Historic, archived document

Do not assume content reflects current scientific knowledge, policies, or practices.
U. S. DEPARTMENT OF AGRICULTURE, bUREAU OF ENTOMOLOGY.
L. O. HOWARD, Entomologist and Chief of Bureau.

TECHNICAL PAPERS ON MISCELLANEOUS FOREST INSECTS.

I. CONTRIBUTIONS T0W ARD A M0N0GRAPH 0F THE BARK-WEEVILS OF THE GENUS PISSODES.

BY

A. D. HOPKINS, Рн. D.,
In Charge of Forest Insect Iniestigations.

WASHINGTON: GOVERNMENT PRINTING OFFICE.

BUREAU OF ENTO MOLOGY.

L. O. Howard, Entomologist and Chief of Bureau.
C. L. Marlatt, Assistant Entomologist and Acting Chief in Absence of Chief.
R. S. Clifton, Executive Assistant.
W. F. Tastet, Chief Clerk.
F. H. Chittenden, in charge of truck crop and stored product insect investigations.
A. D. Hopkins, in charge of forest insect investigations.
W. D. IIunter, in charge of southern field crop insect investigations.
F. M. Webster, in charge of cereal and forage insect investigations.
A. L. Quaintance, in charge of deciduous fruit insect investigations.
E. F. Phillips, in charge of bee culture.
D. M. Rogers, in charge of preventing spread of moths, field work.

Rolla P. Currie, in charge of editorial work.
Mabel Colcord, librarian.

Forest Insect Investigations.

A. D. Hopkins, in charge.
H. E. Burke, J. L. Webb, Josef Brunner, S. A. Rohwer, T. E. Snyder, W. D.

Edmonston, agents and experts.
Mary E. Faunce, preparator.
William Middleton, Mary C. Johnson, student assistants.

LETTER OF TRANSMITTAL.

> U. S. Department of Agriculture, Bureau of Entonology, Washington, D. C., July 25, 1910.

SIR: I have the honor to transmit herewith manuscript of the first part of a bulletin of the technical series to be entitled "Technical Papers on Miscellaneous Forest Insects. I. Contributions Toward a Monograph of the Bark-weevils of the Genus Pissodes," by Dr. A. D. Hopkins. Although the bark-weevils are among the most important enemies of coniferous forest trees, and especially of the young growth, comparatively little has been known heretofore of the species; hence the special need for this contribution as a basis for economic investigations and publications. It embodies the results of extensive systematic work by Doctor Hopkins on new material contained in the collections of the Bureau of Entomology and the United States National Museum and includes the descriptions of twenty-three species new to science.

I recommend the publication of this manuscript as Technical Series No. 20, Part I, of the Bureau of Entomology. Respectfully,

L. O. Howard, Entomologist and Chief of Bureau.

Hon. James Wilson, Secretary of Agriculture.

PREFACE TO BULLETIN.

It is the purpose of this bulletin to include such miscellaneous technical papers on insects, other than the scolytid beetles, as are either injurious or beneficial and of more or less importance in their relation to American forests. These papers are based largely, if not entirely, on original observations and investigations, supplemented by material in the United States National Museum, and serve as a necessary basis for the nontechnical papers on the same insects. As they are intended to be of service especially to the economic entomologist and to the student of forest entomology, they are, as a rule, presented in a somewhat less formal style than if intended for the systematist only.
A. D. H.

CONTENTS

Page.
Introductory 1
Historical references 2
Copy of original description of the genus 3
Translation of original description 3
List of species of Pissodes described previous to 1909 , with recorded distri- bution and host trees 6
Taxonomy 8
Characters used by different authors 8
Subordinal and family characters 8
Tribal and subfamily characters 8
Revisional notes 9
Generic characters 9
Subordinal and family characters 9
Abdominal segments. 9
Revised classification 10
Subordinal to subfamily characters. 11
Generic characters 11
Anatomical details of the adult 12
The head 12
The thorax 17
The prothorax 18
The mesothorax 18
The metathorax 20
The abdomen 20
The wings 21
Internal anatomy 22
Secondary sexual characters 22
The eggs 23
The larva 23
The pupa 25
Host trees 26
General habits 26
General life history 27
General distribution 27
The North American species of Pissodes 27
Natural classification of the species 27
Statistical taxonomy 28
Morphological and physiological characters and characteristics 30
Key to the species 30
Synopsis of adult characters, with descriptions of new species 32
Synopsis of primary sexual characters 37
Synopsis of secondary sexual characters 37
Synopsis of pupal characters 38
The North American species of Pissodes-Continued. Page.
Synopsis of larval characters. 39
Table of distribution. 40
Table showing relations of species to host trees 41
Table of host trees 42
Characters common to the species of the genus 43
Characters common to the species of the major and minor divisions 43
Division I 43
Subdivision A 44
Section al 44
Subsection b1 44

1. Pissodes similis 44
2. Pissodes utahensis 45
3. Pissodes barberi 45
Subsection b2 46
4. Pissodes sitchensis 47
5. Pissodes engelmanni 47
6. Pissodes strobi. 48
7. Pissodes approximatus 49
8. Pissodes schwarzi 50
9. Pissodes canadensis 51
10. Pissodes nemorensis 51
11. Pissodes deodarx 52
12. Pissodes californicus 53
13. Pissodes yosemite 53
14. Pissodes webbi 54
Section a2 55
Subsections b3 and b4 55
15. Pissodes radiatæ 55
16. Pissodes fasciatus 56
Subdivision B 56
Section a3 57
17. Pissodes costatus 57
Section a4 58
Subsection b5 59
18. Pissodes fiskei 59
19. Pissodes nigræ 59
20. Pissodes puncticollis 60
21. Pissodes murrayana 60
22. Pissodes coloradensis 60
23. Pissodes alascensis 61
24. Pissodes rotundatus 61
Subsection b6 62
25. Pissodes burkei 62
26. Pissodes piperi 62
27. Pissodes dubius 63
28. Pissodes fraseri 63
Division II 64
29. Pissodes affinis 64
30. Pissodes curriei 65
List of described species of Pissodes 65
Bibliography 66

ILLUSTRATIONS.

PLATES.Page.
Plate I. Classification of the genus Pissodes, showing technical and common names and species numbers 1
II. Statistical taxonomy of Pissodes 30
III. Adults of Pissodes. Fig. 1.-P. similis. Fig. 6.-P. strobi. Fig. 8.-P. schwarzi. Fig. 15.-P. radiatæ. Fig. 16.-P. fasciatus. Fig. 18.-P. fiskei 68
IV Adults of Pissodes. Fig. 20.-P. puncticollis. Fig. 24.- P. rotundatus. Fig. 25.-P. burkei. Fig. 26.-P. piperi. Fig. 27.-P. dubius. Fig. 29.-P. affinis. 68
V. Larva and pupa of Pissodes. Fig. A.-P. piperi, larva-dorsal, lateral, and ventral aspects. Fig. B.-P. sitchensis, pupa- dorsal, ventral, and lateral aspects. 68
VI. Pygal tergites of the abdomen of Pissodes. Fig. 5, ㅇ.-Tergite 7 of P. engelmanni. Fig. 5, $\widehat{8}$. -Tergites 7 and 8 of P. engelmanni. Fig. 6.-Tergites 7 and 8 of P. strobi. Fig. 7, 8 . -Tergites 7 and 8 of P.approximatus. Fig. 28, 8 .- Tergites 7 and 8 of P. fraseri; Fig. 28, $\%$.-Tergite 7 of P. fraseri. Fig. 29, §.-Tergites 7 and 8 of P. affinis. Fig. 30 , ふ.-Tergites 7 and 8 of P. curriei 68
VII. Female reproductive organs of Pissodes. 68
VIII. Male and female reproductive organs of Pissodes. 68
IX. Male reproductive organs of Pissodes. 68
X. Forks of male genitalia of Pissodes 68
XI. Stems of male genitalia of Pissodes 68
XII. Pissodes fiskei: Work in inner bark and outer wood 68
YIII. Pissodes sitchensis: Work in terminal and top 68
XIV. Pissodes strobi: Work in terminals and tops. 68
XV. Work of Pissodes approximatus and P. nemorensis in bark and wood of small sapling. 68
XVI. Work of Pissodes yosemite and P. schwarzi in bark and wood 68
XVII. Pissodes fasciatus: Work in bark and outer wood. 68
XVIII. Pissodes piperi: Work in bark 68
XIX. Distribution maps of Pissodes. Fig. 1.-P. similis. Fig. 2.- P. utahensis. Fig. 3.-P. barberi. Fig. 4.-P. sitchensis. Fig. 5. $-P$. engelmanni. Fig. 6. $-P$. strobi. Fig. 7. $-P$. approximatus. Fig. 8.-P. schwarzi 68
XX. Distribution maps of Pissodes. Fig. 9.-P. canadensis. Fig. 10. $-P$. nemorensis. Fig. 11.-P. deodarx. Fig. 12.-P. californicus. Fig.13.-P.yosemite. Fig. 14.-P.webbi. Fig. 15.-P. radiatæ. Fig. 16. - P. fasciatus. 68
Fage.
Plate XXI. Distribution maps of Pissodes. Fig. 17.-P. costatus. Fig. 18.-P. fiskei. Fig. 19.-P.nigræ. Fig. 20.-P. puncticollis. Fig. 21. - P. murrayanæ. Fig. 22.-P. coloradensis. Fig. 23.-P. alascensis. Fig. 24.-P. rotundatus. 68
XXII. Distribution maps of Pissodes. Fig. 25.-P. burkei. Fig. 26.- P. piperi. Fig. 27.-P. dubius. Fig. 28.-P. fraseri. Fig. 29.-P. affinis. Fig. 30.-P. curriei 68
TEXT FIGURES.
Fig. 1. Pissodes strobi: Head, ventral aspect, and mouth parts 13
2. Pissodes strobi: Head, dorsal aspect, and mandibles 14
3. Dendroctonus valens: Head, dorsal and lateral aspects 15
4. Dendroctonus valens: Head, ventral aspect, and mouth parts 16
5. Pissodes sitchensis: Head of larva, dorsal aspect 23
6. Pissodes sitchensis: Head of larva, ventral aspect 24
7. Pissodes sitchensis: Head of larva, lateral aspect 25
8. A. Pissodes piperi: Front of head of larva 26
B. Pissodes nemorensis: Front of head of larva. 26
9. Pissodes fraseri: Lateral aspect, showing method of determining indi- vidual index 28

Classification of the Genus Pissodes, Showing Technical and Common Names and Species Numbers. (Original.)

This diagram will enable the reader to refer at once to the technical and common names of any species number mentioned in the text, and will show at a glance the position and relations of the divisions, subdivisions, sections, subsections, series, subseries, minor series, and species into which the genns is divided.

TECHNICAL PAPERS ON MISCELLANEOUS FOREST INSECTS.

I. CONTRIBUTIONS TOWARD A MONOGRAPH OF THE BARKWEEVILS OF THE GENUS PISSODES.

By A. D. Hopkins,
In Charge of Forest Insect Investigations.
\section*{INTRODUCTORY.}

The bark-weevils of the genus Pissodes represent an important class of enemies of pine, spruce, and fir trees. For this reason, in the future management of federal, state, and private forests there will be a demand for information on the species and on practical methods of preventing or reducing the damage from their attacks. Heretofore comparatively little has been known about the North American species, and consequently there has been much confusion in collections and in published information, due to the possession of insufficient facts relating to the destructive characters and habits of the described species, and especially because of the number of undescribed species which have not been recognized or have been wrongly identified.

It is the object of this contribution to revise the generic and specific descriptions, to describe the species recognized by the author as new to science, and to record some of the results of the more technical features of the investigations. This is part of a manuscript on the genus Pissodes which was prepared by the author in 1905, but which, owing to the pressure of other duties, was not completed.

The study of this group of beetles has made it plain to the author that there is urgent need for special work on the rhynchophorous beetles of the world, with a view to determining the more important characters on which to base a satisfactory classification of this important division of the Coleoptera. This is, however, too great a task to be undertaken by any one systematist until the principal genera have been thoroughly studied and monographed by specialists.

For a number of years the writer has given special attention to the family Scolytidæ, with a view to monographing it, and in connection
with this work the genus Pissodes has been studied in some detail and many other genera of the Rhynchophora and other Coleoptera have received attention in order that a broader knowledge of the order, and of the division to which the Scolytidæ belong, might be acquired, but there has been no idea of specializing on any but the Scolytidæ and possibly a few genera, like Pissodes, which are of special interest in connection with forest entomology.

The material which has served as a basis for this bulletin is that collected by the writer between 1890 and 1902, that collected by him and by the assistants in forest insect investigations, Bureau of Entomology, between 1902 and 1907, and that found in the collections of the United States Department of Agriculture and United States National Museum, especially in the Hubbard and Schwarz collection. Studies were made also of good series of specimens of 5 European species sent to the Bureau through the kindness of Dr. R. Heymons and Prof. H. Kolbe, of the Royal Zoological Museum of Berlin, and 3 European species represented in the United States National Museum collection.

The abbreviations adopted in this publication in referring to material in the different collections examined and that identified by the writer are as foliows:
D. A.-Division and Bureau of Entomology, United States Department of Agriculture, Washington, D. C., other than Hopk. U. S.
Hopk. U. S.-Branch of Forest Insect Investigations, Bureau of Entomology, United States Department of Agriculture, Washington, D. C.
Hopk. W. Va.-West Virginia Agricultural Experiment Station, Morgantown, W. Va.
U. S. N. M.-United States National Museum, Washington, D. C.
H. \& S.-H. G. Hubbard and E. A. Schwarz collection in the United States National Museum.
A. M. N. H.-American Museum of Natural History, New York, N. Y.

The author desires to acknowledge in this connection the assistance of Messrs. W. F. Fiske, H. E. Burke, and J. L. Webb in the collecting of material and recording of field obserrations, to Messrs. C. B. Dyar and E. J. Kraus for assistance in compiling the bibliography, and to Mr. J. F. Strauss for assistance in the preparation of the illustrations.

HISTORICAL REFERENCES.

The name Pissodes (pitch-colored) was first proposed by E. F. Germar (1817, p. 340) without description, but to include Rhynchænus bufo Fab., Lixus notatus Fab., and Rhynchænus pini L. Later (Germar, 1824, pp. 316-319) he described the genus, part of which was based on the mouth parts of Pissodes pini and P. notatus, but among the 10 species described only one, P. nemorensis, has been retained. A copy of the original description of the genus and of this species follows:

COPY OF ORIGINAL DESCRIPTION OF THE GENUS.

PISSODES. Genus novum. ${ }^{a}$
Character generis.
[p. 316] Rostrum thoraci subaequale aut longius, teres, scrobe sensim subtus flexa. Antennae pone medium rostri insertae, breves, funiculo septemarticulato, articulis sùbaequalibus. Oculi distantes, immersi. Thorax subtus integer. Scutellum distinctum. Coleoptera oblonga, abdomen et alas obtegentia. Pedes fortes, sub [p. 317] aequales, tibiis apice unco inflexo armatis, tarsis brevibus, latis, articulo penultimo bilobo.

Pissodis corpus oblongum, obscurum, maculis squamosis variegatum. Rostrum thoraci subaequale aut longius, tenue, arcuatum, teres, apicem versus planiusculum, scrobe lineari, sensim subtus flexa, basi rostri subtus connivente.

Antennae pone medium rostri insertae, breves, fractae, scapo recto, parum clavato, funiculo septemarticulato, articulis lenticularibus, 1. 2. sublongioribus, obconicis, clava ovali.

Caput parvum, rotundatum, oculis rotundis, lateralibus, immersis.
Mandibula valida, cornea, tridentata. Maxilla membranacea, intus biloba: lobo majore ovato, ciliato, denticulato, altero parvo, ensiformi, basali. Palpi quatuor aequales, conici. Glossarium corneum, oblongum, basi angustatum, intergerio parvo, basali, ciliato. Inveni instrumenta cibaria in P. pini et P. notato.

Thorax transversus, convexus, apice subito angustatus, coarctatus, subtus pone gulam leviter emarginatus, canali pro receptione rostri nullo praeditus.

Scutellum distinctum.
Coleoptera basi thorace parum latiora, oblonga, convexa, postice callosa, apice rotundata, abdomine haud breviora, alas obtegentia.
[p. 318] Pedes fortes, subaequales, antici approximati. Femora clavata, plerumque dentata, tibiæ parum compressæ, apice intus angulatæ, extus unco magno introrsum flexo armatæ, tarsi breves lati, articulis 1. '2. trigonis, penultimo latiore bilobo, ultimo clavato, biunguiculato.

Degunt species indigenæ in truncis arborum resinosorum, captivi hostem tibiarum unco arcte complectuntur.
([No.] 456) Pissodes nemorensis: femoribus muticis, piceus, thorace punctato rugoso, punctis duobus albis, elytris fulvo-subfasciatis, macula infra medium alba. Habitat in America boreali. (Kentucky.)

Affinis certe P. notato, paullo minor et macula elytrorum alba apici propius. Rostrum thorace longius, punctulatum, piceum. Thorax lateribus parum rotundatus, apice coarctatus, rugoso-punctatus, obsolete carinatus, piceus, punctis duobus disci albo-squamosis. Scutellum albido-squamosum. Coleoptera thorace paullo latiora, et latitudine sesqui longiora, lateribus recta, apice obtuse rotundata, utrinque impressa; convexa, striato-punctata, interstitiis alternis latioribus, elevatioribus, picea, brunneo parum squamosa, fasciis utrinque duabus obsoletis fulvis, posteriore juxta suturam macula alba terminata. Corpus subtus piceum, [p. 319] griseo-squamosum. Pedes picei, femoribus muticis, ante apicem griseo-annulatis.
[TRANSLATION OF ORIGINAL DESCRIPTION.]
PISSODES. New genus.
Generic characters. Beak not quite as long or longer than the prothorax, cylindrical, scrobe noticeably flexed under. Antennæ

[^0] 319, 1824.
inserted behind the middle of the beak, short, funiculus 7 -segmented, the segments subequal. Eyes separate, sunken [impressed]. Thorax entire below. Scutellum distinct. The elytra oblong, covering the abdomen and wings. Feet strong, subequal, tibiæ armed at apex with an incurved hook, tarsi short, broad, the penultimate segment bilobed.

The body of Pissodes is oblong, obscure, variegated with spotcovered scales. The rostrum not quite equal to or longer than thorax, slender, curved, cylindrical, somewhat flattened toward the apex, scrobe linear, noticeably flexed under, in close approximation to the base of the rostrum below.

Antennæ inserted posterior to the middle of the beak, short, elbowed, scape straight, somewhat clavate, funiculus 7 -segmented, the segments lenticular, 1 and 2 somewhat longer, obconical, club oval.

Head small, rounded, eyes round, lateral, sunken [margin impressed].

Mandibles strong, corneous, tridentate. Maxilla membranous, bilobed internally: the larger lobe ovate, ciliate, denticulate, the other small, ensiform, basal. Palpi four, equal, conical. Glossarium [labium] corneous, oblong, narrowed at base, intergerium [ligula] small, basal, ciliate. I have examined the mouth parts in P. pini and P. notatus.

Thorax transverse, convex, the apex slightly narrowed, coarctate, slightly emarginate below behind the gula, not provided with a canal for the reception of the rostrum.

Scutellum distinct.
Elytra slightly broader than the thorax at base, oblong, convex, posteriorly calloused, rounded at apex, not shorter than the abdomen, covering the wings.

Feet strong, subequal, approximate anteriorly. Femora clavate, frequently dentate, ${ }^{a}$ tibiæ hardly compressed, angulate interiorly at the apex, exteriorly armed with a large hook flexed inward, tarsi short, broad, segments 1 and 2 triangular, the penultimate broader, bilobed, the last clavate, with two claws.

The indigenous species live in the trunks of resinous trees; they are able to hold on to the host by the curved hook of the tibia.
[No.] 456. Pissodes nemorensis: Femora shortened, piceous, thorax rugosely punctate, with two white spots, elytra subfasciate with yellow, a white spot below the middle. Lives in North America. (Kentucky.)
It is certainly similar to P. notatus, a little smaller, and the white spot of the elytra near the apex. Beak longer than the thorax, punctulate, piceous. Thorax with the sides somewhat rounded,
coarctate at apex, rugosely punctate, obsoletely carinate, piceous, with two diskiike spots of white scales. Scutellum with white scales. Elytra slightly broader than thorax and half again longer than wide. Sides straight, obtusely rounded at apex, impressed at either side; convex, striato-punctate, the alternate interspaces broader, more elevated, piceous, lightly clothed with brown scales, each with two obsolescent fulvous bands, posteriorly close to the suture terminated with a white spot. Body piceous below, with gray scales. Feet piceous, the femora shortened, annulated with gray before the apex.

Following are the names of the other species described and the genera and species to which they were later referred.

No. 457. Pissodes macellus $=$ Hylobius pales Boh., Sch. Curc., II, 340 .
No. 458. Pissodes choicus $=$ Hilipus choicus $($ Germar $)$.
No. 459. Pissodes onychinus = Hilipus onychinus (Germar).
No. 460. Pissodes flammiger $=$ Hilipus flammiger (Germar).
No. 461. Pissodes picturatus $=$ Hilipus picturatus $($ Germar $)$.
No. 462. Pissodes polymitus $=$ Hilipus polymitus $($ Germar $)$.
No. 463. Pissodes erythrorhynchus $=$ Hilipus erythrorhynchus (Germar).

No. 464. Pissodes prodigialis $=$ Hilipus prodigialis (Germar).
No. 465. Pissodes trachypterus $=$ Hilipus trachypterus $($ Germar $)$.
Schoenherr (1826, pp. 225-226) was the first to subdivide the genus and to designate Pissodes pini (L.) as the type and P. picex (Ill.), P. harcynix (Herbst), P. notatus (Fab.), P. piniphilus (Herbst), and P. nemorensis Germ. as cotypes. Therefore, according to the rules of nomenclature (Stiles, 1905, pp. 26-27), Pissodes pini (L.) must stand as the type of the genus.

It appears that up to 1909 the genus was represented by 21 authentically recognized species, 7 from North America, 9 from Europe, 3 from eastern Siberia, and 2 from Japan, as follows:
inus sylvestris, Pinus strobus, Picea, Larix.

$$
\begin{aligned}
& \text { Pinus. } \\
& \text { Picel. } \\
& \text { Pinus s }
\end{aligned}
$$

Pinus and Larix.

$$
\begin{aligned}
& \text { JAPAN. } \\
& \text {.Japan. } \\
& \text { Japan. }
\end{aligned}
$$

379
 1798, p.

Europe.

TAXONOMY.

CHARACTERS USED BY DIFFERENT AUTHORS.

Beginning with the second division of the Coleoptera or suborder Rhynchophora of most of the authors, the principal characters compiled from Lacordaire (1863), Le Conte and Horn (1876), Ganglbauer (1903), Kolbe (1903), and Bedel (1886-1888), which led up to the family Curculionidæ may be summarized as follows:

SUBORDINAL AND FAMILY CHARACTERS.

Head prolonged into a beak; maxillary palpi rigid, 4-jointed, without palparium (see "Revisional notes," page 9); labial palpi 3-jointed; labrum absent; gular sutures wanting; prosternum with epimera extending across the base (see "Revisional notes," page 9); testicles globular; abdomen always with 5 (visible) ventral segments (see "Revisional notes," page 9); tibiæ without movable spines; pygidium divided (see "Revisional notes," page 9); elytra with strong fold toward inner edge; tarsi dilated, brushlike beneath, third joint bilobed, fourth obscure; mandibles without accessory pieces; antennæ geniculate, clubbed; beak more or less curved.

Continuing through the family Curculionidæ, the principal characters, adopted by one or more of the authors mentioned, which lead up to the subfamilies, tribes, or groups to which the genus Pissodes was referred, are as follows:

TRIBAL AND SUBFAMILY CHARACTERS.

Lacordaire (1863, pp. 442-464): Mentum leaving maxilla exposed; submentum forming a peduncle; anterior coxæ usually contiguous; pygidium covered by the elytra; metasternum more or less elongate; metepisternum at least moderately broad; antennal funiculus 7-jointed; beak variable, with antennal grooves; mesepimerum not ascending toward base of elytra; prothorax with anterior ventral margin usually emarginate. Tribe Hylobiides.

Tarsal claws free; elytra with elevations at base; mesepimerum usually large; body oblong, oval. Group Hylobiides.

Le Conte and Horn (1876, pp. 122, 137): Tibiæ with tooth of outer apical angle small; eyes not contiguous beneath; mandibles with 3 teeth; side pieces of metathorax distinct; lateral angles of first ventral segment not visible; mentum transverse; labial palpi large. Tribe Hylobiini.

Stierlin (1883, p. 403): Tibiæ compressed; inner edge bisinuate with apical hook. Subfamily Hylobiini.

Bedel (1888, p. 65): Tibiæ without distinct groove on the inner edge, but with an incurved apical tooth; ventral segments 2 and 4
with straight sutures; anterior coxæ separated, but without groove for beak; tarsal claws small. Tribe Pissodini.

Nüsslin (1905, p. 110): Beak with antennal insertion near the middle. Subfamily Pissodini.

REVISIONAL NOTES.

generic characters.

The anterior ventral margin of the prothorax is not slightly emarginate in any of the species examined by the writer. The reference to a dentate femur was based on the species of Hylobius and Hilipus. With these exceptions, the original description applies very well to all of the known species.

SUBORDINAL AND FAMILY CHARACTERS.

There has been considerable difference of opinion among systematists as to whether the palpus should be referred to as 4 -jointed or 3 -jointed.

It is evident to the writer that the lateral segment of the maxilla, which has been mistaken for the basal joint of the palpus, is homologous with the palpifer in other Coleoptera and orders of insects, and it would seem, therefore, that the rigid, 3 -jointed palpi should be recognized as one of the important characters to distinguish the true Rhynchophora from the other Coleoptera. It would remove the Anthribidæ and some other groups which, on account of the absence of gular sutures, have been placed with the Rhynchophora, but the writer is inclined to agree with some recent authors that these really do not belong in the Rhynchophora. In representatives of the Curculionidæ, Scolytidæ, and several other families examined by the writer, the maxillary palpus is distinctly 3 -jointed. In some, as in Pissodes, the palpifer closely resembles a basal joint of the palpus, but it joins the stipes and the apex does not extend beyond the base of the galea. Therefore it can not belong to the palpus, but is the part of the body of the maxilla to which the palpus is attached, designated as the palpifer.

ABDOMINAL SEGMENTS.

The abdominal tergites 7 and 8 have been referred to by various authors as the pygidium, propygidium, divided pygidium, etc. Indeed, the terms "pygidium" and "propygidium" have been extensively used in systematic entomology, and there is a very general lack of uniformity in their application to the apical or subapical tergite without regard to their numerical relation. There seems to be serious objection to this general application of these terms in classification, from the fact that in comparative anatomy
they have no meaning. Therefore in the use of the terms "pygidium" or "propygidium" it is important that the numerical position of the tergite should be mentioned.

In the Curculionidæ, for instance, tergite 7 of the female occupies the pygal position, while tergite 7 of the male occupies the propygal position, and tergite 8 the pygal. In the Curculionidæ, Scolytidæ, and many other Coleoptera abdominal tergite 7 is by far the most important of the series, owing to the fact that it presents important characters of structure, sculpture, stridulating accessories, sex, etc. (see Plate VI).

There is also some confusion with reference to the abdominal sternites, or ventral segments. The 5 segments often referred to as the first to fifth are the sternites of the third to seventh abdominal segments, the first and second being obscured by the coxal cavity (Hopkins, 1909, fig. 38). Therefore they should be referred to either in their proper numerical order or as the 5 visible abdominal sternites.

REVISED CLASSIFICATION.

It appears to the writer that it would contribute to a more convenient and natural arrangement if we would give the Curculionidæ of most authors the rank of superfamily, and thus promote the old subfamilies and tribes to families and subfamilies. Thus the genus Pissodes would fall in the superfamily Curculionoidea, family Curculionidæ, and subfamily Pissodinæ.

The subfamily Pissodinæ would come next to the group of genera comprising the subfamily Hylobiinæ. The two subfamilies are characterized as follows:

SUBFAMILY HYLOBIINA.

Anterior coxæ contiguous; prothorax with anterior ventral margin emarginate and produced toward the sides; beak stout, with antennal insertion in front of middle or toward the tip; eyes oval; tibiæ without tooth on inner apical angle. The North American genera of this subfamily are distinguished as follows:
I. Metasternum very short... Paraplinthus.
II. Metasternum long.
A. Tibiæ with outer apical angle dilated........................... . . Pachylobius.
B. Tibiæ with outer apical angle not dilated.
a1. Tibiæ commonly narrowed toward tip....................... Hilipus.
a2. Tibiæ not narrowed toward tip.
b1. Femora not toothed.. Hypomolyx.
Eudocimus.
b2. Femora toothed... . Hylobius.

SUBFAMILY PISSODINA.

Anterior coxæ slightly separated; prothorax with anterior ventral margin not emarginate or produced toward sides; beak usually slender, with antennal insertion at or toward middle; eyes rounded; tibiæ with tooth on inner apical angle.

Metasternum long, femora not toothed.
Pissodes.

SUBORDINAL TO SUBFAMILY CHARACTERS.

Head behind the eyes without gular space; maxillary and labial palpi rigid, 3 -jointed; labrum wanting or obscure.

Suborder Rhynchophora.
Beak or rostrum prominent; elytra with lateral fold or groove; abdomen of sexes with different number of tergites (8 in the males, 7 in the females); tarsi with fourth joint obscure, third bilobed, ventral surface of first to third densely clothed with fine velvety hairs, fifth

Gular peduncle (submentum) usually long; antennæ 11-jointed, geniculate Family Curculionidæ.
Prothorax with anterior ventral margin not distinctly emarginate; tibiæ with incurved apical tooth; femora unarmed; anterior coxæ not widely separated; abdominal tergites covered by the elytra; sternites 3 and 4 (1st and 2nd visible) very long, 5 and 6 short, 7 as long as 5 and 6 together; eyes rounded, widely separated.

Subfamily Pissodinæ.

GENERIC CHARACTERS.

Length, ranging from 3.7 to 10 mm .; body oblong, reddish brown to black, sparsely to thickly clothed with slender to broad scales, the latter often forming spots on the pronotum, elytra, and femora.

Pronotum variable; broader than long, rarely as long as broad, narrowed in front of middle and usually constricted toward head; posterior angles rounded, rectangular or acute; punctures of dorsal surface with intervening flat or elevated contiguous spaces which sometimes obscure the punctures.

Elytra variable, more than as long again, with the base as broad or slightly broader than the pronotum, the sides parallel or slightly narrowed posteriorly, and slightly constricted on each side of the declivity; interspaces convex to flat, the alternating ones often broader and more elevated; punctures of striæ regular or irregular in size. Declivity oblique, the third and ninth interspaces joined around a distinct impression at the apex of the fourth, seventh, and eighth interspaces; fifth strongly elevated at the vertex. Apex of each elytron rounded or subacute; striæ distinctly punctured.

Head (figs. 1, 2) behind the eyes globular, about one-half maximum width of prothorax, smooth, punctured, slightly impressed between the eyes and with a few scales on the front toward the margins of the eyes.

Beak slender, cylindrical, punctured, as long as prothorax or longer, with sides parallel or slightly narrowed toward middle, or slightly broader toward base of mandibles. Antennal insertion at or toward middle and the antennal groove beginning just in front of insertion and extending almost parallel with ventral margin to near eyes.

Antennæ (fig. 1).-Scape shorter than funicle, which is 7-jointed; first joint about as long as secend and third together; second to seventh of about equal length, but slightly increasing in width toward club; first joint of club large, much longer on one side, and sparsely clothed with short hairs and long bristles; other joints of club slightly more flattened on one side, more densely clothed with fine hairs, and the sutures as shown in figures 1 and 2.

ANATOMICAL DETAILS OF THE ADULT. a

THE HEAD.

The generic characters and anatomical details of the external skeleton and appendages of the head are shown in figures 1 and 2. When compared with the head of a scolytid beetle (figs. 3, 4), it is plain that the subordinal characters are common to both, but further than this there are certain features which at once refer them not only to different families but, in the writer's opinion, to different divisions of at least superfamily rank.

Mouth parts.-The labrum and clypeus are not represented, and the epistoma is only represented externally by a smoother area faintly defined by an obscure line and lateral bristles. As usual, the lateral angles, or area, support the dorsal articulation of the mandibles. The hypostoma also is obscurely defined externally, but is represented by the thickened declivous anterior margin of the ventral wall of the beak, by the sides of the submentum, and by a somewhat irregular apodeme, the anterior angles of which support the ventral articulation of the mandibles, the middle supporting the maxillary cardo, the inner anterior angle produced along the lateral area of the submentum, and the posterior angle ending just beneath the large hypostomal puncture. Thus the hypostomal area is that part of the ventral wall of the rostrum which lies anterior to the indistinct limit of the pregula. The pleurostoma is represented by the convex area surrounding the large mandibular scrobe. The solid submentum, or "gular peduncle" of authors, is evidently homologous with the bifid

[^1]submentum in Dendroctonus. Its apex is truncate or rounded, and supports the labium, the mentum of which is about as long as the

Fig. 1.-Pissodes strobi: Head, ventral aspect, and mouth parts. A, Ventral aspect of apical region of beak; B, ventral aspect of head; C, interno-lateral aspect of maxilla; D, externo-lateral aspect of maxilla; a, apical tooth; b, subapical tooth; c, lateral arm of hypostoma; d, pleurostoma; e, mandibular scrobe; f, hypostomal area; g, lacinial bristles; h, antennal groove; i, joints; j, fossa of cardo; k, hypostomal puncture. (Author's illustration.)
submentum and a little broader. The labial palpifer is not defined, but is represented by the anterior third of the mentum. The labial
palpi are stout, conical, and 3-jointed, and not so long as the mentum, the first and second joints of about equal length and the third short.

Fig. 2.-Pissodes strobi: Head, dorsal aspect, and mandibles. A, Dorsal aspect of left mandible; B, ventral aspect of left mandible; C, dorsal aspect of head; a, apical tooth; b, subapical tooth; c, median tooth; d, molar; e, median condyle; f, lateral muscle process; g, lateral condyle; h, lateral fossa; i, extensor tendon; \boldsymbol{j}, pharyngeal bracon; k, retractor tendon; l, ventral area; m, dorsal area; n, median condyle; o, anterior fossa; p, anterior section of beak; q, posterior section of beak; s, dorsal area; t, anterior condyle; u, lateral fossa. (Author's illustration.)
The ligula is narrow and clothed with long bristles rising from the inner anterior margin of the mentum.

The form and relative proportions of the maxillo are shown in figure 1, C, D, and in place in A. The cardo is short and stout, and articulates with the hypostomal apodeme. The extensor, flexor, and other muscles of the cardo, maxilla, and labium are attached to the

Fig. 3.-Dendroctonus valens: Head, dorsal and lateral aspects. A, Dorsal aspect of head; B, lateral aspect of head; C, dorsal aspect of right mandible; D, ventral aspect of right mandible; a, dorsal area; b, dorsal impression; c, anterior condyle; d, median fossa; e, median condyle; f, posterior fossa; g, basal ridge; h, apical tooth; i, acute margin; j, subapical tooth; k, median tooth; l, molar; m, anterior condyle; n, median fossa; o, posterior condyle; p, lateral area; r, dorsal bristles of mandible; s, lateral bristles of mandible; t, epistomal bristles; u, lateral angle of epistoma. (Author's illustration.)
inner ventral wall of the beak in a median triangular space between the hypostomal punctures and converging to a point near the anterior limit of the pregula. The stipes is clearly defined as a subbasal piece articulating with the cardo and joined to the palpifer and subgalea
by distinct sutures, and in this respect is very different from that in Dendroctonus, in which it is fused with the palpifer and subgalea. The maxillary palpifer is large and stout and from an interno-lateral

Fig. 4.-Dendroctonus valens: Head, ventral aspect, and mouth parts. A, Labium; B, maxilla, internolateral aspect; C, same, externo-lateral aspect; D, hypostomal region, dorsal aspect; E, head, ventral aspect; a, basal fossa of mentum; b, joints; c, basal membrane; d, palpiferal area; φ, stipal area; f, subgalear area; g, fossa; h, muscle processes; k, median condyle; l, lateral fossa; m, anterior condyle; n, median fossa; o, posterior condyle; p, hypopharyngeal bracon; q, submental process; r, maxillary coṇdyle; s, gular apodeme; u, oral foramen; v, occipital apodeme; w, postgular piece. (Author's illustration.)
aspect is longer than the stipes and cardo together and inuch longer than the palpus. It is separated from the subgalea and stipes by distinct sutures, and resembles a very large first joint of the palpus.

The subgalea, galea, and lacinia are represented by one broad lobe without even the indication of sutures separating the lacinia from the subgalea as in Dendroctonus. The interno-lateral face and internal margin of the lobe are armed with stout lacinial teeth, while the externolateral face is clothed with bristles and hairs, those of the posterior angle being very long and curved. The palpus is stout, conical, 3 -jointed, shorter than the palpifer, joints 1 and 2 of about equal length and 3 shorter.

The character of the mandibles is shown in figure $2, A$ and B. They are stout, subrectangular, and without a scar on the "outer surface." The inner edge has 3 prominent teeth; the apical, subapical, and median teeth are stout, triangular, and about equal in size, the molar not represented. The outer lateral area is deeply impressed at the base of the lateral muscle process, which is long and broad. The ventral articulation has a simple median "ball" condyle, while the dorsal articulation has a median "ball" condyle surrounded by a deep fossa. The extensor and retractor muscles are attached to the inner wall of the cranium, and are connected to the mandibles by long, very slender, subchitinous tendons (fig. $2, i, k$). The pharyngeal bracon is also long and slender, and apparently subchitinous, thus serving as a rigid support or brace to the lateral wall of the pharynx.

The characters of the antennx are shown in figures 1 and 2. The scape is slightly shorter than the funiculus, and the club is about half as long as either one. The funiculus is 7 -jointed; joint 1 is about as long as joints 2 and 3 together; joints 2 to 7 are of about equal length and increase slightly in width toward the club. The club is subcylindrical, ovate, acuminate, with apex subacute and with 5 obscurely defined joints. Joint 1 is much longer on one side than on the other and sparsely clothed with short hairs and long bristles; the remaining 4 are about equal in length, slightly more impressed on the anterior face, and densely clothed with fine hairs which obscure the sutures; the sutures, according to the point of view, may be oblique, transverse, recurved, or procurved.

The pregula is clearly defined in the ventral area of the rostrum. The sutures diverge anteriorly from their junction with the median gular suture near the base of the rostrum. The pregena is represented by the longitudinal area between the pregular suture and the antennal groove.

THE THORAX.

The thorax, as is usual, consists of 3 distinct segments (fig. 9, p. 28). The prothorax articulates freely with the mesothorax, but the mesothorax and metathorax are firmly connected. The combined length of the sternal areas of the three thoracic segments is slightly greater than that of the sternal area of the abdomen, while the com-
bined length of the dorsal or tergal areas of the thoracic segments is also slightly greater than the tergal area of the abdomen. The pronotum is slightly longer than the mesotergum and metatergum together. The prosternal area is much longer than the mesosternal and about equal to that of the metasternal area. The metapleura show the same relative proportions as the sterna, and together are much longer than the abdominal pleura. The anterior dorsal margin of the pronotum is not greatly extended beyond that of the sternum, as it is in Dendroctonus; the posterior margin of the metatergum is but slightly extended anteriorly beyond the posterior ventral margin of the same segment, but it is much in advance of the posterior margin of the metapleura. (For a discussion of the divisions of the thoracic segments of insects and of the nomenclature, see Hopkins, 1909, pp. 23-35.)

The Prothorax.

As is usual in the rhynchophorous beetles, the tergal, pleural, and sternal areas are fused into a continuous band. In addition to the preceding description of the pronotum there is usually a median elevated line extending from the anterior impression to the posterior margin, and each side of this line toward the middle there are two distinct impressions filled with whitish or yellowish scales, thus forming distinct subdorsal spots. There is also a broad, posterior, dorsal impression near the posterior margin. The lateral areas are usually marked with spots of scales, which are more or less distinct and variable in size and form. The anterior margin is usually evenly curved, but is sometimes slightly emarginate. The anterior ventral margin is never emarginate or distinctly produced toward the sides. The posterior dorsal margin is slightly bisinuate, and the posterior and lateral declivities of the notum are vertical. The posterior ventral margin is elevated and uniformly curved. The episternal and epimeral areas are not indicated by surface sculpture, but the preepisternal area is plainly indicated by a transverse elevation anterior to a distinct transverse pleural groove. This groove also extends across the sternal area and thus defines the presternal area, which is strongly convex. The sternum is flat to subconvex, subdeclivous, the posterior section terminating in an acute point between the coxæ. The sternellum is represented by a small but distinct intercoxal piece and the poststernellum ("epimerum" of authors) by the narrow posterior area which incloses the coxæ. The coxal cavities are large, with the inner margins but slightly separated.

The Mesothorax.

The mesothorax is short and partially hidden from view by the prothorax, which covers the anterior third of the sternites, pleurites, and tergites, while the base of the elytra normally covers the posterior
areas of the tergites, leaving only the scutellar process or scutelltrm exposed between the basal angles. This process is densely clothed with white or yellow scales.

When the prothorax and elytra are removed the mesotergum is found to be rectangular in form; the prescutum is clearly defined as a convex strongly chitinized notal plate, occupying about two-thirds of the tergal area. The anterior margin is acutely emarginate and the anterior angles strongly produced. The prephragma is strongly flexed beneath the posterior dorsal area. The scutum appears to be represented by a narrow dorsal area between the median process of the scutellum and the posterior limit of the prescutum, and by the lateral submembranous areas between the oblique lateral margin of the prescutum and the scutellum. The scutellum is represented by the prominent median process and laterally by the chitinous piece just posterior to the scutal area. The postscutellum is represented by the subventral and flexed margin of the scutellum and by a slender lateral arm.

Mesopleura.-The episternum, preepisternum, epimerum, and postepimerum are all clearly defined. The preepisternum is similar to that of Dendroctonus. It is nearly as large as the episternum, narrowed toward the sternum, and very broad toward the opposite extremity, where it projects over the anterior dorsal angles of the episternum and epimerum. The surface is testaceous and opaque. Its posterior margin is clearly defined by a distinct but narrow lateral impression, which is densely clothed with fine whitish scales. The anterior is strongly declivous, concave, shining, and the preepisternal process is prominent and broad, but not stout as it is in Dendroctonus. The oblique ventral margin is thickened, but the posterior dorsal section is very thin and without a distinct arm connecting it with the articulating condyles. In this respect and in the strongly dilated dorsal section the preepisternum is very different from that in Dendroctonus. The episternum forms an isosceles triangle with the anterior dorsal margin narrowly produced and disappearing beneath the dilated end of the preepisternum. The ventral and posterior angles are equal and acute. The surface is coarsely punctured and, as is common over the entire ventral area of the body, each puncture bears a broad scale. The epimerum is narrow, oblique, and broad at its junction with the anterior dorsal angle of the metepisternal plate. The ventral end is truncate, while the dorsal end is strongly narrowed and produced forward beneath the preepisternum, where it joins with the angle of the episternum to form the articulating processes. The postepimerum is narrow, declivous, and shining.

The mesosternal area is short, with the anterior margin bisinuate, the intercoxal piece elevated and truncate at apex, and the exocoxal pieces distinct. The preepisternum is represented by a narrow shining
area, but the sternellum and poststernellum are not represented by external areas. The coxal cavities are not widely separated. The mesothoracic spiracle is large and situated near the ventral edge of the preepisternal process where it is covered by the prothorax.

The Metathorax.

The metatergum is quite similar in general character to that in Dendroctonus (Hopkins, 1909, fig. 20); it is shorter and broad, and the postscutellum is very short and declivous. The membranous area of the prescutum is broad. The dorsal band is narrower. The scutellar groove is broad but less produced anteriorly. The metatergal costr are not elevated above the scutum. The prescutal lobes are less prominent and the pleural hooks of the postscutellum are long and slender. Internally the median apodeme is more oblique and more acutely joined to the anterior apodeme. The longitudinal ridges formed by the deep lateral impressions of the scutellar groove are much more prominent and continuous from the anterior apodeme to near the posterior margin. The basal area of the wing and the articulating accessories are similar to those in Dendroctonus, differing only in minor details.

The metapleura are also similar to those in Dendroctonus, except that the episternum is narrower, the anterior ventral angle more produced and acute, the posterior end narrowed, and the exposed triangular plate of the postepimerum longer. The chitinous area of the epimerum is narrow, while the submembranous area or postepimeral area is correspondingly broad. The pleural clavicula is very long and the clavicle and coracoid processes are distinctly separated.

The metasternal area is a third longer than the mesosternal and twice as broad as long, without a median longitudinal groove, but with a median impression toward the posterior margin of the sternum proper. The sternellum is represented by an intercoxal piece covered by the median process of the abdominal sternite, and flexed beneath this is a plate which evidently represents the poststernellum. The coxal cavities are very large, widely separated, and suppress the first and second abdominal sternites. The metathoracic spiracle is situated in an open space between the metapleural clavicula and the mesepimerum.

THE ABDOMEN.

Tergites.-The abdominal tergites increase slightly in length from tergite 1 to tergite 4, inclusive, and also become more uniformly subchitinous; 5 and 6 are shorter than 4 , and 6 is more membranous and has a pair of membranous lobes which are absent in the five preceding tergites; 7 and 8 are chitinous and clothed with short hairs. The epipleurites are membranous and quite clearly defined in living examples. The spiracle of segment 1 is very large, as usual, and the
others diminish slightly in size to and including the seventh. Spiracle 8 is evidently not represented. The character of abdominal tergites 7 and 8 in the males and females of different species is clearly shown in Plate VI. It will be noted that they are quite different from the corresponding tergites in Dendroctonus, both in form and vestiture. In those of Pissodes two or three hairs rise from each puncture instead of one, as in Dendroctonus, and in tergite 7 of the male the middle section of the posterior margin is broadly retuse, with the principal stridulating scrapers on the subacute lateral angles. In the female the posterior margin of tergite 7 is broadly rounded. The sensory tubercles in tergite 7 of both sexes appear to be of considerable taxonomic importance, especially in their number and arrangement.

Sternites.-The characteristic form and relative proportions of the abdominal sternites are shown in fig. 9 (p.28). The intercoxal process of sternite 3 (first visible sternite) is broad, with a slightly produced acute apex. In addition to the description of the abdominal sternites on page 10 , suture 3 (or the first visible suture) is bisinuate, with the middle section strongly curved forward. Sutures 4,5 , and 6 continue straight to the lateral margin. The apex of sternite 7 in the males is variously sculptured, as described in the synopsis of secondary sexual characters. Sternite 8 in the males (Plate IX, f) is small, separated in two sections, and forms the so-called genital plate, while in the females (Plate VII, c) it is solid and evidently fused with tergite 9 , which is evidently represented by the chitinous rod on apodeme d, and the fork j.

The hypopleurites are completely covered by the elytra; 1 and 2 are fused with the anterior end of 3 . The sides of 3 and 4 are nearly vertical and have the dorsal edges acute, to fit into the posterior lateral groove of the elytra; 5, 6, and 7 are oblique and increase in width to and including 7 , the posterior margin of which is obliquely curved to fit around the lateral section of tergite 8 in the male or 7 in the female.

THE WINGS.

Mesothoracic wings (elytra).-In addition to the description on page 11, the mesothoracic wings, or elytra, have each 10 striæ and 11 interspaces, the latter including the costal and anal margins. The costal edge is deeply grooved for the reception of the produced dorsal edge of the metepisternum in the anterior section and of hypopleurites 3 and 4 in the posterior section. Beginning near the posterior end of this groove and extending obliquely to the apex there is a triangular area on the inner face of both elytra, which in the male is finely sulcate and serves as the stridulating rasp, while in the female the surface is roughened, with irregular elevations, apparently not available for producing sound. The subacute lateral angles of abdominal tergite 7 of the male evidently serve as the stridulatory scrapers.

Metathoracic wings.-The metathoracic wings are similar to those of Dendroctonus, but are at once distinguished by the two branches faintly connected with an evident cross-vein between the media and cubitus. The writer has not made a sufficient study of the modification of the veins in coleopterous wings to warrant anything more than the provisional interpretations indicated in the recently published figure (Hopkins, 1909, fig. 1).

INTERNAL ANATOMY.

The only parts of the internal anatomy that have been studied in detail by the writer are the reproductive organs of both sexes, which are of special interest, both from a systematic and from an economic point of view. These present taxonomic characters of last resort in the determination of the species. Those of the female are of interest from the fact that it is claimed that individuals must attain an age of several months before the ovaries are sufficiently matured for the development of eggs; also, that a single copulation may suffice for a long period; therefore it is important in our economic studies to be able to readily recognize the sexes and the approximate age of specimens collected at different times. The details of the male reproductive organs are shown in Plates VIII to XI, and require little explanation in addition to that given in the legends and synopsis. It will be seen that there are specific differences in the main body or stem (Plate XI), as well as in the fork (Plate X). The organs of reproduction in a very young female are shown in Plates VII and VIII, the parts of which are fully explained in the legends.

The profile of the abdomen (Plates VII and IX, A), with the parts in situ, shows the relation of the ventral and dorsal segments and genital plates to the different parts of the reproductive organs, certain parts of which are evidently direct modifications of the ninth and tenth dorsal and ventral segments. The figures are intended to illustrate the main features and are in some respects subdiagrammatical.

SECONDARY SEXUAL CHARACTERS.

Females.-In the females there are but 7 visible abdominal tergites, the eighth being completely covered by the seventh, which forms the pygidium. The beak is longer, smoother, and more slender than in the males. The apical or seventh abdominal sternite is usually shorter than the two preceding sternites together, which are usually less convex and more evenly punctured. The inner apical tooth of the tibir is also smaller.

Males.-In the males there are 8 visible abdominal tergites; the seventh is distinguished by the broadly retuse posterior margin, while the eighth is prominent, with the apex broadly rounded, and forms the pygidium. The abdominal sternites 3 and 4 are more con-
rex than in the female, less evenly punctured and more shining toward the middle. The beak is stout, shorter, less shining. and more distinctly punctured. The inner apical tooth of the tibiæ is usually more prominent.

THE EGGS.

The eggs are pearly white, slightly oblong, and equally rounded at both ends.

THE LARVA. ${ }^{*}$

The larva (Plate V, A) is yellowish-white crlindrical. footless, with 3 thoracic and 9 distinct abdominal segments, the anal lobes representing the tenth; the thoracic segments not distinctly larger than the first abdominal. The hairs of the second prothoracic segment to the seventh abdominal segment are small and obscure ; those of the head, first prothoracic, and eighth and ninth abdominal are longer and more conspicuous. The first thoracic segment has a shining dorsal plate and sometimes a distinct sternal plate. The ventral lobes of the three thoracic segments have inconspicuous foot calli, each with fine, erect hairs. The first thoracic segment has a distinct spiracle; the second and third segments are without spiracles,

FIG. 5. --Pissodes sitchensis: Head of larra, dorsal aspect. a, Eye spot; b, frontal suture; c, subdorsal stripe; d, median line: ϵ, epicranial suture. (Original.) but the spiracles are distinct in the first to the eighth abdominal, and are round and not oblong or oval, as in Hylobiinæ.

The head (figs. 5-8 and Plate Y, A).-The head is light brown, the anterior margin and mandibles much darker. When remored, it is as broad as long (not including the mandibles). narrower in front than at middle, the sides broadly rounded from middle to apex, which is somewhat angular. The sides are nearly straight from the middle to the anterior angles, and the lateral area has an oblique, longitudinal, lighter area or stripe: the epicranial and frontal sutures are distinct and much lighter in color in fresh specimens. There are also 2 short, narrow, longitudinal stripes rising from the

[^2]frontal suture. The anatomical details are very similar to those of Dendroctonus. The frontal area is triangular, with a distinct median line from the apex to or beyond the middle. The sutural margins are irregular or sinuate. The normal arrangement of the hairs is shown in figure 8. The antennæ are very small, conical, 1-jointed, and situated at the anterior extremity of the frontal suture. The epistoma is represented by the thickened anterior margin of the front, with which it is fused. It is usually darker in color, with the anterior margin declivous and nearly straight, and the lateral angles slightly produced and elevated where they support the dorsal articulation of the mandibles. The pleurostoma is represented by the thickened declivous area surrounding the mandibular foramen.

Fig.6.-Pissodes sitchensis: Head of larva, ventral aspect. f, A pical papilla of labrum; i, labial hooks; l, gular plate; m, gular area; n, location of gular apodeme; o, submental lobe. (Original.) The mandibles are rather stout, triangular, with 3 teeth on the anterior half of the inner edge. The apical tooth is usually acute, the subapical acute and near the apex, and the third or median tooth obtuse, emarginate, or triangular; usually the basal or molar tooth is not represented. The articulation is quite similar to that in larvæ of Dendroctonus. The dorsolateral area of the mandible has a small impression and short bristle. The eyes are represented in some species by minute black spots beneath the exoskeleton, but apparently without lenses. The maxillæ (fig. 6) are much longer than broad, with a distinct cardo, and the stipes, palpiger, and inner lobe are fused into one piece; the lateral area is elevated toward the base, as seen in balsam and when removed from the head. The palpi are 2-jointed, and the inner face of the lobes is armed with stout lacinial teeth. The labium (fig. 6), ventral aspect, has a large, membranous submental lobe (o) attached to and contiguous with the integument of the prothoracic sterna and laterally to that of the maxilla; it is also attached by ligaments to the intergular plate. The mentum is represented by a median triangular chitinous plate near the middle of the submentum. The mentum, palpifer, and ligula are fused, and the palpi are short, conical, and 2-jointed; the inner part of the ligula is membranous and contiguous with the pharynx. The arrangement of
the hairs on both the maxillæ and labium, as shown in figure 6 , is characteristic and quite constant. The clypeus (fig. 5) is broad at base, the sides narrowed to the apical angles, and slightly to distinctly longer than the labrum. The labrum (fig. 5) is more chitinous, about three times as broad as long from apex of clypeus, the ventral posterior margin angular, and extending beyond the margin of the clypeus. The labral hooks are distinct (in balsam mounts), only slightly longer than the labrum, and, as usual, support the anterior portion of the epipharynx. An examination of the larvæ of 14 species showed that there is considerable specific variation in the form and proportion of the frontal area, clypeus, labrum, and mandibles. The last have characters of some divisional and subdivisional value, but the characters have not been sufficiently studied to present them in tabular form for the identification of the species. Certain characters common to one or more species of a division are given in a provisional synopsis on page 39.

THE PUPA.

(Plate V, B.)
An examination of the pupæ of 6 species of the first division and 3 species of the second division shows that the following characters are common to all: The apex of the posterior tarsus is even with the apex of the wing pad; the apex of the antenna extends toward the middle and in front of the anterior femur, but does not rest against it or touch the wing pad; the anterior, middle, and posterior femora have each 2 minute subapical spines; the head has 2 prominent spines toward the vertex, 2

Fig. 7.-Pissodes sitchensis. Head of larva, lateral aspect. b, Frontal suture; c, subdorsal stripe; o, submental lobe; p, lateral stripe. (Original.) smaller ones on the sides toward the eyes, and 2 small ones each side of the front between the eyes, and usually 3 pairs of smaller ones on the beak between the frontal ones and the base of the antennæ; the prothorax has 3 pairs of dorsal spines, one pair moderately closely placed on or toward the anterior margin, one widely separated pair on the median area, and the other pair situated toward the base and still more widely separated; the lateral area has 2 closely placed spines near the middle, and the basal angle has an oblique row of 3 spines; the mesoscutum and metascutum have each 2 rather closely placed spines on each side of the median space; the abdomen has 8 distinct dorsal tergites, and the dorsal area of each is armed with 2 spines, which slightly increase in prominence from the first segment to the sixth or seventh. In
some species there are alternating smaller, less regular spines between the dorsal and lateral ones. The lateral area of each tergite is armed with two spines and the epipleural lobes are each also distinctly or obscurely armed with one or two spines, and the ninth segment, as usual, is armed with two prominent pleural spines. (See Hopkins, 1909, figs. 37, 38, for anatomical nomenclature.)

HOST TREES.

The host trees of Pissodes are. so far as known, restricted to the conifers, and include

Fig. 8.-A: Pissodes piperi, front of head of larva. b, Frontal suture; c, suldorsal stripe; d, median line; ϵ, epicranial suture; f, apical papilla; g. lal,ial bristles; h, clypeal hristles; i, labral hooks or epipharyngeal bracons; j, epipharyngeal papilla; k, œsophagus. B: Pissodes nemorensis, front of head of larra. Nomenclature same as in A. (Original.) Pinus, Picea, Abies, Larix, Pseudotsuga, and Cedrus. Some of the species infest both living and dying or newly felled trees, while others appear to confine their attack to those which are sickly, dying, or felled. Some of them infest the living terminals and upper branches, others the upper or middle, stem, or base; some prefer to infest the thick bark of large trees, while others show a preference for the thinner bark of saplings and poles. (See table, pp. 41-42.)

GENERAL HABITS.

The eggs are deposited in cavities excarated by means of the beak in the outer or inner portion of the inner bark. Some species deposit one or two eggs in a single cavity, while others deposit many. The larræ obtain their food from the inner bark through which ther extend their irregular mines (Plates XII to XVIII), and when they have completed their development
they excavate transformation cells, or pupal cases, in the outer portion of the wood, or, rarely, in the inner bark. These cells are inclosed by a thick covering of excelsior-like wood fiber, forming the so-called "chip cocoons," which are perhaps a more characteristic feature of the species of this genus than of any other.

GENERAL LIFE HISTORY.

The characteristic features in the life history of the species are the long life of the adult, the slow sexual maturity, the long period in which eggs may be deposited by a single female, and a single generation annually. In some species the broods develop within two or three months after the eggs are deposited, while in others it requires a longer period. The adults of some of the species emerge from the bark and hibernate in the ground, while others pass the winter in the bark.

GENERAL DISTRIBUTION.

The genus is represented in all sections of the United States characterized by natural growth of their host trees, and in other sections where such trees have been introduced to a sufficient extent to support them. (See table, pp. 40-41.)

THE NORTH AMERICAN SPECIES OF PISSODES.

NATURAL CLASSIFICATION OF THE SPECIES.

In the following key and synopses (pp. 30-38) an attempt is made toward a natural classification of the species of Pissodes into primary and secondary divisions, sections, series, etc., according to characters which indicate lines of specialization and natural affinities. It will be noted that the general modification, as in most Curculionidæ, is from a short or stout beak to a longer or more slender one, and in general from small to larger forms.

The characters of the pronotum, as commonly used to indicate species and groups of species, are found to be of little ralue in separating primary, or even secondary, divisions, but are of more importance in separating the subsections, series, and species. The specialization is plainly from a rounded, obtuse, to a rectangular and acute basal angle, but this specialization is confined to the smaller groups, and is therefore represented in the several sections as parallel developments. The pronotum is, in fact, quite rariable in the individuals of the same species. In some reared specimens of the same species there is a wide range from a rounded to an acute basal angle, while in one specimen of Pissodes nemorensis the angle of one side is rectangular, while that of the other is acute. These radical departures from the normal may, however, be considered as deformities.

