630.7 I&6b no.752 cop.8

NOTICE: Return or renew sli Library Materials! The Minimum Fee for each Lost Book is \$50.00.

The person charging this material is responsible for its return to the library from which it was withdrawn on or before the **Latest Date** stamped below.

Thaft, mutilation, and underlining of books ara ressons for disciplinary sction and may result in dismissal from the University. To renew call Talaphone Cantar, 333-8400

UNIVERSITY OF ILLINOIS LIBRARY AT URBANA-CHAMPAIGN

SOIL PRODUCTIVITY INDEXES FOR ILLINOIS COUNTIES AND SOIL ASSOCIATIONS

Bulletin 752 University of Illinois at Urbána-Champaign College of Agriculture Agricultural Experiment Station

ABSTRACT

The 2 percent sample soil data for the Illinois Conservation Needs Inventory were combined with productivity indexes to obtain state, county, and subcounty soil productivity characteristics that were used to evaluate variations in rural land quality. State soil productivity distributions were developed to provide a general framework of soil quality. Frequency diagrams (histograms) of county soil productivity indexes were constructed. Ratios comparing soil productivity patterns for the state and each county were developed and analyzed. Productivity characteristics of soil associations were assembled for Illinois and for each county in a table that lists the percentage of each county in each soil association, the percentage of each soil association in each of seven productivity index categories used in the histogram format, and comparisons of ratios between state and county soil association productivity indexes within the seven productivity index categories. The productivity index data can be used to compare the relative quality of soil for agricultural use between counties and between soil associations within counties. These data should aid county and state officials in evaluating rural land assessments.

Additional index words: Conservation Needs Inventory, soil productivity distributions.

CONTENTS

Development of data2	
State patterns of productivity2	
County patterns of productivity9	
State soil association patterns of productivity	
County soil association patterns of productivity	
Suggested rural land evaluation procedure	
Discussion	
Literature cited	

TABLES

1	County average quarter-section tracts
	productivity indexes1
2	Soil series in Illinois grouped by association area
	on general soil map of Illinois4-7
3	Frequency distribution of basic management PI's
	for Illinois soil association areas10
4	Frequency distribution of high management PI's
	for Illinois soil association areas11
5	Percentage distribution of soils in various pro-
	ductivity index classes for soil association areas
	within counties
~	

6 Field guidelines for estimating high management PI categories for soil association areas......47

FIGURES

1	General soil map for Illinois
2	Basic management PI distributions for Illinois8
3	High management PI distributions for Illinois8
4	Basic management PI ratios for Illinois
5	High management PI ratios for Illinois
6	Annotated diagram of frequency distribution of
	high management PI's for counties
7	Frequency distribution of county high and basic
	management PI's12-37
8	Cross section of Hancock County soil association
	map
9	Hypothetical example of relationship between sale
	value and tract PI

Prepared by P. W. Mausel, Associate Professor of Geography, Indiana State University, Terre Haute; E. C. A. Runge, formerly Professor of Agronomy, University of Illinois at Urbana-Champaign, now Professor and Chairman of Agronomy, University of Missouri-Columbia; and S. G. Carmer, Professor of Biometry, Department of Agronomy, University of Illinois at Urbana-Champaign. The authors are indebted to Norman Cooprider, Department of Geography and Geology, Indiana State University, for his assistance in cartography and photography.

Urbono, Illinols

August, 1975

EVALUATING RURAL LAND for purposes of tax assessment is often inconsistent and thus inequitable in many areas of Illinois and other states. Generally, these inconsistencies in evaluation reflect the paucity of information that would permit governmental officials to make soil quality judgments that would be consistent with one another and thus be equitable over large areas.

Dr.

The soils information currently used by assessors to make land evaluation decisions varies in amount and quality from area to area. Modern county soil survey reports provide a wealth of detailed soils data that are coming to be widely used by assessors to judge soil quality, but many areas lack data in this form. Nine Illinois counties have no published detailed soil reports. Detailed soil reports for another 57 counties were published in the period 1911-1945. Only 36 counties have modern (post-1945) soil reports, published or being prepared for publication, that can be suitably used to estimate relative soil quality and, indirectly, land value. It is difficult to evaluate soil quality consistently when counties have greatly differing forms of soil information. However, all Illinois counties do have soil association maps that indicate generalized soil distributions of two or more soil series, and they have detailed soil maps for the Conservation Needs Inventory (CNI) soil data. (5).¹ Detailed soil maps were made for quarter-section tracts of land for each township (36 sq. mi. or 93 sq. km.) in the Illinois CNI study (2 percent sample). For each CNI tract a Productivity Index (PI) was developed (2) by finding the weighted average PI for the soil mapping units on the tract. The soil association in which the tract occurred was recorded in the CNI study (5). Frequency distributions of CNI quarter-section tract PI's were prepared by counties, by soil associations for each county, and for Illinois.

In the interim period before modern county soil surveys are available for all counties, the results reported in this bulletin and in less complete form in Mausel *et al.* (4) should help assessors and others interested in evaluating soil quality make more consistent decisions in counties that have inadequate soil data. State officials charged

¹ Italicized numerals refer to entries in Literature Cited.

County	High manage- ment PI	Basic manage- ment PI	County	High manage- ment PI	Basic manage- ment PI	County	High manage- ment PI	Basic manage- ment PI
Adams	. 98	60	Hardin		39	Morgan	124	77
Alexander	. 99	59	Henderson		73	Moultrie	146	93
Bond	. 106	60	Henry		76	Ogle	126	78
Boone	. 122	77	Iroquois.		78	Peoria	113	69
Brown	. 100	59	Jackson		50	Perry	99	51
Bureau	. 133	84	Jasper	104	56	Piatt.	145	93
Calhoun	. 91	55	Jefferson		48	Pike	113	68
Carroll	. 120	74	Jersey.		64	Pope	81	43
Cass	. 109	67	Jo Daviess		54	Pulaski	102	57
Champaign	. 145	93	Johnson	7 6	40	Putnam	123	76
Christian	. 133	84	Kane	132	83	Randolph	101	55
Clark	. 107	59	Kankakee		75	Richland	104	54
Clay	. 106	55	Kendall	133	84	Rock Island	117	72
Clinton	. 104	57	Knox		75	St. Clair	110	64
Coles	. 133	82	Lake	11 6	70	Saline	104	57
Cook	. 116	69	LaSalle	134	84	Sangamon	137	87
Crawford	. 107	59	Lawrence	108	62	Schuyler	105	63
Cumberland	. 113	63	Lee	131	83	Scott	114	70
DeKalb	. 146	93	Livingston	132	82	Shelby	120	70
DeWitt	. 142	90	Logan		91	Stark	134	82
Douglas	. 144	92	McDonough	138	86	Stephenson	118	73
DuPage	. 122	75	McHenry		74	Tazewell	128	81
Edgar	. 140	89	McLean		91	Union	98	55
Edwards	. 100	54	Macon		93	Vermilion	132	82
Effingham	. 105	55	Macoupin	117	71	Wabash	115	68
Fayette	. 105	58	Madison		67	Warren	138	86
Ford	. 130	81	Marion		52	Washington	98	53
Franklin	. 98	51	Marshall		77	Wayne	103	54
Fulton.	. 110	67	Mason	104	65	White	105	61
Gallatin.	. 112	67	Massac		55	Whiteside	121	76
Greene	. 116	72	Menard		80	Will	117	71
Grundy	. 131	84	Mercer		77	Williamson	89	4 6
Hamilton	. 96	51	Monroe	102	59	Winnebago	120	75
Hancock	. 115	70	Montgomery	113	67	Woodford	131	82

Table 1. — County Average Quarter-Section Tracts Productivity Indexes (PI)

with equalizing assessment between counties can compare average assessed value with county average PI's (Table 1) or with the frequency distribution of CNI tract PI's (Table 5) as part of their equalization procedure. This study can also be used to help assessors, probably with the assistance of a soil scientist, gain a further understanding of soil and PI relationships, which should lead to more equitable land assessment. It is hoped that county assessors will use specific soils information for each quarter-section tract in their counties.

DEVELOPMENT OF DATA

Each of the more than 5,000 quarter-section samples that make up the Illinois CNI has an accurate enumeration by acres of all soil mapping units (soil series, slope, and amount of topsoil remaining) located within the sample plot (5). These soil mapping units were recorded on computer cards or tape by number of acres in each soil series-slope-erosion class, by sample plot location, and by soil association area. The 26 soil associations identified for Illinois are given in Figure 1 and Table 2. Computer programs were written to assemble these data in forms used to provide patterns of soil distribution in Illinois.

Two sets of soil PI data at basic and high management levels (2) were combined with the computer-stored soil series distribution information. The basic and high management PI's of each soil mapping unit were calculated and recorded on cards for computer processing.

Combining the detailed soil distribution data and the PI's of the soil mapping units allowed us to generate previously unavailable data. The most significant information obtained from these procedures was as follows: 1. Basic and high management soil PI average for each sample plot.

2. Basic and high management soil PI averages for each county (average PI of all sample plots within a county).

3. Basic and high management soil PI state averages (average PI of all sample plots within the state).

4. Basic and high management soil PI averages for each state soil association (average PI of all sample plots within a state soil association).

5. Frequency distribution, expressed by percent of sample plot soil in each of seven PI categories, of soil PI under basic and high management for individual soil sample plots by county.

6. Frequency distribution of basic and high management soil PI for soil associations by county.

7. Frequency distribution of basic and high management soil PI for soil associations by state.

STATE PATTERNS OF PRODUCTIVITY

County averages for basic (Fig. 2) and high (Fig. 3) management productivity indexes were plotted on a map to provide accurate, albeit general, patterns of soil productivity. The boundaries delineated on the maps were constructed from interpolation between county average PI values, which were considered to be located in the geographic center of each county. This procedure successfully indicates general productivity differences among areas of the state; however, the small scale of the map, the interpolated nature of the boundaries, and the use of county average PI data limit the usefulness of these maps.

Although there is a great difference in actual productivity of soils at the different levels of management, the relative productivity patterns indicated on the two maps are similar. The areas of highest soil productivity, regardless of management level, are in the east-central and north-central counties. An example from this region is Champaign County, with basic and high management average P1's of 93.4 and 145.3, respectively. Many northwestern areas have lower county average P1's overall than the north-central and east-central parts of the state but have higher P1's than southern Illinois. For example, under conditions of basic and high management, respectively, Hancock County (northwestern Illinois) has PI's of 70.3 and 115.0, while White County (southern Illinois) has PI's of 60.7 and 105.2.

Comparing basic and high management PI county averages shows that significant soil productivity changes are associated with level of management. The PI frequently increases by 60 percent or more when management practices improve from basic to high. Moreover, the percentage improvement in PI is generally much greater on naturally poor soils than on naturally good soils. For example, the percentage increase in PI from basic to high management in Champaign County is 55.5 percent, while in White County the change is 73.3 percent. The PI of Franklin County, in southern Illinois, increases 91.4 percent from basic to high management.

A second set of maps (Figs. 4 and 5), developed from the same PI data, uses a ratio method to compare the county average PI to the state average PI. A county ratio of 1.00 indicates that the productivity average of the combined soils in the county is equal to the average state soil productivity. An analysis of Figures 2 through 5 reveals the general regional soil productivity differences for Illinois.

Area on		Surface	Degree of		Natural inte	ernal drainage class		Associated soil
general oil map	Fareot material ³	color ³	development ³	Well	Moderately well	Imperfects	Poor	type numbers ⁴
		Dark	Weak	Port Byren 277	Joy 275			272, 276, 562, 564
A	Loess >4-5 ft. thick, noncale. >3½ ft.	Dark	Moderate	Tam-	a 36	Muscatioe 41	Sahle 68	34, 44, 45, 47, 67, 244, 272, 660
		Dark	Modmod. strong		Bolivia 246	Ipava 43	Sable 68	34, 44, 45, 47, 67, 244, 249, 470
	Locse 3-5 ft. thick on cale, loam-sicl. till	Dark	Modmod. etrong	Catl	in 171	Flanagan 154	Drummer 152	67, 153, 330
B	Loess 1-3 ft. thick on cl. till, noocale. >31/5 ft.	Dark	Moderate	Sidell 55	Daca 56	Ranb 481	Drummer 152	330
c	Loess 3-5 ft. thick on cale. sice. till or drift	Dark	Mod. strong		Wencas 388	Rutland 375	Streator 435	91, 235, 330
D	Loess 5-7 ft. thick on weathered 11linoian till	Dark	Mod. strong	Douglas 128	Hårrison 127	Herrick 46	Virden 47, 50	138, 250, 251, 252, 256, 259, 47
E	Loess 4-6 ft. thick on weathered Illinoian till	Mod. dark	Strong		O'Fallen 114	Oconee 113	Cowden 112	48, 120, 138, 250, 474, 581, 584
F	Loess 245-4 ft. thick on weathered Illinoian till	Mod. dark	Strong-very strong		Richview 4	Hoyleton 3	Cisae 2	48, 120, 167, 218, 287, 581, 584
	Med. ter. mat. 2-315 ft. thick on cale. gravel	Dark	Moderate	Warsaw 290		Kane 343	W1II 329	93, 197, 313, 318
5	Med. tex. mat. 2-3½ ft. thick on concale. gravel	Dark	Modweak	Carnoi 285, 286		Omaha 289	Abington 300	79, 155, 305, 253
	Loess 235-5 ft. thick on noncale. cl-sel. till	Dark	Moderate	Ogle 412				
•	Loess 135-3 ft. thick on noncale. cl-scl. till to 4 ft.	Dark	Moderate	Duraod 416				
Ħ	Loess 1-3 ft. thick on sl. till, calc. <4 ft.	Dark	Moderate	Rin	gwood 297			191, 197
	Loess <1 ft. thick on sl. till, cale. <31/2 ft.	Dark	Moderate	Griswold 363				
,	Loess 145-3 ft. thick on loam till, cale. by 2-345 ft.	Dark	Moderate	Say	brook 145	Lisben 59		152
-	Loess $<11\%$ ft. thick on loam till, cale. by 2-3½ ft.	Dark	Moderate	LaRose 60, Parr 221	Corwin 495	Odell 490	Pella 153	152, 204
	Med. tex. mat. 2-4 ft. thick on calc. sicl. till	Dark	Moderate	Sym	terton 294-	Andres 293	Reddick 594	97, 100, 103, 210
'n	Med. ter. mat. <2 ft. thick on sicl. till, calc. at 115-3 ft.	Dark	Moderate	Var	oa 223	Elliott 146	Ashkum 232	330
	Sandy mat. 115-315 ft. thick on sicl., cale. by <315 ft.	Dark	Modweak	Ran	kin 157	Wesley 141		
	Med. tex. mat. 2-4 ft. thick on calc. sic. drift	Dark	Moderate	Mer	1a 448	Mokena 295		
К	Med. tex. mat. (ioc. locss) <2 ft. thick on sic. drift, calc. at <3 ft.	Dark	Mod. strong			Swygert 91	Bryce 235	42, 229, 238
	Med. ter. mat. (ioc. locss) <2 ft. thick on c. drift, calc. at <3 ft.	Dark	Modstrong			Clarence 147	Rowe 230	42, 229
	Loces >5 ft. thick, cale. at 21/24 ft.	Light	Moderate	Sylvan 19	Iona 307	Reesville 723	Whitsen 116	30, 35, 271
		Mod. dark	Weak	Mt. Carroll 266	Fall 263			
L		Light	Weak	Seaton 274	Decorra 273			30, 271, 281, 282, 563, 565
	Loces >4-5 II. ILICK, DCDCAIC. >372 II. (Same 38 A above.)	Mod. dark	Moderate	Dov	vns 386	Atterberry 61		
		Light	Moderate	Fayette 280	Rozetta 279	Strenghurst 278	Traer 633	30, 35, 271
	I amoda B an anda I amoda anda anda anda anda B amoda B	Mod. dark	Mod. strong			Sunbury 234		
~	DOUGS OF IL, LUICE OIL CENT, ICENT-BION, MILL (DENTIC SS D SUCVES)	Light	Mod. strong	Bir/	cbeck 233	Sabina 236	Ward 207	
E.	(amode B as a mail of 12 (2000) and 10 (2000) and 10 (2000)	Mod. dark	Moderate	Mellott 497	Wingate 348	Teronto 353		
	הסמפ די זני נווויג טוו טו. נווו ווטוונאוטי אסאז זני וטאוווס או זו אסטרני)	Light	Moderate	Russell 322	Xenia 291	Fincastle 496	1	
7	[Mod. dark	Mod. stroag	Sici	ly 258	Clarksdale 257		
4	10038 / 1-0 14' MIRCE, HORCERC, / 0 14' (08HE 38 / 800/6')	Light	Mod. strong	Clary 283	Cliaton 18	Keomah 17	Rusbville 16	6, 7, 8, 119, 264, 470, 660

areas.

* Abbreviations and symbols used in tables are as follows: $\langle =$ less than; $\rangle =$ greater than; c = clay; calc. = calcareous; cl. = clay loam; fl. = fine; fsl. = fine sandy loam; ft. = feet; inc. = including; mat. = matrix; mat. = model are model are model are not set. = soluty loam; sit. = silty clay loam; sit. = silty clay loam; sit. = silty the loam; sit. = silty loam; sit. = sit.

