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FOREWORD 

This report represents a summary of structural research efforts by 

many groups within and outside the United States Navy. Significant con- 

tributions during the past 15 years have been made by personnel at the 

David Taylor Model Basin, under the direction of Dr. E. Wenk, Jr., 

Mr. E. E. Johnson, Commander S. R. Heller, U.S.N., and Dr. A. H. 

Keil, and by submarine hull designers at the Bureau of Ships, notably, 

Messrs. J. Vasta, O. Oakley, F. Dunham, and A. Stavovy. The results 

of theoretical studies on shell structures conducted at the Polytechnic 

Institute of Brooklyn under financial support by the Office of Naval 

Research and the Bureau of Ships have made available to the naval archi- 

tect some well-known methods of analysis which have proven very 

successful in the field of thin-walled aircraft structures; these investi- 

gations were under the general supervision of Professors N. J. Hoff and 

V. L. Salerno and are presently being continued under the supervision of 

Professor J. Kempner. Finally, our British counterparts at the Naval 

Construction Research Establishment, Dunfermline, Scotland, namely, 

Mr. S. R. Kendrick and Dr. A. Bryant formerly at NCRE have also made 

significant contributions toward a better understanding of the behavior and 

more scientific design of submarine hull structures. Throughout the 

discussion, recognition is given to those individuals who have made 

specific contributions in this field. 

This paper is an extension of a series of lectures presented by the 



author as part of a short course entitled, ''Analysis and Design of Modern 

Pressure Vessels," held at the University of California in Los Angeles 

during 16 - 27 July, 1962. 
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NOT ATION* 

Radius to median surface of the cylindrical shell 

Uniform thickness of the shell 

Center-to-center spacing of reinforcing ring frames 

Faying width of ring frames in contact with shell 

Unsupported shell length between adjacent ring 

frames 

Actual cross-sectional area of ring frames 

Applied hydrostatic pressure 

Modulus of elasticity 

Poisson ratio 

Flexural rigidity of shell 

Axisymmetric elastic radial deflection 

Axial coordinate along length of cylinder 

Arbitrary constants 

Shell flexibility parameter 

Measure of beam-column effect 

Radius to centroid of ring frame 

Normal stress 

Ratio of ring-frame area to cross-sectional area of 

one bay of shell 

Ratio of ring-frame faying width to frame spacing 

Functions of pressure loading and geometry of shell 

* Basic symbols are given in the order in which they appear in the text 

and figures. 

vili 



u(x, 6);v (x, 6);w(x, 8) 

Yield strength of shell material 

Number of half waves in longitudinal direction of 

buckled cylinder 

Additional displacements in axial, circumferential, 

and radial directions, respectively, for asymmetric 

buckling 

Circumferential coordinate along periphery of cylinder 

Number of full waves in circumferential direction of 

buckled cylinder 

Overall length of stiffened cylindrical shell 

Moment of inertia of ring frame cross section 

Moment of inertia about longitudinal axis through 

centroid of ring frame 

Moment of inertia about radial axis through centroid 

of ring frame 
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ABSTRACT 

This report reviews the "state of the art'' in the field of pressure hull 

structural analysis. Equations and formulas developed from consider- 

ations of thin-shell theory to describe the elastic and inelastic behavior of 

ring-stiffened cylindrical shells under the action of hydrostatic pressure 

are summarized. 

No direct comparison between theory and experiment is included 

herein; however, only those analyses are included which represent the 

most up-to-date knowledge, in the opinion of David Taylor Model Basin 

structural analysts, and which have found firm experimental confirmation. 

This presentation should not be interpreted as representing an exhaustive 

review of all available stress and stability analyses for ring-stiffened 

cylindrical shells under hydrostatic pressure, but merely one which 

includes only those formulations which are essential and which have found 

extensive use in the design of cylindrical pressure hulls. 

A few introductory remarks on some of the more promising high- 

strength hull materials and on new and untried hull configurations and 

construction techniques presently being investigated at the Model Basin 

are also presented. 



INTRODUCTION 

An interesting discussion of the role played by the submarine during 

World War II and the changes which have taken place in design philosophy 

since 1941 may be found in Reference ie together with some comments on 

the circumstances which have led to these changes. A digest of funda- 

mental principles underlying the design of submarine pressure hulls is 

given in Reference 2, from the point of view of the naval architect. 

Wenk? has presented an outstanding report in the open literature on 

the feasibility of pressure hulls for ultradeep running submarines; he dis- 

cusses some of the motivations for operating deeper, and presents the 

results of strength-weight calculations for different hull configurations 

and promising new hull materials. Although very little test data had been 

available with which to check the underlying assumptions and compare the 

various design concepts proposed by Wenk, his paper is an outstanding 

contribution to the literature in that it documents new ideas and construc- 

tion techniques which may constitute the basis for realizing the deep- 

diving submersible. Other feasibility studies, notably those conducted 

about the same time at the Bureau of Ships and the David Taylor Model 

Basin, have led to similar results and to the formulation of detailed pro- 

grams of research into new and untried hull structures and materials 

which are presently underway at the Model Basin. In Reference 4 Wenk 

sets forth some basic principles of pressure-hull engineering which, in 

* References are given on page 134. 
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general, represent the state of knowledge as it was understood at the 

time his paper appeared. 

The purpose of this report is to present and discuss in detail some of 

the physical concepts and mathematical formulations for the stress and 

buckling of cylindrical hull structures. No attempt will be made to 

discuss so-called design criteria or even to outline a design procedure 

because this could possibly infringe on the realm of classified information. 

Furthermore, it is beyond the scope of this short presentation to give 

extensive comparisons between experiment and theory, but it will be 

implied that only those theories and/or empirical formulas will be con- 

sidered which are finding wide use and which represent the best knowledge 

of structural analysts at the Model Basin. It is assumed that the readers 

possess some familiarity with the subject content covered in such courses 

as advanced strength of materials, theories of elasticity and plates and 

shells, and differential equations. 



GENERAL CONSIDERATIONS 

Before and during World War II submarines” had been developed 

that could cruise on the surface at high speeds and had long ranges of 

operation under diesel power. They could dive when the occasion arose 

to attack ships and/or avoid detection, but they had to operate at greatly 

reduced speeds and for short periods of time on battery power while 

submerged until the need for air and battery-power replenishment re- 

quired them to surface. Thus they and the post-World War II submarines 

shown in Figures 1] and 2 could be termed surface ships which were capa- 

ble of submerging. The long and narrow hull configuration shown, per- 

mitted high surface speeds but offered only marginal underwater perform- 

ance. Improvements in radar and sonar detection techniques almost 

immediately dictated that the underwater ships of the future be capable of 

prolonged submergence at greater depths and higher underwater speeds. 

Therefore, in 1946 the Navy started a serious effort to develop a 

nuclear power plant for marine use; this effort culminated in the 

NAUTILUS (SSN-571) (shown in Figures 1 and 3) ---- which made it 

possible for man to cruise beneath the surface of the sea for extended 

periods of time. At the same time, a systematic study of the hydro- 

dynamic characteristics of different hull shapes (similar to that conducted 

by the then NACA on airfoil sections) undertaken at the Model Basin led to 

the whale-like hull shape incorporated in the experimental submarine 

ALBACORE (AGSS-569) (shown in Figures 1 and 4), designed to give high 

underwater speeds. 
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Figure 1 -- Outboard Profiles of Various Submarine Hulls 
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Figure 2 -- Post-World War II SS 563-Class Submarine 

Figure 3 -- First Nuclear-Powered Submarine NAUTILUS 
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Figure 5 -- Nuclear-Powered, Ideal-Shape Submarine SKIPJ ACK 
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The marriage of the nuclear propulsion system of NAUTILUS with the 

hydrodynamically ideal hull shape of ALBACORE comprised a combination 

which could be exploited in producing a true submersible. Developments 

in hull structural materials also permitted operations at greater depths. 

These three major breakthroughs have led to the design and construction 

of two types of underwater ships: one, attack submarines of the SKIPJ ACK 

(SSN-585) class shown in Figure 5; and two, the strategic underwater 

deterrent system represented by the POLARIS missile-launching sub- 

marine shown in Figure 6. A more complete discussion of the various 

hull shapes may be found in Reference 2. 

More recent developments, primarily in the area of structural analy- 

sis, and greater confidence in the use of the current hull structural mate- 

rial (HY-80), which is a high-strength, low-carbon, quenched and temper- 

ed martensitic steel with a nominal yield strength of 80,000 psi, have led 

to the design and initiation of construction of the DOLPHIN (AGSS-555), 

which is a deep-depth experimental submarine. Although this design rep- 

resents a major increase in depth capability, it also signifies that practi- 

cally every last bit of strength potential offered by this steel for hull 

structures of submersibles ‘as been exploited. 

In the strength analysis of submarine hulls, the most important 

element of structure, isolated from an otherwise complex structural 

system, is the ring-stiffened cylindrical shell. Conical transition sections 
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Figure 7 -- Possible Modes of Pressure Hull Failure 



are used to some extent in joining cylindrical portions of different dia- 

meters, but they constitute a small part of the total hull structure so 

that some added strength could be allowed without a great sacrifice in 

weight. This is also true to some extent for the closure bulkheads used 

to terminate the cylindrical hulls. Some of the newer configurations 

which are being considered in conjunction with the higher-strength 

ferrous and non-ferrous materials for hulls of future deep-diving vehicles 

will be introduced in a later section of this presentation; however, a major 

part of our detailed discussions will be concerned with the elastic and in- 

elastic behavior and the primary modes of collapse of ring-stiffened 

cylindrical pressure hulls under the action of uniform hydrostatic pres- 

sure. 

Under the action of external hydrostatic pressure, failure of a ring- 

stiffened cylinder may be precipitated by any or a combination of three 

basic modes. The three distinct possible modes with which we will con- 

cern ourselves are indicated in Figure 7; they are: 

1. Axisymmetric collapse of the shell between adjacent ring frames. 

This has been erroneously referred to by others j2as yield failure of the 

shell, but in reality, it is a combination of yielding and axisymmetric 

buckling, or rather inelastic axisymmetric shell instability between frames. 

This mode is characterized by an accordion-type pleat which may or may 

not extend around the entire periphery, and which may or may not occur in 

more than one bay of the cylinder; a typical case is shown in Figure 8. 

10 
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Figure 8 -- Typical Axisymmetric Collapse Mode 

ll 



2. Nonaxisymmetric or asymmetric collapse of the shell between 

adjacent ring frames. This is usually referred to as shell or lobar 

buckling, and since in any good design, the shell is intended to be stressed 

beyond the elastic limit at design collapse, it is in reality, inelastic 

asymmetric shell instability between frames. This mode is characterized 

by inward-outward lobes which may or may not develop around the entire 

periphery, and which may or may not occur in more than one bay of the 

cylinder; a typical case is shown in Figure 9. 

The basic difference between Modes 1 and 2, therefore, is in their 

axisymmetric and asymmetric patterns, respectively, and the question as 

to which may be the more critical of the two is governed by the thickness- 

radius ratio, frame spacing-radius ratio, frame cross-sectional area to 

shell cross-sectional area ratio of the geometric configuration, and the 

shape of the uniaxial stress-strain curve of the shell material. Imperfect 

circularity of the shell and deviations from straightness of the cylinder 

generators may also play some role in the interbay collapse of a ring- 

stiffened cylinder. 

3. Overall asymmetric collapse of the shell and frames together, 

which may extend over the entire length of the ring-stiffened cylinder. In 

addition to the parameters mentioned above, the occurrence of this mode 

is strongly influenced by the moment of inertia of the ring frames and the 

ratio of the overall length to the radius of the cylinder. Imperfect circu- 

larity of the ring frames plays an important role here since it can precipi- 



Figure 9 -- Typical Asymmetric Collapse Mode 
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tate a premature overall instability of long cylindrical hulls. Here, as in 

the case of the first two modes, instability of the elastic type is of interest 

only as adatum. It is inelastic overall instability which is of prime con- 

cern in designing an adequate hull; a typical case is shown in Figure 10. 

Earlier authors!»3 have offered the 'one-hoss shay" concept, in which 

the best ratio of strength-to-weight is obtained when the hull structure is 

so designed that the three modes of collapse are expected to occur simul- 

taneously, as the one for optimum design. However, this is a rather 

nebulous statement, and the approach even considered oversimplified if it 

is based on purely elastic considerations of instability because the 

"ignorance factors'' or margins between the various modes would then 

merely be guesses, and may not necessarily be constant for the wide 

range of interest. Optimum design must be based on rational consider- 

ations of inelastic behavior, so that the "ignorance factors'' can then be 

representative of the variability introduced by certain intangibles which 

are not easily considered in a theory. 

To make structural problems of the type encountered in the analysis 

and design of pressure hulls for submersibles amenable to mathematical 

solution, the theoretician must invariably resort to idealizations and 

approximations of the actual physical conditions. In this way, the designer 

can only hope to realize upper and/or lower bounds on ultimate load-carry- 

ing capacity. Some of the intangibles which influence static strength and 

complicate the problem so that appropriate design formulas cannot be 

14 
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Figure 10 - Typical General-Instability Collapse Mode 

15 



derived on purely theoretical grounds are those inherent in the fabrication 

process itself since: 

1* Initial stresses, such as those due to rolling and welding of flat 

plating into the cylindrical form, can be of such magnitude so as to cause 

premature yielding and thus appreciably influence static collapse strength. 

ae Even the residual stresses which are introduced during the metal- 

fabrication process of rolling billets into flat plating and eventual heat 

treatment may also be of considerable magnitude. 

3. Initial imperfect circularity (out-of-roundness) and axisymmetric 

longitudinal imperfections (deviations from straightness of the cylinder 

generators) introduce localized stresses which can lead to premature 

yielding and thus influence static collapse strength. 

4. Even so-called isotropic and homogeneous materials (such as 

steel, and aluminum and titanium alloys) may not be so, to varying degrees 

depending on the plating thickness. 

Finally, the elasto-plastic restraints afforded the shell plating by the 

stiffening ring frames are of a highly complicated nature due to varying 

degrees of localized yielding prior to collapse so that the actual boundary 

conditions may be different for each case, and would certainly deviate 

considerably from the ideal conditions (i.e., simple supports, clamped, 

%* These considerations can have a great influence on the shape of the 

stress-strain curve for the material as it exists in the fabricated struct- 

ure. They can lead to an effect commonly referred to as the 

Bauschinger Effect. 

16 



plastic hinges, etc.) assumed in any theory. 

Therefore, in view of these complications, the development of satis- 

factory design criteria must first be predicated on rigorous mathematical 

theory with its concomitant idealizations, and then, empirical factors 

derived from test data can be introduced to "adjust" the theories to take 

account of those many variables which could not or were not considered. 

This is the procedure which has found extensive use in many fields for de- 

veloping empirical design curves, and it is also proving very valuable to 

the naval architect in the design of pressure hulls. In what follows, con- 

sideration will first be given to the various theories which form the basis 

for predicting the elastic and inelastic behavior of ring-stiffened cylin- 

drical pressure hulls, and then some indication as to how these theories 

can be used to predict collapse strength. 

Following this there will be a general discussion of the strength-weight 

potential offered by a variety of ferrous and nonferrous metals, and even 

some of the new materials such as fiber-reinforced plastics which are 

being considered for future hull structures of deep-diving vehicles. This 

final section will also deal with some of the new and untried construction 

techniques and geometric configurations which are presently receiving 

detailed investigation. 

17 



AXISYMMETRIC BEHAVIOR OF A RING-STIFFENED 

CYLINDRICAL PRESSURE HULL 

ELASTIC DEFORMATIONS AND STRESSES 

In the past, many criteria for predicting the collapse strength of a 

ring-stiffened cylindrical pressure hull have been based on an accurate 

knowledge of the biaxial state of circumferential and longitudinal stress 

which results as a consequence of the uniform pressure loading. Although 

it recently has come to be appreciated that the axisymmetric mode of 

collapse is in reality a combined yielding and buckling phenomenon,* the 

prebuckling deformations and stresses are still a prime requisite to an 

analysis of this and the other (asymmetric) modes of instability. 

The problem of determining the amount of external pressure that can 

be resisted by a cylindrical shell structure before failure is precipitated 

by axisymmetric yielding in the shell plating has been considered by many 

6 T investigators, among them Von Sanden and Gunther,’ and Viterbo.’ How- 

ever, the criteria developed by these authors for the maximum bending 

and circumferential stresses in the shell plating and the peripheral load 

supported by the ring frames do not reflect properly the 'beam-column!"! 

effect of the hydrostatic pressure onthe structure. This effect is in 

reality the interaction between longitudinal bending and longitudinal 

compression as a consequence of the axial portion of the hydrostatic pres- 

sure loading. After close examination of these theories by the group at 

* Another way of looking at this is to consider it as axisymmetric buckling 

at a reduced modulus due to the stress state. 

18 



the Polytechnic Institute of Brooklyn, Salerno and Pulos around 1950 modi- 

fied the earlier analyses to properly include the complete effect of the 

pressure load. What has come to be accepted as the most up-to-date 

solution and discussion of this problem is given in Reference 8. For our 

purposes here, it suffices to give the governing differential equation and 

its general solution, the boundary conditions invoked, and finally, the 

expressions for the shell and frame stresses which are later used in 

formulating some of the accepted and often used collapse criteria. 

