PILCHARD EGGS AND LARVAE AND OTHER FISH LARVAE, PACIFIC COAST - 1950

PILCHARD EGGS AND LARVAE AND OTHER FISH LARVAE, PACIFIC COAST - 1950

SPECIAL SCIENTIFIC REPORT: FISHERIES No. 80

The series embodies results of investigations, usually of restricted scope, intended to aid or direct management or utilization practices and as guides for administrative or legislative action. It is issued in limited quantities for the official use of Federal, State or cooperating agencies and in processed form for economy and to avoid delay in publication.

PILCHARD EGGS AND LARVAE AND OTHER FISH LARVAE. PACIFIC COAST: 1950

By Elbert H. Ahlstrom

This report contains records of the quantitative sampling of fish eggs and Zarvae off the west coast of North America during 1950. The srea included is roughly that lying between the Columbia Riven and Funto Abreojos, Lower California, and extending 350 to 400 miles off shore。 The species included are the pilchard or sardine (Sardinops eaerulea), northern anchovy (Engraulis mordax), jack mackerel (Trachurus symetricus), hale (Meriuscius productus): and rockiish (Sebastodes spp.). If

In the tables, pilchard larvae are enumerated by size categories; and pilchard eggs by age (in days) since spawning. Nortinern anchovy larvae are also enumerated by size categories. Tabulations are given oí the numbers of jack mackerel, hake, and rockfjsh, three of the most abundant species in the collections. In addition, heul data are given for all collections taken during cruises 11 through iE. February through September, 1950. Descriptions of the eggs and larvae of the jack mackerel and hake are being prepared for early publicationo

The purpose cf this report is to put these data on record. Analyses of the data will be presented in subsequent publications.

The investigation of the distribution and abundance of pilchard eggs and larvae is one of the major lines of research being pursued by the South Pacific Fishery Investigations of the U. S. Fish and Wildife Service under the California Cooperative Sardine Researci Program。 This program is sponsored by the Marine Research Committee and is being carried out in conjunction with the Scripps Institution of Oceanography of the University of California, the Cajifornia Department of Fish and Game, the California Academy of Sojences, and the Hopkins Marine Station of Stanford University.

It is a pleasure to acknowledge the wholehearted ccoperatica of the Scripps Instituticn of Oceanography, both in the collection of data at sea and in its processing ashore. The whole staff of the Sruth Pacific Fishery Investigations of the Fish and Wildijfe Serrice contribuced to this investigation, with the majority of the workers devoting their full time to it. When it is pointed out that about 50 persons participated in each cruise, either in the coliecticn of material or in the operation of the vessels, and that neariy half this monbe: of persons worked with the material ashore, it will be erident why it is impracticable to include individual acknowledgments.

[^0]

Figure 1. Station plan, showing location of all stations occupied during the 1950 survey of the distribution and abundance of pilchard ϵ ggs and larvae.

AREA COVERED

The area covered during the survey is shown in figure 1 . Not all of the 167 stations shown were occupied monthly; as can be seen from the following tabulation, only 93 to 140 stations were occupied on a giver cruise.

Text table l. Stations scheduled and occupied on cruises 11 through 18.

| | Month | Number
 Scheduled | | Number
 Occupied | |
| :--- | :--- | :--- | :--- | :--- | :--- | | Percent |
| :---: |
| occupied |

The number of stations scheduled for each cruise is shown in text table l. A simplified tabulation giving the station lines scheduled for each cruise and the vessel assigned to work each line is given in text table 2. Most stations were occupied six to eight times during the season, but stations on the northernmost line were occupied only once (cruise 17) and on the next adjacent line only twice (cruises 17 and IB).

Three vessels participated in each of the monthly cruises. The Crest, operated by the Scripps Institution of Oceanography, and the Black Douglas, operated by the U. S. Fish and Wildiffe Service, took part in all of the eight cruises, while the third participating vessel was either the Horizon or the Paolina T., operated by Scripps. Three of the vessels successfully occupied 97 percent or more of the stations assigned to them.

METHODS OF SAMPIING

Fish eggs and larvae were collected by plankton nets that measure l. 0 meter in diameter at the mouth by about 5 meters in overwall length. The nets were constructed of No. $30 x x x$ grit gauze, a rugged grade of Swiss silk bolting cloth. A sketch of the type of net employed has been given in a previous report (Ahlstrom 19LC, fig. 4).

The plankton hauls were taken obliquely from about 70 meters deep to the surface at a vessel speed of about $1-1 / 2$ to 2 knots. In taking a haul, the net was lowered on 100 meters of wire ($1 / 4$-inch cable) at the rate of about 50 meters a minute, then retrieved at the rate of 5 meters a minute. The actual depth reached by the net varied somewhat from haul to haul, depending upon the speed of the ship and the state of the sea. As most of the vessels used for taking plankton hauls could not be slowed down sufficiently when the sea was fairly calm, it was necessary to start and stop the engine frequently during a haul in order to approximate the desired towing speed.

A film trace of the actual path of the net during hauls has been obtained for the tows made on at least one vessel per cruise, by using a microplankton sampler in conjunction with the regular net. The microplankton sampler is fastened about 2 to 4 meters below the regular plankton net. The sampler is equipped with a calibrated bellows and a rotator. A continuous record of the depth of the sampler in the water and the amount of water strained by it during a haul is obtained as a stylus scratch on clear $35-\mathrm{mm}$. acetate film, the amount of water strained, being recorded on the horizontal axis, the depth of the net on the vertical. From these traces we have verified that the depth of the net at any instant during a haul can be approximated by multiplying the amount of wire cut by the cosine of the angle of stray of the towing wire from the vertical (see fig. 2).

Figure 2. Comparison of the path of a 1.0 -meter plankton net during an oblique haul upward (as determined from the cosine of the angles of stray of the towing wire) with the path of a microplankton sampler (M.P.S.) attached 2.5 meters below the 1.0 -meter net, as determined from a film trace made by a pressure bellows.

Text table 2. Station lines scheduled to be occupied on cruises 11 through 18, February-September 1950.

	Cruise							
	11	12	13	14	15	16	17	16
Line 20	-	-	-	-	-	-	B	-
Line 30	-	-	-	-	-	-	B	B
Line 40	-	B	B	B	B	B	B	B
Line 50	B	B	B	B	B	B	B	B
Line 6C	B	B	B	B	B	B	C	B
Line 70	C	B	B	B	B	B	C	B
Line 80	B	C	H	H	C	C	C	-
Line 83	C	C	H	H	C	C	P	-
Line 87	C	C	H	H	C	C	P	\cdots
Line 90	C	C	H	H	C	C	C	C
Line 93	C	C	H	H	C	C	-	-
Line 97	C	C	H	H	C	C	-	-
Line 100	H	H	C	C	P	P	-	P
Line 110	H	H	C	C	P	P	-	P
Line 120	H	H	C	C	P	P	-	P
Line 123	H	H	C	C	P	P	-	P
Line 127	H	H	C	C	P	P	-	P
Line 130	H	H	C	C	P	P	-	P

Throughout the report, vessels used on survey cmises are designated by the following letters: B - Black Douglas; C - Crest; H - Horizon; P Paolina T 。

MEASUREVET OF VOLUME OF WATER STRAINED DURING PLAAKTON HAULS
A measure of the volume of water strained during a haui was derived from current meter readings. An Atlas-type current meter was fastened in the center of the mouth of each net. Seven current meters were used curing cruises 71 through 18 . Two were lost at sea during this period, current meter No. 6 on cruise 12 , and current meter No. 5 on cruise 13.

The current meters were calibrated before and after each cruise on which they were used. In calibrating, the current meters were towed cver a measured distance at different speeds. Performance graphs were oonstructed in which the length of the column of water strained per revolution of the current meters (meters/rev) was plotted as the dependent variable against the rate of towing (revolutions per second). Since these performance tests were made both before and after each cruise, the raphs applicable to a given cruise were a combination of two calibration trials.

A table is given of the performance of the current meters at two selected speeds (text table 3). Some of the current meters were quite consistent in their performance over a long period of use. In this category were current meters Nos. 5, 6, and 31. Other meters changed their performance gradually, becoming less free-running with continued use (current meter No. 81). The abrupt change in performance of current meter No. 32 on Horizon'cruiselth was due to an acidentol ${ }^{\circ}$ change in the pitch of the blades of the current meter!s impeller.

For any given haul, the appropriate calibration graph was used to determine the performance of the current meter (length of the column of water strained per revolution) at the speed at which the haul was taken (average rev/sec). The volume of water strained during a haul was determined by multiplying the number of revolutions registered by the current meter during a haul by this value, and tren teking the cross-sectional area of the mouth of the net (in square meters) into account.

For the very few hauls lacking reliable current meter readings, an approximate value was obtained which represented the average performance of the current meter at the rate of speed at which the particular hauls were made. Such values in table I are enclosed by parentheses.

STANDARDIZATION OF THE HAULS

For comparability with past data, the same method of standardizing hauls has been employed as that described in a previous report (Ahlstrom 1948). This standard adjusts the number of eggs or larvae in a haul to the number in 10 cubic meters of water strained per meter of depth fished by the net. If the vertical distribution of the eggs or larvae has been encompassed, this value is equivalent to the number under 10 square meters of sea surface. The reader is referred to the above-cited paper for details.

SEPARATION OF FISH EGGS AND LARVAE FROM PLANKTON SAMPLES

Fish eggs and larvae were separated from the other constituents of the plankton hauls by examining the material under a low-power microscope. For the majority of hauls (647 samples, representing about 70 percent of the hauls) the complete samples were examined. Owing to the large volume of plankton taken in some hauls, it was necessary to fraction these into aliquot portions. A few samples were divided into as many as 16 aliquots (6.25 percent each), but most fractioned samples were divided into 2, 4, or 8 aliquot portions. For all diquots smaller than 50 percent, two portions of each sample were sorted. A tabulation follows of the number of samples from each cruise that were fractioned and the percent of each that was sorted:

Text table 3. Current meter performance data for two selected = eads (oruises 11 through 18).
(Based on the average of two ealibrations, one made before. the other after the crvise indicated.)

1/ The average rev/sea registered by the current meters during mosi hauls lie between these two values.

Text table 4 . Number of samples from each cruise, by proportion of sample sorted

	Fractioned sa aliquot po	mples examin rtions repre	d by sorting enting--	Whole	Total
	12.5 percent of sample	$\begin{aligned} & 25 \text { percent } \\ & \text { of sample } \end{aligned}$	$\begin{aligned} & 50 \text { percent } \\ & \text { of sample } \end{aligned}$	samples sorted	samples examined
Cruise 11	3	8	15	88	114
Cruise 12	2	7	28	74	111
Cruise 13	-	17	42	66	125
Cruise 14	1	12	34	82	129
Cruise 15	-	-	20	86	106
Cruise 16	-	4	41	95	140
Cruise 17	1	2	18	72	193
Cruise 18	-	2	22	84	108
Total	7	52	220	647	926

LITERATURE CITED

Ahlstrom, Elbert H.
1943. Studies on the Pacific pilchard or sardine (Sardinops caerulea) 4. Influence of temperature on the rate of development of pilchard eggs in nature. U. S. Fish and Wildlife Service, Spec. Sci. Report No. 23, 26 pp.
1948. A record of pilchard eggs and larvae collected during surveys made in 1939 to 1941. U. S. Fish and Wildlife Service, Spec. Sci. Keport No. 54: 76 pp .

Mari, John Cog and Elbert H. Ahlstrom
1948. Observations on the horizontal distribution and the numbers of eggs and larvae of the northern anchovy (Engraulis mordax) off California in 1940 and 1941. U. So Fish and Wildlife Service, Spec. Sci. Report No. 56, 13 ppo

Sette, Oscar Eo, and Elbert H. Ahlstrom
1948. Estimations of abundance of the eggs of the Pacific pilchard (Sardinops caerulea) off southern California during 1940 and 1941 . Sears Found. Journ. Mar. ${ }^{\text {RRes. }}$ vol. VII, No. 3, pp. 511-542.

Table I ∞ onecord of Oblique Hauls made with Plankton Nets during Cruises $11-16$ in 1950.

Station: The letter preceding the station number is used to designate the vessel from which the collections were made. The four participating vessels are designated as follows: B Black Douglas; C Crest; H - Horizon: P - Paolina T. Station numbers are made up of 4 to 6 figures separated into two groups by a dot. The figures before the dot represent the number of the line on which the station occurss the figures following the dot represent the position of the station on the line. Station lines are numbered from north to south. stations on lines from inshore to offshore. Refer to figure 1_{9} the station chart for 1950, showing all stations occupied during cruises 11 through 18 .

Position - No lato, W. longo: The positions given represent the best estimate of the position of occupancy of each station.

Date: Month given in Roman numerals, the day of the month in Arabic: thus VIII-5 is August 5.

Hour: The time indicated is approximately that of the mid-depth of the haul as the net was being brought obliquely upward. The hours are given on a 24 -hour basis; thus 1930 is equivalent to 7:30 pom.

Duration of Haul: Given in minutes to the nearest quarter minute。

Depth (Meters): Depth of the stratum fished, in meters.
Volo of Water Strained: In cubic meters (see preceding text)。 Estimates givien in parentheses were not based on current-meter readings.
S. Factor: Standardized haul factor (for explanationg refer to Ahlstrom 1948).

Table II.r-Record of Pilchard Eggs, 1950.
Number of Normal Eggs: Number of normally developing pilchard eggs.

Total number of Eggs 8 Includes all pilchard eggs taken in a sample, whether normal or abnormal. Pilchard eggs were clasio fied as abnormal when the embryos were stunted and misshapen in appearance. It is not known whether such abnormalities are caused by a diseased condition of the eggs or by mechanical fingury during collection.

Pilchard eggs are separated into the several days of spawning. represented in each sample (see Ahlstrom 1943). The age cateo gories are designated as follows: A o eggs spawned within 24 hours of collection; B - eggs spawned within 24 to 48 hours of collection; C - eggs spawned within 48 to 72 hours of collection; D - eggs spawned within 72 to 96 hours of collection; Unclass. (Unclassified eggs) - refers to deteriorating eggs that could not be classified with certainty\% n o total number of pilchard eggs in a standardized haul.

Average n° : Average number of eggs in a standardized haul per day of spawning represented. Because of incomplete age categories, resulting from collection being made while spawning or hatching was atively taking place, not all age categories were used in determining n^{n} g but only those followed by an asterisk (for a discussion of this problem, refer to Sette and Ahlrom, 1948)。

Table III $\quad \infty$ Record of Pilchard Larvae, 1950
Midocith of size classes 8 The larvae are grouped into size Diasses which have the following midpoints and ranges 8.

$\begin{aligned} & \text { Midpoint } \\ & \text { (in mme) } \end{aligned}$	Range (in mono)	$\begin{aligned} & \text { Midpoint } \\ & \text { (in mmo) } \\ & \hline \end{aligned}$	Range (in mmo)
3.25	$2.25-4.25$	12.75	12.26-13.25
-		13.75	$13.26-14.25$
澘. ${ }^{\text {a }}$	$4.26=5.25$	14.75	$14.26-15.25$
5.75	$5.26-6.25$	15.85	15.26-16.25
6.15	$6.26-7.25$		
? 05	$7.26-8.25$	17.25	16.26-18.25
8.55	$8.26-9.25$	19.25	18.26-20.25
9.75	$9.26-10.25$	21.25	20.26-22.25
20.75	10.26-11.25	23.75	$22.26-25.25$
11.75	$11.26-12.25$		

Table IVow Record of Anchovy Larvae, 1950
Same as above except for the first category: 3.0 mm . size class containing larvae from 2.76 to 4.25 mm 。 in length.

In previous paper dealing with the numbers of anchovy eggs and larvae collected off southern California during 1940 and 1941 (Marr and Ahlstrom 1948), larvae were tabulated by numbers but not by size.

Table $V_{0 \infty}$ Record of the larvae of Jack Mackerel (Trachurus symmetricus). 1950

The standardized numbers of larvae are listed by station for the eight cruises, 11 through 18 , and a station total given in the next to the last column. The station average (last column) represents the average number of larvae per haul taken during the season at each station. A dash indicates that the station was not occupied on the cruise.

Table VI $0=0$ Record of the Larvae of Hake (Merluccius productus), 1950
The comments concerning Table V are applicable to Table VI。
Table VII $-\infty$ Record of the larvae of Rockfish (Sebastodes sppo) 1950
Refer to the comments given above for Table V. The larvae of all species of rockfish taken in our collections are grouped together as Sebastodes spp.

