

150.

AN EVALUATION OF 148 COMPOUNDS AS AVIAN IMMOBILIZING AGENTS

UNITED STATES DEPARTMENT OF THE INTERIOR FISH AND WILDLIFE SERVICE BUREAU OF SPORT FISHERIES AND WILDLIFE Special Scientific Report-Wildlife No. 150

UNITED STATES DEPARTMENT OF THE INTERIOR, ROGERS C. B. MORTON, SECRETARY Nathaniel P. Reed, Assistant Secretary for Fish and Wildlife and Parks Fish and Wildlife Service Bureau of Sport Fisheries and Wildlife, Spencer H. Smith, Director (Acting)

AN EVALUATION OF 148 COMPOUNDS AS AVIAN IMMOBILIZING AGENTS

By

Edward W. Schafer, Jr. and Donald J. Cunningham

Denver Wildlife Research Center Division of Wildlife Research Bureau of Sport Fisheries and Wildlife Denver, Colorado 80225

Special Scientific Report--Wildlife No. 150 Washington, D. C. • February 1972

CONTENTS

INTROI	DUCTIC	ΟN	•					•	•	•	•	•	•	•	•	•	•		•	•		•	•	•	l
PROCEI	URES			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	2
RESUL	cs.	•				•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	3
In	itial	Sc	ere	en	in	g	•	•	•	٠	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	3
	Anes					•						•	•	•	•	•	•	•	•	•	•	•	•	•	3
	Seda						ŊŢ	nc	oti	ics	5	•	•	•	٠	•	•	•	•	•	•	•	•	•	3
	Tran							-			-	•												•	3
	Myone	eur	al	. a	ıge	nt	s	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	4
	Misce	e11	an	iec	us	c		-														•	•	•	4
Adv	vanced	<u>r</u> f	les	ti	ng	2	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	٠	4
REFERE	ENCES															•					•	•	•		5

TABLES

1.	Results of initial screening on starlings and		
	red-winged blackbirds	•	10
2.	Comparative information on the immobilization		
	activity of 25 compounds on 9 species of birds.	•	17
3.	The most active immobilizing compounds on each		
	species	•	18

APPEND IX

Identification 1:	ist (of	all	compounds	tested	•	•	•	•	•		23
-------------------	-------	----	-----	-----------	--------	---	---	---	---	---	--	----

For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 - Price 35 cents Stock Number 2410-0312

AN EVALUATION OF 148 COMPOUNDS AS AVIAN IMMOBILIZING AGENTS

Abstract.--From 1961 to 1969, some 148 compounds were tested for immobilization of red-winged blackbirds (Agelaius phoeniceus) and starlings (Sturnus vulgaris). Of these, 25 showed enough promise to warrant advanced testing on seven additional species of wild birds: the common grackle (Ouiscalus quiscula), common pigeon (Columba livia), house finch (Carpodius mexicanus), house sparrow (Passer domesticus), mallard duck (Anas platyrhynchos), ring-necked pheasant (Phasianus colchicus), and yellow-headed blackbird (Xanthocephalus xanthocephalus). Although no single compound was best suited for immobilizing all of the nine species tested, Banol (6-chloro-3,5-xylyl N-methyl carbamate) Dowco, 161(0-ethyl-, 0-2,4-dichlorophenyl phosphoroamidate), metomidate [methyl ester of imidazole-5-carboxylic acid; $1-(\alpha-methylbenzyl)$, and metomidate HCl possessed exceptional activity on three or more of the species tested. Of the species tested, redwings and house finches were the most sensitive to immobilizing agents, and pheasants the least.

INTRODUCTION

Compounds that anesthetize or immobilize birds are finding increasing use throughout the world. They are used during surgery on captive wild birds (1,2,6,20,25,29,30,32,38,43,45,57) and domestic fowl (21,23,34,35,37,41,59,62), and less potent compounds have been used to promote growth and reduce antagonistic or cannibalistic tendencies in poultry (36,71). Perhaps the newest use of avian immobilizing agents, and the one with the most potential for future development, is in wildlife biology and management. Not only are these compounds now being used to capture wild birds for banding and other scientific pursuits (3,11,13,17,27,28,39,44,46,52,53,58,66,72,74), but also they are being more and more often considered to alleviate agricultural and urban bird problems (4,7,8,9,10,12,14,15,18,19,22,26,31,33,47,48,<math>50,51,54,55,56,63,69,70,75). This latter use will probably expand rapidly as the hazards of nonselective toxicants are realized.

Although a considerable amount of literature has been published in the last three decades on the immobilization of birds, a comparative evaluation of the most effective agents for various avian species has never been made. This paper presents this information on 148 physiologically active compounds. We wish to acknowledge the invaluable help of Ronald B. Brunton who assisted in many of the laboratory studies contained herein, and Ann H. Jones, Jerome F. Besser, Joseph L. Guarino, and Richard R. West for the help that they have graciously given in editing this manuscript.

PROCEDURES

In 1961, the Denver Wildlife Research Center began a program of screening immobilizing agents for possible use in bird damage control. Compounds purchased or solicited from chemical and pharmaceutical companies were first screened on starlings (<u>Sturnus vulgaris</u>) and red-winged blackbirds (<u>Agelaius</u> <u>phoeniceus</u>), two species often involved in agricultural and urban bird problems in the United States. Compounds active in this initial screening were then tested on other species that commonly or occasionally cause damage-mallard ducks (<u>Anas platyrhynchos</u>), ring-necked pheasants (<u>Phasianus colchicus</u>), common pigeons (<u>Columba livia</u>), common grackles (<u>Quiscalus quiscula</u>), yellowheaded blackbirds (<u>Xanthocephalus xanthocephalus</u>), house finches (<u>Carpodius</u> <u>mexicanus</u>), and house sparrows (<u>Passer domesticus</u>). Canada geese (<u>Branta canadensis</u>), mourning doves (<u>Zenaidura macroura</u>), common crows (<u>Corvus brachyrhynchos</u>), brown-headed cowbirds (<u>Molothrus ater</u>), and white-crowned sparrows (<u>Zonotrichia leucophrys</u>) were also tested when available.

Three criteria were established to select compounds with the greatest potential:

1. The median temporary immobilizing dose (TI_{50}) should be 32 mg/kg or less when a compound was administered orally to redwings or starlings. Temporary immobilization was arbitrarily defined as the point at which a bird lost complete control over wing and leg movements. We did not further define the various stages of immobilization as have others (46, 49, 50, 51).

2. The compound should have a safety factor (SF = TI_{50}/LD_{50}) of at least 3 for the bird species tested.

3. It should be well accepted by birds.

By adhering to these criteria we felt that an effective dose for immobilizing or capturing small to medium-sized birds (20-100 grams) could be put on one bait particle so that there would be minimum, acceptable avian mortality in the field. Larger birds would require multiple baits for immobilization.

Screening tests were conducted by dosing the birds orally as described by DeCino et al. (16) and Schafer et al. (58). Test birds were wild-trapped and held in captivity for 2 to 20 weeks before treatment; none were tested more than once. TI50's and LD50's were calculated by the method of Thompson and Weil (64, 65, 68). Confidence limits ($\alpha = 0.05$) were calculated whenever possible but are not listed in the tables in order to conserve space.

2

INITIAL SCREENING

From 1961 to 1969, 148 compounds were screened for immobilization activity on redwings and starlings. The test results are given in table 1. For discussion, they have been grouped into five categories according to the compounds' gross pharmacological activity on mammals.

Anesthetics

<u>General anesthetics</u> are compounds that reversibly depress the central nervous system, producing loss of consciousness, analgesia, and muscular relaxation with minimal depression of vital life functions.

Local anesthetics, when topically applied, reversibly abolish sensory impulses (i.e., pain) but, because of poor absorption, do not produce significant effects on other portions of the body. Thus, the primary use of these compounds is in local surgery requiring the suppression of pain. Oral ingestion of large doses results in anesthetic effects similar to those observed with general anesthetics.

Of 19 anesthetics screened, four satisfied our criteria on redwings (butacaine sulfate, metomidate, metomidate HCl, and phencyclidine), and one on starlings (phencyclidine) (table 1). As expected, general anesthetics were more effective than local anesthetics in producing immobilization; of five general anesthetics tested, four showed activity, whereas only one of 14 local anesthetics did so.

Sedatives and hypnotics

Sedatives and hypnotics are pharmacologically considered somewhat less active than anesthetics. Although they act on the higher brain centers like anesthetics and induce some depression of the central nervous system, they do not suppress pain. As a rule, these compounds are well absorbed orally; their effects last for varying lengths of time.

Of 34 sedatives and hypnotics tested, the barbiturates were the most active. Eight out of 15 met our criteria on redwings (allobarbital, butalbital, butethal, mephobarbital, pentobarbital, secobarbital, talbutal, and thiopental sodium), but none on starlings (table 1). Of the remaining 19 compounds, only four (chloralose, ethinimate, mecloqualone, and phenaglycodol) met our criteria on redwings, and only chloralose on starlings.

Tranquilizers

Tranquilizers act less on the mammalian higher brain centers than sedatives and hypnotics and are generally considered pharmacologically less potent. Although they primarily affect the lower brain centers and do not involve conscious thought processes, they are generally active orally and produce their effects for prolonged periods of time.

Of 33 tranquilizers, only four met our criteria on redwings (chlordiazepoxide, diazepam, SKF 10812A, and trifluoperidol), and none on starlings (table 1).

