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SUBMARINE CANYONS 

OF 

SOUTHERN CALIFORNIA 

Part I. Topography, Water, and Sediments 

by 

K. O. Emery and Jobst Htilsemann 

INTRODUCTION 

For many years submarine canyons have been known off southern 

California and have been studied in varying degrees of detail, largely 

by F. P. Shepard and his students and colleagues. Most of this work 

consisted of studies on topography (Shepard and Emery, 1941), lithol- 

ogy (Emery and Shepard, 1945), and general sediments (Cohee, 1938). 

Hydrographic and biological work has been sketchy. Some recent studies 

by Gorsline and Emery (1959) indicated the common presence of sandy 

floors along the canyon axes which mark the route of turbidity currents 

that move coarse sediment from beaches and inner shelves outward to 

the deep basin floors (Emery, 1960a). This preliminary sampling also 

suggested that benthic animals on the floors of the canyons differ from 

those at the same depths outside the canyons. Differences in environ- 

ment, such as coarse sediment, moving sediment, or abnormal water 

conditions, may be important biological controls in the canyons. 

Thirteen of the largest submarine canyons were selected for special 

studies of the topography, sediments, hydrography, and benthic biology. 

Many other canyons are present in the region, some of them larger than 

the smallest one described in this report. Among these fairly large but 

relatively poorly known canyons are several between Mugu and Hue- 

neme Canyons, San Gabriel Canyon, Oceanside Canyon, Carlsbad Can- 

yon, and several north and east of San Nicolas Island. These canyons 

were omitted not because they are unimportant, but because of time 

limitation and because the 13 canyons which were selected probably 

cover the range of variation expected within the fields of investigation. 

Basin slopes in the region also contain related but smaller features 

termed sea gullies (Buffington, 1951, in press; Emery and Terry, 1956) ; 

perhaps several thousand are present. 

1 
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TOPOGRAPHY 

Methods 

The 13 submarine canyons of this study occur along the mainland 

and off islands and banks (Fig. 1). For each of them 6 to 13 sounding 

lines were run at right angles to the canyon axis, as shown by naviga- 

tional charts, and at approximately equal intervals along it. The lines are 

long enough to show the relationship between the sides of the canyons 

and the adjacent mainland or island shelf, basin slope, or basin floor. 

Soundings were made with the Precision Depth Recorder (Luskin, 

Heezen, Ewing, and Landisman, 1954) attached to an Edo echo 

sounder. Instrumental error is less than 1 part in 3000, so the chief 

error in depth results from variation of the speed of sound in sea water 

and the reflection of sound from areas of the bottom within the sound 

cone and shallower than the point directly beneath the ship. The pro- 

files are based upon soundings uncorrected for sound velocity. Since the 

echo sounder is calibrated for a sound velocity in sea water of 1463 

meters per second and the actual sound velocity for these depths is about 

1.2 per cent faster (Emery, 1960b), the profiles are about 1.2 per cent 

too shallow. More important, however, is the effect of echoes from the 

sides of the narrow canyons; these often obscure the echoes from the 

narrow bottom. Comparison of wire depths for samples taken in the 

canyons with simultaneous echo soundings corrected for sound velocity 

show that some of the echo soundings are as much as 50 meters too 
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shallow, with greatest errors in the narrowest part of the canyons (Fig. 

2). In contrast, the average difference between wire and echo depths 

for flat shelves and basin floors is less than about 3 meters. 

Fig. 1—Index map showing areas which were sounded and 
sampled off southern California, for which contours, 
profiles, and sample positions are shown in Figures 3 
through 15. 

H, Hueneme Canyon; M, Mugu Canyon; D, Dume 
Canyon; SM, Santa Monica Canyon; R, Redondo 
Canyon; SP, San Pedro Sea Valley; N, Newport 
Canyon; LJ, La Jolla Canyon; Co, Coronado Can- 
yon; SCr, Santa Cruz Canyon; SCa, Santa Catalina 
Canyon; SCI, San Clemente “Rift Valley,’ T, Tan- 
ner Canyon. 

