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A Study of the Time-Dependent 

Wind-Driven Ocean Cilecinlate aera 

by 

Ge Wencoutue and G. W. Meneame 

Abstract. This investigation is concerned with the 

large-scale wind-driven motions of the ocean and their responses 

to a time variation in the wind, Starting from the equations 

of motion for an inhomogeneous fluid, a detailed formulation of 

the problem is presented, including the listing and discussion 

of the assumptions and simplifications necessary to reduce the 

general mathematical model to one which may be successfully 

attacked analytically. 

Since the real ocean is baroclinic, the problem is 

formulated to include a non-uniform density distribution. Two 

special cases are considered. 

(i) An ocean consisting of two superposed layers of con- 

stant density is assumed and the equations are integrated over 

each layer to simplify the analysis. Attempts at an analytical 

solution for this case were unsuccessfule 

The results presented in this paper were obtained in the 
course of research conducted under Contract N7onr-35801, 

Research Assistant, Graduate Division of Applied Mathematics, 
Brown University, Providence, R. I. 

3 Associate Professor of Applied Mathematics, Brown University, 
Providence, R.. I. 
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A1l1-101 2 

(ii) A more general density distribution is then assumed, 

but a more restrictive assumption is made concerning the verti- 

cal variation of velocity. In particular, it is assumed that 

there exists a (variable) depth below which the velocities are 

negligiples As a result of this assumption, a direct relvacion 

is found between the thermocline and the free surface. The 

equations are integrated from this depth up to the free surface, 

The linearized equations are then subjected to an analytical 

treatment consisting of a perturbation expansion in terms of a 

parameter which is proportional to the frequency of the wind 

variations The resulting equations are solved by boundary 

layer technique. 

Results are derived for the response of the mass trans- 

port to slowly varying winds, and the effect of the wind on the 

intensified stream near the western boundary is discussed in 

details 

The two-layer steady problem is also solved and the 

steady position of the thermocline is determined. 
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le Introduction. Much of the investigation, both theo- 

retical and observational in the field of oceanography has center~ 

ed around the dynamics of ocean currents = including the mass 

transport of the Gulf Stream and the Kuroshio Current, and the 

general oceanic circulation. Recently interest has developed 

regarding the response of the thermocline (the region of sharp 

vertical gradient of density) to a time-varying wind, 

Since the time of Ekman's first paper iatala a large 

number of papers have appeared in some of the geophysical jour- 

nals dealing with various aspects of ocean currents. However, 

analytical investigations of the problem of general oceanic 

circulation have met with success only in recent years. In the 

past decade various interesting and meaningful mathematical 

models have been suggested by numerous investigatorss Sverdrup 

[2] and Reid [3] proposed a fairly simple model which seems to 

give very good qualitative results for a region with only one 

north-south boundary. Stomnel [4] considered two linearized 

models with a simplified viscous terme His very important con-= 

tribution to the overall problem is based on the difference 

between the results obtained with the two models. In one case, 

the Coriolis term was constant and the resulting streamline 

pattern is identical with the one in a model with no rotation. 

In the second case, the Coriolis term varied linearly with 

latitude and westward intensification resulted = a factor which 

* Numbers in square brackets refer to the bibliography at the 
end of the papers 



mein? ry ey) ea h
ia ihn ! 

Meshes’ mo 

| oul, mi vei 
‘ 4 et 

; WAS Cor « 

Heater! 

if aaees Bh, ’ 

OES fh he gee oy ih rit Pine es 

: ’ 
i 

| Pe) meet 

ia gs bey ne 
PRAT the 

pierih 4 buns 
4 = 

| i ss au io ea 

i al raaversil ie vt i 

Lely! whee La ints pul cL 

en 
“ie a ee is 

ars 

Wy Ky 

Ai five 



Al1-101 

was not present in the previous casee Since Stommel's paper 

all problems dealing with general circulation contain a varying 

Coriolis parameter. Munk [5] refined all the previous work and 

included the general viscous terms in the equations of motion, 

He solved the problem of a steady wind blowing over an enclosed 

ocean, taking account of many of the salient features which are 

present in the real ocean, Munk's work was extended by Munk 

and Carrier [6] to include oceans of various geometrical shapes, 

vize, triangular and semi-circular. It was further extended 

by Munk,Groves, and Carrier [7] to include the non-linear terms 

by means of a perturbation procedures 

Along with the American publications, a number of papers 

have appeared in Japan. Notable among the Japanese authors is 

Hidaka, who published a series of articles covering many of the 

interesting phenomena of oceanographic problems, Among his con- 

tributions are a series of three papers on drift currents in an 

enclosed ocean [12], [13], [14], and a contribution concerning 

the neglect of the non-linear terms in the solution of problems 

in dynamic oceanography [15]. 

Practically all of the work done so far in ocean current 

problems has been confined to motions which are independent of 

time. Hach publication has treated some aspect of the general 

problem of oceanic cireulation, This problem essentially con- 

sists of finding the dynamic pattern which results from a given 

distribution of winds acting on the ocean surface, 

The complete problem contains a large number of features, 

such as large-scale oceanic circulation, surface waves,upwelling, 
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AILLSTOAL B 

ete. To find all such motions one would have to take into ac- 

count the effects of the wind, density and temperature distribu- 

tion, the topography of the ocean bed and possibly even such 

features as salinity. Needless to say, a mathematical analysis 

including all these features is impossible. It is therefore 

necessary to decide what particular aspects of the problem one 

wishes to studye In this paper we shall confine our attention 

to large-scale wind-driven motions in the oceans and their re-~ 

sponses to a prescribed time variation in the wind. In the 

Atlantic Ocean, such large-scale motions must include the Gulf 

Stream and its counter-currents, the Sargasso Sea, etc, 

The time-dependent problem has also been considered by 

Ichiye [16]. We shall discuss his work later in the report. 

It has been generally agreed upon by oceanographers 

that the type of phenomena we wish to consider can be adequately 

described by the dynamics of the problem alone, the temperature 

effects being included by way of an assumed semi-empirical den- 

sity distribution, At the Woods Hole Oceamgraphic Institute, 

experiments with a model parabolic ocean basin verify the above 

conjecture, Hence, in the subsequent analysis, we shall neglect 

direct temperature dependency in the treatment of the problem 

and shall include only the effects of wind and gravitation. 

A large part of our report is concerned with the formu- 

lation of the problem and the assumptions made to reduce the 

general problem to one which can be attacked mathematically, In 

the past a discussion of such assumptions has often been vague. 

It was felt therefore that an explicit and detailed analysis of 



‘ naa ye) 
‘i a on v i 

Bet Ow: 

AL Wh ee eehnph 

st sana 

Neh Bagi: ohne, ah: 

Hs Ns ny 
ce Oe ne Rae 

: Beane pebicun Weca sai : Bernt bn tN 

bs sedulalita APNE ent WieeN Ss | HS Toatits 

EHS) ~ heeegheal 

" oa fesee her i vig ai 

yar 

a oa ee 

A PUP RL NL a 

yp ie ote i) ty hen Hei bsg 

a . . thd ifs Pa 4 ee ae ay tonne Any 

es - , it { a th r H st ‘ ry fun 

gf an a“ vy we 

an 

if 
ee 

: hes A Koken bs id ha ‘1 bey abit 



AILS LOM, A 

the simplifications involved in the formulation of the problem 

might be welcomed by workers in this field and that it might 

help to clear up any existing misconceptions concerning the 

validity of some of the assumptions, 

2o Discussion of Results. At this point we shall discuss, 

without resorting to mathematical detail, the basic assumptions, 

the results, and the conclusions of the present investigation. 

In this manner we hope to convey a more integrated picture of 

the physics of the problems 

Mathematically, the motion which we want to study can 

be defined by the Navier-Stokes equations of motion with the 

viscous terms replaced by terms arising from a macroscopic vis- 

cosity, vize, an eddy viscosity, The complete non-linear equa- 

tions are too difficult to solve, however, so that we are forced 

to make a number of simplifying assumptions which we shall list 

below. 

iy Lhe lund eis alssumed ito bel eincompie ssilpker mauirE acme, 

be inhomogeneous. 

2. The equations on a rotating sphere are approximated by 

equations in a rectangular Cartesian system. The effect of the 

sphericity of the earth is retained by allowing the Coriolis 

parameter to depend on the latitude. Since we shall consider a 

rectangular ocean in the Cartesian system, a few remarks must 

be made concerning the region of the sphere onto which the rec- 

tangle is mapped. The constant east-west distance of the rec- 

tangle is preserved in the mapping of the rectangle onto the 
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All=-101 7 

sphere. Such a mapping is not conformal since angles between 

lines are not preserved. The region under consideration must 

be well removed from the north pole. 

3. The vertical acceleration terms and the viscous terms 

are neglected in the equation of vertical motion so that, in 

efieet, hydrostatie pressure is assumed, i.e... p = g("paz, where 

n is the free surface height and p = 0 at Z = The, density 

p may, Of Course, be a function of the space coordanateiss ln 

Appendix 3 it is shown that for the problem which is independ- 

ent of time, the hydrostatic pressure assumption is necessary 

only in the depths where there is no motion if one desires a 

solution for the components of the mass transport only. If it 

is necessary to find the shape of the free surface, however, or 

if the non-steady problem is considered, this assumption or some 

analogous one must be made. 

4. As stated in the introduction, the thermodynamic effects 

are accounted for only empirically by stipulating a density dis- 

tribution, We assume p = plz = T(x,y,t)] where the function p 

of the variable (z - T) can be prescribed to fit observational 

datas This functional form for p makes the curves of constant 

density parallel. 

5. The equations of motion are integrated over the verti- 

cal coordinate, Ze 

In order to perform this integration it is necessary 

that we specify the density distribution since p appears in 

some of the integrands. We consider two caseSe 

(i) The surface z = T separates two layers of constant 



. i i ; : 

- apaw 5 he of: te aa Hooray te ve any hy Yous a pd sam 8 

tem Ao usiobiga my bidet acaaae 

seal abe pe 3) 1, ‘ pil: aot 

i: ae i 

Wties wi apt baile Ass 

we 

mat aga 

i veel bh r y ee 

Way Rates: 

vets eh i ca 

ee 

th HR Bi 

| J HPAES. “hee Ramage: me Nea 



Al1-101 3 

density. The equations of motion in each layer are then inte- 

grated over the depths of the respective layers and the non- 

linear terms are neglected. We also neglect shear forces at 

the bottom of the lower layer and at the interface. No assump- 

tion is made concerning the vertical distribution of velocity’, 

but instead, we hope to solve for the integrated velocities 

(i.e., the transports) in each layer, This case is referred to 

as the two-layer problem. Unfortunately, it is much too diffi- 

cult to handle analytically, and consequently we must consider 

a second problem, 

(ii) The manner of performing the integration in this case 

will lead to a considerably simplified problem which allows us 

to stipulate a more general density distribution than that in 

(i). The density is specified as a continuous function of depth 

and the ocean is divided into three layers, A layer of constant 

density, po, lies above the surface z = T(x,y,t). From z =T 

down to z = T - d (d is constant) the density increases linearly 

with depth from p, to the value p_jy.- Below z = T-d, the den- 

sity has the constant value, Ppt 

We assume that there is a depth z = = h(x,y,t) below 

which the velocities may be considered negligible (in some 

suitably defined sense). The pressure gradients will then also 

be negligible below z = - he As a consequence of this assumption 

and the previous assumption of hydrostatic pressure, a relation- 

ship exists between the surface z = T and the free surface 

* | Compare this with case (ii), 
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Al1-101 5) 

Z= 1, vize, T==- pp n ~C (where Ap =p_), -pP, and T = -C 

when n= 0). Thus, if the velocities are negligible in the 

depths of the ocean, the thermocline must respond immediately 

to a change in the shape of the free surface in order to main= 

tain negligible pressure gradients at these depths. 

The three assumptions, (a) hydrostatic pressure, 

(b) negligible velocities in the ocean depths, and (c) con- 

stant density below the thermocline, are crucial for the present 

ease. It is, of course, possible that any one or a combination 

of these three assumptions may be incorrect. If this be the 

case, then the thermocline need not respond to the free surface 

immediately, The frequency of the wind variation which we shall 

consider later in our development will be small so that assump- 

tions (a) and (b) seem plausible, Thus the only motion exist- 

ing below the thermocline is caused by vertical shear and this 

motion decays exponentially with increasing depth according to 

Ekman [1]. 

The equations of motion are then integrated from the 

depth) z ==! h to the free surface zo =n. This problem wilaivbe 

called the one-layer problem because of the single integrations 

The depth, z = - h, does not appear explicitly in the integrated 

equationse 

lin) both ealsejs;,, the eriecy of the wind as\represented 

by the shear stress at the ocean surface and appears in the 

evaluation of the vertical viscous terms at the upper limit of 

integration (free surface). 

An additional difference between the two problems is 
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Al1=-101 10 

that the two-layer problem specifically restricts the fluid of 

the top layer to remain in the top layer and the fluid in the 

lower layer to remain in the lower layere The one=-layer prob 

lem has no such restriction and an interchange of fluid may 

result. However, because of the integration we have no inform- 

ation concerning this vertical motion. 

6. The non-linear terms in the equations of horizontal 

motion are neglected. A plausibility argument for this assump-= 

tion, based on the results of 7a. is presented in Appendix 2, 

However, our results must now be considered tentative, since 

the case presented in the appendix for the neglect of the non- 

linear terms is a plausibility argument and not a justificatiom 

The primary motive for neglecting the non-linear terms is our 

inability to cope with them analyticallye 

(othe Coriolis parameter) as iaineariZede) | invetinect, 

this is comparable to linearizing the sine of an angle when the 

angle varies between 15° and 60°, 

With the above assumptions and simolifications we are 

in a position to attempt a solution of the non-steady problem. 

The ocean is chosen to be rectangular with vertical walls as 

boundaries on the east and west. Because of the presence of 

viscosity, the boundary conditions on these walls are that the 

velocities vanish The boundaries on the north and south are 

water boundaries. 

The wind=stress is written as 

Tee el teeticun ot) Cos) ny 
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A11-101 IE 

where W!, 1 ',w, and n are constants and t, (Fig. 1) is the 

east-west component of the stress, The above form for the wind- 

stress may be considered as the general term of a Fourier series 

expansion so that the wind-stress may be generalized for the 

linear problem. However, for our numerical example, we have 

chosen wto give a period of one year and nas 2/s where s is 

the north-south length of the ocean (0 < y < s). The wind- 

stress component t.. is assumed identically zeroe Since the wind- 
V 

stress is prescribed in such a manner that its y derivative 

vanishes at y = 0,s, it appears reasonable to demand that these 

boundaries be streamlines and that the normal derivatives of 

the velocities vanish there. 