Myoneural_agents

Myoneural agents immobilize by inhibiting the contraction of striated muscle at the neuromuscular junction. This effect can be produced by three major mechanisms, but is most often observed with cholinesterase inhibition. Organophosphate and carbamate pesticides in use today rely on this mechanism for their killing power. Because the reaction at myoneural junctions is a graded response (the more inhibitor, the more inhibition), there is a possibility of producing immobilization but not death. This is easiest to accomplish with reversible cholinesterase inhibitors like the phenyl <u>N</u>-methyl carbamates, because their effects are generally short-lived. Organophosphates, which inhibit more permanently, are less likely candidates.

Of 47 myoneural agents tested, 13 met our criteria on redwings (ACD 7029, Banol, Dowco 160, Dowco 161, H 5727, H 9699, matacil, methiocarb, RE 5305, RE 5454, RE 5655, SD 8530, and SD 8786), and 4 on starlings (Banol, Dowco 161, H 5727, and RE 5454). Although some of these data have previously been reported (58), they are repeated here for comparison. Of the 13 active compounds, 11 were phenyl N-methyl carbamates.

Miscellaneous compounds

Of 25 compounds tested, only 3 (nicotine sulfate, pentazocine, and tremorine) met our criteria on redwings, and none on starlings (table 1).

ADVANCED TESTING

Of the 148 compounds screened on redwings and starlings, 36 fulfilled our criteria for active avian immobilizing agents. Twenty-five of these were tested on 7 additional species of wild birds (table 2).

Inspection of the data in table 2 suggested that there was an order among the species in their sensitivity to immobilizing agents. To test this hypothesis, the TI_{50} 's for the 17 compounds used on all 9 species were analyzed by the sum of ranks procedure (24). For each compound, the most sensitive species was assigned rank 1, the second most sensitive, rank 2, and so on. The scores (sums of ranks for the 17 compounds) were as follows: house finch, 38.5; redwinged blackbird, 45.5; house sparrow, 74.5; yellow-headed blackbird, 79.5; mallard duck, 86.5; common pigeon, 94.5; common grackle, 102; starling, 111.5; ring-necked pheasant, 132.5. The mean sum of ranks was 85, and the 95 percent confidence limits were 54 and 114. Thus, the house finch and redwing were significantly more sensitive to immobilizing agents than the other species, and the ring-necked pheasant was significantly more resistant. Although only one of the compounds in table 2 (phencyclidine) met our criteria for all 9 species, several appeared promising for certain species. At this stage we added two more criteria:

4. Average induction time (time between dosing and immobilization) at doses between the TI₅₀ and LD₅₀ should be between 5 and 14 minutes.

5. Average duration of immobilizing effects at doses between the TI₅₀ and LD₅₀ should be between l_2^1 and 3 hours.

Table 3 gives a summary of the most promising immobilizing agents for each species (including results of limited tests with five species not shown in table 2). Only compounds that fulfilled the first three criteria are included. Those marked with one asterisk fulfilled either the fourth or fifth criterion and should be considered further. Those marked with two asterisks fulfilled both the fourth and fifth and appear the most likely candidates for field use.

For each of the nine major species except pheasants, there was at least one compound that met all five criteria. However, no single compound was active on enough species to be considered an "all-purpose" immobilizing agent. Pentobarbital met all five criteria for the largest number of species (five). Two other compounds, diazepam and chloralose, were active on a wider variety of species, but had too long an induction time in many cases. Phencyclidine was also active fairly widely, but its effects generally lasted too long. In situations where slow action is acceptable, these last three compounds may be useful for a variety of species at one time. For the best results, however, it appears that immobilizing agents, like so many other biologically active compounds, should be chosen for particular situations with a single target species in mind.

REFERENCES

1. Arnall, L. 1961a. Anesthesia and surgery in cage and aviary birds. (I) Vet. Rec. 73, no. 7, p. 139-142. 1961b. Anesthesia and surgery in cage and aviary birds. (II) Vet. 2. Rec. 73, no. 8, p. 173-178. 3. Bachrach, A. 1954. Strictly for the birds. Vet. Excerpts 14, p. 102. 4. Bailey, R. E. 1953. Surgery for sexing and observing gonad condition in birds. Auk, vol. 70, no. 4, p. 497-499. 5. Belloff, G. B., and B. Hsu. 1963. A water soluble tranquilizer for handling broilers and replacement pullets. Avian Dis., vol. 7, no. 1, p. 50-55. 6. Bordet, R., J. L. Briand, and J. L. Flipot. 1962. Some comments on anesthesia in monkeys and birds. Nordish Veterinaer Med., 14 (Suppl. 1), p. 341-343.

7. Borg, K. 1955. Om chloralosen och dess anvandning vid fangst av krakoch masfaglar duvor, etc. Viltrevy vol. 1, no. 1, p. 88-121. 8. Borg, K. 1956. Use of chloralose for destruction of injurious birds. Z. Jagdwissench, vol. 2, no. 3, p. 180-182. 9. Colquhoun, M. K. 1943. Preliminary trials with a narcotic bait for the control of woodpigeons. Rep. to the Ag. Res. Council (unpublished). Great Britain. 10. Colquhoun, M. K. 1946. Narcotic baiting. Rep. to the Ag. Res. Council (unpublished). Great Britain. ll. Condy, J. P. 1965. A technique for capturing Abdim's Storks (Lichtenstein). Ostrich, vol. 36, no. 3, p. 121-122. 12. Cornwell, P. B. 1966. Int. Pest Contr., vol. 8, no. 5, p. 10-13. 13. Crider, E. D., and J. D. McDaniel 1967. Alphachloralose used to capture Canada geese. J. Wildl. Mgmt., vol. 31, no. 2, p. 258-264. 14. Danzel, L. 1949. Contribution de la chloralose a latte contre les corbeaux. Phytoma, vol. 4, p. 18. Daude, J. L. 15. 1942. Capture et destruction des corbeaux, pies et autres oiseaux nuisibles aux recoltes. Bull. Akad. Med., Paris, vol. 126, p. 452. 16. DeCino, T. J., D. J. Cunningham, E. W. Schafer, Jr. 1966. Toxicity of DRC-1339 to starlings. J. Wildl. Mgmt., vol. 30, no. 2, p. 249-253. 17. Delius, J. D. 1966. Pentobarbital anesthesia in the herring and lesser black-backed gull. J. Small Animal Practice, vol. 7, p. 605-609. 18. Dietzsch, von Klaus 1964. Die Umsetzung von 1-Methylcyclopentanol-l-und cyclohexanol mit Natriumazid. J. Prakt. Chem., vol. 4, no. 3, p. 43-46. 19. Dixmeras, J., and J. Giban 1950. La lutte contre les corbeaux. Bull. Tech. Ing Serv. Agric. 49, p. 275. 20. Donavon, C. A. 1958. Restraint and anesthesia of cage birds. Vet. Med., vol. 53, p. 541. 21. Durant, A. J. 1953. Removing the vocal cords of fowl. J. Am. Vet. Med. Ass., vol. 122, p. 14-17. 22. El-Hewehi, Z. 1964. Notiz uber D-Glucochloralose. J. Parakt. Chem., vol. 23, no. 4, p. 43-46. 23. Fretz, W. C. 1932. Anesthetizing poultry. Vet. Med., vol. 27, p. 109. 24. Friedman, M. 1937. The use of ranks to avoid the assumption of normality implicit in the analyses of variance. J. Amer. Stat. Ass., vol. 32, p. 675-701.

25. Gandal, C. P. 1956. Satisfactory general anesthesia in birds. J. Am. Vet. Med. Ass., vol. 128, p. 332. 26. Giban, J. 1947. La lutte contre les pies et les corbeaux. Rev. Hort. (Paris), vol. 30, p. 433. 27. Giban, J. 1950. Recherches sur l'action da chloralose on glucochloral chex les oiseaux. Ann. Inst. Nat. Rech. Agron., Paris Serc 1, p. 337. 28. Giban, J. 1954. Baguay des Corvides. Phytoma 56, p. 27. 29. Gillispie, J. M., and W. G. Magrane. 1956.. A new anesthetic for veterinary use. Vet. Med., vol. 51, p. 185. 30. Graham-Jones, O. (Ed.) 1964. Small animal anaesthesia. Pergamon Press, Oxford, 260 p. 31. Guillaume, A. 1951. Les appats enpoisonees au gluco-chloral. Phytoma, vol. 29, p. 17. Halloran, P. O. C. 32. 1955. A bibliography of references to diseases of wild mammals and birds. Am. J. Vet. Res., vol. 16, no. 61, pt. 2, 465 p. 33. Henkes, R. 1967. Wings of destruction. World Farming, vol. 10, no. 6, p. 28-32. 34. Hill, K. J., and D. E. Noakes. 1964. Cyclopropane anesthesia in the fowl. In (Ed. Graham-Jones, 0.) Small animal anaesthesia, Pergamon Press, Oxford, p. 123. 35. Hole, N. 1933. Chloral hydrate as a general anesthetic for the fowl. J. Comp. Path. and Therap., vol. 46, p. 47. 36. Huston, T. M., and K. N. May. 1961. The use of sodium pentobarbital sedation as an aid in catching and plucking poultry. Poult. Sci., vol. 40, no. 2, p. 434-440. 37. Jordan, F. T. W., J. Stanford, and A. Wright. 1960. Anesthesia in the fowl. J. Com. Path., vol. 90, p. 437. Keymer, T. F. 38. 1958. The diagonsis and treatment of common psittacine diseases. Mod. Vet. Practice, vol. 39, p. 22. 39. Lindau, L. 1962. Experiments with tranquilizers in birds. Nordish Veterinaer. Med., vol. 14, Suppl. 1, p. 112-117. 40. Lumb, W. V. 1963. Small animal anesthesia. Lea & Febiger, Philadelphia, 420 p. 41. Marley, F., and J. P. Payne. 1964. Halothane anaesthesia in the fowl. In (Ed. Graham-Jones, 0.) Small animal anaesthesia. Permamon Press, Oxford, p. 127. 42. Marsboom, R., J. Mortelmans, and I. Vercruysse. 1964. R 7315. A new hypnotic agent in birds. Int. Zoo Yearbook. vol. 5, p. 200-201. 43. Marsboom, R., J. Mortelmans, and I. Vercruysse. 1965. Methoxymol induced hypnosis in birds. Bull. de la Societe Royale de Zoologie d Anvers, vol. 35, p. 3-7.