The differential equation governing the axisymmetric elastic defor- 

mations of a thin-walled circular cylindrical shell of finite length and 

under the action of uniform external hydrostatic pressure (see Figure 11) 

is 
2 

dx Qiao RZ 

where the necessary nomenclature and definitions used here and in the 

equations to follow are indicated in the Notation. A derivation of Equation 

(1) may be found in either References 8 or 9. 

2 
The term ae which renders the solution of Equation (1) to be a 

dx 

nonlinear function of the pressure is the 'beam-column effect!’ which was 

not considered in the analyses of References 6 and 7. The importance of 

this term is further emphasized by the fact that it is the necessary in- 

gredient for extracting a criterion for axisymmetric elastic buckling of a 

LY) 



cylindrical shell supported by ring frames of finite stiffness; this is dis- 

cussed more fully in Reference 8. 

It can be shown that the general solution of Equation (1), which is a 

linear, ordinary differential equation with constant coefficients, can be 

written in the form 

Re 

w(x) = A sinh Ayx +Bcosh Ay x +C sinh A,xtF cosh A,X - ara 1- v/2) (2) 

The characteristic roots \; and 3 of the fourth degree auxiliary equation 

which results when w(x)ve\* is substituted into Equation (1) are given by 

2 
Ayihs «2 = () + (>) =i (3) 

where 

4 
ieaeye: L 

= Ee == 4 

' ia’ a) eas o 
and 

4 Binley 
(5) 

V3(-y2) 

is the critical load for the axisymmetric elastic buckling of an unstiffened 

cylindrical shell under the action of uniform axial pressure (see Refer- 

ence 9). 

An examination of the roots A; and }3 reveals that four possibilities 

for the ratio p/p exist and that they all influence the nature of Equation 

(2). These are 

20 



VILA 

P _P 
pF = 1-Ope = 0 (6) 

The case of greatest importance and the only one which will be considered 

here is that defined by p/p <1. 0. A complete discussion of all possible 

solutions defined by Equation (6) is given in Reference 8. 

The integration constants A, B, C, and F appearing in Equation (2) are 

evaluated from the following boundary conditions: 

(a) Evenness of the function w(x) dictates A= C = 0 

(b) Zero slope at the ring frames: dw :0atx= ue a rcisae 7) 

(c) Compatability of the shell and frame radial deflections: 

E ae dw op ila 

—— (Aggs + bh)w = 2D —~ -pR——-pb(l-v/2) at x =>=- 
Belay Hee dx 

The boundary condition (c) results from the fact that the total load sup- 

ported by a ring frame per unit circumferential length is 

|Q*] = 2Q, + pb(1-v/2) (7) 

and the transverse shear force Q, is that transmitted by the shell to the 

frame at their juncture and is given by 

3 d-w  pR ‘| 
Q= fo, Sar att gan et ie L (8) 

21 



Also, the effective frame cross-sectional area Agff, appearing in boundary 

condition (c) is defined by the following for internal and external framing, 

respectively: 

R 
Aeff = Af (z-,) 

(9) 

Aere = Ag es) Reg 

where R is the radius to the median surface of the shell and Rog is the 

radius to the centroid of the frame cross section. 

The total longitudinal stress Oye in the shell is given as the sum of the 

longitudinal bending component 6,, plus the longitudinal membrane com- 

ponent o,y, i-e., 

6 24S (10) 
2 Day) Cee Zin 

so that enforcing boundary condition (a) in Equation (2) results, in 

eee an h} aH hr Ee (11) (0) =H cos x+ cos xi - 

XG 2(1-v2) ! : 2 

The total circumferential stress %} in the shell is given as the sum 

of the circumferential bending component vo plus the circumferential 

membrane component d p LCins 
oM 

ve dew iE pR 
(95 a Oe Se TO” (12) 

2(1-v2) dx? 
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so that 

3 Hs vEhK{ E SBTC 
6,0= se a = + ——— |Bcosh Ay + R Cosh \,* (13) 

i 2(1-v") 2(1-v ~) 

where the subscripts o and i in Equations (11) and (13) refer to the outer 

and inner fibers of the shell plating in conjunction with the plus and minus 

signs, respectively. 

The total radial ring-load Q* is found from Equations (7), (8) and (2) 

to be 

3 L L o* = aay Pa + FMsinh\, = -pb(1-v/2) (14) 

When boundary conditions (b) and (c) are invoked, the integration con- 

stants B and F are determined and the following expressions for the more 

important shell stresses are derived in terms of the convenient notation 

of Reference 10: at midbay between adjacent ring frames (i.e., at x = 0) 

6: Xm 
ie ele exbma (15) 

Sy 2 Sy 

©°m fo} fo} 

oy ( Oy ® u 
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and where 

ey 
h 

ob Mf 

5 F3 (17) 

(1 8) 

is the circumferential stress in an unstiffened cylinder 

of infinite length, 

is the longitudinal bending stress in the shell at midbay 

between adjacent ring frames, and 

is the circumferential membrane stress in the shell ata 

ring frame. 

These latter two stresses are given by 

and where: 

bm = ; (Lv /2)< Fs (19) 
Oy l-y2 x+B+(1-p)F 1 

Pee Venice (20) 
Ou X+p+(1-p) Fy 



In Reference 11, Lunchick and Short modify the theory of Reference 8 

to include the effect of initial axisymmetric deviations from straightness 

of the cylinder generators. If it is assumed that this deviation possesses 

constant curvature between adjacent ring frames so that it can be express- 

ed analytically by a second-degree parabola and assumes a maximum 

amplitude A (+inward), then the stress expressions, i.e., Equations (15) 

through (18), respectively, become in the present notation 

OX Om 
DB Oo Dn eng eae =) aF4 (15) 

Oy 2 Ni-v2 eoulevie 

5.0 
Om 

Wh Saab 4RAT (x+1)F 2 A 
X +Bp4+(1-B)F1 

22% es aN (4 aF4 (16') 
l-y L“(1-y/2) \ * 

Ox OF i is 0.91 1+ 4RA ae aF3 (17) 

Gal 2 We ate 

fo} pee) iat [i+ AR A Hees 

fe) 2 cog 

u L’ (1-y/2) 

ty [0.91 Hs __4RA iol aF, (18') 
2 2 x l-y L“(1-y/2) 
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in which the short-hand notation 

(l-v/2)< 

<X+B+(1-p)F] 
a 

has been introduced. For the case of no eccentricity, i.e., A= 0, 

Equations (15') through (18') reduced to the corresponding stress ex- 

pressions given previously. Also, in the same convenient notation, the 

following expression for the total radial load acting on a ring frame per 

unit circumferential length is obtained: 

ra 
mop) Ss 

ie (21) OP = -roovi2)fi op ea 
(aren ((1b—f8} 195) 

which corresponds to the case of zero initial axisymmetric eccentricity. 

In the case of a ring-stiffened cylinder under some loading, such as 

hydrostatic pressure which is of interest in the case here, a portion of the 

deformed shell between stiffeners will act effectively with each ring frame 

to resist direct stress and bending moment caused by the interaction 

between the shell and the frames. A knowledge of this "effective width" 

is of particular interest in a study of the buckling strength of the ring 

itself and in the elastic and inelastic general-instability analyses of the 

entire stiffened cylinder (this problem is considered in a later section). 

It is also important in calculating the stresses in the frame flanges of 

imperfectly circular cylindrical shell structures. 

In Reference 8, Pulos and Salerno discuss the many "effective width"! 

formulas developed by earlier investigators, and they present a formal 

derivation of a new formula to include the "beam-column" effect. Details 
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of this may be found in Reference 8; however it is of interest here to give 

the end result which can be expressed by the following convenient formula: 

fe 2 LE +b (22) 

In Equations (15) through (22) the following F functions (graphical 

solutions for which were first developed by Krenzke and Short in Reference 

10) have been introduced for ease of calculation: 

ny (Aeon ipo = aeee 1,0 1D (23) 

ia) cosh 1,8 sin iy sinh 1,9 cos 1, on 
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Curves of the functions Ee F,,; F3, and F4 may be found in either of 

References 8 or 10. 

The elastic analysis developed in Reference 8 is intended for the 

determination of the deformations and stresses ina typical bay of a pres- 

surized ring-stiffened cylinder composed of many identical bays as shown 

in Figure 11. This longitudinal identity and symmetry between adjacent 

bays is disturbed by the introduction of rigid bulkheads, intermediate deep 

frames, cone and sphere-cylinder junctures, and other contiguous structure 

which goes to make up the pressure hull of a submersible. In these more 

complicated configurations, a more general analysis of the axisymmetric 

behavior is needed. 

Short and Bart have given a general analysis for determining the 

stresses in stiffened cylindrical shells near structural discontinuities. ne 

The formulation includes the possibility that the shell thickness may differ 

in adjacent bays, the stiffness properties of adjacent ring-frames may be 

different, and the spacing between ring frames may vary along the length 

of the cylindrical compartment. The general equations developed by these 

investigators are given in the form of frame and shell matrices to better 

identify the stiffness and response of each element and to facilitate 

numerical calculations. This form of the solution lends itself very con- 

veniently to high-speed digital computers and also permits immediate 

identification of those geometric and material properties which can be 

varied to produce desirable changes in the static response. All the 
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Figure 11 - Symmetrically Loaded Cylindrical Shell with Equally Spaced 

Reinforcing Ring Frames 
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necessary equations and details of the formulation may be found in Refer- 

ence 12; they are not given here because of their length and rather formi- 

dable nature. However, it is worth mentioning here that extensive exper- 

imental evaluation has been obtained of the Short-Bart analysis. For 

13 example, Keefe and Overby ~ present the results of structural model 

tests undertaken to check the "'end-bay" theory Reference 12. Also, 

Keefe and Short!4 present a method for eliminating the effect of end con- 

ditions on the static collapse strength of stiffened cylindrical pressure 

hulls and give experimental verification of the suggested procedure. 

Another special problem of interest to pressure hull designers, and 

one worth mentioning here, is that concerned with the discontinuity 

stresses which arise at the juncture of axisymmetric shells possessing 

dissimilar meridional shape. Raetz and Pulos!? present an analysis for 

determining the elastic deformations occurring at either cone-cylinder or 

cone-cone junctures and discuss several other analyses developed by 

earlier investigators, notably Wenk and Taylor. 

Conical transition sections are used rather extensively to join 

cylindrical hull components of different diameter, and not only is the 

problem of the edge effects on static collapse strength of the ''weakened"! 

bays of concern, but also, the occurrence of high, localized longitudinal 

stresses in these juncture regions is of great concern from the point of 

view of low-cycle fatigue in way of welded joints. Racin? discusses this 

problem and suggests the use of flexible, tapered ring-segments at these 
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junctures to reduce the high longitudinal stresses; he also presents an 

analysis for determining the elastic behavior of these structural elements 

and gives results to indicate the degree of reduction which can be realized 

in these high stresses. 

FAILURE CRITERIA FOR AXISYMMETRIC 

COLLAPSE PRECIPITATED BY YIELDING 

We will now consider the question of how the biaxial stresses (defined 

by Equations (15) through (20)) ina pressurized ring-stiffened cylinder can 

combine to produce axisymmetric collapse precipitated by yielding of the 

shell plating. Although these stresses are based on equilibrium con- 

siderations only and do not reflect any buckling state, they can and do 

predict good results when used in conjunction with appropriate theories 

of failure even though, strictly speaking, axisymmetric collapse is 

associated with an instability phenomenon. Formulas for predicting 

axisymmetric collapse precipitated by yielding based on various theories 

of failure are summarized in Reference 8, 

The simplest formula devised for the design of pressure vessels is 

the so-called "boiler formula". This formula may have some merit in 

predicting the bursting strength of internally pressurized unstiffened 

cylindrical tubes, but it is unsatisfactory (for other than comparative pur- 

poses) in the design of pressure hulls in which instability and the influence 

of reinforcing ring frames play a dominant role. 

Equation (28) gives the pressure at which the circumferential 

membrane stress in an unstiffened cylinder of mean radius R and 
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thickness h just reached the yield stress oy of the material. 

Pp = %yh/R (28) 

Equation (28) does not reflect in any way the strengthening effect of the 

transverse ring frames on the average circumferential stress. However, 

an estimate of this effect can be found by assuming that the cross-section- 

al area of the frames is spread out and its orthotropic stiffness effect is 

"felt'' in the form of a thicker unstiffened cylindrical shell. This requires 

that the actual thickness h in Equation (28) be replaced by 

Acre 

L¢ 
lol ar 

so that we now get the following modified boiler formula: 

Poy = Pyh(lt Aett/Lgh)/R (29) cl 

From the theory of Salerno and Pulos outlined earlier, the maximum 

stresses occur in the circumferential direction on the outside surface of 

the shell plating midway between adjacent ring frames, and in the longitu- 

dinal direction on the inside surface of the shell plating at a frame; these 

stresses can be determined from Equations (16) and (17), respectively. 

Which of the two stresses is the larger depends upon the geometry of the 

cylindrical shell and the reinforcing ring frames, but in most cases of 

interest, it turns out that Oe (0m: However, extensive Model Basin 

tests have shown that the stress [9@0,, is determinative in precipitating 

axisymmetric collapse. Application of the maximum principal stress 

theory of Rankine! / to this stress, i.e., 

= 6 (30) 
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leads to the following expression for the pressure at which yielding begins 

on the outside fiber of the shell plating midway between adjacent ring 

frames: 

———————EEE (31) 

(l-v/2)& ‘ 

ot p+ (1-8) Fy 
where a= 

If the uniaxial criterion of Rankine is applied to the circumferential 

membrane (midfiber) stress obM? i.e., Equation (16) with 9°,p, set equal 

to zero, the following expression for the pressure at which yielding has 

penetrated through the plating thickness is obtained: 

fo} yh/R 
32 

l-aF2 (32) 
Po5 = 

In deriving the expressions for p.j, Pc3, and pcs, it has tacitly been 

assumed that a uniaxial state of stress exists in the shell plating whereas, 

in reality, a biaxial state exists. More realistic criteria for axisymmetric 

collapse can be derived from the energy-of-distortion theory! which grew 

out of the analytical work of Huber, Von Mises, and Hencky. Since the 

octahedral shear-stress theory gives the same results as the energy-of- 

distortion theory and permits the use of a more familiar quantity, such as 

stress, the former theory will be used in what follows. For a biaxial state 

of stress at midbay, i.e., midway between adjacent ring frames, defined 

by the principal stresses Syyy and Sm, the octahedral shear-stress is 
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given by 

U} el 6 2,62 02 2 
tG> {exe dm) + “xm*t om (33) 

However, since according to this theory inelastic action at any point ina 

body under any combination of stresses begins only when the octahedral 

shear-stress T. becomes equal to ((2/3)%,, then Equation (33) leads to the 

following: 

2 2 
°xm tm 7 °Xm%@m (34) 

Essentially two distinct criteria can be derived from Equation (34) 

depending upon whether the outer-fiber stresses or mid-fiber (membrane) 

stresses at midbay are used. For yielding on the outer surface of the 

shell plating, when the appropriate stresses © °mand 9 Om from 

Equations (15) and (16), respectively, are substituted into Equation (34), 

the following criterion is obtained: 

Cyh/R 35 
- (35) 

3422 Paes F,(1- Te vty ye eal 2alF, vF,P Ip 

If it is assumed that axisymmetric collapse is precipitated by the 

yield zone having penetrated through the shell thickness, when the approp- 

riate stresses Sy,, and %,, from Equations (15) and (16) with °,p,, set 

equal to zero therein, respectively, are substituted into Equation (34), the 

following criterion is obtained: 
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Lunchick!® working at the Model Basin derived another criterion of 

failure for predicting axisymmetric collapse which is based on the plastic- 

hinge concept. He made use of the Hencky-Huber-Von Mises theory of 

yielding, i.e., Equation (34), and allowed for the plastic reserve strength 

after yielding begins in the shell plating at midbay. Lunchick developed a 

formula for the pressure at which a complete plastic hinge has formed at 

midbay. Since the combined stress gradients at the frame locations are 

steeper than those at midbay so that complete plastic hinges form much 

earlier at the frames, this TMB plastic-hinge theory, in reality, gives the 

pressure at which the shell fails as a three-hinge mechanism. Although 

this mechanism is not physically possible in the case of cylindrical shells 

as it is for beams, it does lead to predictions of a collapse pressure (p.g) 

which agree well with experiment in certain ranges of geometry. A 

complete discussion of this theory together with some comparisons to 

experimental data may be found in Reference 18. For our purposes here, 

it suffices to give the salient results which can be used for computation. 

