096	0.0175	0.0256	0.0421	0.0587	0.0754	0.0921	0. 125	0.159	0.326
16.0	. 00425	. 00606	0.0108	-. 0155	0.0253	0.0350	0.0448	0.0546	0.0742	0.0938	-. 192
18.0	. 00285	. 00400	0.00697	0.00997	0.0160	0.0221	0.0282	0.0344	0.0466	0.0585	0.120
20.0	. 00198	. 00275	0.00470	0.00668	0.01068	0.0147	0.01868	0.0227	0.0307	0.0388	0.0789
25.0	. 0000	. 00122	0.00203	0.00284	0.00448	0.00612	0.00777	0.00941	0.0127	0.0160	0.0325
30.0	. 03464	.03619	0.00101	0.00141	0.00220	0.00299	0.00378	0.00455	0.00616	0.00775	-. 0157
40.0	. 03159	. 03209	0.03334	0.03459	-0.03710	0.03960	0.00121	0.00146	0.00197	0.00247	0.00498
50.0	. 04684	. 04888	0.03140	-. 03191	-0.03294	-0.03397	0.03900	0.03603	0.03808	0.00101	0.00204
75.0	. 04144	. 04184	0.04286	0.04387	0.04591	-. 04794	0.04997	0.03120	-. $0_{3} 161$	0.03201	0.03406
100.0	. 05470	. 05598	-.05919	0.04124	0.04188	0.04252	0.04317	0.04381	0.04510	0.04639	0.03128

See Forsythe, J. Opt. Soc., $4,33^{1}, 1920$, relative values, 0.4 to 0.76μ (steps 0.01μ), 12 temperatures, 1000 to $5000^{\circ} \mathrm{K}$.

RADIATION EMISSIVITIES.
TABLE 277. - Relative Emissive Powers for Total Radiation.
Emissive power of black body $=1$. Receiving surface platinum black at $25^{\circ} \mathrm{C}$; oxidized surfaces oxidized at $600+{ }^{\circ} \mathrm{C}$. Randolph and Overholzer, Phys. Review, 2, p. 144, 1913.

Remark: For radiation properties of bodies at temperatures so low that the radiations of wave-length greater than 20μ or thereabouts are important, doubt must exist because of the possible and perhaps probable lack of blackness of the receiving body to radiations of those wave-lengths or greater. For instance, see Table 379 for the transparency of soot.

TABLE 278. - Emissivities of Metals and Oxides.

Emissivities for radiation of wave-length 0.55 and 0.65μ. Burgess and Waltenberg, Bul. Bureau of Standards, 11, 591, 1914.

In the solid state practically all the metals examined appear to have a negligible or very small temperature coefficient of emission for $\lambda=0.55$ and 0.65μ within the temperature range $20^{\circ} \mathrm{C}$ to melting point. Nickel oxide has a well-defined negative coefficient, at least to the melting point. There is a discontinuity in emissivity, for $\lambda=0.65 \mu$ at the melting point for some but not all the metals and oxides. This effect is most marked for gold, copper, and silver, and is appreciable for platinum and palladium. Palladium, in addition, possesses for radiation a property analogous to suffusion, in that the value of emissivity $(\lambda=0.65 \mu$) natural to the liquid state may persist for a time after solidification of the metal. The Violle unit of light does not appear to define a constant standard. Article contains bibliography.

RADIATION EMISSIVITIES.

TABLE 279. - Relative Emissivities of Metals and Oxides.
Emissivity of black body taken as 100 .

TABLE 280. - Temperature Scale for Tungsten.
Hyde, Cady, Forsythe, J. Franklin Inst. 181, 418, 1916. See also Phys. Rev. 10, 395, 1917. The color temperature $=$ temperature of black body at which its color matches the given radiation.

Lumens/watt	Color temperature.	Black-body temperature.	True temperature.	True temperature.	True color.	True brightness.
1	$1763^{\circ} \mathrm{K}$.	$1627^{\circ} \mathrm{K}$.	$1729^{\circ} \mathrm{K}$.	1700°	12°	100°
2	1917	1753	1875	1800	20	115
3	2025	1840	1976	1900	26	128
4	2109	1909	2056	2000	31	142
5	2179	1967	2125	2100	36	158
6	2237	2017	2184	2200	39	175
7	2290 2388	2062	2238	2300	4 I	191
8	2338 2383	2102 2140	2286	2400	43	208
10	2425	2174	2373			

TABLE 281. - Color minus Brightness Temperatures for Carbon.
Hyde, Cady, Forsythe, Phys. Rev. 10, 395, 1917.

COOLING BY RADIATION AND CONVECTION.

TABLE 282. - At Ordinary Pressures.

According to McFarlane * the rate of loss of heat by a sphere placed in the centre of a spherical enclosure which has a blackened surface, and is kept at a constant temperature of about $14^{\circ} \mathrm{C}$, can be expressed by the equations

$$
e=.00023^{8}+3.06 \times{ }_{10}-\dot{6} t-2.6 \times{ }_{10}-8 t^{2},
$$

when the surface of the sphere is blackened, or

$$
e=.000168+1.98 \times 10-8 t-1.7 \times 10-8 t^{2},
$$

when the surface is that of polished copper. In these equations, e is the amount of heat lost in c. g.s. units, that is, the quantity of heat, small calories, radiated per second per square centimeter of surface of the sphere, per degree difference of temperature t, and t is the difference of temperature between the sphere and the enclosure. The medium through which the heat passed was moist air. The following table gives the results.

Differ- ence of tempera- ture t	Value of e.		Polished surface.
5	Blackened surface.		
5	.000178	.000252	.707
10	.000186	.000266	.699
15	.000193	.000279	.692
20	.000201	.000289	.695
25	.000207	.000298	.694
30	.000212	.000306	.693
35	.000217	.000313	.693
40	.000220	.000319	.693
45	.000223	.000323	.690
50	.000225	.000326	.690
55	.000226	.000328	.690
60	.000226	.000328	.690

TABLE 283, - At Different Pressures.
Experiments made by J. P. Nicol in Tait's Laboratory show the effect of pressure of the enclosed air on the rate of loss of heat. In this case the air was dry and the enclosure kept at about $8^{\circ} \mathrm{C}$.

* "Proc. Roy. Soc.", ${ }^{1872 .}$
\dagger "Proc. Roy. Soc." Edinb. 1869.

Smithsonian Tables.

See also Compan, Annal. de chi. et phys. 26, p. 526.

TABLE 284. - Cooling of Platinum Wire in Copper Envelope.
Bottomley gives for the radiation of a bright platinum wire to a copper envelope when the space between is at the highest vacuum attainable the following numbers:-

$$
\begin{aligned}
& t=408^{\circ} \mathrm{C} ., \text { et }=378.8 \times 10^{-4} \text {, temperature of enclosure } 16^{\circ} \mathrm{C} . \\
& t=505^{\circ} \mathrm{C} . \text {, et } \mp 726.1 \times 10^{-4},
\end{aligned}
$$

It was found at this degree of exhaustion that considerable relative change of the vacuum produced very small change of the radiating power. The curve of relation between degree of vacuum and radiation becomes asymptotic for high exhaustions. The following table illustrates the variation of radiation with pressure of air in enclosure.

Temp. of enclosure $16^{\circ} \mathrm{C} ., t=408^{\circ} \mathrm{C}$.		Temp. of enclosure $17^{\circ} \mathrm{C}$, , $t=505^{\circ} \mathrm{C}$.	
Pressure in mm.	et	Pressure in mm.	et
740. 440. 140. 42. 4. 0.444 .070 .034 .012 .0051 .00007	$\begin{array}{ll} 8137.0 \times 10^{-4} \\ 7971.0 & " ، \\ 7875.0 & " \\ 7591.0 & " \\ 6036.0 & " \\ 2683.0 & " \\ 1045.0 & " \\ 77.3 & " \\ 539.2 & " \\ 436.4 & " \\ 378.8 & " \end{array}$	0.094 .053 .034 .013 .0046 $.0005^{2}$.00019 $\left.\begin{array}{c}\text { Lowest reached } \\ \text { but not measured }\end{array}\right\}$	$\begin{aligned} & 1688.0 \times 10^{-4} \\ & 1255.0 \text { " } \\ & 1126.0 \text { " } \\ & 920.4 \text { " } \\ & 831.4 \text { " } \\ & 767.4 \text { " } \\ & 746.4 \text { a } \\ & 726.1 \text { " } \end{aligned}$

TABLE 285.-Effect of Pressure on Loss of Heat at Different Temperatures.
The temperature of the enclosure was about $15^{\circ} \mathrm{C}$. The numbers give the total radiation in therms per square centimeter per second.

	Pressure in mm.					
	10.0	1.0	0.25	${ }^{0.025}$	$\underset{\substack{\text { About } \\ \text { D. } \mathrm{M}}}{ }$	
100°	0.14	0.11	0.05	0.01	0.005	
200 300			.11 .18 I			
300 400	. 75	. 38	.18	.04 .07 1	. 0105	
500	-	. 69	. 35	. 13	. 025	
600 700	-	. 85	45	. 23	.13	
700 800	-	-	-	. 37	. 24	
800 900	-	-	-	-56	. 40	

Note. - An interesting example (because of its practical importance in electric lighting) of the effect of difference of surface condition on the radiation of heat is given on the authority of Mr. Evans and himself in Bottomley's paper. The energy required to keep up a certain degree of incandescence in a lamp when the filament is dull black and when it is "flashed " with coating of hard bright carbon, was found to be as follows : -

> Dull black filament, 57.9 watts.
> Bright " " 39.8 watts.

TABLE 286. - Conduction of Heat across Air Spaces (Ordinary Temperatures).
Loss of heat by air from surfaces takes place by radiation (dependent upon radiating power of surface; for small temperature differences proportional to temperature difference; follows Stefan-Boltzmann formula, see p. 247), conduction, and convection. The two latter are generally inextricably mixed. For horizontal air spaces, upper surface warm, the loss is all radiation and conduction; with warm lower surface the loss is greater than for similar vertical space.

Vertical spaces: The following table shows that for spaces of less than I cm width the loss is nearly proportional to the space width, when the radiation is allowed for; for greater widths the increase is less rapid, then reaches a maximum, and for yet greater widths is slightly less. The following table is from Dickinson and van Dusen, A. S. Refrigerating Engineers J. 3, 1916.

HEAT CONDUCTION AND THERMAL RESISTANCES, RADIATION ELIMINATED, AIR SPACE 20 CM HIGH

Air space, cm.	Heat conduction. Cal./hour/ $\mathrm{cm}^{2} /{ }^{\circ} \mathrm{C}$.				Thermal resistance. Same units.			
	Temperature difference.				Temperature difference.			
	10°	15°	20°	25°	10°	15°	20°	25°
0.5	0.46	0.46	0. 46	0.46	2.17	2.17	2.17	2.17
1.0	0.24	0.24	-. 24	0.24	4.25	4.20	4.15	4.10
I. 5	0.160	0. 172	-. 182	-. 192	6.25	5.80	5.50	5.20
2.0	0.161	-. 178	- 200	0.217	6.20	5.60	5.00	4.60
3.0	0. 172	0. 196	-. 208	0.217	5.80	5.10	4.80	4.60

Variation with height of air space: Max. thermal resistance $=4.0$ at 1.4 cm air space, 10 cm high; 6.0 at 1.6 cm , 20 cm high; 8.9 at $2.5 \mathrm{~cm}, 60 \mathrm{~cm}$ high.

TABLE 287. - Heat Convection in Air at Ordinary Temperatures.

In very narrow layers of air between vertical surfaces at different temperatures the convection currents, in the main, flow up one side and down the other, with eddyless (stream-line) motion. It follows that these currents transport heat to or from the surfaces only when they turn and flow horizontally, from which fact it follows, in turn, that the convective heat transfer is independent of the height of the surface. It is, according to the laws of eddyless flow, proportional to the square of the temperature difference, and to the cube of the distance between the surfaces. As the flow becomes more rapid (e.g., for a 20° difference and a distance of 1.2 cm) turbulence enters, and the above relations begin to change. For the dimensions tested, convection in horizontal layers was a little over twice that in vertical.

Taken from White, Physical Review, 10, 743, 1917.
Heat Transfer, in the Usual C.G.S. Unit, i.e., Calories per Second per Degree of Thermal Head per Square Cm of Flat Surface, at 22.8° Mean Temperature.

Where two values are given, they show the range among determinations with different methods of getting the temperature of the outer plate. It will be seen that the value of the convection is practically unaffected by this difference of method.

Thermal head.	8 mm gap.		12 mm gap.		24 mm gap.	
	Total.	Convection.	Total.	Convection.	Total.	Convection.
0.99°	-	-	$\left.\begin{array}{rll}.000 & 083 & 9 \\ .000 & 084 & 8\end{array}\right\}$	-	. 000065	-
$1.98{ }^{\circ}$	$\left\{\begin{array}{r}.000109 \\ 110\end{array}\right.$	-	$\left.\begin{array}{lll}.000 & 084 & 0 \\ .000 & 085 & 2\end{array}\right\}$.0000001 0004	-	-
4.95°	. 000 III	. 000001	$\left\{\begin{array}{rr}.000 & 086 \\ 88 \\ 81\end{array}\right.$	$\left.\begin{array}{r}.000002 \\ 003 \\ 0\end{array}\right\}$.000 090	over .000 025
$9.89{ }^{\circ}$	$\left\{\begin{array}{rr}.000 \\ \text { I12 } \\ & 113\end{array}\right.$.000003 003	$\begin{array}{r}.000 \\ 093 \\ 95 \\ \hline 1\end{array}$.000 010	.000 106	over .000 040
19.76°	.000 116	. 000007	$\left\{\begin{array}{rr}.000 & 1077 \\ & 1094\end{array}\right.$	$\left.\begin{array}{r}.000 \\ 024 \\ 026\end{array}\right\}$. 000126	over .000 060

CONVECTION AND CONDUCTION OF HEAT BY GASES AT HIGH TEMPERATURES.*

The loss of heat from wires at high temperatures occurs as if by conduction across a thin film of stationary gas adhering to the wire (vertical and horizontal losses very similar). Thickness of film is apparently independent of temperature of wire, but probably increases with the temperature of the gas and varies with the diameter of the wire according to the formula $b \cdot \log b / a={ }_{2} B$, where $B=$ constant for any gas, $b=$ diameter of film, a, of wire. The rate of convection (conduction) of heat is the product of two factors, one the shape factor, s, involving only a and B, the other a function ϕ of the heat conductivity of the gas. If $W=$ the energy loss in watts $/ \mathrm{cm}$, then $W=s\left(\phi_{2}-\phi_{1}\right)$. s may be found from the relation

$$
\frac{s}{\pi} e^{-\frac{2 \pi}{s}}=\frac{a}{B} ; \quad \phi=4.19 \int_{0}^{\tau} k d t
$$

where k is the heat conductivity of the gas at temperature T in calories $/ \mathrm{cm}{ }^{\circ} \mathrm{C} . \phi_{2}$ is taken at the temperature T_{2} of the wire, ϕ_{1} at that of the atmosphere. The following may be taken as the conductivities of the corresponding gases at high temperatures:

$$
\begin{aligned}
& \text { For hydrogen............. } k=28 \times 10^{-6} \sqrt{T}\left\{(\mathrm{I}+.0002 T) /\left(\mathrm{I}+77 T^{-1}\right)\right\} \\
& \text { air.................. } \left.\left.k=4.6 \times 10^{-6} \sqrt{T}\right\}(\mathrm{I}+.0002 T) /\left(\mathrm{I}+124 T^{-1}\right)\right\} \\
& \text { mercury vapor........ } k=2.4 \times{ }^{10}{ }^{-6} \sqrt{ } \bar{T}\left\{\mathrm{I} /\left(\mathrm{I}+960 T^{-1}\right)\right\} \text {. }
\end{aligned}
$$

To obtain the heat loss: B may be assumed proportional to the viscosity of the gas and inversely proportional to the density. For air (see Table 289(b)) B may be taken as 0.43 cm ; for $\mathrm{H}_{2}, 3.05 \mathrm{~cm}$; for Hg vapor as 0.078 . Obtain s from section (a) below from a / B; then from section (b) obtain ϕ_{2} and ϕ_{1} for the proper temperatures; the loss will be $s\left(\phi_{2}-\phi_{1}\right)$ in watts $/ \mathrm{cm}$.
(a) s as Function of a / B.

s	a / B	s	a / B	s	a / B	s	a / B
0.0	0.0	5.0	0.453	10	1. 696	30	7.738
0.5	0.735×10^{-6}	5.5	0.558	12	2.263	32	8.370
1.0	0.594×10^{-3}	6.0	0.671	14	2.844	34	8.995
1.5	0.725×10^{-2}	6.5	0.788	16	3.438	36	9.622
2.0	2.75×10^{-2}	7.0	0.908	18	4.040	38	10.25
2.5	0.0644	$7 \cdot 5$	1.032	20	4.645	40	10.87
3.0	0.1176	8.0	1.160	22	5.263	42	11.50
3.5	-. 185	8.5	1.291	24	5.877	44	12.14
4.0	-. 265	9.0	1.424	26	6.505	46	12.77
4.5	0.354	9.5	I. 561	28	7.122	48	13.14
5.0	0. 453	10.0	1.696	30	$7 \cdot 738$	50	14.03

(b) Table of ϕ in Watts per Cm as Function of Absolute Temp. ($\left.{ }^{\circ} \mathrm{K}.\right)$.

$T^{\circ} \mathrm{K}$.	H_{2}	Air	Hg	$T^{\circ} \mathrm{K}$.	H_{2}	Air	Hg
\bigcirc	0.0000	0.0000	-	1500°	4.787	0.744	
100 200	0.0329 0.1294	0.0041 0.0068		1700 1900		0.931 1.138	0.228 0.284
300	-. 278	-0.0387		2100	8.655	1.363	\bigcirc
400	0.470	0.0669		2300		1.608	0.41 I
500	- 0.700	-. 1017	0.0165	2500	${ }_{11}{ }^{\text {P2 }}$	1.871	0.48 r
700 000	1. 2681	-. 189	0.0356	2700	13.56	二	0.556
(1000	1.961 2.787	0.297 0.426	0.0621 0.0941	2900 3100	15.54 17.42		0.636 0.710
1300	3.726	0.576	-. 1333	3300	19.50		-
1500	4.787	0.744	0. 1788	3500	21.79	-	0. 898

[^39]Smithsonian Tables.

Table 289.
heat losses from incandescent filaments.
(a) Wires of Platinum Sponge Served as Radiators (to Room-temperature Surroundings). Hartman, Physical Review, 7, p. 43i, 1916.

Diameterwire, cm.	(A) Observed heat losses in watts per cm .											
	Absolute temperatures.											
	900°	1000°	1100°	1200°	1300°	1400°	1500°	1600°	1700°	1800°	1900°	2000°
0.0690	1.70	2.26	3.01	3.88	4.92	6.18	7.70	9.63	12.15	15.33		
0.0420	1. 35	1.75	2.26	2.84	3.53	4.29	5.33	6.60	8.25	10.20	12.45	14.75
0.0275	I.12	1.40	1. 76	2.23	2.73	3.23	3.91	4.67	5.72	7.00	8.64	10.45
0.0194	0.92	1.15	I. 39	1. 74	2.12	2.54	3.04	3.64	4.32	5.10	6.10	7.35
(B) Heat losses corrected for radiation, watts per $\mathrm{cm}(\mathrm{A}-\mathrm{C})$.												
0.0690	0.91	1.05	1.23	1. 36	I. 45	1.51	I. 54	1. 66	2.00	2.56	3.40	4.30
0.0420	0.87	1.02	1.17	1.31	I. 42	I. 45	1.57	1. 76	2.08	2.43	2.80	3.26
0.0275	0.80	0.92	1.05	1.22	I. 35	1. 37	1.46	1.50	1.67	1.91	2.32	2.70
0.0194	0.70	0.81	0.89	1.03	1.15	1.23	1.31	1.40	1.47	1.51	1.64	1. 88
(C) Computed radiation, watts per $\mathrm{cm}, \sigma=5.61 \times 10^{-12}$.*												
0.0690	0.79	I. 21	1.78	2.52	3.47	4.67	6.16	7.97	10. 15	12.77	15.85	
0.0420	0.48	0.73	1.09	I. 53	2.11	2.84	3.74	4.84	6.17	7.77	9.65	11.85
0.0275	0.32	0.48	0.71	1.01	1.38	1.86	2.45	3.17	4.05	5.09	6.32	7.75
0.0195	0:22	0.34	0.50	0.71	0.97	1.31	1. 73	2.24	2.85	$3 \cdot 59$	4.46	5.47
(D) Conduction loss by silver leads, watts per cm.												
0.0420	0.42	0.46	0.49	0.61	0.75	0.88	r. 00	1.07	1.13	1.22	-	-
0.0275	0.18	0.21	0.28	0.35	0.43	0.48	0.55	0.57	0.60	0.67	-	-
0.0195	0.06	0.08	0.08	0.09	0.11	0.12	-. 14	0.15	0.22	0.23		
(E) Convection loss by air, watts per cm .												
0.0420	0.45	0. 56	0.68	0.70	0.67	-0. 57	O. 59	0.69	0.95	I. 21		-
0.0275	0.62	0.71	0.77	0.87	0.92	0.89	0.91	0.93	1.07	1.24	-	-
0.0195	0.64	0.73	0.81	0.94	1.04	I. II	1.17	1.25	I. 29	1. 30		

* This value is lower than the presently (1919) accepted value of 5.72.
(b) Wires of Bright Platinum 40-50 Cm Long Served as Radiators to Surroundings at 300° K. Langmutr, Physical Review, 34, p. 401, 1912.

$\begin{aligned} & \text { Diameter } \\ & \text { wire, } \\ & \text { cm. } \end{aligned}$	Observed energy losses in watts per cm.							
	Absolute temperatures.							
	500°	700°	900°	1100°	1300°	1500°	1700°	1900°
0.0510	0.22	0.52	0.90	1.42	2.03	2.89	4.10	5.65
0.02508	0.17	0.39	0.68	1.02	1.45	2.00	2.68	3.55
0.01262	-. 13	0.31	-. 53	0.79	1.11	I. 46	I. 95	2.71
0.00691	0.12	0.29	0.48	0.72	0.99	I. 33	1.79	2.48
0.00404	0.11	0.24	0.41	0.61	0.84	I. 14	I. 54	2.13
Energy radiated in watts per cm.*								
0.0510	0.002	0.013	0.049	0. 137	0.323	0.67	1. 25	2.15
0.02508	0.001	0.007	0.024	0.067	-. 159	0.33	0.62	1. 06
0.01262	0.001	0.003	0.012	0.034	0.080	0. 17	0. 31	-. 53
0.00691	0.000	0.002	0.007	0.019	0.044	0.09	O. 17	0. 29
0.00404	0.000	0.001	0.004	0.011	0.026	0.05	O. 10	-. 17
"Convection" losses in watts per cm.								
0.0510	0. 22	0.51	0.85	1.28	1.71	2.22	2.85	3.50
0.02508	-. 17	0.38	0.66	0.95	1. 29	1. 67	2.06	2.49
-. 01262	-. 13	0.31	0. 52	0.75	1.03	1.29	1. 64	2.18
0.00691	0.12	0.29	0.47	0.70	0.95	I. 24	1.62	2.19
0.00404	O. II	0.24	0.41	0.60	0.81	1.09	1.44	I. 96

Thickness of theoretical conducting air film.									
	0.28	0.30			0.36	0.37	0.35	0.36	Means.
$\stackrel{0}{0.02508}$	0.30	$\stackrel{.}{0.37}$	$\stackrel{.}{0.33}$	0.41	0.45	${ }_{0}^{0.35}$	0.51	0. 56	0.43
0.01262	0.42	-. 42	0.44	-. 49	0. 56	0. 69	0.69	0.47	0.54
0.00691	0.31	0. 32	0.38	0.40	0.43	0.47	-. 38	-. 26	0.37
\bigcirc	0.27	0.43	0.43	$\bigcirc \cdot 47$	-. 56	- 0.47	- 0.40	0.25 0.38	0.51 0.41 +0.43
Means.	0.31	0.37	0.39	0.42	0.49	0.49	0.47	0.38	to. 43

[^40]
THE EYE AND RADIATION.

Definitions: A meter-candle is the intensity of illumination due to a standard candle at a meter distance. The millilambert (o.oor lambert) measures the brightness of a perfectly diffusing (according to Lambert's cosine law) surface diffusing I lumen per cm^{2}. A brightness of 10 meter-candles equals x millilambert. 0.001 ml corresponds roughly to night exteriors, 0.1 , to night interiors, 10 ml to daylight interiors and 1000 , to daylight exteriors. A brightness of 100,000 meter-candles is about that of a horizontal plane for summer day with sun in zenith, 500 , on a cloudy day, 4, rst magnitude stars just visible, o.2, full moon in zenith, .oor, by starlight; in winter the intensity at noon may drop about $\frac{3}{3}$.

TABLE 290. - Spectral Variation of Sensitiveness as a Function of Intensity.

Radiation is easily visible to most eyes from 0.330μ (violet) to 0.770μ (red). At low intensities near threshold values (gray, rod vision) the maximum of spectral sensibility lies near 0.503μ (green) for 90% of all persons. At higher intensities, after the establishment of cone vision, the max. shifts as far as 0.560μ. See Table 297 for more accurate values of sensitiveness after this shift has been accomplished. The ratio of optical sensation to the intensity of energy increases with increasing energy more rapidly for the red than for the shorter wave-lengths (Purkinje phenomenon); i.e., a red light of equal intensity to the eye with a green one will appear darker as the intensities are equally lowered. This phenomenon disappears above a certain intensity (above to millilamberts). Table due to Nutting, Bulletin Bureau of Standards.

The intensity is given for the spectrum at 0.535μ (green).

Intensity (meter-candles) $=$ Ratio to preceding step $=$. 00024	.00225 9.38	.0360 16	. 575	2.30 4	9.22 4	36.9 4	147.6 4	590.4 4
Wave-length, λ.	Sensitiveness.								
0.430μ	0.081	0.093	0.127	0. 128	O. II4	O.II4	-	-	-
0.450	0.33	0. 30	0.29	0.31	0.23	0.175	0.16	-	-
0.470	0.63	0.59	0. 54	0. 58	0.51	0.29	0.26	0.23	-
0.490	0.96	(0.89)	(0.76)	(0.89)	(0.83)	0.50	0.45	0.38	0.35
-. 505	1.00	1.00	1.00	1.00	0.99	(0.76)	0.66	0.61	0. 54
0.520	0.88	0.86	0.86	0.94	0.99	(0.85)	0.85	0.85	0.82
0.535	0.61	0.62	0.63	0.72	0.91	(0.98)	0.98	0.99	0.98
0.555	0.26	0.30	0.34	0.41			0.93	0.97	0.98
0.575	0.074	0. 102	0. 122	0. 168	(0.39)	(0.63)	(0.76)	(0.82)	(0.84)
0.590	0.025	0.034	0.054	0.091	0.27	0.49	0.61	0.68	0.69
0.605	0.008	0.012	0.024	0.056	0.173	0.35	(0.45)	0. 54	0.55
0.625	0.004	0.004	0.011	0.027	0.098	0.20	0.27	0.35	0.35
0.650	0.000	0.000	0.003	0.007	0.025	0.060	0.085	0.122	0.133
, 0.670	0.000	0.000	0. 001	0.002	0.007	0.017	0.025	0.030	0.030
λ, maximum sensitiveness	0.503	0.504	0. 504	0. 508	0.513	0.530	0.541	0.543	0.544

TABLE 291. - Threshold Sensibility as Related to Field Brightness.

The eye perceives with ease and comfort a billion-fold range of intensities. The following data were obtained with the eye fully adapted to the sensitizing field, B, the field flashed off, and immediately the intensity, T, of a test spot (angular size at eye about 5°) adjusted to be just visible. This table gives a measure of the brightness, T, necessary to just pick up objects when the eye is adapted to a brightness, B. Intensities are indicated log intensities in millilamberts. Blanchard, Physical Review, 11, p. 81, 1918.

the eye and radiation.

TABLE 292. - Heterochromatic Threshold Sensibility.

The following table shows the decrease in sensitiveness of the eye for comparing intensities of different colors. The numbers in the body of the table correspond to the line marked T / B of Table 291. The intensity of the field was probably between 10 and 100 millilamberts (25 photons).

Comparison color.		0.693μ	0.640μ	0.575μ	0.505μ	0.475μ	0.430μ
Standard color: $\begin{aligned} & \text { red } \ldots \\ & \\ & \text { yellow }\end{aligned}$	0.693μ	0.044	0.088	0. 165	0. 180	O. 197	O. 150
	0.575μ	-. 174	0. 160	0.032	0.166	-. 174	-. 134
	0.505μ	0.211	0. 180	-. 138	0.030	-. 116	0.126
	0.475μ	O. 168	0.180	0.130	-. 130	0.068	0.142

TABLE 293. - Contrast or Photometric Sensibility.

For the following table the eye was adapted to a field of 0.1 millilambert and the sensitizing field flashed off. A neutral gray test spot (angular size at eye, $5 \times 2.5^{\circ}$) the two halves of which had the contrast indicated ($\frac{1}{2}$ transparent, $\frac{1}{2}$ covered with neutral screen of transparency $=$ contrast indicated) was then observed and the brightness of the transparent part measured necessary to just perceive the contrast after the lapse of the various times. One eye only used, natural pupil. Blanchard, Physical Review, II, p. 88, 1918. Values are log brightness of brighter field in millilamberts.

Time in seconds.	-	I	2	5	10	20	40	60
Contrast: $\begin{aligned} & 0.0 \\ & 0.3 \\ & 0.6 \\ & 0.8 \\ & 0.9\end{aligned}$	-2.80	-3.47	-3.82	-4.30	-4.49	-4.60	-4.89	-5.03
	-2.63	-3.36	-3.58	-3.74	-3.85	-3.97	-4.06	-4.23
	-2.40	-3.00	-3.13	-3.22	-3.21	-3.33	-3.46	-3.48
	-2.10	-2.46	-2.49	-2.48	-2.55	-2.54	-2.67	-2.73
	-1.20	-1.57	-1.67	-1. 69	-1. 59	-1.63	-1.73	-1.78

TABLE 294. - Glare Sensibility.

When an eye is adapted to a certain brightness and is then exposed suddenly to a much greater brightness, the latter may be called glaring if uncomfortable and instinctively avoided. Observers naturally differ widely. The data are the means of three observers, and are log brightnesses in millilamberts. The glare intensity may be taken as roughly 1700 times the cube root of the field intensity in millilamberts. Angle of glare spot, 4°. Blanchard, Physical Review, loc. cit.

TABLE 295. - Rate of Adaptation of Sensibility.

This table furnishes a measure of the rate of increase of sensibility after going from light into darkness, and the values were obtained immediately from the instant of turning off the sensitizing field. Both eyes were used, natural pupil, angular size of test spot, 4.9°, viewed at 35 cm . Blanchard, loc. cit. Retinal light persists only 10 to 20 m when one has been recently in darkness, then in a dimly lighted room; it persists fully an hour, when a subject has been in bright sunlight for some time. A person who has worked much in the dark "gets his eyes" quicker than one who has not, but his final sensitiveness may be no greater.

Sensitizing field.	Logarithmic thresholds in millilamberts after										
	o sec.	1 sec .	2 sec .	5 sec .	IO Sec.	20 sec .	40 sec .	60 sec .	5 min .	30 min .	60 min .
White, 0.1 ml .	-2.79	-3.82	-4.13	-4.50	-4.75	-4.96	-5.16	-5.32	-5.68	-5.91	-6.06
1.0 ml .	-2.20	-2.99	-3.27	-3.79	-4.15	-4.51	-4.82	-5.06	-5.52	-5.86	-6.04
10.0 ml	-1.60	-2.30	-2.53	-3.08	-3.54	-3.94	-4.31	-4.61	-5.22	-5.83	-6.01
100.0 ml .	-0.90	-1.66	-2.00	-2.46	-2.64	-2.88	-3.20	-3.84	-4.76	-5.77	-5.97
Blue 0.1 ml .	-2.82	-3.92	-4.36	-4.91	-5.27	-5.53	-5.68	-5.8I	-6.23	-	-
Green 0.1 ml . Yellow 0.1 ml .	-2.69 -2.61	-4.08 -3.84	-4.39 -4.17	-4.82 -4.41	-5.11 -4.65	-5.26 -4.78	-5.43	-5.56	-5.80 -5.39	-	二
Red 0.1 mml	-2.61	-3.84	- 4.98	-4.41	-4.65 -3.57	-4.78 -3.65	-5.02 -3.73	-5.09	-5.39	-	-

THE EYE AND RADIATION.

TABLE 296. - Apparent Diameter of Pupil and Flux Density at Retina.
Flashlight measures of the pupil (both eyes open) viewed through the eye lens and adapted to various field intensities. For eye accommodated to 25 cm , ratio apparent to true pupil, 1.02, for the unaccommodated eye, I.I4. The pupil size varies considerably with the individual. It is greater with one eye closed; e.g., it was found to be for o.or millilambert, 6.7 and 7.2 mm ; for $0.6 \mathrm{ml}, 5.3$ and 6.5 ; for $6.3 \mathrm{ml}, 4.1$ and 5.7 ; for 12.6 ml , 4.1 and 5.7 mm for both and one eye open respectively for a certain individual. At the extreme intensities the two values approach each other. The ratio of the extreme pupil openings is about 1 ,, whereas the light intensities investigated vary over $\mathbf{I}, 000,000$-fold. (Blanchard and Reeves, partly unpublished data.)

Field millilamberts.	Diameter, mm		Effective area, mm^{2}	Flux at retina, lumens per mm^{2}
	Observed.	$\begin{gathered} (1.14 / 1.02) \\ \times \text { Obs } \end{gathered}$		
0.00001	8	8.96	64	8.4×10^{-12}
0.001	7.6	8.51	57	7.6×10^{-10}
0.1	6.5	7.28	42	5.6×10^{-8}
10 .	4.0 2.07	4.48 2.35	16	2.1 5.8×10^{-6} 10^{-5}

TABLE 297. - Relative Visibility of Radiation.

This table gives the relation between luminous sensation (light) and radiant energy. The results of two methods are given: one from measures of the direct equality of brightness, which some consider the true method, as more direct, but criticized because of the difficulty of judging heterochromatic light (Hyde, Forsythe, Cady, A. J. 48, 87, 1918, 29 observers); the other (Coblentz, Emerson, Bul. Bureau of Standards, 14, 219, 1917, 130 observers) depends on the disappearance of flicker when two lights of different color and intensity are alternated rapidly. Color has a lower critical frequency than brightness and disappears first. Data determined for intensities above Purkinje effect. See Table 290. Ratio of light unit (lumen) to energy unit (watt) at 0.55μ, 0.00162 (Ives, Coblentz, Kingsbury).

${ }_{\mu}^{\lambda}$	Vsisibity.		${ }^{\mu}$	Visibility.		${ }_{\mu}^{\lambda}$	Visibility.		${ }_{\mu}^{\lambda}$	Visibility.		${ }_{\mu}^{\lambda}$	Visibility.	
	HFC	CE		HFC	CE		HFC	CE		HFC	CE		HFC	CE
	0,9	. 010	. 48	. 138	. 125					154	. 194			
:41 ${ }_{4}$	-0.62	-017	- 5	- 2128	. 139	- 58	. 845	. 8068	. 66	.094	.1154	. 74	:036	:0348
. 44	-0175	. 0238	-52	.515	: 710	. 69	. 730	. 888	:68	.0125	.03788	:76	0.09	$\stackrel{.0220}{ }$
.45	:036	. 041	. 53	. 848	862	. 61	. 464	-557	. 69	.0062	:0085	-	-	-
${ }_{-47}$.085	.086	${ }_{\text {. }}^{55}$.9968	9994	:63	${ }_{.238}^{.341}$:427	${ }_{7}{ }_{7}$.0331	:0040	二	二	-

TABLE 298. - Miscellaneous Eye Data.

Light passing to the retina traverses in succession (a) front surface of the cornea (curvature, 7.9 mm); (b) cornea (equivalent water path for energy absorption, . 06 cm); (c.) back surface corneal(curv., 7.9 mm); (d) aqueous humour (equiv. $\mathrm{H}_{2} \mathrm{O}, .34 \mathrm{~cm}, n=\mathrm{I} .337$); (e) front surface lens ($\mathrm{c}, 10 \mathrm{~mm}$); (f) lens (equiv. $\mathrm{H}_{2} \mathrm{O}, .42 \mathrm{~cm}, n=1.445$); (g) back surface lens ($\mathrm{c} ., 6 \mathrm{~mm}$); (h) vitreous humour (equiv. $\mathrm{H}_{2} \mathrm{O}, \mathrm{I} .46 \mathrm{~cm}, n=\mathrm{I} .337$). An equivalent simple lens has its principal point 2.34 mm behind (a), nodal point 0.48 mm in front of (g), posterior principal focus 22.73 mm behind (a), anterior principal focus 12.83 mm . in front of (a), curvature, 5.125 mm . At the rear surface of the retina (. 15 mm thick) are the rods ($30 \times 2 \mu$) and cones (ro (6 outside fovea) μ long). Rods are more numerous, 2 to 3 between 2 cones, over $3,000,000$ cones in eye. Macula lutea, yellow spot, on temporal side, 4 mm from center of retina, long axis 2 mm . Central depression, fovea centralis, 3 mm diameter, 7000 cones alone present, 6×2 or 3μ. In region of distinct vision (fovea centralis) smallest angle at which two objects are seen separate is $50^{\prime \prime}$ to $70^{\prime \prime}=3.65$ to 5.14μ at retina; 50 cones in 100μ here; 4μ between centers, 3μ to cone, 1μ to interval. Distance apart for separation greater as depart from fovea. No vision in blind spot. nasal side, 2.5 mm from center of eye, 15 mm in diam.

Persistence of vision as related to color (Allen, Phys. Rev. II, 257, 1900) and intensity (Porter, Pr. Roy. Soc. 70, 313, 1912) is measured by increasing speed of rotating sector until flicker disappears: for color, $4 \mu, .03 \mathrm{I}$ sec.; .45 μ,
 .020 sec .; 6 mc , . 014 sec .; 100 mc , . 010 sec ; 142 mc ., .007 sec .

Sensibility to small differences in color has two pronounced maxima (in yellow and green) and two slight ones (extreme blue, extreme red). The sensibility to small differences in intensity is nearly independent of the intensity (Fechner's law) as indicated by the following data due to König:

I / I_{0}	1,000,000	100,000	10,000	1000	100	50	10	5	1	0.1	I_{0} in mc
$\begin{array}{r} d I / I, \text { white. } \\ .60 \mu \ldots \ldots \\ .50 \mu \ldots \ldots \\ .43 \mu \ldots \ldots \end{array}$. 036	. 019	. 018	. 018	. 030	. 032	. 048	. 059	. 123	. 377	. 00072
	-	. 024	. 016	. 020	. 028	. 038	. 061	. 103	. 212	-	. 0056
	-	-	. 018	. 018	. 024	. 025	. 036	. 049	. 080	. 133	. 00017
		-	-	. 018	. 025	. 027	. 040	. 049	. 074	. 137	. 00012

Luminous flux, $F=$ radiant power according to visibility, i.e., capacity to produce sensation of light. Unit, the lumen = flux emitted in a unit solid angle (steradian) by point source of one candle power.

Visibility, $K_{\boldsymbol{\lambda}}$, of radiation of wave-length $\boldsymbol{\lambda}=$ ratio luminous flux to radiant power (energy) producing it. Mean visibility, K_{m}, over any range of λ or for whole visible spectrum of any source $=$ ratio total flux (lumens) to total radiant power (erg/sec. or watts).

Luminous intensity, I, of (approximate) point source $=$ solid angle density of luminous flux in direction considered $=d F / d \omega$ or F / ω if intensity is uniform. ω is the solid angle. Unit, the candle.

Illumination on surface is the flux density on the surface $=d F / d S$ or F / S when uniform. S is the area of the surface. Units, meter-candle, foot-candle, phot, lux.
(Lux $=$ one lumen per m^{2}; phot $=$ one lumen per cm^{2}.)
Brightness, b, of element of surface from a given point $=d I / d S \cos \theta$, where θ is the angle between normal to surface and line of sight. Unit, candles per cm^{2}. Normal brightness, b_{0} $=d I / d S=$ brightness in direction normal to surface. Unit, the lambert.

Specific luminous radiation, $E^{\prime}=$ luminous flux density emitted by a surface, or the flux emitted per unit of emissive area, expressed in lumens per cm^{2}. For surfaces obeying Lambert's cosine law, $E^{\prime}=\pi b_{0}$.

The lambert, the cgs unit of brightness, is the brightness of a perfectly diffusing surface radiating or reflecting one lumen per cm^{2}. Equivalent to a perfectly diffusing surface with illumination of one phot. A perfectly diffusing surface emitting one lumen per ft^{2} has a brightness of 1.076 millilamberts. Brightness in candles per cm^{2} is reduced to lamberts by multiplying by π.

A uniform point source of one candle emits 4π lumens.
One lumen is emitted by .07958 spherical candle power.
One lumen emitted per $\mathrm{ft}^{2}=\mathrm{r} .076$ millilamberts (perfect diffusion).
One spherical candle power emits 12.57 lumens.
One lux $=1$ lumen incident per $\mathrm{m}^{2}=.000 \mathrm{I}$ phot $=. \mathrm{I}$ milliphot.
One phot $=\mathrm{I}$ lumen incident per $\mathrm{cm}^{2}=10,000$ lux $=1000$ milliphots.
One milliphot $=.001$ phot $=.929$ foot-candle.
One foot-candle $=\mathrm{r}$ lumen incident per $\mathrm{ft}^{2}=1.076$ milliphots $=10.76$ lux.
One lambert $=\mathrm{I}$ lumen emitted per cm^{2} of a perfectly diffusing surface.
One millilambert $=.929$ lumen emitted per ft^{2} (perfect diffusion).
One lambert $=.3183$ candle per $\mathrm{cm}^{2}=2.054$ candles per in^{2}.
One candle per $\mathrm{cm}^{2}=3.1416$ lamberts.
One candle per $\operatorname{in}^{2}=.4968$ lambert $=486.8$ millilamberts.
Adapted from 1916 Report of Committee on Nomenclature and Standards of Illuminating Engineering Society. See Tr., Vol. if, 1916.

[^41]No primary photometric standard has been generally adopted by the various governments. In Germany the Hemer lamp is most used; in England the Pentane lamp and sperm candles are used; in France the Carcel lamp is preferred; in America the Pentane and Hefner lamps are used to some extent, but candles are more largely employed in gas photometry. For the photometry of electric lamps, and generally in accurate photometric work, electric lamps, standardized at a national standardizing institution, are commonly employed.

The " International candle" is the name recently employed to designate the value of the candle as maintained by coöperative effort between the national laboratories of England, France, and America; and the value of various photometric units in terms of this international candle is given in the following table (taken from Circular No. 15 of the Bureau of Standards).

> I International Candle $=1$ Pentane Candle.
> I International Candle $=1$ Bougie Decimale.
> I International Candle $=1$ American Candle.
> I International Candle $=1.11$ Hefner Unit.
> i International Candle $=0.104$ Carcel Unit.

Therefore I Hefner Unit $=0.90$ International Candle.
The values of the flame standards most commonly used are as follows:
I. Standard Pentane Lamp, burning pentane 10.0 candles.
2. Standard Hefner Lamp, burning amyl acetate 0.9 candles.
3. Standard Carcel Lamp, burning colza oil 9.6 candles.
4. Standard English Sperm Candle, approximately i.o candles.

TABLE 301. - Intrinsic Brightness of Various Light Sources.

	Barrows.	Ives \& Luckiesh.		National Electric Lamp Association.
	C. P. per Sq. In. of surtace of light.	C. P. per Sq. In. of surface of light.	C. P. per Sq. Mm. of surface of light.	C. P. per Sq. In. of surface of light.
Sun at Zenith	600,000	84,000	-	600,000
Crater, carbon arc . . .	200,000	84,000	130.	200,000
Open carbon arc . . .	10,000-50,000	-		10,000-50,000
Flaming arc • • -	5,000	- ${ }^{-1000}$	-	5,000
Magnetite arc - . - . Nernst Glower	800-1,000		6.2	
Nernst Glower ${ }_{\text {Tungsten incandescent, }} \mathbf{1} .15$ w.	800-1,000	(115v.6 amp. d.c.) 3,010	4.7	(1.5 w.p.c.) 2,200
Tungsten incandescent, 1.25 w. p.c.	1,000	1,000	1.64	1,000 875
Tantalum incandescent, $2.0 \mathrm{w} . \mathrm{p} . \mathrm{c}$.	75°	580	0.9	750
$\begin{aligned} & \text { Graphitized carbon filament, } 2.5 \\ & \text { w. p. c. . } \end{aligned}$	625	750	1.2	625
Carbon incandescent, 3.1 w. p. c. .	480	485	0.75	480
Carbon incandescent, 3.5 w. p. c.	375	400	0.63	375
Carbon incandescent, 4.0 w. p. c.	300	325	0.50	-
Inclosed carbon arc (d. c.) . .	100-500	-	-	100-500
Inclosed carbon arc (a.c.) -	-	-	-	75-200
Acetylene flame (r ft. burner) .	75-100	53.0	0.082	75-100
Acetylene flame ($1 / 4 \mathrm{ft}$. burner)	-	33.0	0.057	-
Welsbach mantle . . . Welsbach (mesh)	$20-25$	31.9	0.048	20-50
Welsbach (mesh) . . .	-	56.0	0.067	
Cooper Hewitt mercury vapor lamp Kerosene flame . .	6.7 4.8	14.9 9.0	0.023	${ }_{3-8}{ }^{17}$
Kerosene flame Candle flame . .	$4-8$ $3-4$	9.0	0.014	$3-8$ $3-4$
Gas flame (fish tail) . . .	3-4	2.7	0.004	$3-4$ $3-8$
Frosted incandescent lamp .	4-8	2.7	-	2-5
Moore carbon-dioxide tube lamp .l	0.6	-	-	0.3-x.75

Taken from Data, 191 .

TABLE 302. - Visibility of White Lights.

${ }^{1}$ Paterson and Dudding. $\quad{ }^{2}$ Deutsche Seewarte.
${ }^{1}$ micro-calorie through icm. at m . $=0.034$ sperm candle $=0.0385$ Hefner unit (no diaphragm) $=0.043$ Hefner unit (diap. $14 \times 50 \mathrm{~mm}$.). Coblentz Bul. B. of S., 11, p. $87,1914$.

BRIGHTNESS OF BLACK BODY. CROVA WAVE-LENGTH. MECHANICAL EQUIVALENT OF LIGHT, LUMINOUS INTENSITY AND EFFICIENCY OF BLACK BODY.

The values of L, the luminous intensity, are given in light watts/steroradian $/ \mathrm{cm}^{2}$ of radiating surface $=(x / \pi) \int_{0}^{\infty} V_{\lambda} E_{\lambda} d \lambda$, where V_{λ} is the visibility of radiation function.

Mechanical equivalent. The unit of power is the watt; of lumininous flux, the lumen. The ratio of these two quantities for light of maximum visibility, $\lambda=0.556 \mu$, is the stimulus coefficient $V m$; its reciprocal is the (least) mechanical equivalent of light, i.e., least since applicable to radiation of maximum visibility. A better tern is "luminous equivalent of radiation of maximum visibility." One lumen $=0.001496$ watts (Hyde, Forsythe, Cady); or I watt of radiation of maximum visibility $(\lambda=0.556 \mu)=668$ lumens.

White light has sometimes bee, defined as that emitted by a black body at $6000^{\circ} \mathrm{K}$.
The Crova wave-length for a black body is that wave-length, $\boldsymbol{\lambda}$, at which the luminous intensity varies by the same fractional part that the total luminous intensity varies for the same change in temperature.

TABLE 303. - Brightness, Crova Wavelength of Black Body, Mechanical Equivalent of Light.*

${ }^{\text {Temp. }} \text {. }$	Brightness, candles per cm^{2}	Crova wavelength,	Mech. equiv. watts per l.
1700°	5.1	0. 584	0.001478
1750	7.6	0.583	-
1800	11.3	0. 582	0.00149 I
1850	16.3	-0.58r	-
1900	23.1	0. 580	0.001498
1950	32.2	-0.579	-
2000	44.3	0.578	0.001498
2050	60.0	0.577	-
2100	80.1	0.576	0.001497
2150	105.7	0.576	-
2200	137.6	0.575	0.001496
2250	177.	0. 574	-
2300	226.	0. 574	0.001497
2350	284.	0. 573	-
2400	354.	0.572	0.001497
2450	438.	0. 572	-
2500	537.	0.571	0.001502
2550	651.	0.570	-
2600	785.	0.570	0.001511
2650	939.	0.569	-
Mean.....................			0.001496

* Hyde, Forsythe, Cady, Phys. Rev. 13, p. 45, I919.

TABLE 304.- Luminous, Total Intensity and Radiant Luminous Efficiency of Black Body.*

T, degrees absolute.	Luminous intensity L watt $/ \mathrm{cm}^{2}$	Total intensity $\sigma_{0} T^{4}$ watt $/ \mathrm{cm}^{2}$	Radiant luminous efficiency.
1,200	2.34×10^{-5}	3.762	. 000006
1,600	3.45×10^{-3}	1.189	. 000290
1,700	8.46×10^{-3}	1.515×10	. 000558
1,800	1.88×10^{-2}	1.905×10	. 000987
1,900	3.85×10^{-2}	2.365×10	. 00163
2,000	7.34×10^{-2}	2.903×10	. 00253
2,100	1.32×10^{-1}	3.529×10	. 00374
2,200	2.26×10^{-1}	4.250×10	. 00532
2,300	3.69×10^{-1}	5.077×10	. 00727
2,400	5.79×10^{-1}	6.020×10	. 00962
2,500	8.77×10^{-1}	7.087×10	. Or 24
2,600	1.29	8.291×10	. 0156
3,000	4.66	1.470×10^{2}	. 0317
4,000	3.85×10	4.645×10^{2}	. 0829
5,000	1.36×10^{2}	1. 134×10^{3}	. 1201
6,000	3.26×10^{2}	2.351×10^{3}	. 1386
7,000	6.03×10^{2}	$4.356 \times \mathrm{ro}^{3}$. 1385
8,000	9.59×10^{2}	7.432×10^{3}	. 1290
10,000	1.84×10^{3}	1.854×10^{4}	. 1014

* Coblentz, Emerson, Bul. Bureau of Standards, 14, p. 255, 1917.

Note. - Minimum energy necessary to produce the sensation of light: Ives, 38×10^{-10}; Russell, 7.7×10^{-10}; Reeves, 19.5×10^{-10}; Buisson, $12.6 \times 10^{-10} \mathrm{erg}$. sec. (Buisson, J. de Phys. 7, 68, 1917.)

TABLE 305. - Color of Light Emitted by Various Sources.*

Source.	Color, per cent white.	Hue.	Source.	Color, per cent white.	Hue.
Sunlight.	100	-	N -filled tungsten, 0.50 wpc .	45	584
Average clear sky	60	472	N-filled tungsten, 0.35 wpc .	53	584
Standard candle.	13	593	Mercury vapor arc.....	70	490
Hefner lamp.	14	593	Helium tube.	32	598
Pentane lamp.	15	592	Neon tube..	6	605
Tungsten glow lamp, I .25 wpc	35	588	Crater of carbon arc, 1.8 amp	59	585
Carbon low lamp, 3.8 wpc .	25	592	Crater of carbon arc, 3.2 amp	62	585
Nernst glower, r. 50 wpc....	31	587 586	Crater of carbon arc, 5.0 amp	67	583 586
N-filled tungsten, I. 00 wpc	34	586	Acetylene flame (flat)........	36	586

* Jones, L. A., Trans. Ill. Eng. Soc., Vol. 9 (1914).

Bryant and Hake, Eng. Exp. Station, Univ. of Ill.	Amperes.	$\begin{aligned} & \text { Terminal } \\ & \text { Watts. } \end{aligned}$	Lumens.	Kw-hours for 100,000 Lumenhours.	Total cost per 100,000 Lumen-hours at 10 cts. per Kw-hour.
Regenerative d.-c., series arc	$5 \cdot 5$	385	I 1,670	$3 \cdot 3$	0.339
Regenerative d.-c., multiple arc	5.5	605	11,670	5.18	0.527
Magnetite d.-c., series arc	6.6	528	7,370	7.16	0.729
Flame arc, d.-c., inclined electrodes	10.0	550	8,640	6.37	0.837
Mercury arc, d.-c., multiple	$3 \cdot 5$	385	4,400	15.92	0.89
Flame arc, d.-c., inclined electrodes	8.0	440	6,140	7.16	0.966
Flame arc, d.-c., vertical electrodes	8.0	440	6,140	7.16	0.966
- Luminous arc, d.-c., multiple	6.6	726	7,370	9.85	0.988
Open arc, d.-c., series	9.6	480	5,025	$9 \cdot 55$	1.079
Magnetite arc, d.-c., series	4.0	320	2,870	11.15	I. 13
Flane arc, a.-c., vertical electrodes	10.0	467	5,340	8.75	1.275
Flame arc, a.-c., inclined electrodes	10.0	467	5,340	8.75	1.275
Open arc, d.-c., series	6.6	325	2,920	11.15	1.305
Tungsten series	6.6	75	626	12.0	1. 3^{84}
Flame arc, a.-c., inclined electrodes	8.0	374	3,910	$9 \cdot 55$	1.405
Inclosed arc, d.-c., Series	6.6	475	3,315	14.32	1.459
Luminous arc, d.-c., multiple	4.0	440	2,870	15.32	1.547
Tungsten, multiple	0.545	60	475	12.6	1.55
Nernst, a.-c., 3-glower	1.87	414	2,160	19.2	1.88
Nernst, d.-c., 3-glower	1.87	414	2,160	19.2	1.90
Inclosed arc, a.-c., series	7.5	480	2,410	19.9	2.05
Inclosed arc, a.-c., series	6.6	425	2,020	21.3	2.193
Tantalum, d.-c., multiple	-	40	199	2 I . 1	2.31
Tantalum, a.-c., multiple	-	40	199	21.1	2.504
Carbon, 3.1 w. p. c., multiple	-	49.6	166	29.9	3.24
Carbon, 3.5 w. p. c., series	6.6	210	626	33.6	3.47
Carbon, 3.5 w. p. c., multiple	-	56	166	33.7	3.50
Inclosed arc, d.-c., multiple	5.0	550	1,535	35.8	3.66
Inclosed arc, d.-c., multiple	3.5	385	1,030	37.4	3.84
Inclosed arc, a.-c., multiple	6.0	430	1,124	38.3	3.94
Inclosed arc, a.-c., multiple	4.0	285	688	41.4	4.265

Ives, Phys. Rcv., V, p. 390, 1915 (see also VI, p. 332, 1915) ; computed assuming y lumen $=0.00159$ watt.	Commercial Rating	Lumens per Watt.	Luminous Watts Flux \div Watts Input or True Efficiency.
Open flame gas burner	Bray 6' high pressure	0.22	0.00035
Petroleum lamp		. 26	. 0004
Acetylene	1.0 liters per hour	. 67	. 0011
Incandescent gas (low pressure)	. 350 lumens per B. t. u. per hr.	1.2	.0019
Incandescent gas (high pressure)	. 578 lumens per B. t. u. per hr.	2.0	. 0031
Nernst lamp		4.8	. 0076
Moore nitrogen vacuum tube	220-v. 60-cycle, 113 ft .	5.21	. 0083
Carbon incandescent (treated filament)	4 -watts per mean hor. C. P.	2.6	.004 I
Tungsten incandescent (vacuum)	1.25 watts per hor. C. P.	8.	. 113
Carbon arc, open arc	9.6 amp . clear globe	I 1.8	. 019
Mazda, type C	500 watt multiple .7 w. p. c.	15.	. 024
Mazda, type C	600 C. P. -20 amp. 5 w. p. c.	19.6	.031
Magnetite arc, series	6.6 amp . direct current	21.6	. 034
Glass mercury arc	40-70 volt ; 3.5 amperes	23.	. 036
Quartz mercury arc	174-197 volt; 4.2 amperes	42.	. 067
Enclosed white flame carbon arc	Io ampere, A. C.	26.7	. 042
Open arc " " " ${ }^{\text {" }}$ "	6.5 ampere, D. C.	35.5	. 057
Open arc " ${ }_{\text {6 }}$ " ${ }^{\text {a }}$ (inclined	10 ampere, A. C.	29.	. 046
Enclosed yellow flame carbon arc	io ampere, D. C.	27.7	. 044
" " "	6.5 ampere, D. C.	3.4 34.2	. 054
Open arc, " " , inclined	10 ampere, A. C.	41.5	. 066
" ، " ،	10 ampere, D. C.	44.7	. 071

PHOTOGRAPHIC DATA.
TABLE 307. - Numerical Constants Characteristic of Photographic Plates.

Abscissae of figure are $\log E=\operatorname{lrg}$ It (meter-candles-seconds);

Ordinates are densities, $D=1 / T$;
$E=$ exposure $=I$ (illumination 'in meter-candles) $\times i$ seconds;
D, the density of deposit $=1 / T$, where T is the ratio of the transmitted to incident intensity on developed plate.
$i=$ inertia $=$ intercept straight line portion of curve on $\log E$ axis.
$S=$ speed $=($ some constant $) / i ; \quad \gamma=$ gamma $=$ tangent of angle a.
$L=$ latitude $=$ projected straight line portion of characteristic curve on $\log E$ axis, expressed in exposure units = Anti $\log (b-a)$.
The curve illastrates the characteristic curve of a photographic plate.

Typical Characteristic Curve of Photographic Plate.

TABLE 308. - Relative Speeds of Photographic Materials.

The approximate exposure may be obtained when the intensity of the image on the plate is known. Let L be the intensity in meter-candles; E, the exposure in seconds; P, the speed number from the following table; then $E=$ $\mathbf{1}, 350,000 /(L \times P)$ approximately.

Plate.	Relative speed.	Paper.	Relative speed.
Extremely high speed	100,000	Fast bromide.	
High speed...	75,000	Slow enlarging.	60.0
Medium speed....	60,000 50,000		
Medium speed high cont	25,000	Rapid gas-light, medium contrasty	3.5
Process, slow contrast	10,000	Rapid gas-light, contrasty.	I. 0
Lantern plate	3,000	Professiona..............	1. 25

TABLE 309. - Variation of Resolving Power with Plate and Developer.

The resolving power is expressed as the number of lines per millimeter which is just resolvable, the lines being opaque and separated by spaces of the same width. The developer used for the comparison of plates was Pyro-soda; the plate for the comparison of developers, Seed Lantern. The numbers are all in the same units. Huse, J. Opt. Soc. America, July, 1917.

Developer.	Resolving power.	Developer.	Resolving power.	Developer.	Resolving power.
Pyro-caustic .	77	Pyrocatechin	62	Amidol	51
Glycin......	69	Pyro-metol..........	62	Process hydroquinone..	50
Hydroquinone	64 64	Eikon.-hydroquinone . .	$6 \mathrm{6r}$	Ortol ${ }^{\text {Rodinal }}$	49
MQ_{25}.	64	Caustic hydroquinone. .	57	X-ray powders	49
Metol.	63	Eikonogen............	57	Edinol	47
Nepera.	62	Kachin	54		

Tables 310-311.
PHOTOGRAPHIC DATA.
TABLE 310. - Photographic Efficiencies of Various Lights.

Source.	$\begin{array}{\|c} \text { Visual } \\ \text { efficiency. } \\ \text { Lumens } \\ \text { per } \\ \text { watt. } \end{array}$	Photographic efficiency.					
		(a)			(b)		
		Ordinary plate.	Orthochromatic plate.	Panchromatic plate.	Ordinary plate.	Orthochromatic plate.	Panchromatic plate.
Sun.	150	100	100	100	100	100	100
Sky..............................	0.7	181 30	155 44	130 52	0.14	- 0.21	-0. 24
" (screened)	0.07	8 I	85	89	0.037	0.040	0.042
Pentane.	0.045	18	28	42	0.053	0.086	0.13
	40	600 218	500 105	367 165	158	132	99
"، "، "Nultra" crown glass.	35 37	218 324	195	165 249	50 79	46	39 62
Carbon arc, ordinary...........	12	126	112	104	10	10	8.5
"" " white flame	29	257	234	215	52	45	2.0
" " enclosed.	9	175	177	165	11	11	10
Carbon arc, "Artisto"..........	12	796	1070	744	62	86	60
Magnetite arc..................	18	106	115	82	12	14	10
Carbon glow-lamp..	2.44	23	32	42	0.37	0.52	0.68
Carbon glow-lamp.............	3.16	25	35	45	O. 51	0. 74	0.95
Tungsten vacuum lamp	8	33	45	50	1.74	2.2	2.7
"، vacuum lamp.........	9.9	37	45	53	2.41	3.8	3.5
" ${ }_{\text {" }} \begin{aligned} & \text { nitrogen lamp......... } \\ & \text { nitrogen lamp....... }\end{aligned}$	16.6 21.6	56 64	62 68	70 76	6.1 8.9	6.8 9.8	7.7 11.0
" blue bulb..............	8.9	-	-	-	5.5	5.2	5.6
" blue bulb.............	11	108	99	106	7.8	7.3	7.9
Mercury arc (Cooper Hewitt)....	23	316	354	273	47	54.2	42

(a) Relative efficiencies based on equal illumination.
(b) Relative efficiencies based on equal energy density.

Taken from Jones, Hodgson, Huse, Tr. Ill. Eng. Soc. 10, p. 963, 1915.

TABLE 311.-Relative Intensification of Various Intensifiers.

Bleaching solution.	Blackening solution.	Reference	Intensification.
Mercuric bromide. .	Amidol developer	HgBr_{2} solution (Monckhoven sol. A).*	1.15
Mercuric chloride.	Ammonia	Bleach according to Bennett; blackener.*	1.15
Potassium bichromate + hydrochloric acid	Amidol developer	Piper.**	1.45
Mercuric iodide	Schlippe's salt Sodium sulphide	Debenham, B. J., \dagger p.'r86, 'ı7.	2.50 2.28 2.
Uranium formula................	um sulphide	${ }_{\text {B. J. Almanac.* }}$	2.28 3.50
Potassium permanganate + hydro chloric acid.	Sodium stannate		2.05
Cupric chloride................. Potassium ferricyanide + potassium	Sodium stannate	Desalme, B. J., \dagger p. 215, '12.	1.93
bromide. Mercuric iodide.	Sodium sulphide Paraminophenol developer	Ordinary sepia developer. HgI_{2} according to Bennett.	$\begin{aligned} & \text { I. } 33 \\ & \mathbf{1 . 2 3} \end{aligned}$

See Nietz and Huse, J. Franklin Inst. March 3, 1918.

* B. J. Almanac, see annual Almanac of British Journal of Photography.
\dagger B. J. refers to British Journal of Photography.

Table 312.

WAVE-LENGTHS OF FRAUNHOFER LINES.

For convenience of reference the values of the wave-lengths corresponding to the Fraunhofer lines usually designated by the letters in the column headed "index letters," are here tabulated separately. The values are in ten millionths of a millimeter, on the supposition that the 1 line value is 5896.155 . The table is for the most part taken from Rowland's table of standard wavelengths.

Index Letter.	Line due to -	Wave-length in centimeters \times os 8.	Index Letter.	Line due to-	Wave-length in centimeters $\times 10^{8}$.
A	$\left\{\begin{array}{l}0 \\ 0\end{array}\right.$	7621.28* ${ }^{\text {7 }}$ (594.06*	G	$\left\{\begin{array}{l}\mathrm{Fe} \\ \mathrm{Ca}\end{array}\right.$	4308.081 4307.907
a	-	7164.725	g	Ca	4226.904
$\begin{gathered} \mathrm{B} \\ \mathrm{C} \text { or } \mathrm{H}_{a} \end{gathered}$	O	$6870.182 \dagger$	h or H_{δ}	H	4102.000
	H	6563.045	H	Ca	3968.625
$\boldsymbol{\alpha}$	O	$6278.303 \ddagger$	K	Ca	3933.825
D_{1}	Na	5896.155	L	Fe	3820.586
D_{2}	Na	5890.186	M	Fe	3727.778
D_{3}	He	5875.985	N	Fe	3581.349
E_{1}	$\{\mathrm{Fe}$	5270.55^{8}	O	Fe	3441.155
	\{ Ca	5270.438	P	Fe	3361.327
E_{2}	Fe	5269.723	Q	Fe	3286.898
b_{1}	Mg	5183.791	R	¢ Ca	318 r .387
b_{2}	Mg	5172.856		¢ Ca	3179.453
b_{3}	(Fe	5169.220		(Fe	3100.787
	$\{\mathrm{Fe}$	5169.069	$\left.S_{1}\right\}$	$\{\mathrm{Fe}$	3100.430
b_{4}	\{ Fe	5167.678	S	(Fe	3100.046
	(Mg	5167.497	s	Fe	3047.725
F or H_{β}	H	4861.527	T	Fe	3020.76
d	Fe	4383.721	t	Fe	2994.53
G^{\prime} or H_{γ}	H	4340.634	U	Fe	2947.99
f	Fe	4325.939			

* The two lines here given for A are stated by Rowland to be: the first, a line "beginning at the head of A, outside edge"; the second, a "single line beginning at the tail of A."
\dagger The principal line in the head of B.
\ddagger Chief line in the a group.
See Table 321, Rowland's Solar Wave-lengths (foot of page) for correction to reduce these values to standard system of wave-lengths, Table 314.

STANDARD WAVE-LENGTHS.

TABLE 313.—Absolute Wave-length * of Red Cadmium Line in Air, 760 mm . Pressure, 15° C.
6438.4722 Michelson, Travaux et Mém. du Bur. intern. des Poids et Mesures, $11,1895$.
6438.4700 Michelson, corrected by Benoit, Fabry, Perot, C. R. 144, 1082, 1907.
6438.4009 (accepted primary standard) Benoit, Fabry, Perot, C. R. 144, 1082, 1907.

TABLE 314.-International Secondary Standards. Iron Arc Lines in Angströms.

Adopted as secondary standards at the International Union for Coöperation in Solar Research (transactions, 1910). Means of measures of Fabry-Buisson (1), Pfund (2), and Eversheim (3). Referred to primary standard $=$ Cd. line, $\lambda=6438.4696$ Angströms (serving to define an Ångström). 760 mm ., $15^{\circ} \mathrm{C}$. Iron rods, 7 mm . diam. length of arc, 6 mm .; 6 amp . for $\boldsymbol{\lambda}$ greater than 4000 Ångströms, 4 amp . for lesser wave-lengths; continuous current, + pole above the,- 220 volts ; source of light, 2 mm . at arc's center. Lines adopted in 1910.

Wave-length.	Wave-length.	Wave-length.	Wave-length.	Wave-length.	Wave-length.	Wave-length.
4282.408	4547.853	4789.657	5083.344	5405.780	${ }_{5}^{5615.66 r}$	${ }^{62} 30.734$
4315.089 4375.934	4592.658 460.947	4878.225 4903.325	5110.415 5167.492	5434.527 545.614	5658.836 5753.013	6265.145 6318.028
4427.314	4647.439	4919.007	5192.363	5497.522	6027.059	$6335 \cdot 34 \mathrm{I}$
${ }^{4466.556}$	${ }^{4691.417}$	5001.881	5232.957 5266.569	5506.784		
+494.572	4707.288 4736.786	5012.073 5049.827	5266.569 5371.495	5569.633 5866.722	6137.701 619 l . 568	6430.859 6494.993

TABLE 315.-International Secondary Standards. Iron Arc Lines in Ångströms. Adopted in 1913. (4) Means of measures of Fabry-Buisson, Pfund, Burns and Eversheim.

Wave-length.	Wave-length.	Wave-length.	Wave-length.	Wave-length.	Wave-length.	Wave-length.
3370.789	3606.682	3753.615	3906.482	4076.642	4233.615	6750.250
3399.337	3640.392	3805.346	3907.937	4118.552	5709.396	5857.759 Ni
3485.345	3676.313	3843.261	3935.818	4134.685	6546.250	5892.882 Ni
3513.821	3677.629	3850.820	3977.746	4147.676	6592.928	
3556.88 I	3724.380	3865.527	4021.872	4191.443	6678.004	

(1) Astrophysical Journal, 28, p. 169, 1908; (2) Ditto, 28, p. 197, 1908; (3) Annalen der Physik, 30, p. 815, 1909. See also Eversheim, ibid. 36, p, 107I, I91! ; Buisson et Fabry, ibid. 38, p. 245, I912; (4) Astrophysical Journal, 39, p. 93, เ914.

TABLE 316.-Neon Wave-Lengths.

In-	Wave length.	In-	Wave length.	$\operatorname{In}_{\text {tensity. }}$	Wave length.	$\begin{array}{\|c} \text { In- } \\ \text { tensity. } \end{array}$	Wave length.	$\begin{gathered} \text { In. } \\ \text { tensity. } \end{gathered}$	Wave length.
5	3369.904	5	3515.192	2	5820.155	4	6217.280	5	6717.043
6	3417.906	8	3520.474	10	5852.488	7	6266.495	8	6929.468
6	3447.705	4	$3593 \cdot 526$	6	5881.895	4	6304.789	3	7024.049
6	3454.197	4	3593.634	8	5944.834	8	6334.428	9	7032.413
5	3460.526	5	3600. 170	4	$5975 \cdot 534$	8	6382.991	3	7059. I I I
4	$3464 \cdot 340$	5	3633.664	4	6329.997	10	6402.245	5	7173.939
5	3466.58 I	8	5330.779	7	6374.338	9	6506.528	8	7245.167
6	3472.578	7	5341.096	8	6096.163	4	6532.883	6	7438.902
4	3498.067	6	5400.562	9	6143.062	5	6598.953	5	7488.885
4	3501.218	4	$5764 \cdot 419$	5	6163.594	8	6678.276	5	7535.784

International Units (ingströms). Burns, Meggers, Merrill, Bull. Bur. Stds. 14, 765, 1918.

TERTIARY STANDARD WAVE-LENGTHS. IRON ARC LINES.
For arc conditions see Table 314, p. 266. For lines of group c class 5 for best results the slit should be at right angles to the arc at its middle point and the current should be reversed several times during the exposure.

Wave-lengths.	Class.	Intensity.	Wave-lengths.	Class.	Intensity.	Wave-lengths.	Class.	Intensity.
*2781. 840		4	4337.05^{2}	b3	5	5332.909	a	2
*2806.985		7	4369.777	b3	3	5341.032	a4	5
*2831.559		3	4415.128	bI	8 r	5365.404	a 1	2
*2858.34I		3	4443.198	b3	3	5405.780	a	6
*2901.382		4	4461.658	a3	4	$5434 \cdot 528$	a	6
*2926.584		5	4489.746	a3	3	5473.913	a	4
*2986.46n		3	4528.620	c 4	7	5497.52 I	a	4
*3000.453		4	4619.297	c4	4	5501.471	a	4
*3053.070		4	4786.81 I	c4	3	5506.784	a	3
*3100.838		2	4871.331	c 5	8	$\ddagger 5535.419$	a	2
*3154.202		4	4890.769	c5	7	5563.612	b	3
*3217.389		4	4924.773	a	3	5975.35^{2}	b	3
*3257.603		4	4939.685	a	3	6027.059	b	3
*3307.238		4	4973.113	a	2	6065.495	b	4
* 3347.932		4	4994.I33	a	3	6136.624	b	5
*3389.748		3	5041.076	a	3	6157.734	b	4
*3476.705		5	5041.760	a	4	6165.370	b	3
*3506.502		5	5051.64 I	a	4	$6173 \cdot 345$	b	4
*3553.741		5	5079.227	a	3	6200.323	b	4
*3617.789		6	5079.743	a	3	6213.44 I	b	5
*3659.52I		5	5098.702	a	4	6219.290	b	5
*3705.567		6R	5123.729	a	4	6252.567	3	6
*3749.487		8R	5127.366	a	3	6254.269	b	4
*3820.430		8 R	5150.846	a	4	6265.145	b	5
*3859.913		7 R	5151.917	a		6297.802	b	4
*3922.917		6 R	5194.950	a	5	$6335 \cdot 342$	b	6
$* 3956.682$ * 4000.718		6	5202.34 I	a	5	6430.859	b	5
* 4009.718 * 4062.451		5	5216.279 5227.191	a a	5	$6494 \cdot 992$	b	6
$\dagger 4132.063$	bi	7	5242.495	a	3			
†4175.639	b	4	5270.356	a 4	8			
$\dagger 4202.031$	br	7 r	5328.043	a I	7			
$\dagger 4250.79 \mathrm{I}$	b2	7	5328.537	a4				

* Measures of Burns.
\dagger Means of St. Joln and Burns.
\ddagger Means of St. John and Goos. Others are means of measures by all three. References: St. John and Ware, Astrophysical Journal, 36, 1912; 38, 1913; Burns, Z. f. wissen. Photog. 12, p. 207, 1913, J. de Phys. 1913, and unpublished data; Goos, Astrophysical Journal, 35,$1912 ; 37,1913$. The lines in the table have been selected from the many given in these references with a view to equal distribution and where possible of classes a and b.

For class and pressure shifts see Gale and Adams, Astrophysical Journal, 35, p. 10, 1912. Class a : "This involves the well-known flame lines (de Watteville, Phil. Trans. A 204, p. 139. 1904), i.e. the lines relatively strengthened in low-temperature sources, such as the flame of the arc, the low-current arc, and the electric furnace. (Astrophysical Journal, 24, p. 185, 1906, 30, p. 86, 1909, 34, p. 37, 1911, 35, p. 185, 1912.) The lines of this group in the yellow-green show small but definite pressure displacements, the mean being 0.0036 Anngström per atmosphere in the arc." Class b : "To this group many lines belong; in fact all the lines of moderate displacement under pressure are assigned to it for the present. These are bright and symmetrically widened under pressure, and show mean pressure displacements of 0.009 Angström per atmosphere for the lines in the region λ 5975-6678 according to Gale and Adams. Group contains lines showing much larger displacements. The numbers in the class column have the following meaning: I, symmetrically reversed; 2 , unsymmetrically reversed; 3, remain bright and fairly narrow under pressure; 4, remain bright and symmetrical under pressure but become wide and diffuse ; 5, remain bright and are widened very unsymmetrically toward the red under pressure."

For further measures in International units see Kayser, Bericht iiber den gegenwärtigen Stand der Wellenlängenmessungen, International Union for Coöperation in Solar Research, 1913. For further spectroscopic data see Kayser's Handbuch der Spectroscopie.

REDUCTION OF WAVE-LENGTH MEASURES TO STANDARD CONDITIONS.

The international wave-length standards are measured in dry air at $15^{\circ} \mathrm{C}, 76 \mathrm{~cm}$ pressure. Density variations of the air appreciably affect the absolute wave-lengths when obtained at other temperatures and pressures. The following tables give the corrections for reducing measures to standard conditions, viz.: $\delta=\lambda_{0}\left(n_{0}-n_{0}{ }^{\prime}\right)\left(d-d_{0}\right) / d_{0}$ in ten-thousandths of an Angstrom, when the temperature $t^{\circ} \mathrm{C}$, the pressure $B \mathrm{in} \mathrm{cm}$ of Hg , and the wave-length λ in Angstroms are given; n and d are the indices of refraction and densities, respectively; the subscript o refers to standard conditions, none, to the observed; the prime' to the standard wave-length, none, to the new wave-length. The tables were constructed for the correction of wave-length measures in terms of the fundamental standard 6438.4696 A of the cadmium red radiation in dry air, $15^{\circ} \mathrm{C}, 76 \mathrm{~cm}$ pressure. The density factor is, therefore, zero for $15^{\circ} \mathrm{C}$ and 76 cm , and the correction always zero for $\lambda=6438 \mathrm{~A}$. As an example, find the correction required for λ when measured as 3000.0000 A in air at $25^{\circ} \mathrm{C}$ and 72 cm . Section (a) of table gives ($\left.d-d_{0}\right) / d_{0}=-.085$ and for this value of the density factor section (b) gives the correction to λ of -.0038 A . Again, if λ, under the same atmospheric conditions, is measured as 8000.0000 A in terms of a standard $\boldsymbol{\lambda}^{\prime}$ of wave-length 4000.000 A , say, the measurement will require a correction of $(0.0020+0.0008)=+.0028$ A. Taken from Meggers and Peters, Bulletin Bureau of Standards, 14, p. 728, 1918.

TABLE $318(a) .-1000 \times\left(d-d_{0}\right) / d_{0}$.

$B \mathrm{~cm}$	60.0	62.5	65.0	67.5	70	71	72	73	74	75	76	77	78
$9^{\circ} \mathrm{C}$	-192	-160	-126	-92	-59	-46	-32	- 19	-5	$+8$	$+22$	+35	$+48$
II	-200	-167	- 133	-100	-67	-53	-40	-27	-13	-	+13	+27	+40
13	-206	-172	-139	- 106	-73	-60	-46	-33	-20	-7	$+6$	+20	+33
15	-2II	-178	-145	-II2	-79	-66	-53	-39	-26	-13	\bigcirc	+13	$+26$
17	-216	-184	- 151	-118	-86	-73	-60	-47	-34	-2I	-8	+5	+19
19	-222	-189	-156	-124	-92	-79	-66	-53	-40	-27	-14	-1	+12
21	-227	-195	-163	-130	-98	-85	-72	- 59	-46	-33	-21	-8	+5
23	-232	-200	- 168	-136	-104	-91	-78	-65	-52	-40	-27	-14	-1
25	-238	-206	- 174	-143	-III	-98	-85	-72	-60	-47	-34	-22	-9
27	-243	-2II	- 179	-148	- I16	-104	-91	-78	-66	-53	-40	-28	-15
29	-248	-216	-185	- 154	-122	-109	-97	-84	-72	-59	-46	-34	-21
31	-253	-222	-190	-159	-128	-116	-103	-91	-78	-66	-54	-4I	-29
33	-258	-227	-196	-165	-134	-121	-109	-97	-84	-72	-59	-47	-34
35	-262	-231	-200	-170	- 139	-127	-II4	-102	-90	-77	-65	-53	-4I

TABLE $318(b) .-\delta=\lambda_{0}\left(n_{0}-n_{0}{ }^{\prime}\right)\left(d-d_{0}\right) / d_{0}$, in Ten-thousandth Angstroms.

$\begin{aligned} & 1000 \times \\ & \frac{d-d_{0}}{d_{0}} \end{aligned}$	Wave-lengths in Angstroms.														
	2000	2500	3000	3500	4000	4500	5000	5500	6000	6500	7000	7500	8000	9000	10000
	Corrections in ten-thousandth Angstroms.														
-260	-259	-166	-rı6	-84	-61	-44	-30	-18	-8	+1	+9	+17	+24		
-240	-239	-154	-107	-78	-57	-41	-28	-17	-7	+1		+16	+22	+35	+46
-220	-219	-141	-98	-71	-52	-37	-26	-15	-7	+1		+14	+20	+32	+42
-200	-199	-128		-65	-47		-23	-14		+1			+19	+29	
-180	-179	- 115	-80	-58	-42	-30	-21	-13	-6	+1	+6	+12	+17	+26	+34
- 160	-159	-102	-71	-52	-38	-27	-19	- 11	-5	+1		+10	+15	+23	+31
-140 -120	- 139 -119	-90	-62 -54	-45 -39	-33 -28	-24 -20	-16	-10 -8	-4	+1		+9 +8	+13	+20 +17	+27 +23
-120 -100	- 119 -100	-77	-54 -45	-39 -32	-28 -24	-20 -17	-14 -12	-8	-4			+8 +7	+11 +9	+17 +14	+23 +19
-80	-80	-51	-36	-26	-19	-14	-9	-6	-2	+o		+5		$+12$	+15
-60	-60	-38	-27	-19	- 14	- 10	-7	-4	-2	+o	$+2$	+4	+6	+9	+11
-40	-40	-26	-18	-13	-9	-7	-5	-3	-1	+o	+1	+	+4	+6	+8
- 0	-20	-13	-9	-6	-5 0	-3	-20	-1	-1	--	+1	+1			+4
+20	+20	+13					+2	+1				-2			-
$+40$	+40	$+26$	+18	+13	+9	+7	$+5$	+3	+1	-○		-3	-4	-6	-8

SPECTRA OF THE ELEMENTS.
The following figure gives graphically the positions of some of the more prominent lines in the spectra of some of the elements. Flame spectra are indicated by lines in the lower parts of the panels, arc spectra in the upper parts, and spark spectra by dotted lines.

The following wave-lengths are in Angstroms.

Na	5889.965	Rb	4202	Cu	4023	Mg	5168
	5895.932		4216		4063		5173
K	4044		5648		5105.543*		518.4
	4047		5724		5153.25 * *		5529
	5802		6207		5218.202^{*}	Sn	4525
	7668		6299		5700		5563
	7702	Tl	535 T		5782.090^{*}		5589
Li	4132	In	4102		5782.159^{*}		5799
	4602		4511	Ag	4055		6453
	6104	Hg	4046.8		4212	II	3970
	6707.846*		4078.1		4669		4102
Cs	4555		4358.3		5209.08 x *		43.40
	4593		4916.4		5465.489^{*}		4861
	5664		4959.7		5472		6563
	5945		5460.742 ${ }^{\text {\% }}$		5623 *	He	$3187.743{ }^{\dagger}$
	6011		5769.598*	Zn	4680.138**		$3888.646 \dagger$
	6213		5790.659*		4722.164**		$4026.189 \dagger$
	6724		6152		4810.535*		$4471.477 \dagger$
	6974		6232		4912		$4713.143 \dagger$
For other elements, see Kayser's Handbuch derSpectroscopie.					6103		$5015.675{ }^{\dagger}$
					6362.345^{*}		$5875.618 \dagger$
							$6678.149 \dagger$
* Fabry and Perot.		$\dagger \mathrm{M}$					7065.188†

Table of brighter lines only abridged from more extensive table compiled from Kayser and containing $\mathbf{1 0 , 0 0 0}$ lines （Kayser＇s Handbuch der Spectroscopie，Vol．6，1912）．

Wave－ lengths， inter－ national Ang－ stroms．	Ele－ ment．	Intensities．			Wave－ lengths， inter－ national Ang－ stroms．	Ele－ ment．	Intensities．			Wave－ lengths， inter－ national Ang－ stroms．	Ele－ ment．	Intensities		
		Arc．	Spark．	Tube．			Arc．	Spark．	Tube．			Arc．	Spark．	Tube．
3802.98	Nb	15	4	－	3968.48	Ca	30	40	－	4116.50	V	15	5	－
08.21	I	－	－	10	72.01	Eu	20	20	－	18.48	Pr	15	10	二
10.73	Nh	10	20	－	74.71	Er	15	5	二	23.24	La	10	15	－
14.45	Ra	20	20		76.85	Tb	20	10	－ 10	28.3	I	15	8	－
22.15	Rh	12	15	二	81.68	Em	－	－	15	28.91	Rh	15	то	－
28.47	Rh	12	10	－	8 r .89	Tb	15	\％		29.75	Eu	50	50	－
29.35	Mg	15	8	－	82.60	Y	12	12	－	30.42	Gd	15	10	
32.30	Mg	20	10		88.00	Ny	50	20	－	35.29	Rh	12	10	
36.83 38.29	Sr_{S}	－	15	10	88.52 91.13	${ }_{\mathrm{Zr}}^{\mathrm{La}}$	10 8	15	二	35.80 37.13	$\stackrel{\mathrm{Os}}{\mathrm{Nb}}$	15 12	5	
38.29	Mg	20	10	10	98.96	$\mathrm{Zr}_{\mathrm{Zr}}$	8	12	二	37.74 39.74	Nb	15	4	二
45.45	Co	10	15		4000.47	Dy	15	12		42.86	$\stackrel{\mathrm{Y}}{ }$	15	8	－
47.98	Tm	15	10	－	05.50	Tb	15	10	－	43.14	${ }_{S}^{\text {Pr }}$	15	10.	－
48.75	Tb	15	15	10	05.73	P_{p}		2		45.12	${ }_{\text {S }}$	－	－	10
51.02 56.50	R h	10	12	10	08.73 19.62	$\stackrel{\mathrm{Pr}}{\mathrm{Pb}}$	12 12	10	－	49.20 51.12	${ }_{\mathrm{Zr}}^{\mathrm{Er}}$	$\begin{aligned} & 10 \\ & 15 \end{aligned}$	15 4	
58.29	Ni	20	8	－	22.70	Cu	15	10	－	52.63	Nb	15	5	－
60.86	Cl	－	5	10	23.35	V		20		53.11	S	－	－	10
64.11	Mo	20	10		23.71	Se^{F}	12	8	－	58.62	A	－	－	10
71.65	La	8 10	15	－	25.1 30.80	$\stackrel{\mathrm{F}}{\mathrm{M}} \mathrm{n}$	18	8	10	61.83	${ }_{S}^{\text {Ar }}$	10	20	－
74.16	Tb	15	15	－	31.70	La	8	15	二	62.70 63.64	Nb	15	10	10
76.66	Lu	15	10	－	33.03	Ga	10	30	－	64.66	Nb	12	5	－
88.64	He		－	10	33.06	Mn	15	8	二	66.43	Em	－		20
88.96	Nh	15	10	－	34.48	Mn	15	8		68.14	Nb	15	5	－
91.01	Nh	20	15	－	35.62	V	－	20	－	69.0	Se	－	10	10
94.09	Co	10	15	二	41.43 42.92	$\mathrm{Ma}_{\mathrm{La}}$	12 8 8	8	－	72.05	Ga	15	20	二
94.22 96.36	Er	15	＋ 15	二	44.15	K	20	10	二	79.04	Ge	12	20	
97.63	1	－	－	10	45.45	Nh	20	10		79.43	${ }^{\text {Pr }}$	15	10	－
3900.53	Ti	15	10		45.82	Fe	6	15		80.04	X	－	－	20
02.95	Mo	15	8	－	46.00	Dy	12	4	－	84.25	Lu	20	15	－
05.5	$\stackrel{\mathrm{Si}}{\mathrm{Er}}$	15	4		46.6	Se	－	4	10	89.52	${ }^{\text {Pr }}$	15	10	
06.34	$\stackrel{\mathrm{Er}}{\mathrm{Er}}$	15	10 20		77.21	${ }^{\mathrm{K}}$	20	10		90.91	Nb	15	9	
07.52	Sc	12	2		4	$\mathrm{Ag}^{\mathrm{Ag}}$	11	6	－	4200.65 01.82	Rb	20	15	
11.85	Sc	15	6	－	57.84	Pb	30	20	－	03.23	Em	－	－	10
14.26	$\stackrel{\mathrm{Br}}{\mathrm{Sc}}$	－	－	10	58.97	Nb	15	10	－	05.04	Eu	50	30	－
14.94	${ }_{\mathrm{Sc}}^{\mathrm{Br}}$	12	－	10	62.75	$\mathrm{Cu}^{\mathrm{Cu}}$	15	10	二	05.32	Nb	15	4	
22.52 25.43	Tb	－ 15	－	1	62.83 63.47	$\stackrel{\mathrm{Pr}}{\mathrm{Gr}}$	12	8	－	06．72	$\mathrm{Pr}^{\mathrm{Pr}}$	15	12	
30.51	Eu	50	50	－	77.34	La	10	12	二	II． 14	Rh	15	12	
31.10	I	－	－	10	77.37	Y	15	5	－	11.69	Dy	12	5	
33.67	Ca	40	50	－	77.75	$\stackrel{\mathrm{Sr}}{\mathrm{D}}$	50	50	－	14.74	$\stackrel{\mathrm{Nb}}{ }$	12	－	－
39.55	Tb	15	10	－	77.97	Dy	12	II	－	15.52	$\stackrel{\mathrm{Sr}}{\mathrm{Rb}}$	30	30	－
40.07 40.47	Rb	二	－ 15		78.79 79.73	$\stackrel{\mathrm{X}}{\mathrm{N}} \mathrm{b}$	15	－	10	15.56 17.95	$\stackrel{\mathrm{R}}{\mathrm{Nb}}$	20	10	二
44.68	Dy	12	10	－	80.62	Ra	12	10		21.08	I	－	－	10
45.33	O	－	－	10	86.70	La	10	15	－	23.00	Pr	15	12	
49.10	${ }_{\mathrm{Y}}^{\mathrm{L}}$	12	20	二	92.68	V	15	－	－	25.34	${ }^{\mathrm{Pr}}$	15	12	－
50.35 51.01	Y	12	12	－	99．80	$\stackrel{\mathrm{V}}{\mathrm{Pr}}$	20	I2	二	26.56	Ge	7	50	
51.95	V	－	15	10	$\begin{array}{r} \\ \hline 00.97\end{array}$	Nb	20	6	二	38.21	X	$\underline{-}$	－	10
58.22 58.66	$\stackrel{\mathrm{Zr}}{\mathrm{Pd}}$	8	15 15 10	二	01.82	${ }_{\text {In }}$	20	12	二	4 I .04	$\stackrel{\mathrm{Pr}}{ }$	12	10	
58.66	Pd	15	10	－	02.40	Y	12	8	－	44.34	Rb	－	15	二
58.85 66.23	$\stackrel{\mathrm{R}}{\mathrm{N}} \mathrm{b}$	15 12	$\underline{12}$	二	03.4	$\stackrel{\text { F }}{ }$	－	－	10	45.2	Pb	二	20	－
67.59	X	－	－	10	O9．78 II． 80	V	15 20	10	二	45.38 46.3	$\underset{\mathrm{F}}{\mathrm{S}}$	二	二	10 30
3968.40	Dy	15	12	－	4112.03	Os	12	4	－	4246.85	Sc	15	20	

Smithsonian TAbles．

Wave－ lengths， inter－ national Ang－ stroms．	Ele－ ment．	Intensity．			Wave－ lengths， inter－ national Ang－ stroms．	Ele－ ment．	Intensity．			Wave－ lengths， inter－ national Ang－ stroms．	Ele－ ment．	Intensity．		
		Arc．	Spark．	Tube．			Arc	Spark．	Tube．			Arc．	Spark．	Tube．
4253.61	S	－	－	10	4477.77	${ }^{\mathrm{Br}}$	－	－	10	4994．13	Lu	20	－	－
54.34	Cr	12	12	－	81． 17	Mg	－	20	－	5035．36	Ni	12	10	－
54.42	Nh	15	8	－	96.43	Pr	15	10	－	53.30	W	12	12	－
59.69	Bi	－	20	－	98.76	Pt	12	10	－	5135．08	Lu	15	－	－
60.84	Os	15	5	－	4510.15	Pr	12	10	－	56.20	Sr	20	－	－
73.96	$\mathbf{K r}$	－	－	10	22.59	$\mathrm{Eu}^{\text {en }}$	20	20	－	${ }^{1} 1.19$	I	－	－	10
74.80	Cr	12	10	－	24.74	Sn	10	20	－	63.78	Pd	15	－	－
86.97	La	10	12	－	54.97	Cr	15	－	－	72.68	Mg	15	15	－
4301.11	Nb	12	5	－	55.52	$\stackrel{\mathrm{Ru}}{ }$	10	12	－	83.60	Mg	20	20	－
02.12	Bi	－	15	－	72.74	H	－	－	10	64.51	Cr	12	8	－
02.28	Y	12	－	－	73.09	Nb	12	5	－	5206.05	Cr	12	9	－
03.61	Nd	20	10	－	74.26	I	－	－	10	08.42	Cr	12	10	－
05.49	Sr	10	20	－	85.47	X	－	－	10	09.08	Ag	30	20	－
05.78	Pr	15	10	－	89.35	Dy	15	5	－	24.70	W	12	12	－
07.92	Fe	6	15	－	94.09	Eu	30	20	－	56.95	Sr	20	6	－
08.1	Em	－	－	10	4603.03	X	－	－	10	92.23	X	－	－	10
09.63	Y	12	12	－	06.77	Nb	12	10	－	95.62	Pd	15	－	－
14.11	Sc	12	12	－	07.34	Sr	30	20	－	5330.65	O	－	－	10
19.60	Kr	－	－	10	09.22	Em	－	－	10	32.01	${ }_{\mathrm{Sr}}$	－	－	10
25.77	Nd	15	5	－	24.28	X	－	－	15	32.8	Sn	－	20	－
25.78	Fe	6	15	－	25.40	Em	－	－	15	35.14	Ny	5	20	－
26.36	Nb	12	－	－	27.29	Eu	20	15	－	50.49	T1	20	10	－
30.47	X	－	－	15	27.98	H	－	－	10	52.86	Ny	－	20	－
33.77	La	12	12	－	33.86	H	－	－	10	60.59	Mo	15	12	－
40.67	Ra	15	10	－	34.02	H	－	－	10	69.85	Se		－	10
43.69	Cl	－	5	10	44．I I	Sm	－	－	15	74.08	Se	－	－	10
48.01	A	－	－	10	46.16	Cr	12	10	－	95.27	Pd	12	－	－
49.65	Em	－	－	15	48.66	Ni	15	－	－	5419．19	X	－	－	10
55.47	Kr	－	－	10	61.92	Eu	20	15	－	64.5	I	－	－	10
65.58	Br	－	4	10	66.65	I	－	－	10	65.49	Ag	30	20	－
68.30	O	－	－	10	71.24	X	－	－	10	76.69	Lu	20	10	－
74.51	Sc	10	12	－	72.12	Nb	12	10	－	76.91	Ni	12	10	－
74.8 I	R h	15	12	－	75.36	Nb	12	8	－	80.95	Sr	20	10	－
74.94	Y	15	20	－	80.138	Zn	10	20	－	96.78	I	－	－	10
79.24	V	30	30	－	80.74	Em	－	－	10	5504.26	Sr	20	－	－
79.77	Zr	10	12	－	82.18	Ra	20	15	－	06.51	Mo	20	15	－
81.66	Mo	12	6	－	87.80	Zr	7	12	－	14.71	W	20	20	－
82.8	Se	－	8	10	4704.93	Br	－	15	10	21.80	Sr	20	－	－
83.55	Fe	10	20	－	08.26	I	－	－	10	33.01	Mo	15	12	－
84.73	V	20	30	－	14.42	Ni	15	8	－	42.78	Pd	12	－	－
86.9	Pb	－	20	－	22.164	Zn	10	20	－	56.49	Ny	15	－	－
89.98	V	20	20	－	22.54	${ }_{\text {Bi }}$	10	20	10	62.5	Mo	－	30 10	
93.17	X	－	－	10	30.86	Se	－	15	10	70.46 80.2	Mo	I5	10	－
95.24	V	15	10	10	38.12 85.49	$\stackrel{11}{\mathrm{Br}}$	二	15	10	5608.9	Pb	－	12	－
95.74 98.03	Y	10	15	10	85.49 94.48	Cl	－	20	10	20.64	As	－	－	10
4401.54	Ni	15	15	－	4806.68	I	－	－	10	25.64	1	－	－	10
04.75	Fe	8	15	－	08.23	I	－	－	10	51.34	As	－	－	10
08.50	V	15	20	－	09.97	Cl	－	9	10	62.93	$\stackrel{\mathrm{Y}}{\mathrm{Pd}}$	－	12	－
08.83	Pr	12	10	－	10.534	Zn	10	20	－	70.05	$\stackrel{\mathrm{P}}{\mathrm{V}}$	15	－	－
10.09	I		－	10	11.83	Sr	15	8	－	98.54	V	15	15	－
11.71	Mo	12	6	－	19.28	Mo	12	－	－	5751.40	Mo	15	－	－
20.46	Os	15	10	－	25.93	Ra	15	10	－	99.4 5813.63	Ra	二	20 15	－
24.36	Sm	20	10	二	32.07 40.6	Sr Se	15	6	－10	5813.63 52.49	Ra Ne	二	15	－
29.23 34.26	$\stackrel{\mathrm{Pr}}{1}$	15	12	－10	40.6 44.32	Se	－	4	10	52.49 57.76	Ni	15	－	15
34.26 35.58	Eu	20	20	10	44.8 44	Se	－	6	10	58.27	Mo	12	8	－
37.23	Nb	12	8	－	50.49	I	－	－	10	75.64	He	－	－	10
42.56	Pt	12	． 5	－	54.89	Y	10	15	－	88.33	Mo	15	10	－
46.6	F	－	－	20	83.71	Y	12	20	－	89.96	Na	20	20	－
48.11	X	－	－	10	4900.13	Y	10	20	－	95.93	Mo	15	10	－
51.56	Nd	10	15	－－	11.7	Zn	10	20	－	95.93	Na	20	20	－
53.00	I	－	－	10	24.0	Zn	10	20	－	5928.82	$\mathrm{Mo}^{\text {Mo }}$	15	15	－
59.8	Em	－	－	10	57．4I	Dy	15	－	二	6090.22 6121.80	H	15	15	$\overline{10}$
4462.2 I	X	－	－	20	4962.27	Sr．	15	－		6121.80				

Note．－This table，somewhat unsatisfactory in its abridged form，is included with the hope to occupy its space later with a better table；e．g．，no mercury lines appear since the scale of intensity used in the original table results in the intensity of all mercury lines falling below the critical value used in this table．

Smithsonian Tables．

Table 321.

STANDARD SOLAR WAVE-LENGTHS. ROWLAND'S VALUES.

Wave-lengths are in Ågström units ($10^{-7} \mathrm{~mm}$.), in air at $20^{\circ} \mathrm{C}$ and 76 cm . of mercury pressure. The intensities run from I, just clearly visible on the map, to 1000 for the H and K lines; below I in order of faintness to 0000 as the lines are more and more difficult to see. This table contains only the lines above 5 .

N indicates a line not clearly defined, probably an undissolved multiple line; s, a faded appearing line; d, a double. In the "substance" column, where two or more elements are given, the line is compound; the order in which they are given indicates the portion of the line due to each element ; when the solar line is too strong to be due wholly to the element given, it is represented, -Fe, for example; when commas separate the elements instead of a dash, the metallic lines coincide with the same part of the solar line, Fe, Cr, for example.

Capital letters next the wave-length numbers are the ordinary designations of the lines. A indicates atmospheric lines, (wv), due to water vapor, (\mathbf{O}), due to Oxygen.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \(\underset{\substack{\text { Wave. } \\ \text { length. }}}{\text { cel }}\) \& Substance. \& Inten. \& Wave-length. \& Substance. \& Inten- \& \(\underset{\substack{\text { Wave. } \\ \text { length. }}}{\text { der }}\) \& Sub-
stance. \& \begin{tabular}{c}
Inten. \\
sity. \\
\hline
\end{tabular} \\
\hline 3037.510s \& Fe \& 10 N \& 3372.947 \& Ti-Pd \& rod? \& 3533.345 \& Fe \& 6 \\
\hline 3047.72 5 \& Fe \& 20 N \& 3380.722 \& Ni \& 6 N \& 3536.709 \& \(\mathrm{Fe}^{\mathrm{Fe}}\) \& 7 \\
\hline 3053.5305 \& \& 7 7 d? \& \begin{tabular}{l}
3414.911 \\
3423 \\
\hline
\end{tabular} \& \(\stackrel{\mathrm{Ni}}{\mathrm{Ni}}\) \& 15 \& \begin{tabular}{l}
3541.237 \\
3542.232 \\
\hline
\end{tabular} \& \(\underset{\mathrm{Fe}}{\mathrm{Fe}}\) \& 7 \\
\hline 3054.429
3057.552 s \& \({ }_{\text {Ti, }}^{\text {Me }}\), \({ }^{\text {Ni }}\) \& 10
20 \& 3423.848
3433.715 \& \(\stackrel{\mathrm{Ni}, \mathrm{Cr}}{\mathrm{Ni}}\) \& \(8{ }^{7}\) d \& 3542.232
3555.079 \& \(\stackrel{\mathrm{Fe}}{\mathrm{Fe}}\) \& 6 \\
\hline 3057.5528
3059.2125 \& \(\underset{\mathrm{Fe}}{\substack{\text { Ti, } \\ \mathrm{Fe}}}\) \& 20
20 \& \(\underbrace{343.715}_{3440.7625}\) \& \({ }_{\text {Ne }}\) \& 20 \& 3555.079
3558.672 s \& \(\stackrel{\mathrm{Fe}}{\mathrm{Fe}}\) \& 9 \\
\hline 3067.369s \& \(\mathrm{Fe}^{\text {Fe}}\) \& 8 \& \(\left.{ }_{3441.1555}\right\}^{\text {S }}\) \& \(\mathrm{Fe}^{\mathrm{Fe}}\) \& 15 \& 3566.535s \& \(\stackrel{\mathrm{Fe}}{ }\) \& 20 \\
\hline 3073.091 \& \({ }_{\text {Ti, }}\) \& 6 Nd ? \& 3442.118 \& \(\mathrm{Mn}^{\text {m }}\) \& \& \({ }^{3566.522}\) \& \(\stackrel{\mathrm{Ni}}{\mathrm{Fe}}\) \& 10 \\
\hline 3078.7699 \& Ti, \& 8 d ? \& 3444.0208 \& \(\stackrel{\mathrm{Fe}}{\mathrm{Ni}}\) \& 8 N \& \({ }_{3570.2738}\) \& \(\stackrel{\mathrm{Fe}}{\mathrm{Ni}}\) \& 20 \\
\hline 3088.1455 \& \(\mathrm{Ni}_{\mathrm{Ti}}^{\mathrm{Ti}} \mathrm{Fe}\) \& 78 7 \({ }_{8}\) \& \({ }^{3446.406}\) \& \(\stackrel{\mathrm{Ni}}{\mathrm{Co}}\) \& \({ }^{15} \mathrm{~d}\) ? \& 3572.014
3572.712

3 \& $\mathrm{Se}_{\mathrm{Ni}}^{\mathrm{Na}}$ - \& 6

\hline \& ${ }_{-, \mathrm{Fe}}$ \& 6d? \& 3449.503
3453.039 \& Ni \& 6 d ? \& ${ }^{3578} 8.832$ \& $\mathrm{Cr}^{\text {crer }}$ \& ${ }^{10}$

\hline ${ }^{32} 36.7035$ \& Ti \& 78 \& 3458.601 \& $\stackrel{\mathrm{Ni}}{ }$ \& 8 \& 3558.349s \& $\mathrm{Fe}^{\mathrm{Fe}}$ \& 30

\hline 3239.170 \& Ti \& 7 \& 3466.801 \& $\mathrm{Ni}_{\mathrm{Co}}$ \& 8 \& 3584.800
355.105 \& \& 6

\hline 3242.125 \& ${ }_{-}^{\text {Ti, }} \mathrm{Ni}$ \& 8 \& | 3462.950 |
| :--- |
| 3466.015 | \& $\stackrel{\mathrm{Co}}{\mathrm{Fe}}$ \& 6 \& 3585.105 \& $\mathrm{Fe}^{\mathrm{Fe}}$ \& 6

\hline ${ }^{3243.189}{ }^{3247.6885}$ \& ${ }^{-} \mathrm{Cu}$ \& \& 3466.0158
3475.5945 \& $\stackrel{\mathrm{Fe}}{\mathrm{Fe}}$ \& 10 \& 3555.479
355.859 \& $\stackrel{\mathrm{Fe}}{\mathrm{Fe}}$ \& 6

\hline ${ }_{\text {l }}^{32476.0885}$ \& Fe? \& ${ }_{6} 6$ \& 3475.5949 \& ${ }_{\mathrm{Fe}}$ \& ${ }_{8}^{10}$ \& ${ }^{3555} 5$ \& ${ }_{\text {Fe }}$ \& 8

\hline 3267.834 s \& V \& 6 \& 3483.923 \& Ni \& 6 d ? \& 3587.370 \& Co \& 7

\hline 3271.129 \& Fe \& d \& 3485.493 \& Fe Co \& ${ }^{6}$ \& 3588.084 \& $\mathrm{Ni}^{\mathrm{Ni}}$ \& 6

\hline 3271.791 \& Ti, Fe \& 6 d ? \& 3490.7335 \& Fe \& 10 N \& 3593.636 \& $\stackrel{\mathrm{Cr}}{\mathrm{Fr}}$ \&

\hline ${ }_{\text {l }}^{3274.0968}$ \& ${ }_{\text {Co-Fe }}^{\text {Cu }}$ \& ${ }_{7}^{10} \mathrm{~d}$? \& 3493.114
3497.982 s \& ${ }_{\text {Ni }}^{\mathrm{Ni}}$ \& ${ }_{8}^{10 \mathrm{~N}}$ \& 3594.784

3597.854 \& $\mathrm{Fe}_{\mathrm{Fe}}^{\mathrm{Ni}}$ \& 6

\hline 3277.482
3286.898 \& $\stackrel{\mathrm{Co-Fe}}{\mathrm{Fe}}$ \& ${ }_{7}^{7} \mathrm{~N}$? \& 3497.982 2

3500.96s \& $\stackrel{\mathrm{Ne}}{\mathrm{Ni}}$ \& 6 d ? \& | 3597.854 |
| :--- |
| 365.479 s | \& ${ }_{\text {Cr }}$ \& 7

\hline 3295.9515 \& Fe, Mn \& 6 \& 3510.466 \& $\mathrm{Ni}^{\text {i }}$ \& 8 \& 3606.8388 s \& $\mathrm{Fe}^{\mathrm{Fe}}$ \&

\hline 3302.510s \& Na \& 6 \& 3512.785 \& Co \& 6 \& 3609.008 s \& $\stackrel{\mathrm{Fe}}{ }$ \& 20

\hline 3315.807
3318.1605 \& $\stackrel{\mathrm{Ni}}{\mathrm{Ti}}$ \& $7{ }^{7} 7$ d \& ${ }^{3515.9655}$ \& $\stackrel{\mathrm{Fe}}{\mathrm{Ni}}$ \& 7
12 \& 3612.882
3617.9345

l \& $\stackrel{\mathrm{Ni}}{\mathrm{Fe}}$ \& ${ }_{6}^{69}$?

\hline 3320.391 \& Ni \& 7 \& 3519.904 \& , \& \& 3618.9195 \& Fe \& 20

\hline 3336.820 \& Mg \& 8 N \& 3521.410s \& $\stackrel{\mathrm{Fe}}{ }$ \& 8 \& 3619.539 \& $\mathrm{Ni}^{\mathrm{Ni}}$ \& 8

\hline 3349. 597 \& Ti \& 7 \& 354.677 \& ${ }_{\mathrm{Ni}}^{\mathrm{Fi}}$ \& 20 \& ${ }^{3621.6125}$ \& $\stackrel{\mathrm{Fe}}{\mathrm{Fe}}$ \& 6

\hline | 3360.327 |
| :--- |
| 3365.908 | \& \& 6 \& \[

$$
\begin{aligned}
& 3526.183 \\
& 3526.988
\end{aligned}
$$
\] \& $\stackrel{\mathrm{Fe}}{\mathrm{Co}}$ \& 6 \& 362.1475

$3631.605 s$ \& $\stackrel{\mathrm{Fe}}{\mathrm{Fe}}$ \& ${ }_{15}$

\hline 3366.311 \& Ti, Ni \& 6 d ? \& 3529.964 \& $\mathrm{Fe}-\mathrm{Co}$ \& 6 \& 3640.5355 \& $\mathrm{Cr}_{\mathrm{T}-\mathrm{Fe}}$ \& 6

\hline 3369.713 \& Fe, Ni \& 6 \& 3533.156 \& Fe \& 6 \& 3642.820 \& Ti \& 7

\hline
\end{tabular}

Corrections to reduce Rowland's wave-lengths to standards of Table 314 (the accepted standards, 1913). Temperature $25^{\circ} \mathrm{C}$, pressure 760 mm .
The differences "(Fabry-Buisson-arc-iron) - (Rowland-solar-iron)" lines were plotted, a smooth curve drawn, and the following values obtained:

$$
\begin{array}{lrrrrrrrr}
\text { Wave-length } & 3000 & 3100 . & 3200 . & 3300 & 3400 . & 3500 . & 3600 . & 3700 . \\
\text { Correction } & -.106 & -.115 & -.124 & -.137 & -.148 & -.154 & -.155 & -.140
\end{array}
$$

H. A. Rowland, "A preliminary table of solar-spectrum wave-lengths," Astrophysical Journal, $1-6,1895-1897$.

Smithsonian Tables.

Table 321 (continued).
STANDARD SOLAR WAVE-LENGTHS. ROWLAND'S VALUES.

Wave-length.	Substance.	Intensity.	Wave-length.	Substance.	Intensity.	Wave-length.	Substance.	Intensity.
3647.988s	Fe	12	3826.027s	Fe	20	4045.975^{5}	Fe	30
3651.247	Fe,-	6	3827.980	Fe	8	4055.70 IS	Mn	6
3651.614	Fe	7	3829.5015	Mg	10	4057.668	-	7
3676.457	Fe, Cr	6	3831.837	Ni	6	4063.759 s	Fe	20
3680.069s	Fe	9	3832.450 S	Mg	15	4068.137	$\mathrm{Fe}-\mathrm{Mn}$	6
3684.258 s	Fe	7d?	3834.364	$\mathrm{Fe}^{\mathrm{Fe}}$	10	4071.908 s	Fe	15
3685.339	${ }_{\mathrm{Ti}}$	Iod?	3838.435 s	$\mathrm{Mg}-\mathrm{C}$	25	4077.885 s	Sr	8
3686.141	Ti-Fe	6	3840.580 s	$\mathrm{Fe}-\mathrm{C}$	8	$4102.000 \mathrm{H} \delta$	H , In	40N
3687.610 s	Fe	6	3841.195	$\mathrm{Fe}-\mathrm{Mn}$	10	4121.477 s	$\mathrm{Cr}-\mathrm{Co}$	6d?
3689.614	Fe	6	3845.606	$\mathrm{C}-\mathrm{Co}$	8d ?	4128.251	$\mathrm{Ce}-\mathrm{V},-$	6d
3701.234	Fe	8	3850.118	$\mathrm{Fe}-\mathrm{Cr}$	10	4132.235	$\mathrm{Fe}-\mathrm{Co}$	10
3705.708s	Fe	$6{ }^{9}$	3856.524 s	$\underset{\mathrm{Cr}}{\mathrm{Fe}}$	8	4137.156	Fe	6
3706.175	$\underset{\mathrm{Fa}}{\mathrm{Ca}}$ Mn	6d ?	3857.805	$\underset{\mathrm{Cr}-\mathrm{C}}{ }$	6d ?	4140.089	Fe	6
3709.389s	Fe	8	3858.442	Ni	7	4144.038	Fe	15
3716.5915	Fe	7	3860.055 s	$\mathrm{Fe}-\mathrm{C}$	20	4167.438	-	8
3720.084 s	Fe	- 40	3865.674	$\mathrm{Fe}-\mathrm{C}$	7	4187.204	Fe	6
3722.692 s	Ni	10	3872.639	Fe	6	4191.595	Fe	6
3724.526	Fe	6	3878.152	$\mathrm{Fe}-\mathrm{C}$	8	4202.198 s	Fe	8
3732.545s	$\mathrm{Co}-\mathrm{Fe}$	6	3878.720	Fe	7 Nd ?	4226.904 sg	Ca	20 d ?
3733.469s	Fe-	7 d ?	3886.4345	Fe	15	4233.772	Fe	6
3735.0145	Fe	40	3887.196	Fe	7	4236.112	Fe	8
3737.2815	Fe	30	3894.211	$\overline{\text { F }}$	8d	4250.287 s	Fe	8
3738.466	Fe-Ti	6	3895.803	Fe	7	4250.945 s	Fe	8
$3743 \cdot 508$	$\mathrm{Fe}-\mathrm{Ti}$	6	3899.850	$\xrightarrow[\mathrm{Fe}]{\mathrm{Fe}}$	8	4254.505 s	Cr	8
3745.717 s 3746.058 s	$\underset{\mathrm{Fe}}{ }$	8	3903.090	$\mathrm{Cr}, \mathrm{Fe}, \mathrm{Mo}$	10	4260.640 s	Fe	10
3746.058 s	Fe	6	3904.023	Si	8d	427 I .934 s	Fe	15
3748.408 s	Fe	10	3905.660s	Si	12	4274.958 s	Cr	7 d ?
3749.6315	$\stackrel{\mathrm{Fe}}{ }$	20	3906.628	Fe	10	4308.08 IsG	Fe	6
3753.732	$\mathrm{Fe}-\mathrm{Ti}$	6d ?	3920.410	Fe	10	4325.939 s	Fe	8
3758.3755	Fe	15	3923.054	$\underset{\mathrm{Fe}}{ }$	12d?	$4340.634 \mathrm{H} \gamma$	H^{F}	20 N
3759.447	Ti	12d?	3928.0755	Fe	8	4376.1075	$\underset{\mathrm{Fe}}{ }$	6
3760.196	Fe	5	3930.450	Fe	8	4383.7205	Fe	15
3761.464	Ti	7	3933.523		8N	4404.927 s	Fe	10
3763.945s	Fe	10	3933.825 SK	$\stackrel{\mathrm{Ca}}{\mathrm{Ca}}$	1000	4415.293 S	Fe	8
3765.689	Fe	6	3934.108	$\mathrm{Co}, \mathrm{V}-\mathrm{Cr}$	8N	4442.510	$\mathrm{Fe}^{\mathrm{Fe}}$	6
3767.34 IS	Fe	8	3944.160s	A1	15	4447.892s	Fe	6
3775.717	Ni	7	3956.819	Fe	6	4494.738 s	Fe	6
3783.674 s	Ni	6	3957.177s	$\mathrm{Fe}-\mathrm{Ca}$	7 d 20	4528.798	$\underset{\mathrm{Ti}-\mathrm{Co}}{\mathrm{Fe}}$	8
3788.046 s	Fe		3961.674s	${ }_{\text {Al }}^{\text {- }}$	20	4534.139	Ti-Co	6d?
3795.147 s 3798.655 s	Fe Fe	8	3968.350 3968.625 SH	$-\mathrm{Ca}$	700	4549.808 4554.2 I IS	Ti-Co Ba	6d?
$3798.655 s$ 3799.693 s	Fe Fe	6 7	3968.6255 H 3968.886	Ca	6 N	4572.156 s	Ti-	6
3805.486 s	Fe	6	3969.413	Fe	10	4603.126	Fe	6
3806.865	$\mathrm{Mn}-\mathrm{Fe}$	8d ?	3974.904	$\mathrm{Co}-\mathrm{Fe}$	6d?	4629.52 Is	Ti-Co	6
3807.293	Ni	6	3977.8915	Fe	6	4679.027 s	Fe	6
3807.681	$\mathrm{V}-\mathrm{Fe}$	6	3986.903 s	Fe	6	4703.177 s	Mg	10
3814.698		8	4005.408	Fe	7	4714.599 s	Ni	6
3815.987 s	$\mathrm{Fe}^{\text {che }}$	15	4030.918 s	Mn	Iod?	4736.963		7
3820.586 sL	$\mathrm{Fe}-\mathrm{C}$ Fe	25 6	$\begin{aligned} & 4033.224 \mathrm{~s} \\ & 4034.644 \mathrm{~s} \end{aligned}$	Mn Mn	8d ?	$\begin{aligned} & 4754.225 \mathrm{~s} \\ & 4783.6 \mathrm{I} 3 \mathrm{~s} \end{aligned}$	$\begin{aligned} & \mathrm{Mn} \\ & \mathrm{Mn} \end{aligned}$	7

Corrections to reduce Rowland's wave-lengths to standards of Table 314 (the accepted standards, 1913). Temperature $15^{\circ} \mathrm{C}$, pressure 760 mm . :

Correction -. $155-.140-.141-.144-.148-.152-.156-.161-167-.172-.176-.179-.179$.