44. Martin, L. L. 1967. Comparison of methoxymol, alpha-chloralose, and two barbiturates for capturing doves. Proc. Ann. Conf. Southeast. Ass. Game and Fish Comm., New Orleans, La., vol. 21, p. 193-200. Mortelmans, J., and I. Vercruysse. 45. 1966. Anesthesie bij Vogels. Zoo vol. 31, p. 168-169. 46. Mosby, H. S., and D. E. Cantner. 1956. The use of Avertin in capturing wild turkeys and as an oralbasal anesthetic for other wild animals. Southwestern Vet., vol. 9, no. 2, p. 132-136. 47. Moser, C. M. 1960. Control of unwanted birds with anesthetic foodstuffs. Sixth Pan Amer. Cong. of Pharm. & Biochem., Dec. 7, 1960. 48. Moser, C. M. 1965. Anesthetize pest birds with tribromoethanol for humane removal. Amer. City, vol. 80, p. 30. 49. Murton, R. K. 1962. Narcotics v. wood-pigeons. Agriculture, vol. 69, no. 7, p. 336-339. 50. Murton, R. K. 1963. Stupefying wood pigeons. Agriculture, vol. 70, no. 10, p. 500-501. Murton, R. K., A. J. Isaacson, and N. J. Westwood. 51. 1963. The use of baits treated with alpha-chloralose to catch wood pigeons. Ann. Appl. Biol., vol. 52, p. 271-293. Murton, R. K., A. J. Isaacson, and N. J. Westwood. 52. 1965. Capturing columbids at the nest with stupefying baits. J. Wildl. Mgmt., vol. 29, no. 3, p. 647-649. 53. Peek, J. M. 1966. Chlordiazepoxide and pentobarbital as tranquilizers for cowbirds and coturnix quail. J. Amer. Vet. Med. Ass., vol. 149, no. 7, p. 950-952. 54. Potts, R. M., and D. J. Womeldorf. 1960. Pigeon control in Fresno, California. Vector Views, vol. 7, no. 10, p. 59-62. 55. Ridpath, M. G., R. J. P. Thearle, D. McCowan, and F. J. S. Jones. 1961. Experiments on the value of stupefying and lethal substances in the control of harmful birds. Ann. Appl. Biol., vol. 49, no. 5, p. 77-101. 56. Ryan, C. 1968. Fighting the blackbird plague. Farm Quarterly Summer, p. 38, 126-129. Sanger, V. L., and H. B. Smith. 57. 1957. General anesthesia in birds. J. Amer. Vet. Med. Ass., vol. 131, p. 52. Schafer, E. W., R. I. Starr, D. J. Cunningham, and T. J. DeCino. 58. 1967. Substituted phenyl N-methylcarbamates as temporary immobilizing agents for birds. J. Ag. Food Chem., vol. 15, no. 2, p. 287-289. 59. Schwarte, L. H. 1943. Poultry surgery in diseases of poultry by H. E. Biester and L. H. Schwarte. Iowa State College Press, Ames, Iowa, p. 828.

60. Speidel, W. C. 1963. Pickled pigeons. Time. Starr, R. I., J. F. Besser, and R. B. Brunton. 61. 1964. A laboratory method for evaluating chemicals as bird repellents. J. Agr. Food Chem., vol. 12, no. 4, p. 342-344. 62. Sykes, A. A. 1964. Some aspects of anaesthesia in the adult fowl. In (Ed. Graham-Jones, 0.) Small animal anaesthesia. Pergamon Press, Oxford, p. 117. 63. Thearle, R. J. P. 1960. The use of narcotics in catching harmful birds. Ann. Appl. Biol., vol. 48, p. 414-415. 64. Thompson, W. R. 1947. Use of moving averages and interpolation to estimate median effective dose. Bacteriol. Rev. 11, p. 115-145. Thompson, W. R., and C. S. Weil. 65. 1952. On the construction of tables for moving average interpolation. Biometrics 8, p. 51-54. 66. Tomlinson, J. T. 1967. Sedatives interfere with walking more than flying. Wilson Bulletin, vol. 79, no. 2, p. 242-243. 67. Weigand, G. 1965. Orienting experiments in the control of crows with alphachloralose. Nach. Deut. Planzensuchutzdienstes, vol. 17, no. 7, p. 108-110. 68. Weil, C. S. 1952. Tables for convenient calculation of median effective dose $(ID_{50} \text{ or } ED_{50})$ and instructions in their use. Biometrics 8, p. 249-263. 69. Westhues, M., and R. Fritsch. 1961. De Narkose der tiere. Parey, Berlin. 70. Wight, H. M. 1953. A suggested method of capturing birds with a narcosis-producing drug. Proc. Midwest Wildlife Conf., December 1953, 2 p. 71. Wilgus, H. S. 1960. Reserpine for tranquilizing geese. Second Conf. Use of reserpine in poultry production. University Press, Minn. 72. Williams, L. E., Jr. 1966. Capturing wild turkeys with alpha-chloralose. J. Wildl. Mgmt., vol. 30, no. 1, p. 50-56. 73. Williams, L. E., Jr. 1967. Preliminary report on methoxymol to capture turkeys. Proc. Ann. Conf. Southeast. Ass. Game and Fish Comm., vol. 21, p. 189-193. 74. Williams, L. E., Jr., D. H. Austin, and J. Peoples. 1966. Progress in capturing turkeys with drugs applied to baits. Proc. Ann. Conf. Southeast Ass. Game and Fish Comm., vol. 20, p. 219-226. 75. Woronecki, P. P., J. L. Guarino, and J. W. De Grazio. 1967. Blackbird damage control with chemical frightening agents. Proc. Vert. Pest Cont. Conf., vol. 3, p. 54-56.

TABLE 1. Results of initial screening on starlings and red-winged blackbirds

	S	tarling		Red-wi	nged Blac	kbird
Compound	ті ₅₀	110 ₅₀	SF	т1 ₅₀	10 ₅₀	SF
			(10 ₅₀ /			(110 ₅₀ /
	(mg/kg)	(mg/kg)	TI ₅₀)	(mg/kg)	(mg/kg)	TI ₅₀)
General Anesthetics					· · · · · · · · · · · · · · · · · · ·	
Hydroxydione	> 100	> 100		100	> 100	> 1.0
Metomidate	75	> 100	> 1.3	18	56	3.2
Metomidate HC1	42	178	4.3	13	100	7.5
Phencyclidine	2.4	242	100	1.3	42	32
Tribromoethanol	178	> 316	> 1.8	56	320	5.6
Local Anesthetics - Benzo	ic Acid E	sters				
Butacaine SOh	75	> 100	> 1.3	24	100	4.2
Bu ta mbem 4	> 100	> 100			100	
2-Chloroprocaine HCl				> 100	> 100	
Prilocaine	> 100	> 100		> 100	≥ 100	
Procaine	> 953	> 953				
Tetracaine	> 100	> 100		75	> 100	> 1.3
Tricaine	> 100	> 100		> 100	> 100	
Zolamine	> 100	> 100		> 100	> 100	
Local Anesthetics - Other						
Dibucaine HCl		100			42	
Diperidon HCl	> 100	> 100		75	> 100	> 1.3
Isopentylhydrocupreine	> 100	> 100		> 100	> 100	
Oxethazine				75	> 100	> 1.3
Pramoxine	> 100	> 100		> 100	> 100	
Sedatives and Hypnotics -	Barbitus	tes - Sho	ort and U	ltrashort	Duration	<u>1</u>
Butalbital	42	> 100	> 2.4	24	100	- 4.2
Cyclobarbital				100	> 100	> 1.0
Pentobarbital	56	> 100	> 1.8	7.5	75	10
Secobarbital	> 100	> 100		13	75	5.6
Thiopental Na	56	> 100	> 1.8	13	133	10
= 1					1	

**************************************		Starling		Red-wi	nged Blac	kbird
Compound	TI ₅₀	10 ₅₀	SF	TI ₅₀	110 ₅₀	SF
_			(10 ₅₀ /			(10 ₅₀ /
	(mg/kg)	(mg/kg)	TI ₅₀)	(mg/kg)	(mg/kg)	TI ₅₀)
Sedatives and Hypnotics	- Barbitus	ates – Int	ermediat	e Duratio	<u>m</u>	
Allobarbital Butethal Hexobarbital Na Probarbital Na Talbutal Thiamyl Na	42 75 56 42 	> 100 > 100 > 100 > 100 	> 2.4 > 1.3 > 1.8 > 2.4 	24 24 42 24 24 	100 178 > 100 42 75 > 100	4.2 7.5 > 2.4 1.8 3.2 > 2.4
Sedatives and Hypnotics	- Barbitua	ates - Lon	g Durati	on		
Barbital Na Mephobarbital Metharbital Phenobarbital	> 100	> 100	 	42 24 42 42	> 100 > 178 > 100 > 100	> 2.4 > 7.5 > 2.4 > 2.4
Sedatives and Hypnotics	- Carbama	tes and Al	cohols			l
Chlorphenesin car- bamate Encyprate Ethchlorvynol Ethinimate Mebutamate Meprobamate Valnoctamide	> 100 > 100 100 > 100 > 127 > 100	> 100 > 100 > 100 > 100 > 127 > 100	 > 1.0 	> 100 > 100 24 75 56	> 100 > 100 42 178 100 > 100	 7.5 1.3 > 1.8
Sedatives and Hypnotics	- Halogena	ated Hydro	carbons			
Chloral Chloral hydrate Chloralose Chlorobutanol	> 421 13	 421 75 	 5.7 	> 100 > 100 10 > 100	> 100 > 100 32 > 100	3.2
Sedatives and Hypnotics	- Others		•			
Capuride Chlorethate Fenchlorethate Glutethamide Mecloqualone Paraldehyde Phenaglycodol Trimetozine	> 100 > 100 > 100 > 100 100 > 100 > 100	> 100 > 100 > 100 > 100 > 100 > 100 > 100	 > 1.0 	100 > 100 > 100 75 18 > 100 32 > 100	> 100 > 100 > 100 > 100 178 > 100 316 > 100	> 1.0 > 1.3 10

