

of lake 婹chigan

Zoalegy
A. W.

1914
佂

A S_{ST} TUDY OF ACANTHOCEPHALA FROM FISH OF LAKE MICHIGAN

 BY
RALPH HARLAN LINKINS

A. B. Illinois College, I9II

THESIS

Submitted in Partial Fulfilment of the Requirements for the Degree of MASTER OF ARTS

IN ZOOLOGY

IN

THE GRADUATE SCHOOL

OF THE

UNIVERSITY OF ILLINOIS
(2)

UNIVERSITYOFILLINOIS

THE GRADUATE SCHOOL

June 6,
1914.

I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY

R. H. LINKING
ENTITLED A STUDY OF ACANTHOCEPHAIA FROM FISH OF
\section*{LAKE MICHIGAN}

BE ACCEPTED AS FULFILLING THIS PART OF THE REQUIREMENTS FOR THE

DEGREE OF
MASTER OF ARTS

Recommendation concurred in:
$\left\{\begin{array}{c}\text { Committee } \\ \text { on } \\ \text { Final Examination }\end{array}\right.$

Digitized by the Internet Archive in 2013

A STUDY OF ACANTHOCEPHALA FROM FISH OF LAKE MICHIGAN

$$
\begin{aligned}
& \text { I Introduction - }-\quad-\quad-\quad-\quad-\quad-\quad \begin{array}{l}
\text { page } \\
\text { a. Source of material }
\end{array} \\
& \text { b. Review of work done on the group in North Anerica } \\
& \text { c. Technique } \\
& \text { d. Method of recording hooks }
\end{aligned}
$$

II Systematic Analysis - - - - - 8
a. Key to genera of Acanthocephala from Fish
b. Characteristics which determine species
c. Description of species
1). Echinorhynchus coregoni
2). Echinorhynchus salvelini
d. Systematic relationships of species
1). Echinorhynchus coregoni
2). Echinorhynchus salvelini

III Morphology

a. Echinorhynchus coregoni
1). Size and general appearance
2). Body wall
3). Proboscis and associated structures
4). Leminisci
5). Reproductive organs
a). Male organs
b). Female organs and embryos
b. Echinorhynchus salvelini
1). Size and general appearance
2). Body wall
3). Proboscis and associated structures
4). Lemnisci
5). Reproductive organs
a). Male organs
b). Fernale organs and embryos
IV Plates and descriptions of plates - - - 35
\checkmark Acknowledgments \quad - \quad - \quad - \quad - 37

VI Literature Cited - - - - - 38

I INTRODUCTIONT

The present paper presents the results of a study made on the morphology of some of the Acanthocephala from fish of Lake Michigan, with the view of classifying them properly and of making additions to the knowledge of the morohology of the group. The material was collected by Dr. H. B. Vard, at Charlevoix, Hichigan, in the suraner of 1894.

Most of the work on this group of parasites has been done on forms found in Europe and until rather recent years practically no work at all has been carried out on this group in the United States. Joseph Leidy was the pioneer worker on the group of Acanthocephala in North America. His first work on these forms (Leidy, 1850) is devoted, in part, to a description of three new species of Echinorhynchus from various hosts. From 1850 to 1890 he published various other brief accounts in which he described four additional ner species, listing all of them in the genus Echinorhynchus. Of the seven species originally described by him, four have remained valid; later he recognized that the remaining three species were identical with previously described forms. E. emydis Leidy (1851) was transferred by H. J. Van Cleave (1911) to the genus Eorhynchus as Eo, erydis (Leidy).

Edwin Linton was the next to make a report on the Acanthocephala of the United States; his first account was published in 1888. His studies have been conifned almost entirely to forms found in marine fish of the Woods Hole region. However, he has reported (1893) a number of Acanthocephala from fish of Yellowstone Park. Linton's last work on this group appeared in a paper (1907) in which he de-
scribed the parasites of Bermuda fishes. It is important to note that Linton recognized only one genus, Echinorhynchus, in the group Acanthocephala. Briefly summed up, his contribution to the knowledge of the Acanthocephala consists of original descriptions of seven species of Echinorhynchus and one variety of a previously described species from the same genus. Of these seven nev species, six remain as distinct species; E. serrani, which was described from a single immature female, has been included by Porta (1905) in \mathbb{E}. aurantiacus Risso (1826). It seems doubtiul, however, that E. medime Linton (1907) and E. rectus Linton (1892) constitute valid species, for 巴. medius was described from a fragment of one specimen and \mathbb{E}. rectus was described from only two individuals.
H. W. Graybill published (1902) an article in which he redescribed E. thecutus Linton (1888); gave a detailed account of the morphology of this form, dealing especially with nuclear structures in the subcuticula and lemnisci; and discussed his experiments by means of which he attempted to determine the function of the lermisci. These Echinorhynchi on which Graybill worked came from the intestine of the black bass.

In addition to the above, A. E. Verrill (1871), N. S. Varshall and \mathbb{N}. C. Gilbert (1905), and H. B. Tard (1911) have mentioned the occurrence of Acanthocephala in various hosts in the United States. In most cases no description of the species accompanied the record.

This is the extent of the work done in the United States on this group up to the year 1913 when I. J. Van Cleave (1813) published the systematic part of an extensive work on the Acanthocephala of fresh water fauna. In this paper he described four new species of the genus Eorhynchus and redescribed one of Leidy's species which he in-
cluded in the same genus. The fact that in a single genus containing five species from hosts in this country, four of which were previously unknow, indicates the little consideration which has been given to this group in the United States.

For the past two years the writer has been making a study of the Acanthocephala from fish, considering especially those contained in Dr. Ward's collection from Charlevoix, lichigan. In this study toto mounts, transverse and sagittal sections stained in Ehrlich's acid haematoxylin, were found wost useful in determining the morphological and histological stmuctures. The technique of these forms is very difficult to perfect, for the body is covered with a dense cuticula Which offers great resistance to the penetration of reagents. Another difficulty comes from the fact that in sectioning, the hardshelled embryo often tear the more delicate internal structures. The details of the technique were carried out in the usual manner. The specimens were taken down through three grades of alcohol iron 85\%, in which they were preserved, into distilled water. After washing for $\frac{1}{2}$ to $3 / 4$ of an hour, they were stainea for one hour in dilute Ehrlich's acid haematoxylin. The specimens wexe tinen washed for $\frac{t}{c}$ hour in distilled water. Those which were to be sectioned were "blued" by washing in tap-water for 15 minutes; and then were carried up through the alcohols, cleared in xylol and embedded in paraffin at $52^{\circ} \mathrm{C}$. Ten-micra sections were then mounted in series. The individuals intended for toto mounts were taken from distilled water up to ro\% alcohol where they were destained by the addition of a few drops of acidified 70\% alcohol (100 parts 70\% alcohol \& 5 parts HCl c.p.). When properly destained, the acid was washed out with 7o-i alcohol and the specimens "blued" by adding a few drops of ammonium
hydroxide, or sodium carbonate solution, to the alcohol. After washing out the alkali the individuals were taken up through absolute alcohol, cleared in carjol xylol or synthetic oil of winteryreen and then gradually taken into the balsam.