The length of the beak also varies; thus, in some of the females it is shorter than in some males of the same species. The elytra are more or less variable in form, but appear to be more constant than the other parts, and show little or no sexual difference.

The character and position of the spots of densely placed scales appear to be of special value in the classification of the genus, but these are sometimes rendered obscure in old, rubbed, and dirty specimens. The scales are so firmly attached, however, that they are often sufficiently retained in old specimens to be of value. Dirty specimens can be easily cleaned with chloroform or xylol, the latter being especially valuable for the removal of resin.

STATISTICAL TAXONOMY.
In a comparative study of the characters which distinguish the major and minor divisions and species of a genus or a larger group of organisms, a progressive

Fig. 9.-Pissodes fraseri: Lateral aspect, showing method of determining individual index. a, Length of beak; b, length of prothorax; c, length of elytra. (Original.) modification of certain parts of the body structure is usually found to serve (together with other characters) as an index to a natural classification. Therefore the importance of having some clear and definite method of indicating the range and limit of such lines of modification or specialization is apparent.
The writer's experience with the statistical method in comparative studies of such modifications has convinced him that when it is accurately applied a mathematical formula may be determined to express the limit and relative taxonomic importance of a given modification in one or more structural characters, to indicate specific differences, and to show the relative position and rank the species occupy in a natural classification. Thus we may adopt for certain groups of insects a statistical taxonomy as a guide toward the classification of the species into natural divisions.

In the bark-weevils of the genus Pissodes we have a good example for the application of this method. One of the principal lines of modification available for statistical study is the progressive elongation of the beak. Therefore when we compare the average ratio or mode of the length of the beak to both the length of the prothorax and length of the elytra (fig. 9) in a number of individuals of one species with that of an equal number of individuals of another species,
no matter what differences there may be in the length of the body of the individuals, we get a mathematical expression, or index, of the difference in their relative proportions.

The following examples will serve to illustrate the application of the method: ${ }^{a}$

Example 1.

Female individual of Pissodes strobi.
a, Length of beak, 29 micrometer divisions.
b, Length of prothorax, 31 micrometer divisions.
c, Length of elytra, 73 micrometer divisions.
$a \div b=.935$.
$a \div c=.397,+.935=1.332, \div 2=.666=$ Index of relative proportions of an individual. Now, if 50 male individuals of this species show a range in the individual index of 61 to 64 , with an average or mode of 63 , and 50 females show a range of 65 to 69 , with a mode of 68 , the relative proportions for each sex and for the species are expressed by the formula, o大 $63-968$.

Example 2.

Female individual of Pissodes fraseri (fig. 9).
a, Length of beak, 45 micrometer divisions.
b, Length of prothorax, 33 micrometer divisions.
c, Length of elytra, 85 micrometer divisions.
$a \div b=1.366$.
$a \div c=.529,+1.366=1.895, \div 2=.947+$. If 50 male indịviduals show an index range of 72 to 73 and a mode of 72 , and 50 females show a range of 91 to 111 , with a mode of .100 , the formula would be $\begin{gathered} \\ 72-\oint 100\end{gathered}$
P. strobi, formula वे $63-$ ¢ 68 .
P. fraseri, formula ઠ $72-¢ 100$.

According to other characters, these two species fall in the same division of the genus, but in different subdivisions. The formulas for the species of the first division range from $\widehat{0} 57-¢ 62$ to | |
| :---: | $2-\uparrow 100$. Those of the first subdivision range from

 to ${ }^{\text {® }} 72-$ ¢ 100 .

Thus the formulas for P.strobi and P. fraseri, together with the characters which refer them to their respective primary and minor divisions, indicate the natural position and rank they should occupy in the classification. (See Plate II.)

It is interesting to note that the Hylobiinæ, which are plainly less modified in respect to the length of the beak than the Pissodinæ, show their relative lower position in the determined formulas for representatives of the 4 principal genera (Paraplinthus, ơ 47 , \& 58 ; Hilipus, ơ 35, ¢ 68; Eudocimus, ơ 38, ¢ 49; Hylobius, ơ 48, ㅇ 56). It will be noted that the females of only two of the genera fall within the range of the Pissodinæ, while Hylobius, which has some affinities

[^3]with P. affinis of the second division of the genus Pissodes, does not come within the range, but occupies the position probably held by the more primitive forms of the affinis division. (See Plate II.)

MORPHOLOGICAL AND PHYSIOLOGICAL CHARACTERS AND CHARACTERISTICS.

The plan of combining morphological characters and physiological characteristics as a basis for specific distinction, as discussed by the writer in the technical contribution on Dendroctonus (Hopkins, 1909, p. 64), has been followed in the study and classification of the species of Pissodes. The close resemblance of the adults of allied species and the wide range of specific variation render it very difficult and often practically impossible to refer some of the individuals to the species by external characters of the adults alone, but with information on the distribution, host, habit, seasonal history, etc., they can often be referred to their species without a moment's hesitation. Specimens without locality labels and some additional information are therefore of no value to the economic investigator, and will evidently become of less and less value to the systematists. The importance of utilizing bionomic data as guides to the identification of species will doubtless become more popular in the future and contribute to a more rapid advancement of the essential knowledge required by the systematic and economic entomologist in research work.

KEY TO THE SPECIES.

I. Elytral interspaces 3 and 5 broader or more elevated than 2 and 4 .
A. Elytra always with anterior and posterior spots.
a1. Elytra with distinct spots near vertex of declivity.
b1. Beak moderately stout, always shorter than prothorax.
c1. Elytra with distinct anterior spots and very large posterior ones.
Posterior spot with distinct dark border similis
Posterior spot without distinct dark border........ 2. utahensis.
c2. Elytra with indistinct anterior spots and small posterior ones.
3. barberi.
b2. Beak slender, shorter or longer than prothorax. c3. Elytra with anterior and posterior spots large.

Posterior spots of elytra without dark border. Pacific Coast.
4. sitchensis.

Posterior spots of elytra usually with dark border. Rocky Mountains... . . 5. engelmanni. Posterior spots of elytra with or without dark border. Eastern
U.S.. 6. strobi.
c4. Elytra with small to moderately large anterior and posterior spots. d1. Posterior brown spots moderately large.

Posterior brown and white spots usually separated. Eastern and northern U.S.................. 7. approximatus.
Posterior brown and white spots fused. Central and northern Rocky Mountains.
8. schwarzi.

d2. Posterior brown spots small.e1. Elytral interspaces 3 and 5 elevated and broad.Posterior spots fused, the yellow one larger. Mani-
toba...................................... 9. canadensis.Posterior spots usually separated, yellow one small.Elytra noticeably narrowed posteriorly from base.
10. nemorensis.
Elytra not noticeably narrowed posteriorly frombase. South Atlantic States 11. deodarx.Elytra noticeably narrowed posteriorly; white andbrown spots separated, the latter very small.12. californicus.e2. Elytral interspaces 3 and 5 narrow, strongly elevated.Pronotal punctures coarse but not dense.. 13. yosemite.
Pronotal punctures coarse and dense 14. webbi.
a2. Elytra with transverse band of white and yellow scales near vertex.
b3. Pronotum with posterior angles acute. 15. radiatæ.
b4. Pronotum with posterior angles subrectangular. 16. fasciatus.
B. Elytra usually without distinct anterior spots, and with posterior spotanteriorto vertex of declivity.
a3. Pronotum with basal angles subrectangular. 17. costatus.
a4. Pronotum with basal angles rounded.
b5. Pronotal punctures distinctly separated.
c5. Pronotum not distinctly narrower than elytra.
d3. Pronotum stout, deeply constricted anteriorly.. 18. fiskei.
d4. Pronotum subelongate, not deeply constricted anteriorly.
Pronotum moderately stout; elytral interspaces 3 and 5
scarcely elevated; with anterior spot. 19. nigra.
Pronotum elongate.
Elytral interspaces 3 and 5 slightly elevated, flattened;
with anterior spot. 20. puncticollis.
Elytral interspaces 3 broader and more elevated; with- out anterior spot 21. murrayanx.
c6. Pronotum distinctly narrower than elytra.
Pronotal punctures irregular, not dense; punctures of striæirregular................................... 22. coloradensis.Pronotal punctures regular, moderately dense; punctures ofstriæ coarse, irregular............................. 23. alascensis.
Pronotal punctures dense, regular; punctures of striæ irregular.24. rotundatus.
b6. Pronotal punctures irregular, not distinctly separated.
c\%. Elytral striæ with punctures very irregular.
Gray, densely clothed with scales; spots prominent. 25. burkei.Black, not densely clothed with scales; spots obscure. 26. piperi.
c8. Elytral striæ with punctures moderately irregular; spots obscure.
Pronotum convex, without dorsal impressions and elevations.
27. dubius.
Pronotum moderately convex and usually with dorsal impres-sions and elevations.28. fraseri.
II. Elytral interspaces 3 and 5 not broader or more elevated than 2 and 4.
Elytra with distinct posterior spots. 29. affinis.
Elytra with small posterior spots. 30. curriei.

SYNOPSIS OF ADULT CHARACTERS, WITH DESCRIPTIONS OF NEW SPECIES. a

Elytral interspaces 3 and 5 broader or more elevated than 2 and 4.
Division I, pages 32, 43.
Elytral interspaces 3 and 5 not broader or more elevated than 2 and 4.
Division II, pages 36, 64.

DIVISION I.

Elytra always with distinct spots of densely placed scales on the anterior lateral area and always with spots or bands of scales situated near the vertex of the declivity. Subdivision A, pages 32, 44.
Elytra usually without distinct spots on the anterior lateral area and with small spots situated between the vertex of the declivity and middle of elytra.

Subdivision B, pages 35, 56.
Subdivision A.
Elytra with distinct spots near vertex of declivity......... Section al, pages 32, 44.
Elytra with transverse band of white and yellow scales near vertex of declivity.
Section a2, pages 34, 55.

Section a1.

Beak moderately stout, shorter than prothorax; pronotum with basal angles subobtuse; elytra with interspaces 3 and 5 strongly elevated and rugose.

Subsection b1, pages 32, 44.
Beak slender, shorter or longer than prothorax; pronotum with basal angles rectangular; elytral interspaces 3 and 5 moderately to strongly elevated.

Subsection b2, pages 33, 46.

Subsection b1.

Elytra with distinct anterior spots and very large posterior ones; pronotum distinctly narrower than elytra, punctures indistinct, irregular Series c1, page 32.
Elytra with indistinct anterior spots and small transverse posterior ones; pronotum not distinctly narrower than elytra, punctures distinct and regular.

Series c2, page 32.

Series c1.

Length 3.7 to 4 mm .; brown; pronotal and elytral punctures moderately coarse; posterior spot of elytra with distinct dark border. Maine and high mountains of North Carolina, probably in Abies fraseri, and New Hampshire in Abies balsamea. Species index, ð 57 - 962

1. similis n. sp., page 44.

Length 3.9 mm .; dark brown; pronotal and elytral punctures coarse; posterior spot of elytra without distinct dark border, third and fifth interspaces with acute rugosities, spots prominent. Park City, Utah, and Bear Lake, British Columbia. Species index, đ夭 63-q 64
2. utahensis n. sp., page 45 .

Series cz.

Length 5 to 5.5 mm .; black; pronotal and elytral punctures very coarse; elytra with interspaces 3 and 5 broad and prominent. Humboldt, Cal., Astoria, Oregon, and Tenino, Wash. Species index, ${ }^{\text {ot }} 62$ - 965
3. barberi n. sp., page 45.
a The divisional, subdivisional, sectional, subsectional, serial, and species characters constitute a complete description of each species; e. g., I, A, a1, b1, c1, and species 1.

Elytra with large anterior and posterior spots; sides parallel; beak never longer than
\qquad
Elytra with small to moderately large anterior and posterior spots; sides usually slightly narrowed posteriorly; beak sometimes longer than prothorax.

Series c4, page 33 .

Series c3.

Length 4.2 to 5 mm .; brown; pronotum distinctly narrower than elytra, not distinctly shining, and the punctures moderately coarse and dense; posterior spots of elytra without dark border; punctures of striæ coarse, distinct. Hoquiam and Pialschie, Wash., in tops of Picea sitchensis. Species index, đo $61-q 64$.
4. sitchensis n. sp., page 47.

Length 5 to 5.3 mm .; brown; pronotum not distinctly narrower than elytra, shining, and the punctures coarse; posterior spots of elytra usually with faint dark border; punctures of striæ indistinct, especially on lateral area. Smith's Ferry, Idaho, and Pikes Peak, Colo., in tops of Picea engelmanni. Species ifdex,

Length 4.5 to 6 mm .; brown; pronotum slightly narrower than elytra, moderately shining, and the punctures dense; posterior spot of elytra with or without faint dark border. Eastern United States, in terminals of Pinus strobus, rarely in terminals of Pinus resinosa and terminals of Picea. Species index, đ九 63- $¢ 68$.
6. strobi Peck, page 48.

Series c4.

Posterior brown spots of elytra moderately large; fork of male genitalia very stout.
Subseries d1, page 33.
Posterior brown spots of elytra small; fork of male genitalia long and slender.
Subseries d2, page 33.

Subseries d1.

Length 4.3 to 6.7 mm. ; brown; pronotum not distinctly narrower than elytra, punctures moderately coarse; elytral interspace 3 broad, flattened, moderately rugose, and posterior white and yellow spots usually separated, the brown one smaller but not very small as in species 10 , and the white one extending over the second interspace. Mountains of North Carolina northward to New Hampshire, and west to Lake Superior region, in Pinus under bark on stumps and logs and trunks of dying trees, and base of saplings. Species index, đ $65-\not \subset 71$.
7. approximatus n. sp., page 49 .

Length 5.2 to 6.7 mm .; brown; pronotum slightly narrower than elytra, punctures coarse; elytral interspaces 3 and 5 distinctly elevated and rugose, the punctures of striæ coarse, and the posterior white and yellow spots fused, not extending over the second interspace. Colorado, in Pinus scopulorum, thick bark on base, stems, tops, and terminals of saplings. Species index, б 71-q75.
8. schwarzi n. sp., page 50.

Subseries d2.

Elytral interspaces 3 and 5 distinctly elevated and broader than 2 and 4; pronotal punctures moderately coarse and densely placed......... Minor series e1, page 34.
Elytral interspaces 3 and 5 but slightly broader than 2 and 4, strongly elevated and acutely rugose; pronotum narrower than elytra, punctures very coarse.

Minor series e2, page 34.

Minor series e1.

Length 6.2 to 7 mm. ; brown; pronotum as broad as elytra, with sides rounded; elytra with sides scarcely narrowed posteriorly, interspaces 3 and 5 broad, elevated, rugose, the posterior spots fused, and the yellow one large; beak not longer than the prothorax in the males. Winnipeg, Manitoba, in Pinus? Species

Length 4.9 to 7.7 mm .; brown; pronotum with sides not strongly rounded; elytra with sides narrowed posteriorly from base, posterior spots usually separated, the yellow one very small and the white one extending to first interspace; beak usually longer than prothorax in both sexes. Boardman, N. C., and mountains of North Carolina, to Florida and Texas, in bark of Pinus logs, stumps, trunks of dying trees, and rarely in base of saplings. Species index, | d $67-q 78$ |
| :---: |

10. nemorensis Germar, page 51.

Length 4.2 to 5.8 mm .; light brown; body slender; pronotum slightly narrower than elytra; elytra with sides nearly parallel, interspaces 3 and 5 but slightly elevated, posterior brown spot very small; beak longer than prothorax in both sexes. Experiment, Ga., in stems, branches, and tops of Cedrus deodaræ. Species index,

Length 8.6 mm .; brown; pronotum broad, with sides broadly rounded; elytra with sides distinctly narrowed posteriorly, interspace 3 very broad, not coarsely rugose as in yosemite; posterior spots separated, the brown one very small; beak distinctly longer than prothorax. Yosemite Valley, Cal., in bark of living pine with P. yosemite. Species index, $¢ 83 \ldots \ldots$........12. californicus n . sp., page 53.

Minor series e2.

Length 5.1 to 7.7 mm .; brown; pronotal punctures very coarse, not dense; elytra with sides nearly parallel, interspaces 3 and 5 strongly elevated, acutely rugose, punctures of striæ rather coarse, and posterior spots fused on lateral area. Yosemite Valley, Siskiyou County, and Laks Tahoe, Cal., in Pinus ponderosa and Pinus lambertiana. Species index, дे $65-$ о $77 \ldots \ldots$...............13. yosemite n . sp., page 53.
Length 4.8 to 6.8 mm .; brown; pronotal punctures very coarse and dense; elytra with sides nearly parallel, interspaces 3 and 5 elevated and rugose, punctures of striæ rather coarse, and posterior spots prominent and fused on the sides. Mountains of southern New Mexico and Arizona, in Pinus strobiformis and Pinus ponderosa. Species index, え $73-$ о $78 \ldots$....................14. webbi n. sp., page 54.

Section az.
Pronotum with posterior angles acute.
.Subsection b3, pages 34, 55.
Pronotum with posterior angles subrectangular.
Subsection b4, pages 34,55.

Subsection b.3.

Length 5.1 to 7.4 mm .; brown; pronotum broader toward base, angles acute, sides converging anteriorly, slightly constricted toward head, punctures coarsa, distinct; elytra with anterior spots small, yellow, and the posterior band principally of white scales. Monterey, Cal., in bark of logs and trunks of Pinus radiata; also one specimen from Easton, Wash. Species index, đ $63-965$.
15. radiatæ n. sp., page 55.

Subsection 64.
Length 5.1 to 8.3 mm .; brown; pronotum narrower than elytra, sides rounded and slightly narrowed anteriorly but not distinctly constricted toward head; elytra with anterior spots prominent, oblique, yellow, the posterior indistinct band composed of scattering white and yellow scales. Oregon, Washington, Idaho, and British Columbia, in Pseudotsuga mucronata. Species index, đ62-9 67.
16. fasciatus Le Conte, page 56.

Subdivision B.

Pronotum with basal angles subrectangular; beak rather stout, moderately long.
Section a3, pages 35, 57 .
Pronotum with basal angles rounded; beak slender, moderately to very long. Section a4, pages 35, 58.

Section a3.

Length 5.5 to 7.1 mm .; dark brown; pronotal punctures not distinctly separated; elytra with faint anterior spot toward the middle and indistinct spots of reddish brown and white scales behind the middle, interspaces with many minute white spots toward sides and on declivity. Hoquiam, Wash., in thick bark on trunks of dying trees and stumps of Picea sitchensis. Species index, б 64-甲 70.

$$
\text { 17. costatus Mannerheim, page } 57 .
$$

Section af.

Pronotal punctures distinctly separated; punctures of elytral strix small to coarse.
Subsection b5, pages 35, 59 .
Pronotal punctures irregular, not distinctly separated; punctures of elytral striæ very coarse and irregular
. Subsection b6, pages 36, 62.

> Subsection b5.

Pronotum not distinctly narrower than elytra.
Series c5, page 35 .
Pronotum distinctly narrower than elytra Series c6, page 36.

Series c5.

Pronotum short, stout, sides strongly rounded and constricted toward the anterior margin; elytral interspaces strongly elevated with rather coarse rugosities.

Subseries d3, page 35 .
Pronotum elongate, sides rounded, but not deeply constricted toward head; elytral interspaces with fine rugosities.

Subseries d4, page 35 .

Subseries d3.

Length 4.2 to 5.2 mm .; dark brown; elytra without anterior spot but with broad posterior one, interspaces 3 and 5 strongly elevated, convex, rugose; punctures of striæ small. New Hampshire, in thin bark on dying Picea mariana and Picea

Subseries d4.

Length 4.4 to 5.6 mm .; dark brown; pronotum short, broad; elytra with small obscure anterior spots and distinct posterior ones situated toward the middle, interspaces 3 and 5 flattened, scarcely elevated, rugosities fine; punctures of striæ coarse. Webster, N. H., in Picea mariana, bark of small tree. Species index, ô68-9 84. 19. nigræ n . sp., page 59 .

Length 4.2 to 6.1 mm .; light brown; pronotum elongate, punctures coarse, irregular; elytra with small anterior spots and more distinct posterior ones just behind the middle, interspaces 3 and 5 slightly elevated and flattened; punctures of striæ moderately coarse. Mountains of West Virginia, in Picea rubens, thick bark on logs. Species index, $874-¢ 87$. \qquad 20. puncticollis n . sp., page 60 .

Length 4.1 mm .; dark brown; pronotum elongate, punctures moderately coarse, regular; elytra without anterior spots and with very small posterior ones each side behind the middle, interspace 3 distinctly broader, elevated; striæ coarser toward the base. Wallowa, Oregon, in Pinus murrayana; reared from bark. Species index, $\uparrow 78$.
21. murrayanæ n. sp., page 60.

Series c6.

Length 6.9 to 7 mm .; dark brown; pronotal punctures irregular, elytra without distinct anterior spots, but with distinct spots of yellow scales behind the middle, interspaces 3 and 5 strongly elevated, and punctures of striæ irregular. Leadville, Colo., National Park, Wyo., and Black Hills, S. Dak., in Picea canadensis thick bark on base of trees. Species index, $¢ 87$.
22. coloradensis n . sp., page 60 .

Length 6.5 mm .; black; protonal punctures coarse, regular, closely placed and rather deep; elytra without anterior spots, but with small, rather distinct, posterior ones, punctures of striæ coarse, irregular, and smaller on the lateral area, interspaces 3 and 5 reddish, strongly elevated, and broad. Arctic Circle, Alaska, and Montana in Picea engelmanni. Species index, $¢ 89$.
23. alascensis n . sp., page 61 .

Length 6 to 7.3 mm .; black; pronotal punctures dense, regular; elytra rarely with small anterior white spots, but with small white spots behind the middle, interspace 3 very broad, interspacial rugosities not coarse, punctures of striæ irregular and not smaller on the lateral area. Marquette, Mich., Lake Superior region, probably in Picea. Specics index, $\uparrow 9024$. rotundatus Le Conte, page 61.

Subsection 66 .

Punctures of elytral striæ very irregular, spots of scales moderately distinct; pronotum not distinctly narrower than elytra..................... Series c7, page 36.
Punctures of elytral striæ moderately irregular, spots of scales evident but small and obscured by scattering white or yellow scales; pronotum distinctly narrower than elytra.
.Series c8, page 36.

Series $c \%$.

Length 6 to 7.7 mm. ; gray; elytra and pronotum rather densely clothed with whitish scales; elytra with rather distinct anterior and posterior spots, and punctures of striæ not very closely placed. Ouray, Colo., Alta and Park City, Utah, probably in Abies? Species index, đ 74 - ? $82 \ldots$.....................25. burkein. sp., page 62.
Length 7.4 to 10 mm .; black; elytra and pronotum sparsely clothed with whitish scales; elytra with anterior and posterior spots evident but small, and punctures of striæ very deep and closely placed. Mount Rainier, Wash., and Centerville, Idaho, in Abies lasiocarpa and Abies concolor; also at Glacier, B. C. Species index, of81-¢83.
26. piperi n . sp., page 62 .

Series c8.

Length 4.8 to 5.7 mm .; black; beak moderately long; pronotum convex, without dorsal irregularities. Maine to Lake Superior, in Abies balsamea. Species

Length 4.6 to 9.1 mm .; black; beak very long, even in the male; pronotum somewhat flattened, and usually with dorsal irregularities, sometimes distinctly impressed towards base. High mountains of North Carolina in Abies fraseri. Species index, ð 72 - $¢ 100 \ldots$..28. fraseri n. sp., page 63.

DIVISION II.

Elytral interspaces 3 and 5 not more elevated or broader than 2 and 4; beak short, slender; pronotum broad, with sides behind the middle nearly parallel, and the basal angles rectangular; punctures of elytral striæ moderately coarse, regular; posterior tibia of male fringed with long bristles.

Abstract

Length 5.5 to 8 mm .; black, elytra with or without faint anterior spots but with distinct transverse spots of white or yellow scales near vertex, and the punctures of striæ moderately coarse. Wisconsin to New Hampshire, in Pinus strobus. Species index, ð $61-$ ¢ $67 \ldots$..........................29. affinis Randall, page 64. Length 5.6 to 7.7 mm .; black, elytra with obscure anterior spots and small posterior ones, the punctures of striæ coarse and deep. Kaslo, B. C. Species index, of 62, 30. curriei n. sp., page 65.

SYNOPSIS OF PRIMARY SEXUAL CHARACTERS.

Male Genitalia.

DIVISION I.

Section a1.
Fork slender.. $4,5,6$
Fork short... Species 4
Fork long... Species 5
Fork moderately stout... Species 6
Fork long and stout.. 7 . 8
Fork long and slender... Species 9, 10, 11, 13

Section az.

Stem narrowed toward apex, but not constricted........................... . . Species 15
Stem broad toward apex, slightly constricted anteriorly.................. . . Species 16
Section af.
Fork long and slender.. Species 27,28
DIVISION II.
Fork very stout... . . .

SYNOPSIS OF SECONDARY SEXUAL CHARACTERS.

Beak longer and more slender in females than in males..................... The Genus
Hind tibia of male without long fringe of hairs................................ . . Division I
Hind tibia of male with long fringe of hairs................................. . . Division II

DIVISION I.

Beak in both sexes usually shorter than prothorax, rarely longer...... Subdivision A Beak in both sexes rarely shorter than prothorax, commonly much longer.

Subdivision B
Subdivision A.
Apical margin of abdominal sternite 7 sinuate or not in males.............. Section al
Apical margin of abdominal sternite 7 not sinuate in males................ . Section a2
Section a1.
Apical margin of abdominal sternite 7 not sinuate in males.
Subsection b1, Species 1, 2, 3
Apical margin of abdominal sternite 7 faintly sinuate in males. Subsection 1)2
$57936^{\circ}-11 — 4$

Subsection b2.
Beak shorter than prothorax in males, rarely longer in females.
-
Series c3, Species 4, 5, 6
Beak as long as prothorax or longer in males, usually longer and often distinctly so,
in females................................ Series c4, Species 7, 8, 9, 10, 11, 12, 13, 14
Section a2.
Beak in both sexes shorter than prothorax....................................Species 15, 16
Subdivision B.
Apical margin of abdominal sternite 7 faintly sinuate, but without apical process in females

Section a3, Species 17
Apical margin of abdominal sternite 7 without or with process in males.... Section a4

$$
\text { Section } a_{4}, \text { Subsection } b 5 .
$$

Apical margin of abdominal sternite 7 sinuate, but without median process in
males... . . Species 18
Apical margin with median process in males................................ . Species 20
Subsection b6.
Apical margin of abdominal sternite 7 with apex uniformly rounded in males.
DIVISION II.
Species 25, 26, 27, 28

Beak shorter than prothorax in both sexes, apical margin of abdominal sternite 7 with truncate process rising from deep emargination in males.
.Species 29, 30

SYNOPSIS OF PUPAL CHARACTERS.

DIVISION I.

Head with one or more minute spines on posterior margin of eyes..... Subdivision A
Head without minute spines on posterior margin of eyes........... Subdivision B
Subdivision A.
Abdominal tergites with small spines alternating with larger ones, especially on tergites 3 to 6
.Section al
Abdominal tergites without small spines alternating with larger ones..... Section a2
Section a1, Series c3.
Abdominal tergites 5 and 6 with small spines between the more prominent dorsal ones ... Species 4, 6
Abdominal tergites 5 and 6 without small spines between the more prominent dorsal ones

Species 5

Series c4.

Abdominal tergites 5 to 6 without small spines between the more prominent dorsal ones.
.Species 7-14

Section az

Abdomen with prominent epipleural spines.................... . Series c5, Species 15
Abdomen with small epipleural spines........................... Series c6, Species 16

Subdivision B.

Abdominal tergites with small spines alternating with the larger ones and with smallspines between the more prominent dorsal ones.
Epipleurite 9 with bristles Section a3
Epipleurite 9 without bristles. Section a4

Section a_{3}.

Abdominal tergites 4 to 5 with two small spines between the more prominent dorsalones... . . Species 17
Section af.
Abdominal tergites 4 to 5 with four small spines between the more prominent dorsal ones.
Beak without pair of spines between middle and apex Species 25, 26
Beak with pair of small spines between middle and apex Species 27
DIVISION II.
Abdominal tergites 4 and 5 with two small spines between the more prominent dorsal ones; beak with pair of small spines between apex and middle Species 29
SYNOPSIS OF LARVAL CHARACTERS.
DIVISION I, Subdivision A.
Mandibles with middle tooth emarginate Section a1
Mandibles with middle tooth triangular Sections a2, a3
Mandibles with middle tooth emarginate or triangular .Section a4
Section a1.
Apical tooth acute Subsection b2
Abdominal spiracles distinct.
Head without distinct eye-spots Species 4, 5
Head with distinct eye-spots. Species 6
Series ćs.
Abdominal spiracles distinct.Head without distinct eye-spotsSpecies 7,10
Head with distinct eye-spots Species 14
Section as.
Apical tooth obtuse; head with distinct eye-spots. Species 15
Apical tooth acute; head with distinct eye-spots Species 16
Subdivision B.
Section as.

Abdominal spiracles obscure; apical tooth acute; median tooth triangular; head with distinct eye-spots Species 17

Section a^{4}.

Series c5.

Abdominal spiracles moderately distinct.
Apical tooth obtuse; middle tooth triangular; head without eye-spots. . Species 18 Apical tooth acute; middle tooth emarginate; head without distinct eye-spots.

Species 20

Series c\%.

Abstract

Abdominal spiracles moderately distinct: apical, subapical, and median teeth obtuse; head with distinct eye-spots

Species 25 Abdominal spiracles obscure: apical tooth acute: middle tooth triangular; head without distinct eye-spots.

Species 26

Series c8.

Abstract

Abdominal spiracles obscure; apical tooth acute; median tooth emarginate. Species 27 Apical tooth obtuse; median tooth emarginate. Species 28

TABLE OF DISTRIBUTION.

THE TVORLD

In Europe and Asia, from Spain and England into eastern Siberia and Japan and northward into Sweden and Russia. probably to the Arctic Circle; in Vorth America. from Mexico and Florida to the Arctic Circle in Alaska and eastward to the Atlantic

The genus

NORTH AMERICA-DIVISION I
 Subditisios A.

Section a1.
Maine to higher mountains of North Carolina Species 1
Mountains of Utah to Bear Lake, British Columbia............................. Species 2
Coast of northwestern California to western Tashington Species 3
Coast of northwestern Oregon and western Washington....................... . Species 4
Smiths Ferry, Idaho, to Pikes Peak. Colorado Species 5

Eastern Tnited States, south through mountains to North Carolina and eastward to Maine

Species 7
Eastern Washington to Leadville. Colo.. and Black Hills of South Dakota. . Species 8
Winnipeg, Manitoba. to Michigan Species 9
Atlantic coast region and Lower Austral life zone. northward probably to
Long Island. New York, and westward through the Gulf States into
Texas .. 10

Yosemite Valley. California Species 12
Mountains of northern California Species 13
Southern New Mexico and Arizona. and probably mountains of western Texas into Mexico

Species 14

-Scction az.

Monterey and Palo .1lto. Cal.. Easton, Wash................................ . . Species 15
Northwestern California, into British Columbia Species 16
Subdivision B.
Scetion as.

Section á .
New Hampshire Species 18
New Hampshire Species 19
High mountains of West Virginia Species 20
Northeastern Oregon Species 21
Black Hills, South Dakota, and central Colorado Species 22
Koyukuk River, Alaska, lat. $67^{\circ} 69^{\prime}$, long. 151° Species 23
Northern Michigan Species 24
Colorado and Utah Species 25
Mount Rainier, Washington Species 26
Maine to Northern Michigan Species 27
Higher mountains of North Carolina Species 28
DIVISION II.
New Hampshire to northern Pennsylvania, westward into Minnesota Species 29
Kaslo, British Columbia Species 30

TABLE SHOWING RELATIONS OF SPECIES TO HOST TREES.

Pissodes
Hosts, etc.
species
numbers

1. Abies balsamea and A. fraseri. Dying bark on branches and witch's broom.
2. Abies? (Not observed.)
3. Picea sitchensis? (Not observed.)
4. Picea sitchensis. Living bark of terminals and tops of young trees, causing serious injury.
5. Picea engelmanni. Living bark of terminals and tops of young trees, causing serious injury.
6. Pinus strobus, common; Pinus rigida rare; Pinus divaricata. rare; Picea rubens, frequent; Picea excelsa, frequent. Living terminals of saplings and small trees, causing serious damage to white pine.
7. Pinus strobus, Pinus rigida, Pinus echinata. Pinus resinosa, Pinus virginiana, and Pinus pungens. Living and dying thick and thin hark on base and trunks of standing and felied trees, stumps, and base and stems of saplings. Injurious to the last.
8. Pinus ponderosa and Pinus scopulorum. Living and dying bark on base, stems, tops (?), and terminals of saplings.
9. Pinus? (Not observed.)
10. Pinus palustris, Pinus trda, Pinus virginiana, and Pinus echinata. Living and dying thick bark on standing and felled trees, stumps, and base and stems of saplings.
11. Cedrus deodara. Living branches, tops, and terminals, causing serious injury.
12. Pinus ponderosa. Living thick bark on trunks of small trees evidently causing scars.
13. Pinus ponderosa and Pinus lambertiana. Living and dying thick bark on standing and felled trees and stumps and on base and stems of saplings.
14. Pinus strobiformis. Pinus scopulorum, and Pinus contorta (murrayana). Living (?) and dying bark on base and stems of saplings and of standing and felled trees.
15. Pinus radiata and Pinus sylvestris. Thick and dying bark on standing and felled trees and stumps and on base, stems, tops, and tops of saplings.
16. Pseudotsuga taxifolia. Living and dying thick bark on standing and felled trees and stumps and on base and stems of saplings. causing serious injury to saplings.
17. Picea sitchensis. Living and dying thick bark on standing girdled trees and stumps of felled ones.
18. Picea rubens and Picea mariana. Dying (?) thick bark on logs, stumps, and trunks of small standing trees.
19. Picea mariana. Dying bark on trunk of small tree.
20. Picea rubens. Dying bark on felled and standing trees.
21. Pinus contorta (murrayana). Thin bark on standing tree.
22. Picea canadensis and Picea engelmanni? Dying thick bark on base of standing trees.
23. Picea. Thick bark on living trees. (Brunner's notes.)
24. Probably in Picea rubens? and Picea canadensis? (Not observed.)
25. Abies lasiocarpa and Abies concolor? Living thick bark on trunks and base of living and dying trees. Injurious.
26. Abies lasiocarpa and Abies concolor. Living and dying thick bark on living and dying trees.
27. Abies balsamea. Living and dying bark on trunks of living and dying trees and snags of storm-broken trees; also in trunks of felled trees.
28. Abies fraseri. Living and dying bark on trunks of living and dying trees.
29. Pinus strobus. Thick bark on stump.
30. Host not observed; probably pine.

TABLE OF HOST TREES.

CHARACTERS COMMON TO THE SPECIES OF THE GENUS.

Adults.-Prothorax with anterior ventral margin not distinctly emarginate; tibiæ with incurved apical tooth; femora unarmed; anterior coxx not widely separated; abdominal tergites covered by elytra; sternites 3 and 4 (first and second visible) very long; 5 and 6 short; 7 as long as 5 and 6 together; eyes rounded, widely separated; body oblong, reddish brown to black, sparsely to thickly clothed with slender to broad scales, the latter often forming spots on the pronotum, elytra, and femora.

Sexes.-Females with but 7 visible abdominal tergites; beak longer, smoother, and more slender than in the males. Males with 8 visible abdominal tergites; beak shorter, stouter, less shining, and more distinctly punctured.

Eggs.-Pearly white, slightly oblong, and equally rounded at both ends.
Larvæ.-Elongate, cylindrical, yellowish white, footless; body with 12 closely wrinkled segments, those of the thorax not larger or more permanent than the first abdominal.

Рирæ.-Of the general size and form of the adults, with the beak folded on the mesosterna and metasterna; tips of the posterior tarsi even with tips of wing-pads; head, beak, and abdominal segments armed with spines, the ninth abdominal having 2 rather prominent epipleural spines.

Larval galleries.-Excavated in the inner bark and sometimes marking or grooving the surface of the wood; elongate, winding, and either in the bark or outer wood, ending in pupal cells which are lined with excelsior-like borings.

Host trees.-Pinus, Picea, Abies, Cedrus, and Pseudotsuga.
Distribution.-Spain and England into eastern Siberia and Japan; America north of Mexico.

CHARACTERS COMMON TO THE SPECIES OF THE MAJOR AND MINOR DIVISIONS.

DIVISION I.

(Species Nos. 1 to 28.)

Adults.-Elytral interspaces 3 and 5 broader and more elevated than 2 and 4.

Sexes.-Hind tibiæ of the males without long fringe of hairs.
Pupæ and larvæ.-Apparently without distinctive divisional characters, so far as observed.

Subdivision A.

(Species Nos. 1 to 16.)
Adults.-Elytra always with a distinct spot of densely placed scales on the anterior lateral area, and always with a spot or band of scales near the vertex of the declivity.

Sexes.-Beak of both sexes usually shorter than the prothorax, rarely longer.

Pupx.-Eyes with one or more minute spines on the posterior margin.

Larvx.-The subdivisional characters of the larva have not been recognized.

SECTION al.

(Species Nos. 1 to 14.)
Adults.-Elytra with distinct spots (instead of a continuous band) near the vertex of the declivity.

Sexes.-Apical margin of the seventh abdominal sternite of the male not sinuate, or rarely so.

Рирæ.-Abdominal tergites with small scutellar spines, alternating with larger ones.

Larvæ.-Median tooth of mandible emarginate.
Host trees.-Abies, Picea, Pinus, and Cedrus.
Distribution.-Eastern and western United States, from the Gulf States and Mexico into Canada and British Columbia.

Subsection b1.
(Species Nos. 1 to 3.)
Adults.-Beak moderately stout, shorter than the prothorax; basal angles of pronotum subobtuse; third and fifth elytral interspaces strongly elevated and rugose. In species 1 and 2 the anterior spots on the elytra are distinct, the posterior ones are very large, and the pronotum is distinctly narrower than the elytra, while in species 3 the anterior and posterior spots are indistinct and the pronotum is not distinctly narrower than the elytra.

Sexes.-Apical margin of seventh abdominal sternite of male not emarginate.

Host trees.-Abies, so far as observed.
Distribution.-Species 1, North Carolina; species 2, British Columbia; species 3, California into Washington.

1. Pissodes similis $\mathrm{n} . \mathrm{sp}$.

(Plate III, fig. 1.)
The type specimen is labeled "Type No. 7424, U.S.N.M.;" name; "type of drawing; Black Mts., N. C., VI. 27-30; ㅇ." It was collected by Dr. William Beutenmuller in the spruce forest on

Black Mountain, North Carolina, in 1905. The type and one male are in the type collection of the U. S. National Museum. Three females and one male from the same locality, labeled, respectively, "VI-17," "VI-17," "VI-19," and "VI-30," were returned to the American Museum of Natural History, New York City. A dead specimen was collected by the writer at Camp Caribou, Maine, June 7, 1900, on dead branch of "witch's broom," on balsam fir. Larval mines and pupal cells were observed in adjoining twigs, and another dead specimen was taken at Waterville, N. H., May 4, 1906, from a pupal cell in dead branch of "witch's broom," on balsam fir. Several specimens had emerged from the same branch.

Distinctive characters.-This species is closely allied to P. utahensis, from which it is distinguished by the moderately coarse pronotal punctures and the very large posterior spot which extends anteriorly to the middle of the elytra, and is surrounded by a distinct dark border.

Variations.-The specimens vary in length from 3.7 to 4 mm ., and in color from light brown to dark brown, with but slight variation in the spots. Eight adult specimens were examined.

Host trees.-Abies balsamea; Abies fraseri.
Distribution (Plate XIX, fig. 1).-(Hopk.U.S.) Maine: Camp Caribou, Parmachene Lake. New Hampshire: Waterville. (A.M.N.H.) North Carolina: Black Mountains.

2. Pissodes utahensis n. sp.

The type specimen is labeled "Type No. 7425, U.S.N.M.;" name; "type of drawing; Park City, Ut., 6.17; Coll. Hubbard \& Schwarz; 952; oे 1."

Distinctive characters.-This species is closely allied to the preceding, from which it is distinguished by the coarser pronotal punctures and the smaller posterior spots, which do not extend forward to the middle of the elytra and do not have a distinct darker border.

Variation.-There is very little variation in size, but the scales vary from white to a yellowish brown. Five adult specimens, 4 males and 1 female, have been examined.

Host tree.-Unknown, probably Abies.
Distribution (Plate XIX, fig. 2).-(U.S.N.M.) British Columbia: Bear Lake (London Hill Mine). Utah: Alta, Park City.

3. Pissodes barberi n. sp.

The type specimen is labeled "Type No. 7426, U.S.N.M.;" name; "Bair's R[an]ch, Redw[oo]d Cr[ee]k; Humboldt Co., Cal., 13.6 [June 13, 1903]; H. S. Barber, collector; 327; \& 1."

Distinctive characters.-This species is at once distinguished from all of the other species of the first subdivision by its darker color, the very coarse punctures of the pronotum and elytral striæ, the
strongly elevated and acutely rugose third and fifth interspaces of the elytra, and the small posterior spot. The pronotal punctures are also more distinctly separated than in the other species.

Variations.-There is some variation in size-the length ranging from 5 mm . to 5.5 mm .-and in the elytral spots, color of scales, etc. Three adult specimens, 1 female and 2 males, have been examined.

Host tree.-Unknown, probably Picea.
Distribution (Plate XIX, fig. 3).-(U.S.N.M.) California: Humboldt County. Oregon: Astoria. Washington: Tenino.

Subsection b2.

(Species Nos. 4 to 14.)
Adults.-The beak is slender and shorter than the prothorax in some species and longer in others. The basal angles of the pronotum are rectangular but not acute. The third and fifth elytral interspaces are moderately to strongly elevated and rugose. Species 4 to 6 have large anterior and posterior spots on the elytra. The sides of the elytra are parallel and the beak is never longer than the prothorax. Species 7 to 14 have small anterior and posterior spots on the elytra; the elytra are slightly narrowed anteriorly and the beak in some of the species is longer than the prothorax. Species 9 to 12 have the third and fifth interspaces of the elytra distinctly elevated and broader than the second and fourth, and the punctures of the pronotum are moderately coarse and densely placed. Species 13 and 14 have the third and fifth interspaces of the elytra only slightly broader than the second and fourth, but strongly elevated and acutely rugose. The pronotum is distinctly narrower than the elytra and the pronotal punctures are very coarse.

Sexes.-In species 4 to 6 the beak of the males is shorter than the thorax and that of the females is rarely longer, while in species 7 to 14 the beak of the males is as long as the prothorax, and in a few cases longer; that of the females is usually longer and often distinctly so.

Pupæ.-The fifth and sixth abdominal tergites of species 4 and 6 have small spines between the prominent dorsal ones, while in species - 5 and 7 to 14 they are obscure or absent.

Larvx.-The apical tooth of the mandibles is acute and the abdominal spiracles are distinct. In species 4,5 , and 7 to 10 the eye spots are distinct, while in species 6 and 14 they are not.

Hosts.-Species 4 and 5, Picea; species 6, Pinus and Picea; species 7, 8, 10, and 12 to 14, Pinus; species 11, Cedrus.

Distribution.-Species 4, Rocky Mountains; species 5, Pacific coast; species 6 and 7, eastern United States; species 8, northern Rocky Mountains; species 9, Canada; species 10, 11, Southern States; species 12, 13, California; species 14, southern Rocky Mountains.
4. Pissodes sitchensis n. sp.
(Plate V., fig. B; Plate NIII: text figs. 5-i.)
The trpe specimen is labeled "Type No. it2s, U.S.N.M.;" name; "Hoquiam, Wash.; H. E. Burke, collector; \&: Hopk. U. S. 2289c." The species was described from a large series, including all stages, work, and parasites, collected and reared from terminals.

Distinctive characters.-This species is closely allied to P. engelmanni and P. strobi, from the first of which it is distinguished by the subopaque pronotum, the absence of dark band on the posterior spot of the elytra, and the rather coarse punctures of the elytral strix; from the latter it is distinguished by its arerage smaller size and narrower prothorax, as well as br its distribution and habits.

Variations.-There is not very much rariation in size-length 5 to 5.3 mm . The color ranges from light to dark brown. The spots of scales rary in size, color, and density, and there is some rariation in the relative width of the prothorax and in the size of the punctures of the elytral striæ. More than 200 specimens have been examined, including both sexes, larræ, pupæ, and work.

Host tree.-Picea sitchensis, infesting tops and terminals of saplings and small trees; quite injurious.

Extensive obserrations hare been made br Mr. Burke on the habits and seasonal history of this species.

Distribution (Plate XIX, fig. 4).-(Hopk. U. S.) Oregon: Astoria. Tashington: Hoquiam, North Bend, Pialschie, Satsop.

5. Pissodes engelmanni n. sp.

(Plate VI, fig. 5.)
The type specimen is labeled ${ }^{\prime}$ Type No. $\mathbf{i t 2 7}$, U.S.N.M.;" name; "type of drawing; Picea engelmanni; Smith's Ferry, Idaho, Aug. 10, '05; J. L. Webb, collector; ¢ 3 ; Hopk. U. S. 5314." From a series of 50 adults reared August 23 to Norember 14 from section of top of spruce containing larræ and pupæ collected August 10, 1905.

Distinctive characters.-This species is distinguished from the preceding in that the pronotum is shining, the posterior spot of the elytra has a dark border, and the punctures of the elytral striæ are indistinct, especially on the lateral area. From P. strobi it is distinguished by its generally smaller size, coarse punctures of the pronotum, and more obscure punctures of the elytral striæ, as also by its distribution, habits, and host.

Variations.-There is rery little rariation in size. The color ranges from light to dark brown, the spots of scales vary in size, color, and density, and the dark border of the posterior spot from distinct to obscure. The punctures of the pronotum and elrtra rary considerably in size and distinctness. More than 150 specimens were examined, including both sexes, larræ, pupæ, and work.

Host tree.-Picea engelmanni, infesting tops and terminals of saplings and small trees; quite injurious.

Extensive observations on the habits and seasonal history of this species have been made by Messrs. Burke and Webb.

Distribution (Plate XIX, fig. 5).-(Hopk. U. S.) Colorado: Manitou Park. Idaho: Smiths Ferry. Montana: Little Belt National Forest.

6. Pissodes strobi Peck.

(Plate III, fig. 6; Plate VI, fig. 6; Plate XIV; text figs. 1, 2.)

This species is represented in the collection by a typical specimen labeled with name, "type of drawing; Pinus strobus; Webster, N. H.; W. F. Fiske, collector; ㅇ 6; Hopk. U. S. 3215b;" by 2 specimens labeled "Pinus strobus; Milford, Pa.; A. D. Hopkins, Nov. 14-25, bred; Hopk. U. S. 6077," and by one small specimen labeled "Edsallville, Pa."

Distinctive characters.-This species is most closely allied to P. engelmanni, from which it is distinguished by its average larger size, dense punctures of the pronotum and distinct punctures of the elytral striæ, as well as by its distribution and habits.

Variations.-There is considerable variation in size- 4.5 to 6 mm . in length-but the average is nearer the latter extreme. The color ranges from dark to light brown. The spots of scales vary considerably in size, density, and color and in the presence or absence of a dark border to posterior lateral spot of the elytra. There is also considerable variation in the form of the pronotum and in the punctures of the pronotum and elytral striæ. More than 500 specimens were examined, including all stages and work.

Host trees.-Pinus strobus, Pinus rigida, Pinus divaricata, Picea rubens, and Picea excelsa; infesting terminals. Very injurious to white pine, much less so to the other species.

Distribution (Plate XIX, fig. 6).-(Hopk. U. S.) Connecticut: Hartford, Pomfret Center. Maine: Alfred, Bangor, Portland. Massachusetts: Framingham. Michigan: Grand Rapids. New Hampshire: Colebrook, Dover, Franconia, Keene, Monadnock, Newport, Penacook, Pike, Rochester, Tamworth, Webster, Wiers. New York: Kiamesha, Kidders. North Carolina: Biltmore (Davidsons River). Pennsylvania: Cisuarun, Milford, Mount Airy (Frank-- lin County), Trucksville, Wilkesbarre. West Virginia: Kanawha Station, Cairo. Wisconsin: Ashland. Canada: Ontario-Guelph, Ottawa; New Brunswick-Chatham, Frederickton. (Hopk. W. Va.) Massachusetts: Middlesex Falls. West Virginia: St. George, Tucker County. (U.S.N.M.) Massachusetts: Boston. Pennsylvania: Edsallville. Michigan: Grand Ledge. New Hampshire: Contoocook. New York: New Baltimore.

Bibliography and Synonymy.

Rhynchænus strobi Peck, 1817, p. 2, pl. 2. Harris, 1841, pp. 63-64.
Pissodes strobi (Peck) Say., 1831, p. 14 (in part). Fitch, 1858, pp. 732-736, pl. 3, fig.

1. Say, 1859, p. 277 (in part). Walsh and Riley, 1869, p. 26, fig. 22. Gemminger and Harold, 1871, p. 2432. Le Baron, 1874, p. 139, fig. 63. Thomas, 1876 , pp. 133-134 (in part). Le Conte, 1876, pp. 142-143 (in part). Fuller, 1880, pp. 5-6, fig. 2. Saunders, 1883, p. 55, fig. 23 (in part). Packard, 1886, pp. 322-325, pl. 9 (in part). Lintner, 1888, p. 24, figs. 6, 7. Packard, 1890, pp. 734-741 (in part). Riley and Howard, 1890, p. 348 (parasite); 1891, p. 468 (in part). Lintner, 1893, pp. 344-345, fig. 22 (in part). Hopkins, 1893, p. 205, No. 219 (in part); 1899, pp. 259-260, 345, 441 (in part). Chittenden, 1899, pp. 58-59, figs. 11, 12 (in part). Felt, 1906, pp. 397-401 (in part). Hopkins, 1906, pp. $252-253$, figs. 61,62 ; 1907, pp. 1-7, figs. 1-6; 1909, pp. 11, 16, 17, figs. 8, 9 .

7. Pissodes approximatus $\mathrm{n} . \mathrm{sp}$.

(Plate VI, fig. 7; Plate XV, figs. A, B.)
The type specimen is labeled "Type No. 7430, U.S.N.M.:" name; "Pinus strobus; Lynn Woods, Mass.: A. D. Hopkins, June 11, '06, bred; 9 ; Hopk. L. S. 6332." This specimen was reared from larvæ in bark from base of white pine sapling defoliated by the gipsy moth. The type series is represented by a male labeled the same as the type, one labeled "Camb.; Coll. Hubbard \& Schwarz; ô," and 2 males labeled "Marquette, Mich., 27.6; Coll. Hubbard \& Schwarz."

Distinctive characters.-This species has been commonly confused with P. strobi in collections and literature, but is distinguished from it by the average large size, elongate body. the sides of the elytra more distinctly narrowed posteriorly. The beak is longer, and the spots of the elytra are uniformly smaller, the posterior ones rarely connected. It is also definitely separated by its marked difference in habits. It is distinguished from P. nemorensis, to which it is more closely allied, by its average smaller size, shorter beak, and larger posterior brown spot of the elytra, and, except in regions where the two species may orerlap, it may be at once distinguished by its distribution. It is distinguished from its closest ally, P. schwarzi, by the moderately coarse pronotal punctures.

Variations.-There is much variation in size, the length ranging from 4.3 to 6.7 mm ., but extremes are rare. The color ranges from dark brown, nearly black, to brown, but the prevailing color is dark. There is considerable variation in the structure of the pronotum and elytra and in the punctures, spots, etc.. but the spots of scales, while variable in size and color, are commonly small, and never as large as in the average P. strobi. More than 140 specimens were examined, including all stages and work.

Host trees.-Pinus strobus, Pinus rigida, Pinus echinata, Pinus resinosa, Pinus virginiana, and Pinus pungens, occurring in thick bark on trunks of trees and base of saplings: sometimes injurious to the saplings.

Distribution (Plate XIX, fig. 7).-(Hopk. U. S.). Maine: Lake Moxie. Massachusetts: Lynn Woods, Springfield. Michigan: Grand Island, Munising. New Hampshire: Penacook, Waterville, Webster. North Carolina: Biltmore, Hendersonville, Pink Beds. Pennsylvania: Milford. Virginia: Rock Springs. Wisconsin: Lac du Flambeau. Canada: Guelph.
(Hopk. W. Va.) West Virginia: Deckers Creek, Greenbrier County, Greene Spring, Hampshire County, Harpers Ferry, Morgantown, Pendleton County, Romney, Tibbs Run, Tucker County. (U.S. N.M.) Massachusetts: Cambridge, Marion, Springfield. Michigan: Eagle Harbor, Marquette, Whitefish Point. New Hampshire: Durham, Hanover. New York: New York City and vicinity. Wisconsin: Bayfield.
8. Pissodes schwarzi n. sp.
(Plate III, fig. 8; Plate XVI, fig. B.)
The type specimen is labeled "Type No. 7455, U.S.N.M.;" name; "Veta Pass, Col., 24.6; Coll. Hubbard \& Schwarz; q." This, together with another specimen, a male from the same locality, was evidently collected by Mr. E. A. Schwarz, for whom the species is named. The specimens were found in the United States National Museum under P. costatus.

Distinctive characters.-This species is evidently confused in collections under the name P. costatus. Specimens of P. schwarzi and P. yosemite had been referred to P. costatus by the writer until the specimens from Sitka spruce were recognized as representing the latter. With possibly a single exception, the specimens referred to by Le Conte under P. costatus evidently belonged to P. yosemite. P. schwarzi is not allied to the specimens I have referred to P. costatus. In general appearance it comes nearer P. yosemite and P. webbi, but according to the character of the fork of the male genitalia it falls in the series with P. approximatus, from which it is distinguished by the narrow pronotum with coarse punctures and by the larger posterior spots of the elytra. It is distinguished from P. webbi by its relatively broader pronotum, the punctures of which are less coarse and more densely placed, and from P. yosemite by the same character; also it is distinguished from both by its distribution.

Variations.-There is quite a wide range of variation in size, the length ranging from 5.2 to 6.7 mm ., and in the density of the pronotal punctures, size and density of spots of scales, and relative elevation of elytral interspaces 3 and 5 , so that some specimens may be found which appear to connect it with the other species, but it is the writer's opinion that when we know more of the habits and seasonal history of the northern Rocky Mountain Pissodes some of the species here included will be found to represent one or more undescribed species, and especially Hopk. U. S. 2386a, which was found ovipos-
iting in the terminal of a pine sapling. Forty-nine specimens have been examined, including all stages and work.

Host tree.-Pinus ponderosa scopulorum, in thick bark on trunks of trees, in base of saplings, and possibly in tops and terminals.

Distribution (Plate XIX, fig. 8).-(Hopk. U. S.). Colorado: Estes Park. Idaho: Centerville. South Dakota: Black Hills, Custer, Lead. Washington: Buckeye (U.S.N.M.) Colorado: Breckenridge, Estes Park, La Veta Pass, Leadville. Montana: Helena. South Dakota: Custer. Washington: Buckeve. Canada: Alberta, Banff Springs.

Bibliography and Synonymy.
Pissodes costatus (not of Mann.) Hopkins, 1906, p. 254, fig. 63.
9. Pissodes canadensis $\mathrm{n} . \mathrm{sp}$.

The type specimen is labeled "Type No. 7431, U.S.N.M.;" name; "Winnipeg, Man[itoba], Hanham; \& 1." This, with two other specimens, a male and a female, were found in the Wickham collection in the United States National Museum under P. strobi.

Distinctive characters.-This species may be easily confused with P. approximatus by its general external appearance, but the difference in the fork of the male genitalia indicates that it is distinct and more nearly related to P. nemorensis. It is distinguished from P. approximatus by the somewhat stouter body and prothorax. The alternate interspaces of the elytra are acutely rugose, the posterior spots are more completely fused on the lateral area, and the beak is longer. It is easily separated from P. nemorensis by the relatively shorter beak and stouter body and fused posterior spots of the elytra, as also by its distribution.

Variations.-There is not much variation in the three specimens except that the alternating elevated interspaces are less acutely rugose in one specimen than in the other two specimens. Three adult specimens were examined.

Host tree.-Not known, but it is evidently pine.
Distribution (Plate XX, fig. 9).-(U.S.N.M.). (Wickham Collection) Canada: Manitoba (Winnipeg).
10. Pissodes nemorensis Germar.
(Plate XV, fig. C; text fig. 8, B.)
The species is represented in the collection by a typical specimen labeled with rectangular red label; name; "Pinus; Calhoun, Ala.; A. D. Hopkins, Apr. 25, '05, bred; ㅇ 1; Hopk. U. S. 1174d."

Distinctive characters.-There seems to be little doubt that this is the long unrecognized species described by Germar in connection with the description of the genus and commonly referred to as synonymous with P. strobi, with which it has been confused in col-
lections and literature. The reference in the description to the beak being longer than the prothorax is sufficient to distinguish it from P. strobi, and the type locality, "Kentucky," is sufficient to place it within the range of this common southern form. This species is very readily distinguished from P. strobi by its average larger size, much longer beak, smaller spots of scales on elytra, and by its habits and general distribution, although the ranges of the two species may overlap in some places. It is distinguished from P. approximatus (with which it may occur in the Transition zone around the Appalachian Mountain ranges) by its average larger size, longer beak, the elytra more distinctly narrowed posteriorly, and much smaller posterior brown spot. It is also distinguished from its closest ally (P. deodaræ), the only other species known to occupy the Gulf States region, by its average larger size and shorter beak, and by the posteriorly narrowed elytra and more distinctly elevated third and fifth elytral interspaces.

Variations.-There is much variation in size, the length ranging from 4.9 to 7.7 mm ., and in color from nearly black to light brown, the darker areas predominating. There is also much variation in all of the structural and sculptural characters and in the size, density, and color of the spots. More than 250 specimens have been examined, including all stages and work.

Host trees.-Pinus palustris Pinus trda, Pinus virginiana, and Pinus echinata, in thick bark on trunks of dying and felled trees, stumps, stems, and base of saplings, etc. Apparently it is not especially injurious.

Distribution (Plate XX, fig.10).-(Hopk.U.S.) Alabama: Calhoun. District of Columbia: Langdon, Rock Creek Park. Georgia: Demorest, Macon, Thomasville. Maryland: Silver Spring. North Carolina: Boardman, Tryon. South Carolina: Lumber. Texas: Deweyville, Houston. Virginia: Hawlin, Princess Anne County, Virginia Beach. Test Virginia: Kanawha Station. (Hopk. W. Va.) West Virginia: Lockheart's Run, Roosevelt. (U. S. N. M., under P. strobi.) Alabama: Prattville. Florida: Tallahassee. Maryland: Piney Point. North Carolina: Retreat, Graybeard Mountains.

Bibliography and Synonymy.