Positions were determined at 5-minute intervals by a radar range 

and bearing on a prominent coastal point, such as a pier end or a steep 

cliff. Since the ship speed was 9 to 10 knots, positions are about 1.5 km 

apart. 
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In the laboratory the tapes of continuously recorded soundings were 

reduced to half scale with a pantograph and the reductions were traced 

directly for Figures 3 through 15. U.S. Coast and Geodetic Survey 

navigational charts served as the source for contours of the index map 

for each of the canyons. 

Characteristics 

General :—The canyons off southern California have been described 

previously by Shepard and Emery (1941) and by Emery (1960a) who 

also summarized the pertinent literature on them. Accordingly, only new 

data on topography and data needed for the proper interpretation of 

water characteristics and sediments will be presented here. 

The canyons occupy parts of three physiographic environments of 

the sea floor: continental or insular shelf, basin slope, and basin floor. 

In each environment the canyons present a different aspect. 

Shelf Portion:—The shelf is largely or entirely crossed by 8 of the 

13 canyons of this study. Santa Monica, San Pedro, and Coronado 

canyons only indent the shelf; however, filled extensions of all three 

canyons are known on the adjacent land through well borings, and a 

filled channel across the shelf from the head of San Pedro Sea Valley 

was discovered by jet borings made by Richfield Oil Company. The 

other two exceptions are ‘Tanner Canyon which begins deep on the 

saddle between Cortes and Tanner banks, and San Clemente Rift 

Valley which is different in many ways from other submarine canyons. 

Among the 8 canyons which do cross most of the shelf, Hueneme, Re- 

dondo, and Newport have now-filled extensions on land, as shown 

again by well borings. Each of the 8 also les off a prominent land 

valley, except Santa Cruz Canyon which heads into the shelf saddle 

between Santa Cruz and Santa Rosa islands. Hueneme, Redondo, New- 

port, La Jolla, Santa Cruz, and Santa Catalina extend in nearly straight 

courses across the shelves, but Mugu and Dume are broadly curved. 

The depth of the canyon edge, or lip, is not uniform across the 

shelves. Transverse profiles across the shelf portions of Hueneme, Mugu, 

Santa Monica, Redondo, San Pedro, Newport, La Jolla, Coronado, and 

Santa Catalina canyons (see Figs. 3-15) show a seaward deepening of 

the canyon edge. This deepening is somewhat greater than the general 

slope of the shelf and, moreover, the profiles show some lateral slope of 

the shelf toward the canyons. Both facts mean that the topographic 

effect of the canyons extends somewhat beyond the narrow gorge of the 

canyons. 
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Below the canyon edge, the profiles show steep slopes—too steep in 

fact for completely satisfactory use of an essentially non-directional echo 

sounder. he measured slopes are minimal ones; still, as shown by the 

left-hand part of the top panel of Figure 16, the indicated slopes of the 

WIRE DEPTH MINUS CORRECTED SONIC DEPTH 
-25 0 +25 +50 *75 +100 #125 

WIRE DEPTH—METERS 

1500 

Fig. 2.—Plot of difference between wire depth and sonic depth 
corrected for sound velocity. The dominantly shallower 
sonic depth is the result of echoes from steep canyon 
walls which obscure the echo from directly beneath the 
ship. The sounding differences at sites in canyon axes 
and on canyon side walls are similar. 

walls nearest the heads of the canyons are 10° to 40°. Observations 

made by divers in shallower waters reveal yet steeper, even vertical to 

overhanging walls. These parts of the submarine canyons probably rep- 

resent the steepest areas of the sea floor. 
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Shepard and Beard (1938) reported that the axial slope of Cali- 

fornia submarine canyons is steepest at the head—14.5°, moderate at 

the middle—5.5°, and gentlest at the seaward end—4.0°. The new pro- 

files were made too far from the shallows at the heads of the canyons 

to cross the steepest part of the canyon axes, but axial slopes which they 

did encounter in the shelf portions usually exceeded 5°. All except three 

canyons (Coronado, Santa Catalina, and Tanner) have longitudinal 

profiles that are concave upward. As shown by Figure 16, there is only 

a slight correlation between steepness of canyon walls and of canyon axes. 

Heights of canyon walls in the shelf portion range upward to 480 

meters and average about 170 meters. In five canyons (Hueneme, Santa 

Monica, Redondo, Newport, and Santa Cruz) the greatest wall heights 

occur at the outer part of the shelves; in all the others, the greatest 

heights are slightly farther seaward, near the top of the basin slopes. 

