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PREFACE

Five years of extensive use of this book, since the appearance of

the first edition, have brought to the authors from various sources

numerous suggestions relating to its improvement. In particular the

authors wish to acknowledge their indebtedness to Professor Irving P.

Church of Cornell University and to Professor George R Chatburn of

the University of Nebraska for their unfailing interest and frequent

valuable suggestions.

To utilize the material so obtained, the text has been thoroughly

revised. In making this revision the aim of the authors has been

twofold: first, to keep the text abreast of the most recent practical

developments of the subject; and second, to simplify the method

of presentation so as to make the subject easily intelligible to the

average technical student of junior grade, as well as to lessen the

work of instruction.

Besides correcting the errors inevitable to a first edition, special

attention has been given to amplifying the explanation wherever ex-

perience in using the book as a text has indicated it to be desirable.

This applies especially to the articles on Poisson's ratio, the theorem

of three moments, the calculation of the stress in curved members,

the relation of Guest's and Eankine's formulas to the design of shafts

subjected to combined stresses, etc.

Considerable new material has also been added. In Part I a set

of tables has been placed at the beginning of the volume to facilitate

numerical calculations. Other important additions are articles on

the design of reenforced concrete beams, shrinkage and forced fits, the

design of eccentrically loaded columns, the design and efficiency of

riveted joints, the general theory of the torsion of springs, practical

formulas for the collapse of tubes, and an extension of the method of

least work to a wide variety of practical problems. This last includes

265507



vi STRENGTH OF MATERIALS

the derivation and application of the Fraenkel formula for the bending

deflection of beams, and also a simple general formula for the shearing

deflection of beams, never before published.

Nearly one hundred and fifty original problems have also been

added to Part I. These problems are designed not merely to provide

numerical exercises on the text, but have been selected throughout

with the specific purpose of emphasizing the practical importance of

the subject and extending the range of its application as widely as

possible. Many of them are practical shop problems brought up by
students in the cooperative engineering course at the University of

Cincinnati.

In Part II the recent advances in the manufacture of steel have

been given special attention, including the properties of vanadium

steel, manganese steel, and high-speed steel. Reenforced concrete

has also received a more adequate treatment, and the chapter on this

subject has been thoroughly revised and modernized. The chapter on

timber has also received an equally thorough revision, and considerable

material on preservative processes has been added.

In both the first edition and the present revision, Part I, covering

the analytical treatment of the subject, is the work of S. E. Slocum,

and Part II, presenting the experimental or laboratory side, is the

work of E. L Hancock.
TH AUTHORg
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PART I

MECHANICS OF MATERIALS

CHAPTER I

ELASTIC PROPERTIES OF MATERIALS

1. Introductory. In mechanics all bodies considered are assumed

to be perfectly rigid; that is to say, it is assumed that no matter

what system of forces acts on a body, the distance between any two

points of the body remains unchanged.

It has been found by experiment, however, that the behavior of

natural bodies does not verify this assumption. Thus experiment

shows that when a body formed of any substance whatever is acted

upon by external forces it changes its shape more or less, and that

when this change of shape becomes sufficiently great the body breaks.

It has also been found that the amount of change in shape necessary

to cause rupture depends on the material of which the body is made.

For instance, a piece of vulcanized rubber will stretch about eight

times its own length before breaking, while if a piece of steel is

stretched until it breaks, the elongation preceding rupture is only

from y
1
^ to ^ of its original length.

2. Subject-matter of the strength of materials. Since the assump-

tion of rigidity upon which mechanics is based cannot be extended

to natural bodies, mathematical analysis alone is not sufficient to

determine the strength of any given structure. A knowledge of the

physical properties peculiar to the material of which the structure is

made is also essential.

The subject-matter of the strength of materials, therefore, consists

of two parts. First, a mathematical theory of the relation between

the external forces which act on a body and its resultant change of

shape, by means of which the direction and intensity of the forces

acting at any point of the body may be calculated
; and, second, an

1
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experimental determination of the physical properties, such as

strength and elasticity, of the various materials used in construction.

Although it is convenient to divide the subject in this way, it

must be understood that the two parts are, in reality, inseparable ;
for

the mathematical discussion involves physical constants which can

be found only by experiment, while, on the other hand, experiment
alone is powerless to determine the form which should be given to

construction members in order to secure efficiency of design with

economy of material.

3. Stress, strain, and deformation. Whenever an external force

acts on a body it creates a resisting force within the body. This, in

fact, is simply another way of stating Newton's third law of motion,

that to every action there exists a reaction equal in magnitude and

opposite in direction. This internal resistance is due to innumerable

small forces of attraction exerted between the molecules of the body,

called " molecular forces," or stresses. A body subjected to the action

of stress is said to be strained, and the resulting change in shape is

called the deformation.

For example, suppose a copper wire 40 in. long supports a weight of 10 Ib. and

is stretched by this weight so that its length becomes 40.1 in. Then the sum of

the stresses acting on any cross section of the wire is 10 Ib.
,
and the effect of this

stress is to strain the wire until its deformation, or increase in length, is . 1 in.

4. Tension, compression, and shear. In order to determine the

relation between the stresses at any point in a solid body, only a

small portion of the body is considered at a time, say an infinitesimal

cube. This small cube is then assumed to act like a rigid body, and

the relations between the stresses which act on it are determined by
means of the conditions of equilibrium deduced in mechanics.

By the principle of the resolution of forces, the stresses acting on

any face of such an elementary cube can be analyzed into two com-

ponents, one perpendicular to the face of the cube and the other

lying in the plane of the face. That component of the stress which

is perpendicular to the face of the cube is called the normal stress.

If the normal stress pulls on the cube, and thus tends to increase its

dimensions, it is called tension; if it pushes on the cube, and thus

tends to decrease its dimensions, it is called compression. Tension is

indicated by the sign -f and compression by the sign .
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That component of the stress which lies in the plane of the face

tends to slide this face past the adjoining portion of the body, and

for this reason is called the shear, since its action resembles that of a

pair of scissors or shears.

5. Unit stress. If the total stress acting on any cross section of

a body is divided by the area of the cross section, the result is the

stress per unit of area, or unit stress. In what follows p will be used

to denote the unit normal stress and q to denote the unit shear.

Thus if a bar 2 in. square is stretched by a force of 800 lb., the

unit normal stress is

800 lb.

4 in.
5

= +2001b./in.
2 *

If a rod is subjected to tension, it is customary to assume that the

stress is uniformly distributed over any cross section of the rod.

This assumption, however, is only approximately correct
;

for if two

parallel lines are drawn near the center of a

rubber test piece, as ab and cd in Fig. 1, A, it

is found that when the test piece is subjected

to tension these two lines become convex

toward one another, as indicated in Fig. 1, B,

showing that the tensile stress is greater near

the edges of the piece than at the center. In

such a case of nonuniform distribution of

stress, the smaller the area considered the

nearer the unit stress approaches its true

value. That is to say, if AP is the stress acting on a small area

, then, in the notation of the calculus,

AP dP

FIG. 1

Problem 1. A post 1 ft. in diameter supports a load of one ton.f Assuming
that the stress is uniformly distributed over any cross section, find the unit

normal stress.

Problem 2. A shearing force of 50 lb. is uniformly distributed over an area

4 in. square. Find the unit shear.

* For the sake of brevity and clearness all dimensions in this book will be expressed
as above

;
that is,

"
lb. per sq. in." will be written "

lb. /in.'
2
," etc.

t Throughout this book the word " ton "
is used to denote the net ton of 2000 lb.



4 STKENGTH OF MATEEIALS

6. Unit deformation. If a bar of length I is subjected to tension

or compression, its length is increased or diminished by a certain

amount, say A. The ratio of this change in length to the original

length of the bar is called the unit deformation, and will be denoted

by s. Thus A^
S =

T'

In other words, the unit deformation is the elongation or contraction

per unit of length, or the percentage of deformation, and s is there-

fore an abstract number.

Problem 3. A copper wire 100 ft. long and .025 in. in diameter stretches 2.16 in.

when pulled by a force of 15 Ib. Find the unit elongation.

Problem 4. If the wire in Problem 3 was 250 ft. long, how much would it

lengthen under the same pull ?

Problem 5. A vertical wooden post 30 ft. long and 8 in. square shortens

.00374 in. under a load of half a ton. What is its unit contraction?

7. Strain diagrams. As mentioned in Article 1, experiment has

shown that the effect of the action of external forces upon a body is

to produce a change in its shape. If the body returns to its original

shape when these external forces are removed it is said to be elastic,

whereas if it remains deformed it is said to be plastic.

For instance, the steel hairspring of a watch is an example of an

elastic body, for although it is compressed thousands of times daily

it returns each time to its original shape when the compressive force

is removed. Wood, iron, glass, and ivory are other examples of elastic

substances.

As examples of plastic bodies may be taken such substances as

putty, lead, and wet clay, for such materials retain any shape into

which they may be pressed.

It has been found by experiment that most of the materials used

in engineering are almost perfectly elastic, if the forces acting on

them are not too large. That is to say, if the external forces do not

surpass a certain limit, the permanent deformation, although not

zero, is so small as to be negligible. If, however, the external forces

gradually increase, there comes a time when the body no longer

regains its original form completely upon removal of the stress, but

takes a permanent "set" due to plastic deformation. If the exter-

nal forces increase beyond this point, the permanent (or plastic)
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deformation also increases
; or, in other words, the tendency of the

body to return to its original form grows less and less until rupture
occurs.

For example, suppose that a rod of steel or wrought iron is

stretched by a tensile force applied at its ends. Then if the unit

tensile forces acting on the rod are plotted as ordinates and the cor-

responding unit elongations of the rod as abscissas, a curve will be

obtained, as shown in Fig. 2.*

Consider the curve for wrought iron obtained in this way. For

stresses less than a certain amount, indicated by the ordinate at A in

00
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to take place. At this stage of the experiment, indicated by C on the

diagram, the material in the neighborhood of the place where rupture

is to occur begins to draw out very rapidly, and in consequence the

cross section of the piece diminishes at this point until rupture occurs.

Within the portion OA of the strain diagram the stress is pro-

portional to the deformation produced, and the material may be con-

sidered to be perfectly elastic. For this reason the point A, which is

the limit of proportionality of stress to deformation, is called the

elastic limit The point B, at which the first signs of weakening occur,

is called the yield point

In commercial testing the tests are usually conducted so hurriedly

that the position of the point A is not noted, and consequently the

yield point is often called the elastic limit. The yield point, however,

is not the true elastic limit, because plastic deformation begins to be

manifested before this point is reached, namely, as soon as the stress

passes A.

At C the tangent to the strain curve is horizontal. Therefore the

ordinate at this point indicates the maximum stress preceding rup-

ture, which is called the ultimate strength of the material.

8. Hooke's law and Young's modulus. The fact that within the

elastic limit the deformation of a body is proportional to the stress

producing it was discovered in 1678 by Robert Hooke, and is there-

fore known as Hooke's law. It can be stated by saying that the ratio

of the unit stress to the unit deformation is a constant
; or, expressed

as a formula,
P _
7 = E>

where E is a constant called the modulus of elasticity. E is also called

Young's modulus, from the name of the first scientist who made any

practical use of it.

Since s is an abstract number, E has the same dimensions as p
and is therefore expressed in lb./in.

2

Geometrically E is the slope

of the line OA in Fig. 2,

The answers given to the following problems were obtained by

using the average values of Young's modulus given in Table I.

Problem 6. A steel cable 500 ft. long and 1 in. in diameter is pulled by a force

of 26 tons. How much does it stretch, and what is its unit elongation ?
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Problem 7. A copper wire 10 ft. long and .04 in. in diameter is tested and found

to stretch .289 in. under a pull of 50 Ib. What is the value of Young's modulus

for copper deduced from this experiment ?

Problem 8. A round cast-iron pillar 18 ft. high and 10 in. in diameter sup-

ports a load of 12 tons. How much does it shorten, and what is its unit con-

traction ?

Problem 9. A wrought-iron bar 20 ft. long and 1 in. square is stretched .266 in.

What is the force acting on it ?

9. Poisson's ratio. It has been found by experiment that when

a rod is subjected to tension or compression its transverse dimensions

are changed as well as its length. For instance, if a round rod is in

tension, it increases in length and decreases in diameter, whereas, if

the rod is compressed, it decreases in length and increases in diam-

eter. Experiment has also shown that this lateral contraction or

expansion is proportional to the change in length of the bar; that

is to say, the ratio of the unit lateral deformation to the unit change

in length is constant, say This constant is called Poisson's ratio.m
from the name of its originator.

Poisson's ratio varies somewhat for different materials, but ordi-

narily lies between
J-

and
|.

Values of this ratio for a number of

materials are given in Table I.

Problem 10. What is the lateral contraction of the bar in Problem 9 ?

Problem 11. A soft steel cylinder 1 ft. high and 2 in. in diameter bears a

weight of 75 tons. How much is its diameter increased ?

10. Ultimate strength. From the definition given in Article 7,

the ultimate strength of a body is the greatest unit stress it can stand

without breaking. In calculating the ultimate strength no account

is taken of the lateral contraction or expansion of the body, the ulti-

mate strength being denned as the breaking load divided by the

original area of a cross section of the piece before strain. The reason

for this arbitrary definition of the ultimate strength is that the actual

load on any member of an engineering structure usually lies within

the elastic limit of the material, and within this limit the change
in area of a cross section of the member is so small that it can be

neglected.

Tabulated values of the ultimate strength of various materials in

tension, compression, and shear are given in Table I.
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Problem 12. How great a pull can a copper wire .2 in. in diameter stand with-

out breaking ?

Problem 13. How large must a square wrought-iron bar be made to stand a

pull of 3000 lb.?

Problem 14. A mild steel plate is J in. thick. How wide must it be to stand a

pull of 1 ton ?

Problem 15. A round wooden post is 6 in. in diameter. How great a load will

it bear ?

11. Elastic law. Certain substances, notably cast iron, stone,

cement, and concrete, do not conform to Hooke's law, in that the

deformation is not proportional to the stress which produces it.

Consequently, for such substances the strain diagram is nowhere a

straight line, but is curved throughout, as shown in the curve for

cast iron in Fig. 2. In this case the modulus of elasticity changes

from point to point.

In the reports of the U. S. Testing Laboratory at the Watertown

Arsenal, the modulus of elasticity is defined as the quotient of the

unit stress by the unit deformation minus the permanent set. Thus,

if s
r denotes the permanent set, this definition makes E = *- -

s s

Numerous attempts have been made to determine the equation

of the strain curve for various materials which do not conform to

Hooke's law, and a corresponding number of formulas, or elastic laws,

have been proposed. The one which agrees best with experiment is

the exponential law, expressed by the formula

s = vp*,

where v and cr are constants determined by experiment. From Bach's

experiments the values of v and cr were found to be such that

for cast iron in tension, s =
24)26

1

8>000 P
l ' 6 6 3

5

for cast iron in compression, s =
18>46

1

9>200 P
1 ' 3 9 6

>

the unit stress p being expressed in lb./in.
2

However, all such elastic laws are at best merely interpolation

formulas which are approximately true within the limits of the

experiments from which they were obtained. For this reason it is

best to carry out all investigations in the strength of materials

under the assumption of Hooke's law, and then modify the results

by a factor of safety, as explained in Article 21.
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12. Classification of materials. Materials ordinarily used in engi-

neering construction may be divided into three classes, plastic,

supple, and elastic.

Plastic materials are characterized by their inability to resist stress

without receiving permanent deformation. Examples of such mate-

rials are lead, wet clay, mortar before setting, etc.

Supple bodies are characterized by their lack of stiffness. In other

words, supple bodies are capable of undergoing large amounts of

elastic deformation without receiving any plastic deformation. In

this respect plastic and supple bodies exhibit the two extremes of

physical behavior. Examples of supple bodies are rubber, copper,

rope, cables, textile fabrics, etc.

Elastic bodies comprise all the hard and rigid substances, such

as iron, steel, wood, glass, stone, etc. For such bodies the plastic

deformation for any stress within the elastic limit is so small as

to be negligible ;
but when the stress surpasses this limit the plastic

deformation becomes measurable and gradually increases until rup-

ture occurs. This permanent deformation is the outward manifes-

tation of a change in the molecular arrangement of the body. For

a stress within the elastic limit the forces of attraction between the

molecules are sufficiently great to hold the molecules in equilibrium ;

but when the stress surpasses the elastic limit, the molecular forces

can no longer maintain equilibrium and a change in the relation

between the molecules of the body takes place, which results in the

body taking a permanent set.

Eigid bodies have the character of supple bodies when one of

their dimensions is very small as compared with the others. An
instance of this is the flexibility of an iron or steel wire whose

length is very great as compared with its diameter. Furthermore,

rigid bodies behave like plastic bodies when their temperature is

raised to a certain point. For example, when iron and steel are

heated to a cherry redness- they become plastic and acquire the

property of uniting by contact.

13. Time effect. It has been found by experiment that elastic

deformation is manifested simultaneously with the application of a

stress, but that plastic deformation does not appear until much later.

Thus if a constant load acts for a considerable time, the deformation
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gradually increases; and when the load is removed the return of

the body to its original configuration is also gradual. This phenom-
enon of the deformation lagging behind the stress which produces
it is called hysteresis. The gradual increase in the deformation

under constant stress is also called the flow of the material; and

the gradual return of the body to its original shape upon removal

of the stress is known as elastic afterwork. This gradual flow which

occurs under constant stress approaches a limit if the stress lies

below the elastic limit, but continues up to fracture if the stress is

sufficiently great.

14. Fatigue of metals. If a stress lies well within the elastic limit,

it can be removed and repeated as often as desired without causing

rupture. If, however, a metal is stressed beyond the elastic limit,

and this stress is removed and repeated, or alternates between tension

and compression, a sufficient number of times, it will eventually cause

rupture. This phenomenon is known as the fatigue of metals, and has

been made the subject of laborious experiment by Wbhler, Bauschin-

ger, and others. The results of their experiments show that the less

the range of variation of stress, the greater the number of repetitions

or reversals of stress necessary to produce rupture. Among other

results Bauschinger found that for cast iron with an ultimate ten-

sile strength of 64,100 lb./in.
2
,
the maximum tensile stress which

could be removed and repeated indefinitely without causing rupture

was 35,300 lb./in.
2

;
and that the maximum stress which could be

alternated indefinitely between tension and compression of equal

amounts without causing rupture was 29,100 lb./in.
2 For other

kinds of iron and steel Bauschinger obtained similar results, the

limit of reversible stress in each case agreeing closely with the elastic

limit. From this we conclude that the elastic limit of a material is

much more important than its ultimate strength in determining the

stability of an engineering structure of which it forms a part.

The fatigue of metals indicates that dislocation of matter begins

to be produced as soon as the elastic limit is passed, and continues

under the action of relatively small forces. This is confirmed by the

well-known fact that if, as the result of a blow, a fissure or crack is

started in a piece of glass or cast iron, this fissure will spread with-

out any apparent cause until the piece breaks in two, the only way
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of stopping this tendency to spread being by boring a small hole at

either end of the fissure.

The explanation of the above is that for stresses within the elastic

limit the temperature of the body is not raised, and consequently all

the work of deformation is stored up in the body to be given out

again in the form of mechanical energy upon removal of the stress.

If, however, the elastic limit is surpassed, the friction of the mole-

cules sliding on each other generates a certain amount of heat, and

the energy thus transformed into heat is not available for restoring

the body to its original configuration.

15. Hardening effects of overstraining. When such materials as

iron and steel are stressed beyond the elastic limit, it is found upon

removal of the stress that the effect of this overstrain is a hardening

of the material, and that this hardening increases indefinitely with

time. For example, if a plate of soft steel is cold punched, the

material surrounding the hole is severely strained. After an interval

of rest the effects of this overstrain is manifested in a hardening of

the material which continues to increase for months. If the plate is

subsequently stressed, the inability of the portion .overstrained to

yield with the rest of the plate causes the stress to be concentrated

on these portions, and results in a serious weakening of the plate.

Other practical instances of hardening due to overstrain are found

in plates subjected to shearing and planing, armor plates pierced by

cannon balls, plates and bars rolled, hammered, or bent when cold,

wire cold drawn, etc.

16. Fragility. In the solidification of melted bodies different

parts are unequally contracted or expanded. This gives rise to in-

ternal stresses, or what is called latent molecular action, and puts the

body in a state of strain without the application of any external

forces. For instance, if a drop of melted glass is allowed to fall into

water, the outside of the drop is instantly cooled and consequently

contracted, while the inside still remains molten. Since the part

within cannot contract while molten, the contraction of the outside

causes such large internal stresses that the glass is shattered.

Bodies in which latent molecular action exists have the character

of an explosive, in that they are capable of standing a large static

stress but are easily broken by a blow, and for this reason they are
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called brittle or fragile. The explanation of fragility is that the vibra-

tions caused by a blow are reinforced by the latent internal stresses

until rupture ensues.

17. Initial internal stress. In certain bodies, such as cast iron,

stone, and cement, a state of internal stress may exist without the

application of any external force. This initial internal stress may be

the result of deformation caused by previously applied loads, or may
be occasioned by temperature changes, as mentioned in the preceding

article. The first load applied to such bodies gives them a slight

permanent deformation, but under subsequent loads their behavior

is completely elastic. The first load, in this case, serves to relieve

the strain due to initial internal stress, and consequently the behavior

of the body under subsequent loads is normal. A body which is free

from internal stress is said to be in a " state of ease," a term which

is due to Professor Karl Pearson.

18. Annealing. The process of annealing metals consists in heat-

ing them to a cherry redness and then allowing them to cool slowly.

The effect of this process is to relieve any initial internal stress, or

stress due to overstrain, and put the material in a state of ease.

Hardening due to overstrain is of frequent occurrence in engineering,

and the only certain remedy for it is annealing. If this is imprac-

ticable, hardening can be practically avoided by substituting boring

for punching, sawing for shearing, etc.

19. Temperature stresses. A property especially characteristic of

metals is that of expansion with rise of temperature. The proportion

of its length which a bar expands when its temperature is raised one

degree is called the coefficient of linear expansion, and will be denoted

by L. The following table gives the value of L for one degree

Fahrenheit for the substances named.

Steel, hard L = .0000074

u soft L = .0000061

Iron, cast L = .0000063

(t wrought L = .0000068

Timber L = .0000028

Granite L = .0000047

Sandstone L = .0000065

If a body is fixed to immovable supports so that when the temper-

ature of the body is raised these supports prevent it from expanding,
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stresses are produced in the body called temperature stresses. Thus

suppose a bar of length / is rigidly fastened to immovable supports

and its temperature is then raised a certain amount. Let A/ be the

amount the bar would naturally lengthen under this rise in temper-

ature if left free to move. Then the stress necessary to produce a

shortening of this amount is the temperature stress.

If the temperature of the bar is raised T degrees,

A/ = LIT,

and consequently s = = LT.
L

Therefore, if p denotes the unit temperature stress,

p = sE = LTE.

The temperature of metals also has a marked influence upon
their ultimate strength. Experiments along this line show that at

296 F. the tensile strengths of iron and steel are about twice as

great as at ordinary temperatures.

Problem 16. A wrought-iron bar is 20 ft. long at 32 F. How long will it be at

95 F. ?

Problem 17. A cast-iron pipe 10 ft. long is placed between two heavy walls.

What will be the stress in the pipe if the temperature rises 25 ?

Problem 18. Steel railroad rails, each 30 ft. long, are laid at a temperature of

40 F. What space must be left between them in order that their ends shall just

meet at 100 F. ?

Problem 19. In the preceding problem, if the rails are laid with their ends in

contact, what will be the temperature stress in them at 100 F. ?

20. Effect of length, diameter, and form of cross section. When
an external force is first applied to a body the internal stress is dis-

tributed uniformly throughout the body and, consequently, all parts

are equally deformed.* When the stress surpasses the elastic limit

this is no longer true, and certain portions of the body begin to mani-

fest greater deformation than others. For instance, consider a bar of

soft steel under tension. As the stress increases from zero to the

elastic limit the bar gradually lengthens and its cross section dimin-

ishes, all parts being equally affected. When the stress passes beyond

the elastic limit the cross section at some particular point of the bar,

* This depends somewhat upon the way the external force is applied.
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usually near the center, begins to diminish more rapidly than else-

where. This contraction of section intensifies the unit stress at this

point, and this in turn tends to a still greater reduction of section until

finally rupture occurs.

The appearance of a

bar subjected to a test of

this kind is represented in

Fig. 3. The contracted por-

tion, AB, of the bar is called the region of striction. The contraction

of the section at which rupture occurs is usually considerable
;
for

soft steel its amount is from .4 to .6 of the original area of the bar.

In Article 6 the unit elongation was defined as the ratio of the

total elongation to the original length of the bar. It has been found

by experiment, however, that the extent of the region of striction

depends on the transverse dimensions of the bar and not on its length,

the region of striction increasing in extent as the transverse dimen-

sions of the bar increase. Consequently, if two bars are of equivalent

cross section but of different lengths, the region of striction will be

the same for both, and therefore the unit elongation will appear to

be less for the long bar than for the short one. On the other hand,

if the two bars are of the same length, but one is thicker than the

other, the region of striction will be longer for the thick bar, and

therefore the unit elon-

gation of this bar will

appear to be greater
than for the other.

The form of cross sec-

tion of test pieces sub-

jected to tensile tests

has also an important

influence on their elon-

gation and on their ulti-

mate strength. If a sharp change in cross section occurs at any

point, nonductile materials, such as cast iron, will break at this sec-

tion under a smaller unit stress than they could otherwise carry.

This is due to a greater intensity of stress at the section where the

change in area occurs.

FIG. 4
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For ductile materials, such as wrought iron and mild steel, the

striction extends over a length six or eight times the width of the

piece. Consequently, if the test piece has a form similar to one

of those represented in Fig. 4, in which the length AB is less than

six or eight times the width of the piece, the flow of the metal is

restrained and therefore its ultimate strength is raised. This has an

important bearing on the strength of riv-

eted plates subjected to tensile strain. It
f |

has been experimentally proved that such

plates will stand a greater tension than

plates of uniform cross section whose

sectional area is equal to the sum of the

sectional areas between the rivet holes.

In Article 10 the ultimate strength
i

was denned as the ratio of the maximum
FIG. 5

stress to the original sectional area of

the bar. It is evident from what precedes, therefore, that the unit

elongation and the ultimate strength are not absolute quantities, but

depend on the form of the test piece and the conditions of the test.

For this reason it is absolutely essential that the results of any test

be accompanied by an accurate description of the circumstances under

which they were obtained. The elastic limit and modulus of elasticity,

on the contrary, have an intrinsic value independent of their method

of determination, and therefore more accurately define the elastic

properties of any material.

The tensile strength of long rods is affected in a way different from

any of the preceding. Since no material is perfectly homogeneous, the

longer the rod the greater the chance that a flaw will occur in it some-

where. If, then, by numerous tests of short pieces, it has been deter-

mined how much a material lacks of being homogeneous, the strength

of a rod of this material of any given length can be calculated by

means of the theory of probabilities. Such a theory has been worked

out by Professor Chaplin* and verified experimentally.

If one dimension of a body is very small compared with the

others, as, for example, in long wires or very thin plates, the body

*Van Nostrand's Eng. Mag., December, 1880; also Proc. Eng. Club, Philadelphia,

March, 1882.
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may be permanently deformed by stresses below the elastic limit.

The reason for this is that the smallest dimension of such a body
is of the same order of magnitude as the deformation of one of the

other dimensions, and consequently Hooke's law does not apply in

this case.

21. Factor of safety. In order to assure absolute stability to any
structure it is clear from what precedes that the actual stresses

occurring in the structure must not exceed the elastic limit of the

material used.

For many materials, however, it is very difficult to determine the

elastic limit, while for other materials for which the determination

is easier, such as iron and steel, the elastic limit is subject to large

variations in value, and it is impossible to do more than assign wide

limits within which it may be expected to lie. For this reason it is

customary to judge the quality of a material by its ultimate strength

instead of by its elastic limit, and assume a certain fraction of the

ultimate strength as the allowable working stress.

The number which expresses the ratio of the ultimate strength to

the working stress is called the factor of safety. Thus

ultimate strengthFactor of safety =
working- stress

No general and rational method of determining the factor of safety

can be given. For, in the first place, formulas deduced from theoret-

ical considerations rest on the assumption that the material considered

is perfectly elastic, homogeneous, and isotropic, an assumption which

is never completely fulfilled. Such formulas give, therefore, only an

approximate idea of the state of stress within the body.

Moreover, the forms of construction members assumed for pur-

poses of calculation do not exactly correspond to those actually used
;

also certain conditions are unforeseen, and therefore unprovided for,

such as the sinking of foundations, accidental shocks, etc.

In metal constructions rust is another element which tends to

reduce their strength, and in timber constructions the same is

true of wet and dry rot. Care is usually taken to prevent rust and

decay, but the preservative processes used never perfectly accomplish

their object.
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Besides these elements of uncertainty every construction is

attended by its own peculiar circumstances, such as the duration

to be given to it, the gravity of an accident, etc., which requires a

special determination of the factor of safety.

For all these reasons it is impossible to definitely fix a factor of

safety which will fit all cases, and the only guide that can be given

as to its choice is to say that it will lie between certain limits.

According to Resal,* the factor of safety for iron, steel, and ductile

metals should be 4 or 3, and never less than
2J- ;

for heterogeneous

materials, such as cast iron, wood, and stone, the factor of safety

should lie between 20 and 10, and never be less than the latter.

Problem 20. In the United States government tests of rifle-barrel steel it was
found that for a certain sample the unit tensile stress at the elastic limit was 71,000

lb./in.
2

,
and that the ultimate tensile strength was 118,000 lb./in.

2 What must

the factor of safety be in order to bring the working stress within the elastic

limit ?

Problem 21. In the United States government tests of concrete cubes made
of Atlas cement in the proportions of 1 part of sand to 3 of cement and 6 of broken

stone, the ultimate compressive strength of one specimen was 883 lb./in.
2

,
and of

another specimen was 3256 lb./in.
2 If the working stress is determined from the

ultimate strength of the first specimen by using a factor of safety of 5, what factor of

safety must be used to determine the same working stress from the other specimen ?

Problem 22. An elevator cab weighs 3 tons. With a factor of safety of 5, how

large must a steel cable be to support the cab ? (Use Roebling's tables for wire

rope given in Part II.)

22. Work done in producing strain. In constructing the strain

diagram, explained in Article 7, the unit stresses were plotted as

ordinates and the corresponding unit deformations as abscissas. The

autographic apparatus on a testing machine also gives a diagram
which represents the strain, but in which the loads are the ordinates

and the corresponding total deformations are the abscissas. The two

diagrams are similar up to the elastic limit but not beyond this point,

for after the elastic limit is passed, the area of cross section begins to

change appreciably so that the unit stress is no longer proportional

to the load. If, however, the unit stress is obtained by dividing the

load by the original area of cross section, without taking into account

the lateral deformation, the plotted strain diagram will be similar to

the autographic load-deformation diagram.
* Resal, Resistance des Mattriaux, p. 195.
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The load-deformation diagram has a special physical significance,

namely that the area under the curve up to any point represents the

work done in producing the strain up to that point. In this respect

the autographic strain diagram resembles the indicator diagram on a

steam engine.

Since the elastic limit marks the limit within which the material

may be considered as perfectly elastic, the area under the strain curve

up to the elastic limit represents the amount of work which can be

stored up in the form of potential energy, and is called the resilience

of the test piece. Thus, if p denotes the unit stress at the elastic limit

and F the area of cross section, the load is Fp ;
and hence if A/ denotes

the total deformation at the elastic limit, the work done up to this

pi
point is }fpF&l. From Hooke's law, A/ = Consequently the ex-

1 p
2lF

pression for the resilience becomes > or, since IF represents the
E

1 V*V
volume V of the test piece, this may be written - The resil-

1 p
2

2 E
ience per unit volume, -

> is called the modulus of elastic resilience

of the material.

EXERCISES ON CHAPTER I

Problem 23. A f-in. wrought-iron bolt failed in the testing machine under a pull

of 20,000 Ib. Diameter at root of thread = .5039 in.
;
find its ultimate tensile strength.

Problem 24. Four ^-in. steel cables are used with a block and tackle on the hoist

of a crane whose capacity is rated at 6000 Ib. What is the factor of safety ? (Use

Roebling's tables, Part II, for ultimate strength of rope.)

Problem 25. A vertical hydraulic press weighing 100 tons is supported by four

24-in. round cold-rolled steel rods. Find the factor of safety.

Problem 26. A block and tackle consists of six strands of flexible ^-in. steel cable.

What load can be supported with a factor of safety of 5 ?

Problem 27. A wooden bar 6 ft. long, suspended vertically, is found to lengthen
.013 in. under a load of 2100 Ib. hung at the end. Find the value of E for this bar.

Problem 28. A copper wire in. in di-

ameter and 500 ft. long is used as a crane

trolley. The wire is stretched with a force

of 100 Ib. when the temperature is 80 F.

Find the pull in the wire when the temper-

ature is F., and the factor of safety.U7^ Problem 29. An extended shank is

made for a ||-in. drill by boring a ||-in.

hole in the end of a 10-in. length of cold-rolled steel, fitting the shank into this and

putting a steel taper pin through both (Fig. 6). Standard pins taper \ in. per foot.

n
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What size pin should be used in order that the strength of the pin against shear

may equal the strength of the drill shank in compression around the hole ?

Problem 30. The head of a steam cylinder of 12-in. inside diameter is held on by
10 wrought-iron bolts. How tight should these bolts be screwed up in order that

the cylinder may be steam tight under a pressure of 180 lb./in.
2 ?

Problem 31. Find the depth of head of a wrought-iron bolt in terms of its

diameter in order that the tensile strength of the bolt may equal the shearing

strength of the head.

Problem 32. The pendulum rod of a regulator

used in an astronomical observatory is made of

nickel steel in the proportion of 35.7 per cent nickel

to 64.3 per cent steel. The coefficient of expansion

of this alloy is approximately j
1
^ that of steel, ^

that of copper, and ^ that of aluminum. This is

tempered for several weeks, starting at 180 F. and

gradually lowering to the temperature of the room,

which eliminates the effect of elastic afterwork.

The rod carries two compensation tubes, A
and #, Fig. 7, one of copper and the other of

steel, the length of the two together being 10 cm.

If the length of the rod is 1 m., find the lengths of

the two compensation tubes so that a change in

temperature shall not affect the length of the

pendulum.
Problem 33. Refer to the Watertown Arsenal

Reports (
United States Government Reports on Tests

of Metals), and from the experimental results there tabulated draw typical strain

diagrams for mild steel, wrought iron, cast iron, and timber, and compute E in

each case.

Problem 34. A steel wire \ in. in diameter and a brass wire in. in diameter

jointly support a load of 1200 Ib. If the wires were of the same length when the

load was applied, find the proportion of the load carried by each.

Problem 35. An engine cylinder is 10 in. inside diameter and carries a steam

pressure of 80 lb./in.
2 Find the number and size of the bolts required for the

cylinder head for a working stress in the bolts of 2000 lb./in.
2

Problem 36. Find the required diameter for a short piston rod of hard steel

for a piston 20 in. in diameter and steam pressure of 125 lb./in.
2 Use factor of

safety of 8.

Problem 37. A rivet \ in. in diameter connects two wrought-iron plates each f

in. thick. Compare the shearing strength of the rivet with the crushing strength of

the plates around the rivet hole.

FIG. 7



CHAPTER II

FUNDAMENTAL RELATIONS BETWEEN STRESS AND
DEFORMATION

23. Relations between the stress components. In order to deter-

mine the relation between the stresses and deformations within an

elastic body, it is necessary to make certain assumptions as to the

nature of the body and the manner in which the external forces are

applied to it.

The first assumption to be made is that the material of which the

body is composed is homogeneous ;
that is to say, that the elastic

properties of any two samples taken from different parts of the body
are exactly alike. If, more-

over, the surface of the body
is continuous and the exter-

nal forces are distributed con-

tinuously over this surface,

or, in other words, if there

are no cracks or other sud-

den changes of section in the

body, and the external forces

are distributed over a consid-

erable bearing surface, it fol-

lows, in consequence of the

above assumptions, that the deformation at any point of the body is

a continuous function of the coordinates of that point. In other

words, under the above assumptions the deformation at any point
of the body differs only infiniteshnally from the deformation at a

neighboring point.

Since, by Hooke's law, the stress is proportional to the deforma-

tion, it follows that the stress is also distributed continuously

throughout the body, that is, that the stress at any point of the
'

20

X.
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FIG. 9

body differs only infinitesiinally from the stress at a neighboring

point. This is called the law of continuity.

Now consider an infinitesimal cube cut out of an elastic body
which is subject to the above assumptions, and let the coordinate

axes be taken along three adja-

cent edges of the cube, as shown

in Fig. 8. Then, from the law of

continuity, the resultant of the

normal stresses acting on any face

of this cube is equal to their sum

and is applied at the center of

gravity of the face. Consequently,

these resultants must all lie in one

or other of the three diametral

planes drawn through the center

of the cube parallel to the coordi-

nate planes. The stresses lying in

any one of these planes, say the diametrical plane parallel to ZOX,
will then be as represented in Fig. 9.

Since the resultant normal stresses on opposite faces of the cube

approach equality as the faces of the cube approach coincidence, we

may write

= and ='.

For equilibrium against rotation

the four shearing stresses must

also be of equal intensity, and

therefore

By considering the other two

diametral planes similar relations

between the normal and shearing

FIG. 10 stresses can be established. Con-

sequently, the shearing stresses at

any point in an elastic "body in planes mutually at right angles are

of equal intensity in each of these planes.
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24. Planar strain. If no stress occurs on one pair of opposite faces

of the cube, the resultant stresses on the other faces all lie in one of

the diametral planes. This is called the planar condition of strain.

Suppose the -axis is drawn in the direction in which no stress

occurs, as shown in Fig. 10. Then the stresses all lie in the plane

parallel to XOY, and the relation between them is as represented in

Fig. 9 of the preceding article.

25. Stress in different directions. As an application of planar

stress, consider a triangular prism on which no stress occurs in

the direction of its length. Let the ^-axis be drawn in the direction

in which no stress occurs, and let a denote the angle which the

FIG. 11

inclined face of the prism makes with the horizontal, as shown in

Fig. 11. Then if dF denotes the area of the inclined face ABCD,
and p', q

f denote the normal and shearing stresses on this face

respectively, p' and q
1 can be expressed in terms of px) py)

and q by

means of the conditions of equilibrium. Thus, from 2 hor. comps. = 0,

p'dFsma + q'dFcosa pxdF sin a qdFcosa = 0.

Similarly, from 2 vert, comps. = 0,

p'dFcosa q'dFsma py
dF cosa qdFsma = 0.

Dividing by dF, these equations become

{p
1 sma + q' cosa px sma q cosa = 0,

\p' cosa q
f sma py

cosa q sma = 0.
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Eliminating q',

p' = px sin
2# + pv

cos2
a; + 2 q sin a; cos a;.

From trigonometry,

. 1 cos 2 a 1 + cos 2 a
,

.

2 sma cosa; = sin 2 a.

Therefore, by substituting these values,

(2) p
f = Px ^v + ^y P* cos 2 a + q sin 2 a.

2 2

Similarly, by eliminating p
r from equations (1),

(3)

Problem 38. At a certain point in a vertical cross section of a beam the unit

normal stress is 300 lb./in.
2

,
and the unit shear is 100 lb./in.

2 Find the normal

stress and the shear at this point in a

plane inclined at 30 to the horizontal.

Solution. Suppose a small cube cut

out of the beam at the point N (Fig.

12). Then, by the theorem in Article 23,

there will also be a unit shear of inten-

sity q on the top and bottom faces of

the cube. In the present case, there-

fore, px - 300 lb./in.
2

, py
= 0, and

q = 100 lb./in.
2

Substituting these

values in equations (2) and (3), and

putting a = 30, the unit normal stress

and unit shear on a plane through N inclined at 30 to the horizontal are

p'= 161.5 lb./in.
2

, q' = 179.8 lb./in.
2

26. Maximum normal stress. The condition that p
1 shall be a

dr>
!

maximum or a minimum is that
-j-

0. Applying thie condition

to equation (2),

FIG. 12

whence

(5)

and consequently

(6)

tan 2 a = 2q

a = - tan
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where X is zero or an arbitrary integer, either positive or negative.

Equation (6) gives the angles which the planes containing the maxi-

mum and minimum normal stresses make with the horizontal.

From equation (5),

Substituting these values of sin 2 a and cos 2 a in equation (2), the

maximum and minimum values of the normal stress are found to be

rain

27. Principal stresses. Since X in equation (6) is an integer, the

two values of a given by this equation differ by 90, and, conse-

quently, the planes containing the maximum and minimum normal

stresses are at right angles. The maximum and minimum normal

stresses are called principal stresses, and the directions in which they

act, principal directions.

From equation (3), the right member of equation (4) is equal to

2 q
f
. But since equation (4) is the condition for a maximum or min-

imum value of the normal stress, it is evident that the normal stress

is greatest or least when the shear is zero.

The results of this article can therefore be summed up in the

following theorem.

Through each point of a body subjected to planar strain there are

two principal directions at right angles, in each of which the shear is

zero.

Problem 39. Find the principal stresses and the principal directions at a point

in a vertical cross section of a beam at which the unit normal stress is 400 lb./in.
2

and the unit shear is 250 lb./in.
2

Solution. In this problem px = 400 lb./in.
2

, pv
= 0, and q = 260 lb./in.

2

Therefore, from equation (6),

a = - tan-i - +^ = - 25 40.2', or + 64 19.8';

and from equation (7),

Pmax - 620 lb./in.
2
, p'min = - 120 lb./in.

2
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28. Maximum shear. The condition that cf shall be a maximum or

a minimum is that -~ = 0. Applying this condition to equation (3),
CL OC

= ^y 2 cos 2 a 2 q sin 2 a
;

whence

(8)

By comparing equations (5) and (8) it is evident that tan 2 a,

from (8), equals cot 2 a, from (5). Therefore the values of 2 a

obtained from these equations differ by 90, and hence the values

of a differ by 45. Therefore the planes of maximum and mini-

mum shear are inclined at 4^ t ^e planes of maximum and

minimum normal stress.

From equation (8),

Substituting these values of sin 2 a and cos 2 a in equation (3),

the maximum and minimum values of the shear are found to be

(9) ffJn
=

It is to be noticed that the maximum and minimum values of the

shear given by equation (9) are equal in absolute amount and differ

only in sign, which agrees with the theorem stated in Article 23.

Problem 40. Find the maximum and minimum values of the shear in Prob-

lem 39, and their directions.

29. Linear strain. If a body is strained in only one direction, the

strain is said to be linear. For instance, a vertical post supporting a

weight, or a rod under tension, is subjected to linear strain. The

unit normal stress and unit shear acting on any inclined section of

a body strained in this way can be obtained by supposing the axes

of coordinates drawn in the principal directions and putting q =

and py
= in equations (2) and (3). These values can also be

derived independently, as follows.
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Consider an elementary triangular prism, and let the axis of X be

drawn in the direction of the linear strain. The stresses acting on

the prism will then be as shown in

Fig. 13. Let dF denote the area of

the inclined face. Then the area of

the vertical face is dF sin a. Resolv-

ing px into components parallel to p'

and q
f

respectively, the conditions of

X- equilibrium are

px sin a (dF sin a) = p'dF,

px cos a (dF sin a) = q'dF;

FIG. 13

or, dividing by dF,

(10) p
: = ?=

dq'From the condition -- =
0, it is found that the maximum shear

da
occurs when a 45, and its value is

For a or 90, q'
= 0. Consequently, there is no shear in

planes parallel or perpendicular to the direction of the linear strain.

Problem 41. A wrought-iron bar 4 in. wide and fin. thick is subjected to a

pull of 10 tons. What is the unit shear and unit normal stress on a plane inclined

at 30 to the axis of the strain ? Also

what is the maximum unit shear in

the bar ?

30. Stress ellipse. Suppose

that an elementary triangular

prism is cut out of a body sub-

jected to planar strain, so that

two sides of the prism coincide

with the principal directions.

Then, by Article 27, the shears

in these two sides are zero. Now
let the axes of coordinates be drawn in the principal directions, and

resolve the stress acting on the inclined face of the prism into

FIG. 14
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components parallel to the axes instead of into normal and shearing
stresses as heretofore. Then, from Fig. 14, if dF denotes the area of

the inclined face, the conditions of equilibrium are

p'xdF = pxdF sin a,

p'ydF = pydF cosa
;

whence
P
2 = sin#, = cos a.

Squaring and adding, K K
rf_l~ A

J

which is the equation of an ellipse with semi-axes px and py)
the

coordinates of any point on the ellipse being p
r

x and p'y . Conse-

quently, if the stress acting on the inclined face of the prism is

calculated for all values of a, and

these stresses are represented in

magnitude and direction by lines

radiating from a common center,

the locus of the ends of these

lines will be an ellipse called the

stress ellipse (Fig. 15).

31. Simple shear. If a body is

compressed in one direction and

equally elongated in a direction at

right angles to the first, the strain is planar. In this case, if the axes

are drawn in the principal directions, q = 0, px
= py ,

and the stress

ellipse becomes the circle p'
2 + p'y

= p
2

x.

Moreover, the normal stress in the planes of maximum or mini-

mum shear is zero; for by substituting in equation (2)
the values

of sin 2 a and cos 2 a obtained from equation (8),
the normal stress

7) ~\~ D
in the planes of maximum or minimum shear is found to be **- K

>

and this is zero since px
= py

.

Substituting q = and px
= py

in equation (9), Article 28, the

maximum or minimum value of the shear in the present case is

FIG. 15

[ ruax
miii
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that is to say, the intensity of the shear in the planes of zero normal

stress is equal to the maximum value of the normal stress.

To give a geometrical represen-

tation of the conditions of the

problem, suppose a small cube cut

out of the body with its faces

inclined at 45 to the principal

directions. Then the only stresses

acting on the inclined faces of

this cube are shears equal in

amount to the principal stresses.

The strain in this case is called

FIG. 16

simple shear.

Conversely, if a small cube is

subjected to simple shear, as indi-

cated in Fig. 17, tensile stresses equal in amount to this shear occur

in the diagonal plane AC of the cube, and compressive stresses of

like amount in the diagonal plane BD.

D

Problem 42. The steel propeller shaft of a

steamship is subjected to a shearing stress of

10,000 Ib. /in.
2 Find the maximum tensile stress

in the shaft.

32. Coefficient of expansion. Consider

an infinitesimal prism of dimensions dx,

dy, dz, and suppose that under strain

these dimensions become dx + sxdx,

dy + s
ydy, dz + s

zdz, where s
x)

s
y,

s
z
are

the unit deformations in the directions of the edges of the prism.

Then the volume of the prism becomes

V+ dV=(dx + sxdx) (dy + s
ydy] (dz + s

zdz),

or, neglecting infinitesimals of an order higher than the first,

V+ dY = (1 + sx + s
y + s

z)dxdydz.

Let K = s + s + s

FIG. 17

due to the strain is

Then the change in the volume of the prism

d V Kdxdydz.
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For this reason K is called the coefficient of cubical expansion (or

contraction) of the body.

From this definition it is evident that for temperature stresses the

coefficient of cubical expansion is three times the coefficient of linear

expansion.

From Article 9, for linear tensile strain,

m
Consequently, in this case,

Jf <j
X X

-*i- ~ & ~*

m 2

m E

Since the prism is certainly not decreased in volume by a tensile

strain, K cannot be negative and therefore m 2 > 0, or m > 2. If

m = 2, K = 0, which means

that the body is incompressi-

ble. Therefore 2 is the lower

limit of Poisson's constant.

33. Modulus of elasticity

of shear. In an. elementary

prism subjected to simple

shear an angular deformation

occurs, as shown in Fig. 18.
FlG lg

Let the angle of deformation

</>
be expressed in circular measure. Then, for materials which con-

form to Hooke's law,

7

where G is a constant called the modulus of elasticity of shear, or

modulus of rigidity. Since the angle </>, expressed in circular measure,

is an abstract number, G must have the dimensions of q, and can

therefore be expressed in lb./in.
2
,
as in the case of Young's modulus.

Tabulated values of the modulus of elasticity of shear and ultimate

shearing strength for various substances are given in Table I.

Problem 43. A f-in. wrought-iron bolt has a diameter of .62 in. at base of

thread, with a nut f in. thick. What force acting on the nut will strip the thread

off the bolt ?
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Problem 44. What force will pull the head off the bolt in Problem 43, if the

head is of the same thickness as the nut ?

Problem 45. A f-in. rivet connects two plates which transmit a tension of

2500 Ib. Assuming that the shear is uniformly distributed over the cross section

of the rivet, find the unit shear on the rivet.

Problem 46. An eyebar is designed to carry a load of 15 tons. What^must
be the size of the pin to be safe against shear ?

NOTE. Consider the pin in double shear, and assume that this shear is uniformly
distributed over the cross section of the pin.

34. Relation between the elastic constants. Suppose a cube is

subjected to compressive stress on one pair of opposite faces and

-Px

dx

tensile stress on another pair

of opposite faces. Then, if the

axes of X and Y are drawn

in the direction of the strain,

px
= py ',

and the strain is

_> one of simple shear, as ex-

plained in Article 31.

Let x denote the length

of an edge of the cube before

strain. Under the strain the

cube becomes a parallelepi-

ped, its increase in length

in the direction of the X-axis, due to the tensile stress px , being

f; and its increase in length in this direction, due to the com-

Px *

D

FIG. 19

pressive stress px , being

Therefore, if dx denotes the total increase in length in the direc-

tion of the X-axis,
xpdx -- xpx-*-

or, since px
=

q,

E mE
m+l

dx = xq.mE *

By reason of the strain the angle between the diagonals is increased

by an amount
</>,

and therefore the angle between a diagonal and a

side is increased by From the right triangle ABC (Fig. 19),

* This assumes that the modulus of elasticity is the same for tension as for com-

pression.
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(IT 6\ x 4- dx
tan f 4- ~ =

dx
\ /

From trigonometry,

- tan
i

Since
</>

is assumed to be very small, tan^
=

, approximately,
and therefore

2dx
whence <f> =- =

x mE

By definition, G = Therefore
9

wliich expresses the relation between the elastic constants G, E,

and m.

Problem 47. Fiom the values of G and 22, given in Article 22, determine the

value of m for cast iron.

35. Measure of strain. In general, the unit deformation s is taken

as the measure of a strain. The calculation of s, however, involves

a knowledge of the modulus of elasticity E, and for many materials

the latter is difficult to determine. To obviate this difficulty, any

given strain may be compared with a linear strain which is pro-

duced by a unit stress equal to the maximum allowable unit stress.

The stress which would produce this linear strain is called the

equivalent stress.

To illustrate the application of this method, consider a planar

strain in which pl
and p2

denote the principal stresses and s
lt

s
2

the corresponding unit deformations. Then, by Hooke's law, the
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stress p l acting alone would produce a unit deformation in the direc-

tion in which it acts of amount s
x
= > and also a lateral unit defor-

o
/vj

mation of th this amount, namely or -^-
Similarly, the stress pm m mE

acting alone would produce a unit deformation in its own direction of
fY\ Q

amount s.
= > and a deformation at right angles of amount orE m

-*-2- Hence the total deformation in the direction in which p l
acts,

say sx ,
is

and similarly the total deformation in the direction in which p2
acts is

<
13

>
=

Now let pe
denote the linear stress which, acting alone, would

produce the same unit deformation sx or s
y ;

that is to say, pe
is the

equivalent linear stress which would have the same effect so far as

deformation is concerned as the combined effect of p l
and pz

. Then

sx
=

(or s =
)'
and equating these values of sx and s

y
to those

E \ E)

given by equations (12) and (13) above, we have

(14) P*= Pi P* or pe
=p2 p{ .

lit/ m/

The value of the equivalent stress can thus be calculated directly

from the two principal stresses. In order that the strain be safe, the

greater of the two values of pe
found from equation (14) must not

exceed the maximum allowable unit stress.

In the case of simple shear (Article 31) the principal stresses are

equal in amount to the shear but of opposite sign ;
that is,

Pi= + 2> P2 =-Q'

Therefore, inserting these values in equation (14) we have in this case

1 1 m -f 1
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m=

If, then, the working stress in tension or compression is substituted

for pe)
the allowable shear is given by this relation.

Problem 48. Find the value of the equivalent stress in Problem 39, and compare
it with the principal stresses.

36. Combined bending and torsion. One of the most important

applications of the preceding paragraph is to the calculation of the

equivalent stress in a beam subjected simultaneously to bending and

torsion.

Let the axis of X be drawn in the direction of the axis of the

beam. Then on any cross section of the beam there will be a normal

stress px due to bending, and a shearing stress q due to torsion,

while the stress between adjacent longitudinal fibers is zero
;
that is,

p = 0. Therefore, from equation (7), the principal stresses are

P l
= i (P,+ 4 f +P% P*=\ (P*

~ 4 <?+ Pi)-

Consequently, from equation (14), the equivalent stress is

/K\ m 1
,
tn + 1 r-L 5 r^i^r^-i^4 * +^-

The sign between the terms depends on which of the two values

for pe
in equation (14) is chosen. Evidently that sign should be

chosen which will give the most unfavorable value of pe
. Thus on

the tension side of a shaft subjected to combined bending and torsion

the positive sign should be chosen, and on the compression side the

negative sign.

If m = 3^, which is the best approximate value to use in general,

equation (15) becomes

Many engineers, however, are accustomed to assume .25 for Poisson's

ratio, making m = 4. The reason for using this value is probably that

the modulus of rigidity G for most materials is roughly equal to AE\
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which by equation (11) is equivalent to assuming m = 4. For this

value of m equation (15) becomes

Problem 49. A round steel shaft used for transmitting power bears a trans-

verse load. At the most dangerous section the normal stress due to bending is

5000 lb./in.
2

,
and the shear due to torsion is 8000 lb./in.

2 Calculate the intensity

of the equivalent stress.

EXERCISES ON CHAPTER II

Problem 50. In a boiler plate the tensile stress in the direction of the axis of

the shell is 2 tons per square inch, and the hoop stress is 4 tons per square inch.

Calculate the equivalent linear tensile stress.

Problem 51. At a point in strained material the principal stresses are 0,

9000 lb./in.
2
tensile, and 5000 lb./in.

2
compressive. Find the intensity and direc-

tion of the resultant stress on a plane inclined 45 to the axis of the tensile stress

and perpendicular to the plane which has no stress.

Problem 52. At a point in the cross section of a girder there is a compressive

stress of 5 tons/in.
2 normal to the cross section, and a shearing stress of 3 tons/in.

2

in the plane of the section. Find the directions and amounts of the principal

stresses.

Problem 53. At a certain point in a shaft there is a shearing stress of 5000 lb./in.
2

in the plane of the cross section, and a tensile stress of 3000 lb./in.
2
parallel to the

axis of the shaft. Find the direction and intensity of the maximum shear.

Problem 54. Solve Problem 51 graphically by drawing the stress ellipse to scale

and scaling off the required stress.

Problem 55. In a shaft used for transmitting power the maximum shearing

stress, arising from torsional strain, is 5000 lb./in.
2 Find the normal, or bending,

stress it can also carry if the working stress is limited to 10,000 lb./in.
2 for tension

or compression, and to 8000 lb./in.
2 for shear.



CHAPTER III

ANALYSIS OF STRESS IN BEAMS

37. System of equivalent forces. The theory of beams deals, in

general, with the stresses produced in a prismatic body by a set of

external forces in static equilibrium. Ordinarily these forces all lie

m one plane ;
in this case it is proved in mechanics that they can be

replaced by a single force acting at any given point in this plane,

and a moment. To balance this equivalent system of external forces,

the stresses acting on any cross section of the beam must also consist

of a single force and a moment, the point of application of this single

force being conveniently chosen as the

center of gravity of the cross section.

The following special cases are of fre-

quent occurrence.

If the moment is zero and the single

force through the center of gravity of a

cross section acts in the direction of the

axis of the beam,the strain is simple tension

or compression ;
if it is perpendicular to the axis of the beam, the strain

is simple shear.

If the single force is zero and the plane of the moment passes

through the axis of the beam, pure bending strain occurs
;

if the single

force is zero and the plane of the moment is perpendicular to the

axis of the beam, a twisting strain called torsion is produced. These

two cases are illustrated in Fig. 20, A and B.

If the plane of the moment forms an arbitrary angle with the axis

of the beam, the moment can be resolved into two components whose

planes are parallel and perpendicular respectively to the axis of the

beam. In this case the strain consists of combined bending and torsion.

If the single force through the center of gravity is inclined to the

axis of the beam, it can be resolved into two components, one in the

35
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direction of the axis, called the axial loading, and the other perpen-

dicular to the axis, called the shear.

38. Common theory of flexure. In the majority of practical cases

of flexure (or bending) of beams, the external forces acting on the

beam all lie in one plane through its axis and are perpendicular to

this axis. The single force through the center of gravity of any cross

section is then perpendicular to the axis of the beam, and the plane of

the moment passes through this axis. The theory based on the assump-

tion of this condition of strain is called the common theory of flexure.*

39. Bernoulli's assumption. In order to obtain a starting point for

the analysis of stress in beams, the arbitrary assumption is made that

a cross section of the learn which was plane

he/ore flexure remains plane after flexure.

This assumption was first made by Bernoulli,

and since his time has formed the basis for

all investigations in the theory of beams.f

40. Curvature due to bending moment.

The effect of the external moment on a beam

originally straight is to cause its axis to be-

come bent into a curve, called the elastic curve.

Since, by Bernoulli's assumption, any cross

section of the beam remains identical with

itself during deformation, any two consecu-

tive cross sections of the beam which, .were

perpendicular to its axis before flexure will remain perpendicular to

it after flexure, and will therefore intersect in a center of curvature

of the elastic curve, as shown in Fig. 21.

The fibers of the beam between these two cross sections were origi-

nally of the same length. After flexure, however, it will be found that

the fibers on the convex side have been lengthened by a certain amount

AB, while those on the concave side have been shortened by an amount

* The common theory of flexure also includes the following assumptions : (1) the as-

sumption that Hooke's law is true (Arts. 8 and 11) ; (2) the assumption that plane sections

remain plane (Art. 39) ; (3) the neglect of vertical shear deformation (Arts.J>8_and 69) ;

(4) the assumption that dl is equal to dx
; (5) the assumption that the compressive modu-

lus is equal to the tensile modulus of elasticity ; (6) the neglect of conjugate effect from
the transverse compression (Art. 9) .

t St. Venant has shown that Bernoulli's assumption is rigorously true only for certain

forms of cross section. For materials which conform to Hooke's law, however, it is

sufficiently exact to assure results approximately correct.
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CD.* Between these two there must lie a strip of fibers which are

neither lengthened nor shortened. The horizontal line in which this

strip intersects any cross section is called the neutral axis of the section.

41. Consequence of Bernoulli's assumption. From Fig. 21 it is

evident that, as a consequence of Bernoulli's assumption, the length-

ening or shortening of any longitudinal fiber is proportional to its

distance from the neutral axis. But, by Hooke's law, the stress is

proportional to the deformation produced. Therefore the stress on

any longitudinal fiber is likewise proportional to its distance from

the neutral axis. Navier was the first to deduce this result from

Bernoulli's assumption.

If, then, the stresses are plotted for every point of a vertical strip

MN (Fig. 22), their ends will all lie in a straight line, and conse-

quently this distribution of stress is called the

straight-line law.

42. Result of straight-line law. In rectan-

gular coordinates let the axis of Z coincide

with the neutral axis, and the axis of Y be

perpendicular to it and in the plane of the

cross section. Then if the normal stress at FlG - 22

the distance y from the neutral axis is denoted by p, and that at a

distance yQ
is denoted by pQ)

from the straight-line law,

'

(16)
*=.
PO y

Since in order to equilibrate the external bending moment the normal

stresses must also form a moment, the sum of the compressive stresses

must equal the sum of the tensile stresses. Therefore, since the tensile

and compressive stresses are of opposite sign, the algebraic sum of

all the normal stresses acting on the section must be zero, that is to

say, I pdF= 0, where dF is the infinitesimal area on which p acts.