The one=layer problem is solved by the following proce- 

dures The equations are non=dimensionalized. The non-dimen-= 

sional velocities and free surface height are expanded in per- 

turbation series with the non-dimensional time parameter as the 

perturbation parameter. Each resulting set of equations is 

then solved by application of the boundary layer techniques 

The conditions for the validity of the expansion restrict 

the time variation to a maximum frequency of seasonal oscilla- 

tions in the numerical example, yearly frequency is assumed 

and the perturbation terms of second-order and higher are 

neglected. The error involved in neglecting the second-order 

term as compared to the zero-order term is about 5%, and it is 

about 20% as compared to the first-order term. The remaining 

physical parameters are given values which correspond roughly to 

those of the North Atlantic Ocean, 
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All-101 2 

The following discussion will be based on the non-= 

dimensional quantities defined in the body of the reporte When- 

ever dimensional quantities are mentioned, we shall include the 

dimensions, 

The graph of the north-south component, V, of the mass 

transport vs. the east-west coordinate x! near x! = 0, the 

western shore, is shown in Fig. 2 for the value y* = 0625, iwe,, 

where the Gulf Stream is most pronounced. The Gulf Stream re- 

gion is the region of large positive Ve The region of negative 

Vv adjacent to the Gulf Stream corresponds to the offshore 

counter-current, 

The Gulf Stream responds to the wind in such a manner 

that the mass transport and the wind are in phase whenever the 

latter takes on its maximum or minimum value, At all other 

times the mass tramsport lags behind the wind with the zreatest 

lag occurring when the wind reaches its steady position’. At 

this time the mass transport is about 9 days away from its 

steady values ihe Length of this amverval ds Gy) Tane days. 

is independent of the frequency for slowly varying winds. 

The wind (see Fig. 1) and the mass transport attain 

their maximum values at t = 7/2, The mass transport now has a 

magnitude of (1 + ['/W') times its steady value. Thus, within 

the accuracy of the present method of solution, the time at 

which maximum transport occurs and the magnitude of the maximum 

* We shall refer to the "steady position" whenever the time- 
dependent contribution of the wind is zero. 

** j,e., the value due to its response to a steady wind 
ee t = W' cos nye 
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All1-101 13 

transport are independent of the frequency. The magnitude of 

the out-of-phase effect (the second term in the perturbation 

series) which is largest when the wind has its steady value, 

is proportional to the frequency. 

The time variation of the wind affects the Gulf Stream 

only by changing the mass transport through the Stream It 

does not change the Stream's position. 

As can be seen from Fig. 2, the relative importance of 

the out-of-phase effect is greatest in the counter-current. 

Figure 3 is a graph of the north-south mass transport 

component near the eastern boundary of the rectangular ocean 

at the latitude y! = 0.25, The accompanying out-of-phase effect 

is shown at its maximum in the figure. V is negative on the 

eastern coast, i,e., the mass transport is toward the southe 

Figures 4, 5, and 6 show the contour lines of the free 

surface in the southern half of the ocean for various times. 

With the values of the contour lines multiplied by -200 the 

three figures represent the contour lines of the thermocline. 

Qualitatively, the results agree fairly well with observation 

though some of the natural features are missing. It seems 

likely, however, that most missing features result from local 

effects which we have not taken into account, 

Because of the lengthy computations involved, we have 

calculated numerical results for only one set of values of the 

parameters. It can be seen from the analytical results that if 

the average depth of the top layer be changed, the values for 

the deflection of the free surface and the out-of-phase 
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velocities will changes Specifically, if the depth is decreased, 

the free surface deflection is increased and all out-of-phase 

Quantities are increased. 

The above results appear to invalidate the solution of 

the problem as obtained by Ichiye biG Ichiye neglected the 

contribution of the non-steady term in the integrated continuity 

equation. However, with the values of the parameters used in 

Section 4, the magnitude of this term in the interior of the 

ocean is as much as ten times that of the remaining non-steady 

terms which were retained in Ichiye's analysis. 

We have computed the mass transport through the Gulf 

Stream for the one-layer steady problem. With the given wind 

distribution our result is 26.6 x 10° metric tons per seconds 

This value is about three-fourths of Munk's value [5] and about 

one-third of the observed value. Munk used an empirical east- 

west wind distribution, 

The two-layer steady problem is solved in Section 5 

where it is shown that the mass transport streamline pattern is 

the same as in the one-layer problem This is to be expected 

since, for the steady case, the same assumptions are made regard- 

ing negligible velocities below the thermocline. Thus, the 

height of the thermocline is shown to be proportional** to the 

free surface deflections Since the free surface height is deter- 

mined largely by the thickness of the top layer, the thermocline 

* In [il6] the term corresponding to W! in the present paper 
was assumed to be identically zeroes i.ée.e, the wind had a 
zero mean value. 

*x* The factor of proportionality is the reciprocal of the 
density difference, 
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variation depends on the choice of the two parameters, density 

difference and thickness of top layere 

By varying the two parameters we can get good qualita- 

tive agreement with observations of the shape of the thermocline. 

In Fig. 9, a cross-section of the computed thermocline is shown 

for four pairs of values of the parameters. Because of the 

rather vague definition of the actual thermocline, we cannot 

state specifically the extent of quantitative agreement between 

our computed results and the observed values. Consider, 

however, the curve in Fig. 9 with a depth of the top layer of 

200 meters and a density difference of 0.0025. For that curve 

the results disagree by a factor of three when compared to some 

of the measurements of the thermocline off Chesapeake Bay [10], 

The two-layer non-steady problem constitutes an attempt 

to drop the assumption made in the one-layer problem that the 

velocities vanish at some great depth As a consequence the 

problem becomes much more complicated and it is necessary to 

introduce some other simplifying assumptions, vize, to neglect 

the shear forces at the bottom and at the thermocline. This 

may have far-reaching effects, These simplifications notwith- 

standing, we were unable to obtain a solution. A brief descrip- 

tion of our attempts at such a solution follows, 

First, the equations are non-dimensionalized as in the 

one-layer case. The integrated continuity equation for the top 

layer now contains the time derivative of the magnitude of the 

deviation of the thermocline from its equilibrium positions 

Since this term is very large, the perturbation method used in 
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the one-layer problem is restricted to a range of frequency 

values corresponding to less than one oscillation every hundred 

yearse Since these results are not physically interesting no 

numerical results were computede 

A second method of attack is then attempted. The wind- 

stress term is first divided into its steady and non-steady parts 

and the two problems are treated separately without resorting 

to a perturbation in the time parameter. This method had been 

attempted for the one-layer problem with no success, In the 

present case, however, it was hoped that the new parameter in-= 

volving the density difference could be used to advantage, Un- 

fortunately, an analytic solution still appears to be quite 

hopelesse 

The one interesting fact which seems to emerge from the 

attempts at the solution of our idealized, two-layer, non-steady 

problem concerns the magnitude of the lower layer transporte We 

music Mecalili that, in the case treated. the solution is mestricted 

to the frequency range for which the thermocline responds to the 

variation of the top surface in a quasi-steady manners; ee as 

a result of any change in the free surface, the thermocline 

assumes the same shape as it would for a steady problem with the 

given free surface, except for a small out-of-phase correction. 

In this case, the mass transport in the lower layer, excluding 

whatever transport may be caused by shear at the interface, is 

of the same order of magnitude as that portion of the transport 

in the upper layer which is out of phase with the wind. Fora 

higher frequency this result does not necessarily hold truée 
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A final word should be said about the lack of dquantita- 

tive agreement between our computed results and observation. 

The factor of three is not surprising when one considers the 

very idealized model which we have assumed. A number of more 

realistic assumptions may certainly affect our quantitative 

results by such a factor. The inelwsion of the non-linear terms, 

a better representation of the wind effects on the water, a 

more natural topography, and a non-constant eddy viscosity may 

well alter the quantitative results and bring them into closer 

agreement with reality. 

3. Formulation of the Problem. It is our aim to derive 

expressions for the velocity and the pressure satisfying the 

three equations of motion on a rotating sphere 

== +4 ° ya + 20xd + Ox(Qxr) = - : Vp +E + au * AV) 

the continuity equation 

70a 20 

and the boundary condition that 4 = 0 on a land-water boundary. 

Here, x 
q@ = (u,v,w) denotes the velocity vector relative to a 
ae coordinate system rotating with the sphere, 

@ denotes the angular velocity vector representing the 
earth's rotation, 

p denotes the pressure, 

p denotes the density, 

heal denotes the external forces per unit mass (in our case, 
gravitation), 

* U,V,W are spherical components of velocity along the direc-= 
tions) of the nadius, vine meridvans, and the paraliiels of 
latitude respectively. 
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CW UN ;V)4 represents the eddy viscosity term (discussed 
~ pelow). 

Let us consider the expression for the eddy viscosity 

term in a rectangular coordinate system, this being the system 

in which we shall later write our eduationsSe 

We define the operator (V ° A;V) as follows: 

° ma) fe) ) = 

where A,, Ap, A,, may depend on the space coordinates. These 
5 

three quantities (the coefficients of the lateral and vertical 

eddy viscosity) have been measured and are known to vary through- 

out the oceane The definition of the viscous coefficients and 

our knowledge of their magnitudes, however, are rather vaguee 

In view of this, and because of subsequent analytical simplifi- 

cations, we assume that the lateral kinematic eddy viscosity 

coefficients are constant and equal, so that 

a(V ° Ay) = (Ce +4 SA 
p axe ay” ? 

a5) 

where A is now a kinematic eddy viscosity and is constant. No 

simplification will be made concerning Aye 

Our continuity equation is valid for an incompressible 

fFiluid., In the steady problem the density may be more general 

and we have simply V* (pa) = 0. In the non-steady problem, the 

assumption of incompressibility is imposed but the fluid may be 

homogeneous. 

We shall want to make use of [7] regarding the effect 

of the non-linear terms. Because the results in [7] are discussed 

in terms of rectangular coordinates and because the use of 
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rectangular coordinates considerably simplifies the analysis, 

we shall first transform the equations of motion from spherical 

to rectangular coordinates in such a manner that the equilibrium 

free surface which establishes itself in the spherical system 

as a result of gravity and centripetal acceleration corresponds 

to the x-y plane of the rectangular system. The apparent gravi- 

tational force, iee., the force which is the resultant of true 

gravity and centripetal acceleration, acts in a direction normal 

to this equilibrium surfaces 

In Appendix 1, it is shown that our original equations 

reduce to 

ou! 1 Ou! + Out fl Gan (oye, HAI . ee 2 gy eee ey Eo 20y Ey ce OI VeA.V ; ae ax as Q sin(=) 5 arog A, du Gy) 

av' 4 yf! ov' 4 yt Ov" + 20u! sin(Z) == 1 oP ayvean.v)yt 
at 0x ay R p ay #( A,V)v (2) 

= £ QP = sag (3) 

GUY OME Our = 10 (4) 
Ox y QZ 

where 

x,u' denote the east-west coordinate and velocity 
respectively (x is positive eastward). 

y,v' denote the north-south coordinate and velocity 
respectively (y is positive northward), 

z,w' denote the vertical coordinate and velocity 
respectively (z is positive upward), 

R is the mean radius of the earth, 

g is the apparent gravitational acceleration on 
the earth's surface, 

2gsin(2) is the radial component of the angular velocity 
R vector of the earth. 
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The rectangular coordinate system is oriented with the 

origin in the southwest corner of the ocean and with the equili- 

brium surface in the x-y plane. 

A number of assumptions were made in the reduction of 

the four equations valid on a spherical earth to the four edua- 

tions given above. These assumptions are listed here for the 

convenience of the reader who does not wish to go through the 

detail in Appendix l. 

(1) In the radial component of the equations of motion, 

the acceleration terms and the viscous terms are 

neglected in comparison to g, the gravitational accel- 

erations In essence, we assume hydrostatic pressures 

(2) <All terms involving radial velocity are neglected in 

the remaining two equations of motion on the supposi- 

tion that the radial velocity is very small compared 

to the lateral velocities. 

(3) The variation of the radial distance, r, over the 

depth of the ocean is neglected and we write rv R, 

the mean radius of the earth. 

(Actually, the radial distance varies by about 1/1000 

Oi ales woweil Lerma, ) 

(4) Terms which are divided by R are neglected in compar- 

ison with all other terms. 

(5) The region considered must not lie close to the north 

pole since some terms which have been neglected 

* In Appendix 3, this assumption is discussed in more details 
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previously become infinite at the pole. In our prob- 

lem the ocean is confined to a region lying southof 

latitude 70°, 

(6) An appropriate interpretation of the results as applied 

to the spherical earth must be made, keeping in mind 

that the boundaries have been distorted. If we con- 

sider a rectangular ocean in the plane, the appropri- 

ate mapping onto the sphere would preserve the con- 

stant east-west length. Such a mapping is not conform- 

al since angles are not preserved. (In the caseof a 

Mercator projection, on the other hand, angles are 

preserved, but the east-west distance is distorted. ) 

Let us consider the simplified equation of vertical 

motion (3). In integrated form, this equation is 

uy) 
i = 2h paz (ea) 

Zz 

where n measures the deflection of the free surface from its 

equilibrium position and the scale of p is chosen in such a 

manner that p =O m g=ne Now, the density is a function of 

temperature and salinity. In our treatment of the problem, how= 

ever, we wish to avoid the analytical difficulties introduced 

by ineluding, explicitly, the enemey equation and) an equation of 

state. We propose instead to account for the thermodynamics of 

the problem empirically by prescribing a density distribution 

which roughly conforms to observation’. In particular, we 

* In Appendix 3 it is shown that a specification of the density 
distribution and the assumption of hydrostatic pressure are 
not necessary for the steady problem. 
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choose p = p[z - T(x,y,t)], where the function p of the variable 

(z = T) can be prescribed to fit observational datas We observe 

that this functional form for p makes the curves of constant 

density parallel to each other, 

A complete analysis for the unknown quantities as func- 

tions of the four independent variables x,y,z,t is exceedingly 

difficult and we are forced to eliminate one variable by inte- 

grating our equations over the vertical coordinate, z, and then 

solving for suitably defined integrated quantitiese In so doing, 

we lose information concerning the dependence of the unknowns 

on z Since we are primarily concerned with general oceanic 

circulation and mass transport, however, and since the integra- 

tion leads to a considerable reduction in diffculty, the advan- 

tages gained more than balance the loss of information involved. 

Actually we cannot afford a complete loss of information 

concerning the vertical devendence of velocity, This will become 

apparent shortly. 

The general density distribution must be specialized in 

order to permit integration of the equations over the vertical 

coordinate. Two cases will be considered. 

First, let T be a surface which separates two layers) of 

constant density so that 

plz = Wx yt) l= pa Or zh Gey) 

and 
plz = T(x,y,t)] = pp for z <T(x,y,t)a 

For this problem it is convenient to choose the coordi- 

nate system with the xy-planes parallel to the undisturbed 
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equilibrium surface and with the plane z = O at the bottom of 

the ocean, the bottom being assumed plane in this problem A 

layer of constant density Po extends from the bottom of the 

ocean to the height z = D5 + No where the constant Do is the 

average height of the lower layer and No is the height of the 

disturbed surface of this layer measured from the plane z = Do. 