Basin-slope Portion:—Basin slopes in the region average about 8°. 

The portion of some of the canyons traversing the basin slope is longer 

than that across the shelf, but for other canyons the reverse is true. All 

except Newport, San Clemente, and Tanner canyons have broadly 

curved courses down the basin slopes. For four canyons the curvature 
is to the right and for six to the left; this curvature appears to be the 

result of differential erosion along structural irregularities in the basin 

slopes. 

Just as for the shelf portions, the intersections of the canyon walls 

with the basin slopes are not usually abrupt, but the basin slopes bend 

gradually inward toward the canyons. Indicated steepnesses of the can- 

yon walls range up to 40°, averaging slightly less than for the shelf por- 

tion. In both portions the opposite walls exhibit considerable asymmetry, 

with one-third of all pairs of profiles having one wall more than twice 

as steep as the opposite wall. Heights of the walls range up to 500 

meters and average 170 meters for 79 measurements, the same as the 

average for the shelf portions of the canyons. The heights of both walls 

are about equal, except where the canyon lies at the foot of a basin slope. 

The echograms present a minimum width of the canyon floors be- 

cause of reflections from the canyon walls, as discussed also by Northrop 

(1953) for Hudson Canyon. Often a faint echo from a horizontal sur- 

face can be detected through the traces produced by echoes from the 

walls. This faint echo, the presence of flat bottoms on some echograms, 

the collection of several samples from about the same wire depth on a 

profile across a canyon, plus the observations of divers in shallow water 

indicate that the canyons in both shelf and slope portions may have flat 
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floors. The width is uncertain but it is believed to commonly range up 

to 200 meters. 

Basin-floor Portion:—At the foot of the basin slopes both the gen- 

eral bottom topography and the canyons exhibit a change. The general 

steepness is much less and both contours and samples show that the 

basin slope is bordered by a broad concave fan or apron built up of sedi- 

ments carried through the submarine canyons (Gorsline and Emery, 

1959; Emery, 1960b). Fans from adjacent canyons may coalesce to form 

a general bajada-like feature whose steepness ranges downward from 

about 1.5°. Beyond the fans are basin plains which are so flat that the 

depth may change only 1 meter in 6 km. 

Extensions of the submarine canyons have been recognized only 

across the fans, where they take the form of low winding channels. 

These channels are bordered by natural levees which often cause the 

floor of the channel to be higher than the surface of the adjacent fan. 

Such levees are shown by profiles for Mugu, Dume, Santa Monica, 

Redondo, San Pedro, Newport, La Jolla, Coronado, Santa Cruz, and 

Santa Catalina canyons and they may occur at others. The first recog- 

nition of levees in the region appears to have been by Buffington (1952) 

for San Pedro, Newport and La Jolla canyons. Heights of the levees 

above the channels range up to about 50 meters, but 25 meters is prob- 

ably a better average height. The channels are probably less than 200 

meters wide and their axial slopes range from 3° to 0.4°, as shown by 

the data of Figure 16. 

Lithology and Age 

Rocks have been dredged from the walls of many of the canyons. 