It can be shown that the ratio of circumferential bending stress to 

circumferential membrane stress and the ratio of longitudinal membrane 

stress to circumferential membrane stress (all stresses considered at 

midbay) can be expressed in the convenient-notation of Reference 8 and 

35 



that adopted here as follows: 

yar, [2-9 

sisal, = Ne (37) 
l-aF> 

Nos ae a oeas (38) 
l-aF2 

In Figure 12, the pressure ratio Pog/Pcb has been plotted as a function of 

the stress ratios, Equations (37) and (38). Thus, Equations (37) and (38) 

can be used in conjunction with these curves and Equation (35) for pyg to 

determine values of the plastic-hinge pressure p.g for different geome- 

EIsvejsys 

The formulas for predicting axisymmetric collapse precipitated by 

yielding, and given in this section, represent explicit expressions for 

collapse pressure only for the special case of zero "beam column" effect, 

i.e.,¥ = 0, since in this case only are the F functions given by Equations 

(23) through (26) independent of pressure. For the general case in which 

Ve #3 0, the stresses become nonlinear functions of the pressure, and Equa- 

tions (31), (32), (35), and (36) are transcendental in the pressure. How- 

ever, a numerical iteration procedure can be used in which the collapse 

pressures p.3, Pcs, etc. are first calculated for y = 0, and these values 

are then used as the first approximation in the last of Equations (27) to 

determine a value of y. Then, with this value of Y in each corresponding 

case, new values of the pressures Ppo3, Po5, --- etc. can be found. This 
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process can be repeated again, but probably one or two, or at most, three 

iterations are required to obtain satisfactory convergence. 

One important point to be made is that the collapse criteria reflected 

by the expressions for Po3? Ped» Pcb» Pc7» and pcg are inherently based on 

a material which exhibits elastic-perfectly plastic characteristics, so that 

any effects of strain-hardening are neglected. The assumption is made 

that once the yield strength Sy is reached, at the critically stressed mid- 

bay locations according to each of the respective criteria, collapse then 

occurs. 

Another solution for axisymmetric yield collapse of a ring-stiffened 

pressurized cylinder in the presence of the ''beam-column!'"! effect was 

developed by Kempner and Salerno. be Their elastic analysis was pre- 

dicated on the Hencky-Huber-Von Mises failure criterion as applied to the 

critically stressed fiber at the midbay location. For the usual range of 

geometries the yield strength of the material is first reached at the ring 

frames due to the high longitudinal stress on the inner fiber. The authors 

then considered that for loading beyond this initial yielding pressure, a full 

plastic-hinge exists at the stiffening rings. Thus, the additional pressure 

which the shell can support is calculated on the assumption that the shell 

plating is "hinged'' to the ring frames. The maximum additional pressure 

which the shell can support is then based on applying the aforementioned 

failure criterion to the total stress at the midbay location. 
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AXISYMMETRIC ELASTIC BUCKLING BETWEEN RING FRAMES 

In reference 8, Salerno and Pulos derive the following criterion 

which represents an exact solution to the axisymmetric elastic buckling 

problem of a thin cylindrical shell reinforced by ring frames of finite 

rigidity and loaded by hydrostatic pressure: 

A+ B+ (1-f)F, = 0 (39) 
where 

4 cos“n,@ - cos?1,0 

Sou ae! (40) 
2 \socml Oataal} @sin,@ hy 1 ig cost, sin'l, 
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1) 2 

and 

heap al 

Ay BS 

aul (41) 
LARD Sae 

Equation (39) is a transcendental equation to be solved for the critical 

pressure p = pc; for a given shell and ring-frame geometry defined by the 

nondimensional parameters &, pg, and 6. A graphical representation of 

Equation (40) is given in Reference 8 to facilitate the iteration calculations 

required to find the value of p which satisfies the buckling criterion, 

Equation (39). 

In small-displacement theory, the condition for instability of a 
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structure may be obtained by requiring that the displacements become in- 

finitely large at buckling. It is on this basis that Salerno and Pulos arriv- 

ed at the criterion of Equation (39). Since Von Sanden and Gtinther,° and 

later Viterbo, / omitted the beam-column term in the basic differential 

equation, Equation (1), then this would correspond to y= 0 in the more 

complete formulation of Reference 8. In sucha case, Equation (39) would 

no longer have any meaning because the pressure p would not appear. 

A more complete analytical development and discussion of the 

axisymmetric elastic buckling problem is given by Short and Pulos in 

Reference 20. 

AXISYMMETRIC INELASTIC BUCKLING BETWEEN RING FRAMES 

The collapse criteria which were developed earlier and were identi- 

fied by the pressures Po], Po3, Pc5» Pch» Pc?» and pcg are, strictly speak- 

ing, valid only for an elastic-perfectly plastic material. As it has already 

been stated, the axisymmetric collapse mode is in reality associated with 

the phenomenon of buckling at a reduced modulus, so that the strain-hard- 

ening characteristics as reflected by the secant (E,) and tangent (Et) 

modulii must be considered. 

On the basis of the deformation theory of plasticity, Gerard“! de- 

veloped a general set of differential equations of equilibrium for cylin- 

drical shells in which the coefficients reflect the plasticity or state-of- 

stress effects. Lunchick, specializes these equations for the case of 

short-length cylindrical shells subjected to hydrostatic pressure. “4 In 
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this way, he derives an expression for the inelastic buckling of ring- 

stiffened cylindrical pressure hulls. 

The basic differential equation used by Lunchick in his analysis is 

2 
4 ; mi A 

Ayo + ory?) PRS [A cal 0 AB) -V THe pee -V w = 
1 dace Egh° dax2 R2h2 2 Aj 

where the plasticity coefficients A,, A>, Aj? and the variable Poisson 

ratio y are expressed in terms of the elastic modulus E, secant modulus 

E,, tangent modulus E;, elastic Poisson ratio vg, and the prebuckling 

stress ratio k by the following expressions: 

(1-Et/Es) 2 A, = 1 (2-v) - (1-2y)k (43) 
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By assuming a deflection function corresponding to simple supports at the 

ring frames, i.e., 

w' (x) = W sin TOUS (48) 

Lunchick was able to derive the following expression for the buckling 

pressure: 

(50) 

In order to carry out numerical caluclations to find p., from Equa- 

tion (49), a graphical solution must be resorted to. First, for a given 

geometry, the membrane state of stress at midbay defined by %y,,, and 

com is determined using Equations (15) and (16), respectively, with 9%,p., 

set to zero therein. These stresses are then used in the Huber-Hencky- 

Von Mises theory of failure to compute a stress intensity 9;, i.e., 

1 
0 of 5 f Cee le 51) 

Next, the uniaxial stress-strain curve for the material which comprises 

the cylinder is entered with the value of stress given by Equation (51), and 

values of E, and E; are found for this stress level. A value of pc; can 

then be computed from Equation (49), with the aid of all the other equations, 

(43) through (47), needed to first find Aj, Az, Aj2,yv,... etc. By repeat- 
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ing this process of computation, a curve of p vs On can be found using 

Equation (51), and a corresponding curve of p., vs 0; using Equation (49). 

These two curves are then plotted using pressure as the ordinate scale 

and stress intensity as the abscissa scale; the intersection of two curves 

gives the desired inelastic buckling pressure. A detailed discussion of 

this procedure is given in Reference 23 together with some pertinent 

curves for certain coefficients to help facilitate numerical computations. 

ASYMMETRIC BEHAVIOR OF A RING-STIFFENED 

CYLINDRICAL PRESSURE HULL 

Generally speaking, the three basic modes of collapse for ring- 

stiffened cylindrical pressure hulls are phenomenologically related to and 

influenced by instability. Therefore, the real problem of collapse is one 

in which the stress state and the propensity for instability mutually inter- 

act. Since premature collapse can be precipitated by instability, it is 

necessary that efficient design be based on judicious proportionment of 

the geometry for a given material, so that instability is prevented from 

occurring until the material is stressed well into the inelastic range. 

Rational methods of analysis are therefore needed to accurately pre- 

dict the elastic buckling of stiffened cylinders as a starting point from 

which the more complex interaction problem termed "inelastic buckling"! 

can be solved more readily. Previous authors have suggested that an 

approach to efficient design may be based on the use of arbitrary factors 

or margins between buckling and desired maximum strength. Although 

this appears to be an oversimplification of the problem and represents a 
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philosophy not adhered to at the Model Basin, the starting point still goes 

back to rational methods of analysis for the elastic-instability problem. 

At the outset, it is important to state categorically that, contrary to 

the belief of others, elastic instability of stiffened cylindrical shells under 

hydrostatic pressure is not obscured by the ''snap-through"' mechanism. 

This is in contrast to the problem of cylinders under axial compression or 

torsion loading where, as has been pointed out by Thielemann in an 

excellent paper on the nonlinear theories of buckling of thin cylindrical 

shells,“* even for the case of no imperfections, the effects of large defor- 

mations are important. 

A detailed investigation of the 'Durchschlag' problem by Kempner 

et al*°? for cylindrical shells of short length which are perfectly circular 

and initially stress free has provided theoretical confirmation of the ade- 

quacy of classical small-deflection theory for predicting elastic-instability 

pressures. Experimental studies conducted at the Model Basin have pro- 

vided test data which substantiate these theoretical findings; see for 

example, Reference 26. A more detailed discussion of the elastic-insta- 

bility problem for ring-stiffened cylindrical shells is given by Reynolds,“! 

with some emphasis on large-deflection theory versus small-deflection 

theory for the hydrostatic pressure case. Another excellent discussion of 

the instability problem has been given by Fung and Sechler. 78 

For the reasons emphasized above, no detailed consideration of the 

large-deflection problem will be given in this presentation, so that our 
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attention will be focused mainly on the small-deflection theories. 

ELASTIC ASYMMETRIC (LOBAR) SHELL 

BUCKLING BETWEEN RING FRAMES 

The first attempt at a rigorous solution of the elastic lobar-buckling 

problem of a thin cylindrical shell on the basis of the theory of elasticity, 

and later on the basis of thin-shell theory, was made by Southwell. “7 

Although he concentrated his efforts on the case of radial pressure loading 

only, his work paved the way for the theoretical developments by those who 

30 and Tokugawa. 31 An excellent followed after him, notably Von Mises 

discussion of the most important theoretical formulas developed by these 

three authors is given in Reference 32. 

For our purposes, it suffices to say that the first satisfactory solution 

to the elastic buckling problem of a thin cylindrical shell of finite length 

is attributed to Von Mises. Ly He assumed simple-support boundary con- 

ditions at the ends of the shell, thus enabling him to obtain an exact 

solution to the thin-shell equations in closed form. Ata later date, 

Windenburg and Trilling >@ simplified the original theoretical results of 

Von Mises, and this led to the development of some convenient formulas 

for design purposes. Some details covering both of these accomplish- 

ments will now be reviewed. 

Instead of using the original notation of Von Mises, recourse will be 

made to the terminology and form of solution given by Timoshenko, de- 

tails of which can be found in Reference 33. In terms of the displace- 

ments u, v, and w, the three differential equations of equilibrium for an 
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element of a cylindrical shell subjected to the simultaneous action of axial 

compression (N,) and uniform lateral pressure (q) are given by 
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for the case of uniform external hydrostatic pressure, b> = 5 ou and 

pR 
Ne 3 

Equations (52) are linear and homogeneous so that a solution for the 

displacements u, v, and w in terms of sine and cosine functions is 

possible. Von Mises assumed the following buckling displacements which 

satisfy the conditions of simple support at the ends of the cylinder: 
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where n and m are real integers denoting the number of full waves around 

the circumference and the number of half waves in the longitudinal direc- 

tion, respectively, which form when the cylinder buckles. The buckling 

shape, Equation (54), may be considered as being the first terms in a more 

general double trigonometric-series solution. This general type solution 

will be discussed later in this section, but for our present purposes, 

attention will be restricted to the solution of, Equation (54). Substituting 

these expressions in Equations (52), we obtain for A, B, and C three 

homogenous linear algebraic equations. For a solution other than the 

trivial one (A = B = C = 0), the determinant formed by the coefficients of 

A, B, and C in these three. algebraic equations must vanish. Expanding 

this 3x3 determinant and after some simplifications where only the linear 

pressure terms are retained, the resulting equation for calculating the 

critical values of pressure can be put in the following form: 

C, +C,a8 C36, +C, 6, (55) 
: : 2 
in which 

(er ine 
ay 
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= (n2492)* - zjynos artnet (4-v hatin? | $2(2-v)Mn* + n4 (56) Q i) 
' 

Cy = n@(n4n2)2 - (nt432n4) 
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N= = (56) 

18; s L-b 

Assuming that the shell is thin and keeping only the principal terms in 

Equation (55), Von Mises obtained the following simplified formula for the 

critical value of the pressure: 

Pp apie Bee URES C2 A eRe ene il Be ark mua [n24(mR/;)2 ]2 We) he ae (29) 

It is important to point out that the above equation results as a conse- 

quence of the assumption that n is large, say on the order of 10, so that 

then (n*-1) ~n‘, This implies that Equation (57) is not accurate for very 

long shells which buckle into the elliptic shape, i.e., n = 2, or even for 

relatively long shells which may have a critical buckling mode correspond- 

ings Lom =s os 4 MOrmeventor Hor such cases), which are not usually encoun- 

tered in ring-stiffened cylindrical pressure hulls, recourse must be made 

to the more exact formula developed by Von Mises; see Equation (6) in 

Reference 32. For the limiting case of a cylinder of infinite length, i.e., 

Leo , which buckles in the oval shape as does a ''free'! ring under radial 

loading, the following simple formula of Bresse and Bryan (see Reference 

p -—=_(2) (58) 
STAG EAS) Wa 

Furthermore, Equation (57) is based on the fact that m = 1 which implies 

32) is applicable: 
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that the cylinder buckles into a half-sine wave in the longitudinal 

direction. It can be shown numerically that lower values of p., result 

for m =] than for m> 1. Physical intuition also leads us to accept this 

because the buckling shape corresponding to m = 1 is associated with 

lower energy states than those for m > 1], at least for the case of hydro- 

static pressure loading; however, this may not be so for the case of axial 

loading. 

An examination of Equation (57) reveals that the critical pressure is 

dependent on the value of n. This means that for a given geometry of 

shell and for a given material, calculations must be conducted for dif- 

ferent values of n in order to find that value of n which minimizes the 

pressure. It is this minimum pressure one seeks. To facilitate this 

calculation process, Von Mises developed a set of curves; these can be 

found in either Reference 30 or Reference 32. 

Another approach to this minimization is to do it analytically and 

thus find an expression for p., which is independent of the parameter n. 

Windenburg and Trilling did exactly this in Reference 32, and the final 

convenient formula they arrived at is given by 

5 

iin i 1 (afar)? (59) 
mcr 3/4 te h yl eee) — ee 2 

Calculations carried out for a range of L/2R from 1/8 to 2 and a range of 

h/2R from 0.002 to 0.007, for assumed values of E = 30 x 106 psi and 
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y = 0.3, have shown that the maximum difference between predictions 

using Equations (59), (57), and the more exact formula, Equation (6), 

given in Reference 32 was about 3.5 percent. 

The next major contribution to the panel buckling problem of ring- 

stiffened cylinders was that of Von Sanden and T&lke. By the use of 

trigonometric series, 28 they outlined a general solution to the same dif- 

ferential equations used by Von Mises. This approach also permits a 

closer approximation of the true prebuckling deformations given by the 

theory of either Reference 6 or Reference 8. However, Von Sanden and 

Tolke did not attempt to work out the mathematical details of the general 

solution, but they did develop a solution which was one step better than that 

of Von Mises. They assumed a two-term trigonometric approximation for 

the variability of the prebuckling circumferential stress with the axial 

coordinate, and with this they showed that the ''simple-support functions" 

used by Von Mises for the buckling deformations permit satisfaction of 

the differential equations. 

It is of interest to us here to give the final formula developed by 

Von Sanden and Tolke for purposes of comparison with that of Von Mises. 

In the notation adopted for this presentation, it can be shown to be as 

follows: 

Soe 
Por = R 

4 2 ("R/j) 7 (h/R) Pa) 60) 

Sees nee Cee 
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Equations (60) and (57) are of identical form; the only difference between 

3 il 35 7) 
(2 eat eee 

which multiplies n” in the denominator of Equation (60). The quantities 

the two is the factor 

5m and 69 appearing in Equation (60) can be determined from the stress 

expressions given in an earlier section. It can be shown that using 

Equations (16) and (18), respectively, 

(e} 

fo) sr-8 iE 
m P Ir, 

u 

' (61) 

Of particular interest is the fact that when b ME = ee then °m = S58 I, 

and this reduces Equation (60) exactly to (57); the assumption that the pre- 

buckling stress pR 

fam 

was used by Von Mises. For closely framed cylinders where the 

stiffening effect is appreciable, Equation (60) may predict elastic buckling 

pressures on the order of as much as 50 percent higher than those of 

Equation (57). This suggests that the predictions from Equation (60) be 

used in any comparison between theory and experiment but that some 

conservatism in design of hulls can be introduced by the use of Equation 

(57). 