The records of different workers on the group of Acanthocephala are in some confusion due to the lack of uniformity in tine method of recording the number and arrangerent of the hooks on the proboscis. Such lack of uniformity occurs even in records of the individual writers. Porta and von Linstow describe tire proboscis hooks as arranged in circular rows at right ansles to the long axis of the proboscis and record the number of circles with the number of hooks in each. The difficulty in this system lies in the fact that at the af terior and at the posterior ends of the proboscis the circles are often incomplete.

Lühe and de Warval in most cases descrive the hooks of the proboscis as arranged in rows which extend parallel to the long axis of the proboscis. Such rows Lïne cills "Langseihen" and designates the number of hooks in each of these longitudinal rows. The apelication of this method to such probosces as are found in some of the Eorhynchi meets with greatest difficulty, since in these instances there are only a few hooks arringed in three circular romb and if recorded as lonjituainal rows, altemate row would contain but a singl hook. From this evidence it seems that greater uniformity could be maintained within the entire group of Acanthocephala by strict adherence to the system of recording the number of circular rows rather than the number of longitudinal rows. In the following descriptions the writer has adopted the method of Porta and von Lirstow. A difficult in applying either system lies in the fact that in
all specimens examined in connection with the present study, the probosces were partially inverted, makine it imposisible to reach a hizh degree of accuracy in determining the number and the arrangenent of the hooks. The writer obtained the most satisfactory results from data derived from camera lucida drawings of both the everted and the inverted portions of the probosces. These reulits were checked by carefully counting the hooks without the aid of the carcera lucida. The results of the two methods agreed in all cases.

II SYSTEMATIC ANALYSIS

a. Key to the General of Acanthocephala from Fish

I (4) Neck With bulbous swelling - - - 2
2 (3) Anterior part of body armed with hooks
Corynosoma Lühe
3 (2) Proboscis only possessing hooks
Pomphornynchus ionticelli
4 (1) Neck without bulbous swelling - - - - 5
5 (6) Body, collar, and proboscis armed with hooks Echinosoma Porta

6 (5) Body unarmed; hooks on proboscis or on both collar and proboscis - - - 7

7 (8) Both collar and proboscis carry hooks
Chentrosoma Monticelis
8 (7) Hooks on proboscis only; collar unarmed- - 9
9 (10) Proboscis sheath a single-layered muscular sac
Neorhynchus Hamann
10 (9) Proboscis sheath a double-layered muscular sac- 11
11 (12) Brain at posterior end of proboscis sheath
Acanthocephalus üller
12 (11) Brain anterior to the posterior end of proboscis sheath

Echinorhynchus zoega
b. Characteristics which deternine Species

By the use of the preceding key to the genera of Acanthocephala from fish, the forms under consideration were found to belong to the genus Echinorhynchus since they possess the following characteristics of that genus: (1) a double-walled proboscis sheath; (2) the brain anteriad to the posterior tip the proboscis sheath.

In determing the species to which an individual of this group

$$
i
$$

belongs, it is necessary to consider what characters are most constant and hence diagnostic of the species. The writer in his own observations has confirmed the cbservations of $\mathrm{E} . \mathrm{J} . \operatorname{Van~Cleave~(1913:~178)~}$ that great weight should not be given to such characteristics as body length, length of lemnisci, or length of proboscis sheath, because all of these characters very so greatly either with different stages in the development of the individual; or from the different degrees of contraction of preserved specimens or from shrirkage due to the effect of killing and preserving agents. In the 21 individuals of the two species studied, in all cases where measurenents and observations on the hooks could be made, the number of circles of hooks and the number of hooks in each circle has been found constant for the species No evidence of variation was found and there is much evidence against variation. It must be kept clearly in mind, that the inverted condition of the proboscis gives a small chance for unavoidable error in the observations. The constant agreement of the foresoing observations, however, argues strongly that the number and arrangement of the hooks on the proboscis constitute distinct specific characteristics. Earlier workers in the group did not record such constancy, but on the contrary, thought there were many wial variations in the number of rows of hooks and the number of hooks in each row. In Acanthocephalus ravae, for example, Lưhe (1911: 17) gives the number of rows of hooks as varying from 12 to 20 , each row containing fron 4 to 6 hooks. From descriptions given by other workers in the Acanthoscephala, variability within species varies in different genera. All of the descriptions, and also the observations in this study, show that the genus Echinorhynchus is only slightiy variable in the number and arrangement of proboscis hooks.

Of the internal structures the male genital orgens have been found to be specificly constant in their groupinc and arrangement. The relation of the testes to each other and the arrangement of the cement glands are strikingly uniform. In the nine males of E. coregoni, n.sp., and E. salvelini which were studied, the writer found the grouping of the testes and cement glands to be constant for the species.