Most common are sedimentary and volcanic rocks of Miocene age 

(Fig. 17). Pliocene shales were obtained at San Pedro Sea Valley, San 

Gabriel Canyon (about 20 km east of San Pedro Sea Valley), and 

Coronado Canyon. Landward extensions of canyons have been filled with 

Recent sediments. Therefore, the age of the canyons is pre-Recent and 

at least parts of some of them are post-Pliocene. The strata which crop 

out on the walls represent seaward extensions of the same strata en- 

countered in outcrops or in wells on the adjacent land, but not enough 

samples are available to reveal the tops and bottoms of individual beds 

or to show whether the beds dip seaward or have structural peculiarities. 
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Fig. 3—Hueneme Canyon. Profiles with (X 19) vertical exag- 
geration. Insert map with contours in meters shows posi- 
tions of profiles, bottom samples (solid dots), and hydro- 
graphic casts (circles). 
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Fig. 4.—Mugu Canyon. Symbols same as for Figure 3. 
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Fig. 5—Dume Canyon. Symbols same as for Figure 3. 
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Fig. 6.—Santa Monica Canyon. Symbols same as for Figure 3. 
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Fig. 7—Redondo Canyon. Symbols same as for Figure 3. 
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Fig. 8—San Pedro Sea Valley. Symbols same as for Figure 3. 
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Fig. 9.—Newport Canyon. Symbols same as for Figure 3. 
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Fig. 10.—La Jolla Canyon. Symbols same as for Figure 3. 
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Fig. 11—Coronado Canyon. Symbols same as for Figure 3. 
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Fig. 12.—Santa Cruz Canyon. Symbols same as for Figure 3. 
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Fig. 13.—Santa Catalina Canyon. Symbols same as for Figure 
3. 
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Fig. 14.—San Clemente “Rift Valley.’”’ Symbols same as for 
Figure 3. 
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Fig. 15—Tanner Canyon. Symbols same as for Figure 3. 
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SLOPE OF CANYON AXES 
2: oes 2° 08° 06° 4° 

SLOPE OF CANYON WALLS 

HEIGHT OF WALLS—M. 

Fig. 16.—Relationships of wall steepness and height to slope 
of canyon axes. Symbol L indicates presence of natural 
levees. 
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WATER 

Those who have spent much time aboard ship watching traces be- 

ing drawn by echo sounders frequently observe echoes from dense 

schools of fish which are often present at the tops of slopes, including 

those at the sides and heads of submarine canyons. Some verification is 

provided by the reportedly greater catch of fish at the head and sides 
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of the canyons than on the nearby shelf. It has been suggested that fish 

are concentrated in these areas because of the presence of abundant food 

brought by currents from deep in the canyons. Many of the fish caught 

from piers at the heads of Redondo and Newport canyons are species 

characteristic of deep cold water, confirming the observation by some 

skin divers that water may be colder at the head of a canyon than at 

either side and that at times the water appears to be rising from the 

canyon. A few current-meter measurements in six canyons of the area 

(Shepard, Revelle, and Dietz, 1939) showed flows in the direction of 

the canyon axes but with no preference for up or down canyon. Possibly 

the water moves too slowly to be indicated reliably by such meters; a 

better technique might be the measurement of properties of the water 

itself. 

Two to eight water stations were occupied along the axes of most 

of the 13 canyons at positions shown by open circles in Figure 3 through 

15. Each station was positioned over the canyon axis by first making a 

topographic profile and then by stopping the ship at such a position 

that it would drift over the deepest point of the profile by the time that 

water-sampling gear had been lowered. In a few instances the drift 

varied so that the station was slightly to one side of the axis. Water 

samples were collected in Nansen bottles carrying two protected re- 

versing thermometers. In Redondo Canyon a series of four water samples 

were obtained at each station just above the bottom through use of a 

bottom water sampler described by Rittenberg, Emery, and Orr (1955). 

For each sample, temperature was corrected from the reversing ther- 

mometers, salinity was computed from standard titration for chloride, 

oxygen content was measured by Winkler analysis, and contents of sili- 

cate, phosphate, and nitrate were determined by standard colorometric 

methods using a Beckman DU spectrophotometer. The results are listed 

in Table 1 for the eleven canyons which were sampled. Profiles of six 

canyons with positions of water samples are presented in Figure 18, and 

more completely with water characteristics for Redondo Canyon in 

Figure 19. 

The measurements show no marked difference in the character of 

the water at the canyon head from that near the seaward end of the 

canyon. The water is also within the range of seasonal and areal varia- 

tion of that in the adjacent basins (Emery, 1954). Close examination 

of Table 1 and Figure 19, however, does show some slight inclination 
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of the isopleths in a few of the canyons. At Redondo Canyon the tem- 

perature and oxygen content is higher and the salinity and nutrients are 

lower near the head than farther seaward. This difference is just what 

is to be expected of local upwelling. A similar conclusion is indicated 

by the less complete data at Dume Canyon, but on the other hand possi- 

ble downwelling may have occurred at Mugu and La Jolla canyons. 

Clearly, upwelling was not marked at the times of the surveys, but 

then the wind and sea conditions were fairly calm at these times. At 

times of strong winds, movements of water along the canyons may be 

more intense. 

It seems evident that the water is not of such unusual character as 

to present an abnormal environment for benthic animals; thus any ab- 

normalities in size of individuals or groupings of the fauna must be due 

to some aspect of the environment other than the water within the 

canyon. 