Inserting the value of p from (16),

* This can be shown experimentally by placing two thin steel strips in longitudinal

grooves in a wooden beam, one on the upper side and the other on the lower side, so that

the strips are free to slide longitudinally but are otherwise fixed. If the strips are of

the same length as the beam before bending, it will be found that after bending the upper

strip projects beyond the ends of the beam, while the lower strip does not reach the ends.

Experiments of this kind have been made by Morin and Tresca. See Unwin, The Testing

of Materials of Construction, p. 36.
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/Poqj

and therefore
/

= 0.

But the distance of the center of gravity of the section from the axis

of Z (or neutral axis) is given by

fydJF--
f

y =
a

Therefore, since / yd F = 0, y must be zero, and consequently the

neutral axis passes through the center of gravity of the section.

43. Moment of inertia. For equilibrium, the moment of the nor-

mal stresses acting on any cross section must equal the moment of

the external forces at this section. Therefore, if M denotes the

moment of the external forces, or external bending moment, as it is

called,

ipydF = M,

or, from (16),

The integral
J
y*dF depends only on the form of the cross section,

and is called the moment of inertia of the cross section with respect to

the neutral axis.

Let the moment of inertia be denoted by Z Then

I-

and, consequently,

%o
(17) Po =

-J-'

This formula gives the intensity of the normal stressp at the distance

2/
from the neutral axis, due to an external bending moment M. If
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p denotes the stress on the extreme fiber and e denotes the distance

of this fiber from the neutral axis, then, from (17),

(18) p = Me

Equation (18) gives the maximum normal stress on any cross section

of a beam, and is the fundamental formula in the common theory of

flexure.

Problem 56. Find the moment of inertia of a rectangle of height h and breadth

b about a gravity axis * parallel to its base.

Solution.

T\
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For instance, consider an oak beam 8 in. deep and 4 in. wide. From Table I,

the ultimate compressive strength for timber may be tal^en as 7000 lb./in.
2

,
and

the ultimate tensile strength as 10,000 lb./in.
2

Therefore, using a factor of safety

of 8, the safe unit stress is p = 875 lb./in.
2 For the beam under consideration

I = 170.7 in.4 and e = 4 in. Consequently, the maximum bending moment which

the beam can be expected to carry safely is 37,340 in. lb., or 3112 ft. Ib.

Problem 60. Find the moment of resistance of a circular cast-iron beam 6 in.

in diameter.

Problem 61. Find the moment of resistance of a Carnegie steel I-beam, No. B 1,

weighing 80 Ib./ft.

Problem 62. Compare the moments of resistance of a rectangular beam
8 in. x 14 in. in cross section, when placed on edge and when placed on its side.

45. Section modulus. Iii Article 43 the moment of inertia was

defined as the integral

/= CfdF.

From this definition it is apparent that the moment of inertia de-

pends for its value solely on the form of the cross section. Since it

is independent of all other considerations, it may therefore be called

the shape factor in the strength of materials.

Since e denotes the distance of the extreme fiber of a beam from

the neutral axis, the ratio - is also a function of the shape of the
e

cross section, and for this reason is called the section modulus. Let

the section modulus be denoted by S. Then S=-
t
and the expres-

sion for the moment of resistance becomes

M = pS.

This expresses the fact that the strength of a beam depends jointly on

the form of cross section and the ultimate strength of the material.

Problem 63. Find the section moduli for the sections given in Problems 56, 57,

and 58 respectively.

Problem 64. Compare the section moduli for a rectangle 10 in. high and 4 in.

wide, and for one 4 in. high and 10 in. wide.

46. Theorems on the moment of inertia. The following is a sum-

mary of the most useful theorems concerning the moment of inertia.

The proofs can be found in any standard text-book on mechanics.

(A) Let I
g
denote the moment of inertia of any cross section with

respect to a gravity axis (see footnote, p. 39), In the moment of inertia
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FIG. 24

of the same section with respect to any parallel axis, c the distance

between the two axes, and F the area of the cross section. Then

(19) In = I
9 + F<?-

(B) Every section has two axes through its center of gravity, called

principal axes, such that for one of these the moment of inertia is

a maximum, and for the other is a ^, ->^ /n

minimum. Let the principal axes be

taken for the axes of Y and Z re-

spectively. Then if I
y
and I

z
denote

the moments of inertia of the section

with respect to these axes, and Ia
denotes the moment of inertia with

respect to an axis inclined at an angle a to the axis of Z,

(20) Ia = Ix cos
2
a; -f / sin

2
a.

*

(C) The moment of inertia of a compound section about any axis is

equal to the sum of the moments of inertia about this axis of the

various parts of which the compound section is composed.

(D) The moment of inertia of any section with respect to an axis

through its center of gravity and perpendicular to its plane is called

the polar moment of inertia. The polar

moment of inertia is defined by the

equation

4-

where r is the distance of the infini-

tesimal area dF from the center of

gravity of the section.

Since r2 = y
2" + z*,

FIG. 25

Cr
2dF = Cy*dF+ Cz?dF, whence

(21)

(E) Let
Jj
and /

2
denote the moments of inertia of any section with

respect to its principal axes. Then I
p
= I

I
+ /

2 , and, consequently,

* If the axes of Y and Z are not principal axes, then

la = Iz cos2a + Iy sin2a ffyz dy dz.
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(22)

that is to say, the sum of the moments of inertia with respect to any
two rectangular axes in the plane of the section is constant.

(F) The numerical value of the moment of inertia is expressed as

the fourth power of a unit of length. Therefore the quantity is

F
~^ the square of a length called the radius of

gyration, and will be denoted by t. The

radius of gyration is thus defined by the

_ equation

(33)

FIG> 26 that is to say, the square of the radius

of gyration is the mean of the squares

of the distances of all the elements of the figure from the axis.

The meaning to be attached to the radius of gyration is that if

the total area of the figure was concentrated in a single point at a

distance t from the axis, the moment of inertia of this single particle

about this axis would be equal to the given moment of inertia.

Problem 65. Find the moment of inertia of the rectangle in Problem 56 about

its base, and also the corresponding radius of gyration.

TSolutwn - ^ bh*

Problem 66. Find the moment of inertia of

the above rectangle about a gravity axis inclined

at an angle of 30 to its base.

Problem 67. Find the moment of inertia of a

rectangular strip, such as that shown in Fig. 26,

about a gravity axis parallel to its base.

Problem 68. Prove that the moment of inertia

of a T-shape, such as that shown in Fig. 27, about

a gravity axis parallel to the base Is given by the

expression

6' i

t 6

FIG. 27

Problem 69. Find the polar moment of inertia and radius of gyration of a circle

of diameter d about an axis through its center.
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47. Graphical method of finding the moment of inertia. If the

boundary of a given cross section is not composed of simple curves

such as straight lines and circles, it is often difficult to find the

moment of inertia by means of the calculus. When such difficulties

.arise the following graphical method may be used to advantage.

To explain the method consider a particular case, such as the rail

shape shown in Fig. 28, and suppose that it is required to find the

center of gravity of the section, and also its moment of inertia about

a gravity axis perpendicular to the web. The first step is to draw two

lines, AB and CD, par- ,

allel to the required ^ ^ H

gravity axis, at any k
|

g"-l *\

convenient distance f *^T T~".

apart, say /.

If the section is sym-
metricalabout any axis,

such as Y in the fig-

ure, it is sufficient to

consider the portion

on either side of this

axis, say the part on

the right of Y in the
^

present case.

Now suppose that

the cross section is di-
FIG

videdintonarrow strips

parallel to AB and CD
;

let z denote the length of one of these strips,

and dy its width,

such that

Then, if for each value of z a length z
r
is found,

any point P on the boundary of the original section, with coordinates

z and y, will be transformed into a point P' with coordinates z
1 and y.

Suppose this process is carried out for a sufficient number of points,

and that the points P' so obtained are joined by a curve, as shown

by the dotted line in Fig. 28. Let F denote the area of the original

curve and F 1 the area of the transformed curve, both of which can
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easily be measured by means of a planimeter. Also let N denote the

static moment of the original section with respect to the line AB,

where the static moment an area with respect to any axis is

defined by the integral

in which y is the distance of an infinitesimal area dF from the given

axis. The static moment is thus equal to the area of the section

multiplied by the distance of its center of gravity from the given

axis. Then

N = CydF = Cyzdy = I Cz'dy = IF'.

But, from the above definition,

N=cF,

where c is the distance of the center of gravity of the original sec-

tion from the line AB. Therefore cF = IF' whence

which determines the position of the center of gravity.

To find the moment of inertia, make a second transformation by

constructing for each z' a value z
fr

, such that

*=*&.

Then the points P' on the first transformed curve are transformed

into a series of points Prf on another curve, shown by the broken

line in Fig. 28. Let the area of this second curve be denoted by F".

Then, since z" =dj> and z' = z j
> we have z" = z ^- -

Consequently,
I I I

= Cy*dF = Cfzdy = l
z

Cz"dy = l*F",

which gives the moment of inertia of the original section with respect

to the line AB.
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If the moment of inertia I
g
with respect to a gravity axis is required,

then, since by Article 46 (A), /= I
g + c*F, we have I

g
= l<?F\ and

hence, by substituting the values of / and c from the above,

! =

The above method is due to Nehrs, and furnishes an easy method

of calculating the moment of inertia of any cross section by simply

measuring the area F of the original section and the area F', F" of

the transformed sections by means of a planimeter, and then substi-

tuting these values in the above formulas.

48. Moment of inertia of non-homogeneous sections. The stand-

Me
ard formula for calculating the stress in beams, p = , assumes

that the material of which the .beam is composed is homogeneous

throughout. If, then, a beam is com- i r

posed of two different materials, such,

for instance, as concrete and steel, it is

necessary to modify this formula some-

what before applying it.

To exemplify this, consider a rectan-

gular concrete beam, reenforced by steel

rods near the bottom, as shown in cross

section in Fig. 29. Let pc
and ps

denote

the stresses on a fiber of concrete and

of steel respectively, at the same distance y from the neutral axis, and

let E
t
and E

g
denote the moduli of elasticity for concrete and steel.

Then, by Hooke's law,

FIG. 29

whence

jn >

A,

,

P.-JP,

Therefore, if dF is an infinitesimal area of steel at the distance y

from the neutral axis, the moment of the stress acting on this area is

Kf
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Consequently, the intensity of the fiber stress can be considered to

vary directly as its distance from the neutral axis over the entire

cross section of the beam, provided the area of the steel is increased

7f

in the ratio '-

If, then, the depth is kept constant, the breadth
E

c

must be increased in this ratio, and the cross section thus obtained



ANALYSIS OF STRESS IN BEAMS 47

4.9 in. 2. Consequently, the breadth of the lower flange of the equivalent homo-

geneous section is

16.9 + 4.9

.75
= 29. 1 in.

The distance of the center of gravity of this equivalent section below the top

is found to be 7.69 in., and its moment of inertia about the gravity axis OZ is

2269 in.* (Fig. 32).

49. Inertia ellipse. Dividing equation (20) by F and expressing

the result in terms of the radii of gyration by means of equation (23),

(24) tl cos
2 a -f sin

2
a,

where t
y
and t

e
are the radii of gyration with respect to the axes of

Y and Z respectively, and ta is the radius of gyration with respect to

a gravity axis inclined at an angle a to the axis of Z.

Now let I be a length defined by the relation -&-* = I. Then

It It
^

t
y
= -

, t
z
= -

; and substituting these values of t
y
and t

t
in equa-

tion (24), it becomes

or, dividing by

p%

<J

7
2
/u U/

1 =

This is the equation of an ellipse

with semi-axes t
y
and t,,

called the

inertia ellipse, the coordinates of

any point of the curve being I cos a

and / sin#.

By means of the inertia ellipse

the moment of inertia with re-

spect to any gravity axis AB (Fig.

33) can be obtained as follows. ^ 2

The equation of a tangent to the ellipse + ^
= 1 at the point

FIG. 33

(25) + yy'c?
- aV = 0.
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It is proved in analytical geometry that in order to reduce the linear

equation Az-\-By + C= to the normal form z cos /3-f- y sin ft c = 0,

it is necessary to divide throughout by V^2 + B*. Applying this

theorem to equation (25), it becomes

= 0,

Substituting these values in the expression a2
cos

2
/3 + b

2
sin

2
/3, it

becomes

whence, since ft = a >

c
2 = a2

cos
2
/3 -f b

2
sin

2
/3 = a2

sin
2 a + b

2
cos

2
a.

Since the semi-axes of the inertia ellipse are a = t
y
and & = t

tt
this

expression becomes
2 ,2 . 2 2

/ / cir> /y I /^ pnta^/yt Olll 14> ~|~ t/
a

l^UiS I*,

or, comparing this expression with equation (24),

The radius of gyration corresponding to any gravity axis AB can

therefore be found by drawing a tangent to the

inertia ellipse parallel to AB, and measuring the

distance of this tangent from the center.

Since the inertia ellipse is constructed on the

principal radii of gyration as semi-axes, it can be

drawn on all the ordinary forms of cross section,

and when this is done the method given above

greatly simplifies the calculation of the moment
of inertia with respect to any gravity axis which

FIG. 34 is not a principal axis.

Problem 71. From the Carnegie handbook of structural steel the principal
radii of gyration of T-shape, No. 72, size 3 in. by 4 in., are 1.23 in. and .59 in.

Construct the inertia ellipse (Fig. 34).

_I______i
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Problem 72. For a Carnegie I-beam, No. B 7, 15 in. deep and weighing
42 lb./ft., the principal radii of gyration are 5.95 in. for an axis perpendicular to

web at center, and 1.08 in. for an axis coincident with web at center. Construct

the inertia ellipse.

Problem 73. For a Cambria channel, No. C 21, depth of web 7 in., width of

flanges 2.51 in., thickness of web .63 in., the radius of gyration about an axis per-

pendicular to the web at center is 2.39 in.; the distance of the center of gravity

from outside of web is .58 in., and the radius of gyration about an axis through

the center of gravity parallel with center line of web is .56 in. Construct the

inertia ellipse.

Problem 74. In Problems 68, 69, and 70 determine graphically the radii of

gyration about an axis through the center of gravity and inclined at 30 to the

major axis of the inertia ellipse.

50. Vertical reactions and shear. Under the assumptions of the

common theory of flexure, the external forces acting on a beam all

lie in the same vertical plane. Therefore, since the beam is assumed

to be in equilibrium, the sum

of the reactions of the sup- L

ports must equal the total [*
^ 1_

load on the beam.

For instance, consider a
r> !< - ..... - 7

simple beam AB of length /,

which is supported at the FIG . 35

ends and bears a single con-

centrated load P at a distance d from A (Fig. 35). Let R^ and R
2

denote the reactions at A and B respectively. Then, from the above,

R
l + Rz

= P.

To find the values of R^ and R
z ,
take moments about either end, say A.

Then
RJ, = Pd\

whence

Also, since

If any cross section of a beam is taken, the stresses acting on this

section must reduce to a single force and a moment, as explained in
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Article 37. For a simple beam placed horizontally and supporting a

system of vertical loads, the plane of the moment is perpendicular to

the plane of the section, and the single force is a vertical shear lying

in the plane of the section. Therefore, since the portion of the beam

on either side of the section must be in equilibrium, the vertical

shear is equal to the algebraic sum of the external forces on either

side of the section. Thus, if the portion of the beam on the left of

the section is considered, the vertical shear on the section is equal

to the reaction of the left support minus the sum of the loads on the

left of the section.

Problem 75. A beam 10 ft. long bears a uniform load of 300 Ib./ft. Find the

vertical shear on a section 4 ft. from the left support.

Solution. The total load on the beam is 3000 Ib. Therefore, since the load is

uniform, each reaction is equal to 1500 Ib. The load on the left of the section is

300 x 4 1200 Ib. Therefore the vertical shear on the section is 1500 1200 = 300 Ib.

Problem 76. Find the vertical shear at the center and ends of the beam in the

preceding problem.

Problem 77. A beam 12 ft. long bears loads of 1, |, and 3 tons at distances of

2, 6, and 7 ft. respectively from the left support. Find the vertical shear at either

end of the beam, and also at a

point between each pair of loads.

UJ.

( X

51. Maximum bending
moment . The external bend-

ing moment at any point of
T>

2 a beam is denned as the sum
of the moments, about the

neutral axis of a cross sec-

tion through the point, of all

the external forces on either

FIG. 36 side of the section. Thus, if

the portion of the beam on

the left of the section is considered, the external moment at this point
is the moment of the reaction of the left support about the neutral

axis of the. section, minus the sum of the moments of the loads

between the left support and the section, about the same neutral axis.

For example, in Fig. 36 the moment of RI about the neutral axis of the section

mn is BIZ, and the moment of PI about the same axis is PI (x di). Therefore
the total external moment acting on the section mn is

M=Elx-Pl (x-di).
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As another example, consider a beam of length I bearing a uniform load of

amount w per unit of length. Then the total load on the beam is wl, and each

reaction is Therefore the moment at a point distant x from the left support is

ivl x wx .,

From this relation it is evident thatM is zero for x = or
Z,
and attains its maxi-

mum value for x = -
;
that is to say, the bending moment is zero at either end of

the beam and a maximum at the center.

From the formula M=pSy given in Article 45, it is evident that

the maximum value of the stress p occurs where the bending moment

M is a maximum. Ordinarily the maximum bending moment pro-

duces a greater strain than the maximum shear
;
therefore the section

at which the maximum moment occurs is called the dangerous section,

since it is the section at which the material is most severely strained,

and consequently the one at which rupture may be expected to occur.

In order to find the maximum bending stress in a beam, the formula

M = pS is written M

The maximum bending stress is then obtained at once by simply

dividing the maximum bending moment by the section modulus.

Problem 78. A rectangular wooden beam 14 ft. long, 4 in. wide, and 9 in. deep
bears a uniform load of 75 Ib./ft. Find the position and amount of the maximum

bending moment.

Problem 79. Find the maximum bending stress in the beam in the preceding

problem.

Problem 80. A Cambria I-beam, No. B 33, which weighs 40 Ib./ft., is 15 ft.

long and bears a single concentrated load of 5 tons at its center. Find the maxi-

mum bending stress in the beam, taking into account the weight of the beam.

52. Bending moment and shear diagrams. In general, the bending

moment and shear vary from point to point along a beam. This

variation is shown graphically in the following diagrams for several

different systems of loading.

(A) Simple beam bearing a single concentrated load P at its center

(Fig. 37). From symmetry the reactions 7^ and fi
2
are each equal

-p
to Let mn be any section of the beam at a distance x from the

&

left support, and consider the portion of the beam on the left of this
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section. Then the moment at mn

s ^x = x ) and the shear is

=
). For a section on the

FIG. 37

right of the center the bending
moment is R

2(l x) and the shear

is Rg Consequently, the bending
moment varies as the ordinates of

a triangle, being zero at either sup-

port, and attaining a maximum
PI

value of at the center, while

the shear is constant from A to B,

and also constant, but of opposite

sign, from B to C.

The diagrams in Fig. 37 represent these variations in bending
moment and shear along the beam under the assumed loading. Con-

sequently, if the ordinates vertically beneath B are laid off to scale

to represent the bending moment and shear at this point, the bending

moment and shear at any ^ 7 ^

other point D of the beam

are found at once from the

diagram by drawing the

ordinates EF and HK verti-

cally beneath D.

(B) Beam bearing a single

concentrated load P at a dis-

tance c from one support.

The reactions in this casj

are

_P(l-c)
p(W

M
; 2

and

Pc

Hence the bending moment
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at a distance x from the

left support is

provided x < c, and

_Pc(l-

R.

if x > c. If x = c, each of

these moments becomes

Pc(l-c)

and consequently the bend-

ing moment and shear dia-

grams are as shown in

Fig. 38.

(C) Seam bearing sev-

eral separate loads.

SHEAR

FIG. 30

In this case the bending moment diagram is obtained by con-

structing the diagrams for

each load separately and

then adding their ordinates,

as indicated in Fig. 39.

(D) Beam bearing a con-

tinuous uniform load.

Let the load per unit of

length be denoted by w.

Then the total load on the

beam is wl, and the reac-

tions are

wl

Hence at a distance x from

the left support the bend-

ing moment Mx is
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wl

~2

The bending moment diagram is therefore a parabola. For x = >

wl2

Mx
= which is its maximum value. The bending moment and

8

shear diagrams are therefore as represented in Fig. 40.

(E) Beam bear-

ing uniform load

over part of the

span.

Let the load ex-

tend over a distance

c and be of amount

w per unit of length.

Then the total load

is we. The reactions

of the supports are

the same as though

the load was concen-

trated at its center

of gravity G. There-

fore, if d denotes the

distance of G from

the left support,

wc(l-d)

Also, the bending moment diagrams for the portions AB and CD are

the same as though the load was concentrated at G, and are there-

fore the straight lines A'H and D'K, intersecting in the point T

vertically beneath G (Fig. 41).

From B to C there is an additional bending moment due to the

uniform load on this portion of the beam. Thus, if LMN is the para-

bolic moment diagram for a beam of length LN or c, the ordinates

to the line HK must be increased by those to the parabola LMN,
giving as a complete moment diagram the line A'HJKD'.
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Analytically, if x denotes the distance of any section from the left

support, the equations of the three portions A'H, HJK, and KD' of

the moment diagram are

-"^AB **jtf>
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Differentiating M with respect to x,

Therefore

that is to say, the shear at any point of a beam is the first differential

coefficient of the bending moment at that point.

If the beam is uniformly loaded, as in (Z>) of the preceding
IJJ'li

article, Q = R^ wx and M = R^x ---
> from which equation (26)

results as before.

From equation (26) it follows that if the bending moment is con-

stant the shear is zero
;
and conversely, if the shear is zero the bend-

ing moment is constant. But = is the condition that the
CLOu

bending moment shall be either a maximum or a minimum. Conse-

quently, at a point where the bending moment passes through a maxi-

mum or minimum value the shear is zero ; and conversely. This

theorem is illustrated by the bending moment and shear diagrams in

the preceding paragraph.

54. Designing of beams. In designing beams the problem is to

find the transverse dimensions of a beam of given length and given

material, so that it shall bear a given load with safety.

In order to solve this problem, the formula M= pS is written

- = S.

p

Then, from the given loading, the maximum value of M is determined,

and by dividing the ultimate strength of the material by the proper

factor of safety the safe unit stress p becomes known. The quotient

of these two gives the section modulus of the required section.

In the handbooks issued by the various structural iron and steel

companies, the section moduli of all the standard sections are tabu-

lated. If, then, the beam is to be of a standard shape, its size is

found by simply looking in the tables for the value of S which corre-

sponds most closely to the calculated value > the value chosen
P
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being equal to or greater than the calculated value in order to insure

safety.

If the section of the beam is to be of a shape not listed in the

handbooks, the dimensions of the section must be found by trial.

Thus a section of the required shape is assumed, and its section

modulus calculated from the relation

If the value of S thus found is too great or too small, the dimensions

of the section are decreased or increased, and S again calculated.

Proceeding in this

way, the dimensions

of the section are

changed until a

value of S is found

which is approxi-

mately equal to the

calculated value
P

Problem 83. Design
a steel I-beam, 10 ft.

long, to bear a uniform

load of 1600 lb./ft., neg- FIG. 43

lecting its own weight.

Problem 84. A built beam is to be composed, of two steel channels placed on

edge and connected by latticing. What must be the size of the channels if the

beam is to be 18 ft. long and bear a load of 10 tons at its center, the factor of

safety being given as 4 ?

Problem 85 . Compare the strength of a pile of 10 boards, each 14 ft. long, 1 ft.

wide, and 1 in. thick, when the boards are piled horizontally, and when they are

placed close together on edge.

Problem 86. Design a rectangular wooden cantilever to project 4 ft. from a

wall and bear a load of 500 Ib. at its end, the factor of safety being 8.

Problem 87. A rectangular cantilever projects a distance I from a brick wall

and bears a single concentrated load P at its end. How far must the inner end of

the cantilever be imbedded in the wall in order that the pressure between this end
and the wall shall not exceed the crushing strength of the brick ?

Solution. Let 6 denote the width of the beam and x the distance it extends into

the wall. For equilibrium the reaction between the beam and the wall must con-

sist of a vertical force and a moment. If pa denotes the intensity of the vertical
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stress, and it is assumed to be uniformly distributed over the area &c, pabx P;p
whence pa = (see Fig. 43, a).

Similarly, let pb denote the maximum intensity of the stress forming the stress

couple. Then, taking moments about the center C of the portion AB, since the

stress forming the couple is also distributed over the area 6x, we have

bx*
and

Me
Therefore, substituting in the formula p = , we have

(-1)1

12

6P
Pmax = Pb Pa =
min

H)

= 2P / 3A
"

bx \
+

x)

Consequently,

whence

and

As a numerical example of the above, let I = 5 ft. = 60 in., P = 200 lb., 6 = 4 in.,
and p = 600 lb./in.

2
(for ordinary brick work). Solving the above equation by the

formula for quadratics,

6<>^
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section is moved from this position parallel to itself a distance dx,

say to the position EFGH in the figure, the rate of change of p with

respect to x is

/27^ dp _dM y _ y
to dZ I I Q

'

The difference between the normal stresses acting on these two

adjacent cross sections tends to shove the point P in a direction

parallel to the axis of the beam, and this tendency is resisted by
a shearing stress of intensity q at P, also parallel to the axis of

the beam. Therefore, since the resultant normal stress on the area
*

r 2

BCEF is I dp-dF, and the resultant shearing stress on the area
*) c

ABCD is qbdx, h
_

/2dp
- dF = qbdx.

Substituting the value of dp from equation (27),

whence h

(28) q = Q CydF.

Formula (28) applies to any cross section bounded by parallel sides.

In Article 23 it was proved that whenever a shearing stress acts

along any plane in an elastic solid, there is always another shearing

stress of equal intensity acting at the same point in a plane at right

angles to the first. Consequently, formula (28) also gives the intensity

of the stress at any point P in a direction perpendicular to the neutral

axis of the section.

For a rectangular cross section

and hence

(29) i8 a
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From equation (29), it is evident that for rectangular sections the

shear is zero at the top and bottom of the beam ( where c = -
)
and

\ 2/

increases toward the center as the ordinates to a parabola. For c = 0,

q attains its maximum value, namely, q = ~- (Fig. 45). At the top

and bottom where the normal bending stress is greatest the shear is

zero, and at the center where the normal stress is zero the shear is a

maximum.

1

FIG. 45

Since the area of the parabola

ABC is %hq, the average stress is

I hq/h = | q, and consequently the

maximum unit stress q is | average

unit stress.

56. Distribution of shear over

circular cross section. For a rec-

tangular cross section the shear parallel to the neutral axis is zero,

but for a circular cross section this is not the case. Let Fig. 46 rep-

resent a circular cross section, say the cross section of a rivet sub-

jected to a vertical shear, and let it be required to find the direction

and intensity of the shear at the extremity N of a horizontal line

MN. If the stress at N has a normal component, that is, a compo-
nent in the direction ON, it must have a component of equal amount

through N perpendicular to the plane of the cross section, that is,

in the direction of the axis of the rivet (Article 23). Consequently,
since the rivet receives no stress in the direction of its axis, the stress

at N can have no normal component and is therefore tangential.

Similarly, the stress at M is tangential, and since the line MN is

horizontal, the tangents at M and N must meet at some point B on

the vertical diameter, which is taken for the F-axis. The stress at

any point K on the F-axis must act in the direction of this axis, and
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therefore also pass through B. For. any other point of MN it is

approximately correct to assume that the direction of the stress also

passes through B.

Therefore, in order to determine the direction and intensity of the

shear at any point of a circular cross section, a chord is drawn through

the point perpendicular to the direction of the shear and tangents

drawn at its extremities, thus determining a point such as B in

Fig. 46. Assuming the axes as in Fig. 46, the vertical shear acting

at the point is then calculated by formula (28), where, in the present

case, b is the length of the chord and the integral is extended over

the segment above the chord. The horizontal component of the shear

is then determined by the condition that the resultant of these two

components must pass through B.

The amount of the component and resultant shears acting at any

point can be calculated as follows.

For a strip parallel to the Z-axis, dF = zdy, and z = Vr2

y
2
.

Therefore

The vertical component of the shear is, therefore,

^ =
&I\12

Let KB and KN, Fig. 46, represent in magnitude and direction

the vertical and horizontal components of the shear acting at N. Then,

from the similar triangles KNB and KNO,

KB KN

whence

_ _~ ~'

Since BN* = BK* + KN*, the resultant shear at N is
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or, since - + A2

In this equation q is proportional to 5, and hence the maximum

value of q is at the center where b = 2 r. Hence

(/max =

E

FIG. 47

The maximum unit shear on a circular cross section is therefore

equal to of its average value.

57. Cases in which shear is of especial importance. In Article 53

it was shown that at points where the normal bending stress is a

j_
maximum the shear is zero.

For this reason it is usu-

ally sufficient to dimension

a beam so as to carry the

maximum bending stress

safely without regard to

the shear. However, in

certain cases, of which the

following are examples, it

is necessary to calculate

the shear also, and combine it with the bending stress.

For an I-beam the static moment / ydF is nearly as great directly

under the flange as for a section through the neutral axis
;
and there-

fore, by formula (28), the shear is very large at this point, as shown

on the shear diagram in Fig. 47. Hence the shear and bending
stress are both large under the flange, and the resultant stress at

this point may, in some cases, exceed that at the outer fiber.

Again, if a beam is very short in comparison with its depth, or if

the material of which it is made offers small resistance to shear in

certain directions, as in the case of a wooden beam parallel to the

grain, a special investigation of the shear must be made. For instance,

consider a rectangular wooden beam of length /, breadth I, and depth h,

bearing a single concentrated load P at its center. Then the total
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shear on any section is > and the maximum bending moment is --
2 4

Hence the maximum unit normal stress is

3 PI^ _P ~'~

I
'

2
~

2

P C z bli*

Also, since Q = and / ydF = > the maximum unit shear is
2 Jo 8

j. Cy*V=**.
IIJ

"
46fc

Now let /c denote the ratio between the tensile strength in the direc-

tion of the fiber and the shearing strength parallel to the fiber.

Then, in order that the beam shall be equally safe against normal

and shearing stress, p = tcq,
or

3PZ _ 3JP.

whence

FIG. 48

20'

In general, K is not greater than 10. If /c = 10, 1 = 5 h. Consequently,

if the length of a beam is greater than 5 times its

depth, the shear is not likely to cause rupture. ^~~ ^i ~J

Problem 88. The bending moment and shear at a certain

point in a Carnegie I-beam, No. B 2, of the dimensions

given in Fig. 48, are M= 200,000 ft. Ib. and Q = 15,000 Ib.

respectively. Calculate the maximum normal stress and the

equivalent stress for a point directly under the flange, and

compare these values with the normal stress in the extreme

fiber.

Solution. From the Carnegie handbook, the moment of

inertia of this section about a neutral axis perpendicular

to the web is I = 1466.5 in. 4
. Consequently, the normal

stress in the extreme fiber is

Me 2,400,000(10)

I 1466.5

and the normal stress at a point P under the flange is

2,400,000(9.35) =
1466.5
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Neglecting the rounded corners,

S*2 /*

/ ydF= I

Jk */9.

Consequently, from formula (28), the unit shear at P is

At the point P, therefore, px = 15,300 Ib./in.
2

, py
= 0, and q = 64 Ib./in.

2
.

Hence, from formula (7), Article 26,

Pmax - y +
\
V4^ + p2 = 15

,
304 Ib./in.

2
.

To calculate the equivalent stress it is necessary to find the principal stresses,

which are, from the above,

pl = 15,304 lb./in.
2 and p2 = - 2 lb./in. 2.

Hence, from formula (14), Article 35, for ra = 3 the equivalent stress at P is

pe = 15,305 lb./in. 2.

58. Oblique loading. If, for any cross section, the plane of the

external bending moment does not pass through a principal axis of

the section, the loading is said

to be oUique. In this case the

bending moment M can be re-

solved into components parallel

to the principal axes, namely,
M cos a and M sin #, where a

is the angle which the plane

containing M makes with one

of the principal axes.

For materials which conform to Hooke's law it has been found

that the stress due to several sets of external forces can be calculated

for each set separately and then combined into a single resultant.

This is called the law of superposition. Applying this law to the

present case,

Jfcoso; M sin a Mcosa Msina

FlG 49

/OA\
(30)

where e
v,

e
z
are the distances of the extreme fibers of the beam from

the axes of Y and Z respectively, and S
y ,
S

z
are the corresponding

section moduli.
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Problem 89. In an inclined railway the angle of inclination with the horizontal

is 30. The stringers are 10 ft. 6 in. apart, inside measurement, and the rails are

placed 1 ft. inside the stringers. The ties are 8 in. deep and 6 in. wide, and the

maximum load transmitted by each rail to one tie is 10 tons. Calculate the maxi-

mum normal stress in the tie.

Solution. The bending moment is the same for all points of the tie between the

rails, and is 20,000 ft. Ib. From Problem 66, Sz = 64 in. 3 and Sy
= 48 in. 8

. There-

fore, from equation (30),

240,000 (\ 240,000 (-\

- 5744

59. Eccentric loading. If the external forces acting on any cross

section reduce to a single force P, perpendicular to the plane of the

section, but not passing through its center of gravity, this force is

called an eccentric load. Let B denote the point of application of the

eccentric load P, and let y'z
1 denote the coordinates of B. Then the

eccentric force P acting at B can be replaced by an equal and parallel

force acting at the center of gravity C of the section, and a moment

whose plane is perpendicular to the-, section. This moment can then

be resolved into two components parallel to the principal axes, of

amounts Py' and Pz' respectively. Therefore, by the law of super-

position, the intensity of the stress at any point (y, z) of the cross

section is

P Pzf

Py'
P = F +

^'
Z +^ y '

or, since I= Ftf,

At the neutral axis the stfSs^s zero, and consequently 1 H - + ~-
*y

*

must be zero
; or, since the semi-axes of the inertia ellipse are a = t

y

and b = t
gt

this condition becomes

(3D P +g-'- .
.

This condition must be satisfied by every point on the neutral axis,

and is therefore the equation of the neutral axis. To each pair of values

of y' and z', that is, to each position of the point of application B of

the eccentric load, there corresponds one and only one position of the

neutral axis.
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z2 if
If the point B lies on the ellipse + 7^

= 1, its coordinates must
or lr

satisfy this equation, and, consequently,

(32) ^ + ^ = I-

In this case the neutral axis passes through a point on the ellipse

diametrically opposite to B
;
for if z', y' are substituted for y

and z in equation (31), it is evident that the condition (32) is satisfied.

z
2

if
The tangent to the ellipse -f- ^ = 1 at the point z

1

, y' is

tyd ?/7/

+ ^- = 1, which is identical with equation (31). Consequently,

if B lies on the inertia ellipse, the neutral axis corresponding to B is

tangent to the ellipse at the point diametrically opposite to B.

From equation (31), the slope of the tan-

gent is found to be

If, then, the point B moves out along a radius

CB, z' and y' increase in the same ratio, and

consequently the slope is constant
;
that is to

say, if B moves out along a radius, the neu-

tral axis moves parallel to itself.

As z
r and y f

increase, z and y must de-

crease, for the products zz
f and yy

f must be

constant in order to satisfy equation (31).

Therefore the farther B is from the center of

gravity, the nearer the corresponding neutral axis is to the center

of gravity, and vice versa.

If, in Fig. 50, TN is the neutral axis corresponding to B, it fol-

lows, from the above, that CB CT is a constant wherever B is on the

line BT. But if B lies on the ellipse, the corresponding neutral axis

is tangent to the ellipse at the point diametrically opposite to B, and
in this case the above product becomes CM2

. Therefore

(33) CB.CT

FIG. 50

From this relation, the position of the neutral axis can be determined

when the position of the point B is given.
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60. Antipole and antipolar. The theorems in the preceding para-

graph prove that if the point of application of an eccentric load lies

outside, on, or within the inertia ellipse, the corresponding neutral

axis cuts this ellipse, is tangent to it, or lies wholly outside it.

This relation is analogous to that of poles and polars in analytical

geometry, except that in the present case the point and its corre-

sponding line lie on opposite sides of the center instead of on the

same side. For this reason the point in the present case is called

the antipole, and its corresponding line the antipolar.

The following theorem is analogous to a well-known theorem of

poles and polars.

If the antipole moves along a fixed straight line, the antipolar

revolves about a fixed point. Conversely, if the antipolar revolves

about a fixed point, the antipole moves along a fixed straight line.

If the antipole moves to infinity, the antipolar, or neutral axis,

passes through the center of gravity of the section, which is the

ordinary case of pure bending strain. The bending moment in this

case can be considered as due to an infinitesimal force at an infinite

distance from the center of gravity.

If the antipole coincides with the center of gravity, the neutral

axis lies at infinity, which means that the stress is uniformly dis-

tributed over the cross section.

Since the stresses on opposite sides of the neutral axis are of oppo-

site sign, if the neutral axis cuts the cross section, stresses of both

signs occur
(i.e.

both tension and compression), whereas if the neutral

axis lies outside the cross section, the stress on the section is all of

the same sign (i.e.
either all tension or all compression).

61. Core section. Let it be required to find all positions of the

point of application of an eccentric load such that the stress on

the cross section shall all be of the same sign. From the preceding

article, the condition for this is that the neutral axis shall not cut

the cross section. If, then, all possible lines are drawn touching the

cross section or having one point in common with it, and the anti-

poles of these lines are found, the locus of these antipoles will form

a closed figure, called the core section.

For a point within or on the boundary of the core section the neu-

tral axis lies entirely without the cross section, or, at most, touches it,
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and consequently stress of only one sign occurs. For a point without

the core section the corresponding neutral axis cuts the cross section

and it is subjected to stresses of both signs.

Problem 90. Construct the core section for a rectangular cross section of breadth

b and height h (Fig. 51).

Solution. From Problem 56, Iz = > Iy = and the corresponding radii of
12

gyration are % = = andt^
=

F 12 12

ellipse are tg =
h b

and tv = '

2V32\/3

Consequently, the semi-axes of the inertia

Having constructed the inertia ellipse, the

vertices of the core section will be antipoles of the lines PQ, QR, RS, and SP.

P Q

From Article 59, the antipole of PQ is determined by the relation OA OE = Off
2
, or,

since OE=- and OH=te = -^ ,OA = -. Similarly, OC = - and OB = OD = -.
2 2 V3 6 66

Thus the core section is the rhombus ABCD, of which the vertices A, B, C, D are

the antipoles of the lines PQ, PS, SR, QR respectively, and the sides AB, BC, CD,
DA are the antipolars of the points P, S, R, Q respectively.

Problem 91. Construct the core section for the T-shape in Problem 71.

Solution. Six lines can be drawn which will have two or more points in com-

mon with the perimeter of the T-shape without crossing it, namely, PQ, QR, RT,
TU, US, and SP (Fig. 52). The vertices A, B, C, D, E of the core section are

then the antipoles of these six lines respectively.

Problem 92. Construct the core section of the I-beam in Problem 72.

Problem 93. Construct the core section for the channel in Problem 73.

Problem 94. Construct the inertia ellipse and core section for a circular cross

section.

62. Application to concrete and masonry construction. Since con-

crete and masonry are designed to carry only compressive stresses, it
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is essential that the point of application of the load shall lie within

the core section.

Consider a rectangular cross section of breadth ~b and height h.

For the gravity axes MM and NN (Fig. 53) the corresponding mo-

ments of inertia are

I =m ~
12

Hence the radii of gyration are

b

Vl2
= .28875

Aand

and = ^ = .2887^,
Vl2

and the inertia ellipse is constructed on

these as semi-axes. To determine the core

section it is sufficient to find the antipole

of each side of the cross section PQRS.

Suppose A is the antipole of PQ, B the

antipole of PS, etc. Then, by Article 60,

the antipole of any line through P, such

as LL, lies somewhere on AB
;
that is to

say, as the line PQ revolves around P to

the position PS, its antipole moves along

AB from A to B. The core section in the

present case is thus found to be the rhom-

bus ABCD.
From Article 59, OC> OK = OT2 = , since the semi-axes of the

7 -L

ellipse are the radii of gyration. But OK=-\ hence OC = - and
7 7 2i D

AC = -
Similarly, BD = - - This proves the correctness of the

o o

rule ordinarily followed in masonry construction, namely, that in order

to insure that the stress shall all be of the same sign, the center of

pressure must fall within the middle third of the cross section.

63. Calculation of pure bending strain by means of the core

section. Let Fig. 54 represent the cross section of a beam subjected

to pure bending strain. In this case the neutral axis passes through

the center of gravity of a cross section, and therefore, from Article 60,

the strain can be considered as due to an infinitesimal force at an

infinite distance from the origin. Under this assumption the stress
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due to pure bending strain can be readily calculated by means of

the core section, as follows.

Suppose the external bending moment M lies in a plane perpen-

dicular to the plane of the cross section and intersecting it in the

line MM. Then, assuming that M is due to an infinitesimal force

whose point of application is at an infinite distance from in the

direction OM, the antipolar of this point will be the diameter of the

inertia ellipse conjugate to MM. It is proved in analytical geometry

that the tangent at the end of a diameter of a conic is parallel to the

conjugate diameter. Therefore, if BT is tangent to the inertia ellipse

at B, and NN is drawn through parallel to BT, NN will be the

diameter conjugate to MM. Since the

greatest stress occurs on the fiber most

distant from the neutral axis, the maxi-

mum stress will occur at P or E. Through
P draw PA parallel to NN and intersect-

ing JOf in A. Then, from Article 59,

R

s
/N

or, taking the projections of OA, OK, and

OB on a line perpendicular to NN,
FIG. 54

e OKsma = (OB

where e is the perpendicular distance of PA from 0. But OB sin a

is the distance of the tangent BT from 0, and, by Article 49, this

distance is the radius of gyration t corresponding to the axis NN.
Therefore

(34) e- OKsma = ^ = -2,

where F is the area of the section and In is its moment of inertia

with respect to NN. The component of the external moment M per-

pendicular to NN is M since. Hence, equating this to the internal

moment,

(35) Msma=^ Cy(ydF) =^ Cy*dF =^,
e J e J e

where p is the stress at the distance e from the neutral axis. Sub-

stituting in equation (34) the value of In obtained from equation (35),
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e-M siner

whence

(36)

If, in the handbooks issued by iron and steel companies, the

inertia ellipse and core section were drawn on each cross section

tabulated, the calculation of the

maximum bending stress by for-

mula (36) would be extremely
A B ^ ^ D

simple, requiring merely the

measurement of the distance OK.

Problem 95. Calculate the maxi-

mum bending stress in Problem 89 by
means of the core section.

Solution. The loading is as represented in Fig. 56, in which the portion BC
is subjected to pure bending strain. From Problem 89, M = 20,000 ft. Ib. and

F = 48 in. 2
. From the diagram of the core section drawn to scale, OK is found

to measure .9 in. Therefore, from formula (36), pQ = 6555 lb./in.
2

.

64. Stress trajectories. In Article 27 the principal stresses at any

point in a body were denned as the maximum and minimum normal

stresses at this point. Lines which everywhere have the direction

of the principal stresses are called stress trajectories.

In order to determine the stress trajectories, a number of cross

sections of the body are taken, and the shear and normal stress cal-

culated for a number of points in each section. The directions which

the principal stresses at these points make with the axis of the body

can then be found by formula (6), Article 26, as explained in Prob-

lem 39. The stress trajectories are thus determined as the envelopes

of these tangents.

Since the principal stresses at any point are always at right angles,

the stress trajectories constitute a family of orthogonal curves.

65. Materials which do not conform to Hooke's law. The preced-

ing articles of this chapter are based on Hooke's law, and consequently

the results are applicable only to materials which conform to this

law, such as steel, wrought iron, and wood. Other materials, such as

cast iron, stone, brick, cement, and concrete, are so lacking in homo-

geneity that their physical properties are very uncertain, differing not
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only for different specimens of the material but also for different por-

tions of the same specimen. For this reason it is impossible to apply

to such materials a general method of analysis with any assurance

that the results will approximate the actual behavior of the material.

For practical purposes, however, the best method is to calculate the

strength of such materials by the formulas deduced above, and then

modify the result by a factor of safety so large as to include all

probable exceptions.

The behavior of cast iron is more uncertain than that of any other

material of construction, and it must therefore be used with a larger

factor of safety. If two pieces from the same specimen are subjected

to tensile strain and to cross-bending strain respectively, it will be

found that the ultimate strength deduced from the cross-bending

test is about twice as great as that deduced from the tensile test.

The reason for this is that the neutral axis does not pass through

the center of gravity of a cross section, lying nearer the compression

than the tension side, and also because the stresses increase more

slowly than their distances from the neutral axis. If, then, it becomes

necessary to design a cast-iron beam, the ultimate tensile strength

used in the calculation should be that deduced from bending tests.

For materials such as concrete, stone, and cement, the most

rational method of procedure is to introduce a correction coefficient

77
in formula (18) and put

Me
p = r\

where it has been found by experiment that for granite 77
= .96, for

sandstone rj
= .84, and for concrete 77

= .97.*

66. Design of reenforced concrete beams. Since concrete is a mate-

rial which does not conform to Hooke's law, and moreover does not

obey the same elastic law for tension as for compression, the exact

analysis of stress in a plain or reenforced concrete beam would be

much more complicated than that obtained under the assumptions of

the common theory of flexure. The physical properties of concrete,

however, depend so largely on the quality of material and workman-

ship, that for practical purposes the conditions do not warrant a rig-

orous analysis. The following simple formulas, although based on

*
Foppl, Festigkeitslehre, p. 144.
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approximate assumptions, give results which agree closely with exper-

iment and practice.

Consider first a plain concrete beam, that is, without reenforcement.

The elastic law for tension is in this case (see Fig. 56)

and for compression

To simplify the solution, however, assume

the straight-line law of distribution of

stress, that is, assume m
x

= m
2

1. Note,

however, that this does not make the

moduli equal. Assume also that cross sections which were plane

before flexure remain plane after flexure (Bernoulli's assumption),

which leads to the relation

where e
c
and e

t
denote the distances of the extreme fibers from the

neutral axis (Fig. 56).

Now let the ratio of the two moduli be denoted by n, that is, let

A.

Then
Pt

For a section of unit width the resultant compressive stress Rc
on

the section is R
c
=

\pc
e
c ,
and similarly the resultant tensile stress

R
t
is E

t
= ^p t

e
t
. Also, since R

c
and R

t
form a couple, Rc

= R
t
. Hence

*Y)
>

*Y)

pc
e
c
= p t

e
( ,

or *- = -*; and equating this to the value of the ratio -

Pt e
c Pt

obtained above, we have

e.= e.'vn.
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Since the total depth of the beam h is h = e
c + e

t)
we have, therefore,

e
c
= h e

c^n, whence

h
e..=

and, similarly, e
t
=h -

-j=>
whence

Now, by equating the external moment M to the moment of the

stress couple, we have

whence, by solving for the unit stresses pc
and p t,

e
ii

or, solving one of these two relations for A, say the first, we have

A to1+ v^).
M r>~

For ordinary concrete n may be taken as 25. Also, using a factor

of safety of 8, the working stress pc becomes pc
= 300 lb./in.

2
Substi-

tuting these numerical values in the above, the formula for the depth

of the beam in terms of the external moment takes the simple form

VM

h being expressed in inches, and M in inch pounds per inch of width

of beam.

Problem 96. A plain concrete slab, supported on two sides only, has a 12-ft.

span and carries a load of 200 lb./ft.
2 Find the required thickness.

Solution. The load is fff lb./in.
2

,
and hence for a strip 1 in. wide, the maxi-

mum moment is M = = 3600 in. Ib. Consequently the required depth h is

h = = 15 in.
4
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For a reenforced concrete beam the tensile strength of the concrete

may be neglected. Let E
c and Es

denote the moduli of elasticity for

concrete and steel respectively, and let

. Rf.

-^- n. Then if x denotes the distance
E

c

of the neutral axis from the top fiber

(Fig. 57), the assumptions in this case F
are expressed by the relations

S X Pc J? A Ps _ J?

s
s

h x
'

s
c s

s

~

whence

s
c pc

E
s pc

x= - - = -w. - =

or, solving for x.

Now if F denotes the area of steel reinforcement per unit width of

beam, then

R
s
= ps

F and R
c=\pcx-,

and consequently, since U
c
= JR

S ,

Moreover, equating the external moment M to the moment of the

stress couple, we have

Substituting the value of x in either one of these expressions, say

the first, we have

1 , npc /, h npc
\

.M=-pc
h-*-s

(
A --~

2^" p,+ npc\ 3p,+ n

whence, solving for h,

== ps+npc

>w
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For practical work assume n = 15, pc
= 500 lb./in.

2

(factor of safety

of 5), and ps
= 15,000 lb./in.

2

(factor of safety of 4). Substituting these

numerical values in the above, the results take the simple form

where H denotes the total depth of the beam in inches, d is the diam-

eter of the reenforcement in inches, and M is the external moment in

inch pounds per inch of width.

In designing beams by these formulas first find h, then F, and

finally H.

Problem 97. A reenforced concrete slab, supported on two sides only, has a

12-ft. span and carries a load of 200 lb./ft.
2 Find the required thickness of slab

and area of metal reinforcement per foot of width.

Solution. As in the preceding example, the maximum moment isM = 3600 in. Ib.

Consequently, h= .116 V^7 = 6.96 in.; also F = ''

in. 2
per inch of width, or

in. 2 per foot of widtli = .464 in.2/ft.; and hence the diameter of the reen-
180

forcement is d = f in. for round rods spaced one foot apart. Finally, the total

depth of slab is II 6.96 + f + = 7.84 in., say 8 in.

An interesting application of these formulas is the comparison of

the calculated position of the neutral axis in a reenforced concrete

beam with that determined experimentally. It has been shown by

experiment that when a reenforced concrete beam is loaded, minute

cracks appear extending upward from the bottom, showing that prac-

tically all the tensile stress is carried by the reinforcement. To

render this more obvious, before the concrete is put in, place one or

more sheets of pasteboard vertically in the mold in which the beam

is made, extending completely across the mold and upward from the

bottom to within a distance of the top at least equal to the value of

x given by the above formulas. This eliminates entirely the tensile

strength of the concrete, which is the assumption upon which the

above formulas are based; and when the beam is loaded the exten-

sion of the reenforcetrient causes a crack to appear plainly along the
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pasteboard. Since this crack

must end at the neutral axis,

the position of this axis is thus

approximately determined ex-

perimentally and maybe used to

verify the calculated value of x.

EXERCISES ON CHAPTER III

Problem 98. A structural steel-

built beam is 20 ft. long and has the

cross section shown in Fig. 58. Com-

pute its moment of resistance and

find the safe uniform load it can

carry per linear foot for a factor of

safety of 5.

Problem 99. The cast-iron bracket shown in Fig. 59 has at the dangerous section

the dimensions shown in the figure; Find the maximum concentrated load it can

carry with a factor of safety of 15.

1
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Problem 100. Find the proper dimensions for a wrought-iron crank shaft of

dimensions shown in Fig. 60 for a crank thrust of 1500 Ib. and a factor of

safety of 6.

Problem 101. A wrought-iron pipe 1 in. in ex-

ternal diameter and T̂ in. thick projects 6 ft. from
a wall. Find the maximum load it can support at

the outer end.

Problem 102. The yoke of an hydraulic press
used for forcing gears on shafts is of the form and
dimensions shown in Fig. 61. The yoke is horizon-

tal with groove up, so that the shaft to be fitted lies

in the groove, as shown in plan in the figure. The
ram is 32 in. in diameter and under a water pressure

of 250 lb./in.
2 Find the dangerous section of the yoke and the maximum stress

at this section.

Problem 103. Design a concrete conduit, 7 ft. square inside, to support a con-

centrated load of 1000 Ib. per linear foot, and determine the size and spacing of

the reinforcement.
'

Problem 104. A 10-in. I-bar weighing 40 Ib./ft. is supported on two trestles 15 ft.

apart. A chain block carrying a 1-ton load hangs at the center of the beam. Find
the factor of safety.

FIG. 60

PLAN END ELEVATION
FIG. 61

Problem 105. The hydraulic punch shown in Fig. 62 is designed to punch
a f-in. hole in a f-in. plate. The dimensions of the dangerous section AB are as

given in the figure. Find the maximum stress at this section.

Problem 106. The load on a car truck is 8 tons, equally distributed between

the two wheels (Fig. 63). The axle is of cast steel. Find its diameter for a factor

of safety of 15.

Problem 107. The floor of an ordinary dwelling is assumed to carry a load of

50 lb./ft.
2 and is supported by wooden joists 2 in. by 10 in. in section, spaced 16 in.

apart on centers. Find the greatest allowable span for a factor of safety of 10.
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FIG. 62

Problem 108. A wooden girder supporting the bearing partitions in a dwelling
is made up of four 2-in. by 10-in. joists set on edge and spiked together. Find the
size of a steel I-beam of equal strength.

Problem 109. A factory floor is assumed to carry a load of 200 lb./ft.
2 and is

supported by steel I-beams of 16 ft. span and spaced 4 ft. apart on centers. What
size I-beam is required for a

factor of safety of 4 ?

Problem 110. Find the re-

quired size of a square wooden
beam of 14 ft. span to carry an

axial tension of 2 tons and a

uniform load of 100 lb./ft.

Problem 111. A reenforced

concrete beam 10 in. wide and

22 in. deep has four 1^-in.

round bars with centers 2 in.

above the lower face. The

span is 16 ft. The beam is

simply supported at the ends.

Find the safe load per linear

foot for a working stress in the concrete of 500 lb./in.
2

,
and also find the tensile

stress in the reenforcement.

Problem 112. A reenforced concrete flopr is to carry a load of 200 lb./ft.
2 over

a span of 14 ft. Find the required thickness of the slab and area of the reenforce-

ment for working stresses of 500 lb./in.
2 in the concrete and 15,000 lb./in.

2 in the

reenforcement.

Problem 113. A reenforced concrete beam of 16 ft. span is 18 in. deep, 9 in.

wide, and has to support a uniform load of 1000 Ib. per linear foot. Determine the

amount of steel reenforcement required, bars to have centers 2 in. above lower face

of beam.

Problem 114. Find the maximum mo-
ment and maximum shear, and sketch the

shear and moment diagrams for a canti-

lever beam 8 ft. long, weighing 20 lb./ft.,

with concentrated loads of 200 and 300

Ib. at 3 and 5 ft. respectively from the

free end.

Problem 115. Find the maximum mo-

ment and maximum shear, and sketch the

shear and moment diagrams for a canti-

lever beam 12 ft. long, carrying a total

uniform load of 50 lb./ft. and concen-

trated loads of 200, 150, and 400 Ib. at

distances of 2, 4, and 7 ft. respectively from the fixed end.

Problem 116. A beam 30 ft. long carries concentrated loads of 1 ton at the left

end, 1.5 tons at the center, and 2 tons at the right end, and rests on two supports,

one 4 ft. from the left end and the other 6 ft. from the right end. Sketch the shear

and moment diagrams and find the maximum shear and maximum moment.

FIG. 63
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Problem 117. A beam 20 ft. long bears a uniform load of 100 Ib. per linear foot

and rests on two supports 10 ft. apart and 5 ft. from the ends of the beam. Find

the maximum moment and shear, and sketch the shear and moment diagrams.
Problem 118. Find the maximum moment and maximum shear, and sketch the

shear and moment diagrams for a simple beam 10 ft. long, bearing a total uniform

load of 100 Ib. per linear foot and concentrated loads of 1 ton at 4 ft. from the left

end and 2 tons at 3 ft. from the right end.

NOTE ON SHEAR AND MOMENT DIAGRAMS

It is important to be able to sketch readily by inspection the shear and moment

diagrams corresponding to any given loading. To acquire this ability it is only

necessary to observe the characteristic features of such diagrams. The more im-

portant of these are as follows :

The slope of the moment curve is equal to the shear. From this, the following
conclusions are obtainable.

Where the moment is a maximum the shear is zero. Note, however, that for

concentrated loads the moment has no calculus maximum. In this case, where the

moment has its greatest value, the shear passes through zero because the slope of

the moment diagram necessarily changes from positive to negative at this point.

Where the moment is constant the shear is zero.

For a uniform load the moment diagram is a parabola and the shear diagram
is an inclined line whose slope is equal to the load per unit of length. Mathemat-

ically this means that the parabola is a curve whose slope changes uniformly from

point to point.

For concentrated loads the moment diagram is a broken straight line, and the

shear diagram is a series of horizontal lines or steps.

For uniform and concentrated loads combined, the moment diagram is a series

of parabolic arcs, and the shear diagram is a series of inclined lines or sloping steps.

At the ends of a simple beam the moment is always zero.

Where the moment diagram crosses the axis, the elastic curve or center line of

the beam has a point of inflection
;
that is to say, the beam is curved upward on

one side of this point and curved downward on the other side. Such a point is

called a point of contrqflexure. The tensile stress changes from the bottom to the

top on opposite sides of a point of contraflexure, and such points are therefore

of especial importance in the case of reenforced concrete beams, as the reenforce-

ment must always follow the tensile stress.

The area subtended by the shear diagram up to any point is equal to the mo-

ment at this point, since = Q and therefore M = C Odx.
dx J



CHAPTER IV

FLEXURE OF BEAMS

67. Elastic curve. If a beam is subjected to transverse loading, its

axis is bent into a curve called the elastic curve. The differential equa-
tion of the elastic curve is

found as follows.

Let ABDE (Fig. 64) rep-

resent a portion of a bent

beam limited by two adja-

cent cross sections AB and

DE, and let C be a point

in the intersection of these

two cross sections. Then

C is the center of curva-

ture of the elastic curve

FH. Let dp denote the

angle ACE
y
and through

H drawLK parallel to A C\

then the angle LHE is also equal to d(3. Since the normal stress is

zero at the neutral axis, the fiber FH is unchanged in length by the

strain. Therefore, from Fig. 64, the change in length of a fiber at a

distance y from the elastic curve is yd{3, where dp is expressed in

circular measure. Consequently, the unit deformation of such a fiber is

s =
dx

By Hooke's law, = E where p = -
;
hence

s J.

Is

81
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Inserting in this expression the value of s just found,
^ x = E

;

whence

Let the radius of curvature CF of the elastic curve be denoted by p.

Then pd@ = dx, and inserting this value of dfi in the above equation,

it becomes

From the differential calculus, the radius of curvature of any curve

can be expressed by the formula

But since the deformation of the beam is assumed to be small, the

slope of the tangent at any point of the elastic curve is small
;
that

is to say, -j-
is infinitesimal, and consequently (-j-\

can be neglected

in comparison with ^ Under this assumption p = , and there-
m- i dx d y

, El 1 ,

fore = p = -
;
whenceM d?

dx?

(37) dx
= M,

which is the required

differential equation of

the elastic curve.

In what follows the

external bending mo-

ment M is assumed to

be negative if it tends

Flo 65 to revolve the portion

of the beam under

consideration in a clockwise direction, and positive if the revolution

is counter-clockwise.
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Problem 119. Find the equation of the elastic curve and the deflection at the

center of a simple beam of length Z, bearing a single concentrated load P at its

center.

Solution. The elastic curve in this case consists of two branches, AB and BC
(Fig. 65).

Consider the portion of the beam on the left of any section mn, distant x from
P

the left support. Then M = R^x = x, and consequently the differential

equation of the branch AB of the elastic curve is

Integrating twice,

dx2

dy

and C2 .

At .B, x = - and = 0, since the tangent at B is horizontal. Substituting these
dx PI*

values in the first integral, Ci = - At A, x = and y = ;
hence C2 = 0. Con-

sequently, the equation of the left half of the elastic curve is

Px .

y =
48 El

The deflection D at the center is the value of y for x = -
;
hence

48 El
Problem 120. Find the

equation of the elastic

curve and the maximum
deflection for a cantilever

of length Z, bearing a sin-

gle concentrated load P at

the end.

Problem 121. Find the

equation of the elastic curve

and the maximum deflec-
-^IG - 6^

tion for a simple beam of

length Z, bearing a single concentrated load P at a distance d from the left support.