Smithsonian Tables.

STANDARD SOLAR WAVE-LENGTHS. ROWLAND'S VALUES.

Wave-length.	Substance.	Intensity.	Wave-length.	Substance.	Inten- sity	Wave-length.	$\begin{aligned} & \text { Sub- } \\ & \text { stance } \end{aligned}$	Intensity.
4861.527sF	H	30	5948.765s	Si	6	6563.045 sC	H	40
4890.948s	Fe	6	5985.0405	Fe	6	6593.16 rs	Fe	6
4891.683	Fe	8	6003.2395	Fe	6	6867.457sB	A (O)	6 d ?
4919.1745	Fe	6	6008.7855	Fe	6	${ }^{6868.336}$ \}s	A (0)	6
4920.655	Fe	10	6013.7155	Mn	6	$6868.478\}^{\text {s }}$	A(O)	6
4957.785 s	Fe	8	6016.86 Is	Mn .	6	6869.142s	A(0)	7
5050.00 Ss	Fe	6	6022.016 s	Mn	6	6869.353s	A(O)	6
$5167.497 \mathrm{sb}_{4}$	Mg	15	6024.2815	$\stackrel{\mathrm{Fe}}{ }$	7	$6870.116\}$	$\mathrm{A}(\mathrm{O})$	73 d
5171.778 s	Fe	6	6065.709 s	Fe	7	6870.249 S ${ }^{\text {c }}$	A(O)	$7{ }_{8}$ d
$5172.856 \mathrm{sb}_{2}$	$\mathrm{Mg}^{\text {mg }}$	3	6102.3925	Fe	6	6871.180 s	A(O)	8
$5183.79 \mathrm{Isb}_{1}$	Mg^{F}	30	6102.937 s	Ca	9	6871.532 s 6872.486 s	A (O) $\mathrm{A}(\mathrm{O}$	10
5233.122s	Fe	6	6108.3345	${ }^{\mathrm{Ni}}$	6	6872.486 s	A(O)	11
5266.738 s	Fe	6	6122.4345	Ca	${ }^{10}$	6873.08 os	$\mathrm{A}(\mathrm{O})$	12
5269.723 sE	Fe	8 d ?	6136.829 s	Fe	8	6874.037 s	A(O)	12
5283.802 s	Fe	6	${ }^{6} 37.915$	Fe	7	6874.899 s	A(O)	13
5324.373 s	Fe	7	6141.938 s	Fe, Ba	7	6875.830 s	A(O)	13
5328.236	Fe	8 d ?	6155.350		7	6876.958 s	A(0)	13
5340.121	Fe	6	6162.390 s	Ca	15	6877.882 s	A(O)	12
5341.213	Fe	7	6169.249 s	Ca	6	6879.288s	A(O)	12
5367.669 s	Fe	6	6169.778 s	Ca	7	6880.172s	A(O)	6
5370.1668	Fe	6	6170.730	$\mathrm{Fe}-\mathrm{Ni}$	6	6884.076s	A(O)	10
5383.578 s	Fe		6191.3938	Ni	6	6886.000	A(0)	11
5397.344 s	Fe	7 d ?	6191.779s	Fe	9	6886.990 s	A(O)	12
5405.989 s	Fe	6	6200.527 s	Fe	6	6889.192s	A(O)	13
5424.290s	Fe	6	6213.644 s	Fe	6	6890.1515	A(0)	14
5429.911	Fe	6d?	6219.4945	Fe	8	6892.6 r 8 s	A(O)	14
5447.130s	Fe	6 d ?	6230.943 s	$\mathrm{V}-\mathrm{Fe}$	8	6893.560 s	$\mathrm{A}(\mathrm{O})$	15
5528.641 IS	Mg	8	6246.535 s	Fe	8	6896.289s	$\mathrm{A}(\mathrm{O})$	14
5569.848	Fe	6	6252.773 s	$-\mathrm{Fe}$	7	6897.208 s	A(0)	15
5573.075	Fe	6	6256.572 s	$\mathrm{Ni}-\mathrm{Fe}$	6	6900.199 s	$\mathrm{A}(\mathrm{O})$	14
5586.991	Fe	7	6301.718	$\mathrm{Fe}^{\text {e }}$	7	6901.1175	$\mathrm{A}(\mathrm{O})$	15
5588.985 s	Ca	6	6318.239	Fe	6	6904.362s	A(0)	14
5615.8778	Fe	6	6335.554	Fe	6	6905.271s	A(O)	14
5688.436 s 57 II .31 I	Na Mg	6	6337.048 6358.898	$\stackrel{\mathrm{Fe}}{\mathrm{Fe}}$	6	6908.783 s 6900.676 s	$\mathrm{A}(\mathrm{O})$	13
5763.218 s	Fe	6	6393.820 s	Fe		6913.448s	A(O)	$1{ }_{1}$
5857.674 s	Ca	8	6400.217 s	Fe	8	6914.337 s	A(O)	11
5862.582 s	Fe	6	6411.8658	Fe	7	6918.370 s	$\mathrm{A}(\mathrm{O})$	9
$5890.186 \mathrm{sD}_{2}$	Na	30	6421.5708	Fe	7	6919.250 s	$\mathrm{A}(\mathrm{O})$	9
$5896.155 \mathrm{D}_{1}$		20	6439.2935	Ca	8	6923.553s	A(O)	9
5901.6828 5914.430 s	A(wv) ,$- A(w v)$	6	6450.033 s 6494.0045	Ca	6	6924.4278 7191.755	A (O) $\mathrm{A},-$	$6{ }^{9}$
5919.860s	A(wv)	7	6495.213	Fe	8	7206.692	-, A	
5930.406s	Fe	6	6546.4795	Ti-Fe	6			

Corrections to reduce Rowland's wave-lengths to standards of Table 314 (the accepted standards, 1913). Temperature $15^{\circ} \mathrm{C}$, pressure 760 mm . :

rection	$\begin{array}{r} 4800 . \\ -179 \end{array}$		-5			$-$			8	$\begin{array}{r} 5700 . \\ -.213 \end{array}$	
Correction	$\begin{array}{r} 5800 . \\ -.209 \end{array}$	$\begin{array}{r} 590 \\ -.20 \end{array}$	$-.213$	$\begin{array}{r} 6100 . \\ -.214 \end{array}$	$-.213$	$\begin{array}{r} 6300 . \\ -.210 \end{array}$	$\begin{array}{r} 640 \\ -.20 \end{array}$	$\begin{array}{r} 6500 . \\ -.210 . \end{array}$	6600.	-	

[^42]
SPECTRUM SERIES

In the spectra of many elements and compounds certain lines or groups of lines (doublets, triplets, etc.) occur in orderly sequence, each series with definite order of intensity (generally decreasing with decreasing wave-length), pressure effect, Zeeman effect, etc. Such series generally obey approximately a law of the form

$$
\nu=\frac{1}{\lambda}=L-\frac{N}{(m+R)^{2}},
$$

where ν is the wave-number in vacuo (reciprocal of the wave-length λ) generally expressed in waves per $c_{1} n ; m$ is a variable integer, each integer giving a line of the series; L is the wave number of the limit of the series $(m=\infty)$; N, the "Universal Series Constant"; and R is a function of m, or a constant in some simple cases.

Balmer's formula (1885) results if $L=N / n^{2}$, where n is another variable integer and $K=0$. Rydberg's formula (1889) makes R a constant, and L is not known to be connected with N. Other formulae have been used with more success. Mogendorff (1906) requires $R=$ constant $/ m$, while Ritz (1903) has $R=$ constant $/ m^{2}$. Often no simple formula fits the case; either R must be a more complex function of m, or the shape of the formula is incorrect.

Bohr's theory (see also Table 515) gives for Hydrogen

$$
N=\left\{2 \pi^{2} m e^{4}(M+m)\right\} / M h^{3},
$$

where e and m are the charge and mass of an electron, M the atomic weight, and h, Planck's constant. The best value for N is 109678.7 international units (Curtis, Birge, Astrophys. J. 32, 1910). The theory has been elaborated by Sommerfeld (Ann. der Phys. IgI6), and the present indications are that N is a complex function varying somewhat from element to element.

Among the series (of singles, doublets, etc.), there is apt to be one more prominent, its lines easily reversible, called the principal series, $P(m)$. With certain relationships to this there may be two subordinate series, the first generally diffuse, $D(m)$, and another, $S(m)$. Related to these there is at times another, the Bergmann series $B(m) . m$ is the variable integer first used above and indicates the order of the line.

The following laws are in general true among these series: (I) In the $P(m)$ the components of the lines, if double, triple, etc., are closer with increasing order; in the subordinate series the distance of the components (in vibration number) remains constant. (2) Further, in two related $D(m)$ and $S(m), \Delta \nu$ (vibration number difference) remains the same. (3) The limits (L) of the subordinate series, $D(m)$ and $S(m)$, are the same. (4) $\Delta \nu$ of the subordinate series is the same $\Delta \nu$ as for the first pair of the corresponding $P(m)$. (5) The limits (L) of the components of the doublets (triplets, etc.) of the $P(m)$ are the same. (6). The difference between the vibration numbers of the end of the $P(m)$ and of the two corresponding subordinate series gives the vibration number of the first term of the $P(m)$. The first line of the $S(m)$ coincides with the first line of the $P(m)$ (Rydberg-Schuster law).

In the spectrum of an element several of these families of series $P(m), D(m), S(m), B(m)$ may be found. For further informition see Baly's Spectroscopy and Konen's Das Leuchten der Gasen, 1913, from the latter of which is taken the following tables, based greatly upon Dunz's Die Seriengesetze der Linienspektra, Diss., Tübingen, 1911, which has also appeared in book form, Hirzel, Leipzig. The following gives a schematic arrangement of the various series of a family in accordance with some of the above laws:

Let $\{m, a, a\}=N /\left(m+a+a / m^{2}\right)^{2} ; V P(m)=\{m, p, \pi\} ; V D(m)=\{m, d, \partial\rangle \cdot V S(m)=\{m, s, \sigma\rangle$ and $V B(m)=\{m, b, \beta\} ; V$ criginally referred to the variable part of the formula; when m takes a specific value, it becomes a constant term, viz. $V S(\mathrm{r})$.

Then a single line system is represented as follows:

$$
\begin{array}{lr}
P^{\prime}(m)=V S^{\prime}(\mathrm{I})-V P^{\prime}(m) ; & D^{\prime}(m)=V P^{\prime}(\mathrm{I})-V D^{\prime}(m) ; \\
S^{\prime}(m)=V P^{\prime}(\mathrm{I})-V S^{\prime}(m) ; & \left\{B^{\prime}(m)=V D^{\prime}(\mathrm{I})-V B^{\prime}(m)\right\rangle .
\end{array}
$$

A system of double lines would be represented as follows:

$$
\begin{array}{ll}
P_{1}^{\prime \prime}(m)=V S^{\prime \prime}(\mathrm{I})-V P_{1}^{\prime \prime}(m) ; & D_{1}^{\prime \prime}(m)=V P^{\prime \prime}(\mathrm{I})-V D^{\prime \prime}(m) ; \\
P_{2}^{\prime \prime}(m)=V S^{\prime \prime}(\mathrm{I})-V P^{\prime \prime}(m) ; & D_{2^{\prime \prime}}(m)=V P^{\prime \prime}(\mathrm{I})-V D^{\prime \prime}(m) ; \\
S_{1}^{\prime \prime}(m)=V P_{1}^{\prime \prime}(\mathrm{I})-V S^{\prime \prime}(m) ; & \left\{\begin{array}{l}
\left.B_{1}^{\prime \prime}(m)=V D^{\prime \prime}(\mathrm{I})-V B^{\prime \prime}(m)\right\rangle ; \\
S_{2}^{\prime \prime}(m)=V P_{2}^{\prime \prime}(\mathrm{I})-V S^{\prime \prime}(m) ;
\end{array}\right. \\
\left.B_{2}^{\prime \prime}(m)=V D^{\prime \prime}(\mathrm{I})-V B^{\prime \prime}(m)\right\rangle .
\end{array}
$$

And similarly for a series of triplets, etc.
Series Spectra of the Elements. - The ordinary spectrum of H contains 3 series of the same kind: one in the; Schumann region, $\nu=N\left(1 / \mathrm{I}^{2}-1 / n^{2}\right), n, 2,3 \ldots$; one in the visible, $\nu=N\left(1 / 2^{2}-1 / n^{2}\right), n, 3,4,5 . \ldots$; and one in the infrared, $\nu=N\left(1 / 3^{2}-1 / n^{2}\right), n, 4,5,6 \ldots$ He has three systems of series, one "enhanced," including the Pickering series formerly supposed to be due to H . The next two tables give some of the data for other elements.

2μ	1μ	0.5μ		$0.3 \mu \lambda$		
	1	2		$3{ }^{3} 451$		
$1)$	$0 \mid 2$	3145	∞			
1	2	$3 / 4 / 5$	∞			
$2334 \mid \infty$						
5000	10000	20000		30000		

Series System of Potassium.

Bmithsonian Tables.

TABLE 323. - Limits of Some of the Series.

	$P_{1}(\infty)$	$\begin{gathered} D_{1}(\infty) \\ =S_{1}(\infty) \end{gathered}$	$B_{1}(\infty)$	$P_{2}(\infty)$	$D_{2}(\infty)$ $=S_{2}(\infty)$	$B_{2}(\infty)$	$P_{3}(\infty)$	$\begin{gathered} D_{3}(\infty) \\ =S_{3}(\infty) \end{gathered}$	$B_{3}(\infty)$	$R(\infty)$
H	48,764	27,429	12,186	48,764	27,419	12,186	48,744	27,429	12,186	-
He	32,031	27,173	12,204	38,453	$\left\{\begin{array}{l}29,22 \mathrm{I} \\ 29,222\end{array}\right.$	12,208	-	-	-	-
Li	-	-	-	43,484	28,581	12,202	-	-	-	-
Na	-	-	-	$*_{4} \mathbf{1}, 445$	$\left\{\begin{array}{l}24,472 \\ 24,489\end{array}\right.$	12,274	-	-	-	-
K	-	-	-	35,006	$\left\{\begin{array}{l}21,963 \\ 22,020\end{array}\right.$	13,47 1	-	-	-	-
Rb	-	-	-	33,685	$\left\{\begin{array}{l}21,020 \\ 20,868 \\ 21,106\end{array}\right.$	14,330	-	-	-	-
Cs	-	-	-	31,407	$\left\{\begin{array}{l}\text { 19,674 } \\ 20,228 \\ 3,52\end{array}\right.$	$\begin{aligned} & \text { 16,809 } \\ & 16,907 \end{aligned}$	-	-	-	-
Cu	-	-	-	62,306	$\left\{\begin{array}{l}31,523 \\ 31,771\end{array}\right.$	12,372 12,366	-	-	-	-
Ag	-	-	-	61,093	$\left\{\begin{array}{l}31,721 \\ 30,62 \mathrm{I} \\ 3 \mathrm{I}, 542\end{array}\right.$	12,351	-	-	-	-
Mg	-	26,613	-	?	(31,542	?	20,467	$\left\{\begin{array}{l}39,752 \\ 39,793 \\ 39,813\end{array}\right.$	13,707	-
Ca	-	27,510	-	?	$\begin{aligned} & 60,423 \\ & 60,646 \end{aligned}$	28,929	17,761	$\left\{\begin{array}{l}3,888 \\ 34,983 \\ 34,089 \\ 34, \mathrm{r} 42\end{array}\right.$	$\begin{aligned} & 28,929 \\ & 28,950 \\ & 28,964 \end{aligned}$	49,353
Sr	--	25,745	-	-	55,029 55,830	-	-	$\begin{aligned} & 31,026 \\ & 31,420 \\ & 31,607 \end{aligned}$	$\begin{aligned} & 27,05 \\ & 27,705 \\ & 27,766 \end{aligned}$	45,895
Ba	-	-	-	-	$\left\{\begin{array}{l}49,926 \\ 51,616\end{array}\right.$	-	?	31,	?	48,318

For the series of $\mathrm{Zn}, \mathrm{Cd}, \mathrm{Hg}, \mathrm{Al}, \mathrm{Sn}, \mathrm{Tl}, \mathrm{O}, \mathrm{S}, \mathrm{Sn}$, see original reference.

* 48 lines have been measured in this series from 16,956 to 41,417.

TABLE 324. - First Terms of Some of the Series. Vibration Number Differences of Pairs $\Delta \nu$, and Triplets $\Delta \nu_{1}, \Delta \nu_{2}$.

For the $P(m)$ and the $S(m)$ is given only the first or second term, since the term with index o may be omitted as coinciding with the first term of the $S(m)$ or $P(m)$ respectively. Consequently the numbers always proceed from greater to smaller wave-lengths. Which is the common line can always be recognized from the vibration numbers. See figure on the preceding page. The vibration differences can be obtained from Table 323.

TABLE 325．－Index of Refraction of Glass．
Indices of refraction of optical glass made at the Bureau of Standards．Correct probably to 0.0000 ．The com－ position given refers to the raw material which went into the melts and does not therefore refer to the composition of the finished glass．

Melt．	123	${ }^{241}$	135	116	188	151	163	76
Wave－length．	Ordinary crown．	Borosili－ cate crown	$\begin{aligned} & \text { Barium } \\ & \text { flint. } \end{aligned}$	Light barium crown．	Light	Dense barium crown．	Medium flint．	Dense flint．
$\mathrm{Hg} \quad 4046.8$	1． 53189	r． 53817	1．58851	1．59137	1． 60507	1． 63675	1.65788	1.60005
$\mathrm{Hg}^{\mathrm{Hg}} 4078 . \mathrm{I}$	1．53147	I． 53775	I． 58791	I． 59084	I． 60430	1．63619	I． 65692	I． 68894
H 4340．i	1.52818	I． 53468	I． 58327	1． 58698	I． 59860	1． 63189	I． 64973	I． 68079
Hg 4358.6	1． 52798	I． 53450	1． 58299	1． 58674	I． 59826	1． 63163	1．64931	1． 68030
$\mathrm{H}^{\mathrm{H}} 486 \mathrm{I} .5$	I． 52326	I． 53008	I． 57646	1．58121	I． 59029	I． 62548	1． 6394 I	I． 669 II
Hg 4916．4	1． 52283	I． 52967	I． 57587	I． 5807 I	I． 58958	I． 62492	1． 63854	I． 66814
Hg 546 r .0	1.51929	1． 52633	1． 57105	1． 57657	1． 58380	1． 62033	1． 63143	1．66016
Hg 5769.6	1．51771	I． 52484	I． 56894	I． 57473	I． 58 I 28	1．61829	1． 62834	I． 65671
Hg 5790．5	1.51760	I． 52475	I．5688I	1． 57460	1． 58112	1．61817	I． 62815	I． 6.5650
$\begin{array}{ll}\mathrm{Na} & 5893.2\end{array}$	1． 51714	I． 52430	I． 56819	I． 57406	1． 58038	1．61756	1． 62725	1． 65548
$\begin{array}{ll}\mathrm{Hg} & 6234.6 \\ \mathrm{H} & 6563.0\end{array}$	1.51573 I． 51458	I． 52297	I． 56834 I． 56482	r． 57242	I． 57818 I． 57638	1.61576 I． 61427	I． 62458	1． 65250
$\mathrm{Li} \quad 6708.2$	1．51412	1． 52145	1． 56423	1． 57054	1． 57567	1． 61369	1．62157	I．64913
K 7682．0	1． 51160	1． 51908	I． 56100	1． 56762	1.57183	1．61047	1.61701	I． 64405
（Percentage composition）								
SiO_{2}	67.0	64.2	53.7	48.0	53.9	37.0	45.6	39.0
$\mathrm{Na}_{2} \mathrm{O}$	12.0	9． 4	${ }^{1} .7$	${ }^{2} .0$	1.0		3.4	3.0
$\mathrm{K}_{2} \mathrm{O}$	5.0	8.3	8.3	6.1	7.6	2.7	4.1	4.0
$\mathrm{B2}_{2} \mathrm{O}_{3}$	3.5	11.0	2.7	4.0	－	5.0		
$\stackrel{\mathrm{BaO}}{ }$	10．6	6.1	14.3	29.5	二	47.0	二	二
${ }_{\mathrm{Ans}_{2} \mathrm{O}_{3}}$	r． 5	－	2.5	10.0	－	7.7	二	－
${ }_{\mathrm{CaO}}{ }^{\text {A }}$	0．4	0.4 I．	二	$\underline{1.4}$	0.3 2.0	二	－ 3.0	－
PbO	－	－	16.7	二	35.2	二	44.0	49.0
$\mathrm{Sb}_{2} \mathrm{O}_{3}$						－		1.0

TABLE 326．－Dispersion of Glasses of Table 325.

Melt．	123	241	135	116	188	151	163	76
n_{D}	1.51714	1.52430	I．56819	I． 57406	1． 58038	1． 61756	1． 62725	1． 65548
$n_{F}-n_{C}$	0．00868	0.00820	0.01164	0.01014	0．01391	0.01121	0.01700	0.01904
$\frac{n_{D}-1}{n_{p}-n_{C}}=v$	59.6	63.9	48.8	56.6	41．7	55.1	36.9	34.4
$n_{F}-n_{C}$ $n_{D}-n_{F}$	0.00612	0.00578	0.00827	0.00715	0.00991	0.00792	0． 01216	0.01363
$n_{F}-n_{G^{\prime}}$	0.00492	0.00460	0.0068 I	0.00577	0.00831	0.0064 I	0.01032	0.01168
$n_{D}-n_{C}$	0.00256	0.00242	0.00337	0.00299	0.00400	0.00329	0.00484	0.00541

TABLE 327, - Glasses Made by Schott and Gen, Jena.

The following constants are for glasses made by Schott and Gen, Jena: $n_{\mathbf{A}}, n_{\mathrm{G}}, n_{\mathrm{D}}, n_{\mathrm{F}}, n_{\mathrm{G}}$, are the indices of refraction in air for $\mathrm{A}=0.7682 \mu, \mathrm{C}=0.6563 \mu, \mathrm{D}=0.5893, \mathrm{~F}=0.486 \mathrm{I}, \mathrm{G}^{\prime}=0.434 \mathrm{I}$. $v=\left(n_{\mathrm{D}}-\mathrm{I}\right) /\left(n_{\mathrm{F}}-n_{\mathrm{c}}\right)$. Ultra-violet indices: Simon, Wied. Ann. 53, 1894. Infra-red: Rubens, Wied. Ann. 45, 1892. Table is revised from Landolt, Börnstein and Meyerhoffer, Kayser, Handbuch der Spectroscopie, and Schott and Gen's list No. 75I, igo9. See also Hovestadt's "Jena Glass."

$\begin{aligned} \text { Catalogue Type } & = \\ \text { Designation } & = \\ \text { Melting Number } & = \\ v \quad & = \end{aligned}$			O_{546} Zinc-Crown. 1092 60.7	$\mathrm{O}_{3} 8 \mathrm{r}$ Higher Dispersion Crown $\begin{aligned} & 1151 \\ & 51.8 \end{aligned}$	$\mathrm{O}_{18} 8_{4}$ Light Silicate Flint. 451 41.1	O ro2 Heavy Silicate Flint. 469 33.7	O 165 Heavy Silicate Flint. 500 27.6	$\begin{gathered} \mathrm{S}_{57} \\ \text { Heaviest Sili- } \\ \text { cate Flint. } \\ 163 \\ \mathbf{2 2 . 2} \end{gathered}$
	Cd	0.2763μ	1. 56759	-	-	-	-	-
	Cd	. 2837	1.56372	-			-	
	Cd	. 3403	1.54369	1. 55262	1.63320	1.71968	1. 85487	-
	Cd	. 3610	1.53897	1. 54664	1.61388	1.70536	1.83263	
	H	. 4340μ	1. 52788	1.53312	1.59355	1.6756x	1.78800	1.94493
	H	-4861	1.52299	1.52715	1.58515	1.66367	1.77091	1.91890
	Na_{H}	. .6593	1.51698 1.51446 1	1.52002 1.51712	1.57524	1.64985	1.75130	1.88995 $\times 8.8893$
	K	. 7682	1.51143	1.51368	1.56669	1.63820	1.73530	1.86702
		. 800μ	1.5103	1.5131	1.5659	1. 6373	1. 7339	1.8650
		1. 200	1.5048	1.5069	1.5585	1.6277	1.7215	1.8481
		1.600	1. 5008	1.5024	1.5535	1.6217	1.7151	1. 8396
		2.400	-		1. 5440	1.6131	-	1.8286

Percentage composition of the above glasses:
$\mathrm{O} 546, \mathrm{SiO}_{2}, 65.4 ; \mathrm{K}_{2} \mathrm{O}, 15.0 ; \mathrm{Na}_{2} \mathrm{O}, 5.0 ; \mathrm{BaO}, 9.6 ; \mathrm{ZnO}, 2.0 ; \mathrm{Mn}_{2} \mathrm{O}_{3}, 0.1 ; \mathrm{As}_{2} \mathrm{O}_{3}, 0.4$; $\mathrm{B}_{2} \mathrm{O}_{3}, 2.5$.
$\mathrm{O}_{3} 8 \mathrm{r}, \mathrm{SiO}_{2}, 68.7$; $\mathrm{PbO}, \mathrm{I} 3.3 ; \mathrm{Na}_{2} \mathrm{O}, \mathrm{I}_{5.7} ; \mathrm{ZnO}, 2.0 ; \mathrm{MnO}_{2}$, o.1; $\mathrm{As}_{2} \mathrm{O}_{5}, 0.2$.
$\mathrm{O}_{184}, \mathrm{SiO}_{2}, 53.7 ; \mathrm{PbO}, 36.0 ; \mathrm{K}_{2} \mathrm{O}, 8.3 ; \mathrm{Na}_{2} \mathrm{O}, \mathrm{I} .0 ; \mathrm{Mn}_{2} \mathrm{O}_{3}, 0.06 ; \mathrm{As}_{2} \mathrm{O}_{3}$, o.3.
O го2, $\mathrm{SiO}_{2}, 40.0 ; \mathrm{PbO}, 52.6 ; \mathrm{K}_{2} \mathrm{O}, 6.5 ; \mathrm{Na}_{2} \mathrm{O}, 0.5 ; \mathrm{Mn}_{2} \mathrm{O}_{3}, 0.09 ; \mathrm{As}_{2} \mathrm{O}_{5}, 0.3$.
O $165, \mathrm{SiO}_{2}, 29.26 ; \mathrm{PbO}, 67.5 ; \mathrm{K}_{2} \mathrm{O}, 3.0 ; \mathrm{Mn}_{2} \mathrm{O}_{3}, 0.04 ; \mathrm{As}_{2} \mathrm{O}_{3}$, o.2.
$\mathrm{S} 57, \mathrm{SiO}_{2}, 2 \mathrm{I} .9 ; \mathrm{PbO}, 78.0 ; \mathrm{As}_{2} \mathrm{O}_{5}$, o. 1.

TABLE 328.- Jena Glasses.

No. and Type of Jena Glass.	$n_{\text {D }}$ for D	$n_{\mathrm{F}}-n_{\mathrm{c}}$	$v=\frac{n_{n}-1}{n_{F}-n_{c}}$	$n_{\text {D }}-n_{A}$	$n_{F}-n_{\text {d }}$	$n_{G}{ }^{\prime}-n_{\text {F }}$	Specific Weight
O 225 Light phosphate crown	1.5159	.00737	70.0	. 00485	. 00515	. 00407	2.58
O 802 Boro-silicate crown.	1.4967	0765	64.9	0504	0534	0423	2.38
UV 3199 Ultra-violet crown . . .	1.5035	0781	64.4	0514	0546	0432	2.41
O227 Barium-silicate crown . . .	1.5399	-909	59.4	0582	0639	0514	2.73
O 114 Soft-silicate crown .	1.5151	-910	56.6	0577	$0^{0} 62$	0521	2.55
O 608 High-dispersion crown	1.5149	0943	54.6	0595	-666	$\bigcirc 543$	2.60
UV 3248 Ultra-violet flint.	${ }^{1.5332}$	$\bigcirc 964$	55.4	0611	0680	$\bigcirc 553$	2.75
O 381 High-dispersion crown	1.5262	1026	51.3	0644	0727	$\bigcirc 596$	2.70
O_{602} Baryt light flint	I. 5676 L 5686	1072	53.0	${ }^{0675}$	$\bigcirc 759$	0618	3.122
S^{389} Borate flint ${ }^{\text {a }}$	1.5686	1102	51.6	0712	0775	-629	2.83
O 726 Extra light flint .	1. 5398	1142	47.3	0711	0810	0669	2.87
O 154 Ordinary light flint .	1.5710	1327	43.0	0819	0943	0791	3.16
$\mathrm{O}^{\mathrm{O}} 8848 \mathrm{~B}$ " fint" "	1.5900 1.6235	1438	41.1	0882	1022	0861	3.28 3.67
O 748 Baryt flint ${ }_{\text {O }}^{\text {O2 Heavy flint }}$.	1.6235 1.6489 1.854	1599 1919	39.1 33.8	${ }_{1152} 996$	1142 1372 1749	0965 1180	3.67 3.87
O_{41} " ".	1.7174	2434	29.5	1439	1749	1521	4.49
$\mathrm{O}_{\mathrm{O}} 165$ " ${ }^{\text {c }}$ ".	1.7541	2743	27.5	1607	1974	1730	4.78
$\mathrm{S}_{\mathrm{S}} 386$ Heavy flint.	1.9170	4289	21.4	2451	3109	2808	6.01
S 57 Heaviest flint	1.9626	4882	19.7	2767	3547	3252	6.33

TABLE 329, - Change of Indices of Refraction for 10 C in Units of the Fifth Decimal Place.

No. and Designation.	Mean Temp.	C	D	F	G^{\prime}	$\frac{-\Delta n}{n} 100$
S 57 Heavy silicate flint	$58.8{ }^{\circ}$	1.204	1.447	2.090	2.8 ro	0.0166
O ${ }_{154}$ Light silicate flint . . .	58.4	0.225	0.261	0.334	0.407	0.0078
O 327 Baryt flint light ${ }^{\text {225 }}$ Light phosphate crown ${ }^{\text {a }}$	58.3	\bigcirc	0.014	0.080	0. 137	0.0079
O225 Light phosphate crown .	58.1	-0.202	-0.190	-0.168	-0.142	0.0049

TABLE 330, - Index of Refraction of Rock Salt in Air.

$\lambda(\mu)$.	π	Observer.	$\lambda(\mu)$.	n	Observer.	$\lambda(\mu)$.	n.	Obser ver.
0.185409	1.89348	M	0.88396	I. 53401 I	L	5.8932	1.516014	P
. 204470	1.76964	"	. 972298	I. 532532			I. 515553	I,
. 291368	1.61 325	"	. 98220	I. 532435	P	6.4825	I. 513628	P
. 358702	1. 57932	"	1.036758	1.531762	L,		1.513467	L
. 441587	1. 55962	"	I.1786	1.530372	P	7.0718	1.511062	P
.486149	1.55338	"	"	1.530374	L	7.6611	1. 508318	"
	1. 553406	L	1.555137	I. 528211	P	7.9558	1. 506804	"
58902	I. 553399	P	1.7680	I. 527440	P	8.8398	1.502035	"
. 58902	I. 544340	L	"	I. 52744 I	L	10.0184	I. 494722	"
. 58932	1. 544313	P	2.073516	I. 526554	1	11.7864	1.481816	"
. 656304	I. 540672	P	2.35728	I. 525863	P	12.9650	I. 471720	"
	1. 540702	L		1.525849	L	14.1436	I. 460547	"
.706548	1. 538633	P	2.9466	1.524534	P	14.7330	I. 454404	"
. 766529	1.536712	P	$3 \cdot 5359$	1.523173	"	15.3223	1.447494	"
. 76824	1. 53666	M	4. $125{ }^{2}$	I. 521648	P	15.9116	I. 441032	
.78576	1.536138	P		1.521625	L,	20.57	I. 3735	${ }_{\text {\% }}$ N
.88396	1.534011	P	5.0092	1.518978	P	22.3	1. 340	

$$
\begin{array}{ccc}
n^{2}=a^{2}+\frac{M_{1}}{\lambda^{2}-\lambda_{1}{ }^{2}}+\frac{M_{2}}{\lambda^{2}-\lambda_{2}{ }^{2}}-k \lambda^{2}-h \lambda^{4} \text { or }=b^{2}+\frac{M_{1}}{\lambda^{2}-\lambda_{1}{ }^{2}}+\frac{M_{2}}{\lambda^{2}-\lambda_{2}{ }^{2}}-\frac{M_{3}}{\lambda_{3}{ }^{2}-\lambda^{2}} \\
\text { where } a^{2}=2.330165 & \lambda_{2}{ }^{2}=0.02547414 & b^{2}=5.680137 \\
M_{1}=0.01278685 & k=0.0009285837 & M_{3}=12059.95 \\
\lambda_{1}^{2}=0.0148500 & h=0.000000286086 & \lambda_{3}^{2}=3600 \\
M_{2}=0.005343924 & &
\end{array}
$$

TABLE 331. - Change of Index of Refraction for 10 C in Units of the 5th Decimal Place.

0.202μ	+3.134	Mi			Mi	C line	3.749	Pl	0.760μ	3	L
. 210	+r.570	"	. 508	-3.517	،	D "	-3.739	P1	1.368	-3.88	L
. 224	-0.187	"	. 643	-3.636	"	F "	-3.648	"	1.88	-3.85	L
. 298	-2.727	"				G' "	$-3.5^{8} 5$	"	$4 \cdot 3$	-3.82	L

L Annals of the Astrophysical Observatory of the Smithsonian Institution, Vol. I, 1900.
M Martens, Ann. d. Phys. 6, 1901, 8, 1902.
Mi Micheli, Ann. d. Phys. 7, 1902.

P Paschen, Wied. Ann. 26, 1908.
Pl Pulfrich, Wied. Ann. 45, I892.
RN Rubens and Nichols, Wied. Ann. 60, 1897.

TABLE 332. - Index of Refraction of Sylvite (Potassium Chioride) in Air.

$\lambda(\mu)$.	n	Observer.	$\lambda(\mu)$.	n	Observer.	$\lambda(\mu)$.	n	Observer.
0.185409	1.82710	M	1.1786	1.4783 II	P	8.2505	1.462726	P
. 200090	1.71870	"	"	1.47824	W		I. 46276	W
. 21946	1. 64745	"	1.7680	1.475890	P	8.8398	1.460858	P
. 257317	I. 58125	"	"6	1.47589	W		1.46092	W
. 281640	1.55836	"	2.35728	1.474751	P	10.0184	I. 45672	P
. 308227	1.54136	*	2.9466	1.473834	"	"	1.45673	W
. 358702	I.52115	"		I. 47394	W	I 1.786	1.44919	P
. 394415	1.51219	"	3.5359	1. 473049	P		1.4494 I	W
. 467832	1.50044	/		1.47304	W	12.965	I. 44346	P
. 508606	1. 49620	"	4.7146	1.47 I 122	P		I. 44385	W
. 58933	I. 49044	P	،	1.47129	W	14.144	1.43722	P
. 67082	1.48669	M	5.3039	I. 470013	P	15.912 17.680	1.42617 1.41403	
.78576 .88398	1.483282 1.481422	P		I. 47001 I. 468804	W	17.680 20.60	1.41403 r .3882	RN
. .983920	1.481422 I. 480084	"	5.8932	1.468804 1.4680	W	22.5	1. 369	

$$
\begin{align*}
& n^{2}=a^{2}+\frac{M_{1}}{\lambda^{2}-\lambda_{1}{ }^{2}}+\frac{M_{2}}{\lambda^{2}-\lambda_{2}{ }^{2}}-k \lambda^{2}-k \lambda^{4} \text { or }=b^{2}+\frac{M_{1}}{\lambda^{2}-\lambda_{1}{ }^{2}}+\frac{M_{2}}{\lambda^{2}-\lambda_{2}{ }^{2}}+\frac{M_{3}}{\lambda_{3}{ }^{2}-\lambda^{2}} \\
& a^{2}=2.174967 \quad \lambda_{2}{ }^{2}=0.0255550 \quad b^{2}=3.866619 \\
& M_{1}=0.008344206 \quad k=0.0005 \text { I } 3495 \quad M_{3}=5569.715 \\
& \lambda_{1}{ }^{2}=0.0119082 \quad h=0.000000167587 \quad \lambda_{3}{ }^{2}=3292.47 \tag{P}\\
& M_{2}=0.00698382 \\
& \text { W Weller, see Paschen's article. Other references as under Table } 33 \mathrm{I} \text {, above. }
\end{align*}
$$

table 333. - Index of Refraction of Finorite in Air.

$\lambda(\mu)$	n	Observer	$\lambda(\mu)$	n	Observer	$\lambda(\mu)$	n	Observer.
0.1856	1.50940	S	1.4733	I. 42641	P	4.1252	I. 40855	P
.19881	1. 49629	6	1.5715	1.42596	6	4.4199	1.40559	*
.21441	1. 48462	"	1.6206	1.42582	6	4.7146	I. 40238	6
. 22645	1. 47762	"	1.7680	1.42507	6	5.0092	1.39898	6
. 257 I 3	1. 46476	6	1.9153	1.42437	"	$5 \cdot 3036$	1.39529	6
.32525	1.44987	"	1.9644	1.42413	"	$5 \cdot 5985$	1.39142	\%
. 34555	1.44697	'6	2.0626	1.42359	"	5.8932	1.38719	6
. 39681	I. 44214	6	2.1608	1.42308	6	6.4825	1.37819	6
. 48607	1.43713	P	2.2100	I.42288	6	7.0718	I. 36805	66
. 58930	1. 43393	P	2.3573	1.42199	6	7.6612	1. 35680	6
.65618	1.43257	S	2.5537	1.42088	6	8.2505	I. 34444	66
. 68671	1.43200	*	2.6519	1.42016	6	8.8398	1.33079	6
. 71836	I.43157	،	2.7502	1.41971	6	9.4291	1.31612	${ }^{6}$
.76040	I.43101	'6	2.9466	1.41826	6	5 I .2	3.47	RA
. 8840	1. 42982	P	3.1430	1.41707	'6	61.1	2.66	"
1.1786	1.42787	"	3.2413	1.41612	6	∞	2.63	S
1. 3756	1.42690	*	3.5359	1.41379	،			
I. 4733	1.42641	6	3.8306	1.41120	6	Referen	under Tab	331.

$n^{2}=a^{2}+\frac{M_{1}}{\lambda^{2}-\lambda_{1}{ }^{2}}-e \lambda^{2}-f \lambda^{4}$ or $=b^{2}+\frac{M_{2}}{\lambda^{2}-\lambda^{2}}+\frac{M_{3}}{\lambda^{2}-\lambda_{r}{ }^{2}}$
where $a^{2}=2.03882$

$$
\begin{align*}
M_{1} & =0.0062183 \\
\lambda_{1}^{2} & =0.007706 \\
e & =0.0031999 \tag{P}
\end{align*}
$$

$$
f=0.000002916
$$

$M_{3}=5114.65$
$\begin{aligned} b^{2} & =6.09651 \\ M_{2} & =0.00613 S 6\end{aligned}$
$\lambda_{r}{ }^{2}=1260.56$
$\lambda_{v}{ }^{2}=0.00884$
$\lambda_{v}=0.0940 \mu$
$\lambda_{r}=35 \cdot 5 \mu$
TABLE 334, - Change of Index of Refraction for $1^{\circ} \mathbf{C}$ in Units of the 5th Decimal Place.
C line, -I.220; D, -I.206; F, -I.170; G, -I.142. (Pl)
TABLE 335. - Index of Refraction of Iceland Spar (CaCO_{3}) in Alr.

$\lambda(\mu)$	n_{0}	n_{e}	Observer.	$\lambda(\mu)$	n_{0}	n_{e}	Obser ver.	$\lambda(\mu)$	n_{0}	$n{ }_{0}$	Obser ver.
0.198	-	I. 5780	M	0.508	1. 6653	I. 4896	M	0.99I	І. 6438	1.4802	C
. 200	1.9028	I. 5765	"	. 533	1. 6628	I. 4884	"	1.229	1.6393	1.4787	"
. 208	1. 8673	1.566.4	"	. 589	1.6584	I. 4864	"	1. 307	1. 6379	1.4783	"
. 226	1.8130	1.5492	-	. 643	1.6550	I. 4849	"	1. 497	1. 6346	1.4774	"
. 293	1.7230	1.5151	C	.656	I. 6544	I. 4846	"	1. 682	1.6313		"
. 340	1.7008	I. 5056	M	. 670	1.6537	I. 4843	,	1.749	-	1. 4764	"
. 361	1.6932	1.5022	C	.760	I. 6500	1.4826	-	ז. 849	1.6280	-	"
. 410	1. 6802	I. 4964	-	. 768	1. 6497	1.4826	M	1.908	-	I. 4757	"
. 434	1.6755	I. 4943	M	. 801	1.6487	1.4822	C	2.172	1.6210	-	،
. 486	1.6678	1.4907	"	. 905	1. 6458	1.48IO	"	2.324	-	1. 4739	"

C Carvallo, J. de Phys. (3), 9, 1900.
M Martens, Ann. der Phys. (4) 6, rgor, 8, 1902.
P Paschen, Wied. Ann. 56, 1895.

Pl Pulfrich, Wied. Ann 45, 1892.
RA Rubens-Aschkinass, Wied. Ann. 67, 1899.
S Starke, Wied. Ann. 60, 1897.

TABLE 336. -Index of Refraction of Nitroso-dimethyl-aniline. (Wood.)

$\boldsymbol{\lambda}$	n	λ	n	λ	n	λ	n	λ	n
0.497	2.140	0.525	1.945	0.584	1.815	0.636	1.647	0.713	1.718
.500	2.114	.536	1.909	.602	1.796	.647	1.758	.730	1.713
.506	2.074	.546	1.879	.611	1.783	.659	1.750	.749	1.709
.508	2.025	.557	1.857	.620	1.778	.669	1.743	.763	1.697
.516	1.985	.569	1.834	.627	1.769	.696	1.723		

Nitroso-dimethyl-aniline has enormous dispersion in yellow and green, metallic absorption in violet. See Wood. Phil. Mag. 1903.

Tables 337-338.
INDEX OF REFRACTION.
TABLE 337, - Index of Refraction of Quartz (SiO_{2}).

Wave- length.	$\begin{aligned} & \text { Index } \\ & \text { Ordinary } \\ & \text { Ray. } \end{aligned}$	$\begin{array}{\|c} \text { Index } \\ \text { Extraordinary } \\ \text { Ray. } \end{array}$	Temperature ${ }^{\circ} \mathrm{C}$.	Wave- length.	$\begin{gathered} \text { Index } \\ \text { Ordinary } \\ \text { Ray. } \end{gathered}$	$\begin{array}{c}\text { Index } \\ \text { Extraordinary } \\ \text { Ray. }\end{array}$	Tempera ture ${ }^{\circ} \mathrm{C}$.
$\frac{\mu}{\mu .185}$	1. 67582	1.68999	18	μ 0.656	1.54189	1.55091	18
. 193	. 65997	. 67343	"	. 686	. 54099	. 54998	،
. 198	. 65090	. 66397	"	. 760	. 53917	. 54811	"
. 206	. 64038	. 65300	"	1.160	. 5329		-
. 214	. 63041	. 64264	"	. 969	. 5216		-
. 219	. 62494	. 63698	"	2.327	. 5156		
. 231	. 61399	. 62560	"	.84 .8	. 5039		
. 257	. 59622	. 60712	"	3.18	. 4944		
. 274	.58752 .56748 .5858	. 59811	"	. 63	. 4799	Rubens.	-
.340 .396	. 56748	. 57738	"	.96 4.20	.4679 .4569		-
. 410	. 55650	. 56600	"	5.0	.417		-
. 486	. 54968	. 55896	"	6.45	. 274		-
0.589	I. 54424	1.55334	"	7.0	1.167		-

Except Rubens' values, - means from various authorities.

TABLE 338. - Indices of Refraction for various Alums.*

[^43]
Smithsonian Tables.

Selected Monorefringent or Isotropic Minerals.

The values are for the sodium D line unless otkerwise stated and are arranged in the order of increasing indices. Selected by Dr. Edgar T. Wherry from a private compilation of Dr. E. S. Larsen of the U. S. Geological Survey.

Mineral.	ormul	$\begin{gathered} \text { Index of } \\ \text { refraction } \\ \stackrel{0}{0.589 \mu} . \end{gathered}$
Villiamite	${ }^{\mathrm{NaF}}$	I. 328
Cryoithionite......		(1)
Aluarite............	${ }_{\text {CaF2 }} \mathrm{CaF}_{2} \mathrm{AlO}_{2} \mathrm{O}_{3.4} \mathrm{SO}_{3} .24 \mathrm{H}_{2} \mathrm{O}$	I.
Sodalite	${ }_{5}^{3}{ }_{5} \mathrm{Na}_{2} \mathrm{O} \cdot 3 \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 6 \mathrm{SiO}_{2} \cdot 2 \mathrm{NaCl}$	
Analcite.	$\mathrm{Na}^{2} \mathrm{O} \cdot \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 4 \mathrm{SiO}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	
SYyite.	${ }_{5} \mathrm{Na}_{2} \mathrm{O} \cdot 3 \mathrm{Al}_{2} \mathrm{O}_{3} .6 \mathrm{SiO}_{2} \mathrm{O}_{2} \mathrm{SO}_{3}$	
Haunnite.	${ }^{\text {a }}$	$\underset{\substack{\text { I. } 4.900 \\ \text {. } 500 \pm}}{ }$
Leucite Pollucte Peme	${ }^{\text {Kr }}$	
		¢,
${ }^{\text {Bauxite }}$	${ }^{\mathrm{Al}_{2} \mathrm{O}_{2}, \mathrm{nH} \mathrm{H}_{2} \mathrm{O}} \mathrm{O}$	
${ }_{\text {Pharmacosid }}$		${ }_{\text {1. } 723}^{\text {1. }}$ (
Berzelite.		
Pericasate	3 COO	1.736
Helvite.		I. I . 739
Prrope ${ }_{\text {Prendite }}$		(1.745
${ }_{\text {Hesesente }}^{\text {Heseonite }}$		1.763
Almandite.	${ }_{3} \mathrm{FeO} . \mathrm{Al}_{2} \mathrm{O} \mathrm{O}_{3} 3 \mathrm{SiO}$	r.778
Hercynite.		
Ganite	$3{ }_{3} \mathrm{MnO} .4 \mathrm{AlO}_{3} .3 \mathrm{SiO}_{2}$	¢, c (.8II
Lime. ${ }^{\text {Unarovit }}$		(1.830
Andradite.		${ }_{1.857}$
Microlite.		I. 923
Pyrochlore.	Contains $\mathrm{CaO}_{2}, \mathrm{Ce}_{2} \mathrm{O}_{3}, \mathrm{TiO}_{2}$, etc	1.960-2.000
Schorlomite		1.080
Picitite.		$2.050 \pm$
Eulytite		
Mosesite.	Contains $\mathrm{Hg}_{3} \mathrm{NH}_{4}, \mathrm{Cl}$, etc.	2.065
Senarmont	$\mathrm{Sb}_{2} \mathrm{O}_{3} \mathrm{Cl}_{3}$	${ }_{2}^{2.087}$
Emboite.	${ }_{\text {Ag }}$	ci.150
Bunsenite.	NiO	2.18 (Li light)
Lewisite		
Bromyrite	${ }_{\text {AbBr }}$	${ }_{2}^{2.253}$
Dysanalite	Contains $\mathrm{CaO}, \mathrm{FeO}, \mathrm{TiO}_{2}$, etc.	${ }^{2} .330$
Franklinite	$(\mathrm{Zn}, \mathrm{Fe}, \mathrm{Mn}) \mathrm{O}$.(Fe, Mn) $\mathrm{O}_{2} \mathrm{O}_{3}$	${ }_{\substack{2 \\ 2.350}}^{2.350}$ (Lil light)
Sphaerite	(Ca	
Diamondit.	${ }_{\mathrm{H} \mathrm{CO} .2 \mathrm{HgCl}}$	${ }^{2} .4790$ (Jilizht)
Hauerite.	${ }_{\text {MnS }}$	2. 6900 (Lili light)
Aiabandite........ Cuprite.......	${ }_{\text {Mns }}{ }_{\text {Cuz }}$	

SMITHSONIAN TABLES.

Miscellaneous Monorefringent or Isotropic Solids.

Substance.	Spectrum line.	Index of refraction.	Authority.
Albite glass.	D	1.4890	Larsen, 1009
Amber....	D	1. 546	Mühlheim
Ammonium chloride	D	I. 6422	Grailich
Anorthite glass.	D	1. 5755 1. 635	Larsen, 1909 E. L. Nichols
	-0.670 ${ }^{\text {d }}$	1.635	${ }_{\text {U.: }}{ }^{\text {E }}$ Nichols
Bell metal.	D	1.0052	Beer
Boric Acid, melted.	C	I. 4623	Bedson and Williams
"، ${ }^{\text {a }}$	$\stackrel{\mathrm{F}}{\mathrm{F}}$	I. 4637	"، "،
Borax, melted.	C	I. 4624	" ، "
"، "	D	I. 4630	" " "
" ${ }^{\text {" }}$	F	1.4702	" " "
Camphor.	D	1. 532	Kohlrausch
Canada balsam..	D	1.5402 I. 530	Mean
Ebonite...	red	I. 66	Ayrton, Perry
Fuchsin.	A	2.03	Mean
"	${ }_{\text {B }}^{\text {B }}$	2.19	"،
" ${ }^{\text {a }}$................	G	2.33 1.97	"
" \quad..............	H	1.32	"
Gelatin, Nelson no. 1	D	I. 530	Jones, rimir
" ${ }^{\text {a }}$ various	D	I. 516-r. 534	
Gum Arabic.	red	I. 480 I. 514	Jamin Wollaston
Obsidian. .	D	I. 482 -I. 496	Various
Phosphorus.	D	2.1442	Gladstone, Dale
Pitch.	red	I. 531	Wollaston
Potassium bromide....	D	I. 5593	Topsöe, Christiansen
"\% chlorstannate.	D	1.6574 I .6666	" ${ }^{\text {" }}$
Resins: Aloes..	red	1. 619	Jamin
Canada balsam	red	1.528	Wollaston
Colophony	red	1. 548	Jamin
Copal...	red	1.528 I. 535	Wollaston
Peru balsam.	D	I. 593	Baden Powell
Selenium..	A	2.61	Wood
"	B	2.68	"
"	C	2.73	"،
Sodium chiorate	D	I. 5150	Dussaud
Strontium nitrate.	D	I. 5667	Fock

The values are arranged in the order of increasing indices for the ordinary ray and are for the sodium D line unless otherwise indicated. Selected by Dr. Edgar T. Wherry from a private compilation of Dr. Esper S. Larsen of the U. S. Geological Survey.

Mineral.	Formula.	Index of refraction.	
		Ordinary ray.	Extraordinary ray.
(a) Uniaxial Positive Minerals.			
Ice.	$\mathrm{H}_{2} \mathrm{O}$	1. 309	1.313
Sellaite...il	${ }_{\mathrm{CuO}}^{\mathrm{Mg} 2} \mathrm{SiO}_{2,2 \mathrm{H}_{2} \mathrm{O}}$	1. 378 $\mathbf{1 . 4 6 0}$ a	1.390
Chrysocolla	${ }_{2}^{\mathrm{CuO} . \mathrm{CaO}_{2} \mathrm{Al}_{2} \mathrm{O}_{3} .5 \mathrm{H}_{2} \mathrm{SiO}} \mathrm{O}_{2} .6 \mathrm{H}_{2} \mathrm{O}$	$1.460 \pm$ 1.475	1.570 1.486
Chabazite.	($\mathrm{Ca}, \mathrm{Na}_{2}$) $\mathrm{O} \cdot \mathrm{Al}_{2} \mathrm{O}_{3} .4 \mathrm{SiO}_{2} .6 \mathrm{H}_{2} \mathrm{O}$	r. $480 \pm$	1.482 $=$
Douglasite.	${ }_{2} \mathrm{KCl} . \mathrm{FeCl}_{2.2} \mathrm{H}_{2} \mathrm{O}$	1.488	I. 500
Hydronephelite.	${ }_{2} \mathrm{Na}_{2} \mathrm{O} \cdot 3.3 \mathrm{Al}_{2} \mathrm{O}_{3} .6 \mathrm{SiO}_{2.7} 7 \mathrm{HH}_{2} \mathrm{O}$	1. 490	1. 502
Apophyllite. Quartz .	${ }_{\mathrm{SiO}}^{2} \mathrm{O} .8 \mathrm{CaO} .16 \mathrm{SiO}_{2} .16 \mathrm{H}_{2} \mathrm{O}$	1. $5354 \pm$	r. 537 1.553
Coquimbite	$\mathrm{Fe}_{2} \mathrm{O}_{3.3} \mathrm{SO}_{3} .9 \mathrm{H}_{2} \mathrm{O}$	1. 550	1. 556
Brucite. .	$\mathrm{MgO} . \mathrm{H}_{2} \mathrm{O}$	1. 559	1. 580
Alunite.	$\mathrm{K}, \mathrm{O} \cdot 3.3 \mathrm{Al}_{2} \mathrm{O}_{3.4} 4 \mathrm{SO}_{3} .6 \mathrm{H}_{2} \mathrm{O}$	1. 572	1. 592
Penniuite. Cacoxenite	${ }_{2}^{5}\left(\mathrm{Me} 2 \mathrm{O}_{3} . \mathrm{P}_{2} \mathrm{O}_{5.1} \mathrm{Al}_{2} \mathrm{H}_{2} \mathrm{O} \mathrm{O}^{2} \mathrm{SiO}_{2.4} \mathrm{H}_{2} \mathrm{O}\right.$	1. 576	1. 579
Eudialite.	${ }_{6} \mathrm{Na}_{2} \mathrm{O} .6(\mathrm{Ca}, \mathrm{Fe}) \mathrm{O} .20(\mathrm{Si}, \mathrm{Zr}) \mathrm{O}_{2} . \mathrm{NaCl}$	I. 606	I.645
Dioptasite	$\mathrm{CuO} . \mathrm{SiO}_{2} \mathrm{H}_{2} \mathrm{O}$	1. 654	1.707
Phenacite.	${ }_{2} \mathrm{BeO} . \mathrm{SiO}_{2}{ }^{\text {a }}$	1. 654	1.670
Parisite.	${ }_{2} \mathrm{CeOF}, \mathrm{CaO} .3 \mathrm{CO}_{2}$	1.676	1.757
Vesuvianite	${ }_{2}(\mathrm{Ca}, \mathrm{Mn}, \mathrm{Fe}) \mathrm{O} .(\mathrm{Al}, \mathrm{Fe})(\mathrm{OH}, \mathrm{F}) \mathrm{O} .2 \mathrm{SiO}_{2}$	1.694 r .716	1.723 1.718 \% \%
Xenotime	$\mathrm{Y}_{2} \mathrm{O}_{3} . \mathrm{P}_{2} \mathrm{O}_{5}$	1.721	I.816
Connellite.	$20 \mathrm{CuO} . \mathrm{SO}_{3.2} \mathrm{CuCl}_{2.20 \mathrm{H}_{2} \mathrm{O}}$	1. 724	1. 746
Benitoite.	${ }_{6} \mathrm{BaO}, \mathrm{TiO}_{2.3} \mathrm{SiO}_{2}{ }^{\text {a }}$	1. 757	I. 804
Ganomalite		1.910	1.945
Zircon.	$\mathrm{ZrO}_{2} . \mathrm{SiO}_{2}$	$1.923 \pm$	1.934 r .968
Powellite	$\mathrm{CaO}^{\mathrm{Ca}} \mathrm{MoO}_{3}$	r. 967	r. 978
Calomel.	$\mathrm{HgCl}^{\text {a }}$	I. 973	2.650
Cassiterite Zincite.	$\mathrm{SnO}_{\mathrm{ZnO}}$	1.997	2.093
Phosgenite	$\stackrel{\mathrm{PbO}}{\mathrm{Z}} . \mathrm{PbCl}_{2} \mathrm{CO}_{2}$	2.114	2.029 2.140
Penfieldite	$\mathrm{PbO} .2 \mathrm{PbCl}_{2}$	2.130	2.210
Iodyrite.	${ }_{\text {AgI }}$	2.210	2.220 (${ }^{2}$
Tapiolite.	$\stackrel{\mathrm{FeO}}{ }(\mathrm{Ta}, \mathrm{Cb})_{2} \mathrm{O}_{5}$	2.270	${ }^{2.420}$ (Li light)
Derbylite	${ }_{6 \mathrm{FeO}} . \mathrm{Sb}_{2} \mathrm{O}_{3} .5 \mathrm{TiO}_{2}$	2.356 2.450	${ }_{2}^{2.378} \mathbf{2 . 5 1 0}$ (Li light)
Greenockite	CdS	2.506	2.529 2.5129
Rutile..	TiO_{2}	2.616	2.903
Moissanite. Cinnabarite	$\underset{\mathrm{HgS}}{\mathrm{CSi}}$	2.654	2.697
Cinnabarite	HgS	2.854	3.201
(b) Unlaxial Negative Minerals.			
Chiolite.	${ }_{2} \mathrm{NaF} . \mathrm{AlF}_{3}$	1.349	1.342
Hanksite.	${ }_{11} \mathrm{Na}_{2} \mathrm{O} .0 \mathrm{SO}_{3.2} \mathrm{CO}_{2 . \mathrm{KCl}}$	1.481	I. 46 F
Thaumasite.	${ }_{3} \mathrm{CaO} . \mathrm{CO}_{2} . \mathrm{SiO}_{2} \mathrm{SO}_{3} . \mathrm{I} 5 \mathrm{H}_{2} \mathrm{O}$	1.507	I. 468
Hydrotalcite	$6 \mathrm{MgO} . \mathrm{Al}_{2} \mathrm{O}_{3} . \mathrm{CO}_{2} .155 \mathrm{H}_{2} \mathrm{O}$	1.512	1.498
Milarite.	${ }_{\mathrm{K}}^{2} \mathrm{O} .4 \mathrm{CaO}_{2} \mathrm{All}_{2} \mathrm{O}_{3.24} \mathrm{SiO}_{2} . \mathrm{H}_{2} \mathrm{O}$	1.524 1. 532	1. 496 I .529
Kaliophilite	$\mathrm{K}_{2} \mathrm{O} . \mathrm{Al}_{2} \mathrm{O}_{3} .2 \mathrm{SiO}_{2}$	1.532 I. 537	1.529 1. 533
Mellite.	${ }_{4 l} \mathrm{AlO}_{3} \mathrm{O}_{3}, \mathrm{C}_{12} \mathrm{O}_{9} .18 \mathrm{H}_{2} \mathrm{O}$	1. 539	I. 511
Marialite	$" \mathrm{Ma} "=3 \mathrm{Na}_{2} \mathrm{O} \cdot 3 \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 18 \mathrm{SiO}_{2.2} \mathrm{NaCl}$	1. 539	I. 537
Nephelite.	$\mathrm{Na}_{2} \mathrm{O} . \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 2 \mathrm{SiO}_{2}$	1. 542	1. 538

TABLE 341 (Continued). - Selected Uniaxial Minerals.

Mineral.	Formula.	Index of refraction.	
		Ordinary ray.	Extraordinary ray.
(b) Uniaxial Negative Minerals (continued).			
Wernerite...	$\mathrm{Me}_{1} \mathrm{Ma}_{1}{ }^{ \pm}$	1. 578	1.551
Beryl. Torbernite.	${ }^{3} \mathrm{BeO} . \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 6 \mathrm{SiO}_{2} \mathrm{CuO}_{2} \mathrm{UO}_{3} \cdot \mathrm{P}_{2} \mathrm{O}_{5} 8 \mathrm{H}_{2} \mathrm{O}$	1. $5881 \pm$	1. $575 \pm$
Meionite. .	$" \mathrm{Me}$ " $=4 \mathrm{CaO} .3 \mathrm{Al}_{2} \mathrm{O}_{3} .6 \mathrm{SiO}_{2}$	1.592 1.597	1.582 1.560
Melilite.	Contains $\mathrm{Na}_{2} \mathrm{O}, \mathrm{CaO}, \mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{SiO}_{2}$, etc.	1.597 1.634	1. 560
Apatite.	${ }_{9} \mathrm{CaO} .3 \mathrm{P}_{2} \mathrm{O}_{5} . \mathrm{Ca}(\mathrm{F}, \mathrm{Cl})_{2}$	1. 634	1. 631
Calcite.	$\mathrm{CaO}^{-\mathrm{CO}_{2}}{ }^{\text {a }}$	1. 658	1. 486
Gehlenite..		1. 669	1.658
Tourmaline Dolomite...	$\xrightarrow[\text { Contains } \mathrm{Na}_{2} \mathrm{O}, \mathrm{FeO}, \mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{~B}_{2} \mathrm{O}_{3}, \mathrm{SiO}_{2} \text {, etc. }]{\text { CaO. }}$	1.669 1.682	1.658 1.503 1. 503
Magnesite .	$\mathrm{MgO} . \mathrm{CO}_{2}$	1. 700	1.603 1.509
Pyrochroite.	$\mathrm{MnO} . \mathrm{H}_{2} \mathrm{O}$	1. 723	I. 681
Corundum.	$\mathrm{Al}_{2} \mathrm{O}_{3}$	1. 768	1. 760
Smithsonite ...	$\mathrm{ZnO} . \mathrm{CO}_{2}$ $\mathrm{MnO} . \mathrm{CO}_{2}$	1.818 I 818	1. 618
Jaiosite.......	$\mathrm{K}_{2} \mathrm{O} .3 \mathrm{Fe}_{2} \mathrm{O}_{3.4} \mathrm{SO}_{3} .6 \mathrm{H}_{2} \mathrm{O}$	1.818 1.820	1.595 1.715
Siderite..	$\mathrm{FeO} . \mathrm{CO}_{2}{ }^{\text {d }}$	1.875	I. 635
Pyromorphite	${ }_{9} \mathrm{PbO} .3 \mathrm{P}_{2} \mathrm{O}_{5} . \mathrm{PbCl}_{2}$	2.050	2.042
Barysilite Mimetite	${ }_{3} \mathrm{PbOO} .2 \mathrm{SiO}_{2} \mathrm{Pr}_{2}$	2.070	2.050
Mimetite.	${ }_{\mathrm{PbO}}^{\mathrm{PbO} .3 \mathrm{PbCl}_{2} \mathrm{O}_{5} .} \mathrm{PbCl}_{2}$	2.135 2.150 2.	2.118
Stolzite. . .	$\mathrm{PbO} \mathrm{WO}_{3}$	2.150 2.269	2.040 2.182
Geikielite .	$(\mathrm{Mg}, \mathrm{Fe}) \mathrm{O} \cdot \mathrm{TiO}_{2}$	2.310	1.950
Vanadinite	${ }_{9} \mathrm{PbO}_{.3} \mathrm{~V}_{2} \mathrm{O}_{5} . \mathrm{PbCl}_{2}$	2.354	2.299
Wulfenite.	${ }_{\text {PbO. }}^{\text {Pbo }}$ - MoO_{3}	2.402	${ }^{2} 304$ (Li light)
Massicotite	$\mathrm{PbO}^{\text {P10 }}$	2.554 2.665	2.493 (2.535 li light)
Proustite.	$3 \mathrm{Ag}_{2} \mathrm{~S} . \mathrm{As}_{2} \mathrm{~S}_{3}$	2.685 2.979	${ }_{2.715}^{2.535}$ " ${ }^{\text {c/i }}$
Pyrargyrite	${ }_{3} \mathrm{Ag}_{2} \mathrm{~S}^{2} . \mathrm{Sb}_{2} \mathrm{~S}_{3}$	3.084	2.881 " "
Hematite...	$\mathrm{Fe}_{2} \mathrm{O}_{3}$	3.220	2.940 " "

TABLE 342. - Miscellaneous Uniaxial Crystals.

| Crystal. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

* Topsöe and Christiansen.

Selected Biaxial Minerals.

The values are arranged in the order of increasing β index of refraction and are for the sodium D line except where noted. Selected by Dr. Edga: T. Wherry from private compilation of Dr. Esper S. Larsen of the U. S. Geological Survey.

Mineral.	Formula.	Index of refraction.		
		n_{a}	$n \beta$	${ }^{n} \gamma$
(a) Braxial Positive Minerals.				
Stercorite.	$\mathrm{Na}_{2} \mathrm{O} .\left(\mathrm{NH}_{4}\right)_{2} \mathrm{O} \cdot \mathrm{P}_{2} \mathrm{O}_{5.9} \mathrm{H}_{2} \mathrm{O}$	1. 439	I. 44 I	1.469
Aluminite.	$\mathrm{Al}_{2} \mathrm{O}_{3} . \mathrm{SO}_{3.9} 9 \mathrm{H}_{2} \mathrm{O}$	I. 459	I. 464	1.470
Tridymite.	SiO_{2}	I. 469	I. 470	I. 473
Thenardite.	$\mathrm{Na}_{2} \mathrm{O} \cdot \mathrm{SO}_{3}$	I. 464	I. 474	I. 485
Carnallite.	$\mathrm{KCl} . \mathrm{MgCl}_{2} .6 \mathrm{H}_{2} \mathrm{O}$	I. 466	1. 475	I. 494
Alunogenite	$\mathrm{Al}_{2} \mathrm{O}_{3} .3 \mathrm{SO}_{3} .16 \mathrm{H}_{2} \mathrm{O}$	I. 474	I. 476	I. 483
Melanterite	$\mathrm{FeO} . \mathrm{SO}_{3.7} \mathrm{H}_{2} \mathrm{O}$	1.471	1. 478	1. 486
Natrolite.	$\mathrm{Na}_{2} \mathrm{O} . \mathrm{Al}_{2} \mathrm{O}_{3} .3 \mathrm{SiO}_{2.2} \mathrm{H}_{2} \mathrm{O}$	I. 480	I. 482	I. 493
Arcanite.	$\mathrm{K}_{2} \mathrm{O} . \mathrm{SO}_{3}$	I. 494	I. 495	I. 497
Struvite	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{O} .2 \mathrm{MgO} . \mathrm{P}_{2} \mathrm{O}_{5.1} \mathrm{I}_{2} \mathrm{H}_{2} \mathrm{O}$	I. 495	I. 496	I. 504
Heulandite.	$\mathrm{CaO} . \mathrm{Al}_{2} \mathrm{O}_{3} .6 \mathrm{SiO}_{2.3} \mathrm{H}_{2} \mathrm{O}$	I. 498	I. 499	I. 505
Thomsonite	$(\mathrm{Na} 2, \mathrm{Ca}) \mathrm{O} . \mathrm{Al}_{2} \mathrm{O}_{3.2} \mathrm{SiO}_{2.3} \mathrm{H}_{2} \mathrm{O}$	I. 497	I. 503	I. 525
Harmotomite	$\left(\mathrm{K}_{2}, \mathrm{Ba}\right) \mathrm{O} . \mathrm{Al}_{2} \mathrm{O}_{3.5} \mathrm{SiO}_{2.5} \mathrm{H}_{2} \mathrm{O}$	I. 503	I. 505	1.508
Petalite.....	$\mathrm{Li}_{2} \mathrm{O} . \mathrm{Al}_{2} \mathrm{O}_{3} .8 \mathrm{SiO}_{2}$	1. 504	1.510	1. 516
Monetite	${ }_{2} \mathrm{CaO} . \mathrm{P}_{2} \mathrm{O}_{5} . \mathrm{H}_{2} \mathrm{O}$	I. 515	1. 518	1. 525
Newberyite	${ }_{2} \mathrm{MgO} . \mathrm{P}_{2} \mathrm{O}_{5.7} \mathrm{HH}_{2} \mathrm{O}$	I. 514	I. 519	I. 533
Gypsum...	$\mathrm{CaO} . \mathrm{SO}_{3.2} \mathrm{H}_{2} \mathrm{O}$	I. 520	I. 523	I. 530
Mascagnite	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{O} \cdot \mathrm{SO}_{3}$	I. 52 I	1.523	1.533
Albite....	" Ab " $=\mathrm{Na}_{2} \mathrm{O} \cdot \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 6 \mathrm{SiO}_{2}$	I. 525	I. 529	I. 536
Hydromagnesite	$4 \mathrm{MgO} .3 \mathrm{CO}_{2.4} \mathrm{H}_{2} \mathrm{O}$	I. 527	I. 530	I. 540
Wavellite....	$3 \mathrm{Al}_{2} \mathrm{O}_{3.2} \mathrm{P}_{2} \mathrm{O}_{5.1} 2\left(\mathrm{H}_{2} \mathrm{O}, 2 \mathrm{HF}\right)$	I. 525	I. 534	I. 552
Kieserite.	$\mathrm{MgO} . \mathrm{SO}_{3} . \mathrm{H}_{2} \mathrm{O}$	I. 523	I. 535	1.586
Copiapite.	${ }_{2} \mathrm{Fe}_{2} \mathrm{O}_{3.5} \mathrm{SO}_{3.1} 88 \mathrm{H}_{2} \mathrm{O}$	I. 530	I. 543	1.595
Whewellite	$\mathrm{CaO} . \mathrm{C}_{2} \mathrm{O}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$	I. 49 I	I. 555	1.650
Variscite..	$\mathrm{Al}_{2} \mathrm{O}_{3} . \mathrm{P}_{2} \mathrm{O}_{5.4} \mathrm{H}_{2} \mathrm{O}$	1.551	I. 558	1. 582
Labradorite	$\mathrm{Ab}_{2} \mathrm{An}_{3}$	1.559	I. 563	I. 568
Gibbsite..	$\mathrm{Al}_{2} \mathrm{O}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$	I. 566	I. 566	1.587
Wagnerite.	$3 \mathrm{MgO} . \mathrm{P}_{2} \mathrm{O}_{5} \cdot \mathrm{MgF}_{2}$	I. 569	1. 570	1.582
Anhydrite.	$\mathrm{CaO} . \mathrm{SO}_{3}$	1. 57 I	I. 576	1.614
Colemanite.	${ }_{2} \mathrm{CaO} .3 \mathrm{~B}_{2} \mathrm{O}_{3.5} \mathrm{H}_{2} \mathrm{O}$	I. 586	I. 592	1.614
Fremontite.	$\mathrm{Na}_{2} \mathrm{O} \cdot \mathrm{Al}_{2} \mathrm{O}_{3} \cdot \mathrm{P}_{2} \mathrm{O}_{5} .\left(\mathrm{H}_{2} \mathrm{O}, 2 \mathrm{HF}\right)$	1. 594	1.603	I. 6I 5
Vivianite.	$3 \mathrm{FeO} . \mathrm{P}_{2} \mathrm{O}_{5} .8 \mathrm{H}_{2} \mathrm{O}$	1. 579	1.603	1.633
Pectolite.	$\mathrm{Na}_{2} \mathrm{O} \cdot 4 \mathrm{CaO} .6 \mathrm{SiO}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	I. 595	1.606	1.634
Calamine...	${ }_{2} \mathrm{ZnO} . \mathrm{SiO}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	I. 614	I. 617	1. 636
Chondrodite.	$4 \mathrm{MgO} .2 \mathrm{SiO}_{2} \cdot \mathrm{Mg}(\mathrm{F}, \mathrm{OH})_{2}$	1. 609	I. 619	1. 639
Turquois.	$\mathrm{CuO} .3 \mathrm{Al}_{2} \mathrm{O}_{3.2} \mathrm{P}_{2} \mathrm{O}_{5.9} \mathrm{H}_{2} \mathrm{O}$	1.610	1.620	r. 650
Topaz.	${ }_{2} \mathrm{AlOF} . \mathrm{SiO}_{2}$	1.619	1.620	1.627
Celestite.	$\mathrm{SrO} . \mathrm{SO}_{3}$	1.622	I. 624	1.631
Prehnite.	${ }_{2} \mathrm{CaO} . \mathrm{Al}_{2} \mathrm{O}_{3.3} \mathrm{SiO}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	I. 616	1.626	1.649
Barite.	$\mathrm{BaO}^{\mathrm{SO}_{3}}$	1.636	1.637	1.648
Anthophyllite	$\mathrm{MgO} . \mathrm{SiO}_{2}$	1.633	I. 642	1.657
Sillimanite...	$\mathrm{Al}_{2} \mathrm{O}_{3} \cdot \mathrm{SiO}_{2}$	I. 638	1.642	1.653
Forsterite.	${ }_{2} \mathrm{MgO} . \mathrm{SiO}_{2}$	1.635	I. 651	1.670
Enstatite	$\mathrm{MgO} . \mathrm{SiO}_{2}$	1.650	1.653	1.658
Euclasite	${ }_{2} \mathrm{BeO} . \mathrm{Al}_{2} \mathrm{O}_{3.2} \mathrm{SiO}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	I. 652	I. 655	1.671
Triplite.	$3 \mathrm{MnO} . \mathrm{P}_{2} \mathrm{O}_{5} \cdot \mathrm{MnF}_{2}$	1.650	1.660	1.672
Spodumenite	$\mathrm{Li}_{2} \mathrm{O} \cdot \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 4 \mathrm{SiO}_{2}$	I. 660	I. 666	1.676
Diopside.	$\mathrm{CaO} . \mathrm{MgO} .2 \mathrm{SiO}_{2}$	I. 664	1.671	I. 694
Olivine...	${ }_{2}(\mathrm{Mg}, \mathrm{Fe}) \mathrm{O}^{2} \mathrm{SiO}_{2}$	I. 662	I. 680	1.699
Triphylite...	$\mathrm{Li2}_{2} \mathrm{O} .2(\mathrm{Fe}, \mathrm{Mn}) \mathrm{O} . \mathrm{P}_{2} \mathrm{O}_{5}$	1.688	I. 688	1.692

INDEX OF REFRACTION.
Selected Biaxial Minerals.

Mineral.	Formula.	Index of refraction.		
		${ }^{n}$	${ }^{\prime} \beta$	$n \gamma$
(a) Blaxial Positive Minerals (continued).				
${ }_{\text {Zoisite }}{ }_{\text {Z }}^{\text {Strengite }}$		I. 700 1.710	$\xrightarrow{\text { I. } 702} \mathrm{~T}$	I. 706
Diasporite.	${ }^{\mathrm{Al}_{2} \mathrm{O}_{3} \mathrm{H}_{3} \mathrm{H}_{2} \mathrm{O}}$	1.7102	(1.710	- $\begin{aligned} & \text { '1. } 745 \\ & \text { I. } 750 \\ & 1 .\end{aligned}$
Staurolite... Chrysoberyl	${ }_{\mathrm{Cb}}^{2 \mathrm{FeO} .5 .5 \mathrm{Al}_{2} \mathrm{O}_{3} .4 \mathrm{SiO}_{2} . \mathrm{H}_{2} \mathrm{O}}$	I. 736	1.74i	I. 746
Azurite....	${ }_{3} \mathrm{CuO} . \mathrm{A}_{2} \mathrm{CO}_{2} . \mathrm{H}_{2} \mathrm{O}$		I. 748	I. 757 I. 838 1.88
Scorodite	$\mathrm{Fe}_{2} \mathrm{O}_{3} \mathrm{As}_{2} \mathrm{O}_{5} .4 \mathrm{H}_{2} \mathrm{O}$	1.765	r. 774	1. 797
Olivenite.		I. 772 I 877 1.872		1.863 I. 804 1.858
Titanite..	$\mathrm{CaO} \cdot \mathrm{TiO}_{2} \cdot \mathrm{SiO}_{2}$	1.900	I. 907	2.034
Claudetite	$\mathrm{As}_{2} \mathrm{O}_{3}$	1.871	1.920	2.010
Sulfur....		1.950	2.043	2.240
Cotunnite.	${ }_{\text {MnO. }}^{\mathrm{PbCl}_{2}}$		2.217 2.220	2.260 2.320
Manganite.	$\mathrm{Mn}_{2} \mathrm{O}_{3} \mathrm{H}_{2} \mathrm{O}$	2.170° 2.240	2.220 2.240	${ }_{2.530}^{2.320}$ (Li)
Raspite.	$\mathrm{PbO} \mathrm{WO}_{3}$	2.270	2.270 2.2	${ }_{2.300}$
Mendipite.	${ }_{2} \mathrm{PbO}^{2} \mathrm{PbCl}{ }_{2}$	2.240	${ }^{2.270}$	2.310
Tantalite.	(Fe, Mn) $\mathrm{O} . \mathrm{Ta}_{2} \mathrm{O}_{5}$	2.260	2.320	2.430 (Li)
Wolframite	$(\mathrm{Fe}, \mathrm{Mn}) \mathrm{O} . \mathrm{WO}_{3}$	2.310	2.360	2.460 (Li)
Crocoite.	$\mathrm{PbO} . \mathrm{CrO}_{3}$	2.310	2.370	2.660 (Li)
Pseudobrookite	${ }_{2} \mathrm{Fe}_{2} \mathrm{O}_{3} .3 \mathrm{TiO}_{2}$	2.380	${ }^{2} .390$	2.420 (Li)
Stibiotantalite Montroydite.		2.374 2.370	2.404 2.500 2.5	2.457 2.650 (Li)
Brookite...		$\begin{array}{r}2.378 \\ 2.583 \\ \hline\end{array}$	2. 2.586	${ }_{2.74 \mathrm{I}}^{2.650}$
Lithargite.	PbO	2.510	2.610	2.710

(b) Biaxial Negative Minerals.

Mirabilite.	$\mathrm{Na}_{2} \mathrm{O} . \mathrm{SO}_{3.1} \mathrm{IOH}_{2} \mathrm{O}$	1.394	1. 396	1. 398
Thomsenolite.	$\mathrm{NaF} . \mathrm{CaF}_{2} \cdot \mathrm{AlF}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$	1. 407	1.414	1.415
Natron	$\mathrm{Na}_{2} \mathrm{O} . \mathrm{CO}_{2} .10 \mathrm{H}_{2} \mathrm{O}$	1.405	1. 425	I. 440
Kalinite	$\mathrm{K}_{2} \mathrm{O} . \mathrm{Al}_{2} \mathrm{O}_{3} .4 \mathrm{SO}_{3.24} \mathrm{H}_{2} \mathrm{O}$	1.430	1.452	I. 458
Epsomite	$\mathrm{MgO} . \mathrm{SO}_{3.7} \mathrm{H}_{2} \mathrm{O}$	I. 433	I. 455	1.46r
Sassolite.	$\mathrm{B}_{2} \mathrm{O}_{3} . \mathrm{H}_{2} \mathrm{O}$	1.340	1.456	1. 459
Borax	$\mathrm{Na}_{2} \mathrm{O} .2 \mathrm{~B}_{2} \mathrm{O}_{3} .10 \mathrm{H}_{2} \mathrm{O}$	I. 447	1.470	I. 472
Goslarite	$\mathrm{ZnO} . \mathrm{SO}_{3.7} \mathrm{H}_{2} \mathrm{O}$	1.457	1. 480	1.484
Pickeringite	$\mathrm{MgO} . \mathrm{Al}_{2} \mathrm{O}_{3.4} \mathrm{SO}_{3.2} \mathrm{H}_{2} \mathrm{O}$	1.476	1.480	1. 483
Bloedite...	$\mathrm{Na} 2 \mathrm{O} . \mathrm{MgO} .2 \mathrm{SO}_{3.4} \mathrm{H}_{2} \mathrm{O}$	I. 486	1.488	1.489
Trona.	${ }_{3} \mathrm{Na}_{2} \mathrm{O} .4 \mathrm{CO}_{2} .5 \mathrm{H}_{2} \mathrm{O}$	1.410	I. 492	1. 542
Thermonatrite	$\mathrm{Na}_{2} \mathrm{O} \cdot \mathrm{CO}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	1.420	I. 495	1. 518
Stilbite....	$\left(\mathrm{Ca}, \mathrm{Na}_{2}\right) \mathrm{O} . \mathrm{Al}_{2} \mathrm{O}_{3} .6 \mathrm{SiO}_{2} .5 \mathrm{H}_{2} \mathrm{O}$	I. 494	I. 498	I. 500
Niter.	$\mathrm{K}_{2} \mathrm{O} \cdot \mathrm{N}_{2} \mathrm{O}_{5}$	I. 334	1.505	I. 506
Kainite	MgO. $\mathrm{SO}_{3} . \mathrm{KCl} .3 \mathrm{H}_{2} \mathrm{O}$	I. 494	I. 505	1. 516
Gaylussite	$\mathrm{Na}_{2} \mathrm{O} . \mathrm{CaO} .2 \mathrm{CO}_{2.5} \mathrm{H}_{2} \mathrm{O}$	1.444	1.516	1. 523
Scolecite.	$\mathrm{CaO} . \mathrm{Al}_{2} \mathrm{O}_{3} .3 \mathrm{SiO}_{2.3} \mathrm{H}_{2} \mathrm{O}$	1.512	1. 519	1. 519
Laumontite	$\mathrm{CaO} . \mathrm{Al}_{2} \mathrm{O}_{3} .4 \mathrm{SiO}_{2.4} \mathrm{H}_{2} \mathrm{O}$	1.513	1.524	1. 525
Orthoclase.	$\mathrm{K}_{2} \mathrm{O} \cdot \mathrm{Al}_{2} \mathrm{O}_{3} .6 \mathrm{SiO}_{2}$	I. 518	I. 524	1. 526
Microcline.	Same as preceding	I. 522	I. 526	I. 530
Anorthoclase	$(\mathrm{Na}, \mathrm{K})_{2} \mathrm{O} \cdot \mathrm{Al}_{2} \mathrm{O}_{3} .6 \mathrm{SiO}_{2}$	1. 523	I. 529	I. 531
Glauberite .	$\mathrm{Na}_{2} \mathrm{O} . \mathrm{CaO} .2 \mathrm{SO}_{3}$	1.515	1. 532	1. 536
Cordierite.	$4(\mathrm{Mg}, \mathrm{Fe}) \mathrm{O} .4 \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 10 \mathrm{SiO}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	1. 534	1. 538	1. 540
Chalcanthite	$\mathrm{CuO} . \mathrm{SO}_{3} .5 \mathrm{H}_{2} \mathrm{O}$	1.516	1. 539	I. 546
Oligoclase. .	$\mathrm{Ab}_{4} \mathrm{An}$	1. 539	I. 543	I. 547

INDEX OF REFRACTION.

Selected Biaxial Minerals.

Mineral.	Formula.	Index of refraction.		
		$n a$	${ }^{n} \boldsymbol{\beta}$	${ }^{n} \gamma$
(b) Biaxial Negative Crystals (continued).				
Beryllonite.	$\mathrm{Na}_{2} \mathrm{O} .2 \mathrm{BeO} . \mathrm{P}_{2} \mathrm{O}_{5}$	1.552	1. 558	1. 56 x
Kaolinite.	$\mathrm{Al}_{2} \mathrm{O}_{3.2} \mathrm{SiO}_{2.2} \mathrm{H}_{2} \mathrm{O}$	I. 561	1. 563	1. 565
Biotite.	$\mathrm{K}_{2} \mathrm{O} .4(\mathrm{Mg}, \mathrm{Fe}) \mathrm{O} .2 \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 6 \mathrm{SiO}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	I. 54 I	I. 574	1. 574
Autunite.	$\mathrm{CaO} .2 \mathrm{UO}_{3} . \mathrm{P}_{2} \mathrm{O}_{5} .8 \mathrm{H}_{2} \mathrm{O}$	I. 553	I. 575	1.577
Anorthite	$" \mathrm{An} "=\mathrm{CaO} \cdot \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 2 \mathrm{SiO}_{2}$	1. 576	I. 584	1. 588
Lanthanite.	$\mathrm{La}_{2} \mathrm{O}_{3.3} \mathrm{CO}_{2.9} \mathrm{H}_{2} \mathrm{O}$	I. 520	1.587	1.613
Pyrophyllite	$\mathrm{Al}_{2} \mathrm{O}_{3.4} \mathrm{SiO}_{2} . \mathrm{H}_{2} \mathrm{O}$	I. 552	I. 588	I. 600
Talc	$3 \mathrm{MgO} .4 \mathrm{SiO}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	I. 539	I. 589	1.589
Hopeite.	$3 \mathrm{ZnO} . \mathrm{P}_{2} \mathrm{O}_{5.4} 4 \mathrm{H}_{2} \mathrm{O}$	1. 572	I. 590	1. 590
Muscovite	$\mathrm{K}_{2} \mathrm{O} .3 \mathrm{Al}_{2} \mathrm{O}_{3} .6 \mathrm{SiO}_{2.2} \mathrm{H}_{2} \mathrm{O}$	1.561	I. 590	I. 594
Amblygonite	$\mathrm{Al}_{2} \mathrm{O}_{3} . \mathrm{P}_{2} \mathrm{O}_{5.2} \mathrm{LiF}$	1.579	1.593	I. 597
Lepidolite...	$\mathrm{Al}_{2} \mathrm{O}_{3.3} \mathrm{SiO}_{2.2}(\mathrm{~K}, \mathrm{Li}) \mathrm{F}$	1. 560	I. 598	$\underline{1.605}$
Phlogopite.	$\mathrm{K}_{2} \mathrm{O} .6 \mathrm{MgO} . \mathrm{Al}_{2} \mathrm{O}_{3} .6 \mathrm{SiO}_{2.2} \mathrm{H}_{2} \mathrm{O}$	1. 562	I. 606	1.606
Tremolite.	$\mathrm{CaO} .3 \mathrm{MgO} .4 \mathrm{SiO}_{2}$	1.609	1.623	1.635
Actinolite.	$\mathrm{CaO} .3(\mathrm{Mg}, \mathrm{Fe}) \mathrm{O} .4 \mathrm{SiO}_{2}$	1.6II	1.627	I. 636
Wollastonite	$\mathrm{CaO} . \mathrm{SiO}_{2}$	1.616	1.629	1.63 I
Lazulite.	(Fe, Mg) O. $\mathrm{Al}_{2} \mathrm{O}_{3} \cdot \mathrm{P}_{2} \mathrm{O}_{5} \cdot \mathrm{H}_{2} \mathrm{O}$	1.603	1.632	1.639
Danburite .	$\mathrm{CaO} . \mathrm{B}_{2} \mathrm{O}_{3.2} \mathrm{SiO}_{2}$	1.632	1.634	1. 636
Glaucophanite	$\mathrm{Na}_{2} \mathrm{O} .2 \mathrm{FeO} . \mathrm{Al}_{2} \mathrm{O}_{3} .6 \mathrm{SiO}_{2}$	1.621	1.638	1.638
Andalusite.	$\mathrm{Al}_{2} \mathrm{O}_{3} . \mathrm{SiO}_{2}$	1.632	1.638	1.643
Hornblende	Contains $\mathrm{Na}_{2} \mathrm{O}, \mathrm{MgO}, \mathrm{FeO}, \mathrm{SiO}_{2}$, etc.	1. 629	I. 642	I. 653
Datolite.	${ }_{2} \mathrm{CaO} .2 \mathrm{SiO}_{2} \cdot \mathrm{~B}_{2} \mathrm{O}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$	1.625	1.653	1. 669
Erythrite.	$3 \mathrm{CoO} . \mathrm{As}_{2} \mathrm{O}_{5} .8 \mathrm{H}_{2} \mathrm{O}$	1.626	1.661	1. 699
Monticellite.	CaO. MgO. SiO_{2}	1.651	1. 662	1. 668
Strontianite.	$\mathrm{SrO}^{\text {CO }} \mathrm{CO}_{2}$	1. 520	1. 667	1. 667
Witherite.	$\mathrm{BaO} . \mathrm{CO}_{2}$	1. 529	1.676	1. 677
Aragonite.	$\mathrm{CaO} . \mathrm{CO}_{2} \mathrm{Cl}$	1.53 I	1.682	1.686
Axinite.....	$6(\mathrm{Ca}, \mathrm{Mn}) \mathrm{O} .2 \mathrm{Al}_{2} \mathrm{O}_{3} \cdot \mathrm{~B}_{2} \mathrm{O}_{3} .8 \mathrm{SiO}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	1.678	1.685	I. 688
Dumortierite.	$8 \mathrm{Al}_{2} \mathrm{O}_{3} . \mathrm{B}_{2} \mathrm{O}_{3} .6 \mathrm{SiO}_{2} . \mathrm{H}_{2} \mathrm{O}$	1. 678	1.686	1.689
Cyanite.	$\mathrm{Al}_{2} \mathrm{O}_{3} \cdot \mathrm{SiO}_{2}$ (${ }^{\text {a }}$	1.712	1.720	1.728
Epidote.	$4 \mathrm{CaO} .3(\mathrm{Al}, \mathrm{Fe})_{2} \mathrm{O}_{3} \cdot 6 \mathrm{SiO}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	I. 729	1.754	1.768
Atacamite	$3 \mathrm{CuO} . \mathrm{CuCl}_{2.3} \mathrm{H}_{2} \mathrm{O}$	1.83 I	1.861	1.880
Fayalite. .	${ }_{2} \mathrm{FeO} . \mathrm{SiO}_{2}$	I. 824	1.864	x. 874
Caledonite	${ }_{2}(\mathrm{~Pb}, \mathrm{Cu}) \mathrm{O} . \mathrm{SO}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$	1.818	1.866	1.909
Malachite.	${ }_{2} \mathrm{CuO} . \mathrm{CO}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	1.655	1.875	1.909
Lanarkite.	${ }_{2} \mathrm{PbO} . \mathrm{SO}_{3}$	1.930	1.990	2.020
Leadhillite	${ }_{4} \mathrm{PbO} . \mathrm{SO}_{3.2} \mathrm{CO}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	1.870	2.000	2.010
Cerussite.	${ }^{\mathrm{PbO}} \mathrm{CO}_{2}$	1.804	2.076	2.078
Laurionite	$\mathrm{PbCl}_{2} \cdot \mathrm{PbO} \cdot \mathrm{H}_{2} \mathrm{O}$	2.077	2.116	2.158
Matlockite.	PbO. PbCl_{2}	2.040	2.150	2.150
Baddeleyite..	ZrO_{2}	2.130	2.190	2.200
Lepidocrocite.	${ }_{2} \mathrm{Fe}_{2} \mathrm{Fe}_{2} \mathrm{O}_{3} \cdot \mathrm{H}_{2} \mathrm{O} \mathrm{H}_{2} \mathrm{O}$ in part	1.930	2.210	2.510
Limonite.	${ }_{2} \mathrm{Fe}_{2} \mathrm{Fe}_{3} \mathrm{O}_{3} \cdot \mathrm{H}_{2} \mathrm{O} \mathrm{O}$	2.170	2.290	2.310 (i)
Valentinite.	${ }^{\mathrm{Sb}_{2} \mathrm{O}_{3}}$	2.210 2.180	2.350 2.350	$2.350(\mathrm{Li})$ 2.350
Turgite.	${ }_{2} \mathrm{Fe}_{2} \mathrm{O}_{3} . \mathrm{H}_{2} \mathrm{O}$ in part	2.450	2.550	
Realgar....	AsS	2.460	2.590	$2.610(\mathrm{Li})$
Terlinguaite. .	$\mathrm{Hg}_{2} \mathrm{OCl}$	2.350	2.640	$2.670(\mathrm{Li})$
Hutchinsonite	$(\mathrm{Tl}, \mathrm{Ag})_{2} \mathrm{~S} . \mathrm{PbS} .2 \mathrm{As}_{2} \mathrm{~S}_{3}$	3.078	3.176	3.188
Stibnite. .	$\mathrm{Sb}_{2} \mathrm{~S}_{3}$	3.194	4.303	4.460

INDEX OF REFRACTION.
TABLE 344. - Miscellaneous Biaxial Crystals.

Crystal.	Spectrum line.	Index of refraction.			Authority
		n_{a}	${ }^{n} \beta$	${ }^{n} \gamma$	
Ammonium oxalate, $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O} \ldots$ Ammonium acid tartrate,	D	1.4381	1.5475	1. 5950	Brio
$\left(\mathrm{NH}_{4}\right) \mathrm{H}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{6}\right) \ldots \ldots{ }^{\text {a }}$	D	1. 5188	1.5614		T. and C.*
	D	-	I. 581	1. 59.	Cloisaux
Citric acid, $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7} . \mathrm{H}_{2} \mathrm{O}$	D	1.5697 1. 4932	1. 6935	1.7324	Liweh
Codein, $\mathrm{C}_{18} \mathrm{H}_{2} \mathrm{NO}_{3} \mathrm{H}_{2} \mathrm{O}$	D	1. 4932 1. 5390	1. 4977	1. 5089	Schrauf
Magnesium carbonate, $\mathrm{MgCO}_{3} 3.3 \mathrm{H}_{2} \mathrm{O} \ldots$. .	D	1.5390 1. 495	1.5435 1. 501	1. $\overline{526}$	Grailich
"، sulphate, $\mathrm{MgSO}_{4.7} 7 \mathrm{H}_{2} \mathrm{O} \ldots$.	D	1. 432	1. 455	1.461	Means
"	Cd, 0.226μ	1. 4990	1. 5266	1. 5326	Borel
	H, ${ }_{\text {D }}{ }^{\text {O }}$	1. 4307 1. 7202	1. 4532	1. 4584	
" chromate, $\mathrm{K}_{2} \mathrm{CrO}_{4}$.	D	1.7202	1.7380 1.7254	1.8197	Dufet
"	red	1.6873	1.722	1. 7305	Mallard
	D	I. 3346	1. 5056	1.5064	Schrauf
"، "،....................	D	1. 4976 1.4932	1. 4992	1.5029	T. and C.
Racemic acid, $\mathrm{C}_{4} \mathrm{H}_{6} \dddot{O}_{6} \dddot{\mathrm{H}}_{2} \dddot{O}^{\circ}$	$\stackrel{C}{\text { yellow }}$	I. 4911	1. 494928	1. 4980	" ." "
	yellow		1. 526		Groth
Sodium bichromate, $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} 2 \mathrm{H}_{2} \mathrm{O} \ldots \ldots$	D	1.6610	1. 555	-	Dufet
" acid tartrate, $\mathrm{NaH}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{6}\right) .2 \mathrm{H}_{2} \mathrm{O}$	red	1.6610	1.6994 I. 5332	1.7510	Dufet Brio
Sugar (cane), $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11} \ldots \ldots \ldots \ldots$.	Tl	1. 5422	1. 5685	1. 5734	Calderon
" ،	Li_{L}	1. 5397	I. 5667	1. 57116	
	${ }_{\text {Di }}$	1. 5379 I. 4953	1. 5639 I. 5353	I. 5693	"
Zinc sulphate, $\mathrm{ZnSO}_{4.7} \mathrm{H}_{2} \mathrm{O} \ldots \ldots$.	$\stackrel{\text { F }}{ }$	1.4353 1.4620	1.5353 1. 4860	I. 6046 I. 4897	Means ${ }_{\text {T and }}$
" "	${ }_{\text {D }}^{\text {D }}$	1. 4568	1. 4801	1. r 4836 r	": " "
		1.4544	1.4776	1. 4812	" " "
* Topsöe and Christiansen.					

TABLE 345. - Miscellaneous Liquids (see also Table 346), Liquefied Gases, Oils, Fats and Waxes.

Substance.	$\underset{\circ}{\text { Temp. }}$	Index for D o. 589μ.	Reference.	Substance.	$\stackrel{\text { Temp. }}{\stackrel{\mathrm{C}}{2}}$	Index for D -. 589μ.	Reference.
Liquefied gases:				Oils:			
	15	1.659	a	Lavendar	20	1. $46{ }^{-1}$ - 466	e
Cl_{2}	14	1. 367	b	Linseed	15	I. $4820-\mathrm{I} .485{ }^{2}$	e
CO_{2}	15	1.195 1.325	b	Maize. ${ }^{\text {Mrast }}$.	15.5 15.5	1. $4757-\mathrm{I} .4768$	d
$\mathrm{C}_{2} \mathrm{~N}_{2}$	18	1.325	b	Mustard seed	15.5	1.4750-1.4762	d
$\mathrm{C}_{2}{ }^{2}$	6	I. 180	b	Neat's foot	15	1.4695-1.4708	e
$\mathrm{H}_{2} \mathrm{~N}_{2}$	${ }^{18.5}$	1.384 I .205	b	Olive	15.5	1.4703-1.4718	d
NH_{3}	16.5	I. 325	b	Peanut	15.5	1.4723-1.4731	d
NO.	-90	I. 330	c	Peppermin	20	I. 464-1.468	e
$\mathrm{N}_{2} \mathrm{O}$	15	1. 194	b	Poppy	15.5	1.4770	d
O_{2}	-181	1.221	c	Porpoise	25	I. 4677	e
SO_{2}	15.	I. 350	b	Rape (Colza)	15.5	1.4748-1.4752	d
HCl	16.5	1. 252	b	Seal.	25	1.4741	e
HBr	10	I. 325	b	Sesame	15.5	1. 4742	d
	16.5	I. 466	b	Soja bea	15.5	1.4760-1. 4775	e
Oils:				Sperm	15.5	1.4665-1.4672	e
Almond	15.5	1.4728-1.4753	d	Sunflow	15.5	I. 4739	d
Castor.	15	1.4799-1.4803	e	Tung.	19	I. 503	e
Citronella	20	1.47-1.48	e	Whale	40	I. 4649	e
Clove.	20	1.5301-1. 5360	e	Fats and Waxes:			
Cocoanut.	15.5	I. 4587	d	Beef tallow	40	I. $4552-\mathrm{I} \cdot 4587$	e
Cod liver.	15	1.4790-1. 4833	e	Beeswax	75	I. 4398 -1. 4451	e
Cotton seed. .	15.5	1.4737-1.4757	d	Carnauba wax	84	1.4520-1.4541	e
Croton. . . .	27	1.4757-1.4768	e	Cocoa butter.	40	I. $4560-\mathrm{I} .4518$	e
Lard....... .	20	I. $460-1.467$	${ }_{\text {d }}$	Lard...	40	1. $4584^{-1.1} .4601$	${ }_{\text {e }}$
Lard	15.5	1.4702-1.4720		Mutton	60	1.4510	e
References: (a) Martens; (b) Bleekrode, Pr. Roy. Soc. 37, 339, 1884; (c) Liveing. Dewar, Phil. Mag; 1892-3; (d) Tolman, Munson, Bul. 77, B. of C., Dept. Agriculture, 1905; (e) Seeker, Van Nostrand's Chemical Annual. For the oils of reference d, the average temperature coefficient is 0.000365° per ${ }^{\circ} \mathrm{C}$.							

Indices of Refraction of Liquids Relative to Air.

References: r, Landolt and Börnstein (a, Landolt; b, Korten; c, Brühl; d, Haagen; e, Landolt, Jahn; f, Nasini, Bernheimer; g, Eisenlohr; h, Eykman; i, Auwers, Eisenlohr); 2, Korten; 3, Walter; 4, Ketteler; 5, Landolt; 6, Olds; 7, Baden Powell; 8, Willigen; 9, Fraunhofer; 10, Brühl.

Indices of Refraction relative to Air for Solutions of Salts and Acids.

INDEX OF REFRACTION.

Indices of Refraction of Gases and Vapors.

A formula was given by Biot and Arago expressing the dependence of the index of refraction of a gas on pressure and temperature. More recent experiments confirm their conclusions. The formula is $n_{t}-1=\frac{n_{0}-\mathrm{r}}{1+a t} \frac{p}{760}$, where n_{t} is the index of refraction for temperature t, n_{0} for temperature zero, a the coefficient of expansion of the gas with temperature, and ϕ the pressure of the gas in millimeters of mercury. For air see l'able 349.

(a) Indices of refraction.													
Spectrum line.	$\begin{gathered} 11^{3}(\mathrm{n}-1) \\ \text { Air. } \end{gathered}$		Spectrum line.	$\begin{gathered} 10^{3}(\mathrm{n}-1) \\ \text { Air. } \end{gathered}$	Wavelength.	$(\mathrm{n}-1){ }_{10}{ }^{3}$.							
			Air.			O.	N.	H.					
A				M	. 2993	${ }^{\mu}{ }^{4} 61$. 2951	. 2734	-3012	. 1406			
B	.291I		N	. 3003	. 5461	. 2936	. 2717	- . 2998	. 1397				
C	. 2914		0	. 3015	. 5790	. 2930	. 2710		. 1393				
D	. 2912		P	3023	. 6563	. 2919	. 2698	. 2982	. 1387				
E	. 2933		Q	-303I	. 4360	. 2971	. 2743	CO_{2}	. 1418				
F	. 2943		R	- 3043	. 5462	. 2937	. 2704	. 4506	. 1397				
G	. 2962		S	$\begin{aligned} & .3053 \\ & .3064 \\ & .3075 \end{aligned}$	$\begin{aligned} & .6709 \\ & 6.709 \\ & 8.678 \\ & \hline \end{aligned}$.2918	. 2683	. 447 I	. 1385				
H	. 29		T			.2881	. 2643	. 4804	.1361				
K	$\begin{array}{r} .2980 \\ .2987 \end{array}$		U			. 2888	. 2650	.4579	. 1361				
			First 4, Cuthbertsons; the rest, Koch, 1909.										
(b) The following are compiled mostly from a table published by Brühl (Zeits. für Phys. Chem. vol. 7, pp. 25-27). The numbers are from the results of experiments by Biot and Arago, Dulong, Jamin, Ketteler, Lorenz, Mascart, Chappius, Rayleigh, and Rivière and Prytz. When the number given rests on the authority of one observer the name of that observer is given. The values are for 0° Centigrade and 760 mm . pressure.													
Substance.		Kind of light.		Indices of refraction and authority.		Substance.		Kind of light.	Indices of refraction and authority.				
Acetone Ammonia Argon . Benzene		$\begin{gathered} \text { D } \\ \text { white } \\ \text { D } \\ \text { D } \\ \text { D } \end{gathered}$	1.001079-1.001100		Hydrogen . .		white	$1.000138-1.000143$					
		1.000381-1.000385	Hydrogen ${ }^{\text {c }}$ -		$\begin{aligned} & \mathrm{D} \\ & \mathrm{D} \end{aligned}$	1.000132 Burton.							
		1.000373-1.000379	Hydrogen sul-phide .			1.000644 Dulong. 1.000623 Mascart.							
		I.000281 Rayleigh. 1.001700-1.001823											
		Methane . . .			white	1.000443 Dulong.							
Bromine Carbon dioxide " "				D	I. 001132 Mascart.		" . . .		DDD	1.000444 Mascart.			
		white	$\begin{aligned} & 1.000449-1.000450 \\ & 1.000448-1.000454 \end{aligned}$		Methyl alcohol.		1.000549-1.000623						
		D			Methyl ether .Nitric oxide .		I.000891 Mascart. 1.000303 Dulong. 1.000297 Mascart.						
$\begin{aligned} & \text { Carbon disul- } \\ & \text { phide } . \end{aligned}$		white	I. 001500 Dulong. 1.001478-1.001485				$\begin{gathered} \mathrm{D} \\ \text { white } \\ \mathrm{D} \end{gathered}$						
		D			$\mathrm{Nitric}_{6}{ }_{6}{ }_{6}$. .								
$\begin{aligned} & \text { Carbon mon- } \\ & \text { oxide . } \end{aligned}$		white	1.000340 Dulong. I. 000335 Mascart.		Nitrogen . . .		white	$1.000295-1.000300$					
		white											
Chlorine		white	I. 000772 Dulong. I. 000773 Mascart.		$\underset{\text { Nitrous oxide . }}{6}$.		white D	1.000503-1.000507 i. 000516 Mascart					
		D											
Chlorofo		D	1.001436-1.001 464		Oxygen		white	1.000272-1.000280					
Cyanoge		white	I.000834 Dulong. 1.000784-1.000825		Pentane		$\begin{aligned} & \mathrm{D} \\ & \mathrm{D} \end{aligned}$	$1.000271-1.000272$1.001711 Mascart.					
"،		D											
Ethyl alc		D	$1.00087 \mathrm{I}-1.000885$		Sulphur dioxide		white D	1.000665 Dulong.					
Ethyl eth		D	1.001 52I-I.OOI 544 r.000036 Ramsay.				I.000686	etteler.					
Helium		D			Water			white	1.000261 Jamin.				
Hydroch acid.	, $\{$	white D	$\begin{aligned} & \text { 1.000449 Mascart. } \\ & \text { I.000447 } \end{aligned}$. . .	D	1.000249-1.0002 59					

Smithsonian Tables.

index of refraction.

TABLE 349. - Index of Refraction of Air ($15^{\circ} \mathrm{C}, 76 \mathrm{~cm}$).
Corrections for reducing wave-lengths and frequencies in air $\left(15^{\circ} \mathrm{C}, 76 \mathrm{~cm}\right)$ to vacuo.
The indices were computed from the Cauchy formula $(n-1) \mathrm{IO}^{7}=2726.43+12.288 /\left(\lambda^{2} \times 10^{-8}\right)+0.3555 /$ $\left(\lambda^{4} \times{ }^{10} 0^{-16}\right)$. For $0^{\circ} \mathrm{C}$ and 76 cm the constants of the equation become $2875.66,13.412$ and 0.3777 respectively, and for $30^{\circ} \mathrm{C}$ and $76 \mathrm{~cm}, 2589.72,12.259$ and 0.2576 . Sellmeier's formula for but one absorption band closely fits the observations: $n^{2}=\mathrm{I}+0.00057378 \lambda^{2} /\left(\lambda^{2}-595260\right)$. If $n-\mathrm{I}$ were strictly proportional to the density, then $(n-1)_{0} /$ $(n-\mathrm{I}) t$ would equal $\mathrm{I}+a t$ where α should be 0.00367 . The following values of a were found to hold:

λ	0.85μ	0.75μ	0.65μ	0.55μ	0.45μ	0.35μ	
$\boldsymbol{\alpha}$	0.003672	0.003674	0.003678	0.00368	0.00370	0.003738	0.25μ

The indices are for dry air $\left(0.05 \pm \% \mathrm{CO}_{2}\right)$. Corrections to the indices for water vapor may be made for any wavelength by Lorenz's formula, $+0.00004 \mathrm{I}(\boldsymbol{m} / 760)$, where m is the vapor pressure in mm . The corresponding frequencies in waves per cm and the corrections to reduce wave-lengths and frequencies in air at $15^{\circ} \mathrm{C}$ and 76 cm pressure to vacuo are given. E.g., a light wave of 5000 Angstroms in dry air at $15^{\circ} \mathrm{C}, 76 \mathrm{~cm}$ becomes 5001.391 A in vacuo; a frequency of 20,000 waves per cm correspondingly becomes 19994.44. Meggers and Peters, Bul. Bureau of Standards, 14, p. 731, 1918.

Wavelength, Angstroms.	$\begin{gathered} \text { Dry air } \\ (n-1) \\ \times 10^{7} \\ 15^{7} \mathrm{C} \\ 76 \mathrm{~cm} \end{gathered}$	$\left.\begin{array}{\|c\|} \text { Vacuo } \\ \text { correction } \\ \text { for } \lambda \text { in air } \\ (n \lambda-\lambda) . \\ \text { Add. } \end{array} \right\rvert\,$	$\begin{gathered} \text { Fre- } \\ \text { quency } \\ \text { waves per } \\ \text { cm } \\ \frac{I}{\lambda} \\ \text { in air. } \end{gathered}$	Vacuo correction for $\frac{1}{\lambda}$ in air $\left(\frac{1}{n \lambda}-\frac{1}{\lambda}\right)$.	Wavelength, λ Angstroms.	$\begin{aligned} & \text { Dry air } \\ & (n-1) \\ & \times 10^{7} \\ & \times 5^{\circ} \mathrm{C} \\ & 7^{6} \mathrm{~cm} \end{aligned}$	$\begin{gathered} \text { Vacuo } \\ \text { correction } \\ \text { for } \lambda \text { in air } \\ (n \lambda-\lambda) \\ \text { Add. } \end{gathered}$	$\begin{gathered} \text { Fre- } \\ \text { quency } \\ \text { waves per } \\ \mathrm{cm} \\ \frac{1}{\lambda} \\ \text { in air. } \end{gathered}$	Vacuo correction for $\frac{1}{\lambda}$ in air $\left(\frac{1}{n \lambda}-\frac{1}{\lambda}\right)$. Subtract.
2000	3256	0.651	50,000	16.27	5500	2771	1. 524	18,181	5.04
2100	3188	0.670	47,619	15.18	5600	2769	1.551	17,857	4.94
2200	3132	0.689	45,454	14.23	5700	2768	1. 578	17,543	4.85
2300	3086	0.710	43,478	13.41	5800 5000	2766 2765	1.604 1. 631	17,241	4.77 4.68
2400	3047	0.73I	41,666	12.69	5900	2765	1.631	16,949	4.68
2500	3014	0.754	40,000	12.05	6000	2763	1. 658	16,666	4.60
2600	2986	0.776	38,461	11.48	6100	2762	1. 685	16,393	4.53
2700	2962	0.800	37,037	10.97	6200	2761	1. 712 I. 730	16,129 15,873	4.45 4.38
2800	2941	0.824	35,714	10.50 IO. 08	6300 6400	2760	1.739 I. 766	15,873 15,625	4.38 4.31
2900	2923	0.848	34,482	10.08	6400	2759	1.760	15,025	4.31
3000	2907	0.872	33,333	9.69	6500	2758	1. 792	15,384	4.24
3100	2893	0.897	32,258	9.33	6600	2757	1.819	15,151	4.18
3200	2880	0.922	31,250	9.00	6700	2756	1. 846	14,925	4.11
3300	2869	0.947	30,303	8.69	6800	2755	1.873	14,705	4.05
3400	2859	0.972	29,4! I	8.41	6900	2754	1.900	14,492	3.99
3500	2850	0.998	28,571	8.14	7000	2753	I. 927	14,285	3.93
3600	2842	I. 023	27,777	7.89	7100	2752	I. 954	14,084	3.88
3700	2835	r. 049	27,027	7.66	7200	2751	1.981	13,888	3.82
3800	2829	1. 075	26,315	7.44	7300	2751	2. 008	13,698 I3,513	3.77 3.72
3900	2823	1. 101	25,641	7.24	7400	2750	2.035	13,513	3.72
4000	2817	I. 127	25,000	7.04	7500	2749	2.062	13,333	3.66
4100	2812	I. 153	24,390	6.86	7600	2749	2.089	13,157	3.62
4200	2808	1. 179	23,809	6.68	7700	2748	2.116	12,987	3.57 3.52
4300 4400	2803 2799	I. 205 1. 232	23,255 22,727	6.52 6.36	7800 7900	2748 2747	2.143 2.170	12,820 12,658	3.52 3.48
4400	2799	1. 232	22,727						
4500	2796	1. 258	22,222	6.21	8000	2746	2. 197	12,500	3.43
4600	2792	I. 284	${ }^{21,739}$	6.07	8100	2746	2.224	12,345	3.39
4700	2789	I. 311	21,276	5.93 5.80			2. 265	12,12I	
4800 4900	2786 2784	1.338 1. 364	20,833 20,406	5.80 5.68	8500	2744	2.332	11,764	3.33 3.23
					8750	2743	2.400	11,428	3.13
5000	278I	I. 391	20,000	5.56	9000	2742	2.468	11,111	3.05
5100	2779	I. 417	19,607	5.45	9250 0500	2741	2.536 2.604	10,810 10,526	2.96 2.88
5200	2777	I. 444	19,230 18,867	5.34 5.23	9500	2740 2740	2.604 2.671	10,526 10,256	2.88 2.81
5300 5400	2775 2773	1. 471 1. 497	18,87 18,518	5.23 5.13	10750	2739	2.739	10,000	2.74

[^44]
MEDIA FOR DETERMINATIONS OF REFRACTIVE INDICES WITH THE MICROSCOPE.

TABLE 350. - Liquids, $\mathrm{n}_{\mathrm{D}}(0.589 \mu)=1.74$ to 1.87 .

In 100 parts of methylene iodide at $20^{\circ} \mathrm{C}$. the number of parts of the various substances indicated in the following table can be dissolved, forming saturated solutions having the permanent refractive indices specified. When ready for use the liquids can be mixed by means of a dropper to five intermediate refractions. Commercial iodoform (CHI_{3}) powder is not suitable, but crystals from a solution of the powder in ether may be used, or the crystalized product may be bought. A fragment of tin in the liquids containing the SnI_{4} will prevent discoloration.

