

SUPPLEMENTAL REPORT

ENVIRONMENTAL PROGRAMS

— 1977 —

WHITE RIVER SHALE PROJECT

Federal Prototype Oil Shale Leases

Ua and Ub

January 1979

TN 859 .U82 W417 1977 suppl.

WHITE RIVER SHALE PROJECT

1315 WEST HIGHWAY 40 VERNAL, UTAH 84078 (801) 789-0571

February 23, 1979

Mr. Henry O. Ash Executive Director Oil Shale Environmental Advisory Panel U. S. Department of Interior Office of the Secretary Denver Federal Center, Rm. 820-A, Bldg. 67 Denver, Colorado 80225

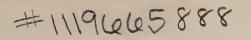
Re: "Supplemental Report -- Environmental Programs"

Dear Mr. Ash:

Enclosed for your use are two copies of the subject report. This report contains data collected by the U. S. Geological Survey during the 1977 water year. This information was not available at the time the WRSP 1977 Environmental Progress Report was published and copies sent to you in July 1978.

Please contact me if you have any questions concerning this report or our project.

Sincerely,


Madra us C.

Rees C. Madsen Manager

RCM/nh

Enclosure

10:88074630

SUPPLEMENTAL REPORT ENVIRONMENTAL PROGRAMS - 1977 -

TN 859 . 482 W417 1977 saypp.

BLM Library D-553A, Building 50 Denver Federal Center P. O. Box 25047 Denver, CO 80225-0047

WHITE RIVER SHALE PROJECT FEDERAL PROTOTYPE OIL SHALE LEASES

U-a and U-b

January 1979

TABLE OF CONTENTS

		Page
1.0	Surface Water	3
2.0	Alluvial Ground Water	32
3.0	Precipitation/Evaporation	50

LIST OF FIGURES

Figure		Page
1	Water Resources Monitoring Sites	2
2	Mean Daily Streamflow, Temperature and Specific Conductance; Evacuation Creek near mouth, near Watson (09306430); October 1976-September 1977	4
3	Mean Daily Streamflow, Temperature and Specific Conductance; White River near Colorado state line (09306395); October 1976-September 1977	7
4	Mean Daily Streamflow, Temperature and Specific Conductance; White River near Watson (09306500); October 1976-September 1977	8
5	Balance and Distribution of Major Ions; White River Stations	26
6	Balance and Distribution of Major Ions; Evacuation Creek - Station 09306430	31
7	Balance and Distribution of Major Ions; Alluvial Water Quality - White River; October 1976-September 1977	42
8	Balance and Distribution of Major Ions; Alluvial Water Quality - Evacuation Creek; October 1976- September 1977	43
9	Balance and Distribution of Major Ions; Alluvial Water Quality - Dry Washes; October 1976-September 1977	44
10	Variation in Time of Specific Conductance and Total Dissolved Solids; Alluvial Wells AG-6 #1 and AG-6 #2; October 1975-September 1976	45
11	Variation in Time of Specific Conductance and Total Dissolved Solids; Alluvial Wells AG-6 #1 and AG-6 #2; October 1976-September 1977	46
12	Annual Precipitation in Cm.; October 1976-September 1977; USGS Regional Network	51
13	Comparison of WRSP Precipitation Gages to USGS Regional Precipitation Network; October 1976-September 1977	52

LIST OF TABLES

Table		Page
1	Mean Daily Streamflow; Hell's Hole Canyon and Asphalt Wash; October 1976-September 1977	5
2	Concentration, Discharge and Particle Size Distribution of Suspended Sediment; White River near Colorado state line (09306395); October 1976-September 1977	9
3	Suspended Sediment Discharge; Station 09306700; October 1976-September 1977	11
4	Concentration, Discharge and Particle Size Distribution of Suspended Sediment; Evacuation Creek near mouth near Watson (09306430); October 1976-September 1977	15
5	Relationship of Temperature Measurements Between Stations 09306395 and 09306400	18
6	Relationship of Specific Conductance Measurements Among Stations 09306395, 09306400, and 09306500	20
7	Results of ANOVA Tests for Significant Difference; White River Water Quality	23
8	Summary of White River Water Quality; October 1976-September 1977	25
9	Summary of Evacuation Creek Water Quality; October 1976-September 1977	28
10	Results of ANOVA Tests for Significant Difference; Evacuation Creek Water Quality (station 09306430); Baseline Period Versus 1977	29
11	Comparison of Nomenclature for Alluvial Wells	33
12	Results of ANOVA Tests for Significant Difference; Alluvial Water Quality; 1976 Versus 1977	35
13	Summary of Alluvial Water Quality; White River Alluvium; January 1976-September 1977	36
14	Summary of Alluvial Water Quality; Evacuation Creek Alluvium; January 1976-September 1977	38

LIST OF TABLES (Continued)

Table		Page
15	Summary of Alluvial Water Quality; Dry Washes Alluvium; January 1976-September 1977	40
16	Results of ANOVA Tests for Significant Difference; Alluvial Water Quality; Lower Versus Upper Alluvial Wells; January 1976-September 1977	48
17	Comparison of Measured Precipitation with Predicted Value From Isohyetal Map; Stations ARA-2, ARS-9, and ARA-13; October 1976-September 1977	53

SUPPLEMENTAL WATER RESOURCES REPORT

The annual WRSP progress report for the Interim Environmental Monitoring Program covering the 1977 water year (October 1, 1976 through September 30, 1977) was published in July 1978. At that time, some 1977 data that had been collected by the United States Geological Survey (USGS) were not available. These data have been received from the USGS and are presented in this supplemental report to the 1977 annual report. The anlayses of these data are also presented.

Some additional analyses of the data presented in the 1977 annual report have been done since that report was published. These analyses are included within the conclusions of the Surface Water, Alluvial Ground Water and Precipitation/Evaporation sections. No additional analyses were done on the data from Deep Ground Water.

The analyses were performed and this report prepared by VTN Colorado Inc. for the White River Shale Project (WRSP). The White River Shale Project is a joint venture of Phillips Petroleum Company, Sohio Natural Resources Company and Sunoco Energy Development Company. WRSP was formed to develop two Federal oil shale leases (Tracts Ua and Ub) located in Uintah County, Utah.

The locations of the water resources monitoring sites are shown in Figure 1. All supporting data are shown in the figures and tables of the text and in the field data section. All USGS data in this report are preliminary and subject to revision.

-1-

.

WATER RESOURCES MONITORING SITES

Kert

6700 o AG-3

LEGEND

- D SURFACE WATER
- DEEP AQUIFER WATER
- ALLUVIAL WATER

UTAH

- A PRECIPITATION (AUTOMATIC)
- PRECIPITATION (STORAGE)
- PRECIPITATION (AUTO)/EVAPORATION
 PAN

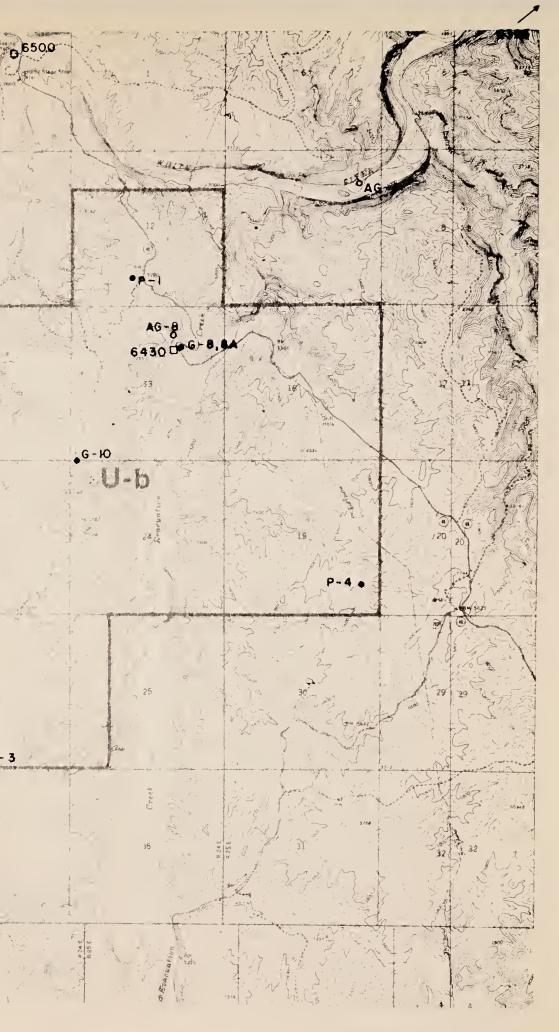
SCALE IN MILES

RATION

AG-60 D6610

U-a

• G -15


AR5 - 9

ARA/EVP 13 G-11

• G-5

35

•P-3

1.0 Surface Water

This section presents the data collected by the USGS that were unavailable at the time that the 1977 annual report for the Interim Monitoring Period was written. The analysis of these data, as well as additional analyses of the previously presented data are included in this section.

1.1 Results to Date

Streamflow: Evacuation Creek

During the 1977 water year the maximum mean daily streamflow at station 09306430 was 2.12m³/sec (75 cfs). The peak flows occurred during July, August and September and were due to thunderstorm runoff. The surface runoff was of short duration but very intense. It accounted for almost all of the volume of runoff during the year. The minimum mean daily streamflow at this station was 0.0003 m³/sec (0.01 cfs). The mean daily streamflow at station 09306430 is shown in Figure 2. The annual total volume of runoff at station 09306430 was 60.3 hectaremeters (489 acre-feet).

Streamflow: Dry Washes

In Hell's Hole Canyon at the mouth (station 09306405) there were eight days of flow during the year. In Asphalt Wash near the mouth (station 09306625) there were six days of flow during the year. All of these flow events were due to thunderstorm runoff. The mean daily streamflow for the days of flow during the 1977 water year at stations 09306405 and 09306625 are shown in Table 1. The annual total volume of runoff

-3-

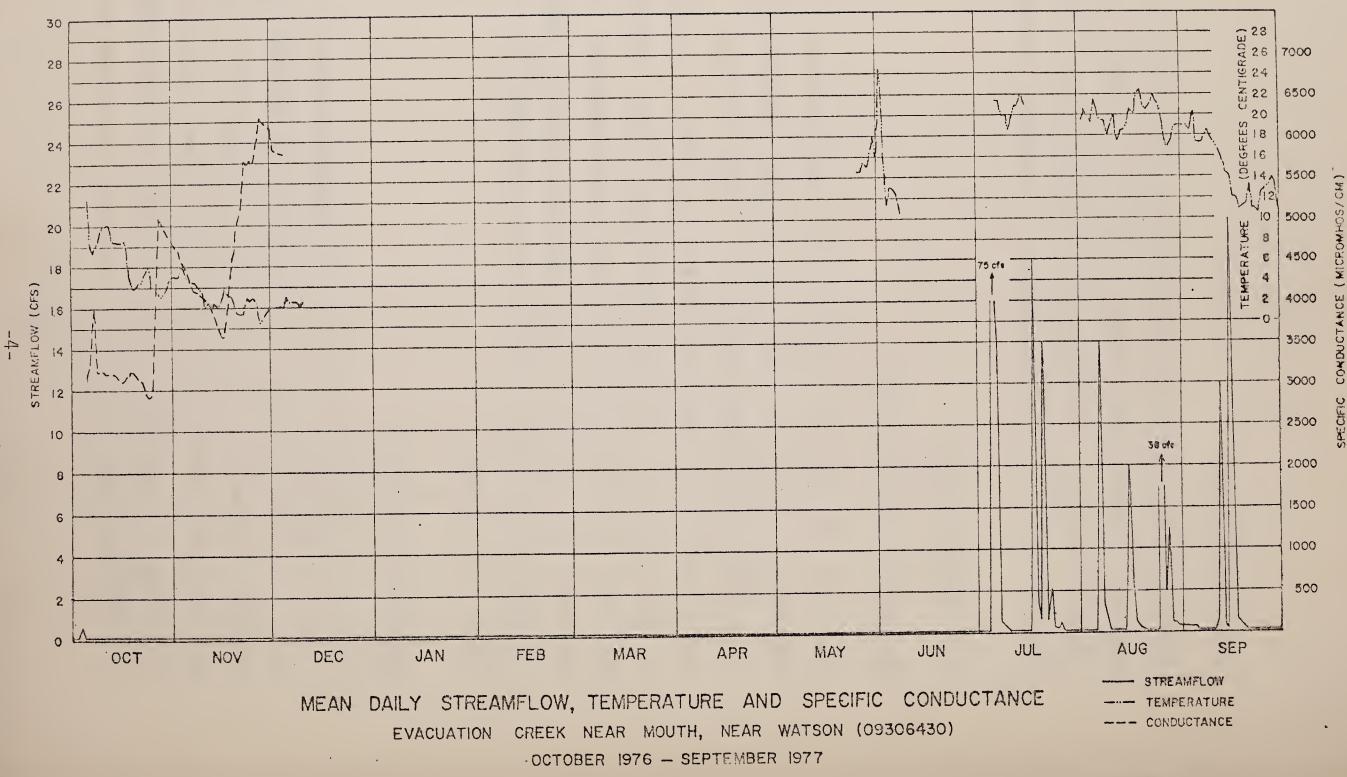


FIGURE 2

TABLE 1

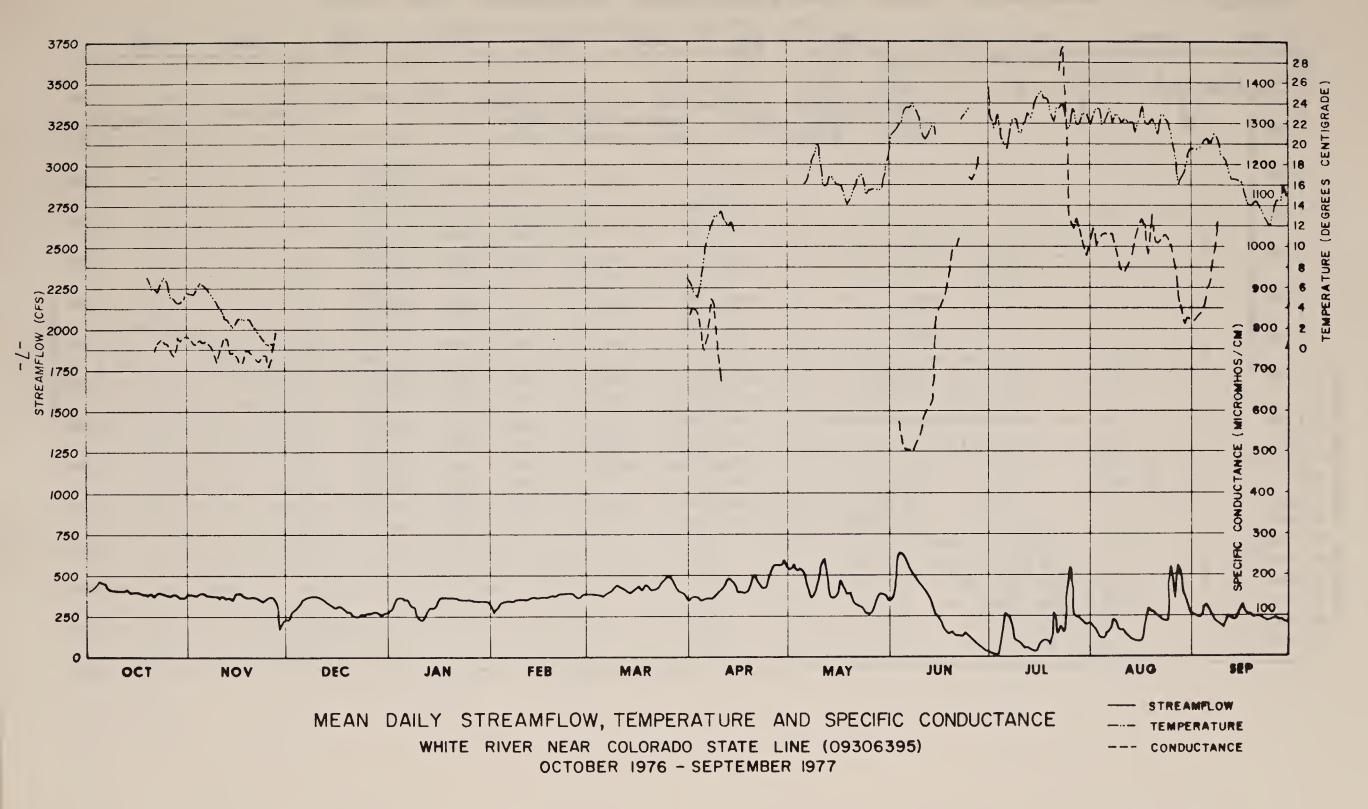
MEAN DAILY STREAMFLOW HELL'S HOLE CANYON AND ASPHALT WASH OCTOBER 1976 - SEPTEMBER 1977

		Date	Mean Daily Streamflow (cfs)
Hell's Hole Canyon at Mouth (Station 09306405)			
(Station 09306405)		10/02/76	0.53
		7/04/77	0.26
		7/05/77	7.00
		7/17/77	0.08
		7/19/77	5.10
		7/20/77	0.20
		7/23/77	5.20
		7/24/77	6.80
Asphalt Wash near Mouth (Station 09306625)		10/02/76	0.01
		10/02/76	
		10/03/76	0.28
	`	8/17/77	3.10
		8/18/77	0.61
		8/25/77	0.07
		9/16/77	0.15

