$$
\begin{aligned}
& 1922 \\
& B 85
\end{aligned}
$$

A STUDY OF THE CORRELATION IN SIZE BETWEEN THE LEAVES AND THE FRUIT OF THE VARIETIES OF PYRUS MALUS L.

JANARDAN SAHASRA BUDHE
B. S. University of Illinois, 1921

THESIS

Submitted in Partial Fulfillment of the Requirements for the

Degree of

MASTER OF SCIENCE

IN HORTICULTURE

IN

THE GRADUATE SCHOOL
OF THE
UNIVERSITY OF ILLINOIS

UNIVERSITY OF ILLINOIS
 THE GRADUATE SCHOOL

$$
\text { Jan. } 25 \mathrm{tin} \text {. }
$$

\qquad

I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY Janardan Sahasra Budhe ENTITLED A Study of the Correlation in size between the Leaves and the Fruit of the Varieties of Fyrus lialus I. BE ACCEPTED AS FJLFILLING THIS PART OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science in Horticulture

Recommendation concurred in*
\qquad

Committee
on
Final Examination*
*Required for doctor's degree but not for master's

Acknowledgements.
The writer is greatly indebte to Professor B. S. Pickett for his kind advice and valuable suggestions, and wisnes to express his nearty appreciation for his help and kindness His tnanks are also due to professor Crandall wino kindly permitted the use of data regarding the size of the fruit of the seedlings.

Digitized by the Internet Archive in 2015

Contente.
I Materials Description of trees

Varieties used

Varieties used22
II. Method
Collection of leaves
The fruit
The messure ment of the leaves
The size of the fruit
irathematical calculations
III Accuracy of deta and sources of error 7
Accuracy as to the leaves 7
Accuracy os to the fruit 7
Sources of error as to tne leaves 8
Sources of error as to the fruit 9
IV. Presentation of the data and Biometric constents IO
Tne correlction tablea IJ
Biometric constants IO
The mean IO
Standerd deviction I)
Coefficient of variability I4
Goefficient of correlation I4Probable errorI5
Clssification of correlation I5
V. Discussion. I6
VI Conclusions 22
Bibliography 23
I\&

A Study of the Correlation in Size between the Jeaves andene Fruit of the Varieties of Pyrus malus I.

Although considerable effort nas been directed toward the breeding of aplles, yet little is knovin concerning the veriation and correletion of charscters of tais crop. Little or no evidence $几$ os been siven to show what characters, if any, may be used as a besis of selection or whether all characters are so verv variable anã so offected by different seasons gs to render impossible their use \&s a means of improvement as regards tae size of the fruit.

Since apple trees are grown primarily for their fruit, it vonla be nighly aesirable from en economical standpoint to elininate undesirable seedings st an early age. The prevailing opinion among norticulturists seems to be tast seedin n_{r}^{q} closely resembling the smooth appearance of our imroved varíties give best results as to tre size,form, flavor, etc. of the fruit. "In regard to this point Ir. Joe A. Burton, who is in the cherge of epple breeding work of tre Indians State iforticultural society, states taat ne inquired of a prominent plant breeder if anything could ce done in selection. inr. Furton writes: "The following is his reply: Prominent buds, lerge smooth, regular, glossy leaves, large leaf stems, short distarces between buds and a compact sturdy look are tre best indications of a sood apple among seedlings. i

Some of the most desirable characters of the applefruit
are large size, reglalar shape, attractive color ana good flavor.
i Ma. Agr. Exp. Sta. Bul. I96, I9I5.

From the economical stan point the large size of tue fruit is of great importance in as much δ it increases tat returns by increseir the value of total crop as well as the grade of tar individual fruit In the following pages the writer is etternting to show whether the size of the leaf and tue size of the fruit are correlated and, if so, to establish this correlation 8 a satisfactory basis fo selection of seedling stock.
I.

Materials.

Varieties used---Two types of materials, standard varieties and seedlings, were used in this effort to determine correletio between the size of the leaf and the size of tie fruit of apple.

