THE

SYSTEMATIC POSITION
 of the
 ORTHOPTERA
 IN RELATION TO OTHER ORDETHO OF INSECTS.
 BY

A. S. PACKARD, JR., M. D.
[Extracted from the Third Report of the United States Entomological Commission.] 1883.

AUTHOR'S EDITION

'THE
 SYSTEMATIC POSITION
 OF THF:
 ORTHOPTERA
 IN JELATION 'IO OTHER ORIDERS OF INSEOTS.

13Y
A. S. PA(KARI), TR., M. D.
[Fxtracted from the 'lhird Report of the ['nited States Entomological ('ommissime]
1883.

MANN SPEC
COLL

QL
506
P17
1883
fourth (labial) segment is quite separate from the rest of the heal. Fig. 11 (in text), copied from our Memoir, also shows in a saw tly larva (Nemutus ventricosus) the relations of the labial or fourth segment to the rest of the head. The suture between the labial segment and the pre-oral part of the head disappears in adult life. From this sketch it woukd seem that the back part of the head, i.e., of the epicranium, may be made upin part of the tergite or pleurites of the mandibular segment, since the
 mandibular museles are inserted on the roof of the

Fig. 11.-ITeal of embrro Nematus, showiug the labial segment, occ, forming the occihead behind the ejes. It is this segment which put; cl, clypeus; $t b_{\text {, }}$ labum: in Corydalis evidently forms the occiput, alld of same; mx, maxilla; mx', od which in most other insects there is no trace in gus. larval or adult life.

It appears, then, that the epicranium, or that piece (sclerite) bearing the eyes, ocelli, and antenuæ, and in front the clypens and labrum, is formed from the original procephalic lobes, and represents the first or antenual segment, and is pleural, the clypeus and labrum being the tergal portion of the segment; while the remainder of the original or primitive segments are obsolete, except in those insects which retain traces of an occiput or fourth cephalie tergite. All of the gular region of the head probably represents the base of the primitive second maxillæ.

CHAPTER XI.

TIE SYSTEMATIO POSITION OF THE ORTHOPTERA IN RELATION TO OTHER ORDERS OF INSECTS.

It may not be out of plaec, considering the amount of space given in the reports of the Commission to matters of a practical nature, and also taking into acconnt the fact that these reports are widely sent to entomologists, as well as to farmers and planters, to give the sciontific reader a brief slicteh or abstract of the results of an examination of the external anatomy of the Orthoptera in general, of which the locnst is a typc. This we have attempted to do, but in undertaking this task we have been lad perforee to examine those insects allied to the Orthoptera, i. e., the Psetdonenroptcra and Neuroptera. This has led us to review the characteristics of the four lowest orders of winged inseets. The results of this review we here present for the consideration of zoologists. It is believed that so detailed a surrey of the external anatomy, especially of the thorix, of so many forms lias not been made before, although much more thorongh and exliaustive studics on a few insects hare been made by Audounn, MacLeay, Newport, Strauss-Durckheim, Manmond, and others. The results liave lad ns to quite different conelusions respecting the classification of the Neuro ptera and Orthoptera, as originally limited by Linnæus, from those which we have heretofore held. Our work is bascd on the rescarehes of Audouin, MacLoay, and Newport, and the terms here used will be fonnd explained in their original works, as well as in the author's "Guide to the Study of Insects." The reader is also referred to our account of the external auatomy of the locust in the Second licport of this Commission.

Any one who lias examined a cock roach and a white ant, and scen how closcly they resemble caeh other, must have felt that so far from representing two distinct orders, they appear rather to be types of two allied families of the same ordcr. Again, while the larval cockroach or larval Forficula closely resemble the Thysanurous Lepisma, on the other hand a larval Perla also nearly approxinates to a Lepisma. The explanation of these facts is to be songht in the probable gencalogieal listory of the Orthoptera, which, with the Pseudonemroptera and Dermatoptera, are evidently descendants from an ancestral form liko Lepisina, their larra closely resembling this Thysanuran. We hare therefore indicated in this ehapter the probable lines of descent from the primitive hypothetical Thysanuran.

In making these studics we have, in order to be unbiased, disregarded the works of others, and gone over the field anew, as if nothing
had been done upon this subject. We have examined the fundamentà elaracters of the head, thorax, and abdomen, points uegleeted by most systematie writers, not spending much time on the peripheral, i. e., the superficial adaptive characters of the mouth-parts, wings, and legs, which have been elaborated by systematie entomologists; believing that by this method perhaps more thorough and better grounderl views might result. The outcome has been to lead us to separate the Nenroptera, as defined farther on, from the Psendoueuroptera, and to regard these two groups, with the Orthoptera and Dermatoptera, as four orders of a category which may be regarded as a superorder, for which the name 1 'hyloptera is proposed, as these four orders are probably closely allied to, if not in some eases identical with, the stem or ancestral groups from whieh probably all the higher orders-the Hemiptera, Coleoptera, Diptera, Lepidoptera, and Hymenoptera-have originated.

We will first briefly summarize the charaeters as we understand them of the Phyloptera as a whole; then the distingnishing marks of the four orders, then briefly diseuss their probable genealogy, closing with a more extended though very condensed aecount of the essential peeuliarities of structure of the families, as represeuted by one or more of the typical genera.

Superorder PHYLOPTERA. ${ }^{137}$

The month-parts are free, adapted invariably for biting; the mandibles being toothed and adapted for chewing; the first maxilfre separate, with three divisions, the outer bearing usually five-jointed palpi; the second maxillæ mited to form a labiun, divided into a submentum, mentm, and ligula, the latter varying mnch, being either eleft (Pseudoneuroptera) or entire (Neuroptera), and bearing usually a three-jointed palpus. This is the primitive, olementary condition of the month-parts, and such as obtains in Coleopterons larro. The head is notable from the great development of the epieranium. The elypeus is often divided into two portions, a posterior (post-clypens) and anterior (ante-clypeus); in the other and higher orders the elypens is entire.
The prothorax is usnally very large and square, but in a few families, as the Phrygaueid:e, Panorpida, Psoeidm, Libelhulidæ, and Ephe. meridæ, it is small and collar-like. There is a marked equality in size and form of the meso- and metathorax ; in most Orthoptera and some Pseudoneuroptera and Nemroptera the metathorax is often even larger than the mesothoras; in this respect the Phyloptera differ from any of the higher Hexapoda. In both of the two hinder segments of the thorax tho four tergal selerites, viz: the prascutum, scutum, sentellum, and postsentellum, are each well developed, aud more equably so than in the higher orders. The seutum is deeply excavated in front to receive the often large subtriangular or cordate preseutum; and in some genera
the scutum is, so to speak, eleft in two by the meeting of the prosentum and sentellum in the median line. The flanks of the thorax, or pleurites, are often very large, and the episternum and epimerum are broad, oblong, or squarish, and these sclerites are sometimes subdivided into an upper and lower division (supra- and infra- epimerum or episteruum). The steruum is often large, flat, and broad; it is sometimes divided into a sternum and presternum.

The wings are usually net-veined, often with numerous longitudinal veins, the branches of the subcostal, median, and submedian veins being either very long and parallel with the longitudinal axis of the wing; or numerons and sinall (especially in the hind wings of Orthoptera).

The hind wings are often (Orthoptera and O. onata) broader and larger than the anterior pair, the metathorax in such eases being a little larger than the mesothorax.

The abdomen has in this group, ineluding representatives of the Neuroptera, Orthoptera, Dermatoptera and Psendonenroptera, besides a tenth, nearly eomplete segment, the rudiments of an eleventluromere, ${ }^{138}$ represented by a tergite forming the supra-anal triangular plate. Well developed jointed cercopoda oceur in the Orthoptera and Psendoneuroptera, while the foreeps of Forfienla (Dermatoptera) are undoubtedly modified cercopoda. All ovipositor oecurs in the Neuroptera (Panorpidx) and Orthoptera.

The metamorphosis is incomplete in all the orters of Phyloptera except the more recent and higher order, i.e., the Neuroptera (in Erichson's sense), in which the transformations are complete, the pupa being quiescent and wholly unlike the larva.

The relative standing of the four orders of phyloptera is shown in the table or genealogical tree of the winged insects on page 295.

The sequenee of the orders, suel as we are compelled to adopt in writing or speaking of them, is difficult to decide upon. Beginning with what on the whole may be regarded as the lowest order, we might first take up the Dermatoptera, whiel are in most respects the most generalized forms, and stand nearest to the Thysanura (Japyx).

[^0]The following is the succession of orders, placing the lowest uppermost:

Dermatoptcra Burm.
Orthoptera Lim.
Psendoncuroptera Erichson.
Nearoptera Linn., restricted by Erichson.
Betore disenssing the relative standing of these orders, we will briefly indicite the more salient and generally applicable differential characters, especially what we regard as the more fundamental ones, but slightly touching upon the mouth-purts aud wings, these being peripheral and more adaptive characters and liable to greatest variation, and being of less value in characterizing the orders of Phyloptera.

Order 1. DErmatoptera.

Forficnla presents so many features separating it from the Orthoptere, and is so composite a form, that it should be regarded as the type of a distinct order, in which it was originally placed by Leach, Kirby, Burmeister, and Westwood. Its composite nature is seen both in the elytra and the hind wiugs, which anticipate the Coleopterous type of wings. On the other hand the larva resembles Japyx, the Thysanurim, with its anal forceps, and in most respects Forficula is the lowest, most deeided stem-form of the Phyloptera.

The Dermatoptera are characterized by the flatness of the body, and the large terminal forceps. The head is flat, horizontal in position, while the presence of the V-shaped epicranial suture is a sign of inferiority, as it is characteristic of Thysannra and Platypteran harve as well as Coleopterons larva. The remarkable thoracic structure, which is deseribed farther on, as well as the emrions overlapping of the abdominal tergites, forbid our uniting the Dermatoptera with the Orthoptera. The small, short elytra, and the sery large, rounded, longitudinally and once cross-folded hind wings, which remiud us rather of the Coleoptera than Orthoptera, are also important diagnostie foatures. Finally, tho metamorphosis of the Dermatoptera is even less complete than that of the Orthopteral.
The lignla (PI. XXIII, Fig. 6) is bifid, being divided into a pair of twojointed paraglosse. The labiom is' thus similar to that of the Orthoptera, thongh scarcely more like them than like Termes.

Order 2. ORTHOptera.

The head is more or less vertical in position; the front is very large, broad, and long, the epicranial region very large and often hypertrophicd. The elypens is large and subdivided as in l'sendonenroptera. In the Othopterat, as a rule, the decply-clett lignla is indistinetly four lobed, the onter pair of paraglossæ very well deveioped, while the innẹ pair is minnte or undeveloped, as in the Acrydii, especially Caloptenus; 19 e c
but in the Locustarix the ligula is four-lobed, and in the Gryllidxo decidedly so. In the Mantidre and Blattario the ligula is plainly fourlobed, nearly as much so as in the Termitidæ. In the Phasmidm the ligula is intermediate in form between the Mantida and Locustarix.

The prothorax is usually remarkably large, particnarly the notum. The meso- and metanotum exactly repeat each other, and the metanotum is usually (Acrydii and Locustarix) longer and larger than the mesonotum, the hind wings being almost uniformly much larger than the anterior pair. The plenrites are very large and square as well as high, the episterna and epimera being large and oblong and equally developed. The sternites are very large and broad. The coxæ are sometimes (Blatta) very large; the hind legs in the Acrydii are much larger than the anterior pairs. The fore wings are narrower than the hinder pair, and show a slight tendency to become subelytriform; on the other hand the hind wings are very large and broad, distinetly net-veined, with nuıerous longitudinal veins, and they fold up longitudinally.

The abdomen has eleren uromeres, the eleventh forming a triangular tergite. The cercopoda are often (Blatta, Mantis, \&c.) multi-articulato and well developed, while the ovipositor is often large and perfect. The metamorphosis is more incomplete than in the Pseudoneuroptera.

With the exclusion of the Forficularia, tho Orthoptera, as here restricted, are a tolerably woll circuinscribed group; and though there are great structural differences betwecu the families, yet the connection or sequence of the families from the Blattaria through the Phasmida and Mantide and Acrydii to the Locustariæ, and, Gually, the highest family, the Gryllidæ, is one which can be distinctly perceived. There is no occasion for a subdivision of the order into groups higher than families, as the Blattarix are but a family removed from the Mantidæ.

Order 3. PSEUDONEUROPTERA Erichson.

It is difficult, if not impossible, to satisfactorily characterize by a sharp-cut definition this very elastic order. As regards the thorax, there is no uniformity in the structure that we have bcen able to discover, nor is there in the structure of the wings, nor more than a general resemblance in the month-parts.

The definition of the Pseudoneuroptera in Hagen's Synopsis of the Neuroptera of North Ancrica, as given in the analytical table, which is stated in is foot-note to have bcen prepared at the request of the Sinithsonian Institution by Baron Osten Sacken, gives no fundamental characters based on a study of the trunk. Those mentioned are what wo have called peripheral characters, i. e., those drawn from the mouth-parts, wings, and appendages. So far as we know, no satisfactory definition of the Psoudonemroptera has ever been given. In Hagen's Synopsis, among the other superficial characters given, are these: "Lower lip mostly cleft"; "antenna cither subulate and thin, the tarsi three- to five- articulate; or setiform, or filiform, in which case the tarsi are two- to four- articulate."

These eharaeters, though superfieial, are the most important yet prosented, perhaps (disregarding the metanorphosis), for separating the Pseudoueuroptera from the genuine Neuroptera. But the eleft labium is also to be found in Orthoptera; and amoug the Orthoptera, whieh ussually have fire-jointed tarsi, the Mantidx have four tarsal joints. The Perlidx, Odonata, and Ephemerina have been, by Gerstieker (Peters and Carns' Zoologic), assoeiated with the Orthoptera under the name Orthoptera amphibiotica, but sueh an alliance does not seem to ns to be entirely a natural or convenient one; it is simply transferring a mass of heterogeneons forms to what, as now limited, is a natural and well cireumscribed eategory, and yet we eonfess that it is diffienlt to give diagnostic adult eharacters separating the Pseudonemroptera from the Orthoptera, thongh the general faeies of the Orthoptera is quite unlike that of the the Psendonenrontera.
In the Pseudoneuroptera, beginning with the more generalized forms, the Perlidæ aud Termitide, the labiun (second maxillæ) is deeply eleft, the eleft not, however, in these or any other inseets, extending to the mentum, or even elear through the palpiger. Each lobe is also eleft, so that the ligula is really four-lobed; the outer lobes are ealled by Gerstieker ${ }^{139}$ the "lamina externa," and the inner the "lamina interma." These finger-shaped, non-artieulated, fleshy lobes appear to be homologous with, or at least suggest the outer pair of, paraglosse of the Coleoptera and Hymenoptera. In the Perlidæ (Pl. XL, fig. 6) the four lobes of the ligula are well developed, and the lobes of the inner pair are broader than the outer. In the Termitidæ (Pl. XLII, figs. 2, 3) the lobes are well developed, but the inuer pair of lobes is either one-half or not quite so wide as the outer paraglosse ; the palpiger is eleft. In the Einbidæ, aecording to Sarigny's figures, the ligula is four-lobed, but the inner pair is narrow and rudimentary.
In the Odonata, aceording to Gerstiaeker's excellent drawings, the ligula varies mnel. In Gomphus it is eutire; in some of the higher Libélluline ouly two-lobed; but in Asehna it is four-lobed, the outer lobe slender; but separate from the palpus. Iu Calopteryx the ligula is widely eleft, the two inner lobes are wide apart, while the outer pair is consolidated with the labial palpi. Owing to the speeialized nature of the labial palpi, the month-parts of the Odonata are snficiently sui generis and distinetive to prevent their being plaeed among the Orthoptera, even if the thorax were not so dissimilar. In the aborted labium and other mouth-parts of the Ephemerima we also have strongly-marked eharacteristies forbidding their being placed in the Orthoptera; were it not for the strong resemblance of the Termitidre to the Orthoptera (Blattarie,) probably no one wonld have thonght of earrying the Psendonenroptera over into the Ortloptera.
The relative proportion of the head and selerites varies greatly; no

[^1]general rule ean be laid down as to the relative proportions of the epicranium and of the clypeus, or of the gular region.

On this aceount I had at one time decided to split the gromp into troo, and to restrict Erichson's Psendoncuroptera to the Platyptera, ${ }^{\text {,40 }}$ and to adopt Latreille's term Subulicomia for the Odonata and Ephemerina (Subulicornes of Latreille). It may, however, be best, for the salke of clearness, to retain Erichson's order Psendoneuroptera as he indicated it, and to dismember it into what may bo regarded, provisionally at least, ats three suborders:

1. Platyptera (Termitidæ, Enbidæ, Psoeidæ, and Perlidæ:=Corrodentia and Orthoptera amphibiotica in part).
2. Olonata (Libellulidæ).
3. Ephemerina (Ephemeridx).

It is comparatively easy to give well grounded differential charaeters for these three sulborders. They are so distinet that they may perhaps lereafter be regarded as entitled to the rank of orders, or the Psoudonouroptera may be dismembered into the Psendoneuroptera and Subulicornia (Odonata and Ephemerina).

1. Platyptera.-The borly is flattened; the bead horizontal. The pronotum is large, broad, and square. The meso- and metanotum are remarkable on aceonnt of the imperfect differentiation of the scutum and sentellum ; the latter is indefinite in outline, but very large. The flanks (1 leurites) are, when long, oblique, or are short. The sternites are usually very large and broad. There are often eleven uromeres.
2. Odonata.-While the Odonata and Ephemerina are somewhat alike as regards the form and venation of the fore wings, in their month-parts and thorax they are entirely mulike. The Odonata are remarkable for the great dorsal (tergal) development of the mesepisterna and the enormons development of the meso- and metapleurites in general, while the notum of the meso- and metathorax, though of the same type as the Orthoptera, is minute in size. The prothorax is very small, both dorsally aud ou the sides, forming a collar.
The wings are as markedly net-veined as in the Ortloptera, thongh the hinder pair are not folded longitudinally as in that order. The Odonata literally live on the wing, and thus the shape of the selerites of the notum of the wing-bearing segments approaches that of the Orthoptera, although the prothorax is remarkably small compared with that of the Orthoptera, and forbids their nnion with this order, as was done by Gerstiacker and other German entomologists. The head of the Odonata is remarkable for the enormous size of the eyes and the consequent great reduction in size of the epicranimn, as compared with the large epieranium of the Orthoptera. The mouth-parts are like those of the Orthoptera, except that the second maxillæ form a re-

[^2]markable, mask-like labium. The abdomen is very long, slender and eylindrieal; there are eleven uroneres, the eleventh being well represented, while the cercopoda are not jointed, but in the form of claspers.
3. Ephemerina.-In the small epieranium, and the large mate eyes, the Ephemerina resemble the Odonata, though the rudimentary mouthparts are in plan entirely unlike them. So, also, the prothorax is small and amular, but the subspherical, concentrated thorax is remarkable for the large mesothorax and the small metathorax. Hence the hind wing are small and sometimes obsolete. The long, slender abdomen has ten uromeres, and bears, besides the two long, filamental multiarticulate cercopoda, a third median one.
The larve of the lower Odonata and of the Ephemeridae closely approach in form those of the Perlida, showing that the three suborders here mentioned probably had a common ancestry, which can be theoretically traced to a form not remote from Campolea. By reason of the general resemblance of the larval forms of these three suborders it would be inadvisable to separate the Odonata and liphemeriua from the Platgptera, althongh, when we consider the adult forms alone, there would appear to be some grounds for such a division.

Order 4. NEUROPTERA.

The head is horizontal and somewhat flattened, except in the Trichoptera and Panorpide, where it is subspherical and vertical. The body shows a tendency to be round or eylindrical, the thorax being more or less spherieal, but there is great diversity in form from the Sialide to the Trichoptera. The mouth-parts are free and the mandibles well developed, except in the Trichoptera, where the mandibles are nearly obsolete in form, and funetionless, thus suggesting or anticipating the Lepidoptera.

In the Neuroptera the ligula is entirely unlike any of the foregoing and lower groups. It is entire, forming a broad, flat, large, rounded lobe; it is largest in Myrmeleon, Asealaphus, and Mantispa, but smaller in Corydalis, where it is also narrower, and indented on the front edge.

In Panorpia the lignla is minute, rudimentary (Pl. LIX, fig. 7). In the 'Trichoptera it is also mimete and rudimentary (PI. LIX, fig. 5).

The prothorax is usually (Plamipenuia) large, broad, and square, but is ring- or collar-like in the Trichoptera, being short and small, much as in Lepidoptera. Except in the Trichoptera, the meso- and metanotum are characterized by the large, corlate prescutum, and in the Hemerobina the metasentmm is partially or (in Ascalaphus) wholly eleft, the presentum and seutellum meeting on the median line of the thorax.

In the Hemerobina and Sialido the metathorax is as large, or nearly as large, as the mesothorax, and the hind wings are as large as the anterior pair. The wings are not net-veined, the type of venation being entirely unlike that of the Orthoptera and Psendonenroptera. The
costal space is wide and well marked, and the transverse veinlets are fow and far apart, compared with the two orders just mentioned.

The abdomen is cylindrieal, and there are $9-10$ uromeres. The ovipositor is only developed in Raphidia, while the cereopoda are not developed. The metamorphosis is eomplete, as in the Lepidoptera, ete., the pupa being entirely uulike the larva, and quiescent, often protected by a cocooll or ease. The order may be divided into two suborders:

1. Planipennia (Sialidæ, Hemerobiidæ, Panorpidæ).
2. Trichoptera (Phryganeidre).

The following tabular view and diagram will in a degree express onr views as to the classification of the orders of the Hexapodons or winged insects, with especial reference to the Pseudoneuroptera, the order perhaps the most lifficult to bring in relation with the other Phyloptera. The diagram will also serve to express our eoneeptions of the genealogy of the Hexapodous orders.

View of the grand divisions of winged insects (Hexapoda).

