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PREFACE 

The present paper by Mr. Marks is one of a number of techni- 

cal reports on investigations dealing with the forecasting of 

characteristics of ocean surface waves on the coast of New Jersey. 

This project is conducted by the Department of Meteorology under 

the sponsorship of the Beach Erosion Board, Corps of Engineers, 

Department of the Army. The project is administered by Dr. H. K. 

Work, Director of Research, College of Engineering, New York 

University. 

During the work on this project it became clear that some 

of the problems of wave propagation arising due to the complicated 

bottom topography off the New Jersey shore could best be studied 

by means of experiments in a ripple tank. Experimentation in such 

a tank allows the verification of results obtained by mathematical 

analysis. Such experimental verifications are particularly desir- 

able when for reasons of mathematical expediency somewhat unreal- 

istic assumptions have to be made to permit a theoretical solution. 

The cases considered in Mr. Marks' study do not include any 

problems in which questions of the applicability of the mathematical 

theory arise. Nevertheless, the following paper forms an important 

part of the experimental work with the ripple tank since it demon- 

strates the feasibility of small-scale experimental studies which 

contribute to our knowledge of surface wave propagation in shallow 

water and under the influence of structures erected for the pro- 

tection of beaches. 

25 October 1951 B. Haurwitz 
Chairman 
Department of Meteorology 
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A SURVEY OF SELECTED SOLUTIONS TO PROBLEMS OF 

REFRACTION AND DIFFRACTION OF LIGHT WAVES AND 

SOUND WAVES AND THE ANALOGIES OF THESE PROBLEMS 

TO WATER WAVES 

Abstract 

Several refraction and diffraction problems in light waves 

and sound waves have been selected for study in the N.Y.U. ripple 

tank. The analogies to these problems are demonstrated by test- 

ing plastic analogue models of the system under investigation in 

the ripple tank. If it is assumed that the initial and boundary 

conditions of the particular problem have been satisfied by the 

nature of the experiment, and it is found that photographs of the 

systems undergoing experimentation clearly demonstrate the physical 

interpretation of the mathematical solution, then we may conclude 

that the problem has an analogy in water waves. 

The selection of the various problems depends on the practi- 

cability of experimentation and upon the photographic technique 

employed. The ripple tank, mentioned above, has been designed in 

such a manner that it propagates plane waves. Therefore, one of 

the conditions imposed on the selection of the problem is that the 

source be of such a nature that it propagates plane waves at a 

finite distance from the system. A possible source is a plane in 

three dimensions, which reduces to a line source in two dimensions. 

Another possible source is a point source originating a great 

distance from the system, so that the waves may be considered 

as Plane waves in the region of the system. Since our problems 



must be studied in two dimensions, it is necessary that the 

systems involved in the examples of wave diffraction be uniform 

with respect to an axis normal to the water surface. 

The mathematical complexities of the problems vary from the 

trivial (non-mathematical, elementary discussions) to treatments 

involving several transformations. 

Most of the problems presented here are the products of 

individual authors. Those readers who are interested in the rigid 

mathematical derivation of any particular solution are referred 

to the source of the material by the footnote at the beginning 

of each section or the bibliography at the end of the paper. 



1. Introduction 

That light waves and sound waves have an analogy in water 

waves can be seen from the two properties common to all waves: 

(1) energy is propagated to distant points, (2) the disturbance 

travels through the medium in such a way that the fluid as a whole 

is not given any permanent displacement. We shall see that whether 

the transporting medium is air or water, these two properties are 

common to the wave motion. 

Since all types of wave motion obey the equation of wave 

motion, the solution of each problem differs only in the imposition 

of the initial and boundary conditions. 

The ripple tank used in these experiments is essentially the 

Same one used by Rix (1949), although the dimensions are somewhat 

larger. 

"We have built a tank 3 feet by 2 feet in which we 
produce ripples in tap water with a mechanically driven 
vibrator consisting of a strip of plate glass. The wave 
field is observed directly or photographed by means of 
stroboscopic illumination, the wave crests acting as 
lenses to focus the transmitted light in a plane ata 
convenient height above the water surface. Refraction, 
interference and diffraction effects are produced with 
the help of obstacles made of glass or plastic." 

The ripple tank has proved its usefulness by facilitating 

the study of wave propagation. Its superiority over other methods 

of studying certain types of wave motion is seen by the fact that 

the actual progress of the water waves can be both directly 

observed and easily photographed. 

2. Experimental technique 

The ripple tank used in testing the models is an improvement 



over the one in which earlier refraction studies, for the Beach 

Erosion Board, were made (Pierson, 1950). 

The tank is made of durable plexi-glass and is mounted about 

three feet from the floor in a sturdy iron framework. Its di- 

mensions are: 4 feet long, 3 feet wide, 3 inches deep. Figure 1 

shows a photograph of the ripple tank. 

An improved audio-oscillator has been installed which is 

capable of generating frequencies from one-half cycles per second 

up to 8,000 cycles per second, and which controls a speaker magnet 

that causes a long cylindrical rod to vibrate at one end of the 

tank, producing parallel waves. It has been found that for the 

most part, a frequency of eight cycles per second is most effective 

in producing the desired results. 

In order to simulate wave motion in the ripple tank, we must 

make some adjustments in the medium of propagation. The velocity 

of a periodic wave of small but finite amplitude is given by 

Oa PS 2th ci = (4+ 5 = ean x C25) 

where A= wave length 

g = gravitational force 

ec = wave velocity 

= surface tension 

p = density 

a iT] depth 

Suppose a liquid to have no surface tension; then 

QT Te = 5 = (2.2) 



FIGURE |. PHOTOGRAPH OF THE RIPPLE TANK. 



and (2.1) reduces to 

o? = BA tann 2m (2.3) 

which is the equation for the velocity of any wave. Hence, if 

the surface tension can be reduced to such a magnitude that st = 

is so small compared to g/\/2r that it can be neglected, then 

the ripples would behave like waves. 

