

U.S. Army Coast Eug. Res. Ctr. Misc. Rep. CO2C Miscellaneous Paper CERC-95-9 December 1995

US Army Corps of Engineers Waterways Experiment Station

Surface Wind Analyses and Storm-Surge Effects of Hurricane Emily on the Outer Banks of North Carolina

Weeds Hele Occanosi 42

by Andrew W. Garcia

constitutes'	and the second second	proprietaria descriptiones	anisocontaine	
20102001007 27		and the statements	-	and the second s
animentaria da		the second se	anteriore Ale	And and a second se
		ment processes		11.00V T
900000000 .20000	DA PASSING THE	and an	2000	and the second se
30000000 -00000			contractory Street	
susperior according	i userent see h		control 400	
autocon 512000			200690	and the second s
Anternood Automotic				100100000000
and the second s			200	
	and the second second second		second parameters	
27204000000000000	tandimenters.			

Approved For Public Release; Distribution Is Unlimited

QC 945 .63 1995

Prepared for Headquarters, U.S. Army Corps of Engineers

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.

Miscellaneous Paper CERC-95-9 December 1995

Surface Wind Analyses and Storm-Surge Effects of Hurricane Emily on the Outer Banks of North Carolina

by Andrew W. Garcia

U.S. Army Corps of Engineers Waterways Experiment Station 3909 Halls Ferry Road Vicksburg, MS 39180-6199

Final report Approved for public release; distribution is unlimited

Prepared for U.S. Army Corps of Engineers Washington, DC 20314-1000

Waterways Experiment Station Cataloging-in-Publication Data

Garcia, Andrew W.

Surface wind analyses and storm-surge effects of Hurricane Emily on the Outer Banks of North Carolina / by Andrew W. Garcia ; prepared for U.S. Army Corps of Engineers.

24 p. : ill. ; 28 cm. — (Miscellaneous paper ; CERC-95-9)

Includes bibliographic references.

1. Hurricane Emily, 1993. 2. Storm surges. 3. Storm winds. I. United States. Army. Corps of Engineers. II. U.S. Army Engineer Waterways Experiment Station. III. Coastal Engineering Research Center (U.S. Army Engineer Waterways Experiment Station) IV. Title. V. Series: Miscellaneous paper (U.S. Army Engineer Waterways Experiment Station); CERC-95-9.

TA7 W34m no.CERC-95-9

Contents

Preface	iv
Conversion Factors, Non-SI to SI Units of Measurement	v
1—Introduction	1
2—Surface Wind Analyses	4
3-Storm Surge Characteristics and Effects	9
4—Summary	17
References	18
SF 298	

Preface

The work described herein was authorized by Headquarters, U.S. Army Corps of Engineers (HQUSACE). The work was performed under the Episodic Events Work Unit 12112 of the Coastal Field Data Collection Program at the Coastal Engineering Research Center (CERC), U.S. Army Engineer Waterways Experiment Station (WES). Messrs. John H. Lockhart, Jr., Charles B. Chesnutt, and Barry W. Holliday were HQUSACE Technical Monitors. Ms. Carolyn M. Holmes, CERC, was Program Manager of the Coastal Field Data Collection Program.

This study was performed by Dr. Andrew W. Garcia, Prototype Measurement and Analysis Branch (PMAB), Engineering Development Division (EDD), during the period September 1993 to March 1995. This report was prepared by Dr. Garcia. This study was performed under the administrative supervision of Dr. James R. Houston, Director, CERC; Mr. Charles C. Calhoun, Assistant Director, CERC; Mr. Thomas W. Richardson, Chief, EED; and Mr. William L. Preslan, Chief, PMAB.

At the time of publication of this report, Director of WES was Dr. Robert W. Whalin. Commander was COL Bruce K. Howard, EN.

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.

iv

Conversion Factors, Non-SI to SI Units of Measurement

Non SI-units of measurement used in this report can be converted to SI units as follows:

Multiply	Ву	To Obtain
feet	0.3048	meters
knots (international)	0.5144444	meters per second
miles (U.S. nautical)	1.852	kilometers
miles (U.S. statute)	1.609347	kilometers

1 Introduction

The meteorological system which evolved into Hurricane Emily was detected on 22 August 1993 via satellite imagery as a cloud pattern typical of a tropical depression. At the time, it was located approximately 1,800 miles¹ southeast of Cape Hatteras, the point of closest approach to land in the continental United States. Emily persisted as a tropical depression for the next 2 days while moving to the northwest. On 25 August, Emily slowed to almost a stop and the system began to intensify, being upgraded to tropical storm status. Emily briefly attained minimal hurricane strength on 26 August as it began to move toward the southwest. During the next 2 days, Emily gradually turned again to the northwest and re-intensified, attaining Saffir-Simpson scale category 3 hurricane status on 31 August 1993. On 1 September 1993, Emily skirted the Outer Banks of North Carolina while on a northward track, then turned toward the northeast and moved back into the Atlantic. Figure 1 (from Lawrence (1993)) shows the track of Emily.