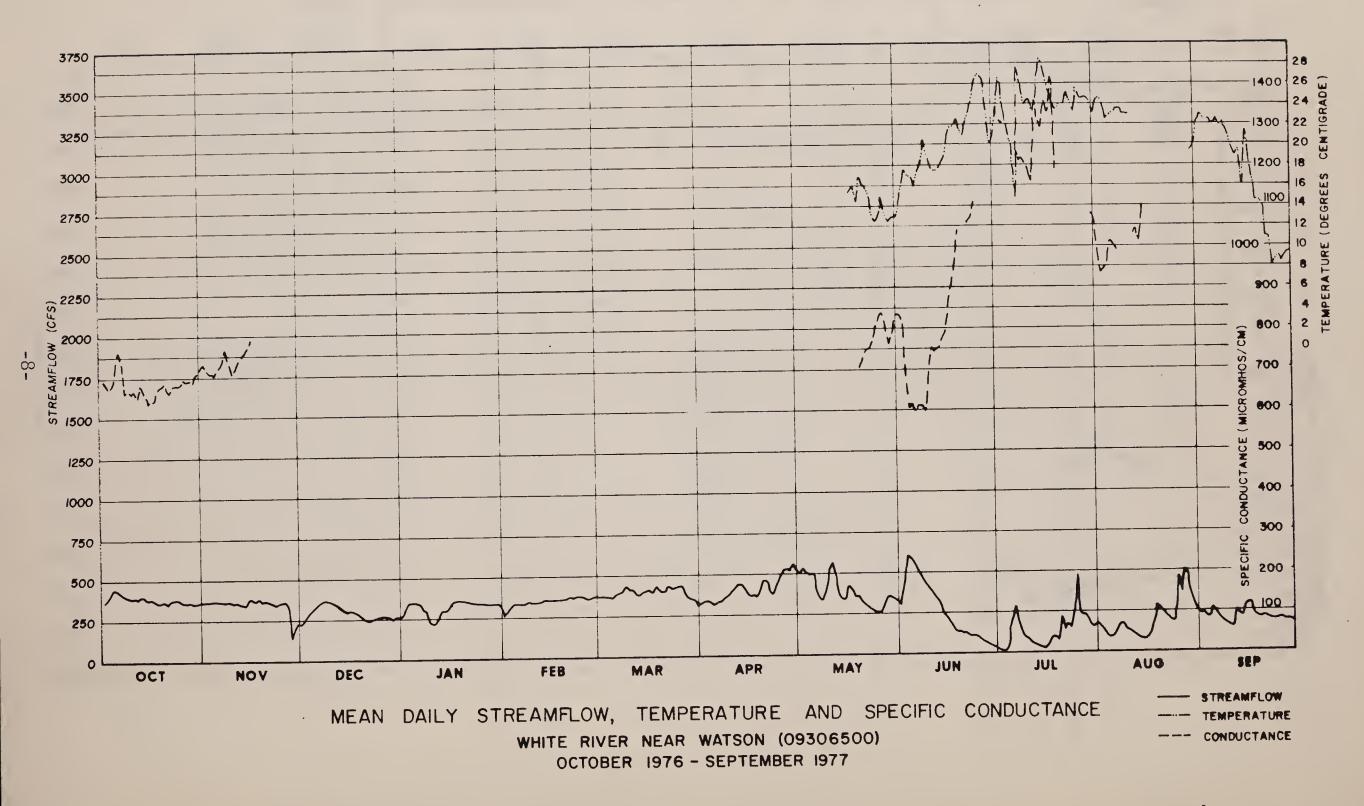
was 6.17 hectare-meters (50 acre-feet) at station 09306405 and 1.04 hectare-meters (8.4 acre-feet) at station 09306625.

Water Quality: White River

Temperature and specific conductance during the 1977 water year at stations 09306395 and 09306500 are shown in Figures 3 and 4, respectively. Temperature followed an annual sinusoidal pattern, and specific conductance followed an inverse relationship to streamflow. This was similar to the Baseline period.


The 1977 records of suspended sediment concentration and discharge at stations 09306395 and 09306700 are shown in Tables 2 and 3, respectively. The 1977 record was the first year of record at station 09306395. Suspended sediment concentration at both stations followed the direct relationship to streamflow that was established in the Baseline study.

Water Quality: Evacuation Creek


Temperature and specific conductance during the 1977 water year for Evacuation Creek near the mouth (station 09306430) are shown in Figure 2.

Suspended sediment concentration and discharge data for station 09306430 are shown in Table 4. The maximum mean daily suspended sediment discharge was 35,700 tons/day on July 5, 1977. The total annual discharge was 89,052 tons. The high values of mean daily suspended sediment were due to thunderstorm runoff. The values of

-6-

FIGURE 3

.

FIGURE 4

TABLE 2

UNITED STATES DEPARTMENT OF INTERIOR - GEOLOGICAL SURVEY 09306395 - WHITE R. NR. COLO. STATE LINE, UT. PHULESS DATE LIVE. DISTRICT CODE 49

PARTICLE-SIZE DISTRIBUTION OF SUSPENDED SEDIMENT

DATE	TIME	STREAM- FLUW, INSTAN- TANEOUS (CFS)	TERPER- ATURE (DEG C)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT DIS- CHARGE, SUS- PENDED (T/DAY)	THAN	SED. SUSP. FALL DIAM. FINER THAN 004 MM
OCT , 19	76						
15	1600	397	13.0	95	102		
JAN + 19		1 050	0	121	114		
05	1245	350	• 0	121	114		
FEB 01	1400	266	• 0	81	58		
MAR	1400	200	••				
24	1545	460	4.0	1040	1290	27	40
29	1415	404	4.5	407	444		
APR							
06	1300	360	13.0	195	190		
27	1215	564	17.0	624	950		
MAY				127	119		
13	1320	347 -	16.0	127	119		
JUN	1200	530	22.5	272	395		
02	1300	538 241	20.0	111	72		
14 • • •	1030 1300	135	14.0	95	34		
21 JUL	1200	133	1400		_		
07	1450	100	24.5	12900	5780	62	84
13	1200	40	25.0	194	21		
AUG							. 7
25	1030	642	21.0		40200	33	47
31	1115	261	18.0	851	600	43	53
SEP				7.0.0	2014		
07	1410	207	24.0	709 2800	396 1690	51	71
14	1100	224		2000	1030	51	•

.

-9-

TABLE 2 (continued)

UNITED STATES DEPARTMENT OF INTERIOR - GEOLOGICAL SURVEY 09306395 - WHITE R. NR. COLO. STATE LINE, UT.

PROCESS DATE 09/29/78 DISTRICT CODE 49

SUS. SUS. <th< th=""><th>Unpublished Records Subject to Revision</th><th></th><th>SU</th><th>ISPENDED S</th><th>EDIMENT D</th><th>ISCHARGE</th><th></th><th>L.</th></th<>	Unpublished Records Subject to Revision		SU	ISPENDED S	EDIMENT D	ISCHARGE		L.
SED.	Callect to Revision		SUS.	SUS.	SUSA	SUS.	SUS	SUS.
FALL DIAM. THAN THAN <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
DIAM. DIAM. DIAM. DIAM. DIAM. DIAM. DIAM. DIAM. S FINER S FINER S FINER S FINER S FINER S FINER THAN THAN THAN THAN THAN THAN THAN THAN								
% FINER % FINER <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
THAN THAN <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>								
DATE .016 MM .031 MM .062 MM .125 MM .250 MM .500 MM OCT , 1976 15 JAN , 1977 05 FEB 01 MAR 24 62 88 89 93 99 100 29 APR 06 APR 13 JUN 02 14 JUL 07 99 100 13 71 90 95 99 100 SEP 07								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		DATE						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		001 • 1	976					
JAN , 1977 05 FEB 01 24 AR 24 62 88 89 93 99 100 29 APR 06 								
05 FEB 01 MAR 24 62 88 89 93 99 100 29 APR 06 77 MAY 13 JUN 02 14 JUL 07 99 100 13 AUG 25 78 96 99 100 31 71 90 95 99 100 SEP 07			977					
FEB 01 MAR 24 62 88 89 93 99 100 29 APR 106 MAY JUN 02 JUN 02 JUL 07 JUL 07 99 100 AUG SEP 07 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
01 MAR 24 62 888 89 93 99 100 29								
MAR 24 62 888 89 93 99 100 29 APR 06 77 HAY 13 JUN 02 14 JUL 07 99 100 13 AUG 25 78 96 99 100 31 71 90 95 99 100 SEP 07								
24 62 88 89 93 99 100 29 APR 27 NAY JUN 02 JUN 02 JUN 02 JUL 02 JUL 07 99 100 JUL 25 78 96 99 100 AUG								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			62	88	89	93	99	100
APR 06 27 MAY 13 JUN 02 14 JUL 07 99 100 13 AUG 25 78 96 99 100 31 71 90 95 99 100 SEP 07			_		_			-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
13 JUN 02 14 21 JUL 07 99 100 13 AUG 25 78 96 99 100 31 71 90 95 99 100 SEP 07								
02 I4 JUL 07 99 100 13 AUG 25 78 96 99 100 31 71 90 95 99 100 SEP 07								
02 I4 JUL 07 99 100 13 AUG 25 78 96 99 100 31 71 90 95 99 100 SEP 07								
14 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>a a</td></td<>								a a
21 JUL 07 99 100 13 AUG 25 78 96 99 100 31 71 90 95 99 100 SEP 07								
07 99 100 13 AUG 25 78 96 99 100 31 71 90 95 99 100 SEP 07								
13 AUG 25 78 96 99 100 31 71 90 95 99 100 SEP 07								
13 AUG 25 78 96 99 100 31 71 90 95 99 100 SEP 07		07	99	100				
25 78 96 99 100 31 71 90 95 99 100 SEP 07								-+
31 71 90 95 99 100 SEP 07								
31 71 90 95 99 100 SEP 07			78	96	99	100		
SEP 07				90		• • •	100	
		07						
I4 95 99 IOO		I4	95	99	100			

TABLE 3

SEDIMENT DISCHARGE STATION 09306700

OCTOBER 1976

-]]-

NOVEMBER 1976

DECEMBER 1976

	MEAN DISCHARGE (cfs)	CON	MEAN CENTRATION (mg/l)	SEDIMENT DISCHARGE (tons/day)	MEAN DISCHARGE (cfs)	MEAN CONCENTRATION (mg/l)	SEDIMENT DISCHARGE (tons/day)	MEAN DISCHARGE (cfs)	CONC	MEAN ENTRATION (mg/1)	SEDIMENT DISCHARGE (tons/day)
					354			202			
	1 384				354 349			250			
	2 398				349			280			
	3 416				349	* 238	229	305			
	4 435				361	230		335			
	5 430			 E70	354			345			
	6 415		509	570	352			355			
	7 392	*	380	402	348			360			
	8 384			– – 21 7	348	220	208	360			
	9 383		307	317	338	168	153	355			
1			240	246	.344	212	197	340			
1			307	313	337	200	182	330			
	2 372			 507	332	165	148	310	*	183	153
	3 384		489		323	153	133	300			
1			 251	245	359	247	239	290			
	5 362		251	206	369	200	199	295			
	6 365		209	184	351	* 145	137	295			
	7 354		193	196	361	176	172	280			
	8 346		210	190 	343	164	152	265			
	.9 347	*	180	170	357	181	174	250			
	20 349	^	100	170	348	203	191	240			
	21 336				338	167	152	240			
	22 351		239	236	319	218	188	245			
	23 366		239	200	321	257	223	250			
	24 362				326	270	238	250			
	25 354				340	455	418	260			
	26 349				310			265			
	27 347				150			255	*	176	121
	<u>28</u> 353				200			240			
	<u>29</u> 339				220			250			
	30 339 31 3 46							255			

Note: The symbol, *, indicates that a suspended sediment measurement was taken manually using the EDI method. The symbol, S, indicates that the day was subdivided using the mean interval method to calculate sediment discharge.

TABLE 3 (Continued)

SEDIMENT DISCHARGE STATION 09306700

		JA	NURAY 1977			FEB	RUARY 1977			MARCH 1977	
	MEAN DISCHARGE (cfs)	CON	MEAN CENTRATION (mg/1)	SEDIMENT DISCHARGE (tons/day)	MEAN DISCHARGE (cfs)	CON	MEAN CENTRATION (mg/1)	SEDIMENT DISCHARGE (tons/day)	MEAN DISCHARGE (cfs)	MEAN CONCENTRATION (mg/l)	SEDIMENT DISCHARGE (tons/day)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27	(cfs) 275 330 345 345 340 335 295 290 220 210 215 265 290 290 315 345 350 350 350 350 350 350 345 340 340 345 345 345 350 350 350 350 350 350 350 35	*	(mg/1) -	(tons/day)	(c+s) 260 290 320 330 330 330 330 330 330 340 34	*	(mg/1) -	(cons / day) 	370 370 365 360 375 385 387 383 405 408 361 353 368 371 402 391 415 398 404 381 419 453 446 446 446 460 413	(ing/ i) -	(cons / day)
28 29 30 31	330 330 330 315				365 				386 373 370 323		

Note: The symbol, *, indicates that a suspended sediment measurement was taken manually using the EDI method. The symbol, S, indicates that the day was subdivided using the mean interval method to calculate sediment discharge.

-12-

TABLE 3 (Continued)

SEDIMENT DISCHARGE STATION 09306700

		APRIL 1977			MAY 1977			JUNE 1977	
1	MEAN DISCHARGE (cfs)	MEAN CONCENTRATION (mg/l)	SEDIMENT DISCHARGE (tons/day)	MEAN DISCHARGE (cfs)	MEAN CONCENTRATION (mg/1)	SEDIMENT DISCHARGE (tons/day)	MEAN DISCHARGE (cfs)	MEAN CONCENTRATION (mg/l)	SEDIMENT DISCHARGE (tons/day)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	(cfs) 335 351 361 340 330 344 353 366 388 405 433 471 475 445 404 386 394	(mg/1) * 277 1010 835 605 485 408 389	(tons/day) 247 247 1280 1070 727 529 425 414	(cfs) 510 542 550 489 536 458 363 352 369 506 579 538 390 363 341 430 424	(mg/1) 846 504 623 477 * 424 366 251 229 358 276 * 204 * 305	(tons/day) 1170 738 925 690 524 359 239 228 489 431 200 349	(cfs) 307 444 624 606 587 560 503 475 450 418 390 345 314 261 222 192 159	(mg/1) * 1310 * 612 * 183 	(tons/day) 2210 925 129 129
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	376 421 465 477 412 390 430 478 516 550 535 563 558 	309 312 352 * 445 587 474 260 234 510 516 664 627 1430 949 	317 400 559 756 527 274 272 658 719 986 906 2170 1430	424 381 374 341 313 300 274 255 247 264 313 357 374 352 348	* 232 * 177 182 * 57 * 119 * 119 	239 179 168 - 39 85 	139 131 124 123 101 111 100 111 94 78 64 47 44 38	112 104 * 109 79 112 73 90 91 64 72 62 * 60 72	40 35 36 22 34 20 27 23 13 12 7.9 7.1 7.4

Note: The symbol, *, indicates that a suspended sediment measurement was taken manually using the EDI method. The symbol, S, indicates that the day was subdivided using the mean interval method to calculate sediment discharge.

TABLE 3 (Continued)

SEDIMENT DISCHARGE STATION 09306700

	JULY 1977			AUGUST 1977		S	SEPTEMBER 1977	
MEAN	MEAN	SEDIMENT	MEAN	MEAN	SEDIMENT	MEAN	MEAN	SEDIMENT
DISCHARGE	CONCENTRATION	DISCHARGE	DISCHARGE	CONCENTRATION	DISCHARGE	DISCHARGE	CONCENTRATION	DISCHARGE
(cfs)	(mg/1)	(tons/day)	(cfs)	(mg/l)	(tons/day)	(cfs)	(mg/1)	(tons/day)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<pre></pre>	$ \begin{array}{r} 6.9\\ 2.6\\ 1.3\\ 3.0\\ 1730\\ 33300\\ 11600\\ 336\\ 185\\ 64\\ 65\\ 41\\ 35\\ 11\\ 9.0\\ 7.9\\ 33\\ 65\\\\ 140\\\\\\ 140\\\\\\ 3370\\ 1940\\ \end{array} $	$ \begin{array}{r} 164 \\ 128 \\ 114 \\ 91 \\ 88 \\ 124 \\ 138 \\ 121 \\ 134 \\ 131 \\ 123 \\ 102 \\ 83 \\ 76 \\ 73 \\ 90 \\ 88 \\ 286 \\ 305 \\ 226 \\ 230 \\ 209 \\ 193 \\ 186 \\ 406 \\ 487 \\ 501 \\ 600 \\ \end{array} $	583 * 216 * 134 * 134 -	258 -	$\begin{array}{c} 245 \\ 235 \\ 226 \\ 200 \\ 308 \\ 260 \\ 216 \\ 196 \\ 177 \\ 160 \\ 154 \\ 216 \\ 247 \\ 220 \\ 249 \\ 376 \\ 234 \\ 214 \\ 201$	1150 3480 3780 * 7550 591 434 292 254 5240 31300 12200 * 4840 21200 23000 2010 -	761 2210 2640 S 4320 S 313 207 126 106 3060 20900 7250 3250 21500 14500 1160
29 168	1120	508	441	* 11300	13500	188	* 181	92
30 155	853	357	332	3480	3120	169		
31 164	586	259	276	1760	1310			

Note: The symbol, *, indicates that a suspended sediment measurement was taken manually using the EDI method. The symbol, S, indicates that the day was subdivided using the mean interval method to calculate sediment discharge.