A major abnormality in the benthic fauna is indicated by the fact 

that 22 samples from six canyons (Table 2) consist almost exclusively 

of Capitella, a polychaete worm which ordinarily lives in estuarine water 

(Hartman, 1962). These same samples are free of marine worms and 

of other marine animals except carnivores such as squid, which may 

not really inhabit the sites. Since Capitella lays its eggs in the tubes in 

which it lives, wide dispersion through sea water is unlikely. It is sug- 

gested that the samples represent sites at which fresh water escapes into 

the ocean from aquifers which have been intersected by cutting of the 

canyons. Escape of fresh water is known to occur from many nearshore 

areas of the sea floor of the world. Accounts of its escape from sub- 

marine canyons go back at least to Benest (1899). Johnson (1938- 

1939) even postulated an origin for submarine canyons on the basis of 

submarine erosion by escaping ground water, but his concept is now gen- 

erally considered less plausible than others. 

It is quite reasonable that a submarine canyon should be a local 

focus for escape of ground water because it is the farthest landward 

point of outcropping horizontal strata, and thus a point of steep pres- 

sure gradient of confined waters. The coarse sediment which floors the 

canyon should form no impediment. The rate of escape of the water is 

likely to be so low that a dilution of the overlying sea water cannot be 

detected. Thus, the benthic fauna may be the best indicator of escaping 

fresh water. At shallow depths escape is less likely, at least for Hueneme 

and Redondo canyons, owing to probable sea-water intrusion into aqui- 

fers produced by artificially lowered water tables of the adjacent land. 
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DISTANCE IN KILOMETERS 

NEWPORT CANYON 

69, 46 = 
© 

CORONADO CANYON LA JOLLA CANYON 
600 

Fig. 18.—Positions and depths of water samples in six canyons 
at stations shown by open circles in Figures 3 through 
15. The solid dots and italicized station numbers along 
the canyon axes indicate samples having abundant speci- 
mens of the polychaete worm Capitella. 
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Fig. 19.—Characteristics of water in Redondo Canyon. Sym- 
bols same as for Figure 18. 
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TABLE 2 

CapITELLA BoTToMS IN CANYONS 

(from Hartman, 1962) 

Sample Depth Number of 
Canyon Number (m) Specimens* 

Hueneme 6897 338 1 
6899 456 52 

Mugu 6902 119 9 
Santa Monica 6781 116 9200+ 

6780 183 55 

Redondo 2192 113 1 
7284 137 1 

3164 148 17 

2148 298 P49 

2190 344 133 

2150 575 1 
Newport 7030 85 2 

5367 97 2 

7730 235 7 

7028 272 1 

La Jolla 7043 135 595 
7045 274 14145 

7039 371 948 

7046 517 36 

7041 545 1 

7040 637 3 

7047 793 5 

*Sampler covers an area of 0.6 square meters of ocean floor. 

SEDIMENTS 

Sampling Methods 

This study is based entirely upon surface samples, though cores were 

used in some previous work by Gorsline and Emery (1959) in a few 

submarine canyons. More than 90 per cent of the samples were taken 

with a large clam-shell bucket which covers an area of 0.6 square meter 

and encloses as much as 0.18 cubic meter of mud; these samples were 

taken primarily for the biological work to be described by Hartman. 

Most are the result of attempts to sample the axes of the canyons using 

the same procedure as that for positioning water-sampling stations. Be- 

cause of ship drift, however, some of the attempts missed the axes and 

these samples are from the steep side slopes of the canyons. About 10 

per cent of the samples were obtained with a small snapper having a 

volume of about 500 cc. Some snapper samples are from water-sampling 

stations, but others are independent samples designed to learn the na- 

ture of sediments on the walls of the canyons. Of a total of 211 samples, 
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some kind of sediment analysis was made for 176. In 16 samples two 

different kinds of sediment were noted; these were separated and ana- 

lyzed individually. 

‘Texture 

Textural analyses were made by a combination of standard pipette 

procedure for fine (< 62 micron) fractions and settling tube for the 

coarse fractions. Percentages of gravel, sand, silt, and clay are reported 

in the Appendix, along with median diameter and Trask sorting co- 

efficient. The Trask coefficient was used so that results would be com- 

parable with those of the many other analyses of sediments in the region 

(Emery, 1960a). 