A major contribution to the solution of shell-buckling problems was 

made by the group at the Polytechnic Institute of Brooklyn working under 
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the general direction of N. J. Hoff. In particular, Salerno, Levine, Pulos, 

and, later, Shaw and Bodner, developed formulations for elastic lobar 

(panel) buckling of ring-stiffened cylinders by application of the principle 

of minimum potential energy (Rayleigh-Ritz method). The approach was 

quite distinct from that used by the earlier investigators who attempted 

solutions of the differential equations. The energy method involves the 

assumption of buckling functions which satisfy some chosen ideal boundary 

conditions, and these are then used to satisfy the condition of minimum 

energy which implies satisfaction of the differential equations in this 

sense. It is of interest here to outline some of the more important 

results with regard to the application of this very potent method in the 

solution of shell-buckling problems of interest to naval architects. 

First, expressions for the elastic strain energy in the shell and also 

in the ring frames are written in terms of the displacement components 

of a point in the middle surface of the shell. Then, expressions for the 

work done by the external pressure forces acting on the cylinder are also 

written in terms of these displacement components. Various displacement 

configurations for the buckled shell are then introduced to approximate 

the actual case. After the total potential is expressed in terms of these 

displacements containing arbitrary mode-shape parameters, the energy 

is then minimized with respect to these parameters and this process leads 

to A set of linear homogeneous algebraic equations. In order that a non- 

trivial solution to this system of equations exists, it is necessary that 
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the determinant of the coefficients vanish. This condition leads toa 

determinantal equation for finding the critical pressure at which elastic 

buckling of the cylindrical shell will occur. Some of the more important 

details will be illustrated later in connection with the elastic general- 

instability problem, the formulation of which follows along similar lines. 

However, the general energy approach to solving shell buckling problems 

is discussed in great detail by Timoshenko in Reference 9. 

By using this energy method, Salerno and levine’ derived the 

Von Mises solution as a starting point. They also developed solutions for 

the cylindrical shell having clamped edges, and later attempted to include 

the bending and torsional restraints afforded the cylindrical shell by ring 

35 : 
However, certain frames possessing finite elastic properties. 

assumptions in their work led to some inconsistency in final results, so 

that a number of investigators after them used their basic formulation 

to get improved solutions. Shaw, Bodner, and Berks 2° have reviewed 

the whole problem of the energy approach to the panel-instability failure 

of reinforced cylindrical shells in an attempt to clarify some of the 

questions which arose in regard to the analytical work of Salerno and 

Levine. 

The most recent and most useful solution derived by application of 

the Rayleigh-Ritz energy method is that by Reynolds. Bt He developed a 

solution in which the influence of the elastic ring frames on both the pre- 

buckling and buckling deformations was included. The use of a several- 
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term Fourier series, the convergence of which is dependent upon the shell- 

flexibility parameter 8 or B, to express the deformations permitted a 

closer approximation to the true state of stress prior to buckling. By 

including the torsional as well as the bending energies of the ring frames, 

Reynolds was able to consider all degrees of elastic support afforded the 

shell by the ring frames, ranging between and including the two extreme 

cases of simple supports and clamped conditions. 

The energy integrals and some of the intermediate mathematical 

operations used by Reynolds are rather lengthy and cumbersome so that 

these details will not be considered here. However, it is of interest to 

give the final equation from which the critical elastic panel-buckling 

pressures can be computed. Thus, for the most general case of interest 

to the designer, that of ring frames possessing finite bending and torsional 

stiffnesses, Reynolds derived the following buckling criterion: 

cae oy Se 
Lie peal c= any Plasr pana ey G ee) 

tort be 4, eae ck. Gad: 

where i=1, 3,5, ... and, Nis the summation index specifying the 

number of terms to be taken in the Fourier expansions to get varying 

degrees of numerical convergence. The other quantities appearing in 

Equation (62) are defined as follows: 

nc 
4 pR pea H, = neaaL AHS (n °-al] +n ‘uh +8 nt 2- vy) = U RY (63) 

RO Lh ( ie) 
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The geometric quantities R, h, lg, AG aes) EtG. are defined at the begin- 

ning of this report. The pressure p,, denotes the elastic buckling load 

for a cylinder which buckles axisymmetrically in a shape defined by 

Wb: AW COS wesc 

Furthermore, Reynolds uses the notation that internal pressure is posi- 

tive and external pressure is negative; therefore, for the particular case 

of external hydrostatic pressure loading which is of interest to us, itis 

necessary to substitute negative numbers for p wherever it appears in 

Equations (62) through (71). The multiplying factor (1-p/p,,) appearing in 

Equation (69) reflects the ''beam-column effect" introduced by Salerno and 

Pulos into the basic axisymmetric stress formulation. 

It becomes obvious upon examination of the buckling equation (62) 

that it is transcendental in the pressure. Reynolds~! suggests a graphi- 

cal solution by which the left-hand side of Equation (62) is plotted against 

N+1 
pressure. Such a plot will have zero - intercepts, one for each root 

of Equation (62), and an equal number of asymptotes corresponding to the 

vanishing of each of the denominators D;. The first asymptote which 

results as a consequence of the denominator D, of Equation (62) vanishing 

corresponds to the buckling pressure for a single-wave simple support 

buckling configuration. The case D3 = 0 corresponds to the buckling 

pressure for a three-wave simple support buckling configuration; and so 

on for Ds = 0, etc. The first "non-singular root" of Equation (62) which 
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occurs between the first two asymptotes corresponding to D, = 0 and 

D3 = 0 is the elastic buckling pressure for a stiffened cylinder with 

elastically restrained edges which buckles in a single-wave configuration. 

A more complete discussion of all the possible solutions of Equation (62) 

together with their physical interpretation is given in Reference 27. 

SEMI-EMPIRICAL FORMULA FOR INELASTIC 

BUCKLING BETWEEN RING FRAMES 

Before we get into the rigorous formulation of the inelastic panel- 

buckling problem, it is instructive to consider the derivation of a semi- 

empirical formula for cylindrical shells which follows along the same 

general development as for columns. The assumptions and underlying 

concepts are not new, but the order and emphasis given them should help 

to clarify a number of questions which have arisen in regard to this 

formula. The basic approach has been given by Trilling and Windenburg 

in an obscure reference in which they review the development of column 

formulas for inelastic buckling and suggest the extension of the same 

concepts for inelastic buckling of ring-stiffened cylindrical shells under 

hydrostatic pressure. 

We start out first with a consideration of the column-buckling for- 

mulas. The well-known Euler formula for the buckling of columns in the 

elastic range is 

Pes (72) 
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and since 

the above equation leads to the following expression for the critical buckl- 

ing stress: 

oj =1 Ep” (73) 
clr 

where 

i'l if Pema 

When the nondimensional variables 

Sor 1 oy 5 : or eee ae 74 Sor Ge 8 AE 1p E (74) 

are introduced, the Euler formula can be written simply as 

1 
S = (75) Cr; 2 

E 
Me 

The Euler formula, Equation (73), is a special case of the more 

, 

general Considere-Engesser formula which may be written as 

Gi Ms 1 Ep (76) 

where E is known as the reduced modulus and is a function not only of the 

slope of the stress-strain diagram but, strictly speaking, also of the shape 

of the column cross section. However, it‘has been shown from rather 

extensive tests that the effect of the column cross section on E does not 
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vary greatly for sections ordinarily used which have an axis of symmetry 

perpendicular to the plane of bending. 

Setting 

c= B/E (77) 

Equation (75) can be modified so that a general column-buckling formula 

applicable in both the elastic and inelastic ranges can be written, i.e., 

T 
s 

cr 2 
Me 

Ss (78) 

Thus, to determine the critical buckling stress from Equation (78), it is 

necessary to know7T, which, in turn, requires a knowledge of the shape of 

the stress-strain.curve. We will now consider a method of determining T. 

Osgood?! has developed the following general column-buckling formula: 

1+ j/2 j 
y Beil iA y 
=l-= 7 

Sep = L 3 \j+2 he (79) 

Different values of the parameter j give rise to parabolas of different 

character. The case j = 2 represents a column formula suitable for 

ductile materials like mild steel. Substituting j = 2 in Equation (79) leads 

to the well-known Johnson parabola, i.e., 

Ls 

cr 45 (80) 

Since the Johnson parabola is an empirical curve which "fits" well the 

experimental data in the inelastic-buckling range for columns of mild 

steel, it affords a means of finding T analytically without knowing the 

actual stress-strain curve. Solving Equations (78) and (80) yields the 
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following expression for t as a function of the critical stress: 

T = 4S.,(1-Ser) (81) 

Equation (81) constitutes one of the important relations to be used in the 

derivation which follows. 

In the preceding it has been shown that, in general, the critical buckl- 

ing stress for columns is given by 

S..=7TS (82) 

In the elastic case, T = 1 and Equations (78) and (82) reduce to the well- 

known results of Euler. 

At this point of the derivation, a basic empiricism is introduced. In 

the case of plate structures, a slight modification of the form of Equation 

(82) in which T is replaced by\T is in better agreement with experiment 

so that 

5... & \ESene (83) 

Trilling and Windenburg offer what appears to be a plausible explanation 

for the reduction in the critical buckling stress implied by Equation (83) 

for plate structures in the effect of lateral restraint offered by the second 

dimension. They go on further to say that "this substitution of VT for T 

in the case of tubes under end-loading is supported theoretically by 

Geckeler.'' Although these earlier investigations had not been extended to 
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the case of tubes under both radial and end-loading, recent experimental 

results lend some further validity to the use of Equation (83) for cylin- 

drical shell structures subjected to hydrostatic pressure. 

Elimination of tT from Equations (81) and (83) leads to the following 

expression for the critical stress in the inelastic buckling range for plate 

and shell structures: 

Sie ayetha tee US dis 4. (84) 

a 1 +5 Ser 

In particular, Equation (84) is of interest in deriving an empirical formula 

for inelastic buckling of cylindrical shells. 

In analogy to the Euler formula for elastic buckling of columns, we 

have the Von Mises formula, i.e., Equation (57), or the Von Sanden and 

Tolke formula, i.e., Equation (60), or even the Reynolds solution, i.e., 

Equation (62), for elastic panel buckling of ring-stiffened cylinders under 

hydrostatic pressure. At this point, the form of the equation for the 

elastic buckling pressure pp, is not as important as the assumption that 

the "'average stress'' for buckling in the elastic range is given by 

5 =—— B (85) 

where B is a factor which can be determined from some appropriate 

formula resulting from the general expression for circumferential stress 

at midbay, i.e., Equation (16). The possibilities for B, which reflects the 

reduction in circumferential stress at midbay due to the presence of the 
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stiffening rings over that in an unstiffened cylinder, are given by 

ae OR 
Be=l -alro-ve, a (86) 

-V 

B= 1 -aF, (87) 

where a has already been defined in connection with Equation (31). We 

see that Equation (86) is a consequence of the outer-fiber location, and 

Equation (87) is a consequence of the mid-fiber location. Another possi- 

bility results from Equation (29), i.e., 

= 1 
Bua: aA (88) 

1+ A; Ligh 

The choice is left to the discretion of the designer. 

With Equation (85), the nondimensional stress ratio Scr a appearing 

in Equation (84) becomes: 

cr Pp E E = 
S SS 3g 89 
COR oy dy h/R Co 

Substituting Equation (89) into Equation (84) leads to 

- (90) 
ese ° yh/R 2 Bp? 

Lo saan 
2Pr 

Equation (90) constitutes a more general relation than that developed by 

Trilling and Windenburg, who, in essence, assumed uae They assumed 

that the stress for elastic buckling to be that given by the simple hoop 

formula ¢ = BR, this neglects the stiffening action of the ring frames. 
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There still remains to formulate an expression for the nondimension- 

al quantity S., which, as defined by Equation (74), is the ratio of the 

average stress at buckling to the yield stress. If we assume that the 

same general expression (Equation (85)) is valid in the inelastic range as 

well as in the elastic range, then the "average stress" for buckling in the 

inelastic range is 

Pre 
Oyak. = rea B (91) 

I 

so that then 

S = 5 Gp B (92) 

CP dave May 

Substituting Equation (92) into the left-hand side of Equation (90) and solv- 

ing for pz leads to 

(Syh/R)B all 

1+ fe B Ve “6 
Pion (93) 

2PEr 

Equation (93) represents a more general semi-empirical formula for in- 

elastic buckling of ring-stiffened cylindrical shells than that developed by 

Trilling and Windenburg. The general form of Equation (93) is similar to 

analogous formulas given by Timoshenko in Reference 9 for the inelastic 

buckling of straight columns and circular rings. 

An important point to be made is that the same value of B must be 

used in both the numerator and denominator terms of Equation (93), 
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regardless of whether B is determined from Equation (86), (87), or (88). 

The significance of this will now be demonstrated. 

Let us assume that the two values of B are different in Equation (93) 

and designate them By and By for the numerator and denominator terms, 

respectively. In the elastic buckling range, Equation (93) should reduce 

to the pressure pp, i.e., 

(Syh/Ry By 

1+ 0) 
2Pr 

(94) 

This leads to a quadratic equation in p, which, when solved, yields 

oh 
4 at y —-1 Taye SrA 

Qe = ee fs Are - By } (95) 

where the lower of the double signs is to be considered. Now, taking the 

partial derivative of Equation (93), with the appropriate N and D sub- 

scripts on ‘De with respect to pp leads to the following expression for the 

slope of the Py versus pp curve: 

(96) 

Substituting the value of pp given by Equation (95), with the minus sign in 

front of the radical, into Equation (96) leads to the following: 

~ = 2 
fe) ( Be) 
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From Equation (97) it is seen that the slope of the p; versus Pp curve 

at the point py; = pp is equal to unity, as it should, only if By = Bp. Then, 

and only then, does the curve defined by Equation (93) become tangent to 

the pp, curve in the elastic buckling range. Thus, in the one extreme 

which corresponds to the elastic buckling range, Equation (93) for the in- 

elastic buckling pressure Py reduces to the elastic buckling pressure Pr 

as it should. In the other extreme which corresponds to the axisymmetric 

collapse range, which conversely implies that Pp Oo, we see that Equation 

(93) reduces to (Sh/R)B, which is a hoop-stress relation at midbay 

between adjacent ring frames. As Was indicated before, what to use for 

Bisa question which has still not been completely resolved in the mind 

of the author. The question that needs to be answered is: ''What is an 

appropriate hoop-stress criterion, if any exists, which adequately pre- 

dicts axisymmetric collapse precipitated hy yielding for the broad range 

of geometry which is of interest?" Some work to clarify this point is 

presently underway at the Model Basin; one possible approach toward re- 

DS Gen sri hel solving this question has been suggested by Pulos and Hom 

empirical curves have been fitted through experimental data from many 

structural model tests and the trends toward asympotic values predicted 

by the various collapse criteria noted. 

Equation (93) may appear to be somewhat nonrigorous to the more 

theoretically inclined stress analysts. A truly rigorous approach to solv- 

ing the inelastic panel-buckling problem of ring-stiffened cylindrical 
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pressure hulls should start with an attempt to integrate the three partial 

differential equations for the shell deformations including elasto-plastic 

effects. This is the topic of discussion in the next section. 

INELASTIC BUCKLING BETWEEN RING FRAMES 

In recent years, advances in plasticity theory have made it possible 

to approach shell buckling problems more rigorously. Investigations by 

Biljaard,>” iiganst nea, Stowell,*! and Gorand2. among others, have con- 

tributed greatly to the development of theory for the inelastic buckling of 

plates and shells; this school of thought made use of the deformation 

theory of plasticity. 

Using the general set of differential equations for a fully plastic 

cylinder derived by Gerard in Reference 21, Reynolds? has developed a 

solution for the inelastic buckling of ring-stiffened cylinders, valid for 

both cases in which the shell material exhibits elastic-perfectly plastic 

and elastic strain-hardening characteristics. The buckling equations 

obtained by specializing the more general ones for the case of hydro- 

static pressure loading are: 

2 
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(100) 
3 at a a a > SW yl tN S*iNn peo 
4 4 i. x s 

ox ox ds ox ds 

where x and s are, respectively, the axial and circumferential coordi- 

nates and N, and N, are forces per unit length in the axial and circum- 

ferential directions, respectively. 

By following a procedure similar to that used by Donnell, Reynolds 

was able to combine Equations (98) through (100) into a single eighth- 

order equation in the radial displacement w only; this result is given as 

4 E 8 8 
aie os ae 4(3 ow AN 2S) 2, Se «OW 

= wae E Pia Dine ANG is |)\A 8 6. 2 
t ox ox Os s s ox 0x ds 

E 1D) 6 
mee je 4 oe 3 s ae 4 aes 3 SN OM || 

pai a Y \eteot peal wae Gees |i | (ey allen eee lia R° ax * t / ax as t/ ax ds 

(101) 

2 G\2 
where We indicates the operator i a 3 | 

Reynolds assumed the following buckling shape as a solution to 

Equation (101): 

w(x,s) = Asinks sin\x (102) 
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— AS a m and n are integers which denote the number of 

half-waves in the longitudinal direction and the number of full waves in 

the circumferential direction, respectively. Equation (102) satisfies the 

conditions of simple support at the ends of the cylinder, i.e., that w and 

ae 
w 

"> Vanish at the ends x = 0 and x = L. These conditions are not un- 

6x 

reasonable for stiffened cylinders since it is likely that the effective 

rotational restraint will be limited by the formation of plastic regions 

arising from high bending stresses near the ring frames. 