CHI_{3}.	SnI_{4}.	AsI_{3}.	SbI_{3}.	S.	$n_{\text {na }}$ at 20°.
			12		I. 764
	25				1.783
	25		12		1.806
	30			6	1.820
	27	13	7		1.826
40	27	16			1. 842
	3 I	14	8	10	1. 853
35	31	16	8	10	1. 868

TABLE 351. -Resin-like Substances, $\mathrm{n}_{\mathrm{D}}(0.589 \mu)=1.68$ to 2.10 .
Piperine, one of the least expensive of the alkaloids, can be obtained very pure in straw-colored crystals. When melted it dissolves the tri-iodides of arsenic and antimony very freely. The solutions are fluid at slightly above 100° and when cold, resin-like. A solution containing 3 parts antimony jodide to one part of arsenic iodide with varying proportions of piperine is easier to manipulate than one containing either iodide alone. The following table gives the necessary data concerning the composition and refractive indices for sodium light. In preparing, the constituents, in powder of about 1 mm . grain, should be weighed out and then fused over, not in, a low flame. Three-inch test tubes are suitable.

Per cent Iodides.	00.	10.	20.	30.	40.	50.	60.	70.	80.
Index of refraction	1.683	1.700	1.725	1.756	1.794	1.840	1.897	1.968	2.050

TABLE 352. - Permanent Standard Resinous Media, $\mathrm{n}_{\mathrm{D}}(0.589 \mu)=1.546$ to 1.682.
Any proportions of piperine and rosin form a homogeneous fusion which cools to a transparent resinous mass. The following table shows the refractive indices of various mixtures. On account of the strong dispersion of piperine the refractive indices of minerals apparently matched with those of mixtures rich in this constituent are 0.005 to 0.01 too low. To correct this error a screen made of a thin film of 7 per cent antimony iodide and 93 per cent piperine should be used over the eye-piece. Any amber-colored rosin in lumps is suitable.

Per cent Rosin.	00.	10.	20.	30.	40.	50.	60.	70.	80.	90.	100.
Index of refraction	1.683	1.670	1.657	1.643	1.631	1.618	1.604	1.590	1.575	1.560	1.544

All taken from Merwin, Jour. Wash. Acad. of Sc. 3, p. 35, 1913.

Smithsonian Tables.

table 353.

Two constants are required to characterize a metal opticaily, the refractive index, n, and the absorption index, k, the latter of which has the following significance: the amplitude of a wave after travelling one wave-length, λ^{1} measured in the metal, is reduced in the ratio ${ }^{1} 1: e^{-2 \pi k}$ or for any distance $d, \mathrm{I}: \mathrm{e}-\frac{2 \pi \mathrm{dk}}{\lambda^{1}}$; for the same wave-length measured in air this ratio becomes $\mathrm{I}: \mathrm{e} \frac{2 \pi \mathrm{dnk}}{\lambda^{1}}$. $n k$ is sometimes called the extinction coefficient. Plane polarized light reflected from a polished metal surface is in general elliptically polarized because of the relative change in phase between the two rectangular components vibrating in and perpendicular to the plane of incidence. For a certain angle, ϕ (principal incidence) the change is 90° and if the plane polarized incident beam has a certain azimuth $\bar{\psi}$ (Principal azimuth) circularly polarized light results. Approximately, (Drude, Annalen der Physik, 36, p. 546, 1889),

$$
\mathrm{k}=\tan 2 \bar{\psi}\left(\mathrm{I}-\cot ^{2} \bar{\phi}\right) \text { and } \mathrm{n}=\frac{\sin \bar{\phi} \tan \bar{\phi}}{\left(1+\mathrm{k}^{2}\right)^{\frac{1}{2}}}\left(\mathrm{I}+\frac{1}{2} \cot ^{2} \bar{\phi}\right) \text {. }
$$

For rougher approximations the factor in parentheses may be omitted. $\mathrm{R}=$ computed percentage reflection.
(The points have been so selected that a smooth curve drawn through them very closely indicates the characteristics of the metal.)

Metal.	λ	$\overline{\text { ¢ }}$	$\bar{\psi}$	Computed.				thority
				n	k	nk	R	
Cobalt							$\%$	
			${ }_{29}^{29} 39$	cintiol		,		$\stackrel{\text { crer }}{ }$
	¢	¢79			(1.85		${ }^{69}$	Ingersoll.
			${ }_{26}^{26} 8$	${ }_{5}^{3.63}$	(1.58	${ }^{5.73}$	${ }_{75}^{73}$	"
Copper	${ }_{\text {2, } 23}$	8348 655	26 26 26		$\underset{\substack{\text { I.1.27 } \\ 1.05}}{1.5}$	$\underset{\substack{7.18 \\ 1.45}}{1.1}$	\% 720	Minor.
	- 2.231	65 65 65 704 08			cin		ce.	$\stackrel{\text { aliner }}{ }$
	- 5.500	\% 74.46	33 41 40 30	${ }_{\substack{\text { a } \\ 0.4 \\ \hline 1.10}}$	${ }_{\substack{2,4 \\ 7.4}}^{\substack{2,1\\}}$	ci.	${ }^{\text {c/ }}$	Ingersoll.
		7840 84 84 84	4230 42 30	${ }_{0}^{0.35}$	${ }_{12}^{11.0} 1$		${ }_{96}^{91}$	"
	(2.25	85 87 80 87 20	-	$\xrightarrow[\substack{\text { 1. } 0_{3} \\ 1.87}]{\text { a }}$			97.	Först.Fréa
Gold	¢		42 $\substack{\text { 42 } \\ 44 \\ 44 \\ \text { 5o }}$			(28.3		$\stackrel{\text { cis }}{ }$
	(i.00	81 85 85 85 85 85	${ }_{4}^{44} 500$		${ }_{26.7}^{28.0}$			" "
	$\underset{\substack{3.00 \\ 5.00}}{ }$	87 88 88 15	${ }_{4}^{43} \mathbf{4}$ 50		24.5			" ${ }^{\prime \prime}$
Iridium	(inc.1.00 2.00	- $\begin{aligned} & 82 \\ & 83 \\ & 83 \\ & 810\end{aligned}$	2915 2940 29	3.85 4.30	${ }_{\substack{1.60 \\ 1.66}}^{\text {a }}$	$\underset{\substack{3.2 \\ 7.1}}{ }$		"، "
	(incoin		- 30	-		6.0		"
Nickel	(inco	7200 76 76 7	cis ${ }_{\text {32 }}^{32}$	2.		${ }_{2,53}^{4.6}$		Tool.
	O. 0.589	76 78 78 8 1	${ }_{32}{ }_{3}{ }^{41}$		$\xrightarrow{1.86}$	${ }_{4}^{3.36}$	${ }^{62} 8$	Drude.
	(1.00		${ }_{3}^{32}{ }^{3}{ }^{2}$	${ }_{\text {2 }}^{\substack{2.63 \\ 3.95}}$	¢	ci.ce	${ }^{74} 8$.	" ${ }^{\text {c }}$
Platinum				($\begin{aligned} & 3.95 \\ & 0.74 \\ & 0.70\end{aligned}$				Först.-Fresed.
	(i.co	7430 73 7 50	39 4150 40 0	- 0.75	${ }_{\text {c. }}^{6.5}$	${ }_{3}^{3.4}$		" "
Silver	${ }_{\substack{\text { S.0.26 }}}^{\substack{\text { S.20, }}}$	${ }_{\text {c }}^{7200}$	${ }_{4}^{42} 10$	${ }_{\text {O }}^{\substack{0.34 \\ 1.44}}$		3.1.		Minor.
			1856 1588 158	${ }_{\text {1. }}^{1.57}$	${ }_{\substack{0.32 \\ 0.38}}^{0.62}$	${ }_{0}^{0.97} 0$	${ }^{17} 4$	
	- 3.332		¢ 372	-		-0.65	${ }_{\text {c }}^{3}$	"
	- 3.50	${ }_{72}{ }_{7}{ }^{36}$	${ }^{43} 29$	O.		2,	${ }^{37} 9$.	"،
	- 5 . 750	75 79 78 88	${ }_{4}^{43} 478$	o. $\begin{aligned} & 0.178 \\ & 0.17\end{aligned}$	${ }_{\text {20, }}^{20.6}$	${ }_{\substack{\text { c.i.64 } \\ 5.15}}^{\text {3, }}$	97.	Ingersoll.
			${ }_{4}^{44} 48$	-0.24 0.45	${ }_{\text {23,7 }}^{29.0}$	(6.96	${ }_{98}^{98}$	
	,	-	43 48 48 48	${ }_{\text {O. }}^{\substack{\text { a } \\ 1.65}}$	19.9 12.2	${ }_{\text {20.i }}^{15}$	99.	Först.
Steel				${ }_{\substack{\text { a } \\ \text { 4.3.9 } \\ 1.30}}$		${ }_{\substack { \text { che } \\ \begin{subarray}{c}{2.3 \\ 1.34{ \text { che } \\ \begin{subarray} { c } { 2 . 3 \\ 1 . 3 4 } }\end{subarray}}$		Mino
		6685 695 69	2845 38 38		¢	${ }_{\substack{1.54 \\ \text { 2.09 }}}^{\text {a }}$	(30.	"
	(5 coi	- 75	302 29 29		¢	cile		Ingersoll.
			279 28 30 30			$\begin{aligned} & 3.59 .59 \\ & 5.71 \\ & \hline 741 \end{aligned}$		Ingerss

Drude, Annalen der Physik und Chemie, 39, p. 48ı, 1890; 42, p. 186, 889 r ; 64, p. 159, r898. Minor, Annalen der Physik, 10, p. 58ı, ro03. Tool, Physical Review, 31, p. 1, 1910. Ingersoll, Astrophysical Journal, 32, p. 265, 1910; Försterling and Fréedericksz, Annalen der Physik, 40, p. 201, 1913.

Metal．	λ ．	n．	k．	R．	Ref．	Metal．	λ ．	n．	k．	R．	Ref．
Al．＊	${ }_{\mu}^{\mu}$			83	I	Rh．＊	${ }_{0}^{\mu}$		467	78	
Sb．＊	－0．589	1.44	$5 \cdot 32$	3	1	Se．\ddagger	－ 0.400	2.94	2.31	7	3
Bi．t \ddagger	white	2.26	4	－	2		． 490	3.12	1.49	35	5
Cd．＊	． 589	1.13	5.01	85	1		． 589	2.93	0.45	25	5
Cr．＊	． 579	2.97	4.85	70	3		． 760	2.60	0.06	20	5
Cb．＊	． 579	1.80	2.11	41	3	Si．＊	． 589	4.18	0.09	38	6
Au．\dagger	． 257	0.92	1.14	28	4		I． 25	3.67	0.08	33	6
	． 441	1.18	1． 85	42	4		2.25	3.53	0.08	31	6
	． 589	0.47	2.83	82	4	Na. （liq．）	． 589	． 004	2.61	99	1
I．crys．	． 589	3.34	0.57	30	4	Ta．＊	． 579	2.05	2.31	44	3
Ir．＊	． 579	2.13	4.87	75	3	Sn．＊	． 589	1.48	5.25	82	1
Fe．§	． 257	1.01	0.88	16	4	W．＊	． 579	2.76	2.71	49	3
	． 441	1.28	I． 37	28	4	V．＊	－ 579	3.03	3.51	58	3
	． 589	1.51	1.63	33	4	Zn．＊	． 257	0.55	0.61	20	4
Pb．＊	． 589	2.01	3.48	62	1		． 441	0.93	3．19	73	4
Mg．＊	． 589	0.37	4.42	93	1		． 589	1.93	4.66	74	4
Mn．＊	． 579	2.49	3．89	64	3		． 668	2.62	5.08	73	4
Hg．（liq．）	． 326	0.68	2.26	66	4						
	．441	1.01	3.42	74							
	． 589	1.62	4.41	75	4	$\lambda=\text { wav } \epsilon$	length	$\begin{aligned} & n=r \\ & \text { dex. } \end{aligned}$	ractio		
	． 668	1.72	4.70	77	4	$\mathrm{k}=\mathrm{abso}$ （1）Drude	see T	dex， 20	$\begin{gathered} =r e \\ (2) \end{gathered}$		
Pt．\dagger	.579 .257	1.62 I． 17	3.41 I． 65	65	3	（I）Drude	see Ph	k und	（2）		
	． 257	1.17 1.94	1． 65 3.16	37 58	4	$36, \text { p. } 824,$	889；	v．	arte	39,	rh．
	． 589	2.63	3.54	59	4	deutsch．Ph	sik．	S． 12	p． 10	191	
	． 668	2.91	3.66	59	4	Meier，Ann	es der	Physi	， 10,	8 I ，	
Ni．＊	． 275	1.09	1.16	24	4	（5）Wood，	hil．M	g．（6）	3， 60	190	（6）
	． 441	1.16	1.23	25	4	Ingersoll，se	Table	205.			
	． 589	1.30	1.97	43	4	as film in v	lectro uo．	tic，	rism		

TABLE 355．—Reflecting Power of Metals．（See page 298．）

$\begin{aligned} & \text { Wave- } \\ & \text { length } \end{aligned}$	的	家	び	－	¢	\pm	$\stackrel{\text { en }}{\sim}$	\％	®	产	$\dot{3}$	¢゙	$\stackrel{\sim}{\sim}$	方	\geqslant	$\stackrel{\sim}{\infty}$	ヘี่
μ	Per cents．																
	－	－	－	－	22	－	72	46	－	76	34	38	－	－	49		－
． 6	－	53	－	－	24	－	73	48	－	77	32	45	49	－	51	58	－
． 8	－	54	－	67	25		74	52	－	81	29	64	48	－	56	60	8
1.0	71 82	55	72	67	27	78	74	58	72	84	28	78	50	54	62 85	61	80
2.0 4.0	82	68	87 96	72 81 81	35	87 94	77 84	82	81 88	91 92	28	90	52	72	85	69	92 97
7.0	96	71	98	93	54	95	91	93	94	94	28	94	68	81	95	88	98
10.0	98	72	98	97	59	96	－	94	97	95	28	－	－	84	96		98
12.0	98	－	99	97	5	96	－	95	97	－	－	95	－	85	96	－	99

Coblentz，Bulletin Bureau of Standards，2，p．457，1906，7，p．197，1911．The surfaces of some of the samples were not perfect so that the corresponding values have less weight．The methods for polishing the various metals are described in the original articles．The following more recent values are given by Coblentz and Emerson，Bul．Bur．Stds．I4，p．207，1917；Stellite，an exceedingly hard and untarnish－ able alloy of $\mathrm{Co}, \mathrm{Cr}, \mathrm{Mo}, \mathrm{Mn}$ ，and Fe（ $\mathrm{C}, \mathrm{S}_{1}, \mathrm{~S}, \mathrm{P}$ ）was obtained from the Haynes Stellite Co，Kokomo， Indiana．

$$
\begin{array}{lccccccccccc}
\text { Wave-length, } \mu, & .15 & .20 & .30 & .50 & .75 & 1.00 & 2.00 & 3.00 & 4.00 & 5.00 & 9.00 \\
\text { Tungsten, } & -32 & -42 & .50 & .50 & .52 & .576 & .900 & .943 & .948 & .053 & \overline{.64} \\
\text { Stellite, } & .32 & .42 & .689 & .747 & .792 & .825 & .848 & .880
\end{array}
$$

According to Fresnel the amount of light reflected by the surface of a transparent medium $=\frac{1}{2}(A+B)=\frac{1}{2}\left\{\frac{\sin ^{2}(i-r)}{\sin ^{2}(i+r)}+\frac{\tan ^{2}(i-r)}{\tan ^{2}(i+r)}\right\} ; A$ is the amount polarized in the plane of inci. dence; B is that polarized perpendicular to this; i and r are the angles of incidence and refraction.

TABLE 356. - Light reflected when $i=0^{\circ}$ or Incident Light is Normal to Surface.

n	$\frac{1}{2}(A+B)$.	n.	$\frac{1}{2}(A+B)$.	n	$\frac{1}{2}(A+B)$.	n.	$\frac{1}{1}(A+B)$.
1.00	0.00	1.4	2.78	2.0	11.1 I	5.	44.44
1.02	0.01	1.5	4.00	2.25	14.06	5.83	50.00
1.05	0.06	1.6	$5 \cdot 33$	2.5	18.37	10.	66.67
I.I	0.23	1.7	6.72	2.75	22.89	100.	96.08
1.2	0.83	1.8	8.16	3.	25.00	∞	100.00
I. 3	1.70	1.9	9.63	4.	36.00		

TABLE 357. - Light reflected when n is near Unity or equals $1+d n$.

i.	A.	B.	$\frac{1}{2}(A+B)$.	$\frac{A-B}{A+B}$
0°	1.000	1.000	1.000	0.0
5	1.015	.985	1.000	1.5
10	1.063	. 939	I.OOI	6.2
15	I. 149	. 862	1.005	14.3
20	1.282	.752	1.017	26.0
25	1.482	.612	1.047	41.5
30	1.778	. 444	I. 11 I	60.0
35	2.221	.260	1.240	79.1
40	2.904	. 088	I. 496	94.5
45	4.000	. 000	2.000	100.0
50	5.857	.176	3.016	94.5
55	9.239	I. 081	5.160	79.1
60	16.000	4.000	10.000	60.0
65	31.346	12.952	22.149	41.5
70	73.079	42.884	57.981	26.0
75	222.85	167.16	195.00	14.3
80	1099.85	971.21	1035.53	6.2
85	17330.64	16808.08	17069.36	1.5
90	∞	∞	∞	0.0

TABLE 358.- Light reflected when $n=1.55$.

i.	r	A.	B.	dA.t	$d B . \dagger$	$\frac{1}{2}(A+B)$ 。	$\frac{A-B}{A+B}$.
$\bigcirc 1$	01						
0	- 0.0	4.65	4.65	0.130	0.130	4.65	0.0
5	313.4	4.70	4.61	. 134	. 129	4.65	1.0
10	625.9	4.84	4.47	.135	. 126	4.66	4.0
15	936.7	5.09	4.24	.141	. 124	4.66	9.1
20	1244.8	5.45	3.92	${ }^{1} 50$.114	4.68	16.4
25	1549.3	5.95	3.50	. 161	.105	4.73	25.9
30	1849.1	6.64	3.00	. 175	. 094	4.82	37.8
35	2143.1	$7 \cdot 55$	2.40	. 191	.081	4.98	51.7
40	2430.0	8.77	1.75	. 210	. 066	5.26	66.7
45	278.5	10.38	1.08	. 233	. 049	5.73	81.2
50	29 37.1	12.54	0.46	. 263	. 027	6.50	92.9
55	3154.2	15.43	0.05	. 303	. 007	7.74	99.3
60	3358.1	19.35	0.12	. 342	-.013	9.73	98.8
65	3547.0	24.69	1. 13	. 375	-.032	12.91	91.2
70	3719.1	31.99	4.00	-400	-. 050	18.00	77.7
75	38 3 32.9	42.00	10.38	.410	-. 060	26.19	61.8
80	3926.8	55.74 64.41	23.34 34.04	.370 .320	-. 069	3954 49.22	41.0 30.8
82 85 85	3945.9 3959.6	64.41 74.52	34.04 49.03	.320 .250	-.067 -.061	49.22 61.77	30.8 20.6
86 -	$\begin{array}{rr}39 & 59.6 \\ 40 & 3.6\end{array}$	79.52 79.02	56.62	. 209	-. 055	67.82	16.5
	$40 \quad 6.7$	83.80	65.32	.163	-. 046	74.56	12.4
88 -	408.9	88.88	75.31	.118	-.036	82.10	8.3
89 -	4010.2	94.28	86.79	.063	-.022	90.54	4.1
$90 \quad 0$	4010.7	100.00	100.00	. 000	-.000	100.00	0.0

Angle of total polarization $=57^{\circ}$ ıо $.3, A=16.99$.

* This column gives the degree of polarization

REFLECTING POWER OF METALS．

TABLE 359．－Perpendicular Incidence and Reflection．（See also Tables 352－355．）
The numbers give the per cents of the incident radiation reflected．

									$\begin{aligned} & \text { Copper. } \\ & \text { Commercially Pure. } \end{aligned}$				
.251	－	－	67.0	35.8	29.9	37.8	－	32.9	25.9	33.8	38.8	－	34.1
． 288	－	－	70.6	37.1	37.7	42.7	－	35.0	24.3	38.8	34.0		21.2
． 305	－	－	72.2	37.2	41.7	44.2	－	37.2	$25 \cdot 3$	39.8	31.8	－	9.1
． 316	－	－	－	－	－	－		－	－	－	－	－	4.2
． 326	－	－	75.5	39.3	－	45.2	－	40.3	24.9	41.4	28.6	－	14.6
.338	－	－	8		－	46.5		－	－	－	－	－	55.5
－357	－	－	81.2	$43 \cdot 3$	51.0	48.8	－	45.0	27.3	43.4	27.9	－	$74 \cdot 5$
$\cdot 385$	－	－	83.9	$44 \cdot 3$	53.1	49.6	－	47.8	28.6	45.4	27.1	－	81.4
． 420	－	－	83.3	47.2	56.4	56.6	－	51.9	32.7	5i． 8	29.3	－	86.6
． 450	85.7	72.8	83.4	49.2	60.0	59.4	48.8	54.4	37.0	54.7	33．1	－	90.5
． 500	86.6	70.9	83.3	$49 \cdot 3$	63.2	60.8	$53 \cdot 3$	54.8	43.7	58.4	47.0	－	91.3
． 550	88.2	71.2	82.7	48.3	64.0	62.6	59.5	54.9	47.7	61.1	74.0	－	92.7
． 600	88.1	69.9	83.0	47.5	64.3	64.9	83.5	$55 \cdot 4$	71.8	64.2	84.4	－	92.6
． 650	89． 1	71.5	82．7	51.5	65.4	66.6	89.0	56.4	80.0	66.5	88.9	－	94.7
． 700	89.6	72.5	83.3	54.9	66.8	68.8	90.7	57.6	83.1	69.0	92.3	－	95.4
． 800	－	－	84.3	63.1	－	69.6	－	58.0	88.6	70.3	94.9	－	96.8
1.0	－	－	84.1	69.8	70.5	72.0	－	63.1	90.1	72.9	－	－	97.0
1.5	－	－	85.1	79.1	75.0	78.6	－	70.8	93.8	77.7	97.3	－	98.2
2.0	－	－	86.7	82.3	80.4	83.5	－	76.7	95.5	80.6	96.8	91.0	97.8
3.0	－	－	87.4	85.4	86.2	88.7	－	83.0	97．1	88.8	－	93.7	98.1
4.0	－	－	88.7	87.1	88.5	91.1	－	87.8	97.3	91.5	96.9	95.7	98.5
5.0	－	－	89.0	87.3	89.1	94.4	－	89.0	97.9	93.5	97.0	95.9	98.1
7.0	－	－	90.0	88.6	90.1	94.3	－	92.9	98.3	95.5	98.3	97.0	98.5
9.0	－	－	90.6	90.3	92.2	95.6	－	92.9	98.4	95.4	98.0	97.8	98.7
11.0	－	－	90.7	90.2	92.9	95.9	－	94.0	98.4	95.6	98.3	96.6	98.8
14.0	－	－	92.2	90.3	93.6	97.2	－	96.0	97.9	96.4	97.9	－	98.3

Based upon the work of Hagen and Rubens，Ann．der Phys．（1）352，1900；（8） 1 ， 1902 ；（11）873， 1903. Taken partly from Landolt－Börnstein－Meyerhoffer＇s Physikalisch－chemische＇Tabellen．

TABLE 360．－Percentage Diffuse Reflection from Miscellaneons Substances．

Wave－ length μ	Lamp－blacks．												$\begin{aligned} & \dot{\pi} \\ & \text { 感 } \\ & \text { 品 } \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\stackrel{0}{0}} \\ & \stackrel{y}{0} \\ & \stackrel{y}{u} \\ & \stackrel{\pi}{c} \\ & \hline \end{aligned}$		苍
		$\begin{aligned} & \text { 茂 } \\ & \underset{\sim}{2} \end{aligned}$	E．													
＊． 60	3.2						25.	52.	84.	82.		89.	15.	ı． 8	14.	30.
＊． 95	3.4	1.3	1.1	0.6	1.3	1.1			88.	86.	75.	93.			21.	
$4 \cdot 4$	3.2	1.3	． 9	． 8	1.2	1.4		51.	21.	8.	18.	29.		3.7		
8.8	3.8		1.3	1.2	1.6	2.1		26.	2.	3.	5.	11.		2.7		12.
24.0	4.4	3.0	4.0	2.1	5.7	4.2		10.	6.	5.		7.				

＊Not monochromatic（max．）means from Coblentz，J．Franklin Inst．1912．Bulletin Bureau of Standards，9，p．283； 1912，contains many other materials．

REFLECTING POWER OF PIGMENTS.
TABLE 361. - Percentage Reflecting Power of Dry Powdered Pigments.
Taken from "The Physical Basis of Color Technology," Luckiesh, J. Franklin Inst., 1917. The total reflecting power depends on the distribution of energy in the illuminant and is given in the last three columns for noon sun, blue sky, and for a 7.9 lumens/watt tungsten filament.

Spectrum color.	$\begin{array}{\|l\|} \hline \text { Vio- } \\ \text { let. } \end{array}$	Blue.		Green.			Yellow.		Orange.			Red.					
Wave-length in μ	0.44	0.46	0.48	0.50	0.52	0. 54	0. 56	0.58	0.60	0.62	0.64	0.66	0.68	0.70			
American vermilion.	8	6	5	5	6	6	9	II	24	39	53	61	66	65	14	12	12
Venetian red.	5	5	5							24		30	32	32	11	10	13
Tuscan red.	7	7	7	8	8	8	8	12	16	18	20	22	23	24	11	10	12
Indian red.	8	7	7	7	7	7	7	II	15	18	20	22	23	24	10	9	II
Burnt sienna.	4	4	4	4	5	6	9	14	18	20	21	23	24	25	II	-	13
Raw sienna.	12	13	13	13	18	26	35	43	46	46	45	44	45	43	33	30	37
Golden ochre....	22	22	23	27	40	53	63	71	75	74		73 82	73 81 81	72 80	58	55	63
Chrome yellow ochre. .	8	9	7	7	10	19	30	46	60	62	66	82	81	80	33	29	40
Yellow ochre.	20	20	2 F	24	32	42	53	63	64	61	60	59	59	59	49	46	53
Chrome yellow medium.	5	5	6	8	18	48	66	75	78	79	81	81	81	81	54	50	63
Chrome yellow light. .	13	13	18	30	56	82	88	89	90	89	88	87	85	84	76	70	82
Chrome green light....	10	10	14	23	26	23	20	17	14	11	9	8	7	6	19	19	18
Chrome green medium..	7	7	10	2 I	21	17	13	11	9	7	6	6	6	5	14	14	12
Cobalt blue.	59	58	49	35	23	15	11	10	10	10	1	15	20	25	16	18	13
Ultramarine blue......	67	54	38	21	10	6	4	3	3	4	5	7	10	17	7	10	6

TABLE 362. - Infra-red Diffuse Percentage Reflecting Powers of Dry Pigments.

Wavelength in μ		O	$\begin{aligned} & \text { O్ } \\ & \text { Ü } \end{aligned}$	$\begin{aligned} & \circ \\ & \text { B } \\ & \hline 1 \end{aligned}$	¢	$\begin{aligned} & \text { O厄 } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { Ö } \\ & \text { U } \\ & \text { مि } \end{aligned}$	Con	O゙	억	$\stackrel{0}{0_{0}}$	OK	오N	$\begin{aligned} & \mathbf{O}_{0}^{\circ} \\ & 0 \end{aligned}$	$\underbrace{}_{\substack{\infty \\ \hline \multirow{2}{c}{\hline}\\ \hline}}$		²
0.60*	3	-	27	52	26	74	70	84	86	82	86	85	86	88	85	76	68
0.95*	4	24	45	-	41		-	88	-	86	-		84	93	89	79	72
${ }_{4}^{4.4}$	14	15	33	51	30	34	4 I	21	47	8	16	22	23	29	11	-	-
8.8 24.0	${ }^{1} 3$	-	5	26 10	4 9	11	5 7	20 6	7 10	5	9	4	5	10 7	4	-	-

* Non-monochromatic means from Coblentz, Bul. Bureau Standards 9, p. 283, 1912.

For the reflecting (and transmissive) power of roughened surfaces at various angles of incidence, see Gorton, Physical Review, 7, p. 66, 1916. A surface of plate glass, ground uniformly with the finest emery and then silvered, used at an angle of 75°, reflected 90 per cent at 4μ, approached 100 for longer waves, only 10 at 1μ, less than 5 in the visible red and approached ofor shorter waves. Similar results were obtained with a plate of rock salt for transmitted energy when roughened merely by breathing on it. In both cases the finer the surface, the more suddenly it cuts off the short waves.

Smithsonian Tables.

REFLECTING POWER.

TABLE 363. - Reflecting Power of Powders (White Light).

Various pure chemicals, very finely powdered and surface formed by pressing down with glass plate. White (noon sunlight) light. Reflection in per cent. Nutting, Jones, Elliott, Tr. Ill. Eng. Soc. 9, 593, 1914.

Alumi	83.6	Magnesium carbonate	86.6	Sodium chloride............. 78. 1
Barium sulphate.	8 ra .1	"" (block)	88.0	Sodium sulphate............ ${ }^{\text {77.9 }}$
Borax	81.6	Magnesium oxide	85.7	Starch...................... 80.3
Boric acid.	83.2	Rochelle salt.	79.3	Sugar...................... 87.8
Calcium carbona	83.8	Salicylic acid	81.1	Tartaric acid............... 79.1
Citric acid.	8 I .5	Sodium carbonate	8 m .8	Tartaric acid............... ${ }^{\text {g. }}$

TABLE 364. - Variation of Reflecting Power of Surfaces with Angle.

Illumination at normal incidence, if watt tungsten lamp, reflection at angles indicated with normal. Ill. Eng. Soc., Glare Committee, Tr. Ill. Eng. Soc. II, p. 92, 1916.

Angle of observation.	0°	I°	3°	5°	10°	15°	30°	45°	60°
Magnesium carbonate block	0.88	-	-	0.88	0.88	0.87	0.83	0.72	0.68
Magnesium oxide.	0.80	-	-	0.80	0.80	0.80	0.77	0.75	0.66
Matt photographic paper	0.78	-		-. 78	0.78	0.78	0.78	0.76	0.72
White blotter	0.76	-	-	0.76	0. 76	0. 76	0.73	0.70	0.67
Pot opal, ground. .	0.69	0.69	0.69	0.69	0.69	0.69	0.68	0.66	0.64
Flashed opal, not ground	II. 3	11.3	II. 3	0.31	0.22	0.21	0.20	0. 20	0. 18
Glass, fine ground	0.29	0. 29	0.29	0.29	0.27	0. 20	0.14	0.13	0.12
Glass, course ground	-: 23	0.22	-. 21	0.20	-. 19	-. 16	-. 11	-.11	0.12
Matt varnish on foil.	0.83	-	0.78	-. 72	0.62	0. 49	0.28	0.21	0.16
Mirror with ground fa	4.9			4.55	3.86	3.03	0.78	0.42	0.35

The following figures, taken from Fowle, Smithsonian Misc. Col. 58, No. 8, indicate the amount of energy scattered on each side of the directly reflected beam from a silvered mirror; the energy at the center of the reflected beam was taken as 100,000, and the angle of incidence was about 3°.

Angle of reflection, $3^{\circ} \pm$ Energy	$\begin{gathered} 0^{\prime} \\ 100,000 \end{gathered}$	8^{\prime} 600	10 244	15 146	20 107	30 66	45^{\prime} 33	60 22	100 II

Wave-length of max. energy of Nernst lamp used as source about 2μ.

TABLE 365. - Infra-red Reflectivity of Tungsten (Temperature Variation).

Three tungsten mirrors were used, - a polished Coolidge X-ray target and two polished flattened wires mounted in evacuated soft-glass bulbs with terminals for heating electrically. Weniger and Pfund, J. Franklin Inst.

Wave length in μ.	Absolute reflectivity at room temperature in per cent.	Per cent increase in reflectivity in going from room temperature to			
		$1377{ }^{\circ} \mathrm{K}$	$1628^{\circ} \mathrm{K}$	$1853^{\circ} \mathrm{K}$	$2056^{\circ} \mathrm{K}$
0.67	51	+6.0	+7.4	+8.7	+9.8 +8.8
0.80	55	\bigcirc	0.	\bigcirc	+8.2 0.0
1.27 1.90	70 83	0.0 -6.6	0.0 -8.2	0.0 -9.6	-11.0
2.00	85	-7.5	-9.3	-10.9	-12.3
2.90	92	-7.7	-9.4	-II. 1	-12.5
4.00	93	-	-	-	-12.5

See also Weniger and Pfund, Phys. Rev. 15, p. 427, 1919.

TRANSMISSIBILITY OF RADIATION BY DYES.
Percentage transmissions of aqueous solutions taken from The Physical Basis of Color-Technology, Luckiesh, J. Franklin Inst. 184, 1917.

For the infra-red transmission (to $\mathbf{x} 2 \mu$) and reflection powers of a number of aniline dyes, see Johnson and Spence, Phys. Rev. 5, p. 349, 1915.

Tables 367-369.

TABLE 367.
Coefficients, a, in the formula $I_{t}=I_{0} a^{t}$, where I_{0} is the Intensity before, and I_{t} after, transmission through the thickness t. Deduced from observations by Müller, Vogel, and Rubens as quoted in Hovestadt's Jena Glass (English translation).

Unit $t=1 \mathrm{dm}$.	Coefficient of transmission, \boldsymbol{a}.										
	. $375{ }^{\mu}$	390μ	. 400μ	. 434	. 436	μ. 4		\%	3μ	. 580μ	. 677μ
O 340, Ord. light flint	. 388	. 456	. 614	. 569	. 68			o	Oo	. 878	-939
O IO2, H'vy silicate flint		. 025	. 463	. 502	. 5			0	S2	. 828	. 794
O 93, Ord. " "					. 71				1	. 903	. 943
O 203, " " crown	.583	.583	. 695	. 66	. 8				72	. 872	. 903
O 59S, (Crown)	.		,		. 79				76	. 818	. 860
Unit $t=1 \mathrm{~cm}$.	0.7μ	0.95μ	1.1 \%	1.4μ	3.7μ	2.0μ	2.3μ	2.5μ	2.7μ	2.9μ	3.1 M
S 204, Borate crown	I. 00	-99	. 94	. 90	. 85	. 81	. 69	. 43	. 29	. 18	-
S 179, Med. phosp. cr.		. 98	. 95	. 90	. 84	. 67	. 49	. 87	. 18	-	-
O 1143 , Dense, bor. sil. cr.	. 98		. 97	-	. 95	. 93	. 90	. 84	. 71	. 47	. 27
O ro92, Crown.	. 99	. 96	. 95	. 99	. 99	. 91	. 82	. 71	. 60	. 48	. 29
O 1151, "	. 98	-	. 99	. 99	. 98	. 94	. 90	. 79	. 75	. 45	. 32
$)^{(1)} 45 \mathrm{I}$, Light flint	I. 00	-	. 99	-	. 98	. 95	. 92	. 84	. 78	. 54.	. 34
O 469, Heavy "	. 0	-	. 98	-	. 99	. 98	. 98	. 97	. 90	. 66	. 50
O 500, " "	1.00	-	1.00	-	1.00	-	1.00	-99	. 92	. 74	. 53
S 163, " "	1.00	-	. 98	-	. 99	-	. 99	-	. 94	. 78	. 60

TABLE 368.
Note : With the following data, t must be expressed in millimeters; i. e. the figures as given give the transmissions for thickness of 1 mm .

No. and Type of Glass.	Wave-length in μ.												
	Visible Specrrum.							Ultra-violet Spectrum.					
	${ }_{44}{ }^{4}$. 578 \%	. 546μ	. 509	.480\%	. 436μ	. 405μ	.384	. $36 \mathrm{\mu} \mu$	30ر μ	. 332μ	309μ	280 μ
F 3815 Dark neutral	. 35	. 35	37	.35	. 34	30	. 15	. 06					
	. 94	. 05				. 43	. 43						
${ }^{\text {F } 4313}$ Dark yellow	. 98	. 97	. 93	. 83	. 09								
	. 98	1.97	. 96	. 93	44	. 15		. 28			. 14	. 06	
${ }_{\text {F }} \mathrm{F}_{4930} 493 \mathrm{Br}$ Green filter	1.0	$\stackrel{1.0}{50}$	${ }^{1.04}$. 62		. 40	. ${ }^{1}$. 28	. 22		. 14	. 06	
F 3873 Blue filter	$\underline{-}$	-	-	. 18	. 50	. 73	69	. 59	. 36	. 10			
F 3654 Cobalt glass,													
transparent for outer red	-	-	-	. 15		. 85	1.0	1.0	1.0	1.0	1.0		
F 3653 Blue, ultraviolet	-	-	-	-	.11	. 65	1.0	1.0	1.0	1.0	1.0	. 81	. 18
	. 99	72	. 99	. 96	. 95	. 96	. 99	. 99	. 89	. 89	. 77	54	

This and the following table are taken from Jenaer Glas für die Optik, Liste 751, 1909
TABLE 369. - Transmissibility by Jena Uitra-violet Glasses.

No. and Type of Glass.	Thickness.	0.397μ	0.383μ	0.361μ	0.346μ	0.325μ	0.309μ	0.280μ
UV 3I99 Ultra-violet	1 mm .	1.00	1.00	1.00	1.00	1.00	0.95	0. 56
	2 mm .	0.99	0.99	0.99	0.97	0.90	0.57	
" "	1 dm .	0.95	0.95	0.89	0.70	0.36		
UV 3248	1 mm .	1.00	1.00	1.00	1.00	0.98	0.91	0.35
$6_{66}{ }^{6}$	2 mm .	0.98	0.98	0.98	0.92	0.78	0.38	
6 6	1 dm .	0.96	0.87	0.79	0.45	0.08		

TRANSMISSIBILITY OF RADIATION BY GLASSES.

The following data giving the percentage transmission of radiation of various substances, mostly glasses, are selected from Spectroradiometric Investigation of the Transmission of Various substances, Coblentz, Emerson and Long, Bul. Bureau Standards, 14, p. 653, 1918.

Glass or substance, manufacturer.	Thickmm	Transmission per cents.									
		Wave-lengths in μ.									
		0.5	\%. 0	1. 5	2.0	2.5	3.0	3.5	4.0	4.5	5.0
Purple fluorite.	4.98	-	-	-	47	48	48	57	60	62	62
Gold film on Crooke's glass		22	3	2	1	1	1	\bigcirc	-	\bigcirc	-
crown glass	-	34	8	3	2	1	I	-	\bigcirc	\bigcirc	\bigcirc
Molybdenite.	. 007	-	4 I	43	44	46	46	47	48	48	48
$\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3} .18 \mathrm{H}_{2} \mathrm{O} .$.	. 24	-	83	63	37	11	-	-	-	-	-
Chrome alum, 10 g to $100 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$	10		73	\bigcirc	\bigcirc	-	-				
CoCl_{2}, 10 g to $100 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} \ldots \ldots$. Glasses:	10	-	50	-	-	-		-		-	-
Copper ruby, flashed.	I. 95	-	50	64	72	76	40	33	36	7	-
G24, Corning, red.	5.90	-	60	70	72	65	2	1	-	-	-
Schott's red, No. 2745	3.18	-	83	89	89	75	10	10	-	-	-
G_{34}, Corning, orange	3.55	-	50	62	67	68	15	3	1	\bigcirc	-
Pyrex, Corning. . . .	I. 55	90	90	90	9 I	87	35	13	7	2	-
Noviol, B, Corning, yellow .	2.88	80	75	60	82	75	23	4	4	-	-
Novieweld ${ }^{\text {, Corning, }}$, dk-yellow	2.2	12	I	${ }^{2}$	6	${ }_{13}$	6	7	7	1	\bigcirc
Schott's 43III, green.	3.43	50	4	53	79	83	25	9	\bigcirc	-	-
Gr7ron, green, Corning.	5.11		1	23	53	68	20	9	8	\bigcirc	-
G174J, Corning, heat abs'b'g.	2.6	-	2	4	12	19	11	4	6	-	-
Gi24JA, Corning.	I. 5	52	-	1	5	10	3	5	6	-	-
Cobalt blue	2.43	-	74	43	63	79	36	27	28	-	-
Schott's F3086, blue	2.58	-	-	1	2	31	11	5	4	-	-
G4013, Corning, blue.	6.36	-	-	15	50	61	11	I	2	\bigcirc	-
G584, Corning, blue .	3.70	-	-	24	60	75	45	20	20	1	-
G1711Z, Corning, blue.	3.23	-	23	60	74	78	45	13	12	1	\bigcirc
Amethyst, C, Corning	2.11	55	91	91	91	88	42	20	25	7	-
G172BW5. Corning, red-purple	4.43		-	-	2	5	6	8	12	2	\bigcirc
Crookes' A, A. O. Co.	I. 96	90	92	91	90	83	38	23	27	5	\bigcirc
" sage green $30, \mathrm{~A} . \mathrm{O} . \mathrm{Co}$	1.98	50	\bigcirc	-	4	11	8	8	11	3	\bigcirc
Lab. 58, A. O. Co.	2.04	72	86	91	91	89	51	35	38	7	\bigcirc
Fieurzal B, A. O. Co.	2.04	59	76	80	82	8 81	30	20	25 51	10	\bigcirc
Akopos green, J. K. O. Co. .	1.58	76	91	91	91	90	70	52	51	10	\bigcirc

Manufacturers: Corning Glass Works, Corning, N. Y.; A. O. Co., American Optical Co., Southbridge, Mass.; J. K. O. Co., Julius King Optical Co., New York City. For other glasses see original reference. See also succeeding table, which contains data for many of the same glasses.

TABLE 371．－Transmission of the Radiations from a Gas－filled Tungsten Lamp，the Sun，a Magnetite Arc，and from a Quartz Mercury Vapor Lamp（no Globe）through Various Substances，especially Colored Glasses．

Color．	Trade name．	Source．＊	Thick－ ness in mm	Transmission，per cent．			
					Quartz mercury vapor．\dagger	Mag－ netite arc．\dagger	Solar radia－ tion．
Greenish－yellow．	Fieuzal，B	A．O．C．	2.04	71.6	26.9	46.0	63
＂${ }^{\text {c }}$	Fieuzal， 63	F．H．E．${ }^{\text {F }}$	1．80	75.5	34.3	55.0	72
＂	Fieuzal， 64	F．H．E．	r． 65	50.7	22.0		
＂،＂،	Euphos	B．S．	3.27	78.9	25.0	－	
＂،＂،	Euphos，B	B．\＆L．	3.12	78.8	24.7	53.0	64
＂＂＂	Akopos green Hallauer， 65	J．K．${ }_{\text {S．}}$	1． 58 2.36 1.3	84.6 70.3	29.5 17.7	59.0	74
＂	Hallauer， 64	F．H．E．	I． 35	58.7	25.9	－	55
Smoky green．	G 124．IP	C．G．W．	2.81	5.7 0.4	0．2	－	5
Yellow－green．	Noviweld，30\％	C．G．W．	2.14	5.1	7.8	－	9
＂،＂	Noviweld，shade 3 Noviweld，	C．G．W．	2.20 2.20	3.4 I． 6	4.2 1.2	2.7 0.8	
＂،＂،	Noviweld，shade ${ }^{\text {Novin }}$－${ }^{\frac{1}{2}}$ Noviweld，shade 6	C．G．W．	2.20 2.17	1.6 0.9	1.2 0.4	0.8 0.2	$\overline{0.9}$
＂＂	Noviweld，shade 7	C．G．W．	2.17	0.8	0． 2	0.2	0.9
Amber．		B．S．	3.12	51.6	15.2	－	
	Saniweld，dark	J．K．	1．32	78.1	10.6	43.0	50
Orange Yellow	G 34 ，	C．G．W．	3.57 2.00	56.9	17.0		47 87
	Noviol，shade B	C．G．W．	2.00 2.88	74.1	32.2	56.0	75
＂．．．	Noviol，shade C	C．G．W．	2.00		32.2	56.	72
Sage green．．．	Ferrous No． 30	A．O．C．	1.95	$5 \cdot 3$	17.5	二	17
Yellow－green	No． 61	A．O．C．	2.10	82.7	28.6	－	72
Blue－green		$\xrightarrow{\text { A．O．G．} \mathrm{W} \text { ．}}$	1． 93 I． 53	3.7 5.3	17.3 21.5	11.5	
Black	Smoke，C	B．\＆L．	2.26	65.3	31.2	52.0	60
	Smoke，D	B．\＆L．	2.45	50.9	16.0	39.0	43
Neutral tint	Crookes，A	A．O．C．	1.97	85.3	46.1	－	89
	Crookes，B	A．O．C．	2.00	75.7	32.0	64.0	69
	${ }^{\text {Pfund }}$ fund	A．O．${ }_{\text {A．}}^{\text {A．}}$（	二		7.2 1.3	1． 2	12
Colorless．．	Lab．No． 58	A．O．C．	1． 58	83.3	40.0	66	88
	Lab．No． 57	A．O．C．	2.00	－	51.9	－	
Amethyst	Shade C	A．O．C．	2.11	82.8	44.3		79
Purple．	Electric smoke	A．O．C．	1． 89	36.6	2.2		
	G 55 A 62	C．G．W．	2.85	17.4	17.0	－	16
Blue ．． Blue，dark	${ }_{\text {G }}{ }_{53}$ D	B．\＆L．	2.09	37.6	20.7	39	－
Blue－green．	G ${ }_{\text {I }}^{53} \mathrm{I}-\mathrm{IZ}$	C．G．W．	2.51 3.21	2.9 46.6	3.9 41.7		
Blue－green，pale	G 584	C．G．W．	3.75	24.9	25.2		
Red－purple．．	G 172 BW 5	C．G．W．	4.93	72.4	26.5	－	－
Blue－purple	G 585	C．G．W．	3.13	35.8	34.0	－	$4{ }^{1}$
Red．	Selenium	C．G．W．	2.90	67.8	7.9	48	48
	Flashed	Schotts B．S．	3.22	69.4	－ 4.8		46
Colorless	Window	B．S．	1． 85	－	59.5	二	82
Brow	Crown	B．S．	1． 56	一	64.9	－	92
Brown．	Mica	B．S．	1． 30	－	35.4		－
Colorless．	Mica	B．S．	0.09	－	43.1	二	
Clear．．．	Water	B．S．	10.0	34.2	$\ddagger 54.0$	－	－

＊A．O．C．，Amer．Optical Co．，Southbridge，Mass．；C．G．W．，Corning Glass Works，Corning，N．Y．；B．\＆L．， Bausch \＆Lomb，Rochester，N．Y．；J．K．，Julius King Optical Co．，New York City；F．H．E．，F．H．Edmonds，optician， Washington，D．C．；B．S．，Bureau of Standards；scrap material，source unknown．
\dagger Infra－red radiation absorbed by quartz cell containing Icm layer of water．Taken from Coblentz－Emerson \＆ Long，Bul．Bureau Standards，14，653， 1918.
\ddagger Transmission of 1 cm cell having glass windows．

Table 372.
TRANSMISSIBILITY OF RADIATION.
Transmissibility of the Various Substances of Tables 330 to 338.
Alum : Ordinary alum (crystal) absorbs the infra-red.
Metallic reflection at 9.05μ and 30 to 40μ.
Rock-salt : Rubens and Trowbridge (Wied. Ann. 65, 1898) give the following transparencies for a 1 cm . thick plate in $\%$:

λ	9	10	12	13	14	15	16	17	18	19	20.7	23.7μ
$\%$	99.5	99.5	99.3	97.6	93.1	84.6	66.1	51.6	27.5	9.6	0.6	0.

Pfluger (Phys. Zt. 5. 1904) gives the following for the ultra-violet, same thickness: $280 \mu \mu, 95.5 \%$; $231,86 \%$; $210,77 \%$; $186,70 \%$.
Metallic reflection at $0.110 \mu, 0.156,51.2$, and $8_{7} \mu$.
Sylvite: Transparency of a 1 cm . thick plate (Trowbridge, Wied. Ann. 60, 1897).

λ	9	10	11	12	13	14	15	16	17	18	19	20.7	23.7μ
$\%$	100.	98.8	99.0	99.5	99.5	97.5	95.4	93.6	92.	86.	76.	58.	15.

Metallic reflection at $0.114 \mu, 0.16 \mathrm{I}, 6 \mathrm{I} .1$, 100 .
Fluorite: Very transparent for the ultra-violet nearly to o. 1μ.
Rubens and Trowbridge give the following for a 1 cm . plate (Wied. Ann. 60, 1897):

λ	8μ	9	10	11	12μ
$\%$	84.4	54.3	16.4	1.0	0

Metallic reflection at $24 \mu, 3 \mathrm{I} .6,40 \mu$.
Iceland Spar: Merritt (Wied. Ann. 55, 1895) gives the following values of k in the formula $i=i_{0} \mathrm{e}^{-\mathrm{kd}}$ (din cm.):

For the ordinary ray:

λ	1.02	1.45	1.72	2.07	2.11	2.30	2.44	2.53	2.60	2.65	2.74μ
k	0.0	0.0	0.03	0.13	0.74	1.92	3.00	1.92	1.21	1.74	2.36

λ	2.83	2.90	2.95	3.04	3.3°	3.47	3.62	3.80	3.98	4.35	4.52	4.83μ
k	1.32	0.70	1.80	4.71	22.7	19.4	9.6	18.6	∞	6.6	14.3	6.1

For the extraordinary ray :

λ	2.49	2.87	3.00	3.28	3.38	3.59	3.76	3.90	4.02	4.4 I	4.67μ
k	0.14	0.08	0.43	1.32	0.89	1.79	2.04	1.17	0.89	1.07	2.40

λ	4.9 I	5.04	5.34	$\frac{5.50 \mu}{2}$
k	I .25	2.13	4.4 I	I 2.8

Quartz: Very transparent to the ultra-violet; Pfluger gets the following transmission values for a plate 1 cm . thick : at $0.222 \mu, 94.2 \% ; 0.214,92 ; 0.203,83.6 ; 0.186,67.2 \%$.
Merritt (Wied. Ann. 55, 1895) gives the following values for k (see formula under Iceland Spar) : For the ordinary ray:

λ	2.72	2.83	2.95	3.07	3.17	3.38	3.67	3.82	3.96	4.12	4.50μ
k	0.20	0.47	0.57	0.31	0.20	0.15	1.26	1.61	2.04	3.41	7.30

For the extraordinary ray :

λ	2.74	2.89	3.00	3.08	3.26	$3 \cdot 43$	3.52	3.59	3.64	3.74	3.91	4.19	4.36μ
k	0.0	0.11	0.33	0.26	0.11	0.51	0.76	ı. 58	1.83	1.62	2.22	3.35	S.0

For $\lambda>7 \mu$, becomes opaque, metallic reflection at $8.50 \mu, 9.02,20.75-24.4 \mu$, then transparent again.

The above are taken from Kayser's "Handbuch der Spectroscopie," vol. iii.
Smithsonian Tables.

TABLE 373. - Color Screens.
The following light-filters are quoted from Landolt's "Das optische Drehungsvermögen, etc." 1898 . Although only the potassium salt does not keep well it is perhaps safer to use freshly prepared solutions.

Color.	Thickness. mm.	Water solutions of	Grammes of substance in $100 \mathrm{c} . \mathrm{cm}$.	Optical centre of band. μ	Transmission.
Red	20	Crystal-violet, 5 BO Potassium monochromate	0.005 10.	0.6659	$\left\{\begin{array}{l} \text { begins about } 0.718 \mu . \\ \text { ends sharp at } 0.639 \mu . \end{array}\right.$
Yellow	20	Nickel-sulphate, $\mathrm{NiSO}_{4} .7 \mathrm{aq}$.	30.	0.5919	0.614-0.574 μ,
"'	15	Potassium monochromate	10.		
Green	15	Potassium permanganate	0.025		
Green	20	Copper chloride, $\mathrm{CuCl}_{2} .2 \mathrm{aq}$.		0.5330	0.540-0.50 5μ
Bright $\{$	20	Potassium monochronate	10. 0.02	0.4885	$\{0.526-0.494$ and
blue ?	20	Copper-sulphate, $\mathrm{CuSO}_{4} .5 \mathrm{aq}$.	15.	0.488	10.494-0.45 μ
Dark	20	Crystal-violet, 5 BO	0.005	0.4482	$0.478-0.410 \mu$
blue	20	Copper sulphate, $\mathrm{CuSO}_{4} \cdot 5 \mathrm{aq}$.	15.		

TABLE 374. - Color Screens.

The following list is condensed from Wood's Physical Optics :
Methyl violet, $4 \mathrm{R} \cdot$ (Berlin Anilin Fabrik) very dilute, and nitroso-dimethyl-aniline transmits 0.365μ. Methyl violet + chinin-sulphate (separate solutions), the violet solution made strong enough to blot out 0.4359μ, transmits 0.4047 and 0.4048 , also faintly 0.3984 .
Cobalt glass + aesculin solution transmits 0.4359μ.
Guinea green B extra (Berlin) + chinin sulphate transmits 0.4916μ.
Neptune green (Bayer, Elberfeld) + chrysoidine. Dilute the latter enough to just transmit 0.5790 and 0.546 r ; then add the Neptune green until the yellow lines disappear.
Chrysoidine + eosine transmits 0.5790μ. The former should be dilute and the eosine added until the green line disappears.
Silver chemically deposited on a quartz plate is practically opaque except to the ultra-violet region $0.3160-0.3260$ where 90% of the energy passes through. The film should be of such thickness that a window backed by a brilliantly lighted sky is barely visible.
In the following those marked with a * are transparent to a more or less degree to the ultra-violet:

* Cobalt chloride : solution in water, -absorbs $0.50-.53 \mu$; addition of CaCl_{2} widens the band to $0.47-50$. It is exceedingly transparent to the ultra-violet down to 0.20 . If dissolved in methyl alcohol + water, alsorbs $0.50-.53$ and everything below 0.35 . In methyl alcohol alone $0.485-$ 0.555 and below 0.40μ.

Copper chloride: in ethyl alcohol absorbs above 0.585 and below 0.535 ; in alcohol $+50 \%$ water, above 0.595 and below 0.37μ.
Neodymium salts are useful combined with other media, sharpening the edges of the absorption bands. In solution with bichromate of potash, transmits $0.535-.565$ and above 0.60μ, the bands very sharp (a useful screen for photographing with a visually corrected objective).
Praseodymium salts: three strong bands at $0.482, .468, .444$. In strong solutions they fuse into a sharp band at $0.435-.485 \mu$. Absorption below 0.34 .
Picric acid absorbs $0.36-42 \mu$, depending on the concentration.
Potassium chromate absorbs $0.40-.35,0.30-.24$, transmits 0.23μ.

* Potassium permanganate : absorbs $0.555^{-} .50$, transmits all the ultra-violet.

Chromium chloride : absorbs above 0.57 , between 0.50 and .39 , and below 0.33μ. These limits vary with the concentration.
Aesculin: absorbs below 0.363μ, very useful for removing the ultra-violet.

* Nitroso-dimethyl-aniline: very dilute aqueous solution absorbs $0.49-.37$ and transmits all the ultra-violet.
Very dense cobalt glass + dense ruby glass or a strong potassium bichromate solution cuts off everything below 0.70 and transmits freely the red.
Iodine : saturated solution in CS_{2} is opaque to the visible and transparent to the infra-red.

Smithsonian Tables.

TRANSMISSIBILITY OF RADIATION.
TABLE 375, - Color Screens. Jona Glasses.

	Kind of Class.	$\begin{gathered} \text { Maker's } \\ \text { No } \end{gathered}$	Color.	Region Transmitted.	$\begin{gathered} \text { Thick- } \\ \text { ness. } \\ \text { nm. } \end{gathered}$
1	Copper-ruby	2728	Deep red	Only red to 0.6 ${ }^{\text {. . . . }}$	1.7
Ia	Gold-ruby	$459{ }^{\text {III }}$	Red	$\left\{\begin{array}{l}\text { Red, yellow; in thin layers also } \\ \text { blue and violet. }\end{array}\right.$	
2	Uranium	$454{ }^{\text {III }}$	Bright yellow	$\left\{\begin{array}{c}\text { Red, yellow, green to } \mathrm{E}_{b} \text {; in } \\ \text { thin layer also blue }\end{array}\right\}$	16.
2 a		$455^{\text {II }}$	$\left\{\begin{array}{l} \text { Bright yellow, fluo- } \\ \text { resces. } \end{array}\right.$		
3	Nickel	$440^{\text {III }}$	Bright yellow-brown	$\left\{\begin{array}{l} \text { Red, yellow, green (weakened), } \\ \text { blue (very weakened) } \end{array}\right\}$	11.
${ }_{4}^{4}$	Chromium	411^{111} $433^{\text {III }}$	Yellow-green . Greenish-yellow	Yellowish-green	10.
$4{ }_{4}^{4 \mathrm{a}}$	Green copper	${ }_{431}{ }^{\text {IIII }}$	Greenish-yello	Red, green; from $0.65-.50 \mu$ Green, yellow, some red and blue	2-3
5	Chromium.	$432^{\text {III }}$	Yellow-green	Yellowish-green, some red . .	$2-3$ 2.5
7	Copperchromium Green-filter	433^{111}	Grass-green	Green	5.
7	Green-filter	$\begin{aligned} & 433^{I I I I I} \\ & 43^{\text {III }} \end{aligned}$	Dark green . .	Green (in thin sheets some blue) Green	5.
10	Copper	2742	Blue, as $\mathrm{CuSO}_{4}{ }_{4}^{\text {. }}$.	Green, blue, violet	5-12
1 I	Blue-violet	$447^{\text {III }}$	Blue, as cobalt glass	Blue, violet. ${ }^{\text {a }}$.	5.
"	" "		" " ، "	$\left\{\begin{array}{c}\text { Blue, violet, hlue-green (weak- } \\ \text { ened), no red }\end{array}\right\}$	2-5
12	Cobalt	$424{ }^{\text {III }}$	Blue . . ${ }^{\text {D }}$	Blue, violet, extreme red	
13	Nickel	$455^{\text {III }}$	Dark violet . . .	Violet ($\mathrm{G}-\mathrm{H}$), extreme red . .	6.
14			Gray, no recog.	Violet (G-H), some weakened. .	0.1-8
15	Gray	$\begin{aligned} & 444^{\mathrm{IIII}} \\ & 445^{\mathrm{II}} \end{aligned}$	$\left\{\begin{array}{c}\text { Gray, no recog. } \\ \text { nizable color }\end{array}\right\}$	All parts of the spectrum weakened	

See "Über Farbgläser für wissenschaftliche und technische Zwecke," by Zsigmondy, Z. für Instrumentenkunde, 21, 190I (from which the above table is taken), and "Über Jenenser Lichtfilter," by Grebe, same volume.
(The following notes are quoted from Everett's translation of the above in the English edition of Hovestadt's " Jena Glass.")
Division of the spectrum into complementary colors :
Ist by 2728 (deep red) and 2742 (blue, like copper sulphate).
2nd by $454^{\text {III }}$ (bright yellow) and $447^{\text {III }}$ (blue, like cobalt glass).
$3^{\text {rd }}$ by $433^{\text {III }}$ (greenish-yellow) and $424^{\text {III }}$ (blue).
Thicknesses necessary in above : 2728, 1.6-1.7 mm.; 2742, $5 ; 454^{\mathrm{II}}, 16 ; 447^{\mathrm{III}}, 1.5-2.0 ; 433^{\mathrm{III}}$, $2.5-3.5 ; 424^{\mathrm{III}}, 3 \mathrm{~mm}$.
Three-fold division into red, green and blue (with violet):
2728 , 1.7 mm .; 414^{III}, 10 mm .; $447^{\mathrm{III}}, 1.5 \mathrm{~mm}$., or by
2728 , $1.7 \mathrm{~mm} . ; 43^{1 \mathrm{II}}, 2.6 \mathrm{~mm} . ; 447^{\mathrm{III}}$, I. 8 mm .
Grebe found the three following glasses specially suited for the additive methods of three-color projection :

2745 , red ; $438^{\text {III }}$, green; $447^{\text {III }}$, blue violet ;
corresponding closely to Young's three elementary color sensations.
Most of the Jena glasses can be supplied to order, but the absorption bands vary somewhat in different meltings.
See also "Atlas of Absorption Spectra," Uhler and Wood, Carnegie Institution Publications, 1907.
TABLE 376.-Water.
Values of a in $\mathrm{I}=\mathrm{I}_{0} \mathrm{e}^{\text {ad }}, \mathrm{d}$ in $\mathrm{c} . \mathrm{m} . \mathrm{I}_{0} ; \mathrm{I}$, intensity before and after transmission.

Wave-length μ,	. 186	. 193	. 200	. 210	. 220	. 230	. 240	. 260	. 300	.415
a	. 0688	. 0165	. 009	.006I	. 0057	. 0034	.0032	. 0025	.0015	. 00035
Wave-length μ,	. 430	. 450	.487	. 500	. 550	. 600	. 650	. 779	. 865	. 945
a	. 00023	. 0002	. 0001	. 0002	. 0003	. 0016	. 0025	272	. 296	. 5.38

First 9; Kreusler, Drud. Ann. 6, 1901; next Ewan, Proc. R. Soc. 57, 1894, Aschkinass, Wied Ann. 55, 1895; last 3, Nichols. Phys. Rev. 1, 1.
See Rubens, Ladenburg, Verh. D. Phys. Ges., p. 19, 1909, for extinction coefs., reflective power and index of refraction, 1μ to 18μ.

TRANSMISSION PERCENTAGES OF RADIATION THROUGH MOIST AIR.

(For bodies at laboratory temperalures; for transmission of shorter-wave energy, see Table 553.)
The values of this table will be of use for finding the transmission of energy through air containing a known amount of water vapor. An approximate value for the transmission may be had if the amount of energy from the source between the wave-lengths of the first column is multiplied by the corresponding transmission coefficients of the subsequent columns. The values for the wave-lengths greater than 18μ are tentative and doubtful. Fowle, Water-vapor Transparency, Smithsonian Misc. Collections, 68 , No. 8, 1917; Fowle, The Transparency of Aqueous Vapor, Astrophysical J. 42, p. 394, 1915.

Range of wave-lengths.	Precipitable water in centimeters.												
$\mu \quad \mu$. 001	. 003	. 006	. 01	. 03	. 06	. 10	. 25	. 50	1.0	2.0	6.0	10.0
0.75 to 1.0	-	-	-	100	99	99	98	97	95	93	90	83	78
$1.0 \quad 1.25$	-	-	-	99	99	98	97	95	92	89	85	74	69
1.251 .5	-	-	-	96	92	84	80	66	57	51	44	31	28
1.52 .0	-	-	-	98	97	94	88	79	73	70	66	60	57
* 23	96	92	87	84	77	70	64	-			-	-	-
34	95	88	8.4	78	72	66	63	-	-	-	-	-	-
* 45	92	83	76	71	65	60	53	-	-	-	-	-	-
56	95	82	75	68	56	51	47	35	-	-	-	-	-
$6 \quad 7$	85	54	50	31	24	8	4	3	2	-	-	\bigcirc	0
78	9.4	84	76	68	57	46	35	16	10	2	\bigcirc	\bigcirc	0
8 . 9	100	100	100	99	98	96	94	65	-	-	-	-	-
$\dagger 9$ 10	100	100	100	100	100	100	100	100	100	100	100	-	-
\dagger IO 11	100	100	100	100	100	100	100	100	100	100	100	-	-
1112	100	100	100	100	100	99	98	96	95	93	-	-	-
12 I3	100	100	100	100	99	99	97	86	82	-	-	-	-
* I3 I4	100	100	100	99	97	94	90	80	60	-	-	-	-
* 14 I5	-	-	96	93	80	75	50	15	o	o	o	o	o
* 1516	-	-	-	-	70	55	40	o	o	o	o	0	o
1617	-	-	-	-	-	50	20	o	-	\bigcirc	-	\bigcirc	0
17 18	-	-	-	-	-	25	10	o	-	\bigcirc	-	-	0
$18 \quad \infty$	98	94	89	82	45	-	\bigcirc	-	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc

[^45]In the above table italicized figures indicate extrapolated values.
F. Paschen gives (Annalen d. Physik u. Chemie, 51, p. 14, 1894) the absorption of the radiation from a blackened strip at $500^{\circ} \mathrm{C}$ by a layer 33 centimeters thick of water vapor at $100^{\circ} \mathrm{C}$ and atmospheric pressure as follows:

$$
\begin{array}{cccc}
\text { Wave-length. } & 2.20-3.10 \mu & 5.33-7.67 \mu & 7.67-10(?) \mu \\
\text { Percentage absorption......... } & 80 & 94 & 94-13
\end{array}
$$

The following table, due to Rubens and Aschkinass (Annalen d. Physik u. Chemie, 64, p. 598, 1898), gives the absorption of radiation from a zircon burner by a layer 75 centimeters thick of water vapor saturated at $100^{\circ} \mathrm{C}$. This amount of vapor is about equivalent to a layer of water 0.45 millimeter thick or to 1.5% of the water in a total vertical atmospheric column whose dew point at sea-level is $10^{\circ} \mathrm{C}$. The region of spectrum examined includes most of the region of terrestrial radiation.

Wave-length. $\ldots \ldots \ldots \ldots .$.	7.0μ	8.0μ	$9.0-12.0 \mu$	12.4μ	12.8μ	13.4μ	14.0μ
Percentage absorption.....	75	40	6	20	13	28	22
Wave-length........... 14.3μ	15.0μ	15.7μ	16.0μ	17.5μ	18.3μ	20.0μ	
Percentage absorption....	43	35	65	52	88	80	100

Smithsonian Tables.

TABLE 378. - Long-wave Absorption by Gases.
Unless otherwise noted, gases were contained in a 20 cm long tube. Rubens, Wartenberg, Verb. d. Phys. Ges. 13, p. 796, 19 Ir .

* Tube 40 cm long.
\dagger Pentane vapor, pressure 36 cm .
TABLE 379. - Properties with Wave-lengths $108 \pm \mu$.
Rubens and Woods, Verh. d. Phys. Ges. '13, p. 88, 19 Ir.
With quartz, 1.7 cm thick: 60 to 80μ, absorption very great; $63 \mu, 99 \% ; 82 \mu, 97.5 ; 97 \mu, 83$.

3 IO TABLES 380, 381.-ROTATION OF PLPNE OF POLARIZED LIGHT.

TABLE 380.-Tartario Acid; Camphor; Santonin; Santonic Acld; Cane Sugas.

A few examples are here given showing the effect of wave-length on the rotation of the plane of polarization. The rotations are for a thickness of one decimeter of the solution. The examples are quoted from Landolt \& Börnstein's "Phys. Chem. Tab." The following symbols are used :-

Right-handed rotation is marked + , left-handed -.

Line of spectrum.	Wave-length according to Angström in $\mathrm{cms} . \times{ }_{10}{ }^{\ell}$.	Tartaric acid, ${ }^{*} \mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{6}$, dissulved in water. $\begin{gathered} q=50 \text { to } 95, \\ \text { temp. }=24^{\circ} \mathrm{C} . \end{gathered}$	$\begin{gathered} \text { Camphor, }{ }^{*} \mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}, \\ \text { dissolved in alcohol. } \\ \text { }=50 \text { to } 95, \\ \text { temp. }=22.9^{\circ} \mathrm{C} . \end{gathered}$		$\begin{aligned} & \text { Santonin, }+\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{3}, \\ & \text { dissolved in chloroform. } \\ & q=75 \text { to } 96.5, \\ & \text { temp. }=20^{\circ} \mathrm{C} . \end{aligned}$	
$\stackrel{\text { B }}{ }$	68.67				$-140^{\circ} .1+$	$0.2085 q$
C	65.62	$+2^{0} .748+0.09446 q$	$3^{8} \cdot{ }^{\circ} .549-$	$0.0852 q$	$\begin{array}{r} 149.3 \\ \hline \end{array}$	$0.1555 q$
D	58.92	$+1.950+0.13030 q$	51.945-	0.0964 q	$-202.7+$	0.3086 q
E	52.69	$+0.153+0.17514 q$	74.331 -	$0.1343 q$	$-285.6+$	0. 5820 q
b_{1}	51.83			-	$-302.38+$	$0.6557 q$
b_{2}	51.72	$-0.832+0.19147 q$	79.348 -	$0.1451 q$		
F	48.61	$-3.598+0.239774$	$99.60 \mathrm{I}-$	$0.1912 q$	$-365.55+$	$0.8284 q$
e	43.83	$-9.657+0.31437 q$	149.696	$0.2346 q$	- 534.98 +	$1.5240 q$
			Santonin	$\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{O}_{3}$,	Santonic acid, \dagger	
		Santonin, $\dagger \mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{3}$, dissolved in alcohol. $\begin{gathered} c=1.7^{82 .} \\ \text { temp. }=20^{\circ} \mathrm{C} . \end{gathered}$	dissolved in alcohol. $\begin{aligned} & c=4.046 \\ & \text { temp. } \\ & 20^{\circ} \mathrm{C} . \end{aligned}$	dissolved in chloroform	$\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{4}$, dissolved in chloroform. $c=27.192$. temp. $=20^{\circ} \mathrm{C}$.	$\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{17}$, dissolved in water. $p=10 \text { to } 30 .$
B	68.67	$-110.4{ }^{\circ}$	442°	484°	-49°	$47^{\circ} \cdot 56$
C	65.62	- 118.8	504	549	- 57	52.70
D	58.92	-161.0	693	754	-74	60.41
E	52.69	- 222.6	991	1088	-105	84.56
b_{1}	51.83	-237.1	1053	1148	- 112	-
b_{2}	51.72		-	-		87.88
F	48.61	-261.7	1323	1444	-137	101.18
e	43.83	- 380.0	2011	2201	- 197	-
G	43.07 42.26	-	${ }_{2381}$	$2 \overline{610}$		131.96
g	42.26	-	2381	2610	- 230	
		* Arndtsen, " Ann. \dagger Narini, "R. Acc. \ddagger Stefan, "Sitzb. d.	$\begin{aligned} & \text { im. Phys." } \\ & \text { Lincei,."(3) } \\ & \text { ien. Akad." } \end{aligned}$	$\begin{aligned} & 54,1858 . \\ & 13,1882 . \\ & 2,1865 . \end{aligned}$		

TABLE 381. - Sodium Chlorate; Quartz.

Sodium chlorate (Guye, C. R. 108, 1889).				Quartz (Soret \& Sarasin, Arch. de Gen. 1882, or C. R. 95, 1882).*					
Spectrum line.	Wavelength.	$\begin{gathered} \text { Temp. } \\ \text { C. } \end{gathered}$	Rotation per inn.	Spec trum line.	Wavelength.	Rotation per mm.	Spec- trum line.	Wavelength.	Rotation per mm.
$\stackrel{ }{\alpha}$	71.769	15°. 0	$2^{\circ} .068$	A	76.04	$12^{\circ} .668$	Cd_{9}	36.090	$63^{\circ} .628$
B	67.889	17.4	2.318	a	71.836	14.304	N	35.818	64.459
C	65.073	20.6	2.599	B	68.67 I	15.746	Cd_{10}	34.655	69.454
D	59.085	18.3	3.104					34.406	70.587
E	53.233	16.0	3.841	C	65621	17.318			
F	48.912	11.9	4.587	D_{1}	58951	21.684	Cd_{11}	34.015	72.448
G	45.532	10.1	$5 \cdot 33 \mathrm{I}$	D_{2}	58.891	21.727		33.600	74.571
G	42.834	14.5	6.005				Q	32.858	78.579
H	40.714	13.3	6.754	E	52.691	27.543	Cd_{12}	32.470	80.459
L	38.412	14.0	7.654	F	48.607	32.773			
M	37.352	10.7	8.100	G	43.072	42.604	R	31.798	84.972
N	35.818	12.9	8.86 I				Cd_{17}	27.467	121.052
P	33.931	12.1	9.801	h	41.012	47.481	Cd_{18}	25.713	143.266
Q	32.341	11.9	10.787	H	39.681	51.193	Cd_{23}	23.125	190.426
R	30.645	13.1	11.921	K	39.333	52.155			
Cd_{17}	29.918 28.270	12.8	12.424 13.426	L	196		Cd_{24} Cd 25	22.645	201.824
Cd_{18}	25.038	1 I .6	14.965	M	37.262	58.894	Cd_{26}	2 I .431	235.972

* The paper is quoted from a paper by Ketteler in "Wied. Ann." vol. 21, p. 444. The wave-lengths are for the Fraunhofer lines, Angström's values for the ultra violet sun, and Cornu's values for the cadinium lines.

Abbreviations: int'n'l, international; emu, electromagnetic units; esu, electrostatic units; cgs, centimeter-gram-second units. (Taken from Circular 60 of U.S. Bureau of Standards, 1916, Electric Units and Standards.)

Resistance:

I international ohm =
I. 0005^{2} absolute ohms
r. 000 int'n'l ohms (France, before 1911)
1.00016 Board of Trade units (England, 1903)
r. 01358 B. A. units
1.00283 "legal ohms" of 1884

1. 06300 Siemens units

I absolute ohm $=$
-. 99948 int'n'l ohms
I "practical" emu
$10^{9} \mathrm{cgs}$ emu

1. $1124 \times 10^{-12} \mathrm{cgs}$ esu

Current:

I international ampere $=$
0.9999 r absolute ampere

1. 00084 int'n'l amperes (U. S. before 19II)
r. 00130 int'n'l amperes (England, before 1906)
r. 00106 int'n'l amperes (England, 190608)
1.00010 int'n'l amperes (England, 190910)
r.00032 int'n'l amperes (Germany, before 1911)
r.0002 int'n'lamperes (France, before 191I)

I absolute ampere $=$
I "0009 int'n'l amperes
I "practical" emu
o. r cgs emu
$2.9982 \times 10^{9} \mathrm{cgs}$ esu

Electromotive Force:

I international volt $=$

1. 00043 absolute volts
I. 00084 int'n'l volts (U. S. before 191I)
1.00130 int'n'l volts (England, before 1906)
r. 00106 int'n'l volts (England, 1906-08)
r. 00010 int'n'l volts (England, 1909-10)
2. 00032 int'n'l volts (Germany, before 1911)
1.00032 int'n'l volts (France, before 1911)
r absolute volt $=$
3. 99957 int'n'l volt

I "practical" emu
$10^{8} \mathrm{cgs} \mathrm{emu}$
0.0033353 cgs esu

Quantity of Electrictity:

(Same as current equivalents.)
I international coulomb $=$
I/3600 ampere-hour
1/96500 faraday

Capacity:

I international farad =
0. 99948 absolute farad
r absolute farad $=$
1.0005^{2} int'n'l farads
I "practical" emu
$10^{-9} \mathrm{cgs}$ emu
$8.9892 \times 10^{11} \mathrm{cgs}$ esu

Inductance:

r international henry $=$

1. 0005^{2} absolute henries

1 absolute henry $=$
o. 99948 int'n'l henry

I "practical" emu
$10^{9} \mathrm{emu}$
I. $1124 \times 10^{-12} \mathrm{cgs}$ esu

Energy and Power:
(standard gravity $=980.665 \mathrm{~cm} / \mathrm{sec} / \mathrm{sec}$.)
r international joule $=$

1. 00034 absolute joules

I absolute joule $=$
0. 99966 int'n'l joule
$10^{7} \mathrm{ergs}$
0. 737560 standard foot-pound
o. 101972 standard kilogram-meter
o. 277778×10^{-6} kilowatt-hour

Resistivity:
I ohm-cm $=0.393700$ ohm-inch
$=10,000 \mathrm{ohm}\left(\right.$ meter, $\left.\mathrm{mm}^{2}\right)$
$=12,732.4$ ohm (meter, mm)
$=393,700$ microhm-inch
$=1,000,000$ microhm-cm
$=6,015,290 \mathrm{ohm}$ (mil, foot)
I ohm (meter, gram) $=5710.0$ ohm (mile, pound)

Magnetic Quantitiés:

I int'n'l gilbert $=0.99991$ absolute gilbert
I absolute gilbert $=1.00009$ int'n'l gilberts
r int'n'l maxwell $=1.00043$ absolute máxwells
r absolute maxwell $=0.99957$ int'n'l maxwell

I gilbert	$=0.7958$ ampere-turn
I gilbert per $\mathrm{cm}=$	0.7958 ampere-turn per
	cm
$=$	2.02 I ampere-turns per
	inch
	$=1$ line
I maxwell	$=10^{-8}$ volt-second
I maxwell per cm^{2}	$=6.45^{2}$ maxwells per in

COMPOSITION AND ELECTROMOTIVE FORCE OF VOLTAIC CELLS.

The electromotive forces given in this table approximately represent what may be expected from a cell in good working order, but with the exception of the standard cells all of them are subject to considerable variation.

(a) Double Fluid Cells.					
Name of cell.	Negative pole.	Solution.	Positive pole.	Solution.	
Bunsen . .	Amalgamated zinc	$\left\{\begin{array}{c} \mathrm{I} \text { part } \mathrm{H}_{2} \mathrm{SO}_{4} \text { to } \\ \\ \\ \mathrm{I} 2 \end{array}\right.$	Carbon	Fuming HNO_{3}	1.94
"	" ${ }^{\circ}$	*	"	HNO_{3}, density I .38	1.86
Chromate .	" "	$\left\{\begin{array}{c}12 \text { parts } \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \\ \text { to } 25 \text { parts of } \\ \mathrm{H}_{2} \mathrm{SO}_{4} \text { and } 100 \\ \text { parts } \mathrm{H}_{2} \mathrm{O} .\end{array}\right\}$	"	$\left\{\begin{array}{cc}\text { I part } \mathrm{H}_{2} \mathrm{SO}_{4} \\ \\ \text { I2 parts } \mathrm{H}_{2} \mathrm{O}\end{array}\right.$ to	2.00
"	" "	$\left\{\begin{array}{c} \text { I part } \mathrm{H}_{2} \mathrm{SO}_{4} \text { to } \\ 12 \text { parts } \mathrm{H}_{2} \mathrm{O} \end{array}\right\}$	"	$\left\{\begin{array}{c}12 \text { parts } \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \\ \text { to } 100 \text { parts } \mathrm{H}_{2} \mathrm{O}\end{array}\right\}$	2.03
Daniell * .	" "	$\left\{\begin{array}{c} \text { I part } \mathrm{H}_{2} \mathrm{SO}_{4} \text { to } \\ 4 \text { parts } \mathrm{H}_{2} \mathrm{O} \end{array}\right\}$	Copper	$\left\{\begin{array}{c} \text { Saturated solution } \\ \text { of } \mathrm{CuSO}_{4}+5 \mathrm{H}_{2} \mathrm{O} \end{array}\right\}$	1.06
"	" "	$\left\{\begin{array}{c} \text { I part } \mathrm{H}_{2} \mathrm{SO}_{4} \text { to } \\ \text { I } 2 \text { parts } \mathrm{H}_{2} \mathrm{O} \end{array}\right\}$	"	"	1.09
"	" "	$\left\{\begin{array}{c} 5 \% \text { solution of } \\ \mathrm{ZnSO}_{4}+6 \mathrm{H}_{2} \mathrm{O} \end{array}\right\}$	"	"	1.08
"	" "	$\left\{\begin{array}{c} \text { I part } \mathrm{NaCl} \text { to } \\ 4 \text { parts } \mathrm{H}_{2} \mathrm{O} \end{array}\right\}$	"	"	1.05
Grove . .	". ${ }^{\text {c }}$	$\left\{\begin{array}{c}\text { I part } \mathrm{H}_{2} \mathrm{SO}_{4} \text { to } \\ \text { I2 parts } \mathrm{H}_{2} \mathrm{O}\end{array}\right\}$	Platinum	Fuming HNO_{3}.	1.93
" .	" "	Solution of ZnSO_{4}	"	HNO_{3}, density 1.33	1.66
"	" "	$\left\{\begin{array}{c} \mathrm{H}_{2} \mathrm{SO}_{4} \text { solution, } \\ \text { density } 1.136 \end{array}\right\}$	"	Concentrated HNO_{3}	1.93
"	" "	$\left\{\begin{array}{c} \mathrm{H}_{2} \mathrm{SO}_{4} \text { solution, } \\ \text { density I.1 } 36 . \end{array}\right\}$	"	HNO_{3}, density 1.33	1.79
"	" "	$\left\{\begin{array}{c} \mathrm{H}_{2} \mathrm{SO}_{4} \text { solution, } \\ \text { density } \mathrm{I} .06 \end{array}\right\}$	"	"	1.71
"	" "	$\left\{\begin{array}{c} \mathrm{H}_{2} \mathrm{SO}_{4} \text { solution, } \\ \text { density } 1.14 \end{array}\right\}$	"	HNO_{3}, density 1.19	1.66
"	" "	$\left\{\begin{array}{c} \mathrm{H}_{2} \mathrm{SO}_{4} \text { solution, } \\ \text { density } 1.06 \end{array}\right\}$	"	" " "	1.61
"	" *	NaCl solution . .	"	" density 1.33	1.88
Marié Davy	" "	$\left\{\begin{array}{cc} \text { I part } \mathrm{H}_{2} \mathrm{SO}_{4} \text { to } \\ \text { I } 2 \text { parts } \mathrm{H}_{2} \mathrm{O} \end{array}\right\}$	Carbon	$\left\{\begin{array}{c} \text { Paste of protosul- } \\ \text { phate of mercury } \\ \text { and water } . \end{array}\right\}$	1.50
Partz .	" ${ }^{\text {a }}$	Solution of MgSO_{4}	"	Solution of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$	2.06

[^46]COMPOSITION AND ELECTROMOTIVE FORCE OF VOLTAIC CELLS.

Name of cell.	Negative pole.	Solution.	Positive pole.	E. M. F in volts.
(b) Single Fluid Cells.				
Leclanche . . . Chaperon . . . Edison-Lelande . Chloride of silver Law Dry cell (Gassner) Poggendorff . . J. Regnault . . . Yolta couple	Amal.zinc " " Zinc " " Amal.zinc " " " " Zinc			1.46 0.98 0.70 1.02 I. 37 1.3 1.08 2.01 0.34 0.98
(c) Standard Crles.				
Weston normal Clark standard	$\left\{\begin{array}{c} \left\{\begin{array}{l} \text { Cadmi'm } \\ \text { am'lgam } \end{array}\right\} \\ \left\{\begin{array}{c} \text { Zinc } \\ \text { am'lgam } \end{array}\right\} \end{array}\right.$	$\left\{\begin{array}{c} \left\{\begin{array}{c} \text { Saturated solution of } \\ \mathrm{CdSO}_{4} \end{array}\right\} \\ \left\{\begin{array}{c} \text { Saturated solution of } \\ \mathrm{ZnSO}_{4} \end{array}\right\} \end{array}\right.$		1.018 3^{*} at 20° at $20^{\circ} \mathrm{C}$ $\begin{array}{r} 1.434 \ddagger \\ \text { at } 15^{\circ} \mathrm{C} \end{array}$
(d) Secondary Cells.				
Lead accumulator Regnier (r). Main (2). Edison	Lead . Copper Amal. zinc Amal.zinc Iron	$\left\{\begin{array}{c} \mathrm{H}_{2} \mathrm{SO}_{4} \text { solution of } \\ \text { density } 1.1 \end{array}\right\}$ $\mathrm{CuSO}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4} .$ ZnSO_{4} solution. $\mathrm{H}_{2} \mathrm{SO}_{4}$ density ab't I.I $\mathrm{KOH} 20 \%$ solution .	PbO_{2}. $" \text { in } \mathrm{H}_{2} \mathrm{SO}_{4}$ A nickel oxide	$\begin{gathered} 2.2 \dagger \\ \left\{\begin{array}{l} 1.68 \text { to } \\ 0.85, \text { av- } \\ \text { erage } 1.3 . \\ 2.36 \end{array}\right. \\ 2.50 \\ \left\{\begin{array}{l} \text { i.1, mean } \\ \text { of full } \\ \text { discharge. } \end{array}\right. \end{gathered}$

* The temperature formula is $\mathrm{E}_{\mathrm{t}}=\mathrm{E}_{20}-0.0000406(\mathrm{t}-20)-0.00000095(\mathrm{t}-20)^{2}+0.00000001(\mathrm{t}-20)^{3}$.
\ddagger The value given for the Clark cell is the old one adopted by the Chicago International Electrical Congress in $\mathbf{8} 893$ The temperature formula is $E_{t}=E_{15}-0.00119(t-15)-0.000007(t-15)^{2}$.
\dagger F. Streintz gives the following value of the temperature variation $\frac{\mathrm{dE}}{\mathrm{dt}}$ at different stages of charge:

$$
\begin{array}{cccccccc}
\text { E. M. F. } & 1.9223 & 1.9828 & 2.0031 & 2.0084 & 2.0105 & 2.0779 & 2.2070 \\
\mathrm{dE} / \mathrm{dt} \times \mathrm{IO}^{6} & 140 & 22 \mathrm{~S} & 335 & 285 & 255 & 130 & 73
\end{array}
$$

Dolezalek gives the following relation between E. M. F and acid concentration :

$$
\begin{array}{llllll}
\text { Per cent } \mathrm{H}_{2} \mathrm{SO}_{4} & 64.5 & 52.2 & 35.3 & 21.4 & 5.2 \\
\text { E.M.F., o } \mathrm{C} & 2.37 & \mathbf{2 . 2 5} & 2.10 & 2.00 & 1.89
\end{array}
$$

Smithsonian Tables.

	矿	芯	¢	-		$\dot{\underline{E}}$	-
Distilled water . . . -	$\left\{\begin{array}{c}.01 \\ \text { to } \\ .17\end{array}\right.$.269 to .100	. 148	.171	$\left\{\begin{array}{c}.285 \\ \text { to } \\ .345\end{array}\right\}$.177	$\left\{\begin{array}{r}\text {-. } 105 \\ \text { to } \\ \text { +.15 } 56\end{array}\right.$
Alum solution : saturated at $1^{\circ}{ }_{5} \mathrm{C}$. .	-	-. 127	-. 653	-. 139	. 246	-. 225	-
Copper sulphate solution : \} sp. gr. i. 087 at $\mathrm{I}^{\circ} .6 \mathrm{C}$.	-	. 103	-	-	-	-	-
Copper sulphate solution : saturated at $15^{\circ} \mathrm{C}$.	-	. 070	-	-	-	-	-
$\left.\begin{array}{l}\text { sea salt solution: sp. gr. } \\ \text { I. } 18 \text { at } 20^{\circ} .5 \mathrm{C} \text {. . . . }\end{array}\right\}$	-	-. 475	-. 605	-	-. 856	-. 334	-. 565
Sal-ammoniac solution:) saturated at $15^{\circ} .5 \mathrm{C}$.	-	-. 396	$-.652$	-.189	. 059	$-.364$	$-.637$
Zinc sulphate solution: sp. gr. I. 125 at $6^{\circ} .9$ C. .	-	-	-	-	-	-	$-.238$
Zinc sulphate solution: saturated at $15^{\circ} \cdot 3 \mathrm{C}$.	-	-	-	-	-	-	-. 430
One part distilled water $+\lambda$ 3 parts saturated zinc sulphate solution. .. .	-	-	-	-	-	-	-. 444
strong sulphuric acid in distilled water: I to 20 by weight	-	-	-	-	-	-	-. 344
I to io by volume . .	\{ about ,	-	-	-	-	_	-
I to 5 by weight	(-.035)	-	-	-	-	-	-
5 to I by weight	$\left\{\begin{array}{l}.01 \\ \text { to } \\ 3.0\end{array}\right\}$	-	-	-. 120	-	-. 25	-
Concentrated sulphuric acid	$\left\{\begin{array}{l}.55 \\ \text { to } \\ .85\end{array}\right\}$	I. 113	-	$\left\{\begin{array}{c}.72 \\ \text { to } \\ 1.252\end{array}\right.$	$\left.\begin{array}{l}\text { I. } 3 \\ \text { to } \\ \text { I. } 6\end{array}\right\}$	-	-
Concentrated nitric acid	(.85)	-	-		. 672	-	-
Mercurous sulphate paste .	-	-	-	-	. 6	-	-
Distilled water containing \} trace of sulphuric acid	-	-	-	-	-	-	-. 241

* Everett's " Units and Physical Constants: " Table of

[^47]
POTENTIAL IN VOLTS.

Liquids with Liquids in Air.*

during experiment about $16^{\circ} \mathrm{C}$.

			$\begin{aligned} & \text { 苞 } \\ & \text { 范 } \end{aligned}$							
Distilled water .	. 100	. 231	-	-	-	-. 043	-	. 164	-	-
Alum solution : saturated $\}$ at $16^{\circ} .5 \mathrm{C}$.	-	-. 014	-	-	-	-	-	-	-	-
Copper sulphate solution : sp. gr. 1.087 at $16^{\circ} .6 \mathrm{C}$.	-	-	-	-	-	-	. 090	-	-	-
Copper sulphate solution: $\}$ saturated at $15^{\circ} \mathrm{C}$.	-	-	-	-. 043	-	-	-	. 095	. 102	-
Sea salt solution: sp. gr. I. 18 at $20^{\circ} .5 \mathrm{C}$.	-	-. 435	-	-	-	-	-	-	-	-
Sal-ammoniac solution: saturated at $15^{\circ} .5 \mathrm{C}$.	-	-. 348	-	-	-	-	-	-	-	-
Zinc sulphate solution: sp. gr. 1.125 at $16^{\circ} .9 \mathrm{C}$.	-	-	-	-	-	-	-	-	-	-
Zinc sulphate solution: $\}$ saturated at $15^{\circ} .3 \mathrm{C}$.	-. 284	-	-	-. 200	-	-. 095	-	-	-	-
One part distilled water + \} 3 parts saturated zinc sulphate solution	-	-	-	-	-	-. 102	-	-	-	-
Strong sulphuric acid in distilled water : I to 20 by weight	-	-	-	-	-	-	-	-	-	-
I to io by volume	-.358	-	-	-	-	-	-	-	-	-
I to 5 by weight 429	-	-	-	-	-	-	-	-	-
5 to I by weight	-	-. 016	-	-	-	-	-	-	-	-
Concentrated sulphuric acid	. 848	-	-	1. 298	1.456	1. 269	-	1.699	-	-
Concentrated nitric acid .			-	-	-	-	-	-	-	-
Mercurous sulphate paste.	-	-	. 475	-	-	-	-	-	-	-
Distilled water containing trace of sulphuric acid.	-	-	-	-	-	-	-	-	-	.078

Ayrton and Perry's results, prepared by Ayrton.

Smithsonian Tables.

DIFFERENCE OF POTENTIAL BETWEEN METALS IN SOLUTIONS OF SALTS.

The following numbers are given by G. Magnanini * for the difference of potential in hundredths of a volt between zinc in a normal solution ot sulphuric acid and the metals named at the head of the different columns when placed in the solution named in the first column. The solutions were contained in a U-tube, and the sign of the difference of potential is such that the current will flow from the more positive to the less positive through the external circuit.

Strength of the solution in gram molecules per liter.		Zinc. \dagger	Cadmium. \dagger	Lead.	Tin.	Copper.	Silver.
No. of molecules.	Salt.	Difference of potential in centivolts.					
0.5	$\mathrm{H}_{2} \mathrm{SO}_{4}$	0.0	36.6	51.3	51.3	100.7	121.3
1.0	NaOH	-32.1	19.5	31.8	0.2	80.2	95.8
1.0	KOH	-42.5	15.5	32.0	-1.2	77.0	104.0
0.5	$\mathrm{Na}_{2} \mathrm{SO}_{4}$	1.4	35.6	50.8	51.4	101.3	120.9
1.0	$\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$	-5.9	24.1	$45 \cdot 3$	45.7	38.8	64.8
1.0	KNO_{3}	$11.8 \ddagger$	31.9	42.6	31.1	81.2	105.7
1.0	NaNO_{3}	11.5	32.3	51.0	40.9	95-7	114.8
0.5	$\mathrm{K}_{2} \mathrm{CrO}_{4}$	$23.9 \ddagger$	42.8	41.2	40.9	94.6	121.0
0.5	$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$	72.8	61.1	78.4	68.1	123.6	132.4
0.5	$\mathrm{K}_{2} \mathrm{SO}_{4}$	I. 8	34.7	51.0	40.9	95.7	114.8
0.5	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$	-0. 5	37.1	53.2	$57.6 \ddagger$	101.5	125.7
0.25	$\mathrm{K}_{4} \mathrm{FeC}_{6} \mathrm{~N}_{6}$	-6.1	33.6	50.7	41.2	$-\ddagger$	87.8
0.167	$\mathrm{K}_{6} \mathrm{Fe}_{2}(\mathrm{CN})_{12}$	$41.0 \S$	80.8	8 I .2	130.9	110.7	124.9
1.0	KCNS	-1.2	32.5	52.8	52.7	52.5	72.5
1.0	NaNO_{3}	$4 \cdot 5$	35.2	50.2	49.0	103.6	104.6?
0.5	$\mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}$	14.8	38.3	50.6	48.7	103.0	119.3
0.125	$\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$	21.9	39.3	51.7	52.8	109.6	121.5
1.0	KNO_{3}	- \ddagger	35.6	47.5	49.9	104.8	115.0
0.2	KClO_{3}	15-10 \ddagger	39.9	53.8	57.7	105.3	I 20.9
0.167	KBrO_{3}	$13-20 \ddagger$	40.7	51.3	50.9	III. 3	I 20.8
1.0	$\mathrm{NH}_{4} \mathrm{Cl}$	2.9	32.4	51.3	50.9	8 I .2	101.7
1.0	KF	2.8	22.5	41.1	50.8	61.3	61.5
1.0	NaCl	-	31.9	51.2	50.3	80.9	101.3
1.0	KBr	2.3	31.7	47.2	52.5	736	82.4
1.0	KCl	-	32.1	51.6	52-6	8 I. 6	107.6
0.5	$\mathrm{Na}_{2} \mathrm{SO}_{3}$	-8.2	28.7	41.0	3 I .0	68.7	103.7
- 11	NaOBr	18.4	41.6	73.1	$70.6 \ddagger$	89.9	99.7
1.0	$\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{6}$	$5 \cdot 5$	39.7	61.3	$54.4 \S$	104.6	123.4
0.5	$\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{6}$	4.1	41.3	61.6	57.6	110.9	125.7
0.5	$\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{KNaO} \mathrm{O}_{6}$	-7.9	31.5	51.5	42-47	100.8	119.7

[^48]
Smithsonian Tables.

THERMOELECTRIC POWER．
The thermoelectric＂power of a circuit of two metals is the electromotive force produced by one degree C difference of temperature between the junctions．The thermoelectric power varies with the temperature，thus：thermoelectric power $=Q=d E / d t=A+B t$ ，where A is the thermoelectric power at $\circ^{\circ} \mathrm{C}, B$ is a constant，and t is the mean tem－ perature of the junctions．The neutral point is the temperature at which $d E / d t=0$ ，and its value is $-A / B$ ．When a current is caused to flow in a circuit of two metals originally at a uniform temperature，heat is liberated at one of the junctions and absorbed at the other．The rate of production or liberation of heat at each junction，or Peltier effect， is given in calories per second，by multiplying the current by the coefficient of the Peltier effect．This coefficient in calories per coulomb $=Q T / \mathcal{F}$ ，in which Q is in volts per degree C, T is the absolute temperature of the junction，and $\mathcal{F}=4.19$ ．Heat is also liberated or absorbed in each of the metals as the current flows through portions of varying temperature．The rate of production or liberation of heat in each metal，or the Thomson effect，is given in calories per second by multiplying the current by the coefficient of the Thomson effect．This coefficient，in calories per coulomb $=B T \theta / \mp$ ，in which B is in volts per degree C, T is the mean absolute temperature of the junctions，and θ is the differ－ ence of temperature of the junctions．（ $B T$ ）is Sir W．Thomson＇s＂Specific Heat of Electricity．＂The algebraic signs are so chosen in the following table that when A is positive，the current flows in the metal considered from the hot junction to the cold．When B is positive，Q increases（algebraically）with the temperature．The values of A, B ，and thermoelectric power in the following table are with respect to lead as the other metal of the thermoelectric circuit． The thermoelectric power of a couple composed of two metals， 1 and 2 ，is given by subtracting the value for 2 from that for $\mathbf{~}$ ；when this difference is positive，the current flows from the hot junction to the cold in I ．In the following table，A is given in microvolts per degree，B in microvolts per degree per degree，and the neutral point in degrees．

The table has been compiled from the results of Becquerel，Matthiessen and Tait；in reducing the results，the electromotive force of the Grove and Daniell cells has been taken as 1.95 and 1.07 volts．The value for constantan was reduced from results given in Landolt－Börnstein＇s tables．The thermoelectric powers of antimony and bismuth alloys are given by Becquerel in the reference given below．

Substance．	$\underset{\text { Microvolts. }}{A}$	$\stackrel{B}{\text { Microvolts. }}$	Thermoelectric power at mean temp．of junctions（microvolts）．		Neutral point $-\frac{A}{B}$	Author－ ity．
			$20^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$		
Aluminum．．	－0．76	＋0．0039	－0．68	－0． 56	＋195	T
Antimony，comm＇l pressed wire．．．	－	－	＋6．0	二	－	M
＂، axial．．．．．．．．．．．．．．．	－	二	＋22．6	二		
＂ Argentan．．．．．．．．．．．．．．．．．．．．．．．．	－11．94	－0．0506	＋26．4 12.95		－236	T
Argentan．．．．．．．．．．．．．．．．．．．．．．	－II． 94	－0．0506	-12.95	-14.47 -12.7	－236	B
－Arsenic．．．．．．．．．．．．．．．．．．．．．	－	－	－r3．56	二	－	M
Bismuth，comm＇l pressed wire．．．．	二	二	－97．0	二	二	＂
، ${ }^{\text {p crystal，axial ．．．．．．．．}}$	二	二	－89．0	二	二	＇
＂crystal，axial．．．．．．．．．．．	－	二	－45．0	－	－	＂
Cadmium．．．．．．．．．．．．．．．．．．．．．．	＋2．63	＋0．0424	＋3．48	＋4．75	－62	T
＂fuse		－		$+2.45$	－	${ }_{\text {B }}$ ，
Calcium．	－	－	－	＋8．9	二	S＇
Cobalt ．．．．	－	二	－22	$-\overline{10.3}$	二	M
Constantan．．．．．．．．．．．．．．．． Copper．．．．．．．．．．．．．．．	＋1．34	＋0．0094	$\underline{+5.52}$	-19.3 +r .81	－$\overline{r a}_{43}$	T
	＋1．34	＋0．0094	＋o．10	－	$\underline{-}$	M
＂galvanoplastic	－	－	＋3．8	－	－	
Gallium．．．．．．．．	－	－	－0．2	－	－	S
Gold．．．．．．．．．．．．．．．．．．．．．．．．	＋2．80	＋0．0101	＋3．0	＋3．30	$\left[\begin{array}{c}-277] \\ +356\end{array}\right.$	T
Iron．．．．．．．．．．．．．．．．．．．．．．．．．．．．．	＋17．15	－0．0482	$\underline{+16.2}$	＋14．74	＋356	T
＂${ }^{\text {c }}$ comoforte wire	－	－	＋17．5	＋$\overline{\text { 2 } 2.10 ~}$	－	B
＂${ }^{\text {commercial．}}$		－	－	＋9．10		＂
Lead．．	－	0.0000	－0．00	0．00	－	
Magnesium．	＋2．22	－0．0094	$+2.03$	＋r．75	$\underline{+236}$	T
Molybdenum	二	二	$\underline{+5.9}$			
Mercury．．．	二	二	－0．413	-3.30 -15.50	［－］	${ }_{\mathbf{B}}$
	-21.8	－0．0506	－22．8	-24.33	［－43r］	T
	－83．57 -3.04	$\begin{aligned} & +0.2384 \\ & -0.0506 \end{aligned}$	二			

TABLE 386.-Thermoelectric Power (continued).

Substance.	$\underset{\text { Microvolts. }}{A}$	$\begin{gathered} B \\ \text { Microvolts. } \end{gathered}$	Thermoelectric powerat mean temp. ofanctions (microvolts).		Neutral $-\frac{A}{B}$.	$\underset{\text { thority }}{\text { Au- }}$				
			$20^{\circ} \mathrm{C}$.	$50^{\circ} \mathrm{C}$						
Palladium	-6.18	$\bigcirc 0.0355$	-6.9	-7.96	-174					
Phosphorus (red) -			+29.9			M				
Platinum - .			+0.9							
"، (hardened)	+2.57 +0.60	$\bigcirc 0.0074$	+2.42 -.818	+2.20 +1.15	347 -55	T				
" wire .	-0.60	$\bigcirc .0109$		+1.15	-55	B				
" another specimen Platinum-iridium alloys:				-2.14						
$85 \% \mathrm{Pt}+15 \% \mathrm{Ir}$	+7.90	+0.0062	+8.03	+8.21	[-1274]	T				
90\% Pt $+10 \% \mathrm{Ir}$	$+5.90$	-0.0133	$+5.63$	+5.23	444					
95\% Pt $+5 \% \mathrm{Ir}$	+6.15	+0.0055	+6.26	+6.42	[-III8]					
$\underset{\text { Silver }}{\text { Selenium }}$.	+2.12	+0.0147	+807. +2.41	+2.86		M				
". (purehard)		+0.014	+3.00	+2.86		M				
" wire				+2.18		13				
Steel	+11.27	$\bigcirc 0.0325$	+10.62	+9.65	347	T				
Tantalum			-2.6	-		-				
Tellurium $\boldsymbol{\beta}$			+500.			H				
Thallium ${ }^{\boldsymbol{a}}$			+160.			H				
Tin (commercial).	-		-	+o.	-	H				
،	-	-	+o.1	-	-	M				
	. 43	+0.0055	-0.33	-0.16	78	T				
Tungsten.			-2.0 +2.79	+3.51	-98	\bar{T}				
${ }^{\text {Zinc }}$ pure pressed	+2.3	+0.023	+2.79 +3.7	+3.		M				
B Ed. Becquerel, "Ann. de Chim. et de Phys." [4] vol. 8. S. Bureau of Standards. M Matthiesen, "Pogg. Ann." vol. 103, reduced by Fleming Jenkin. T Tait, "Trans. R. S. E." vol. 27, reduced by Mascart. H Haken, Ann. der Phys. 32, p. 291, 1910. (Electrical conductivity of $\mathrm{Te} \beta=0.04$, Tea I. 7 e. m. units.) Swisher, 191%										

TABLE 387.-Thermoelectric Power of Alloys.
The thermoelectric powers of a number of alloys are given in this table, the authority being Ed. Becquerel. They are relative to lead, and for a mean temperature of $50^{\circ} \mathrm{C}$. In reducing the results from copper as, a reference metal, the thermoelectric power of lead to copper was taken as - 1.9.

Substance.			Substance.			Substance.		
Antimony Cadmium	$\left.\begin{array}{l} 806 \\ 696 \end{array}\right\}$	227	Antimony Zinc	2 1$\}$	43	Bismuth Antimony	$\left.\begin{array}{l}4 \\ 1\end{array}\right\}$	-51.4
Antimony	47		Tin	I)	43	Bismuth	83	
Cadmium Zinc	2 1$\}$	146	Antimony	$\left.\begin{array}{l}12 \\ 10 \\ 3\end{array}\right\}$		Antimony	$1\}$	-63.2
Antimony	806		Cadmium	$\left.\begin{array}{c}10 \\ 3\end{array}\right\}$	35	Bismuth	$10\}$	
Cadmium	696	137				Antimony	$1)$	
Bismuth	121)	137	Antimony Tellurium	$\left.\begin{array}{c}10 \\ 1\end{array}\right\}$	10.2	Bismuth	12)	
Antimony	$806\}$			$10\}$		Antimony	1 \}	-66.9
Zinc	$406\}$	95	Antimony Bismuth	$\left.\begin{array}{c}10 \\ 1\end{array}\right\}$	8.3	Bismuth	$2\}$	
Antimony	8067			41		Tin	$1)$	60
Zinc Bismuth	406 121$\}$	8.1	Antimony Iron	$1\}$	2.5	Bismuth	10 l	
Antimony	121)		Antimony	81	-	Selenium	$1)$	-24.5
Cadmium	2		Magnesium	I	4	Bismuth	$12\}$	
Lead	$1\}$	76		81	-0.4	Zinc	$1)$	-31.1
Zinc	$1)$		Lead	$1\}$	-0.4	Bismuth	12 ?	
Antimony	4 2		Bismuth)	-43.8	Arsenic	I $\}$	-46.0
Zinc	$1\}$	46	Bismuth	2)		Bismuth	1 I	68.1
Tin	$1)$		Antimony	$1)$	-33.4	Bismuth sulphide	$1)$	68.1

TABLE 388. - Thermoelectrlc Power against Platinum.
One junction is supposed to be at $0^{\circ} \mathrm{C} ;+$ indicates that the current flows from the 0° junction into the platinum. The rhodium and iridium were rolled, the other metals drawn.*

Temperature, ${ }^{\circ} \mathrm{C}$.	Au.	Ag.	$90 \% \mathrm{Pt}+$ $10 \% \mathrm{Pd}$.	$10 \% \mathrm{Pt}+$ $90 \% \mathrm{Pd}$.	Pd.	$90 \% \mathrm{Pt}+$ $10 \% \mathrm{Rh} .$	$\begin{aligned} & 90 \% \mathrm{Pt}+ \\ & \mathbf{1 0 \% \mathrm { Ru } .} \end{aligned}$	Ir.	Rh.
-185	-0.15	-0.16	-0.11	+0.24	+0.77	-	-0.53	-0.28	-0.24
-80	-0.31	$\bigcirc 0.30$	-0.09	+0.15	+0.39	-	-0.39	-0.32	-0.31
+100	+0.74	+0.72	+0.26	-0.19	-0.56	-	+0.73	+0.65	+0.65
+200	+1.8	+1.7	+0.62	-0.31	-1.20	-	+1.6	$+1.5$	+1.5
$+300$	$+3.0$	$+3.0$	+1.0	-0.37	-2.0	+2.3	+2.6	+2.5	+2.6
+400	+4.5	+4.5	+1.5	-0.35	-2.8	$+3.2$	+3.6	+3.6	+3.7
$+500$	+6.1	+6.2	+1.9	-0.18	-3.8	+4.1	+4.6	+4.8	+ 5.1
+600	+7.9	+8.2	+2.4	+0.12	-4.9	+5.1	+5.7	+6.1	+6.5
$+700$	+9.9	$+10.6$	+2.9	+0.61	-6.3	+6.2	+6.9	$+7.6$	+8.1
$+800$	+12.0	+13.2	+3.4	+1.2	-7.9	+7.2	+8.0	+9.1	+9.9
+900	+14.3	+16.0	+3.8	+2.1	-9.6	+8.3	+9.2	+10.8	+11.7
+1000 +1100	+16.8	-	+4.3	+3.1 +4.	-11.5	+9.5	+10.4	+12.6	+13.7
+1100 $+(1300)$	-	-	+4.8	+4.2	-I3.5	+10.6	+11.6	+14.5	+15.8
+(1300) $+(1500)$	-	-	-	-	-	+10.1 +13.1 +15.6	+11.2 +16.9	+18.6 +23.1	+20.4 +25.6

* Holborn and Day.

TABLE 389, -Thermal E. M. F. of Platinum-Rhodium Alloys Against Pure Platinum, in Millivolts.*

t	\& p.ct.	$5 \mathrm{p} . \mathrm{ct}$.	so p. ct.			$15 \mathrm{p} . \mathrm{ct}$.	$20 \mathrm{p} . \mathrm{ct}$.	$33 \mathrm{p} . \mathrm{ct}. \dagger$	$40 \mathrm{p} . \mathrm{ct}. \dagger$	$100 \mathrm{p} . \mathrm{ct}$. \%
			Low.	High.	Standard.					
100°	0.21	0.55	0.63	0.64	0.64	0.65		0.65
200	0.42	I.IS	1.41	1.43	1.43	1.50	1.51
300	0.63	1.85	2.28	2.32	2.32	2.41	-•••	2.34	2.45	2.57
400	0.84	2.53	3.21	$3 \cdot 26$	3.25	3.45	$3 \cdot 50$	$3 \cdot 50$	3.64	3.76
500	1.05	3.22	4.17	4.23	4.23	4.55	4.60	4.74	4.93	5.08
600	1.25	3.92	5.16	5.24	5.23	5.71	5.83	6.06	6.31	6.55
700	1.45	4.62	6.19	6.28	6.27	6.94	7.18	$7 \cdot 49$	7.80	8.14
800	1.65	$5 \cdot 33$	7.25	$7 \cdot 35$	7.33	8.23	8.60	9.01	9.37	9.57
900	1.85	6.05	8.35	8.46	8.43	9.57	10.09	10.67	11.09	11.74
1000	2.05	6.79	9.47	9.60	9.57	10.96	11.65	12.42	12.94	13.74
1100	2.25	7.53	10.64	10.77	10.74	12.40	13.29	14.33	I 4.99	15.87
1200	2.45	8.29	11.82	11.97	11.93	13.87	14.96	16.39	17.13	18.10
1300	2.65	9.06	13.02	13.18	13.13	15.38	16.65	I 8.51	19.51	20.46
1400	2.86	9.82	14.22	14.39	14.34	16.98	I 8.39	20.67	21.73	. . .
1500	3.06	10.56	15.43	15.61	I 5.55	18.41	20.15	. . .		
1600	3.26	I 1.3I	16.63	16.82	16.75	19.94	21.90	. . .		
1700	3.46	12.05	17.83	18.03	17.95	21.47	23.65	. . .		
I755	$3 \cdot 56$	12.44	18.49	18.70	I8.61	22.31	24.55	. . .		

* Carnegie Institution, Pub. 157, 19 ri.
\ddagger Holborn and Day, mean value, 889.

THERMOELECTRIC PROPERTIES: PRESSURE EFFECTS.

TABLE 390. - Thermoelectric Power; Pressure Effects.
The following values of the thermoelectric powers under various pressures are taken from Bridgman, Pr. Am. Acad. Arts and Sc. 53, p. 269, 1918. A positive emf means that the current at the hot junction flows from the uncompressed to the compressed metal. The cold junction is always at $\circ^{\circ} \mathrm{C}$. The last two columis give the constants in the equation $E=$ thermoelectric force against lead $\left(0^{\circ}\right.$ to $\left.100^{\circ} \mathrm{C}\right)=\left(A t+B \ell^{2}\right) \times 10^{-6}$ volts, at atmospheric pressure, a positive emf meaning that the current flows from lead to the metal under consideration at the hot junction.

Metal.	Thermo-electric force, volts $\times 10^{9}$									Formula coefficients.	
	Pressure, $\mathrm{kg} / \mathrm{cm}^{2}$										
	2000		4000		8000		12,000				
	Temperature, ${ }^{\circ} \mathrm{C}$										
	50°	100°	50°	100°	50°	100°	20°	50°	100°	A	B
Bi	53,000	85,000	110,000	185,000	255,000	425,000	185,000	452,000	710,000	-74.42	+.0160
Zn	6,200	14,100	13,000	28,500	26,100	58,100	14,400	38,500	87,400	+3.047	-.00495
$\mathrm{Tl}^{\text {Cd }}$	4,930	10,870	9,380	20,290	17,170	37,630	8,780	23,750	52,460	+1.659	-.00134 ${ }^{1}$
Cd	2,040	7,120	4,620	14,380	10,960	28,740	6,680	19,180	45,560	+12.002	+.1619
Cons	2,850	5,950	5,800	11,810 8,800	11,530 8,630	23,790	6,750	17,200 12,070	35,470	-34.76	-. 0397
$\mathrm{Pt}^{\mathrm{Pa}}$	2,190 I, 810	4,380	4,400 3,600	8,800	8,630 7,370	17,090 14,350	3,880	12,970	26,520	-5.496	-. 01760
W	1,190	2,530	2,360	4,990	4,690	10,120	2,700	7,050	15,140	+1.594	+ +.01785
Ni	700	1,680	1,500	3,400	3,230	7,190	1,880	5,140	11,440	-17.61	-.0178
${ }_{8}{ }_{8}$	840	I,870	1,720	3,720	3,350	7,190	+1,900	4,950	10,560	+2.556	+.00432
${ }_{8}{ }^{\text {Pb }}$	390	1,670	590	3,250	5,300	5,820	-990	220	7,680	+16.18	$-.0089^{2}$
${ }^{\mathrm{Pb}} \mathrm{A}$	460	1,050	920	2,120 2,051	1,860 1,791	4,210	+880	281 2,627	6,330		
${ }_{\mathrm{Cu}}$	456 +292	1,052 584	905 +580	2,051	1,791 $\mathbf{1}, 124$	3,974 2,420	+990 +596	2,627 1,616	5,760	+2.899 +2.777	+.00467 +.00483
$\delta_{81} \mathrm{Al}$	-70	101	-91	r 294	- 32	929	-68	312	r,962	-0.416	+.00008
8 Mo	3	140	+187	278	375	555	+146	562	833	+5.892	$+.02167^{5}$
${ }_{\text {Man }}$	${ }_{-123}^{+38}$	+87 -232	+58 -242	+165	+70 -480	$\begin{array}{r}+292 \\ +804 \\ \hline\end{array}$	-182 -308	+10 -710	${ }_{+}^{+390}$	+0.230	-. 00067
$\mathbf{M g}$	-123	-167	- 242	-452 -362	-489 -395	-894	-308 -259	-719	-1,314	${ }_{-1.366}^{+0.095}$	+ 000414^{6}
	-156	-348	-316	-692	-630	-1,360	-352	-937	-2,061	-17.32	-. 0390

[^49]TABLE 391. - Peltier and Thomson Heats; Pressure Effects.
The following data indicate the magnitude of the effect of pressure on the Peltier and Thomson heats. They refer to the same samples as for the last table. The Peltier heat is considered positive if heat is absorbed by the positive current from the surroundings on flowing from uncompressed to compressed metal. A positive $d^{2} E / d \mathbb{R}^{2}$ means a larger Thomson heat in the compressed metal, and the Thomson heat is itself considered positive if heat is absorbed by the positive current in flowing from cold to hot metal. Same reference and notes as for preceding table.

