ilow

15 (xy

Digitized by the Internet Archive in 2007 with funding from Microsoft Corporation

THE STRENGTH OF

CANADIAN DOUGLAS FIR, RED PINE, WHITE PINE AND SPRUCE.

PROFESSOR H. T. BOVEY, LL.D., F.R.S.C.

THE STRENGTH OF

CANADIAN DOUGLAS FIK,

RED PINE, WHITE PINE AND SPRUCE.

By Benry T. Bovey, M.Inst.C. E.., LL.D.
(Read January 25, 1895.)

In the present Paper it is proposed to give a statement of the results which have been obtained up to the present time, from the numerous experiments which havo becn carried out in the Trsting Laboratories, McGill University, on the strength of Caradian Douglas Fir, Rell Pine White Pine and Spruce.

These experiments, which have now extended over a period of more than two ycars, will still be continued, and it is hoped that the results, will be set before the profession in a Paper on some future occasion.

In order that the subject way be treated in as comprehensive a manner as possible, the engineers and lumber merchants, who must necessarily be most particularly interested, are earnestly requested to give their co-operation. They ean render valuable service by sending to the University Laboratorics timbers of any and all sizes. These timbers should, in each case, be accompaniod by a history giving the treatment of the timber frow the time when the tree was felled, as, for example, the locality in which the tree grew should be specified, the manner in which the \log was brought to the mill, the leugth of time during which it was kept in water (salt or fresh), the time during which it was kept in the pile at the mill, and, if the timber bas already been in scrvice, the length of this service. Any other details respectiog the history of the timber may also be given, so that the information may in every case be as cemplete as circumstances will permit.

The attention of members is specially directed to the tables showing the deflection of beams under transverse loading, and also to tables showing the extension of specimens under direct tension.

These tables tend to prove conclusively the statement made by the author many years ago, i.e., that timber, unlike iron and steel, may be strained to a point acar the breaking point without being seriously iojured. It will be observed that in almost all cases the increments of deflection and extension, alnost up to the point of fracture, are very. aearly proportional to the increments of load, and it seems impossible to define a limit of clasticity for timber. This probably accounts for the coatinucd existeace of many timber structures in which the timbers have been and are still continually subjected to excessive stresses, the factor of safety being often less than $1 \frac{1}{2}$. Whether it is advisable so to strain timber is another question, and experiments are still required to show how timber is affected by frequently repeated strains.

transverse strength.

The followidr Table gives in iuches the distances between the centres of the end bearings (l), the mean depths (d) and the mean breadths (b) of the Beams I to LXI referved to in this Paper :-

Beams	I	$I I$	$11 I$	$I V$	V	$V 1$	VII
1	96	66	66	69	69	69	69
	\times						
1	12.125	12.125	5.35	9.125	9.125	6.125	6
h	\times						
	9	5.625	4.25	5	5	6	5.5125

Beamas	V11]	IX	S	X 1	X11	XIII	IIV
1	6:1	204	198	20.4	20.4	214	21.4
	\times						
1	5. 125	$14 . n 5$	14.875	14.05	14.s.5	14.75	11.75
	\times	\times	\times	\times	\times	X	\times
b	:\%	9	$1{ }^{\text {a }}$	8.6855	8.5125	6	$1 ;$
Beams:	11	SV1	- V1I	XVIII	XIX	NX	XXI
I	1 l	13	135	13 m	1:\%	1:8	13%
	\times	\times	\times	X	\times	\times	\times
1	1i)	15	1.5.12.5	17.i	$1 \because 1$	1.	S. 5
	\times						
1.	(6.123)	(i. 125	$!$	¢.ij	9.1	m.xis	5.95
Beams:	XXII	XXIII	XXIV	NXV	XXVI	SXVI	XXV1II
1	16.	126	$1: 2$	114	210	210	$\because 10$
	\times						
11	15.685	14.35	16.2	15.65	1.32 .1	13.12.5	11.25
,	\times	x	$\underset{x}{x}$	\times	x	x	\times
							0.04 .015
Beam-	SXIX	XXX	XXXI	XXX11	\XX゙HII	1 SXXIV	- \XX
1	2111	174	174	$1 \sim 0$	$1 * 0$	156	156
	\times	\times	\times	\times	X	\times	\times
11	11.25	7.25	714	8.125	11 12.5	9.125	11.15
	\times						
1,	6.25	6.1875	6.21875	3.1	3.1	3.1\%5	3.325
Beximis	SXXVI	JXXVII	NXXVIII	I S.xXI	S I .	SLI	X1.11
1	2 CO	288	114	102	[20	120	288
	\times	\times	X	\times	X	\times	\times
1	18	18	15	18	14	I8	16
	\times	-	\times	X	\times	\times	\times
1	!	9	$!$:	$!$	9	9
Deam:	SI.III	XhJ	XLS	SIN゙1	X1, 11	XIVIII	1 XLIS
1	120	!211	2 nc	129	120	1:0	15
	\times	x	\times	X	\times	X	\times
1.	I	1:	18	IN	Is	15.1875	1.5.375
	\times	X	\times	\times	X	\times	\times
1.	9	$!$	1	\because	4	9.375	9.1\%\%
Be:athe	1.	1.1	LH	1.1		1.15	LV
1	146	1192	1×0	$1+$		2-4	120
	\times	\times	\times	x		\times	\times
.1	:	15.12	14.5	1		7%	17.5
	\times	\times	\times		\times	\times	X
1	9.10125	5 !	9.15	- !	0% i	S.ET5	8.835
Buame	WVI	1,111	SVIH		1	LX	L ${ }_{\text {I }}$
1	120	18:	1×10		-11	13.4	1sic
	X	x	\times	X	x	\times	\times
d	17.5	1.	11.75	; i	11	12.	11.5
	\times	. \times	\times	x	,	\times	\times
h	8.937.	- 1	fi	9		$\therefore .505$	5.625

The transverse tests were earried out witl the Wicksteed 100:to machine by weans of a specially desigued arrangement shown in the photograph on the opposite page.

By this arangement the two ends are gradually foreed downwards while the eentre is supported upon the addle suspended from the lever of the maehine. Thus the two halves of the beam are really equivalent to two eantilevers loaded at the ends. By means of a very simple device, the pressure can be increased so regularly as to ensure an absolute equality in these end loads.

Figures 1 and 2 show the device employed to keep the pressure on the ends of the beam always nermal to the sufface. The spherical

joint allows the bearing to revolve, ard by means of the prisuatic slot any form of bearing surface may be introduced.

The formula used in calculating the skin-streugtlis and co-effieients of elastieity have been deduced by ueans of the ordinary theory of flexure which is based upon assumptions which actual experionce shows to be fir Jrom being true. These asmuptions are:-

(a) That the beam is symmetrical with respect to a certain plane.
(b) That the material of the beam is homogeneous.
(c) That sections which are plane before bending remain plane after bending.
(d) That the ratio of longitudinal stress to the corresponding strain is the ordinary (i. e. Young's) modulus of elasticity, notwithstanding the lateral connection of the elementary layers.
(e) That these elementary layers expand and contract freely under tensile and compressive forces.

In each case, the skin stress at the point of fracture in lbs. per sq. in has been determined by means of the formula,

$$
f=\frac{3}{2} \frac{l\left(2 \mathrm{~W}_{1}+\mathrm{W}_{\underline{2}}\right)}{b d^{2}}
$$

$W_{i}-$ lbs. being the weight at an end, W_{2}-lbs. half the weight of the beau l-ins. the length of the beam between the two end centres of pressure, b-ins, the breadth and d-ins. the depth at the section of fracture.

In practice, the breakiug weight, $W_{1}+\frac{1}{2} W_{i}$, is usually determined from the formula,

$$
\mathrm{W}_{1}+\frac{1}{2} \mathrm{~W}_{2}=\mathrm{C} \frac{b d^{2}}{l}
$$

C being the co-efficient of rupture. Hence, $f=3 \mathrm{U}$.
It may perhaps be well to point out that a very small error in estimating the depth of a beam may lead to a considerable crror in the calculated skin stress. Thus from the formula just given it appears that if Δf be the change in the skin stress corresponding to a change Δd in the depth, then

$$
\Delta f=-2 \frac{f}{d} \Delta d
$$

and the skin stress will be increased or diminisbea by this amount, according as the estimated depth is too small or too great by the amount $\lrcorner \mathrm{J}$.

For instance, in the case of the Spruce Beam No. L, the calculated skin stress, disregardiny the diminution of depth due to compression, is 5123 lbs . The initial depth (d) of the beam was 17.5 ins ., and the amount of the compression (Δd) 2 ins. Thus the error (Δf) in the skin stress is

$$
\Delta f=-2 \frac{5123}{17.5} 2=1171 \mathrm{lbs} . \text { per sq. in., }
$$

and the actual stress becomes $5123+1171=6294$ lbs. per sq. in., showing an increase of 22.8 per cent.

Now, in every example of transverse testing, the material is more or less compressed at the eentral support. The eentral support in the following examples was a bardwood block of 20 ins . diameter. The amount of the compression at this support depends not ouly upon the nature of the material of the beam and upon the character of the support, but also very especially upon the ratio of the length of the beam to its lepth. In calculating the skio stress corresponding to the breaking weight, therefore, thrce assnmptions may be made :-

1st. That the compression at the support may be disregarded.
Ind. That the effective depth of the beam may be taken as equal to the initial depth minus the amount of the compression, and that the usual law may be assumed to hold good for the whole of this effective depth.

3 rd . That the compression portion of the beam is alone affected, so that the so called neatral plane remains in the same position relatively to the teasion face of the beam from the commen cement of the test to the end.

Calculatious based upon these three assumptions have been made in sever:l of the following cases, and it will be observed that in all cases the skin stress calculated upon the first assumption is invariably less than the skin stress determined npon either of the remaining assumptions.
Thus any crror is on the sale side.
It should be renembered, however, that it is possible, and even probable, that neither of these assumptions is even approximately correct, at all events, beyond the limit of elasticity, which in the case of timber siill remains indefinite. The portion in compression doubtless acquires
increasel rigidity, aud thus oxerts a coutinually incroasing resistance, so that there is produced a more or less perfect equalization of stress throughout the portion of the beam under compression, and this equalization will doubtless materially a ffeet both the elastieity and the strength.

An interresting paper on the surfice- loading of beams was presented by Prof. C. A. Carus.Wilson to the Physical Society of London, (Eug.), and an abstract of this Paper is in be found in the nuthor's treatise on the Theory of Structures.

The coefficient of elasticity, as dotermined by the tranverse londing, is deduced from the formula

$$
E=\frac{1}{4} \frac{\Delta W}{\Delta D} \cdot \frac{l^{\prime s}}{\overline{d l^{3}}}
$$

W being the increment of weight corresponding to the inerement $د D$ of the deflection.
Here again an error Δd in the estimated depth will produce an error ΔE in the calculated eo-efficient of elasticity measured by

$$
\Delta E=-3 \frac{E^{\prime}}{d} د d .
$$

DOUGLAS FIR.

Beams I to III were sent to the Testing Laboratory by Mr. John Kenuedy, Chief Eaginecr of the Montreal Harbour Works.

Beams I and II were of good average quality.
Beam I was tested on Mareh 1st, 1893, with the annular rings as in Fig. 3. The load was gradually inereased until it amounted to $\mathbf{4 5 , 6 0 0}$ lbs., when the beam failed by the tearing apart of the fibres on the tension face.

The maximum skin stress corresponiling to the breaking weight of $45,000 \mathrm{lbs}$. is 4897 lbs , per square inch.
'The eo-efficient of elastieity, as deduced from an inerement in the deflection of $.23-\mathrm{in}$. between the loads of 3500 and $22,500-\mathrm{lbs}$, is $1,138,900 \mathrm{lbs}$.

Table A shows the sereral readings.
Beam II was tested on Mareh 2nd, 1893, with the annular rings rumning as in Fig. 4.
The load was gradually inereased until it amounted to $36,575 \mathrm{lbs}$. when the beam lailed by shearing longitudinally.

The maximum skin stress correspondiug to this breaking weight is 4378 lbs. per square ineh.

In connection with this experiment it is of interest to note that the timber, although it had failed by longitudinal shear, still possessed a very large amount of transverse srrength, and similar faets will be subsequently referred to in the case of other beans. Afier the fraeture, the load upon the beam was again gradually inereased to 34,000 lbs. before a second failure oceurred.
'I'he 60 efficient of elasticity, as determined by the inerement in the deffection of . 1 in. between the loads 2000 and $18,000-\mathrm{lbs}$, is $1,146,-900 \mathrm{lbs}$.

Table B shows the several readings.
Beam III was tested on Mareh 2nd, 1893, with the annular rings as in Fig. 5.

This Beam was of especially exeellent quality, with elear, elose, parallel grain, perfeetly sound and free from knots.

The load was gradually increased until it amounted to $12,950 \mathrm{lbs}$., when it failed by shearing longitudinally.

The maximum skin stress corresponding to the breaking load is $10,441 \mathrm{lbs}$. per square inch.
The co-efficient of elasticity, as determined by an increment in the deflection of $.2-\mathrm{in}$. between the loads of 500 and $4 \overline{2} 00-\mathrm{lbs}$., is $2,178,100 \mathrm{lbs}$.

Table B gives the several readings.
Beams IV to VIII were sent to the laboratory by the British Columbia Mills Timber \& Trading Company through Mr. C. M. Beacher.

These beams were cut out of trees grown on the coast section of British Columbia, and felled in the fall or during the winter. The whole of the beams were free from knots, of good quality, and with the grain running straight from end to end.

Bearu IV was.tested May 17th, 1893, with the annular rings somewhat oblique as stown in Fig. 6. Under a load of $16,720 \mathrm{lbs}$. it

failed by shearing longitudinally along a plane $A B$ at right angles to the andular riugs, the distance between the ends of the portions above and below the plane of shear being $\frac{1}{4}-\mathrm{in}$. The plane of shear extended to a distance of about 36 ins. from the end of the beam.

The maximum skin stress corresponding to the breaking load is 4156 lbs . per square inch.
The co-efficient of elasticity, as determined by an increase in the deflection of .14 -in. between the loads of 2,000 and $8,000 \mathrm{lbs}$, is $926,500 \mathrm{lbs}$.

Table B shows the several readings.
After the beam had sheared longitudinally, the jockey weight was run back, and the load aqain gradually applied until it amounted to $15,000 \mathrm{lbs}$., when fracture occurred by the tearing apart of the fibres on the tension face. Under this load of $15,000 \mathrm{lbs}$ an opening of $\frac{1}{2}-\mathrm{in}$. was developed in the end at the plane of shear.

On May 11 th this beam weighed 56 lbs . 13 ozs,, or 28.59 lbs . per cubic foot. On May 17th, the weight of the beam was 56 lbs .3 ozs., or 28.27 lbs . per cubic foot, so that while in the laboratory this beam lost in weight at the ratejof, $0533-\mathrm{lb}$. per cubic foot per day.

Beam V was tested on May 19tl, 1893, with the annular rings somewhat oblique as shown in Fig. 7. It failed by the tearing apart of the fibres on the tension face under a load of $23,610 \mathrm{lbs}$.

Fig. 7 Fig 3 .
The maximum skin stress corresponding to this load is 5869 lbs . per square inch.

The co-efficient of elasticity, as determined by an increase in the deflection of . $24-\mathrm{in}$. between the loads of $1000-\mathrm{lbs}$. and $11,500-\mathrm{lbs}$., is $946,270 \mathrm{lbs}$.

Table B shows the several readings.
The weight of the beam on May 11th was 59 lbs ., or 29.59 lbs per cubic foot. The weight of the beam on May 19 th was 58 lbs .3 ozs ., or 29.18 lbs . per cubic foot, so that the loss in weight in the laboratory was at the rate of $.05125-\mathrm{lb}$. per cubic foot per day.

Beam VI was tested May 22nd, 1893, with the annular riogs as in Fig. 8 . Under a load of $15,480 \mathrm{lbs}$. it failod by the tearing apart of the tibres on the tension face.

The corresponding maximum skin stress is 7116 lbs .
The co-efficient of elasticity as determined by an increase in the deflection of $.3-\mathrm{in}$. betweon the loads of $500-\mathrm{lbs}$. and $8,000-\mathrm{lbs}$. is $1,489,21 \overline{\mathrm{j}} \mathrm{lbs}$.

Table B shows the several readines.
The weight of the beam oll May 11 th was $49 \mathrm{1bs}$. 6 ozs., or 31.05 lbs. per cubie foot, and the weight on May 22nd was 48 lbs . 1%., or $30.23 \mathrm{lbs} .$, showing a loss of weight while in the laboratory at the rate of $.0745-\mathrm{lb}$. per eubic foot per day.

Bearo VII was tested on May 19th, 1893. In this beam the annular rings ran somewhat obliquely as in Fig. 9. Under a load of 17.615 lbs ., the beam sheared longitndinally along the plane AB , Fig. 10, the distanee between the ends of the portions abnve and beiow the plane of shear being $3-16$ ths of an inch. The plane of shear extended to a distance of 46 -ins. from the end of the bean.

The maximum skin stress corresponding to this breaking weight of $17,615 \mathrm{lbs}$. is 8712 lbs .

The co-cffieient of elasticity, as determined by an increase in the deflection of $.255-\mathrm{ia}$. between the loads of 500 lbs and 8500 lbs ., is 2,052,250 lbs.

Tuble B shows the several readings.
Immediately after the longitudinal shear the jockey weight was run back until it indieated a load of 5090 lbs . when the lever again floated. The weight was then gradually inereased until it amounted to 11,840 lbs., when there was a seeond longitudinal shear along the plane CD at the other end, Fig. 11. The lap at the plane AB was now increased from 3-16ths in. to $3-10$ ths in., and the distance between the cads of the portions above and below the plane of shear at the other end of the beam was 3 -20ths of an inch.

Alter this seeond shear the jockey weight was rum back to 6840 lbs when the lever floated. The load was gradually inereased until it amounted to 8990 lbs , when the beam was fractured by the tearing apart of the fibres on the tension faee.

On May 11th, this beam weighed 60 lbs 4 ozs., or 40.69 lbs . per cabie foot, and the weight on May 19th was 59 lbs. 20%., or 39.92 lbs. per cubic foot, showing a loss of weight in the laboratory at the rate of $.09025-1 \mathrm{lb}$. per cubic foot per day.

Beam VIII was tested May 22nd, 1893. In this beam the annular rings were oblique as in Fig. 12. Under a load of $11,700 \mathrm{lbs}$. it failed at the support by the teariug apart of the fibres on the tension face.

The maximum kin stress due to this load is 8382 lbs. per square iuch.

The co-effieient of elasticity, as determined by an inerease in the deficetion of $.32-\mathrm{in}$. between loads of 1000 lbs . to 5500 lbs ., is $1,559,950 \mathrm{lbs}$.

Table B shows the several readings.
The weight of this beam on May 11th was 44 lbs ., or 36.76 lbs . per cubie foot, and its weight on May 22 nd was 42 lbs. 14 ozs., or 35.74 Jbs . per cubic foot, showing a loss of weight in the laboratory at the rate of $.0927-\mathrm{lb}$. per cubie foot per day.

Beams IX to XVI were sent to the laboratory by Mr. P. A. Peierson, ehief engineer of the Canadian Pacific Railway.

Beam IX was grown on the mainland half way between Vaneouver and New Westminster, in a flat country not mueh above the sea level. It was eut from a $\log 26$ ins. in diameter and 34 feet in length; whieb was felled about the month of May, 1892. The log was floated to the mill at Vancouver, and lay in fresh water for ten months.

The timber corresponded to first quality in the market, its grain being straight and running paralle] to the axis. It contained a season erack on the widest faee, about 11 feet long, $3 \frac{2}{2}$ ins. below the edge, and about $1 \frac{1}{2}$ in. deep. The beam was tested Nov. 13th, 1893, with the anuular rings as in Fig. 13, the heart of the tree being in one of the vertical faces. Under a load of $51,600 \mathrm{lbs}$. this beam failed at the support by the tearing apart at the centre of the fibres on the tension face.

The maximum skin stress corresponding to this load is 7974 -lbs. per square ineh.

The co-efficient of elastieity, as determined by an inerement in the defleetion of .77 -in. between the loads of 1000 -Ibs. and $20,000-\mathrm{lbs}$., is $1,767,990 \mathrm{lbs}$.

Table C shows the several readings.
The weight of the beam was 603 lbs , or 36.49 lbs . per cubic foot on Oct. 3rd, 590 lbs. 13 ozs., or 35.76 lbs. per cubie foot on Nov. 10 th, and 590 lbs . on Nov. 13th, showing a loss of weight while in the laboratory at the rate of $.0195-\mathrm{ib}$. per cubic foot per day.

Beam X. This beam was tested Nov. 11th, 1893, with the annular rings as in Fig. 14. It was eut from a log 32 ins. in diameter grown on the mainland 120 miles north and west of Vancouver, on a hill side abont 100 feet above the sca-level. The \log was felled in the winter of 1892-93, and was then towed to the mill, and remained in salt water six months.

The grain in this beam ran erosswise, and it failed by a cross fracture along the plane AB, Fig. 15.

The fracture oceurred under a load of $18,000 \mathrm{lbs}$., corresponding to a maximum skin stress of 4027 lbs . per square inch. The co-effieient of elasticity, as determined by an increase in the end deflections of $.84-\mathrm{in}$. between the loads $1000-\mathrm{lbs}$. and $15,000 \mathrm{lbs}$., is $1,637,806 \mathrm{lbs}$.

Table C shows the several readings.
The weight of the beam was 407 lbs .2 ozs., or 38.94 lbs . per cubic foot on Oct. $3 \mathrm{rd}, 406 \mathrm{lb}$. 3 ozs., or 37.80 lbs , per cubie foot on Nov. 10 th , and $404 \mathrm{lbs} .13 \mathrm{ozs}$. , or 37.79 lbs . per eubic foot on Nov. 13th, showing a loss of weight in the laboratory at the rate of .03 -lbs. per cubic foot per day.

Beam XI. This beam was tested November, 7th, 1893, with the annular rings as in Fig. 16. Its history is the same as that of Beam

X. The timber was of a quality corresponding to lirst cpatity in the market, and the prain tor the met part was parallel with the axis. It rentained a few manon cracks. On the tensin face of the bem the fibres crosed from back to frout in a ditauce ol 32 lt, commencing about live feet moe emil. The beam contained tho heart of the tree, the manalar ringe lnsing an in the Figure.
 the tibres bollow tension face.
 spuare inch.
The weftivient of elasticity, as determined by an increase in the
 $1,770,563 \mathrm{lb}$.
Table If shows the several readinge.

 Hth, showitg a loss of weight in he lahmatury at he rate of .01s 5° the. per cubic foot per day.

Table I shews the several readinge.
The tine occupied by the test was 29 minuter.
Beam XII was tested Nov. 18th, 1893, with the amular rings as in Fig. 17. This beam wat cut from a log og ins. in diameter, cruwn probably about 30 feet above the sallevel at Purt Grey, :bout eioht miles from Vanconver. The tree wats fellet in Augn-t, 1892; it remained in salt water nine months, being ahternately wet and dry aceording to the tide; it was then towed the mill and cut up.

The grain was, straight and parallel th the axis, and the timber wat of good quality corresponding to tirst quality in the market. It whewed several kuots of uedium size and a few semon crack. The beam con. tained the leart of the tree, the amblar rings beine as in Fir.
Under a loat of $-19,000$ the the bean failed by shatriner hogetutinally along the season crack AB.

Under this load the maximum skin stress is i, bit lbs. per sy. in.
The corefficient of elasticity :s deternine by an incerenent in the
 1,678,300 lb .
Table I) shews the several real ling.
The time otechied by the test wats 3 minutes.
'Ihe weight of the beam was 579 lb e, or 35.65 lb , per cubic fiot an
 showing a lose of weight in tha laboratmy at the rate of . 1191 las. per enbic fout per day.

Bean XIII. The history of this beam io he same as that of Beam IX. The beam was tested on Nov. Rah, 189: The heart of the tre was in one of the laces, the annular rimgs being as in lig. Is.

The tiabler was in good condicion anl of a 'quality correspondins to firet quality in the maket; there were mail season cracks alomg the back of the beam, in the neighbourhoul ol the nentral plane, and there were also small season cracks alluge the whole of the front about is ins. above the fice in compressinu.
Under a bad of e9,300 lbs. this beam hailed by the crippliug of the fibres on the empression face, commenceng at a suall knot at the back, Fis. 1!

The maximum skin strese correspouling to this load is 6912 lbs . per "quare inch.

The ch-efficient of elasticity as determined by :n inerease in the deflection of . 805 -ins. betreen the loads $1000-\mathrm{lbs}$. and $13,000 \mathrm{lbs}$. is 1, fite, 193 lbs.

Table E shows the several readings.
The beam weighed 381 lbs .150 z ., or 34.56 lbs . per eubic foot on Oct. 3rd, and 375 lbs ., or 34.13 hbs . per cubie foot on Nov. 15 th , showing a loss of weight in the laboratory at the rate of 01 lb . per enbie foot per dis.

The time ocenpied by the test was 4 a minntes.
Bearm XIV is in reality Beam XIII re-tested, the second test having been made Dec. 2nd, 1893. The beam was replaced in the maehine with the crippled side reversed so as to be in tension. The load was then gradually applied until it amounted to 17,600 3bs., when the leam failed on the tension side by the tearing apart of the fibres abourg the surface at whie! the crippling took place on the previous test.

The maximum skie stress corresponding to this load is 4082 lbs . per erquare inch as eompared with 6912 lbs. per square inch in the first test. The co-eflieient of clasticity, as determined by an increment in the deffection of .51 ins. between the loads of $1,000 \mathrm{lbs}$: and 8,000 lbs., is $1,513,950 \mathrm{lbs}$, as compared with $1,613,193 \mathrm{lbs}$. in the first test.

Table E shews the several readings.
This experiment therefure shews that although the beam may have been crippled by undue pressure, it still retained a large amount of strength as well as elasticity.

Tiable E gives the several readings.
Beam XV. This beall was tented Nor. 18th, 1893. The timber was excelleut in quality, equal to first quality in the market, elcar and straight grained ind free from knots. Its history is the same as that of Beam XII. The annular rings were oblique as in Fig. 20.

Uuder a load of $: 3 \overline{3}, 000 \mathrm{lbs}$. the beam failed by the erippling of the fibres on the compre-sion face, Fig. 21 .

The maximmon skin stress eorresponding to this load is 8020 lbs , per square inch.

The total compression of the material was . 34 -iu., and the maximum skin compressive stress, taking 1466-in., as the effective depth, is $8189-$ lbs. per sfl. in, the corresponding skin tension tress being 8577 lbs. per in. sq.

Assumine the intinary law to hold good for the whole of the cffective depth, the masimum skin strese would be 8511 lh , per sq. in.

The co-sficient of elasticity as determined by an inerement in the deflecrion in' . $\mathbf{3} \mathbf{5 5}$-ins betwecu the loads, 2000 llis, and $18,000 \mathrm{lbs}$, is $1,9 \times 9,400 \mathrm{lbs}$.

Table E: shews the several readings.
Tho time oceupied by the test was 30 minutes.
The weight of the beam was 445 lbs .6 ozs , or 39.99 ibs per cubic foot on Oct. Srd, and 433 lbs .13 ozs , or 38.92 Ils . per eubic foot on Now. 17 th, showing a loss of weight in the lalmratory at the rate of .023 - $\mathrm{-lbs}$. per cubic foot per day.

Bean XVI. This is really Beam XV re-tested, the second test having been made on Dee. 8th, 1893. In the first test the beam hall failed by crippling on the compression face; the beam was now reversed, ant muder a load of $\mathbf{2 5 , 5 8 0} \mathrm{lbs}$. it failed by the tearing apart of the fileres on the tension face along the surfuce at which the crippling had previously taken place. The tensile fracture extended 2 inches below the skin. The jockey weight was now rum back until the lever again floated, :nd the load was gradually increased until it amounted to 32,000 lhs., when the beam fractured a second time on the tension side the fracture extending to a depth of 5 iuches below the skin. The firsp fracture was accompanied by a longitudinal opening (as in Fig.) akout 60 inches in extent. A second longitudinal opening, also about 60 inches long, occurred at the second fracture.

The maximum skin stress corresponding to the breaking load of $25,580 \mathrm{lhs}$. is 5466 lbs per square inch.

The co-efficient of elasticity, as determined by an increment in the deflection of .54 ins. between the loads of 1.000 lbs and $11,500 \mathrm{lb}$., was $1,825,450 \mathrm{lbs}$.

Table E gives the several reading:
The weight of the beau was redueed to 428 lbs., or 38.40 lbs . per cubic foot, showing a loss between the test on Nov. 17 th , and that on Dce. 8th, at the rate of .02476 lbs. per cubie foot per day.
Beams XVII to XXI were sent to the testing laboratories by the British Columbia Mills Timber d. Trading Company through Mr. C. M. Beccher. The whole of these timbers were cut ou the coast section of British Columbia. The trees from which Eeams XVII, XVIII. XX and XXI were cut, were felled during the summer of 1893 , and came from Hartney's Camp, Seymour Creek, while Beam XIX was cut from a tree felled in the spring of 1894, and came from Rowling's Camp, Salmon Arm.
Beam XVII was tested June $241 \mathrm{~h}, 1394$. This beam was coare: grained, the grain rutuing very nearly parallel with the axis, and it contained a number of small knots on the compression side. It was cut from the heart of the tree, and wals iested with the annular ringes as in Fig. 22.

Under: load ol 48 ,600 lbs. it failed by the tearing apart ot the fiber: on the tension face, the enrespmonging maximum skin stress, negleeting the compression of the timber, being 4906 lbs. per square inch. The tensile fracture was followed immediately by a longitudinal :hear, coin cident with the nentral plane at the centre of the beam, and extending for a distance of 8 fect from the end, Fig. 25. The distanee between the portions of the beam above and below the plane of shear at the ent
was 3 -10ths of an inch. Fiys. 23 and 24 are seetions at the end and at the centre showing the nature of the fractures.

The total compression of the material was 1.83 ins, and the max. jmum skin compressive stress, taking $13.29 \overline{\mathrm{y}}$ ins. as the effective depth, is 5193 lbs . per square inch, the corresponding stress in the tension skin being 6851 lis. per square mel.
Assuming the ordinary Jaw to hold good for the whole of this effective d p th, the maxinum shin stress would be 6350 lbs , per sfuare inch.
The co-effeicnt of eltaticity as determined by an inerement in the
 is $1,259,600 \mathrm{lbs}$.

Table \mathbf{F} gives the several realings.
The weight of the heam, when shipel from Tancouver about April 21 st, was 423 lbs ., or 37.21 lhin per cubie foot; on reaching the Lahoratory on June 9 th, the weiglit was frund to be 411 lbs 10 ozs., or 35.78 lbs. per cubic frot, and on the day of the test, namely, June 24th, the weight was 404 lbs , 8 ozs., or $: 35.17 \mathrm{lbs}$ per enbic foot, slonwing a lass at the rate of $.0291-$-th per euhic foot per day butween Vancouser and the laboratory, and a lus at the rate of $.04066-13$, per enbic foot per day while in the laboratory.

Beam XVIII. This.beam was coarse grained, and contained several large and small knots: it was eut from the beart of the tree. It was tested $\mathrm{S}_{\mathrm{p}} \mathrm{tt}$. $28 \mathrm{~h}, 1$ 1894, with the annular riugs as in Fig. 26.
The load on the beam was gradually increased to 12,000 lhs. The beam was now gradually relieved from strain until the load had been reduced to 1000 lbs , withont showing any set. The load was again gradually i-creased from 1000 lhs, up to $19,000 \mathrm{lbs}$., when the beall was açain relieved from load and the radings were taken for cach difference of $1,000 \mathrm{lbs}$.