[^3]

GENEALOGY OF THE HEXAPODA.
I. Thysanura.-This order onee eomprised some lost types nearly resembling Lepisma, Campodea, and Japyx, and more espeeially Scolopendrella, the probable stem-form of the Hexapoda. In other words, from a hypothetical form resembling Campodea or Scolopendrella, it is not difficult to suppose that all or at least the majority of Hexapoda took their origin. It is possible that by a few intermediate steps now lost, Forficula may have descended from the Thysanuran Japyx; this is suggested by the form of the body, the head with its V -shaped suture, and the abdomen with its forceps, so like that of Japyx. The genus Lepisma is a rather more specialized form than Campodea, and Machilis is still more so, as proved by its mouth parts and the presenee of compound eyes. Scolopendrella, with its abdominal true legs, comes nearer to our hypothetical form than even Campodea. The group of Poduride (Collembola) is most probably a series of degradational forms, originally sprung from a higher, more generalized, Campodea-like ancestor.
II. Dermatoptera.-This order, represented by but one family, differs, as already stated, from the Orthoptera, with which it is usually elassi-
fied, mnch more thau the Termitidæ. It stands alone, and, as observed, its larve elosely resemble the Thysamran Japyx.

11I. Orthoptera.-After the elimination of the Forficulide from the Orthoptera, we have a natural and easily circumscribed group. Beginning with decidedly the most generalized and at the same time lowest family, the Blattarise, followed by the Mantidx, which have a number of characters which recall the Blattarix, we pass up throngh the Phasmidro to the trpical family, the Acrydi; then succeed the Locnstarix, and finally the Gryllide, which on the whole are farthest removed from the stem-forms of the order, the Coekroaches. The close resemblance of a larval Cockioaeh to Lepisma indicates the direet descent of the Orthoptera from the Cinurons Thysmura.
IV. Pseudoneuroptera.-This is the most heterogeneous order or as. semblage of insects. While it is eomparatively easy to eireumscribe the Neuroptera (taken in Eriehson's sense): and the Orthoptera as here restricted, the group Psendoneuroptera is remarkably heterogeneous and elastie. We have failed to satisfactorily diagnose the order as a whole. The Termitida comnect the Orthoptera and Pseudoneuroptera so elosely that, excepting in the wings and other peripheral characters, they seem but a family removed from the Blattariæ. For example, the Termitide resemble the Blattarix in the form of the epicranium, in the clypens, which is but partially differentiated at the base from the epicranimm, in the form of the labrum, and the small eyes as well as the mouth-parts.
In the thorax the Termitide approach the Blattarix in the mudifiexentiated senta of the meso- and metathorax; while the pleurites are also very oblique and the femora are flattened and ovate in form, as in Blatta. In the abdomen, as regards the form of the tergites, as well as the nrites and pleurites, besides the form of the end of the abdomen and of the cercopoda, the Termitide closely approach the Blattarice. The degree of metamorphosis is also the same.
On the other hand, the elose relationship of the Termitidx to the Embidx, as well as to the Psocidio and also the Perlidæ, and the close resemblanee of the Perlid larve to those of Odonata and Ephemerina, forbid our removing the Platyptera from the Psendoneuroptera.

We conclude, then, that the Ephemerina, Odonata, Platyptera, as well as Orthoptera and Dermatoptera have had a common origin from some Thysanurau stock. It is possible that these five groups are nearly equivalent and should take the rank of orders, bnt the elassification we have given in the tabular view on p. 294 may better express their relations.

The Odonata and Ephemerina are, as regards the wings and meta. morphosis, a good deal alike. The Ephemerina, while having at highly eoneentrated thorax, are, as regards the mouth-parts and hind wings, degradational forms, the result of probable degeneration from a primitive, lost form. From what gronp the Ephemerima may have originated it seems to us impossible to conjecture.
V. Hemiptera.-The only clew to the origin of this well eirenmscribed order is the fact that in the Physapoda (Thrips) and the Mallophaga the mandibles are free and adapted for biting. This wonld indicate that the entire gronp was derived from ancestors allied possibly to the Phyloptera. The Mallophagaz are by different authors referred to the Orthoptera and Neuroptera, but the development of the bird-liee as worked out by Melaikow fully proves that in the form of the egg, the mode of development, and general form of the embryo, the Parasita and Mallophagas travel along the same developmental path until just before hatcling, when in Mallophaga the jaws remain free, while in the Parasita they beeome farther moditied and form a sucking beak.
There is a possibility that the Hemiptera may have descended from inseets remotely allied to the Pseudoneuroptera: perhaps forms resembling the Psocida; at least this family, the wingless forms of which superfieially resemble the Mallophaga, gives hints which may throw light on the origin of the Hemiptera. They are evidently the offshoot of a stoek which had an incomplete metamorphosis, or they may have descended directly from a modified Campodea-like ancestral form.
VI. Neuroptera.-The members of this order are, exeepting perhaps the Hemiptera, the most molern and least eomposite or synthetic forms that we have yet met with in our ascent up the inseet series from the Thysanura. Moreover, in them for the first time do we meet with wormlike, cylindrieal-bodied larve, or what we have called erneiform larvie. ${ }^{45}$ These larva are sceondary forms, derived, as Fritz Miiller has in a general way suggested, from those larre which have an ineomplete metinnorphosis. By what line of descent, however, the lowest group of Neuroptera, viz, the Sialidæ, arose, it would be diffienlt to say. The earliest winged iusects were probably terrestrial; the aquatic larval forms of the Sialidæ are evidently derivations from Campodea-like terrestrial larve. But how the perfect metamorphosis with the quiescent pupa of the Neuroptera was brought about, is indeed a problem. It is evident, however, that the eruciform larva is a derivation from a Thysanuriform! ${ }^{136}$ type, first stated by Fritz Miiller.

It seems to ns that a consideration of the diverse larval forms whieh oecur in the present order, throws some light on the origin of a complote metamorphosis in inseets in general. In the Sialida, as the larva of Corydalus, or Semblis, we have a Campodea-form provided with gills, and with the month-parts adapted for seizing and biting its prey. The terrestrial larve of the Hemerobiida are evidently molifications of the Sialid larval form; the differences of structure in them, sneh as the long,

[^4]slender mandibles and maxillæ and the short abdomen, bcing the result of their carnivorous habits, and their being obliged to climb up the stems of plants or to walk over the leaves after smaller insects. Under such circumstances the body would become shorter and more concentrated, and the legs well developed. In the Trichoptera, whose larve live in cylindrical cases, the body is scen to be essentially Campodea-like; the head is fundamentally like that of Corydalis; the diffcrences are adaptive.
But when we regard the larva of the Panorpidæ, we are dealing with a new type; it is caterpillar-like, erueiform; its body is slender and eyliudrical, the head small, and feet short and small. Notice also its habits. The larva of Panorpa communis of Europe, as described by Braucr, ${ }^{17}$ is remarkably caterpillar-like or eruciform. The head is small, well rounded, and the antenne and month-parts are small and rudimentary, compared with those of other Neuroptera, not excepting the Trichoptera. Moreover, they are construeted on ncarly the same type as those of caterpillars; for example, the mandibles are short, toothed, of the same form as in Lepidoptcrous larve; the maxillæ are short, and whether more than two-lobed Brauer does not state, though his figure indieates apparently a rudimentary third lobe; the palpi are four-jointed, while the labium is small with small three-jointed palpi.
The form of the body is thick and stout, like that of a Bombycid (Arctian) larva. The short, four-jointed thoracic feet are in length and thickness like those of catcrpillars. But the most striking resemblance to caterpillars and saw-fly larvæ is seen in the eight pairs of abdominal fect, which Braner describes as eonieal or pin-shaped (kegelförmig), while on the last (ninth or tenth ?) segment are four finger-shaped, equal processes. Not only the form of the body, but also the arrangement and shape of the button-like setiferous warts on the body are strikingly like those of some Aretian caterpillars. The pupa has frec limbs and wings as in other Ncuroptera. The larva of Panorpa bores an inch deep into moss-covercd, not wet soil.
The larvæ of Bittacus (B. italicus and hagenii), as also deseribed and figured by Brauer, ${ }^{1,8}$ have a rounded head, with small mouth-parts; the mandibles are, however, rather long, compared witl those of Panorpa; while the maxillo have apparently two inner short lobes, and a fourjointed, short maxillary palpus; the labium is rudimentary, with a pair of short, minute, two.jointed palpi. The body is not so thick as in Panorpa; it is eylindrical and adorned with long, seatterce, dorsal spines, which bear one or two branches near the base, while there is a lateral row of slender filaments, and a row of ventral verticillate hairs. It thus bears a resemblance to the larve of some butterflics, as Vancssa antiopa, and especially the young Polyommatus (Heodes hypophleas) or the Bourbycid larvæ of Anisota stigma or Platysamia, as well as Selandria

[^5]larvæ. Brauer's figures show a pair of abdominal, two-jointed feet to each of the nine abdominal segments; while just as in Lepidopterous larvo and in that of Panorpa there is a pair of prothoracic spiracles, none on the mesothoracic or metathoracic segments, and there are nine pairs of abdominal spiracles according to Brauers figure, or one more pair than in Lepidopterous larvo.

The fact that there are in the larval Panorpidecollectively a pair of feet to each abdominal segment (the terminal segment in Pauorpa bearing what are evidently homolognes of the anal proplegs of caterpillars) is of much siguificance when we bear in mind that while no caterpillars are known to have more than five pairs of abdominal or proplegs, some of the segments bearing none, yet the embryos, as shown by Kowalevsky, have temporary cmbryonic indications of legs, a pair to each segment (uromere); it is a significant fact that the cruciform larva of the Panor. pidse actually have two-jointed legs to each abdominal segment, the penultimate sogmentin Bittacus bearing suel legs, and the terminal segment bearing leg-like processes in Panorpa. The origin of the Lepidoptera from the same stem-form as the Panorpidæ thus seems a reasonable hypothesis.

In the metamorphosis of Mantispa, as Brauer has shown, there is a hypermetamorphosis, i.e., two larval stages. The first stage is Campodeaform ; but the sccond is sub-cruciform. The transformations of Mantispa appear to give us the key to the mode in which a metamorphosis was brought about. The larva, born a Campodea-like form, active, with large, long, four-jointed feet, living a sedentary life in the egg-sac of a spider, before the first molt loses the use of its feet, while the antenne are partly aborted. The fully grown larva is round-bodied, with suall, caterpillarlike fect and a small, round head. Its external appendages retrograding and retarded, acceleration of growth goes on within, and thens the pupal form is perfected while the larva is full-fed and quiescent; hence as a result the pupal stage became a quiescent one, and by inheritance it gradually becane a permanent habit characteristic of Neuropteri, all of which have a complete metamorphosis, and hence inherited by all the orders of metabolic insects which probably originated from Newroptera-like forms, and the imago represents a highly aecelerated stage.

When we consider the imagos or adult Neuroptera: the small, collarlike prothorax, the spherical, concentrated thorax as a whole, and the eylindrical abdomen, are features which give them a comparatively specialized and modem aspect. Withont doubt the Neuropterons labium (Plate LIII) is a secondary product compared with that of the Orthoptera or the Platyptera, where it is deeply cleft (Plate XXVII.) It will be remembered that in the embryo of all insects the labium or second maxillie originates like the first pair.

Origin of the Coleoptera.-Althongh the beetles are a remarkably homogencous and well circumscribed order, there are certain larval forms and life-histories which point out with a tolerable degree of cer-
tainty the line of development of this extensive order from the Campolea type. There are two series of facts whieh seem to us to throw light ou the suljeet.
First, the form of the free, aetive larve of the earnivorous groups of beetles. The larve of the Caralbidæ, Dytiseidæ and Staphylinide appear to us to beon the whole more nearly allied to what was probably the primitive form of Coleopterous larva than those of any other families. This ancestral Coleopterous larva was probably directly related to the Campo-dea-form ancestor of the Hexapoda. The gencral form of the body, the homonomous segments, the free, biting, toothed mandibles, the well-developer oue- or two-lobed maxillæ with their three-jointed palpi, and the well-developerl second maxillæ (labium), also the four-jointed autenm, and the presence of ocelli, while showing that the existing earnivorous larve are the most speeialized and highly developed, also show that they have mulergone the least modification from the primitive type of Colcopterons larva. In the seavenger larval forms, as the Silphidx, Dermestidro and allied families, the month-parts begin to be modified and less developerl, and the form of the borly mulergoes a change, beeoming thicker and with less developed feet.
In the Elateridx and Searabæidæ, whieh in general are phytophagons, we see a still more deeided elange; the borly beeoming cylindrical and the mouth-parts more aberrant.
In the wood-boring Buprestidæ and Cerambyeidæ, and in the leafeating Chrysomelid larve, we witucss a decided departure from the earnivorous type; the mouth-parts show a teudency to become more or less aborted, the legs are frequently wanting and the body more or less maggot-like. Finally, the tendeney to a gradual degradation and atrophy of the head, month-parts and legs culminates in the grubs of tho weevils (Curenlionidx and Seolytidx), plaeing them at the foot of the Coleopterous series, and shows that they have undergone the greatest molification of form, and have become adapted to conditions the most unlike those which constituted the euvironment of the primitive Coleopterous larra.
The relative form of the maxille appears to be a good index as to the general development of the body in the different groups of Coleoptera, espeeially those standing above the wood-boring families. The facts may, for convenience, be arranged in the following form:
Cicindelida.-Maxilla with a maxillary lobe or mala proper ending in a 2 -jointerl appendage whiel is longer than the 3 -jointed palpns. (Antemue 4-jointel ; 3 ocelli.)

Carabide.-Maxilla with the mala 2 -jointed; maxillary palpus 4 jointed. (Antenuse 4 -jointerl, bifureate; ocelli often present.)

Dytisciffe (and Hydradephaga in general).-Maxilla with the mala absent; the palpi 4 -jointerl.
The maxilla in the aquatie forms of the Carabirl type is only a modifieation of the Geodephagous maxilla; the terminal palpal joint being aeute and raptorial.

Staphylinida.-Maxilla with a 1-jointed inner lobe (Xantholinus), or the mala broad and setose as in the succeeding families (Platystethus aind espreially Bledius); maxillary palpi 3 . and 4 jointed.

The Staplylinid type of maxilla is simply a modifieation of the Carabid, with a temdeney to degeneration in the lower genera (Bledins, ete). Many larsæ in this family are caruivorous.

Elateride.-Maxilla with a 2-jointed lobe or maln; the maxillary palpus 4 jointed. Antenne 4 ;jointed, bifurcate as in Carabid larve; mandihles toothed. The maxillæ of Elater and Athous are free. White generally supposed to be vegretable eaters (as Agriotes), those larve which live under the bark of trees in mines made by Longicorn and other borers have been shown by Ratzeburg, Dufour and Perris to be in part caruivorous, living on Dipterous and Longicorularve, as well as on the exerementitions vegetable matter filling the burrows. l'erris (Inseetes du Pin maritime, p. 190) has pointed out the close resemblance of the mouth-parts of this family to those of the larval Carabide.

In the Scarabridx, Buprestida, and all the lower timilies of Coleoptera, the maxilla are of a mather simpler type than in the foregoing families; the maxillary lobe, or mala, being simple and more or less fringed with stiff hairs. In the Scarabxide (Osmoderma), and in Pyrochroa, which is earnirorons, the month-parts are as complicated as in any; but in the Buprestidx and Chrysomelidre they are less dereloperl, while they are most rudimentary in form and size in the wood-boring weerils and Seolytids; the antenure and seeoul maxille and legs also share in the degradation of strueture consequent on the burrowing lignivorous habits of the larve.

But it is in the so-called hypermetamorphosis of the Meloidre, that of the blister beetle (E picauta) as well as Hornia having been fully deseribed and illnstrated by Professor Riley in the Finst Report of tho United States Entomological Commission (p. 207-302, Pl. IV), that wo have a clew to the probable origin of the different types of Coleopterous laree. Tho metamorphosis of tho oil beetle (Meloë) originally discosered by Siebold and Newport and also Fabre, is described in diffirent entomolowical mamals. ${ }^{149}$ In brief, the larrio of Meloë when hatched are very minnte, active, six-legged, slender-bodied ereatures, parasitic on wild bees; as the lears end in three claws the insects in this stage are called "trimgninins." These larse attached to the bees are thas carried into the nests of the latter, where they feed on the bee-larre and bee-bread. On becoming fully fel, instead of transforming directly into the pupa state, they assmme a second (coarctate) larval form, entirely mulike the first, the body being cylindrical and motionless, with long lens; they then attain a third larval stage, the head small and the body thick, celindrical and footless; after this they assume a true pupa stage, and finally become beetles.

Professor Riley has traed the hypermetamorphosis of the blister

[^6]beetle (Epieauta), whieh passes through three larval stages before transforming to a pnpa. He divides the life-listory of this beetle into the following stages: (1) Triunguliu; (2) seeond larva (a, Carabidoid; b, ultimate or Searabæidoid stage); (3) pseudo-pupa, or eoaretate larva; (4) third larva (elosely resembling the Searabwidoid stage of second);
(5) true prpa; (6) beetle. (The reader shonld examine the figures in Pl. IV of the First Report; otherwise he eannot understand the following remarks.)

It apiears, then, that the first larva, or triungulin, in form resembles the Campodea-like primitive larval form of Coleoptera; the Epicauta triungulin elosely resembles a Carabid larva, the liead, antennre, and montl-parts, as well as the legs and form of the body in general, bcing on the primitive, Carabid type (somewhat like Casnonia (?), Galerita and Harpalus); the seeond larva, a, Carabidoid stage, thongh quite different as regards the inonth-parts, and with a smaller head, thicker body and mnelı shorter legs, still adheres to the higher Carabid form (Carabus and allies). During the Scarabæidoid stage the seeond larva rests nearly motionless in the egg of the locust, and is like the eurred, elnmsy larva of the eoekehafer or June beetle and other Lamellicorn larre, which also have the similar habits of lying still in their burrows and feeding on the roots of grass, or, as in the ease of Osmodeima, lying nearly motionless in their eells in rotten wood. This sort of life going on, the larval blister beetle after six or seven days assumes the iltimate stage of the second larva, and now, from apparent contimed disuse, the month-parts and logs become more aborted than before, and the inseet in this stage may be eompared to some Lougieorn larve, with a general resemblance in the enrved, eylindrieal body to the Ptinid and Chrysomelid, and it cven approximates in general shape Curenlionid larvo. In the psendo-pupa or coarctate larva this process of disnse and obsolescence of parts enlminates in the immobile stage preeeding (with the intervention of third larva) the pupal condition. We thus see that in the life-history of a single speeies of beotle, ehange in habits or euvironment, as well as in the food, induees ehange in the form of the body; and this series of elanges in the Meloidx typifies the suecessive steps in the degradation of form whieh eharaeterize the series of Coleopterous larvae from the Carabidæ down to the Cnrenlionide and Scolytidæ. At first all larvæ were earnivorons and aetive in their habits, with large mandibles and well developed aeeessony jaws and legs; certaill forms then becoming seavongers, their appendages beeame, from disuse, less developed; then others, becoming phytophagous, beeame in some eases still less developed, the jaws shorter and toothless, with eorresponding morlifieatious in the other month-parts, the antenur and the legs, while the body became thiek, fat and eylindrieal; until in the woodboring and seed- or nut-inhabiting weevils the autennæ and maxillo beeame rudimentary, almost disappearing, while the legs ntterly vanished. Change of labits aud surroundings, with eorresponding changes in the
form of the body and its appendages, both explain the metamorphosis of inseets in general and also the differenees between the larval forms of the different orders.
The following view will eonvey an idea of the larver of the Coleo. pterous families whieh in a general way enrrespond to the different larval stages of the Meloidx; it being understood that the resomblances are suggestive and general, and not to be aeeepted in a too literal sense.

1. Primitive triungulin stage. $\left\{\begin{array}{l}\text { In Meloë more like Campodea than } \\ \text { in Epieauta. } \\ \text { Meloide. } \\ \text { Stylopidæ. }\end{array}\right.$
2. Carabidoid stage.
3. Scarabreidoid stage.
4. Coarctate stage, more or less eslindrieal and apodous.

C Cieindelidæ.

 Carabidæ, Dytiseidæ, Hydrophilidæ. Silphidæ, Nitidulariæ, Dermestidit, Coeeinellidæ, ete. Elateridæ, Laupyridæ, Telephoridæ, Cleridæ, Pyroehroidæ.$\left\{\begin{array}{l}\text { Histeridæ. } \\ \text { Searabæidæ. } \\ \text { Ptinidæ. }\end{array}\right.$
Cerambyeidæ. Tencbrionidæ. Mordellidæ. Cureulionidæ. ! Scolytidæ.

From the faets and considerations whieh have been presented, we are disposed to believe, subjeet, of course, to future correetion, that the primitive Coleoptera were carnivorons forms, and that the seavenger and phytophagous forms have been derived from them, and are therefore seeoudary produets, and as a whole of more reeent origin.
The primitive form of beetle was probably a Staphylinus-like form, with a long, narrow body and rudimentary elytra, and earnivorons in habits. This has been suggested by Brauer, ${ }^{150}$ though it occurred to us before inceting with his riews.

Thongh the earliest bectle known is a Carboniferous weevil-like form, yet we imagiue the Coleopterous type beeame established in Devonian or Silurian times, when there may have existed the prototypes of the earwigs and beetles; for the two types may have branehed off from some Thysanuran form. On the other hand, the primitive Coleopterous larra may have sprung from some metabolons Neuropterons form. The larva of Gyrinus has a striking resemblanee to that of Corydalus and other Sialidæ, so mueh so that a terrestrial Carabidous form most probably was of Neuropterous origin, as indieated in our diagram.

Origin of the Diptera, Lepidoptera, and Hymenoptera.-The Euglossata. probably had a common origin in the first place from the metabolie

[^7]Neuroptera. The Lepidoptera probably originated from the same group from which the Panorpida and Trichoptera branched off, and we agree with the opinion of H. Müller, ${ }^{150}$ who maintains that the Lepidoptera and Trichoptera "proeed from a common stock," though we should suppose that the Panorpide in their larval stage represented forms like the ancestral caterpillar.
The adult strneture and larval forms of the Diptera show that they originated from nearly the same stock as the moths. The most perfectly developed Dipterous larve are those of the Culicidx and Tipulida; these were probably the primitive forms; the other Dipterous larva, untably the larval Museida or maggots, are degradational forms, and the lower Diptera appear to have been degraded or degenelate forms.