Metal.	Peltier heat, ${ }^{10} \times$ Joules/coulomb.						Thomson heat, ${ }^{10}{ }^{8} \times$ Joules $/$ coulomb $/{ }^{\circ} \mathrm{C}$					
	Pressure $\mathrm{kg} / \mathrm{cm}^{2}$						Pressure $\mathrm{kg} / \mathrm{cm}^{2}$					
	6000			12,000			6000		12,000			
	Temperature ${ }^{\circ} \mathrm{C}$						Temperature ${ }^{\circ} \mathrm{C}$					
	\circ°	50°	100°	0°	50°	100°	0°	50°	100°	\circ°	50°	100°
$8 \mathrm{Bi} \dagger$	+1070	+1210	-	+2580	+2810	-	+1150	+650	-	-520	-405	-
${ }_{8} \mathrm{Zn}$ T1	+ +68 +68	+140 +95	+190 +124	+190	+278	+412 +220	+41 +38 +	+48	+56	+63	+133	+220 +50
${ }_{8}^{8} \mathrm{Cd} \dagger$.	+66 +19	+95 +7	+124	+112	+171	+229 +221	+38 +109	+28 +74	+26 +63	+79 +105	+63 +92	+ 50 +93
Constantan $8 \mathrm{Pd} *$	+46	+57	+70	+90	+114	+140	+5	+6	+6	+13	+14	+17
${ }_{8}^{8} \mathrm{Pt} \mathrm{Pt}^{*}$	+35 +23 +	+43 +37	+52	+68 +45	+86	+103 +65	+3 +4	± 4	+4	+9	+9	+8
${ }_{8} \mathrm{~W}$	+ +17 +1	+37 +25	+35 +32	+45 +36	+76 +49	+65 +65	+49 +8		18 +6	+9 +9	+17 +14	+59 +20
${ }_{8}^{81} \mathrm{Ni}$	+11	+17	+23	+24	+37	+50	+9	+7	+8	+16	+15	+10
${ }_{8}{ }_{8}$	+13	+17	+23	+25	+34	+44	+4	+ 5	+6	+7	+8	+ro
$\stackrel{8}{\mathrm{~Pb}}$	-11	+18	115 +16	-38	+38	+36	+79	+ 58	-121	-347	+120	-194
Au*	+7 +6	+10	+16	+14	+20 +18	+30 +25	$\begin{array}{r}+2 \\ +4 \\ + \\ \hline\end{array}$		+10 +5	+6	+8 +6	+20
$\mathrm{Cu} \dagger$	+4	+10 +6	+14 +8	+13 +8	+18	+25 +16	+4	+	+5 +4	+6		+7 +8
$8 \mathrm{Al} \dagger$	-2	$+2$	+8	-3	+7	+17	+6	+0	+11	+21	+16	+20
8 Mo	+1	+	+o	+2	+4	+1	+	-5	-1	+2	-11	-2
${ }_{8} \mathrm{~S}^{\text {Sn }} \dagger$...	-	\pm	± 1	-5	+ 2	+2	$+6$	+o	-	+29	+2	-5
Mangan $\mathrm{Mg} \dagger .$.	-2 -16	-2 -18 -3	-2 -21	-4 -35	-4 -42	-4 -48				+2	+1	+1
$8 \mathrm{Co} \dagger$	-23	-33	-44	-46	-67	-90	-14	-II	-10	-20	-24	-28

* $\dagger \ddagger \delta$ Same significance as in preceding table.

Smithsonian Tables.

TABLE 392．－Poltior Etfect．
The coefficient of Peltier effect may be calculated from the constants A and B of Table 386，as there shown．With Q（see Table 386）in microvolts per ${ }^{\circ} \mathrm{C}$ ．and $T=$ absolute temperature（ K ）， the coefficient of Peltier effect $=\frac{Q T}{42}$ cal．per coulomb $=0.00086 Q T$ cal．per ampere－hour $=Q T / 1000$ millivolts（＝millijoules per coulomb）．Experimental results，expressed in slightly different units， are here given．The figures are for the heat production at a junction of copper and the metal named，in calories per ampere－hour．The current flowing from copper to the metal named，a posi－ tive sign indicates a warming of the junction．The temperature not being stated by either author， and Le Roux not giving the algebraic signs，these results are not of great value．

Calories per ampere－hour．											
	＋	为或	\％	\cdots	ن்	碳芯	－	\dot{z}	\pm	4	ベ
Jahn＊．	－	－	－	－	－． 62	－	-3.61	$4 \cdot 36$	0.32	－．4I	－． 58
Le Roux \dagger ．	13.02	4.8	19.1	25.8	0.46	2.47	2.5	－	－	－	－39

＊＂＂Wied．Ann．＂vol．34，p．767；
\dagger＂Ann．de Chim．et de Phys．＂（4）vol．10，p．20\％．
Becquerel＇s antimony is So6 parts $\mathrm{Sb}+406$ parts $\mathrm{Zn}+121$ parts Bi ．
Becquerel＇s bismuth is so parts $\mathrm{Bi}+1$ part Sb ．

TABLE 393．－Peltier Effect，Fo－Constantan，Ni－Cu，O－560 \mathbf{C} ．

＇Temperature．	0°	20°	130°	240°	320°	560°	
Fe－Constantan ．	3．1	3.6	$4 \cdot 5$	6.2	8.2	12.5	$\left(\mathrm{in} \mathrm{Gram}. \mathrm{Cal} \times.-10^{8}\right.$
$\mathrm{Ni}-\mathrm{Cu}$ ．	1.92	2.15	2.45	2.06	1．91	2.38	per coulomb．

TABLE 394．－Peltier Electromotive Force in Millivolts．

Metal against Copper．	\％	$\stackrel{\sim}{4}$	U	ธี่	\％	¢	$\stackrel{\square}{\square}$	$\dot{5}$	$\dot{\text { ̇ }}$	\％	0	\dot{z}	\％
Le Roux	-5.64	－2．93	－． 53	－． 45	－	－	－	－	－	－	－	－	＋22．3
Jahn ．	－	-3.68	－．72	$-.68$	$-.48$	－	－	－	－	$+.37$	－	＋5．07	－
Edlund ．．	－	－2．96	－． 16	－． 08	＋． 03	$+.33$	＋． 50	＋．56	＋．70	＋1．02	＋2．17	－	＋17．7
Caswell ．．	－	－	－	－	＋． 03	－	－	－	＋．70	$+8_{5}$	－	＋6．0	＋16．1

Le Roux， 1867 ；Jahn， 1888 ；Edlund， $18707 \mathrm{~m}_{1}$ ；Caswell，Phys．Rev．33，p．381， 19 t ．

Smithsonian Tables．

TABLE 395.

THE TRIBO-ELECTRIC SERIES.

In the following table it is so arranged that any material in the list becomes positively electrified when rubbed by one lower in the list. The phenomenon depends upon surface conditions, and circumstances may alter the felative positions in the list.

```
1 Asbestos (sheet).
2 Rabbit's fur, hair, (Hg).
3 Glass (combn. tubing).
3 Vitreous silica, opossum's
        fur.
5 Glass (fusn.).
6 Mica.
\({ }_{7}\) Mica.
8 Glass (pol.), quartz (pol.),
        glazed porcelain.
9 Glass (broken edge),
        ivory.
10 Calcite.
in Cat's fur.
\({ }_{12} \mathrm{Ca}, \mathrm{Mg}, \mathrm{Pb}\), fluor spar,
        borax.
```

24 Amber.
25 Slate, chrome-alum.
26 Shellac, resin, sealing-wax. 27 Ebonite. $28 \mathrm{Co}, \mathrm{Ni}, \mathrm{Sn}, \mathrm{Cu}, \mathrm{As}, \mathrm{Bi}$, Sb, Ag, Pd, C, Te, Eureka, straw, copper sulphate, brass.
29 Para rubber, iron alum.
30 Guttapercha.
$3 \times$ Sulphur.
$32 \mathrm{Pt}, \mathrm{Ag}, \mathrm{Au}$.
33 Celluloid.
34 Indiarubber.

Shaw, Pr. Roy. Soc. 94, p. 16, 1917; the original article shows the alterations in the series sequence due to varied conditions.

TABLE 396،

AUXILIARY TABLE FOR COMPUTING WIRE RESISTANCES.

For computing resistance in ohms per meter from resistivity, ρ, in michroms per cm . cube (see Table 397, etc.). e. g. to compute for No. 23 copper wire when $\rho=1.724: 1$ meter $=0.0387+$ $.0271+.0008+.0002=0.0668$ ohms ; for No. 11 lead wire when $\rho=20.4 ;$ 1 meter $=0.0479+$ $.0010=0.0489$ ohms. The following relation allows computation for wires of other gage nuntbers : resistance in ohms per meter of $\mathrm{No} . \mathrm{N}=2(n-3)$ within I $\%: e . g$. resistance of meter of No. $18=2 \times$ No. 15 .

Gage. No.	Diam. in mm.	Section mm².	ρ in micro-ohms per cm. cube.									
			1.	2.	3.	4.	5.	6.	7.	8.	9.	10.
			Resistance of wire i meter long in ohms.									
0000	11.7	107.2	. 04933	. $\mathrm{O}_{3} 187$. $\mathrm{O}_{8} 280$.$^{0} 3373$.$_{3}{ }^{3} 66$. 0.8560	. $\mathrm{O}_{3} 653$. 03746	. $0_{3} 840$. 03933
0	9.27	67.43	. $0_{3} 148$. $3_{3} 297$. 3_{3445}	. $0_{3} 593$. $0_{3} 742$. $\mathrm{O}_{3} 890$. $\mathrm{O}_{2} 104$.$_{2} \mathrm{O}_{19}$. $\mathrm{O}_{2}{ }^{13}$.$_{2148}$
1	7.35	42.41	. 02236	. 0_{3472}	. $0_{3} 707$. $\mathrm{O}_{3} 943$. $\mathrm{O}_{2} 118$. $\mathrm{O}_{2} 141$. $\mathrm{O}_{2} 165$. $\mathrm{O}_{2} 189$.$_{2} 212$. $0_{2} 236$
3	5.83	26.67	.$_{3}{ }^{3} 75$. O_{3750}	. $\mathrm{O}_{2} 112$. $\mathrm{O}_{2} 150$.$_{2} 187$. $2_{2} 225$. $\mathrm{O}_{2} 262$. $\mathrm{O}_{2} 300$..$_{2337}$. $0_{2} 375$
5	4.62	16.77	. $0_{3} 596$. $2_{2} 119$. $0_{2} 179$. $\mathrm{O}_{2} 239$. $2_{2} 298$. $\mathrm{O}_{2} 358$. 2_{2417}	. 02477	. $0_{2} 537$.$^{2} 2596$
7	3.66	10. 55	. $0_{3} 948$. $\mathrm{O}_{2} 190$.$_{2} 284$. $\mathrm{O}_{2} 379$. 02474	. $\mathrm{O}_{2} 569$. $\mathrm{O}_{2} 664$. $\mathrm{O}_{2} 758$. $0_{2} 853$.02948
9	2.91	6.634	. $\mathrm{O}_{2} \mathrm{I}^{1} \mathrm{I}$.$_{23}{ }^{\circ 1}$.$^{\circ} 2452$. $\mathrm{O}_{2} 603$. $\mathrm{O}_{2} 754$. 02904	. 0106	. 0121	.0136	.0151
11	2.30	4.172	. $\mathrm{O}_{2} 240$. 0_{2479}	. $0_{2} 719$	-. 2959	. 0120	. 0144	. 0168	. 0192	. 0216	. 0240
13	1.83	2.624	. $0_{2} 381$. $\mathrm{O}_{2} 762$. 0114	. 0152	. 0191	. 0229	. 0267	.0305	. 0343	.0381
15	1.45	1.650	. $0_{2} 606$. 0128	. 0182	. 0242	. 0303	.0364	. 0424	. 0485	. 0545	.06о6
17	1.15	1.038	. $2_{2} 963$. 0193	. 0289	.0385	. 0492	. 0578	. 0674	. 0771	. 0867	. 0963
19	.912	. 6527	. 2153	. 0306	. 0460	.0613	. 0766	. 0919	. 1072	. 1226	. 1379	. 1532
21	.723	. 4105	. 0244	. 0487	. 073 I	. 0974	. 1218	.1462	.1705	. 1949	.2192	. 2436
23	. 373	.2582	.0.387	. 0775	. 1162	. 1549	. 1936	. 2324	. 2711	. 3098	. 3486	.3873
25	. 455	.1624	. 0616	. 1232	. 1847	. 2463	. 3079	. 3695	. 4310	. 4926	. 5542	.6158
27	. 361	. 1021	. 0979	. 1959	. 2938	. 3918	.4897	. 5877	. 6856	.7835	. 8815	. 9794
29	. 286	.0642	- 1557	. 3114	. 4671	. 6228	.7786	. 9343	1.090	1.246	1.401	1.557
31	. 227	.0404	. 2476	. 4952	. 7428	. 9904	1.238	1. 486	1.733	1.981	2.228	2.476
33	. 180	. 0254	. 3937	. 7874	1. 181	1. 575	1.968	2.362	2.756	3.150	3.543	3.937
35	.143	. 0160	. 6262	1.252	1.879	2.505	3.131	3.757	4.383	5.009	5.636	6.262
37	.113	. 0100	. 9950	1.990	2.985	3.980	4.975	5.970	6.965	7.960	8.955	9.950
39	. 090	. 0063	1.583	3.166	4.748	6.331	7.914	9.497	11.08	12.66	14.25	15.83
40	.oso	. 0050	1.996	3.992	5.988	7.984	9.980	11.98	13.97	15.97	17.96	19.96

Smithsonian Tables,

The resistivities are the values of ρ in the equation $R=\rho l / s$ ，where R is the resistance in microhms of a length $l \mathrm{~cm}$ of uniform cross section $s \mathrm{~cm}^{2}$ ．The temperature coefficient is a_{s} in the formula $K_{t}=R_{s}\left\{\mathrm{I}+a_{s}\left(b-b_{s}\right)\right\}$ ．The information of column 2 does not necessarily apply to the temperature coefficient．See also next table for tempera－ ture coefficients 0° to $100^{\circ} \mathrm{C}$ ．

Substance．	Remarks．	Tempera－ture，oc	$\underset{\mathrm{cm}}{\substack{\text { Microhm- }}}$	Refer－ ence．	Temperature coefficient．		
					t_{8}	a_{s}	Refer－ ence．
Advance．．	see constantan	－	－ 828	－	8°	－	－
Aluminum ．	see p． 334	［ 20.	2.828 0.64		18° 25	+.0039 +.0034	
＂	c．p．	－ 189.	0.64 1.53	3 3	25 100	+.0034 +.0040	4
＂	＂	－	2.62	3	500	＋．0050	4
＂	＂	＋100．	3.86	3	－	－	
＂		400.	8.0	3	－	－	－
Antimony．．	－	20. 100.	41.7 10.5	5 6	${ }^{20}$	＋．0036	5
＂	liquid	＋860．	120.	7	－	－	－
Arsenic．	diqud	\bigcirc	35.	8	－	－	－
Bismuth．	－	18.	119.0	9	20	＋．004	5
		100.	160.2	9	－		
$\xrightarrow[\text { Cadmium }]{\text { Brass．．．}}$	d	20.	7.	5	20	． 002	5
${ }_{\text {cadmium．}}$ ．	drawn	－160．	2.72 7.54	10 9	${ }^{20}$－	＋．0038	－
＂	＂	100.	9.82	9	－	－	－
＂	liquid	318.	34.1	11	－	－	－
Caesium．		－187．	5.25	12	二	－	二
＂	solid	27.	${ }_{22.2}^{19 .}$	11	二	二	－
＂	solid liquid	37.	22.2 36.6	${ }_{1}$	二	－	－
Calcium	99.57 pure	20.	4.6	14	二	＋．0036	14
Calido．．	see constantan	－	－	－	－	－	－
Chromium	－	\bigcirc ．	2.6	15	－	－	－
Climax．	－	20.	87.	5	20	＋．0007	5
Cobalt．	99.8 pure	20.	9.7	16	－	＋－	－
Constantan	$60 \% \mathrm{Cu}, 40 \% \mathrm{Ni}$	20.	49.	5	12	＋．000008	4
＂	二	－	二	二	25 100	+.000002 -.000033	4
＂	－	二	二	－	200	－．-.000020	4
＂		－	－	－	500	＋．000027	4
Copper ．	annealed	20.	1.724	1	20 see col．？	＋．00393	5
	hard－drawn	20.	1.77	1		＋．00382	5
＂	electrolytic	－206．	0.144	17	100	＋．0038	4
＂		＋205．	2.92	17	400	＋．0042	4
＂	pure ${ }^{\text {a }}$	400.	4． 10	3	1000	＋．0062	4
re	very pure，ann＇ld	20.	1.692	18	二	二	
Eureka．．．	see constantan	20.	92.	－	20 －	＋．00016	
Gallium．	－	－	53.	12	－	－	\checkmark
German silver	18\％Ni	20.	33.	5	20	＋．000．4	5
Gold．	99.9 pure	－183．	0.68	17	20	＋．0034	5
	－	\bigcirc ．	2.22	11	100 ann ${ }^{\text {＇ld }}$	＋．0025	4
＂	pure，drawn	20.	2.44	9	500 ＂＇	＋．0035	4
Ia	99.9 pure	194.5	3.77	$\underline{17}$	1000 －	＋．0049	4
Ideal．	see constantan	二	－	－	－	－	－
Indium．	－	0.	8.37	19	－	二	－
Iridium．	二	－186．	1.92	20	二	二	－
＂	－	＋10．	8.10 8.3	20	二	－	二

[^50]RESISTIVITY OF METALS AND SOME ALLOYS.

RESISTIVITY OF METALS AND SOME ALLOYS．

Substance	Remarks．	Tempera－ ature， ${ }^{\circ} \mathrm{C}$	$\underset{\mathrm{cm}}{\text { Michrom- }}$	Refer－ ence．	Temperature coefficient．		
					t_{s}	a_{8}	Refer ence．
Osmium．．．．	－	20.	60.2	3	－	－	－
Palladium．		－ 20.	11.	5	20	$+.0033$	5
＂	very pure	－ 183.	2.78 7.17	17 17	－	$+.0035$	2 C
＂	＂＂	－78．	7.17 10.21	17 17	－	－	－
．	＂＂	98.5	13.79	17	－	－	－
Platinum．	，－	20.	10.	5	20	$+.003$	5
＂	wire	－203．1	2.44	17	－	＋．0037	2 I
＂	＂	－97．5	6.87 10.06	17 17	二	－	二
＂،		100.	14.85	17	－	二	二
Potassium．	二	400.	26.	3		－	
Potassium．	二	－75．	4.0	13	二	－	－
R＂	－	55.	8.4	13	－	－	
Rhodium．	－	-186.	0.70	20	－	－	－
،．	－	－78．3	3.09	20	－	－	－
＂\quad.	－	10．	4.69 6.60	20 20	二	二	
Rubidium．	solid	－190．	2.5	13	－	－	－
＂	＂${ }^{\prime}$	0.	11.6	13	－	－	－
＂		35.	13.4	13	二	二	
Silicium．．	－	40. 20.	19．6 ${ }^{\text {58．}}$＝	13	－	二	
Silver．	99.98 pure	18.	1.629	2	20	＋．0038	
＂	electrolytic	-183.	0.390	17	25	＋．0030	4
،	＂	-78.	1.021	17	100	＋．0036	4
＂	＂	${ }_{98.15}^{0.15}$	1.468 2.062	17 17	500	＋．-0044	4
＂	＂	192.1	2.608	17	－	－	－
Sodium	solid	400.	3.77	3	二	－	
	＂،	－75．	2.8	${ }_{13}$	二	二	
＂	＂	O．	4.3	13	二	－	
＂${ }^{\text {a }}$	liquid	116．	5.4 10.2	13	二	－	－
Strontium．	－	20.	24.8	${ }^{1} 8$	二	－	
Tantalum Tellurium．	－	20.6	15.5	5	20	＋．0031	
Thallium．	pure	19.6 -183.	200，000	8	－	二	二
＂		－ 78.	4.88 11.8	17 17	二	二	二
＂	،	0.	17.60	17	－	－	－
Therlo．	＂	98.5	24.7	17	－	－	－
Tin．．．．	二	20. 20.	${ }_{11.5}$	5	20	＋．00001	5
＂	－	-184.	3.40	17	2	－	－
，	－	－78．	8.8	17	－	－	－
	－	－	13.0	17	二	－	－
Titanium．	－	$\underline{\text { 91．}} 4$	18.2 3.2	17	－		
Tungsten．		20.	5.51	29	18	＋． 0045	2
＂	$1000^{\circ} \mathrm{K}$	727.	25.3	29	500	$+.0057$	4
＂${ }^{\prime}$ ．．．	${ }^{15000}{ }^{\circ} \mathrm{K}$	1227.	4 4 .4	29	1000	＋．0089	4
＂	$3000{ }^{\circ} \mathrm{K}$	1727. 2727.	59.4 98.9	29 29	二	二	二
7．＂	$3500^{\circ} \mathrm{K}$	3227.	118.	29	－	－	－
Zinc．	trace ${ }_{6} \mathrm{Fe}$	－183．	1.62	17	20	＋．0037	5
＂	＂،	－78．	3.34	17	－	二	二
＂	＂＂	92.45	8.00	17	二	二	
	＂${ }^{\text {c }}$	191.5	10.37	17	二	二	
	liquid	440.	37.2	7	－	－	－

References to Table 397：（1）See page 334；（2）Jäger，Diesselhorst，Wiss．Abh．D．Phys．Tech．Reich．3，p．269， 1900；（3）Nicolai，1907；（4）Somerville，Phys．Rev．31，p．261，1910；33，p．77，1911；（5）Circular 74 of Bureau of Standards，1918；（6）Eucken，Gelhoff；（7）de la Rive；（8）Matthiessen；（9）Jäger，Diesselhorst；（10）Lees，1908； （II）Mean；（I2）Guntz，Broniewski；（I3）Hackspill；（14）Swisher，r917；（I5）Shukow；（I6）Reichardt，Igor； （17）Dewar，Fleming，Dickson，1898；（18）Wolff，Dellinger，1910；（19）Erhardt，188r；（20）Broniewski，Hackspill， 1911；（21）Dewar，Fleming，1893，1896；（22）Circular 58，Bureau of Standards，1916；（23）Strouhal，Barus， 1883 ； （24）Vincentini，Omodei，1890；（25）Bernini，1905；（26）Glazebrook，Phil．Mag．20，p．343，1885；（27）Grimaldi， 1888；（28）Fleming，1900；（29）Langmuir，Gen．Elec．Rev．19， 1916.

Smithsonian Tables．

The average temperature coefficients are per ${ }^{\circ} \mathrm{C}$ between 0° and $100^{\circ} \mathrm{C}$. The instantaneous pressure coefficients are the values of the derivative $(\mathrm{I} / r)\{d r / d p\}_{\ell}$, where r is the observed resistance at the pressure p and temperature t. The average coefficient is the total change of resistance between 0 and $12,000 \mathrm{~kg} / \mathrm{cm}^{2}$ divided by 12,000 and the resistance at atmospheric pressure and the temperature in question. Table taken from Proc. Nat. Acad. 3, p. 11, 1917. For coefficients at intermediate te,nperatures and pressures, see more detailed account in Proc. Amer. Acad. 52, p. 573, 1917. $\mathrm{Sn}, \mathrm{Cd}, \mathrm{Zn}, \mathrm{Kahlbaum}$'s " K " grade; Tl, Bi, electrolytic, high purity; $\mathrm{Pb}, \mathrm{Ag}, \mathrm{Au}, \mathrm{Cu}, \mathrm{Fe}, \mathrm{Pt}$, of exceptional purity. Al better than ordinary, others only of high grade commercial purity.

[^51]Additional data from P. Nat. Acad. Sc., 6, 505, 1920. Data are ro,000 \times mean pressure coefficient, $0-12,000 \mathrm{~kg}$, and $10,000 \times$ instantaneous pressure coefficient at o kg. $1=$ liquid ; $\mathbf{s}=$ solid.

$\mathrm{Li}, \mathrm{s}, \mathrm{o}^{\circ}$	$+.0772$	+ .068	$\mathrm{Ca}, \mathrm{o}^{\circ}$	+.106	$+.129$	Ti, o ${ }^{\circ}$	$\pm .001$?		
$\mathrm{Li}, 1,240^{\circ}$	$+.093$	+ .093	$\mathrm{Sr},{ }^{\circ}$	+ .680	+ + +	$\mathrm{Zr},{ }^{\circ}$	$\pm .0040$. 004
$\mathrm{Na}, \mathrm{s},{ }^{\circ}$	-. 345	-. 663	$\mathrm{Hg}, \mathrm{s}, \mathrm{o}^{\circ}$	-. 236 b		Bi, $1,275^{\circ}$. 1015		. 12
$\stackrel{\mathrm{Na}}{\mathrm{K}}$, $1,200^{\circ}$	-.436	-. 922	Hy, $1,25^{\circ}$	-.219	. 334	W,	. 0135		. 1
K, S, $1,165^{\circ}$	-. 604	- 1.86	Ga, s, ${ }^{\text {Ga, }}$, ${ }^{\circ}$	-. 0247		${ }_{\mathrm{P}}^{\mathrm{La}, \mathrm{o}^{\circ}}$	-.0331 -.81	-	

a, $0-9,000 \mathrm{~kg} ; \mathrm{b}, 7,640-12,000 \mathrm{~kg} ; \mathrm{c}, \mathrm{o}-7,000 \mathrm{~kg}$. The $\mathrm{Ga}, \mathrm{Na}, \mathrm{K}, \mathrm{Mg}, \mathrm{Hg}, \mathrm{Bi}, \mathrm{w}, \mathrm{P}$, of exceptional purity.

TABLE 399. - Resistance of Mercury and Manganin under Pressure.

Mercury, pure and free from air and with proper precautions, makes a reliable secondary electric-resistance pressure gage. For construction and manipulation see "The Measurement of High Hydrostatic Pressure; a Secondary Mercury Resistance Gauge," Pr. Am. Acad. 44, p. 221, 1919.

*This line gives the Specific Mass Resistance at 25°, the other lines the specific volume resistance.
The use of mercury as above has the advantage of being perfectly reproducible so that at any time a pressure can be measured without recourse to a fundamental standard. However, at $\circ^{\circ} \mathrm{C}$ mercury freezes at $7500 \mathrm{~kg} / \mathrm{cm}^{2}$. Manganin is suitable over a much wider range. Over a temperature range o to $50^{\circ} \mathrm{C}$ the pressure resistance relation is linear within $1 / 10$ per cent of the change of resistance up to $13,000 \mathrm{~kg} / \mathrm{cm}^{2}$. The coefficient varies slightly with the sample. Bridgman's samples (German) had values of ($\Delta R / p R_{0}$) $\times 10^{9}$ from 2295 to 2325. These are + instead of - , as with most of the above metals. See "The Measurement of Hydrostatic Pressure up to 20,000 Kilograms per Square Centimeter." Bridgman, Pr. Am. Acad. 47, p. 321, 1911.
temperature coefficients.
Conductivity in mhos or $\frac{1}{\text { ohms per } \mathrm{cm}^{3}{ }^{3}}=\gamma_{t}=\gamma_{0}\left(1-a t+b t^{2}\right)$ and resistivity in microhms-cm $=p_{t}=\rho_{0}\left(x+a t-b t^{2}\right)$.

Metals and alloys.	Composition by weight.	$\frac{\gamma_{0}}{104}$	$a \times 10^{6}$	p_{0}	-
Gold-copper-silver .	58.3 $\mathrm{Au}^{\text {+ }}$ +26.5 $\mathrm{Cu}+15.2 \mathrm{Ag}$ $66.5 \mathrm{Au}+15.4 \mathrm{Cu}+18.1 \mathrm{Ag}$ $7.4 \mathrm{Au}+78.3 \mathrm{Cu}+14.3 \mathrm{Ag}$	7.58 6.83 $28 . c 6$	$574 *$ $529 \dagger$ $1830 \ddagger$	13.2 14.6 3.6	I
Nickel-copper-zinc.	$\left\{\begin{array}{c} 12.84 \mathrm{Ni}+30.59 \mathrm{Cu}+ \\ 6.57 \mathrm{Zn} \text { by volume . . . } \end{array}\right\}$	4.92	244§	20.3	I
Brass . " hard drawn " annealed	Various . $70.2{ }^{\mathrm{Cu}}+29.8 \dot{\mathrm{Z}}^{\prime} \mathrm{n}$	12.2-15.6 12.16	$\underline{1-2 \times 10^{3}}$	$\begin{gathered} 6.4-8.4 \\ 8.2 \\ 7.0 \end{gathered}$	2 3 3
German silver	$\left\{\begin{array}{l} \text { Various } \\ 60.16 \mathrm{Cu}+25.37 \dot{\mathrm{Z}}_{\mathrm{n}}+ \\ 14.03 \mathrm{Ni}+.30 \mathrm{Fe} \text { with trace } \\ \text { of cobalt and manganese } \end{array}\right\}$	$3-5$ 3.33	360	$20 .-33$. 30.	2
Aluminum bronze .	-	7-5-8.5	$5-7 \times 10^{2}$	12-13	2
Phosphor bronze	-	10-20	-	5-10	2
Silicium bronze .	-	41	-	2.4	5
Manganese-copper.	$30 \mathrm{Mn}+70 \mathrm{Cu}$.	1.00	40	100.	4
copper	$3 \mathrm{Ni}+24 \mathrm{Mn}+73 \mathrm{Cu}$.	2.10	-30	48.	4
Nickelin		3 mOI	300	33.	4
Patent nickel	$\left\{\begin{array}{l}25 . \mathrm{INi}+74.4 \mathrm{ICu}+ \\ 0.42 \mathrm{Fe}+0.23 \mathrm{Zn+} \\ \text { o. } 3 \mathrm{Mn}+\text { trace of cobalt }\end{array}\right\}$	2.92	190	34.	4
Rheotan	$\left\{\begin{array}{c} 53.28 \mathrm{Cu}+25.3 \mathrm{INi}+ \\ 16.89 \mathrm{Zn}+4.46 \mathrm{Fe}+ \\ 0.37 \mathrm{Mn} . . \end{array}\right\}$	1.90	410	53.	4
Copper-manganeseiron.	$9 \mathrm{rCu}+7.1 \mathrm{Mn}+1.9 \mathrm{Fe}$	4.98	120	20.	5
Copper-manganeseiron .	$70.6 \mathrm{Cu}+23.2 \mathrm{Mn}+6.2 \mathrm{Fe}$	I 30	22	77.	6
Copper-mangancseiron.	$69.7 \mathrm{Cu}+29.9 \mathrm{Ni}+0.3 \mathrm{Fe}$	2.60	120	38.	7
Manganin	$8_{4} \mathrm{Cu}+12 \mathrm{Mn}+4 \mathrm{Ni}$				27
Constantan	$60 \mathrm{Cu}+40 \mathrm{Ni}$. . . .	2.04	8	49.	8

Smithsonian Tables.

CONDUCTING POWER OF ALLOYS.

This table shows the conducting power of alloys and the variation of the conducting power with temperature.* The values of C_{0} were obtained from the original results by assuming silver $=\frac{10^{6}}{1.585}$ mhos. The conductivity is taken as $C_{t}=C_{0}\left(1-a t+b t^{2}\right)$, and the range of temperature was from \circ° to $100^{\circ} \mathrm{C}$.
The table is arranged in three groups to show (x) that certain metals when melted together produce a solution which has a conductivity equal to the mean of the conductivities of the components, (2) the behavior of those metals alloyed with others, and (3) the behavior of the other metals alloyed together.
It is pomted out that, with a few exceptions, the percentage variation between on and 100° can be calculated from the formula $P=P_{c} \frac{l}{l}$, where l is the observed and l the calculated conducting power of the mixture at $100^{\circ} \mathrm{C}$., and P_{c} is the calculated mean variation of the metals mixed.

Alloys.	Weight \%	Volume \%		$a \times 1{ }_{10}{ }^{8}$	6×10^{9}	Variation per $100^{\circ} \mathrm{C}$.	
	of first named.					Observed.	Calculated.
Group 1.							
$\mathrm{Sn}_{6} \mathrm{~Pb}$.	77.04	83.96	$7 \cdot 57$	3890	8670	30.18	29.67
$\mathrm{Sn}_{4} \mathrm{Cd} . .$.	82.41	83.10	9.18	4080	11870	28.89	30.03
Sn Zn . . .	78.06	77.71	10.56	3880	8720	30.12	$\because 30.16$
PbSn	64.13	53.41	6.40	3780	8420	29.41	29.10
ZnCd_{2}. . . .	24.76	26.06	16.16	3780	8000	29.86	29.67
SnCd_{4}.	23.05	23.50	13.67	3850	9410	29.08	30.25
CdPb_{6}.	$7 \cdot 37$	10.57	5.78	3500	7270	27.74	27.60
$\cdots \quad$ Group 2.							
Lead-silver $\left(\mathrm{Pb}_{20} \mathrm{Ag}\right)$ Lead-silver (PbAg) Lead-silver (PbAg_{2})	95.05	94.64	5.60	3630	7960	28.24	$\therefore 19.96$
	48.97	46.90	8.03	1960	3100	16.53	$\begin{array}{r}7.73 \\ \hline\end{array}$
	32.44	30.64	13.80	1990	2600	17.36	10.42
$\underset{"}{\text { Tin-gold }} \underset{\left(\mathrm{Sn}_{5} \mathrm{Au}\right)}{\left(\mathrm{Sn}_{12} \mathrm{Au}\right)} .$	77.94	90.32	5.20 '	3080	6640	24.20	14.83
	59.54	79.54	3.03	2920	6300	22.90	$5 \cdot 95$
$\left.\begin{array}{cccccc}\text { Tin-copper } & . & . & . & \\ " & \text { cher } & \dagger & . & . & .\end{array}\right)$	92.24	93.57	7.59	3680	8130	28.71	19.76
	80.58	83.60	8.05	3330	6840	26.24	14.57
	12.49	14.91	$5 \cdot 57$	547	294	5.18	3.99
	10.30	12.35	6.41	666	1185	5.48	4.46
	9.67	11.6 I	7.64	691	304	6.60	5.22
	$4 \cdot 96$	6.02	12.44	995	705	9.25	7.83
	1.15	1.41	39.41	2670	5070	21.74	20.53
$\underset{\text { Tin-silver . . . }}{ }$	91.30	96.52		3820	8190		
	53.85	$75 \cdot 51$	8.65	3770	8550	29.18	I 1.89
	36.70	42.06	13.75	1370	I 340	12.40	
	25.00	29.45	13.70	1270	1240	1 I .49	10.08
	16.53	23.61	13.44	1880	1800	12.80	12.30
	8.89	10.88	29.61	2040	3030	17.41	17.42
	4.06	5.03	38.09	2470	4100	20.61	20.62

Note. - Barus, in the "Am. Jour. of Sci." vol. 36, has pointed out that the temperature variation of platinum alloys containing less than 10% of the other metal can be nearly expressed by an equation $y=\frac{n}{x}-m$, where y is the temperature coefficient and x the specific resistance, m and n being constants. If a be the temperature coefficient at $\circ^{\circ} \mathrm{C}$. and s the corresponding specific resistance, $s(a+m)=n$.

For platinum alloys Barus's experiments gave $m=-.000194$ and $n=.0378$.
For steel $m=-.000303$ and $n=.0620$.
Matthiessen's experiments reduced by Barus gave for
Gold alloys $m=-.000045, n=.0072$ 1.
Silver "، $m=-.000112, n=.00538$.
Copper " m 三二..000386, $n=.00055$.

* From the experiments of Matthiessen and Vogt, "Phil. Trans. R. S." v. 154.
\dagger Hard-drawn.
Bmithsonian Tables.

TABLE 401. - Conducting Power of Alloys.

Grour 3.							
Alloys.	Weight \%	Volume \%	$\frac{C_{0}}{10^{4}}$	$a \times 10^{6}$	6×10^{0}	Variation per $100^{\circ} \mathrm{C}$.	
	of first named.					Observed.	Calculated.
Gold-copper \dagger. . . .	99.23 90.55	98.36 81.66	35.42 10.16	2650	4650	21.87	23.22
" ${ }^{\text {¢ }}$ - . .	90.55		10.16	749	81	7.41	7.53
$\underset{\text { Gold-silver }}{\text { ¢ }}{ }_{\text {¢ }}{ }_{\text {* }}$. . . .	87.95	79.86	13.46	1090	793	10.09	9.65
" ${ }^{\text {c }}$ " ${ }^{\text {c }}$	87.95	79.86	13.61	1140	1160	10.21	9.59
" ${ }_{\text {" }}$ " $\quad \dagger$.	64.80	52.08	9.48	673	246	6.49	6.58
	64.80	52.08	$9 \cdot 51$	721	495	-6.71	6.42
" ${ }^{\prime}$	3 3 .33	19.86	13.69	885	53 I	8.23	8.62
" ${ }^{\text {* }}$. .	31.33		13.73	908	641	8.44	8.31
	34.83	19.17	12.94	864	570	8.07	8.18
" " \dagger. . .	1.52	0.71	53.02	3320	7300	25.90	25.86
$\underset{\text { Platinum-silver } \dagger \text { ¢ }}{ }{ }_{\text {¢ }}$.	33.33	19.65	4.22	330	208	3.10	
	9.81	5.05	11.38	774	656	7.08	7.25
" " \quad.	5.00	2.51	19.96	1240	1150	11.29	11.88
Palladium-silver \dagger.	25.00	23.28	$5 \cdot 38$	324	154	$3 \cdot 40$	4.21
Copper-silver \dagger. . .	98.08	98.35	56.49	3450	7990	26.50	27.30
	94.40	95.17	51.93	3250	6940	25.57	25.41
" ${ }^{\prime}$	76.74	77.64	44.06	3030	6070	24.29	21.92
" ${ }^{\prime}$	42.75	46.67	47.29	2870	5280	22.75	24.00
	7.14	8.25	50.65	2750	4360	23.17	25.57
" " \dagger.	1.31	1.53	50.30	4120	8740	26.51	29.77
	13.59	27.93	1.73	3490	7010	27.92	14.70
" " \dagger. . . .	9.80	21.18	1.26	2970	1220	17.55	11.20
" " \dagger. . . .	4.76	10.96	I. 46	487	103	3.84	13.40
Iron-copper \dagger.	0.40	0.46	24.51	${ }^{1} 550$	2090	13.44	14.03
Phosphorus-copper \dagger.	2.50	-	4.62	$\begin{array}{r}476 \\ \\ \hline\end{array} 320$		-	-
$\dagger \text {. }$	0.95	-	14.91	1320	1640	-	-
Arsenic-copper \dagger.		-		516	989	-	-
" " \dagger.	2.80	-	8.12	736	446	-	-
" ${ }^{\text {c }} \dagger$.	trace	-	38.52	2640	4830	-	-

* Annealed.
\dagger Hard-drawn.

TABLE 402. - Allowable Carrying Capacity of Rubber-covered Copper Wires.

(For inside wiring - Nat. Board Fire Underwriters' Rules.)

B + S Gage	18	16	14	12	10	8	6	5	4	3	2	1	0	∞	0000
A mperes	3	6	12	17	24	33	46	54	65	76	90	107	127	150	210

500,000 circ. mills, $390 \mathrm{amp} . ; 1,000,000 \mathrm{c} . \mathrm{m} ., 650 \mathrm{amp} . ; 2,000,000 \mathrm{c} . \mathrm{m} ., 1,050 \mathrm{ampp}$ For insulated al. wire, capacity $=84 \%$ of cu . Preece gives as formula for fusion of bare wires $I=\operatorname{ad}^{\frac{3}{2}}$, where $d=$ diam. in inches, a for cu. is 10,244 ; al., $75 S_{5} ;$ pt., 5172 ; German silver, 5230 ; platinoid, 4750 ; $\mathrm{Fe}, 3148$; Pb., I 379 ; alloy 2 pts . Pb., I of Sn ., 1318.

RESISTIVITIES AT HIGH AND LOW TEMPERATURES.

The electrical resistivity (ρ, ohms per cm . cube) of good conductors depends greatly on chemical purity. Slight contamination even with metals of lower ρ may greatly increase ρ. Solid solutions of good conductors generally have higher ρ than components. Reverse is true of bad conductors. In solid state allotropic and crystalline fornis grearly modify ρ. For liquid metals this last cause of variability disappears. The + temperature coefficients of pure metals is of the same order as the coefficients of expansion of gases. For temperature resistance (t, ρ) plut at low temperatures the graph is convex towards the axis of t and probably approaches tangency to it. However for extremely low temperatures Ounes finds very sudden and great drops in ρ. e.g. for Mercury, $\rho_{3.6 \mathrm{~K}}<4 \times 10^{-10} \rho_{\mathrm{o}}$ and for Sn ., $\rho_{3.8 \mathrm{~K}}<{ }^{-10^{-7} \rho_{\mathrm{o}}}$. The t, ρ graph for an alloy may be nearly parallel to the t axis, cf. constantan ; for poor conductors ρ may decrease with increasing t. At the melting-points there are three types of behavior of good conductors: those about doubling ρ and then possessing nearly linear t, ρ graphs (Al., Cu., Sn., Au., Ag., Pb.); those where ρ suddenly increases and then the + temp. coefficient is only approximately constant ; (Hg., Na., K .); those about doubling ρ then having a - , slowly changing to a + temp. coef. (Zn., Cd .) ; those where ρ suddenly decreases and thereafter steadily increases (Sb., Bi.). The values from different authornties do not necessarily fit because of different samples of metals. The Shimank values (t given to tenths of ${ }^{\circ}$) are for material of theoretical purity and are determined by the a rule (see his paper, also Nernst, Ann. d Phys. 36 , p. 403 , 1911 for temperature resistance thermometry). The Shimank and Pirrani values are originally given as ratios to ρ_{0}. (Ann. d. Phys. 45, p. $706,1914,46$, p. 176, 1915.) Resistivities are in ohms per cm. cube unless stated. Italicized figures indicate liquid state.

Gold.			Copper.			Silver.			Zinc.		
${ }^{\circ} \mathrm{C}$.	ρ_{t}	$\frac{\rho_{t}}{\rho_{0}}$	${ }^{\circ} \mathrm{C}$.	ρ_{t}	$\stackrel{\rho_{t}}{\rho_{0}}$	${ }^{\circ} \mathrm{C}$.	$\rho_{\text {t }}$	$\frac{\rho_{t}}{\rho_{0}}$	${ }^{\circ} \mathrm{C}$.	ρ_{t}	$\mathrm{\rho}_{\mathrm{f}}$
-252.8	0.018	. 0081	-258.6	0.014	.0091	-258.6	0.009	. 0057	-252.9	. 0511	. 0089
-200.	.601	. 267	-252.8	. 016	. 0103	-252.8	. 014	. 0090	-200.	1.39	. 242
-192.5	. 520	. 231	-251.1	. 028	. 0178	-189.5	. 334	. 222	-191.1	1.23	. 214
-150.	. 997	. 444	-206.6	.163	. 1035	-200.	-357	. 237	-150.	2.00	. 348
-100. -77.6	1.400 1.564	. 623	-192.9 -150	. 249	.1580 .359	-150. -100.	. 638	. 424	-100.	2.90	. 504
-77.6	1.564	. 6806	-150.	. 567	- 359	-100.	. 916	. 608	- 77.8	3.97	. 691
-50. 0. 0.	1.813 2.247	.806 1.00	-100. -50.	.904 1.240	.573 .786	-76.8 -50.	1.040 1.212	. 680	- 50.	4.04	. 703
100.	2.97	1.32	o.	1.578	1.00	O.	1.506	1.00	10.	5.75 7.95	1.00 1.38
200.	3.83	1.70	100.	2.28	1.44	100.	2.15	1.43	300.	13.25	2.30
500.	6.62	2.94	200.	2.96	. 8.88	200.	2.80	1.86	415.	17.00	2.96
750.	9.35	4.16	500.	5.08	3.22	400.	3.46	2.30	427.	37.30	6.49
1000.	12.54	5.58	750.	7.03	4.46	750.	6.65	4.42	450.	37.08	6.46
1063.	13.50	6.01	1000.	9.42	5.97	960.	8.4	5.58	500.	36.60	6.36
1063.	30.82	13.7	${ }^{108} 3$.	10.20	6.47	960.	16.6	IT.O	600.	35.90	6.25
1200.	32.8	14.6	1083.	21.30	13.5	1000.	17.01	11.3	700.	35.60	0.19
1400.	35.6	15.8	1200.	22.30	14.1	1200.	19.36	12.9	800.	35.60	6. 19
${ }^{1500}$.	37.0	16.5	1400. 1500.	23.86	15.1 15.6	1400.	21.72	14.4	850.	35.74	6.21
			1500.	24.62	15.6	1500.	23.0	15.3			
Mercury.			Potassium.			Sodium.			Iron.		
${ }^{\circ} \mathrm{C}$.	ρ_{t}	$\rho_{\underline{t}}$	${ }^{\circ} \mathrm{C}$	P_{t}	$\rho_{\text {t }}$	${ }^{\circ} \mathrm{C}$.	ρ_{t}	$\mathrm{P}_{\mathbf{t}}$	${ }^{\circ} \mathrm{C}$.	ρ_{t}	ρ_{t}
$\begin{gathered} -200 . \\ -150 . \\ -100 . \\ -50 . \end{gathered}$	$5 \cdot 38$. 057	-200.	1.720	. 246	-200.	0.605	- 37	-252.7	0.011	. 0010
	10.30	.109	-150.	2.654	. 379		1.455	. 330	-200.	2.27	. 212
	15.42	. 164	-100.	3.724	. 532	-100.	2.380	. 541	-192.5	. 844	. 079
	21.4	. 227	50.	5.124	. 732	-50.	3.365	. 764	-100.	5.92	. 554
-30.o.	91.7	. 975	o.	7.000	1.00	o.	4.40	1.000	-75.1	6.43	. 602
	94.1	1.000	20.	7.116	1.016	20.	4.873	1.107	- 50.	8.15	. 763
50.100.	98.3	1.045	60.	8.790	1.256	93.5	6.290	1.429	- 0.	10.68	1.00
	103.1	1.096	65.	13.40	1.914	100.	9.220	2.095	100.	16.61	1.554
200.300.	114.0	1.212	100.	15.31	2.187	120.	9.724	2.209	200.	24.50	2.293
	127.0	1.350	120.	16.70	2.380	140.	10.34	2.349	400.	43.29	4.052
Manganin.			German Silver.			Constantan.			$90 \% \mathrm{Pt} . \quad 10 \% \mathrm{Rh}$.		
${ }^{\circ} \mathrm{C}$.	ρ_{t}	$\frac{\rho_{t}}{\rho_{0}}$	${ }^{\circ} \mathrm{C}$.	ρ_{t}	$\frac{\rho_{\mathrm{t}}}{\rho_{0}}$	${ }^{\circ} \mathrm{C}$.	ρ_{t}	$\frac{\rho_{t}}{\rho_{0}}$	${ }^{\circ} \mathrm{C}$.	ρ_{t}	$\frac{\rho_{\mathrm{t}}}{\rho_{0}}$
-200.-150.			-200.			-200.					
	38.2	. 985	-150.	28.7	.957	-150.	43.0	. 975	-150.	16.29	. 770
-100.-50.	38.5	. 992	-ron.	29.3	-97?	-100.	43.5	. 986	-100.	18.05	. 854
					. 990				- 50.	19.66	. 930
0.	38.8	1.000	0.	30.0	1.000	o.	44.1	1.coo	\%.	21.14	1.000
100.400.	38.9	1.003	100.	33.1	1.103	100.	44.6	1.012	100.	24.20	1.145
	38.3	. 987				400.	44.8	1.016			

Au. below \mathbf{o}°, Niccolai, Lincei Rend. (5), 16, p. 757, 906, 1907; above, Northrup, Jour. Franklin Inst. 177, p. 85, 1914. Cu . below, Niccolai, l. c. above, Norihrup, ditto, 177. p. 1, 1914. Ag. below, Niccolai, I. c. above Northrıp. ditto, 178, p. 85 , 1914. Zn. below, Dewar, Fleming, Phil. Mag. 36, p. 271 1, 1893 ; above, Northrup, 175, p. 153.1913 . Hg. below Dewar, Fleming, Proc. Roy. Soc. 66, p. 76, 1900 ; above, Northrup, see Cd. K. below Guntz, Broniewski. C. R. 147, p. ${ }^{1474}, 1008$, 148, p. 204, 1909. Above, Northrup, Tr. Am. Electroch. Soc. p. 185, 1911 . Na, below, means, above, see K. Fe., Manganin, Constantan. Niccolai, l.c. German Silver, 90% Pt. 90% Rh., Dewar and Fleming - Phil. Mag. 36, p. 271, 1893.

Table 403 (continued).
RESISTIVITIES AT HIGH AND LOW TEMPERATURES.
(Ohms per cm. cube unless stated otherwise.)

Pt. low, Nernst, 1. c. high, Pirrani, Ber. Dentsch. Phvs. Ges. 12, p. 305, Pb. low, Schimank, Nernst, 1. c. high. Northrup, see Zn. Bi. low, means, high, Northrup, see Zn. Cd. low, Euchen, Gehlhoff, Verh. Deutsch. Phys. Ges. 14, p. 169, 1912, high, Northrup, see Zn. Sn. low, Dewar, Fleming, high, Northrup, see Zn. Carbon, graphite, Metallurg. Ch. Fing. 13, p. 23, 1915. Silica, Campbell, Nat. Phys. Lab. 11, p. 207, 1914. Alundum, Metallurg. Ch. Eng. 12, p. 125, 1914.

* Diamond $1030^{\circ} \mathrm{C}, \rho>10^{7} ; 1380^{\circ}, 7.5 \times 10^{5}, \mathrm{v}$. Wartenberg, 1912.

TABLE 404.-Volume and Surface Resistivity of Solid Dielectrics.

The resistance between two conductors insulated by a solid dielectric depends both upon the surface resistance and the volume resistance of the insulator. The volume resistivity, ρ, is the resistance between tuo opposite faces of a centimeter cube. The surface resistivity, σ, is the resistance between two opposite edges of a centimeter square of the surface. The surface resistivity usually varies through a wide range with the humidity. (Curtis, Bul. Bur. Standards, 11, 359, 1915, which see for discussion and data for many additional materials.)

Material.	σ; megohms 50% humidity	σ; megohms 70% humidity.	$\boldsymbol{\sigma}$: megohms 90 \% humidity.	$\mathrm{Megohms-cms.}^{\rho}$
Amber	6×10^{8}	2×10^{8}	1×10^{5}	5×10^{10}
Beeswax, yellow .	6×10^{8}	6×10^{8}	5×10^{8}	2×10^{9}
Celluloid . .	5×10^{4}	2×10^{4}	2×10^{8}	2×10^{4}
Fiber, red	2×10^{4}	3×10^{3}	2×10^{2}	5×10^{3}
Glass, plate	5×10^{4}	6×10	2×10	$2 \times 10^{\circ}$
" Kavalier	4×10^{6}	4×10^{3}	1×10^{3}	8×10^{9}
Hard rubber, new	3×10^{9}	1×10^{8}	2×10^{8}	1×10^{12}
I vory	5×10^{3}	1×10^{8}	3×10	2×10^{2}
Khotinsky cement	7×10^{8}	3×10^{8}	5×10^{5}	2×10^{9}
Marble, Italian .	3×10^{8}	2×10^{2}	2×10	1×10^{5}
Mica, colorless	2×10^{7}	4×10^{5}	8×10^{3}	2×10^{11}
Paraffin (parowax)	9×10^{9}	7×10^{9}	6×10^{9}	1×10^{10}
Porcelain, unglazed	6×10^{5}	7×10^{3}	5×10	3×10^{8}
Quartz, fused	3×10^{6}	2×10^{8}	2×10^{2}	5×10^{12}
Rosin . .	6×10^{8}	3×10^{8}	2×10^{8}	5×10^{10}
Sealing wax	2×10^{9}	6×10^{8}	9×10^{7}	5×10^{9}
Shellac	6×10^{7}	3×10^{6}	7×10^{8}	1×10^{17}
Slate :	9×10	3×10	1×10	1×10^{2}
Sulphur	7×10^{9}	4×10^{9}	1×10^{8}	1×10^{11}
Wood, parafined mahogany . .	4×10^{6}	5×10^{5}	7×10^{8}	4×10^{7}

Smithsonian Tables.

TABLE 405.-Variation of Electrical Resistance of Glass and Porcelain with Temperature.
The following table gives the values of a, b, and c in the equation

$$
\log R=a+b t+c t^{2}
$$

where R is the specific resistance expressed in ohms, that is, the resistance in ohms per centimeter of a rod one square centimeter in cross section.*

No.	Kind of glass.	Density.	a	b	c	Range of temp. Centigrade.
1	Test-tube glass	-	13.86	-. 044	. 000065	$0^{\circ}-250^{\circ}$
2	" " "	2.458	14.24	-. 055	. 0001	37-131
3	Bohemian glass	2.43	16.21	-. 043	. 0000394	60-174
4	Lime glass (Japanese manufacture) .	2.55	13.14	-.031	-. 000021	$10-85$
5	"	2.499	14.002	-. 025	-.00006	35-95
6	Soda-lime glass (French flask)	2.533	14.58	-. 049	. 000075	45-120
7	Potash-soda lime glass . . .	2.58	16.34	-. 0425	.0000364	66-193
8	Arsenic enamel flint glass	3.07	18.17	-. 055	. 000088	105-135
9	Flint glass (Thomson's electrometer jar)	3.172	18.021	-. 036	-.0000091	100-200
10	Porcelain (white evaporating dish) .	-	15.65	-. 042	. 00005	68-290

Composition of some of the above Sprcimens of Glass.

* T. Gray, " Phil. Mag." 1880 , and " Proc. Roy. Soc." $188 \mathbf{2}$.

TABLE 405a. - Temperature Resistance Coefficients of Class, Porcelain and Quartz dr/dt.

Temperature.	450°	500°	575°	600°	700°	750°	800°	900°	$1000{ }^{\circ}$
Glass	-32.	-6.	-1.5	-. 8		-0.1	-0.06	-	-
Porcelain.		-	-16.	-9.8	-2.8	-1. 6	$-.70$	-0.30	-0.12
Quartz. .	-	-	-		-	-10.	-6.40	-2.60	-1.00

Somerville, Physical Review, 3 1, p. 261, 1910.

Smithsonian Tables.

Table 406.
TABULAR COMPARISON OF WIRE GAGES.

*The Steel Wire Gage is the same gage which has been known by the various names: "Washburn and Moen," "Roebling," "American Steel and Wire Co.'s." Its abbreviation should be written "Stl. W. G.," to distinguish it from "S. W. G.," the usual abbreviation for the (British) Standard Wire Gage.
\dagger The American Wire Gage sizes have been rounded off to the usual limits of commercial accuracy. They are given to four significant figures in Tables 410 to 413. They can be calculated with any desired accuracy, being based upon a simple mathematical law. The diameter of No. 0000 is defined as 0.4600 inch and of No. 36 as 0.0050 inch. The ratio of any diameter to the diameter of the next greater number $\sqrt[39]{\frac{.4600}{.050}}=\mathbf{8 . 1 2 2 9 3 2 2}$.
Taken from Circular No. 3r. Copper Wire Tables, U.S. Bureau of Standards which contains more complete tables.
Smithsonian Tables.

Tables 407-413. WIRE TABLES.

TABLE 407. - Introduction. Mass and Volume Resistivity of Copper and Aluminum.

The following wire tables are abridged from those prepared by the Bureau of Standards at the request and with the coöperation of the Standards Committee of the American Institute of Electrical Engineers (Circular No. 3I of the Bureau of Standards). The standard of copper resistance used is "The International Annealed Copper Standard" as adopted Sept. 5, 1913, by the International Electrotechnical Commission and represents the average commercial high-conductivity copper for the purpose of electric conductors. This standard corresponds to a conductivity of $58 . \times 10^{-5} \mathrm{cgs}$. units, and a density of 8.89 , at $20^{\circ} \mathrm{C}$.

In the various units of mass resistivity and volume resistivity this may be stated as

$$
\begin{aligned}
& 0.15328 \text { ohm (meter, gram) at } 20^{\circ} \mathrm{C} \text {. } \\
& 857.20 \text { ohms (mile, pound) at } 20^{\circ} \mathrm{C} \text {. } \\
& 1.7241 \text { microhm-cm. at } 20^{\circ} \mathrm{C} \text {. } \\
& 0.67899 \text { microhmmeinch at } 20^{\circ} \mathrm{C} \text {. } \\
& 10.37 \mathrm{t} \text { ohms (mil, foot) at } 20^{\circ} \mathrm{C} \text {. }
\end{aligned}
$$

The temperature coefficient for this particular resistivity is $\alpha_{20}=0.00393$ or $\alpha_{0}=0.00427$. The temperature coefficient of copper is proportional to the conductivity, so that where the conductivity is known the temperature coefficient may be calculated, and vice-versa. Thus the next table shows the temperature coefficients of copper having various percentages of the standard conductivity. A consequence of this relation is that the change of resistivity per degree is constant, independent of the sample of copper and independent of the temperature of reference. This re-sistivity-temperature constant, for volume resistivity and Centigrade degrees, is 0.00681 michromcm ., and for mass resistivity is 0.000597 ohm (meter, gram).
The density of 8.89 grams per cubic centimeter at $20^{\circ} \mathrm{C}$., is equivalent to 0.32117 pounds per cubic inch.
The values in the following tables are for annealed copper of standard resistivity. The user of the tables must apply the proper correction for copper of other resistivity. Hard-drawn copper may be taken as about 2.7 per cent higher resistivity than annealed copper.
The following is a fair average of the chemical content of commercial high conductivity copper:

Copper	99.91\%	Sulphur......... 0.002\%
Silver.	. 03	Iron 002
Oxygen	. 052	Nickel Trace
Arsenic	. 002	Lead
Antimony	. 002	Zinc

The following values are consistent with the data above:

$$
\begin{aligned}
& \text { Conductivity at } 0^{\circ} \text { C., in c.g.s. electromagnetic units } 62.969 \times 10^{-5} \\
& \text { Resistivity at } \circ^{\circ} \mathrm{C} \text {., in michroms-cms. } 1.588 \text { I } \\
& \text { Density at } 0^{\circ} \text { C... } 8.90 \\
& \text { Coefficient of linear expansion per degree C............................ } 0.000017 \\
& \text { "Constant mass " temperature coefficient of resistance at } 0^{\circ} \text { C. } 0.00427
\end{aligned}
$$

The aluminum tables are based on a figure for the conductivity published by the U.S. Bureau of Standards, which is the result of many thousands of determinations by the Aluminum Company of America. A volume resistivity of 2.828 michrom-cm., and a density of 2.70 may be considered to be good average values for commercial hard-drawn aluminum. These values give:

Mass resistivity, in ohms (meter, gram) at $20^{\circ} \mathrm{C}$ (mile, pound) at $20^{\circ} \mathrm{C}$	
Mass per cent conductivity	
Volume resistivity, in michro	
in microhm	
Volume per cent conductivity	61.0
Density, in grams per cubic c	
Density, in pounds per cubic inch	0.097

The average chemical content of commercial aluminum wire is

Aluminum

99.57%

Iron ... 0.14
Smithsonian Tables.

Tables 408, 409.
COPPER WIRE TABLES.
TABLE 408. - Temperature Coeftioients of Copper for Different Initial Temperatures (Centigrade) and Different Condnotivities.

$\begin{aligned} & \text { Ohms } \\ & \text { (meter. gram) } \\ & \text { at } 20^{\circ} \mathrm{C} \text {. } \end{aligned}$	Per cent conductivity.	a_{0}	a_{15}	a_{20}	α_{25}	a_{30}	a_{50}
0.16134 .15966	95% 96%	0.00403 .00408	$\begin{array}{r} 0.00380 \\ .00385 \end{array}$	0.00373 .00377	0.00367 .00370	0.00360 .00364	$\begin{array}{r} 0.00336 \\ .00339 \end{array}$
.15802 .15753	97% 97.3%	$\begin{aligned} & .00413 \\ & .00414 \end{aligned}$		$\begin{array}{r} .0038 \mathrm{x} \\ .00382 \end{array}$	$\begin{aligned} & .00374 \\ & .00375 \end{aligned}$.00367 .00368	$\begin{aligned} & \text { Cos } 42 \\ & . c o 3 ~ 43 \end{aligned}$
.15640 .15482	$\begin{aligned} & \mathbf{9 8 \%} \\ & \mathbf{9 9 \%} \end{aligned}$.004 17	.00393 .00397	.00385 .00389	$\begin{array}{r} .00378 \\ .00388 \end{array}$	$\begin{aligned} & . \infty 371 \\ & . \infty 374 \end{aligned}$	$\begin{aligned} & .00345 \\ & .00348 \end{aligned}$
$\begin{array}{r} 15328 \\ .15176 \end{array}$	$\begin{aligned} & 100 \% \\ & 101 \% \end{aligned}$	$\begin{array}{r} .00427 \\ .00431 \end{array}$	$\begin{aligned} & .004 \text { OI } \\ & .00405 \end{aligned}$	$\begin{array}{r} .00393 \\ .00397 \end{array}$	$\begin{aligned} & .00385 \\ & .00389 \end{aligned}$	$\begin{array}{r} .00378 \\ .00382 \end{array}$	$\begin{aligned} & .00352 \\ & .00355 \end{aligned}$

Note. - The fundamental relation between resistance and temperature is the following:

$$
\mathrm{R}_{\mathrm{t}}=\mathrm{R}_{\mathrm{t}_{1}}\left(\mathrm{I}+\alpha_{\mathrm{t}_{1}}\left[\mathrm{t}-\mathrm{t}_{1}\right]\right)
$$

where $a_{t_{1}}$ is the "temperature coefficient," and t_{1} is the "initial temperature" or "temperature of reference."
The values of a in the above table exhibit the fact that the temperature coefficient of copper is proportional to the conductivity. The table was calculated by means of the following formula, which holds for any per cent conductivity, n, within commercial ranges, and for centigrade temperatures. (n is considered to be expressed decimally: e.g., if per cent conductivity $=99$ per cent, $n=0.99$.)

$$
a_{t_{1}}=\frac{1}{\frac{1}{n(0.00393)}+\left(t_{1}-20\right)}
$$

TABLE 409. - Reduction of Observations to Standard Temperature. (Copper.)

Temperature C.	Corrections to reduce Resistivity to $20^{\circ} \mathrm{C}$.				Factors to reduce Resistance to $20^{\circ} \mathrm{C}$.			Temperature C.
	Ohm (meter, gram).	$\underset{\mathrm{cm} .}{\text { Microhm- }}$	Ohm (mile, pound).	Microhm inch.	For 96 per cent conductivity.	For 98 per cent conductivity.	For 100 per cent conductivity.	
\bigcirc	+0.011 94	+0.1361	+ 68.20	+0.053 58	1.0816	1.0834	1.0853	
5	+ . 00896	+.1021	+ 51.15	+.040 18	1.0600	1.0613	1.0626	5
10	+.005 97	+.068r	+ 34.10	+.026 79	1.0392	1.0401	1.0409	
11	+.00537	+.0612	+ 30.69	+.024 II	1.0352	1.0359	1.0367	II
12	+.004 78	+. 0544	a $+\quad 27.28$ $+\quad 237$	+.02143	1.0311	1.0318	1.0325	12
13	+.00418	+. 0476	+ 23.87	+.018 75	1.0271	1.0277	1.0283	13
14	+.003 58	+. 0408	+ 20.46	+.016 c7	1.0232	1.0237	1.0242	14
15 16	($+\quad .00299$ +.00239	+.0340 .+ .0272	$+\quad 17.05$ $+\quad 13.64$	+.01340 $+\quad .01072$	1.0192 1.0153	1.0196 $\mathbf{1 . 0 1 5 6}$	1.0200 1.0160	15 16
							1.0119	
17 18	+ .00179	+.0204 +.0136	10.23 $+\quad 6.82$	+.00804 +.00536	1.01144 1.0076	1.0117 1.0078	1.0179 1.0079	18
19	+.00060	+. .0068	+ 3.4 I	+.00268	1.0038	1.0039	1.0039	19
20	-	-	-	-	1.0000	1.0000	1.0000	20
21	-. 00000	-. 0068	- 3.41	-.002 68	0.9962	c. 9962	0.9961	21
22	-. .001 19	-. .0136	- 6.82	-. .00536	. 9925	. 9924	. 9922	22
23	-. .001 79	-. 0204	- 10.23	-. .008 04	. 9888			23
24 25	- .002 398	- . 0272	$\begin{array}{r}1 \\ -\quad 13.64 \\ -\quad 17.05 \\ \hline\end{array}$	-. 0101072	.9851	.9848	. 98885	24 25
26	-. 00358	-. 0408	- 20.46	-. .01607	. 9779	. 9774	. 9770	26
27	-. 00418	-. 0476	- 23.87	-. .01875	. 9743	. 9737	. 9732	27
28	-. .00478	-. 0544	- 27.28	-. 02143	. 9707	. 9701	.9695	28
29	-. .005 37	-. 0612	- 30.69	-. 02411	. 9672	. 9665	. 9658	29
30	-.005 97	-. 0688 r	- 34.10	-. 02679	.9636	.9629	. 96222	30 35
35	-.008 96	-. 102 I	- 51.15	-. 04018	. 9464		.9443	35
40	-. .ori 94	- . 136 r	- 68.20	- . 05358	. 9298	. 9285	. 9271	40
45	-. 01493	-.1701	- 88.25	- . 068698	.9138	. 81896	. 89.105	45 50
50	-. 01792	-. 2042	-102.30	-. .080 37	. 8983	. 8964		50
		-. 2382	- 119.35	-.093 76				
60 65	- .02389 -.02687	- .2722 -.3062	- 136.40 -153.45	-. 107116	$\begin{aligned} & .8689 \\ & .8549 \end{aligned}$	$\begin{aligned} & .8665 \\ & .8523 \end{aligned}$	$\begin{aligned} & .8642 \\ & .8497 \end{aligned}$	$\begin{aligned} & 60 \\ & 65 \end{aligned}$
	-. .22687							
70	-. 02986	-. 3403	-170.50	-. 13395	$\begin{aligned} & .8413 \\ & 828 x \end{aligned}$	$\begin{aligned} & .8385 \\ & .8252 \end{aligned}$	$\begin{aligned} & .8358 \\ & .8223 \end{aligned}$	70 75
75	-. .03285	-. 3743	- 187.55	-. 14734	.8281			75

WIRE TABLE, STANDARD ANNEALED COPPER.

American Wire Gage (B. © S.). English Units.

$\begin{aligned} & \text { Gage } \\ & \text { No. } \end{aligned}$	Diameter in Mils. at $20^{\circ} \mathrm{C}$.	Cross-Section at $20^{\circ} \mathrm{C}$.		Ohms per 1000 Feet.*			
		Circular Mils.	Square Inches.	$\left(=0^{\circ} \mathrm{C}\right.$	$\begin{aligned} & \quad 200 \mathrm{C} \\ & (=680 \mathrm{~F}) \end{aligned}$	$\left(\begin{array}{c} 50^{\circ} \mathrm{C} \\ \left.={ }_{122^{\circ}} \mathrm{F}\right) \end{array}\right.$	$\left(\begin{array}{l} 75^{\circ} \mathrm{C} \\ \left.=167^{\circ} \mathrm{F}\right) \end{array}\right.$
0000	460.0	211600.	0.1662	0.04516	0.049 OI	0.05479	0.05961
000	409.6	167800.	. 1318	.05695	. 06180	. 06909	. 07516
00	364.8	133100.	. 1045	. 0718 I	. 07793	. 08712	. 09478
0	324.9	105500.	.082 S9	. 09055	. 09827	. 1099	. 1195
1	289.3	83690.	. 06573	. 1142	. 1239	. 13 S 5	. 1507
2	257.6	66370.	. 05213	. 1440	. 1563	. 1747	. 1900
3	229.4	52640.	. 04134	.1816	. 1970	. 2203	. 2396
4	204.3	41740.	. 03278	. 2289	.2485	. 2778	-3022
5	181.9	33100.	. 02600	.2887	. 3133	. 3502	-3810
6	162.0	26250.	. 02062	. 3640	. 3951	. 4416	.4805
7	144.3	20820.	. 01635	.4590	.4982	.5569	. 6059
8	128.5	16510.	. 01297	. 5788	. 6282	.7023	
9	114.4	13090.	. 01028	. 7299	.7921	. 8855	. 9633
10	101.9	10380.	. 008155	. 9203	. 9989	1.117	I. 215
11	90.74	8234.	. 006467	I.16I	1.260	1.408	1.532
12	80.81	6530.	. 005129	1.463	1.588	1.775	1.931
13	71.96	5178.	. 004067	1.845	2.003	2.239	2.436
14	64.08	4107.	. 003225	2.327	2.525	2.823	3.071
15	57.07	3257.	. 002558	2.934	3.184	3.560	3.873
16	50.82	2583.	. 002028	3.700	4.016	4.489	4.884
17	45.26	2048.	.001 609	4.666	5.064	5.660	6.158
18	40.30	1624.	. 001276	5.883	6.385	7.138	7.765
19	35.89	1288.	. 001012	7.418	8.051	9.001	9.792
20	31.96	1022.	. 0008023	9.355	10.15	11.35	12.35
21	28.45	810.1	.000 6363	11.80	12.80	14.31	15.57
22	25.35	6.42 .4	. 0005046	14.87	16.14	18.05	19.63
23	22.57	509.5	. 0004002	18.76	20.36	22.76	24.76
24	20.10	404.0	. 0003173	23.65	25.67	28.70	31.22
25	17.90	320.4	. 0002517	29.82	32.37	36.18	39.36
26	15.94	254.I	.000 1996	37.61	40.81	45.63	49.64
27	14.20	201.5	. 0001583	47.42	51.47	57.53	
28	12.64	159.8	.000 1255	59.80	64.90	72.55	78.93
29	11.26	126.7	. 00009953	75.40	8 I .83	91.48	99.52
30		100.5	. 00007894	95.08	103.2	115.4	
31	8.928	79.70	. 00006260	I 19.9	130.1	145.5	158.2
32	7.950	63.21	. 00004964	151.2	164.1	183.4	199.5
33	7.080	50.13	. 00003937	190.6	206.9	231.3	251.6
34	6.305	39.75	. 000003122	240.4	260.9	291.7	317.3
35	5.615	31.52	. 00002476	303.1	329.0	367.8	400.1
36	5.000	25.00	.000019 64	$3^{82.2}$	414.8	463.7	504.5
37	4.453	19.83	.000 01557	482.0	523.1	584.8	636.2
38	3.965	15.72	. 00001235	607.8.	659.6	$737 \cdot 4$	802.2
39	3.531	12.47	. 000009793	766.4	831. 8	929.8	1012.
40	3.145	9.888	. 000007766	966.5	1049.	1173.	1276.

* Resistance at the stated temperatures of a wire whose length is 1000 feet at $20^{\circ} \mathrm{C}$.

Smithsonian Tables.

WIRE TABLE, STANDARD ANNEALED COPPER (continued).
American Wire Gage (B. \& S.). English Units (continued).

$\begin{aligned} & \text { Gage } \\ & \text { No. } \end{aligned}$	Diameter in Mils. at $20^{\circ} \mathrm{C}$.	$\begin{gathered} \text { Pounds } \\ \text { per } \\ 1000 \text { Feet. } \end{gathered}$	Feet per Pound.	Feet per Ohm.*			
				$\left(\stackrel{0^{\circ} \mathrm{C}}{\left.=3_{3}{ }^{\circ} \mathrm{F}\right)}\right.$	$\left({ }^{20^{\circ}}{ }_{68} \mathrm{C}\right.$	$\left(=120^{\circ} \mathrm{C}\right.$	$\begin{gathered} 75^{\circ}{ }^{\circ} \mathrm{C} \\ \left(=167^{\circ} \mathrm{F}\right) \end{gathered}$
0000	460.0	640.5	1.561	22140.	20400.	18250.	16780.
000	409.6	507.9	1.968	17560.	16180.	14470.	$13300 .$
∞	364.8		2.482	13930.	12830.	$\text { II } 480 .$	$10550 .$
\bigcirc	324.9	319.5	3.130	118040.	$10 \quad 180$.		
1	289.3	253.3	$3.9+7$	8758	8070.	7219.	$6636 .$
2	257.6	200.9	4.977	6946.	6400.	5725.	5262.
3	229.4	159.3	6.276	5508.	5075.	4540.	4173.
4	204.3	126.4	7.914	4368.	4025.	3600.	3309.
5	181.9	100.2	9.980	3464.	3192.	2855.	2625.
6	162.0	79.46	12.58	2747.	2531.	2264.	2081.
7	144.3	63.02	15.87	2179.	2007.	1796.	1651.
8	128.5	49.98	20.01	1728.	1592.	1424.	1309.
9	114.4	39.63	25.23	1370.	1262.	1129.	1038.
10	IOI. 9	31.43	31.82	1087.	1001.	895.6	823.2
11	90.74	24.92	40.12	861.7	794.0	710.2	652.8
12	80.81	19.77	50.59	683.3	629.6	563.2	517.7
13	71.96	15.68	63.50	541.9	499.3	446.7	410.6
14	64.08	12.43	80.44	429.8	396.0	354.2	325.6
15	57.07	9.858	101.4	340.8	314.0	280.9	258.2
16	50.82	7.818	127.9	270.3	249.0	222.8	204.8
17	45.26	6.200	161.3	214.3	197.5	176.7	162.4
18	40.30	4.917	203.4	170.0	I 56.6	140.1	128.8
19	35.89	3.899	256.5	${ }^{1} 34.8$	124.2	111.1	102.1
20	31.96	3.092	323.4	106.9	98.50	S8.11	So. 99
21	28.46	2.452	407.8	84.78	78.11	69.87	64.23
22	25.35	1.945	514.2	67.23	61.95	55.41	50.94
23	22.57	1.542	648.4	$53 \cdot 32$	49.13	43.94	40.39
24	20.10	1.223	817.7	42.28	35.96	34.85	32.03
25	17.90	0.9699	1031.	33.53	30.90	27.64	25.40
26	15.94	. 7692	1300.	26.59	24.50	21.92	20.15
27	14.20	. 6100	1639.	21.09	19.43	17.38	15.98
28	12.64	. 4837	2067.	16.72	15.41	13.78	12.67
29	11.26	.3836	2607.	I 3.26	12.22	10.93	10.05
30	10.03	-3042	3287.	10.52	9.691	8.669	7.968
31	8.928	.2413	4145.	8.341	7.685	6.875	6.319
32	7.950	.1913	5227.	6.614	6.095	$5 \cdot 452$	5.011
33	7.080	. 1517	6591.	5.245	4.833	4.323	3.974
34	6.305	.1203	8310.	4.160	3.833	$3 \cdot 429$	3.152
35	5.615	. 09542	10 480.	3.299	3.040	2.719	2.499
36	5.000	.07568	13210.	2.616	2.411	2.156	1.982
37	4.453	. 060 O1	16660.	2.075	1.912	1.710	1. 572
38	3.965	. 04759	21010.	1.645	1.516	I. 356	1.247
39	3.531	. 03774	26500.	1.305	1.202	1.075	0.9886
40	3.145	. 02993	33410.	1.035	0.9534	0.8529	.7840

- Length at $20^{\circ} \mathrm{C}$. of a wire whose resistance is \geq ohm at the stated temperatures.

American Wire Gage (B. \& S.). English Units (continued).

$\underset{\sim}{\text { Gage }}$	Diameterin Mils ${ }_{20}{ }^{\text {at }} \mathrm{C}$.	Ohms per Pound.			Pounds per Ohm.
		$\left({\left.\stackrel{\circ}{0}{ }_{32^{\circ}} \mathrm{C}_{\mathrm{F} .}\right)}^{(2)}\right.$	$\left(\stackrel{200^{\circ} \mathrm{C}}{(\stackrel{8}{\circ} \mathrm{~F} .)}\right.$	$\left(\begin{array}{c} \left.50^{\circ}{ }^{\circ} \mathrm{C} .2^{\circ} \mathrm{F} .\right) \end{array}\right.$	$\left({ }_{568^{\circ} \mathrm{C}}^{\mathrm{o}} \mathrm{~F} .\right)$
0000000∞	460.0	0.0000705^{1}	0.0000765^{2}	0.00008554	13070.
	409.6	. 000 1121	. 0001217	. 0001360	8219.
	364.8	. 0001783	. 0001935	. 0002163	5169.
2	324.9	. 0002835	. 0003076	. 0003439	3251.
	${ }^{289.3}$. 0004507	.000 4891	. 0005468	2044.
	257.6	. 0007166	. 0007778	. 0008695	1286.
345	229.4	. 001140	. 001237	. 001383	808.6
	204.3	. 001812	. 001966	. 002198	508.5
	181.9	. 002881	. 003127	. 003495	319.8
678	162.0	. 004 581	. 004972	. 005558	201.1
	144.3	. 007284	. 007905	. 008838	126.5
	128.5	. 0115	. 01257	. 01405	79.55
91011	114.4	. 01842	. 01999	. 02234	50.03
	101.9	. 02928	.031 78	. 03553	$3{ }^{1.47}$
	90.74	.04656	. 05053	. 05649	19.79
12	80.81	. 07404	. 08035	. 08983	12.45
13	71.96	. 1177	.1278	. 1428	7.827
	64.08	. 1872	. 2032	.2271	4.922
15	57.07	. 2976	. 3230	-3611	3.096
	50.82	. 4733	.5136	. 5742	1.947
17	45.26	. 7525	.8167	.9130	1.224
18	40.30	1.197	1.299	1.452	0.7700
19	35.89	1. 903	2.065	2.308	. 4843
	31.96	3.025	3.283	3.670	. 3046
2122	28.46	4.810	5.221	5.836	. 1915
	25.35	7.649	8.301	9.280	. 1205
23	22.57	12.16	13.20	14.76	. 07576
242526	20.10	19.34	20.99	23.46	. 04765
	17.90 15.94	30.75 48.89	33.37 53.06	37.31 59.32	.02997 .01885
			53.06	$59.3{ }^{2}$. 01885
272829	14.20	77.74	84.37	94.32	. 01185
	12.64	123.6 196.6	134.2	150.0	. 007454
	11.26	196.6	213.3	238.5	. 004688
30313	10.03	312.5	339.2	379.2	. 002948
	8.928	497.0	539.3	602.9	. 001854
32	7.950	790.2	857.6	958.7	.001 166
333435	7.080	1256.	1364.		
	6.305	1998.	2168.	2424.	. 0004612
	5.615	3177.	3448.	3854.	. 0002901
363738	5.000	5051.	5482.	6128.	.000 1824
	4.453	8032.	8717.	9744.	. 0001147
	3.965	12770.	13860.	15490.	. 00007215
39	3.531	20310.	22040.	24640.	. 00004538
	3.145	32290.	35040.	39 170.	. 00002854

Smithsonian Tables.

WIRE TABLE, STANDARD ANNEALED COPPER.
American Wire Gage (B. \& S.) Metric Units.

$\begin{gathered} \text { Gage } \\ \text { No. } \end{gathered}$	Diameter in mm . at $20^{\circ} \mathrm{C}$.	$\begin{aligned} & \text { Cross Section } \\ & \text { in mm. } \\ & \text { at } 20^{\circ} \mathrm{C} \text {. } \end{aligned}$	Ohms per Kilometer.*			
			$0^{\circ} \mathrm{C}$.	$20^{\circ} \mathrm{C}$.	$50^{\circ} \mathrm{C}$.	$75^{\circ} \mathrm{C}$.
0000	1 I .68	107.2	0.1482	0.1608	0.1798	0.1956
000	10.40	85.03	. 1868	. 2028	. 2267	. 2466
-0	9.266	67.43	.2356	. 2557	.2858	-3110
\bigcirc	8.252	53.48	. 2971	. 3224	.3604	-392I
1	$7 \cdot 348$	42.41	$\cdot 3746$. 4066	.4545	.4944
2	6.544	33.63	.4724	.5127	. 5731	. 6235
3	5.827	26.67	. 5956	. 6465	. 7227	.7862
4	5.189	21.15	.7511	.8152	.9113	. 9914
5	4.621	16.77	. 9471	1.028	1.149	1.250
6	4.115	13.30	1. 194	1.296	I. 449	1. 576
7	3.665	10. 55	1. 506	1. 634	1.827	1.988
8	3.264	8.366	I. 899		2.304	2.506
9	2.906	6.634	2.395	2.599	2.905	3.161
10	2.588	5.261	3.020	3.277	3.663	3.985
11	2.305	4.172	3.807	4.132	4.619	5.025
12	2.053	3.309	4.80 I	5.21 I	5.825	6.337
13	1.828	2.624	6.054	6.571	$7 \cdot 345$	7.991
14	1.628	2.081	7.634	8.285	9.262	10.08
	1.450	1.65 C	9.627	10.45	11.68	12.71
16	1.291	1.309	12.14	13.17	14.73	16.02
17	1.150	1.038	15.31	16.61	18.57	20.20
18	1.024	0.8231	19.30	20.95	23.42	25.48
19	0.9116	. 6527	24.34	26.42	29.53	32.12
20	. 8118	.5176	30.69	33.31	37.24	40.51
21	. 7230	.4105	38.70	42.00	46.95	51.08
22	. 6438	.3255	48.80	52.96	59.21	64.41
23	. 5733	.2582	61.54	66.79	74.66	81.22
24	. 5106	. 2047	77.60	84.21	94.14	102.4
25	. 4547	. 1624	97.85		118.7	129.1
26	. 4049	. 1288	123.4	133.9	149.7	162.9
27	. 3606	. 1021	155.6	168.9	188.8	205.4
28	. 3211	.oSo 98	196.2	212.9	238.0	258.9
29	.2859	. 06422	$247 \cdot 4$	268.5	300.1	326.5
30	. 2546	.05093	311.9	338.6	${ }_{37} 3^{\text {S }} 5$	411.7
31	. 2268	. 04039	393.4	426.9	477.2	519.2 654.7
32	. 2019	.03203	496.0	538.3	601.8	654.7
	.1798	.02540	625.5	678.8	75.8 .8	S25.5
34	.1601	. 02014	788.7	856.0	956.9	10.41.
35	. 1426	.015 97	994.5	1079.	1207.	1313.
36	. 1270	.012. 67	1254.	1361.		1655
37	.1131	. 01005	1581.	1716. 2164.	1919. 2419.	
38	. 1007	.007967	1994.	2164.	2419.	2632.
39	. 08969	. 006318	2514.	2729.	3051.	3319.
40	. 07987	.005010	3171.	344^{1}.	3 S47.	4 IS 5.

*Resistance at the stated temperatures of a wire whose length is i kilometer at $20^{\circ} \mathrm{C}$.

WIRE TABLE, STANDARD ANNEALED COPPER (continued).
American Wire Gage (B. \& S.) Metrio Units (continued).

$\begin{aligned} & \text { Gage } \\ & \text { No. } \end{aligned}$	Diameter in mm . at $20^{\circ} \mathrm{C}$.	Kilograms per Kilometer.	Meters per Gram.	Meters per Ohm.*			
				$\circ^{\circ} \mathrm{C}$.	$20^{\circ} \mathrm{C}$.	$50^{\circ} \mathrm{C}$.	$75^{\circ} \mathrm{C}$.
0000	11.68	953.2	0.001049	6749.	6219.	5563.	5113.
000	10.40	755.9	.001 323	5352.	4932.	4412.	4055.
∞	9.266	599.5	.001 668	4245.	3911.	3499.	3216.
0	8.252	475.4	.002103	3366.	3102.	2774.	2550.
1	$7 \cdot 348$	377.0	. 002652	2669.	2460.	2200.	2022.
2	6.544	299.0	. 003345	2117.	1951.	1745.	1604.
3	5.827	237.1	. 004217	1679.	1547.	1384.	1272.
4	5.189	188.0	. 005318	1331.	1227.	1097.	1009.
5	4.621	149.1	. 006706	1056.	972.9	870.2	799.9
6	4.115	118.2	.008457	837.3	771.5	690.1	634.4
7	3.665	93.78	. 01066	664.0	611.8	$547 \cdot 3$	503.1
8	3.264	74.37	.01345	526.6	485.2	434.0	399.0
9	2.906	58.98	.or6 96	417.6	384.8	344.2	316.4
10	2.588	46.77	. 02138	331.2	305.1	273.0	250.9
11	2.305	37.09	. 02696	262.6	242.0	216.5	199.0
12	2.053	29.42	.03400	208.3	191.9	171.7	157.8
13	1.828	23.33	. 04287	165.2	152.2	136.1	125.1
14	1.628	18.50	. 05406	13 I .0	120.7	108.0	99.24
15	1.450	14.67	. 06816	103.9	95.71	85.62	78.70
16	1.291	11.63	. 08595	82.38	75.90	67.90	62.41
17	1.150	9.226	. 1084	65.33	60.20	53.85	49.50
18	1.024	7.317	. 1367	51.81	47.74	42.70	39.25
19	0.9116	5.803	. 1723	41.09	37.86	33.86	31.13
20	.8118	4.602	. 2173	32.58	30.02	26.86	24.69
21	.7230	3.649	. 2740	25.84	${ }^{23.81}$	21.30	19.58
22	. 6438	2.894	. 3455	20.49	18.88	16.89	15.53
23	. 5733	2.295	. 4357	16.25	14.97	13.39	12.31
24	. 5106	1.820	. 5494	12.89	1 I .87	10.62	9.764
25	. 4547	1. 443	. 6928	10.22	9.417	8.424	7.743
26	.4049	1.145	.8736	8.105	7.468	6.680	6.141
27	.3606	0.9078	1.102	6.428	5.922	5.298	4.870
28	. 3211	.7199	1.389	5.097	4.697	4.201	3.862
29	.2859	. 5709	$1.75{ }^{2}$	4.042	3.725	3.332	3.063
30	. 2546	. 4527	2.209	3.206	2.954	2.642	2.429
31	. 2268	. 3590	2.785	2.542	2.342	2.095	1.926
32	. 2019	. 2847	3.512	2.016	1. 858	1.662	1.527
33	.1798	. 2258	4.429	1.599	1.473	1.318	1.211
34	. 1601	.1791	5.584	1.268	1.168	1.045	0.9606
35	. 1426	. 1420	7.042	1.006	0.9265	0.8288	.7618
36	. 1270	. 1126	8.879	0.7974	. 7347	. 6572	. 6041
37	.1131	.08931	11.20	. 6324	. 5827	. 5212	.4791
38	. 1007	.07083	14.12	. 5015	. 4621	.4133	. 3799
39	. 08969	.05617	17.80	- 3977	$.3664$.3278	.3013
40	. 07987	. 04454	22.45	. 3154	.2906	. 2600	. 2390

*Length at $20^{\circ} \mathrm{C}$. of a wire whose resistance is I ohm at the stated temperatures.

WIRE TABLE, STANDARD ANNEALED COPPER (continued).
American Wire Gage (B. \& S.). Metric Units (continued).

Gage No.	Diameter in mm . at $20^{\circ} \mathrm{C}$.	Ohms per Kilogram.			Grams per Ohm.
		$\circ^{\circ} \mathrm{C}$.	$20^{\circ} \mathrm{C}$.	$50^{\circ} \mathrm{C}$.	$20^{\circ} \mathrm{C}$.
0000	11.68	0.0001554	0.0001687	0.0001886	5928000.
000	10.40	. 0002472	. 0002682	. 0002999	3728000.
00	9.266	.000 3930	.0004265	. 0004768	2344000.
\bigcirc	8.252	. 0006249	.0006782	. 0007582	I 474000.
1	7.348	. 0009936	.001078	.001 206	927300.
2	5.544	. 001580	.001715	.001917	583200.
3	5.827	. 002512	.002 726	.003048	366800.
4	5.189	.003995	.004335	. 004846	230700.
5	4.62 I	. 006352	. 006893	. 007706	145100.
6	4. 115	.01010	. 01096	. 01225	91230.
7	3.665	.01606	. 01743	. 01948	57380.
8	3.264	.02553	.02771	.03098	36080.
9	2.906	. 04060	. 04406	. 04926	22690.
10	2.588	.06456	. 07007	. 07833	14270.
11	2.305	. 1026	. 1114	.1245	8976.
12	2.053	.1632	.1771	. 1980	56.45
13	1. 828	. 2595	. 2817	.3149	3550.
14	1. 628	.4127	. 4479	. 5007	2233.
15	1.450	. 6562	.7122	. 7961	1404.
16	I. 291	1.043	1.132	1.266	883.1
17	1.150	1. 659	1.801	2.013	555.4
18	1.024	2.638	2.863	3.201	$349 \cdot 3$
19	0.9116	4.194	4.552	5.089	219.7
20	.8118	6.670	7.238	8.092	138.2
21	. 7230	10.60	11.51	12.87	86.88
22	. 6438	16.86	18.30	20.46	54.64
23	. 5733	26.81	29.10	32.53	34.36
24	. 5106	42.63	46.27	51.73	21.61
25	. 4547	67.79	73.57	82.25	
26	. 4049	107.8	117.0	130.8	8.548
27	.3606	171.4	186.0	207.9	$5 \cdot 376$
28	. 3211	272.5	295.8	330.6	$3 \cdot 381$
29	.2859	$433 \cdot 3$	470.3	525.7	2.126
30	.2546	689.0	747.8	836.0	
31	. 2268	1096.	1189.	1329.	0.5410 .5289
3^{2}	. 2019	1742.	1891.	2114.	-5289
33	. 1798	2770.	3006.	3361.	.3326
34	. $60{ }^{1}$	4404.	4780.	5344.	. 2092
35	. 1426	7003.	7601.	8497.	.1316
36	. 1270	II 140.	12090.	13510.	. 08274
37	. 1131	17710.	19220.	$21480 .$. 05204
38	. 1007	28150.	30560.	34160	.032 73
39	. 08969	44770.	48590.	54310.	. 02058
40	. 07987	71180.	77260.	86360.	. 01294

Smithsonian Tables.

Hard-Drawn Aluminum Wire at 20° O. (or, 68° F.).
American Wire Gage (B. \& S.). English Units.

Gage No.	Diameter in Mils.	Cross Section.		$\begin{gathered} \text { Ohms } \\ \text { per } \\ 1000 \text { Feet. } \end{gathered}$	$\begin{gathered} \text { Pounds } \\ \text { per } \\ \text { xooo Feet. } \end{gathered}$	Pounds per Ohm.	$\begin{gathered} \text { Feet } \\ \text { per Ohm. } \end{gathered}$
		Circular Mils.	Square Inches.				
0000	460.	212000.	0.166	0.0804	195.	2420.	12400.
000	410.	168 000.	. 132	. 101	154.	1520.	9860.
00	365.	133000.	.105	. 128	122.	957.	7820.
0	325.	106000.	.0829	.16I	97.0	602.	6200.
1	289.	83700.	. 0657	. 203	76.9	379.	4920.
2	25^{8}.	66400.	.0521	.256	61.0	238.	3900.
3	229.	52600.	. 0413	. 323	48.4	150.	3090.
4	204.	$41 \cdot 700$.	.0328	. 408	38.4	94.2	2450.
5	182.	33100.	. 0260	. 514	30.4	59.2	
6	162.	26300.	. 0206	. 648	24.1	37.2	1540.
7	144.	20800.	. 0164	. 817	19.1	23.4	1220.
8	128.	16500.	.0130	1.03	15.2	14.7	970.
9	114.	13100.	.0103	1.30	12.0	9.26	770.
10	102.	10 400.	. 00815	1.64	9.55	5.83	
II	91.	8230.	. 00647	2.07	7.57	3.66	484.
12	8 I.	6530.	. 00513	2.61	6.00	2.30	384.
13	72.	5180.	. 00407	3.29	4.76	1.45	304.
14	64.	4110.	. 00323	4.14	3.78	0.911	241.
15	57.	3260.	. 00256	5.22	2.99	. 573	191.
16	51.	2580.	. 00203	6. 59	2.37	-360	152.
17	45.	2050.	. 00161	8.31	I. 88	. 227	120.
18	40.	1620.	. 00128	10.5	1.49	. 143	95.5
19	36.	1290.	. 00101	13.2	1.18	. 0897	75.7
20	32.	1020.	. 000802	16.7	0.939	. 0564	60.0
21	28.5	8 I 0.	.000 636	21.0	. 745	. 0355	47.6
22	25.3	642.	. 000505	26.5	. 591	. 0223	37.8
23	22.6	509.	. 000400	33.4	. 468	. 0140	29.9
24	20.1	404.	. 000317	42.1	-371	. 00882	
25	17.9	320.	. 000252	53.1	. 295	. 00555	18.8
26	15.9	254	. 000200	67.0	. 234	. 00349	14.9
27	14.2	202.	. 000158	84.4	.185	. 00219	11.8
28	12.6	160.	. 000126	106.	. 147	.001 38	9.39
29	11.3	127.	. 0000995	134.	. 117	. 000868	7.45
30	10.0	101.	. 0000789	169.	. 0924	. 000546	5.91
31	8.9	79.7	. 0000626	213.	. 0733	. 000343	4.68
32	8.0	63.2	. 0000496	269.	.058r	. 000216	3.72
33	7.1	50.1	.000 0394	339.	.0461	. 000136	2.95
34	6.3	39.8	.0000312	428.	.0365	. 0000854	2.34
35	5.6	$3 \mathrm{I} \cdot 5$. 0000248	540.	. 0290	. 0000537	1.85
36	5.0	25.0	.000 019 6	68 r .	. 0230	. 0000338	1.47
37	4.5	19.8	.000 or 56	858.	. 0182	. 0000212	1.17
38	4.0	15.7	.000 0123	1080.	. 0145	.000013 4	0.924
39	$3 \cdot 5$	12.5	.000 00979	1360.	.0115	. 00000840	.733
40	3.1	9.9 .	. 00000777	1720.	.009I	.000005 28	.581

Smithsonian Tables.

Hard-Drawn Aluminum Wire at $20^{\circ} \mathrm{O}$.

American Wire Gage (B. \& S.) Metric Units.

Gage No.	Diameter in mm .	Cross Section in $\mathrm{mm} .^{2}$	Ohms per Kilometer.	Kilograms per Kilometer.	Grams per Ohm.	Meters per Ohm.
0000	11.7	107.	0.264	289.	1100000.	3790.
000	10.4	85.0	-333	230.	690000.	3010.
-0	9.3	67.4	.419	182.	434000.	2380.
\bigcirc	8.3	53.5	.529	14.	273000.	1890.
1	$7 \cdot 3$	42.4	. 667	114.	172000.	1500.
2	6.5	33.6	. 841	90.8	108000.	1190.
3	5.8	26.7	1.06	72.0	67900.	943.
4	5.2	21.2	1.34	57.1	42700.	748.
5	4.6	16.8	І. 69	$45 \cdot 3$	26900.	593.
6	4.I	13.3	2.13	35.9	16900.	470.
7	$3 \cdot 7$	10.5	2.68	28.5	10600.	373.
8	$3 \cdot 3$	8.37	$3 \cdot 38$	22.6	6680.	296.
9	2.91	6.63	4.26	17.9	4200.	235.
10	2.59	5.26	$5 \cdot 38$	I 4.2	2640.	186.
II	2.30	4.17	6.78	11.3	1660.	148.
12	2.05	$3 \cdot 31$	8.55	8.93	1050.	117.
13	I. 83	2.62	10.8	7.08	657.	92.8
14	1.63	2.08	13.6	5.62	413.	73.6
15	1. 45	I. 65	17.1	$4 \cdot 46$	260.	58.4
16	1.29	I.31	21.6	3.53	16.	46.3
17	I. 15	1.04	27.3	2.80	103.	36.7
18	1.02	0.823	$34 \cdot 4$	2.22	64.7	29.1
19	0.91	. 653	$43 \cdot 3$	1.76	40.7	23.1
20	. 81	. 518	54.6	1.40	25.6	18.3
21	.72	. 411	68.9	1.11	16.1	14.5
22	. 64	.326	86.9	0.879		11.5
23	. 57	.258	110.	. 697	6.36	9.13
24	$\cdot 51$. 205	138.	. 553	4.00	7.24
25 26	. 45	.162 .129	174. 220.	. 438	2.52 1.58	5.74 4.55
26	. 40	. 129	22.	-348	1.58	4.55
27	.36	.102	$277 \cdot$.276	0.995 .626	3.61 2.86
28	.32	.08io	349.	. 219		2.86 2.27
29	. 29	. 0642	440.	. 173	- 394	2.27
30	. 25	. 0509	555.	.138	.248	I. 80
31	. 227	. 0404	700.	.109	. 156	1.43
32	. 202	. 0320	883.	. 0865	. 0979	1.13
	. 180	. 0254	1110.	. 0686	.0616	-. 899
34	. 160	. 0201	1400.	. 0544	.0387	. 712
35	. 143	. 0160	1770.	. 0431	. 0244	. 565
36	. 127	. 0127	2230.	. 0342	. 0153	. 448
37	. 113	. 0100	2820.	. 0271	. 00963	-355
38	. 101	.0080	3550.	. 0215	. 00606	. 252
39	. 090	. 0063	4480.	.0171	.$^{.00381}$.223 .177
40	. 080	. 0050	5640.	. 0135	. 00240	. 177

TABLE 414．－Ratio of Alternating to Direct Current Resistances for Copper Wires．

This table gives the ratio of the resistance of straight copper wires with alternating currents of different frequencies to the value of the resistance with direct currents．

Diameter of wire in millimeters．	Frequency $f=$					
	60	100	1000	10，000	100，000	1，000，000
0.05	－	－	－	－	－	＊1．001
0.1	－	－	－	－	＊1．001	1.008
0.25	－	－	－	＊－	1.003	1.247
0.5	－	二	二	＊I．001	1.047	2.240
1.0 2.0	二	－	－	I． r r 120	1.503	4.19
2.0 3.	－	二	1.001	1.120 I． 437	2.756 4.00	8.10
4.	－	－	1.021	1.842	5.24	17.4
5.	－	＊1．001	1.047	2.240	6.49	19.7
7.5	1.001	1.002	1． 210	3.22	7.50	29.7
10.	1.003	1.008	1． 503	4.19	12.7	39.1
15.	1.016	1.038	2． 136	6.14	18.8	－
20.	1.044	1.120	2.756	8.10	25.2	－
25.	1． 105	1． 247	3.38	10.1	28.3	－
40.	1． 474	I． 842	5.24	17.4	－	－
100.	3.31	4.19	13.7	39.1	－	－

Values between 1.000 and I .00 I are indicated by ${ }^{{ }^{1} \text { I．OOI．}}$
The values are for wires having an assumed conductivity of 1.60 microhm－cms；for copper wires at room tempera－ tures the values are slightly less than as given in table．

The change of resistance of wire other than copper（iron wires excepted）may be calculated from the above table by taking it as proportional to $d \sqrt{f / \rho}$ where $d=$ diameter，f the frequency and ρ the resistivity．

If a given wire be wound into a solenoid，its resistance，at a given frequency，will be greater than the values in the table，which apply to straight wires only．The resistance in this case is a complicated function of the pitch and radius of the winding，the frequency，and the diameter of the wire，and is found by experiment to be sometimes as much as twice the value for a straight wire．

TABLE 415．－Maximum Diameter of Wires for High－frequency Alternating－to－direct－current Resistance Ratio of 1.01 ．

Frequency $\div 10^{6} . .$.	0.1	0.2	0.4	0.6	0.8	1.0	1.2	1.5	2.0	3.0
Wave－length，meters	3000	1500	750	500	375	300	250	200	150	100
Material．	Diameter in centimeters．									
Copper	0.0356	0.0251	0.0177	0.0145	0.0125	O．OII2	0.0102	0.0092	0.0079	0.0065
Silver．	0.0345	0.0244	0.0172	0．0141	0.0122	0．0109	0.0099	0.0089	0.0077	0.0063
Gold ．．．	0.0420	－． 0297	0.0210	0．0172	0．0149	O． 0133	0.0121	0.0108	0.0094	0.0077
Platinum．	0.1120 0.264	0.0793 0.187	0.0560 0.132	O． 0457 O． 1080	0.0396 0.0036	0.0354 0.0836	0.0323 0.0763	0．0290	0.0250	0.0205
Manganin．	0． 1784	O． 1261	0．0892	O． 0.0729	0．0631	－0．0564	0．0515	－0．0461	－0．0591	0.0483 0.0325
Constantan．	－．1892	－． 1337	0． 0946	0.0772	0.0664	0．0598	0.0546	0．0488	0．0423	0.0345
German silver	－． 1942	－． 1372	0.0970	0.0792	0.0692	0.0614	0.0560	0.0500	0.0434	0.0354
Graphite．	0.765	－． 54 I	0.383	0.312	0.27 I	0． 242	0.221	－． 197	－． 17 I	－． 140
Carbon．	1.60	I． 13	0.801	0.654	－． 566	0． 506	0.462	0.414	0.358	0． 292
Iron $\mu=1000 . . .$.	－． 00263	0．00186	0.00131	0.00108	0．00094	0.00083	0.00076	0．00068	0.00059	0． 00048
$\mu=500 . . .$.	0.00373	0． 00264	0.00187	0.00152	0.00132	0.00118	0.00108	0.00096	0.00084	0.00068
$\mu=100 . . .$.	0.00838	0.00590	0.00418	0.00340	0.00295	0.00264	0.0024 I	0．00\％ 15	0.00186	0.00152

Bureau of Standards Circular 74，Radio Instruments and Measurements， 1918.

Smithsonian Tables．

ELECTROCHEMICAL EQUIVALENTS.
Every gram-ion involved in an electrolytic change requires the same number of coulombs or ampere-hours of electricity per unit change of valency. This constant is 96.494 coulombs or 26.804 ampere-hours per gram-hour (a Faraday) corresponding to an electrochemical equivalent for silver of $0.00111800 \mathrm{gram} \mathrm{sec}^{-1} \mathrm{amp}^{-1}$. It is to be noted that the change of valence of the element from its state before to that after the electrolytic action should be considered. The valence of a free, uncombined element is to be considered as 0 . The same current will electrolyze "chemically equivalent" quantities per unit time. The valence is then included in the "chemically equivalent" quantity. The following table is based on the atomic weights of 1917.

Element.		$\begin{gathered} \mathrm{Mg} \\ \text { per } \\ \text { coulomb. } \end{gathered}$	Coulombs per mg	Grams per amp.hour.	Element.	$\begin{aligned} & \text { " } \\ & \text { 品 } \\ & \text { 品 } \\ & \text { ㄹ̈ㄱ } \end{aligned}$	$\begin{gathered} \mathrm{Mg} \\ \text { per } \\ \text { coulomb. } \end{gathered}$	$\begin{gathered} \text { Coulombs } \\ \text { per } \\ \mathrm{mg} \end{gathered}$	Grams per amp.hour.
Aluminum.	3	0.0936	10.682	-. 3370	Nickel	1	0.608 r	1.6444	2.1892
Chlorine.	1	0.3675	2.721	r. 3229	"	2	0.3041	3.289	1. 0946
" ${ }^{6}$	3	0.1225	8.164	0.4410	" ${ }^{\text {" }}$	3	0.2027	4.933	-. 7298
",	5	0.0735	13.606	0. 2646	Oxygen	2	0.08291	12.062	0. 2985
Copper	7	0.0525	19.05	0.1890		4	0.04145	24.123	O. 1492
Copper	1	- 6.6588	1.518	2.3717	Platinum.	2	1.OII5	0. 9887	3.641
	2	0.3294	3.036	1. 1858		4	0.5057	1.9773	1.821
Gold	1	2.044	0.4893	7.357	- .	6	0. 3372	2.966	1.214
	3	0.6812	I. 468	2.452	Potassium.	1	0.4052	2.468	1.459
Hydrogen	1	0.010459	5.728	0.037607	Silver.	1	1. 1180	0.89445	4.0248
Lead.	1	2. 1473	0.4657	7.7302	Sodium	1	0. 2384	4.195	0.8581
	2	1.0736	0.9314	3.8651	Tin.	2	0.6151	1.626	2.214
	4	- 53368	r. 8628	I. 9326		4	0.3075	3.252	I. 107
Mercury	1	2.0789	0.4810	7.484	Zinc	2	0.3387	2.952	1.2194
	2	1. 0394	0.9620	3.742					

The electrochemical equivalent for silver is $0.00111800 \mathrm{~g} \mathrm{sec}^{-1} \mathrm{amp}^{-1}$. (See p. xxxvii.)
For other elements the electrochemical equivalent $=$ (atomic weight divided by change of valency) times $1 / 06494$ $\mathrm{g} / \mathrm{sec} / \mathrm{amp}$. or $\mathrm{g} /$ coulomb. The equivalent for iodine has been determined at the Bureau of Standards as 0.0013×50 (1913).

For a unit change of valency for the diatomic gases $\mathrm{Br}_{2}, \mathrm{Cl}_{2}, \mathrm{~F}_{2}, \mathrm{H}_{2}, \mathrm{~N}_{2}$ and O_{2} there are required
8.619 coulombs $/ \mathrm{cm}^{3} \circ^{\circ} \mathrm{C}, 76 \mathrm{~cm}$ ($0.1160 \mathrm{~cm}^{3} /$ coulomb)
2.394 ampere-hours $/ l, \circ^{\circ} \mathrm{C}, 76 \mathrm{~cm}$ ($0.4177 \mathrm{l} /$ ampere-hour).

Note. - The change of valency for O_{2} is usually 2, etc.
Smithsonian Tables.

CONDUCTIVITY OF ELECTROLYTIC SOLUTIONS.

This subject has occupied the attention of a considerable number of eminent workers in molecular physics, and a few results are here tabulated. It has seemed better to confine the examples to the work of one experimenter, and the tables are quoted from a paper by F. Kohlrausch,* who has been one of the most reliable and successful workers in this field.

The study of electrolytic conductivity, especially in the case of very dilute solutions, has furnished material for generalizations, which may to some extent help in the formation of a sound theory of the mechanism of such conduction. If the solutions are made such that per unit volume of the solvent medium there are contained amounts of the salt proportional to its electrochemical equivalent, some simple relations become apparent. The solutions used by Kohlrausch were therefore made by taking numbers of grams of the pure salts proportional to their electrochemical equivalent, and using a liter of water as the standard of quantity of the solvent. Taking the electrochemical equivalent number as the chemical equivalent or atomic weight divided by the valence, and using this number of grams to the liter of water, we get what is called the normal or gram molecule per liter solution. In the table, m is used to represent the number of gram molecules to the liter of water in the solution for which the conductivities are tabulated. The conductivities were obtained by measuring the resistance of a cell filled with the solution by means of a Wheatstone bridge alternating current and telephone arrangenient. The results are for $1 S^{\circ} \mathrm{C}$., and relative to mercury at $\circ^{\circ} \mathrm{C}$., the cell having been standardized by filling with mercury and measuring the resistance. They are supposed to be accurate to within one per cent of the true value.

The tabular numbers were obtained from the measurements in the following manner : -
Let $K_{18}=$ conductivity of the solution at $18^{\circ} \mathrm{C}$. relative to mercury at $0^{\circ} \mathrm{C}$.
$K_{18}^{18}=$ conductivity of the solvent water at $18^{\circ} \mathrm{C}$. relative to mercury at $0^{\circ} \mathrm{C}$.
Then $K_{18}-K_{18}^{2 w}=k_{18}=$ conductivity of the electrolyte in the solution measured.
$\frac{k_{18}}{m}=\mu=$ conductivity of the electrolyte in the solution per molecule, or the "specific molecular conductivity."

TABLE 417.- Value of k_{18} for a few Electrolytes.
This short table illustrates the apparent law that the conductivity in very dilute solutions is proportional to the amount of salt dissolved.

m	KCl	NaCl	AgNO_{3}	$\mathrm{KC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$	$\mathrm{K}_{2} \mathrm{SO}_{4}$	MgSO_{4}
0.00001	1.25	1.024	1.080	0.939	I. 275	1.056
0.00002	2.434	2.056	2.146	1.886	2.532	2.104
0.00006	7.272	6.162	6.462	5.610	7.524	6.216
0.0001	12.09	10.29	10.78	$9 \cdot 34$	12.49	10.34

TABLE 418. - Electro-Chemical Bquivalents and Normal Solutions.
The following table of the electro-chemical equivalent numbers and the densities of approximately normal solutions of the salts quoted in Table 419 may be convenient. They represent grams per cubic centimeter of the solution at the temperature given.

Salt dissolved.	Grams per liter.	m	$\begin{gathered} \text { Temp. } \\ \text { C. } \end{gathered}$	Density.	Salt dissolved.	Grams per liter.	m	Temp. C.	Density.
KCl	74.59	I. 0	15.2	1.0457	$\frac{1}{2} \mathrm{~K}_{2} \mathrm{SO}_{4}$	87.16	1.0	18.9	1.0658
$\mathrm{NH}_{4} \mathrm{Cl}$	53.55	1.0009	18.6	1.0152	${ }_{2}^{1} \mathrm{Na}_{2} \mathrm{SO}_{4}$	71.09	1.0003	18.6	1.0602
NaCl .	58.50	1.0	18.4	1.0391	${ }_{2}^{2} \mathrm{Li}_{2} \mathrm{SO}_{4}$	55.09	1.0007	18.6	1.0445
LiCl .	42.48	1.0	18.4	1.0227	${ }_{2}^{2} \mathrm{MgSO}_{4}$	60.17	1.0023	18.6	1.0573
${ }_{\frac{1}{2}}^{1} \mathrm{BaCl}_{2}$	104.0	1.0	18.6	1.0888	$\frac{1}{2} \mathrm{ZnSO}_{4}$	80.58	1.0	$5 \cdot 3$	1.0794
$\frac{1}{2} \mathrm{ZnCl}_{2}$	68.0	1.012	15.0	1.0592	${ }_{2}^{1} \mathrm{CuSO}_{4}$	79.9	1.001	18.2	1.0776
KI.	165.9	1.0	18.6	1.1183	${ }_{2}^{1} \mathrm{~K}_{2} \mathrm{CO}_{3}$	69.17	1.0006	18.3	1.0576
KNO_{8}	101.17	1.0	18.6	1.0601	${ }_{2}^{1} \mathrm{Na}_{2} \mathrm{CO}_{3}$	53.04	1.0	17.9	1.0517
NaNO_{3}	85.08	1.0	18.7	1.0542	KOH .	56.27	1.0025	18.8	1.0477
AgNO_{3} -	169.9	1.0	-	-	HCl	36.51	1.0041	18.6	1.0161
$\left.{ }^{\frac{1}{2} \mathrm{Ba}} \mathrm{NO}_{3}\right)_{2}$.	65.28	0.5		- 67	HNO_{3}.	63.13	1.0014	18.6	1.0318
$\mathrm{KClO}_{3}{ }^{\text {- }}$	61.29	0.5	18.3	1.0367	$\frac{1}{2} \mathrm{H}_{2} \mathrm{SO}_{4}$	49.06	1.0006	18.9	1.0300
$\mathrm{KC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$	98.18	1.0005	18.6	1.0467					

Salt dissolved.		$m=10$	5	3	I	0.5	0.1	. 05	. 03	. 08
${ }_{2}^{\frac{1}{2} \mathrm{~K}_{2} \mathrm{SO}_{4}}$	-	-	-	-	-	672	736	897	959	1098
KCl	.	-	-	827	919	958	1047	1083	1107	1147
KI.	-	-	770	900	968	997	1069	1102	1123	1161
$\mathrm{NH}_{4} \mathrm{Cl}$	-	-	752	825	907	948	1035	1078	1101	1142
KNO_{3}	.	-	-	572	752	839	983	1037	1067	1122
${ }_{\frac{1}{2}} \mathrm{BaCl}_{2}$		-	-	487	658	725	861	904	939	1006
KClO_{3}	-	-	-			799	927	(976)	1006	1053
$\frac{1}{2} \mathrm{BaN}_{2} \mathrm{O}_{6}$	-	-	-	-	-	531	755	828	(870)	951
${ }_{2}^{1} \mathrm{CuSO}_{4}$:	-	-	-	150	241	288	424	479	537	675
AgNO_{3}	-	-	351	448	635	728	886	936	(966)	1017
${ }^{\frac{1}{2} \mathrm{ZnSO}_{4}}$	-	-	82	146	249	302	43 I	500	556	685
${ }_{2}^{1} \mathrm{MgSO}_{4}$.	.	-	82	151	270	330	474	532	587	715
${ }_{\frac{1}{2} \mathrm{Na}_{2} \mathrm{SO}_{4}}$	-	60	180	-	475	559	734	784	828	906
$\stackrel{\frac{1}{2} \mathrm{ZnCl}_{2}}{\mathrm{NaCl}}$.	-	60	180	280	514	601	768	817	851	915
NaCl	-		398	528	695	757	865	897	(920)	962
NaNO_{3}.	-	-	-	430	617	694	817	855	877	907
$\mathrm{KC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$	-	30	240	381	594	671	784	820	841	879
${ }_{2}^{1} \mathrm{Na}_{2} \mathrm{CO}_{3}$	-	6		254	427	510	682	751	799	899
$\frac{1}{2} \mathrm{H}_{2} \mathrm{SO}_{4}$.	.	660	1270	1560	1820	1899	2084	2343	2515	2855
$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$	-	0.5	2.6	5.2	12	19	43	62	79	132
HCl		600	1420	2010	2780	3017	3244	3330	3369	3416
HNO_{3}		610	1470	2070	2770	2991	3225	3289	3328	3395
${ }^{\frac{1}{3} \mathrm{H}_{3} \mathrm{PO}_{4}}$		148	160	170	200	250	430	540	620	790
KOH	-	423	990	1314	1718	1841	1986	2045	2078	2124
NH_{3}	-	0.5	2.4	$3 \cdot 3$	8.4	12	3 I	43	50	92
Salt dissolved.		. 006	. 002	. 001	. 0006	. 0002	. 0001	.00006	. 00002	.0000
${ }_{2}^{\frac{1}{2} \mathrm{~K}_{2} \mathrm{SO}_{4}}$	-	1130	1181	1207	1220	1241	1249	1254	I 266	1275
KCl	.	1162	1185	1193	1199	1209	1209	1212	1217	1216
KI		1176	1197	1203	1209	1214	1216	1216	1216	1207
$\mathrm{NH}_{4} \mathrm{Cl}$	-	I I 57	I 180	1190	1197	1204	1209	1215	1209	1205
KNO_{3}	-	1140	1173	1180	1190	1199	1207	1220	1198	1215
$\frac{1}{2} \mathrm{BaCl}_{2}$	-	1031	1074	1092	1102	1118	1126	1133	1144	1142
$\mathrm{KClO}_{8} \cdot$	-	1068	1091	1101	1109	1119	1122	1126	1135	1141
${ }_{\frac{1}{2}} \mathrm{BaN}_{2} \mathrm{O}_{6}$	-	982	1033	1054	1066	1084	1096	1100	1114	1114
$\frac{1}{2} \mathrm{CuSO}_{4}$.	-	740	873	950	987	1039	1062	1074	1084	1086
AgNO_{3} -		1033	1057	1068	1069	1077	1078	1077	1073	IOSo
${ }^{\frac{1}{2} \mathrm{ZnSO}_{4}}$		744	861	919	953	1001	1023	1032	1047	1060
$\frac{1}{2} \mathrm{MgSO}_{4}$.		773	88I	935	967	1015	1034	1036	1052	1056
$\frac{1}{2} \mathrm{Na}_{2} \mathrm{SO}_{4}$		933	980	998	1009	1026	1034	1038	1056	1054
$\frac{1}{2} \mathrm{ZnCl}_{2}$		939	979	994	1004	1020	1029	1031	1035	1036
NaCl		976	998	1008	IOI 4	1018	1029	1027	1028	1024
NaNO_{3}		921	942	952	956	966	975	970	972	975
$\mathrm{KC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$		891	913	919	923	933	934	935	943	$939 *$
$\frac{1}{2} \mathrm{Na}_{2} \mathrm{CO}_{3}$		956	1010	1037	1046	988	874	790	715	697*
${ }_{2}^{2} \mathrm{H}_{2} \mathrm{SO}_{4}$.		3001	3240	3316	3342	3280	3118	2927	2077	1413 *
$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$.		170	283	3 So	470	796	995	1133	1328	${ }^{1} 304 *$
HCl		3438	$3+55$	3455	3440	3340	3170	2965	2057	1254**
HNO_{3}		3421	3448	3427	3408	3285	3088	2863	1904	I144*
${ }_{\frac{1}{3}} \mathrm{H}_{3} \mathrm{PO}_{4}$		858	945	968	977	920	837	746	497	402*
KOH	-	2141	2140	2110	2074	1892	1689	1474	845	747*
NH_{3}		116	190	260	330	500	610	690	700	560*

LIMITING VALUES OF μ. TEMPERATURE COEFFICIENTS.