By substituting Equation (102) into the differential equation (101), 

Reynolds obtained a characteristic-value equation, which using the follow- 

ing notation 

2 
= x i IL 

an ee nL i 

m7rR 

R ox pa ES ies a 2N S (103) 
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and rearranging terms to solve for the plastic buckling pressure Pp: leads 

to 

E Sedo 
BD See 14242 ¢°(1-2) 4 i E ae 4 eee 

aes s : (104) 
Pp Re fi-¢ (-,)] [1+zC ] 
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Equation (104) expresses the plastic buckling pressure Pp in terms of m 

and n. Reynolds minimized this expression with respect to 9; that is, he 

set dPp/d> = 0, and by devising a graphical scheme, he was able to obtain 

the following convenient formula for the plastic buckling pressure: 

2 3 
: 87 Ef (2) (a la Gls (2) ae 

Be OG RYE \ at seco) 

piety) 

Figure 13 - Typical Stress-Strain Diagram Showing 

the Various Modulii of Interest 

Before Equation (105) can be used, the secant and tangent modullii, 

which are defined on Figure 13, and are given, respectively, by 

fo} do 
i> 3 eS = i (106) 

Ss € tee Melis 
i “i 
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must be related to the applied pressure. The procedure is the same as 

that outlined for finding numerical solutions of Equation (49) to determine 

the axisymmetric inelastic buckling pressure. A detailed discussion of 

the procedure is given in Reference 42. It is important to point out that 

these formulations for inelastic buckling of stiffened cylinders can be 

applied to either case where the material is of the strain-hardening type 

or of the ideally plastic type; this corresponds to curvilinear and plateau 

stress-strain curves, respectively, in the plastic range. 

The final equations used by Reynolds to relate stress-intensity 9% 

where 
1 

6 oP a = 6.6 fe (107) 
i x S xX S 

to the state of stress ina ring-stiffened cylinder, using the linear theory 

of Von Sanden and Gunther’ instead of that due to Salerno and Pulos,® are 

as follows: e pR 

0 pal, alte) (a) - 2 8) (108) 
h 
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Thus, using Equations (107) through (109), one can calculate a value of 

stress-intensity 9; as a linear function of applied pressure p; this is 

plotted as a straight line on a p versus 9%; plot. Next, the uniaxial stress- 

strain curve of the material is entered with the value of 9; given by 

Equation (107), and this determines E, and Ey. These values are then 

used in conjunction with Equations (103) to determine the plastic buckling 

pressure Pp), from Equation (105). In this fashion, a plot of Pp versus On 

is obtained. The intersection of the two curves, p versus 9; and Pp versus 

o;, gives the desired value of plastic buckling load. This is shown in 

Figure 14 for the two general classes of material mentioned before. 

Equations (105) through (109) define the buckling pressure for the 

fully plastic case corresponding toy = > By employing an empirical 

correction factor wherein Poisson's ratio is regarded as a variable, one 

can arrive at an expression which defines the buckling pressure in the 

43 
inelastic range. Gerard and Wildhorn’~ have found that vy can be accu- 

rately expressed as a function of E, in the inelastic region by the equation 

E 
yza- = G “| (110) 

which reduces to 1/2 when 1) // 353 is zero and to the elastic valuev eS when 

1D // 3s is unity. For the general inelastic case where y is a variable de- 

fined by Equation (110), Reynolds gives the following formula for buckling 

pressure: 
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EQUATION 105 OR Il2 

EQUATION 107 
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€j 
STRAIN - HARDENING MATERIAL 
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Pe 

a, p EQUATION 107 

€. C. 
i 1 

ELASTIC - PERFECTLY PLASTIC MATERIAL 

Figure 14 - Graphical Determination of Inelastic Buckling Pressure 

for Two General Classes of Material 
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In determining the stress ratio f = eae the stress oy is still equal to 

PR since it comes about from simple equilibrium cansiderations, and the 
2h 

stress oS is again taken to be that midway between ring frames as given 

by the theory of Von Sanden and Gunther but with v a variable defined by 

Equation (110). It is found, however, that os is practically insensitive to 

variations in Y and that it is sufficient to treat f as a constant which 

depends only on the geometry of the cylinder; thus y, can be used for 

determining the stress ratio f. 

The final equations given by Reynolds in Reference 42 for determin- 

ing the inelastic buckling pressure p, are as follows: 

2 
l-y E E 

* e t 3) Seals. (lal) 

Pe = Pa Ste | 

0 SS? ine (113) 
vena | 3-29(1-£) 

where 

$= 1.23 ae (114) 

-l Vv Wee 
hoes pee 

ff -> 1 - ( 2 A, / Lh) Be 8.) (115) 

e eras 
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e leer - cos®8 ) 
e e 

) i) 
Q sinh—& + sin& (116) 

Vogel fae! 2 

Fa 9 0 
cosh cos = 

2 

4 
9 Ss Ways) iyViRE 

The method of calculation has already been discussed in connection with 

Equation (105); the same basic approach applies to Equation (112). 

It is of interest to mention that out of this general solution resulting 

from the use of Equation (101), Reynolds was also able to derive an 

elastic buckling solution by using y, in place of y and setting E, = Et = E. 

This solution, similar to that of Von Sanden and Télke, i.e., Equation (60), 

is given by Equation (113). 

FAILURE CRITERION FOR COLLAPSE OF 

AN IMPERFECTLY CIRCULAR SHELL 

44 carried Using classical small-deflection theory, Galletly and Bart 

out a theoretical investigation of the effects of boundary conditions and 

initial out-of-roundness on the strength of cylinders subject to external 

hydrostatic pressure. The equations developed by these authors were 

applied to the case of initially out-of-round cylinders with clamped ends; 

these equations represented a slightly modified form of those previously 

derived by Bodner and Bemesrae working at the Polytechnic Institute of 
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Brooklyn, for cylinders with simply supported ends. 

The approach used by Galletly and Bart was similar to that of Bodner 

and Berks except that instead of attempting to find a solution directly to 

the Donnell-type shell equations, they employed Galerkin's method 

in conjunction with the Donnell equations modified to include the effects 

of eccentricity. One of the limitations of using Donnell's equations is 

that the number of circumferential lobes n should be fairly high, and thus 

the results will be Somewhat in error for very long cylinders which buckle 

into two or three circumferential lobes, i.e., n = 2 and n = 3, respectively. 

The initial out-of-roundness pattern assumed by Bodner and Berks 

was of the form 

™ 
W(x, 8) = esinn@cos a (117) 

(origin at midbay) while Galletly and Bart assumed 

@ 
Wo(x,8) = 5 sinn@ f3- cos “ta | (118) 

(origin at one end of the cylinder). Thus, in both cases, the initial out-of- 

roundness was similar in form to one of the assumed buckling modes. 

The two solutions represent lower and upper bounds, respectively, for the 

effect of initial eccentricities on the collapse pressures of elastically 

supported cylinders when the initial eccentricities have the same shape as 

one of the assumed buckling modes of the perfect cylinder. 

For the case of uniform external hydrostatic pressure, Galletly and 
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Bart derived the following relevant partial differential equations in Refer- 

ence 44, using the principle of minimum potential energy: 

4 Eh _-4 1 1 
EN PR] tt + zt -00| -p=0 (119) DVwt—V. 

R° g R 

eel (120) 
WARLS R bo 2+ 00 | 

R 

4 
Fess VERE NS oases ieee oe 

R R 

Vanes ee, (122) 
R xx 

where 

2 AN\@ 

v -( ; ei 3 5) 
ox R- 00 

Aly = 
W/W 4 =f 

F is the stress function of the total membrane 

stresses, and 

Wo the initial out-of-roundness, is + inward toward 

the axis of the cylinder. 

The comma after the dependent variables denotes partial differentations 

with respect to the independent variable which follows, so that 
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The assumed functions for the buckling displacements w and initial 

out-of-roundness wo, for clamped-end cylinders are, respectively, 

27x 
w(x,8) = B sine [I~ cos L ] 

(123) 
27. 

W 9(*; 8) = = sinne|1- cos = | 

where e is the maximum amplitude of out-of-roundness and B is the buck- 

ling coefficient. If the expressions (123) happen to be an exact solution of 

the problem, they will satisfy the differential equation of equilibrium, 

Equation (119), exactly. However, as both w and wy, were chosen to satis- fo) 

fy the boundary conditions rather than the equilibrium equation, this, in 

general, will not be the case. The resulting expression will be a function 

of x and ® which we shall denote by Q. In sucha case, Galerkin's method 

is used for determining the relations between the coefficients B and e; 

this leads to the following condition: 

T 
27x 

f ie Q sinie [1-08 z | Rae ox =O) aisle 2 eeieten | (24) 
(e) fe) 

For i#¢n, Equation (124) will be found to be zero identically. For i =n. 

the following relation between B and e is obtained from Equation (124): 

B= i) (125) 
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where p,; is the buckling pressure of the perfect cylinder and is given by 

4 2 
Eh 1 A h/R 4 22 4 p =—/—— pone See (3n +2n At+A) (126) 

Gi R 2 Bn 2 
ZN met Ae) 12(1-v") 

Sa sp 
2 

and A= a The smallest value of the buckling pressure Per is found 

by minimizing Equation (126) with respect ton. A similar relation for 

the elastic buckling of a cylinder with clamped ends was derived by 

Nash*6 using an energy method. Bodner and Berks*> derive a relation 

similar to Equation (125) for simply supported imperfect cylinders. 

Combining Equations (123) and (124), we obtain the following expres- 

sion for w: 

w(x, 8) Al P afam® | le con 2 (127) 
2\Per-P = 

The bending moments in the shell can then be calculated from the 

well-known relations 

" 1 e) $ K + a & © Oo 
aes] (128) 

A + Mo." eo wee" ¥ | 

The maximum bending stresses are then given by 

6 a 6 
les = coy (be one. 

(129) 
as 6 

She == nz (Mo) ax. 

To obtain the total normal stresses, we have to add the membrane stresses 
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to Equations (129). To determine these latter, we substitute Equation 

(127) into Equation (122) and integrate for the stress function F, retaining 

only the periodic terms. The total membrane stresses are then given by 

No) ee (oe) = ioe pues F596 

(130) 

+ R 
fo} ) = aye ey Fy 

The total normal stresses are obtained by adding algebraically 

Equations (129) and (130). The greatest normal stresses occur at midbay 

of the cylinder (x = >) and where sinn®@ =+ 1, which corresponds to the 

trough and crest points of the lobar pattern, respectively. At these 

points, the twisting moment M,@¢ is zero and thus the normal stresses are 

principal stresses. The absolute maximum normal stresses occur at the 

outer shell wall for the trough points. 

Having obtained the maximum principal stresses %, and i) in terms 

of the amplitude of out-of-roundness, the geometric parameters of the 

cylinder, and the applied pressure, the Hencky-Huber-Von Mises criterion 

of failure discussed earlier, see Equation (34), is employed to determine 

the pressure at which yielding initiates at the most critically stressed 

point. Thus, substitution of the maximum principal stresses oy and ac) 

into 

Ors) Gr Flea) =pame (as) 
¥ x @ 

gives an equation relating the initial out-of-roundness, the geometric 

parameters of the cylinder, the yield point oy of the material, and the 
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pressure py at which the shell begins to yield. 

A general set of relations valid for both the simply supported and the 

clamped cylinders was given in Reference 44 as follows: 

1 
e_ ( Py =) +L9 -4(1- pt *) HI fe x 1 for simple a a = 1 
B 4(l1- pt &) K 2 for clamped ends 

where Pes for the simply supported shell may be determined from the 

Von Mises Formula (57), and that for the clamped shell from Equation 

(126). Also for the simply supported shell, 

mao 

nee a 3 
4 

2 6 
n fine + Ate Ea 

ir + 6 

rie Gane au.-vi(2) 
B= 

(133) 
2 

29 | Ne’ ) R 2 Zz 2 2,/R oe ——————| =| K=n’ +y6 + 2(1-v")| =) ———— 
E h h Zee NZ 

n +6 ) 

where 6= =. Whereas for the clamped shell, 

2, @ 
2 

y(2n -1) + i + a ea 

A (n +& 

2 2 2,(R K 
2n -lt+yA +2(1ly (a 

@ a7) 

(134) 

2p_(1-v°) R g 2 2,/R Ss 
—| K=2n -1l+vA +2(1-v (7) ama (noe ie)? 

where A= 2mR | Also, for both cases 
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Zhe, 2 
gba Be (135) 

Rpy : 

Galletly and Bart go into considerable discussion of various methods 

for determining initial out-of-roundness from shape profiles. They also 

carry out calculations for specific cylinders using Equations (132) through 

(135), and compare their results with experimental data obtained at the 

Model Basin. The reader is referred to Reference 44 for further details 

of the mathematical analysis and method of numerical computation. How- 

ever, it is worth summarizing here that the best semi-empirical method 

for determining the ''out-of-roundness'' components from circularity 

profiles is that due to Holt; this technique essentially "picks out'' the 

Fourier component corresponding to the buckling mode of the perfect 

cylinder. For a more exact determination of the contribution due to each 

component, a general harmonic analysis can be conducted on the most 

complicated circularity contour, and the method of superposition can then 

be used to determine the total ''out-of-roundness" stress at any location. 

ELASTIC GENERAL INSTABILITY OF SHELL AND RING FRAMES 

Implicit in the formulations considered so far is the premise that the 

ring frames possess adequate bending and torsional rigidities, thus pre- 

cluding local instability or failure of the stiffeners themselves. The in- 

fluence of only the finite elastic properties of the ring frames on the 

structural behavior of the shell has Been included in the theories discussed 

in the preceding sections. However, it is conceivable that if the ring 
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frames are "light,'' in the sense that they are not of sufficient cross 

section and/or of sufficient inertia, and if the overall length of the 

cylinder is large, say exceeding something on the order of two diameters 

or more, then another mode of collapse may intervene. 

If this situation exists, then local frame failure could precipitate 

"bodily collapse'' or general instability of the shell and ring frames. This 

possibility was first recognized by Tokugawa. ou Just as in the case of 

shell lobar instability, this overall mode could possibly lead to premature 

collapse of a pressure hull unless the design is based on considerations 

governed by those geometric parameters which do not influence the 

axisymmetric and panel-instability collapse behaviors. 

Tokugawa's! was the first rational attempt at developing some 

theory to predict the general-instability behavior. His approach was 

essentially based on a method which has come to be known in modern 

terminology as the ''method of split rigidities.'' Much later, Bayer | 

working at the Naval Construction Research Establishment, Dunfermline, 

Scotland, arrived at practically the same end result but from a different 

point of view. This latter formulation was based on considerations of the 

elastic potential-energy of the shell and ring-frame system; however, the 

"true! interaction between shell and ring frames was approximated by 

Bryant. 

For our purposes here, it suffices to give the final Tokugawa-Bryant 

formula. In the notation of this report, it takes the following form: 
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races, 2S) Nn f 
2 

where \= cs It has become common practice at the Model Basin to com- 

b 

pute I, as the moment of inertia of the combined section of one ring frame 

plus an effective length L, (see Equation (22)) of shell, instead of a full- 

frame-spacing Lr as was originally suggested by Bryant. This, ina 

sense, compensates for neglecting the true load interaction between shell 

and ring frames, (as was done by Bryant in his analysis.) It should be 

pointed out that Tokugawa's original equation was somewhat more com- 

plicated than that given above; however, calculations for a wide range of 

interest indicate that the additional terms included by Tokugawa were 

practically insignificant. As a matter of fact, it usually turns out that the 

second term of Equation (136) is dominant in the case of hull structures 

designed for shallow depths. It is usual to refer to the first term of 

Equation (136) as a shell term and to the second as a ring-frame term, in 

accordance with the "'split-rigidities" concept. 

Equation (136) as it stands does not permit discrimination between 

external and internal ring frames; the second term in Equation (136) is 

based on the assumption that the entire cross section of the ring frame is 

concentrated at the median surface of the shell plating. If one goes back 

to the basic formulation of the ring-buckling problem, it is rather easy to 

ascertain that a more correct ring-frame term for use in Equation (136) 

can be arrived at from 
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so that 

EI 

z 

e 

Pr = (n*- 1) (136') 

where R, is the radius to the outstanding flange for an external ring- 

frame, but however, is defined as the radius to the contact surface with 

the shell plating for an internal ring frame; and Reg is the radius to the 

centroid of the combined cross section made up of one frame and an 

"effective length'' Le of shell plating. The quantity Lg can be computed 

using Equation (22). 

Just as in the case of Equation (57), it is necessary to minimize the 

critical buckling pressure p,, of Equation (136) with respect to the number 

of circumferential lobes n. To facilitate calculations, Ball*8 has develop- 

ed a graphical solution of Equation (136); further discussion of this will be 

given later in connection with some of the more complete formulations of 

the general-instability problem. 