Tables I and 2 show tie list of ten varieties vita the average size of leaf and the numerical size value for the average size of fruitfor each variety of the standard and the seeding types respectively.

Description of the trees---Ine standard varieties were seven-jear old trees planted in nursery rows ten feet apart acc way. There were three trees of each variety and eighty varieties in all. They received the same general care and cultural treatment ss a small commercial orchard would receive.

The seediness were elcvenwyearsola transplanted in rows fifteen feet apart each way. They riere obtained in Igo9 from the following crosses:Five trees from willortvig x oldenburg; nineteen trees from Shackleford x oldenburg; trot trees from figll's No も x oldenburg; tnirty-three trees from oldenburg x Sal's $\mathbb{N} 0.6$; twenty-

Table I．Stonard varietics with avg．size of leaf \＆fruit．
rablel．（contimuec）

Variety．	Leaf size	Fruit size	Variety．	$\begin{aligned} & \text { leof } \\ & \text { عize } \end{aligned}$	$\begin{aligned} & \text { fruit } \\ & \text { size } \end{aligned}$
Akin－－－－－－－－－－ Alexender－－－－－ Am．Summer Pea Arkansos－－－－－－ Bleck Autumr Strawbe Baldwin－－．．．－－ Bexter－ \qquad Benoni \qquad Ben davis．－．．．． Eietigheimer－－ 上smerk－－－－－－－－ Elack zer devi Flack Gilliflo Cnampion－－－－－－ Chal amoffo－－－－ Chenango strwb Delicious－－－－ Domine－－－－－－－－ Dr．Iatnews－－－ Dudley－－－－－－－－ Early farvest－ Early Velun－－－ isopus－ Fallswater－－－－ Fall Pippin．．－ Fameuse－－－－－－－ Fanny－－．．．．．．．． G8no－－－－－－－－－－ Giant Geneton－ Golden Sveet－－ Gravenstein－．－ Grimes（Stark＇s Grimes（hobbs）－ ilenry Clay－－－－ fubbardston－－－ Hunt sman－－－－－－ Ingram－－－－－－． jefferues－－－－－ Jonathsn－－．．．． Xing David－．．． Kinnaird－－－－－－ Lady Sreet－－－ Lawver－－－．．．．． Iiveland Raspb Lowell－ Lowreỹ－－．．．．．．－	4.80 3.85 3.68 4.29 3.14 4.34 4.06 5.97 3.92 3.93 5.19 4.70 4.45 4.17 3.56 4.79 4.42 3.23 3.66 3.43 3.97 2.83 3.38 2.62 3.23 4.57 -3.69 3.50 3.50 3.53 2.93 3.48 3.35 2.81 2.80 2.80 3.50 2.30 3.47 3.22 2.90 3.23 2.69 2.60 2.42 4.20 2.89 3.37	5 8 5 5 6 4 5 7 7 3 3 7 10. 8 5 5 6 6 5 6 3 6 8 5 4 7 5 5 5 8 8 4 5 5	wicInto \qquad \qquad Nero－－－－－－－－－－－－－－－－－－ Nortnern Spy－．．－．．．－ ii．サI．Greening－．．．．． oldenburg（ u utcnes of Ontario－．．．．－．．．．．．．．． Paragon－－－－．．．．．．．．－． Ptten－－－－－－－－－－－－－－ Seviaukee－ \qquad Falls Ramsdell Sweet．．．．．． ed Astrocnan－ Red Caneda－ Red June－－－－．－．．．．－． ス． $1 \cdot$ reening－－．－－ Roman stem－ Romanite－ Romar Pesuty Hoxbury fusset．．．．－ Solome－－－－－－－－－－－－－ Senator－－－－－－－－－－－－ Shiaviassee Eeauty－－ Stayman＂innesap－－－－ Summer \＆ueen－－－－－－ Sutton－－－－－．．．．．．．．．． Sweet Eougn－－．－－－－－－ Tolmen Sweet…－．．． Tompkins Ting－－－－－－	$\begin{aligned} & 3.42 \\ & 4.25 \\ & 3.23 \\ & 3.73 \\ & 3.77 \\ & 3.64 \\ & 3.67 \\ & 5.65 \\ & 2.96 \\ & 3.83 \\ & 4.09 \\ & 3.41 \\ & 2.78 \\ & 3.45 \\ & 3.34 \\ & 3.35 \\ & 3.15 \\ & 3.50 \\ & 3.12 \\ & 2.35 \\ & 3.05 \\ & 3.33 \\ & 3.57 \\ & 2.98 \\ & 3.39 \\ & 3.84 \\ & \hline 3.88 \\ & 3.30 \\ & 3.18 \\ & 3.44 \\ & \hline 2.75 \\ & \hline 3.84 \end{aligned}$	$\begin{aligned} & 5 \\ & 8 \\ & 6 \\ & 0 \\ & 8 \\ & 8 \\ & 5 \\ & 5 \\ & 6 \\ & 6 \\ & 6 \\ & 6 \\ & 5 \\ & 5 \\ & 6 \\ & 6 \\ & 5 \\ & 5 \\ & 5 \\ & 7 \\ & 5 \\ & 4 \\ & 4 \\ & 7 \\ & 5 \\ & 6 \\ & 0 \\ & 4 \\ & 7 \\ & 7 \\ & 5 \\ & 6 \\ & 4 \\ & 4 \\ & 5 \end{aligned}$