-14-

UNITED STATES DEPARTMENT OF INTERIOR - GEOLOGICAL SURVEY

PROCESS DATE IS 09-29-78

LATITUDE	395704 ords	LONGI		90931		GE AREA	284.0	r				UNTY 04
act to Rev		SUSPENDED	-SEDIMEN	T DISCHARGE		AY) . WATER	YEAR OC	TOBER 1970	5 TO SE	PTEMBER 1	977	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SE
1	•02	.00	•00	• 0 0	•01	•01	• 01	•01	.01	•01	.40	6.0
2	.01	• 0 0	• 0 0	• 0 0	• 01	• 0 2	•01	• 01	.01	.01	.50	4.0
3	.10	.00	•00	• 0 0	• 01	• 02	.01	•01	•02	• 01	•50	3.0
4	.01	•00	• 0 0	•00	• 01	•02	• 0 1	•01	• 02	•01	.60	2.0
5	• 02	• 0 0	• 0 0	• 0 0	• 02	•02	• 0 1	•01	•02	35700	.60	• •
6	• 0 0	.00	.00	• 0 0	• 0 2	• 02	•01	.01	•02	4480	4000	•
7	.00	.00	.00	• 0 0	• 02	• 02	•01	•01	• 02	60	250	•
8	.00	.00	• 0 0	• 0 0	•03	• 02	.01	.01	• 0 2	32	6.0	•
9	• 0 0	.00	• 0 0	• 0 0	•03	•02	+01	.01	• 02	22	3.0	•
10	•00	•00	• 0 0	• 0 0	•03	• 02	•01	•02	•02	7.0	1.0	•
11	•00	.00	• 0 0	. •00	•03	•02	•01	.01	•02	1.2	.50	127
12	.00	.00	.00	• 0 0	• 02	• 02	•01	•01	• 02	.70	.20	3250
13	.00	.00	• 0 0	• 0 0	• 0 2	•02	• 01	.02	•02	•10	.10	25
14	•00	.00	• 0 0	• 0 0	• 02	• 02	• 01	• 01	•02	• 06	• 5 0	11
15	• 0 0	• 0 0	• 0 0	•00	• 02	• 02	• 01	•01	•02	• 01	2000	6000
16	.00	.00	.00	• 0 0	.02	• 02	.01	.01	.01	.01	450	1200
17	•00	.00	•00	• 0 0	• 0 2	• 0 2	• 0 0	•01	• 01	7950	46	48
18	• 0 0	.00	• 0 0	• 0 0	•03	• 02	•00	• 01	•01	330	27	36
19	.00	•00	• 0 0	• 0 0	• 02	• 02	•0 <u>1</u>	•01	•01	61	16	10
20	•00	•00	•00	•00	•01	• 02	• 01	.01	• 01	3260	7.0	з.
21	.00	•00	• 0 0	.00	• 01	.01	• 01	.01	.01	58	6.0	1.
2 2	•00	.00	• 0 0	• 0 0	• 02	•01	• 0 0	•01	.01	670	6.0	•
23	• 0 0	•00	• 0 0	• 0 0	• 02	•01	• 0 0	•01	•01	34	5.0	•
24	•00	•00	• 0 0	• 0 0	• 0 2	•01	• 0 0	•01	•01	1.2	9.0	•
25	•00	• 0 0	• 0 0	• 0 0	•01	•01	•00	•01	• 01	2.9	17100	•
26	• 0 0	• 0 0	•00	• 0 0	• 02	• 01	.00	.01	.01	.70	410	•
27	• 0 0	.00	• 0 0	•01	•01	•01	•01	.01	.01	•20	1200	•
28	•00	• 0 0	• 0 0	•01	• 02	•01	•01	• 01	.01	•10	50	•
29	.00	• 0 0	• 0 0	• 01		•58	•01	•01	.01	.03	35	•
30	• 0 0	.00	•00	• 01		.01	•01	• 0 2	•01	.03	11	•
31	.00		• 0 0	• 01		.01		•02		•20	8.0	-
TOTAL	0.16	0.00	0.00	0.05	0.53	1.07	0.23	0.35		52671.48		
MEAN	•01	•00	•00	•00	•02	•03	•01	•01	.01	1700	827	358
MAX	.10	.00	• 0 0	.01	•03	•58	.01	• 02	• 02	35700	17100	6000

-15-

-

TABLE 4

TABLE 4 (continued)

UNITED STATES DEPARTMENT OF INTERIOR - GEOLOGICAL SURVEY 09306430 - EVACUATION CR NR MOUTH NR WATSON.UT PROCESS DATE 11/15/78 DISTRICT CODE 49

PARTICLE-SIZE DISTRIBUTION OF SUSPENDED SEDIMENT

.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER- ATURE (DEG C)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT DIS- CHARGE, SUS- PENDED (T/DAY)	SED. SUSP. FALL DIAM. % FINER THAN .002 MM	SED. SUSP. FALL DIAM. % FINER THAN .004 MM	SED. SUSP. FALL DIAM. % FINER THAN .016 MM	SED. SUSP. FALL DIAM. % FINER THAN .031 MM	SED. SUSP. FALL DIAM. % FINER THAN .062 MM	SED. SUSP. FALL DIAM. % FINER THAN .125 MM	SED. SUSP. FALL DIAM. % FINER THAN .250 MM
DEC . 1	976											
13	1230	-02	3.0	46	<.01							
JAN + 1												
18 FEB	1630	•02	2.5	13	<.01		• ==					
07	1650	.02	4.0	348	.02							
МАҮ 03	1315	.02	16.0	142	.01							
JUL	2015	1.51	14.0	. 70.000	21000 0	-7	2.0		7		05	100
05	2045	456	16.0	178000	219000	27	38 39	60	78 62	84 90	95 98	100 100
05	2130	247	16.0	164000	109000	28	_	64 99		90	98	100
06	1700	1.5	26.0	69700	282	68	90		100			
15	1300	<.01	28.0	91		 49	70	97	100			
20	1200	7.8	26.5	125000	2630				100			
24	1300	18	28.0	1940	• 94	93	97	100				
AUG	1145	4 0	25.5	65900	712	56	77	99	100			
16		4.0					98		100			
19	1230	•19	29.0	31800	16	76	90	100				

suspended sediment concentration were within the range of values during the Baseline period.

Water Quality: Dry Washes

No water quality data were obtained during the 1977 water year at Hell's Hole Canyon at the mouth (station 09306405) and Asphalt Wash near the mouth (station 09306625).

1.2 Conclusions

The December 1976 Work Plan presented two hypotheses to be tested. The first hypothesis is:

There are no significant differences in chemical or physical composition of the surface water between stations 09306395, 09306400, 09306500 and 09306700.

Concurrent data for temperature and specific conductance at stations 09306395 and 09306400 were tested to determine the correlation coefficient and the standard error of estimate using simple linear regression. The criteria to be met were set in the Work Plan. These were: the correlation coefficient should be greater than or equal to 0.9 and the standard error of estimate should be less than or equal to 10%. Also, the analyses should be based on daily values from baseflow and highflow periods.

The results of the analyses for temperature are shown in Table 5. The standard error of estimate with station 09306400 as the dependent

TABLE 5

RELATIONSHIP OF TEMPERATURE MEASUREMENTS BETWEEN STATIONS 09306395 and 09306400

Independent Variable (X)	Dependent Variable (Y)	Time Period	Correlation Coefficient	Standard Error of Estimate in Percent
09306395	09306400	10/19/76-11/22/76	0.96	11.8
09306400	09306395	10/19/76-11/22/76	0.96	9.6
09306395	09306400	5/5/77 - 6/9/77	0.89	7.9
09306400	09306395	5/5/77 - 6/9/77	0.89	7.9

•

variable during baseflow is slightly greater than 10% (11.8%), while the correlation coefficient is 0.96. During highflow the correlation coefficient is slightly less than 0.9 (0.89) while the standard error of estimate in both cases is 7.9%.

The results of the analyses for specific conductance are shown in Table 6. The relationship of each station to station 09306500 is also included to determine whether the data may be erroneous at either station. The correlation coefficients among all three stations during baseflow are well below 0.9. Also, the correlation coefficient between stations 09306395 and 09306500 during highflow is below 0.9 (0.75). In all of the cases the standard error of estimate is less than 10%.

The correlation coefficient is a mathematical definition of the association between samples of two variables. The standard error of estimate is a measure of the reliability of a regression. The relationship between the correlation coefficient and the standard error of estimate is:

$$r = [1 - (S_e/S_v)^2]^{1/2}$$

where r is the correlation coefficient, S_e is the standard error of estimate, and Sy is the standard deviation of the dependent variable. (See: "Some Statistical Tools in Hydrology", Techniques of Water Resources Investigations of the United States Geological Survey, Book 4, Chapter A1, 1968.)

The correlation coefficients for the relationships of specific conductance during baseflow among the three stations are well below 0.9, while the standard error of estimate is well below 10%. A major

-19-

TABLE 6

RELATIONSHIP OF SPECIFIC CONDUCTANCE MEASUREMENTS AMONG STATIONS 09306395, 09306400 and 09306500

Independent Variable (X)	Dependent Variable (Y)	Time <u>Period</u>	Correlation Coefficient	Standard Error of Estimate in Percent
09306395	09306400	10/21/76-11/23/76	0.25	3.3
09306400	09306395	10/21/76-11/23/76	0.25	2.6
09306395	09306400	6/3/77-6/9/77	0.91	4.6
09306400	09306395	6/3/77-6/9/77	0.91	2.2
09306395	09306500	10/21/76-11/16/76	0.46	4.1
09306500	09306395	10/21/76-11/16/76	0.46	2.2
09306395	09306500	6/3/77-6/9/77	0.750.75	2.8
09306500	09306395	6/3/77-6/9/77		3.5
09306400	09306500	10/1/76-11/16/76	0.46	4.8
09306500	09306400	10/1/76-11/16/76	0.46	5.0
09306400	09306500	5/20/77-6/9/77	0.93	4.9
09 3 06500	09306400	5/20/77-6/9/77	0.93	8.7

factor involved is that the ranges of the data values during baseflow at each of the three stations is quite small. Because of this, the standard deviation of the dependent variables is quite small (less than 10% of the mean of the dependent variables, for all cases). As the relationship given previously indicates, the correlation coefficient will be small for such cases, even though the standard error of estimate does not exceed 10%. When the range of data values is small in comparison to the mean value, the standard error of estimate expressed as a percentage of the mean of the dependent variable is the more reliable indicator of the relationship between two stations.

It is planned that operation of station 09306400 will be permanently discontinued. Continuous monitoring of streamflow, temperature and specific conductance at station 09306395 will adequately replace the same at station 09306400.

The records of suspended sediment concentration and discharge at stations 09306395 and 09306700 are shown in Tables 2 and 3, respectively. The record at station 09306395 was prepared by the USGS, and the record at station 09306700 was prepared by WRSP. The data is similar for most of the cases that are comparable; i.e., when the suspended sediment concentration values represent similar points on the streamflow hydrograph. It should be noted that the suspended sediment discharge values are based on instantaneous streamflow for station 09306395, and mean daily streamflow for station 09306700 (except where it is indicated that the day was subdivided).

-21-

The comparability of reported water quality data was determined by F tests using the analysis of variance (ANOVA) approach. The 90 percent confidence level was used for the F tests.

The results of the ANOVA tests for significant differences in the 1977 data among the White River stations are shown in Table 7. There were two failures out of 37 parameters tested for the baseflow period. These were iron and aluminum. For the lower basin runoff period, there were no failures out of 23 parameters tested. For the upper basin runoff period, one parameter, boron, failed out of 16 tests. The results of the tests show a very high success ratio. The failures which did occur are attributed to levels near detection limits of the analytical procedures, or a limited amount of data being available for the ANOVA test. The conclusion drawn from the results of the ANOVA tests is that there are no significant differences in chemical composition of the surface water between stations 09306395, 09306500 and 09306700 on the White River.

The second hypothesis to be tested is:

There are no significant differences in chemical or physical composition of the surface water between comparable data from the two-year Baseline and Interim periods.

White River:

The comparison of streamflow and suspended sediment at the White River stations was discussed in the 1977 annual report. In view of the

TABLE 7

RESULTS OF ANOVA TESTS FOR SIGNIFICANT DIFFERENCE WHITE RIVER WATER QUALITY

		AMONG STATIONS DURING 1977			BETWEEN BASELINE AND 1977			
	1		Lower Basin	Upper Basin		Lower Basin	Upper Basin	
Parameters		Baseflow	Runoff	Runoff	Baseflow	Runoff	Runoff	
iotal Alkalinity as CaCD3	(mg/1)				x			
Dissolved Solids	(mg/1)				Ŷ			
Hardness as Ca, Mg	(mg/1)				x	x		
Noncarbonate Hardness	- (mg/1)							
pH	nos/cm}				x			
Specific Conductance (um Streamflow	(cfs)				x	x	x	
Temperature	(°C)							
Turbidity	(JTU)							
Color	(PCU)							
	(mg/1)				x		x	
Calcium	(mg/1)				x	x		
Magnesium Potassium	(mg/1)				x		x	
Sodium	(mg/1)				x			
Sodium Adsorption Ratio								
Percent Sodium								
Strontium	(ug/1)				x			
	(mg/1)							
Bicarbonate	(mg/l)							
Carbonate Chloride	(mg/1)				x		×	
Sulfate	(mg/1)				×			
Sulfide	(mg/l)					x		
Fluoride	(mg/l)				x			
Bromide	(mg/1)							
Directory Days	(mg/1)							
Dissolved Dxygen Chemical Oxygen Demand	(mg/1)				×			
Dissolved Organic Carbon	(mg/1)							
Chlorophyll A	(ug/1)							
Chlorophyll B	(ug/1)							
	(mg/1)							
Ammonia as N	(mg/1)							
Nitrite as N Nitrate as N	(mg/1)							
Kjeldahl Nitrogen as N	(mg/1)				x			
Total Phosphorus as P	(mg/1)					×		
Diss. Ortho Phosphate as PO4	(mg/1)					×	×	
	(110/1)	•		x		×	x	
Boron	(ug/1) (ug/1)							
Copper	(ug/l)	x						
Iron Manganese	(ug/1)				×			
Zinc	(ug/1)						x	
Molybdenum	(ug/l)						x	
Silica	(mg/1)				x			
	(ug/1)	×						
Aluminum Barium	(ug/1)							
Barium Cadmium	(ug/1)							
Chromium	(ug/1)						x	
Lead	(ug/1)				x			
Lithium	(ug/1)							
Mercury	(ug/1)							
Selenium	(ug/1)						,	
Vanadium	(ug/1)						×	
Arsenic	(ug/1)				x			
MBAS	(mg/l)							
Phenols	(ug/1)							
Pesticides	(ug/1)							
Herbicides	(ug/l)							
DDE in Bottom Material	(ug/1)							
DDT in Bottom Material	(ug/1)							
Other Pesticides in Bottom	(ug/1)							
Material Herbicides in Bottom Materi	al (ug/l)							
Gross Alpha as U-nat.	(ug/l)							
Gross Beta as Sr90	(pCi/1)				1			
Gross Beta as Cel37	(pCi/l)							

LEGEND:

x indicates failure of Analysis of Variance (one-way) test with α =0.1 (9D1 confidence level) -- indicates that test could not be made due to lack of data

conclusion for the first hypothesis, the 1977 water quality data from the White River stations was grouped together for each streamflow The statistical summary of this data is shown in Table 8. period. The results for each streamflow period during the 1977 water year were then compared to the results from the Baseline period using the ANOVA testing procedure previously described. The results of the ANOVA tests are shown in Table 7. There were 18 failures out of 59 tests for the baseflow period. Most of these failures were caused by the data from the July water quality samples, which were taken at extremely low streamflow. Many of the parameters that are related to streamflow had values outside of the ranges from the Baseline period. For the lower basin runoff period there were 7 failures out of 56 tests. For the upper basin runoff period there were 10 failures out of 54 tests. Many of the parameters for these two streamflow periods failed due to a limited amount of data being available during the 1977 water year. The value for zinc (420 ug/l) during the 1977 upper basin runoff period was unusally high and appears to be anomalous.

Although the relatively high failure rates indicate that there are significant differences for some water quality parameters between the Baseline and Interim periods, these differences are attributed to differences in climatic conditions rather than changes in the hydrologic system.