The writer has found the embryos to vary widely: in E. coregoni, n. sp., from 51 microns to 91 microns in length and from 17 mi crons to 25 microns in width. In \mathbb{E}. salvelini, the embryos measured from 115 to 165 microns in length and from $2 C$ to 25 microns in width. In all cases the measurements were made of mature embrycs which had three distinct membranes and were taken from the body of fully mature females and mounted in 85% alcohol. The descrifticns of Lüne, von Linstow, Porta, and de Marval show that different species very as to the degree of constancy in the size of the embryos. In some cases the above authors have given but a single set of measurencents, while in other cases, limits of size are given, ofter showine a rather wide range of variability. Practically all descriptions of erbaryos are incomplete,for the stage of development of the embryos measured is not given. Thus in comparing the embryos of unidentified forms with earlier descriptions of embryos, there is no way of being sure that the two sets of embryos are in the same stage of developnent.

c. Description of Species

1. Echinorhynchus coregoni, n.ep.- Body enlarged at anterior end. Males $3.0-3.7 \mathrm{~mm}$. in length. Jaximum width $0.8--1.05 \mathrm{mri}$. at anterior one-fourth of body. Females $3.1--5.4 \mathrm{~mm}$. in lencth. Videst part of body $0.6--1.5 \mathrm{~mm}$. Proboscis cylindrical, carrying 20
circular rows of hooks, each circle containing 6 hooks. Hooks of adjacent rows alternate. Basal hooks $0.028--0.053 \mathrm{~mm}$. in length. Hooks in midale region of proboscis $0.065--0.080 \mathrm{~mm}$. in length. Terminal hooks smaller than those of midale rows. Ventral hooks lareer and stronger than dorsal hooks. Embryos vary fror: 6.051 mrn . to 0.093 mm , in length and from 0.017 mm . to 0.020 mm . in width. The cormion size is $0.077 \times 0.019 \mathrm{~mm}$.
2. Echinorhynchus salvelini, n.sp.- Body elongate; sliehtly enlarged anteriorly. Wales 7.0--9.0 mr. in leneth. Naxirmumidh $0.82--1.27 \mathrm{~mm}$. in region of proboscis. Females $10.5--17.0 \mathrm{~mm}$. in length. Widest part of body measures $1.19--1.58 \mathrm{~mm}$. Proboscis cylindrical, armed with 26 circular rows of hooks, each circle containing 8 hooks. Hooks of adjacent rows alternate. Basal hooks $0.039-0.050 \mathrm{~mm}$. in length. Hooks in middle and anterior resions of proboscis 0.044--0.068 mm. in length. Hooks in middle and anterior region with basal processes measuring 0.083 mm . Embryos vary in length from 0.115 mm . to 0.165 mm . and from 0.020 mm . to 0.025 mm . in width. Common size 0.140--0.022mm.

d. Systematic Relationships of Species

1. Echinorhynchus coregoni, n.sp.- In determining the species of E. coregoni, the writer has taken for a basis Porta's paper (1805), which lists and describes the species of Echirorhynchi parasitic in fish. The writer has compared E. coregoni not only with those described in the above paper, but also with those described by wi̛he (1911), in varicus papers by von Linstow (1895, 1850, 1900, 1808), in de Marvals papers (1905, 1905), in Leidy's works (1850, 1851, 1852, 1887,1888), and with Linton's described species (1889, 189\%, 1893,
1907). In this comparison forms showing extreme differences have been at once eliminated, those which showed even slight likenesses have been carefully compared with E. coregoni with the following resulte.
E. gadi is similar to E. coregoni, n. sp.: (I) in having the hooks arranged in the same number of alternate circles, (2) in possessing embryos within the range of sizes found in in coregoni, n.sp. (3) in a very short neck region. It differs from C. corezoni, n. sp.: (1) in the number of hooks in a circle, (2) in body size, (3) in the size of lemnisci, (4) in the grouping of the male genital organs. In E. gadi the testes are not in close contact, while in E. coregoni, n. sp., the testes are contiguous. Again, the cement glands in \mathbb{E}. gadi, though of the same number, are arranged in a row posterior to the testes; those in E. coregoni, n. sp., are massed together posteriad to the testes.
E. borealis is similar to E. coregoni, n.sp.: (I) in body size, and in possessing a short collar. This species differs radically from E. coregoni, n.sp.: in having embryos nearly twice as lone as those found in the latter, and in having more circles of hooks with more hooks in each circle.
E. oricola has the sane number of circles of hooks with the sarne number of hooks in each circle as are found in \#. corezoni, n.sp. The size of the hooks and the body length in the two form are different, the details of which are shown in Table IV.

In E. clavula and E. coregoni, n.sp., the testes are similarly
placed in the body and are in the same relation to each other. The body size is nearly the same in the two species. The number of circles of hooks and the number of hooks in each circle vary in the two
forms.
E. Salmonis is similar to E. coregoni, n.sp., in possessing a range in the number of circles of hooks which includes the number of circles found in E, coregoni, n.sp. However, E. Salmonis has one more hook in each circle. The length of the probosces in the two forms is about the same, but the width is much greater in the case of E. Salmonis. The testes in the two are in the same general relation to each other and occupy similar places in the body. The cement glands of these forms are of the same number and similarly grouped. The body size in both cases is approximately the sane. The most notable difference is in the size of the embryos; those of \mathbb{T}. Salmonis being larger than the largest embryos measured fron E. coreeni n.sp. The lemnisci in E. Salmonis are about trice as long as those in E. coregoni, n.sp.

From the above comparisons the writer holds that in. corejoni, n. sp., does not belong to any of the above forms with which it has been compared. It shows closer affinity to E . Salmonis than to any of of
the other species, but ever here the differences are enough weight to warrant considering it a distinct species, Ior which the writer proposes the name E. coregoni. A more detailed taisulation of the relations of this species to other species of Echinorhynchus is given in the following tables.

TABLE I

E. coregoni, n.sp., compared with E. gadi

Likenesses:

Hooks: E. coregoni, n.sp.--20 alternate circles of hooks E. gadi --2C-26 alternate circles of hooks

Embryos: E. coregoni, n.sp.--0.077 by 0.015 mm .
E. gadi-- 0.076 by 0.013 mm .

Neck:
E. coregoni, n.sp.-- 0.1 mm . Iorg
E. gadi -- short.

Differences:

Hooks: E. coregoni, n.sp. -- 6 hooks in a circle E. gadi -- 9-11 hooks in a circle

Testes: E. coregoni, n.sp. -- In close contact E. gadi -- not in close contact

Cement glands: E. coregoni, n. ap. -- 6 massed together E. gadi -- 6 in a row

Body length: E. coregoni, n.sp. -- female, 5.4 by 1.24 mm.; male 3.0 by 0.8 mm . E. gadi -- female, 45-80 by $0.6-0.8 \mathrm{~mm}$. male, 20 by $0.6-0.8 \mathrm{~mm}$.

Lemnisci: E.cor3goni, n.sp. -- 0.527-0.595 mm. E. gaai -- 1.5 mm .

TABLE II

E. coregoni, n.sp., compared with E. truttae

Likenesses:

Hooks: E. coregoni, n.sp. -- alternate circles
0.028-0.053 mm. (Basal hooks)
E. truttae -- alternate circles; 0.05-0.06mm. (Basal hooks)

Differences:

Embryos: E. coregoni, n.sp. -- $0.077 \times 0.019 \mathrm{~mm} \cdot\binom{0.051 \times 0.017 \mathrm{~mm}}{0.091 \times 0.020 \mathrm{~mm}}$ E. truttae - 0.10--0.11 x 0.023--0.024 mm.