.Pissodes nemorensis Germar, 1824, p. 318. Gemminger and Harold, 1871, p. 2431.
Pissodes strobi (not of Peck) Say, 1831, p. 14 (in part). Harris, 1841, p. 63 (in part). Say. 1859, p. 277 (in part). Le Conte, 1876, p. 142 (in part). Thomas, 1877, p. 134 (in part). Hopkins, 1893, p. 205, No. 219 (in part); 1899, p. 429 (parasite); 1899, p. 441 (in part).

11. Pissodes deodaræ n. sp.

The type specimen is labeled "Type No. 7433, U.S.N.M.;" name; "deodar; Experiment, Ga., Apr. 25, '03; Fiske, Col[lecto]r; 9 ; Hopk. U. S. 1641c."

Distinctive characters.-This species is distinguished from P. nemorensis by its arerage smaller size, longer beak, less distinctly elerated elytral interspaces, and the sides of the elytra more distinctly parallel, but it is more distinctly separated by its habit and host. It is not improbable that this is an example of the origin of species through mutation and change of habit and host.

Tariations.-There is considerable rariation in size, the length ranging from 4.2 to 5.8 mm ., but there is not very much variation in the grayish-brown color or in form, sculpture, and restiture. In fact, it appears to be more constant in general character than almost any of the other species.

Host tree.-Cedrus deodara, in living branches, tops, and terminals, causing serious injury.

Distribution (Plate XX, fig. 11).-(Hopk. U. S.) Georgia: Experiment.

12. Pissodes californicus $\mathrm{n} . \mathrm{sp}$.

The type specimen is labeled "Type No. 7456, U. S. N. M.;" name; "Pinus ponderosa; Yosemite Tal., Cal., June 13, '0t; Hopkins, Col[lecto]r; ㅇ 4; Hopk. U. S. 2808a." This specimen was collected by the writer at the same time and place as those referred to P. yosemite, and was not recognized at the time as distinct.

Distinctive characters.-This species is closely related to P. nemorensis, from which it is at once distinguished by the deeply emarginate anterior margin of the pronotum and by its very different habit and distribution. It is also readily distinguished from P. yosemite by the broad, closely punctured pronotum with its emarginate anterior margin and by the broad, flattened, third and fifth elytral interspaces. Indeed, it is so markedly different from any of the other western forms that we feel justified in basing our conclusion as to its distinctness on the single specimen.

Host tree.-Pinus ponderosa, in thick bark on living trees, causing serious scars.

Distribution (Plate XX, fig. 12).-(Hopk. Ǔ. S.) California: Yosemite Talley.

> 13. Pissodes yosemite n. sp.

The type specimen is labeled "Type No. 7434, U. S. N. M.;" name; "Pinus ponderosa; losemite Vil., Cal., June 13, '0t; Hopkins, Col[lecto]r; ô 1; Hopk. U. S. 2808b." The specimen was collected near Sifrror Lake in the thick bark of a tree which was apparently dying from injuries by this and possibly the preceding species.

Distinctive characters.-This species is more closely allied to P webbi, from which it is distinguished by the narrower pronotum with the punctures less densely placed, and by its disiribution.

Tariations.-There is considerable variation in size, the length ranging from 5.1 to 7 mm ., but not much in its reddish-brown color. The spots of whitish scales are usually conspicuous on the sides of the pronotum and near the declivity of the elytra, but there is considerable rariation in their size, density, and color. The very coarse punctures of the pronotum and the strongly elerated third and fifth elytral interspaces are quite constant and characteristic. Fifty-one specimens were examined, including adults, larræ, and work.

Host trees.-Pinus ponderosa and Pinus lambertiana, in living and dying thick bark on standing and felled trees, stumps, and base and stems of saplings. It is evidently quite injurious.

Distribution (Plate XX, fig. 13).-(Hopk. U. S.) California: Summerdale and Yosemite. (U. S. N. M.) California: Lake Tahoe, Placer County, Siskiyou County, under P. costatus. Washington: Easton, under P. fasciatus.

Bibliography and Synonymy.
Pissodes costatus (not of Mannerheim) Hopkins, 1906, p. 254, fig. 64.
14. Pissodes webbi n. sp.

The type specimen is labeled "Type No. 7459, U. S. N. M.;" name; "Pinus strobiformis; bred Nor. 12-7; Sta. Catalina Mts., Ariz.; J. L. Webb, collector; \& ; Hopk. L. S. $5722 . "$ The specimen was reared with others from larre in thick bark on small felled tree, -August 20, 1908. It is named for the collector.

Distinctive characters.-This species is more closely allied to P. yosemite, from which it is distinguished by the broader pronotum, with the punctures more closely placed.

Tariations.-There is considerable rariation in size, the length ranging from 4.8 to 6.8 mm ., and in color from nearly black to dark reddish-brown. There is less variation in the spots than usual, which hare less white and more of the rellow scales. Over 70 specimens were examined, including all stages and work.

Host trees.-Pinus strobiformis, Pinus scopulorum, and Pinus murrayana (contorta) in living(?) and dying bark on base and stems of saplings and standing and felled trees. It is probably injurious.

Distribution (Plate XX, fig. 14).-(Hopk. U. S.) Arizona: Santa Catalina Mountains. New Mexico: Capitan Mountains and Cloudcroft.

> Bibliography and Synonymy.

Pissodes strobi (not of Peck) Champion, 1902, p. 119. (May be above species; can not be P. strobi Peck.-A. D. H.)

Subsections b3 and b4.
(Species Nos. 15 and 16.)
Adults.-Elytra with a transverse band of white and yellow scales instead of a distinct spot near the vertex of the declivity; beak shorter than the prothorax. Species 15 has a broad pronotum with the posterior angles acute, while in species 16 the pronotum is narrow and the angles subrectangular.

Sexes.-Apical margin of seventh abdominal sternite of males not sinuate; beak slightly longer and more slender in the females than in the males.
Pupr.-Abdominal tergites without distinct small spines alternating with the longer ones. Species 15 has distinct epipleural spines, while species 16 . does not.

Lariæ.-Eye spots distinct; apical tooth of mandible obtuse in species 15 and acute in species 16 .

Hosts.-Species 15, Pinus; species 16, Pseudotsuga.
Distribution.-Species 15, coast of California and Washington; species 16, northern California into British Columbia.
15. Pissodes radiatæ n. sp.
(Plate III, fig. 15.)
The type specimen is labeled "Type No. 7435, U. S. N. M.; name; Pinus; Del Monte, Cal., Sept. 4, '02; A. D. Hopkins, collector; \& 4; Hopk. U. S. 1089b." It was reared from a small branch of a transplanted small sapling of Pinus sylvestris, collected September 4, 1902, in the grounds of the Del Monte Hotel at Del Monte, Cal.; it was also found in Pinus radiata, for which the species is named.

Distinctive characters.-This is a very distinct species, separated from all other North American species by the acute posterior angles of the pronotum. It comes nearer to P. notatus of Europe than to any other foreign species, but from this species it is at once distinguished by the strongly elevated third and fifth elytral interspaces.

Variations.-There is considerable variation in size, the length being from 5.1 to 7.4 mm ., but not much in color, markings, etc., of the specimens from Monterey and Palo Alto, but the single specimen from Easton, Wash., is small, dark brown, the punctures of the elytra coarser, and the posterior angles of the pronotum very acute. Further specimens from this northern locality and more information relating to their habit and host may show that the northern individuals represent a distinct species. More than 90 specimens have been examined, including all stages and work.

Host trees.-Pinus radiata (common) and Pinus sylvestris (rare), infesting the thick bark on standing and felled trees and stumps, and the base, stems, and tops of saplings.

Distribution (Plate XX, fig. 15).-(Hopk. U. S.) California; Del Monte, Monterey, Palo Alto. (U. S. N. M.) Washington: Easton, under P. fasciatus.
16. Pissodes fasciatus Le Conte.
(Plate III, fig. 16; Plate XVII.)
The species is represented in the collection by a typical specimen labeled with the name "type of drawing; Pseudotsuga taxifolia; Hoquiam, Wash.; Burke, col[lecto]r; 9 ; Hopk. U. S. 2064b."

Distinctive characters.-This species is readily distinguished from P. radiatr, to which it is somewhat remotely allied, by the posterior angles being rectangular instead of acute, the third and fifth interspaces less elevated, and also by its habit and host.

Variations.-There is considerable variation in size, from 5.1 to 8.3 mm . in length, and in color from nearly black to reddish and brown; there is also much variation in the size, density, and color of the spots of scales. More than 200 specimens have been examined, including all stages and work.

Host tree.-Pseudotsuga taxifolia, living and dying thick bark on standing and felled trees and stumps, and on the base of saplings.

Distribution (Plate XX, fig. 16).-(Hopk. U. S.) Washington: Ashford, Keyport, Hoquiam, Meredith, Pialschie. (Webb's collection) Washington: Sequim. (U. S. N. M.) Washington: Tenino, Easton. Oregon: Corvallis, Portland. British Columbia: Kaslo, North Bend, Victoria.

Bibliography.

Pissodes fasciatus Le Conte, 1876, pp. 142-143. Hopkins, 1905, p. 253, figs. 65, 66.
Subdivision B.

(Species Nos. 17 to 28.)

Adults.--Elytra usually without distinct spots on anterior lateral area and with small spots situated between the vertex of the declivity and the median area.

Sexes.-Beak in both sexes rarely shorter than prothorax, commonly much longer, and always distinctly longer in females than in males.

Pupr.-Eyes without minute spines on posterior margin (so far as observed).

Larve.-Without distinctive divisional characters (so far as observed).

Hosts.-Picea and Abies.

Distribution.-Section a3, coast of western Washington to Sitka; section a/4, Canadian zone, eastern United States from mountains of North Carolina to Canada, and northern Rocky Mountains and Pacific Coast region northward into Alaska.

SECTION a3.

(Species No. 17.)
Adults.-Basal angles of pronotum subrectangular and beak rather stout and moderately long; apical margin of the seventh abdominal sternite of male without apical process, but faintly sinuate.

Puрæ.--Small spines alternating with the longer ones on abdominal tergites and ninth epipleurites with a few bristles.

Larix.-Abdominal spiracles obscure; apical tooth of the mandibles acute, the median emarginate, and the eye spots distinct. The host is Piceu sitchensis from the coast of western Washington to Sitka.

17.. Pissodes costatus Mannerheim.

This species is represented in the collection by a typical specimen labeled with the name: "Picea; Hoquiam, Wash.; A. D. Hopkins, collector; 92 ; Hopk. U.S. 2361g." The specimen was reared from among larvæ and pupæ found May 26, 1903, under thick bark in chip cocoons in outer wood of stump of a tree of Picea sitchensis felled in 1902. This evidently comes nearer to Mannerheim's species than anything yet recognized, and the fact that it is found in the Sitka spruce is additional evidence.

Distinctive characters.-This is the only representative of the first section (a3) of subdivision B, and therefore is not closely allied to any of the other species of the subdivision. It is distinguished by the closely placed punctures of the pronotum, which become coarser and more distinctly separated toward the posterior lateral section, by the moderately rounded posterior angles of the pronotum, and by the indistinct spots of reddish brown and white scales.

Variations.-The three matured adults examined range in length from 5.5 to 7.1 mm ., and in color from dark brown to black. The spets of scales vary in size, color, and density. Three adults and the larva and pupa have been examined.

Host tree.-Picea sitchensis, in thick bark on dying and felled trees and stumps.

Distribution (Plate XXI, fig. 17).-(Hopk. U. S.) Washington: Hoquiam. Alaska: Sitka (the type locality).

Bibliography.

Pissodes costatus Mannerheim, 1852, p. 354 (reprint p. 71).

Adults.-Basal angles of pronotum rounded; beak slender and moderately to very long.

Species 18 to 24 have the punctures of the pronotum distinctly separated and the punctures of the elytral striæ small to coarse. In species 18 to 21 the pronotum is not distinctly narrower than the elytra. Species 18 has a short, stout pronotum with the sides strongly rounded and constricted toward the anterior margin, the elytral interspaces with rather coarse rugosities. Species 19 to 21 have a more elongate pronotum with rounded sides but not distinctly constricted toward the head, and the elytral interspaces have fine rugosities. In species 22 to 24 the pronotum is distinctly narrower than the elytra. Species 25 to 28 have the punctures of the pronotum irregular in size and not distinctly separated and the strial punctures are very coarse and irregular. In species 25 and 26 the strial punctures are very irregular in size, the elytral spots moderately distinct, and the pronotum not distinctly narrower than the elytra. In species 27 and 28 the strial punctures are moderately irregular, the elytral spots are evident but small, and the pronotum is distinctly narrower than the elytra.

Sexes.-In species 18 the apical margin of the seventh abdominal sternite of the males is sinuate but without median process, while in species 20 there is a distinct median process, and in species 25 to 28 the apex is uniformly rounded as in the females.

Рupæ.-The fourth and fifth abdominal tergites have two small spines between the more prominent dorsal ones. In species 26 the rostrum is without a pair of spines between the middle and apex, while in 27 they are present. Head without distinct eye spots (so far as observed).

Larve.-In species 18 the abdominal spiracles are moderately distinct, the apical tooth of the mandibles obtuse, and the median tooth triangular. In species 20 the apical tooth is acute, and the median tooth is emarginate. In species 26 to 28 the abdominal spiracles are obscure. In species 26 the apical tooth is acute and the middle tooth trianoular. In species 27 the apical tooth is acute and the median one emarginate, while in species 28 the apical tooth is obtuse and the median one emarginate.

Hosts.-Species 18, 19, 20, Picea; species 21, Pinus; species 22, Picea; species 25, 26 and 27, Abies.

Distribution.-Species 18, 19, 20, and 28, Canadian zone, West Virginia and New Hampshire; species 21 and 26, Cascade Mountains, Oregon and Washington; species 22 and 25, central Rocky Mountains; species 23, Alaska (Arctic Circle); species 24, northern Michigan; species 27, Maine to northern Michigan.

18. Pissodes fiskei $\mathrm{n} . \mathrm{sp}$.

(Plate III, fig. 18; Plate XII.)
The type specimen is labeled "Type No. 7438, U.S.N.M.;" name; "type of drawing; Picea; Franconia, N. H., Oct. 16, '07; W. F. Fiske, collector; 91 ; Hopk. U. S. 3309." It was reared with other specimens from a section of a small spruce tree scorched by fire, collected October 16, 1907.

Distinctive characters.-This is a very distinct species, and may be known from its nearest ally, P. nigræ, by the strongly elerated third and fifth elytral interspaces, and the larger yellow posterior spot of densely placed scales, with no trace of an anterior spot. It is at once distinguished from P. similis, which may be associated with both species in the bark of the same tree, by its large size, short pronotum, and long beak.

Variations.-There is not much variation in size, the length ranging from 4.2 to 5.2 mm ., nor in other characters. Eight specimens of adults and work were examined.

Host trees.-Picea rubens and Picea mariana, in thick bark on logs and trunks of small standing trees.

Distribution (Plate XXI, fig. 18).-(Hopk. U. S.) New Hampshire: Rye.

Bibliography and Synonymy.
Pissodes strobi (not of Peck) Packard, 1890, pp. 829-830. (Probably P. fiskei Hopk.A. D. H.)

19. Pissodes nigræ n. sp.

The type specimen is labeled "Type No. 7458, U.S.N.M.;" name; "Picea nigra; Webster, N. H.; W. F. Fiske, collector; Hopk. U. S. 3725a." It was taken from a section of the trunk of a small dead tree, collected May 3, 1906.

Distinctive characters.-This species is distinguished from P. fiskei by the much less elevated and less rugose interspaces; longer beak, and small to obscure anterior white spot on the elytra. From P. puncticollis it is distinguished by its darker color, stout pronotum, and less distinctly elevated elytral interspaces. It is at once distinguished from P : similis by its long beak.

Variations.-The length varies from 4.4 to 6.6 mm . There is very little variation in the color. The anterior spots are obscure in some specimens and the posterior ones vary from yellowish to white.

Host tree.-Picea mariana.
Distribution (Plate XXI, fig. 19).-(Hopk. U. S.) New Hampshire: Webster.
20. Pissodes puncticollis n. sp.
(Plate IV, fig. 20.)
The type is labeled "Type No. 7437, U.S.N.M.;" name; "type of drawing; Picea; Randolph Co., W. Va.; A. D. Hopkins, collector; ㅇ 1; Hopk. W. Va. 70." It was taken from the dead bark of a spruce log collected August 25, 1890.

Distinctive characters.-Closely allied to P. murrayanx, but distinguished by its light reddish-brown color, irregular and less dense pronotal punctures, and larger size, with the alternating interspaces less distinctly elevated, an anterior spot present, and the posterior spot distinct.

Variations.-The length varies from 4.2 to 6.1 mm .; there is very little variation in the color. The anterior white spot, which is small and situated on the fourth interspace, is obscure in two specimens and situated on the fifth stria in the others. Four adults and 1 larva were examined.

Host tree.-Picea rubens, in dying bark on felled and standing trees.

Distribution (Plate XXI, fig. 20).-(Hopk. W. Va.) West Virginia: Cheat Bridge, Randolph County, Bayard, Tucker County.

21. Pissodes murrayanæ n. sp.

The type specimen is labeled "Type No. 7436, U.S.N.M.;" name; "Pinus murrayana; Wallowa, Oreg.; A. D. Hopkins, Apr. 10, '07, bred; Hopk. U. S. 6560a." It was reared from the section of a small tree received from correspondent, H. K. O'Brien, February 14, 1907.

Distinctive characters.-The single imperfect specimen representing this species is closely allied to P: puncticollis, from the type of which it is distinguished by its dark brown color, very small posterior spot, absence of an anterior spot, regular pronotal punctures, and broad third elytral interspace. It is probable that more specimens will show a wider range of variation from those of P. puncticollis.

Host tree.-Pinus murrayana, in thin bark.
Distribution (Plate XXI, fig. 21).-(Hopk. U. S.) Oregon: Wallowa.

22. Pissodes coloradensis n. sp.

The type specimen is labeled "Type No. 7439, U.S.N.M.;" name; "Leadville, Colo., H. F. Wickham, July 7-14, '96, 10,000$11,000 \mathrm{ft} . ;$ ㅇ ; C. L. 39." (Abdomen removed and mounted on separate pin. Labeled "C L 39 ¢.") Specimen from Wickham's collection in the United States National Museum.

Distinctive characters.-Pronotum distinctly narrower than elytra and punctures irregular, not dense. Elytral scales distinct, giving
the surface a grayish appearance. Posterior spot prominent, this readily distinguishing it from its nearest allies, P. alascensis and P. rotundatus.

Variations.-Length 7.4 to 9.4 mm . The color ranges from dark brown to black. The color and density of the scales rary as usual, as do also the elevation and rugosities of the alternating interspaces, strial punctures, etc. Twenty-seven specimens of adults were examined.

Host trees.-Picea canadensis in the Black Hills of South Dakota. It will evidently be found also in Picea engelmanni.

Distribution (Plate XXI, fig. 22).-Black Hills of South Dakota; central Colorado.

23. Pissodes alascensis n. sp

The type specimen is labeled "Type No. 7459, U.S.N.M.;" name; "Koyukuk R., Alas., Lt. 67-69, Lg. 151, summer 1901; W. J. Peters, collector."

Distinctive characters.--The darker color and closely placed yet separated pronotal punctures, sparse elytral scales, and small posterior spot on the elytra serve to distinguish the single specimen of this species from P. coloradensis, and the distinctly elerated and rugose elytral punctures distinguish it from P. rotundatus. One specimen only was examined.

Host tree.-Probably Picea.
Distribution (Plate XXI, fig. 23).-(Hopk. U. S.) Alaska: Koyukuk River, Arctic Circle.

24. Pissodes rotundatus Le Conte.

> (Plate IV, fig. 24.)

This species is represented in the collection by a trpical specimen labeled with name; "Marquette, Mich., 4, 7 [.July 4]: Coll. Hubbard \& Schwarz; ㅇ 4."

Distinctive characters.--This species is closely allied to P. alascensis from which it is distinguished br the densely placed punctures of the pronotum and the broad and not strongly elerated third and fifth elytral interspaces, which also serve to distinguish it from P. coloradensis.

Variations.-The length varies from 6 to 7.3 mm .; there is not much rariation in color except as it mar be modified by the more numerous white scales on some specimens. Seven specimens of adults were examined.

Host trees.-Probably Picea rubens (?) and Picea canadensis (?).
Distribution (Plate XXI, fig. 24).-(U.S.N.MI.) (H. \&-S.) Jichigan: White Fish Point, Marquette, June and July.

Bibliography.
Pissodes rotundatus Le Conte, 1876, pp. 142, 143-144. Hopkins, 1906, pp. 254, 256, fig. 69.

Subsection b6.
Species Nos. 25 to 28.)
25. Pissodes burkei n. sp.
(Plate IV, fig. 25.)
The type specimen is labeled "Type No. 7440 U.S.N.M.;" name; "above Ouray, Colo., 9,000-10,000 ft., Mineral Point Trail, VII, 1897, H. F. Wickham; ㅇ 4." From Wickham's collection. Additional specimens collected and host tree determined by H. E. Burke.

Distinctive characters.-This species is quite distinct from P. rotundatus but is more closely allied to P. piperi, from which it is distinguished by its decidedly grayish appearance and the distinct posterior spot of the elytra.

Variations.-The length varies from 6 to 7.7 mm ., but there is comparatively little variation in the color, except in rubbed specimens which are darker. Thirty-two specimens were examined, including all stages and work.

Host tree.-Abies lasiocarpa, in thick bark on living and dying trees.
Distribution (Plate XXII, fig. 25).-(Hopk. U. S.) Utah: Kamas (Burke, collector). (U.S.N.M.) (H. \& S.) Utah: Alta and Park City, June (under P. costatus). Colorado: Ouray (Wickham).

26. Pissodes piperi n. sp.

(Plate IV, fig. 26; Plate V, fig. A; Plate XVIII; text fig. 8, A.)
The type specimen is labeled "Type No. 7441, U.S.N.M.;" name; "type of drawing; Mt. Rainier, Wash.; collector, C. V. Piper; \& 1." Additional specimens were collected and host trees determined by Messrs. H. E. Burke and J. L. Webb.

Distinctive characters.-This species is at once distinguished from P. burkei by its large size, dark color, sparsely placed elytral scales, small posterior spot, and very coarse and deep punctures of elytral striæ.

Variations.-The length varies from 7.4 to 10 mm . and the posterior spots of the elytra vary from obscure to distinct. Five adults and 128 specimens examined, including all stages and work.

Host trees.-Abies lasiocarpa and Abies concolor, in thick bark on trunks of living (?) and dying trees.

Distribution (Plate XXII, fig. 26).-(Hopk. U. S.) Washington: Paradise Valley. Ilaho: Centerville. (U.S.N.M.) (H. \& S.) British Columbia: Glacier. Washington: Mt. Rainier.
27. Pissodes dubius Randall.
(Plate IV, fig. 27.)
This species is represented in the collection by a typical specimen labeled with the name; "Marquette, Mich., 27.6 [June 27]; Coll. Hubbard \& Schwarz; ㅇ 1."

Distinctive characters.-This species is closely allied to P. fraseri, from which it is distinguished by its medium size, moderately long beak, and the regular convex pronotum without broad impressions.

Variations.-The length varies from 4.8 to 5.7 mm . and as usual there is considerable variation in color due to rubbed and immature specimens. Forty-one specimens were examined, including all stages and work.

Host tree.-Abies balsamea, in thick living and dying bark on trunks of living and dying trees and stumps of storm-broken trees.

Distribution (Plate XXII, fig. 27).-(Hopk. U. S.) Maine: Lake Parmachene, Beaver Pond (Boil Mountain). New Hampshire: Dartmouth College, Fabyan, Waterville. Michigan: Grand Island. (U.S.N.M.) (H. \&S.) Michigan: Marquette and White Fish Point.

Bibliography.

Pissodes dubius Randall, 1838, pp. 24-25. Le Conte, 1876, pp. 142, 143. Hopkins, 1906, pp. 254, 256, fig. 67. Felt, 1906, p. 401.

28. Pissodes fraseri n. sp.

(Plate VI, fig. 28; text fig. 9.)
The type specimen is labeled "Type No. 7442, U.S.N.M.;" name; "Pisgah Mt., N. C., altitude 5,000 ft.; A. D. Hopkins, collector; 9 ; Hopk. U. S. 2868." It was collected June 29, 1904. Adults were common, pupæ frequent, and larræ rare in pupal cells in inner bark on trunk of large Fraser fir tree, which had evidently died from root disease.

Distinctive characters.-Closely allied to P. dubius, from which it is distinguished by its large size, very long beak, and the moderately convex pronotum with basal and oblique subdorsal impressions.

Variations.-The length varies from 4.6 to 9.1 mm . and there is considerable rariation in color, size of spots and punctures, length of beak, and impressions of pronotum. One hundred and six specimens were examined, including all stages and work.

Host tree.-Abies fraseri, thick living and dying bark on trunks of living and dying trees.

Distribution (Plate XXII, fig. 28).-(Hopk. U. S.) North Carolina: Pisgah Mountains (Silver Mountain). (A.M.N.H.) North Carolina: Black Mountains (Beutenmüller).

DIVISION II.

(Species Nos. 29 and 30.)
Adults.-Third and fifth elytral interspaces not broader or more elevated than second and fourth. Beak shorter than prothorax, slender. Pronotum broad, with sides behind the middle nearly parallel with the basal angles, rectangular. Punctures of elytral striæ moderately coarse, regular.

Sexes.-Posterior tibiæ of the males fringed with long hairs. Apical margin of the seventh abdominal sternite of the males with a truncate process arising from a deep emargination.

Pupx.-Fourth and fifth abdominal tergites with two small spines between the more prominent dorsal ones. Rostrum with a pair of small spines between the apex and the middle.

Larve.-Not known.
Host.-Pinus.
Distribution.-Species 29, New Hampshire to northern Pennsylvania, westward into Minnesota; species 30, British Columbia.
29. Pissodes affinis Randall.
(Plate IV, fig. 29; Plate VI, fig. 29.)
This species is represented in the collection by a typical specimen labeled with name; "Marquette, Mich., 26.6 [June 26]; Coll. Hubbard \& Schwarz; ㅇ 2."

Distinctive characters.-This species is at once distinguished from all of the preceding ones of the genus by the equal width of the elytral interspaces, the third and fifth of which are not elevated; and from its nearest ally (P. curriei) by the long posterior spot on the elytra and by the moderately coarse strial punctures.

Variations.-The length varies from 5.5 to 8 mm ., and while the sculpture and color are quite constant there is considerable variation in the spots of scales, both in color and density. Twenty-nine adult specimens were examined.

Host tree.-Pinus strobus, in thick bark on stump. (As determined by W. F. Fiske.)

Distribution (Plate XXII, fig. 29).-(Hopk. U. S.) (Fiske collector) New ILampshire: Webster or Penacook. (U.S.N.M.) Minnesota. (II. \& S.) Michigan: Marquette (June and July); Eagle Harbor (Wickham). Wisconsin: Bayfield. New Hampshire: Hampton. New York: Ithaca (Chittenden). Pennsilvania; Massachusetts.

Bibliography.
Pissodes affinis Randall, 1838, p. 24. Le Conte, 1876, pp. 142, 143. Schwarz, 1889, p. 176 (male character). IIopkins, 1906, pp. 254, 256, fig. 68. Felt, 1906, p. 402.
30. Pissodes curriei n. sp.
(Plate VI, fig. 30.)
The type specimen is labeled "Type No. 7443, U.S.N.M.;" name; "Kaslo, B. C., 2.7 [July 2, 1903]; R. P. Currie, collector; ô 1."

Distinctive characters.-This species is distinguished from P. affinis by the very sparsely placed scales, the obscure anterior spots, the small posterior spot on the elytra, and the coarse and deep strial punctures.

Variations.-The length varies from 5.6 to 7.7 mm . There is very little variation in sculpture, spots of scales, etc. Seven adult specimens were examined.

Host tree.-Unknown, probably Pinus.
Distribution (Plate XXII, fig. 30).-(U.S.N.M.) British Columbia: Kaslo.

LIST OF DESCRIBED SPECIES OF PISSODES. ${ }^{a}$

[^4]

BIBLIOGRAPHY.

1758. Linneus, C.-Systema naturæ, tenth edition, p. 379.
1759. De Geer, C.-Memoires pour servir a l'histoire des insectes, vol. 5, p. 231.
1760. Fabricius, J. C.-Mantissa insectorum, vol. 1, p. 103.
1761. Herbst, J. F. W.-Natursystem aller bekannten in-und-ausländischen Insek-ten-Kafer, sechster Theil, p. 294, taf. 82, fig. 11.
1762. Herbst, J. F. W.-Natursystem aller bekannten in-und-ausländischen Insek-ten-Kafer, siebenter Theil, p. 21.
1763. Schrank, F. von P.-Fauna Boica, vol. 1, p. 480.
1764. Panzer, G. W. F.--Faunæ insectorum germanicæ initia oder Deutschlands insecten gesammelt von hrsg. von. D. Georg Wolffgang Franz Panzer.
1765. Fabricius, J. C.-Systema eleutheratorum, vol. 2, p. 498.
1766. Illiger, C.-Magazin fur Insektenkunde, vol. 6, p. 309.
1767. Olivier, A. G.-Entomologie, ou histoire naturelle des insectes, vol. 5, p. 116, No. 83, pl. 16, figs. 42 b, c, pl. 4, fig. 42.
1768. Gyllenhal, L.-Insecta suecica descripta, vol. 3, p. 68.
1769. Реск, W. D.-On the insects which destroy the young branches of the pear-tree, and the leading shoot of the Weymouth-pine. <Mass. Agr. Journ., vol. 4, No. 3, p. 209, pl. 2.
1770. Germar, E. F.-Magazin der Entomologie, vol. 2, p. 340, No. 30.
1771. Germar, E. F.-Insectorum species novæ aut minus cognitæ, descriptionibus illustratæ, vol. 1, pp. 316-319.
1772. Schoenherr, C. J.-Curculionidum dispositio methodica, pp. 225-226.
1773. Stephens, J. F.-A systematic catalogue of British insects, pp. 166, 167.
1774. Say, T.-Descriptions of North American Curculionides and an arrangement of some of our own species agreeably to the method of Schoenherr. <New Harmony, Indiana, p. 14.
1775. Schoenherr, C. J.-Genera et species Curculionidum, vol. 3, p. 260.
1776. Dejean, P. F.-Catalogue des coleoptères de la collection de M. le comte Dejean, p. 300.
1777. Randall, J. W.-Description of new species of coleopterous insects inhabiting the State of Maine. <Journ. Nat. Hist. (Boston), vol. 2, No. 1, pp. 24-25.
1778. Ratzeburg, J. T. C.-Die Forst-Insekten, vol. 1, pp. 142-147, taf. 5, figs. 1, 2, 3, 4.
1779. Harris, T. W.-A report on the insects of Massachusetts injurious to vegetation, pp. 63-65.
1780. (Boheman, C. H.)-In Schoenherr, Genera et species Curculionidum, vol. 7, pp. 133-134.
1781. Mannerheim, G. G. von.-Zweiter Nachtrag zur Kaefer-Fauna der nordamerikanischen Laender des russischen Reiches. <Bul. Soc. Imp. Nat. Mosc., vol. 25, 2, p. 354 (reprint, p. 171).
1782. Perris, Edouard.-Histoire des insectes du pin maritime. <Ann. Soc. Ent. France, vol. 4, pp. 423-431.
1783. Fitch, A.-Fourth report on the noxious and other insects of the State of New York, pp. 732-736, in reports combined.
1784. Say, T.-The complete writings of Thomas Say on the entomology of North America, edited by John L. Le Conte, M. D., vol. 1, p. 277.
1785. Miler, L.-Eine Excursion in das Tatra-Gebirge. <Wien. Ent. Monatsschrift, p. 364.
1786. Motschulsky, V.-Reisen und Forschungen in Amur-Lande (Von Schrenck), vol. 2.
1787. Lacordaire, T.-Histoire naturelle des insectes, vol. 6, p. 461.
1788. Thomson, C. G.-Skandinaviens Coleoptera, vol. 10, p. 192.
1789. Walsh, B. D., and Riley, C. V.-American Entomologist, vol. 2, p. 26, fig. 22.
1790. Gemminger, M., and de Harold, E.-Catalogus coleopterorum, vol. 8, pp. 2431-2432.
1791. Desbrochers des Loges.-Description d'apionides et de quelques autres espèces de curculionides nouveaux. Mitth. Schweiz. Ent. Ges., vol. 3, p. 191.
1792. Redtenbacher, L.-Fauna austriaca, die Kafer, 3d ed., pt. 2, p. 268.
1793. Roelofs, W.-Curculionides recueillis au Japon. <Ann. Soc. Ent. Belgique, vol. 17, p. 121.
1794. Le Baron, W.-Fourth annual report on the noxious and beneficial insects of the State of Illinois, p. 139, fig. 63.
1795. Le Conte, J. L., and Horn, G. H.-The Rhynchophora of America north of Mexico. <Proc. Amer. Phil. Soc., vol. 15, No. 96, pp. 142-144.
1796. Thomas, C.-Sixth report of the state entomologist on the noxious and beneficial insects of the State of Illinois, pp. 133-134.
1797. Fuller, A. S.-The American Entomologist, vol. 3, n. s., vol. 1, No. 1, pp. 5-6, fig. 2.
1798. Saunders, W.-Insects injurious to the white pine. <Report of the Entomological Society of Ontario, p. 55, fig. 23.
1799. Stierlin, G.-Bestimmungstabeller europaischen Coleopteren. IX, Curculionidæ. <Mitth. Schweiz. Ent. Ges., pp. 403-645.
1800. Le Conte, J. L., and Horn, G. H.-Classification of the Coleoptera of North America. <Smithsonian miscellaneous collections, 507.
1801. Packard, A. S.-Report of the Commissioner of Agriculture for 1885, pp. 322325, pl. 9.
1802. Lintner, J. A.-Fourth report on the injurious and other insects of the State of New York, p. 24, figs. 6, 7.
1803. Bedel, L.-Faune Coléoptères du Bassin de la Seine, vol. 6, pp. 64, 312.
1804. Schwarz, E. A.-Coleopterological notes: Male characters in Pissodes affinis. $<$ Proc. Ent. Soc. Wash., vol. 1, No. 2, p. 176.
1805. Riley, C. V., and Howard, L. O.-Insect Life, vol. 2, p. 348.
1806. Packard, A. S.-5th Rep. U. S. Ent. Comm., pp. 734-741, 829, 861, 872.
1807. Riley, C. V., and Howard, L. O.-Insect Life, vol. 3, p. 468.
1808. Lintner, J. A.-Ninth report on the injurious and other insects of the State of New York for the year 1892, pp. 344-345, fig. 22.
1809. Hopkivs, A. D.-Catalogue of the West Virginia forest and shade tree insects. $<$ Bul. 32, W. Va. Agr. Exp. Sta., May, p. 205.
1810. Rey, C.-L'exchange, Revue Linneenne, vol. 11, p. 2.
1811. Hopkins, A. D.-Bul. 56, W. Va. Agr. Exp. Sta., pp. 259-260, 345, 429, 441.
1812. Reitter, Edm.-Beitrage zur coleopteren-fauna des russischen Reiches und der angrenzenden Laender. <Deutsch. Ent. Zeit., p. 208.
1813. Chittenden, F. H.-"Insects Injurious to the White Pine," in Bul. 22, Div. Forestry, U. S. Dept. Agr., pp. 58-59, figs. 11, 12.
1814. LUGGER, O.-Beetles injurious to fruit-producing plants. <Bul. 66, Minn. Agr. Exp. Sta., p. 275.
1815. Chalipion, G. C.-Biologia Centrali-Americana, Curculionidæ (Curculioninæ), vol. 4, pt. 4, p. 119.
1816. Ganglbaur, C. L.-Grundzuge eines neuen Systemes der Koleopteren. <Münchener koleopterologische Zeitschrift, vol. 1, pp. 299, 308-309. Sys-tematische-koleopterologische studien, pp. 271-319.
1817. Kolbe, H. J.-Zur systematik der Coleopteren. <Allg. Zeitsch.f. Ent., vol. 8, pp. 137-145.
1818. Stiles, C. W.-The International Code of Zoological Nomenclature as applied to medicine. <Bul. 24, Hygienic Lab., September.
1819. Nüsslin, O.-Leitfaden der Forstinsektenkunde, pp. 122-131.
1820. Hopkins, A. D.-Thsect enemies of forest reproduction. <Yearbook U. S. Dept. Agr. for 1905, pp. 249-256, figs. 61-69, July.
1821. Felt, E. P.-Insects affecting park and woodland trees. <N. Y. State Mus., mem. 8, vol. 2, pp. 397-401.
1822. Heyden, Reitter, u. Weise.-Catalogus coleopterorum Europeæ, p. 657.
1823. Hopkins, A. D.-The white-pine weevil. <Cir. 90, Bur. Ent., U. S. Dept. Agr., p. 8 , figs. 6 .
1824. Hopkins, A. D.-Contributions toward a monograph of the scolytid beetles. I, The genus Dendroctonus. <Tech. Ser. 17, Pt. I, Bur. Ent., U. S. Dept. Agr., pp. 11, 16, 17, figs. 8, 9.

0

Fig. 1.-P. similis. (Original.) Fig. 6.-P strobi. (Author's illustration.) Fig. 8.-P. schwarzi. (Author's illustration.) Fig. 15.-P. radiatæ. (Original.) Fig. 16.-P.fasciatus. (Author's illustration.) Fig. 18.-P. fiskei. (Original.)

25

26

27

29

Adults of Pissodes.
Fig. 20.-P. puncticollis. (Original.) Fig. 24.-P. rotundatus. (Author'sillustration. Fig. 2j.-P.burkei. (Original.) Fig. 26.-P. piperi. (Original.) Fig. 27.-P.dubius. (Author's illustration.) Fig. 29.P. affinis. (Author's illustration.)

Larva and Pupa of Pissodes.
A.-Larva of P. piperi, dorsal, lateral, and rentral aspects. B.-Yupa of P. sitchensis, dorsal, lateral, and ventral aspects. (Original.)

 ＇sヨaossid do Nヨwogg 3H1 」O Sヨ115yヨ 7V5人d

glands. (Óripinal.)
 sin !

Forks of Male Genitalia of Pissodes.
Fig. 4.-P. sitchensis. Fig. ธ̄.-P. engelmanni. Fig. ti.-P. strobi. Fig. 7.-P. approximatus. Fig. 8.-P. schuarzi. Fig. 9.-P.canadensis. Fig. 10.-P. nemorensis. Fig. 15.-P. radiatæ. Fig. 16. $-P$.fasciatus. Fig. 29. $-P$. affinis. Fig. 30.-P. curriei. (Original.)

16

29

30

Stems of Male Genitalia of Pissodes.
Fig. 4.-P. sitchensis. Fig. 5.-P. engelmanni. Fig. 6.-P. strobi. Fig. 7.-P. approximatus. Fig. 9.-P. canadensis. Fig.10.-P. nemorensis. Fig. 15.-P. radiatæ. Fig. 16.P.fasciatus. Fig. 29.-P. affinis. Fig. 30.-P. currici. (Original.)

Work of Pissodes fiskei in Inner Bark and Outer Wood. (Oriainal.)

WORK OF PISSODES SITCHENSIS IN BARK AND WOOD OF TOPS.
A.-One-year terminal. B.-Four-year-old top: a, One-year internode; $b, 2$-year internode; c, 3-year internode; d, 4-year internode. (Original.)

Work of Pissodes strobi, Showing Character of Injury, Chip Cocoons, and Pupal Cells.
a, Vigorous terminal shoot, showing condition of nem growth at time pupæ are transforming to adults; b, 3 -year-old top, showing how larræ have migrated from terminal to the 2 and 3 rear old internodes: c, chip cocoon and pupal cell, natural size; d, work in

Work of Pissodes approximatus and P. nemorensis.
A.-Work of P. approximatus in bark. B.-Work of P. approximatus in bark and wood of sapling. C.-W ork of P. nemorensis in bark. (Original.)

WORK OF PISSODES YOSEMITE AND P. SChWARZI.
A.-P. yoscmitc: Work in wood and bark. (Author's illustration.) B.-P. schwarzi. Work in wood and bark. (Original.)

Work of Pissodes fasciatus.
A.-Work in bark and wood of stem of sapling. (Author's illustration.) B.-Work in thick bark. (Original.)

Work of Pissodes piperi in Bárk. (Original.)

Tech. Series 20, Part 1, Bureau of Entomology, U. S. Dept. of Agriculture.

Distribution Maps of Pissodes.

Fig. 1.-P. similis. Fig. 2.-P. utahensis. Fig. 3. $-P$. barberi. Fig. 4. $-P$. sitchensis. Fig. 5.-P. engel manni. Fig. $6 .-P$. strobi. Fig. 7. - P. approximatus. Fig. 8.-P. schwarzi.

Tech. Series 20, Part I, Bureau of Entomology, U. S. Dept. of Agriculture.

Distribution Maps of Pissodes.
Fig. 9.-P. canadensis. Fig. 10.-P. nemorensis. Fig. 11. $-P$. deodaræ. Fig. 12.-P. californicus. Fig. 13. $-P$. yosemite. Fig. 14. $-P$. webbi. Fig. 15. $-P$. radiatæ. Fig. 16. - P. fasciatus.

Distribution Maps of Pissodes.
Fig. 17.-P. costatus. Fig. 18.-P. fiskci. Fig. 19.-P. nigræ. Fig. 20.-P. puncticollis. Fig. 21.P. murrayanæ. Fig. 22.-P. coloradensis. Fig. 23.-P. alascensis. Fig. 24.-P. rotundatus.

Tech. Series 20, Part I, Bureau of Entomology, U. S. Dept. of Agriculture.

Distribution Maps of Pissodes.
Fig. 17.-P. costatus. Fig. 18.-P f. fiski. Fig. 19.-P. nigræ. Fig. 20.-P. puncticollis. Fig. 21.P. murrayanæ. Fig. 22. $-P$. coloradensis. Fig. 23. $-P$. alascensis. Fig. $24 .-P$. rotundatus.

Tech. Series 20, Part 1, Bureau of Entomology, U. S. Dept. of Agriculture.
Plate XXII.

Distribution Maps of Pissodes.
Fig. 25.-P. burkei. Fig. 26.-P. piperi. Fig. 27.-P. dubius. Fig. 28.-P. fraseri. Fig. 29.-P. affinis. Fig. 30.-P. curriei.

Technical Series, No. 20, Part 11.

U. S. DEPARTMENT OF AGRICULTURE, BUREAU OF ENTOMOLOGY.
L. O. HOWARD, Entomologist and Chief of Bureau.

TECHNICAL PAPERS ON MISCELLANEOUS FOREST INSECTS.

II. THE GENOTYPES OF THE SAWFLIES AND WOODW ASPS, OR THE SUPERFANILI TENTHREDINOIDEA.

BY

S. A. ROHWER, Agent and Expert.

Issued March 4, 1911.

WASHINGTON:

Technical Series, No. 20, Part II.
U. S. DEPARTMENT OF AGRICULTURE, BUREAU OF ENTOMOLOGY.
L. O. HOWARD, Entomologist and Chief of Bureau.

TECHNICAL PAPERS 0N MISCELLANE0US FOREST INSECTS.

II. THE GENOTYPES OF THE SAWFLIES AND W00DW ASPS, OR THE SUPERFAIIILY TENTHREDINOIDEA.

BY

S. A. ROHWER, Agent and Expert.

Issued March 4, 1911.

WASHINGTON:
GOVERNMENT PRINTINGOFEICE.
1911.

BUREAU OF ENTOMOLOGY.

L. O. Howard, Entomologist and Chief of Bureau.

C. L. Marlatt, Entomologist and Acting Chief in Absence of Chief.
R. S. Clifton, Executive Assistant.
W. F. Tastet, Chief Clerk.
F. H. Chittenden, in charge of truck crop and stored product insect investigations.
A. D. Hopkins, in charge of forest insect investigations.
W. D. Hunter, in charge of southern field crop insect investigations.
F. M. Webster, in charge of cereal and forage insect investigations.
A. L. Quaintance, in charge of deciduous fruit insect investigations.
E. F. Phillips, in charge of bee culture.
D. M. Rogers, in charge of preventing spread of moths, field work.

Rolla P. Currie, in charge of editorial work.
Mabel Colcord, librarian.
Forest Insect Investigations.
A. D. Hopkins, in charge.
H. E. Burke, J. L. Webb, Josef Brunner, S. A. Rohwer, T. E. Snyder, W. D. Edmonston, W. B. Turner, agents and experts.
Mary E. Faunce, preparator.
William Middleton, Mary C. Johnson, student assistants.

LETTER OF TRANSMITTAL.

> U. S. Department of Agriculture, Bureau of Entomology, Washington, D. C., October 22, 1910.

SIR: I have the honor to transmit herewith a manuscript entitled "The Genotypes of the Sawflies and Woodwasps, or the Superfamily Tenthredinoidea." These insects belong to this superfamily of the order Hymenoptera and include some of the important enemies of North American forest trees. The true sawflies, in their larval stage, destroy the foliage of coniferous and other trees and forest growths and some of them are exceedingly destructive, as, for example, the larch sawfly, which feeds upon the foliage of the larch timber of Europe and North America. The woodwasps, in their larval stage, bore in the wood of dying and dead standing and felled trees, causing defects and rapid deterioration.

In addition to the large number of species which are native to this country, there are some very destructive species which have found their way here from other countries, so that it is of the greatest importance to know all of the species and to guard against further introductions.

Both the systematic and economic knowledge of these insects is notably limited, especially as regards North American species, and it is of the utmost importance, as a basis for the best results in investigations of these insects in their relation to economic problems, that considerable purely technical work should be done on them.

Mr. Rohwer has been engaged to work on the sawflies on account of his extended expert knowledge of this group of insects and the work he had done on them before he came to the Bureau. As a collaborator of this Bureau, but at his own expense, Mr. Rohwer visited the principal collections of Europe in the summer of 1909 to study the types of described species and genera, all of which puts him in a position to carry on the research work assigned to him in the most thorough manner. Mr. Rohwer has found it necessary to devote considerable time to preliminary work on the entire group and on the genera of the world in order to have an authoritative basis for the further work of a monographic nature on the more
important groups represented by species which depredate on trees and forest growths. The present paper includes the partial results of his preliminary work, which has been prosecuted with such energy as to leave little more to be done in this line. Mr. Rohwer's future papers will deal with special groups which will be treated in a monographic manner in order that a basis may be formed for special papers on the economic features.

I recommend the publication of this manuscript as Technical Series No. 20, Part II, of the Bureau of Entomology. Respectfully,

L. O. Howard, Chief of Bureau.

Hon. James Wilson, Secretary of Agriculture.

CONTENTS.

Page.
Introduction 69
An alphabetical catalogue of the generic names used in the Tenthredinoidea, with their type species 69
The designation of the type species of genera 69
Rules of zoological nomenclature for the designation of type species 71
Catalogue 72
An index to the genotypes 92
Synonymy of certain genera. 98
The work of William H. Ashmead on the Tenthredinoidea. 102
An alphabetical list of the genera of Tenthredinoidea described by William H. Ashmead, with the determined synonymy 103
Bibliography of the more important writings of William H. Ashmead on Tenthredinoidea 104
Description of the genera and species. 104

TECHNICAL PAPERS ON MISCELLANEOUS FOREST INSECTS.

II. THE GENOTYPES OF THE SAWFLIES AND WOODWASPS, OR THE SUPERFAMILY TENTHREDINOIDEA.

By S. A. Rohwer, Agent and expert.

INTRODUCTION.

The following paper deals with the sawflies and horntails and comprises the superfamilies Tenthredinoidea and Siricoidea of Ashmead's classification; the Chalastogastra of Rev. F. W. Konow; the Phyllophaga (=Phytophaga) and Xylophaga of Cresson and authors; or the genera Tenthredo and Sirex of Linnæus. It is divided into two parts; the first part is an alphabetical catalogue of the generic names used in Tenthredinoidea and Siricoidea with their type species; the second part is composed of descriptions of the briefly characterized genera and species described by the late William H. Ashmead.

An effort has been made to include all the generic names used in these two superfamilies. In case of any omissions the author will be most pleased to have these called to his notice. ${ }^{a}$

an alphabetical catalogue of the generic names used IN THE TENTHREDINOIDEA, WITH THEIR TYPE SPECIES.

THE DESIGNATION OF THE TYPE SPECIES OF GENERA.
The necessity of having the types of genera fixed is now recognized by almost every working systematic entomologist. In the designation of the following genotypes the rulings and recommendations of the International Commission on Zoological Nomenclature have been followed. As these rulings and recommendations have never been finally codified, and there are in a few cases apparently contradictory statements, the personal equation has entered into

[^5]the interpretation to some extent. In all such cases an effort is made to follow the consensus of opinion. Article 2, page 11, of the International Code of Zoological Nomenclature as applied to medicine ${ }^{a}$ says: "The scientific designation of animals is uninominal for subgenera and all higher groups, binominal for species, and trinominal for subspecies." Does this mean that a genus can be founded without included species? In article 30, page 26 , and the correction in Science for October 18, 1907, pages 521-522, it is stated that a genus must have a type and the type must be an included species. In this paper a genus is considered to be without standing until it contains a species; and genera which were founded without species take the first species placed in them as the type and date from the time when that species was placed in them. In such cases the name of the first author of the genus is given first in parentheses, and, following the parenthesis, the name of the author who first included a species. ${ }^{b}$

With the exception of monobasic genera the first designation of genotypes in Tenthredinoidea and Siricoidea was done by Latreille in $1810 .^{c}$ This has been definitely ruled on by the International Commission on Zoological Nomenclature as follows:
The Designation of Genotypes by Latreille 1810.-The "Table des genres avec l'indication de l'espèce qui leur sert de type" in Latreille's (1810) "Considérations Générales" should be accepted as designation of types of the genera in question.d

The next entomologist to fix the types of genera was John Curtis, in his British Entomology, which was published from 1824 to 1839. In this work Curtis says "type of the genus," which makes it very evident that the author endeavored to fix the types of the genera he treated.
J. O. Westwood, in his Synopsis of the Genera of British Insects, e gives after each genus what he calls a "typical species." f In most cases this species can be taken as the type of the genus in question, and in many it is the first indication of the fixing of a type for many of the genera. Inasmuch as the International Commission on Zoological Nomenclature g has said "the meaning of the expression 'select type' is to be rigidly construed; mention of a species as an illustration or example of a genus does not constitute a selection of

[^6]a type," the "typical species" of Westwood are not given as the types of genera except in those cases where no type has been given and the species given by Westwood can be the genotype according to the rules. In the following list, however, the words "Westwood 1840 " are placed after the genotypes of certain genera, for the convenience of the student, should any ruling be given on these "typical species."
With the exception of a few types designated by Brullé ${ }^{a}$ and Shipp, ${ }^{b}$ few genotypes were named except in the works of the two American writers Ashmead and MacGillivray.

It was hoped to verify every reference given, but in some few cases this was not possible. In such cases the reference is that given by Dalla Torre. The original descriptions of the following genera have not been seen: Xiphiura Fallén, Hybonotus Klug, Nycteridium Fischer-Waldheim, Pompholyx Freymuth.

RULES OF ZOOLOGICAL NOMENCLATURE FOR THE DESIGNATION OF TYPE SPECIES OF GENERA.

The ruling of the International Commission on Zoological Nomenclature ${ }^{c}$ is reprinted here for ready reference. Some of the recommendations which do not deal with any cases found in Tenthredinoidea and which are not of general importance have been omitted.
Art. 30. The designation of type species of genera shall be governed by the following rules ($a-g$), applied in the following order of precedence:
I. Cases in which the generic type is accepted solely upon the basis of the original publication.
(a) When in the original publication of a genus, one of the species is definitely designated as type, this species shall be accepted as type regardless of any other considerations. (Type by original designation.)
(b) If, in the original publication of a genus, typicus or typus is used as a new specific name for one of the species, such use shall be construed as "type by original designation."
(c) A genus proposed with a single original species takes that species as its type. (Monotypical genera.)
(d) If a genus, without originally designated (see a) or indicated (see b) type, contains among its original species one possessing the generic name as its specific or subspecific name, either as valid name or synonym, that species or subspecies becomes $i p s o$ facto type of the genus. (Type by absolute tautonomy.)
II. Cases in which the generic type is not accepted solely upon basis of the original publication:
(e) The following species are excluded from consideration in selecting the types of genera:
(α) Species which were not included under the generic name at the time of its original publication.

[^7](β) Species which were species inquirendx from the standpoint of the author of the generic name at the time of its publication.
(γ) Species which the author of the genus doubtfully referred to it.
(f) In case a generic name without originally designated type is proposed as a substitute for another generic name, with or without type, the type of either, when established, becomes ipso facto type of the other.
(g) If an author, in publishing a genus with more than one valid species, fails to designate (see a) or to indicate (see b, d) its type, any subsequent author may select the type, and such designation is not subject to change. (Type by subsequent designation.)

The meaning of the expression "select a type" is to be rigidly construed. Mention of a species as an illustration or example of a genus does not constitute a selection of a type.
III. Recommendations.-In selecting types by subsequent designation, authors will do well to govern themselves by the following recommendations:
(h) In the case of Linnæan genera select as type the most common or the medicinal species.
(i) If a genus, without designated type, contains among its original species one possessing as a specific or subspecific name, either as valid name or synonym, a name which is virtually the same as the generic name, or of the same origin or same meaning, preference should be shown to that species in designating the type, unless such preference is strongly contra-indicated by other factors. (Type by virtual tautonomy.)
(k) If some of the original species have later been classified in other genera, preference should be shown to the species still remaining in the original genus. (Type by elimination.)
(n) Show preference to the best described, best figured, best known, or most easily obtainable species, or to one of which a type specimen can be obtained.
(o) Show preference to a species which belongs to a group containing as large a number of the species as possible.
(q) All other things being equal, show preference to a species which the author of the genus actually studied at or before the time he proposed the genus.
(r) In case of writers who habitually place a certain leading or typical species first as "chef de file," the others being described by comparative reference to this type, this fact should be considered in the choice of the type species.
(s) In case of those authors who have adopted the "first species rule" in fixing generic types, the first species named by them should be taken as types of theirgenera.
(t) All other things being equal, page precedence should obtain in selecting a type.

CATALOGUE.

The various genera accredited to Jurine (Nouv. Meth. Hym. Ins., vol. 1, 1807) have been accredited to Panzer (Krit. Revis., vol. 2, 1806). Panzer accredits the genera to Jurine, but they are in none of Jurine's earlier papers, while he treated them rather fully in 1807.

All references to Encyclopédie Méthodique, Insectes, vol. 10. 1825, have been changed to "vol. 10, pt. 2, 1828." Volume 10 came out in two numbers, the second, containing the Tenthredinidæ, appearing in 1828.

The word "isogenotypic" is used when two genera have the same species as the genotype.

The word "monobasic" is used to indicate that a genus was founded on one originally included species.

The plan in the following list is to give the generic name first, the name of the author second, the original reference third, the type species fourth, the authority for the type fifth. In case the genus was monobasic, an asterisk is placed after the type species; in case the genotype was originally designated, the word "designated" is placed in parentheses; in case the genus was not monobasic and no genotype has been designated, the type has been chosen and no authority is given (see Amauronematus Konow). Certain apparent synonymy, as in the case of isogenotypic genera, is also given. All such synonymy has been verified, and synonymy not verified is not given.

The list of genera is believed to be complete, in as far as publications have been received in Washington, D. C., up to January 1, 1911. All the new generic names proposed in this paper are included in the alphabetical catalogue with the reference, "see p. -."

Abia Leach, Zool. Misc., vol. 3, p. 113, no. 5, 1817.
Type: Tenthredo sericea Linnæus (Curtis, 1825).
Acantholyda A. Costa, Pros. Hym. Ital., vol. 3, p: 232, 1894.
Type: Tenthredo erythrocephala Linnæus (Rohwer, 1910).
Acanthoperga Shipp, Ent., vol. 27, pp. 338, 339, 1894.
Type: Perga cameroni Westwood (designated).
Acanthoptenos Ashmead, Can. Ent., vol. 30, p. 212, 1898.
Type: Acanthoptenos weithii Ashmead (designated).
Acherdocerus W. F. Kirby, List Hym. Brit. Mus., vol. 1, p. 92, no. 42, 1882.
Type: Acherdocerus fumipennis W. F. Kirby.*
Acidiophora Konow, Ent. Nachr., vol. 25, p. 361, 1899.
Type: Acidiophora decora Konow.*
Acordulecera Say, Bost. Journ. Nat. Hist., vol. 1, no. 3, p. 209, 1836.
Type: Acordulecera dorsalis Say.*
Adirus Konow, Ent. Nachr., vol. 25, p. 74, 1899.
Type: Cephus trimaculatus Say.*
Agenocimbex Rohwer, Proc. U. S. Nat. Mus., vol. 39, no. 1777, p. 104, 1910.
Type: Cimbex maculata Marlatt (designated).
Aglaostigma W. F. Kirby, List Hym. Brit. Mus., vol. 1, p. 325, no. 104, 1882.
Type: Aglaostigma eburneiguttatum W. F. Kirby.*
Allantus Panzer, Krit. Revis., vol. 2, p. 25, 1806.
Type: Tenthredo scrophulariæ Linnæus (Curtis, 1839; Brullé, 1846; Westwood, 1840).
$=$ Tenthredo Linnæus (isogenotypic).
Allomorpha Cameron, Trans. Ent. Soc. Lond., p. 463, 1876.
Type: Allomorpha incisa Cameron.*
Amasis Leach, Zool. Misc., vol. 3, p. 114, no. 6, 1817.
Type: Tenthredo obscura Linnæus (Westwood, 1840).
Amauronematus Konow, Deutsch. ent. Zeitschr., p. 237, 1890.
Type: Nematus fallax Lepeletier.
Ametastegia A. Costa, Rendic. Accad. Sci. Fis. Napoli, vol. 21, pt. 10, p. 198, 1882.
Type: Ametastegia fulvipes A. Costa.*
$=$ Tenthredo glabrata Fallén.
$=$ Taxonus Hartig.