The balance and distribution of major ions for streamflow periods during the 1977 water year is shown in Figure 5. Only the baseflow period of mid-June through September 1977 shows significant differences from comparable streamflow periods during the Baseline period. There

-24-

SUMMARY OF WHITE RIVER WATER QUALITY OCTOBER 1976 - SEPTEMBER 1977

			B/	ASEFL	OW			В	OWER ASIN UNOFF				В	PPER ASIN UNOFF		
Parameters		No. of Samples	Mean	Stan. Oev.	Max.	Min.	No. of Samples	Mean	Stan. Oev.	Max.	Min.	No. of Samples	Mean	Stan. Dev.	Max.	Min.
Total Alkalinity as CaCO3	(mg/1)	13	202	31	260	167	4	199	6	204	190	2	125	21	140	110
Oissolved Solids	(mg/1)	13	619	170	908	479	4	560	21	592	545	3	350	65	397	275
Hardness as Ca, Mg	(mg/1)	10	295	25	340	270	4	288	5	290	280	2	195	21	210	180
Noncarbonate Hardness	(mg/l)	10	105	14	130	89	4	90	9	100	78	2	65	3	67	63
рН		11	8.2	0.3	8.5	7.4	4	8.0	0.5	8.4	7.3	2	7.85	0.2	8,0 693	7.7 445
Specific Conductance (u	mhos/cm)	13	929	244	1425	700	4	825	37	870	790 328	3	564 424	124 95	520	330
Streamflow	(cfs)	13	269 11.5	148 10.8	432 26.0	40 0.0	4	356 7.5	21 8.5	376 16.5	0.0	3	19.0	3.1	22.5	16.6
Temperature	(°C) (JTU)	13 9	55	68	20.0	7	2	80	0	80	80	1	220		220	220
Turbidity Color	(PCU)	9	15	12	35	3	2	19	9	25	12	1	8		8	8
							4	71	3	76	69	3	56	8	64	48
Calcium	(mg/l)	13 13	77 32	8 11	95 50	70 22	4	27	2	29	25	3	16	3	19	14
Magnesium	(mg/1) (mg/1)	13	2.8	1.4	4.9	1.6	4	1.9	0.2	2.1	1.7	3	2.4	1.1	3.7	1.7
Potassium Sodium	(mg/1)	13	88	38	150	54	4	80	7	87	72	3	41	8	45	32
Sodium Adsorption Ratio	1	10	1.8	0.5	2.8	1.4	4	2.0	0.2	2.2	1.8	2	1.2	0.3	1.4	1.0
Percent Sodium		10	33	4	43	29	4	38	2	39	35	2	30	3	32	28
Strontium	(ug/1)	9	1059	191	1400	800	2	990	0	990	990	1	660		660	660
8icarbonate	(mg/1)	13	245	38	320	203	4	240	8	249	230	3	177	40	220	140
Carbonate	(mg/1)	12	0.33	1.15	4	0	4	0	0	0	0	3	0	0	0	0
Chloride	(mg/1)	13	55	21	89	33	4	45	3	47	41	3	26	3	29	24
Sulfate	(mg/1)	13	230	80	360	160	4	203	19	230	190	3	112	32	130	75
Sulfide	(mg/1)	3	0.2	0.4	0.7	0.0	2	0.7	0.1	0.8	0.6	1	0.2		0.2	0.2
Fluoride	(mg/1)	13	0.4	0.5	2.0	0.2	4	0.38	0.05	0.4	0.3	3	0.27	0.15	0.4	0.1
8romide	(mg/1)	3	0.1	0.0	0.1	0.1	2	0.1	0.0	0.1	0.1	1	0.1		0.1	0.1
Oissolved Oxygen	(mg/1)	14	8.3	2.6	13.3	5.4	5	9.6	2.0	11.6	7.0	4	6.9	1.4	8.0	5.0
Chemical Oxygen Oemand	(mg/1)	9	37	29	90	5	2	22.5	5.0	26	19	1	25		25	25
Oissolved Organic Carbon	(mg/1)	2	7.2	0.4	7.4	6.9	0					1	3.9		3.9	3.9
Chlorophyll A	(ug/l)	8	3.2	4.8	13.5	0.000	1	0.000		0.000	0.000	0				
Chlorophyll 8	(ug/1)	8	1.7	3.1	7.35	0.000	1	0.000		0.000	0.000	0				
Ammonia as N	(mg/1)	9	0.01	0.02	0.06	0.00	2	0.01	0.01	0.02	0.00	1	0.01		0.01	0.01
Nítrite as N	(mg/l)	9	0.0044	0.0053	0.01	0.00	2	0.00	J.00	0.00	0.00	1	0.00		0.00	0.00
Nitrate as N	(mg/1)	9	0.09	0.10	0.22	0.00	2	0.02	0.00	0.02	0.02	1	0.10		0.10	0.10
Total Kjeldahl Nitrogen as N	(mg/l)	9	0.53	0.35	1.1	0.16	2	0.45	0.06	0.49	0.41	1	0.80		0.80	0.80
Total Phosphorus as P	(mg/l)	9	0.10	0.05	0.19	0.04	2	0.085	0.007	0.09	0.08	1	0.24		0.24	0.24
Diss. Ortho Phosphate as PO4	(mg/1)	13	0.05	0.05	0.18	0.00	3	0.31	0,20	0.52	0.12	2	0.08	0.06	0.12	0.03
Boron	(ug/1)	13	84	38	140	50	4	60	0	60	60	3	63	11	70	50
Copper	(ug/1)	3	4	4	7	0	2	0.5	0.7	1	0	1	5		5	5
Iron	(ug/1)	9	32	23	80	10	2	50	14	60	40	1	20		20	20
Manganese	(ug/l)	9	12	10	30	0	2	5	7	10	0	1	0		0	0
Zinc	(ug/1)	3	10	10	20	0	2	5	7	10	0		420		420	420
Molybdenum	(ug/l)	3	1	0	1	1		1	0		1		0		0	0
Silica	(mg/l)	13	14.2	1.5	16	12	4	13.5	1.9	16	12	3	12.7	1.5		
Aluminum	(ug/l)	9	13	15	40	0	2	5	7	10	0	1	0		0	0
8arium	(ug/l)	3	0	0	0	0	2	0	0	0	0	1	0		0	0
Cadmium	(ug/1)	3	0	0	0	0	2	0.5	0.7	1	0		0		0	0
Chromium	(ug/l)	3	0	0	0			5	7		0		<10		<10	<10
Lead	(ug/1)	3	0		0			2.5	3.5		0		0		0 10	0 10
Lithium	(ug/1)	9	17	10	30	0		20	0		20 0.0		0.0		0.0	0.0
Mercury	(ug/1)	3	0.0	0.0 0	0.0	0.0	2	0.0	0.0		1		1		1	1
Selenium	(ug/1) (ug/1)	3	1.9		2.1	1.6		1.85	0.07		1.8		2.8		2.8	2.8
Vanadium	(ug/1)						+									
Arsenic	(ug/1)	3	0.67		1		1	1	0				0.00		0.00	1
MBAS	(mg/1)	2	0.00					0.00	0.00				0.00		3	3
Phenols	(ug/1)	3	2.33					1.5	0.7	2	: 	0				
Pesticides	(ug/1)	2	0.0									0				
Herbicides	(ug/l)	2	0.0									0				
OOE in Bottom Material DOT in Bottom Material	(ug/1) (ug/1)	2	0.4				1					0				
Other Pesticides in Bottom	(ug/1)	2	0.0				1					0				
Material												0				
Herbicides in Bottom Material	(ug/1)	2	0.0	0.0	0.0	0.0) 0								<u> </u>	
Gross Alpha as U≁nat.	(ug/1)	3	7.9	1.7	<9.7	<6.4	1	9.7				1 .	5.5		5.5	5.5
Gross 8eta as Sr90	(pCi/l)	3	1.7					2.7					2.8		2.8 3.5	2.8 3.5
Gross 8eta as Cel37	(pCi/l)	3	2.0) 0.4	2.5	1.1	7 2	3.4	1.9	4.7	<2.1	. I . I	0.0		9.9	5.5

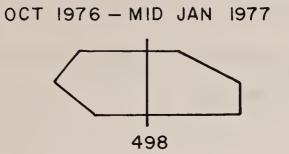
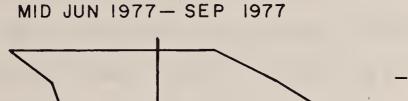

.

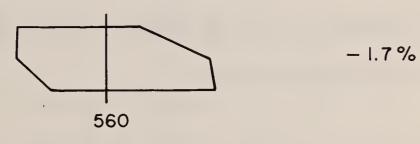
FIGURE 5


BALANCE AND DISTRIBUTION OF MAJOR IONS

WHITE RIVER STATIONS

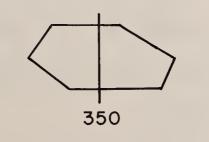
BASEFLOW

0.0%



- 0.7%

LOWER BASIN RUNOFF


MID JAN 1977 - MID APR 1977

814



UPPER BASIN RUNOFF

MID APR 1977 - MID JUN 1977

0.0%

was an increase in the concentration of all major ions, but sodium and sulfate replaced calcium and bicarbonate as the dominant cation and anion, respectively. This situation is similar to the distribution of ions during lower basin runoff. The change in the distribution of ions during the mid-June through September 1977 period was probably due to an increase in the proportion of baseflow contributed by the lower basin (below Meeker, Colorado).

In conclusion, there are some significant differences in the chemical and physical composition of the water of the White River between the Baseline and Interim periods. However, these differences are attributed to differences in climatic conditions rather than changes in the hydrologic system.

Evacuation Creek:

Streamflow at station 09306430 during the 1977 water year was similar to the Baseline period.

A summary of water quality during the 1977 water year at station 09306430 is shown in Table 9. The results of ANOVA tests for significant differences in water quality between the Baseline and Interim periods are shown in Table 10. For the baseflow period there were 10 failures out of 57 tests. For the highflow period there were 16 failures out of 22 tests.

During the 1977 baseflow period, the data for pH, fluoride and dissolved orthophosphate were within the range of values during the Base-

-27-

SUMMARY OF EVACUATION CREEK WATER QUALITY OCTOBER 1976 - SEPTEMBER 1977

	1		BA	SEFLC)W	1		нт	GHFLO	W	
		No. of		Stan.		Min.	No. of		Stan.		Man
Parameters Total Alkalinity as CaCO ₃	(mg/1)	<u>Samples</u> 3	<u>Mean</u> 443	<u>0ev.</u> 11	<u>Max.</u> 450	430	Samples 2	<u>Mean</u> 204	<u>0ev.</u> 150	<u>Max.</u> 310	<u>Min.</u> 98
Dissolved Solids	(mg/1)	3	3817	347	4211	3560	2	1236	557	1630	842
Hardness as Ca, Mg	(mg/1)	2	1150	71	1200	1100	2	375	177	550	250
Noncarbonate Hardness	(mg/1)	2	715	50	750	680	2	195	64	240	150
рH		5	7.7	0.2	7.8	7.4	2	7.15	0.07	7.2	7.1
Specific Conductance	(umhos/cm)	5	4540	623	5300	3600	2	1530	113	1610	1450
Streamflow	(cfs)	5	0.05	0.08	0.2	0.01	1	1.5		1.5	1.5
Temperature	(°C)	5	13.8 '	12.8	31.0	2.0	2 N	21.0	7.1	26	16
Turbidity Color	(JTU) (PCU)	3 3	8.3 8.3	2.1 4.2	10 13	6 5	0				
	(100)										
Calcium	(mg/l)	3	180	10	190	170	2	95	50	130	60
Magnesium	(mg/1)	3	177	6	180 9.8	170	2 2	39 7.7	21 2.6	54 9.5	24 5.9
Potassium	(mg/1)	3	8.4 810	1.6 79	9.0	6.7 750	2	255	92	320	190
Sodium Sodium Adsorption Ratio	(mg/1)	2	9.75	0.35	10	9.5	2	5.6	0.6	6.0	5.2
Percent Sodium		2	59.0	1.4	60	58	2	58.5	5.0	62	55
Strontium	(ug/1)	3	3867	153	4000	3700	0				
Bicarbonate	(mg/1)	3	539	17	550	520	2	250	184	380	120
Carbonate	(mg/1)	3	0	0	0	0	0				
Chloride	(mg/1)	3	ь0	9	70	· 54	2	16.5	6.4	21	12
Sulfate	(mg/l)	3	2300	265	2 600	2100	2	690	297	900	480
Sulfide	(mg/l)	1	0.7		0.7	0.7	0				
Fluoride	(mg/1)	3	0.97	0.15	1.1	0.8	2	0.6	0.0	0.6	0.6
8romide	(mg/l)	1	0.1		0.1	0.1	0				
Oissolved Oxygen	(mg/l)	5	5.9	1.1	7.6	4.8	0				
Chemical Oxygen Oemand	(mg/l)	3	43	8	49	34	0				
Dissolved Organic Carbon	(mg/l)	1	11		11	11	0				
Chlorophyll A	(ug/1)	1	0.000		0.000	0.000	0				
Chlorophyll 8	(ug/1)	1	0.000		0.000	0.000	n				
Ammonia as N	(mg/1)	3	0.04	0.06	0.11	0.00	0				
Nitrite as N	(mg/l)	3	0.00	0.00	0.00	0.00	0				
Nitrate as N	(mg/1)	3	0.03	0.04	0.07	0.00	0				
Kjeldahl Nitrogen as N	(mg/l)	3	0.61	0.28	0.89	0.34	0				
Total Phosphorus as P	(mg/l)	3	0.017	0.012	0.03	0.01	0				
Diss. Ortho Phosphate as PO4	(mg/l)	3	0.02	0.01	0.03	0.01	0				
Boron	(ug/1)	3	2300	30 0	2600	2000	2	344	122	430	257
Copper	(ug/1)	1	2		2	2	0				
Iron	(ug/l)	3	57	29	90	40	2	298 235	279 21	495 240	100 210
Manganese	(ug/1)	3	183	49	240 110	150 110	2				
Zinc	(ug/l)	1	110 49		49	49	0				
Molybdenum	(ug/l) (mg/l)	3	11.4	2.4	14	9.2	2	10.5	0.8	11	9.9
Silica											·
Aluminum	(ug/1)	3	17 0	12	30 0	10 0	0				
8arium Codeium	(ug/l) (ug/l)	1	0		0	0	0				
Cadmium Chromium	(ug/1)	1	0		0	0	0				
Lead	(ug/1)	1	1		1	1	0			•	
Lithium	(ug/1)	3	147	12	160	140	0				
Mercury	(ug/1)	1	0.0		0.0	0.0	0				
Selenium	(ug/1)	1	0		0	0	0				
Vanadıum	(ug/1)	1	0.2		0.2	0.2	0				
Arsenic	(ug/l)	1	1		1	1	0				
MBAS	(mg/l)	1	0.10		0.10	0.10	0				
Phenols	(ug/l)	1	4		4	4	0				
Pesticides	(ug/l)	0					0				
Herbicides	(ug/l)	0					0				
Gross Alpha as U-nat.	(ug/1)	1	<53		<53	<53	0				
Gross Beta as Sr90	(pCi/l)	1	25		25	25	0				
Gross Beta as Cel37	(pC:/1)	1	32		32	32	0				

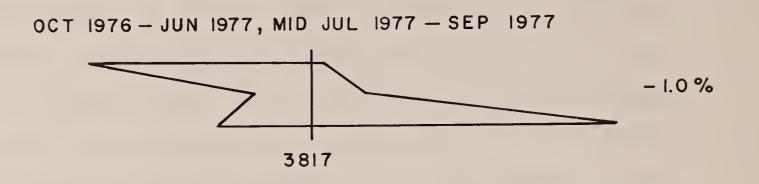
RESULTS OF ANOVA TESTS FOR SIGNIFICANT DIFFERENCE EVACUATION CREEK WATER QUALITY (station 09306430) BASELINE PERIOD VERSUS 1977

Parameters	(Baseflow	<u>Highflow</u> ×
Total Alkalinity as CaCO3	(mg/l) (mg/l)		x
Dissolved Solids Hardness as Ca, Mg	(mg/1)		x
Noncarbonate Hardness	(mg/l)		x
pH	1	×	×
	(umhos/cm)		×
Streamflow	(cfs)		
Temperature	(°C)		
Turbidity	(JTU)		
Color	(PCU)		
Calcium	(mg/l)		×
Magnesium	(mg/1)		×
Potassium	(mg/1)		
Sođium	(mg/l)		x
Sodium Adsorption Ratio			×
Percent Sodium			
Strontium	(ug/1)		
Bicarbonate	(mg/l)		x
Carbonate	(mg/l)		
Chloride	(mg/l)		x
Sulfate	(mg/l)		×
Sulfide	(mg/1)	x	
Fluoride	(mg/l)	x	×
Bromide	(mg/l)	x	
Dissolved Oxygen	(mg/l)	x	
Chemical Dxygen Demand	(mg/1)	x	
Dissolved Organic Carbon	(mg/l)		
Chlorophyll A	(ug/1)		
Chlorophyll B	(ug/1)		
Ammonia as N	(mg/1)		
Nitrite as N	(mg/l)		
Nitrate as N	(mg/1)		
Kjeldahl Nitrogen as N	(mg/l)		
Total Phosphorus as P	(mg/l)		
Diss. Ortho Phosphate as PO	(mg/l)	x	
Boron	(ug/1)		
Copper	(ug/l)		
Iron	(ug/l)		x
Manganese	(ug/l)	x	×
Zinc	(ug/l)	x	
Molybdenum	(ug/l)		
Silica	(mg/l)	x	
Aluminum	(ug/1)		
Barium	(ug/1)		
Cadmium	(ug/1)		
Chromium	(ug/1)		
Lead	(ug/1)		
Lithium	(ug/1)		
Mercury	(ug/1)		
Selenium	(ug/1)		
Vanadium	(ug/1)		
Arsenic	(ug/1)		
MBAS	(mg/1)		
Phenols	(ug/l)		
Pesticides	(ug/1)		
Herbicides	(ug/1)		
Gross Alpha as U-nat.	(ug/l)		
Gross Beta as Sr9D	(pCi/l)		
Gross Beta as Cel37	(pCi/1)		

LEGEND:

x indicates failure of Analysis of Variance (one-way) test with a=0.1 (90% confidence level) -- indicates that test could not be made due to lack of data line period; the data for bromide and dissolved oxygen had some values below the minimum values during the Baseline period; and, the data for sulfide, COD, manganese, zinc and silica had some values above the maximum values during the Baseline period. The causes for these differences are unknown.

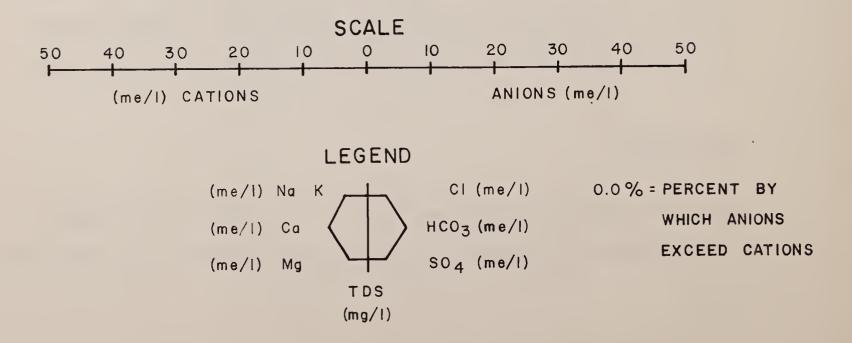
The balance and distribution of major ions during 1977 baseflow and highflow at station 09306430 is shown in Figure 6. The balance and distribution of major ions for the 1977 baseflow period is similar to comparable data during the Baseline period. During highflow the concentrations of all of the major ions were reduced due to the dilution effect of thunderstorm runoff. Although sodium and sulfate were still the dominant ions, potassium, calcium and bicarbonate showed the least reduction proportionally.


