TIMBER PIISSICS.

RÉSUMÉ OF INVESTIGATIONS CARRIED ON IN THE U. S. DIVISION OF FORESTRY,

1889 то 1898.

By FILIBERT ROTH,
ASSISTANT PROFESSOR, NEW YORK SIATE OOLLEGE OF FORESRIEY, OORNELL UNIVERSITY.

Reprinted from H. Doc. No. 181, 55 th Cong., 3d Sess.

WASHINGTON:
©

TIMBER PIIYSICS.

RÉSUMÉ OF INVESTIGATIONS CARRIED ON IN THE U. S. DIVISION OF FORESTRY,

1889 то 1898.

By FTLTBERT ROTH,

Reprinted from H. Doc. No. 181, 55th Cong., 3d Sess.

W ASHINGTON:
GOVERNMENT PRINTING OFFICE.
1899.

I. The work in Tinber physics in The division of FORESTRY.

By Filibert Roth,
Late Assistant in the Dicision of Forestry.

Historical.

As in the case of other materials, exact investigation of the properties of wood did not begin until the latter part of the eighteenth and the beginning of the nineteenth century, when Girard Buffon and Duhamel du Monceau in France, and Peter Barlow, the nestor of engineering in England, laid the foundation for this inquiry by devising suitable methods and working out correct formule for the computation of the results. As might be expected, the results of this pioncer work, particularly that of the French investigators, were often contradictory, and have to-day little more than historical value.

Subsequently our knowledge of wood in general, and that of European species in particular, was increased by a number of experimenters. Among these, Chevandier and Wertheim in France, and Nördlinger in Germany, stand out conspicuous. Unfortunately, their apparatus was crude and, in the case of the French workers, the series was too small to satisfy so complicated a problem, while Nördlinger was obliged to content himself with small and few specimens, owing to a want of proper equipment.

In England considerable money was expended from time to time both by Government and private enterprise, but the eagerness of making the matter as practicable as possible led, unfortunately, to much testing of large sizes and to the employment of insufficient (because unsystematic) methods, so that such extreme experiments as those of Fowke and others have really neither furthered science nor helped the practice. In this country the engineering world for a long time relied largely on the results of European testing, and the wood consumers in general depended on a meager accumnlation of experience and crude observation concerning most of the fine array of valuable and abundant kinds of timber offered in our markets.

Ignorance and prejudice had their way. Chestnut oak was pronounced unfit for railway ties, and thus millions of logs were left rotting in the woods, though this prejudice had not a single fair trial to support it. "Bled" longleaf, or Georgia pine, was considered weaker and less durable, millers and dealers were obliged to misrepresent their goods, causing unnecessary loss and litigation, and yet there existed not a single record of a properly conducted experiment to substantiate these views. Gum was of no value, Southern oak was publicly proclaimed as unfit for carriage builders, and the views as to the usefulness of different timbers were almost as numerous as the men expounding them.

The engineering world was the first to realize this deficiency, and men like Hatfield, Lanza, Thurston, and others attempted to replace the few antiquated and unreliable tables of older textbooks by the results performed on American woods and with modern appliauces.

In addition to these efforts of engineers, Sharples, under Sargent's direction, in his great work for the Tenth Census of $\mathbf{1 8 8 0}$, subjected samples of all our timber trees to mechanical tests, but, since in these tests only a few select pieces represented each species, the engineering world never ventured to use the results. As regards the rest of the wood testing in our country, it may be said that it generally possessed two serious defects: (1) the wood was not properly chosen, and (2) the methods of testing were defective, especially with respect to the various states of seasoning, wood being tested in almost every state from green to dry, without distinction. This is the more 330
remarkable since the important influence of moisture was recognized and emphasized by both French and German experimenters more than forty years ago. ${ }^{1}$

These facts were fully appreciated by the engineers of our country, as is well shown by the numerous, often emphatic, approvals and recommendations of the timber-physics work undertaken by the Division of Forestry, and by the eagerness with which wood consumers generally seized on all information of this kind as fast as the Division of Forestry could supply the same.

Southern and Northern Oak.

Though fully planned before, the work in timber physics was really begun in order to decide an important controversy as to the relative value of Southeru and Northern grown oak.

A representative committee of the Carriage Builders' Association had publicly declared that this important industry could not depend upon the supplies of Southern timber, as the oak grown in the south lacked the necessary qualities demanded in carriage construction. Without experiment this statement could be little better than a guess, ${ }^{2}$ and was doubly unwarranted, since it condemned an enormous amount of material, and one produced under a great variety of conditions and by at least a dozen different species of trees, involving, therefore, a complexity of problems difficult enough for the careful investigator, and entirely beyond the few unsystematic observations of the members of a committee on a flying trip through one of the greatest timber regions of the world,

A number of samples were at once collected (part of them supplied by the carriage builders' committee) and the fallacy of the broad statement mentioned was fully demonstrated by a short series of tests and a more extensive study into structure and weight of these materials. From these tests it appears that pieces of white oak from Arkansas excelled well-selected pieces from Connecticut both in stiffness and end wise compression (the two most important forms of resistance).

Results of tests on Northern and Southern white oak made in Washington University Laboratory, St. Louis, Mo., by Prof. J. B. Johnson, 1889.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Test piece.}} \& \multicolumn{6}{|l|}{Bending and crose breaking. Size of test piece 15 by 15 by 24.} \& \multicolumn{4}{|c|}{Compression.} \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Shearing. \\
Longitudinal.
\end{tabular}}} \\
\hline \& \& \multicolumn{2}{|r|}{Stiffuess.} \& \multicolumn{2}{|l|}{Ultimate strength.} \& \multicolumn{2}{|l|}{Resistance to shock.} \& \multicolumn{2}{|l|}{Endwise.} \& \multicolumn{2}{|l|}{Transverse.} \& \& \\
\hline Where procured. \& No. \& \[
\begin{gathered}
\text { Range } \\
\text { No. }
\end{gathered}
\] \& 3Modulus of elasticity, pounds per square inch. \& Range No. \& \(|\)\begin{tabular}{c}
Modulus \\
3. W. L \\
\(\frac{\text { 2.b. }}{}{ }^{2}\) \\
pounds \\
per \\
square \\
inch.
\end{tabular} \& \[
\begin{gathered}
\text { Range } \\
\text { No. }
\end{gathered}
\] \& \& \[
\begin{aligned}
\& \text { Range } \\
\& \text { No. }
\end{aligned}
\] \& Modulns pounds per square inch. Size log by 5 inches. \& \[
\begin{aligned}
\& \text { Range } \\
\& \text { No. }
\end{aligned}
\] \& Modulus pounds рет square inch. \& \[
\begin{aligned}
\& \text { Range } \\
\& \text { No. }
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { Modulns } \\
\& \text { pounds } \\
\& \text { per } \\
\& \text { square } \\
\& \text { inch. }
\end{aligned}
\] \\
\hline \multirow[t]{2}{*}{A.a.

Average} \& \multirow[t]{2}{*}{$$
\frac{1}{2}
$$} \& \[

$$
\begin{aligned}
& 9 \\
& 5
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
990,000 \\
1,280,000
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 3 \\
& 1
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 13,760 \\
& 18,500 \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 4 \\
& 1
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 59 \\
& 92
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 6 \\
& 7
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 6,160 \\
& 5,480
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1 \\
& 3
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 3,400 \\
& 3,100 \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 3 \\
& 1
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1,375 \\
& 1,560 \\
& \hline
\end{aligned}
$$
\]

\hline \& \& 3 \& 1,135,000 \& 1 \& 16, 130 \& 1 \& 76 \& 3 \& 5, 820 \& 1 \& 3,250 \& 1 \& 1,468

\hline A.b. II \& $$
\begin{aligned}
& 3 \\
& 4
\end{aligned}
$$ \& \[

$$
\begin{gathered}
6 \\
10
\end{gathered}
$$

\] \& \[

$$
\begin{array}{r}
1,120,000 \\
920,000
\end{array}
$$
\] \& 8

5 \& $$
\begin{aligned}
& 12,300 \\
& 12,700
\end{aligned}
$$ \& 6

5 \& $$
\begin{aligned}
& 47 \\
& 55
\end{aligned}
$$ \& \[

$$
\begin{gathered}
11 \\
9
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 4,740 \\
& 4,980
\end{aligned}
$$
\] \& 7

4 \& $$
\begin{aligned}
& 2,500 \\
& 2,800
\end{aligned}
$$ \& ${ }_{6}^{6}$ \& 1, 325

\hline Average \& \& 4 \& 1, 020,000 \& 3 \& 12,500 \& 3 \& 51 \& 5 \& 4,860 \& 2 \& 2,650 \& 3 \& 1,225

\hline \& $$
\begin{aligned}
& 5 \\
& 6
\end{aligned}
$$ \& \[

$$
\begin{array}{r}
11 \\
7
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
850,000 \\
1,140,000
\end{array}
$$
\] \& 9

7 \& $$
\begin{aligned}
& 11,400 \\
& 12,300
\end{aligned}
$$ \& ${ }_{7}^{2}$ \& \[

$$
\begin{aligned}
& 83 \\
& 45
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
8 \\
10
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 5,230 \\
& 4,820
\end{aligned}
$$
\] \& 5

8 \& $$
\begin{array}{r}
2,700 \\
2,500
\end{array}
$$ \& ${ }_{2}^{4}$ \& \[

$$
\begin{aligned}
& 1,375 \\
& 1,540
\end{aligned}
$$
\]

\hline Average \& \& 5 \& 995,000 \& 5 \& 11,850 \& 2 \& 64 \& 4 \& ¢, 025 \& 3 \& 2,600 \& 2 \& 1,458

\hline \& \& \& \& Size: 15 \& by 18 by 18 \& inches. \& \& \& \& Size: \& 178 cube. \& \&

\hline \& 7
8
9 \& 3
8

4 \& $$
\begin{aligned}
& 1,570,000 \\
& 1,100,000 \\
& 1,385,000
\end{aligned}
$$ \& 6

2

11 \& $$
\begin{aligned}
& 12,380 \\
& 14,690 \\
& 11,240
\end{aligned}
$$ \& $\begin{array}{r}9 \\ 3 \\ 11 \\ \hline\end{array}$ \& \[

$$
\begin{aligned}
& 27 \\
& 82 \\
& 19
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 4 \\
& 1 \\
& 5
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 6,800 \\
& 7,800 \\
& 6,800
\end{aligned}
$$
\] \& 11

2

9 \& $$
\begin{aligned}
& 2,000 \\
& 3,200 \\
& 2,300
\end{aligned}
$$ \& 10

5
11 \& $\begin{array}{r}860 \\ 1,260 \\ \hline 825\end{array}$

\hline Average \& \& 2 \& 1,351, 667 \& 2 \& 12, 770 \& 4 \& 43 \& 2 \& 7,133 \& 4 \& 2,500 \& 5 \& 982

\hline \& $$
\begin{aligned}
& 10 \\
& 11
\end{aligned}
$$ \& $\frac{1}{2}$ \& \[

$$
\begin{aligned}
& 1,653,000 \\
& 1,581,000
\end{aligned}
$$
\] \& 4

10 \& $$
\begin{aligned}
& 13,030 \\
& 11,590
\end{aligned}
$$ \& $\begin{array}{r}8 \\ 10 \\ \hline\end{array}$ \& \[

$$
\begin{aligned}
& 30 \\
& 22
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 3 \\
& 2
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 6,900 \\
& 7,700
\end{aligned}
$$

\] \& ${ }_{10}^{6}$ \& \[

$$
\begin{aligned}
& 2,600 \\
& 2,100
\end{aligned}
$$

\] \& 8 \& \[

$$
\begin{array}{r}
1,050 \\
940
\end{array}
$$
\]

\hline Average \& \& 1 \& 1, 617,000 \& 4 \& 12,310 \& 5 \& 26 \& 1 \& 7,300 \& 5 \& 2,350 \& 4 \& 995

\hline
\end{tabular}

$$
\begin{aligned}
& \text { For a more complete history see Bulletin } 6 \text { of Division of Forestry. } \\
& { }^{2} \text { See Report of the Division of Forestry, 1890, page } 209 . \\
& { }^{3} \text { Foung's modulus of elasticity : } \mathrm{E}=\frac{\text { W. L. }{ }^{3}}{4} \text { D. b. h. } 3^{3} \text {. where }\left\{\begin{array}{l}
\text { W. = total load at center in pounds } \\
\text { L. = length in inches. } \\
\text { D. detlection in inches. } \\
\text { b. = breadth in inches. } \\
\text { h. = height in inches. }
\end{array}\right.
\end{aligned}
$$

Description of test material and results of physical examination.

A. b. II. Connec ticut lowland. 3.	B. Arkansas.
Southwest. "Butt cut."	
Not known.	
4	
18 inch.	
18 inch.	Not specitied.
1.5 millimeters.	
54 per cent.	
37.5 per cent.	
24.9 per cent.	
Half seasoned.	

These particular tests can hardly settle definitely any question. Samples 1 and 2 being selected stock, second growth, can not be used for comparison with samples of B, except to show that for stiffiness the unselected Southern stock is superior to the best Northern growth, as also in resistance to endwise compression. The samples $3,4,5$, and 6 are probably more nearly comparable to samples of B, and here we find the Southern oak very much superior, not only in stiffness and columnar strength, but also in ultimate cross-breaking strength, while for resistance to shock, at least one sample of Southern oak is superior to three samples of forest-grown Northern, and even to one of the best Northern second growth. This piece (No.8) exhibits, altogether, qualities which render the verdict tenable that Southern oak is not necessarily inferior to Northern oak in any of its qualities.

Beyond this it would not be safe to use these figures for generalizations.
In 1888 the really first beginning in timber physies was made in the form of a preliminary physical and structural examination of a set of trees representing the more important lumber pines of the South and of the lake region, as well as of bald cypress. A comprehensive plan was fully worked out and the mistakes of former methods were carefully avoided. In 1891 a more extensive study of the four great Southern timber pines, the longleaf, Cuban, loblolly, and shortleaf, was begun, and the material was at the same time collected in such a manner as to enable a detailed inquiry into the relative merits of timber bled or tapped for turpentine as compared with unbled timber.

The trees were collected by Dr. Charles Mohr, of Mobile, Ala., an acknowledged authority on the botany of the region, and thus a correct identification was assured. Of each tree entire cross sections as well as the intervening logs were utilized, the former being subjected to examinations into their specific weight (the acknowledged indicator of many valuable technical properties), into the amount of moisture contained, into the shrinkage consequent on drying, and into the struetural peculiarities, particularly those structural features which are readily visible and may be utilized in practice for purposes of timber inspection.

The logs were sawed and tested according to definite plans in the well-equipped test laboratory of the Washington University, St. Louis, Mo., under the direction of Prof. J. B. Johnson, a recognized authority in engineering. The first series of test results are embodied in Bulletin No. 8 of the division, where the strength values for the longleaf pine are fully tabulated and discussed. So eagerly was this bulletin sought by wood consumers, that an edition of 5,000 copies was exhausted in a short time.

Bled and Unbled Pine.

In addition, this series of tests together with an extensive chemical analysis and physical and structural examination of material from unbled and bled trees, as well as from trees bled and abandoned for five years, re-enforced by an extended study of bled and unbled timber at various points of manufacture, proved conclusively that the discrimination against bled timber was unwarranted, since the bled timber was neither distinct in appearance, behavior, nor strength.

To avoid error in so important a matter, and also for a comparison of the three most important turpentine trees-the Cuban and longleaf with the loblolly pine-the extensive chemical analyses of Dr. M. Gomberg, of the Michigan University, were repeated and extended by Mr. O. Carr, of the Chemical Division of the Department of Agriculture. This series of additional chemical
 timber is as strong as nobled timber; and (2) that it contains the resinous substances in the same amounts and similarly distributed as the wood of unbled timber, so that it seemed to follow as a simple corollary that bled timber is also as durable as unbled, and hence equal to the latter in every respect.

The importance of this fact was quite fully realized. Trautwine, in his standard work, the Engineers' Pocketbook, at once placed the fact on eminent record, and the lumbermen of the South, as well as all trades journals, spread the welcome news in every paper and at every opportunity.

The work of Mr. Gomberg in determining the distribution of the resin through the diflerent, parts of the tree is unique in method and classical in its clear scientific procedure and statement, Since the publication in which it first appeared was at once exhausted, it appears proper to reproduce it in full, leaving out only a few tables, as a part of the most valnable work in timber physies performed under direction of the Division of Forestry:
A Chemical Study of the Resinous Contents and their Distribution in Trees of the Longleaf Pine Before and After Tapping for Turpentine.
[By M. (fombermi.]
Botanists tell us that resins are produced by the disorganization of cell walls and by the breaking down of starch granules of cells. Chemists believe that resins are oxidation products of volatile oils, the change being expressed by formnla as follows: $2 \mathrm{C}_{10} \mathrm{H}_{16}+30=\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O}$.

Whatever view be correct, ${ }^{1}$ one thing is certain, and that is that the formation of either resins or essential oils requires the presence in the tree of those pecnliar conditions which we call vital. The tree must live, must be active, must assimilate carbon dioxide and imbibe moisture, in order that oil of turpentine and rosin be formed.

The heart of the tree is the dead part of it. It does not manufacture any turpentine. A part of the oleoresin in it had been formed when the heartwood was yet sapwood, and remained there after the change from say to heart had takeu place. It is also probable that the heart of the tree acts as a storehouse in which there is deposited a portion of the oleoresin formed in the leaves and sap.

When a tree is tapped for turpentine there are two possible changes that might be supposed to take place: (1) The tree may be considered as placed in a pathological condition, when it will strive to produce a larger amount of oleoresin in order to supply the amount removed. In a few years the chergy of the tree will be exhansted and the amone freshly supplied will fall far below the amount of oleoresin drawn ofi by the tapping. The tapping will then have to be discontinued. The oleoresin in the heartwood will in this case remain untonched. (2) The oleoresin previonsly stored away in the heart might, by some unknown means and ways, also be directed toward the wonud.

If the first change takes place then, the tapping will have little effect upon the chemical composition of the heartwood. If, however, the second condition prevails during tapping, then of course the heartwood will be serionsly affected for some time after tapping, and will contain a much smaller amount of oleoresin than it contained before tapping. Moreover, the tapping may affect not only the amount of oleoresin, but also the quality of the new product and the relative distribution of volatile products.

For this reason the chemical side of the problem has been approached by parallel analyses of tapped or untapped trees for their relative amomits of turpentine. It was hoper that by a large series of analyses an average might be obtained showing whether tapped and mataphed trees differ from each other in that respect.

CIIEMICAL COMPOSITION OF TURPENTINE.

Under the name of turpentine is known an oleoresinons juice produced by all the coniferous trees in greater or less amomut. It is found in the wood, bark, leaves, and other parts of the trees. It flows freely as a thick juice from the incisions in the bark. It consists of resin or resins

[^0]dissolved in an essential oil; the latter is separated from the former usually by distillation with steam.