In order to obtain this situation, we have used Tergitol 

Wetting Agent 7 to reduce the surface tension to the level where 

(2.3) can be applied to a good degree of accuracy. The wetting 

agent causes the surface tension/density ratio to be reduced to 

about .317 times that of water, which, for our purpose, is suffi- 

cient. 

The photographic technique formerly employed, whereby the 

"Freezing" of the field by a strobolume enabled contact prints to 

be made, has been discarded in favor of direct camera photography. 

The advantages of this method are twofold: (1) it is not necessary 

to operate under conditions of absolute darkness, and (2) the 

whole wave field can be photographed. (In contact photography, 

only the portion of the field covered by the photo-sensitive 

paper can be "captured.") 

Instead of the strobe light used in earlier experiments, the 

point source of light is now furnished by the bulb of a common 

slide projector. The light is focussed by the wave crests ona 

screen of ground glass, at a suitable height above the water surface, 

so that the wave pattern is reflected as light and dark bands in 

the mirror mounted above the ground glass screen. A schematic 



Ground Glass 

Screen 

Wave Absorbers 

Oscillator : Point Source 
Mirror 

FIGURE 2. SCHEMATIC DIAGRAM OF THE RIPPLE 

TANK. 



diagram of the ripple tank is featured in figure 2. 

A Graphic-View camera was used in all the ripple tank 

studies. After a series of experiments, it was determined that 

an exposure of 1/100 seconds and an aperture opening of F4.5 

was best suited for freezing the motion. In processing the 

pictures, the wave crests appear as dark bands on the negative 

and as bright bands on the positive, or actual photograph. 

Chapter I. Discussion of the Equation of Wave Motion 

3. Fundamental concepts 

In a non-dispersive medium, that is, a medium in which the 

velocity of the waves is independent of the period, consider a 

disturbance y, which is propagated along the x-axis with a velo- 

city c. When t = 0, » is some function of x, f(x), which is the 

wave profile of the disturbance (p) plotted against x. At t = 0, 

the curve obtained will be » = f(x). If we suppose that the dis- 

turbance is propagated without change of shape, then at some 

later time, t, the curve will be identical with that at t = 0, 

except that the profile has moved a distance ct in the positive 

direction of the x-axis. If a new origin is taken at x = ct and 

if distances measured from this origin are called X, so that 

x = X + ct, then the equation of the wave profile referred to 

the new origin would be 

oO =O) (3.1) 

Referred to the fixed origin, this means that 

9 = f(x = ct) (3.2) 

This is the most general expression for a wave moving with 



constant velocity c, along positive direction x. If the wave is 

travelling in a negative direction, (3.2) becomes 

p= f(x + ct). (3.3) 

4. The equation of non-dispersive wave motion 

If the disturbance is constant over all points of a plane 

drawn perpendicular to the direction of propagation of a wave, 

it is called a plane wave, and the plane is called a wave front. 

The wave front moves perpendicular to itself with the velocity 

of propagation c. Let us consider a plane wave in two dimensions. 

If xsy = l:m is the direction of propagation, where 1 and m are 

the direction cosines of the normal to each wave front, then the 

equation of the wave front in two dimensions is 

lx + my = const, (4.1) 

so that at any moment t, » is constant for all x and y which 

Satisfy (4.1). It is clear then, that 

p = f(1x + my = ct) (4.2) 

is a function which fulfills all these requirements and therefore 

represents a plane wave travelling with velocity ec in the direction 

l:m. 

Since 1 and m are direction cosines, a= + m° = 1 and it can 

be verified that » satisfies the differential equation 

2 2 2 d“o9 _19 
pee eae (4.3) 



This is the two dimensional equation of non-dispersive wave 

motion and represents all types of wave motion in which the 

velocity is constant. The expressions (3.1), (3-2), (3.3) and 

(4.2) are all particular solutions of this equation. 

Since the equation of wave motion is linear, Py and Po are 

any two solutions of (4.3) and A,9, + Ao~5 is also a solution, 

A, and Ay being arbitrary constants. This illustrates the principle 

of superposition, which states that, when all the relevant equa- 

tions are linear, we may superpose any number of individual solu- 

tions to form new functions which are themselves solutions. 

In a dispersive medium, only periodic motions of one discrete 

period can be considered for simple problems. This is so, because 

the superposition of several different periods involves a change 

of shape of the wave form with the distance traveled. Therefore 

(4.3) is valid only when we assume constant depth and one constant 

period. 

Chapter 2. Refraction 

5. Bases of modern refraction theory 

Wave velocity is a function of depth (h) and period (T), that 

is 

e = c{h(x,y), 1). C5 .as) 

For this to hold in the known refraction problems which were 

tested in the ripple tank, it was necessary to maintain the period 

constant. 

In discontinuous, non-dispersive media, the general wave equation 

is satisfied, the wave equation for each medium taking the form 

10 



2 
a ace? (5.2) 

and 079 - a2 Ere ee 029 (5.3) 

where Cy is the velocity in medium I and Cy is the velocity in 

medium II. . 

However, if we are dealing with a medium of constantly vary- 

ing index of refraction, the velocity does not change abruptly, so 

that at every point, C = C(x,y), and the fundamental equation to 

be solved is 

(Cp), + (CP), = Ee (5.4) 

42rt/t If we assume that g is the real part of »'(x,y)e » then (5.4) 

becomes 

2 
(c*p'(x,y) J, + [Cp (x,y) ly + = 9! =0 (5.5) 

Equation (5.5) accounts for all solutions in which both the 

period of the motion is constant and the disturbance is sinusoidal 

as a function of time, at the source. 

