United States
 Naval Postgraduate School

THESIS

| A STUDY OF MEAN MONTHLY THERMAL | |
| :---: | :---: | :---: |
| CONDITIONS AND INFERRED CURRENTS | |
| IN MONTEREY BAY | |
| by | |
| Thennis Larry Lammers | |
| June 1971 | D. F. Leipper |

2d for public release; distribution unlimited.

```
LIDRABH
YAVAL POSTGRADUATE SCHOOL
NONTER"`. CATIP. }9394
```


A Study of Mean Monthly Thermal
 Conditions and Inferred Currents in Monterey Bay

by

Lennis Larry Lammers Lieutenant Commander, Únited States Navy B.S., United States Naval Academy, 1960

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN OCEANOGRAPHY
from the
NAVAL POSTGRADUATE SCHOOL
June 1971

$$
\begin{aligned}
& \text { Thor } \\
& 2-1 \leq 55
\end{aligned}
$$

ABSTRACT

Temperature data, collected over the past 40 years, was compiled and averaged in the first known study of mean thermal conditions throughout the waters of Monterey Bay. The following results were obtained:
(1) The distribution of mean sea surface temperature in the Bay was obtained by calculating mean monthly values at selected grid points and drawing isotherms,
(2) Progressive warming of the upper 100 m was observed to occur in a nearly linear fashion with time, resulting in a maximum temperature increase of $-8^{\circ} \mathrm{C}$ over the 29 year interval from 1931 to 1960. This implies that the intensity of upweiling is ā̊o dこcraasiño with time,
(3) Geographic variations in the rates of upwelling and downwelling, causing a relatively "warm tongue" along the Canyon axis, appeared to be a major element influencing the dynamics of the Bay, and
(4) Mean currents were inferred from the topographies of mean monthly iṣothermal surfaces. Limited comparisons of the inferred flow to past measured currents were very encouraging and tended to support the feasibility of such an inference in the shallow waters and irregular topography of Monterey Bay.
I. INTRODUCTION 10
A. THERMAL CONDITIONS IN MONTEREY BAY 10
B. CURRENTS IN MONTEREY BAY 11

1. Importance 11
2. Why Little is Known Concerning Distribu- tion of Bay Currents 11
3. The Feasibility of Approximating Mean Currents by the Geostrophic Approach 12
a. The Classical Geostrophic Method 12
b. Approximations Derived from the Classical Method 13
C. OBJECTIVES 14
D. ORGANIZING AND USING THE DATA 15
II. VALIDITY OF THE COMPUTED MEAN MONTHLY TEMPERA- TURES (AND DENSITIES) 17
A. TIME RANGE OF DATA 17
B. POSITIONING OF STATIONS 19
C. USE OF THREE DIFFERENT DATA COLLECTION SYSTEMS 20
D. GEOGRAPHIC DISTRIBUTION OF DATA 21
III. THERMAL CONDITIONS 23
A. THE ANNUAL THERMAL CYCLE IN MONTEREY BAY 23
4. The Canyon Region 23
a. The "Upwelling Period" 23
b. The "Oceanic Period" 24
c. The "Davidson Current Period" 24
5. The Regions of the Shallows 24
B. THE VARIATIONS IN INTENSITY OF UPWELLING 25
C. COMPARISON OF THE ANNUAL THERMAL CYCLE IN THE BAY TO THAT OF AN OFFSHORE LOCATION 28
6. Mixing in the Upper Layers 28
7. Upwelling 28
D. PROGRESSIVE WARMING 29
E. THE DISTRIBUTION OF MEAN MONTHLY SEA SURFACE TEMPERATURE IN MONTEREY BAY 29
8. Description of Figures 29
9. Discussion 32
a. The Annual Cycle of Mean Sea Surface Temperature 32
(1) Upwelling 32
(2) The Variation in Mean Air Tem- perature 32
b. Horizontal Sea Surface Temperature Gradients 33
10. Summary 35
IV. USE OF ISOTHERMAL SURFACES AS INDICATORS OF MEAN CURRENT 36
A. POSSIBLE GENERATING FORCES 36
11. Offshore Currents 36
a. The California Current 36
b. The Davidson Current 36
12. Winds 37
13. Tides 37
14. Upwelling 37
B. VERIFYING THE CORRELATION BETWEEN ISOTHERMAL AND ISOPYCNAL SURFACES 37
C. PORTRAYAL OF THE ISOTHERMAL SURFACES 38
15. Selecting the Isothermal Surface for Portrayal 39
16. Description of Figures 39
D. MEAN CURRENTS INDICATED BY THE ISOTHERMAL SURFACES 40
17. Intensities of Mean Flow in the Bay and Offshore 41
18. Annual Variations of Mean Flow in the Bay 42
a. November to February 42
b. February to April 43
c. August to October 44
d. October 46
e. April.to August 46
E. COMPARISONS OF INFERRED MEAN CURRENT TO PREVIOUSLY MEASURED CURRENTS 48
i. March 49
19. July 49
20. August 49
a. McKay's G.E.K. Measurements 49
b. Stoddard's Drogue Study 51
21. September 51
22. October 52
23. November 53
F. SUMMARY 55
V. CONCLUSIONS AND RECOMMENDATIONS 56
A. CONCLUSIONS 56
B . RECOMMENDATIONS 56
APPENDIX A: Data Sources 58
APPENDIX B: Computer Processing of Data 64
APPENDIX C: List of Figures 75
COMPUTER PROGRAMS 127
LIST OF REFERENCES 159
INITIAL DISTRIBUTION LIST 161
FORM DD 1473 164

LIST OF TABLES

I. The Range in the Total Number of Temperatures Averaged to Compute the Means for Blocks in the Bay 30
II. Listing of Specific Data Contained on Computer Master Tape, NPS 306 66
III. The Station Title Record 67
IV. The Station Data Record 69
V. Definition of Computer Variables in the Final Output of Program Number 11 74

LIST OF FIGURES

1. Computer Grid System Used in Monterey Bay 75
2. The Initial Computer Grid System 76
3. Location of Major Data Sources 77
4. Annual Mean Temperature Cycle by Skogsberg 78
5. Annual Mean Temperature Cycle by Bolin 79
6. Annual Mean Temperature Cycle Based on CalCOFI Surveys 80
6A. The Progressive Warming of Bay Waters 81
7. Standard Deviation of Temperature for Selected Blocks as a Function of Time 82
8. Standard Deviation of Temperature for Selected Blociss as a Function of Depth 83
9. The Annual Mean Temperature Cycle at Block 19 84
10. The Annual Mean Temperature Cycle at Block 3 85
11. Vertical Mean Temperature Sections S-1 and S-2 for the Month of November 86
12. The Geographic Regions of the Bay (as Defined by Author) 87
13. The Annual Cycles of Mean Sea Surface Temperature in Very Shallow Regions of the Bay 88
14. The Annual Mean Temperature Cycles at Blocks 1 and 5 89
15. The Annual Cycles of Mean Sea-Surface Tempera- ture in Relatively Deeper Regions of the Shallows 90
16. The Annual Mean Temperature Cycles at Blocks 2 and 4 91
17. Typical Annual Mean Temperature Cycles of a Canyon versus an Offshore Station 92
18. Dipping of the Isotherms Across the Canyon in March 93
19-30. Distribution of the Mean Monthly Sea Surface Temperature for January Through December ------- 94-105
19. Intensities of Mean Flow in the Bay and Offshore 106
20. The Annual Mean Density Cycles at Selected Blocks 107
21. The Annual Mean Temperature Versus Density Cycles at Block 13 108
34-48. Topographies of Selected Mean Isothermal Sur- faces for January Through December 109-123
22. Comparisons of Inferred Currents to Past Measured Currents in August 124
23. Comparison of Inferred Currents to PastMeasured Currents in November Using the PlottedPosition of the $12^{\circ} \mathrm{C}$ Isothermal Surface -------- 125
24. Comparison of Inferred Currents to PastMeasured Currents in November Using a Trans-lated Position of the $12^{\circ} \mathrm{C}$ I:sothermal Surface -- 126

I. INTRODUCTION

Monterey Bay is a large, semi-elliptical indentation in the California coastline separated into nearly equal halves by a deep submarine canyon (Figure 1). ${ }^{1}$ The outer extremity of the Bay may be defined by a line joining Point Santa Cruz to the north and Point Iinos to the south.

A. THERMAL CONDITIONS IN MONTEREY BAY

Several studies have been conducted of thermal conditions at specific locations in Monterey Bay. The most extensive were those by Skogsberg [1936] and Bolin [1964], both spanning five year periods. Skogsberg studied the southern portion of the Bay from 1929-1933 and Bolin researched conditions at a station in the Monterey Submarine Canyon (see Appendix A). Although these studies well defined the thermal conditions for a portion of the Bay, apparently no one had investigated the Bay as a whole.

As discussed in Appendix A, the author compiled a considerable amount of temperature (and some salinity) data covering the period of time from Skogsberg's study until the present. As outlined by the author's objectives (Paragraph C), this data was utilized to study mean monthly thermal conditions throughout the Bay and to investigate the possible relationship between the thermal conditions and indicated mean currents.

A11 figures will be found in Appendix C.
B. CUPRENTS IN MONTEREY BAY

1. Importance

The distribution of current in Monterey Bay is virtually unknown but there is little doubt of its great importance in determining the ecological future of the area. Pollutants, transported by the currents, are scattered freely along the beaches in the form of sewage and general rubbish. Less evident is the adverse effect on marine life created by the discharge of industrial pollutants into the Bay. Currents not only distribute "harmful" pollutants but also serve to maintain the chemical and thermal balance necessary to support marine life.
2. Why Little is Known Concerning Distribution of Bay

The well establisned currents of the open oceans are relatively strong and unchanging with time (e.g., the Gulf Strean and the offshore California Current) and hence, their general movements are fairly well understood. Monterey Bay, being enclosed on three sides, presents a different situation. The Bay currents are weak and variable and their mean flow is almost completely disguised by the effects of local winds, tides, topography, and seasonal changes in the offshore currents.

Past current studies in the Bay have been of a limited nature, both in time and in geographical coverage. They have contributed towards an understanding of "short term" currents (such as those resulting from the tides) but too few observations have been made to be of much use in
describing the mean flow. In time, and with many additional current observations, a study of the combined effects could prove to be of great value.
3. The Feasibility of Approximating Mean Currents by the Geostrophic Approach

Indirect approximations of current using the geostrophic theory may be divided into two categories: (1) the classical use of the geostrophic method, and (2) approximations derived from the classical method.
a. The Classical Geostrophic Method

Basically, flow obtained by classical application of the geostrophic method is that which results from the balancing of the Coriolis force and the pressure force between two points on a surface of variable elevation. (Neumann and Pierson [1966] discuss the theory in their book entitied, Principles of Physical Oceanography). Computed elevation of the sea surface at a given location in the ocean is represented by a term called the "dynamic height," a relative parameter based on the density of sea water at the location and referred to an assumed level-of-no-motion. A high value of density (usually colder water) yields a lower dynamic height and conversely. By geostrophic theory, the circulation in the Northern Hemisphere is counterclockwise about locations of lower dynamic height (depressed surfaces) and clockwise about locations of higher dynamic heights (elevated surfaces). The level-of-no-motion is the depth of water (as best can be ascertained) where
absolute current velocity equals zero and this rarely occurs at depths less than 150 m .