When the load had been reduced to 1000 lbs , the deflection at the cutre wat abserved to be $.015-\mathrm{in}$. as compared. with .005 -in. in the forward movement, and as seon as the beam was relieved of this $\mathbf{1 0 0 0}$ lbs., it returned to its initial condition without showing any set whaterer.
The time occupied by the firit loading was 10 minutes, by the scoond loading 12 minutes, and by the relicving from load 8 minutes.

In the final test the load was gradually inereased from uil until it an:ounted to $69,400 \mathrm{Jbs}$, when the beam fiiled by sha:aring loungitndinally, the shear being immediately followed by the twangyaptof the fibres on the theion fee, Figs 27 28, 29.

The maximum, kin tres a orreponding to the breaking load was 5196 lbs . per square ineh.

The en-efficiont of elasteitr, as deduced from an inerement in the deflection of $1-10$ th of an inch between the loads of 2000 lbs , and 12,000 Jbs., being i,320,900 lbs.

Table fegive the several readings.
The weight of the beam at the date of shijment from Vancouver, April 21st, wis 512 lbs , or 39.0 S lbs. per cubic foot On reaching the faboratory, on June 9th, this weight was 492 lbs. 10 ozs , or 37.60 lls. per culic foot, and the weight on Sept. 25th was 466 lbs . 6 ozs., or 35.59 lb . per culic font, showing a loss in weight between Vamcouver and the laboratory at the rate of $.0302-\mathrm{lb}$. per cubic foot per lay, and a low of weight in the laboratory at the rate of $.0181-\mathrm{lb}$. per cubic foot ger day.

Benm XIX. This bean was of exeeptionally goorl quality, with clear elone grain and no knots. It wis teited Oet. Sud, 189.1, with the anom. lar rings nearly vertieal, as in l"is. 30.

The loarl on the bom was gradually mereased up 10316.000 lis., when it was gradually relieved from load, the readings beeng taken for ach diminution of 4000 lbs. 'The corresponding readings are iaticated in Table 1 .

When it was completely relieved from load, the seales showed reatings if . 0.0 - in at the centre, $.001-$ in and .003 in at the ends. These readiugs, were probably due to inequalities in the timber or a possible sliding of the scales, as the beam showed no evident sign of set.

The load was again immediately increased gradnally from nil until it amounted to $59,540 \mathrm{lbs}$., when the beam failed by longitudinal shear, follomed ly the splintering of the npper edges on the tension side, ligs. 31, 32. Fracture was alsn indicated b; the crippling of the fibres on the compression side taking $\boldsymbol{p}^{\text {thace }}$ between 58,000 and $\mathbf{5 9 , 5 4 0} \mathrm{lbs}$.

The distance between the portions of the beam above and below the plane of shear at the end was $.36-\mathrm{in}$. as in the figure.

The maximum skin stress corresponding to the breaking load is 9043 ths. per square inch.

The co-effieient of clatieity, as deduced by an increase in the deffection of $.3-\mathrm{in}$. between the loads of 2000 lbs . and $16,000 \mathrm{lbs}$, is 1,934,600 lbs.

Table F shows the sevcral readings.
'l'he time occuped by the first loading was $10 \frac{1}{2}$ mins., by the relieving from the load 6_{4}^{3} mins., and by the sceond loading from nil to the max., $15 \frac{1}{2}$ mins.

The weight of this beam on April 21 st, the date of its shipment from Vancouver, was 410 lbs , or 44.99 lbs . per eubie foot. On reaching the laboratory the reight was 392 lbs .8 ozs., or 43.07 lbs , per eubic foet, and the weight on Oet. 2nd, the date of the test, waz 375 lbs . 10 ozs., or 41.22 ibs. per cubic font, showing a loss of weight at the rate of .0392 lb . per cubic foot per day between Vancouver and the laboratory, and a loss at the rate of $0161-\mathrm{lb}$. per cubic foot per day while in the laboratory.

Beam XX. "'his beam was cut from the heart of the tree, and was tested Nov. 3rd., 1894, with the annular rings as in Fig. 33.

It was coarse grained, the grain being very noarly parallel with the axis, and contained a number of knots.

'lise load was graduilly inereased until it amounted 12,000 lbs: and at this point the beam was gradually relievel from load, readings being taken hor every diminution of 2000 lbs . When the load had been reduced to 500 lbs , the reading at the eentre was $.001-\mathrm{in}$., probably due to a movement of the seale. The load was again gradually inereased
until it amounted to $40,000 \mathrm{lbs}$., when the beam failed by the crippling of the fibres on the compression side in the neighbourhond of a small knot $1 \frac{1}{4} \mathrm{in}$. abuve the compression face, Figs. 34, 35, 36. The erippling estended about 4 ins. above this face. The load was still gradually increased until it amounted to $49,600 \mathrm{Jbs}$., when the beam again failed by the tearing apart of the fibres ou the tension face.
The maximum skin stress corresponding to the load of $40,000 \mathrm{lbs}$., and disregarding the compression of the timber, is 6559 lbs ., and the skin stress corresponding to the load of $49,600 \mathrm{lbs}$., is 8127 lbs . per square inch.
The total compression of the timber was .345 -ins., so that taking the effective depth under this load to be 11.655 ins., the maximum skin compressive stress would be 6710 lbs . per square ineh, the eorresponding skin tension stress being 7125 lb . per squ re inch.

Assuming the ordinary law to hold good for the whole of the effective depth, the maximun skin stress wonld be 6936 lbs . per square inch.
The co-efficient of elasticity, as deduced from a cliange io the deflection of $.22-\mathrm{in}$. between the loads 4000 lbs. and $12,000 \mathrm{lbs}$., both forwards and while being relieved from load in the first reading, and also during the second loading, is $1,571,150 \mathrm{lbs}$.

Table G shows the several readiogs.
The weight of this beam wheu shipped from Vaacouver, April 21st, was 349 lb , or 41.16 lbs . per cubic foot ; when delivered at the laboratory on June 9 th, it weighed $3 £ 9 \mathrm{lhs}$., or 36.70 lbs . per cubic foot, and on Nov. 3rd it weighed $311 \mathrm{lbs} .6 \frac{1}{2}$ ozs., or 34.92 lbs . per cubic ioot, showing a loss of weight between Vancouver and the laboratory at the rate of $.091-\mathrm{ib}$. per cubie foot per day, and a loss while in the laboratory at the rate of $.0121-\mathrm{lb}$. per cubic foot per day.

The time occupied by the test was 26 mins.
Beam XXI. I'Ihis beau was tested Nov. 3rd, 1894, with the anuular rings as in Fig. 37.

The load upon the bcam was gradually increased until it amounted to 6000 lbs ., when it was gradually relieved of load, at the rate of 1000 lbs. for each observation, and the beam returaed to its initial conditiou without showing any sign of set. The load was again gradually increased until it amonuted to $17,960 \mathrm{lbs}$., when a sharp fracture took place by the tearing apart of the fibres on the tension side, and this was accompamied by a simultaneous crippling of the fibres on the compression side, Figs. 38, 39, 40.

The maximum skin stress corresponding to the load of $17,960 \mathrm{ibs}$. is 7787 lbs . per square inch.

The total compression of the timber at the centre was. $16-\mathrm{in}$. so that taking the effective depth at the eentre to be 8.82 ins., the maximum skin compressive stress; at the point of fracture is 7901 lbs . per square inch, the corresponding skiu tensile stress teing 8221 lbs . per sq. in.

Assuming the ordinary law to hold sood for the whale of the effective depth, the max. skin stress would be 8100 lbs . per sq. in.
The eo-efficient of clasticity, as deduced by a change in the deflection of . 48 -in. between the loads of $1000-\mathrm{lbs}$. and 6000 lbs ., during the first loading, and while being relieved of load, is $1,588,400 \mathrm{lbs}$.

Table G shows the several readings.
The weight of this beam when shipped from Vanconver, April 21st, was $164 \mathrm{lbs} .$, or 38.86 lb . per cubic foot; when received at the laboratory on June 9 th, the weight was 151 lbs .4 ozs., on 33.02 lbs . per cubic foot. aud on Nov. 13th, the date of test, the weight was 139 lbs. $10 \frac{1}{2}$

O2s., or 30.83 Its. per cubie foot, showing a loss of weight hetweer Van. comer and the laboratory at the rate of . 1102 g -1hs. per culbic foot per day, and a lose of weight whilo in the laboratory at the rate of .0149 How. per cubic. foot per day.

The time oceupied hy the test was $18 \frac{1}{2}$ mins.

OLD DOUGIAS FIK.

Beams XXIT-XXV were sent to the Taboratory by Mr. I'. A. P'eterson, Chief Empineer of ohe Canadian Paefie Railway.

These beams were four old stringers taken from trestles numbered 428, 35, 316 aml 789.

Trestle 428 is about half way between Cisco Cantilever Bridge and Iytton. It was ereeted in the early summer of 1884, and the timbers had consequently been in position for nine years. It is in a dry country, with very little rainfall, and subject to a hot sun in summer. The stringer from this strueture was eut ont of a log probably grown on a Hat about three miles west of Hope, where mast of the trees were winthaken.

I'restle No. 85 is about one mile west of Port Moody, and was built in the early spring of 1887, so that the stringer was in position for a period of $6 \frac{1}{2}$ years in a place subject to the heaviest rainfall in the province. The stringer was ent from a \log most probably grown at l'oint Grey, about cight miles from Vanconver.

Trestle No. 816 is two miles east of Spuzzum. The stringer from this trestle was cut from a log grown on a beneh near Spuzzum about 500 fect above the sea-level. It was prepared and fiamed in 1881, and ereeted in 1882, so that it was eleven years in position in a district with a elimate similar to that of Nova Scotia. As the railway here runs north and south, the sun had not the same effect upon the stringers as on other parts of the line.

Trestle No. 789 is on Kamloops Lake, six miles cast of Sarona, and was erected in the spring of 1885 , so that the timbers had been in service for a period of eight years. The neighbourhood is Jry, but the trestle, being situated under a high bluff, is protected from the afternoon sun. The stringer from this structure was ent out of a \log probably grown about three miles west of Hope, at the same place as the timbers used in strueture No. 428.

Beam XXII fiom Trestle 428, was tertel Nor. 25th, 1893, with the annular rines as in Fig. 41

There were two vertieal 1 -in. boit holes in the timber,-one near the centre and one at the end. There were also several season eracks in the timber, one being somewhat large.

The load upon the beam, was gradually increased antil it amounted to $5 \overline{5}, 400 \mathrm{lb}$., when the beam failed by a longitudinal shear, as in Figs. 42, 43.
The distance between the portions of the beam above and below the plane of shear at the end was $\frac{3}{8}$ ths of an inel.

The maximmu skin stross corresponding to the breaking load is 7086 lbs . per square inch.
The total compression of the timber at the centre was . $63-\mathrm{io}$., so that laking the effective depth at 15.0575 ins., the maximum skin compressive stress is $\mathbf{7 2 6 4} \mathrm{lbs}$. per square ineh, the correspondiby tensile 5 kin stress being 7898 lbs . per square ineh.

As-uming the usual law to bold good for the whole of the effective depth, the maximum skin stress wonld be $7,382 \mathrm{lbs}$. per :quare inch.

The co-fficient of elasticity, as deduecd by an increase in the deflection of .39 im . betweeen the loads of $2,000 \mathrm{lbs}$. and $20,000 \mathrm{lbs}$, is $1,630,500 \mathrm{lbs}$., while it is $1,691,620 \mathrm{lbs}$. for an increment in the deflection of . 42 in . between the loads $2,000 \mathrm{lbs}$, and $22,000 \mathrm{lbs}$.

Table H gives the realings under the several loads.
The welght of the beam on the day of test was 33.75 lbs. per eubic foot, and the total weight on Oct. Brd was 438 lbs 7 ozs .

Beam XXIII from 'n'restle No. $\mathbf{7} 89$ was tested Nor. 28th, 1893, with the annular rings as in Fig. 44, and showing the heart in one of the faces.

The load upou the beam was gradually increased uatil it amounted to $47,560 \mathrm{lbs}$., when the beam failed by the tearing apart of the fibres on the tension face, which was imnediately followed by a longitudinal shear, as in Figs 45, 46.

The naximum skin stress corresponding to the load of $47,560 \mathrm{lb}$. is 7339 lbs.
The co-efficient of elasticity, as deduced from an inerement of .66 in. in the deflection between the loads of $2,000 \mathrm{lbs}$ a a $22,000 \mathrm{lbs}$, is $1,878,950 \mathrm{lbs}$.
Thable I shows the readings under the varions loads.
The total weight of the beam on Oct. 3rd was 654 lbs .12 ozs , or 38.95 lbs . per cubic foot; the tutal weight on Nov. 28th, the date of test, was $549 \mathrm{lbs} .8 \frac{1}{2}$ ozs., or 38.59 lks per cubic foot, showing a loss of weight in the laboratory at the rate of .00643 lbs . per eubic foot per day. Estimating the weight of this beam from a sulid block cut out of the be:m, it was found to be 39.13 lbs . per cubic foot, or . 54 lb . per cubic foot heavier than the weight deduced from the total weight of the whele beam.
Be:ln XXIV from Trestle No. 35. 'Ihis beam was tested Nov. 25tl, 1893 , with the annular riugs as in Fig. 47. It contained two vertical : $:$ in. bolt holes about half way between the centre and ends, and a few hots of avcrage size appeared on the face. It also containerl several season eracks.

The initial load, ineluding the weteht of the beam, was $\overline{5}, 000 \mathrm{lbs}$., and the loal was gradually ineresed up to $41,000 \mathrm{lbs}$, when the materialat one end of the beam was crushed in. The ends of the beam were found to be very much the warse for wear and in a rotten condition. Releasing the beam from load the ends were sawn off and the beam was replaced at 9 -ft, centres, when the load swis gradually inereased nutil it amounted to $76,900 \mathrm{lb}$. Under this load the bcam $f_{\text {ailled }}$ by longitudinal shear, whieh was accompanied by a certain amonnt of cript lin! "f the fibres on the ecmpresionside of the centic, is: in Fixs. 48, 49.

The maximum skin stress correpponding othe breaking had of 76,900 lbs. was 6135 lbs per square inch.

The totul compression under a load of 41,000 lbse at the rentre was 1.7

8 in ., and taking the effective depth of the luam in le 14.5 ins., the correspouling maximmm skin compressive stoes is 6495 lbs . ${ }^{\text {wh }}$ spuare inch, the corresponding shin tedosile stress heing 8221 lis. per spuare inch.

Assuming the ordinary law to hold good for the whole of the effeetive depth, the maximmen skin stress would be igfor lbe per squars inel.

The co efficient of elastieity, as determined by an inerease in the deHection of $.16-\mathrm{in}$, between the loads of 11,000 mid $22,000 \mathrm{ll} \times \mathrm{o}$, i$1,199.741 \mathrm{lls}$. ; as determined by an inerement of the deflection of . 33 in. between the loads $10,000 \mathrm{lbs}$. and $32,001 \mathrm{lbs}$, it is $1,163,354$ the.; and as deduced from an incerement in the deflection of .29-in. the mean letween $285-\mathrm{in}$, and .295 in ., the incermente betwern the loads of 5,000 and $25,000 \mathrm{lbs}$ and 10,000 and 30,4100 libs. respectively, it is $1,203,500 \mathrm{lbs}$.

Table II shows the several readings.
The total weight of the bean on Nov. qeath, the date of text, was 331 lbs .9 ozs., or 32.8 lbs . per eubic foot. After enting off the emb, the weight of a length of 9 feet was 262 lbs. 5 ozs., or 83.4 lbz . per culie foot. The totill weight of the beam on October 3rd was : $3 ; 9$ Ilis. 9 oz .

Beam XXV from Trestle 316. This beam was te-ted Nov. 28th, 1893, with the annular rings as in Fig. 50, and slowing the heart wh one of the faces.

It ennained one vertical bolt hole, several knots, and many season erack: The grain was staight.

The load upon the beam xas erradually inereased until it amometed to 42,900 lbs., when a laree splinter broke off on the tention fee, and the bean failed by longitudinal shear, as in ligs. 51, 52.

The maximmo skin strese correspouding to this hreaking load is 4613 lbs . per square inch.
The co-efficient of eliaticity, as determined by an increment in the deflection of $335-\mathrm{in}$. betwen the loads of $4,000 \mathrm{lbs}$ and $20,000 \mathrm{ll} \mathrm{s}$., is $949, \boldsymbol{i} \geq 0$ lls.
Table I shows the realing, fur the sweral loads.
The total weight of the beam on October 3rd was $4 \geq 2 \mathrm{~B}$ 1be, or 34.44 Ibs. fier eubie foot, and on Nov. PSth, the date of test, the weight waw 406 lbs. , or 33.11 lbs . per enbie foot, showing a loss of weight in the Laboratory at the rate of 236 -Ibs. per cubie foot per day.
The time oceupied by the test was 30 minutes.

The following Table gives a summary of the results obtained for Douglas Fir：－

Beam．	Dineustons in incher．			
New Timber，specially shiectel．				
	l $60 \times 5.35 \times 4$ 125		10，441	2，178，100
XIIX．	$60 \times 5.375 \times 4.25$ $1.38 \times 12.1 \times 9.1$	41.22	10，441	1，934，500
VII．	$69 \times \quad 6 \times 8.8125$	39.92	8，712	2，044，115
XV．	$198 \times 1.5 \times 6.125$	38.92	8，020	1．989，400
New Timber，first quality．				
	$l{ }^{l}{ }^{1} \times$			
X	198×14.8 「5 $\times 6$	37.80	4，027	1，629，616
$X 1$	$204 \times 14.875 \times 8.6875$	36.99	5，698	1，760，563
12	264×14 ，	35.76	7，694	1，764，939
V11I	$69 \times 5.125 \times 5.5$	35.74	8，382	1，584，692
XV11I	$138 \times 17.4 \times 8.76$	35.59	5.196	1，329，900
XVII	$138 \times 15.1 \% 5 \times 9$.	35.17	4，907	1，259，600
XX	$138 \times 12 \times 8.88$	34.92	6，559	1，571，150
X1I	$204 \times 1+875 \times 8.8125$	34.79	7,645	1，678，300
XIII	$204 \times 14.75 \times 66$	34.13	6，912	1，643，193
XXI	$138 \times 5.98 \times 5.95$	30.83	7，784	1，588，400
VI	$69 \times 6.125 \times 6$	30.23	7，116	1，489，215
I	$96 \times 12.125 \times 4$.		4，897	1，138，400
II	$66 \times 12.125 \times 5.625$		4，378	1，146，900
V	$69 \times 9.125 \times 5$.	29.18	5，869	－946，270
IV	$699 \times 3.125 \times 5$	28.27	4，156	926，500
Ulib Timber．				
	$l{ }^{1} 11{ }^{\text {a }}$			
XXIlI	$186 \times 14.85 \times 8.78$	38.59	7，339	1，878，950
SXII	$162 \times 15.6875 \times 7.75$	33.75	7，086	1，665，560
XXV	$144 \times 15.65 \times 8.2$	33.11	4，613	949，720
XXIV	$132 \times 16.2 \times 7.75$	32.8	6，1：35	1，201，620

The following dat：may be adopted in practice ：－
In the case of specially seleeted timber，free from knot－，with sound clear and straight griin，and eut out of the \log at a distanee from the leart：

Average weight in lls．per eubie foot $=40$ ．
Average eo－efficient of clasticity in lbs．per sq．in．$=2,000,000$ ．
Average maximum skin stress in lbs．per square inch $=9000$ ．
Safe working + kin stress in lbs．per square inel $=3000 \mathrm{lbs}$ ．
In the ease of first quality timber，such as is ordinarily found in the market：

Average weight in lbs．per cubic fout $=34$ ．
Average co－efficient of elastieity in ibs．per square inch $=1,430,000$ ．
Average maximum skin stress in lbs．per square ineh $=6000$ ．
Sufe norking skin stress in lbs．per square inch $=2000$ ．
In specifying these data it will be observed that 3 is adopted as the facior of safity．Upon this hypothosis the factor of safety for the stiek giving the minimum skin stress in more than 2，and this，in the opinion of the autlor，is an ample factor for a material which expcrience and all experiments show，may be strained without danger very nearly up to the point of frature．

Further，the results obtained in the experiments with the old stringers shew that th：strength of the timher had been retained to a very large cxtent，and thit the rotting had not extended to such a depth below the skin as to sensibly affeet the efficieney of the stieks，which still possessed ample strength for the work they were designed to do．

Thus in Beam XXII adiminution in the skin striss of 1058 lbs ，per square inch，which is cruivalent to a dinumuion in the effective depth of $\frac{15.6875 \times 1655}{2 \times 7058}=1.076$－ins．would still leare 6000 lbs ．per square inch as the skin stricss．Thus if the rotting had extended to depth of 1.176 ins．，the lict of of safety would stiil remain 3.

If 2 is aloned no the fictor of salsty, and, in the ofinion ol the
 might extsul without danger to a depth of 3.3.398 inn.

In the ease of $\mathrm{Benm} \mathrm{XXV}^{r}$, which is the old athinger giving the last co efficient of strensth, mamely, this lbs. per square incll, taking ens the faetor of safety, the effeetive depth might bo diminislual ligy an
 depth.
dgain, it will be ol-erred that the skin strese ant the elarticity are subject to a wide variation. This variation is due to many causer, of w!eich the most important are the presence of knot., obliquity of grain, and, more than all, the focaliny in which the timber was grown, "the original position ol the stick in the lor from which it wns cut, and the proportion of hard to siff fibre, wr of the nomer the the eprings growth. The tusile shearing and compressive experiments upon specimens ont out of lifferent fart of the salue logy all shew that the timber near the heart possesses mueh leos strensth and seiffuess than the timber at : distance from the heart

The accompanying photugraph is given 10 whow the variation of

thickness in the growth rines from the hart ontwarle, and a carelul study of the results obtained up to date would seem in indieate that the bert elassification defining the strength of the ember wonld be fonnd by dividing the section of a ligg into three parts by means of two eireles, with the heart as the eentre, and by desimating the ecneral purtion as third quality, the portion between the two eireles as sumpluality, and the outermost portion as first paality.
A most interesting papse on the structnal chararteritice of Donglas Fir from a botanical stampont was real by IProf sut Penhallow, F.R.S.C., at the meeting of the hoyal Society of Camata in Ottawa, in 1894, in connection with a paper by the author on the strength of the timber.
REI PINF:
Beams XXVI to XXXII were sent to the laboratory My Messrs,
MeLachlin Bros, of Arnprim. MeLachlin Bros., of Arnprin:
These beams were not specially selacterl, but were the ordinary seantlings in the market. They were ent from logs felled in February or Mareh, 1893, in the neighbourhood of the Bonvechere River, Nipissing District, County Renfrew. The logs remained in the water from April until Oetober, when they were sent to the mill, where they were sawn up and piled.

Beam XXVI. This beam was cut from the heart of the tree and was tested March 13th, 1894, with the annular ringz, as in Fig. ins.

The load upon the beam was gradually inereased until it amounted t. 13,800 lbs., when the beam failed by the erippling of the fibres on the compression faec, Figs. 54, 55. The load was still further inereased until complete fracture took plice by the tearing ipart of the fibres on the teasion fitca under a load of 17,170 lbs. The crippling was in line with a knot running through the timber from back to front, as in the Figure.

The maximum skin stress eo: responding to the load of $13,800 \mathrm{lbs}$. is 3937 lbs . per square inch.

The total compression of the timber at the eentre was .2 -in., so that, taking the effective depth as 13.05 , the maximum skin compressive stress would be 3994 lbs. per sq. in., the corresponding skin tensile stress being 4119 lbs . per square inch.

Assuming the ordinary law to hold good for the whole of the effective depth, the maximum skin stress would be 4059 lbs . per square inch.

The co-efficient of clasticity, as determined by an inerement in the Ueflection of $.885-\mathrm{in}$. betwcen the loads 1,000 and $8,000 \mathrm{lbs}$., is $1,235,000 \mathrm{lbs}$, and as cetermined by an inerement in the deflection of ${ }^{*}$.5 -in. between the loads 2,000 and $6,000 \mathrm{lbs}$., is $1,248,990 \mathrm{lbs}$.

Table K shows the several readings.
The weight of this beam, on March 10 th, was 392 lbs .2 ozs., or 37.56 lbs . per cubic foot, and on Mareh 13 th it was 379 lbs. $4 \mathrm{ozs} .$, or 36.39 lb . per cubic toot, showing a loss of weight in the laboratory at the rate of $\mathbf{3 9}-1 \mathrm{~b}$, per cubio foot per day.

Beam XXVII was tosled April 5th, 1894 , with the annular rings as in Fig. 56. The beam was cut from the heart of the tree, and the darkened portion in the Figure, was sapwood.

The load upon the beam, was gradually inereased until it amounted to $17,700 \mathrm{lbs}$, when the beam failed by the tearing apart of the fibres on the ten:ion fice, Figs. 57,58 , at a resin pocket, the fracture showing a fine resinous surface.

The maximum skin stress corresponding to the braking load is iol 19 lb . per square inch.
'I'be total compression of the timber at the eentre was . 34 -in., so that taking 12.755 ins. as the effective depth, the maximum skin eompressive stress whuld be 5111 lbs . per square inch, the corresponding skin tensile stress beiur 5707 lb . por square inch.

Assuming the ordinary law to hold good for the whole of the effeetive depth, the maximum skin stress would be 5501 lbs . per square iuch.

The co-efficent of elasticity, as deduced from an increment in the $\mathrm{d} \cdot$ flection of 7 - in . between the loads 1500 - lbs . and 7500 lbs ., is $1,418,500$ lus.
'liable K wives the several readings.
The total weight of the beam on March 10 th was 46 lbs. 12 oze, or 41.51 lbs . per cubic foot ; the total weight on April 5 th, the date of test, wa, $397 \mathrm{lbs} .+0 \mathrm{z}$, or 36.50 lbs . per enbic foot, showing a loss of weight while in the laboratory, at the rate of .192 -lbs. per cubie foot per day.

Beam XXVIII. This beam was cut trom the heart of the tree, and Was tested April 20 th, 189 , with the annular rings as shown in Fig 59.

The load upon tho beam was gradually increased until it auounted to 17.050 lbs., when the beam failed by the erippling of the fibres on the compression faec, Figs. 60, 61. The lead was still increased until under $19,140 \mathrm{lbs}$, the beam again faited by the tearing apart of the fibres on the tension lace.

The maximum stin stress corresponding to the toad under which erippling took phace is 6752 lbs. per square incli.

The total compression of the beam under a load of $17,050 \mathrm{lbs}$, was .24-in., so that taking the effective depth to be 11.01 ins., the corresponding maximum skin compressive stress would be 6886 lbs . per square inch, the correspondiug skin tensile stress being 7193 lbs . per square inch.

Assuming the usual law to hold good for the whote of the effective deptb, the maximum skin stress would be 7000 lbs . per square inch.

The coefficient of clasticity, as deternined by in inerease in the deflection of 1.435 in betwen the loads of 2000 and $12,000 \mathrm{lbs}$., is $1,786,000 \mathrm{lbs}$. it is $1,858,400 \mathrm{lbs}$., as determined by an increment in the deflection of $.8 \mathrm{t}-\mathrm{in}$. belwcen the loads 3500 and 9500 lbs ., aud is $1,681,100 \mathrm{lbs}$, as determined by an increurent in the deflection of 1.135 in . between the loads of 2000 and $10,000 \mathrm{lbs}$

Table K shows the severat readiags.
The test occupied 26 minutes.
The weight of the beam on March 10th was 379 lls. 10 ozs., or 44.20 lbs . per cubic foot; upon April 20th, the date of test, the weight was 322 lls. 8 ozs., or 37.55 lbs. per cub. ft., showing a loss of weight at the rate of $1629-\mathrm{lb}$. per cubic frot per day.

Beam XXIX. This beam was cut from the heart of the tree, and was tested March 13th, 1894, with the annular rings as in Fig. 62

The load upon the beam, was gradually increased until it amounted $1011,960 \mathrm{lbs}$., when the beam faild ly the cripding of the fibres on the compression face, Figs. 63, 6.4. The lead was still further gradually inereased to $12,460 \mathrm{llis}$, when the beam was completely fractured by the teariug apert of the fibres on the tension face.

- Tbe maximum skin stress correspuding to the breaking leal of $11,960 \mathrm{lls}$. is 4818 lbs per square inch.
The total compression of the timber at the eentre was. 15 -iu., so that taking 11.1-in. as the effective depth, the maximum skin compressive stress would be $488: 3$ lbs. per square inch, the correcponding skin tensile stress being 5016 lbs . per :quare inch.

Assuming the usual law to hold good for the whole of the cffeetive depth, the maximum skin stress would be 49.49 lbs. per square iuch.

The co-efficient of elasticity, as determined from an inerement of .56 -in. in the deflection between the leads of 1000 and 5000 lbs ., is
$1,210,100 \mathrm{lbs}$. The eo-effisicnt of elasticity, as deduced from an increment of $1.315-\mathrm{in}$ in the deflection between the loads of 1000 lbs and 7000 lbs ., is $1,187,000 \mathrm{lbs}$.

Table L shews the several readings.
The test occupied 27 minutes.
The tetal weight of the beam was 290 lbs ., or 32.89 lbs . per cubic foot on March 10th, and 282 ibs. 6 ozs., or 32.03 lbs . per cubic foot on March 13th, showing a loss of weight in the laboratory at the rate of .2866 lb . per cubic foot par day.

Beaur XXX. This beam was tested May 3rd, 1894, with the annular rings, as in li'ig. 65. Whan the banan was placed in position, it showed an upward camber of 24 ins.

The load upon the bam was gradually inereased until it amounted to 5700 lbs., when the beam failed by the crippling of the fibres on the compression face, Fig. 66, the crippling cxtending $2 \frac{1}{2}$ ins. upwards from the skin. The load was still incroased, and when it amounted to 6580 lbs , the beam broke right across the tension fice about $2 \frac{1}{2}$ iuches from the middle of the beam, and vertically above the second line of crippliag on the compression side, Fig. 67.

The maximum skin stress corrosponding to the breaking load of 5700 lbs . is 4634 lbs . per square ineh, and the maximum skin stress corresponding to the load of 6580 llss . is 5340 lbs . per square inch.

The coeeflicient of elasticity is $1,322,000$ lbs., as determined by an increment in the deflection of $1.69-\mathrm{in}$. between the loads of 1000 and $5000 \mathrm{lbs}$. ; it is $1,329,900 \mathrm{lbs}$., as deduced from an increment in the deflection of $.84-\mathrm{in}$. between the loads of 2000 and 4000 lbs .

Table L shows the several readings.
The weight of this beam on May 4th, the day after the test, was 150 llss. 11 ozs , or 30.96 lbs . per cubic foot.

Beam XXXI. This beam was tested May 4th, 1894. It was cut from the heart of the tree, and the anaular rings were sitnated as io Fig. 68. Season cracks ran iutermittently from cod to end of the beam

in che neighbourhood of the neutral plane, the cracks extending radially outwards from the lieart. The beam was free from knots for a distance of 7 inches on one side and 1 ineh on the other, and the grain ran parallel to the axis.

The load upon the beam was gradually increased until it amounted to 6500 lbs ., when it failed by a crippling of the fibres on the compression face, Fig. 69. The erippling oecurred exactly at the centre and extended 1.5 in . upwards from the skin. The load was then continued, and, when it amounted to 7900 lbs ., the beam failed by the tearing apart of the fibres on the tension face, Figs. 70, 71, and a line of crippling on the compression side timber opened upwards for a distance of about 2 ins. or $3 \frac{1}{2}$ ins. The fracture on the tension side took place about $5 \frac{1}{2}$ ins. from the centre, and the timber opened
along the aunular rings for a distance of 24 ins, on each side of the centre as in thie figure.