Tabie I
Record of Oidique Hawls made with Fleniton iets curing Cruises 1?-18 in 1950

Stetion	$\begin{aligned} & \text { Fosi } \\ & \text { i. Iat. } \end{aligned}$	$\mathrm{EiO}_{\mathrm{H}, ~}$	Date	Hour	ninatio of Houl	$\begin{aligned} & \text { letin } \\ & \text { leter } \end{aligned}$	Vol. 0 ater Strain	$\begin{gathered} \mathrm{S} \\ \text { Pactor } \end{gathered}$
-50.55	$39030:$	121, 30^{\prime}	II-j6	1310	23.25	0-69	785,9	. 834
50.60	390201	2',052!	II-16	1715	22.5	0-71	778.0	. 807
50.70	$39^{\circ 00}{ }^{\prime}$	125036.5	II-16	2345	24.0	0-67	323.8	0.376
50.80	38040:	120021:	11-2?	0640	25.25	0-7?	347.6	.907
50.90	$33^{\circ} 20:$	127005^{\prime}	II-17	1230	22.75	0-68	768.6	. 833
50.100	$30^{\circ} 00:$	127049:	II-17	1900	24, 5	0-09	343.8	. 803
50.110	$37^{\circ} \mathrm{L}_{2}$!	123033°	İ-18	02.50	23.5	$0-\mathrm{r}$	787.6	. 836
50.120	$37{ }^{\circ} 20^{\prime}$	1.20016 .51	II-13	0.25	23.5	0-69	819.6	.837
50.130	37000	$13000{ }^{\prime}$	II-13	1.40	24.75	0-7.	304.1	. 333
55.60 *	38023.58	12.20141	II-ló	$0!00$	24.25	0-73	733.6	-909
60.60	37037^{\prime}	123037°	II-15	1230	23.0	0-67	89.9 .7	. 820
60.70	$3701{ }^{\circ}{ }^{\text {a }}$	$124021{ }^{\text {\% }}$	II-15	0 T 00	22.5	0-70	rides	. 945
60.80	$30^{\circ} 57^{\text {\% }}$	125004.	II-15	0025	23.75	0-71	665.0	1,060
60.90	$36^{\circ} 37^{\circ}$	$125^{\circ} 47^{\circ}$	II-14	1815	22.5	0-71	689.7	1.028
60.100	36017^{1}	1.250301	İ-2	1745	22.35	0-73	705:2	1.037
60.110	$35^{\circ} 57^{\circ}$	i? 7°. $2^{\prime \prime}$	İ-I4	0550	23.15	0-70	\% 82.5	, 398
60.120	$35^{\circ} 37^{1}$	127054.5	II-13	2310	23.75	0-68	7270	.352
60.130*	350171	128037	2I-13	3700	23.45	0-12	827.7	.075
61.55	37037	123007.5	II-15	171.5	12.25	0.67	434.6	1. 5460
65.60	$30^{\circ} 45^{\prime}$	123000:	II-8	0350	24.25	0-68	851.1	.793
70.55	$30^{\circ 0} 0{ }^{\prime}$	1.22002	II-3	1755	25,75	0-75	792.0	. 951
75.60	$35^{\circ} 01:$	120146	II-2	$02+0$	2.6 .75	0-73	000.4	. 657
80.55	340101	1200:8	II-9	1250	13.25	$0-60^{\circ}$	478.3	2. 383
80.60	31.0001	1270031	IT-9	7.735	12.75	0-65	466.8	1. 306
80.70	$33^{\circ} 49^{\prime}$	122051:	II-?	2355	12.0	$0-63$	535,?	1.182
80.80	$33^{\circ} 2 y^{\prime}$	126. 32^{\prime}	II-10	0715	23.75	0-72	732.6	. 261
30.30	330091	123093^{1}	II-10	1500	12.75	0-74	10.3	1.303
80.100	320491	1236541	II-11	0.15	23.25	0-70	$\cdots 76.9$. 906
30.170	$32029{ }^{\circ}$	2:24034.5	I-1I	1.850	14.5	0-rio	550.2	I. 253
80.120	$32^{\circ} 091$	1.25015 .58	II-5	0830	24.5	0-68	829.5	. 827
80,130	310491	$125^{\circ} 5^{\circ}$	II-5	0145	23,25	0-75	062.0	.780
-70.60	350571	120021	II-2	04.10	23.0	0-70	670.8	1.050
70.70	$35^{\circ} 33^{\prime}$	123006°	İ-2	1155	22.5	0-70	695.3	1.0.i 3
70.80	350121	12304:81	こI-2	1630	24.75	0-70	684.6	2,015
70.90	340531	124030	IT-2	2230	2.2 .25	0-70	600.?	1.261
70.200	34032.51	125012 ${ }^{\prime}$	II-3	0500	23.0	0-71	623.6	1.140
70.210			10 sem	le oi	ined			
70.120			Yot oc	cupied				
70.130			-ot oc	cupjed				
83.55	33044	1200:4. 1	II-10	1705	12.0	0-66	377.5	1.75\%
83.60	35033'	120045:	11-10	0650	12.5	0-64	415.0	1.552
83.70	33015'	$121.25{ }^{\circ}$	II-. 0	0040	12.25	0-6.?	397.6	1.7716
83.80	$32^{\circ} 56^{\prime}$	1220041	II-?	1835	12.25	0-7	378.3	1. 908
83.90	$32^{\circ} 38^{\prime}$	$1220{ }^{\circ} 1$	II-?	1250	12.5	0-71	379.3	1.809
87.35	$33^{\circ} 50^{\circ}$	113037.5	II-7	1315	23.0	0-72	646:7	1.110

Taile I（cont＇d）
Pecord of Oblioue Euls m de vith 2lanton nots during Cruises ll－13 in loso

53.54	． 33058	7．44000	VIII－5	1005	12.25	0－67	467.4	1.433
57.54	38024.	1230351	VIIT－5	0820	14.0	0－64	456.5	ј． 279
c－60．60	$37^{\circ} 37^{\prime}$	123037°	VIIT－9	1.330	2.2 .75	0－30	529.6	1.507
60.70	37017^{\prime}	12．4021＂	VIII－I0	0115	12.0	0－68	34：9．4	1.949
60.80	36057.51	$125004{ }^{\prime}$	VIİ－10	0645	13.25	0－70	302，9	1.815
60.90	$30^{\circ} 391$	1250471	Vこご10	1205	12.25	0－70	351．9	1.995
$60: 100$	20929	120031	VIここと0	1305	1.2 .0	0－65	369.9	？． 7.763
60.110	$35058{ }^{3}$	$127^{\circ} 12.5{ }^{\prime}$	VİI－10	2330	32，2．5	0－70	363.2	1.922
60.120	25039	127055^{\prime}	VIII－11	0555	12.25	0－70	374.9	1.859
60.130	35015.78	1230＝0 7 ？	YIİ－11	1155	12：0	0－69	362.3	1.907
61.55	$37035.7^{\text {i }}$	123009 1	VIIー？	$\underline{1520}$	22.25	$0-10$	020.0	1.126
02.37	$37^{\circ} 09$	$122053.4{ }^{1}$	VITI－9	2040	22.75	0－70	642.5	1.088
67.55	35030.71	$1: 2026^{\prime}$	－1发－9	0440	27.0	0－74	689，6	1.072
70.55	35047．51	122010．5	VİI－13	2120	12.5	0－70	$35 \% 2$	1． 953
70.60	$35^{\circ} 40^{\prime}$	122030°	Vİ－1？	2750	12.75	0－70	373.1	1.876
70.70	$35^{\circ} 23^{\prime}$	1230．01	VIJI－］ 3	1210	12.5	0－78	310.8	2.506
70.80	35006.51	123051．51	Vi：I－13	0635	13.5	0－76	374.6	2.037
70.90	340193	124．031．5 ${ }^{1}$	VIII－23	0040	12.5	0－75	353.5	2.086
70.100	$34^{\circ} 33^{\circ}$	$125^{\circ} 12^{\prime \prime}$	VIII－12．	190	12.5	0－73	350.6	2.058
70.110	34019.5	1250541	VIII－12	1345	12.5	0－11	353.7	1.979
70.120	33057^{\prime}	1260.341	VIII－12	0810	12.15	0－7．	364． 8	1.955
70.130	33035^{1}	127014．5 ${ }^{\prime}$	VIII－11	2400	12.25	0－70	363.7	1． 912
73.51	$35^{\circ} 29.5^{\prime}$	1210144	VIII－14	0355	32.5	0－6．1	306.9	1． 566
77.55	34052.51	1．21008．51	VI－I－14	$081+5$	12.0	0－70	339.2	2.076
80.55	340791	1200481	VIEI－14	1350	12.25	0－70	366，6	1.909
80.50	34.0001	1270091	VIIT－I4	1.735	12.0	0－63	339.9	2.006
80.70	3304.91	121047．5：	VITI－15	0005	12.5	0－ril	324． 5	2．197
80.80	$33^{\circ} 23.51$	122020.5^{1}	VIII－I5	0540	12．25	0－72	333.2	2.114
80.90	$33^{\circ 009}$	123005^{1}	VIII－15	1135	12．25	0－70	355.1	I． 977
80.100	32043.51	1230441	UİI－？ 5	1650	12.0	0－63	340.6	1.965
80.110	320831	224023？	VIII－3． 5	2205	12.5	0－73	363.3	I，92，8
80.720	320071	1250031	VIII－16	0335	12.0	0－70	551，9	1.989
80.130	31045.5^{\prime}	125041．51	VIII－16	0050	12.05	0－69	354．8	1.936
50.30	$33^{\circ} 24^{\prime \prime}$	117054．7：	VIII－19	0100	12.75	0－63	379.7	1.786
90.37	$33^{\circ} 11^{\prime}$	$118023.5{ }^{\text {a }}$	VIII－18	2010	12.0	0－70	352.4	1.937
90.45	32054.51	12．30 56， 3^{1}	VIIE－13	2535	12.5	0－73	350.0	2.045
90,53	52032．3＇	119029.51	VIII－18	1045	12.25	0－71	352.6	2.014
90.60	32024.81	$11205 \cdots 31$	VIII－13	0.530	12.0	0－63	30́7．6	1.804
80.70	32.05 ：	120040：	VIII－28	0010	12.5	$0-71$	579.7	1.873
20.80	37.45 ：	121019	VIII－17	1900	22.75	$0-71$	620．7	1.137
90.90	31035．5．	121056.51	VIII－17	13：5	22．75	0－70	675．4	1． 04.2
90.100	31014．1：	1220381	VIII－17	0805	12．0	0－70	387.6	1.803
0.110	30052.81	1230181	VIII－17	0305	12． 5	0－65	384.9	1.080
90.120	$30^{\circ} 37^{\prime}$	123050.6^{\prime}	VIII－16	2005	12.25	0－58	363.3	1.380

Record of Oblique ifouls mode with Dlamion lets iurinc Cruises 11-18 in 1950

Table I (cont ${ }^{\text {a }}$)

110,50	29016.51	$11605{ }^{\circ}$	II-8	0735	22.5	0-65	704.6	. 918
110.60	23055.51	.11703?	-1-3	1350	23.25	0-78	648.2	1.197
110.70	23030.53	173010	II-3	? 9445	24.0	0-78	591.8	1.310
110.80	23010.51	1180.57.51	II-9	0215	24.25	0-70	737.5	. 943
110.90	27050.51	$110036:$	İ-9	0825	23.0	0-65	733.8	. 876
11.0 .100	$27^{\circ} 36.5^{\circ}$	1:0015'	II-9	1410	23.25	0-67	726.5	. 924
310.110	$27^{\circ} 16.5^{\text {i }}$	120054.51	II-9	2055	23.0	0-72	670.1	1.073
215,40	230451	.115046.5'	II-7	1.350	23.5	0-70	693.8	1.009
120.35	20.031	1.14054 .4	II- ${ }^{\text {a }}$	1000	14.5	0-1.6	359.8	1.273
120.45	270431	1150331	II-Ó	0350	23.5	0-63	687.4	. 921
120.50	27033'	$11.55^{\circ} 2.5^{1}$	II-5	2300	23.0	0-69	620.9	1.110
120.60	$27^{\circ} 13^{\prime}$	1176031.51	II-5	1725	24.5	0-64	810.5	. 791
120.70	26052.5^{1}	$31.701 .{ }^{1}$	II-5	10\%	23.0	0-74	64.4.0	1.157
120.30	25032.5!	1170\%.3.5	IJ-5	0235	23.0	0-64	772.7	. 824
12.0 .90	20131	118027.5 ${ }^{1}$	11-5	0025	24.5	0-59	858.7	. 684
120.100	$25^{\circ} 53^{\prime}$	119006^{\prime}	II-4.	1.505	23.5	0-63	826.8	. 760
120.210	250331	$11.004{ }^{1}$	15-b	1035	22.25	0-61	803.5	. 759
123.40	270181	114051.5^{1}	エ1- 1	0235	240	0-71	686.8	1.031
123.50	260581	115030.51	II-].	0205	23.0	0-72	631.2	1.144
123.60	26038.51	$116^{\circ} 09^{\prime}$	II-1	1225	23.25	0-63	725.7	. 871
127.40	26043.51	114029.51	II-2	0740	22.75	0-62	730.2	. 738
127.50	2602.51	$115^{\circ 0} 8^{\prime}$	II-2	01.15	23.25	0-72	525.1	1.350
In7.60	$26^{\circ} 03.5 \prime$	11.5046 .51	II-I	7925	23.5	0-63	770.2	. 873
130.35	260101	$11300 \% 6.5$	IJ-2	1400	27.0	0-55	096.5	. 555
130.40	260091	$1.24007 .5^{\circ}$	II-:].700	23.5	0-6?	633.4	1,001
130.50	2504,	114,048.51	IIー:	22,5	23.0	0-70	700.3	. 996
130.60	250201	115024	II-3	0500	23.5	0-62	810.1	. 771
130.70	25008.51	$11000{ }^{1}$	II-3	1105	23.25	0-76	537.5	1.293
130,60	24068.51	11.60401	1-3	1720	23.5	0-63	671.9	1.009

Cmise 12

B-40. 45
40.50
40.60
40.20
40.80

140,90
40.700
40.110
43.50 20043
$1: 3.50 \quad 1: 0008$
4.55
$\because 7.50 * 390.54$
$50.55 * 39030$
$50.60 \quad 39020$
1092
1003
100421
400631
400021
3001421
390231
100431
400031
40004
39054
39030
39020
Iot curatitotivo
III-13 0030

23.5	$0-73$
12.75	$0-68$
12.75	$0-63$
1.2 .25	$0-69$
1.0 .0	$0-64$
13.0	$0-69$
24.25	$0-67$
2.25	$0-73$
23.0	$0-73$
14.0	$0-63$
23.0	$0-73$
22.75	$0-71$
23.75	$0-71$

703.3	1.035
492.5	7.605
4.64 .8	1.461
419.1	1.653
445.6	1.443
430.5	1.676
81.0 .7	.330
750.0	.969
732.9	.991
505.0	1.343
810.0	.904
748.3	.950
748.0	.953

Table I（contid）
necord of Oblique culs mie vith 2hoton öts durinc Cruises 11－18 in 1950

	Eosition－			Durction	Deotir	Vol．of	S
Stotion	i．Iet．iv．Ione．	Date	Ious	of iful	Weters	Weter	Pactor
						Strained	

50.70	39000 ${ }^{\prime}$	125035．51	III－9	0330	22.5	0－72	710.4	1． 021
50.80	38.401	$120^{\circ} 211$	III－9	． 9335	12.75	0－63	426.0	2．64？
50.80	$28 \cup 201$	127005°	11上－9	2255	14.0	0－70	430.2	1．634
50.100	28.001	$12704{ }^{1} 1$	IIS－10	0600	12.75	0－71	40.7	7.650
50.110	$37^{\circ} 40$	120033＇	II－10	1225	23.5	0－63	717.6	． 946
50.120	3700°	12， $0^{\circ} 55^{1}$	IIL－10	1935	23.0	0－74	627.2	1.172
50.130	$37^{\circ} 00^{1}$	$1.3000{ }^{\prime}$	ITI－I］．	0400	25.25	0－66	753.3	． 372
55，60	33028.51	124014．	III－8	0345	24.65	0－70	833.9	． 337
60，60	370371	1230318	III－7	1.045	13.25	0－67	403.8	1． 667
60.70	37017^{1}	121021：	III－＇？	0400	23.25	0－67	673.9	.996
60.80	300571	125004，	ITI－S	1．945	23.25	0－72	715.1	1． 003
60.90	360371	12．704？	ITİ－́	1245	23.75	0－30	729.6	． 902
60.100	$30^{\circ} 1{ }^{\prime \prime}$	1200301	III－ 6	0435	22.25	0－75	63.2	1.145
60.110	$35^{\circ} 5^{\prime}{ }^{\prime}$	127012＇	12：－5	20.5	24.25	0－62	730.5	． 930
$60.120 *$	35037^{1}	127054.51	III－5	123	23.0	0－71	756.3	． 939
60.130	35017^{1}	123037^{\prime}	15－5	044%	23.5	0－7］	740.3	． 945
61.55	$37^{\circ} 37^{1}$	123007．5＇	III－？	1755	23.75	0－j3	870．2	． 715
65.60	300451	12.3000^{\prime}	IIT－？	22.5	16.5	0－69	52.2 .5	1.321
70.55	$30^{\circ} 03^{\prime}$	122000^{1}	III－2	0830	15.0	0－65	192.5	1.324
70.60	35053^{1}	12202，	III－2	140	24.0	0－68	033.6	． 310
70.70	$35^{\circ} 331$	1330051	III－2	2125	25.0	0－69	734.0	． 375
70．30	$35^{\circ} 3^{1}$	12304，	III－3	04.70	13.0	0－64	425.4	1.511
？ 0.00	$3 \div 0531$	124.0301	III－3	104：5	14.25	0－70	1：61．1	1．514
70.100	34033^{\prime}	1250121	ITI－3	1710	23.0	0－69	782.9	． 879
70.110	34.0131	12505：＇	İI－3	2330	24.5	0－63	75.4	． 0.52
70.120	330531	$120^{\circ} 33.5{ }^{1}$	III－4	0645	13.0	0－65	530.2	1.176
70.130	33033^{1}	127010．5＇	III－4	1：30	13.0	0－6́6	4.51 .3	1．4．54
－80． 55	$31: 017{ }^{\prime}$	1200481	III－2	11.25	23.25	0－70	683.5	1.011
30.60	340091	121.0001	こコIーシ	1585	22.25	0－73	620.4	1.267
80.70	$330 \% 61$	2270501	III－2	21.45	1\％． 25	0－74	420.3	1.750°
80.80	33026^{\prime}	100032	III－3	$04 \% 0$	13.5	0－69	1.14 .3	1.050
8 C .90	32003.51	$123{ }^{\circ} 3^{\prime}$	III－3	iTot	atitat			
80.100	320481	123056：	11う－3	1750	13.75	0－73	403.1	1.809
80.110	$32^{\circ} 29^{\prime \prime}$	124：032：1	III－L：	0015	13.5	0－69	451.2	1.531
30.120	$32^{\circ} 101$	1250 3^{1}	III－4．	0．7：0	23.0	0－69	710.7	． 257
80.130	37.499	125 $5^{\circ} 561$	I．II－4	1555	23.5	0－70	7.15 .5	． 274
83.55			Fot oco	ubied				
33.60			lot occ	vied				
83.70			not occ	picd				
－33，80	$32^{\circ} 55^{\prime \prime}$	$122^{\circ} 06^{1}$	III－10	151：5	12．25	0－63	360.5	1.334
83.90	3804.21	1220401	III－10	0330	22.25	0－60	771.9	． 780
87.35	330501	2180381	III－12	1600	22.5	0－65	756.2	． 654
87.40	330401	$110^{\circ} 581$	III－12	20：5	13.0	0－0́l	456.5	1.391
87.50	$33^{\circ} 201$	11.90391	III－13	0140	07.0	0－36	223．	1． 554

Table I (contid)
Fecora of Coligue Heuls nde with Plarton : eto during Cinises ll-13 in 1950