A comparison of the median diameters of samples from within 10 

meters of the floor of the canyons with those of samples from higher 

on the walls is given in the top panel of Figure 20. The frequency curves 

show that the sediment from the axes is only slightly coarser than that 

from the walls. Clean coarse, even gravelly, sediment is present in many 

samples from the canyon floors, but other coarse sediment occurs high 

on the canyon walls and atop the adjacent shelf. Fine green silty clay is 

common on the canyon walls but it also is interbedded with clean sands 

along the canyon axes. The average median diameter of the 95 axial 

samples is 69 microns and for the 60 wall samples it is 40 microns. A 

similar average median diameter of 70 microns was obtained by Cohee 

(1938) for 29 small dredge samples mostly from the walls of Hueneme, 

Mugu, Dume, Newport, and Coronado canyons. 

The sorting coefficients for axial and wall samples exhibit even 

smaller differences than do median diameters, so no distinction was made 

on most panels of Figure 20 for the two sources of sediments. Sorting 

coefficients for all canyon sediments average about 2.5 but in a general 

way the sorting coefficients are lower for sediments having median diam- 

eters coarser than 50 microns than for finer sediments: about 1.8 versus 

322. 
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Fig. 20.—Relationship of median diameters of samples from 
submarine canyons to frequency of occurrence, sorting 
coefhcient, and contents of calcium carbonate and Kjel- 
dahl nitrogen. 
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Calcium Carbonate 

Dried and weighed sediment samples were treated with sulphuric 

acid, heated, and the evolved carbon dioxide was measured volumetrically. 

From these volumes the percentages of calcium carbonate were computed 

on the assumption that all of the carbonate was combined with calcium. 

The results (Fig. 20) exhibit a range from 0 to 36 per cent calcium 

carbonate. Nearly all values lower than 10 per cent are from canyons 

along the mainland. Most values higher than 10 per cent are from the 

offshore Santa Cruz, San Clemente, and Tanner canyons. As a secondary 

trend, the higher percentages for nearshore canyons occur in the finer- 

grained samples, and for the offshore canyons they are in the coarser- 

grained samples. Calcium carbonate grains coarse enough to be identified 

as to source organism consist dominantly of shell fragments in the coarse 

sediments and of foraminiferal tests in the fine sediments. 

Organic Matter 

The content of organic matter in the sediment samples was measured 

as nitrogen using micro-Kjeldahl equipment and as carbon using a Leco 

(Laboratory Equipment Company) carbon analyzer. The latter device 

measures the carbon dioxide evolved by fusing the sample at 1300° C in 

an induction furnace. Kjeldahl nitrogen would serve as an excellent 

measure of total organic matter except that nitrogen constitutes only 

about 6 per cent of total organic matter and it is more subject to oxida- 

tion than is carbon, as indicated by an increase of C/N ratio with depth 

of sediment burial or lapsed time (Emery, 1960a). Carbon comprises 

about 55 per cent of total organic matter but it is very difficult to 

measure satisfactorily, owing to the difficulty of combusting some car- 

bonaceous materials and to the variable ease by which carbon is released 

from calcium carbonate. As a result, organic carbon in samples was 

measured in two different ways: by combusting the residue left from 

carbonate analysis (direct method), and by combusting a total sample 

and subtracting carbonate carbon (difference method). The direct method 

may yield results that are too low owing to partial breakdown of or- 

ganic matter by the acid treatment for carbonate, or too high because of 

incomplete breakdown of carbonate carbon by the acid. The second 

method can yield erratic results because of the need for two separate 

subsamples. 

In general, the results by the two methods of carbon analysis agree 

(Fig. 21), but there are some individual variations and the direct method 

is considered the more reliable. A plot of direct organic carbon against 

Kjeldahl nitrogen (Fig. 22) reveals good agreement for about 95 per 
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cent of the samples. A best-fit straight line through the plotted values 

for these samples yields an average C/N ratio of 8.9, nearly the same 

as the average for the surface sediments of the basins (Emery, 1960a, 

p. 2/6). 

