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Stipatocrinus, a New and Unusual Camerate Crinoid from the 

Lower Silurian of Western New York 

Abstract 

Stipatocrinus hulveri gen. et sp. nov. is described from the Upper Llandoverian Reynales 

Formation of western New York. Diagnostic characters of this unusual camerate crinoid 

include a peculiar cup in which the lowest circlet, consisting of two large and two small 

plates designated as basals divided by sutures passing through the AE-interray and C- 

ray, possesses a combination of infrabasal, basal, and radial features. Unique t-shaped 

radials bridge interrays consisting of numerous small interbrachials irregular in shape and 

arrangement. Stipatocrinus probably represents an archaic, previously unrecognized lin- 

eage of camerate crinoids that persisted into the Silurian but became extinct in the late 

Llandoverian. Thinly plated, flexible interrays of Stipatocrinus reduced metabolic cost 

of skeletal growth and possibly aided in respiration. 

Introduction 

Crinoids are poorly represented in Lower Silurian (Llan- 

doverian) strata of eastern North America. This interval 

is critical to understanding the evolution of the class, for 

it followed major Late Ordovician extinctions that deci- 

mated crinoids and other groups of marine invertebrates 

and preceded major taxonomic radiation and restructuring 

of crinoid assemblages in the Late Silurian (Wenlockian). 

One might predict, therefore, that Llandoverian crinoid 

assemblages would comprise transitional forms, including 

ancestral stocks of certain of the major Wenlockian clades. 

Indeed, such precursor taxa have been reported from the 

Hopkinton Dolomite (late Llandoverian, C,;—C,) in lowa 

(Witzke, Frest, and Strimple, 1979; Witzke and Strimple, 

1981), and a slightly older fauna is known from the Brass- 

field Formation of Ohio (Ausich, 1985, 1986a, 1986b) in 

strata considered to be of late Llandoverian (C,—C,) age 

(Berry and Boucot, 1970). Potential ancestors of Wen- 

lockian crinoids also occur in the Cataract Group of On- 

tario (Eckert, 1984) and in the lower Clinton Group (middle 

to late Llandoverian, B,—-C,) of the northern Appalachian 

Basin in New York State (Eckert, in prep.). However, 

Early Silurian crinoid assemblages of Ontario and New 

York State are also distinctly Ordovician in aspect and 

characterized by persistence of primitive lineages. For ex- 

ample, Ptychocrinus medinensis, a species closely related 

to the Late Ordovician crinoid P. splendens, is locally 

abundant in the Power Glen Formation (early Llandover- 

ian, A,-A,) of New York and the Cabot Head Formation 

of Ontario (Brett, 1978; Eckert, 1984). The Reynales For- 

mation contains undescribed crinoids very similar to the 

Middle Ordovician crinoid Tornatilicrinus from the Leb- 

anon Limestone of Tennessee. Stipatocrinus hulveri gen. 

et sp. nov. is also inferred to represent a primitive but 

persistent Ordovician lineage. These taxa appear to rep- 

resent relict lineages that escaped Ashgillian extinction. 

Stipatocrinus hulveri formed monotypic, high-density as- 

semblages, suggesting that it may have acted as an op- 

portunistic species that thrived in physically stressed, un- 

crowded environments such as existed in the Early Silu- 

rian of the northern Appalachian Basin. These environ- 

ments may have provided a refuge for primitive holdover 

taxa that became extinct or were displaced coincidentally 

with an invasion of diverse Wenlockian echinoderm as- 

sociations that may nave evolved in the North American 

midcontinent (Witzke, Frest, and Strimple, 1979) or in 

presently unknown areas. 

Occurrence and Stratigraphy 

In 1983, while studying Early Silurian brachiopod com- 

munities in western New York, Michael Hulver of the 

University of Chicago discovered dolostone slabs covered 

with long crinoid stems from talus in the eastern side of 

the gorge of the Genesee River at Rochester, New York 

(Text-Figs. 1, 2). Subsequent investigation by Brett re- 

sulted in discovery of numerous nearly complete individ- 

uals of Stipatocrinus hulveri gen. et sp. nov. at this site, 

0.3 km north of the lower falls of the Genesee River and 

10 to 40 m east of the Rochester Gas and Electric access 
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TeExtT-Fic. 1. Locality map of southwestern Ontario and western New York State. Arrow in inset at right 

indicates occurrence of Stipatocrinus hulveri gen. et sp. nov. 
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TextT-FiG. 2. Upper Ordovician Queenston Formation and Silurian formations exposed in eastern side of 

gorge of Genesee River at Rochester, New York. Vertical section is approximately 50 m. Slabs bearing 

Stipatocrinus hulveri gen. et sp. nov. were found on talus slope between access road and Reynales Formation 

exposed in cliff. Arrows indicate lateral extent of occurrence. 



road south of Seth Green Drive, Rochester, Monroe County, 

New York (United States Geological Survey, Rochester 

West 7.5’ Quadrangle). 

Crinoid-bearing slabs appear to comprise parts of a large 

rockfall from the Wallington Member of the Reynales For- 

mation, exposed in the cliff above the talus (Text-Fig. 2). 

Laminated calcisiltite containing crinoids closely resem- 

bles that found interbedded with green shales near the base 

of the Wallington Member. Crinoid columns and distinc- 

tive t-shaped radials were obtained in situ from the lowest 

metre of this member, which probably represents the ho- 

rizon from which the study material was eroded. 

The Reynales Formation, also known as the Reynales 

Limestone, consists of complex, time-trangressive, dom- 

inantly carbonate strata extending from the Niagara area 

eastwards to near Wolcott, New York, where it grades 

laterally into the Bear Creek Shale. The Wallington Mem- 

ber (Fisher, 1960) is the uppermost unit of the Reynales 

Formation in the Rochester area. Approximately 4 m thick 

in the Genesee Gorge, the Wallington consists of thin- to 

medium-bedded, light grey, cherty, dolomitic limestone 

and dolostone with greenish-grey shale partings. Cross- 

lamination with a maximum amplitude of 2 cm occurs in 

calcisiltite (pelletal grainstone beds). Several horizons of 

fossiliferous packstone and grainstone within the Walling- 

ton contain abundant specimens of the brachiopods Pen- 

tamerus oblongus and Eocoelia hemispherica. On the basis 

of these brachiopods, the Wallington was considered to 

be of late Llandoverian (C,) age (Berry and Boucot, 1970). 