Anachoreta Gistel, "Naturgeschichte des Thierreichs, " p. Ix, 1848 (n.n. for Lophyrus Latreille).
Type: Tenthredo pini Linnæus.
=Diprion Schrank.
Anapeptamena Konow, Ent. Nachr., vol. 24, p. 271, 1898.
Type: Anapeptamena albipes Konow.*
Ancyloneura Cameron, Trans. Ent. Soc. Lond., p. 91, 1877.
Type: Ancyloneura varipes Cameron.*
Aneugmenus Hartig, Fam. Blatt. Holzwesp., p. 253, 1837.
Type: Tenthredo (Emphytus) coronata Klug.*
Anisoarthra Cameron, Trans. Ent. Soc. Lond., p. 461, 1876.
Type: Anisoarthra coerulea Cameron.*
(preocc., =Senoclia Cameron.)
Anisoneura Cameron, Trans. Ent. Soc. Lond., p. 463, 1876.
Type: Anisoneura stigmaticalis Cameron.*
(preocc., $=$ Beleses Cameron.)
Anoplolyda A. Costa, Pros. Hym. Ital., vol. 3, p. 233, 1894.
Type: Lyda alternans O. Costa (Rohwer, 1910).
Anoplonyx Marlatt, U. S. Dept. Agr., Bur. Ent., Tech. Ser. no. 3, p. 18, 1896.
Type: Nematus pectoralis Lepeletier.
Antholcus Konow, Zeitschr. syst. Hym. Dipt., vol. 4, p. 3, 1904.
Type: Tenthredo varinervis Spinola.*
Aomodyctium Ashmead, Can. Ent., vol. 30, p. 309, December, 1898.
A genus without a species.
Aphadnurus O. Costa, Fauna Napoli, Tenthred., p. 40, 1859.
Type: Aphadnurus tantillus O. Costa.* = Emphytus pumila Klug.
$=$ Fenusa Leach.
Aphanisus MacGillivray, Can. Ent., p. 295, August, 1908.
Type: Aphanisus lobatus MacGillivray (designated).
Aphilodyctium Ashmead, Can. Ent., vol. 30, p. 310, 1898.
Type: Strongylogaster rubripes Cresson (designated).
Aprosthema Konow, Ent. Nachr., vol. 25, p. 149, 1899.
Type: Hylotoma brevicornis Fallén.
Ardis Konow, Wien. ent. Zeit., vol. 5, pp. 184, 188, no. 4, 1886.
Type: Tenthredo (Allantus) bipunctata Klug.
Arge Schrank, Fauna Boica, vol. 2, p. 209, no. 231, 1802.
Type: Tenthredo enodis Linnæus.
Astatus Jurine, Fauna Insect. Germ., vol. 7, p. 83, fig. 12, 1801.
Type: Sirex troglodyta Fabricius.
Asticta E. Newman, Ent. Mag., vol. 5, p. 484, 1838.
Type: Asticta ianthe E. Newman.*
$=$ Harpiphorus lepidus Klug.
$=$ Harpiphorus Hartig (isogenotypic).
Ateuchopus Konow, Wien. ent. Zeit., vol. 15, p. 174, 1896.
Type: Ateuchopus armenius Konow.
Athalia Leach, Zool. Misc., vol. 3, p. 128, no. 2, 1817.
Type: Tenthredo spinarum Fabricius (Curtis, 1836).
Athermantus W. F. Kirby, List Hym. Brit. Mus., vol. 1, p. 54, no. 32, 1882.
Type: Hylotoma imperalis F. Smith.*

Athlophorus Burmeister, Athlophorus, eine neue Gattung der Blattwespen, pp. 1-9, 1847.

Type: Athlophorus klugii Burmeister.*
Atocus Scudder, Bul. U. S. Geol. Surv., vol. 93, p. 24, pl. 2, fig. 5, 1892.
Type: Atocus defessus Scudder.*
Atomacera Say, Bost. Journ. Nat. Hist., vol. 1, no. 3, p. 212, 1836.
Type: Atomacera debilis Say.*
Aulacomerus Spinola, Ann. Ent. Soc. France, vol. 9, p. 137, 1840.
Type: Aulacomerus buquetii Spinola.*
Bactroceros Konow, Ann. k. k. Hofmus., Wien., vol. 12, p. 21, 1897.
Type: Tenthredo vafer Linnæus (Rohwer, 1910).
=Anoplolyda A. Costa.
Bathyblepta Konow, Zeitschr. syst. Hym. Dipt., vol. 6, p. 123, 1906.
Type: Bathyblepta procer Konow.*
Beldonea Cameron, Mem. \& Proc. Manchester Lit. \& Phil. Soc., vol. 43, no. 3, p. 35, 1899.

Type: Beldonea rugifrons Cameron.*
Beleses Cameron, Trans. Ent. Soc. Lond., p. 88, 1877 (n. n. for Anisoneura Cameron, 1876).

Type: Anisoneura stigmaticalis Cameron.*
Bergiana Konow, Anal. Mus. Buenos Aires, vol. 6, p. 397, 1899.
Type: Syzygonia cyanocephala Klug (designated, p. 398).
=Syzygonia Klug (isogenotypic).
Bivena MacGillivray, Can. Ent., vol. 26, p. 327, 1894.
Type: Bivena maria MacGillivray (designated).
$=$ Tenthredo delta Provancher.
Blasticotoma Klug, Jahrb. Insectenkunde, vol. 1, p. 270, no. 7, 1834.
Type: Blasticotoma filiceti Klug.*
Blennocampa Hartig, Fam. Blatt. Holzwesp., p. 266, 1837.
Type: Tenthredo (Allantus) pusilla Klug.
Brachycolus Konow, Termes. Fuzetek, vol. 28, pt. 3, p. 166, 1895.
Type: Nematus viduatus Zetterstedt.
Brachyphatnus Konow, Zeitschr. syst. Hym. Dipt., vol. 6, p. 250, 1906.
Type: Brachyphatnus debilicornis Konow.
Brachytoma Westwood, Thes. Ent. Oxon., p. 109, 1874 (non Swainson, 1840). Type: Brachytoma fumipennis Westwood (Ashmead, 1898).
Brachyxiphus Philippi, Stett. ent. Zeit., vol. 32, p. 285, 1871.
Type: Brachyxiphus grandis Philippi.
Braunsiola Konow, Ent. Nachr., vol. 25, p. 312, 1899.
Type: Braunsiola truculenta Konow.*
=Micrarge Ashmead.
Busarbia Cameron, Mem. \& Proc. Manchester Lit. \& Phil. Soc., vol. 43, no. 3, p. 37, 1899.

Type: Busarbia viridipes Cameron.*
Cacosyndia W. F. Kirby, Trans. Ent. Soc. Lond., p. 203, 1883 (n. n. for Pompholyx Freymuth).
Type: Pompholyx dimorpha Freymuth (designated).
Cænocephus Konow, Wien. ent. Zeit., vol. 15, p. 151, 1896.
Type: Cænocephus jakowleff Konow.*
Cænolyda Konow, Ann. k. k. Hofmus., Wien., vol. 12, p. 15, 1897.
Type: Tenthredo reticulata Linnæus (Rohwer, 1910).

Cænoneura Thomson, Opusc. Ent., vol. 2, p. 270, 1870.
Type: Cænoneura dahlbomi Thomson.*
Calameuta Konow, Wien. ent. Zeit., vol. 15, p. 159, 1896.
Type: Cephus filiformis Eversmann.
Caliroa O. Costa, Fauna Napoli, Tenthred., p. 59, 1859.
Type: Caliroa sebetia O. Costa.* $=$ Allantus cinxia Klug.
Caloptilia Ashmead, Can. Ent., vol. 30, p. 212, 1898.
Type: Caloptilia townsendi Ashmead (designated).
Calozarca Ashmead, in Dyar, Journ. N. Y. Ent. Soc., p. 129, 1898; also Can. Ent., vol. 30, p. 252, October, 1898.
Type: Selandria fascipennis Norton (designated). =Parazarca Ashmead.
Camponiscus E. Newman, Ent., vol. 4, p. 215, 1869.
Type: Camponiscus healæi E. Newman.*
$=$ Tenthredo luridiventris Fallén.
$=$ Platycampus Schiödte.
Camptoperga Shipp, Ent., vol. 27, pp. 339-340, 1894.
Type: Perga cressoni Westwood (designated).
Camptoprium Spinola, Ann. Soc. Ent. France, vol. 9, p. 134, 1840.
Type: Camptoprium leprieuri Spinola.*
Canonias Konow, Termes. Fuzetek, vol. 24, p. 65, 1901.
Type: Canonias inopinus Konow.*
Celidoptera Konow, Ann. k. k. Hofmus., Wien., vol. 12, p. 20, 1897.
Type: Lyda maculipennis Stein.*
Cephaleia Panzer, Fauna Ins. Germ., vol. 8, p. 36, 1805.
Type: Tenthredo signata Fabricus (Rohwer, 1910).
Cephalocera Klug, Jahrb. Insectenkunde, vol. 1, p. 251, no. 8, 1834.
Type: Cephalocera pumila Klug.*
(preocc.,=Corynophilus W. F. Kirby).
Cephites Heer, Denkschr. schweiz. Ges. Naturwiss., vol. 11, p. 173, no. 18, 1850.
Type: Cephites œeningensis Heer.
Cephosoma Gradl, Ent. Nachr., vol. 7, p. 294, 1881.
Type: Cephosoma syringæ Gradl.*
$=$ Hartigia Schiödte and Boie.
Cephus Latreille, Hist. Nat. Crust. Ins., vol. 3, p. 303, 1802.
Type: Sirex pygmæus Linnæus (Latreille, 1810; Brullé, 1846; Westwood, 1840).
Ceratulus MacGillivray, Can. Ent., vol. 40, p. 454, 1908.
Type: Ceratulus spectabilis MacGillivray (designated).
Cerealces W. F. Kirby, List Hym. Brit. Mus., vol. 1, p. 31, no. 11, 1882.

- Type: Cerealces scutellata W. F. Kirby.*

Cerobactrus O. Costa, Fauna Napoli., Cephid., p. 9, 1860.
Type: Cerobactrus major O. Costa.*
$=$ Astatus satyrus Panzer.
$=$ Hartigia Schiödte and Boie.
Cerospastus Konow, Anal. Mus. Buenos Aires, vol. 6, p. 404, 1899.
Type: Cerospastus volupis Konow.*
Chalinus Konow, Termes. Fuzetek, vol. 20, p. 605, 1897.
Type: Oryssus plumicornis Guérin.
Characophygus Konow, Ent. Nachr., vol. 25, p. 73, 1899.
Type: Characophygus moricei Konow.*

Cibdela Konow, Ent. Nachr., vol. 25, p. 76, 1899.
Type: Hylotoma jantheria Klug.
Cimbex Olivier, Encyl. Méthod., Ins., vol. 5, p. 762, 1790. Type: Tenthredo lutea Linnæus (Latreille, 1810).

Cladiucha Konow, Zeitschr. syst. Hym. Dipt., vol. 2, p. 389, 1902. Type: Cladiucha insolita Konow.*

Cladius Rossi, Fauna Etrusca, ed. 2a, vol. 2, p. 27, 1807. Type: Tenthredo difformis Panzer (Latreille, 1810).

Cladomacra F. Smith, Ann. Mag. Nat. Hist., (3) vol. 6, p. 256, 1860. Type: Cladomacra macropus F. Smith.*

Claremontia Rohwer, Can. Ent., vol. 41, p. 397, November, 1909. Type: Claremontia typica Rohwer (designated).

Clarissa W. F. Kirby, Ann. Mag. Nat. Hist., (6) vol. 14, p. 46, 1894. Type: Clarissa divergens W. F. Kirby.*

Clavellaria Lamarck, Syst. des Animaux san vertébrés, p. 264, 1801. Type: Tenthredo lutea Linnæus.* =Cimbex Olivier.

Clavellarius Olivier, Encycl. Méthod., vol. 4, p. 22, 1789; vol. 6, p. 18, 1791. No species.

Clydostomus Konow, Zeitschr. syst. Hym. Dipt., vol. 8, p. 19, 1908. Type: Clydostomus cestatus Konow.

Cockerellonis MacGillivray, Can. Ent., vol. 40, p. 365, October, 1908. Type: Cockerellonis occidentalis MacGillivray (designated). =Eriocampidea Ashmead.
Colochelyna Konow, Ent. Nachr., vol. 24, p. 280, 1898. Type: Colochelyna magrettii Konow.
Conaspidia Konow, Ent. Nachr., vol. 24, p. 279, 1898. Type: Conaspidia sikkemensis Konow.*
Corymbas Konow, Ann. Mus. St. Petersbourg, p. 120, 1903. Type: Corymbas koreana Konow.
Coryna Lepeletier, Encyl. Méthod., Ins., vol. 10, pt. 2, p. 567, 1828.
Type: Tenthredo (Coryna) scapularis Lepeletier.
$=$ Tenthredo Alavans Klug.
=Selandria Leach.
Corynia Imhof et Labram, Insect. Schweiz., vol. 1, pl. 23, 1836.
Type: Corynia rosarum Imhof et Labram.
=Arge Schrank.
Corynophilus W. F. Kirby, List Hym. Brit. Mus., vol. 1, p. 32, no. 15, 1882 (n. n. for Cephalocera Klug, non Latreille).
Type: Cephalocera pumila Klug.*
Crœsus Leach, Zool. Misc., vol. 3, p. 129, no. 1, 1817.
Type: Tenthredo septentrionalis Linnæus.* $=$ Nematus Jurine.
Cryptocampus Hartig, Fam. Blatt. Holzwesp., p. 221, March, 1837. Type: Nematus (Cryptocampus) medullaris Hartig. =Euura Newman.
Cryptus Panzer, Krit. Revis., vol. 2, p. 21, 1806 (non Fabricus, 1804). Type: Tenthredo furcata Villers (Curtis, 1825).
$=$ Schizocera Lepeletier (isogenotypic).

Cyphona Dahlbom, Conspect. Tenthred. Scand., p. 6, 1835.
Type: Tenthredo furcata Villers.
=Schizocera Lepeletier.
Decameria (Lepeletier) W. F. Kirby, Lepeletier, Encycl. Méthod., Ins., vol. 10, pt. 2, p.371, 1828; W. F. Kirby, List Hym. Brit. Mus., vol. 1, p. 93, no. 43, 1882. Type: Decameria testacea W. F. Kirby (designated).
Decatria Stephens, Illustr. Brit. Ent., Mandib., vol. 7, p. 94, 1835.
Type: Heterarthus ochropoda Stephens.
Derecyrta F. Smith, Ann. Mag. Nat. Hist., (3) vol. 6, p. 255, 1860.
Type: Derecyrta pictipennis F. Smith.*
Dictynna Brullé, Hist. Nat. Ins. Hym., vol. 4, p. 662, 1846.
Type: Dictynna westwoodii Brullé.*
$=$ Decameria (Lepeletier).
Dictynna Westwood, Arcana Ent., vol. 1, p. 24, pl. 7, fig. 4, 1841.
Type: Dictynna læta Westwood.*
=Eurys Newman.
Didocha Konow, Zeitschr. syst. Hym. Dipt., vol. 7, p. 306, 1907.
Type: Didocha braunsi Konow.*
Didymia Lepeletier, Encycl. Méthod., Ins., vol. 10, pt. 2, p. 574, 1828.
Type: Hylotoma martini Lepeletier.*
Dielocerus Curtis, Trans. Linn. Soc. Lond., vol. 19, pt. 1, p. 248, 1844.
Type: Dielocerus ellisii Curtis.
Dimorphopteryx Ashmead, Can. Ent., vol. 30, p. 308, 1898.
Type: Strongylogaster pinguis Say (designated).
Dinax Konow, Wien. ent. Zeit., vol. 16, p. 182, 1897.
Type: Dinax jakowleff Konow.*
Dineura Dahlbom, Conspect. Tenthred. Scand., p. 13, no. 6, 1835.
Type: Tenthredo degeeri Klug (Westwood, 1846).
Diphadnus Hartig, Fam. Blatt. Holzwesp., p. 225, 1837.
Type: Nematus fuscicornis Hartig.* $=$ Nematus appendiculatus Hartig.
Diphamorphos Rohwer, Ent. News, vol. 22, p. 473, 1910.
Type: Diphamorphos nigrescens Rohwer (designated).
Diprion Schrank, Fauna Boica, vol. 2, pp. 209, 252-254, 1802.
Type: Tenthredo pini Linnæus (Rohwer, 1910).
Dipteromorpha W. F. Kirby, List Hym. Brit. Mus., vol. 1, p. 324, no. 102, 1882. Type: Macrophya rotundiventris Cameron.*
Distega Konow, Zeitschr. syst. Hym. Dipt., vol. 4, p. 224, 1904.
Type: Distega sjostedti Konow.*
Dolerus Panzer, Krit. Revis., vol. 2, p. 40, 1806.

- Type: Dolerus gonager Jurine (Latreille, 1810).

Dosytheus Leach, Zool. Misc., vol. 3, p. 128, no. 4, 1817.
Type: Tenthredo eglanterix Fabricius (Brullé, 1846).
=Dolerus Panzer.
Druida E. Newman, Ent. Mag., vol. 5, p. 484, 1838.
Type: Druida parviceps E. Newman.*
$=$ Phyllotoma nemorata Fallén.
Dulophanes Konow, Zeitschr. syst. Hym. Dipt., vol. 7, p. 132, 1907.
Type: Dulophanes morio Konow.*

Ebolia O. Costa, Fauna Napoli, Tenthred., p. 105, 1859.
Type: Ebolia floricola O. Costa.*
Electrocephalus Konow, Ent. Nachr., vol. 23, p. 37, 1897. Type: Electrocephalus strahlendor.ff Konow.*
Emphytoides Konow, Ent. Nachr., vol. 24, p. 274, 1898. Type: Emphytoides perplexus Konow. =Athlophorus Burmeister.
Emphytus Klug, Mag. Ges. naturf. Berlin, vol. 7, p. 273, 1813. Type: Tenthredo cincta Linnæus (Curtis, 1833; Westwood, 1840).
Empria Lepeletier, Encycl. Méthod., Ins., vol. 10, pt. 2, p. 571, 1828. Type: Dolerus (Empria) pallimacula Lepeletier (Brullé, 1846).
Encarsioneura Konow, Deutsch. ent. Zeitschr., p. 239, 1890.
Type: Tenthredo sturnii Klug.* =Siobla Cameron.

Endelomyia Ashmead, Can. Ent., vol. 30, p. 256, 1898.
Type: Monostegia rosæ Harris (designated).
$=$ Caliroa æthiops (Fabricius).
=Caliroa O. Costa.
Eniscia Thomson, Opusc. Ent., pt. 2, p. 299, 1870.
Type: Tenthredo consobrina Klug.
Entodecta Konow, Wien. ent. Zeit., vol. 5, pp. 184, 243, 1886.
Type: Tenthredo (Allantus) pumila Klug (MacGillivray, 1909).
Epitactus Förster, Verh. naturh. Ver. preuss. Rheinl., vol. 11, p. 435, 1854.
Type: Epitactus præcox Förster.*
Ephippinotus O. Costa, Fauna Napoli, Cephid., p. 10, 1860.
Type: Ephippinotus luteiventris O. Costa.
$=$ Sirex compressus Fabricius.
Epitaxonus MacGillivray, Can. Ent., vol. 40, p. 365, October, 1908.
Type: Taxonus albodopictus Norton (designated).
Eriglenum Konow, Termes. Fuzetek, vol. 24, p. 60, 1901. Type: Eriglenum crudum Konow.*
Eriocampa Hartig, Fam. Blatt. Holzwesp., p. 279, 1837. Type: Tenthredo ovata Linnæus.
Eriocampidea Ashmead, Can. Ent., vol. 30, p. 256, 1898. Type: Eriocampidea arizonensis Ashmead (designated).
Eriocampoides Konow, Deutsch. ent. Zeitschr., p. 239, 1890. Type: Tenthredo limacina Retzius (MacGillivray, 1908).
Ermilia O. Costa, Fauna Napoli, Tenthred., p. 106, 1859.
Type: Ermilia pulchella O. Costa.*
$=$ Tenthredo agrorum Fallén.
$=$ Taxonus Hartig (isogenotypic).
Erythraspides Ashmead, in Dyar, Journ. N. Y. Ent. Soc., p. 128, 1898; also Can. Ent., vol. 30, p. 252, 1898.
Type: Blennocampa pygmæa Say (designated).
Eumetabolus Schulz, Spolia Hymen., p. 211, 1906.
Type: Sirex troglodyta Fabricius.
$=$ Sirex niger Harris.
=Astatus Panzer.
$67595^{\circ}-$ No. 20 , pt 2-11-3

Euryopsis W. F. Kirby, List Hym. Brit. Mus., vol. 1, p. 95, no. 45, 1882.
Type: Euryopsis nitens W. F. Kirby.*
Eurys E. Newman, Ent., p. 90, 1841.
Type: Eurys æratus E. Newman.*
Euura E. Newman, Ent. Mag., vol. 4, p. 259, January, 1837.
Type: Euura gallx Newman.
Eversmannella Jakowlew, Horæ Soc. Ent. Ross., vol. 26, p. 15, no. 3, 1891.
Type: Cephus cruentatus Eversmann.*
Fenella Westwood, Introd. Mod. Class. Ins., vol. 2, Gen. Synop., p. 54, 1840.
Type: Fenella nigrita Westwood.*
Fenusa Leach, Zool. Misc., vol. 3, p. 126, no. 4, 1817.
Type: Tenthredo (Emphytus) pumila Klug.*
Fethalia Cameron, Journ. Bombay Soc. Nat. Hist., vol. 14, p. 439, 1902.
Type: Fethalia nigra Cameron.*
Gongylocorsia Konow, Ann. k. k. Hofmus., Wien, vol. 12, p. 19, 1897. Type: Lyda mandibularis Zaddach.*
Gymnia Spinola, Mem. Accad. Sci. Torino, (2) vol. 13, p. 23, 1851.
Type: Gymnia apicalis Spinola.
Gymniopterus Ashmead, Can. Ent., vol. 30, p. 213, 1898.
Type: Gymniopterus singularis Ashmead (designated).
Gymnonychus Marlatt, U. S. Dept. Agr., Div. Ent., Tech. Ser. 3, p. 122, 1896.
Type: Gymnonychus californicus Marlatt (designated).
$=$ Diphadnus Hartig.
Haplostegus Konow, Termes. Fuzetek, vol. 24, p. 70, 1901.
Type: Haplostegus epimelas Konow.
Harpiphorus Hartig, Fam. Blatt. Holzwesp., p. 253, 1837.
Type: Tenthredo (Emphytus) lepidus Klug.*
Hartigia (Schiödte) Boie. Schiödte, Kroyers Naturhistorisk Tidskrift., vol. 2, p. 332, 1838; Boie, Stett. Ent. Zeit., vol. 16, p. 49, 1855.
Type: Astatus satyrus Rossi.
Hemichroa Stephens, Illustr. Brit. Ent., Mandib., vol. 7, p. 55, no. 18, 1835.
Type: Tenthredo alni Linnæus (Westwood, 1840; Brullé, 1846).
Hemidianeura W. F. Kirby, List Hym. Brit. Mus., vol. 1, p. 48, no. 28, 1882.
Type: Hemidianeura nigricornis W. F. Kirby.
Hemitaxonus Ashmead, Can. Ent., vol. 30, p. 311, 1898.
Type: Taxonus dubitatus Norton (designated).
Hennedyia Cameron, Mem. \& Proc. Manchester Lit. Phil. Soc., vol. 4, no. 4, p. 9, 1891.
Type: Hennedyia annulitarsis Cameron.*
Heptacola Konow, Zeitschr. syst. Hym. Dipt., vol. 5, p. 167, 1905.
Type: Heptacola buyssoni Konow.
Heptamelus Haliday, Nat. Hist. Rev., vol. 2, p. 60, 1835.
Type: Melicerta ochroleuca Stephens.*
Heterarthus Stephens, Illustr. Brit. Ent., Mandib., vol 7, p. 94, no. 25, 1835.
Type: Tenthredo (Emphytus) ochropoda Klug.*
Holcocneme Konow, Deutsch. ent. Zeitschr., p. 238, 1890.
Type: Tenthredo crassa Fallén.
Homœoneura Ashmead, Can. Ent., vol. 30, p. 313, 1898.
Type: Tenthredo delta Provancher (designated).
=Bivena MacGillivray.

Hoplocampa Hartig, Fam. Blatt. Holzwesp., p. 276, 1837.
Type: Tenthredo (Allantus) brevis Klug.
Hybonotus Klug, Mon. Siric. Germ., p. 8, no. 2, 1803.
Type: Ichneumon camelus Linnæus.
=Xiphydria Latreille.
Hylotoma Latreille, Hist. Nat. Crust. Ins., vol. 3, p. 302, 1802.
Type: Tenthredo rosæ Linnæus.*
=Arge Schrank.
Hypargyricus MacGillivray, Can. Ent., vol. 40, p. 290, August, 1908.
Type: Hypargyricus infuscatus MacGillivray (designated).
Hyperoceros Konow, Zeitschr. syst. Hym. Dipt., vol. 6, p. 369, 1906.
Type: Hyperoceros peruanus Konow.*
Hypolæpus W. F. Kirby, List Hym. Brit. Mus., vol. 1, p. 324, no. 103, 1882.
Type: Hypolæpus abbotii W. F. Kirby.*
Hypotaxonus Ashmead, Can. Ent., vol. 30, p. 311, 1898.
Type: Strongylogaster pallipes Say (designated).
Incalia Cameron, Trans. Ent. Soc. Lond., p. 143, 1878. Type: Incalia hirticornis Cameron.*
Ischyroceræa Kiær, Tromoso Mus. Aarsk., vol. 19, p. 67, 1896 (pub. 1898).
Type: Ischyroceræa hyperborea Kiær.*
Isodyctium Ashmead, in Dyar, Journ. N. Y. Ent. Soc., p. 127, 1898; Can. Ent., vol. 30, p. 251, October, 1898.
Type: Isodyctium coryicolum Dyar (designated).
Itycorsia Konow, Ann. k. k. Hofmus., Wien, vol. 12, p. 13, 1897.
Type: Tenthredo hieroglyphica Christ. (Rohwer, 1910).
Janus Stephens, Illustr. Brit. Ent., Mandib., vol. 7, p. 107, no. 30, 1835.
Type: Janus connectus Stephens (Westwood, 1840).
$=$ Janus cynosbati (Fabricius).
Jermakia Jakowlew, Horæ Ent. Soc. Ross., vol. 26, pts. 1-2, p. 58, no. 68, 1891. Type: Allantus cephalotes Jakowlew.*
Kaliofenusa Viereck, Ann. Rep. N. J. State Mus., p. 591, 1909 (1910). Type: Fenusa ulmi Sundevall.
Kaliosysphinga Tischbein, Stett. ent. Zeit., vol. 7, p. 79, 1846. Type: Kaliosysphinga dohrnii Tischbein.* $=$ Fenusa Leach.
Kelidoptera Konow, Ann. k. k. Hofmus. Wien, vol. 12, p. 20, 1897. Type: Lyda maculipennis Stein.*
Kokujewia Konow, Rev. Ent. Russe, vol. 2, p. 3, 1902. Type: Kokujewia ectrapela Konow.
Konowia Brauns, Wien. ent. Zeit., vol. 3, p. 220, 1884.
Type: Konowia megapolitana Brauns.*
Labidarge Konow, Ent. Nachr., vol. 25, p. 309, 1899.
Type: Labidarge bolivari Konow.
=Caloptilia Ashmead.
Labidia Provancher, Addit. Faune Can. Hym., p. 21, 1886.
Type: Labidia columbiana Provancher.*
$=$ Allantus opinus Cresson.
Lagideus Konow, Zeitschr. syst. Hym. Dipt., vol. 5, p. 160, 1905.
Type: Lagideus crinitus Konow.*

Lagium Konow, Zeitschr. syst. Hym. Dipt., vol. 4, p. 246, 1904.
Type: Tenthredo atroviolaceum Norton (designated).
Laurentia A. Costa, Rendic. Accad. Sci. Fis., Napoli, (2) vol. 4, p. 173, 1890.
Type: Laurentia craverii A. Costa.*
$=T e n t h r e d o$ gibbosa Fallén.
Leptocerca Hartig, Fam. Blatt. Holzwesp., p. 228, 1837.
Type: Tenthredo alni Linnæus.
$=$ Hemichroa Stephens.

- Leptocercus Thomson, Hym. Scand., vol. 1, p. 76, 1871 (an emended spelling of Leptocerca).
Type: Tenthredo alni Linnæus.
=Hemichroa Stephens.
Leptocimbex Semenow, Ann. Mus. St. Petersbourg, p. 95, 1896.
Type: Leptocimbex potanini Semenow.
Leptopus Hartig, Fam. Blatt. Holzwesp., p. 104, 1837 (non Latreille, 1809).
Type: Nematus (Leptopus) hypogastricus Hartig.*
$=$ Tenthredo luridiventris Fallén.
$=$ Platycampus Schiödte.
Liolyda Ashmead, Can. Ent., vol. 30, p. 209, 1898.
Type: Lyda frontalis Westwood (designated).
=Cephaleia Panzer.
Lisconeura Rohwer, Bul. Amer. Mus. Nat. Hist., vol. 24, p. 529, 1908.
Type: Scolioneura vexabilis Brues (designated).
Lithoryssus Brues, Bul. Amer. Mus. Nat. Hist, vol. 20, p. 492, fig. 1, 1906.
Type: Lithoryssus parvus Brues (designated).
Lithracia Cameron, Journ. Bombay Soc., vol. 14, p. 441, 1902.
Type: Lithracia flavipes Cameron.*
Loboceras W. F. Kirby, List Hym. Brit. Mus., vol. 1, p. 79, no. 35, 1882.
Type: Loboceras mexicanum W. F. Kirby.
Loderus Konow, Deutsch. ent. Zeitschr., p. 240, 1890.
Type: Tenthredo pratorum Fallén.
Lophyridea Ashmead, Can. Ent., vol. 30, p. 226, 1898.
Type: Lophyrus tropicus Norton (designated).
=Lophyroides Cameron.
Lophyroides Cameron, Ent. Monthl. Mag., vol. 19, p. 133, 1882.
Type: Lophyrus tropicus Norton (designated).
Lophyrotoma Ashmead, Can. Ent., vol. 30, p. 230, 1898.
Type: Pterygophorus interruptus Klug (designated).
$=$ Pterygophorus Klug.
Lophyrus Latreille, Hist. Nat. Crust. Ins., vol. 3, p. 302, 1802 (non Poli).
Type: Tenthredo pini Linnæus.*
$=$ Diprion Schrank (isogenotypic).
Lycaota Konow, Zeitschr. syst. Hym. Dipt., vol. 3, p. 147, 1903.
Type: Selandria sodalis Cresson.*
Lycosceles Konow, Zeitschr. syst. Hym. Dipt., vol. 5, p. 159, 1905.
Type: Lycosceles herbsti Konow.*
Lyda Fabricius, Syst. Piez., p. 43, no. 5, 1804.
Type: Tenthredo sylvatica Linnæus (Curtis, 1831).
$=$ Pamphilius Latreille.

Iygæonematus Konow, Deutsch. ent. Zeitschr., p. 238, 1890.
Type: Nematus pini Retzius.
Macgillivraya Ashmead, Can. Ent., vol. 30, p. 257, 1898 (preoccupied).
Type: Macgillivraya oregonensis Ashmead (designated).
=Macgillivrayella Ashmead.
Macgillivrayella Ashmead, in Smith, Cat. Ins. N. J., p. 606, 1899 (n. n. for Macgillivraya Ashmead).
Type: Macgillivraya oregonensis Ashmead.
Macremphytus MacGillivray, Can. Ent., vol. 40, p. 368, October, 1908.
Type: Harpiphorus varianus Norton (designated).
Macrocephus Schlechtendal, Ent. Nachr., vol. 4, p. 153, 1878.
Type: Macrocephus ulmarix Schlechtendal.*
$=$ Tenthredo linearis Schrank, 1781.
$=$ Hartigia Schiodte and Boie.
Macroclada Konow, Genera Insectorum, Fasc. 29, p. 46, 1906.
(An emended name for Cladomacra F. Smith.) =Cladomacra F. Smith.
Macrophya Dahlbom, Conspect. Tenthred. Scand., p. 11, no. 3, 1835. Type: Tenthredo rusticus Linnæus (Westwood, 1840).
Macroxyela W. F. Kirby, List. Hym. Brit. Mus., vol. 1, p. 351, no. 109, 1882. Type: X yela ferruginea Say (designated).
Manoxyela Ashmead, Can. Ent., vol. 30, p. 206, 1898. Type: Manoxyela californica Ashmead (designated). =Pleroneura Konow.
Marlattia Ashmead, Can. Ent., vol. 30, p. 287, 1898. Type: Hoplocampa laricis Marlatt (designated).
Mastigocera Klug, 18- Reference unknown, a synonym of Xyela by Lepeletier, Encycl. Method., vol. 10, pt. 2, p. 577, 1828.
Megalodontes Latreille, Hist. Nat. Crust. et Ins., vol. 3, p. 302, 1802. Type: Tenthredo cephalotes Fabricius (Latreille, 1810).
Megaxyela Ashmead, Can. Ent., vol. 30, p. 206, 1898. Type: Xyela major Cresson (designated).
Melanopus Konow, Ann. k. k. Hofmus., Wien., vol. 12, p. 12, 1897. Type: Tarpa fabricii Leach.*
Melanoselandria (Ashmead) MacGillivray, in Smith, Cat. Ins. N. J., p. 606, 1899; Can. Ent., vol. 41, p. 404, November, 1909.
Type: Melanoselandria zabriskiei Ashmead.* =Hypargyricus MacGillivray, 1908.
Melicerta Stephens, Illustr. Brit. Ent., Mandib., vol. 7, p. 95, no. 26, 1835 (preocc.). Type: Melicerta ochroleucus Stephens.* =Heptamelus Haliday, 1855.
Melinia O. Costa, Fauna Napoli, Tenthred., p. 41, 1859. Type: Melinia minutissima O. Costa.
Mesoneura Hartig, Fam. Blatt. Holzwesp., p. 229, 1837. Type: Tenthredo opaca Fabricius.*
Messa Leach, Zool. Misc., vol. 3, p. 126, no. 3, 1817. Type: Tenthredo (Emphytus) hortulana Klug.*
Metallus Forbes, 14th Rep. St. Ent. Ill. for 1884, p. 87, 1885. Type: Metallus rubi Forbes.*

Micrarge Ashmead, Can. Ent., vol. 30, p. 213, 1898.
Type: Atomocera ruficollis Norton (designated).

Miocephala Konow, Zeitschr. syst. Hym. Dipt., vol. 7, p. 162, 1907. Type: Niocephala chalybea Konow.*
Micronematus Konow, Deutsch. ent. Zeitschr., p. 239, 1890.
Type: Nematus pullus Förster.
= Nematus monogyniæ Hartig.
Mocsarya Konow, Termes. Fuzetek, vol. 20, p. 608, 1897.
Type: Oryssus metallicus Mocsary.*
Mogerus MacGillivray, Can. Ent., vol. 27, p. 281, October, 1895.
Type: Tenthredo (Allantus) lineolata Klug.
=Periclista Konow.
Monoctenus Dahlbom, Conspect. Tenthred. Scand., p. 7, 1835.
Type: Tenthredo juniperi Linnæus.*
Monophadnoides Ashmead, Can. Ent., vol. 30, p. 253, October, 1898. Type: Monophadnus rubi Harris (designated).
Monophadnus Hartig, Fam. Blatt. Holzwesp., p. 271, 1837. Type: Tenthredo albipes Gmelin (Ashmead, 1898).
Monoplopus Konow, Wien. ent. Zeit., vol. 15, p. 173, 1896. Type: Tenthredo saltuum Linnæus.
Monosoma Viereck, Ann. Rep. N. J. State Mus., p. 583, 1909 (1910). Type: Pcecilostoma inferentia Norton.* =Monsoma MacGillivray.
Monostegia O. Costa, Fauna Napoli, Tenthred., p. 60, 1859. Type: Tenthredo abdominalis Fabricius (MacGillivray, 1908).
Monsoma MacGillivray, Can. Ent., vol. 40, p. 368, October, 1908. Type: Pocilostoma inferentia Norton (designated).
Nematoceros Konow, Wien. ent. Zeit., vol. 15, pp. 54, 52, 1896. Type: Tenthredo luteola Klug.* $=$ Monostegia Costa (isogenotypic).
Nematoneura E. André, Spec. Hym. Europe, rol. 1, pt. 2, p. 576, no. $7^{\text {b }}, 1881$. Type: Nematoneura violaceipennis André.*
Nematinus Rohwer, see p. 99. Type: Tenthredo abdominalis Panzer (designated).
Nematus Panzer, Krit. Revis., vol. 2, p. 44, 1806. Type: Tenthredo septentrionalis Linnæus (Latreille, 1810).
Neocharactus MacGillivray, Can. Ent., vol. 40, p. 293, August, 1908. Type: Neocharactus bakeri MacGillivray (designated).
Neoeurys Rohwer, Ent. News, vol. 22, p. 472, 1910. Type: Neoeurys metallica Rohwer (designated).
Neopareophora MacGillivray, Can. Ent., vol. 40, p. 289, August, 1908. Type: Neopareophora martini MacGillivray (designated).
Neoperga Ashmead, Can. Ent., vol. 30, p. 232, 1898. Type: Perga amenaida Kirby (designated).
Neoptilia Ashmead, Can. Ent., vol. 30, p. 213, 1898. Type: Neoptilia mexicana Ashmead (designated).
Neopus Viereck, Ann. Rep. N. J. State Mus., p. 585, 1909 (1910). Type: Tenthredopsis quatuordecimpunctata Norton.
Neotomostethus MacGillivray, Can. Ent., vol. 40, p. 290, August, 1908. Type: Neotomostethus hyalinus MacGillivray (designated).

Nesodiprion Rohwer, Proc. U. S. Nat. Mus., vol. 39, no. 1777, p. 104, 1910. Type: Lophyrus japonicus Marlatt (designated).
Nesoselandria Rohwer, Proc. U. S. Nat. Mus., vol. 38, no. 1722, p. 657, 1910. Type: Paraselandria imitatrix Ashmead (designated).
Nesotaxonus Rohwer, Proc. U. S. Nat. Mus., vol. 39, no. 1777, p. 111, 1910. Type: Phyllotoma? flavescens Marlatt (designated).
Nesotomostethus Rohwer, Proc. U. S. Nat. Mus., vol. 39, no. 1777, p. 106, 1910. Type: Blennocampa religiosa Marlatt (designated).
Netroceros Konow, Wien. ent. Zeit., vol. 15, p. 51, 1896. Type: Eriocampa (Netroceros) rufiventris Konow.
Neurotoma Konow, Ann. k. k. Hofmus., Wien, vol. 12, p. 18, 1897.
Type: Tenthredo flaviventris Linnæus (Rohwer, 1910).
Nortonella Rohwer, Bul. Amer. Mus. Nat. Hist., vol. 24, p. 582, 1908. Type: Nortonella typica Rohwer (designated).
Nycteridium Fischer-Waldheim, Mém. Soc. Nat. Moscou, vol. 1, p. 286, 1806. Type: Nycteridium fischeri Fischer.
Odontophyes Konow, Wien. ent. Zeit., vol. 18, p. 42, 1899. Type: Pleroneura avingrata Dyar.*
Ophrynopus Konow, Termes. Fuzetek, vol. 20, p. 605, 1897. Type: Ophrynopus andrei Konow.
Opisthoneura Ashmead, Can. Ent., vol. 30, p. 287, 1898. Type: Opisthoneura crevecoeuri Ashmead (designated). $=$ Hoplocampa montana Cresson. =Zaschizonyx Ashmead.
Oryssus Latreille, Préc. Car. Génér. Ins., p. 111, no. 10, 1796. Type: Oryssus coronatus Fabricius (Latreille, 1810).
Pachycephus J. P. Stein, Stett. ent. Zeit., vol. 37, p. 60, 1876. Type: Pachycephus smyrnensis Stein.*
Pachylosticta Klug, Ent. Mon., p. 171, 1824. Type: Pachylosticta tibialis Klug.
Pachylota Westwood, Arc. Ent., vol. 1, p. 24, pl. 7, fig. 3, 1841. Type: Pachylota audouinii Westwood.*
Pachynematus Konow, Deutsch. ent. Zeitschr., p. 238, 1890. Type: Nematus capreæ Panzer. $=$ Nematus trisignatus Förster.
Pachyrotasis Hartig, Fam. Blatt. Holzwesp., p. 295, 1837. Type: Tenthredo rapæ Linnæus (Westwood, 1840).
Palæotaxonus Brues, Bul. Mus. Comp. Zool., vol. 51, no. 10, p. 266, March, 1908. Type: Palrotaxonus typicus Brues (designated).
Pamphilius Latreille, Hist. Nat. Crust Ins., vol. 3, p. 303, 1802. Type: Tenthredo silvatica Linnæus.*
Pampsilota Konow, Ent. Nachr., vol. 25, p. 76, 1899. Type: Pampsilota afer Konow.
Parabatus MacGillivray, Ann. Ent. Soc. Amer., vol. 2, p. 262, 1909. Type: Parabates histrionicus MacGillivray (designated).
Parabia Semenow, Horæ. Soc. Ent. Ross., vol. 25, p. 174, 1890. Type: Parabia jokowlewi Semenow (designated).
Paracharactus MacGillivray, Can. Ent., p. 292, August, 1908. Type: Paracharactus obscuratus MacGillivray (designated).

Paralypia, T. F. Kirby, List. Hym. Brit. Mus., vol. 1, p. 33, no. 17, 1882.
Type: Paralypia picipes Kirby.*
Paraperga Ashmead, Can. Ent., vol. 30, p. 232, 1898.
Type: Perga jucunda Kirby (designated).
Paraselandria Ashmead, Can. Ent., vol. 30, p. 255, 1898.
Type: Tenthredo flavans Klug (designated).
=Selandria Leach.
Parasiobla Ashmead, Can. Ent., vol. 30, p. 308, 1898.
Type: Strongylogaster rufocinctus Norton (designated).
Parastatis W. F. Kirby, Ent. Monthly Mag., vol. 18, p. 107, 1881.
Type: Parastatis indica W. F. Kirby.*
Parasyzygonia Rohwer (see p. 102).
Type: Syzygonia cyanoptera Klug (designated).
Parataxonus MacGillivray, Can. Ent., vol. 40, p. 367, October, 1908.
Type: Taxonus multicolor Norton (designated).
=Aphilodyctium Ashmead.
Parazarca Ashmead, in Dyar, Journ. N. Y. Ent. Soc., p. 128, 1898; also Can. Ent., vol. 30, p. 252, October, 1898.
Type: Parazarca fumipennis Ashmead (designated).
Paremphytus Brues, Bul. Mus. Comp. Zool., vol. 51, no. 10, p. 264, March, 1908.
Type: Paremphytus ostentus Brues.*
Pareophora Konow, Wien. ent. Zeit., vol. 5, pp. 184, 187, no. 3, 1886.
Type: Pareophora luridiventris Konow.
$=$ Tenthredo (Allantus) nigripes Klug.
Paururus Konow, Wien. ent. Zeit., vol. 15, p. 43, 1896.
Type: Sirex juvencus Linnæus.
Pectinia Brullé, Hist. Nat. Ins. Hym., vol. 4, p. 664, 1846.
Type: Tenthredo (Allantus) aterrima Klug (designated).
=Phymatocera Dahlbom.
Pelmatopus Hartig, Fam. Blatt. Holzwesp., p. 244, 1837.
Type: Dolerus (Pelmatopus) minutus Hartig.*
Perantherix Westwood, Thes. Ent. Oxon., p. 109, 1874.
Type: Perantherix pumilio Westwood.*
Perga Leach, Zool. Misc., vol. 3, p. 115, 1817.
Type: Perga dorsalis Leach (Shipp, 1894).
Pergadopsis Shipp, Ent., vol. 27, pp. 339, 340, 1894.
Type: Perga dahlbomi Westwood (designated).
Periclista Konow, Wien. ent. Zeit., vol. 5, pp. 184, 186, no. 2, 1886.
Type: Tenthredo (Allantus) lineolata Klug.
Periclistoptera Ashmead, Can. Ent., vol. 30, p. 255, 1898.
Type: Monostegia quercus-alba Norton (designated).
Ashmead gave the type as alba.
=Eriocampoides Konow.
Perineura Hartig, Fam. Blatt. Holzwesp., p. 303, 1837.
Type: Tenthredo rubi Panzer.*
Peronistilus Chigi, Ann. Mus. Zool. R. Univ. Napoli, n. s. vol. 1, no. 21, p. 26,1904.
Type: Cephus politissimus A. Costa.*
Perreyia Brullé, Hist. Nat. Ins. Hym., vol. 4, p. 661, 1846.
Type: Perreyia lepida Brullé.*
Pëus Konow, Zeitschr. syst. Hym. Dipt., vol. 3, p. 315, 1903.
Type: Pëus privus Konow.*

Phænusa Cameron, Ent. Monthly Mag., vol. 12, p. 131, 1875.
Type: Phænusa albipes Cameron. $=$ Messa Leach.
Philomastix Froggatt, Proc. Linn. Soc. N. S. Wales, (2) vol. 5, p. 467, 1890. Type: Philomastix naucarrowi Froggatt.
Phlebatrophia MacGillivray, Can. Ent., p. 345, October, 1909. Type: Phlebatrophia mathesoni MacGillivray (designated).
Phenacoperga Cockerell, Science, n. s. vol. 27, p. 113, 1908. Type: Perga coloradensis Cockerell (designated).
Phrontosoma MacGillivray, Can. Ent., vol. 40, p. 366, October, 1908. Type: Phrontosoma atrum MacGillivray (designated).
Phylacteophaga Froggatt, Proc. Linn. Soc. N. S. Wales, vol. 24, p. 130, 1899. Type: Phylacteophaga eucalypti Froggatt.*
Phyllœcus E. Newman, Ent. Mag., vol. 5, p. 485, 1838.
Type: Phylloccus faunus E. Newman. $=$ Janus Stephens.
Phyllotoma Fallén, Mon. Tenthred. Suec., p. 25, 1829. Type: Phyllotoma vagans Fallén.
Phymatocera Dahlbom, Conspect. Tenthred. Scand., p. 11, no. 2, 1835. Type: Tenthredo (Allantus) aterrima Klug.*
Pinicola Brébisson, Bul. Soc. Philom. Paris, p. 116, 1818 (non Vieillot, 1805). Type: Pinicola julii Brébisson. =Xyela Dalman.
Plagiocera Klug, Jahrb. Insectenkunde, vol. 1, p. 227, no. 2, 1834. Type: Plagiacera thoracica Klug.*
Plagioperga Shipp, Ent., vol. 27, pp. 339, 340, 1894. Type: Perga mayrii Westwood (designated).
Platycampus Schiödte, Mag. Zool., vol. 9, p. 20, 1839 (footnote). Type: Nematus (Leptopus) hypogastricus Hartig.
Pleroneura Konow, Ent. Nachr., vol. 23, p. 56, 1897. Type: Xyela dahli Hartig.
Pœcilosoma Thomson, Scand. Hym., vol. 1, p. 227, 1871. Emended spelling of Pocilostoma.
Pœcilostoma Dahlbom, Conspect. Tenthred. Scand., p. 13, no. 8, 1835. Type: Tenthredo guttatum Fallén. $=$ Empria Lepeletier.
Pœcilostomidea Ashmead, Can. Ent., vol. 30, p. 256, 1898. Type: Pocilostoma maculata Norton (designated). =Empria Lepeletier.
Polybates MacGillivray, Ann. Ent. Soc. Amer., vol. 2, p. 264, 1909. Type: Polybates slossonæ MacGillivray (designated).
Polyclonus W. F. Kirby, List Hym. Brit. Mus., vol. 1, p. 97, no. 48, 1882. Type: Polyclonus atratus T. F. Kirby.*
Polystichophagus Ashmead, Can. Ent., vol. 30, p. 310, 1898. Type: Tenthredo filicis Klug (designated). =Pseudotaxonus A. Costa.
Pompholyx Freymuth, Protoc. $4^{\text {me }}$ Séance Soc. Anthrop. Moscou, vol. 8, p. 216, 1870.

Type: Pompholyx dimorpha Freymuth.* preocc.,=Cacosyndia Kirby.

Pontania O. Costa, Fauna Napoli, Tenthred., p. 20, 1859.
Type: Nematus gallicola Stephens (Marlatt, 1896).
Poppia Konow, Zeitschr. syst. Hym. Dipt., vol. 4, p. 263, 1904.
Type: Poppia athaloides Konow.*
Praia (Wankowitz) André, Spec. Hym. Europe et Algérie, vol. 1, pt. 6, 1880; p. 572, n. $3^{b}, 1881$.

Type: Praia taczanowskii (Wankowitz) André.*
Priophorus Dahlbom, Conspect. Tenthred. Scand., p. 4, no. 1, 1835.
Type: Priophorus pilicornis Dahlbom. $=$ Tenthredo padi Linnæus.
Pristiphora Latreille, Consid. Générales, p. 294, 1810.
Type: Pteronus testaceus Jurine (designated).
Pristis Brullé, Hist. Nat. Ins. Hym., vol. 4, p. 665, 1846.
Type: Tenthredo punctigera Lepeletier. $=T$ enthredo opaca Fabricius.
$=\mathbf{M e s o n e u r a}$ Hartig.
Probleta Konow, Zeitschr. syst. Hym. Dipt., vol. 8, p. 161, 1908.
Type: Probleta langei Konow.
Prototaxonus Rohwer, Can. Ent., vol. 42, p. 49, February, 1910.
Type: Prototaxonus typicus Rohwer (designated).
Protemphytus Rohwer, Can. Ent., vol. 41, p. 92, March, 1909.
Type: Emphytus coloradensis Weldon (designated).
Pseudabia Schrottky, Ent. Rundschau, vol. 27, no. 23, p. 168, December 1, 1910. Type: Pseudabia fusca Schrottky (designated).
Pseudoclavellaria Schultz, Spolia Hym., p. 87, 1906. Type: Tenthredo amerinæ Linnæus.
Pseudocimbex Rohwer, Bul. Amer. Mus. Nat. Hist., vol. 24, p. 526, 1908. Type: Pseudocimbex clavatus Rohwer (designated).
Pseudocyphona Ashmead, Can. Ent., vol. 30, p. 211, 1898. Type: Rseudocyphona mexicana Ashmead (designated).
Pseudodineura Konow, Wien. ent. Zeit., vol. 4, p. 297, 1885. Type: Tenthredo (Allantus) parvula Klug.
Pseudoperga Guérin, Icon. Regne Anim., vol. 7, Insectes, p. 398, 1845. Type: Perga lewisii Westwood (Shipp, 1894).
Pseudoperga Ashmead, Can. Ent., vol. 30, p. 232, 1898 (non Guérin). Type: Perga polita Leach (designated).
Pseudosiobla Ashmead, Can. Ent., vol. 30, p. 308, 1898. Type: Macrophya excavata Norton (designated).
Pseudosirex Weyenbergh, Arch. Mus. Teyler, vol. 3, p. 238, 1873. Type: Pseudosirex darwinii Weyenbergh.
Pseudotaxonus A. Costa, Proc. Sist. Imenott. Ital., p. 157, 1894. Type: Tenthredo filicis Klug.*
Ptenos Norton, Trans. Amer. Ent. Soc., vol. 4, p. 77, 1872. Type: Ptenos niger Norton.
Pteronidea Rohwer (see p. 98). Type: Nematus ventralis Say (designated).
Pteronus Panzer, Krit. Revis., vol. 2, p. 46, 1806
Type: Tenthredo pini Linnæus.
$=$ Diprion Schrank.

Pterygophorinus Ashmead, Can. Ent., vol. 30, p. 230, September, 1898.
Type: Pterygophorus analis O. Costa (designated).
=Pterygophorus Klug.
Pterygophorus Klug, Mag. Ges. naturf. Freunde Berlin, vol. 6, p. 276, 1812.
Type: Pterygophorus cinctus Klug (Ashmead, 1898).
Ptilia Lepeletier, Mon. Tenthred., p. 49, 1823.
Type: Ptilia braziliensis Lepeletier.
Rethrax Cameron, Mem. \& Proc. Manchester Lit. Phil. Soc., vol. 43, no. 3, p. 32, 1899. Type: Rethrax carinata Cameron.*
Rhadinoceræa Konow, Wien. ent. Zeit., vol. 5, pp. 184, 211, no. 5, 1886. Type: Tenthredo (Allantus) micans Klug.
Rhagonyx Konow, Zeitschr. syst. Hym. Dipt., vol. 3, p. 108, 1903. Type: Rhagonyx lituratus Konow.*
Rhipidioceros Konow, Ann. k.k. Hofmus., Wien., vol. 12, p. 2, 1897. Type: Tarpa flabellicornis Germar.
Rhogogaster Konow, Deutsch. ent. Zeitschr., p. 338, 1884. Týpe: Tenthredo viridis Linnæus.
Rhogogastera Konow, Wien. ent. Zeit., vol. 4, p. 123, 1885.
(An emended spelling for Rhogogaster.)
Rhopographus Konow, Ent. Nachr., vol. 25, p. 79, 1899 (n. n. for Rhoptroceros). Type: Rhoptroceros procinctus Konow.
Rhoptroceros Konow, Ent. Nachr., vol. 24, p. 276, 1898.
Type: Rhoptroceros procinctus Konow.* preocc.,=Rhopographus Konow.
Rusobria Cameron, Trans. Ent. Soc. Lond., p. 150, 1878. Type: Rusobria carinata Cameron.
Schizocera Lepeletier, Encycl. Méthod., Ins., vol. 10, pt. 2, p. 572, 1828. Type: Hylotoma fuscata Villers (Westwood, 1840).
Sciapteryx Stephens, Illustr. Brit. Ent., Mandib., vol. 7, p. 56, no. 19, 1835.
Type: Tenthredo costalis Fabricius.* Sciopteryx is an incorrect spelling.
Scobina Lepeletier, Encycl. Méthod., Ins., vol. 10, pt. 2, p. 574, 1828. Type: Hylotoma melanocephala Lepeletier.*
Scolioneura Konow, Deutsch. ent. Zeitschr., p. 249, 1890. Type: Tenthredo (Allantus) betuleti Klug (MacGillivray, 1909).
Selandria Leach, Zool. Misc., vol. 3, p. 126, no. 3, 1817. Type: Tenthredo serva Fabricius (Brullé, 1846).
Senoclia Cameron, Trans. Ent. Soc. Lond., p. 88, 1877 (n. n. for Anisoarthra Cameron). Type: Anisoarthra cœrulea Cameron.
Sericocera Brullé, Hist. Nat. Ins. Hym., vol. 4, p. 669, 1846. Type: Sericocera spinolæ Brullé.
Siobla Cameron, Trans. Ent. Soc. Lond., p. 88, 1877. Type: Siobla mooreana Cameron (Ashmead, 1898).
Sirex Linnæus, Fauna Suec., ed. 29, p. 396, 1761. Type: Sirex gigas Linnæus.
Sjoestedtia Konow, Schwed. Zool. Exp., Kilimandjaro, p. 1, 1907. Type: Sjoestedtia meruensis Konow.*
Sphæcophilus Provancher, Addit., Faun. Canad., p. 427, 1889. Type: Sphæcophilus crawii Provancher.*

Stevenia Brullé, Hist. Nat. Ins. Hym., vol. 4, p. 667, 1846. No species.
Stirocorsia Konow, Ent. Nachr., vol. 23, p. 372, 1897.
Type: Stirocorsia kohli Konow.*
Stelidarge Konow, Termes. Fuzetek, vol. 24, p. 58, 1901.
Type: Stelidarge diptycha Konow.*
Stromboceros Konow, Wien. ent. Zeit., vol. 4, pp. 19, 20, 1885.
Type: Tenthredo delicatulus Fallén.
Strongylogaster Dahlbom, Conspect. Tenthred. Scand., p. 13, no. 7, 1835.
Type: Tenthredo cingulata Fabricius (MacGillivray, 1908).
Strongylogasteroidea Ashmead, Can. Ent., vol. 30,.p. 308, 1898.
Type: Strongylogaster aprilis Say (designated).
Sunoxa Cameron, Mem. \& Proc. Manchester Lit. Phil. Soc., vol. 43, no. 3, p. 39, 1899. Type: Sunoxa purpureifrons Cameron.*
Synairema Hartig, Fam. Blatt. Holzwesp., p. 314, 1837. Type: Tenthredo delicatula Klug.*
Synaptoneura Konow, Zeitschr. syst. Hym. Dipt., vol. 8, p. 160, 1908.
Type: Synaptoneura boliviensis Konow.*
Syrista Konow, Wien. ent. Zeit., vol. 15, p. 152, 1896.
Type: Cephus parreyssi Spinola.*
Syzygonia Klug, Ent. Monogr., p. 175, 1824.
Type: Syzygonia cyanocephala Klug (Ashmead, 1898).
Syzygonidea Ashmead, Can. Ent., vol. 30, p. 230, September, 1898. Type: Syzygonia cyanea Brullé (designated).
Tanymeles Konow, Zeitschr. syst. Hym. Dipt., vol. 6, p. 244, 1906.
Type: Tanymeles hilarulus Konow.*
Tanyphatna Konow, Zeitschr. syst. Hym. Dipt., vol. 6, p. 187, 1906. Type: Tanyphatna pellos Konow.
Tarpa Fabricius, Syst. Piez., p. 19, no. 2, 1804.
Type: Tarpa cephalotes Fabricius (Westwood, 1840).
$=$ Megalodontes Latreille.
Taxonus Hartig, Fam. Blatt. Holzwesp., p. 297, 1837.
Type: Tenthredo (Allantus) nitida Klug) (=Tenthredo agorum Fallén) (Konow,1896).
Rohwer's remarks (Proc. U. S. Nat. Mus., vol. 39, no. 1777, p. 111, 1910) are incorrect. The type must be Tenthredo agorum Fallén. Ermilia O. Costa is a synonym, being isogenotypic with Taxonus.
Tenthredella Rohwer, Proc. U. S. Nat. Mus., vol. 39, no. 1777, p. 117, 1910.
Type: Tenthredo atra Linnæus (designated).
$=$ Tenthredo authors, not Linnæus.
Tenthredina Rohwer, Proc. U. S. Nat. Mus., vol. 39, no. 1777, p. 116, 1910.
Type: Tenthredo flavida Marlatt (designated).
Tenthredo Linnæus, Syst. Nat., ed. 10, vol. 1, p. 343, no. 213, p. 555, no. 214, 1758.
Type: Tenthredo scrophulariæ Linnæus (Latreille, 1810).
Tenthredopsis O. Costa, Fauna Napoli, Tenthred., p. 98, 1859.
Type: Tenthredo tessellata Klug.
Teredon Norton, Trans. Amer. Ent. Soc., vol. 2, p. 366, 1869. Type: Tremex cubensis Cresson.
Teredonia W. F. Kirby, List Hym. Brit. Mus., vol. 1, p. 386, no. 7, 1882 (n. n. for Teredon Norton).
Type: Tremex cubensis Cresson.