There are many varicties of turpentine, corresponding to the different varieties of conifere, but only three are commercially important, as they are the source of the three principal oils of turpentine.
(1) The turpentine of Pimus pinaster (syn. P. moritima), collected in the southern departments of France around Bordeanx. F'rom it is obtained the French turpentine, which yields 25 per cent of volatile oil.
(*) The turpentine from l'inus palustris, l^{\prime}. tada, $l_{\text {. }}$. heterophylla, collected in the sonthern sea-bordering States from North Carolina to Texas. Irom them, principally from the first source, is obtained the English or American oil of turpentine, which yields 17 per cent of volatile oil. Formerly the l^{\prime}. rigidd was also worked for turpentine in the North Atlantic States, but it is now exhansted.
(3) The turpentine from l'inds laricio var, austritud, collected mainly in Austria and Galicia. From it is obtained the (ierman turpentine oil, which yields 32 per cent of volatile oil.

The linssian oil of trmentine is obtained from Pinus silcestris and limus ledebomrii, by the direct distillation of the resinons wood, without previously collecting the turpentine. It is said to be identical with the German oil of turpentine, but more variable, as it contains products of destructive distillation, both of wood and rosin.

The turpentines from the different sources differ from each other-(1) in their action upon polarized light, (2) in the relative amonnts of volatile oil they yield on distillation with steam, and (3) in the nature of the volatile oils they contain.

Colophony.-The rosin in the different varieties of turpentine is pactically the same. It is known as common rosin or colophony. ${ }^{1}$ It consists chemically of a mixture of several resin acids and their corresponding anhydrides. The chief constituent is abietic anhydride, $\mathrm{C}_{44} \mathbf{H}_{62} \mathrm{O}_{4}$, abietic acid being $\mathrm{C}_{41} \mathrm{H}_{14} \mathrm{O}_{5}$. The crystals that are noticed in crude turpentine are the free abietic acid; on melting the thick turpentine, or on distilling the volatile oil, the acid is changed to the anhydride. Colophony is nonvolatile, tasteless, brittle, has a smooth shining fracture, sp. gr. about 1.05. It softens at $80^{\circ} \mathrm{C}$., and in boiling water melts completely at $135^{\circ} \mathbf{O}$.

The colatile oil.-The second pribcipal constituent of turpentines are the volatile oils. The chief ingredient of the three turpentine oils is a hydrocarbon of the same composition, $\mathrm{C}_{10} \mathrm{H}_{66}$; nevertheless the three oils have distinct hydrocarbons diflering from each other in physical if not in chemical properties. The empirical formula of the liydrocarbon is $\mathrm{C}_{10} \mathrm{H}_{16}$, and according to the latest researches of Wallach ${ }^{2}$ it has the following structural formula:

thus being a dihyoro-para-cymene, paraeymene being $\mathrm{C}_{10} \mathrm{H}_{14}$,

${ }^{1}$ Colophon, a city of Iconia, whence rosin tras obtained by the Grecks.
: Anu. Chem. (Lielig. , 339, 49; Ber. d. Chem. Ges., 2.1, I515.

The position of this particular terpene, pinene, will be best seen from the general classificntion of terpenes taken from Wallach.
I. Hemiterpenes or pentenes of the formula $\mathrm{C}_{5} \mathrm{H}_{8}$.
II. Terpenes or dipentenes of the formulat $\mathrm{C}_{10} \mathrm{H}_{1 \text { tio }}$
(I) l'inene, obtainel from many varieties of turpontine.
(2) Camphene, obtained artificially from camphor.
(3) Fenchene, obtained artificially from fenchone, a constituent of many fennel oils.
(4) Lemonenc occurs in orange-peel oil, in oils of lemon, berganot, cuminin, etc.
(5) Dipentene, obtained artificially from pinene. Occurs in Russian and Swedish turpentine.
(6) Sylcestrene occurs in liussian and swedish turpentiue.
(7) Phelandrene occurs in the oils of bitter fennel and water fennel, elemi, encalyptus.
(8) Terpincne occurs in oil of carlamom.
(9) Terpinolene, only slightly known.

The hydrocarbon of the American and French oils of turpentine is pinene. It is dextrorotatory when obtained from the American turpentine oil, and is known as anstro-terebinthene or australene; lavorotatory when obtained from the French turpentine oil, and is known as terebinthene. Otherwise the two hydrocarbons agree entirely in specific gravity, boiling point, and behavior toward chemical reagents.

The hydrocarbon of the Russian oil of turpentine is sylvestrene. It is dextro-rotatory, and has a higher boiling point than pinene. The latter boils at 155° to $156^{\circ} \mathrm{C}$., the former at 175° to 1780 C.

But even the turpentine oils of high grade as found on the market do not consist of pure pinene; especially is this true of ordinary oil of turpentine, which is obtained from the cruder turpentine by a single distillation with steam. Different samples vary from one another considerably in their specific rotatory power as well as their boiling point.

American oil of turpentine has a density of 0.864° to 0.870°. According to Allen ${ }^{2}$ it begins to boil at a temperature between 156° and $160^{\circ} \mathrm{C}$., and fully passes over below $170^{\circ} \mathrm{C}$. "A good sample of rectified American oil will give 90 to 93 per cent of distillate below 1650 , the greater part of which will pass over between 158° and $160 \circ{ }_{9}{ }^{3}$ while in the experience of J. H. Long, ${ }^{4}$ "In the examination of a large number of pure commercial samples of turpentine oil it was observed that the boiling point was uniformly at 155° to 156°, and that 85 per cent of the samples distilled between 155° and 163°. The distillation is practically complete below $185^{\circ} 0$."

Then, again, as found by Long, the vapor densities of many samples of oil are too high to allow the formmla $\mathrm{O}_{10} \mathrm{H}_{46}$ for tho entire oil. Iractions of different boiling points show different degrees of specific rotation. All this would indicate that ordinary turpentine oil contains hydrocarbons heavier than pure pinene, $\mathbf{U}_{10} \mathbf{H}_{16}$. They are probably either isomerie with pinene, but of a higher boiling point, or may belong to the polyterpeues.

Still less do we know of the source of these hydrocarbons. Whether they are produced by the tree simultancously with pineue, and are therefore to be found in the oleoresin or whether they are all or in part produced by external agencies after the turpentine has been dipped can not be answered. Probably the formation of these other hydrocarbons takes place in both ways spontaneously in the tree and by some influences outside the tree.

Indeed, all terpenes have this property in common that they easily undergo change, from optically active to inactive, from hemiterpenes to terpenes and polyterpenes. The change can be brought about either by heat alone, or by heating the terpenes with salts or acids. So, when a sample of American turpentine oil of $+18.6^{\circ}$ was heated to $200^{\circ} \mathrm{C}$. for two hours it showed an opposite rotation of -9.90^{5} Pinene heated to 250° to $300^{\circ} \mathrm{C}$. is converted into dipentene CH , boiling at 175°, and a hydrocarbon CH , boiling at $260^{\circ} \mathrm{C}$.

These illustrations will suffice to show that the transformation of pinene into isomeric and heavier hydrocarbons may occur, at least partially, after the turpentine has been removed from the tree.

[^1]Muspuratt's Chemio, 4 th ed., 1, 153.

The crude turpentine from l'imus palustris, or long-leaf pine, is thus made up of-
(1) Losin, 75 to 40 per cont; mostly abietic anhydride.
(2) Australene, 25 to 10 per cent: boils at 155) to $1: 6^{2} \mathrm{C}$.
(3) Some other terpenes of C C H H_{\ldots}; small portions; kind not known.
(4) Some polyterpenes of $\left(\mathrm{C}_{5} H_{s}\right)_{n}$; small portions; kind not known.
(5) Cymene (!) CyH H_{1}; small portions, if any; looils at 175° to $176^{\circ} \mathrm{C}$.
(6i) Traces of formic and acotic acids; produced probably by atmospheric oxidation durines eollection of turpentine.

ANALYTICAI WORK.
As both the rosin and the volatile oil are easily soluble in chloroform, ether, carbon disulphide, etc., their separation from wood by any of the above solvents would appear to be au easy matter. But an exact quantitative determination of the volatile oil presents considerable difficulties, and for these reasons: (1) Whood can not be dried free from moisture without driving off some of the volatile hydrocarbons; (2) the ether extract can not be freed entirely from either without some loss of the volatile oil.

If a weighed quantity of wood shavings is exhausted with either, the residue dried at $100^{\circ} 0$. and weighed, the total loss thus fonnd will represent:

> The moisture $=H$
> The rosin $=R$.
> Whe volatile hydrocarbons $=T$.

It is sufficient to determine two of these fuctors; the third could then be determined by difference. Bit as has been mentioned before, the ether extract can not be obtained in any degree

I'w. 85. - Method of chemieal analysis of turpentine.
of purity withont loss of turpentine. The evaporation of ether in a stream of dry air, as proposed by Dragendorf, for the estimation of essential oils in general, does not give satisfactory results with turpentine oil, as Dragendorf himself observed.

A weighed quantity of a mixture of rosin and oil, made up in about the same proportions as they exist in crude turpentine, was dissolved in a suitable amount of ether. The latter was then evaporated in a current of dry air till the odor of ether was hardly noticeable. The mixture was found to have gained considerably in weight by retaining ether in the thick sirupy oleorosin. It was ouly by heating at 100° C. for some time that all of the solvent could be driven off, and then the mixture was found to have lost in weight. Repeated trials proved that this method could not be used safely.

An attempt was then made to determine the quantities H and R, and thus find T by difference A weighed quantity of wood shavings was placed in a small flask a. The latter was commected on one side with a tray of drying bottles, on the other two CaCl_{2} tubes b and c, similar in size and form. The tlask is immersed in boiling water and a current of dry air is passed through the whole apparatus for one and one-half hours. The flask is then cooled and air is passed for one and one half hours longer.

It was thonght that while b would retain all the moisture and a portion of the volatile compounds, e would retain about the same amount of the volatile products only. Gain in weight ol
c subtracted from that of b would then give the moisture H. The sample of wood shavings is then exhausted with ether, the latter evaporated, and the residue heated at about 140° to 150° to constant weight; this gives the rosin h. If L be the total loss by extraction with ether, we have

$$
L-H+R=T
$$

But it was soon found by experiments upon pure turpentine oil that the two CaCl_{2} tubes did not retain an equal amount of volatile oil. The quantity retained depended upon many circumstances, the chief one being the amount of moisture already present in the CaCl_{2} tubes.

Even had the tubes retained quantities of turpentine oil, this method would still have the objection that one of the constituents was to be determined by difference-an objection especially serions when the ingredient to be so determined is small in comparison with the materials to be weighed.

The writer has therefore attempted to make use of a somewhat different principle. A few trials were sufticient to show that the method promised to give satisfactory results. The basis of the method is the same which served for the production of Russian turpentine oil on a large scale, namely, the distillation of the volatile products from the wood itself, withont previonsly obtaining the turpentine. But instead of coudeusing the volatile products, their vapors are passed over heated copper oxide, whereby they are burned to water and carbon dioxide. Many trials were made with this method upon pure materials and on samples of resinous wood. As the results were found to be entirely concordant and satisfactory, the method was adopted, and by it were obtained the results preseuted in this report.

DESCLIPIION OF THE METHOD FMPLOYED.

A weighed amount of wood shavings is placed in a straight CaCl_{2} tube a. The tube is connected on one side by means of a capillary tube with a drier A, which serves for freeing the air from moisture and CO_{2}. The other end of the tube is connected with an ordinary combustion

tube b containing gramulated CuO . The tube is drawn out at one end as is shown in the figure, and the narrow portion is loosely filled with asbestus wool. The connection is made glass to glass, so that the vapors of distillation do not come in contact with any rubber tubing. The forward end of the combustion tube is connected with a CaCl_{2} tube c, one-half of which is filled with granulated CaCl_{2} and the second half with $\mathrm{P}_{2} \mathrm{O}_{5}$. Then follows a potash bulb d provided with two straight tubes, the first oue filled with solid $K O H$, the second with $\mathrm{P}_{2} \mathrm{O}_{3}$. The last tube is connected with an aspirator.

All the comections having been made air-tight, the connection between the tube a and the drier A is shut off by means of a clamp and the aspirator turned on. When the combustion tube has been heated to dull redness the burner under the air-bath B is lit and the temperature raised to $110^{\circ}-120^{\circ} \mathrm{C}$. The moisture contained in the tube escapes quite rapidly, carrying with it some turpentine oil. The capillary tube at the other end of A practically checks backward diffusion

$$
\text { H. Doc. } 181-22
$$

or athy accummlation of condensed vapors. In about fifteen minutes all the moisture appears at the forward end of the combustion tube. The clamp is now opened and a stream of air at the rate of somewhat over one liter an hour is passed throngh the whole apparatus, while the temperature of the air bath is raised to 155° to $160^{\circ} \mathbf{O}$, and kept at that point for about forty-five minutes. Towat the end of the operation the temperature is raised to 165° to $170^{\circ} \mathrm{C}$. for ten minutes. Then the light under the air bath is turned ofl' and air aspirated for twenty to twentyfive minutes longer. As the air bath is in close contact with the combustion furnace, the whole length of the tube is kept at a temperature above the boiling point of turpentine oil. In this way a complete distillation is insured.

All the moisture is retained by c, while the CO_{2} is absorbed in the potash bulb l . The gain of weight in (c represents the moisture originally present in the sample of wood plus the water produced in the combnstion of the hydrocarbons. The gain in weight of drepresents the amount of CO_{2}, derived from the combustion of the volatile products.

The tube a is now transfered to an ordinary Soxhlet's extraction apparatus and exhausted with ether. The latter is distilled off, the residue dried for about two hours at $100^{\circ} \mathrm{C}$., and weighed. This represents the amount of rosin in the sample of wool taken.

As has been previonsly mentioned, the volatile oil of the oleoresin is not pure australene, $\mathrm{C}_{10} \mathrm{H}_{10}=\left(\mathrm{C}_{5} \mathrm{U}_{8}\right)_{2}$. It probably contains some other hydrocarbons, either of the same formula or belonging to the class of polyterpenes $\left(\mathrm{C}_{5} \mathrm{H}_{6}\right)_{n \text {. }}$. It is clear that whichever they be their percentage composition is alike in all; they all have $\mathcal{C}=8.23$ per cent, $I f=11.77$ per cent. Therefore, so far as the combustion of the volatile terpenes is concerned, they can all be represented by the equation:

$$
\underbrace{\mathrm{U}_{10} \mathrm{H}_{16}}_{136}+140=\underbrace{10}_{440} \mathrm{CO}_{2},=\mathrm{SH}_{2} \mathrm{O}
$$

In other words, 410 parts of UO_{2} are derived from 136 parts of volatile terpenes.

$$
440: 136=1: X ; X=0.3091
$$

i. e., 1 part of OO_{2} obtaned in the combustion represents 0.309 parts of the volatile hydrocarbons.

For every 40 parts of CO_{2} produced there are 144 parts of $\mathrm{H}_{2} \mathrm{O}$ formed.

$$
140: 144=1: X ; X=0.32: 2
$$

i. e., simultaneously with 1 part of CO_{2} there is produced 0.327 parts of $\mathrm{H}_{2} \mathrm{O}$.

Let the weisht of the sample taken $=\mathrm{W}$,
Let the weight of CO_{2} obtained $=\mathrm{W}^{\prime}$,
Let the weight of $\mathrm{I}_{2} \mathrm{O}$ obtained $=\mathrm{W}^{\prime \prime}$,
Then- $W^{\prime} \times 0.309=\mathrm{I}$, the amount of volatile hydrocarbons.
$W^{\prime} \times 0.327=\amalg^{\prime}$, the amount of $\mathrm{H}_{2} \mathrm{O}$ corresponding to the volatile hydrocarbons.
$W^{\prime \prime} \times-I^{\prime},=U$ the amount of moisture in the wood.
$\begin{aligned} & \mathrm{I} \\ & \mathrm{W}\end{aligned} \quad=$ per cent of $\mathrm{T} ; \quad{ }_{\mathrm{IV}}=$ per cent of moisture.
Thus the moisture, the volatile hydrocarbons, and rosin are obtained directly from the same sample. Where many estimations are to be made, it is of course monecessary to cool down the combustion tube between successive combustions.

The tempernture of distillation.-Some experiments were made to determine at what temperature it is safe to conduct the distillation. Althongh pure turpentine boils at $\mathbf{1 5 0 - 1 6 0} \mathbf{0}$., yet in open air it can be volatilized at a much lower temperature, even on the water bath, without any difliculty. Especially is this the ease when the vapors are removed as soon as formed by a stream of air, but it must be remembered that the volatilization of the essential oil directly from the wood might be considerably hindered by the large amomet of rosin.

A sample of wood distilled by the method ontlined above gave the following results at difterent temperatures:

Another sample gave:

The results would indicate that the distillation is practically complete at 160°, and that ihe wood itself does not contribute any CO, by partial decomposion at that high temperature; for, should the latter be the case, higher results might be expected at 180° than at 160°, and then the sapwood would give much higher numbers for turpentine oil than those actually obtained.

Even if this method does not give the absolute amounts of volatile lyydrocarbons, yet it certainly gives results very near the truth, and, what is more important, under the same conditions it gives coustant results. Therefore, by employing strictly parallel conditions in the analysis of the different samples, results are obtained which can be sately used as indices of comparison of the relative amounts of volatile hydrocarbons in the samples under analysis.

MATELILAL FOIR ANALYSIS ANI METHOD UW DESIGNATION.

```
Materials.-Trees No. 52 and 53, abandoned five years.
    Trees No. }60\mathrm{ and 61, abandoned one year.
    Trees No. }1\mathrm{ and 2, not tapped.
    Trees 54-57, abandoned tive years.
    Trees 58-59, alsandoned five years.
    Trces 63-65, abandoned ono year.
    Troes 66-69, abandoned ono year.
    Trees 17-19, not tapped.
Generally Disk II is 23 feet from.ground.
    Disk III is 33 feet from ground.
    Disk IV is 43 feet from ground.
```

Method of designation.-It was thought best to make a somewhat detailed analysis of a few bled and unbled trees in order to gain an insight into the quantitative distribution of turpentine in the trees. Each disk was divided into pieces of about thirty rings each, the heart and sapwood being kept separate. The number of the disk is designated by a roman figure, the kind of wood by either s for sapwood or h for heartwood. The arabic figure which precedes the h or s designates the number of the piece, comnting for the sapwood from the bark; for the heartwood, from the line of division between sap aud heart.

Preparation of material.-The first six tables give the results of what might be called "detail" aualysis, where each piece of about thirty rings has been analyzed separately. The material for analysis was prepared in the following way: A radial section of the disk, about 1 to 2 inches thick, is selected. A piece of 1 inch is cut oft transversely,

Fig. 87.-Distribution of turpentine in trees. (A picce marked 52 III $2 h$ means tree No. 52, disk III, the second piece of the heart.) and the strip is then divided into pieces of abont thirty rings each. From the fresbly cut transverse surface about 15 grams of thin shavings are planed off and placed in a stoppered bottle. The exact amount used for analysis, usually from 3 to 5 grams, is found by weighing the bottle before and after taking out the portion for aualysis.

The second set of tables, VII to XII, inclusive, give the results of "average" analysis. The material for these analyses was obtained by mixing equal quantities of shavings from the corresponding portions of several trees and taking for analysis an average sample of the mixture. The sapwood furnish one aualysis and the heart wood was either analyzed as a whole or divided into portions, $1 /$ and $2 h$, if of considerable thickness.

Notes of 'IAbles I to XII.