It is worth noting that in the refraction problems that will 

be studied here, the refracting objects are all large compared with 

the wave length. 

6. Snell's law! 

The most elementary consideration in refraction problems is 

ale Berens E. H. (1908): Sound, (London, Macmillan and Co. Ltd.), pp. 
76-70. 

ala! 



that phenomenon which occurs at the plane surface separating two 

media of different indices of refraction. The treatment here is 

after Barton (1908), and was chosen because it follows most closely 

the method used by Huygens. 

In figure 3, AB is a line representing the transition plane 

between the two media. The velocity of the waves in the second 

medium has a constant ratio to the velocity of the waves in the 

first medium. If v is the velocity in medium I and v' is the velo- 

city in medium II, then we may say that 

2. = R (6.1) 

where R is a constant called the index of refraction. CA may be 

said to be the wave front at the time when A is incident upon the 

plane AB. If there were just one medium, the incident wave front 

would advance unimpeded to BG. But, since there is a second medium 

present in which the advance of the waves is retarded, some other 

place, NB, is reached instead of GB. If NB is to be obtained by 

Huygens' principle, choose some points H,H,H, on the wave front CA. 

Straight lines normal to the wave front cross the transition zone 

at K,K,K, and in the absence of a second medium would proceed to 

M,M,M on BG. Since there is a second medium, this is not the case. 

Upon reaching K, on the zone of transition, a spherical wavelet can 

be assumed to originate from K and this wavelet spreads into the 

second medium. At a time t, the radius of the wavelet is v't. Now, 

in order to obtain the refracted wave front NB it is necessary to: 

(1) describe from A an arc of radius AN, where 

12 



Figure 3. Refraction at a plane surface. 

-After Barton 

13 



AN:AG = v'sv, (6.2) 

and (2) at each point K describe an are with radius v'/v times 

the corresponding length KM. Therefore, the line NB is obtained 

as the new wave front after refraction and this is the envelope 

of the spherical wavelets originating at K,K,kK. 

The angles of incidence and refraction are seen from figure 3 

to be CAB and NBA, respectively, and they are located in the two 

right-angled triangles whose common hypotenuse is AB. Thus, by 

taking the sines of the angles, we have by construction 

sin CAB _ CB/AB _ v_ 
sin NBA ~ NA/AB ~ v" (6.3) 

or 

Sing i sv ee 
sin-r. vit R (6.4) 

where i and r denote the angles of incidence and refraction, 

respectively. 

Barton concludes, "This consequence of Huygens' principle 

that the ratio of the sines is constant, is seen to be in accord 

with the well-known optical laws of refraction. The same laws 

are valid for acoustics also." 

To illustrate Snell's law for ocean waves, we have constructed 

a rectangular plastic "step" model which when submerged in the 

ripple tank is one and one half inches from the bottom, in water 

one and three quarters inches deep. We may now say that for certain 

wave lengths part of the tank-contains shallow water and part of 

the tank contains deep water, the zone of transition being a straight 

line, in two dimensions. 

14 



Plane waves are generated in deep water and travel into 

shallow water crossing the zone of transition at a particular 

angle of incidence (fig. 4). Upon entering shallow water at 

normal incidence, the wave crests are not deflected, but it is 

observed that the wave length has decreased appreciably. The 

expression for the velocity of a plane wave in water of any depth 

is 

v =7 (6.5) 

where T is the period and L is the wave length. From (6.5), the 

velocity varies directly as the wave length. Therefore, as the 

wave length decreases upon entering shallow water, the velocity 

decreases proportionally, the period remaining constant. 

Measurement of the angles of incidence and refraction, and 

of the wave velocities in the deep and shallow water (by means of 

the wave length), will verify Snell's law, when these data are sub- 

stituted in (6.4). 

Another proof of Snell's law and a discussion of the behavior 

of the refracted and reflected waves has been given by Coulson 

(1943). 

Suppose that the ratio of the sine of the angle of incidence 

to the sine of the angle of refraction is less than one. Then the 

angle of refraction is greater than the angle of incidence. However, 

the limiting value of sin i and sin r is one, therefore when i = 90°, 

sin i = 1, and sin r must be greater than 1, to maintain the con- 

dition that sin i/fsin r<l. This, of course, is impossible. Since 

it is necessary that the ratio of the sines be constant in (6.4), 

failure to satisfy the condition above usually occurs at some angle 

a) 



Direction of Propagation 

Fig.4 Photograph illustrating SnellsS law. Waves 

enter shallow water from deep water after 

crossing abrupt transition zone. 
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of incidence less than 90°. This particular angle is called 

the critical angle and its value depends on the two media com- 

prising the system. When the critical angle has been passed, 

the incident wave, instead of refracting into the second mediun, 

rebounds into the first medium. This phenomenon is called total 

reflection and the angle which the reflected wave makes with the 

normal to the boundary of the two media is called the angle of 

reflection. 

We now have a whole new family of problems available for 

investigation and some of these will be studied in future sections. 

7. Refraction of light by a vertical glass cylinder® 

A geometrical optics solution has been obtained by Chin- 

mayanandum (1918) for the intensity of illumination along an 

internal ray for any angle of incidence, ©. Using monochromatic 

light of wave length 5.5 x 107? cm emanating from a horizontal 

collimator slit, and incident on a glass cylinder of radius 

0.0184 cm., Chinmayanandum made the photograph shown in figure 

5, and from the available data he constructed the diagram in 

figure 6. 

