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EXECUTIVE SUMMARY 

Vortex-excited oscillations of marine cable systems and structures are caused by the resonant, 

nonlinear interaction between the flowing water and the structure, which takes place as a result of vor- 

tex shedding. These oscillations usually are characterized by a resonant wake capture or "lock-on" 

phenomenon in which the wake flow and the body oscillate in unison at the same frequency. In the 

case of a cable these relatively high frequency oscillations, which are predominantly in a direction nor- 

mal to the incident flow, are called strumming. Reduced fatigue life, large hydrodynamic forces (partic- 

ularly drag) and induced stresses, and high acoustic noise levels often accompany vortex-excited oscilla- 

tions. The reliability of a cable system’s performance depends on the ability to predict this dynamic 

behavior for conditions that are commonly found in the ocean environment. 

The objective of this report is to present an overview of the state of knowledge concerned with 

strumming oscillations and to apply these findings to the development of design methods for cable sys- 

tems that are likely to undergo these oscillations. The report emphasizes recent findings from the 

marine cable dynamics research program conducted by the Naval Facilities Engineering Command. 

Although this report emphasizes marine cable systems, results of the NAVFAC/CEL research effort are 

applicable to other marine structures as well. These applications are discussed in the report as appropri- 

ate. 

This report is limited in scope to the problems caused by vortex shedding from bluff, flexible 

structures and cables in steady currents, and the resulting vortex-excited oscillations. Emphasis is 

placed on an understanding of various aspects of the basic phenomena, the development of design pro- 

cedures, the definition of hydrodynamic force coefficients applicable in practice, and the specification of 

structural response parameters relevant to marine cable design. 

Vi 



Section 2 of this report gives detailed discussions of the present state-of-the-art concerning the 

vortex-excited oscillations of flexible, cylindrical structures with nominally circular cross-sections. Par- 

ticular attention is given to the behavior of a cable in a flowing fluid and to the specification of the 

hydrodynamic forces and the resonant vibration response characteristics. The coherence or phase uni- 

formity of the vortex shedding due to lock-on also is discussed. The effects of yaw or inclination of the 

cable, surface roughness, and shear (nonuniform flow) gradients are assessed in terms of their 

influence on vortex-excited oscillations. 

In Section 3 of the report a discussion is given of recent experimental studies of cable strumming. 

The physical scales of the experiments range from relatively small flow channels, to large towing chan- 

nels and to field experiments in the oceanic environment. The field experiments encompass relatively 

small-scale tests conducted in a tidal inlet and large-scale, deep water tests of moored arrays. 

Analytical models which have been developed for the prediction of cable strumming are discussed 

in Section 4 of the report. The various modelling approaches taken by different investigators are 

reviewed, and recommendations are made for applications to the cable design process. Comparisons are 

made between the model predictions and available experimental data from both laboratory and field 

scale tests. A discussion is given of the prediction methods and design procedures which have been 

developed and calibrated for practical applications. The parameters that must be considered in an 

assessment of the severity of strumming oscillations are defined and step-by-step procedures are given 

for making such an assessment. 

Computer codes for predicting and modelling cable strumming are described in Section 5. The 

codes that have been developed for ocean engineering applications comprise two areas of application: 

the static analysis of cable arrays and the dynamics of marine cables. NATFREQ is a code for calculat- 

ing natural frequencies, mode shapes, and drag amplification factors for taut cables with attached 

masses. DESADE and DECEL 1 are two versions of a code that was developed to statically analyze 

Vii 



structural marine cable arrays. This code includes a resonant vibration analysis routine which calculates 

the static deflections of the array due to the added drag forces that accompany strumming oscillations. 

SEADYYN is a nonlinear finite element cable system model being developed by CEL. A wide variety of 

systems can be modeled, including: pay-out and reel-in, time varying current fields, and point loads. 

The Skop-Griffin strumming model has been incorporated into SEADYN. SLAK is a finite-element 

computer code that was originally developed for the analysis of the free vibrations of slack cables in 

three dimensions. This code has been adapted at NRL for ocean engineering calculations of cable 

equilibrium shapes, support reaction forces, natural frequencies and the mode shapes with respect to 

the equilibrium position. 

Several appendices are included to provide additional details on topics discussed in the body of the 

report. These topics include the dynamics of taut and slack marine cables, and the measurement of 

cable added mass and hydrodynamic damping coefficients. Another appendix provides the mathemati- 

cal background for the "wake-oscillator" approach to modelling vortex-excited oscillations. Other types 

of modelling approaches (i.e., empirical, discrete-vortex, etc.) are also discussed in order to provide a 

complete background to the cable designer. 
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NOMENCLATURE AND LIST OF SYMBOLS’ 

a,b,c Coefficients defined in Table 4.2 

a,, by, cy, d; Coefficients defined in Table 4.3. 

Cin Unsteady force coefficient on a cylinder or cable vibrating in the 

cross flow direction; see equation (E1.5). 

(Cop Unsteady force coefficient on a cylinder or cable vibrating in the 

cross flow direction; see equation (E1.5). 

Cy, Coo Steady drag coefficient on a vibrating (stationary) cylinder or 

cable. 

CL Lift coefficient; see equation (E1.2) 

Cre Excitation force coefficient; see equation (2.4) 

Cr Reaction force coefficient; see equation (E1.2) 

Crr Fluid reaction (damping) force coefficient; see equation (2.5) 

D Cable diameter (m or ft). 

fe Natural frequency (Hz). 

ii Strouhal frequency (Hz). 

I; Modal scaling factor; see equation (2.3). 

k, Reduced damping; see equation (2.2). 

iL Cable length (m or ft). 

m Cable physical mass per unit length (kg/m or Ib,,/ft). 

Me Effective mass per unit length (kg/m or Ib,,/ft); see equation 
(5.1) and example 8.3 (physical plus added mass). 

m Cable virtual mass (physical plus added mass) per unit 

length (kg/m or Ib,,/ft). 

Re Reynolds number, VD/v. 

Re, Vibration Reynolds number, fD?/2v 

St Strouhal number, /,D/V. 

TOther symbols not listed here are defined in Appendices A through E. 
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Yerr.MAX 

Vi 

oh 

Cable static tension (N or Ib,) 

Wake velocity fluctuation (m/s or ft/sec); see equation (2.6). 

Incident flow velocity (m/s or ft/sec or knots). 

Reduced velocity, V/f,,D. 

Critical reduced velocity. 

Response parameter, (1 + 2Y/D) (V, St)~'; see equation 

(4.3.2). 

Phase angle function; see Table 2.3 and Appendix E. 

In line displacement (m or ft). 

In line displacement amplitude (m or ft). 

Cross flow displacement (m or ft). 

Cross flow displacement amplitude (m or ft). 

Normalized displacement amplitude, Y/D. 

Normalized displacement amplitude; see equation (2.3). 

Coordinate measurement along the cylinder or cable (m or ft). 

Yaw angle (deg or rad). 

Phase angle (deg or rad); see Table 2.3. 

Shear flow parameter; see equation (2.8). 

Log decrement of structual damping; also surface 

roughness (see equation (2.7). 

Phase angle (deg or rad); see equation (E1.8). 

Normalizing factor; see equation (4.3.1). 

Phase angle (deg or rad); see equation (E1.2). 

Phase angle (deg or rad); see equation (E1.2). 

Mass ratio, see equation (E1.1). 

Kinematic fluid viscosity (m?/sec or ft?/sec). 

Fluid density (kg/m? or Ib,,/ft?). 

Cable density (kg/m? or Ib,,/ft*). 

Correlation coefficient; see equation (2.6). 



Ww j(z) Mode shape for i th flexible beam mode; see Table E1. 

fee Structural damping ratio; see equation (E1.1). 
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The Strumming Vibrations of Marine Cables: 

State of the Art 

1. INTRODUCTION 

1.1 Objectives. At the beginning of Fiscal Year 1975, technical management of the NAVFAC cable 

dynamics research program was undertaken by the Civil Engineering Laboratory, Naval Construction 

Battalion Center. The overall objective of this program, as stated in a research plan put forward by 

CEL/NCBC, is: 

". . to provide for the development of effective methods for the analysis of the dynamic response 

of 3-dimensional, moored cable structures which undergo dynamic motions generated by various 

natural or man-produced causes. Failure to predict this dynamic behavior by suitable analytical tech- 

niques will affect the confidence in the adequacy of the system design as well as the estimated reliability 

of the system’s performance." 

"[One aspect of this problem] is the small-displacement, "high frequency" response generated by 

shedding vortices as water flows past the cable-this response is commonly referred to as cable strum- 

ming. The objective of the plan for this specific area is twofold: (1) development of a capability to 

predict the strumming response (i.e., deflection, frequency, generated acoustic energy, and drag force) 

of cable networks which have horizontally or vertically oriented cable segments, in taut or catenary 

configuration subjected to a current which may vary along the cable length, and (2) development of 

techniques which can be used to suppress cable strumming.” 

This report considers the problem of marine cable design against strumming vibrations. The 

suppression of these vibrations is dealt with in a separate CEL-sponsored report.t 

7J.E. Kline, A. Brisbane and E.M. Fritzgerald, "Cable Strumming Suppression" MAR Inc., Technical Report 249, July 1980. 
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1.2 Background. It is often found that bluff, or unstreamlined, structures display some form of 

undesirable oscillatory instability arising from motion relative to a surrounding fluid. A common 

mechanism for resonant, flow-excited oscillations is the organized and periodic shedding of vortices as 

the flow separates alternately from opposite sides of a long, bluff body. The flow field exhibits a 

dominant periodicity and the body is acted upon by time-varying pressure loads. These result in steady 

and unsteady drag forces in line with the flow and unsteady lift or side forces perpendicular to the flow 

direction. If the structure is flexible and lightly damped internally as in the case of a cable, then 

resonant oscillations can be excited normal or parallel to the incident flow direction. For the more 

common cross flow oscillations, the body and the wake have the same frequency of oscillation which is 

near one of the characteristic frequencies of the structure. The shedding meanwhile is shifted away 

from the natural, or Strouhal, frequency at which pairs of vortices would be shed if the structure were 

restrained from oscillating. This phenomenon is known as "lock-on" or "wake capture." . 

The vortex-excited oscillations of marine cables, commonly termed strumming, result in early 

fatigue, increased hydrodynamic forces and amplified acoustic flow noise; they sometimes lead to struc- 

tural damage and possibly to failure. Flow-excited oscillations very often are a critical factor in the 

design of underwater cable arrays, mooring systems, drilling risers, and offshore platforms, since these 

complex structures usually have bluff cylindrical shapes which are conducive to vortex shedding when 

they are placed in a flow. An understanding of the basic nature of the fluid-structure interaction which 

produces vortex-excited oscillations is an important consideration in the reliable design of offshore 

structures and cable systems. 

Problems associated with the shedding of vortices often have been neglected in the past in rela- 

tion to the design of offshore platforms and cable structures, largely because reliable experimental data 

and design methods have not been available. However, the dynamic analysis of ocean structures and 

cable systems has become increasingly important in the prediction of stress distributions and fatigue life 

in the offshore environment. These factors are particularly relevant as new and more complex systems 



must be designed to withstand the deep ocean environment over long time periods. Reliable experi- 

mental data are now in hand for the dynamic response of and flow-induced forces on a model scale. 

Based upon these experiments, semi-empirical prediction models have been developed and favorably 

compared with field test data. 

1.3 NAVFAC/CEL Research Program in Cable Strumming. During the late 1960’s and early 1970’s the 

Navy conducted several experiments on large, three-dimensional moored cable structures. These struc- 

tures were intended to serve as platforms for a variety of oceanographic sensors. In general, the perfor- 

mance of these cable structures was substantially less than desired, due primarly to a lack of adequate 

means for calculating the dynamic response of the structure during installation or while in place in the 

water column. In recognition of the Navy’s inadequate capabilities for the design and prediction of the 

performance of moored cable structures, the Civil Engineering Laboratory (CEL) of the Naval Facilities 

Engineering Command (NAVFAC) initiated a research program to develop effective means for the 

analysis of the dynamic response of complex, three-dimensional moored cable structures in the ocean. 

The objectives of the strumming portion of the research were twofold: (1) development of a capa- 

bility to predict the strumming response (i.e., deflection, vibration amplitude and frequency, drag force) 

of cable networks which have cable segments at arbitrary orientation to the flow, in taut or catenary 

configurations with or without attached masses, subjected to a current which may vary in magnitude or 

direction along the cable length; and (2) development of techniques which can be used to suppress 

cable strumming. 

The research plan reviewed the analytical models then available (1974) for the calculation of 

strumming and concluded that the so-called semi-heuristic approach offered the most promise for 

extension to the strumming of cables. At the time the plan was written, the models had been applied 

only to two-dimensional rigid cylinders. The first step in model development, then, was the extension 

of the models to taut, flexible cables in uniform, perpendicular currents. Succeeding efforts extended 

the models to yawed cables in uniform currents, slack cables and to cables in nonuniform currents. 



The research plan also recommended an extensive program of laboratory and field experiments to 

provide data for validating the analytical models at each stage of development. The laboratory experi- 

ments were to be conducted in water tunnels, towing tanks and wind tunnels, depending on the particu- 

lar aspect of the phenomenon being investigated and the scale of model required. 

1.4 Scope of the Report. This report is limited in scope to the problems caused by vortex shedding from 

marine cable structures and moorings, and to the resonant cross flow or strumming oscillations that 

often are excited by the vortices. The topics discussed in this report are primarily concerned with, but 

not limited to, the various elements of the NAVFAC/CEL cable dynamics research program. A discus- 

sion is given of the basic fluid dynamic characteristics of a cable in an incident flow, including the 

hydrodynamics forces, resonant dynamic response characteristics and Reynolds number effects. Addi- 

tional consideration is given to the fluid/structure interaction effects of shear (nonuniform flow) and 

roughness of the cable surface. Relevant experimental findings from towing channel experiments, 

small-scale field experiments and large scale field experiments also are discussed. 

Strumming analysis methods for both taut and slack marine cables are described together with the 

computer codes that are available to implement the various analysis procedures. Emphasis is placed 

here on the development of design procedures, on the definition of hydrodynamic loads and force 

coefficients applicable in practice, and on the definition of structural and hydrodynamic response param- 

eters relevant to marine cable design. Towing cable hydrodynamics is not considered explicitly in this 

report, though many of the topics discussed also are applicable to that problem as well. 

2. CROSS FLOW STRUMMING OSCILLATIONS 

2.1 Resonant Cross Flow Response Characteristics. The frequency f, of the vortex shedding from a 

circular cylinder is related to the other main flow parameters (D, the diameter of a cylinder; V, the flow 

velocity) parameters through the nondimensional Strouhal number defined as follows 

f,D 
ai St = 



The value of the Strouhal number varies somewhat in different regimes of the Reynolds number and 

with the shape of the cylinder (circular, D-section, etc.). For the ranges of the Reynolds number when 

the Strouhal number remains constant the relation between the shedding frequency and the velocity is 

linear for a given cylinder, i.e. 

I= 12% 

where K = St/D. When a cylinder immersed in a flowing fluid is free to oscillate in the cross-flow 

direction, the latter relation does not hold in the vicinity of the natural frequency of the cylinder. This 

complex resonance phenomenon— called "lock-on" or wake capture — is discussed in detail in this sec- 

tion of the report. 

If the Reynolds number is lower than about 10°, then the vortex shedding is predominantly 

periodic and the value of the Strouhal number can be assumed to be roughly 0.2 for a circular cylinder 

or cable. The Strouhal number — Reynolds number dependence is discussed further in Section 2.4. 

Measurements of the frequencies, displacement amplitudes and forces which result from vortex-excited 

oscillations have been obtained by many investigators from experiments both in air and in water. In 

this section of the report, some of the most recent of these experiments and related studies are sum- 

marized in order to provide a background for the cable strumming problem. A detailed review of the 

basic aspects of the problem of vortex-excited oscillations in general has been made recently by Sarp- 

kaya (1). King (2) and Griffin (3) have reviewed the subject in the context of ocean engineering appli- 

cations. 

A typical structure used for experimental strumming tests consists of a cylinder positioned nor- 

mally to the flow and flexibly supported at each end. Representative measurements for such a cylinder 

in air have been reported by Griffin and Koopmann (4) and in water by Dean, Milligan and Wootton 

(5). The results obtained are generally the same in both media; as the incident flow velocity V, or the 

"reduced velocity" V, as in Fig. 2.1, is increased, the unsteady displacement amplitude first builds up to 

a maximum, after which it begins to decrease as the upper limit of the locking-on range between the 

vortex and vibration frequencies is approached. For one example shown in the figure, the lock-on lim- 



its, defined by vibration displacements greater than the resonant threshold (2 Y/D = 0.1), are given by 

reduced velocities V, = 4.5 and 7.5 in air, with the maximum displacement amplitude occuring at V, ~ 

6. For the in-water experiments the resonance band is somewhat wider, from V, = 4 to nearly 8, but 

the peak displacement amplitude again is excited at V. ~ 6. The narrow resonance band in air is 

typical of lightly-damped systems while the broad resonance in water is typical of systems with relatively 

higher structural damping. From the table in the figure it can be seen that even though the damping 

and mass ratios of the two systems differ by factors of ten, the reduced damping is very nearly the same 

and so are the peak displacement amplitudes Yyax for the two cylinders. Typical values of V, 

corresponding to Yyax are listed in Table 2.1. 

When Reynolds and Froude number effects are neglected, the maximum cross flow displacement 

amplitude can be expressed from dimensional analysis as being dependent on three quantities, viz., 

@aD) 
n 

Yuax = Yuax/D = f [= » Sen 

Here w/w, is the ratio of the Strouhal and structural frequencies w, = 27 St V/D and ,, respectively; 

and ¢, is the structural damping ratio. The parameter w is a mass ratio, defined by 1 = p D?/8m7St?m, 

where p is the fluid density and m is the structure’s or cable’s effective mass. Sris the Strouhal number 

and D is the cylinder diameter. This parameter also results from the normalization of the force 

coefficients in the governing equation of structural motion as shown, for example, by Griffin (6), Sarp- 

kaya (1), and Vickery and Watkins (7). 

It has been demonstrated experimentally (2,3,7) that the peak displacement amplitude Vannse of 

vortex-excited oscillation for any given structure is a function of a "reduced damping parameter" of the 

form: 

k= ee (2.2a) 

or equivalently 

C/p = 2a St?’k,, St = a (2.2b) 



Table 2.1 

Reduced Velocity V, = V/f,D at the Peak Cross Flow 

Displacement Amplitude Due to Vortex Shedding 

Ain em NGrihneSkOpandui ay Skop and 
Koopmann (1973) 

Parkinson, Feng and 

Ferguson (1966) 

Glass (1969) 

Glass (1970) 

Koopmann (1970) 

Nakamura (1977) 

King, Prosser and 

Johns (1973) 

Mei and Currie (1969) 

Dale, Menzel and 
McCandless (1966) 

Cohen (1975) 

Dean, Milligan and Wootton (1977) 

A—Elastically-mounted rigid circular cylinder. 

B—Flexible cantilever circular cylinder. 

C—Pivoted rigid circular cylinder. 

D—Flexible hydrophone cable. 

E—Flexible cable with steel rod core. 

F—Flexible cylinder, clamped-clamped ends. 

(8 is the logarithmic decrement of the cable’s structural damping, i.e. 8 = 27, when the damping is 

small). The importance of the reduced damping follows directly from an energy balance on the vibrat- 

ing cylinder or cable at resonance. Moreover, the relation between Yyax and k, or €,/p is valid for 

flexible cylindrical structures with normal modes ;(z), for vibrations in the ith mode; z is the spanwise 

coordinate. The local cross flow displacement is then 

y= Yu; (z) sinwt 

at each z, and the maximum displacement amplitude is scaled by the factor 



Yerr max = Yuaxlil? / |b; |aax = Yuaxlyi (2.3a) 

where the modal scaling factor J; is defined by 

Bing fy vi @ a 
| i(z)| 

ory; = cae (2.3b) 
J, v2 @ a@ 

Equation (2.3b) was obtained by Iwan (8) and Skop and Griffin (9) in the course of developing a 

"wake-oscillator" formulation for predicting the vortex-excited oscillations of structures (see Appendix 

D). Typical values of J; are tabulated in references 3, 8 and 9, and in Table El. 

Experimental measurements of Yerr yay as a function of ¢,/u are plotted in Fig. 2.2. These 

results encompass a wide range of single cylinders of various configurations at Reynolds numbers from 

Re = 300 to 10°. All available experiments to date indicate that the limiting unsteady displacement for 

an elastically-mounted rigid cylinder is about 2 Yg¢p yay = 2 to 3, as shown in the figure. This result 

has been obtained both in air and in water, even though the mass ratios of vibrating cylinders in the 

two media differ by as much as two orders of magnitude. For cylinders and cables vibrating in water 

the mass ratio aa varies from slightly greater that 1 to about 8; in air typical values of the mass ratios 
p 

corresponding to the figure cover a range ai = 25 to 500. The experimental data in Fig. 2.2 indicate 
p 

that the reduced damping can increase by a factor of nearly fifty (¢,/u = 0.01 to 0.5) while the peak- 

to-peak displacement amplitude decreases by a factor of only about two or three (2-3 diameters to | 

diameter). In that range of the figure the hydrodynamic forces predominate and the light, flexible 

structures that are typically employed in water (cables, cantilevered beams) can undergo large cross flow 

oscillations. 

A fairly wide variety of structural elements is included in the data. For example, the experiments 

of Vickery and Watkins (7) were conducted with a pivoted rigid cylinder in incident flows of both water 

and air. As noted previously, Dean, Milligan and Wootton (5) measured the cross flow response in 

water of both spring-mounted cylinders and flexible cylindrical beams. King’s results (3, 10, 11) were 



obtained with yawed and unyawed flexible cantilevered cylinders that underwent cross flow oscillations 

in flowing water of various depths (in relation to the cylinder’s length). 

Table 2.2. Vortex-excited cross flow displacement amplitude 

response of cylindrical structures. 

Legend for Data Points in Fig. 2.2 

Type of cross-section and mounting; medium Symbol 

Various investigators, from Griffin (6): 

Spring-mounted rigid cylinder; air 

Spring-mounted rigid cylinder; water 

Cantilevered flexible circular cylinder; air 

Cantilevered flexible circular cylinder; water 

Pivoted rigid circular rod; air 

Pivoted rigid circular rod; water 

From Dean, Milligan and Wootton (5): 

Spring-mounted rigid cylinder; water 

Flexible circular cylinder, L/D = 240; water 

From King (16): 

Cantilevered flexible circular 

cylinder, L/D = 52 (PVC); water 

Cantilevered flexible circular 

cylinder, L/D = 52 (Stainless steel); water 

2.2 Hydrodynamic Forces. The unsteady fluid dynamic forces acting on a resonantly vibrating, 

cylindrical structure due to vortex shedding have been categorized as follows (4,6): 

® The exciting force, by which energy is transferred to the structure and which drives the vibra- 

tions; 

® The reaction or damping force, which is exactly out-of-phase with the structure’s velocity; 

® The "added mass" force, which is exactly out-of-phase with the structure’s acceleration; 

® The fluid inertia force. 



These components can be deduced from the total hydrodynamic force as measured, say, by Sarpkaya 

(12) and Mercier (13); or the components can be measured individually as discussed by Griffin and 

Koopmann (4,6). This decomposition of the forces is carried one step further than one proposed by 

Sarpkaya (1), who divides the total transverse force into "drag" and inertia terms. The "drag" term is 

the negative of the lift as it is usually characterized. Both characterizations of the force components 

have their merits depending upon the particular situation being studied and there is a direct correspon- 

dence between them, as discussed in references 3 and 6, and in Appendix E. 

Some practical and useful comparisons can be made between the fluid forces measured when a 

cylinder is forced to vibrate and the fluid forces measured when the cylinder is resonantly excited by 

vortex shedding. The forced cylinder measurements discussed here were made in water by Sarpkaya 

(1,12) and Mercier (13) and the self-excited cylinder measurements were made in air and in water by 

Griffin and Koopmann, King and others as indicated in Table 2.3 (see references 3 and 6). 

Table 2.3. Hydrodynamic Forces on Circular 

Cylinders; from Sarpkaya (12). 

Reduced Velocity, V, = 5. Fluid Force Components, Equation (E1.10) 

Inertia Drag Excitation, Damping, Inertia, 

Displacement, Coefficient,** —_ Coefficient, Phase Angle, — Cy, cose —C,,,sine Cy, sine 
Y= Y/D Ginh Cah B' = arc tan [Cy,/ C4] 

0.13 0.4 -0.2 -26.6° 0.18 0.18 0.089 

0.25 0.4 -0.35 -41.2° 0.26 0.26 0.23 

0.50 1.0 to 2.2 -0.9 -42° to -22.3° 0.67 to 0.83 0.67 to 0.83 0.67 to 0.83 

0.75 1.0 to 2.2 -0.6 -28.8° to -11.9° 0.48 t0 0.54 0.48 to 0.54 0.26 to 0.11 

+ 2al @ BAG 9 
e = £8'+y and y = arctan W, where W = a GS . In addition W = 0.05 is assumed (See 

ir o; 

Appendix E). 