However, further consideration of brachiopod and cono- 

dont biostratigraphy led Rickard (1975) to propose an ear- 

lier (C,) age. 

Materials and Methods 

Most specimens of Stipatocrinus hulveri gen. et sp. nov. 

are embedded in a hard, dolomitic calcisiltite and proved 

difficult to prepare. Attempts to remove matrix, using so- 

dium bicarbonate in an airbrasive machine, were not suc- 

cessful. Dolomite powder proved to be an effective abrasive 

but readily damaged the thin plates of these crinoids. For- 

tunately a few specimens, including the holotype, are 

embedded in a softer, slightly argillaceous matrix and were 

prepared using needles and airbrasion with little damage. 

Immersion of specimens in ethanol facilitated morphologic 

study. Text-Figures 5, 6, and 7 were prepared by tracing 

over photographs. Plate dimensions were measured using 

vernier Calipers; orientations of these plates are given in 

Table 1: 

All study material is deposited in the collections of the 

Department of Invertebrate Palaeontology, Royal Ontario 

Museum (ROM) in Toronto, Ontario, Canada. 

Systematic Palaeontology 

Class Crinoidea Miller, 1821 

Subclass Camerata Wachsmuth and Springer, 1885 

?Order Monobathrida Moore and Laudon, 1943 

Superfamily Stipatocrinacea superfam. nov. 

DIAGNOSIS 

Lowest circlet in cup consisting of four plates (basals?); 

two large plates adjacent to one another along C-ray suture 

and two small plates directly in line with A- and E-ray 

radials. This circlet divided by sutures in AB-, DE-, and 

EA-interrays. Radials and fixed brachials narrow, elon- 

gate, raised. Primanal and anitaxis absent. Interbrachials 

small, exceptionally numerous, irregular in shape and 

arrangement. 

Family Stipatocrinidae fam. nov. 

DIAGNOSIS 

Characters of superfamily. 

Stipatocrinus gen. nov. 

TYPE SPECIES 

Stipatocrinus hulveri sp. nov. 

ETYMOLOGY 

From the Latin stipatus—crowded—in reference to the 

numerous interbrachials crowded together in the interrays, 

and from the Greek krinon—lily. 

DIAGNOSIS 

Monotypic genus of Stipatocrinidae with narrow conical 

cup and depressed interrays. Radials t-shaped, bridging 

interrays. Primibrachials two in each ray, elongate, straight 

sided, grooved ventrally. Fixed secundibrachials four to 
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TEXT-FiG. 3. Plate diagram of Stipatocrinus hulveri gen. et sp. nov. Note peculiar configuration of proximal 

circlet, divided into bilaterally symmetrical halves by sutures in AE-interray and C-ray. The t-shaped radials 

(black) enclose suboval interbrachial areas and are smaller in BC- and CD-interrays than in remaining interrays. 



six in each ray branch. Fixed pinnule borne by second 

secundibrachial. Interbrachials smooth, without ornamen- 

tation. Narrow cylindrical anal tube eccentrically located 

on tegmen. Arms ten, pinnulate; brachials in immature 

biserial arrangement. Column transversely circular. 

DISCUSSION 

There is little doubt that Stipatocrinus gen. nov. belongs 

to the subclass Camerata in view of its densely pinnulate 

arms, fixed ray series, fixed pinnules, and numerous in- 

terbrachials. However, below this level, classification be- 

comes difficult. It is not clear whether Stipatocrinus should 

be classified among the Monobathrida or the Diplobath- 

rida, or in a separate order altogether, because the peculiar 

plate configuration of the base of the cup in this crinoid 

renders plate homologies obscure. The problem is com- 

pounded, for the column of Stipatocrinus is neither pen- 

tameric nor pentagonal, but cylindrical with a round lumen. 

Hence, this column does not provide any indication of 

orientation of thecal plates relative to the entoneural sys- 

tem, as suggested by the “‘Law of Wachsmuth and Spring- 

er’ (Warn, 1975). 

Even the location of radials in Stipatocrinus 1s somewhat 

problematic. The A- and E-rays are each supported by a 

single uninterrupted row of plates beginning in the lowest 

circlet of the cup (Text-Fig. 3). Thus, plates of this circlet 

in the A- and E-rays could be considered to be radials. 

However, if this interpretation is followed, the radials of 

these rays would lie immediately above the stem facet, a 

feature unknown in all other crinoids. In the B-, C-, and 

D-rays the lowest plates of the rays are t-shaped and sit- 

uated within the second circlet of plates (Text-Fig. 3). 

These t-shaped plates are relatively narrow, as in fixed 

brachials, and are even grooved ventrally (Pl. 1, figs. 

16,20). However, they are differentiated from all other 

cup plates by their lateral processes, and they form a dis- 

tinctive circlet. We feel fairly confident in designating 

plates of the second circlet as radials because a t-shaped 

plate of the C-ray overlies a suture between plates of the 

lowest circlet. This plate is therefore in typical radial po- 

sition. Furthermore, the strong differentiation of these plates 

is also suggestive of radials. In other primitive camerate 

crinoids, including reteocrinids and xenocrinids, the ra- 

dials are always markedly separate from other adjacent 

plates (Brower, pers. comm., 1986). 

Configuration of the lowest circlet of cup plates in Sti- 

patocrinus is unique among camerate crinoids, both in 

terms of the shapes and relative sizes of these plates and, 

most notably, in their orientation with respect to the ra- 

dials. The lowest circlet combines features of infrabasals, 

basals, and radials. Three of four sutures dividing this 

circlet are interradial (AB-, DE-, and EA-interrays), a 

characteristic of infrabasals; the fourth suture is directly 

below the C-ray radial as it would be in a normal basal 

TEXT-FiG. 4. Stipatocrinus hulveri gen. et sp. nov. Specimens 

immersed in ethanol. 