A layer of constant density Py extends from the height 

Z = D5 + No to the free surface z = Dy + 11, where D, is the 

distance from z = O of the undisturbed equilibrium surface of 

the upper layer and 1, is the height of the disturbed free sur- 

face of the upper layer measured from z = Dj. 

Then equation (3.a) becomes 

Pi = gp, 0m + Dz - Zz) for the upper layer 
(3.b) 

Ron = g PLO te Dap by ca D5) * EPalia * By = z) for the lower layer 

(3.¢) 

If we denote all quantities in the upper and lower layers 

by subscripts 1 and 2, respectively, the equations (1), (2) and 

(4), with expressions (3b) and (3.c) substituted for the pres- 

sume in thie upper and) Hower Wayers., melsvectavely. pecome 
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! 
—— Ee bd meee ap eee = t i y = AE Dee Mp a 2Qv, sin (3) 

2 ann L(Ve 3 ely ——S be) ee A.V)u (8) 
pic 1 2 

Py 
t ! 1 

Ov 1 OV OV ae 2 Ugeecil? Ba At Daas th VO aT + 20u, sinGs) = 

dn On 
= 2 cal 1 e ' g[b a os Gl aa ] aes A,V)V5 (9) 

1 ! ! 

Au av aw 

ax | Oy | ee u ue 

where a = py/po, b 4P5 = pp /po =Ae/p,* 

The problem defined by equations (5) = (10) with appro- 

priate boundary conditions is quite general in that no assumption 

has been made concerning the vertical distribution of velocity. 

As we shall see later, when the equations are integrated over gz 

and linearized, the simplified problem is still too difficult 

to solvee For this reason we formulate a second problem which 

allows a more general density distribution but which is more 

restricted in other respectSe 

In this problem we retain, for the time being,the gen- 

eral form p = plz - T(x,y,t)]. Then the pressure terms in 

equations (1) and (2) are* 

ul 

foe = & OP g a 3 Oil pice 5) ox een ee tee 

7 
ace =e O28 aa aS SO, (11. b) 
POY |. Pilg (Oy pi ey iS 

Hor) the present problem the plane z = O lies on the undisturb-= 
ed equilibrium free surface. 
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where pg = pln - T(x,y,t) ], the density at the free surface. 

If these terms be substituted into (1) and (2), we have 

Ou y + ut out ab fy I Oi vt sin Z = 
at Be A age a (? 

g I" dp Z Ot af} Vv A;V)u! - = as Of aw SS at 2 U. (2) 
ie Gx i Boe ae 5 1 

J 

ov! 1 Ov! i dv! AO ae iva oa lh Sa + V we ob AW sin SS a = ut a zu (=) 

a E 
SS tz 2 elo CV" BAW) vale (13) 

Pia ek Ree OG ‘ 

As stated previously, the problem will be simplified by 

integrating the equations over the vertical coordinate, Ze 

Let us first consider the problem defined by the equa- 

tions (4), (12), (13). We assume that there is a depth 

z = = h(x,y,t) below which the velocities may be considered 

negligible™ (in some suitably defined sense), and we integrate 

from Z = = h up to the free surface, The depth z = - h(x,y,t) 

May, Of Course, vary from point to point im the oceans since 

the velocities are negligibly small below z = - h, the horizontal 

pressure gradients must also be negligibly small and we may 

therefore write 

Ps oF (14) 
=-h p ieee 

We must now specialize the general form of the density 

distribution because an integration involving p will actually 

* This assumption is the fundamental difference between the 
two problems considered. 
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have to be carried out, 

Define p = p[z - T(x,y,t)] in such a way that 

OS Pane constant OW Gj SB > E 

a2) 
{] cl = Zips for 2 Sz wid (erdiiconstante) (15) 

= (Cheloor i od S| ¢ OD I 
Ph 

With this definition the density is a continuous function of 

depth and the ocean is divided into three distinct layers. A 

layer of constant density, P>5, lies above a region in which the 

density increases linearly with depth from p, to the value p_). 

Finally, at the bottom, there is a layer of constant denen iy 

Pye This prescribed distribution agrees well with the observed 

density distribution. 

If p, as given by (15), be substituted into equation 

(14), we find that* 

OD Conn | Mol eile 
pe) AD. OR” y Ap ay vue) 

where Ap = ay Se ree 

If we integrate equations (16), we obtain 

T=-—— 7 -C Gu) 

where z = ~ C is the constant depth of T when n = 0. Physically, 

Z=-= © is an average depth of the top layer or the depth of 2 

when the ocean surface is undisturbed (i.ee., in the absence of 

winds). These two quantities are, of course, identical. 

* The alsebraic manipulation is given in Anpendix (a). 
oO C oo p 
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let us next integrate equations (12) and (13) from 

* 
Z=- htogz=ne The pressure terms become 

(a p 
at 9p Seo On es a=h on 18; On f AES dz gD ae g Kp n aS ( a) 

Ia) 

(fm) 
= al ap 6 3 5 gD on - ¢g aah 3n (Caley b) 

J-h ee oy ae a 

where D =C + d/2, and the complete equations are 

\ 

OU 45 Nit Ome aa 5) we Onl ag = 20 gia ©) 
at ax | ay R 

-h Veh 

= Tk 
= - gp 208 - g Fab , OUP saat + (a, SH (19) 

Ox Ap @)2' Oz -h 

(pea 7 me 
OV + 6 u! a dz + Fl v! ee dz + 2Q0U sin (2) 

-h 

Ot xe a 
JU =-h 

= - gD se - Dual ene + AAV + (A, _ aval” (20) 
Bo -h 

where pe iS a res 
U = pu'dz, V = pv'dz, 

J-h -h 

p is a constant,average density, 

and NC2y¥ 42 6) as A(X, o1,t) - MCx,y,-h,t). 
-h 

The non-linear terms, u'(x,y,n,t)6n/9t, etc., from 

* See Appendix 4(b) for the details. 

+s Since the vascous terms) are, in any case, only ‘approximacitons 
to the actual shear stresses, we have made the further approx- 
imation n 

( i} ee CIN Oulyg, ~ | 6) Gi) = 4b Oy <i es ou. ee (A Uu zh Ou 
Jia, 2 Oz 3 2 p va az) 3) Ca) 33 Oz lane 
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the interchange of integrals and derivatives of the velocity 

terms have been neglected, We have defined U and V as mass 

transport components rather than as volume transport components 

(by simply including an average density in the definition) be- 

cause we want to compare some of our quantitative results with 

observations and with the results of Munk, both of which are 

given in terms of mass transport. 

The terms A duly t and A avy" must give the wind- 
2 Oa oh Ser | an 

stress terms since they represent the shear stress evaluated at 

the upper limits (the shear stress terms at z = = h are negli- 

gible since -h was chosen as the depth where the motion becomes 

negligible). Thus 

i 
A, Out|° =, = x component of wind stress 
3 0z -h * 

i 

A iow = T. = ¥ COMponient OF wind) siGrelsis, 
3) Gals hy y 

In the equation of continuity we shall want to make use 

of the kinematic free surface condition [9] 

4 [z= 1G) l= 0 2G 4 = io 

When expanded, this equation reads 

wit{T = =i eal ga + yit|l g4 
x Vi 

where w'| ete. denotes the value of We GeN/omo Ge) 2 B= ac 

Integration of the continuity equation (4) yields 

ou fi oii ona! Wye ea in ae ae ah We 
x Oy p | Ox P | dy oak | : 
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where w! | is negligible by definition of h(x,y,t). Substitut- 

ing the free surface condition, we have 

6 Lay 2 | fie . 91) 
ae OC ( 

Equations (19) and (20) are now further simplified by 

neglecting the non-linear terms. The reader is referred to 

Appendix 2 for a detailed plausibility argument concerning this 

step’. 

Two final simplifications will be made in equations (19) 

and (20). The Coriolis parameter 22 sin(Z) will be linearized 

by writing 2 2 sin() = By where B = 20/R. 

In addition, if the velocities are found in some manner, 

then the free surface shape can be obtained by integrating the 

equations (19) and (20) (neglecting the integrals of the non- 

linear terms) with respect to x and y respectively. This yields 

(eb + & <a a) =) x 

where X denotes a known function. The solution of this quad- 

ratic equation in yn is 

* It must be emphasized that the argument presented in Appendix 
2 is one of plausibility and not one of justification. In 

view of the desirability of obtaining an analytic solution 
we neglect the non-linear terms in the hope that the results 
will agree qualitatively with observation and will so furnish 
a mathematical description of the ocean circulation. 
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provided the above inequality holds. It will be shown in Sec- 

tion 5 that the values of the constants which are appropriate 

to our problem satisfy this condition. 

Hence, the final equations take the form 

au = V So D ane + AAU +7 22 
ae SB: zs (22) 

av a dnp S Ca ee (23) 

OU . OW = 2 Bae QU ON ee oy 8 - 5) 
Ox i Oy ot ven) 

The boundary conditions are 0) = Vi =)Oyon a dland-water 

boundary. The wind-stress is prescribed to be 

So (Wo 1 gf i T (it I caine) icos may. ua 0) 

where W', I'' represent the magnitude of the mean wind«stress 
and the amplitude of the time variation of the 
wind=stress, respectively, 

my) is the frequency of the wind variation, 

n is the wave number associated with the wind dis-= 
tribution. 
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One can consider the above form for the wind as a typi- 

cal term in a Fourier series for a more general wind distribu- 

tion. The numerical results in this report are based on a value 

of w corresponding to a period of one year and n is set equal 

to 2n/s where s is the north-south length of the ocean. 

The problem defined by equations (22), (23), (24) to- 

gether with the boundary conditions and the wind-stress term 

will be referred to as the one-layer problem or Problem 1; 

("one layer" because the integration over z is carried out over 

the entire depth). 

For the second problem in which the density stratifica- 

; tion is specified as two constant density layers, we have equa- 

tions (5) - (10). Each equation will be integrated over the 

vertical coordinate, z, with (5) - (7) integrated over the top 

layer, i.e., from z = Do +5 to 2 = Dy +7, and (8) - (10) 

WIONGSSIENUEI ONASID rolls’ eyes Ie wisie anes | aicOm 4 = 0) UO B= Do + Noe 

As in problem 1, the non-linear terms, Be On/Ot etc., 

resulting from the interchange of differentiation and integra- 

tion,are neglected. The viscous terms are integrated in the 

same manner and the Coriolis parameter is again linearized. 

Then the integrated forms of (5) - (10) are 

aU 
Mey. 4 e( Dy = Daye iy Sn ean ee (25) 34 il 1 2 1 20 Re i ba ae 2>c 

av = On, Pp — 
= + By, + g(D, = Do + 1y = 1d) wail = AAV, + Tiy ~ Toy (26) 

Our, Pav 1 ED el NS % 
ie ii aan TOOR (P49y - 2 PoNd) (27) 



A i. ve poe atte: wl ob v whe 

BCL ee le in tae | ey, 1 ‘s 

omlitiny mt! oy Aeitil” Mee tow oF a 

avon tee a rs bits Bian wee) . 

vahiaw96, ‘pet i te Ptah “ J ‘bl ; : ‘ 

wnt we WBE) 48) exis 
anes oor: Went Une oO ‘belt 

ws yi et" Hite Bee spans 

“vo Done be hen, . ie ae 

m4 

angi tovige ahs a Baie cae 

mane pret ween t cd tncvatl & 

i “pry ‘mate ies ‘Bt Pecktey dict 



where 

We specify ee to take the same form as T 

u g(D, aii Np) gql bane Ts P11, J=AdVo+t, 7 

ou av 
a 8 = = & (Qo) 
Ox ay Che 

p2a+ ty ean 

= : i Al 

Uae = | piu,d2, Wo = | p,vi92, 

eDp+ "1p Do+ Np 

pPotNs ine: 

— ! — 1 

U., = PrUnlZ y Wo = Piao 

YO Uo 

are the x and y components, respectively of the wind- 
stress on the free surface 

are the x and y components, respectively,of the shear 
stress between the lower layer and the upper layer at 
the interface, 

are the x and y components, respectively, of the shear 
stress between water in the lower layer and the ocean 
bottome 

x 
in Problem le 

The remaining shear stress terms are assumed to be negligible. 

The boundary conditions are U1 = Vi = Up = We = Oona land- 

water boundary, i.¢., vanishing mass transport in each layere 

These conditions are much more restrictive than the boundary 

conditions of the one-layer problem since there can be no verti-~ 

cal interchange of transport across the interface at the bound- 

aries. 

Equations (25) - (30), together with the boundary condi- 

tions and the wind-stress, constitute Problem 2, or the two-= 
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layer problem (the vertical integration being carried out in 

two steps). 

It may seem to the reader at this point that, since we 

have integrated the equations of motion over the vertical coor- 

dinate z in both problems, there is nothing to be gained by 

considering Problem 2 in which the density distribution is more 

specialized thaw that of Problem le Because of the importance 

of this point, we shall discuss the significance of the two 

problems in more details 

Needless to say, the problem of greatest interest in- 

cludes the more general uensity distribution of Problem 1, the 

four independent coordinates x,y,z,t, and the full non-linear 

equations. The wind-stress components appear as the values of 

the vertical shear at the free surface z = (x,y,t). The solu- 

tion of this problem would, of course, include complete inform- 

ation concerning the dependence of the motion on Zz Being 

unable to attack this problem, we are forced to integrate the 

equations over z and to content ourselves with a solution for 

the transport componentse 

At first this integration over the vertical coordinate, 

Z, appears to have only one shortcoming, vize, a loss of inform- 

ation concerning the vertical distribution of velocity. We 

cannot, however, completely afford such a loss of informa tion 

in the formulation of the "transport" problem and some recourse 

to field evidence is necessary. Unfortunately, however, accur- 

ate observational data are extremely difficult to obtain. In 

particular, it is generally held that the motion in the deep 
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layers of the oceans is negligible, but no definite conelusions 

have been established to this effect. It is because of this 

uncertainty that we consider the two separate problems, 1 and 

2. If the motion of deep water is really negligible, the pres- 

sure gradient in deep water is also negligible and the assump-= 

tions of Problem 1 are justified with the result that the thermo- 

cline responds instantaneously to a change in the free surface 

height provided the hydrostatic pressure assumption is also 

valid. Consequently, the only motion existing in the layer 

below the bottom of the thermocline is that due to the shear 

force exerted by the water at the depth zg = T - d onto the water 

below it. Vertical shear will extend the motion to lower depths 

but the velocities will decay exponentially in the vertical 

direction [1] until they become negligible. 

If the motion of deep water is not negligible, then we 

must consider Problem 2 where no such assumption is made, In 

that case, the thermocline does not necessarily respond imme- 

diiawelly sional echanze an ‘they irce (surmace and. iiconsiequicmt inyaura! 

pressure gradient may result. Since the fluid in the bottom 

layer is homogeneous and since the wave length of the thermo- 

eline is large compared to the depth of the lower layer, a 

velocity with uniform vertical profile is set up, (hydrostatic 

pressure being again assumed). The shear stress, Toy 9 exerted 

by the water of the upper layer onto the surface of the lower 

layer also causes a velocity in the lower layer. This velocity 

is not uniform vertically. The problem including the effect of 
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G and, in addition, the stress of the ocean bottom on the 
Dre 

lower layer, is so complex that an analytic solution is out of 

the question. We therefore assume that the effects of these 

shear stresses on the velocity in the lower layer are negligible 

when compared to the velocity resulting from the variation of 

the thermocline. 