TABLE 420.-Limiting Values of μ.
This table shows limiting values of $\mu=\frac{k}{m} \cdot 10^{8}$ for infinite dilution for neutral salts, calculated from Table 271 .

Salt.	μ	Salt.	μ	Salt.	μ	Salt.	μ
$\frac{1}{2} \mathrm{~K}_{2} \mathrm{SO}_{4}$	1280	$\frac{1}{2} \mathrm{BaCl}_{2}$	1150	$\frac{1}{2} \mathrm{MgSO}_{4}$.	1080	$\frac{1}{2} \mathrm{H}_{2} \mathrm{SO}_{4}$.	3700
KCl .	1220	$\frac{1}{2} \mathrm{KClO}_{3}$	1150	$\frac{1}{2} \mathrm{Na}_{2} \mathrm{SO}_{4}$.	1060	HCl	3500
KI	1220	$\frac{1}{2} \mathrm{BaN}_{2} \mathrm{O}_{6}$.	1120	$\frac{1}{2} \mathrm{ZnCl}$	1040	HNO_{3} - .	3500
$\mathrm{NH}_{4} \mathrm{Cl}$. .	1210	$\frac{1}{2} \mathrm{CuSO}_{4}$	1100	NaCl	1030	$\frac{1}{3} \mathrm{H}_{3} \mathrm{PO}_{4}$.	1100
KNO_{3}. .	1210	AgNO_{3}	1090	NaNO_{3}	980	KOH	2200
-	-	$\frac{1}{2} \mathrm{ZnSO}_{4}$.	1080	$\mathrm{K}_{2} \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$	940	$\frac{1}{2} \mathrm{Na}_{2} \mathrm{CO}_{3}$.	1400

If the quantities in Table 420 be represented by curves, it appears that the values of the specific molecular conductivities tend toward a limiting value as the solution is made more and more dilute. Although these values are of the same order of magnitude, they are not equal, but depend on the nature of both the ions forming the electrolyte.

When the numbers in Table 421 are multiplied by Hittorf's constant, or 0.00011 , quantities ranging between 0.14 and 0.10 are obtained which represent the velocities in millimetres per second of the ions when the electromotive force gradient is one volt per millimetre.

Specific molecular conductivities in general become less as the concentration is increased, which may be due to mutual interference. The decrease is not the same for different salts, but becomes much more rapid in salts of high valence.

Salts having acid or alkaline reactions show marked differences. They have small specific molecular conductivity in very dilute solutions, but as the concentration is increased the conductivity rises, reaches a maximum and again falls off. Kohlrausch does not believe that this can be explained by impurities. $\mathrm{H}_{3} \mathrm{PO}_{4}$ in dilute solution seems to approach a monobasic acid, while $\mathrm{H}_{2} \mathrm{SO}_{4}$ shows two maxima, and like $\mathrm{H}_{3} \mathrm{PO}_{4}$ approaches in very weak solution to a monobasic acid.

Kohlrausch concludes that the law of independent migration of the ions in media like water is sustained.

TABLE 421. - Temperature Coefficients.
The temperature coefficient in general diminishes with dilution, and for very dilute solutions appears to approach a common value. The following table gives the temperature coefficient for solutions containing o.or gram molecule of the salt.

Salt.	Temp. Coeff.	Salt.	Temp. Coeff.	Salt.	'Temp. Coeff.	Salt.	Temp. Coeff.
KCl . . . $\mathrm{NH}_{4} \mathrm{Cl}$. NaCl . . LiCl . . . $\frac{1}{2} \mathrm{BaCl}_{2}$. . $\frac{1}{2} \mathrm{ZnCl}_{2}$. . $\frac{1}{2} \mathrm{MgCl}_{2}$	$\begin{aligned} & 0.0221 \\ & 0.0226 \\ & 0.0238 \\ & 0.0232 \\ & 0.0234 \\ & 0.0239 \\ & 0.0241 \end{aligned}$	KI . . . KNO_{3}. NaNO_{3}. . AgNO_{3}. . $\frac{1}{2} \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ KClO_{3}. . $\mathrm{KC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$.	0.0219	$\frac{1}{2} \mathrm{~K}_{2} \mathrm{SO}_{4}$	0.0223	$\frac{1}{2} \mathrm{~K}_{2} \mathrm{CO}_{3}$. .	0.0249
			0.0216	$\frac{1}{2} \mathrm{Na}_{2} \mathrm{SO}_{4}$	0.0240	$\frac{1}{2} \mathrm{Na}_{2} \mathrm{CO}_{3}$. .	0.0265
			0.0226	$\frac{1}{2} \mathrm{Li}_{2} \mathrm{SO}_{4}$	0.0242		
			0.0221	$\frac{1}{2} \mathrm{MgSO}_{4}$	0.0236	$\begin{aligned} & \mathrm{KOH} \\ & \mathrm{HCl} \\ & \mathrm{HCO} \\ & \mathrm{HNO} \\ & \text {. }\end{aligned} \cdot$.	0.0194 0.0159 0.0162
			0.0224	$\frac{1}{2} \mathrm{ZnSO}_{3}$	0.0234	${ }_{2}^{1} \mathrm{H}_{2} \mathrm{SO}_{4}{ }^{-} \cdot{ }^{-}$	
			0.0219	$\frac{1}{2} \mathrm{CuSO}_{4}$	0.0229		
			0.0229	-	-		0.0159

THE EQUIVALENT CONDUGTIVITY OF SALTS, ACIDS AND bASES IN AQUEOUS SOLUTIONS.

In the following table the equivalent conductance is expressed in reciprocal ohms. The concentration is expressed in milli-equivalents of solute per litre of solution at the temperature to which the conductance refers. (In the cases of potassium hydrogen sulphate and phosphoric acid the concentration is expressed in milli-formula-weights of solute, KHSO_{4} or $\mathrm{H}_{3} \mathrm{PO}_{4}$, per liter of solution, and the values are correspondingly the modal, or "formal," conductances.) Except in the cases of the strong acids the conductance of the water was subtracted, and for sodium acetate, ammonium acetate and ammonium chloride the values have been corrected for the hydrolysis of the salts. The atomic weights used were those of the International Commission for 1905, referred to oxygen as 16.00 . Temperatures are on the hydrogen gas scale.

$$
\begin{gathered}
\text { Concentration in } \frac{\text { gram equivalents. }}{1000 \text { liter }} \\
\text { Equivalent conductance in } \frac{\text { reciprocal ohms per centimeter cube }}{\text { gram equivalents per cubic centimeter }} \text {. }
\end{gathered}
$$

Substance.		Equivalent conductance at the following ${ }^{\circ} \mathrm{C}$ temperatures.									
		180	25°	50°	75°	100°	${ }_{1280}$	${ }_{156}{ }^{\circ}$	$218{ }^{\circ}$	281°	$306{ }^{\circ}$
Potassium chloride .	-	130.1	1)	2.5)	(321.5)	414	(519)	625	825	1005	1120
" "	10	126.3 122.4 1	${ }_{1415}^{146.4}$	215.2	295.2	377	470	${ }_{5}^{56}$	$\begin{aligned} & 779 \\ & 74 \mathrm{I} \end{aligned}$	874	1008
" "	80	113.5				342		498	638	723	720
iun	100	112.0	129.0	194.5	264.6	336 362 3	415	495	760		Ioso
,	2	109.6	-	-	-	349	-	534	722	895	555
" ، ${ }^{\text {، }}$	10	102.0	-		-	336	-	111 450	695 500	820 674	${ }_{680}^{860}$
" "	800	${ }_{9}^{93.5}$	-		-	396 206	-	442			
Silver nitrate	-	115.8	-		-	367	-	570	780	965	1065
"	28	112.2 108.0	-	-	-		-			$\begin{aligned} & 877 \\ & 790 \end{aligned}$	935 818 8
" "	20	105.1	-	-	-	326	-	488	639		
" "	$8{ }^{40}$		-		-	312 294	-	462 43	599 552	$\begin{aligned} & 680 \\ & 614 \end{aligned}$	680 604
" "	100		-		-						
Sodium acetate	-	78.1	-	-	-	285	-	450	${ }^{660}$	-	24
"، "	10	${ }_{71.2}^{74.5}$	-			253		${ }_{396}^{421}$	$\begin{aligned} & 578 \\ & 542 \end{aligned}$	־	$\begin{aligned} & 801 \\ & 702 \end{aligned}$
,	80	63.4	-	-			-				
Magnesium sulphate ${ }_{\text {/، }}$	-		-	-	-	426 302	-		1080 260		
" ،	${ }^{2}$	794	-	-	-		-	241	143		
" "	20	67.5	-			190	-		110 88 88		
"	40 80 80	59.3 52.0	-				-		75		
" "	100	49.8	-				-		75		
Ammonium chloride	20	${ }_{\text {d }}^{\substack{43.1 \\ 13.1}}$		-			-	(628)	(841)		
Am"، ${ }^{\text {c }}$ "		126.5	146.5	-			-		Sor	-	1031
" "	10	122.5	141.7						${ }^{758}$	-	$\begin{aligned} & 925 \\ & 828 \end{aligned}$
Ammonium acetate	$3{ }^{3}$		-	-	-		-				
Amm " "	${ }^{10}$	lif 18.7 88.7	-	-	-	$\begin{aligned} & 300 \\ & 386 \end{aligned}$					

From the investigations of Noyes, Melcher, Cooper, Eastman and Kato; Journal of the American Chemical Society, 30, p. 335, 1908.

Smithisonian Tables.

THE EQUIVALENT CONDUCTIVITY OF SALTS, ACIDS AND BASES IN AQUEOUS SOLUTIONS.

Substance.		Equivalent conductance at the following ${ }^{\circ} \mathrm{C}$ temperatures.									
		18°	25°	50°	75°	100°	:280	156°	2180	281°	$306{ }^{\circ}$
Barium nitrate .	0	116.9	-	-	-	385	-	600	840	1120	1300
" . "	2	109.7	-	-	-	352	-	536	715	828	824
" " . . .	10	101.0	-	-	-	322	-	481	618	658	615
" " . . .	40	88.7	-	-	-	280	-	412	507	503	448
" "، . .	80	81.6	-	-	-	258	-	372	449	430	
Potassium sulphate	100	79.1	-	-	-	249					
Potassium sulphate	0	132.8	-	-	-	455	-	715	1065	1460	1725
" " .	2	124.8	-	-	-	402	-	605	806	893	867
" ${ }^{\prime \prime}$.	10	115.7	-	-	-	365	-	537	672	687	637
" " . .	40	104.2	-	-	-	320	-	455	545	519	466
" " ${ }^{\prime}$. .	So	97.2 05.0	-	-	-	294	-	415	482	448	396
Hydrochloric acid	100	95.0 379.0	-	-	-	286 850	-	1085	1265	1380	1424
" "	2	373.6	-	-	-	826	-	1048	1217	1332	1337
" ${ }^{\text {c }}$	10	368.1	-	-	-	807	-	1016	1168	1226	1162
"	80	353.0	-	-	-	762	-	946	1044	1046	862
Nitric acid	100	350.6	-	-	706	754	-	929	1006		
Nitric acid	\bigcirc	377.0	421.0	570	706	826	945	1047	(1230)	-	(1380)
" ،	2	371.2	413.7	559	690	806	919	1012	1166	-	1156
" "	10	365.0	406.0	548	676	786	893	978			
"، "	50 100	353.7 346.4	393.3	528	649	750	845	917 880			
	100	346.4 383.0	385.0 (429)	516 (591)	632 (746)	728	817 (104I)	880 1176	1505	-	454*
Sulphuric acid.	-	383.0	(429)	(591)	(746)	891	(1041)	1176	1505		(2030)
، ،	10	353.9 309.0	390.8 337.0	501	561	571	551 460	536 481	563	-	37
"	50	$253 \cdot 5$	273.0	323	356	384	417	448	502		
" " . .	100	$233 \cdot 3$	251.2	300	336	369	404	435	483	-	474*
	2	455.3	506.0	661.0	754	784	773	754			
sulphate	50 100	295.5	318.3	374.4	403	422	446	477			
Phosphoric acid . .	100	33	376	329.1 510	354	375	402	435			
" . "	2	283.1	311.9	401	464	498	508	489			
" " . .	10	203.0	222.0	273	300	308	298	274			
" " . .	50	122.7	${ }^{1} 32.6$	157.8	168.6	168	${ }^{1} 58$	142			
" "	100	96.5	104.0	122.7	129.9	128	120	108			
Acetic acid . . .	\bigcirc	(347.0)	-	,	-	(773)	-	(980)	(1165)	-	(1268)
" ${ }^{\prime} \times$. ${ }^{\text {c }}$	10	14.50 8.50	-	-	-	25.1	-	22.2	14.7 8.65		
" "	30	8.50 5.22	-	-	-	14.7 9.05	-	13.0 8.00	8.65 5.34		
"	100	4.67	-	-	-	8.10	-	-	4.82	-	1.57
Sodium hydroxide	\bigcirc	216.5	-	-	-	594	-	835	1060		
" "	2	212.1	-	-	-	582	-	814			
" ${ }^{\text {" }}$.	20	205.8	-	-	-	559	-	771	930		
Barium hydroxide	50	200.6	-	-	-	540	-	738	873		
$\underset{\text { Barium hydroxide }}{\text { "] }}$	\bigcirc	222	256	389	(520)	645	(760)	847			
	10	215 207	2	359 342	4 449	591 548	664	722			
" "	50	191.I	215.1	308	399	478	549	593			
"	100	180.1	204.2	291	373	443	503	531			
	\bigcirc	(238)	(271)	(404)	(526)	(647)	(764)	(908)	(114)	-	(1406)
Ammonium hydrox-	10	9.66	-	-	_	23.2	-	22.3	15.6		
ide	30	5.66	6	-	6	13.6	-	13.0			
	100	3.10	3.62	$5 \cdot 35$	6.70.	$7 \cdot 47$	-	7.17	4.82	-	1.33

[^52]Snithsonian Tables.

Conditions similar to those of the preceding table except that the atomic weights for 1908 were used.

Substance.	Concentration.	Equivalent conductance at the following ${ }^{\circ} \mathrm{C}$ temperature.							
		0°	18°	25°	50°	75°	100°	128°	15°
Potassium nitrate .	\bigcirc	80.8	126.3	145.I	219	299	384		
" "	2	78.6	122.5	140.7	212.7	289.9	370.3	460.7	551
	12.5	75.3	117.2	134.9	202.9	276.4	351.5	435.4	520.4
" ${ }^{\prime}$ " ${ }^{\text {a }}$	50	70.7	109.7	126.3	189.5	257.4	326.1	402.9	476.I
" ${ }^{\text {" }}$ " . .	100	67.2	104.5	120.3	180.2	244.1	308.5	379.5	447.3
Potassium oxalate . .	\bigcirc	79.4	127.6	147.5	230	322	419	538	653
" ${ }^{\text {" }}$ " .	2	74.9	119.9	139.2	215.9	300.2	389.3	489.1	587
" "	12.5	$69 \cdot 3$	III.I	129.2	199.1	275.1	354.1	438.8	524.3
" ${ }^{\prime}$ " . . .	50	63	101	116.5	178.6	244.9	312.2	383.8	449.5
" ${ }^{\prime}$ " ${ }^{\text {a }}$.	100	59.3	94.6	109.5	167	227.5	288.9	353.2	409.7
	200	55.8	88.4	102.3	${ }^{1} 55$	210.9	$265 . \mathrm{I}$	321.9	372.1
Calcium nitrate ${ }_{\text {/، }}$.	\bigcirc	70.4	112.7	130.6	202		369	474	575
" " . . .	$\stackrel{2}{12}$	66.5	107.1	123.7	191.9	266.7	346.5	438.4	529.8
" " . . .	12.5 50	61.6	888.6	114.5 102.6	176.2	244	314.6	394.5	473.7
" " . .	50 100	55.6 51.9	82.6	102.6 95.8	157.2	216.2 199.9	276.8 255.5	343 315.1	405.1 369.1
" "	200	48.3	76.7	88.8	135.4	184.7	$253 \cdot 5$ 234.4	288	369.1 334.7
Potassium ferrocyanide.	\bigcirc	98.4	I 59.6	185.5	288	403	527		
	0.5	91.6		171.1					
" ${ }^{\prime \prime}$ "	2.	84.8	137	158.9	243.8	335.2	427.6		
"، ،	12.5	71	113.4	131.6	200.3	271	340		
" ${ }^{\prime \prime}$	50	58.2	93.7	108.6	163.3	219.5	272.4		
" ${ }^{\text {" }}$	100	53	84.9	98.4	148.1	I98.1	245		
" "	200	48.8	77.8	90.1	135.7	180.6	222.3		
B'" "	400	45.4	72.1	83.3	124.8	165.7	203.1		
$\underset{\text { Barium ferrocyanide }}{\text { ¢ }}$	-	91	150	176	277	393	52 I		
" "	2	46.9	75.	86.2	127.5	166.2	202.3		
Calcium ferrocyanide ${ }^{\text {" }}$	12.5	30.4	48.8	56.5	83.1	107	129.8		
$\underset{\text { Calcium ferrocyanide }}{\text { Ca }}$	2	88. 47.1	146 75.5	$\begin{gathered} 171 \\ 86.2 \end{gathered}$	271	386	512		
	2	47.1	75.5	86.2	${ }^{1} 30$				
" ${ }^{\prime \prime}$	12.5 50	31.2 24.1	49.9 38.5	57.4 44.4	64.6				
"	100	21.9	35.1	40.2	58.4	73.7	84.3		
" " . .	200	20.6	32.9	37.8	55	68.7	77.5		
" . ${ }^{\text {" }}$	400	20.2	32.2	37.1	54	67.5	76.2		
Potassium citrate .	-	76.4	124.6	144.5	228	320	420		
"	0.5	-	120.1	139.4					
" "	2	71	115.4	134.5	210.1	293.8	$3^{81.2}$		
" "	5	67.6	109.9	128.2	198.7	276.5	357.2		
" "	12.5	62.9	101.8	118.7	183.6	254.2	326		
" " . . .	50	54.4	87.8	102.1	157.5	215.5	273		
" " . .	100	50.2	80.8	93.9	143.7	196.5	$247 \cdot 5$		
" "	300	43.5	69.8	81	123.5	167	209.5		
Lanthanum nitrate	\bigcirc	75.4	122.7	142.6	223	313	413	534	651
" "	2	68.9	110.8	128.9	200.5	279.8	363.5	457.5	549
" "،	12.5	61.4	98.5	114.4	176.7	243.4	311.2	383.4	447.8
" "	50	54	86. 1	99.7	152.5	207.6	261.4	315.8	357.7
" "	100	49.9	79.4	91.8	139.5	189.1	236.7	282.5	316.3
" " . .	200	46	72.1	83.5	126.4	170.2	210.8	249.6	276.2

From the investigations of Noyes and Johnston, Journal of the American Chemical Society, 31, p. 287, 1909.

Smithsonian tables.

CONDUCTANCE OF IONS. - HYDROLYSIS OF AMMONIUM ACETATE.
TABLE 424. -The Equivalent Conductance of the Separate Ions.

Ion.	0°	18°	25°	50°	75°	100°	128°	156°
K.	40.4	64.6	$74 \cdot 5$	115	159	206	263	317
Na	26	43.5	50.9	82	116	155	203	249
NH_{4}	40.2	64.5	74.5	115	159	207	264	319
$\mathrm{Ag} \cdot . .$. .	32.9	54.3	63.5	101	143	188	245	299
$\frac{1}{2} \mathrm{Ba}$.	33	55^{2}	65	104	149	200	262	322
$\frac{1}{2} \mathrm{Ca}$.	30	$5 \mathrm{I}^{2}$	60	98	142	191	252	312
${ }_{3} \mathrm{La}$.	35	61	72	119	173	235	312	388
Cl	4 I .1	$65 \cdot 5$	75.5	116	160	207	264	318
NO_{3}.	40.4	61.7	70.6	104	140	178	222	263
$\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{O}_{2}$	20.3	34.6	40.8	67	96	130	171	211
$\frac{1}{2} \mathrm{SO}_{4}$.	41	682	79	125	177	234	303	370
${ }_{\frac{1}{2}} \mathrm{C}_{2} \mathrm{O}_{4}{ }^{-}$	39	63^{2}	73	115	163	213	275	336
${ }_{\frac{1}{3}} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}$	36	60	70	113	161	214		
$\frac{1}{4} \mathrm{Fe}(\mathrm{CN})_{6}$. . . .	58	95	III	173	244	321		
H	240	314	350	465	565	644	722	777
OH .	105	172	192	284	360	439	525	592

From Johnson, Journ. Amer. Chem. Soc., 3r, p. 1010, 1909.

TABLE 425. - Hydrolysis of Ammonium Acetate and Ionization of Water.

Temperature.	Percentage hydrolysis.	Ionization constant of water.	Hydrogen-ion concen- tration in pure water. Equivalents per liter.
t	100_{h}	$\mathrm{~K}_{\mathrm{W}} \times \mathrm{ro}^{14}$	$\mathrm{C}_{\mathrm{H}} \times{ }_{10^{7}}$
0	-	0.089	0.30
18	(0.35)	0.46	0.68
25	-	0.82	0.91
100	4.8	48.	6.9
156	18.6	223.	14.9
218	52.7	961.	21.5
306	91.5	168.	13.0

Noyes, Kato, Kanolt, Sosman, No. 63 Publ. Carnegie Iust., Washington.

Smithsonian Tables.

Tables 426, 427.
DIELECTRIC STRENGTH.
TABLE 426, - Steady Potential Difference in Volts required to produce a Spark in Air with Ball Electrodes.

Spark length. cm.	$R=0$. Points.	$R=0.25$ $\mathbf{c m}$.	$R=0.5$ $\mathbf{c m}$.	$R=1 \mathbf{c m}$.	$R=2 \mathrm{~cm}$.	$R=3 \mathrm{~cm}$.	$R=\infty$. Plates.
0.02	-	-	1560	1530			
0.04	-	-	2460	2430	2340		
0.06	-	-	3300	3240	3060		
0.08	-	-	4050	3990	3810		
0.1	3720	5010	4740	4560	4560	4500	4350
0.2	4680	8610	8490	8490	8370	7770	7590
0.3	5310	11140	11460	11340	11190	10560	10650
0.4	5970	14040	14310	14340	14250	13140	13560
0.5	6300	15990	16950	17220	16650	16470	16320
0.6	6840	17130	19740	20070	20070	19380	19110
0.8	8070	18960	23790	24780	25830	26220	24960
1.0	8670	20670	26190	27810	29850	32760	30840
1.5	9960	22770	29970	37260			
2.0	10140	24570	33060	45480			
3.0	11250	28380					
4.0	12210	29580					
5.0	13050						

Based on the results of Baille, Bichat-Blondot, Freyburg, Liebig, Macfarlane, Orgler, Paschen, Quincke, de la Rue, Wolff. For spark lengths from 1 to 200 wave-lengths of sodium light, see Earhart, Phys. Rev. 15, p. 163; Hobbs, Phil. Mag. 10, p. 607, 1905.

TABLE 427. - Alternating Current Potentials required to produce a Spark in Air with various Ball Electrodes.
The potentials given are the maxima of the alternating waves used. Frequency, 33 cycles per second.

Spark length. cm .	$R=1 \mathrm{~cm}$.	$R=1.92$	$R=5$	$R=7.5$	$R=10$	$R=15$
0.08	3770					
. 10	4400	4.880	4330	4290	4245	4230
.15	5990	5940	5830	5790	5800	5780
. 20	7510	7440	7340	7250	7320	7330
. 25	9045	8970	8850	8710	8760	8760
0.30	10480	10400	10270	10130	10180	10150
. 35	11980	11890	11670	11570	11610	11590
. 40	13360	13300	13100	12930	12980	12970
. 45	14770	14700	14400	14290	14330	14320
. 50	16140	16070	15890	15640	15690	15690
0.6	18700	18730	18550	18300	18350	18400
. 7	21350	21380	21140	20980	20990	21000
. 8	23820	24070	23740	23490	23540	23550
0.9	26190	26640	26400	26130	26110	26090
1.0	28380	29170	28950	28770	28680	28610
1.2	32400	34100	33790	33660	33640	33620
1.4	35850	38850	38850	38580	38620 .	38580
1.6	38750	43400	43570	43250	43520	
r. 8	40900	-	48300	47900		
2.0	42950	-	-	52400		

Based upon the results of Kawalski, Phil. Mag. 18, p. 699, 1909.
Smithsonian Tables.

TABLE 428. - Potential Necessary to produce a Spart in Air between more widely Separated Electrodes.

		Steady potentials.						Steady potentials.	
		Ball electrodes.		Cup electrodes.				Ball electrodes.	
				Projection.					
				4.5 mm .	1.5 mm .				
0.3	-	-	-	-	11280	6.0	61000	-	86830
0.5	-	17610	17620	-	17420	7.0	-	52000	
0.7	-	-	23050	-	22950	8.0	67000	52400	90200
1.0	12000	30240	31390	31400	31260	10.0	73000	74300	91930
1.2	-	33800	36810	3	36700	12.0	82600	-	93300
1.5	-	37930	44310	-	44510	14.0	92000	-	94400
2.0	29200	42320	56000	56500	56530	15.0	-	-	94700
2.5	-	45000	65180	-	68720	16.0	101000	-	101000
3.0	40000	46710	71200	80400	SII 40	20.0	119000		
$3 \cdot 5$	-		75300	-	92400	25.0	140600		
4.0	48500	49100	78600	101700	103800	30.0	165700		
4.5	-	,	81540	-	114600	35.0	190900		
5.0	56500	50310	83800	-	126500				
$5 \cdot 5$	-	-	-	-	135700				

This table for longer spark lengths contains the results of Voege, Ann. der Phys. 14, 1904, using alternating current and "dull point" electrodes, and the results with steady potential found in the recent very careful work of C. Mürler, Ann. d. Phys. 28, p. 585, 1909.

The specially constructed electrodes for the columns headed "cup electrodes" had the form of ter and having a height of 4.5 mm . and 1.5 mm . respectively, attached to the plane face of the electrodes. These electrodes give a very satiso factory linear relation between the spark lengths and the voltage throughout the range studied.

TABLE 429, - Effect of the Pressure of the Gas on the Dielectric Strength.
Voltages are given for different spark lengths l.

Pressure. $\mathrm{cm} . \mathrm{Hg}$.	$l=0.04$	$l=0.06$	$l=0.08$	$l=0.10$	$l=0.20$	$l=030$	$l=0.40$	$l=0.50$
2	-	-	-	-	744	939	1110	1266
4	-	483	567	648	1015	1350	1645	1915
6	-	582	690	795	1290	1740	2140	2505
10	-	771	933	1090	1840	2450	3015	3580
15	-	1060	1280	1490	2460	3300	4080	4850
25	1110	1420	1725	2040	3500	4800	6000	7120
35	1375	1820	2220	2615	4505	6270	7870	9340
45	1640	2150	2660	3120	5475	7650	9620	11420
	1820	2420	3025	3610	6375	8950	11290	13455
65	2040	2720	3400	4060	7245	10210	12950	15470
75	2255	3035	3805	4565	8200	11570	14650	17450

This table is based upon the results of Orgler, 1899. See this paper for work on other gases (or Landolt-BörnsteinMeyerhoffer).
For long spark lengths in various gases see Voege, Electrotechn. Z. 28, 1907. For dielectric strength of air and CO_{2} in cylindrical air condensers, see Wien, Ann. d. Phys. 29, p. 679, 1909.

Smithsonian Tables.

Tables 430, 431.
DIELECTRIC STRENGTH.
TABLE 430. - Dielectric Strength of Materials.
Potential necessary for puncture expressed in kilovolts per centimeter thickness of the dielectric.

TABLE 431. - Potentials in Volts to Produce a Spark in Kerosene.

Spark length. mm .	Electrodes Balls of Diam. d.			
	0.5 cm .	1 cm .	2 cm .	3 cm .
0.1	3800	3400	2750	2200
. 2	7500	6450	4800	3500
$\cdot 3$	10250	9450	7450	4600
. 4	11750	10750	9100	5600
. 5	13050	12400	11000	6900
. 6	14000	13550	12250	8250
. 8	15500	15100	13850	10450
1.0	16750	16400	15250	12350

Determinations of the dielectric strength of the same substance by different observers do not agree well. For a discussion of the sources of error see Mościcki, Electrotechn. Z. 25, 1904.
For more detailed information on the dependence of the sparking distance in oils as a function of the nature of the electrodes, see Edmondson, Phys. Review 6, p. 65, 1898.

Smithsonian Tables.

TABLE 432. - Dielectric Constant (Specific Inductive Oapacity) of Ciases. Atmospheric Pressure.
Wave-lengths of the measuring current greater than 10000 cm .

Gas.	Temp.${ }^{\circ} \mathrm{C}$	Dielectric constant referred to		Authority.
		Vacuum $=1$	Air $=1$	
	-	$\begin{aligned} & 1.000590 \\ & 1.000586 \end{aligned}$	$\begin{aligned} & 1.000000 \\ & 1.000000 \end{aligned}$	Boltzmann, 1875. Klemencix, 1885.
Ammonia	20	1.00718	1.00659	Bädeker, 1901 .
$\underset{\text { Carbon bisulphide }}{\text { c/ }}$.	$\begin{gathered} 0 \\ 100 \end{gathered}$	$\begin{aligned} & 1.00290 \\ & 1.00239 \end{aligned}$	$\begin{aligned} & 1.00231 \\ & 1.00180 \end{aligned}$	Klemencix. Bädeker.
Carbon dioxide	$\begin{aligned} & \circ \\ & 0 \end{aligned}$	$\begin{aligned} & 1.000946 \\ & 1.000985 \end{aligned}$	$\begin{aligned} & \mathbf{1 . 0 0 0 3 5 6} \\ & \text { I.000399 } \end{aligned}$	Boltzmann. Klemencic.
Carbon monoxide 66	0	$\begin{aligned} & 1.000690 \\ & 1.000695 \end{aligned}$	$\begin{aligned} & 1.000100 \\ & 1.000109 \end{aligned}$	Boltzmann. Klemencic.
$\underset{\text { Ethylene }}{ }$	0	$\begin{aligned} & 1.00131 \\ & 1.00146 \end{aligned}$	$\begin{aligned} & \mathrm{I} .00072 \\ & \mathrm{I} .00087 \end{aligned}$	Boltzmann. Klemencix.
Hydrochloric acid . . .	100	1.00258	1.00199	Bädeker.
Hydrogen	\bigcirc	$\begin{aligned} & 1.000264 \\ & 1.000264 \end{aligned}$	$\begin{aligned} & 0.999674 \\ & 0.999678 \end{aligned}$	Boltzmann. Klemencic.
$\underset{\text { Methane }}{ }{ }_{\text {M }}$.	$\begin{aligned} & \circ \\ & 0 \end{aligned}$	$\begin{aligned} & \mathrm{I} .000944 \\ & \mathrm{I} .000953 \end{aligned}$	$\begin{aligned} & \mathrm{I} .000354 \\ & \mathrm{I} .000367 \end{aligned}$	Boltzmann. Klemenčic.
Nitrous oxide $\left.{ }_{\text {" }}^{\left(\mathrm{N}_{2} \mathrm{O}\right.}\right)$	\bigcirc	$\begin{aligned} & \text { 1.00I I } 6 \\ & \text { I.00099 } \end{aligned}$	$\begin{aligned} & \mathrm{I} .00057 \\ & \mathrm{I} .0004 \mathrm{I} \end{aligned}$	Boltzmann. Klemencic.
	\bigcirc			
Sulphur dioxide Water vapor, 4 atmospheres	\bigcirc	1.00993	1.00934	Bädeker.
	-	1.00905	1.00846	Klemencix.
	145	1.00705	1.00646	Bädeker.

TABLE 433, - Variation of the Dielectric Constant with the Temperature.

For variation with the pressure see next table.
If $D_{\theta}=$ the dielectric constant at the temperature $\theta^{\circ} \mathrm{C} ., D_{t}$ at the temperature $t^{\circ} \mathrm{C}$., and α and β are quantities given in the following table, then

$$
D_{\theta}=D_{t}\left[\mathrm{I}-\alpha(t-\theta)+\beta(t-\theta)^{2}\right]
$$

The temperature coefficients are due to Bädeker.

Gas.		a	β	Range of temp. C.
Ammonia	\cdot	5.45×10^{-6}	2.59×10^{-7}	$10-110$
Sulphur dioxide	6.19×10^{-6}	1.86×10^{-7}	$0-110$	
Water vapor	1.4×10^{-4}	-	145	

The dielectric constant of air at atmospheric pressure but with varying temperature may also be calculated from the fact that $D-I$ is approximately proportional to the density.

Tables 434, 435.
DIELECTRIC CONSTANTS (continued).
TABLE 434. - Ohange of the Dielectrio Constant of Gases with the Pressure.

Gas.	Temperature, ${ }^{\circ} \mathrm{C}$.	Pressure atmos.	Dielectric constant.	Authority.
Air . . .	19	20	1.0108	Tangl, 1907.
"	-	40	1.0218	
"	-	60	1.0330	" "
"	-	80	1.0439	" "
" •	-	100	1.0548	" "
"	II	20	1.0101	Occhialini, 1905.
" •	-	40	1.0196	"
" • • • • •	-	60	1.0294	" "
"	-	80	1.0387	" "
"	-	100	1.0482	"
"	-	120	1.0579	" "
" • • • .	-	140	1.0674	" "
" . .	-	160	1.0760	" "
	-	180	1.0845	" "
Carbon dioxide .	15	10	1.008	
	-	20	1.020	
Nitrous oxide, $\dot{\mathrm{N}}$		10	1.060	"
" "	-	20	1.025	'
" "	-	40	1.070	'

TABLE 435. - Dielectric Constants of Liquids.
A wave-length greater than 10000 centimeters is denoted by ∞.

References on page 358.
Smithsonian Tables.

DIELECTRIC CONSTANTS OF LIQUIDS.
A wave-length greater than 10000 centimeters is desiguated by ∞.

Addenda to Table 440, p. 36x, Dielectric Constant of Rochelle Salt :
The polarization of the Rochelle salt dielectric in an electric field is somewhat analagous to the behavior of the magnetization of iron in a magnetic field, showing both saturation and hysteresis. The dielectric constant D depends on the initial and final fields and the hysteresis.

Initial field, $765 \mathrm{v} / \mathrm{cm}$.; Final field, $690 \mathrm{v} / \mathrm{cm}$.; Average D ($23^{\circ} \mathrm{C}$), 40

765	-153	40
765	-765	205
0	880	157

The last value may be fair value for ordinary purposes. The electrodes were tinfoil attached with shellac. The field was applied perpendicular to the a axis. Like piezoelectric properties, the dielectric constant varies with different crystals. It depends on the temperature as follows: (field o to $880 \mathrm{v} / \mathrm{cm}$)

$$
-70^{\circ} \mathrm{C}, \mathrm{D}=12 ;-40^{\circ}, 14 ;-20^{\circ}, 48 ; 0^{\circ}, 174 ;+20^{\circ}, 88 ;+30^{\circ}, 52
$$

(Data from Valesek, University of Minnesota, 1921.)

SmITHSONIAN TABLES.

DIELECTRIC CONSTANTS OF LIQUIDS (continued).
TABLE 436. - Tomporatare Coetticients of the Formula :
$D_{\theta}=D_{t}\left[\mathrm{I}-\alpha(t-\theta)+\beta(t-\theta)^{2}\right]$.

Substance.	a	β	$\begin{aligned} & \text { Temp. } \\ & \text { range, }, \end{aligned}$	Authority.
Amyl acetate.	0.0024	-	-	Löwe.
Aniline . .	0.00351	-	-	Ratz.
Benzene. . . .	0.00106	0.0000087	10-40	Hasenöhrl.
Carbon bisulphide .	0.000966 0.000922	-	-	Ratz.
	0.000922	0.00000060	20-181	Tangl.
Chloroform Ethyl ether	0.00410	0.000015	22-181	"
Methyl alcohol .	0.00459	-	-	Ratz.
Oils: Almond .	0.00163	0.000026	-	Hasenöhrl.
Castor	0.01067	-	-	Heinke, 1896.
Olive	0.00364	-	-	"" "
Paraffine	0.000738	0.0000072	-	Hasenöhrl.
Toluene .	0.000921 0.000977	-00000046	-113	Ratz.
Water .	0.000977 $0.004+74$	0.00000046	$\underset{\substack{20-181 \\ 5-20}}{ }$	Tangl.
"	0.004583	0.0000117	0-76	Drude.
	0.00436	-	4-25	Coolidge.
Meta-xylene .	0.000817	-	20-181	Tangl.

(See Table 433 for the signification of the letters.)

TABLE 437.-Dielectric Constants of Liquefled Gases.
A wave-length greater than 10000 centimeters is designated by ∞.

Substance.	Temp.		$\begin{gathered} \text { Dial. } \\ \text { constant. } \end{gathered}$	言	Substance.			Dial. constant.	产
Air	-191	∞	$\stackrel{\text { I. } 432}{1.47-1.50}$	1	Nitrous oxide				
Ammonia	-34	75	${ }_{\substack{1.47-1.50 \\ 21-23}}$	2	" " ${ }^{2} \mathrm{O}$.	-88	$\stackrel{\infty}{ }$	1.938 1.630	8
" ${ }^{\text {c }}$	14	130	16.2	4	" "	+5	"	1.578	"
Carbon dioxide .	-5	\cdots	1.608	5	Oxygen	+15	"	1.520	،
" " .	0 +10	"	1.583 1.540	"	Oxygen	-182	. "	1.491 1.465 1	9
"	+15	"	1.526	"	Sulphur dioxide	14.5	120	13.75	4
Chlorine	-60	"	2.150	"	"، "	20	∞	14.0	6
"	-20	"	2.030	"	" ${ }^{\text {" }}$	40	"	12.5	"
"	\bigcirc	"	1. 970	"	" "	60	"	10.8	"
"	+10	"	1.940 2.08	"	"، "	So 100	"	7.9	"
" ${ }^{\text {" }}$.	+14	100	2.88 1.88	4	" "	120	"	6.4	"
Cyanogen . - ${ }^{\text {d }}$	23	84	2.52	"	,	140	"	4.8	"
Hydrocyanicacid	21		about 95	"	Critical.	154.2	"	2.1	"
Hydrogen sulph.		"		${ }_{6}$					
	$\begin{aligned} & 50 \\ & 90 \end{aligned}$		$\begin{aligned} & 4.92 \\ & 3.76 \end{aligned}$	،					
I v. Pirani, 1903. 2 Bahn-Kiebitz, 1904. 3 Goodwin-Thompson, 1899.			$\begin{aligned} & 4 \text { Coolidge, i899. } \\ & 5 \text { Linde, I895. } \\ & 6 \text { Eversheim, } 1904 . \end{aligned}$			Schlundt, 1901. Hasenöhrl, 1900. Fleming-Dewar, isg6.			

TABLE 438, - Standard Solutions for the Callbration of Apparatus for the Measuring of Dlelectric Constants.

Turner.		Drude.				Nernst.	
Substance.	Diel. const. at 18°. $\lambda=\infty$.	Acetone in benzene at 199°. $\lambda=75 \mathrm{~cm}$.				Ethyl alcohol in water at 19.5°. $\lambda=\infty$.	
		Per cent by weight.	Density $16{ }^{\circ}$.	Dielectric constant.	Temp.coefficient.		
Benzene Meta-xylene . Ethyl ether A niline Ethyl chloride O-nitro toluene Nitrobenzene Water (conduct. 10^{-6})	2.288					Per cent by weight.	Dielectric constant.
	2.376	\bigcirc	0.885	2.26	0.1%		
	$7.29{ }^{8}$	20	0.866	5.10	0.3		
	10.90	40	0.847 0	8.43	0.4	90	29.3
	27.71	60	0.830	12.1	0.5	80	29.3 33.5
	36.45	80 100	0.813 0.797	16.2 20.5	0.5 0.6	70	38.0
	81.07					60	43.1
		Wat	er in acetone	$19^{\circ} . \lambda=$	75 cm .		
		\bigcirc	0.797	20.5	0.6\%		
		20	0.856	31.5	0.5		
		40	0.903	43.5	0.5		
		80	0.940	57.0	0.5		
		100	0.973 0.999	70.6 80.9	0.5 0.4		

TABLE 439, - Dieloctric Constants of Solids.

Substance.	Condition.	Wavelength cm.	Dielectric constant.		Substance.	Condition.	Wavelength, cm.	Dielectric constant.	京交
Asphalt	-	∞	2.68	I		Temp.			
Barium sulphate					Iodine (cryst.) .	23	75	4.00	2
phate Caoutchouc .	-	75	10.2 2.22	2	Lead chloride (powder)		"		
Diamond .	-	"	16.5	3 1	" nitrate.	-	,	42 16	2
	-	75	$5 \cdot 50$		" sulphate	-	"	28	2
Ebonite	-	∞	2.72	4	" molybde-				
"	-	"	2.86	5	nate	-	"	24	2
Glass* * •	Density.	1000	2.55	6	Marble ${ }^{\text {(Carrara) }}$				
Flint (extra	Density				Mica (Carrara)	-	"	$\stackrel{8.3}{5.66-5.97}$	2
heavy) .	$4 \cdot 5$	∞	9.90	7	${ }^{\prime}$. . . .	-	"	5.80-6.62	15
Flint (very					Madras, brown	-	"	2.5-3.4	16
light) . .	2.87	"	6.61	7	" green	-	"	3.9-5.5	16
Hard crown	2.48	"	6.96	7	" ruby .	-	"	4.4	16
$\underset{\text { Mirror }}{ }$.	-	"	6.44-7.46	5	Bengal, yellow	-	"	2.8	16
"	-	"	5.37-5.90	8	" white.	-	"	4.2	16
"	-	600	5.42-6.20	8	" ruby .	-	"	4.2-4.7	16
Lead (Pow-	3.0-3.	∞	5.4-8.0	9	Canadian amber.	-	"	3.0	16
Jena					South America	-	"	5.9	16
	-	"		10	Ozokerite (raw)	-	"	2.21	
Barium .	-	"	7.8-8.5	10	Paper (tele-				
Borosilicate	-	"			" (cable).	-	"	2.0	17
Gutta percha.	-	-	$6.4-7 \cdot 7$ $3 \cdot 3-4.9$	11	Paraffine . .		"	$2.0-2.5$ 2.46	18
	Temp.		$3 \cdot 3$,	Melting	"	2.32	19
Ice	-5	1200	2.85	12	" . . .	44-46	/	2.10	20
"	-18	5000	3.16	13	" . . .	54-56	"	2.14	20
	-190	75	1.76-1.88	14	" . . .	74-76	،	2.16	20

*For the effect of temperature, see Gray-Dobbie, Pr. Roy. Soc. 63, 1898; 67, 1900.
" " " "wave-length, see K. F. Löwe, Wied. Ann. 66, 1898.

Tables 439, 440.
DIELECTRIC CONSTANTS (continued).
TABLE 439. - Dielectric Constants of Sollds (continued).

Substance.	Condition.	Wavelength, cm.	Diel. constant.	皆	Substance.	Condition.	Wavelength, cm.	$\begin{gathered} \text { Diel. } \\ \text { constant. } \end{gathered}$	遱	
$\underset{\text { Paraffine }}{ }$. .	$47 .{ }^{\circ} 6$ $56 .{ }^{\circ} \mathrm{O}$	61 61	2.16 2.25	21	Sulphur Amorphous					
Phosphorus:	$56 .{ }^{\circ} 2$	61	2.25	21	A morphous	-	\% 75	3.98 3.80	1	
Yellow . .	-	75	3.60	2	Cast, fresh	-	∞	4.22	I	
Solid . .	-	80	4.1	22	" "	-	"	4.05	18	
Liquid .	-	80	3.85	22	ast	-	75	3.95	2	
Porcelain:					Cast, old	-	-	3.60	18	
Hard							75	3.90	2	
(Royal B'l'n)	-	"	5.73	15		near)			
Seger ".	-	"	6.61	15	Liquid .	melting.	$\} \infty$	3.42	I	
Figure " " .	-	"	6.84	15		point				
Selenium .	-	"	7.44	1	Strontium					
"	-	75	6.60	2	sulphate	-	75	11.3	2	
" .	-	∞	6.13	23	Thallium					
Shellac.		1000	6.14	23	carbonate	-	75	17	2	
Shellac . .	-	\cdots	3.10 $2.95-3.73$	4	"' nitrate		75	16.5	2	
'		،	${ }_{3.67}$	25	Red beech .	\|	fibres	∞	$4.83-2.51$	-
Amber .			2.86		,	$\perp{ }^{\prime}$	"	7.73-3.63	-	
Amber .	-				Oak .	II "	"	4.22-2.46 $6.84-3.64$	-	
3 Gordon, 1879.			12 Thwing, 1894.			20	Lietkowski, 1900.			
4 Winklema	n, 188		13 Abegg, 1897.			21 I	Hormell, 1902.			
5 Elsas, 189			14 Behn-Kiebitz, 1904.			22 Schlundt, 1904.				
6 Ferry, 18			15 Starke, 1897.				Vonwiller-Mason,			
7 Hopkinso	1891.		16 E. Wilson.				24 Wullner, 1887.			
8 Arons-Ru 9 Gray-Dob	$\begin{aligned} & \text { ens, } 18 \\ & \text { ie, } 1898 \end{aligned}$		17 Campbell, 1906.			25 Donle.				

TABLE 440. - Dielectric Constants of Crystals.
$\mathrm{D} \boldsymbol{\alpha}, \mathrm{D} \beta, \mathrm{D} \boldsymbol{\gamma}$ are the dielectric constants along the brachy, macro and vertical axes respectively.

Wave-Length in Meters, Frequency in periods per second, and Osollation Constant LC in Microhenries and Microfarads.

The relation between the free wave-length in meters, the frequency in cycles per second, and the capacity-inductance product in microfarads and microhenries are given for circuits between 1000 and 10,000 meters. For values between 100 and 1000 meters, multiply the columns for n by 10 and move the decimal point of the corresponding. LC column two places to the left (dividing by 100); for values between 10,000 and 100,000 , divide the n column by 10 and multiply the LC column by 100 . The relation between wave-length and capacity-inductance may be relied upon throughout the table to within one part in 200.
Example I : What is the natural wave-length of a circuit containing a capacity of 0.00 microfarad, and an inductance of 454 microhenries ? The product of the inductance and capacity is $454 \times 0.001=0.454$. Find 0.454 under LC; opposite under meters is 1270 meters, the natural wave-length of the circuit.
Example 2: What capacity must be associated with an inductance of 880 microhenries in order to tune the circuit to 3500 meters? Find opposite 3500 meters the LC value 3.45 ; divide this by 880, and the quotient, 0.00397 , is the desired capacity in microfarads.
Example 3: A condenser has the capacity of 0.004 microfarad. What inductance must be placed in series with this condenser in order that the circuit shall have a wave-length of 600 meters? From the table, the LC value corresponding to 600 meters is 0.101 . Divide this by 0.004 , the capacity of the condenser, and the desired inductance is 25.2 microhenries.

Meters.	n	LC	Meters.	n	LC	Meters.	n	LC
1000	300,000	0.281	1300	230,800	0.476	1600	187,500	0.721
1010	297,000	0.287	1310	229,000	0.483	1610	186,300	0.730
1020	294,100	0.293	1320	227,300	0.490	1620	185,200	0.739
1030	291,300	0.299	1330	225,600	0.498	1630	184,100	0.748
1040	288,400	0.305	1340	223,900	0.505	1640	182,900	0.757
1050	285,700	0.310	1350	222,200	0.513	1650	181,800	0.766
1060	283,600	0.316	1360	220,600	0.521	1660	180,700	0.776
1070	280,400	0.322	1370	218,900	0.529	1670	179,600	0.785
1080	277,800	0.328	1380	217,400	0.536	1680	178,600	0.794
1090	275,200	0.335	1390	215,800	0.544	1690	177,500	0.804
1100	272,700	0.341	1400	214,300	0.552	1700	176,500	0.813
1110	270,300	0.347	1410	212,800	0.559	1710	175,400	0.823
1120	267,900	0.353	1420	211,300	0.567	1720	174,400	0.833
1130	265,500	0.359	1430	209,800	0.576	1730	173,400	0.842
1140	263,100	0.366	1440	208,300	0.584	1740	172,400	0.852
1150	260,900	0.372	1450	206,900	0.592	1750	171,400	0.862
1160	258,600	0.379	1460	205,500	0.600	1760	170,500	0.872
1170	256,400	0.385	1470	204,100	0.608	1770	169,400	0.882
1180	254,200	0.392	1480	202,700	0.617	1780	168,500	0.892
1190	252,100	0.399	1490	201,300	0.625	1790	167,600	0.902
1200	250,000	0.405	1500	200,000	0.633	1800	166,700	0.912
1210	247,900	0.412	1510	198,700	0.642	1810	165,700	0.923
1220	245,900	0.419	1520	197,400	0.650	1820	164,800	0.933
1230	243,900	0.426	1530	196,100	0.659	1830	163,900	0.943
1240	241,900	0.433	1540	194,800	0.668	1840	163,000	0.953
1250	240,000	0.440	I 550	193,600	0.676	1850	162,200	0.963
1260	238,100	0.447	1560	192,300	0.685	1860	161,300	0.974
1270 1280	236,200 234,400	0.454 0.461	1570 1580	191,100	0.694	1870	160,400	0.985
1280 1290	234,400 232,600	0.461 0.468	1580	189,900	0.703	1880	159,600	0.995
1290	232,600	0.468	1590	188,700	0.712	1890	158,700	1.006

Adapted from table prepared by Greenleaf W. Picard; copyright by Wireless Specialty Apparatus Company, New York. Computed on basis of 300,000 kilometers per second for the velocity of propagation of electromagnetic waves.

TABLE 441 (concluded).
WIRELESS TELEGRAPHY.
Wave-Length, Frequency and Oscillation Constant.

Meters.	n	LC	Meters.	n	LC	Meters.	n	LC
1900	1 57,900	1.016	2800	107,100	2.21	7000	42,860	13.8
1910	157,100	1.026	2820	106,400	2.24	7100	42,250	14.2
1920	156,300	1.037	2840	105,600	2.27	7200	41,670	14.6
1930	155,400	1.048	2860	104,900	2.30	7300	41,100	15.0
1940	154,600	1.059	2880	104,200	2.33	7400	40,540	15.4
1950	153,800	1.070	2900	103,400	2.37	7500	40,000	15.8
1960	1 53,100	1.081	2920	102,700	2.40	7600	39,470	16.3
1970	152,300	1.092	2940	102,000	2.43	7700	38,960	16.7
1980	151,500	1.103	2960	101,300	2.47	7800	38,460	17.1
1990	150,800	1.114	2980	100,700	2.50	7900	37,980	17.6
2000	150,000	1.126	3000	100,000	2.53	8000	37,500	18.0
2020	148,500	1.148	3100	96,770	2.70	8100	37,040	18.5
2040	147,100	1.171	3200	93,750	2.88	8200	36,590	18.9
2060	145,600	I. 194	3300	90,910	3.07	8300	36,140	19.4
2080	144,200	1.218	3400	88,240	3.26	8400	35,710	19.9
2100	142,900	1.241	3500	85.910	3.45	8500	35,290	20.3
2120	141,500	1.265	3600	83,330	3.65	8600	34,880	20.8
2140	140,200	1.289	3700	81,080	3.85	8700	34,480	21.3
2160	1 38,900	1.313	3800	78,950	4.06	8800	34,090	21.8
2180	137,600	1.338	3900	76,920	4.28	8900	33,710	22.3
2200	136,400	1.362	4000	75,000	4.50	9000	33,330	22.8
2220	135,100	1.387	4100	73,170	4.73	9100	32,970	23.3
2240	I 33,900	1.412	4200	71,430	4.96	9200	32,610	23.8
2260	132,700	1.438	4300	69,770	5.20	9300	32,260	24.3
2280	131,600	1.463	4400	68,180	$5 \cdot 45$	9400	31,910	24.9
2300	130,400	1.489	4500	66,670	5.70	9500	31,590	25.4
2320	129,300	1.515	4600	65,220	5.96	9600	31,250	25.9
2340	128,200	I. 541 I	4700	63,830	6.22	9700	30,930	26.5
2360	127,100	1. 568	4800	62,500	6.49	9800	30,610	27.0
2380	126,000	1.594	4900	61,220	6.76	9900	30,310	27.6
2400	125,000	1.621	5000	60,000	7.04	10000	30,000	28.1
2420	124,000	1.648	5100	58,820	$7 \cdot 32$			
2440	129,000	1.676	5200	57,690	7.61			
2460	121,900	1.703	5300	56,600	7.91			
2480	121,000	1.731	5400	55,560	8.21			
2500	120,000	1.759	5500	54,550	8.51			
2520	119,000	1.787	5600	53,570	8.83			
2540	118,100	1.816	5700	52,630	9.15			
2560	117,200	1.845	5600	51,720 50,850	9.47			
2580	116,300	1.874	5900	50,850	9.81			
2600	115,400	1.903	6000	50,000	10.1			
2620	114,500	1.932	6100	49,180	10.5			
2640	113,600	1.962	6200	48,550	10.8			
2660	112,800	1.991	6300	47,620	11.1			
2680	1111,900	2.02	6400	46,870	II. 5			
2700	111,100	2.05	6500	46,150	II. 9			
2720	110,300	2.08	6600	45,450	12.3			
2740	109,500	2.11	6700	44,780	12.6			
2760 2780	108,700 107,900	2.14 2.18	6800	44,120 43,480	13.0 13.4			
	107,900							
2800	107,100	2.21	7000	42,860	13.8			

Smithsonian Tables.

TABLE 442.

WIRELESS TELEGRAPHY.

Radiation Resistances for Various Wave-Lengths and Antenna Heights.

The radiation theory of Hertz shows that the radiated energy of an oscillator may be represented by $E=$ constant $\left(h^{2} / \lambda^{2}\right) I^{2}$, where h is the length of the oscillator, λ, the wave-length and I the current at its center. For a flat-top antenna $E=1600\left(h^{2} / \lambda^{2}\right) I^{2}$ watts; $1600 h^{2} / \lambda^{2}$ is called the radiation resistance.
($\mathrm{h}=$ height to center of capacity of conducting system.)

$\mathrm{W}^{\mathrm{h}=}$	40 Ft .	60 Ft .	80 Ft .	100 Ft .	120 Ft .	160 Ft .	200 Ft .	300 Ft .	450 Ft .	600 Ft .	1200 Ft .
m	ohm	ohm	ohm	ohm	ohm	ohm	ohm	ohm	ohm	ohm	ohm
200	6.0	13.4	24.0	37.0	54.0	95.0					
300	2.7	6.0	10.6	16.5	23.8	42.4					
400	1.56	3.4	6.0	$9 \cdot 3$	13.4	23.8			84.0		
600	0.66	1.5	2.7	4.1	6.0	10.6	16.4	37.4	84.0	149.0 84.0	
800	0.37	0.84	1.5	2.3	3.4	6.0	9.2 6.0	21.0 13.5	47.0 30.0	84.0 54.0	
1000	0.24	0.54	0.95	1.5	2.1	3.8 2.6	4.1	13.5 9.3	30.0 21.0	54.0 37.0	215.0 149.0
1200	0.17	0.37	0.66	1.03 0.66	1.5 0.95	2.6	4.1 2.6	9.3 6.0	21.0 13.4	37.0 24.0	149.0 95.0
1500 2000	0.11	0.24 0.13	0.42 0.24	0.66 0.37	0.95 0.54	1.7 0.95	2.6 1.5	6.0 3.4	13.4 7.5	24.0 13.4	95.0 54.0
2500			0.15	0.24	0.34	0.61	0.95	2.2	4.8	8.6	34.0
3000			0.11	0.17	0.24	0.42	0.66	1.5	3.4	6.0	24.0
4000			0.06	0.09	0.13	0.24	0.37	0.84	1.9	3.4	13.4
5000							0.24	0.53	1.20	2.2	8.6
6000							0.16	0.37	0.84	1.5	6.0
7000							0.12	0.27	0.61	I.I	$4 \cdot 4$

Austin, Jour. Wash. Acad. of Sci. 1, p. 190, 1911.

TABLE 443.

THE DIELECTRIC PROPERTIES OF NON-CONDUCTORS.

Phillips Thomas, J. Franklin Inst. 176, 283, 1913.

Results of tests at unit area and unit thickness of dielectric.				
At 1000 cycles.	Mica.	Paper.	Celluloid.	Ice.
Max. breakdown volts per cm.	1. 06×10^{6}	0.71×10^{6}	1.05×10^{6}	. 011×10^{6}
Specific induc. capacity . . .	4.00	4.90	13.26	86.40
Max. absorbable energy, watts-sec/ cm^{3}	o. 198	-. 108	0.640	. 00040
90°-angle of lead	$0^{\circ} 57^{\prime}$	$2^{\circ} 10^{\prime}$	$3^{\circ} 40^{\prime}$	$13^{\circ} 39^{\prime}$
Equiv. resistance ohms $/ \mathrm{cm}^{3} \times 10^{11}$	3.91	9.84	48.3	1400
Conductivity per cm. cube $\times 10^{-10}$	2.56	1.02	0.207	. 00722
Percent change in cap. per cycle $\times 10^{+}$	2. 18	14.31	30.7	
Percent change in resistance per cycle	0.258	0.146	0.106	0.127
At 15 cycles.				
Specific inductive capacity			18.60	429.0
Max. absorbable energy, watt-sec/ cm^{3}.	0.203	0.126	0.90	0.002
Percent change in capacity per cycle	0.00	0.306	1.74	I. 59
On direct current.				
Conductivity per cm^{3}	2.42×10^{-17}	$2.27 \times 10^{-1 \%}$	71.5×10^{-14}	163.10^{-11}

Smithsonian Tables.

MAGNETIC PROPERTIES.

Unit pole is a quantity of magnetism repelling another unit pole with a force of one dyne; 4π lines of force radiate from it. M, pole strength; $4 \pi M$ lines of force radiate from pole of strength M.
H, field strength,$=$ no. of lines of force crossing unit area in normal direction; unit $=$ gauss $=$ one line per unit area.
\mathbf{M}, magnetic moment, $=M l$, where l is length between poles of magnet.
I, intensity of magnetization or pole strength per unit area, $=\mathbf{M} / V=M / A$ where A is cross section of uniformly magnetized pole face, and V is the volume of the magnet. $4 \pi M / A=4 \pi I=$ no. lines of force leaving unit area of pole.
J, specific intensity of magnetism, $=I / \rho$ where $\rho=$ density, $\mathrm{g} / \mathrm{cm}^{3}$.
ϕ, magnetic flux, $=4 \pi M+H A$ for magnet placed in field of strength H (axis parallel to field). Unit, the maxwell.
B, flux density (magnetic) induction, $=\phi / A=4 \pi I+H$; unit the gauss, maxwell per cm .
μ, magnetic permeability, $=B / H$. Strength of field in air-filled solenoid $=H=(4 \pi / 10) n i$ in gausses, i in amperes, n, number of turns per cm length. If iron filled, induction increased, i.e., no. of lines of force per unit area, B, passing through coil is greater than $H ; \mu=B / H$.
κ, susceptibility; permeability relates to effect of iron core on magnetic field strength of coil; if effect be considered on iron core, which becomes a magnet of pole strength M and intensity of magnetism I, then the ratio $I / H=(\mu-1) / 4 \pi$ is the magnetic susceptibility per unit volume and is a measure of the magnetizing effect of a magnetic field on the material placed in the field. $\mu=4 \pi \kappa+1$.
χ, specific susceptibility (per unit mass) $=\kappa / \rho=J / H$.
χ_{A}, atomic susceptibility, $=\chi \times$ (atomic weight); $\chi_{\mathrm{M}}=$ molecular susceptibility .
$J_{\mathrm{A}}, J_{\mathrm{M}}$, similarly atomic and molecular intensity of magnetization.
Hysteresis is work done in taking $\mathrm{a} \mathrm{cm}^{3}$ of the magnetic material through a magnetic cycle $=\int H d I=(\mathrm{I} / 4 \pi) \int H d B$. Steinmetz's empirical formula gives a close approximation to the hysteresis loss; it is $a B^{1.6}$ where B is the max. induction and a is a constant (see Table 472). The retentivity $\left(B_{r}\right)$ is the value of B when the magnetizing force is reduced to zero. The reversed field necessary to reduce the magnetism to zero is called the coercive force $\left(I I_{c}\right)$.

Ferromagnetic substances, μ very large, κ very large: Fe, Ni, Co , Heusler's alloy $(\mathrm{Cu} 62.5$, Mn 23.5, Al 14. See Stephenson, Phys. Rev. 1910), magnetite and a few alloys of Mn. μ for Heusler's alloy, 90 to 100 for $B=2200$; for Si sheet steel 350 to 5300 .

Paramagnetic substances, $\mu>_{\mathrm{I}}$, very small but positive, $\kappa=10^{-3}$ to 10^{-6} : oxygen, especially at low temperatures, salts of $\mathrm{Fe}, \mathrm{Ni}, \mathrm{Mn}$, many metallic elements. (See Table 474.)

Diamagnetic substances, $\mu<\mathrm{I}, \kappa$ negative. Most diamagnetic substance known is $\mathrm{Bi},-\mathrm{I} 4$ $\times{ }^{10}{ }^{-6}$. (See Table 474.)

Paramagnetic substances show no retentivity or hysteresis effect. Susceptibility independent of field strength. The specific susceptibility for both para- and diamagnetic substances is independent of field strength.

For Hall effect (galvanomagnetic difference of potential), Ettinghausen effect (galvanomagnetic difference of temperature), Nernst effect (thermomagnetic difference of potential) and the Leduc effect (thermomagnetic difference of temperature), see Tables 487 and 488.

Magneto-strictive phenomena:
Joule effect: Mechanical change in length when specimen is subjected to a magretic field. With increasing field strength, iron and some iron alloys show first a small increment $\Delta l / l=$ (7 to 35) $\times 10^{-7}$, then a decrement, and for $I=1600, \Delta l / l$ may amount to $-(6$ to 8$) \times 10^{-6}$. Cast cobalt with increasing field first decreases, $\Delta l / l=-8 \times 10^{-6}, H=150$, then increases in length, $\Delta l / l=+5 \times 10^{-6}, H=2000$; annealed cobalt steadily contracts, $\Delta l / l=-25 \times 10^{-6}, H$ $=2000$. Ni rapidly then slowly contracts, $\Delta l / l=-30 \times 10^{-6}, H=100 ;-35 \times 10^{-6}, H=300$; $-36 \times 10^{-6}, H=2000$ (Williams, Phys. Rev. 34, 44, 1912). A transverse field generally gives a reciprocal effect.

Wiedemann effect: The lower end of a vertical wire, magnetized longitudinally, when a current is passed through it, if free, twists in a certain direction, depending upon circumstances (see Williams, Phys. Rev. 32, 281, 1911). A reciprocal effect is observed in that when a rod of soft iron, exposed to longitudinal magnetizing force, is twisted, its magnetism is reduced.

Villari effect; really a reciprocal Joule effect. The susceptibility of an iron wire is increased by stretching when the magnetism is below a certain value, but diminished when above that value.

This table and Table 456 below are taken from a paper by Dr. Hopkinson * on the magnetic properties of iron and steel. which is stated in the paper to have been 240. The maximum magnetization is not tabulated; but as stated in the by 4π. "Coercive force" is the magnetizing force required to reduce the magnetization to zero. The "demagprevious magnetization in the opposite direction to the "maximum induction" stated in the table. The "energy which, however, was only found to agree roughly with the results of experiment.

* Phil. Trans. Roy. Soc. vol. 176.

PROPERTIES OF IRON AND STEEL.

The numbers in the columns headed "magnetic properties" give the results for the highest magnetizing force used, paper, it may be obtained by subtracting the magnetizing force (240) from the maximum induction and then dividing netizing force " is the magnetizing force which had to be applied in order to leave no residual magnetization after dissipated " was calculated from the formula:-Energy dissipated $=$ coercive force \times maximum induction $\div \pi$

$\begin{gathered} \text { No. } \\ \text { of } \\ \text { Test. } \end{gathered}$	Description of specimen.	Temper.	Specificelectri-cal resis-tance.	Magnetic properties.				Energy dissipated per cycle.
				Maximum induction.	Residual induction.	Coercive force.	Demagnetizive force.	
1	Wrought iron :	Annealed	. 01378	18251	7248	2.30	-	13356
2	Malleable cast iron .		. 03254	12408	7479	8.80	-	34742
3	Gray cast iron . .	-	. 10560	10783	3928	3.80	-	13037
4	Bessemer steel .		. 01050	18196	7860	2.96	-	17137
5	Whitworth mild steel	Annealed	.oroso	19840	7080	1.63	-	10289
6			. 01446	18736	9840	6.73	-	40120
7	" ${ }^{\text {c }}$	Oil-hard- ened	. 01390	18796	11040	1 I. 00	-	65786
8	" ،	Annealed	. 01559	16120	10740	8.26	-	42366
9	" "	$\left\{\begin{array}{l} \text { Oil-hard- } \\ \text { ened } \end{array}\right.$. 01695	16120	8736	19.38	-	9940 I
10	$\left.\begin{array}{l}\text { Hadfield's manganese } \\ \text { steel }\end{array}\right\}$	¢	. 06554	310	-	-		-
11	Manganese steel .	As forged	. 05368	4623	2202	23.50	37.13	34567
12		Annealed	. 03928	10578	5848	33.86	46.10	113963
13	"	$\left\{\begin{array}{l} \text { Oil-hard- } \\ \text { ened } \end{array}\right.$. 05556	4769	2158	27.64	40.29	41941
14	" " .	As forged	. 06993	747	-	-	-	-
15	" " .	Annealed	.06316	1985	540	24.50	50.39	15474
16	" "	\{ Oil-hard) ened	. 07066	733	-	-	-	-
17	Silicon steel	As forged	. 06163	15148	11073	9.49	12.60	45740
18	" " . .	Annealed	.06185	14701	8149	7.80	10.74	36485
19	" "	$\left\{\begin{array}{c} \text { Oil-hard- } \\ \text { ened } \end{array}\right.$. 06195	14696	8084	12.75	17.14	59619
20	Chrome steel	As forged	. 02016	15778	9318	12.24	13.87	61439
21	" " . .	Annealed	. 01942	14848	7570	8.98	12.24	42425
22	" "	\{ Oil-hardened	. 02708	13960	8595	38.15	48.45	169455
23	" "	As forged	. 01791	14680	7568	18.40	22.03	85944
24	" " . .	Annealed	. 01849	13233	6489	15.40	19.79	64842
25	" " .	\{ Oil-hard-	. 03035	12868	7891	40.80	56.70	167050
26	Tungsten steel .	As forged	. 02249	15718	IOI 44	I 5.7 I	17.75	78568
27	"	Annealed (Hardened	. 02250	16498	11008	15.30	16.93	SO3I 5
28	" "	$\left\{\begin{array}{l}\text { in cold } \\ \text { water }\end{array}\right.$. 02274	-	-	-	-	-
29	" "	$\left\{\begin{array}{c} \text { Hardened } \\ \text { in tepid } \\ \text { water } \end{array}\right.$. 02249	15610	9482	30.10	34.70	149500
30	" " (French)	$\left\{\begin{array}{c} \text { Oil hard- } \\ \text { ened } \end{array}\right.$. 03604	14480	8643	47.07	64.46	216864
3 I	"	Very hard	. 04427	12133	68.8	51.20	70.69	197660
32	Gray cast iron	-	. 11400	9148	3161	13.67	17.03	39789
33	Mottled cast iron	-	. 06286	10546	$510 S$	12.24	-	41072
34	White " "	-	.05661	$93+2$	5554	12.24	20.40	36383
35	Spiegeleisen .	-	. 10520	385	77	-	-	-

Smithsonian Tables.

TABLE 446. - Magnotlo Proporties of Iron and Stool.

	Electro lytic Iron.	Good Cast Steel.	Poor Cast Steel.	Steel.	Cast Iron.	Electrical Sheets.	
						Ordinary.	Silicon Steel.
C	0.024	0.044	0. 56	0.99	3.11	0.036	0.036
Chemical composi- $\mathrm{Si}^{\text {chen }}$	0.004	0.004	0.18	0.10	3.27	0.330	3.90
	0.008	0.40	0.29	0.40	0.56	0.260	0.090
\square	0.008	0.044	0.076	0.04	1.05	0.040	0.009
(S	0.001	0.027	0.035	0.07	0.06	0.068	0.006
Coercive force . . . $\{$	$\begin{gathered} 2.83 \\ {[0.36]} \end{gathered}$	$\begin{gathered} \mathrm{I} .5 \mathrm{I} \\ {[0.37]} \end{gathered}$	$\begin{gathered} 7 \cdot 1 \\ (44 \cdot 3) \end{gathered}$	$\begin{gathered} 16.7 \\ (52.4) \end{gathered}$	$\begin{aligned} & 11.4 \\ & {[4.6]} \end{aligned}$	[1.30]	[0.77]
Residual B \}	II 400 [10800]	10600 [11000]	$\begin{aligned} & 10500 \\ & (10500) \end{aligned}$	$\begin{aligned} & 13000 \\ & (7500) \end{aligned}$	$\begin{gathered} 5100 \\ {[5350]} \end{gathered}$	[9400]	[9850]
Maximum permeability $\{$	$\begin{gathered} 1850 \\ {[14400]} \end{gathered}$	$\begin{gathered} 3550 \\ {[14800]} \end{gathered}$	$\begin{gathered} 700 \\ (170) \end{gathered}$	$\begin{gathered} 375 \\ \text { (110) } \end{gathered}$	$\begin{gathered} 240 \\ {[600]} \end{gathered}$	[3270]	[6130]
B for $\mathrm{H}=150$. . . 2	$\begin{gathered} 19200 \\ {[18900]} \end{gathered}$	$\begin{gathered} 18800 \\ {[19100]} \end{gathered}$	$\begin{gathered} 17400 \\ (15400) \end{gathered}$	$\begin{gathered} 16700 \\ (11700) \end{gathered}$	$\begin{gathered} 10400 \\ {[11000]} \end{gathered}$	[18200]	[17550]
$4 \pi \mathrm{I}$ for saturation . $\{$	$\begin{gathered} 21620 \\ {[21630]} \end{gathered}$	$\begin{gathered} 21420 \\ {[21420]} \end{gathered}$	$\begin{gathered} 20600 \\ (20200) \end{gathered}$	$\begin{gathered} 19800 \\ (\mathrm{I} 8000) \end{gathered}$	$\begin{gathered} 16400 \\ {[16800]} \end{gathered}$	[20500]	[19260]

E. Gumlich, Zs. für Electrochemie, 15, p. 599 ; 1909.

Brackets indicate annealing at $800^{\circ} \mathrm{C}$ in vacuum. Parentheses indicate hardening by quenching from cherry-red.
TABLE 447.- Cast Iron in Intense Fiolds.

Soft Cast Iron.				Hard Cast Iron.			
H	B	I	μ	H	B	I	μ
114	9950	782	87.3	142	7860	614	55.4
172	10800	846	62.8	254	9700	752	38.2
433	13900	1070	32.1	339	10850	836	30.6
744	I 5750	1200	21.2	684	13050	983	19.1
1234	17300	1280	14.0	915	14050	1044	15.4
1820	18170	1300	10.0	1570	15900	1138	10.1
12700	31100	1465	2.5	2020	16800	1176	8.3
13550	32100	1475	2.4	10900	26540	1245	2.4
13800	32500	1488	2.4	13200	28600	1226	2.2
15100	33650	1472	2.2	14800	30200	1226	2.0

B. O. Peirce, Proc. Am. Acad. 44, 1909.

TABLE 448. - Corrections for Ring Specimens.
In the case of ring specimens, the average magnetizing force is not the value at the mean radius, the ratio of the two being given in the table. The flux density consequently is not uniform, and the measured hysteresis is less than it would be for a uniform distribution. This ratio is also given for the case of constant permeability, the values being applicable for magnetizations in the neighborhood of the maximum permeability. For higher magnetizations the flux density is more uniform, for lower it is less, and the correction greater.

Ratio of Radial Width to Diameter of Ring.	Ratio of Average H to H at Mean Radius.		Ratio of Hysteresis for Uniform Distribution to Actual Hysteresis.	
	Rectangular Cross-section.	Circular Cross-section.	Rectangular Cross-section.	Circular Cross-section.
$1 / 2$	1.0986	1.0718	1.112	1.084
$1 / 3$	1.0397	1.0294	1.045	1.033
1/4	1.0216	1.0162	1.024	1.018
I/ 5	1.0137	1.0102	1.015	1.011
1/6	1.0094	1.0070	1.010	1.008
$1 / 7$	1.0069	1.0052	1.008	1.006
$1 / 8$	1.0052	1.0040	1.006	1.004
$1 / 10$	1.0033	1.0025	1.003	1.002
$1 / 19$	1.0009	1.0007	1.001	1.001

M. G. Lloyd, Bull. Bur. Standards, 5, p. 435; 1908.

MAGNETIC PROPERTIES OF IRONS AND STEELS.

TABLE 449. - Magnetic Properties of Various Types of Iron and Steel.
From tests made at the Bureau of Standards. B and H are measured in cgs units.

Values of B.		2000	4000	6000	8000	10,000	12,000	14,000	16,000	18,000	20,000
Annealed Norway iron	H	. 81	1.15	1.60	2.18	3.06	4.45	7.25	23.5	116.	-
	μ	2470	3480	3750	3670	3270	2700	1930	680	150	-
Cast semi-steel.	H	2.00	2.90	4.30	6.46	9.82	15.1	24.9	50.5	135.	325.
	μ	1000	1380	1400	1240	1020	795	563	317	133	62.
Machinery steel..	H	5.0	8.8	13.1	18.6	25.8	35.8	50.5	76.0	142.	-
	μ	400	455	460	430	390	340	280	210	127	

TABLE 450. - Magnetic Properties of a Specimen of Very Pure Iron ($\mathbf{0}$.
From tests at the Bureau of Standards. B and H are measured in cgs units.

TABLE 451. - Magnetic Properties of Electrical Sheets.
From tests at the Bureau of Standards. B and H are measured in cgs units.

Values of B		2000	4000	6000	8000	10,000	12,000	14,000	16,000	18,000	20,000
Dynamo steel	H	1.00	1.10	1.43	2.00	3.10	4.95	9.20	34.0	114.	-
	μ	2000	3640	4200	4000	3220	2420	1520	470	158	-
$\left.\begin{array}{c}\text { Ordinary trans- } \\ \text { former steel }\end{array}\right\}$	H	.60	.87	1.10	1.48	2.28	3.85	10.9	43.0	149.	-
$\left.\begin{array}{l}\text { High silicon trans- } \\ \text { former steel }\end{array}\right\}$	μ	3340	4600	5450	5400	4380	3120	1280	372	12 I	-

Smithsonian Tables.

TABLE 452. - Magnetic Properties of Two Types of American Magnet Steel.
From tests at the Bureau of Standards. B and H are measured in cgs units.

Values of B		2000	4000	6000	8000	10,000	12,000	14,000	16,000	18,000	20,000
Tungsten steel.	Π μ	35.0 57	53.3 75	63.3 95	72.0 111	83.4 120	109 110	200 70	二	-	-
Chrome steel. .	$\stackrel{H}{\mu}$	34.5 58	49.0 82	63.5 95	88.4 91	143 70	270 45	二	-	-	-

> Percentage composition: Tungsten stel, C 0.67 W 5.1 Cr 2.09 Si 0.25 Chrome steel, C 0.8 I W 0.96 Mn 0.38 Si 0.26
> Tungsten steel: $H_{\max }^{200} \quad B_{\max } 1_{4} 4,000 \quad$ Chrome steel: $H_{\max }{ }_{200} \quad B_{\max } 11,050$

TABLE 453. - Magnetic Properties of a Ferro-Cobalt Alloy, Fe $\mathrm{F}_{2} \mathrm{Co}$ (35\% Cobalt).
From tests at the Bureau of Standards. B and $I I$ are measured in cgs units.

Values of B		2000	4000	6000	8000	10,000	12,000	14,000	16,000	18,000	20,000
As received.	H	3.10	4.28	5.50	7.17	9.65	13.4	19.1	27.3	40.0	65.0
	μ	645	935	1090	III5	1040	900	730	590	450	310
Annealed at	H	3.00	4.11	5.05	6.45	8.40	11.3	15.4	21.9	31.7	50.6
$1000^{\circ} \mathrm{C}$	μ	670	970	1190	1240	1190	1060	910	730	570	400
Quenched ${ }^{\circ}$,	II	10.8	13.8	19.1	28.7	43.4	65.8	104	163	262	-
from $1000^{\circ} \mathrm{C}$	μ	185	290	314	279	230	182	135	98	69	-
As receivedAnnealed at $1000^{\circ} \mathrm{C}$Quenched from $1000^{\circ} \mathrm{C}$$B \max \left\{\begin{array}{l}15,000 \\ 15,000 \\ 15,000\end{array}\right.$						Π max $\{$	$B_{r}\left\{\begin{array}{l}7750 \\ 7460 \\ 8240\end{array}\right.$		$H_{c}\left\{\begin{array}{c}3.79 \\ 3.95 \\ 14.3\end{array}\right.$		

TABLE 454. - Magnetic Properties of a Ring Sample of Transformer Steel in Very Weak Fields.

From tests made at the Bureau of Standards. $\quad B$ and H are measured in cgs units.

Values of H	0.001	0.002	0.004	0.006	0.008	0.010	0.012	0.014	0.018	0.020
Values of B	0.45	0.91	1.85	2.87	3.94	5.05	6.30	7.51	10.19	11.64
Values of μ.	450	455	462	478	492	505	525	536	566	582

TABLE 455. - Magnetic Properties of Iron in Very Weak Fields.

The effect of very small magnetizing forces has been studied by C. Baur and by Lord Rayleigh. The following short table is taken from Baur's paper, and is taken by him to indicate that the susceptibility is finite for zero values of H and for a finite range increases in simple proportion to H. He gives the formula $k=15+100 H$, or $I=15 H$ $+100 H^{2}$ The experiments, were made on an annealed ring of round bar 1.013 cms radius, the ring having a radius of 9.432 cms . Lord Rayleigh's results for an iron wire not annealed give $k=6.4+5.1 H H$, or $I=6.4 H+5 . H^{2}{ }^{2}$. The forces were reduced as low as 0.00004 cgs , the relation of k to I remaining constant.

First experiment.			Second experiment.	
H		I	II	k
. 01580	16.46	2.63	. 0130	15.50
. 0308 I	17.65	5.47	. 0847	18.38
. 07083	23.00	16.33	. 0946	20.49
. 13188	28.90	38.15	. 1864	25.07
.23011 .38422	39.81 58.56	91.56 224.87	. 2903	32.40
. 3842	50.56	224.87	-3397	35.20

[^53]
PERMEABILITY OF SOME OF THE SPECIMENS IN TABLE 445.

TABLE 456.

This table gives the induction and the permeability for different values of the magnetizing force of some of the speci mens in Table 445. The specimen numbers refer to the same table. The numbers in this table have been taken from the curves given by Dr. Hopkinson, and may therefore be slightly in error; they are the mean values for rising and falling magnetizations.

Magnetizing force. H	Specimen 1 (iron).		Specimen 8 (annealed steel).		Specimen 9 (same as 8 tempered).		Specimen 3 (cast iron).	
	B	μ	B	μ	B	μ	B	μ
I	-	-	-	-	-	-	265	265
2	200	100	-	-	-	-	700	350
3	-	-	-	-	-	-	1625	542
5	10050	2010	1525	300	750	150	3000	600
10	12550	1255	9000	900	1650	165	5000	500
20	14550	727	I 1500	575	5875	294	6000	300
- 30	15200	507	12650	422	9875	329	6500	217
40	15800	395	13300	332	11600	290	7100	177
50	16000	320	13800	276	12000	240	7350	149
70	16360	234	14350	205	13400	191	7900	113
100	16800	168	14900	149	14500	145	8500	85
150	17400	116	15700	105	15800	105	9500	63
200	17950	90	16100	80	16100	80	IOI90	5 I

$T_{\text {ables.457-8, 463-5 }}$ give the results of some experiments by Du Bois,* on the magnetic properties of iron, nickel, and cobalt under strong magnetizing forces. The experiments were made on ovoids of the metals 18 centimeters long and o. 6 centimeters diameter. The specimens were as follows: (1) Soft Swedish iron carefully annealed and having a density 7.82 . (2) Hard English cast steel yellow tempered at $230^{\circ} \mathrm{C}$.; density 7.78 . (3) Hard drawn best nickel containing $99 \% \mathrm{Ni}$ with some SiO_{2} and traces of Fe and Cu ; density 8.82. (4) Cast cobalt giving the following composition on analysis: $\mathrm{Co}=93.1, \mathrm{Ni}=5.8, \mathrm{Fe}=0.8, \mathrm{Cu}=0.2, \mathrm{Si}=0.1$, and $\mathrm{C}=0.3$. The specimen was very brittle and broke in the lathe, and hence contained a surfaced joint held together by clamps during the experiment. Referring to the columns, H, B, and μ have the same meaning as in the other tables, S is the magnetic moment per gram, and I the magnetic moment per cubic centimeter. H and S are taken from the curves published by Du Bois; the others have been calculated using the densities given.

MAGNETIC PROPERTIES OF SOFT IRON AT 0° AND $100^{\circ} \mathrm{C}$.
TABLE 457.

Soft iron at $\mathrm{o}^{\circ} \mathrm{C}$.					Soft iron at $100^{\circ} \mathrm{C}$.				
H	S	I	B	μ	H	S	I	B	μ
100	180.0	1408	17790	177.9	100	180.0	1402	17720	177.2
200	194.5	1521	19310	96.5	200	194.0	1511	19190	96.0
400	208.0	1627	20830	52.1	400	207.0	1613	20660	51.6
700	215.5	1685	21870	31.2	700	213.4	1663	21590	29.8
1000	218.0	1705	22420	22.4	1000	215.0	1674	22040	21.0
1200	218.5	1709	22670	18.9	1200	215.5	1679	22300	18.6

MAGNETIC PROPERTIES OF STEEL AT 0° AND $100^{\circ} \mathrm{C}$.
TABLE 458.

Steel at $0^{\circ} \mathrm{C}$.					Steel at $100^{\circ} \mathrm{C}$.				
H	S	I	B	μ	H	S	I	B	μ
100	165.0	1283	16240	162.4	100	165.0	1278	16170	161.7
200	181.0	1408	17900	89.5	200	180.0	1395	17730	85.6
400	193.0	1500	19250	48.1	400	191.0	1480	19000	47.5
700	199.5	1552	20210	28.9	700	197.0	1527	19890	2 S .4
1000	203.5	1583	20900	20.9	1000	199.0	1543	20380	20.4
1200	205.0	I 595	21240	17.7	1500	203.0	1573	21270	14.2
$3750 \dagger$	212.0	1650	24470	6.5	3000	205.5	1593	23020	$7 \cdot 7$
					5000	208.0	1612	25260	5.1

* "Phil. Mag." 5 series, vol. xxix.
\dagger The results in this and the other tables for forces above 1200 were not obtained from the ovoids above referred to, but from a small piece of the metal provided with a polished mirror surface and placed, with its polished face normal to the lines of force, between the poles of a powerful electromagnet. The induction was then inferred from the rotation of the plane of a polarized ray of red light reflected normally from the surface. (See Kerr's "Constants," p. 33 r.)

MAGNETISM AND TEMPERATURE.

TABLE 459. - Magnetism and Temperature, Critical Temperature.

The magnetic moment of a magnet diminishes with increasing temperature. Different specimens vary widely. In the formula $M t / M_{0}=(\mathrm{r}-a t)$ the value of a may range from .0003 to .001 (see Tables 457-458). The effect on the permeability with weak fields may at first be an increase. There is a critical temperature (Curie point) above which the permeability is very small (paramagnetic?). Diamagnetic susceptibility does not change with the temperature. Paramagnetic susceptibility decreases with increase in temperature. This and the succeeding two tables are taken from Dushman, "Theories of Magnetism," General Electric Review, 1916.

\begin{tabular}{|c|c|c|c|c|c|}
\hline Substance. \& Critical temperature, Curie point. \& Reference. \& Substance. \& Critical temperature, Curie point. \& Reference.

\hline Iron, \boldsymbol{a} form. \& $756^{\circ} \mathrm{C}$ \& 1 \& MnBi . \& 360 to $380^{\circ} \mathrm{C}$ \&

\hline " ${ }^{\beta}$ 仿 form. \& 920 \& 1 \& MnSb. \& 310 " 320 \& 4

\hline $\xrightarrow{4 \%} \boldsymbol{\gamma}$ form.... \& 1280
536 \& 1 \& MnAs \& 45"، 50 \& 4

\hline Magnetite (${ }^{\text {a }}$ \& 589 \& 1 \& Heusler alloy \& 18 $\begin{array}{r}25 \\ 310\end{array}$ \& 4
5

\hline " \& 555 \& 3 \& Nickel. \& 340 \& 1

\hline Cobalt-ferrite ($\mathrm{Fe}_{2} \mathrm{Co}$) \& 520 \& 3 \& \& 376

1075 \& 6

\hline \& \& \& \& 1075 \& 6

\hline
\end{tabular}

References: (1) P. Curie; (2) see Williams, Electron Theory of Magnetism, quoted from Weiss; (3) du Bois, Tr. Far. Soc. 8, 211 , 1912; (4) Hilpert, Tr. Far. Soc. 8, 207, 1912; (5) Gumaer; (6) Stifler, Phys. Rev. 33, 263, 191r.

TABLE 460. - Temperature Variation for Paramagnetic Substances.

The relation deduced by Curie that $\chi=C / T$, where C is a constant and T the absolute temperature, holds for some paramagnetic substances over the ranges given in the following table. Many paramagnetic substances do not obey the law (Honda and Owen, Ann. d. Phys. 32, 1027, 1910; 37, 657, 1912). See the following table.

Substance.	$\mathrm{C} \times{ }^{10}{ }^{8}$	Range ${ }^{\circ} \mathrm{C}$	Reference.	Substance.	C $\times 1{ }^{10}$	Range ${ }^{\circ} \mathrm{C}$	Reference.
Oxygen..	33,700	20° to $450^{\circ} \mathrm{C}$	1	Gadolinium sulphate.	21,000	-259° to 17	2
Air.......	7,830	- -	1	Ferrous sulphate.	11,000	-259 " 17	2
Palladium.	1,520	20 to 1370	1	Ferric sulphate. . ${ }^{\text {a }}$	17,000	-208" 17	3
Magnetite	28,000	850 " 1360	1	Manganese chloride.	30,000	-258" 17	3
Cast iron.	38,500	850 " 1267	1				

References: (1) P. Curie, London Electrician, 66, 500, 1912; see also Du Bois, Rap. du Cong. 2, 460, 1900; (2) Perrier, Onnes, Tables annuelles, 3, 288, 1914; (3) Oosterhuis, Onnes, l.c. 2, 389, 1913.

TABLE 461. - Temperature Effect on Susceptibility of Diamagnetic Elements.

No effect:

$$
\begin{aligned}
& \text { B Cryst. } 400 \text { to } 1200^{\circ} \\
& \text { C Diamond, +r70 to } 200^{\circ} \\
& \text { C "Sugar" carbon } \\
& \text { Si Cryst. }
\end{aligned}
$$

$$
\mathrm{P} \text { white }
$$

$$
\stackrel{\text { Pr }}{\mathrm{S}} \text { Cryst.; ppt. }
$$

$\mathrm{Zn}-170$ to 300°
$\mathrm{Zn}-170$ to 300°
Se -
$\mathrm{Sb}-170$ to 50°
Br -170 to 18°
Zr Cryst. -170 to 500°
$\mathrm{Cd}-170$ to 300°
Cs and Au
$\mathrm{Pb}_{\mathrm{Pb}} \mathbf{3 2 7}$ to 600° to 350°
Increase with rise in Temperature:
${ }_{B}^{\mathrm{Be}}$ Cryst. $\overline{+170}$ to 400°
C Diamond, 200 to 1200°
I -170 to 114°

Ag

$\mathrm{Hg}-170$ to -30°

Decrease with rise in Temperature:
C Amorphous
$\mathrm{Gd}-179$ to 30°
In -170 to 150°
${ }_{\mathrm{C}}^{\mathrm{C}}$ Ceylon graphite
$\mathrm{Ge}-170$ to 900°
$\mathrm{Sb}+50$ to $+631^{\circ}$
Tl -
$\mathrm{Cu}+300$ to 700°
Zr 500 to 1200°
Cd 300 to 700°
I +114 to $+200^{\circ}$
$\mathrm{Pb}-170$ to 327°
$\mathrm{Bi}-170$ to 268°

TABLE 462. - Temperature Effects on Susceptibility of Paramagnetic Elements.
No effect:

$\mathrm{Li} \quad-$	$\mathrm{K}-170$ to 150°
$\mathrm{Na}-170$ to 97°	$\mathrm{Ca}-170$ to 18°
Al 657 to 1100°	$\mathrm{V}-170$ to 500°

$\mathrm{Cr}-170$ to 500°
$\mathrm{Mn}-170$ to 250°
W -
Al 657 to 1100°
V - 170 to 500°
Rb - 170 to ${ }^{250^{\circ}}$
Os -
Increase with rise in Temperature:
Ti
$\mathrm{V} \quad-40$ to 1100°
500
Cr 500 to 1100°
$\mathrm{Ru}+550$ to 1200°
$\mathrm{Ba}-170$ to 18°
Mo - 170 to 1200°
Rh Ir and Th

Decrease with rise in Temperature:

(0)	$\mathrm{Ti}-180$ to -40°	Ni 350 to 800°	Pd and Ta
As -170 to 657°	Mn 250 to $1015{ }^{\circ}$	Co above 1150°	Pt and U
Mg	(Fe)	Cb -170 to 400°	Rare earth metals

Tables 46 I and 462 are due to Honda and Owen; for reference, see preceding table.

MAGNETIC PROPERTIES OF METALS.

TABLE 463. - Cobalt at $100^{\circ} \mathrm{O}$.

H	S	I	B	μ
200	106	848	10850	$54 \cdot 2$
300	116	928	11960	39.9
500	127	1016	13260	26.5
700	131	1048	13870	19.8
1000	134	1076	14520	14.5
I 500	138	1104	15380	10.3
2500	143	1144	16870	6.7
4000	145	1164	18630	4.7
6000	147	1176	20780	3.5
9000	149	1192	23980	2.6
At $0^{\circ} \mathrm{C}$. this specimen gave the following results :				
7900	154	1232	23380	3.0

TABLE 464. - Nickel at $100^{\circ} 0$.

H	S	I	B	μ
100	35.0	309	3980	39.8
200	43.0	380	4966	24.8
300	46.0	406	5399	18.0
500	50.0	441	6043	12.1
700	51.5	454	6409	9.1
1000	53.0	468	6875	6.9
1500	56.0	494	7707	5.1
2500	58.4	515	8973	3.6
4000	59.0	520	10540	2.6
6000	59.2	522	12561	2.1
9000	59.4	524	15585	1.7
12000	59.6	526	18606	
At $0^{\circ} \mathrm{C}$. this specimen gave the following results :				
12300	67.5	595	19782	1.6

TABLE 465. - Magnetite.

The following results are given by Du Bois * for a specimen of magnetite.

H	I	B	μ
500	325	8361	16.7
1000	345	90.11	9.0
2000	350	1008.4	5.0
12000	350	20084	I. 7

Professor Ewing has investigated the effects of very intense fields on the induction in iron and other metals. \dagger The results show that the intensity of magnetization does not increase much in iron after the field has reached an intensity of rooo c. g. s. units, the increase of induction above this being almost the same as if the iron were not there, that is to say, $d B / d H$ is practically unity. For hard steels, and particularly manganese steels, much higher forces are required to produce saturation. Hadfield's manganese steel seems to have nearly constant susceptibility up to a magnetizing force of 10,000 . The following tables, taken from Ewing's papers, illustrate the effects of strong fields on iron and steel. The results for nickel and cobalt do not differ greatly from those given above.

TABLE 466.-Lowmoor Wrought Iron.

H	I	B	μ
3080	1680	24130	7.83
6450	1740	28300	4.39
10450	1730	32250	3.09
13600	1720	35200	2.59
16390	1630	36810	2.25
18760	1680	39900	2.13
18980	1730	40730	2.15

TABLE 467. - Vicker's Tool Steel.

H	I	B	μ
6210	1530	25480	4.10
9970	15570	29650	2.97
12120	1550	31620	2.60
14660	1580	34550	2.36
15530	1610	35820	2.3 I

TABLE 468. - Hadfield's Manganese Steel.

	I	B	μ
	1930	55	2620
2380	84	3430	1.36
3350	84	4400	1.31
5920	111	7310	1.24
6620	187	8970	1.35
7890	191	10290	1.30
8390	263	11690	1.39
9810	396	14790	1.51

TABLE 469. - Saturation Values for Steels of Different Kinds.

		H	I	B	μ
1	Bessemer steel containing about 0.4 per cent carbon	17600	1770	39880	2.27
2	Siemens-Marten steel containing about 0.5 per cent carbon	18000	1660	38860	2.16
3	Crucible steel for making chisels, containing about 0.6 per cent carbon	19470	148 So	38010	1.95
4	Finer quality of 3 containing about 0.8 per cent carbon .	18330	1580	38190	2.08
4	Crucible steel containing I per cent carbon	19620	14.40	37690	1.92 2.07
6	Whitworth's fluid-compressed steel . . .	18700	1590	38710	2.07

TABLE 470.

$H=$ true intensity o. magnetizing field, $H^{\prime}=$ intensity of applied field, $I=\mathrm{in}$ tensity of magnetization, $H=H^{\prime}-N /$.

Shuddemagen says: The demagnetizing factor is not a constant, falling for highest values of $/$ to about $1 / 7$ the value when unsaturated; for values of B ($=H+4 \pi I$) less than $10000, N$ is approximately constant; using a solenoid wound on an insulating tube, or a tube of split brass, the reversal method gives values for N which are considerably lower than those given by the step-by-step method; if the solenoid is wound on a thick brass tube, the two methods practically agree.

RatioofLengthtoDiameter.	Values of $N \times 1{ }^{4}$.						
	Ellipsoid.	Cylinder.					
		Uniform Magneti- zation.	Magnetometric Method (Mann).	Ballistic Step Method.			
				Dubois.	Shuddemagen for Range of Practical Constancy.		
				Diameter.			
				0.158 cm .	0.3175 cm .	1.111 cm .	1.905 cm.
5	7015	-	6800				
10	2549	630	2550	2160	-	-	1960
15	1350	280	1400	1206	-	-	1075
	848	160	898	775	$\overline{-}$	-	671
30	432	70	460	393	388	350	343
40	266	39	274	238	234	212	209
50	181	25	182	162	160	145	149
60	132	18	131	118	116	106	106
70 80	101	${ }^{1} 3.8$	99 78	89 69	88 69	66	63
90	65	7.8	63	55	56	66	63
100	54	6.3	51.8	45	46	41	4 I
150	26	2.8	25.1	20	23	21	21
200	16	1. 57	15.2	11	12.5	11	II
300	7.5	0.70	7.5	5.0			
400	4.5	0.39	-	2.8			

C. R. Mann, Physical Review, 3, p. 359; 1896.
H. DuBois, Wied. Ann. 7, p. 942 ; 1902.
C. L. B. Shuddemagen, Proc. Am. Acad. Arts and Sci. 43, p. 185, 1907 (Bibliography).

TABLE 471.
Shuddemagen also gives the following, where B is determined by the step method and $H=H^{\prime}-K B$.

Ratio of Length to Diameter.	Values of $\mathrm{K} \times 1 \mathrm{o}^{4}$.	
	Diameter 0.3175 cm .	Diameter 1.1 to 2.0 cm .
15	-	85.2
20	-	53.3
25	-	36.6
30	30.9	27.3
40	18.6	16.6
50	12.7	11.6
60	9.25	8.45
80	$5 \cdot 5$	5.05
100	3.66	3.26
150	I. 83	1.67

DISSIPATION OF ENERGY IN THE CYCLIC MAGNETIZATION OF VARIOUS SUBSTANCES.

C. P. Steinmetz concludes from his experiments* that the dissipation of energy due to kysteresis in magnetic metals can be expressed by the formula $e=a B^{1.6}$, where e is the energy dissipated and a a constant. He also concludes that the dissipation is the same for the same range of induction, no matter what the absolute value of the terminal inductions may be. His experiments show this to be nearly true when the induction does not exceed $\pm 15000 \mathrm{c} . \mathrm{g} . \mathrm{s}$. units per sq. cm. It is possible that, if metallic induction only be taken, this may be true up to saturation; but it is not likely to be found to hold for total inductions much above the saturation value of the metal. The law of variation of dissipation with induction range in the cycle, stated in the above formula, is also subject to verification. \dagger

Values of Constant a.

The following table gives the values of the constant a as found by Steinmetz for a number of different specimens. The data are taken from his second paper.

Number of specimen.	Kind of material.	Description of specimen.	Value of a.
1	${ }_{\text {Iron }}$. .	Norway iron 00227
3		Wrought bar Commercial ferrotype plate	. 00326
	" . .		. 00548
3	" . .	Annealed " "	. 00458
5 6	"	Thin tin plate . ${ }^{\text {a }}$. 00286
6	Steel	Medium thickness tin plate	.00425
8	Steel.	Soft galvanized wire - .	.00349
9		Soft annealed cast steel .	. 00457
10		Very soft annealed cast steel .	.003I8
11		Same as 8 tempered in cold water .	. 02792
12		Tool steel glass hard tempered in water	. 07476
13		" " ${ }^{\text {" }}$ tempered in oil	. 02670
14	" . .	(Same as 12, 13, and 14, after having been subjected)	(.01899
15	" . . $\}$	$\left\{\begin{array}{l}\text { to an alternating m. m. f. of from } 4000 \text { to } 6000\end{array}\right.$	$\left\{\begin{array}{l}.06130 \\ .02700\end{array}\right.$
17	Cast iron	$)$ ampere turns for demagnetization)	(.01445
18		Gray cast iron . .	. 01300
20		"، " ${ }^{\text {c }}$ containing $\frac{1}{8} \%$ aluminium	. 01365
	" "		. 01459
21	Magnetite .	from the Tilly Foster mines, Brewsters, Putnam (County, New York, stated to be a very pure sample	. 02348
22		Soft wire - . . ${ }^{\text {a }}$ (${ }^{\text {Steinmetz }}$ from	. 0122
23	"	$\left\{\begin{array}{l}\text { Annealed wire, calculated by Steinmetz from } \\ \text { Ewing's experiments }\end{array}\right\}$. 0156
24	"	Hardened, also from Ewing's experiments	.0385
25	Cobalt	$\left\{\begin{array}{l}\text { Rod containing about } 2 \% \text { of iron, also calculated } \\ \text { from Ewing's experiments by Steinmetz }\end{array}\right\}$. 0120
	Iron filings	$\left\{\begin{array}{l}\text { Consisted of thin needle-like chips obtained by } \\ \text { milling grooves about } 8 \mathrm{~mm} \text {. wide across a pile of } \\ \text { thin sheets clamped together. About } 30 \% \text { by vol- } \\ \text { ume of the specimen was iron. } \\ \text { ist experiment, continuous cyclic variation of m. m. } \\ \text { f. iSo cycles per second } \\ \text { 2d experiment, if cycles per second } \\ 3 \mathrm{~d}\end{array}\right.$	
26			. 0457
			. 0396
			. 0373

Smithsonian Tables.

ENERGY LOSSES IN TRANSFORMER STEELS．

Determined by the wattmeter method．
Loss per cycle per $c c=A B^{x}+b n B^{y}$ ，where $B=$ flux density in gausses and $n=$ frequency in cycles per second．x shows the variation of hysteresis with B between 5000 and 10000 gausses， and y the same for eddy currents．

Designation．	Thick－ ness． cm．	Ergs per Gramme per Cycle．				x	y	a	Watts per Pound at 60 Cy － cles and 10000 Gausses．		
		10000 Gausses．		5000 Gausses．					若品。		
		Hyste－ resis．		Hyste－ resis．						Hyste－ resis．	Total．
Unannealed A											
	0.0399	1599	186	562	46	1.51	2.02	0.00490	0.41	$4 \cdot 35$	4.76
	． 0326	1156	134	384	36	1． 59	I． 89	． 00358	0.44	3.14	3.58
	．0422	1032	242	356	70	1.51	I． 79	．00319	0.47	2.81	3.28
	．0381	1009	184	353	48	1.52	1.94	．00312	0.44	2.74	3.18
Annealed											
E	． 0476	735	236	246	58	1.58	2.02	． 00227	0.36	2.00	2.36
F	．0280	666	100	220	27	1.60	I． 88	． 00206	0.44	1.81	2.25
G	． 0394	563	210	193	54	I． 54	I． 96	．00174	0.47	I． 53	2.00
H^{*}	． 0307	412	146	138.5	39	1.58	I． 90	． 00127	－． 54	1.12	1． 66
1	．0318	341	202	111．5	55	1． 62	I． 88	． 00105	0.70	0.93	1.63
K＊	．0282	394	124	130	32	1．61	1.90	． 00122	－． 54	1.07	1.61
L	． 0346	381	184	125	50	I． 61	1． 88	． 00118	0.535	1.035	1.57
B	． 0338	354	200	116	57	I． 61	I． 81	． 00110	0.61	0.96	1． 57
M	． 0335	372	178	127	46	I． 55	I． 95	． 00115	0.55	1.01	1．56
N	． 0340	321	210	105	56	1.62	1.90	． 00099	0.63	0.87	1.50
P	． 0437	334	I84	107	50	1． 64	1.88	．00103	0.34	0.91	1.25
Silicon steels											
$\underset{N}{\mathrm{Q} \dagger}$	．0361		54	98	15	1.63	－	． 00094	0.14	0.825	0.965
R	． 0315	288	42	93	1 I	1． 64	－	． 00089	0.15	0.78	0.93
S	． 0452	278 250	72 60	90	18	1．63	－	． 00086	0.12	0.755	0.875
U	． 03346	250 270	42	78 86	18	I． 68 ． 66	－	． 00077	0.18	0.68	0.86
V＊	． 0310	251.5	47	79	13	I． 68	－	． 000078	0.17	0．735	0.855
W＊	． 0305	197	43	62.3	12.4	1． 67	－	． 00061	0.16	0.535	0.695
X	． 0430	200	65	64.2	16.6	1． 65	－	． 00062	0.12	0.545	0.665

＊German．
\dagger English．
\ddagger In order to make a fair comparison，the eddy current loss has been computed for a thickness of 0.0357 cm ．（Gage No．29），assuming the loss proportional to the thickness．

Lloyd and Fisher，Bull．Bur．Standards，5，p． 453 ；1909．
Note．－For formule and tables for the calculation of mutual and self inductance see Bulletin Burear of Standards，vol．8，p．1－237， 1912.

Smithsonian Tables．

Table 474.

MAGNETIC SUSCEPTIBILITY.

If \mathfrak{I} is the intensity of magnetization produced in a substance by a field strength then the magnetic susceptibility $\mathrm{H}=\mathscr{I} /$. This is generally referred to the unit mass; italicized figures pecially its freedom from iron. The mass susceptibility of a solution containing p per cent by weight of a water-free substance is, if H_{0} is the susceptibility of water, $(\mathrm{p} / 100) \mathrm{H}+(\mathrm{r}-\mathrm{p} / 100) \mathrm{H}_{0}$.

Substance.	$\mathrm{H} \times{ }_{10}{ }^{6}$	-	Remarks	Substance.	$\mathrm{H} \times{ }_{10}{ }^{6}$	Ė心	Remarks
$\mathrm{Ag}_{\mathrm{AgCl}} \cdot \cdot \mathrm{P} \cdot$	-0.19	18°		$\mathrm{K}_{2} \mathrm{CO}_{3} \cdot . \quad . \quad$.	-0.50	20°	Sol'n
Agir, I A tm	-0.28			Li	+0.38		
Air, I Atm	+0.024 +0.65	15		Mb . ${ }^{\text {Mr }}$	+0.04	18	
$\mathrm{Al}_{2} \mathrm{~K}_{2}\left(\mathrm{SO}_{4}\right)_{4} \dot{2}_{4} \dot{\mathrm{H}}_{2} \dot{\mathrm{O}}$	-1.0		Crys.	$\mathrm{MgSO}_{4}{ }^{\circ}$. . .	+0.55	18	
A, I Atm	-0.10	\bigcirc		Mn	+11.	18	
As . -	-0.3	18		MnCl_{2} - . .	+122.	I8	Sol'n
Au	-0.15	18		MnSO_{4}. . . .	+100.	18	
${ }_{\mathrm{BaCl}}^{\mathbf{B}} \times \cdot \quad \cdot \quad$.	-0.71	18		$\mathrm{N}_{2}, 1$ Atm.	0.001	16	
$\underset{\mathrm{Be}}{ } \mathrm{BaCl}_{2}$.	$\underline{0.36}$	20		$\mathrm{NH}_{3} \cdot$.	-1.1		
$\mathrm{Bi} . .$.	+0.79	15	Powd.	Na	+0.51	18	
Br	-0.38	18		${ }^{\mathrm{Na}} \mathrm{C}_{2} \mathrm{CO}_{3}{ }^{+}$	-0.50	20	
C, arc-carbon	-2.0	18		$\mathrm{Na}_{2} \mathrm{CO}_{3}$. Io $\mathrm{H}_{2} \mathrm{O}$	-0.46	17	"
C , diamond . .	-0.49	18		Nb	+1.3	18	
CH_{4}, I Atm. .	+0.001	16		NiCl_{2}.	+40.	18	Sol'n
CO_{2}, I Atm. . . .	+0.002	16		NiSO_{4}. . . .	+ 30.	20	"
$\mathrm{CS}_{2} \cdot$ - . .	-0.77	18		O_{2}, I Atm. . .	+0.120	20	
CaO .	-0.27	16	Powd.	Os	+0.04	20	
$\mathrm{CaCl}_{2} \cdot{ }^{\text {C }}$	-0.40	19	"	P, white	-0.90	20	
CaCO_{3}, marble .	-0.7			P , red	-0.50	20	
Cd ${ }^{\text {- }}$	-0.17	18		Pb	-0.12	20	
$\mathrm{CeBr}_{3} \cdot \cdot \cdot$	+6.3	18		PbCl_{2}. . . .	-0.25	15	Powd.
Cl_{2}, I Atm. -	-0.59	16		Pd.	+5.8	18	
CoCl_{2}.	+90.	18	Sol'n	$\underset{\mathrm{PrCl}}{3}$. . . .	+13.	18	Sol'n
$\mathrm{CoBr}_{2} \mathrm{CoI}_{2}$.	$+47$.	18		${ }^{\text {Ptt. }}$ P ${ }^{\text {P }}$	+1.1	18	
CoSO_{4}	+33 +57.	19	"	$\mathrm{PhCl}_{4} \cdot \ldots .$.	0.0 +1.1	22	Sol'n
$\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2}$.	+ 57.	18	'	S	+0.48	18	
Cr . .	+3.7	18		SO_{2}, I Atm. .	-0.30	16	
CsCl	-0.28	17	Powd.	Sb . . .	-0.94	18	
$\mathrm{Cu}^{\text {- }}$	-0.09	18		Se	-0.32	18	
CuCl_{2}.	+12.	20	Sol'n	Si.	-0.12	18	Crys.
CuSO_{4}.	+10.	20	Sol'n	SiO_{2}, Quartz .	-0.44	20	
CuS	+0.16	17	Powd.	-Glass . .	$-0.5 \pm$		
FeCl_{3}	+90.	18	Sol'n	Sn	+0.03	20	
FeCl_{2}	+90.	18	"	SrCl_{2}. .	-0.42	20	Sol'n
FeSO_{4}.	+82.	20	"	Ta . . .	+0.93	I8	
$\mathrm{Fe}_{2}\left(\mathrm{NO}_{3}\right)_{6}$.	+50.	18	"	Te	-0.32	20	
$\mathrm{FeCn}_{6} \mathrm{~K}_{4}$.	-0.44		Powd.	Th . . .	+0.18	18	
$\mathrm{FeCn}_{6} \mathrm{~K}_{3}$.	+9.1		"	Ti . . .	+3.1	18	
He, I Atm.	-0.002	\bigcirc		Va . . .	+1.5	18	
H_{2}, I Atm. . . .	0.000	16		Wo . . .	+0.33	20	
$\mathrm{H}_{2}, 40$ Atm. .	0.000	16		Zn . - .	-0.15	18	
$\mathrm{H}_{2} \mathrm{O}$. .	-0.79	20		$\mathrm{ZnSO} \mathrm{m}_{4}$. .	-0.40		
$\mathrm{HCl}^{\text {e }}$.	-0.80	20		Zr -	-0.45	18	
$\mathrm{H}_{2} \mathrm{SO}_{4}$.	+0.78	20		$\mathrm{CH}_{3} \mathrm{OH}$. . .	-0.73		
HNO_{3}.	-0.70	20		$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$. -	-0.80		
Hg .	-0.19	20		$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}$.	-0.80		
I . . .	-0.4	20		$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OC}_{2} \mathrm{H}_{5}$. .	-0.60	20	
In .	$0.1 \pm$	18		CHCl_{3}. . .	-0.58		
Ir . . .	+0.15	18		$\mathrm{C}_{6} \mathrm{H}_{6}$. .	-0.78		
K. .	+0.40	20		Ebonite .	+1.1		
KCl . -	-0.50	20		Glycerine . .	-0.64	22	
KBr . .	-0.40	20		Sugar . .	-0.57		
KI .	-0.3S	20		Paration .	-0.58		
KOH .	-0.35	22	Sol'n	Petroleum.	-0.91		
$\mathrm{K}_{2} \mathrm{SO}_{4}$ -	-0.42	20		Toluene .	-0.77		
KMnO_{4}	+2.0			Wood .	-0.2-5		
KNO_{3}.	-0.33	20		Nylene	-0.81		

Values are mostly means taken of values given in Landolt-Börnstein's Physikalisch-chemische Tabellen. See especially Honda, Annalen der Physik (4), 32, 9 10.
Smithsonian tables.

MACNETO-OPTIC ROTATION.