<u></u>	S	Starling		Red-wi	nged Blac	kbird
	TI ₅₀	10 ₅₀	SF	TI ₅₀	110 ₅₀	SF
Compound			(10 ₅₀ /			(10 ₅₀ /
	(mg/kg)	(mg/kg),	TI ₅₀)	(mg/kg)	(mg/kg)	τι ₅₀)
<u> Tranquilizers - Benzodia</u>	zepines					
Chlordiazepoxide	75	> 100	> 1.3		316	42
Cyprazepam	> 100	> 100		> 100	> 100	
Diazepam	42	> 100	> 2.4	_7.5	> 316	> 42
Oxazepam	> 100	> 100		75	> 100	1.3
Sulazepam	> 100	> 100		75	> 100	> 1.3
<u> Tranquilizers - Phenothi</u>	azines and	Related	Compound	s - Alpha	tics	
Chlorpromazine HCl	> 74	> 74				
Chlorpromazine SOh	> 100	> 100		> 100	> 100	
Desdimethyl chlor-						
promazine	> 100	> 100		> 100	> 100	
Levomepromazine	> 100	> 100		> 100	> 100	
Phenothiazine	> 100	> 100		> 100	> 100	
Promazine	> 335	> 335				
Triflupromazine	> 100	> 100		> 100	> 100	
Tranquilizers - Phenothi	azines and	Related	Compound	s - Piper	azine or	
<u>Piperidine Derivatives</u>						
Acetophenazine						
dimaleate		100			75	
Clothixamide	> 100	> 100		> 100	> 100	
Fluphenazine		562			178	
Mepazine		200				
Perphenazine		100			32	
Trifluoperazine	> 100	> 100		> 100	> 100	
<u> Tranquilizers - Phenothi</u>	azines and	Related	Compound	s - Xanth	enes and	
Thioxanthenes						
Chlorprothixene	> 100	> 100		> 100	> 100	
Р 4657В	> 100	> 100		> 100	> 100	(
SKF 10810A	> 100	> 100		42	316	7.6
SKF 10812A	42	316	> 7.6	24	178	7.5
Xanthiol	> 100	> 100		> 100	> 100	

		starling			nged Black	bird
	TI ₅₀	^{LD} 50	SF	TI 50	110 ₅₀	SF
Compound	(mg/kg)	(mg/kg)	(110 ₅₀ / T1 ₅₀)	(mg/kg)	90 (mg/kg)	(10 ₅₀ / T1 ₅₀)
Tranquilizers - Rauwolfi	a Derivati	ves			•	<u></u>
Rescinnamine Reserpine				> 100 75	> 100 100	1.3
Tranquilizers - Other Co	mpounds					
Benperidol Benzquinamide Droperidol Ethoxomane Ex4211A Ex5004 Hydroxyzine Trifluoperidol	> 100 > 100 > 100 > 100 > 100 > 100 > 527 75	> 100 > 100 > 100 > 100 > 100 > 100 > 527 > 100		100 100 42 > 100 > 100 32	> 100 > 100 > 100 > 100 > 100 > 100 133	1.3 2.4
Myoneural Agents - Pheny		Carballa de	<u>s</u>	5.6	32	5.6
ACD 7029 Aprocarb Banol Bay 50282 DRC 3340 DRC 3341 DRC 3342 DRC 3343 DRC 3343 DRC 3344 DRC 3345 H 5727 H 8717 H 9699 HRS 1422 Matacil Methiocarb RE 5305 RE 5454 RE 5655 SD 8530 SD 8786 U 14540 U 17556 Zectran	7.5 2.1 18 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 2.4 75 > 100 > 100 > 100 > 100 > 100 = 100 = 16	$13 \\ 11.5 \\ 18 \\> 100$	1.8 5.6 3.2 > 1.2 > 1.3 > 2.6 -	$ \begin{array}{c} 1.6\\ 1.8\\ 10\\ 56\\ 56\\ >100\\ >100\\ >100\\ >100\\ >100\\ 3.2\\ 8.3\\ 4.5\\ 5.6\\ 16\\ 1.00\\ 1.0\\ 1.6\\ 0.75\\ 5.6\\ 13\\ >100\\ 7.5\\ 4.0\end{array} $	3.8 5.6 13 75 100 > 100 > 100 > 100 > 100 > 100 15 45 10 50 4.63 4.6 9.0 2.4 18 42 > 100 13 11	2.4 3.2 1.3 1.3 1.8 3.2 1.8 10 1.8 3.2 1.8 3.2 1.8 3.2 4.6 4.6 5.6 3.2 3.2 3.2 3.2 1.8 2.7

	St	arling		Red-winge	d Blackb	ird
	TI ₅₀	10 ₅₀	SF	TI ₅₀	110 ₅₀	SF
Compound			(110 ₅₀ /			(10 ₅₀ /
	(mg/kg)	(mg/kg)	TI ₅₀)	(mg/kg)	(mg/kg)	TI ₅₀)
Myoneural Agents - Phenyl Ph	nosphonates	-				
Dowco 101	> 100	> 100		10	18	1.8
Dowco 132	100	100		42	100	2.4
Dowco 159	> 100	> 100	2.4	42 2.4	56 10	1.3 4.2
Dowco 160 Dowco 161	7.5 3.2	18 13	4.2	5.6	24	4.2
Doweo 169	42	75	1.8	10	13	1.3
Dowco 208	100	> 100	> 1.0	56	> 100	> 1.8
Dowco 210	42	> 100	> 2.4	10	24	2.4
Dowco 211	> 100	> 100		42	75	1.8
Dowco 217	24	56	2.4	7.5	13	1.8
Myoneural Agents - Miscella	neous - Rev	versible I	nhibitor	<u>s</u>		,
Ambenonium chloride	100	> 100	> 1.0	75	> 100	> 1.3
Carbamic acid, N-butyl	75	> 100	> 1.3	75	> 100	> 1.3
Myoneural Agents - Miscella	neous - Ir:	reversible	Inhibit	tors		
Azodrin	1.0	3.2	3.2		1.0	
Dursban		75		10	13.3	
EPN		7.5		2.4	3.2 1.8	
Famophos	1.3	4.2 18	3.2 1.8	0.75	4.2	2.4
Golphacide	10 24	42	1.0	3.2	10	3.2
Methomyl Methyl parathion	5.6	7.5	1.3	4.2	10	2.4
Parathion	4.2	5.6	1.3		2.4	
Phillips 1861		4.9		1.8	2.4	
Phosphamidon	2.4	5.6	2.4	0.56		3.2
Succinyl choline Cl	100	450	4.5	> 100	> 100	
Miscellaneous Agents - Anal	gesics			1	1	1
		1	1	1		
Acetanilide	> 100	> 100		> 100	> 100	
Acetanilide Acetylsalicylic acid	> 100	> 100		> 100 100	> 100	
Acetylsalicylic acid	> 100	> 100		100	100 75	
					100	

······································		tarling		Pod_win	ged Blacl	
Compound	TI ₅₀	10 ₅₀	SF	TI ₅₀	110 ₅₀	SF
-			(10 ₅₀ /			(ID ₅₀ /
	(mg/kg)	(mg/kg)	ті ₅₀)	(mg/kg)	(mg/kg)	TI ₅₀)
Miscellaneous Agents - Anore	xogenics					
CL 24055	75	75			56	
WY 5244	> 100	75 > 100		> 100	> 100	
<u>Miscellaneous Agents - Antie</u>	metics					
Buclizine	> 100	> 100 > 50		> 100	> 100	
Dimenhydrinate	> 50	> 50				
<u>Miscellaneous Agents - Antih</u>	istamine	1 1				,
Chloropheniramine	> 100	> 100			75	
<u> Miscellaneous Agents - Antit</u>	umor	, I	'	· ·		l
β-Thiosemicarbazone,			ļ			
ethylisatin	> 100	> 100		> 100	> 100	
Thiosemicarbazone, methyl glyoxol bis-(<u>N</u> -4-methyl)	> 100	> 100		> 100	> 100	
<u>Miscellaneous Agents - Gangl</u>	ionic Blog	king				
Nicotine SO4	100	> 100		13	75	5.7
Trimethidinium metho- sulfate	> 100	> 100		> 100	> 100	
1	1	I		- 100	- 100	
Miscellaneous Agents - Muscl	e Relaxan	<u>.s</u>	,			
Chlormezanone	> 100	> 100		> 100	> 100	
Mephenoxalone Metaxalone	> 100 > 100	> 100 > 100		> 100 > 100	> 100 > 100	
Methocarbamol	> 100	> 100		> 100	> 100	
Miscellaneous Agents - Psych	l otomimetic	es I	1	ł	1	
			1	I	1	
<u>N-Ethyl-3-piperidyl phenyl</u> cyclopentylglycolate	> 100	> 100		> 100	> 100	
Lysergide	> 32	> 32			1.8	
	5-	<u> </u>				

