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Abstract
In an empirical analysis of software maintenance projects in a large IBM COBOL transaction

processing environment the impacts of software complexity upon project costs were estimated.

Program size, modularity, and the use of branching were all found to significandy affect

software maintenance costs. It was estimated that projects that were required to perform
maintenance on systems with greater underlying code complexity cost approximately 35%
more than similar projects dealing with less complex code. These costs amount to several

million dollars a year at this site alone. A generalizable model is provided to allow researchers

and managers to estimate these costs in other environments.

ACM CR Categories and Subject Descriptors: D.2.7 [Software Engineering]: Distribution and

Maintenance; D.2.8 [Software Engineering]: Metrics; D.2.9 [Software Engineering]:

Management; F.2.3 [Analysis of Algorithms and Problem Complexity]: Tradeoffs among
Complexity Measures; K.6.0 [Management of Computing and Information Systems]: General -

Economics; K.6.1 [Management of Computing and Information Systems]: Project and People

Management; K.6.3 [Management of Computing and Information Systems]: Software

Management

General Terms: Management, Measurement, Performance.

Additional Key Words and Phrases: Software Productivity, Software Maintenance, Software

Complexity.





I. Introduction

With software costs now exceeding $200 billion annually and with most of that being spent on

maintenance of all types, rather than new development, the economic incentives to develop

software that requires less repair maintenance and is more easily adapted to changing

requirements are quite strong [Boehm, 1979] [Boehm, 1987] [Gallant, 1986]. In this paper,

we test and measure the degree to which the maintainability of a system is influenced by the

complexity of the existing code. In particular, we investigate the impact of software

complexity upon the productivity of software maintainers.

The empirical evidence linking software complexity to software maintenance costs has been

criticized as being relatively weak [Kearney et al., 1986]. Much of the early work is based

upon experiments involving small programs [Curtis, Shepperd and Milliman, 1979] or is

based upon analysis of programs written by students [Kafura and Reddy, 1987]. Such

evidence can be valuable, but several researchers have noted that caution must be used in

applying these results to the actual commercial application systems which account for most

software maintenance expenditures [Conte, Dunsmore and Shen, 1986 p. 1 14] [Gibson and

Senn, 1989]. And, the limited field research that has been done has generated either no or

conflicting results; as, for example, in the case of degree of program modularity [Vessey and

Weber, 1983] [Basili and Perricone, 1984] [Card, Page and McGarry, 1985], and in the case

of program structure (see Vessey and Weber's 1984 review article.). Finally, none of the

previous work develops estimates of the actual cost of complexity, estimates which could be

used by software maintenance managers to make best use of their resources. Research

supponing the statistical significance of a factor is a necessary first step in this process, but

practitioners must also have an understanding of the magnitudes of these effects if they are to

be able to make informed decisions regarding their control.

This study analyzes the effects of software complexity upon the costs of COBOL maintenance

projects within a large commercial bank. Freedman notes that 60% of all business

expenditures on computing are for maintenance of COBOL programs, and that there are over

50 billion lines of COBOL in existence worldwide, the maintenance of which, therefore,

represents an information systems activity of considerable economic importance [Freedman,

1986]. Using a previously developed model of software maintenance productivity [Banker,



Datar and Kemerer, 1991]' we estimate the marginal impact of software complexity upon the

costs of software maintenance projects in a data processing environment The analysis

confirms that software maintenance costs are significantly affected by software complexity,

measured in three dimensions: module size, procedure modularity, and control structure

complexity. The results further suggest that the magnitudes of these costs are such that

software maintenance managers should monitor the complexity of the software under their

control, and take active steps to reduce that complexity.

This research makes contributions in two distinct areas. The first is in developing a model with

which to resolve some current academic debate regarding the nature of the impact of software

complexity, and the shape of the functional form relating complexity to the productivity of

software maintainers. The second is in providing practicing software maintenance managers

with a predictive model with which to evaluate the future effects of software design decisions.

This model could also be used to assist in the cost-benefit assessment of a class of computer-

aided software engineering (CASE) tools known as restructurers.

The remainder of this paper is organized as follows. Section II outlines the research questions,

and summarizes previous field research in this area. Section IH describes our research

approach and methodology, and section FV presents our model and results. Implications for

practitioners are presented in section V, and concluding remarks and suggestions for future

research are provided in the final section.