The maximum skin stress corresponding to the breaking load of 6500 lbs is $5+42$ liss, per square ineh.

The coefficient of elasticity, as dedued froman increment in the deficetion of 1.085 ins. between the loads of 2000 - Ibs, and 5000 lbs , was 1,618,900 lbs.

Table Ls shews the several readings.
This beam when tirst placed in position, also had a cauber of 35 -ins. in a central length of 14 ft . 6 ins.

The weight of the beam on May fth, the date of test, was 165 lhs. © ozs., or 34.97 lbs . per cubie frot.

Beams XXXII to XXXV might perhaps more properly be designated 3 ins. planks.

Bean (Plank) XXXII was tested May 7h, 1894. The heart was in one of the faces, and the annular rings were situated as in Fig. 72.

The load upon the bean gradually increased until it amounted to 5200 lbs , when it failed by a crippling of the fibres on the compression side. The erippling oceurred about $1 \frac{1}{2}$ ins away from the ceutre of the beam and extended upwards about 1,5 ins. The load was still increased, and when it amounted to 5860 lbs . the beam again failed by the tearing apart of the fibres on the tension side. A line of crippling also extended upwards a further distanee of abont 2 ins., or about 3 I ins. from the skin.
The maximum skin stres: corresponding to the breaking load of 5200 lb s. is 6923 lbs . per square inch.

The co-efficient of clasticity, as deduced from an increment in the deflection of 1.67 -ins. between the loads $1000-\mathrm{fbs}$, and 4000 lls ., is $1,575,200 \mathrm{lbs}$. per square inch.
Table Li shers the sereral readiags.
The weight of this beam on May 7 th, the date of test, was 102 bbs , or 31.56 lbs. per cubic foot.

Beam (Plank) XXXII was tested May 7th, 189t, with the anular rings as shown in Fig. 73.

The load upon the beam was gradually increased to 9250 lbs , when failure took phace by the crippling of the fibres on the compression side, Fiss 74, 75. There were two lines of crippling on the front and one at the middle of the bean at the back. The crippling at the back probably oceurred first, as the folding of the timber extends across the section of the beam along the entral line at the lower edge, but not up to the point where the failute due to compression was appprently the greatest. In the neighbourhood of the eriphing in front, the timber was clear, and the grain ran straight and parallel with the axis; at the back there were three kunts, which were primarily the cause of the erippling.

When the load on the beam had been inereased to 9900 His., fracture occurred on the teasion side.
The maximum skin stress corresponding to the hreaking load of 9250 Jbs. is $655 \nmid \mathrm{lbs}$. per sff. iu.

The co-efficient of clasticity, as determined by an inerement in the deflection of .76 in . betwecu the loads 2600 and $\mathrm{t}_{2} 00 \mathrm{lbs}$, is 1,618,000 lb:.

Table M shews the several readings.

The weight of the beam on May 7th, date of test, was 128 lbs .8 ozs., or 31.87 lbs . per cubic foot.

Beam (Plank) XXXIV. This beam was tested May 8th, 1894, with the annular rings as in Fig. 76.

The load upon the beam was gradually inercased until it amounted to 5600 lbs ., when the fibres on the compression face crippled to a suall extent. On still further inereasing the load, the fibres on the compression face were completely crippled, Figs. 77, 78, and fracture also simultaneously occurred on the tension side when the load amounted to 8400 lbs .

The grain of this beam was straight and parallel with the axis, and the timber was apparently free from knots for a distance of about 24 inehes on each side of the centre.

The maximum skis stress corresponding to the breaking load of 5600 lbs . is 5079 lbs . per square iuch, and the skin stress corresponding to the load of 8400 lbs . which caused the fracture on the tension side, is 7597 lbs . per square inch.
The co-efficient of elastieity, as deduced from an increment in the deflection of 1.14 ins. between the loads of 500 and 5600 lbs ., was $1,784,800 \mathrm{lbs}$.
Table M shews the several readings.
The weight of the beam on May 8th, date of test, was 96 lbs .2 ozs., or 36.59 lbs . per cubie foot.

Beam (Plank) XXXV was tested May 8th, 1894, with the anuular rings as in Fig. 79. The heart of the tree was very nearly eoincident with the axis of the beam, and the grain ran in the same direction. Season cracks occurred intermittently throughout the beam.

The load upon the beam mas gradually increased until it amounted to 7600 lbs ., when the beam failed by the crippling of the fibres on the compression face, Fig. 80. The load was still inereased, and well defined erippling occurred when it amounted to $10,050 \mathrm{lhs}$. When the load had reached $13,700 \mathrm{lbs}$. the beam failed by the tearing apart of the fibres on the tension face, Fig. 80.
'The maximum skin stress eorresponding to the breaking load of 7600 llos. is 433) ibs. per square ineh.

The co-effecient of elasticity, as determined by an inerement in the deflection of $.92-\mathrm{in}$. between the loads of 500 and 7600 lbs ., is $1,589,250 \mathrm{lbs}$., and as determined by an increment in the deflection of $.025-\mathrm{in}$. for the enrresponding inerease of 200 lbs . it is $1,642,900 \mathrm{lbs}$.

Table M shows the several readings.
The weight of the beam on May Sth, date of test, was 128 lbs .12 azs. or 37.69 Hbs . per cubic foot.

The following Table gives a summary of the resultw obtained．for Red Pine：－

Beam．	Dinen	sious in	inches．			
New Thmaer．						
	l	d	，			
XXXV．	$156 \times$	11.15	$\times 3.395$	37.69	4，339	1，616．075
XXVIII．	$210 \times$	11.25	$\times 6.34375$	37.55	6，752	1，802．633
XXXIV．	$156 \times$	4.125	$\times 3.125$	36.59	5，079	1，784，800
SXVII．	$\underline{210 \times}$	IS 125	$\times 6.1875$	36.50	5，219	1，418，500
XXVI．	$210 \times$	13．25	＋6．375	36.39	3.937	1．241，950
XXXI．	$174 \times$	7.125	$\times 6.21875$	84.97	5，442	1．1i18，900
XXIX．	$210 \times$	11.25	$\times 12.5$	32.03	4，818	1．198，550
XXXIII．	$180 \times$	11125	$\times 3.1$	31.87	6，5，54	1，618，000
EXXII．	$180 \times$	8.125	＋3．1	31.56	6，928	$1.57 .5,200$
XXX．	$174 \times$	7.25	$\times 6.1875$	．30．96	4，634	1，325．950

Hence，

The average weight in lis．per cubic foot $=34.61$ ．
＂co－efficient of elasticity in lbs．per $s q$ ．in $=1,520,056$ ．
＂maximum skin stress＂＂$=5370$ ．
If，however，the plank results are omitted，
The average weight in lbs．per cubic foot $=34.78$ ．
＂co－efficient of clasticiry in lbs．per sq．in．$=1,434,747$ ．
＂maximum skin stress＂＂＝5137．
In general，the following data may be adopted in practioe ：－
The average weight in lbs．per cubie foot $=34.6$ ．
＂co－efficient of elastieity in lbs．per sq．in．$=1,430,000$ ．
＂maximum skin stress
＂$=5,100$ ．
＂safe working skin stress＂
＂$=1,700$ ，

3 being a factor of safety．
In the aecounts of the several beansit will be ob ierved that the failares are almost invariably due to the crippling of the material on the side in compression，indieatine that the tensile strength of the timber excecds its compressive strength，and this was subsequcatly verified by the direct tension and compression experiments．

WHITE PINE．

Beams XXXVI and XXXV1I ：Ire two picce；eut out of one large piece of square pine，made and tiken out in the Gatineau Valley， Ottawa County．The timber was brouglit down via the Gatineau and Ottawa Rivers to Montreal，and remaned in the water until late in the fall of $18: 2$ ，when it was pited on the land for winter sawing．

This timber was purchased from Messıs．J．\＆B．Grier．
Beaw XXXVI was tested February 16th，1893，with the amular rings as in Fig． 81.

The load upou the bean was graduatly increased until it amounted to $19,600 \mathrm{lbs}$ ．，when it failed by the tharing apart of the fibres on the tension side．

The maxiumm shin stress correspon ling to this load is 2993 ibe ． per square inch．

The co-efficient of elasticity, as determined by an increment in the deflection of 1.12 ins. between the loads of 5000 and $10,000 \mathrm{lbs}$., is $503,440 \mathrm{lbs}$. ; as deduced from an increment in the deflection of . $84-\mathrm{in}$. between the loads of 5000 and $12,500 \mathrm{lbs}$., is $463,708 \mathrm{lbs}$. , and as deduced from an increment in the deflection of 2.13 ins. between the loads of 5000 and $15,000 \mathrm{lbs}$., is $534,169 \mathrm{lbs}$.
Table \mathbf{N} shows the sereral readings.
The weight of this beam per cubic foot on Feb. 16 th was 37.25 lbs ., and on March 14th, 34.78 lbs ., showing a loss of weight at the rate of .095 lb . per cubic foot per day.

Beam XXXVII was tested on February 24th, 1893, with the annular ringe as in lig. 82.

The load was gradually increased until it amounted to $24,000 \mathrm{lbs}_{2}$, when the beam failed by the tearing apart of the fibres on the tension face.

The maximum skin stress corresponding to this load is 3555 lbs . per square iuch.

Beams XXXVIll and XXX IX were the two ends of Beam XXXVI which was tested Fel ruary 16th, 1893, the central portion containing the fracture having been cat out.

Beam XXXVIII was tested ou March 14th, with the anuular rings as in Fig. 83.

The load on the beam was gradually increased until it amounted to $52,450 \mathrm{lbs}$., when it failed by the tearing apart of the fibres on the tension side.

The maximum skin stress correspouding to this load is 3075 los . per square inch.

The co efficient of elasticity, as determined by an inerement in the deflection of $.37-\mathrm{in}$. between the loads of 10,000 and $25,000 \mathrm{lbs}$,, is 622,640 lbs.
Table N shows the several readiugs.
Beam XXXIX was tested with the annular rings as in Fig. 84.
The load was gradually increased until it amounted to $51,400 \mathrm{lb}$.., when the beam failed by the tearing apart of the fibres on the teusion side.
The maximum skin stress corresponding to this load is 2696 ibs . per square inch.
The co-efficient of clasticity, as determined from an iucrement in the deffection of $.175-\mathrm{in}$. between the loads of 10,000 and $25,000 \mathrm{lbs}$, is $433,250 \mathrm{lbs}$.
Table N shows the several readings.
Beams XL and XLI are the two ends of Beam XXXVII which was tested ou Feb. 24th, 1893, the ceutral portion of the beam containing the fraeture having been cut out.
Beam XL was tested on March 17 th with the annular rings as in Fig. 85. The load wats gradually increased until it amounted to 53,650 ibs., when the beam failed by the tearing apart of the fibres on the tension side.
The maximum skin stress corresponding to this load is 3311 lbs . per square inch.
The co-efficient of elasticity, as determined by an ineroment in the deflection of $.19-\mathrm{in}$. between the loads of 12,000 and $26,000 \mathrm{lbs}$, is $693,090 \mathrm{lbs}$.
Table N shows the several readings.
The weight of the beam per cubic foot on the day of the test was 36.13 lbs .

Beam Xlil was tested on Mareh 17th, 1893, with the anmilar ringa as in Fig. Sti. The load upon the beam was gradually increased until it amomuted to $\mathbf{4 0 , 5 0 0} \mathrm{lhs}$., when it failed by the tearing apart of the tibres on the tension side.

T'lie maximun skin stress corresponding to this loal is 2500 lbs . per simare inch.

The ee-eflicient of elasticity, as dedneed from an increment in the detiection of 19 -in. between the loads of $10,000 \mathrm{lbs}$ and $22,000 \mathrm{lbs}$, is $\mathbf{5 1 9 , 8 0 0}$ lbs. per square inch.
Thble N shows the several readings.
The weight of the beam on the day of test was $36,1: 3 \mathrm{lbs}$. per enbie foot.

Beams, XLII :and NLVI were eut out of one large piece of square pino made on the Pettewawa, a tributary of the Ottawa, in 1888 . The piece was driven over 1300 miles, and lay in water for four years until it was taken out in the fall of 1892 and piled for winter sawing.
This timber was purchased from Meswrs. Shearer \& Brown.
Beam XLII was tested March 8th, 1893, with the anmalar rings as in Fig. si.

The load ou the bean was gradually increased natil it amounted to $26,350 \mathrm{lbs}$., when the beam failed by the tearing apart of the fibres on the tension side.

The maximum skin stress corresponding to this load is 3815 lbs . per square inch.
The co-efficient of elastieity, as determined by an inc:ement in the deflection of 1.22 ins , between the loads of 2500 lbs . and $13,000 \mathrm{lbs}$, is $979,220 \mathrm{lbs}$.

Table O-hows the sereral readings.
The weight of the beam per cubic foot at the date of test was $\mathbf{4 1 . 4 9}$ Hhs.

Beams XLIII and XLIV are the two ends of Bean XLII tested March Sth, the central partion of the beam containing the fracture having been cut out.

Bean XLILI was tested Mareh 31st, with the amular rings as in Fig. 88.
The load was gralually inereasell until it amonuted to $48,600 \mathrm{lbs}$, when the beam failed by the tearing apart of the fibres on the tension side.

The maxim um skin stress correspending to this load is 300 dbs . jer square inch.
The eo-effienent of elatieity, as duturmined by an increase in the deffection of .19 in. between the loads of 10,000 and $25,000 \mathrm{lbs}$, is $649,780 \mathrm{lbs}$. per square inch.

Table O shows the several readings.
Beam XLIV was tested March 31st, 1893, with the annular ring as in Fig .89.

The load upn the bean: was gradually inereased until it amounted to 51,870 lts., when it f.iled by the tearing apart of the fibres on the tension side.
The maximum skin stress corresponding to this load is 314 l Ibs. per square inch.

The co efficient of elasticity, as deteruined by an inerement in the detlection of .19 in. between the loads of 1000 and $25,000 \mathrm{lbs}$, is ti49,780 lbs. per square inch, the same coeffieient as in beam XLIIIL.
Table 0 shows the several readings.

Beam XLV was tested March 11th, 1893, with the annular rings. as in Fig. 90.

The load upon the beam was gradually iucreased until it amounted to $24,850 \mathrm{lbs}$., when it failed by the tearing apart of the fibres on the tension side.

The maximum skin stress correspouding to this load is 3681 lbs . per square inel.
The co-efficient of elasticity, as determined frou an increment in the deflection of $.81-\mathrm{in}$. between the loads of 2500 :nd $12,000 \mathrm{lbs}$, is $956,540 \mathrm{lbs}$.

Jable P shows the several readings.
Beams XLVI and XLVII are the tro ends of Bcan XLV, tested on March 11th, 1893, the eentral portion eontaining the fracture having been cut out.

Beam XLVI was tested Mareh 30th, 1893, with the annular rings as in Fig. 91.

The load upon the beam was ge:adually increased until it amounted to 44,400 lbs., when it f:iled by the tearing apart of the fibres on the tensiou side.

The maximum skin stress corresponding to this load is 2740 lbs . per square iuch.

The co-efficient of elasticity, as determined by an increment in the deflection of . $23-\mathrm{in}$. between the loads of 10,000 and $25,000 \mathrm{lbs}$, is $536,770 \mathrm{lbs}$.

Table P shows the several readings.
Beam XLVII was tested March 30th, 1893, with the amular rings as in Fig. 92.

The load upon the beam was gradually inereased until it amonted to $48,650 \mathrm{lbs}$., when it failed by the tearing apart of the fibres on the tension side.

The maximum skin stress corresponding to this loid is 3003 lb . per square inch.

The eo-efficient of elasticity, as determined by an increment in the deflection of . 2 -in. between the loads 10,000 and $25,000 \mathrm{lbs}$., is 617,283 lbs.

Table P shows the several readings.
Beams XLVIII to L were sent to the laboratory by Mr. P. A. Peterson. These beams were purehased from the Pembroke Lamber Company, and are supposed to have been similar in quality to the timber used on the Peubroke section of the Canadian Pacific Railway.

Beam XLVIII was tested March 1st, 1894, with the annular rings as in Fig. 93. The darkenel portion, Fig. 96, represents sapwood.

The load upon the beam was gradually mereased until it amounted to $38,100 \mathrm{lbs}$., when the beam failed by the crippling of the material at the support on the eompression side, Fig. 9t. The load was still
gradually increased until it amonuted to $\mathbf{4 7 , 9 6 0} \mathrm{lbs}$, when a complete fracture tonk place by the tearing apart of the fibres on the tension side at the rentre, and simultanoously by a longitudinal shearing throughent mur-half of the leugth of the beam, as in liogs. $9.4,9 \%$.

The maximun skin stress corresponling to the breaking load of $38,100 \mathrm{~ms}$ is 3991 lb . per square ineh; the maximum skin stress corresponding to the load of $47,960 \mathrm{lbs}$ is 5015 Jlise per sifuare inch.

The total compressien of the timber at the entre was . $93-\mathrm{in}$., so that, taking the effective depth to be 14.355 ins., the maximum compressive skin stress at the supporl would he 416 h lhe. per square inch, the corresponding maximum tensile skin stress beiny 465 dis. per squato ineh.

Assuming the usual law to hold good for the whe'e of the effective depth, the maximm skin stress would he 1447 its. per square incth.

Tho co-efficient of elastieity, as determined by an inerement in the deflection of $.375-\mathrm{in}$., between the loads of 21000 hls , and $15,000 \mathrm{th}$., is $1,164,700 \mathrm{lbs}$.

Table Q gives the several readingr.
The total weight of the beau on March lst, the diate of test, was 524 lbs .10 ozs., of 41.08 lbs fer cubie fort, and an February 1 se the weight was 597 lbs ., or 46.73 lbs . e e cubie foct, howing a low of weight at the rate of $.209-\mathrm{lb}$. yer entrie fiot per day.

The time oceupied by the test was 48 minutes.
Beaun XLIX was tested March ㅇnt, 180t, with the amular rings as in Fig. 07. The darkeucd portions represens sapwood.

The load upon the beim was gradnilly incrased until it anounted to $47,080 \mathrm{lbs}$., when the beam fiilid by he te ritig apart of the fibres on the tension side, accompanied simutraneonsiy by a longitudinal shear and at crippling of the materiat in the eompession side, Fige ! !8, 99.

The maximum skio stress enrespmoting to the braking load is 4936 lbs. per square ineh.

The total compression of the material at the centre wals 2.8 ins., in that taking 13.095 ins. as the offetive de, th, the maximum sin compressive stress would be 5156 lb . per square ineh, and the romesponding skin tensile stress, would be 7353 ths. per square inch.

Assuming the nsual law to hold gool for the whole of the effective depth, 6835 ibs . per square inch would be the maximuna skin stres.

The eo-effieient of elinticity, as determined ly an inerement of . 435 in., between the loads of 3000 and $21,000 \mathrm{lbs}$., $i=1,052,600$ lhs.

Table Q shows the several readings.
The weight of the bem was 525 lbs 12 ozs, or 41.33 lbs , porenbic foot February 1 st , and 473 lbs .12 ozs., or 37.24 lbs per eubie foot on March 2 ad, showing a loss of weight at the rate of . 141 - Hh . per cubic foot per day.
The time occupied by the test was filty minu es.
Beam L was tested March 10 h , i 894 , with the annular rings a in Fig. 100.

The load upon the beam was gradually increased until it amounted to $32,200 \mathrm{lbs} .$, when it failed by the tearing apart of the fibres on the trin-iom side.

The maximuun skin stress corresponding to this load is 4370 lbs . per square ineh.

The co-cfficient of elasticity, as dedueed from an inerement in the deflection of .805 -in., betwern the loads of 1000° and $19,000 \mathrm{lbs}$, is 1,184.240 Jis.
$T_{\text {inl }} \mathrm{Q}$-lows the scueral rendings.
The weight of the beam was 509 libs. 12 ozs. or $33.64 \cdot \mathrm{lbs}$. per enbic finet, on Mareh 10 th, the date of test, and 575 lbs .8 ozs ., or $37.25 . \mathrm{lbs}$. per cubie foot, on February 1st, showing a loss of weight at the rate of . $0975 \mathrm{~J}-\mathrm{lb}$. per eubie foot per day.

OLD WHITE PINE.

Beams II to LIII are three old white pine stringers sent to the laboratory by Mr. P. A. Peterson. These stringers had been in service since 1885 , i.e., lor about eight years; they were removed from the testles during the summer of 1892 .

Beam LI was te-ted Deecmbe: 1 st, 1893 , with the aunular rings as in Fig. 101.

The load upon the beam was gradually inereased until it amounted to $22,730 \mathrm{lbs}$. when the beam failed by shearing, longitudinally as in Figs. 102,103 , the distance between the portions of the beam above and below the plane of shear beinar $\frac{1}{4} \mathrm{in}$.

The maximum skin stress correspondiag to this load is 3212 lbs. per stuare inch.

The co-efficient of elisticity, as determined by an inerement in the deflection of . $55-\mathrm{in}$., betwecn the 'oads of 2500 lbs . and $12,000 \mathrm{lbs}$. is $982,480 \mathrm{lbs}$.

Table \mathbf{R} shows the several readings.
The total weight of the beam on Necember 1 st, date of test, was 445 lbs , or 28.3 lbs . per cubic foot. The weight of a leugth of 14 ft. $1 \frac{18}{4}$ ins. was 376 lbs , or 28.12 lbs. per cubic foot on December 2 nd , und 367 lbs .5 ozs , or 27.47 Jbs per eubic foot on December 8th, showing a loss of weight at the rate of .1083 -jb. per eubie foot per day.

Beam LII was tested December 9 th, 1893 , with the anmular rings as in Fig. 104.

The load upon the beam was gradually inereased until it amounted to $26,320 \mathrm{lbs}$, when the beam failed by the tearing apart of the fibres on the tension side.
The maximum skin stress corresponding to this breaking load is 3589 Jbs, per square inch.

The total entupression of the material at the support was . 37 -in., so that, taking 1485 ins. is the effective depth, the maximum skin enm-
presoive stress is 36 all ll ．per square ineh，the corrosponding maxi－ mum teasile stress being 3863 － lb ．per square ineh．Assuming tho usual haw to hold good for the whole of the depth，the maximum skin stress per syuare inch would be 3774 lbs ．

The coefficicut of elasticity，as determined froman inerement in the diflection of ． 635 －in．between the loads of 2500 lbs．and $14,500 \mathrm{lls}$ ．， is $929,690 \mathrm{lbs}$ ．
Table R shows the several readinys．
The weight of the beam on November 29th was 430 lbs ，or 28.71 1bs．per cubie foot，and on December 9 th，the date of test，the weight was $415 \mathrm{lbs} .6 \frac{1}{2}$ ozs．，or 26.08 lbs ．per eubic foot，showing a loss of weight at the rate of ．263－Ib．per cubie foot per diay．

Beam IIll was tested December 9th，1893，with the annular riugs as in Fig． 105.

The beam was a poor specinen，being full of knots and season cracks，and partly decayed，The graio on the top，was paraliel，whild on the sides it was somewhat oblif ${ }^{\text {pes }}$ ．

The load upon the beam was gr．matlly increased until it amounted to 18,600 Ibs．，when it failed by the tearing apart of the fibres on the tension sillo．

The maximum skin stress due to this breaking load is $\mathbf{2 4 9 5}$ lls．per square inch．

The eo－efficient of elastieity，as determined by an increment in the deflection of $\mathbf{5 5}-\mathrm{in}$ ．between the ioids of 1500 lls ，and $10,000 \mathrm{llss}$ ，is $650,930 \mathrm{lbs}$ ．

Table R shows the several readings．
The weight of the beam was 450 lbs 12 ozs，or 29.02 lbs ．per ce：Lic foot on Nor． 9 th，and 438 lh .13 azs ，or 28.25 lh ．per cubic foot on Dee．8th，showing a loss of weight at the rate of ．085．5 lo．per cubic foot per day．

The time occupied by the test wan $\underline{0}^{(0)}$ minutes
The following Table gives the summany of the results obtained for White Pine：－

New Thmer．					
Beams．	Dinerisions in incher．				
	1 d	1			
XLII．	288×18	$\times 9$ $\times 9$	11.49	3，815	979，220
XLV．	280×18	＋99	41.49	：，681	956．540
xLVIII．	150×15.1875	＋9．375	41.08	：3，991	1，164，700
XLV1．	120×18	＋9	39.53	2，7－14	536，70
xLVII．	120×18	＋9	39.40	：3，04	617：283
XLIII．	120×18	＋99	89.50	3，000	6．49，780
XLVV．	120×18	＋99	89.40	：3，18	（114，780
XXXVI．	258×18	$\times 9$	32.25	2，993	500，000
XLIX．	150×15.375	＋9．14．	37.24	1，9315	1，032，600
xXXVII．	248×18	$\times 9$	34.43	：1，5．\％	，
XL．	120×18	＋931	36.13	：3，311	693，090
XLI．	120×18	$\times 9$	36.13	2,300	519， 0^{2}
XXXVIII	114×18	－$\times 1$	34.68	3，07\％	1222,640
xxxis．	102×18	$\times{ }^{9}$	34.78	2， 6196	433，250
1.	186×15	$\times 9.0645$	33.61	4,370	1．184．240
Olid T＇imber．					
LIII．	1800×15	$\times 9.05$	28.25	2，445	190，9：30
$1 . \mathrm{I}$ ．	192×15.12	$\times 9$	2×3	3，212	リビってwo
LiII．	1sis $\times 1.485$	$\times 9.05$	26.08	3.389	929， 9,90

Hence，for the new timber，

The average weiglit in lbs．per cnbic foot $=37.88$ ．
＂co－efficicnt of elasticity in lus．per sq．in．$=754,265$ ．
＂maximum skin stress＂\quad＝ 3388.
The followiug data are suggested for practiee：－

The average weight in lbs. per eubic foot $=37.8$.
" co efficient of elasticity in lbs. per sq. in. $=\mathbf{7 5 4}, \mathbf{0 0 0}$.
" maximum skin stress " " $=3,300$.
" sufe wroking skin stress in lbs. per sq. in., 3 being at factor of safety $=1100$.
Further experiments will probably show that these data require some modification. In fact, the actual skin stress and co-efficients of elasticity are certainly grater than those given in the preceding table, which have been calcolated in the assumption that the amount of the compression at the central support is sufficiently small to be disregarded, but it has been shewn, as for example, in the case of Beam XLIX, that the skin stresses are largely affeeted by this eompression. The co-efficients of elasticity are also necessarily increased by the diminution in the effective depth. Similar remarks apply to the other timbers.
From the experiments with the old White Pine stringers, it might be inferred that these timbers hare lost eonsiderably in weight, but that they have in a great degree retained their strength and stiffness. Other old Timbers will require to be tested, however, before any definite statement can be made on the subject.

NEW SPRUCE BEAMS.

Beam LIV was tested Nov. 2nd, 1893, with the annular rings as in Fig. 106.

This stiek was sent to the laboratory by Mr. T. J. Claxton. It was cut out of a tree felled near the Skeena River, British Columbia, on the Pacific Coast, about six hundred miles north of Victoria. The \log was felled in Dee., 1892, or January, 1893, and was over 100 ft. in length, sfuared 36 ins. at the small end, and would have provided from 12,000 to 15,000 of market lumber.

The beam in question was sawn from the \log in June, 1893, and was shipped by steamer at the cud of June from the town of Claxton, situated at the mouth of the Skeena River, where the mills are located. At Victoria the bean was tramshipped and brought down in August via the C.P.R. to Montreal. It was delivered at the laboratory early in September.

It might, perhaps, be of interest to note that the cost of freight for this beam from Claxton to V'ictoria was $\$ 4.00$; from Vietoria to Vancouver $\$ 2.00$; from Vanconver to Muntreal $\$ 46.00$; and the cartage to the University \& 400 , making a total cost of freight of $\$ 56.00$.

It is said that the spruce from the Skeena District is of a specially fine quality, having a clear straight grain, and possessing a large amount of toughness.

The load upon the bean was gradually increased until it amounted to $36,500 \mathrm{ks}$, when the beam failed by the erippling of the fibres on the compresion side, Fig. 107.

The maximum skin stress corre-ponding to this breaking load 5908 lbs . per cquare inch.

The total compression of the miterial at the enntral support was 5 in., so that taking the effective depth as 17 ins., the maximum skin compressive stress is 5941 lbs. per square ineh, the corresponding skin temsile stress being 6301 lbs . per esfare inch.

If it is assumed that the usual law holds good for the whole of the effective dejth al 17 ins., the maximum skin stress is 6260 lbs . per square inch.

The co-cticient of clasticity, as deduced from an iucrement in the
deflection of 1.1 in ins. between the loads" of 1000 and $15,000 \mathrm{lbs}$, is 1,528,499 lbs.
Table S shows the several readings.
'I'he weight of the beau on Oct. 3ril was 751 lbs. 6 ous., or 27.206 lbs. per eubic foot, and on Nov. 3rd, the date of test, it weighed 73:5 llis. $2 \frac{1}{2}$ ozs., or 26.614 lbs. per cubic foot, showing a loss while in the laboratory at the rate of . 019 lbs . per cubic foot per day.

Beams LV and LSVI are the ends of Beam LIIV, the central portion containing the frature having been cut out.

Beam LV was tested Nov. 3rd, 1893, with the annalar rings as in Fig. 108.

The load was gradually inereased until it amounted to 73,000 lbs., when it failed by the crippling of the fibres on the compression side Fig. 109.

The maximum skin stress cormesponding to this loat is 4839 lbe. per square inch.
The maximum compression of the material at the central support was 2 irs ., so that taking 155 ins , as the effective depth, the maximum compressive skin stress is $\overline{5} 193 \mathrm{lbs}$. per square inch, the eorresponding tensile skio stress being titat lbs. per softare inch.

If it is assumed that the usual law holls good for the whole of the effective depth, the maximum skin stress becomes 6176 Jls .

As soon as the beam was relieved of load, the amount of compression at the support was immediately diminished by $.9-\mathrm{in}$, and at the end of thirtcen days the amount of compression was 82 in .

The co-etficient of elaticity, as decrmined by an iucrement in the deflcetion of $.17-\mathrm{in}$., letween the loads of 3000 lts and $10,000 \mathrm{lbs}$, i: $1,070,950 \mathrm{lbs}$.

Table Thows the several readings.
The weight of the beam on Nov. Brd, date of test, was $26.61+\mathrm{lbs}$. per cubic foot

Beam LVI was tested Nor. $\mathbf{4}$ th, 1893 , with the amulat rings as in Fig. 110.

The load was gradually increased until it amounted to $\mathbf{7 0 , 0 0 0} \mathrm{lbs}$. wheu- it failed by the crippling of the fibres on the compression side Fig. 111.

The maximum skin stress corresponding to this breaking load is 4614-lbs, per square inch.

The maxiunm compression at the eentre of support was 1.9 ins, so that taking 15.6 ins. as the effective depth, the maximum compressive skin stress is 4916 lbs . Fer square iuch, the corresponding tensile skiu stress being 6280 lbs . per square inch.

If it is assumed that the usual law holds good for the whole of the effective depth, then the maximum skin stress becomes 5806 lbs . per squaro inch.

Ten days after this bean had becn relieved of load, the amount of
the compression of the timber at the centre of support was diminished to .77 in.

The co cfficient of elasticity, as determined by an inerement in the deflection of . 18-in. between the loads of $10,000 \mathrm{lbs}$. and $30,000 \mathrm{lbs}$, is $1.011,450 \mathrm{lbs}$.

Table T shows the several readings.
The weight of this beam on Nov. 3rd was 26.614 lbs. per eubie focit.
old spruce.

Beams LV II-LIX were three spruce stringers sent to the laboratory by Mr. P. A. Petcrion.