If the two problems were now solved and the results 

compared with available observational data, it might be possible 

to determine whether or not sensible deep-water motion exists. 

As we shall see in Sec. 5, however, Problem 2 cannot be solved 

by the methods used in the present paper, and numerical methods 

of solution may have to be employed. 

4, Solution to Problem 1, The solution to Problem 1 

will be carried out by means of a boundary layer technique. For 

the convenience of the reader who is not familiar with this 

technique and whowishes to follow the details of the present 

section, a discussion of boundary layer analysis is presented 

alfal,| JNoyerchatclaln-e oy 

The solution of differential equations by boundary layer 

analysis can be carried out most conveniently if the equations 

are first put into non-dimensional form. Let the rectangular 

ocean have dimensions 

OK 255 O<7 <s CPigo Dc 

Choose as a reference length the north-south dimension, 

s, and define dimensionless coordinates x', y' by 
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yo = syle (ie = Sate 

Then the east-west and north-south dimensions of the ocean in 

non-dimensional coordinates will be 

me O52 Seats On yi ie 

We shall assume that the ocean is bounded by land on 

x' = O,r and by water on y' = 0,1. 

Now differentiate equation (3.23) with respect to x and 

equation (3.22) with respect to y and subtract. Substituting 

for the prescribed wind-stress, t,, we then have 

0 (ai ot OU 4, Gi ¢ aM 2 au at ay ay Gees ay) wy a AACS a 

- [nW! + WM! sin wt]sin ny. (a) 

Introducing y 
aN eS 3 yl GE = WE 

and defining 
! 

mW Wl | neue ae eee 
Wee W 

equation (1) becomes 

w 9 av au ell Ov = eee (HONE Gi. ON BONE cs SONICS 
ca yo) OF. “ol oot 

eee, oo iam ie eo iil j 
ie? ! 

BS Bpe ax tay t@ ax 'ay fe) yt? 

=W i = @ sim ailsim msy! @2)) 

or 
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) 7 7 1 ay 7 ee oe a 

De oie meee ON eT 
Ws? axt3 ax‘ ay axt@ay! «gy 13 

= (al ee Silene] satin inane! (3) 

Now, since the term (1 + a sin t)sin nsy! is of order 

unity’, and since this term represents the ‘inal inten generates 

the velocities, it is aopropriate to choose a dimensionless 

velocity which will also be of order unity. Hence we select a 

non-dimensional term containing the velocity which is presumably 

of order one. The term suggested by an inspection of (3) is 

-BV/W and we therefore put 

yo emt iy = BY 
W W 

We shall drop the primes from the x' and y! coordinates 

and work in the non-dimensional system henceforth. With the 

definitions, € = A/3s2 and 5 = w/Bg equation (3) becomes 

Be Ul ty lU VE eel cee i a cee ae : 

= (i 4 @ sin a) sin nsy, (4) 

where Vy = 0V/éx, (Vx - Uy), = 0°V/8x0T ~ 9°U/dyee: , ete. 
If we non=dimensionalize the momentum equations (3,22) 

and (3.23) and the continuity equation (3.24) by means of the 

above definitions, we must introduce a new parameter 9 and a 

variable H defined by 
= 422 

a = aed a OTS e 
B-s3 W 

* As will be seen later, we shall choose a to be 0.2. 
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The equations become 

nsd au - nsy V+e@ = acoA (il eb cilia Gaoos inchy (5) 
T x 

nsd OV + nsy U+6 ols ns ¢ AV (6) 
2} OT oy 

and (3.8) becomes 

OU + OV = 16) moist ° (7) 

Cbs GY at 

Attempts to solve equations (5) to (8) in closed form 

were unsuccessful.e We therefore resorted to seeking solutions 

by a perturbation expansion in the parameter 6. 

Let 5 
Uw = Us + dUz + Uy BOAO 

Tey. = Si. = Oey. 4 
a XO L 2 ke 

H = H~ + 8H. + 8°H + a O alt 5) ees e 

Our formal procedure is to regard the coefficients U,, JU, etCe y 

as coefficients in a power series in 6. 

Let us substitute the expansions into equations (4), 

(prey) and(7). We have 

Woe ae OVix “OOO Voy = iy = oC 

ey LU. a OUsis. + ees ee a OUT cco 

Wee tt 8V> eon Sr Sy ak 

oxxx 7 OVI xxx ee O 

oF Voxyy ote Vi xyy + eve = Vox xy - BU xy — eee 

- = fe) —~ eee - j 7 Wane Viyyy 7 (1 + a sin t)sin nsy (8) 
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OU OU, 
nsé[—2 +6 —= +... ]=- nsy[V, + OW sais) 

OT OT 

0H 0H 
aee|O) peenelll ae = U + 67 + ene + Sls OS ae ] = nseA[U, 1 ] 

- (1 + a sint )cos nsy (9) 

O orl nsd(|——= + 6 ——= + ee. | + U. +8U5 + aco 
ae (olan ] nsyl 0 e 1 

0H 0H fe) i fe 
Fl fo) age. oe ] = nseA [V, + dV, + ove] (10) 

au aU av av aH 
© at fs See a eee fee a: oy eres eo Pea Bes gy Ip 

Ox Q Oy oy at OT (Gia) 

If we regroup each of these equations so as to combine 

the coefficients of each power of 6 4 we have, upon retaining 

terms in 8° and & only: 

ote: 5 Veal © Vows ELV Gx ‘ Voxyy ee Voxxy a Cosa 

ee + (1 + a sin t)sin nsy ee one =Usy, + ylU,, + Viy! 

= Wa = Clee. oo U ee bs eaes0 Caz) 
ina Ua xy Pell 

0H 
{-nsyv, + 9 = — IMs se (il a> & sulin 4 eos ney f 

aU 0H 
+ Fale] OES Galen eee aS ONG Oa iolba = © Ci 
{ At nS Re . ee) 

0H 6V 0H 
nsyU, + 9 —2 - nseAV, >+ e =0 . msl. + © —al=nseAVa sas = 0 

: Oy : at 1 oy ) 
L Se Gi 

COUa) CUR { u, WV,  0Ho 
aoe + [ie * a FR fo) $000 = O Ca) 

Setting each of the coefficients of 8 equal to zero we 

have as the zero order equations for (12) and (15) 
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BI oscar 3g Voxyy = Voxxy = Voyyy ]-Vj=01 Dio} Sali 45) Sibi inlay (CLS) 

U ae W = 0 (17) 

UW SO. Om sO, ae = fo (18) 

With the particular wind distribution prescribed we will 

also be able to satisfy the additional boundary conditions 

aU, 
V Sata O on Ww = O51 (18. a) 

We shall proceed to solve equations (16), (17) together 

with the boundary conditions (18), (18.a) for the velocities 

Us and Vos 

Detine a sitream fLunciron 

. 8 eek) Vo= fe, U=- x (19) 

Somuaat (Ly) as) catistied adentically. — Then (6) can sbelwiriannen 

ceAAy -p, = (1 + a sin t)sin nsy (20) 

oyna) where AA( ) is the biharmonic operator 4) D + 
ax 6x-8y- iy x x-dy 

0 ) 

oy 
Equation (36) is similar to the one solved by Munk [5] 

and Munk and Carrier [6]. In the present case, however, the 

non-dimensional time, tT, appears as a parameter, so that our 

problem corresponds to a quasi-steady probleme 

Equation (20) together with the boundary conditions 



My y 
a 
y 

‘ ‘ 
ari 5 

i . 

ian men ha " bbe 

7 ‘eh 

‘a ae 

me) 



Al1-101 WL 

baw = oO One TOR 

We W = © Cay = 0,0 (20. a) 

can be solved for wv by applying the boundary-layer technique” 

GOmieiae bo wMndancitels 5c — One Lhe solution mais 

y= 

Uy 

j -1/3 
GU ace Sivan) Salita! ny 4 =x + Tf = el/3 i B/S} (Cs-19))2 

3 x Vze2/3 

alae -r)cos( 5 )) et 

Al/3 V3 
x VRE ~ i 

= (4/3e 13 - —£_) sin( 2) ie 2 \ 

V3 J} (21) 

From (19) U, and V, are found to be 

l 1/3 (Gene 
= = ns(1 +a sin t)cos ees +rem—€ = el/36 

13 73 1/3 at 
Mite --s)costavee 4a = aires 38 )] aor me 

2 /3 D | 

22) 

i) Gene 2 
= (L 2 @Gilla wea may Ss 1 = 6 

u “1/3 

-1/3 -1/3 Wf) 288 
+ Koa = ) ioc ae = V3) sin(SB2 ye a 7 

3 

The zero-order equations derived from (13) and (14) are 

The problem defined by equations (20), (20.a) is solved in 
detail in Appendix 5 by means of the boundary layer tecnnique. 
The method used in the remainder of this paper is described 
in detail in that sections Munk and Carrier [6] used this 
method for solving the steady problem in a triangular ocean. 
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OH See SING GP WS SAUG Sl sP sint)cos nsy (24) 

CH 
Oy 

- nsyU, + nseAV,. (25) 

Solving for H,, we have, (neglecting terms of order e), 

OH, = (1 + a sint)(cos nsy + nsy sin nsy)( - x +97 - -l/3) 

-1/3 
dp (CL 2b ies Sala Ga) iach Gialiny falc j 3, (ere 

-1/3 

a8 ice 3 = r)cos( se ae 

-1/3 
-1/3 Bese 

1/3 : e 
TGV Ole - —)sin(* Jy 2 

V3 a : es 

First-Order Solution 

From equations (12) and (15) the terms of first order 

in 8 are found to be 

e[V U Se) See care yH Jt (27) 
lxxx 7 Vascyy mi Bear 5 knny 1 Ox oy 

Us 7 ae. =o Hee (23) 

The boundary conditions are again U, = Wa = © Ola 2c = Opies 

In (27) and (28) the right sides of the equations pro- 

vide the driving term as did (1 + a sin t)sin nsy in the zero- 

order equation. We shall proceed with the solution by means of 

the boundary layer technique. 

For the interior solution we assume that the functions 

are smooth and hence that the derivatives are of the same order 
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of magnitude as the functions themselves, The terms multiplied 

by € may therefore be neglected. 

Let us rewrite equations (22), (23), and (26) as the 

sum of two parts - one part, with subscript i, having the same 

order of magnitude throughout the domain (the "interior solution"): 

the second part, with subscript b, sensibly large near the bound- 

ary and negligibly small in the interior, (the "boundary layer 

contribution") 

1/ 
Oo, == ns(1 +a sint)cos nsy(- x +r-€ 3 

va 

13 Rea) £3 + 
Usp = 7 ns(1 +asin t)cos nsy “V3 

=1/3 i 3 4 1/3 Be Za 

Elite’ *-n cos 2 4G@Bic a een gene i 2 73 2 

Vos = = (Gl ia) sine) samaenasy, 
(O)aL -1/3 

Glen [cos(= Be ) + 
We Siti Suki aa) Sia msi Ke 2 

-1/ 
“1/3 . Bes sails 

+ (Zee ——-- = V3) sin(——5—— )le = 

V3 

Ctln = (1 + a sin t)(cos nsy+nsy sin nsy)(- x +7r - 212) 

3 -1/3 

ch = Gh) =e ergabey 45 ish) Sakin nay 7 60/3949 

aa eG eS 
+((e/3-r)cos(2¥3e VC 2 a yen ee a. : 2 V3 é 
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We expect the boundary layer thickness to have the same 

order of magnitude in the higher order solutions as in the zero- 

Order solution, Wwvalza. e 1/3, Thus, in order to find the first- 

order interior solution, we neglect all the terms with subscript 

b since they are negligible in the interior, Thus immediately, 

Vigo the interior portion of V,, is known and is (from (27)) 

Moa nee EViotee $ Uoiy = yHoil, 

= oa -x +r- eY3)tcos nsy + (nsy-@n*s“) sin nsy] 

(29) 

From (28) and (29) the interior portion of U,, U,,, can 

be computed directly, giving 

cos 1/3 i UG =) Se Saeciaee i= “ye fee oe il lOnsy sila iashy + 

+ (n@s*y" + en>s3 + 2)cos nsy }] + C1 (yy) 

20 

where C,(y,7) is arbitrary and must be evaluated by applying 

the boundary conditions to the complete solution, i.e., inter- 

ior solution plus boundary layer contribution. 

Before proceeding with the boundary layer analysis we 

can simplify equation (27) to some extent. Near x =r, 

OX 

250, 1 SOGe athe OG), ala Se "OU. Wes dn 

each case we are justified in using only the contribution of the 

2/3) 213. ao 

T= Oe 3), Uy, ae?) ena omto(e/3), Near 

Vj, term provided on S Sil eing) 67 As will be shown 

later, when the appropriate dimensional constants are substi- 

tuted, the error involved in neglecting the other terms is 



amo ise er lh Wee yams. oe nie 

iim ii. bs ay 2 nie 5 ety 

fat on “int me a 

(entaeteent ot saat 

Agee m
e ee Sa

in : a 
ig 

a i a cs an a At ha th ai 

at ey Avs, sof de etd ay) is meri 
) 



ALISON 5 

extremely small, Thus for all practical purposes, equation 

(27), near the boundaries can be written 

e[v 5 W lbpxxx Ino onan Opec ss Th byyy ] 
ie =-1 

-1/3,(x-r)e 

-1/3 
ar - ae jens = + 

=", WOE GE alia Da 

+ 

a snes )Je a 6 (31) 

Near x = 0, the inhomogeneous contribution which contains the 
-1 

term git-re can be neglected since its effect is felt only 

near the eastern boundary, ise, Bee ies SHU abiLenollye 5 lalevelic 

x =r, the terms multiplied by e ~~5~ ~~ can be neglected, Thus 

HOG eUMe Ke sion mean a) = 0), 

ee os Vi pxyy 3 Ui pxxy a Ui byyy Ive Vib 

= A -1/3 
= 6 OOS TG Salad Msyy ilies 21) aye cose) fe 

22/3 By arn (3) 
ios 1s Ve Son mea 3 

4 ————sin( 5 dle 
V3 

Now suppose the x coordinate is stretched by substitut— 

aA exe = eke (k > 0). Then (32) becomes 

leer , ek _ eee ee ue 
i LbEE Mbeyy IbEEy ~ © lbyyy ~ 1b 

= 6 COS « Sil tasy7iL(Ges 
k=-1/3 

Fe 

. Be Deeaie 
" meme ei a3 : dle 2 , 
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The term of highest order derivative in & is matched 

with the remaining largest term in the equation, Hence, we 

3 * formally match e273*y with V Then k = 1/3. and the 
UDESE Ifo) 

equation becomes 

Vipces ~ Yip = 2008 7 Sin patie : 
Ay 

are sin) ) &° ote =). (33) 
V3 

The term Vip can now be exnvanded in an asymptotic series 

in € and only the first terms will be kepte Since the inhomo- 

geneous term of (33) contains only exponential and trigonometric 

funeccrons, let us Ury a solution of the form 

Vay = 6 COs we Silin Inshc weve cos( V3) 7° sin( £15) ge 

(34) 

where vy and vo are the first terms of asymptotic expansions 

and are to be determined. 