Tetratneura Ashmead, Can. Ent., vol. 30, p. 256, 1898.
Type: Monostegia ignota Norton (designated).
=Empria Lepeletier.
Themos Norton, Trans. Amer. Ent. Soc., vol. 1, p. 58, no. 19, 1867.
Type: Themos hyalinus Norton.*
Thomsonia Konow, Deutsch. ent. Zeitschr., p. 227, 1884. Type: Perineura thomsonia Konow.
Thrinax Konow, Wien. ent. Zeit., vol. 4, pp. 19, 22, 1885. Type: Strongylogaster contigua Konow (MacGillivray, 1908).
Thulea Say, Bost. Journ. Nat. Hist., vol. 1, no. 3, p. 214, 1836. Type: Thulea nigra Say.*
Tomostethus Konow, Wien. ent. Zeit., vol. 5, pp. 184, 214, no. 7, 1886. Type: Tenthredo nigrita Fabricius.
Topotrita W. F. Kirby, List Hym. Brit. Mus., vol. 1, p. 48, no. 27, 1882. Type: Hylotoma (Schizocera) leucocephala Klug.*
Trachelus Jurine, Nouv. Méthod. Class. Hym., p. 70, pl. 2, fig. 9, 1807. Type: Sirex tabidus Fabricius.
Trailia Cameron, Trans. Ent. Soc. Lond., p. 148, 1878.
Type: Trailia analis Cameron.
Tremex Jurine, Nouv. Méthod. Class. Hym., p. 80, 1807.
Type: Sirex fuscicornis Fabricius (Latreille, 1810).
Trichiocampus Hartig, Fam. Blatt. Holzwesp., p. 176, 1837.
Type: Nematus grandis Lepeletier.
$=$ Tenthredo viminalis Fallén.
Trichiosoma Leach, Zool. Misc., vol. 3, p. 108, no. 2, 1817.
Type: Tenthredo lucorum Linnæus (Curtis, 1824).
Trichiosomites Brues, Bul. Mus. Comp. Zool., vol. 51, no. 10, p. 259, March, 1908. Type: Trichiosomites obliviosus Brues.*
Trichorhachus W. F. Kirby, List Hym. Brit. Mus., vol. 1, p. 39, no. 21, 1882. Type: Trichorhachus nitidus W. F. Kirby.
Trichorrhachus Konow, Genera Insectorum, fasc. 29, p. 15, 1906. Misspelling of Trichorhachus.
Trichotaxonus Rohwer, Proc. Ent. Soc. Wash., vol. 12, p. 30, 1910. Type: Trichotaxonus readi Rohwer (designated).
Tristactus Konow, Ann. k. k. Hofmus., Wien., vol. 12, p. 12, 1897. Type: Lyda judaicus Lepeletier.*
Tristegus Konow, Zeitschr. syst. Hym. Dipt., vol. 6, p. 370, 1906. Type: Tristegus mimarius Konow.*
Tritokreion Schilling, Übers. Arbeit. schles. Ges. Vaterl. cultur., i, j, p. 43, 1825. No species.
Trochophora Konow, Zeitschr. syst. Hym. Dipt., vol. 5, p. 158, 1905. Type: Trochophora duckei Konow.*
Urocerites Heer, Denkschr. schweiz. Ges. Natur., vol. 22, p. 36, 1867.
Type: Urocerites spectabilis Heer.
Urocerus (Geoffroy) Latreille. Geoffroy, Hist. Abr. Ins., vol. 2, p. 264, 1762; Latreille, Hist. Nat. Crust. Ins., p. 304, 1802.
Type: Sirex gigas Linnæus (Westwood, 1840). $=$ Sirex Linnæus.
Waldheimia Brullé, Hist. Nat. Ins. Hym., vol. 4, p. 665, 1846.
Type: Waldheimia braziliensis Lepeletier (designated).

Xenapates W. F. Kirby, List. Hym. Brit. Mus., vol. 1, p. 180, no. 67, 1882.
Type: Dineura (?) africana Cameron.*
Xeris A. Costa, Prosp. Sist. Imenn. Ital., vol. 3, p. 259, 1894.
Type: Ichneumon spectrum Linnæus.*
Xiphidion Provancher, Nat. Can., vol. 7, p. 374, 1875.
Type: Xiphidion canadense Provancher.*
$=X i p h y d r i a$ provancheri Cresson.
Xiphiura Fallén, Spec. Nov. Hym. Disp. Method, p. 11, no. 7, 1813.
No species included.
Xiphydria Latreille, Hist. Nat. Crust. Ins., vol. 3, p. 304, 1802.
Type: Ichneumon camelus Linnæus.*
Xyela Dalman, Svensk. Vet.-Akad. Handl., vol. 40, p. 122, no. 3, pl. 6, figs. 1-11, 1899. Type: Xyela pusilla Dalman (Curtis, 1824).
Xyloecermatium L. Heyden, Berl. ent. Zeitschr., vol. 12, p. 227,' 1868, (n. n. for Xyloterus Hartig, non Erichson).
Type: Sirex fuscicornis Fabricius.
$=$ Tremex Jurine.
Xyloperga Shipp, Ent., vol. 27, pp. 339, 340, 1894.
Type: Perga hallidayi Westwood (designated).
Xyloterus Hartig, Fam. Blatt: Holzwesp., p. 385, 1837 (non Erichson, 1836).
Type: Sirex fuscicornis Fabricius.
$=$ Tremex Jurine.
Zaræa Leach, Zool. Misc., vol. 3, p. 113, no. 4, 1817.
Type Tenthredo fasciata Linnæus.*
Zarca Cameron, Trans. Ent. Soc. Lond., p. 142, 1878. Type: Zarca apicalis Cameron.*
Zaschizonyx Ashmead, Can. Ent., vol. 30, p. 257, 1898.
Type: Hoplocampa montana Cresson (designated).

AN INDEX TO THE GENOTYPES.

EXPLANATORY.

The following index includes (1) the name of the species, (2) the name of its author, (3) the name of the genus in which it was originally described, and (4) the name of the genus of which it is the genotype. When a species given in the index is a synonym of another genotype, a cross-reference is given to the genotype of which it is a synonym. When a species was originally placed in the genus of which it is the genotype, only one generic name is given. Species placed in subgenera by older writers are cited in the subgenus only.
abbotii W. F. Kirby (Hypolæpus).
abdominalis Fabricius (Tenthredo, Monostegia).
abdominalis Panzer (Tenthredo, Nematinus).
æratus Newman (Eurys).
æthiops Fabricius (Tenthredo, Endelomyia).
afer Konow (Pampsilota).
africana Cameron (Dineura?, Xenapates).
agrorum Fallén (Tenthredo, Ermilia).
"alba" Norton (Monostegia, Periclistoptera).
albipes Cameron (Phænusa).
albipes Konow (Anapeptamena).
albipes Gmelin (Tenthredo, Monophadnus).
albiventris Klug (Allantus, Periclista).
albodopictus Norton (Taxonus, Epitaxonus).
alni Linnæus (Tenthredo, Hemichroa).
alni Linnæus (Tenthredo, Leptocerca [=Hemichroa]).
alni Linnæus (Tenthredo, Leptocercus [=Hemichroa]).
alternans A. Costa (Anoplolyda).
amenaida W. F. Kirby (Perga, Neoperga).
amerinæ Linnæus (Tenthredo, Pseudoclavellaria).
analis Cameron (Trailia).
analis O. Costa (Pterygophorus, Pterygophorinus).
andrei Konow (Ophrynopus).
annulitarsis Cameron (Hennedyia).
apicalis Cameron (Zarca).
apicalis Say (Strongylogaster, Strongylogasteroidea).
apicalis Spinola (Gymnia).
armenius Konow (Ateuchopus).
arizonensis Ashmead (Eriocampidea).
arizonensis Ashmead (Eriocampidea,
Cockerellonis [=Eriocampidea]).
aterrima Klug (Allantus, Pectinia).
athalioides Konow (Poppia).
atra Linnæus (Tenthredo, Tenthredella). atratus W. F. Kirby (Polyclonus).
atroviolaceum Norton (Tenthredo, Lagium).
atrum MacGillivray (Phrontosoma).
aterrima Klug (Allantus, Phymatocera).
audouinii Westwood (Pachylota).
avingrata Dyar (Pleroneura, Odontophyes).
bakeri MacGillivray (Neocharactus).
betuleti Klug (Allantus, Scolioneura).
bipunctata Klug (Allantus, Ardis).
boliviensis Konow (Synaptoneura).
bolivari Konow (Labidarge).
braunsi Konow (Didocha).
braziliensis Lepeletier (Ptilia).
braziliensis Lepeletier (Waldheimia).
brevicornis Fallén (Hylotoma, Aprosthema).
brevis Klug (Allantus, Hoplocampa).
buquetii Spinola (Aulacomerus).
buyssoni Konow (Heptacola).
californica Ashmead (Manoxyela).
californicus Marlatt (Gymnonychus).
camelus Linnæus (Ichneumon, Hybonotus).
camelus Linnæus (Ichneumon, Xiphydria).
cameroni Westwood (Perga, Acanthoperga).
canadense Provancher (Xiphidion).
capreæ Panzer (Tenthredo, Pachynematus).
carinata Cameron (Rethrax).
carinata Cameron (Rusobria).
cephalotes Fabricius (Tarpa).
cephalotes Fabricius (Tenthredo, Megalodontes).
cephalotes Jakowlew (Allantus, Jermakia).
cestatus Konow (Clydostomus).
chalybea Konow (Miocephala).
cinctus Klug (Pterygophorus).
cinctus Linnæus (Tenthredo, Emphytus).
cingulata Fabricius (Tenthredo, Strongylogaster).
cinxia Klug (Allantus, Caliroa).
clavatus Rohwer (Pseudocimbex).
cœrulea Cameron(Anisoarthra [Senoclia]).
cœrulea Cameron (Anisoarthra, Senoclia).
coloradensis Cockerell (Perga, Phenacoperga).
coloradensis Weldon (Emphytus, Protemphytus).
columbiana Provancher. (Labidia. See opimus Cresson.)
compressus Fabricius (Sirex, Ephippinotus).
connectens Stephens (Janus).
consobrina Klug (Tenthredo, Eniscia).
contigua Konow (Strongylogaster, Thrinax).
coronatus Fabricius (Tenthredo, Oryssus).
coronatus Klug (Emphytus, Aneugmenus).
coryicolum Dyar (Isodyctium).
costalis Fabricius (Tenthredo, Sciapteryx).
crassa Fallén (Tenthredo, Holcocneme).
craverii A. Costa (Laurentia).
crawii Provancher (Sphacophilus).
cressoni Westwood (Perga, Camptoperga).
crevecoeuri Ashmead (Opisthoneura. See montana Cresson).
crinitus Konow (Lagideus).
crudum Konow (Eriglenum).
cruentatus Eversmann (Cephus, Eversmannella).
cubensis Cresson (Tremex, Teredon [=Teredonia]).
cubensis Cresson (Tremex, Teredonia).
cyanea Brullé (Syzygonia, Syzygonidea).
cyanocephala Klug (Syzygonia).
cyanocephala Klug (Syzygonia, Bergiana).
cyanoptera Klug (Syzygonia, Parasyzygonia).
cynosbati Linnæus (Cephus, Janus).
cynosbati Linnæus (Cephus, Phyllœcus [=Janus]).
dahlbomi Thomson (Cænoneura).
dahlbomi Westwood (Perga, Pergadopsis).
dahli Hartig (Xyela, Pleroneura).
darwinii Weyenbergh (Pseudosirex).
debilicornis Konow (Brachyphatnus).
debilis Say (Atomacera).
decora Konow (Acidiophora).
defessus Scudder (Atocus).
degeeri Klug (Allantus, Dineura).
delicatulús Fallén (Tenthredo, Stromboceros).
delicatula Klug (Tenthredo, Synairema).
delta Provancher (Tenthredo, Bivena).
delta Provancher (Tenthredo, Homœoneura [=Bivena]).
difformis Panzer (Tenthredo, Cladius).
dimorpha Freymuth (Pompholyx [=Cacosyndia]).
dimorpha Freymuth (Pompholyx, Cacosyndia).
diptycha Konow (Stelidarge).
divergens W. F. Kirby (Clarissa).
dohrnii Tischbein (Kaliosysphinga).
dorsalis Say (Acordulecera).
dorsalis Leach (Perga).
dubitatus Norton (Taxonus, Hemitaxonus).
duckei Konow (Trochophora).
eburneiguttatum W. F. Kirby (Aglaostigma).
ectrapela Konow (Kokujewia).
eglanteriæ Fabricius (Tenthredo, Dosytheus).
ellisii Curtis (Dielocerus).
epimelas Konow (Haplostegus).
equiseti Fallén (Tenthredo, Taxonus).
erythrocephala Linnæus (Tenthredo, Acantholyda).
eucalypti Froggatt (Phylacteophaga).
excavata Norton (Macrophya, Pseudosiobla).
fabricii Leach (Tarpa, Melanopus).
fallax Lepeletier (Nematus, Amaurnnematus).
fasciata Linnæus (Tenthredo, Zaræa).
fascipennis Norton (Selandria, Calozarca. faunus Newman. (Phyllœcus. See cynosbati Linnæus).
ferruginea Say (Xyela, Macroxyela).
filiceti Klug (Blasticotoma).
filiformis Eversmann (Cephus, Calameuta).
filicis Klug (Tenthredo, Polystichophagus [=Pseudotaxonus]).
filicis Klug (Tenthredo, Pseudotaxonus).
flabellicornis Germar (Tarpa, Rhipidioceros).
flavescens Marlatt (Phyllotoma?, Nesotaxonus).
flavida Marlatt (Tenthredo, Tenthredina).
floricola O. Costa (Ebolia).
flavens Klug (Tenthredo, Paraselandria).
flavipes Cameron (Lithracia).
flaviventris Linnæus (Tenthredo, Neurotoma).
frontalis Westwood (Lyda, Liolyda).
fulvipes A. Costa (Amestastegia).
fumipennis Ashmead (Parazarca).
fumipennis Westwood (Brachytoma).
fumipennis W. F. Kirby (Acherdocerus). furcata Fabricius (Hylotoma, Cyphona).
furcata Villers (Hylotoma, Schizocera).
fusca Schrottky (Pseudabia).
fuscicornis Hartig (Diphadnus).
fuscicornis Fabricius (Sirex, Tremex).
fuscicornis Fabricius (Sirex, Xylœcermatium [=Tremex]).
fuscicornis Fabricius (Sirex, Xyloterus [=Tremex]).
gallicola Stephens (Nematus, Pontania).
gallæ Newman. (Euura. See medullaris Hartig).
gigas Linnæus (Sirex).
gigas Linnæus (Sirex, Urocerus [=Sirex]).
gonager Jurine (Dolerus).
grandis Lepeletier. (Trichocampus. See viminalis Fallén.)
grandis Philippi (Brachyxiphus).
guttatum Fallén (Tenthredo, Pœcilostoma).
hallidayi Westwood (Perga, Xyloperga).
healæi E. Newman. (Camponiscus. See luridiventris Fallén.)
herbsti Konow (Lycosceles).
hieroglyphica Christ (Tenthredo, Itycorsia).
hilarulus Konow (Tanymeles).
hirticornis Cameron (Incalia).
histrionicus MacGillivray (Parabates).
hortulana Klug (Emphytus, Messa).
hyalinus MacGillivray (Neotomostethus). hyalinus Norton (Themos).
hyperborea Kiaer (Ischyroceræa)
hypogastricus Hartig. (See luridiventris Fallén.)
ianthe E. Newman (Fenusa, Asticta).
ignota Norton (Monostegia, Tetratneura).
imitatrix Ashmead (Paraselandria, Nesoselandria).
imperialis Smith (Hylotoma, Athermanthus).
incisa Cameron (Allomorpha).
indica W. F. Kirby (Parastitis).
inferentia Norton (Pœcilostoma, Monsoma).
inferentia Norton (Pœcilostoma, Monosoma [$=$ Monsoma]).
infuscatus MacGillivray (Hypargyricus).
inopenus Konow (Canonias).
insolita Konow (Cladiucha).
interruptus Klug (Pterygophorus, Lophyrotoma).
jakowleffi Konow (Cænocephus).
jakowleff Konow (Dinax).
jakowlewi Semenow (Parabia).
jantheria Klug (Hylotoma, Cibdela).
japonica Marlatt (Lophyrus, Nesodiprion.)
jucunda W. F. Kirby (Perga, Paraperga).
judaicus Lepeletier (Lyda, Tristactus).
julii Brébisson (Pinicola [=Xyela]).
julii Brébisson (Pinicola, Xyela).
juniperi Linnæus (Tenthredo, Monoctenus).
juvencus Linnæus (Sirex, Paururus).
klugii Burmeister (Athlophorus).
kohli Konow (Stirocorsia).
koreana Konow (Corymbas).
læta Westwood (Dictynna).
langei Konow (Probleta).
laricis Marlatt (Hoplocampa, Marlattia).
lepida Brullé (Perreyia).
lepidus Klug (Emphytus, Asticta [=Harpiphorus]).
lepidus Klug (Emphytus, Harpiphorus).
leprieurii Spinola (Camptoprium).
leucocephala Klug (Schizocera, Topotrita).
lewisii Westwood (Perga, Pseudoperga).
limacina Retzius (Tenthredo, Eriocampoides).
lituratus Konow (Rhagonyx).
lobatus MacGillivray (Aphanisus).
lucorum Linnæus (Tenthredo, Trichiosoma).
luridiventris Fallén (Tenthredo, Camponiscus [=Platycampus]).
luridiventris Fallén (Tenthredo, Leptopus [=Platycampus]).
luridiventris Fallén (Tenthredo, Platycampus).
luridiventris Konow. (Pareophora. See nigripes Klug.)
lutea Linnæus (Tenthredo, Clavellaria).
lutea Linnæus (Tenthredo, Cimbex).
luteola Klug (Tenthredo, Nematoceros).
luteiventris O. Costa. (Ephippinotus. See compressus Fabricius.)
macropus Smith (Cladomacra).
maculata Marlatt (Cimbex, Agenocimbex).
maculata Norton (Pœcilostoma, Pœcilostomidea).
maculipennis Stein (Lyda, Celidoptera). maculipennis Stein (Lyda, Kelidoptera). magrettii Konow (Colochelyna).
major Cresson (Xyela, Megaxyela).
major O. Costa. (See satyrus Panzer.)
mandibularis Zaddach (Lyda, Gongylocorsia).
maria MacGillivray. (Bivena. See delta Provancher.)
martini Lepeletier (Hylotoma, Didymia). martini MacGillivray (Neopareophora).
mathesoni MacGillivray (Phlebatrophia).
mayrii Westwood (Perga, Plagioperga).
medullaris Hartig (Cryptocampus).
megapolitana Brauns (Konowia).
melanocephala Lepeletier (Hylotoma, Scobina).
meruensis Konow (Sjoestedtia).
metallica Rohwer (Neoeurys).
metallicus Mocsary (Oryssus, Mocsarya).
mexicana Ashmead (Neoptilia).
mexicana Ashmead (Pseudocyphona).
mexicanum W. F. Kirby (Loboceras). nigripes Klug (Allantus, Pareophora).
mimarius Konow (Tristegus).
minutissima O. Costa. (Melina. See nigrita Westwood.)
minutus Hartig (Pelmatopus).
montana Cresson (Hoplocampa, Opisthoneura [=Zaschizonyx]).
montana Cresson (Hoplocampa, Zaschizonyx).
mooreana Cameron (Siobla).
moricei Konow (Characophygus).
morio Konow (Dulophanes).
multicolor Norton (Taxonus, Parataxonus).
naucarrowi Froggatt (Philomastix).
nemorata Fallén (Phyllotoma, Druida).
niger Norton (Ptenos).
nigra Cameron (Fethalia).
nigra Say (Thulea).
nigrescens Rohwer (Diphamorphos).
nigrita Fabricius (Tenthredo, Tomostethus).
nigrita Westwood (Fenella).
nigrita Westwood (Fenella, Melinia).
nigricornis W. F Kirby (Hemidianeura).
nitens W. F. Kirby (Euryopsis).
nitidus W. F. Kirby (Trichorhachus).
obliviosus Brues (Trichiosomites).
obscura Linnæus (Tenthredo, Amasis).
obscuratus MacGillivray (Paracharactus).
occidentalis MacGillivray. (Cockerel-
lonis. See arizonensis Ashmead.)
ochroleucus Stephens (Melicerta [$=$ Heptamelus]).
ochroleuca Stephens (Melicerta, Heptamelus).
ochropoda Stephens (Heterarthus, Decatria).
ochropoda Klug (Emphytus, Heterarthus).
œningensis Heer (Cephites).
opaca Fabricius (Tenthredo, Mesoneura).
opaca Fabricius (Tenthredo, Pristis [$=$ Mesoneura]).
opimus Cresson (Allantus, Labidia).
oregonensis Ashmead (Macgillivraya [= Macgillivrayella]).
oregonensis Ashmead. (Macgillivraya, Macgillivrayella).
ostentus Brues (Paremphytus).
ovata Linnæus (Tenthredo, Eriocampa).
padi Linnæus (Tenthredo, Priophorus).
parreyssi Spinola (Cephus, Syrista).
pallimacula Lepeletier (Empria).
pallipes Say (Strongylogaster, Hypotaxonus).
parviceps Newman. (See nemorata Fallén.)
parvulus Klug (Allantus, Pseudodineura).
parvus Brues (Lithoryssus).
pectoralis Lepeletier (Nematus, Anoplonyx).
pellos Konow (Tanyphatna).
perplexus Konow (Emphyoides).
peruanus Konow (Hyperoceros).
picipes W. F. Kirby (Paralypia). pictipennis Smith (Derecyrta).
pilicornis Dahlbom. (Priophorus. See padi Linnæus.)
pinguis Say (Strongylogaster, Dimorphopteryx).
pini Linnæus (Tenthredo, Anachoreta [=Diprion]).
pini Linnæus (Tenthredo, Diprion).
pini Linnæus (Tenthredo, Lophyrus
[=Diprion]).
pini Retzius (Nematus, Lygæonematus).
plumicornis Guérin (Oryssus, Chalinus).
polita Leach (Perga, Pseudoperga).
politissimus A. Costa (Cephus, Peronistilus).
pratorum Fallén (Tenthredo, Loderus).
præcox Föerster (Epitactus).
privus Konow (Pëus).
procer Konow (Bathyblepta).
procinctus Konow (Rhoptroceros [$=$ Rhopographus]).
procinctus Konow (Rhoptroceros, Rhopographus).
pulchella O. Costa. (Ermilia. See agorum Fallén.)
pullus Föerster (Nematus, Micronematus).
pumila Klug (Allantus, Entodecta).
pumila Klug (Cephalocera [=Corynophilus]).
pumila Klug (Cephalocera, Corynophilus).
pumila Klug (Emphytus, Aphadnurus [=Fenusa]).
pumila Klug (Emphytus, Fenusa).
pumilio Westwood (Perantherix).
punctigera Lepeletier. (Pristis. See opaca Fabricius.)
purpureifrons Cameron (Sunoxa).
pusilla Dalman. (Xyela. See julii Brébisson).
pusilla Klug (Allantus, Blennocampa).
pygmæus Linnæus (Sirex, Cephus).
pygmæa Say (Blennocampa, Erythraspides).
quattuordecimpunctata Norton (Tenthredo, Neopus).
rapæ Linnæus (Tenthredo, Pachyrotasis).
reedi Rohwer (Trichotaxonus).
reitteri Konow (Rhadinoceræa).
religiosa Marlatt (Blennocampa, Nesotomostethus).
reticulata Linnæus (Tenthredo, Cænolyda).
rosæ Harris. (Endelomyia. See æthiops Fabricius.)
rosæ Linnæus (Tenthredo, Corynia [=Hylotoma]).
rosæ Linnæus (Tenthredo, Hylotoma). rosarum Imhof et Labram. (See rosæ Linnæus.)
rotundiventris Cameron (Macrophya, Dipteromorpha).
rubi Forbes (Metallus).
rubi Harris (Hoplocampa, Monophadnoides).
rubi Panzer (Tenthredo, Perineura).
rubripes Cresson (Strongylogaster, Aphilodyctium).
rufocinctus Norton (Strongylogaster, Parasiobla).
ruficollis Norton (Atomacera, Micrarge).
rufiventris Konow (Netroceros).
rugifrons Cameron (Beldonea).
rusticus Linnæus (Tenthredo, Macrophya).
saltuum Linnæus (Tenthredo, Monoplopus).
satyrus Panzer (Astatus, Cerobactrus [=Hartigia]).
satyrus Panzer (Astatus, Hartigia),
scapularis Lepeletier (Coryna).
scrophulariæ Linnæus (Tenthredo).
scrophulariæ Linnæus (Tenthredo, Allantus [=Tenthredo]).
scutellata W. F. Kirby (Cerealces).
sebetia O. Costa (Caliroa).
septentrionalis Linnæus (Tenthredo, Crœsus [=Nematus]).
septentrionalis Linnæus (Tenthredo, Nematus).
sericea Linnæus (Tenthredo, Abia). serva Fabricius (Tenthredo, Selandria). signata Fabricius (Tenthredo, Cephaleia). sikkemensis Konow (Conaspidia). singularis Ashmead (Gymniopterus). sjostedti Konow (Distega).
slossonæ MacGillivray (Polybates).
smyrnensis Stein (Pachycephus).
sodalis Cresson (Selandria, Lycaota).
spectabilis Heer (Urocerites).
spectabilis MacGillivray (Ceratulus).
spectrum Linnæus (Ichneumon, Xeris).
spinarum Fabricius (Tenthredo, Athalia).
spinolæ Brullé (Seriocera).
stigmaticalis Cameron (Anisoneura $[=\mathrm{Be}-$ leses]).
stigmaticalis Cameron (Anisoneura, Beleses).
strahlendorffi Konow (Electrocephalus).
sturnii Klug (Tenthredo, Encarsioneura). sylvatica Linnæus. (Tenthredo, Lyda [=Pamphilius]).
sylvatica Linnæus (Tenthredo, Pamphilius).
syringæ Gradl (Cephosoma).
tabidus Fabricius (Sirex, Trachelus).
taczanowskii André (Praia).
tantillus O. Costa (Aphadnurus).
tessellata Klug (Tenthredo, Tenthredopsis).
testaceus Jurine (Pteronus, Pristiphora).
testacea W. F. Kirby (Decameria).
thomsoni Konow (Perineura, Thomsonia).
thoracica Klug (Plagiocera).
tibialis Klug (Pachylosticta).
trimaculatus Say (Cephus, Adirus).
troglodytes Klug (Astatus).
tropicus Norton (Lophyrus, Lophyridea [$=$ Lophyroides]).
tropicus Norton (Lophyrus, Lophyroides).
truculenta Konow (Braunsiola).
townsendi Ashmead (Caloptilia).
typica Rohwer (Claremontia).
typica Rohwer (Nortonella).
typicus Brues (Palæotaxonus).
typicus Rohwer (Prototaxonus).
ulmi Sundevall (Fenusa, Kaliofenusa).
vafer Linnæus (Tenthredo, Bactroceros).
vagans Fallén (Phyllotoma).
varianus Norton (Harpiphorus, Macremphytus).
varinervis Spinola (Tenthredo, Antholeus).
varipes Cameron (Ancyloneura). ventralis Say (Nematus, Pteronidea). vexabilis Brues (Scolioneura, Lisconeura). viduatus Zetterstedt (Nematus, Brachycolus).
viminalis Fallén (Tenthredo, Trichiocampus).
violaceipennis André (Nematoneura).
viridipes Cameron (Busarbia).
viridis Linnæus (Tenthredo, Rhogogaster).
volupis Konow (Cerospastus).
ulmariæ Schlechtendal (Macrocephus).
ustulatus Linnæus (Tenthredo, Cryptus).
weithii Ashmead (Acanthoptenos).
westwoodii Brullé (Dictynna).
zabriskiei Ashmead (Melanoselandria).

SYNONYMY OF CERTAIN GENERA.

By cross-reference in the index to the genotypes it was found that certain genera were isogenotypic. In some of these cases new names were needed. New names and certain synonymy are given below.

THE SYNONYMS OF HARTIGIA SCHIÖDTE AND BOIE.

Schiödte (Kroyers Naturhistorisk Tidsskrift, vol. 2, p. 332, 1838) gave the name Hartigia for a certain cephid insect which differed from Cephus pygæmus in characters of the antennæ. This species was not named, however, so the genus was without standing until 1855, when F. Boie (Stett. ent. Zeit., vol. 16, p. 49) stated that Astatus satyrus was the species which Schiödte had. This gives Hartigia standing and makes satyrus the type-the genus being monobasic.

The genotypes of the genera Cerobactrus O. Costa and Cephosoma Gradl are identical specifically with satyrus; consequently these generic names fall to the older name Hartigia. The species satyrus is also congeneric with Macrocephus ulmarix Schlechtendal ($=$ Tenthredo linearis Schrank), so Macrocephus is a synonym of Hartigia. The synonymy, therefore, is as follows:

Hartigia Schiödte and Boie, 1855.
Cerobactrus O. Costa, 1860.
Macrocephus Schlechtendal, 1878.
Cephosoma Gradl, 1881.

PTERONUS Panzer=DIPRION Schrank.

Panzer, in the original description of Pteronus, included the following species in the order named: Hylotoma frutetorum Fabricius, Hylotoma dorsata Fabricius, Hylotoma juniperi Fabricius, Tenthredo pini Linnæus, and Tenthredo difformis Panzer. As the present-day conception of Pteronus has to be changed, no species originally included belonging to Pteronus Konow and authors, Tenthredo pini Linnæus has been chosen as the type, making Pteronus Panzer and Diprion Schrank isogenotypic. Diprion is the older name, so Pteronus Panzer is a synonym of Diprion Schrank.

Diprion Schrank, 1802.
Pteronus Panzer, 1806.

PTERONIDEA, N. N. FOR PTERONUS Konow and authors.

Pteronus Panzer being a synonym of Diprion Schrank, Pteronus Konow and authors is without a name. For this the name Pteronidea may be used. The type of Pteronidea is Nematus ventralis Say, which is congeneric with Konow's interpretation of Tenthredo myosotides Fabricius.

THE SYNONYMS OF PLATYCAMPUS SCHIÖDTE.

Hartig, in 1837 (Fam. Blatt. Holzwesp., p. 184), described the subgenus Leptopus for a new species, hypogastricus, which has proved to be the same as Tenthredo luridiventris Fallén (1808). The name Leptopus had already (Latreille, 1809) been used for a genus of Hemiptera. Schiödte (Magasin de Zool., vol. 9, p. 20, footnote, 1839) proposed the name Platycampus for Leptopus Hartig.
E. Newman (Ent., vol. 4, pp. 215-217, 1869) describes the larva and adult of a sawfly under the name Camponiscus healxi. The adult is very poorly characterized and unrecognizable, but in 1873 (Ent. Monthl. Mag., vol. 10, p. 84) P. Cameron says he has reared the same larva as Newman describes, and that the adult is the same as Nematus (Leptopus) hypogastricus Hartig. This synonymy establishes the genus Camponiscus and makes it the same as Leptopus Hartig, the two genera being isogenotypic.
F. W. Konow (Genera Insectorum, Fasc. 29, p. 48, 1906) uses the name Leptocercus Thomson (a changed spelling for Leptocerca Hartig) for this genus, but in this he is wrong, because Thomson divides Leptocercus into Leptocercus s. s., which contains Tenthredo alni Linnæus, Tenthredo rufa Panzer, and Leptocercus nigriceps Thomson, and is Hartig's genus Leptocerca. The second division of Thomson's Leptocercus is Leptopus Hartig and contains Tenthredo luridiventris Fallén. The Leptocercus Thomson s. s. is Leptocerca Hartig, not Leptopus Hartig as Konow would have it.

The synonymy of this group is as follows:
Platycampus Schiödte, 1839.
Leptopus Hartig, 1837 (non Latreille, 1809).
Camponiscus E. Newman, 1869.
Leptocercus Konow, 1906 (non Thomson, 1871).

CRGESUS Leach=NEMATUS Jurine.

Latreille (Considérations Générales, p. 435, 1810) fixed the type of Nematus as Tenthredo septentrionalis Jurine. Nematus septentrionalis Jurine is the same as Tenthredo septentrionalis Linnæus. Leach (Zool. Misc., vol. 3, p. 129, no. 1, 1817) based his genus Croesus on Tenthredo septentrionalis Linnæus; so Croesus Leach is a synonym of Nematus, the genera being isogenotypic.

Nematus Jurine, 1807.
Croesus Leach, 1817.

NEMATINUS, N. N. FOR NEMATUS Konow.

The fixing the type of Nematus as Tenthredo septentrionalis Linnæus and making Croesus synonym of it necessitates a new name for Nematus of Konow and authors. For Nematus Konow and authors the name Nematinus may be used.

The type of Nematinus is Tenthredo abdominalis Panzer.

GYMNONYCHUS Marlatt=DIPHADNUS Hartig.

In 1837 Hartig (Fam. Blatt. Holzwesp., p. 225) formed a new subgenus (Diphadnus) of Nematus for a species he called fuscicornis. Later European writers have proved that Nematus (Diphadnus) fuscicornis Hartig is an aberrant form of his Nematus appendiculatus, which for some time was placed in the genus Pristiphora.

Mr. C. L. Marlatt, ${ }^{a}$ in his Revision of the Nematinæ of North America, described a new genus, Gymnonychus, for certain species near Pristiphora, which have simple tarsal claws. Nematus appendiculatus Hartig belongs to this genus, but in 1837 a generic name was given to an aberrant form of this species, so Mr. Marlatt's name must fall as a synonym of Diphadnus Hartig.
Diphadnus Hartig, 1837.
Gymnonychus Marlatt, 1896.

CALIROA O. Costa AND ERIOCAMPOIDES Konow.

In 1859 (Fauna Napoli, Tenthred., p. 59) O. Costa described the genus Caliroa and included one species, C. sebetia O. Costa, which is therefore the genotype. Later it was proved that Caliroa sebetia is the same as Tenthredo (Allantus) cinxia Klug.

Rev. F. W. Konow in 1890 (Deutsch. ent. Zeitschr., 1890, p. 239) described his genus Eriocampoides and in his list of species, page 248, considers sebetia O. Costa as a synonym of cinxia Klug, but makes no mention of the genus Caliroa.

Dr. William H. Ashmead in 1898 (Can. Ent., p. 256) divided Konow's genus Eriocampoides into two genera, naming Monostegia rose Harris as the type of his new genus Endelomyia.

The group of species placed in the genus Eriocampoides by Konow can well be separated into two distinct sections, one of which, Konow to the contrary notwithstanding (for he says Caliroa was founded on a male and not sufficiently characterized, Genera Insectorum, Fasc. 29, p. 75, 1906), must be called Caliroa. The type of Eriocampoides being the common pear slug limacina, that subgenus will contain those species which have the clypeus emarginate, the pedicel subequal in length with the scape, and the hind wings with usually two closed discal cells in the female. The type of Endelomyia Ashmead is Monostegia rosæ Harris, which is the same as the European rose slug æthiops Fabricius. The subgenus Endelomyia is characterized as having the clypeus truncate, the pedicel shorter than the scape (much wider than long), and the hind wings with usually only one discal cell in the female. Endelomyia is, however, a synonym of Caliroa, their genotypes being strictly congeneric.

The differences between these two groups are hardly of generic importance and could better be treated as subgenera, the arrangement being as follows:
Genus Caliroa O. Costa, 1859.
Subgenus Caliroa O. Costa, 1859.
Endelomyia Ashmead, 1898.
Subgenus Eriocampoides Konow, 1890. (See Perielistoptera, p. 86.)

CIMBEX AND ALLIES.

Olivier (Encycl. Méthod., vol. 4, p. 22, 1789) characterized his genus Clavellarius, but included no species in it. No species was ever placed in the genus, but in 1791 (Encycl. Méthod., vol. 6, p. 18) Olivier says that he changed the name to Cimbex because of the resemblance to the botanical genus Clavaria. In the Encyclopédie Méthodique, volume 5, page 764, 1790, the genus Cimbex is described and sixteen species are placed in it. Since Clavellarius had no standing until 1791 it must rank as a synonym of Cimbex as Olivier would have it.

Lamarck (Système des Animaux sans vertébrés, p. 264, 1801) characterized the genus Clavellaria, accrediting it to Olivier, but Olivier's genus was Clavellarius. The only species placed in Clavellaria by Lamarck was Tenthredo lutea Linnæus, the genus being monobasic with Tenthredo lutea as the type. Latreille (Considérations Générales, 1810), however, gave, as the type of Cimbex, Tenthredo lutea Linnæus, so Clavellaria Lamarck is a synonym of Cimbex, the genera being isogenotypic.
W.A.Schultz (Spolia Hymenopterologica, p. 87, 1906) proposed the name Pseudoclavellaria for Clavellaria Leach and authors.
The synonymy is as follows:
Cimbex Olivier (Encycl. Méthod., vol. 5, p. 764, 1790).
Clavellarius Olivier (Encycl. Méthod., vol. 4, p. 22, 1789; Encycl. Méthod., vol. 6, p. 18, 1791).

Clavellaria Lamarck (Syst. Anim. sans. Vert., p. 264, 1801).
Pseudoclavellaria Schultz (Spolia Hym., p. 87, 1906).
Clavellaria Leach (Zool. Misc., vol. 3, p. 111, 1817; and authors).
The above conclusions differ somewhat from those reached by Schultz (Spolia Hym., 1906), but it is believed that they are correct.

SYZYGONIA AND ALLIES.

Klug (Ent. Mon., p. 175, 1824) described his genus Syzygonia and included two species, cyanoptera Klug and cyanocephala Klug. Dr. William H. Ashmead (Can. Ent., p. 230, September, 1898) fixed the type of Klug's genus as cyanocephala and described a genus which he called Syzygonidea for Syzygonia cyanea Brullé. Brullé (Hist. Nat. Ins. Hym., vol. 4, p. 671, 1846), in his remarks on Syzygonia, mentions no species, but refers to plate 48 (fig. 2), where he figures Syzygonia
cyanea and accredits it to Klug, but Klug described no such species and the figure must stand as a description of cyanea Brullé, as it does not agree with any described species.

Rev. F. W. Konow (Anal. Mus. Buenos Aires, vol. 6, pp. 397, 398, 1899) argues that Syzygonia cyanoptera Klug should be taken as the type of Syzygonia, as this species came first in the list and forms the first group. On these grounds he makes a new genus, Bergiana, for Syzygonia cyanocephala Klug. Bergiana and Syzygonia are isogenotypic, so Bergiana falls as a synonym of Syzygonia.

PARASYZYGONIA, N. N. FOR SYZYGONIA Konow.

Since Bergiana Konow is a synonym of Syzygonia, Syzygonia Konow must have a new name, as it is different from Syzygonidea Ashmead. For Syzygonia Konow Parasyzygonia may be used.

The above-mentioned genera may be separated in the following manner:
Radial cell of the fore wings not appendiculate (four cubital cells, the second and third each receiving a recurrent nervure; antennæ 6 -jointed, the third joint longer than the fourth, and the club gradually formed)

Syzygonidea Ashmead.
Radial cell of the fore wings distinctly appendiculate.
Antennæ 5-jointed; third cubital cell receiving the second recurrent nervure.. . Syzygonia Klug.
Antennæ 6 -jointed; the second recurrent nervure interstitial with the second transverse cubitus............................... Parasyzygonia Rohwer. Syzygonidea Ashmead.

Syzygonia cyanea Brullé.
Syzygonia Klug (Syn., Bergian'a Konow).
Syzygonia cyanocephala Klug.
Parasyzygonia n.
Syzygonia cyanoptera Klug (type).
Syzygonia ænea Perty.

THE WORK OF WILLIAM H. ASHMEAD ON THE TENTHREDINOIDEA.

The late Dr. William H. Ashmead's work on Tenthredinoidea was confined almost entirely to the genera, very little being done on the species. It was Doctor Ashmead's desire to give generic tables to all the genera of Hymenoptera. Such an enormous task would never have been undertaken by one less enthusiastic or energetic than Doctor Ashmead. With all the routine duties connected with the position held by this untiring worker there was but a limited time for his researches, so of necessity a great deal of the work was done in a hurry. This hurry caused mistakes, and the founding of genera on what would seem to be trivial characters; but the greater number of the genera founded by Ashmead are at least of subgeneric importance. In unpublished manuscript many of the mistakes and omis-
sions were corrected by Doctor Ashmead, and it is most unfortunate that these were not left in condition in which they could be published.

In the tables of the genera of Tenthredinoidea many genera were described as new, and some of these were based on species hitherto undescribed. The characters given in the tables are sufficient to satisfy the technical requirements, so the generic and specific names should date from their publication in the tables. Various writers have considered the characters given in the tables to be of no value, and in some cases this is correct. On this basis they have sunk into the synonymy genera which have as good standing as many which they recognize.

In the present paper the new genera founded on new species in the tables in the Canadian Entomologist for 1898 are characterized more completely, and a list of all the genera described, with the synonymy, as far as it has been determined, is given. Unless otherwise stated the types have been studied, and the conclusions based on these studies.

AN ALPHABETICAL LIST OF THE GENERA OF TENTHREDINOIDEA DESCRIBED BY WILLIAM H. ASHMEAD, WITH THE DETERMINED SYNONYMY.

1. Acanthoptenos Ashmead. (=Arge Schrank.)
2. Aomodyctium Ashmead. (A genus without a species.)
3. Aphilodyctium Ashmead. (Syn.: Parataxonus MacGillivray.)
4. Caloptilia Ashmead. (Syn.: Labidarge Konow.)
5. Calozarca Ashmead. (=Parazarca Ashmead.)
6. Dimorphopteryx Ashmead.
7. Endelomyia Ashmead. (=Caliroa O. Costa.)
8. Eriocampidea Ashmead. (Syn.: Cockerellonis MacGillivray.)
9. Erythraspides Ashmead.
10. Gymniopterus Ashmead. (Type species lost.)
11. Hemitaxonus Ashmead.
12. Homœoneura Ashmead. (=Bivena MacGillivray.)
13. Hypotaxonus Ashmead.
14. Liolyda Ashmead. (=Cephaleia Panzer.)
15. Lophyridea Ashmead. (=Lophyroides Cameron.)
16. Lophyrotoma Ashmead. (=Pterygophorus Klug.)
17. Macgillivraya Ashmead. (=Macgillivrayella Ashmead.)
18. Macgillivrayella Ashmead.
19. Manoxyela Ashmead. (=Pleroneura Konow.)
20. Marlattia Ashmead.
21. Megaxyela Ashmead.
22. Melanoselandria Ashmead. (=Hypargyricus MacGillivray.)

Listed in Catalogue of Insects from New Jersey and without standing until 1909, when Doctor MacGillivray stated that it was a synonym of Hypargyricus MacGillivray. The synonymy is:

Melanoselandria (Ashmead) MacGillivray, 1909, =Hypargyricus MacGillivray, 1908.
23. Micrarge Ashmead. (Syn.: Braunsiola Konow.)
24. Monophadnoides Ashmead.
25. Neoperga Ashmead.
26. Neoptilia Ashmead.
27. Opisthoneura Ashmead. (=Zaschizonyx Ashmead.)
28. Paraperga Ashmead.
29. Paraselandria Ashmead. (=Selandria Leach.)
30. Parasiobla Ashmead.
31. Parazarca Ashmead. (Syn.: Calozarca Ashmead.)
32. Periclistoptera Ashmead. (=Eriocampoides Konow.)
33. Pœcilostomidea Ashmead. (=Empria Lepeletier.)
34. Poiystichophagus Ashmead. (=Pseudotaxonus A. Costa.)
35. Pseudoperga Ashmead (non Guérin).
36. Pseudosiobla Ashmead.
37. Pterygophorinus Ashmead. (=Pterygophorus Klug.)
38. Strongylogasteroidea Ashmead.
39. Syzygonidea Ashmead.
40. Tetratneura Ashmead. (=Empria Lepeletier.)
41. Zaschizonyx Ashmead.

In all, Ashmead described 41 genera of Tenthredinoidea. Of these 41 genera, 17 have been determined to be synonyms of older genera and 5 have later genera for synonyms. Some of the segregates of Perga defined by Ashmead will be classed as synonyms of the segregates formed by Shipp. These will be discussed in a later paper.

BIBLIOGRAPHY OF THE MORE IMPORTANT WRITINGS OF WILLIAM H. ASHMEAD ON TENTHREDINOIDEA.

Table of genera of Xyelidæ. < In Dyar: Psyche, vol. 8, p. 214, 1898.
A generic table of the Blennocampinæ. < In Dyar: Journ. N. Y. Ent. Soc., vol. 6, pp. 127-129, 1898.
Classification of the horntails and sawflies, or the suborder Phytophaga. In 7 parts. <Can. Ent., vol. 30, 1898 (1), pp. 141-145; (2) pp. 177-188; (3) pp. 205-213; (4) pp. 225-232; (5) pp. 249-257; (6) pp. 280-287; (7) pp. 305-316.
Order Hymenoptera. < In Smith: Insects of New Jersey, pp. 501-613, 1900.
A new oryssid from Chatham Islands, Bismarck Archipelago. < Psyche, vol. 10, p. 73, 1903.

Two new phytophagous Hymenoptera. < Can. Ent., vol. 35, p. 233, 1903.
Descriptions of four new horn-tails. < Can. Ent., vol. 36, pp. 63-64, 1904.

DESCRIPTION OF THE GENERA AND SPECIES.

MANOXYELA Ashmead=PLERONEURA Konow.

The trpe of Manoxyela californica Ashmead belongs to the genus Pleroneura Konow, so Manoxyela is a synonym of Pleroneura.
Pleroneura Konow, Ent. Nachr., vol. 23, p. 56, 1897.
Manoxyela Ashmead, Can. Ent., vol. 30, p. 206, 1898.

PLERONEURA CALIFORNICA (Ashmead).

Manoxyela californica Ashmead, Can. Ent., vol. 30, p. 206, 1898.
Length to the end of the second abdominal segment, 2.5 mm .; length of fore wing, 4 mm . Lateral angles and middle production of the clypeus rounded; antennal furrows wanting above the anterior ocellus; middle foveæ elongate; anterior ocellus in a slightly depressed hasin, which is sharply angled abown: postocellar line slightly
shorter than the ocellocular line, but longer than the ocelloccipital line; right mandible with 2 inner teeth; head and parts of the thorax irregularly granular; tarsal claws with a long bristle near the middle; stigma more than twice as long as wide, angled below; venation very like X yela julii; four posterior legs and abdomen beyond the third segment wanting. Black; antennæ, palpi, and legs reddish-yellow; wings hyaline, venation pallid.

Type locality.-Alameda County, California. One specimen collected in June.

Type.-Cat. No. 8887, U. S. National Museum.
Related to Pleroneura fulvicornis Rohwer.

ACANTHOPTENOS Ashmead=ARGE Schrank.

Ashmead (Can. Ent., p. 212, 1898) described his genus Acanthoptenos for Acanthoptenos weithii Ashmead. The genus is founded upon an abberant specimen of Arge macleayi authors, the intercostal vein being absent in the only perfect fore wing. Acanthoptenos is therefore a synonym of Arge.
Arge Schrank, 1802.
Acanthoptenos Ashmead, 1898.

CALOPTILIA Ashmead.

Caloptilia Ashmead, Can. Ent., vol. 30, p. 212, 1898.
Type.-Caloptilia townsendi Ashmead.
Ashmead placed his genus Caloptilia in his subfamily Schizocerinæ, but in this he is wrong. The type of Caloptilia townsendi Ashmead has the cross-vein in the intercostal cell present and belongs to his Hylotominæ. It is the same as Labidarge Konow.

LABIDARGE Konow=CALOPTILIA Ashmead.

The error of Doctor Ashmead in placing Caloptilia in the Schizocerinæ caused Rev. F. W. Konow to form a new genus Labidarge for the same group of species. As Konow's genus was described a year later than Ashmead's, it must rank as a synonym of Caloptilia.

Caloptilia Ashmead, Can. Ent., vol. 30, p. 212, 1898.
Labidarge Konow, Ent. Nachr., vól. 25, p. 309, 1899.

CALOPTILIA TOWNSENDI Ashmead.

Caloptilia townsendi, Can. Ent., vol. 30, p. 212, 1898.
Reddish-yellow; head, spot on lateral lobe, four posterior tibiæ and tarsi, and apex of abdomen black; wings dusky hyaline with a broad yellow band behind the stigma.

Female.-Length, 8 mm . Labrum arcuately emarginate anteriorly; clypeus with a V-shaped notch in the middle; supraclypeal area in cross section triangular; the usual frontal basin sharply defined, the middle foveal area separated from the upper area by a low, complete, transverse carina; the middle fovea with a spherical tubercle; postocellar furrow angled; the postocellar area with longitudinal impressed line; flagellum hairy, very slightly thickening apically; transverse median vein received beyond the middle of the first discoidal cell; stigma elongate, rounded on the lower
margin; saw with regular triangularly-shaped teeth; sheath at the apex obliquely truncate. Reddish-yellow; flagellum, head (labrum and palpi excepted), a spot on the lateral lobe of the mesonotum, four posterior tibiæ and tarsi, and apical four abdominal segments black; anterior tarsi dusky. Wings dusky hyaline, with a broad yellow band behind the stigma; venation in the dusky part brown, in the yellow part yellowish, basal part of the stigma yellowish.

Male.-Length, 8 mm . The male agrees with the characters given for the female except that the supraclypeal area and clypeus are pale. Hypopygidium rounded apically.

Type locality.-San Rafael, Jicoltepec, Mexico. Five females and one male collected by C. H. T. Townsend (from the Ashmead collection). Also two females from Cordoba, Mexico, collected by Mr. Frederick Knab.

Type.-Cat. No. 13134, U. S. National Museum.

PSEUDOCYPHONA Ashmead.

Pseudocyphona Ashmead, Can. Ent., vol. 30, p. 211, 1898.

Type.-Pseudocyphona mexicana Ashmead.

This genus belongs to the Schizocerinæ and is related to Schizocera, but is readily separated from Schizocera and allies by the toothed tarsal claws. Habitus similar to Schizocera. Clypeus and labrum emarginate; antennal carina present; eyes elongate oval, slightly converging to the clypeus; malar space almost wanting; ocelli in a low triangle, the lateral ones very little before the supraorbital line; antennæ inserted near the middle of the face, the third joint simple in the female and somewhat flattened; thorax and abdomen normal for the group; tibiæ without lateral spurs; postbasitarsis shorter than the following joints; claws with an erect inner tooth near the middle; radial cell not appendiculate; four cubital cells, the second receiving both recurrent veins; basal vein joining the subcosta at the origin of the cubitus; transverse median received near the middle of the first discoidal cell; anal cell broadly contracted; radial cell of the hind wings open at the apex; two closed discal cells in the hind wing; the anal cell longly petiolate, the petiole longer than the cell.

PSEUDOCYPHONA MEXICANA Ashmead.

Pseudocyphona mexicana Ashmead, Can. Ent., vol. 30, p. 211, 1898.
Black; mesonotum, scutellum, and upper part of the pleuræ reddish; legs black; wings dark.
Female.-Length, 7 mm . Labrum and clypeus very slightly arcuately emarginate; supraclypeal area convex, triangular in outline, meeting the prominent middle carina between the antennæ; antennal foveæ large and joining the supraclypeal fovea; antennal furrows not well defined; ocellar basin represented by a gently depressed area; postocellar furrow almost wanting; postocellar line shorter than the ocellocular line; antennæ short, the third joint broad, flattened; thorax normal; transverse median slightly beyond the middle of the first discoidal cell; third cubital cell about onethird longer on the radius than on the cubitus; stigma robust, broadest at the base; sheath with the lower margin marginate; saw with very small, close teeth. Black; pronotum, mesonotum, scutellum, tegulæ, and upper part of the mesopleuræ reddish; wings and venation blackish-brown.

Type locality.-San Rafael, Jicoltepec, Mexico. One female from the Ashmead collection, collected by Mr. C. H. T. Townsend.

Type.-Cat. No. 13135, U. S. National Museum.

NEOPTILIA Ashmead.
Neoptilia Ashmead, Can. Ent., vol. 30, p. 213, 1898.

Type.-Neoptitia mexicana Ashmead.

Belongs to the Schizocerides of Konow, and runs, in Konow's tables (Genera Insectorum, Fasc. 29, p. 13, 1906), in with Hemidianeura TV. F. Kirby and Ptilia Lepeletier, or to Rhagonyx Konow. Elongate, robust species; head not especially small or transverse, not as wide as the thorax, much broader than high; clypeus and labrum emarginate anteriorly; ocelli in a curved line, the lateral ones in front of the supraorbital line; eyes slightly converging to the clypeus; malar space very narrow, antennal furrows present; ocellocular line subequal with the postocellar line; antennæ inserted in the middle of the face, ciliate, furcate in the male, simple in the female and scarcely thickening apically; tibiæ without lateral spurs; post-basitarsis not as long as the following joints; tarsal claws cleft, the inner tooth larger and shorter in the female; thorax normal for the group. Venation of females as follows: Intercostal cell without a cross-vein; radial cell with a strong appendiculation; four cubital cells, the second receiving both recurrent veins, the second near the middle, the first near the base; basal vein slightly basad of the origin of the cubitus, bent basally and not exactly parallel with the first recurrent; transverse median slightly basad of the middle of the first discoidal; anal cell very broadly contracted; in the hind wings the radial cell is long and not closed at the apex; two closed discal cells, the upper one much longer; transverse median at right angles with the anal vein; anal cell shorter than the rest of the anal vein. The venation of the male differs from that of the female in the absence of the second transverse cubitus. Basal plate with a narrow longitudinal suture.

Rhagonyx Konow (Zeitschr. syst. Hym. Dipt., vol. 3, p. 108, 1903) has the claws cleft, and is perhaps related to Neoptilia Ashmead.

NEOPTILIA MEXICANA Ashmead.

Neoptilia mexicana Ashmead, Can. Ent., vol. 30, p. 213, 1898.
Colored simliarly to Hylotoma biramosa Klug, which has been placed in different genera by different authors. There are some minor differences, however, and the standing of biramosa is so uncertain that mexicana should be held distinct until Klug's type can be studied.

Female.-Length, 11 mm . Labrum deeply arcuately emarginate; clypeus with a deep V-shaped notch; labrum, clypeus, and supraclypeal area with rather large punctures; front with small well-separated punctures; vertex impunctate; supraclypeal area broadly convex, triangular; carina between the antennæ high but not sharp; postocellar area parted, with a median furrow, wider than the cephalocaudad length; postocellar furrow not sharply defined; postocellar line subequal with the ocellocular line; thorax shining; third cubital cell more than twice as long on the radius as on cubitus. Black; angles of the pronotum broadly pallid; abdomen, except the black second and third dorsal segments, pallid at the base and reddish yellow at the apex; legs, except the anterior tibiæ at base beneath, black; wings beyond the basal nervure distinctly brown, basad hyaline; venation black; head with pale hair.

Male.-Length, 9.5 mm . The male differs from the female in the usual sexual characters and the arcuately emarginate clypeus. Hypopygidium very large, apex truncate.

Type locality.-San Rafael, Jicoltepec, Mexico. Three females and one male in the collection of Dr. William H. Ashmead.

Type.-Cat. No. 13133, U. S. National Museum.

MARLATTIA Ashmead.

Marlattia Ashmead, Can. Ent., vol. 30, p. 287, 1898.

Type.-Hemichroa laricis Marlatt.

Clypeus shallowly emarginate; malar space present; pentagonal area present; antennæ slender, filiform, fourth joint longer than the third; thorax normal for the group; legs normal except for the simple tarsal claws; venation normal except the intercostal vein, which is interstitial with the basal, and the third cubital cell, which is short as in Pteronus.

Easily known from Hemichroa by the simple tarsal claws.

OPISTHONEURA Ashmead=ZASCHIZONYX Ashmead.

The type of Opisthoneura crevecoeuri Ashmead is the same as Hoplocampa montana Cresson, which is the type of Zaschizonyx Ashmead.

Zaschizonyx Ashmead, Can. Ent., vol. 30, p. 257, 1898.
Opisthoneura Ashmead, Can. Ent., vol. 30, p. 287, 1898.

PARAZARCA Ashmead.

Parazarca Ashmead, in Dyar, Journ. N. Y. Ent. Soc., p. 128, 1898; Can. Ent., p. 252, October, 1898. (Type, Parazarca fumipennis Ashmead.) Calozarca Ashmead, in Dyar, Journ. N. Y. Ent. Soc., p. 129, 1898; Can. Ent., p. 252, October, 1898. (Type, Selandria fascipennis Norton.)

Eyes large, subparallel or slightly converging to clypeus; malar space very narrow so as to be nearly wanting; clypeus truncate, rather large as is the labrum; lateral ocelli below the supraorbital line, the posterior orbits therefore rather narrow; antennæ hairy, pedicellum much longer than wide, third joint the longest, apical joints short and narrowing apically; mesosternum with a distinct, triangular-shaped præsternum; mesopleuræ without a suture separating off a prepectus, metanotum with a distinct "scutellum;" tarsal claws with a large inner tooth appearing cleft, also a small postbasal tooth, basitarsis subequal with the following joints; wings of the normal blennocampid type; transverse median in the middle of first discoidal cell; third cubital cell longer on the radius than the first and third combined; radial cell of the hind wings appendiculate; no closed discal cell in the hind wings and the anal cell distinctly petiolate.

PARAZARCA FUMIPENNIS Ashmead.

Parazarca fumipennis Ashmead, through Dyar, Journ. N. Y. Ent. Soc., p. 128, 1898.

Female.-Length, 7 mm . Lateral angles of the clypeus rounded; frontal foveæ broad, shallow, the lateral ones somewhat circular in outline; the middle fovea joining with the ocellar basin and forming a broad, shallow, depressed area; antennal furrows obsolete; postocellar furrow faintly indicated; lateral boundaries of the postocellar area sharply defined; postocellar line a very little shorter than the ocelloccipital line; stigma broadest at base, tapering gradually to the apex; second recurrent vein quite free from the second transverse cubitus; sheath very robust, straight above, the apex truncate, the oblique lower part emarginate; saw obliquely ribbed, the teeth small; sharp, and regular. Shining reddish yellow; flagellum, spot inclosing ocelli, apex of saw, and four posterior legs below middle of tibiæ black; anterior tarsi brownish, wings brown, venation brownish black.

Male.-Length, 6 mm . Almost exactly as in female. Hypopygidium one and one-fourth times as long as wide, the apex gently rounded.

Type locality.-Frontero, Tabasco, Mexico. A male and female from the Ashmead collection.

Type.-Cat. No. 13136, U. S. National Museum.
COCKERELLONIS MacGillivray=ERIOCAMPIDEA Ashmead.
Comparison of a specimen, from the original lot collected by Prof. T. D. A. Cockerell and sent to the U. S. National Museum, of Cockerellonis occidentalis MacGillivray proves that this species is the same as Eriocampidea arizonensis Ashmead. Cockerellonis MacGillivray is therefore a synonym of Eriocampidea Ashmead.
Eriocampidea Ashmead, Can. Ent., vol. 30, p. 256, 1898.
Cockerellonis MacGillivray, Can. Ent., vol. 30, p. 365, 1908.
Inasmuch as MacGillivray has described Cockerellonis occidentalis (Can. Ent., p. 365, 1908) completely, a description of Eriocampidea arizonensis is not given here.

HYPOTAXONUS Ashmead.

Rohwer ${ }^{a}$ gave this genus as a synonym of Ermilia O. Costa. As his remarks on the type of Taxonus Hartig ${ }^{b}$ are incorrect, this is wrong, and for the present Hypotaxonus should be treated as a good subgenus.
${ }^{a}$ Proc. U. S. Nat. Mus., vol. 38, no. 1739, p. 203, 1910.
${ }^{b}$ Proc. U. S. Nat. Mus., vol. 39, no. 1777, p. 111, 1910.
technieal Series, No. 20, Part ili.