Solution. The elastic curve in this case consists of two branches, AB and BC

(Fig. 66). For a point in AB distant x from the left support, M =
Therefore

P(l-d)x
JTjJ. =

dx2

Integrating twice,

-P(l-d)x
I
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and Ely = h CiX + C2 -

6 1

At A, x = and y = ;
therefore C2 = 0. In order to determine Ci it is necessary

to find the equation of BC.

Taking a section on the right of 2?, M = - -
, and consequently

_ Pd(l-x)
M>

~
Integrating twice,

Pd /Zr2 rrs\

and Ely = - I - ~\ + C3x + C4 .

At C, x = I and y = ;
therefore C4 = C3 Z.

3

Now at B both branches of the elastic curve have the same ordinate and the

same slope. Therefore, putting x = d in the above integrals and equating the slopes

and ordinates of the two branches,

-P(l-d)d* _ _ I~
21

1 ~~~

Gl

Solving these two equations simultaneously for C\ and

61

Substituting these values of C\ and <73 in the above integrals, the equation of the

branch AB becomes, after reduction,

and the equation of BC becomes

Since the load is not at the center of the fleam, the maximum deflection will

occur in the longer segment. Moreover, at the point of maximum deflection the

tangent is horizontal, that is,
= 0. Therefore, equating to zero the first differ-

ential coefficient of the branch AB,
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from which the distance of the point of maximum deflection from the left support
is found to be

and the deflection at this point is

D =
ami

Problem 122. Find the equation of the elastic curve and the maximum deflec-

tion for a simple beam of length /, bearing a uniform load of w Ib. per unit

of length.

Problem 123. Find the equation of the elastic curve and the maximum deflec-

tion for a cantilever of length I, uniformly loaded with a load of w Ib. per unit

of length.

Problem 124. A Carnegie I-beam, No. B 13, is 10 ft. long and bears a load of

25 tons at its center. Find the deflection of the point of application of the load.

NOTE. From the Carnegie handbook, the moment of inertia of the beam about a

neutral axis perpendicular to the web is I = 84.9 in. 4

Problem 125. Find the deflection of the beam in the preceding problem at a

point 4 ft. from one end.

68. Limitation to Bernoulli's assumption. In Article 39 it was

stated that Bernoulli's assumption formed the basis of the common

FIG. 68

theory of flexure. In the case of a prismatic beam subjected to pure

bending strain, this assumption is rigorously correct. For if the oppo-
site faces of a prism ABCD (Fig. 67) are acted upon by equal bend-

ing moments of opposite sign, both faces must, by reason of symmetry,
remain plane and take a position such as A'B'C'D' in the figure.

However, if shearing stress also occurs, Bernoulli's assumption is

no longer absolutely correct. In Article 55 it was proved that the

distribution 'of shear over any cross section limited by parallel sides

varies as the ordinates to a parabola. Consequently, if the beam is

supposed cut into thin layers by horizontal planes, as represented in
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Fig. 68, the shear will tend to slide these layers one upon another.

By Hooke's law, the amount of this sliding for different layers will

also vary as the ordinates to a parabola,

being zero at top and bottom and a maxi-

mum at the center. Therefore, if the

elongations and contractions of the fibers

due to bending stress are combined with

the sliding due to shear, the resultant

deformation of the prism will be as rep-

resented in Fig. 69.

69. Effect of shear on the elastic curve. In addition to the hori-

zontal shearing stress acting at any point in a beam, there is a shear-

ing stress of equal intensity acting in a vertical direction. The effect

of this vertical shear is to slide each cross section past its adjacent

cross section, as represented in Fig. 70, and

thus increase the deflection of the beam.

In Article 83 a general formula is derived

by means of which the shearing deflection

can be calculated in any given case. It is

found, however, that in all ordinary cases the

shearing deflection is so small that it can be D

neglected, in comparison with the deflection

due to bending strain. The point to be re-

membered, then, is that the shearing deflec- FlG 70

tion is negligible but not zero.

In precise laboratory experiments for the determination of Young's

modulus it should always be ascertained whether or not the shearing de-

formation can be neglected without affecting the precision of the result.

70. Built-in beams. If the ends of a beam are secured in such a

way as to be immovable, the beam is said to be built-in. Examples of

built-in beams are found in reenforced concrete construction, in which

all parts are monolithic. Thus a floor beam in a building constructed

of reenforced concrete is of one piece with its supporting girders, and

consequently its ends are immovable.

Since the tangents at the ends of a built-in beam are horizontal,
dit

-j-
at these points. Also, from Fig. 71, it is obvious that the
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elastic curve of a built-in beam differs from that for a simple beam in

having two points of inflection,A and B. At these points the curvature

d\
is zero, that is,

- = 0,
dx2

and consequently the bend-

ing moment is also zero,

since EI^- = M.
dx2

FIG. 71

Problem 126. Find the equation of the elastic curve and the maximum deflec-

tion for a beam of length Z,
fixed at both ends and bearing a uniform load of w Ib.

per unit of length.

Solution. Let Ma and Mb denote the moments at the supports (Fig. 72). The

vertical reactions at the supports are each equal to

Consequently, the bending moment at a point distant x from the left support is

_ wlx wx2

x a
~~^~ ~2~

and therefore

wlx wx*

FIG. 72

Integrating,

dx 4 6

At A, x = and =
;
therefore Ci = 0. At B, x = I and =

;
therefore

wl2 dx dx
Ma = Substituting this value ofMa in the above integral, and integrating again,

.

At A, x = and y = ;
therefore C2 = 0. Consequently, the equation of the elastic

curve is, after reduction,

_ wx2
(I
-

x)
2
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Putting x = - in this equation, the maximum deflection is found to be

384 El

At the points of inflection ^ = 0. Therefore
ax'2

wlx wx2

a ~
~2 2~'

whence

x = - -L= = .2121 or .788J,

which are the distances of the two points of inflection from the left support.

Problem 127. A beam of length I is fixed at both ends and bears a single con-

centrated load P at a distance d from the left end. Find the deflection at the

point of application of the load.

Problem 128. From the result of Problem 127, find the deflection at the point

of application of the load when the load is at the center.

Problem 129. A concrete girder 16 ft. long, 18 in. deep, and 12 in. wide is

reenforced by two 1-in. twisted square steel rods near its lower face, and bears

a uniform load of 250 Ib. per linear inch. The moment of inertia of the equiv-

alent homogeneous section about its neutral axis (Article 49) is found to be

Ic = 7230 in. 4 Find the maximum deflection.

71. Continuous beams. A continuous beam is one which is sup-

ported at several points of its length, and thus extends continuously

over several openings. If the reactions of the several supports were

known, the distribution of stress in the beam and the equation of

the elastic curve could be found by the methods employed in the

preceding articles. The first step, therefore, is to determine the

unknown reactions. General methods for determining these will be

explained in Articles 72, 78, 80, and 81. The two following prob-

lems illustrate special methods of treating the two simple cases

considered.

Problem 130. A beam i simply supported at its center and ends, and bears

a single concentrated load P at the center of each span. Assuming that the

supports are at the same level, find their reactions and the equation of the

elastic curve.

Solution. Let each span be of length Z,
and assume the origin of coordinates

at O (Fig. 73). Consider the portion of the beam on the right of a section mn,

distant x from 0. Then, if x < -
,
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Integrating twice,

(38)

(39)

At 0, x = and =
;
therefore Ci = 0. Also at 0, x = and y = ;

therefore

Let x be greater than -. Then the differential equation of the branch AB
becomes

=-*<'-*>

Integrating,

(40)

D

FIG. 73

At A both branches, OA and J.J5, have the same slope. Therefore, putting x = -

in (38) and (40), and equating the values of thus obtained,

whence

Substituting this value of <73 in equation (40), and integrating again,

At J. both curves have the same ordinate. Therefore, putting x = - in equations

(39) and (41), and equating the values of y thus obtained,
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whence
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PI*

The equations of both branches of the elastic curve are now determined except

that the reaction E3 is still unknown. Since B is assumed to be on the same level

with O, its ordinate is zero. Therefore, to determine JJ3 , put x = I and y = in

equation (41) ;
whence

From symmetry E\ = 3. Therefore

Problem 131. Determine the reactions of the supports for a beam simply

supported at its center and ends, and bearing a 'uniform load of w Ib. per unit

of length.

Solution. If the end supports were removed, the beam would consist of two

cantilevers, AB and BC (Fig. 74), each of length I and bearing a uniform load.

FIG. 74

wl*From Problem 123, the deflection at the end of such a beam is D = -- But the

reaction E3 (or EI) must be of such amount as to counteract this deflection
; and,

from Problem 120, the deflection at the end of a cantilever bearing a single concen-

trated load J?3 is D =

whence

Therefore

From symmetry, EI = Es . Consequently,

E2 = 2wl- (Ei + Eg) = f wl

Having found the reactions of the supports, the equations of the elastic curves can

be determined as in the preceding problems.

72. Theorem of three moments. The theorem of three moments

is an algebraic relation between the bending moments at three con-

secutive piers of a continuous beam. The theorem is due to Clapeyron,
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and first appeared in the Comptes Rendus for December, 1857. The

following is a simplified proof of the theorem for the case of

uniform loading.

Let A, B, C be three consecutive piers of a continuous beam at

the same height, and let Ma ,
M

b)
M

c
and Ru ,

R
b ,
R

c denote the bend-

ing moments

and reactions

at these three

points respec-

tively (Fig. 75).

Also let l
lt

1
2
de-

note the lengths QA
of the two spans

considered, wlt
w

2

the unit loads on U -x- *j

them, and Q'a , Q"
the shears on the

left and right of

Ra respectively, with a similar notation for the other supports. Then,

taking A as origin, the differential equation of AB is

(42)

Integrating twice,

(43)

and

FIG. 75

-r
2

7>
3 on r*

Ely = Jf. J + Qf- - ^J + Of +

At A, x and y = ;
hence (7

2
=0. At B, x =

l^
and y = ;

hence

In equation (42),
if x = l

lt
EI^ = M

b
. Therefore

(44)

Cf't'O

If
-)

denotes the slope of the elastic curve AB at B, then, from

equation (43),
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Similarly, by taking the origin at C and reckoning backward toward

B, it will be found that

(46) j^Jt + g^-SS,
and

Equating the values of
( -j- ]

from equations (45) and (47), and elimi-

\dxj b

nating Q' and Q'e from the resulting equation by means of equations

(44) and (46),

whence

which is the required theorem of three moments.

If the beam extends over n supports, this theorem furnishes n 2

equations between the n moments at the supports, the remaining two

equations necessary for solution being furnished by the terminal con-

ditions at the ends of the beam.

Problem 132. A continuous beam of two equal spans bears a uniform load

extending continuously over both spans. Find the bending moments and reac-

tions at the supports.

Solution. In the present case w\ = w>2 = to, li = ^ = Z, and Ma = Mc = 0. Con-

sequently, the theorem reduces to

whence

From equation (44),

ryn .= (/ I-- Ja8 a 2
whence
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From symmetry, Ra = JRC,
and consequently

-R& = | wl.

Problem 133. A continuous beam of four equal spans is uniformly loaded. Find
the bending moments and reactions at the supports.

Solution. The system of simultaneous equations to be solved in this case is

M
l
= M

5
= 0,

the solution of which gives

Qi" = i i wrf, Qa'
=

\ I "I* Q2

"

JB,
= fl

5
= Qt

" = |i wl, E
2
= E

4
= Q2

' + Q2

- =
f /,

B
8
= Q/ + Q8

" = i| w i.

Problem 134. A continuous beam of five equal spans is uniformly loaded. Find
the moments and reactions at the supports.

73. Work of deformation. In changing the shape of a body the

points of application of the external forces necessarily move, and

therefore do a certain amount of work called

the work of deformation.

To find the amount of this work of defor-

mation for a prismatic beam, consider two adja-

cent cross sections of the beam at a distance

dx apart (Fig. 76). Suppose one of these cross

sections remains stationary and the other turns

through an angle d/3 with reference to the first.

Then the change hi length of a fiber at a dis-

tance y from the neutral axis is ydft, and therefore, by Hooke's law,

_ p
dx E

where p is the intensity of the stress on the fiber. By the straight-

line law, p = -
> and hence

Mdx

Since one of the cross sections is assumed to be stationary, the stress

acting on it does no work. On the other cross section the normal
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stress forms a moment equal to M. This moment is zero when first

applied, and gradually increases to its full value, its average value

being \M. Therefore the work done by the normal stress on this

cross section is 2 ,

Hence the total work of deformation for the entire beam is

Problem 135. As an application of the above, find the deflection at the center

of a simple beam of length /, bearing a single concentrated load P at the center.

Solution. Let D denote the deflection at the center. Then the external work

of deformation is

W= | PD.

Px
At a point distant x from the left support the bending moment is M =

,
and

consequently the internal work of deformation is

96 El

1 P2
/
3 Pls

Therefore - PI) = ; whence 1) =
2 96 El 48 El

Problem 136. Find the internal work of deformation for a rectangular wooden

beam 10 ft. long, 10 in. deep, and 8 in. wide, which bears a uniform load of 250 Ib.

per foot of length.

74. Impact and resilience. If the stress lies within the elastic

limit of the material, the body returns to its original shape upon
removal of the external forces, and the internal work of deformation

is given out again in the form of mechanical energy. The internal

work of deformation is thus a form of potential energy, and from

this point of view is called resilience. The work done in straining a

unit volume of a material to the elastic limit is called the modulus

of elastic resilience of the material.

It is therefore represented by the area under the strain curve up
to the elastic limit, or, expressed as a formula,

(stress at elastic limit)
2

Mod. elas. resilience = -

2 modulus of elasticity
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When a load is suddenly applied to a beam, as when a body falls

on the beam, or in the case of a railway train passing quickly over a

girder, the deflection of the beam is much greater than it would be if

the load was applied gradually, for in this case the full amount of

the load is applied at the start instead of gradually increasing from

zero up to this amount. Since the load is not sufficiently great to

cause the beam to retain this deflection, the resilience of the beam

causes it to vibrate back and forth until the effect of the shock dies

away. The sudden application of a load is called impact, and the

study of its effect is of especial importance in designing machines,

railway bridges, or any construction liable to shocks.

If a simple beam deflects an amount D under a load P suddenly

applied, the work of deformation is PD. If the beam deflects the

same amount under a load P' gradually applied, the work of defor-

mation is i- P'D. Hence
P' = 2 P.

In other words, the strain produced in a beam by a load applied sud-

denly is equivalent to the strain produced by a load twice as great

applied gradually. In practical work P' is assumed to be about f P
instead of 2 P, for it is impossible to apply a load instantaneously at

the most dangerous section.

If a body of weight P falls on a beam from a height h and pro-

duces a deflection D, the work done by P is P(h + D}. Therefore,

if P' is the amount of a static load which would produce the same

deflection,

In order to find Pf from this equation D must be expressed in terms

of P' and its value substituted in the above expression before solving

for P 1
.

Problem 137. A Cambria steel I-beam, No. B 33, is 12 ft. long and 10 in. deep,

and has a moment of inertia about an axis perpendicular to the web of 122.1 in. 4 .

What is the maximum load that can fall on the center of the beam from a height

of 6 in. without producing a stress greater than 25,000 lb./in.
2

,
if 75 per cent of the

kinetic energy of the falling body is transformed into work of deformation ?

Solution. Let P denote the weight of the falling body and P' the amount of a

static load which would produce the same work of deformation. Then, since the
TO/? -\fp P'le 4?)Z

moment at the center of the beam is Jf = , p = - = -
, whence P' =
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The deflection of a beam bearing a static load P' at the center is 1) =

(Problem 119), or, substituting in this the value of P', D =
I /'. '

P'V

48 El
Assuming

E = 30,000,000 lb./in.
2

,
and replacing p, I,

and e by the values given in the problem,

D = .288 in.

Consequently, the work of deformation is

W=-P'D= ^- = 2442 in. Ib.
2 6 Je2

Therefore, from the equality |P'D = P(h + D), we have

2442 = .75P(6 + .288);

P = 618 Ib.
whence

Problem 138. From what height can a weight of half a ton fall on the middle

of the beam in the preceding problem without producing a stress greater than

40,000 lb./in.
2 ?

75.* Influence line for bending moment. As a load moves over a

structure the bending moment and shear at any given point change

continuously. This varia-

tion of the bending moment,

shear, or any similar func-

tion at a given fixed point

due to a moving load can be

represented graphically by
a curve (or straight line)

called an influence line.

To obtain the influence

line for bending moment for

a simple beam of length /, let d denote the distance of the given point

A from the left support 0, and x the distance of a movable load P from

FIG. 77

(Fig. 77). Then, if P is on the right of A, R^ =
the moment at A is

and hence

P(l-x)d
I

Now let P be a unit load (say one pound or one ton). Then

* For a brief course the remainder of this chapter may be omitted.
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load is on the left of A, Ma
= X

^
~

'

and if the values of Ma corresponding to each value of x from d to

/ are laid off as ordinates, we obtain the straight line A'B', which
therefore represents the variation in the bending moment at the

point A as the unit load moves from B to A. Similarly, if the unit

which is the equation of the

straight line O'A'. At D1 both lines have the same ordinate, namely,

A'E L - The influence line for bending moment is therefore
l

the broken line O'A'B'.

From this construction, it is obvious that the ordinate to the influ-

ence line at any point D represents the bending moment at A due to

a unit load at D. Thus, as a

unit load comes on the beam o -A._\B

from the right, the bending
moment at A increases from

the value zero for the load

atB to the value A'E for the

load at A, and then decreases

again to the value zero at

0. Therefore, having con-

structed for a unit load the influence line corresponding to any given

point A, the moment at A due to a load P is found by multiplying

P by the ordinate to the influence line directly under P.

Problem 139. Find the position of a system of moving loads on a beam so that

the bending moment at any point A shall be a maximum.
Solution. Let (YA'B' be the influence line for bending moment for the point A,

and let the loads on each side of A be replaced by their resultants PI and P2

(Fig. 78). Then, if yl and yz are the ordinates to the influence line directly under

PI and P2 ,
the moment at A is

FIG. 78

Now, if the loads move a small distance dx to the left, the moment at A becomes

Ma + dMa = Pi (yi
- dx tan a) + P2 (yz + dx tan/3).

Therefore, by subtraction,

dMa = - PI dx tan a + P2 dx tan/S,

and hence

5 = -Pi tana + P2 tan/S.
dx
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For a maximum value of Ma ,

^-? = 0, in which case
dx

This equation may be written

P2 tan/3 =

p A'C' =2
C'B'

P2

A'C'

O'C''

from which, by composition,

C'B' O'C"

Pi

0'C"'

which is the criterion for maximum moment at A. Expressed in words, the moment
at any point A is a maximum when the unit load on the whole span is equal to the

unit load on the smaller segment.

76. Influence line for shear. To obtain the influence line for

shear, let /, d, and x have the same meaning as in the preceding

article. The shear at any

point A is equal to the re-

action at 0, and for a unit

load this reaction is

I x

o

FIG. 79

I

If, then, the values of 7^ for

all values of x from d to I

are laid off as ordinates, the locus of their ends will be the straight

line B'A' (Fig. 79). Similarly, for a unit load on the left of A the shear

/yt

at A is negative, and its amount is R
2
= > which is the equa-

tion of the straight line O'A". Since the slopes of the two lines

A'B' and O'A" are equal, these lines are parallel. The influence line

for shear is, then, the broken line 0'A"A'I>'.

As a load comes on the beam from the right the shear at A gradu-

ally increases from the value zero for the load at B to the value A'E

for the load just to the right of A. As the load passes A the shear at

this point suddenly decreases by the amount of the load, thus becom-

ing negative, and then increases until the load reaches 0, when it

again becomes zero. Consequently, the shear at A, due to a load P at
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any point C, is found by multiplying P by the ordinate to the influ-

ence line at C', directly under C.

Problem 140. Find the position of a system of moving loads on a beam so that

the shear at any point A shall be a maximum.

Solution. Let the influence line for the point A be as represented in Fig. 80.

Also let PI and P2 be two consecutive loads, d the distance between them, and P'

the resultant of all the loads on

the beam. Since A'E is the

maximum ordinate to the influ-

ence line, the maximum shear

at A must occur when one of

the loads is just to the right of

A. Suppose the load PI is just

to the right of A. Then as PI

passes A the shear at A is sud-

denly decreased by the amount

PI. If the loads continue to

move to the left until P2

reaches A, the shear is gradu-

ally increased by the amount

P'd tan a, since the ordinate

under each load is increased by the amount d tan a. Consequently, either Pt or

PZ at A will give the maximum shear at this point according as

A

E
13'

FIG. 80

PI ^ P'd tan a
;

or, since tana = -, according as

By means of this criterion, it can be determined in any given case which of two

consecutive loads will give the greater shear at any point.

77. Maxwell's theorem. When a load is brought on a beam it

causes every point of the beam to deflect, the amount of this deflec-

tion for any point being the corresponding ordinate to the elastic

curve. If, then, a number of loads rest on a beam, the deflection at

any point of the beam is the sum of the deflections at this point due

to each of the loads taken separately.

For example, if two loads P
l
and P2

rest on a beam at the points

A and B respectively, the deflection at one of these points, say A, is

composed of two parts, namely, the deflection at A due to P
l
and the

deflection at A due to P
2

. Similarly, the total deflection at B is com-

posed of the partial deflections due to P
l
and Pz respectively.
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Maxwell's theorem, when modified so as to apply to beams, states

that if unit loads rest on a beam at two points I and K, the deflection

at I due to the unit load at K is equal to the deflection at K due to

the unit load at L The following simple proof of the theorem is due

to FoppL*
Consider a simple beam bearing unit loads at two points / and K

(Fig. 81). Let the deflection at JTdue to a unit load at /be denoted

by c7"H ,
the deflection at / due to a unit load at / by J{i) etc., the

second subscript in each case denoting the point at which the unit

load is applied, and the first subscript the point for which the number

gives the deflection. Thus J
ik

denotes the influence of a unit load

at K on the deflection at /.

For this reason the quantity

J
ik

is called an influence num-

ber.

If the load at I is of

amount P
it
the deflection at

FIG. 81 / is JaPit
that at K is JKPit

etc.

Now suppose that a load P
{
is brought on the beam gradually at

the point /. Then its average value is ^-Pt.,the deflection under the

load is JaPit
and consequently the work of deformation is \ P.(Jf.P^.

After the load P. attains its full value suppose that a load Pk is

brought on gradually at K. Then the average value of this load is

\Pk ,
but since P

{ keeps its full value during this second deflection,

the work of deformation in this movement is P^J^P^ + J- -^VM^-P*)'

Therefore the total work of deformation from both deflections is

Evidently the same amount of work would have been done if the

load Pk had first been applied, and then P
t

. The expression for the

total work obtained by applying the loads in this order is

Therefore, equating the two expressions for the work of deformation,

which proves the theorem.

*
Festigkeitslehre, p. 197.
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Problem 141. A beam bears a load of 15 tons at a certain point A, and its

deflections at three other points, B, (7, D, are measured and found to be .30 in.,

. 16 in.
,
and .09 in. respectively. If loads of 6, 12, and 8 tons are brought on at .B, C,

and D respectively, find the deflection at A.

Solution. The deflections at U, C, and D due to a unit load (one ton) at A are

'- = .02 in.,
'- - .01 in., and

' = .006 in. respectively. Therefore, by Maxwell's
15 16 16

theorem, the deflection at A is

Da = .02 x 6 + .01 x 12 + .006 x 8 = .268 in.

78. Influence line for reactions. The most important application

of Maxwell's theorem is to the determination of the unknown reac-

tions for a continuous beam.

Consider a beam continuous over three supports, as shown in

Fig. 82. Suppose the middle support removed and a unit load (say 1

ton) placed at this point. A I B a
Then, if the elastic curve

is plotted, the ordinate to

this curve at any point /

is the deflection at I due

to the unit load at B, or,

in other words, this ordi-

nate is the influence num-

ber J
ib

. Similarly, the ordinate to the elastic curve at B is the influence

number Jbb
.

Now -K
2 ,

the unknown reaction at B, must be of such amount as

to counteract the deflection at B due to a load P at any point /.

Therefore



i\fitBBNGTH OF MATERIALS

Since for any point / the fraction is proportional to J
ib (the

Jbb

denominator being constant), the elastic curve is called the influence

line for reactions.

For a number of concentrated loads P1?
P

2 , -, Pn the same method

applies, Rz
in this case being given by the equation

J U J

or, more briefly,

To determine the reactions for a beam continuous over four sup-

ports and bearing a single concentrated load P at any point /, suppose

the two middle supports removed. Then if a unit load is placed at B

(Fig. 83) and the elastic

curve drawn, the ordinate

to this curve at any point

/ is the influence number

J
ib

. Similarly, by placing

a unit load at C and con-

structing the corresponding
FIG. 83

elastic curve, the influence

number J
ic

is obtained. Now the reaction R
z
must be of such amount

as to counteract the deflections at B due to a load P at / and a load

R at a Therefore

A
}
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79. Castigliano's theorem. Consider a beam bearing any number
of concentrated loads P

lf
P

2) ---,Pn , acting either vertically upward
or downward, and let W
denote the work of defor- 'PI \

P*

mation due to these loads

(Fig. 84). Then if one of the

loads, say P., is increased

by a small amount dP
it
the

deflection of P
l
is increased

by the amount j; t
dP

if
that

FlG> 84

of P
2 by the amount J2idP{ , etc., where Ju ,

J2i , etc., are influence

numbers. Therefore the work of deformation is increased by the

amount
dw = P^dP, + P2

J2idP{ + + PnJJPt ;

whence dw

In forming this expression the work done by dP
{
itself has been

neglected, since it is infinitesimal in comparison with that done by
P

lt
P

2) etc.

Now, from Maxwell's theorem, Jik
J

ki
. Therefore the above expres-

sion becomes -,w = P^ + P2
Ji2 + - - - + PnJin

.

The right member of this equality, however, is the total deflection

D
i
at the point /, due to all the loads. Consequently the above expres-

sion may be written ^w
dp,

=D> -

Since the work of deformation W is a function of all the loads and

not of P. only, this latter expression should be written as a partial

derivative; thus

and in this form it is the algebraic statement of Castigliano's theorem.

Expressed in words, the theorem is : The deflection of the point of

application of an external force acting on a beam is equal to the par-
tial derivative of the work of deformation with respect to this force.
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80. Application of Castigliano's theorem to continuous beams.

Castigliano's theorem affords still another means of determining the

unknown reactions of a continuous beam
;
for the reactions may be

included among the loads on the beam, and since the points of applica-

tion of these reactions are assumed to be fixed, their deflections are zero.

Therefore, if Pk is one of the reactions, Dk
= 0, and consequently

o.

A condition equation of this kind can be found for each reaction, and

from the system of simultaneous equations so obtained the unknown

reactions may be calculated. The following problems illustrate the

application of the theo-

rem.

Problem 142. A uniformly
loaded beam of length 2 1 is

supported at its center and

ends. Find the reactions of

the supports by means of Cas-

tigliano's theorem.

Solution. Let w denote the

unit load on the beam (Fig. 85).

-P.

FIG. 85

From symmetry, PI = P8 . Also, by taking moments about JB,

For a point in the first opening at a distance x from the left support,

~~ 1
2

'

consequently,

W=\L2 Jo El 2 El I

uw~\

20 J'

The work of deformation for the other half of the beam is of the same amount.

Therefore the total work of deformation is

W
~El[ 8 4

+
20 J'

Since PI is a function of P2 ,
the partial derivative of W with respect to P2 is

dTT_j_pPiJ
8
5Pi_w^

4 aPil

ap .BiL s '.&PS 4'*aPsj
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Therefore

By Castigliano's theorem, ^- = 0. Therefore

105

dW _ I
s Fwl _Pi1

5P2

~
EI\_~S~ ~3~J

_
EI L 8 3

whence

Substituting in this expression the value of PI in terms of P2 ,

P2 = | wl.

Problem 143. A uniformly loaded beam extends over three openings of equal
span. Find the reactions at

the supports.

Solution. Let I denote the

length of each span and w the

unit load (Fig. 86).

From symmetry, Px = P4

and P2 = P3 . Also, by taking
moments about .B,

-
f

z FIG. 86

For any point in the first opening at a distance x.from the left support,

and therefore, as in the preceding problem,

W =
3

PlWl*

4- ^1
4 20 J

Since PI = P4 ,
TFhas the same value for the third opening, that is, W% = W\. In

the second opening
wx2

and therefore

2 El I 3 3 20 3 4 12 j

Hence the total work of deformation for all three openings is

3 12

Therefore

dW 1 _
2-JBIl

* Pt 4

17 lot*\
12 J"
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Since PI = - P2 ,
=

1, and hence
2 dPz

e)P2

Putting =
0, and substituting for Pj its value in terms of P2 ,

whence P2 =

and consequently PI = f wZ.

81. Principle of least work. Differentiating partially with respect
dW

to P
t
both members of the equation = D

i9
we have

dP

As the load increases the deflection increases, and vice versa. There-
o

y~\

i

fore, since dZ>
t
and dP. have the same sign,

i
is positive and hence

.

- is also positive. But, from the differential calculus,

dW A ?W^ n- = and _>0

are the conditions that W shall be a minimum. Consequently, the

reactions of a continuous beam, calculated from the condition = 0,

ftP<

are such that they make the work of deformation a minimum.

In Article 73 it was pointed out that the internal work of defor-

mation is a form of potential energy. The above is thus a special

case of what is known as the principle of least work, the general state-

ment of this principle being expressed by the following theorem :

For stable equilibrium the potential energy of any system is a

minimum.

The importance of the principle of least work is due to the fact

that it is a general mechanical principle, affording a general solution

of all problems involving the static equilibrium of elastic solids. Its

most useful application, perhaps, is to problems which are other-

wise statically indeterminate, that is to say, problems in which the
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number of unknown quantities involved is greater than the number
of relations furnished by the ordinary conditions of equilibrium.

The general solution of any problem of this nature by the method

of least work is as follows : First express the work of deformation

(or potential energy) in terms of the unknown quantities which it is

required to determine. Then the condition that this expression shall

be a minimum resolves itself into the condition that the partial

derivatives of the potential energy with respect to each of the un-

knowns involved shall be zero. In this way we obtain exactly as

many equations as unknowns, from which these unknown quantities

may be found.

Thus if W denotes the work of deformation and Pv Pz , -,
P

n the

unknown quantities to be found, first express W7
"

as a function of

these unknowns, say W(Plt
P

2 ,---,PW). Then the condition for a

minimum is dW= 0, or, expressing the total differential dW in terms

of its partial derivatives with respect to the various unknowns,

.,..
Since P

Jt
P

2 ,

-

,
PB are assumed to be independent, in order for this

relation to be satisfied identically, that is for all values of P
lt
P

z ,>,
Pw,

the coefficients of dPv dP2 ,

- -,dPn must all be zero
;
that is,

_

We have, therefore, n equations from which to determine the n

unknowns P
lf
P

2,--,Pn .

Before applying this principle it is necessary to find an expression

for the work of deformation of elastic solids subjected to direct stress

or to bending stress.

1. Direct stress. Consider a prismatic bar of length / and cross

section F, which is subjected to a direct stress, either tension or

compression, of intensity p. Then from Hooke's law
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or if P denotes the total load, then since p = and s = -
> this

PI PI
becomes = E

t
whence A/ = -

If, then, the load is applied

gradually, the average force acting on the bar during deformation is

\ P, and consequently the work of deformation in this case is

2FE

2. Bending stress. The work of deformation of a prismatic beam

subjected to a bending moment M has been found in Article 72 to be

w r 2 El

C

The application of the method of least work will now be illustrated

by a number of simple problems. Problems 142 and 143, Article 80,

and Articles 82 and 83 are also applications of this principle.

Problem 144. Three Carnegie I-beams, No. B 80, are placed 4 ft. apart across

an opening 25 ft. wide. Across their centers is placed another I-beam of the same

dimensions as the first, and upon
the center of this cross beam there

rests a load of 10 tons. Find the

greatest stress which occurs in

any member of the construction.

Solution. Let the amount of

the load at fl", which is carried by

GK, be denoted by P (Fig. 87).

A\
"

' T T Ifl Then the loadg on AB and Ep
J at G and K respectively are each

p
-, Q_ equal to

,
and the load on CD

-T IG. 81 2

is 20,000 Ib. - P.

Now the work of deformation for a simple beam of length I bearing a single

concentrated load P" at its center is, from Problem 135,

W =

Therefore, since the load on AB or EF is
,
the work of deformation for either

of these beams is

P*Zf
ab ~ * ~~

384 El
'

K
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Similarly the work of deformation for CD is

(20,000 -

and for GK is

96 El

96 #1

Hence the total work of deformation for the entire construction is

... P*l*
, (20,000-

192 #/ 96.EI

By the principle of least work, = 0; consequentlydP

dW _ PI* (20,000 - P)l* PI*

dP 96 El 48 El 48 #/
=o.

From the Carnegie handbook, I = 795.6 in.*, and from the figure, li = 300 in.,
Z2 = 96 in. Inserting these numerical val-

ues in the above expression, and solving
for P, p _

Having determined P, the stress in the

various members can easily be calculated.

Thus it is found that the greatest stress

occurs in CD, its amount being p = 23,593

Ib./in.a

Problem 145. Two short posts of the

same length I but of cross-section areas FI
and F

2
and of material having moduli EI

and E
2 carry a load P jointly. How much

of the load is carried by each ? (Fig. 88.)

Solution. Let R denote the load carried

by No. 1. Then the load carried by No. 2

is P R. Hence, applying the expression,
for the work due to a direct stress, the total

work of deformation for both posts is

W =

P-R

FIG. 88

The condition for a minimum gives

whence

R= r.

FIG. 89-

Problem 146. A post supporting a load P is braced

near the bottom by two braces each of length I and inclined

at the same angle a to the horizontal (Fig. 89). If the
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upright is of cross section FI and has a modulus J?
1 ,
and the braces are each of

cross section F
2
and modulus E2 ,

show that the load R carried by the upright is

given by

Problem 147. A platform 12ft. x 18ft. in size and weighing 1 ton is supported

at the corners by four wooden legs, each 8 in. square. A load of 5 tons is placed

on this platform 4 ft. from each of two adjacent edges. How much of the load is

carried by each leg ?

Problem 148. A beam 20 ft. long is supported at each end and at a point dis-

tant 5 ft. from the left end. It carries a load of 180 Ib. at the left end, and of

125 Ib. at a point distant 6 ft. from the right end. Find the reactions of the

supports.

Problem 149. Two beams are supported as shown

in Fig. 90, the lower beam resting on fixed end sup-

ports, and the upper beam resting on three supports,

at its center and ends. The upper beam carries a

FIG. 90 uniform load. Find the center load transmitted to

the lower beam.

Problem 150. A flitched (or composite) beam consists of a 3-in. I-beam weighing

1\ Ib./ft. and a 4-in. x 6-in. timber, the I-beam being placed underneath the wooden

beam, and the two are hung from a crane by a wrought-iron strap around the

middle. A cable is then looped over the ends of this flitched beam 2f ft. distant

from the center on each side, and a load of 1000 Ib. supported by the loop. Find

the total load carried by each beam. i

Problem 151. The king post truss shown in \*

---c 4

Fig. 91 is formed of a single beam AC resting

on supports at A and C and trussed at the center

with a strut BD, supported by two tie rods AD
and DC. Determine the load R carried by the strut

BD when a load P is placed at a distance c from A.

Solution. Let R denote the stress in BD. Then if h denotes the length of the

strut BD and d the length of each tie, AD and DC, the stress in AD or DC is

in each, and the direct stress in ABC is -- Let Fv F2 ,
F

3 ,
denote the cross-

2 h 4/i

section areas of AC, AD, and BD respectively. Then the total work of deforma-

tion, due to direct stresses in the various members, is

R2h

In addition to this it is also necessary to consider the work of deformation due to

the bending stress in AC. At a point distant x from A this is as follows :

For x between A and P, MAP = [P(/
~

c) - -1 x,

for x between P and B, NPR = PC - (- + \x,

for x between B and C, MBc = ( \(l x).
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Hence the total internal work due to bending is

Now applying the condition = to the sum of these expressions, and solving

the resulting equation for #, we have finally

3d2 -4c3

h d3

Problem 152. A wooden beam 12 in. deep, 10 in. wide, and 20 ft. long between

supports is reenforced by a steel rod 2 in. in diameter and a cast-iron strut 3 in.

square and 2 ft. high, the whole forming a king post truss. Find the stress in each

member due to a uniform load of 1200 Ib./ft. over the entire beam.

82. General formula for flexural deflection. The ordinary method

of determining flexural deflection is by computing the ordinate to

the elastic curve at the required point, each case requiring sepa-

rate treatment. A general formula for flexural deflection, however,

may be obtained by applying the method of least work in the form

of Castigliano's theorem.

From Article 73 the work of deformation due to bending is

Now in order to apply Castigliano's theorem to this expression,

assume a concentrated load K applied to the beam at the point

whose deflection is desired, and let this load be subsequently reduced

to zero. Let

M = moment at any section due to given loading,

M' = moment at any section due to a unit load at a given point.

Then for a load K at the given point, the moment at any.section due

to this load becomes KM ',
and hence the total moment due to the

given loading and the assumed load K is
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Therefore the above expression for the work of deformation now

1360011168

By Castigliano's theorem the actual deflection DB due to the given

loading only is

and hence applying this to the expression for WB,
we have

2 (M+ KM') 2-(M+KM')
j**

or, simplifying,
^MM'

which is the required general formula for flexural deflection.* All

the ordinary formulas for the flexural deflection of beams under

various loadings and with different methods of support are simply

special cases of this general formula, as illustrated by the following

examples.

Problem 153. Find the flexural -deflection at the center of a simple beam of

constant cross section and bearing a single concentrated load P at the center.

Px
Solution. Here Jf

x
=

,
and applying a unit load at the point whose deflection

Cf

is desired, namely the center, M ' = - . Consequently,

* 1

PZ3

4 El 48 El

Problem 154. Find the flexural deflection at the center of a simple beam of

constant cross section bearing a uniform load over the entire span.

Solution. In this case M= and M' - Consequently,22 2

i

dx

El 384Z

* This formula is due to Professor Fraenkel, but it is believed that the above proof
has never before been given.
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Problem 155. Find the flexural deflection at the center of a beam of constant

cross section fixed at both ends and bearing a single concentrated load at the center.

Solution. The first step in this problem is to determine the moment at one sup-

port. This is determined from the condition that the deflection at the support

is zero.

Applying a load of unity at the left support, we have for sections on either side

of the center,

left of center IM = N ~ Y '

right of center I
M = M ~ T + P

(*
~~

2~)'

\^M' = x, LM' = x,

where M denotes the moment at the left support. Substituting these values in

the condition
DB at support = 0,

we have

whence

*.=?

i pf^ Pan 2 i rn^ Px* P&2T
EI\. 2

"

6 Jo JJL 2
"

6
"

4 Ji

Proceeding now to find the center deflection, we have

and, consequently,

2 r*/PP Pte -Plx'. Px2
\ , PZ8

192^1

Problem 156. Find the flexural deflection at the center of a beam of constant

cross section fixed at both ends and bearing a uniform load over the entire span.

Solution. Let MQ denote the moment at the left support, and w the load in

>/" Then
Wix rfM=M --T +

-2-'
M' = z.

To find Mo apply the condition that the deflection at the support is zero. Then

at support =/<-

whence

J_[M< _ W wxn* =~
El L 2 "6 8 Jo
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To find the deflection at the center, we have therefore

wlx wx2 wl2 wlx wx2

' = --- (from Problem 155),
8 2

wl2x wlx2 wl"x wlx2 wxs
\ , wl*

and, consequently,

2 r 2 /wl3~
#7Jo \~96~ 16

'

10 24
'

4 4 /

~
384 El

83. General formula for shearing deflection. A general formula

for shearing deflection of beams may also be obtained by the method

of least work. For this purpose let Ws denote the work of deforma-

tion due to shear, and G the shear modulus. Then if ql
denotes the

unit shearing stress, Hooke's law for shear reads

and the unit work of shearing deformation for an infinitesimal paral-

lelepiped of unit volume becomes

Therefore, since dV=dFdx, the total work of shearing deformation

for the entire beam is

TT7 Cj C&dFWs
= I dx I

Now to determine the shearing deflection, assume a concentrated

load K applied to the beam at the point whose deflection is desired,

and having used K as required by Castigliano's theorem, let it be

subsequently reduced to zero.

For this purpose let

Q = total shear on any variable section due to the given loading,

Q
1 = shear on any variable section due to a unit load at a given point,

q = unit shearing stress due to total shear Q as above,

q
1 = unit shearing stress due to shear Q'.

Then for a concentrated load K at any given point the shear on any
section is Q'K, and the unit shear at a variable point due to this load
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is q'K. Hence the total unit shear due to both the actual given

loading and the assumed concentrated load K becomes

Hence the expression for the work of shearing deformation now becomes

Now by Castigliano's theorem the actual shearing deflection due to

the given loading is

Performing the indicated differentiation and substitution, we have

therefore

= dx/ 20

To simplify this expression, assume the straight-line law of distribu-

tion of stress, namely =
,
or q

f = q, whence finallyJ
Q Q' Q

which is the required general formula for shearing deflection. The

method of applying this general formula is illustrated below.*

Special Case I. Beam of constant rectangular cross section of

height h.

From equation (28), Article 56, the unit shear at any point of a

cross section bounded by parallel sides is

q= i

and from equation (29), for a rectangular cross section of lieight li

this becomes O /k
2

1
2
\

I \ 8 2 /\ /

* For applications of this method to beams of variable cross section see article by
S. E. Slocum, in Journal Franklin Institute, April, 1911.
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Substituting this value of q in the second integral of the general

formula, it becomes for the special case under consideration

f)1 />2/I,^-/-
144#

2

"8

Hence the formula for the shearing deflection reduces in this case

to the simple integral

Problem 157. Determine the shearing deflection at the center of a simple beam

of constant rectangular cross section due to a single concentrated load at the center.

Solution. Let P denote the load at center. Then the total shear on any section is

Also assuming a unit load at the point whose deflection is to be determined, namely
the center, we have

Substituting these values in the above formula, the shearing deflection DS is

i

. n . 4^ ZPl
JL)s = -

FG WGbh

To determine the relative amounts of the shearing and flexural deflections,

assume the relation between the two moduli G and E as G = % E. Then

3 PI

4:Ebh

4Ebh*

='@

Hence the relative value of the shearing and bending deflections depends in this

case on the square of the ratio of the depth of the beam to its length. Thus

if h = $l, Ds = .12DB ;
if h = ^l, Ds = .03 AB; if h = -fol,

Ds = .0075D fi ,
etc.

The relative dimensions for which the shearing deflection ceases to be of importance
are thus easily determined.
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Special Case II. Beam of constant circular cross section of radius r.

From Article 57, the expression for the unit shear, namely

becomes in the case of a circular cross section

= Qx*

Substituting this value of q in the second integral of the general

formula, we have

32 Q
2 r r

9-w-V 9 ^

Consequently, the shearing deflection in this case is

Problem 158. Determine the shearing deflection at the center of a simple beam

of constant circular cross section and bearing a uniform load.

Solution. Let the uniform load be of amount w Ib. per unit of length. Then

Q = wx. Also assuming a unit load at the point whose deflection is to be de-

termined, namely the center, we have Q = \. Hence in the present case the shear-

ing deflection at the center is

i_

1

The relative amount of the shearing deflection as compared with the flexural

deflection is, in this case, given by the ratio

PS _3Qirr
2G.

384 El
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or assuming, as above, that G = \E and denoting the depth of the beam by h = 2 r,

this becomes
>.s 5

For a circular cross section, therefore, the shearing deflection is of less relative im-

portance for a given ratio of depth to length than for a rectangular cross section.

Thus, if h = ^ I,
Ds = .016 D

,
etc.

EXERCISES ON CHAPTER IV

Problem 159. In building construction the maximum allowable deflection for

plastered ceilings is^ of the span. A floor is supported on 2 in. x 10 in. wooden

joists, 14 ft. span and spaced 16 in. apart on centers. Find the maximum load

per square foot of floor surface in order that the deflection may not exceed the

amount specified.

Problem 160. Determine the proper spacing center to center for 12-in. steel I-

beams weighing 35 Ib./ft. for a span of 20 ft. and a uniform floor load of 100 lb./ft.
2

in order that the deflection shall not exceed^ of the span.

Problem 161. One end of a beam is built into a wall and the other end is sup-

ported at the same level by a post 12 ft. from the wall. The beam carries a uniform

load of 100 Ib. per linear foot. Find the position and amount of the maximum
moment and also of the maximum deflection.

Problem 162. One end of a beam is built into a wall and the other end rests

on a prop 20 ft. from the wall, at the same level. The beam bears a concentrated

load of 1 ton at a point 8 ft. from the wall. Find the position and amount of the

maximum moment and also of the maximum deflection.

Problem 163. A simple beam of length I carries a distributed load which varies

uniformly from at one end to w Ib. per unit of length at the other. Find the

maximum deflection.

HINT. Note that in the notation of Article 67,

d*yEl - = load per unit length,
dx*

EI^ = shear,
dx3

d2yEl- moment,
dx2

EI = EIx slope of elastic curve,
dx

Ely = El x deflection.

In the present case, taking the origin at the light end,

dx* I

which may be integrated to obtain the deflection.



FLEXURE OF BEAMS 119

Problem 164. A beam of uniform strength is one whose moment of resistance

is in the same constant ratio to the bending moment throughout, so that the skin

stress is constant.

Show that in order for a cantilever bearing a single concentrated load at the

end to be of uniform strength, if the depth is constant, the plan of the beam must
be triangular ;

whereas if the breadth is constant, the side elevation of the beam
must be parabolic.

Problem 165. A structural steel shaft 8 in. in diameter and 5 ft. long between

bearings carries a 25-ton flywheel midway between the bearings. Find the maximum
deflection of the shaft, considering it as a simple beam.

Problem 166. A wrought-iron bar 2 in. square is bent to a right angle 4 ft.

from one end. The other end is then imbedded in a concrete block so that it stands

upright with the 4 ft. length horizontal. If the upright projects 12 ft. above the con-

crete and a load of 300 Ib. is hung at the end of the horizontal arm, find the

deflection at the end of this arm.

Problem 167. A cantilever of length I is loaded uniformly. At what point of

its length should a prop be placed, supporting the beam at the same level as the

fixed end, in order to reduce the bending stress as much as possible, and what

proportion of the load is then carried by the prop ?

Problem 168. A continuous beam extends over three spans of 20 ft., 40 ft., and

30 ft., and carries uniform loads of 3, 1, and 2 tons per linear foot on the three

spans respectively. Find the danger sections and the reactions of the supports.

Problem 169. A carriage spring is 2| ft. long and is built up of steel leaves

each 2 in. wide and f in. thick. How many leaves are required to carry a central

load of 1000 Ib. with a factor of safety of 4, and what is the deflection under

this load?

HINT. Consider the material spread out in the form of a triangle of constant

depth | in. and varying width, fixed at the base and carrying the load at the apex.

Also compare with Problem 164.



CHAPTER V

COLUMNS AND STRUTS

84. Nature of compressive stress. When a prismatic piece of

length equal to several times its breadth is subjected to axial com-

pression it is called a column, or strut, the word
" column "

being used to

designate a compression member placed vertically and bearing a static

load
;

all other compression members being called struts.

If the axis of a column or strut is not perfectly straight, or if the

load is not applied exactly at the centers of gravity of its ends, a

bending moment is produced which tends to make the column deflect

sideways, or " buckle." The same is true if the material is not per-

fectly homogeneous, causing certain parts to yield more than others.

Such lateral deflection increases the bending moment, and conse-

quently increases the tendency to buckle. A compression member is,

therefore, in a different condition of equilibrium from one subjected

to tension, for in the latter any deviation of the axis from a straight

line tends to be diminished by the stress instead of increased.

The oldest theory of columns is due to Euler, and his formula is

still the standard for comparison. Euler's theory, how-

ever, is based upon the assumptions that the column is

i

perfectly straight, the material perfectly homogeneous,

and the load exactly centered at the ends, assump-

tions which are never exactly realized. For practical

purposes, therefore, it has been found necessary to

modify Euler's formula- in such a way as to bring it

into accord with the results of actual experiments, as

X explained in the following articles.

85. Euler's theory of long columns. Consider a long

column subjected to axial loading, and assume that

the column is perfectly straight and homogeneous, and

that the load is applied exactly at the centers of gravity of its ends.

120
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Assume also that the ends of the column are free to turn about their

centers of gravity, as would be the case, for example, in a column

with round or pivoted ends.

Now suppose that the column is bent sideways by a lateral force,

and let P be the axial load which is just sufficient to cause the col-

umn to retain this lateral deflection when the lateral force is removed.

Let OX and Y be the axes of X and Y respectively (Fig. 92). Then

if y denotes the deflection of a point C at a distance x from 0, the

moment at C is M= Py. Therefore the differential equation of the

elastic curve assumed by the center line of the column is

which may be written

dy?

dy *
To integrate this differential equation, multiply by 2

-J-
Then

dx

2^ +
2P ^ =

dx2 dx El dx

and integrating each term,

where Cl
is a constant of integration. This equation can now be written

P
~
y

Integrating again,

where <72 is also a constant of integration ;
whence

y =

* This is called an integrating factor and makes each term a perfect differential. See

Granville's Calculus, pp. 438, 444.
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or, expanding,

x
\Eic r / \ P \

y = ^-^ sin
l
x
*\Jjj}

cos ^ + cos lx xl-^ )
sin C, |.

Now for convenience let the constants in this integral be denoted

by A, B, and C respectively ;
that is to say, let

I Tf T/~i I ~t? TC* I T*
IJ^J.G 1

~ ^ L&lCj . ^ _ I -r

Then the general integral becomes

y = A sin (?# + B cos Cte.

At the ends and JT, where x = and /, y = 0. Substituting these

values in the above integral,

-6 = 0, and ^4 sin Cl = 0.

Since ^4 and B cannot both be zero, sin Cl =
;
whence

Cl = sin^O = XTT,

where X is an arbitrary integer. Now let X take the smallest value

possible, namely 1, and substitute for C its value. Then

whence

(48) *

which is Euler's formula for long columns.

Under the load P given by this formula the column is in neutral

equilibrium ;
that is to say, the load P is just sufficient to cause it

to retain any lateral deflection which may be given to it. For this

reason P is called the critical load. If the load is less than this

critical value, the column is in stable equilibrium, and any lateral

deflection will disappear when its cause is removed. If the load

exceeds this critical value, the column is in unstable equilibrium, and

the slightest lateral deflection will rapidly increase until rupture

occurs.

86. Columns with one or both ends fixed. The above deduction

of Euler's formula is based on the assumption that the ends of the
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column are free to turn, and therefore formula (48) applies only to

long columns with round or pivoted ends.

If the ends of a column are rigidly fixed against turning, the

elastic curve has two points of inflection, say B and D. From sym-

metry, the tangent to the elastic curve at the center C

must be parallel to the original position of the axis of

the column AE, and therefore the portion AB of the

elastic curve must be symmetrical with BC, and CD
with DE. Consequently, the points of inflection, B and

D, occur at one fourth the length of the column from

either end. The critical load for a column with fixed

ends is, therefore, the same as for a column with free

ends of half the length ; whence, for fixed ends, Euler's

formula becomes

(49) _P =
FIG. 93

Columns with flat ends, fixed against lateral movement, are usually

regarded as coming under formula (49), the terms " fixed ends
"
and

"
flat ends

"
being used interchangeably.

If one end of the. column is fixed and the other end is free to turn,

the elastic curve is approximately represented by the line BCDE in

|p Fig. 93. Therefore the critical load in this case is ap-

I proximately the same as for a column with both ends

-Y free, of length BCD, that is, of length equal to f BE
or

|^
I

; whence, for a column with one end fixed and the

other free, Euler's formula becomes

(50) P = approximately.

87. Independent proof of formulas for fixed ends.

The results of the preceding article can be established

independently as follows.

Suppose both ends of the column fixed against turn-

ing by a moment MQ at each support. Then the moment

at any point C, distant x from (Fig. 94), is M = - M + Py, and

therefore the equation of the elastic curve is

FIG. 94
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Proceeding as in Article 85, the general integral of this equation is

found to be

y A sin
(
x

V

-
in which A and 5 are undetermined constants. For x = and /,

y = 0, and -^ = 0. Therefore, by substituting these values in the

general integral, the following relations are obtained :

p / P
sin I J )-0.

From these conditions,

cos
(
l \l^} = 1 and sin (KI^) =

;

whence

and consequently

FIG. 95

which is formula (49) of the preceding article.

Suppose one end of the column is fixed and the other

free to turn, and let Ph denote the horizontal force neces-

sary to keep the free end from lateral movement (Fig. 95).

Then the moment at any point C is M = Py Phx, and

the equation of the elastic curve is

The general integral of this equation is
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in which A and B are undetermined constants. For x = or l
t

y = ;
whence

B = and A = -

For x = I,
~ =

;
whence

From the last condition,

This equation is of the form u = tan u, and from this it is found by
trial that

= 4.49.

Consequently,
20 El 2 -rr^EIP = = , approximately.

V v

This equation is of the same form as formula (50) of the preceding

article, the difference between the numerical constants in the two

formulas being due to the approximate nature of the solution given

in Article 86.

88. Modification of Euler's formula. It has been found by ex-

periment that Euler's formula applies correctly only to very long

columns, and that for short columns or those of medium length it

gives a value of P considerably too large.

Very short columns or blocks fail solely by crushing, the tendency
to buckle in such cases being practically zero. Therefore, if p denotes

the crushing strength of the material and F the area of a cross

section, the breaking load for a very short column is P = pF.
*

* As Euler's formula is based upon the assumption that the column is of sufficient

length to buckle sideways, it is evident a priori that it cannot be applied to very short

columns in which this tendency is practically zero. Thus, in formula (48), as I ap-

proaches zero P approaches infinity, which of course is inadmissible.
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For columns of ordinary length, therefore, the load P must lie

somewhere between pF and the value given by Euler's formula.

Consequently, to obtain a general formula which shall apply to

columns of any length, it is only necessary to express a continuous
2
jfij

relation between pF and - Such a relation is furnished by the

equation

(51) !>=

1+pF

For when / = 0, P = pF, and when / becomes very large P approaches
2

37*7"

the.value Moreover, for intermediate values of I this formula
L

gives values of P considerably less than given by Euler's formula, thus

agreeing more closely with experiment.

89. Rankine's formula. Although the above modification of

Euler's formula is an improvement on the latter, it does not yet

agree closely enough with experiment to be entirely satisfactory.

The reason for the discrepancy between the results given by this

formula and those obtained from actual tests is that the assumptions

upon which the formula is based, namely, that the column is perfectly

straight, the material perfectly homogeneous, and the load applied

exactly at the centers of gravity of the ends, are never actually

realized in practice.

To obtain a more accurate formula, two empirical constants will

be introduced into equation (51). Thus, for fixed ends, let

(52) P =
y\ 2

v .

where/and g are arbitrary constants to be determined by experiment,

and t is the least radius of gyration of a cross section of the column.

This formula has been obtained in different ways by Gordon, Ran-

kine, Navier, and Schwarz.* Among German writers it is known as

* Rankine's formula can be derived independently of Euler's formula either by
assuming that the elastic curve assumed by the center line of the column is a sinusoid,
or by assuming that the maximum lateral deflection D at the center of the column is

72

given by the expression D = n , where I is the length of the column, b its least width,
and n an empirical constant. &
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Schwarz' formula, whereas in English and American text-books it is

called Rankine's formula.

For / = 0, P = gF, and since short blocks fail by crushing, g is

therefore the ultimate compressive strength of the material.

For different methods of end support Eankine's formula takes

the following forms.

Flat ends, |
=- _.

(fixed in direction) 1 _|_ f I -

Round ends,

(direction not fixed) 1 _i_ A fl_J

Hinged ends,

(position fixe

direction)

One end flat and the other round,

/
,

. -

direction)
(position fixed, but nof

.

-^
1 i O -f I
L ~T &J (

~

90. Values of the empirical constants in Rankine's formula.

The values of the empirical constants, / and g, in Eankine's formula

have been experimentally determined by Hodgkinson and Christie

with the following results.

For hard steel, g = 69,000 lb./in.
2
, / =

For mild steel, g = 48,000 lb./in.
2
, / =

30,000

For wrought iron, g = 36,000 lb./in.
2
, / =^^

For cast iron, g = 80,000 lb./in.
2
, / =

For timber, g= 7,200 lb./in.
2
, / =

These constants were determined by experiments upon columns for

which 20<-<200, and therefore can only be relied upon to
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furnish reliable results when the dimensions of the column lie within

these limits.

As a factor of safety to be used in applying the formula, Rankine

recommended 10 for timber, 4 for iron under dead load, and 5 for

iron under moving load.

Problem 170. A solid, round, cast-iron column with flat ends is 15 ft. long and

6 in. in diameter. What load may be expected to cause rupture ?

Problem 171. A square wooden post 12 ft. long is required to support a load

of 15 tons. With a factor of safety of 10, what must be the size of the post ?

Problem 172. Two medium steel Cambria I-beams, No. B 25, weighing 25.25

lb./ft., are joined by lattice work to form a column 25 ft. long. How far apart

must the beams be placed, center to center, in order that the column shall be of

equal strength to resist buckling in either axial plane ?

Problem 173. Four medium steel Cambria angles, No. A 101, 3 in. by 5 in. in

size, have their 3-in. legs riveted to a f-in. plate so as to form an I-shaped built

column. How wide must the plate be in order that the column shall be of equal

strength to resist buckling in either axial plane ?

91. Johnson's parabolic formula. From the manner in which

equation (51) was obtained and afterward modified by the intro-

duction of the empirical constants / and g, it is clear that Rankine's

formula satisfies the requirements for very long or very short col-

umns, while for those of intermediate length it gives the average

values of experimental results. A simple formula which fulfills

these same requirements has been given by Professor J. B. Johnson,

and is called Johnson's parabolic formula.

If equation (52) is written

and then y is written for p, and x for -
> Rankine's formula becomes

t

y

For this cubic equation Johnson substituted the parabola

y = S - ear
2

,

in which x and y have the same meaning as above, and S and e are

empirical constants. The constants 8 and e are then so chosen that
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the vertex of this parabola is at the elastic limit of the material

on the axis of loads (or F-axis), and the parabola is also tangent

to Euler's curve. In this way the formula is made to satisfy the

theoretical requirements for very long or very short columns, and

for those of intermediate length it is found to agree closely with

experiment.

For different materials and methods of end support Johnson's

parabolic formulas, obtained as above, are as follows :

KIND OF COLUMN



130 STRENGTH OF MATERIALS

A graphical representation of the relation between Euler's formula,

Rankine's formula, J. B. Johnson's parabolic formula, and T. H. John-

son's straight-line formula (considered in the next article) is given

in Fig. 96, for the case of a wrought-iron column with hinged ends.*

300

FIG. 96. Wrought-iron Column (pin ends)

1, Euler's formula; 2, T. H. Johnson's straight-line formula; 3, J. B. Johnson's

parabolic formula
; 4, Rankine's formula

Problem 174. A hollow wrought-iron column with flat ends is 20 ft. long, 7 in.

internal diameter, and 10 in. external diameter. Calculate its ultimate strength by
Rankine's and Johnson's formulas, and compare the results.

Problem 175. Compute the ultimate strength of the built column in Prob-

lem 172 by Rankine's and Johnson's formulas, and compare the results.

92. Johnson's straight-line formula. By means of an exhaustive

study of experimental data on columns, Mr. Thomas H. Johnson has

shown that for columns of moderate length a straight line can be

made to fit the plotted results of column tests as exactly as a curve.

He has therefore proposed the formula

* For a more extensive comparison of these formulas see Johnson's Framed Structures,
8th ed., 1905, pp. 159-171; also Trans. Artier. Soc. Civ. Eng., Vol. XV, pp. 518-536.
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(53)
P I= V (7

F t

or, in the notation of the preceding article,

in which v and <r are empirical constants, this being the equation of

a straight line tangent to Euler's curve. This formula has the merit

of great simplicity, the only objection to it being that for short

columns it gives a value of P in excess of the actual breaking load.

