TECHNICAL REPORT

A STUDY OF

AEROMAGNETIC COMPONENT DATA PLANTAGENET BANK

G. A. YOUNG
and

A. L. KONTIS

Marine Surveys Division
Geomagnetics Branch

JANUARY 1964

GC $\frac{1}{1} 43$
no. TR-144
U. S. NAVAL OCEANOGRAPHIC OFFICE

WASHINGTON, D. C. 20390
Price 30 cents

ABSTRACT

Magnetic elements observed with a Vector Airborne Magnetometer, under Loran-C control, are used to calculate the directional components for the anomaly associated with Plantagenet Bank. Also determined are the total intensity, inclination, and declination of the anomalous magnetic field. A theoretical source body is presented as a possible solution to the Plantagenet Bank anomaly.

Although many oceanic crustal features are known to have magnetic anomalies associated with them, the description of these anomalies by airborne methods has been limited by a lack of navigational control. Project MAGNET aircraft have now acquired a positioning capability in areas of Loran-C coverage which is commensurate with the accuracy of the Vector Airborne Magnetometer. This report contains the results of the first aeromagnetic component survey using Loran-C for navigational control.

CONTENTS

Page
I. INTRODUCTION 1
II. DISCUSSION OF DATA 2
III. ESTIMATES OF SOURCE BODY 4
REFERENCES 18
Page

1. Survey Area 5
2. Bermuda Rise 6
3. Total Intensity (F) Contour Chart - Plantagenet Bank 7
4. Inclination (I) Contour Chart - Plantagenet Bank 8
5. Declination (D) Contour Chart - Plantagenet Bank 9
6. Anomalous X Contour Chart - Plantagenet Bank 10
7. Anomalous Y Contour Chart - Plantagenet Bank 11
8. Anomalous Z Contour Chart - Plantagenet Bank 12
9. Anomalous F Contour Chart - Plantagenet Bank 13
10. Anomalous I Contour Chart - Plantagenet Bank 14
11. Anomalous D Contour Chart - Plantagenet Bank 15
12. Mode1 Calculation of Source Body - Run No. 1 16
13. Mode1 Calculation of Source Body - Run No. 2 17

I. INTRODUCTION

Using Vector Airborne Magnetometers (Schonstedt and Irons, 1955), extensive aeromagnetic surveys of the magnitude and direction of the earth's magnetic field have been carried out by the Oceanographic Office since 1953. The primary purpose of this work has been to chart the earth's main magnetic field, and as such the surveys have been conducted at relatively high altitudes (6,000 - 20,000 feet), at track spacings of 200 miles, and the reduction of data has been limited to measurements at intervals of 15-20 miles along each track line.

Other requirements have necessitated fine grain, low level airborne surveys of specific ocean areas, from which detailed total intensity information has been used to depict the magnetic field. The processing and analysis of detailed vector data over oceanic features have heretofore not been attempted. Using aeromagnetic survey data collected over Plantagenet Bank, this report describes a method for calculating the direction and magnitude of the anomalous field. In addition, a computer technique is applied to estimate the shape, location, and magnetic properties of the source body.

II. DISCUSSION OF DATA

The test data used for calculating the anomalous field components were provided from an aeromagnetic survey over Plantagenet Bank (Fig. 1) carried out on 7 January 1961. Plantagenet Bank is one of three flat-topped guyots of volcanic origin, on the same platform as Bermuda (Woollard, 1953), and rises from 2400 fathoms to 30 fathoms below sea level (Fig. 2). The survey track spacing was 0.5 mile, and positioning was provided by Loran-C with an estimated accuracy of ± 1000 feet.

Figures 3, 4, and 5 are contour charts depicting the total intensity (F), inclination (I), and dec1ination (D) of the magnetic field observed at 500 feet above sea leve1. The survey data were measured within a 4.5 -hour period thus minimizing the effects due to temporal variations. The amplitude of the magnetic anomaly in the survey area is approximately 4200 gammas which is in agreement with an overall magnitude of 5000 gammas reported by Keller et al (1954).