Beams LVII and LVIII were eut at Gialbraith's Mill, three miles from Sherbrooke, in 1886, and grew near the same place. They were used in the construction of the bridge near Lennoxpille in the winter of 1886-87, and had been in service uutil the summer of 1894 , or for a jeriod of abont cight years.

Beam LIX was taken ont of Dridge E 61 at Roxton Falls during the summer of 1894, and had been in service since 1885, i.e., for about eiglit years. This stringer was purchased by Bridge-master MacFarlane, and no further informatiou has been obtained as to its history. The stringer was boxed $\frac{1}{2}$-in. at the ends on the bearings, and several season eracks were slown on the surfiec.

Beam LVLI was tested on the 21 st Aprit with the annular rings as in Fig. 112.

The load upon the beam was gradnally inereased nutil it muounted 10 $25,700 \mathrm{lbs}$., when the beam failed by shearing longitudinally along the surface of a season erack, the distance between the portions above and below the plane of shear at the end being $\frac{3}{8}$-in.

Inmediately after the fracture the jockey weight was run back until the lever again floated, the load upon the beam being $21,000 \mathrm{lbs}$. 7 'his load was shen gradually increased until it amounted to $24,700 \mathrm{lbs}$., when failure cecurred by the tearing apart of the fibres on the tension side and by a further crippling of the fibres on the compression side. The lap at the end of the plane of shear was also inereased to $\frac{5}{8}$-in.

The maximum skin stress corresponding to the breaking load of $25,700 \mathrm{lbs}$. is 3459 lbs . per square inel.

The maximum compression of the material at the support was .31in., so that taking the effective dejth to be 14.69 ius., the maximum compressive shin stress is 3526 lbs . per square inch, the corresponding tensile skin stress being 3678 lbs . per square inch.

If it is assumed that the usu:al law holds good for the whole of the effective dejth, then the maxinum skin stress beeomes 3607 lbs. per square inch.

The co-efficient of clasticity, as determined by an inerement in the deflection of .7 -in. between the loads of 1500 and $12,500 \mathrm{lbs}$, is $1,123,400 \mathrm{lbs}$.

Table U shows the several readings.
The weight of this beam on April 10 th was 502 lbs, or 33.82 lbs . per cubic foot ; its weight on April 21st, date of test, was 491 lbs. 4 ozs., or 33.09 lbs . per cubic foot, showing a loss of weight at the rate of .0645 lbs . per cubie foot per day:

Beam LVIII was tested May Ist, I894, with the annular rings as in Fig. 113. Season cracks ran intermittently from end to end of the beam.

The load unou this beam was gradually increased until it amounted to $27,470 \mathrm{lbs}$. Under this load the beam fated by shearing loggitudinally aloug a semson crack, as shown in Fig. 114, with a partial tension frature near the end of the beam. The seasou erack for a distance of about 3 ft . from the eentre of the beam appears weathered through the entire thickness of the: beau.

Previously, however, to this longitminal shear, the bean harl exidently finled by the erippling of the materinl, Firg. 114, on the compression side along a line near the centre of the beam where the timber was apparently free from knots and where the tibres were paralled with the axis.

The maximun skin stress corresponding to the load of 27,470 libs. is 5709 lbs . per square ineli.

The co-effieient of elasticity, as determined by an increment in the
 1,316,900 lhs.

Table U shows the several reading.
The weight of the beam on March 10 th was 267 los. 10%, or $27.3 f$ Ibs. per cubic fuot, and its weight on May end was 258 hls. 6 ozs., or 26.47 fbs . fer cubie finot, showing a loss of weipht while in the laboratory at the rate of .0168 lb . per enbic foot per day.

Beau IJIX was tested June gud, 1594, with the amnalar rings as in Fig. 115.

The load was gradually inereased until it amounted to $21,60 \mathrm{lls}$., when the beam failed by the teazius apme of the fibres on the teu-ion side.

The maximum skin stress efrresponding to this load is 2963 lbs . per square inch.

The maximum compression at the centre was. i-in., so that taking 14.3 ins. as the effective depth, the maximum compressive skin stress is 3079 lbs. per square inch, the corresponding tensile skin stress being 3396 lbs . per square ineh.

If it is assumed that the usual law holds gond for the whole of the effective depth, then the maximum skin stres is 3261 lbs . per sq. in.

The co-efficient of elasticity, as determined by an inerement in the deflection of $.43-\mathrm{in}$. between the loads of 2000 lbs . and $10,000 \mathrm{lbs}$, is 905,601 lbs.

Table U shows the several readings.

- The weight of the beam on June 1st was 445 Jbs. 13 ozs., or 30.12 lbs. per cubic foot. It weight on June 8 th was 440 lbs , or 29.72 lbs . per enbic foot, showing a loss of weight at the rate of $.457 \mathrm{l}-\mathrm{lb}$. per cubic foot per day.

Beams LX and XLI are two old spruce stringers sent to the laboratory by Mr. F. A. Peterson.

They had been in use in Culvert E 39 on the north division of the South Eastern Railway, $1 \frac{1}{2}$ miles north of Waterloo Station, since Oct, 1891, or tor about three years.

These timbers were eut aud sawn at Keene $\&$ Company's mills at the boundary east of Megantic.

Beam LX was tested on Nov. 10th, 1894, with the :1mular rings as in Fig. 116.

The upper portion of the stringer, i.e., the part in tension, was par. tially rotten to a depth of about 1 -in., and the effective depth at the eentre of the beam did not exceed $11 \frac{1}{4}$ ins. The remainder of the seetion at the centre was in a perfectly sound and good condition.

The load upon the beam was gradually increased until it amounted
to $16,050 \mathrm{lbs}$. , when it failed by the tearing apart of the fibres on the tensile side. The load was still inereased, and a more complete fracture occurred under a load of $21,240 \mathrm{lbs}$. Immediately after this sceond fractore the jockey weight was run back until the lever again floated, when the load was $15,900 \mathrm{lbs}$. The load was again gradually inereased until it amounted to 18,800 lbs., when fracture again occurred.

The maximum skin stress correspouding to the breaking load of 16.050 lbs . is 2934 lbs.

The waximum compression of the material at the centre was $.25-\mathrm{in}$., so that taking the effective depth to be 11 . ins., the maximum compressive k in stress is 3043 lbs per square inch, and the corresponding tensile skin stress is 3184 lbs . per square inch.
If it is assumed that the usual law bolds good for the whole of the effective depth, the maximum skin stress becomes 3118 lbs. per square inch.

The co-cfficient of elasticity, as determined by an increment in the deflection of $.390-\mathrm{in}$. between the loads of 2000 and $12,000 \mathrm{lbs}$, is $1,352,250 \mathrm{lbs}$. per square inch.
Table V gives the several rcadings.
The weight of this beam on Nov. 10th, date of test, was 255 lbs . $12 \frac{1}{2}$ ozs., or 27.26 lbs. per cubic foot.

Beam LXI was tested Nov. 17th, 1894, with the annular rings as in Fig. 117. There were season cracks from end to end on the front face and numerous knots of medium and small size on the sides. The darkened portion indie:tes sapwood.
The load upon the heam was gradually increased until it amounted to $18,400 \mathrm{lbs}$., when the bram failed by the tearing apart of the fibres on the tensiou faec.

The maximum skin atress corresponding to this load is 4309 lbs . per square inch.

The maximum compression of the material at the centre was .21 in., so that taking the effective deptla to be 14.29 ins., the maximum skin compressive stress is 4432 lbs . per square inch, the corresponding tensile skin stress being 4565 lbs . per square inch.
If it is assumed that the usual law holds good for the whole of the effective depth, the maximum skin stress becomes 4502 lbs . per square inch.
The co-cfficient of clasticity, as determined from an increment of .6 -in. in the deffection between the loads of 1000 lbs and 9000 lbs ., is $1,250,850 \mathrm{lbs}$.

The weight of this beam on Nor. 17 th, date of test, was 967 lbs ., or 28.85 lbs . per cubic foot.

The following Table gives a summary of the results obtained for Spruce :-

New Timber.

Oid Timber.

LV1I.	180	\times	15	\times	9	33.09	3,459	$1,123,400$
LIX.	180	\times	15	\times	9	30.12	2,963	905,601
LXI.	186	\times	14.5	\times	5.625	28.85	4,309	$1,250,850$
LX.	138	\times	11.25	\times	8.875	27.26	$\mathbf{2 , 9 3 4}$	$\mathbf{1 , 3 5 2 , 2 5 0}$
LVIII.	180	\times	14.75	\times	6	26.47	5,709	$\mathbf{1 , 3 1 6 . 9 0 0}$

Beams WVand LVI were ent out of Beam LIV as already described. 'I he wide variation in the value of the skin-stress and of the co-efficient of elasticity is undoubtedly due to the fiet that the anount of the compression at the eentral support has been disregarded in the calculations. If this compression is taken into aecount, and if it is assumed that the ordiuary theory of flexure holds good for the whole of the effecrive depth, it has been shewn that the skin-stresses in lbs. per sq. in. Lecome 6260 for Beam LIV, 6176 for Beam LV, and 5806 for Bean LAVI, the variation in the magnitude of the stresses beins comparatively small.
Further experiments will be made with new spruee heams.
The old spruee striugers were found to possess auple strength and stiffiess for the work they were designed to do. The experiments gave :-
29.15 lbs , as the average weight per enbic foot.
1,189,800 " " co-eflicient of elasticity.
3875 " " maximum skin-stress per sq , in.

The following Tables Λ to V give the end deflections and in some eases the deflections at points dividing the beam into four, six, or eight equal parts, the distanes of these points from the ends being stated at the heads of the columns.

Tables A to I show the deflections in inches of Cathadian New Douglas Fir Beams (I to XXV) under wradnally inereased bads.

TABLE A
Deflection: of Beam I at ands.

Loads in lbs.	Deflection.	$\left\{\begin{array}{l} \text { Loads } \\ \text { in lbs. } \end{array}\right.$	Detlee tion.	Luads in lbs.	Deflection.	$\begin{aligned} & \text { loads } \\ & \text { in lbs. } \end{aligned}$	Deflec tion.	$\begin{gathered} \text { Lonads } \\ \text { in } \mathrm{lbs} \text {. } \end{gathered}$	$\begin{aligned} & \text { Detlec } \\ & \text { tion. } \end{aligned}$
2,000	. 02	9,000	. 095	16,000	. 18	23,000	. 28	30,000	. 39
$\cdots, 500$. 03	9,500	. 10	16,500	. 19	23,500	. 28	30,500	. 40
3.000	. 03	10,000	. 11	17,000	. 19.5	24,000	. 285	31,000	. 41
3,500	. 035	10,500	. 115	17,500	. 20	24,500	. 295	31,500	. 42
4,000	. 0.4	11,000	. 12	18,000	. 205	25,000	. 30	32,000	. 43
4,500	. 045	11,500	. 125	18,500	. 1	2.,500	. 31	32,500	. 44.5
5,000	. 05	12,000	. 13	19,000	. 22	26,000	. 315	33,000	. 46
5,500	. 055	12,500	. 14	19,500	. 225	26,500	. 32	34,000	. 49
6,000	. 06	13,000	. 145	20,000	.230	27,000	. 33	35,000	. 51
Bi,500	. 07	13,500	. 15	20,500	. 24	27,500	. 34	36,000	. 53
7,000	. 075	14,000	. 155	21,000	. 245	28,000	. 35	37,000	. 56
7,500	. 075	14,500	. 16	21,500	. 25	28,500	. 36		
8,000	. 08	15,000	. 165	2-,000	. 255	29,000	. 37		
8,500	. 09	15,500	. 17	22,500	. 265	29,500	. 38		

Breaking weight of Beam $I=45,000 \mathrm{lbs}$.

TABLE B.

Loads in lbs.	Deflections of Beams.						
	II	III	IV	V	VI	VII	VIII
	Ends.	Ends.	Ends.	Ends.	Ends.	Ends.	
300 500		. 05		. 005	. 02	. 015	. 02
800							.0:
1,000		. 08	. 03	. 01	04	. 03	. 07
1,300 1,500		. 11	. 045	. 02	. 06	. 04	. 109
1,800							. 12
2,000	. 035	. 14	. 05	. 03	. 075	. 06	.135
2,200 2,400							.15
2,500		. 155	. 055	. 05	. 10	0.75	
2,600							. 18
2,80'1		. 18	. 16.	. 055	. 12		. 1905
3,400		.	. 065	. 055	. 12	. 10	. 205
3,500		. 21	. 08	. 065	.14	.i15"	
3,800							
4,000 4,500	. 05	. 23	. 095	.07 .08	. 18	. 142	.28 .315
5,000			. 115	.09	. 20	. 155	.35
5,500			.13	. 105	. 22	. 175	. 39
6,000	065		. 145	. 11	. 241	. 195	
6,500	龶	-	. 155	. 125	. 26	. 21	
7,000			. 165	. 135	. 28	. 22.	
7,500 8,100	. 075		. 18	. 145	. 305	. 235	
8,500			. 20	.17		. 27	
9,000			. 215	. 18			
9,500			. 23	. 195			
10,000 10,500	. 085		. 245	. 205	,		
11,009			. 28	.22.			
11,500			. 30	. 25			
12,000	. 10		. 315	. 26			
12,500			. 33	. 27			
13,000	. 105		. 35	. 28			
13,500 14,000	. 110		. 368	. 2905			
14,500				. 315			
15,000	. 115			-33			
15,500 16,090	. 12			.345			
16,400						\% 7	
17,000	. 13						
18,000	. 135						
20,000 21,000	. 14			. 72			
22,000	. 15						
24,000	. 165						
${ }^{26,000}$. 175						
28,000	. 190						

Breaking Weight of Beam
$I I=36,575 \mathrm{Ibs}$.
III $=12,950 "$
$\mathrm{IV}=16,720$ "
$\mathrm{V}=23,610 \quad \circ$
VI $=15,480 \%$
VII $=17,615$ "
VIII $=11,700{ }^{\prime}$

TABLE C.

. E	Detlections of Beam IX.					Deflectionn of Beam X.				
安 $=$	Ins.	68 ins.	Ends.	68 ins.	34 ins.	$3: 1 \mathrm{nm}$.	66 ina.	Ends.	66 inm.	$33^{3} \mathrm{in}$.
1000	. 01	. 01	. 02	. 01	.01	. 02	. 01	. 02	. 01	. 03
1500	. 03	. 02	. 04	. 02	. 03	. 05	. 02	. 05	. 02	. 05
2000	. 03	. $0: 1$. 05	. 025	.04	. 07	. 0.3	. 08	.04	. 07
2500	. 04	. 03	. 05	. 0.3	. 03	.10	. 05	. 11	. 05	. 10
3000	.10	.07	. 16	. 05	. 09	.12	. 06	. 14	. 06	.12
3500	.10	. 08	.12	. 05	.10	.15	. 07	.17	. 07	.15
4000	.10	. 08	.13	. 055	.10	.17	.09	. 20	. 08	.17
1500	.10	. 08	. 14	. 065	. 11	. 20	.10	. 23	. 10	.20
5000	.15	.10	. 18	. 035	.15	. 22	.11	. 26	. 115	. 22
5500	. 15	. 11	. 19	. 09	.16	. 25	.12	. 29	. 12	. 25
6000	. 15	.12	.20	.10	. 17	. 27	.1 .1	. 32	. 14	. 27
6500	.19	.13	. 24	. 11	. 20	. 30	.15	. 35	. 15	. 30
7000	. 20	.13	.25	. 115	.20	. 32	.17	. 38	. 16	. 32
7500	. 20	. 13	. 25	. 11	. 21	. 35	.18	. 41	. 18	. 35
8000	.20	.13	. 26	. 125	. 22	. 37	. 20	. 41	. 211	. 37
8500	. 22	. 14	.27	. 135	.24	.40	. 21	. 17	. 21	.10
9000	. 22	. 15	. 28	. 14	. 24	.42	. 22	. 50	. 22	.43
9500	. 22	.15	. 29	. 145	.25	. 45	. 23	. 53	. 23	.45
10000	.26	.16	. 33	. 16	. 28	. 47	. 25	. 56	. 24	.47
10500	. 33	. 20	.40	. 19	. 34	. 49	. 26	. 53	. 25	. 49
11000	. 34	. 21	. 42	. 20	. 35	. 51	. 27	. 61	. 27	. 51
11500	. 35	. 22	. 41	. 205	.36	. 54	. 29	. 64	. 29	. 5.1
12000	. 39	. 23	.47	. 22	. 40	. 36	. 30	.68	. 30	. 56
12500	. 40	. 24	.49	. 28	.40	. 59	. 32	. 71	. 32	. 59
13000	1 . 40	. 24	. 50	. 2	. 11	. 11	. 33	. 74	. 33	.61
13500	.45	. 27	. 54	. 25	.45	. 64	. 34	. 77	. 34	. 64
14000	. 45	. 27	. 53	. 255	.16	. 66	.36	. 80	. 36	. 66
14500	. 45	. 27	. 56	. 24	.16	. 69	. 37	. 83	. 375	. 69
15000	. 50	. 29	. 130	. 27	. 51	. 11	. 39	. 86	. 39	. 71
15500	. 50	. 30	. 61	. 28	. 51	.74	. 40	. 89	. 10	. 74
16000	. 50	. 30	.62	. 29	. 22	.75	. 41	. 92	. 41	. 76
16500	- 55	. 81	. 166	. 31	. 55	. 79	. 43	. 96	. 43	. 79
17000	- 55	. 32	. 67	. 31	. 51	. 81	.44	. 99	. 45	. 82
17500	. 56	. 33	. 68	. 32	.57	. 85	. 46	1.02	. 46	. 85
18000	\| 56	. 33	. 69	. 325	. 58
18500	. 60	. 36	. 75	. 35	. 62		-
19000	. 63	.36	. 77	. 35	. 64
19500	. 64	. 37	. 78	. 36	. 65	. . . ${ }^{\text {c }}$		
20000	.65	. 37	.79	. 365	. 66					
40000	1.75	-•••••	.				- \cdot. \cdot	
47000	1......	2.20		.					. .

Breaking Weight of Beam $I X=31,600 \mathrm{lbs}$. " " " $\mathrm{X}=1 \%, 000$ "

TABLE D.

.		Deflections of Beam XI.				Deflections of Beam XII.				
辰	34 ins.	68 ins.	Ends.	68 ins.	34 ins.	34 ins.	68 ins.	Ends.	68 ins.	34 ins.
1000						. 01	. 005	. 01	. 01	. 01
1500	. 02	. 01	. 035	. 015	. 025	. 03	. 02	.035	. 02	. 035
2000	. 05	. 02	. 05	. 025	. 04	. 05	. 025	. 055	. 03	. 0.5
2500	. 06	. 03	. 075	. 035	. 06	. 065	. 04	. 075	. 05	. 07
$\bigcirc 900$. 075	. 04	. 10	. 045	. 08	. 09	. 045	. 10	. 05	. 09
3500	. 10	. 05	. 115	. 055	. 095	. 105	. 06	. 12	. 06	. 105
4000	. 11	. 06	. 135	. 06	. 11	. 12	. 07	. 145	. 07	. 12
4500	. 13	. 07	.16	. 07	. 135	. 15	. 075	. 165	. 08	. 145
5000	. 15	. 075	. 175	. 075	. 14	.155	. 09	. 185	. 09	. 155
5500	. 16	. 085	. 20	. 09	.16	.17	. 10	. 205	. 10	. 17
6000	. 185	. 10	. 22	.10	. 18	. 19	. 11	. 23	. 11	. 19
6500	. 20	. 105	. 24	.11	. 195	. 21	. 12	. 25	.12	. 21
7000	. 215	. 115	. 26	. 11	. 215	. 23	. 13	. 27	. 13	. 235
7500	. 24	. 125	. 28	. 13	. 235	. 25	. 14	. 295	.14	. 25
8000	. 25	. 135	. 30	. 14	. 245	. 27	.15	.315	. 15	. 27
8500	26	. 145	. 32	. 15	. 265	. 29	. 15	. 34	. 16	. 29
3000	. 27	. 15	. 33	. 155	. 27	.305	.17	. 36	.17	. 305
9500	. 30	. 16	. 35	. 165	. 29	. 32	. 18	.305	. 18	. 32
10000	. 315	. 17	. 38	. 175	. 305	. 35	. 19	. 405	.19	. 35
10500	. 34	. 185	. 40	. 18.5	. 335	. 36	. 20	. 425	. 20	. 36
11000	. 36	. 195	. 435	20	. 36	. 375	. 21	.45	. 21	. 38
11500	. 36	. 20	. 435	20	. 36	.39	. 21	. 47	. 92	. 40
12000	. 395	. 215	. 475	. 22	. 395	. 41	. 23	. 495	. 23	. 41
12500	. 40	. 22	. 50	. 23	. 405	. 44	. 24	. 21	. 24	. 44
13000	. 42	. 23	. 505	. 2.1	. 42	. 45	. 25	. 535	. 25	. 45
13500	. 45	. 25	. 54	. 255	. 445	. 47	. 26	. 555	. 26	. 47
14000	. 46	. 255	. 56	. 265	.46	. 49	. 27	. 58	. 27	. 49
14500	. 48	. 265	. 57	.275	.475	. 50	. 28	. 60	. 28	. 505
15000	. 50	. 275	. 60	. 28	. 50	. 52	. 29	. 62	. 30	. 52
15500	. 515	. 288	. 62	. 29	. 515	. 55	. 30	. 645	. 30%	. 55
16000	. 535	. 295	. 645	. 30	. 53	. 555	. 30.5	. 665	. 31	. 56
16500	. 54	. 30	. 65	. 30	. 535	. 575	. 32	. 69	. 32	. 57
17000	. 58	. 32	. 695	. 32	. 575	. 60	. 325	.71	. 33	. 61
17500	. 585	. 32	. 70	. 325	. 57.5	. 61	. 33	. 73	. 345	. 615
18000	. 61	. 34	. 735	. 345	.61	. 63	$\therefore 3+5$. 755	. 35	.635
18500	. 61	. 34	. 745	. 35	. 615	. 6.5	. 35	.77	. 36	. 65
19000	. 65	. 36	. 78	. 365	. 655	. 665	. 36	. 80	. 375	. 665
19500	. 65	. 36	. 785	. 375	. 655	. 685	. 37	. 82	. 385	. 69
20000	. 655	. 365	. 80	. 375	.66	. 705	. 38	. 85	. 40	. 705
20500						. 73	. 395	. 87	. 41	. 725
21000						. 75	. 40	. 89	. 415	. 75
21500						. 75	. 405	. 90	. 415	. 75
$\because 2000$. 78	. 42	. 935	. 435	. 78
22500						. 81	.435	.96	. 45	. 805
23000						. 82	. 445	.98	. 455	. 82
21000			. 94						
26500							1.12		
$\because 8000$			1.14					1.17		
29000								1.22		
32000								1.40		
33000			1.35					1.42		
35800			1.45							
37000					-			1.67		
39000								1.97		
42000								2.00		
. 5000								2.28		
45000								2.73		
49000								2.9		

Breaking Weight of Beam XI $=35,800 \mathrm{lbs}$.
" $\mathrm{XII}=49,000 *$

TABLE E：

$\stackrel{\text { 亲 }}{\underset{y}{E}}$	Hellections of Ream						Deflections of Ream XV．					
－	$\begin{aligned} & 3.1 \\ & \text { ins. } \end{aligned}$	$\begin{gathered} 1 ; 8 \\ \text { ins. } \end{gathered}$	粏	68 ins．	$\begin{gathered} 34 \\ \text { ins. } \end{gathered}$		$\begin{gathered} 3.3 \\ \text { ins. } \end{gathered}$	66 ine.	$\begin{aligned} & \dot{3} \\ & \dot{y y} \end{aligned}$	$\begin{gathered} 66 \\ \text { ins. } \end{gathered}$	$\begin{gathered} 33 \\ \text { ins. } \end{gathered}$	淢
760						03						
1000	25.	． 102	． 104	． 02	． 025	． 0	.01	． 01	． 0 2	． 01	． 02	．025
1140							\cdots	．．．．	－			． 035
1500	． 0 i	． 035	． 07	． 03	． 05	．08：	． 04	． 02	． 05	．02：	． 01	． 0.7
1900						－ 11	\cdots		．．．		－．．	．07\％
2000	． 18	． 0.5	． 105	． 05	． 08	：115	． 055	． 035	． 08	．045	． 06	
2300			1				－．．．．					．09
2900 2600	． 10	． 065	． 14	． 065	． 11	． 15°	． 08	． 045	． 085	． 05	． 075	（1）
2800						17						（1）
3000	． 1	． 08	． 17	． 08	． 14	． 19	.10	． 03	．115	． 0	． 10	．125
3200				．．．．	．．．．	． 20						
3.100				．	．．．．	． 22						14\％
3500	． 16	． 10	． 21	． 10	． 16	\cdots	． 11	． 065	． 14	． 07	． 12	
3600						．22：						．\cdot ．
3800						． 25						． 16
4000	． 20	． 11	． 245	11	． 20	． 255	． 3	． 08	If	．085	1.4	．175
4440						．275						． 20
4500	． 22	． 13	． 275	$12:$.22		． 150	． 095	． 183	． 1995	． 16	
4800						． 31.						． 215
5000	． 5	． 145	31	14	．25）	． 32	． 165	． 105	215		－	． 225
5200						． 345					．	． 23
5400						． 335						
5500	． 275	． 15	．i3	．155	． 28	\cdots	19	11	． 3.4	． 115	． 20	．${ }^{\circ}$
5600						． 3 ！	．．．．	．．．．．．				． 25
5800						． 39						
6000	． 30	． 160	36	． 17	． 30	． 40	．21	125	．${ }^{1}$	125	．215	． 27
6400						．．．						． 29
6500	． 33	． 18	． 40	． 185	． 33	\cdots	． 23	． 13	． 285	． 14	．235	．．．．．．
6890		．．．．．．				． 465						．31
7010	． 36	． 20	． 44	． 20	． 36	． 485	． 255	． 145	． 31	． 15	255	． 325
7200				．．．．	．．．．	． 50	．．．．					
7400 7500	． 35	． 215	． 47	．29	\cdots	． 505	\cdots	155	335	16	275	． 34 －
7800						． 34						． 36
8000	． 41	． 225	． 50	23	． 41	． 56	． 295	． 165	． 35	． 175	． 30	． 375
8300				．．．．	．．．．	． 585	．．．．					
8400						．．．．．．						． 40
8500	． 45	． 245	． 54	． 245	． 45		． 31	． 18	． 38	． 18	． 315	．．．．．．
8600			．．．．	．．．．	．．．．	． 605	．．．．	．．．．	．．．．	．．．．		
8800												． 42
7000 1200	． 46	． 255	． 57	． 26	． 47	． 64	． 34	． 19	． 40	． 15	－ 34	． 425
11200 9400					．\cdot ．	． 66	…					
9400	．．．．	．．．． 1	．．．．	．．．．	．．	．．．．	．．．．					． 45

TABLE E.-(Continued.)

Joads in lbs.	Deflections of Beam XIII.					$\left\lvert\, \begin{aligned} & \stackrel{4}{0} \\ & 0_{0}^{0} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}\right.$	Deflections of Beam XV.							
	$\begin{aligned} & 34 \\ & \text { ins. } \end{aligned}$	\|c	c		Ends	S $\left\lvert\, \begin{gathered}68 \\ \text { ins. }\end{gathered}\right.$	ins.	Ends	33	66 ins.	Ends.	\|ins.	ins.	Ends
9500	. 50	. 275	. 605	5.28	. 50		. 35	. 20	. 425	. 205	. 355			
9600						. 69				5		
9800 10000	. 52	. 29	. 64	. 295	. 53	. 715	. 37	\ldots	. 44	. 21	. 375	. 485		
10200						. 76								
10400						. 765								
10500	. 55	. 305	. 67	. 31	. 55		. 40	. 22	. 475	$\because 2$. 40			
10600						. 80								
10800						. 805								
11000	. 585	. 32	. 705	. 325	. 585		. 415	. 23	. 50	. 24	. 415	. 54		
11300					…	. 845								
11500	. 61	. 34	. 745	. 345	. ${ }^{\text {d }}$. 44	. 24	. 525	. 25	. 445	. 565		
11700					\cdots	. 88								
12000	. 64	. 35	. 78	. 36	. 64	. 91	. 45	. 25.5	. 55	.26	. 45	. 59		
12200		 935								
12400					\cdots	. 95								
12500	. 66	. 365	. 81	. 375	. 67		. 47	. 265	. 57	27	- 465	. 61		
12600		 935							
12800						1.00		\cdots						
13000	. 70	. 385	. 845	395	. 70	1.00	. 495	. 275	. 60	28	. 50	. 65		
13200		.		.	\cdots	1.02								
13500	. 725	40	. 885	. 41	. 735		. 51	. 285	. 62	. 29	. 51	. 68		
14000	. 75	. 415	. 915	. 42	. 16		5.	. 295	. 64	. 30	. 51	. 71		
14500	. 795	. 435	. 96	445	. 795		. 55	.:305	. 66	. 31	. 55	. 73		
15000	. 81	. 45	. 99	. 46	. ${ }^{2}$. 57	. 32	. 69	. 32	. 575	. 75		
15500	. 85	. 47	1.025	. 475	. 85		. 59	. 33	. 715	. 335	. 60	.is		
16000	875	. 488	1.065	. 49	. 8%		. 61	. 34	. 7.4	. 34	. 615	. 81		
16500	. 905	. 505	I. 10	. 515	. 915		. 64	. 35	. 765	. 35	. 64	. 83		
17000	. 94	. 52	1.135	. 525	. 94		. 65	. 36	. 79	. 36	. 655	. 87		
17500	. 97	. 54	1.18	. 545	. 975		. 67	. 375	. 81	. 375	. 675	. 90		
18000	1.00	. 55	1.22	. 5 (1.01		. 69	. 385	. 835	. 39	. 70	. 93		
18500	1.04	. 575	1.265	. 58	1.045		. 71	. 395	. 86	. 40	. 71	. 95		
19000	1.106	. 59	1.31	. 60	1.07		. 74	. 403	. 875	. 41	. 735	. 98		
19500	1.1	. 615	1.35	. 62	1.1		. 75	. 415	. 91	. 42	75	1.00		
20000	1.14	. 63	1.39	. 635	1.14		. 77	. 425	. 94	. 43	. 775	1.04		
20500	1.165	. 65	1.43	. 655	1.175							1.07		
21000	1.21	. 67	1.485	. 68	1.22				1.20			1.10		
21500	1.24	. 685	1.515	. 69	1.25							1.13		
22000	1.28	. 71	1.57	. 715	1.29							1.15		
22500												1.17		
23000											1.20		
24000			1.70											
25000								...	1.30					
26000			1.88											
26300			2.05											
27000									1.45					
29000								. \cdot	1.55					
29300			2.6						1.70					
30000									1.90					
32000									2.25					
35000									2.33					
37000.	,						. 1		

Breaking weight of Beam XIII $=29,300 \mathrm{lbs}$.
$\begin{array}{llll}" & \because & \because & \text { XIV }=17,600 \\ " & \because \\ " & \because & \because & X V=37,000\end{array}$
" " \quad. $\mathrm{XVI}=25,580$ to $32,000 \mathrm{lbs}$.

TABLE F .
Denlections of Beama XVII. XV'Il and XIN゙.

Breaking weight of Beam XVII $=48,600 \mathrm{Ibs}$.
" " \quad " \quad XVIII $=69,400$ "

TABLE G.
Deflections of Beams XX and XXI.

Breaking weight of Beam $\mathrm{NX}=49,600$ lbs.
" $\%$ " $\mathrm{XXI}=17,960$ \%

Thbles H and I show defections in incles of Ohd Houglas Fir, cte.
TABLE H.