The ease is different with the Hymenoptera. The saw tly larva represent apparently the primitive larval form; and from their resenblance to caterpillars and Panorpid larvæ, show that the Hymenoptera and Lepidoptera may have had a common origin. The footless larve of tho parasitic Hymenoptera are eorrelated with their parasitic mode of life, and the similar forms of the larval wasps and bees show that from disuse their mouth-parts and legs beeane aborted, and the immobile larve beeame short and thick-bodied. Hence such larva should be regarded as secondary, adaptive larval types. The high degree of specialization of tho bees' mouth-parts, their concentrated bodies and 4 -segmented thorax, with other chancters, show that they are the highest, most specialized and modern of all insects.

Note.-It should be borne in mind that the embryo bee has a pair of temporary abdominal appendages on eath segment (nromere); so also has the Lepidopterous, Coleopterons, and Orthopterons embryo, whieh points back to a common, Scolopendrella-like type; this also possibly indicating a still earlier, worm-like, Peripatus-like ancestor for Myriopoda and Hexapoda at least, it not Arachnidid. For previous diseussions as to the origin of insects the reader is referred to the writings of Fritz Miiller, Brauer, Labbock, and the author.

Order II. DERMATOPTEIAA.

Forflculidet. Plates XXIII, XXIV.

THE MEAD.

Forficula taniata Dolırı. (Pl. XXIII, figs. 1-3). The head is horizontal in position, broad and flat, squarish, the sides being parallel. There is a V-shaped epicranial suture, which is more distinct in the larve of this genus and in Labia. The epicranium is otherwise simple; no ocelli. The elypens is simple, being $n o$ wider and not much larger than the labrum. The genal ridge prominent; a broad galar region. Behind the

[^8]short, broad submentum (and in front of the prosteruum) is a free sclerite, with a transverse, median impressch line. (This sclerite may be called the postgula, and it may correspond to the prosternal sclerite in Blatta, except that no pleural sclerite is attached to it as in Blatta.) The mentum is very large aud flat, as long as broad.

THE THORAX.

Notum.

Pronotum. (Fig. 7.) Large, flat, square, a little longer than broad, and rounded behind.

Mesonotum. (Fig. S.) Somewhat as in Termes, being almost entirely concealed by the pronotum, which rides over it. It is very shortindeed, remarkably so-no other insects approaching this gronp in this respect, while the metanotum is remarkably developed. Neither the meso- nor metanotum are so wide as the thorax, a broad margin of membranc bordering the sides.

The mesoscutum forms a very short, trausversely sublinear sclerite, with the frout edge finll and curved, but linear (in a transverse sense) on the sides; behind, it receires the minute, diamond-shaped scutellum, which forms a posterior, spine like projection, which rubs or plays upon the medially chitinous front celge of the inetanotum. On each side of the scutellum is a transverse, long, lanccolate-oval, chitinous sclerite, which we are disposed to regard as the divided postscutellum. There is no praescntmm, and in front of and behind the mesonotum the thorax is soft and nembranons.

Metanotum. (lig. 8.) Tlicre is no prescutum. The scutum is very large, nenrly as broad as long, broad in front, narrowing belind, sinnous on the front edge, sliyhtly romnded behind, the surface generally flattened, a little convex, with tro parallel, slightly converging median ridges; behind these two ridges is the narrow, longitudinally somewhat oblong scutellum. It is not defined by suture, and I could not decide what it was until I had examined Labia, in which it is more distinctly separated from the scutum; it is thick, dark, with a spine-like projection in front.

The large, long and broad, more or less flat area between the scutum and first uromere we are disposed to regard as, without much donbt, an enormonsly developel postseutellmm, especially as it is much shorter and nore like the postscutellum of Labia. Its surface is broken up into areas; from behind the metasentellum two widely diverging ridges pass backward and outward to support the base of the wings.

Pleurum.

The pleurites are remarkable for being extenderl horizontally, and for the musual form and relations of the epimera, in these respects suggesting the Coleoptera, and perhaps the Staphylinidæ. The legs

20 EO
are inserted at the posterior end on the side of eaeh segment (bænomere), as the coræ are widely separated by the very large and broad sternites.
Propleurites. (PI. XXIV, fig. 1.) These are well developed. The episternum is horizontal, flat, subtriangular, narrow, reduced to a point before reaehing the coxa. A wedge-shaperd, triangular selerite is wedged in between it and the sternite (this may be regarded as the subepisternum, though possibly the troelantine, as the eoxa is apparently entire, and there is otherwise no trochantine to be fonnd).
The epimerum forms the upper part of the pleurum, and is seale-fike, oblong-oval; in front it is narrow, and ends at the anterior margin of the notum. The posterior or upper end of the epimerun is free, rounded, seale-like, as it eovers the prothoraeie stigma.
The coxa is eyiindrieal, shorter than broad. I ean pereeive no suture in it, and think the troehantine is obsolete.

Mesopleurites. (Fig. 2.) These selerites repeat the form of the pro. pleurites. The segment (bænomere) is not so long, and the selerites are a little more horizontal. The epimerum is more regularly oblong. oval, with a deep erease or fold below the middle, whieh extends obliquely from near the eoxa to the front edge of the epimerum.
The episternum is in this segment, as in the preceding one, divided into two pieces; the sur-episternum is very small and situated in the same plane as and on the side of the anterior end of the sternum. The triangular sub-episternum is more oblique than in the propleurum. The eoxa is smaller than in the prothorax.
Metapleurites. (Fig. 3.) The strueture of this region is very remarkable, as eompared with that of other Phyloptera. The episternum is simple, not subdivided as in the pro- and mesopleurum, but represented by an aeutely triangular selerite, the base of whieh lies next to the coxa, the acnte apex reaehing only two-thirds the way to the front of the sternum. This reduetion in the size of the episternal elements is due to the increase in size of the sternum below and the epimerum above.
The epimerum is enormously developed, extending from the insertion of the hind wings (whieh is very near that of the anterior pair) baek nearly to the middle of the seeond abdominal segment; it thus forms the side of about half the entire thorax; in situation it is horizontal, its sides vertieal, but in front next to the mesoeoxa and sternum it rounds down and under, becoming ventral. (This is a most novel modification of the met-episternum, and as unique as the modifieation of the mes-episternum in the Odonata.)

Coxx longer than in the mesothorax, and soldered to the sternum.

Sternum.

The sternal elements are in Forfieulidæ remarkably large and broad, the species being essentially rumuers.

The prosternum is subdivided into a single, large intereoxal plate,
which is oblong, widening in front, and with the surface slightly convex, and a presternal area which is again subdivided into a merlian rounded area (Figs. $10-12, p$ st) flanked posteriorly by two small triangular sclerites ($\left.p^{\prime} s t\right)$.

The mesosternum is scutellate in shapc, nearly as long as broad, wide in front, narrow and well rounded behind the coxæ.

The metasternum is entire, very large, broad and rather full on the surface; it is as broad as long, encroaching on the pleurites, and behind is faintly separated by suture from the first urite.

THE ABDOMEN.

There are ten uromeres with ten urosternites (Pl. XXIV, figs. 7-9); the 8 th very large, being four times as long as the 7 th; the 9 th and 10 th each forming a pair of lateral scales, at base of each blade of the forceps, being separated by the median sclerites forming the genital armature. The genitals, forming a median, interforcipate, spinc-like sclerite, and present above and below, may represent the 11th wromere. The forceps we are inclined to regard as homologues of the ccrcopoda in other Phyloptera.

In regarding as the first uromere the tergite immediately succecding what we have deseribed as the meta-postscutellum, we differ from what seems to be Professor Westwood's opinion as to the nature of the thorax. He apparently regards this segment or tergite and pleurite (as the sternal portion is not developed) as a part of the metathorax. This segment is a large, broad sclerito closely connected with the metathorax, being slightly excavated next to the metathorax, and rounded behind. On each side it is separated by suture from a narrow pleurite bearing the large, somewhat kiducy-shaped first abdominal stigma. The first pair of abdominal stigmata is large and simple, the chitinous edge forming a plain ridge without any projecting teeth. The second pair of abdominal stignata is visible; the others are not easily detecterl, as they are minute, but judging by Westwood's figures there are the usual number, i.e., eight pairs. Westwood states that there are three pairs of thoracie spiracles and seven pairs of abdominal ones. Should it be proved that Forficula has a pair of stigmata to each thoracic segment, it will be a remarkable fact, as there is no uscet known (Campodea not excepted) which has a pair on each thoracic segment. But wo are inclined to think that Westwood has considered our first abdominal uromere with its large spiraeles as a part of the metathorax, and thas he considers the number of pairs of thoracic stigmata as three, and of abdominal ones as seven. We lave found a large prothoracie spiracle over the coxa on the posterior end under the posterior corner of the pronotum, and concealed on the side by the lateral, scale-like epimerun. We have detected a pair of mesothoracic spiracles, but none on the metathorax.

The result of our examination of Forficulide is that they constitute
an ordinal group of Phyloptera, equivalent to the Orthoptera. The larval Forficula is very elose to Japyx in the form of the head, the thoracic homonomous segments, in having ten uromeres, in the nature of the forceps, and in the eleventh rudimentary segment. So elose is the resemblanee that we are somewhat inelined to regard Japyx as a degraded Forfienla. When we eonsider the nature of the head, the elytra-like fore wings, the singular hind wings, which are not net-veined, and the foreeps, we see how mueh unlike the Orthoptera Forfieula is. It does not approaeh Blatta nor Termes. In the eharaeter of the wings and the thorax, espeeially the pleurites, Forficula is suggestive of the Coleoptera, though differing from them in being ametabolous.
In Labia the head is as in Fortieula. The body being mueh shorter and thieker than in Forfieula, there are some relative differenees from what has been deseribed in Forfieula.

Notum.

The pronotum is shorter and broader, but still eovers the mesonotum; the latter is as in Forfieula, the seutellum being similarly spine-like. The metanotum is as in Forfieula, with no important differences; the seutellum is rather more distinet, however, but the postsentellum is mneh shorter, and has similar, lateral, submembranous folds in front.
The first uromere, with its spiracle, is mueh as in Forficula, while the sueeeeding nromeres are mueh shorter.

Pleurum.

The prothoraeic pleurites (episternum and epimerum) are as in Forfieula, but shorter and broader.
In the mesothorax the epinerum is mueh rounded, being, with the episternum, rather shorter than in Forfieula.
The inesothoracie pleurites are as in Forfieula, but mueh shorter and wider in proportion.

Sternum.

The sternites are not essentially different from those of Forfienla, but are rather shorter and broader.

the larva of forficula (Pl. XXIV).

The notum of eaeh segment is. as in all Orthopterous larvæ, simple, not being differentiated into seutum, seutellum, ete. On the other hand, the sternites and pleurites are as in the adult, and this proves that the tergites are eoncerned in and modified by the development of the wings. The episterna are subdivided as in the adult.
In the abdomen there are eleven uromeres, but the first tergite is wanting, the urosternite being present, while the oleventh tergite is small and rudimentary.

Order III. ORTHOPTERA. Plates XXV-XXXVIII.
Blaticaria.
THE HEAD.
Blatta amerieana $\%$. The head is held vertically. The epicranium is broad and smooth; the ocelli are absent or obsolcte. The clypeus is broad and short, no suture separating it from the epicranium. The genæ are large, a genal ridge separating the genæ from the orbits. The gula is broad and short.

THE thorax. (Plate XXVI.)

Notum.

The pronotum (Pl. XXVIII) is broad and flat, as long as broad.
The mesonotum ($\mathrm{Pl} . \mathrm{XXX}$) is remarkably broad and Hat, two-thirds as long as broad. The prescutum is wanting (unless ropresented by a transverse strip in front \%). The scutum is flat, eonsisting of two square sclerites scparated slightly by the rudimentary scutcllum, whiel latter is lanceolate, uarrow, triangular, and divided into two portions, i. e., the posterior or scutellum proper, which is subquadrate, broader than long, and a narrow, long continuation which reaches to the front edge of the scutum, betwecn its two sclerites.

The postscutellum is represented by a well-marked transverse band behind the scutellum, but not separated from the scutellum by a wellmarked suture.

The metanotum ($\mathrm{Pl} . \mathbf{X X X}$) is like the mesonotum, but with no traces of a præscutum; while the seutcllum is mueh more distinet, dianondshaped, with distinct sutures, the aeute apex not quite reaching the front edge of the scutum; behind clearly demarked from the postscutcllum, whieh forms a definite transverse band.

Pleurum.

The pleurites are very hard to make out, owing to the flatness of the body.

Propleurum. (Pl. XXIX). The episternum is divided into three pieces, the anterior a ridge extending from the sternum to the roof of the scutum; the hinder two a lower piece resting on the trochantine, and an upper, larger and eompletely chitinous pieco extended to the suturo. The opimerum is a very irregular, oblong region, partly mem. branous.

Mesopleurum. (Pl. XXXI.) The episternum in this arthromere is also subdivided into three pieces: the antorior (1) broad and resting on the sternum and reaching around to the cpimerum; and (2) a narrow, lance-olate-oval picce not visible from the side; the third sclerite (3) is a broad, triangular pieee (whieh may be the epimerum, but is probably not). A
deep fissure seems to separato the episternal from the epimeral area, and the epimerum rests above the trochantine, being minute, rudimentary, and triangular in outline. The coxa is very large, broad, enormous compared with other Orthoptera; it is much flattened. Tho trochantino is long and narrow, the suture being on a thin, prominent ridge.

Metapleurum. (Pl. XXXI.) Exactly repeats the mesopleurnm in form, but is a littlo larger, and the coxio are somowhat larger.

Owing to the much depressed, flattened body, which is correlated to the habit of living nnder the bark of trees and in cracks, the episterna aro only seen from beneath, on each side of the sternum, and the epimera are reduced nearly to a minimum, while the coxæ are enormous, but still flattened, as the Blattario are active runners rather than leapers.

Sternum.

The prostcrmum (Pl. XXXI) is well developed, but one-half as broad as long, and submembranous.

The mesosternum (Pl . XXXII) is about as broad as long, rounded behind, with a median angular depression.

The metasternum (Pl. XXXII) is broader than long, deeply cleft, with a median fold or gore. Owing to this deep, angular depression both the meso- and metasternites can be flexed together, thus allowing the sides of the body to approach eaeh other somewhat.

THE ABDOMEN.

There are in the of eight abdominal tergites, the eighth tergito being deeply eleft, and seven urosternites. The cercopoda are short and 13-15jointed.

Note.-Tho eloso relation to Termes and the Termitidæ in general, (a point in which, among other respects, Blatta eonnects the Orthoptera and Pseudonenroptera), is seen in the nearly identical form of the episternal and epimeral regions; the latter being dorsal and small, the episternal more developed and sternal in position. The sternal region is much the same in Blatta as in Termes, and judging by the form of the head, thorax and abdomen, these two genera might belong to oven the same family. Thoy seem eertainly only one family removed, the principal differences being in the wings. If there were, so to speak, no other Urthoptera in existence, the Blattarix would certainly be associated with the Psendonenroptera. Hence we have been almost led to think that it is an artificial classification which places them in separato orders.

Mantids.

```
THE HEAD.
```

Mantis carolina. The position of the head is vertieal; the front is broad, triangular. The orbits are very large and broad. The epicra.
nium is divided into an occipito-vertical, square area extcuding from the occipital foramen and bending over to the ocelli, with a transverse straight suture or impressed line in front extending to the orbits. The clypeus is very distinctly divided into a post- and anteclypens, the former wider than the anterior division. The labrum is as long as broad and somewhat pointed in front. The geur are broad, with a marked geual ridge. No gular region in front of the foramen. There is no submentum; the mentum is square, the lignla small and narrow.

THE THORAX.

The thorax, as well as the rest of the body in gencral, approaehes that of Blatta, with, of course, important modifications; in some respects it approaches the Acrydii.

Notum.

The pronotum (Pl. XXXIII, figs. 1-3) is remarkably long, forming thetergal and lateral portions of the area. On the anterior fourth is a transverse, impressed lime, not, however, quite reaching the sides of the notum; this is situated directly over the insertion of the first pair of legs.

Mesonotum. (Fig. 4, 5.) This is very long, being about twice as long as broad; along the middle extends a sclerite from the anterior to the posterior margin; it is triangular in front and behind; the antcrior end wo wonld regard as the præscutum, and the posterior portion as the scutellum, the two uniting on the anterior part of the notum. There is no postscutellum developed. (This union of the prescutum and scutellum is unique in Phyloptera and Neuroptera, but there is an approach to it in Blatta.)

On each side of the front of the notum, and in front of the inscrtion of the wiugs, is a distinct, triangular sclerite, the nature of which is unccrtain.

The scutum is scparated into two long halves.
Metanotum. (Fig. 4, 5.) This is a little longer and slightly naurower posteriorly than the mesonotum, as the hind wings are ncarly twice as wille as the anterior pair.

The prescutum is Fery distinct, narrow, triangular, truncate at the apex. The scutcllum is very long and narrow, ending in a long, very acute point before reaching the proscutum; thus the scutum is divided into two long halves, conneeted by a very narrow bridge, situated. between the prescutum and scutellum, while the mesoscutum is entirely divided. The postscutellum is obsolcte.

Pleurum.

Propleurites. (Fig. 1-3.) The epistcrum and epimerum are very small, short, rudimentary, and situated on the anterior fourth of the prothorax.

The mesopleurites (Fig. -) are very oblique. The episternum is divided into two selerites, the upper one-third as long as the lower and seale-like; the lower obloug, narrow, very long, and on the sternal margin bent down next to the sternite. The epinerum is divided into a long, uarrow, linear, chitinous portion next to the episternum, the posterior portiou lyiug in front of the metathorax.
Between the lower cud of the episternum and coxa is a small, triangular sclerite which I suppose is the trochautine. The coxa is very large, long and quadrangular.

Metapleurites as the mesopleurites, but the sub-episternum is a little wider, and the sur-episteruuu is longer, while the epimerum is almost wholly membranous. The trochantine? is more distinet than in the mesothorax. The coxa is of the same form as in mesothorax, but a little thicker.

Sternum.

The prosternum (Figs. 1-3) is divided into a præ• and poststernite, the lat:er remarkably long.

The mesosternum is narrow, triangular, flat; the apex bordered on each side with a lateral sternal fold of the integument.
Metasternum. A large pant of the sternal surface is oceupied by the sternal pertions of the episterua, which are bent beneath the body. The sternal area is broader and longer than in the mesosternum, but the limits of the sternite itself are less defiuite; it appears to be a long, narrow, lanceolate-oval area (but this part needs further comparative study, with more material in species than we possess).
\leqslant

THE \triangle BDOMEN.

There are ten segmeuts or uromeres, with ten tergites. The cereopoda arise from the tenth segmeut. They are stout, many.jointed, and much as in Blatta, only louger. There are but six urosternites. The eight pairs of stigmata are situated on the membranous pleurites.
Remarks. Mantis is a genuine Orthopter in venation as well as in the fundamental strueture of the borly, and is truly iutermediate in its strneture betweeu the Aerydii and the Blattariæ, approximating the latter iu the structure of the head, mouth-parts, prothorax, the shape of the abdomen, and its appeudages. Blatta, in part, may be regarded as the ancestral or stem form of the Orthoptera, from which all the other Orthoptera may have deseended; aud this accords in the main with the geological succession of the differeut Orthopterous families so far as we know it.

Phasmida.
tile head.
Diapheromera femoratum. Pupa. The head (Pl. XXV, XXVI) is small, narrow, nearly horizontal, subeyliudrieal. The epieranium is
mueh developed posteriorly towards the oeeipital region, being reduced to a minimum in front of the antennæ. The elypeus is very short, undivided, and the labrum is deeply eleft. There is no genal ridge. The gula is rather broad. The sulbentum and mentum are rather small and narruw.

THE THORAX.

Notum.

The pronotum (Pl. XXVIII) is oblong, quadrangular, about twiee as long as broad.
The mesonotum ($\mathrm{Pl}, \mathrm{XXX}$) and metanotum are remarkably long and slender, the mesothorax beiug a little louger than the metathorax, and not differeutiated, owing to the want of wings.

Pleurum.

The propleurum. (Pl. XXIX.) There are three selerites on the sidesminute, short, and rudimeutary; the anterior is the epistermm; the middle the epimerum; and the third and hindermost is the peritreme, bearing the first thoraeie stigna; the seeond pair of stigmata being at the end of the mesopleurum. The coxa is large, eslindrieal (a vertieal suture along the outer side shows that it is made up of the coxa and trochautine?).

The mesopleurum ($\mathrm{Pl} . \mathbf{X X X I}$) is as in the propleurum, but the episternum, as we are disposed to regard it, is larger and exteuds along, forming a long, very uarrow lateral strip, reaehing to the prothorax.
The metapleurum (PI. XXXI) exaetly repeats the form of the mesoplenrum, the episternum in front being somewhat narrower and ending at the mesostigma.

Sternum.

The prostermum (Pl. XXXI) is subseutellate, rapidly narrowing in front of the insertion of the legs.

The mesosternum (Pl. XXXII) is very long, with a separate pieee which we may eall the prasternite, and whieh is narrow and ereseent-shaped.

The metasternum ($\mathrm{Pl} . \mathbf{X X X I I}$) is as in the mesosternum, but the prosternite is mueh smaller.

TIE ABDOMEN.
There are ten tergites aud a rudimentary eleventh. There are nine urosternites. The pleurites are more developed in the of than in the of.

THE HEAD.

Prisopus. ${ }^{151}$ (Plate XXXIII, figs. 6-9.) The head is as in Diapheromera; the epieranium and elypeus are as deseribed under that genus, but the labrum is less deeply eleft.

THE THORAX.

Notum.