When plotted against median diameter, the nitrogen (Fig. 20) as 

well as the organic carbon exhibits a close relationship. Percentages of 

nitrogen decrease from an average of about 0.4 per cent for sediments of 

5 microns median diameter to less than 0.05 per cent for sediments of 

median diameter coarser than 100 microns. This relationship to grain 

size is typical and it results from the similarity in settling velocity of 

organic matter and of fine-grained silts or clays and from adsorption 

of organic matter on clay minerals. Average total organic matter is 2.16 

per cent when computed from organic carbon (1.7 times the average 

of 1.27 per cent organic carbon) and 1.87 per cent when computed from 

nitrogen (17 times the average of 0.11 per cent nitrogen). Perhaps the 

best figure for average total organic matter is the average of the two 

values, or 2.0 per cent. 

Comparison with Sediments of Adjacent Areas 

Sediments of the canyons reveal differences which depend upon the 

degree of isolation from sources of detrital material. These differences 

are best illustrated by a comparison of sediments from canyons cutting 

the mainland shelf, the island shelves, and the bank tops (Table 3). 

Most pronounced is an increase in average percentage of calcium car- 

bonate from mainland canyons to island canyons to bank canyons. The 

average median diameter exhibits little change, except for an increase 

in Tanner Canyon, the only one off a bank. Percentage of organic matter 

increases from mainland to island canyons probably because the slower 

rate of deposition of similar average grain sizes of detrital sediment in 

the latter permits less dilution of organic matter. 

When compared with sediments of the source areas (mainland shelf, 

island shelves, and bank tops) and with those of the sites of final deposi- 

tion (basin floors), the sediments of the canyons are found to be inter- 

mediate in nearly all the averages (Table 3). Sediments of the canyons 

are finer grained than those of the shelves and coarser than those of the 

basin floors. Sorting coefficients are also intermediate, except at Tanner 

Canyon where only six samples are available, most of which are coarse 

grained. The average content of calcium carbonate also is intermediate 

between values for shelf and basin sediments except for the mainland 

canyons, which have a very low content for some unknown reason. Aver- 

age contents of organic matter are intermediate in all instances. These 
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4.0 

CARBON direct 

CARBON differ. 
° =~ 0.90 

% ORGANIC CARBON (difference) 

1.0 

3.0 = ao 2.0 
% ORGANIC CARBON (direct) 

Fig. 21—Results of separate determinations for organic car- 
bon on sub-samples, based on (1) analysis for carbon 
in residue from carbonate analysis, and (2) on analysis 
for total carbon minus carbonate carbon. 

generally intermediate characteristics of the sediments in canyons with 

respect to sediments of shelves and basins are reasonable in view of other 

lines of evidence which indicate that the canyons serve as the routes 

through which at least the coarser sediments reach the basins for per- 

manent deposition. However, the averages of Table 3 do not reveal 

whether the movement through the canyons is chiefly by rapid turbidity 

currents or by slow creep. 
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0.4 

CARBON __ 
NITROGEN 
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Fig. 22.—Comparison of carbon and nitrogen analyses on 
samples from submarine canyons. 
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SUMMARY AND CONCLUSIONS 

In many ways submarine canyons are intermediate between shelves 

and basin floors. Their axial slopes are intermediate in steepness; thus 

the canyons not only dissect the basin slopes but their heads extend 

landward of the shelf break. Where the heads of the canyons are very 

close to shore they may serve as local sites for upwelling in response to 

the action of wind in driving surface water toward the open sea. This 

upwelling, however, appears to be weak and probably discontinuous. It 

does not establish a very unique ecological environment, but the minor 

differences in the waters of canyons or basins which do exist may pos- 

sibly be significant for some animals. 

Canyons which cross much of the width of shelves and of basin 

slopes receive sediments in at least three different ways. Most important 

quantitatively is grain-by-grain deposition of silts and clays carried in 

suspension from the mouths of streams and from the turbulent shore 

zone. When deposited, this sediment forms a homogeneous blanket of 

green mud on the steep walls of the canyons as well as on the basin 

slopes and floors farther seaward. The steepness of the canyon walls, 

possibly aided by animal activities, allows the sediment to move down- 

slope to the canyon axes. This movement not only exposes rock outcrops 

on the sides of the canyons but also produces interbeds of the green 

mud with coarser sediment on the canyon floors. Whether the mud 

moves downslope slowly and continuously or rapidly and intermittently 

is unknown. The outer parts of the canyons, the channels on the basin 

floors, also receive the grain-by-grain deposits, but because of the gentle 

slopes of the sub-sea aprons there probably is little mass movement of 

this sediment. 