The following procedure was used to compute the components of the magnetic anomaly over Plantagenet Bank: F, I, and D data in relatively undisturbed areas near Plantagenet Bank were extrapolated into the survey area. These data were then averaged to approximate the normal field values, $\left(F n=51,280\right.$ gammas, $\left.\operatorname{In}=65.0^{\circ} \mathrm{N}, \mathrm{Dn}=13.8^{\circ} \mathrm{W}\right)$. A grid overlay with an interval of 0.5 mile was used for scaling F, I, and D values from Figures 3, 4, and 5. For each of 240 grid intersections, north (X), east (Y), and vertical (Z) components were computed. These directional components were then subtracted from their respective components of the normal magnetic field. The residuals represent
anomalous X , anomalous Y , and anomalous Z components of the magnetic field (Figs. 6, 7, and 8). The total intensity, inclination, and declination of the anomalous magnetic field are shown on Figures 9, 10 , and 11 , and were calculated from the anomalous X, Y, and Z components.

Several observations regarding the nature of the magnetic source may be made from an inspection of the anomalous components. Since the anomalous dip and declination represent the orientation of the lines of force referenced to the vertical direction and geographic north, respectively, the point at which the anomalous dip goes to 90° and the anomalous declination contours converge locates the dip pole in the plane of observation. The distortion of the anomalous declination and dip isoline in the northern portion of the survey area can be attributed to a localized secondary source. The direction of the anomalous X axis indicates the horizontal direction of magnetization. This is supported by the agreement between the computed direction of magnetization (339°, see Sec. III) and the orientation of the anomalous X axis (340°).

$$
\begin{aligned}
& \text { North (x), \&at(X), Vert (z) } \\
& F_{n x}=51,280 \times \cos 65^{\circ} \times \cos 13.8^{\circ}=21046.3 \\
& F_{n y}=51,280 \times \cos 65^{\circ} \times \sin \left(-138^{\circ}\right)=-5169.5 \\
& F_{T x}=F_{n x}+F_{a x}=21046+2100=23150 \gamma \\
& F_{T y}=F_{n u}+F_{a_{4}}=-5169+1000=-41708 \\
& F_{H}=23522.6 \gamma \text { © } 10.2^{\circ} \mathrm{W} \\
& F_{n z}=51.280 \times \sin 65^{\circ}=46476 \gamma \\
& \begin{array}{lr}
F_{\text {az }}= & 250 \\
F_{\text {oz }}= & 46726
\end{array} \\
& |F|=\lambda(46726)^{2}+(23523)^{2}=52313 \%
\end{aligned}
$$

III. ESTIMATES OF SOURCE BODY

Estimates of the probable shape, location, and magnetic properties of the source body were made with a modified computer technique of Vacquier (1962). Given a three dimensional, uniformly magnetized body and the observed anomaly, the program computes a direction and intensity of magnetization. A theoretical anomaly is then determined from the computed magnetization and the source body. The difference between the observed anomaly and the computed anomaly is a measure of the "goodness of fit."

For the Plantagenet feature, the anomalous vertical intensity was used as the input, and two source configurations were tested as possible solutions. The observed topography was discounted as being the source body, due to the localized areal extent of the magnetic anomaly; however, the slope characteristics of the bank were assumed to be a reflection of the source body.

An east-west and north-south cross section through the center of the first model (run no. 1) is illustrated on Figure 12. The depth to the top of the model was based upon depth estimates from Stearn's method (Heiland, 1946), and Peters' method of tangents (1949). The slopes and base were arbitrarily chosen. This model resulted in a poor fit and excessive intensity of magnetization. The second model (run no. 2, Fig. 13) resulted in a better fit with a computed intensity of magnetization of 1200 gammas, and horizontal and vertical directions of 339° and 85°, respectively. From the results of run no. 2, it is evident that a body located between the model of Figure 13 and the observed topography would yie1d a closer fit. This is commensurate with the investigations of Officer et al (1952) which indicated that the volcanics beneath the Bermuda Islands are close to the top. Further computations were not made because additional geophysical and geological information is required for a more significant solution.