The histories of Emily's central pressure and maximum wind speeds are shown in Figures 2 and 3 (from Lawrence (1993)). The maximum surface wind speed of slightly more than 100 knots was observed about the same time as was the minimum central pressure; both occurred at the time of closest approach to land. The radius of maximum winds at this time was approximately 23 miles (Lawrence 1993). The position of Emily's maximum winds relative to the Outer Banks during the storm's passage resulted in flood water being forced from Pamlico Sound across the barrier island into the Atlantic Ocean.

¹ A table of factors for converting non-SI units of measurement to SI units is presented on page v.

Figure 2. Best track minimum central pressure curve for Hurricane Emily

Figure 3. Best track 1-min sustained wind speed curve for Hurricane Emily

2 Surface Wind Analyses

A series of surface wind analyses were prepared by the staff of the Hurricane Research Division, Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration. The analyses are based upon wind data acquired from a variety of sources including reconnaissance aircraft, moored buoys, coastal meteorological stations, and ship reports. A description of the analysis techniques used may be found in Powell, Dodge, and Black (1991) and Powell, Houston, and Reinhold (in preparation).

Three analyses were selected for inclusion in this report; 1400 hr Coordinated Universal Time (UTC) 31 August, 2200 hr UTC 31 August, and 0200 hr UTC 1 September, 1993 (Figures 4, 5, and 6, respectively). These analyses were selected as depicting Emily's surface wind fields shortly before the point of closest approach to land (PCA), at the time of PCA, and just subsequent to PCA. The solid lines in these figures are streamlines indicating the wind direction. The dashed line are isotachs, i.e., contours of constant windspeed.

At 1400 hr UTC on 31 August (Figure 4), the eye of Emily was approximately 130 miles from Cape Hatteras, with the dominant motion toward the north-northwest. Maximum surface winds were approximately 86 knots (Burpee et al. 1994). At the time, the dominant wind direction over Pamlico Sound was from the east-northeast at approximately 40 knots.

During the next 8 hr, Emily took a slightly more northerly course and moved to within about 15 miles of Cape Hatteras (Figure 5). The maximum winds at this time were slightly greater than 100 knots and the winds over Pamlico Sound had increased to between 70 and 90 knots. The wind directions over the Sound varied from north-northeast to south-southeast, depending upon location. It is apparent from the streamline depiction at this time that high surge levels would be expected to occur on the Pamlico Sound side of the Outer Banks south of Cape Hatteras.

By 0200 hr UTC 1 September 1993, the center of Emily had moved to about 100 km northeast of Cape Hatteras (Figure 6) on a track that was continuing to turn more toward the east. Although the maximum sustained wind speed in Emily was still slightly in excess of 100 knots, the storm's movement away from Cape Hatteras had reduced the wind speeds over Pamlico Sound to between 30 and 70 knots with the direction predominantly from the northwest.

Figure 4. Surface wind analysis for Hurricane Emily 1400 hr UTC 31 August 1993

Figure 5. Surface wind analysis for Hurricane Emily 2200 hr UTC 31 August 1993

Figure 6. Surface wind analysis for Hurricane Emily 0200 hr UTC 1 September 1993

The streamline depiction over Pamlico Sound in Figure 6 suggests the dominant flow of water comprising the storm surge would have occurred along the back side of the barrier islands. Streamline depictions north of Cape Hatteras at this time are approximately parallel to the shoreline; therefore, one would expect relatively low surge levels along the oceanic coast. Characteristics of the storm surge are discussed in detail in Chapter 3.

3 Storm Surge Characteristics and Effects

Reconnaissance of the affected area of the Outer Banks for evidence of storm surge inundation began on 1 September 1993. Field teams from the U.S. Geological Survey (USGS) office in Raleigh, NC, moved into the affected area to identify high water marks. The USGS effort was performed under a tasking from the Federal Emergency Management Agency (FEMA), with funding jointly provided by FEMA, the U.S. Army Corps of Engineers, and National Weather Service.