Faraday discovered that, when a piece of heavy glass is placed in magnetic field and a beam of plane polarized light passed through it in a direction parallel to the lines of magnetic force, the plane of polarization oi the beam is rotated. This was subsequently found to be the case with a large number of substances, but the amount of the rotation was found to depend on the kind of matter and its physical condition, and on the strength of the magnetic field and the wave-length of the polarized light. Verdet's experiments agree fairly well with the formula -

$$
\theta=c l H I\left(r-\lambda \frac{d r}{d \lambda}\right) \frac{r^{2}}{\lambda^{2}},
$$

where c is a constant depending on the substance used, l the length of the path through the substance, H the intensity of the component of the magnetic field in the direction of the path of the beam, r the index of refraction, and λ the wave-length of the light in air. If H be different, at different parts of the path, $l H$ is to be taken as the integral of the variation of magnetic potential between the two ends of the medium. Calling this difference of potential v, we may write $\theta=A v$, where A is constant for the same substance, kept under the same physical conditions, when the one kind of light is used. The constant A has been called "Verdet's constant," * and a number of values of it are given in Tables 476-480. For variation with temperature the following formula is given by Bichat : -

$$
R=K_{0}^{\prime}\left(\mathrm{I}-0.00104 t-0.000014 t^{2}\right)
$$

which has been used to reduce some of the results given in the table to the temperature corresponding to a given measured density. For change of wave-length the following approximate formula, given by Verdet and Becquerel, may be used :-

$$
\frac{\theta_{1}}{\theta_{2}}=\frac{\mu_{1}^{2}\left(\mu_{1}^{2}-1\right) \lambda_{2}^{2}}{\mu_{2}^{2}\left(\mu_{2}^{2}-1\right) \lambda_{1}^{2}}
$$

where μ is index of refraction and λ wave-length of light.
A large number of measurements of what has been called molecular rotation have been made, particularly for organic substances. These numbers are not given in the table, but numbers proportional to molecular rotation may be derived from Verdet's constant by multiplying in the ratio of the molecular weight to the density. The densities and chemical formula are given in the table. In the case of solutions, it has been usual to assume that the total rotation is simply the algebraic sum of the rotations which would be given by the solvent and dissolved substance, or substances, separately; and hence that determinations of the rotary power of the solvent medium and of the solution enable the rotary power of the dissolved substance to be calculated. Experiments by Quincke and others do not support this view, as very different results are obtained from different degrees of saturation and from different solvent media. No results thus calculated have been given in the table, but the qualitative result, as to the sign of the rotation produced by a salt, may be inferred from the table. For example, if a solution of a salt in water gives Verdet's constant less than 0.0130 at 20° C., Verdet's constant for the salt is negative.

The table has been for the most part compiled from the experiments of Verdet, \dagger H. Becquerel, \ddagger Quincke, § Koepsel, \| Arons, \boldsymbol{T}^{\top} Kundt,** Jahn, $\dagger \dagger$ Schönrock, $\ddagger \ddagger$ Gordon, $\S \S$ Rayleigh and Sidgewick, III Perkin, $\boldsymbol{T I}^{\top}$ Bichat.***

As a basis for calculation, Verdet's constant for carbon disulphide and the sodium line D has been taken as 0.0420 and for water as 0.0130 at $20^{\circ} \mathrm{C}$.

* The constancy of this quantity has been verified through a wide range of variation of magnetic field by H. E. J. G. Du Bois (Wied. Ann. vol. 35), p. 137, 1888.
\dagger "Ann. de Chim. et de Phys." [3] vol. 52, p. 129, 1858.
" "Ann. de Chim. et de Phys." [5] vol. 12; "C. R." vols. 90 , p. 1407, 1880, and 100 , p. 1374, 1885.
§ "Wied. Ann." vol. 24, p. 606, 1885.
II "Wied. Ann." vol. 26, p. 456, 1885.
T" "Wied. Ann." vol. 24, p. 161, 1885
** "Wied. Ann." vols. 23, p. 228, 1884, and 27, p. 191, 1886.
$\dagger \dagger$ "Wied. Ann." vol. 43, P. 280, 189 1.
" "Zeits. für Phys. Chem." vol. 11, p. 753, 1893.
§§s ""Proc. Rov. Soc." 36, p. 4, 1883 .
III "Phil. Trans. R. S." 176 , p. 343, 1885.
TI "Jour. Chem. Soc."
*** "Jour. de Phys." vols. 8, p. 204, 1879, and 9, p. 204 and p. 275, 1880.

MAGNETO-OPTIC ROTATION.
Sollds.

Substance.	Formula.	$\underset{\substack{\text { Wave- } \\ \text { length. }}}{\text {. }}$	Verdet's Constant. Minutes.	Temp. C.	Authority.
Amber -		$\stackrel{\mu}{0.589}$	0.0095	18-20 ${ }^{\circ}$	Quincke.
Blende	ZnS		0.2234	15	Becquerel.
Diamond	${ }^{\text {C }}$	"	0.0127	15	
$\stackrel{\text { Lead borate }}{\text { Selenium }}$	$\stackrel{\mathrm{PbBe}_{2} \mathrm{O}_{4}}{ }$	0.68	0.0600	15	"
Sodium borate . . .	${ }_{\text {Na2 }{ }_{2} \mathrm{~B}_{4} \mathrm{O}_{7}}$	0.687 0.589	0.4625 0.0170	15	${ }^{\prime}$
Ziqueline (Cuprite) . .	$\mathrm{Cu}_{2} \mathrm{O}$	0.687	0.0590 0.5908	15	"
Fluorite	CaFl_{2}	0.2534	0.05989	20	Meyer, Ann. der
		. 3655	. 02526	"	Physik, 30, 1909.
		. 43358	. 01717	"	
		. 589	.01329	"	
		1.00	. 00300	"	
		2.50	. 00049	"	
		3.000.580	. 00030	"	
			0.0161	18	DuBois, Wied. Ann.
			0.0220		5I, 1894.
		"	0.0317 0.0608	"	
		,	0.0608 0.0888	"	
		0.313	0.0674	16	Landau, Phys. ZS.
		0.405	. 0369	"	9, 1908.
		0.436	. 0311	"	
Quartz, along axis, i.e., plate cut \perp to axis	SiO_{2}	0.2194 .2573	0.1587 .1079	$\stackrel{20}{6}$	Borel, Arch. sc. phys. 16, 1903.
		.2573 .3609	. .04617	"	
		. 4800	. 02574	"	
		. 5892	. 01664	"	
		. 6439	. 01368	-	
Rock salt	NaCl	0.2599	0.2708	20	Meyer, as above.
		.3100	.1561		
		. 4046	. 0775	"	
		. 4916	. 0483	"	
		. 6708	. 0245	"	
		1.00	. 01050	"	
		2.00	. 00262	"	
		4.00	. 00069	20	
Sugar, cane: along axis IIA	$\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$	0.451		$\stackrel{20}{10}$	Voigt, Phys. ZS. 9,
		. 540	. 0076	"	1908.
	-	0.451	0.0129	"	
axis IIA 1. .		. 540	. 0084	"	
Sylvite	KCl	. 626	. 0075	0	
		$\begin{gathered} 0.4358 \\ .5461 \end{gathered}$	$\begin{gathered} 0.0534 \\ .0316 \end{gathered}$	$\stackrel{20}{ }$	Meyer, as above.
		. 6708	. 02012	"	
		. 90	. 01051	"	
		1.20	. 00608	"	
		2.00	. 00207	"	
		4.00	. 00054		

Smithsonian Tables.

table 477.
MAGNETO-OPTIC ROTATION.
Llquids : Verdet's Constant for $\lambda=0.589 \mu$.

Substance.	Chemical formula.	Density in grams per c. c.	$\begin{gathered} \text { Verdet's } \\ \text { constant } \\ \text { in minutes. } \end{gathered}$	Temp. C	Authority.
Acetone	$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{O}$	0.7947	0.0113	20°	Jahn.
Acids: Acetic	$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$	1.0561	. 0105	21	Perkin.
"، Butyric	$\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$	0.9663	.0116	${ }^{1} 15$	- "،
" Formic	$\mathrm{CH}_{2} \mathrm{O}_{2}$	1.2273	. 105		"
". Hydrochloric	$\xrightarrow{\mathrm{HCl}}$	1.2072	. 0224	"	"
"، ${ }_{\text {Hydrobromic }}^{\text {Hydroiodic }}$	$\underset{\mathrm{HI}}{\mathrm{HBr}}$	1.7859 1.9473	. 0343	"	"
" ${ }_{\text {Hydroiodic }}$	HHNO_{3}	1.9473 1.5190	. 0515	" 3	"'
" Sulphuric	$\mathrm{H}_{2} \mathrm{SO}_{4}$	-	. 0121	15	Becquerel.
Alcohols : Amyl	$\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{OH}$	0.8107	. 0128	$\stackrel{20}{6}$	Jahn.
". $\begin{gathered}\text { Butyl } \\ \text { Ethyl }\end{gathered}$	${ }_{\text {C }}^{\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{H}_{5} \mathrm{OH} \mathrm{OH}}$	0.8021 0.7900	.0124 .0112	"	"
" Ethyl	- ${ }_{\text {C2 }} \mathrm{H}_{5} \mathrm{OH}$	0.7900 0.7920	. 0112	"	"
" Propyl	$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}$	- 0.7842	. 0120	"	"
Benzene	$\mathrm{C}_{6} \mathrm{H}_{6}$	0.8786	. 0297	"	"
Bromides : Bromoform	CHBr ${ }^{\text {c }}$	2.902 I	. 0317	15	Perkin.
" Ethyl	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}$	1.4486	. 0183		"
" Ethylene	$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Br}_{2}$	2.1871	. 0268	"	"
"، Methyl	$\mathrm{CHH}_{3} \mathrm{Br}$	1.7331	. 0205	\bigcirc	"،
" Methylene	$\mathrm{CH}_{2} \mathrm{Br}_{2}$	2.4971	. 0276	15	Gordon.
Carbon bisulphide	CS_{2}		.0433 .0420	-	Gordon. Rayleigh.
Chlorides: Amyl	CHCl	0.8740	. 1140	20	Jahn.
"" Arsenic	AsCl_{3}	-	. 0422	${ }^{1} 5$	Becquerel.
" Carbon	CCl_{4}	-	. 0321		
" Ethyl	${ }_{\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}}$	1.4823 0.9169	.0164 0.0138	$\begin{gathered} 20 \\ 6 \end{gathered}$	Jahn. Perkin.
" Ethylene	$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}$	I. 2589	. 0166	15	"
"، Methyl	$\mathrm{CH}_{3} \mathrm{Cl}$. 0170		Becquerel.
" Methylene	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	${ }^{1.3361}$. 0162	"	Perkin.
" Sulphur bi-	$\mathrm{S}_{2} \mathrm{Cl}_{2}$. 0393	"	Becquerel.
" ${ }^{\text {" }}$ Tin tetra	$\underset{\mathrm{ZnCl}}{4}$	-	. 0151	"*	"
Iodides: Ethyl	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{I}$	1.9417	. 0296	"	Perkin.
" Methyl	$\mathrm{CH}_{3} \mathrm{I}$	2.2832	. 0336	"	"
" Propyl	$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{I}$	1.7658	. 0271	"	"
Nitrates: Ethyl	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O} . \mathrm{NO}_{2}$	1.1149	. 0091	"	"
" Methyl	$\mathrm{CH}_{3} \mathrm{O} \cdot \mathrm{NO}_{2}$	I. 2157	. 0078	"	"
" Propyl	$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{O}_{2} \mathrm{NO}_{2}$	1.0622	. 0100	"	"
$\underset{\text { Paraffins : }}{\text { Heptane }}$ Hexane	$\mathrm{C}_{7} \mathrm{H}_{16}$	0.6880	. 0125	"	"
" Pentane	${ }^{\mathrm{C}_{5}{ }_{5} \mathrm{H}_{12} 14}$	0.6743 0.6332	. 0125	"	"
Phosphorus, melted		-	. 1316	33	Becquerel.
Sulphur, melted		-	. 0803	114	"
Toluene	$\mathrm{C}_{7} \mathrm{H}_{8}$	0.858 I	. 0269	28	Schönrock.
Water, $\lambda=0.2496 \mu$	$\mathrm{H}_{2} \mathrm{O}$.1042		See Meyer,
0.275			. 0776		Ann. der
$\begin{aligned} & 0.3609 \\ & 0.4046 \end{aligned}$. 0384		Physik, 30,
O. 0.500			.0293		
0.589 0.700			.or3i		I andau,
0.700 1.000			.0091		Siertsema, Ingersoll.
Xylene $\quad 1.300$. 00264		
Xylene	$\mathrm{C}_{8} \mathrm{H}_{10}$	0.8746	. 0263	27	Schönrock.

MAGNETO-OPTIC ROTATION.
Solutions of acids and salts in water. Verdet's constant for $\lambda=0.589 \mu$.

Chemical formula.	Density, $\underset{\text { grams }}{\text { ger.c. }}$ per c. c.	Verdet's constant in minutes.	Temp. C.	*	Chemical formula.	Density, grams per c. c.	Verdet's constant in minutes.	Temp. C.	*
$\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$	0.9715	0.0129	20°	J	LiCl	1.0619	0.0145	20°	J
HBr	1.3775	0.0244		P		1.0316	0.0143		"
HCl	1.1163	0.0168	"	"	MnCl_{2}	1.1966	0.0167	15	13
HCl	1.1573	0.0204	"	"	"	1.0876	0.0150	15	${ }^{\prime}$
"	1.0762	0.0168	"	"	HgCl_{2}	1.0381	0.0137	16	S
HI	1.0158	0.0140		J		1.0349	0.0137	،	،
HI	1.9057	0.0499	"	P	NiCl_{2}	1.4685	0.0270	15	B
	1.4495	0.0323	"	"	،	1.2432	0.0196	"	"
	1.1760	0.0205	"	"	"	1.1233	0.0162	"	"
HNO_{3}	1.3560	0.0105	"	"	KCl	1.6000	0.0163	"	"
NH_{3}	0.8918	0.0153	15	"	"	1.0732	0.0148	20	J
$\mathrm{NH}_{4} \mathrm{Br}$	1.2805	0.0226		"	NaCl	1.2051	0.0180	15	B
	I.1576	0.0186				1.0546	0.0144		"
BaBr_{2}	1.5399 1.2855	0.0215	20	J		1.0418	0.0144	"	J
CdBr_{2}	1.2555 1.3291	0.0176 0.0192	"	"	SrCl_{2}	1.1921 1.0877	0.0162 0.0146	"	"
	1.1608	0.0162	"	"	SnCl_{2}	1.3280	0.0266	15	V
CaBr_{6}	1.2491	0.0189	"	"		1.1112	0.0175	"	"
	1.1337	0.0164	*	"	ZnCl_{2}	1.2851	0.0196	"	"
K ${ }_{6}$	1.1424	0.0163	"	"	"'	1.1595	0.0161	'6	"
	1.0876	0.0151	"	"	$\mathrm{K}_{2} \mathrm{CrO}_{4}$	1.3598	0.0098	"	"
NaBr	I.1351	0.0165	"	"	$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$	1.0786	0.0126	"	"
	1.0824	0.0152	"	"	$\mathrm{Hg}(\mathrm{CN})_{2}$	1.0638	0.0136	16	S
SrBr_{3}	1.2901 1.1416	0.0186 0.0159	"	"		1.0605	0.0135	"	"
$\mathrm{K}_{2} \mathrm{CO}_{8}$	1.1906	0.0140	20	،	${ }^{1}{ }^{4}$	1.5940 I. 5109	0.0396 0.0358	${ }^{16} 5$	P
$\mathrm{Na}_{2} \mathrm{CO}_{3}$	1.1006	0.0140	"	"	"	1.234 I	0.0235	"	"
	1.0564	0.0137	"	V	CdI	1.5156	0.0291	20	J
$\mathrm{NH}_{4} \mathrm{Cl}$	1.0718	0.0178	15	V	"	1.1521	0.0177	"	"
BaCl_{2}	1.2897	0.0168	20	J	KI	1. 6743	0.0338	15	B
	1.1338	0.0149	"			1.3398	0.0237		،
CdCl_{2}	I. 3179	0.0185	"	"	, I	1.1705	0.0182	"	"
"	1.2755	0.0179	"	"	NaI	1.1939	0.0200	"	J
"	1.1732	0.0160	"	"	$\mathrm{NH}_{4} \mathrm{NO}_{3}$	I.1191	0.0175	"	
CaCl_{2}	I.I 504	0.0165	"	"	KNO_{3}	1.2803 1.0634	0.0121 0.0130	15 20	J
	1.0832	0.0152	"	"	NaNO_{3}	1.1112	0.0131	"	"
CuCl_{2}	I. 5158	0.0221	15	B	$\mathrm{U}_{2} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{O}_{5}$	2.0267	0.0053	"	B
	I. 1330	0.0156		"		1.1963	0.0115	"	"
FeCl_{2}	1.4331	0.0025	15	"	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$	1. 2286	0.0140	15	P
	1.2141	0.0099		"	$\mathrm{NH}_{4} . \mathrm{HSO}_{4}$	1.4417	0.0085		"
	1.1093	0.0118	"	"	BaSO_{4}	1.1788	0.0134	20	${ }_{6}$
$\underset{64}{\mathrm{Fe}_{2} \mathrm{Cl}_{6}}$	1.6933 1.5315	-0.2026	"	"	CdSO_{4}	1.0938 1.1762	0.0133 0.0139	،	"
"	1.3230	-0.034	"	"	"	1.0890	0.0136	"	"
"	1.1681	-0.0015	"	"	$\mathrm{Ii}_{2} \mathrm{SO}_{4}$	1.1762	0.0137	"	"
"	I.0864	0.0081	"	"	MnSO_{4}	1.2441	0.0138	"	"
"	1.0445	0.0113	"	"	$\mathrm{K}_{2} \mathrm{SO}_{4}$	1.0475	0.01 .33	"	"
"	1.0232	0.0122	'،	"	$\mathrm{Na}_{2} \mathrm{SO}_{4}$	1.0661	0.0135	"	"

* J, Jahn, P, Perkin, V, Verdet, B, Becquerel, S, Schönrock; see p. 378 for references.

Smithsonian Tables.

Gases.

See also Siertsema, Ziting. Kon. Akad. Watt., Amsterdam, 7, 1899; 8, 1900.
Du Bois shows that in the case of substances like iron, nickel, and cobalt which have a variable magnetic susceptibility the expression in Verdet's equation, which is constant for substances of constant susceptibility, requires to be divided by the susceptibility to obtain a constant. For this expression he proposes the name "Kundt's constant." These experiments of Kundt and Du Bois show that it is not the difference of magnetic potential between the two ends of the medium, but the product of the length of the medium and the induction per unit area, which controls the amount of rotation of the beam.

TABLE 480. - Verdet's and Kundt's Constants.

The following short table is quoted from Du Bois' paper. The quantities are stated in c. g. s. measure, circular measure (radians) being used in the expression of "Verdet's constant " and "Kundt's constant."

Name of substance.	Magnetic susceptibility.	Verutis constant.		Wave-length of light in cms.	Kundt's constant.
		Number.	Authority.		
Cobalt . .	-	-	-	6.44×10^{-5}	$3 \cdot 99$
Nickel • -	-	-	-	'	3.15
Iron - .	+0.0126 $\times 10^{-5}$	${ }^{-}{ }^{-} \times 10^{-5}$	Tecquerel	6.56 '،	2.63
Oxygen : I atmo.	$+0.0126 \times 10^{-5}$	0.000179×10^{-5}	Becquerel.	5.89 "	0.014
Sulphur dioxide	-0.0751	0.302		5 ${ }^{\text {a }}$	-4.00
Water d -	-0.0694 "	0.377	Arons	"	-5.4
Nitric acid	-0.0633 "	0.356	Becquerel.	"	-5.6
Alcohol .	-0.0566 "	0.330	De la Rive.	"	-5.8
Ether . ${ }^{\text {a }}$	-0.0541 "	0.315	"	،	-5.8
Arsenic chloride	-0.0876 "	1.222 "،	Becquerel.	"	-14.9
Carbon disulphide	-0.0716 "		Rayleigh.	"	-17.1
Faraday's glass	-0.0982 "	1.738 "	Becquerel.	"	-17.7

Smithsonian Tables.

TABLE 481. - Values of Kerr's Constant.*
Du Bois has shown that the rotation of the major axis of vibration of radiations normally reflected from a magnet is algebraically equal to the normal component of magnetization multiplied into a constant K. He calls this constant K, Kerr's constant for the magnetized substance forming the magnet.

Color of light.	Spectrum line.	Wavelength $\underset{\times 10^{8}}{\text { in }}$	Kerr's constant in minutes per c. g. s. unit of magnetization.			
			Cobalt.	Nickel.	Iron.	Magnetite.
Red .	Li $\boldsymbol{\alpha}$	67.7	-0.0208	-0.0173	-0.01 54	+0.0096
Red . .	-	62.0	-0.0198	-0.0160	-0.0138	+0.0120
Yellow	D	58.9	-0.0193	-0.01 54	-0.01 30	+0.0133
Green . . .	b	51.7	-0.0179	-0.0159	-0.0111	+0.0072
Blue	F	48.6	-0.0180	-0.0163	-0.0101	+0.0026
Violet	G	43.1	-0.0182	-0.0175	-0.0089	-

* H. E. J. G. Du Bois, " Phil. Mag." vol. 29.

TABLE 482. - Dispersion of Kerr Effect.

Wave-length.	0.5μ	1.0μ	1.5μ	2.0μ	2.5μ
Steel . . .	-11^{\prime}.	-16^{\prime}.	-14^{\prime}.	$-1 I^{\prime}$.	$-9^{\prime .0}$
Cobalt . . .	-9.5	-11.5	-9.5	-11.	-6.5
Nickel . . .	-5.5	-4.0	0	+1.75	+3.0

Field Intensity $=10,000$ C. G. S. units. (Intensity of Magnetization $=$ about 800 in steel, 700 to 800 in cobalt, about 400 in nickel). Ingersoll, Phil. Mag. 11, p. 41, 1906.

TABLE 483. - Dispersion of Kerr Effect.

| Mirror. | Field
 (C. G.S.) | $.41 \mu$ | $.44 \mu$ | $.48 \mu$ | $.52 \mu$ | $.56 \mu$ | $.60 \mu$ | $.64 \mu$ | $.66 \mu$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Iron . . | 21,500 | -.25 | -.26 | -.28 | -.31 | -.36 | -.42 | -.44 | -.45 |
| Cobalt.. | 20,000 | -.36 | -.35 | -.34 | -.35 | -.35 | -.35 | -.35 | -.36 |
| Nickel . . | 19,000 | -.16 | -.15 | -.13 | -.13 | -.14 | -.14 | -.14 | -.14 |
| Steel . . | 19,200 | -.27 | -.28 | -.31 | -.35 | -.38 | -.40 | -.44 | -.45 |
| Invar . . | 19,800 | -.22 | -.23 | -.24 | -.23 | -.23 | -.22 | -.23 | -.23 |
| Magnetite | 16,400 | -.07 | -.02 | +.04 | +.06 | +.08 | +.06 | +.04 | +.03 |

Foote, Phys. Rev. 34, p. 96, 1912.
See also Ingersoll, Phys. Rev. 35, p. 312, 1912, for "The Kerr Rotation for Transverse Magnetic Fields," and Snow, l. c. 2, p. 29, 1913, "Magneto-optical Parameters of Iron and Nickel."

Smithsonian Tables.

RESISTANCE OF METALS. MAGNETIC EFFECTS.
TABLE 484.-Variation of Resistance of Bismuth, with Temperature, in a Transverse Magnetic Field.

Proportional Values of Resistance.									
H	-192°	-135°	-100°	-37°	0°	+18 ${ }^{\circ}$	$+60^{\circ}$	$+100^{\circ}$	$+183^{\circ}$
0	0.40	0.60	0.70	0.88	1.00	1.08	1.25	1.42	1.79
2000	1.16	0.87	0.86	0.96	1.08	1.11	1.26	1.43	1.80
4000	2.32	I. 35	1.20	1.10	I. 18	1.21	1.31	I. 46	1.82
6000	4.00	2.06	1.60	1.29	I. 30	1.32	1.39	$\underline{1} 51$	1.85
8000	5.90	2.88	2.00	1. 50	1.43	I. 42	1.46	1.57	1.87
10000	8.60	3.80	2.43	1.72	r .57	1.54	1.54	1.62	$\underline{1.89}$
12000	10.8	4.76	2.93	1.94	1.71	1.67	1.62	1.67	1.92
14000	12.9	5.82	3.50	2.16	1.87	I. 80	1.70	1.73	1.94
16000	15.2	6.95	4.11	2.38	2.02	1.93	1. 79 I 88	1.80	1.96
18000	17.5	8.15	4.76	2.60	2.18	2.06	1.88	1.87	1.99
20000	19.8	9.50	5.40	2.81	2.33	2.20	1.97	1.95	2.03
25000	25.5	13.3	7.30	$3 \cdot 50$	2.73	2.52	2.22	2.10	2.09
30000	30.7	18.2	9.8	4.20	3.17 3.62	2.86 3.25	2.46 2.69	2.28 2.45	2.17 2.25
35000	35.5	20.35	12.2	4.95	3.62	3.25	2.69	2.45	2.25

TABLE 485. - Increase of Resistance of Nickel due to a Transverse Magnetic Field, expressed as $\%$ of Resistance at 0° and $\mathbf{H}=\mathbf{0}$.

H	-190°	-75°	0°	$+18^{\circ}$	$+100^{\circ}$	$+182^{\circ}$
0	+o	0	0	0	0	0
1000	+0.20	+0.23	+0.07	+0.07	+0.96	+0.04
2000	+0.17	+0.16	+0.03	+0.03	+0.72	-0.07
3000	0.00	-0.05	-0.34	-0.36	-0.14	-0.60
4000	-0.17	-0.15	-0.60	-0.72	-0.70	-1.15
6000	-0.19	-0.20	-0.70	-0.83	- 1.02	-1.53
8000	-0.19	-0.23	-0.76	-0.90	-1.15	- I .66
10000	-0.18	-0.27	-0.82	-0.95	-1.23	-1.76.
12000	-0.18	-0.30	-0.87	-1.00	-1.30	-1.85
14000	-0.18	-0.32	-0.91	-1.04	-1. 37	-1.95
16000	-0.17	-0.35	-0.94	-1.09	- 1.44	-2.05
18000	-0.17	-0.38	-0.98	-1.13	-1.51	-2.15
20000	-0.16	-0.4I	- 1.03	-1.17	-1.59	-2.25
25000	-0.14	-0.49	-1.12	-1.29	- 1.76	-2.50
30000	-0.12	-0.56	- I .22	-1.40	-1.95	-2.73
35000	-0.10	-0.63	-1.32	-1.50	-2.13	-2.98

F. C. Blake, Ann. der Physik, 28, p. 449; 1909.

TABLE 486. - Ohange of Resistance of Varions Metals in a Transverse Magnetic Field. Room Temperature.

Metal.	Field Strength in Gausses.	Per cent Increase.	Authority.
Nickel	10000	- 1.2	Williams, Phil. Mag. 9, 1905.
		-1.4	Barlow, Pr. Roy. Soc. 7 I, 1903.
"	6000	$-\mathrm{I} .0$	Dagostino, Atti Ac. Linc. 17, 1908.
Cobalt	10000	-1.4 -0.53	Grummach, Ann. der Phys. 22, 1906.
Cadmium	"،	+0.03	"
Zinc	"	+0.01	"
Copper	"'	+0.004	"
Silver	"	+0.004	،
Tin	"	+0.003 +0.002	،
Palladium	\because	+0.001	،
Platinum	"	+0.0005	"
Lead	"'	+0.0003	"،
Magnesium	6000	+0.0003 +0.01	Dagostino, l.c.
Manganin	¢ ${ }^{\text {a }}$	+0.01	Dagostino.l.c.
Tellurium Antimony	?	+0.02 to 0.34 +0.02 to 0.16	Goldhammer, Wied Ann. 31, 1887.
	Different spec	ens show very	Grummach, l.c.
Iron	diverse result	sually an in-	Barlow, l.c.
,	crease in weak in strong.	ds, a decrease	Williams, l.c.
Nickel steel	Alloys behave	milarly to iron.	Williams, l. c.

Effects are considered positive when, the magnetic field being directed away from the observer, and the primary current of heat or electricity directed from left to right, the upper edge of the specimen has the higher potential or higher temperature.
$E=$ difference of potential produced ; $T=$ difference of temperature produced ; $I=$ primary current; $\frac{d t}{d x}=$ primary temperature gradient ; $B=$ breadth, and $D=$ thickness, of specimen $H=$ intensity of field. C. G. S. units.

Hall effect (Galvanomagnetic difference of Potential), $E=R \frac{R I I I}{D}$
Ettingshausen effect (" " "Temperature), $T=P_{D^{H}}{ }_{D}$
Nernst effect (Thermomagnetic " "Potential), $E=Q H B \frac{d t}{d x}$
Leduc effect (
" " Temperature), $T=S H B \frac{d t}{d x}$

Substance.	Values of R.	$P \times 1{ }_{10}$ 。	$Q \times$ ro6.	$s \times{ }_{10}{ }^{\text {s }}$.
Tellurium	+400 to 800	+200	+360000	+400
Antimony	+ 0.9 " 0.22	+2	+9000 to 18000	+200
Steel - .	+.012""0.033	-0.07	-700" 1700	+69
Heusler alloy	+.010" 0.026	-	+1600" 7000	
Iron ${ }^{\text {a }}$	+.007" 0.011	-0.06	-1000" 1500	+39
$\underset{\text { Cinc }}{\text { Cobalt }}$.	+.0016"0.0046	+0.01	+1800" 2240	+13
$\underset{\text { Cadmium }}{\text { Cal }}$.	+.00055		-54"240	+13
Iridium .	+.00040	-	up to -5.0	+5
Lead .	+.00009	-	-5.0 (?)	
Tin. . -	-. 00003	-	-4.0 (?)	
Platinum . -	-. 0002	-		-2
Copper ${ }_{\text {German silver }}$.	-.00052	-	-90 to 270	-18
$\underset{\text { German silver }}{\text { Gold }}$	$\begin{gathered} -.00054 \\ -.00057 \text { to } .00071 \end{gathered}$			
Constantine.	$-.0009$			
Manganese .	-. 00093			
Palladium	-.0007 to . 0012	-	+50 to 130	-3
Silver	-.0008".0015	-	-46"430	-41
Sodium .	-. 0023			
Magnesium .	一.00094 to . 0035			
Aluminum	-.00036 ".0037			
Nickel .	-.0045".024	+0.04 to 0.19	+2000" 9000	-45
Carbon Bismuth .		$\begin{array}{r} +5 \\ +3 \text { to } 40 \end{array}$	+ 100 + up to 132000	-200

TABLE 488. - Variation of Hall Constant with the Temperature.

Bismuth. ${ }^{1}$						Antimony. ${ }^{2}$				
H	-182°	-90°	-23°	+11.5 ${ }^{\circ}$	$+100^{\circ}$	H	-186°	$\rightarrow 79^{\circ}$	+21.5 ${ }^{\circ}$	$+58^{\circ}$
1000	62.2	28.0	17.0	I 3.3	7.28	1750	0.263	0.249	0.217	
2000	55.0	25.0	16.0	12.7	7.17	3960	0.252	0.243	0.211	
3000	49.7	22.9	15.1	12.1	7.06	6160	0.245	02.35	0.209	0.203
4000	45.8	21.5	14.3	11.5	6.95					
5000	42.6	20.2	13.6	11.0	6.84					
6000	40.1	18.9	12.9	10.6	6.72					
Bismuth. ${ }^{3}$										
H	+14.5 ${ }^{\circ}$	+10			9°		9°	9°	$269{ }^{\circ}$	270°
890	5.28	2.57			42		II	97	0.83	0.77*

${ }^{1}$ Barlow, Ann. der Phys. 12, 1903.
${ }^{3}$ Traubenberg, Ann. der Phys. 17, 1905.
${ }^{2}$ Everdingen, Comm. Phys. Lab. Leiden, 58.

* Melting-point.

Both tables taken from Jahn, Jahrbuch der Radioactivität und Electronik, 5, p. 166; 1908, who has collected data of all observers and gives extensive bibliography.

Smithsonian Tables.

RÖNTGEN (X-RAYS) RAYS.

TABLE 489. - Cathode and Canal Rays.

Cathode (negative) rays consist of negatively charged particles (charge 4.77×10^{-10} esu, $1.591 \times 10^{-30} \mathrm{emu}$, mass, $9 \times 10^{-28} \mathrm{~g}$ or $\mathrm{I} / 1800 \mathrm{H}$ atom, diam. $4 \times 10^{-13} \mathrm{~cm}$) emitted at low pressures in an electric discharge tube perpendicularly to the cathode (\therefore can be focused) with velocities (10^{9} to $10^{10} \mathrm{~cm} / \mathrm{sec}$.) depending on the acting potential difference. When stopped by suitable body they produce heat, ionization (inversely proportional to velocity squared), photographic action, X-rays, phosphorescence, pressure. The bulk of energy is transformed into heat (Pt, Ta, W may be fused). In an ordinary X-ray tube carrying 10^{-3} ampere the energy given up may be of the order of $100 \mathrm{cal} / \mathrm{m}$. Maximum thickness of glass or Al for appreciable transmission of high speed particles is .0015 cm . Maximum velocity V_{d} with which a cathode ray of velocity V_{0} may pass through a material of thickness d is given by $V_{0}{ }^{4}-V_{d^{4}}=a d \times 10^{40}$; $a=2$ for air, 732 for Al and 2540 for Au , cm-sec. units (Whiddington, 1912). Cathode rays have a range of only a few millimeters in air.

Canal (positive) rays move from the anode with velocities about $10^{8} \mathrm{~cm} / \mathrm{sec}$. in opposite direction to the cathode rays, carry a positive charge, a mass of the order of magnitude of the H molecule, cause strong ionization, fluorescence (LiCl fluoresces blue under cathode, red under canal ray bombardment), photographic action, strong pulverizing or disintegrating power and by bombardment of the cathode liberate the cathode rays.

TABLE 490. - Speed of Cathode Rays.

The speed of the cathode particles in $\mathrm{cm} / \mathrm{sec}$. as dependent upon the drop of potential to which they owe the speed, is given by the formula $v=5.95 \sqrt{E} \cdot 10^{7}$. The following table gives values of $5.95 \sqrt{E}$.

For voltages 1000 to 10,000 multiply 2 d line by 10 , etc.

TABLE 491. - Cathodic Sputtering.

The disintegration of the cathode in an electric discharge tube is not a simple phenomenon: The particles taking part in the sputtering must be either large or of high speed or both (2000+ gauss field required for their deviation). It depends upon the nature of the residual gas. H, N, CO_{2} are not generally favorable; Ar is especially favorable, also $\mathrm{He}, \mathrm{Ne}, \mathrm{Kr}$ and Xe . Raised temperature favors it. The relative sputtering from various metals is shown in the following table (Crookes, Pr. R. S. 1891); the residual gas was air, pressure about . 05 mm Hg .

For further data on cathode, canal and X-rays, see X-rays by G. W. C. Kaye, Longmans, 1917, upon which much of the above and the following data for X-rays is based. See also J. J. Thomson, Positive Rays, Longmans, 1913.

X-rays are produced whenever and wherever a cathode ray hits matter. They are invisible, of the same nature as, and travel with the velocity of light, affect photographic plates, excite phosphorescence, ionize gases and suffer deviation neither by magnetic nor electric fields as do cathode rays. In an ordinary X-ray tube (vacuum order 0.001 to 0.01 mm Hg) the cathode (concave for focusing, generally of aluminum) rays are focused on an anticathode of high atomic weight (W, Pt, high a tomic weight, high melting point, low vapor pressure, to avoid sputtering, high thermal conductivity to avoid heating). Depth to which cathode rays penetrate, order of $0.2 \times 10^{-5} \mathrm{~cm}$ in $\mathrm{Pb}, 90,000$ volts (Ham, 1910), $24 \times 10^{-5} \mathrm{~cm}$ in Al, 22,000 volts (Warburg, 1915). Note: High speed H and He molecules ($2 \times 10^{8} \mathrm{~cm} / \mathrm{sec}$.) can penetrate 0.001 to 0.006 mm mica; He a particles ($2 \times 10^{9} \mathrm{~cm} / \mathrm{sec}$.), 0.04 mm glass.

The X-rays from an ordinary bulb consist of two main classes:
Heterogeneous ("general," "independent") radiation, which depends solely on the speed of the parent cathode rays. It is always present and its range of hardness (wave-lengths) depends on the range of speeds of the cathode rays. Its energy is proportional to the 4th power of these speeds.

Homogeneous ("characteristic," "monochromatic") radiation (K, L, M, etc. radiations, see Table 498 for wave-lengths), characteristic of the metal of the anticathode. Generated only when cathode rays are sufficiently fast. There is a critical velocity for each characteristic radiation from each material, proportional to the atomic weight of the anticathode. The critical velocity for the K radiation is $V_{K}=A \times 10^{8}$, when A is the atomic weight of the radiator (e.g. anticathode); $V_{L}=1 / 2(A-48) \mathrm{IO}^{8}$.

The following relation has been found to hold experimentally between the voltage V through which the cathode particles fall and the maximum frequency ν of the X-rays produced: eV $=h \nu$, where e is the electronic charge and h, Planck's constant. Blake and Duane (Phys. Rev. $10,624,1917$) found for $h, 6.555 \times 10^{-27} \mathrm{erg}$ second.

As the speed of the cathode rays is increased, shorter and shorter wave-lengthed "independent" X-rays are produced until the critical speed is reached for the "characteristic" rays; with faster speeds, the cathode rays become at first increasingly effective for the characteristic radiation, then less so as the independent radiation again predominates.

When cathode rays hit the anticathode some 75 per cent are reflected, the more the heavier its atomic weight. The chances of the remainder hitting an atom so as to generate an X-ray are slight; only $\mathrm{I} / 1000$ or $\mathrm{I} / 2000$ of the original energy goes into X-rays. If E_{x} and E_{c} are the energies of the X and the parent cathode rays, A the atomic weight of the anticathode, β the velocity of the cathode rays as fraction of the light value ($3 \times 10^{10} \mathrm{~cm} / \mathrm{sec}$.), Beatty showed (Pr. R. S. 1913) that $E_{x}=E_{c}\left(.5 \mathrm{I} \times 10^{4} A \beta^{2}\right)$; this refers only to the independent radiations; when characteristic radiations are excited their energy must be added and the tube becomes considerably more efficient. No quantitative expression for the latter has been developed.

When an X-ray strikes a substance three types of radiation result: scattered (sometimes called secondary) X-rays, characteristic X-rays and corpuscular rays (negatively charged particles). The proportions of the rays depend on the substance and the quality of the primary rays. When the substance is of low atomic weight, by far the greater portion of the X -rays, if of a penetrating type, are scattered. With elements of the Cr-Zn group most of the resulting radiation is "characteristic." With the Cu group the scattered radiation ($\mathrm{I} / 200$) is negligible. Heavier elements, both scattered and characteristic X-rays. Corpuscular radiation greater, mass for mass, for elements of high atomic weight and may mask and swamp the characteristic radiation. Hence an X-ray tube beam, heterogeneous in quality, allowed to fall on different metals, $-\mathrm{Cu}, \mathrm{Ag}, \mathrm{Fe}$, Pt, etc., - excites characteristic X-rays of wide range of qualities. Exciting ray must be harder than the characteristic radiation wished. The higher the atomic weight of the material struck (radiator), the more penetrating the quality of the resulting radiation as shown by the following table, which gives λ, the reciprocal of the distance in cm in Al , through which the rays must pass in order that their intensity will be reduced to $I / 2.7$ of their original intensity.

TABLE 493. - Röntgen Secondary Rays.

Radiator.	Cr	Fe	Co	Ni	Cu	Zn	As	Se	Sr	Ag	Sn
Atomic weight λ A...........	52. 367.	55.8 239.	59.0 193.	58.7 160.	63.6 129.	65.4 106.	75.0 61.	79.2 51.	$\begin{aligned} & 87.6 \\ & 35.2 \end{aligned}$	108. 6.75	$\begin{aligned} & 119 . \\ & 4.33 \end{aligned}$

With the radiator at 45° to the primary X-rays at most only about 50 per cent of the energy goes to characteristic rays and only about I / Io of the latter escape the surface of the radiator. The β radiations of radioactive elements may possibly be regarded (Rutherford) as a characteristic radiation produced by the expulsion of the a particles. The hardness of some corresponds to the K and L radiations.

For more complete data on X-rays, see X-rays, G. W. C. Kaye, Longmans, 1917, upon which these X-ray tables are greatly based.
Smithsonian tables.

RÖNTGEN (X-RAYS) RAYS.

TABLE 494. - Corpuscular Rays.
Corpuscular rays are given off in greatest abundance when radiator emits its characteristic radiation. Intensity increases with atomic weight (.th power, Moore, Pr. Phys. Soc.). Greater number emitted at right angles to incident rays. Velocity range (6 to 8.5) $10^{\circ} \mathrm{cm} / \mathrm{sec}$. $v_{0}=$ velocity when leaving radiator $=10^{8}(A=$ Atomic weight $)=$ critical velocity necessary to excite characteristic radiation, therefore corpuscular rays have practically the same velocity as the original generating cathode rays. Are of uniform quality when excited by characteristic rays and follow exponential law of absorption in gases. If λ is the absorption coefficient and A the atomic weight, $\lambda A^{4}=\lambda 0_{0}{ }^{4}=$ constant (Whiddington, Beatty). λ is defined by $I=I_{0} e^{-\lambda d}$ where I and I_{0} are the intensities after and before absorption and d the thickness of the absorptive layer in cm . The following values for λ in air for characteristic radiations from various substances are due to Sadler. (At $0^{\circ} \mathrm{C}$ and 76 cm Hg .)

Metal emitting corpuscles.	Exciting characteristic radiation from									
	Ni	Cu	Zn	As	Se	Sr	Mo	Rh	Ag	Sn
Al.	-	-	-	29.6	-	20.0	15.2	-	8.90	
	38.9	37.0	35.8	30.2	26.4	21.5 20.8	15.5	10.9	8.84	6.41
			36.2	30.4	-		15.2	10.8	8.81	6.67

TABLE 495. - Intensity of X-Rays. Ionization.

The intensity of the radiation from an X-ray bulb is proportional to the current. Except at low voltages it equals $K i\left(v^{2}-v_{0}{ }^{2}\right)$ where i is the current, ν the applied voltage, v_{0} the break-down voltage and K a constant for the tube (Krönke). The intensity of X-rays is most accurately measured by the ionization they produce. This may be referred to the International Radium Standard (see Table 508). It is proportional to the 4 th power of the speed of the parent cathode rays (Thomson), (true only of independent rays, Beatty, r913). The saturation current due to X-ray ionization is usually of the order of 10^{-10} to 10^{-15} ampere. When X-rays pass through a substance, only once in a while is an atom struck, only perhaps I in a billion, and ionized. The ionization is probably an indirect process through the mediation of corpuscular rays. In the absence of secondary radiations the ionization is proportional to the mass of the gas (that is, its pressure at constant temperature). It depends on the nature of the gas, but is little affected by the quality of the rays. The following results are due to Crowther, 1908.

Gas or vapor.	Ionization relative to air $=1$.		
	Density, air $=\mathbf{I}$.	Soft X-rays 6 mm spark.	Hard X-rays 27 mm spark.
Hydrogen $\mathrm{H}_{2} \ldots$	0.07	0.01	0.18
$\xrightarrow{\text { Carbon dioxide } \mathrm{CO}_{2} \ldots}$ Ethyl chloride $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$	1. 53	1.57 18.0	I. 49
Carbon tetrachloride CCO_{4}	2.24 5.35	18.0 67.	${ }_{71}^{17.3}$
Ethyl bromide $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br} .$.	3.78		118.
Methyl iodide $\mathrm{CH}_{3} \mathrm{I}$.	4.96	145.	125.
Mercury methyl $\mathrm{Hg}\left(\mathrm{CH}_{3}\right)_{2}$	7.93	425.	-

RÖNTGEN（X－RAYS）RAYS．

TABLE 496．－Mass Absorption Coefficients，λ / d ．

The quality by which X－rays have been generally classified is their＂hardness＂or penetrating power．It is greater the greater the exhaustion of the tube，but for a given tube depends solely upon the potential difference of the elec－ trodes．With extreme exhaustion the X－rays have an appreciable effect after passing through several millimeters of brass or Al．The penetrability of the characteristic radiation is in general proportional to the 5 th power of the atomic weight of the radiator．The absorption of any substance is equal to the sum of the absorptions of the individual atoms and is independent of the chemical combination，its physical state and probably of the temperature．Most of the following table is from the work of Barkla and Sadler，Phil．Mag．17，739，1909．For starred radiators，L radiations used；for others the K ．

If I_{0} be the intensity of a parallel beam of homogeneous radiation incident normally on a plate of absorbing material of thickness t ，then $I=I_{0} e^{-\lambda x}$ gives the intensity I at the depth x ．Because of the greater homogeneity of the secondary X－rays they were used in the determination of the following coefficients．The coefficients λ have been divided by the density d ．

Radiator．	Absorber．										
	c	Mg	${ }^{\text {al }}$	Fe	Ni	Cu	$\mathrm{Zn}^{\text {n }}$	Ag^{8}	Sn	Pt	Au
Cr_{r}	$\begin{aligned} & 15.3 \\ & 10.1 \\ & 10.1 \\ & \hline 6.6 \\ & 5.6 \\ & 4.3 \\ & . .5 \\ & 2.06 \\ & .46 \\ & .35 \\ & .37 \\ & .29 \\ & \hline 20 \\ & \hline \\ & \hline \\ & \hline \end{aligned}$			rot．	129.	${ }^{4} 3$.	170.	58.	74.	（517．）	（507．）
				${ }^{60} 6$	${ }^{64 .}$	${ }^{\text {955．}}$			${ }_{392}^{472 .}$	${ }^{380}$ 285．	${ }_{3}^{366 .}$
				cis．	${ }_{5}^{56 .}$	${ }_{53}^{62 .}$	74．	${ }^{2262}$ 224．	${ }^{3282}$ 272．	${ }^{236}{ }^{236}$.	253． 210
				cos，			－ 50.	（125．	－ 2725		
					${ }_{14}^{100}$	150.	－	88．	（122．	－${ }^{96}$	
				${ }^{\text {17．}}$	$\stackrel{23}{23}$	$\stackrel{\text { 24．}}{ }$	$\underline{ }$		$\stackrel{10}{-}$	${ }_{47}{ }_{47}{ }^{56}$.	52.
				－	－	二	二	${ }_{46}{ }^{56}$	二	二	
${ }_{\text {W }}{ }_{\text {di }}$＊				二	－	127．	二	${ }_{\text {3 }}^{35} \times$	二	${ }_{133}$	
				二	二	${ }_{\substack{177 \\ 130}}$	二	${ }_{1}^{106}$	－	（13）	
				二	二	${ }^{1227}$ 127：	二	行，	二	$\xrightarrow[\substack{125 \\ \\ 125 \\ 135}]{ }$	
				＝	－	${ }^{77}$		${ }_{4}^{42}$	二		

TABLE 497．－Absorption Coefficients of Characteristic Radiations in Gases．

The penetrating power of X－rays ranges in normal air from I to $10,000 \mathrm{~cm}$ or more．The absorptive power of I cm air $=1 / 820$ that of water．λ（see preceding table for definition）for air for soft bulb（ 1.5 to 5 cm spark gap， 4 to 10 m air）ranges from ．0010 to ．0018；for hard bulb（ 30 cm spark gap， 4 to 10 m air）， .00029 ．（Eve and Day，Phil． Mag．1912．）The absorption coefficient for gases for characteristic or monochromatic radiations varies directly with the pressure．For different characteristic radiations it is proportional to the coefficients in air．It varies with the 5 th power of the atomic weight of the radiator．The following table is taken from Kaye＇s X－rays and is based on the work of Barkla and Collier（Phil．Mag．1912）and Owen．All are for the gas at $0^{\circ} \mathrm{C}$ and 76 cm Hg ．

	Air		CO_{2}		SO_{2}		$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}$		$\mathrm{CH}_{3} \mathrm{I}$	
	λ	λ / d	λ	λ / d	λ	λ / d	λ	λ / d	λ	λ / d
Fe ．	． 0202	15.6	． 0456	23.1	． 24	83.3	． 512	${ }_{8}^{105 .}$	2.16	339.
Ni．	． 0136	10．5	．0319	16.1	． 166	89.4 57.6	． 325	66．3	1.80	282.
	． 0109	8.43	． 0227	1 I .5	． 134	46.5	． 260	53． 1	${ }_{\text {I }}^{1.54}$	241.
As．	． 0090	6.96 4.10	． 0184	9．31 5.00 coin	．112	38.9 22.9	－ 2128	${ }_{26.9}^{43.9}$		${ }_{118}^{198 .}$
	．0044	3.40	． 00788	3.96 3.96	． 0546	19.1	．110	22.4	． 619	
$\stackrel{\mathrm{Br}}{\mathrm{Sr}}$	． 0039	3．02	－		． 050	${ }^{17.4}$	． 096	19.6 66.3	． 553	86.5 53.0
	－0023	1．78 0.98	． 000428	2．12	－．0281	9.76 5.56	． 2125	66.3 42.9	． 197	53.0 30.9
Ag．	． 00077	0.59	－	$\underline{1.42}$	． 0079	${ }_{2}$	． 108	22.0	.113	17.7

Kaye has shown that an element excited by sufficiently rapid cathode rays emits Röntgen rays characteristic of that substance．These were analyzed and the wave－lengths determined by Moseley（Phil．Mag．27，703，1914），using a crystal of potassium ferrocyanide as a grating．He noted the K series，showing two lines，and the L series with several． He found that every element from Al to Au was characterized by integer N ，which determines its X －ray spectrum； N is identified with the number of positive units associated with its atomic nucleus．The order of these atomic num－ bers (N) is that of the atomic weights，except where the latter disagrees with the order of the chemical properties． Known elements now correspond with all the numbers between I and 92 except 6 ．There are here six possible elements still to be discovered（atomic nos．43，61，72，75，85）．

The frequency of any line in an X－ray spectrum is approximately proportional to $A(N-b)^{2}$ ，where A and b are constants．All \mathbb{X}－ray spectra of each series are similar in structure，differing only in wave－lengths． $\mathrm{Q}_{K}=\left(0 / \frac{2}{3} 0\right)$ ； $Q_{L}=\left(v / \mathrm{s}_{\mathrm{d}}^{\mathrm{s}} v_{0}\right)$ where v is the frequency of the α line and v_{0} the fundamental Rydberg frequency．The atomic number for the K series $=\mathrm{Q}_{K}+\mathrm{I}$ and for the L series， $\mathrm{Q}_{L}+7.4$ approximately．$v_{0}=3.29 \times 10^{15}$

Moseley＇s work has been extended，and the following tables indicate the present（1919）knowledge of the X－ray spectra．
（a）K Series（Wave－lengths，$\lambda \times 10^{8} \mathrm{~cm}$ ）．

Element， atomic number．	β_{2}	β_{1}	a_{4}	$\begin{gathered} a_{3} a_{4} \\ \text { (not } \\ \text { separable) } \end{gathered}$	α_{3}	a_{1}	$\begin{gathered} a_{1} a_{2} \\ \text { (not } \\ \text { separable) } \end{gathered}$		
11 Na	－	－	－	－	－	－	11.951		－
$\begin{array}{ll}12 & \mathrm{Mg} \\ 13\end{array}$	二	9.477 7	9.845 8.400	二	9．856	二	9．915		
${ }_{14}{ }_{4} \mathrm{Si}$	二	9． 6.759	7.080	－	7.088	－	7.131		－
$15 \quad \mathrm{P}$	－	5.808	6.122		6.129	－	6.168		
16 S		5.018	5.314		5.317		5．360		
${ }_{18}^{17} \mathrm{Cl}$	－	4.394	－	4.692	－	二	4.712		－
$\begin{array}{ll}18 & \mathrm{Ar} \\ 19 & \mathrm{~K}\end{array}$							－		738
${ }_{20}{ }^{19} \mathrm{C}$	3.074	3.449 3.086	二	3.724 3.328	二	3.735 3.355	二		． 738
${ }^{21} \mathrm{Sc}$		2.778		3.011		3.028			．032
$\begin{array}{ll}22 & \mathrm{Ti} \\ 23 & \mathrm{Va}\end{array}$	2.492	2.309 2.281	二	2.729	二	${ }^{2} .742$	－		． 746
		2.281				2.498	－		． 502
Element， atomic number．	β_{2}	β_{1}	a_{1}	α_{2}	Element， atomic number．	β_{2}	β_{1}	a_{1}	$a s$
24 Cr	2.069	2.079	2.284	2.288	43	－	－	－	－
$\begin{array}{ll}25 & \mathrm{Mn} \\ 26 & \mathrm{Fe}\end{array}$	1.802	1．902	2.093	2.097	$\begin{array}{ll}44 & \mathrm{Ru} \\ 45 & \mathrm{Rh}\end{array}$	－ 537	0． 574	0．645	$\overline{6}$
27 Co	1． 602	I． 613	r． 78 r	1.932 1.785	$\begin{array}{ll}46 & \mathrm{R} \\ 46\end{array}$	－0． 537	． 501	． 662	． 567
28 Ni	1.488	I． 497	1.653	1． 657	47 Ag	． 491	． 501	－562	． 567
29 Cu	1． 379	1．391	I． 539	I． 543	48 Cd		． 479	． 538	． 543
${ }_{30}{ }^{\circ} \mathrm{Zn}$	1.281	1． 294	I． 433	1． 437	49 In	． 440	． 453	． 510	． 515
$\begin{array}{ll}31 & \mathrm{Ga} \\ 32 & \mathrm{Ge}\end{array}$	1．121	I． 206 r． 131	1.338 1.257	I． 342 I． 251 I	$\begin{array}{lll}50 & \mathrm{Sn} \\ 5 \mathrm{I} & \mathrm{Sb}\end{array}$	． 408	.432 .416	． 487	－472
33 As	1.038	＋ x .052	I． 170	1.251 1.174	${ }_{52} 5 \mathrm{Te}$	－	． 404	.456	－472
${ }_{34} \mathrm{Se}$	－	－． 993	I． 104	I． 109	53 I	－	． 388	． 437	－
35 Br	0.914	． 929	1.035	1． 040	54 X	－	－	－	－
36 Kr	$\overline{813}$	－	－	－	55 Cs	－	． 352	－ 398	． 402
${ }_{37}^{37} \mathrm{Rb}^{\text {R }}$	． 813	． 825	0.922	0.926	56 Ba	－	－ 343	－ 388	－ 393
$\begin{array}{ll}38 & \mathrm{Sr} \\ 39 & \mathrm{Y}\end{array}$.767 .733	.779 .746	． 871	． 876	$\begin{array}{ll}57 & \mathrm{La} \\ 58 & \mathrm{Ce}\end{array}$	二	.329 .314 .	.372 .355 .3	.376 .360
40 Zr	－	． 705	． 788	． 793	59 Pr	二	－301	－342	． 347
$\begin{array}{ll}4 \mathrm{I} & \mathrm{Nb} \\ 42\end{array}$	． 657	． 669	． 749	－ 754	60 Nd	－	． 292	－330	－ 335
42 Mo	－	． 633	． 710	． 714	74 W		． 177	． 203	． 335

Smithsonian Tables．
(b) L Series (Wave-lengths, $\lambda \times 10^{8} \mathrm{~cm}$).

Smithsonian Tables.
（b）L Series（Wave－lengths，$\lambda \times 10^{8} \mathrm{~cm}$ ）．

		β_{4}	β_{1}	β_{2}	β_{3}	β_{5}	γ_{1}	γ_{2}	γ_{3}	γ_{4}
66	Dy	1.721	1.709	1.622	1． 683	－	1.470	1． 422	1.418	－
67	Ho	1.657	1.646	1． 568	1.620	－	1． 415	1． 369	I． 365	－
68	Er	1． 599	1． 586	1． 514	I． 560	－	I． 367	1． 323	1． 316	－
70	Ad	1． 490	1.474	1.414	1．451	1． 422	I． 267	1． 228	1． 223	－
71	Cp	1.437	1.421	1． 368	I． 399	－	I． 224	I． 188	I． 183	－
73	Ta	1． 343	1.323	1． 280	1.303	－	1． 135	1． 101	1.097	－
74	W	I． 296	1． 278	1.241	I． 258	－	I． 105	I． 064	1.058	－
76	Os	I． 214	1． 194	1．167	I． 176	－	1.021	－		－
77	Ir	1． 176	1.154	1． 133	1． 138	1.101	0.989	0.962	0.956	0.917
78	Pt	1． 142	1． 120	1． 101	1．098	1.072	0.958	0.933	0.929	0.900
79	Au	1.102	1.080	1． 065	I． 059	1.035	0.922		0.894	0.869
80	Hg	－	1.049	1．042	－	－	0.896	－		－ 80
8 I	T1	1.036	1.012	1.006	0.998	0.977	0.864	0.844	0.840	0.808
82	Pb	－ 1.008	0.983	0.983	0.968	－	0.842	0.820	0.816	0.792
83	${ }_{\mathrm{Pi}}$	0.977	0.950	0.954	0.937	0.923	0.810	－0．794	0.790	0． 762
84	Po	－	0.920	，	－	－	－		－	－
88	Ra	二	－ 76	－ 707		－				－
90	${ }_{\mathbf{U}}^{\mathrm{Th}}$	二	0.766 0.720	0.797 0.756	$\begin{aligned} & 0.758 \\ & 0.710 \end{aligned}$	－	0.654 0.615			二
92	U	－	0.720	0.756	0.710	－	0.615			－

（c）M Series（Wave－Lengths，$\lambda \times 10^{8} \mathrm{Cm}$ ）．

		a	β	γ_{1}	γ_{2}	δ_{1}	δ_{2}	$\boldsymbol{\epsilon}$
79	Au	5.838	5.623	5.348	5.284	5.146	5.102	－
81	Tl	5.479	5.256	－	－	－	4.826	4.735
82	Pb	5.303	5.095	4.910	－	－	4.695	－
83	Bi	5.117	4.903	4． 726	－	4．56I	4.532	4.456
90	$\mathrm{Th}^{\text {a }}$	4． 139	3.941	3.812	3.678	－	－	－
92	U	3.905	3.715	－	3.480	3.363	3.324	

Reference：Jahrbuch der Radioaktivität und Elektronik，13，296， 1916.
（d）Tungsten X－ray Spectrum（Wave－tengths，$\lambda \times 10^{8} \mathrm{~cm}$ ）．
The wave－lengths of the tungsten X－ray spectrum have been measured more frequently than those of any other element．The following values are perhaps the most accurate that have hitherto been published．Compton，Physical Review，7，646，1916（errata，8，753，1916）．

Line．	λ	Line．	λ	Line．	λ
	1.0249		1． 2185		1． 3363
b	1． 0399	f	1.2420	k	I． 4735
$c^{\prime \prime}$	1． 0582	g	1． 2601	l	I． 4844
${ }^{\text {c }}$ d	1． 0652	h	1． 2787		
d	1． 0959	i	1． 2985		

Other references on the X－ray spectrum of tungsten：Gorton，Physical Review，7，203，1916；Hull，Proc．Nat． Acad．Sci．2，265，1916；Dershem，Physical Review，11，461，1918；＇Overn，Physical Review，14，137， 1919.
The following values for tungsten are from Duane and Patterson，Phys．Rev．16，p．526， 1920 ：

Critical Absorption wave－lengths $\times 10^{8} \mathrm{~cm}$ ．									
Ka	.17806	L，a_{1}	1.2136	$1 . \alpha_{2}$	1.0726	La_{3}	1.024		
Emission wave－length $\times 10^{8} \mathrm{~cm}$ ．									
K a_{2}	．2134 ${ }^{\text {r }}$	Ka_{1}	． 20860	K β	． 18420	K λ	17901		
1.	1.6756	L_{2}	1.4839	L_{1}	1.47306	$\mathrm{L} \eta$	1.4176		
${ }_{\text {L }} \mathrm{L}_{1} \beta_{4}$	1.2985	${ }_{\text {L }} \mathrm{L}_{1} \mathrm{r}_{1}$	1．27892	${ }_{L} \beta_{3}$	1.2601	$\mathrm{L}^{2} \mathrm{~g}_{2}$	1.24193	L $\boldsymbol{\beta}_{5}$	1.2040
$L_{\gamma_{1}}$	1.09608	L_{2}	1.0655	Lr_{3}	1.0596	L γ_{4}	1.0261		

Smithsonian tables．

A marked increase in the absorption of X-rays by a chemical element occurs at frequencies close to those of the X-rays characteristic of that element. The absorption coefficient is much greater on the short wave-length side. In the K series the a lines are much stronger than the corresponding β and γ lines, but the wave-lengths of the α lines are greater. There is a marked increase in the absorption at wave-lengths considerably shorter than the a lines and near the β lines. Bragg came to the conclusion that the critical absorption frequency lay at or above the γ of the K series. The γ line has a frequency about I per cent higher than the corresponding β line. For the L series there are 3 characteristic marked absorption changes (de Broglie).

The critical absorption wave-lengths of the following table are due to Blake and Duane, Phys. Rev. 10, 697, 1917. The equation $\nu=\nu_{0}(N-3.5)^{2}$ where ν is Rydberg's fundamental frequency ($109,675 \times$ the velocity of light) and N the atomic number, represents the data with considerable accuracy. The nuclear charge is obtained by $Q=2 e(N-3.5)$.

Element.	Atomic number.	ÅU	Element.	Atomic number.	ÅU	Element.	Atomic number.	ÅU
Bromine.	35	.9179	Ruthenium	44	. 5584	Tellurium..	52	. 3896
Krypton	36	-	Rhodium..	45	. 5324	Iodine....	53	. 3727
Rubidium.	37	. 8143	Palladium.	46	. 5075	Xenon.. . .	54	-
Strontium.	38	. 7696	Silver.... .	47	. 4850	Caesium...	55	. 3444
Yttrium.	39	. 7255	Cadmium..	48	. 4632	Barium....	56	. 3307
Zirconium....	40	. 6872	Indium...	49	. 4434	Lanthanum	57	. 3188
Columbium . .	41	. 6503	Tin..	50	. 4242	Cerium....	58	. 3073
Molybdenum.	42	.6180	Antimony.	51	. 4065			

Smithsonian Tables.

Radioactivity is a property of certain elements of high atomic weight. It is an additive property of the atom, dependent only on it and not on the chemical compound formed nor affected by physical conditions controlling ordinary reactions, viz: temperature, whether solid or liquid or gaseous, etc.

With the exception of actinium, radioactive bodies emit $\boldsymbol{\alpha}, \boldsymbol{\beta}$, or $\boldsymbol{\gamma}$ rays. \boldsymbol{a} rays are easily absorbed by thin metal foil or a few cms. of air and are positively charged atoms of helium emitted with about $1 / 15$ the velocity of light. They are deflected but very slightly by intense electric or magnetic fields. The β rays are on the average more penetrating, are negatively charged particles projected with nearly the velocity of light, easily deflected by electric or magnetic fields and identical in type with the cathode rays of a vacuum tube. The γ rays are extremely penetrating and non-deviable, analogous in many respects to the very penetrating Röntgen rays. These rays produce ionization of gases, act on the photographic plate, excite phosphorescence, produce certain chemical reactions such as the formation of ozone or the decomposition of water. All radioactive compounds are luminous even at the temperature of liquid air.
Table 506 is based very greatly on Rutherford's Radioactive Substances and their radiations (Oct. 1912). To this and to Landolt-Börnstein Physikalisch-chemische Tabellen the reader is referred for references. In the three radioactive series each successive product (except Ur. Y, and Ra. C_{2}) results from the transformation of the preceding product and in turn produces the following. When the change is accompanied by the ejection of an a particle (helium, atomic weight $=4.0$) the atomic weight decreases by 4. The italicized atomic weights are thus computed. Each product with its radiation decays by an exponential law; the product and its radiation consequently depend on the same law. $I=I_{0} e^{-\lambda t}$ where $I_{0}=$ radioactivity when $t=O, I$ that at the time \mathfrak{t}, and λ the transformation constant. Radioactive equilibrium of a body with its products exists when that body is of such long period that its radiation may be considered constant and the decay and growth of its products are balanced.
International radium standard: As many radioactivity measures depend upon the purity of the radium used, in 1912 a committee appointed by the Congress of Radioactivity and Electricity, Brussels, 1910, compared a standard of 21.99 mg . of pure Ra. chloride sealed in a thin glass tube and prepared by Mme. Curie with similar standards by Hönigschmid and belonging to The Academy of Sciences of Vienna. The comparison showed an agreement of 1 in 300 . Mme. Curie's standard was accepted and is preserved in the Bureau international des poids et mesures at Sèvres, near Paris. Arrangements have been made for the preparation of duplicate standards for governments requiring them.

TABLE 500. - Relative Phosphorescence Excited by Radium.
(Becquerel, C. R. 129, p. 912, 1899.)

The screen of black paper absorbed most of the a rays to which the phosphorescence was greatly due. For the last column the intensity without screen was taken as unity. The γ rays have very little effect.

TABLE 501. - The Production of a Particles (Helium).
(Geiger and Rutherford, Philosophical Magazine, 20, p. 691, 19ro.)

TABLE 502. - Heating Effect of Radium and its Emanation.
(Rutherford and Robinson, Philosophical Magazine, 25, p. 312, 1913.)

Heating effect in gram-calories per hour per gram radium.				
	a rays.	β rays.	γ rays.	Tonal.
Radium.	25.1	-	-	25.1 28.6
	28.6 30.5	-	-	30.5
Radium B + C .	39.4	4.7	6.4	50.5
Totals	123.6	4.7	6.4	134.7

[^54]Tables 503-505.
RADIOACTIVITY.
TABLE 503.-Stopping Powers of Various Substances for α Rays.
s, the stopping power of a substance for the a rays is approximately proportional to the square root of the atomic weight, w.

	$\begin{gathered} \mathrm{H}_{2} \\ .24 \\ .26 \end{gathered}$	Air 1.0 1.0	$\begin{gathered} \mathrm{O}_{2} \\ \mathrm{I} .05 \\ \mathrm{I} .05 \end{gathered}$	$\mathrm{C}_{2} \mathrm{H}_{2}$ I 111 I .17	$\begin{gathered} \mathrm{C}_{2} \mathrm{H}_{4} \\ 1.35 \\ \mathbf{1} .44 \end{gathered}$	$\begin{aligned} & \text { Al } \\ & \text { I. } 45 \\ & \mathbf{1 . 3 7} \end{aligned}$	$\begin{gathered} \mathrm{N}_{2} \mathrm{O} \\ 1.46 \\ 1.52 \end{gathered}$	$\begin{gathered} \mathrm{CO}_{2} \\ 1.47 \\ 1.5 \mathrm{I} \end{gathered}$	$\mathrm{CH}_{3} \mathrm{Br}$ 2.09 2.03	$\begin{gathered} \mathrm{CS}_{2} \\ 2.18 \\ 1.95 \end{gathered}$	$\begin{aligned} & \mathrm{Fe} \\ & 2.26 \\ & \mathrm{I} .97 \end{aligned}$
Substance	Cu	Ni	Ag	Sn	$\mathrm{C}_{6} \mathrm{H}_{6}$	$\mathrm{C}_{5} \mathrm{H}_{12}$	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{I}$	CCl_{4}	Pt	Au	Pb
s .	2.43	2.46	3.17	$3 \cdot 37$	3.37	3.59	3.13	4.02	4.16	4.45	4.27
\downarrow w . . .	2.10	2.20	2.74	2.88	$3 \cdot 53$	3.86	3.06	$3 \cdot 59$	3.68	3.70	3.78

Bragg, Philosophical Magazine, 11, p. 67, 1906.

TABLE 504, - Absorption of β Rays by Various Substances.
μ, the coefficient of absorption for β rays is approximately proportional to the density, D. See Table 500 for μ for Al.

Substance μ / D Atomic Wt.	$\begin{gathered} \mathrm{B} \\ 4.65 \\ \text { II } \end{gathered}$	$\begin{gathered} C \\ 4.4 \\ 12 \end{gathered}$	$\begin{aligned} & \mathrm{Na} \\ & 4.95 \\ & 23 \end{aligned}$	$\begin{array}{r} \mathrm{Mg} \\ 5 . \mathrm{I} \\ 24 \cdot 4 \end{array}$	$\begin{aligned} & \mathrm{Al} \\ & 5.26 \\ & 27 \end{aligned}$	$\begin{aligned} & \mathrm{Si} \\ & 5 \cdot 5 \\ & 28 \end{aligned}$	$\begin{gathered} P \\ \text { C. } \\ 31 \end{gathered}$	$\begin{gathered} \mathrm{S} \\ 6.6 \\ 32 \end{gathered}$	$\begin{aligned} & \mathrm{K} \\ & 6.53 \\ & 39 \end{aligned}$	$\begin{aligned} & \mathrm{Ca} \\ & 6.47 \\ & 40 \end{aligned}$
Substance μ / D Atomic Wt.	$\begin{array}{r} \mathrm{Ti} \\ 6.2 \\ 48 \end{array}$	$\begin{gathered} \mathrm{Cr} \\ 6.25 \\ 52 \end{gathered}$	$\begin{gathered} \mathrm{Fe} \\ 6.4 \\ 56 \end{gathered}$	$\begin{gathered} \text { Co } \\ 6.48 \\ 59 \end{gathered}$	$\begin{array}{r} \mathrm{Cu} \\ 6.8 \\ 63 \cdot 3 \end{array}$	$\begin{gathered} \mathrm{Zn} \\ 6.95 \\ 65.5 \end{gathered}$	$\begin{array}{r} \mathrm{Ar} \\ 8.2 \\ 75 \end{array}$	$\begin{aligned} & \mathrm{Se} \\ & 8.65 \\ & 79 \end{aligned}$	$\begin{array}{r} \mathrm{Sr} \\ 8.5 \\ 87.5 \end{array}$	$\begin{array}{r} \mathrm{Zr} \\ 8.3 \\ 90.7 \end{array}$
Substance μ / D Atomic Wt.	$\begin{gathered} \mathrm{Pd} \\ 8.0 \\ 106 \end{gathered}$	$\begin{aligned} & \mathrm{Ag} \\ & 8.3 \\ & 108 \end{aligned}$	$\begin{aligned} & \mathrm{Sn} \\ & 9.46 \\ & 118 \end{aligned}$	$\begin{gathered} \mathrm{Sb} \\ 9.8 \\ \mathrm{I} 20 \end{gathered}$	$\begin{gathered} \text { I } \\ 10.8 \\ 126 \end{gathered}$	$\begin{aligned} & \mathrm{Ba} \\ & 8.8 \\ & 137 \end{aligned}$	$\begin{aligned} & \mathrm{Pt} \\ & 9.4 \\ & 195 \end{aligned}$	$\begin{aligned} & \mathrm{Au} \\ & 9.5 \\ & 197 \end{aligned}$	$\begin{array}{r} \mathrm{Pb} \\ 10.8 \\ 207 \end{array}$	$\begin{gathered} \mathrm{U} \\ 10.1 \\ 2.40 \end{gathered}$

For the above data the β rays from Uranium were used.
Crowther, Philosophical Magazine, 12, p. 379, 1906.
TABLE 505 , - Absorption of γ Rays by Various Substances.

Substance.	Density.	Radium rays.		Uranium rays.		$\underset{\mu(\mathrm{cm})^{-1}}{\text { Th. }}$	$\underset{\mu(\mathrm{cm})^{-1}}{\text { Meso. Th }_{2}}$	Range of thickness cm .
		$\mu(\mathrm{cm})^{-1}$	100 μ /D	$\mu(\mathrm{cm})^{-1}$	$100 \mu / \mathrm{D}$			
Hg	13.59	. 642	4.72	. 832	6.12			. 3 to 3.5
Pb . .	11.40	. 495	$4 \cdot 34$.725	6.36	. 462	. 620	.0" 7.9
Cu .	8.81	-351	3.98	.416	4.72	. 294	. 373	.0 7.6 0.6
Brass	8.35	. 325	3.89	-392	4.70	.271 .250	. 355	
Fe .	7.62	-304	3.99	-360	4.72 4.70	.250 .236	. 316	
Sn	7.24	.281	3.88	-341	4.70 4.65	. 233	. 305	
Zn .	7.07 2.85	. 228	3.93 4.14	.329 .134	4.65 4.69	. 096	-300	.0 .0 .0
Al .	2.77	. 111	4.06	.130	4.69	.092	. 119	.0"11.2
Glass	2.52	. 105	4.16	. 122	4.84	.o89	. 113	. 0 " 11.3
S . . .	1.79	. 078	$4 \cdot 38$. 092	5.16	. 066	. 083	. $0^{\prime \prime} 11.6$
Paraffin .	. 86	. 042	4.64	. 043	5.02	.031	. 050	.0" II. 4

In determining the above values the rays were first passed through one cm . of lead.
Russell and Soddy, Philosophical Magazine, 28, p. 130, 19 ri.

RADIOACTIVITY．

$P=1 / 2$ period $=$ time when body is one half transformed．$\quad \lambda=$ transformation constant（see previous page）． The initial velocity of the a particle is deduced from the formula of Geiger $V^{3}=a R$ ，where $R=$ range and assuming the velocity for $R a C$ of range 7.06 cm ．at 20° is $2.06 \times 10^{\circ} \mathrm{cm}$ per sec．，i．e．，$v=1.077 R^{\frac{1}{3}}$ ．
Uranium－radium Group．

	Atomic weights．	$\mathrm{I}_{P}^{\mathrm{I} 2} \underset{P}{\text { period; }}$	Transforma－ tion constants．$\lambda=\frac{.6931}{P}$	Rays．	a rays．			
					Range． ${ }^{760}{ }^{\text {ma }}{ }^{\circ} \mathrm{C}$ ，	Initial velocity．	Kinetic energy．	Whole no． of ions produced．
					cm	cm per s	Ergs．	By an a particle．
Uranium ${ }_{\text {I }}$ ．．	238.2	$5 \times 10^{9} \mathrm{y}$ ．	1． $4 \times 10^{-10} \mathrm{y}$.	${ }_{\beta}^{+}{ }_{\beta}^{+}$	${ }^{2} .50$	${ }^{1.45 \times 109}$	$.^{6} \times{ }^{10-5}$	$1.26 \times 1{ }^{10}$
Uranium $\mathbf{X}_{1} \ldots$	234.2	24.6 d．	$\begin{array}{r} .0282 \mathrm{~d} \\ .0 \mathrm{sec} . \end{array}$					
Uranium $\mathbf{X}_{2} \ldots$	234.2 234.2	1.15 m. 106 yr.			－	－$\times 10$	倍 0^{-5}	－
Uranium Y．．．	230．2？	1.5 d ．	.46 d ．	$\underset{\beta}{a}$	2.90	${ }^{1.53 \times 10}$	$.72^{2} \times 10^{-5}$	1.37×10^{5}
Ionium．．	230.2	$10^{5} \mathrm{yr}$ ．	$7.0 \times 10^{6} \mathrm{y}$ ．	a	3.11	1.56×10^{9}	$.75 \times 10^{-5}$	1.40×10^{5}
Radium．．．．．．．	226	1730 y ．	． 00040 y ．	$\alpha+\beta$	3.30	r．61＂	． $79 \times$	r． 50 I .74 ra
Ra Emanation． Radium A．．．．	${ }^{222}$	3.85 d ．	.180 d		4.16	I .73 r .82	． 92 ＂	
Radium B．．	214	26．8 2.0	． 23258 m ．	$\stackrel{+}{a}+\gamma$	4.75		1．01	1．88－＂
Radium C_{1} ．	214	19.5 m ．	． 0355 m ．	$\alpha+\beta$	－	二	二．	二
$\mathrm{Ra} \mathrm{C}_{2} \ldots \ldots$	210？	${ }_{10}^{1.4} \mathrm{~m}^{-6} \mathrm{~s}$ ．	.495 m ．	$\underset{\boldsymbol{\beta}}{\boldsymbol{\beta}}$	6－1	－		
Ra D，radio－${ }^{\text {Radin }}$		$10^{-6} \mathrm{~s}$ ． ？	700000 s.	a	6.94	$\left\|\begin{array}{c} 2.06 \times 10^{9} \\ - \\ 1.68 \times 10^{9} \end{array}\right\|$	1.35×10^{-5}	2.37×10^{5}
lead．．．．．．	210	15.8 y ．		$\begin{aligned} & \text { slow } \beta \\ & \beta+\gamma \\ & \underset{a}{\beta} \end{aligned}$	$\overline{\bar{Z}_{3}}$			
Ra E．．．．．．．．．	210 210	${ }^{4} .85 \mathrm{~d}$ ．	$143 \mathrm{~d} \text {. }$				${ }_{87} \overline{\times}{ }^{-5}$	${ }_{1}{ }^{1}$
Ra F．Polonium	210	136 d ．	． 00510 d ．				． 87×10^{-5}	1.63×10^{5}

Actinium Group．

Actinium．	A，230？	？	－	a？	3.56	1.64×10^{9}	． 82×10^{-5}	1.55×10^{5}
Radio－Act	A	19.5 d ．	． 0355 d．	$\alpha+\beta$	4.2	1．7 7 ¢ ${ }^{\text {c }}$	． 9×1	1.8 ＂
Actinium X	$A-4$	10.2 d ．	． 068 d．	α	4.26	1．76＂	． 94 ＂	1.79
Act．Emanation	$A-8$	3.9 s．	.178 s．	a	5.57	r．91＂	r． 12 ＂	2.04
Actinium A．．．．	$A-12$.002 s ．	． 350 s ．	a	6.27	I． 98	I .2 I	2.20
Actinium B．	$A-16$	36 m ．	． 0193 m ．	slow β	．			
Actinium C_{1}	$A-16$	2.1 m ．	$.33 \mathrm{~m}$		5.15	1． 85×10^{9}	1.05×10^{-5}	1.94×10^{5}
Actinium D Actinium $\mathrm{C}^{\prime} \ldots$	$A-20$ $A-20$	4.7 m ．	${ }^{1} 47$	$\beta+\gamma$	$\underline{6.45}$	$\left[\begin{array}{ll} 1.03 \text { - } & \\ 2.00 & " \end{array}\right]$	1．23－＂	1.94×1

Thorium Group．

See The Constants of Radioactivity，Wendt，Phys．Rev．7，p．389， 1916.
$\boldsymbol{\mu}=$ coefficient of absorption for $\boldsymbol{\beta}$ rays in terms of cms．of aluminum；μ_{1} ，of the γ rays in cms of Al ，so that if J_{0} is the incident intensity，J that after passage through $d \mathrm{cms}, J=J_{o e^{-} d \mu}$ ．

Uranium－radium Group．				
	β rays．		γ rays．	Remarks．
	Absorption coefficient $=\mu$	Velocity light $=1$	Absorption coefficient $=\mu_{1}$	
Ur $1 . .$.	－－	－	－	I gram U emits $2.37 \times 10^{4} \mathrm{a}$ particles per
Ur X_{1} ．．	510	Wide range	24，70，． 140	sec． β rays show no groups of definite veloci－
Ur $\mathrm{X}_{2} \ldots \ldots$.	14.4	－	－	ties．Chemically allied to Th．
Ur $2 \ldots \ldots \ldots$	－	－	－	Not separable from Ur I ．
Ur Y	300	－	－	Probably branch product．Exists in small quantity．
Io．	－	－	－	Chemical properties of and non－separable from Thorim
Ra．．．．．．．．．	200	．52，．65	354，16，． 27	from Thorium． Chemical properties of Ba ．I gr emits
			354，16，． 27	per sec．in equilib． $13.6 \times 10^{10} a$ par－ ticles．
Ra Em．．．．．	－	－	－	Inert gas，density 111 H ，boils $-65^{\circ} \mathrm{C}$ ， density solid $5-6$ ，condenses low pres－
Ra A．．．．．．．	－	－	－	Like solid，has ${ }^{\text {s }}$ ，${ }^{\circ}{ }^{\circ} \mathrm{C}$（ charge，volatile in H,
				400° ，in O about 550° ．
Ra B．．．．．．．	13，80， 890	． 36 to ． 74	230，40， 51	Volatile about $400^{\circ} \mathrm{C}$ in H．Separated
$\mathrm{Ra} \mathrm{C}_{1} \ldots \ldots .$. $\mathrm{Ra} \mathrm{C}_{2} \ldots \ldots$.	13， 53	． 80 to .98	． 115	Volatile in H about 430° ，in O about 1000° ．
				Probably branch product．Separated by recoil from RaC ．
Ra D	130		45，．99	Separated with Pb ，not yet separable from it．Volatile below 1000° ．
	43	Wide range	Like Ra D	Separated with Bi Probably changes to
				Separated with Bi．Probably changes to Pb ．Volat ile about 1000° ．
Actinium Group．				
Act．．．．．．．．．．				Probably branch product Ur series． Chemically allied to Lanthanum．
Rad．Act．．．．	170	二	25，－ 190	Chemical properties analogous to Ra ．
Act Em．．．．	－	二	二	Inert gas，condenses between -120° and -150° ．
Act A．．．．．．	－	－	－	Analogous to Ra A．Volatile above 400° ．
Act $\mathrm{B} \ldots . .$. Act $\mathrm{C}_{1} \ldots \ldots$.	Very soft	二	120，31，． 45	＂＂＂Ra B．＂＂ 700° ．
Act D．．．．．．	28.5	－	． 198	（Obtained by recoil．）
Thorium Grour．				
Th．．．．．．．．．．	－	－	－	
Mes．Th．I．．	－	． 37 to ． 66	－	spontaneously phosphorescent． Chemical properties analogous to Ra from which non－separable．
Mes．Th．2．． Rad．Th．	20 to 38.5	－	26，．116	Chemically allied to Th ，non－separable
Rad．Th．．．．．		－		Chemically allied to Th，non－separable from it．
Th．X．．．．．． Th．Em．	About 330	${ }^{.47}$＿． 51	－	
Th．Em．．．．．	－	－	－	Inert gas，condenses at low pressure be－ tween -120° and -150° ．
Th．A．．．．．．．	10	63－72	560， 32,36	＋charged，collected on－electrode．
Th．B．．．．．．	110	.63 ． 72	160，32，． 36	Chemically analogous to Ra B．Volatile above $630^{\circ} \mathrm{C}$ ．
Th．CI，．．．．	15.6	－	Weak	Chemically analogous to Ra C ．Volatile above 730° ．
Th．C＇．．．．．．	－	－	－	$\mathrm{Th} . \mathrm{C}^{1}$ and $\mathrm{Th} . \mathrm{D}$ are probably respectively $\boldsymbol{\beta}$ and a ray products from $\mathrm{Th} . \mathrm{C}_{3}$ ．
Th．D．．．．．．	24.8	．3，．4，．93－5	． 096	Got by recoil from Th．C．Probably transforms to Bi ．
$\underset{\mathrm{Rb} ~}{\text { K．}}$	$\begin{gathered} 38,102 \\ 380,1020 \end{gathered}$	二	－	$\begin{aligned} \text { Activity } & =1 / 1000 \text { of Ur. } \\ & =1 / 500 \text { of Ur. } \end{aligned}$

Smithsonian Tables．

TABLE 507. - Total Number of Ions produced by the α, β, and γ Rays.

The total number of ions per second due to the complete absorption in air of the β rays due to 1 gram of radium is 9×10^{14}, to the γ rays, 13×10^{14}.

The total number of ions due to the α rays from 1 gram of radium in equilibrium is 2.56×10^{16}. If it be assumed that the ionization is proportional to the energy of the radiation, then the total energy emitted by radium in equilibrium is divided as follows: 92.I parts to the $\alpha, 3.2$ to the $\beta, 47$ to the γ rays. (Rutherford, Moseley, Robinson.)

TABLE 508.-Amount of Radium Emanation. Curie.

At the Radiology Congress in Brussels in 1910, it was decided to call the amount of emanation in equilibrium with I gram of pure radium one Curie. [More convenient units are the millicurie (10^{-3} Curie) and the microcurie (10^{-6} Curie)]. The rate of production of this emanation is 1.24×10^{-9} $\mathrm{cu} . \mathrm{cm}$. per second. The volume in equilibrium is $0.59 \mathrm{cu} . \mathrm{mm} .\left(760 \mathrm{~cm} ., \mathrm{O}^{0} \mathrm{C}\right.$.) assuming the emanation mon-atomic.

The Mache unit is the quantity of Radium emanation without disintegration products which produces a saturation current of 10^{-3} unit in a chamber of large dimensions. I curie $=2.5 \times 10^{9}$ Mache units.

The amount of the radium emanation in the air varies from place to place; the amount per cubic centimeter of air expressed in terms of the number of grams of radium with which it would be in equilibrium varies from 24×10^{-12} to 350×10^{-12}.

Table 509. - Vapor Pressure of the Radium Emanation in cms. of Mercury.
 (Rutherford and Ramsay, Phil. Mag. 17, p. 723, 1909, Gray and Ramsay, Trans.
 Chem. Soc. 95, p. 1073, 1909.)

TABLE 510. - References to Spectra of Radioactive Substances.

Radium spectrum :
Radium emanation spectrum :
Polonium spectrum :
Demarçay, C. R. I3I, p. 258, i900.
Rutherford and Royds, Phil. Mag. 16, p. 3 13, 1908 ; Watson, Proc. Roy. Soc. A 83, p. 50, 1909.
Curie and Debierne, Rad. 7, p. 38, 1910, C. R. 150, p. 386, 191а

Smithsonian Tables.

The probability of a molecular velocity x is $(4 / \sqrt{\pi}) x^{2} e^{-x^{2}}$, the most probable velocity being taken as unity. The number of molecules at any instant of speed greater than c is $2 N(h m / \pi)^{\frac{1}{2}}\left\{\int_{c} e^{-h m e z} d c+c e^{-h m c 2}\right\}$ (see table), where N is the total number of molecules. The mean velocity G (sq. rt. of mean sq.) is proportional to the mean kinetic energy and the pressure which the molecules exert on the walls of the vessel and is equal to $15,800 \sqrt{T / m} \mathrm{~cm} / \mathrm{sec}$, where T is the absolute temperature and m the molecular weight. The most probable velocity is denoted by W, the average arithmetical velocity by Ω.

$$
G=W \sqrt{3 / 2}=1.225 W ; \quad \Omega=W \sqrt{4 / \pi}=1.128 W ; \quad G=\Omega \sqrt{3 \pi / 8}=1.086 \Omega .
$$

The number of molecules striking unit area of inclosing wall is ($1 / 4$) $N \Omega$ (Meyer's equation), where N is the number of molecules per unit volume; the mass of gas striking is (I/4) Ω where ρ is the density of the gas. For air at normal pressure and room temperature $\left(20^{\circ} \mathrm{C}\right)$ this is about $14 \mathrm{~g} / \mathrm{cm}^{2} / \mathrm{sec}$. See Langmuir, Phys. Rev, 2, 1913 (vapor pressure of W) and J. Amer. Ch. Soc. 37, 1915 (Chemical Reactions at Low Pressures), for fertile applications of these latter equations. The following table is based on Kinetic Theory of Gases, Dushman, Gen. Elec. Kev. 18, 1915, and Jeans, Dynamical Theory of Gases, 1916.

Gas.	$\begin{aligned} & \text { Molec- } \\ & \text { ular } \\ & \text { weight. } \end{aligned}$	Sq. rt. mean sq. $G \times 10^{-2} \mathrm{~cm} / \mathrm{sec}$.			Arithmetical average velocity, $\Omega \times 10^{-2} \mathrm{~cm} / \mathrm{sec}$.							
		$273{ }^{\circ}$	$293{ }^{\circ}$	373°	$223{ }^{\circ}$	$273{ }^{\circ}$	$293{ }^{\circ}$	373°	1000°	1500°	2000°	6000°
Air...	28.96	485	502	567	404	447	463	522	855	1047	1209	209.4
Ammonia.	17.02	633	655	740	527	583	604	681	1115	1367	1577	2734
Argon.	39.88	413	428	483	$3+4$	381	395	445	729	892	1030	1784
Carbon monoxide. .	28.00	493	511	576	410	454	471	531	870	1065	1230	2130
Carbon dioxide. . .	44.00	393	408	459	327	362	376	434	694	850	981	1700
Helium.	4.00	1311	1358	1533	1092	1208	1252	1412	2300	2840	3270	5680
Hydrogen.	2.01	1838	1904	2149	1534	1696	1755	1980	3241	3970	4583	79.40
Krypton.	82.92	286	296	335	238	263	272	308	502	618	712	1236
Mercury.	200.6	184	191	215	154	170	176	199	325	398	459	796
Molybdenum. . . .	96.0	-	-	-	-	-		19	469	575	664	1150
Neon. .	20.2	584	605	683	486	538	557	629	1030	1260	1460	2520
Nitrogen.	28.02	493	511	577	410	454	471	531	869	1064	1229	2128
Oxygen..	32.00	461	478	539	384	425	4.40	497	813	996	1150	1992
Tungsten.	184.0	-	-	-	-	-	-	-	339	416	480	832
Water vapor.	18.02	615	637	720	512	566	587	662	1084	1317	1533	2634
Xenon...	130.2	228	236	267	190	210	218	2.46	400	493	570	986

Free electron, malecular weight $=1 / 1835$ when $H=1 ; G=1.114 \times 10^{7}$ at $\circ^{\circ} \mathrm{C}$ and $\Omega=1.026 \times 10^{7}$ at $0^{\circ} \mathrm{C}$.

TABLE 512. - Molecular Free Paths, Collision Frequencies and Diameters.

The following table gives the average free path L derived from Boltzmann's formula $\mu(.3502 \rho \Omega), \mu$ being the viscosity, ρ the density, and from Meyer's formula $\mu(.3097 \rho \Omega$). Experimental values (Verh. d. Phys. Ges. I4, 596, r912; 15, 373, 1913) agree better with Meyer's values, although many prefer Boltzmann's formula. As the pressure decreases, the free path increases, at one bar (ordinary incandescent lamp) becoming 5 to 10 cm . The diameters may be determined from L by Sutherland's equation $\{\mathrm{r} .402 / \sqrt{2} \pi N L(\mathrm{r}+C / T)\}^{\frac{1}{2}}, N$ being the number of molecules per unit vol. and C Sutherland's constant; from van der Waal's $b,\{3 b / 2 V V \pi\}$; from the heat conductivity k, the specific heat at constant volume $c v,\{.146 \rho G c v / N k\} \frac{1}{2}$ (Laby and Kaye); a superior limit from the maximum density in solid and liquid states (Jeans, Sutherland, ig16) and an inferior limit from the dielectric constant $\left.D,\left\{(D-1)_{2} / \pi, V\right\}\right\}$, or the index of refraction $n,\left\{\left(n^{2}-1\right)_{2} / \pi N\right\}^{\frac{1}{3}}$. The table is derived principally from Dushman, l.c.

Gas.	$L \times 10^{6}(\mathrm{~cm})$ Average free path.*			Collision frequency.$\begin{gathered} \Omega / L \\ \times 10^{-6} \end{gathered}$$20^{\circ} \mathrm{C} *$	$10^{9} \times$ Molecular diameters (cm):				
				```From L (vis- cosity) \mu```	From van der Waal's b	From heat conductivity $k$	Limiting		
	Boltzmann.		Meyer.$20^{\circ} \mathrm{C}$						
	$0^{\circ} \mathrm{C}$	$20^{\circ} \mathrm{C}$					density   $\rho$	Min.   $D$ or $n$	
Ammonia.	5.92	6.60	5.83	9150	2.97	3.08	-	-	- 6
Argon. . . . . . . . .	8.98	9.88	8.73	4000	2.88	2.94	2.86	2.87	2.66
Carbon monoxide.	8.46	9.23	8.16	5100	3. 19	3.12	-	3. 27	2.74 2.90
" dioxide...	5.56	6.15	5.44	6120	3.34	3.23	3.40	3.35	2.90
Helium.	25.25	27.45	33.10	4540	1. 90	2.65	2.30	1.98	1.92
Hydrogen........	16.00	17.44	15.40	10060	2.40	2.34 $(3.60)$	2.32 3.14	2.40 3.35	
Krypton. . . . . . . .	9.5	(14.70)		-	-	(3.60)	3.14	3.35	(2.70)
Mercury. . . . . . . .	-	(14.70)	(13.0)	-	- 15	3.01	-	-	-
Nitrogen.... . . . .	8.50	9.29	8.21	5070	3.15	3.15	3.53	3.23	2.95
Oxygen . . . . . . . . .	9.05	9.93	8.78	4430	2.98	2.92 4.02	3.42	2.99 3.55	2.71 (3.18)
Xenon.... . . . . . .	5.6	-	-	-	-	4.02	3.42	3.55	(3.18)

[^55]Smithsonian Tables.

TABLE 513. - Cross Sections and Lengths of Some Organic Molecules.
According to Langmuir (J. Am. Ch. Soc. 38, 2221, r916) in solids and liquids every atom is chemically combined to adjacent atoms. In most inorganic substances the identity oi the molecule is generally lost, but in organic compounds a more permanent existence of the molecule probably occurs. When oil spreads over water evidence points to a layer a molecule thick and that the molecules are not spheres. Were they spheres and an attraction existed between them and the water, they would be dissolved instead of spreading over the surface. The presence of the - COOH , - CO or - OH groups generally renders an organic substance soluble in water, whereas the hydrocarbon chain decreases the solubility. When an oil is placed on water the -COOH groups are attracted to the water and the hydrocarbon chains repelled but attracted to each other. The process leads the oil over the surface antil all the -COOH groups are in contact if possible. Pure hydrocarbon oils will not spread over water. Benzene will not mix with water. When a limited amount of oil is present the spreading ceases when all the water-attracted groups are in contact with water. If weight $w$ of oil spreads over water surface $A$, the area covered by each molecule is $A M / w N$ where $M$ is the molecular weight of the oil $(O=16), N$, Avogadro's constant. The vertical length of a molecule $l=M / a \rho N=W / \rho A$ where $\rho$ is the oil density and $a$ the horizontal area of the molecule.

Substance.	$\begin{gathered} \text { Cross } \\ \text { section } \\ \text { in } \\ \mathrm{cm}^{2} \\ \times \mathrm{IO}^{16} \end{gathered}$	$\begin{aligned} & l \text { in } \mathrm{cm} \\ & \left(\begin{array}{l} \text { (length) } \\ \times 10^{8} \end{array}\right. \end{aligned}$	Substance.	$\begin{gathered} \text { Cross } \\ \text { section } \\ \text { in } \\ \mathrm{cm}^{2} \\ \times \mathrm{Io}^{16} \end{gathered}$	$\begin{gathered} l \text { in } \mathrm{cm} \\ \left(\begin{array}{c} \text { (length) } \\ \times 10^{8} \end{array}\right. \end{gathered}$
Palmitic acid $\mathrm{C}_{15} \mathrm{H}_{31} \mathrm{COOH}$	24	19.6	Cetyl alcohol $\mathrm{C}_{16} \mathrm{H}_{33} \mathrm{OH}$	21	21.9
Stearic acid $\mathrm{C}_{17} \mathrm{H}_{35} \mathrm{COOH}$.	24	21.8	Myricyl alcohol $\mathrm{C}_{30} \mathrm{H}_{61} \mathrm{OH}$	29	35.2
Cerotic acid $\mathrm{C}_{25} \mathrm{H}_{51} \mathrm{COOH}$	25	29.8	Cetyl palmitate $\mathrm{C}_{15} \mathrm{H}_{31} \mathrm{COOCO} \mathrm{C}_{6} \mathrm{H}_{33}$.	${ }_{6}^{21}$	44.0
Oleic acid ${ }_{\text {c }}{ }_{17} \mathrm{H}_{33} \mathrm{COOH}$. ${ }^{\text {a }}$	48	10.8 10.7	Tristearin $\left(\mathrm{C}_{18} \mathrm{H}_{35} \mathrm{O}_{2}\right)_{3} \mathrm{C}_{3} \mathrm{C}_{5} \mathrm{H}_{5} \ldots \ldots \ldots$.	69 137	23.7 11.9
Linolenic acid $\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{COOH}$	66	7.6	Triolein ( $\left.\mathrm{C}_{18} \mathrm{H}_{33} \mathrm{O}_{2}\right)_{3} \mathrm{C}_{3} \mathrm{H}_{5}$.	145	11.9
Ricinoleic acid $\mathrm{C}_{17} \mathrm{H}_{32}(\mathrm{OH}) \mathrm{COOH}$	90	5.8	Castor oil $\left(\mathrm{C}_{17} \mathrm{H}_{32}(\mathrm{OH}) \mathrm{COO}\right)_{3} \mathrm{C}_{3} \mathrm{H}_{5}$. Linseed oil $\left(\mathrm{C}_{17} \mathrm{H}_{31} \mathrm{COO}\right){ }_{3} \mathrm{C}_{3} \mathrm{H}_{5}$.	280	5.7 11.0

## TABLE 514. - Size of Diffracting Units in Crystals. T

The use of crystals for the analysis of X-rays leads to estimates of the relative sizes of molecular magnitudes. The diffraction phenomenon is here not a surface one, as with gratings, but one of interference of radiations reflected from the regularly spaced atomic units in the crystals, the units fitting into the lattice framework of the crystal. In cubical crystals $\{100\}$ this framework is built of three mutually perpendicular equidistant planes whose distance apart in crystallographic parlance is $d_{100}$. This method of analysis from the nature of the diffraction pattern leads also to a knowledge of the structure of the various atoms of the crystal. See Bragg and Bragg, X-rays and Crystal Structure, 1918.

Crystal.	Elementary diffracting element.	Side of cube.	Molecules or atoms in unit cube.
KCl	Face-centered cube *	$\stackrel{\text { cm }}{6.30} \times 10^{-8}$	molecules
NaCl		$5.56 \times 10^{-8}$	
ZnS ,	" ${ }^{\text {" }}$ "	$5.46 \times 10^{-8}$	"
$\mathrm{CaF}_{2}$	" "، $\ddagger$	$5.40 \times 10^{-8}$	"
Fe	Body-centered cube	$2.86 \times 10^{-8}$	2 atoms
${ }_{\mathrm{N}}^{\mathrm{N}}$	Face-centered cube	$4.05 \times 10^{-8}$	4 "،
	Body-centered cuse	$\stackrel{4.30}{ } \times 1{ }^{\text {a }}$	2 ،
	Face-centered cube	$3.52 \times 10^{-8}$	4

* Each atom is so nearly equal in diffracting power (atomic weight) in KCl that the apparent unit diffracting element is a cube (simple) of $\frac{x}{8}$ this size. Elementary body-centered cube, - atom at each corner, one in center; e.g., $\mathrm{Fe}, \mathrm{Ni}$ (in part), Na, Li? Elementary face-centered cube, - atom at each corner, one in center of each face; e.g., Cu, Ag, Au, $\mathrm{Pb}, \mathrm{Al}, \mathrm{Ni}$ (in part), etc. Simple cubic lattice, - atom in each corner. Double face-centered cubic or diamond lattice -C (diamond); $\mathrm{Si}, \mathrm{Sb}, \mathrm{Bi}, \mathrm{As}$ ?, Te ?
$\dagger$ Diamond lattice. $\ddagger$ Cubic-holohedral. § Cubic-pyritohedral.
Metals taken from Hull, Phys. Rev. 10, p. 661, 1917
T See Table 528 for best values of calcite and rock-salt grating spaces.
Note: - (Hull, Science 52, 227, 1920). Ca, face-centered cube, side 5.56 A , each atom 12 neighbors 3.93 A distant. Ti, centered cube, cf. Fe, side $3.14 \mathrm{~A}, 8$ neighbors 2.72 A . $\mathrm{Zn}, 6$ nearest neighbors in own plane. $2.67 \mathrm{~A}, 3$ above, 3 below, 2.92 A . Cd, cf. $\mathrm{Zn}, 2.98 \mathrm{~A}, 3.30 \mathrm{~A}$. In, face-centered tetragonal, 4 nearest $3.24 \mathrm{~A}, 4$ above, 4 below, 3.33 A . $\mathrm{Ru}, \mathrm{cf} . \mathrm{Zn}, 2.69 \mathrm{~A}, 2.64 \mathrm{~A}$. Pd , face-centered cube, side $3.92 \mathrm{~A}, 12$ neighbors. 2.77 A . Ta, centered cube, side $3.27 \mathrm{~A}, 8$ neighbors 2.83 A . Ir, face-centered cube, side $3.80 \mathrm{~A}, 12$ neighbors, $2.69 \mathrm{~A}\left(\mathrm{~A}=10^{-8} \mathrm{~cm}\right)$.

Note :- (Bragg, Phil. Mag. 40, 169, 1920). Crystals empirically considered as tangent spheres of diameter in table, atom at center of sphere. When lattice known allows estimation of dimensions of crystal unit. Table foot of next page (atomic numbers, elements, diameter in Angstroms, $10^{-8} \mathrm{~cm}$ ).

ELECTRONS. RUTHERFORD ATOM. BOHR ATOM. MAGNETIC FIELD OF ATOM.
References: Millikan, The Electron, 1917; Science, 45, 421, 1917; Humphreys, Science, 46, 273, 1917; Lodge Nature, 10,15 and 82. 1919; Thomson, Conduction of Electricity through Gases; Campbell, Modern Electrical Theory; Lorentz, The Theory of Electrons; Richardson, The Electron Theory of Matter, 1914.

## Electron: an elementary + or - unit of electricity.

Free negative electron: (corpuscle, J. J. Thomson); mass $=9.01 \times 10^{-28} \mathrm{~g}=1 / 1845 \mathrm{H}$ atom, probably all of electrical origin due to inertia of self-induction.

Theory shows that when speed of electron $=1 / r o$ velocity of light its mass should be appreciably dependent upon that speed. If $m_{0}$ be mass for small velocity $v, m$ be the transverse mass for $v, v /($ velocity of light $)=\beta$, then $m=$ $m_{0}\left(\mathrm{I}-\beta^{2}\right)^{\frac{1}{4}}$, Lorentz, Einstein;

for $\beta=0.01$	0.10	0.2	0.3	0.4	0.5	0.6	0.7	0.8
$m / m_{0}=1.00005$	1.005	1.02	1.048	1.091	1.155	1.250	1.400	1.667

(Confirmed by Bucherer, Ann. d. Phys. 1009, Wolz, Ann. d. Phys. Radium ejects electrons with $3 /$ ro to $98 /$ roo velocity of light.) $m$, due to charge $=2 E^{2} / 3 a, E=$ charge, $a=$ radius, whence radius of electron $=2 \times 10^{-13} \mathrm{~cm}=1 / 50,000$ atomic radius. Cf. (radius of earth)/(radius of Neptune's orbit) $=1 / 360,000$.

Positive electron: heavy, extraordinarily small, never found associated with mass less than that of H atom. If mass all electrical (?) radius must be $1 / 2000$ that of the - electron. No experimental evidence as with - electron, since bigh enough speeds not available. Penetrability of atom by $\beta$ particle (may penetrate 10,000 atomic systems before it happens to detach an electron) and $a$ particles ( 8000 times more massive than - electron, pass through 500,000 atoms without apparent deflection by nucleus more than 2 or 3 times) shows extreme minuteness. Upper limit: not larger than $10^{-12} \mathrm{~cm}$ for Au (heavy atom) or $10^{-13}, \mathrm{H}$ (light atom) (Rutherford). Cf. (radius sun)/(radius Neptune's orbit) $=1 / 3000$, but sun is larger than planets. (Hg atoms by billions may pass through thin-walled highly-evacuated glass tubes without impairing vacuum, therefore massive parts of atoms must be extremely small compared to volume of atom.)

Rutherford atom: number of free + charges on atomic nuclei of different elements $=$ approximately $\frac{1}{2}$ atomic weight (Rutherford, Phil. Mag. 21, 1911, deflection of a particles); Barkla concluded free - electrons outside nucleus same in number (Phil. Mag. 2 1, 1911, X-ray scattering). If mass is electromagnetic, then lack of exact equivalence may be due to overlapping fields in heavy crowded atoms, a sort of packing effect; the charge on $U=92$, at. wt. $=238.5$. Moseley (Phil. Mag. 26, 1912; 27, 1914) photographed and analyzed X-ray spectra, showing their exact similarity in structure from element to element, differing only in frequencies, the square roots of these frequencies forming an arithmetical progression from element to element. Moseley's series of increasing $\mathbf{X}$-ray frequencies is with one or two exceptions that of increasing atomic weights. and these exceptions are less anomalous for the $\bar{X}$-ray series than for the atomic-weight series. It seems plausible then that there are 92 elements (from H to U ) built up by the addition of some electrical element. Moseley assigned successive integers to this series (see Table 531) known now as atomic numbers.

Moseley's discovery may be expressed in the form

$$
\frac{n_{1}}{n_{2}}=\frac{E_{1}}{E_{2}} \text { or } \frac{\lambda_{2}}{\lambda_{1}}=\frac{E_{1}{ }^{2}}{E_{2}{ }^{2}}
$$

where $E$ is the nuclear charge and $\wedge$ the wave-length. Substituting for the highest frequency line of $W, \Lambda_{2}=0.167$ $\times 10^{-8} \mathrm{~cm}$ (Hull), $E_{2}=74=N_{w}$, and $E_{1}=1$, then $\lambda_{1}=$ highest possible frequency by element which has one + electron; $\lambda_{1}=91.4 m \mu$. Now the H ultra-violet series highest frequency line $=91.2 m \mu$ (Lyman); i.e.. this ultraviolet line of H is nothing but its $K \mathbf{X}$-ray line. Similarly, it seems equally certain that the ordinary Balmer series of $\mathbf{H}$ (head at $365 m \mu$ ) is its $L$ X-ray series and Paschen's infra-red series its $M \mathbf{X}$-ray series.

There may be other - electrons on the nucleus (with corresponding + charges) since they seem to be shot out by radioactive processes. They may serve to hold the + charges together. He, atomic no. $=2$, has 2 free + charges, at. wt. $=4$; may imagine nucleus has $4+$ electrons held together by $2-$ electrons, with $2-$ electrons outside nucleus. H has one + and one - electron.

The application of Newton's law to Moseley's law leads to $E_{1} / E_{2}=a_{2} / a_{1}$, where the $a$ 's are the radii of the inmost - electronic orbits, i.e., the radii of these orbits are inversely proportional to the central charges or atomic numbers.
(Note: When an $a$ particle ( + charge $=2 e$ ) is emitted by a radioactive element, its atomic number decreases by 2, the emission of a - charged particle increases its atomic number by r.)

Bohr atom: (Phil. Mag. 26, $1,476,857,1913 ; 29,332,1915 ; 30,394,1915$ ). The experimental facts and the law of circular electronic orbits limit the electrons to orbits of particular radii. When an electron is disturbed from its orbit, e.g., struck out by a cathode ray, or returns from space to a particular orbit, energy must be radiated. It is suggestive that the emission of a $\beta$ ray requires a series of $\gamma$ ray radiations. $H$ does not radiate unless ionized and then gives out a spectrum represented by Balmer's formula $\nu=N\left(1 / n_{1}{ }^{2}-1 / n^{2}\right)$ where $\nu$ is the frequency, $N$, a constant, and $n_{1}$ for all the lines in the visible spectrum has the value $2, n$, the successive integers, $3,4.5 \ldots$; if $n_{1}=1$ and $n$, $2,3,4, \ldots$.., Lyman's ultra-violet series results; if $n_{1}=3, n, 4,5,6, \ldots$, Paschen's infra-red series. These considerations led Bohr to his atom and he assumed: (a) a series of circular non-radiating orbits governed as above; (b) radiation taking place only when an electron jumps from one to another of these orbits, the amount radiated and its frequency

## Smithsonian Tables.

(This Table supplements Table 514).

3 Li	3.00	13 Al	2.70	25	Mn	$2.95 \dagger$			$2.35 *$		Xe	2.70 *
4 Gl	2.30	14 Si	2.35	26	Fe	2.80	37	Rb	4.50		Cs	4.75
6 C	1.54	16 S	2.05	27	Co	2.75	38	Sr	$3 \cdot 90$			4.20
7 N	1.30	17 Cl	2.10	28	Ni	2.70	47	A5	3.55			4.50
8 O	1.30	18 A	2.05*	29	Cu	2.75	$4^{8}$	Cd	3.20			3.50
9 F	1.35	19 K	4.15	30	Zn	2.65	50	Sn	2.80	83	Bi	2.96
10 Ne	1.30*	- 20 Ca	3.40	33	As	2.52	51		2.80			
11 Na	3.55	22 Ti	2.80	34		2.35	52		2.65			
12 Mg	2.85	24 Cr	$2.80 \dagger$	35	Br	2.38	53	I	2.80			

Broughall (Phil. Mag. 4r, p. 872, 1921) computes in the same units from Van der Waal's constant "b," the diameters of $\mathrm{He}, \mathrm{N}, \mathrm{A}, \mathrm{Kr}$, and $\mathbf{X}$ as 2.3, 2.6, 2.9, 3.1, and 3.4. These inert elements correspond to Langmuir's completely filled successive electron shells. The corresponding atomic numbers are 2, 10, 18, 36 and 54 . For Langmuir's theory see J. Am. Ch. Soc., p. 868, 1919, Science 54, p. 59, 192 I.

## BOHR ATOM. MAGNETIC FIELD OF ATOM.

being determined by $h \nu=A_{1}-A_{2}, h$ being Planck's constant and $A_{1}$ and $A_{2}$ the energies in the two orbits; (c) the various possible circular orbits, for the case of a single electron rotating around a single positive nucleus, to be determined by $T=(\mathrm{I} / 2) \tau h n$, in which $T$ is a whole number, $n$ is the orbital frequency, and $T$ is the kinetic energy of rotation.

The remarkable test of this theory is not its agreement with the $H$ series, which it was constructed to fit, but in the value found for $N$. From (a), (b), and (c) it follows that $N=\left(2 \pi^{2} e^{2} E^{2} m\right) / h^{3}=3.294 \times 10^{15}$, within $1 / 10$ per cent of the observed value (Science, 45, p. 327 ).

The radii of the stable orbits $=\tau^{2} h^{2} / 4 \pi^{2} m e^{4}$, or the radii bear the ratios $1,4,9,16,25$. If normal H be assumed to be with its electron in the inmost orbit, then $2 a=1.1 \times 10^{-8}$; best determination gives $2.2 \times 10^{-8}$. The fact that $H$ emits its characteristic radiations only when ionized favors the theory that the emission process is a settling down to normal condition through a series of possible intermediate states, i.e., a change of orbit is necessary for radiation. That in the stars there are 33 lines in the Balmer series, while in the laboratory we never get more than 12, is easily explicable from the Bohr theory.

Bohr's theory leads to the relationship $\nu_{K_{\beta}}-\nu_{K_{a}}=\nu_{L_{\alpha}}$ (see X-ray tables), Rydberg-Schuster law.
For further development, see Sommerfeld, Ann. d. Phys. 51, 1, 1916, Paschen, Ann. d. Phys., October, 1916; Harkins, Recent work on the structure of the atom, J. Am. Ch. Soc. 37, p. 1396, 1915; 39, p. 856, 1916.

Magnetic field of atom: From the Zeeman effect due to the action of a magnetic field on the radiating electron the strength of the atomic magnetic field comes out about $10^{8}$ gauss, 2000 times the most intense field yet obtained by an electromagnet. A similar result is given by the rotation of a number of electrons, $A$ ro ${ }^{3}$, where $A$ is the atomic weight; for Fe this gives $10^{8}$ gauss. For other determinations, see Weiss (J. de Phys. 6, p. 661, 1907; 7, p. 249, 1908), Ritz (Ann. d. phys. 25, p. 660, 1908), Oxley (change of magnetic susceptibility on crystallization, Phil. Tr. Roy. Soc. 215, p. 95, 1915) and Merritt (fluorescence, 1915); Humphreys, "The Magnetic Field of an Atom," Science, 46, p. 276, 1917.

Smithsonian Tables.

Note: The phenomena of Electron Emission, Photo-electric Effect and Contact (Volta) Potential treated in the subsequent tables are extremely sensitive to surface conditions of the metal. The most consistent observations have been made in bigh vacua with freshly cut metal surfaces.

TABLE 516. Electron Emission from Hot Metals.
Among the free electrons within a metal some may have velocities great enough to escape the surface attraction. The number $n$ reaching the surface with velocities above this critical velocity $=N(R T / 2 \pi M)^{\frac{1}{2}}-\frac{W}{R T}$ where $N=$ number of electrons in each $\mathrm{cm}^{3}$ of metal, $R$ the gas constant ( $83.15 \times 10^{6}$ erg-dyne), $T$ the absolute temperature, $M$ the atomic weight of electron (.000546, $\mathrm{O}=16$ ), $w$ the work done when a "gram-molecule" of electrons ( $6.06 \times 10^{23}$ electrons or 96,500 coulombs) escape. It seems very probable that this work is done against the attraction of the electron's own induced image in the surface of the conductor. When a sufficiently high + field is applied to escaping electrons so that none return to the conductor, then the saturation current has been found to follow the equation

$$
i=a \sqrt{T e^{-}}-b / T
$$

assuming $N$ and $w$ constant with the temperature; this is equivalent to the equation for $n$ just given and is known as Richardson's equation. In the following table due to Langmuir (Tr. Am. Electroch. Soc. 29, 125, 1916) izooo = saturation current per $\mathrm{cm}^{2}$ for $T=2000 \mathrm{~K}^{\circ} ; \phi=w / F=R b / F=$ work done when electrons escape from metal in terms of equivalent potential difference in volts; $F=$ Faraday constant $=96,500$ coulombs.