Loads in lhs.	Detlections of Beame XXII nud XXIII									
	XXII.					XXilit.				
	$\begin{gathered} 27 \\ \text { ins. } \end{gathered}$	$\begin{gathered} 5! \\ \text { ins. } \end{gathered}$	Ends	$\begin{gathered} \text { s. } \\ \text { ins. } \end{gathered}$	$\begin{gathered} 27 \\ \cos . \end{gathered}$	in	62	Ends.	$\begin{aligned} & 62, \\ & \text { ins. } \end{aligned}$	1
1,000						015	01	5	. 00	
1,500	. 02	. 01	. 02	. 01	. 01	.023,	. 02	025	. 01	(102
2,000	. 025	. 02	. $0: 1$. 01	. 02	. 04	. 03	. 0.4	.02	. 185
2,500	. 0.4	. 025	. 04	.02	.03	.0.3)	.045	. 05	.03\%	04.
3,000	. 045	. 03	. 05	.023	. 04	.063	. 05	. 063	.03)	. $0: 1$
3,500	. 05	. 035	. 06	.03	. 15	. 0.	. 106	.08.5	. 0.4	. 07
4,000	. 06	. 04	. 07	. 035	.16	.11	. 1685	. 1105	.045	. 0×5
+,500	. 07	. 04	. 08	. 04	. 07	. 11	. 118	12	.03)	
5,000	. 08	. 05	. 10	. 045	. 08	.120	. 09	135	.16i	11.7
5,500	. 09	. 05.5	. 12	. 0.5	. 09	. 14	.09.7	. 150	06	$1: 3$
6,000	. 10	. 06	. 13	. 055	. 11	16	. 110	. 175	075	1.
6,500	. 11	. 06	. 14	. 055	. 11	.17	. 11	. 185	. 075	116
7,000	. 12	. 07	. 15	. 06	. 12	. 15	.12	. 20	105.	175
7,500	. 13	. 075	. 155	. 065	. 13	. 20	.13	-225	095	19
8,000	. 14	.0s	. 16	. 07	. 14	. 21	.1.1	25	10	21
8,500	. 15	. 085	. 17	. 05	. 15	. 225	. 145	. 255	11	215
9,000	. 16	. 09	. 18	. 08	. 16	. 24	. 155	-27.3	12	22.5
9,5¢0	. 17	. 095	. 193	. 085	. 17	. 25	. 160.	. 285	.125	45
10,000	. 18	. 10	. 20	.091	. 175	26	17	:30.	13	2.5
10,500	. 19	. 105	. 21	. 095	. 18	. 275	. 185	. 325	. 14	26.5
11,000	. 195	. 11	. 22	. 10	. 19	. 29	. 19	-315	.14	275
11,500	. 20	. 115	. 23.3	. 105	. 20	. 305	. 20	-355	. 15	. 30
12,000	. 21	. 115	. 245	. 11	. 21	. 32	. 205	. 385	. 16	. 305
12,500	.22	12	-250	. 115	.22	. 333	21	. 390	. 17	. 32
13,000	. 23	.125	.26:	. 12	.225	35	225	415	. 175	. 34
13,500	.2:5	. 13	. 27	.120	.235	.36.	235	-12.	. 18	. 35.5
14,000	.25	14	. 29	.13	. 25	. 38	24.5	4	. 19	.36\%
14,500	. 255	.143	.:10	.135	. 26	. 395	2	4.5	20	. 35
15.000	$\because 65$. 5	. 31	. 14	. 215	. 11	26	48	. 205	.39.3
15,500	. 27	. 1.5	. 32	.14	\cdots	.42.	27	- 4 ! ${ }^{\text {a }}$. 215	. 410
16,000	. 28	. 16	. 33	15	. 2	. 44	.275	- 505	.22	. 42
16,500	. 29	. 16	. 34	. 16	.2:)	.4\%5	2*5	-9, 5	23	. 445
17,000	.29\%;	. 17	. 8	16:\%	.29	. 47	29	-545	245	. 4
17,501	. 30	. 175	. 315	. 165	. 31	. 48.5	. 30	-555	245	. 4 tis
1s,000	. 31	. 18	. 38	. 175	. 315	. 50	.305	- 575	25	. 175
18,500	. 32	.185	. 39	. 175	. 32	. 515	. 313	-595	26	. 485
19,000	. 33	. 19	. 395	18	. 33	. 63	. 32	-605	265	50
19,500	. 34	. 195	. 40	. 15	. 34	. 545	. 33	-625	275	. 51
20,000	. 35	- 2	. 42	. 185	.35	. 5.5	. 3.45	-6.5	28	. 53
${ }^{20}, 500$. 565	.35	-6.3)	285	. 545
21,000			43			.580	.360	-175	. 305	. 56
21,500 22,000						. 39	.37	-69\%	.305	. 57
22,000 22,500			45			. 605	.375	-70.3	- 3	.
-29,500						. 625	. 8	-72.4		
23,000						. 65	. 40	-6, 6	. 8 \%	
24,000						.66̄	. 41	. 780	. 3	.f.
2i, 000			. 51							
26,000			. 54					と.		
27,000			. 505							
$\begin{aligned} & 28,000 \\ & 30,000 \end{aligned}$. 57					$\begin{array}{r} .90 \\ 1.00 \end{array}$		
31,000			. 66							
32,000			. 67					1.115		
34,000 35,000			. 71					1.15		
35,00 36,000										
$\begin{aligned} & 36,000 \\ & 38,000 \end{aligned}$. 76					1.2		
40,000			. 86					1.34		
41,000 42,000			. 90							
42,000 44,000								1.45		
44,000 45000			${ }_{1} .02$							
46,000								1.60		
17,000			. 07							
49,000			. 10							
51,000			. 15							
53,000			1.20							
55,000			1.27							

Breaking weight of Beam XXII $=55,400 \mathrm{lbs}$.

TABLE I .

$\begin{gathered} \text { L.oals } \\ \text { in } \\ 11,-\infty \end{gathered}$	Ieflections of Beams XXIV and XXV.									
	NXIV.					XXV.				
	$\begin{aligned} & 2: \\ & 2! \\ & \text { ins. } \end{aligned}$	$\begin{aligned} & 41 \\ & \text { ins. } \end{aligned}$	Ends	44	$\underset{\text { ins. }}{\substack{22 \\ \hline}}$	$\begin{aligned} & 24 \\ & \text { ins. } \end{aligned}$	$\begin{aligned} & 48 \\ & \text { ing. } \end{aligned}$	Ends.	$\begin{aligned} & 48 \\ & \text { ins. } \end{aligned}$	$\begin{aligned} & 24 \\ & \text { ins. } \end{aligned}$
$5111)$. 01	. 005	. 01	. 005	. 01
1,000						. 015	. 01	. 015	. 005	. 015
2.1961						. 02	. 015	. 03	. 01	. 02
:3,000						. 04	. 025	. 05	. 015	. 04
1.000						. 06	. 035	. 075	. 025	. 010
5.0000	. 045	. 03	. 05	. 04	. 04	.075	. 045	. 095	. 04	. 08
6.000	. 065	. 04	. 065	. 045	. 055	. 095	. 055	. 105	. 045	. 10
$\overline{-100)}$. 08	. 04	. 08	. 05	. 06	. 115	. 065	. 140	. 055	. 115
$\bigcirc .000$. 10	. 05	. 10	. 06	. 08	. 125	. 07	. 15	. 065	.125
9,000	. 105	. 055	. 105	. 07	. 08	. 14	. 08	. 18	. 075	. 14
10,000	.12	. 06	. 12	. 07	. 095	155	. 09	. 195	. 08	. 155
11,000	. $1:$. 07	. 13	.08	. 11	. 17	. 10	. 225	. 085	. 165
12,000	.14	. 08	. 15	. 085	. 125	. 185	. 105	. 245	. 10	. 18
13,060	. 11.5	. 045	. 16	. 09	. 14	. 20.5	. 115	. 26	. 105	. 21
14,000	. 110	. 09	. 17	. 10	. 15	. 215	. 12	. 285	. 115	. 22
15,000	. 18	.10	. 20	. 11	. 165	. 24	. 125	. 30	. 125	. 235
16,000	. 20	. 105	. $\because 1$. 12	. 17	. 255	. 14	. 325	. 13	. 255
17,000	. 21	. 11	. 2.2	. 125	. 18	. 265	. 15	. 345	. 145	. 265
18,060	$\because 2$.12	$\therefore 5$.13	. 19	. 285	. 155	. 365	. 16	. 28
19,000	.22;	. 125	. 25	14	. 205	. 30	. 16	. 395	. 17	. 305
20,000	. 24	.13.	. 26	.15	. 22	. 315	. 17	. 410	. 18	. 315
21.000	. 26	. 1.4	. 27	. 16	. 24	. 340	. 185	. 445	.19	. 335
22,000	. 27	. 145	. 29	.17	. 25	. 355	. 195	. 465	. 20	. 355
23,000	. 28	.15	. 31	. 175	. 26					
24,000	. 30	. 16	. 32	. 18	. 27			. 50	
25,000	. 31	. 17	. 335	. 185	. 275			
25,800					\cdots			. 54
26,000	. 32	. 175	. 3	.19.7	. 29				
27,000	. 34	. 18	. 36	- 015	31				
$\cdots 9,000$. 36	. 18	. 38	. 21	32				
29.000	. 37	. 19	- 40	. 22	. 33					\ldots
30,000	. 38	. 20	. 415	235	.:3					
30,200	\cdots	\cdots						. 65		
31,000	. 39	. 21	. 425	.235	. 355					
32,000	. 405	.22	. 45	. 24	. 37					
33,000			. 46						
:3,200								7.7		
$\because-1,000$ 36,000			. 48						
36,000 37,000			. 51							
$\begin{array}{r} 37,000 \\ 33,000 \end{array}$. 54							
39000			. 575							
39,700								. 95		
110,000			. 66							

Breaking weight of Beam XXIV $=76,900 \mathrm{lbs}$ for bean of reduced dength.

Breaking weight of Beam XXV $=42,900 \mathrm{lbs}$.
Table J showing deflections in inches of two Douglas Fir planks uuder gradually increased loads.

$\begin{aligned} & \text { loads } \\ & \text { in lbs. } \end{aligned}$	Detlections in ins. of Plank 1.	Deflections in ins. of Plank 2
	Ends.	Ends.
2,000	. 05	. 06
3,000	. 07	. 10
t,000	. 10	. 15
5,000	. 12	. 19
6,000	. 15	. 23
7,000	. 16	. 27
*,000	. 18	. 35
9,000	. 21	

Breaking weight of Plank $1=22,250 \mathrm{lbs}$.

Tables K to M shew deflections in inches of Canadian Now Red Pine Beams.

TABLEK.

$\begin{aligned} & \text { Lomuls } \\ & \text { in } \\ & \text { Hos. } \end{aligned}$	Deflections of Beams XXVI 10 XXVIII.						
	XXVI.					XXVII*	XXVIII.
	35 ins.	70 ins .	Ends.	70 ins.	35 ins.	Ends.	Endx.
1,000	. 055	. 035	. 065	. 0.4	. 055	. 08	. 09
1,500	. 110	. 060	. 135	. 060	. 110	.15	. 15
1,800	. 145	. 080	. 175	. 080	. 150		
2,000	. 165	. 095	.200	. 09	. 1155	. 20	.22\%
2,300	. 195	. 110	. 235	. 110	. 200	
2,500	. 215	. 125	.260	. 125	. 215	.26	.300
2,700	. 235	.130	.285	. 130			
3,000	. 265	. 150	. 320	. 120	. 2143	.i8	. 36
3,200	. 290	. 160	. 350	. 160	.29.5		
3,500	. 320	. 180	. 385	. 180	. 320	. 3	. 41
3,700	. 345	. 195	. 110	.19.5	. 350	
4,000	. 370	. 210	. 450	. 210	. 370	. 14	. 50
4,200	. 395	. 225	. 475	. 225	.100	
4,500	. 430	. 245	. 510	. 245	. 430	. 49	.57.;
4,700	. 450	. 255	. 535	. 250	. 400		
5,000	. 480	. 270	. 570	. 265	. 475	. 5	. 6.3
5,200	. 300	. 280	. 600	. 275	. 000		
5,500	. 335	. 295	. 63.3	. 290	. 330	. 60	. 72
5,700	. 560	. 310	. 660	. 305	. 550	
6,000	. 580	. 330	. 700	. 320	. 580	. 66	. 3
6,200	. 605	. 340	. 725	. 335	. 600	
6,500	. 635	. 360	. 755	. 350	. 630	. 73	. 86
6,700 7,000	. 655	. 370	. 390	365	. 655	. 70	
7,000	. 690	. 385	. 825	380	. 685	. 79	. 93
7,200	. 715	. 395	. 855	. 390	. 705		
7,500 7	. 745	. 415	. 890	-410	. 740	. 85	1.00
7,700 8,000	. 765	. 425	.915	. 425	.755		…
8,000 8,000	. 800	. 445	. 950	140	. 800	.32	1.07
8,200	. 820	. 455	. 180	. 455	. 815	,	
8,500	. 850	. 475	1.020	. 470	. 855	. 99	1.14
8,700	. 880	. 495	1.050	. 485	.875		
9,000	. 915	. 510	1.100	. 310	. 915	1.105	1.21
9,200 9,500	. 945	. 525	1.135	. 525	. 945		
9,500	. 995	. 545	1.185	. 845	. 985	1.13	1.28
9,700 10	1.015	. 560	1.225	. 560	1.010		
10,000	1.050	. 585	1.265	. 580	1.0 .50	1.20	1.36
10,500 11,000		1.43
11,000 11,500	1.400		1.31;	1.50 1.57
12,000	.	. \cdot	1.600			1.5i	1.56 1.66
12,500							1.72
13,000			1.700			1.63	1.80
13,500						1.87
13,800						
14,000			2.050 \cdot		1.9\%
14,500		2.06
15,000 15,500					.	2.00	2.15
15,500					...		2.30
15,600 16,000			2.750				
16,000			3.000		2.20	2.44
16,500 17,000				……	20.0
17,050	...	……1.	2.0..	2.80

Breaking weight of Beam XXVI $=16,940 \mathrm{lbs}$.
"، "" " XXVII = 17,700"

TABLEL.

$\begin{aligned} & \text { Lowi- } \\ & \text { in } \\ & \text { libe. } \end{aligned}$	Deflections of Beams XXIX to XXXII.							
	XXIX.					XXX.	XXXI.	XXX11.
	3 Bi ins.	70 ins.	Ends.	70 ins.	35 ins.	Ends.	Ends.	End ${ }^{\text {a }}$
201								35
SM1	. 030	. 015	. 04	. 015	. 020	.130		.185
(14)			\ldots			\ldots	239
$\begin{aligned} & 260 \\ & \text { So } \end{aligned}$		\ldots	..		\ldots	. 24.5	\ldots	. 2980
900		\ldots	\ldots		\ldots			-38
1,000	. 120	. 0.000	. 140	.070	\cdots	. 320	. 29	. 430
1,101		\ldots		. 495
1,200		410	. 385	. 545
1,300)	. 185	$\ldots 090$	225	. 110	. 190	. 4.40	. 385	. 6500
1.5010	\ldots 505	. 450	. 750
1,600	\cdots	\cdots	\ldots	590		. 7500
$1,1, \times 00$. 263	. 135	. 310	. 150	. 250	. 590	. 520	. 8800
1,900								. 915
2,000	. 200	. 150	. 350	. 170	. 290	.710	. 615	. 960
$\frac{9}{2,200}$	\ldots	\ldots		1.015 1.075
2,300		190		-		\% 835	.7205	1.145
2,400	. 370	. 190	. 440	20.5	. 360			1.195
${ }^{2,500}$.	\cdots	\ldots	\ldots	\ldots	. 905	. 780	1.245 1.300
2,600 2,700		\ldots	\cdots	\ldots				1.300 1.360
2,800	. 440	. 235	. 525	250	. 435	1.040	900	1.410
2,900 3,000								1.465 1.525
3,000 3,100	. 480	.250	. 565	. 265	. 460	1.150	. 960	1.525
3,200			\ldots	...	1.210	1.035	1.625
3,300	-							1.700
3.8000	. 500	. 295	1850	.305	. 540	1.340	1.115	1.750 1.800
3,600		\ldots		...				1.865
3,700								1.935
3,3,800	. 620	. 330	. 740	350	610	1.456	1.225	1.990 2.025
+,000	. 640	. 350	. 775	. 365	. 640	1.550	1.320	2.100
4,100			
4,200 4,300	…..	\ldots			\ldots	1.640	1.445	2.220 2.290
4,100	.740		. 865	. 410	\% 30		1.45	2.355
4,500	1.765	1.510	2.420
4,600 4,700							2.470 2.530
4,800	. 810	4.5	. 960	. 450	. 800	1.900	1.615	2.610
4.9000	.850	460						$\stackrel{2.680}{2.755}$
\cdots	. 850	.460	1.000	. 470	. 835	2.010	1.700	2.755 .830
\%,200					2.120		-.....
\%,300	. 910	. 500	1.085	. 515	. 900		1.815
5.500			2.335	1.895	
5,700 5,800						2.515		
5,800 6,000	.!95	. 545	1.175 1.225	. 560	$\xrightarrow{.990}$	2.900	2.115	
6,400	1.110	. 610	1.320	- 20	1.100			
6,509				. 660		\ldots	2.410	
6,800 7 7	1.170 1.220 1	. 6.640	1.405 1455	. 660	1.175 1.210 1	\ldots	
7,400	1.290	. 715	1.555	. 740	1.300			
7.800	1.360	. 755	1.660	. 775	1.360	\cdots	
8,000	1.410 1.500	. 785	1.710 1.810	. 8000	1.410 1.510	\ldots
88.800	1.590	. 880	1.915	. 900	1.580			
10,000	1.640	. 910	2.005	. 930	1.650	\ldots		
10,000			$\begin{aligned} & 2.270 \\ & 2.650 \end{aligned}$				
11,000		2.650	

Breaking weight of Beam XXIX $=11,960$ lbs

TABLE M．

lomla in lbs．	Detlections of Benms S゙XXIII to NXXV．		
	SXXIII．	SXXIV．	NXXV。
	Eudes．	Ends．	Fnfo．
500	．0ti．）	． 080	． 030
$400 .$		． 1.16	． 046
$1,000 . .$	． 160	． 185	． 090
1，200．．．．．	． 20.7	． 230	.125
1．400．．．．．．	． 2.50	． 936	． 1.5
1，100 ．．．．	．2\％	． 1120	． 17%
1，800．．．．．	． 320	． 310	． 195
？，000 ．．．．	．175	． 10%	． 220
2，200．．．．．．	． 410	． 450	． 2.15
2，400．．．．．．	． 16%	． 490	． 270
2，600 ．．．．．	． 500	． 335	． 29.5
－2，600 ．．．．．	．540	．S＊	． 320
3，000 ．．	．585	．62\％	．315
：3，200．．．．．．．．．	． 6311	．170	． 370
$3,400 \ldots \ldots \ldots$	． 170	． 71.1	． 390
3，600 ．．．．．．．	． 110	－－ 760	． 115
3，800．．．．．．．．	． 850	． 510	． 412
4，000．．．．．．．．．	． 2190	． 8.50	.465
$4,200 \ldots \ldots$	． 830	.900	． 490
4，400．．．．．．．	－バ0	． 9145	． 5
4，600．．．．．．．	．！10	． 1990	． 5.85
4，800．．．．	． 480	1.03%	． 565
5，000 ．．．	1.000	1.050	． 590
5，200．	1． 240	1．195	．615
$5,400 \ldots \ldots .$.	1.090	1．175	． 6 ± 10
$5,600 \ldots .$	1．125	1.920	． 670
$5,800 \ldots$	1． 16.5	－•．．．	． 695
6，000 ．．．．．．．	1.220	－．．．	.720
6，200．．．．．	1.260	．\cdot	.745
6，400．．．．．．．．．．．．	1．：30	．．．．．	.770
6，600．．．．．．．．．．．．	］．385	．．	． 80
6，800 ．．．．．．．．	1－45	－	． 830
7，000．．．．．．．．．	1.455	．．．．．	.860
7，200．．．．．．．．	1． 5.15	．\cdot ．．．	． 885
7，400 ．．．．．．．．	1.590	．．．．．	．915
7，600．．．．．．．．．	1.640 1.690	＊＊．．＇	． 950
7,800 $8.200 ~$	1.690 1.790		＊．．．．

Breaking weight of Beam XXXII $=9,250 \mathrm{lb}$ ．

$$
\begin{array}{llll}
" & " & \text { " } & \text { XXXV }=5,600 " \\
\because & \because & \because & X X X V=7,600 \cdots
\end{array}
$$

T＇ables N to \mathbf{Q} show deflections in inches of Canadian New White line Beams．
＇TABLE
Drflections of Beams XXXVI to Xll．

	Drflections of Beams XXXVI io SILI．											
	XXXVI．							SXXV11．SXXVIl．		XXXIX	XL．	XLI．
	$\begin{aligned} & 108 \\ & \text { ins. } \end{aligned}$	$\begin{gathered} 72 \\ \text { ins. } \end{gathered}$	36 ins．	立	ins．	72 ins．	108 ins．	Euds．	Ends．	linds．	完	坔
5000	． 109	． 30	． 30	32	． 30	29	． 109		．．．．．．			
7500	． 375	． 70	． 93	1.02	． 90	． 66	． 344					
10000	． 594	1.00	1.33	1.45	1.29	． 95	． 516	．．．．．．	． 10	． 11	． 11	． 13
11000	． 719	1.34	1.78	1．95	1.74	1.28	． 688	．．．．．	．．．．．			
12500	． 799	1.47	1.96	2.16	1.93	1.42	． 750	．．．．．．	． 125	． 14		
15000	． 906	1.68	2.24	2.45	2.20	1.62	． 875	．．．．．．	． 15	． 16.5	.17	． 20
17500	1． 125	2.05	2.70	2.97	． 651	1.96	1.047		． 19	． 19		
20000									． 21	． 2255	． 23	． 29
22000							．．．．．．	．．．．．		－．．．．${ }^{\text {P }}$	． 25	． 32
22500							．．．．	．．．．．	．245	．255\％	．．．	
24000							\ldots				． 27	35
25000							．		． 27	． 285	\cdots	
26000									．．10	\because	． 30	． 40
27500									． 30	． 31		
280 C 0							．．．．			．．．．	． 33	． 44
30000							．．．．．		． 33	． 35	． 36	． 49
32000		．－．					．．．．		\cdots	．．．．．．	． 39	． 5.3
32500									． 37	．．．．	．．．	
34000	．．．．．	．．．					．．．	．．．．．．	．．．．．．		． 42	
36000	．．．．								．．．．．		． 45	

$\begin{aligned} & \text { Breaking weight of Beam XXXIV }=19,600 \mathrm{lbs} . \\ & \text {＂، }\end{aligned}$
$\begin{array}{llll}" & " & " & \text { XXXV }=24,000 \\ " & " & \because & X X X V= \\ 32,450\end{array}$
＂$" \quad$ ：XXXVII $=51,400$＂

TABLE 0 .

	Deflections of Beams XL to XLII								
	XLII.							NLIII.	XLIV.
	108 ins	,	6 ins.	End	.	72 ins.	ins	Ends.	Ends.
2500	. 0312	05	. 07	. 08	. 07	. 055	. 1331		
30	. 047	. 095	. 14	. 19	. 14	. 10	. 047		
3500	. 078	. 13	. 18	. 19	. 18	. 13	. 078		
500	. 125	. 245	. 33	. 37	. 34	. 25	. 141		
55	. 141	. 275	. 38	. 42	. 39	. 28	. 156		
6000	. 172	. 325	. 44	47	. 45	. 33	. 172		
650	. 187	. 35	. 49	. 53	.49	. 35	. 188		
7000	. 219	. 39	. 54	. 60	. 54	. 40	. 219		
75	. 234	. 425	. 59	. 615	. 60	. 43	. 234		
8000	. 250	. 47	. 64	. 71	. 65	. 47	. 266		
8500	. 281	. 505	. 69	. 76	. 70	. 52	. 281		
9000	. 297	. 54	. 75	. ${ }^{2}$	-is	. 55	. 312		
9500	. 312	. 99	. 80	. 90	. 81	. 60	. 328		11
10000	. 328	. 61	. 84	. 93	. 8.5	. 63	. 344	. 10	. 11
10500	. 359	. 66	91	${ }_{1}^{1.00}$. 91	67	. 359		
11000	. 375	. 70	97 1.03	1.07 1.14	1.96	. 71	. 375		
11500	. 406	. 77	${ }_{1}^{1.03}$	1.14	1.04 1.07	$\begin{array}{r}.76 \\ .79 \\ \hline\end{array}$. 406		
12500	. 4328	. 87	1.06	1.17	1.07	. 89	. 4238	\ldots	
13000	.4.33	. 835	1.16	1.30	1.17	. 87.	. 45		
13500	. 484	. 905	1.24	1.37	1.25	.93	. 484		
14000	. 500	. 945	1.29	1.44	1.31	. 97	. 510		
1450	. 531	. 975	1.34	1.49	1.355	1.00	. 531		
15000	. 547	1.02	1.40	1.55	1.415	1.02	. 562	. 16	6
1550	. 562	1.06	1.45	1.61	1.48	1.10	. 578		
16000	. 593	1.105	1.51	1.68	1.53	1.15	. 593	\ldots	
16500	.609	-1.15	1.57	1.76	1.60	1.19	. 625		
17000	641	1.19	1.63	1.81	1.65	1.23	.641		
17500	.6\%\%	1.23	1.68	1.87	1.705	1.27	.672		
18000	. 188	1.27	1.75	1.96	1.775	1.32	. 687		
18500	. 719	1.34	1.84	2.05	1.86	1.39	. 734		
19000	. 750	1.38	1.89	2.11	1.92	1.43	. 750		
19500	. 766	1.43	1.95	2.19	1.98 2.05	1.47	. 766		. 24
20000	. 8813	1.48	2.02 2.10	${ }_{2.35}$	2.05	1.52	. 7978	. 23	
21000	. 844	1.58	2.16	2.42	2.19	1.62	. 859		
21500	. 875	1.665	2.28	2.55	2.31	1.70	. 891		
22000	. 924	1.72	2.36	2.65	2.39	1.77	. 938		
25000 29	

Breaking weight of Beam XX.XVIII $=26,350 \mathrm{lbs}$. $\begin{array}{llll}" ، & " & \text { XXXIX } & =48,600 " \\ " & " & \text { XL } & =51,870\end{array}$
'TABLF P .

.	NIVV.							NI.VI.	XI, VII.
$\stackrel{\square}{7}$	108 ins	72 ins.	16; ina.	Pindm.	; ins.	72 ins.	108 ins	linds.	Einds.
2500	.125	. 22	. 30	. 34	.29	21	.141		. 02
3000	. 141	.27	. 35	.39)	.31	.31	. 156		
3500	.172	.29	.41	.4.7	. 3 !	. 34	. 188	
1000	. 188	. 3.4	.45	. 50	. 14	. 317	. 20.1	-•
4500	. $20: \%$. 8	. 50	. 55	.19	. 44	. 219	- ${ }^{\text {c }}$
5000	. 219	. 12	.5:	. 61	. 54	. 4.1	. 2.4	
. 5500	. 234	.45	. 60	.67	. 59	.15	. 2.50		
6000	. 250	. 19	. 150	. 73	. 64	. 51	. 266		
650	. 260	. $5: 3$. 71	. 79	. 69	. $\%$ (.281
7000	. 397	. 56	.76	. 84	. 74	. 3 !	. 312
7500	. 312	. 160	.81	. 90	.79	. 62	. 328	
8000	. 344	. $1: 3$. 66	.95	. 85	. 619	. 811		
8500	. 359	. 17	.92	1.03	. 90	. 69	. 2.51
9000	. 375	.71	.97	1.08	.95	.74	. 391 \cdot
9500	. 391	.75	1.02	1.14	1.00	. 78	. 4196		
10000	. 422	.79	1.08	1.20	1.06	. 81	. 422	. 12	.10
10500	. 438	. 8:\%	1.14	1.26	1.11	. 817	. 138 ${ }^{\text {a }}$
11000	. 4 (\%)	. 87	1.20	1.3:	1.17	. 90	.	. $\cdot .$.	
11500	. 484	.92	1.26	1.46	1.2 .1	. 9.5	. 500	,
12000	. 200	. 96	1.31	1.47	1.28	. 98	. 516	-•	- . . ${ }^{\text {a }}$
12500	. $5: 1$	1.01	1.36	1.5.3	1.34	1.10	. $5: 31$. 13
13000	. 5.45	1.05	1.42	1.59	1.39	1.06i	. 617		.
13500	. 5 ¢ $2:$	1.06	1.48	1.166	1.45	1.10	. 578		-
14000	. 593	1.1:3	1.55	1.73	1.51	1.1.5	. 593	
14800	. 625	1.17	1.60	1.7!)	1.57	1.18	. 625	-...	
15000	. $6+1$	1.21	1.65]. 86	1.62	1.29	. 611	.20	.16
15500	.655	1.25	1.71	!. 93	1. 6.9	1.27	. 13.56	-	.
16000	.687	1.80	1.78	$\underline{9} .100$	1.75	1. 31	. 672
16500	. $70: 1$	1. 35	1.85	$\stackrel{3}{2} .188$	1.89	1.36	. 687	-••*
17000	. 734	1. 33	1.90	2.14	1.86	1.40	. 734	…].	. 20
17500	. 766	1.43	1.97	$2 \cdot 22$	1.94	$1.4 i$. 750	..	. 20
18000	+ 781	1.50	2.05	2.33	2.02	1.51	.781
18500	- 797	1.54	2.11	2.39	2.05	1.56	.797
19000	1.825	1.59	2.19	$\underline{0.48}$	2.15	1.60	. 828 \cdot......
20000	- 875	1.68	$2 \cdot 31$	$2 \cdot 63$	2.29	1.70	. 875	. 26	. 23
20500	. 924	1.75	2.41	2.76	2.38	1.i	. 924	-
21000	. 95 3	1.82	2.50	2.88	2.47	1.83	. 95.3	--*
22500		-....	-		-••..'	. 26
25000			- 35	. 30
27500				,	34
30000 39

TABLE Q ．

$\stackrel{\dot{\partial}}{=}$	Deflections of Beams XLVIII to L．								
	XLViII．			XLIX．			L．		
	$\begin{aligned} & 37 \frac{1}{2} \\ & \text { ins. } \end{aligned}$	$\begin{aligned} & \text { 券 } \\ & \text { 畨 } \end{aligned}$	$\begin{aligned} & 371 \\ & \text { ins. } \end{aligned}$	$\begin{aligned} & 371 \\ & \text { ins. } \end{aligned}$	荡	$\begin{aligned} & 37272 \\ & \text { ins. } \end{aligned}$	$\begin{aligned} & 46 \frac{1}{4} \\ & \text { and } \end{aligned}$	$\begin{aligned} & \dot{\infty} \\ & \stackrel{\dot{x}}{\boldsymbol{y}} \end{aligned}$	$\begin{aligned} & 46 \frac{1}{2} \\ & \text { ins. } \end{aligned}$
1000	． 01	． 01	． 01	． 005	． 01	． 005	． 015	． 015	． 01
2000	． 025	． 03	． 02	． 02	． 04	． 02	． 04	． 055	． 035
3100	． 04	． 05	． 035	． 035	． 06	． 035	． 07	． 105	． 065
4000	． 055	． 065	． 052	． 05	． 0.9	． 05	． 10	． 15	． 10
5000	． 065	． 085	． 06	． 065	． 10	． 065	． 135	． 195	． 135
6000	． 08	． 105	． 075	． 075	． 125	． 08	． 165	． 245	． 165
7000	． 10	． 125	． 08	． 095	． 15	． 095	． 20	． 295	． 20
~ 000	． 105	． 15	． 103	． 11	． 17	． 105	． 22	． 33	225
9600	． 12	． 17	． 11	． 125	． 20	．13	． 25	． 375	． 255
10000	． 135	． 195	． 125	． 14	． 22	． 14	． 28	． 43	． 28
10500	． 14	． 215	． 135						
11000	． 15	． 22	． 143	． 155	25	． 15	． 30	46	． 30
115100	． 155	． 23	． 15	175				\ldots	
12000	． 165	． 24	． 155	． 18	265	$\begin{aligned} & .165 \\ & .17 \end{aligned}$	$\begin{aligned} & .33 \\ & .35 \end{aligned}$	． 50	． 33
13000	． 18	． 265	． 165	． 19	29	． 185	． 36	． 55	． 36
1：500	． 185	． 27	． 17	． 20	． 30	． 195	． 375	． 57	． 375
141000	． 19	． 28.5	． 177	． 21	． 315	20	． 39	． 60	． 39
14500	． 20	． 295	． 19	． 215	． 32	． 21	． 41	． 615	． 40
15000	． 21	． 305	． 20	． 22	． 35	． 215	． 42	． 645	． 42
15500	． 215	． 32	． 205	． 225	． 355	22	． 43	． 6 5 5	． 43
16000	． 22	． 33	． 21	． 235	． 365	． 23	． 445	． 67	． 45
16500	． 23	． 34	． 223	． 245	． 375	2.4	46	． 70	． 46
17000	． 235	． 353	． 23	． 25	． 39	． 25	． 475	． 72	． 475
17500	． 24	． 345	． 235	． 26	． 405	． 255	． 49	． 745	． 50
18400	． 25	． 38	． 24	． 27	． 415	． 26	． 51	． 6	． 51
18500	． 25	． 395	． 25	． 275	． 425	． 27	． 525	． 795	． 52
1960	． 265	． 405	． 255	． 285	44	． 28	． 54	． 82	． 55
19509	． 27	． 415	． 26	．295	． 455	． 29	． 55	． 84	． 56
20000	． 275	． 425	． 27	． 30	． 465	． 30	． 57	． 865	． 58
20.50	． 285	． 445	． 285	． 31	． 475	． 31	． 585	． 895	． 59
21000	． 295	． 46	． 29	． 32	． 495	． 32	． 60	． 92	． 61
21500	． 30	． 47	． 295	． 325	．505	． 325	． 62	． 94	． 63
2900	． 31	． 485	． 303	． 34	． 515	． 335	． 635	． 965	． 64
22500	． 32	． 50	． 31	． 345	． 52	． 34	． 65	． 00	． 65
23001	． 33	． 515	． 32	． 35	． 535	． 345		． 03	
23500	． $3: 5$	． 53	． 33	． 36	． 555	． 35			
$\stackrel{24000}{ }$	－35	． 54	． 34	． 37	． 57	． 36		． 07	
24500	． 36	． 655	． 35	． 38	． 58	． 37			
25000	． 365	． 565	． 355	$\ldots 85$	． 585	． 375		． 14	
25.50	． 375	． 585	． 365	． 39	． 60	． 385			
26000	． 345	． 60	． 38	． 40	． 61	． 395		． 16	
26500	． 395	． 615	．385	． 415	.625	． 405			
27000 27500	\ldots	． 625		． 42		． 41		． 25	
3000			\cdots	． 445	． 6675	． 43		\ldots	
28500				． 45	． 69	． 445			
29000				． 46	． 71	． 455		． 41	
29500				． 465	． 725	． 46			
30000		69		． 475	． 78	． 47		． 49	
31000 32000		． 76	．．．．．．．		：78			． 55	
34010		． 85			\ldots			．	
36000		． 94			92				
37000					． 98				
37300					1.00				
38100		1.18							
10000 41000			．．．．．		1.30				
44000					1.50				
450		1.85							
46000		1.97			1.70				
47000	．．．．	2.15	．．．．	．．．．	1.95			．．．	

Breaking weight of Beam XhVIII $=38,100 \mathrm{lbs}$ ．

Table R shows deflections in inehes of Camadian White l'ine Beams which have been in service.