A. Individual centred on C-ray. Proximal circlet is divided 

by suture in C-ray but not in BC- or CD-interrays. Aborally 

directed bifurcation of C-ray ridge continues on basals. Small 

suboval interbrachial areas in BC- and CD-interrays, bounded 

above by t-shaped radials, are of similar size. Interbrachials, 

underlain by black integument, are poorly preserved. Paratype 

ROM 44309a, x 4.0. 

B. Individual centred on D-ray. Proximal circlet is divided 

by suture in C-ray and DE-interray but not in CD-interray. Sub- 

oval interbrachial area in DE-interray, bounded above by t-shaped 

radials, is smaller than adjacent area in CD-interray. Interbra- 

chials are well preserved in this specimen, and proximal portion 

of anal tube is visible. Paratype ROM 44309b, x 4.0. 

circlet (Text-Figs. 3, 4A,B). Furthermore, two plates in 

the lowest circlet resemble radials because they are directly 

in line with and support the A- and E-rays. 

An unusual and interesting feature of Stipatocrinus is 

that the plates of the lowest circlet are dissimilar in size 

and shape with respect to each other. Two plates of this 

circlet, directly in line with the A- and E-rays, are five- 

sided and considerably smaller (narrower) than the larger 

six-sided plates that they adjoin laterally (Text-Fig. 3). 

Pairing of each larger plate with a smaller one divides the 

lowest circlet into bilaterally symmetrical halves, each with 

two plates, about a sutural plane passing through the AE- 

interray and C-ray. To our knowledge, no other camerate 

crinoids, including xenocrinids, possess a basal circlet with 

this symmetry. 

We emphasize that the peculiar configuration of the 

lowest circlet of cup plates in Stipatocrinus is not an ab- 

normality. Consistent orientations have been observed in 

all seven specimens that have been adequately prepared. 

Furthermore, plate organization appears well coordinated 

with ray ridge configuration. 

an 



Homology of the lowest circlet of cup plates in Stipa- 

tocrinus is a problem. We have termed these plates basals 

because they comprise the only circlet of plates between 

the stem facet and inferred radial circlet. However, the 

proximal circlet resembles a typical basal circlet only at 

the C-ray suture, situated directly below the C-ray radial. 

An alternative interpretation is that the lowest circlet of 

plates in Stipatocrinus may be homologous with the in- 

frabasals of dicyclic camerates, in which the sutures are 

invariably interradial in position. However, number and 

sutural configuration of plates in the lowest circlet of S1- 

patocrinus do not precisely conform to that of a normal 

camerate crinoid infrabasal circlet. Nearly all diplobath- 

rans possess five equal infrabasals, although the Anthemo- 

crinidae possess four. None of these crinoids has a suture 

in the C-ray position as in the Stipatocrinus base. Instead, 

sutures between infrabasals normally occur in the BC- and 

CD-interrays; such sutures are absent in Stipatocrinus (Text- 

Figs. 3, 4A). 

The origin of the unequal basals in Stipatocrinus 1s un- 

clear. The infrabasal circlet of anthemocrinids, a family 

unrelated to Stipatocrinus, possesses a large plate presum- 

ably derived from fusion of two smaller plates. In contrast, 

Stipatocrinus possesses two large and two small plates in 

the lowest circlet. The two large plates could have devel- 

oped by lateral fusion of two pairs of plates in an infrabasal 

circlet that originally possessed six plates. However, this 

seems unlikely, for crinoids with six infrabasals are un- 

known. A more plausible explanation is that the two larger 

plates of Stipatocrinus were derived in two different ways: 

one by fusion of two plates, the other by enlargement of 

a single plate, so that the sutural position migrated from 

an interradial to a radial position. This would imply an 

ancestral condition with five plates in the lowest circlet, 

for which no evidence exists. 

If the lowest cup plates of Stipatocrinus are homologous 

with infrabasals, we are faced with the obvious problem 

of absence of a basal circlet. Most researchers have implied 

that a pseudomonocyclic condition results from loss of 

infrabasals (Warn, 1975; Ubaghs, 1978). For example, the 

inadunate genus Jocrinus could have evolved from Mer- 

ocrinus by loss of infrabasals. Alternatively, certain mon- 

ocyclic inadunates including Belemnocrinus may have 

evolved from dicyclic forms by loss of the basal circlet 

(McIntosh, 1979). The latter process may also have oc- 

curred in Stipatocrinus. 

The interrays of Stipatocrinus are peculiar in several 

respects. Most notably, they are filled with an exceptional 

number of small ossicles, more than 400 plates in the CD- 

interray of the holotype specimen (ROM 44310a, Pl. 1, 

figs. 1,3). Moreover, these plates are irregular in size, 

shape, and arrangement and are unusually thin. Unlike the 

majority of camerate crinoids, Stipatocrinus has interrays 

without a well-developed gradient of progressively smaller 

plates distally. Finally, Stipatocrinus lacks a primanal and 

anitaxis but possesses a cylindrical anal tube composed of 

plates resembling interbrachials. 

Moore and Laudon (1943) considered small, irregular, 

and numerous interbrachials to be a primitive character. 

Brower (1974a) believed this characteristic to be advanced 

in xenocrinids, crinoids with interray plating similar to 

Stipatocrinus and occurring stratigraphically above sup- 

posedly related camerates with fewer and larger interbra- 

chials. However, this conclusion was based, in part, on a 

misinterpretation of the phylogeny of xenocrinids (Brower, 

pers. comm., 1986). Poorly known phylogenies of ca- 

merate crinoids do not prove that either of these conflicting 

theories is correct. However, we believe that ontogenetic 

patterns of growth in primitive pelmatozoans and biostrati- 

graphic evidence lend support to the Moore and Laudon 

hypothesis. 