The next major theoretical development for this problem was that of 

the group at the Polytechnic Institute of Brooklyn, notably the work of 

Salerno and Levine. +? Their method of solution was based on the principle 

of minimization of the potential energy as for the shell (lobar) buckling 

problem. The same general system of energy expressions was used in 

both cases; however, in the general-instability problem, the total energy 
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of the shell is integrated over the entire length I, of the cylinder, and the 

ring energies are summed over the total number of ring frames. Bodner 

and Shaw2 review the whole problem of the energy approach to both lobar 

(sometimes referred to as panel) and general-instability failure of rein- 

forced cylindrical shells. 

The work of Salerno and Levine constituted the basis for theoretical 

developments by investigators who followed them. The most acceptable 

solution of the elastic general-instability problem is that attributed to 

Kendrick?! of the Naval Construction Research Establishment. Extensive 

confirmation of this theory has been reported by Reynolds and Blumenberg?@ 

at the Model Basin. It is of interest here to summarize the basic equations 

and integrals used by Kendrick in his formulation. 

The total potential energy Vy of the elastic system, comprised of the 

cylindrical shell and the ring frames, is given by 

N N 
Toe, +U +) (FD. +), (F+W (137) 

r=] rel 

U, and U, are the extensional and bending strain energies of the 

shell, respectively 

F, and Fy are the extensional and bending strain energies of the 

ring frames, respectively 

W is the total work done on the elastic system by the 

external loads due to the pressure, and 
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N is the total number of ring frames on the cylinder. 

These quantities, as used in Reference 51, are defined by the following 

integrals in terms of the displacements u(x,6), v(x,8), and w(x,6): 

oa 

E 76.2 Pine ae a PROS Bom, (we, aaa & 
e 2 x a) x Q 

Alay) 

ome) 
ary 

N b 

(1-v) 2 oy 2 @ 
Vv: = 5S ( 1b Ys g/R) d@dx + OR (u,gty, 3 2v; gw) dQdx + 

oO 
27 

RN a > > 

+ os i (v,_ +w,_) d@dx (138) 
2 x x 

(ome) 

y 27 ee 

E 
UL = A [ Rew: +(w, ogtw) /R° + 2yw, (W, 59 tw) oF 

24R(1-v“) aon = 
° °o 

il 1 2 
+ 22-0 (0 4 + 5 Vos x) dQdx (139) 

where the subscripts x and 9 after a comma denote partial differentation 

with respect to the variable, i.e., 

— dv th = Se 

*x® 9x00 

The quantities N,, and Noy 2re the longitudinal and circumferential (hoop) 

7 etc. 

thrusts per unit length, respectively, just prior to buckling. The longi- 

tudinal thrust N,, has the constant value (-pR/2) throughout. Kendrick 

assumed the hoop thrust Noy to have the constant value -pRhL¢/(A¢+L¢h) 
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throughout. This latter is an approximation since Noy is really a func- 

tion of x as can be seen from the theory of Von Sanden and Glinther,® or 

from that of Salerno and Pulos,® but it can be shown that the error intro- 

duced by this approximation is negligible. 

The extensional and bending strain energies, respectively, of a ring 

frame situated at a distance x = rL¢ from a bulkhead (one end of the 

cylinder) are given as follows: 

we Tr - 2 PAu (140) 

f e of (4 2 
(Fo). 7 a lw. oot Ah (v, | dQ + OR (« eI a ONG, 3" dé 

x=rL x=rL 
@) f£ f 

21 

wees 2 
(Fi). = 3 («, co") de (141) 

2R =rL. 
° 

where Nos is the hoop thrust in a ring frame just prior to buckling and will 

be assumed to have the value -pRL;sA;/(Ag+L¢h) instead of, say, that given 

by Equation (21). The quantity L,, is the moment of inertia of a ring- 

frame section about the x-axis, and e is the eccentricity (+inward) of the 

centroid of a ring-frame section. 

The potential due to the radial pressure p, involving the additional 

displacements u, v, w, due to buckling is given by 

Wye 
pn) ddx (142) = _ PR a a WwW 5 (2wu, + RWYs g V u 

ian) x 

oO 

The work done by the axial pressure p becomes equal to zero as a conse- 

quence of the trigonometric functions assumed for the buckling 
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displacements. 

Kendrick attempted many solutions by using different buckling 

patterns in the energy integrals. However, the most plausible solution 

52 at the Model found and the one which has been confirmed by model tests 

Basin is that based on the following buckling pattern used in the solution 

of Reference 51: 

u(x,8) = A, cos n@ cos — 
Ty 

v(x,8) = By sinné@ sin" + By sinn@ (1-cos 
b 

aux ) (143) 

f 

(x,@) = C gina © @ (1 aus, w(x, = cosn0 sin —+ cosn -cos 
! ae i L¢ 

Implicit in the above fmetione are the assumptions that the cylinder 

buckles into one-half sine wave from end to end, i.e., corresponding to 

simple-support conditions, and the interframe buckle shape is such that 

a zero-rotation condition exists at the ring frames, i.e., corresponding 

to clamped conditions. The radial component w of the buckling defor- 

mations defined by Equation (143) is shown in Figure 15. 

Substituting Equation (143) into the energy integrals, Equations (138) 

through (142), the total potential energy given by Equation (137) becomes 

a function of the shell and frame geometry, the pressure loading, and the 

mode-shape parameters Aj) B,, C,, Bg, and C2 of the buckling dis- 

placements. Hence, for a given geometry it can be seen that 

Vr = Vr(Ay,B1,C1,B2,C2) (144) 
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The principle of minimum potential energy is invoked to determine 

the equilibrium state of the structure, for which the elastic energy Vr 

must have a stationary value. Any arbitrary variation from this value 

must vanish, and this leads to the following mathematical criterion: 

aVv aV aV aV aV T T T T G10) Sa A ae ee ep en ad aie 
T BAG Ay ueBn a en Ce aB, er A Sen ae (145) 

Now, since the variations 6A), 6B ,6 C)> 6 Bz, and 6C> in the buckling 

displacements are arbitrary so that they need not be zero, then, for equi- 

librium to exist, the following conditions must be satisfied simultaneously: 

T T at £ EO wl Soh eee (146) 
aA, @B, 3C, @B, ac 

The above conditions lead to a system of five linear, homogeneous, 

algebraic equations which must be solved simultaneously. In order that 

the nontrivial solution exist, which is A, # B}] # C; # B2 #C2 # 0D, the 

determinant formed by the coefficients of these shape parameters must 

vanish. This 5 X 5 stability determinant when expanded leads toa 

fifth-degree equation for the instability pressure. Extensive calculations 

conducted by Reynolds at the Model Basin with the aid of a UNIVAC 

computer have shown that the linearized form of the determinantal 

equation is more than adequate; the higher order terms in the pressure 

are almost insignificant. Reynolds developed a convenient graphical 

8 solution”’~ of the Kendrick equations; he showed that the overall instability 

of a ring-stiffened cylinder can be expressed in a form similar to 
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Equation (136), that is, as the sum of two effects. One is a shell effect 

which reflects the membrane stiffness of the cylinder, as does the first 

term of Equation (57) for the panel-instability problem, except in the 

difference of the length (L¢ vs Lp) of shell considered. The other isa 

frame effect which reflects the bending stiffness of the cylinder. Thus, 

Reynolds showed numerically that Kendrick's solution can be expressed 

in the form 

L I b h e 
Bes = Ps (aR) + ( =) (147) 

where the geometric parameters are the same as those for the Tokugawa- 

Bryant formula. Equation (147) further demonstrates the usefulness of 

the "split-rigidities" concept. 

Ball*8 refined Reynolds! graphical solution and extended the range 

of usefulness by carrying out additional computer calculations for 

geometries of future interest. Figures 16 and 17 give the curves devel- 

oped by Ball for both the Tokugawa-Bryant formula and the Kendrick 

solution. One point of interest to the designer is that these curves in- 

dicate the range of geometry for which disagreement exists between the 

two formulations. In such cases, it goes without saying that the curves 

corresponding to the Kendrick solution should be used. 

Another approach to the general-instability problem was first pro- 

posed by Flugge; see Reference 9. He derived a set of differential equa- 

tions for an orthotropic shell and showed how its solution could be used 

Dik 



(Ne 
ee eee Ne 
Bh ese 
BASEENE 

Figure 16 - Shell Pressure Factor p, (for E = 30x 106 psi) 
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Figure 17 - Frame Pressure Factor p¢ (for E = 30x 10° psi) 
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for some special cases of stiffening. The basic idea is that the ring 

frames can be replaced by equivalent increases in the circumferential 

direction of the bending and extensional rigidities of the shell. If EI, is 

the flexural rigidity of one ring frame together with an effective width of 

shell plating and Ly is the center-to-center distance between adjacent 

ring frames, we use Ele/Lg¢ instead of Eh3/12(1-v2) in considering bend- 

ing in the circumferential direction. An equivalent thickness 

he = h(1 + A¢/Lg¢h), instead of h, is used in considering the hoop com- 

pression. Using the notations 

2 AD 1b (Ne) Ayes h,(1-v“%) 

h 
=uS (148) 

LfhR4 

the equation for determining the critical values of general-instability 

pressure becomes 

x x Gh PG kte, l SSO +C.¢, (149) 
] 

in which a, ,, and $2 have the same meaning as given by Equation (53), 

and the coefficients C,, Cz, ... etc. are as follows: 

4 C,=SX 

C, = Nien i + 5° Nea E Lie + Neo? + Shee | 

Cc, = (ae ue be + S(n24222)n" | (150) 

C, 7 ae Ne + Snaeooy ela = S(naeue nine 
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Cpe + satiate as 
= ma7R / L. 

Note the similarity between Equations (149) and (55) and between the’ 

coefficients, Equations (150) and (56). 

Bodner>* working at the Polytechnic Institute of Brooklyn derived an- 

other set of equilibrium equations for an orthotropic cylindrical shell 

which are considerably simpler than those of Flugge. He used these 

equations to solve the case of a simply supported shell under hydrostatic 

pressure; and by relating the stiffness properties of the orthotropic shell 

to those of the ring-stiffened shell, he was able to derive a simple 

formula for the elastic general-instability pressure. For our purposes 

here, it suffices to give this final equation, which in the present notation 

takes on the following form: 

R cr BoE hg? ONS BRR y=) 2 

[°s x) ® a 
2 

where }) = at The similarity between Bodner's formula (151) and the 

Tokugawa-Bryant formula should be noted. The second term, that~wh?, 

of the so-called shell contribution to Pa of Equation (151), is usually of 

minor importance so that the circumferential bending rigidity is pre- 

dominately reflected by the frame term, i.e., the third term in Equation 

(151). In such a case, the Tokugawa-Bryant and Bodner formulas are 

almost identical in overall form except for two very important differences. 

These will now be discussed. 
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Since the differential equations used by Bodner to develop his 

orthotropic-shell solution were of the same approximation as Donnell's, 

2 2 this resulted in the approximation n“-lzn“ in the denominator of both 

terms in Bodner's final formula (151). Basically, this approximation is 

in error because the general-instability buckling mode is associated with 

a small number of lobes, i.e., nis usually 2, 3, or 4, so that assuming n@ 

to be very large in comparison to unity could lead to appreciable discrep- 

ancy. However, it turns out in numerical calculations that the frame 

term dominates, and although Bodner's coefficient 

2 

nt / (n@+ AY 

is different from (Pai) of Equation (136), better agreement has been 

shown by Ball*® to exist between pressures from Equation (151), than 

from Equation (136), with those computed using the solution of Kendrick. 

However, in the case of the infinite cylinder, i.e., \>0, the Bodner frame 

coefficient reduces to né instead of (n*-1). In this case, the Bodner 

formula gives pressures which are one third larger than the correct 

value given by the simple ring formula, i.e., p = 3EI/R°Ly. 

Bijlaard?° also developed an analysis for the general-instability 

mode of collapse for ring-stiffened cylinders using the method of "split 

rigidities.'' Also, a rather complete discussion of the orthotropic- shell 

approach to the problem of general-instability of stiffened cylinders for 

various loadings is given by Beekered However, neither of these two 
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formulations are discussed further, nor are any of their final formulas 

included here because they involve certain parameters which are not too 

easily determined without having recourse to their original references. 

INTERMEDIATE DEEP FRAMES TO INCREASE 

GENERAL-INSTABILITY STRENGTH 

One of the more important geometric parameters which.influences 

general-instability strength of ring-stiffened cylindrical pressure hulls is 

the overall length Lp, which, in actuality, is the distance between rigid 

holding bulkheads in submarine construction. Certain designs, and this is 

becoming more common, particularly for deep-submergence vehicles, pre- 

clude the use of rigid internal bulkheads to break up the overall length of 

long hull compartments. The requirements may, for example, stem from 

internal arrangements and other space considerations. In such cases, the 

most efficient manner in which the general-instability strength of long 

cylindrical compartments can be increased without increasing overall 

shell thickness and/or cross-sectional properties of all the ring frames, 

with their concomitant prohibitive weight increase, is the use of inter- 

mediate heavy frames or mixed-framing arrangements. Such stiffening 

systems can provide large increases in general-instability strength by 

effectively "breaking up!'' these long hull compartments. In order to 

efficiently design for maximum possible instability strength of such 

structures within certain specified weight limitations, it is necessary to 

have adequate theory which, when verified by experiment, can then be 

converted to design criteria. 

97 



The first attempt at a rigorous mathematical solution of the elastic 

general-instability problem for long cylindrical shells, which are stiffen- 

ed by a uniform distribution of typical light ring frames closely siacan 

and a set of two or more, depending on the length Lp, intermediate heavy 

ring frames widely spaced apart, is that attributed to Kendric of the 

58 at the Naval Construction Research Establishment. Later, Reynolds 

Model Basin discovered certain shortcomings in the buckling functions 

assumed by Kendrick, and he revised the original analysis to conform 

more realistically to the experimental observations reported in Reference 

58. 

The basic approach used in the mathematical formulations by both 

Kendrick and Reynolds was that of using the energy method and writing 

expressions for the elastic strain energies for the shell, the typical light 

ring frames, and the intermediate heavy ring frames. The procedure is 

almost identical to that followed in connection with Equations (137) through 

(142), except that the ring AOE series 

Ufealeontd 
in Equation (137) must be rewritten as follows to include the strain 

energies of the heavy frames: 

(Nj +1)(N,+1)-1 N, m 

aimee a Peal a (F ae ae aa (152) 

where 

Ny is the number of light ring frames, 
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N is the number of heavy ring frames, and the 

subscripts f and F refer to light and heavy ring 

frames, respectively. 

The original ring-energy integrals, Equations (140) and (141), as used for 

the present problem were modified by Kendrick to include some additional 

terms as follows: 

27 

2 N 

F. -= (saa?) a ra) oe (rq tq” 2¥9¥)(14E)* 
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Reynolds pointed out certain shortcomings in regard to the hoop thrusts 

in the ring frames just prior to buckling as assumed by Kendrick, and the 

following expressions have been used in the revised theory: 

(155) 
A he pe 

Ox 7 AN ya 

RA_L nihagnkiat et INTieettsst ie eee 

GO yas (156) 

for the heavy and light frames, respectively, and where A, and A, are the 

cross-sectional areas of the heavy and light frames, respectively. 
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The ring-energy integrals, Equations (153) and (154), are evaluated 

at x = rl for the first summation of Equation (152), and at x = RL» for 

the second and third summations of Equation (152). 

The shell-energy integrals, Equations (138) and (139), remain the 

same for the present problem and so do the membrane forces in the shell 

prior to buckling, i.e., 

= Bs xeoe (157) 

PRL¢h 

IN Fi = hn eee) (158) Oey | Aveta 

The justification for using Equations (155), (156), and (158) instead of the 

analogous expressions of Kendrick is discussed in Reference 58. 

With all this, the total potential of the system comprised of the shell 

and ring strain energies and the work done by the external loads is given 

by 

Vr SW ae Wy oP Vrings ar \Kf (159) 

where U., Up, Vrings> and W are given by Equations (138), (139), (152), 

and (142), respectively. 

Thetassumed buckling displacements used by Kendrick?! for the 

present problem are given by the following expressions: 

_ 7x _ 7x k 
v(x, 8) = Exe + Bp sing |+ B3| sin |sinne (160) 
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w(x 

where 

uw, (x) = 

v(x) = w, (x) 

where 

u, v, andw 

A,,B,; Spee etc 

Ly 

q 

,8) = lc w(x) + Co sin — | + G3 |sin | feos né (160) 1 2 ae ity 

u,(x) = cos =~ 
1 2ql, 

0 <x Sal, (161) 

= = ui v(x) w(x) = sin aL 

uw, (x) = 0 

GG, Ses S(t ety) (162) 
v,(x) = w (x) =1 at Ge free ‘ Ht 1 

tN Ulsan 

equ 

(L,-qh) <x < L. (163) 
(x-L, +2qL,) 

= sin|7 B ! 
2qL, 

are the axial and circumferential coordinates, respec- 

tively 

are the axial, tangential, and radial displacements, 

respectively 

are arbitrary coefficients 

is the bulkhead spacing, and 

is an arbitrary number which permits the formation of 

a straight central portion of variable lengths as shown 

in Figure 18. 
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Lp 
When q is given the value 5-—, the shape of the radial deflection w 

Ze” 

between bulkheads is a half-sine wave. Since there are seven arbitrary 

coefficients in the buckling deformations, Equation (160), the system 

possesses, ina sense, seven degrees of freedom which allow independent 

deformations between the light frames, the heavy frames, and the ends of 

the cylinder; the three degrees associated with the w component of dis- 

placement are shown in Figure 18. 