The USGS field teams identified 108 high-water marks on the Outer Banks between the communities of Avon and Hatteras (see Figure 7 for locations of communities). Of the 108 marks initially identified, 62 were selected as being of sufficient quality to adequately represent the elevation and extent of flooding. Each of the 62 selected marks was leveled using a total stations instrument referenced to a local benchmark network. Data for each of the marks were tabulated to show location referenced to latitude and longitude, type and quality of mark, and the water-level and ground surface elevations. Marks acquired inside structures are tabulated to the nearest hundredth foot, while outside marks and ground elevations are tabulated to the nearest tenth. These data are presented in Table 1; marks recovered inside structures are denoted as "I," and marks recovered outside are denoted as "O."

The northern extent of flooding along the Outer Banks barrier island occurred about 1 mile north of the Little Kinnakeet Coast Guard Station. To the north of Little Kinnakeet, the elevation of coastal Highway 12 increases, forming a barrier which confined the inundation to the narrow strip of land between the shore and highway.

To the south of Little Kinnakeet, the entire community of Avon was inundated except for isolated elevated areas. South of Avon, Highway 12 was inundated by water from the Pamlico Sound side of the barrier island, which was prevented from flowing into the Atlantic Ocean by the beach dunes at elevations higher than the highway. High-water marks acquired along this stretch of Highway 12 were between 7 and 9 ft above National Geodetic Vertical Datum (NGVD). Water levels increased in elevation as one approached

Figure 7. Areal distribution of high-water levels caused by Hurricane Emily on Cape Hatteras

Table 1 Locations and Des Hurricane Emily Fi	criptions of Hig ood, Hatteras I	gh-Water I sland, Nor	Marks (na, Augu	and Water- and Gro st 31, 1993	ound-Surfac	e Elevations	for the
HWM number (on USGS Quadrangle Map)	USGS Quadrangle Map Name	Near es t Town	Latitude	Longitude	Type and Quality of HWM	Inside (I) or Outside (O) HWM	Water-Surface Elevation (feet, NVGD ¹)	Ground-Surface Elevation (feet, NVGD ¹)
-	Little Kinnakeet	Avon	35°24'22"	76°29'29"	Seed line, excellent	-	5.92	4.0 ²
2	Little Kinnakeet	Avon	35°22'38"	75°29'40"	Drift line on dunes, poor	0	7.2	
e	Little Kinnakeet	Avon	35°22'35"	75°29'40"	Drift line on dunes, poor	0	7.6	£.
4	Little Kinnakeet	Avon	35°22'33"	75°29'40"	Drift line on dunes, poor	0	7.5	e.:
5	Buxton	Avon	35°22'17"	75°29'55"	Seed line, excellent	-	7.62	4.4
6	Buxton	Avon	35°21'38"	75°30'28"	Seed line, good	_	7.3	2.3 ²
7	Buxton	Avon	35°21'37"	75°30'28"	Seed line, excellent	_	7.54	2.0 ²
8	Buxton	Avon	35°21'30"	75°30'09"	Seed line, excellent	_	7.53	3.8
6	Buxton	Avon	35°21'30"	75°30'00"	Wash line, poor	0	7.5	e.
 National Geodetic Vertica 2 Estimate. 3 Ground-surface elevation 	I Datum of 1929 (refer at drift line is same as	rred to as sea s water-surface	level in text). • elevation.					
								(Sheet 1 of 5)

.