Area on		Surface	Degree of		Natural inter	rnal drainage class		Associated soil
general soil map	ratent makerai.	color ¹	development ³	Well	Moderately well	Imperfect ³	Poor	type numbers
	Locas > 5 ft. thick, cale. at 2)5-4 ft.	Light	Moderate	Sylvan 19	lona 307	Reesville 723	Whitson 116	30, 35, 271
D	Loese >5 ft. thick, noncale. >3½ ft.	Light	Moderate	Alford 308	Muren 453	Iva 454		35, 216, 271
d.	Loess 4-10 ft. thick on Illinoian drift ar >7 ft. thick on residuum	Light	Strong		Hosmer 214	Stoy 164	Weir 165	8, 15, 215, 583, 585
	Loess 1 19-4 ft. thick on Illinoian drift	Light	Strong-very strong		Ava 14	Bluford 13	Wynoose 12	15, 109, 337, 583, 585
2	Loess <1½ ft. thick on Illinoian drift	Light	Modstrong	Hie	kory 8	Blair 5		264
6	Loess 315-7 ft. thick on bedrock residuum	Light	Strong-very etrang		Grantsburg 301	Robbs 335		
벅	Loess 115-315 ft. thick an bedrock residuum	Light	Modstrong	Z	ierville 340		1	339, 425
s	Med. tex. mat. 2-31% ft. thick on cale. gravel	Light	Moderate	Fox 327		Homer 326		93, 253, 313, 323, 325, 342, 364
		Mod. dark	Moderate	Myrtle 414				
	Loss 2/2-5 it, thick on noncale. cl.eccl. till (Same as H above.)	Light	Moderate	Flagg 419				
		Mod. dark	Moderate		cyle 227	Веатег 225		
T	Loess 1 2-3 it, thick on noncale. cl.eel. till to 4 it. (Name as H above.)	Light	Moderate	Pee	atonica 21			
	Locas 1-3 ft. ap al. till, calc. <4 ft. (Same as H above.)	Light	Moderate	Mc	Henry 310			292, 296, 299, 364
	Loess <1 ft. thick an al. till, calc. <31/2 ft. (Same as H above.)	Light	Moderate	Lapeer 361				25, 292, 296, 364
	Loess <11% ft. thick on noncale. elsel. till to 31% ft.	Light	Moderate	Westville 22				25
		Mod. dark	Moderate			Herbert 62		
:	Loces 135-5 it. thick on loam till, cale. Dy 2-335 it. (Same as I above.)	Light	Moderate	Dodge 24				
þ		Mod. dark	Moderate	Octagon 656	Montmorenci 57	Otterbein 617		
	LOCES <173 II. THEN ON LOAD THI, CAR, DY Z-372 II. (NAME 38 I ADOVE.)	Light	Moderate	Miami 27	Celina 618			25, 205, 224
		Mod. dark	Moderate	Ma	rkham 531	Beecher 298		210,324
	Med. ter. mat. < 21t. thick on sici. till, cale. at 1 ½-5 ft. (Same as J above.)	Light	Moderate		rley 194	Blount 23		
*		Mod. dark	Mod. strong			Frankfort 320		
	Medi. Ver. IDB4. < 216. MINE OF SIC. 9. ULL, CART, CARC. 31 172-9 16.	Light	Modstrong		St. Clair 560	Eylar 228 (Nappace	(9	241
		Dark	Moderate	Pla	ao 199	Elburn 198	Drummer 152	191, 197, 206
	Loess 3-5 ft. thick on noncale. med. ter. outwash or sl. till to 5 ft.	Mod. dark	Moderate	Bat	avia 105	Virgil 104		
		Light	Moderate	St.	Charles 243	Kendall 242		
		Derk	Moderate	Alexis 80	Proctor 148	Breaton 149		67, 136, 152, 206
	Loess <3 ft. thick on med. tex. autwash to 5 ft., noncale. to 3½ ft.	Mod. dark	Moderate	Hai	rvard 344	Millbrook 219		346
		Light	Moderate	Ca	mden 134	Starks 132	Sexton 208	137
	Ciller and S. 6. 6. think	Dark	Weak	Wo	rthen 37	Littleton 81		39
	TOTA MAGIN / 16 MICH	Light	Weak	D	ury 75			732
		Dark	Moderate			Harco 484		
m	Silty mat. >4 ft. thick, calc. at 2-3½ ft.	Mod. dark	Moderate			Marissa 176	Patton 142	
=		Light	Moderate	no line	iontown 482	Reesville 723		

Table 2. — Continued

^a Abbreviations and symbols used in tables are as follows: <= less than; >= greater than; c = clay; calc. = calcareous; cl. = clay loam; f. = fine; fal. = fine sandy loam; ft. = feet; inc. = including; mat. = marchial; mad. = medium; mod. = mediare; noncelc.= noncelcareous; scl. = saody clay loam; sic. = silty clay; sicl. = silty clay loam; sl. = sandy loam; slt. = slighty; and tex. = texture. "*Somewhat poor" may also be used for this soil draines class. and the same times, but usually differ in one or more characteristics. Some soils shown in a given are also listed as associated soils in other " Associated soils after occur in the field with those soils showo on the same lines, but usually differ in one or more characteristics. Some soils shown in a given area are also listed as associated soils in other

areas.

D	DULIBOO	Degree or			DODTA ABOTTO TO TOTI I		Associated soil
r arcent machan	color ²	development3	Well	Moderately well	Imperfect ³	Poor	type numbers ⁴
M.J. t	Dark	Moderate			Denrock 262	Perrot 568	110, 261, 576
Med. 16X. mat. <2 II. Unick on upnease. sicc. > 0/2 II. Unick	Light	Mod. strong		Colp 122	Hurst 338	Okaw 84	26
Med. tex. mat. <11/2 ft. thick an sicc., calc. at 2-31/5 ft.	Light	Moderate		Markland 467	McGary 173		465
	Dark	Moderate		Gilmer 341	Martinton 189	Milford 69	
Med. Ver. IIBV. < 132 14, VIICK OR SICH, CAIC, 81 232-9 14.	Light	Moderate			DelRey 192		
Med. tex. mat. 3-5 ft. thick on loamy mat.	Light	Moderate	Wheeling 463	Scintoville 462	Weinbach 461	Ginat 460	469
Med. tex. mat. 315-5 ft. thick on sand or fine sand	Dark	Moderate			LaHogue 102	Selma 125	130, 188, 265
	Dark	Moderate	olid	t 159			
M 50. 16X. 1381. OF 10688 2-572 II. VAICE OD 88.00 OF 1106 88.00	Light	Moderate	The	bes 212	Tamms 211		
	Dark	Nane to 5 ft.	Hagener 88		Watseka 49	Manmee 89	
2004 for the former of the former of the first second second second second second second second second second s	Light	None to 5 ft.	Plainfield 54, 90			Kilbourne 203	270
osud, me ssud, losmy ssud, or losmy me ssud ~ 1. Mick	Dark	Weak at 3-5 ft.	Ade 98				
	Light	Weak at 3-5 ft.	Bloomfield 53				31
	Dark	Weak	Dick	cinsoa 87	Hoopeston 172, 237	Gilford 201	266
Sandy loam and fine sandy loam 1953 ft. thick on sand, fine sand,	Light	Weak	Lan	oat 175			332
heary send, or loamy fine sand at 3–5 ft.	Dark	Moderate	Ons	rga 150, 190	Ridgeville 151, 156	Pittwood 130	101, 187, 200, 202, 359, 673
	Light	Moderate	Alvi	a 131, 144	Roby 184, 185	Ruark 178	101, 187, 200
Med. tex. mat. <1 ft. thick an limestone	Dark	None-weak				Romeo 316	
Mad for mot 1.012 ft thick on limestoon	Dark	Weak-mod.	Cha	anahon 315		Joliet 314	
ALCU: 024: 11140. 1-272 11. 01114 ULI 1000000	Light	Weak-mod.	Rite	hey 311			
Med. tex. mat. 215-4 ft. thick on limestone	Dark	Moderate			Plattville 220	Millsdale 317	
Loess 1-2½ ft. thick as <1 ft. af limestone residuum as limestone	Dark	Moderate	Dodgeville 40				
at 1 12 -3 ft.	Light	Moderate	Dubuque 29				413, 471, 511
Locus $2\frac{1}{2}$ ft. thick on <1 ft. of limestone residuum on limestone	Dark	Moderate	Ashdale 411				
at 3-5 ft.	Light	Moderate	Palsgrove 429				
Losse and noncelo of drift 912.4 ft thick on limeetone	Dark	Moderate	Hitt 506				
הראנסט שוות ההתרמותי לה חוזה לאבינה החוזה לא האווה היו אווונסטרות	Light	Moderate	Woodbine 410				
Med. tex. mat. <1 ft. thick on chale residnum or chale	Light	Weak-mod.		Gosport 551			
related and important uncorrelated soils in Illinois. Dreviations and symbols used in tables are as follows: $\leq = 1$ es	ss than: > ==	ereater than, c - c	lav. cale — cale	areous, cl - clav	ham. f - fine. fel -	- fine sandy loam	. ft - fast: inc - includin
	reference Mech. tex. mat. <2 ft. thick on nonceale. site. >335 ft. thick Mech. tex. mat. <115 ft. thick on sich. cale. at 2-335 ft.	rarent moteration ologa Med. lear. mait. <2 ft. thick on nonceale. site.e. > 39/5 ft. thick Dark Med. lear. mait. <19/5 ft. thick on sead or fine sead	revent matteries coder developments Med. terr. mat. < 11,4 fullitle on nuceals. sic-c. > 31/4 ft. thick on nuceals. sic-c. = succease at 2.31/4 ft. thick on nuceals. sic-c. = succease at 2.31/4 ft. thick on nuceals. sic-c. = succease at 2.31/4 ft. thick on nuceals. sic-c. = succease at 2.31/4 ft. thick on saud or fine saud at 3.5 ft. Light None to 5 ft. None to 5 ft. None to 5 ft. Light for numer to 5 ft. Light for or 1 ft. of limestone at 3.5 ft. Light for 0 ft. thick on limestone at 3.5 ft. Light for numer to 5 ft. Light for or 1 ft. of limestone at 3.5 ft. Light for 0 ft. Numer to 5 ft. Light for or 1 ft. of limestone at 3.5 ft. Light for 0 code at 5 ft. Nuclear to 1 ft. dt limestone at 3.5 ft. Light for 0 code at 0 codes te 1.5 ft. Light for 0 code at 0 codes te 1.5 ft. Light for 0 code at 0 codes te 1.5 ft. thick on 1 limestone to 1 ft. dt limestone at 1.5 ft. thick on 1 limestone bus ft. L	rates color development well Med. ter. mut. < 21f. thick on morade, nic.e. > 35 ft. thick Durk Modentee well Med. ter. mut. < 15 ft. thick on naorde, nic.e. > 35 ft. thick Durk Modentee Pile Med. ter. mut. < 15 ft. thick on sicl., cuto. at 235 ft.	retrot older developments wall Moderately wall Med. ter. mut. <151 ft. thick on monodel, nic.d. >334 ft. thick Dark Moderate Colp 123 Med. ter. mut. <154 ft. thick on monodel, nic.d. >334 ft. thick Dark Moderate Colp 123 Med. ter. mut. <154 ft. thick on monodel, nic.d. >334 ft. thick Dark Moderate Colp 123 Med. ter. mut. <154 ft. thick on monodel, nic.d. >334 ft. thick Dark Moderate Colp 123 Med. ter. mut. <24 ft. thick on monodel, nic.d. >344 ft. thick on monodel, nic.d. >344 ft. thick on monodel, nic.d. >344 ft. thick on mut. Moderate Woderate Med. ter. mut. Dark Moderate Woderate Scietorille (63 Med. ter. mut. Dark Moderate Woderate Scietorille (63 Med. ter. mut. Dark Moderate None to 5 ft. Photos 212 Med. ter. mut. Dark None to 5 ft. Photos 213 Moderate Med. ter. mut. Moderate None to 5 ft. Photos 213 Moderate Med. ter. mut. Moderate None to 5 ft. Photos 214 Moderate <t< td=""><td>return the problem of the p</td><td>$\label{eq:constraints} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$</td></t<>	return the problem of the p	$\label{eq:constraints} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$

Table 2. — Continued

50

mat. = material, med. = medium; mod. = moderate; noncate. = noncateareous; set, - satus, us, - median, med. = medium; med. = medium; mod. and a subset of the set of set of