Ontogeny of interbrachials in most camerate crinoids 

was closely integrated and coordinated with increase in 

size of the cup (Brower, 1974b). Originating near the 

periphery of the tegmen, interbrachials were derived from 

tegmen interambulacrals that were modified in size and 

shape, becoming regular polygons as they were gradually 

incorporated into interrays. Consequently, interrays of most 

camerate crinoids typically show a well-developed gra- 

dient of progressively smaller and more irregular inter- 

brachials towards the tegmen. This gradient apparently 

evolved early in the history of camerates, first appearing 

in the Lower Ordovician crinoid Proxenocrinus. 

Unlike that of most crinoids, ontogeny of interbrachials 

in Stipatocrinus and the Late Ordovician crinoid Xeno- 

crinus was poorly coordinated and poorly integrated with 

overall growth of the cup. In these crinoids, interbrachials 

grew more slowly than other calyx plates, necessitating 

an intercalatory mode of growth (Brower, 1974a). As a 

consequence of this mode of growth, interbrachials in Sti- 

patocrinus and Xenocrinus are irregular in shape and ar- 

rangement. Interbrachials could have been added anywhere 

within interrays of these crinoids. This pattern 1s especially 

‘well developed in Stipatocrinus, in which small interbra- 

chials adjacent to larger interbrachials are scattered 

throughout interrays. Intercalation increased the number 

of interbrachials at a given level within the cup as this 

crinoid grew. New interbrachials were also added by in- 

corporation of interambulacrals. Interbrachials in Stipa- 

tocrinus merge smoothly into the tegmen, indicating that 

tegmen plates were incorporated into interrays, unaccom- 

panied by substantial modification in size or shape of these 

ossicles. Because of an intercalatory mode of growth, in- 

terrays of Stipatocrinus and Xenocrinus display a poorly 

developed gradient of progressively smaller plates distally. 

The origin of camerate crinoids and their relationships 

to other groups of pelmatozoans is poorly known. How- 

ever, biostratigraphic evidence indicates that primitive 



Cambrian pelmatozoans, including the probable crinoid 

Echmatocrinus, are characterized by thecae possessing a 

large number of plates irregular in shape and arrangement. 

Moreover, thecae of these echinoderms typically show a 

poorly developed gradient of progressively smaller plates 

distally, and these plates commonly merge into the tegmen 

with little differentiation. We suggest that similar features 

in Stipatocrinus represent primitive characters. 

The calyces of Stipatocrinus and Xenocrinus are similar 

in that both possess large numbers of small irregular in- 

terbrachials. However, Xenocrinus has a well-developed 

anitaxial ridge, and configuration of the lowest circlet of 

plates in Stipatocrinus is unlike that of Xenocrinus. We 

conclude that similar morphology of interrays suggests 

simply that these crinoids belong to archaic lineages prob- 

ably not closely related to each other. In fact, superficial 

similarity of these genera could be an example of con- 

vergent evolution, although this possibility seems doubt- 

ful. It implies repeated development of large numbers of 

small interbrachials from ancestors with larger regular in- 

terbrachials, which is contrary to evolutionary trends in 

camerate lineages of simplifying cup structure by reducing 

numbers of interbrachials or eliminating them altogether. 

Even the assumption that Stipatocrinus 1s related to di- 

plobathran camerates does not provide insight into the 

evolution of this genus. Gaurocrinus and Reteocrinus, both 

members of the Reteocrinidae, possess large numbers of 

irregular interbrachials as in Stipatocrinus. However, these 

crinoids have a primanal within the radial circlet and also 

possess a prominent, ridged anitaxis. Furthermore, Reteo- 

crinus has divergent characters, including interinfrabasal 

gaps, spiculelike interbrachials, and apinnulate, branching 

arms. None of the more advanced diplobathrans is at all 

similar to Stipatocrinus. Thus, Stipatocrinus presently stands 

by itself. We follow convention in tentatively assigning 

this genus to the Monobathrida because only a single circlet 

of plates is situated below the radials. However, we also 

emphasize that the present monocyclic-dicyclic schism in 

classification of crinoids, discussed by Warn (1975), may 

obscure phylogenetic relationships. In fact, Stipatocrinus 

may belong to a sister group of the Diplobathrida. Dis- 

covery of additional genera related to Stipatocrinus may 

readily justify erection of a new order to encompass these 

unusual crinoids. We conclude that the several seemingly 

primitive features of Stipatocrinus suggest that it may have 

been a “‘living fossil’’ in late Llandoverian seas. 

Stipatocrinus hulveri sp. nov. 

Text-Figs. 1-8; Pl. 1, figs. 1-21; Pl. 2, figs. 1-12 

TYPE MATERIAL 

Numbered slabs containing approximately 75 calyces and 

crowns associated with numerous columnals and columns 

of this species are deposited in the collections of the De- 

partment of Invertebrate Palaeontology at the Royal On- 

tario Museum, catalogue numbers ROM 44309-44344. 

Figured specimens: holotype ROM 44310a; paratypes ROM 

44309a,b,d; 443 10b-44323. 

OCCURRENCE 

Reynales Formation, Wallington Member, exposed in the 

gorge of the Genesee River, Rochester, New York. 

ETYMOLOGY 

The species is named in honour of Michael Hulver. 

DIAGNOSIS 

As for genus. 

DESCRIPTION 

Calyx steeply conical (height/width = 1.5—1.7), with highly 

elevated ray ridges and depressed interrays. CD-interray 

about 20 per cent wider than other interrays. 

Four plates in lowest cup circlet, here designated as 

basals, possibly representing infrabasals. Proximal circlet 

comprising approximately I5 per cent of calyx height, 

divided by sutures in AB-, DE-, and EA-interrays and in 

C-ray, undivided in BC- and CD-interrays (Text-Figs. 3, 

4A,B; Pl. 1, figs. 1,5,6,13—15). Basals two large and two 

small (Pl. 1, fig. 13). Basals directly underlying A- and 

E-ray radials five-sided, smaller (narrower) than larger six- 

sided basals occupying AB- through DE-interrays (Text- 

Figs. 3, 4A,B, 7; Pl. 1, figs. 5,6). Smaller basals elongate, 

widest just above stem facet (PI. 1, fig. 5). Larger basals 

expanding in width distally. Sutures passing through AE- 

interray and C-ray divide basal circlet into bilaterally sym- 

metrical halves (Text-Fig. 3). In AB-, DE-, and EA- 

interrays basals meeting along straight suture for about 

one-third to one-half of basal height, diverging above 

forming concave margins of proximal interrays (Text-Fig. 