Table 1 (Continued	()							
HWM number (on USGS Quadrangle Map)	USGS Quedrangle Map Name	Neares I Town	Latitude	Longitude	Type and Quality of HWM	Inside (I) or Outside (O) HWM	Water-Surface Elevation (feet, NVGD ¹)	Ground-Surface Elevation (feet, NVGD ¹)
10	Buxton	Avon	35°21'29"	75°30'03"	Seed line, good	0	7.6	6.0
11	Buxton	Avon	35°21'07"	75°30'41"	Seed line, excellent	-	7.62	5.2 ²
12	Buxton	Avon	35°20'35"	75°30'19"	Drift line, poor	0	7.5	е,
13	Buxton	Avon	35°20'05"	75°30'20"	Drift line, poor	0	7.6	8-1-
14	Buxton	Avon	35°20'04"	75°30'27"	Seed line, fair	0	7.5	5.0 ²
15	Buxton	Avon	35°19'21"	75°30'34"	Seed line, good	0	8.5	5.3
16	Buxton	Avon	35°19'20"	75°30'32"	Debris line, poor	0	8.5	e
17	Buxton	Avon	35°19'13"	75°30'33"	Drift line on dunes, poor	0	8.8	e
18	Buxton	Buxton	35°17'10"	75°30'54"	Drift line on dunes, poor	0	10.8	е,
19	Buxton	Buxton	35°16'59"	75°30'56"	Drift line on dunes, poor	0	11.1	С. -
20	Buxton	Buxton	35°16'40"	75°30'59"	Drift line on dunes, poor	0	11.1	°-
21	Buxton	Buxton (at near breach)	35°16'37"	75°31'00"	Drift line on dunes, poor	0	11.2 AVG ²	°
22	Buxton	Buxton	35°16'28"	75°31'01"	Drift line on dunes, poor	0	10.3	-3
4 Water-surface elevation	is average of two man	ks.						
								(Sheet 2 of 5)

Table 1 (Continued	1)							
HWM number (on USGS Quadrangle Map)	USGS Quadrangle Map Name	Nearcet Town	Latitude	Longitude	Type and Quality of HWM	Inside (I) or Outside (O) HWM	Water-Surface Elevation (feet, NVGD ¹)	Ground-Surface Elevation (feet, NVGD ¹)
23	Buxton	Buxton	35°16'09"	75°31'06"	Drift line on dunes, poor	0	11.5	e.
24	Buxton	Buxton	35°16'05"	75°31'08"	Drift line on dunes, poor	0	10.34	e.
25	Buxton	Buxton	35°15'59"	75°31'10"	Seed line, excellent	_	10.54	5.9
26	Buxton	Buxton	35°15'53"	75°31'19"	Seed line, excellent		9.71	6.4 ²
27	Buxton	Buxton	35°15'36"	75°31'40"	Seed line, good	0	8.4	7.5
28	Buxton	Buxton	35°15'52"	75°31'42"	Seed line, excellent	_	8.68	5.8
53	Buxton	Buxton	35°16'07"	75°31'43"	Water stain, good	_	10.1	4.0
30	Buxton	Buxton	35°16'07"	75°31'59"	Seed line, good	0	9.5	7.0
31	Buxton	Buxton	35°15'48"	75°32'27"	Seed line, fair	0	7.1	4.9
32	Buxton	Buxton	35°15'49"	75°32'27"	Seed line, good	_	7.1	3.9
33	Buxton	Buxton	35°15'53"	75°32'34"	Seed line, good	0	9.0	7.8
34	Buxton	Buxton	35°15'39"	75°32'35"	Drift line, poor	0	6.3	е.
35	Buxton	Buxton	35°16'09"	75°32'37"	Seed line, good	_	10.0	5.4
36	Buxton	Buxton	35°15'54"	75°33'03"	Seed line, excellent	_	9.30	4.9
								(Sheet 3 of 5)

Table 1 (Continued	(
HWM number (on USGS Quedrangle Map)	USGS Quedrengle Map Name	Nearest Town	Latitude	Longitude	Type and Quality of HWM	Inside (I) or Outside (O) HWM	Water-Surface Elevation (feet, NVGD ¹)	Ground-Surface Elevation (feet, NVGD ¹)
37	Buxton	Buxton	35°15'52"	75°33'29"	Seed line, excellent		9.42	4.6
38	Buxton	Buxton	35°15'49*	75°33'44"	Drift line near road, poor	0	9.6 ⁴	е
39	Buxton	Frisco	35°15'27"	75°34'59"	Drift line, poor	0	6.3	3
40	Buxton	Frisco	35°15'22"	75°35'08"	Seed line, good	0	6.4	5.5
41	Buxton	Frisco	35°15'50"	75°35'23"	Seed line, good	1	5.9	4.2
42	Buxton	Frisco	35°15'50"	75°35'35"	Seed line, excellent	+	8.31	3.9
43	Cape Hatteras	Frisco	35°14'57"	75°35'56"	Seed line, excellent	_	7.88	4.3
44	Buxton	Frisco	35°15'04"	75°36'10"	Seed line, good	-	8.0	3.8
45	Cape Hatteras	Frisco	35°14'25"	75°37'11"	Seed line, excellent	-	8.05	4.5
46	Hatteras	Frisco	35°14'01"	75°37'32"	Seed line, good	0	8.1	5.9
47	Hatteras	Frisco	35°13'35"	75°38'11"	Seed line, good	-	8.7	5.4
48	Hatteras	Frisco	35°13'33"	75°38'14"	Drift line on dunes, poor	0	8.3 ⁴	.3
49	Hatteras	Frisco	35°13'22"	75°38'59"	Drift line on dunes, poor	0	7.8	3
50	Hatteras	Frisco	35°13'17"	75°39'13"	Drift line on dunes, poor	0	7.7	°;
								(Sheet 4 of 5)