Hooks: E.coregoni, n.sp.-- 20 circles; 6 hooks in a circle
E. truttae -- 26-32 circles; 10-11 hooks in a circle

Testes: E. coregoni, n.sp.-- ir close contact; spherical
E. truttae -- not approaching; oval

Cement glands: E. coregoni, n.sp.-- 6, massed.
E. truttae -- 6, separated

Body size: E. coregoni, n.sp.-- female $5.4 \times 1.24 \mathrm{~mm}$. nale $3.0 \times 0.8 \mathrm{~mm}$.
E.truttae -- Femaie $15.0-20.0 \times 1.0-1.2 \mathrm{~mm}$. male $8.0-11.0 \times 1.0-1.2 \mathrm{~mm}$.

Lemnisci: E. coregoni, n.sc.-- $0.527--C .595 \mathrm{~mm}$. E. truttae -- 1.4 mm .

TABLE III

E. coregoni, n.sp., compared with E. borealis

Likenesses:

Body size: E. coregoni, n.sp.-male $3.0 \times 0.8 \mathrm{~mm}$.
female $5.4 \times 1.24 \mathrm{~mm}$

$$
\begin{aligned}
& \text { E. borealis }-- \text { male } 4.94 \times 0.75 \mathrm{~mm} \\
& \text { female } 7.11 \times 1.03 \mathrm{~mm}
\end{aligned}
$$

Collar: E. coregoni, n.sp.-- O.I mm
E. borealis -- short

Differences:

Hooks: E. coregoni, n.sp.-- 20 circlea of hooks, alternate 6 hooks in a circle
E. borealis -- 25 circles of hooks, alternate 10 hooks in a circle

Hook size: E. coregoni, n.sp.-- 0.028--0.080 mm
E. borealis -- $0.042-\mathrm{mm}$.

TABLE IV

E. coregoni, n.sp., compared with E. oricola

Likenesses:

Hooks: E. coregcni, n.sp.-- 20 circles of hooks, alternate 6 hooks in a circle
E. oricola -- 20 circles of hooks, alternate 6 hooks in a circle

Differences:

Hook size: E. coregoni, n.sp.-- 0.028--0.080 mm. E. oricola -- 0.085 mm .

Body size: E. coregoni, n.sp.-- male $3.0 \times 0.8 \mathrm{~mm}$. female $5.4 \times 1.24 \mathrm{~mm}$.
E. oricola -- $8.75--10.27 \times 0.75 \mathrm{~mm}$.

Neck: E. coregoni, n.sp.-- 0.1 rm .
E. oricola -- none

TADLE V

E. coregoni, n.sp., compared with E. clavula

Likenesses:

Testea: E. coregoni, n.sp.-- located near center of body; sherical, in close contact
E. clavula -- located near center of body; spherical, in close contact

Body size: E. coregoni, n.sp.-- male $3.0 \times 0.8 \mathrm{~mm}$. fenale $5.4 \times 1.24 \mathrm{~mm}$.
E. clavula -- male 3.5--4.3 $\times 1.0 \mathrm{~mm}$. fernale $7.0 \times 1.0 \mathrm{~mm}$.

Differences:

Hocks: E. coregoni, n.sp.-- 20 circles of hooks, alternate 6 hooks in a circle
E. clavula -- 24-26 circles of hooks, alternate 9 hooks in a circle

TABLE VI

E. coregoni, n.sp., compared with E. salmonis

Likenesses:

Hooka: E. coregoni, n. 2p.-- 20 circles of hooks; each row containing 6 hooks; hooks of ajjacent rows aiternate
E. salmonis -- 18-22 circles of hooka, each circle containing 7 hooks

Proboscis: E. coregoni, n.sp.--0.71-1.2 x 0.17-0.26mm. E. salmonis -- 0.70-1.0 $\times 0.250-0.37 \mathrm{~mm}$.

Testes: E. coregoni, n.sp.--spherical, in close contact; nearex posterior end
E. salmonis -- ovoid, in close contact; nearer posterior end

Cement gilands: E. coregoni, n.sp.-- 6 grouped together E. salmonis -- 6 grouped to gether

Body size: E. coresioni, n.sp.-- female 5.4 x 1.24 mm . male $3.0 \times 0.8 \mathrm{rm}$.
E. salmonis -- female $7.0-8.0 \times 1.2-1.6 \mathrm{~mm}$. male $3.0-4.0 \times 1.2-1.6 \mathrm{~mm}$.

Differences:

Lemnisci: E. coregoni, n.sp.-- $0.527--0.595 \mathrm{~mm}$.

$$
\text { I. saimonis -- } 1.0 \mathrm{~mm} \text {. }
$$

Embryos: E. coregoni, n.ap.-- $0.077 \times 0.019 \mathrm{~mm}$. E. salmonis -- $0.095 \times 0.025 \mathrm{~mm}$.
2. Echinoshynchus salvelini, n.sp.: The only two species of Echinorhynchus that \mathbb{E}. salvelini, n.sp., can be coniused with are \mathbb{E}. borealis and \mathbb{E}. truttae. Hovever, it differs in nany important points from both of these species.
E. salvelini, $n . s p .$, is similar to \mathbb{E}. borealis in the following respects: (I) in possessing embryos whose rance of size includes the size given for the embryos of E. borealis, (2) in possessing a neck region of approximately the same length as is found in \mathbb{E}. borealis, (3) the probosces of the two forms are of the same size. The species are different, (I) in possessing different numbers of rows of hooks on the proboscis, (2) the number of hooks in a row is different in the two species, (3) the size of the hooks is much larger in \mathbb{E}. saivelini, n.sp., than in \mathbb{T}. borealis, and (4) the body size in the two disagrees.

The only point of agreement between E. salvelini, n.sp., and E. truttae is in body size. The two are markedly widely distinct in the size and arrangement of the proboscis hooks, size of the proboscis number and arrangement of the cement glands, and the size of the embryos. The details of these comparisons are shown in the following tables.

From the comparison of \mathbb{T}. salvelini, n.sp., with other Fchinorhynchi, the writer holds, that the differences are of enough importance to constitute a distinct species, to wich the name Echinorhynchus salvelint has been given.