Metal.	$\begin{gathered} a \\ \mathrm{amp} / \mathrm{cm}^{2} \end{gathered}$	$b$	$\begin{gathered} i_{2000} \\ \mathrm{amp} / \mathrm{cm}^{2} \end{gathered}$	$\begin{gathered} \phi \\ \text { (volts). } \end{gathered}$
Tungsten*.	$2.36 \times 10^{7}$	52500	0.0042	4.52
Thorium.	$2.0 \times 10^{8}$	39000	30.0	$3 \cdot 36$
Tantalum.	$1.12 \times 10^{7}$	50000	0.007	4.31
Molybdenum. . . . ,	$2.1 \times 10^{7}$	50000	. 013	4.31
Carbon (untreated)		48000	-	4.14
Titanium	1300?	28000?	.048?	2.4 ?
Iron.	2400 ?	37000?	. 0010 ?	3.2?
Platinum $\dagger$	$1.25 \times 10^{7}$	51060	. 0035	4.4
BaO-SrO, Pt-6 \% Ir core. ....	${ }_{1.6} \times 1{ }^{4}$	20000	3.25	$\mathbf{1 . 7}$

* Best determined value of table, pressure less than $10^{-7} \mathrm{~mm} \mathrm{Hg}$.
$\dagger$ Schlichter, $19 \times 5$.


## TABLE 517. Photo-electric Effect.

A negatively charged body loses its charge under the influence of ultra-violet light because of the escape of negative electrons freed by the absorption of the energy of the light. The light must have a wave-length shorter than some limiting value $\lambda_{0}$ characteristic of the metal. The emission of these electrons, unlike that from hot bodies, is independent of the temperature. The relation between the maximum velocity $v$ of the expelled electron and the frequency $\nu$ of the light is $(1 / 2) m \nu^{2}=h \nu-P$ (Einstein's equation) where $h$ is Planck's constant $\left(6.58 \times 10^{-27} \mathrm{erg}\right.$. sec.); $h \nu$ sometimes taken as the energy of a "quanta," $P$, the work which must be done by the electron in overcoming surface forces. $(\mathrm{I} / 2) m \nu^{2}$ is the maximum kinetic energy the electron may have after escape. Richardson identifies the $P$ of Einstein's formula with the $w$ of electron emission of the preceding table. The minimum frequency $\nu_{0}$ (corresponding to maximum wave-length $\lambda_{0}$ ) at which the photo-electric effect can be observed is determined by $h \nu=P . \quad P$ applies to a single electron, whereas $w$ applies to one coulomb ( $6.062 \times 10^{23}$ electrons); therefore $w=\hat{N} P=.00399 \nu_{0}$ ergs. $\phi=$ $\left(12.4 \times 10^{-5}\right) \boldsymbol{\lambda}_{0}$ volts. See Millikan, Pr. Nat. Acad. 2, 78, 1916; Phys. Rev. 7, 355, 1916; 4, 73, 1914; Hennings, Phys. Rev. 4, 228, I914.

## TABLE 518. Ionizing Potentials and Single-line Spectra.

When electrons are accelerated through gases or vapors, especially those with small electron affinity (inert gases, metallic vapors) at well-defined potentials a large transfer of energy takes place between the moving electrons and the gas atoms. There appear to be two types of inelastic encounters under such circumstances: the first accompanied by the emission of a radiation of a single line at a potential called the resonance potential and satisfying the relation $h \nu=e V$ where $V$ is the potential fall, $\nu$ the frequency and $h$ Planck's constant; the second ionizes the gas (ionization potential), exciting the radiation of a composite spectrum. The latter potential satisfies a relation $h \nu=e V$ except that $\nu$ is now the limiting frequency of a series of lines. The following table was communicated by Tate and Foote (see Phil. Mag. 36, 64, 1918).

Metal.	$\lambda$	Ionization potential.*		$\frac{h}{x}{ }^{10^{27}}$	$\lambda$	Resonance potential.*		$\frac{h}{x} \dagger_{102 i}$	Observers.
		Obs.	Comp.			Obs.	Comp.		
Na	$2412.63 \pm$	5.13	5.11	6.57	5889.97	2.12	2.09	6.63	Tate and Foote
F	$2856.65 \ddagger$	4.1	4.32	6.22	7664.94	I. 55	1.61	6.31	
Rb	$2968.40 \pm$	4.1	4.15	6.46	7800.29	I. 6	I. 58	6.62	Foote, Rognley, Mohler
Cs.	$3184.28 \ddagger$	3.9	3.87	6.59 6.67	8521.12	I. 48 2.65	1.45 2.70	6.69	Foote and Mohler
Mg .	1621.78	7.75	7.61	6.67 6.66	4571.38	2.65	2.70	6.43 6.70	Foote and Mohler
Zn .	1319.958	9.5	9.34	6.66	3075.99	4.1 88	4.01	6.70	Tate and Foote
$\mathrm{Cd}_{\mathrm{Hg}}$	1378.698	8.92 10.35	8.95 10.38	6.53 6.53	3260.17 2536.72	3.88 4.9	3.78 4.86	6.71 6.60	
Hg	1187.968	10.35	10.38	6.53	2536.729	4.9	4.86	6.60	Tate, Davis, Goucher, others
T1.	?	7.3	-	-	11513.22 II	1.07	1.07	6.54	Tate and Mohler
Ca.	2027.56§	6.04	6.08	-	6717.69 d 4226.73 **	1.93 3.0	1.84	-	Mohler and Foote
As.	-	II. 5	-	-	${ }^{4226.73}$	3.9 4.7	2.92	-	Foote, Rognley, Mohler
Pb.	-	8.0	-	-	-	I. 26	-	-	Mohler and Foote

Mean of Computed $h=6.55 \times 10^{-27}$ erg. sec.

[^56]
## Smithsonian Tables.

## CONTACT（VOLTA）POTENTIALS．

There has been considerable controversy over the reality and nature of the contact differences of potential between two metals．At present，due to the studies of Langmuir，there is a decided tendency to believe that this Volta differ－ ence of potential is an intrinsic property of metals closely allied to the phenomena just given in Tables 516 to 518 and that the discrepancies among different observers have been caused by the same disturbing surface conditions．The following values of the contact potentials with silver and the relative photo－sensitiveness of a few of the metals are from Henning，Phys．Rev．4，228，1914．The values are for freshly cut surfaces in vacuo．Freshly cut surfaces are more electro－positive and grow more electro－negative with age．That the observed initial velocities of emission of electrons from freshly cut surfaces are nearly the same for all metals suggests that the more electro－positive a metal is the greater the actual velocity of emission of electrons from its surface．

Contact potential with Ag ． Relative photo－sensitiveness	Ag 0 50	Cu .05 60	Fe .19 65	Brass .21 45	Sn .27 70	Zn .59 80	Al .99 500	Mg I .42 1000

From the equation $w=R T \log \left(N_{A} / \mathrm{N}_{B}\right)$ ，where $w$ is the work necessary per gram－molecule when electrons pass through a surface barrier separating concentrations $N_{A}$ and $N_{B}$ of electrons，it can be shown（Langmuir，Tr．Am． Eletroch．Soc．29， $\mathrm{r}_{4}$ 2，1916，et seq．）that the Volta potential difference between two metals should be

$$
v_{1}-z_{2}=\frac{1}{F}\left\{w_{2}-w_{1}+R T \log \left(N_{A} / N_{B}\right)\right\}=\frac{w_{2}-w_{1}}{F}=\phi_{2}-\phi_{1}
$$

（see Table 517 for significance of symbols），since the number of free electrons in different metals per unit volume is so nearly the same that $R T \log \left(N_{A} / N_{B}\right)$ may be neglected．The contact potentials may thus be calculated from photo－ electric phenomena（see Table 517 for references）．They are independent of the temperature．The following table gives a summary of values of $\phi$ in volts obtained from the various phenomena where an electron is torn from the attrac－ tion of some surface．In the case of ionization potentials the work necessary to take an clectron from an atom of metal vapor is only approximately equal to that needed to separate it from a solid metal surface．
（a）The Electron Affinity of the Elements，in Volts．

Metal．	Contact．   （Henning．）	Thermionic． （Langmuir．）	$\begin{array}{\|c} \text { Photo- } \\ \text { electric } \\ \text { and } \\ \text { contact. } \\ \text { (Millikan.) } \end{array}$	Photo－ electric． （Richardson）	Miscel－ laneous．	Single－ line spectra．	Adjusted mean．
Tungsten．	－	4． 52	－	－	－	－	4.52
Platinum．	－		－	4.3	4.45	二	$4 \cdot 4$ ？
Tantalum．．．	－	4.3 I	－		－	－	$4 \cdot 3$
Molybdenum	－	4．31	－		二	二	4.3
Silver．．	4.05	4.14	－	－	－	－	4.1
Copper．	（4．0）	一	－	4.1	－	－	4.0
Eismuth．	－${ }^{7} 8$	－	二	3.7	二	二	3.7
Iron．．	3.78 3.86	3．2？	二	3．5	－	二	3.8
Zinc．．．．．	3.46	－	－	3.4	－	4.04	3.7 3.4
Thorium．．．	－	$3 \cdot 36$	－		－	－	3.4
Aluminum．	3.06	二	－	2.8	二		3.0
Mitanium．．	$\stackrel{2.63}{-}$	2．4？	－	3.2	二	4.35	2.7 2.4
Lithium．．	－	2.4.	2.35	二	－	1． 85	2.7 2.35
Sodium．．	－	－	1.82	2.1	－	2.11	1.82

（b）It should not be assumed that all the emf of an electrolytic cell is contact emf．Its emf varies with the elec－ trolyte，whereas the contact emf is an intrinsic property of a metal．There must be an emf between the two electrodes of such a cell dependent upon the concentration of the electrolyte used．The following table gives in its first line the electrode potential $e_{h}$ of the corresponding metals（in solutions of their salts containing normal ion concentration）on assumption of no contact emf at the junction of the metals．The second line，$\phi-e_{h}-3.7$ volts，gives an idea of the electrode potentials（arbitrary zero）exclusive of contact emf．


Smithsonian Tables．

The process of ionization is the removal of an electron from a neutral molecule, the molecule thus acquiring a resultant + charge and becoming a + ion. The negative carriers in all gases at high pressures, except inert gases, consist for the most part of carriers with approximately the same mobilities as the + ions. The negative electrons must, therefore, change initially to ions by union with neutral molecules.

The mobility, $U$, of an ion is its velocity in $\mathrm{cm} / \mathrm{sec}$. for an electrical field of one volt per cm . The rates of diffusion, $D$, are given in $\mathrm{cm}^{3} / \mathrm{sec}$. $U=D P / N e$, where $P$ is the pressure, $N$, the number of molecules per unit volume of a gas and $e$ the electronic charge.

Nature of the gas and the mobilitics: (I) The mobilities are approximately proportional to the inverse sq. rts. of the molecular weights of the permanent gases; better yet when the proportionality is divided by the 4th root of the dielectric constant minus unity; (2) The ratio $U+/ U$ - seems to be greater than unity in all the more electronegative gases.

Mobilities of Gaseous Mixtures: Three types: (I) Inert gases have high mobilities; small traces of electronegative gases make values normal. (2) Mixed gases: lowering of mobilities is greater than would be expected from simple law of mixture. (3) Abnormal changes produced by addition of small quantities of electro-negative gases:
e.g.: normal mobility
6 mm C
$6 \mathrm{H}_{5} \mathrm{Br}$ gave
6 mm C
$2 \mathrm{H}_{3} \mathrm{I}$
10 mm C
2 $\mathrm{H}_{5} \mathrm{OH}$ "

$U+=$| 1.37 | $U-1.80$ | Wellisch, Pr. |
| ---: | ---: | ---: |
| 1.37 | 1.80 | Roy.Soc. 82 A, |
| 1.37 | 1.80 | p. $500,1909$. |
| 0.91 | 1.10 |  |
| 1.15 | 1.37 |  |

Temperature Coefficient of Mobility: There is no decided change with the temperature.
Pressure Coefficient of Mobility: Mobility varies inversely with the pressure in air from 100 to $1 / 10$ atmosphere for - ion, to $1 / 1000$, for + ion; below $1 / 10$ atmosphere all observers agree that the negative ion in air increases abnormally rapidly.

Free Electrons: In pure $\mathrm{He}, \mathrm{Ar}$, and N , the negative carriers have a high mobility and are, in part at any rate, free electrons; electrons become appreciable in air at 10 cm pressure.

TABLE 520. -- Ionic Mobilities.

Dry gas.	Mobilities.		$K-1$	Observer.	Dry gas.	Mobilities.		$K-\mathrm{I}$	Observer.
	+	-				+	-		
H.	6.70	7.95	. 000273	Zeleny	Nitrous oxide.	0.82	0.90	. 00107	Wellisch
He	5.09	6.31	. 000074	Franck	Ethyl alcohol.	0.34	0. 27	. 00940	
	1.37 1.27	-	. 000100	"	${ }_{\text {CCl }}{ }_{\text {Ethyl }}$ chio.	0.30	0.31	. 00426	"،
$\begin{aligned} & \mathrm{N} . \\ & \mathrm{O} \end{aligned}$	1.27 1.36	I. 80	. .000590	Zeleny	Ethyl ether.	0.33 0.29	0.31 0.31	. 0150742	"
$\mathrm{CO}_{2}$	0.81	0.85	. 000960	Wellisch	Methyl bromide	-. 29	0.28	. 01460	"
NH	0.74	0.80	. 00770		Ethyl formate	-. 30	0.31	. 00870	"
Air	1.40	1.78	. 000590	Mean	Ethyl iodide.	0.17	0.16	-	"

Franck, Jahr. d. Rad. u. Elek. 9, p. 2, 1912; Wellisch, Pr. Roy. Soc. 82A, p. 500, 1909. The following values are from Yen, Pr. Nat. Acad. 4, 198.

	$\mathrm{H}_{2}$	$\mathrm{N}_{2}$	Air.	$\mathrm{SO}_{2}$	$\mathrm{C}_{5} \mathrm{H}_{12}$	$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$	$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$	$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}$	$\mathrm{CH}_{3} \mathrm{I}$	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{I}$
$U+\ldots \ldots$	5.54	I. 30	1.37	412	. 385	${ }^{3} 63$	. 307	304	216	1.81
	8.45	1.80	1.81	+14	. 451	. 373	. 331	. 317	. 220	1.81
$U-/ U+$	1.53	1. 38	I. 34	$1 . \infty$	1.17	1.03	1.07	I. 04	1.05	1.00

## TABLE 521. - Diffusion Coefficients.

The following table gives the observed and computed ( $D=300 U P / V e=$ very nearly $0.0236 U$ ) values of the diffusion coefficients. The diffusion coefficients are given for some neutral molecules as actually determined for some gases into gases of nearly equal molecular weight. Table taken from Loeb, "The Nature of the Gascous Ion," J. Franklin Inst. 18.4, p. 775, 1917.

Gas, diffusing.	Gas diffusedinto	$\underset{\text { molecules. }}{D}$	$\boldsymbol{U}+$	$D+$ for ions.	
				Computed.	Observed.
Ar.	Hc	0. 706	5.09	1. 20	-
$\mathrm{H}_{2}$.	$\mathrm{N}_{2}$	. 739	6.02	0. 143	0.12.3
Air	$\mathrm{O}_{2}$	. 178	1. 35	0.0319	0.028
$\mathrm{O}_{2}$.	$\mathrm{N}_{2}$	. 171	1.27	. 0299	025 *
$\mathrm{CO}_{2}$	$\mathrm{N}_{2} \mathrm{O}$	1.5-1.0	. 82	. 0193	023*
$\mathrm{CO}_{2}$	CO	1. 31	.81	. 0193	-
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$	$\xrightarrow{\mathrm{CO}_{2}}$	0.0693	$.34+$	. 00805	-
Air.	Ethyl acetate	. 093	. $30 \dagger$	.0071	-
$\mathrm{H}_{2} \mathrm{O}$ $\mathrm{NH}_{3}$.	$\stackrel{\mathrm{Air}_{\mathrm{N}}^{\mathrm{N}} 3}{ }$	. 2.46	1.35 0.74	.0319 .0174	-
$\mathrm{NH}_{3}$.		. 190	0.74	. 0174	

* $\mathrm{CO}_{2}$ into $\mathrm{CO}_{2}$. † Ethyl formate. $\ddagger$ Estimated.

Smithsonian tables.

## COLLOIDS.

## TABLE 522. - General Properties of Colloids.

For methods of preparing colloids, see The Physical Properties of Colloidal Solutions, Burton, 1916; for general properties, see Outlines of Colloidal Chemistry, J. Franklin Inst. 185, p. 1, 1918 (contains bibliography).

The colloidal phase is conditioned by sufficiently fine division ( $\mathrm{I} \times 10^{-4}$ to $\mathrm{IO}^{-7} \mathrm{~cm}$ ). Colloids are suspensions (in gas, liquid, solid) of masses of small size capable of indefnite suspension; suspensions in water, alcohol, benzole, glycerine, are called hydrosols, alcosols, benzosols, glycerosols, respectively. The suspended mass is called the disperse phase, the medium the dispersion medium.

Collords tall into 3 quite definite classes: rst, those consisting of extremely finely divided particles $(\mathbf{C u}, \mathrm{Au}, \mathbf{A g}$, etc.) capable of more or less iudefinite suspension against gravity, in equilibrium of somewhat the same aspect as the gases of the atmosphere, depending as in the Brownian movement upon the bombardment of the molecules of the medium: 2nd, those resisting precipitation (hænoglobin, etc.) probably because of charged nuclei and which may be coagulated and precipitated by the neutralization of the charges; 3rd, colloidal as distinguished from the crystalloidal condition, the colloid being very slowly diffusible and incapable unlike crystalloids of penetrating membranes (gelatine, silicic acid, caramel, glue, white of egg, gum, etc.).


TABLE 523. - Molecular Weights of Colloids.

Determined from diffusion.		Determined from freezing point	
Gum arabic.	1750	Glycogen (162)*............	1625
Tannic acid (322)*	2730	Tungstic acid (250)*	1750
Egg albumen.	7420	Gum.... .	1800
Caramel............	13200	Albumose........	2400 6000
		Egg albumen.	14000
		Starch (162)*	25000

* Formula weight.


## TABLE 524. - Brownian Movement.

The Brownian movement is a microscopically observed agitation of colloidal particles. It is caused by the bombardment of them by the molecules of the medium and may be used to determine the value of Avogadro's number. Perrin, Chaudesaignes, Ehrenhaft and De Broglic found, respectively, $70,64,63$ and $64 \times$ 10 ${ }^{22}$ as the value of this constant. The following table indicates the size and the dependence of this movement on the magnitude of the particles.

Material.	Diameter $\times 10^{5} \mathrm{~cm}$	Medium.	$\underset{\mathrm{C}}{\mathrm{Temp}}$	$\begin{aligned} & \text { Velocity } \\ & \times 10^{5} \\ & \mathrm{~cm} / \mathrm{sec} . \end{aligned}$	Observer.
Dust particles.	2.0	Water	-	none	Zsigmody
Gold...	0.35	" ${ }^{\text {\% }}$	20?	200.	
Gold.	0.1	"		280.	"
Gold. . .	0.06	'،		700.	
Platinum.	4 to 5	Acetone	18	3900.	Svedberg, 1906-9
Platinum.... ${ }_{\text {Rubber }}$ mulsio	10.	Water	17	3200.	Henri, 1008
Mastic....	10.	"	20?	1.55	Perrin, Dabrowski, 1909.
Gamboge	4. 5 2.13	"	20	2.4	Chaudesaignes, 1908.

The movement varies inversely as the size of the particles; in water, particles of diameter greater than $4 \mu$ show no perceptible movement; when smaller than . $1 \mu$, lively movement begins, while at $10 m \mu$ the trajectories amount up to $20 m \mu$.

Smithsonian Tables.

COLLOIDS．
TABLE 525．－Adsorption of Gas by Finely Divided Particles．See also p． 439
Fine division means great surface per unit weight．All substances tend to adsorb gas at surface，the more the higher the pressure and the lower the temperature．Since different gases vary in this adsorption，fractional separation is possible．Pt black can absorb 100 vols． $\mathrm{H}_{2}, 800$ vols． $\mathrm{O}_{2}, \mathrm{Pd} 3000$ vols． $\mathrm{H}_{2}$ ．In gas analysis Pd ，heated to $100^{\circ}$ ，is used to remove $\mathrm{H}_{2}$（higher temperature used for faster adsorption，will take more at lower temperature）．Pt can dissolve several vols．of $\mathrm{H}_{2}, \mathrm{Pd}$ ，nearly 100 at ordinary temperatures；but it seems probable that the bulk of the 100 vols．of $\mathrm{H}_{2}$ taken by Pt and the 3000 by Pd must be adsorbed．In 1848 Rose found the density 21 to 22 for Pt foil，but 26 for mrecipitated Pt ．

The film of adsorbed air entirely changes the behavior of very small particles．They flow like a liquid（cf．fog）． With substances like carbon black as little as 5 per cent of the bulk is $C$ ；a liter of C black may contain 2.5 liters of air．Mitscherlich calculated that when $\mathrm{CO}_{2}$ at atmospheric pressure， $12^{\circ} \mathrm{C}$ ，is adsorbed by boxwood charcoal，it occu－ pies $1 / 56$ original vol．Apparent densities of gases adsorbed at low temperatures by cocoanut charcoal are of the same order（sometimes greater）as liquids．
$\mathrm{Cm}^{3}$ of Gas Adsorbed by a $\mathrm{Cm}^{3}$ of Synthetic Charcoal（corrected to $0^{\circ} \mathrm{C}, 76 \mathrm{~cm}$ ？）（Hemperl and Vater）．

${ }^{\circ} \mathrm{C}$	$\mathrm{H}_{2}$	Ar	$\mathrm{N}_{2}$	$\mathrm{O}_{2}$	CO	$\mathrm{CO}_{2}$	NO	$\mathrm{N}_{2} \mathrm{O}$
$\begin{gathered} +20^{\circ} \\ -78 \\ -185 \end{gathered}$	$\begin{array}{r} 7.3 \\ 19.5 \\ 284.7 \end{array}$	$\begin{aligned} & 12.6 \\ & 92.6 \end{aligned}$	$\begin{array}{r} 21.0 \\ 107.4 \\ 632.2 \end{array}$	$\begin{array}{r}25.4 \\ 122.4 \\ \hline\end{array}$	$\begin{array}{r} 26.8 \\ 139.4 \\ 697.0 \end{array}$	$\begin{array}{r}83.8 \\ 568.4 \\ \hline\end{array}$	103.6 231.3 -	109.4   330.1
	$\mathrm{CH}_{4}$	$\mathrm{C}_{2} \mathrm{H}_{6}$	$\mathrm{C}_{2} \mathrm{H}_{4}$	$\mathrm{C}_{2} \mathrm{H}_{2}$	$\mathrm{NH}_{3}$	$\mathrm{H}_{2} \mathrm{~S}$	$\mathrm{Cl}_{2}$	SO2
$\begin{aligned} & +20^{\circ} \\ & { }_{-78} \end{aligned}$	41.7 174.3	$\begin{aligned} & 119.1 \\ & 275.5 \end{aligned}$	$\begin{aligned} & 139.2 \\ & 360.7 \end{aligned}$	135.8 488.5	197.0	213.0	$\stackrel{304 .}{ }$	337.8

$\mathrm{Cm}^{3}$ of Gas Adsorbed by a $\mathrm{Cm}^{3}$ of Cocoanut Charcoal（corrected to $\circ^{\circ} \mathrm{C}, 76 \mathrm{~cm}$ ）（Dewar）．

${ }^{\circ} \mathrm{C}$	He	$\mathrm{H}_{2}$	$\mathrm{N}_{2}$	$\mathrm{O}_{2}$	CO	Ar
$-185{ }^{\circ}$	$\mathrm{I}_{15}$	4 135	15 155	18 230	21 190	12 175

See Langmuir，J．Am．Ch．Soc．40，136I，1918；Richardson，39，1829， 1916.
TABLE 526．－Heats of Adsorption．

Adsorber．	岂	－	$\begin{aligned} & \text { む̈ } \\ & \stackrel{y}{0} \\ & \text { U } \end{aligned}$	交す	交品苞	号	三首会	式苞	家	范	ㄷ．．	频边	它
Fuller＇s earth＊．	57．I	30.2	27.3	21.8	17.2	13.4	10.9	10.5	8.4	4.6	4.6	4.2	3.9
Bone charcoal＊．	－	18.5	19.3	17.6	16.5	－	10.6	－	14.0	II． 1	8.4	13.9	8.9
Kaolin＊．．．．	78.8	－68	－68	27.6	24.5	－	20.4	－	15.7	9.9	9.9	9.7	7.2
Fuller＇s earth $\dagger$		． 683	． 684	． 679	－	－		－	．61 1	．610	． 621	． 625	

＊Small calories liberated when I g of the adsorbent is added to a relatively large quantity of the liquid．
$\dagger$ Volume adsorped from saturated vapor by Ig of fuller＇s earth．
Gurvich，J．Russ．Phys．Ch．Soc． $47,805, \mathrm{I} 915$ ．
TABLE 527．－Molecular Heats of Adsorption and Liquefaction（Favre）．

Adsorber．	Gas．	Molecular heats of		Adsorber．	Gas．	Molecular heats of	
		adsorption．	lique－ faction．			adsorption．	lique－ faction．
Platinum． Palladium Charcoal．． ＂، ＂．	$\mathrm{H}_{2}$ $\mathrm{H}_{2}$ $\mathrm{NH}_{3}$ $\mathrm{CO}_{2}$ $\mathrm{~N}_{2} \mathrm{O}$	$\begin{gathered} 46200 \\ 1800 \\ 5900-8500 \\ 6800-7800 \\ 7100-10900 \end{gathered}$	二 $(5000)$ 6250 $4+00$	Charcoal． ＂． ＂．	$\mathrm{SO}_{2}$ HCl HBr HI	$10000-10900$ $0200-10200$ $15200-15800$ $21000-23000$	$\begin{gathered} 5600 \\ (3600 \\ (4000 \\ (4+00) \\ (4+00 \end{gathered}$

Smithsonian Tables．

TABLE 528. - Miscellaneous Constants (Atomic, Molecular, etc.).


TABLE 529. - Radiation Wave-length Limits.

Hertzen waves, longest. .	-0. 0 cm
Infra-red, longest, reststrahlung	0.03 0.2 cm
Infra-red, spectroscopically stu	0.002 cm
Visible, longest.	0.00008 cm
Ultra-violet, Lyman, shortest**	$0.000 ~$ 0.000 006 cm
Ultra-violet, Lyman, shortest*	0.000 006 cm
X-rays, longest	0.00000012 cm 0.000000001 cm
$\gamma$ rays, longest.	0.000000001 cm 0.000000013 cm
shortest	0.0000000007 cm

TABLE 530．－Periodic System of the Elements．

0	I	II	III	IV	V	VI	VII			
－	$\mathrm{R}_{2} \mathrm{O}$	RO	$\mathrm{R}_{2} \mathrm{O}_{3}$	$\mathrm{RO}_{2}$	$\mathrm{R}_{2} \mathrm{O}_{5}$	$\mathrm{RO}_{3}$	$\mathrm{R}_{3} \mathrm{O}_{7}$	RO4 Oxides．		
－	－	－	－	RH4	$\mathrm{RH}_{3}$	RH	RH	－Hy Hydrides．		
He	Li	Gl	B	C	N	O	F	二		
Ne	Na	Mg	Al	Si	P	S	Cl	二		
20	23	24	27	28	31	32	35			
A	K	Ca	Sc	Ti	V	Cr	$\begin{aligned} & \mathrm{Mn} \\ & 55 \end{aligned}$	$\begin{array}{cc}\mathrm{Fe} & \mathrm{N} \\ 56 & \\ 50\end{array}$		
40	39	40	44	48	51	52				
－	Cu	Zn	Ga	Ge	As	Se	Br	－		
－	64	05	70	72	75	79	80	－		
Kr	Rb	Sr	Yt	Zr	Cb	Mo	－	${ }_{102}^{\mathrm{Ru}} .{ }_{\text {R }} \mathrm{R}$	$\begin{aligned} & \mathrm{Pd} \\ & 107 \end{aligned}$	
82	85	88	89	91	94	96	－			
－	Ag	Cd	In	Sn	Sb	Te	I	二		
－	108	112	115	119	120	128	127			
X	Cs	Ba	La	Ce	Pr	Nd	－	二		
128	133	137	139	140	141	144	－	二		
－	Sa	Eu	Gd	Tb	Ds	Er	－	二		
－	150	${ }^{152}$	157	159	162	168	－			
－	Tm	$\mathbf{Y}$ b	Lu	－	Ta	W	－	$\mathrm{Os} \quad \mathrm{Ir}$		
－	168	174	${ }^{175}$	－	181	184	－	$191 \quad 193$		
－	Au	Hg	Tl	Pb	Bi	Po	－	－		
－	197	201	204	207	308	210	－			
Em	二	${ }_{2}^{\mathrm{Ra}}$	$\underset{(227)}{\text { Ac }}$	${ }_{232}$	UrX：	${ }_{238}^{\text {U }}$	二	二		
（222）	－			232						

TABLE 531．－Atomic Numbers．＊

1	Hydrogen		Calcium		Yttrium		Cerium		Osmium
2	Helium		Scandium		Zirconium		Praseodymium		Iridium
3	Lithium		Titanium		Niobium $\ddagger$	60	Neodymium	78	Platinum
4	Beryllium		Vanadium	42	Molybdenum	61		79	Gold
5	Boron		Chromium	43		62	Samarium	80	Mercury
6	Carbon	25	Manganese	44	Ruthenium		Europium	81	Thalium
7	Nitrogen		Iron	45	Rhodium	64	Gadolinium	$\mathrm{S}_{2}$	Lead
8	Oxygen		Cobalt	46	Palladium	65	Terbium	83	Bismuth
9	Fluorine	28	Nickel	47	Silver	66	Dysprosium	84	Polonium
10	Neon		Copper	48	Cadmium	67	Holmium	85	
11	Sodium		Zinc	49	Indium	68	Erbium	86	Emanation
12	Magnesium		Gallium		Tin	69	Thulium	87	
13	Aluminum		Germanium		Antimony	70	Ytterbium	88	Radium
14	Silicon		Arsenic	52	Tellurium	71	Lutecium	89	Actinium
15	Phosphorus		Selenium	53	Iodine	72		90	Thorium
16	Sulphur	35	Bromine	54	Xenon		Tantalum	91	Uranium $\mathrm{X}_{2}$
17	Chlorine	36	Krypton	55	Caesium	74	Tungsten	92	Uranium
18	Argon	37	Rubidium	56	Barium	75			
19	Potassium	38	Strontium	57	Lanthanum				
＊Quoted from Millikan＇s The Electron， 1917.						$\dagger$ Glucinium．		$\ddagger$ Columbium．	

Smithsonian Tables．

$\leftarrow$ Indicates the loss of an alpha particle (producing He); the element becomes more electro-positive and the atomic weight decreases by 4, position changing 2 columns to the left.
$\nearrow$ Indicates beta radiation (loss of electron); the element becomes more electro-negative, atomic weight remains the same, position changes one column to the right and up.

Isotopes of an element have the same valency and the same chemical properties (solubility, reactivity, etc.), although their atomic weights may differ. The isotopes of Bi are, e.g., $\mathrm{RaE}, \mathrm{ThC}, \mathrm{AcC}, \mathrm{RaC}$.

In the upper half of the table are the elements possessing high electro-potential, simple spectra, colorless ions. The properties are analogous in the vertical direction (groups). In the lower half are the elements with low electro-potential, complex spectra, colored ions and tending to form complex double salts, the general properties of the elements being more pronounced in the horizontal direction (periods).

On the left side of the table are the electro-negative elements, those of the upper half forming strong acids, those of the lower half weak oxyacids.

On the right side of the table are the electro-positive elements, forming bases, oxysalts, sulfides, etc.
The center of the lower balf is occupied by the amphoteric elements forming weak acids and bases, many complex compounds and double salts, many insoluble and mostly colored compounds.

A very striking point, however, is, as already mentioned, that the similarity among the elements in the upper half is in the vertical direction, and in the lower half in the horizontal direction. This justifies the use of the expressions group-relation and period-relation.
*Table adapted from Hackh, J. Am. Chem. Soc. 40, 1023, 1918, Phys. Rev. 13, 169, 1919.
The following isotopes have been determined by means of mass-spectra. Aston, Phil. Mag. 40, 633, 1920 ; Nature, 106, 468, 1920. The columns give symbol, min. number of isotopes, masses in order of intensity. Numbers in brackets are provisional.


## SMITHSONIAN TABlES.

## ASTRONOMICAL DATA.

## TABLE 533. - Stellar Spectra and Related Characteristics.

The spectra of almost all the stars can be arranged in a continuous sequence, the various types connected in a series of imperceptible gradations. With one unimportant exception, the sequence is linear, the transition between two given types always involving the same intermediate steps. According to the now generally adopted Harvard system of classification, certain principal types of spectrum are designated by letters, - O B , A, F,G,K,M,R and N- and the intermediate types by suffixed numbers. A spectrum halfway between classes B and A is denoted $\mathrm{B}_{5}$, while those differing slightly from Class A in the direction of Class B are called B 8 or B 9 . In Classes M and O the notation Ma, $\mathrm{Mb}, \mathrm{Mc}$, etc., is employed. Classes R and N apparently form a side chain branching from the main series near Class K .

The colors of the stars, the degree to which they are concentrated into the region of the sky, including the Milky Way, and the average magnitudes of their peculiar velocities in space, referred to the center of gravity of the nakedeye stars as a whole, all show important correlations with the spectral type. In the case of colors, the correlation is so close as to indicate that both spectrum and color depend almost entirely on the surface temperature of the stars. The correlation in the other two cases, though statistically important, is by no means as close.

Examples of all classes from O to M are found among the bright stars. The brightest star of Class N is of magnitude 5.3; the brightest of Class R, 7.0.

TABLE 534. - The Harvard Spectral Classification.

Class.	Principal spectral lines (dark unless otherwise stated).	Example.	Number brighter than 6.25, mag.	Per cent in galactic region.	Color index.	Effective surface temperature, K	Mean peculiar velocity, $\mathrm{km} / \mathrm{sec}$.
O B	Bright H lines, bright spark lines of $\mathrm{He}, \mathrm{N}, \mathrm{O}, \mathrm{C}$   $\mathrm{H}, \mathrm{He}$, spark lines of N	$\gamma$ Velorum	20	100	$-0.3$	-	-
	and $O$, a few spark lines of metals	$\epsilon$ Orionis	696	82	-0.30	20,000 ${ }^{\circ}$	6
A	H series very strong, spark lines of metals.	Sirius	1885	66	0.00	$1 \mathrm{I}, 00{ }^{\circ}$	10
F	$H$ lines fainter. Spark and arc lines of metals.	Canopus	720 720	57	0.00 +0.33	7,500 ${ }^{\circ}$	14
G	Arc lines of metals, spark lines very faint.	The sun	609	58	+0.70	5,000	15
K	Arc lines of metals, spectrum faint in violet.	Arcturus	1719	56	+0.70 +1.12	$4,200^{\circ}$	17
M R	Bands of $\mathrm{TiO}_{2}$, flame and arc lines of metals.   Bands of carbon, flame and	Antares	457	54	+1.00	$3,100^{\circ}$	17
R N	Bands of carbon, flame and arc lines of metals. . Bands of carbon, bright	$\begin{gathered} \text { B. D. } \\ -10^{\circ} 5057 \end{gathered}$	$\bigcirc$	63	+1.7	3,000 ${ }^{\circ}$	15
	lines, very little violet light.	19 Piscium	8	87	+2.5	2,300 ${ }^{\circ}$	13

Compiled mainly from the Harvard Annals. Temperatures based on the work of Wilsing and Scheiner. Radial velocities from Campbell. Data for classes R and N from Curtis and Rufus. The color indices are the differences of the visual and photographic magnitudes. Negative values indicate bluish white stars; large positive values, red stars. The peculiar velocities are in the radial direction (towards or from the sun). The average velocities in space should be twice as great.

The "galactic region" here means the zone between galactic latitudes $\pm 30^{\circ}$, and including half the area of the heavens.
$96 \%$ of the stars of known spectra belong to classes $\mathrm{A}, \mathrm{F}, \mathrm{G}, \mathrm{K}, 99.7 \%$ including B and M (Innes, 1919).

TABLE 535. - Apex and Velocity of Solar Motion.

R. A. 1900.	Dec.	Velocity, $\mathrm{km} / \mathrm{sec}$.	Method.	No. of stars.	Authority.
$\begin{array}{lll}18 \\ 18 & 02 \\ 17 \\ 17 & 54 \\ 18 & 00\end{array}$	$\begin{array}{r} +34.3 \\ 25.1 \\ 29.2 \end{array}$	19.5 21.4	Proper motions   Radial velocities	$\begin{aligned} & 5+13 \\ & 1193 \\ & 1405 \end{aligned}$	Boss, Astron. J. 614. 1910 Campbell, Lick Bull. 196. igir Strömberg, Astrophys. J. 1918.

Smithsonian Tables.

## ASTRONOMICAL DATA.

## TABLE 536. - Motions of the Stars.

The individual stars are moving in all directions, but. for the average of considerable groups, there is evidence of a drift away from the point in the heavens towards which the sun is moving (solar apex). The best determinations of the solar motion, relative to the stars as a whole, are given in Table 535. In round numbers this motion of the sun may be taken as $20 \mathrm{~km} / \mathrm{sec}$. towards the point R. A. 18 h .0 m ., Dec $+30.0^{\circ}$.

After allowance is made for the solar motion, the motions of the stars in space, relative to the general mean, present marked peculiarities. If from an arbitrary origin a series of vectors are drawn, representing the velocities of the various stars, the ends of these vectors do not form a spherical cluster (as would occur if the motions of the stars were at random), but a decidedly elongated cluster, whose form can be approximately represented either by the superposition of two intermingling spherical clusters with different centers (Kapteyn's two-stream hypothesis) or by a single ellipsoidal cluster (Schwarzschild), the actual form, however, being more complicated than is indicated by either of these hypotheses. The direction of the longest axis of the cluster is known as that of preferential motion. The two opposite points in the heavens at the extremities of this axis are called the vertices. The components of velocity of the stars parallel to this axis average considerably larger than those parallel to any axis perpendicular to it.

The preferential motion varies greatly with 'spectral type, being practically absent in Class B, very strong in Class A , and somewhat less conspicuous in Classes F to M , on account of the greater mean velocities of these stars in all directions. The positions of the vertices are nearly the same for all.

Numerous investigators, from the more distant naked-eye stars, find substantially the same position for the vertex, the mean being R.A. $6 \mathrm{~h}, 6 \mathrm{~m}$., Dec. $+9^{\circ}$. The nearer stars, of large proper motion, give a mean of 6 h . 12 m ., $+25^{\circ}$. (See Strömberg's discussion, cited above.)

In addition to these general phenomena, there are numerous clusters of stars whose members possess almost exactly equal and parallel motions, - for example, the Pleiades, the Hyades, and certain large groups in Ursa Major, Scorpius, and Orion. The vertices, and the directions toward which these clusters are moving, are all in the plane of the galaxy.

Several faint stars are known which have radial velocities between 300 and $350 \mathrm{~km} / \mathrm{sec}$. (e.g. A. G. Berlin 1366 R.A. $1000=4^{h 8 m} 6$, Dec. $1000=+22.7^{\circ}$, mag. 8.9 velocity of recession $339 \mathrm{~km} / \mathrm{sec}$.), and it is probable that the actual velocity in space exceeds $500 \mathrm{~km} / \mathrm{sec}$. for some of these.

The gth magnitude star A. G. Berlin I 366 has a radial velocity of $494 \mathrm{~km} / \mathrm{sec}$.
The greatest known proper motion is that of Barnard's star of the ninth magnitude in Ophiuchus, $10.3^{\prime \prime}$ per year, position angle $356^{\circ}$. The parallax of this star is $0.52^{\prime \prime}$, and its radial velocity about -roo $\mathrm{km} / \mathrm{sec}$.

The average radial velocity of the globular clusters is $100 \mathrm{~km} / \mathrm{sec}$. and that of the spiral nebulae 400 km . The globular clusters as a class are approaching the sun. The spiral nebulae, with a few exceptions, are receding. The greatest individual values are -410 km for the cluster N. G. C. 6934 and +1800 km for the nebula N. G.C. 584 .

Average velocities with regard to center of gravity of the stellar system, according to Campbell (Stellar Motion, 1913):

Type B Stars:	6.6	km per sec.	Type G Stars:	15.0	km. per sec.
" ${ }_{\text {" }}^{\text {F }}$	10.9	" ${ }^{\text {" }}$ " ${ }^{\text {، }}$	" K "	16.8	" " "
F	14.4	" 6	M	17.1	" ${ }^{\prime}$

For radial velocities of 119 stars see Astrophysical Journal, 48, p. 261, 1918.

TABLE 537. - Distances of the Stars.

Distances.	Parsecs.*	Light years.
Alpha Centauri (nearest star).	1.32	4.3
Barnard's Star.	1.9	6.3
Sirius...	2.7	8.7
Arcturus.	13.0	43.0
The Hyades.............	+40.	130. 600.
Globular Clusters (Shapley): omega Centauri (nearest)	185. 6,500	21,000.

[^57]
## Smithsonian Tables.

## TABLE 538.-Brightness of the Stars.

Stelar magnitudes give the apparent brightness of the stars on a logarithmic scale, - a numerical increase of one magnitude corresponding to a decrease of the common logarithm of the light by 0.400 , and a change of five magnitudes to a factor of roo. The brightest objects have negative stellar magnitudes. The visual magnitude of the Sun is -26.7; of the mean full Moon, -12.5 ; of Venus at her brightest, -4.3 ; of Jupiter, at opposition, -2.3 ; of Sirius, -1.6 ; of Vega, +0.2 ; of Polaris, +2.1 . (The stellar magnitude of a standard candle 1 m distant is -14.18 .) The faintest stars visible with the naked eye on a clear dark night are of about the sixth magnitude (though a single luminous point as faint as the eighth magnitude can be seen on a perfectly black background). The faintest stars visible with a telescope of aperture $A$ in. are approximately of magnitude $9+5 \log _{10} A$. The faintest photographed with the 60 -inch reflector at Mt. Wilson are of about the 2 sst magnitude. A standard candle, of the same color as the stars, would appear of magnitude +0.8 at a distance of one kilometer.

The actual luminosity of a star is expressed by means of its absolute magnitude, which (Kapteyn's definition) is the stellar magnitude which the star would appear to have if placed at a distance of ten parsecs. The absolute magnitude of the sun is +4.8 (equal to that of $a_{2}$ Centauri); of Sirius is +I .3 ; of Arcturus, -0.4 . The faintest star at present known (Innes), a distant companion to a Centauri, has the (visual) absulute magritude +15.4 , and a luminosity 0.00006 that of the sun. The brightest so far definitely measured, $\boldsymbol{\beta}$ Orionis, has (Kapteyn) the abs. mag. -5.5 and a luminosity 13,000 times the sun's. Canopus, and some other stars, may be still brighter.

Intrinsic brightness of sun's surface $=57,000$ candles per $\mathrm{cm}^{2}$ of surface. (Abbot-Fowle, 1920)
The absolute magnitudes of 6 planetary nebulae average 9.1 ; average diameter, 4000 astronomical units (Solar system to Neptune $=60$ astr. units), van Maanen, Pr. Nat. Acad. 4, p. 39.4, 1918.

## Giant and Dwarf Stars.

The stars of Class B are all bright, and nearly all above the absolute magnitude zero. Stars of comparable brightness occur in all the other spectral classes, but the inferior limit of brightness diminishes steadily for the "later" or redder types. The distribution of absolute magnitudes conforms to the superposition of two series, in each of which the individual stars of each spectral class range through one or two magnitudes on each side of the mean absolute magnitude. In one, - the "giant stars," - this mean brightness is nearly the same for all spectral classes, and not far from absolute magnitude zero. In the other, - the "dwarf stars,"- it diminishes steadily from about abs. mag. -2 for Class Bo to + ro for Class $M$. The two series overlap in Classes $A$ and $F$, are fairly well separated in Class $K$, and sharply so in Class M. Two very faint stars of Classes A and F fall into neither series.

The majority of the stars visible to the naked eye are giants, since these, being brighter, can be seen at much greater distances. The greatest percentage of dwarf stars among those visible to the eye is found in Classes F and G . The dwarf stars of Classes K and M are actually much more numerous per unit of volume, but are so faint that few of the former, and none of the latter, are visible to the naked eye.

Adams and Stromberg have shown that the mean peculiar velocities of the giant stars are all small, - increasing only from about $6 \mathrm{~km} / \mathrm{sec}$. for Class B to 12 for Class M, - while those of the dwarf stars are much greater, increasing within each spectral class by about 1.5 km per unit of absolute magnitude, and reaching fully 30 km for stars of Class M and abs. mag. io. Both giant and dwarf stars show the phenomenon of preferential motion.

## TABLE 539. - Masses and Densities.

The stars differ much less in mass than in any other characteristic. The greatest definitely determined mass is that of the brighter component of the spectroscopic binary $\boldsymbol{\beta}$ Scorpii, which is of 13 times the sun's mass, 400 times its luminosity, and spectrum Br. The smallest known mass is that of the faint component of the visual binary Krueger 60 , whose mass is 0.15 , and luminosity 0.0004 of the sun's, and spectrum M.

The giant stars are in general more massive than the dwarfs. According to Russell (Publ. Astron. Soc. America, $3,327,1917$ ) the mean values are:

Spectrum.
$\mathrm{B}_{2}$
$\mathrm{Ao}_{5}$
$\mathrm{~F}_{5}$ giant
$\mathrm{K}_{5}$

Mass of a Binary System.
 8

Spectrum.
Mass.

$\mathrm{F}_{2}$ dwarf	$3.0 \times$ Sun
G 2	6
K 8	6

The densities of stars can be determined only if they are eclipsing variables. It appears that the stars of Classes $B$ and A bave densities averasing about one tenth that of the sun and showing a relatively small range about this value, while those of Classes F to K show a wide range in density, from 1.8 times that of the sun (W Urs. Maj.) to 0.000002 (W Crucis).

The surface brightness of the stars probably diminishes by at least one magnitude for each step along the Harvard scale from B to M. It follows that the dwarf stars are, in general, closely comparable with the s.n in diameter, while the stars of Classes B and A, though larger, rarely exceed ten times the sun's diameter. The red ler giant stars, however, must be much larger, and a few, such as Antares, may have diameters exceeding that of the earth's orbit. The densities of these stars must be exceedingly low.

If arranged in order of increasing density, the giant and dwarf stars form a single sequence starting with the giant stars of Class M, proceeding up that series to Class B, and then down the dwarf series to Class M. It is believed by Russell and others that this sequence indicates the order of stellar evolution, - a star at first rising in temperature as it contracts and then cooling off again. The older theory, however, regards the evolutionary sequence as proceeding in all cases from Class B to Class M.

Tropical (ordinary) year Sidereal year Anomalistic year
Eclipse year
$=\left\{365.24219879-0.00000006 \mathrm{I}_{4}(t-\mathrm{1900})\right\}$ days
$=\{365.25636042+0.0000000011(t-1900)\}$ days
$=\{365.25964134+0.0000000304(t-1900)\}$ days
$=\{346.620000+0.00000036(t-$ I900 $)\}$ days

Synodical (ordinary) month $=\{29.530588102-0.00000000294(t-1900)\}$ days
Sidereal month $\quad=\{27.321660890-0.00000000252(t-1900)\}$ days
Sidereal day (ordinary, two successive transits of vernal equinox, might be called equinoctial day)

Sidereal day (two successive transits of same fixed star)
$=86164.09054$ mean solar seconds $=23 \mathrm{~h} .56 \mathrm{~m} .4 .09054$ mean solar time
$=86164.09966$ mean solar seconds

1920, Julian Period $=6633$
January 1, 1920, Julian-day number $=2422325$

```
Solar parallax \(=8.7958^{\prime \prime} \pm 0.002^{\prime \prime}\) (Weinberg)
 \(8.807 \pm 0.0027\) (Hincks, Eros)
 8. 799 (Sampson, Jupiter satellites; Harvard observations)
 8.80 Paris conference
Lunar parallax \(=3422.63^{\prime \prime}=57^{\prime} 2.63^{\prime \prime}\) (Newcomb)
```

Mean distance earth to sun $=149500000$ kilometers $=92900000$ miles
Mean distance earth to moon $=60.2678$ terrestrial radii
$=38441$ I kilometers $=238862$ miles
Light traverses mean radius of earth's orbit in 498.580 seconds
Velocity of light (mean value) in vacuo, 299860 kilometers/sec. (Michelson-Newcomb) $=186324$ statute miles $/ \mathrm{sec}$.
Constant of aberration

Light year
$=20.4874^{\prime \prime} \pm 0.005^{\prime \prime}$
20.47 Paris conference (work of Doolittle and others indicates value not less than 20.51 )

Parsec, distance star whose parallax is I sec. $=3 \mathrm{I} \times 10^{12} \mathrm{~km}=19.2 \times 10^{12} \mathrm{~m}$
General precession
Obliquity of ecliptic
$=50.2564^{\prime \prime}+0.000222(t-1900)^{\prime \prime}$ (Newcomb)
Constant of nutation
$=23^{\circ} 27^{\prime} 8.26^{\prime \prime}-0.4684(t-1900)^{\prime \prime}($ Newcomb)
$=9.2 \mathrm{I}^{\prime \prime}$ (Paris conference)
Gravitation constant
$=666.07 \times 10^{-10} \mathrm{~cm}^{3} / \mathrm{g} \mathrm{sec}{ }^{2} \pm 0.16 \times 10^{-10}$
Eccentricity earth's orbit
$=e=0.01675104-0.0000004180(t-1900)-$ $0.0000000000126(t-1900)^{2}$
Eccentricity moon's orbit
Inclination moon's orbit
Delaunay's $\gamma=\sin \frac{1}{2} I$
$=e_{2}=0.05490056$ (Brown)
$=I=5^{\circ} 8^{\prime} 43 \cdot 5^{\prime \prime}$ (Brown)
Lunar inequality of earth
$=0.04488716$ (Brown)
Parallactic inequality moon
$=L=6.454^{\prime \prime}$
Mean sidereal motion of
moon's node in 365.25 days
Pole of Milky Way
$=Q=124.785^{\prime \prime}$ (Brown)
$=$ R. A., 12 h. 48 m.; Dec. $+27^{\circ}$

TABLE 541. - The First-magnitude Stars.


* Visual binary. $\dagger$ Spectroscopic binary. $\ddagger$ Pair with common proper motion.
§ Wide pair probably optical.
Mass relative to sun of (7) is 3.1 ; of (8), 1.5; of (16), 2.0. For description of types, see Table 534 or Annals of Harvard College Observatory, 28, p. 146, or more concisely 56 , p. 66, and 91, p. 5. The light ratio between successive stellar magnitudes is $\sqrt[5]{100}$ or the number whose logarithm is 0.4000 , viz., 2.512 . The absolute magnitude of a star is its magnitude reduced to a distance corresponding to $0.1^{\prime \prime}$ parallax.


## TABLE 542. - Wolf's Observed Sun-spot Numbers. Annual Means.

Sun-spot number $=k$ ( ( $\circ \times$ number of groups and single spots observed + total number of spots in groups and single spots). $k$ depends on condition of observation and telescope, equaling unity for Wolf with $3-\mathrm{in}$. telescope and power of 64. Wolf's numbers are closely proportional to spotted area on sun. 100 corresponds to about $1 / 500$ of visible disk covered (umbras and penumbras). Periodicity: mean, II.I3, extremes, 7.3 and 17.1 years. Monthly Weather Review, 30, p. 171, 1902; monthly means, revised, $1749-1901$; see A. Wolfer in Astronomische Mitteilungen and Zeitschrift für Meteorologie, daily and monthly values.

Year.	$\bigcirc$	I	2	3	4	5	6	7	8	9
1750	83	48	48	31	12	10	10	32	48	54
1760	63	86	61	45	36	2 I	II	38	70	106
1770	101	82	66	35	31	7	20	92	154	126
1780	85	68	38	23	10	24	83	132	131	118
J 790	90	67	60	47	41	21	16	6	4	7
1800	14	34	45	43	48	42	28	10	8	2
1810	$o$	1	5	12	14	35	46	41	30	24
1820	16	7	4	2	8	17	36	50	62	67
1830	71	48	28	8	13	57	122	138	103	86
1840	63	37	24	II	15	40	62	98	124	96
1850	66	64	54	39	21	7	4	23	55	9.
1860	96	77	59	44	47	30	16	7	37	74
1870	139	III	102	66	45	17	11	12	3	6
1880	32	54	60	64	64	52	25	1.3	7	6
1890	7	36	73	85	78	64	42	26	27	12
1900	10	3	5	24	42	63	54	62	48	4.4
1910	19	6	4	I	10	46	55	99	78	-

Note: The sun's apparent magnitude is -26.5 , sending the earth $90,000,000,000$ times as much light as the star Aldebaran. Its absolute magnitude is +.4.8.


GEODETICAL AND ASTRONOMICAL TABLES.
TABLE 543.-Length of Degrees on the Earth's Surface.

At.	Miles per degree		Km . per degree		$\begin{gathered} \text { At } \\ \text { Lit. } . \end{gathered}$	Miles per degree		Km. per degree	
	of Long.	of Lat.	of Long.	of Lat.		of Long.	of Lat.	of Long.	of Lat.
$0^{\circ}$	69.17	68.70	111.32	110.57	$55^{\circ}$	39.77	69.17	64.00	111.33
10	68.13	68.72	109.64	110.60	60	34.67	69.23	55.80	111.42
20	65.03	68.79	104.65	110.70	65	29.32	69.28	47.18	111.50
30	59.96	63.88	96.49	110.85	70	23.73	69.32	38.19	111.57
40	53.06	68.99	85.40	111.03	75	17.96	69.36	28.90	111.62
45	49.00	69.05	78.85	111.13	80	12.05	69.39	19.39	111.67
50	44.55	69.11	71.70	111.23	90	0.00	69.41	0.00	111.70

For more complete table see " Smithsonian Geographical Tables."

## TABLE 544.-Equation of Time.

The equation of time when + is to be added to the apparent solar time to give mean time. When the place is not on a standard meridian ( 75 th , etc.) its difierence in longitude in time from that meridian must be subtracted when east, added when west to get standard time ( 75 th meridian time, etc.). The equation varies from year to year cyclically, and the figure following the $\pm$ sign gives a rough idea of this variation.


TABLE 545.-Planetary Data.

Body.	Reciprocals of masses.	Mean distance from the sun. Km.	Sidereal period. Mean days.	Equatorial diameter. Km.	Inclination of orbit.	Mean density. $\mathrm{I}_{2} \mathrm{O}=1$	Gravity surface.
Sun	I.	-	-	1391107	-	I. 42	28.0
Mercury	6000000.	$58 \times 10^{6}$	87.97	4842	$7^{\circ} .003$	5.61	0.4
Venus	408000.	108 "	244.70	12191	$3 \cdot 393$	5.16	0.9
Earth*	329390.	149 "	365.26	12757	-	5.52	1.00
Mars	3093500.	228 "	686.98	6784	1.850	3.95	0.4
Jupiter	1047.35	$778{ }^{\prime \prime}$	4332.59	142745	I. 308	I. 34	2.7
Saturn	3501.6	1426 "	10759.20	120798	2.492	. 69	1.2
Uranus	22869.	2869"	30685.93	49693	0.773	I. 36	1.0
Neptune	19700.	4495 "	60187.64	52999	1.778	1.30	1.0
Moon	†81.45	$88 \times 10^{4}$	27.32	3476	5.145	$3 \cdot 36$	0.17

[^58]TABLE 546．－Numbers and Equivalent Light of the Stars．
The total of starlight is a sensible but very small amount．This table，taken from a paper by Chapman，shows that up to the zoth magnitude the total light emitted is equivalent to 687 rst－magnitude stars，equal to about the hundredth prrt of full moonlight．If all the remaining stars are included，following the formula，the equivalent addi－ tion would be only three more ist－magnitude stars．The summation leaves off at a point where each additional magni－ tude is adding more stars than the last．But，according to the formula，between the 23 d and 24 th magnitudes there is a turning point，after which each new magnitude adds less than before．The actual counts have been carried so near this turning point that there is no reasonable doubt of its existence．Given its existence，the number of stars is probably finite，a conclusion open to very little doubt．All the indications of the earlier terms must be misleading if the margin between 1 and 2 thousand millions is not enough to cover the whole．（Census of the Sky，Sampson，Observ－ atory，1915．）

$\underset{m}{\text { Magnitude, }}$	Number．	$\left\lvert\, \begin{gathered} \text { Equivalent } \\ \text { number } \\ \text { of rst- } \\ \text { magnitude } \\ \text { stars. } \end{gathered}\right.$	$\underset{m}{\text { Totals to }} \begin{gathered} \text { magnitude } \end{gathered}$	$\underset{m}{\text { Magnitude, }}$	Number．	$\begin{gathered} \text { Equivalent } \\ \text { number } \\ \text { of st- } \\ \text { magnitude } \\ \text { stars. } \end{gathered}$	Totals to $\underset{m}{\text { magnitude，}}$
－1．6．．	Sirius	II	－	9．0－10．0．	174，000	69	380
－0．9．	a Carinæ	6	－	10．0－11．0．	426，000	68	$44^{8}$
0.0	a Centauri	2	－	11．0－12．0．	961，000	60	508
0．0－1．0．	8	14	33	$12.0-13.0$	2，020，000	51	559
1．0－2．0．	27	17	50	13．0－14．0．．．．．．．．．．．．．	3，960，000	40	599
2．0－3．0		18	88	14．0－15．0．．．．．．．．．．．．．	7，820，000	31	630
3．0－4．0	189	19	87	${ }^{15} .0-16.0 . \ldots \ldots . . . . .$.	14，040，000	22	652
4．0－5．0．	650	26	I13	16．0－17．0．	25，400，000	16	668
5．0－6．0．	2，200	35	148	$17.0-18.0$	38，400，000	10	678 684
6．0－7．0． $7.0-8.0$	6，600	42 56	190 246	$18.0-19$. $19.0-20$.	54，000，000	6 3	684 687
8．0－9．0．	65，000	65	311	All stars fainter than 20.0	－	3	690

## TABLE 547．－Albedos．

The albedo，according to Bond，is defined as follows：＂Let a sphere $S$ be exposed to parallel light．Then its Albedo is the ratio of the whole amount reflected from $S$ to the whole amount of light incident on it．＂In the following table， $m=$ the stellar magnitude at mean opposition；$g=$ magnitude it would have at full phase and unit distance from earth and sun：$\sigma=$ assumed mean semi－diameter at unit distance；$p=$ ratio of observed brightness at full phase to that of a flat disk of same size and same position，illuminated and viewed normally and reflecting all the incident light according to Lambert＇s law；$g$ depends on law of variation of light with phase；albedo $=p q$ ．Russell，Astrophysical Journal，43，p．173， 1916.

Albedo of the earth：A reduction of Very＇s observations by Russell gives 0.45 in close agreement with the recent value of Aldrich of 0.43 （see Aldrich，Smithsonian Misc．Collections，69，1919）．

| Object． | $m$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

TABLE 548．－Duration of Sunshine．

Declination of sun： approx．date：	Dec． 22.	$-15^{\circ}$ Feb． Nov．${ }^{\text {a }}$ ．	$\begin{gathered} -10^{\circ} \\ \text { Feb. } 23 . \\ \text { Fct. } 19 . \end{gathered}$	$-5^{\circ}$ Mar． Oct． 6.		$\begin{gathered} +5^{\circ} \\ \text { Sept. 10. } \\ \mathrm{Aprl}^{20} . \\ \hline \end{gathered}$	$\left\{\begin{array}{c} +10^{\circ} \\ A_{102}{ }^{166} \\ \text { Aus. } 28 \end{array}\right.$	$\left\lvert\, \begin{gathered} +15^{\circ} \\ \text { May. } \\ \text { Aug. } 13 . \end{gathered}\right.$	$\left\lvert\, \begin{gathered} +20^{\circ} \\ \text { Hay } \\ \text { Jan 24. } \end{gathered}\right.$	June 2r
titud	h m	m	h m	${ }^{\text {h m }}$	${ }_{\text {h }} \mathrm{m}$	b m		1207	${ }_{\text {h }}^{\text {h }} \mathrm{m}$	
잉	crer $\begin{gathered}12 \\ 11\end{gathered}$	${ }^{11} 45$			12   12   12   12   12   1	（1207	crin 1207	（1207	（120	1209   12   12   13   13   20
圱。	（10	1122	cill		12 12 128 12 120 O	－	${ }^{12} 5$	（12	col	（12
	（1）	1025	（11）				－ 1317	ctic		
55\％		${ }_{8}^{9} 12$	1015		12120	（1323		（1513		
650	$\stackrel{3}{34}$	¢ $\begin{array}{r}79 \\ 630 \\ \hline 10\end{array}$	${ }^{\circ} \mathrm{O}$			（	（1515 $\begin{aligned} & 15 \\ & 18 \\ & 1805\end{aligned}$	$\xrightarrow{17} 1$	${ }_{19}{ }^{19} 9$	$\stackrel{2203}{=}$
85 ${ }^{75^{\circ}}$	－	${ }^{2}-37$	7 3 3 104	9 ${ }^{\circ}{ }_{46}$	12206	（15 $\begin{array}{r}15 \\ 1644 \\ \hline\end{array}$	${ }^{18} 0$			二

For more extensive table，see Smithsonian Meteorological Tables．

## Smithsonian Tables．

table 549. - The Solar Constant.
Solar constant (amount of energy falling at normal incidence on one square centimeter per minute on body at earth's mean distance $)=1.932$ calories $=$ mean 696 determinations 1902-12. Apparently subject to variations, usually within the range of 7 per cent, and occurring irregularly in periods of a week or ten days.
Computed effective temperature of the sun: from form of black-body curves, $6000^{\circ}$ to $7000^{\circ}$ Absolute ; from $\lambda$ max. $=2930$ and max. $=0.470 \mu, 6230^{\circ}$; from total radiation, $\mathrm{J}=76.8 \times 10^{-12} \times \mathrm{T}^{4}$, $583^{\circ}$.

## TABLE 550. - Solar spectrum energy (arbitrary units) and its transmission by the earth's atmosphere.

Values computed from $e_{m}=e_{o} a^{m}$, where $e_{m}$ is the intensity of solar energy after transmission through a mass of air $m ; m$ is unity when the sun is in the zenith, and approximately $=s e c$. zenith distance for other positions (see table 556) ; $\mathrm{e}_{0}=$ the energy which would have been observed had there been no absorbing atmosphere; a is the fractional amount observed when the sun is in the zenith.


Transmission coefficients are for period when there was apparently no volcanic dust in the air.

* Possibly too high because of increased humidity towards noon.

TABLE 551. - The intensity of Solar Radiation in different sections of the spectrum, ultra-violet, visual infra-red. Calories.

Wave-length.	Mount Whitney.					Mount Wilson.				Washington.			
$\mu \quad \mu$	m	$m=1$	2	3	4	$\mathrm{m}=1$	2	3	4	$\mathrm{m}=\mathrm{t}$	2	3	4
0.00 to 0.45	. 31	. 25	. 19	.16	. 13	. 23	. 16	.12	. 09	.13	. 06	. 04	. 02
0.45 to 0.70	. 71	. 67	. 62	. 58	. 54	. 65	. 57	. 51	. 45	. 53	. 40	. 30	. 24
0.70 to $\infty$	. 91	. 87	.85	. 82	. 80	. 69	. 68	. 66	. 63	. 69	. 62	. 57	. 53
0.00 to $\infty$	1.93	1.78	1. 66	1.56	1.47	1.57	1.42	1.28	1.17	1.35	1.08	. 90	. 79

TABLE 552. - Distribntion of brightness (Radiation) over the Solar Disk.
(These observations extend over only a small portion of a sun-spot cycle.)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Wave.
length. \& $\mu$

0

0 \& $$
\begin{gathered}
\mu \\
0.386
\end{gathered}
$$ \& \[

$$
\begin{gathered}
\mu \\
0.433
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
\mu \\
0.456
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
\mu \\
0.4^{91}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
\mu \\
0.501
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
\mu \\
0.534
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
\mu \\
0.604
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
\mu \\
0.670
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
\mu \\
0.699
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
\mu \\
0.866
\end{gathered}
$$

\] \& $\underset{1}{\mu}$ \& \[

$$
\begin{gathered}
\mu \\
\mathbf{~} .225
\end{gathered}
$$

\] \& \[

\stackrel{\mu}{1.655}
\] \& $\mu$

2.097 <br>
\hline is 0.00 \& 144 \& 338 \& 456 \& 515 \& 511 \& 489 \& 463 \& 399 \& 333 \& 307 \& 174 \& 111 \& 77.6 \& 39.5 \& 14.0 <br>
\hline . 0.40 \& 128 \& 312 \& 423 \& 486 \& 483 \& 463 \& 440 \& 382 \& 320 \& 295 \& 169 \& 108 \& 75.7 \& 38.9 \& 13.8 <br>
\hline ర్ల 0.55 \& 120 \& 289 \& 395 \& 455 \& 456 \& 437 \& 417 \& 365 \& 308 \& 284 \& 163 \& 105.5 \& 73.8 \& -38.2 \& 13.6 <br>
\hline ¢ 0.65 \& 112 \& 267 \& 368 \& 428 \& $43^{\circ}$ \& 414 \& 396 \& 348 \& 295 \& 273 \& 159 \& 103 \& 72.2 \& 37.6 \& 13.4 <br>
\hline E\{0.75 \& 99 \& 240 \& 333 \& 390 \& 394 \& 380 \& 366 \& 326 \& 281 \& 258 \& 152 \& 99 \& 69.8 \& 36.7 \& 13.1 <br>
\hline 응 0.825 \& 86 \& 214 \& 296 \& 351 \& 358 \& 347 \& 337 \& 304 \& 262 \& 243 \& 145 \& 94.5 \& 67.1 \& $35 \cdot 7$ \& 12.8 <br>
\hline U 0.875 \& 76 \& 188 \& 266 \& 317 \& 324 \& 323 \& 312 \& 284 \& 247 \& 229 \& 138 \& 90.5 \& 64.7 \& 34.7 \& 12.5 <br>
\hline L 0.92 \& 64 \& 163 \& 233 \& 277 \& 290 \& 286 \& 281 \& 259 \& 227 \& 212 \& 130 \& 86 \& 61.6 \& 33.6 \& 12.2 <br>
\hline 40.95 \& 49 \& 141 \& 205 \& 242 \& 255 \& 254 \& 254 \& 237 \& 210 \& 195 \& 122 \& 81 \& 58.7 \& 32.3 \& 11.7 <br>
\hline
\end{tabular}

Taken from vols. II and III and unpublished data of the Astrophysical Observatory of the Smithsonian Institution. Schwartzchild and Villiger: Astrophysical Journal, 23, 1906.

## Smithsonian Tables.

## ATMOSPHERIC TRANSPARENCY AND SOLAR RADIATION.

## TABLE 553. - Transmission of Radiation Through Moist and Dry Air.

This table gives the wave-length, $\boldsymbol{\lambda}$; a the transmission of radiation by dry air above Mount Wilson (altitude $=1730 \mathrm{~m}$. barometer, 620 mm .) for a body in the zenith; finally a correction factor, $\mathrm{a}_{\mathrm{w}}$, due to such a quantity of aqueous vapor in the air that if condensed it would form a layer 1 cm . thick. Except in the bands of selective absorption due to the air, a agrees very closely with what would be expected from purely molecular scattering. aw is very much smaller than would be correspondingly expected, due possibly to the formation of ions by the ultra-violet light from the sun. The transmission varies from day to day. However, values for clear days computed as follows agree within a per cent or two of those observed when the altitude of the place is such that the effect due to dust may be neglected, e. g. for altitudes greater than tooo meters. If $\mathrm{B}=$ the barometric pressure in mm., w, the amount of precipitable water in cm ., then $a_{B}=a^{\frac{b}{230}} a_{w}^{w} . w$ is best determined spectroscopically (Astrophysical Journal, 35, p. 149, 1912, 37, p. 359,1913 ) otherwise by formula derived from Hann, $w=2.3 \mathrm{e}_{\mathrm{w}} 10^{-\frac{\mathrm{h}}{22(0) 0}}, \mathrm{e}_{\mathrm{w}}$ being the vapor pressure in cm . at the station, h , the altitude in meters. See Table 377 for long-wave transmission.

$\lambda(\mu)$ .360   a	$.660)$	.384	.4 I 3	.452	.503	.535	.574	.624	.653	.720	.986	1.74
$\mathrm{a}_{\mathbf{w}}$												

Fowle, Astrophysical Journal, 38, 19 I 3.
TABLE 554. - Brightness of (radiation from) Sky at Mt. Wilson (1730 m.) and Fint Island (sea level).


* Includes allowance for bright region near sun. For the dates upon which the observation of the upper portion of table were taken, the mean ratios of total radiation sky/sun, for equal angular areas, at normal incidence, at the island and on the mountain, respectively, were $636 \times 10^{-8}$ and $210 \times 10^{-8}$, on a horizontal surface, $305 \times 10^{-8}$ and $77 \times 10^{-8}$; for the whole sky, at normal incidence, 0.57 and 0.20 ; on a horizontal surface 0.27 and 0.07 . Annals of the Astrophysical Observatory of the Smithsonian Institution, vols. II and III, and unpublished researches (Abbot).

TABLE 555. - Relative Distribution in Normal Spectrum of Sunlight and Sky-light at Mount Wilson.
Zenith distance about $50^{\circ}$.

	$\mu$	$\mu$	$\mu$	$\mu$	$\mu$	$\mu$	C	I	b	F
Place in Spectrum	0.422	0.457	0.491	0.566	0.614	0.660				-
Intensity Sunlight	186	232	227	211	191	166				
Intensity Sky-light	1194	986	701	395	231	174				
Ratio at Mt. Wilson	642	425	309	187	121	105	102	143	246	316
Ratio computed by Rayleigh	-	-	-	-	-	-	102	164	258	$32 S$
Ratio observed by Rayleigh	-	-	-	-	-	-	102	168	291	369

## TABLE 556. - Air Masses.

See Table $\mathbf{1 7 4}$ for definition. Besides values derived from the pure secant formula, the table contains those derived from varions other more complex formula, taking into account the curvature of the earth, refraction, etc. The most recent is that of Bemporad.

Zenith Dist.	$0^{\circ}$	$20^{\circ}$	$40^{\circ}$	$60^{\circ}$	$70^{\circ}$	$75^{\circ}$	$80^{\circ}$	$8_{5}^{\circ}$	$88^{\circ}$	
Secant	1.00	1.064	1.305	2.000	2.924	3.864	5.76	11.47	28.7	
Forbes	1.00	1.065	1.306	1.995	2.902	3.809	5.57	10.22	18.9	
Bonguer	1.00	1.064	1.305	1.990	2.900	3.805	5.56	10.20	19.0	
Laplace	1.00	-	-	1.993	2.899	-	5.56	10.20	18.8	-10.8
Bemporad	1.00	-	-	1.995	2.904	-	5.60	10.39	19.8	

The Laplace and Bemporad values, Lindholm, Nova Acta R. Soc. Upsal. 3,1913 ; the others, Radau's Actinometric, 1877 .
Smithsonian tables.

TABLE 557. - Mean intensity $J$ for 24 hours of solar radiation on a horizontal surface at the top of the atmosphere and the solar radiation $A$, in terms of the solar radiation, $A_{0}$, at earth's mean distance from the sun.

Date.	Motion of the sun in longitude.	Relative Mean Vertical intensity ( $\left.\frac{J}{A_{\mathrm{O}}}\right)$.										$\frac{A}{A}$.
		latitude north.										
		0	$10^{\circ}$	$20^{\circ}$	$30^{\circ}$	$40^{\circ}$	$50^{\circ}$	$60^{\circ}$	$70^{\circ}$	$80^{\circ}$	$90^{\circ}$	
Jan, i	0.99	0.303	0.265	0.220	0. 169	O. 117	0.066	0.018				1.0335
Feb. I	31.54	.312	. 282	. 244	. 200	. 150	. 100	. 048	0.006			1.0288
Mar: I	59.14	-320	. 303	. 279	. 245	. 204	. 158	. 108	. 056	0.013		1.0173
Apr. I	89.70	. 317	. 319	. 312	. 295	. 269	. 235	. 195	. 148	. 101	0.082	1.0009
May I	119.29	$\cdot 303$	-318	. 330	-329	-320	- 302	. 278	. 253	. 255	. 259	0.9841
Junt I	149.82	. 287	.315	. 334	-345	. 349	-345	. 337	. 344	. 360	. 366	0.9714
July 1	179.39	.283	. 312	. 333	- 347	-352	-351	-345	-356	- 373	- 379	0.9666
Aus. I	209.94	. 294	. 316	. 330	. 334	-330	-318	-300	. 282	. 295	-300	0.9709
Sept. I	240.50	-310	-318	. 316	. 305	. 285	. 256	. 220	. 180	. 139	. 140	0.9828
Oct. I	270.07	-317	- 308	. 289	.26I	. 225	.183	.135	. 084	. 065	-	0.9995
Now. I	300.63	- 312	. 286	.251	. 211	.164	. 114	. 063	. 018			1.0164
Dec. 1	330.19	. 304	. 267	. 224	. 175	. 124	. 072	. 024				
Year.		0.305	0.301	0.289	0.268	0.241	0.209	0.173	0.144	0.133	0.126	

## TABLE 558،-Mean Monthly and Yearly Temperatares.

Mean temperatures of a few selected American stations, also of a station of very high, two of very low temperature, and one of very great and one of very small range of temperature.

	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Year.
I Hebron-Rama (Labr.)	-20.7	20.9	-15.6	-6.9	0.2	-4.5		+8.0		- 0.8	- 6.2	-16.2	5.2
2 Winnipeg (Canada)	21.6	18.8	.	1.9	0.9	+17.1	8.9	+17.6	11.6	+ 4.1	- 7.6	-15.7	0.6
3 Montreal.	-10.9	-9.1	4.3	4.8	12.6	+18.3	-20.5	19.3	+14.7	7.8	- 0.2	- 7.1	5.5
4 Boston	- 2.8	2.2	1.2	7.3	+13.6	+19.1	+21.8	-20.6	-16.9	11.1	+ 4.8	- 0.5	9.2
5 Chicago	4.8	- 2.9	-1.2	7.9	-13.4	+19.7	+22.2	+21.6	+17.9	+11.1		- 1.5	9.1
6 Denver ${ }^{\text {a }}$	2.1	+ 0.1	+3.8	8.3	13.6	19.1	+22.1		+16.6				
7 Washington	+ 0.7	+ 2.1	+ 52	+11.7	+17.7	${ }^{22.9}$	+24.9	${ }^{23} 37$				+ 2.3	
8 Pikes Peak.	- ${ }^{16.4}$	$-15.6$	-13.4	-10.4	- 5.3	-0.4	+ 4.5		-0.3			- 14.4	
9 St. Louis .	- 0.8	+1.7	+6.2	-13.4	18.8	-24.0				+14.2	+6.4		13.1
10 San Francisco	+10.1	+10.9	12.0	+12.6	-13.7	+14.7	+14.6	-14.8	+158	+15.2	13.5	-10.8	13.2
	+12.3	9	.	21.0	-25.1	+29.4	-3.1	32.6	-29.1	+2.8	,	-13.3	-22.3
12 New Orleans	+12.		6.7	${ }^{20.6}$	-23.7	+26.8	+27.9	+275	+25.7	+21.0	+15.9	+13.11	+20.4
${ }_{13}{ }^{13}$ Massaua ${ }^{\text {Ft Conger (Greenl'd) }}$	+25.6	+26.0	+27.1	+29.0	-31.1	-33.5	+34.8	-34.7	+33.3	+31.7	+29.0	+27.0	+30.3
${ }^{14} 4$ Ft. Conger (Greenl'd)	-39.0	-40.1	-33.5	- 25.3	$-10.0$	- 0.4			-9.0	-22.7	-30.9	-33.4	20.0
15 16 $\begin{aligned} & \text { Werchojansk } \\ & \end{aligned}$	[	-453 +254	- ${ }^{32.5}$	-13.7 +26.3						-150	-37.8	- 47.0	
16 Batavia -	+25.3	+25 4	+25.8				+25.7	5.9				+25.6	+25.9

Lat., Long., Alt. respectively: (1) $+5{ }^{\circ}{ }^{\circ} .5,63^{\circ} .0 \mathrm{~W},-;(2)+49.9$, $97.1 \mathrm{~W}, 233 \mathrm{~m} . ;(3)+45.5,73.6 \mathrm{~W}, 57 \mathrm{~m} . ;$ (4) $+42.3,7 \mathrm{rII} \mathrm{W}, 38 \mathrm{~m} . ;(5)+419,87.6 \mathrm{~W}, 25 \mathrm{~mm} . ;$ (6) $+39.7,105.0 \mathrm{~W}, 1613 \mathrm{~m} . ;(7)+38.9,77.0 \mathrm{~W}, 34 \mathrm{~m} . ;$ ( 8 ) +38.8 , $105.0 \mathrm{~W}, 4308 \mathrm{~m}$. ; (9) $+38.6,90.2 \mathrm{~W}, 173 \mathrm{~m} . ;(\mathrm{xo})+37.8,122.5 \mathrm{~W}, 47 \mathrm{~m} . ;(11)+32.7,114.6 \mathrm{~W}, 43 \mathrm{~m} . \mathrm{i}$
 $106.8 \mathrm{E}, 7 \mathrm{~m}$.

Taken from Hann's Lehrbuch der Meteorologie, $z^{\prime}$ 'nd edition, which see for further data.
Note: Highest recorded temperature in world $=57^{\circ} \mathrm{C}$ in Death Valley, California, July 10, 1913. Lowest recorded temperature in world $=-68^{\circ} \mathrm{C}$ at Verkhoyansk, Feb. 1892.

## smithsonian tables.

## THE EARTH＇S ATMOSPHERE．

## TABLE 559．－Miscellaneous Data．Variation with Latitude．

Optical ev dence of atmosphere＇s extent：twilight 63 km ，luminous clouds 83 ，meteors 200 ，aurora $44-360$ ．Jeans computes a density at 170 km of $2 \times 10^{13}$ molecules per $\mathrm{cm}^{3}$ ，nearly all $\mathrm{H}(5 \% \mathrm{He})$ ；at $810 \mathrm{~km}, 3 \times 10^{10}$ molecules per $\mathrm{cm}^{3}$ almost all H ．When in equilibrium，each gas forms an atmosphere whose density decrease with altitude is independent of the other components（Dalton＇s law， $\mathrm{H}_{2} \mathrm{O}$ vapor does not）．The lighter the gas，the smaller the decrease rate．A homogeneous atmosphere， 76 cm pressure at sea－level，of sea－level density，would be 7991 m high．Average sea－level barometer is 74 cm ；corresponding homogeneous atmosphere（truncated cone） 7790 m ，weighs（base， $\mathrm{m}^{2}$ ） $10,120 \mathrm{~kg}$ ；this times earth＇s area is $52 \times 10^{14}$ metric tons or $10^{-6}$ of earth＇s mass．The percentage by vol．and the partial pressures of the dry－air components at sea－level are： $\mathrm{N}_{2}, 78.03,593.02 \mathrm{~mm} ; \mathrm{O}_{2}, 20.99,159.52 ; \mathrm{A}, 0.94,7.144$ ； $\mathrm{CO}_{2}, 0.03,0.228 ; \mathrm{H}_{2}, 0.01,0.076 ; \mathrm{Ne}, 0.0012,0.009 ; \mathrm{He}, 0.0004,0.003$（Hann）．The following table gives the varia－ tion of the mean composition of moist air with the latitude（Hann）．

	N 75.99 77.32 77.87	$\begin{array}{ll} \mathrm{O}_{2} & 20.44 \\ 20.80 \\ & 20.94 \end{array}$	$\begin{array}{r} \text { A. } 0.92 \\ 0.94 \\ 0.94 \end{array}$	$\begin{array}{rr}\mathrm{H}_{2} \mathrm{O} & 2.63 \\ 0.92 \\ \\ 0.22\end{array}$	$\begin{array}{rr}\mathrm{CO}_{2} & 0.02 \\ 0.02 \\ & 0.03\end{array}$

TABLE 560．－Variation of Percentage Composition with Altitude（Humphreys）．
Computed on assumptions：sea－level temperature $11^{\circ} \mathrm{C}$ ；temperature uniformly decreasing $6^{\circ}$ per km up to II km，from there constant with elevation at $-55^{\circ}$ ．J．Franklin Inst．184，p．388， 1917.

$\underset{\mathrm{km}}{\mathrm{Height},}$	Argon．	Nitrogen．	Water vapor．	Oxygen．	Carbon dioxide．	Hydrogen．	Helium．	Total pressure，mm
140	－	0.01	－	－	－	99.15	0.84	0．00．40
120	－	－． 19	－	－	二	98.74	1.07	$0.005{ }^{2}$
10 80	二	2.95 32.18	0.05	0.11 I 85	－	95．58	1． 31	0． 0067
80 60	0.03	32.18 81.22	0.17	1.85	－	64.70 10.68	1．10	－． 0123
50	0．12	81.22 86.78	0.15 0.10	7.89 10.17	二	10.68 2.76	1.23 0.07	0．0935
40	0.22	86.42	0.06	12.61	－	0.67	0.02	I． 8.
30	0.35	84.26	0.03	15.18	0.01	0.16	0.01	8.63
20	－． 59	81.24	0.02	18． 10	0.01	0.04	－	${ }_{8}^{40.99}$
15	0.77	79.52	0.01	19.66	0.02	0.02	－	89.66
11	0.94	78.02	0．01	20.99	0.03	0.01	－	168.00
5	0.94	77.89	0.18	20.95	0.03	0.01	－	405.
－	0.93	77.08	1.20	20.75	0.03	0．or	－	760.

TABLE 561．－Variation of Temperature，Pressure and Density with Altitude．
Average data from sounding balloon flights（ 65 for summer， 52 for winter data）made at Trappes（near Paris）， Uccle（near Brussels），Strassburg and Munich．Compiled by Humphreys， 16 to 20 m chiefly extrapolated．

Elevation， km	Summer．			Winter．		
	Temp．${ }^{\circ} \mathrm{C}$	Pressure， mm of Hg ．	Density， dry air， $\mathrm{g} / \mathrm{cm}^{3}$	Temp．${ }^{\circ} \mathrm{C}$	Pressure， mm of Hg ．	Density， dry air， $\mathrm{g} / \mathrm{cm}^{3}$
20.0	－51．0	44.1	0.000092	－57．0	39.5	0．000085
19.0	－51．0	51.5	． 000108	－57．0	46.3	．000100
18.0	－51．0	60.0	． 000126	－57．0	54.2	． 000117
17.0	－51．0	70.0	． 0001.46	$-57.0$	63.5	． 000137
16.0	－51．0	81.7	． 000171	$-57.0$	74.0	． 000160
15.0	－51．0	95.3	． 000199	－57．0	87.1	． 000187
14.0	－51．0	111.1	． 000232	$-57.0$	102.1	． 000220
13.0	－51．0	129.6	． 000270	－57．0	119.5	． 000257
12.0	$-51.0$	151.2	． 000316	－57．0	140.0	． 000301
11.0	－49．5	176.2	． 000366	－57．0	16.4 .0	． 000353
10.0	－45．5	205.1	． 000.419	$-5+5$	192.0	． 000.408
9.0	－37．8	237.8	． 000470	－49．5	22．4．I	． 000.466
8.0	－29．7	274.3	． 00052.4	$-43.0$	260.6	． 000526
7.0	－22．1	314.9	． 000583	$-35.4$	301.6	． 000590
6.0	－15．1	360.2	． 0006.49	$-28.1$	$3+7.5$	． 000659
5.0	－8．9	410.6	． 000722	$-21.2$	398.7	． 000735
4.0	$-3.0$	466.6	． 000803	$-15.0$	455.9	． 000821
3.0	＋2．4	528.9	． 000892	$-9.3$	519.7	． 000915
2.5	$+5.0$	562.5	． 00009.42	－6．7	$55+3$	． 000067
2.0	$+7.5$	598.0	． 000990	$-4.7$	590.8	． 001023
1.5	＋10．0	635.4	． 0010.43	$-3.0$	629.6	． 001083
1.0	＋12．0	674.8	． 001100	$-1.3$	670.6	． 001146
0.5	＋14．5	716.3	． 001157	0.0 +0.7	75.4 .0	． 001215
0.0	＋15．7	760.0	． 001223	＋o． 7	760.0	． 001290

$760 \mathrm{~mm}=29.92 \mathrm{I} \mathrm{in} .=1013.3$ millibars．$\quad 1 \mathrm{~mm}=1.33322387$ nillibars． 1 bar $=1,000,000$ dynes；this value， sanctioned by International Meteorological Conferences，is $1,00,000$ times that sometimes used by physicists．
Smithsonian Tables．

TABLE 562. - Temperature Variation over Earth's Surface (Hann).

Latitude.	Temperatures ${ }^{\circ} \mathrm{C}$						Mean ocean temp.	Landsurface surfa
	Jan.	Apr.	July.	Oct.	Year.	Range.		
North pole	$-41.0$	$-28.0$	-1.0	-24.0	$-22.7$	40.0	-1.7	-
$+80^{\circ}$	$-32.2$	$-22.7$	$+2.0$	$-19.1$	-17.1	34.2	$-1.7$	20
70	$-26.3$	-14.0.	7.3	-9.3	$-10.7$	33.6	+0.7	53
60	$-16.1$	$-2.8$	14.1	+o. 3	$-1.1$	30.2	4.8	61
50	$-7.2$	+5.2	17.9	6.9	$+5.8$	25.1	7.9	58
40	$+5.5$	13.1	24.0	15.7	14.1	18.5	14.1	45
30	14.7	20.1	27.3	21.8	20.4	12.6	21.3	43.5
20	21.9	25.2	28.0	26.4	25.3	6.1	25.4	31.5
+10	25.8	27.2	27.0	26.9	26.8	1.4	27.2	24
Equator	26.5	26.6	25.7	26.5	26.3	0.9	27.1	22
-10	26.4	25.9	23.0	25.7	25.5	3.4	25.8	20
20	25.3	24.0	19.8	22.8	23.0	5.5	24.0	24
30	21.6	18.7	14.5	18.0	18.4	7.1	19.5	20
40	15.4	12.5	8.8	11.7	11.9	6.6	13.3	4
50	8.4	$5 \cdot 4$	3.0	4.8	5.4	$5 \cdot 4$	+6.4	2
60	3.2	-	$-9.3$	-	$-3.2$	12.5	0.0	$\bigcirc$
		二		二	-12.0 $(-20.6)$	19.8	-1.3	71
$\stackrel{80}{ }$	$(-4.3)$ $(-6.0)$	-	( -28.7 )	-	$(-20.6)$ $(-25.0)$	(24.4)	-	100
South pole	(-6.0)	-	(-33.0)	-	(-25.0)	(27.0)	-	(100)

## TABLE 563. - Temperature Variation with Depth (Land and Ocean).

Table illustrates temperature changes underground at moderate depths due to surface warming (read from plot for Tiflis, Lehrbuch der Meteorologie, Hann and Süring, 1915). Below $20-30 \mathrm{~m}$ (nearer the surface in tropics) there is no annual variation. Increase downwards at greater depths, $0.03 \pm^{\circ} \mathrm{C}$ per $m$ ( $\mathrm{I}^{\circ}$ per 35 m ) $1 . \mathrm{c}$. At Pittsburgh, $1524 \mathrm{~m}, 49.4^{\circ}$. 0294 per m ; Oberschlesien, $2003 \mathrm{~m}, 70^{\circ}$, . 0294 per m ; or W. Virginia, $2200 \mathrm{~m}, 70^{\circ}, .034^{\circ}$ per m (Van Orstrand). Mean value outflow heat from earth's center, o. ooooor $72 \mathrm{~g}-\mathrm{cal} / \mathrm{cm}^{2} / \mathrm{sec}$. or $54 \mathrm{~g}-\mathrm{cal} / \mathrm{cm}^{2} / \mathrm{year}$ ( 39 Laby). Open ocean temperatures: Greatest mean annual range (Schott) $40^{\circ} \mathrm{N}, 4.2^{\circ} \mathrm{C} ; 30^{\circ} \mathrm{S}, 5 . \mathrm{I}^{\circ}$; but $10^{\circ} \mathrm{N}$, only $2.2^{\circ}$; $50^{\circ} \mathrm{S}, 2.0^{\circ}$. Mean surface temp. whole ocean (Krümmel) $17.4^{\circ}$; all depths, $3.9^{\circ}$. Below I km nearly isothermal with depth. In tropics, surface $28^{\circ}$; at $183 \mathrm{~m}, 11^{\circ}$, $80 \%$ all water less than $4.4^{\circ}$. Deep-sea (bottom) temps. range $-0.5^{\circ}$ to $+2.6^{\circ}$. Soundings in S. Atlantic: $0 \mathrm{~km}, 18.9^{\circ} ; .25 \mathrm{~km}, 15^{\circ} ; .5 \mathrm{~km}, 8.3^{\circ} ; \mathrm{Ikm}, 3.3^{\circ} ; 3 \mathrm{~km}, \mathrm{I} .7^{\circ} ; 4.5 \mathrm{~km}, 0.6^{\circ}$.

$\underset{\mathrm{m}}{\text { Depth, }}$	Temperature, centigrade.											
	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
$\bigcirc$	$I$	4	10	14	21	29	32	32	24	16	9	
0. 5	4	7	9	13	18	23	26	28	24	18	12	6
1. 0	6	${ }_{8}$	8	12	15	20	24	26	23	18	14	10
1.5	9	8	9	11	14	18	21	23	22	18	15	12
2.0	11	10	10	11	13	16	19	21	21	18	16	14
3.0	14	12	12	11	13	14	16	17	18	18	17	15
4.0	15	13	12	12	12	13	14	16	16	17	17	16
5.0	15	14	13	13	13	13	14	14	15	16	16	16
6.0	15	14	14	14	14	14	14	14	14	15	15	15

Smithsonian Tables.

## GEOCHEMICAL DATA.

Eighty-three chemical elements ( 86 including Po, Ac and $\mathrm{UrXX}_{2}$ ) are found on the earth. Besides the eight occurring uncombined as gases, 23 may be found native, $\mathrm{Sb}, \mathrm{As}, \mathrm{Bi}, \mathrm{c}, \mathrm{Cu}, \mathrm{Au}, \mathrm{Ir}, \mathrm{Fe}, \mathrm{Pb}$ ?, $\mathrm{Hg}, \mathrm{Ni}, \mathrm{Os}, \mathrm{Pd}, \mathrm{Pt}, \mathrm{Rh}, \mathrm{Ru}$, $\mathrm{Se}, \mathrm{Ag}, \mathrm{S}, \mathrm{Ta}$ ?, $\mathrm{Te}, \mathrm{Sn}$ ?, Zn ?. Combined the elements form about $\mathbf{y}$ ooo known mineral species. Rocks are in general aggregates of these species. Some few (e. g., quartzite, limestone, etc.) consist of one specie. We have some knowledge of the earth to a depth of 10 miles. This portion may be divided into three parts : the innermost of crystalline or plutonic rocks, the middle, of sedimentary or fragmentary rocks, the outer of clays, gravels, etc. $93 \%$ of it is solid matter, $7 \%$ liquid, and the aimosphere amounts by weight to $0.03 \%$ of it. Besides the 9 major constituents of igneous rock (see 7 th col. of table) 3 are notable by their almost universal occurrence, $\mathrm{TiO}_{2}, \mathrm{P}_{2} \mathrm{O}_{5}$, and MnO . Ho , Gl , and Sc are also widely distributed.

The density of the earth as a whole is 5.52 (Burgess) ; continental surface, 2.67 and outer to miles of crust, 2.40 (Harkness). Computed from average chemical composition: outer ten miles as a whole, 2.77; northern continents 2.73 ; southern, 2.76; Atlantic basin, 2.83 ; Pacific basin, 2.88.

Data of Geochemistry, Clarke, Bul. 616, U. S. Geological Survey, 1916; Washington, J. Franklin. Inst. igo, p. 757, 1920.

Average Composition of Known Terrestrial Matter.

Atomic number and element.	Average composition.			Igneous rocks.	Average composition of lithosphere.					
	Lithosphere, $93 \%$	Hydrosphere, $7 \%$	Average including atmosphere.		Compound.	Igneous rocks, $95 \%$	Shale, $4 \%$	Sandstone,   0.75\%	Limestone, $0.25 \%$	Weighted average.
80	47.33	85.79	46.43	47.29	$\mathrm{SiO}_{2}$.	59.09	58.10	78.33	5.19	59.77
14 Si	27.74	-	27.77	28.02	$\mathrm{Al}_{2} \mathrm{O}_{3}$.	15.35	15.40	4.77	0.8 I	14.89
13 Al	7.85	-	8.14	7.96	$\mathrm{Fe}_{2} \mathrm{O}_{3}$	3.08	4.02	1.07	. 54	2.69
26 Fe	4.50	-	5.12	4.56	FeO	3.80	2.45	. 30	-	3.39
20 Ca	3.47	0.05	3.63	3.47	MgO	3.49	2.44	I. 16	7.89	3.74
12 Mg	2.24	0. 14	2.09	2.29	CaO	5.08	3.11	5.50	42.57	4.86
11 Na	2.46	1. 14	2.85	2.50	$\mathrm{Na}_{2} \mathrm{O}$	3.84	1.30	. 45	. 05	3.25
19 K	2.46	0.04	2.60	2.47	$\mathrm{K}_{2} \mathrm{O}$	3.13	3.24	1.31	. 33	2.98
1 H	0.22	10.67	0.127	0.16	$\mathrm{H}_{2} \mathrm{O}$	1.14	5.00	1.63	. 77	2.02
22 Ti	0.46	-	. 629	. 46	$\mathrm{TiO}_{2}$.	1.05	. 65	. 25	. 06	. 77
6 C	. 19	0.002	. 027	. 13	$\mathrm{ZrO}_{2}$.	0.039	-	-	-	. 02
17 Cl	. 06	2.07	. 055	. 063	$\mathrm{CO}_{2}$	. 102	2.63	5.03	41.54	. 70
35 Br	-	0.008	5	-	$\mathrm{P}_{2} \mathrm{O}_{5}$	. 30	. 17	. 08	. 04	. 28
15 P	12	-	130	. 13		. 053	-	-	. 09	. 10
16 S	. 12	. 09	. 052	. 103	$\mathrm{SO}_{3}$	-	. 64	. 07	.05	. 03
56 Ba	. 08	,	. 048	. 092	Cl .	. 056	-	-	. 02	. 06
25 Mn	. 08	-	. 096	. 078		. 078	-	-	-	. 09
38 Sr	. 02	-	. 018	. 033	BaO	. 055	. 05	.05	-	. 09
7 N	-	-	-	-	SrO....... .	. 022	-	-	-	. 04
9 Fl	. 10	-	. 077	. 10	MnO . . . . .	.125	-	-	. 05	. 09
etc.	. 50	-	. 111	. 091	NiO......	. 025	-	-	-	. 025
					$\mathrm{Cr}_{2} \mathrm{O}_{3} \ldots .$.	. 056	-	-	-	. 05
					$\mathrm{V}_{2} \mathrm{O}_{3} \ldots \ldots$.	. 032	-	-	-	. 025
					$\mathrm{Li}_{2} \mathrm{O} \ldots . .$.	. 007	-	-	-	. .or
					C.	-	. 80	-	-	. 03

Average Composition of Meteorites: The following figures give in succession the element, atomic number (bracketed), and the percentage amount in stony meteorites (Merrill, Mem. Nat. Acad. Sc. 14, p. 28, 1916). The "iron" meteorites contain a much larger percentage of iron and nickel, but there is a tendency to believe that with such meteorites the composition is altered by the volatilization or burning up of the other material in passing through the air. Note the greater abundance of elements of even atomic number (97.2 per cent).

O (8)	36.53	Fe (26)	23.32		(14)	18.03		(12)	13.60
S (16)	1.80	Ca (20)	1.72		(13)	1.53		(28)	I. 52
Na (II)	1.64	Cr (24)	0.32		(25)	0.23		(19)	0.17
C (6)	0. 15	Co (27)	0. 12		(22)	O. 11		(15)	O. II
H (1)	0.09	Cu (29)	0.01		(17)	0.09		(23)	tr.
Ru (44)	tr.	Pd (46)	tr.			tr.			tr.

## For Sea Level and Different Altitudes.

Calculated from U. S. Coast and Geodetic Survey formula, p. 134 of Special Publication No. 40 of that Bureau. $g=9.78039\left(\mathrm{I}+0.005294 \sin ^{2} \phi-0.000007 \sin ^{2} 2 \phi\right) \mathrm{m}$
$g=32.08783\left(\mathrm{I}+0.005294 \sin ^{2} . \phi-0.000007 \sin ^{2} 2 \phi\right) \mathrm{ft}$.

$\underset{\phi}{\text { Latitude }}$	$\stackrel{g}{\mathrm{~cm} / \mathrm{sec}^{2}}$	$\log \delta$	$\mathrm{ft} . / \mathrm{sec}^{2}$	$\begin{gathered} \text { Latitude } \\ \phi \end{gathered}$	$\stackrel{g}{\mathrm{~cm} / \mathrm{sec}^{2}}$	$\log g$	$\stackrel{\mathrm{ft} / / \mathrm{sec}^{2}}{ }$
$0^{\circ}$	978.039	2.9903562	32.0878	$50^{\circ}$	981.071	2.9917004	32.1873
5	978.0.0 .078	. 9903735	. 8891	51	- 159	. 9917394	. 1902
10	. 105	. 9904254	.0929	52	247 .336	-9917784	. 1931
12	. 262	. 990455	. 0951	53	- 336	. 9918177 .9018558	.1960 .1988
14	. 340	-990.489	. 0977	54	. 422	. 9918558	. 1988
15	${ }_{97} 8.38{ }_{4}$	2.9905094	32.0991	55	981.507	2.9918934	32. 2016
16	. 430	. 9905298	. 1007	56	. 592	-9919310	. 2044
17 18	. ${ }^{43} 8$	. 9905520	.1023 .1040	57 58	.675 .757	. 9919677.	.2071 .2098
19	.582 .585	. 9905985	-1057	59	. 839	. 9920403	. 2125
20	978641	2.9906234	32. 1076	60	981.918	2.9920752	32.2151
21	978	. 9906500	. 1095	61	. 995	-9921073	. 2176
22	. 763	. 9906775	. 11116	62	982.070	. 9921424	2201 .2225
23	. 825	. 9907050	. 1136 .1558	63 64	. 145	.9921756 .9922079	. 2225
24	. 892	-9907348	.1158	64	. 218	-9922079	. 2249
25	${ }_{978} 960$	2.9907649	32.1180	65	982.288	2.9922388	32.2272
26	979.030	. 9907960	. 1203	66	- 356	-9922689	. 22295
27 28	. 101	.9908275 .9908603	$\begin{array}{r}1227 \\ .1251 \\ \hline 1250\end{array}$	67 68	.422 .487	.992298 I .9923268	.2316 .2338
29	. 251	. 9908940	. 1276	69	. 549	. 9923542	. 2358
30	979.329	2.9909286	32.1302	70	982.608	2.9923803	32.2377
3 I	- 407	. 9909632	- 1327	71	. 665	- 9924055	. 2396
32	. 487	. 9909987	. 1353	72	. 720	- 9924298	. 2414
33	. 569	. 9910350	. 1380	73	.772 .822	-9924528	.2431 .2448
34	. 652	.9910718	. 1407	74	. 822	. 9924749	. 2448
35	979.737	2.9911095	32.1435	75	982.868	2.9924952	32.2463
36	. 822	. $991147^{2}$	. 1463	76	-912	. 99251478	- 24777
37 38	.908 .995	. 9911853	11491 .1520	77 78	.954 .992	. 99253332	.2491 .2503
39	980.083	. 9912628	-1549	79	983.027	. 9925655	. 2515
40	980.171	2.9913018	32.1578	80	983.059	2.9925796	32.2525
4 I	. 261	. 9913417	. 1607	81	. 089	. 9925929	. 2535
42	- 350	.9913812	. 1636	82	. 115	- 9926043	. 2544
43	. $\mathrm{}$.	.9914210	.1666 .1696	83 84	139 .160	.9926149 .9926242	.2552 .2558
44	. 531	-9914613	. 1696	84	. 160	. 9926242	. 2558
45	980.621	2.9915011	32.1725	85	983.178	2.992632 I	32.2564
46	. 711	-9915410	. 1755	86	. 191	-9926379	. 2569
478	. 802	.9915814	$\begin{array}{r}1785 \\ .1814 \\ \hline 1\end{array}$	87 88	. 203	. 9926432	.2572 .2575
49	. 988	. 9916606	. 1844	90	983.217	. 9926494	. 2577

To reduce $\log g$ (cm. per sec. per sec.) to $\log g(f t$. per sec. per sec.) add $\log 0.03280833=8.5159842$ - 10 .
The standard value of gravity, used in barometer reductions, etc., is 980.665 . It was adopted by the International Committee on Weights and Measures in 1gor. It corresponds nearly to latitude $45^{\circ}$ and sea-level.

Free-air Correction for Altitude.
$-0.0003086 \mathrm{~cm} / \mathrm{sec}^{2} / \mathrm{m}$ when altitude is in meters.
$-0.000003086 \mathrm{ft} / \mathrm{sec}^{2} / \mathrm{ft}$ when altitude is in feet.

Altitude.	Correction.	Altitude.	Correction.
200 m. 300	$-0.0617 \mathrm{~cm} / \mathrm{sec}^{2}$	200 ft . 300	-0.000617 $\mathrm{ft} . / \mathrm{sec}^{2}$
+ +0	-1234	300 400	. .001234
500	. 1543	500	. 001543
600	. 1852	600	. 001852
700 800	. 2160 .2469	700 800	. 002160
900	. 2777	900	. 002469

Smithsonian Tables.

The following more recent gravity determinations (Potsdam System) serve to show the accuracy which may be assumed for the values in Table 565, except for the three stations in the Arctic Ocean. The error in the observed gravity is probably not greater than $0.010 \mathrm{~cm} / \mathrm{sec}^{2}$, as the observations were made with the half-second invariable pendulum, using modern methods.

In recent years the Coast and Geodetic Survey has corrected the computed value of gravity for the effect of material above sea-level, the deficiency of matter in the oceans, the deficiency of density in the material below sea-level under the continents and the excess of density in the earth's crust under the ocean, in addition to the reduction for elevation. Such corrections make the computed values agree more closely with those observed. See special publication No. 40 of the U. S. Coast and Geodetic Survey entitled, "Investigations of Gravity and Isostasy," by William Bowie, 1917; also Special Publication No. Io of same bureau entitled, "Effect of Topography and Isostatic Compensation upon the Intensity of Gravity," by J. F. Hayford and William Bowie, 1912.


References: ( I ) Report 16th General Conference International Gcodetic Association, London and Cambridge, 1909, 3 d Vol. by Dr. E. Borráss, 1911; (2) U. S. Coast and Geodetic Survey, Special Publ. No. 40;* (3) U. S. Coast and Geodetic Survey, Report for 1897, Appendix 6.*
*For references (2) and (3), values were derived from comparative experiments with invariable pendulums, the value for Washington being taken as 980.112 . For the latter, Appendix 5 of the Coast and Geodetic Survey Report for 1901, and pages 25 and 244 of the 3 d vol. by Dr. E. Borráss in 1911 of the Report of the 16 th General Conference of the Intern. Geodetic Association, London and Cambridge, 1909. As a result of the adjustment of the net of gravity base stations throughout the world by the Central Bureau of the Intern. Gcodetic Association, the value of the Washington base station was changed to 980.112 .

Smithsonian Tables.

## ACCELERATION OF GRAVITY (g) IN THE UNITED STATES.

The following table is abridged from one for 219 stations given on pp. 50 to 52 , Special Publication No. $40, \mathrm{U}$. S. Coast and Geodetic Survey. The observed values depend on relative determinations and on adopted value of 980.112 for Washington (Coast and Geodetic Survey Office, see footnote, Table 566). There are also given terms necessary in reducing the theoretical value (Table 565) to the proper elevation (free-air) and to allow for topography and isostatic compensation by the Hayford method (see introductory note to Table 566).

To a certain extent, the greater the bulk of material below any station, the less its average density. This phenomenon is known as isostatic compensation. The depth below sea-level to which this compensation extends is about 96 km . Below this depth any mass element is subject to equal (fluid) pressure from all directions.


TABLE 568. - Length of Seconds Pendulum at Sea Level and for Different Latitudes.

	Length in cm	Log.	$\underset{\text { in }}{\text { Length }}$ inches.	Log.		Length in cm	Log.	$\begin{aligned} & \text { Length } \\ & \text { in } \\ & \text { inches. } \end{aligned}$	Log.
-	99.096r	1.996056	39.0141	1. 591222	50	99.4033	1.997401	39. 1351	1. 592566
5	. 1000	. 996074	. 0157	-591239	55	. 4475	. 997594	. 1525	- 592760
10	. 1119	.996126	. 0204	. 591292	60	. 4891	-997776	. 1689	-59294I
15	. 1310	. 996210	. 0279	. 591375	65	. 5266	-997939	. 1836	-593104
20	.1571	. 996324	. 0382	-591490	70	. 5590	. 998081	. 1964	- 593246
25	99.1894	I. 996465	39.0509	1.591631	75	99.5854	1. 998196	39.2068	1.593361
30	. 2268	. 996629	. 0656	-591794	80	. 6047	. 998280	. 2144	- 593446
35	. 2681	. 9968 ro	. 0819	. 591976	85	. 6168	-998332	. 2191	- 593498
40	. 3121	. 997002	. 0992	. 592168	90	. 6207	- 998350	. 2207	- 593515
45	. 3577	. 997201	. 1171	. 592367	-	-	-		

Calculated from Table 565 by the formula $l=g / \pi^{2}$. For each 100 ft . of elevation subtract 0.000953 cm or 0.000375 in . or 0.00003 I 3 ft . This table could also have been computed by either of the following formulae derived from the gravity formula at the top of Table 565.
$l=0.990961\left(\mathrm{I}+0.005294 \sin ^{2} \phi-0.000007 \sin ^{2} 2 \phi\right)$ meters
$l=0.99096 \mathbf{I}+0.005246 \sin ^{2} \phi-0.000007 \sin ^{2} 2 \phi$ meters
$l=39.014135\left(\mathrm{I}+0.005294 \sin ^{2} \phi-0.000007 \sin ^{2} 2 \phi\right)$ inches.
$l=39.014135+0.206535 \sin ^{2} \phi-0.000276 \sin ^{2} 2 \phi$ inches.

## TABLE 569. - Miscellaneous Geodetic Data.

Equatorial radius $\quad=a=6378206$ meter
Polar semi-diameter $\quad=b=6353.225$ miles. 3949.790 miles.

Reciprocal of flattening $=\frac{a}{a-b}=295.0$
Square of eccentricity $=c^{2}=\frac{a^{2}-b^{2}}{a^{2}}=0.006768658$


Difference between geographical and geocentric latitude $=\phi-\phi^{\prime}=$
$688.2242^{\prime \prime} \sin 2 \phi-1.1482^{\prime \prime} \sin 4 \phi+0.0026^{\prime \prime} \sin 6 \phi$.
Mean density of the earth $=5.5247 \pm 0.0013$ (Burgess Phys. Rev. 1902).
Continental surface density of the earth $=2.67$
Mean density outer ten miles of earth's crust $=2.40$
Harkness. See also page 423.
Constant of gravity, $6.66 \times 10^{-8} \mathrm{c} . g . s$. units.
Rigidity $=n=8.6 \times$ ro 11 c.g.s. units.
Viscosity $=e=10.9 \times$ 10 16 c.g.s. units (comparable to steel). $\}_{\text {A. }} \quad$ p. IO5, I914.
Moments of inertia of the earth; the principal moments being taken as $A, B$, and $C$, and $C$ the greatest:

$$
\begin{aligned}
\frac{C-A}{C} & =0.0032652 \mathrm{I}=\frac{1}{306.259} \\
C-A & =0.001064767 E a^{2} \\
A=B & =0.325029 E a^{2} \\
C & =0.326004 E a^{2}
\end{aligned}
$$

where $E$ is the mass of the earth and $a$ its equatorial semi-diameter.

[^59]
## TERRESTRIAL MAGNETISM.

## Secular Change of Declination.

Changes in the magnetic declination between 18 ro , the date of the earliest available observations, and 1920 . Based on tables in "Distribution of the Magnetic Declination in Alaska and Adjacent Regions in 19ro" and "Distribution of the Magnetic Declination in the United States for January 1, 1915," published by the United States Coast and Geodetic Survey. For a somewhat different set of stations, see 6th Revised Edition of the Smithsonian Physical Tables.

State.	Station.	1810	1820	1830	1840	1850	1860	1870	1880	1890	1900	1910	1920
		-	-	-	-	-	$\bigcirc$	-	-	-	-	-	-
Ala.	Ashlan	6.0 E	6.2 E	6. I E	5.9 E	5.6 E	5.2 E	4.7 E	4.1 E	3.4 E	3.0 E	2.9 E	3.0 E
	Tuscaloosa	7.15	7.3 E	$7 \cdot 3 \mathrm{E}$	7.2 E	6.9 E	6.6 E	6.15	5.5 E	4.8 E	4.4 E	4.4 E	4.6 E
Alas.	Sitk			-			28.7 E	29.0 E	29.3 E	29.5 E	29.7 E	30.2 E	30.4 E
		-					26.2 E	25.7 E	25.2 E	24.8 E	24.5 E	24.2 E	24.2 E
	St. Micha			-	-	-	20.4 E	20.1 E	19.6 E 24.7	19.0 E 23.1	18.3 E 22.1	17.5 E 21.5	17.2 E 2 L .0 E
Ariz.	Holb	-	-	-	-	13.5 E	13.7 E	13.8 E	13.6 E	13.4 E	13.5 E	I4. I E	14.5 E
	Prescot		-			13.3 E	13.6 E	13.7 E	13.7 E	13.6 E	13.7 E	14.4 E	14.9 E
Ark.	Augusta	7.7 E	7.9 E	8.0 E	8.0 E	7.8 E	7.5 E	7.15	6.5 E	5.9 E	5.5 E	5.6 E	5.8 E
	Danville		-	9.3 E	9.3 E	9.2 E	9.0 E	8.6 E	8.1 E	7.6 E	7.2 E	7.4 E	7.7 E
Cal.	Bagda	-	E	13.1 E	13.5 E	13.9 E	14.15	14.3 E	14.4 E	14.4 E	14.6 E	15.3 E	15.7 E
	Moja	12.4 E	12.9 E	13.4 E	13.8 E	14.2 E	14.4 E	14.6 E	14.9 E	14.9 E	15.15	15.8 E	16.3 E
	Modes	13.8 E	14.2 E	${ }^{1}+7.7 \mathrm{E}$	15.1 E	15.5 E	15.8 E	16.15	16. 1 E	16.2 E	16.6 E	17.3 E	17.7 E
	Redding	15.6 E	16.1 E	16.6 E	17.0 E	17.4 E	17.8 E	18.1 E	18.2 E	18.3 E	18.7 E	19.4 E	19.7 E
Colo.	Puel		-	-	-	13.7 E	13.8 E	13.7 E	13.5 E	13.0 E	12.8 E	13.3 E	13.7 E
	Ouray	-	-	-	-	15.0 E	15.2 E	15.2 E	15.0 E	14.6 E	14.6 E	15.15	15.5 E
Conn.	Hartio	5.1W	5.5W	6. IW	6.8 w	7.5W	8.1w	8.7 W	9.4 W	9.8w	10.4W	II. 2 W	12.1W
Del.	Dover	6w	1.9W	2.3 w	2.8w	3.4 W	4.0W	4.7W	5.3W	5.9W	6.5w	7.2W	8.0w
D. C.	Washingt	0.5 E	-0.3E	0.0	0.5 W	1.0w	1.7 W	2.4W	3.0w	3.6w	4. 2 W	4.9W	5.6w
Fla.	Miam	5.8 E	5.7 E	5.3 E	4.9 E	4.4 E	3.9 E	3.3 E	2.7 E	2.2 E	1.7 E	1.5 E	1.5E
	Bartow	5.5 E	5.4 F	5.2 E	4.8 E	4.4 E	3.8 E	3.2 E	2.6 E	2.1E	1.6 E	I. 4 E	1.3 E
	Jacksonville	5.0 E	5.0 E	4.9 E	4.6 E	4.2 E	3.6 E	3.0 E	2.4 E	1.8 E	1.3 E	I. 1 E	0.9 E
	Tallahassee	5.8 E	5.8 E	5.7 E	5.5 E	5.2 E	4.8 E	4.2 E	3.6 E	3.0 E	2.5 E	2.4 E	2.4 E
Ga.	Millen	4.9 E	+.8E	$+6 \mathrm{E}$	4.3 E	3.9 E	3.4 E	2.7 E	2.IE	1.5 E	0.9 E	0.7 E	0. 5 E
	Americus	5.9 E	6.0 E	5.9 E	5.6 E	5.2 E	4.7 E	4.1 E	3.5 E	2.9 E	2.4 E	2.2 E	2.2 E
Haw.	Honolu	-	-		-	9.4 E	9.4 E	9.5 E	9.8 E	10. 1 E	10.4 E	10.7 E	II. 1 E E
Idaho	Poca	-				17.7 E	17.9 E	18.0 E	17.9 E	17.8 E	17.9 E	18.5 E	18.8 E
	Boi		-		-	18.0 E	18.5 E	18.8 E	18.8 E	18.6 E	18.8 E	19.5 E	19.8 E
	Pierce.				20.2 E	20.6 E	21.0 E	21.2 E	21.1 E	21.2 E	21.4 E	22.0 E	22.2 E
III.	Kankak	6.6 E	6.8 E	6.8 E	6.6 E	6.3 E	5.8 E	$5 \cdot 3 \mathrm{E}$	4.8 E	4.1 E	$3 \cdot 5 \mathrm{E}$	3.3 E	3.1E
	Rushville	7.7 E	8.0 E	8. I E	8.0 E	7.8 E	7.4 E	7.0E	6.4 E	5.7 E	5.2 E	5.1 E	5.1E
lnd. Iowa	Indianap	5.0 E	5.1 E	5.0 E	$4 \cdot 7 \mathrm{E}$	4.3 E	3.8 E	3.3 E	2.7 E	2.1E	1.5 E	I. 1 E	0.9E
	Walker		8.9 E	9.1 E	9.1 E	8.9 E	8.6 E	8.2 E	7.5 E	6.8 E	6.2 E	6.2 E	6.2 E
Kans,	Sac City		10.4 E	10.7 E	10.8 E	10.8 E	10.5 E	10.2 E	9.6 E	8.8 E	8.4 E	8.6 E	8.6 E
	Ness Cit					11.5 E 12.4	11.4 E I 2.4 E	11.2E	10.8 E 11.9 E	10.2 E 11.3	9.9 E II. 2 E	10.15 II. 4 E	10.3 E 11.7 E
Ky.	Manches	3.5 E	3.6 E	3.4 E	3.15	12.4 E 2.8 E	12.4 E 2.2 E	12.2 E I .6 E	11.9 E 1.0 E	11.3 E 0.3 E	11.2 E 0.3 W	11.45 $0.6 W$	II. 7 E 0.8 W
	Louisville.	4.8 E	4.9 E	4.8 E	4.6 E	4.3 E	3.8 E	3.2 E	2.5 E	1.9E	1.5 E	1.3	1. 2 E
	Princeton	6.8 E	6.9 E	6.9 E	6.8 E	6.5 E	6.0 E	5.5 E	4.8 E	4.2 E	3.9 E	3.7 E	3.8 E
La.	Winfield.	8.6 E	8.9 E	9.0 E	9.0 E	8.9 E	8.6 E	8.2 E	7.6 E	7.1 E	6.8 E	7.0E	7.4 E
Me.	Eastport	13.9 W	14.7 W	15.5 W	16.3 W	17.2 W	$18.0 W$	18.5 W	18.8w	$19.0 W$	19.3 W	20.0W	21.0W
	Bango	1.8 W	12.4 W	13.2 W	13.9 W	14.7 W	15.4 W	15.9 W	16.4 W	16.7 W	17.16	17.8w	18.8w
	Portl	9.3 W	9.9W	10.6 w	11. 2 W	11.9 W	12.6 W	13.10	13.6 w	14.10	14.5 W	15.3 W	16.3 W
Md.	Baltim	0.9W	I. IW	I. 4 W	1.9W	2.4 W	3.1w	3.8w	4.4 W	5.0w	5.6w	6.3 W	7.0w
Mass.	Bosto	7.3W	7.8w	8.4W	9.1W	9.8 w	10. 5 W	II. OW	II. 5 W	12.0 W	12.6 W	13.4 W	14.4 W
	Pittsfield	5.7W	6.2 W	6.7 W	7.4W	8.1w	8.7 W	9.3W	10.0W	10.4 W	ir.ow	1 I .8 W	12.7 W
Mich.	Marque		6.7 E	6.7 E	6.5 E	6.1 E	5.5 E	4.7 E	3.8 E	3.0 E	2.4 E	2.15	1.7E
	Lapeer		2.6 E	2.4 E	2.1 E	1.6 E	1.0 E	0. 3 E	0. 5 W	1. 2 W	1.8w	2.3 W	2.8w
Minn.	Grand H	-	5.1 E	5.0 E	4.8 E	4.4 E	3.8 E	3.15	2.4 E	1.6 E	1.15	- 7 E	0.3 E
	Marshal		11.6 E	11.8 E	11.9 E	11.7 E	11.4 E	10.9 E	10.3 E	9.5 E	8.9 E	8.8 E	8.7 E
	Mibbing			10.7 E	11.7 E IO .8 E	11.6 E	11.4 E	II.OE	10.5 E	9.8 E	9.3 E	9.4 E	9.4 E
				10.7 E	10.8 E	10.6 E	10.3 E	9.7 E	9.0 E	8.2 E	7.6 E	7.7 E	7.5 E
Miss.	Meridia	7.3 E	7.4 E	7.5 E	7.4 E	13.1 7.2 E	12.8 E 6.9	12.3 E 6.5	11.7 E 5.9 E	11.0 E 5.2 E	$\begin{array}{r}10.4 \mathrm{E} \\ 4.8 \\ \hline\end{array}$	10.6 E 4.9 E	10.5 E
	Vicksbur	8.2 E	8.4 E	8.5 E	8.4 E	8.2 E	8.0 E	7.6 E	7.1E	6.4 E	6.0 E	6.15	6.4 E

TERRESTRIAL MAGNETISM (continued).
Secular Change of Declination (concluded).