Station	$=\text { Posi }$	tion	Dite	Hour	Junction of anul	Depth lieters	$\begin{aligned} & \text { Vol.of } \\ & \text { Vater } \\ & \text { Stroined } \end{aligned}$	$\begin{gathered} \mathrm{S} \\ \text { Foctor } \end{gathered}$
87.60	320591	$120^{\circ} 21^{\prime}$	101-13	0055	12.75	0-67	438.8	1.531
37.70			io somp	le trl	dine to	loss of	60ar	
87.30			$\because \mathrm{Ot}$ occ	uried				
87. 70			Yot occ	uice				
30.30	$33^{\circ} 24.51$	117055.61	III-16	0220	13.25	0-71	(394:3)	1.791
90.37	$33^{\circ} 11^{\prime}$	$11.30<3.51$	III-16	0750	12.75	0-69	(335.4)	1.790
90.45	30054.51	$11305{ }^{\prime \prime}$	1II-16	13:30	11.75	0-67	(377.4)	1.765
90.53	32030.51	11002\%'	III-16	7.240	13.0	0-75	(352.1)	2.127
90,60			-ot occ	uvied.				
90.70			Vot oco	vied				
90.30			iTot occ	unied				
-90.90	$31^{\circ} 23^{\prime}$	$12900{ }^{1}$	III-6	0625	23.0	0-73	506.5	1.210
90.100	31005^{\prime}	1220401	III-5	2255	22.75	0-73	632.3	1.153
90.110%	300451	129021'	I:I-5	1.54.5	24.75	0-71	769.1	. 926
90.120*	$30^{\circ} 25^{3}$	124001'	III-5	0755	25.0	0-68	840.0	. 808
-93.30	320501	117031.51	III-18	00625	12.5	0-62	(433.6)	1.1:23
93,40	$32^{\circ} 30^{\prime \prime}$	113012.51	1:1-17	233	12.5	0-70	(300.5)	1.332
93.50	$32^{\circ} 10^{\prime \prime}$	118053.5^{1}	ITイーI7	1020	1\%,0	0-70	(420.2)	1.656
93.60	37042^{1}	119015^{\prime}	III-I7	0835	12.5	0-68	(392.9)	1.721
93.70			Oot occ	upied				
93.80			-ot occ	uried				
93.90			liot occ	uried				
97.32			Oot occ	uniod				
97.1:0			Iot occ	aricd.				
97.50			liot occ	unied				
97.60			Tot occ	vied				
97.70			Tot occ	pied				
97.30			iot occ	upied				
97.90			Liot occ	nicd				
-100.30	32042.2'	116040.5	III-15	0040	23.0	0-74	695.0	1.059
100.40	$31^{\circ} 23^{\prime}$	11.7024 .1	III-I4	1320	12.0	0-63	139.0	1.506
200.50	$31^{\circ} 041$	17.30051	III-1L:	123:	23.0	0-56	731.4	. 723
100. 60	$30045^{\text {1 }}$	118043,1	III-14	0635	22.5	0-61	697.4	. 376
100.70	30023.81	119026.31	III-14	0030	12.25	0-63	433.2	1.433
100.30	3000%	$120^{\circ}{ }^{\prime \prime} .5^{\prime}$	III-13	1850	23.25	0-62	720,1	. 362
100.80	29044,	1200471	III-13	1250	22.75	0-71	713.3	. 797
100.100	20020.5^{1}	$1.102^{\prime} 7^{\prime}$	III-13	00540	23.0	0-73	700.3	1.1 .07
100.110	$2 ¢ 001$.	$12200{ }^{1}$	III-]. 3	0045	22.75	0-62	837.9	. 734
100.120*	20401	122045 ${ }^{1}$	111-12	1900	24.0	0-72	673.0	1.067
105.35	$30^{\circ} 391$	1160331	III-?	0020	23.75	0-65	(913.1)	. 795
11.0 .35	20046.5^{\prime}	$116^{\circ} 00^{\prime \prime}$	III-9	1805	22.25	0-63	800.2	. 850
110.40	$29^{\circ} 36.51$	$116^{\circ} 19^{\prime}$	III- ${ }^{\text {a }}$	2135	22.5	0-76	(702.3)	1.085
110.50	29015^{\prime}	$17.005{ }^{1}$	III--10	0350	23.0	0-75	(723.0)	1.037
1.20 .60	230531	$117^{\circ} 391$	IIT-1. 0	0915	23.75	0-74	78.3	. 938

Table I（cunt＇d）

Stetion	$\frac{\text { Posis }}{\text { lot. }}$	$\frac{\text { ion }}{\mathrm{H} \cdot} \operatorname{lon} .$	Date	Your	Duration 0 O Kioul	Denth Neters	$\begin{aligned} & \text { Vol.of } \\ & \text { Witer } \\ & \text { thasincd } \end{aligned}$	$\begin{gathered} S \\ \text { Inctor } \end{gathered}$
110，70	230381	178031	IT－－10	1315	23.5	0－76	695.7	1.030
110.30	28013.51	118057	III－11	1020	23.0	0－9	724.4	． 890
110．90	．27056．5＇	2190361	III－21	1550	22.5	0－6．	3：4．2	． 724
110.100	27036．51	1200151	III－II	2125	22.75	0－77	72.1	1.036
110.110	$2.7076 .5^{1}$	120055^{1}	III－I？	0450	22.75	0－63	833．3	． 810
$11 \% .35$	29072	1150321	III－O	2.325	22.75	0－6\％	333， 3	． 828
$11 \% .35$	28037	$115^{\circ} 16^{1}$	IIT－？	－ 820	22.25	0－70	655.9	1.050
120.35	$23003{ }^{\circ}$	114．54	III－9	0445	19．0	0－50	50.7	． 206
1：0．4．5＊	2704.01	115032^{\prime}	III－3	0610	25.5	0－00	863.5	． 781
1.20 .50	270311	11505061	III－3	0125	23.25	0－50	232．7	． 579
120：00	$27^{\circ} \mathrm{L} .2^{\prime}$	1150321	IT－？	1000	22.5	0－63	340.7	． 752
120.70	26054．51	1170101	13－7	1320	23.25	0－033	3 3 2.3	． 725
120．80	25033.51	$117051{ }^{\prime}$	エエこー7	0640	23.5	0－71	770.5	， 221
120.90	25034	218027^{\prime}	III－7	0020	22.25	0－72	728.4	． 999
120.100	$25053{ }^{1}$	17.90041	III－6	I． 35	33.0	0－70	778.7	． 005
120．110＊＊	$25^{\circ} 30.71$	11004\％1	III－6	1200	2 t	0－50	739	.678
123.40	$27^{\circ} 13^{\prime}$	114057．5＇	IIT－2	274	25.25	0－30	（308．9）	－ 988
123.50	26055．51	115030．7 ${ }^{1}$	I工I－3	04.15	22.75	0－75	702.9	？．06́7
123.60	260301	115010：	112－3	1050	23.25	0－78	$770 \cdot 7$	． 924
127.10	260：3．51	114030＇	エIさー！	0515	23.0	0－72	79.1	.906
127.50	260231	$11.500{ }^{\prime}$	III－3	2310	23.5	0－78	$0: 0.3$	2．240
12．7．60	250031	115046：31	III－3	1.655	22.75	0－77	723.2	2.003
130.35	26010，41	$113040.3{ }^{1}$	III－4	1150	22.3	0－70	743.3	． 235
130.10	250001	112001	III－4	1605	23.5	0－72	70501	． 244
130．50	25051.51	1240451	－11－ 4	20.5	23.0	0－72	716.5	2.021
130，60	350311	115030＇	III－5	0.450	22.5	0－62	799.2	． 203
130.70	$25^{\circ} 03.5^{\prime}$	11000：	ITI－5	1115	23.0	0－72	31.3	． 830
130.50	24049！	116040 ：	III－5	2740	22.75	$0-70$	700.5	． 914

Cruise 13
＝－40．45．
40.45
40.50
40.60
40.70
40.80%
40.90
40.1 .00
40.110
4.3 .50
43.60
47.55% 47.60 50.55 50.60 50．70 \％ 3 40 40 40 3 3
32

3

410331 41023^{\prime} 42003^{\prime} I250051 IV－I5 $400421 \quad 12.0055 \quad$ IV -15 $40023: \quad 127^{\circ} 401$ IV－14 $\begin{array}{lll}400021 & 1200251 & I T-I 4 \\ 300421 & 1200101 & I T-14\end{array}$

Toinle I (contld)

 streinca

50.80	380401	1260211	IV-11	1225	33.25	0-77	555.5	1.334
50.0	$30^{\circ} \mathrm{CO}$	1270054	IV-11	1940	25.5	0-66	830.2	. 754
50.100	$38^{\circ} 00^{\prime}$	12704 ${ }^{\prime}$	IV-12	0620	13.25	0-71	14.0 .1	1.622
50.110	370401	$12003{ }^{1}$	IV-12	. 1135	14.75	0-66	536.8	1.224
50.120	$37^{\circ} 20^{1}$	129016́.51	IV-12	? 2905	13.75	0-70	465.6	1.:97
50.130	37000^{1}	130001	IV-13	0300	1.5 .5	0-70	4 Cl 3	1.454
55.60	$33^{\circ} 23.5^{1}$	12!01:1	IV-10	0350	13.05	0-70	487.0	1.446
60.60	37035^{1}	223040'	IT-9	11.20	13.0	0-70	4.69 .2	1.503
60.70 \%	37017^{1}	12:021'	5-9	OL\% 0	23.75	0-70	718.5	. 973
60.80	$3605 ?^{1}$	12500\% 1	IV-8	2105	15.75	0-63	562.9	1.203
60.90	300371	1250\% ${ }^{1} 1$	IV-8	2420	22.75	0-68	383.6	. 771
60.100	30.371	1260301	IV-8	0500	23.25	0-69	1033.7	. 669
60.110	350571	12701?	IT-7	2305	24.25	0-06	- 320.3	. 798
60.120	$35^{\circ} 37^{\prime}$	12705 6.51	IV-?	1205	23.75	0-69	395.2	. 771
60.130	$35^{\circ} 17^{\prime}$	1230311	IT-7	0840	23.25	0-69	815.1	. 851
61.55	370371	$123900 \cdot{ }^{1}$	IV-9	3725	23.25	0-30	839.7	. 769
65.50	3601:5	123000	IV-3	2200	21.0	0-58	74.2	. 778
70.55	350041	122003^{\prime}	IT-4	0750	13.5	0-68	613.5	1.113
70.60	350531	1220231	IT-4	1320	13.75	0-70	004.7	1.166
70.70	$35^{\circ} 33^{\prime}$	1230061	I:-4	2020	13.0	0-0́3	57.5 .6	1.222
70.30	350131	1.930401	I-5	0305	25.5	0-69	812.6	. 352
70.90	34.0531	124.0301	IV-5	2005	12.25	0-63	515.7	1.214
70.100	34033^{1}	1250121	IT-5	1630	11.75	0-70	491.4	1.420
70.110	3\%0131	12505\%	I-5	2300	23.25	0-03	908.2	. 691
70.120	$33^{\circ} 53^{\prime}$	120035.51	I:-6	0630	23.25	0-71	803.7	. 835
70.130	33033^{\prime}	127016.51	I--6	122.5	23.0	0-69	$843 \cdot 3$. 819
- 80.55	34,0221	1200501	IV-4	0840	14.25	0-71	1.79 .3	1.481
30.60	340021	127.001	IT-4	1300	12.25	0-72	434.0	1.064
80.70	330491	1270571	1-4	1245	12.75	c-ól	485.9	1.251
80.80	$33^{\circ} 301$	$12203{ }^{\text {r }}$	IT-5	0100	13.25	0-66	473.8	1.577
80.20	$33^{\circ} 09^{\prime}$	123013'	I- -5	0640	3.3 .0	0-65	443.5	1.1.68
80.100	3204.91	123054	IV-5	1305	11.5	0-59	$!53.9$	1.294
80.110	320291	$120^{\circ} 34.51$	IV-5	1350	12.5	0-59	439.8	1.564
80.120	320031	1250161	IV-6	0130	12.75	0-75	3.7.]	1.931
80.130*	31045.51	125053'	IT-G	1105	23.75	0-70	823.7	.852
83.55	330421	1.200241	IT-12	04.10	15.25	0-5 5	610.0	. 898
83.60	330341	120045	I:-11	2355	$1 \% 0$	0-77	395.6	1.936
83.70	$33^{\circ} 13^{\prime}$	1210241	IT-11	1730	13.65	0-71	1875.1	1.497
83.30	320561	122005^{\prime}	- -11	1145	12.75	0-r. ${ }^{0}$	424.4	1.751
83.90	320291	122046.51	IT-11	053	13.0	0-69	453.9	1.4193
87.35	330501	1180371	IT-9	1030	12.5	0-63	450.1	1.504
87.40	$33^{\circ} 401$	11.00501	IT-9	1345	15.0	0-71	487.9	1.447
87.50 87.00	Mot occupied. 1.0							
87.00 87.70	320551 320321	120022 1010061	IV-20	04.35	12.5	0-81	377.4	2.138
	-3.1	121030	IV-20	1035	13.5	0-39	291.8	3.040

Table I (contic)

87.80
87.90
20.30
90.37
90.45
90.53
90.60
20.70
20.90
20.70
30.100
20.110
90.120 33.30 93.40 23.50 93.60 93.70 93.80 93.90 97.3% 97.40 97.50 97.60 97.70 97.80 97.90 C-100.30 $100: 40$ 100.50 100,60 100. 70 100.80 $100: 80$ $100: 100$ 100.110 200:120 105:35 110.35 110.4:0 3.10 .50 110.00 110,70 110.80
32018.51 3.1].0191 IV-7.0 $33054.5^{\prime} 122022^{\prime}$ IV-7.0 $\begin{array}{ll}330244^{\prime} & 1177055^{\prime} \\ 33011^{\prime} & 1180233^{\prime}\end{array}$ 3<054: 118056: $32036{ }^{\circ} 110028^{1}$ $\begin{array}{ll}32025^{1} & 129056^{\prime} \\ 32006^{\circ} & 1200271\end{array}$ 37047^{\prime} 121015' $370251 \quad 1220591$ 3100311202121 $\begin{array}{ll}300391 & 1,23^{\circ} 24 \\ 300221 & 124,002\end{array}$ $37051^{\prime} 117032{ }^{\prime}$ 32030: 118012.5: 320701113053.5^{\prime} $31050^{\circ} 1.19034$

$$
\begin{array}{lll}
32011.5^{8} & 11707^{\prime \prime} & I \\
31055^{\prime} & 117050^{\prime} \\
310371 & 1180 \% 30,51
\end{array}
$$

ITot occupied

$$
I T-7.5 \quad 0055
$$

IV-15 04:25
$1 V-15$
inct occupied
$30055^{\prime} 119050.5^{\circ}$ IV-14 1775
$\begin{array}{llll}300301 & 100024 & I V-T H & 1740 \\ 300191 & 10101,1 & I J-I 4 & 0000\end{array}$
31040.3* 3.16047^{\prime}

IV-I? 0050
500501 II30031 IV- 3.5 $\begin{array}{llll}30040^{\prime} & 7180501 & \text { IV-16 } \\ 30019.5 ; & 712029.5^{\prime} & \text { IV-15 }\end{array}$ 20057.21 1:0010' IT-15 29026. 120049 IV-15 200ำ 121029' IV-15 $28057.5^{\prime} 122003.5^{\prime}$ IV-14 23039.5^{\prime} 122043.5! IJーI4 300391116032.7^{\prime} 29046.5.110001' IV-II $89036.5^{\prime} 11.0^{2021}$ 29023.5: 11505 IV-12 $23050^{\circ} 117^{010}$ IT-12 $280361 \quad 113013.5^{\prime}$ $28^{\circ} 15.81113057^{\circ}$

IT-13
13.
13.5
12.25
22.25
2.2 .5
12.25
12.75
12.5
13.75
13.0
120.5
12.25
22.25
22.5

1625
72.75
$0-7 n$

39.7	1.971
407.2	1.322
4.45	1.500
400.5	1. 544
403,0	1. 877
393.8	1.849
404.7	1.890
1024.3	. 660
302.8	2.019
733.2	1.009
730.3	1.052
869.0	. 225
240.1	. 817
33\%.6	1.992
4.49 .3	1.567
330.3	2. 512
32.0	2,36.1

23.

23,0
22.25
3.010
1.020

0200
2145
1535
2240
1425
1815
0000
0605
2250
oum
12.25
12.0

0-74 4.707.2
0-67 42.5

1. 500
2. 51
$13.0 \quad 0-72 \quad 400.5$
3. 8.877
4.

$0-70 \quad 403,0$
1.049
7.3075
$0-77$
$0-03$
$0-77$
$0-72^{2}$
$0-77$
$0-53$
(0-0.)
$0-77$
$0-7$
$0-83$
$0-75$
318.
2.36.
18.0

1053
1050
01:30
0
$0-$
$0-$
$0-$
$0-6$
$0-$
$0-$
$0-6$
22.
22.
$\therefore 2$.
22.75
22.75
22.5
22.5
?2.
22.75
22.75
22.5

Record of Obliane dauls made with Planlon iets during Cruises ll-18 in 1950
 Sturined

110.90	$28^{\circ} 001$	119035'	IV-13	1035	22.5	0-57	661.0	1.020
110.100	$27^{\circ} 33.71$	12001\% ${ }^{51}$	IV-13	1505	22.5	0-70	689.1	1,014
110.170	$27^{\circ} 22^{\prime}$	120053^{\prime}	IV-1?	2155	22.5	0-70	635.6	1.018
113.35	29012.5 ${ }^{\text {P }}$	1150391	IV-11	0820	22.5	0-73	614.7	1.188
117.35	$28^{\circ} 36.31$	115016	IV-1.	0.250	22.5	0-71	657.3	1.070°
120.35	28003.31	1210054.61	IV-10	0850	21.75	0-72	302.1	1.988
120.45	27039.51	113032	IV-T0	0020	22.75	0-71	665.4	1.073
120.50	$27^{\circ} 311$	115054	IV-9	2035	22.5	0-6?	685.6	1.013
120.60	$27^{\circ} 13.51$	1160331	IV-9	1500	22.5	0-70	711.3	. 981
120.70	$20^{\circ} 51.51$	1170141	IT-9	1025	2.05	0-71	624.5	1.036
120.80	$26^{\circ} 32.21$	11.7051.21	IV-9	0450	22.75	0-72	601.0	1.089
120.90	$26^{\circ} 12.51$	11.80291	IV-8	27.35	$2 \% 0$	0-68	705.7	. 965
120.100	$25^{\circ} 52.5^{\prime}$	11.9006	IV- 8	10.35	22.5	0-6\%	71.1 .5	. 938
1.20.110*	$25^{\circ} 31^{\prime \prime}$	119046:	IV-8	1120	23.5	0-7.	605.3	1.021
123.40	$2^{\prime 2} 96.21$	1.14051:	IV-5	0.35	22.25	0-70	621.5	1.130
123.50	$27^{\circ} 02^{\prime \prime}$	I15030'	IV-5	091.5	2 2 .5	0-70	670.1	1.040
123.60	$26^{\circ} 38^{\circ}$	1160091	IT-5	1110	22.5	0-70	670.4	1.047
127.40	2604.31	114009.51	IV-6	0725	22.5	0-68	643.6	1.050
127.50	250\%21,31	115011.5'	IV-6́	0100	23.0	0-73	616.8	1.187
127.60	26004,	1115040:89	IV-5	2005	23.25	0-17	65.3	1.091
130:35	$26^{\circ} 16^{\prime \prime}$	1130451	IV-6	14:20	2n. 75	0-6?	063.1	1.039
130.40	260091	114007.3^{1}	IT-6	120	22.75	0-31	542.6	1.309
130.50	250491	11404:6.5 ${ }^{\prime}$	IV-6	2335	3.75	0-68	602.0	. 994
130.60	250201	$11500 \% 1$	IV-7	0440	22.5	0-68	606.0	. 973
130.70	$25^{\circ} 12^{8}$	$110^{\circ} 02.81$	IV-7	1125	23.0	$0-6$?	603.1	. 993
1.30,80 \%	34010?	1100401	IV-7	1755	24.95	0-69	700.0	.983

Curice 14								
3-40.45 *	417033	12.5000^{\prime}	V-16	1820	13.5	0-59	$1: 01.2$	1.730
40,50	$41^{\circ} 23^{\prime}$	1250231	T-16	1135	13.65	0-63	516.6	1.218
140.60	41.0031	1260091	-1.6	0410	33.5	$0-17$	(377,8)	1.371
40.70	400421	12005:1	V-7 5	2045	14.0	0-13	(364.5)	2.008
40.80	40423:	1270401	$\mathrm{V}-15$	1245	24.5	0-72	603.9	1.187
40.80	40.02^{\prime}	128025^{\prime}	V-15	0.325	24.75	0-r1	305.3	. 886
40.100	30042:	129010^{\prime}	T-1\%	1730	23.75	$0-74$	598.0	1.216
40.110 *	$39^{\circ} 23^{\prime}$	129055^{\prime}	V-14	$0 \% 15$	25.0	0-70	786.6	. 892
43.50	400481	124057^{1}	-16	2315	14.65	$0-68$	473.2	1.47 .6
43.60	400281	125043	T-17	0620	24:0	0-65	795.4	. 313
4.725			Not quantitatjue					
47.60	390541	1250188	「-1?	1210	24.25	0-r ${ }^{2}$	733.2	1.011
50,55	$300 \% 301$	$12^{1} 1030^{\circ}$	$\mathrm{V}-10$	2200	13.0	0-53	1:38.9	1.326
50.60	390201	124052'	V-1.1	037.0	24.5	0-75	575.1.	1.297
50.70	39000:	125030.51	V-71	1055	23.25	0-70	569.9	1.259
50.30	38020:	1260\%.	V-2]	175:	23.25	0-64	983.3	. 550
50.90	330201	$127^{\circ} 05^{\prime}$	$\mathrm{V}-12$	0020	1.4 .0	0-73	444.5	1. 649