++ 
The inertia coefficient is evaluated here in coordinates appropriate to a cylinder vibrating in a quiescent 

fluid or, equivalently, a fluid in uniform, steady motion. 

Typical measurements reported by Sarpkaya appear in Figs. 2.3 through 2.6. The measured values 

for the inertia coefficient C,,,, are shown in Figs. 2.3 and 2.5 as a function of the reduced velocity V,, 

for displacements from equilibrium of Y = Y/D = 0.5 and 0.75. Of particular note is the marked vari- 

ation in C,,,, in the vicinity of V, = 5. This effect corresponds to the large phase shift in the fluid force 

relative to the vibratory displacement when the characteristic frequency of the flow is locked onto the 
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vibration frequency. The fluid force on the cylinder is dominated by inertia contributions at the 

cylinder frequency at low reduced velocities. Measurements by Bearman and Currie (14) of the phase 

between the pressure at 90 degrees from the front stagnation point and the cylinder’s displacement 

confirm this large inertia effect at low V,. 

The drag or resistance force C,, is plotted in Figs. 2.4 and 2.6 as a function of V, at the same dis- 

placements, Y = 0.50 and 0.75. This component of the total fluid dynamic force is negative and 

becomes dominant near V,= 5. As noted earlier, C,, is the negative of the lift coefficient as it is usually 

characterized, so that the negative values of C,, near V,= 5 suggest a net transfer of energy to the 

cylinder in that region. These forced-cylinder results are comparable to the vortex-excited forces which 

act upon resonantly vibrating cylinders when the reduced damping is sufficiently small as in the left- 

hand portion of Fig. 2.2. It should be noted that C,,,, and C,, are Fourier-averaged coefficients and 

contain only the components of the total fluid force at the vibration frequency f. Considerable power is 

contained in the fluid force spectrum at other frequencies (i.e. 2f, the Strouhal frequency /,) for 

reduced velocities outside of the regime of locking-on between the vortex and vibration frequencies. 

The excitation component of the lift force is defined as 

Cre = Cy sind = —Cy, cose’. (2.4) 

The measurements in Figs. 2.3 through 2.6 are now compared to previous measurements by other 

investigators. The minimum value of C,, in Fig. 2.4 occurs at V, = 5, and similar results were 

obtained at the displacements Y = 0.13, 0.25, and 0.75. The several values of Cy, and C,,, so obtained 

are listed in Table 2.3 together with the related values of the force components derived from them. 

For all of these cases of forced vibration the condition for self-excitation 

Cup = WY Ca, > O 

is satisfied, thus assuring the possibility of the equivalent vortex-excited oscillation. The results for 

Cr, are plotted against the effective displacement in Fig. 2.7 together with a host of similar findings. 

The conditions under which the experiments were performed are described in Table 2.4. 

+See Appendix E. 
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Table 2.4. The Excitation Force Coefficients on Vibrating Bluff Cylinders; 

Description of the Data in Figure 2.7 

Type of cylinder Medium Cylinder material Investigator(s) Symbol 

Flexible PVC 
O cantilever PVC 

Aluminum 

Stainless steel 

King (1977) 

Pivoted Brass Vickery and 

Watkins (1964) 
rigid cylinder & Air 

sr Spring-mounted Air Aluminum tubing Griffin and 

rigid cylinder Koopmann (1977) 

Oo Rigid cylinder, Water Stainless steel Mercier (1973) 

forced 

oscillations 

O Rigid cylinder, Water Aluminum tubing  Sarpkaya (1978) © 

forced 

oscillations 

A Flexible Air Aluminum Hartlen, Baines 

cantilever and Currie (1968) 

The excitation component C,; of the total hydrodynamic force is important because it is this 

component of the fluid force system that transfers energy to the structure or cable and drives the 

strumming vibration. Several important characteristics of the unsteady lift and pressure forces that 

accompany vortex-excited oscillations are clear from the results. First there is a maximum of the excit- 

ing force coefficient at a peak-to-peak displacement between 0.6 and 1 diameters for all the cases shown 

in the figure. Second, the maximum of the force coefficient is approximately C;; = 0.5 to 0.6 for all 

but one case, the sole exception being the result at Cp; = 0.75. Cy, then decreases toward zero in all 

cases. and results in a limiting effective displacement of 2 to 3 diameters (peak-to-peak). This limit is 

clearly shown by the displacement amplitudes measured at low reduced damping in Fig. 2.2. 

The decomposition of the fluid dynamic forces described here is based upon the supposition that 

both flow-induced lift (excitation) and flow-induced reaction (damping) forces act on a resonantly 

vibrating cable or cylinder. The "wake-oscillator' models developed by a number of investigators (see 

Appendix D) are also based upon the hypothesis of a fluid damping or reaction force that is exactly 
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out-of-phase with the cylinder’s velocity. It is possible to deduce the reaction effect of the fluid from 

the measured force coefficients by means of the equations developed in Appendix E (see also refer- 

ences 3 and 6) as 

Cre = Cr sing; = —C,,, sin €. (2.5) 

As a further step in comparing the two approaches some typical results are plotted in Fig. 2.8. All of 

the measurements show the same general pattern of behavior even though some were made with freely 

vibrating cylinders in a wind tunnel and some were made with cylinders that were forced to vibrate in 

water. 

The remaining force components, the added mass and the fluid inertia, can be obtained from the 

equations given in references 3 and 6 and Appendix E when the force coefficients and the structural 

parameters of a cylindrical structure and its mountings (i.e., internal damping, natural frequency) are 

known. Detailed and related discussions of the forces and displacements that result from lock-on are 

given by Sarpkaya (1) and Griffin (3). 

Not only are the unsteady forces amplified as shown in the preceding figures but the steady drag 

loads also are increased substantially as a result of vortex-excited oscillations. Sarpkaya (12) has meas- 

ured steady drag coefficients as high as Cp = 3.1 for a cylinder vibrating in water at a displacement of 

2¥uay = 1.7. This represents an increase of nearly a factor of 300 percent from the drag on a station- 

ary cylinder, i.e. Cpg=1.1 in this case. Griffin, Skop and Koopmann (15) found that the drag 

coefficient was increased by as much as a factor of 1.8 from the stationary cylinder case (Cpo = 0.9) for 

their experiments plotted in Figs. 2.2 and 2.7. The steady drag amplification on circular cross-section 

cylinders due to vortex-excited oscillations is plotted in Fig. 2.9. The solid line on the figure is a least- 

squares fit to the data points (see Section 4.1). 

The static deflection at the tip of a flexible cantilever that experienced resonant cross flow oscilla- 

tions in water (16) is plotted in Fig. 2.10. The drag coefficient on the vibrating flexible cylinder was 
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estimated to be as large as Cp = 2.12, an amplification of 230 percent from the drag measured when 

the cylinder was restrained. This is comparable to the drag amplification measurements that are plotted 

in Fig. 2.9. 

2.3 Coherence of Shedding due to Lock-on. An important consequence of lock-on between the vor- 

tex and vibration frequencies is the greatly increased coherence or correlation of the vortex shedding 

along the length of the structure or cable. Above a threshold cross flow displacement amplitude (typi- 

cally Y/D = 0.05 to 0.1) the shedding is in phase along the length of the cylinder or cable and the wake 

is nearly two-dimensional even at large Reynolds numbers. Koopmann (17) and Toebes (18) in experi- 

ments at low and high Reynolds numbers, respectively, were among the first to investigate the 

increased coherence of the shedding that accompanies lock-on. Koopmann’s experiments were limited 

to Reynolds numbers below 300 but his flow-visualization photographs clearly showed that the vortex 

shedding was in phase along the vibrating cylinder when the cross flow displacement amplitude was 

above 2Y/D = 0.1. Toebes’ experiments were conducted at much larger Reynolds numbers (Re ~ 

68,000), but detailed wake and pressure correlation measurements showed clearly that lock-on was 

accompanied by increased coherence of the shedding along the cylinder. The magnitude of the cross 

correlation function was reduced to values below unity only by the effects of turbulent fluctuations in 

the wake, and the sign of the cross correlation measured along the cylinder indicated that the shedding 

was in phase for distances up to seven and one-half diameters when the displacement amplitude was 

above 2Y/D = 0.16. The results of these studies were limited by the relatively small length/diameter 

ratios, L/D = 7.5 to 12, in the experiments. Novak and Tanaka (19) and Howell and Novak (20) also 

have investigated the effects of turbulence in the incident stream on the correlation effects that accom- 

pany lock-on. Smooth flow (low turbulence) experiments were conducted by them to provide a base- 

line for comparison with the effects of various kinds of turbulence introduced into the incident flow. 

Blevins and Burton (21) have developed an empirical model for predicting the vortex-excited reso- 

nance, and this mode! takes account of the variation in correlation length at small displacement ampli- 

tudes. 
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Detailed investigations of the spanwise coherence that accompanies lock-on were made recently by 

Ramberg and Griffin at NRL (22,23). These experiments were conducted to investigate the wakes of 

vibrating cables as part of the overall program to develop the semi-empirical "wake-oscillator" model for 

predicting the cross flow response of flexible cables (see Appendix D). The spanwise correlation 

coefficient p 4g measured between two hot-wire probes in the wake of a vibrating cable is plotted in Fig. 

2.11. There the normalized cross correlation function (correlation coefficient) for two periodic signals, 

measured at the spatial displacement Az, is given by 

] if =) u4(z,t)ug(z+Az,t)dt 
pap(Az) = I eee ae (2.6) 

\ / =), uj(z,t)dt \ / all ug(z+Az,t) dt 

where u, and wp are the fluctuating velocity signals at probes A and B in the near wake of the cable 

(22,23). The correlation coefficient p 4, can also be defined in terms of the pressure fluctuations meas- 

ured at two locations at varying displacements along a cylinder (19). Both probes were positioned 

above the cable.so as to measure vortices of like sign, and one probe was moved in a direction parallel 

to the cable which was vibrated at several displacement amplitudes. The results shown in the figure 

correspond to vibration frequencies equal to 90 percent of the Strouhal frequency /,. 

There are three distinguishing characteristics of the correlation in vortex shedding along the cable 

(22). The shedding is in phase along the cable’s half-wavelength as shown by the constant sign of the 

correlation coefficient p4g. When the moveable probe was traversed past the node of the cable, a 

change in sign of p4g was observed. The degree of the correlation was determined by the maximum 

value of p4g (relative to unity) along the cable and the extent of the correlation was defined as the 

length along the cable that p,, was equal to its maximum constant value. Typically it was observed 

that the p 4g yay ~ 0.90 to 0.96 for the frequencies that correspond to vortex-excited oscillations, f<f, 

as shown in Table 2.5. The vortex shedding was fully correlated in degree and extent over most of the 

half-wavelength of the cable (L = 12 to 14 D) where the displacement amplitude was greater than a 

threshold of Y = 0.05 to 0.1D. 
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Table 2.5. The degree of correlation (denoted by the maximum 

value of the correlation coefficient p 4g) in the wake of a 

vibrating cable; from reference 22. 

Reynolds number = 1300 

Frequency ratio, f/f, | Displacement amplitude, 2Y/D Degree of correlation, p 4g wax 

0.9 0.1 0.89 
0.2 0.94 
0.3 0.96 
0.4 0.96 
0.5 0.92 
0.6 0.92 

1.0 0.1 0.88 
0.2 0.96 
0.3 0.96 
0.4 0.97 
0.5 0.97 
0.6 0.96 

A further study of the coherence of the vortex shedding in the wake of a flexible cable was con- 

ducted by Ramberg and Griffin (23). It was found from spectral analysis of the vortex shedding that 

the component of the fluctuating pressure or velocity at the cable frequency was 15 to 20 times the 

component at the Strouhal frequency. The spanwise correlation coefficient p 4g attained values compar- 

able to those shown in Table 2.5, as shown in Fig. 2.12. Note that magnitude of the spectral com- 

ponent C,, in Fig. 2.12 follows the distribution in displacement amplitude along the cable; this and other 

similar observations suggest that predictive models for vortex-excited oscillations can be correctly based 

upon local conditions, i.e. lift and drag forces, so long as the vortex and vibration frequencies are 

locked-on. As a practical matter it is reasonable to assume that at large displacement amplitudes the vor- 

tex shedding is coherent in degree and extent between nodal points on a vibrating flexible structure. As 

a nodal region is traversed lengthwise there is a 180 degree phase shift; the vortex shedding is again 

coherent in degree and extent but is shifted in phase from neighboring sections of the cable. The 

steady and unsteady hydrodynamic forces (drag, excitation, damping, etc.) vary with local displacement 

amplitude and are not constant over the half wave length of the cable. 

Similar findings were obtained by Novak and Tanaka (19) and Howell and Novak (20) for experi- 

ments conducted with cylinders vibrating in smooth flow. Results similar to those in Fig. 2.11 were 
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obtained (19) when the cross correlation p 4g waS measured between the signals from pressure taps at 

various spacings along a circular cylinder. When the complications of various types of turbulence and 

boundary layer profiles were added to the case of a low-turbulence uniform flow, Howell and Novak 

found that the displacement response of the cylinder was largely independent of the flow characteristics 

if the structural damping was sufficiently small to allow lock-on. 

As the damping ratio €, was increased, the displacement response of the flexibly-mounted 

cylinders became susceptible to the characteristics of the flow incident to the cylinder. The correlation 

coefficient at the pressures measured between two taps on the cylinder is plotted in Fig. 2.13. The 

cylinder employed during the experiments was a pivoted rigid rod of aspect ratio L/D = 10 in a deep 

boundary layer, but the results are very similar to those plotted in Figs. 2.11. In addition to the correla- 

tion profiles, Howell and Novak measured the cross flow displacement amplitudes as a function of 

structural damping (¢, = 0.01 to 0.11) and obtained results in various types of boundary layer (shear 

flow) environments. The measured amplitudes compare very well with those plotted in Fig. 2.2, and 

full lock-on was observed for the cylinder with €¢, = 0.01 and Yerryyy = 0.5. This case is plotted in 

Fig. 2.14. These findings further confirm that flexible cylindrical structures and cables with small 

reduced damping ¢,/u will be vulnerable to resonant vortex-excited oscillations even if the incident 

flow is nonuniform (as discussed in Section 2.7). 

A number of computer codes, prediction models and design procedures have been developed on 

the basis of the results just discussed. It has been found that local displacement amplitudes and forces 

can be predicted for flexible structures and cables from empirical data that are measured in experiments 

conducted with rigid cylinders, so long as the condition of lock-on is met and the frequency ratios f/f, 

(or reduced velocities V,) and displacement amplitudes are matched appropriately in the two cases. 

2.4 Reynolds number effects. The overall pattern of cable and cylinder response described else- 

where in this section of the report is typical of measurements in water, air and similar fluids at all Rey- 

nolds number where vortex shedding takes place. Few results at large Reynolds numbers are available, 
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however, except in the case of in-line oscillations. These results are discussed by King (2). It was 

found from the experiments conducted by King that full-scale results at high Reynolds numbers could 

be modelled in small scale laboratory experiments when the reduced velocity V, and the reduced damp- 

ing k, of the two systems were the same. This point is discussed at greater length in Section 4.3. The 

limited results that are available suggest that Reynolds number effects are of secondary importance if 

the critical reduced velocity is exceeded and the structural damping is small enough to allow excitation 

of a flexible cylinder or cable into resonant cross flow oscillations. 

The inverse of the reduced velocity V, or the Strouhal number corresponding to the peak vortex- 

excited displacement is plotted as the solid line in Fig. 2.15, adapted from the results of Wootton (24). 

The conditions span the critical regime near Re = 10° to 10°, and little influence of the critical Rey- 

nolds number is shown. For the results in the figure, the shedding frequency /, was locked onto the 

natural frequency f,, of the cylinder; the dashed line represents the value of St corresponding to the ini- 

tiation of lock-on. It is likely that conditions such as shear gradients, surface roughness, and inclination 

to the flow are of greater importance than the Reynolds number. 

In order to consider the effects of Reynolds number on vortex-excited oscillations, a universal 

Strouhal number — Reynolds number correlation was developed for the case of cross flow lock-on 

(25,26) which had not been considered in previous studies of wake similarity (27). This universal 

Strouhal number (or non-dimensional frequency scale) is valid at subcritical and supercritical Reynolds 

numbers (or non-dimensional flow velocities). The formulation has been verified for stationary two- 

dimensional bluff bodies with fixed and free separation points, vibrating bluff structures, and bluff 

cylinders in confined flow passages and at large yaw angles to the incident flow. The Strouhal number 

St* = f,d'/V, is based upon the characteristic frequency of the wake, f,; the wake width d’at the end 

of the vortex formation region; and the mean velocity V, in the region where flow separation takes 

place. The usual pressure drag coefficient Cp, the vortex shedding frequency, and the base pressure 

coefficient C,, are also related by means of an inverse dependence between St* and a wake drag 

coefficient Cp = Cp/(d'/d) K*, where K = (1— C,,)'/?. Here d’is the width of the separated vortex 

wake and d is a characteristic lateral dimension of the structure. 
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The Strouhal number St* is plotted against the wake Reynolds number Re* = V,d’/y in Fig. 2.16 

and the legend for the data is given in reference 26. The results span five decades of the Reynolds 

number, from Re* = 10? to 10’, except for the critical regime near Re* = 10°. The data for St* 

encompass both stationary and vibrating bluff cylinders and bodies with blunt trailing edges, both yawed 

and normal to the incident flow. There is some Reynolds number dependence at the lowest Reynolds 

numbers, as is the case for the classical St vs. Re relationship, but only a slight dependence of St* upon 

Re* over the remainder of the subcritical range below 2(10°). 

The inverse dependence between St* and the drag coefficient Cp is plotted in Fig. 2.17 to demon- 

strate the universal drag coefficient versus Reynolds number dependence. The solid line corresponds to 

a prediction (26) of the drag coefficient, which is in excellent agreement with a representative sampling 

of data points from experiments conducted at NRL and elsewhere. There is a universal correlation 

between the Strouhal number Sr*, the Reynolds number Re*, and the flow-induced drag coefficient Cj 

over the entire range of flow conditions where vortices are shed. 

2.5 Yaw or inclination effects. Yawed cylindrical structures and cables are those which are inclined 

forward or backward in the plane of the incident flow. Many practical ocean engineering structures are 

inclined rather than normal to the incident flow; these include cables, raked marine piles and braced 

frame members of jacket structures. Two recent studies (10,28) have considered the effects of yaw 

upon the wakes of stationary and vibrating flexible cylinders. King (10) has studied the effect of yaw 

angle upon the criteria for the onset of vortex-excited oscillations and upon the steady drag forces act- 

ing on the structure. His study also includes a complete survey of previous studies on the subject 

through 1975. More recently, Ramberg (28) has completed a detailed study of the combined effects of 

inclination and finite length (end conditions) on the vortex wakes of stationary and vibrating cylinders. 

Included in this study were the effects of yaw angle on the drag and pressure forces on stationary 

cylinders and on the boundaries of the lock-on range for vibrating cylinders. The experiments of King 

and Ramberg covered the Reynolds number range from Re = 500 to 2(10’). 



Several conclusions were drawn from these investigations. Among the most important of King’s 

findings was that yawing the structure provides no protection against vortex-excited oscillations, and sus- 

tained oscillations both in line and cross flow were recorded for yaw angles up to @ = 45° both into and 

away from the incident flow. The cylinder response was virtually the same whether the cylinder was 

inclined into or away from the flow, and a typical example (for inclination into the flow) is given in Fig. 

2.18. There the reduced velocity V, is based upon the normal component of the incident flow, V cos B, 

where B is the angle between V and a plane that is normal to the axis of the structuref. The lower 

peak displacement amplitudes again correspond to larger values of the reduced damping k,. The yawed 

flexible cylinder results are plotted in Fig. 2.2 and are indistinguishable from the displacement ampli- 

tudes measured at normal incidence. The critical reduced velocities for the onset of in line and cross 

flow oscillations were once again found to be V, = 1.2 and V, = 3.5 to 5, with the appropriate velocity 

term being V cos 8. Similar results were obtained during the DTNSRDC towing channel experiments 

discussed in Section 3.2. A marine cable that was inclined at an angle 8 = 30° underwent large cross 

flow strumming displacement amplitudes (29), and the shedding was completely locked on to the 

resonant vibrations. 

King also made a detailed study of yaw angle effects on the drag coefficient of a stationary 

cylinder. This aspect of the investigation demonstrated that if the normal component of velocity, V cos 

8, were employed as the velocity scale, then a consistent value of drag coefficient Cp was obtained, and 

that the value of Cp so obtained was equal to the equivalent value for a cylinder at normal incidence. 

Ramberg’s findings suggest that the drag estimated in this way may be low and somewhat dependent on 

the experimental arrangement (28). 

Ramberg undertook a detailed investigation of the flow around yawed cylinders; the primary 

objective was an examination of the Independence Principlet and how it can be used correctly. This 

principle, as noted above, states that the proper velocity scale for characterizing the flow about and 

forces on bluff bodies is the component of the incident flow normal to the body. One conclusion of 

+The use of normal component of velocity is called the "Independence Principle;" this is discussed in further detail later in this 

section. 
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Ramberg’s investigation was that the Independence Principle is not generally valid for stationary, yawed 

cylinders. It was found that the variation of the shedding frequency of the vortices deviated substan- 

tially from the Independence Principle for yaw angles greater than 8 = 25° to 30°, and that the vortex 

shedding from stationary cylinders was strongly influenced by the end conditions. 

A special case (one of only two) where the Independence Principle was found to apply is for the 

condition of lock-on between the vortex and the vibration frequencies. A typical example of the results 

obtained by Ramberg is shown in Fig. 2.19. The bounds for lock-on during cross flow oscillations are 

plotted for yaw angles up to 50° from normal sera aee The yawed cylinder results are in excellent 

agreement with comparable experiments performed with a cylinder positioned normal to the incident 

flow. The region inside the dashed lines and data points corresponds to the lock-on regime. The 

findings from Ramberg’s investigation imply that the various methodologies for predicting vortex- 

excited oscillations at normal incidence can be applied with resonable confidence to a cylinder at an 

angle of inclination to the flow. King’s findings further suggest that such an extension of the results 

obtained at normal incidence is valid for flexible cylindrical structures in flowing water. 

2.6 Surface Roughness Effects. Another factor influencing the hydrodynamic forces that result 

from vortex-excited oscillations is the surface roughness of the cable or cylinder. Sarpkaya (30) has 

measured the unsteady hydrodynamic forces on sand-roughened cylinders forced to vibrate and has 

compared his measurements to similar experiments with a smooth cylinder. Some typical results for 

the total hydrodynamic force coefficient Cry4y are plotted in Fig. 2.20. Substantial increases are 

apparent in the unsteady hydrodynamic force coefficient for the rough cylinder, though additional study 

is necessary to determine which components of the total force are amplified by the roughness. The 

resonant effect of lock-on is apparent, however, when the coefficient C7 is plotted against the displace- 

ment amplitude Y/D as in Fig. 2.21. Once again the peak value of C7 is obtained at 2Y/D = 1 for the 

different reduced velocities in the lock-on regime. The increase in C7 for the roughened cylinder as 

compared to a smooth cylinder is readily apparent in Fig. 2.21. The Reynolds number based on the 
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cylinder diameter was Re = 5 x 10%, the largest value reached by Sarpkaya. This corresponded to a 

roughness Reynolds number of Res = 500, where the relationship between Res and Re is 

Re; = Re (6/D). (2.7) 

Here 8 is the average roughness height. Sarpkaya (30) employed a uniform sand roughness on the 

cylinder and discusses some of the complexities that arise when the roughness is nonuniform and irreg- 

ular. 

Peltzer and Rooney (31) have conducted one of the most complete and up-to-date studies of the 

effects of shear and roughness on vortex shedding from stationary circular cylinders. The Reynolds 

numbers for their experiments spanned the range from Re = 1.6 x 10° to 3.6 x 10°, for smooth and 

roughened cylinders (roughness 8/D = 1 x 10-3), and steepness parameters (see Section 2.7) from B 

= 0 (uniform flow) to B = 0.041. This range of parameters was sufficient to provide both subcritical, 

critical (or transcritical), and supercritical vortex shedding conditions. Some of the uniform flow base- 

line conditions for the smooth and rough cylinders are plotted in Fig. 2.22, along with some recent 

measurements by Buresti and Lanciotti (32) and by Alemdaroglu, Rebillat and Goethals (33). The 

Strouhal number St versus roughness Reynolds number Re; plot illustrates the three Reynolds number 

ranges just mentioned. Szechenyi (34) introduced the idea of roughness scaling to achieve high 

Reynolds number flows, and found that critical and supercritical flows were reached for Res > 200. 