Mattatatata Mattatatata Mathatata Mathatata <th mathatata<="" th=""></th> <th>res op</th> <th></th> <th></th> <th></th> <th></th> <th>Natural inter</th> <th>aal drainage class</th> <th></th> <th></th>		res op					Natural inter	aal drainage class		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	neral	Farent material ²	color ²	Degree Di development ²	Well Moder	ately well	1mperfect ³	Poor	type numbers ⁴	
Lower 1-57 it that are noted are noted are also realition or chainLight is from the realition or chainLight is from the realition or chainDerival (17Derival (17Solution of 10Lower 2-57 it that are shorthousHat it is that are also realition or chainHat is is the realition or chainDerival (17Light is that are shorthousDerival (11Light is that a			Dark	Moderate	Schap	ville 418				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Loces 1-2½ it, thick no shale residum or shale	Light	Moderate	Derind	la 417			309, 549	
Look System Light Modente Light Modente Light Modente Light Modente Light Modente Light Modente Elemptige Rudy unt. 13/5 f. thick on Solutions Light Weix. Bound 38%			Dark	Moderate	Keltner 546		Loran 572			
It with the standard state of the state of t		Loess 2)24 it. thick on shale residuum or shale	Light	Moderate	Elerpy 547					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Sl. and fal. <1 ft. thick nn Sandstone	Mod. dark	None	Bullard 389					
Bandy nut. 13/5 ft. thick on bioadition Light Weak-and. Each one 307 Coluctoon mody loom to and or from and Light None — Sarry 92— Coluctoon mody loom to and or from and Light None — Sarry 92— Coluctoon mody loom to and or from and Light None — DuPage 31— — DuPage 32] Coluctoon modium tectured soliments Light None — DuPage 32] Millington 82— 60 Sightly add-senterial and Life. mat. 1-3/5ft. think on mod Dark None — DuPage 31 — DuPage 31 104 20 Sightly add-senterial mode. Tot. Life. mat. 1-3/5ft. think on mod Dark None None None None 104 20 104 20 104 20 104 20 104 20 104 20 104 20 104 20 104 20 104 20 104 20 104 20 104 20 104 20 104 20 104 20 104 20 104 20 104 <td< td=""><td></td><td></td><td>Dark</td><td>Weak-mod.</td><td>Heach 390</td><td></td><td></td><td></td><td></td></td<>			Dark	Weak-mod.	Heach 390					
Character and of lare fare and Interval bound or fare and Interval bound or fare and Interval bound or fare and Interval bound or fare and Interval bound of the rank 1.95 f.t. thick on and Interval bound interval bound Interval bound interval bound interval Interval bound interval bound interval bound interval bound interval Interval bound interval bound interval bound interval Interval bound interval bound interval bound interval bound interval Interval bound interval bound intervand bound interval bound interval bound interval bo		Sandy mat. 1-3½ ft. thick on Saodstone	Light	Weak-mod.	Boone 397					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Calcareous sandy loam to sand nr fine sand	Light	None	Sarpy 92				1	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			Dark	Weak	-DuPage 321-		millim — — — — — — — — — — — — — — — — — — —	lgton 82	400	
Light Inne Jule 28 Sightly uid-neural in d. d. 33.1t. thick on and Derk None-weak Jule 29 Sightly uid-neural mod. f.er. mat. 129,61. thick on and Derk Wark Mare 669 Sile add-neural mod. f.er. mat. 129,61. thick on and Derk Wark Mare 669 Sile add-neural mod. f.er. mat. 129,51. thick on and Derk Wark None-weak None-weak Sile add-neural mod. f.er. mat. 19,31. thick on and the fore. Mat. None-weak Hauron 11, 77 Lawon 451 Outer 76 24,590 Sile thy sold-neutral mod. face ter. mat. 34. thick Light None-weak Harwon 331 Vateland 333 Har 115 Sile thy sold-neutral mod. face ter. mat. 34. thick Light None-weak Harwon 331 Yateland 333 Har 135 Sile thy sold-neutral mod. face ter. mat. 34. thick Light None-weak Harwon 431 Nate. 334 135 Sile thy sold-neutral mod. face ter. mat. 34. thick Light None-weak Harwon 432		Calcareous medium textured sediments	Mod. dark	None		Dare	heater 239, 578			
Signity ordinantral al. 24 ft. thick on send Dark None-weak Laddes 304- Signity sold-sentral mod. ker. mat. 12/5 ft. thick on send Dark Wask Signity sold-sentral mod. Sile sold-sentral mod. ker. mat. 12/5 ft. thick on send Dark Wask Sile sold-sentral mod. Sile sold-sentral mod. ker. mat. 12/5 ft. thick on send Dark Wask New t161 Carban 102 248,500 Sile sold-sentral mod. for ter. mat. 12/5 ft. thick on send Dark Weak Material 12 248,500 115 248,500 Sile thy sold-sentral mod. for ter. mat. 12/5 ft. thick on fact Dark Weak			Light	None	Jules 2	88				
Signify sold-sectral mod. ter. mat. 1-3/5 ft. thick on sand Dark Weak Nare 466 Sold-sectral mod. ter. mat. 1-3/5 ft. thick on sand Dark Weak Rile 452 Bondre 589 Sold-sectral mod. ter. mat. 1-3/5 ft. thick on sand Dark Weak Rile 452 Newart 161 Cachman 162 248, 560 Sold-sectral mod. ter. mat. 1/5/3/5 ft. thick on sand Dark Weak Newart 161 Cachman 162 248, 560 Sold-sectral mod. ter. mat. 1/5/3/5 ft. thick on dark fine ter. sand. 1/5/3/5 ft. thick on dark fine ter. sand. 1/5/3/5 ft. thick on dark fine ter. mat. 1/5/3/5 ft. thick on fare ter. mat. 1/5/3/5 ft. thick on fare ter. mat. 2/11. thick Dark Mark sand. 3/11. Thick on fare ter. mat. 2/12. thick on fare ter. mat. 2/13. th		Slightly scid-neutral slfsl. 2-3 ft. thick nn sand	Dark	None-weak	I.andes 304					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Slightly soid-neutral mod. tex. mat. 1-21% ft. thick on sand	Dark	Weak						
Sh. aid-entral med-mod. It et. mat. $9/4$ ft. thick on sandDarkWeakNewart 161Corham 162246, 590Slightly scid-entral med-ter. mat. $1/4$ - $3/5$ ft. thick on dark fine ter. willDarkWeak- Arenaville 79Radford 74415Slightly scid-entral med. ter. mat. $1/4$ - $3/5$ ft. thick on dark fine ter. willDarkWeak- Hunteville 77 415Slightly scid-entral med. ter. mat. >4 ft. thickDarkWeak- Hunteville 77 Lawon 651Otter 76Slightly scid-entral mod. fae ter. mat. >4 ft. thickDarkWeak- Allison 300Tice 284Bearcony 70, 124107, 302Slightly scid-entral mod. fae ter. mat. >4 ft. thickLightWeak- Allison 300Tice 284Bearcony 70, 124107, 302Slightly scid-entral fine ter. mat. >4 ft. thickLightWeak- Allison 300Tice 284Bearcony 70, 124107, 302Slightly scid-entral fine ter. mat. >4 ft. thickLightWeak- SlightSlightly scid-science 70024477Acid med. ter. mat. >4 ft. thickLightWeak- Slightly scid-science 700Slightly scid-science 700247Acid med. ter. mat. >4 ft. thickLightWeak- Slightly scid-science 700Slightly scid-science 700247Acid med. ter. mat. >4 ft. thickLightWeak- Slightly scid-science 700249247Acid med. ter. mat. >4 ft. thickLightWeak- Slightly scid-science 700249247Acid med. ft. mat. >4 ft. thickLightWeak- Slightly scid-science		Slt. acid-neutral mod. ff. tex. mat. 1-215 ft. thick on sand	Dark	Weak	Riley	452	Bow(dre 589		
Bightly acid-certral med. ter. mat. 194,395ff. thick on dark fine ter. wellDarkWeakLearwrille 78Daylof 74Addred 74Slightly acid-neutral med. ter. mat. 194,395ff. thick on dark fine ter. wellDarkWeak- Hunterrille 78Dupo 180415Slightly acid-neutral med. ter. mat. > 4f. thickDarkWeak- Hunterrille 77Lawoon 451Otter 76415Slightly acid-neutral mod-fine ter. mat. > 4f. thickDarkWeak- Allison 300Stepad 333Birdia 334475Slightly acid-neutral mod-fine ter. mat. > 4f. thickDarkWeak- Allison 300The 284Beaucup 70, 124107, 302Slightly acid-neutral fine ter. mat. > 4f. thickDarkWeak- Allison 300The 284Beaucup 70, 124107, 302Slightly acid-neutral fine ter. mat. > 4f. thickLightWeak- Allison 300The 284Beareaup 70, 124107, 302Slightly acid-neutral fine ter. mat. > 4f. thickLightWeak- Sharon 72Bark 171Etermat. 426AcidAcid mod. fine ter. mat. > 4f. thickLightWeak- Sharon 72Berkm 282Bounie 108427Acid mod. fine ter. mat. 2.35f.f. thick on fine ter. mat. 2.35f.f. thick on fine ter. mat. 2.46LightWeakSharon 72Cape 422Acid mod. fine ter. mat. > 4f. thickLightWeakSharon 72Sharon 72Sharon 72Acid mod. fine ter. mat. > 4f. thickLightWeakSharon 72Cape 422Acid fine ter. mat. > 4f. thickLightWeakSharon 72S		Slt. acid-neutral med-mod. f. tex. mat. 215-4 ft. thick on sand	Dark	Weak			Newart 161	Gorham 162	248, 590	
Nightly acid-neutral mod. ter. mat. 1/59-59, ft. thick Light Name Arearville 77 Dupo 180 415 Slightly acid-neutral mod. ter. mat. >4 ft. thick Light None-weak Hutaville 77 Lawon 451 Ottor 76 415 Slightly acid-neutral mod. far. mat. >4 ft. thick Light None-weak Haymond 331 Nakeland 333 Birda 334 475 Slightly acid-neutral mod. fine ter. mat. >4 ft. thick Dark Weak Allison 300 Tice 284 Beauroup 70, 124 107, 302 Slightly acid-neutral fine ter. mat. >4 ft. thick Dark Weak Nate Nahoak 83 Nahoak 83 Add med. ter. mat. >4 ft. thick Light None-weak Sharon 72 Belknap 332 Bonie 103 427 Add med. ter. mat. >4 ft. thick Light None-weak Sharon 72 Belknap 332 Bonie 103 427 Add med. ter. mat. >4 ft. thick Light Weak Sharon 72 Belknap 332 Bonie 103 427 Add med. ter. mat. >4 ft. thick Light Weak Sharon 72 Belknap 332 Bonie 103 427 Add med. ter. mat. >4 ft. thick Light Weak Sharon 72 Belknap 322 Bonie 103 427 Add med. ter. mat. >4 ft. thick Light Weak Sharon 72 </td <td></td> <td></td> <td>Dark</td> <td>Weak</td> <td></td> <td></td> <td>Radford 74</td> <td></td> <td></td>			Dark	Weak			Radford 74			
Stightly acid-neutral mod. ter. mat. > 1f. thick Dark Weak Hutaville 77-10 Lawson 451 Otter 76 Stightly acid-neutral mod. fare ter. mat. > 1f. thick Light None-weak Haymond 331-0 Wakeland 330 Birds 334 475 Stightly acid-neutral mod. fare ter. mat. > 1f. thick Dark Weak Allieon 300- Tice 284 Bearonp 70, 124 107, 302 Stightly acid-neutral fine ter. mat. > 1f. thick Dark Weak Neak Petrolin 288 Araon 75 Stightly acid-neutral fine ter. mat. > 1f. thick Light Weak Neak Darwin 71 Darwin 71 Add mod. fer. mat. > 1f. thick Light Neak Sharon 72- Belknap 382 Bonin 108 477 Add mod. fer. mat. > 1f. thick Light None-weak Sharon 72- Belknap 382 Bonin 108 477 Add mod. f. ter. mat. > 1f. thick Light Weak Sharon 72- Belknap 382 Bonin 108 477 Add mod. f. ter. mat. > 1f. thick Light Weak Sharon 72- Belknap 382 Bonin 108 477 Add mod. f. ter. mat. > 1f. thick Light Weak Sharon 72- Belknap 382<		Mignely acid-delutral med. Kex. mat. 1 19-5 18. vales on date and Vex. Sou	Light	None	Arensville 78		Dupo 180		415	
Sugarty acto-neutral mod. ver. mat. > 11. turkLightNone-weakHaymond 331-Wakehand 333Birds 334475Slightly acid-neutral mod-fine ter. mat. > 4 ft. thickDarkWeak			Dark	Weak			Lawson 451	Otter 76		
Bightly acid-neutral mod-fine ter. mat. > 4 ft. thickDarkWeakMillion 300Tice 294Bearconp 70, 124107, 302Sightly acid-neutral mod-fine ter. mat. > 4 ft. thickDarkWeakPetrolia 288Petrolia 288Sightly acid-neutral fine ter. mat. > 4 ft. thickDarkWeakMeakPetrolia 288Sightly acid-neutral fine ter. mat. > 4 ft. thickDarkWeakNeakPetrolia 288Acid med. ter. mat. > 4 ft. thickLightWeakSharon 72Darwin 71Acid med. ter. mat. > 4 ft. thickLightNone-weakSharon 72Belknap 382Bonie 108Acid med. ter. mat. > 4 ft. thickLightWeakSharon 72String 200427Acid mod. fine ter. mat. > 4 ft. thickLightWeakSharon 72Cape 422Acid mod. fine ter. mat. > 4 ft. thickLightWeakStord 200Stord 200Acid mod. fine ter. mat. > 4 ft. thickLightWeakStord 200Stord 200Acid mod. fine ter. mat. > 4 ft. thickLightWeakStord 200Stord 200Acid mod. fine ter. mat. > 4 ft. thickLightWeakStord 200Stord 200Acid mod. fine ter. mat. > 4 ft. thickLightWeakStord 200Stord 200Acid mod. fine ter. mat. > 4 ft. thickLightWeakStord 200Stord 200Acid mod. fine ter. mat. > 4 ft. thickLightWeakStord 200Stord 200Acid mod. fine ter. mat. > 4 ft. thickLightWeakStord 200Stord 200Acid mod.		buguny acid-neutral med. ter. mat. >4 If. thick	Light	None-weak			Wakeland 333	Birds 334	475	
Sugnity acid-neutral mod-me ter. mat. > 1.1. tunk. Light Weak Petralia 288 Dark Weak Wabash 83 Skghtly acid-neutral fine ter. mat. > 1.1. tunk. Mod. dark Weak Wabash 83 Skghtly acid-neutral fine ter. mat. > 1.1. tunk. Mod. dark Weak Mana. 1.1 And med. ter. mat. > 1.1. thick Light None-weak Sharon 72 Belknap 382 Bounie 108 427 Acid mod. fine ter. mat. > 1.1. thick Light Weak Sharon 72 Belknap 382 Bounie 108 427 Acid mod. fine ter. mat. > 1.1. thick Light Weak Sharon 72 Belknap 382 Bounie 108 427 Acid mod. fine ter. mat. > 1.1. thick Light Weak Sharon 72 Cape 422 Acid mod. fine ter. mat. > 1.1. thick Light Weak Jacob 85			Dark	Weak			Tice 284	Beaucoup 70, 124	107,302	
Dark Weak Weak Shightly acid-neutral fine tex. mat. >4 ft. thick Mod. dark Weak Weak Light Weak Darwin 71 Darwin 71 Acid med. tex. mat. >4 ft. thick Light None-weak Sharon 72— Belknap 382 Bonnie 108 427 Acid med. fex. mat. >4 ft. thick Light Weak Sharon 72— Belknap 382 Bonnie 108 427 Acid mod. fine tex. mat. >4 ft. thick Light Weak Sharon 72— Belknap 382 Bonnie 108 427 Acid mod. fi tex. mat. >4 ft. thick Light Weak Sharon 72— Belknap 382 Bropolie 420 Acid mod. fi tex. mat. >4 ft. thick Light Weak Sharon 72— Belknap 382 Bropolie 420 Acid mod. fi tex. mat. >4 ft. thick Light Weak Sharon 72— Sharon 72— Sharon 23 Acid mod. fi tex. mat. >4 ft. thick Light Weak Sharon 72— Sharon 23 Sharon 23 Acid fine tex. mat. >4 ft. thick Light Weak Sharon 72— Sharon 23 Sharon 23		Sughtly zeid-neutral modhne tex. mat. >4 it, thick	Light	Weak				Petrolia 288		
Stightly acid-neutral fine tex. mat. > 1 ft. thick Mod. dark Weak Darwin 71 Light Weak Sharon 72 Belknap 382 Bonnie 108 427 Acid med. tex. mat. > 1 ft. thick Light None-weak Sharon 72 Belknap 382 Bonnie 108 427 Acid med. tex. mat. > 314 ft. thick Light Weak Sharon 72 Belknap 382 Bonnie 108 427 Acid mod. ft tex. mat. 2.314 ft. thick on fibe tex. mat. Light Weak Sharon 72 Belknap 382 Bonnie 108 427 Acid mod. ft tex. mat. 2.314 ft. thick on fibe tex. mat. Light Weak Sharon 72 Sharon 72 Shoroli 420 Acid mod. ft tex. mat. > 1 ft. thick Light Weak Sharon 72 Shoroli 420 Shoroli 420			Dark	Weak				Wahash 83		
LightWeakKarnak 426Acid med. ter. mat. > 4 ft. thickLightNone-weak—————————————————————————————————		Sfightly scid-neutral fine tex. mat. >4 ft. thick	Mod. dark	Weak				Darwin 71		
Acid med. tex. mat. >4 ft. thick Light None-weak Sharon 72 Belknap 382 Bonnie 108 427 Acid mod. fine tex. mat. >4 ft. thick Light Weak Piopolis 420 Acid mod. f. tex. mat. 2-375 ft. thick on fine tex. mat. Light Weak Cape 422 Acid fine tex. mat. >4 ft. thick Light Weak Jacob 85			Light	Weak				Karnak 426		
Acid mod. fine tex. mat. >4 ft. thick Light Weak Piopolia 420 Acid mod. f. tex. mat. 235 ft. thick on fine tex. mat. Light Weak Cape 422 Acid fine tex. mat. >4 ft. thick Light Weak Jacob 85		Acid med. ter. mat. >4 ft. thick	Light	Nnne-weak	Sharon 72		Belknap 382	Bonnie 108	427	
Acid mod. f. tex. mat. 2.315 ft. thick on fine tex. mat. Light Weak Cape 422 Acid fine tex. mat. >4 ft. thick Jacob 85		Acid mod. fine tex. mat. >4 ft. thick	Light	Weak				Piopolis 420		
Acid fine ter. mat. >4 ft. thick Light Weak Jacob 85		Acid mod. f. tex. mat. 2-315 ft. thick on fine tex. mat.	Light	Weak				Cape 422		
		Acid fine ter. mat. >4 ft. thick	Light	Weak			-	Jacob 85		

¹ Correlated and important uncorrelated soils in Illinois. ² Correlated and important uncorrelated soils in Illinois. ³ Abstriviations and symbols used in tables are as follows: <= less than; >= greater than; c = clay; calc. = clay loam; f, = fine; fsl. = fine sandy loam; ft. = feet; inc. = including; ³ The material; med. = medium; mod. = moderate; noncalcareous; scl. = sandy clay loam; sic. = silty clay; loam; sl. = sindy loam; slt. = slightly; and tex. = texture. ³ "Somewhat poor" my also be used for this soil drainage class. ⁴ Associated soils often occur in the field with those soils shown on the same lines, but usually differ in one or more characteristics. Some soils shown in a given are are also listed as associated soils in other

arcas.

Concluded Table 2.

Figure 2. Basic management PI distributions for Illinois.

Figure 4. Basic management PI ratios for Illinois.

Figure 3. High management Pl distributions for Illinois.

Figure 5. High management PI ratios for Illinois.

Frequency diagrams that reflect soil productivity variations in seven PI categories at two different management levels (basic and high) were constructed to provide detailed PI distribution data within each county. These diagrams present visual patterns of soil productivity within PI categories. An annotated example of the frequency histogram format is given in Figure 6.

In the example, the Hancock County high management frequency diagram shows that 17.7 percent of the soils in the county are in the PI category of less than 70. The approximate percentage distribution is represented by the height of the *unshaded* part of the bar graph above each PI category; the exact statistical value of the percentage distribution of county soils by PI category is printed at the top of each PI category bar.

The height of the *shaded* portion of each bar represents the state average percentage of soils within a given PI category. The approximate state average percentage of soils can be estimated from the bar graph alone, but the exact statistics are available in Tables 3 and 4. In Hancock County, the shaded portion of the bar for the high management PI category of less than 70 indicates that not quite 10 percent of the state's soils have a PI in that range. The exact state average percentage of soils with PI's of less than 70 is 8.7 percent (Table 4).

Each frequency distribution graph has a ratio scale for comparing the percentage of county soils in a particular PI category with the average percentage of all Illinois soils in the same PI category. A ratio of 1.00 indicates that the county and state soil distributions are identical within a given PI category. A county ratio of more than 1.00 in a category means that the percentage of soil within the category is more than the state avcrage for that PI category. Conversely, a county PI category ratio of less than 1.00 shows that the percentage of soils in the county PI category is below the state average.

Basic and high management PI frequency diagrams are designed to show trends of soil productivity within

Figure 6. Annotated diagram of frequency distribution of high management PI's for counties.

HANCOCK COUNTY HIGH PI

HIGH MANAGEMENT PI CATEGORIES

^a Based on high input levels thought to be near the levels required for maximum profit. For specific high management characteristics see (2, p. 9).

^b Productivity index average of all soils in the county divided by the productivity index average of all soils in the state.

^c Percentage of county soils in a PI category divided by the average percentage of stote soils in the same PI category. The solid continuous line indicates the ratios of the PI categories.

 $^{\rm d}$ The exact percentage of the county's soil in a specific Pl category.

^e The top of the unshaded portion of each bar represents the percentage of the county's soil in that PI category.

^t The top of the shaded portion of each bar represents the average stote percentage of soils in that PI category.

Soil		Percent of	f soils in eac	h basic mar	agcment P	category ^a		
association – area	23 <40	45 40–50	55 50–60	65 60 -70	75 70–80	85 80–90	95 >90	Ave. PI
A	2.3	1.4	4.7	2.9	13.0	6.4	69.3	86.6
B	0.6	0.7	2.3	1.9	3.9	5.7	85.0	91.5
C	1.3	0.7	2.5	4.6	3.3	20.6	67.0	88.6
D	3.1	0.8	6.6	2.5	14.3	11.9	60.8	84.9
E	6.1	7.7	15.6	19.7	38.2	6.7	6.0	66.3
F	8.4	8.1	9.7	68.3	2.0	2.8	0.7	59.8
G	7.4	4.1	9.5	13.1	31.3	16.4	18.3	72.1
Η	4.0	7.3	19.3	9.7	7.1	18.3	34.3	74.6
I	1.2	1.2	3.7	8.5	4.9	8.7	71 .7	87.6
J	0.7	2,3	7.2	7.1	24 8	19.8	38.1	81.4
К	6.2	5.3	10.6	22.0	34.5	5.2	16.2	69.6
L	22.5	7.3	23.8	6.6	17.6	6.5	15.6	59.4
M	11.6	5.4	11.6	5.0	25.8	12.1	28.5	71.4
N	27.9	3.3	16.7	4.5	23.9	4.5	19.2	60.0
O	13.7	5.9	35.5	11.8	24.9	6.3	1.9	58.8
P	25.1	23.3	15.4	22.7	7.2	1.7	4.7	50.8
Q	28.3	6. 7	38.4	21.1	3.7	0.3	1.4	48.7
R	70.1	4.7	13.4	8.6	3.1	0.0	0.0	33.5
S	10.6	13.7	6.3	13.6	6.6	39.2	10.1	68.8
Τ	2.7	22.0	6.6	22.8	20.0	5.9	19.9	67.9
U	3.4	15.2	8.9	10.0	24.4	14.7	23.4	72.0
V	8.6	21.7	15.7	16,6	11.3	13.1	13.0	63.1
W	2.9	3.3	8.2	10.8	13.2	15.3	46.3	80.6
X	17.4	8.0	14.5	23.1	15.8	12.5	8.7	61.3
Y	24.6	8.6	15.3	10.9	18.1	8 0	14.5	59.2
Z	2.0	2.5	12.9	21.3	19.5	8.6	33,2	76.0
State	12.4	5.8	13.7	14.6	13.8	7.4	32.3	70.2

Table 3. — Frequency Distribution of Basic Management PI's for Illinois Soil Association Areas

The PI categories are designated by range (lower line) and average value (upper line).

and among counties, as related to state PI distribution data. The county frequency distribution diagrams of Champaign, Hancock, and White Counties illustrate the patterns of soil productivity most typical of east-central, northwestern, and southern Illinois, respectively (see Fig. 7). Although no single county can be used to characterize a large region, the examples selected give insight into productivity variations within and among counties, as illustrated by the frequency-diagram approach.

CHAMPAIGN COUNTY AND ASSOCIATED AREAS

Champaign County is one of the most productive areas in Illinois. Many counties in Illinois have the same general pattern of soil distribution as Champaign County but not all of them are as productive. The most common high management PI frequency distribution pattern for east-central Illinois (and certain northwestern areas) has two main characteristics: a high to very high percentage of soils in the two highest PI categories (>130), and a low percentage of soils in the two lowest PI categories (<85). Generally, more than half (frequently, more than 60 percent) of the soils in east-central Illinois have PI's of >130, and less than 10 percent of the soils have PI's of < 85. Specifically, 87 percent of Champaign County soils have a PI of > 130, and only 1 percent have a PI of < 85. As expected in a county with high soil productivity, the percentage of soils in each of the five lower PI categories (< 130) is far below the state average (the PI ratios in those categories are less than 1.00), and the percentage of soils in the two highest categories is above the state average (those PI ratios are greater than 1.00).