Each table contains a column "calculated for wool free from moisture," giving the per cent of volatile hydrocarlons and rosin obtained ly calculation from results actually found. Ohjections might be raised to this mode of interpreting the results. It might be said that the moisture in the rood can not be disregarderl, because it is as much an essential proximate constitnent of wood as the turpentine itself is. But since the analyses were not made soon after the trees had been felled, the moisture found in the samples does not represent the original moisture, nor
does it represent equal portions of it in all samples. 'The numbers given in the column "water" are of course suggestive as to the comparative degree of retention of moisture by the difierent samples, since the latter were all exposed to about the same influences. But it seemed best to compare the amounts of volatile hylrocarbons and rosin on wood free from that variable constituent; the moro so as some time elapsed hetween the analysis of the first and last samples.

The last colum in oach tahle contains the ratio between tho volatile lyytrocarhons and rosin. This ratio is moltiplied by 100 , and means that for every 100 parts of rosin as many parts of tho volatilo hydrocarbons are found as is indicated in tho columm. This ratio $\binom{T}{I_{0}}$ is of littlo valuo in cases when tho amome of turpentine is sumall, becanse a very small increase of tho first coustituent-an increaso within experinental error-will change the quotient considerably. An increase of 0.07 per cent of volatile hydrocarbons in 60 . IV, 18 will bring up T_{i} from 7.2 to 10 . A decrease of 0.07 per cent in $52, I V, 28$ will change $\frac{T}{h}$ from 25.20 to about 19 . These numbers are therefore of very littlo significance when applied to the sapwood of all samples, to entire tree 5 , and to some parts of trees 60 ami 1 , all of which show only small portions of turpentine.

IISCUSSION OH LESULTS OBTAINEI).
Rolation of rosin and rolatile hyrracarbon to moisture. -The amount of moisturo retained by different samples does not seem to have any direct relation to the amount of oleoresin in these samples. Iet in the same tree, or rather in the different parts of the same disk, there seems to exist something like arelation of the two. This is especially notice-

Fig. B8.-Relationship of diflerent parts of same disk. able in tree No. 53. The moisture retained seems to vary inversely with the amount of oleoresin in the sample. Compare, for example, in $5: 3 \mathrm{II}, 1 h, 2 h, 3 h$; in $53 \mathrm{II}, 1 h, 2 h$, $3 h$, $4 h$; in 53 IV, $6 h, 3 h, 47$. The piece richest in oleoresin is generally the poorest in moisture. But this is by no means a muiversal rule. Some trees show about the same per cent of moisture in parts widely differing from each other in the amomes of turpentine, and in many instances a smaller amount of turpentine is associated with a smaller per cent of moisture.
Suprood and hervtrood.- Sll the analyses, detail and average, show conchasively that the sapwood is comparatively very poor in turpentine; it is immaterial whether it coases from a rich tree or a poor one, from a tapped tree or an untapped one. The turpentine in sapwood reaches 3 to 4 per cent in very rich trees, as in Nos. 53,61 , and 2 ; in the remaining trees it is $2 / 2$ to 3 per cent. Consequently the results obtained for sapwood are not taken into account in tho following paragraphs. When differences between trees are spoken of, it applies entirely to heartwood.

The different parts of the same disk show a constant relation in nearly all instances. In most cases $1 / \mathrm{h}$ is the richest, and the heartwood grows poorer as we approach the pith of the tree. In a few eases, as in 1 III and in $1 \mathrm{IV}, 1 \mathrm{~h}$ and $2 h$ are practically identical, while in some instances, in 2 III , $61 \mathrm{II}, 61 \mathrm{IH}$, and 53 II , 1 h is poorer than $2 h$. In nearly all cases the decline is marked in $3 h$, and $4 h$ is usually found to be the poorest part of the disk. This relationship can be represented in a general way by the following curve:

Relation of colatile hydrocarbons to rosin.-As the turpentiue in the tree is a solution of rosin in an essential oil, it will follow that the richer a tree is in turpentine the richer it will be in the constituents that go to make up this mixture. One would also expect that the ratio between the volatile hydrocarbons and rosin would be tolerably constant in the different parts of the same tree, but the results of analysis do not indicate it. They show that this ratio increases with the

Flti. 89.- Yield of volatile oil from constaut duantity of turpentine. amount of rosin. A part of heartwood having twice as much rosin as another part will contain more than twice as much volatile products as the secoud part. This is true in a general sense of parts of the same disk, of parts of different disks in the same tree, and parts from different trees. There is no distinction in that respect between bled and unbled trees. This relationship san be formulated in the following way: The crude turpentine from leartwood rich in oleoresm will yield a comparatively larger amount of turpentine oil than the turpentine from heartwood poor in oleoresin.

It has been shown that the heartwood grows poorer from $1 / h$ toward the pith of the tree. It will therefore follow from what has been said in the preceding paragraph that $\frac{T}{R}$ will also grow smaller from 1 to the pith. The yield of volatile oil from a constant duantity of turpentine can be expressed in a gencral way by a graphic illustration similar to that which expresses the yield of total oleoresin from different parts of the disk.

It is diflicult to explain satisfactorily this decrease of $\frac{T}{h}$. The two parts of the radial sections that have been the longest exposed to air are $1 s$ and the last $\%$. The question naturally arises, May not the decrease of $\frac{T}{T^{j}}$ be due to a greater evaporation of volatile hydrocarbons from these two ends? But this can liardly be so. No. $33,15,4 h$ was analyzed at intervals of two months and furnished the following data:

$$
\begin{aligned}
& \text { I, Sept. 2\%. |II, Nov. 27.| } \\
& \begin{array}{l}
\mathrm{I}_{2} \mathrm{O}=11.33 \\
\mathrm{I}^{2}=1.34 \\
\mathrm{I}=7.34 \\
\end{array}
\end{aligned}
$$

Calculated for wool free from moisture:

1.	11.
$T-1.30$	1.30
$12-8.96$	8.75

Sufficient oxperimental data are lacking to prove conclusively that the volatile hydrocarbons fo not evaporate to any extent from the heartwood except from freshly cut surfices of it.

Relation belueen different diskis of the same trec.-There is no constant relation between the different disks of the same tree so far as the amount of olcoresin is concerned. Although the disks do vary from each other, the variation can not be comected with gravitation, by virtue of which the lower disks would contain a larger amount of turpentine than the upper ones; for different trees vary from each other considerably in this respect, the variation being apparent in both bled and unbled trees. If a, b, o stand for the amonnts of oleoresin in disks denoted by Roman mmerals, the relative maguitudes being represented by the letters in the alphabetic order, then the results of aualysis can be condensed in the following table for the trees denoted in Arabic numbers:

It is evident that no constant relation as to amountis of oleoresin exists between the disks of the same tree.

Compurison of tree 52 with 53 .-These two trees were both supposed to have been sound, healthy trees at the time of felling, and yet they differ from each other as much as tro trees could differ. The heartwood of one is very rich in turpentine; that of the other contains comparatively very small quantities-only a trace. How to explain the difference? Previous to felling they had both been tapped for four consecutive years; consequently both must have contained considerable amounts of turpentine. Since the last tapping they stood for five years side by side, both exposed to the same influences. This great difference cai not be traced directly to tapping, for the latter, it may be assumed, would have affected both treesequally. The cause of the difference between 53 and 52 ought to be looked for, rather, in the condition of the two trees before tapping. In connection with this it would be interesting to know how much turpentine each tree had yielded when tapped.

Comparison of trees 60 mul 61 . -There is a rlecided difference between the two trees. The highest numbers in 60 are $0.8 \pm$ per cent for volatile hydrocarbons and 5.35 for rosin, while in 610.75
and 5.67 are the lowest numbers for the corresponding constituents, the highest being 3.40 and 16.29 , respectively. Here again we have two trees of about the samo age, under apparently the same conditions of growth, tapped at the same time and abandoned for the same length of time before felling, and yet differing very widely from each other. It is dificult to conceive why tapping should lave affected the heartwood of these two trees in such a strikingly different manner. If the assumption is made that the tapping had draned both trees equally, what explanation can be given for the fact that within one year of abandomment one tree is very rich in turpentine while the other has less than one-fourth as much?

Comparison of trees 52 and 53 with 60 and 61 .-Compare 53 and 61. Here we have two trees both very rich in turpentine, but while $5: 3$ had five years of rest after tapping, of had only one year. Had the tapping forced the trees to pour out their oleoresin previonsly stored up in the heart, we shonld expect to find in the time of rest the prime factor for the tree in resuming its natural condition; but, on the contrary, results of analysis show that time of abandonment before felling is of little importance. While we can lave a tree very rich in turpentine within five years atter tapping, we can also have trees rich and poor even within one year, and trees almost totally deprived of turpentine in the heartwood within five years after tapping.

Compurison of 1 with 2 -These two trees had never been tapped, and yet neither is rich in turpentine. No. 2 contains about twice as much turpentine as No. 1, the difference becoming smaller as we go up the tree. The highest numbers for 2 are 1.93 and 14.19 for T and R , respectively, the lowest 0.86 and 5.89 , with an average of about 1 and 7 . We can say that there is as much difference between untapped trees as there is between trees that have been tapped.

Averufe analyses.-The average analyses cover 16 trees. Thirteen trees furnish four sets of analyses of tapped trees and 3 trees furnish one set of untapped. The results obtained are summarized in the following table:

These results show a pretty constant average number for turpentine in tapped trees. The heartwood of untapped trees is poorer in both volatile oil and rosin than that of tapped trees. And here again it is worthy of notice that time of abandonment is of little importance to tapped trees. The trees that had been abandoned for one year are fully as rich as those that had five years to recover from tapping.

Comparison of tapped with untapped trees.-If now the heartwood of tapped trees be compared with that of untapped, one is at a loss as to what conchsions should be drawn from so few analytical data. It is remarkable that the two richest trees and the poorest tree are among those that had been tapped. Of the remainins 19 trees, there is no difference between the 14 tapped and 5 untapped. Whatever differences are found among bled trees are equally found among those that have not been tapped.

Indeed, from the study of the results of analyses the writer is of the opinion that the difference in untapped trees is due to the same causo as the difference in trees that have been tapped. As stated above, the cause of the difference among tapped trees can not be traced directly to tapping; it ought to be looked for, rather, in the condition of the trees previons to tapping.

The difference between trees 52 and 53 can be explained on the foliowing hypothesis: 53 had been a rich tree from early growth and had a large amount of turpentine stored up in the lieartwood; 52 for some reason or other had very little stored away. When the two trees were subjected to tapping they gave up, whatever turpentine they had in tho sapwood and whatever they conld produce from season to season, till at the end of four years the production became too smali in amount and too poor in quality. The trees were then abandoned. But tree No. 53 had its oleoresin in the heartwood untonched, while No. 3 had hardly any before tapping, and for the same unknown cause did not store away any in the heartwood after the tree had been abandoned.

The explanation offered in the preceding paragraph gains still more probability when trees 60 and 61 are compared with each other and also with 52 and 53 . The difference between 1 and 2, the results of average analyses-all these are very suggestive of the theory that the sap, and not the heart of the tree, supplies the turpentine when the tree is tapped. The fact that the heartwood of trees felled one year after tapping is fully as rich or as poor as that of trees felled five years after tapping, seems to the writer of especial significance, for it shows that the richness of the heartwood in a tapped tree is independent of time of rest before felling.

It is a well-known fact that when a pine tree is cut transversely, liquid turpentine immediately appears on the fresh su:.face of the sapwood, while the heartwood remains perfectly clear. It would seem as if the turpentine in the sap is far less viscid than that in the heart of a tree. It is probable that the turpentine in the sap is richer in volatile hydrocarbons than that in the heart. (A difference of cell structure and manmer of existence of oleoresins may also account for this difference in part.-B. L. F.)

It is geuerally stated that crude turpentine as obtained on a large sealo yiclds from 10 to 25 per cent of volatile oil. This gives $\frac{T}{N}=11.11$ to 30 , with an average of over 20 . This average is somerwat higher than that for the $\frac{T}{R}$ as found for the turpentine from heartwood of the 21 trees analyzed. Although experimental data are wanting to show conclusively that the difference in the consistency of the olcoresin from sapwood and heartwood is due to a difference in the relative amount of volatile oil, yet it is quite probable that this should be the cause. The oleoresin in the heartwood of trees has been produced for the most part when the heartwood was yet sapwood. Therefore that part of turpentine which is found in the heartwood is the oldest in age and consequently has been exposed the longest to oxidizing intluences of air, which gradually replace the water when the sapwood changes to heartwood. It is the same kind of oxidation and of thickening which takes place wheu crude turpentine is exposed to the air and sun, or when a fresh cut is made in the bark of a tree. It is probably for the same reason that $\frac{T}{h}$ becomes smaller as we approach the pith of the tree, because the parts nearest the pith are the oldest.

It is difficult to conceive how the thick oleoresin of the heartwood could be made to flow toward the incision when a tree is tapped. It is also difficult to explain by what means the tree could change this thick turpentine into a less viscid solution in order that it may flow toward the wound.

One would judge, a priori, from the great difference in the consistency of the turpentine in the heart and sap, that only the liquid turpentine will flow when a tree is tapped. Tapping will then have little effect, if any, upon the oleoresin stored up in the heartwool of the tree. A tree whose heartwood is rich in turpentine will remain so after tapping.

The writer is not willing to generalize too hastily from so few results and consider them as a solution of the problem. A large number of analyses, devoid of the possibility of chance selection of samples, is necessary before a positive or a negative answer can bo given to the question, does the tapping of trees for turpentine affect the subsequent chemical composition of the heartwood?

But, however few in number the results are, they admit of the following conchsions:
(1) Trees that have been tapped can still contan very much turpentine in the heartwood.
(2) Trees that have been abandoned for only one year before felling can coutain fully as much turpentine in the heartrood as trees that have been abandoned for five years.
(3) Trees that have not been tapped at all do not necessarily contain more turpentine in the heartwood than trees that lave been tapped.

The following diagram serves to show what proportion of each disk was involved in each of the detail analyses, and tho results in each case. The right-hand rertical liue represents the pith of the tree, the horizontal lines represent the radical extension of each disk, as numbered by roman number, the position of the disk in the tree being maintained as in nature, IV being the top, If the lower, and III the intervening disk. The subdivisions of radii represent the actual divisions of the disk to scale of one-half natural size, the portions to the left of the heavy subdivisiou line representing sapwood $s 1$ and $s 2$; the portions to the right heartwood h, h, divided according to the method as iudicated above. The four columns of figures over each disk piece represent results pertaining to that piece; they stand in order from the top, for (1) number of rings, (2) volatile
liydrocarbons, (3) rosin, (4) ratio $\frac{T}{R} ;(2)$ and (3) as calculated on wood free from moisture. For instance, for tree No. 53 , disk IV, s, we find-

[^2]Table I.-TREE No. 53.

No. of disk.	Part of disk.	$\begin{gathered} \text { Number of } \\ \text { rings. } \end{gathered}$	Width.	Water.	Folatile hydrocarbous.	Rosin.	Calculated on wool free from moisture.		$\frac{\text { Yiul. Lydruc. }}{\text { Rosin. }} \times 100$
							Volatile hydrecarhon.	Rosin.	
II.			('m.	Per cent.	Ter cent.	Her cent.	Percent.	I'er cent.	
	18 $2 s$	37 40	3.3 4.0	10.51	0.16 0.17	0.87 0.86	- $\begin{aligned} & 0.18 \\ & 0.19 \\ & 0.19\end{aligned}$	0.97 0.46 10	18.39
	$1 / 4$	33	3.0	9.11	2.32	10.93	2.56	12.02	21.23
	\% h	32	2.9	8.79	4.00	17.83	4. 39	24.70	22.43
	$3 /$	32	5.0	8.47	2.013	11.26	2.22	12.30	18.29
	4h	28	10.0	*11. 23	1.30	7.96	1.46	8.96	16. 33
	18	40	2.7	9. 188	0.35	2.69	0.39	2.96	13.01
	28	37	2.6	8.90	0.38	2. 75	0.42	3.02	13.82
	$1{ }^{1}$	35	3.5	7. 89	3.57	20.05	3.87	21.87	17.85
	$2 h$	33	4.1	8.04	3.50	18.48	3.81	20.09	18.94
	3 h	30	5.5	8.55	1,92	10.95	2.10	11.97	17.53
	$4 h$	18	7.0	8.79	1.14	8.86	1.25	971	13. 10
	$1 s$	40	4.0	8.96	0.36	3.47	0.40	3.81	10. 37
	$2 s$	30	3.0	8.67	0.42	3.62	0.46	3.96	11.60
	1 h	34	3.9	8.04	4.20	22.08	4.56	24.01	19.03
	$2 h$		3.0	7.93 8.65	4.13	20, 56	4.49 3.86	22.33	20. 12
	3 l	31	5.8 5.3	8. 65	$\begin{aligned} & 3.53 \\ & 2.41 \end{aligned}$	16.21 13.74	3.86 2.66	17.74	21.77 17.53
	$4 h$	15	5.3	9. 65	2.41	13.74	2. 66	15. 19	17.53

* 53, II, 4 has heen analyzed some three weeks earlier than the remaning parts of this tree, hence a large per cent of moisture.

Table IT.-TRER No. 52.

II	1s	40	3.1	9.72	0.27	1.98	0.30	2.19	13.6
	28	40	3.9	9.77	0.28	1.81	U. 31	2.01	15. 48
	$1 h^{2}$	36	4.6	8.67	0. 28	1.98	0. 30	2.17	14.14
	$2 h$	32	3.0	8.44	0.24	1. 68	0. 26	1.83	14.38
	3 h	35	6.8	8.80	0.16	1,81	0.17	1.93	8. $8: 3$
	$4 h$	24	7.4	8.55	0.16	1.38	0.17	1.51	11.6)
	18	30	3.0	9.12	0. 23	1.81	0. 25	1.99	12.71
	$2 s$	40	3.5	9.00	0. 23	1.68	0. 25	1. 87	13.67
	1 h	30	3.4	8.44	0.14	1.62	0.15	1. 77	8,64
III	$2 h$	30	3.0	8.51	0.18	1.71	0.20	1.89	10.51
	$3 h$	32	4.8	8.37	0. 13	1. 70	0.14	1.86	7.65
	4h	27	6.9	9.35	0. 14	1.45	0.15	1.60	9. 65
	$5 h$	11	5.0	9.21	0.13	1. 39	0.14	1.53	9. 26
	18	40	3.5	8.88	0.24	1.28	0.26	1. 40	18.78
	$2 s$	35	3.3	8.49	0.31	1.23	0.34	1.34	25,20
	1 h	32	3.0	9.08	0.14	1. 50	0.15	1. 65	9.33
IV	$2 h$	34	2.8	8.86	0.20	1. 80	0.22	1.97	11.11
	3 h	30	3. 6	8.48	0.21	1.57	0.23	1.72.	13.38
	$4 h$	30	6.8	8.10	0.24	1.76	0.26	1.92	13. 64

Table III.-TLELE No. 61.

Table IV.-TIREL No. 60.