The results in Fig. 2.22 are in good agreement with this finding. These results are in good overail 

agreement with the original supercritical roughness Reynolds number simulation of Szechenyi although 

the supercritical Strouhal numbers measured by Szechenyi were somewhat higher (St ~ 0.26) than 

those plotted in Fig. 2.22. Sarpkaya’s experiments with vibrating cylinders spanned the three regimes 

and the results at Res = 500 in Fig. 2.21 approach close to, or are in, the supercritical range of Res. 

Nakamura (35) has measured the steady drag forces and Strouhal frequencies on rough circular 

cylinders at supercritical Reynolds numbers, and has observed strong regular vortex shedding at Re = 

4(10°) and above. In this Reynolds number range the vortex-excited cross flow displacement amplitude 

of a rough cylinder increased substantially from the corresponding smooth cylinder experiment. This 

22 



finding would tend to confirm Sarpkaya’s measurements of amplified hydrodynamic forces due to sur- 

face roughness in addition to the force amplification due to lock-on. A comprehensive study of the 

effects of surface roughness on the steady drag forces on stationary cylinders was made by Miller (36) 

for the case of a stationary cylinder, and another recent report by Hove, et al. also considers this prob- 

lem in some detail (37). 

2.7 Shear (Nonuniform Flow) Effects. The effects of velocity gradients (shear) are difficult to quan- 

tify on the basis of available evidence, especially for structures and cables which are vibrating. How- 

ever, the sparse information that is available suggests that a full-scale cylindrical structure or cable will 

vibrate at large displacement amplitudes even in the presence of nonuniform flow effects if the reduced 

damping is sufficiently small and the critical reduced velocity is exceeded. Detailed experiments 

reported by Howell and Novak (20) and by Kwok and Melbourne (38) give strong evidence that a flexi- 

ble bluff structure with a circular cross-section will vibrate resonantly at large displacement amplitudes 

when a turbulent boundary layer type of shear flow is incident upon the cylinder. Kwok and Melbourne 

measured maximum tip displacements comparable to those in Fig. 2.2 for reduced dampings in the 

range k, = 2 to 12 (€./u ~ 0.5 to 3). 

Stansby (39) investigated the phenomenon of lock-on for the cross flow vibrations of circular 

cylinders in a linear shear flow and has compared the results to similar experiments in uniform flow. 

From these experiments Stansby developed empirical equations to predict the bounds for lock-on in a 

shear flow, based upon the assumption of universal similarity in the wakes of bluff bodies (25,26). 

However, these results are limited to cylinders with small length/diameter ratios (L/D = 8 to 16), rela- 

tively low Reynolds number (Re = 3000 to 10,000) and small displacement amplitudes ( Y/D < 0.2). 

A recent paper and a report by Fischer, Jones and King (16,40) describes some problems that 

were anticipated during the installation of foundation piles for the Shell Oil production platform in the 

Cognac field of the Gulf of Mexico. The problems stemmed largely from the anticipated vortex-excited 

oscillations of the piles during two operations: while they were being lowered from a derrick barge into 
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sleeves in the platform base and while the inserted piles were being hammered into the sea bed. Max- 

imum tip displacement amplitudes (cross flow) of 3.2 to 3.8 m (10.5 to 12.5 ft) from equilibrium were 

predicted for currents as low as 0.6 m/s (0.31 kt) at the platform site. These large-scale motions were 

expected to create difficulties while "stabbing" the piles into the sleeves, and they could also increase 

the risk of buckling and fatigue failures during the pile driving operations. 

Experiments were conducted with model piles in three laboratories (40), for both the pile lower- 

ing and the pile driving operations. Uniform and nonuniform (shear) flows were modelled in the 

experiments. The shear parameter that characterizes a nonuniform flow is defined as 

p (2.8) 

where V is the magnitude of the incident flow velocity and z (in this case) is the depth of the water. 

The reference value Veer is usually taken as the velocity magnitude at half the distance along the cable 

or structure, although the maximum value from a velocity profile is sometimes used. For the small- 

scale experiments reported by Fischer et al (40) the shear parameter was B = 0.01 which matched the 

actual Cognac site value at depths between 100 m (330 ft) and 250 m (820 ft). 

The results from some typical model-scale experiments are plotted in Fig. 2.24. The tests were 

conducted with a 1:168 scale model of the large marine piles of diameter D = 2.1 m (7 ft). Both the 

full-scale and the model piles had specific gravities of 1.5. It is clear from the results in Fig. 2.24 that a 

shear flow with B = 0.01 to 0.015 had virtually no mitigating effect on the peak vortex-excited displace- 

ment amplitudes in the cross flow direction. The data plotted in the figure correspond to a free- 

cantilever flexible beam with no tip mass at the free end. This configuration matched closely the 

"stabbed" pile before an underwater hammer was attached for driving it into the sea bed. The structural 

damping of the PVC model in Fig. 2.24 was ¢, = 0.063 and for a similar stainless steel model the 

damping was ¢, ~ 0.015; the two flexible cylinders experienced tip displacement amplitudes of 2Y= 

3D and 4D, respectively. These damping ratios and displacement amplitudes fall well toward the left- 

hand portion of Fig. 2.2 where hydrodynamic effects are dominant. 
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It was concluded from a study of the static and dynamic stress levels within the Cognac piles dur- 

ing driving that the large cross flow displacement amplitudes (of the level shown in Fig. 2.24) would 

triple the stresses from a corresponding stationary 130 m (426 ft) long pile. The apparent steady drag 

coefficient on the oscillating pile was Cp = 2.12; this is an amplification of 230 percent from the drag 

coefficient (Cp9 = 0.93) when the pile was restrained. A fatigue life of four days was predicted for a 

stabbed pile (without a hammer attached) when it was exposed to a current of magnitude 0.46 m/sec 

(0.9 kt). Additional details and assumptions pertaining to the study are discussed in reference 40. 

A flag-type or flexible tail fairing type of wake interference device was developed to suppress the 

cross flow oscillations. Such a device was tested successfully on the model piles, but the particular 

configuration was chosen because of the nearly unidirectional currents at the Cognac site (40). Few 

actual problems were encountered during the field installation, but in the case of one pile typical peak- 

to-peak displacement amplitudes of 3 m (9.8 ft) were measured. The cause of these cross flow oscilla- 

tions was attributed to alternate vortex shedding. 

A program of experiments recently was conducted to assess the effects of shear on vortex shed- 

ding from smooth and rough cylinders at large Reynolds numbers (31). The experiments were con- 

ducted with a cylinder of aspect ratio L/D = 16 at Reynolds numbers in the range of 1.5 (10°) to 3 

(10°) in order to assess the minimum shear (as denoted by the shear parameter B given above) at 

which the characteristic lengthwise cellular vortex shedding pattern was initiated. An incipient cellular 

pattern of vortex shedding was observed at the weakest shear gradient, B = 0.007, and persisted in 

stronger form over the test range to shear levels given by B = 0.04. Most of the test runs, however, 

were carried out at values of the shear parameter, B = 0.007 to 0.02, which are representative of ocean 

site conditions. The results obtained by Peltzer and Rooney provide a reasonably extensive data base of 

circumferential mean pressure and vortex shedding frequencies for smooth and rough circular cylinders 

at subcritical, critical and supercritical Reynolds numbers. 

Peterka, Cermak and Woo (41) are conducting experiments to study the vortex shedding from 

large aspect-ratio (L/D = 12 to 128), stationary and vibrating circular cylinders and cables in a linear 
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shear flow. Figure 2.25 shows the Strouhal number based on centerline velocity for L/D = 34, B= 

0.032, and Re = 4000. This figure confirms the existence of two cells at the boundaries and shows a 

tendency toward a cellular vortex pattern over the central section of the stationary cylinder. Regions 

with a similar frequency can be identified over a limited distance, but it is not clear that cells with well- 

defined boundaries exist. When the data from Fig. 2.25 are presented as Strouhal numbers based on 

the local velocity, the data are grouped around Strouhal numbers of 0.2 to 0.21 (41). The data indi- 

cates that some cellular structure occurs but that no clear cell boundaries can be identified in many 

regions. 

Two smoke visualization photographs of the wake of the same cylinder at a Reynolds number 

slightly below 2000 are shown in Fig. 2.26. The region observed is roughly from the centerline to L = 

8D below the centerline where no clear indication of a cell structure was evident from frequency meas- 

urements in the wake. The smoke was illuminated by a strobe light that was synchronized with the 

shedding frequency, and an exposure time long enough to cover about six or seven shedding cycles was 

used. The periodic structure seen in the smoke pattern along the cylinder length is a result of smoke 

introduction through equally spaced holes in the base of the cylinder. If a coherent cell shedding at the 

strobe frequency for seven or eight cycles existed during the exposure time, the result would appear as 

a banded system as seen in the top photograph. If a cell with a frequency different from the strobe fre- 

quency was shedding or if no shedding occurred during the exposure time, the result would look like 

the bottom photo. However, the photos in Fig. 2.26 were taken at two different times using the same 

strobe frequency. These results suggest that cells of finite size, but of different frequencies and extent, 

exist at different times in the wake (41). An inclined pattern of vortex shedding similar to that shown 

in the top photograph was observed by Stansby (39) for a cylinder with L/D = 16, B = 0.025 and Re 

= 3000. 

The available evidence through 1980 relevant to shear flow effects on bluff bodies has been sum- 

marized in an NRL report (42). Additional detailed findings are given in the proceedings of recent 

International Conferences on Wind Engineering (see references 43 and 44) and in several of the refer- 

ences just cited. 
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Figure 2.1 The cross flow displacement amplitude 2Y/D for a circular cylinder plotted against the 

reduced velocity V, = V/f,D. Data points denoted by (+,®) were measured in a wind tunnel us- 

ing a cylinder with a natural frequency f,, = 52 Hz and diameter D = 6.1 mm (4). Data points 

denoted by (®) were measured in water using a cylinder with f, = 2.2 Hz (air), 2.0 Hz (water) 

and D = 25 mm (5). 
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Figure 2.2 Maximum vortex-excited cross flow displacement 2 Yerr max Of circular cylinders, scaled as in Eq. 
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8) was measured in still air for all cases shown in the figure. The legend for the data points is given in Table 
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Figure 2.3 The inertia coefficient C,,, at the vibration frequency plotted against the re- 

duced velocity V, for Y/D = 0.5. The data are from Sarpkaya (12) and were measured 

in water with uniform, steady fluid motion past a cylinder oscillating normal to the flow. 

The coefficient C,,, was derived from the total unsteady transverse force. Lock-on oc- 

curs near V, = S. 
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Figure 2.4 The "drag" coefficient Cy, at the vibration frequency plotted against the reduced velocity 

V, for Y/D = 0.5. The data are from Sarpkaya (12) and were measured in water with uniform, 

steady fluid motion past a cylinder oscillating normal to the flow. The coefficient Cy, was derived 

from the total unsteady transverse force. Lock-on occurs near V, = 5. 
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Figure 2.5 The inertia coefficient C,,, at the vibration frequency plotted against the re- 

duced velocity V, for Y/D = 0.75. The data are from Sarpkaya (12) and were measured 

in water with uniform, steady fluid motion past a cylinder oscillating normal to the flow. 

The Coefficient C,,,, was derived from the total unsteady transverse force. Lock-on oc- 

curs near V, = 5. 
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Figure 2.6 The "drag" coefficient Cy, at the vibration frequency plotted against the re- 

duced velocity V, for Y/D = 0.75. The data are from Sarpkaya (12) and were measured 

in water with uniform, steady fluid motion past a cylinder oscillating normal to the flow. 

The coefficient C,,, was derived from the total unsteady transverse force. Lock-on oc- 

curs near V, = 5S. 
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EXCITATION FORCE COEFFICIENT, Cy ¢ 

CROSS FLOW OSCILLATIONS 
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Figure 2.7. The excitation component C,¢ of the lift force plotted against the vortex- 

excited cross flow displacement 2 ¥er¢e yay (peak-to-peak), as in Eq. (2.3). The legend 

for the data points is given in Table 2.4. 
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CROSS FLOW OSCILLATIONS 
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Figure 2.8 The fluid reaction coefficient Cr, plotted against the maximum cross flow dis- 

placement 2Yyy4y for a circular cylinder vibrating in uniform flow. Legend for data 

points: ——, Griffin and Koopmann (4); ——, Mercier (13); --- Sarpkaya (12). 
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CROSS FLOW OSCILLATIONS 
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Figure 2.9 The ratio of the steady drag coefficient Cp due to vortex-excited cross flow oscillations and the 

steady drag coefficient Cpg on a stationary circular cylinder plotted against the wake response parameter w,. 

Here 2Y/D is the peak-to-peak displacement amplitude (D is the diameter of the cylinder), V, is the reduced 

velocity and St is the Strouhal number. 
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Figure 2.11 Spanwise correlation coefficients p 4g for the velocity signals measured in the wake of a vi- 

brating cable at a Reynolds number of 1300; from reference 22. The spanwise separation between the 

two measuring probes is given by A Z/D and the vibration displacement amplitude by Yuax/D. Vibra- 

tion frequency equal to 90 percent of the Strouhal number frequency /f,. 
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Figure 2.12 Distribution of displacement amplitude Y/D, magnitude 

of the spanwise correlation coefficient p 4g, and the spectral content 

of the vortex shedding at the vibration frequency f(C,) and at the 

Strouhal frequency f,(C,); from reference 23. The spanwise separa- 

tion between the measuring probles is given by Az/D and the varia- 

tion displacement amplitude by Y/D. Vibration frequency equal to 86 

percent of the Strouhal frequency f,. Reynolds number = 610. 
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Figure 2.13 Spanwise correlation coefficient R, between the fluctuating pressures measured on a vibrating pivoted rigid 

cylinder in a deep boundary layer flow; from reference 20. The peak-to-peak tip displacement amplitude of the cylinder is 

given by 2Y/Dand the spanwise separation between the pressure taps is given by Az/D. Reynolds number = 75,000. 
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Figure 2.14 Peak cross flow displacement amplitude Y/D (root-mean-square of Y) plotted against reduced 

velocity V, for a flexibly-mounted circular cylinder in uniform and sheared incidents flows; from Howell and 

Novak (20). Structural damping ratio, = 0.01; aspect ratio L/D = 10. The various types of incident wind 

flows are given by the legend. The figure was provided by Dr. John F. Howell, University of Bath, England. 
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MAXIMUM CROSS FLOW 
OSCILLATIONS 
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REYNOLDS NUMBER 
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Figure 2.15 Inverse reduced velocity V—-' for maximum displacement amplitudes plotted against the Rey 

nolds number for roughened cylinders. The inverse of V, is the Strouhal number based on f,. Maximum 

peak displacement, ——; onset of vortex-excited oscillations ---; from Wootton (24). 
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Figure 2.16 Universal Strouhal number Sr* plotted against the wake Reynolds number Re* (see Section 2.4). 

A detailed legend for the data in given in reference 26. 
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Figure 2.17 The universal wake drag coefficient Gp plotted against the wake Reynolds number (see Section 2.4). 

A detailed legend for the data points is given in reference 26. 
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REDUCED VELOCITY, V, = VcosB/f,D 

Figure 2.18 The cross flow induced displacement 

amplitude Y/D for flexible, yawed cylinders in 

uniform flow plotted against the reduced velocity 

V., from King (10). The reduced velocity is 

based upon the component of the incident flow 

normal to the cylinder, V cos B, where B is the 

yaw angle. The Reynolds number of the experi- 

ments was Re = 10%. 
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Figure 2.19 Lock-on boundaries (in terms of the cross flow displacement amplitude 2Y/D) plotted against the ratio of 

vibration and Strouhal frequencies; from Ramberg (28). The Strouhal frequency f, was estimated from the cosine law 

relation f, = 0.21 V. cos B/D. Lock-on occurs inside the area bounded by the data points and dashed lines, and the 

latter correspond to the case of flow normal to the vibrating cylinder. 
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Figure 2.20 Total unsteady transverse force coefficient at the locked-on vibration frequency (Force/1/2/p V>DL). Cy y4y, meas- 

ured on smooth and rough circular cylinders vibrating in the cross flow direction, plotted against the reduced velocity V,; from 

Sarpkaya (20). The measurements were made under the same conditions as in Fig. 2.3 through 2.6, and lock-on occurs near V, 

= 5. 
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Figure 2.21 Total unsteady transverse force coefficient C7, measured on smooth and rough circular cylinders 

vibrating in the cross flow direction plotted against the displacement amplitude 2Y/D, from Sarpkaya (30). 

Legend for data points: ——, rough cylinder, ----- , smooth cylinder. 
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Figure 2.22 Strouhal number St = f,D/V plotted against the roughness Reynolds number 

Re; = V8/v. Here is the cylinder surface roughness. Legend for data points: 

Peltzer and Rooney (31): 

© Rough (6/D = 1073) 
A Rough, low turbulence = .03% 

Buresti and Lanciotti (32): 
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Alemdaroglu, Rebillat and Goethals (33): 
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Figure 2.23 Peak cross flow displacement response Y/D (standard deviation of Y) 

plotted against reduced velocity V, = V/f,D for a model circular cylinder in a tur- 

bulent boundary layer, from Kwok and Melbourne (38). The structural damping ra- 

tio ¢, of the rigid pivoted model was varied as shown on the figure. The characteris- 

tic flow velocity V was measured at the tip of the cylinder, of aspect ratio L/D = 9. 

The figure was provided by Dr. K.C.S. Kwok, University of Sydney, Australia. 
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Figure 2.24 Measured peak cross flow displacement amplitude 

Y/D plotted as a function of the reduced velocity V,. A slender, 

fully submerged and cantilevered circular cylinder was employed 

as the model (L/D = 52. D = 12.7 mm (0.5 in)) for experi- 

ments conducted in uniform (8 = 0) and shear (B = 0.01 to 

0.015) flows of water. The cylinder was a 1:168 scale model of a 

full-scale marine pile with the same specific gravity (SG = 1.5), 

from experiments reported by Fischer, Jones and King (40) and 

King (16). In the case of the shear flow V is the maximum 

value in the nonuniform incident velocity profile. The figure 

was provided by Dr. Warren Jones of the Shell Development 

Company. 
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Figure 2.25 Strouhal number Sty (based upon the center line velocity Vj) plotted 

against the spanwise distance along a circular cylinder in a linear shear flow; from Peter- 

ka, Cermak and Woo (41). Reynolds number Rey = 4000, shear flow steepness param- 

eter B = 0.032. 
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Figure 2.26 Long exposure photographs of vortex shedding from a circular 

cylinder in a linear shear flow; from Peterka, Cermak and Woo (41). Reynolds 

number Rey = 20000; shear flow steepness parameter B = 0.032: cylinder as- 

pect ratio L/D = 20. The photographs were provided by Dr. Jon Peterka, 

Colorado State University. 
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3. EXPERIMENTAL STRUMMING RESULTS 

3.1 Behavior of Cables in Fluid Flows. The measured frequency and displacement amplitude 

responses for small-diameter taut cables undergoing cross flow strumming vibrations in water are plot- 

ted in Figs. 3.1 and 3.2. These results are taken from laboratory-scale experiments reported by Dale, 

Menzel and McCandless (45). In the first set of experiments (see Fig. 3.1) a 2.5 mm diameter cable, 

0.9 m in length, was excited in three resonant strumming modes over the frequency range 14-28 Hz, 

and in the second set of experiments (see Fig. 3.2) a cable of the same diameter, but 1.8 m in length, 

was excited in six modes over the same frequency range. Predictions have been made for the response 

frequency and the strumming displacement for the case shown in Fig. 3.1 and they are shown there as a 

function of the flow speed V together with the experimental results obtained by Dale and his col- 

leagues. The calculations of the cable response were made with the "wake-oscillator" model of Skop 

and Griffin that is described in Appendix D. The agreement between the prediction and the experi- 

ments is generally satisfactory for the strumming displacement and frequency, the flow speed at the 

maximum amplitude and the flow speeds at which the cable passes from one natural mode to the next. 

The reduced velocities which correspond to the peak strumming displacements are noted on the figure. 

The higher modes and frequencies of the cable result in larger strumming displacements. This 

follows from the dependence of the cable’s damping ratio €¢, on 1/f, which results in smaller values of 

the reduced damping at the higher frequencies and, consequently, larger strumming amplitudes. A 

similar result was obtained by King (46), who found that the higher normal modes of a flexible cantil- 

ever corresponded to smaller values of ¢,/u or k,, so that the higher modes experience increasing peak 

displacements. 

The steady drag and the tension fluctuations on a strumming small-diameter cable were measured 

by Dale and McCandless (47). The cables employed in the experiments were between 1.45 mm (0.057 

in) and 3.6 mm (0.140 in) in diameter and approximately 0.9 m (3 ft) long. A spherical mass of 0.23 

kg (0.5 lb) was attached to the free end of the cables as they were towed through still water. The 

details of the experimental set-up are discussed by Dale and McCandless. 
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The drag and strumming force (fluctuating tension at the attachment) are plotted in Figs. 3.3 and 

3.4. The tests were conducted with a smooth cable 2.72 mm (0.107 in) in diameter. The third (n = 3) 

and fourth (n = 4) mode resonances of the cable are clearly shown as the relative flow velocity (Rey- 

nolds number) is increased. A portion of the second mode (n = 2) is visible at the left-hand side of 

both figures. The drag coefficient Cp is amplified for all of the modes from the stationary cable refer- 

ence value plotted in the figure. The peak value of the tension fluctuation for each cable mode 

corresponds to the peak strumming displacement amplitude and to the peak drag coefficient for that 

particular cable mode. In other experiments conducted as part of the same program, Dale and 

McCandless measured strumming drag coefficients as large as Cp = 2. This corresponds to an 

amplification of the steady drag by a factor of about two, and this finding is in good agreement with the 

results discussed in Section 2 of this report. 

Some indication of the changes that occur in the flow pattern in the wake of a strumming cable 

can be obtained from the photographs in Fig. 3.5. The. photographs were taken at NRL in a wind tun- 

nel equipped with an aerosol flow visualization system (48). Two views of each of the cable wakes are 

shown with the flexible cable held stationary and with the cable vibrating with the sinusoidal displace- 

ment amplitude pattern along its length that is typical of strumming. In the photographs the maximum 

displacement amplitude is about 30 percent of a diameter, and the wake is highly coherent with p 4g = 

0.9 (see Section 2.3) over a distance of 10 diameters along the cable’s length. One photograph from 

the wake of the vibrating cable represents the wake of a node in the vibration pattern; in this case the 

wake is irregular and similar to the pattern downstream from the stationary cylinder. When the dis- 

placement amplitude is 0.3 D the wake flow is highly regular and coherent, and the vortex pattern is 

typical of the wake of a resonantly vibrating bluff body. 

3.2 Towing and Flow Channel Experiments. A program of cable strumming experiments was carried 

out in the towing basin at the David W. Taylor Naval Ship R&D Center (DTNSRDC) (29,49,50). 

These experiments added more details concerning the behavior of flexible cables to the fundamental 

results that are described earlier in this report. 
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The following dimensionless parameters were varied during the towing experiments: 

Reynolds number, Re, = V sin @D/y, based on the normal component of the incident flow; 

Length-to-diameter ratio, L/D, 

Angle, 9, between the cable and the incident flow; 

Tuning parameter, 27/p V’?DL, which determines the mode of vibration, i.e. fundamental, second 

harmonic, etc. (Tis the tension in the cable); 

2m 

pD? 
, where p, is the density of the cable material and m is the 

: ; 2 
Density ratio, p./p = — 

7 

cable’s mass per unit length. 

In order to specify these and other parameters the following measurements were made during the 

experiments: 

In-line and transverse displacements along the span of the cable to characterize the various mode 

shapes; 

In-line (drag), transverse (lift) and tangential forces at one end of the cable; 

Static tension at the other end of the cable; 

Tow speed. 

Three models (Double Armor Steel, Uniline and Small Diameter Cables) were fabricated to vary 

the cable density and length-to-diameter ratio; the physical characteristics of the models are listed in 

Table 3.1. The added mass and damping properties of these cables are discussed in Appendix C of this 

report. A rotatable twin strut assembly was used in which cables up to 4.4 m (14.5 fi) in length could 

be held at static tensions up to 2225N (500 lb) and towed at speeds up to 2.6 m/s (5 kt) at various 

angles to the tow direction between 8 = 0 and 90°. A sketch of the test rig is shown in Fig. 3.6. Two 
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sensors were used to measure displacements at selected points along the cable. Each sensor was 

comprised of two sets of electric dipoles, which were set 89 mm (3.5 in) apart; these were used to 

sense the position of the cable in terms of two vector signals R, and Rj. In later analysis of the data, 

the horizontal and vertical displacements were derived from R, and R>. The accuracies obtained in the 

measurement and analysis processes were calculated and are discussed in detail together with equipment 

and data analysis techniques in references 49 and S50. 