FIGURE 1—SURVEY AREA

FIGURE 2-BERMUDA RISE

Magnetic contours with flight-lines which provided Total Intensity data Contour Interval 200 Gammas

FIGURE 3-TOTAL INTENSITY (F) CONTOUR CHART-PLANTAGENET BANK

Magnetic contours with flight-lines which provided Inclination data
Contour Interval 0.5 Degrees
FIGURE 4-INCLINATION (I) CONTOUR CHART-PLANTAGENET BANK

Magnetic contours with flight-lines which provided Declination data
Contour Interval 1 Degree
FIGURE 5-DECLINATION (D) CONTOUR CHART-PLANTAGENET BANK

Contour Interval 200 Gammos
FIGURE 6-ANOMALOUS X CONTOUR CHART-PLANTAGENET BANK

Contour Interval 200 Gammas
FIGURE 7-ANOMALOUS Y CONTOUR CHART-PLANTAGENET BANK

Contour Interval 200 Gammas
FIGURE 8-ANOMALOUS Z CONTOUR CHART—PLANTAGENET BANK

Contour Interval 200 Gammas
FIGURE 9—ANOMALOUS F CONTOUR CHART-PLANTAGENET BANK

Contour Interval 10 Degrees

FIGURE 12-MODEL CALCULATION OF SOURCE BODY-RUN NO. 1

FIGURE 13-MODEL CALCULATION OF SOURCE BODY-RUN NO. 2

Heiland, C. A., Geophysical Exploration, Prentice-Hall, Inc., New York, 1946.

Keller, F., Jr., Meuschke, J. L. and Alldredge, L. R., Aeromagnetic surveys in the Aleutian, Marshall, and Bermuda Islands, Transactions American Geophysical Union, 35, 558-572, 1954.

Officer, C. B., Ewing, M. and Wuenschel, P. C., Seismic refractions measurements in the Atlantic Ocean. Part 4: Bermuda, Bermuda Rise, and Nares Basin, Bull, of the Geological Society of America, 63, 777-808, 1952.

Peters, L. J., The direct approach to magnetic interpretation and its practical application, Geophysics, 14, 290-320, 1949.

Schonstedt, E. O., and Irons, H. R., NOL Vector airborne magnetometer type 2A, Transactions American Geophysical Union, 36, 25-41, 1955.

Vacquier, V., A machine method for computing the magnitude and the direction of magnetization of a uniformly magnetized body from its shape and a magnetic survey, results of work supported by the Office of Naval Research under contract Nonr 2216(05), 1962.

Woollard, G. P., Crustal structure beneath oceanic islands, Proceedings of the Royal Society A, 222, 361-386, 1954.

Magnetism, Terrestrial--
Plantagenet Bank
 Magnetism
i. Title: A Study of Aeromagnetic Component Data-
Authors: G. A. Young

$$
\begin{aligned}
& \text { Authors: G. A. } \\
& \text { and A. L. Kontis }
\end{aligned}
$$

iii. TR-144

$$
1 \mathrm{ng}
$$

1. Magnetism, Terrestrial--

Plantagenet Bank
2. Plantagenet Bank--
i. Title: A Study of Aexo-
$\frac{\begin{array}{l}\text { magnetic Component Data } \\ \text { Plantagenet Bank }\end{array}}{\text { i1. Authors: G. A. Young }} \begin{aligned} & \text { and A. L. Kontis }\end{aligned}$
iii. TR-144
Data from an aeromagnetic survey, under Loran-C control, are used to compute the anomalous components and elements of the magnetic feature associated with shagenet Bank, and magnetic character of the source body are given.

Magnetism, Terrestrial--
Plantagenet Bank Plantagenet Bank

Plantagenet Bank-Magnetism
i. Title: A Study of Aeromagnetic Component Data-Authors: G. A. Young and A. L. Kontis

TR-144
U. S. Naval Oceanographic Office dAta - Plantagenet bank, by G. A. Young and A. L. Kontis, 1963. 18 p., includData from an aeromagnetic survey, Data from an aeromagnetic survey,
under Loran-C control, are used to compute the anomalous components and elements of the magnetic feature associated with Plantagenet Bank. Estimates of the shape, location, and magnetic character of the source body are given. ing 13 figs. (TR-144) ii.
iii. A STUDY OF AEROMAGNETIC COMPONEN DATA - PLANTAGENET BANK, by G. A. Young
and A. L. Kontis, 1963. 18 p., including 13 figs. (TR-144)
 under Loran-C control, are used to compute the anomalous components associated with Plantagenet Bank. Estimates of the shape, location, and

U. S. Naval Oceanographic Office DATA - PLANTAGENET BANK, by G. A. Young and A. L. Kontis, 1963. ing 13 figs. (TR-144) I