	ទ	tarling		Red-wing	ged Black	sbird
Compound	TI ₅₀	1.D ₅₀	SF	TI ₅₀	10,50	SF
Compound			(10 ₅₀ /			(110 ₅₀ / TI ₅₀)
	(mg/kg)	(mg/kg)	TI ₅₀)	(mg/kg)	(mg/kg)	τι ₅₀)
Miscellaneous Agents - Spasm	otic					
Tremorine	56	> 100	> 1.8	32	100	3.2
Miscellaneous Agents - Stimu	lants (CN	<u>s)</u>	i i i i			
Amphetamine, 3,4-dichloro	> 100	> 100			75	
Caffeine Pemoline	> 100	500 > 100			100	
Strychnine SO4					6	

	₽.	Mallard Duck	*	R1r Ph	Ring-necaed Pheasant	ů	Common Pigeon	g	in .	Starling		Come	Common Grackla	-	Bla	Red-winged Blackbird		Yellov-headed Blackbird	headed bird		House	House Finch		House	House Sparrow	
	TI50	10,50		TI50	05œ1	TI50	ш ₅₀		TI50	un ₅₀	1	TI50 I	10 ⁵⁰	# 	TI50 1	10 ²⁰		TI50 ILD	IID50		TI50 10	m ₅₀	IL	TI50 ID50	0	
spunodmoth		ng/kg	SF		ag/kg SF	ag/kg	s ag/kg	SF	ng/ks	øg∕kg	SF	mg/kš E	BA/Kg	St mg/	¥	ng/ke	SF	mg/kg mg/	¥6	SF	Bu Sv/Bu	mg/kg	St mg/	59	mg/kg S	SF
General Anesthetics	d				10.000		1 13	5 61	61	001	1 0 0	-	-43	- 1	-	- 000	1 5 1	1.5.7	1 52	- 01	1.5.1	- 95	1.5.7	7.5	-	4.2
Metomidate HCl	*	51	18.0	43	1001 S. 1001	- #		2.1	1 12	100	> 1.3	¥:	R		2 ®]	÷	5.5	24	75	3.2		115		2 2	35	, t- ≥
Phencyclidine	1, 1, 2		81	E	133 10		2 133	Ř	2.4		100	3.2	133	75	1.3	42	32	2.4	ţ,	18	1.0	75	75	1.3	133 10	100
Local Anesthetics - Benzoic acid esters	acid es	ters					_									-			-			-				a , ,
Butacaine Sol	> 100	- 100 - 100	;	75	75 > 100 > 1.3 > 100	3 > 100	8	:	52	001	e.1 <	<u>م</u>	8	× 1-8	54	100	с, -	<u><</u>	3		7	242	-		•	0.1
Hypnotics -	Burbi turates	-1	short and	ultrash	¢ .		1				-			-	_	100		1 0 1	7	2 6	- H	1 221	7 5 1	1 01	1 001	4 0
Butalbital	e	3			- 100		£ ;	5.5		3		• •	: 1	u		3	ų	() , L	2 9		1 1			1 7	35	
Pentobarbital	នេះ	75	5•6	8 8	1000 > 1.0 1000 > 1.0	1.1	27 E	0.4	<u>م</u>		0.1	54	174	. ·	ý	£. #	or V	-	01		7 7	56 95	5 F	19		3.6
Thiorental	1 2		× 19				2 <u>2</u>		3 R	001 ~	> 1.8	::	; ;		រជ		10.2	^	100	× 1.8	1	178	7.5	24	100	5.4
Sedatives and Hypnotics . 5	5	tes - in	termedia	inte duration	ion.										-											-
Allobarbital		-		ļ	> 100	54	ŝ	5.5	_	8	> 2 4	:	;			100	5.4	<u> </u>	9 j		23		÷ •	_	/	5.2
Butethal	54 5	8	> 5° +	8	8 10	8 ¤	ý 3	7.5 1	23		~ ~ ~	: :	; ;		1.7	1/V 75	: ;	<u>^ ^</u>	3		N II	111	2°-1	<u>د</u>		
	2		-	3		2	2	-		-				_	-	-	-	_	_	_	_	_	_	_	-	
Mephobarbital	> 100 > 100 > 100	> 100 1		001	> 100 > 100 > 100	> 100	001 <		< 100 <	100	-	:	;		24 >	316 >	13		1 001	• 1.3 1	115 1>	× 001	< 1 4.2.	100	100	;
Sedatives and Hypnotics - C Ethinimate	arbamate 42	Carbamates 1 42 > 100 > 2.4	> 2.4	100	100 > 100 1.0	0 175	> 100	> 2.4	100	> 100	> 1.0	5é	100	> 1.8 2	54	178	7.5	75 [>	100	> 1.3	35	2112	7.5	- 96 	100	1.8
Hypnotics -	alogenat	Halogenated hydrocarbons	carbons		_	-		_	-	_	- -	_	-							-	-	-		-		
	9	Ĵ,	3.2		75 > 100 > 1.3	3 24	178	7.5	ព	75	6. 6	ET	75	5.6 1	্র	32	3.2	51	133	া	5.6	56	10	p	ft2	5.4
vpnotics - 0	Others										-				_	0.00	-	_		_	-	314	81	-	1000	ď
			:	100	> 100 > 100 24	5#			8	100	× 1.0		100	- T.3		1/1		<u>.</u>	8			-	9	\ _/		
Phenaglycodol		8 ^ 18	1.3	8	> 100 > 1.1	001 × 100	01 ^	:	8	100	<u>۸</u> ۱	^ 20	100			316	^	8	100		< <u></u>	 8	£.1 <	<u> </u>	<u> </u>	r
Tranquilizers - Benzodiazepines	oines													_			-	-		_	-		-	_	4	
Chlordiazepoxide	75	87	~ I.3	× 100	75 > 100 > 1.3 > 100 > 100 - 100 -	8 2	× 10	р. т. С. /	2 2	001	V 1.5 ×	N N	100	1 8	7.5	316	^	01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		: 001	0.75 >	भू गूर	2421	<u>م</u>	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	
Diszepsa	OT of		X X	7					_	3			24	-		_		_	-					-		
10012A TUBLICATION 1 56 100 1.8 > 100 2.00 - 100 1	26	1 100	1.8	- 100	- 100 <	> 100	> 100	;	34 1	> 100	> 2.4 12 <	100 >	100		54	178	1 5.7	26 12	100	> 1.8 1	18	316	18 >	100	1 001	;
Myoneural Agents - Carbamates				001	001 /		5.5	0	1001	100	-	ic	100	· -	4 4	22	ų v	2 4	51	8 (1 2 1	181	1 2 1	4.2	2	7.5
						4	2 - -		3	1			3			4			2 -						5	0
Banol. Mathicent	5.1 5.4	4°2	с.Т	2° ° 0	1 01		2.4 II 2.4 II	3.6 9.6	9	n n	5.1	5 8 i	10.1	5.6	0.0	0.0 4.4	- 9°+	0"T	F	4 e	7.7 7.7	1	1.0	1	81	, c, -
ta - Phenyl	hosphone	- 57			-	_		_			-	-	-		-	-	-	-	_	-	-	-	-	-	-	
	5.61	1 51 1	2.4	10	E-T ET	3 7.	52 15-	10	3.2	- Е1	h.2	ค	24	1.81	9*6	24 2	h.2	1.8.1	10	2*6	- 25		1.3 J	12.4	1.51	1.8
Other - Analgesics Pentazocine	100	100 < 100 <		> 100 > 100	> 100	> 100	> 100	;	> 100 >	00	<u>^</u> ;	100	100	:	2h	316 >	 ว	75 >>	100	> 1.3	56 >	100	1.8	v v	100 >	> 1.0
Other - Ganglionic blocking agent	g agent				_	_	_	_		-	-	-	-		-	-	-	-		-	-	-	-	-	-	
Nicotine SO4	54	52	3.2	3.2 > 100 > 100	> 100	24 	52	1.8	> 001	100	< 1.0 >	100	100	-	ถ	- 22	5.6	:	9	:	0.75	100	133	<u>^</u>	 81	:
								1		-															-]

TABLE 2. Comparetive information on the immobilization activity of 25 compounds on 9 species of birds