Accurate representation of the mean current based on the classical geostrophic method thus requires two prerequisices; (1) a knowledge of mean temperature and salinity ($\ddagger o$ obtain mean density) of the water column at several well spaced locations in the area of interest, and (2) a level-of-no-motion everywhere shallower than the depth of the bottom (otherwise, there is no reference except the bottom itself from which to compute true velocity). Finally, of course, wind driven and tidal currents are neglected in computing means.
b. Approximations Derived from the Classical Method

Several approximations to the classical approach have been used in relatively deep waters with considerable success. Barker and Denham [1970] used the classical method to plot geopotential topographies (surfaces of equal dynamic height) for various levels-of-nomotion off the northeast coast of New Zealand. The close correlation between the shapes of the topographies suggested that broad current patterns could be approximated without using an accurate level-of-no-motion. Duncan and Ne11 [1969] demonstrated that isopycnal (equal density) surfaces were closely related to current patterns in their study off the Cape Coast. Drift cards were employed to measure gencral current trends and were found to follow the isopycnal contours as predicted by geostrophic theory for
the Southern Hemisphere. Leipper [1970] demonstrated that temperature data alone could be used to approximate current in the Gulf of Mexico. Monthly topographies of the $22^{\circ} \mathrm{C}$ isothermal surface were constructed by him from data collected on various cruises during the period 1965-1966. The current was found to closely follow the contours, moving in a direction placing colder waters to the left of the flow. These results were verified by geostrophic flows computed at various locations in the Gulf. This approach is based on the assumption that temperature changes are directly proportional to density changes throughout the water column, and thus isothermal surfaces may be considered in place of isopycnal surfaces.

Application of any of the above approximations to the shallow waters and irregular topography of Monterey Bay would be a considerable extension of usual practice. However, the theory of geostrophic flow does not depend on the depth of water, therefore, geostrophic methods might be useful in indicating broad current patterns in the shallow waters of the Bay. Considerable temperature data was compiled for Monterey Bay in this study (see Appendix A). The author used this data to investigate the feasibility of relating mean currents to mean isothermal surfaces in a manner similar to that of Leipper.

C. OBJECTIVES

The objectives of this study are to:

1. Compile temperature and salinity data from previous oceanographic studies conducted in Monterey Bay,
2. Conduct a study of the distribution of mean monthly temperature in Monterey Bay and construct charts of the mean monthly distribution of sea surface temperature,
3. Investigate the feasibility of inferring mean currents from the topographies of mean isothermal surfaces, and
4. Prepare a computer program for the continuing storage and retrieval of oceanographic data collected in Monterey Bay.
D. ORGANIZING AND USING THE DATA

The IBM 360 computer at the Postgraduate School was used to compile the temperature data and to compute monthly averages (as discussed in Appendix B). A grid system, dividing the Bay into 19 blocks, 4 mi by 4 mi in dimensions, was used to segregate the temperature data (Figure 1). The author's initial grid system covered a larger area (Figure 2.) containing 39 blocks, but only the numbered blocks held significant data. The mean temperature of a given block, based on the averaging of all temperatures compiled for that block, was assumed to be effectively located at its center.

The temperature data was compiled over the 40 year interval from 1929 through 1968. Temperatures collected by all reliable methods were combined in the averaging process (although the computer program did allow for data to be retrieved by type, i.e., Nansen, XBT, BT).

The risks inherent in the "lumping" together of all types of temperature data spanning a 40 year interval and further reducing data from $4 m i$ by $4 n i$ blocks to represent points in their centers were fully realized. This lumping was essential due to the erratic distribution of data within the Bay and also because no reasonaily short time span held enough data to support this study. The errors introduced by the above procedures are discussed in Chapter II.

II. VALIDITY OF THE COMPUTED MEAN MONTHLY TEMPERATURES (AND DENSITIES)

A discussion of the questions raised in the Introduction involving the method of computing mean monthly temperatures is considered necessary before an appraisal of the results (Chapters III and IV) can be made.
A. TIME RANGE OF DATA

Data from three separate time intervals within the previously mentioned 40 year time span was averaged and compared to determine the degree of consistency of thermal conditions relative to the progression of time. Three Bay studies (as referenced in Appendix A) were used:

Sǩugsuerg (1929-1933), (2) Doliii (1951-1955), and (3)
CalCOFI surveys (1954-1967). ${ }^{2}$ The time intervals between midpoints (mean years) of the studies were 22 years from Skogsberg to Bolin and 7 years from Bolin to CalCOFI, with a total time interval of 29 years (1931 to 1960).

The annual thermal cycles of the three periods (Figures 4-6) were generally similar in shape with upwolling noticeable from the surface to 500 m (as characterized by the humps in the isotherms during the months of April through June). A consistent feature over the 29 year interval was the apparent weakening in intensity of upwelling

2
The oceanographic stations used in these studies are shown in Figure 3. Skogsberg's station is denoted by "C", Bolin's by "B" and CalCoFI by a square numbered "J". It is noted that the three stations are contained within a radius of two mi.
with time. The $9^{\circ} \mathrm{C}$ isotnerms from all three studies are plotted in Figure 4 to demonstrate the effect. It was observed that the depths of the $9^{\circ} \mathrm{C}$ isotherms were relatively close together during the winter months. During the remainder of the year (especially noticeable in May) the $9^{\circ} \mathrm{C}$ isotherms were observed to deviate from one another. The deviation followed a consistent pattern with the $9^{\circ} \mathrm{C}$ isotherm of the earliest study (Skogsberg in 1931) at the shallowest depth and the $9^{\circ} \mathrm{C}$ isotherms of the later two studies at greater depths as time progressed. This "flattening out" of the $9^{\circ} \mathrm{C}$ isotherm with time could indicate a weakening in intensity of upwelling.

A general warming with time was also observed to occur throughout the waters of the Bay. Figure 6A depicts the temperature increase (ΔT) observed to occur over the period from 1931 (Skogsberg's mean) to 1960 (CalCOFI's mean) at selected depths throughout the year. The curves represent the variation of ΔT for each month and for depths from the surface to 500 m . Figure 6 A shows that the maximum temperature increase occurred at depths from the surface to 100 m and during the period from October to December. At depths from 200-500m, ΔT cycled between positive and negative values throughout the year; however, ΔT was always positive (temperature increase) in the months of May, June, September, and October.

The consistently positive values of ΔT in May and June for depths from the surface to 500 m might be another indication that upwelling was decreasing in intensity (with time)
throughout this region, since the warming in May and June would also indicate a flattening out of the isotherms.

The reasons for the maximum temperature increase during the months of October to December are unknown. It could be related to changes in the "Oceanic Period," or possibly, to changes in the transition period between the influence of the California and Davidson current systems.

In summary, the general warming of the water column with time was observed to be consistent in the upper 100 m (by the similarity in the shape of the ΔT curves in Figure 6A at these depths). At depths below 200 m , the consistency was not as good (as observed by the ΔT curves cycling between positive and negative values) ; however, the total range of ΔT was only $0.5^{\circ} \mathrm{C}$ in the deeper waters.

The maximum temperature increase over the 29 year interval was $1.8^{\circ} \mathrm{C}$ (the 50 m curve in November from Figure 6A) resulting in about $1 / 15$ th of a degree C increase per year. This small annual temperature change, along with the general similarity of the curves (as observed in Figures 4-6) was considered to represent consistent behaviour with time. It was concluded that the author's method of averaging temperature values was justified. This provided averages that were representative of the overall period.

B. POSITIONING OF STATIONS

The computer grid system was based on the assumption that all temperature values found in a given block were located at its center. The grid system was initially posjeioned
so as to minimize the distance of known oceanographic stations from grid centers. The maximum deviation from such centers was 1.6 mi . Data was assumed to be scattered randomly around the centers of the blocks in the grid system.
C. USE OF THREE DIFFERENT DATA COLLECTION SYSTEMS

The data was collected by Nansen, BT, and XBT devices. Several papers have been written concerning system errors peculiar to each. The magnitude of the errors in the BT's and XBT's are apparently undeterminable.

To investigate the significance of possible system errors, the standard deviations (σ) of temperature (and density) values were included in the computer output. $(\bar{X} \pm \sigma)$ represented the interval containing 67% of all values averaged for a given mean (\bar{X}).

Standard deviations of mean monthly sea surface temperature versus time (by months) were plotted for selected blocks. Figure 7 (Block 13) represented the worst condition found. The larger standard deviation in July was not representative; the consistent features of all graphs were: (1) minimum values of standard deviation for the month of January, and (2) the relatively small variation of the values throughout the year.

Plots of standard deviation versus depth (Figure 8) were also consistent. Values of standard deviation halved within $30-40 \mathrm{~m}$ of the surface, reached values of $0.5^{\circ} \mathrm{C}$ anywhere from $50-275 \mathrm{~m}$ and then linearly decreased to minimum values of
$0.1-0.2{ }^{\circ} \mathrm{C}$ in deeper waters. The decrease of standard deviation with increasing depth of water and its practically invariable value ($0.1-0.2^{\circ} \mathrm{C}$) below 800 m , where the data was exclusively from Nansen casts, indicated that seasonal changes were mainly responsible for variations in mean temperatures. System errors were thus neglected.

D. GEOGRIPHIC DISTRIBUTION OF DATA

The 3000 oceanographic stations used in this study (25,100 temperatures) were erratically distributed throughout the blocks in the computer grid system (Figure 2). Blocks $1-6,13,20$, and $21 S$ contained the major portion of the data ($10-85$ surface temperatures per block per month) and thus were given major consideration in the analysis. The remainder of the blocks contained random amounts of data, except for Blocks 17 and 19 which generally contained 3-6 values per month each.

Clearly, the blocks containing relatively few temperatures (less than 10 per month) would yield less reliable averages than blocks with many values. Choosing a minimum number of temperature values to achieve relatively accurate mean monthly temperatures was based on a study of continuity between weak blocks (with less than 10 temperatures per month at a given depth) and strong blocks (more than 10 temperatures).

Graphs of annual mean temperature cycles, mean monthly temperature sections, and standard deviation versus time and depth were drawn for weak Blocks 8, 17 , and 19 and for strong Blocks 1-6 and 13. The annual mean temperature cycles of tic
weak blocks compared closely to those of the strong blocks. This comparison was well represented by Block 19 (Figure 9) and Block 3 (Figure 10).

Further continuity in data between weak and strong blocks was demonstrated by Figure 11, showing the thermal structures of two vertical sections (see Figure 12 for location of sections), one oriented north to south connecting Blocks 1, 2, 17, and $5(S-1)$ and the other oriented along the Monterey Submarine Canyon axis ($S-2$) connecting Blocks 13, 3, 17, and 19. The isotherms were smooth and continuous; in the upper and lower waters for both sections throughout the year. In depths from 50-100m, the isotherms were smooth and continuous along section $S-2$. Along section $S-1$ the isotherms were occasionally depressed at Block 17 . The depression of isotherms at Block 17 in section S-1 and lack of depression for the same block in section S-2 will be shown to be consistent in Chapter III, paragraph B.

Finally, the standard deviations of mean monthly temperatures versus time and depth were comparable for all blocks, weak or strong (Figure 7 and 8 were representative).

The continuity exhibited in the vertical sections between adjacent weak and strong blocks (and within the blocks as time progressed) supported the limited use made of the weak blocks for constructing mean monthly isothermal surfaces in Chapters III and IV. As the isothermal surfaces were prepared, the weak blocks demonstrated further consistency of data, especially Blocks 8, 17, and 19. Examples of this are noted in Chapter IV.

III. THERMAL CONDITIONS

A. THE ANNUAL THERMAL CYCLE IN MO.VTEREY BAY

The "3-phase" annual thermal cycle occurring at specific locations in Monterey Bay has been described by Skogsberg [1936], Bolin [1964] and others. The following discussion considers the variation in mean thermal conditions relative to various geographic locations throughout the Bay, a subject apparently not previously dealt with.

Figure 12 depicts three geographic regions in the Bay that the author will refer to in this Chapter. The choice of the 50 fathom curve as a dividing line was arbitrary, but gave the desired sectioning.

1. The Canyon Pocrion

Since Bolin described the thermal conditions for the Canyon region a detailed account will not be repeated here; however, a brief description of the "phases" will be necessary for later comparisons.
a. The "Upwelling Period"

Commonly considered to span from mid-January to September, the Upwelling Period is characterized by the rising of the deep, colder waters. As found in this study (Figure 10), the cold waters began their upward movement in mid-January from depths as great as 700 m (however, the movements were minimal below 300 m). The maximum rate of rise occurred between February and March and the peak was found in April or May when the $11^{\circ} \mathrm{C}$ water nearly reached the
surface. Although upwelling reached its peak later at greater depths, none was observed after July.