Table 3.1 

Cable Model Physical Characteristics: 

DTNSRDC Experiments 

Uniline 

Small Diameter 

Experimental conditions were chosen for the three cables to vary the five dimensionless parame- 

ters discussed above and to bracket each resonant condition with several runs at various constant tow- 

ing speeds. To select these speeds for each static tension setting, the tow carriage was slowly 

accelerated through a wide speed range. Strip chart recordings of the forces during a portion of a typi- 

cal acceleration sweep are shown in Fig. 3.7 for the Double-Armored Steel cable oriented normal to the 

flow and under 1650N (370 Ib) of static tension. As the carriage speed was increased from zero, a reso- 

nance appeared in the drag signal at about 0.1 m/s and then diminished at about 0.2 m/s (0.4 kt). This 

represents an in-line mode where the cable was oscillating in the direction of the flow. As the speed 

was increased from 0.4 to 0.8 m/s (0.7 to 1.5 kt) in Fig. 3.7, a fundamental-mode resonance appeared 

in the midspan displacements and in the forces. Within this range, higher harmonics of the motion 

begin to appear, especially in the flow direction. The displacement spectra for five speeds in this range, 

shown in Fig. 3.8, clearly illustrate the build-up of these harmonics. Over a still higher range of speeds, 

between 0.9 and 1.3 m/s (1.8 and 2.5 kts), a second harmonic resonance appeared in the displacements 

at the quarterspan and in the flow-induced forces (49,50). 
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The data from the DINSRDC towing experiments are compiled in Table 3.2. In addition to the 

kind of results already discussed, these experiments reveal a number of interesting phenomena. Con- 

sider first the data from experiments 10, 7 and 23 in the table. These measurements were obtained on 

the Double Armor Steel Cable at a relatively low tension, T = 289N (65 lb); this condition 

corresponds to a slack cable (see Appendix B). The critical tension H below which slack cable effects 

become important is given by the equation 

Hi, = 0.93 (W?EA)"3, (3.1) 

where W is the total weight of the cable in water, E is Young’s modulus of the cable material and A is 

the cable’s cross-section area. These parameters are all known for the case of the Double-Armored 

Steel (DAS) cable. The computed and measured natural frequency-tension behavior is shown in Fig. 

3.9. The critical tension H,,;, is in the range 756 to 1112N (170 to 250 Ib) based on the EA values 

given in the figure, so that the conditions for runs 10, 7 and 23 fall well within the slack cable regime. 

The natural frequency of the DAS cable in water is f, = 4.2 Hz from Fig. 3.11, which falls within the 

frequency "crossover" range enclosed by the dashed lines in the figure. This modal crossover is a com- 

plex phenomenon associated with the dynamics of slack cables with small sag-to-span ratios. At the 

crossover three modes of the cable have the same natural frequency and include a symmetric in-plane 

mode, an anti-symmetric in-plane mode and an out-of-plane or sway mode. The symmetric modes con- 

tain an even number of nodal points along the cable while the anti-symmetric modes contain an odd 

number of nodes. The dynamics of slack marine cables are discussed further in Appendix B of this 

report. 

It is sufficient to note here that although the results of runs 10, 7 and 23 fall within this complex 

regime, the transverse vibration amplitudes for these runs are comparable to those measured under taut condi- 

tions. The strumming waveform contains an appreciable in-line component at the transverse vibration 

frequency and there are large phase differences between the in-line and transverse components. Small 

or non-existent phase differences were exhibited during the taut cable strumming experiments. 
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Table 3.2 
Results of The DINSRDC Towing Tank Cable Strumming Experiments 

Cable Vibration Natural Reduced Phase Double 

Cable type Experiment tension, 7 | frequency, f Mode frequency velocity, angle, amplitude 

number (Ib, N) (Hz) in water, f, | Vsin0/f,,D ; displacement 
(Hz) (deg) 

Double Armor 10 (Tow angle, | (65,290) 2.46 Fund 4.2 3.31 

steel; 7 6 = 90°) 3.46 (n = 1) | (slack cable) 5.04 é I 
D = 0.6 in. 23 3.52 5.60 131.0 0.65 

15) 36 (370,1640) 3.94 Fund 4.56 4.65 0.09 

37 4.62 (n = 1) | (taut cable) 5.37 1.07 
30 (@ = 90°) 4.77 6.17 1.28 

38 5.05 6.83 el. 

41 (365, 1620) 5.30 7.70 0.97 
42 (365,1620) 9.00 n=2 | 9.18 7.25 0.89 
45 (375, 1665) 9.28 7.58 1.08 

33 (@ = 90°) (370, 1640) 9.51 8.19 Hel 
48 (375,1665) 9.83 8.33 1.05 

51 9.99 8.73 1.09 
109 (265,1180) 3.88 Fund 3.86 4.82 —1.4 0.62 | 0.64 

104 3.96 (n = 1) 5.50 —1.8 NAD | 1.35 
105 (@ = 60°) 4.09 6.24 6.9 1.40 | 1.55 
108 4.43 7.06 = 0.99 | 1.12 

112 4.55 7.80 11.4 1.05 | 1.18 

115 (265,1180) 7.62 n=2 VP 1355 —1.8 0.70 | 1.04 
121 @ = 60°) WHS} 7.87 =017 0.77 | 1.19 

124 8.31 8.24 =I2 0.81 | 1.32 

127 8.48 8.52 —0.9 0.87 | 1.36 

Uniline: 72 (216,960) 4.25 Fund 4.68 4.61 0.33 
D = 0.6 in. 73 4.68 (n = 1) 5.34 1.23 

15.2 mm 59 (@ = 90°) 4.75 5.70 1.09 

74 4.80 6.06 1.18 
76 5.14 6.86 —10.3 1.29 

64 11.08 n=2 9.36 6.89 0.44 

66 9.89 TDS 1.08 
68 (6 = 90°) 11.66 7.58 0.41 
70 11.89 7.94 0.36 

62 12.01 8.37 0.38 
Small diameter; | 86 (20.89) 9.5 Fund 9.82 4.45 0.22 

D = 9.07 in. 87 9.0 (n = 1) 5.04 0.62 
1.8 mm 88 (6 = 90°) 9.9 5.93 1.07 

89 10.8 6.52 1.15 
90 11.0 7.12 0.99 
92 (20.89) 21.7 n=2 19.64 6.07 —49 8 0.34 

93 6.38 | —70.4 0.43 

94 (@ = 90°) 21.9 6.60 —43.8 0.48 
95 22.3 6.82 —45.8 0.45 
96 2DRS) U2) —449 0.46 

+See equation (3.4); displacement measured at the cable antinode. 

The taut cable natural frequencies in Table 3.2 were calculated from the string equation 

n 1 
Te a =a il, 2, 3 (3.2) 

where n is the mode number, 7 is the static tension, L is the cable length (span) and m’ is the cable’s 

virtual mass. The added mass coefficients employed in computing the cable’s natural frequencies were 
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measured for the three cables at NRL and are discussed in Appendix C. The measured displacements 

at the cable antinodes contain components in-line with the tow direction as well as in the transverse 

direction. These in-line components in all cases have a frequency equal to the transverse cable vibra- 

tion frequency. For most of the tests conducted at the second harmonic of the fundamental frequency, 

however the in-line component of the displacement signal at the cable antinode is equal to or greater 

than the transverse component. 

If the two components of the cable motion at the frequency w = 27/f are 

x=Xsin @s) in-line (3.3a) 

y=Ysin @t+,,) transverse, (3.3b) 

then the results show that ¢,, = 0 for most of the Double-Armored Steel and Uniline cable experi- 

ments. This suggests that the cable strumming waveform at the antinode takes the form 

r=VX°+ Y’sin @t) =R sin @t) (3.4) 

where R = V X*+ Y° is the resultant displacement. When the phase angle #,, is non-zero as in a 

number of cases, i.e., the slack cable conditions, a complex strumming waveform shape with time- 

varying displacement is obtained. 

The displacements for several runs are plotted in Fig. 3.10 as a function of the reduced velocity 

V, = V sin 6/f,.D, where the normal velocity component incident to the cable is given by V sin @. 

(The legend on the figure lists the tension, inclination angle, structural log decrement, and the reduced 

damping k, for the three cables.) . Each run corresponds to a resonant, vortex-excited response over the 

lock-on regime between the vortex shedding and cable vibration frequencies. In the first mode (n = 1) 

results shown in Fig. 3.10, all three cables exhibit nearly the same maximum strumming displacement 

at V, = 6, which is typical of vortex-excited oscillations of cables and bluff structures as shown by the 

results in Fig. 2.1 and Table 2. The peak displacement amplitude for the yawed DAS cable is higher by 

about 20% from the unyawed cable even though the yawed cable damping is apparently higher. The 

structural damping of the cable was dependent upon the orientation of the mounting struts (see 

Appendix C) as they were rotated to align with the tow direction. Thus there is some variation in the 
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measured structural damping due to changes in the strut stiffness with yaw angle, which may account for 

the response changes. The reduced damping k, of the cables is very low, and the peak displacement 

changes only slightly with k, except for the anomaly just mentioned. The peak displacements are 

slightly lower than one might expect from the limiting values at low damping in Fig. 2.2, but the meas- 

ured strumming frequencies in Fig. 3.10 clearly show the constant frequency vs. flow velocity resonance 

(lock-on) that characterizes vortex-excited oscillations. 

The second mode (n = 2) results for the three slack cables exhibited many of the strumming 

characteristics that are evident from the fundamental mode results shown in Fig. 3.10. The peak dis- 

placements and their corresponding reduced velocities are listed in Table 3.2. The resultant strumming 

amplitudes of the DAS and Uniline cables are nearly the same as in the fundamental mode, but the 

second-mode displacement for the small diameter cable is about half the fundamental mode response. 

This anomalous behavior (compared to taut cctiea) is very likely due to the complex strumming 

waveform in the n = 2 mode that is characterized by large values of the phase angle P xy (see Table 

3.2) and the relatively large in-line components of the vibration at the strumming frequency. Based 

upon the results from the preceding section, one would expect the cable strumming in the second mode 

to exhibit slightly larger displacements than in the fundamental mode. The cable vibration frequencies 

in the second mode again are typical of the frequency vs. velocity dependence that characterizes the 

lock-on phenomenon as discussed in Sections 2 and 3.1 of this report. 

As part of the overall CEL/NCBC cable dynamics research program MAR Incorporated conducted 

a program of experiments to investigate the effects of sensor housings (attached discrete masses) on the 

overall cable response. A first report on the results obtained has been given recently by Kline, 

Fitzgerald, Tyler and Brzoska (51). Some of these results are summarized briefly here and compared 

with the previous findings from the cable dynamics program shown in Fig. 3.10. The tests were con- 

ducted on the same "strumming rig" at the DINSRDC that was employed in previous CEL-sponsored 

strumming experiments. The recent MAR Incorporated experiments and the experimental layout are 

described in detail in references (49) and (51). 
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Some of the results obtained in these experiments are plotted in Fig. 3.11. The attached masses 

in all cases were one or two aluminum sensor housings attached at various locations along the 4.57 mm 

(0.18 in.) diameter steel cable span of 4.42 m (14.5 ft). It can be seen from the results in the figure 

that the cable was tested at various conditions in the resonant, cross flow strumming regime during the 

experiments. It should be noted that the attached masses did not deter or diminish the strumming, but 

instead the system consisting of a bare cable plus attached masses reached higher cross flow displace- 

ment amplitudes than the bare cable alone. It should be noted that the conditions of MAR’s bare cable 

reference experiment were at the onset of the resonant strumming regime while the attached mass 

experiments reached well into the resonant region as shown in Fig. 3.11. All of the tests were con- 

ducted in the range of cable and attached mass properties where hydrodynamic effects dominate (the 

left-hand portion of Fig. 2.2), and even the addition of concentrated masses does little to deter large- 

displacement cross flow strumming effects. All of the frequency spectra plotted in reference 51 give 

clear evidence of cross flow strumming at a single resonant frequency. Many of the dynamic properties 

of marine cables with attached masses can be calculated from the results of a study by Chung (52). 

Further studies of the behavior of cables with attached masses are continuing as part of the 

NAVFAC/CEL cable dynamics program. 

3.3 Small-Scale Field Experiments. Field studies of the strumming behavior of marine cables were 

conducted over several summers at Castine Bay, Maine by staff members of the Ocean Engineering 

Department at MIT. The field test layout is shown in Fig. 3.12. Sections of faired and unfaired cables, 

nominally 23 m (76 ft) in length, were positioned normal to a spatially uniform tidal current which 

ranged in magnitude from 0 to 0.7 m/sec (0 to 1.36 kt). The earlier experiments have been reported in 

detail (53). The most recent experiments, performed during 1976, were concerned with detailed meas- 

urements of the strumming response of both unfaired and faired marine cables in an ocean environ- 

ment (54). As with the DINSRDC cables, measurements of the natural frequencies (in-air and in- 

water), the added mass, and the fluid dynamic damping of the cables were made at NRL and are dis- 

cussed in Appendix C. 
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The strumming behavior of the cables tested during these experiments has been classified into 

three general categories: resonant lock-on, non-resonant lock-on and non-lock-on. The first of these 

categories, resonant lock-on, is characterized by very stable motion of the cable in one of its natural 

modes where the displacement is sinusoidal and the displacement amplitude is essentially constant. 

Non-resonant lock-on is characterized by small modulations in the cable vibration displacement and fre- 

quency. These two lock-on regimes are shown in Fig. 3.13 where two data records from the Castine 

Bay experiments are plotted. Non-lock-on occurs when the natural vortex shedding frequency is just 

outside of the synchronization range. The results obtained in this latter regime are discussed in a 

recent paper by Kennedy and Vandiver (55). 

The results from the Castine Bay experiments that pertain to the case of resonant lock-on are now 

discussed. The actual vibration frequencies measured at currents between 0.2 and 0.6 m/sec (0.4 and 

1.2 kt) with an unfaired polyester (Uniline) cable and an unfaired Kevlar cable positioned in the tidal 

flow are plotted in Figs. 3.14 and 3.15. The tension changed slightly (less than 5 percent) during the 

2 in order to account for the Tun time, so that the measured frequencies are scaled here by [Tension] 

slight variations in the natural frequencies of the cable. When this adjustment is made, the natural 

modes of the Uniline cable are clearly highlighted as shown in Fig. 3.14. Five natural modes of the 

cable (n = 2, 4-7) appear over the range of tidal currents shown and all are characterized by resonant 

lock-on. In the case of the Kevlar cable, five natural modes (n = 3-7) also are shown in Fig. 3.15. 

The mode numbers were estimated from the taut cable equation 

, 

pS DULG. = (2a) 

after taking into account the added mass of the cable. The frequency response of these relatively long 

cables (23 m or 76 ft) is similar to the strumming response of a meter-long cable employed by Dale, 

Menzel and McCandless (45) in their small scale experiments discussed in Section 3.1. The strumming 

response of the short sample of cable is shown in Fig. 3.1; the similarities between the field and the 

laboratory are evident. 
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Some indication of the reproducability in the field tests is given by Fig. 3.16 which shows the 

(scaled) frequencies measured at two different positions along the Kevlar cable during two different 

runs. The agreement between the two test runs is excellent. The resonant strumming displacements 

for two runs with the Kevlar cable (n = 2) and one run with the Uniline cable (n = 5) are plotted as a 

function of the reduced velocity V, in Fig. 3.17. The measured displacements are shown on a relative 

scale. The data for the individual runs are divided by the maximum measured disotaccuent for that 

run. The strumming results in Figs. 3.16 and 3.17 again clearly show the frequency and displacement 

amplitude resonances that are characteristic of the vortex-excited oscillations. As in the laboratory 

experiments discussed in Sections 2 and 3.1 and the towing tank results plotted in Fig. 3.10, the 

resonant cross flow displacements for the field tests occur at reduced velocities in the range V, = 5 to 

8, with maximum strumming displacements in the range V, = 6 to 7. 

3.4 Large Scale Field Experiments. FISHBITE is the name of a marine cable experiment conducted 

by Softley, Dilley and Rogers in 1976 (56). A wire rope 12 mm (0.47 in.) in diameter and 500 m 

(1640 ft) long was hung from a ship anchored in 1960 m (6430 ft) of water at the Tongue of the 

Ocean, located at 77° 52' W and 25° 10’ N. The tidal flow varied both temporally and spatially from 0.1 

to 0.4 m/s (0.2 to 0.8 knots). A current meter was attached at the halfway point, but no other lumped 

masses were attached to the cable. The cable response was measured at the top end only and the cable 

parameters resulted in a modal spacing of 0.025 Hz. 

The response typically included more than one hundred modes between 8 and 12 Hz, with a 

center frequency of 10 Hz. An rms acceleration spectrum from the report of Softley et al. is given in 

Fig. 3.18. From a study of these data Kennedy and Vandiver (55) have noted that the rms response at 

the measurement point on the upper end of the cable was limited to less than one cable diameter. 

They attribute the bandwidth of the cable response to spatial and temporal variations of the current at 

the test site. No lock-on was observed during any of the FISHBITE experiments. 

SEACON II was a major undersea construction experiment the chief goal of which was the meas- 

urement of the steady-state response of a complex three-dimensional cable structure to ocean currents. 
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The measured array responses were to be employed in a validation of analytical cable design models and 

computer codes (57). A second goal of the SEACON II experiment was to demonstrate and evaluate 

new developments in ocean engineering which were required to design, implant, operate, and recover 

fixed undersea cable structures. 

The SEACON II structure consisted of a delta-shaped module with three mooring legs. It was 

implanted in 885 m (2900 ft) of water in the Santa Monica Basin by the Civil Engineering Laboratory 

during 1974 and was retrieved during 1976. The top of the cable structure was positioned 137 m (450 

ft) below the water surface. The mooring legs were 1244 m (4080 ft) long and each arm of the delta 

was 305 m (1000 ft) long. An artist’s view of the completed structure is shown in Fig. 3.19. Two 

mooring legs were attached to explosive anchors embedded in the sea floor and the third leg was 

attached to a 5680 kg (12500 Ib) clump anchor. The entire cable structure was instrumented in order 

to collect water current and array position data. 

The data were used to validate the computer code DECEL1 (previously called DESADE). This 

code was developed at NRL (58) and is discussed elsewhere in this report. The delta cables experi- 

enced uniform currents over their respective lengths and often were subject to cable strumming. These 

strumming oscillations led to increased steady drag coefficients and static deflections as discussed 

further in Section 4 of this report and by Skop, Griffin and Ramberg (59). Details of the SEACON II 

implantation, design and recovery are given by Kretschmer, Edgerton and Albertsen (57). 

The drag coefficient Cp of the SEACON II cable was measured in two series of tests conducted 

for CEL. These measurements are plotted in Fig. 3.20. The tests conducted at the Naval Postgraduate 

School utitized a short segment of the cable that was restrained from oscillating. An average value of 

Cp = 1.55 was obtained. The DINSRDC tests were conducted with a 4.6 m (15 ft) long cable seg- 

ment. The resonance in the drag versus Reynolds number data in Fig. 3.20 was caused by cable strum- 

ming. The drag resonance is similar to that measured by Dale and McCandless (47) and plotted in Fig. 

es 
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A cable strumming experiment (the Bermuda Testspan) was conducted by the U.S. Navy from 

December 1973 to February 1974. The site of the experiment was near Argus Island, Bermuda. A 256 

m (840 ft) long, 16 mm (0.63 in.) diameter electromechanical cable was suspended horizontally in the 

water at a depth of 28 m (92 ft). The cable had no strumming suppression devices attached, but it had 

numerous weights, instrumentation devices, and floats distributed over its length. The experimental 

arrangement is shown in Fig. 3.21. The unfaired cable and instrumentation were similar to the cables 

which made up the horizontal delta module of the SEACON II array. Two current meters were 

suspended near the mid-span point of the cable. 

Kennedy and Vandiver (55) have analyzed the results of this experiment and have reached 

several conclusions. They found that the strumming response of the cable was typical of a broadband 

random process and that resonant and nonresonant lock-on were rare. The high modal density, which 

ranged from the 10th to the 150th mode, and extreme variations in current speed and direction were 

chiefly responsible for the broadband response of the test span. The peak rms cross flow displacement 

amplitude experienced by the Bermuda Testspan was estimated by Kennedy and Vandiver to be Y=+ 

0.5 D. A more thorough discussion of this large scale field experiment is given by Kennedy (60). 
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Figure 3.1 Vortex-excited strumming vibrations of a taut marine cable. The solid lines denote the predicted strumming 

response and the individual points denote the displacements (A) and frequencies (@) measured by Dale, Menzel and 

McCandless (45). Cable length, L = 0.9 m; cable diameter, D = 2.5 mm. The frequencies of the three natural cable modes 

are noted on the left-hand vertical axis. 
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NOTE: VERTICAL LEADERS REPRESENT SHARP 
FREQUENCY CHANGES OVER A SMALL 
VELOCITY CHANGE.CORRESPONDING 
AMPLITUDE CHACTERISTICS ARE SHOWN 
BY THE LOWER CURVE. 
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Figure 3.2 Vortex-excited strumming vibrations of a taut marine cable. Conditions 

as in Fig. 3.1 except L = 1.8 m. 
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Figure 3.3 Strumming drag coefficient Cp for a smooth cable plotted against Reynolds number Re (incident relative flow speed), 

from Dale and McCandless (47). Cable length L = 0.9 m (3 ft), cable diameter D = mm (0.107 in.). 
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Figure 3.4 Strumming force (tension fluctuation)? for a smooth cable, from 

Dale and McCandless (47). Cable data as in Fig. 3.3. 
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(a) 

(b) 

(c) 

(d) 

Figure 3.5 Flow visualization of vortex shedding at several 

spanwise (Z) locations along a stationary and vibrating flexible 

cable, at a Reynolds number of Re = 570, from Ramberg and 

Griffin (). (a) Stationary, z = 0.25 L. (b) Stationary, z = 0. 

(c) Vibrating (node of the vibration pattern), z = 0.25 L and V, 

= 5.2. (d) Vibrating (antinode), 7 = 0, V, = 5.2 and 2Y¥/D = 
0.3. The wavelength of the vibration pattern is denoted by L. 
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Figure 3.6 A drawing of the DINSRDC experimental strumming test rig. 
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CRITICAL TENSION 
20 RANGE 

MODAL FREQUENCY 
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TENSION, H/NEWTONS 
Figure 3.9 The measured vibration frequencies of a Double-Armored Steel cable in water as a function of the tension. The 

natural frequency "crossover" range for slack cables with small sag is predicted by the dashed lines for two values of the meas- 

ured cable elastic modulus, EA. Legend for data points: ©, O, Lowest symmetric mode of the slack DAS cable; GO, Taut cable 

natural frequency in the second (n = 2) mode; © —, experimental runs 10, 7, 23 from Table 3.2. 
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Figure 3.10 Strumming displacements and frequencies of marine cables in the fundamental 

mode as functions of the reduced normal velocity V, = Vsin @/f, D. 
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=— MAR EXPERIMENTS (1979) 
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STRUMMING FREQUENCY, f/Hz 
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Figure 3.11 Strumming displacement amplitudes for cables with attached sensor housings. 

The data are plotted against a background of the bare cable data shown in Fig. 3.10. 
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(a) RESONANT LOCK-IN. 

(b) NON-RESONANT LOCK-IN. 

Figure 3.13 Sample displacement amplitude signal traces in the resonant and non-resonantt { 

lock-on regimes, from the Castine Bay experiments (54). 
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Figure 3.14 Measured resonant frequencies of cable strumming in the the ocean (54), normalized by the factor [Ten- 

sion]'/2, plotted against the tidal current speed V. Cable fundamental frequency, f,, = 1.2 Hz, Diameter, D = 13 

mm; Specific gravity = 1.13 (Uniline polyester cable). 