If Vi, 2s ae by (34) be substituted into (33) and 

if coeificients of Sea (S BV3) be equated, two simultaneous differ- 

ential equations with constant coefficients result. 

es O O a VA =e BV Sey 4 2} 2 Vip 3 Vier 4 Viger 7 : Le +35 Vice = i 2 DE 
2 

3V3 y 3 ey y° -3 v9 235 
Vee asa Lene, 2 

* The fact that k = 1/3 indicates that the thickness of the 
boundary layer is of the same order of magnitude in the zero 
and first order solution, as was anticipated. 
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Particular solutions of (35), (36) are 

v4 = ea cae 3 , Vo = ee Se Ee 

3 i 3 V3 

The homogeneous solutions may be derived by letting 

Vi = eS Vv 0 
ali 

Then (35), (36) become 

eee ee ie QO (7 ee a Ne) ee 

] 
Gx3 eels x + Bi-=n - 3X Pel = @, (33) 

Hence, since the determinant of these two simultaneous 

- equations must vanish, we have 

3. 2 Bz OF - 30° -30)° + 22 (y- 07)? = 0, (39) 

The roots are 

= 0,0. Seem A —_ ; VAS & V2 a (0) 

cnerar 

1/3 3+ V3i Vong euslsty 7 3}3b 15 
Ou a 2 7+ Ane +A e Aye ee 

—6) 4 ees Say V3it sau ne - Y3ik 
Vo = ==-—- 6 + Bee D + Boe +B, € 2 By, By 

moe 

Hence, from (3+) 

Vip = weost sin nsy e234 5 (35 fe 277 eV 31E+ Aye V32E 4 1 

1/3 Voit) = Vai 1 
+ sin Sy aie E+ Boe +B),€ : +B, | Me 

3 V3 ; 
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where we have set Ar = Ay = ie B, = 0 since the contributions 

of the terms with those coefficients do not tend to zero as 

E—-> ©, 

When (37) and (38) are used to get a relationship be- 

tween the A; and the Bay then the final form for Vj, near x = 0 

LG} atoll WO foe) 

he W/3 
oe =a COS Sin ensy ve 23d M3 5 ree sdeos(lab.) 

1/3 
+ a Sa © 3) sing a (42) 

where Cc, and Oe are arbitrary functions of y and t and must be 

| found by applying the boundary conditions to the complete solu- 

tione 

In a similar manner, if we make the following two sub-= 

stitutions for the right (eastern) boundary 

h 
(x-r) =e! 

h=1/3 
-1/3 ne 

Vay =) GOS % Salia migyy & e [v$ Tiialiove Ms 

* 

Wemmind that lk = 1/3) and 

-1/ 
Woe = 6 COS a Silla inca eS 3f 3 + A, (y,t)le" g fis) 

We have used the fact that V.,.—>0 as n~- ©. (As stated in 
1b 

the appendix, 1 ->~q@ when the boundary on the right is under 

consideration, since the boundary layer solutions must become 

* The same remark applies to the value of h as previously made 
Hors che awwe VOm | Ke. 
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negligibly small as the distance from the boundary increases, 

ican TS) Ol Xe Ceereascss 

If the three contributions (29), (42), (43) to the com- 

plete solution for V, be added, the final form for Ve is 

dL 
Vi = SEC OS8 (See eee 13) ty?ns + @n“s-) sin nsy + y cos nsy] 

i.) 

=/3 -1/3 
-2 

+ @ COS tSin nsy « 13 jee 2 4 Co(y))eos(= eas 
3 

-1/3 x Vie ae a = zene 
+ (Sie ee las x +C 3(y))sin(iets- 

3 V3 
-1/3 (a 

W/o l/s yi (x-r)e 
+ @cOS tT Sin nsy ¢€ ae E + A, (y) io . 

: (44) 

By means of the continuity equation we then find 

UL =e ao [2nsy sin nsy + Gan 25 oa Der 6n3s3)cos nsy | 

2 ’ 1/3 
[- oe ar (( we) ] + Ci(yb)- = sy) sin nsy e-/ 36 ==2)E 

173} (xer)e7l/3 - acos Tt ns cos nsy[A- : a. e 

-1/3 A FS 
= cos GF Sin nsy = A mE - oo ialenye habia sash S 

-1 
-1/3 1/3 -1/3 eee 

T(rel/3 - pee) ay ie - #&— sinha ) Ie - 

73 2/3 -1/3 
- a@cos tT ns cos nsyé 20 EXC Sg Sed fe 1S) ogee oe) 

3 3 3 2 
1/3 

2/3 ELA) iieny Se a 
+ (ea gee? Soe gems Vet dle 2 

Va woos 3 V3 2 
-1/3 173 
“a tc, V2 ¢ 3) sin ney Cog WBE Es) + 

=273))) eycecmas 
- V3 C,,)sin nsy sin (Sie ——) e 2 5 CD 

+ aecost 

+ 
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The arbitrary functions of y can be evaluated by means 

of the boundary conditions U, = V, = 0 on x = O,r. We have 

2/3 2 2? 
sin nsy Cy = SS [Cay + Q@n°s“)sin nsy + y cos nsy] (46 ) 

4 e2/3 2 2 2 
sin nsy A, = =a (Las + Qn°s-)sin nsy + y cos nsy] (4-7) 

C, = fe! a.cget [onsy sin nsy + (y°n 25> 4 2 + On3s3) » 

— 

2 iL 2 2 
’ “GOS nsy]{5- = Pe /3 + € (3y -€ 13 (828 + 1l)cos nsy f (48) 

sin nsy C, = [2e/3(y*ns +2 4 en2s®)(rel/3 = 22 - 62/3) + 
F | ns 

2€ r9et/3 bh 2/3 
+ S& . £2£_-Jsin nsy + (Sy cos nsy - — sin nsy)re ~ 

3 3 ns 

2 2 
- (9y cos nsy - ee sin nsy)e eel: [Sy (ee oneacyneae ih nsy - 

(49) 

The first-order contribution to H can be found from 

equations (12), (13). The first order equations are 

ou 0H, 
ns ee nsy va + Q erin aseAU, 

aV 6H ale pune ns rem ash We, ae © arte nseAV, 

from which Hy is found to be 

Hy = peel. + y “Joos nsy + (y3 ns + yon® s =) sin nsy 

- r)(x + swe) J + 4. cos nsy + 

2/3 a (3 (G08 4 » De ae nsy , ees yb, 

nas 
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4+ 2 o98 ~ nsy sin nsy e 195 [8 yeremee _ rx ae 3 

i op. 
1/3} 2/3 SS Sil 3} 1/ 

as 

= eee 2 
e 

x Vale 
E 3 

ieee Wy 3} aed a) een 
+ (C. = |B C.) sin( 11 be 2 + aaa nsy sin nsy *° 

~ = 3} 

1 I/ Be) = 7/3 | (eerde 
N= (x = r-=-c€ ) + A, pe : 

: J 
The terms Uy and Vi do not satisfy the boundary con- 

6U 
ditions Wa = = =Oony =0,le We must recall that these 

boundary conditions were chosen rather arbitrarily as being 

(50) 

plausible ones for the type of wind distribution specified, and 

the y dependence of the zero-order solution was accordingly 

chosen as sin nsy.e We cannot expect such a y dependence to 

satisfy all the conditions for each set of equations. The fact 

that U, and Vi do not satisfy the boundary conditions does not 

seem to be very serious since we do not really know what con-= 

ditions are appropriate. 

If we next consider the equations resulting from equat- 

ing the coefficients of 8° to zero, we obtain from (8) and (11), 

e[ V +V Sr) 20 
2XXX Qxyy 2xxy 2yvyy lec a = Wage) = Ujyy-vHy) 

A 

Ope Ve = 2 Bac 

In the boundary layer, near x = 0, V,, is of order au 

L Thus we can expect V5 to be of order ST in way 2wegiom, By 2 

similar argument, we can expect V3 to be of order omy Vj, to 

-5/3 19S) Oi Oiler Ee AGwOs dh? WE) WhaSwEKOME WeIwe OCG wine Seieles 
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WS Ve Oa ae 4 eV, soy, fe) aie 

we have in terms of orders of magnitude near x = O, 

Vie O(en’ 2) + be7 V3 o(e- V3) 4 

+ soerls o(e7 1/3) + ose7t o¢e7 3) hen 

-1 
or factoring out the O(e ey we have 

=I 
VS o(e7 2/3) [4 te gen l/3 + (d€ £32 saa, JER 

The perturbation scheme may be expected to be valid 

1/3 
provided d¢ < 1. We can expect a fairly good approximation 

from only the first two terms provided the more stringent con- 

~1/ 
1/3 << il ale anoseels ihe oe : = 1/95 wae) Sieicor9 Gustaom “S/e ) 

involved in neglecting the third term is no larger than 5% of 

the first term 

“V3 2 1/6. Hence For yearly variation of the wind, de 

we shall keep only the first two terms of the series, It should 

be noted that a determines the magnitude of the effect of the 

perturbation but it has no bearing on the validity of the ex- 

pansion. 

Numerical Example 

In order to discuss the above solution, we shall pre-= 

scribe numerical values for the constants of the problem Let 

Ste ys 
ry = 6.5 x 119° aya ) = 2 sc lO ent seers 

8 
S |= 5 xc lO om D 

i 

5) 3s 10 tem(C = QO, G = GOOm )) 
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25 _1* 
2 sect Qa 3 LO Uae 1 

7 
WM = 5 se MO) olin 

ae 2 
1 = 2n/s Wt = 0.65 gm emy- sec - « 

The magnitudes of r,, s, A, D correspond roughly to the 

Atlantic Ocean parameters. The value of B is chosen so as to 

give the best approximation to the Coriolis parameter in the 

laticude of Cape Hatteras. The equality mn = 2/5 corresponds 

roughly to the east-west components of the trades and the west- 

erlies. The value of w corresponds to yearly frequency of the 

“2 is the value used by wind variation and W! = 0.65 gm em tsec 

Munk [5] for the wind stress. 

Then the dimensionless constants have the values 

We=odx 1072 ing = Zac 
oO UH fe 

% D 
€ = A. = 2 x 10 6 e= = = Op 123) 

Bs? Bs 
r= NG 3} 

Also I! has been chosen so that 

a= Oo 2 

The results for this numerical example are shown in 

Ries. 2 =) Os 

In Fig. 2 the non-dimensional, north-south component, V, 

of the mass transport is plotted against x' near x! = O for the 

value y' = 0.25. The region of large V corresponds to the Gulf 

* Corresponding to an annual period for the wind fluctuation, 
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Stream and the section adjacent to the Gulf Stream, with nega- 

tive V, corresponds to the off-shore counter-current, 

For the Gulf Stream, the extreme values of V are in 

phase with the extreme values of the wind. However, for the 

points between the maximum and minimum values of wind strength, 

the transport lags behind the wind. 

During one cycle of wind variation the following result 

is found. The transport and wind both have maximum values at 

t =7/2. Immediately after t=m2/2, the wind begins to decrease. 

The transport also decreases but it lags behind the wind. At 

tT =m the wind has reached its mean amplitude and the lag of the 

transport is greatest, vize, an interval of 9 days” elapses 

between the time the wind reaches its mean amplitude and the 

time at which the transport reaches its mean amplitude, After 

t =n, the transport begins to gain on the wind until at 

t= 3n/2, the two are again in phasee The wind and the trans~ 

port now begin to increase and the transport again lags behind 

the wind, The maximum lag is reached at t = 2x at which point 

the transport begins to catch up to the wind. They are in phase 

again at t = 5n/2, This cycle is repeated indefinitely. 

The discussion presented here is based on the assumption 

that the first two terms of the series represent, in a sufticient— 

ly accurate manner, the complete solution. One result of this 

assumption is that transport reaches its maximum value at t =7/2. 

* It is shown later that the value 9 days is independent of the 
specific value of the fredueney for slowly varying winds. 
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The perturbation contribution vanishes at that instant since 

its coefficient is cos gy Thus, no matter what the value of 6 

(essentially, the frequency), as long as it lies within the 

limits necessary for the validity of the above method of solu- 

tion, the maximum value of the transport will occur at t = mn/2, 

m= 1, 5, 9 ««. 5 and its value is given by 1 +a times the 

steady transport value. 

The interval of 9 days between the time at which the 

wind reaches its mean amplitude and the time at which the trans- 

port reaches its mean amplitude is also independent of the fre- 

quency. To show this let Vp = (1+ a sin t)Q and V, = al cost. 

Then V = (1 +a sint)Q + 8a Lcost. Since the mean value of 

the transport is V = Q, we can find the time at which this occurs 

by setting 
(1 + a sin t)Q + aL cos t = Q 

or Ls 

(Geia ~ S53 5 4 

Q 

since 7 is small, we can write tant 7 7 and therefore 

L 
Te - a. 

Substituting t =wt and 8 = w/Bs, we have finally 

Rare eic eT] oa0 ace 

which is independent of frequency anda. 

It is apparent from Fig. 2 that the out-of-phase effect 

is of relatively greatest importance in the counter-current 

rather than in the main stream The graph shows the various 
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effects only up to the eastern edge of the counter-current at 

x' =O.le For x! > 0.1 only the mean position of the transport 

is plotted since the deviations from this mean position are very 

small. 

Near the eastern boundary of the ocean (Fiz, 3) and in 

the counter-current region (Fig. 2), the absolute magnitude of 

the extreme values of the transport (which is now negative) are 

also in phase with the extreme values of the wind and the trans- 

port lags behind the wind at all other times. 

Figures 4, 5, and 6 show surface contours for the 

southern half of the rectangular ocean for t= 0, ®/2, T, 37/2. 

The contribution of 5H; is very small throughout the ocean** and 

has therefore been neglected. Thus the graphs for t= 0 and 

T=" coincide. This result is based on the assumption that D 

is 500 meters in thickness.e If D were increased the above re= 

marks would be even more appropriate. If D were decreased, the 

contribution of the perturbation term would be larger and we 

would therefore have to account for ite The value of the first- 

* If we define the thermocline as the surface at z = T - d/2, 
then the contour lines of Figs. 4+, 5, and 6, multiplied by? 
-200 represent the deviation of the /Hnermoel ine from its 
equilibrium position at z=-C-d/2=.D, 

** Tf for any of the variables the magnitude of the coefficient 
of 8 in the perturbation solution is of the same order as that 
of the zero-order term, the coefficient 8 = 0,002 renders such 
a correction negligibles Throughout the present example, the 
only sizable contribution of the out-of-phase term is found 
in the north-south transport V in the boundary layer where 
the function V increases by order e7!/3, However, Ho and Hy 
have the same order of magnitude throughout the ocean so that 
the first-order correction H, can be neglected throughoute 
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order velocities would also be altered when © is changed. We 

shall consider several values of 6 when we discuss the deflection 

of the thermocline in the steady two-layer ocean. 