HANCOCK COUNTY AND ASSOCIATED AREAS

Most of the northwestern and far northern areas of the state have soil productivity distribution patterns characterized by a large or moderately large percentage of soils in the two highest PI categories and an intermediate percentage of soils in the two lowest PI categories. Counties with this pattern of distribution have at least 30 percent of their soils with high management PI's of >130 and more than 10 percent of their soils with high management PI's of <85. These counties have areas with soil of superior quality, as in east-central Illinois; however, there is also an appreciably larger percentage of poor soil. The overall county average PI is lower than

Soil		Percent of	f soils in eac	h high m a n	agement Pl	category ^a		
association area	40 <70	77.5 70-85	92.5 85–100	107.5 100-115	122.5 115–130	137.5 130–145	152.5 >145	Ave. PI
A	1.7	1.9	2.3	5.2	14.7	12.0	62.2	139.2
B	0.6	0.8	1.2	2.2	4.9	10.3	80.1	146.6
С	0.0	0.0	4.2	2.4	9.5	45.1	38.7	139.1
D	3.1	3.6	2.1	9.0	10.9	65.6	5.6	127.7
E	4.2	11.9	7.8	20.0	43.7	10.8	1.7	110.6
F	4.2	9.3	3.7	9.8	69.3	2.9	0.7	112.8
G	6.1	6.4	8.2	38.7	18.7	10.7	11.2	111.3
Н	3.5	5.8	21.2	9.5	11.5	15.8	32.6	121.3
Τ	0.8	1.2	3.4	4.7	10.4	34.1	45.4	138.3
J	0.3	1.0	6.4	4.9	31.3	32.8	23.3	131.1
К	1.2	1.4	12.1	13.0	51.3	15.7	5.2	119.1
L	19.4	8.1	13.2	17.8	21.7	11.5	8.3	100.4
M	7.3	8.6	3.6	10.6	28.1	21.9	19.9	119.9
N	25.6	6.3	4.5	15.8	27.4	9.9	10.6	99.4
0	12.2	3.9	17.6	29.5	29.5	6.2	1.1	102.2
P	17.5	7.9	27.7	18.0	23.3	2.2	3.6	95.1
О	13.7	16.0	4.4	41.3	23.0	0.6	1.1	97.0
$\widetilde{\mathbf{R}}$	36.5	33.7	14.5	4.8	10.4	0.1	0.0	72.2
S	10.0	11.1	10.2	12.3	22.2	30.7	3.4	109.9
Τ	2.3	22.2	7.0	34.1	11.4	8.3	14.7	109.1
U	1.9	15.3	4.2	11.0	33.5	16.0	18.2	119.1
V	2.8	17.6	20.6	12.4	22.6	18.4	5.6	108.7
W	2.2	1.9	6.4	14.4	15.2	25.3	34.6	129.9
X		10.3	15.5	30.5	9.4	15.1	4.6	100.2
Υ		11.8	13.0	14.2	21.3	7.1	10.3	96.9
Z.	1.5	1.9	7.8	24.5	24.4	31.6	8.2	121.4
State	8 7	6.5	7.8	15.9	22.8	14.8	23.5	116.8
	0.7	0.0	, .0	10.5	en da s O		20.0	

Table 4. Frequency Distribution of High Management PI's for Illinois Soil Association Areas

* The PI categories are designated by range (lower line) and average value (upper line).

for Champaign County. In Hancock County approximately 47 percent of the soils have high management PI's of >130, and 20 percent of the soils have high management PI's of <85.

Comparing PI categories for Hancock County and for the state as a whole (Tables 3 and 4) indicates that Hancock County is more complex than Champaign County. For example, Hancock County soils in the >145 PI category are present only 0.6 times as much as the state average; however, soils in PI category 130 to 145 are represented over three times as often as the state average. Hancock County also has far less soil in PI category 70 to 85 than average for the state (the ratio is 0.3); however, there is twice as much Hancock County soil in the PI category of <70 as is average for the state. Throughout this region the county to state ratios are variable; ratios of greater than 1.00 and less than 1.00 are distributed throughout all PI categories.

Soil distribution patterns in which any PI category may be far above or far below the state average soil distribution for that PI category are common in northwest and western Illinois counties (Fig. 7).

WHITE COUNTY AND ASSOCIATED AREAS

The counties of southern Illinois — the southern twofifths of the state — have a third distinctive soil PI pattern. The basic pattern is characterized by a relatively low percentage of soils with PI's of >130 (generally no more than 30 percent, but usually less than 15 percent, of the soils), and a relatively large percentage of soil in PI's of <85 (generally at least 10 percent, but frequently more than 20 percent, of the soils).

White County has a large variety of soils characteristic of southern Illinois. Overall, the county has above-average soils for southern Illinois because of a large amount of alluvial soils; however, the pattern of soil productivity is typical of this section of Illinois. About 12 percent of the county has soils with PI's of >130, and 17 percent has soils with PI's of <85. White County, like most of southern Illinois, has greater than average percentages of soils in the middle and lower PI categories (Fig. 7).

The three counties used as examples illustrate the most common patterns of soil productivity distribution revealed through frequency-diagram analysis. Variations of the three basic patterns can also be identified.

Figure 7. Frequency distribution of county high and basic management Pl's.

Figure 7 (continued).

Figure 7 (continued).

Figure 7 (continued).

Figure 7 (concluded).

STATE SOIL ASSOCIATION PATTERNS OF PRODUCTIVITY

Basic and high management soil productivity characteristics of the major Illinois soil associations were developed (Tables 3 and 4). These data give a broad insight into soil productivity distribution characteristics for every soil association of the state by indicating the average percentage of soils in each of seven PI categories for basic and high management. It is not our intent to discuss these PI categories for each soil association area; rather, examples of prairie, forested, and alluvial soil will be examined. It may be noted, however, that soil association B is the most productive soil association: 95.3 percent of the area designated as B has a high management PI of 115 or greater. Soil association R is the least productive: 84.7 percent of the area designated as R has a high management PI of 100 or less.

PRAIRIE SOIL ASSOCIATIONS

Soil association area A (Fig. 1) has soils that developed under prairie vegetation on thick to moderately thick (1.5 meters or more) Wisconsin-age locss that overlies gently rolling topography. The dark colored, moderately permeable soils are fertile and suffer from few

problems. The most productive areas are in northwestern Illinois on flat interstream divides. Very high soil PI's are characteristic of this soil association. The combined PI average of all soils this soil association comprises frequently can be used to approximate the soil productivity of almost all land in association A. Variation in PI's between the nearly level major soil series within soil association A is only about 10 units. (Average high and basic management PI's for these individual soil series vary from 150 to 160 and from 95 to 100, respectively; the overall average high and basic management PI's for the association are 139 and 87, respectively.) Larger PI variations occur for less commonly distributed soil series and for more sloping phases within a given soil series. It is possible, therefore, to estimate PI's for different areas within a soil association even though PI variations exist within an individual soil series or among the various soil series that are a part of the association.

Soil association B is similar to soil association A in many respects. Soil association B contains soils that developed under prairie vegetation on thin to moderately thick (0.5 to 1.5 meters) loess over calcareous loam till. The general properties and productivity of soil series in soil association B are similar to those of soil association A. Major soil series that make up association B have high and basic management PI's between 145 and 160 and between 90 and 100, respectively. Soil series that have minor geographical distribution or occur on sloping land have PI's that are not typical of the major soils in association B. The overall high and basic management PI averages for soil association B are 147 and 91, respectively (Tables 3 and 4); hence, soil association B is somewhat better than association A.

The pattern of PI distribution within soil associations A and B is similar: a large majority of the soils of both are in high management PI categories of >130 (74 percent of association A and 90 percent of association B), while few of the soils have PI's of < 85 (4 percent of association A and 1 percent of association B). The intermediate PI categories (85 to 130) occur at low frequencies because of the dominance of the two highest PI categories; approximately 22 percent of association A soils and 8 percent of association B soils are in the intermediate productivity categories. Both associations are characterized by a large concentration of productive soils. Other prairie associations are relatively uniform (compared to forested and alluvial soil associations) but have more variation in PI's between fields than do associations A and B.

Forest soil associations

Soil association area L comprises soil series that developed under broadleaf deciduous forest on thick (1.5 meters or more) Wisconsin-age loess. Soil series within this association have greater variation in PI than soil series of prairie associations because large variations in slope and loess thickness are common. Average high and basic management PI's of major soils in this association range from 70 to 140 and from 40 to 90, respectively. The overall high and basic management PI averages for association L are 100 and 59, respectively; thus, the average quality of a soil in association L is low compared to soils in associations A and B.

The distribution pattern of PI's within this association is rather uniform. For example, 28 percent of the soil association area has a high management PI average of < 85, 20 percent has a high management PI average of > 130, and more than half has soils in the intermediate PI categories (85 to 130). It is evident from this frequency distribution pattern that soils of any productivity level could dominate a given local area within soil association L. Large variations in PI's make it necessary to use procedures that allow differentiation between better and poorer soils in specific soil association areas. Other forested associations have similar wide variations in PI.

Alluvial soil association

Soils in soil association Z are related to the nature of the alluvial parent material on which they formed. The association is made up of bottomland and terrace deposits along streams and rivers. The variable nature of the alluvial deposit results in large variations in PI between soil series.

High and basic management PI's for the major soil series range from 100 to 145 and from 60 to 95, respectively. Most of these soil series have PI's in the higher categories, with the result that the overall high and basic management average PI's are 121 and 76, respectively. The soil productivity for the total association is above the state average; however, the combination of highly productive soil series with some soil series of lower productivity results in a productivity average less than those of soils in most prairie associations.

The distribution of high management PI's is as follows (Table 4): 3 percent of the soils in association Z have low PI's (<85), 57 percent have intermediate PI's (85 to 130), and 40 percent have high PI's (>130). Variations in PI's that are associated primarily with the texture of alluvial deposits make it difficult to generalize PI's over wide areas.

COUNTY SOIL ASSOCIATION PATTERNS OF PRODUCTIVITY

The state average areal distribution of soils within each of the seven PI categories in individual soil associations is given in Tables 3 and 4. These data can be used to help estimate soil PI in an association area. However, possible soil PI's of a given association in a particular county may be atypical and not closely related to the state average.

Patterns of high management PI of soil associations for individual counties (Table 5) were developed in order to estimate more accurately the approximate soil productivity of a soil area within a specific county. Intercounty comparisons of soil association PI patterns are indicated by means of ratios that compare individual county soil association PI distribution characteristics with comparable state soil association data.

Hancock County soil PI category >145 in soil association L has a county/state ratio of 0.83. This ratio means the county percentage of soils in PI category >145 is 83 percent as much as the state average for that category and association. Thus, whereas 8.3 percent of the state's soils in association L have a PI of >145, only 6.9 (0.83 x 8.3) percent of Hancock County soils in association L are rated that productive. This kind of information should be useful for evaluating soils within

	Soil	Percent		Produ	sctivity index	classes - high	levels of manag	ement	
County	Aseociation Area	of County	< 70	70-85	85-100	100-115	115-130	130-145	> 145
ADAMS	A	15.2	11.8(6.94)	10.4(5.47)	3.3(1.43)	2.5(.48)	16.5(1.12)	36.0(3.00)	19.6(.32)
	D	9.3	10.4(3.35)	2.2(.61)		.2(.02)	2.5(.23)	84.6(1.29)	
	L	15.0	18.1(.93)	.6(.07)	4.2(.32)	14.9(.84)	33.1(1.53)	24.1(2.10)	4.9(.59)
	Z	6.3	47.0(1.00)	.9(.47)	3.3(.42)	17.5(.71)	3.9(.16)	60.8(1.92)	13.6(1.66)
ALEXANDER	0	24.9	43.1(3.53)	1.4(.36)	8.8(.50)	27.4(.93)	17.7(.60)	1.5(.24)	
	W Z	20.2 54.9	.5(.23) 2.9(1.93)	1.2(.63) 5.3(2.79)	28.4(4.44) 14.8(1.90)	60.8(4.22) 32.0(1.31)	9.1(.60) 34.1(1.40)	10.8(.34)	*** ***
BOND	E	28.5	3.8(.90)	6.2(.52)	7.8(1.00)	45.2(2.26)	29.9(.68)	6.5(.60)	.6(.35)
	F	36.3	4.3(1.02)	12.4(1.33)	16.4(4.43)	10.4(1.06)	51.4(.74)	2.0(.69)	3.1(4.43)
	P	20.6 14.7	22.8(1.30) 17.1(1.25)	.5(.06)	10.7(.39) 5.3(1.20)	25.1(1.39) 14.4(.35)	29.3(1.26) 23.8(1.03)	1.0(.45) 4.9(8-17)	10.6(2.94) 26.8(24.36)
DOONE	т	27.2			1.87 53)	44 09)	13 8(1 33)	58 4(1 71)	25.57 601
BOONE	T	49.4	.4(.17)	23.1(1.04)	.3(.04)	47.5(1.39)	3.6(.32)	4.7(.57)	20.4(1.39)
	W	23.3	.7(.32)	.3(.16)	1.2(.19)	37.3(2.59)	8.5(.56)	20.2(.80)	31.8(.92)
BROWN	A D	8.2	5.7(3.35) 16.5(5.32)	.4(.21)		15.1(2.90)	14.4(.98) 14.5(1.33)	48.9(4.08)	15.5(.25)
	Ĺ	22.6	7.1(.37)	2.2(.27)	27.2(2.06)	23.4(1.31)	38.2(1.76)	1.5(.13)	.2(.02)
	N Z	57.5 8.2	33.5(1.31) 3.3(2.20)	1.8(.29) 17.3(9.11)	8.8(1.96)	19.1(1.21) 11.4(.47)	28.3(1.03) 14.2(58)	5.9(.60) 47.3(1.50)	2.7(.25) 6.6(.80)
BURFAIL		48.0	1.2(71)	.7(37)	1.2(.52)	4.4(85)	15.2(1.03)	13.4(1.12)	63.9(1.03)
DUNERO	В	1.1					15.5(3.16)	14.7(1.43)	69.8(.87)
	I	8.6	2.8(3.50)	.1(.08)	9.2(2.71)	2.6(.55)	12.4(1.19)	36.3(1.06)	36.5(.80)
	L	17.7	19.2(.99)	4.6(.57)	.9(.07)	10.7(.60)	38.9(1.79)	11.8(1.03)	13.8(1.66)
	x	2.9	5.5(1.50)	5.1(.50)	4.5(.29)	12.2(.40)	21.8(2.32)	51.0(3.38)	5.4(1.17)
	Z	.4	13.3(8.87)		*** ***		2.2(.09)	84.4(2.67)	
CALHOUN	L Z	81.7 18.3	24.4(1.26) 4.0(2.67)	6.8(.84) 4.3(2.26)	32.6(2.47) 10.3(1.32)	22.4(1.26) 13.1(.53)	6.3(.29) 5.4(.22)	6.5(.57) 57.6(1.82)	1.1(.13) 5.3(.65)
CARROLL	A	47.3	.9(.53)	.8(.42)	2.1(.91)	5.0(.96)	23.0(1.56)	19.9(1.66)	48.4(.78)
	L	37.6	3.5(.18)	22.8(2.81)	16.8(1.27)	18.0(1.01) 24 8(1 72)	22.7(1.05)	6.1(.53)	10.2(1.23)
	x	1.9	10.4(.71)	15.1(1.47)	42.5(2.74)	1.9(.06)			30.2(6.57)
	Y	8.3	16.6(.74)	12.0(1.02)	10.5(.81)	8.1(.57)	44.4(2.08)	6.6(.93)	1.8(.17)
	2	2.3				4.8(.20)	40.0(1.04)	10 0(1 60)	E1 (/ 92)
CASS	A T.	25.4	2.6(1.53)	16.8(2.07)	6.1(.46)	5.2(29.1(1.34)	5.9(.51)	4.9(.59)
	Ň	11.0	37.0(1.45)	5.7(.90)	9.0(2.00)	6.8(.43)	37.7(1.38)	.4(.04)	3.3(.31)
	W	14.2	14.2(6.45)	.9(.47)	3.5(.55)	9.8(.68)	10.7(.70)	9.6(.38)	51.3(1.48)
	X Z	23.2	45.1(3.09)	7.1(.69)	.4(.05)	72.0(2.94)	10.0(.41)	7.6(.24)	10.1(1.23)
CHAMPA IGN	В	55.8	.3(.50)	.1(.13)	.7(.58)	1.1(.50)	6.2(1.27)	10.7(1.04)	80.9(1.01)
	J	8.6	1.0(3.33)		.3(.05)	2.1(.43)	11.2(.36)	33.3(1.02)	52.1(2.24)
	К м	4.9	4.5(62)	5.4(.63)	12.3(1.02) 1.4(39)	7.3(.69)	38.4(./5)	34.0(1.55)	19.2(.96)
	W	23.7					5.6(.37)	11.0(.43)	83.4(2.41)
CHRISTIAN	A	31.6	.1(.06)		1.2(.52)	3.7(.71)	5.2(.35)	26.8(2.23)	63.0(1.01)
	D	48.4	3.0(.97)	.5(.14)	20.1(2.58)	2.7(.30)	53.6(1.23)	6.2(.57)	4.5(.80)
	N	16.3	10.2(.40)	4.4(.70)	2.0(.44)	18.7(1.18)	27.1(.99)	26.8(2.71)	10.8(1.02)
CLARK	E	7.3	1.9(.45)			5.9(.30)	82.0(1.88)	7.5(.69)	2.7(1.59)
	F	16.6	.2(.05)	3.6(.39)	3.0(.81)	11.4(1.16)	75.1(1.08)	6./(2.31)	
	0	12.9	15.1(1.24)	4.4(1.13)	7.5(.43)	32.5(1.10)	31.0(1.05)	9.5(1.53)	
	P	23.3	16.5(.94)	2.1(.27)	3.3(.12)	33.0(1.83)	39.2(1.68)	5.7(2.59)	.1(.03)
	Q	30.3	16.7(1.22)	6.1(.38)	5.9(1.34)	46.4(1.12)	21.6(.94)	1.0(1.67)	2.4(2.18)
	W Z	4.8	.3(.20)	.3(.16)	.3(.04)	34.3(1.40)	8.7(.36)	22.8(.72)	33.3(4.06)
CLAY	P	63.7	2.3(.55)	6.1(.66)	2.4(.65)	13.8(1.41)	74.0(1.07)	1.2(.41)	.2(.29)
	Q Z	33.8 2.5	18.2(1.33)	8.3(.52)	9.8(2.23)	36.8(.89)	26.0(1.13) 70.5(2.89)	.6(1.00) 29.5(.93)	.4(.36)
CLINTON	D	5.0	2.2(.71)	54.5(15.14)		1.0(.11)		42.3(.64)	
	E	15.8	7.1(1.69)	19.4(1.63)	15.6(2.00)	3.2(.16)	51.3(1.17)	3.1(.29)	.2(.12)
	F	26.4	4.4(1.05)	33.4(3.59)	16.8(.61)	2.0(.29)	43.4(1.86)	4.6(2.09)	5.0(1.39)
	Q	22.3	4.7(.34)	17.2(1.08)	1.4(.32)	54.7(1.32)	16.4(.71)	5.6(9.33)	
	ż	7.0				65.4(2.67)	11.5(.47)	23.2(.73)	