79 



OS 

ny 7l72 O iS 

tL /T/n2 
O Ow 

FREQUENCY SCALE 

0. | 

0.15 0.3 0.45 0.6 
CURRENT VELOCITY, V/m/sec 

Figure 3.15 Measured resonant frequencies of cable strumming in the ocean (54), normalized by the fact [Tension] 

plotted against the tidal current speed V. Cable fundamental frequency = /,, = 3 Hz; diameter D = 6.1 mm; specific 

gravity = 1.74 (Kevlar cable). 
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Figure 3.16 Measured resonant frequencies of cable strumming in the ocean (54) normalized by the factor [Ten- 

sion]'/2, plotted against the tidal current speed V. Case one, @: Cable fundamental frequency, /, = 2.7 Hz. Case two, 

© —: Cable fundamental frequency, f,, = 30 Hz. Cable properties same as Fig. 3.15. 
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Figure 3.17 Measured resonant cable strumming displacements (54), normalized by the maximum value for 

each run, as a function of the reduced velocity V,. For the Kevlar and polyester cable characteristics see 

Figs. 3.14 and 3.15. 
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Figure 3.18 A root-mean-square acceleration spectrum of the cable strumming response measured during 

ihe FISHBITE experiments by Softley, Dilly and Rodgers (56); the figure is from reference 60. 
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Figure 3.19 A schematic drawing of the SEACON II experimental mooring that was implanted and retrieved by 

the Civil Engineering Laboratory (57). The array was implanted in 885 m (2900 ft) of water in the Santa Monica 

Basin during 1974. The horizontal delta module of the array was approximately 137 m (450 ft) below the surface. 
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Figure 3.20 The measured normal drag coefficient Cp for the SEACON II cable plotted against the 

Reynolds number Re; from reference 57. Curves A and B are provided for reference purposes only. 
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4. STRUMMING CALCULATION METHODS 

4.1 Analytical Models. A number of analytical models have been developed to predict the vortex- 

excited oscillations of general bluff, cylindrical structures. Application to cable strumming problems is 

but one specific example of the utility of the various methods. In general the models that have been 

developed fall into these categories: 

) Nonlinear, or wake, oscillator models. 

® Empirical models, which are based upon measured fluid dynamic force coefficients. 

® Random vibration models. 

@ Discrete vortex models, which are based upon the insertion of arrays of small vortices to 

represent the overall features of the vortex shedding. 

e Numerical models, which are based upon numerical integration of the governing equations of 

fluid motion. 

The wake oscillator models have been developed because many features of the resonant interac- 

tion between the vibrations and the vortex shedding exhibit the characteristics of a nonlinear oscilla- 

tion. This observation was first made by Bishop and Hassan (61) and the idea since has been developed 

by Skop and Griffin (9,62), Iwan and Blevins (8,63) and Hartlen and Currie (64), among others. The 

wake oscillator model most recently has been applied to marine riser vibration problems. Some limited 

success has been achieved as discussed by Fischer, Jones and King (40). The wake oscillator concept is 

discussed in further detail in Appendix D. 

Random vibration models to predict vortex excited oscillations in general and cable strumming in 

particular have been developed by Blevins and Burton (21) and Kennedy and Vandiver (55), respec- 

tively. Some limited success has been achieved. A general model for employing measured force 

coefficients in an empirical formulation has been developed by Griffin (3,6) and Chen (65). Measured 
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force coefficients such as those reported by Sarpkaya (12) and Griffin and Koopmann (4) are used to 

predict the resonant crossflow oscillations. A discrete vortex model for predicting the vortex-excited 

oscillations of a flexibly-mounted rigid cylinder has been developed by Sarpkaya and Shoaff (66). A 

numerical integration of the time-dependent Navier-Stokes equations in the presence of an oscillating 

cylinder has been reported by Hurlbut, Spaulding and White (67). However this numerical scheme is 

limited to low Reynolds numbers, i.e. Re < 200. These four classes of predictive models are discussed 

in Appendix E. 

4.2 General Design Procedures. Design procedures and prediction methods for the vortex-excited 

oscillations of structures and cable systems have been developed only recently. Previously a reliable 

experimental data base and accurate characterization of the phenomenon were relatively unavailable, 

and it is only since marine construction has moved into deeper water (and more harsh operating 

environments) and since the requirements of oceanographers and acousticians have become more 

sophisticated that the need for sophisticated design procedures has arisen. The need to design slender, 

flexible structures against problems due to vortex shedding in the atmospheric environment also has 

spurred renewed efforts to develop new wind engineering design procedures. It should be emphasized, 

however, that reliable data are now available only at subcritical Reynolds numbers. 

The design procedures that are available have been reported by Hallam, Heaf and Wootton (68), 

King (2), and Skop, Griffin and Ramberg (59,69). These various approaches have been unified on a 

common basis by Griffin (3). The following discussion is structured similarly to those of Hallam et al. 

and King, whose primary applications thus far have been to the design of marine structures. The 

methods developed by Skop, Griffin, and Ramberg have been applied primarily to the analysis of 

marine cable systems, though many of their basic findings have been incorporated by others in the 

marine industry (70). Blevins (71) discusses design problems due to flow-induced vibrations in gen- 

eral, including heat exchangers, overhead transmission lines and marine structures and cables. 

A general flowchart which lays out a calculation procedure for assessing the response of a struc- 

ture or cable due to vortex shedding is given in Fig. 4.1. Both single members and arrays of members 
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are considered in the general procedure, but emphasis is placed here on the case of a single flexible 

cylinder or cable. The reader should consult references 2 and 68 for further discussions of arrays of 

structural members. A second flowchart that describes the steps necessary to compute the amplified 

drag forces and steady deflections is given in Fig. 4.2. 

All of the methods developed thus far are in agreement that the following parameters determine 

whether large-amplitude, vortex-excited oscillations will occur (3): 

®@ the logarithmic decrement of structural damping, 6 

@ the reduced velocity, V/f,D 

@ the mass ratio, m,/p D?. 

Here m, is the effective mass of the structure which is defined as 

i m(x) y?(x) dx 
= Hh 

i y*(x) dx 

where m(x) is the mass per unit length including contributions due to internal water, fluid added mass, 

m (4.2.1) 

joints, sections of different material, etc., 

y(x) is the modal shape of the structure or cable along its length, 

L is the overall length of the structure or cable, measured from its termination. 

The effective mass m, defines an equivalent structure whose vibrational kinetic energy is equal to that 

of the real structure. In the context of cable strumming, this equation is generally applicable to bare 

cables and to cables with attached masses. 

As described in the previous sections the mass parameter and the structural damping can be com- 

bined as 

2m,6 
or ooan 2m St*k, , 

bw 
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which are called the reduced damping. As noted by Hallam, et al. (68), the reduced damping k, is the 

ratio of the actual damping force (per unit length) and PYaD> which may be considered as an inertial 

force (per unit length). The results in the preceding sections also suggest criteria for determining the 

critical incident flow velocities for the onset of vortex-excited motions. They are: 

Vain = YD) Vert 

where V,,..,;, = 1.2 for in-line oscillations and V,,.,;, = 3.5 for cross flow oscillations at Reynolds numbers 

greater than about 5(10°). For Reynolds numbers below 10°, V, crit = 5, which is a typical value for 

cable strumming applications. 

An increase in the reduced damping will result in smaller amplitudes of oscillation and at large 

enough values of ¢,/u or k, the vibratory motion becomes negligible. Reference to Fig. 2.2 suggests 

that oscillations are effectively suppressed at £,/u > 4 (or k, > 16), but cylindrical marine structures 

and marine cables fall well toward the left-hand portion of the figure. The measurements of in-line 

oscillations by King (46) have shown that vortex-excited motions in that direction are effectively negli- 

gible for k, > 1.2. The results obtained by Dean, Milligan and Wootton (5) and others shown on Fig. 

2.2 indicate that the reduced damping can increase from ¢,/u = 0.01 to 0.5 (a factor of fifty) and the 

peak-to-peak displacement amplitude is decreased only from 2 to 3 diameters to 1 diameter (a nominal 

factor of only two or three). At the small mass ratios and structural damping ratios that are typical of 

light, flexible structures in water, the hydrodynamic forces predominate; it is difficult to reduce or 

suppress the oscillations by means of mass and damping control in that range of parameters. Typical 

values of k, for marine cables are given in Fig. 3.10. 

Step-by-step procedures for determining the deflections that result from vortex-excited oscillations 

have been developed by Skop, Griffin and Ramberg (59,69), by King (2), by Hallam, et al. (68) and by 

Griffin (3). The steps to be taken are explained in detail in these references and generally should follow 

the sequence given most recently in reference (3): 

e@ Compute/measure vibration properties of the structure or cable system (natural frequencies or 

periods, normal modes, modal scaling factors, etc.) 
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@ Compute Strouhal frequencies and test for critical velocities, V,,;, (in-line and cross flow), based 

upon the incident flow environment. 

® Test for reduced damping, k,, based upon the structural damping and mass characteristics of the 

structure or cable. 

If the cable system or structure is vulnerable to vortex-excited oscillations, then 

@ Determine vortex-excited unsteady displacement amplitudes and corresponding steady-state 

deflections based upon steady drag augmentation according to the methods of reference (59), if 

applicable (see Fig. 4.2); 

@ Determine new stress distributions based upon the new steady-state deflection and the superim- 

posed forced mode shape caused by the unsteady forces, displacements and accelerations due to 

vortex shedding. 

@ Assess the severity of the augmented stress levels relative to fatigue life, critical stresses, etc. 

4.3 Practical Design Data. Several dynamic models of varying levels of sophistication have been 

developed to predict the displacement amplitudes that are excited by vortex shedding. One class of 

models, the so-called nonlinear "wake-oscillator’ type, has been described briefly here and in more 

detail in Appendix D. None of the wake-oscillator formulations proposed thus far has been developed 

to the stage where it truly represents a practical procedure for detailed design of structures in both air 

and water, but, based upon a detailed study, Dean and Wootton (72) have suggested that the wake- 

oscillator model of Skop and Griffin (see Appendix D) is perhaps the most promising for additional 

development. At present the wake oscillator model of Appendix D has been used with considerable 

success in the derivation of scale factors such as those in equations (2.3) and (4.3.1). 

Several empirical predictions of the dependence between the peak cross flow displacement ampli- 

tude and the reduced damping have been developed over the past several years. The three most widely 
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used are listed in Table 4.1. The prediction curve developed by Griffin, Skop and Ramberg (69) is a 

least-squares fit to those data points in Fig. 2.2 that were available in 1976 (about two-thirds of the 

points now appearing in the figure). The Iwan and Blevins curve was developed during a study of one 

wake-oscillator formulation (8) and Sarpkaya’s result is based upon a modeling study (1) similar to the 

one described in Appendix E. The dimensionless mode shape factor y is given by 

Miike hb , (z) heard fit (4.3.1) 

Representative maximum values of y, for different end conditions and mode shapes can be calculated 

from the results in Table El in Appendix E. 

All of the equations in Table 4.1 correctly model the self-limiting displacement amplitude that is 

shown at small values of reduced damping in Fig. 2.2. It is also important to note that all of these 

models are based upon the structural damping ratio, typically the still air value, for whatever mode of the 

structure is excited (see Appendix E). The models in Tables 4.1 tend to overpredict the cross flow dis- 

placement amplitude at Y/D < 0.05 to 0.1 where the vortex shedding is not fully correlated over the 

length of the cylinder, but these small-amplitude cross flow oscillations are of more concern in gas flows 

rather than in water. 

Table 4.1. Predictions of Cross Flow Displacement 

Amplitude Due to Resonant Vortex-Excited Oscillations 

as a Function of the Reduced Damping 

Investigator Predicted Displacement Amplitude 

1.29y Gtiiin, Shon andl Renbor @) 0p)  —_—— ee 
P e / (1 + 0.43 (2m Stk, 1335 

0.07y 
Blevins (71) VD Ss 

oe ! (1.9 + k,) St? 

spe 0572 ve 
: (1.9 + k,) St 

0.32y 
Sarpkaya (1 YDS 

Baye 1D = 7006 + (Om SK)? 
Legend: Y= displacement amplitude; D= cylinder diameter; m= mass or 

equivalent mass (equation (4.2.1)) per unit length; St = Strouhal number; k, = 

reduced damping (equation 2.2)); y = dimensionless mode shape factor (equation 

(4.3.1)), y = 1 for a spring-mounted rigid cylinder, y = 1.3 for the first mode of a 

cantilever, and y = 1.16 for a sinusoidal mode shape (cable). 
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The drag coefficient Cp for a structure vibrating due to vortex shedding is increased as shown in 

Fig. 2.9. The ratio of Cp and Cpg (the latter is the drag coefficient for a cylinder, cable or other flexi- 

ble bluff structure that is restrained from oscillating) is a function of the displacement amplitude and 

frequency as given by the response parameter (59) 

w, = (1 + 2Y/D)(V,St). (4.3.2) 

Here again 2Y is the double amplitude of the displacement, V, is the reduced velocity and St is the 

Strouhal number. The ratio of the drag coefficients is given by 

Cp/Cpo = 1 ; W, << Il (4.3.3a) 

Cp/Cpo = 1 + 1.16(w, — 1)°8, w, > 1 (4.3.3b) 

which is a least-squares fit to the data in Fig. 2.9. The equation 

1.29y; 
— (4.3.4) 
[1 + 0.43 (20 St? k,) 133° 

Yupax/D = 

can be combined with equations (4.3.2) and (4.3.3) to compute the unsteady displacements, the drag 

amplification and the amplified static deflection that is due to the vortex excited oscillations. The local 

displacement amplitude along a flexible cylindrical structure (in the ith normal mode) is given by 

y(z) = Y,(z)sin(2z ft). 

where 

Y,(z) = Yerr max Dw j(z)/1, 

These equations are employed as outlined in Fig. 4.2 to iteratively compute the static deflection of a 

structure or cable due to vortex-excited drag amplification (the drag coefficient Cpg for the stationary 

cylinder or cable is assumed to be known). | 

Blevins and Burton (21) have developed a random vibration model for predicting vortex-excited 

cross flow displacement amplitudes. As noted in Section 4.1 and Appendix E, the model is based upon 

random vibration theory in order to incorporate the effects of varying correlation length on the resonant 

response of the structure and the flow-induced forces. The details of the model are given by Blevins 

and Burton (21,71), and will not be repeated here since the variable correlation length effects are more 
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applicable at cross flow displacements less that Y/D = 0.2 and reduced dampings greater than ¢,/u = 

2. This is somewhat beyond the range in Fig. 2.2 that is most applicable to marine structures and cable 

systems. 

In order to specify the excitation component of the lift forces, Blevins and Burton fitted a qua- 

dratic curve to the data of Vickery and Watkins (1964) and Hartlen, Baines and Currie (1968) that are 

plotted in Fig. 2.7. The curve is given by 

Cre(z) =at bib ,(z)| Yuay ar c lb ,(z) |? prays (4.3.5a) 

with a = 0.35, b = 0.60 and c = — 0.93, and C;,¢ is evaluated from the equation 

L 

f Cre(z) w (2) dz 
= 20 

Ff Sv ile)az 

which is discussed in Appendix E.1. Blevins (71) has carried out the necessary integrations for a rigid 

C, (4.3.5b) 

cylinder @(z) = 1), a pivoted rod (J (z) = z/L) and a sine (taut cable) mode ( ;(z) = sin(imz/L)). 

The results are listed in Table 4.2 for the case where the correlation length /. is much larger than the 

length L of the cylinder. The calculation of additional cases is straightforward. 

Table 4.2 Excitation Force Coefficient C/, for 

Three Cylindrical Structures; from 

reference 71. 

Structure Mode Shape w ; (z) Gre Ui > Jb) 

Rigid cylinder 1 a + b(¥/D) + c(Y/D)? 

Pivoted rod ALL a+ 2 b(Y/D) + A OD 

Sine (taut cable) 

mode, i = 1 sin (Z/L) a +7 a(Y/D) + > c(¥/D)? 

"Chis is the average value calculated from equations (4.3.5a) and 
(4.3.5b). Y/D is the peak displacement amplitude for a given mode. 

a = 0.35, b = 0.60, c= — 0.93 

The coefficients for a cubic fit to the data in Fig. 2.7 have been computed and are based upon a fit 

to all of the data points shown there. This cubic equation is given by 

Cre = 4) + bi Vere max + ¢1 Vere max + 41 Vere max (4.3.6) 
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These new coefficients are listed as a,, b,, c; and d, in Table 4.3. This fitted curve to the data is con- 

sidered to be valid between Yerry4y = 0 and Yerrmay = 1.25 (2 Vere yay = 2.5). The results in the 

table can be employed as inputs to a predictive model for the strumming oscillations of a flexible cable 

according to the methods described in Appendices D and E. However, it should be noted that the 

coefficient C,,; represents only the excitation force on the structure or cable. For vibrations in water it 

is necessary to have an accurate and precise representation of the coefficients of the added mass, hydro- 

dynamic damping and hydrodynamic inertia forces. These coefficients are not as well characterized as 

Cf, but they can be derived from the total force measurements of Sarpkaya (28), for example, as 

shown in Table 2.3 and Appendix E. 

Table 4.3 Excitation Force Coefficient C/;-; 
data from Fig. 4.9 

Force coefficient: Cre = Oh 3 b, Yerr MAX + Cy Veer max of d, Yerr MAX 

where a, = 0.12, 5; = 2.12, c) = —3.57, d, = 1.45 

and the standard deviation of the curveo = 0.1. 

Effective displacement: Yerr MAX = aes 5 YE Bie wat 

In terms of Yiy4y/D, 

Cel Fay = a, + (by/y;) (Yay! D) + (ey/y?) (Yura! D)? + (dily3) Yuax/ DY? 

where the factor y; is evaluated for a given set of end fixities, i.e. free-pinned, pinned-pinned, 

clamped-clamped, etc. Hence Yjy,4y/D is the peak displacement along the beam. The factor 

y;, can be calculated from the data listed in Table E1. 

+Note that this form of the equation is slightly different than introduced by Blevins (71) as given in equation (4.3.5a) 

Several handbooks and catalogues of relevant data are available to augment the results contained 

in this report. These include a survey of steady drag coefficients for cables subjected to cross flow 

currents (73), a detailed handbook of hydrodynamic coefficients for moored array components (74), 

and a book in which the practical aspects of moored cable and buoy engineering are discussed (75). 

The report by Dalton (73) is a compilation of steady drag coefficients for stranded steel and synthetic 

fiber cables. These data are tabulated according to the source and in each case a critical assessment is 

made concerning the reliability of the experimental findings. The report by Pattison, Rispin and Tsai 
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(74) is a lengthy and detailed compilation of hydrodynamic force coefficients for moored array com- 

ponents of various shapes (cylinders, spheres, spheriods, streamlined bodies, etc.) and for cables and 

cable fairings. The authors also make an assessment of the quality and quantity of the experimental 

data that they include in their report. Solutions to a number of example problems are given in order to 

illustrate the application of the data. 

The book by Berteaux (75) is intended to serve as a text for a graduate course in buoy engineer- 

ing. Topics that are discussed include the mechanics of floating bodies, and the static and dynamic 

analysis of mooring lines. Both single point moors and multi-leg systems are considered. The final sec- 

tion of the book is concerned with the design of moored and free drifting buoy systems. Problems due 

to corrosion, fatigue, strumming and fishbite also are discussed. 
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pile 

Array of piles 
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Calculate V/ND and Re for each 
pile or member to determine 

if in-line or cross flow oscillation 

is possible (5.3.1. and 5.3.2.) 
N should relate to both individual 

members and overall structure. 

For members inclined to the 

flow see 5.4 

Calculate V/ND and 
Re to determine if 
in-line or cross-flow 

oscillation is possible 

(5.3.1. and 5.3.2.) 

No 

oscillation 

No 

oscillation 

Possible 

oscillation 

Circular 

sections only 

Circular 

sections 

only 

Possible 

oscillation 
Unlinked 

array 
Lattice 

structure 

Calculate Calculate m and 6 
pD* 

As described in 5.5.4: 

In-line motion if 

2m6 
FA < Iles 
pD 

Less certain criterion for 

cross-flow motion if wake 

interaction, but no motion 

if 2m6 >30 

pD 

If inclination 

See 5.4 

In-line motion 

If 2m6 <1.8; 
pD* 

(See 5.3.1. and 

5.5.1. for 

unlinked 

arrays) 

Cross-stream motion 

Unlinked array: 

Upstream cylinder as Isolated piles: 

motion if isolated cylinder, 
2m6 downstream cylinder 2 mse 
pD motion if 

5.3.2 

Figure 4.1 Flow diagram of the steps required for the calculation of the response of the structure due to vortex shed- 

ding; adapted from Hallam, and Wootton (68). Numbers in the boxes refer to relevant sections of reference 68. The 

same general procedures apply to an analysis of the strumming vibrations of marine cables. 
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A. w,ls)=[1 +2Ymax(s)/D] ( fplfs ) 
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(AVERAGE) 

Figure 4.2 Flow diagram of the steps required for the calculation of the steady drag amplification due to vortex- 

excited oscillations: from Griffin (3). This procedure originally was developed for an analysis of the SEACON II 

experimental mooring (59). 



5.0 NUMERICAL MODELS FOR STRUMMING ANALYSIS AND ASSOCIATED 

STRUCTURAL MODELING 

As the state of the ocean engineering art steadily progresses, more and more stringent demands 

are being placed upon the performance of cable structures. In particular, displacement tolerances and 

constraints in response to currents are ever tightening; fatigue is becoming an important design con- 

sideration; and the sensitivity of acoustic sensors has become such that they cannot differentiate 

between legitimate acoustic targets and slight variations in their vertical position. All of these are prob- 

lems that are aggravated by strumming. 

In order for an engineer to be able to design a structure to meet the constraints imposed by his 

own and other disciplines, he must be able to assess the effect of strumming on the structure in ques- 

tion. Numerical techniques to predict strumming have been developed using the models described in 

this report as well as other models which account for the effect of strumming on cable structures. For 

the most part, the strumming and structural analysis models are separate; however, a few codes have 

integrated the two types of analyses. The earliest codes that accounted for strumming were static 

models that allowed the user to specify drag coefficients; other codes performed the strumming analysis 

and supplied the drag coefficients. Recently, the capability to do strumming calculations continuously 

has been incorporated into a dynamic model. This allows strumming effects to be modeled and updated 

virtually continuously as a cable system changes geometry. 

5.1 NATFREOQO, a Strumming Prediction Model. NATFREQ is being developed by CEL for calcu- 

lating natural frequencies, mode shapes, and drag amplification factors for taut cables with attached 

masses. Drag amplification factors calculated by NATFREQ using the Skop-Griffin strumming model 

are used as inputs to the DESADE and DECEL] structural analysis models. The solution technique is 

based on a new, efficient iterative algorithm (76). The computed results have been compared to simple 

laboratory experiments with good agreement. Mode shapes generated by the algorithm for modes 5 and 

7 of the experimental cable with six unequally spaced attached masses are given in Fig. 5.1. One of the 

cases analyzed using the algorithm was a 4700 m (15,400 ft) cable with 380 attached bodies. The 
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calculated mode shape for mode number 162 is shown in Fig. 5.2. This mode #& excited by current 

velocities near one knot and thus is likely to occur in practice. The complexity of the response is evi- 

dent. 

An accurate prediction of the strumming-induced drag amplification depends upon accurate 

knowledge of the natural frequencies and mode shapes of the cables in their higher modes. When the 

cable system has large numbers of attached masses, the prediction of the cable modes and frequencies 

must be done numerically. NATFREQ is ideally suited to this type of analysis. 

5.2 Static Cable Structure Analysis Models. 

5.2.1 The DESADE Code. DESADE was developed by NRL for computing the current-induced 

static deflections of cable structures (58). The solution technique is the method of imaginary reactions. 

This is a powerful method that usually converges rapidly; however, it has been shown to be sensitive to 

problems where the cable tension is low and/or the current velocity is high. DESADE can accommo- 

date a complex cable structure with multiple interconnections and a variety of cable materials. An 

option exists to perform parametric studies to determine the effect of structural changes or various 

current regimes on the deformation response. Strumming of the cables can be handled by specifying 

increased drag coefficients obtained from other models. 

A simplified approach to the drag amplification routine in DESADE has been described for appli- 

cation to mooring system design (77). The code also has been employed recently in a design study 

(78) of the riser power cable segment that provides the link between a floating OTEC power plant and 

the bottom-resting cable segment that transmits electric power to shore. The required input to the pro- 

gram is listed in detail in reference 58, and the code is available to interested users from NRL or CEL. 

The importance of including increased drag due to strumming was made apparent in a comparison 

between the DESADE model and data from an at-sea cable structure experiment. This was the SEA- 

CON II structure; it is discussed in reference 57 and in Section 3.4 of this report. Results from the 

comparison with the SEACON II data are shown in Fig. 3.19. 

100 



The cables comprising the delta module of the SEACON array had uniform currents incident over 

their lengths and were found to be subject to cable strumming. As shown in Section 4.3, the strum- 

ming vibrations lead to increases in the effective steady drag coefficients. Since the steady drag 

coefficient is a basic parameter in all array motion computations, an accurate knowledge of its value is - 

required in order to validate the various models for the analysis of cable structures. 

The calculated steady drag coefficient was frequently 150 to 230% greater than the value of the 

nominal stationary-cable drag coefficient Cpg because of strumming of the SEACON II array. Large 

increases in the resulting drag loads would be expected to have a significant effect on the magnitude of 

the predicted array motions. In Fig. 5.3 the measured motions of a point near the intersection of two- 

cables on the horizontal delta of the SEACON II array are compared to the predicted motions during a- 

semi-diurnal tidal cycle. The calculated motions were obtained using the computer code DESADE. 