II. Research Questions

Complexity and maintenance

The complexity of a software system is said to increase as "the number of control constructs

grows and as the size in the number of modules grows" [Conte, Dunsmore and Shen, 1986,

p. 109]. The formal characterization of the maintenance impacts of software complexity is

sometimes ascribed to Belady and Lehman, who, in their Evolution Dynamics theory, propose

that software systems, like their analogues in other contexts, face increasing entropy over time

[Belady and Lehman, 1976]. As more changes are made to a system in the form of

maintenance requests, the initial design integrity deteriorates, and the system's complexity

increases. In addition, several longitudinal studies have noted increases in the size of software

^Hereafter referenced as "BDK, 1991".



systems that are in active use [Lawrence, 1982] [Chong Hok Yuen, 1987]. Both of these

factors have been suggested to contribute to the increasing difficulty of software maintenance

over time. Given the growing economic importance of maintenance, researchers have

attempted to empirically validate these theories. In general, however, researchers have not

been able to empirically test the impact of complexity upon maintenance effort while controlling

for other factors known to affect costs. Therefore, our overall research question (to be

developed into specific testable hypotheses below) will be:

Research question 1: Controllingfor otherfactors known to effect software maintenance
project costs, wliat is the impact of software complexity upon the productivity ofsoftware

maintenance projects?

Size and Modularity

A key component of structured programming approaches is modularity, defined by Conte, et

al., as "the programming technique of constructing software as several discrete parts" [1986,

p. 197]. Freedman and Weinberg have estimated that 75-80% of existing software was

produced prior to significant use of structured programming [Schneidewind, 1987], and

therefore the absence of modularity is likely to be a significant practical problem. A number of

researchers have attempted to empirically validate the impact of modularity on either software

quality or productivity with data from actual systems, and the results of this research are

summarized in Table 1.

Table 1: Previous Field research on Modularity

Y?ar



Perhaps the first widely disseminated field research in this area was by Vessey and Weber, in

their study of repair maintenance in Australian and US data processing organizations [Vessey

and Weber, 1983]. Their work relied on subjective assessments of the degree of modularity in

a large number of COBOL systems. In one dataset they found that more modular code was

associated with fewer repairs, in the other dataset no effect was found. Basili and Perricone, in

an analysis of a large Fortran system, found more errors per thousand source lines of code

(KSLOC) in smaller modules, which they hypothetically attributed to a) greater numbers of

interface errors, b) possible greater care taken in coding larger modules, or c) simply the

continued presence of undiscovered errors in larger modules [Basili and Perricone, 1984].

Shen, et al. disagreed with Basili and Perricone's analysis, noting that the higher error rate

observed with smaller modules could be simply a function of an empirically observed

phenomenon that modules contain a number of errors independent of size, in addition to a

size-related error rate. Therefore, according to this model, smaller modules will show a higher

rate of errors due to this size-independent error component being divided by a smaller number

of lines of code. Shen, et al. conclude that "...it may be beneficial to promote programming

practices related to modularization that discourage the development ofeither extremely large of

extremely small modules." [Shen era/., 1985] p. 323].

Bowen, in an analysis of secondary data, compared the number of SLOC / module with a set

of assumed maximum values of two well-known complexity metrics, McCabe's V(G) and

Halstead's N [Bowen, 1984]. He concluded that the optimal values of SLOC / module

differed across languages, but that all were much less than the DoD's proposed standard of 200

SLOC / module. In his suggestions for future research, he notes that "More research is

necessary to derive and validate upper and lower boundsfor module size. Module size lower

bounds, or some equivalent metric such as coupling, have been neglected; however they are

just as significant as upper bounds. With just a module size upper bound, there is no way to

dissuade the implementation of excessively small modules, which in turn introduce intermodule

complexity, complicate software integration testing, and increase computer resource overhead."

[1984, p. 331] Boydston, in his analysis of programmer effort, noted that "...as a project gets

larger, the additional complexity oflarger modules has to be balanced by the increasing

complexity of information transfer between modules." [Boydston, 1984 p. 159]. Card, Page,

and McGarry tested the impact of module size and strength (singleness of purpose) on

programming effort [Card, Page and McGarry, 1985]. In their basic analysis, they found that

effort decreased as the size of the module increased. However, they also noted that effort

decreased as strength increased, but that increases in strength were associated with decreases in



module size. Their conclusion was that nothing definitive could be stated about the impact of

module size.