	181	30 35	2.7	9.91	0.26	2.04	0.29	$\begin{array}{l\|l} 2.26 & 12.74 \end{array}$	
	$2 s$		2.8	9.34	0. 30	2.39	0.33	2.26$\mathbf{2 . 6 3}$5.03	12.7412.5614
	$1 h$	37	3.5	8.72	0.65	4.63	0.71		
	$2 h$	33 35	4.5	9.15	0.46	2.47	0.51	2.71	14.07 18.62
	3 h		4.6	8.01	0.67	4.71	0.73	5.19	14.00
	4.	27	6. 5	8.45	0.43	3.31	0.47	3. 62	13.00
	18	301	3. 1	8.74	0.25	2.42	0.28	2. 65	10.3312.16
	28	34	2.8	8, 60	. 0.32	2.63	0.35	2.88	
	1 h	3030	3.2	8.68	0.53	3.4i	0.58	3.80	12.16 15.24
III.	$2 h$		4.4	9.02	0.36	2. 72	0.40	2.99	13.23
	3 h	36	4.5	7.73	0.38	2. 23	0.42	2. 42	17.04
	4 4	20	6. 0	7.73	0. 46	3.13	0. 50	3. 39	
	18	30	${ }_{2} 2.6$	7.51	0.15	2.15	0. 16	2. 32	14.70 7.02
	2.9	28	2.6	7.84	U. 22	2.45	0.24	2. 66	9.09
IV	$1 h$		3.7	7. 77	0.77	4.94	0.84	5. 35	15.5912.85
	${ }_{3}^{2 h}$	36 40	5.0 8.0	8.12	0.37	2. 88	0.41	3. 13	
	$3 h$	40	8.0	7.92	0.26	2.81	0.28	3.05	9.18

Table VII-scmmary of lestelta of Trees Nok, 54 to 69 and Nos. 17 to 19.

Thmber Piysiga Work.
The timber physies work was coutinned actively and the investigation extended to other kinds of timber, both conifers and hard woods. In 1896 the Division was in position to announce its findings with regard to the meehanical, physical, and structural study of the four principal Southern pines (Circular 12). Based, as these results are, on over 20,000 mechanical tests aud over 50,000 weighings and measurements, they may fairly be regarded as final, and thus avoid future discussion and much fruitless and expensive private testing. According to this exhaustive study, the Cuban and long-leaf pine rank foremost among our timber pines, and are fully 20 to 25 per cent stronger than had previously been assumed. It also appeared that the wood of these species varies in strength directly as the weight (little discrepancies being well acconnted for by variations in resin contents, which add only to weight and not to strength); that in the same tree the wood varies according to certain definite laws, being heaviest at butt, lightest in top, heavier in the interior, and lighter and weaker in the outer parts of saw-size timber; that thus the age when formed, as well as the position in the tree, exercises a definite inftuence which is generally far greater than the much-quoted infuences of soil, locality, etc. In this latter respect it was clear
from the results that the oft-claimed superiority of the timber of certain localities is not substantiated by experiment, but that there is heavy and strong as well as lighter and weaker timber in every locality throughout the range of these species. The all-important effect of moisture was carefully considered throughout the work, and it was established that in general an increase in strength of at least 50 to 75 per cent takes place during ordinary seasoning, so that for all designing of coverel work, as in ordinary architecture, this improvement may be depended upon and considered in the proportioning of the timbers.

The manner in which the valuable information was secured and communicated will appear from the following reprint of Circulars 12 and 15 , issued in 1896 and 1897:

Sonthern I'ine-Mecilanical any Pilysical loroberties.
TIE MATEIRIAL UN゙DER CONSIDFRATION.
The importance of reliable information regarding the pines of the South is evident from the fact that they furnish the bulk of the hard-pine material used for constructive purposes with an annual cut hardly short of $7,000,000,000$ feet B. M., which, with the decline of the soft-pine supplies in the North, is bound to increase rapidy.

Although covering the largest area of coniferous growth in the country (about 230,000 square miles), proper economies in their use are nevertheless most needful, since much of this area is already severely culled and the cut per acre has never been very large. Hence the demonstration (a result of the investigatious in this Division) that bled pine is as strong and useful as unbled, and the assurance that long-leaf pine is in the average 25 per cent stronger than it is often supposel to be, and therefore can be used in smaller sizes than customary at present, must lue welcome as permitting a saving in forest resources which may readily he estimated at from eight to ten million dollars annually, due to this information.

The pines under consideration, often but imperfectly distinguished by consumers in name of substance, are:
(1) The long-leaf pine (l'inus palustris), also known as Georgia or yellow pine, and in England as "pitch pine," and by a number of other names, is to be found in a belt of 100 to 150 miles in width along the Atlantic and Gulf coasts from North Carolina to Texas, furnishing over 50 per cent of the pine timber cut in the South-the timber par excellence for heavy construction, but also useful for flooring and in other directions where strength and wearing qualities are required.
(2) The Cuban pine (Pimus heterophylla), found especially in the sonthern portions of the long-leaf pine belt, known to woodsmen commonly as "slash pine," but not distinguished in the lumber market. It is usually mised in with long leaf, which it closely resembles, although it is wider ringed (coarso grained), and to which it is equal if not superior in weight and strength.
(3) The short-leaf pine (Pinus echinata), also known, besides many other names, as yellow pine and as North Carolina pine, but growing through all the Southern States generally north of the long leaf pine region; much softer and with much more sapwood than the former two, useful mainly for small dimensions and as finishing wood, being about 20 per cent weaker than the long-leaf pine.
(4) The loblolly or old-field pine (I'inus teda), of similar although more Southern range than the short leaf, also known as Virginia pine, much used locally and in Washington and Baltimore, destined to find more exteusive application. At present largely cut together with short leaf and sold with it as "yellow pine," or North Carolina pine, without distinction, although sometimes far superior, approaching long-leaf pine in strength and general qualities.

The names in the market are often used interchangeably and the materials in the yard mixed. All four species grow into tall but slender trunks, as a rule not exceeding 30 inches in diameter aud 100 feet in leight; the lulk of the logs cut at present fall below 20 inches. The sapwood forms in old trees of long leaf (with 2 to 4 inches) about 40 per cent of the total \log volume; in Cuban, short leaf, and loblolly 60 per cent and over.

A reliable microscopic distinction of the wood of the four species has not yet been found. As a rule long leaf contains much less sapwood than the other three. The uarrow-ringed wood of long leaf (averaging 20 to 25 rings to the inch) usually separates it also from the other three, while the especially broad-ringed Cuban excels usualls also by broader summer-wood bands. In the log short leaf and loblolly may usually be recognized as distinguished from the former by the greater proportion of saprood and lighter color due to smaller proportion of summer wond. The general appearance of the wood of all four species is, however, ofuite similar. The annual ringe (grain) are sharply definet; tho light yellowish spring wood and the dark orange-brown summer wood of each ring being strongly contrasted produce a pronounced pattern, which, although pleasing, especially in the curly forms (which occur occasionally, may become obtrusive when massed.

The following diagnosis may prove helpful in the ristinction of the wood:
Diatgostic features of the wood.

The sapling timber of all four species is coarse grainel, that of loblolly exceeding the rest in this respect. The grain varies most in the butt, least in the top, is very fine in the onter portions of all old trees. Loblolly in the center of the \log frequently shows rings over one-half inch wide, and timber averaging eight rings to the inch is not rare, while short leaf will average 10 to 15 rings to the inch. The greater or less proportion of the sharply defined darli-colored bands of summer wood of the ring furnish the most reliable and ready means of determining quality.

At present distinction is but rarely made in the species and in their use. All four species are used much alike, although differentiation is rery desirable on account of the difference in fuality. Formerly these pines, except for local use, were mostly cut or lewn into timbers, but especially since the use of dry kilns has become general and the simple oil finish has displaced the unsiglatly painting and "graining" of wood Southern pine is cut into every form and grade of lumber. Nevertheless, a large proportion of the total cut is still being sawel to order in sizes above 6 by 6 inches, and lengths above 20 feet for timbers, for which the long leaf and Cuban furnish ileal material. 'The resinous condition of these two pines make them also desirable for railway tios of lasting quality.

MHCHANICAL PJOPERTIES.

In general the wood of all these pines is heary for pine (31 to 40 pounds per cubic foot, when dry) ; soft to moderately hard (hard for pine), requiring about 1,000 pounds per square inch to inclent one-twentieth inch; stiff, the modulus of elasticity being from $1,500,000$ upward; strong, requiring from 7,000 pounds per spuare inch and upward to break in bending, and over 5,000 pounds in compression when yard-dry.

The valnes given in this circular are avorages based on a large number of tosts, from which only defective pieces are excluded.

In all cases where the contrary is not stated the weight of the wood refers to kiln-llied material and the strength of wood containing 15 per cent moisture, which may be concoived as just on the border of air-dried coudition. The first table gives fairly well the range of strength of commercial timber.

Arevage strength of Southern pine.
Air-dry material (about 15 per cent noisture).

IRELAIION OF STRENGTH TO WEIGHT.
The intimate relation of strength and specific weight has been well established by the experiments. The average results olotained in comection with the tests themselves were as follows:

	Culan.	Longleaf.	Loblolly.	Strortleaf.
'Iransverse streugth.	100	91	84	77
Srecitic weight of test pieces.	100	94	83	77

Since in the determination of the specific gravity alove given, wood of the same per cent of moisture (as is the case of the values of strength) was not always involved, and also since the test picces, owiug to size aud shape, can not perfectly represent the wood of the entire stem, the following results of a special inquiry into the weight of the wood represents probably more accurately the weight and with it the strength-relations of the four species.

WEHGIIT RWILAIONS.

[These data refer to the averago specitic woirght for all the wood of oach tree, only trees of approximately the same age being involred.]

a the valnos of strength refer to all tests and therefore involve trees of wide range of age and consequently of quality, especially those of longleaf, involvo much wood of old trees, hencu tio relation of weight and strength appears less distinct.

From these results, although slightly at variance, we are justitied in coucluding that Cuban and longleaf pine are nearly alike in strength and weight aul excel loblolly aul shortleaf by about 20 per cent. Of these latter, contrary to common beliof, the loblolly is the heavier and stronger.

The weakest material would differ from the average material in transverse strength by about 20 per cont and in compression strength ly about 30 to 3.3 per cent, except Cubau pine, for which the difference appears greater in transverse and smaller in compression strength. It must, of course, not he overlooked that these figures are obtained from full-yrown trees of the virgin forest, that strength varies with physical conditions of the material and that, thercfore, au intelligent inspection of the stick is always necessary lefore applying the values in practice. They can only represent tho average conditions for a largo amount of material.

BISTRIBUTION Ok WEICIIT AND STKENGTII THROC゙GHOUT TIE TREE,
In any one tree the woud is lighter and weaker as wo piss from the base to the top. "This is true of erery tree and of all four species. The decrease in weight and strength is most pronounced in the first 20 feet from the stump and grows smaller upwarel. (See lig. 91.)

This great difference in weight and strength betwecn butt and top finds explanation in the relative width of the summerwood. Since the specific weight of the dark summerwood band in each ring is in thrifty growth from .90 to 1.00 , while that of the springwood is only about. 40 , the relative amount of summerwood furnishes altogether the most delicate and accurate measure of those differences of weight as well as strength, and hence is the surest criterion for ocular inspection of 'fuality", especially since this relation is free from the disturbing influence of loth resin and moisture contents of the wood, so conspicuons in weight determinations.

The following figures show the distribution of the summerwood in a single tree of longleaf pine, as an example of this relation:

Weight and strongth of wood at different heights in the tree.

Number trees used Average age of trees.	pine	unuds per		cilic weigh			Itelative
	Bending strength.	$\begin{gathered} \text { sion cuel } \\ \text { wise } \\ \text { (with } \\ \text { grain). } \end{gathered}$	Longleaf.	Loblolly:	Shortleaf.	lielative weight.	Mean ofeom pression and bending.
	$\stackrel{56}{150 \text { (over) }}$		22 127	113	131	48	56
Number of feet from stump:							
6..........................			- 7111	-629	- 108	tmi	
	12. 100	7. 385	- 705	- 595	- 38.8	I(M)	Im
10	11,650	7.200	. 674	. 578	. 565		
	$y_{i j}$	3)	\%	:17	97	97	97
	10,700	6. 800	. 624	. 534	. 523		
	10, iss	${ }_{6} 6831$	5: 5	(if)	919	sin	s
$30 . .$.	10, 100	6, 500	-590	- ${ }^{\text {and }} 8$. 496		
40	9,500	6,300	. 560	. 491	. 478	5	$\mathscr{6}$
	i9	56)	80	8.3	81	S1	s3
5060	9, 0100	6, 150	. 539	. 476	. 453		
	8.600	6, 050	77 .528	80 .470	78 .454	78	79
	71	83	75	73	75	77	\% 6

Flg. 91.-Variation of weight with beight of tres.

Logs from the top can usually be recognized ly the larger percentage of sapwood and the smaller proportion and more regular outlines of the bands of summer wood, which are more or less wary in the butt logs.

The variation of weight is well illustrated in the foregoing table, in which the relative values are indicated in italice. For comparison the figures for strongth of long-leaf pine are added.

Both weight and strength vary in tho different parts of the same cross section from center to periphery, and though the variations appear frequently irregular in single individuals, a definite law of relation is nevertheless discernible in large averages, and onco determined is readily observable in every tree.

A separato inquiry, avoiding the many variables which enter in the mechanical tests, permits the following deductions for the wood of these pines, and especially for long leaf, the data referring to weight, but by inference also to strength:

1. The variation is greatest in the butt \log (the heaviest part) and least in the tup logs.
2. The variation in weight, leneo also in strength, from center to periphery depends on the rate of grow th, the heavier, stronger wood being formed during the period of most rapid growth, lighter and weaker wood in old age.
3. Aberrations from the normal growth, due to unusual seasons and other disturbing causes, cloud tho uniformity of the law of variation, thus occasionally leading to the formation of heavier, broad-ringed wood in old, and lighter, narrow-ringed wood in young trees.
4. Slow-growing trees (with narrow rings) do not make less heavy, nor heavier, wood than thriftily grown treos (with wide rings) of the same age. (Seo fig. 92.)
```
EFFLCT OF AGH.
```

The interior of the butt log, representing the young sapling of less than 15 or 20 years of age, and the central portion of all logs containing the pith and 2 to 5 rings arljoining is always light and weak.

The heaviest wood in long-leaf and Cubau pine is formed between the ages of 15 and 120 years, with a specific weight of over 0.60 and a maximum of 0.66 to 0.68 between the ages of 40 and 60 years. The wood formed at the age of about 100 years will have a specifie weight of 0.62 to 0.63 , which is also the average weight for the entire wood of old trees. The wood formed after this age is lighter, but does not fall below 0.50 up to the two hundredth year; the strength varies in the same ratio.

In the shortor-lived loblolly and short leaf the period for the formation of the heaviest wood is between the ages of 15 and 80 , the avorage weight being then over 0.50 , with a maximum of 0.57 at the age of 30 to 40 . The average weight for old trees (0.51 to 0.53) lies ahout the seventy-fifth year, the weight then falling off to about 0.45 at the age of 140 , and continuing to docrease to below 0.38 as the trees grow older.

That these statements refer only to the clear portions of each \log, and aro variably affected at cach whorl of knots (every 10 to 30 inches) accordiug to their size, aud also by the variable amounts of resin ($n 1$, to 20 per cent of the dry weight), must be self-evident.

Sapmood is not necessarily weaker than heartwood, only usually the sapwood of the large-sized trees we are now using is represented by the narrow-ringed outer part, which was

Fig. 92.-Schematic section through stom of long leal pine, showing variation of specific weight, with height, diameter, and age, at 20 (aba), 60 (dcd), 120 (eece), 200 (ffff) years. formed during the old-age period of growth, when naturally lighter and weaker wood is made; but the wood formed during the more thrifty diameter growth of the tirst eighty or one hundred years-sanwood at the time, changed into heartwood later-was, eveu as sapwood, the heaviest and strougest.

Although the range of values for the individual tree of any given species varies from butt to top and from center to periphery by 15 to 25 per cent and occasionally more, the deviation from average values from one individual to another is not usually as great as has been believed; thus of 56 trees of long-leaf pine, 42 trees varied in their average streugth by less than 10 per cent from the average of all 56.

The following table of weight (which is a direct and fair indication of strength), representing all the wood of the stem and excluding knots and other defecte, gives a more perfect idea of the range of these values:
liange of specific accight with age (kiln-dried wood).
[To avoid fractions the values aro multiplied by 100.]

	Cuban.	Longleaf.	Loblolly.	Short leaf.
Number of trees involved	24	96	60	54)
Trees orer 200 years old	61	57		
Trees 150-200 years old	63	39,1	\% 3	
Trees 100-150 years old			${ }_{56}^{513}$	51
Trees 50-100 years old	${ }_{55}$	61	$5: 3$	57
Trees under 25 jears	51	55	19	i3

Though occasionally some very exceptional trees occur, especially in loblolly and short leaf, the range on the whole is generally within remarkably narrow limits, as appears from the following table:
liange of specific ucight in trees of the same age approximately; averages for whole trecs.
[Specific gravity multiplied by 100 to avoid fractions.]

Namo.	No. of trees.	Age (years).	Single trees.													Average.
	4	150-200	56	68	62	65		-	--	--	-.	--	-	-		62.5
Cubs	5	50-100	60	58	60	59	67		\cdots							60.9
Long-leaf pine.		100-150	59	66	57	6 \%	66		53	57	57		59	62	57	60.5
Lobiolly pine.	10	125-150	51	51	53	51	55	53	54	55	55	52				5 \%. 8
Short-leaf pine	12	100-150	45	47	53	47	50			55	53		50	53	--	50.8

From this table it would appear that single indivituals of one species would approximate single individuals of another species so closely that the weight distinction seems to fail, but in large uumbers-for instance, carloads of material-the averages above given will prevail.

INILUENCE (OF LOCALITY.

In both the Cuban ant long-leaf pine the locality where grown appears to have but little intuence on weight or strongth, and there is no reason to believe that the long-leaf pine from one State is bettor than that from any other, since such variations as are claimed can be found on any 40 -acre lot of timber inauy State. But with loblolly, aud still more with short leaf, this seems not to he the case. Being widely distributed over many localities different in soil and climate, the grow th of the short-Jeaf pine seems materially influenced by location. The wood from the Southern coast and Gulf region, and even Arkansas, is generally heaviex than the wood from localities farther north. Very light and fine-grained wood is seldom met near the southeru limit of the range, while it is almost the rule in Missouri, where forms resembling the Norway pine are by no means rare. The loblolly, occupying both wet and dry soils, varies accordingly.

INHLUENCE OF MOISTURE.
This influence is among the most important; hence all tests have been made with due regard to moisture contente. Seasoned wood is stronger than green and moist wood. The difference between green and soasoned wood may anount to 50 and oven 100 per cent. The influence of seasoning consists in (1) bringing by means of shrinkage about 10 per cent more fibers iuto the same square inch of cross section than are contained in the wet wood; (2) shrinking the cell wall itself by ahout 50 per cent of its cross section, and thus hardening it, just as the cow skin hecomes thinner and harder by drying.

In the following tables and diagram this is fully illustrated. The values presented in these tables and diagrams are based on large numbers of tests and are fairly safe for ordinary use. They still require further revision, since the relations to density, etc., have had to be neglected iu this study.

Influence of moisture on strength.

a 33 per cent green, 20 per cent half dey, 15 per cent sard dry, 10 per cent roon dry.

Frt. 93.-Variation of compression strength with moisture.

It will be observed that the strength increases by about 50 per cent in ordinary good yard seasoning, amd that it can be increased by about 30 per cent more by complete seasoning in kiln or house.