TABLE VII

E. salvelini, n.sp., compared \#ith \mathbb{Z}. boresis

Likenesses:

Embryos: E. salvelini, n.sp.--0.115-0.165 x 0.020-0.025rm. E. borealis -- $0.148 \times 0.023 \mathrm{~mm}$.

Neck: E. salvelini, n.sp.-- $0.19-0.38 \mathrm{~mm}$. in length
E. borealis -- 0.2 mm . in length

Proboscis: E. salvelini, n.sp.-- 0.73-0.85 x 0.29-0.31 mm.
E. borealis -- $0.75 \times 0.26 \mathrm{~mm}$.

Differences:

Hooks: E. salvelini, n.sp.-- 25 circular rows; each circle containing 8 hooks.
E. borealis -- 25 circular rows; each circle containing 10 hooks

Hook size: \mathbb{I}. salvelini, n.sp.-- $0.044-0.068 \mathrm{~mm}$. in lengin at midale of proboscis
E. borealis -- 0.042 main. in length at midale of proboscis

Body size: E. salvelini, n.sp.-- nale 7--9 mm, in lenath $0.82--1.27 \mathrm{~mm}$. in widh. female, $10.5--17.0 \mathrm{~mm}$. in length $1.19--1.58 \mathrm{~mm}$. in wiath
E. borealis -- male, 4.94 mm . in lenetin 0.75 mm . in width female, r.11 mm. in length 1.03 mm . in width

TABIE VIII

E. salvelini, n.sp., compared with E. truttae

Likenesses:

Body size: E. salvelini, n.sp.--male, 7.0-9.0 x 0.82-1.27n female, $10.7-17.0 \times 1.19-1.58 \mathrm{~mm}$.
E. truttae -- male,8.0--11.0 x $1.0--1.2 \mathrm{~min}$. female, $15.0-20.0 \times 1.0-1.2 \mathrm{~mm}$.

Differences:

Hook size: E. salvelini, n.sp.-- 0.044-0.068rm.in midale region of proboscis
E. truttae -- $0.061-0.080 \mathrm{~mm}$.

Proboscis: E. salvelini, $n . s p .-0.73-0.85 \times 0.29-0.31 \mathrm{~mm}$. E. truttae -- 1.0-1.3 x 0.3-0.35 mm.

Hook arrangement: E. salvelini, n.sp.-- 26 circular rows, 8 hooks in each circle
E. truttae - - SO-2Z circular rows, I3-16 hooks in each circle

Cement glands: E. salvelini, n.sp.-- 8 in a row E. truttae -- 6 in a row

Embryos: E. salvelini, n.9p.--0.115-0.165 x 0.030-0.025rm. E. truttae - 0.10-0.140 $\times 0.023-0.026 \mathrm{~mm}$.

III MORPHOLOGY

Echinorhynchus coregoni

1. Size and General Appearance.

The individuals vary in lenctin from 6.12 mm . to $3.0 \mathrm{~m} .-$-measure ments being made from the posterior tip to the region of the proboscis The maximum diameter which occurs at the anterior one-iounth of the body is 0.06 to 1.5 mm . The females are usually much larger than the males. The contracted specimens show irregular creasing a which might suggest segmentation, but sections demonstrate that this conaiton does not extend beyond the cuticula ma hence must be due only to the contracted condition of the body. The individual is divided into three regions: (1) a cylindaicis proboscis armed with hooks (2) a short neck region which joins the proboscis to the posterior (fig. $5 ; a$)
revision and (3) the body proper. In all cases where mevaurementis could be made, the neck measured 0.1 mm . Tais region constitute a an introvert which is drawn in by definite seta of mas io fibore which extend from the anterior edge of the neck to the interior surface of the body wall.

This species has definite dorsal and ventral surfaces. The latter in slightly folattoned and the extended proboscis is always bent toward it. The dorsal surface is convex and in tho region of the proboscis-sheath is markedly enlarged.
2. Body Wall

Externally, the body is covered with a dense cuticula which varLes slightly in thickness in the different parts of the body, measuring from 0.003 to 0.013 mm . Beneath the cuticula is the 3yncitial
sub-cuticular layer which contains many nuclei irregularily arranged throughout the resion. These nuclei are unifommy distriouted in the body wall. They contain distinct nucleoli which vary in number and in size. In some nuclei there is a single nucleolar mass, while in others there are many nucleoli of different sizes and shapes.

The sub-cuticula is divided into two zones. The reqion next to the cuticula is densely granular, quite uniform in thickness, and occupies about one-third of the entire width of the sub-cuticula. In the region next to the body cavity the protoplasr is less dense out has fibriller strands of protoplasr exterdine transversely across the wall.

Next to the subcutioula interiorly, is a single lajer of circu(Xig.2b)
lar muscle fibers^and immediately next to the body cavity are lorei(xig2.c) tudinal muscle fibers wioh in cross section show a definite wrrangement in circuler groups. Detween trese two layers are scattored e few large nuclei.

The subcuticula is penetrated oy many transverse vessels, the Lacunae, whick are irregriar in arrangerent ari frequerify anastorose. These unite to form a right and a left loneituainal canal, both of which extend the entire length of the body.
3. Proboscis and Associated Stmictures

When the proboscis is invertea it is hela within a aheath made up of two distinct ruscle layers. Exterjing from the inner anll of the tip of the proboscis to the posterior wall of the shestr are canc (रig.5,e) of muacle fibers which serve to invert the proboecis n ne rovosois retractor muscles, ab hom by sagitual sections, contirue throves the posterior wall of the sheath and fonk two bands, one of aich we--
comes ettached to the dorsar surfece end tre other to the ventral sur face of the Dody. The actior of this set of muscies sidatae coller retractors causes the comrlete inversion of the introvert. Located between the proboscis retractors anteriad to the posterior end of the proboscis sheath is the orain. From thin two javiza uf reveefoberb (fio, s, d) pass through the proboscis sheath and form the two retinavulay one of Which is attached to the dorsal and the other to the ventral rejian of the body wall. The proboscia varies in size irom 1. a by 0.2 mm . to 0.71 by 0.2 mm . Since the proboscis was always inverted, the length had to be deterrined by combinizy fhe length of the Exterded and of the inverted portions.