The relation of this formula to those which precede is shown in

Fig. 96.

The constants v and cr in formula (53) are connected by the relation

where for fixed ends n = 1, for free ends n 4, and for one end fixed

and the other free n = 1.78.

The table on page 132 gives the special forms assumed by John-

son's straight-line formula for various materials and methods of end

support.*

The limit for use in this case is the value of x I = -
)

for the point

at which Johnson's straight line becomes

tangent to Euler's curve. ^
Problem 176. Compute the ultimate strength of

the column in Problem 104 by Rankine's and John-

son's straight-line formulas, and compare the results.

Problem 177. A column 18 ft. long is formed by
joining the legs of two Carnegie steel channels, No. C 3,

weighing 30 lb./ft, by two plates each 10 in. wide

and in. thick, as shown in Fig. 97. Find the safe

load for this column by Johnson's straight-line for-

mula, using a factor of safety of 4.

Problem 178. A wrought-iron pipe 10 ft. long,

and of internal and external diameter 3 in. and

4 in. respectively, bears a load of 7 tons. What is the factor of safety ?

FIG. 97

* Trans. Amer. Soc. Civ. Eng., 1886, p. 530.
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KIND OF COLUMN
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For posts

^ = 7,000 - 40 - for live load stresses,F t

j,
= 14,000 - 80 - for dead load stresses,

P I- 10,000 60 - for wind stresses.
_r t

For lateral struts

~ = 9,000 - 50 - for initial stresses.

By initial stress in the last formula is meant the stress due to the

adjustment of the bridge members during construction.

Problem 179. What must be the size of a square steel strut 8 ft. long, to trans-

mit a load of 6 tons with safety ?

Problem 180. Design a column 16 ft. long to be formed of two channels joined

by two plates and to support a load of 20 tons with safety.

Problem 181. Using Cooper's formula for live load, design the inclined end

post of a bridge which is 25 ft. long and bears a load of 30 tons, 'the end post to be

composed of four angles, a top plate, and two side plates.

94. Beams of considerable depth. When narrow beams of consider-

able depth are subjected to compression, as, for example, in a deck

plate girder bridge, the strain is similar to that in a column. For a

narrow, deep beam the inertia ellipse is greatly elongated, and conse-

quently the radius of gyration relative to a line forming a small angle

with the horizontal is considerably less than the semi-major axis of

the ellipse. Therefore, if the beam is thrown slightly out of the ver-

tical by the unequal settling of its supports, or by any other cause,

such inclination results in a notable decrease in its resistance. Since

it is impossible to make allowances for such accidental reductions of

strength, beams of great depth or very thin web should be avoided.

95. Eccentrically loaded columns. In a column carrying an eccen-

tric load, as, for example, a column carrying a load on a bracket, or

the post of a crane, there is a definite amount of bending stress due

to the eccentricity of the load in addition to the column stress. As

the nature of column stress is such that it is impossible to deter-

mine its amount, the simplest method of handling a problem of this
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H\

pj+P

kind is to determine its relative security against failure as a column

and failure by bending. That is to say, first determine its factor of safety

against failure as a column under the given column

load. Then consider it as a beam and find the equiv-

alent bending moment which would give the same

factor of safety. Finally, combine this equivalent

bending moment with that due to the eccentric

load, and calculate the unit stress from the ordinary

beam formulas.

To illustrate the method, suppose that a column

18 ft. long is composed of two 12-in. I-beams, each

weighing 40 lb./ft., and carries a column load of 20

tons at its upper end and also an eccentric load of

10 tons with eccentricity 2 ft., as shown in Fig. 98.

Assuming that the column has flat ends, and using Johnson's

straight-line formula P=jP( 52,500 179 -\ the factor of safety

against column failure is

^52,500-
179 -\

Factor of safety,
6Q?000

_ 2(11.76) (52,500
-

179(47.3)) _
60,000

Now consider the column as a beam, and find the equivalent central

load K corresponding to the factor of safety just found, namely 17.3.

The maximum moment in a simple beam bearing a concentrated load

FIG.

K at the center is M=
4

Hence from the beam formula M

we
, Kl pi .

have -=-, whence
4 e

le

Assuming the ultimate strength of the material to be 60,000 lb./in.
2

,

we have

60,000
P ~~

17.3

= 216 in.,

lb./in.
2
,

1= 2 (245.9) in.
4
,

e = 6 in.,
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and inserting these values, the equivalent load K is found to be

4 x 60,000 x 491.8

17.3 x 216 x 6

Now the eccentric load P2 acting parallel to the axis of the column

produces the same bending effect as a horizontal reaction H at either

end, where HI = P
2
d. The bending moment at the center, due to a

TT7

reaction H perpendicular to the axis of the beam, is, however,

Hence the total equivalent moment at the center now becomes

M- + - ^-

_5220x 216 20,000 x 24

4 2

= 521,880 in. Ib.

Consequently, the maximum unit stress in the member becomes

M

521,880 , Q ,_ ., .. 2==

^l96-
==63671b-/in-

which corresponds to a factor of safety of about 9.

If this factor of safety is larger than desired, assume a smaller

I-beam and repeat the calculations.

A method substantially equivalent to the above is to assume that

the stress in a column is represented by the empirical factor in the

column formula used. Thus for a short block, the actual compressive
stress p is given by the relation P = pF, whereas in the column

formula used above, namely P = W52,500 179 -
),

the stress p is

replaced by the empirical factor 52,500 179-. Consequently, the

fraction

52,500-179-
t
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where u
c denotes the ultimate compressive strength of the material,

represents the reduction in strength of the member due to its slim-

ness and method of loading ; or, what amounts to the same thing, the

equivalent unit stress in the column is

52,500- 179-
t

t

Applying this method to the numerical problem given above, we

have ^=23.52,

- = 47.3, and 60,000

52,500 -179
179 x 47.3

Hence the equivalent stress in the column is

30 x 2000
Pe

23.52
x 1.36 = 3470 lb./in.

s

Also, the bending stress, produced by the eccentricity of the load, is

Consequently, by this method, the total stress in the column is found

3470 + 2928 = 6398 lb./in.
2

If a formula of the Rankine-Gordon type is used, namely,

P_ 9

the equivalent stress pe
in the column, due to the given load P, is

u.

9

where u
c denotes the ultimate compressive strength of the material,

as above.
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EXERCISES ON CHAPTER V

Problem 182. A strut 16 ft. long, fixed rigidly at both ends, is needed to sup-

port a load of 80,000 Ib. It is to be composed of two pairs of angles united with

a single line of -in. lattice bars along the central plane. Determine the size of

the angles for a factor of safety of 5.

Note that the angles must be spread in. to admit the latticing.

Problem 183. For short posts or struts, such as are ordinarily used in building

construction, it is customary to figure the safe load as 12,000 lb./in.
2 of cross-section

area for lengths up to 90 times the radius of

gyration,* i.e. for -^90. To what factor of sp H= 141

S'Toiis

FIG. 99

safety does this correspond, using Johnson's

straight-line formula ?

Problem 184. The posts used to support a

girder in a building are 8 in. x 8 in. timbers

8 ft. long. Find the diameter of a solid cast-

iron column of equal strength.

If a wrought-iron pipe 4 in. in external

diameter is used, what must be its thickness

to be equally safe ? _
Problem 185. At what ratio of diameter

to length would a round mild steel strut have the same tendency to crush as

to buckle?

Problem 186. A load of 100 tons is carried jointly by three cast-iron columns

20 ft. long. What saving in material will be effected by using a single column

instead of three, the factor of safety to be 15 in both cases ?

Problem 187. Determine the proper size for a hard-steel piston rod 48 in. long

for a piston 18 in. in diameter and a steam pressure of 80 lb./in.
2 Consult table

for proper factor of safety.

Problem 188. The side rod of a locomotive is 9 ft. long between centers, 4 in.

deep, and 2 in. wide. The estimated thrust in the rod is 12 tons, and the transverse

inertia and gravity load 20 Ib. per inch of length. Determine the factor of safety.

Problem 189. The vertical post of a crane, sketched in Fig. 99, is to be made

of a single I-beam. The post is pivoted at both ends so as to revolve about its axis.

Find the size of I-beam required for factor of safety of 4, and for dimensions

and loading as shown in the figure.



CHAPTER VI

TORSION

96. Circular shafts. When a uniform circular shaft, such as

shown in Fig. 100, is twisted by the application of moments of" oppo-

site signs to its ends, every straight line AB parallel to its axis is

deformed into part of a helix, or screw thread, A C. The strain in this

case is one of pure shear and is called torsion, as mentioned in Arti-

cle 37. The angle <f>
is called the angle of shear (compare Article 33), and

is proportional to the radius BD of the shaft. The angle 6 is called the

angle of twist, and is proportional to the length AB of the shaft.

FIG. 100 FIG. 101

97. Maximum stress in circular shafts. Consider a section of

length dx cut from a circular shaft by planes perpendicular to its

axis (Fig. 101). Let dO denote the angle of twist for this section.

Then, since the angle of twist is proportional to the length of the

shaft, dO : 6 = dx : I
;
whence

de-e
I

'

Also, if $ and dO are expressed in circular measure,

and

Therefore

. rdO 6
m = = T

dx I

138
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From Hooke's law (Article 33), = G. Hence
9

(54) q
=

G<t>
=

i

Therefore q is proportional to r
;
that is to say, the unit shear is pro-

portional to its distance from the center, being zero at the center

and attaining its maximum value at the circumference.

If q' denotes the intensity of the shear at the circumference and

a denotes the radius of the shaft, then the shear q at a distance r

from the center is given by the formula

q'r

Let M
t
denote the external twisting moment. Then, since M

t
must

be equal to the internal moment of resistance,

Mtt
= CqrdF= Cr*dF=
J aj a

where I
p

is the polar moment of inertia of the section.

For a solid circular shaft of diameter D, I
p

-r -
, and consequently

For a hollow circular shaft of external diameter D and internal

diameter d
y
I
p
= ~ (D

4 d4

),
and hence

(56) q
1 =

98. Angle of twist in circular shafts. From equation (54),

Gr Ga'

Therefore, for a solid circular shaft, from equation (55),

(57) 6.
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and for a hollow circular shaft, from equation (56),

If M
t
is known and can be measured, equations (57) and (58) can

be used for determining G. If G is known and 6 measured, these

equations can be used for finding Mt ;
in this way the horse power

which a rotating circular shaft is transmitting can be determined.

Problem 190. A steel wire 20 in. long and .182 in. in diameter is twisted by
a moment of 20 in. Ib. The angle of twist is then measured and found to be

9 = 18 31'. What is the value of G determined from this experiment ?

Problem 191. If the angle of twist for the wire in Problem 190 is 6 40, how

great is the torsional moment acting on the wire ?

99. Power transmitted by circular shafts. Let H be the number

of horse power transmitted by the shaft, and n the number of revolu-

tions it makes per minute. Then, if q is the force acting on a particle

at a distance r from the center, the moment of this force is qr, and

consequently the total moment transmitted by the shaft isM
t
= I qrdF.

Also, the distance traveled by q in one minute is 2 Trrn, and there-

fore the total work transmitted by the shaft is

W= Cz

Since 1 horse power = 33,000 ft. Ib./min. = 396,000 in. Ib./min., the

total work done by the shaft is

W= 396,000 H in. Ib./min.
Therefore

2 irn CrqdF= W= 396,000 H,

2 im,M
t
= 396,000 H-,

.

2 Trn

Therefore, if it is required to find the diameter D of a solid circular

shaft which shall transmit a given horse power H with safety, then

from equation (55),
^ ^ 16Jff _ 321,000 IT

~
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whence

(59) Z> = 68.5
.-^

As safe values for the maximum unit shear q
1

Ewing recommends
9000 lb./in.

2 for wrought iron, 13,500 lb./in.
2 for steel, and 4500 lb./in.

2

for cast iron.* Inserting these values of q' in formula (59), it becomes

(60)

where for steel p 2.88, for wrought iron p = 3.29, and for cast

iron
IJL
= 4.15.

Expressed in kilowatts in-

stead of horse power, this

formula becomes

where for steel p = 3.175, for

wrought iron p = 3.627, and

for cast iron p = 4.576.

Problem 192. Find the diameter of a solid wrought-iron circular shaft which is

required to transmit 150 H.P. at a speed of 60 revolutions per minute.

Problem 193. A steel shaft is required to transmit 300 H.P. at a speed of 200

revolutions per minute, the maximum moment being 40 per cent greater than the

average. Find the diameter of the shaft.

Problem 194. Under the same conditions as in Problem 193, find the inside

diameter of a hollow circular shaft whose outside diameter is 6 in. Also com-

pare the amount of metal in the solid and hollow shafts.

Problem 195. How many H.P. can a hollow circular steel shaft of 15 in. exter-

nal diameter and 11 in. internal diameter transmit at a speed of 50 revolutions per

minute, if the maximum allowable unit stress is not to exceed 12,000 lb./in.
2 ?

100. Combined bending and torsion. When a shaft transmits power

by means of a crank or pulley, it is subjected to combined bending
and torsion. For example, if a force P acts at a point A in the crank

pin shown in Fig. 102, the bending moment at any point C of the

shaft is M
b
= Pd^ and the torsional moment at C is M

t
= Pdr

Ewing, The Strength of Materials, p. 190.
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Therefore, if D is the diameter of the shaft at (7, the normal stress

on the extreme fiber due to bending is

_'32Mh

P ~~~'^^
>

and the shearing stress on the extreme fiber due to torsion is

= 16Jf,
q "

TrD3
'

There is also a shearing stress of amount P distributed over the

cross section through (7, but since it is zero at the outer fiber, it does

not enter into this calculation.

From Article 26, the values of the principal stresses are

and from Article 28, the maximum or minimum shear is

Inserting in these expressions the values of p and q obtained above,

the principal stresses and the maximum or minimum shear are, in

the present case,

V'Ml + M\) (called Rankine's formula),
mill

16
</'iiiax = =*= -^Ml + Mf (called Guest's formula).

mill ITI)

The equivalent stress may also be found. Thus, from equation (15),

Article 36, assuming m =
3J, its value is found to be

16 i

pe
= [.7Mb 1.3 VJWrJ + Ml~] (called St. Venant's formula).

It is evident that St. Venant's formula is simply a refinement on

Rankine's, as both give the principal normal stresses, whereas Guest's

formula is essentially different, since it gives shear. Hence in design-

ing members subjected to both bending and torsion, try both Guest's

and Rankine's (or St. Venant's) formulas with the same factor of

safety, and then use whichever gives the larger dimensions to the

construction.
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Problem 196. A steel shaft 5 in. in diameter is driven by a crank of 12-in.

throw, the maximum thrust on the crank being 10 tons. If the outer edge of the

shaft bearing is 11 in. from the center of the crank pin, what is the equivalent
stress in the shaft at this point ?

Problem 197. A steel shaft 10 ft. long between bearings and 4 in. in diameter

carries a pulley 14 in. in diameter at its center. If the tension in the belt on this

pulley is 250 lb., and the shaft makes 80 revolutions per minute, what is the maxi-

mum stress in the shaft and how many H.P. is it transmitting ?

*101. Resilience of circular shafts. In Article 74 the resilience of

a body was denned as the internal work of deformation. For a solid

circular shaft this internal work is

where N
t
is the external twisting moment and 6 is the angle of twist.

From equation (54), 6 = -^ =
,
and from equation (55),M= --~-

Gr Ga 16

Therefore the total resilience of the shaft is

2

and consequently the mean resilience per unit of volume is

w - W~ *

WI ~V"-TG'

102. Non-circular shafts. The ahove investigation of the distribu-

tion and intensity of torsional stress applies only to shafts of circular

section. For other forms of cross section the results are entirely dif-

ferent, each form having its own peculiar distribution of stress.

For any form of cross section whatever, the stress at the boundary

must be tangential. For if the stress is not tangential, it can be

resolved into two components, one tangential and the other normal

to the boundary ;
and in Article 23 it was shown that such a normal

component would necessitate forces parallel to the axis of the shaft,

which are excluded by hypothesis.

Since the stress at the boundary must be tangential, the circular

section is the only one for which the stress is perpendicular to a

radius vector. Therefore the circular section is the only one to which

the above development applies, and consequently is the only form of

* For a brief course the remainder of this chapter may be omitted.
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cross section for which Bernoulli's assumption holds true. That is to

say, the circular section is the only form of cross section which remains

plane under a torsional strain.

The subject of the distribution of stress in non-circular shafts has

been investigated by St. Yenant, and the results of his investigations

are summarized below (Articles 103-106 inclusive).

103. Elliptical shaft. For a shaft the cross section of which is an

ellipse of semi-axes a and b, the maximum stress occurs at the ends

of the minor axis, instead of at the ends of the major axis, as might
be expected. The unit stress at the ends of the minor axis is given

by the formula ,..
22 JxLt

and the angle of twist per unit of length is

The total angle of twist for an elliptical shaft of length I is therefore

Problem 198. The semi-axes of the cross section of an elliptical shaft are 3 in.

and 5 in. respectively. What is the diameter of a circular shaft of equal strength?

104. Rectangular and square shafts. For a shaft of rectangular

cross section the maximum stress occurs at the centers of the longer

sides, its value at these points being

(61) gmax =_ = .68 + .45

in which h is the longer and I the shorter side of the rectangle. The

angle of twist per unit of length is, in this case,

For a square shaft of side b these formulas become

(62)

and
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The value of q for a square shaft found from this equation is about

Mr
15 per cent greater than if the formula q = was used, and the

p

torsional rigidity is about .88 of the torsional rigidity of a circular

shaft of equal sectional area.

Problem 199. An oak beam 6 in. square projects 4 ft. from a wall and is acted

upon at the free end by a twisting moment of 25,000 ft. Ib. How great is the angle

of twist ?

105. Triangular shafts. For a shaft whose cross section is an

equilateral triangle of side c,

M.
= 20

and the angle of twist per unit of length is

The torsional rigidity of a triangular shaft is therefore .73 of the tor-

sional rigidity of a circular shaft of equal sectional area.

106. Angle of twist for shafts in general. The formula for the

angle of twist per unit of length for circular and elliptical shafts can

be written

=
1 G

in which I
p is the polar moment of inertia of a cross section about

its center, and F is the area of the cross section. This formula is

rigorously true for circular and elliptical shafts, and

St. Venant has shown that it is approximately true

whatever the form of cross section.

Problem 200. Compare the angle of twist given by St. Venant's

general formula with the values given by the special formulas in

Articles 103, 104, and 105.

Problem 201. Find the angle of twist in Problem 193.

Problem 202. Find the angle of twist in Problem 194, and com-

pare it with the angle of twist for the solid shaft in Problem 201.

107. Helical springs. The simplest form of a helical,

or spiral, spring is formed by wrapping a wire upon a

circular cylinder, the form of such a spring being that

of a screw thread. Let r be the radius of the coil and a the radius

of the wire, and let the spring be either compressed or extended by
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two forces P acting in the direction of the axis of the cyUnder (Fig. 103).

Then the bending moment at any point of the spring is M= Pr, If

the radius r of the coil is large in comparison with the diameter of

the wire, and if the spring is closely wound, the plane of the external

moment M is very nearly perpendicular to the axis of the helix, and

consequently the bending strain can be assumed to be zero in com-

parison with the torsional strain. Under this assumption the maxi-

mum stress is found, from equation (55), to be

Tra 7TCT

Similarly, the maximum stress in a spring of square or rectangular

cross section can be found by substituting M= Pr in equations (61)

and (62).

To find the amount by which the spring

is extended or compressed, let d6 be the

angle of twist for an eleruent of the helix

of length dl. Then (Fig. 104), if AB is the

axis of the spring, a point M in this axis

in the same horizontal plane with the ele-

ment dl is displaced vertically an amount

MN rdO in the direction of the axis. Therefore the total axial

compression or extension D of the spring is the sum of all the infini-

tesimal displacements rdO for every element dl
;
whence

D= CrdO.

v ,. /Kn a 2 Ml 2Prl
From equation (57), 6 = = -

9 Pr
Therefore dO = dl

}
and consequently

TTCl G

2Pr2
l

/
l 2 Pr2

2 Pr2 C l

2 Pr2
<

ITCH (JT TTCt' (JT Jr. TTCL (j~^
<J

D

in which / is the length of the helix.

If n denotes the number of turns of the helix, then, under the

above assumption that the slope of the helix is small, I = 27rrn

approximately, and hence
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approximately.

The resilience W of the spring is equal to one half the product of

the force P multiplied by the axial extension or compression of the

spring. Hence -,

p2 27

Problem 203. A helical spring is composed of 20 turns of steel wire .258 in. in

diameter, the diameter of the coil being 3 in. If the spring is compressed by a

force of 50 lb., what is the maximum stress in the spring, its axial compression, and

its resilience ?

108. General theory of spiral springs. The general theory of the

cylindric spiral spring subjected to both axial load and torque has

many important applications in physics and engineering, as, for ex-

ample, in the helical-spring transmission dynamometer now coming
into general use by reason of its ability to measure power without

absorbing it.

To analyze the most general case, suppose that an axial load P is

applied to the spring and also a torque Mt)
the positive direction of P

being chosen as that which will produce elongation of the spring, and

the positive direction of M
t
as that which will increase the number

of coils. Also let

x = axial elongation of spring,

cf)
= angular rotation of spring,

r = radius of coils, i.e. distance from center of wire to axis,

a == angle of spiral (pitch angle),

/ = length of wire,
torqueA = torsional rigidity

=

B = flexural rigidity
=

angle of twist per unit length

bending moment

flexure per unit length of wire-

Note that if E= Young's modulus and G = shear modulus (modulus

of rigidity), then B = El, where / denotes the static moment of inertia

of a cross section of the wire with respect to its neutral axis, but that

A is not equal to GI
p ,
where I

p
denotes the polar moment of inertia of a

cross section of the wire. The true values of A for various cross sec-

tions, however, may be found from Articles 105-108 in connection

with the above definition, and are summarized in the following table :
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SHAIM:
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Now consider any cross section GOF of the wire (Fig. 105) and
draw the F-axis through parallel to the axis of the helix, and the

X-axis at right angles to OF and

tangent to the cylinder on which

the helix is wound. Also draw

another pair of rectangular axes

in the XOY- plane, namely OF
tangent to the helix and OU nor- -

mal to it.

The axial load P produces a

moment M
b about OX of amount

M
b
= Pr, while the torqueMt

acts

about the axis OF. Represent
each of these moments by a vec-

tor, that is, a single line, the length of which represents the numerical

amount of the moment, and the direction of which is the same as

that in which a right-handed screw would advance if revolved in

the direction indicated by the

u X

given moment. In the present

case the torque Mt
causes rev-

olution about the F-axis and

is therefore represented by a

vector laid off along this axis

and pointing upward; while

similarly the axial load P pro-

duces revolution about the X-

axis and is represented by a

vector M
b
laid off along OXand

pointing to the left (Fig. 106).

Now in order to obtain the bending and twisting moments acting

on the wire, these vectors must be resolved in the directions U and

OF. Hence

Moment about V (torsional moment) = Mt
sin a; -+- Mb

cos a,

Moment about U (bending moment) = M
t
cos a M

b
sin a.

Consequently, from the above definitions of torsional and flexural

rigidity, we have

FIG. 106
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ATI...... Jf, sin a + Mh cos a
Angle of twist per unit of length = -

Flexure per unit of length

A

M
t
cos a M

h
sin a

To obtain the axial deflection of the spring and its angular rotation

about its axis, these quantities must next be projected back on the

X- and Y- axes. Making this projection (Fig. 107), we have

FIG. 107

Rotation about vertical axis Y per unit length of wire

Mf cos a Mh sin a M
t sin a -\-Mh cos a .= - cosoH sin a,

-t> A

Rotation about horizontal axis OX per unit length of wire

M sin a +M cos a
cos a

M cos a M sin a .

B
sin a.

Multiplying each of these expressions by the length of the wire /, and

simplifying, we have finally

x = M
hrl

cos a sin a

jj A

1



TOKSION 151

Special Case I. Spirals very flat.

In case the spirals are very flat, a may be as sumed to 1 e zero, and

the above expressions then reduce to

MJ, _
B

Special Case II. Ifotatioii of ends prevented, i.e.
(/>
= 0.

In this case first find M
t
in terms of M

b
from the equation < =

;

then substitute this value of M
t
in the x equation and find x in terms

of Jf
6
.

Problem 204. Assume = and a = 45. Find x.

Solution. Substituting these numerical values of and a in the expression

/I 1\ /cos2 a sin 2

= Mb l sin a cos al - -
J
+ Mt l (

and solving the resulting equation for Mt ,
we have

Substituting this value of Mt in the equation

,/cos
2
<* sin2 -\ /I 1\= Mbrl / --

1

--
J
+ Mt

lr sin a cos a /
- -

j,

2

x

we have finally

A +

Special Case III. Axial elongation prevented, i.e. x = 0.

This case applies to the helical-spring transmission dynamometer
mentioned above. In this case first find M

b
in terms of M

t
from the

equation x = 0, and then substitute this value of M
b
in the

<f> equation

and find < in terms of M
t
.

Problem 205. A helical-spring transmission dynamometer is made of 15f turns

of -in. steel wire, the mean diameter of the coil being 1^ in., and there being 2 turns

of wire per inch. Calculate the torque required to produce an angular deflection

of 25.

Solution. From the table the constants A and B for a circular cross section are

A = and B = Inserting these values in the equation x = 0, and assum-

ing the relation between the elastic moduli to be G = f E, the result is

sin a cos a
A .

,

5 cos2 a + 4 snr a
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From the given dimensions it is found that a = 7 15.4', and consequently

Mb = .02513Mt .

Inserting this value in the
<f> equation and also making d = .25, =

,
I = 62.35,

and E = 30,000,000, the result of solving for Mt is

Mt
= 40.06 in. Ib.

EXERCISES ON CHAPTER VI

Problem 206. Find the diameter of a structural-steel engine shaft to transmit

900 H.P. at 75 R.P.M. with a factor of safety of 10.

Problem 207. Find the factor of safety for a wrought-iron shaft 5 in. in

diameter which is transmitting 60 H.P. at 125 K.P.M.

Problem 208. A structural-steel shaft is 60ft. long and is required to transmit

500 H.P. with a factor of safety of 8 and to be of sufficient stiffness so that the

angle of torsion shall not exceed .5 per foot of length. Find its diameter.

Problem 209. Under the same conditions as in Problem 208 find the size of

a hollow shaft if the external diameter is twice the internal.

Problem 210. A hollow wrought-iron shaft 9 in. in external diameter and

2 in. thick is required to transmit 600 H.P. with a factor of safety of 10. At what

speed should it be run ?

Problem 211. A horizontal steel shaft 4 in. in diameter and 10 ft. long be-

tween centers of bearings carries a pulley weighing 300 Ib. and 14 in. in diameter.

The belt on the pulley has a tension of 50 Ib. on the slack side and 175 Ib. on

the driving side. Find the maximum combined stress in the shaft.

Problem 212. An overhung steel crank carries a maximum thrust on the crank

pin of 2 tons. Length of crank 9 in.
;
distance from center of pin to center of

bearing 5 in. Determine the size of crank and shaft for a factor of safety of 5.

Problem 213. A propeller shaft 9 in. in diameter transmits 1000 H.P. at 90

R.P.M. If the thrust on the screw is 12 tons, determine the maximum stress in

the shaft.

Problem 214. A round steel bar 2 in. in diameter, supported at points 4 ft.

apart, deflects .029 in. under a central load of 300 Ib. and twists 1.62 in a length
of 2 ft. under a twisting moment of 1500 ft. Ib. Find E, (?, and Poisson's ratio

for the material (see Article 35).

Problem 215. If P and Q denote the unit stresses at the elastic limits of a

p
material in tension and shear respectively, show that when <1 the material will

P Q
fail in tension, whereas when > 1 it will fail in shear, when subjected to com-

bined bending and torsion, irrespective of the relative values of the bending and

twisting moments.

Solution. Combining Rankine's and Guest's formulas, we have

16Mh

P V = '
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Consequently, if the bending moment is zero, p' = q' or = 1, whereas if it is

<l'
tf

not zero, p' > q'. Similarly, if the twisting moment is zero, = 2.

9'

Now let Ft and Fs denote the factors of safety in tension and shear respectively.

Then
P

Ft = = Ptf

Fs Q Qp>'

Q'

Since p' ==<?', the fraction = 1. Consequently, if <1 also, then <l;i.e.
p' Q Fs

Ft < Fs and the material is weaker in tension than in shear. The second part of the

theorem is proved in a similar manner.

For a complete discussion of this question see article by A. L. Jenkins, En-

gineering News (London, November 12, 1909), pp. 637-639.

Problem 216. A steel -shaft subjected to combined bending and torsion has

an elastic limit in tension of 64,600 lb./in.
2 and an elastic limit in shear of

29,170 lb./in.
2 Show that Guest's formula applies to this material rather than

Rankine's.

Problem 217. A shaft subjected to combined bending and twisting is made of

steel for which the elastic limit in tension is 28,800 lb./in.
2 and the elastic limit in

shear is 16,000 lb./in.
2 Show that if the bending moment is one half the twisting

moment, the shaft will be weakest in shear, whereas if the bending moment is twice

the twisting moment, it will be weakest in tension.

Problem 218. A closely coiled helical spring is made of 5-111. round steel wire

and has 15 coils of mean diameter 3 in. Find its deflection under an axial

.load of 20 lb., and the stiffness of the spring in pounds per foot of deflection.

Problem 219. A helical-spring transmission dynamometer is made of 20 turns

of J-in. steel wire
;
mean diameter of coil 2| in. with 2 turns per inch. Find its

axial twist in degrees when transmitting 6 H.P. at 75 R.P.M.

Problem 220. A closely coiled helical spring is made of f-in. steel wire with

coils of 3 in. mean diameter. Find the length of wire required in order that the

spring shall deflect f-in. per pound of load.



CHAPTER VII

SPHERES AND CYLINDERS UNDER UNIFORM PRESSURE

109. Hoop stress. When a hollow sphere or cylinder is subjected

to uniform pressure, as in the case of steam boilers, standpipes, gas,

water, and steani pipes, fire tubes, etc., the effect of the radial pres-

sure is to produce stress in a circumferential direction, called hoop

stress. In the case of a cylinder closed at the ends, the pressure on

the ends produces longitudinal stress in the side walls in addition to

the hoop stress.

If the thickness of a cylinder or sphere is small as compared with

its diameter, it is called a shell In analyzing the stress in a thin

shell subjected to uniform pressure, such as

that due to water, steam, or gas, it may be

assumed that the hoop stress is distributed

uniformly over any cross section of the shell.

This assumption will be made in what follows.

110. Hoop tension in hollow sphere. Con-

sider a spherical shell subjected to^ uniform

internal pressure, and suppose that the shell

is cut into hemispheres by a diametral plane (Fig. 108). Then, if w
denotes the pressure per unit of area within the shell, the resultant

force acting on either hemisphere is P = > where d is the radius

of the sphere. If p denotes the unit tensile stress on the circular

cross section of the shell, the total stress on this cross section is Trdhp,

approximately, where h is the thickness of the shell. Consequently,

ird^w wd= irdlip ;
whence p = - >

4 4h

which gives the hoop tension in terms of the radial pressure.

From symmetry, the stress is the same on any diametral cross

section. Therefore the equivalent stress at any point of the shell is

154
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m 1
10 =- v

l wd
4/i,m m

If the value of m is assumed to be 3^, this expression for pe becomes

Problem 221. How great is the stress in a copper sphere 2 ft. in diameter and

.25 of an inch thick, under an internal pressure of 175 lb./in.
2 ?

111. Hoop tension in hollow circular cylinder. In the case of a

cylindrical shell, its ends hold the cylindrical part together in such

a way as to relieve the hoop tension at either extremity. Suppose,

then, that the portion of the cylinder considered is so far removed

from either end that the influence of the

end constraint can be assumed to be zero.

Suppose the cylinder cut in two by a

plane through its axis, and consider a sec-

tion cut out of either half cylinder by two

planes perpendicular to the axis, at a dis-

tance apart equal to c (Fig. 109). Then the

resultant internal pressure P on the strip

under consideration is P = cdw, and the resultant hoop tension is

2 clip, where the letters have the same meaning as in the preceding

article. Consequently, cdw = 2 clip ;
whence

div

FIG. 109

(64) p =

If the longitudinal stress is zero, pe
=

p.

This result is applicable to shells under both inner and outer pres-

sure, if P is taken to be the excess of the internal over the external

pressure.

Problem 222. A cast-iron water pipe is 24 in. in diameter and 2 in. thick.

What is the greatest internal pressure which it can withstand ?

112. Longitudinal stress in hollow circular cylinder. If the ends

of a cylinder are fastened to the* cylindrical part, the internal pres-

sure against the ends produces longitudinal stresses in the side walls.

In this case the cylindrical part is subjected both to hoop tension

and to longitudinal tension.
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To find the amount of the longitudinal tension, consider a cross

section of the cylinder near its center, where the influence of the end

restraints can be assumed to be zero (Fig. 110). Then the resultant

\A
ird'' W
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B

Problem 224 . A marine boiler shell is 16 ft. long, 8 ft. in diameter, and 1 in. thick.

What is the stress in the shell for a working gauge pressure of 160 lb./in.
2 ?

Problem 225. The air chamber of a pump is made of cast iron of the form
shown in Fig. 112. If the diameter of the air chamber is 10 in. and its height 24 in.,

how thick must the walls of the air chamber be made to stand a pressure of

500 lb./in.
2 with a factor of safety of 4?

* 113. Differential equation of elastic curve for circular cylinder.

A cyliudrical shell subjected to internal pressure is in a condition of

stable equilibrium, for the internal pressure tends to preserve the

cylindrical form of the shell, or to restore it to this form if, by any
cause, the cylinder is flattened or otherwise deformed. A cylindrical

shell which is subjected to external pressure, however, is in a con-

dition of unstable equilibrium, for any deviation from a cylindrical

form tends to be increased rather than

diminished by the stress. In this respect

thin hollow cylinders under external

pressure are in a state of strain similar

to that in a column, and the method of

finding the critical pressure just preced-

ing collapse is similar to that for finding

the critical load for a column, as explained

in the derivation of Euler's formula.

Consider a thin hollow cylinder which

is subjected to a uniform external pres-

sure of amount w per unit of area, and suppose that in some way the

cylinder has been compressed in one direction so that it assumes the

flattened form shown in Fig. 113. The first step in the solution of

the problem is to find the differential equation of the elastic curve in

curvilinear coordinates, or, in other words, the differential equation

of the elastic curve of the flattened cylinder referred to its original

circular form.

In polar coordinates let be the origin and OA the initial line.

Also, let a denote the radius of the circular cylinder, and r the radius

vector of the flattened or elliptical form. Now suppose that the cir-

cular wall of the cylinder is considered as a piece which was origi-

nally straight and has been made to assume a circular form by a

FIG. 113

* For a brief course the remainder of this chapter may be omitted.
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bending moment M'. Then, if p denotes the radius of curvature, from

Article 66, -
,

Again, suppose that this circular cylinder is made to assume the

flattened form as the result of an additional bending moment M, and

let p
f denote the corresponding radius of curvature. Then

1 _ M' + M
J'~ El

Consequently,

(ee) J~J
=
Jr

From the differential calculus,

2-ii

dr\*

)da da2

dr
If the deformation is small,

-- is infinitesimal, and r differs mfinitesi-
da

mally from a. Therefore, neglecting infinitesimals of an order higher

than the second, the expression for p' becomes

P' d2r d2r
a2 - a a--

da2 da2

and, consequently, -, -, 1/72.

p' a a?

Since p = ,- = -, and therefore

p a

(67)
^~~p

= ~

Comparing equations (66) and (67)

(68> V^ =d
^ / S-*4 sJ STS&

*The sign is used because the calculus expression for p' contains a square root in

the numerator.
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Now let u denote the distanca between the circle and the ellipse

measured radially. Then
r = a u,

or, if u is assumed to be positive when it lies outside the circle and

negative when it lies inside,
r = u + a.

Differentiating both sides of this equation with respect to a,

dr du

da da

d2
r

Also, if dl is the length of an infinitesimal arc of the circle, ada = dl.

Substituting these values in equation (68), it becomes

(69)

which is the required differential equation of the elastic curve in the

curvilinear coordinates I and u.

114. Crushing strength of hollow circular cylinder. 'As a continu-

ation of the preceding article, let it be required

to find the external pressure which is just suffi-

cient to cause the cylinder to retain its flattened

form, or, in other words, the critical external pres-

sure just preceding collapse.

In Fig. 114 let OA and OB be axes of symmetry;
then it is sufficient to consider merely the quadrant

A OB. Let c denote the length of the chord AC,

and let w be the unit external pressure. Then for

a section of the cylinder of unit length the external pressure P on

the curved strip AC is

P = we.

Now let M denote the bending moment at the point A. The tangen-

tial force at this point is equal to the resultant pressure on OA, or wb.

Consequently the bending moment M at the point C is

114
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In the triangle OAC,

~OC* = 'AC
1
+ AC? -2AO- AD, or

r
2 = c

2 + 6
2 - 2 b AD,

from which 2 2 2

Since r = u + a and a = b UQ)
*

inM= MQ + - (a
2 + 2 aw + ^ - a2 - 2

Since w and U
Q are both infinitesimal, w

c + u (or the difference between

the absolute values of u and u
)
is negligible in comparison with 2 .

Therefore M= M - wa(u - u
),

and, consequently, the differential equation of the elastic curve becomes

The general integral of this differential equation is found to be

(70) M = Wo +^ + ClSi

in which C
l
and (7

2
are the undetermined constants of integration.!

This may be verified by substituting the integral in the above differ-

ential equation.

To determine C
l
and C

2
it is only necessary to make use of the

terminal conditions at A and B. At the point A y
I 0, = 0, and

CLL

u = u . Substituting these values in equation (70) and its first deriv-

ative, it is found that

a = and 0,,=-^-
wa

* Throughout this discussion it should be borne in mind that u is a negative quantity.
t See Johnson, Treatise on Ordinary and Partial Differential Equations, 3d ed.,

pp. 85-86.
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Hence the integral becomes

u =^ + u -^cos l^l
wa wa ^llI

or

At the upper end of the quadrant B the conditions are I = and

= 0. Substituting these values in the first differential coefficient
at

obtained from equation (71), namely,

I~H
we have

du M Iwa . Iwa

whence

Iwa

EI 2
= "

where X is an arbitrary integer. Choosing the smallest value of X,

namely 1, this condition becomes

wa a
=

whence

If the thickness of the tube is denoted by h, then, for a section of

h8

unit length, / = > and formula (72) becomes
12

(73)

Formula (73) gives the critical pressure just preceding collapse ;
that

is to say, it gives the maximum external pressure w per unit of area

which a cylindrical tube of thickness h can stand without crushing.

Problem 226. What is the maximum external pressure which a cast-iron pipe

18 in. in diameter and in. thick can stand without crushing ?
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Problem 227. In a fire-tube boiler the tubes are of drawn steel, 2 in. internal

diameter and | in. thick. What is the factor of safety for a working gauge pres-

sure of 200 lb./in.2 ?

115. Thick cylinders ; Lame's formulas. Consider a thick circular

cylinder of external radius a and internal radius &, which is subjected

to the action of either internal or external uniform pressure, or to

both. Suppose a section is cut out of the cylinder by two planes per-

pendicular to the axis at a unit's distance apart, and consider a small

sector ABCD of angle a cut out of the ring so obtained, as shown

in Fig. 115. Letph denote the tangential stress, or hoop stress, acting on

tin's infinitesimal element, pr
the radial stress acting on the inner sur-

face AD, and pr + dpr
the radial stress acting on the outer surface BC.

FIG. 115

Then the internal and external radii being r and r + dr respectively,

the length of AD is ra and of BC is (r -f dr)a. Since the width

of the piece is unity, the resultant radial force acting on the piece, or

the difference between the pressure on the inner and outer surfaces,

is (pr + dpr) (r -f dr) a prra. Therefore, since the resultant of the

hoop stress in a radial direction is (pha) dr, in order that the radial

stresses shall equilibrate,

(pr + dpr) (r + dr) a pr
ra = phadr ;

or, neglecting infinitesimals of an order higher than the second,

pr
dr + rdpr

= phdr ;

which may be written

(74)
-
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If the ends of the cylinder are free from restraint, or if the cylinder

is subjected to a uniform longitudinal stress, the longitudinal defor-

mation must be constant throughout the cylinder. The longitudinal

deformation, however, is due to the lateral action of pr and ph ,
and is

7) 1) 1
of amount -^- -f -~- > or -

(pr + ph),
in which m denotes Poisson'smE mE mE

constant. Therefore, if this expression is constant, pr + ph must

be constant, and hence _ -,

Pr ~r Ph K
>

where k is a constant. Consequently, ph
= k pr ,

and substituting

this value of ph in equation (74) and multiplying by r, it becomes

krdr = 2 rpr
dr -\- r1

dpr ,

which may be written
^

dr

Integrating, ^

in which C
l

is the constant of integration ;
whence

Also, since ph
= k pr ,

Now suppose that the cylinder is subjected to a uniform internal

pressure of amount w
i per unit of area, and also to a uniform external

pressure of amount w
e per unit of area. Then pr

w
e
when r a,

and pr
= w

i
when r = 1. Substituting these values in equation (75),

i- r1 i- r^/v V/i tu \j *-

whence 27 2 / _ \ o

Therefore, substituting these values of <7
X
and k in equations (75) and

(76), they become

_ wea
z

Wjb
2 azb2

(we

(77)
. a'Q'(we

-
I /^.2 i,2\
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which give the radial and hoop stresses in a thick cylinder subjected

to internal and external pressure. Equations (77) are known as

Lamp's formulas.

116. Maximum stress in thick cylinder under uniform internal

pressure. Consider a thick circular cylinder which is subjected only

to internal pressure. Then w
e
= 0, and equations (77) become

w a? \ w /
2

(78)

Since ph is negative, the hoop stress in this case is tension.

Since pr and ph both increase as r decreases, the maximum stress

occurs on the inner surface of the cylinder, where

w-(a -\- b )
T = 0. f) = w., and t), =

JJ T 1* M ft 2 Z.2

Clearing the latter of fractions, we have = l-
, whence the

thickness of the tube, h = a &, is given by

(79) h = b\

Moreover, the equivalent stress for a point on the inner surface of

the cylinder is

If m = 3
J,

the absolute value of the equivalent stress becomes

This may also be written

Problem 228. Find the thickness necessary to give to a steel locomotive cylinder

of 22 in. internal diameter, if it is required to withstand a maximum steam pressure

of 150 lb./in.
2 with a factor of safety of 10.

Problem 229. In a four-cycle gas engine the cylinder is of steel with an internal

diameter of 6 in., and the initial internal pressure is 200 lb./in.
2 absolute. With

a factor of safety of 15, how thick should the walls of the cylinder be made ?

Problem 230. The steel cylinder of an hydraulic press has an internal diameter

of 5 in. and an external diameter of 7 in. With a factor of safety of 3, how great

an internal pressure can the cylinder withstand ?
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117. Bursting pressure for thick cylinder. Let ^denote the ulti-

mate tensile strength of the material of which the cylinder is com-

posed. Then, from equation (79), the maximum allowable internal

pressure wi
is obtained from the equation

whence

If m is assumed to be 3J, this formula becomes

ut(a*
- ft

2
)

Equations (81) and (82) give the maximum internal pressure w
{

which the cylinder can stand without bursting.

Problem 231. A wrought-iron pipe is 4 in. in external diameter and .25 in.

thick. What head of water will it stand without bursting?

Problem 232. Under a water head of 200 ft., what is the factor of safety in

the preceding problem ?

118. Maximum stress in thick cylinder under uniform external

pressure. Consider a thick circular cylinder subjected only to external

pressure. In this case w
i
= and equations (77) become

Since ph is positive, the hoop stress in this case is compression.

For a point on the inner surface of the cylinder

2 w
e
a2

r = b, pr
= Q, and Ph

= ^p'
Since the radial stress is zero on the inner surface, the equivalent

stress is equal to the hoop stress, that is,

Problem 233. A wrought-iron cylinder is 8 in. in external diameter and \\ in.

thick. How great an external pressure can it withstand ?
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119. Thick cylinders built up of concentric tubes. From equa-

tions (77), it is evident that in a thick cylinder subjected to internal

pressure the stress is greatest on the inside of the cylinder, and

decreases toward the outside. In order to equalize the stress through-

out the cylinder and thus obtain a more economical use of material,

the device is resorted to of forming the cylinder of several concentric

tubes and producing an initial compressive stress on the inner ones.

For instance, in constructing the barrel of a cannon, or the cylinder

of an hydraulic press, the cylinder is built up of two or more tubes.

The outer tubes in this case are made of somewhat smaller diameter

than the inner tubes, and then each is heated until it has expanded

sufficiently to be slipped over the one next smaller. In cooling, the

metal of the outer tube contracts, thus producing a compressive stress

in the inner tube and a tensile stress in the outer tube. If, then, this

composite tube is subjected to internal pressure, the first effect of

the hoop tension thus produced is to relieve the initial compressive

stress in the inner tube and increase that in the outer tube. Thus

the resultant stress in the inner tube is equal to the difference between

the initial stress and that due to the internal pressure, whereas the

resultant stress in the outer tube is the sum of these two. In this

way the strain is distributed more equally throughout the cylinder.

It is evident that the greater the number of tubes used in building

up the cylinder, the more nearly can the strain be equalized.

The preceding discussion of the stress in thick tubes can also be

applied to the calculation of the stress in a rotating disk. For example,

a grindstone is strained in precisely the same way as a thick tube

under internal pressure, the load in this case being due to centrifugal

force instead of to the pressure of a fluid or gas.

120. Practical formulas for the collapse of tubes under external

pressure. A more rigorous analysis of the stress in thin tubes, due

to external pressure, than that given in Article 114, using Poisson's

ratio of transverse to longitudinal deformation, gives the formula *

m
E

w
4 l--

2

v \

* Love, Math. Theory ofElast., Vol. II, pp. 308-316.
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or, m terms of the diameter D = 2 a,

This formula, however, is based on the assumptions that the tube is

perfectly symmetrical, of uniform thickness, and of homogeneous

material, conditions which are never fully realized in commercial

tubes. From recent experiments 011 the collapse of tubes,* however,

it is now possible to determine the practical limitations of this for-

mula, and so modify it, by a method similar to that by which the

Gordon-Eankine column formula was deduced from Euler's formula

(Articles 88, 89), as to obtain a rational formula which shall never-

theless conform closely to experimental results. By determining the

ellipticity, or deviation from roundness, and the variation in thick-

ness of the various types of tubes covered by the tests mentioned

above, it is found that by introducing empirical constants the rational

formulas can be made to fit experimental results as closely as any

empirical formulas, with the advantage of being unlimited in their

range of application.! The formula so obtained is

ffor thin tubes

t 5

where h = average thickness of tube in inches,

D = maximum outside diameter in inches,

= Poisson's ratio = .3 for steel,m
C = .69 for lap-welded steel boiler flues,

= .76 for cold-drawn seamless steel flues,

= .78 for drawn seamless brass tubes.

By a similar procedure for thick tubes / >.023) a practical

* Carman,
"
Resist, of Tubes to Collapse," Univ. HI. Bull., Vol. Ill, No. 17

; Stewart,

"Collap. Press. Lap-Welded Steel Tubes," Trans. A.S.M.E., 1906, pp. 730-820.

t Slocum,
" The Collapse of Tubes under External Pressure," Engineering. London,

January 8, 1909. Also abstract of same article in Kent, 8th ed., 1910, pp. 320-322.
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rational formula has been obtained from Lame's formula, Article 118,

for this case also, namely

IK)
w

D

for thick tubes

where u
c
= ultimate compressive strength of the material,

K = .89 for lap-welded steel boiler flues.

Only one value of K is given, as the experiments cited were all made

on one type of tube.

The correction constants C and K include corrections both for

ellipticity, or flattening of the tube, and for variation in thickness.

Thus if the correction for ellipticity is denoted by C
l
and the correc-

tion for variation in thickness by <7
2 ,
we have

Minimum outside diameter
1

_

Maximum outside diameter

Minimum thickness

Average thickness

and the correction constants C and K are therefore denned as

By an "experimental determination of C
1
and C

2
the formulas can

therefore be applied to any given type of tube.

121. Shrinkage and forced fits. In machine construction shrink-

age and forced or pressed fits are frequently employed for connecting

certain parts, such as crank disk and shaft, wheel and axle, etc. To

make such a connection the

shaft is finished slightly larger

than the hole in the disk or

ring in which it belongs. The

shaft is then either tapered

slightly at the end and pressed

into the ring cold, or the ring

is enlarged by heating until it

will slip over the shaft, in which case the shrinkage due to cooling

causes it to grip the shaft,

Di D

FlG
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To analyze the stresses arising from shrinkage and forced fits, let

D
l
denote the diameter of the hole in the ring or disk, and Z>

2
the

diameter of the shaft (Fig. 116). When shrunk or forced together,

D
l
must increase slightly and D

2
decrease slightly, i.e. D

l
and Z>

2

must of necessity take the same value D. Consequently the circum-

ference of the hole changes from 7rD
l
to 7rZ>, and hence the unit

deformation s
x
of a fiber on the inner surface of the hole is

l

7TD, D

Similarly the unit deformation s
2

of a fiber on the surface of the

Shaftis

A
From Hooke's law, = E

y
we have therefore for the unit stress pl

s

on the inside of the disk

i = .
1
=:^;

E, D,

and for the unit stress p on the surface of the shaft

Adding these two equations to eliminate the unknown quantity

the result is

where K denotes the allowance, or difference in diameter of shaft and

hole. For a thick disk or heavy ring this allowance K may be deter-

mined from the nominal diameter D of the shaft by means of the

following empirical formulas.*

For shrinkage fits, K= \
,

For pressed fits, K= ^
>

For driven fits, K= ^ 2

* S. H. Moore, Tram. Am. Soc. Mech. Eng., Vol. XXIV.
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For thin rings, however, the allowance given by these formulas will

be found to produce stresses in the ring entirely too large for safety.

In deciding on the allowance for any given class of work, the working
stresses in shaft and ring may first be assigned and the allowance

then determined from the formulas given below so that the actual

stresses shall not exceed these values.

From Lame's formulas the stresses pl
and p2 may be obtained in

terms of the unit pressure between the surfaces in contact. Thus

from formula (80) the equivalent stress on the inside of the hole is

A=A = - (-7^ + 1.819,

where Z>
3
denotes the outside diameter of the ring, while, by substi-

tuting r = a and b = in the equations of Article 118, the stresses

on the outer surface of the shaft are found to be

Ph = W
> Pr = >

and consequently -,

P2=Ph-Pr = -7w-

Eliminating w between these expressions for p^ and p ,
we have

~
.7

Now to simplify the solution, let the coefficient of p2
be denoted by

H; that is, let

U == >
rr / T\2 7~)2\

in which case

p l
= Hp2

.

Eliminating pl
between this relation and the above expression for the

allowance K, we have finally

Pi = Hp z .

In applying these formulas the constant .If is first computed from the

given dimensions qf the parts. If the allowance K is given, the unit
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stresses pl
and p2

in ring and shaft are then found from the above.

If K is to be determined, a safe value for the stress in the ring, p ,
is

assigned, and p2
calculated from the second equation. This value is

then substituted in the first equation and K calculated.

The following problem illustrates the application of the formulas.

Problem 234. A cast-iron gear, 8 in. external diameter, 3 in. wide, and If in.

internal diameter, is to be forced on a steel shaft. Find the stresses developed, the

pressure required to force the gear on the shaft, and the tangential thrust required
to'shear the fit, i.e. produce relative motion between gear and shaft.

Solution. From the formulaK 2 the allowance is found to be .004 in.,
1000

making the diameter of the shaft D2 = 1.754 in. Also since DI = 1.75 in., D3 = 8 in.,

we have H - 2.0007. Hence assuming EI = 15,000,000 lb./in.
2 and E2 = 30,000,000

lb./in.
2

,
we have

p l
= 13,713 lb./in.

2
, p2

= 27,436 lb./in.
2

To find the pressure required to force the gear on the shaft it is first necessary
to calculate the pressure between the surfaces in contact. From the relation

p2
= . 7 w this amounts to

u> = 39,194 lb./in.
2

The coefficient of friction depends on the nature of the surfaces in contact. As-

suming it to be /t
= .15 as an average value, and with a nominal area of contact

of TT x If x 3 = 16.485 in. 2
,
the total pressure P required is

P = 16.485 x 39,194 x .15 = 96,917 Ib. = 48.5 tons.

To find the torsional resistance of the fit, we have, as above

Bearing area = 16.485 in. 2
,

Unit pressure = 39,194 lb./in.
2

,

/x,
= .15, radius of shaft = .875 in.

Hence the torsional resistance is

M
t

= 16.485 x 39,194 x .15 x .875 = 85,000 in. Ib.

Consequently the tangential thrust on the teeth of the gear necessary to shear

the fit is

isoao _ 21,250 Ib. = 10.6 tons.

122. Riveted joints. In structural work such as plate girders,

trusses, etc., and also in steam boilers, standpipes, and similar con-

structions, the connections between the various members are made

by riveting the parts together. As the holes for the rivets weaken

the members so joined, the strength of the structure is determined

by the strength of the joint.

Failure of a riveted joint may occur in various ways,namely, by shear-

ing across the rivet, by crushing the rivet, by crushing the plate in
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front of the rivet, by shearing the plate, i.e. pulling out the rivets, or

by tearing the plate along the line of rivet holes. Experience has

shown, however, that failure usually occurs either by shearing across

the rivet or by tearing the plate along the line of rivet holes.

The strength of any given type of riveted joint is expressed by
what is called its efficiency, denned as

strength of joint
Efficiency of riveted joint =

strength of unriveted member

Thus if d (Fig. 117), denotes the diameter of a rivet and c the distance

between rivet holes, or pitch of the rivets as it is called, the efficiency

of the joint against tearing of the plate along the line of rivets is

c d
e =

To determine the efficiency of the joint against shearing across the

rivets, let q denote the ultimate shearing strength of the rivet and p
the ultimate tensile strength of the plate. Then for a single lap joint

(Fig. 117), if h denotes the thickness of the plate, the area corre-
J2

sponding to one rivet is hd
t and the area in shear for each rivet is

;

consequently the efficiency of this type of joint against rivet shearing is

c =

For an economical design these two efficiencies should be equal. For

practical reasons, however, it is not generally possible to make these

exactly equal, and in this case the smaller of the two determines

the strength of the joint.

For a double-riveted lap joint the efficiency against tearing of the

plate is
c d

as above
;
but since in this case there are two rivets for each strip of

length c, the efficiency against rivet shear is

2chp
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SINGLE-RIVETED LAP JOINT

EFFICIENCY 50-60 PER CENT

SINGLE-RIVETED BUTT JOINT

EFFICIENCY 76-78 PER CENT

DOUBLE-RIVETED LAP JOINT

EFFICIENCY 70-72 PER CENT

i*-c-*i

> (

y)

DOUBLE-RIVETED BUTT JOINT

EFFICIENCY 82-83 PER CENT

FIG. 117

Similarly for a single-riveted butt joint with two cover plates the

efficiency of the joint against tearing of the plate is

c d

and against rivet shear is

e =
2 chp

For a double-riveted butt joint with two cover plates the efficiency

against tearing of the plate is

c d
e =
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and against rivet shear is

clip

The average efficiencies of various types of riveted joints as used in

steam boilers are given in Fig. 117.

In designing steam-boiler shells it is customary in this country to

determine first the thickness of shell plates by the following rule.

To find the thickness of shell plates, multiply the maximum steam

pressure to be carried (safe working pressure in lb./in.
2

) by half the

diameter of the boiler in inches. This gives the hoop stress in the

shell per unit of length. Divide this result by the safe working stress

(working stress = ultimate strength, usually about 60,000 lb./in.
2

,

divided by the factor of safety, say 4 or 5) and divide the quotient

by the average efficiency of the style of joint to be used, expressed as

a decimal. The result will be the thickness of the shell plates ex-

pressed in decimal fractions of an inch.

Having determined the thickness of shell plates by this method,

the diameter of the rivets is next found from the empirical formula

d = k^ft,

where k.= 1.5 for lap joints and Jc =1.3 for butt joints with two

cover plates.

The pitch of the rivets is next determined by equating the strength

of the plate along a section through the rivet holes to the strength

of the rivets in shear, and solving the resulting equation for c.

To illustrate the application of these rules, let it be required to

design a boiler shell 48 in. in diameter to carry a steam pressure of

125 lb./in.
2 with a double-riveted, double-strapped butt joint.

By the above rule for thickness of shell plates we have

125 X -V-h =-2 = .3, say -A m.
e 0,000 x 82

5

The diameter of rivets is then

d =1.3 = .73, say f in.

To determine the pitch of the rivets, the strength of the plate for a

section of width c on a line through the rivet holes is

c- 5 X 60,000,
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and the strength of the rivets in shear for a strip of this width is

4 x-q = 7r~x 40,000.
4

J

ID

Equating these two results and solving for c, we have

(
c -!)i

5
6
x 60,000 = 71-^ x 40,000,

whence
c = 4. 5 in.

As a check on the correctness of our assumptions the efficiency of

the joint is found to be

-

c 4.5

For bridge and structural work the following^ enr^Fical rules are

representative of American practice.*

The pitch or distance from center to center of rivets should not

be less than 3 diameters of the rivet. In bridge work the pitch should

not exceed 6 inches, or 1 6 times the thickness of the thinnest outside

plates except in special cases hereafter noted. In the flanges of beams

and girders, where plates more than 12 inches wide are used, an extra

line of rivets with a pitch not greater than 9 inches should be driven

along each edge to draw the plates together.

At the ends of compression members the pitch should not exceed 4

diameters of the rivet for a length equal to twice the width or diameter

of the member.

In the flanges of girders and chords carrying floors, the pitch should

not exceed 4 inches.

For plates in compression the pitch in the direction of the line of

stress should not exceed 16 times the thickness of the plate, and

the pitch in a direction at right angles to the line of stress should

not exceed 32 times the thickness, except for cover plates of top

chords and end posts in which the pitch should not exceed 40 times

their thickness.

The distance between the edge of any piece and the center of the

rivet hole should not be less than 1J inches for |-inch and |-inch

rivets except in bars less than 2J- inches wide
;
when practicable it

* Given by Cambria Steel Co.
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should, for all sizes, be at least 2 diameters of the rivet and should

not exceed 8 times the thickness of the plate.

EXERCISES ON CHAPTER VII

Problem 235. The end plates of a boiler shell are curved out to a radius of 5 ft.

If the plates are | in. thick, find the tensile stress due to a steam pressure of

175 lb./in.
2

Problem 236. If the thickness of the end plates in Problem 235 is changed to

\ in., the steam pressure being the same, to what radius should they be curved

in order that the tensile stress in them shall remain the same ?

Problem 237. In a double-riveted lap joint the plates are \ in. thick, rivets

| in. in diameter, and pitch 3 in. Calculate the efficiency of the joint.

Problem 238. A boiler shell is to be 4 ft. in diameter, with double-riveted lap

joints, and is to carry a steam pressure of 90 lb./in.
2 with a factor of safety of 5.

Determine the thickness of shell plates, and diameter and pitch of rivets. Also

calculate the efficiency of the joint.

Problem 239. A cylindrical standpipe is 75 ft. high and 25 ft. inside diameter,

with double-riveted, two-strap butt joints. Determine the required thickness of

plates near the bottom for a factor of safety of 5, and also the diameter and pitch

of rivets.

Problem 240. The cylinder of an hydraulic press is 12 in. in diameter. Find

its thickness to stand a pressure of 1500 lb./in.
2

,
if it is made of cast iron and the

factor of safety is 10.

Problem 241. A high-pressure, cast-iron water main is 4 in. inside diameter and

carries a pressure of 800 lb./in.
2 Find its thickness for a factor of safety of 15.

Problem 242. The water chamber of a fire engine has a spherical top 18 in.

in diameter, and carries a pressure of 250 lb./in.
2 It is made of No. 7 B. and S.

gauge copper, which is reduced in manufacture to a thickness of about .1 in.

Determine the factor of safety.