Large timbers require several years before even the yarl-season condition is attained, but "-inch and lighter material is generally not nsed with more than 15 per cent moisture.
WHIGHT ANJ MOLSTUKE,

So far the weight of only the kiln-dry wood has been considered. In fresh as well as all yard and air-dried material there is containell a variable amount of water. The amount of water contained in fresh woon of these pines forms more than half the weight of the fresh sapwood, and about one-fifth to one-fourth of the heartwood; in yard-dry wood it falls to alont 12 to 18 per cont, while in wood kept in well-ventilated and especially in heated rooms it is about 5 to 10 per cent, varying with size of piece, part of tree, species, temperature, and humidity of air. Heated to $150^{\circ} \mathrm{F}$. ($65^{\circ} \mathrm{C}$.) the wood loses all lout about $1 \frac{1}{3}$ to 2 per cont of its moisture, and if the temperature is raised to $175{ }^{\circ} \mathrm{F}$. there remains less than 1 per cent, the wood dried at $2120 \mathrm{~F}^{2}$. being assumed to be (though it is not really) perfectly dry. Of course large pieces are in practice never left long enongh exposed to become truly kiln-dry, though in factories this state is often approached.

As long as the water in the wood amonnts to aloont 30 per cent or more of the dry weight of the wood there is no shrinkage' (the water coming from the cell lumen) and the density or specific gravity changes simply in direct

In ordinary lumber and all large size material the exterior parts commonly dry so much sooner than the bulk of the stick that checking often occurs, though the moisture per cent of the whole stick is still far above 30.
H. Doc. 181——23
proportion to tho loss of water. When the moisture per cent falls below about 30 the water comes from the cell wall, and the loss of water :ant weight is accompanicel by a loss of volume, so that both factors of the fraction

$$
\text { Suecific gravity }=\frac{\text { veight }}{\text { volume }}
$$

are athected and the chame in the spocilic gravity no longer is simply proportional to the lows of water or weight. The loss of weight and volume, however, being unequal and disproportionate, a markel rednction of the specitic gravity talies place, amounting in theso pines to about 8 to 10 per cent of the specific weight of the try wool.

SHILINHACER.
The hehavion of the wool of the sonthern pines in shrinkage does not difer matorially. Generally the heavier wool shrinks the most, and sapwood shrinks abont one-fourth more than hoartwond of the same specitic weight. Fery resinous picces ("light wood") shrink much less than other wood. In keeping with theso general fitcts, the shrinkage of tho wood of the upper logs is usually 15 to 20 per cont less than that of tho butt pieces, and the shrinkage of tho heary heartwood of ohd trees is greater than that of tho lighter poripheral parts of the same, while tho shrinkare of the heavy wool of saplings is greatest of all. On tho whole, the wood of these pines shrinks about 10 per cent in its volumo, 3 to 4 per cont along tho radins, and 6 to 7 per cent along the tangent or along the yearly riners.

After laving tho kiln tho wood at once begins to ahsorb moisturo and to swell. In an oxperiment with short pieces of loblolly and shortleaf, representing ordinary flooring or siding sizes, these regained more than half the water and underwent more than haff the total swelling during the first 10 days after leaving the kiln (see fig. 91). Even in this less than air-dry wood the changes in weight far excel the changes in volume (sum of radial and tangential swelling), and therefore the specific gravity, "ven at this low per cent of moisture, was decreased by drying and increased by subsequent absorption of moisture. Immersion and, still more readily, boiling, cause the wood to return to its original size, but temperatures even above the boiling point cho not prevent the wood from "working," or shrinking, and swelling.

Fig. 94.-Loss of water in kiln drying and realsorption in air, shrinking, and swelling.
In fig. 04 are reprasented the results of experiments on the rate of loss of water in the dry kila and the reabsorption of water in the air. The wood used was of loblolly and shortleaf pine kept on a shelf in an ordinary room before and after kiln-drying. The measurements were made with caliper.

EFFECT OF KILN゙-1HRYING。
Although kiln-drying has become \&uite universal, oninions are still divided as to its effects upon tho strength of the material aud otber qualitios. Many objections and claims as to physical and chemical changes produced by the treatment remain manbstantiated. The method most widely used and most severely criticised is that of the "blower" kiln, where hot air ($180^{\circ} \mathbf{F}^{\prime}$) is forced into the drying room by means of powerful fans. Besibes the
many, in part, unreasonable and contradictory claims about closing or opening of pores, chemical or physical inluence on the sap and its contents, albumen, gum, resin, sugar, etc., substances whose very existeuce in many cases is problematical or doubtful, the general claims of increasod checking and warping, "casehardening," "honeycombing," etc., as well as reduction of strength, are still provalent oven among the very manufacturers themselves. Tho maner and progress of the kiln-drying may render this otherwise useful method of seasoning injurious. Kapid drying of the heavier hardwoods of complicated structure, especially in large sizes and from the green state, is apt to produce inordinate checking and thus weakening of thomaterial. For Southern pine, however, it is entirely practicable to carry on the process without any injury, as is evilenced lyy the following experiment, in which wood of Cuban pine in small dimensions (4 by 4) was seasoned in warm air (about 100 F.) and parts of the same scantling were dried at temperatures varying from 150° at the outrance end to $190^{\circ} F^{\circ}$. at the exit.

Well-constructed "blower kilns," where the hot air is blown in at one end and escapes at the other (this latter always the entrance end for the material), are sriving satisfaction. The best kiln, however, seems to be oue in which ample piping in tho kiln itself insures sufficiently high ($n \mathrm{p}$ to $180^{\circ} \mathrm{F}$.), uniform temperature in all parts of the kiln, and where the circulation, promoted by a suction fan, is moderate aud under perfect control. In such kilns even timbers of large size can be dried satisfactorily with a temperature not over $150^{\circ} \mathrm{F}$ 。

EFWECT OF HIGH-TEMPERATURE AND HIGH-PRESSURE IPOCFSSES.
For some time a process employing high temperature under high pressure (temperature over 300 F., pressure 150 pounds) has been discussed and applied, claiming as a result of̃ tho treatment (1) increase in strength; (2) increase in durability; (3) absence of shxinkage.

The result of a series of experiments in which a number of scantlings of longleaf pine, one-half treated, the other untreated, is as follows:

The same differenco in fivor of the untreated material obtained in every single case.
The chemical analyses performed on wool lying site by side along the same radius, being of the same annual riugs and same position in tree, gave the following:

I'er cent of rosin and phenols calculated to dry weight of wood.

	Tree No. 475.		Tree No. 476.		Average of both.	
	Treated.	Urtreated.	Treated.	Untreated.	Treatel.	Cintreated.
Rosin:	$\begin{gathered} \text { Per cent. } \\ 1.21 \\ 8.35 \end{gathered}$	$\begin{gathered} \text { Per cent. } \\ 2.05 \\ 10.58 \end{gathered}$	$\begin{gathered} \text { Per cent. } \\ 1.22 \\ 2.23 \end{gathered}$	Per cent.$1.23$$1.93$	$\begin{gathered} \text { Per cent. } \\ 1.22 \\ 5.29 \end{gathered}$	$\begin{aligned} & \text { Per cent. } \\ & 1.64 \\ & 6.26 \end{aligned}$
Sapworl. Heartwood						
Phenols:						
Sapwoorl..	$\begin{aligned} & 0.061 \\ & 0.290 \end{aligned}$	$\begin{aligned} & 0.083 \\ & 0.180 \end{aligned}$	$\begin{aligned} & 0.045 \\ & 0.070 \end{aligned}$	$\begin{aligned} & 0.08: 3 \\ & 0.058 \end{aligned}$	$\begin{aligned} & 0.053 \\ & 0.180 \end{aligned}$	$\begin{aligned} & 0.083 \\ & 0.119 \end{aligned}$
Heartwoul						

It appears that the protective rosin is rather decreased by the treatment, and the antiseptic phonols not increased in an adequate amount to be of value since it requires at least 20 times as much heavy oil in wood impregnation to lee effective. It is, however, possible that the change of color due to the process may be accomplished aut be produced by the formation of empyreumatic bodies (allied to the humus substances) which may act as Ireservative against the attacks of fungi.

The claim that the shrinkage of the wood is favorably intluencell by the process was not sustained by a series of experiments with oak and pine, which showed that the treated wool absorbs water from air or in the tub, swells and shrinks in the same manner and to about the same extent as the untreated wood.

EFELCT OR MMERSION ON TIE STRENGTK OF WOOD.
The notion frequently expressed is that "soaking wood by floating, rafting, etc., reduces its tendency to decay and shrinkage, but injures its strength." The same was claimed for boiling or steaming preparatory to bending. The last position was disproved by Peter Barlow iu the first quarter of this century. The following figures (results of an experiment involving several hundred separate tests) disprove the former assertion.

The soaked wood was kopt immersed six months, each pieco having its check pieces from the same scantling, which were not sulject to the same process, but were tested-one green and one dry. All soaked pieces were sptasoned in dry kiln before testing. All valnes were reduced to 15 per cent moisture.

$$
\text { FFFECT OF " } 33 O X I N G \text { " OR "BIEEDING" }
$$

"1Bleoding" pine trees for their resin-to which only the longleaf and Cuban pine aro subjected-has generally been reganded as injurious to the timber. Both durability and strength, it was claimed, were impaired by this process, and in the specifications of many architects and large consumers, such as railway companies, "bled" timber was excluded. Since the utilization of resin is one of the leading inlustrice of the South, and since the process affects several millions of dollars' worth of timber every year, a special investigation involving mechanical tests, plysical and chemical analyses of the wood of bled and anbled trees from the same locality were carried out by this division. The results prove concusively (1) that bled timber is as strong as unbled if of the same weight; (2) that the weight and shrinkage of the wood is not affected by bleeding; (3) that bled trees contain practically neither more nor less resin than unbled trees, the loss of resin referring only to the sapwood, and, therefore, the durability is not affected by the hleeding process.

The following table shows the remarkable numerical similarity between the average results for three groups of trees, the higher values of the unbled material being readily explained by the difference in weight:

Longleaf pine.	Number of tests.	Suecific weight of test pieces.	Bending strength.	Compression strength.
Unhoxed trees.	400	0.74	Lbs. yer sq. in. 12, 358	Lbs. per sq.in. 7, 166
loxed and recontly abandoned	390	0. 79	12, 361	7,813
Boxed and abandoned 5 years.	535	0.76	12,586	7,575

The amount of resin in the wood varies greatly, and trees growiug side by side differ within very wide limits, Sapwood contains lint little resin (1 to 4 per ceat), even in those trees in which the heartwood contains ahundance. In the heartwood the resin forms from 5 to 24 per cent of the dry weight (of which abont one-sixth is turpentine and cin not be removed by bleeding), so that its 'quatity remains unaffected by the process. Bled timber, then, is as usefnl for all purposes as unbled.

To give an idea how necessary it is that a large series of material be tested before making statements of the strength of wood of any species, we reproduce one of the many tables contained in Bulletin S, which at the same time exhibits the variation of strength thronghout the tree and from tree to tree.
('omparative Strexgtif of Different Tries of Longleaf Pine.
 of all of that class

Compaleative Strengtif of Differfent Treme of Longleaf Premec'ontimed.

SIZE OF TEST MATERIAL.
The long-standing idea of engineers and other consumers to have wood tested more nearly in the sizes used in ordinary practice led to the adoption of test sizes, generally varying from 3 by 3 inches to 4 by 4 inches. Besides this, special inquiries with different kinds of timber into the relation of large and small tests were instituted to ascertain the correctuess of the general dogma which claimed that tests on small pieces could not be utilized, since such pieces for their very size gave higher values of strength. This investigation involved full-size columns as well as beams, and was continued throughout the entire period of the timber-physics work. It led to a number of the most interesting and highly valuable results, as will appear from the following statements:

Selected tests of columns and compression pieces from the same trees compared.

Number of tree.	Length.	Ratio $\frac{b}{d}$	Small pieces (average of whole tree). (α)	Large columas. (b)	Relativ (a)		Deflec. tion.	Failure.
239	Fect ${ }_{12}$	14	Pounds per sq.inch. 6,7(10)	Pounds per sq. inch. 6. 100	100	91	Inch. 0.7	Sheared.
$\because 40$	12	14	7,000	6,900	100	99	0.1	Compression.
241	12	15	(6, 900)	6,500	100	94	(1. 7	1)0.
309	12	12	6, 800	6,500	100	96	0.4	Io.
312	12	16	6, 100	6,300	100	103	0.4	Do.

In these columns (nearly one-teuth of all longleaf pine columus tested) tho strength was so nearly the same as that of the short pieces that it appears as if texure had hut little to do with the failure, the small differences being amply accounted for by a larger number of defects in the colnmns. Should this prove true in general for wooden columms as ordinarily designed, the problem would become simply a study of the intluence of defects and of proper inspection.

The nature of the failures would also point in this direction:
Of 86 columus 32 failed normally, \mathbf{i}. 0. , in simple compression; 22 were crusbed near the end; 14 failed at linots, anl 19 by shearing, the rupture usually beginning at or near the ends; a small knot proved sufficient to cause a large column, 20 times as long as its diameter, to fail at 14 inches from the end.
'The dellection in the average for all columns (12 to 20 fect long) was only about 1 inch for the maximm load, when, to be sure, destruction had progressed for some time; at the elastic limit the dellection was only about one-half as much. These results would seem to warrant the statement that for pine columns at least, in which the ratio of height to least diameter does not exceed 1 in 20 , none of the accepted column formula are applicable, the nature of the failure being mostly in simple compression, and depending more on specific defects than on the design of the column.
stbengtif of large beams and columes.
Owing to the fact that much wood testing has been dono on small, select, and perfectly seasoncel pieces, usually from butt loge, the values thus obsained seemed to differ very markedly from the results on large tinbers usually very imperfectly seasoned, avd it was claimed that tests on small sizes always furnishod too high values, just as if the differences werb due to sizes alone.

While, to he sure, a small piece may be so selected that defects are excluderl, the grain straight and in the most favorable position with regard to the load, the assumption of the difference in strength of small pieces from that of large-sized sticks has never lieen mato good experimentally.

Sinco it appears desirable to compare the results from large beams and colmmes not only with the average data obtained from the general test scries on suall 4 by 4 material, but also with the average strength of small pieces cut from the same beams and columns, a special inquiry into the legitimacy of such a comparison was made. This study involved over 100 separate tests, and proved the very important fact that uninjured parts of broken beams and colums do not sulier in the test. The large-sized beams varied from 4 by 4 to 8 by 16 inches.

Tests of large and small beams-Bending strength.

From the preceding table it would appear that large timbers, when symmetrically cut (i, e., with tho center of the \log as center of the beam), develop as beams practically the same strength as the average of the small pieces that may be cut from them, and sometimes even higher values; tho explanation being that cut in this manner the extreme fibers which are tested in a beam come to lie in that part of the tree which, as arulo, coutains the strongest timber.

Results discordant from these may be explained by difterences in the tegree of seasoning of the onter layers and also by the fact that especially in the northern pineries timbers are often cut from the top logs, which are weaker and moro defective.

Tist of large and small columns-Ciompression strength.

	lemular series frumsame trees av the columms.	Columas (simple compression).	small pieces cut from columne.
Number of teats imbultal	344	95	97
Longleaf	$\begin{array}{r} \text { L.bs. per sy. in. } \\ \text { 6, (ive } \end{array}$	Libs. per sq. in	$\begin{array}{r} \text { 1.bs. per sy. in. } \\ 7,100 \end{array}$
Lablolly	6, 800	4,700	6,300
Shortleaf	5, 90\%	4, 1110	6,200
Cuharn.	7, 400	5, 0010	8.700

The square columns were mostly 8 by 8 inches, some 10 by 10 inches, a few of larger and also some of smaller dimensions. The ratio of length to width varied from 12 to 27 , about one-half being under and the other halfover 18 to 1 . The compression pieces of the regular series, and those cut from the brokencolnmes, were ingeneral about 4 by 4 by 6 inches.

It will appear from this statement of average results that columns develop only from 62 per cent (in (inban) to 78 per cent (longleaf) of tho compressiou strength of ordinary short pieces. The explanation may be due to several reasons, natual and mochanical. In a column, unlike a beam, all the fibers are umder great strain; hence all the defects, which are by necessity found in every column, intluence the results; the llexure of a column under strain is an element of weakness, to which the short compression piece is not subject. In addition the dificulty of determining the average moisture condition of the large timber thronghout the cross section and that of the small pieces cut from them afterwards would remier this method for columms less satisfactory; a larger number of tests will still be required to establish comparable arerage conditions in the two kinds of tests. It would, therefore, be unsafe to semeralize too hastily from these average figures, at least as to the mumerical difierence, for there are remarkable individual exceptions. Not only do individual colnmns show ditherences in strength 50 per cent and more lower than the compression pieces from the same log, but sometimes they show practically the same or even a higher value of strensth, as will appear from the following selected cases, in which the data for the columnsare placed in comparison with those obtained on compression pieces from the same tree.

Anditional. Smbies on beams ang Colomis.

A series more extended as regards leams, involving tis large and 777 small beams, hesides over 1 , 000 compression tests on the same material on which the lean tests were made, and tests on 6 large columns, has fully contirmed the indications of the previous experiments.
THETS ON COHUMNS.

The colmmes were 12 by 12 inches and 8 by 12 iuches in cross section, with a length of 132 to 168 inches. From these were cut, as near as possilhle from the place of failure, two blocks $2 t$ inches long, and these hocks were tested on the same large testing machine (described in Bulletin 6), so that inaccuracies of machinery do not onter into consideration. The results, tabulated as follows, prove conelnsively tho statement made upon the former more extensive series (see Circular 12), that woolen colnmus in which the diameter and length are to each other as 1 to 18 or less behave like short blocks and fail in simple compression. The four columns of long-leaf pine exhibit practically the same strength as the short blocks-i. e., within 10 per cont-which, as has heon shown above, is within the limits of maximum uniformity.

Strength of large columns and short (ot-inch) blocks cut firom thesc columus.

Kind of woonl.	Dimensions of columny (incles).			Moisture of word (per cent).	Motulus of elasticity (prounds).	Compr strength per squa Columns.	sion pounds juch. Short blocks.
Nhortleaf pin	144 132	12	12	14.2 12.9	2, 274, 000 $1,740,000$	4,840 4.840	6. 090 5,660
S.majeat pme	$\overline{168}$	12	8	30.9	1.628,000	2,940	-, 950
Jh,	16 m	12	8	32.3	1,570, 000	3,170	3,530
11.	15.6	12	8	40.8	1,764, 040	3, 130	3,310
1 ha .	158	12	8	29.7	1, 776,000	3,710	3, 780

HEAM TESTS.
The experiments, of which the following tables contain the principal results, were performed on beams generally 8 by 12 by 192 inches. After breaking the large beam 12 small beams were cut from the uninjured portion of the large beam ${ }^{2}$ in such a way that the entire cross section of the large piece was represented by two sets of 6 small beams each. Besides these tests on small beams, the compression strength of part of the material was tested on small blocks, part of which was sawed and part split from portions of the largo loeam. (See diagram at head of
'The legitimacy of using such material for such purpose has been fully estahlished by aloug series of experiments. (See Circular 12, Division of Forestry, p. 11.)
table.) To avoid any complications due to differences or changes in moisture, the tests on large and small beams were performed the same day.

Strengit of large beams and of small beams, and of compression pieces cut from them.
[Usually 12 small beams cut from the uninjured part of each large beam.]