The pronotum (Pl. XXXIII, fig. 6) is one-third louger than wide.
The mesonotum (Fig. 7) is very long, though shorter than in Diapheromera. It is entire, with no signs of subdivision into the scutum, scutellum, \&c. The presence of the small, net-veined, rudimentary fore wings has not affected or produced a differentiation of the notum, the insertion of the wings being very slightly marked.

In the metanotum, owing to the long, large hiud wings, with well developed museular attachments, the notum is differcntiated into two lateral swellings, which correspoud to two halves of a scutum; while the scutellum is represented by a long, moderately broad arca, rounded in front, and at the posterior end narrowed, and with a flattened, bosslike swelling. The scutellum is about one-half as wide as the entire notum, and on the sides it is not definitely scparated from the sides of the notum. The hind cdge of the notum is emarginate, forming a distinct, rather full ridge extending aeross the notum. This may represcnt the postseutellum; but most probably the next sclerite, which I at first took to be the first abdominal segment, is the postscutellum, as the next sclerite bears the first pair of spiraeles.

Pleurum.

The pleurites are very much as deseribed in Diapheromera, but the large, long episterna are shorter and broader than in Diapheromera, corresponding with the shorter and thieker proportions of the thorax.

Sternum.

The prosternum eonsists of two sclerites, as in Diapheromera. The mesosternum is shorter and broader, but otherwise exactly as in Diaphe. romera. The metasternum is much wider than in Diapheromera, with a narrow, intereoxal oblong arca, as in Acrsdii.

THE ABDOMDEN.

The abdomen repeats that of Diapheromera; counting out the very large meta-postscutellum, there are eleven tergites and eight urostcrnites. The cercopoda are jointed, short, much as in Mantis.

Note.-This genus connects the Phasınida with the Acrydii, Proscopia being the eonnecting link in the latter family.

Family ACRYDII.

THE HEAD.
Caloptenus spretus. The head, as in the other genera of Acrydii, is compressed so that the front is high and narrow. No signs of an occipital sclerite. In the epieranium the vertex, genæ, and clypeus are well developed. The epieranium extends below the middle of the front, but
not so far down as usual in the other Orthopterous families, though in Tettix it docs extend down much farther than in Caloptenus. The clypeus is well marked, one-third as long as broad. The genæ are uot very broad; the gula is short and broad.

THE THORAX.

Notum.

The pronotum ($\mathrm{Pl} . \mathrm{XXVIII}$) is very large, extending to the hinder edge of the mesonotum, and down on the sides as far as the insertion of the legs.

The mesonotum. (P1. XXX.) This and the metanotum, except in the absence of the proscutum, closely resemble the same parts in the Perhidx. The scutum is short and broad, cxeavated in front, one-half as long in the middle as ou the sides, each side swollen in the middle area, the hind edge decply excavated to receive the scutellum, which is slorter than wide, obtuse, rouuded in front, and behind is a little more pointed. The postseutellum is represented by a uarrow, transverse ridge expanding ou the sides.

The metanotum ($\mathrm{Pl} . \mathrm{XXX}$) is as the mesonotum, but a little longer, as the hind wings are larger than the fore pair. The scutellum, with the sutures separating it in front from the scutum, is more distinet; the scutum is a little longer ou the median line; the seutellum is rather more acute, triangular iu front, and longer and larger than the mesoscutellum. The postscutellum is represeuted by a simple ridge as iu the mesothorax.

Pleurum.

The propleurum. (Pl. XXIX.) The episternum is rndimentary, minute, shorter than broad, and triangular. The cpimernm is almost obsoletc, bcing represented by a slort, ridge-like sclerite. The trochantine is rudimeutary, minnte, with a large spiue. The coxa is a little larger and more swollen sclerite than the trochantine, and is full behind. ${ }^{132}$.

The mesopleurum. (PI. XXXI.) The episternum is entire, very large and full, narrowing towards the insertion of the wings, and extending below to bencath the insertiou of the legs. The epimerum is of eveu width, being quite regularly oblong, and only exteuding to the insertion of the legs above. The neta-spiraele is situated on the posterior, lower angle of the epimerum, while the meso-spirache is placed on the anterior and upper edge of the episternum. The trochantinc and coxa are much as in the fore legs.

The metapleurum. (Pl. XXXI). Much as in the mesopleurum, but more oblique, and on the whole slightly larger, as the hind wings are larger. The episternum is uarvower below, and much more definitely

[^9]separated by an oblique suture from the sternum. The epimerum is less regular in shape than in the mesopleurum, and is more oblique and a little curved. The trochantines are large and longer than those of the two anterior pair of limbs. The coxa are but slightly developed. The trochanter is oblong, though longer than thick.

In the Orthoptera genuina, Blatta excepted, the trochantines and coxe are very small, owing to the large pleura and sterna.

Sternum.

The prosternum (Pl. XXXI) is short in front, small, broad, triangular, with a seutellate expansion between the coxx, and a central, long, acute conical tubercle; behind, the sternum expands on each side behind the legs, and is on the same plane as the mesosternum, but separated from it by a well-defined suture; it extends far up on each side of the thorax.

The mesosternum (PI. XXXII) is not so long as broad, but is large, not extending up above the insertion of the middle pair of legs; the surface is a little convex; the hinder edge is exeavated, a square portion of the metasternum being dovetailed into it.

The metasternum (Pl. XXXII) is wider and longer than the mesoster. num, the sides extending up the thorax. The sternum is divided into four parts by sutures; the anterior part has just been described, the posterior is a piece nearly as long and a little wider than the first urosternite, and sends a square portion corresponding to, but smaller than, the one on the mesosternum into the latter selerite; the two lateral narrow parts lie next to the cosm.

THT: ABDOMEN.

There are ten uromeres (PJ. XXXIV-XXXVIII), represented by ten tergites, and seven urosternites; no pleurites are developed, the eight pairs of spiracles opening on the lower edge of the tergites. The tenth tergite is telson-like, with a triangular pleurite, on each side bearing the cercopoda, which are not jointed. The tenth tergite extends beyond the base of the upper pair of rhabdites.

PROSCOPIA.

TIE HEAD.

The high, vertical prolongation of the head in this remarkable insect is a development of the epicranium; the occipital region of the epicranium is also greatly produced, carrying the eyes and insertion of the antennæ much beyond the middle of the head; the space between the eyes is very narrow. The singular, four-angled process projecting above the insertion of the antenne arises from the vertical rather than from the frontal region of the epicraninm, as there is a long space between the insertion of the antennæ and eyes aud the clypeus. The latter is very short and divided into post, and anteclypens, though the two divisions are not separated by a distinet suture. The labrum is deeply hollowed out in front.

THE THORAX.

Notum.

Pronotum. (Pl. XXVIII.) The prothorax is remarkably long, eylindrical, and full in the middle. It is very singular for having no sternmm as distiuguisbed from the tergum, but the segmeut is perfectly cylindrieal, with only a tine, lateral, straight suture, whieh is obsolete belrind tho legs; while along the sternal region behind the legs there is a median, fine suture. The episternum is present, but no epimerum is differentiated from the tergum. The anterior spiraeles are sitnated on the front edge of the utesothorax, and these are really the usual prothoraeic ones, while there is another pair on the hind edge of the mesothorax on the rudimeutary mesepimerum.
The mesonotum ($\mathrm{Pl} . \mathrm{XXX}$) eonsists of a single oblong sclerite, oue third longer than broad, very slightly separated from the pleurnm; the surface is rounded and rough like the rest of the segment.
The metanotum ($\mathrm{Pl} . \mathrm{XXX}$) consists of two portions whieh have no resemblanee to a scutum and sentellum, but which are separated on the side by a diverging ridge extending down the sides into the epimerme; the anterior area is short, transsersely broal, while the posterior area is not separated by suture from the anterior, but is as long as broad, and romnled in front. It is interesting to notice the extreme modification of the meso- and metanotnm, owing to the absence of wings, and also those characteristics due to the eylindrieal form of the body. Proseopia is a link between the Aerydii and the Phasmida.

Pleurum.

The mesoplcurites (PI. XXXI) are well marked selerites, but are still snbordinated in form and relation to the cylindrical form of the body. Whey are oblique, separated by a fine suture from the tergum. The episternum is large and broal, irregnlar in shape, while the epimerum is much shorter, and not mneh longer than wide. The pro-peritremes, bearing the prostigmata, are separated by sutnre from the prothorax, and the meso-peritreme is consolidated with the posterior edge of the mesepimerum.

The metapleurites (P1. XXXI) are much as in the mesothorax, but shorter. The epistermm is straight-edged; thongh oblique in its general position, it is as wide as in the mesothorax, while the epimerum is less than half as wide as the mesepimerum, and the upper portion is redaced to a mere ridge, which extends upon the notum. The metaeoxæ are as in Diapheromera, being twice as large as those of the mesothoracie segment, while the procusa are a little smaller than those of the metathorax.

Sternum.

The sternites ($\mathrm{Pl} . \mathrm{XXXII}$) are broad pieees, tho meso- and metasternites not separated by suture. The external opreuings of the mesento-
thorax and met-entothorax are conspicuous and situated between the second and third pair of legs.

Conocephalus. In the head of this genns the entire epicranium is produced tergally into a long cone, with no suture above. Bencath, there is a decp inter-antcmal fossa dividing the conc from the face, whieh is longer than broad. There are no ocelli. There is no suture between the clypeus and cpicranium, except on the sides.

Family LOOUSTARIAE.

THE HEAD.

Anabrus. (Pl. XXV-XXVI). The epicranium is very large, and dirided into two portions, post- and ante-antennal, which are separated by a short interantennal suture. The front of the head is very broad, and the eyes are small. There is an occipital ridge on the hinder edge, separating the genæ from the ocular region. The clypeus is trapezoidal, about one-half as long as wide, with an accessory, rounded, anterior expansion on the basc of the labrum; the latter rounded, as long as broad. The gene are broad and flat; the gula moderatels broad.

THE THORAX

Notum.

The pronotum (Pl . XXVIII) is very large, extending down to the insertion of the fore legs and backward to the base of the abdomen.

Mesonotum. (PI. XXX.) The scutum and scutellum are only partially differentiated, the scutal area bcing represented by two lateral, flattened, slightly-marked bosses on each side of the segment in front, and not separated by snture from the scutellum, whose apex is distinet and acutc. There is no proscutum or postscutellum.

The metanotum ($\mathrm{Pl}, \mathbf{X X X}$) repeats the general features of the mesonotum, but the segment is a little shorter, the scutal bosses smaller, while the scutellnm is indicated by a circular, flattened cminence, with no apex behind. The postscutellum is not indicated.

Pleurum.

The propleurites (Pl. XXIX) are small and short. There are two episternal sclerites, an upper and lower, of irregular form. The epincrum is undivided; it is no longer than broad, and below lateralls flares outward, forming a horizontally-projecting scale. The prostigmata are very large, and the edges are armed within by thick-sct spines.

The mesopleurites and metapleurites are much alike and peculiar in form, being large and high, owing to the small wings. The episternmm is long and inarrow, and vertieal in position ; it is undivided, and a little narrower above than near the sternum, the middle being produced into a sharp ridge. The epimerum is as in the episternum, but flatter and only ridged near the sternum.

The metapleurites are more obligne than the mesoplcurites, and are
a little longer and larger, the entire segment being a little larger than the mesothorax. The eoxæ are stout and thick; those of the prothorax spined.

Sternum.

The sternites (Pl. XXXI, XXX1I) are peenliar in this genus and family. The prosternum is very short and broad; the coxa are situated rather far apart. The mesosternum is divided into two portions; the anterior (presternite) is divided by a median sinus into two lateral swollen areas, while behind, at the base of each eoxa, is a stout, triangular spine.
In the metasternum the anterior sternal portion or præsternite merely forms a transverse, eurvilinear rilge, from eaeh side of whieh arises a stouter posterior spine than in the mesosternum.

THE ABDOMEN.

There are ten and perhaps eleven uromeres; nine large square tergites and a tenth narrower one, the tenth segment bearing the small unjointed eereopoda. The supra-anal plate probably represents the eleventh tergite, but it is not separated very distinetly by suture from the tenth uromere. The plenrites are broad but membranous. There are eight pairs of abdominal stigmata, whieh are situated on the pleurum. Of the sternites, the first seven are small and narrow, surrounded by membrane; the eighth is large and square. The ovipositor is enormous. (The proportion of parts in Planeroptera is seen in Plates XXXIVxXXVIII.)

Family GRYLLIDE.

TIIE IIEAD.

Gryllus negleetus. The head is rounded, full, vertieal in position, smooth, with no areas, although the three ocelli are present. The elypeus is separated by suture from the epieranium; it is divided into tro parts, the post-elypeus being short and very broad, and separated on the sides by a well-marked suture from the ante-clypeus, whieh is considerably shorter and not so wide as the labrum, the latter being one-half as long as broad. The genal ridges are remote and posterior to the orbits. The gular region is unusually broad; the mentum is muek shorter and smaller than the submentum.

THE THORAX.

Notum.

Pronotum is broad and flat, square, nearly as long as broad, and beut over the sides, so that the pleurites are very short; posteriorly it overlaps the mesonotum.

Mesonotum is very simple in strueture. It is very short, being onethird as long as the pronotum and also one-third as long as the metanotum; the seutum is very short, consisting of two lateral raised areas, nearly separated by the large, broad, swollen seutellum, the latter transversely lozenge-shaped, being rounded in front and a little more angular behind.

Metanotum. On the same plan as the mesonotum, but about three times as long; the seutum is very short and slightly depressed in the midde, enlarging and swollen on the sides. The seutellum is of the same shape as in the mesonotum, but muelvlarger; behind it is a moderately broad, flat band, representing the postseutellum.

Pleurum.

Propleurum. In the prothorax the episternum is represented by two small sclerites, one forming a spine. The epimerum is minnte, rudimentary, subinembranous. The coxa and troehantine are consolidated into a single, large, thick coxal joint. The prostiguata are rather large and situated ou a distinet peritreme.
Mesopleurum. The episternum is divided into three selerites, the upper mueh larger than the two lower sclerites, and triangular, with the apex produced towarls the insertion of the wings, but not extending up so high as the epimerum. Of the two other sclerites one is supracoxal, and the other is next to the sternum. The epimerum is a large, lanceolateoval, seale-like, single sclerite, with the posterior edge free, below which is the mesostigma.

Metapleurum. This is melh larger than the plenrum of the mesothorax. The episternum is large, oblique, narrow triangular, with the apex extending as far as the upper end of the epimerom; the latter is quite wide, narrowing below; the hind margin is not, however, free.

Sternum.

Prosternum. This is in part rudimentary, and consists of a transverse row of three small selerites surrounded by membrane, behind which are two larger selerites, and above, on each side, is a subtriangular piece. Between the coxæ, whiel are wide apart, is a small, triangular sternite, which sends off long, chitinous angles towards the episternal spines. Behind this is a narrow, long, seutel-like selerite.

Meso and metasternum. These are both large, broad, solid sclerites, as long as broad, angulated obtusely ou the sides, and noteled in the middle of the posterior margin, espeeially on the metathorix.

THE $\triangle B D O M E N$.

.There are eleven uromeres: eleven tergites, the 11th being the supraanal plate; the 10th is narrower than the 9 th, and situated between the cereopoda, which are large and long and obseurely jointed. The 1.1 th tergite is separated by a faint suture from the 10 th tergite. The pleural region is rather broad, bearing the eight pairs of stigunata. There are eight well.developerl urosternites; the 7 th is twice as long as the basal seven. The Stl is small and rounded behind.

THE IIEAD.

Gryllotalpa borealis. The head and prothorax are almirably adapted to the fossorial labits of this inseet. The head is long, and rounded
above. The clypeus is very short, the postelypeus less than one-haif as long as the anteclypens. The labrum is long and narrow. The gular region is broad, the gene small.

IHE TIIORAX.

Notum.

Pronotum. This part is immensely developed, being equal in bulk to the rest of the thonax.

Mesonotum. This is remarkably short, not quite so long as broad, and about one-half as long as the metanotum. There is no prescutum. The scutum is, along the median line, shorter than the scutellum, and is excarated behind in the middle to receive the sentelnm, which is rather large and broader than long. There is no postscutellum.

Mctanotum. More than twice as long as the mesonotum. The scintum is as long as broad, with a boss on each side above, and a posterior, rather flat area, succeeded by the scutellum, which is broader than long.

Plcurum.

Propleurum. This is represented by an irregularly triangular selerite, whose apcx below bears a stout, downward-projecting spinc. The eoxa is vers thick and rather large, and excavated in front to receire the posterior prolongation of the base of the femur, which is remarkably short, thick, large, and broad, as is the tibia, this and the tarsi being deseribed by other authors.

Mesopleurum. The episternum and epimerum are moderate in width, and oblong; the episternum is broader than the epincrum, and the selerites ane placed vertically and not obliquely.

Metapleurum. The sclerites are large and broad, the sides of this segment being square and vertical, thongh the selerites themselves are obliquely situated. The episternum is one large piece resting below on the stcrum ; the epimerum is as long as the episternum, bnt narrower. The hinder coxe are less splerical and swollen than the mesoeoxr.

Sterrum.

The prosternum is obsolete, being reduced to a narow membrane situated between the coxit, which closely meet.

The mesostemum is very large and broad, with a curvilinear impressed line between the coxa.

THE ABDOMEN.

There are ten uromeres; ten tergites, the tenth rudimentary, twiangnlar, short. There are nine urosternites. Theplemal ridge is well developed. The cercopoda are long and filamental, thick at base, multiarticulate.

There are no prothoracie stigmata, hent the first pair is sitnated on the back of the mesothorax behind the coxa; and the scond pair on the metathorax behind the epimera and above the coxie. I can discover only seven pairs of abdominal spiracles.

21 E 0

THE חEAD.

Geanthus niveus $\$$.-The head is long and narrow. The suture between the post- and anteclypeus is obsolete in the middle. The oecipital and gular regions are much developed, while the gene are narrow.

THE THORAX.

Notume.

The pronotum is long and narrow.
The mesonotum is very short; the scutum almost wanting, very short, while the scutellum is about one-third as long as wide.
The metanotum is a little longer than wide; the scutum is shorter than broal, slightly swollen on each side; the scutellum is one-half as long as the sentnm, unusually broad, regnlarly convex, very obtusely angular bchind, succeeded by a thin, transverse ridge, whieh is perhaps the postsentellum.

Plearum.

The propleurum is minute and rudimentary.
The mesopleurum is very short and oblique; the episternm is a long oblong sclerite which is moderately broad, while the epimerum is very narrow, but as long as the episternum.

The metaplearum is also very oblique, but the two sclerites are of the sanc width, and both are somewhat broader and larger than the mesepisterna.

Sternum.

All the sternitcs are broad and full, as indicated in Fig. , so that the coxa are wide apart.

$$
\text { THE } \triangle B D O M E N \text {. }
$$

There are eleven uromeres; eleven tergites, and eight urosternites. The ccreoporla are long, multiarticulate, while the ovipositor is large, long, and well developed.

Remarks.-This family is cridently closely allied to the Locustariæ, while the Acrydii and Plasmida are closely allied, the Mantidx standing below next to the lowest group, the Blattarix.

Order IV. PSEUdONEUROPTERA.
Suborder 1. Corrodentia.
Perlide. Plates XL, XLIV, LVII. the iead.

Pteronareys ealiforniea. (Pl. XL, figs. 1-2.) No occiput. Epicranium divided into three regions; vertex large and well marked, about onc-
fourth as long as broad; eyes on each side; no orbits; the ocellar area separated from the vertex by a well-marked suture, broad, somewhat Vshaped. Separated from the third area in front by a deeply-impressed line.

Clypeus narrow, one-lalf as long as wide, with a narow projection in front. Labrum small, narrow, short, and partly fleshy. Gence of moderate extent. Gnla but slightly developed; mentum short, distinct from the submentum.

THE THORAX.

Notum.

Pronotum (Ptcronarcys californica). (Pl. LVII, fig. 1.) Broad and square, nearly as long as broad.

Mesonotum (Pteronareys californica). (Fig. 2.) Prescutum snb-cordate, rhomboidal, with the posterior half triangular, divided by a deep mesial impressed line; anterior lalf smooth and swollen. Patagia (?) large and broad.

Scutum rery peeuliar. It is broader than long, with two large lateral bosses in front, appareutly corresponding to the two halves of the seutum in the Neuroptera metamorphotica, and between them is a boad, slightly conrex area, whiel might be regarded as the anterior part of the scutellum, but judging by the limits of the metascutellum it is not.

Scutellum short and broad, well marked behind, but in front insensibly merging into the central flat area of the seutum, with no indications of a suture.

Postscutellun, forming a transrerse linear ridge of even width throughout, with rery slight indications of an impressed line along the middle of the bods.

Metanotum. (Fig. 3.) Exaetly repeats the form of the mesonotum, and is, if anything, a little longer than the mesonotum (the hind wings being considerably larger). Only the posterior half of the prascutum in the mesonotum is represented in the metanotum, $i . c$., the cordate, roughened portion, with the mesial suture. The lateral bosses of the scutum are as far asunder as in the mesonotnm. Scntellun crescentshaped; the suture in front is distinct, whereas in the mesonotum it is obsolete. ${ }^{153}$

Postscutellum a little larger behind the scutellum than in the mesonotulir.

Behind the metapostscutellum is a long, transverse, rather broad menbrane which connects the metanotum with the abdomen. It is not the first abdominal segment.

Pleurum.

Propleurnm (Pteronareys californica). (l l. XLIV, Fig.1.) Episternum and epimerum both uearly equally developed; the former subtriangular, the latter subquadrate, and each in part semi-membranous.

[^10]Mesoplenrm. (Fig. 2.) The flanks are obliqnely inelined. The epistermm is diyided into a snpra-episteruite and an infra-episternite; the latter is trapezoidal, a little longer than broad, with a broad projection extending round in front, resting upon the mesosternum. The supracpisternite is sub-diamond-shaped, the lower odge triangular, fitting into the infra episternite.

The epimerum is divided into tro pieces; the infra-epinerite is nearly as broad as long; the sub-epimerite is lowg, oblique, irregular in form, with three large projections from the surface.