To study the analogous problem in the ripple tank, it was 

necessary to set a plastic disc in the water. The disc, 8 inches 

in diameter and 1 inch high, was submerged in the tank which was 

filled with water one and one-eighth inches deep. The photographic 

result is shown in figure 7 and the projection of the wave front 

after refraction is shown in figure 8. 
——= 

2. Chinmayanandum, T.K. (1918): Diffraction of light by an 
obliquely held cylinder. Physical Review, vol. 12, pp. 314-324. 
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Fig.5.Photograph showing refraction of light by d 

vertical glass cylinder. n ¢rer Chinmayandum 

18 



Fig.6. Projection of the wave front on the 

plane passing through the two caustics when the 

plane wave is incident normal to fhe glass cylinder. 

- After Chinmayanandum 



——$_—_——_————————> Direction of propagation 

Fig.7 Refraction of waves by a submerged level 

disc at constant depth. 

20 
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It will be noticed that the respective photographs and 

the figures constructed by 

Vv 

sini . 1 (7.2) 

where i and r are the angles of incidence and refraction, respect- 

ively, and Vi and v5 are the wave velocities in the two media, do 

not agree. This is due to the fact that it was not possible to 

get the water over the disc shallow enough for proper results. 

When the water was made shallow enough, the waves would dissi- 

pate as they passed over the disc. However, the picture taken 

(fig. 7) does show refraction by a submerged circular shoal. 

Figure 8 shows the appropriate ray-wave crest diagram for 

the two relative wave speeds involved, and it compares quite well 

with the actual photograph (fig. 7). If the depth were shallower, 

the rays would come to a focus inside the circle (Pierson, 1950). 

8. Atmospheric refraction of sound waves caused by a uniform 

temperature variation 

A practical application of refraction in the atmosphere is 

the deviation of sound waves from a straight path due to the variation 

of temperature with height. 

The velocity of sound in gases is given by the expression 

v= /2 (8.1) 

where p is the pressure of the gas, p is the density of the mediun, 

and y is the ratio of the specific heat of the gas at constant 

pressure to the specific heat at constant volume (y = 1.40 for air). 
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From the equation of state 

: = RT (8.2) 

where R is the gas constant and T is the absolute temperature, 

substitute (8.2) in (8.1). The result is 

= YN ae (8.3) 

Since “YR is constant, the velocity of sound in air is proportional 

to the square root of its absolute temperature. 

Suppose a sound wave is propagated upwards through an atmo- 

Sphere of continually decreasing temperature. Then the velocity 

will decrease proportionally and in a situation similar to that 

shown in figure 9, the sound waves will be refracted. 

Although air temperatures decrease with height there is 

nothing constant about the rate of decrease. On clear days, the 

temperature lapse rate during the day is greater than on cloudy 

days, but towards sunset the temperature becomes approximately 

constant. 

At a given place a number of lapse rates have been observed 

and statistically averaged. This average value for the lapse 

rate is known as the "normal lapse rate" and is approximately 

6°C per kilometer. 

The analogous model tested in the ripple tank was made in 

the form of a sloping uniform surface, the waves being propagated 

in the deeper water to simulate the hizher temperature at the 

ground where the sound waves were produced (fig. 10). 

As the waves proceed into the shallow water they are notice- 

ably refracted and at the portion of the model which is above water 

23 



Direction of 
Hep esOuen 

lh 
Fig9. Refraction of sound waves in fhe 

atmosphere due to a variation of temperature. 
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Direction of Propagation 

igs a Rie = wees 

aia ee ee 
Sige SHARE IRE me 

Fig!O. Photograph showing refraction of water 

waves by ao uniformly sloping beach. 
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level the wave crests are in a position nearly parallel to the 

tshore. 

_It must be kept in mind that the linear slope of the model 

is not necessarily in the same ratio as the normal lapse rate. 

However, this does not destroy the analogy. 

9. Reflection by a plane rigid surface? 

Suppose an incident sound wave is made to impinge normally 

on a plane surface which is absolutely unyielding with respect 

to the slight variations of atmospheric pressure due to the inci- 

dent wave. The wave, upon striking the "wall," will be unable to 

proceed in the line of propagation, and the wall will react as 

if it, and not the air, were vibrating with the given period and 

amplitude, resulting in a reflected wave along the line of 

direction. Hence, sound waves incident upon a plane rigid medium 

and light waves incident on a totally reflecting surface, are 

completely reflected, the incident and reflected waves having 

the same phase at the rigid boundary. 

The more general case, that of a plane harmonic wave incident 

obliquely on a rigid wall has been discussed mathematically 

(Rayleigh, 1945), with the assumption that the incident and reflect- 

ed waves have equal amplitudes and wave lengths. This being the 

case, everything will be the same in planes perpendicular to the 

lines of intersection of the two wave fronts, and therefore the 

problem may be considered as a two-dimensional one. Let the angle 

between the incident and reflected rays be 2a (fig. 11), and let 

the rays proceed with a velocity, a, in a direction perpendicular 

3. Rayleigh, Lord, (Strutt, J. W.), 1945: The Theory of Sound. 
New York, Dover Publication, Volume II, pp. 75-77. 
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to the wave fronts. As the reflected waves cross the incident 

waves, a pattern is set up consisting of equal parallelograms 

advancing in the direction of one set of diagonals. 

At the corners of each parallelogram, the two trains of waves 

are superposed giving maximum condensation, and likewise the cen- 

ter of each parallelogram is a point of maximum rarefaction. Hence, 

in each diagonal, there is a series of maxima and minima conden- 

sations advancing with a velocity a/cosa. There are parallel lines 

of zero condensation between each adjacent pair of lines in maxima 

and minima. 