The meanmass transport of the Gulf Stream (corresponding to 

the steady problem) is 26.6 x 10° metric tons per second as com- 

6 
pared to Munk's value [5] of 36 x 10° and the observed value of 

Y2=eo x 10° metric tons per second. Munk [5] used the east-west 

component of an empirical wind system and the discrepancy is 

therefore due to the difference between the two wind systems, 

At the time of maximum (minimum) wind the transport is 20% higher 

(lower) in accord with the remarks made previously in this sec- 

‘tion. In the counter-current the steady mass tranport is 4.61 x 

10° metric tons per second. 

The difference between the computed and the observed 

values is not surprising when one considers the many idealizing 

assumptions made. Such features as the straight coast lines, 

the simplified theory of turbulence used, the neglect of the non- 

Winear terms, and a more realistic stress-effect of the wind on 

the water could well change the quantitative results by a factor 

of two or three. 

The problem as stated and solved by the above method 

gives no sensible east-west variation in the position of the 

Gulf Stream, but a careful investigation of the eastern boundary 

of the Gulf Stream shows a very small narrowing of the stream. 

How well such a result agrees with field evidence is uncertain 

since our solution yields no inshore counter-current,. 
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It would be interesting to ascertain how well our pre-~ 

dicted results agree with observation; specifically, if the mass 

transport of the Gulf Stream responds as indicated to variations 

in the wind and if the lag of the transport is independent of 

the frequency. 

5. Methods of Solution for Problem 2. The equations 

(3.25) - (3-30) are non-dimensionalized below in order that 

boundary layer theory may be employed. Using the arguments of 

Section 4 for the method of non-dimensionalizing, we have 

Sey ESaeple Ki = gw = ‘ = Bs 

aor 
ae = ISIN 

ng(D, - Do) 
tT =wt, Os 5 9 

2 Bs? 
Vv 2 ap _ B 

aie Ac ome 
ue Bas 

me A 
W Bs 

a Uap ee 
NE sre Bs ? 

Uop rota 

aa: at 
: B°sp 174 a0 
i 5 ew ’ a ’ 

a) ip 

H a eOSEe 2s bie eee 

2 W Py 

Then equations (3.25) = (3.30) become 
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aU aH 1 a ee US ab 
nsdé -—=- - nsyVy = - 9 = = - Steet 

Ot ae ax a Behn Sects : 

+ nseAU, - (1 + a sin t)cos nsy (aL) 

av 0H a 6H 
ns ——+ + nsyJ, = - 09 —1 - S84; H, - a,j} + aa yUy ay [ Bel a + nseAV, (2) 

0U aV 
pal per apeles acl 2 0) = ae ae See [Hy aH, J (3) 

Oa = Vg = — ta (Hy + DHS) = AH (Hy + BHD) FeAUR() 

ov. 

one} OV 0H 
See a ee eRe I, geen 6 
Ox ‘i Oy e @) 45; “ey 

Let us first treat the case of a steady wind, Gan 

a= 0 and Ydt =43/dt = O, and let us assume that, in the case 

of steady motion, there are no velocities, and hence no horizon-= 

tal pressure gradient, in the bottom layere Equations (4) = 

(6) are then satisfied immediately by 

ae Del Uy Sg = On By So ae (7) 

i fe) a AGN ee ; - nsyV] = - se [ OH, — ad + nseAU, ~ cos nsy (3) 

jee SO ca, 2 BES ge J esi (9) ego PON wagag ert ee 

aU, Vy 
——= = 0, (10) 
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Differentiating (8) with respect to x, (9) with respect 

to y, and substracting, we have 

e[V We Se Galigy ney (11) 
Lexx 7” "ery ~ Uy 7 U1yyy il 

which is equation (4,16) with a = 0 

Thus the transport distribution for the steady case is 

preewcely, the same) aseit is) an Problem i, “Lherdin semencio sam 

behavior enters into the non-steady case when the motion of the 

interface affects the motion of the water in the top layers 

If we set a= 0, then equations (4,22) and (4.23) are 

the solutions for the present Ce ale Similarly with a = 0, 

from equations (8) and (9) above 

MSs 62 
Bisa Hy Heh = OH, 

where H, is given by (4,26). Then H, may be written 

(je ae ze ask it 

Hy = +--+ (2) 
ost 
b 

However, if 2nX\/@b Hp < 1, then H, may be written 

approximately 

ee fee ss Ho] 
Hy itu teats ee ote RENE se ES Ho e Gis a) 

b 

Hy can then be evaluated by 

Hee yl i =e (7) 

If the dimensional constants* which were used in Problem 

* The depth (D,-D5) is given the same value as D in Problem l» 
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fare used here, and Wf we put b = .005, then (12.4) ds conrect 

to 0(10°°), The streamlines and the thermocline, Ho are shown 

alin Males, V7 ial Gy 

In Fig. 8 it can be seen from the contour lines of the 

thermocline that there is not much deviation of the thermocline 

from its equilibrium position. In particular, if the initial 

depth be 500 meters, the thermocline does not fall more than 35 

meters below its average depth in the southern half of the ocean. 

In checking our results with observation, we find that 

quantitatively this result is in poor agreement with field evi- 

dence. The definition of the thermocline in the real ocean is 

vague, however, and hence the two parameters @ (corresponding 

to the average thickness of the top layer) and b (the density 

difference) are not clearly determined, In fact, they may vary 

over a wide range giving rise to a very considerable variation 

in the deflection of the thermocline. 

In Fig. 9, the vertical cross section of the ocean at 

y' = 0,25 is shown for four combinations of © and be If we 

consider the curve with 9 = 0.0492 (Dy - Do = 200 m) and 

b = 0.0025, our result is in good qualitative agreement with 

measurements of the thermocline off Chesapeake Bay [10], Quan- 

titatively, the values are out by a factor of (approximately ) 

thr eee 

Our solution shows a tendency for the thermocline to 

approach the surface in the northern part of the ocean (Fig, 8). 

As a matter of fact, if @ and b be chosen small enough, the 
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interface lies above the free surface! Such a result is absurd, 

of course, but the tendency of the thermocline to approach the 

surface in the northern part of the ocean is clearly indicated. 

This fact agrees with observation since the thermocline actually 

reaches the surface in the north. 

Non=Steady Wind 
In the treatment of the non-steady, two-layer problem, 

we shall neglect the terms with coefficient \ in equations (1), 

(2), (4+), (5). For the steady problem, if @ and b are chosen 

appropriately, it has been shown (eduation (12.a) that the error 

involved herein is small. 

Two methods of attack have been applied to the lineariz- 

ed equations of (1) - (6). Our first procedure is that used 

in Problem 1, viz, a perturbation in 6 followed by a boundary 

layer analysis. 

The ditticuilty anvthe fanrst method vom solutvonvarisers 

from the fact that the quantities with coefficient 6 are no 

longer small, i.e., the magnitude of the terms is no longer 

governed by 6 In particular, in the continuity equation (3), 

the term on the right hand side has magnitude 5/b H, (based on 

the steady solution). In the interior of the ocean where Uy and 

Wa) are (OC) and Hy = oer) in order for the perturbation in 6 

to be valid, we must have 8 < <1/0b. ‘ith the dimensional con- 

Stans on eroblem al thas means oO (<< 1onts Such a value corres-= 

ponds to a wind period of one hundred years or morcee 

If the above results were the only objection to the 
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analysis, the problem as defined thus far might still have some 

Qualitative value. Unfortunately, for such a small value of 6, 

the terms in the equations of motion which involve a time-~ 

derivative become very small, and we are wholly unjustified in 

neglecting the non=-linear terms while still retaining these 

time dependent terms. 

In spite of these objections, the analysis fcr Problem 

2 by the first method was carried through but the results were 

not computed numerically. The analytical results are listed 

in the next few pages, 

'! <j Uy = + 6U V 
iLiby a 

leh VE el + 6H U 21) a = 56) 21? ao 21 U + 5U 
2 20 

7 
where Ung=Vog = 0 by equation (42), Uios Vio» Hy are given by 

equations (4.22), (4. 23) and (4.26) and the remaining values are 

given below. 

2 
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j 
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5 

/3 
re 
ey 

i 

3 
= 

2 
nsy sin nsy) 

Nee: 
(nsy sin nsy + 3y cos nsy)e 

- r el/3) [nsy“sin nsy + £52 O87] 
n 

+ Sie + yon*s“)cos nsy + 2yns sin nsy ] 
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The second method of attack on the non-steady two-layer 

problem consists of separating the expression for the wind-~ 

stress into its steady and periodic parts, ieee, (1 + a sin 7) 

cos nsy = cos nsy + a sin acos nsy, and treating each problem 

separately, This method of solution was also attempted in the 

One-layer problem The resulting equations could not be solved, 

however, without recourse to numerical methods. In the present 

case, we hope to make use of the smallness of the parameter b 

in seeking a solution. 

In equation (3) the right hand side may be approximated 

by d/ dt (= Hy + aHy) & 3/dt (- Hy + H5)s% OHo/ 0%. 

The steady problem with cos nsy as the wind-stress term 

has been solved previously. For the time-dependent problem, we 

write 

H, = 0H,, Hy = ObH,, t= 

Then, with the time-dependent part of the wind=-stress only, (1) 

(6) become 

Uy 3H, i 
Mo) =i ASVVE) = = + MSicAUS T=) 1G) Saint a icoysisnis 

6H 
mem 2 iE misy Ua p=) ese nse Ay 

Ot 1 ay 1 

av aH 
Ue mee 

Ox 6) OT 
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av oH, oH, 
d—£ + yU, =-2 (—t + 2) + cAV 
Barer ay ae ee 

CUB Ue aoe 
ox cy Y ar 

Next let us write the wind-stress as the imaginary part 

LG Hi é : 
of ae?” cos nsye Then if we take only the imaginary terms in 

the remaining parts of the equation, the results will be the 

same as those above. 

Define 

seas et Mee! Gian Hee Nace | ee kl Uae = ae YU, o(%sy) Nae = ge Vy ol%sy)y Hy p=ae Hyp le,y)s 

The equations become 

mee sh dhy ik 
SIS OMG Re SYN T= ee + nse Uy - cos nsy 

a ah 
insdv, eS Va aval + nseAVyz 

Unait Vay = ly hy 

- Fat , dha, 
16U5 -_ YV5 = An Pp ae) op EAUy 

‘ay ps én; 6) ) A 
al Vo qP YU5 3S 2 7 aa ap Vo 

v So Fl yh a Case + Voy al vf 2) 

The above equations must be solved for the six unknowns, 

The difficulty arises in trying to match the boundary layer con- 

tirbution with the interior solution. To conserve space, we 

shall not give the entire analysis here, but shall confine 
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ourselves to the determination of the boundary layer contribu- 

tion and to an indication of the ensuing difficulties. 

Carry out the following three steps: 

(a) Let x = oe ise, stretch x coordinate near x = 0. 

memes) el o= (bo) Substitute Mame = 6 ee yee lye 

(c) Keep the leading terms of the equations. 

The equations then reduce to 

nsyV, = Hie 

insbe /3y, cp aR Bly SS Ay + NSVI xe 

Wie + Vay = iyhy 

YV5 = y (hy ¢ + Nyy) 

Uy te + YU5 = - R (hy, srl) Vorr 

Ug + Voy = - iyh, e 

Eliminating all the unknowns except h5, we find 

-— - = O Psa ee esg AG 12 
where 

Sy ee yg hace Ol) 
1 iy 

Solutions are 

y D,& 
No = No Cree 

wae i 
eile 

where the Di are the roots of 
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They are ia oa ER 

= (2 6, +2A+2B) aye b, +2A42B)* - 2(A+B = oe) 
Dea oars a 3 3 
U2 ree eae at a EAT EaTE ay 

2] 

‘ : 4 64 +2A+2B = & b1+2A+2B)* - 2(A+B- OMe 2) 

35 2 

where mined eee ——, 4) 

ea a Rey Ar 5 3 2 3 
a ee / 1 SK a, a al A = a oF 3 39 oF - [SCL oa) | Fs ara - 37) 

3 Mii a ha iy moe 3 
USeuen mes b EBulavn Sages Wea) Te ge elk. ewe a rel ai eh ell ileal RT| 

i) = {4 ae cae a - \ fn oF 3 )] a + + | ° 

The above solution for ho must now be substituted into 

the previous six equations and the boundary layer contributions 

eon wh can be derived by keeping the parts which Te ihe ual 
—+> O0as —€—5o. If the interior and boundary layer solutions 

are added, the Cy can be evaluated by means of the boundary 

Comditions Uy = Vi = Uo = Vo = 0 en x = Or, 

Practically, this is an almost impossible task, and 

numerical methods must be employed for the whole procedures 

In view of this fact, nothing is gained by the analysis and the 

entire solution might as well be carried out numerically from 

the very beginning. 
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Since we have been unable to arrive at a useful solu- 

tion for the non-steady ocean circulation without assuming 

negligible velocities in the bottom layer, we have no assurance 

that our analysis is valid. Reliable observational data which 

might guide us in this matter are not available, We may per~ 

haps gain a little more confidence in the results of this inves- 

tigation by the following considerations. 

For the formulation of Problem 1 it was assumed that 

the velocities, and hence the horizontal pressure gradient, 

vanish in the bottom layer. This, together with the hydrostatic 

pressure law, immediately led to the conclusion that the thermo- 

celine responds instantaneously to any motion of the free surface. 

Natumaity, this can hold, if at all, only for surticienbly, 

slowly varying circulation. 

Some investigators are of the opinion that the very 

opposite situation actually exists, i.¢e, the thermocline re- 

mains essentially fixed and does not respond to wind variations 

of, say, seasonal or annual periods, This is perhaps a more 

reasonable assumption because it is based on the idea that the 

frequency of wind variation is much greater than the important 

frequencies of free oscillations of the bottom layer. 

Let us assume, therefore, that the shape of the thermo- 

cline remains roughly fixed in such a manner as to result ina 

vanishing time-average horizontal pressure gradient in the 

bottom layer. That is to say, the thermocline adjusts itself 

to the mean wind distribution so as to give zero pressure 
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gradient for the case of a steady wind having this mean distri- 

bution, If we now have a time-dependent wind, we will have 

non-vanishing pressure gradients in the bottom layer as a result 

of changes in the free surface shape. The resultant velocities 

in the bottom layer will tend to be uniform vertically (except 

as influenced by friction) provided the bottom layer has fairly 

uniform density so that the pressure gradient is independent of 

depthe 

Suppose we have a two-layer ocean and integrate over the 

top layer only. If we make use of the assumption of a station- 

ary thermocline, and if the effect of friction at the thermo- 

cline on the transport in the top layer is negligible, then the 

resulting transport equations are essentially the same as those 

attained in Problem 1. Henee, the distribution of mass trans- 

port obtained in Problem 1 may be expected to be valid now, 

provided it is interpreted as the distributions of transport 

above the thermocline. Since this is the transport usually 

measured, we may still hope that the results are useful. 