(a) The difference between the values for the large beam and the averago for tho small beams is not at all constant, oither in character or ruantity; tho large bean may bo stronger (20 per cent of the cases) or practically as strong-i. ©., within 10 per cent (57 per cent of tho cases)-or it may bo weaker, and vary often considerably from the average (23 per cent of the cases).

Of 696 tests on small beams 235 furnished results smaller than that of the largo beam. Again, ont of 396 small beams fully 40 per cent were weaker that the large heam, while of another series of 300 only 24 per cent gave lower values.
(b) There aro in every case some small beams which far excel in strength the large boam; even in such cases, where the arerage strength of the small beams is practically the same as that of the large beam, some small beams show values 25 to 30 per cent wreater than tho large beam.
(c) In only 6 per cent of tho cases each of tho small pieces gavo a higher result than was obtained from the larme beam, but in these cases the latter was evidently defective.
(d) In all beams the differences observed between the several small beams themselves are far greater than that between the average value of the small beams and the valne of the large beam from which they are cht.
lrom these observations, which are fully in accord with the observations on the numerous tests of the large general serios, it would appear that-
(1) Size alone can not account for the differences observed; and, therefore, also that a small beam is not proporfionately stronger because it is smaller, for it may le either stonger ur woaker; but that if it is strouger, the canso of this lies in the fact that the larger beam contains weak as woll as strong wood, besides other defects, which may or may not appear in the small stick.
(2) Generally, but not always, a large timber gives values nearer the average, since it contains, naturally, a larger quantity as well as a greater variety of the wood of the tree; and, therefore, also-.
(3) Small beams, for the very reason of their smallness, containing, as they clo, both a smaller quatity and Tariety of the material, give results which vary more from the average than results from large beams, and, therefore, can ho atilized only if a suflicient number be tested; but it also appears that-
(4) To olbtain an average value, even a very moderato number of smaller pieces, if they fairly represent the wood of the entire stem, give fully as reliable data as values derived from a large lieam.
(5) Arerage ralues derived from a large series of tests on small but representatice material may be used in praclice aith perfect safcty, and these averages are not likely to be modified by tests on large material.

It might bo added that both the practicability and need of establishing a coefficient or ratio between results from tests on large and small beams or colmmus falls away. To deserve any conlidence at all, only a large series of tests on either large or small boams wonld satisfy the requirement of estabishing standard values, while a series of small pieces has the preference, not only on acconnt of greater cheapuess and convenience in establishing the values, lut still more for the reasou that only by the use of small, properly chosen material is it possible to obtain a suficiently complete representation of the cutire log.

Before these results, part of which were published by installments, had all been computed and arranged, the results of the work made it possible to publish, for the first time in the English language, a brief exposition of the technical properties of wood in general, which appeared as Bulletin 10 of the Division. This little booklet was copied verbatim several times by different technical journals of this country, was embodied in toto in one of the best works on the materials of engineering, and was even translated into French by one of the foremost publishers of France, besides being used itself as a text-book by several of our largest colleges. In addition to the diseussions of the several technical properties of wood, this booklet contains the first attempt in the English language at a key by which our common woods may be safely recognized from their structure alone. The key and some of the tables in this bulletin have been reproduced in an earlier part of this report. By this time, when the work was interrupted by superior orders, there were brought together the strength values for the wood of 32 species, of which 26 were represented by more than 200 tests each (the longleaf pine by over 6,000), 17 of them by over 400 tests per species, and seven by over 1,000 tests. These results were published in full in Circular No. 15 of the Division, from which the following extract is here repeated:

Summary of Mecitanicat. Tests on Thirty-two sibeles of American Woods.

($R E N E R A L$ IEMARKS.

The chief points of superiority of the data obtained in theso investigations lie in, (1) Correct identification of the material, it leing collected hy a competent botanist in the woods; (2) selection of representative trees with record of age, development, place and soil where grown, etc.; (3) determination of moisture conditions and specific gravity and record of position in the tree of the test pieces; (4) large number of trees and of test pieces from each tree; (5) employment of large and small-sized test material from the same trees; (6) uniformity of methorl for an unusally large mumber of tests.

The entire work of the merhanical test serins, carried on throngh nearly six years intermittontly as funds
were available, comprises so far 32 species with 308 test trees, furuishing over 6,000 test pieces, supplying material for 45,336 tests in all, of which 16,767 were moisture and specific gravity determinations on the test material.

In addition to the material for mechanical tests, about 20,000 pieces have been collected from 780 trees (including the 308 trees used in mechanical tests) for physical examination to determino structure, character of growth, specific gravity of green and dry wood, shrinkage, moisture conditions, and other properties and behavior.

In addition to the regular series of tests, the results of which are recorded in the subjoined tables, special series, to determine certain questions were planned and carried out in part or to finish, adding 4,325 tests to the above number.

stccount of test material.					
No.	Name of species.	Numlier of trees.	$\begin{aligned} & \text { Number } \\ & \text { of me- } \\ & \text { chanical } \\ & \text { fests. } \end{aligned}$	Averago specilic gravity of dry wowl.	Localities and number of trees from cach.
1	$\begin{aligned} & \text { Longleaf pine....... } \\ & \text { (Pinus palustris.) } \end{aligned}$	6.3	6,478	0.61	Alabama, coast plain (22) a; aplands (6); hill district (6); Georgia, undulat ing uplands (6); South Carolina, coast plain (7) ; Mississippi, low coast plain (2); Lonisiana, low coast plain, gravelly soil (7): sandy loam (6)
2	Cuban pine.............. (Pinus heterophylla.)	12	2,113	. 63	Alabama, coast plain (6) ; Georgia, uplands (1) ; South Carolina, const (5).
3	shortlear pine.......... (Pinus echinata.)	\because	1,831	. 51	Alabama, uplands (4) ; Missouri, low hilty uplands (6); Arkansas, low hilly uplands (6) ; Texas, uplands (6).
4	Loblolly pine (Pinus treda.)	?2	3,335	. 53	Alabana, mountainous plateau (8); low coast plain (6); Arkansas, level floon plaiu (5) ; Georgia, level coast plain (6) ; Sonth Carolina, low coast plain (7)
5	White bine (Pinus strobus.)	17	540	. 33	Wisconsin, clay uplauds (5) ; saunly soils (4); sandy loan (5) ; Michigan, level drift lands (3).
6	Ked pine (I'inus resinosa.)	,	412	. 50	Wisconsin, dritit (5) ; Michigan (3).
7	spruce pine (Pinus glabra.)	4	fimi	. 44	Alahama, low coast plain.
8	hald ryprest (Taxodium distichum.)	\because	3 34\%	. 46	South Caroiina, pine barren (6) ; river bottom (4); Lonisiana, coast plain, horler of lake (4); Mississippi, Yazoo hottom (3); upland (3).
9	White cerlar.......... (Chanareyparis thy oide.)	4	3 4	. 37	Mississippi, low plain.
10	Douglas sprice (Pseudotsuga tavifolia.)		-	. 51	(From lumber jard.)
11	White oak (Quercus alba.)	12	1, 1009	. 80	Alabama, ridges of Tennessee Valley (5) ; Mississippi, low plain (7).
12	Overcup oak (Quercus Iyrata.)	111	911	. 74	Mississippi, low plain (7) ; Arkansas, Mississippi bottoms (3).
1:	Trost oak (Quercus minor.)	8	296	. 80	Alabama, Tennessee Valley (5) ; Arkansas, Mississippi bottom (3).
14	Cow oak (Quercus michaunii.)	11	92:	. 74	Alabama, Tennessee Valley (4) ; Arkansas, Mississippi bottons (3); Missis. sippi, low plain (4).
: 5	Ked oak (Quercus rulbra.)	7	29	. 73	Alabama, Tennessee Valley (5) ; Arkansas, Mississippi luttom (2).b
16	Tevan mak (Quercus taxana.)	3	49	. 73	Arkansas, Mississipni bottom.
17	Y. $\left.{ }^{\text {llow rak }} \begin{array}{r}\text { (Quercus velutina.) }\end{array}\right)$	6	를	. 72	Alabama, Tennessee Valley (5).
18	Water nali (Quercus nigra.)	4	1:3:	. 73	Mississippi, lory plain (4).
19	Willow oak. (Quercus phellos.)	12	649	72	Alabama, Tennessee Valley (5) ; Arkanaas, Mississippi bottom (3) ; Missis. sippi, low plain (4).
$\underline{0}$	Spanish oak (Quercus digitata.)	11	1, 01.3%	73	Alabania, 'Tennesseo Valley (5) ; Arkansas, Mississippi hottom (3); Missis sippi, low plain (3).
21	Shagbark hickory (Hicoria ovata.)	${ }^{6}$	794	. 81	Mississippi, alluvial plain (3); limestoue (3).
22	Mockernat hickory (Hicoria alha.)	4	301	. 85	Mississippi, low plain.
23	Water hickory (Hicoria aquatica.)	2	197	. 73	Do.
21	Bitternut hickory.... (Hicoria minima.)	4	II	. 77	Wo.
2	Nutmeg hickory (Hicoria myristice formis.)	3	304	78	Do.
26	Pecan hickory (Hicoria pecan.)	2	172	. 78	1 \%.
± 7	lignut hickory (Hicoria glabra.)	3	4	. 89	Do.
28	White elm (Ulmus americana.)	2	91	. 54	Mississippi, bottom.
29	Cedar olm. (Ulmus crassifolia.)	3	211	. 74	Arkansas, bottom.
30	White ash (Fraxinus americana.)	3	476	. 62	Mississippi, bottom.
31	druen ash.. (Fraximus lanceolata.)	1	4.5	63	I)
32	Sweet gum. (Liquidambar styracilua.)	7	518	. 59	Arkansas, lottom (3) ; Mississippi, low plain (4).

a sixteen of these were bled trees to study the eflects of boxing.
b These two should probably be classed as Southern red oak. They were collected before the distinction was finally decided upon.
Note.-The values for specific gravity here given refer to "dry" wood of test material-i. O., wood contaiming variable amounts of moisture below 15 por cent; the moisture etfect has therefore not been taken into account, bnt more careful experiments indicate that its ntuence on specitic gravity at such low per cent is so small that it may be neglected for practical purposes.

As will be observed, some species, notably the Southern pines, have been more fully investigated, and the resulta on these (which have been published more in cletail in Circular No. 12) may be taken as authoritative. With those species of which only a small number of trees have been tested this can be claimed ouly within limits and in proportion to the number of tests.

The great variation in strength which is noticoable in timber of the same species makes it necessary to accept with cantion the result of a limited number of tests as representing the average for the species, for it may have lappened that only all superior or all inferior material has been used in the tests. Hence we would not be entitled to couclude, for instance, that pigunt hickory is 14 per cont stronger than shasbark, as it wonlu appear in the table, for the 30 test pieces of the former may easily have been superior matorial. Only a detaileal examination of the test pieces or a fuller series of tests would enlighten us as to the romparative valno of the results.

The following data, therefore, are not to be considered as in any semse final valnes for the species, except where the mumber of trees and tests is very largo:
liesults of tests in compression endurise.
[lounde per square inch.]

The variation in strength in wood of the virgin forest, as will bo scen from the tables, is in some species so great that by proper inspection and selection values differing by 25 to 50 per cent may bo obtained from different parts of the same tree, and values difiering 100 to 200 per cent within the same species. These differences have all their definite recognizable causes, to find and formulate which is the final aim of these investigatious.

The tests are intentionally not made on selected material (except to discard absolutely defective pieces), but on material as it comes from the trees, so as to arrive at an average statement for the specios, when a sufticient uumber of trees has been tested. How urgent is the need for data of inspection as above indicated will appear from the wide range of results recorded.

To enable any engineer to use the data here given with due cantion ami judgment, not only the ranges of valnes and the average of all values obtained, hat also the proportion of tests which came near the average values, have been stated, as well as the average results of the highest and lowest values of 10 per cent of the tests. With this information aud a statement of the actual number of tests involved, the comparative merit of the stated values can he judged. With a large number of tests, to be sure, it is more likely that an arerage value of the species has been fomm. 'The actual test results have been romuled oft' to even humdreds in the tables.
FACTOKS OF SAFPTY.

With such lowest staudard values, also lowest factors of safety could be employed. As to factors of safety, it may be proper to state that the final aims of the present investigations may be smmed up in one proposition, namely, to estalilish rational factors of safety. It will be admitted by all engineers that the factors of safety as used at presunt can hardly be claimed to be more than gresswork. There is not an engineer who couk give account as to the basis upon which numerically the factors of safety for wood hare been established as " 8 for stealy stress; 10 for varying stress; 15 for shocks" (sce Morriman's Testhook on the Mechanies of Materials); or as 4 to 5 for "rlead" load and to to lo lor "live" Load (see Rankiue's Hanthook of" Civil Enginoeriner).

The directions for using these indeterminate factors of safety given in the texthooks would imply that the student or engineer is, after all, to rely on his judgment as to the modification of tho factor, i. ©., he is to add to this general guess his own particular guess. The factor of safety is in the nain an expression of ignorance or lack of confidence in the reliahility of values of strength, upon which the designing proceeds, together with an absence of data upon which to inspect the material. With a larger number of well-conducted tests, coupled with a linowlerge of the quantitative as well as qualitative inlluences of various factors upon strengile, aud with delinite data of inspection which allow ready sorting of material, the firctor of safety, as far as it denotes the residunu of iguorance which may be assumed to remain, as to tho character and behavior of the material, may he reduced to a minimm, restrictiner itself mainly to the consideration of the indeterminable variation in the actual and legitimate application of load.
hesults of lests in compression cutwise on green wood (above fo per cent moisture, not reduccd).

[Pounds per square inch.]						
No.		Speries.	Number of tests.	$\begin{aligned} & \text { Mighost } \\ & \text { siugle } \\ & \text { test. } \end{aligned}$	Lowest single terat.	Average of all tests.
1	Longleaf pin		86	7,300	2, 800	4,300
2	Cuban pine.		38	6, 100	3,500	4, 200
3	shortleaf pine.		8	4,000	3,000	3,300
4	Loblolly pine		69	5,500	2,600	4,100
7	Spruce pine..		71	4,700	2,800	3,900
8	Bald cypress		280	8,200	1,800	4,200
9	Whitecedar.		34	3,400	2,300	$\stackrel{2}{2} 900$
11	White oak		25	7,000	3, 200	5, 310
12	Overcup oak		45	4,900	2,800	3,800
14	Cow oak		58	4,900	2,300	3, 800
16	'Texan oak		39	6, 000	3,100	5,200
19	Willow oak		49	5, 500	-, 360	3, 800
20	Spanish oak		52	5, 100	2, 510	3, 900
21	Shagbark hickor		22 ;	$6,900$	3,500	5, 700
22	Mockernut hicki		18	7,200	4,500	6, 100
23	Water hickory--		4	5,600	4,700	5,200
25	Nutmeg hickory		26	5, 500	3,700	4,500
26	P'ecan hickory. .			3, 800.	3,300	3,600
97	Pigunt hickory		5	6. 200	4,700	5, 400
$3 \pm$	Sweet gum......		6	3,600	3,000	3, 300

While the values riven in thess tables mar clain to contain more elements of reliahility than most of those publisher hitherto, much more work will have to le done before the above-stated aim will be satistied.

In explination of the table recording tests in bending at relative elastic limits it shonld be stated that since an elastic limit in tho sense in which the term is used for metals, namely, as a point at which distortion becomes disproportionate to load and a permanent injury amb set results, can not be retdily detemined for wood, Prof. J. B. Johnson has proposel to utilize a point whero the rate of distortion hecomes 50 per cent greater for fhe amont of load than it was for the initial loal, which point can be tolerably accuratelf determined (see 13ull. 8, p. 9). This point he has called the "rolative clastic limit." 'The assumption is that such a point wonld he nar the limit to which the material can be strained withont permanent injury, and the strength values obtained at that point would serve for indications of safe loads.

The practical utility of determining this point and the strength values relating to it remains, however, still open for discussion. A comparison of the values ohtained for the strength at rupture and at relative elastic limit shows a parallelism which would mako it questionable whether much is gained by the use of that point, which in reality lies beyond the limit where practical injury has hegun, as indicated by the increased clistortion.

We would le inclined to consider that point more servicealo where the curve begins to eleviato from the straight line, at which point we may assmme no permancut injury has as yet been experienced. 'Ihis point we may call provisionally the "safe limit."

Ohjection has been made to utilizing this point because it can not loo locatod with as much nicety and mathematical precision as the point of "relative chastic limit." but even this point is only approximately defiuable; and since no strength values can claim to he more than approximately correct, it would suftice to determino the safelimit point and the correspondent strength values also only approximately. This point has the advantage that it lies on the safe side.

Special series of tests to investigate the legitimacy of the use of any of these limits for practical purposes were designed, but have as yet not leen taken up, aud hence the values in the table on p. 367 are given only as suggestions for what thoy are worth.
liesults of tests in bendint, at ruphure.
[l'ounds per square inch.]

HELATIONS OF WEIGIIT INH STRENGTII.
That within the same species the strength of wood varicd with the dry weight (specitic gravity), i. o., that the heavier stick is the stronger, has been known for some time. That this law of variation held good not only for a given species, but irrespective of species for the four principal pines of onr Southern states was indicated in Circular 12 of this Division. This fact becomes the more important in practical application, as the wood of these species of pines so far can not be distinguished at all by its anatomical structure and only with difficulty and uncertainty by other appearances, while in the lumber market substitution is not infrequent. It will therefore be best with these pines, where strength alone is desired, to inspect the material by weight (specitic), other things being equal, disregarding species determination.

While this result of the exhaustive series of tests reasonably well demonstrated for these pines may be considered of great practical value, we can now extend the application of tho law of relation between weight and strength a step farther, and state as an indication of our tests that probably in woods of uniform structure strength increases with specific weight, independently of species and genus distinction, i. e., other things being equal, the heavier wood is the strouger. We are at prosent inclined to state this important result with caution, only as a probability or indication, until oither the test material and tests can bo more closely scanned, or more carefully planmed and minutely executed series of detail tests can be carried on to confirm tho truth of what the wholesale tests seem to have developed.

In the following two dianrams the averago strength of the different species in compression endwise and bending, as found in the preceding tables, has been plotted with reference to the dry weight as given in proceding table.

Considering that these tests and weight determinations (especially the latier) were not carried ou with that finesse which would be required for a scientitic demonstration of a natural law, that other inlluences, as crossgrain, unknown defects, and moisture conditions may cloud tho results, and that in the averaging of results undue cousidoration may have beon given to weaker or stronger, heavier or lighter, material, tho relasation is exhibited even by

An exception is apparent in the oaks in that they do not exhilit this relation of weight and strength with reforence to other species, and also with less definiteness among the various species of oak in themselves. The structure of oak wood heing exceedingly complicated and essentially different from that of tho wood of all other species under consideration, it may reasonably be expected that it will not range itself with these.

Lesults of tests in bending, at rclative elastic limit.
[1'ounds per square inch.]