In conclusion, there are significant differences in the chemical composition of the water of Evacuation Creek between the Baseline and Interim periods. However, these differences probably do not represent a change in the hydrologic system. It is more likely that they represent natural variations attributable to climatic variations and extreme surface runoff from thunderstorms. Therefore, the 1977 data should be included with the Baseline period data to further define variations of the water quality of Evacuation Creek near the mouth.


Dry Washes:

Streamflow measured at the gaging stations in Hell's Hole Canyon, Southam Canyon and Asphalt Wash during the 1977 water year was similar

BALANCE AND DISTRIBUTION OF MAJOR IONS EVACUATION CREEK - STATION 09306430



-1.0%

to data from the Baseline period. Flow events were due to runoff from thunderstorms.

No water quality samples were collected from the stations in these dry washes during the 1977 water year.

2.0 <u>Alluvial Water</u>

This section expands on the conclusions presented in the 1977 annual report for the Interim Monitoring Period. The statistical analyses presented are based upon data from water quality samples analyzed by USGS laboratories. A comparison of nomenclature is presented in Table 11.

2.1 Conclusions

The December 1976 Work Plan presented three hypotheses to be tested. The first hypothesis is:

There are no significant differences in water level and chemical composition between comparable data from the two-year Baseline and Interim periods.

The static water levels of wells in the White River alluvium and the Evacuation Creek alluvium during the Interim period were similar to the static water levels during the Baseline period. The static water levels of the wells in the alluvium of the dry washes (Asphalt Wash, Southam Canyon and Hell's Hole Canyon) remained steady through the Interim period at levels close to the lowest levels during the Baseline period. The decline of the lowest static water level between the two periods of time ranged from 0.09 to 0.27 meter (0.3 to 0.9 feet) for these wells.

COMPARISON OF NOMENCLATURE

ALLUVIAL WELLS

WRSP Nomenclature	USGS Nomenclature	Nomenclature for Report
AG-1 Lower	AG-1 #1	AG-1 #1
AG-1 Upper	AG-1 #2	AG-1 #2
AG-3 Lower (USGS)	White River Alluvium #1	AG-3 #1
AG-3 Upper (USGS)	White River Alluvium #2	AG-3 #2
AG-3 Upper (WRSP)	White River Alluvium #3	AG-3 #3
AG-4	AG-4	AG-4
AG-6 Lower	Southam Canyon #1	AG-6 #1
AG-6 Upper	Southam Canyon #2	AG-6 #2
AG-8	AG-8	AG-8
Evacuation Creek Near Park Canyon, Lower	Evacuation Creek Near Park Canyon #1	Evacuation Creek Near Park Canyon #1
Evacuation Creek Near Park Canyon, Upper	Evacuation Creek Near Park Canyon #2	Evacuation Creek Near Park Canyon #2
Evacuation Creek Above Missouri Creek, Lower	Evacuation Creek Above Missouri Creek #1	Evacuation Creek Above Missouri Creek #1
Hell's Hole Canyon, Lower	Hell's Hole Canyon #1	Hell's Hole Canyon #1
Hell's Hole Canyon, Upper	Hell's Hole Canyon #2	Hell's Hole Canyon #2

.

The results of statistical tests for significant differences in water quality for the alluvial wells between the Baseline and Interim periods are shown in Table 12. A statistical summary of the data from the Baseline and Interim periods for each of these wells is shown in Tables 13 through 15. All of the alluvial wells except AG-6 #1 and #2 have no significant difference between the Baseline and Interim periods for most of water quality parameters.

The distribution of major cations and anions based on the water quality samples from the alluvial wells during the Interim period are shown in Figures 7 through 9. The distribution of major cations and anions is also similar for each of the wells, except AG-6 #1 and #2, between the Baseline and Interim periods. At AG-6 #1 there were 11 failures out of 24 Analysis of Variance tests. At AG-6 #2 there were 13 failures out of 21 tests.

The trend of specific conductance and dissolved solids with respect to time during the Baseline and Interim periods for these two wells is shown in Figures 10 and 11. The dissolved solids concentration and specific conductance for both wells show a decrease from January 1976 to May 1977, and then are relatively steady from May 1977 through September 1977. Both wells also show differences in the distribution of major cations and anions between the Baseline and Interim periods. At AG-6 #1, calcium and magnesium decreased proportionally more than sodium did, and bicarbonate did not decrease while chloride and sulfate did.

The differences in chemical composition at AG-6 #1 and #2 are probably due to a decreasing effect in time of the upstream discharges that occurred at the P-2 wells earlier. It appears that the effects of these discharges have passed by May 1977, because the specific conductance is relatively stable from May through September 1977 at both wells.

-34-

RESULTS OF ANOVA TESTS FOR SIGNIFICANT DIFFERENCE ALLUVIAL WATER QUALITY 1976 VERSUS 1977

.

	1					10.0	Evac. Cr. Near Park	Evac. Cr. Near Park <u>Canyon #2</u>	Evac. Cr. Above Missouri Creek #1	AG-6 #1	AG~6 #2	AG-4	Hell's Hole Canyon #1	Hell's Hole Canyon #2
Parameters	[<u>AG-1 #1</u>	AG-3 #1	AG-3 #2	AG-3 #3	<u>AG-8</u>	Canyon #1	conjon ve			x			
Total Alkalinity as CaCO3	(mg/1)									×	x			
Dissolved Solids	(mg/1)					×				x	×			
Hardness as Ca, Mg	(mg/1)				×					×	×			
Noncarbonate Hardness	(mg/1)			x										
pН					x		×			x	x			
Specific Conductance	(umhos/cm)													
Temperature	(0°)													
Calcium	(mg/l)								×	×	×			
Magnesium	(mg/l)			x	×					Ŷ	x			
Potassium	(mg/l)						×				x			
Sodium	(mg/l)				x				×		^			
Sodrum Adsorption Ratio										×	×			
Percent Sodium												~-		
Strontium	(ug/1)													
Bicarbonate	(mg/1)										×		×	
Carbonate	(mg/1)													
Chloride	(mg/l)									x	x			
Sulfate	(mg/1)					×				x	x			
Sulfide	(mg/1)													
Fluoride	(mg/l)												x	
Bromide	(mg/1)													
														×
Dissolved Organic Carbon	(mg/1)													
Carbon Dioxide	(mg/1)													
Ammonia as N	(mg/1)									 x	x			
Nitrite and Nitrate as N	(nig/l)								x	^ 				
Total Kjeldahl Nitrogen as N	(mg/l)													
Total Phosphorus as P	(mg/l)													
Diss. Ortho Phosphorus as P	(mg/l)													
Diss. Ortho Phosphate as PO4	(mg/l)											<u> </u>		
Boron	(ug/1)				×	x								
Copper	(ug/1)													
Iron	(ug/1)	×												
Manganese	(ug/1)									X				
Zinc	(ug/1)													
Molybdenum	(ug/1)													
Silica	(mg/1)	x												

NOTE: The trace metals, trace non-metals, radioactive constituents and all other parameters not shown cannot be tested due to lack of data

.

LEGEND:

x indicates failure of Analysis of Variance (one-way) test with $\alpha=0.1$ (90% confidence level) -- indicates that test could not be made due to lack of data

SUMMARY OF ALLUVIAL WATER QUALITY WHITE RIVER ALLUVIUM JANUARY 1976 - SEPTEMBER 1977

.

					AG	-1 #2				AG-	-3 #1		1		AG-	3 #2		1		AG	-3 #3						
	Parameters		No. of Samples	Mean	Stan. Oev.	<u>Max.</u>	<u>Min.</u>	No. of Samples	Mean	Stan. <u>Oev.</u>	<u>Max.</u>	Min.	No. of Samples	Mean	Stan. <u>Oev.</u>	<u>Max.</u>	<u>Mín.</u>	No. of Samples	Mean	Stan. <u>Oev.</u>	Max.	<u>Min.</u>	No. of Samples	Mean	Stan. Oev.	<u>Max.</u>	<u>Min.</u>
	Total Alkalinity as CaCO3	(mg/1)	5	346	42	416	318	2	319	63	363	274	6	470	18	497	445	5	384	14	401	3 67	7	486	39	550	424
	Dissolved Solids	(mg/1)	5	633	21	649	597	2	951	42	980	921	6	3340	344	3630	2680	6	1852	51	1900	1770	7	2796	383	3650	2570
S	Harndess as Ca, Mg	(mg/1)	5	78	6	89	73	2	425	35	4 50	400	6	1388	237	1600	930	5	562	23	590	530	7	1084	187	1500	990
TICS	Noncarbonate Hardness	(mg/l)	5	0	0	0	0	2	106	91	170	41	6	935	253	1200	470	5	180	33	210	140	7	6 09	218	1100	480
IS ⁻	Oil and Grease	(mg/1)	1	. 6		6	6	1	4		4	4	1	3		3	3	0					1	2		2	2
L L L L L L L L L L L L L L L L L L L	рH		5	8.0	0.3	8.2	7.5	3	7.9	0,2	8.1	7.7	5	7.8	0.2	8.0	7.6	5	7.7	0.2	8.0	7.5	7	7.9	0.3	8.3	7.4
GENERAL CHARACTERIS1	Specific Conductance (um	hos/cm)	5	964	106	1150	900	3	1467	247	1750	1300	5	4132	365	4400	3490	5	2660	115	2800	2500	8	3394	336	3800	2800
AR	Temperature	(°C)	5	9.8	1.7	11.7	7.4	3	11.2	3.9	14.7	7.0	6	10.8	1.7	13.5	9.0	5	11.0	2.4	13.5	8.5	8	10.6	1.7	12.6	8.3
СН	Turbidity	(JTU)	1	450		450	450	1	450		450	4 50	0					0					1	130		130	130
	Color	(PCU)	5	82	103	200	20	. 2	25	7	30	20	1	5		5	5	0					5	12	5	20	7
	Calcium	(mg/1)	5	13	2	16	11	2	105	7	110	100	6	238	43	280	160	5	73	6	80	65	7	187	33	260	170
	Magnesium	(mg/l)	5	11.2	0.5	12	11	2	39	3	41	37	6	195	35	230	130	5	93	3	97	90	7	151	27	210	130
MAJOR CATIONS	Potassium	(mg/l)	5	2.5	0.3	3.0	2.2	2	5.8	0.3	6.0	5.6	6	4.8	0.7	5.5	3.8	5	3.4	0.5	3.7	2.6	7	4.2	0.8	5.6	3.5
010	Sodium	(mg/1)	5	204	5	210	200	2	155	7	160	150	6	572	25	600	540	5	418	16	440	400	7	533	39	610	500
CAT	Sodium Adsorption Ratio		5	10.1	0.5	11	9.7	2	3.3	0.0	3.3	3.3	6	6.7	0.5	7.7	6.1	5	7.7	0.4	8.1	7.2	7	7.0	0.2	7.3	6.8
	Percent Sodium		5	85	1	85	83	2	44	0	44	44	6	48	4	56	44	5	62	2	64	59	7	51	2	53	47
	Strontium	(ug/1)	3	430	26	460	410	2	1500	0	1500	1500	1	3400		3400	3400	0					5	2380	164	2500	2200
	Bicarbonate	(mg/1)	5	399	19	433	388	2	388	76	442	334	6	573	23	606	542	5	468	17	489	448	7	593	47	670	517
	Carbonate	(mg/1)	4	0	0	0	0	2	0	0	0	0	5	0	0	0	0	4	0	0	0	0	6	0	0	0	0
NS NS	Chloride	(mg/l)	5	52	2	55	51	2	96	21	110	81	6	173	19	190	140	5	101	14	110	79	7	144	21	190	130
MAJOR ANIONS	Sulfate	(mg/1)	5	115	17	130	85	2	340	42	370	310	6	1850	243	2100	1400	5	912	47	940	830	7	1457	294	2100	1300
ANAN	Sulfide	(mg/l)	3	9.1	5.5	14	3.2	2	0.0	0.0	0.0	0.0	1	0.0		0.0	0.0	0					5	0.7	1.3	3.0	0.0
	Fluoride	(mg/l)	5	2.5	0.2	2.7	2.3	2	0.65	`.0.0 7	0.7	U.6	6	0.4	0.2	0.7	0.2	5	1.1	0.1	1.2	0.9	7	0.6	0.1	0.7	0.4
	8romide	(mg/l)	, 1	0.3		0.3	0.3	1	0.3	·	013	0.3	1	0.6		0.6	0.6	0					1	0.5		0.5	0.5
·	Chemical Oxygen Oemand	(mg/1)	1	52		52	52	1	92		92	92	1	91		91	91	0					1	76		76	76
BIO- CHEM. CONST	Carbon Dioxide	(mg/l)	0					0					2	13	3	15	11	2	21	4	23	18	2	23.9	27.1	43	4.7
CCB	Oissolved Organic Carbon	(m.g/1)	3.	10.5	5.2	16	5.6	2	33	8	39	27	1	4.9		4.9	4.9	0					4	23	2	25	21
	Ammonia as N	(mg/1)	3	0.29	0.04	0.32	0.25	2	0.54	0.03	0.56	0.52	1	0.62		0.62	0.62	0					5	0.67	0.08	0.74	0.54
ITS	Nitrite as N	(mg/1)	3	0.003	0.006	0.01	0.00	2	0.01	0.00	0.01	0.01	1	0.00		0.00	0.00	0					5	0.03	0.07	0.16	0.00
IEN	Nitrate as N	(mg/l)	3	0.08	0.06	0.14	0.02	2	0.24	0.03	0.26	0.22	0					0					5	0.08	0.08	0.22	0.01
MACRONUTRIENT	Nitrite and Nitrate as N	(mg/1)	5	0.07	0.05	0.14	0.03	2	0.25	0.03	0.27	0.23	5	0.04	0.03	0.07	0.00	4	0.035	0.021	0.06	0.00	6	0.10	0.14	0.38	0.01
NNO	Total Kjeldahl Nitrogen as N	(mg/l)	3	1.16	0.42	1.6	0.77	2	6.1	5.2	9.8	2.4	1	1.7		1.7	1.7	0		***			5	2.6	1.3	4.6	1.1
CR(Total Phosphorus as P	(mg/l)	3	0.32	0.16	0.48	0.17	2	3.11	3,95	5.9	0.31	1	0.09		0.09	0.09	0					5	1.11	0.53	1.9	0.48
MΑ	Oiss. Ortho Phosphorus as P	(mg/1)	5	0.08	0.02	0.10	0.05	2	0,005	0.007	0.01	0.00	5	0.016	0.012	0.03	0.00	4	0.020	0.008	0.03	0.01	6	0.010	0.006	0.02	0.00
	Oiss. Ortho Phosphate as PO4	(mg/l)	5	0.23	0.07	0.31	0.15	2	0.015	0.021	0.03	0.00	1	0.03		0.03	0.03	1 1	0.03		0.03	0.03	6	0.03	0.02	0.06	0.00

-36-

TABLE 13 (continued)