seven trees from lidenbure x Yellov Iransparent; four trees from Domine x Yellow Trasparent; twio trees from eacr of iellow Transfarent x Oldenburg and Yellov Transparent x Domine and one tree escr from Domine x Irll's No. 6 snd oldenburg x Domine. whe trees were in sod and did not receive eny fertilizers. Some of the trees begen bearing in I9Ió ond all of the trees produced fruit in I9I9.

II.

Method.

Collection of leaves---Twa hundred normal-sized leaves from only the annmel snoots of each standard variety vere gatnered during tne last week in June I92I. Ine leaves pere collected in naper bags, waicn eliminates any possible cnance of variation in Size by shrinkage or wilting due to the wigi summer temperature ond insured their fresnness till tney were preserved. Tne leaves coliected during a day were preserved tne same day by putting them into two-quart fiason jars filled with preservative solution made from tro nerts of formslin, five parts of ninety-five ner cent glconol and fifty parts of water.

The leaves of tine seedings werf collected snd preserveत̉ in tre same manner as for the standard varieties but tne collection was made during the first weet of sctober.

> THe Ir?it---It res practically impossible to secure enough representative fruit of all tie standerd varieties from wnich weights could be secured directly for tnis study. Tnerefore, the data pertaining to the size of the fruit of these varieties nad to be collectec from descriptions given in some of the experiment sta-
tion publications, books end nursery catelogues. ¿
essurement of tile leoves---Tne leaves were nessured by the vse of a planimeter,(see rig. I) manufactured by reuffler ond Isser co. Mew rork. Fach Icaf to $亡 \mathrm{~L}$. measured was laid flat on the table and was covered witn a piece of transparent elass about eight incnes long, five incnes ride end one-eighth of on incr taick. The sreas of the leaves were recorded in subure incnes reorest to tertn of a square inch.

The measurements of the leaves for each variety vere added togetiner and tıe sum was aiviñed by tae total number of leaves two hunareã. This gave tae average area of s leaf fo eacn voriety. The size of the fruit---Tne size of tae fruit for the different standara varieties was taken by tne following metnod: The description of tne sizes of tie fruit given in tae publications referred to elsewnere designate tae sizes of tae fruit of the differ ent variєties in general terms such as very large, large, medium, smell, very small, above medium, below medium, etc. These designations were given definite numerical values, taking ten as the maximum size. Thus tne numerical value for tne "very large" would be ten, for tne "large" eignt, for the"medium" sir and so on. Intermediate sizes were given intermediate values. Tnus the"below medium"size is internediate between tne"medium"and tne "small" ond, therffore, its numerical value is five.