State.	Station.	1810	1820	1830	1840	1850	1860	1870	1880	1890	1900	1910	1920
Mont.	Hermann	-	9.2 E	. 3 E	9.2 E	9.0 E	8.7 E	8.3 E	$7 \cdot 7 \mathrm{E}$	7.0 E	6.5 E	6.5 E	6.6 E
	Sedalia.	-	9.9 E	10.0 E	10.0 E	9.9 E	9.6 E	9.3 E	8.7 E	8.0 E	7.6 E	7.8	8.0 E
	Miles City			-	-	17.6 E	17.8 E	17.7 E	17.4 E	16.9 E	16.9 E	17.3 E	17.6 E
	Lewistown			-	19.5 E	19.8 E	20.1 E	20.18	19.9 E	19.6 E	19.6 E	20.1	20.4 E
Nebr.	Ov				20.4 E	20.8 E	21.15	21.2 E	2 I . IE	20.9 E	2I. X E	21.6 E	22.0 E
	Val	-		12.7 E	12.9 E	12	12.8 E 14.1	13.9 E	E	II. 4 E	$11.0{ }^{11}$	11.2	11.5 E I 3.1 E
	Alliance		-	-	-	15.4 E	15.4 E	15.3 E	14.8 E	14.3 E	14.2 E	14.5	I 4.8 E
Nev.	Elko				-	17.3 E	17.6 E	17.7 E	17.7 E	17.6 E	17.8 E	18.4	18.9 E
	Hawthor					16.2 E	16.6 E	16.8 E	17.0 E	17.0 E	17.3 E	18.0	18.4 E
N. H.	Hanover	7.1w	7.5W	8.2W	8.9W	9.7 W	10.5 W	II. IW	11.6w	12.0W	12.6 W	13.2 W	14.2W
N.	Trenton	2.8 W	3. IW	3.5W	4. W W	4.7 W	5.4 W	6.0W	6.7 W	7.2W	7.8w	8.6w	9.4W
N. M.	Santa Ro				-	12.7 E	12.8 E	12.7 E	12.4 E	12.0 E	11.9 E	12.5	12.9 E
	Laguna		- ${ }^{\text {W }}$	6	-	13.4 E	13.6 E	13.6 E	13.4 E	13.0 E	13.0 E	13.6 E	14.1 E
N. Y	Albany	5.7W	5.9W	6.4 w	7.0W	7.8w	8.5W	9. 2 W	10.0W	10.3W	10.9 W	II. 6 W	12.5W
	Elmira	2.2W	2.4W	2.8w	3.3W	4. OW	4.8w	5.4W	6.3W	7.0W	7.5w	8. 2 W	9.0W
	Buffal	O	I. IW	1. 4 W	1.9 W	2.4 W	3.2W	3.8w	4.7 W	5.4 W	5.9W	$6.5 W$	7.2W
N. C.	Newbe	1.	I. 6 E	1.3 E	0.8 E	0.3 E	0.3 W	I. OW	1.7W	2.3W	2.9W	3.4W	4.0w
	Greensboro	3.5 E	3.4 E	3.15	2.7 E	2.2 E	1. 6 E	1.0E	0.3 E	-. 3W	0.8w	I. 3W	1.8w
	Asheville	4.2 E	4.2 E	4.0 E	3.6 E	3.15	2.6 E	2.0 E	1.3E	-0.7E	0. 2 E	0.2 W	-. 5 W
N. D.	James			14.0 E	14.2 E	14.2 E	14.0 E	13.7 E	13.2 E	12.5 E	12.2 E	12.4 E	12.5 E
	Disma				-	16.4 E	16.3 E	16.15	15.6 E	15.0 E	14.7 E	15.0	15.2 E
Ohio	Canton	2.3	2 E	2.0 E	1.7 E	17.7 E 1.2 E	17.7 E 0.6 E	17.5 E 0.0	17.15 0.76	16.5 E I .3 W	16.3 E I .9 W	16.7 E 2.5 W	$\begin{array}{r} 16.9 \mathrm{E} \\ 3.1 \mathrm{~F} \end{array}$
	Urbana	4.4 E	4.4 E	4.3 E	4.0 E	3.5 E	3.0 E	2.4 E	1.8 E	I.IE	0.5 E	0.1 E	0.3W
Okla.	Okmulge			-	-	10.2 E	10	9.8 E	9.5 E	9.	8.7 E	8.9 E	9.2E
	Enid.	-		-	-	11.2 E	11.2E	II.OE	10.6 E	10.2 E	9.8 E	10.1	10.5 E
Ore.	Sumpt					19.3 E	19.7 E	20.0 E	20.2 E	20.2 E	20.4 E	21.1	2 I .4 E
	Detroit.	16.7 E	17.4 E	18.0 E	18.6 E	19.2 E	19.7 E	20.1 E	20.3 E	20.5 E	20.8 E	21.6 E	21.9E
Pa.	Wilkes-Ba	2.3W	2. 5 W	2.9W	3.4 W	4. Ow	4.7W	5.3W	6.0w	6.6w	7.2 W	8.0w	8.8w
	Lockhave	1. 4 W	1.5W	1.9W	2.4 W	3.0W	3.6w	4.3 W	5.0w	5.6w	6.3W	7.0	7.7W
	Indiana	0.6 E	0.5 E	0.3 E	O. IW	0.7 W	I. 3 W	$2.0 W$	2.6W	3.3 W	3.9W	4.6w	5.2W
P. R.	San Juan	-	. 5	-	-						1. OW	2.01	3.4W
R.I.	Newpor	6.6w	7.1w	7.7w	8.4 W	9.1W	9.8 w	10.3W	10.8w	11.3 W	11.9 W	12.7 W	13.7 W
S. C.	Marion	3.4 E	3.3 E	3.0 E	2.6 E	2.1 E	1.6 E	0.9 E	0.3 E	0.4 W	r.ow	1.4W	1.8w
	Aiken.	4.8 E	4.7 E	4.5 E	4.2 E	3.7 E	3.1 E	2.5 E	1.9 E	I. 3 E	0.7 E	0.45	O.IE
S. D.	Huron		-	-	13.2 E	13.2 E	13.0 E	12.7 E	12.3 E	11.7E	11.2 E	11.5 F	II.7E
	Murdo					15.0 E	14.9 E	14.7 E	14.3 E	13.7 E	13.4 E	13.7 E	13.9 E
	Rapi					16.4 E	16.4 E	16.3 E	15.8 E	15.3 E	15.1 E	15.4 E	15.7 E
Tenn.			3.8 E	3.6 E	$3 \cdot 3 \mathrm{E}$	2.9 E	2.4 E	1.8 E	I. I E	0.5 E	0.0	0.3W	0.5w
			6.5 E	6.4	6.2 E	5.9 E	5.5	4.9 E	4.3 E	3.7 E	3.2 E	3.0 E	2.9 E
Tex.		$7 \cdot 3 \mathrm{E}$		7.4	7.3 E	7.0 E			5.5 E	4.9 E	4.4	4.	4.4 E
	San An				9.	9.8		8.9 E 9.5	8.4 E 9.2 E	7.9 E	7.7 E 8.7 E	9.15	8.6 E 9.7 E
	Pecos		-	10.7 E	II.OE	III.IE	II.IE	II. 0 E	10.8 E	10.4 E	10.3 E	10.8 E	II. 3 E
	Wythev	2.9 E	2.9 E	2.7 E	2.4 E	2.0 E	1.4 E	0.8 E	O.1 E	0. 5 W	I. IW	1. 5 W	I.9W
Wash.	Wilson C		-	-	-	21.2 E	21.6 E	21.8 E	21.9 E	22.1 E	22:4E	23.0 E	23.3 E
	Seattle.	18.9 E	19.5 E	20. I E	20.7 E	2 I .2 E	21.6 E	22.0 E	22.2 E	22.45	22.8 E	23.5 F	23.8 E
W. Va. Wis.	Sutton	1.9 E	. 8 E	. 6 E	. 2 E	0.8 E	0.2 E	0.4 W	I.IW	1.8 W	2.4 W	2.9 W	3.4 W
	Sh		7.4 E	7.4 E	7.3 E	7.0 E	6.5 E	5.9 E	5.0 E	4.3 E	3.7 E	3.4 E	3.15
	Floy				-	11.2 E	11.3E	11.2 E I 6.8 E	10.9	10.4 E	10. 3	10.7	II. 1 E
Vt.	Rutla	6.6w		7.6w	8.3W	16.4 E $9 . \mathrm{W}$	16.7 E 0.8 W	16.8 E 10.5 W	16.7 E II .2 W	16.4 E	16.5 E $12 . \mathrm{WW}$	17.15 12.8 w	17.5 E I 3.8 W
Va.	Richmo	0.8 E	0.6 E	0.3 E	-.1w	0.6w	I. 2 W	1.8 w		3.	3.7 W	4.2	4.9 W
	Lynchbu	1. 6 E	1. 5 E	1.3 E	0.9 E	-0.5E	-.1w	0.7 W	I. 4 W	$2.0 W$	2.6w	3.15	3.7 W
	Stanle		8.9 E	9.0 E	9.0 E	8.8 E	8.4 E	7.8 E	7.1 E	6.3 E	5.8 E	5.6	5.4 E
Wyo.			-	-	-	15.8 E	16.0 E	16.0 E	15.8 E	15.3 E	15.2 E	15.7 E	16.0 E
	Green R	-	-	-	-	16.8 E	17.0 E	17.0 E	16.8 E	16.5 E	16.6 E	17.2 E	17.5 E

TABLE 571. - Dip or Inclination.
This table gives for the epoch January 1, 1915, the values of the magnetic dip, $I$, corresponding to the longitudes west of Greenwich in the heading and the north latitudes in the first column.

$\begin{aligned} & \lambda \\ & \phi \end{aligned}$	65	$\circ$ 70	$\circ$ 75	80	85	90	$\circ$ 95	100	105	$\circ$ 110	$\circ$ 115	120	$\circ$ 125
	-	-	-	-	-	-	-	-	-	-	-	-	-
19	-	-	50.4	49.4	48.5	47.2	46.1	45.1	44. 1	-	-	-	-
21	-	-	52.7	51.9	5 I .1	50.1	48.9	47.9	46.9	$\square$	-	-	-
23	-	-	55.1	54.2	53.7	52.8	51.7	50.4	49.7	48.7	-	-	-
25	-	-	57.6	56.8	56.1	55.2	54. 2	53.1	52.2	51.2	50.1	-	-
27	-	-	59.8	59.3	58.3	57.6	56.6	55.6	54.6	53.6	52.4	-	-
29	-	-	61.9	61.3	60.5	59.7	58.9	57.9	56.8	55.8	54.6	53.8	-
31	-	63.6	63.8	63.4	62.8	62.0	61.1	60.1	59.0	58.1	57.0	55.8	-
33	-	65.4	65.6	65.3	64.7	64.0	63.1	62.4	61.2	60.2	59.1	58.0	-
35	-	67.2	67.3	67.2	66.6	66.1	65.3	64.3	63.2	62.2	61.0	60.1	-
37	-	69.1	69.2	69.0	68.9	68.1	67.3	66.4	65.2	64.2	63.1	62.1	-
39	-	70.6	70.8	70.6	70.6	70.0	69.2	68.3	67.3	66.2	64.9	63.9	62.5
41	-	72.2	72.3	72.5	72.2	7 I .7	71.0	70.1	69.0	68.0	66.6	65.5	64.3
43		73.6	74.0	74.1	74.0	73.5	72.6	71.8	70.7	69.7	68.4	67.2	65.9
$+5$	74.3	74.9	75.4	75.5	75.5	75.2	74.5	73.5	72.4	71.3	70.2	69.0	67.8
47	75.6	76.3	76.8	76.9	76.9	77.0	76.1	75.1	74.2	72.9	71.7	70.5	69.5
49	76.5	77.4	78.2	78.5	78.5	78.3	$77 \cdot 7$	76.7	75.7	74.5	73.2	72.1	71.2

TABLE 572. - Secular Change of Dip.
Values of the magnetic dip for places designated by the north latitudes and longitudes west of Greenwich in the first two columns for January I of the years in the heading. The degrees are given in the third column and the minutes in the suceeding columns.

Latitude.	Longitude.		1855	1860	1865	1870	1875	$\pm 880$	1885	1890	1895	1900	1905	1910	1915
-	-	-	1	,	,	,	,	,	,	1	,	,	,	,	,
25	80	$55+$	32	32	31	29	26	23	18	18	22	31	43	73	108
25	110	$49+$	14	26	36	45	52	61	67	74	82	92	102	116	132
30	83	$60+$	66	70	73	74	73	67	57	51	53	63	78	101	126
30	100	$57+$	4 I	46	55	64	67	62	57	58	65	74	87	103	120
30	115	$54+$	47	56	63	65	64	66	69	73	79	85	90	96	102
35	80	$66+$	67	68	67	64	55	45	36	31	30	32	40	55	72
35	90	$65+$	67	61	53	46	39	34	28	27	27	29	38	51	66
35	105	$62+$	- ${ }_{56}$	-	61	47	45	39	39	39	43	49	57	65	72
35	120	$59+$	56	59	61	6 I	60	59	6 I	64	66	66	66	66	66
40	75	$71+$	82	82	78	73	65	55	43	33	27	24	24	29	36
40	90	$70+$	30	31	34	37	36	32	29	26	25	26	30	38	48
40	105	$67+$	-	-	-	56	53	51	51	51	52	56	60	63	66
40	120	$64+$	-	-	-	51	52	54	57	58	58	54	50	45	42
45	65	$74+$	118	112	103	94	82	70	59	48	37	30	26	22	18
45	75	$75+$	91	87	83	78	73	61	50	41	31	26	24	24	24
45	90	$74+$	86	86	86	84	82	80	73	68	66	64	65	68	72
45	105	$72+$	-	-	-	-	-	30	28	27	26	26	25	25	24
45	122.5	$68+$	45	44	47	50	50	49	47	44	40	37	33	27	21
49	92	$77+$	80	79	78	76	74	74	69	66	65	63	60	58	60
49	120	$72+$	-	27	25	24	23	22	21	20	20	19	17	12	06

Smithsonian Tables.

## TERRESTRIAL MAGNETISM（continued）．

TABLE 573．－Horizontal Intensity．
This table gives for the epoch January 1，1915，the horizontal intensity，$H$ ，expressed in cgs units，corresponding to the langitudes in the heading and the latitudes in the first column．

${ }_{\phi}^{\lambda}$	$65^{\circ}$	$70^{\circ}$	$75^{\circ}$	$80^{\circ}$	$85^{\circ}$	$90^{\circ}$	$95^{\circ}$	$100^{\circ}$	$105^{\circ}$	$115{ }^{\circ}$	$15^{\circ}$	${ }^{120^{\circ}}$	${ }^{12} 5^{\circ}$
19										＝	＝	二	＝
$\begin{aligned} & 21 \\ & 23 \\ & 25 \end{aligned}$	二	二	－200	${ }_{\text {－206 }}^{288}$	－ 28	$\begin{gathered} 3100 \\ .350 \\ \hline \end{gathered}$	$\begin{aligned} & 3150 \\ & .350 \\ & .308 \end{aligned}$	－ 32	：320	． 3 II	二	三	二
$\begin{aligned} & { }_{25}^{25} \end{aligned}$	－	－	：2734	：271	：286	：282	－288	${ }_{\text {－} 292}$	－ 295	． 296	${ }_{\text {－} 297}$	－	－
${ }_{3}^{29}$	二	． 237	${ }_{\text {－} 243}$	${ }_{-248}^{258}$	${ }_{-265}$	－272	${ }_{\text {－} 276}$	${ }_{\text {－}}^{\text {272 }}$	${ }_{-286}^{.286}$	$\stackrel{.287}{.279}$	${ }_{\text {－} 288}^{288}$	－288	－
3   $\begin{array}{c}31 \\ 35 \\ 35\end{array}$	二	－237	－ 212	－ 2.248	－ 24.	－288	－255	－272	－264		－ 28.281	－ 282	
35 37	－－	：2023	－217	${ }_{\text {－} 210}^{223}$	${ }_{213}^{232}$	${ }_{\text {：} 2225}^{235}$	${ }_{\text {：} 227}^{241}$	${ }_{-234}^{24}$	－241	${ }_{\text {－} 246}^{254}$	－250	${ }_{\text {－253 }}$	
	二	－178	${ }_{\text {－} 178}$	－ 186	－ 180	－ 1206							
$\begin{aligned} & 43 \\ & 43 \\ & 45 \end{aligned}$	二	－1．156	$\underset{.156}{1150}$	${ }_{\substack{165 \\ 1153}}^{181}$	${ }_{\substack{171 \\ 115}}^{1185}$	－154	－182	－184	－182	－ 2107	－214		240   .227   .216
${ }_{47}^{45}$	－ 1.150	－154	${ }_{\text {－139 }}^{153}$	${ }_{\text {－139 }}^{15}$	${ }_{145}^{155}$	－1420	－150	${ }_{\text {－154 }}^{\text {－174 }}$	${ }_{.185}^{185}$	－ 180	－ 187	2105	． 2120
49	135	． 130	． 126	． 123	． 123	． 129	． 136	． 14	．153	${ }^{164}$	．174	．182	r89

TABLE 574．－Secular Change of Horizontal Intensity．
Values of horizontal intensity，$H$ ，in cgs units for the places designated by the latitude and longitude in the first two columns for January I of the years in the heading．

Lat．	Long．	1860	1865	1870	1875	1880	1885	1890	1895	1900	1905	1910	1915
－	。												
25	80	． 3086	． 3073	． 3057	． 3042	． 3025	． 3008	． 2990	． 2970	． 2949	． 2917	． 2870	． 2810
25	110	－ 3216	－ 3202	－ 3187	． 3168	． 3153	． 3141	． 3128	． 3115	． 3102	． 3088	－ 3063	． 3030
30	83	． 2775	． 2768	． 2760	． 2752	． 2743	． 2732	． 2720	． 2705	． 2686	． 2658	． 2614	． 2560
30	100		－ 2978	． 2959	． 2941	． 2924	． 2908	． 2894	． 2882	． 2867	． 2847	． 2817	． 2780
30	115	． 2996	． 2981	－ 2966	－ 2949	． 2934	． 2922	－ 2910	． 2899	． 2890	． 2880	． 2863	． 2840
35	80	． 2367	． 2362	． 2357	． 2355	． 2351	． 2347	． 2340	． 2335	． 2325	． 2306	． 2272	． 2230
35	90			． 2460	． 2460	． 2459	． 2456	． 2453	． 2445	－ 2435	． 2418	． 2387	． 2350
35	105	－	－	－	． 2619	． 2607	． 2598	． 2589	． 2582	． 2572	． 2559	． 2537	． 2510
35	120		884	． 2727	． 2714	． 2702	． 2690	－ 2679	－ 2670	－ 2663	． 2657	－ 2645	． 2630
40	75	． 1876	． 1884	． 1895	． 1904	． 1912	． 1918	． 1923	－ 1924	－192I	． 19 II	． 1889	． 1860
40	90	． 2080	． 2076	． 2073	． 2070	． 2069	． 2068	． 2066	． 2062	－ 2054	． 2042	． 2019	． 1990
40	105			． 2269	． 2263	． 2258	． 2254	． 2250	． 2245	． 2237	． 2227		． 2190
40	120	－	－	． 2439	． 2430	． 2422	． 2416	． 2409	． 2402	． 2396	． 2390	． 238 r	． 2370
45	65	． 1504	． 1515	． 1527	．1543	． 1557	． 1568	． 1579	． 1590	． 1598	． 1600	． 1596	． 1590
45	75	． 1487	． 1490	． 1497	． 1508	． 1518	． 1529	． 1540	． 1548	． 1552	． 1552	－ 1543	． 1530
45	90	． 1648	． 1646	． 1644	． 1641	． 1639	． 1637	． 1636	． 1637	． 1636	． 1633	． 1620	． 1600
45	105	－	－	． 1895	． 1894	． 1893	． 1891	． 1888	． 1885	． 1881	． 1875	． 1864	． 1850
45	122.5	． 2183	． 2175	． 2166	． 2158	． 2148	． 2140	．2134	． 2130	． 2128	． 2128	． 2125	． 2120
49	92	． 1336	． 1334	． 1330	． 1327	． 1325	． 1324	． 1324	． 1327	． 1330	． 11336	． 1330	． 1320
49	120	． 1846	． 1845	． 1844	． 1841	． 1836	． 1831	． 1826	． 1824	． 1825	． 1825	． 1823	． 1820

Smithsonian Tables．

TERRESTRIAL MAGNETISM (continued).
TABLE 575.- Total Intensity.
This table gives for the epoch January 1, 1015, the values of the total intensity, $F$, expressed in cgs units corresponding to the longitudes in the heading and the latitudes in the first column.

$\stackrel{\lambda}{\phi}$	$65^{\circ}$	$70^{\circ}$	$75^{\circ}$	$80^{\circ}$	$85^{\circ}$	$90^{\circ}$	$95^{\circ}$	$100^{\circ}$	$105^{\circ}$	$110^{\circ}$	I15 ${ }^{\circ}$	$120^{\circ}$	$125^{\circ}$
			400	. 466	. 460	. 465	. 463	. 461	. 453	-	-	-	-
21	-	-	. 478	. 480	. 482	. 48.3	. 479	. 477	. 468	-	-	-	-
23	-	-	. 495	- 492	. 497	. 498	. 495	. 488	. 481	. 471	-	-	-
25	-	-	. 500	. 513	. 513	. 512	. 510	. 503	- 494	-484	.474	-	
27	-	-	. 525	. 531	. 525	. 524	. 523	. 517	. 509	. 499	. 487		
29	-	-	. 537	. 537	. 538	- 539	. 536	. 533	. 522	. 511	. 497	. 488	-
31	-	. 533	. 548	. 552	. 5.56	. 554	. 550	. 546	. 536	. 528	. 514	. 498	-
33	-	. 540	. 557	. 565	. 566	. 566	. 564	. 559	. 548	- 543	. 528	. 513	-
35	-	. 550	. 562	. 576	. 584	. 580	. 577	. 574	. 557	. 549	. 536	. 528	-
37	-	. 566	. 577	. 586	. 592	. 595	. 588	. 585	. 572	. 561	. 552	. 541	-
39	-	. 575	. 587	. 590	. 602	. 602	. 597	. 590	. 586	. 575	. 559	. 550	. 531
41	-	. 582	. 585	. 605	. 605	. 608	. 605	. 599	. 592	. 582	. 569	. 559	. 544
43	-	. 588	. 602	. 602	. 620	. 613	. 609	. 605	. 599	. 597	. 58 I	. 570	. 556
45	. 588	. 591	. 607	.611	.6r9	. 626	. 625	.613	.612	. 599	. 596	. 586	- 572
47	. 587	. 604	. 609	. 613	. 622	.631	. 624	. 618	. 617	. 612	. 596	. 584	. 577
49	. 578	. 596	. 616	. 617	. 617	. 636	. 638	. 626	. 619	. 614	. 602	. 592	. 587

TABLE 5.6. - Secular Change of Total Intensity.
Values of total intensity, $F$, in cgs units for places designated by the lat:tudes and longitudes in the first two columns for January I of the years in the heading.

Lat.	Long.	1855	1860	1865	1870	1875	1880	1885	1890	1895	1900	1905	1910	1915
-	-													
25	80	. 5476	. 5453	. 5427	. 5396	. 5363	. 5324	. 5285	. 5253	. 5227	. 5208	. 5178	. 5160	. 5131
25	110	. 4941	. 4946	. 4941	. 4933	. 4914	. 4906	. 4900	. 4889	. 4884	. 4879	. 4876	. 486 r	. 4836
30	83	. 5758	. 5755	. 5749	. 5735	. 5716	. 5678	. 5625	. 5584	. 5559	. 5549	. 5534	. 5510	. 5471
30	100	-	-	. 5608	. 5595	. 5567	. 5523	. 5479	. 5455	. 5450	. 5444	. 5441	. 5426	. 5399
30	115	. 5219	. 5216	. 5205	. 5182	. 5149	. 5129	.5114	. 5101	. 5094	. 5092	. 5086	. 5068	. 5041
35	80	.6101	. 6000	. 6075	. 60.48	. 6008	. 5955	. 5910	. 5873	. 5856	. 5838	. 5823	. 5796	. 5756
35	90	-		-	. 5993	. 5966	. 5946	. 5914	. 5904	. 5885	. 5868	. 5861	. 5834	. 5800
35	105	-			-	. 5720	. 5675	. 5656	. 5636	. 5634	. 5630	. 5627	. 5604	. 5567
35	120	$\overline{618}$	6103	-	. 5157	. 5428	. 5401	. 5383	. 5369	. 5356	. 5342	. 5330	. 5306	. 5276
40	75	. 6183	. 6193	. 6196	. 6204	. 6190	. 6160	. 6115	. 6077	. 6047	. 6022	. 5991	- 5948	. 5892
40	90	-	. 6236	. 62.40	. 62.46	. 6233	. 6209	. 6190	. 6169	. 6151	. 6133	.6118	. 6089	. 6052
40	105	-	-	-	. 6040	. 6011	. 5988	. 5978	. 5967	. 5958	. 5955	. 5944	. 5912	. 5871
40	120	$\overline{6161}$	6150	6	. 5739	. 5720	. 5709	. 5707	. 5692	. 5676	. 56.47	. 5621	. 558 x	. 5546
45	65	. 6161	. 6159	. 6140	. 6126	. 6107	. 6082	. 6052	. 6022	. 5994	. 5980	. 5962	. 5923	. 5875
45	75	. 6369	. 6347	. 6330	. 6320	. 6329	. 628 r	. 6247	. 6228	.6189	.6171	. 6157	.612I	. 6070
45	90	-	. 6552	. 65.44	. 6522	. 6495	. 6474	. 6415	. 6377	. 6366	. 6349	. 6344	. 6315	. 6264
45	105	6	60	-	-	-	. 6296	. 6276	. 6261	. 6245	. 6232	. 6206	. 6170	. 6118
45	122.5	. 6037	. 6019	. 6010	. 6000	. 5978	. 59.44	.5913	. 5883	. 5855	. 5837	. 5820	. 5784	. 5745
49	92	. 6616		. 6578	. 6540	. 6508	. 6498	. 6448	. 6421	. 6427	. 6424	. 6426	. 6380	. 6349
49	120	-	.612I	. 6107	. 6098	. 6083	. 6061	. 6039	. 6017	. 6010	. 6008	. 5997	. 5963	. 5922

Smithsonian Tables.

TERRESTRIAL MAGNETISM (continued).
TABLE 577. - Agonic Line.
The line of no declination appears to be still moving westward in the United States, but, as the line of no annual change is only a short distance to the west of it, it is probable that the extreme westerly position will soon be reached.

$\begin{aligned} & \text { Lat. } \\ & \text { N. } \end{aligned}$	Longitudes of the agonic line for the years					
	1800	1850	1875	1890	1905	1915
-	-	-	-	。	。	-
25	-	-	-	75.5	76.1	77.4
30	-	-	-	78.6	79.7	80.0
35	-	76.7	79.0	79.9	8 r .7	82.7
	75.2	77.3	79.7 80.6 8	80.5 82.2	82.8 83.5	84.4 84.0
7	75.3 76.7	77.7 78.3	80.6 81.3	82.2 82.6	83.5 83.6	8 84.1
9	76.9	78.7	81.6	82.2	83.6	83.9
40	77.0	79.3	81.6	82.7	84.0	84.3
I	77.9	80.4		82.8	84.6	85.1
2	79.1	8 r .0	82.6	83.7	84.8	85.3
3	79.4	81.2	83.1	84.3	85.0	85.4
4	79.8	-	83.3	84.9	85.5	85.8
	-	-	83.6	85.2	86.0	86.2
6	-	-	84.2	84.8	86.4	86.3
7	-	-	85.1	85.4	86.4	86.6
8	-	-	86.0	85.9 86.3	86.5	87.2
9	-	-	86.5	86.3	87.2	88.0

TABLE 578. - Mean Magnetic Character of Each Month in the Years 1906 to 1917.*
Means derived from daily magnetic characters based upon the following scale: $\circ$, no disturbance; I , moderate disturbance, and 2, large disturbance.

Year.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Year Mean.
1906	0.45	0.90	0.68	0.63	0. 58	0. 56	0.69	0.63	0.79	0.59	0.55	0.71	0.65
1907	0.69	0.83	0.58	0.55	0.72	0.67	0.67	0.66	0.68	0.71	0.61	0.53	0.66
1908	0.64	0.71	0.87	0.68	0.82	0.66	0.49	0.77	0.89	0.53	0.60	0.47	0.68
1909	0.76	0.63	0.79	0.49	0.59	0.54	0.53	0.65	0.70	0.69	0.49	0.58	0.62
1910	0.58	0.71	0.8I	0.68	0.72	0.53	0.55	0.81	0.80	0.96	0.77	0.76	0.72
I9II	0.78	0.89	0.78	0.76	0.70	0.53	0.61	0.53	0.50	0.59	0.49	0.45	0.63
1912	0.42	0.49	0.45	0.45	0.47	0.47	0.41	0.49	0.47	0.46	0.45	0.43	0.46
1913	0. 51	0.53	0.53	0.54	0.45	0.45	0.42	0.46	0.58	0.57	0.42	0.36	0.48
I914	0.46	0.50	0.62	0.50	0.37	0.52	0.61	0.6 I	0.53	0.64	0.60	0.46	0.54
1915	-. 53	0.64	0.68	0.61	0.58	0.61	0.47	0.60	0.59	0.77	0.82	0.54	0.62
I916	0.6 I	0.56	0.86	0.68	0.75	0.67	0.62	0.75	0.75	0.76	0.83	0.65	0.71
1917	0.8 I	0.69	0.59	0.63	0.66	0.55	0.61	0.85	0.61	0.74	0. 53	0.72	0.67

[^60]
## RECENT VALUES OF THE MAGNETIC ELEMENTS AT MAGNETIC OBSERVATORIES.

(Compiled by the Department of Terrestrial Magnetism, Carnegie Institution of Washington.)

Place.	Latitude.	Longitude.	$\begin{array}{\|c} \substack{\text { Middle } \\ \text { of } \\ \text { year. }} \end{array}$	Magnetic elements.				
				Declination.	Inclination.	Intensity (cgs units).		
						Hor'l.	Ver'l.	Total.
	。	- ,		-	-			
Pavlorsk	$59+1 \times$	3029 E	1907	I 09.9 E	7037.7 N	. 1650	. 4694	. 4975
Sitka	5703 N	r35 20 W	1916	3024.0 E	74 26.0 N	- 1558	. 5592	. 5805
Katharin	5650 N	6038 E	1907	$1035.5 \mathrm{E}^{\mathrm{E}}$	7052.2 N	- 1762	. 5081	$.5378$
Rude Sk	5551 N	1227 E	1915	8 44.3 W	6850.6 N	. 1726	. 4459	. 4781
Kasan	5547 N	49 O8 $\mathbf{E}$	1912	809.1 E	6917.3 N	. 1802	. 4765	. 5094
Eskdalemui	5519 N	3 I 2 W	1913	1754.9 W	6937.3 N	.1682	. 4528	. 4831
Stonyhur	$53 \mathrm{5I} \mathrm{~N}$	228 W	1915	1638.0 W	6841.4 N	. 1734	. 4446	. 4772
W'ilhelm	5332 N	8 o9 E	1911	II 28.2 W	6730.7 N	. 1811	. 4375	. 4735
Potsda	52 523 5	$1304 \underset{\text { E }}{ }$	1916	807.6 W	66 27.1 N	. 1870	. 4290	. 4680
Seddi	5217 N	13 or E	1916	808.9 W	66 24.1 N	. 1874	. 4289	. 4680
Irkutsk	5216 N	10416 E	1905	$158 . \mathrm{I} \mathrm{E}$	7025.0 N	. 2001	. 5625	. 5970
Ie Bilt	5206 N	5 II E	1914	1222.6 W	6646.5 N	. 1851	. 4314	. 4694
Valencia	5156 N	1015 W	1913	2019.6 W	68 09.2 N	. 1789	. 4463	. 4808
Clausth	5 r 48 N	1020 E	1905	1040.3 W			-	. 4808
Bochu	5129 N	714 E	1912	II 39.4 W		-	-	-
Ke	5 I 28 N	- 19 W	1915	15 18.4 W	6656.6 N	. 1846	. 4338	.4714
Green	5128 N	- 00	1916	1446.9 W	6652.8 N	. 1849	. 4332	. 4710
Uccle	5048 N	4215	1911	1313.9 W	66 o. I N	. 1902	. 4273	. 4677
Herms	5046 N	1614 E	1913	658.2 W		-		-
Beu	5021 N	1855 E	1908	6 I 2.3 W		-	-	
Falmo	5009 N	505 W	1912	17 24.2 W	6626.6 N	. 1880	. 4312	. 4704
Craco	50 05   50 0.4	1425   19   18	1912	750.3 W				
Val Ioy	$48+9$	19	1913 1913	$\begin{array}{r}5 \\ \mathrm{~S} \\ \mathrm{O} \\ 503.2 \mathrm{~W} \\ \hline\end{array}$	$\begin{array}{lll}64 & 18.4 \\ 64 & 38.9 \\ \mathrm{~N}\end{array}$			
Munich	4809 N	1137 E	I91I	923.8 W	63 06.2 N	. 2063	. 4068	. 4615
Kremsmün	4803 N	$1+08 \mathrm{E}$	1904	902.4 W	03	-	. 4068	-4561
OGyalla (Pesth)	4753 N	18 I 2 E	1912	617.5 W		2106	-	-
Odess	4626 N	30.46 E	1910	335.9 W	6226.9 N	. 2171	. 4161	.4693
Pola. . . . . . .	4452 N	1351	1915	739.0 W	60 05.1 N	. 2217	. 3853	
Agincourt (Torc	4347 N	79 16 W	1916	633.4 W	7443.5 N	. 1599	. 5854	. 6068
Perpi	4242 N	253 E	1910	1244.8 W		-	-	-
Tiflis	$41+3$ -	4448 E	1913	309.1 E	56 5r.I N	2522	. 3761	. 4528
Capodimonte	4052 N	14 I5 E	1911		56 11.7 N	-	-	-
Ebro (Tortosa	40.49 N	$\bigcirc 3 \mathrm{I}$ E	1914	1251.6 W	5747.5 N	. 2330	. 3698	. 4371
Baldw	40 I 2 N	825 W	1915	15 57.5 W	5834.7 N	. 2305	. 3773	. 4422
Chelten	3847 N	95 10 W	1909	834.0 E	6850.2 N	. 2167	. 5596	6001
San Fe	38 44   36	7650 W	1916	607.6 W	7049.9 N	. 1934	. 5662	. 5889
Tokio.	3020	6 12 W	1913	1451.7 W	54266 N	. 2494	- 3489	. 4289
Tucson.	35   32   15	139 115 10	1912 Ig 6	503.4 W	4853.7 N	. 3000	- 3438	. 4563
Lukiapang	3119 N	12102 E	1909	13 2	5926.1 N	. 2706	. 4582	. 5322
Dehra Dun	3019 N	7303 E	1914	218.8 E	45   44   44.9   22.9	- 3323	- 3391	. 4747
Helwan.	2952 N	3120 E	1913	217.0 W	4422.9 N 4047.6 N	. 3316	.3246 .2592	. 4641
Barrackpor	2246 N	8822 E	1914	-32.2 E	3058.9 N	. 3740	. 2246	
Hongkong	22 I8 N	II. 410 E	1916	013.8 W	3051.8 N	. 3716	. 2220	. 43838
Honolulu	2119 N	158 of W	r916	943.8 E	39 29.2 N	. 2896	. 2386	.4328 .3752
Toungo	1856	9627 E	1914	002.6 E	23 06.1 N	. 3898	. 1663	. 4238
Vieque	1838 N	7252 E	1915	- 40.6 E	24 2I.I N	. 3637	. 1669	. 4047
Antipol	1809 N	6526 W	1916	319.4 W	5056.7 N	. 2315	. 3470	. 4468
Kodaikánal	$\begin{array}{lll}14 & 30 \\ 10 & 14 \\ \\ 10 & \end{array}$	121 77 78 28	I9II	040.9 E	1618.2 N	. 3820	. 1117	. 3981
Batavia-Buitenz	6 II S	10649 E	1914	I 17.1 W	411.2 N	. 3757	. 0275	. 3767
St. Paul de Loan	848 S	1313 E	1912	0 47.3   16 12.3	3119.4 S	- 3668	. 2232	. 4229
Samoa (Apia)	1348 S	17146 W	1916	959.9 E	35 29 $294.2 .2 ~ S$	.2012 $\therefore 3536$	. 1437	. 2473
Mauritius	1855 S	4732 E	1907	929.7 W	5405.7 S	. 2533	. 3479	. 4319
Pilar	2006 S	5733 E	1916	947.6 W	5254.6 S	. 2320	. 3069	. 3847
Santiago	31 33 31	6353 W	1914	840.4 E	2541.5 S	. 2560	. 1232	. 2841
Christchurch	33 43 3	7042 17237 E	1909	1357.9 E	${ }^{29} 57.2 \mathrm{~S}$	-		-
New Year's Isl	$5.4+5 \mathrm{~S}+$	$6403 \mathrm{~W}+$	1906	1541.6 E	67 50 50	. 224 I	. 5546	. 5982
Orcadas.	6045 S	4232 W	1912	446.5 E	$5+26.0$ S	. 2534	. 3544	. 423 I

[^61]
## APPENDIX.

## DEFINITIONS OF UNITS.

ACTIVITY. Power or rate of doing work; unit, the watt.
AMPERE. Unit of electrical current. The international ampere, "which is one-tenth of the unit of current of the C. G. S. system of electro-magnetic units, and which is represented sufficiently well for practical use by the unvarying current which, when passed through a solution of nitrate of silver in water, and in accordance with accompanying specifications, deposits silver at the rate of 0.0011800 of a gram per second."
The ampere $=1$ coulomb per second $=1$ volt through I ohm $=10^{-1}$ E. M. U. $=3 \times$ $10^{9}$ E. S. U.*
Amperes $=$ volts $/$ ohms $=$ watts $/$ volts $=(\text { watts } / \text { ohms })^{\frac{1}{2}}$.
Amperes $\times$ volts $=$ amperes ${ }^{2} \times$ ohms $=$ watts.
ANGSTROM. Unit of wave-length $=10^{-10}$ meter.
ATMOSPHERE. Unit of pressure.
English normal $=14.7$ pounds per sq. in. $=29.929 \mathrm{in} .=760.18 \mathrm{~mm} \mathrm{Hg} .32^{\circ} \mathrm{F}$.
French " $=760 \mathrm{~mm}$ of $\mathrm{Hg} . \mathrm{o}^{\circ} \mathrm{C}=29.922 \mathrm{in} .=14.70 \mathrm{lbs}$. per sq. in.
BAR. A pressure of one dyne per $\mathrm{cm} .^{2}$ Meteorological "bar" $=10^{6} \mathrm{dynes} / \mathrm{cm}^{2}$.
BRITISH THERMAL UNIT. Heat required to raise one pound of water at its temperature of maximum density, $\mathrm{I}^{\circ} \mathrm{F} .=252$ gram-calories.
CALORIE. Small calorie $=$ gram-calorie $=$ therm $=$ quantity of heat required to raise one gram of water at its maximum density, one degree Centigrade.
Large calorie $=$ kilogram-calorie $=1000$ small calories $=$ one kilogram of water reised one degree Centigrade at the temperature of maximum density.
For conversion factors see page 197.
CANDLE, INTERNATIONAL. The international unit of candlepower maintained jointly by national laboratories of England, France and United States of America.
CARAT. The diamond carat standard in U. $\mathrm{S} .=200$ milligrams. Old standard $=205.3$ milligrams $=3.168$ grains.
The gold carat: pure gold is 24 carats; a carat is $1 / 24$ part.
CIRCULAR AREA. The square of the diameter $=1.2733 \times$ true area.
True area $=0.785398 \times$ circular area.
COULOMB. Unit of quantity. The international coulomb is the quantity of electricity transferred by a current of one international ampere in one second. $=10^{-1} \mathrm{E} . \mathrm{M} . \mathrm{U}$. $=3 \times 10^{\circ} \mathrm{E} . \mathrm{S} . \mathrm{U}$.
Coulombs $=$ (volts-seconds) $/$ ohms $=$ amperes $\times$ seconds.
CUBIT $=18$ inches.
DAY. Mean solar day $=1440$ minutes $=86400$ seconds $=1.0027379$ sidereal day.
Sidereal day $=86164.10$ mean solar seconds.
DIGIT. $3 / 4$ inch; $1 / 12$ the apparent diameter of the sun or moon.
DIOPTER. Unit of "power" of a lens. The number of diopters $=$ the reciprocal of the focal length in meters.
DYNE. C. G. S. unit of force $=$ that force which acting for one second on one gram produces a velocity of one cm per $\mathrm{sec}=1 \mathrm{I} \div$ gravity acceleration in $\mathrm{cm} / \mathrm{sec} . / \mathrm{sec}$.
Dynes $=$ wt. in $g \times$ acceleration of gravity in $\mathrm{cm} / \mathrm{sec} . / \mathrm{sec}$.
ELECTROCHEMICAL EQUIVALENT is the ratio of the mass in grams deposited in an electrolytic cell by an electrical current to the quantity of electricity.
ENERGY. Sce Erg.
ERG. C. G. S. unit of work and energy = one dyne acting through one centimeter.
For conversion factors see page 197.
FARAD. Unit of electrical capacity. The international farad is the capacity of a condenser charged to a potential of one international volt by one international coulomb of electricity $=10^{-9} \mathrm{E} . \mathrm{M} . \mathrm{U} .=9 \times 10^{11} \mathrm{E} . S . \mathrm{U}$.
The one-millionth part of a farad (microfarad) is more commonly used.
Farads $=$ coulombs/volts.

- E. M. U.=C. G. S. electromagnetic units. E. S. U.=C. G. S. electrostatic units.

FOOT-POUND. The work which will raise one pound one foot high. For conversion factors see page 197.
FOOT-POUNDALS. The English unit of work $=$ foot-pounds $/ \mathrm{g}$.
For conversion factors see page 197.
g. The acceleration produced by gravity.

GAUSS. A unit of intensity of magnetic field $=1$ E. M. U. $=\frac{1}{3} \times 10^{-10}$ E. S. U.
GRAM. See page 6 .
GRAM-CENTIMIETER. The gravitation unit of work $=\mathrm{g}$. ergs.
GRAM-MOLECULE $=x$ grams where $x=$ molecular weight of substance.
GRAVITATION CONSTANT $=G$ in formula $G \frac{m_{1} m_{2}}{\mathrm{r}^{2}}=666.07 \times 10^{-10} \mathrm{~cm}^{3} / \mathrm{gr} . \mathrm{sec}^{2}$
HEAT OF THE ELECTRIC CURRENT generated in a metallic circuit without selfinduction is proportional to the quantity of electricity which has passed in coulombs multiplied by the fall of potential in volts, or is equal to (coulombs $\times$ volts)/4.18I in small calories.
The heat in small or gram-calories per second $=\left(\right.$ amperes $^{2} \times$ ohms $) / 4 \cdot 18 \mathrm{I}=$ volts $^{2} /$ $($ ohms $\times 4.18 \mathrm{I})=($ volts $\times$ amperes $) / 4.18 \mathrm{I}=$ watts $/ 4.18 \mathrm{I}$.
HEAT. Absolute zero of heat $=-273.13^{\circ} \mathrm{C}$., $-459.6^{\circ}$ Fahrenheit, $-218.5^{\circ}$ Reaumur.
HEFNER UNIT. Photometric standard; see page 260.
HENRY. Unit of induction. It is "the induction in a circuit when the electromotive force induced in this circuit is one international volt, while the inducing current varies at the rate of one ampere per second." $=10^{9} \mathrm{E} . \mathrm{M} . \mathrm{U} .=1 / 9 \times 10^{-11} \mathrm{E} . \mathrm{S} . \mathrm{U}$.
HORSEPOWER. The English and American horsepower is defined by some authorities as 746 watts and by others as 550 foot-pounds per second. The continental horsepower is defined by some authorities as 736 watts and by others as 75 kilogrammeters per second. See page 197.
JOULE. Unit of work $=10^{7}$ ergs. For electrical Joule see p. xxxvii.
Joules $=\left(\right.$ volts $^{2} \times$ seconds $) /$ ohms $=$ watts $\times$ seconds $=$ amperes ${ }^{2} \times$ ohms $\times$ sec.
For conversion factors see page 197.
JOULE'S EQUIVALENT. The mechanical equivalent of heat $=4.185 \times 10^{7}$ ergs. See page 197.
KILODYNE. 1000 dynes. About i gram.
KINETIC ENERGY in ergs $=$ grams $\times(\mathrm{cm} . / \mathrm{sec} .)^{2} / 2$.
LITER. See page 6.
LUMEN. Unit of flux of light-candles divided by solid angles.
MEGABAR. Unit of pressure $=1000000$ bars $=0.987$ atmospheres.
MEGADYNE. One million dynes. About one kilogram.
METER. See page 6.
METER CANDLE. The intensity of lumination due to standard candle distant one meter.
MHO. The unit of electrical conductivity. It is the reciprocal of the ohm.
MICRO. A prefix indicating the millionth part.
MICROFARAD. One-millionth of a farad, the ordinary measure of electrostatic capacity.
MICRON. $(\mu)=$ one-millionth of a meter.
MIL. One-thousandth of an inch.
MILE. See pages 5, 6.
MILE, NAUTICAL or GEOGRAPHICAL $=6080.204$ feet.
MILLI-. A prefix denoting the thousandth part.
MONTH. The anomalistic month = time of revolution of the moon from one perigee to another $=27.55460$ days.
The nodical month $=$ draconitic month $=$ time of revolution from a node to the same node again $=27.21222$ days.
The sidereal month $=$ the time of revolution referred to the stars $=27.32166$ days (mean value), but varies by about three hours on account of the eccentricity of the orbit and "perturbations."
The synodic month $=$ the revolution from one new moon to another $=29.5306$ days (mean value) $=$ the ordinary month. It varies by about 1.3 hours.

OHM. Unit of electrical resistance. The international ohm is based upon the ohm equal to $10^{\circ}$ units of resistance of the C. G. S. system of electromagnetic units, and " is represented by the resistance offered to an unvarying electric current by a column of mercury, at the temperature of melting ice, 14.4521 grams in mass, of a constant cross section and of the length of 106.3 centimeters." $=10^{\circ}$ E. M. U. $=1 / 9 \times 10^{-11}$ E. S. U.
International ohm $=1.01367$ B. A. ohms $=1.06292$ Siemens' ohms.
B. A. ohm $=0.98651$ international ohms.

Siemens' ohm $=0.94080$ international ohms.
PENTANE CANDLE. Photometric standard. See page 260.
$\mathrm{PI}=\pi=$ ratio of the circumference of a circle to the diameter $=3.14159265359$.
POUNDAL. The British unit of force. The force which will in one second impart a velocity of one foot per second to a mass of one pound.
RADIAN $=180^{\circ} / \pi=57.29578^{\circ}=57^{\circ} 17^{\prime} 45^{\prime \prime}=206265^{\prime \prime}$.
SECOHM. A unit of self-induction $=1$ second $\times 1$ ohm.
THERM = small calorie $=$ (obsolete).
THERMAL UNIT, BRITISH = the quantity of heat required to warm one pound of water at its temperature of maximum density one degree Fahrenheit $=252$ gramcalories.
VOLT. The unit of electromotive force (E. M. F.). The international volt is "the electromotive force that, steadily applied to a conductor whose resistance is one international ohm, will produce a current of one international ampere. The value of the E. M. F. of the Weston Normal cell is taken as I.OI83 international volts at $20^{\circ} \mathrm{C} .=10^{8}$ E. M. U. $=1 / 300$ E. S. U. See page 197.
VOLT-AMPERE. Equivalent to Watt/Power factor.
WATT. The unit of electrical power $=10^{7}$ units of power in the C. G. S. system. It is represented sufficiently well for practical use by the work done at the rate of one Joule per second.
Watts $=$ volts $\times$ amperes $=$ amperes $^{2} \times$ ohms $=$ volts ${ }^{2} /$ ohms (direct current or alternating current with no phase difference).
For conversion factors see page 197.
Watts $\times$ seconds $=$ Joules.
WEBER. A name formerly given to the coulomb.
WORK in ergs $=$ dynes $\times \mathrm{cm}$. Kinetic energy in ergs $=$ grams $\times(\mathrm{cm} . / \mathrm{sec} .)^{3} / \mathbf{2}$.
YEAR. See page 414.
Anomalistic year $=365$ days, 6 hours, 13 minutes, 48 seconds.
Sidereal " $=365$ " 6 ". $9 \quad$ " 9.314 "
Ordinary " $=365$ " 5 " $48 \quad 446+$
Tropical " same as the ordinary year.

## Table 580.

## TEMPERATURE MEASUREMENTS.

The ideal standard temperature scale (Kelvin's thermodynamic scale, see introduction, p. xxxiv) is independent of the properties of any substance, and would be indicated by a gas thermometer using a perfect gas. The scale indicated by any actual gas can be corrected if the departure of that gas from a perfect gas be known (see Table 206, p. 195, - also Buckingham, Bull. Bur. Standards, 3, 237). The thermodynamic correction of the constant-pressure scale at any temperature is very nearly proportional to the constant pressure at which the gas is kept and that for the constant-volume scale is approximately proportional to the initial pressure at the ice-point. The gas thermometer has been carried up to the melting point of palladium, $1822^{\circ} \mathrm{K}$ ( $1549^{\circ} \mathrm{C}$ ) (Day and Sosman, Am. J. Sc., 29, p. 93, 1910).

A proposed international agreement divides the temperature scale into three intervals. The first interval, $-40^{\circ}$ to $450^{\circ} \mathrm{C}$, uses the platinum resistance thermometer calibrated at the melting point of ice, $0^{\circ} \mathrm{C}$, at saturated steam, $100^{\circ} \mathrm{C}$, and sulphur vapor, $444.6^{\circ} \mathrm{C}$, all under standard atmospheric pressure. Points on the temperature scale are interpolated by the Callendar formulæ:

$$
P_{t}=\frac{R_{t}-R_{0}}{R_{100}-R_{0}} 100 \quad \text { or } \quad t-P t=\delta\left\{\frac{t}{100}-\mathbf{I}\right\} \frac{t}{100}
$$

where $t$ is the temperature, R , the resistance, Pt , the platinum temperature, and $\delta$, a constant.
Temperatures in the second interval are measured by a standard platinum-platinum-rhodium couple calibrated say at the freezing points of zinc, $419.4^{\circ} \mathrm{C}$, cadmium, $320.9^{\circ} \mathrm{C}$, antimony, $630^{\circ} \mathrm{C}$, and copper free from oxide, $1083^{\circ} \mathrm{C}$. These points furnish constants for the formula, $\mathrm{e}=\mathrm{a}+\mathrm{bt}+\mathrm{ct}^{2}$ (see Sosman, Am. J. Sc., 30, p. 1, 1910).

For the region above $1100^{\circ} \mathrm{C}$ most experimenters base their results upon certain radiation laws. These laws all apply to a black body and the temperature of a non-black body cannot be determined directly without correction for its emissive power. For standard points the melting points of gold, $1336^{\circ} \mathrm{K}$ and palladium $1822^{\circ} \mathrm{K}$, are convenient,

Above $1336^{\circ} \mathrm{K}$ the optical pyrometer is generally used with a calibration based upon Wien's equation

$$
\mathrm{J}_{\lambda}=\mathrm{c}_{1} \lambda^{-5} \mathrm{e}^{-\frac{\mathrm{c}_{2}}{\lambda \mathrm{~T}}}
$$

By comparing the brightness of a black body at two temperatures and applying this equation, the following formula results:

$$
\log \mathrm{R}=\frac{\mathrm{c}_{2} \log \mathrm{e}}{\lambda}\left\{\frac{\mathrm{I}}{\mathrm{~T}_{2}}-\frac{\mathrm{I}}{\mathrm{~T}_{1}}\right\}
$$

where $R$ is the ratio of the brightnesses, $\lambda$, the wave-length used, $T_{1}$ and $T_{2}$, the two temperatures, and $c_{2}$ $=14.256 \mu$ deg. Thus if R is measured and one temperature known, the other can be calculated.

A table of the standard fixed points is given in Table 207, p. 195. With these determined there comes the difficulty of maintaining this temperature scale both from the standpoint of the standardizing laboratory and the man using the temperature scale in the practical field. In the region of the platinum-resistance thermometer and the thermocouple, standards of either can be obtained from the standardizing laboratories and used in checking up the secondary instruments. It is not very difficult to actually check up a resistance thermometer at any one of the standard points in the region $-40^{\circ} \mathrm{C}$ to $+450^{\circ} \mathrm{C}$. It is a little more difficult to check the thermocouple in the region $4.50^{\circ} \mathrm{C}$ to $1100^{\circ} \mathrm{C}$. Most of the standard fixed points in this region are given by melting points of metals that must be melted so as to avoid oxidation. This requires a neutral atmosphere, or that the sample be covered with some flux that will protect it.

Both the gold and the palladium, used to calibrate the scale above $1300^{\circ} \mathrm{K}$, can be successfully melted in a platinum wound black-body furnace. The whole operation can be carried out in the open air, requiring neither a vacuum nor neutral atmosphere within the furnace. But because of the trouble necessitated by a black-body comparison. much time can be saved if a tungsten lamp with filament of suitable size is standardized so as to have the same brightness for a particular part of the filament, when observed with the optical pyrometer, as the standard black-body furnace for one or more definite temperatures. With such lamps properly calibrated, any one may maintain his own temperature scale for years, if the calibration does not extend higher than that of the palladium point and the standard lamp is not accidentally heated to a higher temperature.
(Soc 1919 Report of Standards Committee on Pyrometry, Forsythe, J. Opt. Soc. of America, 4, p. 205, 1920; The Measurement of High Temperatures, Burgess, Le Chatelier, 1912, The Disappearing Filament Type of Optical Pyrometer, Forsythe, Tr. Faraday Soc., 1919.)

The following additional adsorptio- tables (see page 407, Table 525) may be of use in the "cleaning-up of vacua." See Dushman, General Electric Review, 24, 58, 1921, Methods for the Production and Measwement of High Vacua.

## TABLE 581. - Adsorption of H and He by Cocoanut Charcoal at the temperature of liquid air.

For the preparation of activated charcoal see Dushman, $1 . c .5 \mathrm{~g}$ of charcoal at the temperature of liquid qir will clean up the residual gases in a volume of $3000 \mathrm{~cm}^{3}$ from an initial pressure of I bar ( $\mathrm{bar}=1 \mathrm{dyne} / \mathrm{cm}^{2}$ ) to less than 0.0005 bars at the temperature of liquid air. 5 grams cleaned up $3000 \mathrm{~cm}^{3}$ of H from an initial pressure at room temperature of o.or bar to a final pressure at liquid air temperature of less than 0.0004 bar. The clean-up is rapid at first but then slower taking about an hour to reach equilibrium. The figures of the following table are from Firth, Z. Phys. Ch. 74, 129, 1910; 86, 294, 1913. p is in mm of Hg ; $\mathrm{v}=$ volume adsorbed per g of charcoal reduced to $0^{\circ} \mathrm{C}$ and 76 cm Hg .

Hydrogen				Helium	
$\mathbf{p}$	v	p	v	p	v
9	21.5	90	59.3	120	0.337
17	32.1	126	63.1	171	.465
30	46.5	186	69.2	235	.81
5 I	53.3	245	76.0	428	1.17
59	56.0			705	1.84

TABLE 582. - Adsorption by Ch rcoal at Low Pressures and temperatures.
Extrapolated by Dushman from Claude, see l. c., and C.R. 158, 86I, 1914. Amounts occluded in terms of volume measured at I bar, $0^{\circ} \mathrm{C}$. e.g. at a pressure of 0.0 I bar, I g charcoal would clean $\mathrm{up} \mathrm{I} 30 \mathrm{~cm}^{3}$ hydrogen or $18,000 \mathrm{~cm}^{8}$ nitrogen from a pressure of I bar down to 0.01 bar.

$\mathrm{H}, \mathrm{T}=77.6^{\circ} \mathrm{K}$		$\mathrm{N}, \mathrm{T}=90.60 \mathrm{~K}$	
$\mathrm{p}=8$.	$\mathrm{v}=106,000$.	$p=5.3$	$\mathrm{v}=9,500,000$.
I.	13,250		I,800,000
O.I	I,325	0.0	180,000
0.01	133	0.01	18,000
0.001	13	0.001	1,800

## TABLE 583. - Adsorption of Hydrogen by Palladium Black.

Palladium, heated, allows hydrogen to pass through it freely; the gas is first adsorbed and then diffuses through. For the preparation of palladium black, see reference at top of page for Dushman. The following data are from Valentiner, Verh. Deutsch. Phys. Ges., 3, 1003, 19II. Different samples vary greatly. P gives the pressure in mm of Hg , and V the volume at standard pressure and temperature per g of palladium black.

$-190^{\circ} \mathrm{C}: \mathrm{P}=$	$\begin{aligned} & .0005 \\ & 2.05 \end{aligned}$	$\begin{aligned} & .001 \\ & 3.06 \end{aligned}$	$\begin{gathered} .002 \\ 33.0 \end{gathered}$	$\begin{gathered} .005 \\ 40.0 \end{gathered}$	$47.2^{.012}$	$\underset{63.0}{.025}$
$+20^{\circ} \mathrm{C}: \begin{aligned} & \mathrm{P}= \\ & \mathrm{V}=\end{aligned}$	$\begin{aligned} & .001 \\ & 0.10 \end{aligned}$	$\begin{gathered} .005 \\ 0.26 \end{gathered}$	$\begin{aligned} & .037 \\ & 0.40 \end{aligned}$	$\begin{aligned} & .110 \\ & 0.52 \end{aligned}$	.315 0.70	.76 0.92

## Smithsonian Tableg.

## INDEX.




page	Pag
173-174	Crystals: diffracting units, X-rays
correction to barometer . . . . . . . 143	clasticity
rcel unlt . . . . . . . . . . . . . . . . 260	refraction indices: alums, quartz
hode rays: . . . . . . . . . . . . . . 386	fluorite, spar
energy of - . . . . . . . 386	rock-salt, silvine . . . 27
penetration depths	refr. indices: mine:als, isotropic . . . . 28
X-rays, generative efticiency for - 387	
standard, roltages	biaxal
eston normal . . . . . . . . xil	( + ) . 286, 28
Weston portahle . . . . . . . xlili	miscel. uniaxial
voltaic, composition, voitages . . . . 312-313	ial
ntipoise . . . . . . . . . . . . . . . . 155	Cubes of numbers
Characteristic X-rays . . . . . . . . . . 387-392	Cubical expansion coefficients: gases
Charcoal, adsorption by . . . . . . . . . . 407	liquids
Charge, elementary electrical . . . . . . . . . 408	solids
Chemical enerky data . . . . . . . . . .24i-246	Current measures: absolute units
Coals, heats of combustion . . . . . . . . . . 242	
Collision frequencies, molecules . . . . . . . . 399	adium standard . . . . . . . . . . . 398
Colloids . . . . . . . . . . . . . . .406-407	point and constant, magnetic . . . . . . 372
Color: eye sensitiveness to . . . . . . . . .256-258	Cutting-tool lubricants . . . . . . . . . . . . 154
indices of various stars . . . . . . . . . 411	Cylindrical harmonics (Bessel) ist and and deg. . 66
lights, of various . . . . . . . . . ${ }^{26 \mathrm{I}}$	general formulæ . 68
ens . . . . . . . . 306-307	
complimentary colors . . . . . 307	Day, length of sidereal
	Declination, magnetic: secular change . . . . . $4^{28}$
Combination, heats of Pastion, heats of: carion and misc . . ${ }^{\text {a }}$ - 245-246	Degree on earth's surface, length of . . . . . . ${ }^{\text {a }}$ (16
combustion, heats of: carbon and misc. cpdi . . . 241	
explosires . . . . 243-244	Densities in air, reduction to vacuo
	Densitics: air moist, values of $\mathrm{h} / 760 \cdots$. ${ }^{\text {a }}$, i33-135
Compressibility: $\underset{\text { liquids }}{\text { gases }}$. . . . . . .i04, 128-132	alcohol ethyl aqueous . .
$\underset{\text { solids }}{\text { liquids }}$.. . . . . . . . . . . 107	methyl aqueous . . . . . . . 126
ctrical: see resistivity $\cdots 322-332$	alloys ${ }_{\text {aqueous solutions }}$. . . . . . . . ${ }^{114}$
allny . . . . . . $327-328$	aqueous solutions . . . . . 122, 159-163
ic: . . . . . . . 346 -352	cane sugar, aqueous . . . . . . . . 109
equivatent . . . . . . . 349	castor oil . . . . . . . . . . ${ }_{156}$
ionic . . . . . . . . . 352	earth . . . . . . . . . . . . ${ }_{427}$
sp. molecu.ar . . . . . . 347	clements chemical . . . . . . . . . 110
limiting values . . . 348	gases . . . . . . . . . . . . . 127
Conductivity, thermal: alloys, metals. coefs. . . . 348	glycerol, aqucous . . . . . . . . . 156
Conductivity, thermal: alloys, metals . . . . . 213	inorganic compounds . . . . . . . . 201
building materials . . . 215 earth	insulators, thermal . . . . . . 215, 216
earth . . . . . . . . 422	${ }_{\text {mercury }}$ liquids 10 $^{\circ}$ + $0^{\circ}+360^{\circ}$ - . . . 117
high temp. 217 254	${ }_{\text {minerals }}$ mercury $-10^{\circ}$ to $+360^{\circ} \mathrm{C}$. . . . . 121
$\text { insulators } \because \because 214-216$	organic compounds . . . . . . . . 115
mp. . . . 214	${ }_{\text {planets }} \mathbf{0}$. . . . . . . . . . . . . ${ }^{203}$
liquids . . . . . . . 217	solids various . . . . . . . . . . 413
metals, high temp. . . . . 213	
$\underset{\text { salt solutions . . . . . } 216}{\text { sat }}$	sucrose, aqueous . . . . . . . . 156
water apart in ese . . . . . 216	sulphuric acid, aqueous . . . . . . . 126
Cones, number and distance apart in eye . . . . . 258	tin, liquid; tin-lead eutectic
Constants: mathematical ${ }_{\text {miscellaneous, }}$ itcmic, etc. . . . . I4	water, $0^{\circ}$ to $4 \mathrm{r}^{\circ} \mathrm{C},-10^{\circ}$ to $250^{\circ} \mathrm{C} .118$, 120
rad!ation, $\sigma, C_{1}, C_{2} . . . . . . .{ }_{247}$	Dcvelopers and resolving power of piotor 95-98, 112
Contact difference of potential . . . $314,31 \dot{6}^{247}$	Diamagnetic properties power of photo. plate . . 263
Contrast, eye sensitiveness to	
Conrection, cooling by . . . . . . . . $251-255$	Diameter molecules . . . . . . 372
pressure effect . . . 251 -252	some organic molecules . . . . . 400
: general formulae, sce introduction	constant: (sp. inductive capacity) . 356-360
Baumé to densities . . . . . rog	crystals ${ }^{\text {a }}$. . . . . ${ }^{\text {a }} 361$
horse-power . . . . . . . . 197	gases $\mathrm{f}(\mathrm{t}, \mathrm{p}) \cdot . . . . \cdot 356-357$
Cooling of hodies work-units . . . . . . . . 197	liquids liquefled . . . . . . . . 357
	liquefled gases . . . . . . . 359
Copper: mechanical properties $\begin{gathered}\text { wire, altemating current resistance } \cdot .82-83\end{gathered}$	solids standard colutions . . . . ${ }^{\text {a }}$. 360
wire tables, English units . . . . . 3444	
metric units . . . . . . 336	Ijielectrics, volume and surface resistances) . 353-355
Corpuscle (Thomson) . . . . . . . . . . . 339	Differentials, formulae . . . . . . . . . 12
	Diffusion: aqueous solutions into water $\quad$. ${ }^{\text {a }}$, 166
Cosines, circular, natural, ( ${ }^{\prime}$ ) . . . . . . . ${ }^{\text {a }}$ ( ${ }^{\text {a }} 36$	gases . . . . . . . . . . . . 167, 168
	integral . . . . . . . . . . . . 60
logarithmic, ( ${ }^{\circ}$ )	
(radians)	${ }_{\text {vapors }}^{\text {metals }}$. . . . . . . . . . ${ }^{\text {a }}{ }^{168}$
hyperbolic, natural logarithmic . . . . 41-47	Diffusivities thermal. . . . . . . . . 167, 168
Cotangents, circular, natural, ( ${ }^{\circ}$ ) . . . . . ${ }^{\text {a }}$ (326	Digit . . . . . . . . . . . . . . . 217
(radians) . . . ${ }^{32-40}$	Dilution, heat of $\left(\dot{H}_{2} \mathrm{SO}_{4} \dot{)}\right.$. . . . . . . . . ${ }_{2} 435$
logarithmic, $\left(^{\circ}\right.$ ) . . . . $32-36$	
(radians) • - .37-40	
Coulomb, electrical equivalents. . . . . ${ }^{\text {a }}$ (-47	Dip, magnetic, ig is value, secular variation . . 435
Critical data for gases . . . . . . . . . . . 311	Disk, distribution of brightness over sun's . . . . 4188
Crova wave-length . . . . . . . . . . . 2122	Distance earth to moon . . . . . . . ${ }^{\text {m }} 18$
	sun . . . . . . . . . . . . 414



Foot Page
Fork, tuning, temperature coefficient . . . . . . 149
Fromation, heat of, for elements . . . . . . 245, 246
Frec path of molecules . . . . . . . . . . 399
Freezing mixtures . . . . . . . . . . . . . 211 point, lowering of for salt solutions . . . 208 point of water, pressure effect . . . . . 200
Frictional electricity series . . . . .8. . . . 322
Functions: $\begin{aligned} & \text { Bessel functions (roots, 68) . . . 66-68 } \\ & \text { cylindrical harmonics . . . . . }\end{aligned}$
gamma . . . . . . . . . . . . 62
probability . . . . . . . . . 56-58
trigonometric, circular $\left(^{\circ}\right.$ ) . . . . . 32
trigonometric, circular (radians) . . . 37
zonal harmonics
Fumdamental frequency (Rydberg) . . . . . . . 408
Fundamental standards $\begin{gathered}\text { units }\end{gathered}$. . . . . . . . . . ${ }_{\text {xxxiii }}$
Fusion, latent heat of . . . . . . . . . . . . 240
Gages, $\begin{aligned} & \text { kire } \\ & \text { Galvano-magnetic } \\ & \text { effects }\end{aligned}$
Gas constant . . . . . . . . . . . . . . . 408
absorption coef: long-wave radiation . . . 309
conductivity, thermal . . . . . . . . 217
critical data . . . . . . . . . . . . . 212
densities . . . . . . . . . . . . . 127
dielectric constants . . . . . . . . 356-36r
strength . . . . . . . 353-355
diffusion . . . . . . . . . . . . . 168
expansion coefficients . . . . . . . . . 405
ignition temperatures of mixtures . . . . . 244
magnetic susceptibility . . . . . . . . . 377 magnetic-optical rotation
magnetic-optical rotation . . . . . . . . 382refractive indices . . . . . . . . . .292
solubility in water . . . . . . . . $170-171$sound, velocity of, in . . .
viscosityvolume, $f(t, p)$ . . . . . . . . . . $164-165$
Gaussian system of units . . . . . . . . . . . xxxv
Geochemical data . . . . . . . . . . . . . . 423
Geodetic data . . . . . . . . . . . . . 424-427 Gilbert
Clare sensibllity of eye . . . . . . . . . . . 257
Glasses: refraction indices, American . . . . . 277   German, temp. var. . . 278   resistance electric, temp. var. . . . . . . 332   transparency of . . . . . 302-304, 306-307
Gravity, acceleration of, altitude variation . . . . 424 latitude variation . . . . 424 observed values . . . 425-426
Gsration, radil of . . . . . . . . . . . . . 70
Hall effect. temperature variation . . . . . . . . 385




Leduc thermomagnetic effect . . . . . . . . 385
Legal electrical units
PAGE
Length, standards of ..... Xxxiv, 5
$256-258$
flux, definition259
intensities on various days ..... 256
lambert, definition ..... 256
least visible to eye ..... 261
mechanical equivalent ..... 261
photometric standards ..... 260
units
295-297
polarized, reflection ..... - 310rotation of plane by substances
rotation of plane, magnetic $\cdot 378-383$
reflection of: formule ..... 297
function of " $n$ "
$\cdot 297$
$295-298$
reflecting power: metals
pigments ..... 299
powders ..... 300
rough surfaces ..... 299
scattered light ..... 300
300
sensitiveness of eye to ..... 25-258
transparency to: crystals ..... 303
dyes ..... 301 ..... 303-304 ..... 303-304
water water ..... 307
velocity of
wave-lengths: cadmium std. ine . . . 408,414
266
elements ..... 266
Fraunhofer lines ..... $269-271$
265
Std. iron lines ..... 266-267
Lights, brightness of various ..... 260
color of various ..... 261 ..... 262
efficiency of various electric
efficiency of various electric
visibility of white lights ..... 264
260
Light-year ..... 414
Limits of spectrum series ..... 276
Linear expansion coefficients ..... 218-219
Liquids: absorption of gases by ..... 172
capillarity of
combustion heat, fuels . . . . . . . $173^{-1} 74$
h
compressibilities ..... 242
107
conductivity, therinal ..... 217
densities ..... $314-310$
II5-117
mercury, $f(t)$ ..... 118-120
dielectric constant ..... 357-360
strength
355
166
355
166
diffusion, aqueous solutions
221
221
exparsion coefficients ..... 221
fuels, combustion heats ..... 221
242
380
magnetic suscentibility ..... 377
potential dif. with substances ..... $314-316$
sound velocity in ..... 147
specific heats
specific heats
173-174
173-174
surface tensions
surface tensions ..... 217
vapor pressures ..... 175-18
viscosity, absolute
viscosity, absolute ..... 157-159 ..... 157-159
Logarithms: standard 4-place ..... 163
26
1000 to 2000 ..... 24
28
.9000 to 1.0000 ..... 30
Logarithmic functions ..... 40 ..... 420, 434
Longitudes of a few stations
Longitudes of a few stations
Long-wave transmissions ..... 309
408
Loschmidt's number ..... 208
oreng of freaing points by salts.
oreng of freaing points by salts. ..... 154
Lumen ..... 259
Luminosity of black-body, f( $\dagger$ ) ..... 261
Lumar parallax ..... 414
M X-ray spectrum259
Mache radioactivity unit ..... 392
398
Maclauren's theorem ..... 13

Magnetic observatories, magnetic elements . . . . 434   Magnetic properties: cobalt, o ${ }^{\circ}$ to $100^{\circ}$ C. . . . 373		steel . . . . . . 77	
		white metal . . . . 89	
	Curie point . . . . . . . 372	aluminum: ${ }_{\text {a }}$. . . $80-8 \mathrm{8I}$	
	deflnitions - . . 365	brick and brick piers . . . . ${ }^{\text {alloy }}$ 81	
	demaguetizing factor for rods - 374 diamaguetism, $\mathrm{f}(\mathrm{t})$. . 365,372	cement . . . . . . . . 93	
	ferro-cobalt alloy . . . . 370	cement mortars . . . . . . 90	
	${ }_{\text {ferromagnetism }}^{\text {fistersis }}$. . . . . ${ }^{365}$	clay products . . . . . . concrete.	
	hystersis . . . . . . $375-376$	concrete . . . . . . . . 91	
	fron: cast, intense fields ${ }^{367-376}$		
	pure . . . . . . . . 369	wire . . . . . 82-83	
	soft, o and $100^{\circ} \mathrm{C} . . .371$	heat treatment for steels . . 76	
	very weak fields . . . . 370		
	wrought - . . . . 373	alloys . . . . . . . 75	
	${ }_{\text {magnetite, }} 0^{\circ}$, $100^{\circ} \mathrm{C}$ C. . 373	leather belting . . . . . . 94	
	magneto-strietive effects . . 365 nagnet steel	$\rho$-ratio extension/contraction. IOI	
	maxwell	rigidity moduli $\mathrm{f}(\mathrm{t})$. . . . 100	
	nickel, $0^{\circ}$, $100^{\circ}$ C. . . . . 373	rope, manila . . . . . . . 95	
	paramagnetism, $\mathrm{f}(\mathrm{t})$. . 365, 372	steel-wire . . . . . . 79	
	permeability . . . 365,371	rubber, sheet . . . . . . 94	
	saturation values for steels . $\cdot 373$	eel: . . . . . . . . 76	
	steel: . . . . . . . . 367-376	alloys . . . . . . . 77	
	energy losses . . . . 376	heat treatment for . . 76	
	magnet steel . . . . 370		
	manganese steel . . . 373	wire . . . . . . . 78	
	saturation values . . . 373	wire-rope . . . . . . 79	
	temperature effect . $37 \mathrm{I}-372$	stone products . . . . 92	
	tool steel transformer ${ }^{\bullet}$ steei $\cdot 37 \mathrm{i},{ }_{376}^{373}$	terra-cotta piers . . . . 93	
	transformer steel . 371,376	tungsten . . . . . . 89	
	Steinmetz constant ${ }^{\text {Weak }}$ ( ${ }^{\text {a }}$. . . . 370	white metal . . . . . 89	
	susceptibility . . ${ }^{\text {6j }}$, 372, 377	woods: conifers: English unit 99	
	temperature effects . . 371-373	7	
Magnetism	strlal: agonic line . . . . . . . 425	hard: English unit - 98	
	declination . . . . . . . 420 dip . . . . . . 422	: alloys . . . . . . . . . . . . 206	
	inclination $\cdot . . . .422$	elements . . . . . . . . . . . 198	
	intensity, horizontal . . . 423	eutectics . . . . . . . . . . 207	
	total . . . . 424	inorganic compounds . . . . . 20 I	
	magnetic character yearly . . 425	lime-alumina-silica compounds . . 207	
			organic compounds . . . . . 203
			paraffins . . . . . . . . . 203
			pressure effect . . . . . . . . 200
			water-ice, pressure effect . . . . 200
			Meniscus, volume of mercury - . . . $0^{\circ} \cdot 143$
			Mercury: density and volume, $-10^{\circ}$ to $360^{\circ} \mathrm{C}$. 121
			conductivity thermal, high temp. . . . . 254
		electric resistance standard . . . . . xxxviii	
		meniscus, volume of . . . . . . . . . 143	
		pressure hydrostatic of columns . . . . . 136	
		specific heat . . . . . . . . . . . 227	
		thermometer . . . . . . . . . . 190-194	
		vapor pressure . . . . . . . . . . . 180	
Masses, stellar.		s: conductivity, thermal . . . . . . . . 213	
		reflection of light by . . . . . 295-296, 298	
velocity I molecule . . . . . . . . . . 408		refraction indices . . . . . . . . 295-296   optical constants . . . . . . . . . 295-298	
		resistivity, temperature coefficient . . . 323	
		pressure effect . . . . . . 326	
Mechanical equivalent of heat metric . . . . . . 5		Volta emf . . . . . . . . . . . 316,404	
Mecharical propertles: defligitions li. . . . 261		weight sheet metal . . . . . . . . . 116	
		Metallic reflection . . . . . . . . . 295-296, 298	
	tic limit - . 74	Meteors, chemical composition . . . . . . . . 423	
	Erichson value . . 74	Meter-candle . . . . . . . . . . . . . 256, 259	
	dness . . - 74	Metric weights and measures, equivalents . . . 5-10	


page	pag
Micron, $\mu$. . . . . . . . . . . . . . . . 7, 436	Pendulum, second: formula; latitude variation . . 427
Milky way, pole of . . . . . . . . . . . 414	Penetration cathode rays ${ }^{\text {a }}$. . . . . . 387
nerals: densities . . . . . . . . . 11	high speed molecules . . . . . . . 387
refractive indices: ${ }_{\text {biaxial }}^{\text {isotropic }}$. . . . . . 286	Pentane candle ${ }_{\text {cher }}$
uniaxial . . . . . ${ }^{284}$	Periodic system: Hackh . . . . . . . . . . 41 I
specific heats . . . . . . . . . . 229	Mendelejeff - . . . . . . ${ }^{409}$
Minimum energy for light sensation . . . . . . . 261	Permeability, magnetic . . . . . . . . 365 et seq.
Mixtures freezing . . . . . . . . . . . . . . 211	Persistence of vision
Mobilities, ionic - . . . . 405	Phosphorescence (radio-active excitation)
Moduli, -see mechanical properties . . . .74-103	Phosphorescence (radio-actire excitation) . . . . 394
Mogendorf series formula . . . . . . . . i33-135	Photoelectricity
Moist air, density of $\begin{gathered}\text { maintenance of }\end{gathered}$......... 133-135	Photographic data : intensification
maintenance of transparency to radiation, .36 to $1.7 \mu$. $4^{11}$	lights, efficiencies . . . . . . 264
transparency to radiation, $\mathrm{H}_{36}$ to $1.7 \mu .41 \mathrm{I}$	plate characteristics . . . . . 263
Molecular collision frequencies . . . . . . . 399	olving power
conductivities: $\begin{gathered}\text { equivalent } \\ \text { speciflc }\end{gathered} . . . . .349-352$	Photometric definitions, units
crystal units . . . . . . . . . . . 400	Physiological constants of the eye . . . . . . . 258
diameters . . . . . . . . . . 399, ${ }_{\text {free }} 400$	$\mathrm{Pl}^{\text {( }}$ ) . . . . . . . 14, 436
	Pigments, reflecting powers $\mathrm{f}(\lambda)$. . . . . . . . 299
liquefaction . . . . . . . . 407	Pipes, organ: pitch . . . . . . . . . . . . 149
kinetic energy . . . . . . . . . . . 408	Pitch: ${ }_{\text {organ }}$ pipes . . . . . . . . . . . . 148
	voice, limits . . . . . . . . . . . . . 149
mber in $\underset{\text { gram-molecule }}{\mathrm{cm}^{3}, 76 \mathrm{~cm}, o^{\circ} \mathrm{C} . . . . . .} 408$	Planck's " ${ }^{\text {\% }}$ "
velocities . . . . . . . . . . 399	
weights of colloids . . . . . . . . . 406	Planetary data
Moments of inertia: earth . . . . . . . . . . 427	Platinum resistance thermom
	thermoelectric thermometer
Month	thermoelectric powers against
Mcon: albedo	Poisson's ratio
distance from earth, parallax , . . . . . 414	Polcnium radioactive series
radiation compared with sun's . . . . . 407	Polarized light: reflection by . . . . . 295-296, 297
Musical scale $\begin{gathered}\text { sone } \\ \text { touality }\end{gathered}$	ation of plane
tone quality . . . . . . . . . . . . 149	magnetic
Mutual induction . . . . . . . . . . . . . . 376	Porcelain, resistance, $\mathrm{f}(\mathrm{t})$. . . . . . . . . 332
Nernst thermomagnetic potential difference . . . . 385	Positive rays
Neutral points, thermoelectric . . . . . . . . . 317	ceils voltarc . . . . . . . $312 \mathrm{r}-3 \mathrm{r}$
Neutralization, heat of . . . . . . . . . . . . 246	contact . . . . . . 314, 316,40
Nickel, Kerr's constants for . . . . . . . . . 383	ionizing
agnetic properties, o to $100^{\circ}$. . . . . 373	Peltier . . . . . . . . . . . 321
resistance in magnetic field . . . . . . . 384	sparking, kerosene . . . . . . 35
Nitrogen thermometer . . . . . . . . . . . . 192	arious
Nitroso-dimethyl-aniline, refractive index . . . . . 280	resenance
Nuclear charge, atomic . . . . . . . . . . 393, 40 I	standard cells
Number of stars . . . . . . . . . . . . . . 417	thermo-electric $\cdot \cdots \cdot{ }^{317-320}$
	Weston normal . . . . . . . xli
Numbers: magnetic character . . . . . . . . . 433	ble . . . . . . . xliii
sun-spot . . . . . . . . . . . . . 415	
Nutation . . . . . . . . . . . . . . . . 414	Pressure: air, on moving surfaces . . . . . i ${ }_{50-152}$
Ohservatories, magnetic elements at . . . . . . . 434	tric, reductions, capillarity - $\dot{8}^{143}$
Ohm: . . . . . . . . . . . . xxxvii, xxxviii, 3 I	
electrical equivalents . . . . . . . . . . 311	boiling water . . . .
Oersted . . . . . . . . . . . . . . . . . xlvi	itical, gases
Oils, viscosity of . . . . . . . . . . . . 156, 157	mercury columns . . . . . . . . . . 136
Optical constants of metals . . . . . . . . . . 295	volume relations, gases . . . . . . . . 10
Optical rotation magnetic . . . . . . . . . 378-383	water columns
Optical thermometry . . . . . . . . . . . . . 250	Pressure effect on hoiling points . . . . . . . 200
Organ pipes, pitch . . . . . . . . . . . . . 449	melting points
Organic compounds: boiling points . . . . . . . 203	resistance electrical thermoelectric powers
densities . . . . . . . . . 203	thermoelectric powers
Organic salts, solubilities melting points . . . . . . 203	aqueeus (steam tables 234) $\cdot$ i83-186
Organic salts, solubilities - . . . . . . . . 170	
Oscillation constants wireless telegraphy $\begin{gathered}\text { times of wires, temperature variation . . yor } \\ \text { a }\end{gathered}$	mercury
nes . . . . . . . . . . . . . . 149	solutions
	water vapor
	Probable errors . . . . . . . . . . . . $56-5$
${ }_{\text {Parsec }}^{\text {P-limit }}$ (proportional limit) . . . . . . 74 et seq.	Probability integrai . . . . . . . . . . . . $56-57$
Parsec . . . . . . . . . . . . . . . 414	(nverse . . . . . . . . . . 60
Parallax, solar, lunar . . . . . . . . . . . 414	Proportional limit (P-limit) $\quad . \ldots 20.74$ et seq
stellar . . . . . . . . . . 412,415	Pupil diameter . . . . . . . . . . . . . 258
Paramagnetism . . . . . . . . . . . . . . . 365	Purkinje phenomenon . . . . . . . . . . . . 256
Partials (sound) . . . . . . . . . . . . . 149	
Particle, smallest visible . . . . . . . . . . . 406	Quality, tone . . . . . . . . . . . . . . . 149
itier effect: pressure effect $\because . . . .317,321$	Quartz: refraction indices . . . . . . . 280
pressure effect . . ....... 320	transmission of radiation by . . . . . . 30











	PAGE
Weston normal cell . . . . . . . . . . . . . xll	
	atomic numbers and spectra $\because \because .390-393$
	calcite grating space
Wire gages, comparison . . . . . . . . . . . . 333	cathode efficiencies
Wire, mechanical properties: copper . . . . . 82-83	corpuscular radiation . . . . . . 387-38
	crystals, diffraction with . . . . . . . . 401
steel rope and cable . 79	energy relations . . . . . . . . . . . 387
Wire resistance, auxiliary table for computing . . . 322	general radiations . . . . . . . . . . 387
Wire tables: aluminum, English measures . . . . 34	heterogeneous radiations . . . . . . . . 387
metric measures . . . 343	homogeneous radiations . . . . . . . . 387
see also . . . . . . . . 334	independent radiations . . . . . . . . 387
copper, English measures . . . . $335^{\circ}$	${ }_{\text {intensity }}^{\text {ionization }}$. . . . . . . . . . . . . 388
metric measures . . . . . 339	K series of radiations
see also . . . . . . . . 334	L series of radiations . . . . . . . . . 391
temperature coefficients . 334,335	M series of radiations . . . . . . . . . 392
reduc. to std. . . 335	monochromatic radiatious . . . . . . ${ }^{\text {c }} 87$
Wires, alternating-current resistance . . . . . . 344	secondary radiations . . . . . . . . 387
carrying capacity of . - . . . . . . . . 329	spectra: absorption . . . . . . . . . . 393
high-frequency resistance . . . . . . . 344	K series . . . . . . . . . . 390
ires, heat losses from incandescent, bright Pt. . 255	L series . . . . . . . . . . . 391
Pt sponge . 255	M series . . . . . . . . . 392
ireless telegraphy: antennæ resistances . . . . 364	wave-lengths ${ }_{\text {tungen }}$
wave-lengths, frequencies, oscil-	${ }_{\text {wave-lengths and }}^{\text {wavelengt }}$ cathode fall . . . 390-393
lation constants . . . . . 362	wave-lengths and cathode fall . . . . 387
Wolf sun-spot numbers, 1750 to 1917 . . . . . . 415	Years . . . . . . . . . . . . . . . 414, 437
Woods: densities . . . . . . . . . 96-99, 112	Yearly temperature means . . . . . . . . . . 420
mechanical propertles: conifers, Eng. units. 99	Young's modulus, deffinition . . . . . . . . 74
metric units 97	Yield point (mechanical property) ${ }^{\text {values }}$. . . . ${ }^{\text {74-103 }}$
hard wds, Eng. units 98	Yield point (mechanical property) . . . . 74-103
k, conversion factors . . . . . . . . . . . 997	Zero, absolute, thermodynamic scale . . . . . . 195
, conversion factors . . . . . . . . . . 197	Zonal harmonics . . . . . . . . . . . . . 64

Che fivergide prefif
CAMBRIDGE . MASSACHUSETTS
U.S.A

## DATE DUE SLIP

 UNIVERSITY OF CALIFORNIA MEDICAL SCHOOL LIBRARYTHIS BOOK JS DUE ON THE LAST DATE STAMPED BELOW
DC. 7 - 1041
$\cdots$
SEP 251942
MUV 201945
APR 251946

O6T 20-195?



Library of the University of California Medical Schnol


[^0]:    June, 1919.

[^1]:    ${ }^{1}$ Because of its greater psychological and physical simplicity, and the desirability that the unit chosen should have extensive magnitude, it has been proposed to choose as the fourth fundamental quantity, a quantity of electrical charge, $e$. The standard unit of electrical charge would then be the electronic charge. For thermal needs, entropy has been proposed. While not generally so psychologically easy to grasp as temperature, entropy is of fundamental importance in thermodynamics and has extensive magnitude. (R. C. Tolman, The Measurable Quantities of Physics, Physical Review, 9, p. 237, 1917.)

[^2]:    ${ }^{1}$ Circular 60 of the Bureau of Standards, Electric Units and Standards, 1916. The subse-

[^3]:    "Practical" Electromagnetic System. - This electromagnetic system is based upon the units of $10^{9} \mathrm{~cm}, 10^{-11}$ gram, the sec. and $\mu$ of the ether. It is never used as a complete system of units but is of interest as the historical basis of the present International System. The principal quantities are the resistance unit, the ohm $=10^{9}$ c.g.s. units; the current unit, the ampere $=10^{-1}$ c.g.s. units; and the electromotive force unit, the volt $=10^{8}$ c.g.s. units.

[^4]:    ${ }^{1}$ For example, A. G. Webster, "Theory of. Electricity and Magnetism," 1897; J. H. Jeans, "Electricity and magnetism," 1911; H. A. Lorentz, "The Theory of Electrons," 1909; and O. W. Richardson, "The Electron Theory of Matter," 191.4.

[^5]:    ${ }^{1}$ Dellinger, International System of Electric and Magnetic Units, Bull. Bureau of Standards, 13. p. 599, 1916.

[^6]:    * For these formulx the numbers in the last column are the exponents of F where F refers to the luminous flux. For definitions of these quantities see Table 299, page 259 -
    Smithsonian tables.

[^7]:    * As adopted by American Institute of Electrical Engineers, 1915.
    $\dagger c$ is the velocity of an electromagnetic wave in the ether $=3 \times 10^{10}$ approximately.
    $\ddagger$ This conversion factor should include $\left[\theta^{-1}\right]$.

[^8]:    * Legendre's "Exercises de Calcul Intégral," tome ii.

[^9]:    ＊Specification Values：Alloy＂No． 12 ＂：A．S．T．M．B26－18T，tentative specified minimums for aluminum，copper．
    $\dagger$ Quenched in water from $475^{\circ} \mathrm{C}$ ．after heating in a salt bath．Modulus of elasticity for Duralumin averages $7000 \mathrm{~kg} / \mathrm{mm}^{2}$ or $10,000,000 \mathrm{lb} / \mathrm{in}^{2}$ ．
    $\ddagger$ Specification values：Aluminum castings；U．S．Navy 49 Al，July I， 1915 （Impurities：Fe max．0．5，Si max．0．5）．
    Smithsonian Tables．

[^10]:    ＊Tensilite， $\mathrm{Cu} 67, \mathrm{Zn} 24, \mathrm{Al}_{4.4}, \mathrm{Mn} 3.8, \mathrm{P}$ o．or compressive P －limit： $42.2 \mathrm{~kg} / \mathrm{mm}^{2}$ or $60,000 \mathrm{lb} / \mathrm{in}^{2}$ and x .33 per cent set for $70.3 \mathrm{~kg} / \mathrm{mm}^{2}$ or $100,000 \mathrm{lb} / \mathrm{in}^{2}$ load．
    $\dagger$ Compressive P－limit 20.0 to $28.2 \mathrm{~kg} / \mathrm{mm}^{2}$ or 28,500 to $40,000 \mathrm{lb} / \mathrm{in}^{2}$
    $\ddagger$ Compressive ultimate strength $54.5 \mathrm{~kg} / \mathrm{mm}^{2}$ or $77,500 \mathrm{lb} / \mathrm{in}^{2}$
    ${ }_{8}^{+}$Compressive P－limit $4.2 \mathrm{~kg} / \mathrm{mm}^{2}$ or $6000 \mathrm{lb} / \mathrm{in}^{2}$ and 40 per cent set for $70.3 \mathrm{~kg} / \mathrm{mm}^{2}$ or $100,000 \mathrm{lb} / \mathrm{in}^{2}$
    f Modulus of elasticity $9840 \mathrm{~kg} / \mathrm{mm}^{2}$ or $14,000,000 \mathrm{lb} / \mathrm{in}^{2}$
    Il Values are for yield point．
    ＋Rolled manganese bronze（U．S．N．） Cu 57 to $60, \mathrm{Zn} 40$ to $37, \mathrm{Fe}$ max． $2.0, \mathrm{Sn} 0.5$ to 1．5； 2.9 per cent increase for thickness 25.4 mm （ I in．）and under．

    非 Ni 9 per cent，B．h．n．$=130$ as rolled；B．h．n．$=50$ as annealed at $930^{\circ} \mathrm{C}$ ．
    U．S．Navy Dept．Spec．46S 3a，June r，1917：German silver Cu 60 to 67 ， Zn 18 to 22，Ni min．15，no mechanical requirements．

    For list of 30 German silver alloys，see Braunt，＂Metallic Alloys，＂p．3r4，—＂best＂（Hiorns），＂hard Sheffield，＂ $\mathrm{Cu}_{46}, \mathrm{Zn} 20, \mathrm{Ni}_{3} 4$.

    88 Platinoid $\mathrm{Cu} 60, \mathrm{Zn}_{24}, \mathrm{Ni}_{14}, \mathrm{~W}$ I to 2 ；high electric resistance alloy with mechanical properties as nickel brass．
    III\｜Specification Values，Naval Brass Castings，U．S．Navy， 46 B rob，Dec．1， 1917 for normal proportions $\mathrm{Cu} 62, \mathrm{Zn}$
    

[^11]:    ＊U S．Navy Spec． 46 M 2 b （ $\mathrm{Cu}_{3}$ to $4.5, \mathrm{Sn} 88$ to $89.5, \mathrm{Sb} 7.0$ to 8.0 ）covers manufacture of anti－friction－metal castings． Composition W．）

    Note．－See also Brass，Lead（yellow brass），Brass，Lead－Tin（Red Brass）；Bronze，Phosphor，etc．，under Copper alloys

[^12]:    Smithsonian Tables．

[^13]:    * Building ordinances of American cities specify allowable working stresses in compression over bearing area of 12.5 per cent (vitrified brick) to 17.5 per cent (common brick) of corresponding ultimate compressive strength shown in table.
    $\dagger$ P. denotes Portland.

[^14]:    * Modulus of rigidity in $\mathrm{to}^{11}$ dynes per sq. cm .

[^15]:    * In this system the subscript $a$ indicates that compression or extension takes place along the crystalline axis, and distortion round the axis. The subscripts $b$ and $c$ correspond to directions equally inclined to two and normal to the third and equally inclined to all three axes respectively.
    ! Voigt, "Wied. Ann.", 31, p. 474, p. 701, 1887; 34, p. 981, 1888; 36, p. 642, 1888.
    $\ddagger$ Koch, "Wied. Ann." 18, p. 325, 1882.
    § Beckenkamp, "Zeit. für Kryst." vol. 10.
    II The subscripts $x, 2,3$ indicate that the three principal axes are the axes of stress; $4,5,6$ that the axes of stress are in the tiree principal planes at angles of $45^{\circ}$ to the corresponding axes.
    II Baumgarten, " Pogg. Ann." 152, p. 369, 1879.

[^16]:    *From the experiments of Roth, "Wied. Ann." vol. 11, 1880 ,

[^17]:    Smithsonian Tables.

[^18]:    *From - $10^{\circ}$ to $0^{\circ}$ the values are due to means from Pierre, Weidner, and Rosetti; from $0^{\circ}$ to $41^{\circ}$, to Chappuis, $42^{\circ}$ to $100^{\circ}$, to Thiesen ; $110^{\circ}$ to $250^{\circ}$, to means from the works of Ramsey, Young, Waterston, and Hirn.

    ## Smithsonian tables.

[^19]:    *The height of the barometer is affected by the relative thermal expansion of the mercury and the glass, in the case of instruments graduated on the glass tube, and by the relative expansion of the mercury and the metallic inclosing case, usually of brass, in the case of instruments graduated on the brass case. This relative expansion is practically proportional to the first power of the temperature. The above tables of values of the coefficient of relative expansion will be found to give corrections almost identical with those given in the International Meteorological Tables. The numbers tabulated under $a$ are the valnes of $a$ in the equation $H_{t}=H_{t}^{\prime}-a\left(t^{\prime}-t\right)$ where $H_{t}$ is the height at the standard temperature, $H t^{\prime}$ the observed height at the temperature $t^{\prime}$, and $a\left(t^{\prime}-t\right)$ the correction for temperature. The standard temperature is $0^{\circ} \mathrm{C}$. for the metric system and $28^{\circ} \cdot 5 \mathrm{~F}$. for the English system. The English barometer is correct for the temperature of melting ice at a temperature of approximately $28^{\circ} .5 \mathrm{~F}$., because of the fact that the brass scale is graduated so as to be standard at $62^{\circ} \mathrm{F}$., while mercury has the standard density at $32^{\circ} \mathrm{F}$.

    EXAMPLE.-A barometer having a brass scale gave $H=765 \mathrm{~mm}$. at $25^{\circ} \mathrm{C}$. ; required, the corresponding reading at $o^{\circ} \mathrm{C}$. Here the value of $\boldsymbol{a}$ is the mean of . 1235 and .125I, or .1243; $\cdot^{\circ}, a\left(t^{\prime}-t\right)$ $=.1243 \times 25=3.11$. Hence $H_{0}=765-3.11=761.89$.
    N. B.-Although $a$ is here given to three and sometimes to four significant figures, it is seldom worth while to use more than the nearest two-figure number. In fact, all barometers have not the same values for $a$, and when great accuracy is wanted the proper coefficients have to be deter. mined by experiment.

[^20]:    *"Smithsonian Meteorological Tables."

[^21]:    *See Dushman, The Production and Measurement of High Vacua, General Elec. Rev. 23, p. 493, 1920

[^22]:    * Quoted from a paper by Jenkin and Ewing, "Phil. Trans. R. S." vol. 167. In this paper it is shown that in cases where "static friction" exceeds " kinetic friction" there is a gradual increase of the coefficient of friction as the speed is reduced towards zero.

[^23]:    * Bureau of Standards, see special table. $\dagger$ Glaser.

[^24]:    * In the case of solutions of salts it has been found (vide Arrhennius, Zeits. für Phys. Chem. vol. 1, p. 285) that the specific viscosity can, in many cases, be nearly expressed by the equation $\mu=\mu_{1}{ }^{n}$, where $\mu_{1}$ is the specific viscosity for a normal solution referred to the solvent at the same temperature, and $n$ the number of gramme molecules in the solution under consideration. The same rule may of course be applied to solutions stated in percentages instead of gramme molecules. The table here given has been compiled from the results of Reyher (Zeits. fuir Phys. Chem. vol. 2, p. 749) and of Wagner (Zeits. für Phys. Chem. vol. 5, p. 31) and illustrates this rule. The numbers are all for $25^{\circ} \mathrm{C}$

[^25]:    * Taken from Winkelmann's papers (Wied. Ann. vols. 22, 23, and 26). The coefficients for $\circ^{\circ}$ were calculated by Winkelmann on the assumption that the rate of diffusion is proportional to the absolute temperature. According to the investigations of Loschmidt and of Obermeyer the coefficient of diffusion of a gas, or vapor, at o ${ }^{\circ} \mathrm{C}$. and a pressure of 76 centimetres of mercury may be calculated from the observed coefficient at another temperature and pressure by the formula $k_{0}=k_{T}\left(\frac{T_{0}}{T}\right)^{n} \frac{7^{6}}{p}$, where $T$ is temperature absolute and $p$ the pressure of the gas. The exponent $n$ is found to be about 1.75 for the permanent gases and about 2 for condensible gases. The following are examples: $\mathrm{Air}-\mathrm{CO}_{2}, n=1.968 ; \mathrm{CO}_{2}-\mathrm{N}_{2} \mathrm{O}, n=2.05 ; \mathrm{CO}_{2}-\mathrm{H}, n=1.742 ; \mathrm{CO}-\mathrm{O}, n=1.785 ; \mathrm{H}-\mathrm{O}$, $n=1.755 ; \mathrm{O}-\mathrm{N}, n=1.792$. Winkelmann's results, as given in the above table, seem to give about 2 for vapors diffusing into air, hydrogen or carbon dioxide.

[^26]:    * This determination of the capillary constants of liquids has been the subject of many careful experiments, but the results of the different experimenters, and even of the same observer when the method of measurement is changed, do not agree well together. The values here quoted can only be taken as approximations to the actual values for the liquids in a state of purity in contact with pure air. In the case of water the values given by Lord Rayleigh from the wave length of ripples (Phil. Mag. 18go) and by Hall from direct measurement of the tension of a flat film (Phil. Mag. 1893) have been preferred, and the temperature correction has been taken as 0.141 dyne per degree centigrade. The values for alcohol were derived from the experiments of Hall above referred to and the experiments on the effect of temperature made by Timberg (Wied. Ann. vol. 30).

    The authority for a few of the other values given is quoted, but they are for the most part average values derived from a large number of results published by different experimenters.

    + From Volkmann (Wied. Ann. vol. 17, p. 353).
    For more recent data see especially Harkins, J. Am. Ch. Soc., 39, p. 55, 1917 (336 liquids). and 42, p. 702, 2543, 1920.

[^27]:    *This table has been compiled from results published by Ramsay and Young (Jour. Chem. Soc. vol. 47, and Phil. Trans. Koy. Soc., 1886).

    + In this formula $a=5.0720301 ; \log b=\overline{2} .6406131 ; \log c=0.6050854 ; \log a=0.003377538 ; \log \boldsymbol{\beta}=\overline{\mathrm{I}} .99682424$ ( $c$ is negative).
    $\ddagger$ Taken from a paper by Dittmar and Fawsitt (Trans. Roy. Soc. Edin. vol. 33).


    ## Smithsonian Tables.

[^28]:    * Compiled from a table by Tammann, "Mém. Ac. St. Petersb." ${ }_{35}$, No. 9, x887. See also Referate, "Zeit. f.

[^29]:    * Greenwood, Pr. Roy. Soc., p. 483, igio.

[^30]:    References：（1）Mond，Langer，Quincke；（2）Ordway；（3）Tilden；（4）Erdmann；（5）R．Weber；（6）Olszewski； （7）Birhaus；（8）Ramsay；（9）Deville；（10）Wroblewski；（11）Day，Sosman，White；（12）Ramme；（13）Meyer； （r4）Lemoine；（15）Carnelly；（16）Mitscherlich；（17）LeChatelier；（18）Carnelly，O＇Shea；（19）Thorpe；（20）Amat； （21）Mendelejeff；（22）Marignac；（23）Besson；（24）Clarke，Const．of Nature；（25）Isambert；（26）Mylius； （27）Hevesy；（28）Retgers；（29）Grünauer；（30）Richards and others．
    ＊Under pressure $\mathrm{r}_{3} 8 \mathrm{~mm}$ mercury．$\dagger$ Decomposes．

[^31]:    ${ }^{*}$ Liquid at $-1 \mathrm{r} .{ }^{\circ} \mathrm{C}$. and 180 atmospheres' pressure (Cailletet).
    $\dagger$ " " + 4.0 " " 46
    $\ddagger$ Boiling-point under 15 mm . pressure.
    In vacuo.

[^32]:    * Boiling-point under 15 mm . pressure.
    $\dagger$ Liquid at $-11 .{ }^{\circ} \mathrm{C}$. and 180 atmospheres' pressure (Cailletet).

[^33]:    * Compiled from a paper by Gerlach, " Zeit. f. Anal. Chem." vol. 26.

[^34]:    * Compiled from the results of Cailletet and Colardeau, Hammerl, Hanamann, Moritz, Pfanndler, Rudorf, and

[^35]:    *Abridged for the most part from Landolt and Börnstein's "Phys. Chem. Tab."

[^36]:     ing; for reference see next page).
    $\dagger$ Iron: 100- $727^{\circ} \mathrm{C}, k_{t}=0.202$; 100-912ㅇ, 0.184; 100-1245 ${ }^{\circ}$, 0.191 (Hering).

[^37]:    * Total heat from $0^{\circ} \mathrm{C}$.
    $\dagger$ U. S. Bureau of Standards, 1913 , in terms of $15^{\circ}$ calorie.
    ₹ 1903, based on electrical measurements, assuming mechanical equivalent $=4.187$, and in terms of the value of the international volt in use after igir.

[^38]:    Smithsonian Tables.

[^39]:    * Langmuir Physical Review, 34, p. 401, 1912.

[^40]:    * Computed with $\sigma=5.32$, black-body efficiency of platinum as follows (Lummer and Kurlbaum): $492^{\circ} \mathrm{K}$. $0.039 ; 654^{\circ}, 0.060 ; 795^{\circ}, 0.075 ; 1108^{\circ}, 0.112 ; 1481^{\circ}, 0.154 ; 1761^{\circ} \mathrm{K} ., 0.180$. For significance of last group of data, see next page. $\dagger$ Weighted mean.

[^41]:    Smithsonian Tables.

[^42]:    Smithsonian Tables.

[^43]:    * According to the experiments of Soret (Arch. d. Sc. Phys. Nat. Genève, r884, r888, and Comptes Rendus, 1885). $\dagger R$ stands for the different bases given in the first column.
    For sther alums see reference on Landolt-Börnstein-Roth Tabellen.

[^44]:    Smithsonian Tables.

[^45]:    * These places require multiplication by the following factors to allow for losses in $\mathrm{CO}_{2}$ gas. Under average sea-level outdoor conditions the $\mathrm{CO}_{2}$ (partial pressure $=0.0003$ atmos.) amounts to about 0.6 gram per cu. m. Paschen gives 3 times as much for indoor conditions.
    $2 \mu$ to $3 \mu$, for ${ }^{2}$ grams in ${ }_{\text {" }} m^{2}$ path (95); for 140 grams in ${ }_{\text {u }}{ }^{2}$ path ( 93 );
    4 " 5 "" "" "" " (93); " " " " " " (70); more $\mathrm{CO}_{2}$ no further effect;
    I3 " I4, slight allowance to be made;
    ${ }_{15}{ }^{15}$ " ${ }^{15} 16,80$, grams in $m_{\text {" }}^{2}$ path reduces energy to zero;
    $\dagger$ These places require multiplication by 0.90 and 0.70 respectively for one air mass and 0.85 and 0.65 for two air masses to allow for ozone absorption when the radiation comes from a celestial body.

[^46]:    * The Minotto or Sawdust, the Meidinger, the Callaud, and the Lockwood cells are modifications of the Daniell, and hence have about the same electromotive force.
    8 mithsonian Tables.

[^47]:    Smithsonian Tables

[^48]:    * "Rend. della R. Acc. di Roma," 1890.
    $\dagger$ Amalgamated.
    $\ddagger$ Not constant.
    § After some time.
    If A quantity of bromine was used corresponding to $\mathrm{NaOH}=\mathbf{r}$.

[^49]:    * Identical wire of Table 398. $\dagger$ Another wire of same sample. $\ddagger$ Different sample.
    \& Results too irregular for interpolation for values at other temperature and pressures; see original article. (1) $-.0556 t^{3}$; (2) $-.0486 t^{3}$, annealed ingot iron; (3) -.05166 $\beta^{3}$; (4) -.04I $\beta^{3}$; (5) -.0425 ; (6) -.04112 $\beta^{3}$.

[^50]:    Smithsonian Tables．

[^51]:    $* 0^{\circ}$ to $20^{\circ}$. $\quad \dagger 0^{\circ}$ to $24^{\circ}$. $\ddagger$ Extrapolated from $50^{\circ}$. § Extrapolated from $75^{\circ}$.

[^52]:    * These values are at the concentration 80.0.

[^53]:    Smithsonian Tables.

[^54]:    Other determinations: Hess, Wien. Ber. 121, p. 1, 1912, Radium (alone) 25.2 cal. per hour per gram. Meyer and Hess, Wien. Ber. 121, p. 603, 1912, Radium in equilibrium, 132.3 gram. cal. per hour per gram. See also, Callendar, Phys. Soc. Proceed. 23, p. ı, 1910; Schweidler and Hess, Ion. i, p. 16ı, 1909; Ångström, Phys. ZS. 6, 685, 1905, etc.
    Smithsonian Tables.

[^55]:    * Pressure $=10^{6}$ bars $=10^{6}$ dynes $\div \mathrm{cm}^{2}=75 \mathrm{~cm} \mathrm{Hg}$.

[^56]:    * Computed from relation $V e=h \nu$ or $V=12334 / \lambda$ volts; $\lambda$ in Angstrom units.
    $\dagger$ Computed from $h=0.5308 \lambda \mathrm{~V}$ ro $0^{-30}$
    $\ddagger$ Limit of principal series.
    $\$$ Limit of principal series of single lines, 1.5 S .
    I| Short wave-length line of first doublet of principal series.
    ** First line principal series single lines $1.55-2 P$.

[^57]:    * Parsec $=206,265$ astronomical units $=3.08 \times 10^{13} \mathrm{~km}=3.26$ light years. $\quad \mathrm{r}$ astronomical unit $=$ distance sun to earth.

    Practically all the stars visible to the naked eye lie within 1000 parsecs of the sun, and most of them are more than 100 parsecs distant. In the vicinity of the sun, the majority of the stars lie within two or three hundred parsecs of the galactic plane; but along this plane the star-filled region extends far beyond 1000 parsecs in all directions, and may reach 30,000 parsecs in the great southern star clouds (Shapley).

    Average parallax 6 planetary nebulae, o.o18" (van Maanen, Pr. Nat. Acad. 4, p. 394, 1918).

[^58]:    * Earth and moon. † Relative to earth. Inclination of axes: Sun $7^{\circ} .25$; Earth $23^{\circ} .45$; Mars $24^{\circ} .6$; Tupiter $3^{\circ} .1$; Saturn $26^{\circ} .8$; Neptune $27^{\circ} .2$. Others doubtful. Approximate rates, frotation: Sun $25 \frac{1}{8} d$; Moon 27ld; Mercury 88d; Venus 225d; Mars $24^{\text {h }} 37^{\mathrm{m}}$; Jupiter $9^{\mathrm{h}} 55^{\text {m }}$; Saturn $10^{\mathrm{h}} 14^{\mathrm{m}}$ 。

[^59]:    Smithsonian Tables.

[^60]:    * Compiled from annual reviews of the "Caractère magnétique de chaque jour" prepared by the Royal Meteorological Institute of the Netherlands for the International Commission for Terrestrial Magnetism. The number of stations supplying complete data for the above years were respectively, $30.32,36,38,34,39,43,42,37,35,35,35$ Data from Sitka, Ekaterinburg, Stonyhurst, Wilhelmshaven, Potsdam-Seddin, De Bilt, Greenwich, Kcw, Val Joyeux, Pola, Cheltenham, Honolulu, Bombay, Porto Rico, and Buitenzorg were employed for all of the years.

[^61]:    * Baldwin Obs'y replaced by Tucson Obs'y, Oct. 1909; mean given for Jan.-Oct. 'o9.

    20 Replaced Zi-ka-wei Obs'y, 1908. $\dagger$ Observations discontinued Apr. 26, 1915.
    $\ddagger$ Provisional values taken for position of Port Cork, p. 298, American Practical Navigator, 1914 edition.