			1		AG-	•1 #1		1		AG	i-1 #2		1		AG	-3 #1				AG	-3 #2				AG-	3 #3		
				No. of	, (G	Stan.			No. of		Stan.			No. of		Stan.			No. of	Hann	Stan.	Max.	Min.	No. of Samples		Stan. Dev.	Max.	<u>Min.</u>
		Parameters		No. of Samples	Mean	Oev.	<u>Max.</u>	<u>Min.</u>	Samples	Mean	Dev.		<u>Min.</u>	Samples	Mean	<u>0ev.</u>	Max.	<u>Min.</u>	<u>Samples</u> 5	<u>Mean</u> 3280	<u>Dev.</u> 1580	6000	2000	7	3097	2084	6900	1700
	S	Boron	(ug/l)	5	1340	182	1500	1100	2	265	35	290	240	6	4017	2032	6900	1200	0	3200				5	4.0	4.1	11	1
	MICRONUTRIENTS	Copper	(ug/1)	3	2.3	1.5	4	1	2	3.5	0.7	4	3	1	2		70	2 30	1	80		80	80	6	245	259	650	20
	RIE	lron	(ug/l)	4	128	129	320	40	2	30	14	40	20	2	50	28	70			280		280	280	6	410	65	460	300
	UT	Manganese	(ug/1)	4	20	8	30	10	2	425	64	470	380	2	380	0	380	380 860	0	200				5	40	24	80	20
	SON	Zinc	(ug/l)	3	13	15	30	0	.2	10	0	10	10	1	860		860							5	15	5	21	10
ا در	ICF	Molybdenum	(ug/1)	3	0	0	0	0	2	38	3	40	36	1	18		18	18	5	16.4	1.1	18	15	7	17.6	1.1	19	16
۲ <i>۲</i>	Σ	Silica	(mg/l)	5	21	2	23	19	2	13.5	0.7		13	6	17.7	1.4	20	16										
		Aluminum	(ug/l)	3	37	32	60	0	2	25	21	40	10	1	0		0	0	0					5	22	15	40	0
		Barium	(ug/1)	3	100	100	200	0	2	150	212	300	0	1	0		0	0	0					5	0	0	1	0
	LS	Cadmium	(ug/1)	3	0.3	0.6	1	0	2	0	0	0	0	1	0		0	0	0					5	0.4	0.6	1	30
	TRACE METALS	Total Chromium	(ug/1)	3	3 0	10	40	20	2	350	424	650	50	1	10		10	10	0					5	64	21	80 g	0
	Σ	Lead	(ug/1)	3	1.0	1.7	3	0	2	0	0	0	0	1	8		8	8	0					5	2.4	3.9		90
	СЕ	Lithium	(ug/l)	3	60	0	60	60	3	30	0	30	30	1	130		130	130	0					5	100	0.15	110	
	-RA	Mercury	(ug/1)	2	0.15	0.21	0.3	0.0	1	0.2		0.2	0.2	1	0.1		0.1	0.1	0					5	0.14	0.15	0.3	0.0
	F	Selenium	(ug/1)	2	0	0	0	0	1	0		0	0	1	0		0	0	0					5	U	0	2 7	1.4
		Vanadium	(ug/l)	3	2.0	2.2	4.4	0.2	2	4.8	1.7	6.0	3.6	1	1.4		1.4	1.4	0					5	2.5	0.9	3.7	
			(ug/1)	2	0.5	0.7	1	0	1	5		5	5	1	1		1	1	0					5	6	2	8	4
	ILS	Arsenic	(mg/l)	3	0.00	0.00	0.00	0.00	2	0.00	0.00	0.00	0.00	1	0.00		0.00	0.00	0					5	0.002	0.004	0.01	0.00
	ACE ET/	Cyanide	(ug/l)	1	- 1		1	1	1	1		1	1	1	2		2	2	0					1	0		0	0
	TR. M	Phenols	(ug/l)	· 0					0					0					0					1	0		0	0
	TRACE NON-METAL	Pesticides	(ug/l)	0					1	0		0	0	0					0					1	0		0	0
		Herbicides											.12						0					1	<35		<35	<35
	1.1	Gross Alpha as U-nat.	(ug/1)	1	<8.5		<8.5		1	<12		<12	<12						0					1	<7.3		<7.3	<7.3
	IVE	Gross Beta as Sr 90	(pCi/l)	1	4.3		4.3			7.9		7.9	7.9						0					1	<9.0		<9.0	<9.0
	RADIOACTIVE CONST.	Gross Beta as Ce 137	(pCi/1)	1	5.1		5.1	5.1	1	9.8		9.8	9.8						0					1	3.0		3.0	3.0
	I OA	Potassium 40	(pCi/l)	1	1.7		1.7		1	4.3		4.3	4.3	0			0.12							1	0.07		0.07	0.07
	AD1 CC	Radium 226, radon method	(pCi/1)	1	0.07		0.07		0						0.12				1					1	1.5		1.5	1.5
	R	Diss. Uranıum, dir. fluorome	tric (ug/l)	1	0.5		0.5	0.5	0					1 1	2.2		2.2	2.2										

SUMMARY OF ALLUVIAL WATER QUALITY EVACUATION CREEK ALLUVIUM JANUARY 1976 - SEPTEMBER 1977

			1	А	G-8					CREEK CANYON					CREEK CANYON				AC. C SSOUR			
	Parameters		No. of Samples	Mean	Stan. Oev.	Max.	Mín.	No. of Samples	Mean	Stan. Oev.	Max.	Min.	No. of Samples	Mean	Stan. Oev.	Max.	Min.	No. of Samples	Mean	Stan. Oev.	Max.	Min.
	Total Alkalinity as CaCO3	(mg/l)	7	427	49	456	320	5	463		<u></u> 508	369	5	461	6	470	455	5	423		450	395
	Dissolved Solids	(mg/l)	7	387 7	122	4010	3650	5	3416	168	3540	3130	5	3804	101	3950	3710	5	3316	45	3350	3240
CS	Harndess as Ca, Mg	(mg/l)	7	1171	76	1300	1100	5	1176	173	1300	880	5	1380	45	1400	1300	5	762	41	800	710
STI	Noncarbonate Hardness	(mg/l)	7	747	62	860	69 0	5	718	192	850	380	5	894	49	930	810	5	338	52	390	260
RAI	Oil and Grease	(mg/l)	1	19		19	19	0					0					0				
	pH		8	7.9	0.3	8.4	7.4	5	7.7	0.3	8.1	7.4	5	7.7	0.3	8.2	7.4	5	7.8	0.2	8.1	7.5
GIRA	Specific Conductance	(umhos/cm)	8	4550	650	5200	3100	5	4336	181	4500	4060	5	4580	133	4690	4370	5	4366	159	4600	4190
GENERAL CHARACTERISTICS	Temperature	(°C)	7	12.3	2.5	14.4	8.3	5	10.9	2.4	14.0	7.5	5	11.4	4.5	18.0	7.5	5	11.1	2.9	13.0	6.0
0	Turbidity	(JTU)	1	4500		4500	4500	0					0					0				
	Color	(PCU)	5	32	36	90	0	0					0					0				
	Calcium	(mg/1)	7	171	12	190	160	5	166	5	170	160	5	200	12	210	180	5	81	6	88	75
	Magnesium	(mg/l)	7	180	16	210	160	5	186	43	210	110	5	208	4	210	200	5	136	11	² 150	120
MAJOR CATIONS	Potassium	(mg/l)	7	9.4	1.8	12	7.0	5	6.4	0.5	7.1	5.7	5	7.2	1.0	8.3	5.8	5	9.0	2.1	12	6.3
AJC TIC	Sodium	(mg/l)	7	819	25	850	780	5	672	11	680	660	5	726	15	740	700	5	806	9	820	8 00
CA ⁻	Sodium Adsorption Ratio		7	10.4	0.6	11	9.6	5	8.6	0.8	10	8.0	5	8.6	0.3	8.9	8.2	5	12.8	0.5	13	12
	Percent Sodium		7	60	2	63	57	5	56	4	63	53	5	54	1	55	53	5	69	1	71	68
	Strontium	(ug/1)	5	3680	638	4300	3000	0					0					0				
	Bicarbonate	(mg/1)	7	520	60	556	39 0	5	563	67	619	4 50	5	562	6	570	555	5	516	27	550	481
(0	Carbonate	(mg/l)	7	0	0	0	0	4	0	0	0	0	4	0	0	0	0	4	0	0	0	0
MAJOR ANIONS	Chloride	(mg/1)	7	64	13	9 3	54	5	53	2	54	50	5	50	4	53	43	5	37	4	43	31
1AJ NN I	Sulfate	(mg/l)	7	2 357	98	2500	2 20 0	5	2040	152	22 00	1800	5	2280	84	2400	2200	5	1980	45	2000	1900
24	Sulfide	(mg/l)	5	0.7	0.1	1.1	0.9	5	1.64	0.05	1.7	1.6	0					0				
	Fluoride	(mg/l)	7	1.0	0.1	1.1	0.9	5	1.64	0.05	1.7	1.6	5	1.7	0.1	1.8	1.6	5	0.98	0.15	1.2	0.8
	8romide .	(mg/l)	1	0.2		0.2	0.2	0					0					0				
	Chemical Oxygen Demand	(mg/l)	1	79		79	79	0					0					0				
HEM.	Carbon Dioxide	(mg/l)	0					2	30	10	37	23	2	25	16	36	14	2	22	8	28	16
CCH BI	Oissolved Organic Carbon	(mg/1)	5	16.6	0.6	17	16	0					0					0				
	Ammonia as N	(mig/1)	5	0.094	0,038	0.14	0.04	0					0					0				
S	Nitrite as N	(mg/l)	5	0.016	0.030	0.07	0.00	0					0					O	-			
ENTS	Nítrate as N	(mg/l)	5	0.130	0.037	0.17	0.07	0					0					O				
RI	Nitrite and Nitrate as N	(mg/l)	6	0.13	0.07	0.24	0.04	4	0.09	0.09	0.17	0.01	4	10.7	0.6	11	9.9	4	0.12	0.04	0.14	0.06
MACRONUTRI	Total Kjeldahl Nitrogen as P	N (mg/1)	5	18.5	29.1	70	1.5	0					0					0				
ROI	Total Phosphorus as P	(mg/l)	5	2.87	3.17	7.4	0.21	0					0					0				
1AC	Diss. Ortho Phosphorus as P	(mg/l)	6	0.007	0.005	0.01	0.00	4	0. 010	0.008	0.02	0.00	4	0.013	0.013	0.03	0.00	4	0.010	0.008	0.02	0.00
	Oiss. Ortho Phosphate as PO	4 (mg/l)	6	0.020	0.015	0.03	0.00	1	0.03		0.03	0.03	1	0.03		0.03	0.03	1	0.03		0.03	0.03

TABLE 14 (continued)

				А	G-8					REEK I ANYON					REEK M ANYON					REEK <i>i</i> I cree		
	Parameters		No. of <u>Samples</u>	Mean	Stan. Oev.	<u>Max.</u>	<u>Min.</u>	No. of <u>Samples</u>	Mean	5tan. <u>Oev.</u>	Max.	<u>Min.</u>	No. of <u>Samples</u>	Mean	Stan. Oev.	Max.	Min.	No. of <u>Samples</u>	Mean	Stan. Dev.	<u>Max.</u>	<u>Min.</u>
0	Boron	(ug/l)	6	2850	1701	6100	1300	5	2560	182	2800	2300	5	1940	134	2100	1800	5	198	38	220	130
MICRONUTRIENTS	Copper	(ug/1)	5	3.2	1.5	5	1	0					0					0				
ZIE	lron	(ug/l)	6	50	28	100	20	1	40		40	40	1	40		40	40	1	30		30	30
UTI	Manganese	(ug/l)	6	780	303	1200	470	1	510		510	510	1	30		30	30	1	160		160	160
NOX	Zinc	(ug/1)	5	10	10	20	0	0					0					0				
ICR	Molybdenum	(ug/1)	5	43	12	55	25	0					0					0				
Σ	Silica	(mg/1)	7	10.8	0.7	12	9.8	5	8.9	0.6	9.9	8.3	5	13	1	14	12	5	11.4	1.1	13	10
	Aluminum	(ug/1)	5	24	5	30	20	0					0					0				
	Barium	(ug/l)	5	40	55	100	0	0					0					0				
LS	Cadmium	(ug/1)	5	0	0	0	0	o					0					0				
TA	Total Chromium	(ug/l)	5	176	186	500	60	0					0					0				
ME	Lead	(ug/l)	5	0	0	0	0	0					0					0				
TRACE METALS	Lithium	(ug/1)	5	148	13	160	130	0					0					0				
ΓRΑ	Mercury	(ug/1)	5	0.2	0.2	0.4	0.0	0					0					0				
	Selenium	(ug/1)	5	0.2	0.5	1	0	O					0					0				
	Vanadium	(ug/1)	5	0.9	0.5	1.3	0.2	0					U					0				
S	Arsenic	(ug/1)	5	2	1	3	1	0					U					0				
ЧГ	Cyanide	(mg/l)	5	0.002	0.004	0.01	0.00	0					0					0				
AC AET	Phenols	(ug/1)	1	3		3	3	0					0					0				
N- H	Pesticides	(ug/l)	1	0		0	0	0					U					0				
TRACE NON-METALS	Herbicides	(ug/1)	1	0		0	0	0					0					0				
ш	Gross Alpha as U-nat.	(ug/1)	1	<45		<45	<45	0					0					0				
I VI	Gross Beta as 5r 90	(pCi/l)	1	15		15	15	0					0					0				
ACT 3T.	Gross Beta as Ce 137	(pCi/l)	1	18		18	18	0					0					0				
101	Potassium 40	(pCi/l)	1	8.0		8.0	8.0	0					0					0				
RADIOACTIVE CONST.	Radium 226, radon méthod	(pCi/l)	1	0.07		0.07	0.07	0					0					0				
LY.	Diss. Uranium, dir. fluorometr	ric (ug/l)	1	20.0		20.0	20.0	0					0					0				

SUMMARY OF ALLUVIAL WATER QUALITY DRY WASHES ALLUVIUM JANUARY 1976 - SEPTEMBER 1977

				A	G-6 #	1			A	G-6 #2	-			A	G-4				HELL' CANY	S HOL 'ON #1					S HOL ON #1	E	
	Parameters		No. of Samples	Mean	Stan. Dev.	<u>Max.</u>	<u>Min.</u>	No. of Samples	Mean	Stan. <u>Oev.</u>	<u>Max.</u>	<u>Min.</u>	No. of <u>Samples</u>	Mean	Stan. Dev.	<u>Max.</u>	<u>Min.</u>	No. of <u>Samples</u>	Mean	Stan. Dev.	Max.	<u>Min.</u>	No. of <u>Samples</u>	Mean	Stan. <u>Oev.</u>	<u>Max.</u>	<u>Min.</u>
	Total Alkalinity as CaCO3	(mg/l)	10	284	9	305	274	5	296	21	323	271	7	483	47	556	428	5	84 6	119	9 80	721	5	782	70	9 00	712
	Dissolved Solids	(mg/1)	10	6222	469	6710	5310	5	3506	78 8	4490	2420	7	1259	272	1680	975	5	1626	33	1680	1600	5	1718	130	1910	1550
CS	Harndess as Ca, Mg	(mg/l)	10	3060	384	3500	2 30 0	5	1760	445	2300	1100	7	240	89	380	150	5	107	25	150	91	5	100	17	130	86
IL	Noncarbonate Hardness	(mg/l)	10	2760	360	3200	2100	5	1428	47.7	200 0	740	7	0	0	0	0	5	0	0	0	0	5	0	0	0	0
RIS	Oil and Grease	(mg/l)	1	2		2	2	0					1	2		2	2	0					0				
LEI	рН		8	7.8	0.2	8.1	7.7	4	7.6	0.2	7.8	7.4	7	7.9	0.2	8.2	7.5	4	8.9	0.5	9.5	8.5	5	9.0	0.3	9.4	8.7
GE RAC	Specific Conductance	(umhos/cm)	10	6536	464	7250	5600	5	4260	798	5000	3000	7	1831	457	2600	1370	5	2505	212	2750	2250	5	2680	135	2850	2500
GENERAL CHARACTERISTICS	Temperature	(0°)	10	12.0	1.0	13.5	10.0	5	12.2	1.4	13.5	10.0	7	12.3	1.0	13.9	11.0	5	12.2	1.5	14.0	11.0	5	12.5	1.7	14.0	10.0
D	Turbidity	(JTU)	0					0					1	85		85	85	0					0				
	Color	(PCU)	4	0.8	1.5	3	0	.0					5	22	16	40	5	0					0				
	Calcium	(mg/1)	10	637	89	790	510	5	350	91	440	210	7	17.4	6.2	26	9.9	5	10.8	7.9	24	5.0	5	8.2	2.1	11	6.1
10	Magnesium	(mg/1)	10	354	40	390	260	5	210	58	29 0	130	7	48	18	77	30	5	20	1	21	18	5	20	4	27	17
DNS NS	Potassium	(mg/1)	10	7.1	1.1	8.7	5.5	5	6.8	1.0	7.7	5.2	7	2.1	0.6	2.9	1.2	5	3.8	1.0	5.2	2.5	5	3.3	0.5	3.8	2.5
MAJOR CATIONS	Sodium	(mg/l)	10	789	45	850	730	5	460	53	520	380	7	371	59	460	300	5	570	14	590	550	5	594	29	630	550
СA	Sodium Adsorption Ratio		10	6.3	0.5	6.8	5.5	5	4.9	0.2	5.1	4.7	7	10.4	0.5	11	10	5	24	2	26	21	5	26	1	27	24
	Percent Sodium		10	36	3	40	32	5	37	4	44	33	7	77	4	82	72	5	92	2	93	89	5	92	1	93	91
	Strontium	(ug/l)	4	7225	2985	11000	4500	0					5	874	231	1200	610	0					0				
	Bicarbonate	(mg/l)	10	346	11	372	334	5	361	25	394	330	7	588	58	678	522	5	931	98	1080	825	5	875	82	960	764
	Carbonate	(mg/l)	7	0	0	0	0	3	0	0	0	0	6	0	0	0	0	4	62	74	168	0	4	48	24	66	13
NS NS	Chloride	(mg/l)	10	238	26	280	190	5	113	24	130	73	7	51	9	69	42	5	70	62	180	39	5	84	45	150	42
MAJOR ANIONS	Sulfate	(mg/l)	10	3970	330	4400	3400	5	2160	577	2900	1400	7	437	140	650	280	5	424	131	56 0	230	5	524	150	730	380
M/ N/	Sulfide	(mg/1)	4	0.0	0.0	0.0	0.0	0					5	0.6	1.4	3.2	0.0	0					0				
	Fluoride	(mg/l)	10	0.4	0.3	1.0	0.2	5	0.3	0.0	0.3	0.3	7	4.5	1.8	5.8	0.7	5	6.2	0.7	6.9	5.0	5	5.3	0.7	5.9	4.3
	Bramide	(mg/l)	, 1	0.7		0.7	0.7	0					1	0.2		0.2	0.2	0					0				
	Chemical Oxygen Oemand	(mg/l)	1	36		36	36	0					1	35		35	35	0					0				
IO- HEM. ONST	Carbon Dioxide	(mg/l)	1	6.9		6.9	6.9	1	15		15	15	3	8.3	0.4	8.6	7.9	1	5.1		5.1	5.1	2	1.6	0.9	2.2	0.9
B1(CHECON	Dissolved Organic Carbon	(mg/1)	4	8.5	2.1	11	6.0	0					5	13.2	4.2	19	9.0	0					0				
	Ammonia as N	(mg/l)	4	0.08	0.05	0.14	0.01	0					5	0.03	0.02	0.07	0.01	0					0				
TS	Nitrite as N	(mg/l)	4	0.30	0.10	0.38	0.16	0					5	0.022	0.027	0.06	0.00	0			-		0				
л Ц	Nitrate as N	(mg/l)	0					0					5	5.4	2.9	9.3	2.3	0					0				
TRI	Nitrite and Nitrate as N	(mg/l)	10	6.6	1.3	8.7	4.8	5	1.43	0.49	2.0	0.92	6	5.2	2.7	9.3	2.3	4	0.038	0.075	0.15	0.00	4	0.035	0.051	0.11	0.00
MACRONUTRIENTS	Total Kjeldahl Nitrogen as	H (mg/l)	4	1.67	1.22	3.3	0.63	0					5	1.66	0.57	2.3	0.98	0					0				
CRO	Total Phosphorus as P	(mg/l)	4	2.89	3.89	8.7	0.46	0					5	0.37	0.18	0.57	0.18	0		-			0				
MAC	Diss. Ortho Phosphorus as P	(m g/1)	10	0.020	0.013	0.04	0.00	2	D.025	0.007	0.03	0.02	6	0.025	0.010	0.04	0.01	4	0.14	0.18	0.40	0.03	4	0.053	0.043	0.10	0.00
	Oiss. Ortho Phosphate as PC	D4 (mg/1)	3	0.070	0.046	0.12	D.03	2	0.075	0.021	0.09	0.06	6	0.072	0.030	0.12	0.03	1	0.18		0.18	0.18	1 1	0.12		0.12	0.12