Trochantine broad and short. Coxa small compared with the trochautine, being about one-third as large.

Metapleurum. (Fig. 3.) Exactly repeats the structure of the meso. plenrmm, except that it is a little longer, as the lind wings are larger than the anterior pair. Coxa and trochantine the same as in the mesothomx.

Sternum.

Prostcrnum (Pteronarcys californica). (Fig. 4.) Represented only by a swollen fold in front of the insertions of the legs. and by a gill-bearing' membranous swelling behincl. In Acronewria ubnormis there is a broad, large, sentellate chitinous picee.

Mesostermun (Pt.californica). (Fig. 5.) This sternite consists of two portions, (1) a raised, rounded selerite (præsternite) longer than broad, and situated on the front of the sternal area, between the two anterior gills; (2) behind is the true sternum, which is a very broad, trans-rersely-oblong selerite, square on the sides, and abont one-fourth as long as broad, and somewhat eurvilinear. In Acroneuria abnormis the mesosternum is divided into (1) a large prosternite, whieh is broad and triangular; and (2) a large trapezoidal steruite.

Mctasternum. (Fig. 6.) The same as in the mesothorax, but slightly larger. Behind the stemite, on both meso-and metathorax, are in each segment two deep fosse, extending probably into the entothorax (mediand postrurea). In Acroneuria the metastermun is the samo in form as the inesosterunm, but the presternite is shorter and broader.

THE UROSOME (ABDOMEN).

Sn Pteronarcys culifornica (Pl. XLIV, figs. 7-9) there are ten abdominal seginents (aromeres). The tergites are ten in mmber, the first broad and well developed, the tenth small and very short, with a median triangular projection (supraanal plate); the segment is entire but very short sternally. There, are no pleurites, except nearly obsolete membranous folds on the first and second mromeres, on which the first and second pair of spiracles are situated; on the other uromeres the remaining six pair are situated on the lower edge of the tergites. From tho hinder edge of the eighth urosternite two short, stout spines project
backwards. From the tenth urosome apair of long, multiartieulate cercopoda arise from broad basal joints or flaps, forming lateral anal plates.

Psocide. Plate XXXIX, XLIII.

TIE MEAD.

Psocus noverscotice. ${ }^{\text {154 }}$ (PI. XXXIX, figs. 6-8.) The head is in its structure allied to that of the Perlidæ. Epicranimn horizontal, nearly as long as broad, being square on the sides. Ocelli situated close together between the eyes. Clypeus very large and swollen, situated between the antennæ; in front is a semi-membranous division, which may be the ante-clypens; this sclerite is not quite so wide as the large, broad labrum. The gular region and mentum are broad.

THE THORAX.

Notum.

Pronotum (Psocus novce-scotice Walk). Very small, depressed, overlapped by the heade, bing much reduced iu size compared with tho Perlidx.

Mesonotum (Pl. XLIII, fig. 10) very high and conrex; seen from above, much rounded in front. Proscutum large, promineut, high and rounded, subcordate, but with no median impressed linc.

Scutum rery short and broad, decply excarated in front for the reception of the prescutum; each side is much swollen, the swollen areas being separated by the broad median impressed linc.

Scutellum small and short, three or four times as wide as long, with a median acute angle in front, and angulated on each side anteriorly; while from each posterior angle a high narrow ridge diverges to the hinder part of the iusertion of the fore wing. No postscutellum is visible.

Metanotum (Fig. 11) small, one-half as loug as the mesonotum. The presentun is very small, subtriangular, broad and short, depressed. Sclitum one-quarter as long as broad, consisting of two inflated halres, with a median impressed line.
Seutellum minutc, rudimentary, somerhat rounded.

Pleurum.

Proplcurum. The episternum and epimerum rudimentary, though rather long; while the coxa and troehantine are large and long, being mell developed.
Mesopleurum. (Fig. 12.) Episternum and epimcrum long and narrow; not oblique, but vertical ; the episternum a little thicker than the epimerum.

[^11]Metaplcurum. ${ }^{\circ}$ (Fig. 12.) Episternum mnch as in mesothorax, but the epimerum is narrow; triangular, and reduced to a point next to the trochantiue. Coxa and trochantine well developed, rather long and large; the coxa considerably narrower than the trochantine.

Sternum.

Prosternum. Very small, rudimentary.
Mesosternum very small, triangular; the coxæ nearly meeting on the median line of the body.

Metastermum small.
Termitides. Plates XXXIX, figs. $1-5$; XL, figs. $3,4,8 ;$ XLI, XLII, XLIII, figs. 1-9.

THE HEAD.

Termopsis angusticollis. (Pl. XXXIX, figs. 1-3.) The head is broad and flat, oblong-oval in shape. The opictanial region is remarkably simple, not subdivided, with no V -shaped suture, and the eyes are very sinall. The clypeus is very simple, very short and broad; and only an impressed line, no suture, separates it from the epicranium. The labrum is large, one-half as long as broad, and much longor than the clypeus. The gene are separated from the upper portion of the epicranium by a sharp, lateral, conspicuous ridge. The gular region is small, mewbranous. The labium is not differentiated into a submentum and mentum.

In Termes flavipes (figs. 4,5) the lead is oblong, with faint traces of a ∇-shaped suture; the clypeus is subdivided into an anterior aud posterior portion, the two subequal and well marked.

THE THORAX.

Notum.

Pronotum (Termopsis). (Pl. XLIII, fig. 1.) Somewhat ereseent-shaped, being excavated in front and rounded behind.

Mesonotum. (Fig. 2.) Remarkably square, as long as broad, with the elements but partly differentiated, an approach to that of Pteronarcys, the slight partial auterior attalchment of the wings being eorrelated with the undeveloped nature of the tergal selerites. The proscutum is not visible.

The seutellum is not differentiated from the seatum; the latter forming a somewhat swollen flattened boss on each side, but in the middle of the notum contracted, becoming narrow, the region where the scutellum usually is being about a quarter less wide than the scutal region. Postscutellum wanting.

Metanotum. (Fig. 3.) Considerably smaller than the mesonotum, hour-glass shaped, being much contracted in the middle, forming an
anterior or sental and a posterior or seutellar region. Each side of the scutal region is swollon in front, but the seutellum is not indicated by sutures. Posteriorly tho scutellar region spreads out laterally. The wings on both seginents are only attached by feeble, loeal, restricted areas to the front part of the seutum.

In Termes flavipes (Pl. XLII, figs. 1-3) thare are important differences from Termopsis.

The pronotum is one-half as long as the head, mell rounded behind, and one-fourth shorter than broad.

In the mesonotum the seutum and seutellum are differentiated; the sentum is broad and short, one-half as long as broad, and rounded behind. The seutellum is quite froe from it, and is larger than the seutum, being longer, with the sides prolonged toward the posterior insertion of the wings.

In the metanotum (Fig. 3) the scutum is very broad and short, shorter than the mesoscutum, and only two-thirds as long as the metaseutellum; the latter is large and broad, being a little shorter than broad. No pras- or postseutellum in either segment.

The meso- and metanotum are considerably harrower than the thorax itself, and are margined with membrane, the insertion of the wings being tergal and very weak.

Pleurum.

Propleurum (Termopsis angustieollis). (Fig. 4.) The sides of the prothorax are much flattened, as if (seen from above) the body had been squeezed and the flanks pressed out, so that they present a rather wide lateral area on each side of tho tergites. The episternum forms a narrow (vertically) linear piece. The epimerum is membranous, narrow, but wider than the episternum. The coxa and trochantine are consolidated in one large oval-oblong selerite.

Mesopleurum. (Fig. 5.) Episternum forming one large, irregular piece, expanding above the middle, anteriorly forming a triangle. The epimeruin is mueh smaller and semi-membranous. The trochantine is large and long, being oblong-ovate; eoxa as long as the trochantine, but narrower, and pressed up (so to speak) beyond it.

Metapleurum. (Fig. 6.) Much slorter than that of the mesothorax. Episternum mueh narrower, while the troehantine is broader and much shorter in proportion; otherwise mueh as in the preeeding segment.

In Termes flavipes (Fig. 4) the pro-episternum is represented by a narrow selerite situated iu front of and below tho pronotum, and separated from the sternites by a suture. The epimerum is a minute, triangolar selerite situated over the coxa. The trochantine is large and long, and the eoxa is of the same length.

Mesopleurum. (Fig. 5.) The episternum is well devoloped, narrow, eurved, triangular. The epimerum is much smaller, and both pieees are situated obliquely. The troclantine and coxa are of the same size and
length, and are unusually free from each other, the two sclerites together forming a very broad and thick portion for the attachment of the legs.

Metapleurum. (Fig. 6.) Much as in the mesopleurum, with the coxa pointed at the lower and posterior end; both the meso- and metapleurites are more oblique than the propleurites, while the meta- are fully as large as the mesopleurites.

Sternum.

Termopsis. (Fig. 7.) The prosteruum is triangular, about as long as broad.

The mesosternum is about three times as large as the prosterum, and also equilaterally triangular, with the posterior apex acutc. Metasternum?

Termes flavipes. (Figs. 7-9.) The prosternum is rudimentary, consist. ing of four selerites; two large ones uext to the episternum in fiont, and two minute triangular ones behind. The meso- and metasterna are entire, broadly triangular, and rather large, with a pair of accessory sclerites in front of the coxæ. The coxm seen from bencath are divided by a deeply-impressed lougitudinal line.

THE ABDONEN.

The abdomen of Termopsis is much as in Blatta; it is very flat, broad, oval-oblong; ten uromeres, the first tergite broad and long; the tenth

Irig. 12.-Abdomen of Termopsis angnsticollis. D, dorsal; V, rentral; L, lateral view. Enlarged. Gisslor, del.
short, triangular, small, only extending between the slort five-jointed cercopoda. There are nine urosternites. The pleurites of the abdomen abdomen of T'ermes flavipes is substantially as in Termopsis.

Fig. 13.-Abdomen of Termes flavlpes. Lettering as in fig. 12. Eularged.
Suborder 2. Odonata. Plates XLVII-L.
THE HEAD.
Agrion verticale Say. (Pl. XLVII, figs. 4-6.) The structure of the head of Agrion aud Calopteryx is more easily mulerstood than that of Fischna and Libellnla, as their eyes are mueh smaller, and the development of the epicranium is moro equablo and normal. Tho head is umsnally short and wide; the orbits very wicle; ejes spherieal. The epierauinm, exclusive of the orbits, is about as long as broad, with a decided ocellar area, tho ocelli being large and elosely contiguons. In front of tho ocelli is a deop impressed line parallel to tho elypeus.

The clypeus is moderately large, about ono-half as long as broad, with a high, sharp, shelf-like side; it is divided into a clypens posterior and anterior; the post-clypeus being horizontal like a shelf, and the anteelypens forming a vertical wall.

The labrum is large and broad, well rounded in front. The genæ are very large and broad, smooth, and continuous with tho orbits. The gula is membranons.

In Calopteryx maculata the head is mnch as in Agrion, but the elypens is more clearly defined and separate from the epicranium than in Agrion. The epicranium is wider and larger than in Δ grion; a transverse inpressed line separates it into a posterior and anterior area.

In Aischna heros (Pl. XLVII, figs. 1-3) there is no definite trace of the occipnt, nuless a postorbital ridgo between the gula and orbits marks its limits. This ridge becomes obsolete towards the median line near the
vertex. As the eyes are enormous aud meet on the median line of the head, the epicranium is divided by them into three portions: 1 , a uarrow orbito-gular area, not seon from alove; 2, an ocello-antenual, very small, subtriangular area; and 3, a pre-antennal, large area, corresponding to the small ante-antenual aroa in Agrion. This area, with the clypeus, forms the peculiar shelf-like projection of the front of the head. The area is divided into a horizontal broad area and a transverse cres-cont-shaped subarea, separated from the horizontal portion by a sharp ridge. The elypeus is very large and full, reaching from eye to eye, and nearly as long as broad. It is separated from the epicranium by a well-marked curvilinear suture. In front it incloses the ante-clypeus, which is a erescent-shaped selerite no wider than the labrum, and separated by a distinet suture from the clypeus proper.

The libbrum is large and broad, very distinet from the clypeus.

THE THORAX.

Notum.

The Odonata are characterized by the unusual development of the pleurites, the moso-opisternum forming the larger part of the dorsum of the thorax, the meso- and metanotum being greatly reduced in size, owing to the great and long-sustained powers of flight possessod by these insects.

In Agrion the pronotum (Pl. XLVII, fig. 10) is well developed compared with the meso- and metanotum; somewhat broader than long, divided into three areas, being emarginate in front and behind, with the edges tirned up, while tho large central area has two lateral, slightly swollen areas.

Mesonotum. (Fig. 11.) The præscutum not visible; seutum entire, minute, not much longer than wide. The seutellnm is a much swollen rounded knob, with the base subtriangular, not mueh smaller than the sentum. The post seutelluin appears to be a modorately broad, even, two-ridged, transverse band.

The metanotum (Fig. 11) repeats the general appearance of the mesonotum and is of the same size, the wings being alike. The prescutum is not visible. The sentum is deeply divided into two halves, each half minnte and much swollen. The scutellum as in mesonotum, but considerably larger. The post-seutellum is very distinet, forming a transversely-oblong piece no wider than the sentellum.

Calopteryx (Pl. XLVIII, figs. õ-6) is substantially as in Agrion, as regards the notum.

In Aschna horos the pronotum is small and narrow, and nearly concealed from above by the head. It is about two-thirds as long as broad, divided into a short trausverse ridge and a posterior, longer portion subtriangular behind, by a deep eonstriction or impressed line.

Mcsonotum. (PI. XLVIII, fig. 3.) The prescutum obsolete, not visi-
ble from above. Scutum subtrapezoidal, longer than broad; acute behind, with an appendicular area between the conical end and the seutellum, cousisting of two diverging tubercles, from which a narrow ridge falls away on each side, forming the origin of the 5th voin of the wings on each side. (Fig. 3, v. 5.)

The scutellun is swollen, triangular, as broad as long, the apex directed backwards and wedged in between the separate halves of the post-scntellum, which is represented by two triangular bosses, the apices separated by the pointed end of the scutellum, the bases connected by a ridge concerded by the end of the sentellum.

Metanotum. (Fig. 4.) There is a pair of patagia, one in front of the base of eacli hind wing. No prescutum. The scutum is much larger than the mesosentum, a little longer than broad; each side raised into an oblong-oval boss, with a narrow, acnte, triangular, depressed, fat area between, and bonnded behind by a convergiug ridge, which is succeeded by a peculiar diverging ridge (v. 5), like that in the mesonotum, which is the origin of the 5 th vein of the second pair of wings.

The scutellum is much larger than in the mesonotnm, nearly square, smooth and flat; the postenior one-half vertical, thin, and move or less elastie and membranous, moving upon the abdomen. (This posterior portion may represent the post-sentellum, which is otherwise absent, but there are no signs of a sutnre.) Post-scutellum absent (?) See Fig. 4, : p. scl.", for what maj prove to be the post-sentellum.

Pleurum.

In Agrion (Fig. 7) the pro-opisternum and epimerum of each side are minute, rudimentary, and submembranous, and in position are vertical,

Mesopleurum. Tho opisterum in the Odonata differs remarkably from all other Psoudonenroptera and indeed from all other insects, ouly the Acrydii approaching them in the enormously long and large episterna, which meet in front to form a large, dorsal, convex area, that usually ocenpied in other insects by the sentum. The epimerum is a similar piece, and nearly as large as the lateral portion of the episternum; it is in Agrion consolidated with the meta-cpistomum. In Caloptersx, however (Fig. 6), where the thorax is broader and ligher, the two selerites are separate.

The coxe are small, conical; the trochantine is small, triangnlar, and situated directly over the small conical eoxa.

Metapleurum. (Fig. 8.) The episternum repeats the form of that of the mesopleurnm, but is consolidated with the meso-episternmm. The epistermum, seen laterally, is regularly oblong, and three times as long as broal.

The trochantine is a triangular piece, situated directly over the small subconical coxa.

In Calopteryx (Fig. 6) the meso-episternum and epimernm are unch
as in Agrion; those of the metapleurum are much as in the meso-, but a well-marked suture separates the meso-epimeruin from the meta-episternum, and the latter is much wider towards the insertion of the wing than next to the eoxa.

In the prothorax of Asehna the episternum is very small, and sub. divided into several pieces; the epimernm is larger and not divided; it is about as long as broad, and posteriorly submembranous.

The coxa is very large, being much enlarged within, mecting the opposite coxa on the median line.

Mesopleurum (Fig. 1) enormous, and forming a large part of the dorsal region of the thorax. The episternum is enormous, forming with its fellow on the opposite side a large proportion of the front and nesonotum; the foramen leading into the prothorax is situated very low, the mesostigmata being situated on the upper side of the opening. The two meso-episterua unite to form the front of the mesothorax and also the anterior fourth or third of the dorsal region of the entire thorax. Dorsally there is on the united episterna a high median ridge becoming forked behind, with two lateral diverging transverse ridges. The ridge originates in front from the hinder border of a transverse eres-cent-shaped area directly above the foramen leading into the prothorax. A straight, distinet suture separates the episternum from the epimerun. Between the episternum and the troclantine is a selerite, the nature of whieh is uneertain; by its close relation to the sternum it may be the infra-episternum and probably not the coxa, the latter appearing to be obsolete.

The epimerum is large, broad, oblique, and below in front of the metastigma separated by suture from the meta-cpisternum, but above there is $n o$ suture, only a broad, valley-like depression.

Metapleurum. The episternum is about one-half as wide as the large, swollen, smooth epimerum, which composes the posterior third of the pleurum of the thorax. Below the metastigina is a square selerite, directly orer the trochantine, which is probably the infra-episternum, there apparently being no coxa; the trochantine as in the prothorax.

Sternum.

In Agrion the prosternum is small, triangular, longer than broad, with the apex acute.
Mesosternum a little larger and broader than the prosternum, but still small.

Metasternum. What I am disposed to regard as this selerite is a very large, elongated, polygonal area; whieh is semi-membranous and flat.

In Calopteryx the sternites are as in Agrion, but the metasternum is broader and shorter, with an anterior deeply impressed median line.
In Asehna the mesosternum is small, broad, irregular; while the metasternum is mueh smaller, nearly obsolete in front of the legs,
and behind is a broad, sternal, large aren, broader and shorter than in Agrion.

It sbould be observed that in Odonata the middle and hind legs are close together.

THE ABDOMEN.

In Agrion (Pl. L, figs. 4-6) there are ten uromeres. The first tergite is well-dereloped, the second one-half as long as the fise sneceeding tergites. No plenrites, the tergites overlapping the urostcruites, which are very uarrow. The tenth urosome shorter than broad. The claspers possibly represent an eleventh urosome, as such a segment is dereloped in the embryo, but in the adult the claspers appear to be appeudages (cercopoda) of the tenth mrosome. Calopteryx closely resembles Λ grion as to its abdomen.

In Aschna (Pl. XLIX, L. figs. 1-3) there are ten uromeres; and the rudiments of an eleventh urosternite; the cercopoda (c) are loug and spatulate.

Suborder 3 EPHEMERINA. Plates XLS, XLVI.

THE ILEAD.

Ephemera.-It has been diffienlt with the material at my command to properly describe the external anatomy of any member of this gromp. The species examined was our commonest Ephemera in Rhode Island, identified by Dr. Hagen as probably E. cupida (Leptophlebia) Walk., and also aspocies of Palingenia. There is a great deal of variation in the form of the thorax and head in the genera of this suborder, which is as much specialized in its way as the Odonata is in its.

In examiuing the under side of the head of an alcoholie Ephemera, the subject of the drawing made by Dr. Gissler (Fig. 2), there is a cavernous area, at the bottom of which I can discorer what appear to be the rudiments of the maxilla and labimm. There are certainly no rudiments of the mandibles. The gular region and the mentum can be distinguished, and I think I can detect the labial palpi aud lingna; concerning the maxillo I am less certain. The drawing mas made by Dr. Gisslor from but one specimen, and while correct in most respects ho regarts the sketch of the mouth-parts as provisional. The general relations of the under side of the head are as he drew them, with one or two corrections made by the writer.

In an alcoholic specimen of Palingenie bilineata (perhaps a subimago) I can discover no certain rudiments of any of the montl-parts. The under side of the lead forms a deep hollow, and the mouth region is a dcep pit, bounded by a high, thin wall in front-the lower edge of the elypeus. This pit is open to the roof of the mouth or clypens. It is impossible to distinguish the rudiments of any of the mouth parts, and practically they appear to be wholly obsolete.

Notum.

This region of the body is more highly concentrated than in any other Phyloptera, not excepting the Trichoptera. The prothorax is a rather wide collar, longer and broader than in the Trichoptera, bnt the mesothorax is spherical and very large in proportiou to the metathorax, which is rudimentary and but slightly developed; owing therefore to the large mesothorax and the small pro- and metathorax, the entire thorax is oral-elliptical, and mnch consolidated, thms approaching in its general appearance the general shape of the Tipulid thorax, or that of the lower Lepidoptera.

Pronotum. This forms a broad collar extending baekwards on each side, the hinder edge being excavated in the middle.

Mresonotum. This is long and well developed, not so wide as the borly, the flanks extending out, when seen from above, beyond the sides of the notum. The prescutum is well developed, forming a round, conrex, swollen selerite as long as broad, with a modian suture-like inpression. The scutum is very large and long, oval, about one-third longer than broad, slightly broader bchind than in front.

The scutellum is large and well developed, irregularly scutellate in ontline, with two bosses iu front; the posterior end is narrow, truncate at the end, with the surface at the end somewhat swollen.

Metanotum. The metathoracic segment is small; very short, and the notum and sternum, as also the pleurites, are somewhat rudimentary. The surface of the notum is somewhat depressed below the level of the mesoscutellum. It is difficult to describe the sclerites, which are represented in Fig. 1. The entire segment is about one-third as long as broad. The scutum is not well differentiated, being representer by a median irregular area (Fig. 1 se $e^{\prime \prime}$) abont half as long as broad. No scutellum and postscutellum can be distinguished with certainty.