 Table 5. — Percentage Distribution of Sails in Various Productivity Index Classes for Soil Association Areas Within Counties

 (Ratias of County to State Percentage Distribution Are in Parentheses)

40

Table 5. — Continued

	Soi1	Percent	ent Productivity index classes - high levels of management						
County	Association Ares	County	> 70	70-85	85-100	100-115	115-130	130-145	< 145
COLES	в	49.9			.4(.33)	1.8(.82)	1.0(.20)	8.8(.85)	88.0(1.10)
	E	4.7		30.1(2.53)		14.7(.74)	39.4(.90)	13.1(1.21)	2.6(1.53)
	M	40.8	12.3(1.68)	7.6(.88)	4.9(1.36)	10.2(.96)	33.3(1.19)	11.7(.53)	19.9(1.00)
	Z	2.3	19.1(12.73)	7.6(4.00)		2.5(.10)	12.1(.50)	4.5(.14)	54.1(6.60)
СООК	J	5.8		6.1(6.10)	51.0(7.97)	2.7(.55)	27.2(.87)	8.8(.27)	4.1(.18)
	K	29.1	1 2 (4 2)	19 2/1 02)	34.7(2.87)	.8(.06)	56.6(1.10)	7.3(.46)	.5(.10)
	v	20.5	1.2(.43)	4.2(2.21)	4.0(63)	4.5(15.0(99)	54.2(2.14)	18.0(.52)
	x	14.2			4.1(.26)	5.2(.17)	5.0(.53)	82.3(5.45)	3.3(.72)
CRAWFORD	F	24.2	.6(.14)	2.1(.23)	2.1(.57)	14.4(1.47)	74.6(1.08)	6.3(2.17)	
	0	19.3	3.3(.27)	6.8(1.74)	5.0(.28)	27.3(.93)	42.4(1.44)	15.2(2.45)	
	P	13.1	7.5(.43)	10.2(1.29)	23.9(.86)	24.1(1.34)	30.5(1.31)	3.8(1.73)	
	Q Z	30.7 10.0	13.9(1.01) .5(.33)	7.1(.44) .9(.47)	4.9(1.11) 7.0(.90)	55.2(1.34) 29.5(1.20)	18.4(.80) 21.8(.89)	.5(.83) 40.3(1.28)	
CUMB ERLAND	Е	27.8	.9(.21)	2.2(.18)	.6(.08)	4.0(.20)	68.5(1.57)	21.8(2.02)	2.0(1.18)
	F	25.3	5.3(1.26)	4.7(.51)	.8(.22)	8.5(.87)	75.7(1.09)	4.4(1.52)	.4(.57)
	G	1.7	25.8(4.23)	5.8(.91)	.6(.07)	21.3(.55)	6.5(.35)	3.9(.36)	36.1(3.22)
	M	6.9	4.1(.56)		10.3(2.86)	1.3(.12)	63.2(2.25)	16.2(.74)	4.9(.25)
	P 0	24.6	26.1(1.91)	7.5(.47)	.4(.09)	35.8(29.7(1.29)	1.7(.00)	.6(.55)
	พิ	1.7						42.5(1.68)	57.5(1.66)
	Z	10.3	.4(.27)	.7(.37)	9.4(1.21)	.1(.00)	16.3(.67)	23.6(.75)	49.5(6.04)
DE KALB	В	26.5	.1(.17)		.5(.42)	.3(.14)	6.2(1.27)	12.4(1.20)	80.4(1.00)
	I	34.6	.4(.50)		1.6(.47)	2.5(.53)	11.9(1.14)	31.8(.93)	51.8(1.14)
	w	36.9			.2(.03)	.3(.02)	7.7(.51)	20.1(.79)	71.7(2.07)
DE WITT	в	69.8	.1(.17)	.3(.38)	.3(.25)	.2(.09)	4.2(.86)	8.7(.84)	86.2(1.08)
	M	21.6	13.2(1.81)	14.4(1.67)	2.4(.67)	8.2(.77)	24.6(.88)	28.7(1.31)	8.4(.42)
	W	8.6	.5(.23)	.7(.37)		2.3(.16)	5.1(.34)	48.3(1.91)	43.2(1.25)
DOUGLAS	В	64.6			.2(.17)	.8(.36)	1.1(.22)	15.2(1.48)	82.6(1.03)
	M W	14.4 21.0	.3(.04)	11.2(1.30)	3.9(1.08) 1.0(.16)	13.5(1.27) 4.2(.29)	26.5(.94) 6.2(.41)	15.4(.70) 43.9(1.74)	29.2(1.47) 44.7(1.29)
DU PAGE	I	23.1		3.3(2.75)	5.0(1.47)	8.4(1.79)	12.2(1.17)	44.4(1.30)	26.7(.59)
	J	44.7	.1(.33)	2.0(2.00)	19.1(2.98)	6.0(1.22)	36.3(1.16)	21.2(.65)	15.3(.66)
	V W	18.4	./(.25)	.3(.16)	5.2(.25) 10.0(1.56)	5.6(.39)	20.6(1.36)	61.1(2.42)	2.4(.07)
EDGAR	в	62.9			.5(.42)	.6(.27)	1.2(.24)	8.6(.83)	89.1(1.11)
	м	25.2	1.5(.21)	10.3(1.20)	1.3(.36)	16.7(1.58)	35.3(1.26)	22.8(1.04)	12.1(.61)
	P W	4.2 7.7	30.8(1./6)	*** ***	/.1(.26)	.5(.03)	42.3(1.82) 16.3(1.07)	9.3(.37)	73.9(2.14)
EDWA RD S	F	5.7		5.2(.56)	8.7(2.35)	11.3(1.15)	74.8(1.08)		
	P	14.6	17.7(1.01)	13.9(1.76)	14.4(.52)	16.4(.91)	37.0(1.59)	.8(.36)	
	Q	42.4	9.0(.66)	19.6(1.23)	28 9(1.99)	31.9(.//)	32.5(1.41)	.2(2.00)	
	Ŵ	10.6	.4(.18)	1.6(.84)	6.2(.97)	26.5(1.84)	39.7(2.61)	25.7(1.02)	
	Z	9.3	.4(.27)	1.8(.95)	.8(.10)	32.7(1.33)	58.1(2.38)	6.2(.20)	
EFF INGHAM	F	69.2	6.5(1.55)	5.1(.55)	2.6(.70)	10.5(1.07)	72.6(1.05)	2.1(.72)	.6(.86)
	Q Z	28.1 2.7	24.3(1.77) 4.4(2.93)	8.6(.54) 4.4(2.32)	1.3(.30)	38.1(.92) 2.5(.10)	27.4(1.19) 32.9(1.35)	.4(.67)	55.7(6.79)
FAYETTE	E	6.6	5.7(1.36)	4.3(.36)	8.7(1.12)	7.7(.39)	72.0(1.65)	1.6(.15)	
	F	31.7	4.7(1.12)	8.3(.89)	1.6(.43)	2.9(.30)	72.5(1.05)	8.0(2.76)	2.0(2.86)
	P	1.6	20.9(1.19)		7.2(.26)	48.4(2.69)	23.5(1.01)		0 0 (2 64)
	z	46.8	2.0(1.33)	8.3(.52) .5(.26)	1.8(.23)	13.4(.55)	45.7(1.87)	8.6(.27)	28.0(3.41)
FORD	T	5.0			11.4(3.35)	1.9(.40)	2.3(.22)	54.9(1.61)	29.5(.65)
- 510	Ĵ	34.6	.1(.33)	.2(.20)	2.5(2.7(.55)	28.3(.90)	37.2(1.13)	28.9(1.24)
	K	35.5	.9(.75)	2.3(1.64)	8.9(.74)	18.9(1.45)	44.3(.86)	20.4(1.30)	4.3(.83)
	W	24.9			3.2(.50)	1.0(.07)	8.7(.57)	42.2(1.67)	45.0(1.30)
FRANKLIN	F	5.6	····	3.0(.32)	0 7/ /1	26.1(2.66)	71.0(1.02)		
	Ŵ	11.2	4.2(.31)	5.2(2.74)	35.8(5.59)	53.7(3.73)	3.8(.25)		
FULTON	A	14.4	1.3(.76)	.5(.26)	4.5(1.96)	8.3(1.60)	4.5(.31)	10.2(.85)	70.7(1.14)
	L	8.5	7.6(.39)	34.7 (4.28)	.9(.07)	6.0(.34)	43.8(2.02)	6.7(.58)	.4(.05)
	z	13.0	2.6(1.73)	.1(.05)	.1(.01)	25.5(1.04)	2.5(.10)	52.4(1.66)	16.7(2.04)

Table 5. — Continued

	Soil	Percent		Productivity index classes - high levels of management					
County	Association Area	of County	< 70	70-85	85-100	100-115	115-130	130-145	> 145
GALLATIN	O P Q W X Z	10.2 10.6 3.8 54.7 7.8 12.9	15.0(1.23) 35.7(2.04) 12.8(.93) 1.6(.73)	.1(.03) 6.8(.86) 8.7(.54) .7(.37) 6.3(.61)	10.7(.61) 19.5(.70) 3.0(.68) 18.5(2.89) 21.6(1.39)	31.9(1.08) 10.4(.58) 43.0(1.04) 14.6(1.01) 31.8(1.04) 23.0(.94)	37.2(1.26) 23.6(1.01) 32.6(1.42) 42.4(2.79) 19.7(2.10) 1.3(.05)	5.2(.84) 4.0(1.82) 	
GREENE	A D L N W Z	17.2 2.2 27.3 39.6 2.2 11.6	.2(.12) 13.1(4.23) 28.0(1.44) 24.3(.95) 	2.0(.56) .9(.11) 1.6(.25)	.2(.09) 	-1.5(.29) 17.2(.97) 13.4(.85) 27.1(1.88) 33.8(1.38)	1.1(.07) 33.3(3.06) 20.5(.94) 30.0(1.09) 11.6(.76) 21.3(.87)	11.6(.97) 51.6(.79) 12.6(1.10) 12.7(1.28) 14.8(.58) 40.5(1.28)	85.5(1.37) 11.9(1.43) 14.1(1.33) 46.5(1.34) 3.3(.40)
GRUNDY	G J W X Y	5.1 41.0 9.1 23.1 11.1 10.5	.1(.33) 5.6(.25)	17.7(2.77) 3.2(3.20) .2(.11) 15.3(1.30)	3.2(.39) 3.1(.48) .3(.05) 5.6(.36) 1.9(.15)	17.0(.44) 4.7(.96) .2(.02) .5(.03) 56.6(1.86) 9.4(.66)	50.5(2.70) 9.7(.31) 55.4(1.08) 13.4(.88) 15.1(1.61) 7.7(.36)	2.2(.21) 37.6(1.15) 44.4(2.83) 28.7(1.13) 21.4(1.42) 29.2(4.11)	9.4(.84) 41.5(1.78) 57.0(1.65) 1.3(.28) 31.0(3.01)
HAMILTON	Q R W	63.7 19.3 17.0	12.0(.88) 40.3(1.10)	7.3(.46) 20.3(.60)	3.1(.70) 18.4(1.27) 18.7(2.92)	51.1(1.24) 10.6(2.21) 61.9(4.30)	26.5(1.15) 10.5(1.01) 19.3(1.27)	····	
HANCOCK	A D L N	15.0 36.5 30.6 18.0	1.4(.82) 9.5(3.06) 24.3(1.25) 36.5(1.43)	2.7(1.42) 5.2(1.44) .3(.04) .6(.10)	.6(.26) 7.5(3.57) 9.4(.71)	7.6(1.46) .8(.09) 17.3(.97) 2.7(.17)	20.1(1.37) 14.9(1.37) 22.6(1.04) 26.8(.98)	20.9(1.74) 57.9(.88) 19.3(1.68) 9.5(.96)	46.7(.75) 4.2(.75) 6.9(.83) 23.9(2.25)
HARD1N	O P R	16.3 42.0 41.7	25.4(2.08) 39.5(2.26) 42.2(1.16)	3.4(.87) 6.0(.76) 24.6(.73)	24.5(1.39) 38.5(1.39) 20.9(1.44)	26.6(.90) 3.5(.19) 4.7(.98)	13.6(.46) 11.1(.48) 7.4(.71)	6.5(1.05) 1.4(.64) .1(1.00)	
HEND ER SON	A L W X Z	33.0 40.0 3.0 18.2 5.8	5.7(3.35) 24.0(1.24) 14.7(1.01)	.5(.26) .7(.09) 34.7(3.37)	2.8(1.22) 7.7(.58) 9.3(.60)	6.3(1.21) 15.8(.89) 20.7(1.44) 14.6(.48)	13.8(.94) 13.4(.62) 9.0(.59) 6.3(.67) 8.5(.35)	7.8(.65) 14.5(1.26) 2.1(.08) 13.3(.88) 80.7(2.55)	63.1(1.01) 23.9(2.88) 68.3(1.97) 7.2(1.57) 10.8(1.32)
HENRY	A L W X Z	44.7 11.8 31.5 9.1 2.8	4.1(2.41) 4.6(.24) 11.3(5.14) 8.2(.56)	3.7(1.95) 7.7(.95) 3.0(1.58) 15.1(1.47)	2.4(1.04) 13.5(1.02) 5.9(.92) 18.9(1.22) 5.4(.69)	16.2(3.12) 18.2(1.02) 6.4(.44) 19.1(.63)	16.1(1.10) 16.0(.74) 18.3(1.20) 15.3(1.63) 6.1(.25)	11.9(.99) 13.8(1.20) 22.3(.88) 23.3(1.54) 27.2(.86)	45.6(.73) 26.2(3.16) 32.8(.95) 61.2(7.46)
IRQUOIS	I J K W X	9.2 17.5 25.7 26.5 21.2	.3(.38) .1(.33) .3(.25) .7(.32) 8.3(.57)	1.2(1.00) .1(.10) .9(.64) 1.7(.89) 4.5(.44)	5.0(1.47) .8(.13) 11.1(.92) 2.5(.39) 15.5(1.00)	9.0(1.91) 3.0(.61) 14.0(1.08) 4.1(.28) 25.0(.82)	6.4(.62) 27.6(.88) 50.7(.99) 11.3(.74) 11.4(1.21)	18.2(.53) 44.5(1.36) 18.9(1.20) 50.2(1.98) 29.9(1.98)	59.8(1.32) 23.8(1.02) 4.0(.77) 29.6(.86) 5.5(1.20)
JACKSON	O P Q W Z	12.5 43.2 5.1 28.8 10.5	14.6(1.20) 19.6(1.12) 7.2(.53) 15.2(6.91) 6.2(4.13)	13.6(1.72) 15.1(.94) 6.2(3.26) 1.1(.58)	29.3(1.66) 36.4(1.31) 18.7(4.25) 40.1(6.27) 28.6(3.67)	44.8(1.52) 18.5(1.03) 58.4(1.41) 27.1(1.88) 30.5(1.24)	7.6(.26) 11.9(.51) .7(.03) 11.4(.75) 19.5(.80)	3.3(.53) 	.4(.36)
JASPER	P Q X Z	52.6 38.3 2.3 6.7	5.6(1.33) 25.6(1.86) 10.6(.73) 1.4(.93)	7.9(.85) 7.6(.48) 6.6(.64) .2(.11)	1.2(.32) 1.3(.30) 36.4(2.35) .7(.09)	2.6(.27) 37.4(.91) 30.5(1.00) 3.4(.14)	72.0(1.04) 24.2(1.05) 15.9(1.69) 46.6(1.91)	10.2(3.52) 3.6(6.00) 47.7(1.51)	.6(.86) .2(.18)
JEFFERSON	F Q R	22.2 75.5 2.3	1.4(.33) 12.1(.88) 44.8(1.23)	11.8(1.27) 26.3(1.64) 49.1(1.46)	9.7(2.62) 7.3(1.66)	15.7(1.60) 36.6(.89) .6(.13)	61.4(.89) 17.7(.77) 5.5(.53)		
JERSEY	A D L N Z	5.6 6.6 43.1 39.4 5.3	4.1(1.32) 36.5(1.88) 18.9(.74) 1.0(.67)	1.3(.36) .1(.01)	10.0(.76) .3(.07)	9.7(.87) 6.6(.73) 24.3(1.37) 21.2(1.34) 17.7(.72)	11.0(.75) 15.3(1.40) 20.0(.92) 31.6(1.15) 32.5(1.33)	2.0(.17) 72.8(1.11) 8.1(.70) 17.4(1.76) 41.0(1.30)	77.2(1.24) 1.1(.13) 10.5(.99) 7.9(.96)
JO DAVIESS	A B L X Y	4.6 4.2 39.5 4.1 47.7	15.6(26.00) 17.0(.88) 11.6(.79) 33.5(1.50)	2.6(1.37) 2.2(2.75) 6.3(.78) 23.5(2.28) 21.0(1.78)	30.2(13.13) 17.5(14.58) 19.9(1.51) .6(.04) 18.4(1.42)	33.9(6.52) 28.7(13.05) 22.5(1.26) 14.5(.48) 10.2(.72)	2.9(.20) 18.2(3.71) 23.3(1.07) 9.0(.42)	9.2(.77) 17.8(1.73) 7.8(.68) 3.4(.48)	21.3(.34) 3.2(.39) 49.8(10.83) 4.4(.43)
JOHNSON	P R Z	53.8 39.1 7.1	31.0(1.77) 48.8(1.37)	12.5(1.58) 26.5(.79)	33.1(1.19) 9.3(.64) 13.0(1.67)	14.4(.80) 5.4(1.13) 70.2(2.87)	9.0(.39) 10.1(.97) 16.8(.69)		