The descent (downwelling) of the cold waters generally commenced in June and was apparent until late November at greater depths.
b. The "Oceanic Period"

This period is commonly considered to occur during September and October and is well defined by the sharp vertical temperature gradients at depths from the surface to about 100 m .
c. The "Davidson Current Period"

In November the south-moving California Current is displaced by the north-moving Davidson Current along the coast. The influx of warmer waters into the Bay results in a weakening of the vertical temperature gradients and a resulting well-mixed layer of water from the surface to about 50 m . The northerly flow continues until midJanuary when the California Current again predominates and the "3-phase" annual cycle commences again.
2. The Regions of the Shallows (see Figure 12)

The annual thermal cycle in the Shallows was similar to that in the Canyon Region with two noteworthy exceptions:

First, the very shallow regions at the extreme northern and southern ends of the Bay possessed unique annual thermal cycles at depths from the surface to 10 m . Referring to Figure 13, the annual cycle of the surface temperature in the Canyon (Block 3) showed a clear decrease
in temperature from January until early May and then a steady increase until late September (this was typical for all the deep water areas). The annual cycles of surface temperature for the very shallow waters (Blocks 1 and 5) showed no similar decrease in late winter but rather a steady increase from mid-January until late September (Figures 13 and 14). This steady temperature increase, unique for the shallow water regions (less than 75 m), was probably due to greater heating of the water column from bottom reflection and the insolation of nearby 1 and masses. This greater heating of the shallow areas is clearly shown in the distribution of mean monthly sea surface temperatures as will be discussed in paragraph E (Figures 19-30). The relatively deep regions of the Shallows areas (Blocks 2 and 4) exhibited a very slight amount of cooling from January until May, but not nearly as much as did the canyon Region (see Figures 15 and 16). The second exception is discusscd below.

B. THE VARIATIONS IN INTENSITY OF UPWELLING

In studying the various graphs constructed for the analysis of thermal conditions, the author came upon a feature which could be an important element in the dynamics of the Bay in general. Figure 17 is introduced to show the months of the maximum rates of upwelling and downwelling during the year. Inspection of the annual cycle in Block 3 shows maximum rates of upwelling from February to March, and
maximum rates of downwelling (or heating) from July to August (note the slopes of the $10^{\circ} \mathrm{C}$ and $11^{\circ} \mathrm{C}$ isotherms).

Vertical temperature section S-1 (see Figure 12) shows a strange dipping of the isotherms at Block 17 for all of the above mentioned months (Figure 18 is representative). Block 17 was a weak block (less than 10 temperatures per month) and thus the dipping was suspected. To attempt to verify the dipping of isotherms in the Canyon, two additional sections were constructed (see Figure 12 for locations), both running across the Canyon axis (as did section S-1). Section S-3 connected Blocks 2, 3, and 4, and section S-4 connected Blocks 2, 3, and 6 (emphasis is placed on the fact that sections S-3 and S-4 contained only strong blocks with greater than 20 temperatures per month each). ${ }^{3}$ The results are clearly illustrated in Figure 18 which shows marked dipping of the isotherms across the Canyon axis in all sections. This results in a relatively warm tongue along the Canyon axis for the months of maximum rates of upwelling and downwelling.

The dipping of the isotherms across the Canyon axis could have been caused by the up-slope entry of the cold upwelling waters into the regions of the Shallows. During February and March, when upwelling rates are highest, the cold waters are ascending from depths down to 300 m . As the

3
Table V lists the number of temperatures compiled for the various blocks of the computer grid system.
cold, dense water spreads to the Canyon walls, its horizontal movement is interrupted, and thus it is accelerated up the walls and into the shallower adjacent regions. Conversely, in July and August, when downwelling rates are highest, the cold waters are descending from the nearsurface regions. Their rates of descent are accelerated into the Canyon since the deepening topography offers no resistance to their sinking. The transition period (from April to June) between upwelling and downwelling showed no dipping of isotherms across the Canyon.

No dipping of isotherms was observed along the Canyon axis. This would be as expected since the depth of water along the axis (section S-2) was everywhere deeper than 300 m thus affording no bottom influence unon the cold upwelling waters.

The annual mean temperature cy les of the relatively deep regions (Figure 16) and the very shallow regions (Figure 14) of the Shallows further demonstrated the up-slope surge idea. During the months of highest up/downwelling rates, Blocks 2 and 4 (adjacent to the Canyon) exhibited somewhat stronger upwelling (greater slopes of the $10^{\circ} \mathrm{C}$ and $11^{\circ} \mathrm{C}$ isotherms) than did Blocks 1 and 5 which were at the extreme northern and southern ends of the Bay. It thus appeared that the cold up-surging waters might have lost some of their momentum by the time they reached the very shallow regions of Blocks 1 and 5 .
C. COMPARISON OF THE ANNUAL THERMAL CYCLE IN THE BAY TO THAT OF AN OFFSHORE LOCATION

Block 20, located 22 mi west-southwest of the Bay
(Figure 2) was compared to Block 3 in the Canyon. Figure 17 demonstrated two broad differences between the thermal conditions of the two locations.

1. Mixing in the Upper Layers

The offshore station exhibited generally warmer surface waters throughout the year and better mixing of the upper waters ($0-50 \mathrm{~m}$) from January to April. At onset of the "Oceanjic Period" in September, the offshore and Bay stations both exhibited maximum vertical temperature gradients.

At the close of the "Oceanic Period" in November, the Bay station exhibited somewhat better mixing than did the offshore station, maintaining its more uniform surface waters until January. The weakening of the vertical temperature gradients in the Bay (as described by Bolin) was assumed to be the result of the influx of warm waters brought into the Bay by the north-flowing Davidson Current (during the period of November through January). The more uniform mixing of the Bay waters might have been due to a greater influence by the Davidson Current nearshore.
2. Upwelling

Upwelling is considered to result from the northerly winds deflecting the surface waters to the right and away from the coast, allowing the deeper cold waters to rise. The intensity of upwelling should then decrease as the distance
to the coast increases. Figure 17 demonstrated that this was indeed the case, Block 20 showing less intense upwelling than Block 3.

D. PROGRESSIVE WARMING

Chapter II, paragraph A, contains a discussion of the progressive warming found for the entire water column in the Bay over the 29 year interval from 1931 to 1960. It should be noted that Bolin [1964] found an opposite indication of progressive cooling from 1951-1955. He investigated the "previous and subsequent" sea surface temperatures taken at selected locations along the west coast of North America and found that the years of his study were all relatively cool and that 1955 had the minimum temperature in a "longterm trend." In Chapter II, evidence was presented indicating continual progressive warming over the 29 year interval noted above. It thus appears that the cooling observed by Bolin was a short-term cycle.
E. THE DISTRIBUTION OF MEAN MONTHLY SEA SURFACE TEMPERATURE IN MONTEREY BAY

Figures 19-30 depict the distribution of mean monthly sea surface temperature in Monterey Bay.

1. Description of Figures

The dots on each figure (representing the centers of their respective blocks) served as the points from which isotherms were drawn. The values of mean monthly temperature are directly below the points. Table I lists the total number of temperature measurements per block per month (at

TABLE I. The Range in the Total Number of Temperatures Averaged to Compute the Means for Blocks in the Bay

BLOCK	DEPTH	RANGE		OF TOTAL		TEMPERATURES			PER	MONTH		AT 0	$\begin{aligned} & \mathrm{E} 50 \mathrm{n} \\ & \mathrm{D} \end{aligned}$
NO.	(m)	J	F	M	A	M	J	J		S	0	N	
1	0	65	62	62	65	64	61	67	65	60	70	72	70
	50	0	0	0	0	0	1	0	0	0	0	1	0
2	0	62	64	64	67	64	61	68	65	61	68	70	67
	50	6	9	6	9	8	10	10	9	8	11	9	9
3	0	79	79	79	84	77	69	84	81	77	83	94	85
	50	23	25	20	24	21	18	23	21	24	22	32	26
4	0	76	80	68	76	72	72	86	78	72	83	87	80
	50	20	25	10	13	15	20	23	16	18	23	28	21
5	0	65	66	67	67	63	60	68	64	63	70	69	68
	50			-	DEPTH	OF	WATI	R LES	SS T	HAN	50 m		
6	0	69	60	64	70	66	62	69	65	60	67	70	68
	50	9	6	6	8	6	7	11	7	6	9	8	7
7	0	0	0	0	0	0	1	0	0	3	2	1	0
	50	0	0	0	0	0	0	0	0	2	1	1	0
8	0	11	5	0	10	8	9	6	5	2	7	8	5
	50	11	5	0	9	8	7	5	5	2	7	8	5
13	0	22	24	20	23	27	23	22	21	18	25	21	21
	50	22	24	20	23	27	23	22	21	18	25	21	21
16	0	2	0	0	2	0	4	1	0	1.	0	1	1
	50			-	DEPTH	OF	WATER	R LE	SS TI	HAN	50m		
17	0	4	18	4	4	3	3	5	3	6	5	6	4
	50	4	18	4	4	3	3	5	3	6	5	6	4
19	0	4	4	4	3	4	5	4	3	4	5	6	4
	50	4	4	4	3	4	3	4	3	4	5	6	4
20	0	10	3	2	12	8	1.3	9	5	5	6	5	3
	50	10	3	2	12	8	13	9	5	5	6	5	3
		J	F	M	A	M	J	J	A	S	0	N	D

Note 1: Blocks 9-11, 14 , and 18 seldom contained data.
Note 2: Block 20 (see Figure 3) is located 22 mi offshore.
the surface and 50 m) that were used to compute the mean temperatures. Mean temperatures are not listed (or used) in the figures if less than four values were available for averaging. Dashed lines represent probable extensions of the isotherms.

The circle in the upper right hand corner of each figure displays the local mean wind condition (taken from the U. S. Naval Oceanographic Office "Pilot Charts," series H.O. 1401) and the mean offshore currents (taken from the U. S. Naval Oceanographic Office Publication H.O. 570). The local mean winds are shown as a series of arrows (fine lines) that fly with the winds. The lengths of the arrows represent the percentages of the month that winds were from the directions shown (the percentage shown for the longest arrow serves as a reference). The number of tails on a given arrow defines the wind force by the Beaufort Scale, as shown below:

Number of Tails	Mean Wind Force (kt)
	0
1	$1-3$
2	$4-6$
3	$7-10$
4	$11-16$
5	$17-21$
6	$22-27$
7	$28-33$

The mean offshore current is displayed by an arrow (bold line) extending the diameter of the circle. Mean current
direction is with the arrow and its speed (miles per day) is displayed inside the inner circle.

The upper left hand corner of each figure shows the mean sea surface temperature at a location 15 mi offshore. This data was taken from Naval Oceanographic Office Special Publication, SP-123, and represented mean monthly values based on ship's injection temperatures collected over the past 100 years.

2. Discussion

a. The Annual Cycle of Mean Sea Surface Temperature The following two factors appear to influence the distribution of mean sea surface temperature.
(1) Upwelling

The coldest waters in the Bay occur during the period from February to May (with April being the coldest month of the year) coinciding with the upwelling period. Figures 20-22 show the intrusion of the colder waters from seaward. It appears that the main intrusion broadly occurs along the axis of the Submarine Canyon (note the $11^{\circ} \mathrm{C}$ and $12^{\circ} \mathrm{C}$ isotherms in Figure 22).
(2) The Variation in Mean Air Temperature

According to data contained in the U. S. Naval Oceanographic Office Pilot Chart series, the mean air temperature is at a minimum in January, rises to an annual maximum in September to October, and then falls to a minimum again in January.