66 Conclusionss If the velocities in the depths of 

the ocean are negligible, then the horizontal pressure gradients 

are also negligible and the thermocline responds immediately to 

a change in the free surface height provided the hydrostatic 

pressure equation is valid. For such a case, the following 

results appear to be valid (within the framework of subsequent 

approximations made in this report): 

(i) For a varying wind with a period of three months or 
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more, the mass transport through the Gulf Stream responds to 

the wind but lags behind it at all times except at the instants 

of extreme wind variation when the two are in phase. 

(ii) The maximum lag appears when the wind is in its 

mean position and an interval of about nine days elapses between 

the time at which the wind reaches its mean value and the time 

at which the transport reaches its mean value, The actual 

length of the interval, oe nine days, is independent of the 

frequency of the wind variations 

(iii) The value of the maximum mass transport through the 

Gulf Stream does not depend on the frequency but only on the 

maximum strength of the wind. 

(iv) The Gul? Stream does not undergo any noticeable east- 

west shift nor is its width altered because of the wind variation, 

For the steady two-layer problem, the streamline pattern 

coincides with that of the one-layer casee The computed steady 

position of the thermocline can be made to agree qualitatively 

with the position of the observed thermocline provided the two 

parameters (a) the thickness of the top layer and (b) the density 

difference, are chosen appropriately. 

At the outset of our investigation we had hoped to solve 

the linearized, non-steady, two-layer problem with no a priori 

assumption concerning the vertical distribution of velocity. 

However, we were unsuccessful in doing so except for the case 

of a wind with a period of oscillation of 100 years or mores 

For such a low frequency, the retention of the time derivative 
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terms in favor of the non-linear terms seems wholly unjustified. 

The only conclusion (which may not be justified because of the 

previous statement) resulting from this last investigation is 

that the transports in the lower layer are ef the same order of 

magnitude as the out-of-phase transports of the upper layer. 

In view of the statements made at the end of Section 5, 

the results listed for the one=layer problem are approximately 

valid for the non-steady two-layer problem provideds 

(a) The thermocline adjusts itself to the mean wind dis- 

tribution and remains fixed. 

(b) The mass transports of Problem 1 are interpreted as 

the transports in the upper layers 

The assumption of hydrostatic pressure is not necessary 

for the solution of the mass transports in the steady problem. 

Wherever the results of this analysis permit a compari- 

son with observation, good qualitative agreement is achieved, 

but the quantitative results are off by a factor of about three. 

In view of the many idealizing assumptions made, however, no more 

than qualitative agreement could be hoped for. 

A number of features have been left out of the present 

model. Changing topography, non-linear terms, variable eddy 

viscosity and many other features could combine to change the 

results noticeably. However, the analysis of the problem in= 

eluding most of the features which were omitted in our model 

would probably require a numerical treatment. 
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Appendix 1. Transformation of the Differential Equations from 

Spherical to Rectangular Coordinates. 

Consider a rotating spherical coordinate system; let 

r be the radial distance from the center of the sphere, 9 the 

colatitude, » the meridianal angle. The equations of motion are* 

meee sine - 2v@sin @ = - 1B - gi +i (vt apy) u 

= + u sett 2 — on + x & weot @ +2°r sin © cos 0 

- WwQceos 90=-41 804 liye Ay VY) Vv 
i 6) p 

ee eo + etre ce ee ae ee 

tA UO Saer ale es 5 feta dil Opylcy: a, 
sin 9 d9 i vom 

where 24 is the material derivative of the radial velocity in 

terms of spherical coordinates 

g! denotes the gravitational force 

2 * and Y> denotes the BS Ny nee ee Ao) 
a! A; V = AV is a hey 

Laplacian operator for the two dimensions @ and 9. 

We shall neslect the radial acceleration and shear terms 

arising as a result of the velocities relative to the rotating 

ed eee re ee ee ee ee emery re ee 

* : , i 
We shall not consider the non-linear terms or the viscous 

terms in the radial equation of motion; hence, this equation 

is written in operator form only. 
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sphere. We then have 

L Op - - ar g (1) 

IVA OM, en, VON gw Ov 4 UV weeot © Zaye 
at ie ee) isin ea Tr pegt oan Warerereree al Orig “Gialial ©) Cols |S 

BO ocos © S 5 Lt wo a Cy My Bin 
: p r a9 et p a8 ar ) 

COW OM) a VOW wow! Gu wu nvwalcomme 
ot dr r a0 r sin 0 0 a anes Ae 

+ 2 ©) shane Se a ay Ay OL ow 
i eS oe 7 p or ae (3) 

where g = 

foree. The viscous terms for equations 

2M av, 8° Ge KK WYaSy = 55 cot © QV aa) + SOT a, 

iy de ae sin-Q 3dg° 

Peer ts ce Bw) o Olw a i ew 
re a 88 ga sin°o ep* 

Since the 

thin layer on the 

D) 

g' - 2.6 r° sin? 0) is the apparent gravitational 

(2)) eiiael (3) anee 

a (2ECOsie aw 
sin-@ sin9 o9 

Wi) /2acoske au: 

sin? sin°o Oy 

region Of interest fo us consists of a) very 

surface of the globe, we shall approximate 

r by R, the mean radius of the earth, whenever r appears in 

undifferentiated form. At the 

east-west coordinate by x =9R sin Q, 

by y = RCS - @) and a vertical 

equations (1)-(3) become 

9p 
Oz Dlr 

Cooma loi 4 = Ww, 

same time let us define a new 

a north-south coordinate 

Then 

(+) 
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ov Ov av OV , uv wee ie 2 ‘ at 2 Us = ay CW aS + = Tae Oe Q“r sin 0 cos 90 

{Pi Coe 6) = 24 eld aN ‘e cot 9 av 4 av i ey ee 
p oy Ri Ova ton, ax° Resin? 

~2.cot 8 dw i Av 

Ow Ow WwW 
3 + uss - ee + vel + = uw cot © + 2v 2 cos © - 2uQsin © 

Eiietsap) s ) 2 2 eot.6 Bw 4 foow lonn) enue OMCoLmelan } 
p Ox R Oy ay< axe R-sin°-9 R Ox mi 

os do (A, ow) (6) 
Pp OZ 3 8z 

Since R is very large, we shall neglect terms divided 

by R. We can do this provided the region is sufficiently far 

removed from the poles (9 = 0,x) where cot @ becomes infinite. 

The velocity component u is assumed to be much smaller than the 

components v and w so that we can neglect u throughout the 

equations of motion, 

Ordinarily, one uses the velocity components u,v,w to 

correspond to the directions x,y,z respectively. In equations 

(4)-(6), u,-v,w correspond to z,y,x respectively. The negative 

sign was carried over from the definition of v which was defined 

positive southward. If we revert to the more familiar nota- 

tions and write u' = w, v' = -v, w' = u, we have for equations 

(4)-(6)(with the terms with coefficient = and all terms con- 

taining w! neglected) 
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Ou! Ou! 1 Ou eee a 2Qv' gin (e) 

2 ~- 19044 at, evil ia (13.224) (7) 
p Ox ay* | p 02 02 

av! ! = 
- + wt Su + aw + 2Qu' sin (2) = Oon sin 9 cos © 

a5 £ OD ah avi, av! ¢ tb & (4 Qv') (8) 
p ay ax ay? i ks 2) ae 

; ge = =f (9) 

If the above procedure be carried out for the con- 

tinuity equation, the latter becomes 

Ons Gy a (10) 
x y Zz 

In making the transformation from spherical to 

rectangular coordinates, we must consider the distortion of 

the spherical surface as a result of the mapping process. 

opecifdeally, a rectangle in the rectangular system maps! anito 

a region on the sphere in such a manner that the east-west 

distance remains constant and the right angles between the 

lsimes) x)= Const, and y = const. map anto jobtuse angiles pe= 

tween the lines on the sphere corresponding to x = const. and 

Ve CoOnsic.e) Laus, tie Mapping is Mot Comlormerk 

With the above transformation we have mapped a 

spherical surface onto the plane. Our real aim, however, is 

to map the equilibrium surface which establishes itself as a 
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result of the interaction of centripetal acceleration and 

gravity, onto the plane, We shall, therefore, neglect the 

small difference between the true equilibrium surface and 

the sphere. 

The apparent gravity, g, in (1) acts perpendicular 

to the spherical surface. We shall now consider g to act 

perpendicular to the equilibrium surface. We must then 

drop the term Q°r sin @ cos © from the 9 equation since, in 

reality, this force combines with g acting normal to the 

spherical surface, to give rise to a resultant normal to the 

equilibrium surface. Finally, g = g!' = B-(4 2° r° sin®e) is 

assumed constant. The final result of the approximate trans- 

formation is to map the equilibrium free surface of the 

ocean onto the x-y plane, with the apparent force of gravity 

acting normal to this plane, 
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Appensix 2, Neglect of the Non-Linear Terms. Rae ate = mae 

vonsider the integrated equetions of motion of section 

i) eat (4 
on Ga & | mo ay Geir i yo ela = py | vicz ot Sie 0 

=a -h @ ja y <1 

== 2D ga + A ) Au' az + ty (1) 

Riou! qn 6 CY ae x | 1 Ov! 7 "4 se Oe | vt SY" az | ye dz + oh v'dz 

-h =< U = =a) 

So & 1) see Wis dz +ty (2) 

-h 

where we heve linearized the pressure term in accordance with 

remarks to be made later in sections 3 and 5. are now Tien 8 
2 Cea 

the wind-stress components of section 3 divided by p. Assume 

okZ 

i.e. the velocities decay cxnohnentially with denth, 

Then, 

a 2g 1- ou 2kz Wo Su Bim elke 1 
ae” Uys eee are ae 

=a -h <1 

a 1) Ul So 0) Sil es Aa a +t, G) 
. -h 
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av ok i 
Sonne 3 

ss 
Ne) 

a passes Phi 7 oy 2)\kz, 

Oy ct 

-h 

= } Q 129) sin(t) Uo 

-h 

Avproxinate the exnonentials at their limits by 

coe 
CS) A nS h O. Then (3) and (4) become 

EE Ol Bl ol 2 ae) a, Selo Suetianl = ae” Bp Dae Py af 2Q sin(¥) Ww so @ 1D) suk + AAU + 7T 

oe be OY A 7 oe RCo ys oe mun 3 a Ss ae tS - + 2Q sin(s) His o 2D oe + AAV +7 

Linearize the Coriolis nareneter by 22 sin(<) ~ 
L 

2 where B = =e Teking the derivative of (6) with respec 

x and the derivative of (5) with respect to y and subtracting, 

we have 

a on Hy es _ aa STi _.2- ne _ O= 

Hoa. aly 4 1 | ou oN 4 fy Oa 2 ow Oi cave 2 one cae 
at Xe ay Z| Oi Or axe Ox OY Oxdy ax OY axay 

av ou _ sou a 4. Oly 2 Ge av _ au) 7 oe sel Gere om gpa GR YN ee oe 

9 OT OT cee Ve ES PU are Sy ) (7) 

Choose tis Olt e te Ne (wi +P" sin wit) cos ny. 

85 

Gin, a == eon} gD ae k + MAve | +t k (4) 

Hic GD 

ye (6) 

By 

18 WO) 

We shall non-dimensionalize the velocities so that they 

are of order unity in the interior of the ocean. It is 

venient* to choose 

aT SEE AF 

*The choice of the non-dimensional quantities is motivat 

section 44. 

con-=- 
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2 2 
" S aes i AL. lal Bos 9 W = nw! PS iain 9 By) 3 ’ W ») b) 

2B s Bs : 

In this notation and with the prescribed form for t.. and t 
x Yi 

equation (7) becomes 

Ta "iF 2 aia a ai ou av Ay Gl Al a“ 5 =) eto a ew oo ee SIQIEE) 3 ONGOM —= at ox! a8, 1 Oe ax! ax! av Ane - x' ay! af Vaxtoyl 

Soy | ew A Ia ge eo 
x'dy'! ax'ay' dy'dy'! ay"? 

Bly, | 2u,+ a | AW sen! | ee | = (1 +q sin t)isim nsy! 
x vi x! dy! 

(8) 

The integrated, non-dimensionalized continuity equation be- 

comes 

oie OMe Sy oe (9) ga Oy 

iijwe expand thellvelocitimestand Gacy edie lita a Hemanmc 

Series in ©, then the solution can be looked upon as the sum 

of a quasi-steady part plus a number of out-of-phase contribu- 

tions. If 6 is small enough we may be justified in keeping 

only the first two terms of such a series as a fairly accurate 

representation of the complete series. 

Hence, let 

Tews 15 Uy + OSU kls 4 V = Vo ON \y @ Baal Man 

Fs ad EG ae a 
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Then for the equations of zero-order in 8, we have* 

2 GU SoM 6~U av au 
OY eo) ev tere) a One fe) 

= (i acy seine isa anisiy.! (10) 

OU OV OQ QO _ 
ax! + ay! = © (CaLaL 

The first order equations in 6 are: 

av, au OU Oy, BU, ay acy acy 
10s (228 ) al iL se} ons + *U O we se) +¥ (eS ee ee Ss 
OR) Ope! dy! Geax! ex! Osa Ox! ax! 1 gx! 

fe) av, aU 
ch) Wovens ~ SEO Pea = ' set Vai brated 2 ] his 1 =e A er aD (GZ) 

Se Ess (13) 
Oza! dy! OT 

Munk, Groves, and Carrier [7] have shown that the effect 

of the non-linear terms in [10] is quantitative and that these 

non-linear terms can be neglected as compared to the Coriolis 

term, Vo. The relationship of the non-linear terms to the 

Coriolis term in equation (12) is essentially the same as that 

in equation (10). This fact can be shown by considerations 

based on orders of magnitude. We choose a typical non-linear 
au er, BU, ov; 

term in each equation, y yr ggr in (10) and y aon age ee 

(2), and compare it to the Comiolis terms in that equation, 

Neuen GLO) ernie: Vey an \Cr2)). 

In the solution it is shown that Up, Vo, Uj, Vy and all 

their derivatives are of order unity in the interior of the 

ee rs ener ee eS 

*Rquation acy with @ = 0 is the same as that of Munk, Groves, 
Garner 7) 
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ocean, Near the boundary x' = 0, it is shown that Up = 0(1), 

lig SOE )y ly = Olee =), th = Ole=/2)) and £, has the 
effect of multiplying the magnitude of a term by o(e-1/3), 

Based on these results the terms to be compared are 

given in the table below. 