Problem 243. A cast-iron ring 3 in. thick and 8 in. wide is forced on a steel

shaft 10 in. in diameter. Find the stresses in ring and shaft, the pressure required

to force the ring on the shaft, and the torsional resistance of the fit.

NOTE. Since the ring in this case is relatively thin, assume an allowance of about

half the amount given by Moore's formula. Then having given Dz = 10 in., Ds = 13 in.,

and computed the allowance K, we have also D\ = Di K, and inserting these values

in the formulas of Article 121, the required quantities may be found, as explained in

Problem 234.

Problem 244. The following data are taken from Stewart's experiments on the

collapse of thin tubes under external pressure, the tubes used for experiment

being lap-welded, steel boiler flues. Compute the collapsing pressure from the

rational formula for thin tubes, given in Article 120, for both the average thickness

and least thickness, and note that these two results lie on opposite sides of the

value obtained directly by experiment.
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OUTSIDE DIAMETER IN INCHES
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Problem 247. A cylindrical standpipe 80 ft. high and 20 ft. inside diameter is

made of ^-in. plates at the base with longitudinal, double-riveted, two-strap butt

joints, connected by 1-in. rivets with a pitch of 3 in. Compute the factor of safety

when the pipe is full of water.

Problem 248. In a single-riveted lap joint calculate the pitch of the rivets and

the distance from the center of the rivets to the edge of the plate under the assump-
tion that the diameter of the rivet is twice as great as the thickness of the plate.

Solution. Consider a strip of width equal to the rivet pitch, i.e. a strip contain-

ing one rivet. Let q denote the shearing strength of the rivet, and p the tensile of

the plate. Then if h denotes the thickness of the plate, in order that the shearing

strength of the rivet may be equal to the tensile strength of the plate along the line

of rivet holes, we must have

TTd2

q = (c-d)hp.

Since the rivet is usually of better material than the plate, we may assume that

the ultimate shearing strength of the rivet is equal to the ultimate tensile strength

of the plate, i.e. assume that p = q. Under this assumption the above relation

becomes

whence
c = 2.5d, approximately.

Similarly, in order that the joint may be equally secure against shearing off the

rivet and pulling it out of the plate, i.e. shearing the plate in front of the rivet,

the condition is

where a denotes the "margin," or distance from center of rivets to edge of plate,
'

4
and q' denotes the ultimate shearing strength of the plate. Assuming that q' = -q

d 5
and h = -

,
and solving the resulting expression for a, we have



CHAPTER VIII

FLAT PLATES

123. Theory of flat plates. The analysis of stress in flat plates is,

at present, the most unsatisfactory part of the strength of materials.

Although flat plates are of frequent occurrence in engineering con-

structions, as, for example, in manhole covers, cylinder ends, floor

panels, etc., no general theory of such plates has as yet been given.

Each form of plate is treated by a special method, which, in most

cases, is based upon an arbitrary assumption as to the dangerous

section, or the reactions of the supports, and therefore leads to

questionable results.

Although the present theory of flat plates is plainly inadequate,

it is, nevertheless, of value in pointing out the conditions to which

such plates are subject, and furnishing a rational basis for the esti-

mation of their strength. The formulas derived in the following

paragraphs, if used in this way, with a clear understanding of their

approximate nature, will be found to be invaluable in designing, or

determining the strength of flat plates.

The following has come to be the standard method of treatment,

and is chiefly due to Bach.*

124. Maximum stress in homogeneous circular plate under uni-

form load. Consider a flat, circular plate of homogeneous material,

which bears a uniform load of amount w per unit of area, and suppose

that the edge of the plate rests freely on a circular rim slightly

smaller than the plate, every point of the rim being maintained at

the same level. The strain in this case is greater than if the plate

was fixed at the edges, and, consequently, the formula deduced will

give the maximum stress in all cases.

* For an approximate method of solution see article by S. E. Slocum entitled "The

Strength of Flat Plates, with an Application to Concrete-Steel Floor Panels," Engineer-

ing News, July 7, 1904.

179
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Now suppose a diametral section of the plate taken, and regard

either half of the plate as a cantilever (Fig. 118). Then if T is the

radius of the plate, the total load on this semi-

vrr
2

circle is - w, and its resultant is applied at

the center of gravity of the semicircle, which is

4r
at a distance of from AB. The moment of

3?r

this resultant about the support AB is therefore

ITf* 4 IT 2i "7* iJ}

-W- > or -

Similarly, the resultant
2 O 7T O

of the supporting forces at the edge of the

plate is of amount - -w, and is applied at the center of gravity of

2r
the semi-circumference, which is at a distance of - - from AB. The

7T

FIG. 118

Trr
2

moment of this resultant about AB is therefore
TTT

ZW 2 r
> or r w.

7T

Hence the total external moment M at the support is

Now assume that the stress at any point of the plate is independ-

ent of the distance of this point from the center. Under this arbi-

trary assumption the stress in the plate is given by the fundamental

formula in the theory of beams, namely,

Me
P--J-

If the thickness of the plate is denoted by h, then, since the breadth

of the section is ~b = 2 r,

Consequently,

l>li* rhs h=
To'

= '""' and e =
o'JLZ D

Me-

whence

(83)



FLAT PLATES 181

Foppl has shown that the arbitrary assumption made in deriving

this formula can be avoided, and the same result obtained, by a more

rigorous analysis than the preceding; and Bach has verified the

formula experimentally. Formula (83) is therefore well established

both theoretically and practically.

Problem 249. The cylinder of a locomotive is 20 in. internal diameter. What
must be the thickness of the steel end plate if it is required to withstand a pres-

sure of 160 lb./in.
2 with a factor of safety of 6 ?

Problem 250. A circular cast-iron valve gate i in. thick closes an opening 6 in.

in diameter. If the pressure against the gate is due to a water head of 150 ft.,

what is the maximum stress in the gate ?

125. Maximum stress in homogeneous circular plate under con-

centrated load. Consider a flat, circular plate of homogeneous mate-

rial, and suppose that it bears a single concentrated load P which is

distributed over a small circle of radius r
Q
concentric with the plate.

Taking a section through the center of the plate and regarding either

half as a cantilever, as in the preceding article, the total rim pres-
P 2r

sure is
,
and it is applied at a distance of from the center. The

p 7T

total load on the semicircle of radius r is > and it is applied at a dis-

4r
tance of - from the section. Therefore the total external moment M

3-7T

at the section is

^=^_2Pn = pr /
1 _2nY

7T 3-7T 7T \ 3r

Assuming that the stress is uniformly distributed throughout the plate,

the stress due to the external moment M is given by the formula

Me
P = -j'

If the thickness of the plate is denoted by k, then

rhs h/=_ and , = _.

Therefore
f

Me ~i

whence
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If r = 0, that is to say, if the load is assumed to be concentrated

at a single point at the center of the plate, formula (84) becomes

(85) P = _

TTh2

If the load is uniformly distributed over the entire plate, then

= r and P = Trr*w, where w is the load per unit of area. In this

case formula (84) becomes

o

which agrees with the result of the preceding article.

Problem 251. Show that the maximum concentrated load which can be borne

by a circular plate is independent of the radius of the plate.

126. Dangerous section of elliptical plate. Consider a homo-

geneous elliptical plate of semi-axes a and b and thickness h, and

G suppose that an axial cross is cut out

of the plate, composed of two strips

AB and CD, each of unit width, and

intersecting in the center of the plate,

as shown in Fig. 119.

Now suppose that a single concen-

trated load acts at the intersection

of the cross and is distributed to the

supports in such a way that the two

beams AB and CD each deflect the same amount at the center. Since

AB is of length 2 a, from Article 67, Problem 119, the deflection

P C2 a}
s

at the center of AB is D
l

- ' From symmetry, the reactions

at A and B are equal. Therefore, if each of these reactions is denoted

by R19 2 R^ = P, and, consequently,

3 JET

Similarly, if R
z
denotes the equal reactions at C and D, the deflec

tion !> of CD at its center is
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If the plate remains intact, the two strips AB and CD must deflect

the same amount at the center. Therefore D^ = D2 , and hence

1-5-
For the beam AB of length 2 a the maximum external moment is

^3 j

R^a. Also, since AB is assumed to be of unit width, /= and e = -

Hence the maximum stress p
r

in AB is

r
Me , a

P'-.--.^ Bl -.

Similarly, the maximum stress p
rf in CD is

*"-'*
Consequently, /

or, since from equation (86) ^
= -

JU/2

y

By hypothesis, a > &. Therefore p" >y ;
that is to say, the maxi-

mum stress occurs in the strip CD, or in the direction of the shorter

axis of the ellipse. In an elliptical plate, therefore, rupture may be

expected to occur along a line parallel to the major axis, a result

which has been confirmed by experiment.

127. Maximum stress in homogeneous elliptical plate under

uniform load. The method of finding the maximum stress in an

elliptical plate is to consider the two limiting forms of an ellipse,

namely, a circle and a strip of infinite length, and express a continu-

ous relation between the stresses for these two limiting forms. The

method is therefore similar to that used in Article 88 in obtaining

the modified form of Euler's column formula.

Consider first an indefinitely long strip with parallel sides, sup-

ported at the edges and bearing a uniform load of amount w per unit

of area. Let the width of the strip be denoted by 2 b, and its thickness
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by h. Then, if this strip is cut into cross strips of unit width, each

of these cross strips can be regarded as an independent beam, the

load on one of these unit cross strips being 2 ~bw, and the maximum
(2 5)

2 w
moment at the center being

- '---
Consequently, the maximum

8

stress in the cross strips, and therefore in the original strip, is

4&V h

,-s-V"fr
12

'

In the preceding article it was shown that the maximum stress in

an elliptical plate occurs in the direction of the minor axis. There-

fore equation (87) gives the limiting value which the stress in an

elliptical plate approaches as the ellipse becomes more and more

elongated.

For a circular plate of radius b and thickness h the maximum
stress was found to be

(S8) ,-

Comparing equations (87) and (88), it is evident that the maximum
stress in an elliptical plate is given, in general, by the formula

where & is a constant which lies between 1 and 3. Thus, for - =
1,

~b

a

that is, for a circle, k = 1
; whereas, if - 0, that is, for an infinitely

CL

long ellipse, k = 3. The constant k may therefore be assumed to

have the value

&=3-2->
a

which reduces to the values 1 and 3 for the limiting cases, and in

other cases has an intermediate value depending on the form of the

plate. Consequently,
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which is the required formula for the maximum stress p in a homo-

geneous elliptical plate of thickness h and semi-axes a and &.

Problem 252. A cast-iron manhole cover 1 in. thick is elliptical in form, and
covers an elliptical opening 3 ft. long and 18 in. wide. How great a uniform pres-
sure will it stand ?

128. Maximum stress in homogeneous square plate under uniform

load. In investigating the strength of square plates the method of

taking a section through the center of the plate and regarding the

portion of the plate on one side of this section as a cantilever is used,

but experiment is relied upon to determine the position of the dan-

gerous section. From numerous experiments on flat plates, Bach

has found that homogeneous square plates under uniform load always
break along a diagonal.*

Consider a homogeneous square plate of thickness h and side

2 a, which bears a uniform load w per unit of area. Suppose that

a diagonal section of this plate is taken,

and consider either half as a cantilever,

as shown in Fig. 120. Then the total load

on the plate is 4wa2
,
and the reaction of

the support under each edge is wa\ If d

denotes the length of the diagonal AC, the

resultant pressure on each edge of the plate

is applied at a distance from AC, and

therefore the moment of these resultants
FIG. 120

about AC is 2 (wa
2

)
-

> or The total load on the triangle ABC

is 2 wa2
, and its resultant is applied at the center of gravity of the

triangle, which is at a distance of - from AC. Therefore the mo-

7 2>-7

ment of the load about AC is (2 wa
2

)
-

> or ^ - Therefore the total
6 3

external moment M at the section AC is

wa2d wa2d wa2d

* Bach, Elasticitat u. Festigkeitslehre, 3d ed., p. 561.
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Hence the maximum stress in the plate is

h

2

from which

(90)

D

The maximum stress in a square plate of side 2 a is therefore the

same as in a circular plate of diameter 2 a.

Problem 253. What must be the thickness of a wrought-iron plate covering an

opening 4 ft. square to carry a load of 200 lb./ft.
2 with a factor of safety of 5 ?

129. Maximum stress in homogeneous rectangular plate under

uniform load. In the case of rectangular plates experiment does

Sa not indicate so clearly the posi-

tion of the dangerous section as it

does for square plates. It will be

assumed in what follows, however,

that the maximum stress occurs

along a diagonal of the rectangle.

This assumption is at least ap-

proximately correct if the length

of the rectangle does not exceed

two or three times its breadth.

Let the sides of the rectangle

be denoted by 2 a and 2 b, and

the thickness of the plate by h

(Fig. 121). Also let d denote the

length of the diagonal AC, and c

the altitude of the triangle ABC. Now suppose that a diagonal section

AC of the plate is taken, and consider the half plate ABC as a canti-

lever, as shown in Fig. 121. If w denotes the unit load, the total

load on the plate is 4 abw, and consequently the resultant of the

reactions of the supports along AB and BC is of amount 2 abw, and
/>

is applied at a distance from A C. Therefore the moment of the sup-

porting force about AC is abwc. Also, the total load on the triangle

FIG. 121
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ABC is 2 abw, and it is applied at the center of gravity of the triangle,

which is at a distance of - from A C. Consequently, the total moment
o

of the load about A C is --- Therefore the total external moment
M at the section A C is

2 abwc abwcM abwc - = -
>

o o

and the maximum stress in the plate is

abwc li

_Me__ 3
'

2 _ 2 wale
p ''

i
''

dtf ~dhT
12

or, since cd = 4 ab,

which gives the required maximum stress.

For a square plate a = b and c = a V2, and formula (91) reduces

to formula (90) for square plates, obtained in the preceding article.

Problem 254. A wrought-iron trapdoor is 5 ft. long, 3 ft. wide, and f in. thick.

How great a uniform load will it bear ?

130. Non-homogeneous plates ; concrete-steel floor panels. The

formulas derived in the preceding articles apply only to flat plates of

homogeneous material. If a plate is composed of non-homogeneous

material, such as reenforced concrete, the maximum stress is given by
the formula -

,

where /' is the moment of inertia of the equivalent homogeneous
section obtained from the non-homogeneous section as explained in

Article 48, and e' is the distance of the extreme fiber of this equivalent

homogeneous section from its neutral axis.

Thus, from Article 124, the external moment M on half of a uni-

*7* ijf)

formly loaded circular plate is M = > and, consequently, the maxi-
o

mum stress in a uniformly loaded, non-homogeneous, circular plate is

given by the formula
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where I1 and e
f refer to the equivalent homogeneous section as

explained above, and this section is taken through the center of

the plate.

Similarly, from Article 128, the maximum stress in a uniformly

loaded, non-homogeneous, square plate of side 2 a is given by the

formula

/no\
(93) ,

and, from Article 129, the maximum stress in a uniformly loaded, non-

homogeneous, rectangular plate of sides 2 a and 2 I by the formula

abwce'
(94) p =

31'

in which e
r and /' refer to the equivalent homogeneous section obtained

from a diagonal section of the plate.

Problem 255. A concrete-steel floor panel is 18 ft. long, 15 ft. wide, and 4 in.

thick, and is reenforced by square wrought-iron rods 1 in. thick, placed of an

inch from the bottom of the slab and spaced 1 ft. apart. Find the maximum stress

in the panel under a total live and dead load of 150 lb./ft.
2

.

NOTE. Take a diagonal section of the panel and calculate the equivalent homogeneous
section corresponding to it. Then find the position of the neutral axis of this equivalent

homogeneous section, and its moment of inertia about this neutral axis, as explained in

Article 48. The maximum stress can then be obtained from formula (94).

Problem 256. Design a floor panel 14 ft. square, to be made of reenforced

concrete and to sustain a total uniform load of 120 lb./ft.
a with a factor of safety

of 4.

EXERCISES ON CHAPTER VHI

Problem 257. The steel diaphragm separating two expansion chambers of a

steam turbine is subjected to a pressure of 150 lb./in.
2 on one side and 801b./in.

2

on the other. Find the required thickness for a factor of safety of 10.

Problem 258. The cylinder of an hydraulic press is made of cast steel, 10 in.

inside diameter, with a flat end of the same thickness as the walls of the cylinder.

Find the required thickness for a factor of safety of 20. Also find how much larger

the factor of safety would be if the end was made hemispherical instead of flat.

Problem 259. The cylinder of a steam engine is 16 in. inside diameter and

carries a steam pressure of 125 lb./in.
2 If the cylinder head is mild steel, find its

thickness for a factor of safety of 10.

Problem 260. A cast-iron valve gate 10 in. in diameter is under a pressure

head of 200 ft. Find its thickness for a factor of safety of 15.
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Problem 261. A cast-iron elliptical manhole cover is 18 in. x 24 in. in size and is

designed to carry a concentrated load of 1000 Ib. If the cover is ribbed, how thick

must it be for a factor of safety of 20, assuming that the ribs double its strength ?

Problem 262. Thurston's rule for the thickness of cylinder heads for steam

engines is

h = .00035 wD,

where h = thickness of head in inches,

1} = inside diameter of cylinder in inches,

w = pressure in lb./in.
2

Compare this formula with Bach's, assuming the material to be wrought iron, and

using the data of Problem 259.

Problem 263. Show that Thurston's rule for thickness of cylinder head, given
in Problem 262, makes thickness of head =11 times thickness of walls.

Problem 264. Nichols's rule for the proper thickness of unbraced flat wrought-
iron boiler heads is

_ Fw

"Top'

where h = thickness of head in inches,

jP area of head in square inches,

w = pressure per square inch,

44,800 ult. strength in tension
p = working stress =

8 factor of safety

Compare this empirical rule with Bach's formula, using the data of Problem 259

and assuming the material to be wrought iron.

Problem 265. Nichols's rule for the collapsing pressure of unbraced flat wrought-
iron boiler heads is

_ 10 hut

where w = collapsing pressure in lb./in.
2

,

h = thickness of head in inches,

ut
= ultimate tensile strength in lb./in.

2
,

F area of head in square inches.

Show that Nichols's two formulas are identical and that therefore they cannot be

rational.

Problem 266. The following data are taken from Nichols's experiments on flat

wrought-iron circular plates.

DIAMETER
IN.

34.6

34.5

28.5

26.5

Using this data, compare Bach's and Grashof's rational formulas with Nichols's

and Thurston's empirical formulas, as given below:

THICKNESS
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Circular plate, supported at edge and uniformly loaded.

Bach,
P

Grashof
,
h== .4564 ,

\ Qp \p

Nichols, ^=
l̂Op

Thurston, A = .00035 w>Z>,

where /i = thickness of head in inches,

D = diameter of head in inches = 2 r,

w = pressure in lb./in.
2

,

p = working stress in lb./in.
2

,

F = area of head in square inches =

Note that the Nichols and Thurston formulas apply only to wrought iron.



CHAPTER IX

CURVED PIECES: HOOKS, LINKS, AND SPRINGS

131. Erroneous analysis of hooks and links. In calculating the

strength of a curved piece whose axis is a plane curve, such as a hook

or a link of a chain, many engineers are accustomed to assume that

the distribution of stress is the same as in a straight beam subjected

to an equal bending moment and axial load. For example, in calcu-

lating the strength of a hook, such as shown in Fig. 122, the practice

has been to take a section AB where the

bending moment is a maximum, and cal-

culate the unit stress p on AB by the

formula p (pd)g
P = hF I

where the first term denotes the direct

stress on the section AB of area F, and

the second term represents the bending

stress due to a moment Pd calculated

from the formula for straight beams.

The bending formula for straight

beams, however, does not apply to curved

pieces, as will be shown in what follows.

Moreover, experiment has conclusively shown that a curved piece

breaks at the point of sharpest curvature, whereas the above formula

takes no account whatever of the curvature. The above formula is

therefore not even approximately correct, and is cited as a popular

error against which the student is warned.

132. Bending strain in curved piece. Consider a curved piece

which is subjected to pure bending strain, and assume that the axis

of the piece is a plane curve and also that the radius of curvature is

not very large as compared with the thickness of the piece. Hooke's

law and Bernoulli's assumption will be taken as the starting point

191

FIG. 122
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for the analysis of stress, as in the theory of straight beams
;
that is

to say, it will be assumed that the stress is proportional to the

deformation produced, and that any plane section remains identical

with itself during the deformation.

Since the fibers on the convex side are longer than those on the

concave side, it will take less stress to deform them an equal amount.

Therefore the neutral axis does not pass through the center of gravity

G of the section, but through some other point D, below G, as shown

in Fig. 123. For if the neutral axis passed through G, the total

deformation above and below

G would be of equal amount,

and therefore the total stress

above G would be less than

that below G, since the fibers

above G are longer than those

below. This shifting of the

neutral axis constitutes the

fundamental difference be-

tween the theory of straight

and curved pieces.

Now let the length of any

fiber, such as MN in Fig. 123,

be denoted by Z, and the distance of this fiber from a gravity axis GZ

by y. Also, let p denote the radius of curvature OG of the piece, j3

the angle between two plane sections, and a the angle of deformation

of a plane section. Then

1 = /3>MO = (OG + GN)/3=(p + y)/3t

and the deformation dl of the fiber MN is

dl = NN' = a ND =
(y + d) a,

where d denotes the distance GD between the neutral axis and the

gravity axis. From Hooke's law,

v Jit

_ Edl _ E(y + d)a
~~r (o-

whence

Let =
Jc, where & is a constant. Then this expression for p reduces to

P



HOOKS, LINKS, AND SPRINGS 193

(95) p^Ek^t+A.
y + p

Under the assumption of pure bending strain the shear is zero

and the normal stresses form a couple. Therefore the algebraic sum
of the normal stresses is zero

;
that is to say,

pdF = 0,

or, substituting the value of p from equation (95),

y + p

Since k and E are constants and not zero, the integral must be zero.

Therefore, separating the integral into parts,

y + p
whence

r

OB) d=- J y+p
dF
+ P

which gives the distance of the neutral axis below the center of

gravity of the section.

Now let M denote the external bending moment acting on any

given section of area F, dF an infinitesimal area taken anywhere in

this section, p the stress acting on it, and y its distance from the

gravity axis GZ. Then

or, substituting the value of p from equation (95),

y

consequently
k =

y + p
and hence
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which is the required formula for calculating the bending stress at

any point of a curved piece.

133. Simplification of formula for unit stress. In formulas (96)

and (97), derived in the preceding article, the integrals involved

make the formulas difficult of application. The following geometrical

transformation, which is due to Resal,* greatly simplifies the formulas

and their application.

The first step is a geometrical transformation of the boundary of

the given cross section. Consider a symmetrical cross section, for

example the circle shown in Fig. 124, and let OF be an axis of

symmetry passing through the center

of curvature C of the section, and OZ
a gravity axis perpendicular to OY.

Now suppose radii drawn from C to

each point M in the boundary of the

cross section. From H, the point of

intersection of CM with the gravity

axis OZ, erect a perpendicular to OZ,

and from M draw a perpendicular

to OY. Then these two perpendicu-

lars will intersect in a point of the

transformed boundary, as shown in

Fig. 124.

It will now be proved (1) that the

distance of the center of gravity G
of the transformed section from the

center of gravity of the original section is the value of d given by
formula (96), and (2) that the moment of inertia of the transformed

section is the integral which occurs in formula (97).

In Fig. 124 the distance NM' is the ^-coordinate of the point M '

let it be denoted by z
f
. Then

NM' = z' = OH = MN = z
CN p + y

The distance d' of the center of gravity G of the transformed

Resistance des Mate'riaux, pp. 385 et seq.
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section below the center o'f gravity of the original section is

zy
-

dy

Cz
'dy Cz-f

J J p + y
dy

Dividing out the constant p and replacing the element of area zdy

by dF, this expression for d' becomes

y + p

which is identical with the value of d given by formula (96) above.

Consequently, the neutral axis of the original cross section coincides

with the gravity axis of the transformed section.

Now let the moment of inertia of the transformed section be

denoted by I'. Then

in which y' is measured from the gravity axis of the transformed

section, that is, from a line through G parallel to OZ
;
and dF' denotes

an element of area of the transformed section
;
whence dF ! =

zdy'.

Therefore, since

y'
= y + d, z' = z -

> and dy' = dy,
p + y

the expression for /' becomes

or, if the element of area zdy is denoted by dF,

!< = p
r(y + ^dF
J p + y

This integral, however, is the one which occurs in formula (97).

Consequently, if its value from the above equation is substituted in

(97), the expression for the unit stress p simplifies into
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For an ordinary beam without initial curvature, d = 0, I r = J, and

p = oo, in which case, since = 1- y

y+p p y

My

, the formula reduces to

the ordinary beam formula p = -

To avoid the confusion which may arise from positive and negative

values of y in applying formula (98), note that

y + d distance of fiber from neutral axis

y + p distance of same fiber from center of curvature

This quotient is then an abstract number, and its substitution in

formula (98) gives the numerical value

-I of the stress p without regard to sign.

The following problem illustrates the

application of the formula.

Problem 267. The wrought-iron crane hook,
shown in Fig. 125, is designed to support a load

of ten tons. Find the maximum stress in the

hook under this load, and thence determine the

factor of safety.

Solution. Let a cross section OCF of the hook

be taken at the position of maximum moment,
as shown in the shaded projection in Fig. 125.

In Fig. 126 let the curve numbered 1 repre-

sent this projection. The gravity axis DF of

this section, perpendicular to the axis of sym-

metry COF, is first determined, which may be

done by the graphical method explained in

Article 47, or otherwise.* Curve 1 is then trans-

formed into curve 2 by the method explained in

Article 133, the light construction lines on the

left of OF showing how this is accomplished.
The moment of inertia I' of curve 2 is then

found graphically by the method explained in Article 47. This method consists

in first transforming curve 2 into curves 3 and 4, as there explained, then measuring
the areas between OF and curves 3 and 4 by means of a planimeter, and finally sub-

stituting the areas so found in the formulas for the moment of inertia I' of curve

2 and the distance c of its center of gravity from AB, given in Article 47.

In the present case we have then the following numerical values for substitution :

p=C# = 4.4in., F=7.9in. 2
,

CO = 2.2 in., EO' = 2.8 in.,

M= 20,000 x 4.4 = 88,000 in. Ib.

* A simple method of determining a gravity axis sufficiently accurate for ordinary pur-

poses consists in cutting the section out of cardboard and balancing it on a knife edge.

FIG. 125
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Consequently, at the outer fiber O' we have

88,000 x 4.4 2.8 + 0.4
x = 1 2,200 lb./ in. 2

compression; and at the inner fiber 0,P =

p =

14.1

88,000 x

_
= - 22,470 lb./i,,., tension.

Moreover, the direct tensile stress on the cross section is
20,000

7.9
= 2530 lb./in.'

Hence the actual total stress on the outer fiber O' is 12,200 2530 = UG70 lb./in.
s

compression, corresponding to

a factor of safety of about 5;

and on the inner fiber is

22,470 + 2530 = 25,000 lb./in.
2

tension, corresponding to a fac-

tor of safety of 2.

Problem 268. By the for-

mula given in Article 131, cal-

culate the maximum bending
stress and the maximum total

stress on the hook shown in

Fig. 125, and compare the re-

sults with those of the preced-

ing problem.

Problem 269. The danger-
ous section of a hook similar to

that shown in Fig. 125 has for its

dimensions b = 2| in., h = Q in.,

ri = If in., r2 = fin. (Fig. 127),

and OC= 2| in. (Fig. 126). Using
a factor of safety of 4, find the

safe load for the hook.

For all practical purposes the

theory of stress in curved pieces

here presented is undoubtedly
the most satisfactory theory

which has yet been developed.

A more rigorous analysis of the

subject, however, introducing
Poisson's ratio of lateral def-

ormation, has been given by
Andrews and Pearson in their monograph on crane and coupling hooks.* Although
this discussion is extremely valuable , from a theoretical standpoint, it has been

shown that its results exhibit but a slight refinement over the simpler discussion

given above, a difference considerably less than the variation which may be ex-

pected in the physical properties of materials used commercially.! By reason of

* Karl Pearson and E. H. Andrews, "Theory in Crane and Coupling Hooks," etc.,

Tech. Series I; J)rapers Co. Research Memoirs [Dulau and Co., 37 Soho Square, London,W.],
See also Am. Much., Vol. XXXII, Oct. 7, 1909, pp. 615-619; Dec. 16, 1909, pp. 1065-1067.

t Am. Much., Vol. XXXIII, Nov. 24, 1910, pp. 954-955.
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this uncertainty as to the exact values of the physical constants involved, the

simpler method is of more value to the designer. The enormous amount of labor

and liability to error involved in the application of the Pearson-Andrews formula

is, in fact, prohibitive where speed and accuracy are an object.

* 134. Curved piece of rectangular cross section. If the cross

section of a curved piece is rectangular, the integrals in formulas (96)

and (97), Article 132, can be easily evaluated. These formulas may
therefore be used for calculating the strength of the piece in prefer-

ence to the graphical method explained in the preceding article.

Let the cross section of the piece be a rec-

tangle of breadth b and depth h, and let p

denote the radius of curvature of the 1

piece

at the section under consideration. From

formula (96), the distance of the neutral axis

of the section from the mean fiber, or gravity

axis, is

J I

y + p

where y denotes the distance of the infinitesi-

mal area dF from the gravity axis. In the

present case dF= Idy ;
hence

n n

> C
2

ydy r*

I , y -\- n I
,is h u '

i is h

FIG. 127
f*

dy r\
I 7 H -h D / i

'

*/ h,y ' r i/ hi

dy

By* division,
- = 1 Consequently, the numerator of the

y+p y+p
above fraction becomes

r
J

* For a brief course the remainder of this chapter may be omitted.
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Similarly, the denominator becomes

19!)

Consequently,

8

dy

y + p

d=-

+ p)
2 p h

"2p-h
h

which may be written

(99) d = p
-

>e

2p-h

h

h

2p-h
From formula (97), Article 132, the unit stress^? at any point in the

cross section, distant y from the mean fiber, is given by the equation

M(y + d)

(y + p)
(y dF

Replacing dF by ~bdy, and separating the integral in the denominator

into partial integrals by means of division, this integral becomes

-

Substituting for d its value from equation (99), this expression

finally reduces to

y + p
p-

2/o hj

= bhd.
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Hence the expression for p becomes

(100)

The stresses on the extreme fibers are the values of p for y =
Hence

(101)

FIG. 128

(7*, 2/9) bhd

Note that the stress on the inside fiber is always negative, in con-

sequence of which the sign of M should be

negative if it tends to decrease the radius of

curvature, and vice versa.

Problem 270. A boat's davits are composed of

two wrought-iron bars 2| in. square, bent to a radius

of 2 ft., as shown in Fig. 128. If the boat weighs
500 Ib. and is hung 3} ft. from the vertical axis of

the davits, find the maximum stress in the davits

and the factor of -safety.

135. Effect of sharp curvature on bending

strength. Consider a sharply curved pris-

matic piece which is subjected to bending strain. From the above

discussion, it is known that for a section taken in the neighborhood of

the bend, the neutral axis does not coincide with the gravity axis but

approaches the center of curvature. The neutral

fiber is therefore separated from the mean fiber,

or axis of the piece, and takes some such posi-

tion as that shown by the broken line in Fig. 129. \

Consequently the inner fiber through A must \ \\
endure a far greater stress than that deduced

from formulas for the straight portion. Engi-

neers and constructors have learned by experi-

ence that sharp curvature produces weakness

of this kind, and that it is necessary to reenforce a piece at a bend

either by increasing its diameter or by adding a brace.

As an illustration of the effect of sharp curvature on bending

strength, suppose that a bar of rectangular cross section is bent into a

right angle, as shown in Fig. 130. In this case the center of curvature

FIG. 129
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of the mean fiber BC is at A. Therefore, if h denotes the thickness

of the piece, the radius of curvature of BC is

p = -
Consequently,

2 + h 2k

and hence formula (99) becomes

h
d = p = -.

FIG. 130
Therefore the neutral fiber passes through the ver-

tex of the angle A, and consequently a piece of

this kind can offer no resistance to bending. In other words, if a

piece is bent exactly at right angles on itself, the slightest bending

strain must produce incipient rupture.

This example is useful, then, in pointing out the danger of sharp

curvature and showing how rapidly the strength decreases with the

radius of curvature.

136. Maximum moment in circular piece. Consider a prismatic

piece with a circular axis, such as a ring or a section of pipe,

and suppose that it is

subjected to two equal

and opposite forces

P, either of tension

or compression, act-

ing along a diameter

as shown in Fig. 131.

Draw a second diam-

eter MN at right an-

gles to the direction

in which the forces P
act. Since these two

diameters divide the

figure into four symmetrical parts, it is only necessary to consider one

of these parts, say the upper left-hand quadrant. The forces acting on

any section of this quadrant consist of a single force and a moment.
p

On the base CD of the quadrant this single force is of amount >

2

FIG. 131
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and the unknown moment will be denoted by Jf . On any other sec-

tion AB the bending moment M and single force P' are respectively

M=M*+j{p -pcaa/3),

(102) p
P' = - cos A

in which p is the radius of the mean fiber and /? is the angle which

the plane of the section AB makes with the base CD.

Now, no matter whether the section is flattened or elongated by
the strain, from the symmetry of the figure the diametral sections

MN and PP will always remain at right angles to one another.

Therefore the total angular deformation A/3 for the quadrant under

consideration must be zero
;
that is to say,

But, from Article 67,

Consequently,

MI

= 0.
El

Inserting in this expression the value of M obtained above,

or

pd/3=0,

7T

Jo \

whence
TT A

which is the maximum negative moment.

From formula (102), the maximum positive moment must occur

when cos ft = 0, that is, when /3 = > or at top and bottom. Therefore

^naX
= ^ = =-318 Pp.

7T
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The maximum moment, therefore, occurs at the points of application
of the forces. From formula (102), the direct stress at these points
is zero.

Having determined the position and amount of the maximum

bending- moment, the maximum bending stress can be calculated by
the graphical method explained in Article 133, or, if the piece is rec-

tangular in section, by formulas (99) and (100) or (101) in Article 134.

Problem 271. A wrought-iron anchor ring is 6 in. in inside diameter and 2 in. in

sectional diameter. With a factor of safety of 4, find by the graphical method of

Article 133 the maximum pull which the ring can

withstand.

Problem 272. A cast-iron pipe 18 in. in in-

ternal diameter and 1 in. thick is subjected to

a pressure of 150 Ib. /linear foot at the highest

point of the pipe. Find the maximum stress in

the pipe.

HINT. Use formula (101), Article 134.

137. Plane spiral springs. Consider a

plane spiral spring, such as the spring of

a clock or watch. Let P denote the force

tending to wind up the spring, and c the

perpendicular distance of P from the spindle on which the spring is

wound (Fig. 132). Also, let dx denote a small portion of the spring

at any point A distant y from P. Then the moment at A is M= Py ;

and hence, from Article 6 7, the angular deformation dp for the portion

dx is given by the formula

-jo _ Mdx _ Pydx" ~
~&T

~
T?T

'

Jiil M/l

Therefore the total angular deformation of the spring is

FIG. 132

Since the average value of y is c, and the integral of dx is the length

of the spring I, ~
l

I ydx = cl,

Jo
and hence

7
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The resilience W of the spring is, therefore,

If the spring is of rectangular cross section, which is the usual

form for plane spiral springs, the stress can be calculated by formulas

(99) and (101), Article 134.

The formula just obtained for the resilience of a spring is a special

case of a more general formula. Thus consider a portion of a beam of

length AB = I, and letM denote the average bending moment over the

part considered, and (3 the change in slope in passing from A to B. Then

the work done in bending the

portionAB isW= \M(3, or, since

Ml ,, . M2
l

p = ,
this becomes W =

El 2El
\_ In the case of the spring con-

sidered above, the mean value

of the bending moment was

M=Pc.
Furthermore, if p denotes the

greatest stress at the elastic

limit and e the distance at which" it acts from the neutral axis,

then M= > and consequently the resilience of the beam is

r~Lt

FIG. 133

For the resilience of a piece under direct stress, see Article 22.

Problem 273. A steel clock spring | in. wide and ^ in. thick is wound on a

spindle T
3
^ in. in diameter. With a factor of safety of 5, what is the maximum

moment available for running the mechanism ?

Suggestion. The dangerous section occurs at the spindle where the moment is

greatest and the radius least. Therefore, in the present case, p = TV5 in., h = g\ in.,

b = | in. Also, since the ultimate tensile strength of spring steel is about 240,000

lb./in.2, pm&x=
24

'
00 = 48,000 lb./in.

2 d can then be calculated by formula (99),
5

and M by formula (101).
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EXERCISES ON CHAPTER IX

Problem 274. A flat spiral spring is in. broad, -^ in. thick, and 12 ft. long.

What is the maximum torque it can exert on a central spindle if the stress is not

to exceed 60,000 lb./in.
2 ?

Problem 275. The links of a chain are made of f-in. round wrought iron, with

semi-circular ends of radius 1 in. Straight portion of link 1 in. long. Find the

maximum stresses in the link due to a pull

of 1 ton on the chain.

Problem 276. A ring is made from a

round steel rod 1 in. in diameter. The

inside diameter of the ring is 6 in. Find

the maximum stress resulting from a pull

on the ring of f ton.

Problem 277. Calculate the maximum
tensile and compressive stresses on the

cross section of the hydraulic riveter

shown in Fig. 62, page 79.

Problem 278. In Fig. 133 a design is

shown for the cross section of a punch

press frame.* Substitute this cross sec-

tion for that shown in Fig. 62, page 79,

calculate the maximum stresses, and com-

pare with the results of Problem 277.

Problem 279. The following table gives

the dimensions of crane hooks for the

design shown in Fig. 134 for loads from 5 to 50 tons.t Compute the maximum
stresses at the dangerous section in each case and determine the factor of safety.

T

FIG. 134

TONS
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Problem 280. In Fig. 135 a design for the cross section of a crane hook is shown
in which all the dimensions are expressed in terms of a single quantity r. The

values of this constant r for various loads

"~^ are given by the designer as follows :*

, ^ ,
, "I 40-ton hook, r=o.54;

30-ton hook, r = 4.7
;

20-ton hook, r = 3.94
;

10-ton hook, r = 2.76;

5-ton hook, r = 1.95
;

2-ton hook, r = 1.23.

Compare the strength of this design for a given load with that of the design shown

in Fig. 134.

NOTE. Materials like cast iron, which do not conform to Hooke's law, cannot be

subjected to a rigorous stress analysis. For example, the Pearson-Andrews formula is

based on Poisson's ratio, which is one of the most refined elastic properties, and it is

therefore useless to attempt to calculate the stress in a casting by such formulas. More-

over, it has recently been shown by experiment that the initial stresses due to cooling
in an irregular casting, such as a punch or riveter frame, are so great as to upset any
exact calculations of the bending stresses involved. t In these experiments many of the

specimens failed by a vertical crack appearing in the web just back of the inner, or com-

pression, flange, i.e. perpendicular to the section AB in Fig. 62, page 79, a form of failure

which has no apparent relation to the theory of flexure. These experiments were also

valuable in showing the practical necessity of putting a fillet in the corners where the

web joins the inner flange, or increasing the thickness of the web at this point, as shown
in Fig. 133.

In many machine tools the rigidity of the frame is the factor which determines the

design, rather than the strength of the construction. In all such cases empirical meth-
ods based on practical experience are the ones that should be employed.

* Rautenstrauch, Am. Mach., December 16, 1909.

t A. L. Jenkins, "The Strength of Punch and Riveter Frames made of Cast Iron,"
Jour. Am. Soc. Mech. Eng., Vol. XXXII, pp. 311-332.



CHAPTER X

ARCHES AND ARCHED RIBS

I. GRAPHICAL ANALYSIS OF FORCES

138. Composition of forces. In determining the effect which a

given system of forces has upon a body, it is often convenient to

represent the forces by directed lines and calculate the result graphic-

ally. In this method of representation the length of the line denotes

the magnitude of the force laid off to any given scale, and the direc-

tion of the line indicates the direction in which the force acts, or its

line of action.

When the lines of action of a system of forces all pass through
the same point, the forces are said to be concurrent. The simplest

method of dealing with such a system is to find the amount and line

of action of a single force which would have the same effect as the

given system of forces upon the motion of the point at which they
act. This single force is called the resultant of the given system
and its equal and opposite the equilibrant. When each of a system of

forces acting on a body balances the others so that

the body shows no tendency to move, the forces

are said to be in equilibrium, in which case their

resultant must be zero.

The resultant of two forces acting at a point

is found by drawing the forces to scale in both

magnitude and direction, and constructing a

parallelogram upon these two lines as adjacent

sides
;
the diagonal of this parallelogram is then the required resultant

(Fig. 136). This construction can be verified experimentally by fas-

tening a string at two points A and B and suspending a weight R
from it at any point C (Fig. 137). Then if two forces equal in magni-

tude to the tension in AC and BC are laid off parallel to AC and BC
207

FIG. 136
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FIG. 137

respectively, it will be found that their resultant is equal and par-

allel to R, and opposite in direction.

Since the opposite sides of a parallelogram

are equal and parallel, it is more convenient in

finding the resultant of two forces to construct

half the parallelogram. Thus, in the preceding

example, if P
2

is laid off from the end of Pv

R is the closing side of the triangle so formed

(Fig. 138). Such a figure is called a force triangle.

In order to find the resultant of several con-

current forces lying in the same plane, it is

only necessary to comhine two of

them into a single resultant, com-

bine this resultant with a third force, and so on, taking

the forces in order around the point in which they meet.

Thus, in Fig. 139, E l
is the resultant of P

l
and P

2 ;
R

z
is

the resultant of R
l
and P

s ;
R

s
is the resultant of R

z

and P
4 ;

and R is the resultant of R
z
and P

5
. R is there-

fore the resultant of the entire system PI}
P

2 ,
P

3 ,
P

4 ,
P

5
.

In carrying out this construction it is unnecessary to draw the

intermediate resultants

RV R2 , and P3 ,
the final

resultant in any case

being the closing side of

the polygon formed by

placing the forces end

to end in order. Such

a figure is called a force

polygon. From the above

construction it is evi-

dent that the necessary

and sufficient condition

that a system of concur-

rent forces shall be in

equilibrium is that their

force polygon shall close, since in this case their resultant must

be zero.

FIG. 138

FlG ' 139
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The resultant of a system of non-concurrent forces lying in the

same plane, that is to say, forces whose lines of action do not all pass

through the same point, is found by means of a force polygon as

explained above. In this case, however, the closing of the force

polygon is not a sufficient condition for equilibrium, for the given

system may reduce to a pair of equal and opposite forces acting in

parallel directions, called a couple, which would tend to produce rota-

tion of the body on which they act. For non-concurrent forces, there-

fore, the necessary and sufficient conditions for equilibrium are first,

the resultant of the given system must be zero, and second, the sum of

the moments of the forces about

any point must be zero.

Suppose that the force polygon

corresponding to any given system

of forces is projected upon two

perpendicular lines, say a vertical

and a horizontal line. Then since

the sum of the projections upon

any line of all the sides but one

D
F "

c"lc

1)

C'B'D' A'E'

FIG. 140

F'G'
of a polygon is equal to the pro-

jection of this closing side upon
the given line, the sum of the horizontal projections of any system

of forces is equal to the horizontal projection of their resultant, and

the sum of their vertical projections is equal to the vertical projection

of their resultant (Fig. 140).

The conditions for equilibrium of a system of forces lying in the

same plane may then be reduced to the following convenient form.

1. For equilibrium against translation,

I ^y horizontal components = O,

I Vvertical components = O.

2. For equilibrium against rotation,

Vmoments about any point = O.

If the forces are concurrent, rotation cannot occur, and the first

condition alone is sufficient to assure equilibrium. In order that
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a system of non-concurrent forces shall be in equilibrium, how-

ever, both conditions must be

fulfilled.

6 lb. Problem 281. Construct the re-

sultant of the system of concurrent

forces shown in Fig. 141.

Problem 282. Determine
whether or not the system of par-

allel forces shown in Fig. 142 satis-

fies conditions 1 and 2 above.

139. Equilibrium polygon.

The preceding construction for

the force polygon gives a method for calculating the magnitude and

FIG. 141

3 tons

-
4-'

2 tons

3^ tons
2 1 tons

4 tons

FIG. 142

direction of the result-

ant of any given system

of forces, but does not

determine the line of

action of their resultant.

The most convenient 3-tons

way to determine the

line of action of the re-

sultant is to introduce into the given system two equal and opposite
1

forces of arbi-

trary amount
and direction, such

as P' and P" in

Fig. 143 (A).

Since Pf and P"

balance one an-

other, they will not

affect the equilib-

rium of the given

system. This is

obvious from the

force polygon. For

in Fig. 143 (B), let

R denote the resultant of the given system of forces P
l

P
4

. Then,

if A represents in magnitude and direction the arbitrary force P', OB
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is the resultant of P' and P
1?
OCis the resultant of OB and P

2 , etc., and

finally OE, or P'", represents the resultant of P 1

',
P

x ,
P

2 ,
P

8 ,
P

4
. If

then P'" is combined with P", the resultant JK is obtained as before.

Now to find the line of action of R, suppose that P' and P
l are

combined into a resultant R^ acting in the direction B'A' (Fig. 143 (C))

parallel to the ray OB of the force polygon (Fig. 143 (B)). Prolong
A'B' until it intersects P

2 ,
and then combine R^ and P

2 into a result-

ant Rz acting in the direction C'B' parallel to the ray OC of the force

polygon. Continue in this manner until P'" is obtained. Then the

resultant of P" and P'n will give both the magnitude and line of

FIG. 144

action of the resultant of the original system P1?
P

2 ,
P

8 ,
P

4
. The

closed figure A'B' C'D'E'F' obtained in this way is called an equilibrium

polygon.

For a system of parallel forces the equilibrium polygon is con-

structed in the same manner as above, the only difference being that

in this case the force polygon becomes a straight line, as shown in

Fig. 144.

Since P' and P" are entirely arbitrary both in magnitude and

direction, the point 0, called the pole, may be chosen anywhere in the

plane. Therefore, in constructing an equilibrium polygon correspond-

ing to any given system of forces, the force polygon ABODE (Fig. 143)

is first drawn, then any convenient point is chosen and joined to

the vertices A, B, C, D, E of the force polygon, and finally the equi-

librium polygon is constructed by drawing its sides parallel to the

rays OA
} OB, OC, etc., of the force diagram.
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Since the position of the pole is entirely arbitrary, there is an

infinite number of equilibrium polygons corresponding to any given

set of forces. The position and magnitude of the resultant R, how-

ever, is independent of the choice of the pole, and will be the same,

no matter where is placed.

Problem 283. The ends of a cord are fastened to supports and weights attached

at different points of its length. Show that the position assumed by the string is

the equilibrium polygon for the given system of loads.

140. Application of equilibrium polygon to determining reactions.

One of the principal applications of the equilibrium polygon is in

determining the unknown reactions of a beam or truss. To illustrate

its use for this purpose, consider a simple beam placed horizon-

tally and bearing a number of vertical loads P
lt
P

2 ,
etc. (Fig. 145).

To determine the reactions E^ and R
z ,

the force diagram is first

FIG. 145

constructed by laying off the loads P
lt
P

2 , etc., to scale on a line AF,

choosing any convenient point as pole and drawing the rays OA,

OB, etc. The equilibrium polygon corresponding to this force diagram

is then constructed, starting from any point, say A
1

,
in Rr

Now the closing side A'G' of the equilibrium polygon determines

the line of action of the resultants P' and P" at A r and G r

respectively.

For a simple beam, however, the reactions are vertical. Therefore, in

order to find these reactions each of the forces P' and P' f must be

resolved into two components, one of which shall be vertical. To

accomplish this, suppose that a line OH is drawn from the pole in
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the force diagram parallel to the closing side GrA' of the equilibrium

polygon. Then HO (or P') may be replaced by its components HA
and AO, parallel to E

1
and A'B1

respectively ;
and similarly, OH may

be replaced by its components FH and OF, parallel to jft
2 and F' G'

respectively. HA and FH are therefore the required reactions.

Problem 284. A simple beam 20 ft. long supports concentrated loads of 3, 5, 2,

and 9 tons at distances of 5, 7, 14, and 18 ft. respectively from the left support.

Calculate the reactions of the supports graphically.

Problem 285. Construct an equilibrium polygon for a simple beam bearing a

uniform load, and show that the reactions are equal.

141. Equilibrium polygon through two given points. Let it be

required to pass an equilibrium polygon through two given points,

say M and N (Fig. 146).

To solve this problem a trial force diagram is first drawn with any

arbitrary point as pole, and the corresponding equilibrium polygon

FIG. 146

MA'B'C'D'E' constructed, starting from one of the given points, say

M. The reactions are then determined by drawing a line OH parallel

to the closing side ME' of the equilibrium polygon, as explained in

the preceding article.

The reactions, however, are independent of the choice of the pole

in the force diagram, and consequently they must be of amount AH
and HE, no matter where is placed. Moreover, if the equilibrium

polygon is to pass through both M and N, its closing side must coin-

cide with the line MNt
and therefore the pole of the force diagram

must* He somewhere on a line through H parallel to MN. Let O1 be
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a point on this line. Then if a new force diagram is drawn with 0'

as pole, the corresponding equilibrium polygon starting at M will pass

through N.

142. Equilibrium polygon through three given points. Let it be

required to pass an equilibrium polygon through three given points,

say M, N, and L (Fig. 147).

As in the preceding article, a trial force diagram is first drawn

with any point as pole, and the corresponding equilibrium polygon

constructed, thus determining the reactions R
1
and R

2
as AH and

HE respectively.

Now if the equilibrium polygon is to pass through N, the pole of

the force diagram must lie somewhere on a line HK drawn through

K

1)

FIG. 147

H parallel to MN, as explained in the preceding article. The next

step, therefore, is to determine the position of the pole on this line

HK, so that the equilibrium polygon through M and N shall also pass

through L. This is done by drawing a vertical LS through L and

treating the points M and L exactly as M and N were treated. Thus

GABCD is the force diagram for this portion of the original figure, and

MA'B'C'S is the corresponding equilibrium polygon, the reactions

for this partial figure being H'A and DH'. If, then, the equilibrium

polygon is to pass through L, its closing side must be the line

ML, and consequently the pole of the force diagram must lie on a

line H'K' drawn through H' parallel to ML. The pole is therefore

completely determined as the intersection 0' of the lines HK and

H'K' . If, then, a new force diagram is drawn with 0' as pole, the
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corresponding equilibrium polygon starting from the point M will

pass through both the points L and N.

Since there is only one position of the pole 0', but one equilibrium

polygon can be drawn through three given points. In other words, an

equilibrium polygon is completely determined by three conditions.

143. Application of equilibrium polygon to calculation of stresses.

Consider any structure, such as an arch or arched rib, supporting a

system of vertical loads, and suppose that the force diagram and

equilibrium polygon are drawn as shown in Fig. 148. Then each

ray of the force diagram is the resultant of all the forces which pre-

cede it, and acts along the segment of the equilibrium polygon parallel

to this ray. For instance, OC is the resultant of all the forces on the

FIG. 148

D

left of P
3 ,
and acts along C'D'. Consequently the stresses acting on

any section of the structure, say mn, are the same as would result

from a single force OC acting along C'D'.

Let 6 denote the angle between the segment C'D' of the equilibrium

polygon and the tangent to the arch at the point S. Then the stresses

acting on the section mn at S are due to a tangential thrust of amount

OC cos
;
a shear at right angles to this, of amount OC sin

;
and a

moment of amount OC-d, where d is the perpendicular distance of

C'D' from S.

From Fig. 148, it is evident that the horizontal component of any

ray of the force diagram is equal to the pole distance OH. There-

fore if 0(7 is resolved into its vertical and horizontal components, the

moment of the vertical component about S is zero, since it passes
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through this point ;
and hence the moment OC d = OH- z, where z is

the vertical intercept from the equilibrium polygon to the center of

moments S. Having determined the moment at any given point, the

stresses at this point can be calculated as explained in Article 157.

144. Relation of equilibrium polygon to bending moment diagram.

In the preceding article it was proved that the moment acting at any

point of a structure is equal to the pole distance of the force diagram

multiplied by the vertical intercept on the equilibrium polygon from

the center of moments. For a system of vertical loads, however, the

pole distance is a constant. Consequently the moment acting on any
section is proportional to the vertical intercept on the equilibrium

polygon from the center of moments. Therefore, if the equilibrium

polygon is drawn to such a scale as to make this factor of propor-

tionality equal to unity, the equilibrium polygon will be identical

with the bending moment diagram for the given system of loads.

Problem 286. Compare the bending moment diagrams and equilibrium polygons
for the various cases of loading illustrated in Article 62.

II. CONCRETE AND MASONRY ARCHES

145. Definitions and construction of arches. The following dis-

cussion of the arch applies only to that form known as the barrel

arch. Domed and cloistered arches demand a special treatment which

is beyond the scope of

this volume.

The various portions of

a simple, or barrel, arch,

such as shown in projec-

tion in Fig. 149, have the

following special names.

Soffit : the inner or con-

cave surface of the arch.

Intrados : the curve of in-

tersection (ACB, Fig. 149) of the soffit, with a vertical plane perpendicular

to the axis, or length, of the arch.

Extrados : the curve of intersection (DEF, Fig. 149) of a vertical plane

with the outer surface of the arch.

Crown : the hk;-hc 't wrt of the arch.
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Haunches : the parts of the arch next to the abutments.

Springing line : the line AB joining the ends of the intrados.

Rise : the distance from the springing line to the highest point of the

intrados.

Spandrel : the space above the extrados. In the case of an arch supporting
a roadway, the filling deposited in this space is called the spandrel Jilting.

Voussoir : any one of the successive stones in the arch ring of a masonry arch.

Keystone : the central voussoir.

In constructing an arch the material is supported while being put

in place by a wooden structure called a center, the outer surface of

which has the exact form of the soffit of the required arch. The

center is constructed by making a number of frames or ribs having

the form of the intrados of the required arch, and then placing these

ribs at equal intervals along the axis of the arch and covering them

with narrow wooden planks, called lagging, running parallel to the

axis of the arch. When the arch is completed, or, in case of a con-

crete arch, when the material has hardened sufficiently to resist the

stress due to its weight, the centers are removed, thus leaving the

arch self-supporting.

146. Load line. Since the filling above an arch has the same form

as the arch itself, it must be partly self-supporting. In designing an

arch, however, no advantage is taken of this fact, and it is assumed

that any portion of the extrados supports the entire weight of the

material vertically above it. The only exception to this is in the

construction of tunnel walls, in which case it would be obviously

unnecessary as well as impracticable to construct an arch sufficiently

strong to support the entire weight of the material above it.

If the filling above an arch is not of the same material as the arch

ring, subsequent calculations are greatly simplified by constructing a

load line which shall represent at any point the height which a filling

of the same material as the arch itself must have in order to produce

the same load as that actually resting on the arch. The vertical

intercept between the intrados and the load line will then represent

the load at any given point of the arch.

In case of a live load the load line will have a different form for

each position of the moving load.

Problem 287. A circular arch of 20 ft. span and 6 ft. rise, with an arch ring

3 ft. thick, is composed of concrete weighing 140 lb./ft.
3 Construct the load line
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for a roadway three feet above the crown of the arch, with a spandrel filling of

earth weighing 100 lb.'/ft.
3

Solution. In this case the weight of a cubic foot of the spandrel filling is to the

weight of a cubic foot of the arch ring as 100 : 140. Therefore the load line is

obtained by reducing the

intercept on each ordinate

between the roadway and

the extrados in the ratio

140:100. Thus, in Fig. 150,

reducing any ordinate AB
in this ratio we obtain the

ordinate EC, etc. By car-

rying out this reduction

on a sufficient number of

ordinates, and joining the

points C so found, the load

line DJECFG is obtained.

147. Linear arch. Suppose that the voussoirs of an arch have

slightly curved surfaces so that they can rock on one another, as

shown in Fig. 151. The points of contact of successive voussoirs are

then called centers of pressure, and the line joining them the line of

pressure, or linear arch. It is evident, from the figure, or from a model

constructed as above, that with every change of loading the voussoirs

change their position more or less, thus altering the form of the

linear arch. In a model constructed as above, the linear arch can

alter its shape consider-

ably without overthrow-

ing the structure, the only

condition necessary to

assure stability being

that the linear arch shall

lie within the middle

third.*

In a masonry arch the

pressure on any joint
is ordinarily distributed

over the entire surfaces in contact. In this case the center of pres-

sure is the point of application of the resultant joint pressure, and

* See discussion of arches in article by Fleeming Jenkin, entitled "
Bridges," Ency-

clopedia Britannica, 9th ed., Vol. IV, pp. 273-282.



'

AECHES AND AECHED KIBS 219

the linear arch is the broken line joining these centers of pressure.

In a concrete arch the linear arch becomes a continuous curve. With

each change of loading the same shifting of the linear arch occurs

as in the case of the model with curved joints, the only difference

being that with flat joints this action is not visible. To assure sta-

bility, however, the linear arch must be restricted to lie within the

middle third of the arch ring, as will be proved in Article 148.

If we consider a single voussoir of a masonry arch, or a portion of

a concrete arch bounded by two plane sections, as shown in Fig. 152,

the resultant joint pressures R and R', and the weight P of the

block and the material directly above it, form a system of forces in

equilibrium. Consequently, if the amount, direction, and point of

application of one of these

resultant joint pressures

are known, the amount,

direction, and point of ap-

plication of the other can

be found by construct-

ing a triangle of forces.

Therefore, if one result-

ant joint pressure is com-

pletely known in position,

amount, and direction, the others can be successively found as above,

thus determining the linear arch as an equilibrium polygon for the

given system of loads.

Since an equilibrium polygon may be drawn to any given scale,

if no one joint pressure is completely known, which is usually the

case, there will be, in general, an infinite number of equilibrium

polygons corresponding to any given system of loads. The linear

arch may, however, be defined as that particular equilibrium polygon

which coincides with the pressure line, and the question then arises

how to determine the equilibrium polygon so that it shall coincide

with the pressure line. This problem will be discussed more fully in

Articles 150, 151, and 152.

When the linear arch has been determined, the resultant pressure

on a joint having any inclination to the vertical can easily be

obtained. Thus, in Fig. 153, let R be the resultant pressure on a
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DC

R'

FIG. 153

vertical section through B, and R' the resultant pressure on the

inclined section AE through B. Since R is due to the load on the

right of the vertical CF, and R 1 to the load 011 the right of the broken

line DAE, the difference between them must be due to the load

ABCD minus the load BFE. Let

P denote the difference between

these two loads, represented by
the shaded portion in Fig. 153.

Then, since R, R J

,
and P must

be in equilibrium, R' is found at

once by drawing a force triangle,

as shown in the figure.

148. Conditions for stability.

A masonry arch may fail in any
one of three ways : (1) by sliding

of one voussoir upon another; (2) by overturning; (3) by crushing

of the material.

These three methods of failure will now be considered in order.

1. The first method of failure is caused by the shearing stress at

any joint exceeding the joint friction, or the adhesion of the mortar.

This kind of failure can only occur when the angle which the result-

ant pressure on any joint makes with a normal to the plane of

the joint exceeds the angle of repose for the material in question

(Article 167). Ordinarily the resultant pressure on any joint is very

nearly perpendicular to its plane, and since the angle of repose for

masonry is very large, failure by sliding is not likely to occur.

As a criterion for safety against failure of this kind, it may be

assumed that when the resultant makes an angle of less than 30

with the normal to the joint safety against sliding is assured.

2. In order for an arch to fail by overturning, one or more of the

joints must open at one edge, the adjacent blocks rotating about

their center of pressure. For this to occur, one edge of the joint

must be in tension. Although in a well-laid masonry arch the

joints have considerable tensile strength, it is customary to disregard

this entirely, and in this case the condition necessary to assure

stability against rotation is that every joint shall be subjected to

compressive stress only. Assuming, then, a linear distribution of
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stress over the joints, the center of pressure is restricted to lie within

the middle third of any joint (compare Article 62).