-40-

TABLE 15 (continued)

				AG-	-6 #1				AG	-6 #2				AG-	-4		1			'S HO YON #					'S HOL YON #1		
	Parameters		No. of <u>5amples</u>	Mean	5tan. <u>Oev.</u>	<u>Max.</u>	<u>Min.</u>	No. of Samples	Mean	Stan. Oev.	<u>Max.</u>	<u>Min.</u>	No. of <u>Samples</u> 7	<u>Mean</u> 2014	5tan. <u>Oev.</u> 1319	<u>Max.</u> 3700	<u>Min.</u> 540	No. of <u>Samples</u> 5	<u>Mean</u> 1800	Stan. <u>Dev.</u> 224	<u>Max.</u> 1900	<u>Min.</u> 1400	No. of <u>5amples</u> 5	<u>Mean</u> 1760	Stan. <u>Oev.</u> 313	<u>Max.</u> 1900	<u>Min.</u> 1200
0	Boron	(ug/1)	10	544	279	1300	250	5	3 66	48	440	320	5	18	7	30	12	0	••				0				
NT	Copper	(ug/l)	4	10	7	18	3	0					6	32	23	70	10	1	90		90	90	1	100		100	100
SIE	Iron	(ug/l)	5	28	11	40	20	0					6	13	8	30	10	1	0		0	0	1	10		10	10
UTI	Manganese	(ug/l)	5	2120	377	2500	1500	0	**				5	16	15	40	0	0					0				
KON	Zinc	(ug/1)	4	3700	949	4600	2500						5	426	123	530	230	0					0				
MICRONUTRIENTS	Molybdenum	(ug/l)	4	3	4	7	0	0	 19.2	1.1	21	18	7	12.9	0.7	14	12	5	10.3	0.7	11	9.7	5	9.1	0.7	10	8.3
Σ	5ilica -	(mg/l)	10	19.9	1.0	21	18																0				
	Aluminum	(ug/1)	4	20	8	30	10	0					5	32	18	50	10 0	0					0				
	Barium	(ug/l)	4	100	200	400	0	0					5	40	55	100 2	0	0					0				
LS	Cadmium	(ug/l)	4	1.8	1.7	4	0	0					5	0.6	0.9 21	60	10	0					0				
METAL	Total Chromium	(ug/l)	4	158	112	320	70	0					5	34 2.0	3.5	8	0	0		•-			0				
	Lead	(ug/l)	4	3.3	4.0	9	0	0					5	174	37	230	140	0					0				
TRACE	Lithium	(ug/1)	4	40	0	40	40	10 C					5	0.24	0.29	0.7	0.0	0					0				
ΓRA	Mercury	(ug/1)	4	0.28	0.21		0.0						5	5.8	5.1	11	0	0					0				
	Selenium	(ug/l)	4	38	15		18						5	8.0	3.4	13	3.9	0					0				
	Vanadium	(ug/1)	4	4.3	1.2	5.4	2.8																0				
	Arsenic	(ug/1)	4	1.3	1.0	2	0	0					5	7.8	2.2			0					0				
ALS	Cyanide	(mg/l)	4	0.00	0.00	0.00	0.00	0					5	0.002	0.004	0.01	0.00	0					0				
ACI ET/	Phenols	(ug/1)	1	1		1	1	0					1	1		1	1	0					0				
TR 1-14	Pesticides	(ug/1)	·0					0					1	0		0	0	0					0				
TRACE NON-METALS	Herbicides	(ug/1)	0					0					1	0													
		(- ())	0					0					1	<50		<50	<50	0					0				
LLI	Gross Alpha as U-nat.	(ug/1)	0					0					1	5.3		5.3	5.3	0					0		***		
RADIOACTIVE CONST.	Gross Beta as 5r 90	(pCi/l) (pCi/l)	0					0					1	6.4		6.4	6.4	0					0				
ACT ST.	Gross Beta as Ce I37	(pCi/l)						0					1	1.3		1.3	3 1.3	0					0				
010'	Potassium 40	(pCi/l)	0					0					1	0.09		0.09	0.09	0					0				
SAD	Radium 226, radon method							0					. 1	15		15	5 15	0					U				
	Oiss. Uranium, dir. fluorometi	ric (ug/1)	I																								

.41 -

FIGURE 7

BALANCE AND DISTRIBUTION OF MAJOR IONS ALLUVIAL WATER QUALITY - WHITE RIVER OCTOBER 1976-SEPTEMBER 1977

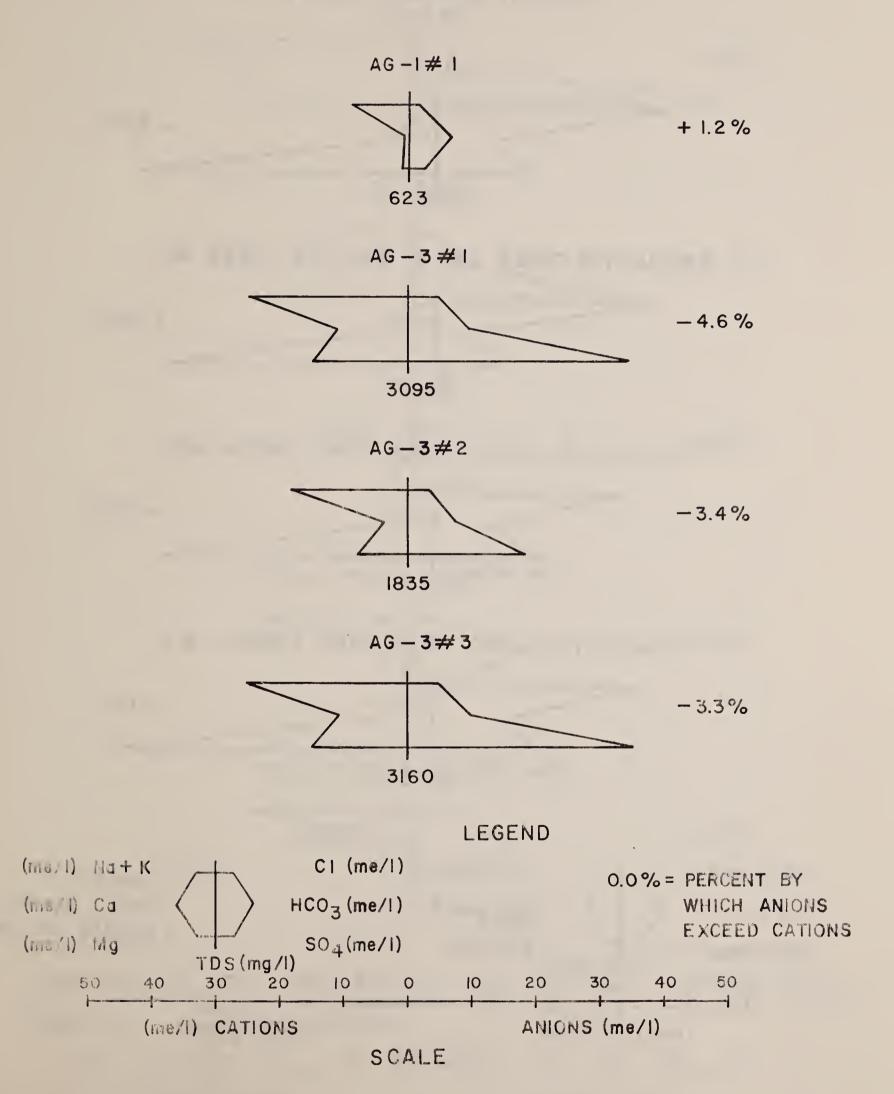
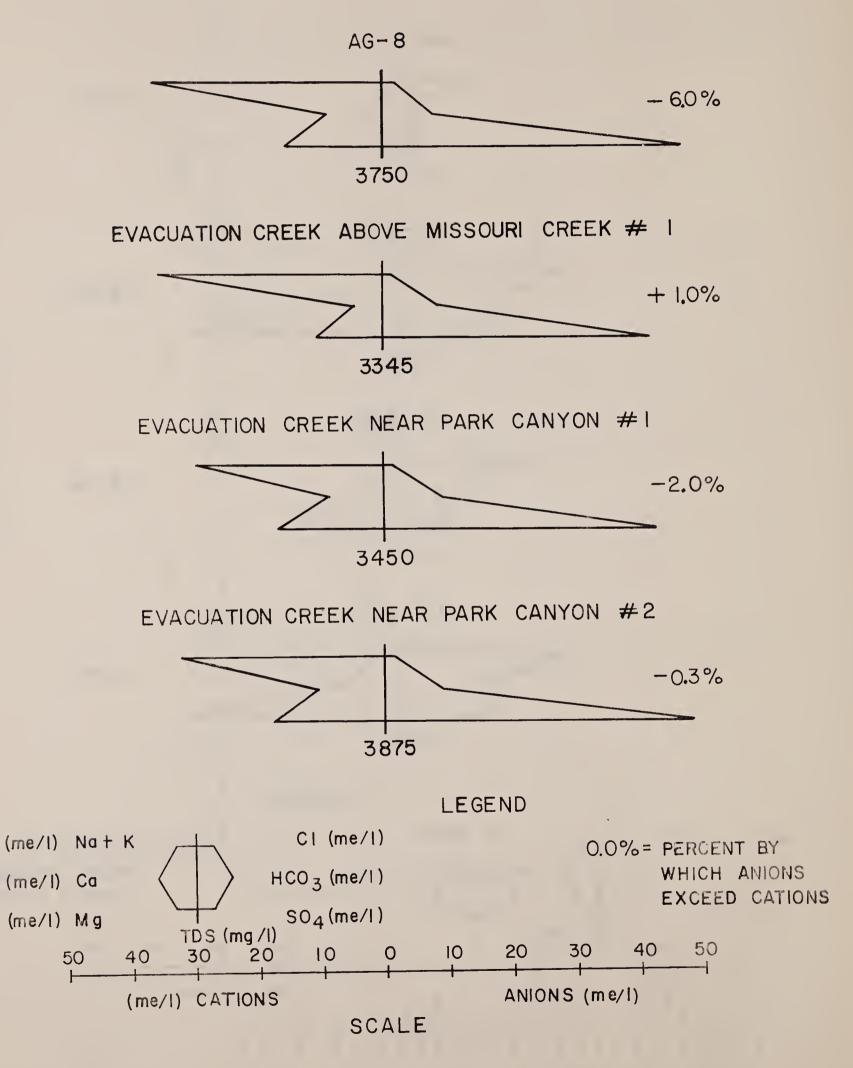
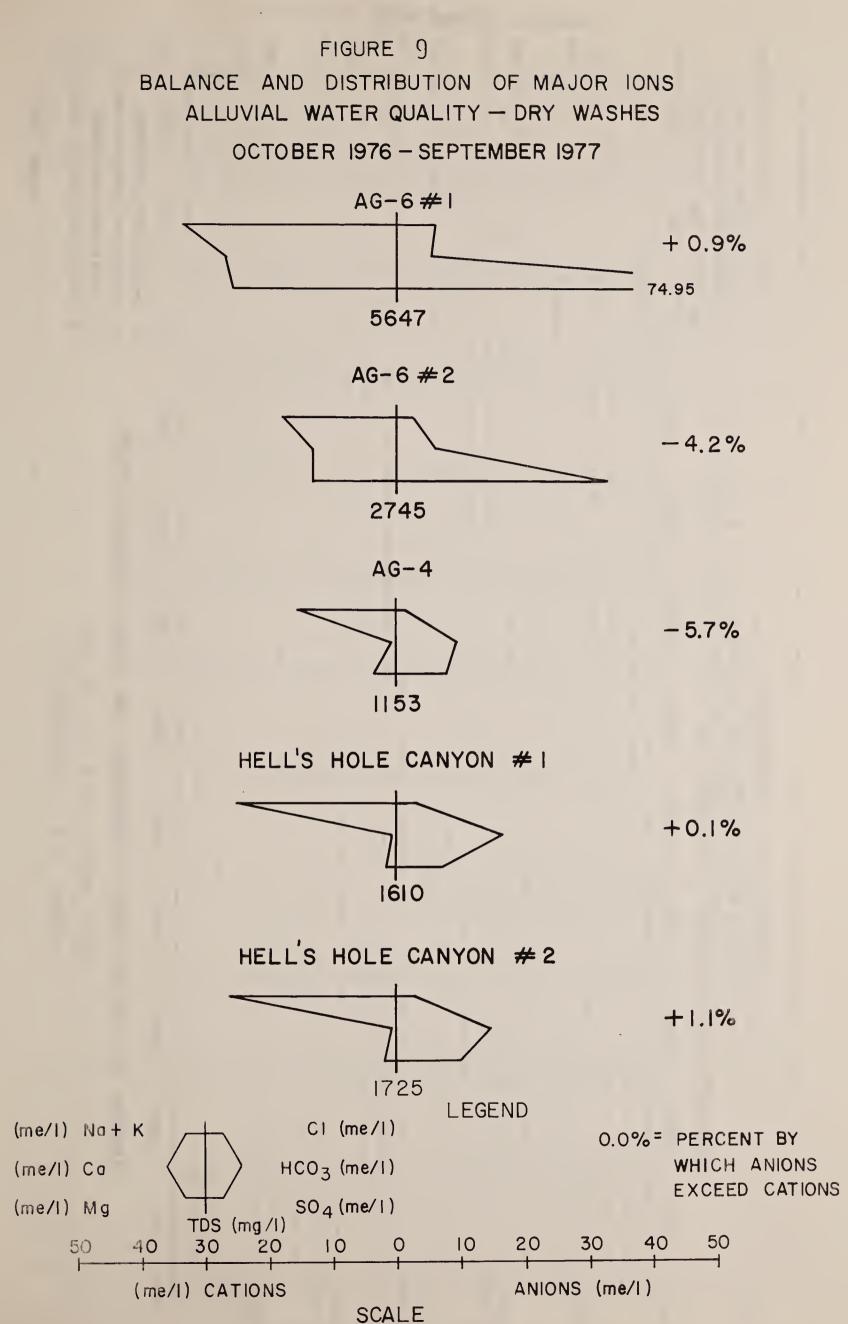




FIGURE 8

BALANCE AND DISTRIBUTION OF MAJOR IONS ALLUVIAL WATER QUALITY - EVACUATION CREEK OCTOBER 1976-SEPTEMBER 1977

-44-

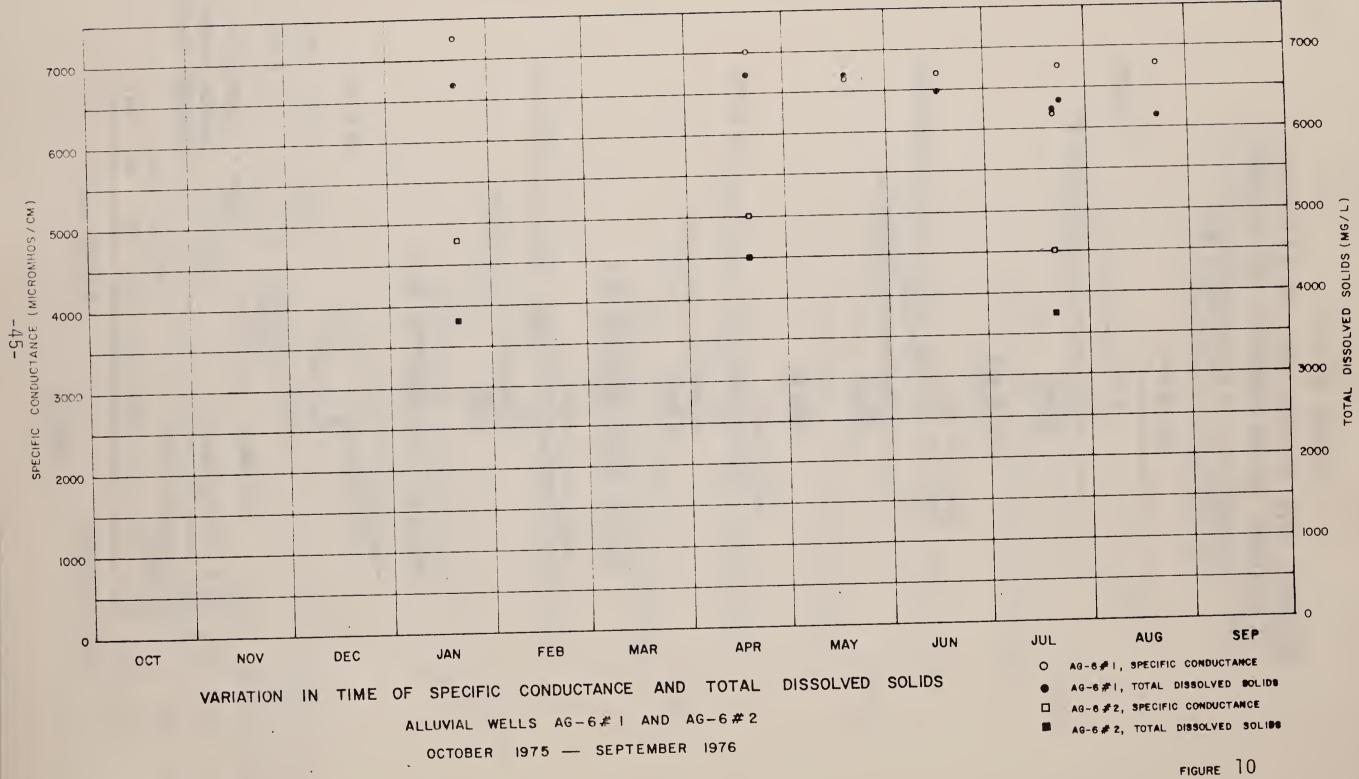


FIGURE 11

.