42

Table 5. — Continued

	Soi1	Percent		Productivity index classes - high levels of management					
County	Association Area	of County	< 70	70-85	85-100	100-115	115-130	130-145	> 145
KANE	B G J T U V W	2.7 1.5 26.8 2.8 2.3 14.3 2.7 46.8	2.7 (3.38) 11.2(4.87) .4(.21) .3(.14)	3.6(3.00) 2.5(2.50) 3.0(.14) 7.5(.49) 7.1(.40) 4.3(2.26)	$\begin{array}{c} 3.9(3.25)\\ 11.4(1.39)\\ 5.0(1.47)\\ 8.0(1.25)\\ 8.2(1.17)\\ 6.2(1.48)\\ 7.1(-34)\\ 1.9(-30) \end{array}$	30.7(.79) 8.3(1.77) 4.3(.88) 7.5(.22) 12.4(1.13) 52.6(4.24) 2.0(.14)	5.8(1.18) 22.3(2.14) 32.1(1.03) 7.5(.66) 30.6(.91) 11.7(.52) 18.8(1.24)	18.2(1.70) 26.7(.78) 16.0(.49) 59.0(7.11) 22.4(1.40) 19.5(1.06) 21.2(.84)	90.3(1.13) 39.8(3.55) 31.4(.69) 37.0(1.59) 3.7(.25) 20.5(1.13) 1.9(.34) 51.5(1.49)
KANKAK BE	I J W X Y	7.4 24.4 5.6 15.0 31.6 16.1	15.0(1.03) 4.3(.19)	6.7(4.78) .2(.11) 3.6(.35) 2.7(.23)	8.8(1.38) 26.3(2.17) 5.3(.83) 10.5(.68) 11.0(.85)	1.0(.21) 3.7(.76) 4.6(.35) 7.4(.51) 43.0(1.41) 5.5(.39)	1.3(.13) 41.9(1.34) 34.2(.67) 17.2(1.13) 5.1(.54) 41.5(1.95)	50.0(1.47) 19.6(.60) 12.0(.76) 31.0(1.23) 20.9(1.38) 10.3(1.45)	47.8(1.05) 26.1(1.12) 16.2(3.12) 38.8(1.12) 1.9(.41) 24.7(2.40)
K ENDA LL	B J K U W	5.7 35.7 7.7 21.3 1.9 27.7	.2(.25) 1.3(.68) 5.8(2.64)	.2(.14) 5.2(.34) .6(.32)	.2(.06) 12.9(2.02) 8.6(.71) 3.2(.50)	.6(.27) 5.8(1.23) 6.1(1.24) 21.0(1.62) 31.4(2.85) 15.3(1.06)	7.8(1.59) 9.6(.92) 27.2(.87) 55.7(1.09) 20.3(.61) 13.0(.86)	15.2(1.48) 30.5(.89) 7.0(.21) 5.1(.32) 17.0(1.06) 18.0(.74)	76.4(.95) 53.8(1.19) 46.8(2.01) 9.4(1.81) 24.8(1.36) 44.1(1.27)
KNOX	A D L N	52.6 1.8 1.5 44.1	3.2(1.88) 28.4(1.46) 18.7(.73)	3.6(1.89) 8.2(1.01) 9.6(1.52)	1.5(.65) 8.2(.62) 7.3(1.62)	6.5(1.25) .6(.07) 11.2(.63) 12.4(.78)	27.6(1.88) 13.4(.62) 24.4(.89)	5.6(.47) 8.2(.83)	52.1(.84) 99.4(17.75) 30.6(3.69) 19.3(1.82)
LAKE	I J K S V W	9.4 38.8 7.6 4.2 36.3 3.7	4.4(.44) .6(.21)	4.8(4.00) 3.4(3.40) .9(.64) 3.9(.35) 21.6(1.23)	1.0(.29) 17.1(2.67) 25.4(2.10) 22.4(1.09) 22.6(3.53)	10.0(2.13) 6.4(1.31) 9.6(.74) .6(.05) 12.7(1.02) 2.6(.18)	33.6(3.23) 24.0(.77) 51.7(1.01) 19.4(.87) 15.9(.70) 55.5(3.65)	39.1(1.15) 41.7(1.27) 12.4(.79) 71.7(2.34) 25.1(1.36) 19.4(.77)	11.5(.25) 7.4(.32)
LA SALLE	A B C J K L M V V Y	24.9 20.7 8.5 4.4 8.7 2.1 4.2 15.0 6.6 4.9	1.4(.82) .3(.50) 	 .3(.03) 8.9(.51) 9.4(4.95)	.2(.09) 2.4(2.00) .5(.12) 16.0(2.50) 9.8(.81) 3.3(.25) 	1.5(.29) 4.1(1.86) .5(.04) 49.3(2.77) 12.6(1.19) 11.0(.89) 15.2(1.06) 11.5(.81)	12.0(182) 16.0(3.27) 5.3(.56) 24.6(.79) 48.8(.95) 8.7(.40) 29.2(1.04) 23.8(1.05) 31.4(2.07) 51.6(2.42)	11.1(.93) 9.1(.88) 43.0(.95) 17.3(.53) 7.2(.46) 27.3(2.37) 31.9(1.47) 13.4(.73) 4.5(.18) 2.6(.37)	73.8(1.19) 68.1(.85) 51.2(1.32) 42.2(1.81) 17.9(3.44) 4.0(.48) 25.9(1.30) 20.7(3.70) 36.5(1.05) 34.3(3.33)
LAWRENCE	F G O P Q W X Z	1.7 12.0 4.8 8.3 38.2 15.2 8.2 11.6	2.0(.33) 2.0(.11) 1.8(.13) .1(.05) .7(.05) 1.0(.67)	6.5(.70) 4.2(.66) 5.6(1.44) 13.1(1.66) 25.0(1.56) 3.9(2.05) 5.9(.57)	34.0(9.19) 8.4(1.02) 9.0(.51) 17.0(.61) 4.5(1.02) 4.5(.70) 11.1(.72) 15.0(1.92)	15.7(1.60) 73.4(1.90) 13.7(.46) 21.0(1.17) 45.8(1.11) 14.7(1.02) 43.8(1.44) 26.3(1.07)	43.8(.63) 5.5(.29) 59.6(2.02) 45.2(1.94) 21.4(.93) 25.6(1.68) 13.7(1.46) 31.2(1.28)	6.6(.62) 12.1(1.95) 1.7(.77) 1.6(2.67) 51.1(2.02) 24.9(1.65) 26.4(.84)	
LEE	A B I M W X	11.6 32.8 6.6 2.3 35.1 11.6	4.1(6.83) 9.0(11.25) 34.4(4.71) 1.4(.64) 15.2(1.04)	.9(.47) 3.5(4.38) 3.9(3.25) 1.7(.89) 10.4(1.01)	2.5(1.09) 2.3(1.92) 15.6(4.59) 14.9(4.14) 1.9(.30) 7.7(.50)	1.6(.31) 6.8(3.09) 11.6(2.47) 24.7(2.33) 13.3(.92) 28.7(.94)	18.1(1.23) 14.3(2.92) 7.7(.74) 17.2(.61) 3.6(.24) 15.7(1.67)	7.2(.60) 16.2(1.57) 32.2(.94) 2.8(.13) 26.9(1.06) 14.7(.97)	69.7(1.12) 52.9(.66) 20.0(.44) 6.0(.30) 51.2(1.48) 7.6(1.65)
LIVINGSTON	A B C J K W	3.5 9.3 2.3 8.9 27.3 29.6 19.2	.4(.67) 	1.9(2.37) 2.1(1.50) .5(.26)	.6(.50) 12.4(2.95) 1.5(.44) 4.1(.64) 11.6(.96) .7(.11)	15.3(6.95) 3.6(1.50) 1.6(.33) 11.2(.86) 3.2(.22)	4.2(.86) 29.7(3.06) 11.8(1.13) 29.9(.96) 58.7(1.14) 15.0(.99)	1.5(.13) 19.5(1.89) 17.3(.38) 23.8(.70) 42.9(1.31) 14.3(.91) 15.6(.62)	98.5(1.58) 58.0(.72) 37.6(.97) 62.9(1.39) 21.5(.92) .8(.15) 63.7(1.84)
LOGAN	A B L M N W	63.4 1.9 2.0 2.1 5.7 25.0	.2(.12) 4.5(.23) 3.0(.41) 15.6(.61) .1(.05)	.2(.11) 7.1(.88) 4.9(.57) 1.8(.29) .5(.26)	.6(.26) 17.9(1.36) 4.2(.93) .3(.05)	3.4(.65) 7.7(.43) 6.1(.58) 20.5(1.30) 1.5(.10)	8.4(.57) 8.7(1.78) .6(.03) 13.4(.48) 30.4(1.11) 11.6(.76)	15.5(1.29) 1.3(.13) 12.8(1.11) 22.6(1.03) 7.1(.72) 28.3(1.12)	71.7(1.15) 90.0(1.12) 49.4(5.95) 50.0(2.51) 20.3(1.92) 57.9(1.67)
MACON	A B M W	2.2 72.5 10.8 14.5	2.8(1.65) .1(.17) 13.3(1.82)	4.2(2.21) .1(.13) 25.0(2.91)	1.5(1.25) 1.0(.28)	11.3(2.17) .4(.18) 8.8(.83)	38.7(2.63) 2.5(.51) 18.6(.66) 4.5(.30)	28.2(2.35) 3.7(.36) 18.7(.85) 11.7(.46)	14.8(.24) 91.6(1.14) 14.6(.73) 83.8(2.42)
MACOUPIN	A D N P	8.6 42.6 20.0 28.8	4.1(2.41) .5(.16) 33.4(1.30) 31.8(1.82)	2.3(.64)	.9(.39) 1.1(.52) 1.6(.36) 13.0(.47)	10.6(2.04) 4.2(.47) 20.6(1.30) 12.0(.67)	12.5(.85) 7.9(.72) 20.3(.74) 21.4(.92)	23.1(1.93) 84.1(1.28) 8.7(.88) 11.7(5.32)	48.8(.78) 15.4(1.45) 9.2(2.56)

Table 5. — Continued

	Soil	Percent	ent Productivity index classes - high levels of management						
County	Association Area	of County	< 70	70-85	85-100	100-115	115-130	130-145	> 145
MADISON	A	9.0			.6(.26)	15.5(2.98)	7.7(.52)	22.5(1.88)	53.8(.86)
	D	12.4	.7(.23)	.8(.22)	3.3(1.57)	51.6(5.74)	16.8(1.54)	26.8(.41)	
	E	15.6	.7(.17)	5.3(.45)	8.0(1.03)	60.2(3.01)	15.5(.35)	10.4(.96)	
	н	1.9	19 3/ 9/	1 6 (20)	19.4(.92)	11.3(1.19)	11.9(1.03)	3.8(.24)	53.8(1.65)
	N	4.7	36.0(1.41)	1.0(.20)	12.3(2.33) 10.0(2.22)	15.8(1.00)	12.0(4.1(.30)	11.2(1.35) 17.5(1.65)
	0	11.9	17.9(1.47)		13.0(.74)	32.0(1.08)	25.3(.86)	7.8(1.26)	3.9(3.54)
	P	23.3	17.6(1.01)	.2(.03)	17.4(.63)	16.6(.92)	23.8(1.02)	6.8(3.09)	17.7(4.92)
	Z	12.4	.3(.20)	2.4(1.26)	22.3(2.86)	14.0(.57)	17.0(.70)	37.6(1.19)	6.4(.78)
MARION	P	41.6	4.1(.98)	11.7(1.26) 12.4(1.57)	1.8(49)	6.8(.69) 45.8(2.54)	75.5(1.09)		
	Q	56.4	20.3(1.48)	13.3(.83)	3.3(.75)	34.5(.84)	28.5(1.24)		
MARSHALL	A	34.3		.4(.21)	2.1(.91)	1.7(.33)	30.1(2.05) 11 5(2.35)	10.2(.85)	55.6(.89) 61.9(.77)
	c	9.4		4.2(5.25)		6.2(2.58)	6.4(.67)	43.3(.96)	44.0(1.14)
	M	3.1	15.7(2.15)	7.2(.84)	11.1(3.08)	24.8(2.34)	22.9(.81)	18.3(.84)	
	N	31.3	30.3(1.18)	5.9(.94)	3.1(.69)	15.2(.96)	29.1(1.04)	10.2(1.03)	6.2(.58)
	z	3.1						93.4(2.96)	6.6(.80)
MASON	A T	9.7	.3(.18)	1.4(.74)	4.1(1.78)	19.8(3.81) 34.2(1.92)	21.1(1.44) 13.8(64)	1.9(.16) 12.5(1.09)	51.3(.82)
	พี	15.0		.4(.21)	5.1(.80)	19.2(1.33)	15.2(1.00)	32.7(1.29)	27.5(.79)
	х	63.3	18.8(1.29)	10.8(1.05)	26.4(1.70)	34.1(1.12)	3.4(.36)	5.2(.34)	1.2(.26)
	Z	9.7			.3(.04)	.8(.05)	62.8(2.57)	35.2(1.11)	.8(.10)
MASSAC	M	2.3	3.9(22)	3.5(.41)	32.9(9.14) 49.1(1.77)	44.1(4.16) 16.5(92)	19.6(.70) 17.5(.75)		
	Ŵ	21.9	1.5(.68)	3.0(1.58)	10.8(1.69)	62.1(4.31)	22.2(1.46)	.4(.02)	
	Z	17.9	.2(.13)	.9(.47)	14.3(1.83)	42.0(1.71)	18.3(.75)	24.4(.77)	
MC DONOUGH	A	73.0	2.6(1.53)	2.1(1.11)	.9(.39)	2.7(.52)	7.0(.48)	7.4(.62)	77.3(1.24)
	D	6.5		6.2(1.72)	5.6(2.67)	.2(.02)	11.6(1.06)	4.2(.06)	72.1(12.88
	N	20.5	26.1(1.02)		1.7(.38)	18.9(1.20)	32.7(1.20)	6.9(.70)	13.7(1.29)
MC HENRY	В	2.0	1.3(2.17)	19.4(24.25)	10.3(8.58)	16.1(7.32)	29.0(5.92)	23.2(2.25)	.6(.01)
	G	10.4	4.4(.72)	10.3(1.61)	8.3(1.01)	17.9(.46)	26.2(1.40)	21.0(1.96)	11.9(1.00)
	н	6.0	.4(.11)	3.0(.52)	6 2 (1 82)	1.9(.20)	1.3(.13)	56.9(1.67)	35.6(.78)
	1	3.8		7.4(7.40)	29.1(4.55)	1.7(.35)	8.4(.27)	23.1(.70)	30.4(1.30)
	м	7.9	1.8(.25)			4.8(.45)	37.0(1.32)	26.5(1.21)	29.9(1.50)
	S	11.2	11.1(1.11)	12.6(1.14)	12.3(1.21)	14.8(1.20)	22.8(1.03)	22.4(.73)	4.1(1.21)
	Т	13.8	3.7(1.61)	33.8(1.52)	6.3(.90)	8.3(.24)	27.0(2.37)	10.5(1.27)	10.4(.71)
	U	13.9	3.4(1.79)	24.8(1.62)	3.8(.90)	8.0(./8) 7.8(.63)	30.0(.91)	23 0(1 25)	1.8(.32)
	w	21.6	1.8(82)	1.2(.63)	4.1(.64)	3.9(.27)	14.2(.93)	48.1(1.90)	26.7(.77)
MC LEAN	A	21.0			3.1(1.35)	.3(.06)	12.2(.83)	7.4(.62)	77.0(1.24)
	В	22.8			.8(.67)	.2(.09)	6.0(1.22)	9.5(.92)	83.6(1.04)
	I	24.4	.2(.25)	1.7(1.42)	7.0(2.06)	3.0(.04) 1 3(26)	26 7 (85)	22.0(.65)	51.8(2.22)
	м	6.6			1.2(33)	1.8(.17)	10.0(.36)	35.7(1.63)	51.2(2.57)
	N	4.3	6.4(.25)	8.6(1.37)	2.1(.47)	29.7(1.88)	28.7(1.05)	12.8(1.29)	11.6(1.09)
	W	10.4	.5(.23)		.3(.05)	3.8(.26)	12.8(.84)	16.5(.65)	66.1(1.91)
MENARD	A	38.0		1.2(.63)	1.8(.78)	3.1(.60)	11.3(.77)	11.2(.93)	71.4(1.15)
	L	13.3	20.3(1.40)	26.7(4.24)	0.0(.45)	4.7(30)	37.1(1.35)	7.9(.80)	9.1(.86)
	W	20.3	4.7(2.14)	3.7(1.95)	1.8(.28)	9.3(.65)	13.4(.88)	28.0(1.11)	39.1(1.13)
	x	9,6	13.5(.92)	36.7(3.56)	5.9(.38)	22.6(.74)	15.0(1.60)	4.7(.31)	1.5(.33)
	Z	9.3	.4(.27)			6.1(.25)	1.3(.05)	91.6(2.90)	.6(.07)
MERCER	A	51.0	1.9(1.12)	1.0(.53)	6.5(2.83)	3.5(.67)	25.8(1.76)	11.8(.98) 19.5(1.70)	49.5(.80)
	և Մ	20.5	13.6(6.18)	9.7(5.10)	24.8(3.88)	2.7(.19)		46.6(1.84)	2.7(.08)
	x	2.2	28.8(1.97)	41.9(4.07)	29.4(1.90)				
	Z	13.6	1.1(.73)	1.4(.74)	5.5(.71)	23.6(.96)	1.0(.04)	37.5(1.19)	29.8(3.63)
MONROE	E	4.8	8.0(1.90)	21.6(1.82)	22.3(2.86)	6.1(.31)	40.7(.93)	.9(.08)	.4(.24)
	P	34.9	19.7(1.13)	8.6(1.09)	24.1(.87)	17.0(.94)	29.5(1.27)	.9(.41)	.2(.06)
	z	28.7	.7(.47)	.1(.05)	17.5(2.24)	17.4(.71)	54.2(2.23)	9.1(.29)	1.0(.12)
MONTGOMERY	A	1.6					7 0/ //)	42.6(3.55)	57.4(.92)
	D	33.0	7 3/1 7/1	2.2(.61)	1.0(.48)	14.3(1.59) 19.7/ QQN	29.8(.68)	14.7(1.36)	5.6(3.29)
	E P	20./	1.3(1./4)	.4(05)	10.0(.02)	10.2(.57)	28.3(1.21)	.6(.27)	16.6(4.61)
	ę	9.7	39.7(2.90)	3.2(.20)	8.8(2.00)	7.1(.17)	26.2(1.14)	4.0(6.67)	11.1(10.09
MORGAN	A	55.8	1.7(1.00)	4.4(2.32)	1.5(.65)	7.0(1.35)	10.0(.68)	5.6(.47)	69.8(1.12)
	L	4.3	24.8(1.28)	31.5(3.89)	6.1(.46)	9.0(.54) 7.5(.7)	13.4(.02)	5.3(.54)	13.3(1.25)
	N U	35.1	21./(.83)	19.1(3.03)	0.0(1.33)	1.8(.13)	36.1(2.37)	60.9(2.41)	1.2(.03)
	ž	2.0						100.0(3.16)	