Table 1 (Continued	()							
HWM number (on USGS Quadrangle Map)	USGS Quadrangle Map Name	Nearest Town	Latitude	Longitude	Type and Quality of HWM	Inside (I) or Outside (O) HWM	Water-Surface Elevation (feet, NVCD ¹)	Ground-Surface Elevation
51	Hatteras	Frisco	35°13'12"	75°39'26"	Drift line on dunes. poor	0	73	(1001) (1001)
52	Hatteras	Hatteras	35°13'01"	75°40'03"	Drift line on dunes, poor	0	79	
53	Hatteras	Hatteras	35°13'00"	75°40'05"	Drift line on dunes, poor	0	7.84	3
54	Hatteras	Hatteras	35°12'59"	75°41'12"	Seed line, excellent	-	7.02	3.9
55	Hatteras	Hatteras	35°12'56"	75°41'18"	Seed line, good	0	7.0	3.3
56	Hatteras	Hatteras	35°13'07"	75°41'25"	Seed line, poor	_	5.8	352
57	Hatteras	Hatteras	35°13'22"	75°41'04"	Seed line, excellent	_	80 98	2 42
58	Hatteras	Hatteras	35°13'14"	75°41'27"	Seed line, fair		67	4.n ²
59	Hatteras	Hatteras	35°13'07"	75°41'40"	Seed line, fair		64	
60	Hatteras	Hatteras	35°12'46"	75°41'46"	Seed line. excellent		6 03	2.02
61	Hatteras	Hatteras	35°12'32"	75°41'55"	Seed line, excellent		899	0.0
62	Hatteras	Hatteras	35°12'28"	75°42'10"	Seed line, excellent		6.68	5.62
								(Sheet 5 of 5)

the community of Buxton, where the orientation of Cape Hatteras transitions from predominantly north-south to east-west. Four high-water marks exceeding 11 ft NGVD were recovered just east of Buxton.

The zone of highest water levels on the Outer Banks due to Emily was near the community of Buxton, most of which was inundated. Water levels in Buxton ranged from about 7 to 10 ft, with flooding coming from Pamlico Sound. The area south of Buxton, Buxton Woods, is densely vegetated, making recovery of high-water marks difficult. While no definitive high-water marks were recovered in this area, there were indications of saltwater intrusion.

To the west of Buxton, the village of Frisco was inundated, with high-water marks at elevations between 8 and 9 ft. Hatteras, the west-most community on Hatteras Island, also was completely inundated with high-water marks at elevations between 6 and 7 ft. As at the community of Buxton, flooding came from Pamlico Sound.

4 Summary

Figure 7 illustrates storm-induced flooding. Zones of water elevations in feet above NGVD are denoted. The figure is intended as a general overview; therefore, isolated high-water marks of unusually high or low elevations within a given zone have been ignored in the preparation. Based upon the recovered high-water marks, all of the flooding on the Outer Banks appears to have come from the Pamlico Sound side of the barrier island. This interpretation is based upon the gradient of elevations of high-water marks which slopes from the Sound to the ocean and is consistent with the streamline patterns depicted in the wind analyses of Chapter 3. The streamlines indicating wind direction in the 2200 hr UTC analysis (Figure 5), the time of PCA, are most shore-normal along the east-west-oriented reach of Cape Hatteras. The isotachs indicating the most intense wind speeds over land, approximately 90 knots, are located near Buxton, where the highest water levels occurred.

Hurricane Emily was unusual in that it caused significant flooding and damage on the Outer Banks, yet never made landfall in the commonly accepted sense because the eye of the storm stayed over water. Emily was also unusual in causing the most pronounced flooding along the back side of a barrier island system.