The relation of mean sea surface to mean
air temperatures is demonstrated by following the monthly position of the $13^{\circ} \mathrm{C}$ isotherm. In January and February its
absence implies generally colder waters. In March it was seen to intrude into the Bay near the Moss Landing area. In April, the $13^{\circ} \mathrm{C}$ isotherm appears to be pushed aside by the intrusion of the colder waters (Figure 22). During the period from May to October, the $13^{\circ} \mathrm{C}$ isotherm was observed to move steadily seaward as the waters in the Bay continued to warm. Although the positions of the $13^{\circ} \mathrm{C}$ isotherms are nearly identical in September and October, the overall thermal distribution shows September to be the warmest month of the year (Figure 27). From October until January, the $13^{\circ} \mathrm{C}$ isotherm was observed to move steadily towards shore indicating the broad cooling of the surface waters.
b. Horizontal Sea Surface Temperature Gradients Horizental temperature gradients are weakest during the period from November through January with nearly uniform temperature throughout the Bay (less than $0.5^{\circ} \mathrm{C}$ change) occurring in January. The uniform temperatures characterizing this period are probably due to the influx into the Bay of warmer waters from the north-flowing Davidson Current (prevailing during the above period). In February, the temperature gradients are stronger and continue to increase in strength until reaching their annual maximum in July. The mean offshore sea surface temperature of $13.9^{\circ} \mathrm{C}$ in July indicates that strong gradients are also set up offshore as well as in the Bay. Steady weakening of temperature gradients occur from August until January, completing the annual cycle.

It will be recalled that maximum vertical temperature gradients occur in the surface layers during the Oceanic Period from September to October (see Figure 10). Bolin related the occurrence of maximum vertical gradients to the relatively windless (and also the minimum velocity of the California Current) conditions prevalent during this period. The occurrence of the maximum horizontal sea surface temperature gradients in July (2-3 months earlier than the maximum vertical gradients) might be related to the greater velocity of the south-flowing California Current. The cooler waters carried into the Bay by this current move at twice the velocity in July as compared with September to October (3.6 versus $1.7 \mathrm{mi} / \mathrm{day}$). Hence, the outer Bay reginns are colder while the inner or nearshore regions continue to warm from atmospheric heating.

The mean sea surface temperatures in the northern and southern areas of the Bay are consistently warmer than those in the center area for all months except November through January (when generally uniform temperatures prevail). The northern area exhibited consistently higher temperatures than did the southern area throughout this period. The warm spot in the northern region is probably due to the shallower depths of water there (see Figure 12) thus permitting greater insolation and reflective heating of the waters as earlier mentioned. Also, the shallower northern region is somewhat isolated from the effects of upwelling and thus does not undergo mixing with the deeper and colder waters.

3. Summary

Inspection of the mean isothermal surfaces portrayed in Figures 19-30 reveal several blank spots in the data field, especially in the northeastern section of the Bay. It would be of considerable benefit to conduct a further search for data within these blank spots (Blocks 16, 18, and the non-numbered block shown crossed out in Figure 1) thus providing a more complete picture of the sea surface temperature distribution.
IV. USE OF ISOTHERMAL SURFACES AS INDICATORS OF MEAN CURRENT

If mean flow can be approximated in Monterey Bay using mean isothermal surfaces, then the topographies of these surfaces must be associated with all dynamic forces acting to establish mean flow. Some of the factors involved are as follows:
A. POSSIBLE GENERATING FORCES

1. Offshore Currents

The offshore currents are considered by some to be the major driving forces behind the generation of Bay currents. Some theorists believe that a northerly flow adjacent to the Bay will establish a clockwise gyre within it, and conversely for a southerly flow. This theory was presented recently by Garcia [1971] using a mathematical model of the Bay.
a. The California Current

Transgressing a large clockwise circle in the Northern Hemisphere, the California Current makes its way south along the coast year-round. The southern flow of its outer boundaries is felt at the seaward edge of the Bay from mid-February until early November, with mean velocities ranging from 1.0 to $6.7 \mathrm{mi} /$ day (see Chapter III, paragraph E.1).
b. The Davidson Current

Prevailing from November to early February, the Davidson Current flows north adjacent to the coast, bringing relatively warmer waters into the Bay (see Figure 31).
2. Winds

Long acting and relatively steady winds will
generate related current patterns wherever and whenever such wind systems exist.
3. Tides

Tidal currents are active in Monterey Bay but are not considered in this study since they are very nearly (if not entirely) averaged out in taking monthly means.
4. Upwelling

Upwelling has been studied as thoroughly as any oceanographic feature, but almost all studies considered only its vertical aspects. As discussed in Chapter III, paragraph B, the author found that the horizontal differences in unwelling in the vicinity of the Submarine Canyon were apparently a contributing factor in the resulting shapes of the mean isothermal surfaces (possibly a major factor during the months of maximum rates of up/downwelling). The possible influence of up/downwelling upon mean indicated currents is discussed in paragraph D of this chapter.
B. VERIFYING THE CORRELATION BETWEEN ISOTHERMAL AND ISOPYCNAL SURFACES

To employ an approach similar to that used by Leipper [1970] in the Gu1f of Mexico (discussed in the Introduction), it was first necessary to show that changes in mean density were directly proportional to changes in mean temperature throughout the water column in the Bay. There was not enough data available on mean density to allow the construction of vertical density sections, therefore, annual
cycles of mean density and temperature (for several blocks) were compared. The results showed that mean density and temperature were closely related throughout the Bay and at all depths considered except in the region above 10 m where the correlation was not quite as good. The below listed comparisons demonstrated the results:
(1) Figure 32 (mean density structure, Blocks 1 and 5) to Figure 14 (mean temperature structure, Blocks 1 and 5),
(2) Figure 32 (mean density structure, Block 20) to Figure 17 (mean temperature structure, Block 20),
(3) Figure 33 (mean temperature structure with mean density structure (dashed lines) superimposed, Block 13).

The relatively small total change in mean density throughout the water column was not unexpected. Previously measured currents in the Bay were generally on the order of $U . \bar{Z} 5$ to 0.5 kt , and rarely (if ever) exceeded 1 kt . Therefore, the small changes in density (assuming isopycnal surfaces are related to indicated mean current) would imply small values of mean current. This appears to be the case.
C. PORTRAYAL OF THE ISOTHERMAL SURFACES

The foregoing results provide evidence demonstrating the close correlation between mean isothermal and isopycnal surfaces. Assuming that Leipper's approximate geostrophic approach could be extended from deep waters to the waters of Monterey Bay, the mean isothermal surfaces would then effectively replace the mean isopycnal surfaces and indicated mean currents could be deduced from them. On this basis,
topographies of the mean monthly isothermal surfaces were assumed to represent mean flow and were portrayed in Figures 34-48.

1. Selecting the Isothermal Surface for Portrayal

The annual variation in upvelling, causing the isotherms to rise and fall through a considerable depth interval, prevents the use of any one isothermal surface for the whole year. Instead, isotherms were chosen for a given month by inspection of selected vertical temperature sections. The isotherm that best described the temperature characteristics of the mid-waters (40-100m) was chosen from the corresyonding vertical section. When a shift was made from one isothermal surface to another, both surfaces were drawn to assist in observing continuity. The mid-waters were chosen for two reasons: (1) rapidly changing thermal conditions in the surface waters could be misleading since they did not correlate as well to mean density conditions as did the deeper waters, and (2) the $40-100 \mathrm{~m}$ region should respond to offshore currents, upwelling, and wind (to a lesser extent) and thus provide mean isothermal surfaces most likely to be related to changes in mean current.
2. Description of Figures 34-48

The comments in paragraph III. E. 1 concerning location of data points, mean winds, and mean offshore currents are applicable to these figures as well. The number of temperature values used to compute the mean temperatures for each block are listed in Table I (the values at 50 m are representative of those throughout the mid-waters).

Topographies of the mean isothermal surfaces were contoured at 10 m intervals. Dashed lines indicate probable extensions of contours where data was not available. Depth contours of isothermal surfaces are portrayed only in regions of the Bay where depths of water are greater than or equal to the values of the contours. The termination of a given contour is shown by a short segment of the equal valued bottom contour drawn across it.

The letter H (high) indicates the greatest depths of the isothermal surface and the letter L (low) indicates the shallowest depths.
D. MEAN CURRENTS INDICATED BY THE ISOTHERMAL SURFACES

In considering the indicated mean currents it should be emphasized that the results are based on the combination of data compiled from 1929 through 1968. The various regions of "highs" and "lows" appearing on the mean monthly isothermal surfaces (Figures 34-48) cannot be considered as fixed. Skogsberg [1936] showed that internal waves and advection, acting in the southern portion of the Bay, caused daily (and even hourly) changes in the thermal structures. For any given month the contours vary from day to day and also from year to year, and therefore, the figures are useful as indicators of the average thermal conditions and not the conditions for any given time.

Since it was assumed that the topographies of the mean isothermal surfaces represented mean flow (see paragraph C), the following rules apply: (1) mean circulation is counterclockwise about regions marked with an L (cold water, high
mean density regions), and clockwise about regions marked with an H (warm water, low mean density regions), (2) mean flow follows the contours with the colder water always to the left, and (3) stronger currents are indicated by closer spacing of the contours, and conversely.

The indicated mean currents (inferred from Figures 3448) are discussed below. To prevent repetition, the term "mean flow" will be used to imply indicated or inferred mean flow and the term "intensity" (or "strength") will imply the relative intensity based on the spacing of contours.

1. Intensities of Mean Flow in the Bay and Offshore The intensity of mean flow (I) in the Bay is represented by a formula relating it to contour spacing as follows:

$$
I=\Delta D / 5 L
$$

where,

$$
\begin{aligned}
\mathrm{I} & =\text { Intensity of mean flow in mi/day, } \\
\Delta \mathrm{D} & =\text { The difference in depth (m) between contours, } \\
\mathrm{L} & =\text { The measured length (in) between contours }
\end{aligned}
$$

The factor of 5 (in the denominator) was applied to make the annual range of I agree with the annual range of mean offshore current (mi/day) as found in H.O. 507 (see Figure 31). The values of I plotted in Figure 31 represent the maximum intensities (minimum spacing of contours) for a given month. Thus, the assumption is made that the strongest monthly average currents in the Bay are equal to the average currents offshore. Months where two isothermal surfaces are portraycd are represented by an average value of I.

The annual cycle of the mean offshore current (dashed line in Figure 31) was divided into two periods. The California Current prevailed from February (mid-points of the months are plotted on the abscissa) until early November, the Davidson Current prevailing the remainder of the year. The annual cycle of mean current intensity in the Bay shows peaks in December, March, and August. The peak in December and the general shape of the curve from November to February is similar to that of the offshore Davidson Current. The peaks in March and August do not appear to be related to peaks of the offshore current; in fact, the shapes of the Bay and offshore curves approach that of a mirror image during the period from March until Angust. These peaks appear to he related to unwelling and are discussed in subparagraph 2 below.
2. Annual Variations of Mean llow in the Bay

Inferred mean flow is depicted by arrows with the intensity of flow (I) indicated to the nearest whole number (mi/day) in Figures 34-48). ${ }^{4}$
a. November to February (Figures 47, 48, and 34) The variations in intensity of flow (as noted above) are similar for the Bay and the offshore Davidson Current prevailing during this period. As described in paragraph A.l, a north-flowing offshore current is considered by some to generate a clockwise driven current within the Bay.

[^0]Referring to the mean isothermal surfaces, the current patterns exhibit this clockwise tendency throughout the period, suggesting that the Davidson Current might be the primary generating force.

In November, the mean flow enters the Bay from the south and spreads into the northeast region with a broad clockwise movement indicated in the center region. Flow then exits from the northern region of the Bay (note the 40 m contour).

In December and January, the same general clockwise tendency of flow is indicated. However, the flow appears to enter from the northern region and exit from the southern region of the Bay. The difference in entry points could be due to the offshore current intensity which increases from $1 \mathrm{mi} / \mathrm{day}$ in November to $3.4 \mathrm{mi} /$ day in December and January.
b. February to April (Figures 35-37)

In February, the "high" (located near the center of the Bay) intensifies and the resulting intensity of flow doubles over that in January. Flow appears to enter and exit from the nor thern region following a well defined clockwise path throughout the Bay. The clockwise tendency of flow could not have resulted from offshore current generation since the direction of the offshore current is away from and nearly perpendicular to the coast (and also at its annual minimum speed of $1 \mathrm{mi} / \mathrm{day}$). The maximum rates of upwelling occurring in February and March (as discussed in Chapter III, paragraph B) may explain the inferred clockwise
tendency of the currents. As previously postulated, the spreading or up-surge of the cold waters from the Canyon into the Shallows regions cause a relatively warm tongue (high) in the Canyon region. The high established by this up-surge might tend to overshadow the influence of the weak flowing Cajifornia Current during February.