Thus, in Fig. 154 (A), if ABCD represents the distribution of

pressure on any joint AD, the resultant R must pass through the

center of gravity of the trapezoid ABCD. Consequently, when the

compression at one edge becomes zero, as shown in Fig. 154 (B),

the resultant R is applied at a point dis-

tant from A
y
and cannot approach any

o

nearer to A without producing tensile

stress at D. Therefore, the criterion for

stability against overturning is that the

center of pressure on any joint shall not

approach nearer to either edge than -
>

o

where b is the width of the joint ; or, in

other words, that the linear arch must lie

within the middle third of the arch ring.

3. Failure by crushing can only occur

when the maximum stress on any joint

exceeds the ultimate compressive strength

of the material. To guard against this

kind of failure, 10 is universally chosen

as the factor of safety. Hence, if u
c
denotes the ultimate compressive

strength of the material, and j9ma

'

x the maximum unit stress on any

joint, the criterion for stability against crushing is

FIG. 154

From Fig. 154 (B), the maximum unit stress is twice the average.

Therefore, if F denotes the area of a joint, and pa the average unit

stress on it, P

Consequently the criterion for stability against crushing can be

expressed in the more convenient form

F 20'
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that is to say, the average unit stress on any joint must not exceed

one twentieth of the ultimate compressive strength of the material.

The above conditions for stability can be applied equally as well

to a concrete arch by considering the stress on any plane section of

the arch ring.

149. Maximum compressive stress. Let R denote the resultant

pressure on any joint, b the width of the joint, F its area, and c the

distance of the center of pressure from the center of gravity of the

joint. Then, under the assumption of a linear distribution of stress,

the stress on the joint is due to a uniformly distributed thrust of
T>

amount per unit of area, and a moment M of amount M= Re.

Therefore the unit stress p at any point is given by the formula

R .Me
p = ,r F I

where e is the distance of the extreme fiber from the center of gravity,

and / is the moment of inertia of the cross section.

For a section of unit length, F = b-l =b, I = > and e = -
.

I u

Therefore, substituting these values, the formula for maximum or

minimum stress becomes
R

,
6 Re

Pmax = '

min

For e = - the minimum stress is zero, and if c > - it becomes nega-
6 .6

tive, thus restricting the center of pressure to lie within the middle

third of the cross section if tensile stress is prohibited (compare
Article 62 and Article 148, 2).

Combining this result with that of the preceding article, the maxi-

mum stress calculated by the formula

_R 6 Re

must not exceed -
> where u

c
is the ultimate compressive strength

of the material.

150. Location of the linear arch : Moseley's theory. In order to

obtain a starting point for the construction of the linear arch, it is

necessary to know the amount, direction, and point of application
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of one joint pressure, as explained in Article 147
; or, in general, it

is necessary to have given three conditions which the equilibrium

polygon must satisfy, such, for instance, as three points through
which it is required to pass. Since it is impossible to determine these

three unknowns by the principles of mechanics, the theory of the

arch has long been a subject of controversy among engineers and

mathematicians.

Among the various theories of the arch which have been proposed

from time to time, the first and most important of the older theories

is called the principle of least resistance. This theory was introduced by
the English engineer, Moseley, in 1837, and later became famous on the

Continent through a German translation of Moseley's work by Scheffler.

In building an arch the material is assembled upon a wooden frame-

work called a center
;
when the arch is complete this center is removed

and the arch becomes self-supporting, as explained in Article 145.

Now suppose that instead of removing the center suddenly, it is

gradually lowered so that the arch becomes self-supporting by degrees.

In this case the horizontal pressure or thrust at the crown gradually

increases until the center has been completely removed, when it has

its least possible value. This hypothesis of least crown thrust con-

sistent with stability is Moseley's principle of least resistance.

In constructing an equilibrium polygon the horizontal force, or

pole distance, is least when the height of the polygon is a maximum.

Therefore, in order to apply the principle of least resistance, the equi-

librium polygon must pass through the highest point of the extrados

at the crown and the lowest points of the intrados at the abutments.

Since this would cause tensile stress at both the crown and abut-

ments, the criterion for stability against overturning makes it neces-

sary in applying the theory to move the center and ends of the

equilibrium polygon, or linear arch, until it falls within the middle

third of the arch ring. There is nothing in the principle of least

resistance, however, to warrant this change in the position of the

equilibrium polygon, and consequently the theory is inconsistent with

its application.

Culmann tried to overcome this objection to Moseley's theory by

considering the compressibility of the mortar between the joints. At

the points of greatest pressure the mortar will be compressed more
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than elsewhere, and this will cause the pressure line, or linear arch,

to move down somewhat, thus taking a position nearer to the middle

third than is required by the principle of least resistance, if applied

to the arch as a rigid body.

The above brief account of Moseley's principle of least resistance

and Culmann's modification of it are given chiefly for their historical

interest and the importance formerly attached to them. The modem

theory of the arch is based upon the principle of least work, and is

therefore rigorously correct from the standpoint of the mathematical

theory of elasticity.

151. Application of the principle of least work. Although Hooke's

law is not rigorously true for such materials as stone, cement, and

concrete, the best approximation to actual results is obtained by

assuming that the materials of which the arch is composed conform

to Hooke's law, and then basing the theory of the arch on the general

theorems of the strength of materials. On this assumption the posi-

tion of the linear arch can be determined by means of Castigliano's

theorem, which states that for stable equilibrium the work of defor-

mation must be a minimum (Articles 79 and 81).

Consider a section of the arch perpendicular to the center line of

the arch ring, or, in general, normal to the intrados. Let F denote

the area of the section, R the resultant pressure on the section, c the

distance of the point of application of R from the center of gravity

of the section, and ds an infinitesimal element of the center line.

Then the work of deformation will consist of two parts, that due

to the axial thrust It, and that due to a moment M = Re. Since the
T->

direct stress per unit of area of the section is > the unit deformation

R
due to the stress is > where E denotes Young's modulus; and

FE -.

/ 7? \ 7?
2

hence the work of deformation due to R is -R{ )>
or

2 \FEI 2 FE
From Article 73, Chapter IV, the work of deformation due to the

M2

bending moment M is Therefore the work of deformation dW
2 El

for a portion of the arch included between two cross sections at a

distance ds apart is

,
T/r

. R2
, M*

dW = - ds H ds.
2EF 2 El
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Hence the total work of deformation for the entire arch is

/R
2 C M2

2 EF
d +

J ^EI
d

Let b denote the thickness of the arch ring, and consider a section of

unit width. Then F = b and / = > and substituting these values

in the above equation and assuming that E is constant throughout

the arch, -.

W=

In Article 147 it was shown that three conditions are necessary

for the determination of the linear arch. Therefore, since the values

of R and M in the above expression depend upon the position of the

linear arch, in order to apply Castigliano's theorem to the integral,

R and M must first be expressed in terms of these three unknown

quantities, which may be conveniently chosen as the position, amount,

and direction of the joint pressure at a certain point.

Having expressed R and M in this way, Castigliano's theorem is

applied by differentiating W partially with respect to each of the three

unknowns, and equating these three partial derivatives to zero. In

this way three simultaneous equations are obtained which may be

solved for the three unknown quantities, thus completely determining

the linear arch.

The principle of least work, therefore, permits of a rigorously cor-

rect determination of the linear arch. Instead, however, of actually

carrying out the process outlined above, Winkler has applied the prin-

ciple to the derivation of a simple criterion for stability, as explained

in the following article.

152. Winkler's criterion for stability. From the preceding article,

the total work of deformation for the whole arch is given by the

expression -,

in which the integral is to be extended over the entire length of the

arch. As the position of the pressure line is altered, the first term

in this integral changes but little, whereas the second term under-

goes a considerable variation, since M = Re, where c is the distance
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of the center of pressure from the center of gravity of the section.

For a first approximation, therefore, the first term may be disregarded

in comparison with the second, and hence the problem of making W

/M
2

ds as small

as

To effect a still further reduction, suppose that R is resolved into

vertical and horizontal components so that the vertical component
shall pass through the center of gravity G of the section (Fig. 155),

and let z denote the perpendicular distance of the horizontal com-

ponent Ph from G. Then M = P
h
z and

/jf

2 rp~s?
ds becomes I ^- ds,

b

or, since Ph is constant for all sections,

this may be written P\ I -

Ordinarily the thickness of the arch

ring varies, being least at the crown

FlG 165 and greatest at the abutments. In this

case let b
c
denote the thickness of the

crown, and suppose that the law of variation in thickness is such

that the thickness I at any other point is given by the expression

c
~dx

where dx is the horizontal projection of ds. Under this assumption,

the expression P\ I - becomes

Therefore the problem of making W a minimum is now reduced to

that of making the integral / z*dx as small as possible.

This latter expression, however, consists of only positive terms,

and reduces to zero for the center line of the arch. From this it

follows that if an equilibrium polygon is drawn for the given system
of loads, and then the center line of the arch is so chosen as to coin-

cide with this equilibrium polygon, the true linear arch can differ

but little from this center line.
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In order for an arch to be stable at least one of the many possible

assumptions of the linear arch must be such as to fall within the

middle third of the arch ring. Moreover, the elastic deformation of

the arch is such as to move the linear arch as near to the center line

as the form of the arch permits. Therefore, if for any given arch

it is possible to draw an equilibrium polygon which shall everywhere

lie within the middle third of the arch ring, the stability of the arch

is assured.

This criterion for stability is due to Winkler, and was first given

by him in 1879.

153. Empirical formulas. The thickness necessary to give an arch

at the crown can only be found by assuming a certain thickness and

determining whether or not this satisfies all the conditions of sta-

bility. The least thickness consistent with stability is such that the

average compressive stress does not exceed one twentieth of the

ultimate compressive strength of the material. The arch is usually

made somewhat thicker than is required by this criterion, however,

for the thicker the arch the more easily can the equilibrium polygon
be made to lie within the middle third of the arch ring.

The following empirical formulas for thickness at crown represent

the best American, English, and French practice respectively, and

may be used in making a first assumption as a basis for calculations.

Trautwine.

Rankine.

r = radius of intrados in feet
;

d rise in feet
;

/ = span in feet
;

b = depth at crown in feet.

154. Designing of arches. In designing an arch to support a given

loading the equilibrium polygon for the given system of loads should,

in accordance with Winkler's criterion, be assumed as the center line

of the arch. This, however, is not always possible, For instance, in
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the case of an arch intended to support a roadway, the level of which

is fixed, the loading depends to a large extent on the form of the

arch, and consequently the equilibrium polygon cannot be determined

until the form of the arch has been assumed.

In designing arches, therefore, the method usually followed is to

assume the form of the intrados of the required arch, and determine

its thickness at the crown by an empirical formula, such as those

given in the preceding article. Then, having draw^n the extrados and

load line, the surface between the intrados and the load line is

divided into any convenient number of parts by drawing verticals,

and the amount and position of the resultant weight of each part for

a section one foot wide is calculated. An equilibrium polygon for

this system of loads is then passed through the middle point of the

arch ring at crown and abutments by the method given in Article 142.

If this equilibrium polygon lies within the middle third of the arch

ring, the arch is assumed to be stable against overturning.

If the equilibrium polygon through the middle points of the arch

ring at crown and abutments does not lie entirely within the mid-

dle third of the arch ring, these three points are shifted so as

to make it do so if possible. If no choice of the three points will

make the equilibrium polygon lie entirely within the middle third

of the arch ring, the design must be altered until this has been

accomplished.

The next step is to calculate the maximum unit joint pressure by
the formula given in Article 149, and apply the criterion for stability

against crushing given in Article 148. When these criteria have been

satisfied the design is assumed to be safe. If, however, there is a

considerable excess of strength, the design may be lightened and the

criteria reapplied.

Before the design can be considered complete it must also be

shown that the above criteria are satisfied for every form of loading

to which the arch is likely to be subjected. In the case of an arch

designed to carry a heavy live load, such as that due to several

locomotives, it may be necessary to draw a number of load lines

corresponding to different positions of the load, and make a corre-

sponding number of determinations of the equilibrium polygon and

maximum joint pressure.
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The stability of the abutments still remains to be investigated, and

finally the bearing power of the soil on which these abutments rest.

Problem 288. Design a concrete arch to span a stream 25 ft. in width and sup-

port a roadway 15 ft. above the level of the stream, if the spandrel filling is clay

weighing 120 lb./ft.
3

;
the maximum depth of frost is 3 ft. and the bearing power

of the soil at this depth is 4 tons /ft.
2
(see Article 158).

155. Stability of abutments. To determine the stability of the

abutments, the joint pressure at the haunch is combined with the

weight of the abutment into a single resultant, say R 1

. For stability

against overturning, the line of action of this resultant must strike

within the middle third of the base (Article 148, 2).

Eesolving the resultant R' into a horizontal component Rh and a

vertical component Rv) the maximum pressure on the soil is calcu-

lated by substituting this value of Rv for R in the formula given in

Article 149. To prevent sinking of the abutments, this pressure must

not exceed the bearing power of the soil (see Article 166).

For stability against sliding, the shearing stress between the abut-

ment and the soil, due to the horizontal component Rh of the result-

ant R', must be less than the friction between the two; or, more

briefly, the angle which R f makes with the horizontal must be less

than the angle of repose (compare Article 172).

156. Oblique projection of arch. Suppose that an arch, its load line,

and its pressure line are drawn to any given scale, and then the whole

figure is projected upon an oblique plane by a system of parallel lines.

The projection of the pressure line on this oblique plane will then be

the true pressure line for the projected arch and its projected load line.

This principle can often be used to advantage, as, for example, in

comparing two arches of equal span but different rise. Its most

important application is in giving an accurate construction of the

pressure line for arches of long span and small rise. Thus, instead of

plotting such an arch to scale, its projection can be plotted ; or, in

other words, its span can be shortened any convenient amount. A

larger unit can then be used in plotting the vertical dimensions than

would otherwise be possible, and consequently the pressure line can

be drawn to any desired degree of accuracy.

Having constructed the pressure line in this way, the pressure on

any joint of the given arch can be found from the pressure on the
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corresponding joint of the projected arch by laying off the horizontal

and vertical components of the latter to two different scales
;
in other

words, by projecting the pressure back again onto the original arch.

III. ARCHED RIBS

*157. Stress in arched ribs. The arch is frequently used in metal

constructions, especially in such structures as roofs and bridges, in

the form of a curved beam composed either of a solid web and flanges

or built up like a truss. Such a metal arch is called an arched rib.

FIG. 156

The fundamental difference between a concrete or masonry arch

and an arched rib is that the latter, being composed of metal, is

capable of resisting bending moment. For an arched rib, therefore,

it is not essential that the equilibrium polygon shall lie within the

boundaries of the arch
;

it may, in fact, either cross the arch or lie

entirely on either side, the only condition for stability being that the

arched rib must be sufficiently strong to resist the bending moment

thus produced.

*For a brief course the remainder of this chapter may be omitted.
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When the equilibrium polygon has been drawn for the given system
of loads, the stress at any point of an arched rib can be calculated by
the method explained in Article 143. Thus, in Fig. 156

(^t),
let AGF

denote the arched rib, Pv P2 ,
etc. the given loads, and ABCDEFthe

corresponding equilibrium polygon. Then the stress on any section

mn is due to a force acting in the direction CD, of amount equal to

the corresponding ray OC
r
of the force diagram.

Consequently, if the rib is composed of a solid web and flanges,

as shown in Fig. 156 (B), the direct stress on the section is equal in

amount to the ray OCf
of the force diagram, the bending stress on

P z
1 P z

the upper flange is ~
> the bending stress on the lower flange is -

,

Cu CL

and the shear normal to the rib is OC f sin a, where a is the angle

between CD and the tangent to the rib at the section.

Similarly, for the trussed rib shown in Fig. 156 (C), by taking

moments about L and S the stresses in ItS and LK are found to be

P z P z'

f- and 7- respectively, while the normal component of the stress
a d

in LS is OC sin a.

Arched ribs are usually constructed in one of three different ways :

(1) hinged at the abutments and at the crown; (2) hinged at the

abutments and continuous throughout; (3) fixed at the abutments

and continuous throughout. The method of constructing the equilib-

rium polygon differs for each of these three methods of support, and

will be treated separately in what follows.

158. Three-hinged arched rib. When a member is free to turn

at any point the bending moment at that point is zero, and con-

sequently the equilibrium polygon, or bending moment diagram,

passes through the point. For a three-hinged arched rib, therefore,

the equilibrium polygon must pass through the centers of the

three hinges and is therefore completely determined, as explained in

Article 142.

159. Two-hinged arched rib. Consider an arched rib hinged at

the ends and continuous between these points. In this case the

equilibrium polygon must pass through the centers of both hinges,

but since there is no restriction on the vertical scale, this scale may
be anything whatever, depending on the choice of the pole in the



232 STRENGTH OF MATERIALS

force diagram. A third condition is therefore necessary in order to

make the problem determinate.

The problem can be solved in various ways, depending on the

choice of the third condition. The first solution that will be given is

that found by applying the principle of least work, that is, by apply-

ing Castigliano's condition that the work of deformation shall be a

minimum.

Consider a two-hinged arched rib supporting a system of vertical

loads, as shown in Fig. 157. Then the moment at any point A is

equal to the moment of the forces on the left of the section mn

through A, minus the moment of Ph about A, where Ph
is the unknown

A

V
FIG. 157

horizontal reaction, or pole distance of the force diagram, which is to

be determined. Consequently, if M denotes the moment at A, Mp
the

moment of the forces on the left of A, and z the perpendicular distance

of Ph from A, we have M= M
p
- P

hz.

Since the work of deformation due to the shear and axial load is small,

it may be neglected in comparison with that due to the bending mo-

ment. Under this assumption the work of deformation is

El ds,

in which the integral is to be extended over the entire length of

the rib. Applying the principle of least work to this expression, the

partial derivative of W with respect to the unknown quantity Ph

must be zero. Hence
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or

whence

T> /M
p
z

/-*
If E is constant throughout the rib, this reduces to

j-fdsPh
=

The pole distance Ph found from this formula is the third condition

necessary for the complete determination of the equilibrium polygon.

160. Second method of calculating the pole distance. The value

of the pole distance Ph of the force diagram can also be calculated by

assuming that the bending of the rib produces no change in the span.

To apply this condition, the change in length which the span would

naturally undergo is

calculated and equated
to zero.

Consider a small

portion ds of the rib.

If, for the moment,
the rest of the rib is

regarded as rigid, the

bending of this portion would make the end B revolve about D as

a center to a position at C (Fig. 158). Let d/3 denote the angle

between DB and DC, a the angle between DB and a vertical through

D, z the ordinate DF, and CE, or A/, the change in length of the

span. Then

BC = DB dft, DB cos a = z, and A/ = CB cos a.

Hence
A/ - DB '

d/3 cos a = zd/3.

FIG lgg
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From Article 66, the angular deformation d/3 is given by the expression

_ Mds

Consequently

and hence the total change in length of the span is
*

CMz
1=1 ds.

Therefore the condition that the span shall be unchanged in length

by the strain is rw
ds = Q.

J EI

The bending moment M in this expression has the same value as

in the preceding article, namely, M = Mp
Phz. Inserting this value

of If in the above condi-

tion, it becomes

EI

from which, as in the pre-

ceding article,

P
r*?

j j
jds

FIG. 159
161. Graphical deter-

mination of the linear

arch. From the condition that the bending stress shall produce no

change in the length of the span, the position of the linear arch may
be determined graphically as follows.

In Fig. 159 let ACF represent the center line of the rib, ADF the

corresponding equilibrium polygon drawn to any convenient scale, and

ABF the linear arch. Then the linear arch can be obtained from the

equilibrium polygon by reducing each ordinate of the latter in a certain

* The effects of changes of temperature and also of direct compressive stress in altering
the length of the span are neglected, as they are slight in comparison with that due to

bending strain.
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ratio, say r. The problem then is to find this ratio r in which the

ordinates to the equilibrium polygon must be reduced to give the

linear arch.

The condition that the span is unchanged in length, derived in

the preceding article, is

hi which z represents the ordinate CE to the rib, and ds an element

of the rib. Since the bending moment M is proportional to the verti-

cal intercept between the linear arch and the center line of the rib,

this condition may be written

*BC-z 7

f El

or, since E may be assumed to be constant and

BC = BE - CE = BE - z,

this condition becomes

which may be written

If r denotes the ratio in which the ordinates to the equilibrium

polygon must be decreased in order to give the linear arch, then

BE
r =-

DE
and consequently the condition becomes

Cr-DE-z Cz* ,

J
- ds- I

jds=Q;
whence

DE-z

f
This expression for r can be evaluated graphically by replacing

the integrals by summations and calculating the given functions for a
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series of vertical sections taken at equal intervals along the rib. Thus,

since ds in this case is constant,

r =

I

in which the functions under the summation signs are to be calculated

for each section separately, and their sum taken. After r has been

found in this way the linear arch is obtained by decreasing the

ordinates of the equilibrium polygon in the ratio r : 1, and the stress

can then be calculated as explained in Article 157.

This method of determining the linear arch is due to Ewing.

162. Temperature stresses in two-hinged arched rib. When the

temperature of an arched rib changes, the length of the rib also changes,

and consequently stresses called temperature stresses are produced in

the rib (compare Article 19). To calculate the amount of this stress

let L denote the coefficient of linear expansion and T the change in

temperature in degrees. Then each element of the rib of length ds

changes its length by the amount LTds, the horizontal projection of

which is LTdx. Therefore the total change I in the length of the rib is

1= C
C

LTdx = 2cLT,
Jo

where 2 c is the span. From Article 160, the total change in length

of the span is given by the expression

I

Therefore

_ f*Mz

~Jo El

f**-2
Jo El

cLT.
.0
El

To simplify this expression assume that the modulus of elasticity

E is constant throughout the rib, and that the moment of inertia /
ds

increases towards the abutments in the ratio Under this assump-
ds

dx
tion / = I -

> where J denotes the moment of inertia at the crown,
dx

and the above equation becomes

I

El.
Mzdx = 2 cLT,
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The only forces which tend to resist the change in length of the rib

due to temperature stresses are the horizontal reactions P
h of the

abutments. Therefore the external moment at any section of the rib

with ordinate z is M= Phz, and substituting this value in the above

integral, it becomes

whence
2 EI

Q
cLT

z
2dx

This expression is easily evaluated in any given case, thus determin-

ing Ph and consequently the linear arch. The temperature stresses

can then be calculated by the methods explained above, and combined

>l

FIG. 160

with those due to the given loading. For a rise in temperature above

that for which the arch was designed, T is positive and the horizontal

reactions Ph of the abutments act inwardly ;
for a fall in temperature

T is negative and the reactions Ph act outwardly.

To illustrate what precedes, the above formula will now be applied

to a parabolic arched rib, which on account of its simplicity is the

form ordinarily assumed in designing. Let h denote the rise of

the arch, 2 c its span, and x, z the coordinates of any point A on

the rib (Fig. 160). Then, from the intrinsic property of the parabola,

it follows that
h z (c x) .

"T" ~~s~
whence

fix ._ ,

z = (2 c - x).
c
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/c
z
zdx and integrating,

we have

f
2

Jf

Consequently for a parabolic arched rib the horizontal reaction of

the abutments due to a change in temperature of T degrees is

^A =

163. Continuous arched rib fixed at both ends. For a continuous

arched rib fixed at both ends the problem of constructing the equi-

librium polygon is subject to a threefold indetermination, since none

of the three conditions necessary for its determination are given.

The theoretical solution of the question by the principle of least

work is as follows.

Let the vertical reaction R^ t
the horizontal reaction P

h ,
and the

bending moment M at the left support be chosen as the three

unknown quantities necessary to determine the linear arch. For a

system of concentrated loads the moment M at any section of the

rib distant x from the left support is

M = M + Ex - P
h
z -V P(x - d),

in which d is the distance of any load P from the left support, and

the summation is to be extended over all the loads between the left

support and the point under consideration. Similarly, for a uniform

load of amount w per unit of length,

Now, from Article 73, the work of deformation W is given by the

expression

in which M has the value given by one or the other of the above

expressions, depending on whether the loading is concentrated or

uniform. To apply Castigliano's theorem to this expression it is
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necessary to find the partial derivatives of W with respect to M
,
Rv

and Ph respectively, and equate these derivatives to zero. The three

conditions obtained in this way are

dW M dM Mx
(103) ^= ^7-^ ds =

M

since from either of the above expressions for M we have

= x, and - = z. Inserting in these three conditions the value
h

of M for the given form of loading, three simultaneous equations are

obtained which may be solved for the three unknown quantities Rv

Ph ,
and M .

Equations (103) can also be obtained by assuming as our three con-

ditions that the horizontal and vertical deflections of the supports are

zero, and that the direction of the rib at the ends remains unchanged.

The method of obtain- D
ing equations (103) from

these assumptions is

simply an extension of

that given in Article

160 for the two-hinged

arched rib.

164. Graphical deter-

mination of the linear

arch for continuous
arched rib. The simplest

method of applying equa-

tions (103) to the deter-

mination of the linear

arch is by means of a graphical treatment similar to that given in

Article 161.

Consider first the case of symmetrical loading. Then ifM denotes

the bending moment at either abutment, the linear arch has the same

E'

E

FIG. 161
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form as for a rib with two hinges, except that its base is shoved

down a distance M below the springing line of the rib. Therefore

in this case the linear arch is completely determined by the two

quantities M and r, the third condition being supplied by the sym-

metry of the figure.

In Fig. 161 let ACF represent the center line of the rib, A'BF'

the linear arch, and ADF the equilibrium polygon for the given

system of loads. Since the bending moment M at any point of the

rib is the vertical intercept BC between the linear arch and the

center line of the rib, we have

M=BC = BE-CE* -EE',

or, since BE = r-DE', M=r . DE> - Z-MV

Substituting this value of M in the first and third of equations (103),

they become

CrDE'zds_rj?_ TM^
J El J El J El

If the expressions under these integral signs are evaluated for a num-

ber of vertical sections taken at equal distances along the rib, and the

results are summed, we obtain the two conditions

from which r and M can easily be determined. The linear arch is

then constructed by starting from a point at a distance M below the

left support, and decreasing the ordinates to the equilibrium polygon

in the ratio r : 1.

If the loading is unsymmetrical, the moments at the ends of the

rib are not equal. Let M
l
and M

2
denote the moments at the left

and right ends respectively (Fig. 162). As before, the moment M
at any point of the rib is the vertical intercept BC between the linear

arch A'BF' and the center line of the rib ACF. Consequently

M = BC = BE - CE' - EE'.
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In this case, however, the distance EE* is not constant from A to F,

but varies as the ordinates to a triangle, being equal to M
l
at A and

to M2
at F. Hence, for a point at a distance x from A,

(EE')X
= M

l
- -

(M,
-

where 2 c is the length of the span. Also BE = r - DE, and CIS' = z.

Therefore

M = r DE - z - M, -f
-
(M.

- M
z).

2 c

Let this value of M be inserted in equations (103). Then, if the

expressions under the integral signs are evaluated for a number of

vertical sections taken at equal distances along the center line of the

rib, and their sums taken, the integrations in equations (103) can be

replaced by summations giving the three conditions

DE ^ z ^f\^ 1

-T-L-I- M^LJ
zx

ZDE-z
--

2c
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Solving these three equations simultaneously for M
lt
M

2 ,
and r, the

linear arch is constructed by laying off M
l
and M

2
from A and F

respectively, and then reducing the ordinates to the equilibrium

polygon in the ratio r : 1, and laying them off from the line A'F'.

The stresses in the rib can then be calculated by the methods

previously given (Article 157).

165. Temperature stresses in continuous arched rib. Using the

notation of Article 162, the change in the length of the span due to

a change in temperature of T degrees is

/ = 2 cLT.

Therefore, for temperature stresses equations (103) become

Mz
~EI

MX , rJ

zi
s ~~

'

J *

By hypothesis, the only external forces acting on the rib are the

reactions and moments at the abutments due to the temperature

stresses. Consequently, if R denotes the vertical reaction, Ph the hori-

zontal reaction, and M^ the moment at the left abutment, the moment

M at any other point of the rib is

M= M^ + Rx- P
hz.

If, then, this value of M is inserted in the above integrals and the

resulting equations solved simultaneously forM
lt R, and Ph) the linear

arch is thereby determined.



CHAPTER XI

FOUNDATIONS AND RETAINING WALLS*

166. Bearing power of soils. Since the character of a foundation

is dependent upon the nature of the soil on which it is to rest, it is

necessary in designing a foundation to know with a reasonable degree

of accuracy the maximum load which the soil can sustain per unit

of area without appreciable settlement; or, in other words, what is

known as the bearing power of the soiLf

Ordinarily the results of previous experience are relied upon to

give an approximate value of the bearing power of any given soil,

and stability is assured by the adoption of a large factor of safety.

For structures of unusual importance, however, or when the nature

of the soil is uncertain, the results of previous experience are usually

insufficient to assure stability, and special tests are necessary for the

determination of the bearing power of the soil in question. Among
notable structures for which such special tests have been made may
be mentioned the State Capitol at Albany, N.Y.

;
the Congressional

Library at Washington, D. C.
;
the suspension bridges at Brooklyn, N.Y.,

and at Cincinnati, Ohio; the Washington Monument; the Tower

Bridge, London, etc.

By averaging the results of a large number of such tests, reliable

information is furnished as to the bearing power of soils in general.

The most commonly accepted of such average values are those given

by Professor I. O. Baker in his Treatise on Masonry Construction, and

are as shown in the table on the following page. Other values in

common use are also quoted for comparison, and may be accepted as

representative of modern practice.

* For a more detailed treatment of foundations and retaining walls the following

special treatises may be consulted. Baker, Treatise on Masonry Construction ; Howe,

Retaining Walls for Earth; Fowler, Ordinary Foundations; Merriman, Walls and

Dams; Patton, Ordinary Foundations.

t The bearing power of soils is analogous to what is called the crushing strength in

the case of more rigid materials, such as stone and brick.

243
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In the case of wet or moist soils the same effect is obtained by

drainage, as indicated in the tables on the preceding page.

A more marked increase in the bearing power may be obtained by

excavating the soil and replacing it by a layer of moist sand
;
or by

driving short piles and then either removing them and filling the

hole immediately with moist sand, or else leaving the piles in the

earth and covering them with a platform of timber or concrete.

When none of these methods will suffice, the soil must be exca-

vated until a subsoil with an adequate bearing power is reached.

167. Angle of repose and coefficient of friction. When a mass of

granular material, such as sand, gravel, or loose earth, is poured upon
a level surface, the sides of the pile will assume a definite slope,

called the natural slope. This maximum angle which the sides of

the pile can be made to assume with the horizontal is called the

angle of repose, and is a constant for any given material. Since the

size of this angle is dependent upon the amount of friction between

the particles of the

material, it may be

taken as a measure

of the friction, "or

vice versa.

The laws of fric-

tion as determined

by experiment are
/
that the force of

friction is independent of the areas in contact, is dependent on the

nature of the material, and is directly proportional to the normal

pressure between the surfaces in contact. Let PF denote the force

of friction and PN the normal pressure. Then the above laws may
be expressed by the formula

P- Z-PF ^-L N>

where k is the constant of proportionality, and is called the coefficient

of friction.

In Fig. 163 let DE represent the natural slope and o> the angle

of repose, and consider a particle of the material of weight P at any

point A in the natural slope. Let P be resolved into two components

FIG. 163
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PF and Py, respectively parallel and perpendicular to DE. Then
PF = PN tan a), and comparing this with the relation PF kPN >

k = tan CD
;

that is to say, the coefficient of friction is equal to the tangent of the

angle of repose.

The following table gives the numerical values of the angles of

repose and coefficients of friction for various materials, and also the

weight in pounds of one cubic foot of each material*

MATERIAL,
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recently wood was the only material used for piles, and they were

either driven by hand with sledges, or by means of a block, usually
of metal, which was raised between two upright guides and allowed

to fall on the head of the pile. The latter form of pile driver is still

in frequent use for driving wooden piles, and is called the drop-
hammer pile driver.

In 1839 Nasmyth invented the steam pile driver, which consists

essentially of a steam cylinder supported vertically above the head

of the pile by two uprights fastened to a cap which rests on the

pile. The hammer in this case is a weight attached to the piston

rod, and delivers a blow on the head of the pile at each stroke

of the piston. The uprights which support the cylinder also serve

as guides for the hammer, which varies in weight from 550 Ib. to

4800 Ib. This form of pile driver owes its efficiency to the rapidity

with which the blows can be given, the number being from sixty

to eighty per minute, thus preventing the soil from recovering its

equilibrium between strokes, and greatly decreasing its resistance to

penetration.

In modern engineering practice cast-iron and concrete piles are rap-

idly coming into use, and as neither of these materials is capable
of standing repeated blows, piles of this kind are usually driven by
means of an hydraulic jet. The jet is attached to the point of the

pile, thus constantly excavating the soil in front of the pile as it

descends, and enabling it to sink into place with little or no assist-

ance other than its own weight.

The rational formulas in ordinary use for determining the bearing

power of piles are based upon the assumption that the pile is driven

by a drop-hammer pile driver, and express its bearing power in terms

of the amount of penetration at the last blow. Since the bearing

power of a pile is due in part to the friction of the earth on the sides

of the pile, as well as to the resistance of the subsoil to penetration,

and also since part of the energy of the hammer is absorbed by the

friction of the guides, in compressing the head of the pile, in compress-

ing the hammer, in overcoming the inertia of the pile, etc., a rigorous

formula is too complicated to be of much practical value, although

there are a number of elaborate discussions of the bearing power of

piles which take all of these elements into consideration, notably the
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theories of Kankine and Weisbacli.* However, as several of the ele-

ments entering into the discussion are attended with considerable

uncertainty, it is customary in practice to use either an empirical

formula or the simple approximate formula deduced below, adopting

a factor of safety large enough to cover the assumptions made.

Let P denote the weight of the hammer in pounds, h the height

of the fall in inches, R the average resistance of the soil to penetra-

tion during the last blow in pounds, and d the penetration of the

pile, due to the last blow, in inches. Then, assuming that all the work

done by the hammer is expended in overcoming the resistance of the

earth at the point of the pile, we have

Ph = Rd.

With a factor of safety of 6, the approximate formula for safe load

on the pile becomes

(104) S = .

As the head of a timber pile becomes " broomed "
by repeated blows,

and this greatly decreases the efficiency of the blow by absorbing the

kinetic energy of the hammer, the head should be sawed off to a solid

surface before making a test blow for determining the bearing power
of the pile.

For a drop-hammer pile driver the empirical formula in most

common use is 2Ph
(105) K =

dTl'
the notation being the same as above, and the factor of safety being 6.

For a steam pile driver this formula becomes

<"> "iSn-
where Ph represents the kinetic energy of the hammer.

The above empirical formula, (105) or (106), is commonly known

as Wellington's formula, or the Engineering News formula, and has been

incorporated in the building laws of Greater New York.

The only means of determining the bearing power of a pile driven

by an hydraulic jet, is to observe the maximum load it can support

without appreciable settlement.

* See Baker, Treatise on Masonry Construction, chap. xi.



FOUNDATIONS AND RETAINING WALLS 249

Problem 289. A one-ton hammer falls 15 ft. on the head of a pile, and the

settlement is observed to be . 1 in. Calculate the safe load for the pile by formulas

(104) and (105) and compare the results.

Problem 290. Under what conditions will the approximate rational formula

(104) and the Engineering News formula (105) give substantially the same results?

Solution. If the values of B obtained from these two formulas were equal, then

=
;
whence d Jj- in. For other values of d the rational formula gives the

greater value of the bearing power when d < -fa in.
,
and the empirical formula gives

the greater value when d > T
J

T in. From this it follows that the empirical formula

is only applicable when the settlement at the last blow is small.

169. Ordinary foundations. Although the foundation of a struc-

ture is necessarily the first part to be constructed, it is the last part

to be designed, for the weight of the structure determines the nature

of the foundation, and this cannot be calculated until the structure

has assumed definite proportions.

The load which a structure is designed to carry consists primarily

of three parts.

1. The dead load, due to the weight of the structure and the per-

manent fixtures, such as plumbing and heating apparatus, elevators,

water tanks, machinery, etc.

2. The live load, which depends on the use to which the structure

is to be put, and which may vary from 20 lb./ft.
2
to 400 lb./ft.

2

3. The wind load, due to the overturning action of the wind upon
the side of the structure. These three parts of the total load must

be calculated separately and then combined so as to give the maxi-

mum resultant. The area of the foundation is then found at once

by dividing this maximum load by the safe bearing power of the soil.

The chief concern in designing a foundation, however, is not that

its settlement shall be zero, but that it shall be uniform throughout.

For if one part of a foundation settles more than another, it is evident

that cracks are bound to occur which will seriously weaken the struc-

ture and may even destroy its usefulness altogether. Since uniformity

of settlement implies uniformity of pressure on the soil, the condition

which determines the stability of a foundation and its superstructure

is simply uniformity of pressure on the soil.

The effect of violating this condition is frequently seen, the most

common instance being that of ordinary dwelling houses in which

several openings, say a door and a number of windows, occur one
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above another. It is evident in this case that if the foundation is of

the same width throughout, the centers of pressure will fall outside

the centers of resistance, which will tend to throw the top of the wall

outward on either side, and so result in cracks between the openings

(Fig. 164). The remedy for this is either to narrow the foundation,

or omit it altogether under the openings, or else extend it beyond
the ends of the wall, the length of

this extension being of such amount

that the centers of pressure will fall

inside, or at least coincide with, the

centers of resistance.

When a foundation extends

beyond the ends of a wall the projec-

tion is called the footing. To dimen-

sion the footing it may be regarded

as a simple cantilever, and its

thickness calculated by the ordinary

theory of beams. Thus let h denote

the thickness of the footing in

inches for a concrete foundation,

or the thickness of the bottom foot-

ing course in inches for a masonry

foundation, b the width of the foot-

ing in inches, u the ultimate strength of the material in lb./in.
2
,
and

P the load in tons/ft.
2

Then, since 1 ton/ft.
2 = 13.9 lb./in.

2
, the

moment at the face of the wall is

FIG. 164

jr.*
T bh*

A 2
t,

41.7 ,

or, since /= and u =- > we have u =---
;
whence

2i I h

fp
h = 6.45 x -\] , approximately.

Problem 291. Find the thickness of the bottom footing course for a masonry
foundation if the load is 1 ton/ft.

2
,
the factor of safety is 10, the footing is to

extend 18 in. beyond the face of the wall, and is composed of limestone for which
u = 15,000 lb./in.2
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IIII

CONCRETE

170. Column footings. In the modern construction of tall build-

ings the design frequently provides that the entire weight of the

building and its contents shall be carried by a steel framework of

columns and

girders. This

"skeleton type"

of tall-building

construction, as

it is called, ne-

cessitates a new

type of founda-

tion, since each

column load

must be calcu-

lated separately

and transmitted

to the soil by a

footing of suffi-

cient size to

give the neces-

sary amount of

bearing area.

If the col-

umns reach
solid rock, the

footing may
consist simply

of abase plate of

such form as to

give the column

a solid bear-

ing and afford

sufficient anchorage to prevent the footing from lateral movement.

For compressible soils the column is usually supported by a cast-

iron base plate resting on a footing consisting of two or more layers

of steel rails or I-beams, the whole resting on a concrete base, as

shown in Fig. 165.

J

FIG. 165
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What has been said in the preceding article in regard to the cal-

culation of the loads carried by the foundation also applies to the

calculation of column loads, and the method of designing a column

footing is essentially the same as for a masonry footing, explained

above. Thus let P denote the total column load in tons, c the length

of one side of the base plate in inches, and I the length in inches of

the beams supporting it (Fig. 165). Then, if the base plate is assumed

to be stiff enough to carry the load on its perimeter, the maximum

moment M will occur at one edge of the base plate. Since the reac-

tion on one side of the base plate is 2000 P--^> the amount of

this moment is

2000P(/-c) l-e 250P(/-c)
2

.

~2l~
~ ~T

Consequently, if n is the number of beams supporting the base plate,

the maximum moment for one beam is

250P(/-c)
2

.

M. = ^
'

in. Ib.
nl

If the base plate is assumed to be only stiff enough to distribute

the load uniformly, the maximum moment will occur at the center

of the beams, and its value will be (cf.
Article 52 (E))

2000 P
('-D.M=-i-=L = 250 P(2 I -

c)
in. Ib.

In this case the maximum moment for one beam is

250P(2J-f) .

M, =- in. Ib.

n

Now let p denote the allowable fiber stress per square inch, / the

moment of inertia of a cross section of one beam, and e half the

depth of the beam. Then the moment of resistance of one beam is

For foundation work p is usually taken to be 20,000 lb./in.
2 Substi-

tuting this value, the moment of resistance becomes

M= 20,000- = 20,000 S,
e
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where S denotes the section modulus. Equating the moment of

resistance to the external bending moment and solving the resulting

equation for S, we have in the first case

SO In
and in the second case T> /*> 7 \^ I C)

In designing a column footing the column load P is first calculated,

and the area of the footing determined by dividing the column load

by the safe bearing power of the soil. The size of base plate and

number of beams supporting it are next assumed, and the section

modulus calculated by one of the above formulas. The size of beam to

be used is then determined by choosing from the tables a beam whose

section modulus agrees most closely with the calculated value of S.

Problem 292. Design the footing for a column supporting~a load of 400 tons,

and resting on a base plate 4 ft. square, so that the pressure on the foundation bed

shall not exceed 3 tons/ft.
2

171. Maximum earth pressure against retaining walls. A wall

of concrete or masonry built to sustain a bank of earth, or other

loose material, is called a retaining wall.

In Chapter X it was shown that in order to determine the stability

of an arch three conditions were necessary, which might conveniently

be chosen as the direction, amount, and point of application of the

resultant pressure on any cross section of the arch ring. The same

necessity arises in the discussion of retaining walls, namely, that three

conditions are necessary for the complete solution of the problem,

and a number of theories have been advanced, notably those of

Coulomb, Weyrauch, and Eankine, based on different assumptions as

to these conditions.

All theories, however, agree upon two of these assumptions, namely,

(1) that the pressure against the wall is due to a wedge of earth, or,

in other words, that the surface along which the earth tends to slide

against the wall is a plane ;
and (2) that the point of application of

the resultant earth pressure is one third of the height of the wall

from the bottom. Neither of these assumptions is rigorously correct,

for the first is equivalent to neglecting the cohesion of the earth, and
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the second assumes that the earth pressure against the wall is the

same as if the earth was a liquid. However, the uncertainty attend-

ing the exact degree of homogeneity of the materials under consid-

eration probably does not warrant any greater precision in these first

two assumptions.

The third assumption relates to the direction of the maximum

pressure, and is the point on which the various theories differ. Thus

Coulomb and Weyrauch assume that the pressure is normal to the

D

FIG. 166

back of the wall
;
Rankine assumes that it makes an angle with the

back of the wall equal to the angle of repose of the material
;
while

other authorities assume values intermediate between these two.

In the present discussion the first two conditions mentioned above

will be retained, and the third condition will be replaced by the

assumption that the resultant earth pressure makes an unknown

angle with a normal to the back of the wall. The assumptions

are, then :

1. The surface of rupture is a plane.

2. The point of application of the resultant pressure is one third

of the height of the wall from the bottom.
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3. The resultant pressure is inclined at an angle to a normal to

the back of the wall.

From the result of the theory based on these assumptions, the

values of the resultant earth pressure given by Coulomb, Weyrauch,
Kankine, and others will then be deduced as special cases by giving
different values to f,

In Fig. 166 let AB represent the back of the wall, BD the surface

of the ground, AD the natural slope, and A Cany line included between

AB and AD. Also let P' denote the resultant pressure due to the

wedge BAC, Pl
the weight of this wedge, OR its reaction against

the plane AC, the angle between Pf and a normal to the back of

the wall, <w the angle of repose of the earth, a the angle between the

back of the wall and the horizontal, ft the angle between the surface

of the ground and the horizontal, and x the angle between AC and

the horizontal.

Then in the triangle TOS, by the law of sines,

,
si

l
s

or, since TOR=x-o> and mS=180-a ?, we have OST=a+-x+a),
and, consequently, /

pl = p sin
(a; -ft))

1
sin (a + f -f- &) x)

To find an expression for Pv let w denote the weight of a unit

volume of the material, say the weight of one cubic foot. Then for a

section of unit length in the direction of the wall

inP
l
= w(area ABC) = -AB - AC sin BAC

;

z>

or, if k denotes the height of the wall, AB = -7 > BA C = a - x,
'

( _ R\
sma

and AC = AB sm (*-P) . whence
sin (x j3)

_ wli
z
sin (a ft) sin (a x)

2 sin
2a sin(x ft)

and, consequently,

, _ wb? sin (a ft) sin (a x)sin(x ft))~
2 sin

2
a; siu(x

-
ft)siu(a ++&)- x)
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The problem now consists in finding the value of the variable angle

x for which Pr
is a maximum, which may be expressed symbolically

by the conditions , p/~ = and
dx x

In order to reduce the expression for P' to a form more suitable for

differentiation, we make use of the following identity.

cos (a x) cos (a &>)
cot (a x) cot (a &>)

=
sin (a x) sin (a &>)

cos (a x) sin (a co)
cos (a o>)

sin (a x)

sin (a x) sin (a &>)

__
sin (x ft>)

sin (a x) sin (# &>)'
whence

sin (x ft>)
= sin (a #) sin (a &>) [cot (a x) cot (a o>)].

Similarly,

sin (x P) = sin (a a?)
sin (a j3) [cot (a x) cot (# /3)],

and

sin (a + &) + f a?)
= sin

(or #) sin
(&> + f) [cot (a x) cot

(o> -f ?)].

Substituting these values in the expression for P', the latter becomes

i
wh* sin (a CD) cot (a x) cot (a &>)

~~

2sin2# sin(a)+f) [cot (-#) cot (a /S)][cot(a #)+ cot (&)+?)]

Now the terms in this expression which contain the variable x are

all of the same form, namely, cot (a x). This term may therefore

be replaced by a new variable yt
and the remaining terms by letters

denoting constants. Thus let

wh2
sin (a co)

cot (a x) = y,
- = A,

2 sin
2a sin

(o> + ?)

cot (a a>)=B, cot (a
-

/3)= C, cot(&> + ?)= D.

Equating to zero the first derivative of P' with respect to yy
we have

= ^ (y
-

C)(y + J)-(y - J3)(y
- C)-(y -

<fy

"

(y
-

c-)
2

(2/ + vf
whence the condition for a maximum is

= B +(#- C)(B
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Substituting this value of y in the expression for P'
t
the latter becomes

or, replacing A, B, C, I) by their values,

^ sin* (a -co)
maX

2sin*asin(a + t) ,
sin (co

-
/?)

sin (co
"

which is the general formula for the maximum inclined earth pressure

against retaining walls.

The various standard theories as to the maximum eartli pressure

may now be obtained as special cases of the above general formula

by making the following assumptions.*

1. Weyrauch's formula. Assume that the pressure is normal to

the back of the wall. Then f 0, arid formula (107) becomes

P' = sin
2

(a o>)

>
. a A I sin (ft) /3)sin co\

2

2sm3

o:( 1 -f- A -I
\ M sm (a p) sin a j

2. Rankine's formula. Assume that the angle of repose of earth

on masonry is equal to the angle of repose of earth on earth. Then

f = co, and formula (107) becomes

,
wh* sin

2

(a co)
1

max ~2sm2

tfsin(o; + co)
/ I

sin(o)
-

ft) sin 2 a>

3. Poncelet's formula. In Eankine's formula assume that the earth

surface is horizontal and the back of the wall is vertical. Then

/3 = and a = 90, and the preceding formula becomes

f
wh2

cos co

2(l+V2siii&))
2

4. Coulomb's formula. Assume, as in 3, that the earth surface is

horizontal and the back of the wall vertical, and make the further

* It is not intended to convey the idea that Weyrauch, Rankine, etc., made these

assumptions explicitly, but that they lead to formulas identical with theirs.
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assumption that the pressure is normal to the back of the wall. Then

/3 = 0, a = 90, ?= 0, and formula (107) becomes

45-i

5. Rankine's formula for vertical wall Assume that the back of the

wall is vertical and that the line of action of the resultant earth

pressure is parallel to the surface of the earth. Then a = 90,

f 90 + /3 a, and formula (107) becomes

, _ ivk
2
COS

2
ft)

^g/i+j^+a^g^jy
\ M cos2/3 i

6. Maximum normal pressure. Assume that /3 has its maximum

value, which will be when

ft = &). Then Wey ranch's

formula becomes

f
wh2

sin
2

(a ft>)

max=
2 sin

3*

which is the greatest normal

thrust that can be caused by
a sloping bank.

Problem 293. A wall 20 ft.

high is inclined at an angle of 85

to the horizontal and supports a

backing of clayey gravel the sur-

face of which makes an angle of

20 with the horizontal. Compute
the maximum pressure against the

back of the wall by Weyrauch's and

Rankine's formulas, and compare
the results.

Problem 294. By the use of

Poncelet's formula compute the

-p -g
maximum pressure in the preceding

problem if the back of the wall is

vertical and the surface of the ground is horizontal.

Problem 295. What is the greatest normal pressure that can be caused by a

bank of loose sand against a vertical wall 18 ft. high ?

172. Stability of retaining walls. The conditions for the stability

of a retaining wall are the same as those given in Article 155 for the
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stability of abutments, namely, that the wall must be secure against

sliding on its base and against overturning.

Let P
2
denote the weight of the wall, P' the resultant earth pres-

sure, and R the resultant of P
2
and P' (Fig. 167). Then, if R is resolved

into two components RF and RN , respectively parallel and perpen-

dicular to the base of the wall, the condition for stability against

sliding is that RF shall be less than the friction on the base, or,

symbolically,

Let g denote the factor of safety. Then this condition may be written

sr < ksr .

(108) JB, = r.

9

To find the values of RF and RN) let P' and P
2
be resolved into com-

ponents parallel to RF and Ry respectively. Then, in the notation of

the preceding article,

RF = P' sin(o; + + f)
_ p

a
sin 6,

RN = P2
cos 6 - P' cos(a + 6 + ?).

Substituting these values of RF and RN in equation (108) and solving

the resulting expression for g,

If the base of the wall is horizontal, = and equation (109) becomes

(no)
*[P2 -P'cos(*+jr)].

P'sin(a + f)

For security against sliding the factor of safety should not be less

than 3
; consequently, the criterion for stability against sliding may

be stated as
f/>3,

where the value of g is calculated from equation (109) or (110).

In applying this criterion it should be noted that the value of f

must first be assumed (Article 171
; < ? < a>).

The following table gives average values of the angle of repose

and coefficient of friction of masonry on various substances.*

* See references at the foot of p. 246.
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level with the top, the thickness 1} of the base of the wall in terms

of its total height li should be as follows :

*

For wall of cut stone or. large ranged nibble f in mortar,

1> = .35 h.

For wall of good common 8cabblcd mortar rubble, or brick,

1> = .40 h.

for wall of well scabbled dry rubble,

1> = .50 h.

These empirical rules may be regarded as representative of the best

American practice, and may be used to give a first approximation in

making a tentative design.

By inclining the wall backward the angle between the earth thrust

P' and the wall is decreased, and consequently the resultant li is

made to approach more nearly the center of the base. This allows

the thickness of the base to be decreased and thus lessens the

amount of material in the wall, although it slightly increases its

depth. However, there is a restriction upon the amount of inclina-

tion which is permissible, for the inclination also has the effect of

increasing the tendency to slide on the base or joints. In practice

these considerations are balanced by inclining the back of the wall

at a small angle, say 5 or 10, to the vertical
(i.e.

a = 80 or 85),
and at the same time cutting the footing into steps perpendicular

to the line of action of the resultant R, thus securing economy of

material without sacrificing stability.

The thickness of the top of the wall is determined by the necessity

of providing for the lateral pressure of the earth, due to the action of

frost. Since the action of frost is greatest near the top of the wall

where the material is most exposed, it is likely to push the top over

if the wall is made only thick enough to resist the pressure due

to the weight of the earth. This consideration, therefore, limits the

least thickness of the wall at the top to about two feet for masonry,

or somewhat less than this amount for concrete, since the latter has

no joints and therefore offers a greater moment of resistance.

* Engineer's Pocket-Book, 1902, p. 603.

t Masonry composed of rough, undressed stones is called rubble ; scabbled rubble has

the roughest irregularities knocked off with a hammer.
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From the above, it follows that for an economical design the cross

section of a wall should be trapezoidal, the thickness of the base

being determined by the consideration of stability against overturn-

ing, and the thickness of the top by the maximum action of frost.

The inclination of either face of a wall to the horizontal is usually

expressed by giving the ratio of the horizontal projection of this face

to its vertical projection. This ratio is called the batter, and is given

in inches of horizontal projection per foot of height. For example, if

a wall makes an angle of 80^- with the horizontal, it is said to be

" battered 2 to 1," since the ratio of its horizontal projection to its

vertical projection is equal to cot a, and in the present case

cot a = cot 80^ = .1673 = ^, approximately.

Problem 296. Design a concrete retaining wall to support a bank of loose earth

25 ft. high, the back of the wall to be inclined backward at a batter of H to 1.
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PART II

PHYSICAL PROPERTIES OF MATERIALS

CHAPTER XII

IRON AND STEEL

174. Introductory. A study of the properties of materials used in

engineering construction involves a study of the machines used for

making the tests and the method of conducting these tests. From

the time of Galileo, in 1600 A.D., tests have been made to determine

the strength of materials, but only during the past fifty years has any

very great advance been made. The rapid development of the past

half century has been due to the notable increase in the construction

of large buildings, bridges, etc.
;
for where engineers were formerly

content to use material without being tested, the importance of modern

constructions demands that the physical properties of the materials

used shall be determined for each large contract.

The early testing machine consisted of little more than an ordinary

scalebeam with the test piece attached to one end and the load

applied at the other. These were used for making tension tests, and

machines equally as simple were used for compression and flexure

tests. Fig. 168 shows a type of these machines which was used by

Kirkaldy about 1860. The specimen to be tested was held in the

jaws g while the lever F was in the position of the dotted lines

(Fig. 168). A load N was then applied to the end of the lever and

gradually increased until the specimen was ruptured.

Testing machines have been much improved during the past twenty
or thirty years in the United States by Eiehle Bros, and Olsen & Co.,

265
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both of Philadelphia, Pennsylvania. The machines as now con-

structed for ordinary testing purposes consist of a platform scales

with the usual means of measuring loads, and a screw press operated

by an outside source for applying the loads. Fig. 169 is a machine

of 100,000 Ib. capacity, built by Olsen & Co., and may be taken

as a type. The four upright pieces A with the base B upon which

they rest form the platform of the scales. This platform rests upon

knife-edges C attached to a system of levers D which terminate

finally in a graduated lever E (the scalebeam) provided with a

movable poise. Each lever is supported by knife-edges resting upon
hardened steel plates. The screw press in this case is seen in the

FIG. 168

four screws F with their movable crosshead G. The upper cross-

head H is attached to the four upright pieces and is a part of the

scale platform.

175. Tension tests. If a piece is to be tested in tension, one end

is attached to the upper crosshead and the other end to the lower.

The turning of the screws, due to the driving mechanism on the

other side of the machine, causes the lower crosshead to move down-

ward, thus bringing pressure to bear on the upper crosshead. From

here it is transmitted to the base and thence to the levers, and is

measured by movement of the poise on the graduated scalebeam.

Machines of 20,000 Ib., 30,000 Ib., 50,000 Ib., 100,000 Ib., 200,000 Ib.,

and 300,000 Ib. capacity are manufactured, as well as a great many
machines for making special tension tests. In the larger testing

machines the upper head is usually adjustable so as to accommodate

specimens of various lengths, but in the smaller machines the upper

head is fixed.
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The tensile strength in pounds per square inch is computed by

dividing the load read from the scalebeam by the area of cross section

of the test specimen (see Article 20). Expressed as a formula,

load from scalebeam
Tensile strength in lb./in.

2 =
area of cross section

176. Compression tests. To make compression tests the piece is

placed on a small block resting on the platform, and the lower cross-

head, provided with a similar block, is brought down upon it. The

further lowering of the crosshead compresses the specimen. The pres-

sure comes on the platform through the crossbeam that rests upon it,

and is transmitted to the scalebeam, where it is measured.

The compressive strength in lb./in.
2
is computed by dividing the load

in pounds as read on the scalebeam by the area of cross section of

the test specimen, as in finding the tensile strength.

177. Flexure tests. Beams are tested in flexure by mounting the

specimen on a crossbeam provided with knife-edges and applying the

load from above by means of a knife-edge attached to the under side

of the moving head. The beam is tested by lowering the moving
head as in the compression tests.

The fiber stress in the outer fiber of the beam is computed in this

case from the formula (see Article 52),

Pie

where e is the distance from the neutral axis to the outer fiber, / is

the moment of inertia with reference to the neutral axis, P is the

load in pounds as read from the scalebeam, I is the length of the span

in inches, and p is the fiber stress in lb./in.
2

The maximum deflection for the concentrated central load is com-

puted by the formula (see Article 67),

where D is the deflection at the center, E the modulus of elas-

ticity (see Article 8), and P, I, and I have the same meaning as

above.
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In case the beam is loaded at the third points, uniformly, eccen-

trically, or otherwise, the corresponding expressions are used for fiber

stress and deflection (see Articles 52, 67).

178. Method of holding tension specimens. To make a tension

test of a material a special test piece is usually provided. This test

piece has the same composition as the rest of the material, but has a

special form, being larger at the ends than in the central portion (see

Article 20). Fig. 170 illustrates a test piece made from a carbon

steel bar turned down in the central portion.* The machines are

provided with serrated wedges

for holding the large ends of the

test piece, and as the load is ap-

plied these serrations sink into

the specimen, thus holding it

firmly.

The behavior of the specimen

in tension is studied by noting
FlG> m

the behavior of the reduced

portion, which should be far enough from the ends so that the local

stress caused by the wedges will have no effect upon it.

Flat pieces, such as pieces of boiler plate, are left as they come

from the rolls on two sides, and the edges are machined to get the

reduced cross section, as shown in Fig. 171. The lower specimen,

of cast iron, is made with rounded corners to eliminate shrinkage

stresses. Eolled material is often tested without being turned down.

Special holders and clamps are usually provided for holding tension

specimens of timber.

179. Behavior of iron and steel in tension. Wrought iron and mild

steel when tested in tension conform to Hooke's law up to the elastic

limit, a point which is usually well defined in these materials. They
then suffer a rapid yielding, with little increase of load, reaching a

point where the piece elongates very much for no increase of load.

This point is known as the yield point. It is indicated by the scaling

of the oxide from the specimen that has not been machined, and by
the dropping of the beam of the testing machine, if it has been kept

balanced up to this point. Beyond this point stress increases much

* Dimensions for standard test specimens of different materials are given in Article 203.
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more slowly than deformation, until finally rupture is about to

occur, at which point the load attains its maximum value, called

the ultimate load. If the stress be continued, the piece begins to

neck and breaks at a load somewhat less than the maximum (see

Article 7). This necking is due to the fact that the metal under

great strain becomes plastic and flows. Brittle materials, such as

cast iron and hard steel, show very little, if any, necking. In com-

puting the fiber stress at the maximum load the original cross section

is used.

In commercial tests the load at the yield point (commercial elastic

limit) and the maximum load are noted
;

also the percentage of

elongation and the percentage of reduction of cross section. The per-

centage of elongation is the increase in length divided by the original

length multiplied by 100. This percentage varies with the original

length taken (see Article 20), and therefore is usually computed for an

original length of eight inches. The percentage of reduction of cross

section is the decrease in area of the cross section divided by the

original area of the cross section multiplied by 100. In some com-

mercial laboratories provision is made for making as many as sixty

tests per hour on one machine.

180. Effect of overstrain on wrought iron and mild steel. If

wrought iron and mild steel are strained just beyond the elastic limit

in tension or compression, then released and tested again in the same

direction, it has been found that this second test shows that the

elastic limit is higher than at first, and almost as high as the load

in the first test. Eepeated overstrain of this kind, with subsequent

annealing, makes it possible to raise the elastic limit considerably

above what it was originally. When further strained the metal

loses its elasticity and takes on a permanent set
;
that is to say, it

does not return to its original length when the stress is removed.