Pleurum.

The sclerites of the flanks are difficult to distingnish. In their development and arrangement the Ephemerina differ from all other Phy: loptera.

Mesopleurum. Though there are a number of sclerites in the mesothorax it is difficult to distinguish what are properly episterna and epimera. The region of the mesepisternum is indicated in Fig. 2 epis", and is much larger than the epineral, which is the region situated over the insertion of the middle pair of legs.

The first pair of spiracles is situated on the mesothorax under and in front of the insertion of the first pair of wings; the second pair is situated on the metathorax directly under the insertion of the second pair of wings.

In the metapleurum the episternal region is quite limited and minnte compared with the large mesepisterual region; what I am inclined to
regard as the epimerum appears to be the selerite e $m^{\prime \prime}$ (Fig. 2), which in the sketch is situated direetly under the metanotum.

Sternum.

Prostermum. This is a small triangular area situated between the insertion of the legs.
Hesosternum. This is a very large region divided into a presternito and sternite. The former is narrow, as long as broad, the surfaee conrex. The sternite is divided into two large, long, oval portions extending far baek of the insertion of the legs.

Metasternum. This selerite is rery short, small and rudimentary.

THE ABDOMEN.

There are ten abdominal segments. The first tergito is wanting, the tenth is a supra-anal plate. There are mine urosternites; the basal is large and long, with a pair of spiraeles. The 11th uromere nay be represented by the median articulated appendage situated between the two very long multi-artieulated eereopoda. The 10th urite is represented by two long, oval, parallel plates.

A remarkable feature of the male Ephemorina is the two pairs of jointed appendages rising from beneath the eoreopoda. These may be regardod as homolognes of two pairs of the rhabdites eomposing the ovipositor of the female of other inseets. The lower pair (Fig. 1 rh) is 3 -jointed (perlaps 4 -jointed), while the upper pair $\left(r h^{\prime}\right)$ is 2 -jointed. We know of no other insects whieh hare two pairs of jointed claspers. These singular organs may be called rhabdopoda. They appear to be homologues of the abdominal feet of Myriapods, the abdominal legs of Tenthredinid and Lepidopterous larve, and the spimerets of spiders.

The adnlt Ephemerina, then, in the laek of mouth-parts, in the concentrated thorax, and the possession of two pairs of abdominal jointed appendages, differ remarkably from the Odonata and other Phyloptera, so that we are nearly justified in regarding the group as entitled to rank as a suborder.

Order NEUROPTERA (as restricted by Erichson).

Suborder 1. Planipennia.

> Family SIALIDAe.

TIE HEAD.
Corydalus cornutus: (Pl. LII, figs. 1-3.) Head rery broad and flat; vertex remarkably large, broad, long, and flat, forming the bulk of the epieranium. Oeelli three, large, but the oeellar area is small, with no suture; the ante-antennal (orbital) fosso large and eonspieuons, transversely oval above, beneath eurvilinear. No suture between the elypens and
epierautum, the very broad clypeus being indefinitely bounded belind, the front edge projecting over and concealing the short, broad labrum, and the edge thickened and tridentate. Mandibles of male cnormous, their base partly covered by the clypeus. The gene are very large and broad, bonnded (in part) in front by the ante-anteunal curvilincar fosse. The gula is solid, long, and narrow, extending from the occipital suture to the mentum, there being no submental suture; lateral sutures separate the mentuu plainly from the gula; submentum very broad. The occiput is present, appearing as a short and broad area, with a median, transversely-obloug sternite forming the base of the gula. (Sce larva.)

Raphirlia oblita. ${ }^{154}$ (Pl. LI, fig. 5-7.) Head as in Corydalus, but the vertex is longer in proportion and the clypeus, being smooth, is better limited. The ocelli are either present or absent, and there is no distinct area. The labrum is large, the clypeus not concoaling it. There are no fosse. The genre are very large, meeting over the gula, which is obsolete, except in frout, where it is broad and triangular, and forms a submental region. The occiput is apparently well marked, forming the neck, and with a suture in front.

THE THORAX.

Notum.

Pronotum of Corydalus, enlarged.

Pronotum (Corydalus). Large and square, about as long às broad; full in front and sinmous behind; somewhat hollowed in the middle.

Raphidia. (Pl. LIV, fig. 10.) Long and narrow, rectangular, very slightly excavated in front, and pointed behind.

Mesonotum (Corydalus. (Fig. 12). Prescntum broadly subtriangular, shorter than in Raphidia, but more distinct. Scutum completely eleft, the prescutim and sentellnm touching; each divisiou of the scutum subruadrate. Postscutellum large and long, very wide, and well developerl.

Raphidia. (I'l. LIV, fig. 11.) Prescntum well developed, larger, but otherwise as in Corydalus. Scutun completely cleft, so that the prescutum mects the scutellum; the latter shorter than broad, obtnse at the apex in front, being subtriangular. Postscutellum well developed, wide, aud of uearly the same length throughout, but incised in the middle to receive the sentellum.

Metanotum (Corydalus). Prescutum much as in Raphidia, bnt smaller; scntum not entirely divided; sentellum triangular, less acnte in fiont than in Polystochotes, lnt more so than in Raphiclia. Postseutellum well developet, transversely linear.

Raphidia. (Pl. LIV, fig. 12.) Presentum present, but obscmely marked, being almost obsolete, but the outline is seen to be triangular. The scutnon is large, ouly half divided by the sentellum, whieh is much shorter than broal, but triangular in form. Postscutellum forms a narrow, transverse band, which is shorter than in the mesonotun.

Pleurim.

Corydalus. In the propleurum (Pl.LXIV, fig. 1) the episternmm and epimerum aro minnte, rudimentary, and not well defined; owing to tho great size of the sternite no trochantine is visible. The coxa is large and thick, about twiee as large as tho sneeeeding coxæ.

Raphidia. (Pl. LIV, fig. 13). Mnch as in Corydalns; the episternmm and epimernm are minute and rudimentary, the relative form of theso sclerites not being easily made ont. The coxa, however, aro long and thick, and much larger than those of the meso- and metathorax.

In Corydalus (Fig. 2) tho meso-Hanks are rather short and thick; the supra-sternite square. The epistermm is a little longer than broad; the suture between it and tho sternito is obsolete. Tho epimerum is moderately long, widening considerably towards tho insertion of the wings. The coxa is very short and thick. The trochantine is very small; one-half as large as the eoxa.

Raphidia. (Pl. LIV, fig. 14.) The mesopleurites are just as in Corydalus, but longer and slenderer, and the sutnre of the sternum is well marked. The epimernm is longer and narrower abovo than in Corydalus, and the troehantine is small; coxa moderately large.

Metaplewrum (Corydalus). (Fig. 12.) The flanks of the metathorax are longer, i. e., thieker, than in the mesothorax; being also shorter vertically. Tho episternites are shorter vertically, but thicker, and the eoxe are shorter and thieker. The epimerum is undivided, not so wide abovo (noxt to the insertion of the wings) as in the mesothorax. The troehantino is a littlo smaller than in the mesothorax.

Raphidia. (Pl. LIV, fig. 15.) Δs in Corydalus, the metapleurites are deeidedly thicker and longer than the pleurites of the mesothorax. 'The episterua are both larger and thicker than in the mesothorax. The epimernm is not divided, narrower below, and wider towards the insertion of tho wing than in the mesothorax. The coxa is nearly twiee as large as in the mesothorax.

Sternum.

Corydalus. The prosternum (Fig. 4) is remarkably large, square, with an anterior, short, separate pioee, or presternite.

The mesosternum (Fig. 5) is large and very broad, transversely suboblong, tho suturo between it and the infra-sternite only partial.

Tho metasternum is as in tho mesothorax, bot a little larger (Fig. 6).
Raphidio. The prostornum (Pl. LIV, fig. 16) is very large, long, and narrow oblong antero-posteriorly, and is covered by the bent-down
tergite. The mesostermum (ig. 17) is large, each half subrhomboidal and passing laterally, forming a ridge between the sur- and infra-episternites. The metastermum (fig. 18) is much as in the mesosternmm, there being no speeial differenee in furm or size, sinee the meso- and metathorax are of the same size.

TIIE ABDOAMEN.
Corydalus. The $\begin{gathered}\text { abdomen (PI. LVII, figs. 4-5; Pl. LYIII, fig. 1) is not }\end{gathered}$ rery long, but broad and thiek; ten uromeres; ten tergites, the tenth rudimentary and conical, coneealed by the large ninth tergite, whieh is eleft, and bears two pairs of large, long elaspers, which are jointed to the tergite. The pleurites are narrow, membranous. There are eight wrosteruites, the eighth eleft along the entire length.

Ruphidia. The of abdomen is moderately long, broad, spindle-shaped. There aro ten uromeres; ten tergites, the tenth small. The pleurites are well developed, but narrow, bearing the spiracles. Of the urosternites, seven are well developed, and the ovipositor is remarkably well developed, more so than in any other Neuroptera (Pl. LVIII, fig. 5-7).

HEMEROBIID A.

THE MEAD.

Ascalaphus. ${ }^{155}$. (Pl. LI, figs. 3-4.) The head is held rertically; it is broad and short; the eyes are very large, approaching the Odonata in this respeet, and are double. The epicranium is small and narrow on the vertex, owing to the large eyes, which nearly meet above. The orbits are very wide in front of the eyes; the elypeus broad, double, heing divided into an anterior and posterior elypens; the latter is smooth and flat, transversely oblong, limited on the sides by two deep linear fossa; the anteelypeus narrows in front and is broadly trapezoidal, but is considerably shorter than the postelypeus. The labrum is broad and very short, the front edge a little exearated. The genie are large, full, and swollen. The gular region is depressed, moderately wide.

Myrmeleon diversum Hag. ${ }^{156}$ (Pl. LII, figs. 1, 2). The head is short and moderately broad; the rertex is full and swollen on each side of the median furrors. No ocelli, and no ocellar area, the latter region being sunken and obsolete. There are two deep, ante-antennal, linear, orbital fosse in frout at the base of the elypeus. There is no well-marked elypeal suture. The elypeus is a little shorter than broad, the posterior and anterior divisions being slightly indicated by a ridge. The labrum is short and broad. The gula is broad and membranous.

Polystocehotes nebulosus. (Pl. III, figs. 8-10.) The head is of the same shape as in Myrmeleon, but the vertex is entire, full, and eonvex. Ocelli wanting, but the oeellar area is full, raised, though not well defined.

[^12]The orbits are large. The orbital fosse are round, but not so distinet as in Myrmeleon. The elypeus is as long as broatl, the sutures more distinet than in Myrmeleon; the median transserse ridge is more distinct than in Mymeleon. The post- and anteclypens are nearly equal in size. Lalbum as in Myrmeleon. The gula is broad, membranons.

Mantispa. ${ }^{157}$ (Pl. LII, figs. 4-6.) The head is held vertically, ant is as broat as long. The epieraniom is broader than long, rather flat, with no V-shaped suture or ocellar area. The clypeus is large, rery distinct, nearly as broad as long, square at the lase, but eonstricted in the middle. The labrum is large, broader than long, much ronnded and produced in front. The gene are broad, and the ginlar region is rather narrow, but moderately so compared with Corydalus. The submentum (?) is large, and nearly as long as broad. The liguda is very large and long, spatulate, not divided, and very simple compared with Corsdalus.

THE TIIORAX.

Notum.

In Ascalaphus the pronotum (P1. LVI, fig. 1) is short and small, divided into two halves by a deep mediau suture. In its shape it approaeles that of the Odonata more than any other true Nenrontera.

Myrmeleon. (P l. LIIV, fig. 1.) It is square, much exeavated behind and full in frout, a little narrower than long.

Polystochotcs. (Pl. LVII, fig. 8.) It is one-half as long as broad, and is alittle exeavated in front and behind.

Mantispa. It is very long, being twice as long as its greatest breadth, subpyriform in ontline, neanly twice as broad in front (full on the front edge) as behiud. It is excavated behind (P l. LV, fig. 1).

The mesonotum. Ascalaphus. (P l. LVI, fig. 2.) The prasentom is large witli the central portion subcordate, larger than in Myrucheon. The scutum is almost entirely divided. Scutellum large and swollen, apex very obtuse; the postseutelhm forms a transverse, Hat riulge.

Myrmeleon (Pl . LIV, fig. 2.) Rectangular in ontline. The prasentum is very large, as loug as broad, and much as in Polystochotes. The sentum is not deeply eleft, the median thind being entire. The sentellum is small, subtriangular, broat, and with the apex ohtuse, while the side selerites are large, as iu the metanotum. Postsentellam?

Polystochotcs. (1'l. LVI, fig. 9). The prosentum is very large, being nearly as large and wide as the sentum, and divided by a median furvow; each half full and rounded in front. Tho sentom is completely eleft, the priescutum and sentellum touehing; eath side of the sentum is spuarish. The sentellum is broader than long, very acute, being produeed in front, forming a long point. The postscutellum is rather large and very wide, being divided by a median suture.

Mantispa. (Pl. LV, fig. 2.) Prascutum minute, nearly obsolete, not

[^13]visible from abore. The scutum is, howerer, mueh larger than in any other genera of Neuroptcra (restricted), being only clcft on the posterior one-fifth. The scutellum is very short and broad; one-fourth as long as broad, with a lincar, depresscd, aente apex. The postscutellum is not visible from above, and is only seen by examining the posterior aspect of the segment in dissccted specincns.

The metanotum (Ascalaphus). (Pl. LVI, tig. 3.) Mnch smaller than the mesonotum. The preseutum is unusually large, with a swollen cordate portion. The seutum is entirely divided, the two lialves widely separated, the preesentum and scutellum meeting, the point of juucture being rery wide.

Myrmcleon. (Pl. LIV, fig. 3.) The præscutnm is large, excavated in front, thougli not so large as in Polystochotes; it is wider than the seutellum. The seutum is entirely divided into halves, so that the preseutum and scutellum touch each other. The scutellum is very full and rounded behind, as long as broad, not being triangular; the side pieees are large, seen from above.

Polystocehotes. (Pl. LVI, fig. 10.) Præscutum? The scutum is eompletely divided by the scutellum, which is acutely triangular. Postsentellum?

Mantispa. (Pl. LV, fig. 3.) The prescutum obsolcte, not visible from above. The scutum is larger than usual, but only cleft on the posterior fourth of its length; the scutellum is short, acutely triangular in front, but very broad, and the sides iu front are sinuous; it is sinaller and narrower than in the mesonotum. The postscutellum is not visible unless the specimen is dissected, when it is seen to form the baek of the segment.

Plcurum.

Propleurum (Ascalaplus). The plenrum is hard to describe from a single specimen, but the sclerites are much rounded, full, and swollen; the mesothorax is nearly one-third longer and thieker than the meta. thorax, while the thorax as a whole is spherical and much consolidated.

Myrmeleon. (Pl. LIV, fig. 7.) The episternum is nearly twiee as large as the epimerum. The coxæ are very large and long.

Polystochotes. The episternum is not so much larger than the epimerun as in Myrmelcon, but the coxæ are longer and slenderer.

Mantispa. The plenrites are very small; the opisternum is very small, irrcgularly oblong; the epimerum is smbdivided, small, narrow, but a little more regular and larger than the episternum. Coxse very large and long; the trochantine submembranous.

Mesopleurum (Ascalaphus?).
Myrmclcon. (I'l. LIV, fig. 8.) The flanks are very broad and short, as a whole. The suprasternite present, very short and broad, equilaterally triangular in outline. The epistermm is remarkably short and broad, triangular, being two-thirds shortcr than in Polystochotes. The
cosa is large, mueh broader than long, subrhomboidal. The mesostigmata or their peritremes are situated each on the front and upper angle of the supra-sternite directly in front of the fore wings.

Polystochotes. (Pl. LVI, figs. 8-15). The pleurites are not so broad and short as in Myrmeleon. The supra-sternite is considerably louger than broad, the apex toward the wings being conieal. The epistermm is vertically oblong, quite regular, being considerably longer than broad. The epimermon is moderately broad, square below. The cora is moderately long, longer than broal; the troehantine regularly eonical.

Mantispa. (Pl. LV, fig. 8.) The flanks of the meso- and metathorax are of the same size and general appearance. The episternum and epimerum are each subdivided more or less regularly into two selerites. The epimerum as a whole is not so wide as the episternum. The eoxa is large, full, conical ; the troehantiue is minute, short, triangular.

Metaplcurum (Ascalaphus 8).
Myrmcleon. (Pl. LIV, fig. 9.) Although the meta- are not mueh shorter than the mesopleurites, the episternum (whieh is subdivided into an npper and lower selerite) is smaller but nearly of the same shape as iu the mesoplenrites, but the eoxa are larger and broader in proportion. The supra-pimerite is very different, being as broad as long, not widening above, and it is solid, with no membranous area; while the infra-epimerite is a liuear, antero-posterior ridge becoming triangular behind. The coxa is considerably larger than in the mesothorax. The trochantiue is one-half smaller than that of the mesothorax.

Polystæchotes. (Pl. LVI, fig. 15.) The meta- are about one-third shorter than the mesopleurites. The episternum is as in the mesothorax, but the supra-steruite is fuller, more rounded next to the wings. The epimerum is divided into asupra-and infra-epimerite. The coxæ are more ronnded and globose than in the mesothorax, while the trochantine is smaller and not so wide in proportiou.

There is a great difference between the thorax of Polystœehotes and Myrmeleon, that of the latter being about twice as long as in the former; in both, however, the metathorax is shorter than the mesothorax.

Mantispa. The metapleurites are a little stouter and thieker than the mesoplenrites, but have the same strueture, though the coxe are considerably shorter.

Sternum.
Ascalaphus?
Myrmeleon. (Pl. LIV, fig. 4.) The prostermum is rudimentary and membranous.

The mesostcrnum (Pl. LIV, fig. 5) is large and well developed, snbcordate, deeply furrowed medially; about two-thirds as loug as broad. There is no suture between it and the infra-episternite.

The metasternum (Pl. LIV, fig. 6) is mueh smaller than the mesosternum, but from lack of alcoholic specimens I ean not here deseribe it.

Polystochotes. The prostcrnum is rudimentary and membranous.

The mesosternum is triangular, eordate, one-half as long as wide in front; distinetly separated by sutnre from the infra-episternite, with a deep median furrow. The meta- as the mesosternite, bnt one-third as long.

Mrentispa. The prostermum is rery long and narrow, and is well dereloped. The mesosternum is large, broad, about one third as long as broad; not distinetly separated by suture from the episternnm; in this respeet the metasternum is the same.

TIIE ABDOMEN.

Asealaphus. ([l. LJVII, figs. 6, 7.) The abdomen is moderately long, spindle-shaped, with nine mromeres.

Myrmeleon. (Pl. LVII, figs. 8-10.) Very long aud slenter, more as in Odonata than other Nenroptera, being slender, cylindrieal. There are seren well developed tergites; the 8th and 9th small, the 9th being as long as broad. The pleurites are broad, well developed, membranons; the spiracles distinet. Of the urosternites the first is obsolete, followed by six well-developed ones; the 7th well developed, oblong. The of elaspers are well developed, and are much as in Odonata.

Polystochotes. (Pl. LVIII, figs. 2-t.) The abdumen is mueh shorter and thicker than in Mymeleon. There are ten tergites; the 2nd subdivided into two subtergites, appearing as if two tergites; the Sth is onethird as long as the 7th ; the 9th one-half as long as the Sth; the 10 th is broader than long, the end being subeonical. The plemites are broad, membranous, six pairs of spirac'es visible. There are seven urosternites, the first membranous and obsolete; the seventh longer than the sixth. No nropods; the eereopoda rudimentary.

Mantispa.-Broad and large, hine uromeres; the first tergite very short; ninth uromere very short, with rery short mropoda?

Family PANORPIDA. Plate LX.

THE IIEAD.

Panorpa. ${ }^{158}$ (Pl. LX, figs. 1-3.) No true oceipht. The epieraninm is strollen on the vertex, which is as long as broad; there is a small ocellar area, and a small inter-antennal area. The front of the head is remarkably elongated, and is formed by the great development of the clypeus. The labrum? The gene form an elongated tract, and the gula?

The submentum is a little longer than the mentum, while the lingua is short.

The antennte are very long and many-jointed, as in moths, and the minute mandibles are situated at the end of the snout.

[^14]
THE THIORAX.

The pronotum ($\mathrm{Pl} . \mathrm{LX}$, fig. 4) is very small and short, with a deep) transverse, impressed line; on the median liue it is extavated in front and behind.

The mesonotum ($\mathrm{Pl} . \mathrm{LX}, \mathrm{fig} .15$) is without a presentum; the seutum is lurge, about two-thirds as loug as broad, and well-rounded in front. The seutellum is small, transversely narrow oblong. The post-scutellum is moderately long, interrupted by the median line.

The metanotum (Pl. LX, fig. 6) is mueh shorter than the mesonotum, but of the same general shape; the seutellum is also of the same general shape, but a littlo longer. The postseutellum is as in the mesonotmm.

Pleurum.

The pleurites in this family aro very long and narrow, the thorax being mueh compressed, its general shape approaching that of the Trichoptera and Lepidoptera.

The propleurum ($\mathrm{Pl} . \mathrm{LX}$, fig. 7) is rudimentary, the episterna and epimera being membranous.

The mesopleurum (Pl. LX, fig. 9) has the epistermum undivided, and is moderately full in front. The epimerum is entire, narrow, a little shorter than the episternmm, and not so broad. The coxa is rather slender; the troehantine long and narrow.

The metapleurum (Pl. LA, fig. 8) is as the mesopleurum, but the episternmm andepimerum are decidedly shorter, and slightly broader in proportion. The eoxa are a little larger and thieker, while the trochantine is about the same.

Sternum.

The prostermum is linear and rudimentary.
The mesosternum is short and broad, nuch as in Lepidoptera.

The metasternum is mueh smaller and less distinet than tho mesosternum.

Finally, in the thorax as a whole, and in the form of the pleurites and sternites, we have a striking approximation to the Lepidoptera.

TIIE ABDOMEN.