The $10^{\circ} \mathrm{C}$ and $11^{\circ} \mathrm{C}$ isothermal surfaces were constructed for March. Both have similar patterns but the gradients are stronger at the greater depths $\left(10^{\circ} \mathrm{C}\right.$ surface, Figure 37). This further indicates the influence of upwelling since upwelling rates are maximum from $60-100 \mathrm{~m}$. The currents indicated by the $11^{\circ} \mathrm{C}$ surface (Figure 36) enter the Bay from the south and follow a snake-like pattern before exiting from the northern region. The $10^{\circ} \mathrm{C}$ surface (Figure 37) exhibits the same general isothermal structure except there is another well formed low observed in the northern region and the overall intensity of flow is greater. The development of the "lows" in March could be caused by an influence of the California Current which had increased to $5 \mathrm{mi} / \mathrm{day}$ (near its annual maximum intensity). The influence, by the theory of offshore generation, would be to cause a counterclockwise gyre within the Bay which would agree with formation of a "low." This was not indicated to be a major feature by the isothermal topographies.
c. August to October (Figures 42-44)

This period is discussed next because the mean
flow in the Bay is believed to be a result of conditions similar to those described above. August and September (the
months of naximum rates of downwelling) showed the same dipping of isutherms across the Canyon and the same relative warm spots in the Canyon region as were observed during February and March. The possible relationship was discussed in Chapter III, paragraph B. The well established highs in August and, for the $10^{\circ} \mathrm{C}$ surface, in September (the deeper surface where downwelling rates are also greater) demonstrate the possible influence of downwelling. Current trends are clockwise (as in February and March) and thus opposite $=0$ the currents theoretically predicted due to influence by the California Current. On the other hand, the $11^{\circ} \mathrm{C}$ surface (shallower waters) in September exhibits more complex trends that could have been partly influenced by the California Current. Current patterns are counterclockwise in the middle and no:thern regions and a clockwise trend is observed in the southern region. Downwelling is weaker above 50 m (in September) and apparently does not exert as great an influence on the indicated currents. It was also observed that $f 10 w$ indicated by the shallow waters $\left(11^{\circ} \mathrm{C}\right.$ surface) is nearly opposite in direction to that indicated by the deeper waters $\left(10^{\circ} \mathrm{C}\right.$ surface). Since the whole region of the midwaters (40-100m) is assumed to represent the indicated currents, it is concluded that the shallow and the deep surfaces (in September) combined in some fashion to represent mean flow. The best approximation of the mean flow is thus a combination of flows inferred from both surfaces.
d. October (Figures 45 and 46)

The current trends indicated by the $11^{\circ} \mathrm{C}$ isothermal surface are similar to those of the $11^{\circ} \mathrm{C}$ surface in September (Figure 44). Flow enters the southern region of the Bay, follows an "S-shaped" path, and exits from the northern region. The high observed in the southern region appears to be a holdover from the high observed during July and August.

The $12^{\circ} \mathrm{C}$ surface (Figure 46) is generally
similar to the $11^{\circ} \mathrm{C}$ surface except the high is absent. The general counterclockwise trends (expecially for the $12^{\circ} \mathrm{C}$ surface)conform to the theory of generation by an offshore current.

In general. it appeared that weaker offshore currents came into the Bay, while stronger currents caused a reverse eddy within the Bay.
e. April to August (Figures 38-41)

The intensity of indicated mean flow is low throughout this period. Figure 31 shows the weak mean currents which decrease to an annual minimum in June.

Current trends in April are similar to those in March (Figures 36-37) but the intensity of flow is only half as great. The weakening of the high in the center region corresponds to the decrease in the rate of upwelling which ends altogether in May to June. The low in the southern region remained the same strength as it was in March but intruded further into the Bay (as noted by the 40 m contour in Figure 38).

The indicated mean flow during May is almost due south, dipping into the Bay and broadly following the shoreline. The direction of flow corresponds closely to the direction of mean offshore current in the central and northern regions and tends seaward in the soilthern region.

A high develops in June which extends throughout the Bay. Mean flow enters the Bay from the north and follows a broad clockwise path, exiting also from the northern region. Intensity of mean flow is at its annual minimum in June.

The high persists in July and a low is seen to develop in the northern region. Flow enters the Bay from the north and is observed to exit from the southern region.

The development of the high in June and its subsequent strengthening from June through August (Fjgure 42) could have been partly due to downwelling which commences in June and ends in early November (see Chapter III).

In summary, the inferred mean flow in the Bay is based solely on the topographies of mean monthly isothermal surfaces. Inferred current trends could be related to generation by offshore currents only during the Davidson Current Period and possibly in the month of May. Trends of inferred current during the remainder of the year appear to be influenced more by up/downwelling than by offshore currents. The possibility of up/downwelling exerting a greater influence than offshore currents on mean flow is difficult to test and verify. However, the maximum intensity of mean offshore current during any month of upwelling or downweliing
is only $5 \mathrm{mi} / \mathrm{day}$ (about $1 / 5 \mathrm{th}$ of $\mathrm{a} k \mathrm{t}$), and the annual maxj. mum reaches only $6.7 \mathrm{mi} / \mathrm{day}$. Thus, it would appear that the relatively small horizontal density changes (assumed to be mainly a result of the surging of the cold waters during up/downweliing) between the waters of the Canyon and those of neighboring shallow areas could be equally (if not more) responsible for influencing mean Bay currents. The above phenomena are of course, related in some complex manner.

There is insufficient data concerning previously measured currents in the Bay to verify the influence. of up/downwelling on Bay currents. However, the author found several limited current studies which could be compared to the inferred Bay currents of this report.
E. COMPARISONS OF INFERRED MEAN CURPENTS TO PREVIOUSLY MEASURED CURRENTS

Comparisons between the inferred mean monthly flow (based on many years of data) and several short term (6-48 hours) current measurements during a given month cannot be expected to show more than broad agreement for specific times. The positions of the highs and lows (and hence the distribution of indicated current) on the mean isothermal surfaces for a given month represent the most likely conditions over a long time period and not those for a given day of the month, or even for a given year for that month. Finally, the short term currents must be considered only as general trends since their directions and speeds are heavily influenced by tidal forces and local winds. The following comparisons are more encouraging than the above limitations

1. March

Sqevenson [1954] deployed three surface drogues in early March from a location $1 / 2 \mathrm{mi}$ offshore in the southernmost area of the Bay. All drogues moved shoreward (until beaching) as shown by the dotted arrows in Figure 36. The shoreward novements of the drogues would appear to agree with the inferred currents which tend shoreward in the region where the drogues were deployed.
2. July

McKay [1970] conducted current measurements in late July using a Geomagnetic Electrokinetograph (G.E.K.). The measured currents (indicated by dotted arrows in Figure 41) did not fully agree with the plotted indicated current patterns: however. the position of the "low" in the northern region would support such current movement. The shape of the "low" could not be determined since there was no data for adjacent blocks to the north and east.

3. August

McKay conducted current measurements with the G.E.K. in early and mid-August, 1969 (solid short arrows in Figure 49) and Stoddard [1971] employed surface drogues in mid. August, 1970 (dotted arrows).
a. McKay's G.E.K. Measurements

The shorter solid arrows represent individual G.E.K. measurements. Considering the region bounded by the 60 m and 80 m contours, the correlation of the measured currents to the inferred mean currents is very close, with
about $3 / 4$ ths of the G.E.K. measurements observed to follow the contours. In the region bounded by the 80 m contour, the measured currents broady exhibit a clockwise motion with a general confusion in direction noted (which agrees with the plotted position of the high).

The G.E.K. measurements to the south of the 60 m contour appear somewhat confused in direction when considered as a whole. The arrows with tails represent measurements taken on 5 August while all other solid arrows represent measurements taken from 11-12 August. During 11-12 August the measured currents in the extreme southern region are seen to move northward and then to turn towards the west. This trend would appear to agree with the mean flow which evits the Bar (betureer the 50 m and 60m contours) from the southern region and could force the northerly current to turn westward. The currents measured on 5 August tend towards the southwest which could be due to the conditions such as displayed by the isothermal surfaces in July (note the 30 m contour in Figure 41). Since all surfaces are as sumed to represent the mid-month conditions, the mean flow in July might influence that in early August. The above discussion is conjectural since insufficient data is available to construct contours in the region of interest. The intention is to show that the current trends by McKay in this (southeastern) region show plausible agreement with those inferred from the isothermal surfaces. The measured current velocities were all significantly higher than inferred
values (I). This is as expected since they were virtually instantaneous measurements.
b. Stoddard's Drogue Study

The longer dotted arrows in Figure 49 represented surface drogue tracks. Six drogues were tracked for about 17 hours and one (the southernmost shorter track) was tracked for 7 hours.

The two tracks in the regjon bounded by the 70 m contour follow definite clockwise gyres, not too far removed from the location of the high (generally agreeing with its plotted position). The remaining tracks do not correlate with mean flow ; in fact the three tracks to the south are nearly 180 degrees out. Data was not available during Augus. in Blocks 10, 11, 14, and 21 S (see Figure 1) and therefore the isothermal surfaces (as shown for this region) could be in error.
4. September

Stoddard tracked six surface drogues in late September, 1970. The tracks show good correlation to the shallower $11^{\circ} \mathrm{C}$ isothermal surface (Figure 44) but generally are not well related to the $10^{\circ} \mathrm{C}$ surface (Figure 43). The following discussion is based on comparison to the $11^{\circ} \mathrm{C}$ surface (although the best approximation of indicated mean flow would lie somewhere in between the two surfaces).

The duration of the drogue tracks varied from 12 to 25 hours. The author computed the speed of each drogue based on the distance made good from deployment until the end of tracking. The average value of the six speeds was $2.75 \mathrm{mi} / \mathrm{day}$
which compared favorably to the arbitrary value of I for September of $3.6 \mathrm{mi} / \mathrm{day}$ (Figure 31). The value of I represents the maximum mean intensity (minimum contour spacing) for a given month, and was made to agree (in total range of values) with the intensity of mean flow for the offshore current (see paragraph D.1).

Drogues 1-3 (see circled numbers adjacent to dotted arrows in Figure 44) all exhibit clockwise trends which broadly agree with the location of the high in the southeastern region of the Bay. Closer correlation is not possible since no data exists in the block to the right of the high (shown crossed out in Figure 1).

Tracks of drogues 4 and 5 cut directly across the 40 m contour; however, their tendencies to move to the right when seaward of Point Pinos agree with the general mean current patterns (note the north-flowing mean current which would force the currents indicated by tracks 4 and 5 to the right).

The track of drogue 6 agrees with indicated mean flow, following the 40 m contour and tending in a slight clockwise path. The speed of drogue 6 (computed as above) was computed to be $4.1 \mathrm{mi} / \mathrm{day}$ versus an arbitrary value of I equal to $4 \mathrm{mi} / \mathrm{day}$ in the same region.
5. October

Stoddard tracked four surface drogues in early October, 1970. The tracks show excellent correlation to the shallower $12^{\circ} \mathrm{C}$ surface (dotted arrows in Figure 46) and fair correlation to the $11^{\circ} \mathrm{C}$ surface (Figure 45). Drogue 3 was
tracked for 10 hours and all other drogues were tracked for only six hours. The average computed speed for drogues 1 , 2 , and 4 was eight mi/day, while drogue 3 made good a speed of $6 \mathrm{mi} / \mathrm{day}$. The speeds inferred from contour spacing are only 2 to $3 \mathrm{mi} / \mathrm{day}$. Since the duration of tracking was short, the effects of the tidal currents (and local winds) could have introduced considerable influence on the speeds and directions of the drogue tracks.