Tuble I（contid）

50.100	380001	1291051	V－1？	0725	13.75	0－69	2095	2.303
50.170	33^{101}	1：8033＇	サーフ2	1275	14.0	0－69	204.3	3.373
50，180	370201	12001u．51	$\because-72$	20：0	24.25	0－36	4.560	1.431
50.130	370001	1300001	V－I3	0335	24.35	O－óó	81.7 .5	.807
55.60	30023.5^{1}	12401：＇	$V-10$	0340	124．5	0－72	42.50	1.706
60.60	$37^{\circ} 371$	$12303{ }^{1}$	$\mathrm{V}-3$	1905	12．5	0－69	（3）7．1）	1．7．43
60.8	37017	$124021{ }^{1}$	$7-8$	1055	24.5	0－09	（71．9．6）	． 961
60.30	35057^{8}	1250041	T－8	0205	23．0	0－70	3\％4．3	2.152
60.90	360371	12501，7	V－7	1030	15.25	0－36	（490．6）	1．343
60.700	30078 ：	L＇áoso＇	T－7	0040	30.5	0－65	(992.5)	． 659
60.710	35051	1：3012 ${ }^{1}$	7－6	2050	13.25	0－6．	504.3	1.044
60.120	350371	127054．51	V－5	1220	2\％．0	0－73	606.7	1.092
60.130	$35^{\circ} 17^{1}$	128037^{1}	V－ó	0305	23.75	0－69	551.3	1． 2250
61.55	$33^{20} 3{ }^{1}$	123007.51	T－9	02.00	24， 25	0－58	758.3	． 803
65.60	$36045{ }^{1}$	123000＇	$\because-2$	200	23.5	0－70	446.3	1.573
70.5	$30^{\circ 003}$	122002＇	－3	04.55	13．5 5	0－68	453.0	1．512
70.60	350531	1220231	V－3	0935	17.0	0－55	314.1	1．7442
$70 \cdot 90$	350331	1230061	V－3	1025	13．0	0－66	436.9	7.500°
70.30	350.21	123014	$\mathrm{V}-3$	21.10	14.0	0－68	3.3 .2	1.775
70.90	$3405 ?$	1240201	\bigcirc	0.705	13.25	0－6＇	1407.0	1.426
70.7 .00	$34: 033^{\prime}$	155072＇	$\because-4$	2江0	24.0	0－38	590.9	1，157
70.110	34013^{1}	1250361	－4	2010	23.5	0－70	（0́ra．2）	2.043
70.120	330531	220035.51	V－5	0.245	2：0	0－62	（722．0）	－ 223
70.130	33033°	129096．5	7－5	1000	0.203	0－ro	701.7	－ 270
-80.55	31021	12.00501	$\because-3$	0305	25，0	0－67	10\％ 0 ？	． 599
80.60	320101	181010＇	$\because-3$	1200	130．35	0－30	500.3	1.382
20．90	330501	12105 ${ }^{1}$	V－3	1005	12．5	0－59	408.8	1．422
80.80	33033	122032	$\mathrm{V}-14$	0020	72.25	0－66	54.6	1.210
60.50	330001	12－073＇	－4	0640	3\％0	0－59	4029	1.230
80.100	．320\％ 01	1.350 .41	T－4	1305	12.5	0－61	487.3	1． 254
30.110	320201	1240\％	T－4	1.55	12.5	0－7．3	411.5	1.787.
80.120	320091	125015	7－5	0135	13.0	0－85	39.8	2.436
80.730	31.501	$\underline{25057}{ }^{\prime}$	V－5	0700	12．75	0－24	448.2	1.656
83.55	3304.4	1＜0024．51	V－12	0：245	13.5	0－56	550.3	1.008
83.00	$33^{\circ} 341$	12004.51	V－17	22.35	7．6．？5	0－？	420.6	1.705
63.70	33014.31	$1210.26{ }^{\circ}$	$\because-\mathrm{i}$	1630	12.55	0－39	54.9	． 004
83，80	32040%	$122006{ }^{1}$	－－11	0.30	$\therefore .3 .25$	0－3	733.5	1.017
83.90	$32^{\circ} 351$	12204，	V－11	0355	23．0	$0-10$	721.8	． 396
87.35	33050	1．13037．51	V－？	1105	12.0	$0-13$	454.0	1．60\％
87.0	$33^{\circ} 401$	118058.51	17？	1700	12.25	0－40́	628.6	， 740
37.50	330201	130039.51	T－9	27.20	11.5	0－64	163.0	1.391
87.60	330001	120021.51	7－10	02.55	≥ 3.0	0－3	$\therefore 24.9$	1.600
87，70	320401	1210041	V－．20	0025	13．5	0－36	$\therefore 75.9$	1.33 .5
87.30	32019.5^{1}	12104．31	V－10	1520	23，0	0－65	833.6	． 779

Toble I (cont'u)
Record of Oblique Souls maie witio Planton Iets curing Cruises 21-18 in 2250

37.90	$32^{\circ 001}$	$122^{\circ} 25^{\prime}$	V-10	2045	23.75	0-49	1060.3	. 160
90.30	$33^{\circ} 24.51$	$117^{\circ} 55^{\prime}$	i-8	1215	12.25	0-52	545.7	. 951
90.37	330171	$110^{30} 23.51$	- 3	0745	12.5	0-50	553.9	. 370
90.45	$32056{ }^{\prime}$	1.18057	V-3	0205	13.25	0-6́6	4.88 .6	1.353
90.53	$32^{\circ} 35^{\prime}$	119026^{\prime}	T-7	2015	12.75	0-63	442.7	1.432
30.60	$32^{\circ} 25^{\prime}$	11.00561	T-7	1600	23.25	0-75	706.2	1.053
90.70	$32^{\circ} 04.51$	1:00381	-7	0335	2, 6.75	0-60	810.0	. 809
30.30	37.0501	1210.25	$V-7$	0315	23.75	0-31	609.0	1.214
90.90	37.0271	1.2051	V-S	2010	23.25	0-72	742.2	. 971
90.100	$31^{\circ 0} 4.51$	1220:0'	7-0	13.0	23.0	0-53	94.5 .1	. 553
90.110	30046	$123^{\circ} 1{ }^{1}$	V-ó	005	2.0	0-6)	730.7	. 869
90.120	$30^{\circ} 34.5{ }^{\prime}$	124001'	V-5	2305	2.95	0-73	745.2	. 982
93.30	32.0501	$11.7031 .5^{\text {i }}$	$1-1.2$	1735	23.75	$0-57$	926.1	. 611
23,10	32.030^{1}	17.8012 .51	V-?	2305	18.0	0-53	$44 \% .5$	1.293
93.50	32007	178051	$1-23$	0.4 .45	1\%.0	0-43	634.2	. 673
93.60	310401	119034.1	V-13	1.05	20.5	$0-6$?	756.1	. 815
?3.70	310081	12:0016	Y-3	1770	23.0	0-63	376.4	.714
93.80	310014	320058.51	V-12	2323	12.0	0-71	4i:2.?	2. 595
23.90	$3003{ }^{1}$	12104.51	V-? 4	0.510	1\%.0	0-65	452.0	1.445
97.32	32021.5^{1}	17.707°	--0	0030	78.5	0-7)	457.0	A. 545
97.40	310561	1170511	V-7. 5	1355	12.5	$0-27$	583.8	. 202
9.50	310364	1130321	$\mathrm{V}-1.5$	1235	$1 ? .75$	0-5].	431.7	1.200
97.60	31015.51	119010.51	T-IT	0635	12.0	$0-45$	51.7	.76́1
97.70	300551	118050.31	- -15	0055	I. 2.25	0-70	403.3	1.951
87.00	$30 \times 35{ }^{\prime}$	1.300311	V-14	1805	12.5	0-30	519.2	3.150
97.90	30007.51	$121^{\circ} 11^{\prime}$	- -12	1205	72.55	0-38	352.].	2.499
- -7.00 .30	31^{01401}	1160!'01	V-15	1930	12. 25	0-6́8	362.4	1.863
100.40	$3703{ }^{1}$	11.701^{\prime}	-15	1405	20.25	0-72	575.7	1.233
1.00.50	$37^{\circ} 07^{\prime \prime}$	113002^{1}	- -15	07.5	2. 2.75	0-70	5.3 .7	1. 240
100.60	$300 \cdot 51$	17.80441	P-13	0235	23.5	0-71	623.3	2.145
100.70	$30^{\circ} 251$	$1190{ }^{2}{ }^{1}$	V-2 ${ }^{\text {2 }}$	2005	22.5	0-70	64.4 .7	1.036
100.80	30.05^{1}	$120004{ }^{\text {i }}$	V-1 4	1420	23.25	0-71	034.8	1.120
100.50	200431	120043'	V-14	0050	22.75	0-72	52.5	1. 222
100.100	290231	121025^{\prime}	$\mathrm{V}-14$	0300	23.25	$0-13$	567.9	1.237
100.110	$29^{\circ} 04$.	$22.200{ }^{\prime \prime}$	T-13	21.35	22.75	$0-72$	640.9	2.110
100.120	28044.8	$12203{ }^{1}$	T-13	1535	23.5	0-72	630.1	1.099
105.35	300321	1100291	V-2	2345	23.75	0-34	736.1	.867
110.35	290101	1160031	V-11	0015	23.0	0-08	654.0	1.04?
? $110 \cdot 40$	25029	1150221	-11	105.5	23.75	0-ó?	0.4 .6	.976
110.50	29016:	$110^{\circ} 59^{\prime}$	7-11	1035	22.75	0-60	712.1	. 94
110,60	280551	$117^{\circ} 40^{\prime}$	V-11	2215	2j. 5	0-68	683.5	. 835
110.70	28033°	11.9024 .1	T-12	0355	22.75	0.70	59.1 .7	2.015
110.80	$22017{ }^{\prime}$	118055^{\prime}	T-12	0050	23.15	$0-70$	650.7	2.073
110.90	270551	$17803{ }^{1}$	-12	1315	23.0	$0-70$	652.2	1.070

Table i（cont ${ }^{\prime}$ ）
Record of Cblique Fauls min witin innoton ets during Gmises ？I－I3 in 1950

Stetion	T． Ic cos	－ 100%	Dite	－002	hranion oi Ful	Jepth Meters	Vol．Of Moter Straired	$\begin{gathered} S \\ \text { Recton } \end{gathered}$
110.100	270381	1200151	V－72	2100	23.5	$0-72$	$657=0$	1.096
110.110	27022^{1}	120055	$V-1.3$	0230	22.75	0－72	03.38	1.112
113.35	\％90711	115041	V－11	0045	22．5	0－1．	580.2	1.227
11\％．35	280371	$115^{\circ} 16^{\prime}$	V－1．0	1915	23.0	0－00	722.3	． 9.20
120.35	$\therefore 30031$	1146541	T－10	1420	19.25	0－56	303，0	1.537
1．20．4．5	2702^{1}	115032＇	$\mathrm{V}-\mathrm{O}$	110%	22．75	0－73	500.5	． 2.227
120，50	$\therefore 700^{181}$	115053^{1}	T－O	0635	23.5	$0-13$	678.7	$\bigcirc .070$
120.60	． 210201.	21.5033^{1}	T－？	0055	$23=0$	$0-10$	$\bigcirc 25.2$	． 905
120.70	$2900{ }^{1}$	2170671	\％－8	1500	2 2.0	0－32．	072.3	1.093
120.80	2601：61．	2170531	T－8	1325	22.75	0－69	\％－9，5	． 24.9
120.90	Auoati	1180321	V－8	0850	23.5	0－72	023.1	1．04：2
120.100	20000^{1}	11.007 .51	V－8	09.00	33.0	0－\％3	524.8	1．301
120．110\％	2,5031	$119035:$	V－？	1．502	23.0	0－3	719.5	1.020
123．40	270161	121054．5	T－6	039	13．1：5	0－63	19．1	1．613
123.50	250.57	1150371	－4	010	20．5	0－70	0，6．1	2.011
123.60	26037.21	$110^{\circ} 09.51$	T－4	3.45	$\therefore 2.0$	0－72：	69.7	2．070
127.40	260391	214033^{\prime}	T－5	0855	22.75	0－72	6rox4	2．060
127.50	20.031	$215^{\circ} 03.5^{\prime}$	－5	0253	22.5	$0-1$	550 － 3	1．232
127.60	20051	1150131	V－2！	20	23.0	0－r	604.4	1.064
130.35	200191	$71.30{ }^{1}$	－-5	2535	22.5	$0-12$	$\therefore 69.9$	1．1：20
130.40	25010%	12．003：	V－5	1935	23.0	$0-6$ ？	j20．？	1.030
1.30 .50	250198	114045	V－6	0205	23.75	0－12	653．5	1.103
130.60	250031	$115^{\circ} 23^{\prime}$	V－b	0820	22.75	0－69	690，8	.903
130.70	250031	110010：	T－6	14.55	25.75	0－68	750.5	.802
130.80%	240551	115041	サー6	2345	23.25	0－72	773.6	． 237

Cruise 15
$3-40.45$
40.50
40.60
40.70
$40.30 \cdot 40023:$
$40.90 \cdot 100021$
$\begin{array}{lll}40,100 \cdot & 390421 & 1200.10 \\ 40.110 & 39021 & 12005\end{array}$
43.50
43.60
47.55
4.7 .60
50.55
50.50
50.70
$50.80 \quad 33040^{\prime}$
$50.90 \quad 38 \circ 20^{\circ} \quad 127009^{\prime}$
$50.100 \quad 33^{\circ} 00^{2} \quad 12,1049^{\prime}$
ITct occupied
Tot occupied
Not occraided
サI－20 1020

12.75	$0-75$	376.0	2.003
14.75	$0-07$	447.7	1.497
12.75	$0-68$	403.4	1.600
12.75	$0-71$	383.6	1.027
13.0	$0-72$	350.9	1.812

Table I (cont'd)
Fecord of Oblaue Oeuls made with Flinton Nets during Cruises 11-18 in 1950

Station	Position		Dete	hour	Duration of inaul	Depth Meters	Vol. of Mater Strained	$\begin{gathered} \mathrm{S} \\ \text { Factor } \end{gathered}$
	I. lat.	H. Iong.						
50.110	37040^{\prime}	$123^{\circ} 33^{\prime}$	VI-18	0525	12.25	0-72	369.4	1.941
50.120	370201	$129^{\circ} 10.51$	VI-19	1120	12.0	0-66	351.0	1.383
50.130	$37^{\circ} 00^{\prime}$	130000^{\prime}	VI-18	1700	12.25	0-71	301.5	2.361
53.54	$33^{\circ} 53^{\prime \prime}$	1240001	VI-16	1000	12.0	0-68	330.3	2.053
53.64	$38^{\circ} 33^{\prime \prime}$	12110441	VI-15	0010	12.75	0-72	325.1	2.227
57.54	380241	123035'	VI-15	0925	12.25	0-65	411.4	1.580
57.64	380041	$124^{\circ} 19^{\prime}$	VI-15	1530	16.75	0-'71	444.1	1.608
60.60	370371	$123^{\circ} 3^{\prime \prime}$	VI-14.	1625	13.5	0-71	352.6	2.005
60.70	37017^{\prime}	$124^{\circ} 21^{\prime}$	VI-I 4	0945	1.5 .0	0-64	393.5	1.619
60.80	360571	$125^{\circ} 04^{\prime}$	VI-14	02.5	13.0	0-72	358.7	2.016
60.90	300371	$12504{ }^{\prime \prime}$	VI-13	1820	23.0	0-69	662.0	1.0147
60.100	360171	$126^{\circ} 30^{\prime}$	V-13	7.040	23.75	0-70	713.0	. 985
60.110	$35^{\circ} 57^{1}$	$127^{\circ} 1^{\prime}$	VI-13	0330	14.0	0-72	380.1	1.889
60.120	$35^{\circ} 371$	127054.5^{\prime}	VI-1?	2000	25.5	0-72	733.5	. 978
60.130	$35^{\circ} 17^{\prime}$	$128^{\circ} 37^{\prime}$	VI-I2	1220	22.25	0-72	690.0	1.034
61.55	$37^{\circ} 37^{\prime}$	$123^{\circ} 07.5^{1}$	VI-1!	21.20	13.0	0-61	379.6	1.615
63.57	$37^{\circ} 09^{\prime}$	$122^{\circ} 8^{\prime}$	VI-5	1825	12.5	0-74	432.7	1.713
63.67	360491	12304.1'	VI-6	0625	14.0	0-72	365.1	1.969
67.55	350391	$122^{\circ} 2^{\prime \prime}$	VI-?	0825	13.25	0-73	385.6	1.885
67.65	360191	123001	VI-6	1720	14.75	0-42	625.0	. 670
70.55	$36^{\circ} 03^{\prime}$	$122^{\circ} 02^{\prime}$	VI-9	0935	18.75	0-81	662.0	1.221
70.60	$35^{\circ} 53^{\prime}$	$122^{\circ} 23^{\prime}$	VI-9	1.435	23.25	0-69	605.7	1.142
70.70	$35^{\circ} 33^{\prime}$	1230061	VI-9	2100	2.65	0-66	54.2 .5	1.226
70.80	$35^{\circ} 13^{\prime}$	12301431	VI-10	0430	24.0	0-63	382.2	1.771
70.90	340531	124030^{\prime}	VI-10	1050	22.25	0-63	443.6	1.542
70.100	$31,033^{\prime}$	$125^{\circ} 12^{\prime}$	VI-10	1805	14.25	0-77	342.7	2.247
70.110	$3^{4} 4^{\circ} 13^{\prime}$	1250541	VI-11	0135	24.75	0-67	642.7	1.046
70.120	$33^{\circ} 53^{\prime}$	125035.5^{\prime}	VI-11	0950	23.0	0-70	585.5	1.196
70.130	$33^{\circ} 33^{\prime}$	12,900.5'	11-11	1705	24.0	0-70	561.5	1.248
-73.51	35035'	$121^{\circ} 20^{\prime}$	VI-0	0705	12.5	0-70́	382. 3	1.998
73.61	$35^{\circ} 15^{\prime}$	12.2003^{\prime}	VI-8	1235	12.75	0-68	412.7	1.645
77.55	340541	121013^{\prime}	Vi-9	0010	13.75	0-67	(425.2)	1.578
77.65	$34034{ }^{\prime}$	121055^{1}	VI-3	1745	12.5	0-78	337.4	2.008
30.55	3401.91	120040^{1}	VI-?	0510	13.0	0-75	417.1	1.303
30.60	31,0091	$121^{\circ} 01$	-I-S	0910	12.75	0-82	35:.6	2.293
80.70	330491	1210581	VI-9	1450	12.75	0-69	403.7	1.709
80.30	$33^{\circ} 31^{\prime}$	$122^{\circ} 33^{\prime}$	VI-9	1950	12.25	0-68	385.2	1.752
80.90	$33^{\circ} 12^{\prime}$	$123{ }^{\circ} 2^{\prime}$	VI-10	0205	12.0	0-70	359.1	1.941
80.100	320491	1230561	TI-10	0755	11.75	0-69	363.5	1.901
30.110	3202.91	124.341	VI-10	1325	12.0	0-69	334.1	1.799
81.120	320091	12150951	VI-10	1930	1\%.0	0-67	380.9	1.756
80.130	310491	1250561	VI-11	0120	12.0	0-70	384. 3	1.829
83.55	$33^{\circ} 41^{\prime}$	120025^{\prime}	VI-16	0010	12.25	0-71	291.4	2.430
83.60	$33^{\circ} 3^{\prime}$	1200451	I-1. 6	0225	12.25	0-68	$26 \% .2$	2.552