Table 5. — Continued

<u> </u>	Soi1	Percent		Produ					
County	Association Area	of County	< 70	70-85	85-100	100-115	115-130	130-145	> 145
MOULTRIE	B M	76.9 23.1	2.6(.36)	1.4(1.75) 12.2(1.42)	.4(.33) .6(.17)	1.7(.77) 4.3(.41)	1.6(.33) 16.5(.59)	6.8(.55) 29.0(1.32)	88.0(1.10) 34.8(1.75)
OGLE	A B G N I L	30.2 8.2 1.6 1.7 16.2 13.1	1.2(.71) 3.2(5.33) 23.8(3.90) 17.7(5.06) 1.8(2.25) 14.2(.73) 1.0(.14)	3.0(1.58) 5.1(6.38) 8.6(1.34) 10.6(1.31) 6(07)	9.4(4.09) 2.3(1.92) 6.0(.73) 18.4(.87) .9(.26) 15.6(1.18) 8.0(2.22)	10.5(2.02) 15.6(7.09) 24.5(.63) 51.9(5.46) 7.7(1.64) 18.0(1.01)	17.1(1.16) 21.5(4.39) 11.9(.64) 7.7(.74) 16.9(.78) 44.7(1.59)	16.0(1.33) 22.2(2.16) 19.9(1.86) 8.9(.56) 32.3(.95) 15.0(1.30) 15.4(.70)	42.8(.69) 30.1(.38) 5.3(.47) 3.2(.10) 49.7(1.09) 9.8(1.18) 28.6(1.44)
	r T W Y	3.3 3.3 17.5 5.0	1.9(.83) 6.9(3.14) 9.2(.41)	5.8(.26) 1.8(.95) 12.2(1.03)	19.5(2.79) 1.1(.17) 13.2(1.02)	17.6(.13) 17.6(.52) 7.8(.54) 21.7(1.53)	39.6(3.47) 5.6(.37) 21.7(1.02)	5.4(.70) 5.4(.65) 44.1(1.74) 19.8(2.79)	28.6(1.44) 10.2(.69) 32.7(.95) 2.1(.20)
PEORIA	A N W Z	27.8 64.9 2.0 5.3	.1(.06) 21.5(.84)	1.1(.58) 14.2(2.25) 1.0(.53)	.6(.26) 4.2(.93) 1.5(.19)	5.5(1.06) 14.1(.89) 88.8(3.62)	22.9(1.56) 29.5(1.08) 4.6(.19)	10.7(.89) 8.5(.86) 4.1(.13)	59.1(.95) 8.0(.75) 100.0(2.89)
PERRY	P P Q W	30.6 9.4 58.6 1.4	.3(.07) 19.4(1.11) 12.5(.91)	7.2(.77) 6.9(.87) 15.9(.99)	2.0(.54) 21.7(.78) 8.6(1.95)	5.7(.58) 33.5(1.86) 53.6(1.30) 94.1(6.53)	83.9(1.21) 18.5(.79) 9.4(.41) 5.9(.39)	1.0(.34)	
PIATT	B M W	84.7 12.5 2.8	3.7(.51)	.5(.63) 14.1(1.64)	.6(.50) 1.9(.53)	1.2() 16.0(1.51)	2.1(.43) 28.7(1.02)	9.8(.95) 34.1(1.56)	85.8(1.07) 1.6(.08) 100.0(2.89)
PIKE	A L N Z	12.0 44.3 24.1 19.6	3.6(.19) 8.8(.34)	20.9(2.58) 2.8(.44) .4(.21)	22.6(1.71) 12.1(2.69)	6.3(1.21) 17.8(1.00) 34.5(2.18) 8.1(.33)	27.5(1.87) 25.9(1.19) 27.6(1.01) 7.8(.32)	21.3(1.78) 8.2(.71) 8.3(.84) 68.5(2.17)	44.9(.72) 1.0(.12) 5.9(.56) 15.2(1.85)
POPE	P R W Z	21.1 65.9 4.7 8.3	15.2(.87) 32.0(.88) 6.0(2.73)	7.5(.95) 50.8(1.51) .7(.37) .6(.32)	47.8(1.73) 10.7(.74) 31.1(4.86) 4.1(.53)	18.2(1.01) 2.2(.46) 38.1(2.65) 15.9(.65)	8.4(.36) 4.3(.41) 21.5(1.41) 22.6(.93)	2.8(1.27) .1(1.00) 2.6(.10) 56.8(1.80)	
PULA SKI	0 P W 2	5.5 51.3 29.1 14.2	2.0(.16) .2(.09) .5(.32)	9.2(1.16) 1.3(.68)	27.4(1.56) 35.5(1.28) 23.2(3.63) 28.6(3.67)	35.3(1.20) 31.1(1.73) 59.3(4.12) 47.1(1.92)	35.3(1.20) 24.2(1.04) 14.5(.95) 14.4(.59)	1.5(.06) 9.5(.30)	
PUTNAM	A B G L M N V X 2	38.1 1.8 9.2 3.4 3.7 14.6 5.8 13.4 10.0	.1(.06) 2.8(.46) 66.3(3.42) 12.3(1.68) 19.8(.77) 14.2(5.07) 17.2(1.18) 10.3(6.87)	1.3(.68) 4.3(.67) 3.2(.37) 8.4(1.33) 28.1(1.60) 14.8(1.44) 1.7(.89)	.1(.04) 8.8(1.07) 4.2(1.17) 7.1(1.58) 22.6(1.10) 22.1(1.43) .7(.09)	2.1(.40) 33.6(.87) 3.1(.17) 28.6(2.70) 12.8(.81) 8.4(.68) 17.0(.56) .5(.02)	11.7(.80) 14.6(2.98) 16.2(.87) 13.2(.61) 32.8(1.17) 28.9(1.05) 6.6(.29) 3.7(.39) 25.4(1.04)	8.6(.72) 6.6(.64) 4.8(.45) 17.4(1.51) 15.3(.70) 18.2(1.84) 13.8(.75) 3.7(.25) 54.3(1.72)	76.1(1.22) 78.8(.98) 29.5(2.63) 3.6(.18) 4.8(.45) 6.4(1.14) 21.6(4.70) 7.1(.87)
RANDOLPH	E P Q 2	10.1 2.0 20.8 30.6 20.2 16.2	3.2(.76) 10.7(.88) 10.5(.60) 9.4(.69) 3.0(2.00)	7.5(.63) 12.3(1.32) 2.0(.51) 6.2(.78) 27.6(1.73) 5.1(2.68)	10.6(1.36) 21.3(5.76) 16.0(.91) 31.7(1.14) 8.8(2.00) 17.3(2.22)	12.3(.62) 14.2(1.45) 40.4(1.37) 23.9(1.33) 42.2(1.02) 24.3(.99)	62.8(1.44) 52.3(.75) 29.9(1.01) 27.6(1.18) 11.9(.52) 34.5(1.41)	1.0(.16) .1(.05) 15.8(.50)	3.5(2.06)
RICHLAND	P Q Z	46.4 48.4 5.3	4.3(1.02) 10.1(.74) 1.4(.93)	10.5(1.13) 13.4(.84) 7.2(3.79)	1.6(.43) 2.4(.55) 1.8(.23)	10.9(1.11) 44.8(1.08) 41.8(1.71)	71.0(1.02) 29.3(1.27) 47.9(1.96)	.9(.31)	.7(1.00)
ROCK ISLAND	A L W X Z	24.4 42.6 15.3 8.8 8.8	18.8(.97) .5(.23)	9.8(5.16) 16.4(2.02) 1.5(.79) 2.2(.21)	11.9(5.17) 11.2(.85) 1.5(.23) 8.8(.57) 3.7(.47)	2.7(.52) 10.9(.61) 27.3(1.90) 74.2(2.43) 10.3(.42)	20.8(1.41) 21.6(1.00) 10.3(.68) .4(.04)	11.6(.97) 14.6(1.27) 28.2(1.11) 14.4(.95) 33.3(1.05)	43.2(.69) 6.5(.78) 30.8(.89) 52.7(6.43)
ST. CLAIR	A D P Q W Z	3.5 9.9 6.2 22.6 37.3 2.1 4.1 14.3	3.3(1.06) 7.0(1.67) 9.8(.80) 6.3(.36) 10.0(4.55) 2.7(1.80)	14.7 (4.08) .6(.15) 2.6(.33) 1.3(.68) 1.8(.95)	1.1(.48) 3.6(1.71) 56.4(7.23) 17.0(.97) 24.4(.88) 25.9(5.89) 16.1(2.52) 16.1(2.06)	23.7(4.56) 21.2(2.36) 11.4(.57) 32.5(1.10) 19.5(1.08) 18.5(.45) 28.0(1.94) 7.4(.30)	23.7(1.61) 8.0(.73) 22.2(.51) 23.9(.81) 32.8(1.41) 38.9(1.69) 44.7(2.94) 65.8(2.10)	15.6(1.30) 38.9(.59) 2.1(.19) 10.5(1.69) 4.3(1.95) 6.1(.19)	35.9(.58) 10.3(1.84) .8(.47) 5.6(5.09) 10.0(2.78) 16.7(15.18) .3(.04)
SALINE	Q R W	40.7 13.6 45.8	3.3(.24) 8.6(.24) .8(.36)	26.6(1.66) 35.3(1.05) 6.6(3.47)	2.7(.61) 13.6(.94) 7.4(1.16)	45.6(1.10) 2.5(.52) 31.8(2.21)	21.7(.94) 40.0(3.85) 25.4(1.67)	28.0(1.11)	
SA NGAMON	A N Z	70.7 19.2 10.0	1.1(.65) 23.1(.90) 12.1(8.07)	.3(.16) 1.1(.17) 14.6(7.68)	.6(.26) 9.0(2.00) 4.5(.58)	4.7(.90) 9.4(.59) 5.3(.22)	4.7(.32) 21.1(.77) 3.0(.12)	9.4(.78) 15.1(1.53) 44.8(1.42)	79.1(1.27) 21.2(2.00) 15.7(1.91)

Toble 5. — Continued

	Soi1	Percent		Produ	activity index	·			
County	Association Area	of County	< 70	70-85	85-100	100-115	115-130	130-145	> 145
SCHUYLER	A	2.7			14.4(6.26)	32.5(.86)	11.9(.81)	27.5(2.29)	13.8(.22)
	D	5.2				28.4(3.16)	22.5(2.06)	49.0(.75)	
	L	19.0	13.3(.69)	2.0(.25)	9.7(.73)	33.3(1.87)	24.1(1.11)	14.7(1.28)	2.9(.35)
	N Z	62.2 10.8	28.7(1.12)	2.4(.38)	2.2(.49)	21.3(1.35) 34.4(1.40)	28.0(1.02) 19.7(.81)	9.8(.99) 28.4(.90)	7.6(.72)
80000		16.9	2 2/1 201	1 37 69)	3 9(1 70)	12 4/2 58)	16 2/1 11)	7 44 62)	EE 67 00)
SCOTT	L A	16.3	29.1(1.50)	11.9(1.47)	3.6(27)	10.8(.61)	21.3(8.4(.73)	15.0(1.81)
	N	30.0	25.0(.98)	4.0(.63)	12.9(2.87)	13.7(.87)	22.5(.82)	5.2(.53)	16.7(1.58)
	W	9.4	12.9(5.86)	4.9(2.58)			4.1(.27)	22.6(.89)	55.5(1.60)
	X	13.9		7(37)	35.0(2.26)	43.8(1.44)	14.3(1.52)	25.9(.82)	6.9(1.50)
	4	19.0				4207 (2000)	0.2(154)		2510(2100)
SHELBY	B	19.4		2.0(2.50)	.9(.75)		6.6(1.35) 49.5(4.54)	26.7(2.59) 50.2(.77)	63.8(.80)
	E	24.4	2.0(.48)	1.5(.13)	3.6(.46)	6.5(.33)	70.1(1.60)	16.4(1.52)	
	F	6.5	15.4(3.67)	4.2(.45)	3.5(.95)	17.4(1.78)	53.1(.77)	.6(.21)	5.8(8.29)
	M	9.6	26.0(3.56)	5.2(.60)	11.0(3.06)	7.6(.72)	22.3(.79)	6.5(.30)	21.4(1.08)
	P	14.4	21.4(1.22)	1.2(.15)	9.5(.34)	15.2(.84)	20.2(.8/)	4.2(1.91)	28.4(7.89)
	Q	13.0	10.0(1.3/)	14.7(.92)	1.3(-20)	29.7(2.06)	43.2(2.84)	22.6(.89)	3.2(09)
	z	3.3				15.2(.62)	1.3(.05)	12.7(.40)	70.9(8.65)
STARK		41.6	.4(24)	.3(.16)	1.4(.61)	2.7(.52)	24.5(1.67)	6.4(.53)	64,3(1.03)
	D	2.1		8.5(2.36)	3.3(1.57)	4.6(.51)	20.9(1.92)	3.9(.06)	58.8(10.50)
	N	29.2	17.2(.67)	8.0(1.27)	.7(.16)	19.8(1.25)	25.1(.92)	14.9(1.51)	14.3(1.35)
	*	27.1	.5(.23)			4.5(.51)	14.0(.)/)	11.5(.45)	
ST EPHENSON	A	32.5	2.4(1.41)	1.8(.95)	7.2(3.13)	9.9(1.90)	13.7(.93)	20.8(1.73)	44.2(.71)
	L T	13.3	10.0(.82)	3.9(18)	9 6 (1 36)	29 2(86)	30.2(1.70)	13.6(1.64)	2.6(.18)
	ŵ	12.2	1.9(.86)	.5(.26)		10.4(.72)	17.9(1.18)	25.6(1.01)	43.7(1.26)
	Ŷ	37.6	19.9(.89)	4.3(.36)	12.1(.93)	20.9(1.47)	27.3(1.28)	6.6(.93)	8.9(.86)
TAZEWELL	A	50.2			.1(.04)	2.4(.46)	10.1(.69)	6.6(.55)	80.8(1.30)
	N	15.1	22.8(.89)	7.3(1.16)	2.4(.53)	29.0(1.84)	28.7(1.05)	8.9(.90)	.9(.08)
	W	2.8		45.6(24.00)				8.7(.34)	45.6(1.32)
	x z	20.8	23.5(1.61) 3.2(2.13)	8.7(.84)	3.1(.40)	40.2(1.32) 6.4(.26)	.3(.03)	4.4(.29) 55.2(1.75)	14.6(1.78)
INTON	0	17 8	21 5(1 76)	2.4(62)	13.8(78)	22.8(77)	39.0(1.32)	.6(.10)	
ONTON	P	62.0	10.0(.57)	19.0(2.41)	50.6(1.83)	11.1(.62)	8.2(.35)	1.1(.50)	
	ż	20.2			4.8(.62)	6.4(.26)	50.3(2.06)	38.5(1.22)	
VERMILION	в	25.4	4.6(7.67)	.9(1.13)	.7(.58)	2.6(1.18)	6.7(1.37)	10.3(1.00)	74.3(.93)
	I	11.1				7.8(1.66)	4.8(.46)	30.7(.90)	56.7(1.25)
	J	27.0	1.5(5.00)	2.7(2.70)	6.3(.98)	9.6(1.96)	40.3(1.29)	24.7(.75)	15.0(.64)
	ĸ	2.8	10.0/1.00)	()(7)	.7(.06)	99.3(7.64)	12 9/ /0)	27 0/1 22)	14 0/ 75)
	M	5 /	6 2(2 21)	5 1(29)	9 6 (47)	27.7(2.23)	13.6(.49)	36.3(1.97)	1.7(.30)
	w	16.8	1.5(.68)		.9(.14)	3.3(.23)	13.0(.86)	16.7(.66)	64.6(1.87)
WABASH	P	12.6		8.9(.96)	2.6(.70)	10.9(1.11)	77.6(1.12)		
	0	16.8		4.2(1.08)	13.0(.74)	29.3(.99)	44.8(1.52)	8.6(1.39)	
	P	17.6	3.0(.17)	3.7(.47)	20.1(.73)	23.2(1.29)	37.0(1.59)	13.0(5.91)	
	Q	7.6	3.2(.23)	20.5(1.28)	12 2/2 04)	25.8(.62)	50.5(2.20)	66.0(2.61)	
	W	14.9	.4(.18)	13.0(1.26)	8.8(.57)	48.5(1.59)	1.3(.14)	28.3(1.87)	
	ź	25.6		.8(.42)	8.4(1.08)	27.5(1.12)	5.2(.21)	58.2(1.84)	
WARREN	٨	77.3	3.1(1.82)	.5(.26)	.5(.22)	3.3(.63)	12.9(.88)	9.8(.82)	70.0(1.13)
	L	13.7	4.2(.22)	8.5(1.05)	4.5(.34)	15.8(.89)	13.9(.64)	22.1(1.92)	31.0(3.73)
	N	9.0	24.1(.94)		2.6(.58)	19.1(1.21)	11.6(.42)	25.4(2.57)	17.2(1.62)
WASHINGTON	E	14.4	10.1(2.40)	58.4(4.91)	.1(.01)	1.3(.07)	17.2(.39)	12.6(1.17)	.3(.18)
	P	40.9	9.7(2.31)	16.3(1.75)	3.6(.97)	9.3(.95)	60.2(.87)	1.0(34)	
	P	4.3	7.3(.42)	19.0(2.41)	10.8(.39)	28.9(1.61)	33.0(1.42)	1.0(.45)	
	Q D	34.L 4.4	4.7(2 14)	.9(.47)	11.6(1.80)	51.9(3.60)	30.0(1.97)	.9(.04)	
	z	1.9		1.4(.74)	21.8(2.79)			76.8(2.43)	
WAYNE	P	28.1	2.7(.64)	3.9(.42)	1.9(.51)	20.6(2.10)	70.8(1.02)		
	Q	51.6	11.9(.87)	13.0(.81)	3.2(.73)	52.5(1.27)	19.3(.84)		
	W	8.5			3.1(.48)	68.6(4.76)	24.3(1.60)	4.0(.16)	
	Z	11.8	.5(.33)	1.6(.84)	.9(.12)	72.0(3./8)	4.4(.18)		