All drogue tracks broadly followed the 30 m contour (Figure 46) and all except drogue 3 moved in a direction related to the indicated mean current. The path of drogue 4 almost exactly agrees with the indicated flow.
6. November

Stoddard tracked eight surface drogues in midNovember, 1970 (shown by solid, dashed, and dotted arrows, numbered 1-8 in Figure 50). The duration of tracking varied from 6-42 hours. The computed speeds (again based on distance made good per total tracking time) are listed below:

Drogue No.	Durationof Tracking (hr)	Computed Sp $(\mathrm{mi} / \mathrm{day})$
1	.42	5.7
2	22	3.9
3	21	1.2
4	23	3.4
5	7.5	11.2
6	6.5	14.1
7	6.5	10.7
8	6	10.8

The consistently greater speeds for drogues 5-8
were probably due to tidal currents prevalent in the short
duration of tracking time and were thus disregarded. Drogues 1-4 exhibited speeds closely related to the arbitrary value of I for November. The combined average speed of drogues 1-4 was $3.6 \mathrm{mi} / \mathrm{day}$ while the arbitrary maximum value of I was 4.2 (Figure 31). The average value of I for November would be somewhat lower (but nearly impossible to estimate from contour spacing alone).

The tracks of all drogues exhibited clockwise tendencies which correlated with indicated mean current about the extensive high in the center of the Bay. The individual tracks of drogues 1 and 8 closely approximate the indicated mean current while the remaining drogues showed fair correlation (Figure 50).

It is noted that the speed of drogue 3 ($1.2 \mathrm{mi} / \mathrm{day}$) is significantly lower than the speeds of drogues 1,2 , and 4. Also, the track of drogue 3 describes a tight clockwise path which is not the case for the other tracks. This led the author to believe that drogue 3 might have been nearer the center of a high than is shown in Figure 50. It is as sumed that the high (and the entire mean isothermal surface as well) could probably vary in location from day to day (and year to year) for a given month. On this basis, the mean isothermal surface for November was translated to a position where the high overlayed the track of drogue 3 . The distance of translation was 3 mi in a west-southwest direction. Figure 51 shows the results of the translation. All drogue tracks are now observed to closely follow the

```
translated contours and the correlation to indicated mean
current is excellent.
```

F. SUMMARY

The general agreement between measured currents from past studies and indicated mean currents for this study is encouraging. The total number of comparisons made is far from that required to fully substantiate the inferred mean currents of this study; however, the comparisons do lend considerable support to the feasibility of using mean isothermal surfaces as indicators of mean flow, which was a primary objec̣tive of this study.

V. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

1. Progressjve warming with time is indjcated throughout Monterey Bay, mainly occurring a.t depths from the surface to 300 m . The temperature was noted to increase as much as $1.8^{\circ} \mathrm{C}$ over the 29 year interval from 1931 t.o 1960.
2. The intensity of upwelling varies in different geographic regions of the Bay. This variation in the maximum rates of upwelling (and downwelling) is believed to be a major factor controlling the shapes of mean isothermal surfaces (and indicated mean currents as well) during the months of maximum up/downwelling.
3. The mothod of using moan isothcrmal surfaces as indicators of mean current shows promise. The comparisons of inferred mean flow to direct current measurements (as shown in Figures 34-48) demonstrates general agreement between the two.
B. RECOMMENDATIONS
4. The data collected throughout Monterey Bay is insufficient for several of the blocks in the author's grid system (Figure 1). To obtain a more complete picture, both in the mean monthly sea surface temperature distribution and in the topographies of mean monthly isothermal surfaces, a continued search of data for the following blocks would be beneficial: $7,8,9,10,11,14,16,18,21 \mathrm{~S}$ as well as the block shown crossed out in Figure 1.
5. Future studies should be made of the mean monthly current distribution in the Bay (the author was unable to locate any previous work in this area). Whatever methods are used in the future might be compared to the mean flow inferred in this study for purposes of attempted verification.
6. To aid in the future study of oceanographic parameters (in general) of Monterey Bay, a computer storage and retrieval system should be instituted and maintained on a continuing basis. An example of a computer system designed for this purpose is presented in Appendix B (the "final computer program, number 11').

Closer coordination with NODC is required of all oceanographic facilities so that the oceanographic data collected in Monterey Bay over the years can be made available to any investigator desiring its use.
A. PROBLEMS ENCOUNTERED

The only previous research found that categorized oceanographic data collected in Monterey Fay was that presented in an NPS research paper by P. M. Magruder, Jr., [1969]. Magruder's paper was most beneficial in delineating the major sources of data. Many reports were located covering related subjects such as biology, sound velocity variation, and light attenuation studies. Many of these reports used temperature and salinity data. However, the data was generally not contained therein, nor is there any reference to its location in some reports. There is a general lack of continuity in reporis which contâincd tompcrature and solinity data。 Methods of collection were sometimes omitted and very seldor was there any information describing environmental conditions, etc.
B. MAJOR DATA SOURCES (FIGURE 3)

1. Bolin Data

Rolf L. Bolin and collaborators [1964] collected Nansen samples over a five year period from 1951-1955 at the position $36-42 \mathrm{~N}, 122-02 \mathrm{~W}$. Casts of 24 -bottles were generally employed to depths of 1000 m at weekly intervals. A total of 233 casts were made and analyzed for temperature, salinity, and other chemical parameters. A copy of this report is on file at the Naval Postgraduate School Library.
2. Fleet Numerical Weather Certer (FNiNC) XBT Data

Nansen cast, bathythermogreph (BT), experimental
BT (XBT), and message BT data are on file at FNWC. The Nansen cast and. BT data are also filed at the National Oceanographic Data Center (NODC) anc are kept more completely there.

FNWC is presently digitizing the XBT data for inclusion in computer tape files at NODC. Two 9-track computer tapes (NPS 264 and NPS 265), held by Dr. Denner at the Naval Postgraduate School Oceanography Department, contain the world oceans XBT data which consists of about 40,000 individual stations. A computer progran (see article B.2, Appendix B) written by the author reveals only 43 XBT stations scattered randomly throughout the Bay. There have been considerably more than 43 XBT drops in the Bay over the last three years but the data is not as yet available.
3. Hopkins-CalCoFI Data

Hopkins Marine Station has conducted a continuous hydrobiological survey of Monterey Bay for the California Cooperative Oceanic Fisheries Investigations (CalCOFI) since 1951. Commencing in March of. 1954 the data (unpublished) was tabulated and distributed in annual reports containing monthly averages of Bucket, Nansen, and BT temperatures, salinities, and densities (sigma-T) for six oceanographic stations in the Bay. The averages were based on approximately weekly visits to each station; [Hopkins 1954-1967].
a. Ocean Temperatures

Surface temperatures were read from a bucket thermometer and BT data was listed at 10 m intervals from the surface to 50 m for stations $2,3,4$, and 6 , and to 30 and 20 m for stations 1 and 5 , respectively. This data was not computerized since the majority of it was included as NODC-BT data in paragraph 4 below.
b. Salinity and Sigma-T Data

Nansen samples taken at the surface and 15 m were titrated for chlorinity and thence salinity and sigma-T were determined. Temperature, salinity, and sigma-T were tabulated along with their monthly averages for each station.
4. National Oceanographic Data Center (NODC) Data

Magruder obtained complete printed listings of Nansen cast and BT data from NODC in January of 1969. The area of coverage included Marsden Squares 121 (61 and 62). The listings are available in the NPGS Oceanography files.

For purposes of, (1) rapid computer processing, and (2) updating of data through 1970; magnetic tapes were requested from NODC. Two 7 -track tapes were received in December 1970, one listing Nansen cast data in Marsden Square 121 (R1019) and the other 1isting BT data (R1030). The formats of these tapes were different and had to be processed separately (sce articles B.4, 5 of Appendix B). The tapes are the property of the NPGS Oceanography Department (see Dr. Leipper).

The total number of Nansen and BT stations within Monterey Bay (retrieved from above Lapes) were 107 and 1377 respectively.
a. Nansen Cast Data

The data included temperature, salinity, oxygen, phosphates, silicates, nitrates, and pH as observed parameters. All values were interpolated to standard depths by a three point Lagrange method. Each station is identified by a Master Card, which lists such information as ship name, position, date, etc.
b. BT Data

BT temperatures were listed at 5 m intervals from the surface to maximum depth. Each scation was again identified by a Master Card.
5. Naval Postgraduate School (NPGS) Data

Four stations were established by NPGS in October 1966. Nansen casts and BT drops were made regularly and all chemical parameters were filed quarterly.

A continuing program of computer processing and filing of data cards for these stations is in progress.
6. Skogsberg Data

Tage Skogsberg [1936] conducted an exhaustive study of thermal conditions in the southern portion of Monterey Bay, collecting over 15,000 samples from 1929-1933. Data included temperature, chlorinity, phosphate, and silicate from 23 separate stations. The original data is on file at Hopkins Marine Station. Skogsberg tabulated monthly temperature
averages for two of his stations, both of which were used in the author's analysis (Chapters III and IV).
7. Sea Surface Temperatures
a. Hopkins Marine Station

Sea surface temperature and salinity has been measured daily at the station since 1919. All records are filed by Hopkins and monthly averages are published by Scripps Institution of Oceanography under the title: "Data Report, Surface Water Temperatures at Shore Stations, United States West Coast and Baja California."
b. Santa Cruz

Sea surface temperature has been measured daily since 1956 and data is also published by Scripps under the same title as above.
C. MINOR DATA SOURCES

The below listed sources comprise data covering ejther small areas or that limited to only several observations. A complete listing was impossible.

1. "Monterey Bay Bibliography" [Baron, 1971]

This comprehensive study was recently completed by the Moss Landing Marine Laboratories' of the California State Colleges. It includes all known scientific literature concerning Monterey Bay. Limited copies are now being published.

2. Yeske and Waer Data

Yeske and Waer [1968] studied light attenuation at two stations in the Bay during the period 26 July to 31 August, 1968. A total of 39 Nansen casts were made and BT
drops accompanied each cast. Data was filed with NODC and is contained on the computer tapes referenced in paragraph C. 4 above.
3. Message BT Data

Very little data was found at FNWC (only 21 stations for all of Marsden Square 121) and none more recent than 1968.
4. OC-3520 Data

The Chemical Oceanography Course (OC- 3520) at NPGS sponsors limited duration Bay cruises for students. Various oceanographic parameters are collected and final reports are required. The data is not currently being filed but some of it is available.

D. DISCUSSION

It was clear that a complete source listing of the chemical parameters in the Bay would be a monumental task. NODC maintains a computer listing of oceanographic data throughout the world's oceans but little of the data collected in Monterey Bay has ever reached there. Only 107 Nansen casts were recorded by NODC for the last 40 odd years, representing a trifle of the data actually collected.

APPIENDIX B: COMPUTER PROCESSING OF DATA

Two major goals were sought in designing the "final computer program": (1) to store temperature, salinity, and density data in a form suitable for the computation of mean monthly averages at given geographi= locations, and (2) to design a flexible system for storage and retrieval of various oceanographic parameters on a continuing bases.

The second goal was achieved by designing the "station title card" in such a manner that a simple extension could be made to the "station data card" to include additional selected oceanographic parameters without modification of existing formats (see paragraphs A.2.a \& b). The instituticn of such a card system could make the rctricval and usage of oceanographic data from Monterey Bay a very simple task.
A. STORAGE OF TEMPERATURE, SALINITY AND DENSITY (SIGMA-T) DATA

1. Problems Encountered

About 60% of available data was already in computer format, either on magnetic tape or on data cards. Regrettably, no two formats were consistent. Thus, a separate computer program had to be written to reduce each data source to the author's format. This often included calculation of densities (when they were not included as part of the original format) and always required interpolation of one form or another to place the data at the author's selected "standard depths" (standard depths are listed in Table IV).

The reduction of data already in computer format was actually more time consuming than processing the tabulated data.

The remainder of the available data was tabulated in the various reports cited in Appendix A. First it was keypunched onto computer cards in various formats, depending on the format of the data source. The next step was the printing out of data on computer paper to compare it for accuracy against the original source. After proofreading, computer programs were written to convert the data on punched cards to the desired format. Again, this included calculations and interpolations for the desired results.