Table I (cont!d)
Recoid of oblique aduls mode with Planton ets during cruises 11-18 in 1950

Toible I (cont'd)
Record of Oblique Zauls made with Planloton ilets during Cmises 11-18 in 1950

Station	Tot	it. $10 n \mathrm{E}$	Date Hour	Duration of Haul	Depth Dioters	Vol., of Water Etrained	S Factor
1.00.120			TYot occupiea				
105.35	$30^{\circ} 391$	$116^{\circ} 33^{\prime}$	VI-22 1555	20.25	0-60	493.4	1.214
110.35	$23^{\circ} 146.5^{8}$	$116^{\circ} 00^{\prime}$	VI-22 0655	23.25	0-69	619.8	1.115
11.0 .45			Not occunied				
110.50			Not occupied				
110,60			Not oscupied				
110.70			ITot occrupied				
110.80			ITot occuvisa				
110.90			Iot occupied				
11.0 .100			Rot occuried				
110.110			Not occupied.				
113.35	$29^{\circ} 12^{\text {\% }}$	11.5039^{\prime}	VI-22 0020	22.5	0-67	645.9	1.044
117.35	$28^{\circ} 37^{1}$	$115^{\circ} 16^{\prime}$	Vi-21 1320	24.5	0-0.9	484,0	1.434
$1<0.35$	28.03^{\prime}	$114^{\circ} 5^{\prime}{ }^{\prime}$	VI-2? 1245	21.75	0-68	$4: 2.6$	1,525
120.45	27043^{1}	$115^{\circ} 33^{\prime}$	Vi-21 0r00	21.25	0-62	601.5	1.037
120.50	$27^{\circ} 33^{\prime}$	$115^{\circ} 52.5^{\prime}$	VI-20 1040	19.25	0-59	597.2	. 981
120.60	$27^{\circ} 13^{1}$	116031.5'	Vi-20 1035	22.0	0-62	700.1	. 890
J. 20.70			liot occuriea				
120.80			Vot occrivied				
1.20 .90			Tot occuluted				
220.100			Vot occuinied				
120.110			Not uccuried.				
123.40A	27°	114051.51	VI-1.2 0920	23.0	0-67	785.6	. 850
123.408	$27^{\circ} 181$	114051.51	VI-19 2:10	22.5	0-6́4	726.1	. 879
183.50	2.60581	11.5030 .51	VI-19 151.5	22,25	0-6́6	735.9	. 894
1.23 .60	26038.5^{\prime}	116009:	VI-29 0910	22.0	C-68	688.4	. 983
127.40	26043.5'	114029.5'	VI-13 1.140	23.75	0-70	689.7	.1.019
127.50	26023.5?	$115^{\circ} 03^{\prime}$	Vi-13 1830	22.25	0-69	697.5	. 992
127.60	26003.51	I15046.5'	VI-19 0025	21.5	0-72	699.2	$\geq .024$
730.35	$26^{\circ} 22^{\prime \prime}$	113054.	VI-14 1025	22.5	0-70	725.7	. 963
1.30.40	$26^{\circ} 09^{\prime}$	$114^{\circ} 07.5{ }^{\prime}$	VI-14 1529	23.0	0-66	680.7	. 962
130,50	$2501 / 91$	114046:	VI-1\% 2325	22.25	0-6\%	69.4	. 998
130.60			Not occunied.				
130.70			Not occapjed.				
130.80			ごot occipied				
Cruise 16							
-40.45	$1: 10331$	$125^{\circ} 00^{\prime \prime}$	VII-22 1705	12.25	c-63	320.0	2.140
40.50	$41^{\circ} 23^{\prime}$	$125^{\circ} 23^{\prime}$	VII-22 1300	13.25	0-69	369.2	1.877
40,60	$41^{\circ} 03^{\prime}$	1260091	VII-22 02:50	1.3.75	0-75	$34 \% .0$	2.150
4.0 .70	$40042{ }^{1}$	126055^{\prime}	VII-21 2120	13.5	0-70	355.9	1.956
40.80	$40023{ }^{\prime}$	1270401	VII-21 1315	23.75	0-72	658.9	1.079
1:0.90	$40002:$	128025^{\prime}	VI-? 0550	$1 \% .25$	0-76	34.4 .2	2.223
40.100	390421	$12.9{ }^{\circ} 0^{\prime}$	VII-20 2110	23.75	0-71	653.1	1.096
40.110	30023:	1290551	VII-20 14: 5	23.0	0-72	621.5	$\underline{2} .150$

Table I (cont'd)

Record of Oblique Fouls made with Planton iets Guring Ciuisen ll-18 in 1950

- Poxtion

Stoticil in. lat. in longe Date Hour of Houl Metors Vator Factor

43.50	40048:	1240579	VII-22	2405	13.5	0-70	293.7	2.370
43.60	$1: 00281$	125043:	VII-23	0540	12.25	0-77	22.7 .3	3.375
4.7 .55	40004:	124. $5^{\prime \prime}$	VII-23	1650	13.5	0-72	334.1	2.146
47.60	39054	1250181	VII-23	1145	14.0	0-74	310.2	2.395
50.55	39030^{1}	124030	VII-17	1.105	12.35	0-69	33.1	1.760
50.60	30020:	1240521	VTI-17	2000	12.75	0-69	3.33 .0	2.063
50,70	39000:	125036.5	VII-18	0245	13.25	0-69	$31: 0.0$	2.035
50.80	330110	126021^{\prime}	Vil-J. ${ }^{\text {c }}$	1.000	13.9	0-06	390.5	7.703
50.90	38020^{\prime}	12.90051	VII-13	1.625	14.75	0-60	307.9	1.699
50.100	380001	$12.7019{ }^{\prime}$	VII-I3	2305	24.0	0-70	657.7	1.070
50.110	37040^{1}	128033^{\prime}	V1-19	0605	23.85	0-67	742.9	. 800
50.120	370201	129096.5'	VII-19	1.335	23.25	0-70	6003.8	1.04%
50.130	$3 \mathrm{raO} 0^{1}$	130000'	VIT-19	1305	23.0	0-69	72.6,6	.952
53.54	350531	124000	VIT-1?	0735	23.75	0-13	32.7	2.258
53.64	$380 \% 1$	12401:4.	ViJ-26	2100	13.5	0-71	32. 5	1.819
57.54	38024	123035	VII-16	01.55	23.75	0-72	581.7	1.236
57.64	38.04 .1	1214019:	VII-10	1125	$\bigcirc 5.0$	0-67	301.3	1.849
60.60	370371	123037^{1}	V1I-15	3420	23.75	0-74	486.6	1.511
60.70	$37017{ }^{1}$	124021:	VII--15	0630	24.75	0-7?	4.61 .6	1.664
60.80	$30^{\circ} 5^{\circ}{ }^{\circ}$	125004	- 5 I-14.	1820	23.15	0-67	539.8	1.236
60.90	360371	725447	VII-1!	0740	24.5	0-68	609.3	1.108
60.100	$36^{\circ} 17^{\prime}$	126030^{\prime}	VII-I3	2753	24.25	0-68	653.9	3. 023
60,110	350571	127012^{1}	VII-13	14.50	24.0	0-ú9	64.2 .7	1.077
60.120	350371	1.2.70 ${ }^{\prime}$	VII-13	0535	22.5	0-63	700.8	. 909
60.130	35017 ,	1230371	VII-1?	2125	24,0	0-67	710.3	. 240
61.55	370371	123007.5'	VII-15	2040	24.5	0-72	69.2	1.023
63.57	$37^{\circ} 09^{1}$	122058^{\prime}	VII-6	2110	24.3. 5	0-68	832.0	. 314
63.67	36049	$12.3041{ }^{1}$	VII-?	0440	26.75	0-69	750.3	, 8rI
67.55	360391	1220261	VII-9	1305	23.75	0-69	51.8	1.333
67.65	$36^{\circ} 191$	$12300{ }^{1}$	VII-9	0600	24.5	0-72.	597.1	1.348
70.55	. 36003^{\prime}	$12200{ }^{1}$	VII-9	2010	24.0	0-72	572.6	1. 263
70.60	$35^{\circ} 53^{\prime}$	$122^{\circ} 23^{\prime}$	VII-10	0050	24.0	0-70	522.1	1.3445
70.70	35033:	$\underline{23} 3001$	VII-IO	0820	24.0	0-70	591.2	7. 182
70.80	$35^{\circ} 13^{\prime}$	123048:	VII-10	1540	24.0	0-72	545.8	?. 325
70.80	34,053:	121030:	VII-10	2340	25.5	0-69	526.4	1.315
70.100	34:33!	1.25012 ${ }^{1}$	VII-II	0655	$2+0$	0-14	577.0	1.279
70.110	34.013^{1}	125054'	VIT-11	3.345	24.0	0-12	593.2	1. 197
70.120	330531	1260355^{\prime}	VII-11	2005	23.5	0-72	563.4	2.274
70.130	33033^{1}	127016.51	VII-12	0225	23.5	0-73	667.2	1.091
-73.51	35035.5^{\prime}	$121.20{ }^{\circ}$	VII-3	1030	12.0	0-71	363.7	1. 24.9
73.61	$35^{\circ} 15.51$	$122.02 .5^{\prime}$	ViI-3	1455	12.5	0-66	343.3	1.393
77.55	340541	121013^{\prime}	VII-9	0105	12.75	0-66	23304	2.307
77.65	30341	121054.31	VIT-8	1.95	12.25	0-7].	3:3,2	2.036
80.55	34013.51	2200521	VII-9	0555	12.75	0-70	402.9	1.72?

Table I (cont'd)
Record of Oblique Fauls made wita Plenkton ITets curing Cruises 11-18 in 1950

80.50
80.70
80.80
80.90
80.100
30.110
80.120
80.130
83.55
83.60
83.70
33.30
33.90
86. 50
87.35
87.40
87.60
87.70
37.30
87.90
90.30
90.37
20.45
90.53
20.60
90.70
90.80
90.90
90.100
90.110
90.120
93.30
93.40
93.50
23.60
83.70
93.80
93.90
97.32
97.40
97.50
97.60
97.70
97.80
97.90
$34,003.611210701$ VII-9 33047' 121052.5' VII-9 $33^{\circ} 29.5^{\prime} 122^{\circ} 32.5^{\prime}$ VII-9 $33^{\circ} 10^{\prime}$ 123013.5 VII-10 32049.5' 123054.55^{\prime} VII-10 $32^{\circ} 29.5^{\prime}$ 12l:O35.5' VII-10 32011.5' 1250761 VII-10 $3!0491 \quad 1250561$ TII-10 $33045^{\prime} 120^{\circ} 26^{\prime}$ VII-1. 6 $33^{\circ} 30^{\prime} 120040.21$ VII-16 $33^{\circ 17.75 i}$ 121021' VII-15 $32^{\circ} 56^{\circ}$ 122005:8' VII-15 $32035.5^{\prime} 1220,47$ Vili-15 30026.5' 1.100/4.5. 51 II-14. 33050: $210^{\circ} 37.5^{\prime}$ TII- 3 33041 1180591 VII-14 33001' 1:0021.7: VII-14 32047.1 1910021 VIT-14 320201 1210431 TII-74 320071 1220.231 VII-15
 $32054{ }^{\prime}$ II8050' VII-13 32030.5^{\prime} II 180291 VII-1. 3 320ath.5' 119056.51 VII-12 $32006.5^{\prime} 1200391$ VII-12 $31045.5^{\prime} 101022^{\prime}$ VII-12 $31^{\circ} 281$ 120000.51 VII-12 31005.31 I 22041 T VII- -12 30045.51 123026: VII-2.]. $32024.51124004 .5{ }^{2}$ VII-13. 32051.5: 117032: VII-17 300301 118012.5: :II-17 17 32010.5' 113054 VII-17 $31^{\circ} 51.5$: 119032 V,Iー18 31030.31120013 .5 : VII-13 31011 l 120054 VIF H $30050.5^{\prime} 1210351$ VII-19 32013^{1} I17017.5'VII-22 31055.5' 1170501 VII-20 $3.031 .5^{\prime} 1180261$ VII-20 31015.5' 1190111 VII-20 30055: 119449.51 VIf-19 30036: 1200311 VII-19 3007.5: 1.21011' VII-19

0855
1144 1930 0050 0550
12

12
12
12
12
12
12
2.
12. 2:
12.0
12.
12.
1..。
12.
12.0
6.5

2245
0150
1755
1050
2200
0310
1705
1245
0820
0310
2255
1512
1040
0445
2315
1720
1110
0900
1440
2050
0930
1505
2125
0235
0040
29:
1125
335
2205
1455
0840
12. 25
14.0
12.
12.
13.
13.
12.25
22.75
12.75
13.75
12.
23.0
22.5
12.5
1.2 .0
22.5
22.25
22.5
22.25
22.75
22.5
22.25
22.75
22.75

0-67
361.4
1.832
12.0
1.2 .5
2.2 .55
$22 . \therefore 5$
$22 . \therefore 5 \quad 0$
$0-71 \quad 317.4$
$\begin{array}{ll}0-72 & 364.6 \\ 0-69 & 35.7\end{array}$
0-69 355.7
$0-72 \quad 37405$
$0-6) \quad 359.6 \quad 1.030$
$0-70 \quad 375.9 \quad 2.852$
$0-72 \quad 379.4 \quad 1.200$
0-65
425,6
1.541
$\begin{array}{ll}350.9 & 1.842 \\ 358.3 & 1.679 \\ 372.0 & 1.732 \\ 370.1 & 3.913\end{array}$
$\begin{array}{ll}350.9 & 1.842 \\ 358.3 & 1.679 \\ 332.0 & 1.732 \\ 370.1 & 1.913\end{array}$
$\begin{array}{ll}350.9 & 1.842 \\ 358.3 & 1.679 \\ 332.0 & 1.732 \\ 370.1 & 1.913\end{array}$
$\begin{array}{ll}350.9 & 1.842 \\ 358.3 & 1.679 \\ 332.0 & 1.732 \\ 370.1 & 1.913\end{array}$
2,234

1. 280
1.934
1.023

0-65
$0-69$
$\begin{array}{ll}178.7 & 3.861 \\ 336.4 & 2.004\end{array}$
$0-73 \quad 364.6 \quad 2.002$
$\begin{array}{lll}0-71 & 300.9 & 2.373 \\ 0-67 & 400.7 & 1.659\end{array}$
$\begin{array}{lll}u-7.3 & 300.6 & 1.503\end{array}$
$0-72$
367.8
1.849
$\begin{array}{lll}0-0 ́ 1 & 338.3 & 1.576\end{array}$
$0-0.7 \quad 330.4 \quad 2.034$
$0-69 \quad 330.1 \quad 2.090$
$0-70 \quad 344,3 \quad 2.024$
$\begin{array}{lll}0-83 & 277.2 & 2.080 \\ 0-7 i 4 & 300.2 & 2.407\end{array}$
$0-74 \quad 531.7 \quad 1.392$
$0-72 \quad 557.7 \quad 1.282$
$0-69 \quad 603.9 \quad 1.013$
$\begin{array}{lll}0-72 & 356.3 & 2.01 .0\end{array}$
$\begin{array}{lll}0-72 & 362.0 & 1.939\end{array}$
0-0́8 405.7 1.676
$0-0$? $07.8 \quad .990$
$0-07 \quad 080.7 \quad .980$
$0-68 \quad 086.5 \quad .988$
.992
1.044
1.027
1.010
1.059
$\begin{array}{lll}0-71 & 381.3 & 1.854 \\ 0-71 & 1.02 .4 & 1.757\end{array}$
$\begin{array}{lll}0-69 & 668.6 & 1.032\end{array}$
$\begin{array}{lll}0-69 & 718.0 & .955\end{array}$
$0-69 \quad 713.6 \quad .961$