There are ton uromeres; ten tergites, the first very short and transrersely linear, the sixth to tenth uar-

End of abdomen of male Pauorpa, enlarged. row; there are seven urites, very narrow, as long as broad.

The pleurites are membranous, broad, haring the spiracles, of which there are eiglit pairs as usual, the last pair minute.

Fig. (in text) represents the end of the abdomen of the male of Panorpa.

Suborder 2. Trichoptera. Plates Lix, figs. 1-5; LNT.
Limncphilus. ${ }^{159}$ (PI. LIX, figs. 1-5.) The head differs from all other Phyloptcra in being construeted on a plan elosely approaehing that of the lepidoptera. It is short and ligh, and of the general proportions of the lepidopterous head. The vertex is as long as broal ; the orbits wide. The elypeus is small, narrow, and situated high np; the labrum (Fig. 5) is small, narrow, elongate, subtriangular. (The exaet differences from the Lepidopterons head age stated in the American Naturalist, Nov. 1871, vol. v, p. 711.) The mandibles are not present in Limne. philus, unless a slight pointed tuberele on each side of the lower part of the orbits (Fig. -, md ?) may represent them. If so, they are eonsolidated with the epieranium, but I am inelined to think that these do not repre. sent the mandibles at all, as rudimentary mandibles in the form of a movable tubercle are to be seen in Neuronia on each side of the base of the labrum. ${ }^{160}$

The maxillary palpi (Fig. 5) are long and slender, directed down. ward; the lobe on the side (Fig. 4, lac.) liangs down. It may perhaps be the homologue of the laeinia. The labial palpi are three-jointed (Fig. 5), while the mentum, palpiger, and an undivided rudimentary ligula are present.

The genx are broad on the under side, while the gular region is narrow. The smbmentum is small and narrow; the mentum is trape zoidal, broadest in front.

TIE 'IIORAX.

Limnephilus. The pronotum (Pl. LXI, flg. 1) is much as in Lepidoptera, being divided into two transversely oval, narrow bosses by a deep median suture.

Mcsonotum. (Fig. 2.) The patagia are thick, solid, rounded oval; longer than broad. The proseutum is obsolete.

The scntum is long and broal, with a prominent aeute angle in tho middle on each side. Surfaee with a deeply-impressed median line extending to the scutellum, and with a parallel, lateral impressed line. In general form there is a close approximation to the lepidopterous mesosentum. It is deeply excavated behind for the reception of the scutellum, whiel is large, a little longer than broad, and subtriangular. The postseutellun is either wanting or it may be represented by a transverse ridge.

The motanotum (Fig. 3) is mueh as in the lepidopterous type. It is

[^15]a little more than one half as long as the mesonotmm. The presentum is well marked, small, divided by the median line in to two transversely oblong pieces, the broad end next to the median line.
The scutum is deeply eleft behind for the reception of the triangular seutellum, the anterior part of the latter nearly reaching the front edge of the seutmm. It is narower than long, the lateral sutures oloseure. The postscutellum is wanting.

Pleurum.

Propleurum. (Fig. 4.) The episternum and epimermm are minute, rudimentars.

Mesopleurum. The meso- and metapleurites are high and short; the metapleurites a little shorter than the meso-; in this respect mueh as in Lepidoptera. The episternum is not subdivided; it is square oblong, nearly three times as long (deep) as wide. The epimerm is narromer, but of nearly the same shape, but exeavated by tho ring-membrane. The coxie are long, narrow, conieal, as long as the episternite; the troehantine one-lialt' as wide as the eoxa.

Metaplourum. (Fig. 6.) The episternum is much narrower than the mesepisternum, espeeially towards the wings, and the cpimerum is uearl 5 as wide as in the mesopleurum. The coxie are fuller and thicker than those of the mesothorax, while the troehantine is mueh smaller, being onc-half as thick and shorter than in the mesothorax.

Sternum.

The prosternum is short, but distinetly dereloped. The mesostermum is rather large, about two-thirds as long as broad, produeed baekward in the middle, with a smbante apex. The metastermum is obsolete, rep. resented bs a membrunous area.

TIIE ABDOAIEN.
The abdomen (Fig. 7-9) is long and slender, eslindrieal, much as in the lower Lepidoptera. There are nine uromeres equally mell developed, the eighth not much smaller than the preceding one; there are eight urites, the eighth very short. The plenral region is membranous, broad, but obsolete on the first and eighth momeres, with a spiracle in the middle of each of the first eight plemitie areas.

It will be observed that the Triehoptera oecupy a much higher sjs. tematie position than any of the foregoing gronps. This is seen in the loss of tro terminal segments in the abdomen, in the small eoncentrated bead, and the snlospherical thorax.

The Trichoptera and Panorpide differ from the other Nemroptera in having the trochantine well developed and nearly as large or larger than the coxre; in this respeet and in the form of the legs they elosely resemble the Lepidoptera. Braner* has ealled attention to the faet that in the Trichoptera and Panorpide the coxa are divided into two halves.

23 E C

CHAPTER XII.

NOTE ON THE GEOGRAPHICAL DISTRIBUTION OF THE ROCKY MOUNTAIN LOCUST, ILLUSTRATED WITH A COL. ORED ZOÖ-GEOGRAPHICAL MAP OF NORTH AMERICA.

In the first report of the Commission (Chapter VI, p. 136) we traced the geographical limits of the Rocky Monntain locust, giving its castern, northern, western, and its approximate southern limits; the latter being farther perfected and revised in Chapter VI of our sceond report, and in the colored map accompanying the report. On page 168 of our second report we also showed that the geographical limits of the western cricket (species of Anabrus) "are probably ncarly or quite coextensive with those of the Rocky Mountain locnst."

For the convenience of the gencral reader, as well as of naturalists, we have, with the permission of Dr. F. V. Hayden, reproduced, with ecrtain minor corrections, a colored zoö-geographical map of North Ameriea. It was originally prepared to illustrate the distribution of ecrtain fresh-water Crustacca (Phyllopods) and appears in the Twelfth Annual Report of the United States Geological Survey of the Territorics. Upon sending a proof to Mr. J. A. Allen, who has paid special attention to the geographical distribution of the manmals and birds, he kindly returned it without corrections, stating that it agreed with his views as to the limits of the zoölogical regions and provinces. Another copy was sent to Prof. A. E. Verrill, who made some corrections in the eastcrn province around the Bay of Fundy, and a few less inportant changes. Hence it is believed that the map will represent with tolerable accuracy the zoological distribution not only of the insects in gencral, but of nearly all the other classes of the animal kinglom, exeluding the marine forms.
The range of the Rocky Mountain locust is co-equal with the light. brown area, i. e., the Central Province, except that it will probably not be found south of the isothermal of 72°. This province is also the home of the species of Anabrus or Western Crickets. These are among the most characteristic Orthoptems insects to be found in this province, although there are many other species not to be found elsewherc. On the other hand, the common red-legged locust, Caloptenus femur-rubrum, occurs all over the Boreal or Canadian, the Eastern, the Westeru (Pacifie), as well as the Central Province, so that it ranges over the whole of North America south of the limit of trees and north of Mexico and Lower California. The distribution of a third species, Caloptenus atlanis, is ucarly co-extensive with that of C. femur-rubrum, although it 346

EXPLANATION OF PLA'TES.

LETPERING OF THE ANATOMICAL HJATES.

The HRAD.
epic, cpicraniuu.
cly, clypens.
a.cly, anto.olypous.
p. cly, post-clypeus.
$l b$, or lbr, labrum.
lb, labium.
gena, gena.
gula, mula.
anf, antenua.
e, byo.
$o c$, ocelti.
occ, occiput.
of, occipital foranion.
$m x, 1$ st maxilla.
$m x^{\prime}$, 2 l maxilla.
p, palpus.
c, cardo of maxilla.
st, sti, or stip, stipes of maxilla.
lac, laciuia of maxilla.
s. m., snbmentım.
m. monturn.
palpr, palpiger.
lig, ligula.
le, lamina oxterior of ligula.
li, lanina iuterior of ligula,
md, mandlble.
The Thorax.
PRO, prothorax.
MESO, mesothorax.
META, metathorax.
n, notnm of prothorax.
n^{\prime}, notum of mesothorax.
$n^{\prime \prime}$, notnin of motathorax.
y. 8c, prasecutur of prothorax.
sc, soutum of prothorax.
sel, scntellum of prothorax.
p. scl post-sentollinm of prothorax.
p. $8 \mathrm{C}^{\prime}$
$8 c^{\prime}$
scl The same selerltes of mesonotum.
'The 'Thorax-Continued.
p. $8 c^{\prime \prime}$
$s c^{\prime \prime}$
sel" $\}$ the same scleritos of motanotum.
p. scl"

8t, stemum of prothorax.
st', sternum of mesothorax.
st $t^{\prime \prime}$, storuum of metatborax.
epis, epistermmra of prothorax.
epis , epristornum of mesothorax.
epi8", cpistermm of motathorax.
em, epimerim of prothorax.
em', epimernu of mesotborax.
em", epinuerum of uetathorax.
te, trochantino of prothorax.
$t e^{\prime}$, trochantino of mesothorax.
t $e^{\prime \prime}$, trochantine of metathorax.
ex, coxa of prothomx.
ex', cosa of mesothorax.
c $x^{\prime \prime}$, coxa of metathorax.
tr, trochanter of prothorax.
(r^{\prime}, trochanter of mesothorax.
Ar", trocbsnter of metatborax.
8.-ерis, \&e., sur-epistomuи.
s.em, \&ं., sur-opimerum.
i.eері, \&о., iufle-episternum.
i.em, \&e., infra-ephnorum.
per, leg.
$p t$, patagia.
WI, front whe
W^{2}, bind wing.
The AbDOMRN.
A, ablomen.
c, cercopooda (cerel).
rh, rhabdite, or elements of tho ovipositor, or clasper in tho malo.
ur, urosteruito, ol sternum of an uromere. *
to, tergal sclerite or tergite.
pen, penls.
st, stigma or spiraele.
D, dorsal viow.
I, Interal vlew.
V , ventral viow.

[^16]
explanatiun of plates.

PLATE XXHI.

Fig. 1. Forficula tarniata Dohru, head, upper side.
Fig, 2. Forficula toeniata Dohri, head, under side, lac, lncinia; le, lamina exterior of ligula.
Fig. 3. Forficula taniata Dolhm, head, sido view.
Fig. 4. Forficula treniata Dulirn, mandiblo.
Fig. 5 . Forficula tonieta Dohrn, maxilla.
Fig. 6. Forficula tumiata Dohrm, $2 d$ maxilha (labinm): l, ligula; le, lamina exterior; p, palpus.

Fig. 7. Forficula tenieta Dohin, pronotum, dorsal riow.
Fici. S. Forficula turiata Dohrm, meso and meta. notum.
Fic. 9. Forficula terniata Dolim, pro-, meso-, and meta-thoran, slemal view.
Figs. 10-12. Forficula larva, pro-, meso-, and mets. notum: not, notum; pst, prw-steroum; st, stormun.

All enlarged. Drawn by C. Fr. Gissler, undor author's direction.
PLATE XXIV.
Fis. 1. Forftula, American specios. Propleurum: not, notum.
Fig. 2. Forficula, American species. Mesoplenram: not, notunn.
Fig. 3. Forficula, American spoeies. Metapleurum: not, notam.
Fig. 4. Forficula, Ameriead species. Prostermm.
Fig. 5. Forficulu, Americin species. Mesosternum.

Fig. 6. Forficula, American spocies. Motaster. mim.
Fib. 7. Forficula, American species. Abdomen, lateral view: c, cercopoda.
Fig. 8. Forficula, American spocies.
Abfomen, donsal view: c, cercopoda.
Fig. 9. Forficula, Americin specios. Abdemen, ventral view: c, cercopoda.

All the figuros enlarged. Gissler del., under tho anthor's directions.
(Pls. XXV-XXXII drawn by J. S. Kingaley.)

PLATE XXV.

Fige. 1-14. Heads (front view) of typical Orthoptera.

PLATE XXVI.

Figs. 1-13. Heads (top view) of typical Orthoptera.
Figs. 14-27. Meads (sile viow) of typieal Ortho ptora.
PLATE XXVII.
Figs. 1-14. Labinu of typical Orthoptera.
PLATE XXVIII.
Figs. 1-12. Maxilla (left) of typical Ortboptera.
Figs. 13-20. Protherax (tergal view) of typical Orthoptera.

PLATE XXIX.

Figs. 1-13. Prothorax (lateral viow) of typioal Fige. 14-16. Prothorax (tergal view) of typleal Ortboptera. Orthopera.

PLATE XXX.

Figs. 1-13. Mese and metathorax (torgal vlow) of typical Onthoptera.
PLA'TE XXXI.
Figs. 1-12. Meso and metaploas of typical Orthoptera.

Figs. 13-21. Prosternum of typical Ortheptera.

PLATE XXXII.

Figg. 1-13. Meso- and metastermum of typical Orthoptora.

PLATE XXXIII.

Figu. 1-3. Mantia carolina. Prothornx.
Figs. 4, 5. Mantis carolina. Meso-mul metanothm.
Fig. G. Prisopus (Brazil). Propleurnm.

Fis. 7. I'risopus (Brazil). Meso- and metaplenrum. Fia. 8. I'risopus (Brazil). P'ostol'unm.
Fis. 9. Prisopus (Brazil), Meso-and metasternuza

EXPLANATION OF PLATYS.

PLATEXXXIV.

Figs. 1-8, 10, 11. Ablomen (tergal viow) of typical Fig. 9. Abromen (tergal view) of mate Diaphero. femalo Ortboptera.
mera.

PLATE XXXV.

Figa. 1-9. Abdomen (ond, tergal viow) of typieal Figs. 10-16. Abdomen (omd, tergal viow) of typieal female Orthoptera. male Orthoptera.

PLATE XXXVI.

Figs. 1-0. Abdomen, side view, of typical female Orthoptora.
PLATE XXXVII.

Note.-Plates XXXVII and XXXVIII have heen combined so that the explanations apply to Plate XXXVII, and there is no Plato XXXVIII.

PLATE XXXIX.

Fig. 1. Termopsis angusticollis, head, from beneatb: x, hypopbaryngeal ehitinous support. (Gissler).
Fig. 2. Termopsis angusticollis, head, from above.
F1e. 3. Termopsis angusticollis, head, fion side:
the elypens is shaded.
F10. 4. Termes flevipes, liead, frou above: v, opieranial v-shaped suture.
Figs. 1-5 drawn by C. F. Gissler; 6, 7, 8, by Willam W. Grittin: all magnified.

PLATE XL.

Fio. 1. I'teronareys californica, head, иүper view.
Fig. 2. Pteronarcys californica, head, under viow. Fic. 3. Termopsis angusticollis, 1st maxilla: c, cavlo.
Fig. 4. Termes flavipes, lst maxilla.
Fio. 5. Pteronarcys californica, 1st maxilla.

Fig. 5. Tcrmes fla vipes, head, from sido.
Firs 6. P'косus ap., head, fron abovo: v, v-ahaped suture.
lisg. 7. I'socus ap., heat, from side.
Fis. 8. Pieronareys californica, head, irawa from the side.

Figs. 1, 2,5-7 drawn by Willian W. Grillin; $3,4,8,9, b y$ Gisaler: all magnifed.

PLATE XLI.

Fig. 1. Termes flavipes, head soen from beneath: $m x$, maxilla; palpr, palplger; $l i$, lamlna interior; le, lamina exterior: p, labial patpus.
Ftg. 2. Termes flavipes, od maxilla (labinnt), seen fiom beuoath.
Fig. 3. Termopsis angusticollis, 2 d maxilla (labinm).
FIG. 4. Termes flavipes, maudible, oxtermal riow. Fig. 5. Termes flavipes, mandibe, internal view.

Fig. 6. Pteronarcys californica, 2d maxilla (labium).
Fig. 7. I'teronareys califormica, mantible.
Fis: 8. Termopsis angusficollis, labrnm and part of elypeus.
Fis. 9. Termes lavipes, labrum.

FIG. 6. Termopsis angusticollis, mandible, from within.
FIG. 7. Termopsis angusticollis, mandiblo, from withont.
Fic. 8. Termopsis anyusticollis, mandible, from witbout.
Fig. 9. Termopsis - angusticollis, mautiblo, from within.
Fis. 10. Termopsisangusticollis, part seen benoath the tabial palpi.

All enlarged. Gissler del.

PLATE XLII.

Fig. 1. Termes flaripes. I'ronotum.
Fig. 2. Trmes flavipes. Musonotnu.
Fig. 3. Termes Javizes. Metanotam.
Fic. 4. Termes flavizes. l'roplenrun.
Flo. 5. Termes flaviprs. Musoplenrinn.
Fig. 6. Termes flavipes. Metaplenium.
Fig. 7. Termes flavipes, Prothoras, stermal view. ITg. 8. Termes flevipes. Mesothorax, sterual vhew.

Fig. 9. Termes fanipen. Metathorax, sterna view.
Fig. 10. Termes flavipes. Abdoment, tergal view : 1-10, the ten tergites; e, corcopoda.
list. 11. Termes hampes. A hiomen, ventral vies.
FIc: 12. Termes fluvipes. Abdomen, hateral view, showing the 10 torgites and 9 urites.

EXPLANATION OF PLATES.

PLATE XXXIV.

Figs. 1-8, 10, 11. Ahdomon (tergal view) oftypical FiG. 9. Abdonten (tergal rlew) ef male Diaphero. fenale Ortboptera.
mera.

PLATE XAXV.

Fios. 1-9. Abdomen (end, tergal viow) of typical fomale Orthoptera.

Figs. 10-16. A bdomon (end, tergal viow) of typieal male Orthoptera,

PLATE XXXVI.

F1gs. 1-9. Abdomen, sido viow, of typieal female Orthoptera.
PLATE XXXVII.
Figs. 1-6. End of abdomon, sido view, of typieal Orthoptera.
PLATE XXXVIII.
Figs. 7-16. Fui of abdomen, side viow, of typieal femalo Ortboptera.
(Plates XXXIV-XXXVIII drawn by J. S. Kingsley.)

PIATE XXXIX.

Flg. 1. Termopsis angusticollis, head, from he. noath: x, liypepharyugeal chitinous support. (Gissler').
F1g. 2. Termopsis angusticollis, hoad, from above.
Fia. 3. Termopsis angusticollis, head, from side; the elypens is sbaded.
Fig. 4. Termes flavipes, head, from above: $ข$, epieranial ∇-shaped suture.

Fig. 5. Termes flovipes, head, frem side.
Fig. 6. Procus sp., bead, from abero: v, v.shaped anture.
Fic, T. I'sucus sp., head, from sido.
Fig. 8. I'teronarcys californica, head, drawn from tbe side.

Fiss. 1-5 drawn by C. F. Gissler; $0,7,8$, by Wilham W. Grithin : all magnifled.

PLATE XI.

Fig, 1. Pteronarcys califormica, head, npper viow.
Fro. 2. Pteronarcys califormica, hoad, under viow. Fio. 3. Termopsis angusticollis, 1st maxilla: $c_{\text {, }}$ carte.
Fio. 4. Termes favipes, lst maxilla.
Fio. 5. Pteronarcys californica, 1st maxilla,

Fif. 6. I'teronarcys califormica, 2d maxilla (la. bium).
Fig. 7. I'teronarcys ealifornica, mandiblo,
Fli. 8. Termopsis angusticollis, labrum and part of clypeиs.
Fic, 9. Termes flavipes, labrmin.

Figs. 1, 2, 5-7 drawn by William W. Grithin; 3, 4, 8, 9, by Gissler: all magnified.

PLATE XLI.

Fig. 1. Termes flavijes, head seen from beneath: $m x$, maxilla; palpr, palpiger; $l_{\text {, }}$, lamina intorior: le, lanina extevior; p, labial palpus.
Fig. 2. Termes flavipes, 2d maxilla (labiam), seen frem benoath.
Fig. 3. Termopsis engusticullis, 2d maxlla (la. bium).
Fig. 4. Tcrmes Aavipes, mandible, oxteraal viow. FIG. 5. Termes flavipes, mandible, internal view.

All ealarged. Gissler del.

PLATF XLII.

Fig. 1. Termes flamipes. Pronotum,
F10. 2. Termes Acwipes. Mesonotum.
Fig. 3. Termes Jlaviprs. Metanotum.
Fio, 4. Terines flaviper. Propleurmm.
Fig. 5. Termes flaipirs. Mesopleurum.
Fig. 6. Termes fluvipes. Drtapleumm.
Fig. 7. Termes glavipes. Prothorax, stemal view.
Fle, 8. Termes flenipes. Mesethorax, stemal view.

Fig. 6. Termopsis entusticullis, mandible, fron within.
Fig. 7. Trmopsis angusticollis, mandible, from without.
Fig. 8. T'ermopsis anypsticollis, mandible, from without.
F1g. 9. Termopsis -anyusticollis, mandilite, from withiu.
Fyc, 10. Termopsis angusticollis, part seen beneath the labial palpi.

Fis. 0. Tormos fituipes. Metathorax, sterna riew.
I'in. 10. Jermes jlanipes. Ibdomen, torgal view : $1-10$, the ten tergites; e, cercopeda.
Fis. 11. Termes faripes. Alalomon, ventral view.
Fic, 1:. Termes flerijes. Ahlomen, lateral view, showing the 10 tergites and 9 urites.

EXPLANATION OF PLATES.

PLATE XLIII.

Fig. 1. Termopsis angusticollis, pronotnm.
Fig. 2. Tcrmopais angualicollix, mesonotnm: w^{1}, 1st pail of wings.
Fig. 3. Termopsis angusticollis, metanotum: w^{2}, $2 d$ pair of wings.
FIg. 4. Termopsis angusticallis, proplenrum.
Fig. 5. Termopsis angusticollis, mesoplournn.
Fig. 6. Termopsis anyusticollis, metapleurnm.
Fig. 7. Jermopsis angusticollis, prothorax, stornal view : pst, preesternum; not, notum.
Fig. 8. Termopsis angusticollis, mosothorax, sternal viow.