3; Pl. 1, fig. 5). In BC- and CD-interrays these concave 

margins less pronounced, not extending as close to stem 

facet (Text-Figs. 3, 4A). Basals in A- and E-rays each 

with ridge continuing onto A- and E-ray radials, respec- 

tively. Larger basals meeting directly below C-ray along 

straight suture for about 80 per cent of basal height, each 

possessing two adradially directed ridges. Pair of ridges 

divided by suture separating these basals merging up- 

wards, forming single ridge on C-ray radial (Text-Figs. 

3, 4A). 

Radials and higher fixed brachials grooved ventrally (PI. 

1, figs. 16,17,20,21), extremely narrow, forming highly 

elevated ray ridges extending full width of brachials (Text- 

Figs. 3, 4A,B, 8; Pl. 2, figs. 1-5). Radials t-shaped (height/ 

maximum width = 1.6—1.8). Each radial bisected near 

midpoint by pair of short, narrow, laterally directed pro- 

jections (Text-Figs. 3, 4A,B; Pl. 1, figs. 5,20). Projections 



forming ridges lower in height than ray ridges, crossing 

proximal interray areas, narrowly joining radials together. 

First primibrachials rectangular, highly elongate (height/ 

width = 3.0—5.0), straight-sided. Second primibrachials 

Y-shaped (height/width = 1.4—1.6), axillary (Pl. 1, fig. 

10). Each ray bifurcating near centre of second primibra- 

chial, forming two straight ray ridge segments continuing 

upwards towards arms. First secundibrachials rectangular 

(height/width = 1.5—1.9), each bearing a stout fixed pin- 

nule bounded by interprimibrachials (PI. 1, figs. 1,4). Sec- 

ond secundibrachials equidimensional (height/width = 1.0). 

Succeeding fixed secundibrachials rectangular, wider than 

high (height/width = 0.6—0.8). Arms free beyond third 

to seventh secundibrachial. 

Interrays filled with exceptionally numerous interbra- 

chials (more than 400 ossicles in CD-interray of holotype 

specimen, ROM 44310a; PI. 1, fig. 1). Interrays of smaller 

individuals with fewer plates (Pl. 2, figs. 10,11). Inter- 

brachials immediately above basals enclosed in suboval to 

subtriangular depressed areas bounded above by lateral 

projections of radials (Text-Figs. 3, 4B, 5; Pl. 1, fig. 19). 

These enclosed areas smaller in BC- and CD-interrays than 

in remaining interrays (Text-Figs. 3, 4A,B; Pl. 1, fig. 6). 

Interbrachials irregular polygons, typically five- or six- 

sided, varying from four- to seven-sided. Largest inter- 

brachials commonly with rounded corners. Interrays dis- 

playing poorly developed gradient of progressively smaller 

plates distally; smaller plates occurring between larger plates 

throughout interrays (Pl. 1, fig. 3). Interbrachials smooth, 

without ornamentation, very thin (approximately 0.03 mm 

thick), resting on black layer representing degraded or- 

ganic matter (Text-Figs. 3, 4A; Pl. 1, fig. 5). Interray 

areas loosely sutured to straight-sided ray series. 

Primanal and anitaxis absent. Narrow cylindrical anal 

1 m m , i 

TextT-Fic. 5. Plate diagram of basals and proximal interbra- 

chials in AB-interray of Stipatocrinus hulveri gen. et sp. nov. 

Paratype ROM 44310b, PI. 2, fig. 19. 

tube developed in CD-interray, eccentrically situated near 

edge of tegmen (PI. 1, figs. 1,11; Pl. 2, figs. 1,9). Anal 

tube incompletely preserved in available specimens, com- 

posed of smooth polygonal plates resembling interbrachi- 

als (Text-Fig. 6; Pl. 1, figs. 2,4). 

Tegmen seen only in cross-section, forming shallow 

dome consisting of polygonal plates resembling interbra- 

chials in size and shape. Some tegminal plates nodose, 

commonly bearing short spines (PI. 1, fig. 12). 

Arms ten, pinnulate, relatively long (Table 1). Proximal 

brachials in uniserial arrangement (PI. 1, fig. 5), rectan- 

gular, wider than high (height/width = 0.4—0.6). Suc- 

ceeding brachials cuneate, in immature biserial arrangement 

in distal portions of arms (PI. 1, fig. 8). Pinnules incom- 

pletely known. Pinnulars attached directly to free brachi- 

TEXxT-FiG. 6. Plate diagram of anal tube of Stipatocrinus hul- 

veri gen. et sp. nov. Anal plates resemble interbrachials. Dotted 

area represents area damaged during preparation. Holotype ROM 

44310a, Pl. 1, fig. 2. 



als, short, quadrangular, tapering distally (Pl. 1, fig. 7). 

Succeeding pinnules lath-shaped (height/width = 2.2—2.7). 

Column transversely circular, heteromorphic, tapering 

uniformly almost to a point distally (Pl. 2, figs. 4,5,8,10). 

Proximal nodals biconcave in longitudinal cross-section 

with thickened, rounded epifacets concealing adjacent in- 

ternodals (Text-Fig. 7A,B; Pl. 1, fig. 18). Internodals rec- 

tangular or slightly biconvex in longitudinal cross-section. 

Proximal columnals thin (nodal height/width = 0.25—0.33, 

internodal height/width = 0.06—0.13). Columnals becom- 

ing successively thicker in distal portion of column (nodal 

height/width = 0.28—0.36, internodal height/width = 0.17— 

0.22). Noditaxis typically consisting of one nodal, two or 

three second-order internodals, a first-order internodal, and 

two or three second-order internodals (Text-Fig. 7A—D). 

Lumen small, round (PI. 2, figs. 6,7). 