An, Gustafson, and Melton, in analyzing change data from two releases of UNIX, found that

the average size of unchanged modules (417 lines of C) was larger than that of changed

modules (279 lines of C) [An, Gustafson and Melton, 1987]. Unfortunately, the authors do

not provide any analysis to determine if this difference is statistically significant. Most

recentiy, Lind and Vairavan analyzed the change rate (number of changes per 100 lines of

code) versus a lines of code-based categorical variable [Lind and Vairavan, 1989]. They

found that minimum values of change density occurred in the middle of their ranges,

suggesting that modules that were both too large and too small increased the amount of change

density. TTiey further suggest that, for the Pascal and Fortran programming languages, the

optimum value might be between 1(X) and 150 SLOC. This is in contrast to some suggestions

from work in Japan, where, for example, at Toshiba the management heuristic is no more than

50 lines per module [Matsumura et al., 1987].

The results of these previous studies can be summarized as follows. Researchers looking for

unidirectional results {i.e., that either smaller modules or larger modules were better) have

found either no or contradictory results. Other researchers have suggested that a U-shaped

function exists, that is, both modules that are too small and modules that are too large are

problematic. In the case of many small modules, the number of intermodule interfaces is

increased, and interfaces have been shown to be among the most problematic components of

programs [Basili and Perricone, 1984]. In the case of a few very large modules, these

modules are less Hkely to be devoted to a single purpose and may be assumed to be more

complex, as both of these factors having been linked with larger numbers of errors and

therefore higher maintenance costs [Card, Page and McGarry, 1985] [Vessey and Weber,

1983],

However, the researchers who have suggested the U-shaped curve hypothesis either provide

no or very limited {i.e., categorical) data linking size and cost . They also, in general, do not

provide a methodology for determining the optimum program size.^ Finally, recent research

on software complexity metrics has suggested that, for large systems, modularity is most

appropriately measured at multiple levels of program organization [Zweig, 1989]. This is

^Boydston does extrapolate from his dataset to suggest a specific square root relationship between number of

new lines of code and number of modules for his Assembler and PLS language data [Boydston, 1984].



because, as will be explained in greater detail in Section III below, the effects of breaking an

application into modules of an appropriate size are believed to be distinct from those of

breaking those modules into their component subprograms or procedures [Zweig, 1989].

Therefore, a general research question to be addressed is:

Research question 2: Do software maintenance costs depend significantly upon degree of
modularity, measured at multiple levels, with costs risingfor applications that are either under
or over modularized?

Structure

An excellent review of the empirical research on structured programming is provided by

[Vessey and Weber, 1984]. Therefore, this section will only briefly summarize the arguments

presented there. Structured programming is a design approach that limits programming

constructs to three basic control structures. Because these structures are often difficult to

adhere to using the GOTO syntax found in older programming languages, this approach is

sometimes colloquially referred to as "GOTO-less programming". Vessey and Weber note

that, while few negative results have been found, absence of significant results is as frequent as

a finding of positive results, a development that they attribute, in part, to the fact that

researchers have not adequately controlled for other factors. They note the difficulty of

achieving such control, particularly in non-laboratory, real world settings. Therefore, the

question of a positive impact of structure on maintenance costs is still unanswered, and

requires further empirical support. This suggests the following research question:

Research question 3: Do software maintenance costs depend significantly upon the degree of
control structure complexity, with costs rising with increases in complexity?

In the following section we describe our approach to answering these research questions.

III. Research Approach

In attempting to answer the research questions posed above, we needed to test the impact of

complexity on real-world systems, and to attempt to control for other factors that may have an

impact on labor productivity, since labor costs are the single largest cost component in

commercial software maintenance. For this purpose we began with the data and model

developed in our previous research in software maintenance productivity. The data collection

procedures and model development are described in detail in [Kemerer, 1987] and [BDK,

1991], and will only be summarized here.



The Research Site

Data were collected at a major regional bank with a large investment in computer software. The

bank's systems contain over 10,000 programs, totalling over 20 million lines of code. Almost

all of them are COBOL programs running on large IBM mainframe computers. The programs

are organized into application systems (e.g. Demand Deposits) of typically 100 - 300 programs

each. Some of the bank's major application systems were written in the mid- 1 970' s, and are

generally acknowledged to be more poorly designed and harder to maintain than more recently

written software.

The software environment in which we are conducting our research is believed to be a quite

typical commercial data processing environment. The empirically based results of the research

should, therefore be highly generalizable to other commercial environments. The projects

analyzed were homogeneous in that they all affected COBOL systems, so our results are not

confounded by the effects of multiple programming languages.