All onlarged. Gisslor del., under anthor's direction.

PLA'TE XLIV.

Fig. J. Pteronarcys califormica, proplenrum.
Fig. 2. I'teronareys californica, mesoplonrum.
Fig. 3. Pteronarcys calfformica, metapleuru
Fig. 4. Pteronarmy califormica, prosterimm
Fig. 5. I'teronarcys californica, mesostermm.
Fig. 6. Pteronarcys californica, metastemmm.

Iis. 9. Termopsis angusticollis, metatborax, ster. nal view.
Fig. 10. I'socus nover-scotio, meso- and motatho. rax (notum), dorsal view: w', w^{2}, wings.
F1g. 11. Psocus norascotia, motanotum, seen more from behind.
Fig. 12. Psocus novip.gcotice, meso. and meta. pleura.
Fig. 13. P'socus nova-scotio, mesothorax, seea from in front.
Fig. 14. Psocus noure-scotire, mesosentellum.

Willian W. Griffin del., under author's direction. All magolfied.

PLATE XLV.

Fig. 1. Ephemera (Leptophlebia) cupida? Mead and thorax, doraal view : proon, pronothm: $w^{1}, w^{2}, 1$ st and $2 d$ pair of wings: 1, first abdominal segment.
FIg. 2. Ephemera (Leptophlebia) cupida? Hoad seen from beneatb: $l b$, labinm; $l p$, labial palpi; mr, maxilla; st, prosternum.
Fig. 3. Ephemera (Leptophlebia) cupida? Head soen from above.
Fig. 4. Ephemera (Leptophlebia) cupide? Hend and protborax, seen laterally.

Fig. 7. Pteronarcys califormica, abdomou, dorsal view.
Fig. 8. I'teronarcys californica, abdomen, ventral view: rh, rhalditos.
FIG. 0. I'teronarcys californica, abdonen, latoral viegr: $b r$, branelize or gills; $s p$, spiracles. vief: $b r$, braneliz on
ion. A 11 magnlfied.

Flu. 5. Lphemera (Leptophlesia) cupida? Mesoand meta-stermum: $s p$, spiraclo.
Fic. 6. Ephemera sp., larva, head soen from in front: md, mandibles.
Fic. 7. Ephemera sp., larva, hoad seen from the side, the occipitul region not drawn.
Fig. 8. Ephemera, 1 upa, head seen from in front.
Fig. 9. Kphemera, imatgo, head seen fiom above. Fig. 10. Ephemera, inago, head secn from abovo, diflorent viow, more in front.

Figs. 1-5 drawn by Dr. C. F. Gissler; 0-10, author alel.

PLATE XLVI.

Fig. 1. Ephemera (Leptophlebia) cripida? Male, much enlargod to slow the structure of the notnm and abdonen: c, cercopoda; rh, onter 3 -jointed claspers or rhalidites; $r h^{1}$, imner pair of 3 jointed thabdites.
Fig. 2. Ephemera (Leptophlebia) cupider Side view of thorix: the lettoring as in other plates.

FIG. 3. Ephemcra (Leptophlebia) cupida? Sids viow of proplenrum, with sido viow of notum.
FIG. 4. Ephemera (Leptophlebia) cupida? Abdomen, ventral view, showing the 9 uro. sternites.
Fルi. 5. Epheinera (Leptophlebia) cupida? Abdomen, latoral viow.

All the figures enlarged. Gissler tel.

PLATE NLVII.

Fig. 1. Fischana heros, head, front vlew: cl. p, plost-, $c l . a$, ante clypous.
Fig. 2. Aschna heros, head, lateral vlew.
Fig. 3. Dischna heros, head, mulur view.
FIG. 4. Agrion verticale?, hest, vertical view.
Fig. 5. Agrion verticale ?, hemd, inder view.
FiG. 6. Agrion verticale?, hent, lateral vlew.
Fig. 7. Frchna heros, Lablum: 1, 2, 1st and 2d
jolnt of lablal palpus; le, lamina exterlor of ligula; $l i$, lamina intorior.
All tho parts anlarged; drawn by Willime W. Griffin, under anthor's direction.

PLATE XLVIII.

Fli, 1. Archna heros, moso-and motapleurum, and two ahdominal arthromeres.
Fig. 2. ABshne heros, pronotim.
Fig. 3. Aschue heros, mesonotum.
Fig. 4. Eschue heros, metanotum.
Fif. 5. Calopteryx maculuta, moso- and metanotum.

Fia. 6. Calopteryx maculate, plearum of entire thorax.
Fig. 7. Igrion verticale ?, proplonrum.
Fif. 8. Agrion rerticale?, pleurnm of entire thomax, lettoring as in Fig. 6: 1, 2, momeres.

Figs. 1,5 , and 6 drawn by C. F. Gissler: figs. 3, 4, and 7, by William W. Griftin, under author's direction. Objects all enlarged.

1'IATE XLIX.

Fig. 1. Ahsehna herus, abdomen, domsal view, showing the 11 tergites: c, cercopoda. (1-11).

Fig. 3. Aschna herob, abdomen, vontral riow, the 11th tergite (11) seen from benoath: t, testes; ur, urosternites.

Pig. 2. Aschua heros, alolomen, lateral view,
Willian W. Grifin del.

PLATE I.

Fig. 1. Nischnce heros, aud of femate nblomen, showing the ovipositur: $u r$, urester. nite; or, outer; mr, middle; ir, inner rhabdites or elemonts of the ovipositor; 11, 11th tergite; c, corcopoda; 1 aud 2 , uromores, showing the external genital armature, the tergites widuly separated.
Fig, 2. Eschna heros, wale: pea, penis; tg, tergite: cl, clasper (basirbabdite); ur, urosternite of 2 uromere.

William W. Grillit del.

Fiti. 3. Rschna heros, the sannes, with the tergites closed.
Fig. 4. Agrion rerticale ?, ablomen of male, side view : prn, penis; c, cercopoda.
Fli. 5. Agrion verticale?, abdomen of male, rential view: ur, urostemito.
Fic. 6. Agrion verticale?, abdomen of male, end: 11, 11th torgite.

All the parts eularged.

PLATE LI.

Fig. 1. Hyrmeleon diversum, lead from ahove.
Fig. 2. Myrmeleon diversum, beat fiom bewoath: of, oceipital foranen.
Fig. 3. Ascalaphus longicornis?, head from above; and beneath; epic, epicraninm.
Fiss, 4. Ascaluphis, lesad fiom boneath.
Fig. 5. Kaphidia oblita, lead from above.

Fsi, 6. Raphidia wblita, bead from benenth.
Ifs. 7. Raphidia oblita, head from side; oc, occiput.
Fig. 8. Polystorchotes ncbulosus, beat from above.
Fiti. 9. Pulystochotes nebulosus, head from beneath.
FIG. 10. l'olystorhutes nebulosus, bead from side.

William W. Griffin del. All the fgures drawn enlarged.

PLATELII.

Fig. 1. Corydulus cornutus, head scen from bencath.
Fic. 2. Corydalus cormutu, hend seen from alove:
a. cly, anteclypons; p. cly, post-cly. реия.

Fis. 3. Corydalus cornutus, lead seen sidewise.
Fig. 4. Mantispa brunnea, bead seen sidewise.
Fig. 5. Mantispa brunnca, bead seen from abere.
Fisi. 6. Mantirpa bremet, hend scen from boneatb.

All enlarged. Gisstor del., under anthor's direction.

PL.ITE LIH.

Fig. 1. Adantirpa brunnea, 1st maxilla: c, cardo; at, stipes; l, lacinia; g, gula: p, palpus.
Fig. 2. Iscalaphus longicornis, lst maxilla.
Fig. 3. Myrmeleon divergum, 1 st maxilla.
Flo. 4. Corydalus cornutus, lat maxilth.
Flg. 5. Mantispa brunnea, $2 d$ maxilla (labinm).

Fia. 6. Ascalaphus longieormis?, 2d maxilla (labiumb).
Fig. 7. Ruphidia oblita, ad maxilla (labium).
Fit. 8. Myrmcleon diversum, 2d maxilta (labium).
Fig. 5. Corydelux cornutue, 2d maxilla (labinm).

All enlarged. William W. Grillin dol., muder anthor's dinotion.

EXPLANATION OK PLATES.

PLATL LIV.

Fig. 1. Miyrmeleon diversum, pronotnu.
Fig. 2. Myrmelcon dinersum, mosonotutn.
Fig. 3. Myrmeleon diversum, nuetanotum.
Fig. 4. Myrmeteon diversutm, prosternum.
F1g. 5. Myrmeleon diversum, mesosternum.
Fic. 6. Myrmeleon diversum, metastermim,
Fig. 7. Myrmeleon diversum, proploninm.
Fia. 8. Myrmeleon diversum, incsopleurua.
Fia. 9. Myrmeleon diversum, metapleurum.

Fifr, 10. Faphidia oblita, pronotum.
Fig. 11. Raphidia oblita, mesonotuni.
Flg. 12. Raphidia oblita, metanotum.
Fig. 13. Raphidia ablita, proplenrum.
İtg. 14. Raphitia oblita, mesoplenrnm.
Fig. 15. Raphidia oblita, metaplenrum.
FIG. 16. Raphidia oblita, prostormum.
Fig. 17. Raphidia oblita, mesosternum.
Fig. 18. Raphidia oblita, metastermnm.

All magnified. Williau W. Griftin del., nuder author's direction.

PLATE LV.

Fig. 3. Mantispa brunnea, pronotum.
Fig. 2. Mantispa brunnea, mesonotum.
Fig. 3. Drantiapa brunnca, metanotun.
Fig. 4. Mantispa brunnea, prostornnm.
Fig. 5. Mantispa brunnea, inesostermm.
All enlarged. Willian W. Grifin del.

PLATE LVI.

Fig. 1. Ascalaphus longicornis P, pronotam.
FIG. 2. Ascalaphus longicornis?, mesonotum.
FIG. 3. Ascalaphte longicornis?, metanotum.
FIG. 4. Ascalnphus longicornis?, mesoplenrmm.
Fig. 5. Ascalaphus longicornis?, metapleurum.
FIG. 6. Ascalophus longicornis ?, mesosternum.
Fig. 7. Ascalaphus longicornis?, metastermum.
Fig. 8. Polystochoites nebulosus, pronotum.
Fig. 9. Polystochotcs nebitlosus, mesonotum: w', 18t wings.

All enlarged. William W. Grltin del., muler anther's direction.

PLATE LVII.

Fig. 1. Pteronarcys californica, pronotnm.
Fig. 2. Pteronarcys californica, mesonetum.
Eig. 3. Pteronarcys californica, motanotmm,
Fig. 4. Corydalus cornutus, end of abdomon of male, nuder side.

Fis. 5. Corydalus cornutus, end of abdomen of male, side viow: c, cercopoda; $r h$, Habdite.

Fic. 10. Polystochotes nebulosus, metanotnm: w^{1}, 2d wings.
F'ig. 11. Polystachotcs nebulosu8, mesosterמam.
Fig. 12. Polystochotes nebulosus, metasternnm.
Fig. 13. Polystochotes ncbulosur, pronotum, seen laterally.
Fig. 14. Polystochotes nebulosus, mesoplourum. Fiti. 15. I'olystachotes nebulosies, metaplearnm.

Fig. 6. Mantispa brinnea, metastermum.
Fig. 7. Mantispa brunnea, proplenrunn.
Fig. 8. Mantispa brunnea, mesoplourum.
Fif. 9. Mfantispa brunnea, metaplenrum.
\qquad

Jig. 6. Ascalaphus longicornis $P_{\text {, }}$ abdomen.
Fig. 7. Ascalaphus longicomis P, abdemen.
Fig. 8. Myrmeleon diversum, nbdomon of male, dorsal viow.
Fig. 9. Jfyrmeleon diversum, abdomen of male, lateral view.
Fig. 10. Myrmeleon diversum, nladomeu of male, ventral view.

All enlarged. William Griflin del.

PLATE LVIII.

Fig. 1. Corydalus cornutur, abdoman, dorsal view: c, erreoporla.
Fic. 2. Polystochotes nebulosus, abdomeu, florsal view: c, ercopoda.
Fig. 3. Polystochotes nebulosus, abdomen, ventral view: c, cercopoda.

All eularged. William W. Griffin del., under author's direction.

PLATLE LIX.

Fig. 1. Limncphilus mudicus, head, seen from above: p, labial palpus.
Fig. 2. Limnephilua pudicu8, head, scen from he. neath.
Fig. 3. Limnephilus pudicus, head, sceu from the sikle.
Fig. 4. Limncphilus pudicus: mx, lst uaxilla, luc, lachiat!
Fig. 5. Limnephilıes pudieus, labrum.
All misgrified. Gissler del., under futhor's direetion.
(6)

EXPLANATION OF PLATES.

PLATE LX.

Fig. 1. Panorpa debilis?, head, viow from above.
Fio. 2. Panorpa debilis?, head, view from bencath. Fig. 3. I'anorpa debilis ?, head, view from side.
Fig. 4. Penorpa debilis?, pronstım.
Fig. 5. P'anorpu debilis?, mesonotum.
Fig. 6. Panorpa debilis?, metanotun.
Fic. 7. Panorpa dcbilis ?, proplenrum.

Fic. 9. Panorpa debilis ?, masopleurnm.
Fig. 9. Panorpa debilis ?, wntapleurum.
I'tG. 10. Panmpa debilis?, eud of abdomen from the side; fumale, somewhat com. pressed.
Fig. 11. P'(tnorpa debilis?, end of abdomeu from ahove: c, jointed cercopola.

All eularged. Figs. 1-9 drawn by William W. Grifin; 10 and 11, by C. F. Gissler:

PLATE LXI.

Fig. 1. Limnephilus pudicus, prenetum.
FIo. 2. Limnephilus pudicus, mesonotum.
Fio. 3. Limnephilus pudicus, metauotum.
Fig. 4. Limnephilus pudicus, propleurum.
Fig. 5. Limnephihus pudicus, mosopleurum.
Fig. 6. Limnephilus pudicus, metapleurum.

Fis. 7. Simnephilus pudicue, abdomen.
Fig. 8. Jimnephilus pudicus, ablomeu, ond; dorsal view.
IIg. 9. Limnephilus pudicus, abdomen, and; ventral view.

All enlarged. Gissler del., under author's direction.

PLATE LXIV.

FIG. 1. Corydalus cornutus, proplenram.
Fig. 2. Oorydalus cornutus, mesopleurum.
Fig. 3. Corydalus cornutus, motaplenrnm. Fio. 4. Corydalus cornutus, prosternum.

Fig. 5. Corydalns cornutus, mesosternum.
Fig. 6. Corydalus cornutus, metasternusu.
Fig. 7. Corydalus corntutus, mesonotum.
Fig. 8. Corydalus cornutus, metanotum.

Forpicula,

ORTHOPTERA. HEAD FRONT VIEW.
.
crocephalus.
Anatrus. Grocephalus.

1

Diapheromera.

Grylius.

12
12

14

Periplaneta

Prisopus

Ftoscopia

Blatra
.

Diapheromera

HIRD REPORT, US ENTOMOTOGICAL COMMISSION

 Jskizaitey dee

Troudacris

(i) Caloptenus.

Phaneroptera

Gryllotalpa

> 11

Truxalis.

Proscopis

THIRD REPORT, U.S. ENTOMOLO GICAL COMMISS ION.

PLATE XXXIV.

Phaneroptera.

Caloptenis.

Anabrus.

Tropidacris

Poriplaneta.
a

Diapheromera

7

Proscopia

Phaneroptere

C. spretus.

Caloptenus spretus.

Trupidacris.

Gryllozalpa

Gryllus

Diapheromera.

-

epert III, U. S. Entomologival Commission.
Plate XLII.

-

.
-

1
-

Pthronarcys calmonsic.
,
,
-

Hilhemleta.
-

E1'iemelia.

-

-
-

1-7. Thobax of Ascalajhes.
8-15. POL.s.50:CHOHEL,
\pm
$\%$
,
-
*

1-3. PTERONAHCY. 4,5. CORYHALUS. 6, 7. AsCALAPHLS. \&-10. MYRMELEON.


```
M,
-


, •

\[
\begin{aligned}
& N: 6 \\
& M E^{\prime} I
\end{aligned}
\]




N! 1.


No 2.


NO 3.


No 4.


No 5.



No 7.


No 8.
```


[^0]: ${ }^{\text {ias }}$ Nomenclature of exteinal parts of Aithiropoda. -The following terme have been devised for convenience in anatemical and syetematle work on the Arthropoda, and are submitted for the jutgmont of naturaliete. We havo adopted most of them in a monograph of N. A. Phyllopoda, phbllshed in Hayden'e 'Twolfth Annual Report U. S. Geol. Surf. Terr., 1883.
 The term arthromere, orlglnally employed in the author'e "Gulde to the Study of Iusects," in 1869, Is now restricted te the body-segments of Arthropols, the term zonite or somite being used for the bedy-eegments of worms, etc., as well as Arthropods. The "head," "thorax" and "nblomon" may ho termod respcetively cephalosume, beenosome (Gr. vaino, to walk, lvcometion), and urosome. The headsegmente aro tormed cephalomeres, the theracio eogments beenomeres, wad the abdouninal uromeres. For the antenpo the tem asthopoda, and for the mandibles and maxlla the prevlously used tom gnathopoda is allopted.
 The thoracle loge are termed benopoda, and Westwood's term uropoda, applied by him to the terminal palrs of feet of the Totradocapoda, is extended to all tho abduminal feet of Arthropeds. The bisal abdoninal teet of male Decapoda, melifted as acceseory reproductivo organe, aro termed, for couvenience in descriptivo earcinology, gonopoda, and the jointed anal cerel of certain ineocts aud of Apus are termed cercopoda (xipkos, tall; movis, no6os, foot). The cloments of the ovipositor or eting are throo pairs of hlado-like appendages which are homelognos of the legs; they may thorefore be designated an oöpoda, as they are chiefly concerned in ogg-laying.

[^1]: ${ }^{130}$ Zur Morphologio der Orthoptera amphibiotica. Aus der Festsehift zur Geselisch. Natur forbel. Freunde, 1873.

[^2]: ${ }^{140}$ This name wharús, flat, mrepóv, wlag, in alluslon to the winge which in the majority (the l'socida folding their wings rathor roof-like) fold thoir winge flat on the back. Tholsontara of Brille comprise the Termit her alono.

[^3]: 11 Wo propose the namo Euglossata for the highest insects, comprising those orders whioh, besides having the mouth parts (either the first or sccond maxille, or both) motitied so as to sip, suck or lap up liquill food, also bave the body cylndrieal, and the thorax more or less spherical and concentratod. ${ }^{123}$ 'I his term is proposod for tho Coleoptora, which are aearly oquivalont to tho other superorders, boing r romarkably circumscrihed group.
 ${ }_{103}$ This term is proposed for tho Liemiptera, lu all of which, except the Mallophaga and Phjaapoda (Thrips), tho mouth jarta are mnited to form a sucking beak.
 ${ }^{14}$ This term is proposed for tho Thysanuran apterous Hexapods whioh aro perhaps nearly the morphoiogical equivalents of eithor of the four other superorders.

[^4]: 145 See "Our Common Insects," p. 175, 1873. Also tho Amorican Natnralist, vol. V, Sept. 1871.
 146 We lavo in tho writings just queted called tho secend class of larrio leptiform, but the tosu Thysamurifom, or Brauer's expression Campodea form, is preferable. The Campodon or primitivo Moxapodens form is evidently a derivativo form, which points back to a common six-foeted ancestor of all Trachoata, to which tho term Leptiform may bo applied.

[^5]: ${ }^{132}$ Sitzungsberichte math.-naturw. Clase k. Aknd. Wiss., Wien, 1851. Tafel 1,
 1ss Verhaudlungen k. k. zool.-bot. Geselischaft in Wien, 1871.

[^6]: ${ }^{16}$ Seo the writer's "Guide to the Study of Inseets," pp. 477-479, figa. 447-451.

[^7]: ${ }^{180}$ So wird uns der Staphylinus als eine der ältesten Kaferformen gelten, etc. Betra htungen über die Verwandlung der Insekten im Sinne der Desceudenz-Theorle, ron F. Brauer, Verh. k. k. zool.bot. Ges., Wien, 1860, p. 313.

[^8]: ${ }^{150}$ American Naturalist, F, July, 1871, 288. Sce alao the saue maguzine, Nuv., 1871, p. 707-713.

[^9]: ${ }^{162}$ In Fig. 13, p. 250 of the 1st Report of the Commiesion, thoso parts are wrongly named; the tro. ohantine is the antorior and tho coxa is the posterior piece.

[^10]: ${ }^{153}$ In Acroncuria abnormis the meso- and motascutellum aro not separated by sututo from the scutum.

[^11]: ${ }^{164}$ A large species of Psoms inhabiting coniferons trees in dlaine; kindly ilentified by Dr. Hagen.

[^12]: ${ }^{185}$ A. longicornis $/$ from New Jerser.
 ${ }^{258}$ Tho specimens examined were from Colurado. I תm indebted to Dr. H. Hagen for the identification of tho species.

[^13]: 167 Mantispa brunnea Say, from Utah; identitied by Dr. Hagen.

[^14]: ${ }^{168}$ On sending the specimen, after dlesection, to Professor Hagen, he kindly informs me that it is "perhaps P. delilis Westw."

[^15]: ${ }^{159}$ A common spocies, L.pudicus Hag.; identified by Dr. Magen.
 ${ }^{160} \mathrm{In}$ Neuronia they appear to be neariy of the same form as represented hy Savigny in Prohyganes grandis (Mfemolres sur les Animane sans Vertènes. Il. Y, Fig. 1.) In the pupa the mandibles are mucb largor.

[^16]: *The author has somethes inadvertently used the term urite instead of nrosternite; Lacaze-Duthier's term uite is oquivalent to our uromere.

 The eugraver bas in some oases omitted! tho accents distingnlshing the parts similarly lettered on the plates, but no confuaion is likely to arlse, upon careful examinatiou of the figuros aud comparison with the text.