TABLE 1. Measurements (in mm) of types of Stipatocrinus hulveri gen. et sp. nov. 

Orientation of plate measurements as follows: ROM 44309a—below B- and C-rays (basal), C-ray (radial— 

secundibrachial); RoM 44309b and 44310a—below C- and D-rays (basal), D-ray (radial—secundibrachial); 

ROM 44310b—below B- and C-rays (basal), B-ray (radial—secundibrachial). 

Paratype 

Measurements ROM 44309a 

Calyx height 13.7 

Calyx width ll 

Arm length 33.07 

Proximal stem diameter Het) 

Basal height 2.1 

Basal width 2.1 

Radial height 37 

Radial width Dal 

First primibrachial height 2.8 

First primibrachial width 1.0 

Second primibrachial height 2.4 

Second primibrachial width 1.8 

Second secundibrachial height 1.4 

Second secundibrachial width 1.0 

*Specimen crushed. Actual width less than indicated. 

tDistal portions of arms not preserved. 
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TEXT-FiG. 7. Diagrams of longitudinal cross-sections through pluricolumnals of Stipatocrinus hulveri gen. 

et sp. nov. Nodals and internodals are indicated, respectively, as follows: N, 1 IN, 2 IN, 3 IN. 

A. Pluricolumnal between 9 and 10 mm below cup of paratype ROM 44319, indicated by upper pair of 

arrows on PI. 1, fig. 18. Very thin second-order internodals are not visible from exterior of proximal column. 

B. Pluricolumnal between 26 and 28 mm below cup of paratype ROM 44319, indicated by lower pair of 

arrows on PI. 1, fig. 18. Second-order internodal is incipient nodal. Note prominent, thickened epifacets of 

nodals, which partly enclose adjacent third-order internodals. 

C. Distal pluricolumnal of paratype Rom 44320, indicated by upper pair of arrows on PI. 1, fig. 9. 

D. Distal pluricolumnal of paratype ROM 44320, indicated by lower pair of arrows on PI. 1, fig. 9. 
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Palaeoecology 

Limited lateral extent of slabs bearing Stipatocrinus hul- 

veri on a talus slope in the gorge of the Genesee River 

and apparent absence of similar slabs in the cliff wall above 

indicate that these crinoids comprised a highly localized 

stand, or “‘garden,’’ on the seafloor. The area of seafloor 

occupied by this stand, assuming that the majority of spec- 

imens have been discovered, did not exceed 0.2 m?. This 

occurrence represents a high-density stand (sensu Brower, 

1973) with about 400 crinoids per square metre. Few fos- 

sils, including poorly preserved specimens of the brachio- 

pod Coolinia? and encrusting bryozoans are associated 

with these crinoids (PI. 2, fig. 10). The horizon from which 

the Stipatocrinus material was apparently derived is nearly 

devoid of fossils, indicating that the seafloor surrounding 

this stand was sparsely populated by skeletonized benthic 

organisms. Stands of Early Silurian crinoids described by 

Brett (1978) and Eckert (1984) also occur in poorly fos- 

siliferous strata. Clustering of conspecific crinoids in these 

environments may have conferred adaptive advantage by 

providing viable breeding populations (Brower, 1973). 

Polished slabs obtained by sectioning perpendicular to 

bedding planes reveal that well-preserved Stipatocrinus 

individuals consisting of nearly complete crowns with long 

stems occur in calcisiltite adjacent to a thin encrinite (Text- 

Fig. 8). Although it is not possible to demonstrate con- 

clusively the sequence of deposition of these layers be- 

cause the slabs were not recovered in situ, comparison 

with stands of Early Silurian crinoids excavated in situ 

(Eckert, 1984) and personal observations of occurrences 

of well-preserved crinoids in the Middle Devonian Ham- 

ilton Group of western New York and Ontario strongly 

suggest that well-preserved Stipatocrinus individuals are 

situated immediately above the encrinite. Consisting al- 

most entirely of Stipatocrinus columnals, cup plates, and 

arm fragments, the encrinite rests with a sharp lower con- 

tact on plane-laminated, unfossiliferous calcisiltite. Com- 

TeEXxT-Fic. 8. Vertical section through slab containing Stipa- 

tocrinus hulveri gen. et sp. nov. Basal encrinite (En) is inferred 

to represent lower surface of slab. Calcisiltite layer (Ca) above 

encrinite shows well-preserved, sectioned cups and pluricol- 

umnals of S. hulveri. Paratype ROM 44322. 

plete calyces, typically lacking arms and columns, are 

embedded in the lower surface of this encrinite. 

In reconstructing the palaeoecology of this occurrence, 

we infer that the Stipatocrinus hulveri stand originated 

from a chance spatfall on a sparsely populated seafloor. 

Most of these pioneer individuals attained maturity, as 

indicated by the large size of radials in the encrinite (PI. 

1, fig. 20). Death, decay, and subsequent disarticulation 

of these crinoids under conditions of generally slow sedi- 

mentation gradually formed a carpet of ossicles, repre- 

sented by encrinite, below the stand. Resuspension of 

ossicles by currents buried decaying, partly articulated, 

individuals relatively quickly. Small crinoids, evidently 

juveniles, associated with larger individuals indicate that 

the stand survived for more than one generation. Even- 

tually the stand was completely extirpated by rapid burial, 

indicated by excellent preservation of articulated crinoids 

in calcisiltite, displaying undulatory laminations. Burial 

must have been rapid because modern crinoids exposed 

on the seafloor typically decay and disarticulate quickly 

after death (Meyer, 1971; Liddell, 1975; Meyer and Meyer, 

1986). 