We analyzed 65 software maintenance projects from 17 major application systems (see Table 2

in Section IV). These projects were carried out between 1985 and 1987. An average project

took about about a thousand hours (at an accounting cost of $40 per hour) and changed or

created about five thousand source lines of code.

Modeling maintenance productivity

Our major goal in this study is to evaluate the impact of software complexity on maintenance

labor productivity. In order to do so, however, we must control for the effects of other

factors, such as task magnitude and the skill of the developers, that also affect the developer

hours required on a project [Gremillion, 1984]. Excluding task size or other relevant factors

would result in a mis-specification of the model and incorrect inferences about the impact of

software complexity on costs. For example, a large maintenance project dealing with an

application system of low complexity may require more hours than another project meant to

make a small modification to a system of higher complexity. A failure to control for the

different task sizes could lead us to the unjustified conclusion that higher software complexity

will result in lower costs.

Figure 1 presents a measurement model of the maintenance function developed in [BDK,

1991]. Software maintenance is viewed as a production process whose inputs are labor and

computing resources and whose output is the modified system. Since labor hours are



considerably more expensive than computer resources, and as there are limited substitution

possibiUties between the two, we focus upon labor hours as the major expense incurred in

software maintenance. The productivity of this process depends upon a number of

environmental variables, including the skill and experience of the developers, and the software

tools available to the developers [Boehm, 1987].

Activity



e) Working environment: There is evidence that fast-turnaround maintenance

environments enhance developer productivity.

f) Product quality: It has been suggested that doing a careful job of error-free

programming will cost more than a rushed job would cost, although its benefits will be

realized in the long term. But, there are those who believe that careful and systematic

programming may not take any longer, some even arguing that it should be less

expensive.

g) Software tools: Many commercially available products have been designed to

increase developer productivity. To the extent that they do so, they will have noticeable

beneficial effects upon maintenance costs.

h) Software complexity: We are primarily concerned here with the impact of this factor

upon maintenance costs. Any practical cost estimation model, however, must consider

and control for the effects of other factors such as those discussed above.

This model of software maintenance costs with the first seven factors (i.e., not including "h)

Software complexity") has already been tested at the research site [BDK, 1991]. The model

was explicidy designed to allow the introduction of new factors, and by introducing software

complexity we can confirm its robustness. Of more immediate interest is that we can test the

marginal impact of software complexity upon maintenance costs. And we can compute the

actual estimated magnitude of the cost impact of complexity, so as to determine the extent to

which the effect is of managerial interest.

Definitions

The following definitions will be used throughout the rest of this paper:

*Module: A named, separately compilable file containing COBOL source code. A module
will typically, though not necessarily, perform a single logical task, or set of tasks. All the

modules counted in the analysis were of this type. Modules containing COBOL source code
but not the headers which allow it to be run on its own (e.g., INCLUDE modules and COPY
files) were not included.

*Paragraph: The smallest addressable unit of a COBOL program. A sequence of COBOL
executable statements preceded by an address/identification label. This construct is not

precisely paralleled in other high level languages.

*Procedure: The range of a PERFORM statement. For example, if paragraphs are labelled

sequentially, the statement PERFORM D THRU G invokes the procedure consisting of

paragraphs D, E, F, G and the paragraphs invoked by these paragraphs.

*Component: The union of two or more overlapping procedures, (e.g., PERFORM D THRU
G and PERFORM E THRU J will have at least E, F, and G in common.) Measurement of

components prevents possible double counting [Spratt and McQuilken, 1987]. Such overlaps

are relatively rare, however, with the result that components and procedures behave almost
identically for all statistical purposes.



*Application System: A set of modules assigned a common name by the bank, typically

performing a coherent set of tasks in support of a given department, and maintained by a single

team. References to this term refer only to the source code, not to the JCL and other material

associated with it. 'Application' or 'system', if used separately, mean the same thing.

Software Complexity Metrics

A number of steps must be taken before it can be determined whether reductions in software

maintenance costs can be achieved by monitoring and controlling software complexity. First,

we must identify appropriate metrics with which to measure software complexity. Having

identified such measures, we can then attempt to establish that their effects are managerially

important ~ that they do in fact have a large enough effect upon software costs to justify

possibly significant expenditures by those wishing to control them.