The proboscis is armed with hooks arrenged in 20 alterate circlea, each cortaining G hooks. The circlea nearer the reok are ofted incomplete. The hooks vary in size and shape. Those close to the neck are much otraighter and rone delicete than trowe meares the the of the proboscis. On the ventral surface the hocks are strikingiy larger and rove strongly built than on the dorsal suricuce. Fis difference is most clearly seen in the roms of hooks ciose ta the body. The anterior rows of hooks heve a definitejy bifnemertiated basal portion mhior is not found ir the josterior hooke. Srenevene sections show large nuclei at the bases of the hooks.

4. Iemnisci

The Iemniscinare two laree organs located at the anterior amt of the body. They are attached to the collar at the point where it joins the proboscis sheath. One lemiscus is dorsa? in fosttion, the othex is ventrally placed. The lemrikei show much the oane structure as is found in the fibrillar part of the eviocutiouna.
are large canals extending transversely through the organs, and around these canals are nuclei similar to those in the suncutjoula. Those of the Jemisci, however, are rich lexer. Tach Iemiscus is surrounded by a delicate membrane mich extends bern the posterior end of the structure and is attached to the body wail. Just what connection, if there is any, exists between the two lemnisci the writer has not been able to work out definitely. A canal can be traced part way around the anterior en ce of the proboscis sheath, and evidence indicates that the two lemnisci open into this cinevien canal, ell though such a connection has rot beer derionstrateủ. Since there is such a marked resemblance in the canal arrancerent and the general structure of the subcuticula and the lemnisci, it seems poosible that there may be some compaction sotreer those parts, primary through the lateral canals of the subcuticula.

5. Reproductive Organs

In this form the two sexes are different individuals. The male apparatus consists of several parts. A pair of approximately caner-
 proboscis sheath. Posterior to the testee are oik cerement glandes, Λ grouped together. They are ovoid in their general outing, aitroujh there is some irregularity in this particular. Ienind this the burs a (rip. $5, i$) begins as an elongated chin from the posterior narrow end of ion ex(his. $5,1.1)$ tend the cirrus. ${ }^{\circ}$, Around, a the cirrus is a group of hare nerve celia (Pif.5.5.j)
Which form: a genital senior, The final past of the usu is a much folded tube which has on its walls in the region of the cirrus four disc-anaped strictures mich I interpret as adhesive organs mich aid in copulation. The whole systeri is swing in a clear sac which
probably is a modification of the suspensory ligament.

The female genital apparatus is held in the ligamentum suspensorum which is attached at its anterior end to the posterior tip of the proboscis sheath. Posteriorly the ligament is attached to the posterior tip of the body wall. The apparatus is divided into two distinct regions, the uterus and the vagina. The uterus consists of an anterior complicated selective apparatus by means of which only the spindle-shaped embryos are allowed to pass down the uterus to the posterior region of the stricture. Fron the selective apparatus the uterus extends as a long tube with a single layered wall to a vaginal region which is surrounded by gland cells and sphincter ruscles. In the region of the vagina, the cavity of the uterus increases in size and is abruptly narrowed into the vagina. At this place the wall of the uterus is thickened.

In the mature females no ovaries were found, but the body cavity was filled with embryos in all stages of development iror egs masses to the fully developed apincle-shaped embryos with their three distinct membranes surrounding the inner granular mass. The ege masses are ovoid, but vary in size. These egg masses with the erborycs were often found in such numbers as to completely fill the cavity of the female. The embryos were best studied by removing from the female and examining in 85% alcohol. Two methods were used in measuring embryos from two individuals: (I) by making camera lucida drawings of the embryos and then measuring these drawings, and (2) by direct measurement of the embryos with the ocular micrometer. One raethod acted as a check on the other. By the former method the greatest number of embryos measured from $0.07 \% \mathrm{~mm}$. to 0.081 man. in lensth with a range of variability from 0.063 to 0.09 mm . and by the same method
0.019 and 0.020 mm . were the most common widhs, with a range of variability from 0.016 to 0.025 mm . By the latter method the nost common length was found to be $0.0 \% \% \mathrm{~mm}$. With extrenes of 0.057 and 0.085 mm . The most common width was 0.019 min., with extremes of 0.017 and 0.020 mm . The slight disagreement in the results obtained by the two different methods is due, in large part, to the iifference in magnification used. In the direct observations, ocular ricrometer \#2 with lilath oil immersion objective were used; for the canera lucida drawing, ocular ""3 and objective " 5 were used.

b. Echinorhynchus salvelini

1. Size and General Appearance.

The body length in E. salvelini varies irom 9 to 17 mm ; the Width from 0.82 to 1.58 mm . In obtaining these measuanamta, the maximum diameter which occurs in the resion of the proboscis shesth, was recorded as the width; the lenjth was measured irom the vosterior tip of the body to the inverted collar rejion. In all casea the famales were found to be longer than the males, but the akacetor in the two sexes varied less. In the contracted apecimens, the anterior region of the body and the poboscis ourve biarijutomari the ventral surface. The oody is divided into three recions: (1) a lone cyindrical proboscis carryinic hooks ${ }_{N}$ (() well defined neck rejion which measures from 0.19 to 0.38 mm . In lensth, and (3) the biz proper. The collar or neck reaion constitute: the introvert and iz operated by muscle fibers which are attached to the collar at tine place where the proboscis sheath and the collar are joined. These fioers are most numerous on the dorsal and the ventral surfaces.
2. Body Mall

The body wall is composel of distinct resions. Jatemally, it is covered with a dense cuticula which measures 0.003 to 0.000 mor. in thickness. Beneath this is the suboutioula rinich contains a densely granular region and a region in which the protoplazk is arranged in fillar atrands. The aubcuticula is a syncitium posaeasinô many irregular nuclei and large lacunae. The latter unite to forli tio lateral vessels extending the length of the body. On the inmet surface of the subcutiozla, is a circular layer of muscle itioersic This is followed by a thin irrecular layer of cella containing very large nuclei. This layer sevarater the ciroular bard of madele fioess fom
anotiner muscular resion in whion the fibers extena lonsituainally. Immediately next to the body cavity is a second layer of very large (Pi9.8,h) cells $\Lambda^{\text {which }}$ in section are seen to be continuous witt the muscle fibers. These and the cells found between the circuler and lonsioxdinal layers are undoubtedy the cells which prowive the mancle fibers

3. Proboecis and Associated Stmatures

The proboscis varies in length from 0.73 mm . to 0.85 mm ; the width is from 0.29 to 0.31 mm . Wer inverted, tre wrovosis is neld Within a sheath made up of two listinct muscle liyyers. cis is dram into the sheaty oy the contraction of nuscle fibemariol extend from the inner wall of the tip of the proboseis to tou posterior wall of the probiscis sheath. Whese groboscis retractorsceontinue through the sheath as two bends, one of ohich paseen to the dorsal and the other to the ventral portion of the body anil. The contraction of these ounds, the sheath retractori, cauaes the sheath to be drawn fartiner into the body. The brain is iocated betreon the fibers of the proboseis retractors, aliginty posteriad to the center of the sheath. From the brain two nerve fibers branch ofy, -one pas sea through the dorsal, the other through the ventral anl. or the proboscis sheath ani form retinacula ahich attach themselves, one to the ventral and the other to the dorsal wall of the body. At the points where tie nerve fibers leave the probuscis, there are large nerve calls.