The last step in the process was to check the various outputs for correctness and then write the data onto a computer "master tape." Paragraph B describes the various computer programs to the extent of including information not apparent from inspection of the programs themselves.
2. Format of the Master Tape

The master tape (NPS serial number 306) served as the storage location for all data processed. The general format of data includes a station title record (identifying the oceanographic station) and a station data record (listing the oceanographic parameters). Table II lists all data contained on the master tape.

a. The Station Title Record

The station title record allows the flexibility required in general retrieval of data. Referring to Table III, the "80-column record numbers" refer to the inclusive positions on the station title record where the information

TABLE II. Listing of Specific Data Contained on Computer Master Tape, NPS 306

Data Source	Data	Year (incl.)	Remarks
Bolin	$\mathrm{T}, \mathrm{S}, \sigma_{t}$	1951-1955	229 Nansen stations
FNWC	T	Various	40 XBT stations
Hopkins-CalCOFI	T, S, σ_{t}	1954-1967	972 Nansen stations, each station representing the monthly average of 4 stations at 0 and 15 m .
NODC	See Chap II	Various	107 Nansen stations
NODC	T	Various	1377 BT stations
NPGS	See Chap II	Sept 1966 Sept 1967	175 Nansen stations

Note 1: See Appendix A for detailed discussion of data sources.

Note 2: In cases where only portions of a data source were computerized, the year and type of data defines such portions.

Note 3: The 'Data Source" is listed by author or collecting activity.

TABLE III. The Station Title Record

80-Column		
Record No.	Variable	Definition
1-2	NCARDS	The total number of station data records following the title recorci.
4-7	$\begin{aligned} & \text { NANS, XBT, } \\ & \text { BT, STD } \end{aligned}$	A left-adjusted variable defining the type of data collected.
9-10	NDAY	The day data collected.
12-13	NMO	The month data collected.
15-16	NYEAR	The last two digits of the year data collected.
18-21	NT IME	The time (GMT) data collected. If unknown, NTIME appears as 0000.
24-25	LATDEG	The degrees of station latitude.
27-30	RLATMI	The minutes and tenths of minutes of station latitude.
33-35	LONDEG	The degrees of station longitude.
37-40	RLONMI	The minutes and tenths of minutes of station longitude.
43-45	NWF	NWF=999 specifies Hopkins-CalCOFI monthly average values (4 stations per average).
48-63		Ship name.
48-49		NODC country code.
50-51		NODC ship code.
52-55		NODC station I.D. number.
56-59		NODC Stano number.
65-80	REF	Reference data by author or facility controlling data collectio:l.

was entered. "Variable" was the computer name (applied by author) used in programming. Desired data may be retrieved from the master tape by any one, or any combination of the listed variables. For example, assume an investigator is interested in conducting a study of experimental (XBT) versus mechanical (BT) bathythermograph data in the Submarine Canyon, collected over the last five years. By a series of "computer logical IF statements" [see Blatt, 1968] all station title records are eliminated except those that are either $X B T$ or $B T$, have geographic positions in the Canyon, and fall within the time frame (NYE. AR) of 1966 or 1 ater.
b. The Station Data Record

Each station data record contains the standard depth of observation (m) plus one or more of the parameters listed in Table IV above the dashed line. The oceanographic parameters below the dashed line were not included on the master tape but are listed as the recommended additions referred to in the second paragraph of this Appendix.
B. COMPUTER PROGRAMS USED IN DATA STORAGE

Ten computer programs were required to compile the master tape and are briefly described below. The programs will be found in the section entitled, "Computer Programs."

1. Bolin Data

a. Program Number One

Cards were punched from the tabulated data of depth, temperature, and salinity. Program number one calculated densities and linearly interpolated ali data to the

TABLE IV. The Station Data Record

80-Co1umn Record No.	Variable	Definition
1-5	STDEP	The author's selected standard depth (m), as: 0000. Standard depths used were: $0, \overline{10,} 15,20,30,50,75,100$ 125, 150, 200, 250, 300, 400, 1400, 1500, 1750, 2000, 2500, 3000, 4000, .. , 6000.
7-11	TEM	The temperature to hundredths of degrees C, as: 10.25.
13-17	SAL	The salinity to hundredths of parts per thousand, as: 33.65.
19-23	SGT	Sigma-T (density) to hundredths of units, as: 26.77.
25-27	XOXG	Oxygen to tenths of m1 per 1.
29-31	XPO4	P04-P to tenths of g-at per 1.
33-35	XNO2	NO2-N to tenths of g-at per 1.
37-39	XNO3	NO3-N to tenths of g-at per 1.
41-43	SIO4	SiO4-Si to tenths of g-at per 1.
45-47	XPH	pH of seawater to tenths of units.
49-80	---	Can be used for additional storage as required; e.g., computed sound velocity, dynamic parameters, etc.

Note 1: Data above dashed line is included on master tape. Data below dashed line is the recommended additions for a future storage and retrieval system.
selected standard depths. Linear interpolation was considered accurate since the maximum difference between tabulated and standard depths was only 25 m . The final output consisted of computer cards in the format for the master tape.
2. Fleet Numerical Weather Center (FNWC) Data
a. Program Number Two

The existing 9 -track tapes (NPS 264 and 265) containing world ocean's XBT data through 1968 were processed. Data in Monterey Bay was retrieved, linearly interpolated, and punched out on computer cards in the format for the master tape. Linear interpolation was exact because XBT data occurred at every depth where temperatures deviated from a linear path.

3. Hopkins-CalCOFI Data

a. Program Number Three

Computer cards were punched from the tabulated annual reports [Hopkins 1954-1967]. Program number three processed the computer cards, linearly interpolated for the 10 m values (a selected standard depth), and punched new computer cards in the format for the master tape.

Since each station represented a monthly average value (generally the average of four stations) the data had to be processed differently in the final program. A weighting factor (NWF=999) was added to each station title record and served as a branch instruction to weight this data "four to one" over other data on the tape.
4. National Oceanographic Data Center (NODC) Nansen Cast Data
a. Program Number Four

This program read data from a 7 -track tape
(R 1019), computed the number of station data records following each station title record (NCARDS), and wrote the data (in modified format) onto a 9-track tape (NPS 297).
b. Program Number Five

Data within Monterey Bay was retrieved from the 9-track tape (NPS 297) and written directly onto the master tape in the author's format. One linear interpolation for 15 m was required per station, all other data being at the author's standard depths.
5. National Oceanographic Data Center (NODC) Bathythermograph Data
a. Program Number Six

Data was read from a 7 -track tape (R 1030) and written directly onto a 9 -track tape (NPS 296). Each station title record contained the number of following station data records, hence, no further programming was necessary.
b. Program Number Seven

Data within Monterey Bay was retrieved from the 9 -track tape (NPS 296) and written directly onto the master tape in the author's format. No interpolation was required as data was entered on the tape (R 1030) at 5 m intervals.

6. Naval Postgraduate School Data

a. Program Number Eight

This program was written by Robert Middelberg for the Oceanography Department. He was kind enough to allow the author to copy and then modify the program for usage herejn. Data cards prepared by Mr. Middleberg were read by the modified program and densities were computed. All data was interpolated to the author's standard depths using Middleberg's "three point Lagiange" method. The Lagrange interpolation method more closely approximates the normal shape of a temperature profile when data is widespread (50-150m between observations) as was the case here. Finally, data was written directly onto the master tape in the authot's fomat.

7. Transferring Punched Card i)ata

a. Program Number Nine

Program number nine read the punched output
from programs 1,2 , and 3 above and wrote it onto the master tape.

8. Master Tape Record Count

a. Program Number Ten

When working with computer tape it is essential to keep an accurate record count of data as it is stored; otherwise, errors that may be made would be nearly impossible to locate. Program number ten was used to keep a running account of data stored and a double check for correct format.

C. THE FINAL COMPUTER PROGRAM

Program number 11 computes the mean monthly temperatures and densities (at author's standard depths) throughout the Bay, using data from the master tape as its input. Table V defines the output as it appeared on the master printout. Figure 2 shows the initial field of blocks used for the segregation of data. The numbered blocks on the Figure were the only ones containing significant data (at least one month with three or more temperatures in the block). This program will also be found in the section entitled, "Computer Programs."

TABLE V: $\frac{\text { Definition of Computer Variabies in the Final }}{\text { Output of Program Number } 11}$

Variable	Definition
TEMP (AV)	The average of all temperatures (weighted and unweighted) for a given block, month, and depth.
SIGMA-T (AVG)	As above for density (sigma-T).
NR WTD VALUES	The number of weighted stations processed.
SUM WTD TEMPS	The sum of all weighted temperature values,
STDEV WTD TEMPS	The computed standard deviation of all weighted temperature values.
SUM WTD SIGMA-T	As above for density.
STDEV WTD SIGMA-T	As above for density.
NR UNWTD TEMPS	The number of non-weighted temperature values.
SIIM IINWTD TEMPS	The sum of all non-ueighted temperaさure values.
STDEV UNWTD TEMPS	The computed standard deviation of all non-weighted temperature values.
NR UNWTD SJGMA-T	As above for density.
SUM UNWTD SIGMA-T	As above for density.
STDEV UW SIGMA-T	As above for density.
WTD TEMPS	A listing of all weighted temperature values.
WTD SIGMA-T	A listing of all weighted sigma-T values.
UNWTD TEMPS	A listing of all non-weighted temperature values.
UNWTD SIGMA-T	A listing of all non-weighted sigma-T values.

Note 1: All variables above are for a given block, month, and standard depth.

APPENDIX C

NOTE: Only the numbered blocks contained significant data.

Vigure 2. The Initial Computer Grid Systen.

Figure 4. Averare annual temperature (${ }^{\circ} \mathrm{C}$) cycle based on five years of data (upper 100 m from 1929-1933, below 100 m from 1932-1933) by Skogsberg. Dashed lines note scale chanze. Note: The $9^{\circ} \mathrm{C}$ isotherms by Skossberg (S). Bolin (B) and CalCOFI surveys (C) demonstrate the downward migration of isotherms.

NOTE: Dashed line denotes scale change.

Fiotre 5. Amuai lean Temperature Cycle by Bolin.

TIME (MONTHS:

NOTE: Dashed line denotes scale change.

Figure $6 . \quad$ Annual :lean Temperature Cycle Based on Caicopt Surveys.

Figure 6ג. The Progressive warming of Bay oraters.

TIME (months)

Figure 7. Standard Deviation of Temperature for selected Blocks as a Function of Time. Sea Surface Temperature.

Figure 8. Standard Deviation of Temperature, Averaged in Typical Blochs, as a Finction of Depth.

TIME (MONTHS:

Figure 9. The Annual ioan Temperature Cyclo at BIock 10.

TIME (MONTHS)

Figure 10. The innual : iean Temperature Cycle at Block 3.

Figure 11. Vertical roan Temperature Sections S-1 and S-2 for the Nonth of

TIME(HONTHS:

Fisure 13. The Annual Cycles of "ean sea Surface Temonarione in Very Shallow regions of the Bay.

TIME (MONTHS)

DEPTH
(m)

Figure 14. The Amual fean Temperature Cycles at Blocks i and 5.

TIME (MONTHS)

$\left({ }^{\circ} \mathrm{T}\right.$)

Figure 15. The innual Cycles of vean Sea Surface Tenperanne in Nelatively Deeper Refions of the Shallo ios.

TIME (MONTHS)

DEPTH
(m)

NOTE: The steep slopes of the $10^{\circ} \mathrm{C}$ and $11^{\circ} \mathrm{C}$ isotherms at Block 4 illustrate the up-slope entry of cold waters into the rogion.

Figure 15. Tise Ammal Yean Temperature Cycles at Blocas 2 and 4.

DEDM:
(m)

NOTE: Dashed lines denote scalo cinnge.
Figure 1". Typical Annual "ean Temperature Cycles of a Canyon versus an ofshore Station.

Figurc 1S. Djpping of the Isotherns Across the Canyon in March.

TIME (MONTसS)

NOTE: The intensity of Elow in the Bay (I) is based on contour spacing and is shom by a solid line. The dashed line denotes the mean offshore flow.

Figure 31. Intensitics of 'ean FIc" in the 3ay no offshore.

TIME (MONTHS)

DEPTH
(m)

NOTE: The dashed lines denote mid-values of nean jensity.
Fiourc 32. The Anmual Vean Donsity Cycles at Selectei 3locks.