The first step was accomplished in an earlier study at the same research site [Banker, Datar and

Zweig, 1989]^. We analyzed over five thousand appHcation programs in order to develop a

basis for selecting among dozens of candidate software metrics which the research literature

has suggested. Consistent with some recent research, our analysis suggested that the metrics

which we analyzed could be classified into three major groups, measuring three distinct

dimensions of software complexity: measures of module size; measures of procedure

modularity; and measures of the complexity of a module's control structure [BDZ, 1989]

[Harrison era/., 1982] [Munson and Khoshgoftaar, 1989] [Rombach, 1987]. That research

also identified representative metrics ft"om each group which could be exp>ected to be

Orthogonal to each other [BDZ, 1989].

In the current study we undertake the second step required to validate the practical use of

software complexity metrics by assessing their effect upon maintenance costs. We used a

commercial static code analyzer to compute metrics from each of the groups of metrics

identified earlier. Three software complexity metrics, representing each of the previously

identified dimensions, were used in this study. Choice of these three metrics was based upon

the ease with which they could be understood by software maintenance management and the

ease of their collection. Given the typical high levels of cortelation among complexity metric

groups [Zweig, 1989] [Munson and Khoshgoftaar, 1989], this approach has been

^Hereafter referenced as "[BDZ, 1989]".
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recommended by previous research [Shepperd, 1988]^. Consistent with previous research,

we used module length, in executable statements (STMTS) for the first metric, a measure of

size^. The effect of this complexity metric will depend upon the application systems being

analyzed. Module for module, larger modules will be more difficult to understand and modify

than small ones, and maintenance costs will be expected to increase with module size.

However, a system can be composed of too many small modules as easily as too few large

ones. If modules are too small, a maintenance project will spread out over many modules with

the attendant interface problems and therefore maintenance costs could actually decrease as

module size increases.

For the second metric, to measure procedure modularity, we computed the average size of a

module's procedures (STMTCOMP)^. The same argument concerning the effect of module

size applies here. And, if modules are broken into too many small components, then an

increase in average component size will be associated with a decrease in maintenance costs.

There is an almost universal tendency to associate large comf)onent size with poor modularity,

but intuitively, neither extreme is likely to be effective.

A third dimension of software complexity was the complexity of the module's control

structure. The initial candidate metric chosen for this dimension was the proportion of the

executable statements which were GOTO statements (GOTOSTMT) We selected a control

structure metric which was normalized for module size, so that it would not be confounded

with STMTS. This metric is also a measure of module decomposabUity, as the degree to

which a module can be decomposed into small and simple components depends directiy upon

the incidence of branching within the module. Highly decomposable modules (modules with

low values of GOTOSTMT) should be less costly to maintain, since a developer can deal with

manageable portions of the module in relative isolation.

The density ofGOTO statements (GOTOSTMT), like other candidate control metrics we

examined, is a measure of decomposabUity — each GOTO command makes a module more

difficult to understand by forcing a programmer to consider multiple portions of the module

^However, in order to test the sensitivity of our results to choices of alternative meuics, the model described

below was re-eslimaled using other metrics. No significant changes in the results were found due to specific

metric choice.

'For these data this metric is highly correlated (Pearson correlation coefficient > .92) with other size meuics,

such as physical lines of code, and Halstead Length, Volume, and Effort [Zweig, 1989].

°This metric was found to be uncorrelated with STMTS (coefficient = .10).
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simultaneously -- but it does not distinguish between more and less serious structure

violations. A branch to the end of the current paragraph, for example, is unlikely to make that

paragraph much more difficult to comprehend, while a branch to a different section of the

module may [Vessey, 1986]. However, none of the existing structure metrics we examined

clearly differentiate between the two cases.

The modules we analyzed have a large incidence ofGOTO statements (approximately seven per

hundred executable statements) but if only a relatively small proportion of these are seriously

affecting maintainability, then the GOTOSTMT metric may be too noisy a measure of control

structure complexity. Empirically, over half of the GOTOs in these programs (19 GOTOs out

of 31 in the average module) are used to skip to the beginning or end of the current paragraph.