Professor C.S.Cranaall, vino Kindly gave tae data concerning the sizes of tre fruit of the seedings, collectea ine fruit and described the sizes in the same general terms ss large, very large, etc. Therefore, the numerical size values for tie seeding
2. Authors and names of these publicstions are given in the bibliography.

fig. 1 The L anineter.
fruit rere besed on tue sume scrle uscd in deriengtirg tne sizes of the fruit of the standara varieties.

Mathematical calculatione--All the mstnematicsl cislculations in tre biometrical part of tais study vere made as described by Davenport $(485)^{3}$ and rietz (IG) and Smith. The fractions vere corrected to $t_{a} \in$ thiird decinal places.

III

Accuracy of Data end Sources of Error.

Accuracy of tne data as to the leaves---Mne data concerning tae leaves of bota tae standerd vorieties and the seedings seem to be sccurate enough to give fairly correct results. For, aue care vas taken to preserve the leaves whils tney vere fresn, thus eliminsting tne possibility of variation in the size of the picked leaves by shrinkage and rilting due to the nign summer temperature.

The leaves mere measured by tne use of a planimeter as as described elsevinere. Tne planimeter used was fine enougn to give approximately correct masurements. Thus thereis no reason to believe that there inaccurscy in tine measurements of the leaves.

Accurscy of the data as to tne fruit---As descrited elsewnere the numerical size values of the fruit of tne standara varieties were based on the descriptions of the fruit by men from differf ent parts of the country and therefore the size of the fruit of these varieties is not greatly liable to inaccuracy.

The seme may ke sai d of the size of the seedling fruit;
3. iumbers in perentinesis refer to the names in the bibliograony. seen to be thrce possib]e ways throun wich error micnt nove occurred. First is tar selection of population. In selecting leaves from several trees there is probably some cnance for commiting errors. It is impossible to select leaves of exactly form size. There will be included botn the large and tne small leaves, because of tae guess work that is to be relied upon in tne process of selecting population of t.iis nature. Eut tne chances ere that such errors might greatly be mitigated by the chance picking of smaller and larger leaves alike.

I'ne second source is tne number of population selected from each variety. In this case two hundred leaves represent tne total population for each variety. It may be cuestioned rinether tuis number is large enougn to really represent tae total population Of course, tne larger the number of individuals so selected tne more accurate the results would be. Eut in statistical studies of tnis nature "the number to be taken snould depend to a certain extent upon the variability of the material. If the material shovis but little variabilitya smaller number needs be taken tnan if the population vere much more variable". $\frac{4}{}$ In the particular case in nand the population is not greatly veriablemer the coefficients of Variability for tne stsndard varieties ana the seedings are I7.I5 and I3.8 respectively.

The thira source is the individual tree varistion vitnin tre verieties or misnaming of varieties in the nurseries. It is well krown that tnere often wide variations in the individuals of one variety. It is possible, therefore, that some of tae varieties

4 111. Exp. Sta. Bul. IIの.
under consideration are not "true to type" as regards the eize of their leaves. This appoars more lirely duc to the misneminé of veric ties in the nurseries, for example, huntsman nas usuolly good sized leaves ransing from medium to above medium. Eut it was fornd thet all the trees of this variety in tne University orcnards nad smell leaves. Surely, then, this is due to the misnaming of variety and not due to the veristion in the individurl variety.

Sources of error as to the fruit---There gre, at least, tvo possible sources of error; first is tre variation in size aue to local causes such as temperature, moisture, soil conditions, methods of cultivation, plant food supply, etc. Eut in view of tae fact that the determination of the average size of tne fruit is based upon the averages for many seasons anu tue experience of many obser vers locstei in manj different parts of tie country, before the final designation of the average size of a variety is made, it is less probable that tnere are variations of tnis kind.

The second source is tae individual tree variation in varieties. Tais variation may be more or less depending upon the cicumstances. Therefore tais source of error shoula not be greatler emphasised.

Presentation of tue Jota una Eiometric constants

After necessory preliminary considerstions it is noy opportune to present tae data obtained as described in tne preceeding pages of this paper.