TABIER R.

	Deflections of Beams LI to L.III.														
.	L.					1,1.					LIII.				
تِّ	$\begin{gathered} : 32 \\ i n y \end{gathered}$	$\begin{gathered} 6.4 \\ \text { ins. } \end{gathered}$	$\begin{aligned} & \text { 兰 } \\ & \end{aligned}$	$\begin{aligned} & 64 \\ & \text { ins. } \end{aligned}$	$\begin{aligned} & 32 . \\ & \text { ins. } \end{aligned}$		$\left[\left.\begin{array}{c} 60 \\ \text { ins. } \end{array} \right\rvert\,\right.$	$\underset{y}{n}$	60 ins.	$: 80$	$\begin{gathered} 30 \\ \text { ins. } \end{gathered}$			$\begin{gathered} 60 \\ \text { in } \end{gathered}$	$\begin{aligned} & 30 \\ & \text { ins. } \end{aligned}$
1000	. 02	. 02	. 03	12	. 02	. 12	. 11	. 025	. 01	. 02	. 0.3	01	0.4	02	0:3
1500	. 0.5	. 04	. 065	. 03	. 0.	. 15	. 02	. 0.5	. 025	(15)	0.055	02	. 065	1.1	10
2000	. 06	. 05	. 09	. 15	.178	. 060	. 040	. 05	. 014	. 070	. 08	0.4	. 10	. 0.5	0R:
2500	10	.065	12	. 06	. 10	. 09	.0.3	. 103	. 05	. 1095	11	06	1\%5	. 166	
3000	11	. 18	. 145	. 17	.12							13	. 16		
3200							$.06$.07	125		09			
4000	17	10	. 21	. 10	. 15	. 16	. 18	. 185		.16	18	10	. 235	10	. 19
4500	19	. 12	. 24	. 115	. 20	. 18	. 10	.21	11	. 18	. 21	11	. 26	. 12	\because
5000	$\cdots 1$. 13	. 265	. 13	.2:;	. 20	.105	.233	12	. 2105	$2: 5$.13	2x	. 13	24
3500	25	. 14	. 30	145	. 2.7						26	.1.65	. 325	15	27
5700						. 22	12	-263		.245					
6000	. 27	. 15	. 325	. 16	. 275	24.	.13	285		.2.)	29	11	.35		
6500	. 29	17	. 35	. 17	. 30	. 26	. 14	. 31	155	.225	. 31	.16	. 39	18	. 32
7000	. 31	.185	. 185	145	.3:)	29	. 15	. 345	175	.:30	. 34	19	. 12	19	
7500	. 345	20	. 415	20	. 35						. 37	20	. 45	21	.385
						. 31	. 16	. 3.7		. 325					
8000	. 35	. 21	. 14.5	215	375	. 34	. 17	. 40	. 20	. 35	41	22	. 49	2	14\%
8500	38	.225	. 47	. 235	. 10	. 35	. 185	. 415	.21.5	. 4	. 425	24	. 515		
9000	. 40	$\therefore 3$. 50	. 25	. 425	. 375	19%	. 44	22	. 39	. 4.55	25	. 3.3	.25.5	
9500	425	. 25	. 5	. 26	43	. 40	? 21	+ +5	2.1	. 11	. 47	27	. 58.5	2	195
10000	45	. 26	.555	. 285	. 18	. 42	.22	. 0	.2\%	. 138	. 505	285	. 115	. 285	2
10500	. 47	. 27	. 585	. 29	50	. 15	.24	. 035	2	. 41	. $5:$. 29	. 65	. 30	55
11000	. 50	. 29	6.615	.315	.is						. 66	.:05	69	. 31	58
11500	31.5	. 30	. 65	. 315	. 55	4	25	. 51	2	185	. 59	. ${ }^{2}$. 725	. 38	${ }^{60}$
12000	. 55	. 31	. 67	. 33	.js						.62:	. 3	. 76	. 3	
12500	. 51	. 3	. 70	. 38	. 60	. 51	. 27	. 615	. 31	. 33	. 65	. 25	. 895	34,	6,65
13000	60	. 3	. 735	. 31	.63)	. 55	. 30	(65.)	.:3	. 5	. 675	, 8 澼	. 825	. 39	69
13500	. 62	. 35	I6	. 37	. 66	. 5	. 31	. 6	. 3.5	. 59	. 11	.8.3)	. 855	(10.)	-
14000	. 65	. 365	-9	. 30	. 6×5	. 60	. 32	. 11	.35.)	. 11	. 1	.	. 90	12	75
14500	. 67	. 8	. 82	. 40	. 71	. 615	. 31	. 7	.37	. 64	. 77	. 42	. 94	- 43	. 79
15000	70	. 39	. 8.	. 415	. 733	. 64	. 3.5	. 765	.35	. 655	. 8	. 43	935	. 45	.815
15500	T25	. 41	. 875	. 435	. 76	. 614	. 315	. 79	.39	. 68	.835	. 16	1.02	. 47	
16000	7.	42	. 91	. 446	. 785	. 69	. 38	. 3	. 115	. 71	. 87	. 4	1.07	. 18	89
16500 17000	.7	. 435	. 94	+ 4	. 81										
17000	.s0	+ 4.	97	. 47	. 84	. 72	.393	. 465	. 13	. 74			15		
17500 18000	. 82	. 17	1.00	. 49	. 86	. 76	. 415	. 915	. 45	.88					
18500	. 85	. 17	1.03	. 51	. 89	. 79	. 4	. 95	. 47	. 1					
19000	. 38	. 50	1.10	. 53	${ }^{.925}$.	. 985							
19500	. 93	. 52	1.14	. 56	. 985										
20000	96	. 54	1.185	. 60	1.03			. 06							
20.5001	1.00		: 2235		1.07										
$\begin{aligned} & 21000 \\ & 215 \end{aligned}$. 04		1.28		1.11			1.10	\cdots						
22000			32												
22650			. 40					.							
23500															
24000								1.34							
00								1.46			.				

Breaking weight of Beams LI $=22,730 \mathrm{llw}$.
LII $=26,320{ }^{\prime}$
" 6 " \quad,III - 18,600 "

Tables S and T,hew duflections in inches of Canadian New Spruce Beans (B.U.)

TABLE S .

$\begin{gathered} \text { hunlo in } \\ H \ldots . . \end{gathered}$	Deflections of Beam LIV.						
	10) ins.	T2 ins.	36 ins.	Ends.	36 ins.	72 ins.	108 ins.
1.1000	. 11	. 22	. 30	. 30	. 26	. 20	. 11
1.800	. 1.5	. 24	. 33	. 34	. 30	. 23	. 12
$\cdots, 100$. 17	. 28	. 37	. 38	. 34	. 25	. 15
$\because 200$. 18	. 31	. 41	. $4:$. 88	. 28	. 16
3.000	. 19	. 34	. 44	.46	. 42	. 31	.18
$\therefore, 500$.21	. 36	. 48	. 51	. 45	. 34	. 19
1,000	.29	. 39	. 52	. 56	. 50	. 37	. 21
4.500	. 24	. 42	. 56	. 60	. 54	. 39	. 22
-3,100	. 25	. 45	. 60	. 6.4	. 57	. 42	. 24
5,500	$\therefore 26$. 4	. 63	. 68	. 60	. 45	. 25
(6,000)	.27	. 50	. 67	. 72	. 64	. 48	. 26
6,500	. 29	. $5: 3$. 71	. 76	.65	. 50	. 28
7.000	. 31	. 56	. 75	. 80	. 71	. 52	. 30
5.500	. 22	. 54	. 79	. 41	. 75	. 56	.3I
8,000	.31	. 61	.82	. 88	. 79	. 60	. 32
$\therefore .500$. 3	. 65	. 86	. 92	. 83	. 61	. 34
!,000	. 3	. 67	. 90	. 97	. 86	. 65	. 35
9,500	. 38	. 710	. 98	1.01	. 90	.67	. 36
10,000	. 40	. 78	. 96	1.05	. 94		. 39
10,500	. 41	. 76	1.01	1.081	. 98	. 71	. 40
11,000	. 43	. 79	1.05	1.14	1.02	. 72	. 41
11,500	. 44	. 84	1.09	1.17	1.05	. 75	. 43
12,000	. 46	. 81	1.18	1.21	1.09	. 78	. 45
12,500	. 48	. 87	1.16	1.26	1.14	. 82	.46
1:3,000	. 49	.89	1.19	1.29	1.16	. 83	. 48
1:3:500	.50	.90	1.23	1.3!	1.20	. 84	. 49
1.1,000	. 51	.19\%	1.27	1.38	1.27	\cdots	. 50
14,500	. 53	.9y	1.30	1.42	1.28 51
15,000	. 34	. 94	1.32	1.45	1.3! 53
15,500	. 55	1.00	1.32	1.46	1.3%	. 99	. 54
16,000	. 5	1.00	1. 3	1.18	1.34	1.0]	. 54
16,500	. 55	1.01	1.34	1.50	1.35	1.02	. 55
17,000	. 56	1.01	1.34	1.51	1.36	1.03	. $\%$
15,500	. 54	1.02	1.35	1.52	1.10	1.05	. 27
1-,000	. 56	1.03	1.35	1.54	1.4 i	1.06	. 54
18,500	. 57	1.03	1.36	1.55	1.43	1.07	. 39
19,000	. 57	1.04	1.36	1.67	1.45	1.09	. 60
19,500	. 58	1.04	1:36	1.58	1.46	1.11	. 60
20,000	. 58	1.05	1.37	I. 60	1.47	1.12	. 61
20,500	. 71	1.32	1.53	1.93	1.74	1.30	. 70
-1,000	. 72	1.35	1.80	1.98	1.78	1.33	. 71
21,500	. 74	1.38	1.85	2.02	1.82	$1 . .36$. 73
22,000	. 76	1.41	1.90	2.07	1.86	1.38	. 75
23, 400	,	2.20	1.86	+...
26,200	2.50
27,800	2.75
29,000	2.85
29,900	3.00
:3,800	3.15
32,000		3.25
32,500	3.35
:33,200	3.70
33,500		\cdots	3.80	\ldots	-
$: 3,800$ 34,400	\ldots	\ldots	4.00 4.10	\ldots	\ldots	.
34,400 34,800	...	\ldots	\ldots	4.10 4.25	\ldots
: 25,600	.	. \cdot.	. . .	4.50	...	"....
:3f, 200	4.60
$: 36,300$		4.75
36,600			4.90
:36,800	5.00
38,250			5.50	\cdots

Breaking weight of leam 1,I ${ }^{\circ}=36,800 \mathrm{lbs}$.

TABLE T.

Loands in . 1 s .	Deffections of Beams LV und LVI.					
	LV.			LVI.		
	30 ins.	End.	$30 \mathrm{ins}$.	30 ins.	End.	$30 \mathrm{ins}$.
10,000	. 05	. 09	. 05	. 1	. 07	. 0
11000	. 06	. 10	. 06	. 11	. 09	. 06
12,000	. 07	. 10	. 0665	.12	. 10	. 06
13,000	. 07	.11	. 07	.17	. 10	. 117
1.1,000	. 0.5	.11	. 075	. 13	. 13	. 08
15,000	. 08	. 12	. 08	. 135	.12	. 09
16,000	. 19	. 13	. 085	. 14	.13	. 19
17,000	. 10	. 14	. 09	. 145	. 14	. 09.5
18,000	.10	.15	. 095	.15	.15	. 10
19,000	.11	. 16	. 105	.16	.15	. 105
20,000	. 11	.17	. 11	.16	. 16	. 11
21,000	. 12	. 17	.12	.17	. 17	. 115
22,000	.12	. 18	.125	. 175	. 18	. 12
23,000	.13	. 19	. 13	. 185	.19	. 12
24,000	. 13	.20	. 135	. 19	. 19	. 13
25,000	. 14	. 21	. 1.4	. 195	.20	. 14
26,000	. 15	. 22	. 145	. 2	. 20	. 15
27,000	. 15	. 23	. 15	. 2	. 22	. 16
28,000	. 16	. 24	. 16	. 215	. 24	. 16
29,000	. 16	. 25	. 165	. 22	. 24	. 16
30,000	. 17	. 26	. 17	. 225	. 25	. 17
31,000	.17	. 27	. 18	. 23	. 26	. 17
32,000	. 15	. 28	. 18.5	.235	. 27	. 18
33,000	.19	. 29	. 19	. 24	. 28	.18\%
34,000	. 20	. 30	. 20	. 245	. 29	. 19
35,000	.20	. 31	. 205	. 255	. 29	. 20
36,000	.21	. 32	. 21	. 267	. 31	. 20
37,000	. 21	. 33	. 215	. 27	. 32	. 21
38,000	. 22	. 34	.22:	. 28	$\cdot 33$. 215
39,000	. 22	. 35	.23	.28	. 34	. 225
40,000	. 23	. 36	. 24	. 285	. 3.5	. 235
41,000	. 24	. 37	. 25	. 29	. 36	. 24
42,000	. 25.	. 38	.205	. 30	. 37	. 25
43,000	. 25	. 39	. 26	. 31	. 39	.255
44,000	. 26	. 40	. 27	. 32	. 40	. 26
45,000	. 27	.41	. 28	. 325	. 41	. 27
46,000	. 27	. 42	. 29	. 335	.42	. 28
47,000	. 28	. 44	.30	. 34	.45	. 285
48,000	. 29	. 45	. 305	. 35	. 46	. 30
49,000	. 30	. 46	. 315	. 36	. 47	. 305
50,0010	. 31	. 48	. 32	. 37	. 49	. 315
51,000	. 31	. 50	. 33	. 38	. 50	. 325
52,000 39	. 52	. 34
53,000	...	\ldots 40	. 55	. 35
54,000 41	. 56	. 36
55,000 42	. 59	. 37
56,000 44	. 60	. 39

Breaking weight of Beam LV $=73,000 \mathrm{lbs}$. " " " LVI = 70,000 "

Table U and T show deflections of Canadian Spruce Beams which have been in service.

TABLE U.

1.oads in Its.	Deflectiona of Beams LVII to LIX.						
	LVII.			LVIII.			LIX
	$45 \mathrm{ins}$.	Ends.	45 ins.	45 ins.	Ends.	45 ins.	At End.
1.000	. 01	. 02	. 01	. 030	. 040	. 040
1,500	. 02	. 05	. 025	. 050	. 065	. 056
2.000	. 035	. 07	. 05	. 060	. 100	. 070	. 09
2,500	. 05	. 09	. 07	:080	. 130	. 095
3,000	. 06	. 11	. 09	. 100	. 160	. 115
3,500	. 075	. 14	. 10	. 120	. 190	. 130	
4.000	. 09	. 15	. 115	. 140	. 215	. 150	. 20
4,500	. 10	. 17	. 135	. 160	. 250	. 170	-•...
5,000	. 115	. 20	. 15	. 175	. 270	. 190	. 25
5,500	. 13	. 22	. 165	. 200	. 300	. 205	\cdots
6.000	. 14	. 24	. 19	. 210	. 330	. 225	. 30
6,500	. 16	. 26	. 20	. 240	. 360	. 248	-...
7,000	. 17	. 28	. 21	. 255	. 390	. 251	:36
7,500	. 185	. 30	. 22	. 275	. 420	. 285	*...**
R,000	. 20	. 3.3	. 235	. 300	. 450	. 305	. 41
8,500	. 21	. 35	. 25	. 315	. 475	. 320
9,000	. 22.5	. 37	. 26	. 340	. 500	. 342	. \cdot. ${ }^{\text {a }}$
9,500	. 235	. 39	. 275	. 350	. 535	. 362	
10,000	. 25	. 41	. 29	. 875	. 570	. 380	. 52
10,500	. 265	. 44	. 30	. 400	. 590	. 400
11,000	. 275	. 46	. 315.	. 410	. 620	. 415
11,500	. 29	. 41	. 33	. 440	. 650	. 440
12,000	. 30	. 50	. 35	. 450	. 675	. 460
12,500	. 32	. 52	. 31	. 475	. 705	. 480	:......
13,000	. 335	. 54	. 37	. 500	. 745	. 500
13,500	. 35	. 55	. 39	. 510	. 765	. 515
14,000	. 36	. 57	. 40	. 540	. 800	. 540
14,500	. 37	. 60	. 415	. 550	. 840	. 555
15,000	. 39	. 612	. 13	. 575	. 860	. 580
15,500	. 40	. 65	. 15	. 600	. 900	. 620
16,000	. 415	. 67	. 46	. 610	. 920	. 630	. .-...
16,500	. 435	. 69	. 47	. 640	. 960	. 645
17,000	. 45	. 72	. 49	. 655	. 990	. 1665	\ldots
17,500	. 46	. 74	. 50	.	1.025
18,000	. 475	. 76	. 52
18,500	. 50	. 78	. 54	.	\ldots	
19,000	. 51	. 80	. 56	.	1.120
19,500	. 525	. 83	. 575	
20,000	. 55	. 87	. 59	...	1.180	
21,000 92	1.270	
22,060	.	. 97	1.350	
$\because 3,000$	1.10	1.430	
24,000	. .	1.50	1.570
25,000	2.40	i.....*
26,000 27,000	1.850 2.040	

The Breaking weight of Beam LVII $=25,700 \mathrm{lbs}$.
" LVIII $=27,470$ "

$$
، \quad ، \quad \mathrm{LIX}=21,700 ;
$$

TABLSE V.

Lomen in lbs.	Detlectione of Beams L/X to L/XI.					
	$1 . \mathrm{N}$.			LSI.		
	34 ins.	At Eid.	$34 \mathrm{ins}$.	46 ins.	At End.	$15 \mathrm{ins}$.
800	 015	. 02	. 01
1,000	. 005	. 015	. 005	. 04	. 05	. 03
1,500)	. 005	. 0.15	. 015	. 06	. 09	. 05
2,000	. $0 \leq 0$. 050	. 020	. 085	. It	. 07
2,500	.035	.070	. 035	.105	. 17	. 10
3000	. 045	. 080	. 045	. 135	.20	. 12
3,5010	. 05.5	. 100	. 055	- I50	.2.	.15
+1,000	. 065	. 120	. 06.5	. 180	. 290	.170
1,500	. 070	.140	. 070	20	. 320	. 190
¢,000	. 080	. 145	. 080	. 23	. 350	. 210
$\therefore, 500$. 095	. 165	. 100	.24is	. 390	. 245
(i,000	. 105	. 185	. 105	. 265	. 830	.260
6,500	. 115	. 200	. 115	.29	.46	. $2 \times$
7,000	. 130	. 290	.130	. 31	. 51	.3I
7.500	. 140	. 240	. 145	. 34	. 51	.335
8,000	. 155	. 255	. $1: 5$. 36	. 57	. 35
8.500	. 175	. 285	.170	. 39	. 61	. 38
9,000 $-9,500$. 180	. 300	-15\%	.4!	. 6.5	.40
- 9,500	.190	. 320	. 193	. 40%	. 70	. 43
10,000	. 205	. 345	.205	. 4.5	. 7.1	.45
10,500	-220	.36.)	. 220	. 49	.76	. 485
11,000	. 230	.380	.230	. 51	.i9	. 50
11,500	. 250	. 11.1	.20\%	. 5.1	.85	. 51
12,000 4.6 92	. 6
13,000		. 150	 95
14,000 510	1.03
15,000		.8is)		1.04
16,000610		1.20
17,000		. 690		1.32	...
18,000 19000		. 580			1.11
19,000 $\mathbf{2 0 , 5 0 0}$870 .000		
Breaking weight of Beam 1.X $=16,050 \mathrm{lb}$. " \quad " L.NI $=18,400 "$						

COMPRESSIVE STRENGTH.

The experiments to determine the compressive strength of the various timbers have been chiefly made with columns cut out of the sticks already tes ted transwersely. These columns were, in the first place, carcfully examined to see that they had suffered no injury. The following iufercuces may be drawn :-
(1) The compressive sirength of Douglas Fir and of other soft timbers is much less near the heart than at a distance from the heart. Attention may be directed to the ease of three equal specimens A, B and C (see photograph page 19), cut out of Beam XIII. The compressive strenyth of C was found to be $7,706 \mathrm{lbs}$. per square inch as compared with $6,653 \mathrm{lbs}$. per square inch, the compressive strcogth of A. The difference of strength is undoubtedly due to the very much larger proportion of soft to hard fibre, or of summer to spring growth in C, as compared with the proportion in the case of A. The compressive strength of the timber increases with the density of the annular rings.
(2) When knots are present in a timbar column, the column will almost invariably fail at a knot or in consequence of the proximity of a knot.
(3) Any imperfection, as, for cxample, a small hole made by an ordinary caut hook, tends to introduce incipient bending, or crippling.
(4) Whew the failures of averare specimens commence by an iuitial béndiag, the compressive strengths of columns of about 10 to 25 diameters in leugth agree very well with the results obtained !by Gordon's formula, the eo-efficients of direct compressive strength per square jneb being 6000 lbs . for Douglas Fir and 5000 lbs , for White Pine.

Gordon's formula, however, is not at all applicable in the case of speciaily good or bad specimens. It is often found that a very clear, sound specimen, of eren more than 20 diameters in length, will show no signs of bending, but will suddenly fail by crippling under a load as great as that sufficient to crush a shorter sprecimen.
(5) The greatest care should be observed in avoiding obliqueness of grain in columns, as the effective beariug area, and therefore also the strensth, are considerably diminished.
(6) If the end bearings are not perfectly flat and parallel, the columns wiil in all probability fail by bending coneave to the lougest side.
(7) The revpege strength per square inch, independent of the ratio of levgth to diameter, is:

$597 t$	lbs. for New Douglas Fir
6265	$"$ for Old " " "
4067	$"$ for New Red Pine
$33+3$	"for New White Pine
2772	"for Old " " "
3617	"for New Spruce (B.C.)
5136	"Old Spruee

It should be pointed out that none of the old Donglas Fir columns cexeceded 4.4 diameters in length, while the great majority of the new Douglas Fir colmms were from 4 to 25 diameters in length. This explains the reason of the greater average compressive strength of the old Douglis Fir. A similar remark applics to the New and Old Spruce.

Table giving in detail the results of the experiments on the different specimens:-

RESULTS OF COMPRESSION TESTS ON
NEW DOUGLAS FIR.

Dimensions in ins.
$3.07 \times 3.08 \times 3.11 \times 6367$
$3.06 \times 3.08 \times 3.10$
$2.63 \times 3.13 \times 5.1$
4923
30.3
$3.65 \times 3.65 \times 6.12$
$3978 \quad 99.8$
$2.19 \times 3.74 \times 5.40$
.1761

5218
$4.10 \times 4.30 \times 8.0$
32.9
$2.15 \times 2.25 \times 0.2$
5809
$\because 8.8$
7313
39.1
$2.12 \times 2.16 \times 9.15 \quad 7294 \quad 38.7$
$2.22 \times 2.22 \times 9.07$
8177
37.5
$2.13 \times 2.20 \times 9.15$
6850
36.5

Remark:

Falied by bulging.
Failed by folding.
Specimen $3^{\prime \prime}$ or $4^{\prime \prime}$ from heart; grain straight; one small knot on high edge. Failed by crippling at knot on high edye.

Heart mece; grain straight but seasoned; anmular rings very wide; two knots, one on high edge. Failed at this latter ly crippling.
Straight grained ; one large knot from side to side; specimen $3^{\prime \prime}$ or $4^{\prime \prime}$ away from centre. Failed at knot.
Large knot on one end; many small knots all throngh piece; also. heavy season cracks. Failed by bursting along season cracks and through knots.
All clear. Failed by crippling.

Sonnd, clear and straight grained; small deficiency on one side at end. Failed by erippling.
Straight gramed; clear on three sides; 4 th side old, with bad defect 4 ins. from one end. Bulged and failed at defect.
Straight grained and clear: one bad season crack. Failed by crippling.
Straight grained; swall knot near me corner 3 ins. from end. Failed at this knot.

RESULTS OF COMPRESSIOS TESTS UN NHW DOUGLAS F゙ZH. - Continued

RESULTS OF COMPRESSION TESTS ON NEW DOUGIAS FIR.-Continued.

$2.78 \times$	4.38	\times	12.0	6500	35.5	Straight grained and clear; one old side with season crack nearly across piece. Crippled 3 ins. from one end.
$2.82 \times$	3.48	\times	13.02	6010	3.3 .9	Geain straight ; two old sides; piece sound, no flaws. Crippled near one end.
3.3 ¢	3.98	\times	12.0	3560	34.3	Grain straight and clear, except small pin knot on a corner 4 ins. from end; had two bad season cracks the whole length. Crippled 4 ins from end induced by season cracks; also bulged out.
$3.38 \times$	3.43	\times	13.53	6816	34.7	Clear ; grain bent out of straight at one end, due to proximity of knot, also somewhat shaken. Failed by bursting along fibres out of parallel.
$2.20 \times$	2.21	\times	13.78	2638	34.3	Grain ont of parallel for 1 in . in lengtle; knot on one corner of end. Burst along shaken fibres out of parallel.
$3.38 \times$	3.45	\times	13.90	6861	33.8	Straght grained, except one-half of a knot on one end. Failed by crippling near knot as end.
4.03 in	diar.	\times	48.01	5856	31.3	Grain parallel, no knots; two small cracks and a small split; ammar rings nearly straight. Failed by bending concave to a high corner.
2.84-x	4.23	\times	13.12	5828	31.5	Straight ' grained. small pin knot 3 ins. fromi one end; season cracks from end to end through middle, passing through linot. Failure by opening of season cracks, and crippling through knot.
$4.10 \times$	4.45	\times	14.47	7188	39.1	Clear ; grain out of parallel. Failed by crippling and shearg in of unsupported fibres.
$2.70 \times$	2.90	\times	15.96	8365	39.5	Clear, straight grain shaken over a length of ll-ins. Crippled 5 ins. from end.
$2.16 \times$	2.20	\times	16.29	6442	36.0	Clear, not straight grain; somewhat shaken ; sheared along shake in grain which being cut off parallel had no tottom support.
4.08 in	diar.	\times	24.12	6595	31.8	Clear and straight grained. Failed by crippling 10 ins. from end.
$2.70 \times$	4.20	\times	16.45	634:	30.8	Straight grained ; season cracks on one side; several small pin knots. Faled by crippling 2 ins. from one end through one of the pin knots.
$2.38 \times$	3.56	\times	16.74	7143	33.0	Straight grain; some small pin knote. Crip pled through the largest one at centre.
$1.73 \times$	5.98	\times	17.73	4209	38.7	Grain parallel knot on edge 4 ins. from end; also bad season crack and small deficiency in one corner for 6 ins. from one end. Burst at knot and split along. season crack.

resilut of compression tests on new douglas fir.-Contimued.