Such branches would not be expected to contribute noticeably to the difficulty of understanding

a module (in most high level languages other than COBOL they would probably not be

implemented by GOTO statements) and a metric such as GOTOSTMT which does not

distinguish between these and the less benign 40% of the branch commands will be

understandably imperfect

To avoid this problem, a modified metric was computed (GOTOFAR) which is the density of

the non-benign GOTO statements i.e., the 40% of the GOTO statements which extend outside

the boundaries of the paragraph and which can be expected to seriously impair the

maintainability of the software. Since the automated static code analyzer was not able to

compute this metric, it was computed manually. Due to the large amount of time this

computation required, this metric was not computed for all the modules analyzed, but for a

random sample of approximately fifty modules per apphcation system (about 1500 modules in

total, or approximately 30% of all modules)^.

Research Hypotheses

Based on the above research approach, we propose four specific research hypotheses based on

the initial research questions that can be empirically tested:

Hypothesis 1 : Controlling for otherfactors known to affect software maintenance costs,

software maintenance productivity increases significantly with increases in software

complexity, as measured by STMTS, STMTCOMP and GOTOFAR.

"a later sensitivity analysis regression using G0T0STT4T instead of GOTOFAR lends credence to our belief

that the excluded branch commands represent a noise factor: The estimated effect ofGOTOSTMT had the same
relative magnitude as that of GOTOFAR, but the standard error of the coefficient was four times as large.

12



Hypothesis 2: Software maintenance costs will depend significantly upon average module size

as measured by STMTS, with costs rising for applications whose average module size is either

too large or too small.

Hypothesis 3: Software maintenance costs will depend significantly upon average procedure

size as measured by STMTCOMP, with costs rising for applications whose average procedure

size is either too large or too small.

Hypothesis 4: Software maintenance costs will depend significantly upon the density of
branching as measured by GOTOFAR, with costs rising with increases in the incidence of
branching.

IV. Model and Results

Factors Affecting Maintenance Costs

We the focus of the current research is in assessing the effect of software complexity upon

maintenance costs, it is necessary to control for other factors known to affect these costs. The

most significant of these, of course, is the magnitude of the maintenance task. To control for

this, and for other factors known to affect costs, we began with a previously developed model

of software maintenance costs [BDK, 1991]. The magnitude of the maintenance task is

measured by both the number of Function Points and the number of source lines of code

(SLOC) added or changed [Albrecht and Gaffney, 1983] [Boehm, 1987].

Other factors, shown to be significant in affecting project costs included:

*SKILL: The percent of developer hours billed to the most highly skilled (by formal

management evaluation) developers. This variable is quite distinct firom the following

one, which depended upon the developers' experience with a specific application

system. [BDK, 1991]

*LOWEXPER: The extensive use (over 90% of hours billed to the project) of

developers lacking experience with the application being modified. (A binary variable.)

[BDK, 1991]

The values of these variables depended upon the number of hours billed to each project. This

information was obtained from the project billing files. [BDK, 1991]

*METHOD: The use of a structured design methodology. (A binary variable.) This is

expected to have an adverse effect upon single-project productivity, although it is meant
to reduce costs in the long run. [BDK, 1991]

RESPONSE: The availability of a fast-turnaround programming environment. (A
binary variable.) [BDK, 1991]

The values of these binary variables were obtained from the project managers.

13



QUALITY: A measure (on a three-point scale of low/medium/high quality) of the

degree to which the completion of the project was followed by an increase in the

number of operational errors. This measure was based upon information obtained from
the site's error logs. [BDK, 1991]

In a manner consistent with the software productivity literature we model the effects of these

factors to be proportional, rather than absolute, so they are weighted by program size [Boehm,

1981] [Albrecht and Gaffney, 1983]. These explanatory factors are weighted by a measure of

project size, either by FP or by SLOC, depending on whether they are thought to be associated

more strongly with the analysis phase or with the coding phase of the project. ^^

In testing the various complexity metrics, we shall be interested in their impact upon

maintenance costs controlling for these other factors. To do so, we shall estimate the following

model:

HOURS = po + Pl*FP + P2*SL0C + P3*FP*FP+ p4*SL0C*SL0C + P5*FP*SLOC +

p6*FP*L0WEXPER + p7*FP*SKILL + p8*FP*METH0D +

p9*SL0C*QUALITY + Pio*SLOC*RESPONSE +

pll*SLOC*STMTS + Pi2*SL0C*STMTC0MP + pi3*SL0C*G0T0FAR + e

This model, without the three complexity terms (the terms associated with parameters pn
through Pi3), has been previously validated at the research site [BDK, 1991]. In this model,

project costs (measured in developer HOURS) are primarily a function of project size,

measured in function points (FP) and in source lines of code (SLOC). The number of hours

was obtained from the site's billing files. The size measures were computed by the

development staff after the projects were complete. In order to model the known nonlinearity

of development costs with respect to project size, we include not only FP and SLOC, but also

their second-order terms. We expect this to result in a high degree of multicollinearity among

the size variables which will make the interpretation of their coefficients difficult [Banker and

Kemerer, 1989]. Those coefficients, however, are of no concern to us for examining the

current research hypotheses relating to the impact of complexity. Table 2 presents the

summary statistics for this dataset.