Interior Nears © 

Vo = 0(1) lip = Oe 2) 
CW OW CW BW 
a Oy SO. bd OMRON NE -1 

Y Ona aac! yo(1) el @)sicl yote ) 

Va = OC) Vy = 0(e 72/3) 

OURO One ieee OU, OVy hy 

axt age (Y (OM) at a ae 

Thus, in the interior in each case we haveO(1) vs. 

yO(1) . Near the boundary x! = QO, in cach case we must com- 

pare O(1) vs. yO(e7-/3), Henee, the relationship of the non- 

linear terms to the Coriolis terms is essentially the same 

in the two sets of equations. It would seem therefore that, 

if the non-linear terms can be neglected in the steady equation 

(10), they can also be neglected in the first-order, non-steady 

equation (12). 
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Pressure Assumption. 

The results in the main body of the report are based on 

the assumption that the vertical cquation of motion can be 

approximated by the hydrostatic pressure equation. Although 

this approximation is probably sufficiently accurate for the 

problem under consideration, it may warrant a few further 

remarks. 

Consider the steady, lincarized problem. The equations 

Of motion with a linearized Coriolyvs, term are 

Ee i= 2 26D (eae Or gu' B yv j ey 576 A3 ae (1) 

b= 4b fo Gn ele ov! Byu x oe AAv' + 5 EES ae ) (2) 

and the continuity equation is 

ae mn @) 
Equations (1) and (2) ean be multiplied by the density 

to yield 

a ty eo Le ' moe gu! 
BT Do ax oe von yt ae OZ ) 

acest eeacly A iol ov! Byu'p ay + AA (pv') + =o 6A3 ae ) 

where we have written AA(pu') for ApM' and AA (pv') for 

ApAv'. This approximation is certainly permissible since 

these terms represent, in the first instance, only very rough 

approximations to the true state of affairs in turbulent motion. 
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If we integrate (1)-(3) from a depth z = - h(x,y,t) 

where the motion is assumed negligible to the free surface 

Z =) (x,y, ¢), then 

Ean irae eee lemme 7 ou! n By F Op az + AAD + a, 22 | (4) 
= -h 

= Oee se) =a 4) Goya eevaaT ol gy! 7 (5) y ay 5) Oz 

= Ge =e (6) 

where the non-lincar torms resulting from the interchange of 

derivatives and integrals in the viscous terms have been 

neglected. 

q 
The terms Aa ou! SS = 5 nda iv! = 

az ops #3 az ‘ 
-h -h : 

provide the wind-stress components at the free surface (see 

Seey So Of report). The depthy z=) —myhacn peenuchosenias atlas 

depth where the velccitics are negligible so that the econtribu- 

tions of the above terms at the lowor limit are nogligible. 

When the oul term in the continuity equation is integratcd, 

it provides a contribution involving a time-derivative, viz., 

“Mee , so that it vanishes in the present problem. 

The pressure terms are 

oo) 
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where Py is p evaluated at z= , and io is p evaluated at 

Zi a—alalt 

If the free surface be considered a surface of zero 

pHessumme,, then Py = 0% 

Defining 

P = ( 10), Gle 

we have for equation (4) and (5) 

-B. V=- OF » Sh u By V Ae ee Dain SMU ty (7) 

U Ss 3 SP + oh V By ; 7 Poy AAV + Ty (8) 

A stream function can be defined by U = - z > V=+4 a 

so that (6) is satisfied identically. Taking the derivative of 

(7) with respect to y and (8) with respect to x and subtracting, 

we obtain 

dh 9P_-h dh OP_h OT > Oty = ey el, = A DAW Bip, ae 5 5 5 (9) 

Since z = -h is the depth where the velocities are 

negligible, the third equation of motion below this depth re- 

duces to the hydrostatic pressure equetion, - op EO Lk (p 

iSMCOnsizant alongs) — =e. you ie aera a = ole 55 

= gps . With these results substituted into (9), we have 

OT AT 
AAA) = By, = — = ee" (10) 
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If boundary conditions are imposed and if 7 and Ui 

are specified, the problem defined by (10) can be solved (see 

Appendix 5). Thus for the analysis of the steady state prob- 

lem, the only necessary assumption concerning the pressure and 

the density is that the density be constant along the surface 

below which the velocities are negligible. 

If the height z = -h is approximated by a constant, 

then the derivatives of the pressure terms in (9) vanish and 

no assumption need be made concerning the density along the 

sumtace 7 = <—h. 
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Appendix 4(a). Derivation of Relationship Between T andn. 

With the density distribution given by 

PSP 6 i) 2 pF ae 

Oa ha ot) | Po BS Ww = él 

P=P _» =P, [1 + cal] He eG Ss 

we can find a relationship between T and n by considering the 

conditions 

i OP = 
‘Soe os 

p=e i pat 
Z 

; 16 ZO ep 23 “BRANT Bae 8B 

But 

Hence, 
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1 Sag a Bp = QP = pc) OE ae ae ea Poe Vash | PSR) eq Pon ox 
or 

eae oe Sto 
Ox Ox 

OE 5 2h en eoren 
Ox ed ox 9 V Ap Gx 

where Ap = Pie Piece 

Similarly, 

an. Eo on 
(Oy us Ap oy 

imbvecnracane  () and 

rivation of Integra 

In order to compute the terms a , 
= 

oh 

(1) 

(2) 

we must divide the region of integration into three scparate 

uss Walon 

(1) 



ChE nape (at) 
i Ua) hae 

. K 



Al1-101 

Using the values of op 
ex 

4(a), we have 

for the three layers listed in Appendix 

1 20 av = ar é (ee aha cla z < T-d 

eb OT = Dee ae (T-z) Ted 6 Zi <2 

= 0 NP Leh 2 

Then 

(T-d aq] 
| 2p \ 22 at jaz = 2 Co 82 ited 2 

alee pl ile Clee l+ed 0x [ ] 

g ; DG Saar aas eo) ae eae 
mr Pi Ox " Ox 7 2 escue mc mncaenl T-d Z 

nq} n 

ei S(t S26elaz = ¢ 
TP Jy OX 

1 1 

3 al Bye mln Pele 5 ee Cin ingles 
BP ae ie p ae a x l+cd [rca 2 CX C 8 (cae 

+ g 20 (n-T). 
Ox 

Let us put these values into (1) and at the same time 

use 

fe eye On Oy eels ell] Eo bees 
Onan PeANP xx @Gl Ox rete Ap Wage 

ae ENE dn 1 Ones + OP Se) oi) imecienl) 2 e@ au T-d+h 
; 1G, p Ox of © Ox ite ! ° Sx Ited [ J 

5 8 one 2 Lot ei nee( 5) 22 2 Sn tes(—) 
= ai - Ap ¢ Ox 08 (aT > 6 Ox soar 
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Ap Ox Oo 7 P Lh 

But, 

Ap+ 
Log PO] So tee Bake se ge eho == ioe (No 2 i) 

p p -h fo) Po Po 

Since the term Be is small we can write 
fo) 

log(1 + Ag) = AO = J (Ag)? 
Po M5 2 Be 

Henee (2) becomes 

Similarly, 

where D=C + $ 5 

96 

(2) 
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Appendix 5. An Uxample of Boundary Layer Tochniquc. * 

In this section we shall discuss the application of 

the boundary layer technique to the solution of the problem 

defined by the equation 

eAA = 4h. = (l+a sint) sin nsy (aL) 

and the boundary conditions 

VS Wi = Oa x = On: (2) 

Wi =o = © ony, Onl 

The nature of the boundary layer problem is characterized 

by three features: (1) the problem is non-dimensionalized so 

that the size of the domain has lengths of order unity; (2) 

ihiescoeiiicient of the most highly ditrerenttateds term aks 

small compared to unity; (3) the remaining terms have coeffi- 

cients of order unity. The problem to be considered here has 

already been put into a suitable non-dimensional form. 

If ~ were everywhere a smooth** function of its arguments 

and of order unity, then it should be possible to determine a 

good approximation to the solution by neglecting the term with 

coefficient e(e <<1) and by considering the remaining equation 

* For an interesting account of boundary layer technique, in- 
cluding the treatment of non-linear problems, the reader is 
referred to [8] . 

aN By"smooth"' we mean that )p has no larze derivatives, i.e., 
vp, Vx5 iW) eeeecey ete. are all of the same order of magnitude. 
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b, = - (lta sin t) sin nsy (3) 

Thus, a possible solution is 

Wa SS (Cite Salta a5) Gaia tas lo be 2 Craigs) Je (4) 

We are now faced with a dilemna, however, w as given 

in (4) provides one arbitrary function of y and t to satisfy 

the four conditions on the boundaries x = 0, x=r, If our 

assumption that ~» is everywhere a smooth function is correct, 

then we are at a loss to find a complete answer to the problem, 

For if ) and its derivatives have the same order of magnitude 

everywhere, the only possible solution is of the form 

vs PIOCE) and at ds not possible Go savicimy elalibounderivacon. 

ditions. 

It is obvious, therefore, that ) cannot be smooth 

everywhere. la particular, in order fom che full solutuon 

to be different from; + O(e€), at least one of the terms, 

or ¥ must be of order e7! in some part of 
VS 

the domain under consideration so that the approximation of 

ieeee Weer 

neglecting torms of order € will not reduce the order of the 

differential equation. If ) is smooth away from the boundaries 

and if derivatives with respect to x are large, so that 

Vesa 

of the boundary layer type. We shall proceed formally on the 

LS Ort  Orgelicns eae meee 26 = Op, waleial wae joieolollem Is Cia 

assumption that this is true, realizing that if it is not the 

case, we shall be led to a contradiction. 
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The solution may now be written as the sum of two parts- 

ve given by (4)(the "interior solution"), by being sensibly 

large only near the boundary and negligibly small in the in- 

terior, (the "boundary layer contribution"). We must now try 

to determine the boundary layer contribution. 

Rie Watune of the tobe) solurdion  ittcelin acm mle me Mell rere 

factor in the investigation. We have supposed that near the 

boundaries x = O,r, has large derivatives with respect to x 

while ); is everywhere smooth and of order unity. Thus, if we 

wire your solution in two parts, dies, we ie: Vos the differential 

equation can be written in the form 

eAA; + cAA hb, - Wy - bp, = (Ita sin t)sin nsy. 

Now the term eAA) ; iS Or Order ie, whe GeRmsmundermlsined sami ace 

are of order unity and the order of magnitude of the terms 

underlined once is as yet undetermined. Since the terms in 

vy are to have derivatives with respect to x which are (assumed) 

large, we have Vox >> il. Hence, ab leas th Onew oO ice mnermsiaon, 

cAAy, must be as large as Vox in order to balance this term, 

The equation will then be satisfied approximately if we write 

2 Wa (1l+a sin t) sin nsy 

and 

= 0 (5) eAAb, - Vox 

We must now integrate these equations and then add the two 

solutions p~; and p to form the complete solution Wo 
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The solution to the first of the two equations is given 

by (4). Since the complete solution will only be approximate, 

in that terms of order ¢ have already been neglected, Vy need 

only be determined approximately. 

It is suggested by the above considerations that we 

find a formal method for writing our equation so that the 

magnitudes of the terms are expressed by the coefficients and 

that the derivatives, etc., be of order unity. We ean do this 

by stretching the x coordinate near the boundary i.e., by de- 

fining a new x coordinate so that a particuler distance in x 

becomes a much larger distance in the new coordinate. 

Formally, wc operate as follows. Let x be replaced by 

the coordinate & such that 

% = 6 

where n is to be determined. Then the equation (5) becomes 

o,rentl -~ ntl vy i =n 

the yy + "Yyyyy “© Poe = 2 

In choosing n we note that it must be positive if the 

x coordinate is to be stretched. Thus of the terms which 

originally had coefficient e€, e7 tnt Vorcer is the largest 

since it has the largest coefficicnt (n.b. Ye» saad 

VeEEyy? Wi cemey ere the same order of magnitude). This term 

is matched with e~” YoEs the remaining large term in the 

differential equation, and by equating the coefficients of the 

above two terms, we have n = 1/3. 
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Thus we get 

=i1/3) 1/3 =il/ 
i Vinggee ee = Unaaan & ee are bye = 0 E ~ 

yyy 

or 

Qi 
Tpece = Wye 7 Oe =)! 

Now if vy be expanded into an asymptotic series and if 

we keep only the first term in the series (for all practieal 

purposes, this amounts to neglecting the o(e2/3) terms), we 

have 

Veeco 7 ie = © ce) 

ae Golliteaoia wo) (Uo) abs 

E ge Wy = Cyoly,t) + Conly,t)e” + Cao(yyt Je 3 

Ur i te he 

Flea Cate eae 

We have specified that this solution is to become 

negligibly small as the distance from the boundary increases. 

Thus letting Eo, we note that it is necessary that Cj5 = 

Con = O since neither C,5 nor eb GeUCls 10) Wei, Inlswle, ioe 

the region near x = 0, we have 

fo 

b= Coen 8 | eo yaiepE 

or, changing our coordinates back to x by means of x =€ oe 
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ua em 2 Ugi 
by = C,o(y;t)e™ Bo: 3 + Go(y,7)e wy © 3 

For the boundary near x =r, we now define & by 

(x-r) = 6% 

and specify that the solution vanish as &-@, i.e., as the 

distance into the interior part) of the ocean anereases By 

acimilarvanailliy sis, we find that near a =n. 

r ae ani 
bp = C13 (y,7) 4 Co, (y, te + C67) Te 3 

Lad 
e —<——<— FO(¥, ne" 3 

Iinvonder tor by, to tend) to zero ase — >i) Go aGes 

= = = il necessary that C13 ©33 C13 O. Hence 

any f=173 
b, = On,(y, te" 2 C,,(y, en se) 

The total boundary layer solution can be written 

eee L/S , 208 
by = Cy (y, ve r) + Cay, te 3 

=1/3 2 tad 

+ CCy, we 3 (7) 

The solution throughout the domain consists of (4) and 

(7), oe 

v=, +p = (2%: Silin ae )) Satia nsyfl - x + Ci(y, 2 J 

Cane ta a i 
+ Coly,t)e + Ca(y;t)e c 

(8) 
1/35 bad 

HCAG ee i ic ten j 
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An application of the boundary conditions, = eS 

onl) x = O57), yields 

3 4 al/3 Gereq2 ~= (1l+asin ct) sin nsy eee 

4 [6et-r)e0s cae: ea) + (3 1/3 - ao cxVael43, 

Tt ee i en 

eran eee Sl 

The term 1 is valid throughout the ocean. Near x = On 3) be= 

comes as important as 1 and gets negligibly small as x in- 

Creases. Near x =r, 2 and 1 together form the solution but 

« tends to zero as x decreases, 

Perhaps a few remarks should be made as to the specific 

choice of sin nsy for the total y dependence of the solution. 

“The particular choice of sin nsy satisfies the boundary con- 

ditions v = Uae = © ony = 0.) y=) ond) us Ssmppomce dem yaniume 

specified wind distribution. Thus we were not forced to resort 

0 a boundary layer analysis to satisfy the four boundary 

conditions. Of course, such a simple choice is not always 

possible, and one might have to resort to methods for refining 

the interior solution in other problems in order to satisfy 

the necessary boundary conditions. 
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