Table 5. — Concluded

	Soil	Percent	Productivity index classes - high levels of management						
County	Association Area	County	< 70	70-85	85-100	100-115	115-130	130-145	> 145
WHITE	0	6.2	.8(.07)	14.1(3.62)	6.1(.35)	18.7(.63)	56.6(1.92)	3.8(.61)	
	p	29.1	10.5(.60)	10.5(1.33)	23.7(.86)	16.0(.89)	37.5(1.61)	1.7(77)	
	0	21.8	13.1(.96)	22.3(1.39)	5.3(1.20)	38.0(.92)	21.3(.93)		
	Ř	2.3	28.9(.79)	32.9(98)	13.4(.92)	12.8(2.67)	12.1(1.16)		
	v	17.3	.1(.05)	.7(37)	3.4(.53)	25.8(1.79)	41.3(2.72)	28.7(1.13)	
	Y	7.3		2.1(.20)	10.3(.66)	41.8(1.37)	19.5(2.07)	24.5(1.62)	1.7(37)
	z	15.9		4.7(2.47)	5.5(.71)	14.7(.60)	46.9(1.92)	28.1(.89)	
WHITESIDE	A	19.1	.5(.29)	12.5(6.58)	2.4(1.04)	4.8(.92)	23.6(1.61)	10.3(.86)	45.9(.74)
	L	14.0	4.5(.23)	11.5(1.42)	13.0(.98)	15.2(.85)	36.1(1.66)	9.9(.86)	9.8(1.18)
	W	42.2	.9(.41)	5.8(3.05)	4.8(.75)	22.1(1.53)	16.6(1.09)	30.4(1.20)	19.5(.56)
	х	5.3	1.7(.12)	6.9(.67)	17.8(1.15)	35.8(1.17)	26.0(2.77)	10.9(.72)	.9(.20)
	Z	19.4	.5(.33)	2.0(1.05)	9.5(1.22)	21.3(.87)	38.2(1.57)	20.1(.64)	8.4(1.02)
WILL	G	3.1	30.2(4.95)	6.6(1.03)	16.7(2.04)	15.7(.41)	27.9(1.49)	3.0(.28)	
	I	8.6	.4(.50)	7.3(6.08)	2.5(.74)	2.2(.47)	6.4(.62)	30.2(.87)	51.0(1.12)
	J	44.9	.6(2.00)		.6(.09)	9.6(1.96)	47.1(1.50)	34.8(1.06)	7.2(.31)
	v	27.1	1.4(.50)	10.7(.61)	28.6(1.39)	7.5(.60)	31.1(1.38)	17.2(.93)	3.6(.64)
	W	3.1			16.1(2.52)		21.4(1.41)	46.5(1.84)	16.1(.47)
	Х	8.8	19.1(1.31)	2.4(.23)	12.2(.79)	8.4(.28)	42.2(4.49)	12.9(.85)	2.8(.61)
	Y	4.4	51.7(2.32)	23.3(1.97)	10.7(.82)	1.4(.10)	9.8(.45)	.7(.10)	2.3(.22)
WILLIAMSON	F	5.2		.8(.09)		5.5(.56)	93.7(1.35)		
	P	17.9	32.2(1.84)	1.5(.19)	30.2(1.09)	18.0(1.00)	18.1(.78)		
	Q	53.4	11.5(.84)	36.6(2.29)	3.9(.89)	31.5(.76)	16.5(.72)		
	R	13.7	41.0(1.12)	17.9(.53)	25.7(1.77)	5.4(1.13)	10.0(.96)		
	W	9.9	10.8(4.91)	10.4(5.47)	70.0(10.94)	1.5(.10)		7.3(.29)	
WINNEBAGO	A	15.7	2.9(1.71)	.3(.16)	10.1(4.39)	17.6(3.38)	26.1(1.78)	7.3(.61)	35.7(.57)
	G	.9			11.1(1.35)	24.1(.62)	7.4(.40)	57.4(5.36)	
	H	16.7	3.3(.94)	9.0(1.55)	29.0(1.37)	6.1(.64)	10.5(.91)	1.3(.08)	40.7(1.25)
	L	2.6			19.6(1.48)			61.4(5.34)	19.0(2.29)
	T	18.0	6.7(2.91)	19.9(.90)	25.7(3.67)	25.2(.74)	5.4(.47)	11.1(1.34)	6.1(.41)
	W	37.1	.3(.14)	1.0(.53)	2.9(.45)	11.9(.83)	14.1(.93)	37.6(1.49)	32.3(.93)
	Y	9.1	30.2(1.35)	4.3(.36)	10.2(.78)	45.7(3.22)	7.6(.36)		2.0(.19)
WOODFORD	A	39.9	.8(.47)	.5(.26)	2.3(1.00)	1.1(.21)	9.4(.64)	9.7(.81)	76.3(1.23)
	B	19.6	.4(.67)	.1(.13)	6.3(5.25)	.5(.23)	4.6(.94)	10.3(1.00)	77.9(.97)
	С	6.7			8.9(2.12)	.5(.21)	4.1(.43)	74.0(1.64)	12.5(.32)
	N	31.0	18.5(.72)	14.5(2.30)	.3(.07)	14.8(.94)	30.4(1.11)	11.4(1.15)	10.1(.95)
	х	2.8	2.6(.18)	20.8(2.02)	18.2(1.17)	32.5(1.07)	.6(.06)	21.4(1.42)	3.9(.85)

a particular soil association at the county level. County data by soil association (Table 5) are the most detailed information presented in this bulletin and, it is hoped, will be useful in evaluating soil productivity within soil associations at the subcounty level.

The high management PI's of all 26 soil associations were analyzed to identify soil factors associated with various PI categories. The soils of 22 Illinois soil associations had characteristics whereby the slope of the land and the depth of the topsoil were parameters that could be used to estimate the specific high management PI category of any soil association area from field observation (see Table 6). In four terrace and bottomland soil association areas soil texture, color, and drainage were the parameters that permitted an accurate estimation of the high management PI category for a specific soil area.

SUGGESTED RURAL LAND EVALUATION PROCEDURE

Hancock County, Illinois, is used to illustrate the procedure that could lead to more equitable and consistent rural land evaluation in the period before detailed soil survey reports become available for all counties. The average high management PI of all Hancock County soils is approximately the same as or slightly below the state average (Figs. 2 through 5).

Hancock County contains numerous soil series representative of Illinois soil associations A, D, L, N, and Z. Soil productivity distribution data for all Hancock County soil associations except Z are given in Table 5. Soil association area Z has limited areal extent in Hancock County and was not included in the 2 percent CNI sample. In cases in which productivity distribution data for county soil associations are missing, state soil association productivity distribution data (Tables 3 and 4) can be substituted to give insight into common soil quality variations within a soil association area.

The guidelines in Table 6 supply the information for evaluating PI's for each soil in Illinois. These guidelines were developed by analyzing the PI characteristics of all areally significant soil series found within the soil association or associations area represented by each guideline. Within a soil association, however, it is possible that the PI's of a few soil series of very limited distribution are not as accurately evaluated as the major and more widely

distributed minor soil series. Each guideline does not necessarily contain all seven PI categories or all feasible combinations of percent slope, topsoil thickness, texture, soil color, and drainage class. Only the PI categories and soil properties characteristic of Illinois soil association soil series are included.

Table 6. — Field Guidelines for Estimating High Management Soil PI Categories for Soil Association Areas of Illinois^a

Soil association areas ^b	PI category	Relevant characteristics		Soil association areas	Pl category	Relevant characteristics		
A, B, I	145-160	Slope (%) 0-4	Inches of topsoil More than 7	W	145-160	Soil texture Soils with silty or loamy		Surface soil color Dark
	130-145	a. 0-4 b. 4-12	Less than 7 More than 7		130-145	materials over me textured material	Moderately dark	
	115-130	a. 4-12 b. 12-18	Less than 7 More than 7		115-130			Light
	100-115	12-30	Less than 7		130-145	Soils with more th	an 30	Dark-moder-
	85-100	>30	3-7		115 120	soil material over	sandy	
	<85	>30	Less than 3		115-150	or clayey materia	1	Lignt
C, D, H,	130-150	0-4	More than 7		100-115	Soils with less than 30		Dark-moder-
J, L, M, N, U	115-130	a. 0–4 b. 4–12	Less than 7 More than 7		85-100	soil material over or clayey materia	sandy ls	Light
	100-115	a. 4–12	Less than 7	Х	100-120	Loamy topsoil		Dark
		<i>b</i> . 12–18	More than 7		85-100	Loamy topsoil		Light
	85-100	12-30	3-7		85-100	Sandy topsoil		Dark
	70-85	>30	3-7		<70	Sandy topsoil		Light
	<70	>30	Less than 3			Soil textu	re characte	ristics
E, F, G, K, O S T	115-135	a. $0-4$	Less than 7 More than 7	Y	100-120	More than 30 inc material over lim	hes of m estone	edium textured
0, 5, 1	100-115	a. $4-12$ b. $12-18$	Less than 7 More than 7		85-100	Between 12 to 30 tured material ov) inches (er limest	of medium tex- one
	85-100	12-30	Less than 7		<85	Less than 12 incl	nes of me	edium textured
	70-85	>30	Less than 7			material over lim	estone	
	<70	>30	Less than 7			Surface texture	Surface color	Drainage
				Z	145-160	Medium	Dark	Well
P, Q, V	100-120	<i>a</i> . 0–4 <i>b</i> . 0–12	Less than 7 More than 7		130-145	Medium	Dark	Moderately well/some-
	85-100	a. 4-12 b. 12-18	Less than 7 More than 7		115-130	Medium	Light	what poorly Moderately
	70-85	12-30	Less than 7				3	well/some-
	<70	>30	Less than 7					what poorly
					100-115	Medium	Light	Poorly
R	85-100	<i>a</i> . 0-4 <i>b</i> . 0-12	Less than 7 More than 7		85-100	a. Fine b. Coarse (sandy)	Light Dark	Poorly Well
	70-85	a. 4–12 b. 12–18	Less than 7 More than 7		70-85	a. Fine b. Coarse (sandy)	Light Light	Very poorly Very well
	<70	a. >18 b. >2	Less than 7 Less than 3		<70	a. Very fine b. Very coarse	Light Light	Very poorly Excessively well

^a In general, a surface soil color of black, very dark brown, or extremely dark grayish-brown is identified in the guidelines as dark; very dark grayish-brown and very dark gray soils are considered moderately dark; all other soil colors are considered light. Fine-textured soils identified in the guidelines are clay, sandy clay, and silty clay; coarse-textured soils are the sands and loamy sands; all other textural classes are considered medium or moderate.
 ^b Soil association area C soils that have heavy clay subsoils should be evaluated one PI category lower than indicated in the table. Soil association areas the soil of limited areal extent that have severe subsoil problems (Huey and Piasa, for example); such soils should be assigned productivity indexes of less than 85, even in areas with low slope and thick topsoil.
 A few areas in association F have suils with very severe subsoil problems (Huey, for example). These soils should be assigned a PI of less than 85 even if they have thick topsoils and low slope. Small areas of soils in associations G and S (Rodman and Stonington, for example) have gravel within a few inches of the surface; these gravelly soils should be assigned PI's of less than 85, regardless of slope and topsoil thickness.
 Association area V soils that have clay subsoil should be evaluated at one PI category lower than indicated in the table. Light-colored soils in associations T and U should be rated 10 PI units less than that indicated in the guidelines.

Figure 8. Cross section of Hancock County soil association map.

Figure 8 shows a cross section of an area on the published soil association map of Hancock County (6). An assessor, after having trained with a soil scientist, should be able to evaluate this area effectively if equipped with the county soil association high management PI frequency distribution data and soil association field guidelines for PI categories. Suppose, for example, an assessor evaluates the soil quality of an area in soil association L, Fayette-Rozetta-Hickory Association (6). The PI category for that area could possibly be any one of the seven indicated in Table 5; if the approximate slope and topsoil thickness of the soil under analysis are known, however, the specific PI category for the area can be identified. An association L soil area with a slope of 4 percent and 5 inches of topsoil most typically will have a soil PI between 115 and 130 (an average of 122.5), according to the Table 6 guidelines. Another assessor evaluating the same Hancock County soil or evaluating another soil association L area with similar topsoil thickness and slope should estimate the same PI category if he follows the suggested procedures.

Other soil associations in Hancock County can be evaluated the same way. In the Hancock County example in Figure 8, soil association areas D, A, and N are encountered from west to east. The soils of these associations developed from good to excellent parent material and have not developed subsoil problems that reduce soil productivity. Variations in PI's in these soil areas, as in association L, can be related to differences in slope and topsoil thickness. The pattern of PI distribution varies among associations D, A, and N, however; for example, the soils of association areas A and D exhibit a dominance of thicker topsoils and less slope and thus are more productive than those of association N. Nevertheless, soils in association area N that have slopes and topsoil thicknesses comparable to those in associations A and D have PI's comparable to those of soils in associations A and D. State and county patterns of PI distributions for associations A, D, and N suitably indicate to an assessor the distributional characteristics of soil productivity within the general association area that can be used to evaluate (and adjust) an assessor's preliminary land assessment.

Productivity evaluation of soil association area Z at the eastern edge of the Hancock County example area illustrates two points. First, association area Z was not identified by CNI sample data, which means that productivity distribution patterns for association Z specific to Hancock County are unavailable. Under these circumstances, the state PI distributions for soil association Z (Tables 3 and 4) should be used.

Secondly, soil association Z, Sawmill-Lawson-Wakeland Association (6), in the Hancock County cross section will be more difficult to evaluate than other associations. After training and some experience, an assessor will find that he needs to observe soil color, soil texture, and soil drainage rather than slope and topsoil thickness, since this soil association is composed exclusively of alluvial soils. For example, a high management PI between 85 and 100 is expected if the observed association Z soil in Hancock County is well drained, light in texture (loamy sand), and dark colored (Table 6).

Tract PI's can be translated into average dollar sale value per acre of rural land by plotting recent rural land value sales against the corresponding PI average of the land sold (3). Figure 9 illustrates this suggested approach. In a hypothetical example, the sale values of 89 tracts of land were plotted against the PI's for each tract.

900 800 ACRE 700 SALE VALUE PER 600 500 400 300 60 0 80 100 120 140 TRACT - PRODUCTIVITY INDEX

Figure 9. Hypothetical example of relationship between sale value and tract Pl.

Through statistical analysis a regression line was established for these data that gives the average sale value of rural land per acre corresponding to a specific productivity index. For example, a soil area with an overall high management PI of 100 will, on the average, have a sale value of approximately \$550. With information similar to that presented in Figure 9, assessors can relatively easily convert raw PI's to actual land sale values.

DISCUSSION

Rural land can be evaluated consistently and equitably when the area under evaluation is analyzed by means of a single system of soil productivity data in conjunction with soil distribution data of comparable quality. The CNI soil distribution data combined within a high management soil productivity framework are now available for each county of the state. As in the Hancock County example, these data can be used to help estimate the value of the soil land resources of a specific area in any part of Illinois. The resulting estimation of rural land values should thus be as fair and accurate as possible regardless of the area evaluated, even for counties without recent soil survey reports (provided the assessors apply the guidelines and data equally).

Other states might want to develop similar data and evaluation procedures if they have access to unprocessed CNI data, comparable county soil association maps, and a measurement of soil productivity that can be adopted for the purpose of land evaluation. The rural land evaluation procedures set forth in the Hancock County example can be used without supplementary data; however, all available soils data should be used, which will improve the quality of the final land assessment in selected areas. If detailed and accurate soil maps are available, a similar procedure can be followed except that the PI's for all tracts are determined directly: Soil mapping units are measured and PI's assigned; average PI's for the tracts are then determined as they were determined here for CNI quarter-section tracts. A similar relationship between sale value per acre and PI must be determined before assigning value.

The use of additional detailed soils data can assure — with a very high level of confidence — that the correct

PI category is associated with a specific soil tract; it can also determine a PI with more precision than the PI categories presented in this study. Additional detailed soils data would sharpen the focus of land evaluation, but using the data and procedures developed in this publication will itself help improve the assessment of rural land.

According to correspondence with Mr. Floyd Smith, Farm Land Appraiser, Department of Local Government Affairs, State of Illinois, Springfield, the State of Illinois officials primarily responsible for rural land evaluation have indicated three important needs:

1. To develop soil distribution data that are comparable in quality with one another and are associated with soil productivity characteristics.

2. To develop guidelines for using soil distribution and productivity data effectively to evaluate rural land.

3. To educate persons associated with land assessment to use soils data and guidelines that promise to alleviate the problems of assessment inequities.

For the first time, comparable data are now available to carry out these functions for an entire state.

It is the opinion of the authors and the State of Illinois officials involved in this project that the consistent use of data and guidelines developed in this study have a potential for improving a very specific land assessment problem. In addition, these data provide soil geography information of general interest to farmers, students of agriculture, merchants and other citizens who support rural activities, and academicians. The pedagogic function of the data, however, may be secondary to the purpose of helping alleviate land assessment inequities.

LITERATURE CITED

- Fehrenbacher, J.B., G.O. Walker, and H.L. Wascher. 1967. Soils of Illinois. Illinois Agricultural Experiment Station Bulletin 725. Urbana, Illinois.
- Odell, R.T., and W.R. Oschwald. 1970. Productivity of Illinois soils. University of Illinois Cooperative Extension Service Circular 1016. Urbana, Illinois.
- Oschwald, W.R. 1971. Suggested procedure for utilizing soil surveys in tax assessment of agricultural lands. University of Illinois at Urbana-Champaign, College of Agriculture Agronomy Facts.
- Mausel, P.W., E.C.A. Runge, and S.G. Carmer. 1975. Frequency distribution of tract productivity indexes and examples of their utilization in rural land assessment. Soil. Sci. Soc. Amer. Proc. 39:503-507.
- 5. USDA Soil Conservation Service. 1958. Soil and water conservation needs inventory sample plot data for all Illinois counties. Champaign, Illinois.
- USDA Soil Conservation Service and University of Illinois at Urbana-Champaign Department of Agronomy. 1970. Soil association map of Hancock County (Illinois).