^^it should be noted that any coUinearity which may exist between the weighted complexity metrics and other

independent variables which have been weighted by SLOC will cause us to underestimate the significance of the

complexity metric variable. Therefore, the analysis presented below is a conservative test
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At this site, the minimum-cost component size was computed to be (0.01 1/(2*0.00012)) = 45

executable statements per component (See Table 3). This value is very close to the mean (43)

and to the median (40) for this organization. However, individual appUcations vary in average

procedure size fix)m 13 to 115 executable statements! ^^

As an additional test of the robustness of these results, after determining the minimum value of

45, we developed a linear model incorporating two linear variables representing the deviations

below and deviations above the optimum value. This model generated similar results (r2=.90,

adjusted r2=.87, Fh.so = 31.15).

Analogous to the U-shaped relationship between maintenance costs and procedure size, there is

also reason to expect a similar U-shaped relationship between maintenance cost and module

size. An additional model was tested, adding a second order term, STMTS^. However, this

relationship was not supported by the data at this site, as the second order term was found to be

statistically insignificant. The resulting coefficients showed that all the appUcation systems

examined fell on the downward-sloping portion of the computed curve. In fact, a direct

plotting of the data confirmed that the relationship was downward-sloping and approximately

linear across the observed range of the data, so no second-order term was included for this

complexity metric in the final model.

The Belsley, Kuh, Welsch test of multicoUinearity [Belsley, Kuh and Welsch, 1980] did not

show the complexity metrics to be significandy confounded with the other regression variables,

so we may interpret their coefficients with relative confidence. We also detected no significant

heteroskedasticity. This supports our decision to model the complexity effects in our

regression as proportional ones, rather than use the unweighted metrics alone. '^

Tests of the Research Hypotheses

This analysis confirms our four hypotheses that software complexity increases maintenance

costs:

^ ^ As is often the case in this type of estimation [Banker and Kemerer, 1989] there was a high degree of

multicoUinearity between the linear term and the quadratic term, which required the computation of the

minimum point to be taken with caution. Sensitivity analysis, using different minimum points, showed the

estimation to be insensitive to moderate variations in this value.

'^If the complexity effects were not proportional to project magnitude, our use of the weighted metrics would

cause our model to overestimate the costs of large projects, resulting in residuals negatively correlated with size.

17



Hypothesis 1 was the general hypothesis that, controlling for the other explanatory factors,

software complexity has a significant Impact upon software maintenance costs. This is

confirmed. Recall

P(Ho: pll=Pl2=Pl3=Pl4=0)=0.0001 as F4,50 =12.02.

Hypothesis 2 was that maintenance costs would be significantiy affected by module size. This

is confumed.

P(Ho: Pi i=0)=0.001 as tso = -3.33.

We also tested for a U-shaped relationship between module size and software maintenance

costs. The maintenance costs at this site the data tended to be linear over the observed range of

module sizes, controlling for other factors. It should be noted however, that while these data

do not indicate a U-shaped relationship, they are not necessarily inconsistent with such a

hypothesis. (The data can be seen as falling on the downward sloping arm of this U, with the

possibility that had sufficiently large modules been available, that costs would again begin to

rise.)

Hypothesis 3 was that maintenance costs would be significantly affected by procedure size.

This hypothesis is confirmed by an F test on the joint effect of the two procedure-size terms.

Recall

P(Ho: P 1 2=P 1 3=0)=0.0{)0 1 as F2. 50 = 1 2.02.

Again, we hypothesized a U-shaped relationship between procedure size and software

maintenance costs. At this site the data are supportive of the U-shaped hypothesis, with actual

application systems observed to fall on both arms of the U, and minimum costs observed for a

procedure size of approximately 45 executable statements.

Hypothesis 4 was that maintenance costs would be significantly affected by the

density of branch instructions within the modules. This is confirmed.

P(Ho: Pi4=0)=0.002) as tso = 3.22.