	<u> </u>				
Species and	SF	TI ₅₀	10 ₅₀	Average Induction	Average Duration
Compounds	(10 ₅₀ /TI ₅₀)	(mg/kg)	(mg/kg)	(Min)	(Hrs)
Mallard Duck	•	↓	+		
Diazepam* Thiopental** Phencyclidine Metomidate* Dowco 210* Butethal* Talbutal Allobarbital* Pentobarbital** Secobarbital* Metomidate HCl Butalbital* Methiocarb Aprocarb* Chloralose* Nicotine S04*	32 > 18 18 13 7.5 7.5 5.6 5.6 5.6 5.6 4.2 3.2 3.2 3.2 3.2 3.2	$ \begin{array}{c} 10\\ 18\\ 4.2\\ 13\\ 7.5\\ 13\\ 13\\ 13\\ 13\\ 24\\ 13\\ 4.2\\ 5.6\\ 13\\ 24\\ 13\\ 24 \end{array} $	> 316 316 75 242 100 100 100 75 75 75 133 56 13 18 42 75	23.6 9.7 22.1 10.6 32.3 39.8 16.0 15.7 7.8 16.6 18.6 21.9 31.6 27.3 45.3 5.1	$ \begin{array}{c} 2.3 \\ 1.9 \\ 4.1 \\ 1.4 \\ 1.7 \\ 2.5 \\ 3.3 \\ 2.7 \\ 2.7 \\ 2.3 \\ 3.1 \\ 2.8 \\ 3.3 \\ 1.7 \\ 2.5 \\ 0.3 \\ \end{array} $
<u>Canada Goose</u>	1	t	t	I	1
Phencyclidine	> 10	5.6	> 56	24.0	14.0
Ring-necked Pheasant	I		1	1	1
Diazepam* Phencyclidine	> 42 10	13 13	> 562 133	9.5 15.3	3.8 8.0
Common Pigeon					
Phencyclidine Diazepam* Mecloqualine* Dowco 161* Chloralose* Butethal* Methiocarb** Metomidate HCl** Pentobarbital** Secobarbital* Metomidate* Talbutal* Allobarbital Banol* Butalbital	32 > 24 > 13 10 7.5 7.5 5.6 5.6 5.6 5.6 5.6 4.2 4.2 4.2 4.2 3.2 3.2	4.2 13 24 7.5 24 32 2.4 7.5 24 24 13 13 24 1.3 24 1.3	133 > 316 > 316 > 316 = 75 = 178 = 242 = 13 = 42 = 133 = 133 = 56 = 56 = 100 = 4.2 = 75	17.3 17.6 10.8 16.3 42 62.3 10.0 8.1 15 18.8 4.4 70.4 54.4 8.0 105.2	3.6 2.0 0.9 3.0 2.1 3.0 1.6 1.7 2.8 1.9 2.2 2.7 12.5 0.8 8.1
		18		-	

TABLE 3.	The	most	active	immobilizing	compound s	on	each	species.

Species and Compounds	SF (ID ₅₀ /TI ₅₀)	TI ₅₀ (mg/kg)	LD ₅₀ (mg/kg)	Average Induction (Min)	Average Duration (Hrs)		
Mourning Dove							
Metomidate HCl* Phencylclidine* Chloralose	56 10 5.6	2.4 7.5 7.5	133 75 42	12.6 13.1 22.6	6.4 8.0 4.1		
Starling							
Phencyclidine* Chloralose Banol** Dowco 161**	100 5.6 5.5 4.2	2.4 13 2.1 3.2	242 75 11.5 13	14.5 21.0 8.7 11.3	5.3 3.7 1.6 2,2		
Common Crow							
Phencyclidine* Aprocarb* Chloralose Nicotine SO ₄	32 5.6 5.6 3.2	7.5 2.4 7.5 13	240 13 42 42	7.3 7.0 38.0 4.5	16.0 0.8 6.5 0.8		
Brown-headed Cowbird							
Nicotine SO_4 *	10	3.2	32	3.5	2.5		
Common Grackle							
Phencyclidine* Diazepam* Pentobarbital** Banol* Methiocarb* Chloralose* Aprocarb* Dowco 210* ACD 7029	42 18 7.5 5.6 5.6 5.6 4.2 4.2 4.2	3.2 18 24 0.32 1.8 13 3.2 13 24	133 > 316 178 1.8 10 75 13 56 100	13.3 21.5 14.8 16.6 18.4 19.0 6.4 23.6 18.6	4.5 2.3 2.2 2.7 2.0 2.2 3.3 3.0 3.1		

Species and	SF	TI ₅₀	10 ₅₀	Average Induction	Average Duration
Compound s	(ID ₅₀ /TI ₅₀)	(mg/kg)	(mg/kg)	(Min)	(Hrs)
Red-winged Blackbird					
Diazepam Chlordiazepoxide Phencyclidine** Pentazocine Mephobarbital Phenaglycodol* H 9699 Pentobarbital* Thiopental Na* Oxazepam* Metomidate HCl* Butethal SKF 10812A Ethinimate** RE 5454* ACD 7029** Nicotine SOL Secobarbital** Methiocarb* RE 5305* RE 5655 Dowco 160* Dowco 161** Butalbital Butacaine SOL** Allobarbital** Trifluoperidol Phosphamadon* Banol* H 5727** Methomyl* Chloralose SD 8786* Metomidate** Talbutal** Tremorine	> 42 > 42 32 24 > 13 > 10 10 10 10 10 10 10 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 3.2	7.5 7.5 1.3 24 32 4.2 7.5 13 13 1.0 1.0 0.75 2.4 256 1.8 3.2 10 13 18 24 32	> 316 > 316 > 42 562 > 316 > 316 > 316 > 316 > 316 100 180 178 178 100 180 178 178 10 32 75 75 75 4.6 4.6 3.2 10 24 100 100 133 1.8 5.6 10 10 32 42 56 75 100	18.3 20.1 13.6 35.4 15.5 27.0 22.0 21.7 20.8 10.3 6.3 17.6 21.6 5.6 4.3 11.2 2.3 12.3 16.5 16.3 21.6 5.3 13.3 14.6 8.5 12.6 18.1 15.6 16.1 7.4 14.5 26.3 13.7 5.1 14.3 16.1	$\begin{array}{c} 4.1\\ 3.5\\ 3.0\\ 3.2\\ 7.3\\ 2.3\\ 3.5\\ 1.6\\ 3.5\\ 1.6\\ 3.5\\ 1.6\\ 3.6\\ 2.5\\ 1.3\\ 0.5\\ 2.5\\ 5.5\\ 5.5\\ 5.5\\ 2.5\\ 1.5\\ 3.9\\ 3.6\\ 4.5\\ 2.6\\ 1.3\end{array}$

Species and	SF	TI ₅₀	10 ₅₀	Average Induction	Average Duration			
Compounds	(LD ₅₀ /TI ₅₀)	(mg/kg)	(mg/kg)	(Min)	(Hrs)			
Yellow-headed Blackbird								
Diazepam**	100	3.2	316	8.5	2.7			
Phencyclidine*	13	2.4	32	10.1	4.3			
Metomidate*	10	7.5	75	3.6	2.2			
Chloralose	10	13	133	23.0	3.1			
Allobarbital	10	13	133	20.3	3.6			
Butalbital	7.5	7.5	56	15.5	3.4			
Probarbital Na*	7•5	24	178	29.8	2.1			
Dowco 161**	5.6	1.8	10	13.6	2.2			
Secobarbita1**	4.2	24	100	10.4	1.8			
Banol**	3.2	0.42	1.3	10.0	2.1			
Methiocarb*	3.2	1.0	3.2	18.6	2.3			
Metomidate*	3.2	24	75	3.2	2.2			
House Finch								
Diazepam**	> 421	0.75	> 316	6.6	2.1			
Nicotine SOL	133	0.75	100	4.3	0.9			
Phencyclidine*	75	1.0	75	10.6	4.5			
Chlordiazepoxide*	18	18	316	12.2	1.3			
SKF 10812A*	18	18	316	31.1	1.6			
Mecloqualone	18	18	316	17.2	0.7			
Chloralose*	10	5.6	56	16.6	2.8			
Pentobarbital**	10	13	133	14.0	1.9			
Talbutal*	10	13	133	12.5	3.8			
Butacaine SOL	10	24	242	14.3	1.9			
Metomidate HCl**	7.5	7.5	56	7.8	2.4			
Butalbital*	7.5	18	133	8.0	3.4			
Thiopental*	7.5	24	178	11.0	4.1			
Ethinimate*	7.5	32	242	20.0	1.5			
Aprocarb**	4.2	1.8	7.5	11.6	1.5			
Butethal*	4.2	32	1 33	18.8	3.0			
White-crowned Sparrow								
Diazepam	> 5.6	18	> 100	4.0 1	1.2			
Chloralose*	3.2	18	56	15.0	4.0			
Metomidate HCl*	3.2	18	56	7.0	0.1			
The contract of HOT.		-~ I	<i>)</i> °	•••	***			

Species and Compounds	SF (1D ₅₀ /TI ₅₀)	TI ₅₀ (mg/kg)	LD ₅₀ (mg/kg)	Average Induction (Min)	Average Duration (Hrs)
House Sparrow Phencyclidine* Diazepam* Chlordiazepoxide** Talbutal** ACD 7029** Allobarbital Methiocarb** Metomidate HCl**	100 > 42 > 13 10 7.5 7.5 4.2 4.2	1.3 13 24 13 4.2 24 4.2 7.5	133 562 316 133 32 178 18 32	6.1 18.3 15.0 6.3 8.6 17.1 5.0 7.2	3.5 1.6 3.0 2.3 2.0 3.6 1.6 1.6
Chloralose* Thiopental** Banol** Pentobarbital**	4.2 4.2 3.2 3.2	10 24 1.3 24	42 100 4.2 75	29.2 12.2 8.5 13.5	1.8 2.6 1.0 2.5

* Marginal

** Recommended for further trials

APPENDIX

The following list identifies all compounds tested. Product or chemical names listed are those commonly accepted by the USP (United States Pharmacopeia), NF (National Formulary), USAN (United States Adopted Name Council), or ISO (International Standards Organization), or are other officially accepted names. Following the name and the chemical description (by American Chemical Society nomenclature) is the company from which the compound was obtained.

```
ACD 7029 Carbamic acid, methyl, 3-isopropyl-4-methylthiophenyl ester (Allied)
```

ACETANILIDE N-Phenyl acetamide (Aldrich)

ACETOPHENAZINE DIMALEATE Phenothiazin-2-yl, methyl ketone, 10-{3-[4-(2-hydroxyethyl)-1-piperazinyl]-propyl}-, dimaleate (Schering)

ACETYLSALICYLIC ACID (Aldrich)

ALLOBARBITAL Barbituric acid, 5,5-diallyl (CIBA)

```
AMBENONIUM CHLORIDE Diethylammonium chloride, [oxalyl bis(iminoethylene)], bis [(o-chlorobenzyl)] (Winthrop)
```