2.90		3.28	$\times 25.4$	4416	34.7	Straight grain; large knot 4 ins. from end on an edge. Failed by crippling at knot.
2.27		2.28	$\times 23.46$	4363	36.91	Straight grained ; clear except part of knot on one end. Failed by crippling at knot.
4.20	\times	4.36	$\times 27.88$	2622	32.4	Heart ; grain 2d ins. out of straight ; heary season cracks; two large knots. Failed by bulging along season crack and at knots 14 ins. from end.
4.05	\times	4.20	$\times 24.70$	5026	33.9	Tested before as pillar, failed then at 67,200 lbs. This portion had straight grain ; two knots close together 8 ins. from one end going through piece. Failed by crippling at these knots.
2.61	\times	2.65)	$\times 24.43$	6237	36.0	Straight grain; season crack across end running half the length of the piece ; knot 3 ins. from other end $\frac{1}{3} \mathrm{in}$. in diameter. Crippled at the knot.
2.65	\times	2.66	$\times 26.24$	6865	36.4	Straight grained and clear; season crack running down abont 8 ins. Crippled clean across at foot of season crack. apprarently not in duced by seasoning.
$\because .00$	\times	2.101	$\times 27.40$	6841	34.6	Clear and straight grain; heavy seasoll crack. Burst froln end to end on season crack.
$\because 388$	\times	2.95	$\times 23.91$	8106	38.8	Clear, straight giained. Crippled $\&$ ins. from one end.
2.87	\times	2.93	$\times 25.00$	6600	35.5	Clear, nearly straight grained; slighit reason crack. Faled by a bulging oll seavon crack and atterwards crippled on reduced rection at centre.
2.88	\times	2.90	$\times 24.40$	7856	36.4	Clear, straight errained. Failed by direct cripp'g.
2.87	\times	2.90	$\times 24.55$	8065	38.0	Clear and straight grained, Failed by direct crippling 8 ins. from end.
$\because .90$	\times	2.95	$\times 25.70$	8093	36.3	Clear and st:aight grainel. Failed by direct crippling 15 ins. from end.
2.78	\times	2.57	$\times 25.95$	9700	40.9	Deficiency uear centre, about $\frac{1}{2}$ in. by 1 in. (resin) ; fibre crooked through vicinity of knot; otherwise clear and straight grained. Failed at crooked fibres at deficiency.
2.89	x	2.90	$\times 26.69$	8269	334	Clear and straight grained; failed liy compression of fibres on a corner.
$\because .82$	\times	2.97.	$\times 25.15$	9104	40.2	Very heavy summer rings; clear; fibres bent 12 ins. from one end at one side due to vicinity of a knot. Failed at crooked fibres.
4.77	x	5.82	$\times 26.15$	7709	36.5	Did not fail.
4.77	X	4.68	$\times 2.32$	8411		Same as preceding with piece cut of ; clear and straight grain.

RREUTI'S UF COMIRESSION TEST'S ON NEW DOUGLAS FIR.- Continucd.

results of compression tests on new douglas fir.-Continued.

QESULTS DF COMtrifession tests on new noughas fit. - Comtinuch.

Results of compression tests on
OLD DOUGLAS FIR.
Dimension in ins. Lengths.

$2.21 \times 2.23 \times 9.15$

Grain straight and clear; one old cide with senson crack. Bulged alony season crack, and crippled.
All fresh sides ; straight and paralle grain; oncedge strained from wolt. Crippled all over.

One old side; grain straight and parallel. Crippled near one end.

All fresli sides; grain straight and parallel; one edge stranied from: bolt ; l in. season crack. Crippled one fourth the way down, slightly helped liy season crack.

One old side; grain straight and parallel. Crippled at one end, slightly aided by season crack.

Une old side; iron stain at one end; season crack ; grain straight and paraliel, Crippled at ? ins. from cad.

One old side; grain straight and parallel. Crippled near centre.
Knot 5 ins. from end; next face, knots $1 \frac{1}{2}$ ins and 4 ins. from same end: small pin knot and season rack on third side. Crippled through knots.

Clear and straight; very tull of resin ; some season cracks; crippled al one end.

Grain straight, lout slightly curly ; three fresh sides ; old side crushed by tie; slightly rotten under tie: crip. pled at small defect near one end.
Grain parallel ; crush. ed and rotten for a depth of $\frac{2}{2}$ in. under tie; two adjacent sides new. Crippled at rotten part near one end.
results of compression tests on old douglas' fir.-Continued.

hesults of compression tests on old douglay fir.-Continhed.

2.80		3.80		12.06	7481	34.1	One ohl ride; grain atraight and pratalel. Crippled at end.
2.78		3.88		12.0	7090	34.2	One old side; grain straight and parallel.
2.79		3.06		12.0	7317	33.4	Crippled near one end. Une old side; grain atraight and parnilel. Crippled at 3 ins. from end.
3.27	\times	3.95	\times	12.0	5540	33.45	Grain straight and clear, except stmall pin knot liole 3 ins. from end; piece shivered by serson cracks. Failed by piece splitting off. It then crippled at knot 3 ins. from one end.
3.28	\times	3.96	\times	12.	5510	32.9	Grain straight ; small pin knot on a corner near centre ; very lieavy season crack on old side. Burst along season crack; also crippled 4 ins. from one end.
3.32		4.04	\times	12.0	4825	28.85	Grain straight ; pin knot on corner ne:r celltre; heart decayeri; also one scason crack. Crip. pled nt juin knot.
3.31		4.02	\times	12.04	5675	32.85	Grain straight ; small pinknot I $\frac{1}{2}$ ins.froni end; two had season cracks. Crippled square across near each emb.
3.33		4.0	\times	12.0	4165	28.95	Grain not quite straight; knot at corner 2 ins. fronn end; deficiency of heart all along one edge. Crippled at knot.
3.30			\times	12.0	6300	33.55	Straight grain; knot on corner $1 \frac{1}{2}$ ins. from end; large deliciency on opposite corner at other end; another deficiency und nail gonge at centre of same edge; also one scason crack. Crippled at knots.
3.28	\times	4.02	\times	12.03	5540	32.70	Straight grain; knot on corner ld ins. from end; also season cracks.
4.18	\times	4.63	X	12.22	5200	35.3	Knots 3 ins. and 6 ins. from end on same side ; also small knot on next face ln . from same end; also part of large knot on other end. Failet longitadinally throngin two knots; upper cnd was not horizontal, not more than $5 \cdot 6$ thes. of the area bearing.
4.35	X	4.65	\times	14.15	6735	36.95	Two knots 2 ins. and 6 ine. from end on same side; abo knot on next face 3 ins. from same end and two knots on other end; on third and fourth fuces, knots 12 ins. and 4 ink. from first end. ©rippled at knot 3 ins. fron end:
4.25	\times	4.65		$\times 14.80$	7085	36.6	Two knots passing turough from face to next face; one 3 ins.from end ; the other 7 ins.from same end; deficiency $1 \mathrm{in} . \times 1 \frac{1}{\mathrm{in}}$, on opposite edge. Crippled througth knot 7 ins. frens end.

results of compression tests on old douglas fir.-Continued.

ItFSUITTS OF COMPRESSIVE TESTS ON

RED PINE.

Dimensjons in insher.	I، hugtha ili inches:

4.96 in diar. $\times 5.9 \quad 2497$

2742
$27 \because 2$
$26: 31$
2.95 in diar. $\times 5.65$ 6870,
2.88 in diar. $\times \mathbf{5 . 6 9} \quad 7057$
4.81 in diar. $\times 13.75 \quad 5092$
3.88 in diar. $\times 13.5 \quad 7602$
3.80 diar. $\times 13.31 \quad 6438 \quad 3 \mathbf{3} .8$
4.02 in diar. $\times 18.75$
$\$ 657$

3.90	6	$\times 18.20$	7202	35.7
3.66	\because	$\times 2.3 .61$	851%	43.2

4.101	in liar. $\times 2.23 .33$	56.37	28.7
4.3 in diar. $\times 22.8$	5983	26.7	
3.93 in diar. $\times 29.2$	7914	38.1	

7.02	"	\times	36.12	2087
7.01	،	\times	36.12	2024
3.97	"	\times	3.10	$3 \div 87$
4.10	"	\times	3.10	28\%5

4.04	$"$	\times	3.10	3482
4.03	$"$	\times	3.10	4247
3.98	$"$	\times	3.10	3293
3.96	$"$	\times	3.10	4001
4.75	\times	4.75	$\times 6$.	3104
3.97	in	diar.	$\times 69$.	$\mathbf{6 5 8 5}$

Remarks.

Finiled at knots 26 ins. from end; almo at anwher ring of knota 3 ine. from rame end; nineteen knots in length.

One knot near one end. Pailod by crippling abore knot.
Clear. Crippled 6 ins from one end.
Clear grain. Failed ly spreading at bottim.
Nearly straicht grain ; knot if ins. from end passing nearly throuph centre. Failed at the knot by ctippling.
Straight grained: knot on one end. Failed by crippling at knot about $\frac{1}{2}$ in.from endallaround

Clear wood; straight grainel; pread at emd, lue to earsiature of fibre in lecalit! of as knot.

Clane and straight grained. Fiailed 6 int. frum end ber folding.
Grain parallel; one knot 10 ins, from eml. Failed throngh knot ly crippling.
Four knots at 8 ins. from one end. Failed by crippliner at kuots.

Grain parallel; two knots, onc large knot 10 ins. from one end. Failed by criphlif: at this knot.
Failed by crashing at knot, 4 in․ from ent. Fonrteen knots in lenurth.

Failed at knot $8 \frac{1}{2}$ ins. from end; tell knots in length.
Failed at rine of knota 7 ins. from end; fifteen knots in length.

Crushed and failed at knot; strabigh grain; fairly free from knots.

Failed by crubhing and bemding. Straight arain; crack down leminth.

Not well seasoned. Failed by erushing and bending at a large knot 31 ins. from end; alco at 1 in . from eml and 4 ins. from other end; straight grained ; six knots in whole length.
Failed at ring of knots four in number by crush. ing and bending at 24 ins. from end; also at 2 me. from same end; fourteen knots in whole length.
results of compression tests on red pine.-Continued.

4.02	di	$\times 64$	3152
3.91	"	$\times 69$	3280
4.03	"	$\times 69$	3158
3.90	"	$\times 69$	3734
4.94	"	$\times 66.25$	2386
4.92	6	$\times 60.20$	2513
2.96	‘	$\times 66$	1977
3.06	"	$\times 86.25$	2438

Failed by crushing straight grained; failed at two sinall knots 27 ins. from end and also at 16 ins. from same end; large knots 39 ins. from same end; ten knots in lengtb.
Failed by crushing 16 ins. from one end at a knot. Twelve knots in whole length.
Failed chiefly by crushing 12 ins. from one end; four knots in length.
Failed at knot 24 ins. from end; six knots in length; also crippled 1 inch from same end.
Failed at knots 26 ins. froms end; also at another ring of knots 3 ins. from same end; nineteen knots in length.

Failed at ring of knots 36 ins. from end; sixteen knots in length.
Failed by crushing and bending at large knot 28 ins. from end eight knots in length.

Failed by crushing at knots 5 ins. from end Four knots in whole length.

RESLLTS of COMPRESSIVE TESTS ON
NEW WHITE PINE.

Grain clear but not straight. Cracked down one side.

Clear and straight Failed ly folding near one end.

Clear grained, hint not straight. Failed by folding over at top.

Clear specimen; deep season cracks across annular rings. Failed by crippling.
Two large knots. Failed between them.

Two heavy knots 2 ins. from end. Failed by crippling at the knots

Clear specimen. (rippled witho:at bulging or cracking.
Clear and straight grained. Failed by crippling.

Remarks.

4.6 .4 in	diar.	\times	13.12	9774		lling of four k noils 6 ins. fromone end. Fniled by crippling at knots.
4.71 iı	diar.	\times	1-4.20\%	34010	213.6	One knot and alyo rigns of decay. Fuiled by crippling at the knot.
$3.605 \times$	3.56		14.135	6400		Clear.
$4.72 \times$	4.79		14.875	5004	21.3	Clear. Cripiled with-
4.75 in	diar.		14.75	44087		out cracking or batging.
4.71 ill	diar.		15.5	"136ia'	91.1	One large knot; de cayed nearhenrt Faled nt knot.
4.718	*	\times	16.35	8861	26.60	One knot at Ir tom ol specimen. laialed at this knot loy crippling.
9.94		\times	1:30	4272	26.5	Clar and straight,
4.75 in	diat:			44ti		but derp injury trom pukenole. Finked atinjured part.
3.87	-	\times	119.2\%	2973	29.9	Straight is rained. Frailed atl ont ent at a large knot.
4.75	"	\times	17.35	423%	26.40	Two large knotr. Failed hetween them.
4.71	"	\times	$17!338$	4847	27.1	Clear and etraight grabuet. Faled at ind
$4.40 \times$	4.40	\times	17.11	;856	30.6	Three large knots in armbarond xuectarn. Failed at knots.
$2.97 \times$	3.85	\times	20.51	- 10030	:30.1	Clan and straight graned; one-third sajwoul. Failed ly crippling at 7 ins. from one end.
$3.85 \times$:3.3:	\times	21.65	393:	26.1	Failen previonsly as pillar moler 49, 200° tbs. Cripled now at a large linot $\begin{gathered}\text { ins., from end. }\end{gathered}$
$3.8 \times$	3.8	\times	9.3.85	3408	26.7	Two latre knots CripHed at are, 2 ins. from an end.
$3.83 \times$	3.83	X	93.8	31615	25.9	Faled ley crippling at two knot. iear centre.
$2.97 \times$	2.94	\times	23.60	5463	$\underline{3} 4.9$	Clear and straight grainel! : tated previonsTy as piliar under 42,000 ltis. Cripmled now near centre.
3.02	diar.	\times	25.79	5023	$\underline{-2.5}$	Clear and straight grained. Failed by cripphing - ins from une end.
$3.40 \times$	3.80	\times	$\underline{25.4}$	3610	$\because 0.0$	Straight irmined ; bad sea-un eracks; fill of knots, finiled by crippling throngh two of them 8 ins. from end.
$3.98 \times$	2.99	\times	24.25	4607	0.3 .9	Straight erained; pin knot 10 ins. from one emu. Failed by crippling and bending at pin knot.
$2.95 \times$	3.25	\times	26.70	3508	$\because 4.1$	Straight grained, but finll of knots. Crippled at one near corner in middte.
$4.75 \times$	4.75	\times	21.0	3103		Clear ; grain 2 ins. ont
$2.99 \times$	2.99	x	$\underline{2}+08$	4+7.4	$\bigcirc 6.7$	of parallel ; reason cracks along grain. At upper curner grain ran out. Failed hy sliding along reasoning, due to non support of fibres ronning from corner.
3.05 in	diar.	\times	24.1	5240	25.8	Clear und strnight grained. Fanled by crip. pling and bending at same instant nt middle.
$3.46 \times$	4.33	x	27.00	3488	20.4	Failed prevolosly as pillar mader $3: 3,300 \mathrm{ll}$ s. Failed now at knot 8 ms. from eml on a side.
2.92 in	diar.	\times	36.5.3	5260 71	39.8	Clear and straight grained: one-third sapwond Fail by crippling on sapwood side and then bending afterwards 12 ins. from end.

results of compressive tests on new white pine.-Continued.

3.05 i	in				4377	25.9	Clear grain, $1 \frac{1}{2}$ in. out of straight ; high at one side. Failed by bending 20 ins. from one end ou high side.
3.	\times	3.	\times	480	4666	25.0	Ten knots; long season crack ran three fourths the way down, $1 \frac{1}{2}$ ios. deep and $\frac{1}{2} \mathrm{in}$. from edge; a bruise 3 ins. from end on same side; on opposite side, crack 3 ins. long, 1 in. deep; grain and rings both parallel. Failed by bending toward a high corner and then crippling.
4.75	in	diar.	\times	60	2652		
4.75	in	diar.	\times	60	1862		
4.75	X	4.75	\times		2749		
4.75	\times	4.75	X		1862		
4.75	\times	4.75	\times	60	1951		
4.75	X	4.75	\times	60	1951		
4.75	\times	4.75	\times	60	2306		
4.75	in	diar.	\times	61	2676		
4.62	\times	4.75	\times	60	2370		
4.62	\times	4.75	\times	60	2836		
4.75	in	diar.	\times		2765		
4.00	\times	4.00	\times	TS.24	2937	27.6	Heart ; museasoned straight grain ; four groups of knots 2 in. $3 \frac{1}{2}$ ins. $4_{4}^{3} \mathrm{ins}, 5{ }^{3}$ ins. from end on each face. Crippled and failed through knot 2 ins. from end on low side.
4.03	x	4.06	X	78.2	3466	28.7	Straight grain; several knots. Failed by hending at knot 30 ins. from one end. Einds square maximum load 70,500 lbs.
4.113		4.03	X		4557	28.3	Straight clear grain one small knot. Failed at knot 3 ft . 4 ins. from end; crippled, then spilt open ; ends square.
3.95	\times	3.98	\times	75	3260	29.3	Grain straight hut for frequent knots; faled at a group of knots about 2 ft. from one end by splitting first sliyhtly open and then crippling on one side ; it bent afterwards.

RESULTS OF COMPRESSIVE TESTS ON
OLD WHITE PINE.

Dimensions in inches.
Lengthe.
$3.5 \times 4.4 \times 11.75$
$3.4 \times 4.3 \times 11.30$

Remarks.

Large knots on all sides about 2 ins. from an end, otherwise in good condition, except shivered at a corner between two knots. Failed by splintering at shivered corner ; also crippled at knots.

A large knot appearing on two faces 3 ins. from end ; also a slight season crack on one face. Failed by splitting longi. tudinally along season crack.

Medium knot throngh corner showing on two faces about lif ins. from end ; otherwise soundand clear. Failure by crippling at centre.

results of compressive tests on old white pine.-Continued.

$4.20 \times 4.23 \times 12.01 \quad 2.47525 .0 \quad$ 'liliree siles frouth
$4.19 \times 4.29 \times 19.05 \quad 217426.4$
$4.20 \times 4.26 \times 12.04 \times 2.38426 .1$
$4.17 \times 4.20 \times 12.02$
$2753 \quad 24.7$
$4.21 \times 4.2: 3 \times 12.02$
1797
$4.18 \times 4.20 \times 19.05 \quad 1789 \quad 25.0$
$4.19 \times 4.22 \times 12.05 \quad 2099 \quad 24.8$
$4.21 \times 4.22 \times 12.01$
$4.17 \times 4.24 \times 12.02$
$1606 \quad 28.0$

1
$4.18 \times 420 \times 12.0$
$4.20 \times 4.22 \times 12.0$
2499
25.9
3.82 in diam. $\times 13.65 \quad 5770 \quad 30.3$
$3.625 \times 4.50 \times 40.875 \quad 2390 \quad 29.4$
anwn ; crain not paral. lel, owing to a knot; ons senson crack on old ride; wood alecaying somewhat; several mmall pin kmots. Sheared alomg meason chack, caused by adjacent knot.
Three fresh mawn sides ; two lurge knots. near centre ; one pin kbot: grain parallel; very large semoln cracks. Split along senson crucks.

Fubr sides frex sawn; grain juralkel season cracks nre. tharough specimen; onw large and two small knots at one end, large one at corner. Cripplet at knots.
Tharee sibes fresh sawa; grain not paral(e) ; season crack: through borly of specimen; slighty decayed on one site ; severa! smatl fin knot*. Shared un rot line and crippled at knots.

All sides fresls sawn; two large knote mbody; wrain parallel; slight Tecay ; cracks in mellut. lary ravs. Crippled through knots.
Two silles fresh eawn; grain not quite parallel; large knot at one end; seacon cracks on two old sides ; small knot in looly. Crippled through knots.

Three vides fresh sawn; grain parallel; spason eracks on old sile ; two small injuries in old side near one eud. Crippled leronsh yery small knot near one ($n: 1$

Three fresh sides; specimen full of knote? two at one end, one large knot and two small knots in body; bad sea-on crack on old side. Crippled through knot at one ent.
Four fresh sides; two large knot: near centre ; two jin knots; grain parallel. Crippled and split along filire from the knots.

Three sides fresh sawn: large knot 4 ins. from end; grain paral. lel; slight jlecay. Cripfled opposite knut.
Four sides fresh sawn; large knot near centre; grain parallel. Crippled opposite knot.
Clear und straight grained. Failed by folding through an injury from cant. hook 43 ins. from end.
Grain straight: one old side; free trom large knots; failed ly bursting open along three lines. which pass throngh varions knots nnd season cracks.

RESULTS of COMPRESSIVE TESTA ON OLD WHITE PINE.-Continued

$3.75 \times 4.31 \times 45.25$	2970	23.6	Grain straight; one old seaconed side; sev-
eral knots; failed atone			
large knot in middle of			

HFMt:CTS OF ('OMPHESQIVF, Trists ON

NEW SPIRUCE (B.C.)
Dimensions in inches.
bengthe.

$472 \times$	2.313×1.91	: 41%
$4.77 \times$	2.25×1.9	29.41
$4.75 \times$	2.375×1.875	:300
4.7\% \times	2.25×1.875	3115
$4.78 \times$	225×197	3256
$4.75 \times$	$205 \times 1.9 .4$:31:
$4.75 \times$	3.319×3.88	:300!
$4.72 \times$	2.20×1.9	3179
$375 \times$	2.34×162	3×5
4.810 \times	2.312×1.94	:3?11
$4.375 \times$	$1.875 \times$	440
$4.75 \times$	3.25×2.60	:33:1

$4.73 \times 4.73 \times 3.9 \quad 3.51$
$3.67 \times 3.67 \times 3.64 \times 300$
$4.75 \times 475 \times 4.0 \quad 3325$
$4.75 \times 4.75 \times 4 \quad 2838$
$4.812 \times 4.8!9 \times 4 \quad 2986$
$4.65 \times 4.65 \times 520 \quad 15411$
$3.00 \times .2 .875 \times 6.50$
$3.00 \times 3.125 \times 6.00$
$4.7 \times 4.7 \times 7.7$.
$3.125 \times 2.875 \times 7.25$
$4.687 \times 4.687 \times 8.66$

| $4.75 \times 4.75 \times 11.5$ | $4154 i$ |
| :--- | :--- | :--- |
| $4.2 \times 3.8 \times 115$ | $4804 i$ |
| $4.0 \times 4.04 \times 11.75$ | 3598 |

$4.10 \times 4.10 \times 125$
$4451 \quad \because 8.3$

| $3.75 \times 3.75 \times 12.05$ | 4907 | 24.5 |
| :--- | :--- | :--- | :--- |
| $4.72 \times 4.72 \times 14.09$ | 4063 | 30.2 |
| $4.75 \mathrm{in} \mathrm{diar} \times 14.$. | 3328 | |
| $3.33 \times 4.18 \times 14.97$ | 4382 | $3: 9$ |
| $4.35 \times 4.39 \times 20.55$ | 3757 | 29.6 |
| $4.35 \times 4.45 \times 20.6$ | 3540 | 27.1 |
| $4.41 \times 4.45 \times 20.6$ | 38.10 | 29.9 |
| $2.5 \times 3.42 \times 24.5$ | 3390 | 24.3 |

$3.48 \times 3.50 \times 32.25$

4384
$2.75 \times 4.05 \times 41.0 \quad 3070 \quad 28.3$
$2.75 \times 4.02 \times 40.95$
$: 386$
flamarke.

Failed ly erippling.
'lear and straight.
29.80 Four pin knotz; enls not quite parallel.

Clear and sound; cracks along mednllary; 1ass.
Clenr and straight. Crippled at centre.
Straicht grained. Crippled at large knot on ulge near centre.
Clear an ol straight grained; wight axe-cut on une face 3 ins. from end Failed by crip. pling at axe cal.
Crippled at a bunch of five kinots.
Five larue knots and one large raton crack. Clear and straight. Failed by criplling neat (in end.

Failed ty erippling.
Knot uear one entl. Failed in centre.
Clear.
Clear and straight grained, hut heavy season crack from ride to side. Failed ty bulying on season crack and then bending.

Grain not straight; heary knot through centre; also ends not square. Jurst apart along centre.

Straight grained. Fai]. ed at large knot 3 ins. from end by crippling.
Straight grained; eight large knots. Failed live bending at two knot: 19 ins. from one enil concave to high side.

RESIL: OF COMPRESSIVE TESTS ON NEW SPRUCE (B.C.)-Continued.

4.35	$\times 4.50$	$\times 20.55$:3584	27.4	Grain clear and parallel. Crippled at centre.
4.08	$\times+.35$	$\times 22.97$	3909	27.5	Grain crinkled near one end. Failed there.
4.18	$\times 4.35$	$\times 22.95$	3271	27.7	Clear; straight; no knots. Failed at one end.
4.29	$\times 4.35$	$\times 22.96$	3617	25.4	Grain not quite parallel; knot near centre of one side at which piece failed.
4.20	$\times 4.35$	$\times 22.95$	2834	28.2	Grain not parallel. Failed by longitudinal shear, which passed through a knot.
4.25	$\times 4.411$	$\times 22.9$	3774	26.1	Failed at a knot near centre of one side.
4.24	$\times 4.34$	$\times 2.94$	$\because 973$	25.1	Failed by longitudinal
4.12	$\times 4.35$	$\times 23.00$	3560	27.2	Failed at a knot.
4.10	$\times 4.41$	$\times 23.00$	3680	25.7	Grain parallel. Failed by crippling at a knot 6 ins. from one end.
4.25	$\times 4.40$	$\times 28.0$	8382	27.9	One season crack, did not affect the failure which was by crippling.
4.10	$\times 4.40$	$\times 29.05$	3500	26.4	Knot near one end. Crippled in body of piece at a distance from the knot.
4.09	$\times 4.3 .5$	$\times 23.06$	429!	25.6	Grain clear and parallel. Crippled on one side.
2.97	$\times 4.0$	$\times 15.1$	$4!008$	20.7	Clear and etraight grained. Crippled two trom end.
3.33	$\times 4.1$	$\times{ }^{\circ} 15.64$	3397	26.4	Straight grained ; large knot on middle of side. Failed near one end in clear wood.
4.72	in liar.	$\times 15.0$	34.31	30.86	Four deep medullary weathering cracks; a mass of knots at lower end ; small pin knots at centre; ends not quite parallel. Crippled at lower end at knuts.
\because	$\times+.1$	$\times 18.5$	525.3	24.1	Clear and straight grain; failed by
4.75	in diar.	$\times 60$	1862		crippling and bending 6
4.75	"	$\times 60$	2708		
4.75	$\times 4.75$	$\times 60$	2351		
4.75	$\times 4.75$	$\times 60$	2275		
4.75	$\times 4.75$	$\times 60$	3104		
4.75	$x+.75$	$\times 10$	2660		
4.75	$\times 4.75$	$\times 60$	2351		
4.75	$\times 4.75$	$\times 60$	2306		
4.75	$\times 4.75$	$\times 60$	2661		
4.62	$\times 4.63$	$\times 60$	2431		
4.62	$\times 4.75$	$\times 10$	2416		
4.62	$\times 4.62$	$\times 60$	2420		
4.75	in diam.	$\times 60$	2483		
4.75	. \cdot	$\times 61$	2483		
4.75	..	$\times 111$	321\%		

REGUI.TS OF COMPRKABIVE TRETS ON

OLD SPRUCE:

Dimensions in inches.
liengthe.

2.54	x	3.15	x	5.95	4375	28.4	Clear wood, straiglit grained: eads, ont of aquare ; bent over.
2.12	\times	セ.97	\times	10.12	4508	28.4	Clear wool, straight graned ; ends ont' of -r\|uare ; bets over.
2.42	\times	2.4i	x	10.95	4367	27.9	Clear wood. straight grained; failed ly hendung; worm eaten.
2.30	x	3.20	x	11.25	3869	28.4	Clear wool, straight grained ents out of square ; bent over.

$2.18 \times 2.15 \times 14.1004842009$

Clear woon, straight graned; failed by hending ; worm cuten.
$2.17 \times 2.18 \times 13.40 \times 471427.9$

Clear wood, straight grained; failed by bending ; worm caten.
Clear; etraight erainet ; crippled at centre.
Clear ; straight grais. ed ; cruppled at ead at a previons injury on surtace.
Straight grained; knot at centre. Cripped at knot.
Straight grained; knot on curner at centre. Faited at knot.
Heavy knot through edge near centre. Crippled at kiout.
Straight grained;
knots near each end.
Crippled and burst
throngh large knot.

Clear wood; straight gramet. Failed by bendmg ; worm eaten.

Clear and straight grainer. Crippled near emethrough asmall injury like a mail hole.
Clear; straight graiu. ed Cripuled 5 ins. from end.
One surall knot. but ladly out of parallet. Failed at knot.

Straight grained; one small knot near end. Crippled tirst near centre throngli cant hook holes
Straight grain ; knot 12 ius. from end. 'rippled at knot.

Straight grain; knot 10 ins. frim end. Crippled at a knot.

Clear, but grain very much out of parallel, as much as 3 ins. in 18 ins. Burst apart ty sliearing of unsupported fibre.

TENSILE STRENGTH.

The expcriments were especially directed to the comparison of the tensile strength aud stiffess of portions of the same stick, in different positions relatively to the heart.
In designing the form of the test-piece, it was of importance to make the head of such a depth as would prevent the central portions from keing pulled through the head by shearing along the surface BC, and it was also nceessary that the depth should not be inconveniently great. Wedge shaped holders (Fig. H) were adopted which would grip the

Fig. 1.:

Fig. K .
specimen along the faces $\mathbf{A B}$. This furm of holder was intended to increase the resistance to shear which is always much less than the tensile strength. As the tension on the test-piece increases, so also does the normal pressure upon the faces AB, Fig. K.:nd, therefore, so also does the resistance to shor along the surface BC. At first, the faces of the holders in contact with the specimen were left rough, but it nas fonnd that the ronghness prevented the speciuen from sliding in far enough to be gripped along the whole of the face $A B$, so 'that the bearing surface was practically limited to a comparatively suallarea near the top of the head. Thus it often happened that the specimen still failed by shearing along the surface BC. This diffieulty was obviated by planing the faees of the holders.
The test-picees were prepared from the uninjured portious of the beams, which had already been fractured transversely. The extensions of a length of tun inehes of the specimen under gradually increased loads were measured by means of Uuwin's extensometer until the total extension exceeded about one-cightieth of an inch. After this the extensometer wis rimoved, and in many cases additional extension readings, up to the point of fracture, of a length of sisteen inches of the specimen, were mearurd by means of a stcel rule and indicator clamped to the specimen at points 16 -inches apart and allowed to slide over one another.
The results obtained are given in the following Tables and an examination of these will show :-
1st. That the increments of extension up to the point of fracture are almost directly proportional to the increments of load;

2nd. That the presence of knots is most detrimental both to the: strength and to the stiffness, inasmuch as they practically diminish the effective sectional area, and also produce a eurvature in the grain;

3rd. That wood near the heart possesses much less strength and much less stiffness than that more distant from the heart ;
fth. That the strength and stifliess are also dependent npon tho proportion of summer to spring growth;

5th. That irregularity of readings, both with the extensometer and with the rule, are chicfly due to the presenco of a knot, or to early or oblique grain caused by a knot.

Again, some of tho 'Tables give the effects on various specimens, of alternately loading them and relieving them from their loal, and from the experiments earried ont u_{p} to date the following inferences may perhaps be drawn :-

If the specimen is elear, free from knots, and straight in the grain, aud if no interval of rest is allowed, then for any given range of loads:
(a) The total extension is greatest during the first hoading ;
(b) The extensions due to the suceessive loadings continually diminish, tending to at minmum limit, so that the coeffecients of chasticity increase, and therefore so also does the stiffess ;
(c) By the successive unloadings in set is protneed, which continually inereases, but at a diminishing rate, and whith tends to a maximum limit :
(d) When the specimen is allowed an intersal of rest under the minimuun load, the first total extension, when the loading is resumed, is greater than at the commencemeat, but coatinually diminishes, tending to a minimum limit, which possibly coincides with' the maximum limit reached previous to the interval of rest.

So :ilso, after the interal of rest, when the tirst set produced the specimen is from load, is greater than that previously produced, but gradually diminishes, in the ancecediag releases from load, tendiag probably to ar minimum limit coinciding with the maximum limit reacher before the interval of rest.

Ilaese inferences are also in acoord with similar experiments carried out by Mr. Kerry, B.A.Sc.
Specialatention may be directel to the test of speciuen 4 , beam XXI. This specimen lialed simultaneously at two sections, the wool seeming to be very britte, and the character of the failure pointed to some inherent weakuess in the timber itself. After a microscopic examination of the fratured sectious. Professor Penhallow described the fractures as being " very regular and devoid of any fibrous character, having the "sact appearance of' a piece of glass. The lines of fracture followed "the variations in thickness of structure longitudinally and trans"versely with great resularity. The peculiar brittleness ean ouly be "referred to some local molecular condition of unknown origin, possibly "to a deficieney in the element of water."