Reynolds pointed out that the generality of the analysis could be 

improved by permitting one additional degree of freedom. This was done 

by adding to the axial displacement u(x,8) a second component varying 

periodically between adjacent heavy frames, i.e., Reynolds suggested the 

following function instead of that given in Equation (160): 

6) = |A fea =| 8 164 u(x, 8) [Aree = 3 Ses |sin ioe Jeosn ( ) 

This is discussed further in Reference 58. 

The method of solution then goes along the following lines: the 

assumed buckling displacements, Equations (160) and (164), are substituted 

into the integrals for the shell and ring energies and for the work done, and 

thus the total potential, Equation (159), is determined. The condition of 

minimum potential energy, i.e., 5V—p = 0 (see Equation (145), for example), 

leads to a system of eight linear homogeneous algebraic equations for the 

eight coefficients A,, Az, B), Bz, B3, Cj, C2, and C3. The 8 X 8 stability 

determinant formed by the coefficients of the A's, B's, and C's when 



expanded leads to an equation from which the buckling pressures can be 

determined. This system of equations has been programmed on the 

Model Basin IBM-7090 computer for purposes of numerical computations 

and verification of the analysis. 

In lieu of this rather complicated mathematical solution, which is 

necessary for a complete analysis and insight into the phenomenologic 

aspects of the problem, Blumenberg?® developed some convenient 

empirical formulas for design purposes on the basis of test data he and 

Reynolds obtained. He adapted the well-known Lévy ring formula to the 

present problem by redefining the geometric parameters as follows: 

3 

I jee (165) 

BSN ae = ie 

where it is assumed that 

Toes Cares BERNESE (166) 
aX ld pont Py-PB 

for the range where p, > Poy 2 Pp. Also, the following additional defini- 

tions are used: 

Inc is the moment of inertia of the heavy-frame-shell 

section. 

Per is the critical pressure of the actual cylinder including 

all the frames. 

R is the radius from the cylinder axis to the centroid of the 

heavy-frame-shell section. 
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IL, is the effective length of that portion of the cylinder e 

which loads the heavy frame. 

PB is the critical pressure of the cylinder with the heavy 

frames replaced with typical light frames (see Figure 

19) 

n is the critical buckling mode associated with pp. 

Ly is the spacing between typical light frames. 

oo is the spacing between intermediate heavy frames. 

De is equal to Pp OF Py» whichever is lower. 

Pr is the critical pressure of the uniformly stiffened 

cylinder of length Ly (see Figure 19). 

2. is the critical pressure at which the critical mode 

changes from n to (n+l) as the length of the uniformly 

stiffened cylinder is reduced (see Figure 19). 

Thus, the size of the heavy frame in the pressure range Pez [pois Pp is 

dependent upon two limiting conditions. For the lower limit pp, the heavy 

frame is equal in size to a typical light frame and the load acting on it is 

the pressure over one typical frame spacing of shell. As the heavy 

frame is made larger, it assumes increasingly more of the total load. At 

the upper pressure limit Pi» the maximum pressure for which there exists 

an overall symmetrical buckling shape in the longitudinal direction, the 

heavy frame is loaded by the pressure acting on one heavy-frame spacing 

of cylinder. 
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Figure 19 - Kendrick Part III (Second Solution)?! versus Length of 

Uniformly Stiffened Cylinder 

The size of the heavy frame in the pressure range pe Py te P,, can 

be calculated from the formula 

1 Per Pn 
= ap = ae Tas ro (lng Ue (167) 

where 

3 
R 

sty ees ar 
ES: o 3E ( ) 
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and I is the moment of inertia of the heavy-frame-shell section deter- 

mined for p,, from Equation (165). Any further increase in the strength 

of the heavy frame will not increase the critical pressure because the 

failure will occur between the heavy stiffeners. 

In Reference 58, the authors compare calculations using Equations 

(165) and (167) with observations from model tests. On the basis of the 

good agreement obtained between prediction and measurement, they suggest 

that the pressures Pp and Pr be computed using the Tokugawa-Bryant 

formula, Equation (136), and that p,, be computed using the following 

formula: 

we aise ines 

i Roly 

In this way, the need for drawing curves similar to those of Figure 19 is 

eliminated. Figure 19 shows the results of calculations for a specific 

geometry considered by Blumenberg and Reynolds as part of their model 

test program. The pressures Pp Pp and p_, entering into Equations (166) 

and (167) are shown for this case. 

ELASTIC DEFORMATIONS AND STRESSES IN 

IMPERFECTLY CIRCULAR RING FRAMES 

The theories and formulas presented so far for predicting the elastic 

general-instability strength of ring-stiffened cylindrical pressure hulls 

have all been based on the assumption that the structure is initially per- 

fectly circular. In the fabrication of submarine hulls, it invariably turns 

out that due to the cold-forming process and welding of steel plating into 
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the cylindrical form, the hull structure is far from the ideal case assumed 

in the theory. 

The problem of the additional elastic stresses due to imperfect circu- 

larity of the shell alone and their influence on collapse strength has 

: ; : 5 44 
already been considered in the discussion of the Galletly-Bart and 

45 : 
Bodner-Berks formulations. These analyses were based on the 

assumption that the ring frames were initially perfectly circular and 

remained so during the buckling and collapse stages of the shell structure. 

For the buckling strength of the overall cylinder structure, the circularity 

and the state-of-stress in the ring frames is of paramount importance 

because local failure of the ring frames could precipitate a premature 

overall collapse just as if no stiffening existed. The ring frames are also 

intended to provide adequate circularity to the shell portion. Pulos and 

59 Hom~ ’ working at the Model Basin have discussed the basic mechanism 

by which the local circumferential bending stresses induced in the ring 

frames by out-of-roundness when superposed on the axisymmetric 

compressive stress due to the pressure loading can cause premature 

yielding thus leading to failure; see Reference 60 for the results of some 

model tests using deliberately out-of-round stiffened cylindrical hulls. 

Kendrickon working at the Naval Construction Research Establish- 

ment developed an analysis for determining the maximum stresses in the 

transverse stiffeners of imperfectly circular cylindrical shells. This 

frame out-of-roundness theory followed closely his earlier work for 
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determining the elastic general-instability pressures of a perfect cylinder. 

The basic approach was again the energy method in which an out-of round- 

ness and a buckling pattern are assumed, and the principle of minimum 

potential energy is invoked to determine the amplitude coefficients. In 

his analysis, Kendrick assumed that the out-of-roundness coincides with 

the buckling shape associated with the lowest elastic general-instability 

pressure of the perfect cylinder; that is, the out-of-roundness function is 

sinusoidal in both the circumferential and longitudinal directions, i.e., 

t _ marx 
w (x98) = C,cos n@ sin 1 (170) 

where wa is the radial deviation from perfect circularity and C, is the 

amplitude of this deviation. 

Since in actual construction of reinforced cylindrical pressure hulls, 

the initial overall longitudinal "sagging" implied by Equation (170) is 

highly improbable, Sonne working at the Model Basin devised a new 

analysis based on the following more realistic out-of-roundness shape: 

W,(8) = Cocos né (171) 

This function implies that the cylinder generators over the bulkhead spac- 

ing Lp are straight and parallel but that the circumferential profile of the 

shell varies from the perfect circle in a sinusoidal manner. 

The mathematical techniques used by both Kendrick and Hom were al- 

most identical, and they have already been discussed in connection with 
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the panel-buckling and general-instability problems. Both investigators 

used the following buckling deformations: 

= . marx 
u(x,8) = Acosn@sin 

b 

v(x,®) = Bsinn@ sin (172) 
Lp 

mT 
w(x,8) = C cosn@sin 

Jy 

i.e., it is assumed that the cylinder will buckle into m half waves in the 

longitudinal direction and n full waves in the circumferential direction. 

Further, the ends of the cylinder are assumed to be simply supported. 

The energy integrals for the shell and the ring frames and the in- 

tegral for the work done (used by both investigators) were somewhat more 

complicated than Equations (138) through (142) because of additional terms 

that enter as a consequence of the out-of-roundness w,. These integrals 

are not given here, but the reader is referred to Equations (4) through ( 8) 

in Reference 60. Once the total potential energy of the elastic system 

(see Equation (137)) is determined, the minimum energy criterion leads 

to a system of three linear, nonhomogeneous, algebraic equations which 

must be solved simultaneously; these are of the following form: 

ayyArt a,2B + a13C = -aj4Co 

a Ata Bra C = -a54C 
12 22 23 (ote) fe) 

a + ae a a330 = -A3,C, 



wherea.., 11 aio? 213) -.- etc. are rather complicated expressions of the 

geometry and loading; see Equations (27) in Reference 60. From 

Equations (173), the displacement coefficients A, B, and C may be deter- 

mined in terms of the out-of-roundness amplitude C,. The case Cy = 0 

leads us back to the eigenvalue problem of the elastic general instability. 

Once eng coefficients A, B, and C are determined in terms of C,, the 

elastic stresses due to imperfect circularity, at any point on the periphery 

of the frame flange, can be found in terms of the amplitude C, from the 

equation 
(iia aa e 

f 0 R ask 00/2 -e 
6. = -E |(w- 

where the displacements u, v, and w are given by Equation (172); Equation 

(174) is derived in Reference 60. The first term in the brackets of 

Equation (174) represents a direct-stress component whereas the second 

term represents a bending component; both components are due to the 

asymmetric bending action as a consequence of the out-of-roundness. To 

obtain the total stress in the flange of a ring frame, the axisymmetric mem- 

brane component due to the radial load Q* from Equation (21) must be added 

to that of Equation (174); this latter stress is given by 

zing Seer): ery (175) of h q 
ee + bh)(R +d + 5) 

where d is the depth of the circular ring frame. Equation (175) is valid 

for external frames; for internal frames, the factor (R- d- =) must be 

used in the denominator (see Figure 11). 



Numerical calculations using Equations (173) are facilitated with the 

aid of a digital computer. Their solution represents an "exact"! solution 

of the problem within the framework of thin-shell assumptions and the 

assumed out-of-roundness and buckling functions. However, both 

Kendrick and Hom developed so-called approximate solutions from these 

more exact equations; these latter are proving useful in design. Hom 

gives the following convenient formula for determining the maximum 

bending stress in the flange of an imperfectly circular ring frame: 

Yala icto ue? 
Oo =s+t— Sit - 1) ae (176) 
bf 7 2 i = 15) 

R cn 

where e, is the distance of the frame flange from the median surface of 

the shell and is positive for internal frames and negative for external 

frames. 

Note should be taken of the magnification term ) in Equation 
( P 
Maral? 

(176), which is analogous to that of Equation (127) for the shell out-of- 

roundness problem. These factors suggest that initial imperfections 

"srow'' in a nonlinear fashion with the applied static pressure p. This 

phenomenon is similar to the resonance condition in vibration problems 

when the frequency of an applied force approaches the natural frequency 

of the structure. In the static pressure problem of interest to us here, 

resonance" occurs when the applied pressure p approaches the elastic 

general-instability pressure Pe. of the perfectly circular ring-stiffened 

cylinder. The pressures Pon Can be conveniently determined from the 

curves given by Ball in Reference 48 and reproduced in this report as 

Figures 15 and 16. 2 



In Reference 60 Hom presents experimental data from tests of struc- 

tural models which have been purposely fabricated imperfectly circular in 

specified out-of-roundness patterns. He also presents a comprehensive 

comparison and discussion of theory vis-a-vis experiment. 

PLASTIC GENERAL INSTABILITY OF SHELL AND RING FRAMES 

Although it is true that prior to reaching its ultimate load-carrying 

capacity, a ring-stiffened cylindrical shell first undergoes elastic de- 

formations, optimum design of such a structure must eventually be based 

on considerations of inelastic behavior. The elastic general-instability 

mode and the theories developed to predict this behavior have already been 

discussed ina previous section. It remains for us to give due consider- 

ation to the inelastic general-instability mode as was done for both the 

axisymmetric and asymmetric inelastic panel-instability modes. 

Taking advantage of what has already been discussed in connection 

with the asymmetric inelastic buckling of a stiffened cylindrical shell 

between adjacent ring frames, and coupling this to the "'split-rigidities" 

concept underlying the Tokugawa-Bryant formula for elastic general insta- 

bility, it becomes rather obvious to the reader what a possible approach 

to the inelastic general-instability problem might be. 

Lunchick°~ followed this avenue of thinking, and by introducing the 

Shanley tangent-modulus concept) for the buckling of a column in the in- 

elastic range, he was able to derive a formula for plastic general insta- 



bility of ring-stiffened cylindrical shells. It can be shown that this 

formula may be expressed as follows: 

E oh ie EL. 

Pe = ae, < somes =, 4 i+ (n -“-1) om (177) 

(n -1+—)(n +X) | 1-—(1- =) 5 ae f 
fe (aye 7) 
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It is instructive for us to compare Equations (177) and (136). The 

form of the first term, the so-called shell contribution, in each of these 

two formulas is identical except for two differences which reflect the 

difference between inelastic and elastic behavior, respectively; first, the 

elastic modulus E of Equation (136) is replaced by the secant modulus E, 

in Equation (177); and second, the denominator term of Equation (177) has 

a multiplying factor in brackets which is exactly the same as the second 

multiplying factor in brackets in the denominator of Equation (104). The 

form of the second term, the so-called frame contribution, in each of 

Equations (177) and (136) is identical with one exception: the elastic 

modulus E of Equation (136) is replaced by the tangent modulus E, in 

Equation (177). This latter stems from the replacement of the elastic 

modulus in the column-buckling equations with the tangent modulus to 

generalizt the Euler formula so that it applies in both the elastic and 

inelastic ranges; this is due to Shanley. ©? 

Since Equation (177) can be easily deduced from what has already 

been developed in the preceding sections, and from what has been said 

above, details of its development will not be given here. Investigations 
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are presently underway at the Model Basin to obtain some verification of 

Equation (177). 

The method for determining the secant and tangent modulii E. and E,, 

respectively, from the uniaxial stress-strain curve of a given material 

comprising the shell structure and for a given state of stress defined by 

5; (see Equation (107)) has already been outlined in connection with the 

axisymmetric and asymmetric panel-instability modes. The same tech- 

niques are also used here, and the procedure for finding the buckling 

pressure in the plastic range follows the method shown on Figure 14. 

SOME REMARKS ON NEW PRESSURE HULL 

STRUCTURES FOR DEEP DEPTH 

In the preceding sections, consideration was given to the more im- 

portant physical concepts and mathematical analyses, and the equations 

and formulas resulting therefrom, which today form the basis for rational 

design of cylindrical pressure hull structures. The question as to how 

these formulations can be used collectively in an optimum design pro- 

cedure is left to the discretion of the reader. However, it goes without 

saying that the most obvious approach would be to program the various 

equations and formulas for high-speed digital computation. It is then 

possible that for specified mechanical properties of a hull material, the 

pressure and stresses associated with each of the primary modes of 

failure can be determined for a broad range of the geometric parameters 

of interest. It then remains to optimize, by some semigraphical technique 

for instance, the best possible configurations for a given weight-displace- 
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ment or buoyancy ratio. Once a particular geometty is chosen, it then 

remains to carry out detailed buckling and stress analyses to check the 

adequacy of the design. 

The results of such an attempt at optimization may look like the 

strength-weight curves presented by Buhl, Pulos, and Graner in Reference 

64; these are reproduced here as Figure 20. It is rather obvious from 

these curves all other considerations like fabricability, creep resistance, 

fatigue strength, etc. being equal, what the strength potential of various 

hull materials appears to be. Some general discussion of the materials 

problem as such and the research programs underway to find the necessary 

answers is given by Owen and Sorkin in Reference 5. Later investigators 

have given some detailed consideration to both the advantages and some of 

the apparent shortcomings of specific hull materials. Sorkin and Willner 

have examined the high-strength titanium alloys as possible hull structural 

materials, and Buhl, Pulos, and Graneron examined certain possibilities 

offered by the fiber-reinforced plastics. 

In Reference 3, Wenk also presents the results of strength calculations 

he conducted for different hull materials and for a wide range of geometry. 

However, his curves are primarily of qualitative value because he in- 

troduced a number of questionable approximations and simplifications to 

make the numerical computations tractable; it can also be said that some 

of the design equations and criteria he used are not the most up to date. 

: 66 ale 
The same is true of a more recent paper by Gerard onthe minimum- 
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Figure 20 - Strength-Weight Characteristics of Ring-Stiffened Cylindrical 

Pressure Hulls Made of Different Materials 
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weight design of ring-stiffened cylinders under external pressure. 