The correlation tables---Tablos 3 and 4 show the correlation tables for tne standard varieties and the seedlings rcspective ly. In botil of these correlation tables the size of tie leaf is subject and the size value for the fruit is relative.

Eiometric constants---The meariis obtained by multiplyira tho roluo \ddagger ef ech class by the number of individuals contained in it. The products are adảed and the sum is divided bu tac ontire aumberive inaiviaucls ur variates.

Tre mean enables one to know now any strain or variety is likely to behave on the everage in regard to its various caaran cters. In case of symmetrical variation the mean is identical wita the mode. But rone of the means obtained in this strad is identical with the mode. Tinerefore the variation in the size of the leaf and tne size of the fruit, inder consideration, is decidedly a "sker." variation as is shown by graphical representetions in Figs. II,III, IV and V.

Standard deviation--To find the stendard deviation: find the deviation of each class from the mean; add the products, divide by the total number of variates and extract the scuare root.
"Standard deviation forms a measure of the degree of
scatter of varistes". "It is a good measure of deviation from taf mean. It is therefore a variability reckoned from thst point.

Correlationtable for the size of the leaf and the size of the fruit of the seedlings

Table 3 .

Correlation table for the size of the Leaf and the size of the fruit of the standard varieties

Fig. II
Frequency Polygon and curve for the Size of the fsiut of the Standard Varutio

"The practical value of standard deviation is tastit stords ga á definite measure of variabilityof tne population in ruestion and if records be rept tac vuriability of ony race be compared from Jear to year". It is the best index of variation that is in use for the same or like unaracters of different lots of materiel measured in the same units.

Soefficient of variability---It is obtainea ty dividing the standard deviation by tne mean and and by multiplying the quotiert by one nundred. It is also an index of variation for comparing one oase of variation with anotner as regards the degree of scatter of the variates. It is of value, particularly, when tine variation of unlike characters of different lots of material measured in jissimilar units are compared.

Coefficient of correlation---Rietz ana Smitn(Ie) define tne correlation coefficient as follows: "Tne correlation coefficient may be defined as tne meon product of deviation of corresponding variates fron their mean value in units of the standard deviation". It is a messure of tae extent to vinci one character varies in agreement vith another. A correlation table has tro princioal uses according to Castle, wro says "The correlation table nss found tro principal uses (I) to show what part or processes of an orcenism vary iin unison snd to wat extent they so vary and (2) to measure heredity. The first use of tie correlation table is of more import:ence nere since it is tne object of this study to consider toe correlation, if sny, between tne sire of the leaf and the size of the fruit of apple.

Rietz and Smith (I8) define correlation as follows:"Tmo
characters --say lengta gnd cicumference of ears of corn--gre soid to be correlatel pinen with any selecter value (x) of tac one cnaracter we find that tae values of t other character, are not equally likely to be assuciate ${ }^{\prime \prime}$.

According to Leignty(I5) "Tne correlation coefficient is of special value in relation to selection". Inthe processes involfed in selection for any one character tne correlatior in tre succeeding generations may be moaified in inexplicakle r:ays by the modification of one character, unles the correlationsof tne parents are know:

Probable error is a measure of the reliabilitypf a statis tical conclusinn. "The need of such a measure rests on tae fact trat tne number of observations on which the conclusion rests is finite, tnat is, the number of observations in tae class concerning wnich generalization is made.
(2I)
Clsssificetion of correlation---".ebber has classified correlation into four grouns: (I) Environmental (2) Fiopnclogical (3) Physiological and (4) Coherital. Realy there is no class distinction between morpholugicsl and physiological correlations. The correlation considered in this paper may come under morpho-physiolosical class.

The classification given by East(6) is simpler in its main divisions : (I) Somatic end (2) Gametic, bu the subdivisions ne gives are not well defined. The correlation under consideration may be classea as the sometic correlation.

Love (I6) and Leignty classify correlation as (I) Fluctuating and (2) Stable; these divisions are based "on the behavior
of the relationship of the cnaracters concerned when tae variation occurs in tne environmentsl conditions such os exist in different years or in different locations.