The elastic properties, however, can be restored by annealing (see

Article 18). Overstrain in either tension or compression destroys

almost entirely the elasticity of the material for strain of the opposite

kind
;
for instance, a piece of mild steel overstrained in tension has its

elastic properties in compression almost entirely destroyed, and vice

versa. Overstraining in torsion produces much the same effect as

overstraining in tension or compression.
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181. Relative strength of large and small test pieces. It has been

found by Tetinajer
* and others that the values obtained in testing

small test pieces taken from different parts of a steel girder or I-beam

are higher than those obtained in testing the girder itself. The aver-

age of a series of tests of small test pieces gave an elastic limit of

49,000 lb./in.
2 and a maximum strength of 62,000 lb./in.

2
Tests on

the complete girders themselves gave an elastic limit of 33,500 lb./in.
2

and a maximum strength of 54,500 lb./in.
2 The same has been found

true for the elastic limit of wrought-iron girders, but in this case the

maximum strength is greater in the girder than in the small test piece.

182. Strength of iron and steel at high temperatures. From a

series of tests made at Cornell University,! it was found that wrought
iron having a tensile strength of 30,000 lb./in.

2
at ordinary tem-

peratures increased in strength with increase of temperature up to

475 F., and then decreased as the temperature was further raised.

Machinery steel of 60,000 lb./in.
2 maximum strength gave at 475 F.

a maximum strength of 111,500 lb./iu.
2 Tool steel having a strength

of 114,000 lb./in.
2

at ordinary temperatures gave 145,000 lb./in.
2

maximum strength at 350 F.

Professor C. Bach also reports an elaborate series of tests on the

strength of steel at high temperatures.$ At ordinary temperatures

one bar had a maximum strength of 54,000 lb./in.
2
, an elongation in

8 in. of 26.3 per cent, and a contraction of area of 46.9 per cent.

Up to a temperature of 572 F. the strength increased by about

7000 lb./in.
2

,
and from this point fell, approximately in proportion to

the temperature, to 26,200 lb./in.
2
at 1022 F. The ultimate elonga-

tion decreased to 7.7 per cent at 392 F., and then increased to 39.5

per cent at 1022 F. The contraction of area fell until 392 F. was

reached, and did not rise until about 572 F.

While the tensile strength is increased for a moderately high tem-

perature, the elastic limit is lowered in proportion to the increase of

temperature, being diminished about 4 per cent for each increase of

100 F.

183. Character and appearance of the fracture. The kind and

quality of the metal are usually indicated by the character of the

*
Communications, Vol. IV. f Journal Western Society of Engineers, Vol. I.

J Journal Franklin Institute, December, 1904.
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fractured portion of the test piece. Two points are to be noted in

this connection : the geometrical form and the appearance of the fractured

material. Under the first we may have, as in tensile tests of hard

steel, a straight fracture where the material breaks squarely off in a

plane at right angles to the axis of the test piece ; or, as in tensile tests

of mild steel and high-grade wrought iron, a fracture which is cup-

shaped, half-cup, etc. The appearance of the material for the cup-shaped

fracture may be described as dull granular in the bottom of the cup
and silky around the edge ; or, in the case of wrought iron, as fibrous

in the bottom of the cup and silky around the edge. A cast-iron

fracture appears crystalline, the crystals being fine, coarse, or medium.

In reporting a test the character and appearance of the fracture

should always be given. It should also be noted whether or not any

longitudinal seams occur, or whether the fracture shows the material

to be homogeneous and free from blowholes and foreign matter. If

the specimen has not been properly placed in the machine, so that

there is a bending moment, the fracture will indicate this. The axis

of the test piece should always coincide with the axis of the machine.

184. Measurement of extension, compression, and deflection. The

extension in a tension specimen of iron or steel up to the elastic

limit is so slight that very accurate measurements must be made to

determine the elongations. Instruments for making such measure-

ments are known as extensometers, and are usually made to read to

.0001 of an inch. Fig. 173 shows a type of such instrument known

as the Yale-EieJile extensometer. The method of using the instrument

is to mark off an 8-in. gauge length on the test piece and fasten

the extensometer to it by inserting the screws in the extreme punch
marks of the gauge length. The backpiece is then removed and a

battery with a bell in circuit is attached
;
the instrument is then

ready for use. As the piece elongates the elongations are measured

by turning the micrometer screw until it touches the armature, when

the circuit is closed and the bell rings.

The instrument is used only a little past the elastic limit (the limit

of proportionality of stress to deformation), and about twenty elonga-

tions for corresponding loads are taken below the elastic limit. The

instrument is then removed and the test continued to failure, the

maximum load being noted. From the data obtained in making
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the test, the strain diagram is drawn by using unit loads as ordinates

and relative elongations as abscissas. From this curve the elastic limit,

modulus of elasticity (Young's modulus), and modulus of elastic

resilience may be determined.

The elastic limit is found by noting the point on the strain diagram

where it ceases to be a straight line.

The modulus of elasticity is determined by dividing the stress by
the deformation for any stress below the elastic limit.

The modulus of elastic resilience is denned as the amount of work re-

quired to deform a cubic inch of the material to its elastic limit. It is

therefore represented by the area under the strain curve up to the elastic

limit, or, expressed as a formula,

(stress at elastic limit)
2

Mod. elastic resilience =
2 modulus of elasticity

If in plotting the strain diagram the ordinates represent the stress

expressed in lb./in.
2 and the abscissas represent the correspond-

ing unit elongations, the area under the curve up to the

elastic limit multiplied by the scale value in inch-pounds of

each unit area gives

the modulus of elas-

tic resilience in inch-

pounds.

The modulus of total
FIG. 172

resilience is denned as

the amount of work required to deform a cubic inch of the material

to rupture. It is therefore represented by the area under the whole

curve multiplied by the scale value of a unit area, that is, the number

of inch-pounds per unit area.

In case the stresses are plotted in pounds and the corresponding

deformations in inches, the above method gives the work done on the

whole volume of the specimen included in the gauge length. To

obtain the modulus for such cases it is necessary, in addition to the

above, to divide by the volume of that portion of the specimen over

which the deformations were measured.

Compression is measured by means of a compressometer, by methods

similar to those used in making tension tests. The strain diagram in

this case is a stress-compression curve.
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For measuring deflections in transverse tests various methods are

used. A simple instrument for this purpose is shown in Fig. 172.

This instrument is placed under the beam and the deflections meas-

ured to .001 of an inch. The strain diagram for flexure is thus a

load-deflection curve.

Problem 297. A rod of nickel steel .854 in. in diameter, and with a gauged

length of 8 in., when tested in tension gave the data tabulated below. From this

data draw the strain diagram and locate the elastic limit
;
also compute the mod-

ulus of elasticity and the modulus of elastic resilience.

LOAD

lb./in.
2
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the radius, and having its plane at right angles to the axis of the

bar; the other arm carries a pointer so arranged as to move over

the scale when the bar is twisted. The arc of the scale is called the

troptometer arc and the arm supporting it the troptometer arm. The

angular distortion at the center of the bar for the given gauge length

is then obtained by dividing the reading on the troptometer arc by
the length of the troptometer arm plus the radius of the specimen,

or, expressed as a formula,

reading" on troptometer arc
Ang-le 8 (in radians) =

troptometer arm + radius of specimen

where is the angle of twist (see Article 96).

Problem 298. A steel rod with a gauged length of 10 in. and .85 in. in diam-

eter, when tested in torsion, gave the data tabulated below. Draw the strain

diagram, plotting the stress in lb./in.
2 on the outer fiber as ordinates, and the cor-

responding angle of twist 6 as abscissas. Also locate the elastic limit, compute the

modulus of elasticity of shear, and the modulus of elastic resilience. Length of

troptometer arm, 12 inches.

TORSION TEST OF STEEL

MOMENT
in. Ib.
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When torsion tests are made, the moment in in. Ib. is read from

the machine, and the shearing stress in the outer fiber in lb./in.
2
is

computed from the formula,

p

where Pa is the twisting moment read from the machine, r the

radius of the test piece, and I
p
the polar moment of inertia of the

cross section.*

The modulus of elasticity in shear is computed from the relation,

where Pa and I
p
are defined as above, I is the gauged length in inches,

and is the angle of twist in radians.

The test piece is held in position by a set of adjustable jaws similar

to those used in ordinary pipe wrenches. The gauged length should

be taken far enough from the ends so that the local stress due to the

jaws may not influence the results.

187. Torsion as a test of shear. Although the torsion test is used

to determine the shearing strength of materials, it is not an accurate

test, since the shearing stress is a maximum on the outer elements,

and zero at the center. For this reason the inner material tends to

reenforce the outer, thus giving a higher shearing strength than

would otherwise be obtained. A more perfect torsion test would be

one made upon a hollow tube of the material, for in this case the

inner reenforcing core would not be present. However, the difficulty

of obtaining suitable hollow tubes for test pieces makes their use

impracticable for ordinary tests.

A further objection to the torsion test as a test of shearing strength

lies in the fact that there is considerable tension in the outer ele-

ments of the test piece during the test. Any element of the cylin-

drical test piece which is a straight line before the strain becomes a

helix during the test. Since the length of the helix is greater than

that of the original element, a tensile stress is thus produced in the

outer fibers. In fact, in testing wrought iron in torsion the outer

fibers often fail in tension along the helix. The slight shortening

TTr4
* For a cylinder, Ip =
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of the whole specimen, due to the twisting, is corrected in part by

the swinging head of the machine shown in Fig. 174.

188. Shearing tests. To determine the shearing strength of timber

along the grain and the resistance of iron and steel to the pulling out

of rivets, many special tests are used. By means of a special piece of

apparatus, the force required to push off, along the grain, a projecting

piece from a test piece of timber is easily measured on the ordi-

nary tension-compression machine. The intensity of shearing stress is

computed by dividing the load by the area of the block pushed off.

Tests are also made on wrought-iron plates to determine the force

required to pull out a rivet through the metal, both in the direction

of the fiber and perpendicular to it. A series of such tests may be

found in the Watertown Arsenal Report for 1882. Many tests have

also been made to determine the shearing strength of rivets.

189. Impact tests. In actual service many materials are subjected

to shock or impact (see Article 74). This is especially true of all

railway structural material, such as rails, axles, springs, couplers,

bolsters, wheels, etc., which must be designed to withstand consid-

erable shock. Two special machines have been designed to test

materials in impact. The first, called the drop testing machine, is

operated by allowing a given weight (hammer) to drop a given dis-

tance upon a test piece mounted on an anvil under the hammer.

The other form of machine is operated by allowing a heavy pendu-

lum to strike the specimen when placed in the center of its swing.

In either case the amount of the energy of the blow absorbed by the

specimen is desired.

The results obtained from impact tests can only be comparative in

any case, since a part of the energy of the blow must be absorbed

by the parts of the machine itself. This is seen in the drop testing

machine in the absorption of energy by the anvil and hammer.

Since the results of such tests cannot be absolute, it is highly

necessary that they should be standardized by making tests on the same

anvil with the same hammer. The Master Car Builders Association

has taken a step toward such standardization by building an impact

testing machine for testing materials used by them. This machine

has been established at Purdue University. Its maximum blow is

given by a hammer having a weight of 1640 lb., and dropping 50 ft.
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The use of this machine should do much to standardize specifications

for railway material.*

Tests in impact compression, impact tension, and impact flexure

are also made, but on account of the uncertainty as to the amount of

energy absorbed by the test specimen many engineers do not favor

such tests. Many of these objections, however, might be removed by

proper standardization.

Some recent investigations seem to indicate that the impact test

shows very little that cannot be determined by static tests.

190. Cold bending tests. Cold bending tests are tests of the duc-

tility of metals, and are designed to show the effect on the metal of

being bent in various ways while cold. Such material as rivet steel

and Bessemer steel bridge pieces are bent double over a pin of speci-

fied radius, and the result noted. In making these tests the angle at

which the first crack occurs and the angle at wrhich rupture occurs

are read.

Few machines for making cold bending tests have been made.

The tests are usually made by bending the specimen over the edge

of a vise, or some such simple device, according to specifications. The

tests have never been standardized, but their importance is obvious,

since the conditions of actual service are thus applied to the specimen.

191. Cast iron. Pig iron is a combination of iron with small

percentages of carbon, silicon, sulphur, phosphorus, and manganese,

obtained from the blast furnace. The carbon probably comes from

the fuel used in reducing the ore
;
the other impurities come either

from the ore or from the flux. The product is graded, according to

chemical composition, into forge pig and foundry pig. Foundry pig

is remelted in a cupola furnace and made into castings of various

kinds
; forge pig is used in making wrought iron.

Cast iron is a very brittle material, weak in tension and strong in

compression. Its great usefulness in engineering structures comes

from the fact that it may be readily molded into any desired form
;

it is, however, being replaced by the various steel products. The

carbon, silicon, and other impurities contained in the iron affect its

physical properties.

* For a description of this machine see the report by Professor W. F. M. Goss, Proc.

Amer. Soc. for Testing Materials, 1903.
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COMPOSITION AND TENSILE STRENGTH OF CAST IRON

WATERTOWN ARSENAL REPORT, 1895

CHEMICAL COMPOSITION
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strength varies from 50,000 lb./in.
2
to 150,000 lb./in.

2
,
a good average

being about 95,000 lb./in.
2

The metal is so imperfectly elastic that Hooke's law does not

strictly hold for any range of stress, however small. The modulus of

elasticity in tension varies from 15,000,000 to 20,000,000 lb./in.
2
,
and

in shear from 5,000,000 to 7,000,000 lb./in.
2 On page 280 is given

a table of the tensile strength of various samples of cast iron of

different chemical compositions.

192. Strain diagram for cast iron. The strain diagram of cast

iron in tension, shown in Fig. 175, illustrates clearly the fact that

the metal is very imperfectly elastic. No part of the diagram is a

straight line, and no elastic limit is shown by the curve. The maxi-

mum load in this case was 34,750 lb./in.
2 The curve was drawn

from data given in the Watertown Arsenal Report, 1895. From the

results of four hundred and fifty tests of cast iron in tension, com-

pression, and cross-bending, Kirkaldy found the average compressive

strength to be 121,000 lb./in.
2
,
the tensile strength 25,000 lb./in.

2
,

and the cross-bending modulus (see Article 65) 38,000 lb./in.
2

Fig. 176 shows a strain diagram of cast iron in compression. Like

the tension diagram, this shows no well-defined elastic limit and no

constant modulus of elasticity. The maximum compressive strength

in this case was 50,000 lb./in.
2

When tested in compression as a short block, cast iron has a

characteristic fracture, shearing along a plane making an angle of

about 30 with the vertical. This differs by 15 from the theoretical

angle (45) of maximum stress for such cases.

193. Cast iron in flexure. The most extended series of tests ever

made on cast iron in flexure was made by J. W. Keep on bars
J-

in.

square and 12 in. long. From these tests, the average strength was

found to be 450 lb., giving a modulus of rupture of 64,800 lb./in.'
2

A good average for the modulus of rupture for ordinary commercial

cast iron would be between 36,000 lb./in.
2 and 42,000 lb./in.

2

194. Cast iron in shear. The strength of cast iron in shear varies

from 13,000 lb./in.
2
to 25,000 lb./in.

2 Tests are made in the ordinary

torsion machine. The fracture in this case is the characteristic frac-

ture of brittle materials in torsion
;
that is, instead of shearing off in a

plane at right angles to the axis of the test piece, as is the case with
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STRAIN DIAGRAM
COMPRESSION TEST OF CAST IRON

,007
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ductile materials, the fracture extends down one side for some dis-

tance. The material fails by the outer fiber failing first in tension.

A similar fracture can be seen by twisting a stick of chalk or other

brittle material with the fingers until fracture occurs.

195. Cast-iron columns. Some tests have been made upon full-sized

cast-iron columns both at the Watertown Arsenal and by the Phoenix

Iron Company of Phoenixville, Pennsylvania. The results of these

tests show that the total strength of these columns is much less

than the compressive strength of the metal would lead one to expect.

This was probably due to the presence of blowholes or other imper-

fections in the column, such as are likely to occur when large pieces

are cast. The ultimate strength of the Watertown columns varied

from 21,0001b./in.
2
to 40,000 lb./in.

2

The following table gives the result of a compression test of a cast-

iron column made by the Watertown Arsenal, the ultimate strength

in this case being 33,340 lb./in.
2

COMPRESSION TEST OF CAST-IRON COLUMN

Gauge length, 100 in. Sectional area, 17 in. 2

WATERTOWN ARSENAL REPORT, 1893

LOAD
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curves for this case, and determine whether or not an elastic limit is indicated.

Also compute the strength of the column by Rankine's formula and Johnson's

straight-line formula, and compare the results with those obtained from the test.

196. Malleable castings. The castings with combined carbon are

hard and brittle. These are heated with some oxide, so that the

carbon near the surface is burned out, leaving the outer surface

tough and strong, like wrought iron. The interior of the casting

is somewhat annealed, but the finished product consists of a hard

interior portion with a ductile outer portion. This structure insures

strength both statically and as regards impact.

197. Specifications for cast iron.* The following specifications

are for special hard cast iron (close-grained). They are taken from

the J. I. Case Threshing Machine Company's specifications, and may
be considered as typical.

CHEMICAL COMPOSITION

Silicon must be between 1.20 and 1.60 per cent. (Below 1.20 the

metal will be too hard to machine
;
above 1.60 it is likely to be

porous unless much scrap is used.)

Sulphur must not exceed 0.095 per cent, and any casting showing
on analysis 0.115 per cent or more of sulphur will cause the rejec-

tion of the entire mixture. (Above 0.115 per cent sulphur produces

much shrinkage, shortness, and " brittle hard
"
iron.)

Phosphorus should be kept below .70 per cent unless specified for

special thin castings. (High phosphorus gives castings brittle under

impact.)

Manganese should not be above .70 per cent except in special chilled

work.

PHYSICAL TESTS

Transverse breaking strength. The test bars should be 1 in. square

and 13^ in. long, and should be tested with a load of 2400 Ib. applied

at the center of a 12-in. span.

* These specifications, as well as all others quoted, are given so that the student may
get an idea of the composition and properties required of commerial cast iron or other

material. Specifications issued by different companies vary, and those issued by the

game company are frequently changed on account of the requirements of service.
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Deflection should not be less than 0.08 in.

Tensile strength must not be less than 22,000 lb./in.
2

The following specifications for cast iron are suggested by J. W.

Keep as being representative of modern practice.*

Transverse test bars were cast 1 in. square and 12 in. long, and

were tested with a central load. Tensile test bars were cast 1.13 in.

in diameter and were tested as cast.

CHARACTER OF CASTING
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Wrought iron is a tough, ductile material showing an elongation of

from 18 to 30 per cent in 8 in. Its tensile and compressive strength

at the elastic limit is about 28,000 lb./in.
2
for high-grade wrought

iron, and about 23,000 lb./in.
2
for common wrought iron. Its max-

imum tensile strength varies from 44,000 lb./in.
2
to 64,000 lb./in.

2

The material is much more elastic than cast iron, its modulus of

elasticity in tension being about 28,000,000 lb./in.
2
,
and in shear

about 10,000,000 lb./in.
2

Ingot iron. The impurities of wrought iron have almost been elimi-

nated in a new product known as ingot iron. In the manufacture of

this material the carbon, manganese, sulphur, and phosphorus are

nearly all burned out, leaving the product 99.94 per cent pure iron,

which greatly increases its strength and ductility (see Ey. Age Gazette,

Vol. 49, p. 574). It does not corrode easily, and has good electrical

conductivity and low magnetic retentivity.

199. Manufacture of steel. Tool steel is made by recarbonizing

wrought iron by heating it in a charcoal fire for several days at a

temperature of about 3000 F. During this process part of the carbon

is absorbed by the iron, the product being known as Ulster steel.

This is then melted and cast into ingots, from which the merchant-

able bars are rolled or hammered. The two steps in this process are

usually combined into one.

Tool steel. Carbon tool steel, such as has been used until within the

past few years, did not admit of high speeds when cutting. The rub-

bing of the chip soon dulled the tool, and any considerable increase in

temperature was sufficient to cause it to lose its hardness. It has been

unusual for such steel to stand a speed of cutting of 50 ft./min.

The constituents of carbon steel as previously used for cutting tools

are indicated by the following table (see Becker, High-Speed Steel) :

USE
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High-speed steel. Recently it has been found that the addition of

tungsten and other constituents had the effect of so changing the tool

steel as to increase its wearing qualities and to make it capable of

cutting at a much higher speed than formerly. A speed of 500 ft.

per minute is often obtained with this new steel, although the average

is considerably less than this. The tool may be heated up to redness

in cutting without injuring its wearing qualities appreciably. This

high-speed steel, as. it is called, has made very rapid work possible.

The chemical analysis of twenty brands of this material is given

by Becker as follows :
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Carbon. Increasing the amount of carbon in steel has, in general, the

effect of increasing its modulus of elasticity and its ultimate strength.

From a series of tests made on carbon steel, in which the percentage

of carbon varied from 0.08 to 1.47, Professor Arnold found that the

elastic limit varied from 27,300 lb./in.
2
to 72,300 lb./in.

2

;
the tensile

strength, from 47,900 lb./in.'
2
to 124,800 lb./in.

2

;
the elongation, from

46.6 per cent to 2.80 per cent; and the reduction of area, from 74.8 per-

cent to 3.30 per cent* The following table gives average values of

the ultimate strength in both tension and compression for Bessemer

and open-hearth steel containing different percentages of carbon.
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Manganese steel. This is coming into use for railroad rails on account

of its resistance to wear. The average values for the strength of this

material may be given as follows :
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Tests made by the Watertown Arsenal on a 3.37 per cent nickel

steel gave an average elastic limit of 56,700 lb./in.
2 and a tensile

strength of 90,300 lb./in.
2 *

Vanadium steel. Vanadium when added to steel in small quantities

acts as a dynamic intensifier, that is to say, it greatly increases resist-

ance to fatigue under alternating or repeated stresses. Vanadium

also increases the static properties of steel, increasing its strength

and toughness and resistance to wear or abrasion. Tensile tests

made by the writer on one grade gave the following results: Elastic

limit, 78,000 lb./in.
2

; yield point, 91,900 lb./in.
2

;
tensile strength,

116,100 lb./in.
2

;
modulus of elasticity, 30,900,000 lb./in.

2

; elonga-

tion in 8 in., 20 per cent; reduction of area at fracture, 57 per cent.

This material showed the following chemical analysis : Vanadium,

.30; carbon, .25; manganese, .15; chrome, .42; phosphorus, .009;

sulphur, .024; silicon, .10.

Recent tensile tests of large I-bars of vanadium steel having a

cross section of 14 in. x 2 in. gave an average elastic limit of 70,000

lb./in.
2

,
an average yield point of 81,200 lb./in.

2
,
and an average

maximum strength of 96,800 lb./in.
2

(see Eng. Record, July 30,

1910). The following chemical analysis is given for this steel: car-

bon, .25
; vanadium, .17

; nickel, 1.45
; chrome, 1.20

; manganese, .32
;

silicon, .12; phosphorus, .02; sulphur, .035. In engineering steels

the maximum amount required seldom exceeds 0.2 per cent. Its

judicious use makes it possible to fulfill varied requirements, whether

chiefly static, chiefly dynamic, or divided between the two.

201. Steel castings are made both by the Bessemer and open-

hearth processes. In the Bessemer process the iron is first reduced

to wrought iron, and then spiegeleisen, or ferromanganese, added to

furnish the necessary carbon. Aluminum may be added to pre-

vent blowholes. The metal is cast in the same way as in making
other castings.

On page 292 is given a report of a series of tests made at the

Watertown Arsenal on castings for gun carriages.! The elastic limit

varied from 47,000 lb./in.
2 to 21,500 lb./in.

2
,
and the tensile strength

from 81,000 lb./in.
2
to 43,000 lb./in.

2 Good average values might be

given as 30,000 lb./in.
2 at the elastic limit and 66,000 lb./in.

2 at the

* Watertown Arsenal Report, 1899. t Watertown Arsenal Report, 1903.
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maximum. At the elastic limit the compressive strength was about

the same as the tensile strength. The American Society for Testing

TEST OF STEEL CASTINGS

ELASTIC
IJMIT

lb./in.
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Materials has recommended the following values for the strength of

steel castings (allowable variation 5000 pounds). TENSILF STRENGTH
lb./in.2

Soft castings 60,000
Medium castings 70,000
Hard castings 80,000

In the cold bending test the material must be bent about a diameter

of 1 iii. through 120 for the soft, and 90 for the medium, without

showing cracks or signs of failure.*

The Ordnance Department of the United States Army in the gen-
eral specifications for 1903 gives the following requirements for steel

castings and forgings.

METAL
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203. Standard form of test specimens. It was pointed out in

Article 20 that the form of the test specimen had considerable effect

upon the results obtained from tests. To eliminate this factor, standard

*/
About -3 A N/.g
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The above grades of steel, known as structural steel for bridges and ships,

must conform to certain bending tests. For this purpose the test specimens
shall be 1| in. wide, if possible, and for all material f in. or less in thickness the

test specimen shall be of the same thickness as that of the finished material

from which it is cut
;
but for material more than in. thick the bending test

specimen may be \ in. thick. Rivet rounds shall be tested full size as rolled.

Rivet steel shall bend cold 180 flat on itself without fracture on the out-

side of the bent portion.

Soft steel shall bend cold 180 flat on itself without fracture on the outside

of the bent portion.

Medium steel shall bend cold 180 around a diameter equal to the thick-

ness of the specimen tested, without fracture on the outside of the bent

portion.

STEEL AXLES

Steel for axles shall be made by the open-hearth process and shall be

divided into the following classes : (a) car, engine-truck, and tender-truck

axles
;
and (J) driving axles. For (a) no tensile tests shall be required, but

for driving axles the following physical properties shall be required.
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DESCRIPTION OF THE DROP TEST

The points of support on which the axle rests during tests shall be 3 ft.

apart from center to center; the hammer must weigh 1640 Ib.
;
the anvil,

which is supported on springs, must weigh 17,500 Ib.
;

it must be free to

move in a vertical direction
;
the springs upon which it rests must be twelve

in number, of the kind specified ;
and the radius of supports and of the strik-

ing face on the hammer in the direction of the axis of the axle must be 5 in.

The deflections are measured by placing a straightedge along the

axle, properly held at the supports, and measuring the distance from

this straightedge to the axle both before and after the blow. The

difference between the two measurements gives the deflection.



CHAPTER XIII

LIME, CEMENT, AND CONCRETE

205. Quicklime. If calcium carbonate (ordinary limestone) is

heated to about 800 F., carbon dioxide is driven off, leaving an

oxide of calcium, which is known as quicklime. This has a great

affinity for water and slacks upon exposure to moisture. Slacked

lime when dry falls into a fine powder.

Lime mortar is formed by mixing slacked lime with a large propor-

tion of sand. Upon exposure to the air this mortar becomes hard by
reason of the lime combining with carbon dioxide and forming again

calcium carbonate, the product being a sandy limestone. Lime mortar

is used in laying brick walls and in structures where the mortar will

not be exposed to water, since it will not set, i.e. combine with carbon

dioxide, under water.

206. Cement. When limestone contains a considerable amount of

clay, the lime produced is called hydraulic lime, for the reason that

mortar made by using it will harden under water. If the limestone

contains about 30 per cent of clay and is heated to 1000 F., the

carbon dioxide is driven off, and the resulting product, when finely

ground, is called natural cement. When about 25 per cent of water is

added, this cement hardens, because of the formation of crystals of

calcium and aluminum compounds.
If Limestone and clay are mixed in the proper proportions, usually

about three parts of lime carbonate to one of clay, and the mixture

roasted to a clinker by raising it to a temperature approaching 3000 F.,

the product, when ground to a fine powder, is known as Portland cement

The proper proportion of limestone and clay is determined by find-

ing the proportions of the particular clay and stone that will make

perfect crystallization possible. In the case of natural cement the

lime and clay are not present in such proportions as to form perfect

crystals, and consequently it i^ not as strong as Portland cement.

297
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The artificial mixing of the limestone and clay in the manufacture

of Portland cement is accomplished in different ways. Throughout

the north central portion of the United States large beds of marl are

found, and also in the same localities beds of suitable clay. This marl

is nearly pure limestone, and is mixed with the clay wet. (These

materials are also mixed dry.) Both the marl and clay are pumped to

the mixer, where they are mixed in the proper proportions. The prod-

uct is then dried, roasted, and ground. Most American Portland ce-

ments, however, are made by grinding a clay-bearing limestone with

sufficient pure limestone to give the proper proportions. After being

thoroughly mixed the product is roasted and ground to a powder.

Slag cement (Puzzolan) is made by thoroughly mixing the granulated

slag from an iron blast furnace with slacked lime, and then grinding

the mixture to a fine powder. Slag cements are usually lighter in

color than the Portland cements, and have a lower specific gravity, the

latter ranging from 2.7 to 2.8. They are also somewhat slower in

setting than the Portland cements, and have a slightly lower tensile

strength. They are not adapted to resist mechanical wear, such as

would be necessary in pavements and floors, but are suitable for

foundations or any work not exposed to dry air or great strain.

True Portland cement may be made from a mixture of blast-furnace

slag and finely powdered limestone, the mixture being burned in a

kiln and the resultant clinker ground to powder. Both the Portland

and the Puzzolan cements will set under water, i.e. they are hydraulic.

207. Cement tests. The many different processes of mixing, roast-

ing, grinding, and setting through which a cement must pass, require

that a number of tests be made to determine whether or not these

have been well done. If the grinding has been improperly done, or

if any of the other operations of manufacture have been neglected,

the product may be very weak, or even worthless. To make sure that

all the steps in the manufacture of the cement have been properly

carried out, engineers make use of the following tests : (a) test of

soundness
; (6) test of fineness

; (c) test of time of setting ; (d) test

of tensile strength.

208. Test of soundness. One test for soundness consists in boiling

a small ball of neat cement in water for three hours, and noting

whether or not checks or cracks occur. If the cement contains too
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much free lime, the ball will disintegrate and show signs of crumbling.
The ball of cement is kept under a damp cloth for twenty-four

hours before boiling. This test is not regarded with favor by many
engineers (see steam pat test, specifications, p. 305).

209. Test of fineness. If the grinding has not been properly done,

large particles of clinker remain, which act as a sand or other foreign

substance and thus weaken the cement. The test for fineness is made

by sifting the cement through different sieves
; usually all of it is

required to pass through a sieve of 50 meshes to the inch, and a

smaller amount through sieves of 80 and 100 meshes. About 75 per

cent should pass through a 200-mesh sieve (see Article 214).

210. Test of time of setting. It is important that a cement should

not set too quickly or too slowly. A test for time of setting, known

as Grillmore's test, has been standardized in the United States, and

consists in applying to a small cement pat given weights supported

by points of specified area (Fig. 178). The cement pat is made by

mixing a portion of neat cement with the proper amount of water,

mounting this on a piece of glass, and smoothing it until the middle

is half an inch thick and the edges are smooth and tapering. The

pat is then kept under a damp cloth to prevent injury by sudden

changes in temperature, or too high temperature, of the surrounding

air. When this pat will hold without appreciable indentation a

quarter-pound weight supported by a wire ^ in. in diameter, it is

said to have acquired its initial set. It is said to have acquired its

final set when a one-pound weight supported by a wire ^ in. in

diameter will not appreciably indent the surface.

When a pat prepared as indicated above checks or warps, it

indicates that the cement in setting changes volume too rapidly.

For many pieces of work a slow-setting cement cannot be used
;
but

a cement which sets too quickly is likely to contain too much free

lime, and should be very carefully tested before being used. In

general, the time of final setting for natural cement should not be

less than thirty minutes nor more than three hours.

The table given on page 300 shows the time of setting of different

brands of cement.* The student is also referred to the standard speci-

fications for cement given in Article 214.

*Watertown Arsenal Report, 1901.
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TIME OF SETTING OF CEMENTS



FIG. 178. Weights for Testing Briquettes

EIG. 170. Cement Testing Machine
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FIG. 180

which provide for a cross section of one square inch at the middle,

with thicker ends for insertion in the jaws of the testing machine.

This test requires considerable expertness to get satisfactory results,

for the proper mix-

ing and tamping into

the molds can only

be satisfactorily done

by one of consider-

able experience. After molding, the briquettes are kept under a damp
cloth for about twenty-four hours and then under water until tested.

Many machines are now made for testing the tensile strength of

cement, most of them being light enough to be portable. A new

automatic machine, manufactured by the Olsen Testing Machine

Company of Philadelphia, is shown in Fig. 179. The machine is

operated by first placing the briquette in position and balancing the

beam at the top. The load is then applied by allowing the shot to run

from the pan on the right end of the beam. The spring balance gives

the exact weight of the shot and, consequently, the tensile stress on the

briquette at any time during the test. After the briquette is broken

the tensile strength in pounds per square inch is recorded on the dial.

212. Speed of application of load. It has been found that the

rapidity with which the load is applied has considerable effect upon
the results obtained in making tension tests of cement. The follow-

ing table clearly shows this effect.*

EFFECT OF SPEED OF APPLICATION OF LOAD ON TENSILE
STRENGTH OF CEMENT
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TENSILE AND COMPRESSIVE TESTS OF CEMENT

BRAND OF
CEMENT
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213. Compression tests. Compression tests of cement are made

in Europe, but not generally by engineers in the United States, as

the tensile test is thought quite as valuable as the compression test

in giving results indicative of the strength of the cement. Compres-

sion tests are made upon the ends of the specimen broken in tension,

or upon specially prepared cement cubes. The use of the broken

ends of the briquette insures the same material for the compression

test as was used in the tension test. The table on page 302 gives the

compressive strength of several brands of cement.* The tests were

made by compressing halves of briquettes broken in tension., and

both the tensile and compressive strengths are given.

214. Standard specifications for cement. The following is a copy
of the standard specifications for cement adopted by the American

Society for Testing Materials.

NATURAL CEMENT

This term shall be applied to the finely pulverized product resulting from

the calcination of an argillaceous limestone at a temperature only sufficient

to drive off the carbonic acid gas.

Fineness. It shall leave by weight a residue of not more than 10 per cent

on the No. 100 sieve, and not more than 30 per cent on the No. 200 sieve.

Time of setting. It shall develop initial set in not less than ten minutes,

and hard set in not less than thirty minutes nor more than three hours.

Tensile strength. The minimum requirements for tensile strength forjbri-

quettes 1 in. square in cross section shall be as follows, and shall show no

retrogression in strength within the periods specified.

Neat Cement
AGE STRENGTH

24 hours in moist air 75 Ib.

7 days (1 day in moist air, 6 days in water) 150 "

28 days (1 27 "
)

250

One Part Cement, Three Parts Standard Sand

7 days (1 day in moist air, 6 days in water) ..... 50 Ib.

28 days (1 27 )
125

* Watertown Arsenal Report, 1901.
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Constancy of volume. Pats of neat cement about 3 in. in diameter, | in.

thick at the center, tapering to a thin edge, shall be kept in moist air for a

period of twenty-four hours.

(a) A pat is then kept in air at normal temperature.

(ft)
Another is kept in water maintained as near 70 F. as practicable.

These pats are observed at intervals for at least twenty-eight days, and, to

satisfactorily pass the tests, should remain firm and hard and show no signs

of distortion, checking, cracking, or disintegrating.

PORTLAND CEMENT .

This term is applied to the finely pulverized product resulting from the

calcination to incipient fusion of an intimate mixture of properly proportioned

argillaceous and calcareous materials, and to which no addition greater than

3 per cent has been made subsequent to calcination.

Specific gravity. The specific gravity of the cement, thoroughly dried at

100 C., shall be not less than 3.10.

Fineness. It shall leave by weight a residue of not more than 8 per cent on

the No. 100 sieve, and not more than 25 per cent on the No. 200 sieve.

Time of setting. It shall develop initial set in not less than thirty minutes,

and hard set in not less than one hour nor more than ten hours.

Tensile strength. The minimum requirements for tensile strength for bri-

quettes 1 in. square in section shall be as follows, and shall show no retro-

gression in strength within the periods specified.

Neat Cement
AGE STRENGTH

* 24 hours in moist air 175 Ih.

7 days (1 day in moist air, 6 days in water) 500 "

28 days (1 27 "
) 600 "

One Part Cement, Three Parts Standard Sand

7 days (1 day in moist air, 6 days in water) 200 Ib.

28 days (1
" " 27 " "

) 275

Constancy of volume. Pats of neat cement about 3 in. in diameter, ^ in.

thick at the center, and tapering to a thin edge, shall be kept in moist air

for a period of twenty-four hours.

(a) A pat is then kept in air at normal temperature and observed at intervals

for at least twenty-eight days.

(5) Another pat is kept in water maintained as near 70 F. as practicable,

and observed at intervals for at least twenty-eight days.
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(c) A third pat is exposed in any convenient way in an atmosphere of

steam, above boiling water, in a loosely closed vessel for five hours.

These pats, to satisfactorily pass the requirements, shall remain firm and

hard and show no signs of distortion, checking, cracking, or disintegrating.

Sulphuric acid and magnesia. The cement shall not contain more than 1.75

per cent of anhydrous sulphuric acid (SO 3), nor more than 4 per cent of

magnesia (MgO).

215. Concrete. When cement mortar is mixed with certain per-

centages of broken stone, gravel, or cinders, the mixture is called

concrete. The amount and kind of stone or other material to be used

depends upon the use to be made of the finished product. Concrete

is rapidly coming into favor as a building material, and is replacing

brick and stone in many classes of structures. If properly made it is

a much better building material than either of the latter, and has an

additional advantage in the fact that it can be handled by unskilled

labor and may be readily molded into any desired form. In view of

these facts, a study of its properties is of the greatest importance.

216. Mixing of concrete. In making concrete, the sand and cement

are first thoroughly mixed and gauged with the right amount of water.

The stone, having previously been moistened, is then added, and the

whole is thoroughly mixed until each piece of stone is coated with the

cement mortar. These two operations are often combined into one.

The amount of water to be used in making the mortar depends upon
the character of the concrete desired. A medium concrete may be

obtained by adding enough water so that moisture comes to the

surface when the mortar is struck with a shovel.

After mixing, the concrete is tamped, or rammed, into position.

This tamping should be thoroughly done, since in no other way can

as dense a mixture be obtained. It is desirable that all the voids

(spaces between the broken stone) should be filled as compactly as

possible with mortar.

217. Tests of concrete. Concrete is usually tested in compression,

and for this purpose 6-inch cubes * are made, composed of cement,

sand, and broken stone in the proportions of 1 : 2 : 4 or 1 : 3 : 6. In

some cases the proportion to be used in the particular work con-

cerned is also used in making the test cubes. These cubes are made

in molds and allowed to set in air, or part of the time in air and the

*
Cylinders or larger cubes are also sometimes used.
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remainder in water, until tested. The kind of cement as well as its

physical properties must be known
;
also the kind of sand and stone

and the degree of fineness of each.

When ready for testing, the concrete cubes are placed in the testing

machine, bedded with plaster of Paris or thick paper, and tested in

compression. The load at first crack and the maximum load are noted.

The table on the opposite page is a report of a series of tests made

at the "Watertown Arsenal on Akron Star cement concrete in com-

pression.* It will be noticed that the ultimate strength varied from

600 lb./in.
2
to 2700 lb./in.

2

The table on page 308 is taken from the same volume as the

preceding, and summarizes the results of tests on concrete made

from different kinds of cement. Various kinds of broken stone were

used, including broken brick, and the ultimate strength ranged from

600 lb./iu.
2
to 3800 lb./in.

2 In making comparisons from the table

as to strength several things must be noted, namely, the kind and

strength of the cement, the proportions and character of the sand

and gravel, the treatment after making, and the age when tested
;
in

other words, a complete history of the materials and their treatment

should be known. In the following table the cubes tested were set

in air, in a dry, cool place.

The location and character of the structure will often determine

the kind of materials to be used in making the concrete. Thus, on

account of convenience, pebbles are sometimes used with the sand

in which they are found. This reduces the cost of the concrete, but

usually impairs its strength, as the proportions of sand and stone as

they occur in nature are not likely to be such as to be suitable for

concrete. Theoretically, to get the best results the proportions should

be such that the cement fills the spaces between the grains of sand,

and the mortar fills the spaces between the pieces of stone.

In any particular case the cost of material, strength of the concrete,

and service required of the structure must determine what propor-

tions shall be used.

Problem 300. A concrete cube 12 in. high when tested in compression sustained

a load of 324,000 Ib. at first crack, and 445,200 Ib. at failure. Find the intensity

of the compressive stress in lb./in.
2 at first crack and at failure.

* Watertown Arsenal Report, 1901.
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218. Modulus of elasticity of concrete. Concrete is so imperfectly
elastic that the modulus of elasticity varies with the stress. It also

changes with the age of the material and with the change in propor-

tions of cement, sand, and stone.

The variation in the modulus of elasticity with the stress makes

it difficult to make theoretical computations in which the modulus

of elasticity is involved, as, for instance, in such problems as arise

in connection with reenforced concrete beams, etc.*

MODULUS OF ELASTICITY OF CONCRETE IN COMPRESSION

COMPOSITION
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The strain diagram of concrete in compression, shown in Fig. 181,

illustrates the fact that there is no well-defined elastic limit, and that

the modulus of elasticity changes as the load increases.

The table on page 309 also illustrates the variation in the modulus

of elasticity of concrete in compression.* In the first ten tests the

cement used in making the test specimens was Alpha Portland, in

the next sixteen it was Germania Portland, and in the remaining

ones Alsen Portland.

Problem 301. From the strain diagram of concrete in compression shown in

Fig. 181, compute the modulus of elasticity at 1800 lb./in.
2 and at 2400 lb./in.

2

The height of the block tested was 10 in.

Problem 302. A concrete beam 6 in. x 6 in. in cross section, and with a 68-in.

span, is supported at both ends and loaded in the middle. The load at failure is

1008 Ib. Find the maximum fiber stress.

COMPRESSIVE STRENGTH AND MODULUS OF ELASTICITY OF
CINDER CONCRETE CUBES
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Few tests have been made on concrete blocks, and but little is

known as to their durability. The following table is a report of a

series of tests made at the University of Michigan.* The blocks were

first tested in flexure, and then an uninjured portion of the block

was tested in compression. Blocks 3, 4, 5, and 6 were from the same

mixture, and were composed of one part cement, two parts sand, and

three parts broken stone. They were all tested after four months.

TESTS OF CONCRETE BUILDING BLOCKS

NTMKEK OF







CHAPTER XIY

REENFORCED CONCRETE

222. Object of reenforcement. The fact that concrete is much

stronger in compression than in tension has led to attempts to

increase its tensile strength by imbedding steel .or iron rods in the

material. This metal reinforcement is so designed as to carry most of

the tensile stress, and thus plays the same part in a concrete structure

as the tension members play in a truss.

It has been found by experiment that reenforced concrete beams

may be stressed in flexure far beyond the elastic limit* of ordinary

concrete, and even beyond the stress which would rupture the same

beam, if not reenforced, without appreciable injury to the material.

M. Considere, one of the leading French authorities on the subject,

reports a test of this kind, in which he found that concrete taken

from the tensile side of a reenforced concrete beam tested in flexure

was uninjured by the strain. Professor Turneaure, of the University

of Wisconsin, has found that minute cracks occur on the tension side

of 'a reenforced concrete beam as soon as the fiber stress reaches the

point at which non-reenforced concrete would crack,f Experiments
of this kind seem to indicate that the metal reenforcement carries

practically all of the tensile stress, as cracks in the concrete must

certainly reduce its tensile strength to zero at this point.

223. Corrosion of the metal reenforcement. The maintenance of

the increased strength of concrete due to the metal reenforcement

depends upon the preservation of the metal. The corrosion of metal

imbedded in concrete is thus a matter of the greatest importance in

connection with reenforced concrete work. It has been found that

metal thus protected does not corrode even though the concrete be

* As indicated in Chapter XIII, concrete shows no well-defined elastic limit, i.e. the

material does not conform to Hooke's law. In this case elastic limit means the arbitrary

point beyond which the deformations are much more noticeable than formerly.

t Proc. Amer. Soc.for Testing Materials, 1905.

313
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subjected to the severest exposure. However, the existence of cracks

on the tension side of reenforced beams makes the exposure of the

metal rods possible, and thus adds a new danger to the life of the

beam
;
but the small hairlike cracks that occur after the elastic limit

of the concrete has been passed probably have no effect in this respect.

When they become large enough to expose the reenforcement, the

strength of the beam is endangered.

224. Adhesion of the concrete to the reenforcement. When a reen-

forced concrete beam is subjected to stress, there is always a tendency

to shear horizontally along the reenforcement. This is prevented in

part by the adhesion between the steel and
1 -=Sfctz-.^gL. Tzy ii_j^ concrete. Failure sometimes occurs, due to

this horizontal shear, especially when the

beam is over-reenforced, i.e. when the area of

cross section of the reenforcement is large as

compared with the total area of cross section

of the beam. When plain round or square rods

are used, the adhesion between the steel and

concrete furnishes the only bond. For com-

FIG. 183 mercial purposes, however, various forms of

i,Kahn trussed bar; 2, Johnson regnforcement are ordinarily used to increase
corrugated bar

; 3, Thaeher

bulb bar; 4, Ransome twisted tliis bond. Four of these commercial types
bar are illustrated in Fig. 183. The Johnson,

Thaeher, and Ransome bars are provided with projections and inden-

tations to prevent the bar from pulling out of the concrete, while the

Kahn bar, by means of the projecting arms that extend upward along

the lines of principal stress in the beam, is also designed to act as

a truss. Several other commercial types of bar are also in use, but

all are provided with projections or indentations of some kind to

prevent slipping.

Many tests have been made to determine the force necessary to

pull the various forms of rods from concrete. The following table

gives the results of pulling-out tests made by Professor Edgar Mar-

burg, of the University of Pennsylvania.* The rods in this case were

imbedded centrally in 6 in. X 6 in. concrete prisms 12 in. long, and

were tested after thirty days. In most cases, except in that of the

* Proc. Amer. Soc.for Testing Materials, 1904.
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plain rods, failure was due to the breaking of the rods or the cracking
of the concrete. On account of the projections on some of the rods

these can hardly be called adhesion tests, but should more properly
be called pulling-out tests.

As might be expected, the plain rods show the lowest values, since

any reduction in cross section of the rod, due to the tensile stress

upon it, largely destroys the adhesion of the concrete. Square reen-

forcing rods, or those that present sharp angles, are likely to cause

initial cracks upon the shrinkage of the concrete. To have the

strongest bond a rod should be round, with rounded projections.

PULLING-OUT TESTS
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gives 1600 lb./in.
2

for the compressive strength of 6-inch cubes

thirty days old. A slightly higher value was found for cubes from

a different mixture.

From an investigation of the tensile strength of steel reenforcing

bars, the writer referred to above obtained the following values.
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compression, for certain grades of material to be as follows.* The use

of this ratio is exemplified in the following article.

Stone concrete 23 days 8.8

Stone concrete 00 days 6.6

Average 7.7

Gravel concrete 28 days 8.0

Gravel concrete 90 days 6.2

Average 7.1

227. Strength of reenforced concrete beams. Concrete is weak in

tension and strong in compression, so that when used in the form of

a beam, the tensile strength controls the strength of the beam. To

correct for this lack of strength in tension, steel rods are imbedded in

beams in such a way as to carry the tensile stresses.

A few years ago engineers believed that the tensile strength of the

concrete in a beam might be considered in computing the strength of

the reenforced concrete beam. At present, however, the steel reen-

forcement is designed to carry all the load in tension and the con-

crete all the load in compression ;
that is, the tensile strength of the

steel is balanced against the compressive strength of the concrete.

Since concrete is imperfectly elastic, the stress-strain diagram is not

quite a straight line in any part of its length. This means that its

modulus of elasticity is not constant, but changes with the stress.

The results of many tests show that the stress-strain diagram for

concrete may be assumed a parabola, so that the compressive stress

on any section of the beam varies as the ordinates of a parabola.

On account of the difference in the modulus of elasticity of steel

and concrete (30,000,000 lb./in.
2 and 2,000,000 lb./in.

2
to 2,500,000

lb./in.
2

),
the position of the neutral axis changes with the load on the

beam. In the following analysis the assumptions of the common

theory of flexure are supposed to hold, with the exception of the

points stated above.

Let I = length of span,

x distance of the neutral axis from the compression face,

d = effective depth of beam
;
that is, the distance from top of

beam to center of gravity of reenforcement,

* Jour. Western Soc. Eng., June, 1904.
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r = ratio of area of steel to that of the effective cross section

of the beam,

E
s
= modulus of elasticity of steel,

E
c
= modulus of elasticity of concrete in compression,

ps
= unit stress in metal reinforcement,

pc
= unit compression stress in the concrete at outer fiber,

e = unit contraction in concrete, and e
r unit elongation in the

steel,

E
c
is measured at stress pc

.

The beam is supposed reenforced on the tension side only, and the

rods are imbedded to a sufficient depth to protect the steel. (This

p
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moment of the stress couple must be equal to the moment of the ex-

ternal forces acting upon either portion of the beam. If the beam is

supported at the ends and loaded in the middle, and the middle sec-

tion is considered, then

2 ,/, 3 \ PI

-g*)=->

or
PI~

Equating the summation of horizontal forces (Fig. 184) to zero,

we have

or

But on the assumption that the cross sections of the beam remain

plane during flexure (see Fig. 185),

e e' e
or :

From definition,

so that

and therefore

x d x

E. = -& and

Eliminating pe between (d) and
(e),

we have

O 77Y

x2 = rd '

(d x). (/)
3 E

c

Equation (/) may be used to locate the neutral axis in a beam.

The ratio - is taken by different authorities from 12 to 15. Tests

made in this country seem to show the lower value as more nearly

correct, although 15 is usually used. It has also been found that the

relations of d and x may be expressed approximately by

x = .52 d.
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Substituting this value in equations (a)
and

(6), we have

and M= .80 p8
rbd?.

(h)

Problem 304. A reenforced concrete beam 8 in. x 10 in. in cross section, and

15 ft. long, is reenforced on the tension side by six --in. plain steel rounds. The

steel has a modulus of elasticity of 30,000,000 lb./in.
2

,
and the center of the

reenforcement is placed 2 in. from the bottom of the beam. Assuming that

Ec = 3,000,000 lb./in.
2

,
and pc = 600 lb./in.

2
,
find from formulas (/) and (a) the

position of the neutral axis and the moment M.

NOTE. The moment M corresponds to the moment obtained from the consideration

of the flexure of homogeneous beams; that is to say, M is the moment of resistance of

the beam (see Article 44).

Problem 305. For a stress pc = 2700 lb./in.
2 on the outer fiber of concrete

in the beam given in Problem 304, find the stress ps in the steel reenforcement.
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and equation (/) becomes

-a* =
drjj(d-x).

In this case it has been found that

x=
^ d, approximately,

so that equations (/)
and (j) may be written

\ (ft)

229. Bond between steel and concrete. The reenforced concrete

beam should be regarded as a girder. The concrete in compression

should be regarded as one flange, the steel in tension as the other,

while the web is made up of concrete. In order that the steel reen-

forcement may act effectively, it is necessary that there be sufficient

bond between the steel and concrete to carry the horizontal shear

occurring along the reenforcernent. The stress that this bond must

carry is about the same as that carried by the rivets connecting the

flange and web in a plate girder.

If y denotes distance along the beam, we know (Article 53) that

?=
and so from equations (a) and (m),

g_&W,_|Ay \ 8

where F is the area of cross section of the reenforcement, or, calling

d | x, d', this may be written

F dps = Q

dy d'

But F is the rate of change of total stress in the reenforcing bars

dy
as y varies along the beam. For unit length of beam, it measures the

stress transmitted by the concrete to the bars, that is, the bond.

Let k = number of bars,

and o = surface of one bar per inch of length.

Then ok = surface of steel per inch of length of beam,

and oku = bond, where u is the bond developed per unit area of

rod surface of bars.
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Then

For parabolic loading,

If x = .52 d,

STEENGTH OF MATEEIALS

- == oku.

_Q
(d | x) ok

u =

For the linear variation,

If x = | d, this becomes

.8 (okd)

_Q

Q

(A

l(okd)

These equations give the unit horizontal shearing stress along the

reenforcement. From what has been shown previously, this is also

the unit vertical shearing stress at the reenforcement.

Turneaure and Maurer *
give the following as working stresses

in concrete beams.

ULTIMATE
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the case of those of rectangular section, the cross sections are assumed

to remain plane during bending. We have, then,

e' ps
E

c
d-x

The tension of the concrete in the web, and the small amount of

compression when the neutral axis falls below the flange, may be
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The resisting moment of the T-beam may now be written

x) ) (t)

or M=2isF(d-x). (u)

If the neutral axis falls within the flange, then d", the arm of the

internal couple, will be greater than d , so that a safe approximation
o

for the resisting moment is obtained by using

or

When the neutral axis falls on the lower edge of the flange, these

formulas (v) and (w) are exactly true.

The horizontal shear in the case of T-bearns may be obtained as

follows. From equation (u)

_
~

==^ Irtd _x) == Q
dy dy

Q
and -T-^ = OKU,

d x

where oku has the same meaning as in the case of rectangular

beams. So that

Qu =

or, from (w),

ok (d x)

Q_

~3

231. Shear at the neutral axis. If the tension in the concrete

is neglected, in the case of rectangular beams, the horizontal shear

at the neutral axis must be equal to the horizontal shear along the

reenforcement. If u r

is the unit horizontal shearing stress in the
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concrete at the neutral axis and b is the width of the beam, then

bu' = shear per unit length of beam, at the neutral axis, and so

"'=!

and therefore for parabolic variation of stress

Q

and for linear variation of stress

o

In the case of the T-beams, if the tension in the web is neglected,

the horizontal shear where the web joins the flange must be equal to

the shear along the steel. Then

and so
b' (d

-
x)



CHAPTER XV

BRICK AND BUILDING STONE

232. Limestone. Limestone is principally a carbonate of lime, made

up of seashells that have been deposited from water during past

geological times. Its method of formation has much to do with its

value as a building material. If it contains no thin layers of clay

or shale (sedimentary planes), it is likely to be fairly homogeneous in

structure. But if layers of shale, however small, occur, the material

is much more quickly weathered. This is especially true if the stone

be placed at right angles to the position it occupied in the quarry.

Thin planes of foreign substances are likely to occur in many
of our best building stones, as may be seen in the rapid deteriora-

tion of seemingly first-class limestone when used as curbing. Such

disintegration is caused by a lessening of the adhesion between the

particles of stone.

Limestone may be composed of a great percentage of sand cemented

together by calcareous matter, in which case it is called siliceous lime-

stone. Under such circumstances chemical action may remove the

cementing material, thus leaving the stone free to crumble. Marble

is almost pure limestone.

Conditions to which a building stone is to be exposed will determine

the character of the material to be used in any particular structure.

Rapid freezing and thawing is likely to set up internal strains in the

material, which may lead to future failure. These strains may be

caused by unequal expansion or contraction of the particles of the

stone, or by the freezing and thawing of the water in the stone. The

formation of ice in the sedimentary planes accounts in a large measure

for the rapid deterioration of stone.

Limestone often occurs in very thick layers, as in the case of the

oolitic limestone found at Bedford, Indiana, where the layers are

often from 25 to 30 ft. thick. In such cases it is a most valuable

326
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building stone, especially for bridge piers and other structures where

large masses of stone are needed. This particular limestone, unlike

most others, is easily worked, being almost equal to sandstone in

this respect.

When limestone is subjected to the atmosphere of a large city, where

great quantities of coal are used, it is acted upon by the sulphuric

acid in the air. To determine the effect of this action, a small piece of

stone, well cleaned, is placed in a 1 per cent solution of sulphuric

acid and left for several days. If no earthy matter appears, it may be

concluded that the stone will withstand the action of the atmosphere.

233. Sandstone. Sandstone consists very largely of grains of sand

(silicon) cemented together. It has been deposited from water, making
it homogeneous in structure, and as it occurs in vast beds, it is very

suitable for building purposes. The ease with which it may be carved

and worked makes it a much more valuable building material than

limestone. Various foreign substances, such as iron, manganese, etc.,

give to the stone a variety both in color and texture. Sandstone

absorbs water much more readily than limestone, and were it not for

the fact that it occurs in such thick layers, and is therefore almost

free from sedimentary planes, this might be a serious objection to its

use. The mean weight of sandstone is 140 lb./ft.
3

;
that of limestone

is 160 lb./ft.
3

234. Compression tests of stone. The most common test for a

building stone is that of subjecting it to a direct crushing force in

an ordinary testing machine. To prevent local stresses, the specimen,

which is generally a well-finished cube, is usually bedded in plaster

of Paris, thin pine boards, or thick paper, and the load at first

crack and the maximum load are noted. The friction of the bedding

against the heads of the machine tends to prevent the spreading of

the specimen near these heads and thus adds to the strength of the

cube. Great care is necessary in preparing the specimen, in order to

get the two bearing faces exactly parallel. The stone fractures along

the 30 line approximately, giving the characteristic fracture of two

inverted pyramids (Figs. 188 and 189).

From a series of tests made by Buckley on the building stones of

Wisconsin,* the average of ten tests on limestone gave an ultimate

*
Buckley, Building Stones of Wisconsin.
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strength of 23,116 lb./in.
2
,
a modulus of elasticity ranging from

31,500 lb./in.
2
to 1,800,000 lb./in.

2
,
and a shearing strength ranging

from 1735 lb./in.
2

to 2518 lb./in.
2 The average of thirty tests on

sandstone gave an ultimate strength of 4109 lb./in.
2
,
and a modulus

of elasticity ranging from 32,000 lb./in.
2
to 400,000 lb./in.

2

From a series of tests on building stone from outside the state of

Wisconsin, the same report gives the ultimate strength of limestone

as ranging from 3000 lb./in.
2

to 27,400 lb./in.
2
,
and the ultimate

strength of sandstone from 2400 lb./in.
2

to 29,000 lb./in.
2

This

report also gives tables showing the effect of freezing and thawing

on the strength of stone, the effect of sulphuric acid on limestone,

and the effect of high temperatures on building stone.

The following table shows the results of a series of compressive

tests made upon limestone at the Watertown Arsenal.*

HEIGHT

in.



FIG. 188. Result of Compression
Test of Limestone

FIG. 189. Results of Compression Tests of Sandstone
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235. Transverse tests of stone. The use of stone where transverse

stress is applied calls for some knowledge of its transverse strength.

A stone may meet the specifications for crushing and yet fail entirely

when subjected to cross bending, since a beam is in tension on one

side and in compression on the other. As stone is much stronger in

compression than in tension, it usually fails in tension under trans-

verse loading.

To test the transverse strength of stone, small beams are pre-

pared usually 1 in. square by 6 or 8 in. long. These are supported

on knife-edges resting on the platform of the testing machine, and

the load is applied at the center. Buckley reports limestone beams

1 in. x 1 in. X 6 in. to have a modulus of rupture of 2000 lb./in.
2
,

and sandstone beams 1 in. x 1 in. X 4 in. to have a modulus of rupture

of 1000 lb./in.
2

236. Abrasion tests of stone. The most extended series of tests

of stone iii resisting abrasion was made by Bauschinger.* Four-inch

cubes under a pressure of 4 lb./in.
2 were subjected to the abrasive

action of a disk having a radius of 19.5 in. and making 200 revo-

lutions per minute, upon which 20 g. of emery were fed every 10

revolutions. The loss of volume in cubic inches was as follows.

Granite 24 dry and .46 wet

Limestone 1.10 " 1.41 "

Sandstone . 80 " .64 "

Brick 38 " .75 "

Asphalt 60 " 1.62 "

Abrasion tests of stone have never been standardized, and comparison
of results of different tests must be made with a full understanding

of all the conditions affecting the results.