U. S. DEPARTMENT OF AGRICULTURE, BUREAU OF ENTOMOLOGY.

L. O. HOWARD, Entomologist and Chief of Bureau.

TECHNICAL PAPERS ON MISCELLANEOUS FOREST INSECTS.

III. A REVISION OF THE POWDER-POST BEETLES OF THE FAMILY LYCTID E OF THE UNITED STATES AND EUROPE.

BY
E. J. KRAUS,
Expert Preparator, Forest Insect Investigations.
\section*{APPENDIX.}
notes 0n habits and distribution with LIST OF DESCRIBED SPECIES.

BY
A. D. HOPKINS, Ph. D., In Charge of Forest Insect Investigations.

Issued May 5, 1911.

WASHINGTON

Technical Series, No. 20, Part III.
U. S. DEPARTMENT OF AGRICULTURE, BUREAU OF ENTOMOLOGY.
L. O. HOWARD, Entomologist and Chief of Bureau.

TECHNICAL PAPERS 0N MISCELLANEOUS FOREST INSECTS.

III. A REVISION OF THE P0WDER-POST BEETLES OF THE FAMILY LYCTIDE OF THE UNITED STATES AND EUROPE.

BY
E. J. KRAUS,
Expert Preparator, Forest Insect Investigations.

APPENDIX.

NOTES 0N HABITS and distribution with LIST OF DESCRIBED SPECIES.

BY

A. D. HOPKINS, Ph. D., In Charge of Forest Insect Investigations.

Issued May 5, 1911.

WASHINGTON
GOVERNMENT PRINTING OFFICE

BUREAU OF ENTOMOLOGY.

L. O. Howard, Entomologist and Chief of Bureau.

C. L. Marlatt, Entomologist and Acting Chief in Absence of Chief.
R. S. Clifton, Executive Assistant.
W. F. Tastet, Chief Clerk.
F. H. Chittenden, in charge of truck crop and stored product insect investigations.
A. D. Hopkins, in charge of forest insect investigations.
W. D. Hunter, in charge of southern field crop insect investigations.
F. M. Webster, in charge of cereal and forage insect investigations.
A. L. Quaintance, in charge of deciduous fruit insect investigations.
E. F. Phillips, in charge of bee culture.
D. M. Rogers, in charge of preventing spread of moths, field work.

Rolla P. Currie, in charge of editorial work.
Mabel Colcord, librarian.
Forest Insect Investigations.
A. D. Hopkins, in charge.
H. E. Burke, J. L. Webb, Josef Brunner, S. A. Rohwer, T. E. Snyder, W. D. Edmonston, W. B. Turner, agents and experts.
E. J. Kraus, expert preparator. ${ }^{a}$

Mary E. Faunce, preparator.
William Middleton, Mary C. Johnson, student assistants.
${ }^{a}$ Resigned June 19, 1909.
II

CONTENTS

Page.
Introduction 111
History 112
The principal characters of the family Lyctidæ 114
Synopsis of genera 115
Revisional notes 115
Synopsis of species of the genus Lyctus 116
Systematic notes 121
Genus Lyctus Fabricius. 121
Lyctus impressus Comolli 121
Lyctus punctatus (Le Conte) 121
Lyctus californicus Casey 121
Lyctus parallelopipedus (Melsheimer) 121
Lyctus curtulus Casey 122
Lyctus politus n. sp 122
Lyctus brunneus (Stephens) 123
Lyctus pubescens Panzer 123
Lyctus opaculus Le Conte 123
Lyctus suturalis Faldermann 124
Lyctus cavicollis Le Conte 124
Lyctus planicollis Le Conte 124
Lyctus parvulus Casey 125
Lyctus linearis (Goeze) 125
Genus Lyctoxylon Reitter 126
Lyctoxylon japonum Reitter 126
Genus Minthea Pascoe 126
Minthea rugicollis (Walker) 127
Minthea stichothrix (Reitter) 127
Bibliography 128
Appendix. Notes on habits and distribution, with list of described species 130
Habits 130
Distribution 132
The Lyctidæ represented in the collections examined by Kraus and Hop- kins (classification according to Kraus) 136
List of described species, with synonymy according to the literature and recent studies by the authors 137

TECHNICAL PAPERS ON MISCELLANEOUS FOREST INSECTS.

II. A REVISION OF THE POWDER-POST BEETLES OF THE FAMILY LYCTIDE OF THE UNITED STATES AND EUROPE.

By E.J. Kraus,
Expert Preparator, Forest Insect Investigations.

INTRODUCTORY NOTE.
[By A. D. Hopkins.]
This contribution by Mr. Kraus is based on a study (1) of the material in the forest insect collection and general collections of the Bureau of Entomology and of the United States National Museum and (2) of the types of species described by Doctor Le Conte and Colonel Casey, and of specimens of European species submitted by Mr. Edmund Reitter, of Austria. The family Lyctidæ is represented in North America by certain species which are of special economic importance as causing the injury to seasoned wood products known as "powder post." These species have been the subject of extended investigation by the writer and his associates to determine their habits, seasonal history, and practical methods of control. There has, therefore, been special need of a revision of the group to bring the knowledge of systematic facts up to date and to furnish a reliable basis for working up the biological data.

INTRODUCTION.

Much has been written regarding the members of the family Lyctidæ, especially with respect to their economic importance. There has, however, been considerable doubt as to the correct identity of some of the species, perhaps more especially on account of their enormous variability. In this paper the author has attempted to point out the more prominent specific characters and give something of the range of variation within the species as he has recognized them. For the determination of some of the species he has had occasion to examine a series of several hundred specimens.

Through the courtesy of Col. T. L. Casey, the author has been permitted to examine the types of his species. Mr. Samuel Henshaw, of the Museum of Comparative Zoology at Cambridge, Mass., has kindly permitted him to make a personal examination of the Le Conte types; Dr. Henry Skinner, of the Academy of Natural Sciences, Philadel-
phia, has generously afforded him a like privilege with the Horn collection, and Mr. Edmund Reitter, of Paskau, Austria, has sent him representatives of some of the European species.

In this connection the author desires to express his appreciation of the facilities offered by Mr. E. A. Schwarz, of the Bureau of Entomology, of the valuable assistance rendered by him in the study of the material in the U.S. National Museum, and of his helpful advice in the systematic work, and by Dr. A. D. Hopkins in allowing unlimited use of the large series of specimens and notes of the forest insect collection of the Bureau of Entomology.

HISTORY.

The genus Lyctus and allied genera constitute a group which has always been a source of perplexity to systematists, and the opinions as to their relationship have been almost as many and varied as the number of writers who have ventured them, as may in a general way be gained from the following summary:

The first reference to an insect belonging to the present family Lyctidæ was made by Geoffroy (1762), whose description reads thus:

Dermestes oblongus fuscus, elytris striatis. Le dermeste levrier à stries.
The next reference is by Goeze (1777), who described the same insect as Dermestes linearis. In 1783 Herbst again described and figured the species as Dermestoides unipunctatus. Olivier, first in 1790, and again in 1792, describes it as Ips oblonga and gives a very good figure of it. Fabricius (1792) erected the genus Lyctus and referred to it 13 species, only one of which, L. canaliculatus Fabricius (linearis Goeze), belongs to the genus as now recognized. L.linearis (Goeze) is therefore the type of the genus. Herbst (1793) erected the genus Bitoma, to which he referred his Dermestoides unipunctatus, together with three other species. Latreille (1803) placed Lyctus, together with Bostrichus and several other genera, in the family Xylophages, and in 1807 under the Bostrichini. In 1830 Stephens described another species, brunneus, and erected for it the genus Xylotrogus, and referred both this genus and Lyctus to the Engidæ, to which family Melsheimer (1844) also referred several new species of Lyctus and Xylotrogus (Trogoxylon) described by him. Wollaston (1854), after comparison and dissection, considered Xylotrogus as synonymous with Lyctus and placed it in the Colydiadæ. Lacordaire (1857) considered Lyctus, including Xylotrogus Stephens, under the Cissides, but remarked that the forms are in many ways aberrant and not well placed there, especially because of the 5 -segmented tarsi. He placed (Xylotrogus) Trogoxylon parallelopipedus Melsheimer in Pycnomerus under the Colydiidæ. Mellié (1848), in his monograph of the old genus Cis, does not mention Lyctus. Thomson (1863), in his sequence
of families, followed the Bostrichidæ with the Lyctidæ, of which he gives the following synopsis:

Caput pone oculos rotundos valde prominulos in collum globosum constrictum; sulcis antennariis nullis; clypeo sutura frontali discreta; mento magno lato. Trochanteres apice fere recta truncato. Antennæ sub tuberculo frontali insertæ, clava 2-3 articulata, compressa, prothoracis basin haud attingentes. Mesopleura coxas intermedias haud attingentia. Coxæ anticæ subglobosæ, parum exsertæ, contiguæ, posticæ marginem elytrorum attingentes, transversæ, parum distantes. Episterna metathoracis linearia, libera. Tibiæ calcari antico uncinato. Tarsi 5-articulati, compressi, articulo 1:o obsoleto, 5:0 reliquis simul sumtis longiore.

He divided the family into two tribes, Dinoderina and Lyctina, the latter of which he diagnosed thus:

Antennæ 11-articulatæ, clava biarticulata. Labrum transversum, apice emarginato, libero. Coxæ anteriores rotundæ parum, posticæ, latius distantes. Tibiæ externe haud denticulatæ. Acetabula antica occlusa.

Pascoe (1863) described the genus Minthea and remarked that in Erichson's arrangement this genus, owing to the position of the coxæ and the large basal abdominal segment, would be placed with Bothrideres and Sosylus in the Colydiidæ. Redtenbacher (1874) placed Lyctus in the Cryptophagides. In 1877 Kiesenwetter, in his revision of the Anobiadæ, divides the family into the Bostrichini, Anobiini, and Ptinini, and again divides the Bostrichini into five groups, Psoini, Sphindini, Lyctini, Bostrichini veri, and Hendecatomini. Lyctus, in which he included Xylotrogus Stephens, was the only representative of the Lyctini. He further remarked that while this group is related to the Bostrichini it might well be considered as a connection between the Anobiadæ and the Colydii, but that it was widely separated from C is by its mouthparts and the antennal and tarsal structure, and that eventually a separate family might well be erected for it. He probably had not seen Thomson's work. The following year (1878) Reitter published an article, "Beitrag zur Kenntniss der Lyctidæ." He assigned no characters to the family, but referred to it Lyctus Fabricius, Trogoxylon Le Conte, Lyctoxylon Reitter, new genus, and Lyctopholis Reitter, new genus (Minthea Pascoe), and described several new species. Le Conte and Horn (1883) divided the Ptinidæ into four subfamilies, Ptininæ, Anobiinæ, Bostrichinæ, and Lyctinæ. To the Lyctinæ are assigned Lyctus Fabricius and Trogoxylon Le Conte. In 1885 Reitter again gave a synopsis of the European species of Lyctus and Trogoxylon and assigns them as before to the family Lyctidæ. Casey (1890) described several new species of Lyctus under the Ptinidæ, but in the appendix of the same paper referred the genus to his more broadly conceived Cucujidæ, and gave a discussion on its apparent relationship to other families and genera. Lesne (1896-1898), in his revision of the Bostrichidæ, divided that family into four tribes-

Psoinæ, Polycaoninæ, Dinoderinæ, and Bostrychinæ, but made no mention of Lyctus. Kolbe (1901) has retained the Lyctidæ as a family and placed it in his Heterorrhabden under the suborder Heterophaga; and Ganglbauer (1903) placed the family between the Anobiidæ and Sphindidæ in his Diversicornia under the suborder Polyphaga. Reitter, in 1906, has the family between the Bostrychidæ and the Anobiidæ.

Without doubt the family Lyctidæ is a valid one, its members possessing characters which will not readily admit of their being placed in any other family. The family Ptinidæ of Le Conte and Horn is a composite one, and the subfamilies Ptininæ, Anobiinæ, Bostrichinæ, and Lyctinæ are deserving of family rank and in fact have already been so treated by European coleopterists. While it is not intended to treat extensively on the exact position of the Lyctidæ, it may be said that the family is apparently most closely allied to the Bostrychidæ, especially by the pentamerous tarsi with the first segment very short, the method and point of insertion of the antennæ, and the only too well-known destructive habits of the larvæ, which bore into the solid wood. The larva possesses three pairs of well-developed prothoracic legs, and in form and structure is scarcely to be distinguished from the bostrychid larva, but is totally different from any scolytid larva to which it has been likened, the resemblance being scarcely even superficial. The mouthparts of the adult Lyctus are very similar to those of Dinoderus, especially in the structure of the labium, maxillæ, and the broad mentum. The family has very little in common with the Cucujidæ. As pointed out above, the larva is of a wholly different character in form and habits, and the adults, while agreeing in one character or another with those found in certain other genera included by Colonel Casey in his broadly conceived Cucujidæ, have probably derived those characters independently of any real connection with them. The family seems best placed as in the latest (1906) edition of the Catalogus Coleopterorum Europæ, i. e., immediately after the Bostrychidæ and preceding the Ptinidæ.

THE PRINCIPAL CHARACTERS OF THE FAMILY LYCTID压.

Mentum large, transverse, corneous; glossa coriaceous, ciliated; palpi with 3 flexible segments.

Maxillæ not exposed at base; galea subchitinous, densely ciliate at apex, more strongly chitinized at base; lacinia subchitinous, fringed with long ciliæ; palpi moderately short, with four rather stout segments.

Antennx at the sides of the head beneath the produced frontal angles and before the eyes, eleven-segmented, clavate, the club two-segmented and without porous sensitive areas.

Head prominent, constricted behind the eyes; oral organs small; epistoma distinct, labrum distinct.

Prothorax with the episterna and epimera fused; lateral margin distinct or obsolete; coxal cavities rounded, closed behind.

Mesosternum small, surrounding the coxæ anteriorly and at the sides; mesepisternum and mesepimeron not attaining the coxa.

Metasternum long.

Elytra entire, completely covering the abdomen, epipleuræ narrow.
Abdomen with five visible ventral segments, the first ${ }^{a}$ always longer than the second.

Anterior coxæ subcontiguous or widely separated, subglobose, moderately prominent; middle coxæ similar to anterior; posterior coxæ widely separated, transverse, subprominent internally, externally grooved for the reception of the thighs.

Legs not contractile, slender; tibiæ slender; tarsi five-segmented, the first segment very short.

SYNOPSIS OF GENERA.

At present but three distinct genera belonging to this family are recognized. They may be separated as follows:

Antennal club with both segments subequal, neither decidedly elongated; pronotum varying in shape from subquadrate with all angles acute to cordate with the angles rounded; elytra punctate, the punctures confused or distinctly seriate; pubescence confused or seriate; anterior tibiæ slender, acutely produced externally; tarsi slender.

Lyctus Fabricius.
Antennal club with both segments very strongly elongated, the segments much longer than broad, the terminal one very much narrower than the preceding; sides of head with three hooklike teeth; the prothorax as in Lyctus (Trogoxylon), the margins, however, clothed with bristles; elytra punctured in not very regular rows, the pubescence, however, scarcely in rows; anterior tibiæ on either side strongly widened into a tooth externally, with a large tooth, straight at the base and hooklike at the apex; tarsi rather slender; claw-segment simple...... Lyctoxylon Reitter.
Antennal club with terminal segment elongate, sides of head with three weak teeth at either side; margins of pronotum denticulated and, like the margins of the body, with bristles; elytra striately punctured, with rows of erect bristles. Tibiæ at the outer angle unequal, curved, the anterior widened into a tooth at the apex, with a somewhat large curved spine; tarsal segments short, claw segment strongly clavately thickened, claws simple, rather small; form of body and prothorax as in Lyctus

Minthea Pascoe.

REVISIONAL NOTES.

In the foregoing generic synopsis Trogoxylon Le Conte has been placed with Lyctus, as has been done by Colonel Casey (1891). Le Conte, in separating the genera, did so on the ground that Trogoxylon did not have the anterior tibiæ prolonged at the outer apical

[^8]
116

angle. As stated by Reitter, later by Casey, and as is easily seen, they are produced and in some species as strongly as in any true Lyctus. Reitter in his synopsis states that in Trogoxylon the sides of the head are provided with three hooklike teeth, that the pronotum has all its angles sharp, and that the elytra are without rows of punctures or hairs, but that these are irregularly disposed. As a matter of fact, Lyctus (Trogoxylon) impressus Comolli does have the three elevations mentioned, but in all the species so far recognized in the United States not only the tooth over the eye is obsolete, but the posterior angles and margin of the epistoma are closely joined to the angles of the front, so that the epistoma is but slightly depressed below the level of the front, and the two elevations seen in many species of Lyctus are not traceable-a character also observable in L. (Xylotrogus) politus n. sp. The shape of the pronotum is of little value; in L. brunneus Stephens all the angles are acute. The elytral punctures in L. (Trogoxylon) californicus Casey are decidedly striate and there is a tendency to the same thing in L. curtulus Casey.

The first visible ventral segment in most species which would fall in Trogoxylon is as long as the second and third combined, but in others it is not longer than the second and one-half of the third.

Xylotrogus has long since been shown by Wollaston (1854) and other writers to be synonymous with Lyctus, and Trogoxylon must also be so considered, though it might well be regarded as representing a well-marked subgenus.

The species of the family Lyctidæ are very variable, especially in size. Well-developed individuals are frequently four or five times larger than others, the difference in size perhaps depending largely on food supply; for the offspring of those individuals which have bred in the same piece of wood for four, five, or six generations are very much smaller and quite different in some of the structural details from the first individuals reared. Accompanying the decrease in size are found such changes as in the shape and punctation of the pronotum and the punctation and pubescence of the elytra. As a result, one must allow for much variation within the limits of the species, and characters which might be of specific importance in groups more constant in character can only be held to be individual.

SYNOPSIS OF SPECIES OF THE GENUS LYCTUS.

Elytral pubescence confused over the entire surface or sometimes in single rows, never in double series separated by wide intervals; apical angles of the prothorax usually decidedly prominent-if not, at least subprominent and the sides of pronotum decidedly convergent posteriorly........... Division I, pages 117-119. Elytral pubescence always arranged in distinct series, the series at the sides at least separated by a double row of fine, deep punctures or a single row of large, shallow, circular punctures...................................... . Division II, pages 119-120.

DIVISION I.

Elytral punctures confused, or somewhat striate, but if so, the series never impressed.
Subdivision A, pages 117-118.
Elytral punctures distinctly seriate, the series distinctly impressed.
Subdivision B, pages 118-119.

Subdivision A. (Trogoxylón Le Conte.)

Head with a distinct tubercle over the eye; pronotum quadrate, with the sides not convergent posteriorly \qquad Section 21, page 117. Head without tubercle over the eye; pronotum with the sides more or less convergent posteriorly

Section a2, page 117.

Section a1.

Length 3 to 4.5 mm .; ferruginous. Pronotum opaque, very densely, evenly punctured; anterior margin slightly trisinuate; sides sinuate, scarcely convergent posteriorly; anterior and posterior angles very prominent, right, not at all rounded; median impression narrow, deep near the center of the disk, broadly expanded toward anterior and posterior margins. Elytra subparallel, just visibly wider at baṣe than prothorax, extremely finely, densely, confusedly punctured; pubescence fine, decumbent, confused. Head with front subconvex, densely, evenly punctured; frontal angles very prominent, narrowly rounded; side margins of epistoma forming an acute, slightly reflexed tooth; antennæ slender, club feeble, ovate. Abdomen slightly shiny below, excessively minutely punctured. impressus Comolli, page 121.
Section a2.
Pronotum broader than long, the vestiture very short, coarse, and bristling; prosternum distinctly punctured throughout............... Subsection b1, page 117.
Prothorax as long or longer than wide anteriorly, the pubescence rather long, fine, and decumbent or subdecumbent; prosternum not punctured or but very feebly so near its side margins. \qquad Subsection b2, page 117.

Subsection b1.

Length 3 mm .; body nigro-piceous, short, broad, stout, subconvex, densely clothed with short, stiff bristles. Prothorax feebly shiny; side margins strongly convergent posteriorly; anterior margin broadly rounded; punctures large, deep, more dense posteriorly; median impression shallow, broad; pro-episternal area coarsely, distinctly punctured. Elytra broad, shiny, subparallel, densely, coarsely punctured, the punctures feebly seriate. Head with front subconvex, densely, evenly punctured; epistoma slightly depressed, side margins scarcely reflexed, with a dense fringe of coarse bristles, which also occur on the angles of the front; antennæ stout. Abdomen subopaque below.
punctatus Le Conte, page 121.
Subsection bz.
Elytral punctures in distinct series; epistoma with side margins strongly reflexed.
Series c1, page 117.
Elytral punctures confused, without distinct serial arrangement; epistoma not reflexed
at sides.
Series c2, page 118 .

Series c1.

Length 2.2 to 2.5 mm .; very slender, parallel, compressed, castaneous throughout, strongly shining. Prothorax with side margins rather strongly convergent posteriorly; anterior margin strongly arcuate; anterior angles strongly rounded,
posterior obtusely rounded; median impression very broad and shallow; punctures coarse, rather dense, sparser and finer anteriorly. Elytra elongate, the punctures small and arranged in distinct series, becoming confused toward suture and base, the pubescence sparse and recumbent. Head with front scarcely convex, densely, finely punctured; epistoma depressed, side margins strongly reflexed; antennæ slender. Abdomen shiny below, densely, exceedingly finely

Series ca.

Length 2 to 4 mm .; elongate, rather slender, ferruginous to nigro-piceous. Prothorax with side margins strongly convergent posteriorly; anterior margin strongly trisinuate; anterior angles acutely rounded; posterior right, not at all rounded; median impression very shallow, broad, deeper posteriorly; punctures fine and dense. Elytra subparallel, slightly narrowed posteriorly; punctures very fine, dense, confused; pubescence yellowish, fine, and dense. Head with front subconvex, finely, densely punctured, the pubescence very short, reflexed at the sides; antennæ slender, the club large and prominent. Abdomen subopaque below, densely, coarsely punctured...... parallelopipedus Melsheimer, page 121.
Length 2.7 to 3.3 mm .; stout, comparatively broad, castaneous to nigro-piceous. Prothorax with the sides slightly convergent posteriorly; anterior margin broadly rounded or faintly trisinuate; anterior angles acutely rounded; posterior obtuse and blunt; median impression broad, rather deep, more so posteriorly; punctures coarse and dense, less so anteriorly. Elytra stout, slightly narrowed toward the base; punctures coarse, dense, faintly, subseriately arranged toward sides; pubescence rather coarse, sparse, decumbent, and arranged in faint series. Head with front convex, densely, subrugosely punctured, the pubescence short and fine; epistoma nearly flat, coarsely punctured, side margins very faintly reflexed; antennæ stout, the club robust, small, oval. Abdomen polished below, extremely finely and sparsely punctured. curtulus Casey, page 122.

Subdivision B. (Xylotrogus Stephens.)

Length 2.5 to 3.5 mm .; castaneous throughout. Pronotum shiny, strongly punctured posteriorly, the punctures becoming very small or obsolete anteriorly; side margins strongly sinuate; anterior angles very broadly rounded. Elytra with the sides nearly parallel; strial punctures fine, close-set, confused near suture; interspaces flat; pubescence fine, decumbent, sparse. Head with front densely, evenly punctured, feebly shiny, scarcely impressed before the eyes; epistoma convex, finely punctured, not at all elevated at lateral margins.
politus n . sp., page 122.
Length 3 to 5 mm .; rufo-fuscous throughout. Pronotum subopaque; side margins nearly straight, densely, finely serrulate and strongly convergent posteriorly; anterior angles acute, slightly prominent, blunt, but scarcely rounded; punctures more dense posteriorly, finer, not becoming obsolete anteriorly. Elytra with the sides nearly parallel; strial punctures fine, impressed; interspaces, especially toward sides, subconvex; pubescence fine, decumbent. Head with front densely, rather coarsely punctured, convex, strongly impressed at the sides before the eyes; epistoma subconvex, its anterior angles distinctly elevated.
brunneus Stephens, page 123.
Length 4.5 to 5 mm .; rufo-testaceous, head and prothorax piceous. Pronotum opaque, punctato-scabrous; anterior margin very broadly curved; side margins feebly sinuate, rather strongly convergent posteriorly; anterior angles subprominent, obtuse, very broadly rounded, posterior obtuse, not rounded; median impression merely a narrow, feebly impressed furrow extending from near anterior
margin to posterior margin. Elytra shiny, subparallel, a little broader than prothorax; punctures large, distinct, deep, circular, strongly seriate, the series impressed; interspaces slightly convex; pubescence fine, sparse, seriate. Head with front convex, opaque, densely, rugosely punctate; epistoma strongly depressed, not at all elevated at the sides; antennæ stout, the club large, elongate oval.
pubescens Panzer, page 123.

DIVISION II.

Elytral striæ composed of a double or sometimes a single row of fine, elongate, deeply impressed punctures

Subdivision C, pages 119-120.
Elytral striæ each compcsed of a single row of large, shallow, circular punctures.
Subdivision D, page 120 .

Subdivision C.

Prothorax anteriorly distinctly narrower than the elytra at base.
Section a3, pages 119-120.
Prothorax fully as wide anteriorly as the elytra at their base.... Section a4, page 120.

Section as.

Pronotum distinctly longer than wide, its anterior angles not at all prominent, very broadly rounded; median impression merely a narrow, faintly impressed groove from anterior to posterior margins; elytral interspaces frequently subconvex, especially toward sides.
. Subsection b1, page 119.
Pronotum quadrate or subquadrate; anterior angles distinct, subprominent but not acute; median impression large, broadly oval, deep; elytral interspaces not at all or but feebly convex.

Subsection b2, pages 119-120.

Subsection b1.

Length 2.1 to 4 mm .; castaneous. Pronotum opaque, punctato-scabrous; anterior margin broadly rounded; side margins straight or slightly sinuate and convergent posteriorly; anterior angles subobsolete; posterior sharp, everted. Elytra slightly narrowed toward base; interspaces toward the sides feebly to rather strongly elevated; punctures coarse, elongate, and in double series between the interspaces; pubescence fine, short, dense, decumbent. Head with front strongly convex, densely punctured and granulose; epistoma narrow, depressed, side margins strongly divergent posteriorly, anterior deeply emarginate, its anterior angles not elevated; antennæ slender, the club stout, narrowly oval. Abdomen subopaque below, densely, finely, granulately punctured.
opaculus Le Conte, pages 123-124.

Subsection 62.

Length 3 to 5 mm .; ferruginous, head and prothorax slightly darker. Pronotum opaque, punctate, scabrous; anterior margin broadly rounded; side margins nearly straight, finely denticulate, acute, parallel or very faintly convergent posteriorly; anterior angles subprominent, obtuse, blunt; posterior angles right, prominent, not rounded; median impression broadly oval, deep. Elytra subparallel, scarcely narrower anteriorly, convex but not more noticeably so at their middle; strial punctures very fine, elongate, arranged in single or sometimes in double series, especially toward sides; pubescence seriate, fine, sparse, decumbent. Head with front strongly convex, opaque, densely punctato-granulate, sides slightly elevated over the eye; epistoma strongly depressed, narrow, its anterior angles not elevated; antennæ stout, the club strong, oval. Abdomen subopaque below, densely, finely punctured...suturalis Faldermann, page 124.

Length, 3.5 to 4.5 mm .; ferruginous. Pronotum shiny, rather densely, but not at all scabrous or rugosely punctured, the punctures smaller and less dense anteriorly; median impression broadly oval, deep, not approaching anterior margin; anterior margin broadly rounded, sides parallel, straight or faintly sinuate; anterior angles obtusely rounded; posterior angles right, prominent, not at all or very feebly rounded. Elytra broad, distinctly narrowed toward base, more strongly convex at about their middle; interspaces not at all elevated; punctures very fine, elongate, seriate as in opaculus; pubescence of medium length, fine, decumbent, strongly seriate in arrangement. Head with front strongly convex, smooth, shiny, evenly but not densely punctured; epistoma depressed, its anterior margin broadly emarginate, the anterior angles elevated and with coarse pubescence; antennæ very slender, the club weak, narrowly oval. Abdomen feebly shiny below, exceedingly finely, densely punctured.
cavicollis Le Conte, page 124.

Section a_{4}.

Length, 2.5 to 5.5 mm .; black. Pronotum shiny, rather densely but not at all rugosely punctured, median impression broad, shallow, narrow from posterior margin to middle, where it becomes broadly, gradually expanded to the anterior margin, rarely deep, suboval and scarcely expanded anteriorly; anterior margin broadly rounded; side margins strongly arcuate and convergent posteriorly or nearly straight and subparallel; anterior angles broadly rounded, not at all prominent, posterior obtuse and feebly rounded or subrectangular and sharp. Elytra elongate, convergent toward base, the interspaces flat or just visibly convex; punctures very fine, seriate as in opaculus; pubescence fine, sparse, decumbent, distinctly seriate. Head with front strongly convex, densely, subrugosely punctured; epistoma depressed, anterior margin broadly emarginate, anterior angles not elevated; antennæ stout, club prominent; abdomen shiny below, densely, finely punctured........................planicollis Le Conte, pages 124-125.
Length, 2.4 to 4.7 mm .; black. Pronotum opaque, punctato-scabrous; median impression reduced to a shallow, narrow line from anterior to posterior margin; anterior margin very strongly, broadly arcuate; side margins strongly curved and convergent posteriorly; anterior angles very broadly, obtusely rounded; posterior angles obtuse, not rounded. Elytra narrowed toward base; interspaces noticeably convex; punctures coarse, narrow, elongate, deep, seriate; pubescence fine, sparse, seriate. Head with front strongly convex, scabrous; epistoma small, depressed; anterior margin broadly emarginate; antennæ slender, club strong, compact, oval. Abdomen subopaque below, very densely, finely punctured.
parvulus Casey, page 125.

Subdivision D.

Length 2.5 to 5 mm .; ferruginous. Pronotum opaque; surface very finely granulate and pubescent; median impression oval, deep, extending from anterior fourth to posterior fourth and thence very narrowly to posterior margin; anterior margin strongly arcuate, sides straight or feebly sinuate, not at all or but scarcely narrowed behind; anterior angles obtuse, broadly rounded; posterior angles right, not at all rounded. Elytra just visibly narrowed toward base; interspaces flat; punctures shallow, circular, arranged in single series except at costal border, where they are in double series; pubescence sparse, fine, decidedly seriate in arrangement. Head with front strongly convex, side margins distinctly elevated over the eye, densely, finely granulato-punctate; epistoma narrow, its anterior margin broadly, deeply emarginate; anterior angles not elevated; antennæ slender, noticeably pubescent, club large and prominent. Abdomen feebly shiny below, densely, finely punctate. linearis Goeze, pages 125-126.

SYSTEMATIC NOTES.

Genus LYCTUS Fabricius.

Lyctus Fabricius, 1792, p. 502.
Xylotrogus Stephens, 1830, pp. 116-117.
Trogoxylon Le Conte, 1861, p. 209.
Lyctus impressus Comolli.
Lyctus impressus Comolli, 1837, pp. 40-85; Seidlitz, 1875, p. 160; Erichson, 1877, p. 17.

Trogoxylon impressus (Comolli) Reitter, 1885, p. 100.
This species is the largest of the Trogoxylon group which the author has seen. It is very distinct in the quadrate prothorax and in the possession of the three elevations at the sides of the head, one over the eye, another just before it at the frontal angle, and another at the lateral angle of the epistoma.

Material examined.-A series of 5 specimens, very constant in character, except in size. The species occurs in southern Europe, but has not as yet been recorded from the United States.

Lyctus punctatus (Le Conte).

Trogoxylon punctatum Le Conte, 1866, p. 104.
Lyctus punctatus (Le Conte) Casey, 1891, pp. 13, 16.
This species is easily known by its short, broad form, coarse punctation of the pronotum and elytra, and the stiff, short, almost squamose pubescence.

Material examined.-A single specimen from Santa Rosa, Lower California, and Le Conte's type, which is from Cape San Lucas, Lower California.

> Lyctus californicus Casey.

Lyctus californicus Casey, 1891, p. 14.
This species is readily recognized by its elongate, highly polished body, and by the finely but definitely striated punctures of the elytra, the pubescence of which is fine and sparse. It is easily distinguished from L. curtulus, to which it is probably most closely allied, by its more slender, parallel, elongate form, finer elytral punctures, and other minor details. There is some variation in size and density of color, but other characters are quite constant.

Material examined.-A series of 5 specimens from Santa Rosa, Lower California. Colonel Casey's specimens are from Fort Yuma, Cal.

Lyctus parallelopipedus (Melsheimer).

[^9]Most readily recognized by the very finely, densely, confusedly punctured elytra, with the pubescence long, dense, fine, and decumbent, and the margin of the prothorax strongly trisinuate.

There is great rariation in size, as usual. The side margins of the prothorax are generally straight, sometimes slightly curved inward, and the prothoracic punctures are generally fine.

Material examined.-A series of more than 100 specimens. Distributed throughout the eastern and southeastern United States.

Lyctus curtulus Casey.

Lyctus curtulus Casey, 1891, p. 15.
One of the smaller species, easily separated from parallelopipedus Melsheimer by its coarse elytral punctation, average smaller size, and prothoracic structure, and from californicus Casey by-its much shorter, robust form, denser elytral pubescence, coarser and less sinuate arrangement of elytral punctures, and in being much less shiny.

There is considerable rariation, more especially in size and coloration, and likewise in the density and size of the prothoracic and elytral punctures, in the convergence of the sides of pronotum, in the sinuation of its anterior margin (the latter sometimes becoming feebly trisinuate), and in the degree of depression of the epistoma. A single specimen from Bonner, Mont., differs quite noticeably in several respects from the more trpical examples of curtulus, and may represent an undescribed species. However, it is placed here until more specimens show it to be distinct.

Material examined.-A series of more than 300 specimens. Distributed throughout the southwestern United States.

Lyctus politus n . sp.

Type.-Cat. No. 7432, United States National Museum; U. S. Department of Agriculture, No. 7414; one of 21 specimens collected and reared by Dr. F. H. Chiittenden from licorice at Washington, D. C.

This species is readily separated from brunneus Stephens by its much shorter, broader form, more shiny, finely and less densely punctured prothorax, and by the structure of the front as outlined in the synopsis (p. 118).

There is considerable variation in size, and to a less extent in the convergence of the sides of the prothorax posteriorly, and in the pronotal punctation.

It is possible that this species has been already described, but the author has been unable to place it in any of the species of which he has had specimens or descriptions and has, in consequence, described it as being new.

Lyctus brunneus (Stephens).
Lyctus parasiticus Stephens, 1829, p. 94.
Xylotrogus brunneus Stephens, 1830, p. 116, pl. 18, fig. 4; Seidlitz, 1875, p. 160.
Lyctus glycyrrhizx Chevrolat, 1829-1838, pp. 191-192, pl. 41, fig. 3.
Lyctus rugulosus Montrouzier, 1861, p. 266.
Lyctus brunneus (Stephens) Wollaston, 1854, p. 152; Erichson, 1877, p. 17; Reitter, 1885, p. 100; Reitter, 1906, p. 423.
Lyctus carolinx Casey, 1891, pp. 13-14.
This species, while allied to L. politus n. sp., is readily distinguished by its larger size and coarser structure throughout and more acute anterior angles of prothorax; the epistoma also is more depressed, its posterior angles as in planicollis Le Conte. The series of specimens is very constant, except that there is the usual variation in size and color. A single specimen from Philadelphia, Pa., is more slender, the prothorax narrower and more constricted behind, with the sides straight, and the anterior margin more strongly arcuate. It is probably best placed here for the present. A series of 3 specimens from Mr. Reitter shows considerable variations, more especially in the shape of the prothorax, and one individual has the pronotum much more coarsely punctured.

Material examined.-A series of 14 specimens. The species is widely distributed throughout the world.

Lyctus pubescens Panzer.

Lyctus pubescens Panzer, 1793, fasc. 4, fig. 17; Erichson, 1877, p. 16; Reitter, 1878, p. 196; Reitter, 1885, p. 99.

Lyctus bicolor Comolli, 1837, p. 41; Seidlitz, 1875, p. 160.
Lyctus caucasicus Tournier, 1874, p. 412; Reitter, 1878, p. 196; Reitter, 1885, p. 99. Lyctus pubescens v. caucasicus (Tournier) Reitter, 1906, p. 423.
The species is very distinct. It is perhaps more closely allied to brunneus Stephens than any other, both in elytral and prothoracic structure, though very distinct from it. It is remarkable in having the prothorax very much darker than the elytra, a character seldom met with in this family.

Material examined.-Two specimens from Mr. Reitter are labeled "Silesia, on Willow." One of them has the prothorax strongly narrowed posteriorly, the other much less, although distinctly so. The species occurs in Europe, but up to the present time it has not been recorded from the United States.

Lyctus opaculus Le Conte.

Lyctus opaculus Le Conte, 1866, p. 103; Casey, 1890, p. 324; Casey, 1891, p. 13.
This species is remarkably distinct and easily separated by the narrow, convex prothorax, the anterior angles being very broadly rounded, the side margins strongly convergent posteriorly, the surface opaque and very densely subrugosely punctured, the median
impression long, shallow, and narrow, and the strial punctures of the elytra deep and coarse.

There is considerable rariation, more especially in size, in the acuteness of the posterior angles of the prothorax, in the convergence of its side margins posteriorly, and in the elevation of the elytral interspaces.

Material examined.-A series of 60 specimens. The species is distributed throughout the eastern United States.

Lyctus suturalis Faldermann.
Lyctus suturalis Faldermann, 1837, p. 225; Reitter, 1878, p. 196; Reitter, 1885, p. 99; Reitter, 1906, p. 423.

Lyctus deyrollei Tournier, 1874, p. 411.
This species is related to linearis Goeze in prothoracic structure, but is wholly different in elycral structure, resembling, in this respect, planicollis Le Conte, though quite different in that for the most part the strix are made up of but a single row of exceedingly fine punctures.

The specimens are quite constant in character, though there is considerable variation in the prominence and roundness of the anterior angles of the prothorax.

Material examined.--A series of four specimens from Mr. Reitter. The species occurs in the Caucasus. Up to the present time it has not been recorded from the United States.

Lyctus cavicollis Le Conte.

Lyctus caricollis Le Conte, 1866, p. 103; Casey, 1890, p. 324; Casey, 1891, p. 13.
This species is rery distinct, and is readily separated from the other species by the shining, narrow, subquadrate, subconvex prothorax with the sides parallel, the posterior angles sharply rectangular, and the form generally stout. It is not closely allied to any other species. It resembles planicollis Le Conte in elytral structure, but the prothorax is totally different. There is some rariation in size, but the structural details are quite constant.

Material examined.-A series of 25 specimens, all from California.
Lyctus planicollis Le Conte.
Lyctus planicollis Le Conte, 1858, p. 74; Le Conte, 1866, p. 103; Dugès, 1883, pp. 54-58; Casey, 1890, p. 324; Casey, 1891, p. 13.
(?)Lyctus carbonarius Waltl, 1832, p. 167.
This species is extremely variable; perhaps more so than any others of the genus. Individuals range in length from 2.5 to 5.5 mm . The prothorax raries from broader than long, with the side margins strongly sinuate and convergent posteriorly, to subquadrate and the sides parallel; it is, however, always as wide anteriorly as the elytra at base, the anterior angles always rounded, the posterior never so.

The pronotum may be densely, evenly punctured over the entire surface, or have the punctures less dense and the surface polished anteriorly, but is never scabrous; the median impression varies from very deep and becoming broadly expanded anteriorly, with a small circular impression at either side, to subobsolete in the smaller specimens.

Whether this species and carbonarius Walt are synonymous the author can not say, since he has not seen Waltl's description. However, he has 2 specimens which Mr. E. A. Schwarz tells him are from Mexico, received through Dr. E. Dugès from Guanajuato. These specimens are probably from among the series on which Doctor Dugès based his "Metamorphoses du Lyctus planicollis." They differ in some of the minor details from planicollis, more especially in having the pronotal punctures coarser and less dense; and the median impression is deep, oval, and not broadly expanded anteriorly. Should these characters prove constant in a larger series they might well be considered as representing a distinct species, probably carbonarius Waltl, very closely allied to planicollis.

Material examined.-A series of over 500 specimens. The species is found widely distributed throughout the entire United States at least.

Lyctus parvulus Casey.
Lyctus parrulus Casey, 1884, p. 175; Casey, 1890, p. 325; Casey, 1891, p. 13.
This species is remarkably distinct and is separated at once from the other species by the broad cordate prothorax and its dense, coarse, subrugose punctation.

There is great variation in size and to a less degree in the shape of the prothorax and in the acuteness of the posterior angles. In general form it resembles planicollis Le Conte, but in structural details resembles opaculus Le Conte. It is readily separated from either, and is far removed from linearis Goeze, with which species it has very little in common.

Material examined.-A series of about 50 specimens. Distributed throughout the western and southwestern United States.

Lyctus linearis (Goeze).

Dermestes oblongus fuscus, elytris striatis,, Geoffroy, 1762, p. 103.
Dermestes linearis Goeze, 1777, p. 148; Thunberg, 1784, p. 4, no. 4.
Lyctus linearis (Goeze) Reitter, 1906, p. 423.
Dermestes oblongus (Olivier) Fourcroy, 1785, p. 19, no. 9.
Ips oblonga Olivier, 1790, vol. 2, no. 18, sp. 8, pl. 1, fig. 5, a, b; 1792, p. 405, no. 9 .
Lyctus oblongus (Olivier) Latreille, 1804, p. 241; Latreille, 1807, p. 16, sp. 1; Stephens, 1830, p. 117.
Dermestoides unipunctatus Herbst, 1783, p. 40, pl. 21, fig. H, h.
Bitoma unipunctata Herbst, 1793, p. 26, pl. 46, fig. 3.

```
Lyctus unipunctatus (Herbst) Kiesenwetter, 1877, p. 15; Reitter, 1885, p. 99.
Lyctus canaliculatus Fabricius, 1792, p. 504, no. 11; Panzer, 1793, fasc. 4, fig. 16;
    Paykull, 1800, p. 332, no. 9; Fabricius, 1801, vol. 2, p. 562, no. 13; Gyllenhal,
    1813, vol. 1, pt. 3, pp. 408-409, no. 1; Thomson, 1863, vol. 5, p. 204; Tournier,
    1874, vol. 6, p. 411, no. 103.
Synchita canaliculata (Fabricius) Hellwig, 1792, vol. 4, p. 405, no. 8.
Lyctus striatus Melsheimer, 1844, vol. 2, p. 112; Casey, 1890, vol. 5, p. 324; Casey,
    1891, vol. 6, p. 13.
Lyctus axillaris Melsheimer, 1844, vol. 2, p. 113.
Lyctus pubescens Duftschmid, 1825, vol. 3, p. 148.
Lyctus fuscus Seidlitz, 1875, p. 16.
```

This species is at once and easily recognized by its peculiar, large, shallow, circular punctures of the elytral striæ, not observable in any other of our species. There is considerable variation in size, but in other respects the species is quite constant.

Material examined.-A series of several hundred specimens. Occurs throughout the United States, Europe, and probably the entire world.

Genus LYCTOXYLON Reitter.

Lyctoxylon Reitter, 1878.

Lyctoxylon japonum Reitter.
Lyctoxylon japonum Reitter, 1878, p. 199.
Subdepressed, ferruginous, feebly shiny, rather densely clothed with very short subsquamose bristles. Segments 1-4 of the antennæ subelongate, 5-9 subtransverse, club strongly elongate, cylindrical, scgments nearly three times as long as broad, the terminal one a little narrower than the preceding. Head and prothorax densely confusedly punctured, the punctures subpapillate. Prothorax a little broader than long, more narrow toward the base, anterior angles obtuse, posterior right, the sides setulose-ciliate, at the middle of the dorsum longitudinally foveately impressed and with a short, strongly excavate line before the scutellum. Elytra a little broader than prothorax, parallel, more than twice as long as wide, either elytron seriately, near the suture irregularly punctured, with short, dense, just visibly seriate, subsetulose scales. Length 1.5 to 2 mm . [Reitter.]

Material examined.-A series of 4 specimens from New Jersey, reared from Japanese cane. The species was described from specimens from Japan and China.

Genus MINTHEA Pascoe.

[^10]Minthea rugicollis (Walker).
Ditoma rugicollis Walker, 1858, p. 206.
Minthea similata Pascoe, 1863, p. 141.
Minthea rugicollis (Walker) Waterhouse, 1894, p. 68; Arrow, 1904, pp. 35-36; Reitter, 1906, p. 423.
Eulachus hispidus Blackburn, 1885, p. 141.
Lyctopholis foveicolliṣ Reitter, 1878, p. 199.
Prothorax at the middle of the dorsum with an oblong-oral, deeply impressed foreola. Subcylindrical, ferruginous, feebly shiny, somewhat densely clothed with erect, white, subsquamose bristles thickened at the apex. First segment of club of antennæ subquadrately transverse, the terminal half again as long as it, elongate oval. Prothorax somewhat densely punctate, the punctures scarcely separated, not at all deeply impressed; elytra a little wider than prothorax, parallel, lightly seriately punctured, the punctures very feebly impressed, interspaces just visibly rugose, feebly shining, the alternate ones with erect seriate bristles. Length about 2 mm . [Translated from Reitter's original description of foreicollis.]

> Minthea stichothrix (Reitter).

Lyctopholis stichothrix Reitter, 1878, p. 199. .
Thorax with the dorsum scarcely excavated, but with an almost obsolete longitudinal line at the middle, becoming less anteriorly at the apex. Subcylindrical, ferruginous, rather densely clothed with long, white, erect setæ thickened at the apex. First segment of antennal club transverse, the terminal segment three times as long as the former, subcylindrical. Head and thorax confusedly, rugosely punctured, opaque, the sides of the latter eridently denticulate and ciliate; elytra seriately punctate, interspaces densely, rather strongly, rugosely punctured, the alternate ones with seriate erect setæ. Length 2.7 mm . [Reitter.]

Described from specimen from Bogota, Colombia. The species occurs also in Europe.

Material examined.-One specimen from Mr. Reitter, labeled "Styria;" another in the Horn collection, without name, labeled "N. Y.," and with light-green square.
Representatives of the genus occur throughout the world, M. rugicollis Walker being recorded from the West Indies, Ceylon, Malay Archipelago, Hawaiian Islands, and Europe. The single specimen in the Horn collection, mentioned abore, is, so far as the author is aware, the only record of the genus in the United States.

BIBLIOGRAPHY.

1762. Geoffroy, E. L.-Histoire abrégée des insectes qui se trouvent aux environs de Paris, vol. 1, p. 103, no. 9.
1763. Goeze, J. A. E.-Entomologische Beiträge, vol. 1, p. 148, no. 43.
1764. Herbst, J. F. W.-In Füessly, Archiv der Insectengeschichte, p. 40, pl. 21, fig. H, h.
1765. Thunberg, C. P.-Novæ insectorum species descriptæ.<Nova Acta Upsaliæ, vol. 4, p. 4, no. 4.
1766. Fourcroy, A. F.-Entomologia Parisiensis, vol. 1, p. 19, no. 9.
1767. Olivier, M.-Entomologie ou histoire naturelle des insectes. Coléoptères, vol. 2, no. 18, p. 7, sp. 8, pl. 1, fig. 5, a, b.
1768. Olivier, M.-Encyclopédie méthodique, histoire naturelle, insectes, vol. 7, p. 405, no. 9.
1769. Fabricius, J. C.-Entomologia systematica, vol. 1, pp. 502-504.
1770. Hellwig, J. C. L.-Schneider's Magazine, vol. 4, p. 405, no. 8.
1771. Herbst, J. F. W.-Natursystem aller bekannten in- und ausländischen Insekten-Käfer, vol. 5, p. 26.
1772. Panzer, G. W. F.-Faunæ Insectorum Germanicæ, fasc. 4, figs. 16, 17.
1773. Von Paykull, G.-Fauna Suecica, vol. 3, p. 332, no. 9.
1774. Fabricius, J. C.-Systema Eleutheratorum, vol. 2, p. 562, no. 13.
1775. Latreille, P. A.-Histoire naturelle des crustacés et des insectes, vol. 5, p. 253.
1776. Latrellle, P. A.-Histoire naturelle des crustacés et des insectes, vol. 11, p. 241.
1777. Latreille, P. A.-Genera Crustaceorum et Insectorum, vol. 3, pp. 16, 17.
1778. Gyllenhal, L.-Insecta Suecica, vol. 1, pt. 3, pp. 408-409, no. 1.
1779. Duftschmid, C.-Fauna Austriaca, vol. 3, p. 148, no. 1.

1829-1838. Chevrolat, A.-In Guérin-Méneville, Iconographie du regne animal, pp. 191-192, pl. 41, fig. 3.
1830. Stephens, J. F.-Illustrations of British Entomology, Mandibulata, vol. `3, pp. 116-117, pl. 18, fig. 4.
1832. Waltl, J.-Faunus, vol. 1, p. 167.
1837. Faldermann, F.-Fauna Entomologica Transcaucasica, vol. 2, p. 225.
1837. Comolli, A.-De coleopteris novis ac rarioribus minusve cognitis provinciæ Novocomi, p. 41.
1844. Melsheimer, F. E.-Descriptions of new Coleoptera of the United States. $<$ Proc. Acad. Nat. Sci. Phila., vol. 2, pp. 112-113.
1847. Erichson, W. F.-Conspectus insectorum Coleopterorum quæ in Republica Peruana observata sunt. <Archiv für Naturgeschichte, vol. 13, p. 88.
1848. Mellié, M. J.-Monographie de l'ancien genre Cis des auteurs.<Ann. Soc. Ent. France, vol. 6, pp. 205-284, and 313-396, pls. 10-12.
1848. Erichson, W. F.-Naturgeschichte der Insekten Deutschlands, vol. 3, pp. 258, 287.
1854. Wollaston, T. V.-Insecta Maderensia, pp. 151-153, pl. 4, fig. 3.
1857. Lacordaire, Th.-Histoire naturelle des insectes. Genera des coléoptères, vol. 4, pp. 547, 548.
1858. Walker, F.-On some undescribed Ceylon insects.<Ann. \& Mag. Nat. Hist., ser. 3, vol. 2, p. 206.
1859. Le Conte, J. L.-Additions to the coleopterous fauna of northern California and Oregon. $<$ Proc. Acad. Nat. Sci. Phila., vol. 11, p. 282.
1861. Montrouzier, P.-Essai sur la faune entomologique de la Nouvelle Caledonie. <Ann. Soc. Ent. France, vol. 1, sec. 4, p. 266.
1861. Le Conte, J. L.-Classification of the Coleoptera of North America, pt. 1, p. 209. $<$ Smithsonian Miscellaneous Collections, vol. 26.
1863. Pascoe, F. P.-On the Colydiidæ of the Amazon Valley.<Journ. Ent., vol. 2. no. 8, pp. 97-98, pl. 5, fig. 6.
1863. Pascoe, F. P.-On the Colydiidæ collected in the Indian Islands by Mr. A. R. Wallace.<Journ. Ent., vol. 2, no. 9, pp. 141-142, pl. 8, fig. 10.
1863. Thomson, C. G.-Skandinaviens Coleoptera, vol. 5, pp. 200-205.
1866. Le Conte, J. L.-New species of North American Coleoptera, pt. 1, pp. 103104. $<$ Smithsonian Miscellaneous Collections, no. 167, vol. 6.
1869. Gemminger, M., et de Harold, B.-Catalogus Coleopterorum, vol. 6, pp. 1793-1794.
1874. Tournier, H.-Tableau synoptique des espèces Europeénnes du genre Lyctus. $<$ Petites Nouvelles Entomologiques, vol. 6, no. 103, pp. 411-412, July.
1874. Redtenbacher, Ludwig.-Fauna Austriaca. Käfer., vol. 1, ed. 3.

18i5. Seidlitz, Georg.-Fauna Baltica, pp. 160-161.
1877. Kiesenwetter, E. A. H. von.-Anobiadæ. Naturgeschichte der Insecten Deutschlands. Coleoptera, vol. 5, pp. 11-18.
1878. Reitter, Edm.-Beitrag zur Kenntniss der Lyctidæ.<Verh. K. K. zool.- bot. Ges. in Wien, vol. 28, pp. 195-199.
1883. Dugès, E.-Metamorphoses du Lyctus planicollis Lec.<Ann. soc. ent. Belgique, vol. 27, pp. 54-58, pl. 1.
1883. Le Conte, J. L., and Horn, G. H.-Classification of the Coleoptera of North America, p. 229.<Smithsonian Miscellaneous Collections, vol. 26.
1884. Casey, T. L.-Contributions to the descriptive and systematic coleopterology of North America, pt. 2, p. 175.
1885. Reitter, Edm.-Bestimmungs-Tabellen der europäischen Colopteren, vol. 1, pp. 98-100.
1885. Blackburn, T.-Memoirs on the Coleoptera of the Hawaiian Islands. <Scientific Transactions of the Royal Dublin Society, ser. 2, vol. 3, p. 245.
1890. Casey, T. L.-Coleopterological Notices II.<Ann. N. Y. Acad. Sci., vol. 5, pp. 324, 325, and appendix, pp. 495-497.
1891. Casey, T. L.-Coleopterological Notices III.<Ann. N. Y. Acad. Sci., vol. 6, pp. 12-16.
1894. Sharp, D.-Biologia Centrali-Americana. Coleoptera, vol. 2, pt. 1, p. 464, pl. 14, fig. 25.
1894. Waterhouse, C. O.-Coleoptera. New species and notes.<Ann. \& Mag. Nat. Hist., ser. 6, vol. 14, p. 68.
1896. Lesne, P.-Revision des coléoptères de la famille des bostrychides.<Ann. Soc. Ent. France, vol. 65, pp. 95-127.
1897. Lesne, P.-Ibid., vol. 66, pp. 319-350.
1898. Lesne, P.-Ibid., vol. 67, pp. 438-621.
1898. Seidlitz, Georg.-Nachträge und Berichtigungen zur Familie Anobiadæ. <Naturgeschichte der Insecten Deutschlands. Coleoptera, vol. 5, erste Hälfte, pp. 801-812.
1899. Everts, J. E.-Coleoptera Neerlandica, vol. 1, pt. 2, pp. 564-566.
1901. Kolbe, H. J.-Vergleichend-morphologische Untersuchungen an Koleopteren nebst Grundlagen zu einem System und zur Systematik derselben.<Archiv für Naturgeschichte, vol. 67, pp. 89-150.
1903. Ganglbauer, C. L.-Systematisch-koleopterologische Studien. II Grundzüge eines neuen Systemes der Koleopteren.<Münchener koleopterologische Zeitschrift, vol. 1, pp. 271-319.
1904. Arrow, G. J.-Note on two species of Coleoptera introduced into Europe. <Ent. Monthly Mag., vol. 40, pp. 35-36.
1906. Reitter, Edm. (joint author).-Catalogus Coleopterorum Europæ, p. 423.

APPENDIX.

NOTES ON HABITS AND DISTRIBUTION, WITH LIST OF DESCRIBED SPECIES. ${ }^{a}$

By A. D. Hopkins,
In charge of Forest Insect Investigations.

HABITS.

So far as known, the species of the family Lyctidæ live in dead and dry wood of natural growth, in the seasoned sapwood of commercial products, and in the pith of vines and the dried roots of herbaceous plants, but do not infest the wood of coniferous trees.

Some of the species appear to prefer the dead and dry wood of standing trees, shrubs, and vines under natural conditions, and therefore are rarely found in the commercial articles; for this reason they are not subject to temporary or permanent removal from the natural range of the species. The other species, which infest commercial products, are subject to wide distribution over the world.

The following notes relate to species represented in the collections of the United States National Museum and United States Department of Agriculture, the habits of which have been observed by the writer or recorded in connection with the specimens. ${ }^{b}$

THE GENUS LYCTUS

Division I.

SUBDIVISION A.

Section al.
L. impressus Comolli.-This species has been found in an umbrella handle, in which it was evidently introduced into Mississippi.

Section a2.
Subsection b1.
L. punctatus (Le Conte).-Habits not recorded.

[^11]Series c1.
L. californicus Casey.-Recorded as breeding in adobe wall.
L. preustus Erichson.-Habits not recorded.

Series c2.
L. parallelopipedus (Melsheimer).-Extensive observations have been made on the habits of this species. It infests the seasoned sapwood of commercial products made from persimmon, hickory, ash, oak, and bamboo; it also lives in the dead wood or natural growth of osage orange, sassafras, and fig.
L. curtulus Casey.-Common in dead wood or natural growth of mesquite, Parkinsonia, mimosa, hackberry, cotton stems, and fig.

SUBDIVISION B.

L. politus Kraus.-Found in dried licorice roots.
L. brunneus (Stephens).-In seasoned wood and dried herbaceous roots.
L. pubescens Panzer.-Habits not recorded in connection with specimen.

SUBDIVISION C.

Section a3.
Subsection b1.
L. opaculus Le Conte.-In pith of dead grapevines.

Subsection b2.
L. suturalis Faldermann.-Habits not recorded.
L. cavicollis Le Conte.-In commercial products, seasoned orange wood and hickory, tanbark oak, and cordwood of live oak.

SECtion a4.
L. cinerius Blanchard.-Habits not recorded.
L. planicollis Le Conte.-Extensive observations have been made on the habits of this species. It is common in .commercial products of seasoned ash, oak, hickory, persimmon, and sycamore. Rearing records show that it may breed continually in the same wood during a period of at least six years, or until all the wood tissue has been converted into powder.
L. carbonarius Waltl.-In seasoned oak and bamboo, in natural growth and in commercial products.
L. parvulus Casey.-In dead and dry wood of locust (Robinia neomexicana), according to Schwarz.

Division II.

SUBDIVISION D.
L. linearis (Goeze).-Extensive observations have been made on the habits of this species. It is common in commercial products of seasoned hickory, oak, walnut, and ash, and occasionally in poplar, wild cherre, and locust. It is not recorded from natural growth in this country, but is said to infest such growth, as well as commercial products, in Europe.

THE GENUS LYCTOXYLON.

L. japonum Reitter.-Found in walking stick from Japan and in commercial articles made from bamboo in China.

THE GENUS MINTHEA.

11. rugicollis (Talker).-Habits not recorded in specimens in the national collection.
M. stichothrix (Reitter).-Habits not recorded.

DISTRIBUTION.

The distribution of the species of the family Lyctidæ presents some interesting features, especially in regard to the natural habitat and the temporary and permanent introductions.

The habits of some of the species which infest commercial products make it possible for them to be widely distributed outside of their natural range, but it does not necessarily follow that a species introduced to another country in commercial products will become established in its new environment. Therefore we find many records in literature of localities in which specimens of a species have been collected, some of which evidently represent accidental or temporary introductions. Some other records may be held in doubt as to permanent introduction until they are rerified by observations which would indicate that the localities are either within the natural range of the species or that the species has become established.

It would appear that the most reliable guide to the natural distribution of the species is their habit of living in natural growth and under natural conditions of exposure to climatic influences at all seasons of the year.