Rayleigh says, "It is especially remarkable that, if the 

wave pattern were visible (like the corresponding water wave- 

pattern to which the whole of the preceding argument is appli- 

cable), it would appear to move forward without change of type 

in a direction different from that of either component train, 

and with a velocity different from that with which both component 

trains move." This phenomenon has been observed in the N.Y.U. 

ripple tank and a photograph showing one of the stages is pre- 

sented here (fig. 12). If the conditions were the same as shown 

in figure 11, the wave pattern would appear to move in the direction 

of the arrow, that is, in the positive x direction. 

Since the angle between the incident and reflected rays is 

2a, the angle between either ray and the normal to the reflecting 

plane is a. Then, the condensations may be written as 

cos = (at - x cosa = y sina) (9.1) 

where A is the wave length, and 
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cos aa (at - x cosa + y sina) (9.2) 

respectively, and the expression for the resultant is 

s = cos = (at - x cosa - y sina) + cos = (at - x cosa + y sina) 

= 2 cos 22 (at - x cos a) cos a (y sin a) (9.3) A Ou : 

Since the expression on the right side of (9.3) is an even 

function of y, s is symmetrical with respect to the x-axis, so 

that there is no motion across that axis. Under these conditions, 

a rigid wall placed along the x-axis would in no way impede the 

motion. Therefore, the resultant ray (s) satisfies the boundary 

condition that there be no motion across the x-axis. 

From the expression (9.3) it is seen that the resultant wave 

(s) on the xy plane advances parallel to the x-axis unchanged in 

type and with a constant velocity a/cosa. 

If, of course, a = dn which is the case for normal incidence, 

then (9.3) reduces to 

pe QT Pais s = 2 cos (Fy at) cos (FV yo. (9.4) 

and we have standing waves. 

10. Reflection at an air interface’ 

Let two adjacent air masses, I and II be separated by the 

boundary M. If they have the same pressure, but different densities 

due to differences in temperature and/or humidity, then a wave pro- 

ceeding from air mass I to air mass II will undergo a change in 

4, Humphreys, W. J. (1929): Physics of the Air. Second edition, 
McGraw-Hill Book Company, Inc., New York and London. pp. 407-410. 
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velocity. If also it is assumed that none of the energy of the 

incident wave is dissipated, then it may be concluded that the 

energy is contained in the refracted and reflected waves. Since 

the laws for reflection and refraction are the same for both 

light waves and sound waves, we will discuss the general case 

of a wave incident at the air interface described above. 

Consider the incident, reflected and refracted waves as 

shown in figure 13. Let the amplitudes of these waves be a, b 

and c respectively; let the wave velocity in medium I be v and in 

medium II, v's; and let the densities of the respective media be 

p and p'. Now,since the energy of the incident wave is divided 

between the reflected and refracted waves without loss, and 

since, in each case, it can be shown that the energy of the wave 

is proportional to the volume affected and to the squares of the 

respective amplitudes, then the energy may be expressed as 

a= 2 pay ecOser 
Voseu= Vala *.¥ (p'C Sao (105.1) 

where i and r are the angles of incidence and refraction, re- 

spectively. From Snell's law, we know that 

abal al 
aa = Th lo (10.2) 

hence (10.1) becomes 

MS - b-)sin 2ie= o'c-sin ors C1053) 

As previously seen 

Y, 
Po wee Saeed 
p vi San 

Sil 



Fig.13. Incident(x), reflected (y),and 

refrdcted(z)rays at an air 

interface. 



therefore, (10.3) becomes 

a” - b* = o“tan i cot r. (10.4) 

If there is no slipping between the media, then the 

algebraic sum of the amplitudes of the incident wave and the 

reflected wave equals the amplitude of the refracted wave, or 

atbe=c (10.5) 

Substituting (10.5) in (10.4), it is seen that 

a-b=ctanicotr, (10.6) 

so that 

b = (10.7) 

and 

ars 28005 5218 PS 2a_cos i (10.8) 
ease 

(e) cos r + cos i 

Suppose a sound wave impinges normally on a cloud in which 

the density of the air at the same pressure is 1% less, (a possible 

ratio owing to differences in temperature and humidity), the 

energies in the incident, reflected and refracted waves will be 

to each other as the ratios 

2 2 vpa:vpb-:v'p'ce~ = 160,00021:159,999. (10.9) 

If therefore, the angle of incidence is made larger and gradually 

approaches 90°, then the reflection becomes greater, but is still 

small for any angle up to 90°. 
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To show this phenomenon in the ripple tank, we have taken 

the boundary M to be a plane in three dimensions (reducing to a 

line in two dimensions), the waves impinging on it at increasing 

angles of incidence. The model used here (step model) is the 

same as the one used in section 6 to illustrate Snell's law. 

When the angle of incidence is 0° then the refracted waves are 

parallel to the incident waves and the change in velocity mani- 

fests itself as a change in wave length (in the refracting medium). 

When the angle of incidence is increased, reflection is ob- 

served at the boundary and it is seen that the crests of the re- 

fracted waves are fainter than the crests of the incident waves, 

indicating that the energy which would have gone into the second 

medium if there had been no discontinuity, is now contained in 

the reflected waves (figure 14). The greater the angle of 

incidence, the greater the reflection. 

11. The phenomenon of total reflection? 

Suppose that the second medium is not unyielding to the inci- 

dent wave front and that total reflection is accomplished by merely 

reaching and passing the critical angle. It is of interest to 

investigate what happens to the "superficial" wave in the second 

medium. 