No	specios.	Number of tests.	IIighest single test.	Lowest siugle test.	Average of highest 10 per cent of tests.	A verage of lowest 10 per cent of tests.	Average of all tests.	I'roportion of tests within 10 per cent of average.	l'ropurtion of tests within 25 per cent of average.	Modulus of elasticity (averige of all tests).
	Reducal to 15 per cen							P'er cone.		
1	Longleaf pine	1, 160	13,500	2,400	11, 100	5. 400	8,500	Otr 4		1,800,000
2	Cuban pipo.	390	12,400	2,200	11,500	5,600	9,500	42	83	2, 300, 000
3	Shortleaf pine	330	11,500	2,900	9,700	4,800	7,200	48	81	1, 600,000
4	Loblolly pine .	650	12,700	3,100	10,800	5,400	8, 200	46	85	1, 950,000
	heducel to 12 per een									
5	White pine	1:30	10,000	4,100	8, 200	4,500	6, 400	58	85	1,300, 000
6	Led pine.	95	11,300	3,100	10,300	4,500	7,700	38		1,620, 0001
7	spruce pine	170	13,700	3,000	11,200	5,000	8, 400	51	82	1,6411,000
8	Bald cypress.	655	12,000	2, 200	4,900	4,200	6, 600	25	G6	1, 210,000
9	W Wite cedar	87	8,200	3.400	7,390	4,000	5,800	44	86	910,000
10	Douglas sprucea	41	13, 700	2, 800	9,600	3, 400	6,400	32	56	1, 680, 000
11	Whito oak.	$\because 18$	15,700	4,400	14, 100	6, 100	9,600	37	73	2, 1290,000
12	Overcmpak	216	11, 600	4,000	9,500	5,400	7,500	47	91	1,620, 000
13	Postoak.	4.3	10, ti00	5,100	3,600	6,000	8,400	34	76	2, 030, 000
14	Cow oak	256	14, 200	3,400	11,600	5,000	7,600	50	95	1,610, 000
15	lied oak	57	14,500	5,100	13,600	5,600	9, 200	15	49	1,970, 000
16	Texan ocir	117	12,000	5,900	11,410	7, 800	9, 400	62	94	1, 860, 000
17	Yellow jak	40	11,800	4,900	11, 100	5,100	8,100	35	75	1, 740, 0000
18	Water vak	31	11,800	4,500	11, 400	5,500	8,800	40	84	2, 000, 000
19	Willow oak.	153	13, 100	2, 700	10,000	4,300	7. 400	42	81	1,750, 000
20	Spanish oak	257	13,500	5,100	11,600	6, 600	8, 600	41	80	1,930,000
21	Shagbark hickory	187	16,100	5,400	14,200	7, 700	11, 200	50	89	$2,390,1000$
22	Mockernut hickors	75	15,400	4,300	14,600	7.800	11,700	39	83	2,320,000
23	Water hickory	14	11,900	4,100	11,800	4,800	9,800	21	86	$2,180,000$
24	Bitternut hickory	25	14.300	7,500	14, 000	7,600	11, 100	44	84	$2,280,000$
25	Nutmeg lickory	72	12, 200	4, 200	11,200	6,400	9,3100	46	93	1, 940, 000
26	Pecan hickory.	37	15, 100	5,800	14,400	7,900	11,500	65	89	2,536,900
27	${ }^{\text {l }}$ igaut hickory	30	17,500	7,4011	16.400	8,300	12,600	40	83	2, 730,000
28	White elm.	18	9,700	5,300	9,600	5.400	7,300	3.3	71	1,540,000
29	Cedar elm	4	10,710	4, 700	10, 100	5, 800	8,000	57	91	1,700, 000
30	White ash	87	11,500	3,600	10, 400	5,200	7,900	43	83	1,610, v00
31	Green ash	10	13,200	3,200	13,200	3,200	8,900	40	70	2,050, 000
32	Sweet gum	118	11,000	3,500	10,100	5,100	7, 800	46	82	1,700, 000

a Letual tests on "dey" material not reduced for moisture.

Fig. 95.-Telation of strengh in compression endwiso to weight of material. The figure at each point indicates the syecies thereby reprosented.

Fig. 36.-Lelation of weight to bending strength at ruphture. The figure at each point indicates the species thereby represented.

In addition, the diffeculty of seasoning oak without defects or eren securing perfect material may have influenced the results of tests so as to cloud the relationship with the gemus.

If further close study, supplemented by additioual series of tests carefully devised to investigate this relationship, should uphold the truth of it, this result may bo set down as the most important practical one that could be reached by these tests, for it would at once give into the lunds of tho wood consumer a means of determining the relative value of his material as to strength and all allied properties by a simple process of weighing the dry material; of course with clue regard to the other disturbing factors like crossgrain, defects, coarseness of grain, etc.

Results of teats in compression across grain (a) and shearing with grain.

Having fully established the great influence of moisture on the strength of wood, the practitioner still needed information as to the rate and manner of drying and as to the way in which moisture is distributed during seasoning. Several thousand moisture determinations were made and it was established beyond donbt that moisture is generally least abundaut at the euds, is quite evenly distributed throughout the length, but is not always uniform in different parts of the same cross section, often varying in this respect within astonishing ranges, so that the use of timber in a half-seasoned condition, and where uniform seasoning can not be obtained by the material, requires that these facts be duly considered in designing.

Tests of Maymum Uniformity.

Both in this country and abroad small differences in strength values were often interpreterd as deciding for or against any given material. This same problem arose also in every case where mauy results were to be compiled, and it seemed especially desirable once for all to find just how much uniformity conld be expected of wood materials. From a large series of well-selected quarter-sawed pieces representing several kinds of pine, cypress, and hardwoods it was found that even contiguous blocks, 22 inches long, may differ by as much as 2 to 4 per cent in conifers and as much as 13 per cent in oak, and that in a seantling only 6 feet long the butt might differ from the top by 10 to 20 per cent in conifers and over 35 per cent in oak. This extremely valuable set of results throws much light upon diseussions of the past, and is well suited to show that many boastful claims rested on very flimsy and entirely unreliable differences, such as might well be arcounted for by a little more extended examination of materials. It will also assist in judging test results in the future and help to avoid useless controversy and prejudice. The following more fully illustrates the results of this series:

Scantlings of air-dry material, 6 to 10 feet long, of white pine, longleaf pine, tuliptree (poplar), and white oak, and of perfectly green material of lohlolly pine and cypress, fresh from the saw, were cut partly into blocks 2 by 2 ? by 29 inches, but mostly into cubes of 2 is inches. All material was quarter sawed, carefully prepared, and in all cases treated alike, either perfectly green or dried together at the same temperafure. Altogether 529 tests in endwise compression were made, namels, 100 on white pine, 72 on longlear pine, 99 on lohlolly pine, 40 on white oak, 115 on tuliptree (poplar), 103 ou cypress.
H. 1)oc. 181-24

From these tests the following table of averages is derived, fogether with fig. 97 :
Average of tests for maximum uniformity.

Name.	Moisture.	Average strength ot all piceres.	(ireatest dilferencein strength hetween aljoinіня piaces.		Greatest dif: ference in ex. tire scabtling. i. e., 6-10 fool piere.
White pine (Pinus strobna)	Per cent.	Lbs. per sq. in. 4,900	L.ls. juer sq.in.	Per cent.	I'er crnt.
Longleaf pine (Pinus palustris)	7.8	10,800	380	3. 5	10
Tuliptree (poplar) (Jiriodendron t	8	6, 010	480	8.3	20
White oak (Quercus alba).	Yard dry.	8,300	1,130	13.4	37
Loblolly pine (Piaus tieda)	$125+$ (green).	2,670	130	4.8	20
Cspress ('Taxodium distichum).	$125+$ (green).	4,090	70	1.8	15

It will be observed that green cypress excelled in its uniformity; that ireen loblolly proves mot more uniform than dry white and longleaf pine; that wood of the conifers far excel even the tuliptree (poplar) with its uniform grain and textnre; and that oak, as might be expecteli, is the least uniform. It will also bo noticed that even in one and the same short scantling (6 to 10 feet) of select quarter-sawed longleaf pine differences of 10 per cent may occur, and that in all others these differences were even greater.

Incidentally in this anl the following experiment a small number of the blocks wexe thoronghly oven-dried (to about 2 per cent moisture), and it was found that the strength of both crpress and loblolly wis increaserl loy about 150 per cent during drying, so that wood at 2 per cent is about two and one-half times as strong as perfectly green or soaked material; and also that drying from 8 to 10 per cent to the lowest attainable moisture condition (1 to 2 per cent) still adds about 25 per cent to the strength of the wood.

In the following diagram and table a part of the results are presented in detail:

Fig. 97.-Strength of contiguous blochs, showing maximum uniformity of select guarter-sawed material in compression end wise.

Strength of contiguous blocks of the sume scantliny, select materiul, in compression enduise.
(Dimensions geverally; 2.76 by 2.76 by 2.76 inches.]

As was indicated at the outset and is fully explained in Bulletins 6 and S, the plan of this investigation also inchuded among the objects to be sought the establishment of the following:
(1) The relative value of each species.
(2) The outward signs or physical and structural properties, easily used in inspection.
(3) The relation of the properties among themselves; and
(4) Their relation to the conditions under which the wood is formed, such, for instance, as the age of the tree when wood is laid on, influences of soil, climate, etc.

As has been explained, some of these relations were more or less fully determined, at least, qualitatively; nevertheless, the relation of the several forms of resistance, as well as the mutual relations of tho properties in general, seemed to escape observation in the manner of inquiry generally pursucd. It became clear befowe long that these laws must be established by special series, planned each to seek answer to some specific question. Several of these were carried out,
and, thougn little more was accomplished than to find proper ways, the study of these results, amplified by the large ordinary series, led to several interesting discoveries, the most important of which is the discovery of the relation between the strength in cross bending at elastic limit and the compression endwise, this latter being equal to the fiber stress of the former. Though still requiring special experiments to become convincing, it is fair to state at this point that a great deal of useless testing will be saved in the future, since the test in compression is by all means the simplest, the selection and treatment of the material for it the easiest, and the result the most satisfactory. The importance of this discovery by Mr. S. T. Neely is such that a reprint of Mr. Neely's discussion here will be found justified.

Relation of comblession-fndwise sthengtir to lirkakinix loalb of lbeam.
In testing timber to ohtain its varions coetticients of strength, the test which is at once the simplest, most expedient, satisfactory, aud reliahle is the "compression-endwise test," which is made by crushing a specimen parallel to the filvers. All other tests are either mechanically less easily performed, or else, as in the case of crossbending, the stresses are complex, and the unit coefficient can be expressed only by reliance upon a theoretical formula, the correctness of which is in doubt. It would, therefore, be of great practical value to tind a relation between the cross-bending strength, the most important coeficient for the practitioner, and the compression strength, when the study of wood would not ouly be greatly simplified and cheapened, but the data could be applied with mucle greater satisfaction and safety.

The consideration of such a relation resolves itself naturally into two parts, namely, a study of the relation of the internal stresses in a beam to the external load which produces them, and a study of the relation of the internal stresses in a beam to the compression-endwise strength of the material of which the beam is made.

Thefirst relation has been a subject of study for more than two centuries, and from the time of Galileo down to the present day the theory of beams has been gradually evolved. Within recent years sereral eminent physicists and engineers have given a true analysis of both the clastic and ultimate strength of a heam, a clear exposition of which is made by Prof. J. I3. Johnsou in his work on Modern Framed Structures. He points out that the "ordinary "fuation" for oltaining the extreme fiber stresses, when the external load and dimensions of the heam are given, is not applicable to a beam strained beyond its elastic limit; and he follows this statement with a discussion of the true distribution of internal stresses in a heam at time of rupture, and with a "Rational erguation for the moment of resistance at rupture," devised by M. Saint-Venant, which really does connect the extremefiber stre:s in alient beam with the compression-endwise streagth and also with the tension strength. Professor Johnson's final conclusion, however, is that for practical use the "orlinary formula" may he appliel to a leam at rupture, providing the filuer stress involved is obtained from cross-lending tests; and this is the present practice among engineers.

1RELATION OF INTERNAL, STRESAEE.

Assume for the discussion of the relation of internal stresses to oxternal load the simple couditions of a lieam of rectangular cross section loaded at the middle.

Regardiug the distribution of internal stresses, it must be agreed that the nentral plane lies in the center of the beam so loug as the beam is loaded within the elastic limit; this follows from the fact that the modulus of elasticity is the same whetber derived from compression tests or from tension tests (i.e., $\mathrm{E}_{\mathrm{c}}=\mathrm{E}_{\mathrm{t}}$), as proved hy experiments of Nördlinger, Bauschinger, 'Tetmayer, and others.

Since the distortion of any given fiber in the beam is proportional to its distance from the neutral plane, the distribution of stresses in a longitudinal section of a beam loaded up to its elastic limit may be represented by the following diagram, in which the vertical scale represents increments of distortion and the horizontal scale the fiber stresses.

In this diagram the angle $a=$ angle b, since $\mathrm{E}_{\mathrm{c}}=\mathrm{E}_{\mathrm{t}}$; and furthermore, since these latter quantities are each mqual to the modulus of elasticity obtained from cross-bending tests (according to the same anthorities), this angle a (or b) can be obtained by platting the results of the cross-bending test itself.

It is a well-established fact that the tension streugth of wood is much greater than the compression strength, and also, as shown by the German experimenters quoted, that the elastic limit in either case is not reached until shortly bofore the ultimate strength. Furthermore, it seems reasouable to suppose, and is esseutial to the construcfion of the above diagram, that the true elastic limit of the beam (shown on the strain diagran of a beam at the point where it ceases to be a straight line) is reached at the same instant that the elastic limit of the extreme compression fiber is reached; for when the loading is continued beyond this latter condition the line OC must begin to curve upward (since the proportion of load to distortion on that side begins to increase more rapidly), while the line O'T' contimes in its original direction. Therefore, in order to maintain the equilibrium, the whole distribution of stresses will necessarily be changed, the position of the nentral axis will be lowered, and these changes will, of course, show an effect on the cellection of the beam.

Now, even at rupture the proportionality of fiber distortion to distance from neutral axis is maintained (becanse a plane cross section will always remain a plane), and therefore the distribution of internal stresses just at the point of rupture can be represented by a diagran similar to fig. 99 , in which, as before, the vertical scale represents incte. ments of distortion and the horizontal scale fiber stresses. The fibers on either side of the nentral plane are under stresses which vary from zero at the neutral plane to the maximmo stress in the extreme liber, changing in proportion
as the increments of load in the test machine vary. Therefore, the distribution of stresses on the compression side of the neutral plane will be shown by an ordinary strain diagram for compression, and on the tension side by a similar tension-strain diagram. Uufortunately there are no relialle diagrams of these kinds now on record. The compression pieces tested have usually been too short to afford reliable measurements of distortion, aud, owing to structural and mechanical difficulties, satisfactory tension tests seem to be impossible.

1's. 98.-Relation of filuer stresses and distortions.

Fig. 99.-Distribution of internal stresses in a beam at rupture.

Experience in testing, however, has taught that when a piece of green wood is tested in zompression it will undergo at great distortion after the maximum load has been applied without actually breaking down-in fact, while sustaining the sameload. A piece tested in tension, ou the other hand, breaks suddenly as zoon as the maximum load is applied. A beam in failng may, therefore, sustain an increasing load long after the extreme compression fiber has been loaded to its ultimate strength; the fibers on the compression side continue to be mashed down, While the neutral plane is lowered and the stress in the tension fiber increases until, very often in practice, the beam "fails in rension." With these facts and observations before us it is possible to construct a diagram so that it will represent, approximately, at least, the distribution of internal stresses in a lean at rupture. (See fig. 100.)

In this fimure OA represents the position of neutral plane at time of rupture, OU the distortion in the extreme compression tiber, UC the stress on same fiber, OL the distortion in extreme tension fiber, and LT the stress on that fiber.

It can readily be seen that the manner of breaking will intluence slightly the form of this diagram. If the beam fails in compression hefore the tension tiber reaches its elastic limit the liue OT will be straight as shown, otherwise the line will assume some such position as $O l, T$, (diagram 99), in which l, is tho elastic limit in tension.

From the approximate distribution of internal stresses their relation to the external load may be determincd. The two fundamental equations-(1) that the sum of inter-

Fig. 100.-l'osition of nentral axis and iuternal stresses at rupture of beam. nal stresses on the tension side equals the sum of internal stresses on the compression side, and (2) that the sum of the external moments equals the sum of the internal moments-apply at the time of rupture as well as at the elastic limit. From (1) it follows that area OUCl=area OLT, and the position of the neutral plane at rupture is thereby fixed. If now the line LU be assumed to represent the depth of the beam in inches instead of indicating the distortion of the fibers, the sum of the internal moments ahout the point O is found by multiplying the area of either the compression or tension diagram by the sum of the distances of their respective centers of gravity from the neutral plane. By putting this sum equal to the moment of the external load about the same point O the first relation is established.
'lho second relation (that of crushing-endwise strensth to internal stresses) was touched upon in discussinct the lirst, when it was stated: (1) That the true elastic limit of the bean is pohably reached at the same instant that tho extreme fibers on tho comprossion side reach their elastic limit in compression. (2) That this latter limit lies closb to the ultimate compression-thd wise strensth (so close that fomer experimenters have been unable satisfactorily fosoparate them). (3) That a piece of sreen wool will stand a grat doal of distortion after tho ultimato load is applied before actually faling. And to these statements may be added the evident fact (f) that the stress on any fiber on the compression side can not exceed the compression-endwise strength of the material. (5) Finally and most important it appears from (1) and (2), but especially from an cxamination of the several thousand test results on the soveral species of conifers made by the loivision of Forestry, that tho oxtremo fiber stress at the true elastic limit of a beam is practically fentical with tho compression-cudwiso strength of the material. (This last observation, which was forcod npon tho writer by its continual repetition in tho largo series of tosts under review, lies at the basis of this discussion.) The observation of this identity makes the distribution of internal stresses appear more simple than was hitherto assumed, and tho desired relation hetween compression and cruss-bending strength capable of mathematical expression.

```
DFVELOPMENT OF FORMOTJEF
```

From these considerations the distance UC in fig. 100 , which represcats the ultimate compression-eudwise strength of the material, becomes practically equal to the distance el, which represents the compression strength at the true elastic limit, and hence the line IC straight and vortical; and if OT is taken as straight, the diagram will he mado up of simple geometric figures, as in fig. lofo.

The line LU will represent the total fiber distortion at time of rupture, and is erfual to the sum of the amounts hy which the extreme compression fibers shorten and the extreme tension fibers elongate.

Lot a test in which the following quantities have heen observed and recorded he considered:

$$
\begin{aligned}
\text { Let } \mathrm{P}_{\mathrm{r}} & =\text { the external load at rupture (pounds). } \\
A_{\mathrm{r}} & =\text { the corresponding detlection of the beam (inches). } \\
\mathrm{C} & =\text { compression-endwise streneth of the material (pounds). } \\
\mathrm{E} & =\text { modulus of elasticity (pounds). } \\
d & =\text { depth of beam (inches). } \\
b & =\text { brealth of beam (iuches). } \\
l & =\text { length of beam (inches). } \\
\Delta_{e} & =\text { detlection at true elastic limit. }
\end{aligned}
$$

Then, hased upon the above statements, by means of formulas deriver from the geometric relations of the diagram and the fundamental equations of cquilibrinm, tho following quantities can be calculated:

Let L_{r} - total iber distortion due to bending at trme elastic limit (inches).
$\mathscr{L}_{\mathrm{r}}^{\prime}=$ total fiber distortion due to bending at rupture - Llif (inches).