Record of Oblque Teuls mede with Rlenton Tets during Cuises 11-18 in 1950

Station	$\frac{\text { pooi }}{\text { lot }}$	tion	Dete	İour	Inmaivion of Iaul	i) cpth ietors	$\begin{gathered} \text { Vol.of } \\ \text { Vator } \\ \text { Strai ea } \end{gathered}$	$\begin{gathered} \mathrm{S} \\ \text { Factor } \end{gathered}$
P-100. 30	3101:0.5	116046.5^{1}	VII-20	0105	23.0	0-60	805.1	.362
100.40	$31^{\circ} 22^{\prime}$	117032^{\prime}	VII-19	1900	23.5	0-69	761.8	. 903
100.50	31.05^{\prime}	118014^{\prime}	VII-19	1115	23.0	0-67	767.2	. 377
100.60	300431	1100531	VIT-19	0555	22.5	0-70	732.0	. 949
100.70	30.21	11.9032^{\prime}	VII-19	0025	23.0	0-68	709.2	. 962
100.80	$30^{\circ} 00^{8}$	1200091	VII-18	1855	23.0	0-6́7	700.7	. 833
100.90	290.35	1.2004.21	VII-18	1320	23.5	0-65	764.2	. 856
100.100	$29^{\circ} \mathrm{j} 0^{1}$	$121^{\circ} 23^{\prime}$	VII-18	0805	23.0	0-68	753.5	. 398
100.110	29015:	$122^{\circ} 09^{\prime \prime}$	VII-18	0230	23.5	$0-67$	$700 . ?$. 950
100.120	230301	$122^{\circ} 4{ }^{\prime}$	Vİ-17	2050	22.5	0-66	315.6	. 815
105.35	$30^{\circ} 0$? 1	115033^{\prime}	Tİ-7	0700	22.25	0-59	325.7	. 711
110.35	290501	$115^{\circ} 02^{1}$	VII-15	0705	23.0	0-69	71.0 .8	. 967
110.40	29040'	$110^{\circ} 22^{\prime}$	VII-15	1.035	23.0	0-70	734.5	. 950
110,50	290201	$117^{\circ} 00^{\circ}$	VII-15	1655	22.0	0-66	730.4	. 901
110.60	280591	11704.1	VIT- 5	2250	22.0	0-70	758.4	. 919
110.70	230391	118020^{\prime}	VII-J.	04LO	22.5	0-63	730.6	. 913
110.80	230198	1180581	VII-10	1035	23.0	0-68	708.3	. 883
110.90	$23001{ }^{\prime}$	1190341	VII-16	1635	22.5	0-68	788.4	. 864
110.100	270378	120010:	VII-16	2250	23.0	0-70	r31.3	. 963
110,110	27036.51	120054.51	VII-I?	04.50	2?.0	$0-08$	780.8	. 865
113.35	$29^{\circ} 12^{\prime \prime}$	$1.15{ }^{\circ} 391$	VII-15	0010	23.0	0-6\%	809.5	. 823
117.35	$28037{ }^{\prime}$	$115^{\circ} \mathrm{J} 6^{1}$	VII-I	2735	22.0	C-71	71.1 .0	. 097
120.35	280031	114,054	VII-14	1035	23.0	0-65	591.2	1.096
120.45	$27^{\circ} 43^{\prime}$	115033:	Vİ-14	01:35	23.0	0	172,0	. 272
120.50	$27^{\circ} 33^{\prime}$.115052.51	VII-14	0020	22.5	0-70	(724, 3)	. 664
120.60	$27^{\circ} 13^{1}$	110031.51	VIT-13	1735	24.0	0-67	9 mb .3	. 8.57
120.70	$25054{ }^{\circ}$	$117^{\circ} 10^{\prime}$	ViI-13	1705	23.0	0-69	745.3	.930
120.30	$20^{\circ} 37$	1170501	VII-13	0.350	? 3.0	0-60	32\%,3	. 327
120.90	$26^{\circ} 191$	113035°	Vİ-12	2020	23.0	0-68	72.8	. 834
120.100	$25^{\circ} 02^{\prime}$	$119{ }^{\circ} 10^{\prime}$	VII-12	1.340	23.0	0-rio	755,3	. 028
120.110	2504.5	? 173043^{\prime}	VII-12	0610	23.0	0-72	'72.3. 1.	.886
123.40	270161	1.140491	VII-3	1320	24.0	0.067	8167.1	.790
123.50	$26053:$	1150321	ViI-8	1240	24.0	0-69	785.2	. 379
123. 00	có361	116006:	VII-9	0315	23,0	0-69	763.5	. 902
127.40	2604.3 .51	11:029.5'	Vİ-10	0015	24.0	0-69	744.0	. 923
227.50	$26.23 .5^{\circ}$	115003'	VII-9	1645	24,0	0-68	722.4.	. 937
127.60	$25^{\circ} 55^{\circ}$	$175^{\circ} 42^{\prime}$	VIT-9	0830	24.5	0-67	835.6	. 798
130.35	$26017{ }^{1}$	$113^{\circ} 5^{\prime}$	ViI-10	0605	24.0	0-63	789.7	. 362
130.40	26007	214011^{\prime}	VII-10	0925	23.0	0-70	739.7	. 946
130.50	$25^{\circ} 50^{\prime}$	$114046{ }^{1}$	VIT-10	157.0	23.0	0-70	74.7 .6	. 930
130.60	250291	$21502 \% 1$	VII-? 0	2145	23.0	0-70	668.6	1.054
130.70	$25^{\circ} 04{ }^{\prime}$	J. $16^{\circ} 10^{\prime}$	VEI-11	0430	23.0	0-64	75.2	. 309
130.80	21:047 ${ }^{1}$	1.10043^{\prime}	VII-II	1015	24.0	0-71	713.9	. 996

Table I（cont＇d．）
Record of Oblique Nouls nade with Plakton Fets during Cruises ll－13 in 1950

Cruisc 17
B－：0． 10
20．20
20.30
20.40
2.0 .50
20.60
$20 .{ }^{2} 0$
20.80
20.90
23.15
2.7 .20
30.26
30.30

50，40
30.50
30.60
30.70
30.80

30： 50
30.100
33.32 37.38 40.100 40.110 40.120 43.50 43.60 4.7 .55 $4 \div 60$ 50.55 50.60 50.70 50.30 50.90 50.100 50.110 50． 120 50.130

$40.45 \quad 41033^{\prime} \quad 125^{\circ} 001$ VIII－12 2.555 40.50 41023＇125023＇TIFI－12 1125 40.60 U1003＇126009＇VIII－12 0105 $40.70 \quad 40^{\circ} 42^{\prime} \quad 120^{\circ} 55^{\prime} \quad$ VIII－711 1840 $40.80 \quad 40^{\circ} 233^{\prime} \quad 122040^{\prime} \quad V I I-111215$ | 40.90 | 40002^{\prime} | 123025^{\prime} | $V I I I-I 1$ |
| :--- | :--- | :--- | :--- |
| 40525 | | | |
| 40.100 | 300421 | 1240701 | $V I I-10$ |
| 1245 | | | |

46010．5＇12404．9＇VIII－18， 2035 $45^{\circ} 50.5^{4} 125^{\circ} 38.5^{\prime}$ VIII－18 I400 $45^{\circ} 30.5^{\prime} 126027.5^{\prime}$ VIII－10 0715 45010．5：1．27016．5＇VIII－1U0130 $4: 4050.5^{\prime} 1.23006^{\prime}$ VIII－7．7 1930 ＂4020．5＇ 128053.5^{\prime} VIII－17 1310 44010．5＇129042．51 VIII－17 0630 $43^{\circ} 50.5^{\prime \prime} 130^{\circ} 30^{\prime}$ VIII－17 O145 $43^{\circ} 30.5^{\prime} 131^{\circ} 13^{\prime}$ VITI－1́́́ 1.520 $4.5^{\circ} 25.5^{\prime} 124047^{\prime}$ VII－ 190400 1：4040＇124045＇VIIL－I9 1120 $143^{\circ} 54.5^{\prime} 124049.5^{\prime}$ VI－1－13 1425 $43046.5^{\prime} 125003.5^{\prime} \mathrm{VIEI}-131700$ $43^{\circ} \mathrm{c}$ ó $5^{\prime \prime} 125^{\circ} 56^{\prime}$ VIII－13 2350 $43^{\circ} 06.5^{\prime} 1.26043 \cdot 5^{\prime}$ VIII－14 $0^{\prime} 730$ $42^{\circ} 46.5^{\circ}$ J．27030． 5° VIII－ 4.4825 $42026.5^{\prime} 1.23017^{\prime}$ VIII－ 150010 $42006.5^{\prime} 129^{\circ} 04$ VIII－ 1.50800 $41047^{8} \quad 127050^{\prime}$ VIII－ 151455 41027＇I300361 VIII－15 ：135 $43007.5^{\circ} 122^{2}, 053^{\prime \prime}$ VIII－7．3 0735 $422^{\circ} 20^{\prime}$ 122050．5＇VIII－12 2335 $39042: 1290101$ VIIL－10 2145 $30231 \quad 120551 \quad V E 1-101550$ 3プ03＇13003？VIII－10 0730 400481 124，57＇VIII－6 1950 $40^{\circ} 23^{\prime \prime} 125^{\circ} 43^{\prime}$ VIII－？ 0340 400041 300541 32030^{\prime} $39^{\circ} 20^{\prime}$
30000^{\prime} 124055＇VIII－6 124．5 125018：VIII－？ 1020 1240．30：VTII－6 0135 124052＇VIII－7 165 125036.5 ：VIII－8 0020 39040^{\prime} 126021＇VIIT－8 0530 39020^{\prime} 127005＇VIII－E 1255 300001 In70491 VIII－8 1340 37040^{1} 37020^{1} $37^{\circ} 00^{\prime}$

1280．33＇VITIーS 0120
129016．51 VIII－9 07？0
$130^{\circ} 00^{\prime}$ VIII－9 1415

12.5	0－66
12.0	0－6́3
23.0	0－6́6
13.0	0－6？
20.0	0－68
1.2 .5	0－65
1.2 .25	0－63
12.5	0－5
12.75	0－0́7
13.45	0－30
12.75	0－68
12.75	0－60
12.25	0－56
12．75	0－68
13.0	0－r／2
15.0	0－63
13.5	0－68
12.75	0－65
23.0	0－66
± 3.25	0－67
13.5	0－69
13.75	0－6？
17.75	0－94
13.0	0－73
13.15	O－ril
12.0	0－r1
12.5	0－73
12．5	0－66
23.75	0－70
11.75	0－69
12.5	0－67
12.75	0－63
12.55	$0-69$
12．25	0－64
12．25	0－70
13.5	0－73
12.0	0－6？
13.25	0－67
12.0	$0-63$
12.0	0－6？
12． 5	0－65
12.5	0－67
1．2．23	0－6\％
12． 5	0－70

418.7	1.564
439.2	1.435
792.7	． 833
44.7 .3	7.496
651.9	1.042
434．1	1.506
434.9	1． 4442
435.2	1.611
434.5	1.544
421.0	1.568
467.0	1.450
435.9	1.383
373：5	$1.47 ?$
400.1	1.710
337.5	2.154
54.29	1.170
4.79 .4	1.425
500.2	1.303
800́． 6	． 323
4：66．9	1.429
337.9	2.033
333.1	1.982
53.7	1.751
317.4	2.313
413.2	1.709
296.5	1.726
399.0	1.329
41.0 .8	1.607
774.7	－ 907
413.4	1.655
1：43， 9	1.500
246.9	2.742
427.8	1.620
36.1	1.72 .9
361.8	1． 9146
2：00．9	1.767
419.4	1.650
435.7	1.533
461.4	1.365
370.3	1．782
407.6	1.619
434.0	1.59
467.9	1.301
405.9	1.72

Table I (contla)
Record of Oblinue Feuls mocie vith Plan ton ets during Cruises 11-13 in 1950

P-70,80-1	$35^{\circ} 12^{\prime}$	$12301.7{ }^{\circ}$	VIII-9	14:20	26.25	$0-147$	71.2 .5	2.061
70.80-2	$35^{\circ} 12^{\prime}$	12304.71	VIII-9	2100	26.0	$0-140^{\circ}$	737.7	1.974
70.30-3	$35^{\circ} 12^{\prime}$	12304, ${ }^{1}$	VIII- ${ }^{\text {P }} 0$	1.520	25.5	0-1.39	735.3	1.396
83.60	23031,1	1200493	VIII-I2	0920	22.0	0-6\%	622.7	1.021
83.70	33074.51	1.210261	VIIT-I2	1535	25.0	0-78	709.9	1.070
87.50	$33^{\circ} 00^{\prime}$	$120^{\circ} 21.5^{\prime}$	VIII-13	0520	23.5	0-6.	732.8	. 91.7
87.70	32039.51	121002'	「Iİ-12	2230	24.25	0-69	7 7 24.7	. 892
86.50	$33^{\circ} 281$	1170461	TIII-13	1055	24.75	0-0	602.8	1.160
Cruise 13								
及-30.26	43054.51	124049.5	İ-19	13.5	24.25	0-71	675.7	1.01:6
30.30	143046.51	125008.51	1x-19	0950	13.75	0-66	166.1	1.426
30.40	143026.5^{\prime}	$125^{\circ} 56^{\circ}$	IX-19	0315	13.75	0-68	$1: 32.1$	1.576
30.50	$43^{\circ} 06.5^{\prime}$	126043.5	IX-18	1210	14.5	0-71	309.6	1.734
30.60	42016.51	127030.5'	IX-13	1255	24.25	0-71	642.1	1.106
30.70	$42^{\circ} 25.5{ }^{\prime}$	$123^{\circ} 17^{\prime}$	IX-13	0540	24.25	0-72	4:55.6	1.58'7
30.30	$42^{\circ} 06.5^{\prime}$	129004'	TM-17	2125	24.25	0-61	799.3	.766
30,90	4.7047	129050'	İ-17	1400	25.5	0-72	734.5	. 976
30.700	$41^{\circ} 27^{\prime}$	$130^{\circ} 36^{\prime \prime}$	IX-17	0500	24.5	0-68	732.0	. 930
33.32	$43^{\circ} 07.5^{1}$	12'1053'	Ix-19	1930	13.75	0-70	470.5	1. 483
37.38	$42^{\circ} 20^{\prime}$	$12.056 .5^{\prime}$	I-20	0455	13.25	0-68	4:52.0	1. 500
40.45	$411^{\circ} 33^{\prime}$	$12500{ }^{1}$	IX-13	1935	15.75	0-68	335.9	1. 757
40.50	$42^{\circ} 23^{\prime}$	125023	IX-13	2325	14.25	0-67	392.3	1.6073
40.60	$41^{\circ} 03^{\prime}$	1250091	İ-14	0620	13.75	0-63	377.4	1.702
4.0 .70	400421	126055^{\prime}	Tx-14	1400	13.5	0-71	334.6	2.131
4.0 .80	$40^{\circ} 231$	$127040{ }^{\circ}$	IX-1/	2030	13.25	0-68	377.0	2.84.4
40.90	$40^{\circ} 02^{\prime}$	12.925^{\prime}	Ei-15	0325	24.5	0-70	72.2	. 906
40.100	390421	$129^{\circ} 10^{\prime}$	IX-15	1215	13.75	0-73	362.7	2.007
40.110	$39^{\circ} 23^{\prime}$	129055^{\prime}	IX-15	1750	24.0	0-72	665.2	1.038
40.120	39003^{1}	$130^{\circ} 39^{\prime}$	IX-16	$02: 0$	24.75	0-71	723.8	. 969
43.50	4004.31	12!057'	I\%-13	1220	14.75	0-70	393.6	1.739
43.60	$40^{\circ} 231$	125043	Ix-13	0525	15,25	0-63	336.5	1.702
47.55	$40^{\circ} 04$,	124055^{\prime}	İ-1. 2	1810	13,25	0-67	350.3	1.958
47.60	39051	1250131	İ-12	2230	14.0	0-68	36\%.6	1.861
50.55	$39^{\circ} 301$	124.030^{\prime}	IX-1: $?$	1130	13.0	0-67	226.3	2.978
50.60	390201	124.052'	IT-12	0720	13.75	0-63	347.4	1.972
50.70	$39^{\circ} 00^{\prime}$	125036.5^{\prime}	Ix-12	0035	13.25	0-70	333.0	2.071
50.80	380401	126021	18-11	1655	23.5	0-6)	651.6	1.060
50.00	$38{ }^{\circ} 20^{\prime}$	127005	[illl	0940	23.75	0-71	646.1	1.093
50.100	$3000{ }^{1}$	1270491	I-11.	0210	24.25	0-71	612.8	1.155
50.110	370401	123033^{\prime}	IX-? 0	1825	23.25	0-69	658.6	1,049
50.120	370201	$120^{\circ}{ }^{5} 51$	IV-I0	1105	23.5	0-69	56i.9	1,200
50.130	$37^{\circ} 001$	$130^{\circ} 00^{\prime}$	I-10	0255	23.75	0-73	460.3	1.532
53.54	$3805{ }^{\prime}$	1240001	I--6	1235	14.25	13-65	473.0	1.579
53.64	$38^{\circ} 33^{\prime}$	1240441	IX-6	1.855	14.75	0-70	412.1	1.677

Table I (cont' a)
Fecord of Oblique Sieuls mido wich plonton Tets during Cruices 11.-18 in 1950

57.54	380241	123035^{\prime}	IX-6	0025	14.0	0-73	419.3	1.739
57.64	330041	$124019{ }^{\prime}$	IX-7	0.25	12.5	0-67	416.7	1.613
60.60	370371	123037^{1}	IX-7	0840	13.25	0-69	405.4	1.712
60.70	$37^{\circ} 7^{1}$	121021'	IX-7	1505	12.75	0-72	355.8	2.032
60.00	36057 :	225004	IX-7	:115	13.15	0-68	400.3	1.694
60.90	360371	125042^{1}	IX-3	0435	13.5	0-67	365.1	1.327
60.100	35017	$120^{\circ} 30^{\prime}$	IX-3	1140	13.5	0-69	377.3	1.323
60.710	350571	127012^{1}	IX-8	1820	12.75	0-70	363.3	?. 909
60.120	$35^{\circ} 37^{\prime}$	127051.05	IX-?	0040	24.0	0-? 4	602.7	1.229
60.130	$35^{\circ} 17^{\prime}$	1230371	1--9	$0 \% 35$	23.75	0-68	465.0	1.467
61.55	370371	123007.5^{1}	I. -5	1750	16.25	0-90	514.6	1.358
--70,55	35003.41	122001.71	18-6	2220	14.0	Ion quentitative		
70.60	350531	122023^{\prime}	IN-7	015	14.5	0-69	442.3	1. 569
70.70	$35035{ }^{3}$	123005.5'	IT-?	0815	13.25	0-70	1:09.0	1.719
70.30	$35^{\circ} 16.5^{\prime}$	1.23043	IX-7	? 250	12.5	0-70	353.5	1.958
70.90	34057.31	$124^{\circ} 31^{\prime \prime}$	IX- ${ }^{7}$	2055	13.0	$0 . .70$	880.7	1.84.7
70.100	34.038 .81	$1.25^{\circ} 13.5{ }^{1}$	1s-8	0220	12.75	0-73	30\%.2	1.994
70.110	340201	12505.5.51	IX-3	0970	12.5	0-72	354,1	2.039
70.120	$34^{\circ} 011$	12.037 .81	IX-3	1330	12.5	0-ro	372.8	1.843
70.1 .30	$33^{\circ} 33^{1}$	$127016.5!$	IT-3	1820	22.75	0-72	669.5	1.072
90.30	33084	12705\%.81	IX-1.3	1955	22.75	$0-1$	650.8	1.039
50.37	33010.01	$310^{\circ} 23.21$	I.-13	1330	21.75	0-11	652.3	1.091
90.45	32056.88	113055.51	I. -13	1025	23.0	0-71	519.3	1.358
90.53	32037.69	119029:	1. $\mathrm{X}-18$	0510	23.25	0-69	620,4	1.115
90.00	32030.08	$11905 \% 31$	IT-13	0220	23.25	0-69	685:5	2.005
90.70	320111	1.2003年21	I:-17	2055	22.5	0-69	705.3	. 974
90.80	37043.78	$1 \mathrm{c}^{\circ} \mathrm{O}$	1×-27	1510	23.0	0-63	723.8	. 944
50.90	31025 ,	192001:	İ-17	0930	22.5	0-68	62.1	- 990
90.100	3100651	1220401	I - - 17	0.330	22.75	0-69	722.3	. 253
90.710	30044.51	$123{ }^{\circ} 20^{8}$	IX-16	$2 ? 00$	22.5	0.69	729:5	. 251
?0.1.20	$30^{\circ} 23.71$	125:001	I.-16	1610	22.75	0-6\%	702.6	. 953
P-100. 30	31040.51	110046.51	I	1105	23.5	0-67	820.4	. 812
100.40	310241	1170201	I--6]	1525	23.25	0-66	806.5	. 322
100,50	$31^{\circ} 07^{\text {: }}$	1170531	IX-2].	1015	23.75	0-67	(743.7)	. 303
100.60	30049 ;	118037.	[]-2]	0350	23.75	0-ro	652.3	?.072
100.70	$30^{\circ} 20: 5^{\prime}$	119027^{\prime}	I-20	1955	23.75	0-67	740.1	. 904
100.80	300001	1200031	I-OU	1.320	03.25	$0-69$	$64: 2,8$	1.078
100.90	$20037{ }^{1}$	$120^{\circ} 52^{\prime}$	İ-20	0545	$2 \% .0$	0-67	'723.6	. 922
100.100	29015	121.037^{1}	I-19	2140	23.5	0-72	713.2	1.001.
1.00 .110	29000.51	122007^{\prime}	IX-79	1520	23.75	0-68	770.3	. 377
105.35	$30^{\circ} 391$	11,5033:	I-7	0215	22.25	0-60	824.3	. 72.4
110.35	29046.51	116000^{\prime}	IX-16	2335	23.75	0-64	303.7	.72
110.40	29036.51	$110019.5{ }^{1}$	Ix-17	0,20	23.25	0-64	760.5	. 846