In a study of the records represented by specimens in the national collection and of the evidently authentic records in literature, it would appear that the distribution of the species of the family Lyctidæe in the western continent is between about the forty-eighth parallel north and the thirtieth parallel south, and in the eastern continent
and Australia, from about the fifty-fifth parallel north to the fortieth parallel south. The genus Lyctus has practically the same range as the family; the genus Lyctoxylon seems to have its natural distribution in eastern India and Asia between the twentieth and fortieth parallels north; while in the genus Minthea one species is from Rodriguez Island and the Philippines, with a record from southern Europe, and the other species is from Bogota, Colombia, South America.

It appears that the center of distribution of the greatest number of species of the family is between the twentieth and fortieth parallels north in both continents.

The available evidence would indicate that the natural distributions of the species studied by the writer are approximately as follows:

THE GENUS LYCTUS

Division I.

SUBDIVISION A.
Section al.
L. impressus Comolli.-Northern Africa, southern Italy, Greece, Spain, and the Caucasus. Probably temporarily introduced into central Europe and southern North America.

Section a2.
Subsection b1.
L. punctatus (Le Conte).-Lower California.

Subsection b?
Series c1.
L. californicus Casey.-Lower California.
L. præustus Erichson.-Peru and Brazil.

Series c2.
L. parallelopipedus (Melsheimer).-Florida, Texas, Louisiana, Georgia, South Carolina, Virginia, West Virginia, District of Columbia, Long Island, N. Y., Ohio, and Missouri. The natural distribution of the species is evidently in the South Atlantic and Gulf States, and in part of the Mississippi and Ohio valleys, from which it has been temporarily introduced into other States.
L. curtulus Casey.-California, Arizona, Texas, and Guatemala. This evidently represents its natural distribution. One record from Montana indicates temporary introduction, and a record from the Sandwich Islands may represent a permanent introduction.

SUBDIVISION B.

L. politus Kraus.-Temporarily introduced into the District of Columbia, probably from northern Spain or Italy, from which the commercial product of licorice is exported.
L. brunneus (Stephens).-Paraguay, Brazil, Cuba, and Mexico. This evidently indicates the natural range of the species, from which it has probably been introduced and become established in Europe, Asia, Africa, and Australia. It has been recorded from South Carolina, from Philadelphia, Pa., and from Chicago, Ill., which probably represent temporary introductions, although it is not at all improbable that it may become permanently established in the Gulf States, especially in Florida and Texas.
L. pubescens Panzer.-Recorded as common in southern and middle Europe, which may be its natural distribution.

SUBDIVISION C.
Section a3.
Subsection b1.
L. opaculus Le Conte.-Michigan, Iowa, Nebraska, Ohio, Long Island and Staten Island, N. Y., District of Columbia, and North Carolina. This probably represents the natural distribution, and since the species lives in natural growth it is not likely to be distributed out of its natural range.

Subsection b2.

L. suturalis Faldermann.-Caucasus, southern Russia.
L. cavicollis Le Conte.-California, several localities, with doubtful record from Oregon.

Section a4.
L. cinereus Blanchard.-Chile.
L. planicollis Le Conte.-Arizona, Nevada, Texas, and the Gulf and South Atlantic States. This range probably represents the natural distribution of the species, but it is frequently introduced temporarily into the Northern and Middle States and evidently into other countries, since there is a definite record from Capetown, South Africa, in lumber from the southern United States. This species is evidently derived from one or more subtropical forms, of which L. carbonarius is a representative.
L. carbonarius Waltl.-Mexico and Florida. This species is evidently distinct from L. planicollis, as indicated by a large series not observed by Mr. Kraus, which had been reared by Mr. H. G. Hubbard from winter-killed bamboo in Florida. The specimens from Florida and Mexico are readily distinguished from average specimens of planicollis by their more reddish color but otherwise agree
with characters mentioned by Mr. Kraus. It is probable that there is some overlapping of the ranges of these two allied species in Florida and from Texas to California, and that in such localities occasional specimens will be found which occupy an intermediate position.
L. parvulus Casey.-Arizona, California, and Utah. This evidently indicates the natural distribution of the species.

Division II.

SUBDIVISION D.

L. linearis (Goeze).-This species is recorded in literature as extending over Europe, and especially England, France, and Germany, where it lives in natural growth, cordwood, etc. This evidently represents its natural habitat, from which it has been introduced in commercial wood products to many other countries of the world, but it would appear from observations and records in the United States that it becomes permanently established only in those countries with climates similar to that of central and northern Europe. The species appears to be permanently established in the States north of North Carolina, Tennessee, and Arkansas. There are a great many records from this area, including Maine, Massachusetts, New York, Pennsylvania, Virginia, West Virginia, Ohio, Indiana, Michigan, Illinois, Missouri, Iowa, and Minnesota. The specimens in the national collection show but a single record from the South Atlantic and Gulf States, and that is evidently a temporary introduction. Undoubtedly the species is frequently carried into the southern region, but evidently does not survive there.

THE GENUS LYCTOXYLON.

L. japonum Reitter.-Japan, China, and India. This probably represents the natural range of the species, from which it has been introduced into Europe, America, and other countries, possibly becoming established in those with climatic conditions similar to that of its original habitat. The recorded introductions into the United States are from China into California and Massachusetts, and probably from Japan into New Jersey.

THE GENUS MINTHEA.

M. rugicollis (Walker).-Philippine Islands, Siam, China, Ceylon, and the Malay Archipelago. This probably represents the natural habitat, from which it may have been introduced into Europe, the West Indies, and the Hawaiian Islands.
M. stichothrix (Reitter).-Bogota, Colombia, South America,

THE LYCTID間 REPRESENTED IN THE COLLECTIONS EXAMINED BY KRAUS AND HOPKINS.

(Classification according to Kraus.)

Genus LYCTUS Fabricius.

Division I.
Subdivision A (Trogoxylon).
Section al.
impressus Comolli.
Section a2.
Subsection bl.
punctatus Le Conte.
Subsection b2.
Series cl.
californicus Casey.
præustus Erichson.
Series c2.
parallelopipedus Melsheimer.
curtulus Casey.
Subdivision B (Xylotrogus).
politus Kraus.
brunneus Stephens.
pubescens Pȧnzer.
Subdivision C (Lyctus).
Section a3.
Subsection b1.
opaculus Le Conte.
Subsection b2.
suturalis Faldermann.
cavicollis I.e C̣onte.
Section a4.
cinereus Blanchard.
planicollis Le Conte.
carbonarius Waltl.
parvulus Casey.
Division II.
Subdivision D.
linearis Goeze.
Genus LYCTOXYLON Reitter.
japonum Reitter.
Genus MINTHEA Pascoe.
rugicollis Walker.
stichothrix Reitter.

LIST OF DESCRIBED SPECIES, WITH SYNONYMY ACCORDING TO THE LITERATURE AND RECENT STUDIES BY THE AUTHORS.

Genus LYCTUS Fabricius.
æqualis Wollaston. S. Jago
africanus Lesne. Africa.
brunneus (Xylotrogus) Stephens. England; Australia; Japan; Paraguay; Brazil;
Cuba; Mexico; Philadelphia, Pa.
carolinx Casey. South Carolina.
colydioides Dejean. France.
glycyrrhizæ Chevrolat.
parasiticus Stephens.
rugulosus Montrouzier. Woodlark Islands (near Australia).
californicus Casey. Lower California.
carbonarius Waltl. Mexico; Florida.
caucasicus Tournier. Caucasus (Russia).
cavicollis Le Conte. California; Missouri; Oregon.
cinereus Blanchard. Chile.
cornifrons Lesne. Obock, Africa (Red Sea),
costatus Blackburn. Australia.
curtulus Casey. Arizona; California; Montana; Texas; Guatemala; Sandwich Islands.
depressicatus White. New Zealand.
discedens Blackburn. Australia.
disputans Walker. Ceylon.
fœricollis Reitter. Santo Domingo, West Indies.
griseus Gorham. Guatemala.
hispidus Kiesenwetter.
serie-hispidus Kiesenwetter. Japan.
impressus Comolli. Cordova, Mex.; Corinth, Greece; Gallia; Meridian, Miss.
var. capitalis Schauf. Algeria, Africa; Mallorca (Mediterranean).
castaneus Perroud. Middle Europe.
glabiatus Villa. Lombardia, Italy.
lærei Galeazzi. Lombardia, Italy.
læripennis Faldermann. Caucasus; Greece.
leococianus Wollaston. Madeira.
linearis Goeze. Canada; District of Columbia; Illinois; Iowa; Indiana; Massachusetts; Maine; Michigan; Minnesota; Missouri; New York; Ohio; Pennsylvania; Texas; West Virginia; Virginia; Middle Europe.
var. axellarius Melsheimer. Pennsylvania.
canaliculatus Fabricius. Lampa, South America (Chile).
duftschmidti Des Grozes.
fuscus Seidlitz.
var. fuscus Melsheimer. Pennsylvania.
linearis Thunberg.
var. nitidus Dahl. Hungaria, Austria.
oblongus (Dermestes) Olivier.
pubescens Duftschmid.
striatus Melsheimer. Pennsylvania
unipunctatus (Dermestoides) Herbst. Austria?
longicornis Reitter. Bogota, South America.
nitidicollis Reitter. Bogota, Colombia; Chile.
obsetus Wollaston. S. Jago.
opaculus Le Conte. District of Columbia; Iowa; Long Island; Michigan; North Carolina; Nebraska; Ohio; Pennsylvania; Texas; West Virginia.
parallelocollis Blackburn. Australia
parallelopipedus (Xylotrogus) Melsheimer. District of Columbia; Florida; Georgia;
Louisiana; Missouri; Ohio; South Carolina; Texas; West Virginia; Virginia; New York.
parvulus Casey. Arizona; California; Utah.
planicollis Le Conte. Arizona; California; Colorado; District of Columbia; Florida;
Georgia; Illinois; Iowa; Mexico; Michigan; Minnesota; Missouri; Nevada; Ohio;
Oregon; South Carolina; Tennessee; Texas; Cape Town, Africa.
politus Kraus. (Reared at Washington, D. C.)
præustus Erichson. Brazil; Peru.
prostomoides Gorham. Guatemala; Panama.
pubescens Panzer.
bicolor Comolli. Middle Europe.
caucasicus Tournier.
subarmatus Megerle. Austria.
punctatus(Trogoxyion) LeConte. Cape San Lucas and Santa Rosa, Lower California.
punctipennis Fauvel. Caen; New Caledonia; Sumatra.
recticolli (Trogoxylon) Reitter. La Plata.
retractus Walker. Ceylon.
simplex Reitter. Colombia.
suturalis Faldermann. Caucasus.
deyrollei Tournier. Mingrelia (Russia).
tomentosus Reitter. Mexico.

Genus LYCTOXYLON Reitter.

japonum Reitter. Hindostan; Europe; China; California; Massachusetts; New
Jersey; New York.
jalnophæ Wollaston. San Antao.

Genus MINTHEA Pascoe.

rugicollis Walker. Philippine Islands.
Lyctopholis foricollis Reitter. Santo Domingo.
Eulachus hispitus Le Conte.
Ditoma rugicollis Walker. Rodrigues Is.; Missouri; Madagascar.
Minthea similata Pascoe. Styria Marhunaland, near Austria.
stichothrix Reitter.
Lyctopholis stichothrix Reitter. Bogota (Colombia); Africa; South Germany; Austria.

U. S. DEPARTMENT OF AGRICULTURE, BUREAU OF ENTOMOLOGY.
 L. O. HOWARD, Entomologist and Chief of Bureau.

TECIINICAL PAPERS ON MISCELLANEOUS FOREST INSECTS.

IV. STCDIES IN THE SANFLY GENUS HOPLOCAJIPA.

BY

S. A. ROHWER, Agent and Expert.

$$
\text { Issued May } 27,1911 .
$$

WASHINGTON :
GOVERNMENT PRINTING OFFICE. 1911.

BUREAU OF ENTOMOLOGY.
L. O. Howard, Entomologist and Chief of Bureau.
C. L. Marlatt, Entomoloyist and Acting Chief in Absence of Chief.
R. S. Clifton, Executive Assistant.
W. F. Tastet, Chief Clerk.
F. H. Chittendex, in charge of truck crop and stored product insect investigations.
A. D. Hopkins, in charge of forest insect investigations.
W. D. Hunter, in charge of southern field crop insect investigations.
F. M. Webster, in charge of cereal and foraje insect investigations.
A. L. Quaintance, in charge of deciduous fruit insect investigations.
E. F. Phillips, in charge of bee culture.
D. M. Rogers, in charge of preventing spread of moths, field work.

Rolla P. Currie, in charge of editorial work.
Mabel Colcord, librarian.
Forest Insect Investications.
A. D. Hopkins, in charze.
H. E. Burke, J. L. Webb, Josef Brunner, S. A. Rohiver, T. E. Snyder, W. D. Edmonston, W. B. Turner, agents and experts.
Mary E. Faunce, preparator.
William Middleton, Mary C. Johnsox, student assistants.

CONTENTS.

Page.
Introduction 139
Hoplocampa (Macgillivrayella) pallida n. sp 141
Hoplocampa (Hoplocampa) orbitalis n. sp. 141
Hoplocampa (Hoplocampa) Koebelei n. sp 142
Hoplocampa (Hoplocampa) alpestris n. sp 142
Hoplocampa (Hoplocampa) californica n. sp 143
Hoplocampa (Hoplocampa) marlattin. sp 143
Hoplocampa (Hoplocampa) nevadensis n. sp 143
Hoplocampa (Hoplocampa) xantha n. sp 144
Hoplocampa (Hoplocampa) occidentalis n . sp) 144
Hoplocampa (Hoplocampa) montanicola n. sp 145
Hoplocampa (Hoplocampa) halcyon (Norton). 145
Hoplocampa (Hoplocampa) bioculata Rohwer. 146
Hoplocampa (Hoplocampa) pallipes MacGillivray 146
Selandria canadensis Provancher 146
Selandria flavicornis Provancher 146
Hoplocampa (?) atriceps Kirby 147
Hoplocampa lenis (Cresson) and Hoplocampa spissipes (Cresson) 147
Hoplocampa gentilis (Cresson) and Hoplocampa montana (Cresson) 147
Tenthredo (Allantus) obtusa Klug 147
Synoptic table to the Nearctic species of the subgenus Hopiocampa 147

ILLUSTRATIONS.

PLATES.
Page.
Plate XXIII. Fig. 1.-Hoplocampa (Macgillivrayella) oregonensis: Front view of head. 148
Fig. 2.-Hoplocampa (Hoplocampa) flava: Front view of head. 148
Fig. 3.-Hoplocampa (Hoplocampa) orbitalis: Saw 148
Fig. 4.-Hoplocampa (Hoplocampa) montanicola: Saw 148
Fig. 5.-Hoplocampa (Hoplocampa) alpestris: Saw 148
Fig. 6.-Hoplocampa (Hoplocampa) koebelei: Saw 148
Fig. 7.- Hoplocampa (Hoplocampa) pallipes: Saw 148
Fig. 8.-Hoplocampa (Hoplocampa) halcyon: Saw 148
Fig. 9.-Hoplocampa (Hoplocampa) xantha: Saw. 148
Fig. 10.-Hoplocampa (Hoplocampa) nevadensis: Saw 148
XXIV. Fig. 1.-Hoplocampa (Hoplocampa) xantha: Sheath 148
Fig. 2.-Hoplocampa (Hoplocampa) pallipes: Sheath 148
Fig. 3.-Hoplocampa (Hoplocampa) koebelei: Sheath 148
Fig. 4.-Hoplocampa (Hoplocampa) nevadensis: Sheath 148
Fig. 5.-Hoplocampa (Hoplocampa) alpestris: Sheath 148
Fig. 6.-Hoplocampa (Hoplocampa) montanicola: Sheath 148
Fig. 7.-Hoplocampa (Hoplocampa) marlatti: Sheath 148
Fig. 8.-Hoplocampa (Hoplocampa) occidentalis: Sheath 148
Fig. 9.-Hoplocampa (Hoplocampa) halcyon: Sheath 148
Fig. 10.-Hoplocampa (Hoplocampa) orbitalis: Sheath 148
XXV. Fig. 1.-Hoplocampa (Hoplocampa) alpestris: Male, anterior wing 148
Fig. 2.-Hoplocampa (Hoplocampa) halcyon: Male, anal cell of fore wing 148
Fig. - 3.-Hoplocampa (Hoplocampa) montanicola: Female, four basal antennal joints. 148
Fig. 4.-Hoplocampa (Hoplocampa) nevadensis: Female, four basal antennal joints. 148
Fig. 5.-Hoplocampa (Hoplocampa) occidentalis: Male antenna. 148
Fig. 6.-Hoplocampa (Hoplocampa) montanicola: Male antenna 148
XXVI. Fig. 1.-Hoplocampa (Hoplocampa) flava: Female, radial area in fore wing 148
Fig. 2.-Hoplocampa (Hoplocampa) halcyon: Female, radial area in fore wing. 148
Fig. 3.-Hoplocampa (Hoplocampa) montanicola: Female, radial area in fore wing. 148
Fig. 4.-Hoplocampa (Macgillivrayella) lacteipennis: 'Female, radial area in fore wing. 148
TEXT FIGURE.
Fig. 10. Map of the world, showing the distribution of the genus Hoplocampa. 140

TECHNICAL PAPERS ON MISCELLANEOUS FOREST INSECTS.

IV. STUDIES IN THE SAWFLY GENUS HOPLOCAMPA.

By S. A. Rohwer, Agent and expert.
INTRODUCTORY NOTE.

[By A. D. Hopkins.]
This second contribution by Mr. Rohwer to technical information on the sawflies, while not treating of species of known economic importance in their relation to forest growth, conforms to our plan of giving in one series of publications the results of the necessary general studies, by a specialist, of the entire group represented by species and genera which are of special economic importance. This not only gives the economic entomologist a comprehensive view of the whole group, but makes available information on species which may prove to be injurious to indigenous or cultivated plants.

INTRODUCTION.

In the Canadian Entomologist ${ }^{a}$ the author has a paper treating: the sawfly genus Hoplocampa Hartig through the subgenus Macgillivrayella Ashmead. The present paper treats the Nearctic species of the subgenus Hoplocampa, including also a description of a new species belonging to the subgenus Macgillivrayella.

The accompanying map (fig. 10) gives, in general, the distribution of the genus. Macgillivrayella apparently does not occur in the Palæarctic region. In America the species of the genus will probably be found to occur from the Lower Austral Zone to the lower border of the Boreal Zone.

The species of this genus are small, closely related, and without striking specific characters. The characters used in the following table were found to be reliable, but the saw of the female should be examined when possible. Lacking a large number of males, the male genitalia were not studied, but, judging from the genitalia in other genera of sawflies, they may be expected to possess good specific

[^12]
characters. The color, in details, is not constant, although a normally black or brownish species was never found to be uniformly pale, or vice versa. The venation, as in many genera, is constant to the typical form. The length of the upper and lower discal cells of the hind wing apparently varies within a species (as in Hoplocampa marlatti).

The descriptions were drawn up under a Carl Zeiss binocular with a magnification of 35 diameters, although a Zeiss hand lens, magnifying 27 and 16 diameters, was used for the color description and checking up.

The generic description given in the Canadian Entomologist ${ }^{a}$ should be corrected and elaborated as follows:

Proepimerum $\left(\mathrm{Epm}_{1}\right)$ present.

Mesoprepectus (Ppct_{2}) present.
Pleural suture of metathorax $\left(\mathrm{PS}_{3}\right)$ straight from the coxal process $\left(\mathrm{CxP}_{3}\right)$ to the wing process (W_{3}), not curved as in Nematinæ.
Metascutellum $\left(\mathrm{Scl}_{3}\right)$ rather large.
Metapostnotum ($\mathrm{P} \mathrm{N}_{3}$) as in Nematinæ.

Hoplocampa (Macgillivrayella) pallida n. sp.

Runs in the table in the Canadian Entomologist ${ }^{b}$ to lacteipennis Rohwer, but may be separated from that species by the large depressions between the ocelli and orbits, higher, narrower occiput, paler color, etc.

Female.-Length 5.5 mm . Head distinctly higher than broad, broadest just above the antennæ; labrum rather broadly rounded; clypeus with a deep, obtusely V-shaped emargination, lobes obtusely triangular; supraclypeal area more convex near the clypeus; eyes diverging toward the clypeus; lateral foveæ close to the antennæ, small, punctiform; antennal furrows not continuous; crest rather well developed; frontal area raised; ocellar basin and middle fovea wanting; postocellar area not defined; vertex depressed on each side of ocelli, so that the occiput is much narrowed; antennæ slender, third and fourth joints subequal; shining, practically impunctate, cerci tapering; sheath straight abore, gently rounded below; stigma broad, slightly broader basad of middle; transverse radius receired in middle of cell, nearly at right angles with the radius; upper discal cell of hind wings slightly exceeding lower on the outer margin. Pallid; legs, antennæ, front, and dorsulum pale yellowish; wings strongly milky-hyaline; renation pallid-hyaline, except stigma, which is yellowish.

Type locality.-Michigan. One female from C. F. Baker collection. Type.-Cat. No. 13469, U. S. National Museum.

Hoplocampa (Hoplocampa) orbitalis n. sp.

(Plate XXIII, fig. 3; Plate XXIV, fig. 10.)
Female.-Length 4 mm . Labrum broadly rouided apically; clypeus rather deeply emarginate, lobes obtusely triangular; supraclypeal area convex, polished; antennal furrows and postocellar area as in koebelei; middle forea elongate; ocellar

[^13]basin V-shaped, open below; crest poorly defined; head with small, scattered punctures; antennæ rather robust, third and fourth joints equal; stigma broadest at base, tapering to apex; transverse radius normal; sheath and saw as in Plate XXIV, figure 10, and Plate XXIII, figure 3. Black; antennæ brownish; head (except between antennal furrows above antennæ), tegulæ, spot on lower angle of pronotum, apex of venter, sheath, and legs below coxæ reddish-yellow; posterior tibiæ pallid, posterior tarsi dusky; wings hyaline, iridescent; venation pale brown, stigma and costa yellowish.

> Type locality.-Montana.
> Type.-Cat. No. 13472, U. S. National Museum.

Hoplocampa (Hoplocampa) koebelei n. sp.

(Plate XXIII, fig. 6; Plate XXIV, fig. 3.)
Feraale.-Length 3.5 mm . Labrum broad, obtusely triangular; clypeus broadly, triangularly emarginate, lobes broad, sharply triangular; supraclypeal area convex, polished; antennal foveæ not sharply defined; antennal furrows nearly continuous; middle fovea transversely oval; crest poorly defined; ocellar basin reduced to a pit below the ocellus; postocellar area well defined, the furrows punctiform laterally; antennæ wanting; head with small, distinct, separate punctures; stigma gently rounded below, broadest a little basad of middle; transverse radius normal; upper discal cell of hind wings slightly longer than lower; sheath and saw as in Plate XXIV, figure 3, and Plate XXIII, figure 6. Black; head (except inside antennal furrows to postocellar furrow), pronotum, tegulæ, venter, apex of tergum, and legs below trochanters reddish-yellow; posterior tarsi dusky; wings hyaline, iridescent; venation pale brown, stigma pallid.

Type locality.-Oregon. One female collected by Mr. Albert Koebele.

Type.-Cat. No. 13473, U. S. National Museum.

Hoplocampa (Hoplocampa) alpestris n. sp.
(Plate XXIII, fig. 5; Plate XXIV, fig. 5; Plate XXV, fig. 1.)
Female.-Length 4.5 mm . Labrum obtusely angulate; clypeus with a shallow, narrow, arcuate emargination, lobes broad, obtuse; supraclypeal area convex, polished; antennal foveæ poorly defined; antennal furrows nearly wanting; middle fovea broad, shallow, better defined below; ocellar basin reduced to a circular depression in front of the anterior ocellus; postocellar very poorly defined; head polished, nearly impunctate, punctures very small and scattered; antennæ slender, the third and fourth joints subequal; mesothorax shining, polished; stigma broadest at base, tapering to apex; transverse radius normal; sheath and saw as in Plate XXIV, figure 5, and Plate XXIII, figure 5. Black; orbits (except at upper middle), clypeus, labrum, mandibles, supraclypeal area, tegulæ, a small spot on pronotum, ventral part of tergal segments $6-9$, and legs below coxæ reddish-yellow; wings hyaline; venation rather dark brown, stigma and costa yellowish.

Male.-Length 3.5 mm . Structurally not differing in any important characters from the female; hypopygidium broadly rounded to an obtusely angulate middle. Reddish-yellow; antennæ brownish; spot around the ocelli, anterior part of mesoprescutum, metanotum, and most of tergum black; wings as in female.

Type locality.-Veta Pass, Colo. Two females and one male collected June 6, by Mr. E. A. Schwarz.

Type.-Cat. No. 13474, U. S. National Museum.

Hoplocampa (Hoplocampa) californica n . sp.
Allied to bioculata Rohwer, but may be separated by the table (p.147).
Female.-Length 3.5 mm . Clypeus broadly, shallowly, angulately emarginate, lobes broad, obtusely triangular; supraclypeal area convex, finely granular; antennal furrows wanting, antennal foveæ small; middle fovea elongate, shallow, not well defined; ocellar depression small, distinct, not sharply defined; postocellar area well defined on all sides; head and mesoscutum with small, separate, well-defined punctures; antennæ rather slender, third and fourth joints equal; sheath slightly concave above, slender, convex below from apex; cerci short, stout; stigma broadest near base, strongly tapering to apex; transverse radius strongly oblique, in apical third of cell; third cubital cell longer than the first and second combined. Black; clypeus, labrum, mandibles (except piceous apices), orbits, occiput (except postocellar area), tegulæ, anterior legs (except coxæ), intermediate femora, and part of posterior femora reddishyellow; posterior femora in part, most of four hind tibiæ, and tarsi black or brownish; wings hyaline, iridescent; venation pale brown, stigma in part pallid.

Paratopotypes show that the four hind legs may be mostly black, the posterior orbits pale and the pale spots on the occiput reduced in size.

Male.-Length 3 mm . Clypeus more obtusely emarginate than in female; third joint shorter than fourth; stigma not strongly tapering; hypopygidium narrowly rounded at apex. Black; antennæ, head (except interocellar area), margin of mesoprescutum, lati, pectus, legs, and venter reddish-yellow; wings as in female.

Type locality.-Suisun, Cal., March 10, 1910 (R. W. Braucher); eight females and one male.

Type.-Cat. No. 13471, U. S. National Museum.

Hoplocampa (Hoplocampa) marlatti n. sp.

 (Plate XXIV, fig. 7.)Female.-Length 3 mm . Labrum short, broadly rounded; clypeus shallowly emarginate, lobes broad, obtuse; supraclypeal area shining, convex; middle fovea broad, not sharply defined, spreading over the antennæ; antennal furrows interrupted by the rather well-defined crest; ocellar basin represented by a small fovea in front of the anterior ocellus; postocellar area scarcely narrowing apically; postocellar furrow strongly arcuate; front shining, with separate, well defined, small punctures; antennæ slender, third joint distinctly longer than fourth; venation very like montanicola (Plate XXVI, fig. 3); upper discal cell much exceeding the lower on the outer margin; sheath as in Plate XXIV, figure 7; saw concealed. Color reddish-yellow; antennæ brownish; spots on mesoscutum, the metanotum, and the tergum (except apex) black; tarsi dusky; wings hyaline, iridescent; venation pale brown, stigma yellowish pallid.

Male.-Length 2.5 mm . Very like the female. Hypopygidium broadly rounded.
Type locality.-Riley County, Kans. Four specimens collected by Mr. C. L. Marlatt in April.

Paratype locality.-Baldwin, Kans. Two females collected by Mr. J. C. Bridwell.

Type.-Cat. No. 13477, U. S. National Museum.

Hoplocampa (Hoplocampa) nevadensis $\mathrm{n} . \mathrm{sp}$.

(Plate XXIII, fig. 10; Plate XXIV, fig. 4; Plate XXV, fig. 4.)
Female.-Length 4.5 mm . Labrum short, broadly rounded apically; clypeus shallowly, arcuately emarginate, lobes short, broad, obtusely rounded apically; supraclypeal area shining, not strongly convex; middle foveæ poorly defined; antennal
furrows not well defined; ocellar basin practically wanting; postocellar area well defined, the postocellar furrow curved; head with small, distinct, rather close punctures; antennæ rather slender, third joint distinctly longer than fourth; venation nearly as in montanicola (Plate XXVI, fig. 3); sheath and saw as in Plate XXIV, figure 4, and Plate XXIII, figure 10. Color reddish-yellow; antennæ above, interocellar area with two prongs before, posterior face of mesoscutum, metathorax (except scutellum), and tergum (except apex and sides) black; wings hyaline, iridescent; yenation yellowish pallid.

Type locality.-Nevada. One female.
Type.-Cat. No. $1347 \overline{5}$, L. S. National Museum.
Hoplocampa (Hoplocampa) xantha $\mathrm{n} . \mathrm{sp}$.
(Plate XXIII, fig. 9; Plate XXIV, fig. 1.)
Female.-Length 4 mm . Labrum rather narrow, broadly rounded; clypeus somewhat squarely emarginate, lobes broad, subtruncate; supraclypeal area shining, rather strongly convex ; middle forea deep, well defined, rather small; antennal furrows interrupted by the rather distinct crest; ocellar basin very shallow, practically wanting; postoceilar area somewhat convex, narrowing slightly posteriorly; postocellar furrow somewhat arcuate; front shining, with smali, separate, well-defined punctures; antennæ rather robust, third and fourth joints equal; venation of fore wing about as in montanicola (Plate XXVI, fig. 3), but the stigma is broader, the second and third cubital cells subequal in length; upper discal cell much exceeding the lower on the outer margin; sheath and saw as in Plate XXIV, figure 1, and Plate XXIII, figure 9. Color red-dish-yellow; antennæ and basal part of tergum brownish; wings hyaline, iridescent; venation yellowish-pallid.

Paratopotypes indicate that the tergum, except apex and sides, is normally black; venation normally as in halcyon (Plate XXVI, fig. 2), with a narrower stigma. The interocellar area may be black; the middle forea smaller than in type.

Type locality.-Ottawa, Canada. Four females from the Ashmead collection.

Type.-Cat. No. 13478 , U. S. National Museum.
Hoplocampa (Hoplocampa) occidentalis $\mathrm{n} . \mathrm{sp}$.
(Plate NXIV, fig. 8; Plate XXV, fig. 5.)
Female.-Length 4 mm . Labrum narrowly rounded apically; clypeus angulately marginate, lobes triangular, narrowly obtuse; supraclypeal area convex dorsally, shining; middle fovea spreading orer the antennæ, shallow; antennal furrows interrupted by the broad rounded crest; ocellar basin large, well defined, rectangular in outline; postocellar area scarcely narrowed posteriorly, flat; postocellar furrow nearly straight; front with rather close small punctures; antennæ rather robust, the third and fourth joints equal; venation nearly as in montanicola (Pl. XXVI, fig. 3); sheath as in Plate XXIV, figure 8; saw not exserted. Color reddish-yeilow; antennæ brownish above; interocellar area, large spot on mesoprescutum, smail spots on mesoscutum, the metanotum, and the tergum (exc~. sides and apex) black; wings hyaline, iridescent; venation very pale brown, stigma and costa pallid.

Paratypes show that the mesonotum may be entirely pale, or the mesoscutum may have two spots on each lobe. The black of the interoceliar area is wanting in some specimens.

Male.-Length 3 mm . Very like the female. Hypopygidium subtruncate, with an angulate middle. The series shows the color to vary as follows: Mesoprescutum without black, or spotted; mesoscutum spotted or not ; interocellar area pale or black. In the Oregon specimens the head and mesonotum are usually entirely pale.

Type locality.-Colorado. Two females and three males from the C. F. Baker collection.

Paratype locality.-Oregon. Males and females collected by Mr. A. Koebele. Also a male from Placer Countr, Cal., June, which seems to be the same species.

Type.-Cat. 13479, U. S. National Museum.
Hoplocampa (Hoplocampa) montanicola n. sp. (Plate XXIII, fig. 4; Plate XXIV, fig. 6; Plate XXV, figs 3, 6; Plate XXII, fig. 3.)
Ferate.-Length 4 mm . Labrum broadly rounded; clypeus rather deeply, subangulately emarginate, lobes triangular, obtusely rounded; supraclypeal area shining, somewhat convex; middle fovea small, well defined; antennal furrows interrupted by the rounded frontal crest; ocellar basin shallow, well defined, rectangular in outline; postocellar area narrowing posteriorly, well defined; postocellar furrow arcuate; front with sparse, small punctures; antennæ rather robust, third and fourth joints subequal; venation as in Plate XXII, figure 3; upper discal cell exceeding the lower on the outer margin; sheath and saw as in Plate XXIV, figure 6, and Plate XXIII, figure 4. Color reddish yellow; antennæ beyond scape, posterior part of mesoscutum, the mesoscutellum, the metanotum, and the tergum except apex black; wings hyaline, iridescent; venation yellowish pallid.

Paratopotypes show that the scape and interocellar area may be black.
Male.-Length 3.5 mm . Sufficiently like the female to be easily associated with it. In the following color characters it differs from the female: Antennæ reddish yellow, interocellar area black, mesonotum black. Hypopygidium rounded apically to an obtuse angle.

Type Tocality.-Montana. Four females and two males.
Type.-Cat. No. 13476, U. S. National Museum.
Hoplocampa (Hoplocampa) halcyon (Norton).
(Plate XXIII, fig. 8; Plate XXIV, fig. 9; Plate XXV, fig. 2; Plate XXVI, fig 2.)
Selandria (Hoplocampa) halcyon Norton, Proc. Boston Soc. Nat. Hist., vol. 8, p. 222, 1861, no. 10, of ¢ ; Norton, Trans. Amer. Ent. Soc., vol. 1, p. 252, 1867, no. 16, ô ㅇ.
In the collection of the American Entomological Society Hoplocampa (Hoplocampa) halcyon (Norton) was confused with Hoplocampa (Macgillivrayella) lacteipennis Rohwer. That which agreed with Norton's original description, and was from the type locality, has been considered the type. Agreeing with this type, specimens have been seen from the following localities: Ithaca, N. Y. (two females); Canada (one female) ; McLean, N. Y., May 8, 1891 (male and female); Washington, D. C., April 22, 1885 (one male); Clementon, N. J., April 25, 1909, Harbeck (one male which has the mesoscutum dark brown). Norton records this species from Maine, Massachusetts, Maryland, and Saskatchewan.

Konow ${ }^{a}$ states that this species feeds on Amelanchier canadensis. The only statement which seems to indicate such a habit is by Nor-

[^14]ton: " "Taken in April for successive years in Baltimore, by Mr. Uhler, on Amelanchier canadensis." Konow's statement needs verification.

Hoplocampa (Hoplocampa) bioculata Rohwer.
Hoplocampa bioculata Rohwer, Can. Ent., vol. 40, p. 179, 1908, $甲$.
In the collection of the U. S. National Museum there are many females of this species from Colorado, two females from Pullman, Wash. (C. V. Piper), and one female from Oregon (Koebele). There are also males from Colorado.

Male.-Length 3.5 mm . Structurally like the female. Hypopygidium truncate apically. Antennæ orange color; head with more reddish-yellow than the female, the postocellar area always black; legs below coxæ, venter, and apical tergal segments orange color; mesoprescutum sometimes margined with pale.

Hoplocampa (Hoplocampa) pallipes MacGillivray.

(Plate XXIII, fig. 7; Plate XXIV, fig. 2.)
Hoplocampa pallipes MacGillivray, Can. Ent., vol. 25, p. 239, 1893.
Two females which have been determined as this species are from Pullman, Wash. (C. V. Piper). MacGillivray's specimens came from Skokomish River, Wash.

Selandria canadensis Provancher.

Selandria canadensis Provancher, Add. Fauna Ent. Canada, pt. 2, p. 7, 1895; 1. c., p. 351.

This has been placed in Hoplocampa, but does not seem to belong in this genus. Provancher says: "La cellule lancéolée fermée au milieu; ailes inférieures avec une cellule discoïdale." Hoplocampa always has two discoidal cells. Nothing in the collection agrees with this. On page 351 (l. c.), after defining Hoplocampa on page 349 (l. c.) as follows: "Cellule lancéolée contractée au milieu; ailes inférieures à 2 cellules discoïdales," Provancher places Selandria canadensis in Hoplocampa.

Selandria flavicornis Provancher.

Selandria flavicornis Provancher, Nat. Can., vol. 10, p. 100, 1878.
Provancher ${ }^{b}$ placed this as a synonym of Hoplocampa halcyon Norton. The original description says: "Cellule lancéolée pétiolée." The types of this and the above species may place these species in different genera.

[^15]Hoplocampa (?) atriceps Kirby.
Hoplocampa (?) atriceps Kirby, List Hym. Brit. Mus., vol. 1, p. 168, 1882, no. 19, ¢ ; pl. 8, fig. 18.
Examination of the type of this species proves that it is the same as Strongylogaster uncus Norton.

> Hoplocampa lenis (Cresson). Hoplocampa spissipes (Cresson).

These two species placed in Cresson's catalogue (1887) in Hoplocampa belong to Lycaota Konow.

> Hoplocampa gentilis (Cresson).
> Hoplocampa montana (Cresson).

These two species placed in Hoplocampa by Cresson (1887) belong to Zaschizonyx Ashmead.

Tenthredo (Allantus) obtusa Klug.

Tenthredo (Allantus) obtusa Klug, Mag. ges. Nat. Berlin, vol. 3, p. 55, 1814.
This species has been placed in Hoplocampa by Konow (1905). Klug's original description says: "Die zweite Kubitalzelle nimmt zwei zurücklaufende Nerven auf, von welchen der zweite dicht von dem Anfang der dritten Zelle sich einsenkt," which excludes it from Hoplocampa.

SYNOPTIC TABLE TO THE NEARCTIC SPECIES OF THE SUBGENUS HOPLOCAMPA.

Males. .. 1.
Females.. 7.

1. Hypopygidium not regularly rounded apically, more or less angled at the sides and apical middle... 2
Hypopygidium regularly rounded apically a. .. 3 .
2. Antennæ very slender; mesonotum almost entirely pale; hypopygidium obtusely angled apically \qquad
Antennæ more robust; mesonotum black; hypopygidium more acutely angled apically... montanicola Rohwer.
3. Clypeus nearly truncate, broadly arcuately emarginate (ocellar basin almost wanting) 4.
Clypeus deeply emarginate, the emargination subangulate........................ 5.
4. Mesopleuræ and pectus black; hypopygidium truncate. ... bioculata Rohwer.

Mesopleuræ and pectus pale; hypopygidium rounded..... californica Rohwer.
5. Third antennal joint distinctly longer than the fourth; stigma narrow, broadest basad of middle.. marlatti Rohwer.
Third antennal joint subequal in length with the fourth

[^16]6. Postocellar area well defined, twice as wide as the cephalo-caudal length, flat,stigma narrow; lanceolate cell of the fore-wings narrowly contracted (seefigure). .. alpestris Rohwer.Postocellar area convex, not so sharply defined; stigma broader; contraction of thelanceolate cell distinctly longer than the width of the cell (see figure),
halcyon Norton.
7. Mesopleuræ and pectus black 8.
Mesopleuræ and pectus pale. 12.
8. Legs entirely fulvo-ferruginous; orbits continuously pale. 9.
Legs more or less black or dusky, especially the posterior pair; orbits not con-tinuously pale.11.
9. Ocellar basin of the normal type, open below, poorly defined; saw with very longtruncate teeth which are narrower at their bases; (clypeus deeply emarginate,lobes narrow).orbitalis Rohwer.
Ocellar basin small, punctiform present only just in front of the anterior ocellus; saw with narrow teeth. 10.
10. Clypeus broadly, angulately emarginate, lobes sharply triangular; head distinctly punctured; stigma gently rounded below koebelei Rohwer.
Clypeus arcuately emarginate, lobes broad, obtusely rounded; head shining, verysparsely punctured; stigma strongly tapering. alpestris Rohwer.
11. Supraclypeal area shiny, flattened, or but slightly convex; stigma rounded onthe lower margin; clypeus very shallowly emarginate. bioculata Rohwer.Supraclypeal area roughened, strongly convex; stigma strongly tapering; clypeus
rather deeply, angulately emarginate.......................californica Rohwer.
12. Third antennal joint distinctly longer than the fourth 13.
Third and fourth antennal joints subequal. 14.
13. A small circular fovea in front of the anterior ocellus; mesoscutum with black spots laterally marlatti Rohwer.No small fovea in front of the anterior ocellus; mesoscutum immaculate,nevadensis Rohwer.
14. Ocellar basin practically wanting. 15.
Ocellar basin large, distinct 16.
15. Middle fovea wanting; sheath narrowly rounded apically . . pallipes MacGillivray. Middle fovea represented by a large shallow depression; sheath narrowly truncate apically. xantha Rohwer.16. Sheath narrowly rounded apically; stigma broadest at base, tapering to apex,halcyon Norton.
Sheath obtusely rounded or subtruncate apically; stigma narrower, gentlyrounded below.17.
17. Scape black; sheath subtruncate apically; front of head closely punctured,
occidentalis Rohwer.
Scape pale; sheath obtusely rounded apically; front of head with separate, small, distinct punctures montanicola Rohwer.

The Sawfly Genus Hoplocampa.
Fig. 1.-Hoplocampa (Macgillivayella) oregonensis: Front view of head. Fig. 2.-Hoplocampa (Hoplocampa) flava: Front view of head. Fig. 3.-Hoplocampa (Hoplocampa) orbitalis: Saw. Fig. 4.-Hoplocampa (Hoplocampa) montanicola: Saw. Fig. 5.-Hoplocampa (Hoplocampa) alpestris: Saw. Fig. 6.-Hoplocampa (Hoplocampa) koebelei: Saw. Fig. 7.-Hoplocampa (Hoplocampa) pallipes: Saw. Fig. 8.-Hoplocampa (Hoplocampa) halcyon: Saw. Fig. 9.-Hoplocampa (Hoplocampa) खantha: Saw. Fig. 10.-Hoplocampa (Hoplocampa) nevadensis: Saw. (Original.)

The Sawfly Genus Hoplocampa.
Fig. 1.-Hoplocampa (Hoplocampa) xantha: Sheath. Fig. 2.-Hoplocampa (Hoplocampa) pallipes: Sheath. Fig. 3.-Hoplocampa (Hoplocampa) koebelei: Sheath. Fig. 4.-Hoplocampa (Hoplocampa) nevadensis: Sheath. Fig. 5.-Hoplocampa (Hoplocampa) alpestris: Sheath. Fig. 6.-Hoplocanpa (Hoplocampa) montanicola: Sheath. Fig. 7.Hoplocampa (Hoplocampa) marlatti: Sheath. Fig. 8.-Hoplocampa (Hoplocampa) occirlentalis: Sheath. Fig. 9.-Hoplocampa (Hoplocampa) halcyon: Sheath. Fig. 10.Hoplocampa (Hoplocampa) orbitalis: Sheath. (Original.)

The Sawfly Genus Hoplocampa.
Fig. 1.-Hoplocampa (Hoplocampa) flava: Female, radial area in fore wing. Fig. 2.Hoplocampa (Hoplocampa) halcyon: Female, radial area in fore wing. Fig. 3.-Hoplocampa (Hoplocampa) montanicola: Female, radial area in fore wing. Fig. 4.-Hoplocampa (Macgillivrayella) lacteipennis: Female, radial area in fore wing. (Original.)
t'echnical Series, No. 20, Part V.
U. S. DEPARTMENT OF AGRICULTURE, bureau of entomology.
L. O. HOWARD, Entomologist and Chief of Bureau.

TECHNICAL PAPERS ON MISCELLANEOUS FOREST INSECTS.

V. A PRELIIIINARY SYNOPSIS OF CERAIIBYCOID LARVE.

J. L. WEBB, Entomological Assistant.

Issued August 14, 1912.

WASHINGTON:
GOVERNMENT PRINTING OFFICE.
1912.

BUREAU OF ENTOMOLOGY.

L. O. Howard, Entomologist and Chief of Bureau.

 C. L. Marlatt, Entomologist and Aeting Chief in Absence of Chief. R. S. Clifton, Executive Assistant. W. F. Tastet, Chief Clerk.F. H. Chittenden, in charge of truck crop and stored product insect investigations.
A. D. Hopkins, in charge of forest insect investigations.
W. D. Hunter, in charge of southern field crop insect investigations.
F. M. Webster, in charge of cereal and forage insect investigations.
A. L. Quaintance, in charge of deciduous fruit insect investigations.
E. F. Phillips, in charge of bee culture.
D. M. Rogers, in charge of preventing spread of moths, field work.

Rolla P. Currie, in charge of editorial work.
Mabel Colcord, in charge of library.
Forest Insect Investigations.
A. D. Hopkins, in charge.
H. E. Burke, entomological assistant, in charge of Forest Insect Field Station 5, Yreka, Cal.
W. D. Edmonston, entomological assistant, in charge of Forest Insect Field Station 6, Klamath Falls, Oregon.
Josef Brunner, agent and expert, in charge of Forest Insect Field Station 1, Columbia Falls, Mont.
E. B. Mason, entomological assistant, in charge of Forest Insect Field Station 7, Spartanburg, S.C.
Frits Johansen, expert on forest Lepidoptera, Forest Insect Field Station 8, East Falls Church, Va.
T. E. Snyder, agent and expert, engaged in investigations of insect damage to telegraph and telephone poles, East Falls Church, Va.
J. L. Webb, entomological assistant, specialist on cerambycid beetles and larvæ. ${ }^{1}$
S. A. Rohwer, agent and expert, specialist on sawfies (Tenthredinoidea).

Mary E. Faunce, Mary C. Johison, Maude Taylor, Elizabeth Ritchie, Edna O. Haslup, preparators.

[^17]
CONTENTS.

Page.
Introduction 149
Superfamily Cerambycoidea 151
Family Lamiidæ. 152
Family Cerambycidæ 153
Family Lepturidæ 154
Family Prionidæ. 155
Family Asemidæ. 155
ILLUSTRATIONS.
PLATE.
Page.Plate XXVII. Dorsal aspect of heads of representative larvæ of each familyof Cerambycoidea: A, Prionus; B, Tetropium; C¹, Cyrtomerus;C², Phœnicus; D, Liopus; E, Rhagium.152

TECHNICAL PAPERS ON MISCELLANEOUS FOREST INSECTS.

V. A PRELIMINARY SYNOPSIS OF CERAMBYCOID LARVE.

By J. L. Webb, Entomological Assistant.

INTRODUCTION.

In this study of cerambycoid larvæ the writer has adopted the primary groups defined by Schiødte, ${ }^{1}$ but has given them family rank under a superfamily. Schiødte's primary groups, namely, Prionini, Asemini, Cerambycini, Lepturini, and Lamiini, are easily recognized, and up to the present time no other author has given a better division of the family into primary groups. The writer proposes the raising of these groups to family rank under the superfamily Cerambycoidea, designating the families as Lamiidæ, Cerambycidæ, Lepturidæ, Prionidæ, and Asemidæ. Schiødte gives most excellent plates showing the characteristics of these different groups. He fails, however, to give any tables of genera or to subdivide his primary groups. He does give a morphological conspectus of the genera known to him, but it is not in the form of a table by which the identity of any of the genera treated can be definitely determined. And, so far as the writer has been able to determine, no author has ever attempted such a table for the entire superfamily as here recognized, and for a very good reason, namely, the great difficulty experienced in finding suitable characters upon which to base a table of genera. Perris alone gives a table separating the genera Spondylis, Tetropium, Criocephalus, and Asemum, but further than this he does not go, although he divides the entire family into groups, subgroups, etc., without indicating the characters by which his divisions are made. Specific descriptions innumerable are given by different authors, but these are practically worthless when it comes to identifying isolated larve.

The need for such a table is all too apparent. The larvæ of the Cerambycoidea are much more commonly met with in an economic way than are the adults. Thus larvæ of a given species may be found

[^18]within their host perhaps during the greater part of the year, while the adults are to be found in the host only within a very short period of the year, namely, just before they leave the host. A tree or piece of wood may be found to be badly infested and damaged by Cerambycoid larvæ, and no adults present to give a clue to the identity of the species. In fact, there may be several species present. The question immediately arises, "Which is the destructive species and what is it? What are the known habits of the species? And what relation to the damage done, and to the primary enemy, do the other species bear?" Without knowing the identity of the destructive species one is at sea as to its known habits and the methods which may have been used to combat it. This necessitates the working out of life history and habits in each case. It can thus be seen that much time and labor would be saved if the larvæ could be readily identified.

As indicated above, the making of a table by which the genera of cerambycoid larvæ can be recognized is extremely difficult. The first requisite is, of course, the possession of authentically identified specimens of the different genera. To gather together such a collection is in itself a stupendous task. Cerambycoid larvæ are to be found in abundance, and in many cases in situations which seem to indicate the identity of the species. But right here is where extreme care must be exercised to avoid making serious mistakes. The fact that a certain larva is taken from a piece of wood or bark, and that later a certain adult Cerambycoid is reared from the same host, is by no means proof that the larva and adult are the same species. In fact, adults of two or three species are often reared from the same piece of wood. The most conclusive proof of the identity of a given larva is obtained by rearing it to the adult stage in a vial or other receptacle, where it is kept entirely to itself until the adult stage is reached. In order to do this the larva must be taken from its host only after it has practically completed its growth. If the collector cuts out a half-grown larva there is practically no chance of rearing it to the adult stage. It can not complete its growth and go through its metamorphoses outside of its natural environment. However, the building up of a collection of larvæ identified by this method is such a slow process that for practical purposes the writer has accepted as authentic, identifications made in other ways. Thus, where several larvæ, exactly similar morphologically, have been found together with pupæ and adults, all of which are the same species, he has considered the larvæ to be the same species as the adults.

In all, the writer has studied the larvæ of 46 genera of Cerambycoidea; 15 in the family Lamiidæ, 18 in the family Cerambycidæ, 5 in the family Lepturidæ, 5 in the family Prionidæ, and 3 in the family Asemidæ. Henshaw lists 175 genera of Cerambycidæ for America north of Mexico. Therefore it is readily seen that the present effort
is a bare beginning of the work. The material studied has for the most part been collected by the members of the Branch of Forest Insect Investigations of the Bureau of Entomology, United States Department of Agriculture.

The 46 genera referred to above are as follows: In the family Lamiidæ: Ptychodes, Monohammus, Leptostylus, Dorcaschema, Acanthoderes, Liopus, Hyperplatys, Oncideres, Goes, Lepturges, Plectrura, Synaphoeta, Saperda, Graphisurus, and Acanthocinus. In the family Cerambycidæ: Chion, Eme, Tylonotus, Phymatodes, Euderces, Opsimus, Clytanthus, Cyrtophorus, Hylotrupes, Smodicum, Elaphidion, Callidium, Romaleum, Physocnemum, Cyllene, Neoclytus, Xylotrechus, and Notorhina. In the family Lepturidæ: Desmocerus, Bellamira, Leptura, Rhagium, and Ulochætes. In the family Prionidæ: Tragosoma, Prionus, Ergates, Orthosoma, and Mallodon. In the family Asemidæ: Asemum, Tetropium, and Atimia.

The following table is based upon these genera and beyond the family characters may not be found applicable to the entire superfamily. (See also Plate XXVII.)

Superfamily CERAMBYCOIDEA.

Head much longer than broad, deeply invaginated into the prothorax.... Division I. Head as broad as long, or broader than long, not deeply invaginated into the prothorax

Division II.

DIVISION I.

Labrum large; clypeus large, filling frontal margin..................... Family Lamiidæ.

DIVISION II.

Labrum small; clypeus small, not filling frontal margin............... . Subdivision A.
Labrum large; clypeus large, filling frontal margin
Subdivision B.

Subdivision A.

Without spines or tubercles on anal and ninth abdominal segments.
Family Cerambycidæ.

Subdivision B.

Head somewhat flattened; sides of head behind epistoma separated, angulate. Legs quite long \qquad Family Lepturidæ. Head not flattened; sides of head not separated immediately behind epistoma. Legs moderate.
.Section al.

Section a1.

Sides of head behind epistoma fused for some distance, later separating, angulate. Head invaginated into prothorax almost to base of maxillæ. Usually larvæ of very large size

Family Prionidæ.
Sides of head behind epistoma fused almost to apex, farther back each one rounded.
Head not invaginated into prothorax to base of maxillæ. Larvæ of medium size.
Family Asemidæ.

Family Lamidde.

Abdominal segments bearing fleshy tubercles Division I.
Abdominal segments without fleshy tubercles. Division II.
DIVISION I.
Dorsal aspect of ninth abdominal segment smooth
Dorsal aspect of ninth abdominal segment bearing one or more spines or chitinoustubercles.Subdivision B.
Subdivision A.
Sternum of prothorax not separated from sternellum by well-defined, deep suture.Section al.
Sternum of prothorax separated from sternellum by well-defined, deep suture.
Section a2.
Section a1.
Pleural folds present on at least seven abdominal segments Subsection b1.
Pleural folds not present on more than three abdominal segments. Subsection b2.
Subsection b1.
Anal segment bearing a group of small spines on ventral aspect. Ptychodes. Anal segment without spines Monohammus.
Subsection 62.
Gular suture or sutures present. Series c1.
Gular suture or sutures lacking. Series c2.
Series c1.
Posterior half of protergum alutaceous. Leptostylus.
Posterior half of protergum smooth and shining. Dorcaschema.Posterior half of protergum rugose and shining.Acanthoderes.
Series c2.
Epipleural sutures of prothorax deep at posterior end and extending almost entirelength of segment. Anterior half of protergum sparsely but evenly clothed withlong erect hairs.Liopus.
Epipleural sutures of prothorax extending only about half the length of segment.Anterior half of protergum with only a few straggling hairsHyperplatys.
Section a2.
Epistoma with many parallel longitudinal carinæ. Oncideres.
Epistoma without parallel longitudinal carinæ. Goes.
Subdivision B.
Ninth abdominal segment bearing a single, slender, strongly chitinized spine pointingdorsally.Lepturges.
Ninth abdominal segment bearing a more or less fleshy spine pointing posteriorly.Plectrura.
Ninth abdominal segment bearing two very small, closely placed, chitinized points sometimes apparently merged into one. Synaphota
DIVISION II.
All abdominal segments bearing pleural folds Saperda.
Pleural folds borne only on posterior three abdominal segments. Subdivision C.

Subdivision C.
Body robust. Abdominal segments $3,4,5$, and 6 not constricted near middle.
Hylotrupes bajulus.
Body slender. Abdominal segments $3,4,5$, and 6 constricted near middle.
Smodicum.
Subdivision D.
Legs long Section 44.
Legs short Section a5.
Legs lacking Section a6.
Section a4.
Body very slender Elaphidion.
Body robust Subsection b2.
Subsection b2.
Anterior part of protergum with scarcely any hairs Callidium antennatum.
Anterior part of protergum sparsely clothed with long hairs Series c2.
Series c2.
Scutum, scutellum, and postscutellum of both mesotergum and metatergum plainly differentiated Romaleum.
Scutum, scutellum, and postscutellum of mesotergum and metatergum not differen- tiated Subseries d1.
Subseries d1
Head with an ocellus near base of each antenna Physocnemum.
Head without ocelli.Sides of thoracic and abdominal segments bearing long, dense, yellowish hairs.Callidium æreum.Sides of thoracic and abdominal segments not bearing long, dense, yellowish hairs.Hylotrupes (ligneus and amethystinus).
Section a5.
Head with 3 ocelli at each side Cyllene (robinix, crinicornis and antennatus). Head with not more than one ocellus at each side Neoclytus.
Section a6.
Xylotrechus, Notorhina, and Cyllene caryæ, impossible of separation by the author.
Family Lepturide.
Abdominal segments bearing fleshy tubercles. Division I.
Abdominal segments without fleshy tubercles. Division II.
DIVISION I.
Mandibles very finely sulcate on middle third. Long hairs on eighth and ninth abdominal segments arising from small tubercles .Desmocerus.
Mandibles not finely sulcate on middle third Subdivision A.
Subdivision A.
Tubercles on first seven segments not closely placed, but separated from each otherand sphericalBellamira.Tubercles closely groupedLeptura (with the exception of L. nitens).
DIVISION II.

Subdivision B.

Each mandible with a rather prominent groove or sulcus extending longitudinally on
anterior third..es.
Mandibles without prominent groove on anterior third.............eptura nitens.

Family Prionide.

Sternum and sternellum of prothorax divided by a well defined, curved suture.
Division I.
Sternum and sternellum of prothorax not divided by a well defined, curved suture.
Division II.

DIVISION I.

Subdivision A.
Scutellum of mesothorax short, dorsal. Presternum of prothorax in form of an equi-
lateral triangle..
Scutellum of mesothorax not showing. Presternum of prothorax small, transverse.
Ergates.

DIVISION II.

Epistoma bearing four more or less well-defined teeth or tubercles. Presternum of prothorax not differentiated
.Orthosoma.
Epistoma without teeth or tubercles. Presternum small, triangular........ Mallodon.

Family Asemide.

Labrum longer than b	Division I.
	Asemum.
Labrum broader than long.	Division II.

DIVISION II.

Ninth abdominal segment bearing two small, narrowly separated, chitinized points on dorsal aspect.. Tetropium.
Ninth abdominal segment bearing two chitinized points on dorsal aspect, widely separated, and curved toward each other in the form of hooks

Atimia.
The foregoing classification is based entirely upon the characters of the larvæ, irrespective of adult characters. Thus the genus Atimia falls in the family Asemidæ instead of in the Cerambycidæ proper, where it has been placed in the classification of the adults.

The writer realizes fully the imperfections and deficiencies of this work. And it is only with the hope that it may prove the basis of a more complete and perfect classification of cerambycoid larvæ that he now offers it for publication.

[^19]
U. S. DEPARTMENT OF AGRICULTURE, BUREAU OF ENTOMOLOGY.
 L. O. HOWARD, Entomologist and Chief of Bureau.

technical papers on miscellaneots FOREST INSECTS.

VI. CHALCIDIDS INJURIOUS T0 F0REST-TREE SEEDS.

S. A. ROHWER,
Entomological Assistant.

Issued February 10, 1913.

WASHINGTON:
GOVERNMENT PRINTING OFFICE.

BUREAU OF ENTOMOLOGY.

I. O. Howard, Entomologist and Chief of Bureau.
C. L. Marlatt, Entomologist and Acting Chief in Absence of Chief.
R. S. Clifton, Executive Assistant.
W. F. Tastet, Chief Clerk.
F. H. Chittenden, in charge of truck crop and stored product insect investigations.
A. D. Hopkins, in charge of forest insect investigations.
W. D. Hunter, in charge of southern field crop insect investigations.
F. M. Webster, in charge of cereal and forage insect investigations.
A. L. Quaintance, in charge of deciduous fruit insect investigations.
E. F. Phillips, in charge of bee culture.
D. M. Rogers, in charge of preventing sprcad of moths, field work.

Rolla P. Currie, in charge of editorial work.
Mabel Colcord, in charge of library.

Forest Insect Investigations.