Christian Huygens showed that the absence of a refracted wave 

and the increased intensity of reflection for angles of incidence 

exceeding the critical angle follow from his principle as simple 

consequences. Therefore, from the standpoint of wave theory, 

Huygens! principle is the natural starting point for the study of 

5. Raman, C.V. (1927): Huygens' principle and the phenomenon of b] 

total reflection, Optical Society of London, Transactions, 
vol. 28, ppe 149-160. 
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Direction of | Propagation 

Fig.14 Photograph showing incident, refracted, 
and reflected waves at the boundary of 
the step model. 
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total reflection. 

The usual treatment given the problem of total reflection 

is based on the formulae obtained by Fresnel. It is necessary 

that proper mathematical interpretation be given the angle of 

refraction, which becomes imaginary when the angle of incidence 

exceeds the critical angle. The method of approach adopted by 

Raman (1927) is shown in figure 15. Suppose the plane of the 

paper is the plane of incidence (xz plane), and the origin of 

coordinates 0 is taken to be on the surface at which total re- 

flection occurs (xy plane). According to Huygens' principle, 

the disturbance in the second medium at a point P (coordinates 

X,z) may be regarded as the superposition of an infinite number 

of wavelets radiated from elements of the bounding surface and 

the disturbance is determined by evaluating the integral which 

expresses the result of such superposition. 

If a train of light waves (or sound waves) of period T is 

incident on the boundary between two media, where the velocities 

of light (or sound) are respectively Vy and Voy the refractive 

index of the second medium relative to the first medium is pro- 

portional to the wave velocities in the two media (ViNV>), and 

is called zw. The disturbance in the first medium due to the 

incident waves is expressed as 

= 2nt om isindstez.cose)) 1 

where © is the angle of incidence, t is the time, A is the ampli- 

tude of the incident wave and 1/2 6 is the phase difference 

between the disturbance incident on any element of surface and 

the secondary wavelet starting out from it. 
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It is found that the disturbance in the second medium has 

the form 

2 
or sin'6 _ 1 

7 IV, fe s ar ,;t - x sind 
2 =— On Ace cos “Tr ( tA V5 ). (112.2) 

It is seen from (11.2) that the superficial wave has an 

amplitude oA at the surface along the x-axis, which decreases 

exponentially with z. Furthermore, the energy of the superficial 

wave is propagated parallel to the surface along the x-axis, thus 

the energy-flux across any element of area of the surface must 

be zero. Since there is no energy-flux across the boundary, it 

follows that the amplitudes of the incident and reflected waves 

must be equal. Hence, we have total reflection. 

If a rigid plane is placed at the boundary between the two 

media then the phenomenon which occurs is the same as demonstrated 

in figure 16. 

That this is the case can be seen by placing a plane strip 

of plastic at the boundary of the step model in an earlier experi- 

ment. If the strip of plastic extends above the water, then we 

have the case of total reflection by a rigid plane (figure 17). 

Comparison of figure 17 with figure 16 bears out the theory 

already discussed, although in figure 16, there is some leakage 

of energy across the boundary, due to a poor deep water to shallow 

water ratio. 

The laws of reflection which are valid for light waves and 

sound waves have now been shown by theory and experimentation 

(sections 9, 10, and 11), to hold also for water waves, and so 
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Direction of Propagation 

Photograph showing total reflection of 

water waves af the boundary of the step 

model. 
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Direction of Propagation 

Fig. 17 Photograph showing an infinite screen(jetty) 
placed at the zone of transition between 

deep and shallow water. 



in concluding this chapter, we will write them here. 

(1) The normal to any point on the reflecting surface, 

and the directions of both the incident wave front and the 

reflected wave front at that point all lie in the 

Same common plane. 

(2) If the reflecting surface is of such a nature that 

its every diameter is large compared with the wave 

length, then the reflection is said to be regular, 

i.e., the angle of reflection is equal to the angle 

of incidence. 

(3) Surfaces whose diameters are smaller than the wave 

length do not regularly reflect the sound waves, but 

merely scatter or diffuse them. 

Chapter 3. Diffraction 

12. Beginning of modern diffraction theory 

In accordance with geometrical optics, rays of light are 

straight lines wherever the index of refraction is constant. 

With this observation in mind, it was thought that light which 

emanates from a point source a great distance from an opaque 

screen should give a sharply defined shadow, which is called the 

geometrical shadow. Actually, it is observed that the light is 

propagated up to the screen as if the screen were absent, but 

once beyond the screen, light enters the geometrical shadow. 

This phenomenon which violates the laws of geometrical optics 

is known as diffraction. 

Christian Huygens was the first pioneer in diffraction and 

those that followed him used his principle as a springbroad to 
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more complex theory. It was Fresnel who first discovered the 

real cause of diffraction. In order to obtain satisfactory 

solutions, Fresnel had to make somewhat arbitrary assumptions 

on the nature of the secondary waves. Most of the difficulties 

of Fresnel's theory were overcome by Kirchhoff, who used Helmholtz's 

formulation of Huygens' principle for monochromatic phenomena. 

13. Diffraction of light by a black half-plane® 

The first type of diffraction problem to be considered is one 

in which plane monochromatic light is incident on a black screen 

of infinite extent and bounded by a straight edge (figure 18). 

For the portion of the y-axis covered by the screen (S), a 

physical optics solution has been obtained in the form 

foe) 
See ikp cosh7 -iket sing 

ULE Sos 4ar 2 cosh7 + cos@p aT” (13.1) 
-0 

U = wave profile 

K = constant 

p = distance from the edge of the screen 

/ = variable of integration 

c = velocity of light 

t = time. 