The proboscis is armed with 26 circles of hooks, each circle containing 8 hooks which alternate with the hooks in ajjacent ciroles. The hooks gradually increase in size srom the smallest hooky in Jhe inoomolete circles at the posterior end of the proioneiz to the lare-
est hooks founk in the middle and anterion regions of the groboscis. The basal hooks measure 0.030 to 0.050 mm , in leneth, Varying mith their distance from the most posterion fow. The howk of the midile and anterior rezions are 0.008 mm . in leajti. The huoke of the joaterior region disfer Irom the hooks of other part; un the mobosois in not naving a basal or root process winch rajojects into tine substance of the proboscis. Tris basal process nezsures 0.005 am. in length, being much longes than the projeoting portion of the iovir.
4. The Lemmisci

(fis. 8, b)

The long , looel lemiscíare attachei laterally at tre anterior end to that part of the body wall where the anterior edse of the collar is joined to the proboscis sheatio Entrumding the lemisoi are sheaths of tissue which continue beyond the posterior tip of the organs and passing coliquely posteriad are attached ti tiae Dody unil. In this species as in othen foms, the aunction oi the lemisei has not been deterrined. Trensverse sections of the lemnisui $3^{\circ} n 0$ that the protoplasre is arranged in Pibrillar strands. Extending tranzversely and longituainally throung these orgzns are conals, aimilar in appearance to the lacunae found in the suboutioula. A few large irregular nuclei are conspicuous in the structure of tre levnisci. The two lemnisci are connected by a ciroulai canzl winch extendis a around the extreme anterior end of the proboscis sheath.
5. Reproductive Organs

The male reuroductive organs consiat of tro ovoia testea looated slightly posteriad to the certer of the individual. Juat poatesior to these is a chain of eight spherical cement plands.
following the cement glands is the bursa, the first division of which is a thick-walled, cone-shaped structure, called the Kittoental, which receivea the ducts from the testes and cement glands. The Kittbental opens into the eversible portion of the bursa, wich contains the cirrus surrounded by the genital ganglion. About midway between the testes and the Kittbental the wall of each vas dererens dilates into a bulbous enlargement.

The fernale genital organs are located in the extrame posterior end of the individual and consist of a utems and a vayina. The important part of the uterus is the complicated selective apparatus at the anterior end of the structure. This opens into a thick uterin tube which terminates in the vagina. The vagina is surrounded by large sphincter muscles which control the passage of erioryos to the exterior. Large gland cells are also found in the vaginal region.

The embryos are very lone, spindle-shaped forms varying in length from 115 to 165 mm . and in width from 20 to 25 mm . The granular protoplasmic part of tine developing eribryos is surrounded by three memoranes. No ovaries ware founa, but ege massea in all stages of development were numerous in the mature Iensles. rhe enbryos rere measured Dy direct observation using " immersion objective.

TABLE IX

The size of the embryos in this group seens to be of enough importance to warrant a detailed atudy. The following table contains the measurements of embryos from two mature females of \mathbb{E}. coresoni. The measurements were made from camera lucida drawing's for which ocular \#3 and objective " ing direct measurements of embryos from the same individuals, the combination of \#\# micrometer ocular with $1 / 12$ oil immersion were used for these measurements. Results are recorded in microns.

Individual A

74	\times	20	82	$\times 19$
77	\times	18	82	\times

80×21

Individual B

67	x	18
75	x	18
68	x	18
67	x	18
82	x	20
82	x	21
73	x	20
70	x	20
70	x	19
75	x	18
85	x	19
85	x	21
84	x	20
73	x	19
72	x	18
70	x	19
72	x	20
72	x	16
81	x	18
80	x	20
81	x	10
87	x	20
68	x	19
81	x	20
78	x	19
81	x	18

77
81×19
81×19
70×18
80×20
81×19
83×20
80×19
78×19
85×20
83×20
83 x 21
80×19
80×20
77×18
70×20
70×18
80×19
73×17
78×18
83×20
77 x 19
80×19
67×18
.

TABLE X

Measurements in microns of embryos from a mature individual of E. salvelini. Measurements made by direct observation with the aid of \#2 ocular micrometer and \#8 objective.

| 163 | x | 25 |
| :--- | :--- | :--- | :--- |
| 155 | x | 22 |
| 158 | x | 22 |
| 150 | x | 25 |
| 120 | x | 25 |
| 140 | x | 22 |
| 150 | x | 22 |
| 150 | x | 22 |
| 150 | x | 22 |
| 145 | x | 22 |
| 165 | x | 22 |
| 155 | x | 22 |
| 122 | x | 22 |
| 145 | x | 22 |
| 150 | x | 22 |
| 155 | x | 22 |
| 120 | x | 25 |
| 140 | x | 22 |
| 163 | x | 22 |
| 150 | x | 22 |
| 138 | x | 22 |
| 138 | x | 25 |
| 138 | x | 22 |
| 143 | x | 25 |
| 147 | x | 22 |
| 158 | x | 22 |

| 182 | x | 22 |
| :--- | :--- | :--- | :--- |
| 150 | x | 22 |
| 143 | x | 20 |
| 130 | x | 20 |
| 143 | x | 25 |
| 143 | x | 22 |
| 140 | x | 25 |
| 153 | x | 22 |
| 150 | x | 22 |
| 140 | x | 22 |
| 147 | x | 22 |
| 145 | x | 22 |
| 145 | x | 22 |
| 143 | x | 25 |
| 128 | x | 25 |
| 140 | x | 25 |
| 150 | x | 25 |
| 138 | x | 25 |
| 145 | x | 22 |
| 140 | x | 22 |
| 145 | x | 22 |
| 169 | x | 22 |
| 115 | x | 22 |
| 150 | x | 25 |
| 153 | x | 22 |