V

Discussion

In discussing the results just presented it is hiehly desirgble, in order to avoỉ confusion, to consider these correlation tables separately. For ir one case positive correlatior is obtained, while in the otner there appears no correlation of the characters concerned.

Correlation between the size of the leaf and the size of the fruit seedlisys only four per cent ond therefore negligible. The failue to obtair correlation between tnese cnaracters of the seedings may be due to several factors. One of these appears to affect tne cnaracters concerned, especially the size of trie fruit, directly.

It is the condition of tae orchard. The orcnard is in sod.
Experimental results obtaine at the New York Experiment Station show conclusively that sodded trees produce fruit with extreme variation in size. "A tree ir sod would bear on one branch, not otner; fruit on one side would be large, on onotner would be small". So was the seeding fruit extr mely variable in size. As to the size and general conditions of the sodded tree lesves iedrick sajs the numier and the sine of tae leaves tell the sane tale of some kind of interference in tne protoplasmic activities ir tue leaves on tne sodded trees. It recuired but a glance to satisfy oneself tast tne lecves on the tilled trees were larger and more numerous and therefore total leaf area mucn greater on the tilled thenon the sodied
trees". This expleins clearly $\begin{aligned} \\ \text { ny }\end{aligned}$ no correletion betreen tae size of tre leaf and the size of the fruit of the seedinge was found.

Trese facts renuer tue data regarding tue seedinesuite viortaless.

Correlation in standard varieties---Tne etandsrd varietie Snow a definite correlutjon between the size of the leaf cnd tac size of tae fruit. Tne correlation is positive and it is tnirtyfive per cent. In otner words, tais means tner, tast thirty-five rer cent of tıe couses or the foctors tnat increase trıe size of the leaf also simultaneously increase the size of tie fr"it. Whetaer tnis interreletion is inneront or internal or it is externel remaine to be seen. Some plant breeder or norticulturist may prove it in tae future.

It is rell knovn tast proper cultural metnods tenci to inerease the size of tae fruit. AedricrifI) found tist"the tilled gpples average larger. It is apparent, too, tnat if the relative size, indicated bu the proportion of 5 to 7 , nolds for the whole crop, os ∇ e think it does, there is a greater proportion of culls snd seconds in tise sodaed tnen in the tilled plats winen size alcne is considered": The folloving table substantialle supports tais staterert.

stimulate a greator production of fruit buts they cicer]y improved tie size and tie ruality of tae fruit".

Gourley's experiments shum tnat cultural methodes and application of fertilizers to aprle orcrurds increase the bize of the fruit. Table 6 illustrates this point very vell. In tais number one apples measure 2.5 incnes or overia Jiemeter; IVo. 2 spples measure from 2 to 2.5 incnes in diameter and tre rest not included in tneses two classes are culls.

6 Table 6 Influence of treatments on yield and size

Plot	Treatment	Yield in pounảs	Size: M1TO.I
I	Sod------------------	155	54
2	Tillage alternate Jr.	I57	60
3	" "	225	62
4	Clesn cultivation----	252	55
5	Tillage ${ }^{\text {c cover }}$ crop	268	56
6	Tillsge cover crop \&o complete fertilizer	258	53
7	AE NO. 6	210	5%
8	As No. 6	199	61
9	" "	219	66
IO	" " "	240	7 I

Stewart (IB) who has been one of tife foremost vorizers in this line supports tive foregoing statement vitn numerous experimental data. Ne says" under certain conditiors, at least, tne size of apples can be influenced by fertilizetion and also by cultural
6. Ioảified takle from H.f. Ag. Exp. Sts. Eul. I90, I9I9.
methads. Their average aize is olso influenced by innerent or intef nal causes as shovn by tne differences in eize betveen varirties ond olso prokobly by some of the differencee betweer individual trees of the same verietiv".

Experiments condmeted at the liev iemshire and liev. York
Bxperiment stations show that the conditions tast tend to increase the size of the fruit also at the same time incresse the size of the leaf in about the same proportion. Tekle ? fives the recults cutain ed at Ifew York Acricultural Experiment Station.