One of the basic assumptions underlying all the mathematical 

formulations presented in the main portion of this paper is that associated 

with thin-shell theory. Immediately, the question arises as to what is the 

limit of applicability of the equations and formulas which have been pre- 

sented. If we accept the thesis of Nowozhilowtad then it appears that the 

approximations of thin-shell theory may introduce errors on the order of 

5 percent for thickness-radius ratios of about 1/20 for cylindrical 

pressure hulls. This small magnitude of error provides the designer a 

great deal of flexibility because the wall thicknesses required for pres- 

sure-hull structures to withstand the pressures for operation at great 

depths, even those depths covering 98 percent of the world's oceans, may 

still be no thicker than the 1/20 ratio so that the equations we have set 

forth can provide adequate solutions. Of course, this is also contingent 

on the hull material used, which, in turn, influences the thickness, but in 

general, it can be said that probably the upper limit on the error 

introduced by using thin-shell theory should be less than 10 percent. 

The assumptions of thin-shell theory have been examined by Klosner 

and Kempne oe 8 in light of results they found from a three-dimensional 

elasticity solution for the case of a long thick cylinder under the action of 

a single radial band load around its periphery. These investigators 

concluded that the classical shell theories of Timoshenko and Fliigge 

represent good approximations to the three-dimensional stress problem 
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for relatively thick shells, e.g., R;/Ry = 0.9 and h/R = i/9.5, (where R; 

is the radius to the inside surface of the cylinder, Rj is that to the outside 

surface, R is that to the median surface, and h is the thickness of the 

cylinder). However, they found that these shell theories do not adequately 

predict the stresses and radial deflections in the neighborhood of concen- 

trated loads. At these locations, the radial deflections are predicted quite 

accurately by the transverse shear deformation shell theories. Interest- 

ingly enough, shear deformation theory was found not to improve the 

accuracy of the axial displacements and the stresses. 

For the particular problem of a long circular cylindrical shell of 

constant thickness subjected to a radial line load considered by Klosner 

and Kempner, the authors found that the classical shell theories predict 

deflections which are 8 percent smaller than those obtained from the 

elasticity solution. Thus, if one would consider a ring-stiffened cylindrical 

shell subjected to a uniform pressure, then the maximum error in the 

calculated interaction load may be as great as 8 percent and will occur 

when the spacing of the reinforcing rings is large and the rings are rigid. 

As the rigidity of the ring frames decreases, the error decreases. Thus, 

for ordinary pressure-hull design, the interaction loads are not significant- 

ly different whether use is made of classical shell theories or three- 

dimensional elasticity or shear deformation shell theories. What is 

significant, however, is the difference in the stress distribution, and it is 

with this consideration in mind that future work pertaining to pressure-hull 
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design should be directed. Of course, if the shell is much thicker than 

R,/R, = 0.9, then the interaction loads will not be adequately predicted by 

the use of a classical shell theory. 

The problem of predicting the ultimate load-carrying capacity ofa 

thick-walled pressure hull may be somewhat simpler than that associated 

with the shallower depth designs. This latter question has been adequately 

answered in an earlier section and the pertinent formulas used for pre- 

dicting axisymmetric collapse, of relatively thin cylinders, precipitated by 

yielding have been given as Equations (29), (31), (32), (35), (36), ... etc. 

For the case of the thicker walled hulls required to withstand the greater 

pressures of deep depth, the following simple equations provide the 

necessary means for predicting collapse strength: 

Bee eRe We pR ies pR 
Gus pa oo Oe a 9 

’ ’ ee aT (178) 

a 8 ion co) h(1+A ./ Lh) e (Ro+R,) 

The stresses given by Equations (178) appropriately define the three- 

dimensional state of stress in the shell wall; the stress oy results from 

considerations of equilibrium in the axial direction, whereas the stresses 

a and Gs in the circumferential and radial directions, respectively, 

ne stresses through the thickness of the result from integrating the Lamé 

shell. The added thickness Ag/ Lg reflected by the term in the denominater 

for G, represents the stiffening action of the ring frames and is a conse- 

quence of "spreading" the frame area A, out over a frame spacing Ly. The 

stresses, Equation (178), can then be used in conjunction with the Huber- 
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Hencky-Von Mises failure onttostion” | to predict the pressure at which 

the "effective stress" OF reaches the yield strength a, of the material. 

The appropriate collapse criterion can be derived from 

V2 

Fe ON ee ea ee ee | 
ae hy + ( o5 a) + ( Gils a) | = o (179) 

so that once the stresses, Equation (178), are substituted into Equation 

(179), the following expression for the collapse pressure is obtained: 

¢h/R 
= a AU NO 1 Pas 5 (180) 
aye ay a oe ye aaniles 

4 l+aJ/l+a« 2 

where 

A IRV oR 
UR teks ee Ee IO i 
ne ec ae rR, (181) 

If we accept thin-shell theory as a valid starting point, then it appears 

that the choice of thicker walled pressure-hull structures of the future 

will depend to a large measure on the ease with which they can be econom- 

ically fabricated. In cases of hulls requiring thicknesses of plating up to, 

say, about 6 inches, and/or materials which are not easily fabricable and 

weldable, the conventional construction techniques associated with the 

monolithic cylindrical shell stiffened by the usual type of transverse ring- 

frames is no longer practical. Recourse must therefore be had to new 

and, as yet, untried hull concepts and constructions. It is highly possible 

that the pressure-hull structure of the future will look like the configuration 

shown in Figure 21. This shows the composite or sheathed concept 

applied to either a conventional ring-stiffened cylinder or to a sandwich 

cylinder. 
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As part of its broad program of structural research into novel hull 

structures, in conjunction with some of the newer high-strength materials 

such as the HY-steels, the HY-titanium and aluminum alloys, and even the 

fiber-reinforced plastics, the Model Basin is examining a broad spectrum 

of the more promising geometrical configurations and construction ideas. 

These include stiffened and unstiffened spheres, prolate spheroids, and 

other shells of double curvature; bimetallic and other composite and 

sheathed arrangements; sandwich construction; multilayered cylinders, 

and multilayered spheres; ''membrane'! shells; and metal tape-wound and 

filament-wound cylinders. These efforts include both analytical studies 

and structural model tests. A number of these problem areas are also 

being investigated by organizations outside the United States Navy, but 

these studies are primarily under Bureau of Ships and Office of Naval 

Research sponsorship. 

A complete discussion of the state of knowledge for these new hull 

concepts is a presentation in itself so that it is beyond the scope of this 

report. However, it is pertinent that some introductory remarks be made 

on the subject. 

Let us begin by saying that in the range of the thicker hull structures 

required to withstand the greater pressures of operation, it can be shown 

that with judicious design evolved from rigorous mathematical theory, 

there is probably very little difference in structural efficiency between 

the unstiffened, the ring-stiffened, and the sandwich cylinder. This fact is 
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Figure 22 - Strength-Weight Ratios for Different Cylindrical Pressure Hulls 
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brought out in a qualitative way in Figure 22 where the static strength- 

weight ratios for unstiffened, ring-stiffened, and sandwich-type cylindrical 

pressure hulls are compared. If this turns out to be the case, and there is 

some indication to this effect, then the advantages offered by any of the 

newer multilayered, sandwich, and sheathed constructions will be mainly 

ease of fabrication and some possibility of improved dynamic and 

explosion resistance; these latter considerations have not been discussed 

in the earlier sections on strength analysis, and will not be pursued here 

either. Therefore, we can state that the main advantages of these new 

pressure-hull constructions stem from the use of thinner plating materials 

with their inherently superior ductility, higher yield strength, greater 

notch toughness, uniformity of physical and mechanical properties, and 

greater ease of fabrication. 

69 Krenzke ” at the Model Basin has conceived the idea of applying the 

bimetallic, and in general, the sheathed construction idea to cylindrical 

pressure hulls. A major advantage of this technique is that it permits the 

use of available materials such as the very high strength titanium and alu- 

minum alloys by eliminating the handicaps of nonweldability and the 

propensity to corrosion. The basic idea is that forged and/or machined 

ring segments, not physically joined together, are placed inside a thin, 

weldable outer jacket made of some compatible material so that upon 

initial application of pressure, the thin outer jacket is stressed beyond its 

yield point and thus plastically deforms around the more rigid high-strength 
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ring segments. Upon release of pressure, the ring segments expand 

more than the outer jacket so that the two become firmly locked together, 

the outer jacket being in residual tension and the ring segments compris- 

ing the hull structure being in residual compression. This technique 

offers many possibilities for combining the best properties of high- 

strength nonweldable materials, and, at the same time, for circumventing 

the obvious shortcomings of each. Two possible combinations are shown 

in Figure 21. Short /° has suggested the use of variable-thickness shell 

segments as a means of eliminating the longitudinal bending action 

between adjacent stiffening elements and thus permitting a state of "pure 

membrane" behavior. This innovation is shown in Figure 21 where a web- 

stiffened titanium sandwich hull core of varying thickness between webs is 

encased ina fiberglass jacket. 

Another of the more promising structural concepts for the design and 

fabrication of cylindrical pressure hull structures for deep-depth applica- 

tion is the sandwich concept. Structural engineers in the aircraft industry 

have long recognized and taken advantage of the favorable strength-weight 

and thermal-dispersion characteristics of sandwich-type construction in 

the design of modern high-speed aircraft and missiles. In studying the 

literature, however, it has been found that the loading conditions encounter- 

ed in these applications have dictated sandwich structural arrangements 

that would be of no direct use to the naval architect in the design of pres- 

sure hulls for submersibles. Most of this work (e.g., see Reference 71) 
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has been concerned chiefly with structural arrangements comprised of 

thin sheets or facings, flat or curved, and spaced apart from each other by 

a core of low Young's modulus material intended primarily to increase the 

moment of inertia or bending rigidity of the section. Such cores possess 

shear-transmitting properties but are rather weak in compression, partic- 

ularly in the circumferential direction. 

The demands of hydrostatic pressure loading are such that in order 

to exploit the sandwich concept for pressure hull construction, a core com- 

prised of elements which are compression resistant as well as shear 

resistant is sought. For this latter application, the membrane loads are 

predominant, whereas in aerospace applications, the bending-type loads 

are of prime concern. With the thinking directed along these lines, Buhl 

and Pullos (2 conducted a series of exploratory structural model tests to 

investigate the strength-weight advantages of sandwich-type cylindrical 

pressure hulls having "hard"! cores. The configurations which have 

received the most attention include the web-type and tube-type core 

arrangements. The earlier results found by these investigators indicated 

that collapse-strength advantages on the order of 25 percent may exist 

over the conventional ring-stiffened cylinder in certain ranges of 

geometry; this is shown qualitatively to some extent in Figure 22. 

More recent experimental studie ae conducted at the Model Basin on 

sandwich cylinders have revealed another possible strength advantage 

inherent in these type hull structures. Hydrotests of some structural 

127 



models made of high-strength steel have collapsed at pressures much 

higher than those predicted by calculations based on the most optimistic 

expectations. These observations have been explained on the basis that 

the exceptionally high buckling strength possessed by these sandwich 

cylinders permits straining of the material well into the inelastic and 

work-hardening ranges with its beneficial effects of higher strength 

levels. Although this phenomenon may exist, it should be viewed as more 

of a scientific curiosity than one which could be incorporated in a design. 

Furthermore, this strain-hardening influence may not even exist for 

sandwich structures fabricated of the higher strength but lower modulus 

materials like titanium, for example. 

In addition to experimental programs on sandwich cylinders, ana- 

lytical studies have been going on concurrently in order to develop 

rational formulas based on thin-shell theory for predicting the static 

structural response of these type structures. In Reference 74 Pulos 

presents an analysis of the axisymmetric elastic deformations and stresses 

in a web-stiffened sandwich cylinder under hydrostatic pressure. Raetz 

presents a similar analysis for the tube-stiffened sandwich cylinder. ? 

76,77 for three- An examination of available elastic-stability analyses 

layered sandwich cylinders under hydrostatic pressure revealed the 

absence of satisfactory criteria pertinent to the thick-walled sandwich 

hull problem in which the core possesses compression- and shear-resist- 

ant characteristics. For this reason, a new analysis has been developed 
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by Pulos and Yang. (© 

The question of how important interlaminar shear resistance is and 

what influence it has on instability strength of multilayered shell 

structures should be studied. Tests of structural models having different 

numbers of layers comprising a cylindrical shell should be conducted to 

study the relationship of different geometric parameters to ultimate load- 

carrying capacity. Also, available theories for the stresses in and 

buckling of multilayered cylinders require examination. An excellent 

summary of such analyses has been given by Ambartsumian. !? 

A strong possibility exists that underwater vehicles of the future will 

utilize spherical shells as the main pressure hull or, more likely, to close 

off the ends of basically cylindrical or spheroidal hulls. Krenzke has 

recently presented the first results stemming from a major structural 

research effort on stiffened and unstiffened spherical shetia, ” From 

tests of machined models, designed to investigate both elastic and in- 

elastic behavior, he has obtained collapse pressures on the order of two 

to three times the values reported by earlier investigators. The collapse 

strength of those models which failed elastically could not be predicted by 

the classical small-deflection theory of Zoelly, or any of the available 

28,82 However, Krenzke was able to achieve large-deflection theories. 

collapse pressures which were 70 percent of the predictions from the 

linear theory of Zoelly. Another significant result reported by Krenzke 

is that, contrary to the belief of others, the buckling coefficient appears 
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to be a constant and not a function of the thickness-radius ratio of the 

sphere; this appears to be true at least for the range of thickness-radius 

ratios from 0.10 to 0.01 investigated by Krenzke. Tests with welded 

hemispheres and tests of spherical caps (having included solid-angles 

ranging from 5 degrees to a full sphere) are also presently underway at 

the Model Basin. 

Although the overall shape of even present-day submersibles is that 

of a general extended ellipsoid of revolution,(see the ALBACORE 

(AGSS-569) hull in Figure 1), the main pressure hull structure is still 

the ring-stiffened, right-circular cylinder. In the future it may be desir- 

able to consider the use of doubly curved shells such as prolate spheroids 

for the major hull structure. Such shells are superior to the circular 

cylinder in hydrodynamic characteristics and may also possess signifi- 

cantly greater structural strength for the same weight of hull. At 

present, both analytical and experimental data on such shell structures 

are rather limited. Two major problems which require attention are 

those dealing with the axisymmetric stresses in and buckling of ring- 

stiffened prolate spheroids. A general set of edge coefficients for a 

spheroid of constant but different radii of curvature in the two principal 

directions may serve as a basis for carrying out an analysis of the elastic 

deformations and stresses in the ring-stiffened structure. Efforts should 

also be directed toward an examination of available buckling analyses such 

as those summarized in Reference 83. Structural models are required to 
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obtain necessary experimental data with which to check the predictions of 

theory. 

Further requirements may dictate the use of other than circular. 

cylindrical pressure hulls, such as those possessing either deep-draft or 

wide-beam cross sections. To meet these needs and retain the same 

degree of rationality that exists for the structural analysis and design of 

circular cylindrical pressure hulls, experimental and analytical studies 

are required. Under joint sponsorship by the Bureau of Ships and the 

Office of Naval Research, the group at the Polytechnic Institute of 

Brooklyn has been conducting theoretical studies of the elastic behavior 

of noncircular cylindrical shells under hydrostatic pressure. Kempner, 

Romano, and Vafakos have already reported some of their findings ina 

series of PIBAL peas Stee One of the more significant results they 

have found so far is that for the case of a short cylinder having a quasi- 

elliptic cross section and either simply supported or clamped edges, it 

appears that one can use the local radius of curvature in the equations for 

the right-circular cylinder to get excellent prediction of the longitudinal 

and circumferential stresses in the shell. Although one might argue that 

intuitively this result is not at all unexpected, it also turns out that no such 

simple analogy can be deduced for the case of the elastically supported 

(ring-stiffened) quasi-elliptic cylinder and recourse must be had to the 

exact solution which is based on a Fourier series approach. As an 

adjunct to these analytical studies, model tests are required to obtain 
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experimental data with which to check the predictions of theory. 

In conclusion, it is appropriate to cite two references which 

summarize the valuable theoretical research on the transverse strength 

of pressure hulls being conducted in the Department of Aerospace 

Engineering and Applied Mechanics at the Polytechnic Institute of 

Brooklyn. This research effort has been going on for the past 15 years 

under the financial sponsorship and technical cognizance of the Office of 

Naval Research and the Bureau of Ships. Much useful information has 

resulted from these investigations; some has already been discussed in 

the main body of this presentation, and a great deal has found its way into 

present-day methods of structural analysis and design of pressure hulls 

for submersibles. Prof. Nicholas J. Hoff (presently Head of the Depart- 

ment of Aeronautics and Astronautics at Stanford University) reviewed 

this work for the period from 1947 through 1952 in PIBAL Report 209. 

More recently, Kempner?’ has discussed in considerable detail the 

research effort covering the period from 1952 through 1961. The topics 

are varied and include circular cylindrical shells reinforced by non- 

uniform frames; noncircular cylindrical shells; inelastic behavior of 

circular cylindrical shells, disks, and frames; large deflections of 

circular cylindrical shells; and general instability of reinforced circular 

cylindrical shells. 

Finally, a valuable bibliography on shells and shell-like structures has 

been compiled by Nash. oe This document has proved to be a very useful 
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source of information to structural analysts and designers of pressure 

vessels in general. 
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