TIME (MONTHS)

NOTE: The non-labeler dashed lines denote mid-values of mean density.

```
#isure 33. The Amnual `ean Tenperature versus tiensit.
    Cycles at Blocfi 1%.
```


 0000000000000000000
on 6
00
0

NM
mm
m i-conornn
M
nonion
nints

DTMENSICN UEP（35），TEM（35），SAL（35），SGT（35）

TOTAL NANSEN STATIONS PROCESSED

> O, ERR $=800$, NREFI, LATDEG,RLATMI, LONDEG, RLONMI ,の入のてのはの之ーは トは
（r） $1 \operatorname{SO}^{6}(r) 7 \forall S^{6}(r) W \exists 1^{6}(r) d=0$
NOT IN WTRY BAY BEFORE PRDCESSING noローのU11 mmz！a

D）GC TO 10
NON EXCLUDE OATA GO TO 20
NOTER VALUES
$\underset{\sim}{\infty}$

$$
\begin{aligned}
& \text { IS ICN } \\
& \text { ID } 8 \\
& \text { DD } 9 \\
& \\
& 8: 101 \\
& \text { T: } 20 A \\
& 10: 10 \\
& 20
\end{aligned}
$$

INDATA(20)
யート

uU

in Or mor

Nm runn

 りづーのシいつトーてい

WRITE（IO， 70 O NA，IN，NDAY，LL，NLT，ALM（L），NLN，AAM（L），IZ，（NSTA（L，K），K＝2 I2，1X，A4，1X，A2，1X，I2，1K， $67,7 \mathrm{X}, \mathrm{I}, \mathrm{I}, 1 \mathrm{X}, \mathrm{F} 4,1,2 \mathrm{X}, \mathrm{I} 3,1 \mathrm{X}, \mathrm{F} 4.1$ ，
 Zounaro $T+N A$ n
0
0
0
0
0
0
0
0
0 －inx •・ル
WRITE（ 6,8$)$（NSTA（N1，K），$K=1,3), N L T, A L M(N 1), ~ N L N, A N M(N 1), ~$
（IDATE $N 1, K), K=1,3),(N S T A(N 2, K), K=1,3), M L T, A L M(N 2), M L N$ ？ $\stackrel{N}{N}$ ${ }^{\infty} \mathrm{O}$ $0^{* \rightarrow}$ －

 いまてロ

（ 6 ：＊AATI）
CI）
COS（6＊AATII）
-, F6.2,
जにい絔
$0 \% 0-10$
H ビーO
0ッツも

思ささん
さんにあな
いなU菏
い＊um
$\because m+c$

$1.20 /, 01.0021$
$012 /, 01$
15
－
－ご

 ーサメロ゙ーい－

\rightarrow

[^1]
$10267+(D-400) * .4 \cdot 33 E-7)$
5
$10250+(D-700) * 3.0 E-7$.

$10304+(0-1500.1) * 2.7 E-7)$

 $(045 E-4+T \div(7.0851 E-6) 1))$$(3.5216 E-9-P \div(3.3603 E-12)))$
$1.69202 E-3)$
$(7.7711 E-7+1.5750 E-9 * P))$
 4 －为四药

 Mowwm－t－
 5O OLnN＋u＞
 そのm｜WN＞ ifamtintrit
mat
to INM，No Ors －NーNいい1＋ No，Mo．Nov ルロ・0に1トの

/LAFIMOOO9 JOB (O687,0446FT, CEG9): L.L.LAMMERS'

HN MJE LIDNCOQOFNM tLDONDGONNMN゙NO

$\rightarrow 0$－
リーデール゙

S

 67
i
\ddagger
in
．

OmN	m	tino	$1 \infty 00$	$\cdots \mathrm{N}$	mut	0	$\cdots \cos$	OHNm	d*	UnOMOCOm	Nm
vinto	L	<n¢ก	untiono	00	000	0	000	MRNR	\cdots	MNNN $-\infty \times 0$	00
H-H5	H	-لन-1	Traryrod	mind	-1mm	-1	r-4-4.d		-1		-1.

[^2]

LIST OF REFERENCES

1. Defense Scientific Establishment Report 73, R.N.Z.F.A. TUI Oceanographic Cruise - T60, North Eastern New Zealand Waters, July to October, 1964 , by F. H. Barker and R. N. Denham, p. 15-17, October 1970.
2. Moss Landing Marine Laboratories' of the California State Colleges Publication 71-1, Monterey Bay Bibliography, ed. by Doris Baron, p. 1-259, March 1971.
3. Office of Naval Rescarch Contract N6 onr-25127, Hydrographic Data From the Area of the Monterey Submarine Canyon, 1951-1955, by R. L. Bolin and Collaborators, p. 1-101, 30 July 1964.
4. Blatt, J. M., Introduction to Fortran IV Programing : Usins the Watfor Compiler, p18-22, Goodyear PubTishing Company, 1968.
5. Division of Sea Fisheries Investigational Report 76, Surface Currents off the Cape Coast, by C. P. Duncan and J. H. Ne11, p. 14-15, 1969 .
6. Garcia, R. A., Numerical Simulation of Currents in Monterey Bay, Master's Thesis, Naval Postgraduate Schocl, Nonterey, California, 1971.
7. Hopkins Marine Station of Stanford University Unpublished Ammal Reports, CalCOFI Hydrographic Data, Collected on Approximately Weckly Cruises on Monterey Bay, California, January-jecember, Sponsored by the Marine Research Committee, 1954-1967.
8. Leipper, D. F., "A Sequence of Current Patterns in the Gulf of Mexico," Journal of Geophysical Research, v. $75, \mathrm{p} .637 .657,20$ January 1970 .
9. Margruder, P. M., Jr., Physico-Chemical Data Arailable for Monterey Bay, California, a research paper for the Naval Postgraduate Schooj, Monterey, California, April 1969.
10. Mckay, D. A., A Determination of Surface Currents in the Vicinity of the Monterey Submarine Canyon by the Electromagnetic Method, Master's Thesis, Naval Postgraduate School, Monterey, California, 1970.
11. Neumann, Gerhard, and Picrson, W. J., Jr., Princinles of Physical Oceanogranhy, 1st ed., v. XII, Pre:tice Ha11, 1966.
12. Skogsberg, T., "Hydrography of Monterey Bay, Califormia. Thermal Conditions, 1929-1933," Transactions of the American Philosophical Societr, v. 29, December 19.36.
13. Steverson, C. D., A Study of Currents in Southern Monterey Bay, Master's Thesis, Naval Postgraduate Schocl, Monterey, California, 1964.
14. Stoddard, H. S., Feasibility Study on the Utilization of Parachute Drogues and Shore-Based Radar to InvestiThesis, Naval Postgraduate School, Monterey, California, 1971.
15. Yeske, L. A. and Waer, R. D., The Correlation of Oceanic Paraneters With Light Attenuation in Montercy Bay, California, laster's Thesis, Naval Postgraduate Schoob: Monterey, California, 1971.
16. Defense Documentation Center 2
Cameron Station
Alexandria, Virginia 22314
17. Library, Code 0212 2
Naval jostgraduate School
Monterey, California 93940
18. Department of Oceanography, Code 58 3
Naval jostgraduate School Monterey, California 93940
19. Professor R. S. Andrews, Code 58Ad 1 Department of Oceanography Naval ?ostgraduate School Monterey, California 93940
20. Professor N. E. J. Boston, Code 58Bb 1 Department of Oceanography Navai Pusigracuadi SGhō? Monterey, California 93940
21. Professor W. W. Denner, Code $5 \% \mathrm{Dw}$ 1 Department of Oceanography Naval Postgraduate School Monterey, California 93940
22. Professor J. A. Galt, Code 58G1 1 Department of Oceanography Naval Posigraduate School Monterey, California 93940
23. Professor E. C. Haderlie, Code 58 Hc 1 Department of Oceanography Naval Postgraduate School Monterey, California 93940
24. Professor G. H. Jung, Code 58Jg 1 Department of Oceanography Naval Postgraduate School Monterey, California 93940
25. LCDR W. C. Knodle, Code 58 Kn 1 Department of Oceanography Naval Postgraduate School Monterey, California 93940
26. Professor D. F. Leipper, Code 58Lr 1Department of OceanographyNaval Postgraduate SchoolMonterey, California 93940
27. Professor R. J. Smith, Code 58 Sj 1
Department of Oceanography Naval Postgraduate School Monterey, California 93940
28. Professor W. C. Thompson, Code 58Th 1 Department of Oceanography Naval Postgraduate School Monterey, California 93940
29. Professor E. B. Thornton, Code 58 Tm 1 Department of Oceanography Naval Postgraduate School
Monterey, California 93940
30. Professor E. D. Traganza, Code 58Tg 1 Department of Oceanography Naval Postgraduate School Monterey, California 93940
31. Professor S. P. Tucker, Code 58Tc 1 Department of Oceanography ivaval Fusigraciuate Scilvoi Monterey, California 93940
32. Professor J. J. von Schwind, Code 58 Vs 1 Department of Oceanography Naval Postgraduate School Monterey, California 93940
33. Assoc Professor J. B. Wickham, Code 58ilk 1 Department of Oceanography Naval Postgraduate School Monterey, California 93940
34. President 1
Marine Technology Society, Code 58
Monterey Chapter
Naval Postgraduate School
Monterey, California 93940
35. Chairman 1
Association of the Monterey Bay Area Govermments (AMBAG)
Monterey, California 93940
36. National Oceanographic Data Center (NODC) 1 Washington, D. C. 20202
37. Director 1
Hopkins Marine Station of Stanford University Pacific Grove, California 93950
38. Director 1
Moss Janding Marine Laboratories of the California State Colleges Moss Janding, California 95039
39. LCDR leennis L. Lammers (USN) 1 Q.H. 201 5th Street Mare Island Naval Shipyard Vallejo, California 94592

DOCUHENT CONTROL DATA•R \& D

Securty classification of tille, body ctabstract and indeximg annotation must be entered whan the overall report is classified
originating activity (Cotporate author)
Naval Postgraduate School
Monterey, California 93940

2a. aEFORT SECURITY CLASSIFICATIOM

UNCLASSIFIED
2b. GROUP
report title
A Study of Mean Monthly Thermal Conditions and Inferred Currents in Monterey Bay

- OESCRIPTIVE NOTES (Type of report andinclusive detes)

Master's Thesis, June 1971
aUTHORISI (First name, middle initicl, last name)
Lennis L. Lammers

$\begin{aligned} & \text { 6. REFORT DATE } \\ & \text { JuIV } 1971 \end{aligned}$	7a. TOTA! NO. OF PAGES 165 $76 . ~ N O . ~ O F ~ R E T S ~$
8. CONTRACT OR GRANT NO. b. PROJECTNO	8A. ORIGINATOR'S REPORT NUMBER(S)
c.	Qb. OTMER REPOFIT NO(S) (Any other numbers that nay be satpnod this regori)

Approved for public release; distribution unlimited.

Temperaturc data, collected over the past 40 years, was compiled and averaged in the first known study of mean thermal conditions throughout the waters of Monterey Bay. The following results were obtained.
(1) The distribution of mean sea surface temperature in the: Bay was obtained by calculating mean monthly values at selected grid points and drawing isotherms.
(2) Progressive warming of the upper 100 m was observed to occur in a nearly linear fashion with time, resulting in a maximum temperature increase of $1.8^{\circ} \mathrm{C}$ over the 29 year interval from 1931 to 1960. This implies that the intensity of upwelling is also decreasing with time.
(3) Geographic variations in the rates of upwelling and downwelling, causing a relatively "warm tongue" along the Canyon axis, appeared to be a major element influencing the dynamics of the Bay, and
(4) Mean currents were inferred from the topographies of mean monthly isothermal surfaces. Limited comparisons of the inferred flow to past measured currents were very encouraging and tended to support the feasibility of such an inference in the shallow waters and irregular topography of Monterey Bay.

Monterey Bay
Mean Monthiy Circulation
Mean Monthy Thermal Conditions

[^0]: 4
 In this case, the value of I (shown in the Figures) represent relative intensities at given locations and not the maximum monthly values.

[^1]: LGTP（N，D，V，M，SD，CV，NN）
 $(N), V(N), C V(M), S D(M)$

[^2]: MT, STW, TW, SUASTW,