References

- Burpee, R. W., Aberson, S. D., Black, P. G., DeMaria, M., Franklin, J. L., Griffin, J. S., Houston, S. H., Kaplan, J., Lord, S. J., Marks, F. D., Jr., Powell, M. D., and Willoughby, H. E. (1994). "Real-time guidance provided by NOAA's hurricane research division to forecasters during Hurricane Emily of 1993," Bull. Amer. Met. Soc. 75, 1765-83.
- Lawrence, M. (1993). "Preliminary report, Hurricane Emily; 22 August -06 September 1993," unpublished manuscript, National Hurricane Center, National Oceanic and Atmospheric Administration.
- Powell, M. D., Dodge, P. P., and Black, M. L. (1993). "The landfall of Hurricane Hugo in the Carolinas: Surface wind distribution," Weather and Forecasting. 6, 379-99.
- Powell, M. D., Houston, S. H., and Reinhold, T. A. (1995). "Hurricane Andrew's landfall in south Florida; Part I: Standardizing measurements for documentation of surface wind fields," *Weather and Forecasting*, in press.

	REPORT D	DOCUMENTATION P	AGE	Form Approved OMB No. 0704-0188
Pu the for Off	blic reporting burden for this collection of inform data needed, and completing and reviewing th reducing this burden, to Washington Headquai ce of Management and Budget, Papework Re	ation is estimated to average 1 hour per response, in re collection of information. Send comments rega rters Services, Directorate for Information Operatic eduction Project (0704-0188), Washington, DC 2	cluding the time for reviewing instructions, sea rding this burden estimate or any other aspec ons and Reports, 1215 Jefferson Davis Highw 0503.	rching existing data sources, gathering and maintaining of this collection of information, including suggestions ay, Suite 1204, Arlington, VA 22202-4302, and to the
1.	AGENCY USE ONLY (Leave bla	nk) 2. REPORT DATE December 1995	3. REPORT TYPE AND DAT Final report	ES COVERED
4.	TITLE AND SUBTITLE Surface Wind Analyses and S Hurricane Emily on the Outer	torm-Surge Effects of Banks of North Carolina	5. F	UNDING NUMBERS
6.	AUTHOR(S) Andrew W. Garcia			
7.	PERFORMING ORGANIZATION U.S. Army Engineer Waterwa 3909 Halls Ferry Road, Vicks	NAME(S) AND ADDRESS(ES) ys Experiment Station burg, MS 39180-6199	8. F F N	ERFORMING ORGANIZATION EPORT NUMBER fiscellaneous Paper CERC-95-9
9.	SPONSORING/MONITORING AC Headquarters, U.S. Army Corp Washington, DC 20310-1000	SENCY NAME(S) AND ADDRESS(E ps of Engineers	S) 10.	SPONSORING/MONITORING AGENCY REPORT NUMBER
11.	SUPPLEMENTARY NOTES Available from National Tec	hnical Information Service, 5285	Port Royal Road, Springfield	, VA 22161.
12a	DISTRIBUTION/AVAILABILIT Approved for public release	Y STATEMENT e; distribution is unlimited.	12Ь.	DISTRIBUTION CODE
13.	ABSTRACT (Maximum 200 wo Surface meteorological and These data include maximum times of Emily's closest appre- form for the Outer Banks of N coastal effects are noteworthy rather than the Atlantic Ocean	rds) d coastal storm-surge data for Hu surface wind speed and minimu oach to land, 8 hr prior, and 4 hr North Carolina. The report docun y in that inundation of the barrier n.	urricane Emily (22 August - 6 m surface central pressure his following; and storm surge da nents Emily's effects in the pr island system was due to high	September 1993) are presented. ories, surface wind analyses at ta in both tabular and graphic mary area of impact. Emily's waters from Pamlico Sound
14.	SUBJECT TERMS Hurricane effects Hurricane Emily Hurricane winds Storm surge			15. NUMBER OF PAGES 24 16. PRICE CODE
17.	SECURITY CLASSIFICATION OF REPORT UNCLASSIFIED	18. SECURITY CLASSIFICATION OF THIS PAGE UNCLASSIFIED	19. SECURITY CLASSIFICAT OF ABSTRACT	ON 20. LIMITATION OF ABSTRACT

B

. •

Destroy this report when no longer needed. Do not return it to the originator.

DEPARTMENT OF THE ARMY WATERWAYS EXPERIMENT STATION, CORPS OF ENGINEERS

3909 HALLS FERRY ROAD VICKSBURG, MISSISSIPPI 39180-6199

Official Business

298/L25/ 1 WOODS HOLE OCEANGRAPHIC INSTITUTE ATTN: MR. WILLIAM DUNKLE DATA LIBRARY WOODS HOLE MA 02543-1098