The magnitude and direction (predominantly from the southeast) of the current during the cycle can be 

inferred from the movement of the measurement point from its zero current location designated by 

"X." The North direction is shown on the plot as a reference. 

The measured motion of the point is shown in Fig. 5.3 by the solid line, and the predicted motion 

using a constant stationary-cable drag coefficient Cpg = 1.55 (measured in water (57) on a sample of 

the SEACON II cable) is given by the dashed line with circles (---0---). Finally, the predicted motion 

using Cp = (Cp/Cpo)Cpo, with Cp/Cpo calculated from equation (4.3.3) and Cpg = 11.55, is shown 

by the dashed line (----- ). Excellent agreement was obtained between the predicted and measured 

motions when the strumming-amplified steady drag coefficients were employed. It was also apparent, 

for the larger current magnitudes, that the displacement amplitudes predicted using the nominal 

stationary-cable drag coefficient (Cpg = 1.55) were considerably smaller than the measured displace- 

ments. As noted in Section 3.4, the delta cables of the SEACON II array did not undergo a pure mode, 

resonant lock-on response to the strumming forces. However, the strumming-amplified drag 

coefficients measured during well-controlled laboratory experiments that were characterized by resonant 

lock-on have been validated for applications in practice by the SEACON II computations and measured 

array motions. 
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5.2.2 Variations of DESADE. CEL has made modifications to its version of DESADE resulting in 

the re-named program DECEL1. The modifications include: user conveniences; plotting of structure 

shape and current field; iteration limits to prevent unexpected high execution costs; and three dimen- 

sional current field specification using data from up to four current meter strings. A new users manual 

(79) has been prepared that includes experience gained from using the program. 

5.3 Other Computer Codes. DESADE is one of two existing cable structure models that explicitly 

takes account of strumming-induced hydrodynamic force amplifications of marine cables. However, 

other codes to predict vortex-excited oscillations are being developed because of the importance of vor- 

tex shedding-related problems in marine applications. VORTOS is a computer code developed by 

Atkins Research and Development in the the United Kingdom. The essential features of the code are 

described in a recently published report (80). This program predicts the dynamic response of a flexible 

cylinder to vortex-excited oscillations in steady flow. The vibration amplitude and frequency response 

in a steady flow may be calculated for flexible cylindrical members of a variety of marine structures. 

The calculation is based upon experimental measurements of the cross flow response and the excitation 

forces using spring-mounted rigid cylinders and flexible cylinders (5). 

The program is based upon the well-founded assumption that the lift force at each position along 

the length of a cylinder in steady flow is a sinusoidal function of time and is dependent upon the local 

incident flow velocity and the displacement amplitude. This point is discussed in Section 2 of this 

report. The structure is represented by simple finite elements (at this stage up to eleven in number) 

and the appropriate mass and stiffness matrices. The vortex shedding frequency is determined from the 

reduced velocity V, for each element and is assumed to lock-on close to the natural frequency of the 

structure at the critical velocities described in Sections 2, 3 and 4 of this report. More specifically, 

lock-on is assumed to occur if the Strouhal frequency w, is between 0.8 w, and 1.6 w, (80). The 

resonant, vortex-excited lift forces as a function of displacement amplitude for each vibrating element 

are derived from experimental data. An iterative procedure is employed to calculate the steady-state 

deflected shape of the cylindrical member and the maximum bending stress are determined from the 
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curvature. A typical comparison between the VORTOS prediction and experimental measurements 

taken with a long, flexible circular beam is plotted in Fig. 5.4. 

The flexible cylinder of diameter D = 25 mm (1 in.) employed in this example was very much 

like a cable since it had an aspect ratio of L/D = 240 and a low value of structural damping. The 

important features of the code are described in more detail in reference 80, which also includes a 

worked example problem with output and a listing of the input data required to exercise the code. 

A computer code, MARISE, for the analysis of marine riser dynamics has been developed by the 

Shell Development Company. This code recently was modified to accommodate a wake-oscillator type 

of vortex shedding analysis (40). Predictions have been made of the oscillatory behavior of Cognac 

platform piles in various configurations during lowering and driving operations (16,40). Fair agreement 

was obtained between the MARISE predictions and model test results such as those shown in Fig. 2.24. 

Several additional marine riser dynamics codes that model the resonant vortex/structure interaction are 

discussed briefly:in reference 3. 

5.4 SEADYN, a Dynamic Analysis Model. SEADYN is a nonlinear finite element cable system 

model being developed by CEL. Both the static and dynamic behavior of cable systems can be simu- 

lated. A wide variety of situations can be modeled, including: pay-out and reel-in, time varying current 

fields, point loads and surface excitations. 

The Skop-Griffin strumming model has been incorporated into SEADYN. Strumming calculations 

are updated in a dynamic simulation whenever the relative velocity of the cable through the water 

eee 7 10%. This is an arbitrary interval and can be changed by the user. To date, the strumming 

calculation option has been used infrequently because of the disparity between the relatively small 

number of nodes required for adequate hydrodynamic modeling as compared to the large number 

required to obtain an adequate description of mode shape for the strumming model. Modeling with a 

large number of nodes results in a large cost penalty in computing the gross response of the cable. A 
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more efficient, fast algorithm such as the one used in NATFREQ could be adapted to perform cost 

effective strumming calculations. SEADYN has a default, Reynolds number-dependent drag coefficient 

builtin, but this can be over-ridden if the user specifies a drag coefficient or function based on other 

independent knowledge or calculations. 

5.5 The SLAK Code. A finite element code for predicting the natural frequencies and mode 

shapes of slack cables has been developed from a previously existing code as part of this cable dynam- 

ics research program. A finite element formulation is employed and the range of validity is not limited 

to small sag-to-span ratios, (s// < 0.12) as are most existing linear theories. The code is also valid for 

arbitrary locations of the end points (i.e. an inclined cable), it is three-dimensional, and it permits con- 

centrated applied loads (attached discrete masses) at various locations along the cable. The principal 

results that are obtained from the code in its present form are the (in-air) natural frequencies, the sup- 

port reaction forces, the equilibrium shape of the cable, and the natural mode shapes with respect to 

the equilibrium shape. The code is called SLAK and it is discussed in further detail in Appendix B of 

this report. 

These numerical models represent the first generation of cable strumming analyses. As more 

experience is gained using these models, other ideas and techniques for improving the state of the art 

of calculating the effects of strumming on marine structures undoubtedly will evolve. At the present 

time, these models represent the current understanding of strumming effects. 
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Figure 5.1 The computer representation of the n = 5 and n = 7 modes of an experimental cable with 

six unequally-spaced attached masses; from Sergev and Iwan (76). 
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X= 15400.0 FT 

Figure 5.2 The calculated mode shape (mode number n = 162) for a 4700 m (15400 ft) long marine 

cable with 380 attached masses; from Sergev and Iwan (76). 
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CROSS FLOW DISPLACEMENT AMPLITUDE, Y/D 

1.0 

PREDICTION BY 

VORTOS 

0.8 PROGRAMME 

BOTH SETS REFER TO: 
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6=1.06 
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EXPERIMENTAL RESULTS 

FROM LONG FLEXIBLE 
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REDUCED VELOCITY, V,= V/f,D 

Figure 5.4 A comparison of the measured cross flow oscillations (from equilibrium) of a flexible cylinder 

with the predicted response from the VORTOS code; from Dean and Wootton (72). 
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6. SUMMARY 

6.1 Findings and Conclusions. Problems associated with the shedding of vortices often have been 

overlooked or crudely approached on an ad hoc basis in the past in relation to the design of marine 

structures and cable systems, largely because reliable experimental data and design procedures have not 

been available. However, the dynamic analysis of marine structures and cable systems has become 

increasingly important and sophisticated in order to accurately predict stress distributions and opera- 

tional lifetimes in the ocean environment. The strumming of marine cables has serious consequences 

because these vibrations are a potential cause of fatigue for system components and they are a cause of 

increased hydrodynamic drag. Strumming vibrations also introduce acoustic noise in sensor com- 

ponents attached to the cable and they cause abrasion and wear of fittings and of the cables themselves. 

This report has summarized the present state-of-the-art concerning the strumming vibrations of 

marine cables. Reliable data now are in hand for the dynamic response of and hydrodynamic forces on 

model-scale structures and cables, and based upon these findings empirical and semi-empirical predic- 

tion models have been developed and calibrated for use in practice. Many, if not most, of these 

findings have come from the marine cable dynamics program of the Naval Facilities Engineering Com- 

mand. The results of this program are reported in detail in the various sections and appendices of this 

report and others (1,12). 

Detailed information now is available for the resonant vortex-excited response of model cylindri- 

cal structures and cables that oscillate at subcritical Reynolds numbers, i.e. Re < 2(10°). There also is 

reasonably detailed knowledge of the steady drag amplification that accompanies vortex-excited oscilla- 

tions. This force amplification causes increased static deflections of the structure or cable and practical 

design methods have been developed to predict this static deflection, as shown in this report. Unsteady 

hydrodynamic strumming force coefficients have been measured at moderate Reynolds numbers, Re = 

10° to 10*, and these coefficients have been employed in the development of the practical design pro- 

cedures that are described here. Virtually all of the measurements of cylinder and cable dynamic 
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responses and forces have been made in the Reynolds number range that is directly applicable to cable 

strumming problems. 

6.2 Recommendations. Yhough reasonable engineering approximations must be made, the pro- 

cedures and experimental data base presented in this report are recommended for use in cable system 

design practice. Procedures are described for predicting a particular system’s vulnerability to vortex- 

excited strumming oscillations. In addition, a reasonable data base from dynamic response and force 

coefficient measurements is also provided to aid in detailed calculations of the system response, if that 

is necessary. A number of computer codes also are available to assist the designer and some have been 

calibrated against both field-scale and laboratory-scale test data. 
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Appendix A 

DYNAMICS OF TAUT MARINE CABLES 

A.1 Equation of Motion for a Taut (Stretched) Cable. Consider a uniform cable stretched between 

rigid supports a distance Z apart with an equilibrium position along the x axis and equilibrium tension 

Ty. The cable has a virtual mass density p, cross-sectional area A, elastic modulus E, and a moment of 

inertia J about the neutral axis z. For simplicity it is assumed transverse oscillations take place only in 

the xy plane. To account for the damping, we assume a term in the equation linearly proportional to 

the transverse velocity by a damping coefficient ¢. The coefficient ¢ is taken as the damping of the sys- 

tem as measured in still air. This is the usual approach to specifying the structural damping. A further 

discussion of structural and hydrodynamic damping is given in Appendices C and E. Longitudinal dis- 

placements are neglected and the transverse displacement at the position x is taken to be y(x,f). 

Further, for typical cables and the frequencies of flow-induced vibrations, shear deformations and rotary 

inertia are negligible. The potential energy of the cable is then a sum of bending and stretching poten- 

tial energies. From elementary beam theory the bending energy is given by 

L d2y 

/2f, El a (Al) 

The approach developed by Murthy and Ramakrishna (Al) is employed here to determine the 

stretching contribution for the nonlinear vibrations of strings. This is a good approximation for cables 

that undergo flow-induced "strumming" motions in water. As an element of cable dx is deformed into 

the planar element ds, the stretched length of the element is 

21/2 

ds = (dx? + dy?) = def + | (A2) 

and the local strain is given by 

24 1/2 
ds — dx oy 

= —— =] 14+ ]/— = 1. re ae 1 (A3) 



If the amplitudes are small enough for Hooke’s law to be valid, then the local tension is 

T = T) + EAe (A4) 

and the local potential energy is equal to the product of the average local tension and the local strain. 

Expanding the local strain in a power series of 0y/0x and neglecting terms higher than fourth order 

results in 

ay)’ 
Ox 

the local potential energy due to stretching. For all practical cases EA >> To and the contribution to 

EAC ais 
8 

4 

hie T, a LOVANE a (A5) 
Ox 

potential energy from stretching is 

4 

ay)’, £4 {ay i 2a allt taronl lar (A6) 

The kinetic energy of the cable in terms of the virtual mass density p is given by 

We | Cs AT 2p 7 (A7) 

and the generalized work due to structural damping per unit length is 

J, - 5. Bova (A8) 
After Hamilton’s principle is applied, the final equation of planar cable motion becomes 

aty d2y 3EA | dy| | dy dy 
EI SS |||! || SS f eat pia Ty + amalige ao ko ay = 0 (A9) 

It is convenient to transform this equation by 

ik Lise a 2 
x nies wy met (A10) 

where n is the mode number, Y is the antinode amplitude, and w is the frequency of vibration. The 

resulting equation is 

2 

029 , Eln‘x* a45 - | Ton’m? | 3EY?n‘a* | ay| | a2) . 8 ap 
MWR Ties BOC Re ABT oes ae (All) Or pAwL* 9x pAL‘w 2pw*L ox} | ox 27 Ot 

in which 6 is the log decrement of the vibration (6 = 27¢, for small damping). The fluid forces that 

act on a resonantly vibrating, taut cable are usually included on the right hand side of the equation of 
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motion. Specification of these force terms is discussed in Section 2 and Appendices D and E of this 

report. 

The above equation is quite general since it includes both cable bending stiffness and finite ampli- 

tude vibrations, i.e. tension fluctuations. We now will examine the relative importance of these effects 

for marine cables. First, consider the ratio of the fluctuating tension to the equilibrium tension, 

3 BATE 9p 
shy JEP 

It is reasonable to assume that EA/T) = E/o ~ 6 x 10° and Y= D/2 for actual cables that undergo 

flow-induced vibrations. Furthermore L/D ~ 10? is a conservative estimate, particularly for n > 2, 

and this ratio therefore becomes proportional to n? x 10-'. Using these estimates and the additional 

fact that the moment of inertia /= (D/2)4, one then finds that the ratio of bending stiffness to equili- 

brium tension is on the order of n? x 10-2. The justification for treating the cable as an equivalent 

homogeneous string is thus apparent, as well as an ordering of the assumptions inherent in this approx- 

imation. The natural frequencies for a taut cable under the homogeneous linear string assumption are 

given by the simple classical relations 

a Nae ITN a fil 
2a Db, pA 

Since the nonlinearity is small, a first approximation to the nonlinear tension fluctuation 7; can be 

Lig (A12) 

obtained by substituting the linear string equation solution into the nonlinear expression, which yields 

the result 

T; = sept cos? ad sin? wt. (A13) 

The transverse motion of a particular cable now can be adequately predicted if the required cable pro- 

perties are known. The virtual mass (the sum of the structural mass and added mass contributions) 

and damping are available, based upon recent experiments. The experimental characterization of the 

structural damping, the added mass, and the hydrodynamic damping is discussed in Appendix C. This 

discussion has been limited to taut cables; the dynamics of slack cables and the development of criteria 

for delineating the two regimes are discussed in Appendix B. 
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Appendix B 

DYNAMICS OF SLACK MARINE CABLES 

B.1. The Linear Theory for a Slack Cable. The vibrations of taut cables are described appropriately 

by the classical taut string equations. This approach neglects the cable’s bending stiffness and finite 

amplitude vibration effects, but it is accurate to within 2-4 percent for many cables over a wide range of 

conditions (see Appendix A and references Bl and B2). As the tension is relaxed, a cable eventually 

assumes the configuration shown in Fig. Bl. H is the horizontal component of tension at the supports 

and each vertical component V is equal to half of the total cable weight. The limiting sag-to-span ratio 

s/1— 0 is accompanied by H = T since the cable weight becomes a negligible fraction of the tension. 

At the other extreme, when s// becomes large, V is comparable to or larger than H and the cable 

assumes a Classical catenary shape. The natural vibrations of catenaries are known (B3) for 2s 1:10, 

but until recently they could not be reconciled with the taut string theory as the ratio of sag to span 

vanished. This difficulty has been overcome by Irvine and Caughey (B4) as a result of including the 

extensional behavior of the cable in the theory. 

A summary is given here of Irvine and Caughey’s recent development and the results applicable 

to marine cables are discussed. The equilibrium shape of an inextensible cable is given by 

_ gl? | x 
eS aa | T 

for d/l < 1:8 where d = mgl?/8H is the midspan sag. The length of this cable is L = / 

x 

! 
(B1) 

2 
d 
l 

(aes 3 , so that if three of the quantities mg, H, d, | and L are known, the other two can be 

found. However, owing to stretch, the sag and length of a real cable are greater than the inextensible 

values while the horizontal component of tension of the stretched cable is less. If this new sag is s 

while the new horizontal component of tension is (H — AA), then equilibrium dictates that 
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where He = AH/H. Compatibility of the cable displacement requires, in addition, that 

(1- H.)3 = De (2H. — H?) (B3) oa 

where 

1 ; d ; l 
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and 
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The quantity EA is the product of the elastic modulus and the cross-sectional area of the cable while L, 

is the stretched cable length to the order of the linear theory approximation. According to Irvine and 

Caughey the dimensionless variable \* is the fundamental parameter of the extensible cable because it 

accounts for both the elasticity and equilibrium geometry of the cable. In the subsequent notation H 

will be taken to mean the horizontal component of tension in the extensible profile, i.e. the measured 

tension. 

In the study of natural vibrations, the equations of motion can be linearized about the equilibrium 

configuration and then the out-of-plane motions are decoupled to first order. The remaining in-plane 

modes then fall into two classes. In the first class there are no first-order tension fluctuations induced 

at the supports, whereas the second class induces first-order tension fluctuations. The two cases are 

characterized respectively by mode shape symmetry and antisymmetry about the cable midpoint. The 

antisymmetric motions of the sagging cable have the same frequency equation as the taut string, but 

the symmetric modes obey a different eigenvalue equation. This means that the classical equation for a 

taut cable is valid for 0 < s// < 1:8 if nis even, whereas the symmetric mode frequencies are given by 

EO SVE IS (a us a 
3 

Bl {a on 
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(B7) 

The result simplifies to the taut cable equation in the limit s// = 0 when mgl << H in equation (B4). 

In that case \2 approaches zero and equation (B6) reduces to 

lim |tan al = —0o (B8) 
s/I-0 2 

and 

(6), = Qk — 1), k = 1,2,3... (B9) 

or 

f= 3 a) n odd. (B10) 

A graphical solution to equation (B9) is presented in Fig. B2 for several values of the parameter 

2. The arrows indicate the values of é which correspond to the natural frequencies of a taut string. 

For small 4? the symmetric mode frequencies approach those of a taut string. However, as 2 increases 

the first symmetric mode frequency increases toward the first antisymmetric frequency. They coincide 

for \2 = 47? and thereafter the first symmetric mode frequency is greater than the first antisymmetric 

mode frequency. At still larger values of 4? these frequency crossovers occur at the higher symmetric 

modes. 

As an example consider \? = 3677. The antisymmetric mode values of e are given by ao: n 

= 2.4.6, etc. as before while the first four symmetric mode solutions are indicated by the encircled 

intersections in Fig. B2. The lowest two symmetric mode frequencies have crossed over and lie above 

the '»west two antisymmetric frequencies. The frequencies of the third symmetric and antisymmetric 

modes are equal (crossover is occuring) while the fourth symmetric mode frequency is quite close to 

the n = 7 frequency of a string. For the modes higher than n = 7 the natural frequencies are essen- 

tially those of the taut string. The catenary effects progress into the higher modes as d? increases, but 

for finite \2 some unaffected modes remain. Returning to the first symmetric mode frequency of the 
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example, there is little difference between A? = 367” and A? = © so that the first mode is nearly inex- 

tensible. For 42 = ©, equation (B6) reduces to 

tan 2 = 2 (B11) 

which is also plotted in Fig. B2. With this frequency equation the symmetric natural frequencies are 

again well ordered and alternate with antisymmetric frequencies, but there is a shift of between 0.93a 

and 7 in these symmetric mode frequencies with respect to the taut string symmetric mode frequen- 

cies. 

The modes shapes are affected by the frequency crossover in a very interesting manner. A sym- 

metric mode must possess an even number of nodes. The mode shape acquires two additional nodes in 

crossing over, thus altering its form while preserving symmetry. The transition is smooth as shown in 

Fig. B3 which is adapted from a related numerical study by West, Geschwindner and Suhoski (B5). A 

dashed line which corresponds to the example A? = 3677? is included in Fig. B3a. 

Some recent NRL experiments (B2) demonstrated this behavior as shown in Fig. B4. To the 

tight of the crossover the mode shapes were identifiable with the » = 1 (0) and n = 2 (G) mode 

shapes of a taut cable, although the natural frequencies of the n = 1 curve deviate from those of a taut 

string. To the left of the crossover the n = 2 mode was essentially unchanged while the mode shape 

for the other curve (@) acquired two additional nodes and thus resembled an n = 3 mode of a taut 

cable. The observed modal transitions were of the form predicted by Irvine and Caughey and are indi- 

cated in Fig. B3(b). According to the theory the first crossover occurs at \? = 477” and this provides a 

means for comparison with the data. Since the product EA is not a simple material constant for cables, 

particularly at low tensions, a range of values for EA was found from curves of elongation versus ten- 

sion measured at NRL. The crossover range computed in this way is included in Fig. B4 and is in good 

agreement with the experimental observations. The in-water tests with the same cable afforded another 

opportunity for comparison. The same range of EA was employed, but the linear weight was adjusted 

to reflect the buoyancy. The result is shown in Fig. BS and again there is good agreement with the 

theory. 
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B.2 The Onset of Catenary Effects. An expression for the "critical" tension corresponding to the 

onset of catenary behavior can be obtained from equation (B4). The result is 

2/3 

eh = |= (B12) i 
r crit 

EA 1/3 ; 

Es ; 

By requiring the cable frequency to be within 5S percent of the taut string, an approximation consistent 

with the accuracy of the string equation, one obtains 

NS NOG. (B13) 

Since d= s for typical cables when \? is small, equation (B5) becomes 

L, = 1 (1+ 8(s/1)?) < 9/81 (B14) 

The onset of slack effect occurs near the limit of s// — 0, so that a slightly conservative estimate is 

established by putting L, = / to obtain 

Hori, = 0.93(W2EA)¥3, (B15) 

where W = mel is the total weight of the cable to the accuracy of the linear theory. The corresponding 

critical sag is 

Sorin = 0.134 (B16) 
1/3 

Wi l a 
For the Double Armor Steel (DAS) cable, equation (B15) yields 

Heri, = 200 — 300 lbs (890 — 1340 N) in air 

and 

Heri, = 167 — 254 Ibs (743 — 1130 N) in water. 

When they are compared to the data in Figs. B4 and BS, these tensions correspond well to the regions 

where the cables begin to deviate from a taut string behavior, i.e. where f ~ (T)"2. It should be 

emphasized that this criterion applies only to the initiation of catenary effects in only the symmetric 

modes, since the antisymmetric modes are unaffected for s// < 1:8 and H> W. Furthermore, at H = 

Hy, the only affected mode will be the n = 1 mode. If one is interested in the onset of slack effects at 

the higher symmetric modes, then the expression becomes 

1/3 
W2EA 

dA 
8b = | (B17a) 
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where 

. 

\e= Ee a = 0:525 nia, n= 1,3,5, ete. (B17b) 
a — tana 

Additional experimental results are discussed in a recent paper which deals with marine cable applica- 

tions (B6). 

B.3. The Inclined Slack Cable. The linear theory just described has proven to be a valuable tool in 

the analysis of marine cable vibrations. A shortcoming of the original analysis is a restriction to hor- 

izontal cables or, more precisely, to cables with supports at the same elevation. The simplest way to 

extend the theory to cables with inclined chords is to view the cable in a coordinate system inclined 

with the cable (B7). In order to retain symmetry about the cable midpoint, an essential feature of the 

linear analysis, one must ignore the effect of the chordwise component of gravity. The problem then 

reduces to the previous analysis except that the weight per unit length is given by w = mg cos @ where 

@ is the chord inclination angle from the horizontal. 

According to the linear theory, the horizontal (or chordwise) component of tension H is constant 

along the cable, 

H = mg cos 0 [7/8s. (B18) 

However, the chordwise component of gravity produces a change in H from one end to the other of an 

inclined cable by an increment AH given by 

AH = mg/sin@. (B19) 

Thus the modified linear analysis for inclined slack cables is subject to 

AH 
= — << 1 
Sey 

or 
e = 8(s//) tan@d << 1. (B20) 

This condition places rather stringent limits on the sag-to-span ratio as the chord inclination angle 

steepens. 

Experiments were conducted at NRL to examine the natural vibration of inclined slack cables. 