AMPHETAMINE 3,4-DICHLORO 2-Propylamine, d-1-phenyl-3,4-dichloro-, (Aldrich)

APROCARB Carbamic acid, methyl, o-isopropoxy phenyl ester (Chemagro)

AZODRIN Phosphoric acid, dimethyl ester with 3-hydroxy-N-methyl-cis-crotonamide (Shell)

```
BANOL Carbamic acid, methyl, 2-chloro-4,5-xylyl ester (Upjohn)
```

BARBITAL SODIUM Barbituric acid, 5,5-diethyl, sodium salt (Sandoz)

```
BAY 50282 Carbamic acid, methyl, 3,5-dimethyl-4-diallyl aminophenyl ester (Chemagro)
```

```
BENPERIDOL 2-Benzimadazolinone, 1-{1-[3-(p-fluorobenzoyl)propyl]-4-piperidyl}-, (McNeil)
```

```
BENZQUINAMIDE 2H-Benzoquinolizine-3-carboxamide, N,N-diethyl-1,3,4,6,7,11b-
hexahydro-2-hydroxy-9,10-dimethoxy-, acetate (Roerig)
```

BUCLIZINE Piperazine, 1-(p-chlorobenzhydryl)-4-(p-tert-butylbenzyl)-, (Pfizer)

- BUTACAINE SULFATE p-Aminobenzoate, 3-(dibutylamino)-l-propyanol-, (Abbott)
- BUTALBITAL Barbituric acid, 5-allyl-5-isobutyl (Sandoz)
- BUTAMBEM p-Aminobenzoate, n-butyl-, (Abbott)
- BUTETHAL Barbituric acid, 5-butyl-5-ethyl-, (Abbott)
- CAFFEINE Xanthene, 1,3,7-trimethyl (Aldrich)
- CAPURIDE Urea, 2-ethyl-3-methylvaleryl (McNeil)
- CARBAMIC ACID n-BUTYL
- CHLORAL Ethane, 2,2,2-trichloro (Aldrich)
- CHLORAL HYDRATE 1,1-Ethanediol, 2,2,2-trichloro (Aldrich)
- CHLORALOSE α -D-Glucochloralose (Aldrich)
- CHLORD IAZEPOXIDE 3H,1,4-Benzodiazepine-4-oxide, 7-chloro-2-methylamino-5phenyl (Roche)
- CHLORETHATE Carbonate, bis 2,2,2-trichloroethyl (SKF)
- CHLORMEZANONE 4H-1,3-thiazin-4-one, 2-(p-chlorophenyl)tetrahydro-3-methyl-1, l-dioxide (Winthrop)
- CHLOROBUTANOL 2-Propanol, 1,1,1-trichloro-2-methyl-, (Parke-Davis)
- 2-CHLOROPROCAINE HYDROCHLORIDE Benzoic acid, 2-chloro-4-amino, 2-(diethylamino)ethyl ester HCl (Strasenburgh)
- CHLORPHENESIN CARBAMATE Carbamic acid, 3-(p-chlorophenoxy)-2-hydroxypropyl ester (Upjohn)
- CHLORPHENIRAMINE Pyridine, $2[p-chloro-\alpha(2-dimethylaminoethyl)benzyl]maleate (Hexagon)$
- CHLORPROMAZINE Phenothiazine, 2-chloro-10-[3-(dimethylamino)propyl] HCl (SKF)
- CHLORPROMAZINE SULFATE Phenothiazine, 2-chloro-10-[3-(dimethylamino)propyl] SO_h (SKF)
- CHLORPROTHIXENE Thioxanthene, $-\Delta 9, \alpha$ -propylamine-2-chloro-<u>N</u>,<u>N</u>-dimethyl HCl (Hoffman-LaRoche)
- CL 24055 Acetanelide, 4"-dimethyltriazino (American Cyanamid)

- CLOTHIXAMIDE Piperazine propionamide, 1-4[3-(2-chlorothioxanthen-9-ylidene) propyl]-<u>N</u>-methyl dimaleate (Pfizer)
- CYCLOBARBITAL Barbituric acid, 5-ethyl, 5-(1-cyclohexenyl) (Winthrop)
- CYPRAZEPAM 3H-1,4-Benzodiazepam-1-4-oxide, 7-chloro-2-[(cyclopropylmetnyl)amino]-5-phenyl (Warner-Lambert)
- DESDIMETHYL CHLORPROMAZINE Phenothiazine, 2-chloro-10-(3-aminopropyl) (Lakeside)
- DIAZEPAM 2H,1,4-Benzodiapepin-2-one, 7-chloro-1,3-dihydro-1-methyl-5-phenyl-, (Hoffman-IaRoche)
- DIBUCAINE HYDROCHLORIDE Cinchoninamide, 2-butoxy-N-(2-diethylaminoethyl) HCl (CIBA)
- DIMEFADANE 1-Indanamine, N,N-dimethyl-3-phenyl, (SKF)
- DIMENHYDRINATE 8-Chlorotheophillinate, 2-(benzohydryloxy)-<u>N,N</u>-dimethylethylamine (Searle)
- DIPERODON HYDROCHLORIDE 1,2-Propanediol, 3-piperidino dicarbanilate ester HCl (Merrill)
- DOWCO 101 Phosphoric acid, dimethyl, (2,4,5-trichlorophenyl) (Dow)
- DOWCO 132 Phosphoroamidic acid, methyl, 4-tert-butyl-2-chlorophenyl methyl ester (Dow)
- DOWCO 159 Phosphoroamidic acid, ethyl, methyl-2,4,5-trichlorophenyl ester (Dow)
- DOWCO 160 Phosphoroamidic acid, ethyl, 2,4,5-trichlorophenyl ester (Dow)
- DOWCO 161 Phosphoroamidic acid, ethyl, 2,4-dichlorophenyl ester (Dow)
- DOWCO 169 Phosphoroamidic acid, N,N'-dimethylphenyl ester (Dow)
- DOWCO 208 Phosphoroamidic acid, ethyl, 2,4,5-trichlorophenyl ester (Dow)
- DOWCO 210 Phosphoroamidic acid, ethyl, ethyl-2,4,5-trichlorophenyl ester (Dow)
- DOWCO 211 Phosphoroamidic acid, sec-butyl, ethyl-2,4,5-trichlorophenyl ester (Dow)
- DOWCO 217 Phosphorothioic acid, <u>0,0</u>-dimethyl, <u>0</u>-(3,5,6-trichloro-2-pyridyl) ester (Dow)
- DRC-3340 Carbamic acid, methyl, 3,5-xylyl ester (Schafer)
- DRC-3341 Carbamic acid, methyl, 3-tolyl ester (Schafer)
- DRC-3342 Carbamic acid, methyl, 4-chloro-3,5-xylyl ester (Schafer)

DRC-3343 Carbamic acid, methyl, 4-chlorophenyl ester (Schafer) DRC-3344 Carbamic acid, methyl, 4-chloro-3-tolyl ester (Schafer) DRC-3345 Carbamic acid, methyl, phenyl ester (Schafer) DROPERIDOL 2-Benzimidazolinone, 1-{1-[3-(p-fluorobenzoy1)propy1]-1,2,3,6tetrahydro-4-pyridyl}-, (McNeil) DURSEAN Phosphorothioic acid, 0,0-diethyl 0-3,5,6-trichloro-2-pyridyl ester (Dow) ENCYPRATE Carbamic acid, N-benzylcyclopropane ethyl ester (Abbott) EPN Phosphonothioic acid, phenyl-, O-ethyl, O-p-nitrophenyl ester (duPont) ETHCHLORVYNOL 1-Chloro-3-ethyl-1-penten-4-yn-3-ol (Abbott) ETHINAMATE Carbamic acid, 1-ethynylcyclohexyl ester (Lilly) ETHOMOXANE 1,4-Benzodioxan, 8-ethoxy-2-(n-butylaminomethyl)-, HCl (Lilly) ETHYL AMINOBENZOATE p-Aminobenzoic acid, ethyl-, (Aldrich) N-ETHYL-3-PIPERIDYL PHENYLCYCLOPENTYLGLYCOLATE Mandelic acid, α -cyclopentyl-, 1-ethyl-3-piperidyl ester HCl (Lakeside) EX 4211-A 1,2,3-Benzothiadiazine, 4-hydrazino-1,1-dioxide HCl (Lakeside) EX 5004 2H.1.2.4-Benzothiadiazine, 6-chloro-3,4-dihydro-3-(3-oxo-n-propyl)-7sulfamy1-1,1-dioxide phthalazone-azine (Lakeside) FAMOPHOS Phosphorothioic acid, 0,0-Dimethyl ester 0 ester with p-hydroxy-N-N-dimethyl benzenesulfonamide (American Cyanamid) FENCAMFAMIN 2-Norbornanamine, N-ethyl-3-phenyl (lakeside) FENCLOPETHATE Carbamic acid, ethyl, p-acetamidophenyl-2,2,2-trichloro ester (SKF) FLUPHENAZINE 1-Piperazine ethanol, 4-{3-[2-(trifluoromethyl)-phenothiazin-10yl]propyl}diHCl (Squibb) GLUTETHIMIDE Glutarimide, 2-etbyl-2-phenyl (CIBA) GOLPHACIDE Phosphoroamidothioic acid, 0,0-bis(p-chlorophenyl)acetimidoyl ester (Chemagro) H 5727 Carbamic acid, methyl, m-isopropyl phenyl ester (Hercules) H 8717 Carbamic acid, methyl, m-(2-propynyloxy)phenyl ester (Hercules)