In the Reynales Formation at Rochester, beds of Pen- 

tamerus, a brachiopod that inhabited relatively shallow, 

rough-water environments (Boucot, 1975; McKerrow, 1978) 

alternate with sparsely fossiliferous strata deposited in rel- 

atively quiescent, probably deeper water conditions. Thus, 

occurrence of well-preserved Stipatocrinus specimens in 

sparsely fossiliferous strata lacking Pentamerus is con- 

sistent with a previous interpretation (Brett and Eckert, 

1982) that occurrences of well-preserved crinoids are typ- 

ically associated with quiet-water palaeoenvironments near 

the limit of normal wave base but within reach of storm- 

generated waves and currents. Several slabs bearing S. 

hulveri show prominent, subparallel orientation of crowns 

and columns suggestive of storm-generated currents during 

or immediately preceeding burial (PI. 2, figs. 10,12). After 

burial the crinoids rapidly decayed, but disarticulation was 

prevented by overlying sediment and absence of biotur- 

bation. Internal organs were not preserved in any speci- 

mens of Stipatocrinus. However, a black carbonaceous 

film representing degraded organic matter commonly cov- 

ers inner surfaces of interbrachials (Text-Figs. 3, 4A; Pl. 

1, figs. 5,11). A reducing, acidic environment was ap- 

parently generated within the calyces as decay proceeded, 

inducing formation of syngenetic pyrite on some speci- 

mens. Acidic conditions caused dissolution of interbra- 

chials in some individuals (Text-Figs. 3, 4A; Pl. 1, figs. 

5,11). Dissolution probably occurred before lithification 

because the crinoids are not preserved as steinkerns. 

Many Stipatocrinus calyces are filled with sparry cal- 

cite. These specimens are typically less crushed or flat- 



tened than individuals filled with calcisiltite. Precipitation 

of calcite within hollow calyces early in diagenesis may 

have allowed the crinoids to resist compaction (see Sprin- 

kle and Longman, 1982:69). However, it is also possible 

that calcite was precipitated late in diagenesis after lithi- 

fication. When calcite was absent, thinly plated interrays 

of Stipatocrinus made these crinoids susceptible to com- 

paction, distorting and flattening them. 

Densely pinnulate arms and the flexibility of the prox- 

imal portion of the column suggest that Stipatocrinus was 

a rheophilic filter feeder. The t-shaped radials that bridge 

proximal interray areas helped to strengthen the base of 

the calyx. However, narrow brachials and unusually thin 

interbrachials that do not interlock with the ray series made 

the Stipatocrinus calyx relatively fragile in construction 

when compared to most other camerates, perhaps restrict- 

ing this crinoid to relatively low-energy environments. 

Apparent absence of Stipatocrinus in the Pentamerus com- 

munity is consistent with this interpretation. 

Extremely narrow fixed brachials and t-shaped radials 

made possible incorporation of more interbrachials in Sti- 

patocrinus than any other described crinoid of similar size. 

Functional morphology of this interray plating is conjec- 

tural. The ease with which Stipatocrinus calyces were flat- 

tened during compaction of the sediment, without breakage 

of plates, demonstrates that the interrays were flexible in 

life. Brower (1974a) postulated that large numbers of in- 

terbrachials in Xenocrinus aided respiration by diffusion 

of oxygen through plate sutures, enhanced by pumping 

action of flexible interrays. Perhaps oxygen could diffuse 

directly through the unusually thin (0.03 mm thick) inter- 

brachials of Stipatocrinus. We note, however, that unlike 

certain Ordovician crinoids with pore-bearing calyces, there 

is no evidence of auxiliary respiratory structures in Early 

Silurian crinoids. Numerous interbrachials in Stipatocrinus 

may simply be a scaling phenomenon involving thickness/ 

width ratios of plates: reduction in plate thickness neces- 

sitated smaller plate size in order to retain resistance to 

breakage. 

Unusually thin interray plating and a thick but very 

narrow fixed ray series of the calyx of Stipatocrinus in- 

corporated the smallest amount of calcite possible con- 

sistent with requirements for sufficient strength and rigidity. 

Thus, metabolic cost of calcite secretion in Stipatocrinus 

was minimal compared to most other thicker-plated cri- 

noids. By reducing metabolic cost, overall growth of Sti- 

patocrinus may well have been rapid, perhaps allowing 

early reproduction. If Stipatocrinus is assumed to have 

colonized environments generally unfavourable to most 

crinoids, as occurred during deposition of the lower Wal- 

lington Limestone, an r-selective strategy of early repro- 

duction may have ensured survival. 

The column of Stipatocrinus 1s relatively short, not ex- 

ceeding 10 cm in length, and tapers gradually almost to a 

point distally. Curvature of the distal portion in paratype 

ROM 44314 (PI. 2, fig. 8) and in other specimens suggests 

that the column of Stipatocrinus was coiled distally around 

other objects for anchorage. This mode of attachment is 

characteristic of many camerates with gradually tapering, 

heteromorphic columns, including Alisocrinus, Glypto- 

crinus, Xenocrinus, and most diplobathrids (Brett, 1981). 

Possession of a distally coiled column permitted attach- 

ment to a wide variety of substrates (Brett, 1985) and was 

probably a contributing factor in the survival of melocrin- 

itids, glyptocrinids, dimerocrinitids, rhodocrinitids, and 

the lineage leading to Stipatocrinus into the Silurian. 
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PLATE 1, figs. 1—21. 

Stipatocrinus hulveri gen. et sp. nov. Reynales Formation, Rochester, New York. Specimens immersed 

in ethanol. 

1. CD-interray of well-preserved individual. Note absence of primanal and anitaxis. Proximal circlet is 

divided by suture in DE-interray but not in CD-interray; t-shaped radials bridge proximal interray areas, 

enclosing interbrachials between basals and lateral projections of radials. Narrow, highly raised brachials 

enclose thinly plated interrays consisting of numerous, polygonal interbrachials. Distal interbrachials merge 

with plates of anal tube and tegmen without differentiation. See also Text-Fig. 6; Pl. 1, figs. 24,10; Pl. 2, 

fig. 1. Holotype Rom 44310a, x 3.5. 

2. Cylindrical anal tube of above individual showing arrangement of irregular polygonal plates. Distal 

portion of tube is missing. See Text-Fig. 6 for a diagram of this specimen. Holotype Rom 44310a, x 8.0. 

3. CD-interray detail between first primibrachial and second secundibrachial. Interray, slightly separated 

from C-ray in this individual, is composed of numerous polygonal interbrachials irregular in shape and 

arrangement. Holotype ROM 44310a, x 7.0. 