This expression holds only when P, the point of observation, is 

in the geometrical shadow. If it isn't, the additional term 

&U(P), which is the wave function according to geometrical optics, 

must be added to (13.1), where & = 0 or 1 depending on whether 

P is or is not in the geometrical shadow. If we write the expression 

6. Baker, B. B. and E.T. Copson, 1950: Mathematical Theory of 
Huygens' Principle, Oxford at the Clarendon Press, pp. 
84-92. : 
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the plane waves 
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(at infinity) 

Fig.18 - Diffraction of plane monochromatic 

light by a black half plane. 
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&U(P) as u and call the right hand side of (13.1) vw (the 

effect of diffraction), the solution may be written 

Ue=ur ou (13.52) 

In the geometrical shadow, U = u’, so that the intensity 

of illumination is measured by 

fo] 2 =| uP] 2 ~ gobs tan® dp (13.3) 

when p is large compared with the wave length. The intensity of 

the incident light having measure unity, the illumination in the 

geometrical shadow is very feeble, but there is nowhere absolute 

darkness since tan@ S09 never is actually zero in the shadow. 

According to (13.1), when p is very large compared with the wave 

length, the diffracted wave is a non-isotropic cylindrical wave 

propagated outwards from the edge of the screen. Diffraction by 

a black half plane is actually an edge effect, because neither 

w nor vw depends on the angle of incidence and so U is the same 

for all black screens having the same edge and the same shadow. 

The model tested in the ripvle tank is a simple arrangement 

consisting of a vertical strip of plastic bounded by a straight 

edge and supnorted in such a manner that it protrudes above the 

surface of the water, the plane of the strip being normal to the 

surface. The depth of the water is constant everywhere so that 

the wave front is only affected by the "wall" and the bounding 

straight edge. 

As was mentioned before, there is nowhere absolute darkness 

in the geometrical shadow, since tan® 49 is never zero there (13.3). 

This phenomenon may be seen in the prepared photographs (fig. 19). 
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That this particular case of diffraction is purely an edge 

effect can also be seen from the two views, in which different 

angles of incidence were used. 

The analogous problem, that of diffraction of sound waves 

by a semi-infinite screen, has been studied by many investi- 

gators. Although a somewhat different approach was used by 

Lamb (1906), his results were the same, because it was shown 

(Friedlander, 1946) that although the solution differed in form 

from the one obtained by Baker and Copson (1950), the two solutions 

are related by a suitable transformation. It has further been 

shown (Sivian and O'Neill, 1931-1932) by means of the solution 

obtained by Lamb, that essentially the same situation holds for 

any angle of incidence for which the plane of the wave front is 

parallel to the edge of the screen. This means that diffraction 

by a straight edge is an edge effect, which is in complete agree- 

ment with Baker and Copson and with our ripple tank investigation 

(fig. 19). 

14. Diffraction by an infinite slit’ 

"Partially opened doors and windows in a house or’ 
other building afford apertures which may be small 
compared with the wave length of many common sounds. 
Thus the openings may be a few inches wide, and the 
wave length of the speaking voice of a man may be 
eight feet or more. Hence such sounds spread in all 
directions beyond those openings, as is well known, 
instead of vroceeding as straight lines and giving 
sharp sound 'shadows' as in the case of light through 
the same opening." 

Barton. 

Consider the incidence of a wave upon an infinite slit 

of very small width compared with the wave length. If the slit 

7. Drude, P. K. L. (1922): Theory of Optics. Longmans, Green 
and Co., pp. 198-20. Translated by C. Riborg Mann and 
Re A. Millikan. 

46 



is parallel to the z-axis and the incident light travels in the 

xy plane, then the slit itself may be regarded as a single point 

on the incident wave front, and according to Huygens! principle, 

the slit becomes the origin of a spherical wavelet, and the only 

source of wave activity beyond the slit (fig. 20). 

In the case of a plane wave front which advances along 

parallel lines, the wave front upon passing through the slit be- 

comes spherical and the direction along which it advances becomes 

radial, and therefore diverging. 

In the subject of physical optics, many such phenomena due to 

the spreading of light waves which pass through small apertures 

are known and are studied under the general name of diffraction. 

In all such cases, the openings in question bear about the same 

relation to the wave length of light as the openings in the analo- 

gous acoustical phenomena bear to the wave length of sound. 

Consider the emitted light to be lying in a plane which passes 

through the source Q and is perpendicular to the edges of a slit. 

This plane is the xz plane (fig. 21). Let the x coordinates of 

the slit be Xy and X5- If the point P,» where the intensity is 

to be calculated, is in the geometrical shadow of one of the 

screens which bounds the slit on either side, then Xy and xX, are 

both positive or both negative. But if the line connecting Q with 

Fi passes through the open slit, then the signs of Xy and X5 are 

opposite. 

The intensity of illumination (J) at some point P, a distance 

Po from the plane of the slit was calculated and is given by the 

expression 

A? 



Arrows indicate 

direction of 

Propagation 

) 
oe 

Fig. 20. Diffraction by an infinite slit (sound). 
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P, 6d 

Figure 21 - Diffraction by an infinite slit 

-After Drude 
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Ac 
2 

ay = Pe et Oe (v Vv ) eeeoe (14.1) 2(p, 3 p,) 12°20" > 

where 

A = amplitude 

PoP, = distances shown in figure 21 

V19Vo = values corresponding to the limits of 

integration Xj and X5- 

In order to investigate the distribution of light ina 

plane which lies a distance, b, behind the screen, it is necessary 

to take the width of the slit into account. In the case where 

the width of the slit is mall compared to the wave length, the 

geometrical shadow cannot be even approximately located, for 

the light is distributed almost evenly over a large region and 

there is nowhere a sharp shadow formed. In the case where the 

width of the slit is large compared with the wave length, the 

effect will be simple diffraction at each of the edges. 