Record of Oblique Frils made with Phothon ats Cuming Cinises 21－10 in 1950

Station	T．lat．	tion In	Date	zour	Drierion of foul．	Ioptin Meters	VOI．Of Weter	$\begin{aligned} & \mathrm{S} \\ & \text { E.ctor } \end{aligned}$
110．50	22^{0121}	3．70023	IX－17	0910	24.0	0－65	302.9	． 806
170．60	$20059{ }^{3}$	21704 ${ }^{1}$	1－17	1520	25.0	$0-6{ }^{0}$	303.3	． 390
110．70	$20^{\circ} 30^{\prime \prime}$	1180181	10－1．7	22：0	24.0	0－60	73.3 .2	． 873
110．80	28020^{1}	13.050^{1}	1×-30	0405	2.0	0－63	600.0	． 96
110．90	2804	17．90\％2＇	İ－？${ }^{\text {a }}$	1010	230：5	$0-61$	772.6	． 353
110．100	270401	1200781	IX－i8	1635	23.5	0－56	755.4	． 31
110.110	27076.51	120054．58	TX－ 18	$2: 45$	23.15	0－69	656.8	1.037
113.35	$29^{\circ} 121$	11．5039	1－16	1.45	亿， 3.5	0－3\％	$8=3.1$	． 768
117．35	250371	115076	IX－16	0955	23.75	0－64	766.0	.023
120.27	290791	17．7．023＇	I2－15	2355	21：0	0－56	753.2	－ 230
1．20， 35	$28^{\circ} 031$	11．13541	I－2 5	155	2.75	0－64	640：0́	． 839
120，45	27043！	$115^{\circ} 2^{\prime}$	12－15	1.10	23：5	0－6́7	750.3	． 839
120．50	270021	11100ํ	－2－15	0）20	23.5	0－0．	754.9	． 886
120，60	$27^{\circ} 05^{\prime}$	11．01：31	－8－14	2400	24． 0	C－65	$70 \% 0$	． 851
120 70	0.60501	117015＊	T－-14	1745	23.25	$0-62$	808．15	． 773
120．00	26034	11＇\％050＇	I－34	1130	24.5	0－6？	342.0	.793
120.90	250221	$113030{ }^{\prime}$	ご－T． 4	01.50	$24=0$	0－60	723.0	． 857
120．100	25051	11900^{8}	IX－ 3	2215	23.5	0－6́8	779.6	． 867
120．110	2.5032	119045°	IX－i3	1610	23.5	0－63	302.3	． 783
223，40	27015	1140541	İ－8	0035	22．0	0－65	753.2	－ 364
123.50	2605^{2}	125030^{1}	－1－8	3.30	24，0	0－65	710.1	0.034
123，60	$26^{\circ} 30.51$	$110^{\circ} 091$	IX－8	105	14．0	C．－r 2	(102.9)	1．775
12．7．40	$26^{\circ} 43.5$	$214029.5{ }^{1}$	IX－9	140	13.0	0－69	395.0	1． $2 \cdot 6$
12\％． 50			Iot oc	pied				
127．50	$26^{\circ} 03.5^{\prime}$	1．15046．5 ${ }^{1}$	İ－9	00.45	13.0	0－62	405.2	1.520
130.35	$26^{\circ} \mathrm{J}, 1$	1130488.51	İ－11	1320	25.5	0－r\％	609：？	1.245
130．40	250 ch ！	1.14011^{\prime}	IS－11	1700	24.0	0－63	825.6	－761
130.50	$25^{\circ 1} 171$	114055	JX－11	2300	25，0	0－65	763.2	－840
130．60	$25^{\circ} 20$	$215{ }^{\circ} 4^{\prime \prime}$	IT－12	0530	23，25	0－63	70． 2	． 900
130.70	$25^{\circ} 08^{\prime \prime}$	$11600{ }^{\prime}$	IT－ 12	1110	24.75	$0-63$	820．0	． 701
130.80	24043：51	1100401	I－12	2645	12.75	0－58	452.2	3.283

Station
Truber of ionnal wes

Cruise 11:

180.35	317	143	179	379^{*}	164^{*}	209^{*}	6	758	253	
120.45	15	12	12	113	40^{*}	58^{*}	2	147	360	83
120.50	1	13	21	1	33^{*}	32^{*}		6	72	30
130.35	1	1		1^{*}	1^{*}	1^{*}			3	1
Total	334	169	212	49^{*}	238	300	2	159	1193	373

Cruise 12:

113.35			2	*	*	2*	$2 *$		4	1
117.35		1	1	*	1**	1*			2	1
120.35		2	9		2*	29*			31	16
120, 45		2	54		4*	263*	2		259	134
120. 90					*	3*			8	4
123.40		10	23		? 15^{*}	55*		5	175	87
123.50	2			2	*	*			2	1
130.35	2.84	932	2072	1235*	1335*	2102		711	5383	1480
130.40				*	5*			8	13	6
Totial	286	247	1159	1237	1162	2400	4	724	5887	1730

Cruise 13:

87.35		2	2	2	2^{*}	6*	8*		16	5
CO.60				4	*	*	*	4	4	0
93.30			2.8		*	*	32*		32	11
93.50	23	5	50		45*	8*	63^{*}		121	40
97.32	23	17	160		83*	23**	214*		320	107
97.40	3	± 2		2	9	32*	3^{*}	26	57	22
100.30	4	15	43	15	4	20*	59*	30* ?	126	41
100.40		61	5		*	71*	5		75	36
100.50	244	20.1	588		32:*	220*	613*		1143	383
105.35		1	5	159		1*	5^{*}	265	271	3
110.35		97	104	667	*	134*	145*	1463*	1742	436
113.35	2	4		1	4*	1.2*	*	1	17	5
117.35		12			2	24.*	*	1	27	13
120.45		165	9			366*	3'4**	11	417	206
1.20 .50			1			3^{*}	12*		15	8
123.40	1.182	1521	3797	262	1767	2068*	5860*	3.306*3356	14357	4018
123.50	285	372	94.t		832*	530*	150?	2.5	2939	712
123.60					*	$*$	2^{*}		2	1
127.40		6	5		*	6*	6		12	3
127.50		18	39			23^{*}	74**		102	51
130.35	1077	85	19		20142*	137*	58		$2 \% 37$	1020
130,40	65	2843	52		94	34.64*	68		3626	3464
Totel	-2509	5432	5562	1112	51.99	7203	0773	$30 \% 113406$	27658	10655

Table II（cont＇d）
Record or 2ilcherd TESs， 1950

Ototion											
Cruire 14．											
83.60			41			＊	$63 *$	\％		68	23
90． 00	2				2；＊＊＊	＊	＊			4	1
93．40		47	320			83＊	614＊	10	3	715	352
93：50						＊	＊	1		1	0
93.60		4		7	＊	15＊	＊	26		4.2	5
92.70	1	4	16		1＊	4＊＊	20\％			25	8
$97=10$					＊	＊	＊	5		5	0
97.80	2	3			5＊	8＊			2	15	8
97.50			35		＊	＊	110			110	0
100.40			2		＊	＊	2			2	0
105.35						2＊	＊		2	4	2
110.35		23	10	7	1＊	8，＊	13^{*}	13＊	33	149	37
113.35				4		＊	＊	5＊		5	2
117.35				$?$	＊	＊	＊	l		1	0
120.35	14.4	25	27.		43＊	37^{*}	17		9	I1］	146
120.45		752	1110		＊	1248＊	2310＊		360	2，18	1306
J．23．40	5	129	8	5	27	$510 *$	21＊	12＊	44	613	195
］ 30.35		94	104		＊		100			205	50
130.40		2	57		＊	33^{*}	1.13		1	14	17
Total	24	1083	I\％14	24	36	2123	3304	72	459	6139	20.52

Cruise 60.70		3		3	＊	3^{*}	＊	3	3	9	2
60.80			4			＊	4＊＊	＊		4	1
60.90		4			＊	限	＊			4	2
70.70			2			＊	2^{*}	＊		2	1
70.90		6			＊	ó	＊	＊		6	2
77.65	189	32			297＊＊	4＊＊	＊		$1 i 2$	333	218
80.55			25	4		\because	27^{*}	4%	2	33	11
80.60	25	9	30		37^{*}	16\％	30＊			83	23
80.80			4		＊	＊	4			4	0
87.60	154	664	374	85	378＊	1023＊	673＊	724	2170	5200	3306
90.53	2	35	15		2	40^{*}	15＊			5 ？	23
90.60			4			＊	4＊＊	＊		4	1
93.40		10	23		＊	IR＊＊	41\％		2	57	28
93.50			12		＊	r＊＊	131		11.	159	3
93.60			16		＊	＊	10＊			76	5
117.35					2＊	3＊	＊		3%	33	13
120．4．5			1		＊	＊	1＊			1	0
123.40					＊	＊	1＊	＊		1	0
123.50		1.	2		3＊	4＊	4.4		1	52	4
130.35	3	55			5＊	工湜＊	＊	2	9	157	52
Totel	383	820	512	92	723	－ 305	1049	733	2550	6360	3510

Table III
Record of Pilchard Larvae, 1950

Midpoint of Size Class (in mm.)																		
	3.25	4.75	5.75	6.75	7.75	8.75	9.75	10.75	11.75	12.75	13.75	14.75	15.75	17.25	19.25	21.25	Dis.	Total
Cruise 11:																		
120.35		2.6																2.6
120.45	1.8	5.5	3.7	5.5	11.9	3.6	0.9	0.9									1.8	35.6
120.50	34.4	121.0	7.8	27.7	28.9	14.4	26.6	8.9	2.2		1.1							273.0
127.50												1.4						1.4
130.35	1.2																	1.2
130.60			11.5	16.2	3.9	1.6			1.5									34.7
Total	37.4	129.1	23.0	49.4	44.7	19.6	27.5	9.8	3.7		1.1	1.4					1.8	348.5
Cruise 128																		
87.35		0.8																0.8
110.40								5.5	1.1	1.1	1.1							8.8
110.50																	1.0	1.0
117.35							1.0										9.5	10.5
120.35	7.3	41.0	26.4	16.4	16.4	11.0	4.6	4.5	2.7									130.3
120.45	3.2	9.5	5.5		0.8	0.8	1.6	0.8										22.2
120.50				0.6														0.6
120.90	2.0																	2.0
123.40	9.9	16.9	1.0	1.0	2.0	2.0	1.0											33.8
127.40											0.9							0.9
130.35	43.3	63.9	3.8	1.9														112.9
130.40										0.9								0.9
130.50												1.0						1.0
130.60			0.8															0.8
130.80							0.9											0.9

Table III (oont'd)
Hocord of Pilchard Larrae, 1950

Midpoint of Size Clase (in min.)																		
at1	3.25	4.75	5.75	6.75	7.75	8.75	9.75	10.75	11.75	12.75	13.75	14.75	15.75	17.25	19.25	20.25	D18.	Tetal
Cruise 13:																		
97.32		14.3																14.3
97.40	21.3	45.6	10.7	3.0		1.5					3.0							85.1
100.30	3.7	14.8	3.7															22.2
100.50	2.2	4.4																6.6
105.35	10.6																	10.6
110.35	8.1																	8.1
117.35						2.2		2.2	1.1	2.2								7.7
120.35	27.9	71.6																99.5
120.45	12.9	2.1	8.5		8.6	4.2	8.5	2.1	4.3	2.1								53.3
120.50		2.0																2.0
123.40	99.5	153.7	43.0	15.8	18.1	11.3	4.5	2.3		2.3		2.3			2.3		38.4	393.5
123.50	151.8	68.6	8.3	2.1		2.1	2.1											235.0
127.40	9.4	1.0																10.4
127.50	22.6	54.8	20.3	14.3	14.2	13.1	14.3	17.8	11.9	1.2								184.5
127.60			1.1	1.1		2.2												4.4
130.35	112.3	343.2	81.1	54.0	35.4	6.3	10.4	2.1	4.2		4.2	4.2						657.4
130.40	47.2	148.0	51.1	9.2	3.9	2.6	2.6	3.9	1.3	1.3	1.3						1.3	273.7
130.50							4.0	7.9	5.0	1.0								17.9
Tetal	529.5	924.1	227.8	99.5	80.2	45.5	46.4	38.3	27.8	10.1	8.5	6.5			2.3		39.7	2086.2

Table III (cont'd)
Record of Pilchard Larvae, 1950

Table III (cont'd)
Hecord of Pilchard Larvae, 1950

Station	Midipoint of Size Class (in mmo)																	
	3.25	4.75	5.75	6.75	7.75	8.75	9.75	10.75	11.75	12.75	13.75	14.75	15.75	17.25	19.25	21.25	Dis.	Total
Cruise $15:$																		
60.70	3.2																	3.2
60.110		1.9	1.9															3.8
70.110		3.1						1.0										4.1
77.65										4.0								4.0
80.55							1.8											1.8
80.60												2.3						2.3
80.70								1.7		5.1	1.7	1.7						10.2
80.80				3.5						3.5	7.0							14.0
83.60															2.6			2.6
87.60	18.8																	18.8
87.80		1.9		1.9	3.7				3.8	1.9								13.2
90.53	1.9	1.9	1.9															5.7
90.60	4.1	32.5	101.5	64.9	60.9	28.4	24.4	4.1	4.1						4.1			329.0
90.70				5.7	1.9	2.9	3.8				1.9							15.2
93.40	16.5	31.0	2.1						2.1									51.7
93.50	42.4		1.8															44.2
93.60	37.7	26.9	70.0	53.8	21.5			5.4									5.4	220.7
93.70		6.4	4.2	4.2	27.7	53.3	51.2	29.9	29.8	12.8	6.4			14.9	4.3			245.1
93.80		4.2			12.6	6.3	4.2		2.1	2.1								31.5
97.40										4.4	4.4	2.2						11.0
97.50		10.5	2.1	2.1	2.1	2.1												18.9
97.60	12.2	28.8	14.3	6.2	6.2	16.4	2.0	4.1	2.0									92.2
97.70		9.4	33.8	56.4	30.1	24.4	1.9	1.9										157.9
97.80										1.9				1.9		1.9		5.7
100.30														0.8	0.8			1.6
120.50			1.0						1.0		1.0							3.0
123.50		0.9		0.9											0.9			2.7
127.40		1.0																1.0
130.35	1.0	1.0																2.0
130.50														1.0				1.0

Table III (cont'd)
Record of Pilchard Larvae, 1950

Midpoint of Size Class (in mm.)																			
	3.25	4.75	5.75	6.75	7.75	8.75	9.75	10.75	11.75	12.75	13.75	14.75	15.75	17.25	19.25	21.25		D1s.	Total
Cruise 16:																			
61.55												2.0							2.0
70.80													1.3	1.3					2.6
70.90										5.3									5.3
73.51	3.9																		3.9
77.65				2.0		2.0	2.0												6.0
87.40											2.0		2.0	4.0					8.0
87.80															3.8				3.8
90.80																1.4			1.4
93.50														1.0	4.0				5.0
93.80																1.0			1.0
100.60		2.9																	2.9
120.45	2.0																		2.0
120.50														1.0	1.0				2.0
123.50		7.1	7.1		3.6	1.8				1.8	1.8								23.2
Total	5.9	10.0	7.1	2.0	3.6	3.8	2.0			7.1	3.8	2.0	3.3	7.3	8.8	2.4			69.1
Cruise 17:																			
67.55		2.1	2.1	1.1	5.3			1.1											11.7
73.51																	3.1*		3.1
Total		2.1	2.1	1.1	5.3			1.1									3.1		14.8
Cruise 18:																			
120.27									0.9	1.8									2.7
120.35								1.9											1.9
130.35	11.2																		11.2
Total	11.2							1.9	0.9	1.8									15.8

* Represents one 31.5 mm . Larva
Table IV
Recerd of Anchory Lerreo, 1950

Table IV (cont'd)
Record of Anchory Itarrae, 1950

Table IV (cent'd)
Hecord of Anchery Larrae, 1950

Midpoint of Size Class (in mm.)																			
tion	3.0	4.75	5.75	6.75	7.75	8.75	9.75	10.75	11.75	12.75	13.75	14.75	15.75	17.25	19.25	21.25	23.75	Dis.	Total
Cruise 14:																			
87.35		3.2																	3.2
87.50		1.4		4.2	2.8									1.4					9.8
90.30	8.5		1.0	1.9															11.4
90.37					3.6														3.6
90.53						17.2		17.1	5.7	5.7									45.7
90.60									2.1										2.1
93.30				3.7	1.2														4.9
93.40	7.8	7.8	18.2	15.6	15.6	7.8	10.4	2.6										2.6	88.4
93.50	669.8																		669.8
97.32	166.3	46.2	12.3	12.4	6.2	6.2	6.2	6.2	3.1	3.1				3.1					271.3
97.40	9.6	12.8	25.6	20.8	20.8	12.8	16.0	3.2											121.6
97.50	7.5																		7.5
100.30		1.9		1.9							1.9								5.7
100.50		4.0	6.7	4.0	1.3					1.3									17.3
100.60							5.7	1.1	1.1		2.3	1.1							11.3
113.35		2.4	3.7	4.9															11.0
117.35				1.8		5.5	2.7	5.5		2.7		1.8							20.0
120.45				1.2															1.2
120.60							1.0				1.0								2.0
123.40			1.6	6.4	30.5	22.5	6.4	1.6	3.2										72.2
127.50										1.3	1.3								2.6
130.40									1.1	2.2									3.3

Table IV (cont'd)

Station	Midpoint of Size Class (In mm)																		
	3.0	4.75	5.75	6.75	7.75	8.75	9.75	10.75	11.75	12.75	13.75	14.75	15.75	17.25	19.25	21.25	23.75	Dis.	Total
Cruise 15:83.55																			
87.35		1.7		5.1	8.5	18.7	34.0	40.8	17.0	11.9		1.7						1.7	141.1
87.40		3.2	4.8	14.6	29.2	29.2	37.3	24.3	14.6	4.8									152.0
87.60 90.37	103.3		1.9	9.4	3.8	3.8	1.9												152.8 20.8
90.45	103.3									1.8									103.3
90.53	37.8	47.3	17.0	7.6	7.6	9.5				1.8		1.9							1.8
90.60	8.1	4.1			8.2	4.1			4.1			1.9						4.1	128.7 32.7
93.30			10.2	6.8	5.1	6.8	1.7	1.7	1.7									4.1	32.7 34.0
93.40	89.1	16.5	4.2	2.1			2.1												114.0
93.50	1.8	$5 \cdot 3$	7.1	5.3	5.3	5.3													30.1
93.60	226.0	118.4	123.7	75.3	21.5	21.5	5.4	10.8	10.8	5.4									618.8
93.70 97.50		2.1	2.1 4.2	17.1	10.6	34.1													66.0
97.60	2.0	4.1	4.2	4.1		2.1	2.1	2.0											8.4
97.70	3.8	20.7	28.2	16.9	1.9			1.9											12.2
100.30			0.8	1.6	2.3	3.0	3.8	1.6	3.1	1.5	0.8	0.8	2.3	1.6					73.4 23.2
120.50					1.0	2.0	2.0	2.0											23.2 7.0
123.40								0.8											0.8
127.40			1.0			1.0													2.0