| 135 | x | 22 |
| :--- | :--- | :--- | :--- |
| 160 | x | 22 |
| 130 | x | 25 |
| 150 | x | 25 |
| 130 | x | 22 |
| 140 | x | 25 |
| 160 | x | 25 |
| 147 | x | 22 |
| 147 | x | 22 |
| 153 | x | 25 |
| 145 | x | 22 |
| 143 | x | 22 |
| 140 | x | 22 |
| 150 | x | 22 |
| 135 | x | 22 |
| 143 | x | 20 |
| 160 | x | 22 |
| 143 | x | 22 |
| 145 | x | 22 |
| 158 | x | 22 |
| 135 | x | 25 |
| 147 | x | 22 |
| 138 | x | 25 |
| 145 | x | 22 |
| 147 | x | 22 |

explaination of plates

Plate I
Representing the Morwology of Echinorhynchus coregoni

Figure 1. Proboscis ($x 90$), showing hooks of doreal and ventral surfaces.

Figure 2. Section of body wall (x640). a, subcuticular nuclei; b, fibers in circular muscle layer; \underline{c}, fibers in longitudinal muscle layer.

Figure 3. Tangential section through subouticula (x640), shoming the irregular nuciei.

Figure 4. Hook of proboscis (x540). ㄹ, from a midale region; b, from basal rows.

Figure 5. Entire animal (55\%), with part of body mall and provoscis sheath removed to show internal stmacture. a, collar or neck region; \underline{b}, circular canal connecting the lemnisci; ${ }^{\text {G }}$ d, retinacula; e, proboscis retractor ruscles; £, proboscis sheath retractor muscles; g, testes; h, cement glands; i, Kittbeutal; i, genital ganglion; k, adhesive orgen; 1 , cirrus

Figure 6. Proboscis (x285), showing reiative size of dorsal and ventral hooks.

Figure \%. Embryo (x890).

Flate I

Plate II

Representing the Morphology of Echinorhynchus salvelini

Figure 8. Optical section (x90) through anterior region of body. a, proboscis; b, lemiscus; \underline{c}, one of the large irregular nuclei of lemniscus; d, proboscis retractors; e, nerve cells at base of retinacula; $\underline{\underline{f}}$, retinacula; g, proboscis sheath; h, cells associated with longitudinal muscle fibers; i, proboscis sheath retractor.

Figure 9. Embryo (x890).
Figureio. Hooks of proboscis (x640). a, anterior hook; b, basal hook.

Figurell. Proboscis (x285).

Flate II

Acknowleagments

The writer wishes to recognize the valuable aid given him during this mork by Frofessor H. B. Ward, under whose direction this work was carried on. Dr. H. J. Van Cleave's many helpful suggestions as to technique and proceedure were invaluable and the writer wishes to express his sincere appreciation for the help given by his coworker in the group of Acanthocephala, in the University of Illinois.

Literature Cited

Graybill, H.W.
1902. Some Foints in the Structure of the Acanthocephala. Trans. Amer. Micr. Soc., 20: 191-198.

Leidy, Jospeh
1850. Contributions to Helminthology. Prod. Acad. Sci. Fhiladelphia, 5: 98-100.
1851. Descriptions of New Species of Entozoa. Froc. Acad. Sci. Philadelphia, 5: 155.
1852. Contributions to Helminthology. Froc. Acad. Sci. Fhiladelphia, 5: 205-210.
1856. A Synopsis of Entozoa and Some of Their Ectocongeners observed by the author. Proc. Acad. Sci. Philadelphia, 8: 42-58.
1888. Farasitesoof the Striped Bass. Froc. Acad. Sci. Philadelphia, 40: $124-135$.
1890. Notices of Entozoa. Proc. Acad. Sci. Philadelphia, for 1890: 410-418.

Linstow, 0 . von
1901. Entozoa des Zoologischen Museums der Kaiserlichen Akademie der Wissenschaften zu St. Petersburg. Bull. Acad. Imp. Sci. St. Fetersburg, 15: 271-292.

Linton, Edwin
1889. Notes on Entozoa of Marine Fishes of New England, with Descriptions of Several New Species. Rep. IJ. S. Fish Comm. for 1886 : 456-542.
1890. Notes on Entozoa of Marine Fishes of New England, with Descriptions of Several hew Species. Part II. Rep. U.S. Fish. Comm, for 1887: 719-882.

Linton, Edwin (continued)
1891. Notes on Entozoa of Marine Fishes, With Desceiptions of New Species. Fart III. Rep. U. S. Fish Comm. for 1888 : 523-542.
1892. Notes on Avian Entozoa. Proc. U. S. Nat. Museum, 15: 87-113.
1893. On Fish Entozoa from Yellowstone National Fark. Rep. U. S. Fish Comm. for 1889-91: 545-564.
1901. Parasites of Fish of the woods Hole Region. U. S. Fish Comm. Bull. for 1899: 405-492.
1907. Notes on Farasites of Bermuda Fishes. Proc. U. S. Nat. Mus., 33: 85-126.

Lthe, Max
1911. Die Susswasserfauna Leutschlands. Heft 16, Acanthocephalen. Jena: 116

Marshall, W. S., and Gilbert, N. C.
1905. Notes on the Food and Farasites of some Fresh Fater Fishes from the Lakes of Madison, Wisconsin. Rep. U. S. Fish Comm. for 1904: 513-522.

Marval, L. de
1905. Monographie des Acanthocephales d'Oiseaux. Rev. Suisse de Zool., 13: 195-387.

Prota, Antonio
1905. Gli Echinorinchi dei Fesci. Arch. Zool., 2: 149214.
1907. Contributo allo Studio degli Acantocefali dei Fesci. Biologica 1: 377-419.
1908. Gli Acanto@efali degli Anfibii e dei Rettili. Arch. 2pol. 3: 225-260.

VanCleave, H.J.
1913. The Genus Neorhynchus in North America. Zool. Anz. 43: 177-190.

Verrill, A. E.
1871. Additional observations of the farasites of Man and Domestic Animals. Rep. Conn. Bd. Agr., 5: 321-349. Ward, H. B.
1912. The Distribution and Frequency of Animal Farasites and Parasitic Diseases in North American Fresh Water Fish. Trans. Amer. Fish. Soc. for 1911: 217-34.

(