Second most important, but probably of greatest interest, is the depo- 

sition of sand and fine gravels which move down coast along beaches 

and atop the inner part of the shelves, under the influence of longshore 

currents. These currents are partly the inshore portions of the general 

southern California eddy but mostly they are produced by the diagonal 

approach to shore of the dominant waves from the northwest (Emery, 

1960a). Where canyons extend close in to shore, they serve as traps for 

this moving sediment. The sediment may accumulate slowly until it 

finally moves out en mass, causing a sudden deepening of the water of 

the canyon head (Shepard, 1951a, and other papers). The moving mass 

may become transformed into a turbidity current which carries sand into 

deep water (Shepard, 1951b), building up sub-sea fans or aprons at 

the mouths of the canyons (Gorsline and Emery, 1959; Emery, 1960b). 

These sands have the same general grain size as the nearshore sediments 
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of the shelves and they contain shallow-water foraminifera and remains 

of other animals and plants, including bits of wood from land. Within 

the canyons the sands form narrow bands traversing the canyon axes 

between the steep walls covered by green mud. Movement of this mud 

downslope to the intermittently moving axial sand produces the observed 

bedded character of the sediment on the floors of the canyons. The sands 

in canyons near the mainland contain lower percentages of calcium car- 

bonate than do the muds, in agreement with the low content of calcium 

carbonate in sands atop the mainland shelves as compared with that of 

muds on the basin slopes and floors. In contrast, the sands in offshore 

canyons have more calcium carbonate than the muds, again in response 

to the shelly nature of sands of island shelves and bank tops. 

Third, and least important, are small quantities of sediment from the 

outer parts of the shelves which are moved into the canyons, probably 

by occasional storm waves. Their presence is attested by occasional grains 

of glauconite and phosphorite, authigenic sediments which are most com- 

mon on bank tops and on the outer parts of shelves. 

As shown by Menard (1955) and by Emery (1960a), the quantities 

of sediment in sub-sea fans and aprons far exceed the volume of rock 

which has been removed during erosion of the canyons. Since the fans 

consist mostly of sand, it is evident that the canyons act as conduits for 

movement of sand from near shore to deep water. As pointed out by 

others, this movement may act as a sort of giant chain saw cutting down- 

ward into the bedrock floors of the canyons. Deepening of the axes 

steepens the side walls and allows more sliding of muds from the canyon 

walls, possibly leading to lateral enlargement of the canyons. Future 

work from manned or televised deep-diving vehicles should go far toward 

investigating this interesting geological agent of erosion. 

Downcutting of canyon axes by moving axial sands should clear away 

a strip through the blanketing muds or prevent the muds from being 

deposited. Any aquifer which has been exposed through erosion by the 

same sand or by other possible canyon-forming agents is thereby exposed 

to the sea water. If the internal water pressure is greater than hydro- 

static pressure of sea water at the outcrop, fresh water should leak to 

the sea. If the reverse is true, owing to over-pumping or perhaps to 

natural causes, sea-water intrusion should occur. Because of widespread 

over-pumping in the intensely cultivated and highly populated coastal 

areas of southern California, sea-water intrusion is well known. It is 

generally made manifest by increasing salinity of water wells (Emery, 

1960a). Deeper aquifers, largely untapped by water wells, may be 

expected to behave differently than the over-pumped shallow ones. 
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Accordingly, it should occasion no great surprise to learn that the deep 

aquifers still discharge fresh water, as did the shallow ones during the 

nineteenth century. The quantity of discharge must be small compared 

with the volume of sea water within the canyons. Accordingly, one 

should not expect to detect it through water analyses, except perhaps 

of interstitial waters of axial sands or by visual inspection from deep- 

diving vehicles. The finding of fresh-water worms and the absence of 

marine animals in more than a score of axial sediment samples serves 

as a clear indication of seaward loss of water from deep aquifers. Prob- 

ably most of the loss of fresh water from these aquifers occurs through 

the canyons because they represent the points of outcrop of aquifers 

nearest land and thus are the focal points of the steepest pressure 

gradients. 
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