4. C-ray and adjoining interbrachials showing proximal portion of anal tube and first pinnular of fixed 

pinnule borne by second secundibrachial. Holotype Rom 44310a, x 7.0. 

5. Anterior view of nearly complete crown. Orientation of rays unknown. Interbrachials, apparently 

dissolved during diagenesis, are absent in most of interray area, revealing underlying black layer representing 

degraded organic matter. Interray areas below lateral projections of radials are subtriangular in this specimen. 

Proximal free brachials are uniserial. See also Pl. 2, fig. 12. Paratype Rom 44311f, x 3.0. 

6. Specimen centred on B-ray. Numerous irregular polygonal interbrachials are visible in BC-interray. 

Basal circlet is divided by suture in AB-interray but not in BC-interray. See also Text-Fig. 5; Pl. 1, fig. 19; 

Pl. 2, fig. 3. Paratype Rom 44310b, x 4.0. 

7. Proximal arm detail. Note short pinnules. Paratype ROM 44321, x 5.0. 

8. Distal portion of arm with cuneate brachials. Paratype RoM 44309d, x 5.0. 

9. Longitudinal cross-section through distal column. Nodals have prominent, thickened epifacets. Typical 

noditaxis consists, sequentially, of a nodal, two or three second-order internodals, a first-order internodal, 

and two or three second-order internodals. See Text-Fig. 7C,D for diagrams of two noditaxes indicated here 

by pairs of arrows. Paratype ROM 44320, x 4.0. 

10. Intersecundibrachial detail between bifurcation of D-ray. Holotype Rom 44310a, x 6.0. 

11. CD-interray of crown. Incomplete anal tube is outlined by black integument. Most interbrachials are 

missing. See also Pl. 2, fig. 12. Paratype ROM 4431la, x 2.0. 

12. Longitudinal cross-section through distal fixed secundibrachials and tegmen. Many tegminal plates 

possess nodes or short spines. Paratype ROM 44315, x 6.0. 

Figs. 13-16. Sequential series of cross-sections through lower portion of cup destroyed by progressive 

grinding. C-ray is at upper left of each section. 

13. Basals just above stem. Note small opening for lumen. Basal suture at upper left is directly below 

C-ray. Two basals below B-, C-, and D-rays are larger than remaining basals. 

14. Slightly higher section through basals showing initial development of ridges on rays. 

15. Basals sectioned near top of cup with prominent ridges on rays. 

16. Section through proximal portions of radials and interrays. Each radial has prominent ventral groove. 

17. Cup transversely sectioned just below bifurcation of rays. Cup has been strongly compressed, dem- 

onstrating flexibility of thinly plated interrays. Paratype ROM 44316, x 3.0. 

18. Longitudinal cross-section through column and proximal portion of cup. One basal and part of adjoining 

radial are visible. Proximal nodals are transversely biconcave with slightly thickened epifacets. Internodals 

are typically transversely biconvex. See Text-Fig. 7A,B for diagrams of two noditaxes indicated here by 

pairs of arrows. Paratype ROM 44319, x 3.0. 

19. Proximal AB-interray area enclosed by basals and lateral projections of t-shaped radials. Numerous 

irregular, polygonal interbrachials are visible. See Text-Fig. 5 for a diagram of this specimen. Paratype ROM 

44310b, x 10.0. 

20. Isolated radial showing characteristic lateral projections and deep ventral groove. Left projection is 

incomplete. Paratype ROM 44323, x 5.0. 

21. Transverse cross-section through three calyces, each sectioned near bifurcation of rays. Fixed brachials 

contain prominent ventral groove. Paratype ROM 44313, x 3.0. 





PLATE 2, figs. 1-12. 

Stipatocrinus hulveri gen. et sp. nov. Reynales Formation, Rochester, New York. Blackened specimens 

whitened with ammonium chloride. 

1. CD-interray of holotype specimen. Suboval interbrachial area in CD-interray, bounded by a single basal 

and t-shaped radials of C- and D-rays, is smaller than adjacent area in DE-interray, bounded below by two 

basals. See also Text-Fig. 6; Pl. 1, figs. 14,10. Rom 44310a, X 3.5. 

2. Lateral view of nearly complete crown centred on B-ray. See also Pl. 2, fig. 12. Paratype Rom 4431 1d, 

x We). 

3. Crown centred on B-ray. Suboval interbrachial area of proximal AB-interray is larger than adjacent 

suboval area in BC-interray. See also Text-Fig. 5; Pl. 1, figs. 6,19. Paratype Rom 44310b, x 2.8. 

4. Partial crown centred on C-ray. Proximal bifurcation of C-ray ridge continues on basals. See also PI. 

2, fig. 12. Paratype RoM 44311b, x 2.8. 

5. CD-interray view of crown with most of column. See also PI. 2, fig. 12. Paratype RoM 4431le, x 2.0. 

6. Pluricolumnal. Two internodals are attached to nodal with prominent epifacet. Paratype ROM 44318b, 

x 710: 

7. Pluricolumnal. Internodal is attached to nodal displaying broad epifacet. Note small lumen. Paratype 

ROM 44317a, X 7.0. 

8. Incomplete column coiled distally. Paratype RoM 44314, x 2.0. 

9. CD-interray of individual with proximal portion of anal tube. See also Pl. 2, fig. 12. Paratype ROM 

443lla, x 3.0. 

10. Small slab with nearly complete crown and column near centre of photograph, two additional partial 

crowns and numerous pluricolumnals. These small specimens represent juvenile crinoids. Paratypes ROM 

44312a—c, X 0.8. 

11. Detail of above slab. Lower crown possesses two essentially complete arms. Paratypes ROM 44312a-c, 

x 1.6. 

12. Well-preserved crinoids on small slab. Specimens are oriented subparallel to each other, suggesting 

unidirectional current at time of burial. Paratypes RoM 4431 la—-i, x 0.8. 







wv i 

v7 



ISBN 0-88854-336-0 
ISSN 0384-8159 