A. D. Hopkins, in charge.
H. E. Burke, August Busck, Josef Brunner, J. M. Miller, W. D. Edmonston, S. A. Rohwer, F. C. Craighead, C. T. Greene, W. S. Fisher, T. E. Snyder, E. B. Mason, Frits Johansen, B. T. Harvey, Wm. Middleton, entomological assistants.
Mary E. Faunce, Mary C. Johnson, Elizabeth Ritchie, Maude Taylor, Edna O. Haslup, Pearl L. Boone, preparators.

[^20]
CONTENTS.

Page.
Introduction 157
Syntomaspis druparuni 158
Megastigmus sp 159
Megastigmus brevicaudis 159
Megastigmus strobilobius 159
Megastigmus pinus. 160
Megastigmus spermotrophus. 160
Summary 162
Bibliography 162

TECHNICAL PAPERS ON MISCELLANEOUS FOREST INSECTS.

VI. CHALCIDIDS INJURIOUS TO FOREST-TREE SEEDS. ${ }^{1}$

By S. A. Rohwer, Entomological Assistant.

INTRODUCTION.

For a long time entomologists were loath to give up the theory that all chalcidids were parasitic, and most of the species which attacked the seeds of forest trees were originally described as being parasitic on some other insect which either lived within the seeds of the trees or lived within the cones, but in 1893 Wachtl recorded definitely that Megastigmus spermotrophus lives within the seeds of Douglas fir and is phytophagous. Even after this statement entomologists were loath to believe that any chalcidids are not parasitic, and many of the foremost authorities on these insects believed up to the time of their death that some day it would be proven that all chalcidids, with the exception of certain few belonging to the genus Isosoma and its allies, are parasitic. Of late years, however, most entomologists have come to believe that the phytophagous habit in many of the chalcidids is not uncommon. We know at present phytophagous species of the family Collimanidæ (olim Torymidæ), of the subfamilies Collimaninæ and Megastigminæ, and of the family Eurytomidæ, the phytophagous species being in the tribes Isosomini and Eurytomini. To these also may be added certain genera which have been assigned to the family Perilampidæ.

The species that attack seeds of forest trees are confined to the Collimanidæ, and most of them belong to the subfamily Megastigminæ. Summing up the literature on phytophagous Chalcidoidea belonging to this family, it is possible to outline the life history of every species which may live within the seeds of forest trees. This would be as follows: The egg is laid in the early summer or late spring,

[^21]the larva feeding within the seed until it reaches maturity, passing the winter within the seed as a prepupal larva, transforming into a pupa early in the spring, and emerging as an adult in time to oviposit in the rather young seeds of the trees. The egg-laying habit of some of the chalcidids which attack the seeds of shrubs or vines differs in a measure from that of those attacking the seeds of trees; for instance, the grape-seed chalcidid (Evoxysoma vitis Saund.) oviposits in the seeds that are quite hard, and the only way that the female is able to deposit eggs within the seed of the grape is by finding a soft portion of the shell which is known as the chalaza. This is also the case with the seed chalcidid of Virginia creeper (Prodecatoma phytophaga Crosby). The oviposition of species of Megastigmus which live within the seeds of coniferous trees has never been observed, but owing to the heavy, leathery texture of the cones it is possible that oviposition occurs when the cones are very small.

Species of chalcidids feeding within the seeds of various plants have proven in some cases to be of much economic importance. A few examples will suffice to show this. Forty pounds of apple seed planted at Budapest failed to give even a good standing of apple seedlings, the seeds having been destroyed by the apple-seed chalcidid (Syntomaspis druparum). The seeds of the Douglas fir usually gathered in Aberdeenshire, Scotland, and amounting to over 300 bushels were, according to a letter from Mr. John Crosier published by MacDougall in 1906, not worth gathering, owing to the attack of the Douglas fir seed chalcidid (Megastigmus spermotrophus). According to a letter published by Riley in 1893, the seeds of the silver fir (Abies pectinata) in the forests of Denmark were so completely destroyed during the years 1886 and 1888 by species of the genus Megastigmus that not a single healthy seed could be found. As a great many of the species of Megastigmus which are troublesome in Europe come from the seed of the American conifers it is very likely that difficulty will be found in North America on account of the attacks of these insects. No parasite of the species of the genus Megastigmus is as yet known.

SYNTOMASPIS DRUPARUM (Boheman).

This species, which normally attacks the apple but is known to attack the seeds of mountain ash (Sorbus scandica, and probably Sorbus latifolia) and hawthorn (Cratægus), is very elaborately treated by Crosby in his paper entitled "Certain seed-infesting chalcid flies," where an account is given of practically the entire life history of this insect. The egg is deposited by the female within the seed of an apple when the apple is about three-fourths of an inch in diameter. The young larva feeds within the seed and develops until it hibernates as a larva within the seed, pupating early in the spring and emerging as an adult in June. As this species is not of any economic importance
so far as forest trees are concerned, no more details concerning it need be given, but any one wishing to obtain information regarding this insect may consult the above-mentioned paper by Crosby.

BIBLIOGRAPHY.
Ichneumon nigricornis Berger, 1803, p. 141.
Torymus druparum Boheman, 1833, p. 361. ㅇ δ
Syntomaspis pubescens (Foerster) Mayr, 1874, p. 103. (There is some doubt as to this being the same.)
Mokrezecki, 1906, pp. 390-392, figs. 1-2.
Syntomaspis druparum (Boheman) Guérin-Méneville, 1865, pp. 83-85.
Thomson, 1875, p. 76.
Horvath, 1886, p. 127.
Schlechtendal, 1888, p. 416.
Dalla Torre, 1898, p. 294.
Rodzianko, 1908.
Crosby, 1909, pp. 369-375, figs. 67-76.

MEGASTIGMUS SP.

A species of Megastigmus is recorded by Riley through rearings conducted by Borries, from the Japanese Abies mariesii. Nothing more is known about this species.

BIBLIOGRAPHY.
Megastigmus D. Riley, 1893, p. 360.

MEGASTIGMUS BREVICAUDIS Ratzeburg.

This insect is considered by its original describer as probably a parasite of a gall fly inhabiting the fruit of mountain ash (Sorbus scandica), but Crosby has proven the species as entirely phytophagous in habit, and has reared it from seeds of Sorbus aucuparia. Crosby describes the larva as white, smaller than the larva of Syntomaspis druparum, from which it may be distinguished by the mandibles having four teeth on their inner margin and by the absence of brown tubercules on the face. The oviposition habit and the egg of this species are unknown, but it may be presumed that they are similar to those of the foregoing species.

BIBLIOGRAPHY.

Megastigmus brevicaudis Ratzeburg, 1852, p. 225. Dalla Torre, 1898, p. 286. Crosby, 1909, pp. 375-377, fige. 78-79.

MEGASTIGMUS STROBILOBIUS Ratzburg.

The original describer of this insect considered it to be parasitic on Tortrix strobilotina, but since then it has been shown by Judeich and Nitsche that this species lives, as do other species of Megastigmus, within the seeds of plants, this species choosing the amabilis fir (Abies
amabilis). They also state that this species is distinct from Megastigmus spermotrophus, and that the larva is about 4 millimeters long, whitish in color, and that the mandibles have three inner teeth. Crosby records this species in Abies pectinata. Riley records it from Hooker hemlock (Tsuga mertensiana hookeriana) and from Abies excelsa.

BIBLIOGRAPHY.
Megastigmus strobilobius Ratzeburg, 1848, p. 182.
Judeich and Nitsche, 1893, p. 704; 1895, p. 1339.
Riley, 1893, p. 260.
Crosby, 1909, p. 368.
Megastigmus pictus (Foerster) Mayr, 1874, p. 138. Cameron, 1879, p. 138.
Dalla Torre (in part), 1898, p. 287.

MEGASTIGMUS PINUS Parfitt.

This species was considered by its original describer to be a parasite on some species of Cynips which infested the seeds of the bristle-cone fir (Abies venusta) (according to the original describer this was considered as Picea bracteata), of a new species of Tsuga, and of the noble fir (Abies nobilis). In the original account "etc." is added after the foregoing list, which implies that other coniferous seeds are attacked by this insect. Riley, in referring to material reared by Mr. Borries, of Copenhagen, Denmark, adds that this species has been reared from the seeds of Shasta fir (Abies magnifica), from the white fir (Abies concolor), from the grand fir (Abies grandis), and from the amabilis fir (Abies amabilis), but as Riley allows great variation within this species it may be that some of these rearings actually contained some of the other species of Megastigmus. Other than the above mentioned list of food plants nothing is published concerning the biology of this species.

BIBLIOGRAPHY.

Megastigmus pinus Parfitt, 1857, pp. 5543, 5629, 5721.
Dalla Torre, 1898, p. 287.
Riley, 1893, p. 360.
Crosby, 1909, p. 368.

MEGASTIGMUS SPERMOTROPHUS Wachtl.

This insect was originally described in 1893 by Wachtl, and at that time Wachtl stated with assurance that this species of Megastigmus was phytophagous and lived within the seeds of the Douglas fir (Pseudotsuga taxifolia). Since then two papers have treated this insect in some detail. The first of these was by MacDougall in 1906. MacDougall knew the larva and felt reasonably sure that this species was phytophagous. Some of his statements as to emergence are not without interest; he states that from a lot of seeds harvested in October, 1904, he found larvæ in May, June, July, August, September, Octo-
ber, and November, 1905, and seemed to be of the opinion that the great variation in the dates of emergence of this insect was due to the irregularity of the hatching of the eggs and the coming to maturity of the larvæ. It may be, however, that the females which had emerged in the receptacle containing the seeds oviposited within the seeds, thus accounting for the larve found in the months of July, August, September, October, and November, 1905, when the larvæ which would be adults in the spring of 1906 should be feeding within the seeds. MacDougall does not give sufficient information to make his statement concerning variation in emergence conclusive, while rearings by Crosby, Crosier, and Wachtl confirm this last supposition.

The egg has been obtained by Crosby by dissection of a female and is described by him as "white, smooth, and spindle-shaped with a very long pedicel at the anterior end and the vestige of one at the opposite end. Length of body of egg, .36 mm .; tail-like process, .9 to 1.2 mm ." The larva described by Crosby is as follows: "The full-grown larva is yellowish white with brownish mouth parts; its length varies from 2.5 to 3.5 millimeters. The surface is smooth without apparent sculpture, and the hairs are very sparse and microscopic in size. The inner margin of the mandibles is provided with three sharp teeth." The pupa is described by Crosby as follows: "The pupa is yellowish white and in the female has the ovipositor curved over the back and reaching to about the middle of the thorax. Length of female pupa, 3 mm .; of male, 2.5 mm ."

The oviposition of this species is unknown, and the shape of the egg after having been deposited is not known. Neither has this insect been recorded as having been reared from the seeds of any Douglas fir raised in the United States. All seeds from which it has been reared were collected in Aberdeenshire, Scotland, on the estate of Mr. John Crosier. In this statement we must except the seeds from which the species was reared by Wachtl, as it is presumed that these were collected somewhere in the northwestern United States. Crosby also records the larvæ within the seeds of Douglas fir in Colorado, but these seeds came from a nursery firm and definite locality could not be secured.

Up to the present time this is the most injurious chalcidid on forest trees which has received the attention of any entomologist. The attention which this insect has received in America, with the exception of the work done by Crosby, has been nil. MacDougall recommends as protection from this species that the cones be gathered as soon as ripe, and that, as soon as they will permit, the seed be thrashed from them, and that this be fumigated without delay with bisulphid of carbon. No experiments have been published concerning the results of such fumigation, but except for killing the larvæ within the seed and preventing another generation of adults this method can not be considered as valuable.

BIBLIOGRAPHY.

Megastigmus spermotrophus	Wachtl, 1893, p. 26, pl. 1.
	Dalla Torre, 1898, p. 287.
	MacDougall, 1906, pp. 52-65, 2 pls.
	Crosby, 1909, pp. 379-380, figs. 85-89.

SUMMARY.

Up to the present time there are seven species of chalcidid flies which are known to attack the seeds of the following forest trees:

Mountain ash	$\left\{\begin{array}{l} \text { Sorbus scandica. } \\ \text { Sorbus aucuparia. } \\ \text { Sorbus latifolia? } \end{array}\right.$
Amabilis fir.	. Abies amabilis.
White fir.	. Abies concolor.
Great silver fi	. Abies grandis.
Shasta fir.	. Abies magnifica.
Bristlecone fir	. Abies venusta.
Noble fir.	. Abies nobilis.
Three exotic firs	$\left\{\begin{array}{l} \text { Abies excelsa. } \\ \text { Abies pectinata. } \\ \text { Abies mariesii. } \end{array}\right.$
Hooker hemlock.	. Tsuga mertensiana hookeriana.
Unknown Tsuga.	Tsuga sp. (?)
Douglas fir.	Pseudotsuga taxifolia.

Of these seven species the eggs of two are known, the larvæ of four, the pupæ of two, the oviposition habit of one, and the emergence dates of three. The only species of which the life history has been completely traced is that of the apple-seed chalcidid (Syntomaspis druparum) which is also known to attack the seeds of mountain ash.

BIBLIOGRAPHY.

The following bibliography is believed to be reasonably complete for all the literature received in Washington up to November 1, 1912, dealing with chalcidid flies which are phytophagous within the seeds of forest trees.
1803. Berger, Francais.-Extrait des observations sur un ver qui se trouve dans l'interieure des pépins de la pomme d'api. <Bull. Sci. Soc. Philomatique Paris, Ann. 12, p. 141.
1833. Bohfman, Carl H.-Skandinaviska Pteromaliner. <Vetensk. Acad. Handl., pp. 329-380.
1879. Cameron, P.-On some new or little known British Hymenoptera. <Trans. Ent. Soc. Lond., pp. 107-119.
1912. Crawford, J. C.-Descriptions of new Hymenoptera No. 5. <Proc. U. S. Nat. Mus., vol. 43, pp. 163-188.
Change of the name Torymidæ to Collimanidæ.
1909. Crosby, Cyrus R.-On certain seed-infesting chalcis-flies. <Bul. 265, Cornell Univ., Coll. Agr., Dept. Ent., pp. 367-388, pls. 1-2, figs. 67-98.
Original notes on a number of seed-infesting chalcidids, with many figures.
1898. Dalla Torre, C. G. de.-Catalogus Hymenopterorum, vol. 5, pp. 285-287, 294.
1865. Guérin-Meneville, F. E.-Note sur un chalcidite sorti des pépins d'une pomme. <Ann. Ent. Soc. France, ser. 4, vol. 5, pp. 83-85.
Notes on Syntomaspis druparum.
1886. Horvath, G.-Syntomaspis diuparum Boh. <Rovartani Lapok, T. 3, pp. 125-127, pp. xviii-xix.
1895. Judeich, J. F., and Nitsche, H.-Die Chalcididen. <Lehrbuch der Mitteleuropäischen Forstinsektenkunde, Bd. I, pp. 703-704; Bd. II, p. 1339.
1906. MacDougall, R. Stewart.-- Megastigmus spermotrophus Wachtl, as an enemy of Douglas fir (Pseudotsuga taxifolia). <Trans. Roy. Scot. Arbor. Soc., vol. 19, pp. 52-65, 2 pls.
Notes on this species, with remarks on the habits of chalcidids in general.
1874. Mayr, Gustav.-Die europäischen Torymiden biologisch und systematisch bearbeitet. <Verh. zool.-bot. Ges. Wien, vol. 24, pp. 53-142.
1906. Mokrezecki, S.-Beitrag zur Kenntnís der Lebensweise von Syntomaspis pubescens Först., druparum (Boh.) Thoms. <Zeitschr. Wiss. Insektenbiol., vol. 11, pp. 390-392, figs. 1-2.
1857. Parfitt, Edward.-Description of a new hymenopterous insect, found amongst seeds of various species of pine in California. <Zool., pp. 55435544, 5629.
Original description of Megastigmus pinus.
1857. Parfitt, Edward.-Description of the male of Megastigrnus pinus. <Zool., p. 5721.
1848. Ratzeburg, J. T. C.-Die Ichneumonen der Forstinsekten, vol. 2, p. 182; vol. 3, p. 225, 1852.
1893. Riley, C. V.-Is Megastigmus phytophagic? <Proc. Ent. Soc. Wash., vol. 2, pp. 359-363.
1908. Rodzlanko, W. W.--Commentatio de Torymidis quarum laryæ in seminibus pomacearum vitam agunt.
A separate publication giving a review of the literature and some original observations on Syntomaspis druparum.
1879. Schlechtendal, D. H. R. von.-Entomologische Aufzeichnungen. <Jahresbr. ver. Naturk. Zwickau, pp. 21-29.
1888. Schlechtendal, D. H. R. von.-Über das vorkommen phytophager Schlupfwespen. <Zeitschr. Naturwissensch. Halle, ser. 4, vol. 7 (61), pp. 415-419. Records the rearing of Syntomaspis druparum from Cratægus.
1893. Wachtl, Fritz A.--Ein neuer Megastigmus als Samenverwüster von Pseudotsuga douglasii Carr. <Wien. Ent. Zeit., vol. 12, pp. 24-28, Tab. 1.

INDEX.

Abies ?, host of Pissodes burker.
Page.
Abies-
host of Pissodes 26, 43
host of Pissodes dubius 6
probable host of Pissodes utahensis. 45
Abres amabilis-
host of Megastigmus pinus 160
host of Megastigmus strobilobius. 150-160
Abies balsamea-
host of Pissodes dubius 36, 42, 63
host of Pissodes similis 32, 41, 42, 45
Abies concolor-
host of Megastigmus pinus 160
host of Pissodes piperi 36, 62
Abies excelsa, host of Megastigmus strobilobius. 160
Abies fraseri-
host of Pissodes fraseri. 36, 42, 63
host of Pissodes similis 32, 41, 42, 45
Abies grandis, host of Megastigmus pinus 160
Abies lasiocarpa-
host of Pissodes burkei 42, 62
host of Pissodes piperi 36, 42, 62
Abies magnifica, host of Megastigmus pinus 160
Abies mariesii, host of Megastigmus sp 159
Abies nobilis, host of Megastigmus pinus 160
Abies pectinata-
host of Megastigmus spp 158
host of Megastigmus strobilobius. 160
host of Pissodes picex. 6
Abies venusta, host of Megastigmus pinus. 160
Acanthocinus, larvæ studied by Webb 151
Acanthoderes, larvæ studied by Webb 151
Acanthoptenos $=$ Arge 105
Adobe wall, Lyctus californicus recorded breeding therein 131
Amelanchier canadensis, reported host of Hoplocampa (Hoplocampa) halcyon.. 145-146
Anthribidæ not Rhynchophora 9
Aomodyctium, a genus without a species. 103
Apple, host of Syntomaspis druparum 158
Apple-seed chalcidid. (See Syntomaspis druparum.)
Arge, Acanthoptenos a synonym. 105
Asemidæ-
family proposed 149
genera of larvæ studied by Webb 151
in table of families and genera of cerambycoid larvæ. 151, 155
25170-21-2 165
Asemum- Page.
In table of families and genera of cerambycoid larvæ 155
In table of larvæ by Perris 149
larvæ studied by Webb 151
Ash, mountain. (See Sorbus scandica and S. latifolia.)
Ash, seasoned-
infestation by Lyctus linearis. 132
infestation by Lyctus planicollis. 131
sapwood products infested by Lyctus parallelopipedus. 131
Atimia-
in table of families and genera of cerambycoid larvæ 155
larvæ studied by Webb 151
Bamboo-
infestation by Lyctoxylon japonum 132
seasoned, infestation by Lyctus carbonarius. 131
seasoned sapwood products infested by Lyctus parallelopipedus. 131
Bark weevils of the genus Pissodes 1-68
Bellamira-
in table of families and genera of cerambycoid larvæ. 154
larvæ studied by Webb 151
Bergiana=Syzygonia Klug 102
Bisulphid of carbon, remedy against Megastigmus spermotrophus. 161
Bitoma, reference to original description 112
Caliroa, synonymy 100-101
Callidium, larvæ studied by Webb 151
Callidium æreum, in table of families and genera of cerambycoid larvæ. 154
Callidium antennatum, in table of families and genera of cerambycoid larvæ 154
Caloptilia, Labidarge a synonym 103, 105
Caloptilia townsendi, description 105-106
Camponiscus =Platycampus 99
Calozarca=Parazarca 108
Catalogue of genotypes of sawflies and woodwasps 72-92
Cedrus deodara, host of Pissodes deodaræ 34, 41, 42, 53
Cephosoma $=$ Hartigia 98
Cerambycidæ-
genera of larvæ studied by Webb. 151
in table of families and genera of cerambycoid larvæ. 151, 153-154
family proposed 149
Cerambycoid larvæ, article 149-155
Cerambycoidea-
genera the larvæ of which were studied by Webb. 150-151
superfamily proposed 149
table of families and genera of larvæ 151-155
Cerobactrus = Hartigia 98
Chalcidids injurious to forest-tree seeds-
article. 157-163
bibliography 162-163
general life history 157-158
summary 162
Cherry, wild, seasoned, infested by Lyctus linearis. 132
Chion-
in table of families and genera of cerambycoid larvæ 153
larvæ studied by Webb 151
Cimbex, synonymy 101
Page.
Clavellarius $=$ Cimbex 101
Clavellaria Lamarck=Cimbex 101
Clavellaria Leach $=$ Pseudoclavellaria 101
Clytanthus-
in table of families and genera of cerambycoid larvæ 153
larvæ studied by Webb 151
Cockerellonis=Eriocampidea 109
Collimanidæ-
bibliographic reference 162
certain species phytophagic 157
Cotton stems, dead, infestation by Lyctus curtulus 131
Cratægus-
bibliographic reference. 163
host of Syntomaspis druparum 158
Criocephalus, in table of larvæ by Perris 149
Crosus = Nematus 99
Curculionidæ-
as restricted 10
characters 11
characters used by different authors 8
maxillary palpus 9
Curculionoidea-
characters 11
proposed for Curculionidæ of most authors. 10
Cyllene-
larvæ studied by Webb 151
(robiniæ, crinicornis, and antennatus) in table of families and genera of cerambycoia larvæ. 154
Crynips, erroneously considered bost of Megastigmus pinus. 160
Cyrtophorus-
in table of families and genera of cerambycoid larvæ. 153
larvæ studied by Webb 151
Dermestes linearis (see also Lyctus linearis)-
a lyctid, reference to original description 112
$=$ Lyctus linearis 125
Dermestes oblongus fuscus, a lyctid, description by Geoffroy 112
Dermestoides unipunctatus, a lyctid, placed in genus Bitoma, reference to origi- nal description 112
Diprion, Pteronus a synonym 98
Desmocerus-
in table of families and genera of cerambycoid larvæ. 154
larvæ studied by Webb 151
Diphadnus, Gymnonychus a synonym 100
Dorcaschema-
in table of families and genera of cerambycoid larvæ 152
larvæ studied by Webb 151Douglas fir. (See Pseudotsuga taxifolia.)Douglas fir seed chalcidid. (See Megastigmus spermatrophus.)Elaphidion-
in table of families and genera of cerambycoid larvæ 154
larvæ studied by Webb 151
Endelomyia = Caliroa 100-101
Ergates- Page.
in table of families and genera of cerambycoid larvæ 155
larvæ studied by Webb 151
Eriocampidea, Cockerellonis a synonym 109
Eriocampoides, synonomy 100-101Euderces-
in table of families and genera of cerambycoid larvæ 153
larvæ studied by Webb 151
Eudocimus-
in key to genera of Hylobiinæ 10
statistical taxonomy 29
Eurytomidæ, certain species phytophagic 157
Eurytomini, certain species phytophagic 157
Fig, dead wood infested by Lyctus curtulus and L. parallelopipedus. 131
Fir, amabilis. (See Abies amabilis.)
Fir, bristle-cone. (See Abies venusta.)
Fir, Douglas (see also Pseudotsuga taxifolia-food plant of Megastigmus spermotrophus158
Fir, grand. (See Abies grandis.)Fir, noble. (See Abies nobilis.)Fir, Shasta. (See Abies magnifica.)Fir, silver. (See Abies pectinata.)Fir, white. (See Abies concolor.)
Forest-tree seeds-
chalcidids injurious thereto, bibliography 162-163
chalcidids injurious thereto, paper 157-163
Goes-
in table of families and genera of cerambycoid larvæ 152
larvæ studied by Webb 151
Grape, host of Evoxysoma vitis 158
Grape-seed chalcidid. (See Evoxysoma vitis.)
Grapevines, dead, infestation by Lyctus opaculus 131
Graphisurus-
in table of families and genera of cerambycoid larvæ 153
larvæ studied by Webb 151
Gymniopterus, type species lost 103
Gymnonychus=Diphadnus 100
Hackberry, dead wood infested by Lyctus curtulus. 131
Hartigia, synonyms. 98
Hawthorn. (See Cratægus.)
Hemlock, Hooker. (See Tsuga mertensiana hookeriana.)
Hickory, seasoned-
infestation by Lyctus cavicollis 131
infestation by Lyctus linearis. 132
infestation by Lyctus planicollis 131
sapwood products infested by Lyctus parallelopipedus 131
Hilipus-
in key to genera of Hylobiinæ 10
statistical taxonomy 29
Hilipus choicus, Pissodes choicus a synonym 5
Hilipus erythrorhynchus, Pissodes erythrorhynchus a synonym 5
Hilipus flammiger, Pissodes flammiger a synonym 5
Hilipus onychinus, Pissodes onychinus a synonym 5
Hilipus picturatus, Pissodes picturatus a synonym 5
Page
Hilipus polymitus, Pissodes polymitus a synonym 5
Hilipus prodigialis, Pissodes prodigialis a synonym 5
Hilipus trachypterus, Pissodes trachypterus a synonym 5
Hopkins, A. D.-
paper, "Appendix. Notes on Habits and Distribution with List ofDescribed Species of the Family Lyctidæ".130-138
paper, ''Contributions toward a Monograph of the Bark-Weevils of the Genus Pissodes" 1-68
Hoplocampa-
article 139-148
description, corrected, of genus 141
distribution 139-140
synoptic table to the Nearctic species of the subgenus 147-148
Hoplocampa (?) atriceps, bibliographical reference, Strongylogaster uncus a synonym 147
Hoplocampa (Hoplocampa) alpestris-
female142
in table of species of subgenus 148
male 142
new species, description, type locality 142
Hoplocampa (Hoplocampa) bioculata- bibliographical reference 146
comparison with H. californica 143
distribution. 146
in table of species of subgenus. 147
male. 146
Hoplocampa (Hoplocampa) californica, female, male, type locality 143
Hoplocampa (Hoplocampa) halcyon-
bibliographical reference. 145
comparison with H. (H.) xantha 144
in table of species of subgenus 148
systematic notes, distribution, food plant. 145-146
Hoplocampa (Hoplocampa) koebelei-
comparison with H. orbitalis. 141
female 142
in table of species of subgenus 148
type locality 142
Hoplocampa (Hoplocampa) marlatti-
female 143
in table of species of subgenus 147-148
male 143
paratype locality, type locality 143
Hoplocampa (Hoplocampa) montanicola-
comparison with H. marlatti 143
comparison with H. (H.) nevadensis, H. (H.) occidentalis, and H. (H.) xantha 144
female 145
in table of species of subgenus 147, 148
male. 145
type locailty 145
Hoplocampa (Hoplocampa) nevadensis- Page.
female. 143
in table of species of subgenus 148
type locality 144
Hoplocampa (Hoplocampa) occidentalis- female 147, 148
male 144
paratype locality, type locality 145
Hoplocampa (Hoplocampa) orbitalis- female 141
in table of species of subgenus 148
Hoplocampa (Hoplocampa) pallipes- bibliographical reference, distribution 146
in table of species of subgenus 148
Hoplocampa (Hoplocampa) xantha- female 144
in table of species of subgenus 148
new species, description, type locality 144
Hoplocampa lacteipennis, comparison with H. (Macgillivrayella) pallida. 141
Hoplocampa lenis, a Lycaota 147
Hoplocampa (Macgillivrayella) lacteipennis, confused with H. (H.) halcyon 145
Hoplocampa (Macgillivrayella) pallida, distinguished from H. lacteipennis, female, type locality 141
Hoplocampa montana, a Zaschizonyx 147
Hoplocampa spissipes, a Lycaota 147
Hylobius, statistical taxonomy 29-30
Hylotoma biramosa, comparison with Neoptilia mexicana 107
Hylotrupes, larvæ studied by Webb 151
Hylotrupes bajulus, in table of families and genera of cerambycoid larvæ. 153
Hylotrupes (ligneus and amethystinus), in table of families and genera of ceram- bycoid larvæ 154
Hyperplatys-
in table of families and genera of cerambycoid larvæ 152
larvæ studied by Webb 151
Hypomolyx, in key to genera of Hylobiinæ 10
Hypotaxonus, a good subgenus 109
Ips oblonga, a lyctid, reference to original description 112
Index to genotypes of Tenthredinoidea 92-97
"Isogenotypic," definition of term 72
Isosoma, phytophagous habits 157
Kraus, E. J., paper, "A Revision of the Powder-Post Beetles of the Family Lyctidæ of the United States and Europe" 111-138
Labidarge $=$ Caloptilia 105
Lamiidæ, in table of families and genera of cerambycoid larvæ 151, 152-153
Larix-
host of Pissodes laricinus 7
host of Pissodes notatus. 6
host of Pissodes pini 7
species of Pissodes of which host 65, 66
Leptocercus=Platycampus 99
Leptopus=Platycampus 99
Leptostylus-
in table of families and genera of cerambycoid larvæ 152
larvæ studied by Webb 151
Leptura- Page.
in table of families and genera of cerambycoid larvæ 154
larvæ studied by Webb 151
Leptura nitens, in table of families and genera of cerambycoid larvæ 155
Lepturges-
in table of families and genera of cerambycoid larvæ 152
larvæ studied by Webb 151
Licorice roots, dead, infestation by Lyctus politus 131
Liopus-
in table of families and genera of cerambycoid larvæ. 152
larvæ studied by Webb 151
Live oak cordwood, infested by Lyctus cavicollis. 131
Locust, seasoned, infestation by Lyctus linearis 132
Locust. (See Robinia neomexicana.)
Lycaota, Hoplocampa lenis and H. spissipes belonging to that genus. 147
Lyctidæ-
article 111-138
bibliography 128
characters. 114-115
distribution 132-135
habits. 130-132
history of classification 112-114
list of described species, with synonymy 137-138
represented in collections examined by Kraus and Hopkins 136
revisional notes. 115-116
synopsis of the family by Thomson. 112-113
synopsis of the genera. 115
systematic notes 121-127
Lyctoxylon-
description 115
distribution of species. 135
habits of species. 132
in synopsis of genera of family 115
systematic notes on species. 126
Lyctoxylon japonum-
distribution. 135
habits. 132
in list of described species. 138
systematic notes. 126
Lyctoxylon jalnophx, in list of described species 138
Lyctus-
distribution of species 133-135
habits of species. 130-132
history 112-114
in synopsis of genera of family 115
list of described species. 137-138
synonyms, systematic notes on species 121-126
synopsis of species. 116-120
Lyctus æqualis, in list of described species. 137
Lyctus africanus, in list of described species 137
Lyctus brunneus-
comparison with L. politus 122
comparison with L. pubescens. 123
Lyctus brunneus-Continued. Page.
description. 118
distribution. 134
habits. 131
list of described species, synonyms 137
structural details 116
systematic notes, synonyms 123
Lyctus californicus-
comparison with L. curtulus 122
description 117-118
distribution. 133
habits 131
in list of described species 137
systematic notes 121
Lyctus carbonarius- 134-135
habits 131
in list of described species 137
(?) synonym of L. planicollis 124-125
Lyctus caucasicus, in list of described species 137
Lyctus cavicollis-
description 120
distribution, habits 131
in list of described species 137
systematic notes 124
Lyctus cinereus-
distribution, habits. 131
in list of described species 137
Lyctus cornifrons, in list of described species 137
Lyctus costatus, in list of described species 137
Lyctus curtulus-
comparison with L. californicus 121
description in synopsis of species of genus. 118
distribution 133
habits 131
in list of described species. 137
structural details 116
systematic notes 122
Lyctus depressicatus, in list of described species 137
Lyctus discedens, in list of described species. 137
Lyctus disputans, in list of described species 137
Lyctus fcericollis, in list of described species 137
Lyctus griseus, in list of described species 137
Lyctus hispidus, in list of described species 137
Lyctus impressus-
description in synopsis of species of genus 117
distribution 133
habits 130
in list of described species, synonyms 137
Lyctus impressus var. capitalis in list of described species. 137
Lyctus leococianus, in list of described species. 137
Lyctus linearis-
comparison with L. parvulus 125
comparison with L. suturalis 124
Lyctus linearis-Continued. Page.
description in synopsis of species of genus 120
distribution 135
habits. 132
in list of described species 137
systematic notes, synonyms 125-126
type of Lyctus 112
Lyctus longicornis, in list of described species. 137
Lyctus nitidicollis, in list of described species. 137
Lyctus opaculus-
comparison with L. parvulus 125
description in synopsis of species of genus 119
distribution 134
habits 131
in list of described species 138
systematic notes. 123-124
Lyctus parallelopipedus-
description, in synopsis of species of genus. 118
distribution 133
habits. 131
in list of described species. 138
systematic notes, synonyms. 121-122
Lyctus parvulus-
description in synopsis of species of genus 120
distribution. 135
habits. 131
in list of described species. 138
systematic notes 125
Lyctus planicollis-
bibliographic reference. 129
comparison with L. brunneus 123
comparison with L. cavicollis 124
comparison with L. parvulus 125
comparison with L. suturalis 124
description in synopsis of species of genus. 120
distribution 134
habits. 13^{1}
in list of described species 138
systematic notes, synonym 124-125
Lyctus politus-
comparison with L. brunneus 123
distribution 134
habits. 131
in list, of described species 138
n. sp., description in synopsis of species of genus. 118
new species, systematic notes. 122
Lyctus præustus-
distribution 133
habits. 131
in list of described species 138
Lyctus prostomoides, in list of described species 138
Lyctus pubescens- Page.
description in synopsis of species of genus 119
distribution 134
habits 131
in list of described species, synonyms 138
systematic notes, synonyms 123
Lyctus punctatus-
description in synopsis of species of genus 117
distribution 133
habits 130
in list of described species 138
systematic notes, synonym 121
Lyctus punctipennis, in list of described species 138
Lyctus recticolli, in list of described species. 138
Lyctus retractus, in list of described species 138
Lyctus simplex, in list of described species 138
Lyctus suturalis-
description in synopsis of species of genus 119
distribution 134
habits 131
in list of described species, synonym 138
systematic notes, synonym 124
Lyctus tomentosus, in list of described species. 138
Lyctus (Trogoxylon) californicus, structural details 116
Lyctus (Trogoxylon) impressus, structural details. 116
Lyctus (Xylotrogus) politus, structural details 116
Macgillivrayella, distribution, subgenus. 139
Macrocephus = Hartigia 98
Mallodon-
in table of families and genera of cerambycoid larvæ 155
larvæ studied by Webb 151
Manoxyela=Pleroneura 104
Marlattia, description, type species 108
Megastigminæ, certain species phytophagic 157
Megastigmus, no parasite known 158
Megastigmus brevicaudis, bibliography, distinguished from Syntomaspis dru- parum, habits, larva 159
Megastigmus D., bibliographic reference 159
Megastigmus pinus-
bibliography 160
bibliographic reference 163
habits 160
Megastigmus sp., reared from Abies mariesii, bibliography 159
Megastigmus spp.-
bibliography 155
destruction of seed of Abies pectinata, oviposition habit 158
Megastigmus spermotrophus-
bibliographic reference 163
comparison of larva of M. strobilobius therewith 160
destruction of Douglas fir seed 158
egg. 161
habits, host 160
injury, oviposition, remedy against 161
Page.
Megastigmus strobilobius, bibliography, recorded from Abies excelsa, A. pecti- nata, and Tsuga mertensiana hookeriana 160
Mesquite, dead wood infested by Lyctus curtulus 131
Mimosa, dead wood infested by Lyctus curtulus 131
Minthea-
description 115
distribution of species 135
habits of species 132
in synopsis of genera of family 115
synonym 126
systematic notes on species 126-127
Minthea rugicollis-
distribution135
habits 132
in list of described species, synonyms 138
systematic notes, synonyms. 127
Minthea stichothrix-
distribution. 135
habits 132
in list of described species, synonym 138
systematic notes, synonym 127
Monobasic, definition of term 72
Monohammus-
in table of families and genera of cerambycoid larvæ 152
larvæ studied by Webb 151
Mountain ash. (See Sorbus scandica and S. latifolia.)
Nearctic species of the subgenus Hoplocampa, synoptic table 147-148
Nematus-
Croesus a synonym. 99
Nematinus new name therefor. 99
Nematinus, new name for Nematus 99
Neoclytus-
in table of families and genera of cerambycoid larvæ 154
larvæ studied by Webb 151
Neoptilia, des̊cription, type species. 107
Neoptilia mexicana, description 107
Notorhina, larvæ studied by Webb 151
Oak, seasoned-
infestation by Lyctus carbonarius 131
infestation by Lyctus linearis 132
infestation by Lyctus planicollis 131
sapwood products infested by Lyctus parallelopipedus. 131
Oak, tanbark, infestation by Lyctus cavicollis 131
Eme-
in table of families and genera of cerambycoid larvæ 153
larvæ studied by Webb 151
Oncideres-
in table of families and genera of cerambycoid larvæ. 152
larvæ studied by Webb 151
Opisthoneura $=$ Zaschizonyx 108
Opsimus-
in table of families and genera of cerambycoid larvæ 153
larvæ studied by Webb 151
Page.
Orange wood, seasoned, infestation by Lyctus cavicollis 131
Orthosoma-
in table of families and genera of cerambycoid larvæ 155
larvæ studied by Webb 151
Osage orange, dead wood infested by Lyctus parallelopipedus 131
Pachylobius, in key to genera of Hylobiinæ 10
Paraplinthus-
in key to genera of Hylobiinæ 10
statistical taxonomy 29
Parasyzygonia-
in table of genera allied to Syzygonia 102
new name for Syzygonia Konow 102
Parazarca, description, synonymy 108
Parazarca fumipennis, description 108-109
Parkinsonia, dead wood infested by Lyctus curtulus 131
Perilampidæ, certain genera phytophagic 157
Persimmon-
seasoned, infestation by Lyctus planicollis 131
seasoned sapwood products infested by Lyctus parallelopipedus 131
Phymatodes-
in table of families and genera of cerambycoid larvæ 153
larvæ studied by Webb 151
Physocnemum-
in table of families and genera of cerambycoid larvæ 154
larvæ studied by Webb 151
Picea-
host of Pissodes 26, 43
host of Pissodes harcyniæ and H. notatus 6
host of Pissodes pini 7
host of Pissodes rotundatus 36, 61
host of Pissodes scrabricollis. 7
host of Pissodes strobi 33, 48
probable host of Pissodes barberi 46
probable host of Pissodes rotundatus 36, 42
species of Pissodes of which host 65, 66
Picea bracteata, confusion of Abies venusta therewith 160
Picea canadensis, host of Pissodes coloradensis 36, 61
Picea canadensis (?), host of Pissodes rotundatus 61
Picea engelmanni-
host of Pissodes alascensis 36, 61
host of Pissodes engelmanni 33, 41, 42, 48
probable host of Pissodes coloradensis 42, 61
Picea excelsa, host of Pissodes strobi 41, 42, 48
Picea mariana, host of Pissodes fiskei and P. nigræ. 35, 42, 59
Picea rubens-
host of Pissodes fiskei 35, 42, 59
host of Pissodes puncticollis. 35, 42, 60
host of Pissodes strobi 41, 42, 48
Picea rubens (?), host of Pissodes rotundatus 61
Picea sitchensis-
host of Pissodes costatus $35,41,42,57$
host of Pissodes sitchensis $33,41,42,47$
Picea sitchensis (?), host of Pissodes barberi. 41
Pine (see also Pinus)- Page.
probable host of Pissodes canadensis 51
'SPine (?)," host of Pissodes costatus 6
Pinus-
host of Pissodes 26, 43
host of Pissodes affinis 6
host of Pissodes approximatus 33
host of Pissodes laricinus 7
host of Pissodes nemorensis 34
host of Pissodes piniphilus. 7
probable host of Pissodes curriei 42, 65
Pinus banksiana. (See Pinus divaricata.)Pinus californicus, distribution.53
Pinus cembra, host of Pissodes cembræ 7
Pinus contorta. (See Pinus murrayana.)
Pinus divaricata, host tree of Pissodes strobi 41, 42, 48
Pinus echrnata-
host of Pissodes approximatus 41, 42, 49
host of Pissodes nemorensis 41, 42, 52
Pinus lambertiana, host of Pissodes yosemite 34, 41, 42, 54
Pinus murrayana (contorta), host of Pissodes webbi 41, 42, 54
Pinus murrayana, host of Pissodes murryanx 35, 60
Pinus palustris, host tree of Pissodes nemorensis. 41, 42, 52
Pinus ponderosa, host of Pissodes californicus 41, 42, 53
host of Pissodes schwarzi 41, 42
host of Pissodes webbi 34, 54
host of Pissodes yosemite. $34,41,42,54$
Pinus ponderosa scopulorum-
host of Pissodes schwarzi 33, 51
host of Pissodes webbi 34, 54
Pinus pungens, host of Pissodes approximatus 41, 42, 49
Pinus radiata, host of Pissodes radiatæ $34,41,42,56$
Pinus resinosa-
host of Pissodes approximatus 41, 42, 49
host of Pissodes strobi 33
Pinus rigida-
host of Pissodes approximatus 41, 42, 49
host of Pissodes strobi 41, 42, 48
Pinus scopulorum-
host of Pissodes schwarzi 33, 41, 42
host of Pissodes webbi. 41, 42, 54
Pinus sp., host of Pissodes approximatus 33,49
Pinus spp., host of Pissodes nemorensis 34, 52
Pinus strobiformis, host of Pissodes webbi $34,41,42,54$
Pinus strobus-
host of Pissodes affinis 37,42, 64
host of Pissodes approximatus 41, 42, 49
host of Pissodes notatus 6
host of Pissodes pini 7
host of Pissodes strobi. $33,41,42,48$
Pinus sylvestris-
host of Pissodes notatus 6
host of Pissodes pini 7
Pinus sylvestris-Continued. Page.
host of Pissodes radiatæ (rare) 56
host of Pissodes validirostris 7
Pinus tæda, host of Pissodes nemorensis. $41,42,52$
Pinus virginiana-
host of Pissodes approximatus 41, 42, 49
host of Pissodes nemorensis 41, 42, 52
Pissodes-
anatomical details. 12-23
article 1-68
bibliography 66-68
characters 11-12
characters common to species of genus 43
characters common to species of major and minor divisions. 43-65
characters, generic 9
characters, subordinal and family 8-9
characters, tribal and subfamily 8-9
classification, natural, of North American species 27-30
description, original, of genus, and translation 3-5
distribution, general 27
distribution, table 40-41
eggs 23
habits, general 26-27
historical references 2
host 26
host trees, table 42
key to the species. 30-32
larva. 23
life history 27
list of species 6-7
morphological and physiological characters and characteristics. 30
original description 3
pupa 25
relations of species to host trees, table 41-42
revised classification 10
species described before 1909, with recorded distribution 6
species, North American. 27-65
synopsis of adult characters 32
synopsis of larval characters 39-40
synopsis of primary sexual characters. 37
synopsis of pupal characters. 38-39
synopsis of secondary sexual characters 37-38
table showing relations of species to host trees. 41-42
table of distribution 40-41
taxonomy 8-25
Pissodes abietis $=$ P. pini, reference to original description, distribution 7
Pissodes affinis-
bibliography 64
description 37
distinctive characters, distribution, host 64
in list of described species. 66
variations. 64

INDEX. 179
Pissodes alascensis- Page.
description 36
distinctive characters, distribution, host 61
in key to species 31
Pissodes approximatus-
description. 33
distinctive characters 49
distribution 50
host trees. 49
in key to species. 30
variations. 49
Pissodes barberi-
description 32
distinctive characters. 45-46
distribution, host tree 46
in key to species 30
variations. 46
Pissodes burkei-
characters 62
description 36
distribution, host 62
in key to species 31
variations 62
Pissodes californicus-
description 34
distinctive characters, host 53
in key to species. 31
Pissodes canadensis-
description 34
distinctive characters, distribution, host 51
in key to species. 31
variations. 51
Pissodes cembrex-
in list of described species, habitat, host. 66
reference to original description, distribution. 7
Pissodes coloradensis-
description. 36
distinctive characters. 60
distribution, host 61
in key to species. 31
variations. 61
Pissodes costatus-
bibliography 57
description 35
distinctive characters, distribution 57
in key to species 31
variations. 57
Pissodes curriei-
description. 37
distinctive characters, distribution, host 65
in key to species 31
variations. 65
Pissodes deodaræ- Page.
description 34
distinctive characters, distribution, host 53
in key to species 31
variations 53
Pissodes dubius-
bibliography 63
description. 36
distinctive characters, distribution, host 63
in key to species 31
variations. 63
Pissodes engelmanni-
description 33
distinctive characters. 47-48
distribution, host. 48
in key to species. 30
variations 47
Pissodes fasciatus-
bibliography 56
description 34
distinctive characters, distribution, host. 56
in key to species. 31
variations. 56
Pissodes fiskei-
bibliography and synonymy 59
description 35
distinctive characters, distribution, host. 59
in key to species 31
variations 59
Pissodes fraseri-
description 36
distinctive characters, distribution, host 63
in key to species. 31
statistical taxonomy 29
variations 63
Pissodes gyllenhali-
in list of described species, habitat 66
reference to original description, distribution, synonym. 6
Pissodes harcynix-
in list of described species, habitat, host. 65
reference to original description, distribution, host, synonyms. 6
Pissodes insignatus-
in list of described species, habitat, hosts 66
reference to original description, distribution, synonym. 7
Pissodes irroratus-
in list of described species, habitat 66
reference to original description, distribution 7
Pissodes murrayanæ-
description 35
distinctive characters, distribution, host 60
Pissodes nemorensis-
bibliography and synonymy 52
description 4, 34
characters. 27
Pissodes nemorensis-Continued. Page.
distinctive characters 51-52
distribution, host 52
in key to species 31
variations 52
Pissodes nigrx-
description 35
distinctive characters, distribution, host 59
in key to species 31
variations 59
Pissodes notatus, in list of described species, habitat, hosts 65
Pissodes obscurus-
in list of described species, habitat 65
reference to original description, distribution 7
Pissodes fini, type of genus. 5
Pissodes picex-
in list of described species, habitat, host 66
reference to original description, distribution, host, synonyms 6
Pissodes pini-
in list of described species, habitat, hosts 66
reference to original description, distribution, hosts, synonyms 7
Pissodes piniphilus, in list of described species, habitat, host 66
Pissodes piperi-
description 36
distinctive characters, distribution, host 62
in key to species 31
variations 62
Pissodes puncticollis-description35
distinctive characters, distribution, host 60
in key to species 31
variations 60
Pissodes radiatr-
description 34
descriptive characters 55
distribution, host 56
in key to species 31
variations 55
Pissodes rotundatus-
bibliography 62
description 36
distinctive characters, distribution, host 61
in key to species 31
variations 61
Pissodes rotundicollis--
in list of described species habitat 66
reference to original description, distribution 7
Pissondes scabricollis-
in list of described species habitat, host 65
reference to original description, distribution, host 7
Pissodes schuarzi-
biblingraphy and synonymy 51
description 33
25170--20--3
Pissodes schwarzi-Continued. Page.
distinctive characters 50
distribution, host 51
in key to species 30
variations 50
Pissodes similis-
description 32
distinctive characters 44-45
in key to species 30
Pissodes sitchensis-
description. 33
descriptive characters, distribution, host 47
in key to species. 30
variations 47
Pissodes strobi-
bibliography and synonymy 49
description 33
distinctive characters, distribution, host 48
in key to species 30
statistical taxonomy 29
rariations. 48
Pissodes utahensis-
description 32
distinctive characters, host 45
in key to species 30
variation 45
Pissodes validirostris-
in list of described species, habitat, host 65
reference to original description, distribution, host, synonym 7
Pissodes webbi-
bibliography and synonymy 54
description 34
distinctive characters, distribution, host 54
in key to species 31
variations 54
Pissodes yosemite-
bibliography and synonymy 54
description 34
distinctive characters 53
distribution 54
in key to species 31
variations 54
Pissodinæ-
generic characters 11
statistical taxonomy 29
Pissodini-
subfamily, characters of Nüsslin 9
tribe, characters of Bedel 8-9
Platycampus, synonyms 99
Plectrura-
in table of families and genera of cerambycoid larvæ 152
larvæ studied by Webb 151
Pleroneura, Manoxyela a synonym 104
P'eroneura californica, description, synonym 104-105
Page.
Poplar, seasoned, infestation by Lyctus linearis 132
Powder-post beetles. (See Lyctidæ.)
Prionidæ-
family proposed 149
genera of larvæ studied by Webb 151
in table of families and genera of cerambycoid larvæ. 151, 155
Prionus-
in table of families and genera of cerambycoid larvæ 155
larvæ studied by Webb 151
Prodecatoma phytophaga, oviposition habits 158
Pseudocyphona, description, type species 106
Pseudocyphona mexicana, description 106
Pseudotsuga-
host of Pissodes 26, 43
species of Pissodes of which host 65
Pseudotsuga douglasii, bibliographic reference 163
Pseudotsuga mucronata (see also P. taxifolia) - host of Pissodes fasciatus 34, 42
Pseudotsuga taxifolia (see also P. mucronata)- bibliographic reference 163
host of Megastigmus spermotrophus. 160-161
host of Pissodes fasciatus. 41, 56
Pteroneura californica, description 104-105
Pteronidea, n. n. for Pteronus 98
Pteronus $=$ Diprion 98
Ptychodes-
in table of families and genera of cerambycoid larvæ 152
larvæ studied by Webb 151
Rhagium-
in table of families and genera of cerambycoid larvæ 154
larvæ studied by Webb 151
Robinia neomexicana, dead and dry wood infested by Lyctus parvulus. 131
Rohwer, S. A.-
paper, "Chalcidids Injurious to Forest-Tree Seeds" 157-163
paper, "Studies in the Sawfly Genus Hoplocampa", 139-148
paper, "The Genotypes of the Sawflies and Woodwasps, or the Super- family Tenthredinoidea" 69-109
Romaleum-
in table of families and genera of cerambycoid larvæ 154
larvæ studied by Webb 151
Roots, dried herbaceous, infestation by Lyctus brunneus 131
Rules of zoological nomenclature for the designation of type species of genera 71-72
Saperda-
in table of families and genera of cerambycoid larvæ 152
larvæ studied by Webb 151
Sassafras, dead wood infested by Lyctus parallelopipedus 131
Sawflies. (See Tenthredinoidea.)
Seed chalcidid of Virginia creeper. (See Prodecatoma phytophaga.)Selandria canadensis, bibliographic reference, systematic notes146
Selandria flavicornis, bibliographic reference, systematic notes 146
Smodicum- Page.
in table of families and genera of cerambycoid larvæ. 153
larvæ studied by Webb 151
Sorbus aucuparia, food plant of Megastigmus brevicaudis 159
Sorbus latifolia, host of Syntomaspis druparum 158
Sorbus scandica-
host of Megastigmus brevicaudis. 159
host of Syntomaspis druparum 158
Spondylis, in table of larvæ by Perris. 149
Statistical taxonomy of Pissodes 28-30
Strongylogaster uncus, Hoplocampa (?) atriceps a synonym 147
Sycamore, seasoned, infestation by Lyctus planicollis. 131
Synaphoeta-
in table of families and genera of cerambycoid larvæ 152
larvæ studied by Webb 151
Syntomaspis druparum-
bibliographic reference 159
destruction of apple seeds 158
distinguished from Megastigmus brevicaudis. 1 ั 9
life history in brief. 158
Syntomaspis pubescens, bibliographic reference. 163
Syzygonia- synonymy 101-102
in table of allied genera 102
Syzygonidea, in table of genera allied to Syzygonia 102
Tanbark oak, infestation by Lyctus cavicollis 131
Tenthredinoidea-
alphabetical list of genera described by William H. Ashmead, with determined synonymy 103-104
article. 69-109
bibliography of more important writings of William H. Ashmead 104
catalogue of genotypes. 72-92
genotype index 92-97
genotypes. 69-109
synonyms of certain genera. 98-102
work of William H. Ashmead 102-109
Tenthredo (Allantus) obtusa, bibliographical reference, not a Hoplocampa. 147
Tetropium -
in table of families and genera of cerambycoid larvæ. 155
in table of larvæ by Perris 149
larvæ studied by Webb 151
Tortrix strobilotina, erroneously considered host of Megastigmus strobilobius. 159
Torymidæe (see also Collimanidæ)-
bibliographic reference 162
Tragosoma-
in table of families and genera of cerambycoid larvæ. 155
larvæ studied by Webb. 151
Tsuga mertensiana hookeriana, host of Megastigmus strobilobius 160
Tsuga sp., food plant of Megastigmus pinus 160
Tylonotus-
in table of families and genera of cerambycoid larvæ. 153
larvæ studied by Webb. 151
Ulochretes- Page.
in table of families and genera of cerambycoid larvæ 155
larvæ studied by Webb 151
U mbrella handle, Lyctus impressus found therein. 130
Virginia creeper chalcidid. (See Prodecatoma phytophaga.)
Virginia creeper, host of Prodecatoma phytophaga 158
Walking stick, infestation by Lyctoxylon japonum 132
Walnut, seasoned, infestation by Lyctus linearis 132
Webb, J. L., paper, "A Preliminary Synopsis of Cerambycoid Larvæ" 149-155
Wood, seasoned. infestation by Lyctus brunneus 131
Woodwasps. (See Tenthredinoidea.)Xylotrechus. larvæ studied by Webb151
Xylotrogus brumneus, reference to original description of genus and species 112
Xylotrogus parallelopipedus. (See Trogoxylon parallelopipedus.)
Zoological nomenclature, rules of international commission for designation of type species of genera 71-72

Technical Series, No. 20.
U. S. DEPARTMENT OF AGRICULTURE, BUREAU OF ENTOMOIOGI.
L. O. HOWARD. Entomologist and Chief of Bureau.

TECHNICAL PAPERS 0N MISCELLANE0US F0REST INSECTS.

CONTENTS AND INDEX.

Issued February 12, 1921.

[^0]: aFrom "Insectorum species novæ," by E. F. Germar, vol. 1 (Coleoptera), pp. 316-

[^1]: a For anatomical nomenclature, see Technical Series 17, Part I, Bureau of Entomology, U. S. Dept. of Agriculture, 1909.

[^2]: a For anatomical nomenclature, see Hopkins. 1909. pp. 57-64.

[^3]: a Measurements up to 10 mm . may be made by means of a microscope with a micrometer eyepiece and a 2 -inch objective, the tube adjusted so that each division in - the micrometer scale equals five one-hundredths of a millimeter.

[^4]: ${ }^{a}$ N orth American species are numbered; foreign species are without numbers.

[^5]: ${ }^{a}$ Address Bureau of Entomology, Department of Agriculture, Washington, D. C.

[^6]: a Bul. no. 24, Hygienic Laboratory, Public Health and Marine-Hospital Service of United States, September, 1905.
 b See synonyms of Hartigia Schiodte and Boie, p. 80.
 c Considérations Générales sur l'Ordre Naturel des Animaux composant les Classes des Crustacés, des Arachnides et des Insectes, Paris, 1810.
 ${ }^{d}$ Science, n. s. vol. 31, no. 787, p. 150, January 28, 1910.
 e Published as an appendix to "An Introduction to the Modern Classification of Insects," vol. 2, London, 1840.
 f Synopsis, p. 1, footnote.
 g Science, n. s. vol. 26, no. 668, p. 521, October 18, 1907.

[^7]: ${ }^{a}$ Histoire Naturelle des Insectes. Hyménoptères, vol. 4, Paris, November, 1846.
 ${ }^{b}$ Entomologist, vol. 27, pp. 339-340, 1894.
 c See Science, n. s. vol. 26, no. 668, pp. 521-522, October 18, 1907.

[^8]: ${ }^{a}$ The first visible ventral segment in the Lyctidæ is the third abdominal sternite. (See Hopkins, Tech. Ser. 17, Pt. I, Bur. Ent., U. S. Dept. Agr., p. 55, fig. 38, 1909.)

[^9]: Xylotrogus parallelopipedus Melsheimer, 1844, p. 112.
 Trogoxylon parallelopipedum (Melsheimer) Le Conte, 1861, p. 209; Le Conte and Horn, 1883, p. 229.
 Lyctus parallelopipedus (Melsheimer) Casey, 1891, p. 13.

[^10]: Minthea Pascoe, 1863, p. 97; Reitter, 1906, p. 423.
 Lyctopholis Reitter, 1878, p. 196; Everts, 1899, p. 565.

[^11]: ${ }^{a}$ This portion of the paper was prepared some months after Mr. Kraus submitted his manuscript and includes data on additional specimens.
 ${ }^{b}$ The primary and secondary divisions, sections, and genus are included under "habits" and "distribution" in order to aid in the comparison of facts concerning allied groups and species.

[^12]: a Can. Ent., vol. 42, pp. 242-244, July, 1910.

[^13]: ${ }^{a}$ Can. Ent., vol. 42, p. 242, July, 1910. b Can. Ent., vol. 42, p. 243, July, 1910.

[^14]: ${ }^{a}$ Zeitschr. syst. Hym. Dipt., vol. 1, p, 174, 1901; or Syst. Zusam. Chalastogastra, p. 46, 1901.

[^15]: a Catalogue of the described Tenthredinidæ and Uroceridæ of North America. <Trans. Amer. Ent. Soc., vol. 1, p. 252, 1867 (catalogue, p. 119).
 ${ }^{b}$ Add. Fauna Ent. Can., pt. 2, p. 351, 1888.

[^16]: ${ }^{a}$ To determine this the hypopygidium should be viewed at right angles. When the hypopygidium is not regularly rounded, the sides are subparallel and the apex slopes off obliquely to an angulate middle.

[^17]: ${ }^{1}$ Transferred to Southern Field Crop Insect Investigations.

[^18]: ${ }^{1}$ De Metamorphosi Eleutheratorum Observationes: Bidrag til Insekternes Udviklingshistorie ved J. C. Schiddte.

[^19]: ADDITIONAL COPIES of this publication A may be procured from the SUPERINTENDent of Documents, Government Printing Office, Washington, D. C., at 5 cents per copy.

[^20]: ADDITIONAL COPIES of this publication
 A may be procured from the SUPERINTENDent of Documents, Government Printing Office, Washington, D. C. , at 5 cents per copy

[^21]: ${ }^{1}$ Although certain hymenopterous insects belonging to the superfamily Chalcidoidea have been shown to be very injurious to the seeds of certain forest trees, very little work has been done on these insects in America. The present paper is a résumé of the literature which deals with these insects, with a bibliography of the literature. It is prepared to facilitate the work of field men and to call the attention of entomologists in general to the damage done by these insects.