In the entrance to harbors or bays, breakwater gaps are fre- 

quently encountered which are physically analogous to the problem 

just discussed. In order to study the effect of ocean waves on 

the breakwater gap (finite slit), two strips of plastic, bounded 

by straight edges, were placed in the ripple tank so that they 

were alined in the same plane. The distance between the two 

edges was then varied and the phenomenon observed and photographed. 

It has been found (Penney and Price, 1944) that in the case 

of the breakwater gap, the wave pattern is essentially the same 

whether the barrier is cushioned or rigid. Therefore our rigid 
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barrier will suffice to demonstrate diffraction effects behind 

the breakwater gap. 

When the gap width is less than the wave length, the gap 

acts as the source of a spherical wavelet and the diffracted 

waves spread into the geometrical shadow, even though very faint- 

ly (figure 22). Upon increasing the gap width, the diffracted 

waves also extend far into the geometrical shadow, and the effect 

of diffraction is greater than before, since more energy is 

admitted by the breakwater gap (fig. 23). However, when the gap 

is made very large compared with the wave length, the phenomenon 

becomes an edge effect, so that the part of the wave passing 

through the center of the gap progresses without being disturbed 

for a very great distance (fig. 24). 

15. Diffraction of light by two noncoplanar parallel straight 

edges® 

Heirtzler (1949) used the Kirchoff diffraction formula to 

determine the intensity of illumination as a function of distance 

along some plane of observation, for the case of diffraction by 

two noncoplanar parallel straight edges. The method is essentially 

the same as that employed by Drude (1922) in the case of a slit. 

It is seen from figure 25 that the opening lies between the 

source Q and the point of observation P. The projection of the 

line QP on the xz plane coincides with the x-axis and Q'; the 

projection of Q on the xy plane is located midway between the 

two edges which have coordinates x' and x", The expression for 

the intensity of illumination is then found to be 

8. Heirtzler, J. R., 1949: Diffraction by two noncoplanar 
parallel straight edges, American Journal of Physics, 
Veo 1/5106! 75 PDs 419-432, 
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Direction of Propagation 

Photograph showing diffraction by a 
breakwater. The width of the gap is 
small compared with the wave length. 
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Direction of Propagation 

Photograph showing diffraction by a 

breakwater gap. The gap is large compared 

with the wave length. 

53 



Direction of Propagation 

Fig.24. Photograph showing diffraction by a 

breakwater gap. The width of the gap 

is very large compared to the wave 

length. 
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Fig. 25. Arrangement of source, straight 

edges and plane of observation. 

-After Heirtzler 
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v' 

2 2 2 

i= ——— g: cos Se av ) + (/ sin ev) (15:0) 
2] 2 2 

2( Po ¥ Py) v' 

where A is a constant, and 

1/2 
v x' cosp [FF oD * p1)) E (15.2) 

1/2 2 1 al. ee ae a E 15. v x" cosp iS Go + o>) (15.3) 

where )\ is the wave length of light and 

E = ali - tang (15.4) 

The significance of the symbols Por Py» d and 6 is evident 

from figure 25, and » is the angle that Py makes with the z-axis. 

Note that the equations (15.1), (15.2) and (15.3) are the 

same as those used by Drude (1922) except for the factor E in 

equations (15.2) and (15.3). As d approaches zero, the factor E 

approaches l. 

Heirtzler obtained a geometrical optics solution for the 

intensity of illumination along a plane of observation (15.2) and 

made several graphs of J(intensity of illumination) against 

D(the distance from the observer to the point on the normal to 

the plane of observation through the source). 

When d = 0, that is the straight edges lie in the same 

plane, it is seen from Heitzler's graph (fig. 26) that the theo- 

retical diffraction pattern is symmetrical. This agrees with 

several photographs which have just been shown (figs. 22, 23, 24). 

As d is made larger, it is seen that the theoretical diffraction 

curves become more and more dissymmetrical (figs. 27, 28). By 
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Direction of Propagation 

Fig.29. Photograph showing increase in 

dissymmetry of the diffraction pattern 
as d is increased. 
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Direction of Propagation 

RR i nt 

Fig,30 Photograph showing increase in 

dissymmetry of the diffraction pattern 

as d is increased still further. 
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moving one side of the breakwater gap system in the ripple tank, 

results were achieved (figs. 29, 30) which bear out the theoreti- 

cal computations. 

if 

Resume and conclusions 

Several relatively simple problems in refraction and dif- 

fraction have been covered by this paper. The reason for the 

relative simplicity of these problems is the very nature of 

the ripple tank itself, which has already been discussed. 

The formulation of the method of solution of problems in 

refraction of ocean waves by complex bottom topography has been 

presented by Eckart (1951), but actual formal solutions have not 

yet been found. 

Also of great interest is the theoretical work which has 

been done in wave motion involving superposition of periods 

(Pierson, 1951). Since the ripple tank is now only capable of 

producing waves of one discrete period, it has been necessary 

to forego discussion of these problems. 

However small the scope of this paper, it has been shown 

that problems in the refraction and diffraction of light waves 

and sound waves are analogous to problems in the refraction 

and diffraction of water waves. The analogy has provided a means 

for testing theoretical results and a way to observe waves in 

motion. 

A more exhaustive search of the literature would undoubtedly 

yield many more solutions to problems in wave propagation. A 

catalogue of these problems would make a useful reference for 
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studies in ocean wave refraction and diffraction. Quantitative 

tests of the solutions to these problems, made in a test basin, 

such as the coast model test basin of the Beach Erosion Board 

(1949), would yield much useful information. 
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