Table IV (cont'd)
Hecord of Anchory Larvae, 1950
Midpoint of Size Class (in mm.)
$\begin{array}{llllllllllllllllllll}3.0 & 4.75 & 5.75 & 6.75 & 7.75 & 8.75 & 9.75 & 10.75 & 11.75 & 12.75 & 13.75 & 14.75 & 15.75 & 17.25 & 19.25 & 21.25 & 23.75 & \text { D1s. Total }\end{array}$

$\stackrel{\circ}{i} \quad \underset{ }{i}$

OO

| 38.6 | 278.0 | 129.2 | 80.6 | 49.8 | 53.3 | 39.7 | 29.4 | 21.2 | 14.3 | 7.8 | 3.0 | 1.0 | 8.0 | 4.1 | 0.9 | 1058.9 |
| :--- |

| 388.6 | 278.0 | 129.2 | 80.6 | 49.8 | 53.3 | 39.7 | 29.4 | 21.2 | 14.3 | 7.8 | 3.0 | 1.0 | 8.0 | 4.1 | 0.9 | 1058.9 |
| :--- |

| Total | 338.6 | 278.0 | 129.2 | 80.6 | 49.8 | 53.3 | 39.7 | 29.4 | 21.2 | 14.3 | 7.8 | 3.0 | 1.0 | 8.0 | 4.1 | 0.9 | 1058.9 |
| :--- |

| Total | 338.6 | 278.0 | 129.2 | 80.6 | 49.8 | 53.3 | 39.7 | 29.4 | 21.2 | 14.3 | 7.8 | 3.0 | 1.0 | 8.0 | 4.1 | 0.9 | 1058.9 |
| :--- |

Cruise 16:

Total
Table IV (cent'd)
OS6T 'obaret Raeqo

Record of the Lervio o: J.cl: hicherel (racerue symetricus), 1950

40.45	-		-				
40.50	-		-				
140.60	-		-		7	7	1.2
40.70	-						
40.80	-						
40.80	-						
40.100	\sim				4	4	. 6
40.110	-						
43.50	-		-				
43.60	-		-				
47.55	-	-	-				
$4 \% .60$	-		-				
50.55							
50.60				4		4	. 5
50.70							
50.80			3			3	. 4
30.90							
50,100				1		1.	. 1
50.710							

50.120
50.720

53.54	-	-	-	-						
53.64	-	-	-	-			-			
55,60					-	-	-	-		
57.54	-	-	-	-						
57.64	-	-	-	-			-			
61.55						2			2.	: 2
60.60										
60.70							8		3	2.0
60.80						2			2	. 2
60.90					4	20			24	3.0
60.100					26				26	3.2
60.1 .10					38	3			4.7	5.1.
60,120					8				3	1.0
60.130					145				145	18.7
63.57	-	-	-	-			2	-	?	.7
63.67	-	-	-	-			-	-		
65.60					-	-	-	-		
67.55	-	-	-	-				-		
67.65	-	-	-	-			-	-		
70.55						23	14		37	4.0
70.60					2	5			7	. 9
70.70					22	19	2		13	5.4
70.30						$1]$.			$1]$.	1.4
70.90		2				43			50	6.2
70.100		2		9	9	18			38	4.3
70.130	-		1		1\%				1.5	2.1
70.1:0	-			1	69				60	$9 \cdot 7$

$$
\text { Teble } V \text { (cont'd) }
$$

Record of the Larvae of Jan Nachercl (Trainuus semetricus), 1950

Sta. Ste. Stotion Feh. Morch Mril Iny Juic July Anco Sent. Totra Ave.

70.130	-		2	70	98				176	25.1
73.51	-	-	-	-		S4		-	O 4	31.3
73,61	-	-	-	-		4	-	-	4	2.0
77.55	-	-	-	-		1.1	2	-	13	4.3
77.65	-	-	-	-	12	29	-	-	41	20.5
80.55				5				-	5	. 7
80.60					62	247		-	309	44.1
30.70				159	2.25	58	9	-	392	55.3
80.60				416	42	-		-	46\%	66.3
80.90				51%	35			-	54.9	78.4
80.100			4.2	105	42		2	-	150	27.1
80.110				7.4		14		-	28	4.0
80.120			53	125	9			-	202	37.4
60.130			7	17	6	' 4		-	34	4.9
83.55		-			5		-	-	5	1.0
83.60		-		7	3			-	10	1.7
23.70		-	45	169	'11	24	3	-	312	52.0
83.80			22\%:	92?	13	4	-	-	1158	193.0
33.50			125	10	10		-	-	151	25.2
87.35						2	-	-	2	. 3
87.40	2						-	-	2	. 3
87.50			-		-	-	-	-		
87.60			$?$	4.5			3	-	57	3.1
87.70		-	316	326	6	10	1.	-	729	121. 5
87.80		-	$1: 2$	109	50	27	-	-	333	76.6
87.00		-	51.9	1.36			-	-	705	24.0
90.30										
90.37						12	10		22	2.8
90.4 .5										
90.53			7	27					24	3.0
90.60		-	08	2	69	694			863	223.3
90.70		-	78	2.9	152				529	75.6
90.80		-	107	235	4		3	1	350	50.0
90.90		73	106	100	15				374	46.8
90.100		5	ul	17					33	10.4
90.17 .0			102	13	21	26			ló2	20.2
90.120			23	2		10			35	4.4
93.30							-	-		
33.40				13	12		-	-	30	5.0
93.50			85	6	7	18	-	-	126	19.3
23.60	-	52	5	265	204	1	-	-	527	105.4
93.70		-	-	32.5	172	4	-	-	501	133.2
93.80	6	-	-	525	24	1	-	-	$6: 6$	156.5
93.90		-	-	513	92	4	-	-	009	132.2
97.30		-			-	2.	-	-	2	. 5
27.40		-	234	154	29	2	-	-	4.19	33.3
27. 50		-	24.3	186	40	4	-	-	479	95.8
97.60		-	-	1.20	43	35	-	-	198	4.9

Table V (Cont c)

Toble VI

Record of the Lerve of Whice (forluccius productus), 1950
$11 \begin{array}{llllllll}12 & 13 & 74 & 15 & 16 & 18 & \text { ste. Ste. }\end{array}$
Station Feb. Wrich Waj - Hy Jrie Jul- Anc. Eent Totol Ave.
50.55

2
50.60
50.70
50.30
50.90
50.100
50.110
50.120
50.130

53.54	-	-	-	-						
53.64	-	-	-	-			-			
55.60					-	-	-	-		
57.54	-	-	-	-						
57.64	-	-	-	-			-			
57.55										
00.60		3							3	. 4
69.70		20	35						55	6.9
60.80		303							303	37.9
60.90										
60.100										
60.1900										
60.120	3								3	. 4
60.130		1.							1	. 1
63.57	-	-	-	-				-		
6.067	-	-	-	-			-	-		
65.50			3		-	-	-	-	3	. 8
67.55	-	-	-	-				-		
67.55	-	-	-	-			-	-		
70.55		1	2			2			5	. 6
70.60		2							2	. 2
70.70			2	3					5	. 6
70.30	16	21							40	5.0
70.90	10	\therefore							12	1.5
70.100	511.	76							63	7304
70.110	-	00							88	32.6
70.120	-	173							2 ?3	23.7
70.730	-	33							38	5.4
73.5	-	-	-	-				-		
73.01	-	-	-	-	2		-	-	2	1.0
75.00	1	-	-	-	-	-	-	-	1.	1.0
77.55	-	-	-	-				-		
77.65	-	-	-	-			-	-		
80.55					11			-	1.1	1.04
20.00					5			-	5	. 7

Toble VI (Cont'd)
Record of the Lervae of Five (Vorluccius productus), 1950

$11 \begin{array}{llllllll}12 & 13 & 14 & 15 & 16 & 17 & 18 & \text { Ste. Ste. }\end{array}$

80.70 - 30 - 30.4										
80.30			16	is	is			-	24	3.4
80.90 - 24. 3.4										
80.100		7	3					-	10	1, 4
. 80.210			3					-	3	. 4
80.120			2					-	2	. 3
80.1 .30 - ${ }^{\text {8. }}$										
83.55		-	2	9			-	-	10	2.0
3.3 .60		-		$?$				-	7	3.2
23.70		-	3		4			-	7	1.2
83.30				20			-	-	20	3.3
83.90			9				-	-	9	1.5
87.35		1.	2	¢		2	-	-	11	1.8
87.40 - 1.0 - 1.0										
87.50			-		-	-	-	-		
37.60				19				-	10	2.7
87.70	8	-		3				-	11.	1.3
87.30	7	-					-	-	7	1.4.
87.90		-					-	-		
90.30			3	1					4	. 5
90.37 - ${ }^{\text {2 }}$										
00.45				22					22	2.8
20.33		2	48	23	ó				79	30.0
90.60		-	4.9	125					194	24.9
90.70		-	22.1	2					223	37.8
90. 80		-	12	1					13	1.9

90.100
90.210
90.120

93.30			4	1			-	-	5	. 3
83.40			201	26	2		-	-	229	30.2
93.50			13	1			-	-	14	2.3
93.50	-	21.	373	40			-	-	43%	86.8
93.70		-	-	14	2		-	-	16	190
93.80	2.	-	-	J. 6			-	-	13	4.5
33.90		-	-				-	-		
97.32		-	3		-		-	-	3	. 8
97.40		-	18	6			-	-	24	4.8
97.50	3	-	23%	2			-	-	220	43.4
97:60		-	-				-	-		
97.70		-	62	2			-	-	64	12.8
97.80		-	1196	15			-	-	3.2.1	2.2 .2
97.80		-	85%	$4: 2$			-	-	309	178.8
100.30	1		4		4	1	-		10	1.4

Table VI (Cont'd)
Fecord of the Larvie of Fione (herluccius productus), 1950
Cruise and yonth
$\begin{array}{llllllllllll}11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & \text { Sta。 Ste. }\end{array}$ Station Fob March April Moy June July inge Sept. Motal Ave.

100.40					-		-			
100.50	24			3	-		-		27	4.5
100.60		4	49	5	-		-		58	9.7
100.70		40		11	-		-		51	8.5
100.80		7	6		-		-		13	2.2
100.90		28		1	-		-		29	4.8
100.100				19	-		-		19	3.2
100.110					-		-			
100.120					-		-	-		
105.35	3		3				-		6	. 9
110.35	47	3	3	1			-		54	7.7
110.40	5	68	742	3	-		-		318	136.3
110.50	9	4	23		-		-		36	6.0
110.60	1	1	26		-		-		28	4.7
110.70		3			-		-		3	. 5
110.30			301		-		-		331	53.5
110.90			2		-		-		2	. 3
110.100					-		-			
110.110					-		-			
113.35	-	8	1				-		9	1.5
115.40	15	-	-	-	-	-	-	-	15	15.0
117.35	-	18	4	5			-		27	4.5
120.35		141	52.				-		193	27.6
120.45		14	23	5			-		47	6.7
120.50		5					-		5	. 7
120.60							-			
120.70					-		-			
120.80					-		-			
120.90					-		-			
120.100					-		-			
120.110					-		-			
123.40		23		3			-		26	3.7
123.50			2				-		2	. 3
123.60							-			
127.40					1		-		1	. 1
127.50							-	-		
127.60							-			
130.35	1	2	8	54			-		65	9.3
130.40		1	5				-		6	. 9
130.50							-			
130.60					-		-			
130.70		7			-		-		7	1.2
130.80					-		-			
Totals	669	1139	4718	519	44	5			2094	

Station	11.	$\begin{gathered} 12 \\ 2 \cos ^{2} \end{gathered}$	13	. 24	15	$\begin{aligned} & 16 \\ & \hline 771 \\ & \hline \end{aligned}$	$\begin{array}{r} 17 \\ \text { nine } \end{array}$	$\begin{gathered} 18 \\ \text { anot. } \end{gathered}$	$\begin{gathered} \text { Stan } \\ \text { Totol } \\ \hline \end{gathered}$	$\begin{array}{r} \text { Sta. } \\ \hline \end{array}$
20.10	-	-	-	-	-	-	8	-	3	8.0
20.20	-	-	-	-	-	-		-		
20, 30	-	-	-	-	-	-	3	-	3	3.0
20.1:0	-	-	-	-	-	-	4	-	4	2.0
20.50	-	-	-	-	-	-		-		
20.50	-	-	-	-	-	-		-		
20.70	-	-	-	-	-	-		-		
20.80	-	-	-	-	-	-		-		
20.50	-	-	-	-	-	-		-		
23.15	-	-	-	-	-	-	82	-	82	82.0
27.20	-	-	-	-	-	-	1	-	3.	1,0
30.2 .6	-	-	-	-	-	-	4		4	2.0
30.30	-	-	-	-	-	-				
30.40	-	-	-	-	-	-	5	3	8	4.0
30.50	-	-	-	-	-	-				
30.60	-	-	-	-	-	-	4	2	6	$3=0$
30.70	-	-	-	-	-	-				
30.80	-	-	-	-	-	-				
30.90	-	-	-	-	-	-				
30.100	-	-	-	-	-	-				
33.32	-	-	-	-	-	-	$4]$	1	45	22.5
37.33	-	-	-	-	-	-	2	2	4	2,0
40.45	-	173*	3		-	33	19	is	24\%;	40.7
40.50	-	630	9	4	-	2	2	10	657	109.5
40.60	-	37	2	20	-	13	7		21	13.5
40.70	-	27	24	2		16	\because		75	10.7
40.80	-	46	13	2	$2 ?$	9	2		90	14.1
40.90	-	30°	23	4	17	4	5		0%	13,4
40.100					15	9	4	1	32	4.6
40.110	-					7			7	2.0
40.120	-	-	-	-	-	-				
43.50	-	64	29	1.	-	52			146	24.3
43.60	-	23	3	3	-	41	5	7	1.18	18,7
47.55	-	133	20	-	-	80	10	4	255	51.0
47.60	-	45	10	26	-	14			123	20.5
50.53	34	1	4	1.7	1.2	13	11		96	12.0
50.60	4	12	2	1.9	4	8	13		22	11. 5
50.70	2.	\because	2		23	4.3		4	09	11.1
50.80	1		6		2	10	3	2	29	3.6
50, 00	1	5	12		40		11.		6 ?	8.6
50.100			20		14.	2	2	5	33	4.1
50.110			1	47	4				52	6.5

Sunle non-umtitntire de to net beive tom

Recorc of the Imrvae of Foclefich (Subastodes spps), 1250

50.120				1					1	. 1
50.130										
53.54	-	-	-	-	20	54	66	6	146	36.5
53.64	-	-	-	-	22	53	-	2	32	27.3
55.60	4	13			-	-	-	-	17	4.2
57.54	-	-	-	-	13	2	20	11	46	11.5
57.64	-	-	-	-	19	37	-	6	6%	20.7
61.55	177	9	6\%		35	1 ?	9	19	325	40.6
60.60	30	12	4		4	ú	36	20	127	15.1
60.70	4	4	4	4	1.0	10	35	20	91	11.4
60,80	3	2			3	42	7	3	65	8.1
60.90	3	?			4	2.		1	42	5.2
60.100	1	2					11.		14	1.8
60.110	6								6	. 8
60.120		2							2	. 2
60.1 .30										
63.57	-	-	-	-	5	47	13	-	65	21.7
63.67	-	-	-	-	4	5	-	-	9	4.5
65.60	85	24	7	3	-	-	-	-	11.9	2.9 .7
67.55	-	-	-	-	60	8	256	-	324	103.0
67.65	-	-	-	-		11	-	-	11.	5.5
70.55	53		2		6	23	20	8	117	146
70.60	$?$	7		4		5	2		25	3.1
70.70	8	7		6		5			26	3.2
70.30	6	15	2	4		4		2	33	4.1
70.90			10		3	$3{ }^{3}$			50	0.2
79.100				2		1.0			11	1.4
70,110	-				3				3	. 4
70:1:0	-									
70.130	-									
73.51	-	-	-	-	3	21	22	-	124	42.3
73.61	-	-	-	-	5	3	-	-	13	6.5
77.55	-	-	-	-	16	11	2.2	-	39	13.0
77.65	-	-	-	-	12	4	-	-	16	8.0
80.55	11	7		25	?	4	8	-	62	8.9
80.60	33	28	3	3	2	35	$?$	-	106	1.5 .1
80.70	14			6		2%	4	-	146	6.6
80.30	3	3	22		35		2	-	65	2.3
80.90								-		
80.100								-		
30.110					2			-	2	. 3
30.120								-		

80.3 .30								-		
83.55	34	-	270	3.6	15	3	-	-	30	77.6
83.60		-	10		18	11	2	-	41.	6.3
83.70	70	-	6		0	7		-	92	15.2
33.80	3		2			2	-	-	12	2.0
83.00							-	-		
37.35	37.8	113	5%		14	10	-	-	512	85.3
87.40	373	300	128	6	3	4	-	-	759	I26.5
86.50	\cdots	-	-	-	-	4	10	-	14	7.0
87.50	77	186	-	14	-	-	-	-	277	92.3
87.60	0	24		26	162	19		-	239	32.1
07.80	8	-				5	1	-	I4	2.3
8.8 .30		-					-	-		
87.00		-					-	-		
90.20	16	7	$?$	7	5				14.	5.5
50.37	30	75	6	2.1.		4	6	3	135	16.9
80.45	23		30	27		\therefore		2	303	38.5
80.53	109	239	12.6	120	33	3	4		64:	80.5
50.60	101.	--	©	47	3	\geqslant	1?		335	47.9
90.70		-	13.		2				13	1.0
90.80		-								
90.00										
50.200										
90.110										
90.7 .20										
93.30	11		48	1		7	-	-	$6 ?$	11.2
93.40		4	233	16	10	3	-	-	316	52.7
93.50	20	3	- 10	3	4	30	-	-	76	12.7
93.60	-		34.5	15	43	$]$.	-	-	404	0.8
93.70	6	-	-	13	6		-	-	25	6.2 \%
93.30		-	-	2	6		-	-	8	2.0
93.90		-	-			\therefore	-	-	$\%$. 5 .
97.32	6	-	186	10	-		-	-	1\%	43.0
97.40	2	-	11.	6	7		-	-	26	5.2.
9\%50	3	-	3	35	6		-	-	$4{ }^{\circ}$	9.4
97.60	3	-	-		12	4	-	-	1.9	4.8
97.70	2\%	-	4	4	24		-	-	56	.1. 2
97.30		-	52	23	4		-	-	70	15.8
97.0		-	349	12			-	-	307	\%2.2
100.30	2	3%	67	15	4].	-	22	10	23.6
100.40	5	60	5	2	-		-		$7{ }^{2}$	12.0
100.50	3		2	8	-	2	-		14	2.3

Teble VII (Cont'd)
Fecord of the Larvae of Focifish (Sebastocies spp.), 1950

[^0]: 1/ The colieetions were designed primarily to yield information on pilcherd. Information on the cther species is partially an incidental, althougn not unexpected byproduct.