H 9699 Carbamic acid, methyl, o-(2-propynyloxy)phenyl ester (Hercules) HEXOBARBITAL SODIUM Barbituric acid, 5-(1-cyclohexen-1-y1)-1,5-dimethyl sodium salt (Winthrop) HRS 1422 Carbamic acid, methyl, 3,5-diisopropylphenyl ester (Hooker) HYDROXYDIONE 5 β-Pregnane-3,20-dione-21-hydroxy sodium hemisuccinate (Pfizer) HYDROXYZINE Ethanol, 2-{2-[4-(p-chloro phenylbenzyl)-1-piperazinyl]ethoxy} diHCl (Roerig) ISOPENTYLHYDROCUPREINE Hydrocupreine, ether isopentyl (White) LEVOMEPROMAZINE Phenothiazine, 10-(3-dimethylamino-2-methylpropyl)-2-methoxy (Lederle) LYSERGIDE Lysergamid, N, N-diethyl (Sandoz) MATACIL Carbamic acid, methyl, 4-dimethylamino-3-tolyl ester (Chemagro) MEBUTAMATE Carbamic acid, 2-sec-butyl-2-methyl trimethylene ester (Wallace) MECLOQUALONE 4(3H)-Quinazolinone, 3-(o-chlorophenyl)-2-methyl (Warner-Lambert) MEPAZINE Phenothiazine, 10-[1-methyl-3-(piperidyl)methyl] HCl (Warner-Chilcott) MEPHENOXALONE 2-Oxazolidinone, 5-[(o-methoxyphenoxy)methyl] (Lakeside) MEPHOBARBITAL Barbituric acid, 5-ethyl-1-methyl-5-phenyl (Winthrop) MEPROBAMATE Carbamic acid, 2-methyl-2-propyl trimethylene ester (Wyeth) METAXALONE 2-Oxazolidinone, 5-(3,5-dimethylphenoxymethyl) (Robins) METHARBITAL Barbituric acid, 5,5-diethyl-l-methyl (Abbott) METHIOCARB Carbamic acid, methyl, 4-methylthio-3,5-xylyl ester (Chemagro) METHOCARBAMOL 1,2-Propanediol, 3-(o-methoxyphenoxy)-METHOMYL Acetimidothioic acid, methyl, N-methylcarbamoyl ester (du Pont) METHYL PARATHION Phosphorothioic acid, 0,0-dimethyl 0-p-nitrophenyl (Stauffer) METOMIDATE Imidizole, 5-carboxylic acid, $1-(\alpha-methylbenzyl)methyl ester$ (McNeil) METOMIDATE HYDROCHLORIDE Imidazole, 5-carboxylic acid, $1-(\alpha-methylbenzyl)methyl$ ester HCl (McNeil)

NICOTINE SULFATE Pyrrolidine, 1-methyl-2-(3-pyridyl)sulfate (Aldrich)

- OXAZEPAM 2H,1,4-Benzodiazepin-, 7-chloro-3-hydroxy-5-phenyl-1,3-dihydro-2-one (Wyeth)
- OXETHAZAINE Oxaine, <u>N.N-bis(N-methyl-N-phenyl-tert-butylacetamide)-</u>B-hydroxyethylamine (Wyeth)

PARALDEHYDE (Aldrich)

- PARATHION Phosphorothioic acid, 0, 0-diethyl 0-p-nitrophenyl ester (Stauffer)
- **PEMOLINE** 4-Oxazolidinone, 2-imino-5-phenyl (Abbott)
- PENTAZOCINE 3-Benzazocin-8-ol, 1,2,3,4,5,6-hexahydro-6,11-dimethyl-3-(3-methyl-2-butenyl)-2,6-methano-, (Winthrop)
- PENTOBARBITAL Barbituric acid, 5-ethyl-5-(1-methylbutyl) (Abbott)
- PERPHENAZINE 1-Piperazineethanol, 4-[3-(2-chlorophenothiazin-10-yl)propyl] (Schering)
- P-4657-B Thioxanthene, 2-dimethylsulfamyl[9-(4-methyl-1-piperazinyl)-propylidine] (Pfizer)
- PHENAGLYCODOL 2,3-Butanediol, 2-(p-chlorophenyl)-3-methyl (Lilly)
- PHENCYCLIDINE Piperidine, 1-(1-phenylcyclohexyl) HCl (Parke-Davis)
- PHENOBARBITAL Barbituric acid, 5-ethyl-5-phenyl (Winthrop)
- PHENOTHIAZINE Parke-Davis)

```
PHILLIPS 1861 Pyridine, 4-amino (Phillips)
```

- PHOSPHAMIDON Phosphoric acid, dimethyl ester, ester with 2-chloro-<u>N,N</u>-diethyl-3-hydroxy crotonamide
- PRAMOXINE Morpholine, 4-[3-(p-butoxyphenoxy)propyl] HCl (Abbott)
- PRILOCAINE o-Toluidide, 2-propylamino propiono HCl (Astra)
- PROBARBITAL SODIUM Barbituric acid, 5-ethyl-5-isopropyl sodium salt (Squibb)
- PROCAINE p-Aminobenzoic acid, 2-diethylaminoethyl HCl (Parke-Davis)

PROMAZINE Phenothiazine, 10-(3-dimethylamino propyl) HCl (Wyeth)

RESCINNAMINE (Aldrich)

RESERPINE (Aldrich)

RE 5305 Carbamic acid, methyl, 3-sec-butylphenyl (Ortho) RE 5454 Carbamic acid, methyl, 2-chloro-5-tert pentylphenyl (Ortho) RE 5655 Carbamic acid, methyl, 2-chloro-5-sec butylphenyl (Ortho) SD 8530 Carbamic acid, methyl, 3,4,5-trimethylphenyl (Shell) SD 8786 Carbamic acid, methyl, 2,3,4-trimethylphenyl (Shell) SECOBARBITAL Barbituric acid, 5-allyl-5-(methylbutyl) (Lilly) SKF 10810A Methylxanthene, 9(3-dimethylaminopropyl)-2-trifluoro HCl (SKF) SKF 10812A Methylxanthene, trans-9-(3-diethylaminopropyl)-2-trifluoro HCl (SKF) STRYCHNINE SULFATE (Aldrich) SUCCINYL CHOLINE CHLORIDE (Abbott) SUIAZEPAM 4-Benzodiazepine-2-thione, 7-chloro-1, 3-dihydro-1-methyl-5-phenyl (Warner-Chilcott) TALBUTAL Barbituric acid, 5-allyl-5-sec-butyl (Winthrop) TETRACAINE p-Butylaminobenzoic acid, 2-(dimethylamino)ethyl ester HCl (Winthrop) THIAMYL SODIUM Barbituric acid, 5-allyl-5-(1-methylbutyl)-2-thio sodium salt (Parke-Davis) THIOPENTAL SODIUM Barbituric acid, 5-ethyl-5-(1-methylbutyl)-2-thio sodium salt (Abbott) 8-THIOSEMICARBAZONE ETHYLISATIN (Nutritional Biochem.) THIOSEMICARBAZONE METHYL GLYOXOL BIS-(N-4-METHYL)(Nutritional Biochem.) TREMORINE Dipyrrolidine, 1,1'-(2-butynylene) (Abbott) TRIBROMOETHANOL (Winthrop) TRICAINE m-Aminobenzoic acid, ethyl-, methane sulfonate salt (Sandoz) TRIFLUOPERAZINE Phenothiazine, 10-[3-(4-methylpiperazin-l-yl)propyl]-2-trifluoromethyl diHCl (SKF) TRIFLUOPERIDOL Buterophenone, 4'-fluoro 4-[4-hydroxy-4-(α, α, α -trifluoro-m-tolyl)piperadino (McNeil) TRIFLUOPROMAZINE Phenothiazine, [10-(3-dimethylamino)propyl]-2-trifluoromethyl HCl (Squibb)

TRIMETHID INIUM METHOSULFATE 1,3,8,8-Tetramethyl-3-azoniabicyclo[3,2,1]octane, 3-[3-(dimethylamino)propyl]-methylsulfate methosulfate (Wyeth) TRIMETOZINE Morpholine, 4-(3,4,5-trimethoxybenzoyl) (Abbott) U 14560 Carbamic acid, methyl, 2,4-dichloro-3,5-xylyl ester (Upjohn) U 17556 Carbamic acid, methyl 2,4-dichloro-5-ethyl m-tolyl ester (Upjohn) VALNOCTAMIDE 3-Methylvaleramide, 2-ethyl (McNeil) WY 5244 2,5-Benzodiazocine, 1-(p-chlorophenyl)-1,2,3,4,5,6-hexahydro HCl (Wyeth) XANTHIOL 1-Piperazine propanol, 4-[3-(2-chlorothioxanthen-9-yl)propyl] diHCl⁻ (Roerig)

ZECTRAN Carbamic acid, methyl, 4-dimethylamino-3,5-xylyl ester (Dow)

ZOLAMINE Thiazole, 2-[(2-dimethylaminoethyl)(p-methoxybenzyl)amino] (White)

As the Nation's principal conservation agency, the Department of the Interior has basic responsibilities for water, fish, wildlife, mineral, land, park, and recreational resources. Indian and Territorial affairs are other major concerns of this department of natural resources.

The Department works to assure the wisest choice in managing all our resources so that each shall make its full contribution to a better United States now and in the future.

UNITED STATES DEPARTMENT OF THE INTERIOR FISH AND WILDLIFE SERVICE BUREAU OF SPORT FISHERIES AND WILDLIFE WASHINGTON D. C. 20240

POSTAGE AND FEES PAID U.S. DEPARTMENT OF THE INTERIOR