The second hypothesis is:

There are no significant differences in water level and chemical composition between comparable data from the two White River alluvial well sites (AG-1 and AG-3).

The fluctuation of static water level with respect to time at these two locations is similar. However, the ranges of these fluctuations are not similar. At AG-1 the range is approximately 1.22 meters (four feet), whereas at AG-3 the range is approximately 0.30 meter (one foot).

There are obvious differences in the chemical composition of the water at these two locations. This is shown in Table 13 and Figure 7. Of the major cations and anions, only bicarbonate does not show large differences between the AG-1 and AG-3 locations.

Possible explanations for these differences in water level and chemical composition were discussed in the 1977 annual report for the Interim Period.

The third hypothesis is:

There are no significant differences in water level and chemical composition between lower and upper well points at any specific location.

The results of statistical tests for significant differences in water quality parameters between lower and upper well points are shown in Table 16.

At AG-1, there are significant differences in 26 out of 48 water quality parameters tested. Also, the distribution of major cations and

RESULTS OF ANOVA TESTS FOR SIGNIFICANT DIFFERENCE ALLUVIAL WATER QUALITY LOWER VERSUS UPPER ALLUVIAL WELLS JANUARY 1976 - SEPTEMBER 1977

<u>Parameters</u>		AG-1 #1 (Lower) vs. <u>AG-1 #2 (Upper)</u>	AG-3 #1 (Lower) vs. AG-3 #2 (Upper)	AG-3 #1 (Lower) VS AG-3 #3 (Upper)	Evac. Cr. Near Park Canyon #1 (Lower) vs. Evac. Cr. Near Park <u>Canyon #2 (Upper)</u>	AG-6 #1 (Lower) vs. AG-6 #2 (Upper)	Hell's Hole Canyon #1 (Lower) vs. Hell's Hole Canyon #2 (Upper)
Total Alkalinity as CaCO3	(mg/l)		x				
Dissolved Solids	(mg/1)	x	x	×	×	x	
Hardness as Ca, Mg	(mg/l)	x	×	×	×	x	
Noncarbonate Hardness	(mg/1)	×	x	x	×	×	
Oil and Grease							
рH						x	
	umhos/cm)	×	×	x	x	x	
Temperature	(°C)						
Turbidity	(JTU)						
Color	(PCU)						
Calcium	(mg/1)	x	x	x	×	×	
Magnesium	(mg/1)	x	x	x		x	
Potassium	(mg/1)	x	x				
Sodium	(mg/1)	X	x	x	x	x	
Sodium Adsorption Ratio		x	x			×	
Percent Sodium		X	x	×			
Strontium	(ug/1)	×		×	-		
Bicarbonate	(mg/l)		x				
Carbonate	(mg/l)						
Chloride	(mg/1)	x	x	×		x	
Sulfate	(mg/1)	x	x	X	x	x	
Sulfide	(mg/1)	×		×			
Fluoride	(mg/1)	x	x	×			x
Bromide	(mg/l)	~•					
Chemical Oxygen Demand	(mg/1)						
Carbon Dioxide	(ng/1)						
Dissolved Organic Carbon	(mg/l)	×		x			
Ammonia as N	(mg/l)	x					
Nitrite as N	(mg/l)						
Nitrate as N	(mg/1)	x					
Nitrite and Nitrate as N	(mg/1)				x	×	
Total Kjeldahl Nitrogen as N	(mg/1)	×					
Total Phosphorus	(mg/l)						
Diss. Ortho Phosphorus as P	(mg/l)	×					
Diss. Ortho Phosphate as PO4	(mg/1)	x					
						······	
Boron	(ug/1)	x		•	×		
Copper	(ug/1)						
Iron	(ug/1)						
Manganese	(ug/1)	x	×				
Zinc	(ug/1)			×			
Molybdenum	(ug/1)	x	··•				
Silica	(mg/l)	×			×		×
Aluminum	(ug/l)						
Barium	(ug/1)						
Cadmium	(ug/l)						
Total Chromium	(ug/1)			×			
Lead	(ug/1)						
Lithium	(ug/1)	x		×			
Mercury	(ug/1)						
Selenium	(ug/1)						
Vanadium	(ug/1)						
Arsenic	(ug/1)			x			
Phenols							
Cyanide	(ug/l)						
Pesticides	(mg/l)						
Herbicides	(ug/l)						
Herbicides	(ug/1)						
Gross Alpha as U-nat.	(ug/1)						
Gross Beta as Sr90	(pCi/1)						
Gross Beta as Cel37	(pCi/1)						
Potassium 40	(pCi/l)						
Radium 226, radon method	(pCi/l)						
Diss. Uranium, dir. fluorometr	ic (ug/l)						

LEGENO:

anions is not similar between the lower and upper wells. Differences in chemical composition may be influenced by the depth of alluvium that the water percolates through. Also, the lower well may be influenced by leaching from the bedrock surface.

There are significant differences in 16 out of 25 water quality parameters tested between AG-3 #1 and AG-3 #2. There are significant differences in 16 out of 48 water quality parameters tested between AG-3 #1 and AG-3 #3. The distribution of major cations and anions is similar between all three wells. There is no clear explanation for this condition. A possible cause might be that water reaching the lower well has had more opportunity to dissolve minerals from the alluvium than water reaching the other two upper well points.

At Evacuation Creek near Park Canyon, 10 out of 23 water quality parameters have significant differences between the lower and upper wells. Inspection of Table 14 indicates that only nitrite and nitrate as nitrogen and silica show large differences between the means. The other eight parameters failed because the standard deviations were quite small compared to the difference in means. The distribution of major cations and anions is similar between the lower and upper wells.

At the AG-6 location, 12 out of 23 water quality parameters showed significant differences between the lower and upper wells. This situation is changing with respect to time, as shown in Figures 10 and 11 . From May 1977 through September 1977, the specific conductance is similar between the lower and upper wells. This leads to the conclusion that water quality samples taken after May 1977 will show

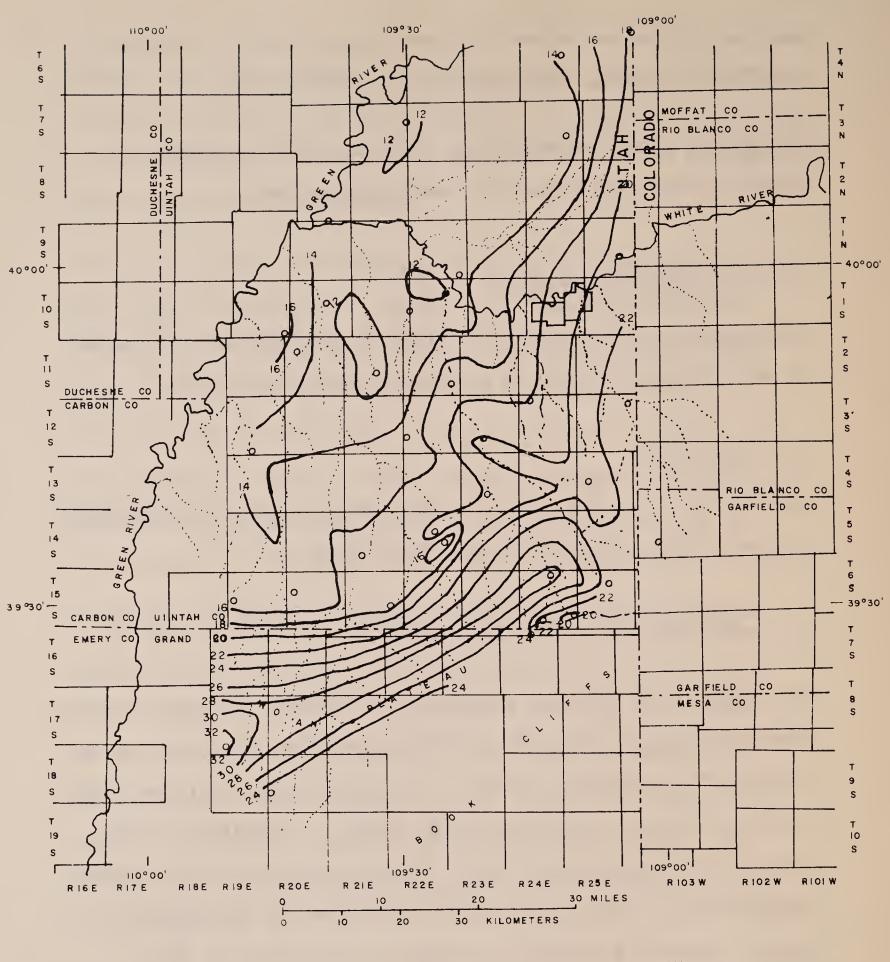
-49-

much less difference between the lower and upper wells. Future data will indicate whether this conclusion is correct or not.

At the Hell's Hole Canyon location there was little difference in chemical composition between the lower and upper wells.

3.0 Precipitation/Evaporation

The purpose of this section is to expand on the conclusions presented in the 1977 annual report for the Interim Monitoring Period.

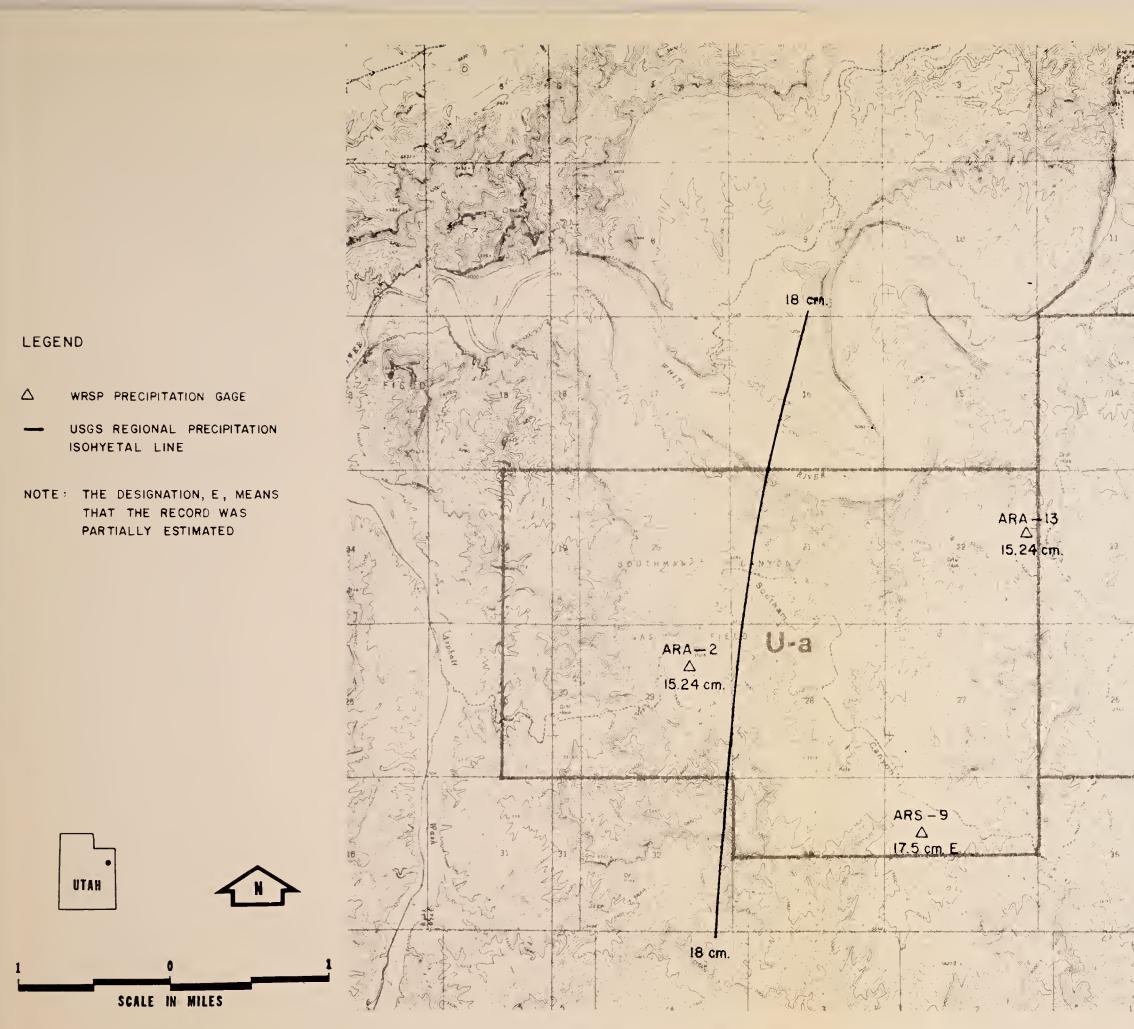

3.1 Conclusions

Specifically, this section will be concerned with the second hypothesis presented in the December 1976 Work Plan, which is:

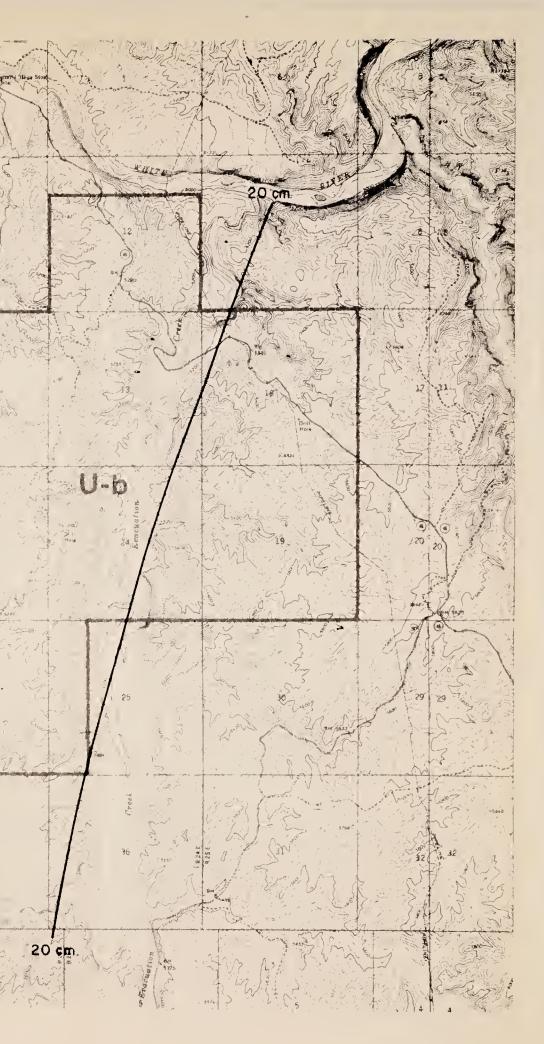
The existing USGS precipitation network is adequate to predict precipitation levels on Tracts Ua/Ub.

The isohyetal map of annual precipitation during the 1977 water year is shown in Figure 12. This map is based on data from the gages involved in the USGS precipitation network. This network does not include any of the precipitation gages maintained by WRSP. A comparison of the 1977 annual precipitation at ARA-2, ARS-9 and ARA-13 with the regional isohyetal map is shown in Figure 13. The record for ARS-9 during January, February and March was estimated from the data at ARA-2. The results of the comparison of measured versus predicted 1977 annual precipitation are shown in Table 17. These results indicate that the predictions from the isohyetal map of 1977 annual precipitation for the USGS network of gages is within 25 percent of the measured values at the three WRSP automatic precipitation gages.

-50-


LEGEND

. O Precipitation gage


ANNUAL PRECIPITATION IN CM. OCTOBER 1976 - SEPTEMBER 1977 USGS REGIONAL NETWORK

-

ż

COMPARISON OF WRSP PRECIPITATION GAGES TO USGS REGIONAL PRECIPITATION NETWORK OCTOBER 1976 - SEPTEMBER 1977

FIGURE 13 -52-

COMPARISON OF MEASURED PRECIPITATION WITH PREDICTED VALUE FROM ISOHYETAL MAP

STATIONS ARA-2, ARS-9 and ARA-13

OCTOBER 1976 - SEPTEMBER 1977

Station	Measured 1977 Annual Precipitation in Centimeters	Predicted 1977 Annual Precipitation in Centimeters	Percent Difference of Prediction from Measurement
ARA-2	15.24	18	+18
ARS-9	17.5 E	19	+ 9
ARA-13	15.24	19	+25

Note: The designation, E, means that part of the record was estimated.

This type of prediction may be considered accurate for some purposes; however, the regional precipitation network is not likely to accurately predict precipitation on Tracts Ua/Ub from an intense localized thunder storm. This was discussed in the 1977 annual report. The conclusion for the second hypothesis will not change considering the analysis discussed in this section; i.e., the existing USGS precipitation network is not completely adequate to predict precipitation levels on Tracts Ua/Ub.