237. Absorption tests of stone. The absorption test is made to

determine the amount of water absorbed by the dry stone. In making
the test the specimen is first heated for several hours at a tempera-

ture of 212 F., and then placed in water for about thirty hours. The

increase in the weight of the specimen divided by its weight when

dry and multiplied by 100 gives the percentage by weight of'moisture

absorbed. This percentage for a series of tests varied, for granite,

from 1.1 to .3 ;.for limestone, from 3.6 to 1.2
;
and for sandstone, from

13.8 to 1.6.
* Communications, 1884.
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238. Brick and brickwork. Brick is generally made by tempering

clay with the proper amount of water, and then molding into the

desired shape and burning. The tempered clay is used wet, dry, or

medium, depending upon the kind of brick desired, and these are classi-

fied as soft mud brick, pressed brick, or stiff mud brick respectively.

The position of the brick in the kiln may also determine its classifica-

tion as hard brick, taken from nearest the fire, medium brick from

the interior of the pile, and soft brick from the exterior of the pile.

Paving brick is a vitrified clay brick or block somewhat larger

than the ordinary brick.

239. Compression tests of brick. For this test a whole or half

brick is tested edgewise or flat in much the same way as in the

crushing test for building stone. The faces which are to be in contact

with the heads of the testing machine are ground perfectly smooth

and parallel, or are bedded, or both. If plaster of Paris is used, it

should be placed between sheets of paper to prevent the absorption

of water by the brick, as this may affect its strength. In any case, in

testing brick or stone in compression it is desirable to use a spherical

compression block for one of the heads, so that in case the faces of the

test piece are not parallel the bearing will adjust itself to bring the

axis of the test piece into coincidence with the axis of the machine.

In this case, also, the load at first crack and the maximum load are

noted. The form of the fractured specimen is also noted
;

it is usually

that of the double inverted pyramid. An imperfect bedding may cause

the specimen to split vertically into thin pieces. Cardboard cushions

and soft pine boards are also used in bedding brick for testing.

The relative value of the kinds of bedding, as indicated by tests

made at the Watertown Arsenal * on half bricks, may be seen from

the following table.
MEAX STRENGTH

Set in plaster of Paris 5640 lb./in.2

Set in cardboard cushions 4430 "

Set in pine wood 4540 "

The strength of a single brick in compression cannot be taken as

a criterion of its strength in an actual structure, since its strength in

that case must depend somewhat upon the mortar used. If the

mortar is soft and flows
(i.e.

is squeezed out), the brick may fail in

* Watertown Arsenal Report, 1901.
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tension, due to the lateral flow of mortar, instead of in compression.

From a series of thirty-eight tests made at the Watertown Arsenal*

on piers of common brick, it was found that the maximum compres-

sive strength varied from 964 lb./in.
2

to 2978 lb./in.
2 The mortar

in this case was composed of one part Rosendale cement and two

parts sand. The bricks used in these piers developed only one half

their compressive strength. The compressive strength of soft brick

may go as low as 500 lb./in.
2
,
and that of paving brick as high as

15,000 lb/in.
2
,
when used in piers.

The following table gives the results of tests of the compressive

strength of common brick made at the Watertown Arsenal. The

compressed surfaces were bedded in plaster of Paris, and the bricks

were tested whole.

COMPRESSIVE STRENGTH OF COMMON BRICK

NUMBER
OF

BRICK
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The compressive strength here ranged from 5000 lb./in.
2
to 18,000

lb./in.
2

Average values for the strength of different kinds of brick

in compression might be given as follows : soft brick, 900 lb./in.'
2

;

hard brick, 3250 lb./in.
2

;
and vitrified brick, 17,500 lb./in.

2 The

latter includes paving brick.

Problem 310. The following bricks were tested in compression.

(a) Red face brick: sectional area, 28.45 in.'2
;
load at first crack, 379,000 Ib.

;

load at maximum, 384,600 Ib.

(6) Vitrified brick : sectional area, 27.46 in. 2
;
load at first crack, 72,000 Ib.

;
load

at maximum, 230,000 Ib.

(c) Paving brick : sectional area, 26.72 in. 2
;
load at first crack, 51,000 Ib.

;
load

at maximum, 148,000 Ib.

Find the intensity of stress at first crack and at maximum load in each case.

240. Modulus of elasticity of brick. As in the case of stone and

concrete, the modulus of elasticity of brick in compression is not

constant, but varies to some extent with the load. On account of

this variation it is hard to give average values for the modulus of

elasticity of brick, especially as the materials and methods of manu-

facture are so varied. Therefore in stating the modulus of elasticity

it is also necessary to state the corresponding load. Strictly speaking,

brick, stone, and concrete have no modulus of elasticity.

The table below is the result of a series of tests of dry-pressed and

mud brick, tested edgewise in compression, and gives the modulus of

elasticity for loads between 1000 lb./in.
2 and 3000 lb./in.

2

,
and also

at the highest stress observed.

MODULUS OF ELASTICITY FOR BRICK
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Problem 311. A dry-pressed brick of sectional area 9.72 sq. in. was tested in

compression endwise. Measurements were taken on a gauged length of 5 in. and
the following data obtained.

APPLIED LOADS
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241. Transverse tests of brick. Bricks are tested transversely

by supporting them edgewise or flatwise upon two knife-edges and

applying the load centrally by means of an ordinary testing machine.

Care must be taken to provide suitable bearing surfaces for the knife-

edges, in order to prevent local failure. In this test the upper fibers

are in compression and the lower fibers in tension, and since brick is

stronger in compression than in tension, failure is caused by rupture

of the tension face. The fiber stress is computed from the formula

Pie
P = J>

where P is the breaking load in pounds, I is the length of span in

inches, e is half the height, and I is the moment of inertia of a cross

section. The fiber stress on the outer fiber at failure is usually called

the modulus of rupture.

For paving brick the modulus of rupture varies from 1000 lb./in.
2

to 3000 lb./in.
2 For pressed brick, common brick, and medium brick

the modulus of rupture varies from 300 lb./in.
2
to 1200 lb./in.

2

The shearing strength of various grades of brick varies from

300 lb./in.
2
to 2000 lb./in.

2

Problem 312. A brick having a depth of 2.23 in. and a breadth of 3.95 in. was
loaded centrally on a span of 6 in. The ultimate load was 1645 Ib. Find the

modulus of rupture.

242. Rattler test of brick. Paving bricks were formerly tested in

abrasion in order to determine their ability to withstand wear. This

test, however, does not approach the conditions of actual service,

which consist of the impact of horses' feet as well as the abrasive

action of traffic. To meet these conditions the rattler test was devised.

The testing machine consists of a cast-iron barrel mounted horizon-

tally, and the test is made by placing the brick, together with some

harder material, such as cast iron, in the machine and revolving
it at a certain speed for a certain length of time. The ratio of the

amount of material broken or worn off in this way to the original

weight of the brick put into the machine indicates the value of the

brick in withstanding the conditions of service.

The charge usually consists of nine paving bricks or twelve other

bricks, together with 300 Ib. of cast-iron blocks, the volume of the
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bricks being equal to about 8 per cent of the volume of the machine.

The cast-iron blocks are of two sizes, the larger being about 2J- in.

square and 4J-
in. long, with rounded edges and weighing at first

7J-
Ib. The smaller are about IJ-in. cubes, with rounded edges. About

225 Ib. of the smaller size and 75 Ib. of the larger size are used
;

1800 revolutions are required, and must be made at the rate of about

30 per minute.*

During the first 600 revolutions the effect of the rattler action on

the brick is to chip off the corners and edges. Thereafter the action

is more nearly abrasive.

243. Absorption test of brick. A brick which absorbs a great

amount of water is likely to be weakened and injured by frost. To

measure the amount of absorption, a dry brick is taken and a deter-

mination of its absorbing capacity made, as in the case of stone

(Article 237).

Ordinary brick will absorb from 10 to 20 per cent of its own

weight, and paving brick from 2 to 3 per cent.

This test is now little used, since a brick that fails in the absorp-

tion test is of such poor quality that it will also fail when subjected

to the crushing and cross-bending tests.

* See specifications of the National Brick Manufacturers' Association for rattler test.



CHAPTER XVI

TIMBER

244. Structure of timber. An examination of the cross section of

a tree usually shows that it is made up of a rather dark interior core,

or heartwood, and a lighter exterior portion, or sapwood, surrounded by

the bark. In some species, such as the oaks, radial lines, called

medullary rays, are seen running from the center toward the bark.

If the cross section happens to be near a knot or other defect, this

normal structure may be changed. If, however, no knots are present,

a closer examination shows that both the sapwood and heartwood are

made up of concentric rings, called annual rings, and that this appear-

ance is due to a difference in structure. Part of the ring is seen to

be denser than the rest, and, in fact, it is this difference in density

which gives the section its characteristic appearance.

The annual rings in one stick of a certain species may be more

widely separated than those in another stick of the same species, and

the relative thickness of heartwood and sapwood may differ in different

sticks. This indicates that the structure of timber varies considerably,

and that therefore the physical properties also vary. This wide varia-

tion is seen in all substances found in nature, one instance of which

has been shown in the case of natural stone. An investigation of the

physical properties of such substances, therefore, is more difficult than

that of a more homogeneous substance. However, the extensive use

of timber as a structural material makes a knowledge of its structure

and properties of the utmost importance.

245. Annual rings. Each of the concentric rings in timber repre-

sents the growth of one year. The inner or less dense portion repre-

sents the more rapid spring growth, while the outer dense portion

represents the slower summer and fall growth. The number of rings

per inch indicates the rate of growth for that number of years. If

the number of rings per inch be few, the growth has been rapid and

336
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the spring growth predominates, making the wood somewhat weak.

If, on the contrary, the number of rings per inch be many, a slow

growth is indicated and there is a greater amount of the dense, strong

summer and fall wood. The number and character of the annual

rings may thus give some idea of the strength of a piece of timber.

246. Heartwood and sapwood. The heartwood of a tree may be

considered a lifeless conical core, which is increased each year by the

addition of a portion of the outer sapwood. Both the sapwood and

heartwood contain small tubes that extend from the roots of the tree

to the branches. These tubes in the sapwood carry water charged

with nourishment to the branches and growing parts of the tree. In

the heartwood the tubes no longer act as conveyors, although they

still contain moisture. The heartwood is the mature wood and is

more valuable for structural purposes.

247. Effect of moisture. It is well known that green wood is not

as strong as the same wood when seasoned, which indicates that the

effect of moisture in timber is to lessen its strength. A live tree as

it stands in the forest contains a great deal of moisture. When it

has been cut, sawed, and dried, most of this moisture has evaporated,

but considerable still remains, and however well seasoned timber may
be, it will still contain some moisture.

In making tests of timber, therefore, it is necessary to determine

the percentage of moisture in order that the results- may be compared
with the results of other tests. This is determined by cutting a

small piece from the uninjured portion of the test piece and weighing

before and after thorough drying. The difference in weight divided

by the dry weight and multiplied by 100 gives the percentage of

moisture.

248. Strength of timber. The strength of timber depends upon the

amount of heartwood or sapwood, knots (sound or loose), wind shakes

and checks, cracks, or any defect that breaks the continuity of the

fiber. In general, the strength of timber is indicated by its weight,

the heaviest timbers being the strongest. Timber is strongest along the

grain both in tension and compression, as will be seen in what follows.

It has been found that values obtained for the strength of timber

by testing small, carefully selected test pieces are much higher than

those obtained by testing large commercial timbers. This is what
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might be expected, since the larger commercial pieces contain knots

and other defects not found in the selected test pieces. It has been

found also that the place and conditions of growth, time of felling,

method and time of seasoning, and many other factors have each

some effect upon the strength of timber. Since the weight of timber

is an indication of its strength, some idea of the relative strength

of the more common species may be obtained by referring to the

table given below.*

WEIGHT OF KILN-DRIED WOOD OF DIFFERENT SPECIES
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with its ends as nearly parallel as possible, and the compression is

measured by an ordinary compressornet6T, or similar instrument for

measuring the lowering of the moving head. To provide for the non-

parallelism of the ends, it is well to use a spherical bearing for one

of the bearing ends. This will insure the proper
"
lining up

"
of the

specimen so that the compression will be along the grain.

A strain diagram may be drawn by plotting loads in lb./in.
2
as

ordinates and the corresponding relative compressions as abscissas.

The elastic limit, modulus of elasticity, modulus of resilience, and

maximum strength may then

be obtained from the diagram
in the usual manner. Failure is

either due to a splitting of the

specimen or to a shearing off at

an angle of about 30 to the

horizontal (Fig. 190). The latter

is the characteristic failure for

green timber.

The tests on long columns are

made in much the same way as

the tests on short blocks. Provision is made for fixing the ends of

the columns so as to give the standard end conditions, namely, square

ends, round ends, pin and square ends, etc. In either case sufficient

data is taken to get a load-deflection curve by measuring the deflec-

tions at the center corresponding to selected load increments. These

deflections are usually measured in two directions at right angles to

each other.*

Problem 313. Fig. 191 represents the results of compression tests of pine,

poplar, and oak, plotted with loads in pounds as ordinates and compression in

inches as abscissas. The blocks were all 7 in. high, with an area of cross section as

follows : pine, 2 in. x 1.48 in.
; poplar, 2 in. x 1.48 in.

; oak, 2 in. x 1.47 in. Redraw

the curves, plotting the loads in lb./in.
2 as ordinates and the corresponding unit

compressions in inches as abscissas. Determine for each material the elastic limit,

the modulus of elasticity, and the modulus of elastic resilience. Also compare the

results obtained with the results reported for these materials in compression in

the following tables.

FIG. 190

* For a report of the tests that have been made on full-sized timber columns the

student is referred to Lanza's Applied Mechanics.
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250. Flexure tests. Flexure tests are usually made by supporting

a rectangular piece at both ends and loading it in the middle, care

being taken to guard against local failure at the supports and at the

point of application of the load. This local failure may be prevented

by inserting some kind of metal plate between the beam and the

knife-edge. The deflections of the beam for specified loads are meas-

ured by means of a deflectorneter, usually measuring to .01 in. or

.001 in. From the data obtained from a test, a strain diagram may
be drawn by plotting loads in pounds as ordinates and deflections in

inches as abscissas. The fiber stress for any load within the elastic

limit is determined, for central loading, from the formula

Pie
P =

I>

and the modulus of elasticity from the formula (Article 67)

,**-.
4:8 DI

The formulas used to determine the fiber stress in the case of the

flexure of beams
(

= J/max )
are true only within the elastic limit

e

of the material. They are used, however, to determine the fiber stress

beyond the elastic limit, although they are only approximately true

beyond this limit. The value of the fiber stress at rupture as deter-

mined by the formula is usually designated as the modulus of rupture

(Article 65) ;
it is expressed in lb./in.

2

On account of the peculiar structure of timber the character of

the fracture due to a failure in flexure is rather difficult to predict.

In case the specimen is free from knots and the grain is parallel to the

length of the piece, failure from concentrated central loading is likely

to take place either on the tension or the compression side, or both.

It may happen, however, even in the case of such a perfect specimen as

indicated, that failure will be due to horizontal shear. In such cases

shearing takes place along the spring growth of one of the annual

rings. This may have been weakened previously by wind shakes.

If part of the beam is sapwood and part heartwood, the fracture

will be influenced thereby, due to the difference in the strength of

the two portions. A cross grain may cause a failure due to splitting.
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Knots of any kind near the central portion of the beam may determine

the fracture and cause the beam to break off almost squarely. No
law has yet been determined which will give the effect of knots of

various sizes on the strength

of timber.

Some characteristic failures

in flexure are shown in Fig.

192. The lower beam shows a

normal failure on the tension

side. The two upper beams

show the fracture of a some-

what more brittle material,the

fracture being influenced by
the presence of knots. The

upper beam also shows a com-

pression failure.

FIG. 192 Problem 314. A rectangular

pine beam, width 1.48 in., height

1.99 in., and span 30 in., was tested in flexure by being supported at both ends and

loaded in the middle, and the following data obtained. Draw the strain diagram,

plotting loads in pounds as ordinates and deflection in inches as abscissas. Locate

the elastic limit and compute the fiber stress on the outer fiber at the elastic limit.

Also compute the modulus of rapture, the modulus of elasticity, and the modulus

of elastic resilience.

CENTRAL LOAD

Ib.
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In this case the line of action of the force is parallel to the grain.

The intensity of stress is obtained by dividing the force by the area

of the sheared surface.

252. Indentation tests. Indentation tests are intended to show

the crushing strength of timber perpendicular to the grain. A rec-

tangular piece of the tim-

ber is usually chosen,

and a metal block whose

width equals the width

of the specimen is pressed

into it by an ordinary

testing machine. Con-
FIG 193

venient load increments

are taken, and these, together with the corresponding compressions,

give sufficient data for a load compression curve from which the

elastic properties may be determined. Fig. 193 illustrates a specimen

that has been tested in compression perpendicular to the grain.

253. Tension tests. Tension tests of timber are seldom made on

account of the difficulty of obtaining satisfactory test pieces. The

specimens to be tested must be much larger at the ends than in the

middle in order to provide for attachment in the heads of the testing

machine, and for this reason the piece is likely to fail by the shearing

off of the enlarged ends, or by the pulling out of the fastenings.

This test, therefore, is little used, the flexure test being relied upon
to furnish information regarding the tensile strength of timber.

254. European tests of timber. As early as the middle of the

eighteenth century tests to determine the strength of timber were

made in France. This work was done for the most part from a scien-

tific standpoint. The most important European tests were carried out

by Bauschinger in his laboratory at Munich, from 1883 to 188 7. The

object of these tests was to determine the effect of the time of felling

and conditions of growth upon the strength of Scotch pine and spruce.

From these tests Bauschinger drew the following conclusions.

1. Stems of spruce or pine which are of the same age at equal diameters,

and in which the rate of growth is about equal, have the same mechanical

properties (when reduced to the same moisture contents) , irrespective of local

conditions of growth.
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2. Stems of spruce or pine which are felled in winter have, when tested

two or three months after the felling, about 25 per cent greater strength than

those felled in summer, other conditions being the same.

He notes, however, that later tests may change these conclusions

somewhat.

AVERAGE RESULTS OF TIMBER TESTS MADE FOR THE
TENTH CENSUS

NAME OF SPECIES
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255. Tests made for the tenth census. In the United States, tests

were made for the tenth census on four hundred and twelve species

of timber. The test specimens were all small, selected pieces, 1.57 in.

X 1.57 in. in cross section, and 43 in. long, and were seasoned in a

dry, cool building for two years. On account of the number of

species tested the results obtained are not conclusive, but should

be taken as indicating the probable values for the strength of the

timbers tested. On page 344 is given a table of the averages for some

of the species tested. Since the test pieces were all small, selected

specimens, the results are probably higher than would have been

obtained from larger commercial specimens.

In the transverse tests the specimens were supported at both ends

and loaded in the middle, the span being 39.37 in. The compression

tests parallel to the gram were made on pieces 1.57 in. x 1.57 in. in

cross section, and 12.6 in. long. Indentation tests were made on

pieces 1.57 hi. x 1.57 in. in cross section and 6.3 in. long. The test

pieces in the latter case rested upon the platform of the testing

machine, and the tests were made by crushing perpendicular to the

grain with a plate 1.57 in. x 1.57 in. in size, by lowering the moving
head of the machine.

256. Tests made by the Bureau of Forestry. The most extensive

series of timber tests that has ever been undertaken has been begun

by the United States Department of Agriculture under the direction

of the Bureau of Forestry. These tests were begun in 1891, under

the direction of Professor J. B. Johnson, at St. Louis. Thirty-two

species were tested and 45,000 tests were made. The material was

selected with special reference to the conditions under which the

trees were grown, and the test pieces were small, selected speci-

mens. The table on page 346 gives the average results of some of

the tests.*

In the table the results have been reduced to an amount of moist-

ure equivalent to 12 per cent of the dry weight.

A comparison of this table with that of the tenth census shows as

close an Agreement in most cases as might be reasonably expected

when the variability of timber is considered, and serves to extend

and verify the results of the previous work.

* U. S. Forestry Circular, No. 15.
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RESULTS OF TIMBER TESTS MADE BY THE UNITED STATES
BUREAU OF FORESTRY
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the foregoing species endwise in compression while green. The fol-

lowing table gives the results of these tests in lb./in.
2 The pieces

contained over 40 per cent of moisture. A comparison of the results

obtained from these tests with those reported in the preceding table

shows that the compressive strength has been diminished from 50

to 75 per cent by the presence of the given percentage of moisture.

COMPRESSIVE TESTS OF GREEN TIMBER

SPECIES
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(&) That large, sound beams may be as strong as small ones cut

from the same piece ;
that is, large beams may show the same fiber

stress as small ones.

(c) That large, sound pieces in compression may be as strong as

small ones cut from the same piece; that is, the intensity of com-

pressive stress may be the same.

(d) That there were no detrimental effects.

The results of the tests made by the Bureau of Forestry, as out-

lined in this article, should not be taken as conclusive, since not a

sufficient number of tests were made to establish values. The pieces

were in most cases small, and specially selected, and the results are

of more value from a scientific than from a commercial standpoint,

since the lumber of commerce contains knots, wind shakes, and other

defects that lessen its strength.

257. Recent work of the United States Forest Service. The United

States Forest Service (formerly known as the Bureau of Forestry)

has recently made extensive studies of the uses and durability of

the various commercial woods of the United States, and has also

conducted a series of tests to determine their strength, the most im-

portant of which are as follows :

() Tests of commercial-size beams of various timbers found on the market

to determine

1. The effect of knots and other defects on the strength.

2. The effect of moisture on the strength.

3. The effect of preservatives on the strength.

4. The effect of methods of seasoning on the strength.

(&) Tests of materials used in the construction for vehicles for such pur-

poses as spokes, axles, and poles,

(c) Tests of the strength of packing boxes.

(d} Tests of the strength of railroad ties.

In each of these investigations one of the objects has been to deter-

mine, if possible, some so-called inferior woods that might be used in

place of varieties that are superior but are becoming scarce. The test

pieces for (a) were large commercial pieces in which knots and other

defects occur, as they do in the structural timbers used by engineers.

A summary of some of the cross-bending tests is given in the

following table.
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FLEXURE TESTS OF COMMERCIAL TIMBER
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In sizes over 6 by 6, knots not to exceed 2 in. in diameter, varying according
to the size of the piece ; sap on corners not to exceed 3 in. on both face and edge ;

pitch seams not to exceed 8 in. in length.

Defects in all cases to be considered in connection with the size of the piece and
its general quality.

The cross-bending tests of 1 were made upon large specimens

ranging in size from 6 in. x 8 in. x 7 ft., to 8 in. x 16 in. x 16 ft. The

table shows that the modulus of rupture is less for the poorer grades

of timber than for the selects, showing the effect of knots and other

imperfections. The modulus of elasticity, indicating the stiffness, is

less for the poorer grades, except in the case of shipment B of red fir.

The same report also makes a comparison of the strength of large

sticks and small sticks, both in cross bending and in compression

parallel to the fiber.

The table on page 350 gives average values obtained from this

report, and indicates that the strength of the small sticks is, in nearly

every case, greater than the strength of the large sticks. The modu-

lus of elasticity is less for the small sticks than for the large ones,

indicating a greater stiffness for the latter.

258. Treated timber. The increasing scarcity of good timber and

the consequent rise in price has called the attention of American

engineers to the necessity for the use of preservatives in order to

lengthen the life of the timber for commercial purposes. This has

developed a new branch of engineering in this country, based on the

use of many things learned by the Europeans, who were the originators

of some of the best methods of treatment.

When the tree is cut down and the timber seasoned (dried), a por-

tion of the water evaporates from the sap, leaving the food materials

deposited upon the cell walls. These materials are excellent food for

bacteria and various forms of fungi that cause early decay of the

timber if allowed to carry on their destructive work. In the early

days, when timber was plentiful, no attempt was made to preserve

wood from the destructive action of bacteria, but with increasing

scarcity of good timber various methods of treatment have been

devised. The simplest method, of course, is the application of com-

mon paint. This closes all the pores and protects the wood from the

action of bacteria, but this method cannot be made use of where the
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timber is in or near the ground or water, since the continued mois-

ture causes the paint to peel off. The methods most generally used

for treating timber for commercial purposes are given in the follow-

ing paragraphs.

Zinc chloride process. The zinc chloride process is the cheapest, and

until the last few years the one most widely used in this country.

It consists of impregnating the wood fibers with a solution contain-

ing about one half a pound of dried zinc chloride per cubic foot of

timber. The treatment is carried out as follows : Air-seasoned timber

or timber that has been steamed to drive off the moisture is placed

in a cylinder ;
a vacuum is then maintained, while the solution is be-

ing introduced, until the timber is covered. Pressure is then applied

up to 100 to 125 lb./in.
2

by pumping in additional solution. When
the penetration has been sufficient, the solution is drained off. The

principal difficulty with the timber treated by this process comes from

the injury caused by steaming and the subsequent rapid leaching out

of the zinc chloride. This treatment requires about seven hours.

Absorption process. In this process of treatment and those that fol-

low the preservative used is creosote oil. This oil is obtained from

coal tar, a by-product of artificial gas manufacture and the coke ovens.

The creosote oil is distilled from coal tar at temperatures between

240 and 270 C. This absorption process is also known as a non-

pressure process. Air-dried timber is placed in a receptacle and cov-

ered with the boiling preservative. This boiling tends to expel some

moisture from the wood. After boiling, the excess creosote is drained

off and the timber is immersed in cold preservative. In this way

greater absorption is obtained on account of differences in tempera-

ture and pressure. This process is used principally for butts of tele-

graph poles, fence posts, and ties, in limited numbers. About 6 to 12 Ib.

of creosote oil per cubic foot may be absorbed by this process. The

time required for treatment varies from seven to fourteen hours.

Full-cell creosoting process. The seasoned timber, which may be

steamed to reduce moisture and expel sap, is placed in a vacuum and

creosote introduced until the timber is submerged. A pressure of

100 to 125 lb./in.
2

is then maintained, forcing the creosote into the

wood. The creosote is then drained from the tank and, generally,

a low vacuum is maintained to draw out the excess preservative.
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An absorption of as much as 20 Ib. of creosote oil per cubic foot

of timber is possible by this process. The time required, including

steaming, is about seven hours.

Riiping process. When this treatment is used, compressed air is

forced into the pores of the wood, and while under this compres-

sion, creosote oil is introduced under a higher pressure (150 lb./in.
2

).

When the pressure is relieved and the creosote drained off, a vacuum

is produced, allowing the compressed air in the pores of the wood to

expand and force out the excess creosote. This leaves about 4 to%6 Ib.

of creosote per cu. ft. of timber. The cell walls are left lined with the

preservative, whereas in the full-cell process the cells themselves are

left nearly full. The Iviiping process is accordingly much more eco-

nomical in the use of cresote. The time required for this treatment

is about four hours.

259. Strength of treated timber. The question naturally arises as

to whether or not the treatment to which timber is subjected in in-

troducing the preservative has any effect upon its strength in tension,

bending, compression, and shear. The question as to whether or not

the preservative itself weakens the timber must also be considered.

To answer these questions the United States Forest Service has made

an extended study of the strength of treated timber. The results of

some of these tests are shown in the following tables.

SOUTHERN-PlNE BRIDGE STRINGERS, TREATED AND UNTREATED

STATIC BENDING, $ POINT LOADING

NOMINAL SIZE, 8 IN. x IG IN. x 14 IN.
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BRIEF SUMMARY OF RESULTS OF TESTS ON TREATED TIES

STRENGTH OF FULL-SIZED
TIES ix RAIL BEARING

(COMPRESSION PERPENDIC-
ULAR TO GRAIN)
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An examination of the results of tests of the bridge stringers shows

that there is little decrease in strength due to the action of the creo-

sote in the case of the air-dry, long-leaf pine. The loblolly pine, air

dried, shows a decrease in strength of 16 per cent in bending and

29 per cent in compression. The long-leaf pine, partially air dried,

shows no appreciable decrease in strength in bending, but about 18

per cent decrease in compression. Loblolly pine, partially air dried,

shows 14 per cent decrease in bending strength and 38 per cent in

compressive strength. These tests seem to show that long-leaf pine

is injured very little, if any, by the creosote, while loblolly pine is

injured appreciably. Treated oak ties (results not given here) show

a decrease in strength of from 5 to 10 per cent. Douglas fir and

Wisconsin white pine show little or no effect due to treatment so far

as bending and compression are concerned, but show a decrease in

strength of from 20 to 25 per cent in shear.



CHAPTER XVII

ROPE, WIRE, AND BELTING

260. Wire. Wire is made from a steel or iron rod by pulling it

through a hole, or die, of smaller diameter than the rod. This is

called drawing, and is done while the metal is cold. It is known as

wet drawing when the metal is lubricated, and as dry drawing when

no lubricant is used. The drawings are made with a smaller sized die

each time, until the desired diameter of wire is obtained. Cold draw-

ing of steel and iron raises the elastic limit and ultimate strength of

the metal and decreases its ductility. It is made ductile again by

annealing, and is finished by giving it the proper temper consistent

with the desired use.

The Mining Journal for 1896 gives the following values for the

strength of wire.
lb./in.* Ib./in-

2

Iron wire 80,000 High-carbon steel wire . . 180,000

Bessemer steel wire . . . 90,000 Crucible cast steel . . . 240,000

Mild open-hearth steel wire 130,000

Piano wire varies in strength from 300,000 lb./in.
2
to 400,0001b./in.

2

261. Wire rope. Wire rope is made by twisting a number of steel

or iron wires into a strand, and then twisting a number of these

strands about one of the strands, or about a hemp,

manila, jute, or cotton strand. The exact composition

of the cable or wire rope will depend upon the service

for which it is designed. The hemp core gives added

pliability to the cable, and acts as a means of lubricat-

ing the strands and wires
;
this reduces the internal

friction in the cable, and adds much to its life in case it is used where

pliability is required, as in running over sheaves. Fig. 194 is an illus-

tration of the cross section of a cable in which the separate strands

each have a hemp core. Such a cable can be used where great

pliability is required. Fig. 195 shows a cross section of a cable with

356



KOPE, WIKE, AND BELTING 357

a single hemp core at the center, and Fig. 196 shows a cross section

of a cable in which the center is a wire strand similar to those used

on the outside. A cable of the latter type can only be used where

little bending is required, as in

the case of suspension bridges.

The strands are twisted about the

central core either to the right or

left. When twisted to the left

the rope is designated as left lay,
FIG. 195 FIG. 196

and when twisted to the right as

right lay. The twist is long or short, depending upon the require-

ments of service. The shorter the twist the more flexible the rope,

and the longer the twist the less flexible.

262. Testing of rope wire and belting. These materials are usually

tested in tension. This may be done in an ordinary testing machine,

providing the proper means are used for holding the specimen. A
type of wire-testing machine is shown in Fig. 197. One end of the

wire is clamped to the movable head and the other to the stationary

head, which is provided with a spring balance for registering the pull.

Many other types of wire-testing machines are in use, some of them

being arranged to make torsion tests. Many special machines are

also made for testing rope and belting.

Since a wire rope is a built-up structure, made of twisted strands,

it is not to be expected that it will exhibit such well-defined elastic

properties as a single wire tested separately. This is due to the fact

that as the tension is increased each strand, which was originally in

the form of a helix of a certain pitch, becomes somewhat straightened

and takes the form of a helix of a greater pitch. On account of the

twisted condition of the wires in the strands, they do not all carry

the same load, and therefore do not all reach their elastic limit at

the same time. We find, consequently, upon testing a wire rope, that

it has no well-defined elastic limit.

The individual wires of which the rope is made show a very high

tensile strength and elastic limit, but exhibit no yield point, as the

process of drawing seems to destroy the properties of the material

that give the yield-point phenomena. The modulus of elasticity is

not changed appreciably by the process of drawing.
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Problem 315. A piece of steel music wire was tested in tension and the following

data obtained. Draw the strain diagram, using loads in lb./in.
2 as ordinates and

unit elongations as abscissas, and find the elastic limit, the modulus of elasticity,

and the modulus of elastic resilience. The wire was No. 25 gauge ;
diameter before

test 0.0577 in., and sectional area 0. 002615 sq. in. It was tested on a gauge length

of 6 in. The sectional area at the point of fracture after test was 0.00132 sq. in.

Compute the percentage of reduction of cross section.

TEST OF WIRE

LOAD

Ib.







ROPE, WIRE, AND BELTING 359

TEST OF INDIVIDUAL WIRES TAKEN FROM THE WIRE ROPE
REPORTED ABOVE
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The table at the bottom of page 359 gives the strength of iron and

cast-steel wire rope as given by John A. Roebling's Sons. The size of

a new manila rope of the same strength is also given for comparison.

STRENGTH OF WIRE ROPE MADE FROM CAST STEEL AS GIVEN
BY JOHN A. ROEBLING

(Rope composed of six strands and a hemp center, seven or nineteen wires in each strand)

DIAMETER
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TESTS OF MANILA AND SISAL ROPE

MANILA ROPE

SIZE OF ROPE
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265. Strength of leather and rubber belting. Leather belts are

made from tanned oxhide. That portion of the hide that originally

covered the back gives the best leather for this purpose. The " flesh

side," or side originally next to the animal, wears better when placed

in contact with the pulley, while the outside gives the greater

adhesion when placed in contact with the pulley.

Single belts are made from one thickness of leather, the desired

length being obtained by cementing or splicing the short lengths cut

from the hide. Double belts are made by cementing two thicknesses

of the leather together. The strength of good leather varies from

600 to 700 Ib. per inch of width, and from one half to two thirds

as much when spliced. The following table gives the strength of

cemented belt laps as determined by the Watertown Arsenal.* A
complete series of tests on belt lacings is also reported in the same

volume, and the student is referred to this report for the results. The

allowable stress on a single belt is from 250 to 300 Ib. per inch

of width.

TESTS OF LEATHER BELTING
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TESTS OF RUBBER BELTING





ANSWERS TO PROBLEMS

1.
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177. 127 tons.

178. 15 + .

179. 2f in. square.

190. = 11,490,000 lb./in.
5

191. M = 43.24 in. Ib.

192. d = 4.465 in.

193. d = 3.684 in.

194. Internal diameter =
5.63 in.

;

solid : hollow = 3:1.

195. 4484.

196. pe = 23,500 Ib. /in.
2

197. If weight of shaft is

neglected,

q = 131) Ib./ in. 2
,

II = 2f
198. d = 7.114 in.

199. = 32 28'.

201. Angle of twist per unit of length is 6
l
= V 33.8".

203. gmax = 22,2401b./in.
2

,

D = 6.36 in.,

W =158.965 in. Ib.

2940 Ib./ in.'
2

375 lb./in.
2

, assuming
10 for the factor of

safety.

221.

230. 591 lib./ in. 2

231. 15,880ft.

232. 79.4.

233. 12,187 lb./in.
2

249. 1.2 in.

250. 2344 lb./in.
2

252. 139 lb./in.
2

253. .28 in.

223. Bottom .13 in.
;

side .31 in.

224. 65281b./in.2

225. fin.
226. 685 lb./in.

2

227. 68|.

228. lin.

229. .13 in.

254. 11. 78 lb./in.
2

255. Assuming E8 : Ec = 15 : 1, /' = 2350 in. 4
,

t' = 2.266 in., p = 450 lb./in.
2

270. pmax = 3733 lb./in.
2

,
factor of safety 13, d = .0245 in.

272. Pmn = 192.6 lb./in.
2

273. d= .0002in., 291. 3 in.

3f = 1.529 in. Ib. 293. Weyrauch,40421b./ft.

289. E = 300 tons, by (104); Rankine, 4116 Ib./ft.

# = 32 7 tons, by (105). 294. 4242 Ib./ ft.

303. 450 lb./in.
2

310. (a) 12,870 lb./in.
2

, 13,059 lb./in.
2

;

(6) 2659 lb./in.
2

,
8372 lb./in.

2
;

(c) 1908 lb./in.
2

,
5538 lb./in.

2

312. 752 lb./in.
2

295. 13,890 Ib./ ft.

300. 2250 lb./in.
2

,

3091 lb./in.
2

302. 476 lb./in.
2
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Abrasion test of stone, 329

Absorption test of brick, 335
of stone, 329

Allowance for shrinkage and forced fits,

169

Angle of repose, 245
of shear, 138
of twist, 138, 139, 145

Annealing, 12

Annual rings, 336
Answers to problems, 365, 366

Antipole and antipolar, 67

Arch, linear, 218
Arched rib, continuous, fixed at both

ends, 238

graphical determination of linear

arch, 234, 239
method of calculating pole distance

of, 233
stress in, 230

temperature stresses in, 236, 242

three-hinged, 231

two-hinged, 231
Arches. See Masonry arches

equilibrium polygon for, 210, 212,

213, 214, 215, 216

Area, contraction of, 14, 269

Ash, strength of, 344, 346

Average constants, Table I

Bald cypress, strength of, 346, 347

Basswood, strength of, 344

Beams, bending moments, 38, 50, 51

built-in, 86

cantilevers, 57

cast-iron, 280

Castigliano's theorem, 103, 104

continuous, 88, 104
deflection of, 83, 85, 88, 111, 114

designing of, 56
eccentric loading of, 65
effect of shear on elastic curve of, 86
elastic curve of, 36, 81, 84, 87, 89, 91

impact and resilience, 94
influence line for bending moment,

96
influence line for reactions, 101
influence line for shear, 98
limitation to Bernoulli's assump-

tion, 85

Beams, maximum moments, 50, 52, 53,

54,55
Maxwell's theorem, 99
modulus of rupture, 282, 334
moment of resistance, 39
moments of inertia, 38, 43, 45

oblique loading, 64
of considerable depth, 133

principle of least work, 106
reactions of supports, 49, 52, 54, 55,

101

straight-line law, 37, 320
theorem of three moments, 90
vertical shear, 49, 58, 60, 62
work of deformation, 93

Bearing power of soils, 243

Beech, strength of, 344
Behavior of iron and steel in tension,

270

Belting, strength of, 362, 363

Bending, cold, 279

Bending and torsion combined, 33

Bending moment, defined, 38

maximum, 50, 52, 53, 54, 55

Bending moment and shear, relation

between, 55
Bernoulli's assumption, 36
Bessemer process, steel manufacture, 288
Black walnut, strength of, 344
Bond between concrete and steel, 321
Box elder, strength of, 344

Brick, absorption of, 335

compression of, 330, 331
flexure of, 334
manufacture of, 330
modulus of elasticity of, 332
rattler test of, 334

Brick piers, strength of, 331

Briquettes, cement, 300

compression of halves of, 302

molding and care of, 301
tensile strength of, 302

Building blocks, concrete, 311
Bureau of Forestry timber tests, 345,

346, 348

Bursting pressure of thick cylinder, 165

Cantilever, 57

Carbon, in cast iron, 280
in steel, 289

367
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Cast iron, manufacture and general
properties of, 279

compression of, 282

elasticity of, 282
flexure of, 282

impurities in, 280

malleable, 285
modulus of rupture of, 286
shear of, 282

specifications for, 285
tensile strength of, 280, 286

Cast-iron columns, 284

Castigliano's theorem, 103

application to continuous beams, 104

Castings, malleable, 285

steel, 291, 292, 293

Cedar, strength of, 344, 346, 347

Cement, 297

compression tests of, 302, 303

specifications for, 303
test of fineness, 299
test of soundness, 298
test of tensile strength, 300, 302
test of time of setting, 299, 300

Cinder concrete, 310
Circular plates, 179, 181

Circular shafts in torsion, 138, 139, 140
Classification of materials, 9

Coefficient of cubical expansion, 29
Coefficient of elasticity. See Modulus of

elasticity

Coefficient of linear expansion, 12

Cold bending test, 279
Column footings, 251
Columns :

cast-iron, 284

Cooper's modification of Johnson's

straight-line formula, 132

eccentrically loaded, 133
Euler's formula, 122, 123
Gordon's formula, 126

independent proof for fixed ends,
123

Johnson's parabolic formula, 128,
129

Johnson's straight-line formula,
130, 131, 132

modification of Euler's formula, 125
nature of compressive stress, 120
one or both ends fixed, 122
Rankine's formula, 126, 127

Combined bending and torsion, 33, 141
Common theory of flexure,~3~6

Compression, defined, 2

brick in, 330, 331, 332
brick piers in, 331
cast iron in, 284
cement in, 302, 303
concrete in, 308, 309, 310
stone in, 327, 328

Compression, tests, 269
timber in, 338, 344, 346, 347, 350

Compressive strength, average values,
Table I

Concrete. See Masonry arches

building blocks of, 311, 312

mixing, 307
modulus of elasticity of, 309
reenforced. See Reenforced concrete

tests of, 305, 306, 307, 308, 309, 310
Concrete-steel plates, 187

Consequence of Bernoulli's assumption,
37

Continuous beams. See Beams
Contraction of area, 14, 271
Core section, 67, 68, 69

Cottonwood, strength of, 344
Crane hook, design of, 205

Cross-bending. See Flexure

Crushing. See Compression
Curvature due to bending moment, 36

Curve, elastic. See Elastic curve

Curved pieces, 191

Cylinders and spheres, thin, 154

Cylinders, thin :

elastic curve for, 157

hoop tension in, 155

longitudinal stress in, 155

Cylinders, thick, 162

bursting pressure, 165
Lamp's formulas, 162

made of concentric tubes, 166
maximum stress in, 164, 165

Cypress, strength of, 346, 347

Dangerous section, 51

Deflection, of beams. See Beams
of columns. See Columns

bending, general formula, 111

shearing, general formula, 114

Deformation, defined, 2, 4

Designing of arches, 227

Designing of beams, 56

Diagram, bending moment and shear, 51

Douglas spruce, strength of, 346

Earth pressure (retaining walls), 253

Eccentric loading, 65

Efficiency of riveted joint, 172

Elastic afterwork, defined, 10

Elastic constants, relation between, 30

Elastic curve, 36, 81, 84, 87, 89, 91

Elastic law, 8

Elastic limit, defined, 6, 274
Elastic resilience, 94, 274

Ellipse of inertia, 47

Ellipse of stress, 26

Elliptical plates, 182, 183

Elliptical shafts, 144

Elm, strength of, 344, 346
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Empirical formulas (arches), 227

Equilibrium polygon (arches), 210, 212,

213, 214, 215, 216

Equivalent stress, 31

Euler's formulas, 122, 123, 125

European tests of timber, 343

Expansion, cubical coefficient of, 29
linear coefficient of, 12

Factor of safety, 16, Table I

Fatigue of metals, 10

Fir, red, strength of, 344, 349, 350
Flat plates. See Plates

Flexural deflection, general formula

for, 111

Flexural rigidity, 148

Flexure, common theory of, 34
tests in, 269, 282, 312, 329, 334, 340,

344, 346, 349, 350
Flow of material, 10

Form of test piece, 13, 270, 294
Foundation. See Retaining walls

Fracture, character and appearance, 272
Fraenkel formula for flexural deflec-

tion, 112

Fragility, 11

Functions of angles, Table X

Gordon's formula, 126

Granite, strength of, 18

Guest's formula for combined bending
and torsion, 142

Gum, strength of, 344, 346, 347
Guns. See Thick hollow cylinders

Gyration, radius of, 42

Hardening effect of overstrain, 11, 271
Heartwood and sapwood, 337
Helical spring, 145

Hemlock, strength of, 344, 349, 350

Hemp rope, 360

Hickory, strength of, 344, 346, 347

High-speed steel, 288

Holding tension specimens, 270
Hollow cylinders. See Cylinders
Hollow spheres. See Spheres
Hooke's law, 6

Hooks, links, and springs :

analysis for hooks and links, 191

bending strain in curved piece, 191

curvature, sharp, effect on strength,
200

curved piece of rectangular cross

section, 198
maximum moment in circular piece,

201

plane spiral springs, 203

simplification of formula, 194

Hydraulic cement, 297, 298

Hysteresis, 10

Impact and resilience, 94

Impact tests, 278
Indentation test, 343

Independent proof (columns), 123

Inertia, ellipse of, 47
moment of. See Moment of inertia

Influence line, for bending moments, 96
for reactions, 101
for shear, 98

Initial internal stress, 12

Iron, cast. See Cast iron

ingot, 287

wrought. See Wrought iron
Iron and steel, 265

strength of, at high temperatures,
272

Ironwood, strength of, 344

Johnson's parabolic formula, 128, 129
Johnson's straight-line formula, 130, 131

Cooper's modification of, 132

Keep's tests of cast iron, 282

Kirkaldy's tests, 265, 282

Lamp's formulas, 162
Latent molecular action, 11

Lateral contraction, 14, 271
Law of continuity, 21
Least work, principle of, 106
Leather belting, 362

Lime, manufacture and properties, 297

Limestone, 326, 327, 328, 329
Limit of elasticity. See Elastic limit

Limitation to Bernoulli's assumption, 85
Linear arch, 218, 234, 239
Linear strain, 25
Linear variation of stress, 320

Links, hooks, and springs. See Hooks
Load line (arch), 217

Logarithms, common, Table VIII
conversion of, Table IX
natural, Table IX

Manganese in cast iron and steel, 280,

289, 290
Manila rope, 360

Maple, strength of, 344

Masonry arches, 216

application of principle of least

work, 224
conditions for stability, 220

designing of arches, 227

empirical formulas, 227
linear arch, 218
load line, 217
maximum compressive stress, 222

Moseley's theorem, 222

oblique proj ection of, 229

stability of abutments, 229
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Masonry arches, Winkler's criterion for

stability, 225
Materials .not obeying Hooke's law, 71

Materials of construction, average con-
stants for, Table I

Maximum bending moment. See Bend-

ing moment
Maximum earth pressure, 253
Maximum normal stress, 23
Maximum shear, 25
Maximum stress in circular shafts, 138
Maxwell's theorem, 99
Measure of strain, 31

Merchantable timber, 349
Modulus of elasticity :

average values of, Table I

denned, 6, 274
of brick, 332
of cast iron, 282
of concrete, 310
of shear, 29
of steel, 293
of stone, 332
of timber, 344, 346, 349, 350
of wrought iron, 293

Modulus of resilience, 94, 274
Modulus of rigidity, 29
Modulus of rupture, 282, 329, 334, 338,

344, 346, 349, 350
Moisture in timber, 337
Molds for cement briquettes, 301
Moment diagrams, 51

Moment of inertia, by graphical method,
43

defined, 38
of non-homogeneous sections, 45

polar, 41

tables of, Tables VI and VII
Moment of resistance, 39

Mortar, cement. See Cement
lime. See Lime

Moseley's theory, 222

Natural cement, 297
Neutral axis, defined, 35

of sections of beams with oblique
forces acting, 64

of sections of reenforced concrete

beams, 316, 319, 321
Nickel steel, 290
Non-circular shafts in torsion, 143
Normal stress, maximum, 23

Oak, strength of, 344, 346, 347

Oblique loading, 64

Oblique projection of arch, 229

Open-hearth steel, 288

Ordinary foundations, 249

Overstrain, effect of, on iron and steel,

11, 271

Parabolic variation of stress, 318

Paving brick. See Brick

Phosphorus in iron and steel, 280, 290
Physical constants, Table I

Piers, brick, 331

Piles, bearing power of, 246

Pine, strength of, 344, 346, 347, 350
Pitch of rivets, 172
Planar strain, 22

Plates, flat, circular, 179, 181

concrete-steel, 187

elliptical, 182, 183
formulas of Bach, Grashof

, Nichols,
and Thurston, 190

rectangular, 186

square, 185
stress in, 179, 181, 183, 185, 186

theory of, 179
Poisson's ratio, 7, Table I

Polar moment of inertia, 41

Poplar, strength of, 344
Portland cement, 297
Power transmitted by circular shafts,

140

Principal axes, 41

Principal stresses, 24

Principle of least work, 106, 224

Properties of channels, Table IV
of I-beams, Table III

of standard angles, Table V
of various sections, Table II

Punch press frame, design of, 205
Puzzolan cement, 298

Eadius of gyration, 42
Rankine's formula for columns, 126, 127

for combined bending and torsion,
142

Rate of applying load, effect on strength
of cement, 301

Rattler test of paving brick, 334
Reactions of supports, 49, 52, 53, 54, 55,

90, 101

Rectangular plates, 186

Rectangular shafts in torsion, 144
Red cedar, strength of, 344
Red fir, strength of, 344, 349, 350
Reduction of area of cross section, 14, 271

Reenforced concrete, 313
adhesion of reenforcement, 314
area of reenforcement, 314

beams, 72, 316, 317, 318, 319, 320,

321, 322
corrosion of metal reenforcement,

313

object of reenforcement, 313
Relation between stress components, 20

between elastic constants, 30
between shear and bending mo-

ment, 55
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Resilience, defined, 94
of circular shafts, 143
modulus of, 94, 274

Result of straight-line law, 35

Retaining walls, angle of repose, 245

bearing power of piles, 246

bearing power of soils, 245
column footings, 251
formulas for, 257
maximum earth pressure, 253

ordinary foundations, 249
thickness of, 260

Wellington's formula, 248

Rigidity, torsional and flexural, 148
Riveted joints, 171

Rivet pitch, 172

Rope, 356

hemp, 360

manila, 360, 361

sisal, 361

wire, 356, 358, 359, 360
Rubber belting, 363

Rupture, modulus of. See Modulus of

rupture

Safety, factors of, 16

St. Venant's formula for combined bend-

ing and torsion, 142

Sandstone, formation and properties of,
327

strength of, 328, 329

Sapwood and heartwood, 337

Seconds, timber, 349
Section modulus, 40, Tables VI and VII
Selects, timber, 349

Setting, time of (cement), 299, 300

Shear, and bending moment, relation

between, 55
and moment diagrams, Table XI,

80
at neutral axis, 324

defined, 3
influence line for, 98

maximum, 25
modulus of elasticity of, Table I

simple, 27
vertical reactions and, 49

Shearing deflection, general formula

for, 114

Shearing strength of materials, average
values, Table I

Shearing tests, 342, 344, 346

Shrinkage and forced fits, 168
Silicon in iron and steel, 280, 289

Simple shear, 27
Sisal rope, 361

Size, effect of size, of test piece on

strength of steel, 272
of timber, 350

Slag cement, 298

Slippery elm, strength of, 344
Soundness test for cements, 298
Sour gum, strength of, 344

Specifications, for cast iron, 285
for cement, 303
for steel, 294
for wrought iron, 294

Speed of application of load, effect on

strength of cement, 301

Spheres and cylinders, 154, 155

Springs, helical, 145

general theory of spiral, 147
hooks and links, 191

plane spiral, 203

Spruce, strength of, 346

Square plates, 185

Square shafts in torsion, 144

Stability, of abutments, 229
of arches, 220
of retaining walls, 258
Winkler's criterion for, 225

Standard forms of test specimens, 294

Steel, Bessemer process, 288

castings, 291, 292, 293

composition of, 288

impurities in, 287, 288, 289
manufacture and properties, 287
modulus of elasticity of, 293

nickel, 290

open-hearth process, 288

specifications for, 294

strength of, 289, 290

vanadium, 291
Steel and concrete. See Reenforced con-

crete

Stone. See Limestone and Sandstone

Straight-line formula, 320

Straight-line law, 35

Strain, defined, 2

diagrams, 4, 281, 283, 311, 341

equivalent, 31

measure of, 31

Strength, of materials, average values,
Table I

of reenforced concrete beams, 317
of T-beams, 322

Stress, defined, 2

ellipse, 26
maximum normal, 23

trajectories, 71

Stresses, equivalent, 31
in different directions, 22

temperature, 12, 236, 242

Structure of timber, 336
Struts and columns, 120

Sugar maple, strength of, 344

Sulphur in iron and steel, 280, 290
Sweet gum, strength of, 344

Sycamore, strength of, 344

System of equivalent forces, 33
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Tamarack, strength of, 344

Temperature, effect on strength of steel,
272

effect of, on strength of concrete, 312

Temperature stresses, 12, 236, 242
Tensile strength, average values, 18
Tensile tests, 266

of belting, 362, 363
of cast iron, 280, 286
of cement, 301, 302
of rope, 361
of steel, 289, 290, 292
of timber, 343
of wire rope, 358, 359, 360
of wrought iron, 294

Tension, denned, 2

Tenth census timber tests, 344
Test pieces, large and small, 272, 350
Test specimens, standard forms of,

294
Theorem of three moments, 90
Theorems on moment of inertia, 40

Theory of flat plates, 179

Theory of flexure, common, 36
Thick hollow cylinders. See Cylinders
Thickness of retaining walls, 260
Thin hollow cylinders. See Cylinders

Timber, absorption process, 352
annual rings, 336
full-cell creosoting process, 352
moisture in, 337
results of tests, 344, 346, 347, 349,

350

Riiping process, 353

sapwood and heartwood, 337

strength of, 337

strength of treated, 353
structure of, 336
tests of treated ties, 354

treated, 351
zinc chloride process, 352

Time effect, 9
Tool steel, 287

Torsion, and bending combined, 32, 141

angle of twist, 139, 145, 274

Torsion, as test for shear, 277
circular shafts in, 138, 139, 140

elliptical shafts in, 144
maximum stress in circular shafts

in, 138
non-circular shafts in, 143

rectangular and square shafts in,
144

resilience of circular shafts in, 143
test specimen, 276

tests, 275

triangular shafts in, 145
Torsional rigidity, 148
Transverse tests. See Flexure

Tubes, collapse of, under external

pressure, 159

practical formulas for collapse of,
166

Ultimate strength, defined, 6, 7

average values for, Table I

Unit deformation, 4
Unit stress, denned, 3
United States Forest Service, 348

Vanadium steel, 291
Vertical reaction and shear, 49

Wellington's formula, 248
Winkler's criterion for stability, 225

Wire, 356
Wire rope. See Rope
Wood. See Timber

Work, defined. See Resilience

of deformation of beams, 93

Working stress in concrete beams, 322

Wrought iron, impurities in, 290
manufacture and properties, 286,

290
modulus of elasticity of, 293

specifications for, 294

Yield point, defined, 6, 270

Young's modulus, 6

average values for, Table I
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BOOKS ON THE HISTORY OF
MATHEMATICS

KARA ARITHMETICA
By DAVID EUGENE SMITH, Professor of Mathematics in Teachers College, Columbia

University. 8vo, cloth, 500 pages, illustrated, $4.50

A CATALOGUE of arithmetics printed before 1601, with a descrip-
tion of the early textbooks and works bearing upon arithmetic, now
in Mr. George A. Plimpton's library, numbering three hundred and

seventy-four, besides some sixty-eight manuscripts. Among this num-
ber are included most of the important arithmetics of the formative

period in the modern history of the subject. Not only from the bibli-

ographical but also from the historical standpoint, this is a neces-

sary book of reference for all bibliophiles, librarians, and teachers of

secondary mathematics.

Such a volume as this is rarer than rare arithmetics. An admirable

piece of bookwork. The Independent, New York City.

Not only is this publication of interest to teachers and lovers of old

books, but it contains material which will be of marked service to the
historian. The Nation, New York City.

HINDU-ARABIC NUMERALS
By DAVID EUGENE SMITH, Professor of Mathematics in Teachers College, Columbia

University, and Louis C. KARPINSKI, Instructor in Mathematics in the Uni-

versity of Michigan, Ann Arbor. 8vo, cloth, 160 pages, $1.25

ALTHOUGH it has long been known that the numerals ordinarily em-

ployed in business, and commonly attributed to the Arabs, are not of

Arabic origin, and although numerous monographs have been written

concerning their derivation, no single work has yet appeared in which
the complete story of their rise and development has been told. In the

preparation of this treatise the authors have examined every important
book and monograph that has appeared upon the

subject, consulting
the principal libraries of Europe as well as America, examining many
manuscripts, and sifting the evidence with greatest care. The result is

a scholarly discussion of the entire question of the origin of the numer-

als, the introduction of the zero, the influence of the Arabs, and the

spread of the system about the shores of the Mediterranean and into

the various countries of Europe.

uga

GINN AND COMPANY PUBLISHERS



ADVANCED CALCULUS
By EDWIN BIDWELL WILSON, Professor of Mathematics in the

Massachusetts Institute of Technology

8vo, cloth, 280 pages, $2.75

PROFESSOR WILSON'S " Advanced Calculus "
supplies in a single

volume a comprehensive second course in calculus. Although mod-

ern rigorous tendencies are given due attention, the chief aim of the

book is to confirm and to extend the student's knowledge of the great

formal methods of analysis that are essential alike to the practical

and to the pure mathematician. To connect with elementary texts,

two chapters in review are supplied, and many subsequent chapters

are tempered with material which is essentially review. Advanced

differential calculus is represented by work on Taylor's Formula, with

special reference to approximate analysis, partial differentiation of

explicit and of implicit functions, complex numbers, and vectors.

INTRODUCTORY REVIEW

Chapter I Review of Fundamental Rules
" II Review of Fundamental Theory

PART I. DIFFERENTIAL CALCULUS

" III Taylor's Formula and Allied Topics
" IV Partial Differentiation

; Explicit Functions
" V Partial Differentiation

; Implicit Functions
" VI Complex Numbers and Vectors

PART II. DIFFERENTIAL EQUATIONS

" VII General Introduction to Differential Equations
" VIII The Commoner Ordinary Differential Equations
" IX Additional Types of Ordinary Equations
" X Differential Equations in more than Two Variables

GINN AND COMPANY PUBLISHERS



APPLICATIONS OF THE CALCU
LUS TO MECHANICS

By E. R. HEDRICK, Professor of Mathematics in the University of Missouri,

~nd O. D. KELLOGG, Assistant Professor of Mathematics

in the University of Missouri

8vo, cloth, 116 pages, with diagrams, $1.25

THIS
book presents a completed summary of those parts

of mechanics which occur as applications of the calculus.

Although intended primarily as a supplement to the usual

standard course in calculus, it may be used independently as a

text for a short course on the mathematical side of mechanics,

if the time allotted to the former study is not sufficient to in-

clude this work.

As a review it fastens in the student's mind the notions of

mechanics previously gained. It aims also to present these

topics in a new light, as articulated portions of one general

theory, and thus to make mechanics seem an integral subject.

As a preparation for more extended courses in mechanics, or

indeed for courses dealing with any applications of the calcu-

lus, the material presented is valuable in showing concretely

how the theoretical ideas of this subject are used in specific

practical applications.

The course outlined in the book is the result of a number of

years' experience in presenting this material to classes in the
;

calculus, both at the University of Missouri and elsewhere. The \

text itself is a modification .

jf
a similar text written by Pro- |

fessor Hedrick and publisher! in mimeograph fot the use of *\

students at the Sheffield Scientific School.

GINN AND COMPANY PUBLISHERS



A COURSE IN MATHEMATICS
By FREDERICK S. WOODS and FREDERICK H. BAILEY, Professors of

Mathematics in the Massachusetts Institute of Technology

Volume I. Algebraic Equations, Functions of One Variable, An-

alytic Geometry, Differential Calculus. 8vo. Cloth. 385 pages.

With Diagrams. $2.25

Volume II. Integral Calculus, Functions of Several Variables,

Space Geometry, Differential Equations. 8vo. Cloth. 410 pages.

With Diagrams. $2.25

THIS
course in mathematics is designed to present in a con-

secutive and homogeneous manner an amount of material

generally given in distinct courses under the various names of

algebra, analytic geometry, differential and integral calculus, and

differential equations. The aim is to give the student a better

grasp of mathematics as a whole and of the interdependence of

its various parts, and to accustom him to use, in later applications,

the method best adapted to the problem in hand. A decided ad-

vantage is gained in the first volume by the introduction of the

principles of analytic geometry and calculus earlier than is usual.

In this way these subjects are studied longer than is otherwise

possible, thus leading to greater familiarity with their methods

and greater freedom and skill in their application.

Special features of the second volume are the early introduction

of a chapter on simple differential equations in close connection

with integration, and a chapter on line integrals.

H. E. SLAUGHT, Assistant Professor of Mathematics, The Univer-

sity of Chicago: It is directly in line with the spirit of our programme
at The University of Chicago, and we wish to register our approval of
its plan and purpose. The book is in the spirit of advance and the authors
are on the right track. We shall use it in two sections next quarter.

WILLIAM F. OSGOOD, Professor of Mathematics, Harvard Univer-

sity: It is a good, clear presentation and will be welcome to many
teachers. As regards the scholarship that characterizes the book, its

order is distinctly higher than that of most American or English books
on analytic geometry and calculus.

GINN AND COMPANY PUBLISHERS





'"aSBcw
IN

woaAn

55*8*35^55
==-~ _



YC

265507

UNIVERSITY OF CALIFORNIA LIBRARY