Essentially, the earlier Double Armor Steel (DAS) cable experiments were repeated in the DINSRDC 
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test frame except that the frame could be rotated to angles up to 6 = 34° from the horizontal. Three 

angles, 9 = 0°, 20° and 34°, were selected for the experiments. An important feature of the inclined 

cable analysis described above is that all frequencies should collapse onto a single curve if the span and 

sag are measured in the appropriate inclined coordinates (B7). This was indeed the case in the present 

experiments as shown in Fig. B6 and this finding justifies the simplified approach. If these same fre- 

quencies are plotted against the tension H, then a separate curve for each inclination angle is obtained 

as indicated by equation (B18). 

Although the ranges of the inclination angles and the sag-to-span ratios are somewhat restricted, 

one can generalize the present results to larger angles by using the quantity e. In the tests conducted at 

NRL e was as large as 0.48, which includes substantially greater values of s// and 6 than are implied by 

equation (B18). For example, « < 0.48 implies that the linear analysis is adequate for sag-to-span 

ratios at least as large as 0.06 and 0.035 at 9 = 45° and @ = 60° respectively. 

B.4. The Slack Cable Computer Code. The finite element slack cable code which was originally 

written by Henghold, Russell and Morgan (B8) has been adapted for marine cable studies. The result- 

ing FORTRAN source program, called SLAK, is available to interested users. The remainder of this 

appendix is devoted to a further discussion of the slack cable problem and to brief descriptions of the 

method, code, the input and some typical results. Extensive comparisons between numerical, theoreti- 

cal, and experimental results for inclined slack cables are contained in the final section of this appendix. 

A sketch of an inclined slack cable is presented in Fig. B7 along with the appropriate nomencla- 

ture. The numerical problem is defined by the locations of the two ends of the cable (left end always at 

x = y = z= 0), by the unstretched initial length of the cable L, by the physical properties of the cable 

grouped together as AE/mgL, and possibly by the number and location of (any) applied loads and 

attached discrete masses. The loads and masses must be concentrated at the nodes of the finite ele- 

ment model. Important derived parameters are the cable span / (i.e. chord length) and the cable incli- 

nation angle @ (i.e. chord inclination). The principal results are the equilibrium shape of the cable, 
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often characterized by the maximum or midspan sag s, the support reaction forces, the natural frequen- 

cies, and the mode shapes with respect to the equilibrium position. It should be noted that the SLAK 

code is three-dimensional and permits applied loads in the z-direction and computes the out-of-plane or 

sway modes of the cable. Additional information concerning the code itself, the numerical method, 

and the required input data is available from NRL. 

B.5. Inclined Slack Cable Comparisons. This section compares numerical, theoretical, and experi- 

mental results for inclined slack cables. The purposes of the comparisons are twofold. First, an 

attempt is made to account for some discrepancies between the experimental data and the theoretical 

predictions at moderate sag-to-span ratios. Second, and more important, the extension of the linear 

theory to inclined slack cables (B7) is tested against the finite element code calculations so that 

engineering limits for the simple extension can be determined. The slack cable problem is defined in 

the preceding pages where descriptions of the theory and the finite element code are given. This sec- 

tion deals only with comparisons and with an analysis of the results. 

The discrepancy just mentioned is illustrated in Fig. B6. For sag-to-span rations s// greater than 

0.02 the experimental data no longer follow the theoretical prediction. Earlier attempts to identify the 

mode shape(s) in these instances were frustrated by the complex construction of the DAS cable speci- 

men near its ends. It is in these segments of the cable that additional loops in the mode shape are 

known to form during and after the "modal cross-over". The complex construction can also directly 

influence the dynamics by abrupt changes in the mass per unit length, by abrupt changes in the cable 

stiffness and by a number of lesser effects. Neither the theory nor the finite-element code provides for 

cable stiffness and it was felt that this might be the largest source of error because of the relatively large 

amount of local curvature required by the forming loops as compared to the significant stiffness of the 

cable segment and of its aluminum terminations. 

An important feature of the simplified inclined cable analysis is that all frequencies should col- 

lapse onto a single curve if the span and the sag are measured in the appropriate inclined coordinates 
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and if the cable parameter AE/mgL is adjusted to reflect the change in the body force. This was the 

case in the NRL experiments shown in Fig. B6 and this finding justified the simplified approach for that 

range of conditions. In order to search for the limits to the theoretical approach implied by equation 

(B20) a number of numerical cases were run for different sag-to-span ratios at several inclination angles 

up to 8 = 75 degrees from the horizontal. The results are plotted in Fig. B8 in the appropriate coordi- 

nates, but with the numerical code parameter AE/mgl held constant. The frequencies collapse onto the 

proper curves everywhere except at crossover. This behavior is correct since 4? (or AE/mgi) also must 

be adjusted to reflect the cable inclination. Several runs were made which verified that the use of 

AE/mgl cos @ will collapse the crossover data up to inclination angles of 9 = 75°. The point to be 

made here is that the limitations imposed by equation (B20) are far less stringent than they appear and, 

within a numerical accuracy of a few percent, the horizontal cable limitation of s// < 1/8 holds equally 

well for inclination angles up to 9 = 75°. This range of angles includes virtually all structural applica- 

tions and most mooring cases as well. 
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Figure B2 Graphical solutions to equation (B9) for the lowest symmetric-mode natural frequencies of a flat-sag cable. The 

effects of cable sag and extension are included in the parameter \2 (see equation (B4)). For A2 = © t e cable is inextensible, 

and for A? = 0 the cable is taut. 
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Figure B3 Two figures adapted from reference BS showing (a) the natural frequencies versus the variation in sag including 

modal crossovers, and (b) an indication of the mode shape transitions during a crossover of the lowest modes of Figure B3(a) 
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Figure B7 The geometry and nomenclature for an inclined slack cable of length L and mass per unit length m. 
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Appendix C 

ADDED MASS AND DAMPING COEFFICIENTS 

C.1 Structural Damping of Marine Cables. In order to quantify the coefficients in the equation for 

the resonant vibrations of marine cables, both the structural and the hydrodynamic damping coefficients 

must be specified. These damping coefficients have been measured for a variety of marine cables as 

part of the NAVFAC research program in cable dynamics. Some typical, but limited, measurements of 

the structural damping, from experiments conducted at NRL, are now discussed. Free vibration experi- 

ments with the DINSRDC test cables (Cl) and the CEL-supplied small diameter cables were con- 

ducted and the results are summarized here. The characteristics of the DINSRDC cables are listed in 

Table Cl. 

The measured in-air natural frequencies for two representative test cables are plotted in Figs. Cl 

and C2. In the DINSRDC test apparatus that was employed in the experiments discussed here (see 

Fig. 3.6), the cable span was maintained while the length was varied to accommodate changes in the 

tension. The differences between the various test spans and cable lengths were small, but they did 

account for some of the apparent discrepancies between the two sets of experiments. Another 

difference between the two sets of experiments:was due to changes in the rigidity of the cable supports. 

The stiffness of the DINSRDC cable mounting struts (see reference Cl for a detailed description of 

the test apparatus), as seen by the cable, depends on the relative orientation of the two struts. Strut 

motions were quite evident during the tests when the DINSRDC test apparatus was configured for the 

cable axis normal to the towing direction. The stiffness of the struts was increased by rotating them 

until their longest dimension was nearly aligned with the cable axis. As indicated in the accompanying 

figures, an increase in the support rigidity raised the measured cable natural frequency at a given 

tension. This effect diminishes with increasing tension as the vibration-induced tension fluctuations 

140 



drop to second order from the larger first order tension fluctuations that are characteristic of slack 

cables. The influence of strut rigidity upon the measured in-air (structural) damping is discussed in 

further detail later in this Appendix. 

The measured in-air damping is generally referred to as the structural damping because it is 

assumed that external energy losses to the air or supports are negligible when compared to the cable’s 

internal losses. The validity of this assumption depends upon the magnitude of the measured damping 

and upon the compliance of the cable supports. Estimates of the fluid losses in air can be used to check 

that part of the assumption, but losses to the supports are difficult to determine or even to estimate. In 

the present experiments, test runs with the same cable for two strut rigidities made it possible to iden- 

tify changes in the damping due to the very different support conditions. This task was complicated by 

the nonlinear behavior of the in-air damping, and to discount this nonlinearity the log decrements for 

the Uniline and DAS cables are presented in Figs. C3 and C4 for approximately the same initial ampli- 

tude (0.1” or 2.5 mm). In both cases the data generally.correspond to taut cable conditions, although at 

the lowest tensions the DAS cable behavior is in the range of slack cable effects (see Appendix B). 

From the results in Fig. C3 it appears that the Uniline cable is not influenced by variations in the rigi- 

dity of the struts. The DAS cable behavior is significantly dependent on the rigidity and, as shown in 

Fig. C4, the measured damping is lower when the struts are more flexible. The relative importance of 

strut rigidity in each case is consistent with the natural frequency measurements in Figs. Cl and C2. 

Any influence of the initial amplitude could not be detected in one or even several cycles of the 

vibration decay. The procedure adopted was to take 150 to 450 consecutive vibration cycles and to 

compute the log decrement of the damping over various segments of the record. The lengths of the 

record and therefore the lengths of the segments were dictated by the resolution of the measuring sys- 

tem and the rate of the vibration decay. 

The structural log decrements obtained in this manner appeared to be a simple linear function of 

cable amplitude, but it is quite possible that this linear behavior is due to the limited range of 
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displacement amplitudes tested. Also, the DAS and Uniline cables were very different in terms of their 

response characteristics. For example, the log decrements for the Uniline cable decreased by about 

0.001 as the amplitude dropped from 0.1 inches to 0.02 inches; this was independent of the tension. 

On the other hand, the change in structural damping of the DAS cable depended on the tension. For 

tensions less than 200 pounds the log decrement increased by as much as 70-90 percent for amplitudes 

between 0.02 and 0.1 in., whereas the increase was 30 percent or less for tensions above 200 pounds. 

Some of the differences are undoubtedly due to the onset of slack cable conditions, but it should be 

noted that the DAS cable damping increases were always dependent upon the tension even when the 

cable was essentially taut. This discussion pertains only to the taut or nearly taut cases for which the 

mounting struts were perpendicular to the cable axis; a similar analysis for other strut orientations 

and/or lower tensions was not attempted because of the uncertainties involved. 

This discussion has shown the difficulties encountered in attempting to measure the structural 

damping of marine cables. One inescapable conclusion, however, is that the structural damping of 

cables is small as shown here, in Fig. 3.10 and in reference C2. This small structural damping places 

most cable strumming conditions well toward the left-hand portion of Fig. 2.2 where the reduced damp- 

ing is very small and hydrodynamic forces predominate in controlling the strumming response. 

C.2 Hydrodynamic Added Mass and Damping. The added mass effect due to the unsteady relative 

motion between the surrounding fluid and the cable is customarily treated as being proportional, by the 

added mass coefficient C,,,, to the mass of the fluid displaced by the body. Therefore the ratio of vir- 

tual mass density in water to the body’s mass density in air is given by 

EA HIGHS (C1) 
PA 

in which S is the specific gravity of the cable. It is assumed that the fluid loading in air is negligible. In 

addition, the ratio of the in-air resonant frequency, /,, to the in-water resonant frequency, fy, at the 

same load and mode shape is given by (using the taut string approximation, as in Appendix A) 

1/2 

Sa es | (C2) 
tw PA 
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The added mass coefficient is determined from experimental measurements by means of equations 

(C1) and (C2) which combine to give 

2 
: 3) 

Since f, and fw are usually close, particularly at low frequencies, a small error (1 or 2%) in one or 

both often results in relatively large variations in C,,,(~10-40%). For this reason it is helpful to also 

consider the ratio of the virtual and actual masses which, according to equation (C2), is the square of 

A bd Semen 3 ; 
the frequency ratio Ge . Most of the conclusions in this section related to the added mass effect for 

W 

in 
fw 

marine cables are based on the measured values of 

The added mass coefficient C,,, was determined from equation (C3) for a variety of marine cable 

materials and constructions. The results are plotted against the “vibration Reynolds number," 

Re, = fD’/2v in Fig. C5 and the legend for the data points is given in Table C2. The cables were taut 

for all of the conditions tested and discussed here. The dashed line in Fig. C5 represents the classical 

added mass prediction developed by Stokes (see Rosenhead, reference C3). This predicted value of 

Cz iS given by the equation 

C=? 7 (C4) 

Table Cl 

Marine Cable Model Physical Characteristics 

DTNSRDC Towing Tank Experiments (C1,C2) 

Cable Model/Type Nominal Nominal Weight Virtual 

Diameter Length In Air In water Mass 

[ (Ibs/ft) | (N/m) | (Ibs/ft) | (N/m) | (slugs/ft) | (kg/m) 

Double Armored Steel (DAS) |0.051 USS O38 || Si 0.0202 0.967 

Uniline 2.77 | 0.069 | 1.01 | 0.00967 | 0.463 

Small Diameter 0.0058} 0.177) 14.25] 4.34] 0.0065 | 0.095 | 0.0048 | 0.070 | 0.00025 | 0.012 

(Piano wire) 
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The measured and predicted values of C,,, show considerable deviation at small Re,, but reasonable 

agreement is exhibited at Re, = 2000 and above. However, the predicted curve is valid only as a guide 

since most of the simplifying assumptions under which it was derived are not applicable to large ampli- 

tude vibrations of marine cables. 

The hydrodynamic damping is considered in the form 

2 

Sal s (cs) 
Sw 

The values of k, measured by vibrating the cables listed in Table C2 in still water are plotted in Fig. C6. 

hee le ee Tes t= 2eC,=4 

The parameter k, usually termed the reduced damping, commonly appears in the study of flow-induced 

oscillations of cables and structures (C2) and is related to the linear damping coefficient c by 

Ce pDufikee (C6) 

In either form the total damping is the sum of the structural and hydrodynamic damping contributions. 

For taut cable conditions, however, the structural contribution is very small and the results in Fig. C6 

are essentially equal to the fluid contribution to the total damping. The same dependence of the added 

mass and fluid damping on the vibration Reynolds number was obtained by Chen, Wambsganss and 

Jendrejezyk (C4) and by Skop, Ramberg and Ferer (C5) during experiments conducted with vibrating 

cylinders in water. 

Table C2 

Cable Added Mass and Damping; 

Legend for the Data in Figures C5 and C6 

Cable type and specifications Fig. CS Fig. C6 

3/32 inch (2.4 mm) steel wire cable, three modes: OAA O,0,® 

3/32 inch (2.4 mm) hydrophone cable A 

1/4 inch (6.4 mm) steel wire, two modes: ] oB 

3/8 inch (9.5 mm) jacketed kevlar fiber: O x 

7/16 inch (11.1 mm) polyester fiber: + 

0.6 inch (15.5 mm) Double Armor Steel cable: ® 

0.6 inch (15.5 mm) Uniline cable: > > 

0.6 inch (15.5 mm) Seacon cable: d < 
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The hydrodynamic contributions to changes in the natural frequency (added mass) and in the 

damping also can be determined for slack cables. The method is approximate, but it demonstrates the 

applicability of the data in Figs. CS and C6 to slack cable vibrations in water. Computations were car- 

ried out for the Double Armor Steel (DAS) cable because a range of EA was available only for that 

particular cable construction. A single value of EA was chosen for the computations despite the likeli- 

hood that it was tension-dependent. This value of EA was selected to give a good representation of the 

measured frequencies in air and of the observed modal crossover (see Appendix B) in particular. 

The natural frequencies were predicted from equations (B4) and (B6) for two equilibrium posi- 

tions corresponding to the in-air and in-water tests. Thus, the difference between the predictions 

shown by the dashed lines in Fig. C7 represents a change in the natural frequency due to a reduction in 

the linear weight of the cable. Subtracting this buoyancy contribution from the total difference between 

the frequency measurements yields the added mass effect of the water. From the computations, this 

correction disappears, as it should, when the cable becomes taut (\? — 0). The predictions are about 5 

percent below the in-air measurements at large tensions, most likely due to the neglected bending 

stiffness of the cable. At the lowest tensions there is a large discrepancy between the predictions and 

the measured points that raised some doubt as to the validity of the ena represented by those 

data points; it was later determined that this anomaly was probably a result of the particular cable 

configuration (see Appendix B, Section BS). The added mass coefficients nevertheless were computed 

from the data and with the exception of the results obtained at the lowest two tensions, the coefficients 

in Table C3 are comparable to the added mass results in Fig. CS. 

f 

Estimates of the fluid damping involved additional approximations but good results were obtained. 

After calculating the approximate in-air and in-water values of 6, the fluid damping contribution was 

estimated by taking the difference between the log decrements measured in the two media at the same 

sag-to-span (s//) ratios. In this way the significant contribution of the structural damping for slack 

cables was discounted from the measured total damping in water, and the fluid damping was compared 
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to earlier measurements for taut cables and cylinders. These results and their corresponding values of 

k, are listed in Table C3, and they agree quite well with the measurements shown in Fig. C6. 

Table C3 

Flat-Sag Cable Results for Added Mass and Damping 

Double Armor Steel (DAS) Cable 

Natural frequency Added mass Hydrodynamic Vibration Reduced fluid 

in water, f,,/Hz coefficient, C,,,, decrement, 6 Reynolds number, Re, damping, k, 

5.2 (AS) 

4.65 (52) 

4.24 (69) 

3.93 (90) 

3.83 (100) 

4.02 (187) 

*Tension in pounds (1 pound = 4.45 Newtons) 

Sarpkaya (C6) discusses an alternate method for calculating the added mass and damping 

coefficients from force coefficients measured in periodic flows of water over stationary cylinders. How- 

ever, care should be taken in interpreting these force coefficients because the added mass coefficient 

Cym iS not equal to the inertia coefficient C,,,, or C,,,; as measured in a periodic flow of water. There is 

an additional pressure gradient generated by the acceleration of the fluid in the latter case which pro- 

duces the so-called Froude-Krylov force. Under potential flow or ideal fluid conditions C,,, or C,,; is 

unity plus C,,,. 
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Figure C3 The measured in-air (structural) log decrements 5 of the Uniline cable in the 

DTNSRDC test apparatus. Initial amplitudes are all approximately 0.1 in. (2.5 mm). 

149 



10.0 = 

X MAXIMUM STRUT STIFFNESS 
O MINIMUM STRUT STIFFNESS 

7.0 

6.0 

5.0 

4.0 
Le) 

° 
x 3.0 
rs) 

we 

2 
wW 2.0 
= 
Ww 
a 
oO 
Ww 
ra} 

oO 
(e) 
= 

1.0 

0.8 

0.6 

80 100 200 300 400 500 

TENSION/POUNDS 

Figure C4 The measured in-air (structural) log decrements 6 of the DAS cable in the 
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Figure C6 Reduced damping k, plotted against vibration Reynolds number Re, (see Table C2 for legend). 
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Appendix D 

THE "WAKE-OSCILLATOR" MODEL FOR PREDICTING 

VORTEX-EXCITED OSCILLATIONS 

The periodic lift force F,, characterized by a lift coefficient C,t which acts on a bluff structure as 

a result of vortex shedding, is assumed to respond during lock-on or wake capture as would a modified 

van der Pol oscillator (D1,D2). The governing equation for C,, in the form employed most recently 

by Skop and Griffin (D3,D4), is 

Cy BiG, = (C2 = C= (é./os} | (GG, = OBC) = malt Oil». (D1) 

Here, a dot denotes differentiation with respect to time 4 Y is the transverse displacement amplitude of 

the cylinder due to the incident flow of velocity V, and D is a characteristic transverse dimension 

(diameter) of the cylinder. The frequency coefficient w; (rad/sec) and the four dimensionless 

coefficients Cyg, G, H, and F represent parameters which are to be evaluated from experimental 

results. It is interesting to note that Iwan and Blevins (D5) and Iwan (D6) have justified the introduc- 

tion of models similar to equation (D1) from a consideration of the momentum equation for the 

fluid/structure system. 

For flow over a stationary cylinder (that is, for Y = 0), equation (D1) exhibits a self-excited, 

self-limited solution given by 

C, = Cro sin Ost. (D2) 

This result leads to the interpretations of Czg and ws as, respectively, the fluctuating lift amplitude and 

shedding frequency from a stationary cylinder. The shedding frequency ws is determined from the 

Strouhal relation 

Ove 2a StV/D (D3) 

where St is the Strouhal number. 

+The lift force F, (per unit length along the structure) is normalized by F, = 1/2 pV? DC,. 
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The equation of motion of a rigid, spring-mounted cylinder is 

WD = eo, 1D = O2TD = (DIAL) CG, = meaeC, (D4) 
where, as noted earlier in the report, w = pD?/877St?m. The natural frequency w, and damping ratio ¢ 

are taken for the purpose of modeling as those values measured in a stationary fluid having the same 

physical properties as the flowing fluid.t The solution to the above equations in the entrainment region 

where resonant oscillations occur is sought as 

Y/D =A sinot, (D5a) 

C,/Cro = B sin (ot + d). (D5b) 

Here, » is the entrainment frequency and the conditions w/w, = 1 and w/w; = 1 are implicitly 

assumed; A and B are, respectively, amplification factors for the cylinder displacement amplitude and 

the fluctuating lift. 

When equations (D5) are substituted into equations (D1) and (D4), the entrained response is 

found to be 

A = (BC; 0/Sg)/ (82 + 4)", (D6a) 

B* = 1 — (F/GS¢Cfo) [8/2 + 4)], (D6b) 

¢ = arctan(—2/8), (D6c) 

where 6 must satisfy the cubic equation 

8° — A8? + (4— HF/EGSg) 8 — 4(A — F/2LS,) = 0. (D7) 

In these equations, the detunings 6 and A are defined by 

8 = (2/6) (w/w, — 1), (D8a) 

A = (2/6) (@,/w, — 1), (D8b) 

and the response parameter Sg = ¢/p. 

It has been shown (D3,D9) that the above equations yield an accurate representation of the 

entrained resonant response of spring-mounted rigid cylinders when the empirical parameters G, H and 

F are appropriately selected. Based on an analysis of several diverse sets of experimental data for 

+More recent studies (D7,D8) have demonstrated that, for oscillations of bluff cylinders in water, this simplified specification of 

the damping is not appropriate. This point is discussed in more detail in Appendix C, and the presentation here is meant only to 

demonstrate the general approach to a "wake-oscillator" type of formulation. For most cylinders in air, the structural damping 

and the still fluid damping are virtually identical. 
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resonantly vibrating cylinders, the proper selections for circular cylinders were related to the response 

parameter Sg through the equations 

logioG = 0.25 — 0.21 Sg, (D9a) 

H=th, (D9b) 

logiohSé = —0.83 + 0.98 Sg, (D9c) 

F = 4GSc/h. (D9d) 

When the above relation for F is specified, the stable entrained responses are associated with the solu- 

tions of equation (D7) for which 6 < 0. The above relations are valid within the nominal Reynolds 

number range 400 to 10° for which St and C;o are generally constant.* One consequence of equations 

(D9) is that the maximum cylinder response amplitude Ajy4y in the entrainment region becomes a 

function of only Sg. An example of the results that have been obtained with the wake-oscillator model 

is given in Fig. D1. 

The vortex shedding process is strongly dependent on the local amplitude of vibration, but only 

weakly, or not at all, dependent on the behavior of nearby cable elements. This provides an initial 

justification for extending the model to elastic cylinders—namely, the equation (D1), without the intro- 

duction of any spatial derivatives, should be applicable for describing the vortex-excited oscillating lift 

force on an elastic, cylindrical structure. 

To develop the model for the vortex-excited oscillation of an elastic cylinder, it is useful to adopt 

a normal mode formulation. Let the vortex-induced displacement Y(x,t) of an elastic cylinder by 

expressed as 

Y (x,t) = Yaw; &) (D10) 

where the g;(t) are the modal response factors and the w,;(x) are the normal modes of the response. 

The dynamical equations for the g;(t) are then obtained as 

L pDV?Cyb (x) dx Ae : 2 a IES AT 
Oh ae DEO ae Oi = { aul pata (D11) 

0 2m; 

*Available experimental results indicate a lack of coherence in the data for C,g, but the value chosen is reasonable. Different 
values of C;o require different values of G, H, and F to yield accurate predictions of resonant vibrations. However, changing 

the value C;¢ affects only the numerical coefficients F, G, and H and not the functional dependence on Sg. 
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» natural frequency w,,; and the i" damping ratio ¢; are those values measured where, as before, the i‘ 

in a stationary fluid having the same physical properties as the flowing fluid (see previous footnote). 

Here m; is the effective mass of the i'" mode of the vibration. 