V. Software Maintenance Management Results

Through the above analysis we have estimated the effect of software complexity upon

developer productivity in a maintenance environment. While it is a firmly established article of

conventional wisdom that poor programming style and practices increase programming costs,

there has been litde empirical evidence to support this notion. As a result, efforts and
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investments meant to improve programming practices have had to be undertaken largely on

faith. We have extended an existing model of maintainer productivity and used it to confum

the significance of the impact of software complexity upon productivity. We used a model

which allowed us to not only verify this significance, but also to estimate the magnitude of the

effect. The existence of such a model provides managers with estimates of the benefits of

improved programming practices which can be used to cost-justify investments designed to

improve those practices. Based upon the regression estimates in Table 4, the effects of the

metrics for projects of average size (about 5400 source lines of code) are approximately

• 0.6 hours reduction for every statement added to average module size.

• 15 hours added for every statement deviation from an optimum average component

size of 45.

• 140 hours added for every 1% absolute increase in the proportion of statements

which are non-benign GOTO statements.

A perhaps more informative way to interpret these results is to compute the percent change in

average project costs associated with metric values which deviate unfavorably from the

research site's mean values by one standard deviation. The advantage of this approach is that

we know we are comparing the more complex software to complexity standards observed in

practice at this site, rather than to a perhaps-arbitrary ideal. The penalties associated with these

less favored complexity scores are:

• 10% of total costs for module size.

• 30% of total costs for procedure size^^.

• 15% of total costs for branching density.

Armed with these quantified impacts of complexity, software maintenance managers can make

informed decisions regarding preferred managerial practice. For example, one type of decision

that could by aided by such information is the purchase of CASE reengineering tools. A great

many claims are made for such tools; improved programming practice is only one of them.

The benefits of these tools have also generally had to be taken on faith. Our analysis,

however, indicates that the magnitude of the economic impact of software complexity is

l^There is an asymmetry here. The estimates are a 25% penalty for appHcations whose procedures are 1 SD
smaller than average and a 35% penalty for those whose procedures are 1 SD larger than average. We cannot

statistically reject the hypothesis that these two values are actually equal.
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sufficiently great that many organizations may b: able to justify the purchase and

implementation of CASE reengineering tools on the basis of these estimated benefits.

More generally, a common belief in the long-term importance of good programming practice

has generally not been powerful enough to stand in the way of expedience when "quick-and-

dirty" programming has been perceived to be needed immediately. An awareness of the

magnitude of the cost of existing software cumplexity can combat this tendency. The cost of

correctable complexity at this research site amounts to several million dollars per year, the

legacy of the practices of previous years.

Taken together these ideas show how, through the predictive use of the model developed here,

managers can make decisions today on systems design, systems development, and tool

selection and purchase that depend upon system values that will affect future maintenance.

This can be a valuable addition to the traditional emphasis on current on-time, on-budget

systems development in that it allows for the estimation of full life-cycle costs. Given the

significant percentages of systems resources devoted to maintenance, improving managers'

ability to forecast these costs will allow for them to be properly weighted in current decision-

making.

In summary, this research suggests that considerable economic benefits can be expected from

adherence to appropriate programming practices. In particular, such aspects of modular

programming, such as the maintenance of moderate procedure size, and the limitation of

branching between procedures, seems to have great benefits. The informed use of tools or

techniques which encourage such practices should have a positive net benefit.

VI. Concluding Remarks

In this study we have investigated the links between software complexity and software

maintenance productivity. On the basis of an analysis of software maintenance projects in a

commercial application environment we confirmed that software maintenance costs rise

significantly as software complexity increases. In this study software maintenance costs were

found to increase with increases in the complexity of a program's components, as measured by

the programs' average module size, average procedure size, and control structure complexity.

Historically, most models of software labor productivity have focused on new development,

and therefore have not exphcidy used software complexity metrics. Our analysis at this site
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suggests that, after controlling for other factors believed to affect maintenance costs, high

levels of software complexity account for approximately 30% of maintenance costs, or about

20% of total Ufe-cycle costs. Therefore, the neglect of software complexity is potentially a

serious omission.

The results presented here are based up>on a highly detailed analysis of programming costs at a

site we judge to be very typical of the traditional transaction processing environments which

account for such a considerable p)ercentage of today's software maintenance costs. Based upon

this analysis, the aggregate cost of poor programming practice for industry is likely to be

substantial. ^'*

^"^Helpful comments from Tom Malonc and Ron Weber are gratefully acknowledged.
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