Table7 Showing the incresse in tre veignt of leaf and fruit.

Irote.--Check plat received clean cultivation; fifteen cneck trees ten in all other treatments.

Later on fedrick(II) foma that "tilled apples are nearly one-third larger tian tnose grown under sod--a very telling advartage in crop production". "To those who nave keen in orcnard in nervest time, however, figures are unnecessary to snor thst tillage gives more and larger apples--in no otner way $t_{\text {. }}$ e tsle of deletereousness of tae sod told so strikingly as to the eye at pickinç time when the zise and number of fruits are compared". As to the leaves "It wes found, in snort, taet tile leaves of tne tilleá trees veigh one and one-third as muen as tnose of tie sodded trees, indicating one ena one-tnird grester efficiency of the foliage of the
tille trees".
(8)

Gourley nas siso obtained very striking results enoring tne influunce of different treatments orn tra size of twe fruit and tne size of tre leaf. Iis results are summerized in tre followin table:

Table 8.Compsrative results for size factors.
Ireatments.

$$
\begin{array}{ll}
\text { Yield: } 5-\mathrm{yr} . \text { Size of Ares of } \\
\text { average } & \text { fruit as leaves } \\
& \text { by\% of o.I I9I. } \\
& 5-\mathrm{yr} \text {. avg. }
\end{array}
$$

Sod-	100	100	100	120
Cultivation alternate Jears	I32	I68	IO7	III
Same as above-------	I76	I65	IIS	II7
Olesn culture-------	213	I 42	II9	I23
Cultivation scovercrop	$2 I 6$	I35	I24	I25
Cultivation covercror scomplete fertilizer-	I9I	I 65	I 29	155
Same as above-------	195	I55	I 26	I3I
is "3-ө\#eess-?	I60	I 68	I 26	I3I
" $:$ " " IN.	I 63	196	I25	I28
" " " \quad K	I6I	206	I3I	I 34

Potasin seems to nave more influence on tne size oftne leaf and the size of tne fruit alike. Stewart(I8) also states that potash has a distinct value in increasing the average size of the apples. It appears tnat tie sizeof theleaves winich receive? the fertilizers otner than potasin is somewnat larger tnan that receivinc other treatments of culture. this may be due to tae fact tnet fertilizers were applied in excess. It can be soen from table 9
that lesf contains a larger percentage of nutrient neterials tran the fruit. It is probabje therefore tnet tae leaves utilizei more fertilisers, which were in excess, in increasing tneir size tion trey really require. Ience the size of tae leaves rcesiving fertilizer *as larger in proportion to tne size of tne fruit tnan tre sias of the leaves under clean culture.

7 Toble 9. Analysis of apple: fruit, leaves and rood. Part of Dry sub. If \% $\mathrm{P}_{2} \mathrm{O}_{5} \mathrm{~K}_{2} \mathrm{O}$ CaO LigO $\mathrm{Fe}_{2} \mathrm{O}_{3}$ Votal plent food

Wood_-. 52	.62 .20	.36	I.6	.24	.03	3.35	
Ieaves-- 54	2.15	.44	I.34	2.48	.75	.125	8.6
Fruit-.- I5.4	.43	.17 I.IO	.08	.09	.02	2.035	

Fedrick(II), Gourley(8) and stewart(I\&) agree on tne
statement that under normal conditions moisture supply is tne dominont factor in influencing tie average size of the fruit. According to feinicke(I2) "woter supply is \& factor increasing the size of leaves". "The vigorous spurs heve lerger leaves tnan tae weak spurs, because they nsve a greater diameterof conaucting tissue and hence can obtain more sap". And that "the vigorous spurs bear large apples.

From the above discussion it clearly sppears that there is a correlation between tine size of the leaves ana tne size of tne fruit of tile spple.

7 Pe. Sta. Ann. rept. I9IO-I9II

Ire data presented and discussea in this paper snov tnst I. The seedings have a very low percentoge of correlation between the size of the leaves and tre size of the fruit.
2. The size of tal leaf and tae size of tit fruit of tne standard varieties are correlated.
3. Different cultural methods appear to show that the treatments that increase the siee of tile fruit \&lso incresse the size of tae legf.
4. Large fruit is associated wita large leaves and vise vers8.