Finally, let the fluctuating lift coefficient C; in the shedding region be developed as 

Cr = YA ypi@), (D12) 
i 

where the Q;(t) are the lift response factors. When equation (D12) is substituted into equation (D1), 

and the latter is multiplied by #;(x) and integrated over the length of the structure, the lift equation 

for the i'" lift response factor reduces to 

QO; + w 30, ia {CZo ia Tint Q? ats (Q,/w 5)71} lo sG;O, oe w $H,Q;] 

ar LPL oy Tjxalo sG,Q; Ox O1 + (G/w 5) 00,0, 

— 0§H,0,0,0, — H,0,0,Q)] = wsF,4;/D; j,k,|# i simultaneously (D13) 

where 

jb 
Ling = (m/m){, Wis Wp dx 

L L 
=f babbihide/ {uP (D14a) 

This equation of motion for the structure reduces to 

G,/D + 26;7,;4;/D + w7.:4;/D = wu iQ), (D14b) 

where 

is a constant and m is the virtual mass per unit length of the structural member. 

The undamped linear equivalents to the governing equations show that if the system is responding 

at a frequency w then g; « Q, /[1 — (@/w,,;)7] and Q, « g)/[1 — (@/ws)*]. Thus, for w/w, = 1 and 

w/ws = 1 simultaneously, the equivalent linear solution reveals that the i vibration mode undergoes a 

resonant type behavior while the remaining vibration modes remain small. Hence, for the flow condi- 

tion ws; ~ w,,;, the solution to the equation (D14) is sought as the pure mode form 

q/D = A; sin wt (D15a) 
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q=0, 74 i (D15b) 

O/ Cro = B; sin (ot + 4;) (D15c) 

OO; pen (D15d) 

Here again A; and B; are modal amplification factors for the cylinder displacement and fluctuating lift, 

and @; is the phase of the fluctuating lift relative to the cylinder displacement. The conditions w/a, ; = 

1 and w/w; ~ 1 imposed on the response frequency w must be satisfied for the assumed solution to be 

valid. 

The entrained pure mode response of the system is found to be 

A; = (B;Cyo/ Sg,)/ (8? + 4)", (D16a) 

B? = (A/T) {1 — (Fi G:SGiCfo) [8:1 (67 + 4)1}, (D16b) 
o; = arctan (—2/8;), (D16c) 

where 6; must satisfy the cubic equation 

8; — Aj? + 4— HF /C,G)S¢,)8;-4A; = F;f 2¢ SG.) = 0, (D17) 

and where 

8; = (2/£;) @/o,; — 1), (D18a) 

A; = (2/¢;) @s/o,; — 1), (D18b) 

Soi = Cilmi. (D18c) 

These equations for the i pure mode response are identical to the equations for the vortex-excited 

response of a rigid, spring-mounted cylinder except for the multiplicative factor of J;,/* appearing in 

the equation for B;. Hence, the behavior of the i” modal response as a function of Aj, or ws/w,,;, is 

similar to the behavior of the rigid, spring-mounted cylinder, complete discussions of which of can be 

found elsewhere (D9). 

The vortex-excited oscillation of an elastic cylinder under the condition ws; ~ w,,; is 

Y(xt)/D = Ai; (x) sin wt. 

The maximum oscillation amplitude Vanryacs) in the i” pure mode entrainment region is then 

Y, max (x)/D = Aj axl; (x) | 

157 



where A; 4x is a function only of the modal response parameter Sg. This equation can also be written 

in the form 

= Sib 

Y, max (x)/D = Ayax(Se,) I, * W(x) | (D19) 

where Ajyj4y is the maximum response amplitude for a rigid, spring-mounted cylinder WW, = 1, W,;2; = 

0) having a cross-section similar to the elastic cylinder. Here the notation for the multiplicative factor 

I,,, is simplified to J. The parameters F,;, G,, H; in equations can be obtained from equations (D9) 

when the modal response parameter Sg; = ¢;/w;; is known. Then not only the amplitude response but 

also such system features as the lift response and phase between the lift force and structural motion can 

be obtained from equations (D16), as demonstrated in detail elsewhere (D10). Additional discussion 

of the wake-oscillator approach can be found in a recent textbook on wind engineering by Simiu and 

Scanlan (D11), the proceedings of a recent international conference on wind engineering (D12), and in 

the discussions of a recent colloquium on vortex shedding from bluff bodies (D13). 
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Figure D1 Lift amplification C,/C;9 and cross flow displacement amplitude Y/D, for a spring-mounted rigid cylinder in air, 

plotted against the reduced velocity V, = V/f,,D. 

Legend for data: 

Wake-oscillator model prediction: . Wind tunnel measurements (¢,/u = 0.5, Re = 500 to 900): +, speed increasing; 

0, speed decreasing. 
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Appendix E 

OTHER CABLE STRUMMING PREDICTION MODELS 

The "wake-oscillator' model described in the previous appendix is but one of the several models 

for predicting the response of bluff structures to vortex shedding-induced forces. However, most of 

these other models have not been sufficiently extended to the case of an arbitrary flexible body such as 

a cable. The several categories of predictive models are: 

® Empirical models, in which the hydrodynamic forces are derived from experiments; 

® Random vibration models, in which the vortex forcing and cable response are modeled as 

stochastic processes; 

© Discrete vortex methods, in which the flow field parameters and the hydrodynamic forces 

are computed from the motions of arrays of discrete vortices inserted into the flow; 

e Numerical solution of the Navier-Stokes equations, in which the complete equations of 

unsteady fluid motion are integrated numerically. 

The first two methods have been developed specifically toward applications to predicting the 

vortex-excited oscillations of flexible members such as cables. The third and fourth methods are, 

except for special cases, limited to problems in two dimensions. These methods have not been 

extended to practical design problems but they have employed in basic fluid dynamic studies. 

E.1 The Prediction of Strumming Parameters from Measured Force Coefficients. The equation for the 

resonant cross flow vibration of an elastically-mounted, rigid cylindrical structure, with the vortex and 

vibration frequencies locked on, can be written in general as 
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@ 

ar Dies Yor Si = [wo 

2 

| (G; = Gp), (E.1.1) 
@n 

where the dot (-) notation denotes differentiation with respect to time. Here y = y/D, tT = w, t, the 

2 
mass ratio uw = — and ¢, is the structural damping ratio. The fluid force coefficients are 

17 m 

Lift: Gr = pee = Cr sin (at 35 o), a= x. (E.1.2a) 
1/2pV?D Wp 

Reaction: Cr = pidtliata = Cp sin (at + $;), a=, (E.1.2b) 
1/2pV?D Wp 

as suggested by Griffin and Koopmann (E1), Griffin (E2) and Chen (E3), where @ and ¢; are the 

phase angles between the lift and the displacement and between the reaction and the acceleration, 

respectively. The two forces represented by C, and Cp are orthogonal (E2). 

If the cross flow displacement y is written as 

y= Ysinat, a= 2 . 
Or 

with Y= Y/ D, then the equation of motion separates into 

2 
: 2 ®s; 

sinat: -a?7Y+Y-yp 7 | (C, cos @ — Cr cos ¢,) = 0 (E.1.3a) 

aye 

cosat: 2¢, -n[2| (C, sind — Cr sind,) = 0 (E.1.3b) 
n 

when the coefficients of sin at and cos at are grouped appropriately. The various force components are 

identified as follows: 

STRUCTURAL FLUID 

INERTIA AND STIFFNESS INERTIA AND ADDED MASS 

3 2 

—a?Y + Y = pi—| (C, cos ¢ — Cp cos $4) (E.1.4a) 
; ® 
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STRUCTURAL FLUID 

DAMPING EXCITATION AND DAMPING 

2 

a a (C, sind — Cpr sin d)). (E.1.4b) 

A decomposition of the system such as this allows the fluid and structural force contributions to be 

separated completely. The various fluid forces then can be measured individually or derived from the 

total measured force. 

Using a different approach Sarpkaya (E4, E5) has expressed the measured total fluid force on a 

resonantly vibrating cylinder as the sum of two components 

E . 
CToTAL = hp V2D = Gan Sina Tis Cun cos at, (E.1.5) 

where C,,,, is an “inertia’ force and Cy, is a "drag" force. These components are related to Sarpkaya’s 

"generalized force coefficients’ Cz, and C,,, (E5), see Figs. 2.3 to 2.6, by 

-)2 
ES Ey =2 

Cu, = Cy bs D V, (E.1.6a) 

and 

Co =a Ca |e D Vee (E.1.6b) 

; ; 2a V V V. " al} V. — ‘ 

where V, is the "reduced velocity" V, Aw) D or 7,D 

In this case the equation of motion for the cylinder becomes 

War Men a2) 

2 

=| (Giasinem =1@ cosian)e (E.1.7) 

The force component C,, is negative when energy is transferred to the cylinder, as is the case for 

resonant, vortex-excited oscillations. If a steady-state response is assumed, then 

y = Y sin (at —e) , 

where € is an undefined phase angle. This form of the equation of motion separates into 

sin at:—a*Y cose +26, Y sine + Y cose —p 
n 

2 

es | C= (E.1.8a) 
@ 
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and 

cosat:a?Y sine +2¢, Ycose — Ysine +u 
Ws gi 

| Cp =O (E.1.8b) 
W@W n 

when the coefficients of sin at and cos a7 are again grouped appropriately. 

Upon rearranging, these equations reduce to 

STRUCTURAL FLUID 

(E.1.9a) 
INERTIA STIFFNESS FORCE TERMS 

2 
Ws . 

—a’ Y fp i =p = [Cy, sine — Cp cos €] 

STRUCTURAL FLUID 

DAMPING FORCE TERMS 

2 
DC be || [-C,, cose + C,» sine] 

: Wn ie im (E.1.9b) 

which are of the same form as those derived above. The two approaches are in fact identical when 

C, sin@ = — Cy, cose, EXCITATION’ (E.1.10a) 

C;.cos ¢ = Cy, sine, FLUID INERTIA (E.1.10b) 

Cr sind, = —Cyy, sine, FLUID REACTION (DAMPING) (E.1.10c) 

Cr cos; = Cy, COS€, ADDED MASS (E.1.10d) 

These relations can be used to compare recent measurements of the various force components. Blevins 

(E6) also has proposed the use of a force decomposition such as that given by equations (E.1.4b) and 

(E.1.9b). 

‘These equations are discussed further in Reference E2. 
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These solutions are based upon the assumption that the fluid forces are independent of the 

resonant motion of the cylinder. In reality, there is a complex nonlinear dependence between the fluid 

forces and the displacement, c.f., Fig. 2.7. Also, the maximum displacement is dependent upon the 

mass ratio and structural damping of the cylinder and its mountings. When the force coefficients are 

assumed to be known, as from experiments, as shown in Figs. 2.3 to 2.6, these analytical models can be 

used to predict the cylinder displacement and vice versa. A more complete development of these equa- 

tions is given by Griffin (E2, E7). 

It is a relatively simple matter to extend the analysis to the case of a flexible cylinder such as a 

cable with a normal mode shape W;(z), following the "wake-oscillator’ formulations described in Appen- 

dix D. If a pure mode response is assumed, then the displacement of the flexible cylinder is 

Y¥,= Yw,(z) sinat (E.1.11) 

at each spanwise point z = z/L, and the maximum displacement is scaled by the factor 

ionaanvige = 10 L? / \b;@) max = Y/y; (E.1.12) 

where 

1 
i Wi (2) dz Ibi (2) lava 
Se = crea ara 
fi w? (z) dz i 

for a cylinder of length L. For the special case of a circular cylinder J; = |W;(z)|yay = 1, and other 

(E.1.13) 1 

values of J; and , for a variety of flexible cylindrical cross-sections are tabulated in Table El. The 

parameter y; can be calculated directly from the entries in the table. 

The model just discussed also can be extended to the case of a flexible cylinder by means of a 

normal mode approach. The cross flow displacement of the cylinder is assumed to take the form 

yz => Y,(@) v,@) (E.1.14) 
i=1 

which is a standard expansion of the normal modes. When equation (E.1.14) is substituted into equa- 

tion (E.1.1), the result is a generalized form for the equation of motion given by 
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co 

Xi (m (2) ¥iy+2m (Zeon £5; Yi, +m(z)w2, ¥)w; = 
i=1 

SSO DT (C, = Gr) (E.1.1a) 

where, in general Gr and G are assumed to be functions of both z and 4, and the mass per unit length 

m is a function of z. If this equation is multiplied through by w ,(z) and integrated over the length 

L(z = z/L) of the cylinder, then the balance of forces for the ith mode is 

1 
Yn $2 On bs Yur +02 YG, b2@)m (z)dz) = 

pD*w; 
8ar St? 

when the normal modes of the structure satisfy the orthogonality condition 

[Jf Cus (eree a ie Cabs (2) a (E.1.15) 

J, movie) vj @ae=|2 FEL. (E.1.16) 
J 

In terms of the variables given in the first paragraph of this section, equation (E.1.15) reduces to 

iiss Ls 

Fs : D-w2 Ci (z) dz Cri (z) dz 
wni(Y; + 264 Yj + Y= area pliGatii es ou elee ; (E.1.17) 

ars J, m(z)W?(z)dz Ji m(z)W?(z)dz 

where Y; is the generalized displacement and the integrals on the right-hand side are generalized force 

coefficients. When "equivalent" force coefficients and the "equivalent" mass are introduced by 

My f Gaui2) dz 

Cre = (E.1.18a) 
Sf, wi@dde 

We 

é ues (E.1.18b) RE — p ale 
S, wide 

and 

1 
de m(z)b ?(z) dz 

lig = (iene. ans p (E.1.18c) 

ales Z)azZ 

the equation of motion reduces to 

1 
2 br ; a A W(z)dz 

VC EPEC api 3 fh “| (Cap = pe : (E.1.18d) 

id W*(z)dz 
0 

The subscript i is dropped since a single mode response is understood in this equation. In the case of 

the flexible cylindrical structure, such as a cable, a work and energy balance as discussed by Griffin (E2, 
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E7) and Sarpkaya (E4) leads to the result 

ie W(z)dz 

ihe w?(z) dz 

where C;¢ and Cpr are "equivalent" force coefficients similar in form to those given by equation 

2 "(i)at = TM mal (Cre Y sin Q= Cre Y sind) 

(E.1.18). 

E.2 Random Vibration Models. Predictive models for vortex shedding-induced oscillations based 

on a random vibration approach have been introduced by Blevins and Burton (E8) and by Kennedy and 

Vandiver (E9). The latter model is tailored specifically toward the prediction of cable strumming oscil- 

lations which are not in complete resonance with the vortex shedding. The former model is a pure- 

mode approach, based upon an assumption of resonant interaction between the body and the fluid. 

Also, the model equations are derived for arbitrary flexible cylinders, of which the cable is but one 

specific example. 

Blevins and Burton (E8) derive the equation of motion for a flexible cylinder in a manner similar 

to that given in Section E.1. It is then assumed that 

= 1 Sof Se(e1,z2,0)b (er) en) de dey 

Iz@)|? LS was 

where j is the rms cross flow response and S;(z;,z7,w) is the cross spectral density of the vortex- 

dw (E.2.1) 

induced lift force, and z(w) is the impedance of the system. This equation reduces to 

Y/D= Sve ee (E.2.2) 
Cone fae Wwdz Cue ici 

where the equivalent excitation force coefficient, C,,, is 

Cig = if va 

In this equation K,K2g(z) is the rms lift coefficient at the spanwise location z and r(z; — z) is the 

(E.2.3) 

spanwise correlation coefficient. K, and K, are arbitrary constants. The correlation coefficient is 

specified from experimental measurements on a cable or cylinder at resonance. 
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Blevins and Burton have applied their formulation to a number of specific cases. One such case is 

plotted in Fig. El where the predicted peak displacement amplitude for a sine mode (taut cable) at 

resonance is plotted. At the lower displacement amplitudes the cable response is dependent upon the 

correlation length, but only a single prediction is the result at displacement amplitudes above Y=03 

D. The limiting value of Y/D (see Fig. 2.2) is 1.2 for the particular case of a cable as shown in Fig. 

leit. 

Kennedy and Vandiver (E9) have introduced a stochastic model for the cross flow strumming 

response of marine cables. The lift coefficient Cz, in the non-lock-on regime is assumed to be a nar- 

row band random variable centered about a local Strouhal frequency that is characterized by its correla- 

tion function or its power spectrum. Much the same approach as had been used by Blevins and Burton 

is employed, except that the response of the cable is treated as a forced oscillation. A normal mode 

response with mode shape w; and modal frequencies f is assumed, and the modal force spectrum is 

given by 

Lel 

Sr. P) as f, i Wj (zy) Wp (22) Sp (21,22,f) dz dz. (E.2.4) 

In the analysis cross terms (j  k) are assumed to be small in relation to the modal response for which 

j = k. The response and force spectra are then related by 

S5@i.22.f) = Lb j 2 bj 2) | NSP (E.2.5) 
J 

where 
IL jail 

Sr; (f) = Ji Ih Wj (2\)W; (25) Sp (z1,2,f) dz, dz. 

The total displacement response spectrum then is the sum of the individual modal response spectra that 

are included in the excitation bandwidth. Kennedy and Vandiver have applied their model to two prac- 

tical problems: the response of a nonuniform cable in a uniform flow and the case of a uniform cable in 

a nonuniform (shear) flow. These problems are discussed in detail in reference E9. 

Forced vibration models based upon random oscillations have been introduced by Howell (E10) 

and Kwok and Melbourne (E11) for the purpose of predicting the cross flow response of aeroelastic 

structures in turbulent shear flows. 
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E.3 Discrete Vortex Methods. The discrete vortex method (DVM) is a potential flow representation 

of the separated shear layers and vortex wake of a body from which flow separation has taken place. 

The DVM approach has been applied recently to the case of a freely oscillating circular cylinder by 

Sarpkaya and Shoaff (E12,E13). The method has only come into general usage with the advent of 

modern high speed computers, and applications of the method have dealt primarily with modeling the 

flow separation from two-dimensional bodies with fixed separation points as described by Maull (E14) 

and Clements and Maull (E15). Stansby (E16) has applied the DVM approach to the periodic flow past 

a circular cylinder in order to model wave/structure interactions. The history of the method and the 

mathematical details of it are discussed by Sarpkaya and Shoaff (E12) and by Clements and Maull 

(E15). 

A problem with implementing the DVM approach has been the number of empirical parameters 

that must be employed to minimize undesirable features. These features include instability of the vor- 

tex sheets, the need for extreme accuracy of the flow field in the vicinity of the separation point, and 

the difficulty in tracking the evolution of a random distribution of discrete vortices. Sarpkaya and 

Shoaff appear to have minimized these problems by the introduction of a boundary layer calculation on 

the cylinder to precisely determine both the location of the separation point and the amount of shed 

vorticity and by a method of rediscretization for the evolving vortex sheets. The evolution of the vor- 

tex wake behind a vibrating circular cylinder is shown in Fig. E2. The arrow in each step of the figure 

represents the incident flow relative to the cylinder. By application of Blasius’ theorem to the flow the 

time-dependent and steady fluid forces can be calculated. The form of the equation employed by Sarp- 

kaya and Shoaff is 

N ———= eee OS ee 

Chto, = >> tal = — Svan 
n=1 

N 

—izg 3, Ly a Zo. (E.3.1) 

n=1 

Here zy denotes the (complex) position of the center of the cylinder and the (-) notation denotes 

differentiation with respect to time. The circulation and location of the nth discrete vortex in the wake 

are given by I’, and z,, respectively, and the second term in the brackets represents the image point of 

the nth discrete vortex within the cylinder. It is readily seen from equation (E.3.1) that the forces on 
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the body are critically dependent upon the strength (circulation) and location of the discrete vortices. 

These parameters are in turn dependent upon the starting conditions (separation point, magnitude of 

the vorticity, number of vortices, etc.) and upon the evolution of the vortices. 

It is possible to predict the major features of the complex nonlinear interaction that characterizes 

vortex-excited oscillations, but application of the discrete vortex method (DVM) is thus far limited to 

the case of a rigid cylinder. Although Sarpkaya and Shoaff (E12, E13) have made considerable progress 

in limiting the number of empirical parameters that must be used with the DVM and have achieved 

good agreement with rigid cylinder experiments, the prediction of the vortex-excited response of flexi- 

ble bluff bodies such as cables and marine pilings will require the formidable step to a three- 

dimensional code. Moreover, the effects of yaw angle, shear, and roughness will no doubt be 

extremely difficult to incorporate into the boundary layer calculations, i.e. starting conditions, without 

resort to further empiricisms. 

E.4 Numerical Models. Few, if any, numerical models for calculating the flow around bluff bodies 

have been developed for practical applications. This is primarily due to the difficulties that are encoun- 

tered in achieving the required small grid sizes and time steps as the Reynolds number is increased to a 

practical value (say Re = 200 at a minimum). The numerical solution of the Navier-Stokes equations 

of motion for flow past a cylinder are highly sensitive to the grid size, especially near the cylinder, and 

to the time step size. 

A numerical solution of the Navier-Stokes equations for the flow around a circular cylinder was 

obtained recently by Hurlbut, Spaulding and White (E17, E18). Three cases were considered: a 

cylinder vibrating in a still fluid, a cylinder vibrating in line with an incident uniform flow, and a 

cylinder vibrating normal to an incident uniform flow. The maximum Reynolds number achieved was 

Re = 100. The solution of the governing equations in the presence of the oscillating cylinder was 

achieved by transforming the equations for the computational grid system to a noninertial (accelerating) 

system. Good quantitative agreement was achieved with experimental data for the steady drag and 

unsteady lift forces on a vibrating cylinder at Re = 80. The computer model developed by Hurlbut, 
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Spaulding and White (E17, E18) presently is being extended to Re = 200 in order to model numeri- 

cally the drag and lift forces on a vibrating cylinder. 

Virtually all computations of the flow past bluff bodies (except for the discrete vortex model 

described earlier) have been based upon a finite-difference approximation to the governing equations 

where the continuum is represented by a grid of discrete points. Recently, however, the finite-element 

method has been extended to the modeling of the time-dependent flow over a (stationary) cylinder 

(E19). The finite element method in this case approximates the fluid continuum by some form of 

weighted-residual average of the governing equations over elemental volumes (three dimensions) or an 

elemental areas (two dimensions). Several finite element formulations were employed by Greshko, Lee 

and Upson (E19) to solve the problem of flow past a stationary circular cylinder at Re ~ 100. Some 

promising results were obtained, but the numerical solution was shown to be highly dependent upon 

the choice of element (simple versus higher-order) and other considerations (lumped mass versus con- 

ventional mass matrices). The prospect of three-dimensional computations by any of the Navier-Stokes 

numerical methods is conceptually straightforward but is at the same time sobering financially. 
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Table El. Normal Modes w ;(z) and Corresponding 

Values of J"? for Various Structural Forms 

I. Pivoted Rigid Rod 

Normal modes: W, = 2/L, bx; = 0 

PM © 8 G/B)" = AGN 

II. Taut String 

Normal modes: ; = sinimz/L 

jpawe 2 (YB)? S 1647 

Ill. Pinned-Pinned Beam 

Normal modes: ; = siniaz/L 

[V2 2 (Q2D)2 = VIS 

IV. Cantilevered Beam 

Normal modes, ww; = cosh d,z/L — cos \,z/L — a,(sinh \,z/L — sin d,z/L) 

i dr, Qa, | pane 

1 1.87510410 = 0.73409550 0.6525 
2 4.19409113  1.01846644 0.7494 

3. 7.85475743  0.99922450 0.7686 

V. Clamped-Clamped Beam 

Normal modes: w, = cosh \,;z/L — cos \,z/L — a,(sinh A ,z/L — sin ,z/L) 

i d, a, [ae 

1 4.75300408 0.98250222 0.7348 

2 7.8532046 1.00077731 0.7694 
3 10.9956078 0.99996645 0.7817 

VI. Clamped-Pinned Beam 

Normal modes: ; = coshdA ,;z/L — cos \.z/L — a,(sinh \,;z/L — sind ,z/L) 

i Na a; [We 

I 3.92660230 1.00077730 0.7694 
2 7.06858275  1.00000144 0.7891 
3 10.21027613 1.00000000 0.7972 

VII. Free-Pinned Beam 

Normal modes: w; = cosh A,(z/L) + cos \,(z/L) — a; [sinh \;(Z/L) + sin d,(Z/L)] 

i A, a; fe 

1 3.92660 1.000773 0.7628 
2 7.06858 1.000000 0.7890 
310.2102 1.000000 0.7972 
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DISPLACEMENT AMPLITUDE, Y/D 

© 

0.01 
OZ 1.0 exe [00.0 

REDUCED DAMPING, (27 St)@ Ky 

Figure El Predicted cross flow displacement amplitude Y/D plotted against the reduced damping (27 S1)?k, for the sine 

mode resonant response of a flexible structure; from Blevins and Burton (E8). The aspect ratio of the structure, i.e.. a ca- 

bie, is given by L/D. 
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Figure E2 Evolution with time of the vortex shedding in the wake of an oscillating cylinder, from 

Sarpkaya and Shoaff (E12). The vortex sheets emanating from the cylinder are calculated with the 

discrete vortex method (DVM). The arrow represents the direction of the incident flow relative to 

the instantaneous position of the cylinder. 
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