The simultancous failure at two sections of specimsus 2 and 8 from White Piue beam X'S VILI may probably be referred to a similar e:use, and, as Professor Penhatlow says, a lejuata explamations of such failures are still to be sought.

In the Tables the extensometer measurements are gipen in hundred. thousandthe of an inch, ant the rule measurements in hundredths of an inch.

With each table a diagrammatie section is also given, showing the part of the stick from which the several specimens have been taken.

Results of tension tests on specimens 1 to 9 cut out of Donulas Fir Beam IX，and of repeatcdiy loading a specimen cut out of the same Beam．（Fig 118．）

	Readings taken by Bxtensometer． Specimen．								
bs．	$\underset{\substack{\text { For- } \\ \text { ward. }}}{\text { chat }}$	$\underset{\substack{2 \\ \text { Fori. } \\ \text { wari. }}}{ }$	$\begin{gathered} \stackrel{3}{\text { For- }} \\ \text { ward. } \end{gathered}$	$\begin{gathered} 4 \\ \text { Far- } \\ \text { ward. } \end{gathered}$	$\begin{aligned} & \text { For } \\ & \text { ward. } \end{aligned}$	$\begin{gathered} \text { f } \\ \text { For- } \\ \text { ward. } \end{gathered}$	For－	$\begin{gathered} \mathrm{T} \\ \text { Far- } \\ \text { ward. } \end{gathered}$	$\begin{gathered} 9 \\ \text { For- } \\ \text { ward. } \end{gathered}$
100	0	0	0	0	0			0	0
200	81	79	65	92	80			50	82
100	229	227	194	261	240	259	259	162	252
（300）	372	379	318	430	393	．．．．		293	421
800	509	527	435	579	549	564	561	403	579
1，000	6.4	673	547	737	702	．．．．．		520	736
1，200	779	818	664	870	852	863	868	637	890
1， 100	914	960	784	1060	1004	1004	1025	752	1047
1，600	1049	1097	894	1226	．．．．．	．．．．．．	118：3	869	1200
1，800	1185	1241	1008	1395		．．．		984	
2，000	1323		1124				．	1098	
Total breaking weight in lbs．	9270	6290	10，580	8820	6390			10，114	6348
Break＇g weight 11 lbs ．per sq． in．									
$\left.\begin{array}{cc} \text { Coeflicient } & \text { of } \\ \text { elasticity } & \text { in } \\ \text { lbs..................... } \end{array}\right\}$									

Results of tension tests on specimens 1 to 7 cut out of Douglas Fir Beam X．

	\bigcirc		\％		
	$\frac{\text { 关 }}{\text { 家 }}$		发	－	－
			${\underset{E}{E}}_{\underset{G}{E}}$	＋	¢
			$\begin{aligned} & \stackrel{\rightharpoonup}{y} \\ & \underset{\sim}{\infty} \end{aligned}$	芯	E－
	$\frac{\text { 卷 }}{+\frac{ \pm}{2}}$		$\begin{aligned} & =\underset{0}{8} \\ & \stackrel{y}{6} \end{aligned}$	－	旲
			$\begin{aligned} & 9 \\ & \underset{N}{N} \end{aligned}$	（1080	cis
			$\begin{aligned} & 8 \\ & \stackrel{8}{0} \\ & =1 \end{aligned}$	$$	cock
	一竞		$\stackrel{\Sigma}{2}_{\infty}^{\circ}$	N O－ $=$	¢
		N్స			

Results of repeatedy loading tonsion specimens 2 and 5 cut out of Doughas Fir Beam X. (Fig. 119.)

Results of tension tests on specimens $1,2,5$ cut oul of Beam X , and of repeatedly loading specimens 3, 4, 6 cut ont of same Beam. (Fig. 119.)

Results of tension tests on specimens cut out of Douglas Fir Bean X, and of repeat-

Loads in lis.	For. ward.	Return.	$\underset{\text { For- }}{\text { ward. }}$	Return.	$\underset{\text { Far- }}{\text { warl. }}$	$\mathrm{t}_{\text {eturn }}$	${ }_{\text {Fur- }}$	$\underset{\text { For- }}{\text { ward }}$	${ }_{\text {For- }}^{\text {Ford. }}$	Returu.	$\underset{\text { Fur }}{\text { ward. }}$	Return	For
100	0							0	0				
200	58	\cdots						69	78				
400 600	17.1 299	172	172	-16	17i	179	179	21.4	193	29	222	228	22
500	417	410	412	413	416	118	417	168	430	158	4:3	463	$4{ }^{4}$
1900	$53 \pm$							602	545				
1200 1400	654	656	(13\%	659	660	665	661	731	760	680	(880	689	
1400 1600	776 894						${ }^{860}$	875				
1500	1019	1019	1023	102:	1027	1027	1029	1121	100.5	101:	10170	1017	1020
							11.3:3		1120	1120			1138
Total hreak'g	7030							7700	9270				
Total hreak'g w'ght in lis.	97.18							1,11.40	13,07!				
Bras weight													
$\left.\begin{array}{l} \text { in thes per } \\ s, q, i n \end{array}\right\}$	2,294, 250							2203150	22,9,63511				
coeflic'nt. of													
elasticity in lbs.													

Results of teusion texts on specimens 1 to 6 cut ont of Doughs Pir Beam XII, and of repeatedly loaling specimen 3 cut ont of same Beam. (Fig. 120)

Resulte of repeatedly subjecting to tensile stress a specimen eut out of Beam XV. (Fig. 122.)

Results of repeatedly subjectiog to teusile stress a specimen cut out of Beam XV. Fig. 122.

Results of tebsion tests on specimens 1 to 11 cut out of Douglas Fir Beam XVII. (Fig. 123.)

Results of tension tests on specimens 1 to 3 cut out of Douglas Fir Beam XIX．（Fig．124．）

Loads in lbs．	$\begin{gathered} 1 \\ \text { Extr. } \end{gathered}$	$\underset{=1}{0}$	$\begin{gathered} \underline{2} \\ \text { Extr, } \end{gathered}$	$\stackrel{\dot{\theta}}{\underline{E}}$	3 Extr．	$\stackrel{\dot{C}}{\Xi}$	$\begin{array}{c\|c\|} 1 & \dot{y} \\ \text { Extr. } & =\underset{\sim}{\|c\|} \\ \hline \end{array}$	$\begin{gathered} 2 \\ \text { Extr. } \end{gathered}$	$\begin{gathered} 3 \\ \text { Extr. } \end{gathered}$	获	$\begin{gathered} \mathbf{l} \\ \text { Extr. } \end{gathered}$	\mid	3 Extr．
100	0	\cdot		．．			0 ．	0	0				
200	50		50		58		$57 . .$.	50	61		58		78
400	190	．．	183		212		$190 .$.	153	190		179		235
600	320	．．	290		315		$296 .$.	279	339		276		358
800	448	．．	38.4		425		422 ．．	400	478		327		490
1，000	589	．．	520		550		544 ．．	520	－ 620		479		$1 ; 2$
1，200	741	\cdots	619		661		665 ．	$6+2$	760		534		75
1，400	864	．．	730		790		782 ．．	766	898		69\％		881
1，600	1，008		869		902	．．	$901 . .$.	590	1，04］		795		1，01：
1，800	1，128	0			1，03．1		1，033．．	1，008	1，142		898		1，148
2，000		3	1，090				1，151 0	1，1．10	1，240	0	1，100		1，276
2，200		，					．．．．．．．	言気家			1，101		
2,500		9	．．．．．．．．				．．．． 5			10		．．	
＂，160		1				．	．．．．．${ }^{\text {．}}$				1，30s		
3，000		1.1	．．．．．．．．．．	12	．．	is	．． 10		F	1 ii ，	．．．．．．．	1	
：3，500		19		16		19	．．．111			9：3	．．．．．．	11	
4，000		25	．．．．．．．．	21		24	．．．18			24.		16	
1，500		29	．．．．．．．．	26		30	．．．． 23			36	．．－．	21	
5，000		3：	．．．．．．．．	31		35	$\ldots 29$	5	${ }^{5}$	11	．．．．	27	
5,500		423		36		39	……．．．${ }^{\text {a }}$			51	．．．．${ }^{\text {a }}$		
13，000		49	．．．	40	．．．．．．．．．	43			三－Era	39）	．．．．．．		
6，500			．．．．．．．．							70		11	

Lomis in lus．	Readings taken liy							
	Fxienmomelar．		$\left\lvert\, \begin{aligned} & \text { Itule } \\ & \hline \left.\begin{array}{l} \text { Fing } \\ w^{*} r \\ \hline \end{array} \right\rvert\, \end{aligned}\right.$	1．xir．Hule	Exir．	ISunt	Mextr．	Hule
	Forwaral．	$\begin{array}{l\|l} \text { lie- } & \begin{array}{l} \text { For } \\ \text { lurn. } \end{array} \\ \text { waral. } \end{array}$						
100	0	（6i） 0	．．．．	$0 . .$.	11	\ldots	0	
200		． 69	．．．	10．］．．．．	116	．．．	113	
（114）	212	291220	．．	291．．．．	355		349	．．．．
dill	391	－ 360	．．	45：	5is）		600	
810	624	iil 198	\cdots	$620 . . .$.	918		880	
1，000	tifi：	－$\quad 126$	．．．	810 ．．．．	1，244	0	1，229	
1.200	R06	853775		1，011 ．．．．	．．．．．．		1，5：39	0
1，400	948	918		1，23－1．．．				
1，500				．．．．．．．．．	．	10		5
1.600	1，090	1，11＊1，050	．．．	1．12S ．．．．				
1，800	1，239	．．．．． 1,199		1，593．．．．				
2.000	1，785	1，34： 1,340	0	1，7：31 0	$\underset{\sim}{2}$		\pm	14
$\underline{2.500}$			7	．．．．．． 6	$\stackrel{1}{6}$		\＃	25
：3，000			12	．．．．．． 11	EN		\cdots	37
：3，500			17	．．．．．．18 18	E		\％	50
$1: 000$			22	．．．．．． 24	\pm		$\stackrel{0}{0}$	60
4，500			30		\＃		里	
5,000			37	．．．．． 411	$\bar{\square}$	－	충	
\％，500			42	．．．．．． 80	＂		ㄹ．	
6，000			50	．．．．．． 56	荘		䨖	
6,500			56	．．．．．． 63				
7，000			61	．．． 76			\pm	
7，500			70	．．． 82			\cdots	
8,000			85	．．．．．． 92			［	
$\left.\begin{array}{c}\text { Total lireak } \\ \text { ing wegihts in }\end{array}\right\}$								
lbs．	8.2 .10			8，100．．．．	1，830		4，480	
Br＇king wgl．）								
$\begin{aligned} & \text { in lbs. per sq. } \\ & \text { in. } \end{aligned}$	11，565			11，09\％．．．．	2，485		6，157	
Coefficient of				11，06．．．．				
elastieity in lbs．$\{$	2，005，050			1，336，300 ．．．．	916，640		923，890	
$\left.\begin{array}{l}\text { Time of lest } \\ \text { in nimutes．}\end{array}\right\}$	44			：35 ．．． 1	14		27	

Results of tension tests on specimens cut of an old Douglas Fir stringer，Beam XXII．：and of the repeated loading of auolher specimen cut out of the same Beam．

Results of tension tests on specimens cut out of Old Spruce stringer，Beam LVII．（Fig．128．）

$\begin{gathered} \text { Loads } \\ \text { in } \\ \text { lbs. } \end{gathered}$	Readings taken by												
	Extr．	$\stackrel{\square}{3}$	Extr．	$\stackrel{9}{\underset{z}{\underset{z}{x}}}$	$\underset{\text { Extr. }}{1}$	$\stackrel{2}{\text { Extr. }}$	$\stackrel{\text { ¢ }}{\underset{\sim}{\#}}$	$\begin{gathered} 3 \\ \text { Extr. } \end{gathered}$	$\frac{\stackrel{y}{x}}{=1}$	$\underset{\text { Extr. }}{4}$	$\stackrel{\text { gin }}{\square}$	$\stackrel{5}{\text { Extr. }}$	$\stackrel{\text { ® }}{\#}$
100	0	．．	0		0	0		0	．．	0		0	
200	132	．	130	．．．	102	109		100	\ldots	100	．	75	
400	362	．	376	．	324	317		286	\cdots	263	\cdots	220	
600	614	．	603		592	535	\cdots	455	\cdots	431	\cdots	369	
800	855	．	843		949	818		619		640		525	
1，000	1，121	．	1，071	\cdots	1，179	1，130		－34	－	817	\cdots	678	
1，200	1，442	0	1，303	0	1，416	1，340	0	1，017	\cdots	1，022		829	
1，400	．．．．．．．．							1，060		1，169		979	
1，500	．．．．．．．．	7		8		．．．．．．．			．	1，160	\cdots	979	
1,600 1,800	．．．．．．．．．	．		．．．		．		1，289	0	1，356	0	$\cdots \mathrm{M}, 124$	．
1,800 2,000	．．．．．．．．				．．．．．．．．	．．．．．．．．						1，252	0
2,000 2,500	．．．．．．．．	19	．	18		．．．．．．．．	19	．\cdot ．	7		8		2
2,500 3,000 3,500	．．．．．．．．	32	．．．．．．．．	29			31	．	12		13	．．．	8
3,000 3,500	．	45	．．．．．．．．	39			46	．\cdot	20	．．．	20	．．．	13
3,500 4,000	．\cdot	57	．．．．．．．．	50		気家，	56	．	29	．．．	29		20
4,000 4,500	\cdots	69	．．．．．．．．	62		응			39	．．．．．	38	．．．．	2
4,500 5,000	．．．．	82		75		\cdots			49	．．．．．．	46	．．．	32
5,000 $\mathbf{5 , 5 0 0}$	．．．．．．．．	99		89		$\stackrel{\square}{0}$			60				39
5,500 6,000		．．		105					71				48
16,000 6,500						\＃			81				56
6,500 7,000						＝			92				64
$\begin{aligned} & 7,000 \\ & 7,500 \\ & 8,000 \end{aligned}$						T．							72
8,000 8,500						$\overline{7}$							80
8,500 Total breaking weight													88
in Total breaking weight $\}$	5，500		5，700		6，830								9
in lbs．${ }_{\text {Breaking weight in }}$	厄，		¢，${ }^{\text {a }}$		6，830	5，600		6，970		7，080		9，000	
liss．per bq．in．weight in	7，662		7，9＋1		9，564	7，739		10，069		10，175		12，626	
Co－efficient of elasti－ city in lbs．	1，032，050		1，202，350		1，025，850	1，069，350		1，818，950		，577，900			
Time of test in minutes．	18		17		16	17		18		－16		20	

Results of tension tests on specimens cut out of Old Spruce stringer, Beam LX. (F゙ig. 129.)

Lond	Readings faken by			
$\begin{gathered} \text { in } \\ \text { lbs. } \end{gathered}$	$\begin{array}{c\|c} 5 & \stackrel{\Phi}{E} \\ \text { Extr. } & \end{array}$	$$	$\begin{gathered} 8 \\ \text { Exir. } \end{gathered}$	$\stackrel{3}{\underline{\Xi}}$
100	0 ..	0 ..	0	
200	54.	127.	90	
400	191 ..	$276 .$.	259	
600	$344 .$.	468 ..	445	
800	497 ..	652 ..	610	
1,000	657 ..	870 ..	780	
1,100		9600		
1,204	$811 .$.	950	
1,300	\cdots	.	1,040	0
1,400	967			
1,500	1,040 0	$\ldots \mid 5$		
1,600		5
1,800	. 5	8
1.900 11		
2,000	. 9	11
2.300 18		
2,400	. 14	. ${ }^{\text {- }}$...	17
2,700	-	... 25	,	
2,800	.. 20	23
3.100		. 31	.	
3,200 225	...		29
3,500	. \cdot	.. 37		
3,600 31	35
3,900 45	
4,000	...35	…....	41
4,300 4,400 40	c...... 		49
4,700 57		
. 1,800 48		54
5,000 50	. 61		57
5,400	 ${ }^{\circ}$		63
$\therefore 500$	 70		
6,000	 80		
-6,500)	 88		
Total breaking weight in lbs.	8,100	6,750	5,600	
Breaking weight in lis. p. sq. in.	11,445	10,20G	8,004	
Co-efticient of elasticity in lus.	1,830,650)	1,547,350	1,647,150	
Time of test in miautes.	22	31	22	

Resalts of tension-testio on specimens cut out of a 2 in. $x 4$ in. Red Pine scantling, and also of the repeated loading of another specimen cut out of same seautling. (Fig. 131.)

Readings taken ly

	Extr.	Inule	Extr.	Extr	Extr	Rule	Exir.	Rute
- Loads in			Forward.	$\begin{gathered} \mathrm{Re}-1 \\ \text { turn. } \end{gathered}$	$\left\lvert\, \begin{gathered} \text { For- } \\ \text { waril } \end{gathered}\right.$	$\begin{gathered} \text { For } \\ \text { cord } \end{gathered}$		
100	0		0	23	0	.	00	
200	60		58		55		56	
400	190	179	187	173		182	
600	311	286		279		306	
800	$4: 32$		391	401	396		433	
1,000	553		495		492		559	
1,200	(778		600	614	599		682	
1,400	804	708		712		812	
1,600	929	816	837	816	942	
1, 200	1053	927	925	...	1074	.
2,000	1179	. . .	1035	1045	1039	1202	
2,200	1306		1143		1142		1:35	
$\pm, 400$	1429	0	1257	1237	1257	0	161	0
3,000		5				5	6
3,500		12				10		12
4,000		18				1.4	18
4,500	21				19		$\underline{28}$
5,000		28			23		28
5.500	30				29		33
6,000	35			33		40
6,500	41			39	.	45
- 7,000		49			43		50
7,500		52				50		55
8,000		57				52		60
8,500		132			60		69
9,000						62		74
Total brk'r 9,500								
$\left.\begin{array}{c}\text { Total brk'y weight } \\ \text { in lbs............. }\end{array}\right\}$	9,00n		9,280				9,500	
$\left.\begin{array}{r}\text { Breaking weight in } \\ \text { lbs. per sq. in.... }\end{array}\right\}$								
	12,689		12,775				14,3i2	
Co-efficient in elas- $\}$ ticity in lbs....... Time of test in min	2,279,850		2,55.4,150				2,247,350	
	24		120				30	

Results of repeatedly loading specimens 2, 8 and 9 eut out of White Pine Bean XLVIII. (Fig. 131A.)

Specmens 2 and 8 filed at two vections simultaneously. Specimen 8 , after the reading indicated by a * was allowed to rest under the
minimulond of 400 its. for an interval of $2 \frac{3}{4}$ hours. When the loading was resumed the reading was $.00324^{\circ}$ in.
out of same Beam, (Fig. 121s.)
Results of testing speeimens 1 and 2 eut out of Red Pine Beam XXXI, and of repeatedly loads sper

	Measurements laken ly Extensometer.														
100 200	9	9	17	$8{ }^{\text {d }}$	92					0) ...					
400	215	29	351	190	290	329	32	$3 \cdot 19$	341	220		277	277	288	\%
600 800	319	488	571	31.3	489		518			269			27	280	280
1,000 1,200	6,4*	${ }_{8}^{5154}$	1,005		${ }_{6}^{689}$		$7{ }^{39}$	${ }^{2} 2,3$	${ }^{501} 541$	533	551	547	561	552
(1,400	\%	8.49	1,229	6993)	1,087	i,087	1,102	1,io2	1,113	${ }_{776}{ }^{69} 9$	
	1,067	24		${ }_{925} 9$				937.					
tal treak-				1,084			\cdots		1,096	1,096	1,109	1,109	1,117
Total treak-													
inge weight in $\}$	6,	6,928	,620	7,910	5,592			6,790					
in. lus. per eq. $\}$, 225		274		8,090					9,508					
Cocreficient of															
flastieity in lbs.	1,06,500	1,421,900\|	1,237,500	58,801\|	,452,200					1,953,					

SIIEAIRING STRFNGTH.

Tin "ine experiments, to determitue the shearing strength of timbers, con siderable difficulty was found in preparing suitahle test-picees which would not at the same time be liable to n large bending action. Block a were prepared ns shown by sketches A, B and C; but unless the sides were sufficiently strongly elamped, as in Fig. A, the specimens almost invariably opened at M, under an effect chiefly duo to bending. The clauping, ayain, introduced a compression, which rendered it impossible to obtain the true shearing stress.

Alter a number of experiments, more satisfactory and reliablo result.s were obtained by preparing test-nieces ats shown by Figs. E and 1). Tho benling action is by no means eliminated, and, generally speaking. it is practically impossible to frame imber joints subjecten to a pure shear only. The shearing strensths, which are of importance, are the resistances alng planes tagential and radial to the aunular rings An cxamination of the test-pieces shows that the shears are invariably alone these planes.

Thus it will be observed that in the tangential shears, the fibre, both hard and soft, is sheared radially; in the radial shears tangentially, and invariably through the soft fibre.

With t st-pieces of the form shown by Fig. 1), the shearing strengths along the tungential and ralial planes are obtained, while the compound shearing strength, which may be considered as the resultant of the tingential and radial shears, is obtained with the test-picees of the form shown by Fig. F.

The following I'ables sive the results of experiments carried out with test-picces and holders of the form described :-
table of the tangential, madial and compolind shearing strengtils of notglas fir spechmens cut out of tae same

BEABr.

Specimen.	Shearing stress per sq. in. in a direction tangential to the annular rings.	Specimea	Shearing stress\| per sq. in. in a direction at riglit angles to the annular rings.	Specimen.	Cumponnd shears.
No. 1	55:3	No. 3	560	*No. 13	471
No.	668	No. 5	484	*No. 14	536
No. 4	411	No. 7	544	No. 16	629
No. 6	595	No. 8	480	No. 16	657
No. 10	454	No. 9	436		
No. 11	415	No. 12	480		

Douglas Fir.		Red Pine.	
Specimell.	Shearing strenglh per square inch.	Specimen.	Shearing streugth per square inct.
No. 1	802 lbs.	No. 1	648 lbs.
No. ${ }^{\text {\% }}$	727 "	No. 2	553 "
No. 3	886 "	No. 3	572 "
No. 4	795 "	No. 4	570 "
No. 5	706 "	No. 5	731 "
No. 6	649 6	No. ${ }^{\text {b }}$	534 "
No. 7	746 ،	No. 7	671 "
No. 8		No. 8	698 :
		No. 9	740 "
		No. 10	757 ،

Not being altogether satisfied with these results, as the text-pieees did not seens to be of sufficient size to give results which could be cotsidered of stardard practical value, new holders, with spherical seats, were designed, and are shown in Fig. F.

With these holders, tests can now be made upon specimens in whieh the shearing surfaee las a width of 8 ins. and a depth limited by the tensile strength of the timber, the maximum shearing area being 96 sq . inches. The web of the specimens is usually about . 7 in, in thickness, so that the depth should not exceed. 35% 施 t being the tensile and s the shearing strengths in lbs. per sy. in. The duth of the si:oulder forming the bearing fir the pressure required to produce the shear is about $\frac{1}{2}$ inch, and is made of only sufficient scerional area to resist failare by compression, as the deeper the shoulder the greater will be the bending action introduced.

From the Tables giving the results of the shearing experiments, the following inferences may be drawn:
u. The shearing strength of the timbers is much lese near the heart than at a distance from the heart.
b. Generally speaking, the sharing strength increases with the weight per eubie foot.
c. The shearing strength inereaves with the density of the annular rings, or rather with the proportion of hard to soft fibre.
d. A failure sometimes occurs, for which it is diffieult to find a complete explanation.

For example, the two speeimens from Beam \mathbf{X}, and designated in the Table by a $*$, were preeisely similar io dimensions and in weight, and also occupied precisely similar positions relatively to the heart in the stick from which they were eut. One of these specimens failed under a shear of 470.24 lbs . per sq . in., and the other under a shear of 301.84 lbs . per sq. in., so that the shearing strength of the latter was more than 35 per cent. less than that of the stronger specimen. A careful examination of the surfaces of fracture showed no visible differenee in the specimens, and the only possible conclusion to be drawn seems to be cither that one of the
specimens might hatve been drier than the other, and was therefore detfecut in the element of water, or that the shoulders of tho weaker specimen, at the end at which the failure oceured, were not eut very parallel with each other, and thus the greater part of the load mighe have been concentrated on one side.
e. As a result of the experiments, the average shearing strength of Doughas Fir in ltos. per square inch is 411.61 , 377.14 or 403.605 according as the plate of shat is tangential, at right ingles, or oblique to the annular rings.

In practice, therefore, it will be safe to alopt as the arerage coefficients of shearing strength for Douglas Fir. 400 lb . per sq. inch for shears tangential and oblinue to the anmular rings, and 375 lbs . per sq. iach for shears at right ansles to the annular ringe.

Note.-The numbers in brackets at the cad of the total shears in the following Trable eorrespond to the numbers in the diagrammatie sections, al d iudicate the psition in the stick from which the speeimens are taken. The letter H designates a specimen taken from the heart

Table of Shearing Strengths in lbs. of specimens cut out of various Beams.

Beam.	Tangential.		Radial.		Oblique.		Av. w'ght in lbs. Per cub. ft.
	Total.	Per sq. in.	Totai.	Per sq. in.	Total.	l'er sq. in.	
$\underset{(\text { Fig. } 132 .)^{\text {I }}}{ }$	$\begin{array}{ll} 13,530 & (1) \\ 16,610 & (1) \end{array}$	$332 \cdot 94$ 40.49	20,020 (4)	$413 \cdot 40$	16,760 17,120 (2) (2)	$401 \cdot 22$ 412.41	33.52
	${ }_{16,170}^{16,61)}$	40. $375 \cdot 47$			17,120 14,720 18	412.41 393.41	
	16,200 (5)	$370 \cdot 37$			17,820 (3)	$393 \cdot 11$ $425 \cdot 05$	
	17,210 (1)	$412 \cdot 48$			15,820 (2)	$372 \cdot 01$	
	16,440 (1)	$400 \cdot 09$			17,630 (3)	36064	
$\underset{(\text { Fig. 133.) }}{\mathrm{X}}$	- ${ }^{\text {a }}$ A ${ }^{\text {erage }}$	$=382 \cdot 65$			19,570 (3) Average	367.89 $=.55 .94$	
	19,380 (2)	$435 \cdot 31$	14,450 (1)	$=\begin{gathered}461 \cdot 20 \\ 36\end{gathered}$	${ }_{16,156}^{\text {Average }}$ (3)	$\begin{aligned} &= 455 \cdot 94 \\ & 394 \cdot 53 \end{aligned}$	$35 \cdot 73$
	15,868 16,660	$477 \cdot 24$ $406 \cdot 14$	H,131 (l)		$19,430^{*}$ (1)	$\begin{array}{r} 394.53 \\ 170.24 \end{array}$	$85 \cdot 73$
	16,660 (2)	$406 \cdot 14$			12,424* (1)	$301 \cdot 84$	
					21,501 (1)	$436 \cdot 36$	
					24,880 (4)	511.41	
	Average	$=439 \cdot 56$	A verage	$=301 \cdot 2.3$	$\xrightarrow{23,760 ~}{ }_{\text {A }}$ (4)	+486.29	
$\underset{(\mathrm{Fig} .134 .)}{\text { XII..... }}$	17,970 (1)	433.64	21,300 (2)	$457 \cdot 50$	20,300 (1)	$=\begin{aligned} & 133 \cdot 41 \\ & 398 \cdot 15\end{aligned}$	$3 \cdot 57$
	19,760 (1)	416.51	21,300 (2)	$458 \cdot 14$	21.5001 (1)	47\%-67	$3 \cdot$-57
			16,160 (2)	$37 \cdot 51$			
	A verage	$=425.07$	17,100 (2)	= $\begin{aligned} & 159 \cdot 79 \\ & 138 \cdot 31\end{aligned}$	Averare		
	16,984 (3)	- $462 \cdot 15$	${ }_{\text {17,886 }}$ Aserage	$={ }_{4}$	Averare	$=437$	[1.81
	14,552 (3)	$395 \cdot 22$	16,980 (2)	$441 \cdot 04$			$31 \cdot 81$
	15,330 (4)	$414 \cdot 78$	14,954 (2)	388.41			
	15,210 (4)	$409 \cdot 97$					
	17,440 12,940	$424 \cdot 70$ 443	14,920 15,350 1$)$	355.18			
	12,860 (4)	$428 \cdot 80$	13,260 .(2)	$334 \cdot 20$		-	
	19,600 (3)	$478 \cdot 37$	14,610 (2)	$350 \cdot 55$	r.	
	Average	$=432 \cdot 22$	Average	$=3 \times 5 \cdot 86$			

douglas fir-Contimued.

Beam.	Tangential.		Radial.		Oblique.		Av. w'ght in lbs
	Total.	Per sq. in.	Total.	Per sq. in.	Total.	Per sq. in.	Per cul. f .
	19,280 (3)	$475 \cdot 60$	15,260 (1)	$36 \cdot 1 \cdot 49$			36.73
(Fig. 136.)	17.176 16,170 160	$4 \geq 3.00$ 420.00	1, 17,165 (1)	401-50			
	16,926 (4)	420.00 437.40	17,944 16,050 12$)$	${ }_{387} 831$			
$\underset{\text { (Fig. 137.) }}{\text { XVIII. .. }}$	Average	$=439 \cdot 50$	Average	$=397 \cdot 46$			
	10,-2				359.	
					13,120 (9)	44^{4}.	
	.				14,840 (12)	$482 \cdot 5$	
					12,595 (13)	402.	
				12,500 (8)	${ }_{389} 38.7$
				11,525 (9)	$347 \cdot 2$	
	Averase	$=446 \cdot 55$			19,420 (10)	$382 \cdot 1$	
(Fig .13 S,)	16,040 (6)	$409 \cdot 1$	14,430 (4)	$375 \cdot 7$	${ }_{14,470}$ Average	$=400 \cdot 15$	
	20,390 (7)	+22.6	14,220 (i)	388.9	20,830 (8)	${ }_{442}$	$38 \cdot 4$
	18,470 (13)	$395 \cdot 3$	14,590 (7)	411.8	17,200 (9)	371.	
	14,6.50 (13)	340.	15,700 (4)	$414 \cdot 6$	13,860 (5)	$362 \cdot 7$	
	19,580 (13)	416.5	15,200 (-)	.112. 5	15,500 (6)	$437 \cdot 6$	
	18,865 20,760 (13)	410 440.8					
	${ }^{\text {A }}$ verage	$=.104 \cdot 90$	Average	- $101 \cdot 90$	Average	$\stackrel{\text { - }}{=1010}$	
(Fig . 139.$)$	${ }^{21,030}$ (7)	3688	15,4.5 (4)	$276 \cdot 7$			
	21,190 (7)	380.4	14,270 $17,6,30$ (4)	$232 \cdot 0$ $378 \cdot 2$			
	26,050 (7)	$451 \cdot 1$	19,040 (4)	33806			
	Average	$=107.0$	Average	$=309 \cdot 3 \%$			
	18,700 (5)	330.	16,540 (1)	$291 \cdot 0$	16,050 (1)	$282 \cdot 1$	
	17,400 (2)	307.8		273-2			
	17,800 (2)	394. $=350 \cdot 60$	16,560 (3)	$307 \cdot 1$			

0, 1 DOUGLAS FHR.

N. B.-I wish to express my acknowledgment of the help given to me by Mr. C. B. Smith, Ma.E., in carrying out many of the experiments and in checking the calculations. I have also been ably assisted by Mr. Withy. combe, the foreman of the Laboratories, who has devised many mechanical devices which have greatly facilitated the work.
(an

;