Eibliography

I．Eallard，．i．R．Methods sind problems in pear and apple breeding．氵ird．Agr．Exp．Sto．Eul．I96，I9I6．

2．Beach，S．A．，Booth，IT．O．and Taylor，C．In．Apples of irew york， 2 Vols．，I905．

3．Collins，U．ǐ．Gametic couplins os cause of corre－ lation．Am．Nat．46：569－590，I9I2．

4．Davenport，C．E．Statisical metnods vit Ω special reference to biological variation．Second ed．Niew York，I904．

5．Davenport，Eugene Principles of breediñ．Roston， I907．
…－．．．．－．－．－－－snd Rietr，Fenry I．Type and varia－ bility in corn．Univ．of III．Asr．Exp．Sta．Eul． II9，I907．

6．East，E．Arsenic correlation．Amer．Ereedes essn． Ann．rept．4：332－343，I908．

7．Tmerson，R．A．The inheritance of sizes and snapes in plants．Am．Nat．44：739－746，I910．

8．GourleJ，J．T．The effects of fertilizers in a culti－ orcnerd．IT．I．Agr．Exp．Sts．Bul．IGE，I9I4． …．．．．．．．．．．Sod，tillgge हnà fertilizers for the aprle orchard．II．A．Agr．Exp．Sta．Bul．I90，I9I9．
9．Green，＂．．U．，Thaye，זul and Keil，J．E．Varieties of apples in ohio．0．Agr．Exp．Ste．NuI．290，I9I5．
IO．Heys，A．A．Correlation snd inferitance in licotiane tabscum．Conn．Aテr．बxp．Sta．Eul．I7I，I9I2．

II．Iedrick，U．P．A comparison of tillage and sod mulch in an apple orcagra．N．Y．Agr．Exp．Sta．Eul．3It， I909．
．－．．．－．．．－．Is it necessary to fertilize on spple orcherd．N．Y．Agr．Exp．Sts．Bul．j59，I9II． ．．．．．．．．．．－．A comparison of tillege and sod mulon in an spple orchard，Second report for fucnter inchard．\＃T．V．Ay，Fiap．Sta．Iui．383，I9I生。
…-...-.-.--- ond lome, $a_{\text {. If. Apples: old bnł nev. 1. . } 1 .}$ Aer. Exp. Ste. Pul. 361, 1915.

f2.Heinicke, Artnur J. Factors influercing tae abscisfion of flowers and fortially developed fruit of the aprie (Ijrus malus I..). Cornell Univ. Agr. Exp. Sta. Eul. 393, I917.
13. Leighty, C. E. Correlation of cnaracters in osts witn specịal reference to breeding. Am. Ereeders Assn. rept. 7:50-60, 19II.
I4.Love, A. A. and Leignty, C.E. Variation and correletion of oats. Cornell Univ. Agr. Exp. Sta. Memoir Iro. 3, I9I4
I5.Pickett, B. S. Fruit bud formation. it. A. Agr. Exp. Ste. Bul. I53, I9II.

I6.Rietz, fenry I. and Smitn, J. .i. On the measurement of correlation wita special reference to some characters of Indian corn, Univ. of I11. Agr. Exp. Sta. Eul. I48, I9IO.

I7.Shaw, J. K. Variation in apples. Hess. Agr. Exp. Sta. rept. I:I94-2I3, I9IO.
I8. Stemart, J. P. Factors influencing yield, color, size and growtin in apples. Pa. State college Ann. rept. pp. 40I492, I9I0-I9II.
I9. Webber, I. j. Correlation of characters in plant breeaing Am. Breeders Assn. Ann. rept. 2:73-83, I906.
20. Youn, $7 . J . A$ study of variation in apple. Am. liat. 48:595-634, I9I4.
2I.Sterk's Nursery Cataloguesfor I920 ant I92I/

UNIVERSITY OF ILLINOIS-URBANA

30112077324496