$d_{p}=$ distortion in extreme tension fiber at rupture $=1.0$ (inches); also the proportional distance of neutral plane from tension side of beam.
d_{r}-real distance of nentral plane at rupture from tension side of bean (inches).
$d_{n}=$ real distance of neutral plane at rupture from that fiber on compression side which has just reached the elastic limit, in inches $=$ Oc.
' $\mathrm{I}=$ stress in extreme teusion liber (pounds).
$\mathrm{T}_{\mathrm{n}}=$ sum of forces on tension side - area (OLT (pounds).
$\mathrm{C}_{\mathrm{a}}=$ sum of forces on compression side $=$ area OUC (pounds).
$d_{\mathrm{t}}=$ distance of center of gravity of tension area from neutral plane (inches).
$d_{c}=$ distance of center of gravity of compression area from neutral plane (inches).
$\mathrm{M}_{\mathrm{r}}=$ sum of the internal moments about the point O (inch-pounds).
The formulas connecting those quantities are derived as follows:
To find E_{c} let fig. 101 represent a portion of the beam one unit in length bent to its elastic limit; then,

$$
\frac{E_{e}}{1}=\frac{d}{r}
$$

Fia. 101.-Filur din. tortion in unit length of beam, at elastic limit.
where r is the radius of envature, but from, fundamental formulas true at elastic limit

$$
1=\frac{m}{11 \%}=\frac{12 \Delta_{e}}{T^{\circ}} \therefore(1) F_{n}=\frac{12 A_{\mathrm{e}} d}{T}
$$

Since this involves only geometric relations, it is true also at rupture (since the leam preserves its original form).
(2) $E_{r}=\frac{1 \because S_{r} d}{l-}$.

To find d_{0} and ' l ':
Since the sum of stresses on the tension sile - sum of stresses on compression side,
the area OLT $=$ area OUCl $\therefore \frac{d_{p}}{2} \mathrm{~T}=\left(E_{\mathrm{r}}-d_{p}\right) \mathrm{C}-\frac{E_{\mathrm{c}} \mathrm{C}}{4}$ and $\mathrm{T}=\frac{d_{n} \mathrm{C}}{\frac{\partial}{2} E_{\mathrm{e}}}$
from the similar triangle OLT and Oel (ig. 100),

$$
\therefore \frac{d_{\mathrm{p}}^{2} \mathbf{C}}{E_{\mathrm{e}}}=\left(E_{r}-d_{p}\right) \mathbf{C}-\frac{E_{e}}{4} \mathbf{C}
$$

whence,
(3) $d_{\mathrm{p}}=\sqrt{E_{\mathrm{r}} \times E_{\mathrm{e}}}-\frac{E_{\mathrm{e}}}{2}$,
and after d_{p} is lound, 'I' can be olbtainenl:
(4) $\mathrm{T}=\stackrel{d_{p} \mathrm{C}}{1 /}$

Now, when the vertical line $L U$ is assumed to represent the real depth of the beam in inches $=d$, every vertical measure will bo changed in the ratio $\frac{d}{E_{\mathrm{T}}}$ (see iig. 10\%); whence,
(5) $d_{r}=\frac{d_{r}}{E_{r}^{-}} d_{p}$
(real distance of neutral plane from tension side).
(6) $d_{e}=\frac{1}{2} \frac{d}{E_{\mathrm{r}}} E_{0}$
($\frac{1}{2}$ because E_{e} total distortion, while d_{u} is the distance on one side of the nentral planes).

The area OLT would then become:
(7) $\mathrm{T}_{\mathrm{s}}={\underset{2}{d_{\mathrm{r}} \mathrm{T}} \text {, and the area oUCl}==~}_{2}$
(8) $\mathrm{C}_{\mathrm{a}}=\left(\mathrm{d}-d_{\mathrm{r}}\right) \mathrm{C}-\left(\begin{array}{c}d_{2} \\ 2\end{array} \times()\right.$
(C_{n} must equal T_{B}).
The distance of centers of gravity would be:
(y) $d_{t}=\frac{2}{3} d_{r}$,
(10) $d_{C}=\frac{d-d_{r}}{2}+\frac{d_{n}}{4}$,
and the sim of internal moments.

(11) $M_{r}=\left(\mathbf{C}_{a} d_{c}+\mathrm{T}_{\mathrm{a}} d_{1}\right) b$, and since $\mathrm{C}_{a}=\mathrm{T}_{\mathrm{a}}$, hence $\mathrm{M}_{\mathrm{r}}=\mathrm{C}_{\mathrm{a}}\left(d_{\mathrm{c}}+d_{\mathrm{t}}\right) b$.

But since the sum of internal moments equals the sum of external moments:

$$
\operatorname{Pr}_{4} l \quad . M M_{\mathrm{r}} \cdots\left(l_{H}\left(d_{t}+d_{\mathrm{t}}\right) h_{0}\right.
$$

And since P_{r} is the breaking load of the beann, and C_{b} involves only the compression endwise strength and lineal dimensions, we have a formula directly counecting the breaking load of a beam with the compression strength.

Application of these formule.-Unfortunately no tests have been made to study the application of these formulte directly and is particular. The tests on beams published in this circular were mado for a different purpose. For the purpose of ascertaining the correctness of the formula only the tests made on large beams have been utilized, since in these the detlections were specially accurately measured. In addition to the quantities to be calculated already given in this discussion, the fiber stress at the true elastic limit is also calculated, and called S_{e}, to lee compared with C, and the load producing it, P_{e}, is also set down as an olserved quantity. If the modulus of rupture, R, has already becn calculated by the "ordinary formula," S_{e} can be obtained from the relation $\frac{S_{e}}{R}=P_{e} P_{r}$ and (12) $\mathrm{S}_{\mathrm{e}}=\frac{\mathrm{J}^{\prime}}{\mathrm{P}_{r}} \mathrm{R}_{\mathrm{r}}$.

The modulus of clasticity at true elastic limit E_{e} is recomputed as a check, and of course is:

$$
\text { (13) } \mathrm{E}_{\mathrm{e}}-\frac{1}{2} \mathrm{E}_{\mathrm{e}}
$$

Since P_{e} is an arhitrary quatity within certain limits, and can not be determined with any degree of accuracy, $S_{\text {e will }}$ be found to differ more or less from C. For these reasons, however, C is a more reliable value for the true elastic limit than S_{e} itself, and in the formulx is used as such; for instance, E_{0} is the fiber distortion produced by the same load which produces a fiber stress $=C$, not by the load which produces \mathcal{S}_{e}.

The following table exhibits the results of applying the formulæ to the data from these tests:
[1The factors $d_{c}+d_{t}$, within such limits as the cross-bending strength is constant, are constants; they will have to be ascertained by actual experiment for each species and quality, and might then be expressed as a proportion of the depth. In the material used, pine as well as oak, it appears to be abont $3 / 5$. The material on which this relationship has been mainly studied was green wood, and it may be questioned whether the factors d_{c} and d_{t} wonld romain the same in material of all moisture conditions. There is no logio which would load us to expect a difierence greater than the limits of "maximum uniformity" i. e., 10 per cent. A few comparisous of data obtained from material of other species with varying moisture percentage indicate that a difference does not exist, -B, E,F.J.
lielation of results obserted and c＇alculated by usual methods and results c＇alculated by Vecly＇s formula．

				Data ob	serred	ad	Hat	jo usi	1 met	ods．							drater								
							Yin	nsions atms．				ents ahont	$\stackrel{0}{\pi}$	$\underset{\Xi}{E}$	Total fil tortion bend	ber dis． due to ing．	$\stackrel{\cong}{\underset{\sim}{x}}$		Real tan neut nean rup	1 dis． ce of tral ne at ture．	灵	Simm of for unit of be	forces wirlth am．	Dist from tral of cer gra	alle $11 \mathrm{H}_{10}$ मame ternit ify．
		$\underset{\underset{\sim}{3}}{\substack{5 \\ 0}}$									$\underset{\sharp}{\Delta}$	${ }_{E}^{\infty} \stackrel{\leftrightarrow}{6}$	侖	$\frac{\bar{x}}{\frac{\pi}{2}}$				$\stackrel{9}{\pi}$		$\dot{\infty} \dot{\infty}$	$\underset{E}{E}$				
		\sum_{i}^{2}								\pm	$\stackrel{E}{巳}$	$\underset{\sim}{E}$	$\stackrel{n}{\sim}$	Φ			$\underset{\sim}{\rightleftarrows}$	E	$\underset{\Xi}{\text { E }}$	送总	$\frac{5}{2}$				
		$\underset{\alpha}{\tilde{\alpha}}$								．	$\stackrel{ \pm}{5}$	E	㻉	E			\％	年	$=$		\cdots				
		$. \mathscr{S}$			＋	E				\％	先	运	E	\pm			包	戓					\％		句
		$\stackrel{E}{E}$	\＃		.	$\stackrel{\square}{0}$				$\stackrel{\rightharpoonup}{\oplus}$	$\stackrel{巳}{E}$	0	念				$\stackrel{\text { By }}{\stackrel{5}{5}}$	등	$\stackrel{y}{x}$				\％		$\stackrel{\square}{\square}$
Kind of wooll．		E	Et	$\stackrel{3}{*}$	$\begin{gathered} \underset{\Xi}{\sigma} \end{gathered}$	E				$\frac{9}{4}$	E	$\stackrel{+}{E}$	$\underset{y}{\text { 펼 }}$	$\begin{aligned} & E_{0} \\ & E \\ & E \end{aligned}$	$\stackrel{N}{*}$		$\ddot{\nabla}$		\％		華	$\stackrel{\square}{x}$	\％	風	\％
				Ξ_{E}	\pm	$\underset{\sim}{\mathrm{m}}$				$巳$	菏	E	$\underset{\sim}{E}$	${ }_{\text {D }}^{2}$	．	－	$\stackrel{\square}{6}$	\approx		－	玉	$\stackrel{\infty}{+}$	\％	$\begin{aligned} & \text { if } \\ & \text { E } \end{aligned}$	
	立			$\underset{E}{E}$	$\begin{aligned} & \overline{3} \\ & 3 \end{aligned}$	$\stackrel{\pi}{5}$				\pm	E	旨	$\underset{\Xi}{\mathrm{E}}$	$\begin{aligned} & \tilde{N}_{1} \\ & \varepsilon 0 \end{aligned}$	E	$\stackrel{y}{\Xi}$	$\stackrel{\pi}{\pi}$	\equiv	色	\％¢	$\stackrel{7}{4}$	気	気	\％	E
	\＄		$\stackrel{\text { t }}{\text { E }}$	$\stackrel{*}{*}$	范	\approx	\＃゙	$\dot{\square}$	$\stackrel{3}{5}$	\pm	＊	E	\approx	\＃	$\begin{aligned} & \underset{\sim}{x} \\ & \hline \end{aligned}$	$\frac{5}{3}$	$\underset{E}{E}$	E	E	든	$\stackrel{x}{x}$	E	E	$\stackrel{\text { g }}{ }$	完
	\%	$\overline{5}$	\％	E	馬	$\frac{ \pm}{2}$	¢	E．	岂	$\stackrel{\text { If }}{\text { Hn }}$	$\stackrel{0}{2}$	${ }_{4}^{\text {¢ }}$	$\underset{\tilde{U}}{E}$	5	$\stackrel{ \pm}{4}$	\pm	$\frac{\overrightarrow{5}}{2}$	走	\％	$\sum_{i=1}^{\infty}$	$\frac{\underset{\sim}{N}}{\stackrel{N}{2}}$	E	E	5	－
	宸	0																							
	\bar{E}	C	I	Pr_{r}	E	Δ	l	d	b	$\mathrm{P}_{\text {e }}$	S．	$\mathrm{Pr}_{4} \underline{4}$	M，	S c	E。	Et	$\mathbf{E}_{\text {e }}$	$d_{\text {p }}$	d_{r}	$d_{\text {e }}$	T	＇${ }_{\text {d }}$	$\mathrm{C}_{\text {a }}$	$d_{\text {t }}$	d^{\prime}
		Llos．per 8q．in．	Lbs．per sfl． 2 n ．	Lus．	$\begin{aligned} & 1,000 \\ & \text { lus. } \end{aligned}$		Inc			Lbs．	Inch．	Inch pds． $1,000$.	Inch jils． 1，000．	Lbs．	Incl	hes．	l ${ }_{\text {l }} 000$		chees．		$\begin{aligned} & \text { hos.per } \\ & \text { sq.in. } \end{aligned}$	Lb		Inc	hes．
shomil of pin．	32		\bigcirc in	こと，11011	1.311	3111			7．	1．1．100	102	1，341	1.3 .31		0． 0039	ก ก180	1．75\％	n．not？	4． 85	3．RG	9．7011				3． 99 4． 13
－Ji．．．．．	Y		（i．	\％－8．11	1．13：	（1） $2+$	2150	11．9	$8:$	$1: 3$	1 m1）	1.046	1．8350	$\therefore \therefore 0$	11． 1055	U． 1119 11 129	1．37：3	11 11075 011003	4.711 4.4	14			－	$3{ }^{3}$	4．14
11．1．	9	1．＂1	－Su，	S＇	1．6331	1i． 16	192．11	1\％＂	－${ }^{1}$	1：15．010	1 in	1，0771	1.311	1，V（1）	0． 11159	111224	1， 1,130	11） 111003	4．4	1 4 1 4	12		－4，144	\％ 21	4.15
111.	10	，（n．1）	－44，	20， 401	1.3810	4．31	19．910	1910	\bigcirc	17，1001	1.39	1，4：30	1，160	1．181	（1． 10.75	0.015 j	1,500	0．0cis	S） 1	$\because 11$	9．930）	－1， 8101	25，1111	3． $3: 3$	4． 10.3
II，	11	1． 3.11	7310	2！ 8011	1， 810	$4{ }^{4} 16$	198，${ }^{(1)}$	$1{ }_{12}^{10}$	8．	17，（1．01）	1.36 1.93	c，iss	1，180	1．	1） 00.58	0.0150	1．703	0．nutit	B11	2． 27	？－	\＃1． 1 里11	－4， 9101	2． 34	3． 94
110	－	！！＇，	7． 1111	－t	1．80：	480 $3.3 i$	216 11	12	－	16.1101	1 18	1，125	1， 1 301	1．S．${ }^{\text {a }}$	11）（1）4 4	110104	$\because .0100$	（1．1047	54	－ 4	－3．3\％	2－	2．： 0111	3.43	4． 11.
1）：	\because	！．，	\cdots	－	1．71	－	－14；${ }^{\prime \prime}$	12	7	115， 15×1	17%	1.170	1，．571	4． i，$^{\text {a }}$	10.610 .5	（） 1120	1，¢30	0 014，	$4!11$	$1: 2$	113011	27，（in）	루，	3	4
tinalat prm	4	－ ［．，	－．：011	\％	1．\％1．7	4 ＋ 910	$\because 16$	12．：	-1	$\because(1)$	1.17	1．611	1．4＊g	$\therefore 1$	（1．1946？	$00^{0} 95$	1，214	0 O 1467	5 3：	$\because 8$	11 Sent	3，澵	\％．1．	3 is	\pm
	5	\therefore	5． 3111	18．7（1）	1，：320	3． 7.	21011	$1 \because 1$	75	13．1141	1． 69	1.009	1，05．5	－．$t^{\prime \prime \prime}$	（1）． 1.014	014116	1，3＋0	0 104， 1	530	\because	16，	1． 0.61	1－．111	3	
IA－do．th．．．	：	． 11	（f） 8.	$\because .5$, m＂1	1，8115	7．94	1！！ 11	12	$\times 0$	9，（11）	1． 50	1－4：5\％	1，05．5		（1． 11058	0． 131310	$1.64{ }^{1}$	U． 01116	4．111	1.11	11．	－	－100	з 3	
11.	4	11．	－fitil	$\because 1$, ，－1．	1，いごす	513	216．0	1¥：	\＆ 11	$\because 0,011$	190	1．701	1，675	\therefore inl	${ }^{11} 00060$	011187	1，¢0	11．${ }^{\text {ch }} 16$	4．18	1 1！	11，．．．．．	$2{ }^{2}$	\＃－ran	$3 \square$	4
1）．．．．．．	\cdots	． $1 . /$	（i．）mil	26,100	1，480）	6． 70	216.0	12． 25	8.87	14，uew	1.71	1，10！	1，437	－，iun	u．ousu	0．cさdu	1，450	U． 10075	4.60					311	

In order to see how far the formulit may be applicable to boams of the same material the data obtained on the small beams cut from one of the large beans were subjected to scrutiny, basing the calculations on the data from the adoining compression hlock. Tho calculated result compared with the actual braking load showed a most convincing similarity, as will he apparent from the table herewith presented:

Strength of small beams, calculated by Neety's formule from compression strength, on the assumption thut the velatire prosition of the neutral plane at rupture is the same as found in large beams.
[Shortleaf pine, large beam No. 13, special series.]

On the whole, it is in no way boastful to assert that this work has already furnished practical data enough to more than pay the expenses incurred ten times over; that its fruits are not. half gathered, and that for more than a duarter of a century its results will serve as a basis for the user of wood and as the guide to the teacher and experimenter.

Devmiopuend of the Scinncle of Thiber Pifysics and Metiods Employed in dHe INVESTIGATION.

Since the elaborate plan and methods of this study of our woods denotes an entirely new departure in timber investigations, at least in our conntry, it is only fitting to place the credit for its conception, for the elaboration of the plan, the organization of the work, and the persistent prosecution of the same in spite of many drawbacks and lack of support. This credit belongs to Dr. B. E. Fernow, chief of the Division of Forestry. The plan was first foreshadowed in his second report ($188 \%, p, 37$) as chief of that division, and the word "timber physies" was there used for the first time, and the essentials of the finture plan were there discussed. In a small tentative manner the tirst steps to put it in operation were made in 1888 . In the report for 1889 we read:

The investigations into the technology of our timbers and expecially into the conditions npon which the qualities of our timbers depend-for which Mr. Roth of Ann Arbor has begun preliminary studies-has also made but slow progress for lack of means.

In the report for 1890 we find, besides an account of the tests on Northern and Sonthern oaks referred to before, the statement that "by the increase of appropriations the forest technological investigations referred to in former reports have become possible on a scale rhich was hitherto nuattainable," and a description of the plans is given. But the first fuller statement of the

Tevelopment of the investigation and its methods was not published nntil 1892 , in Bulletin 6 , in which Mr. Hernow described the aims, objects, and methods at length.

In the report for 1890 the following language is used:

TIMBER TF心T心.

While the uso of wool pulp and other substitutes may displace in many ways the use of wood in its natural state, there will always be desirable qualities inherent in the latter that make its use indispensable. Hence the desirability of knowing the rualities of our timbers and, if possible, of knowing the conditions under which the wool crop will develop the desirable gualities.

Much work and ueeful work is done in the world by the rule of thmmb. All such work is mot reliable and certainly not economical. With the need of sreater economy in production, the need of more accurate measuring arises, and with that the neerl of more specific knowledge of the haterials to be measured.

Wood is one of the materials which has been measured by the rule of thmmb longer than others. Irou and other metals used in the arts have their properties much more accurately determined than wood material. Especially in the United states, when we speak of quality of our timbers, it can only be in general terms; we lack definite data.

One difficulty in determining reliably the rualities of our timbers lics in the fact that living things are rarely prerisely alike. Every tree differs from every other tree, and the material taken from the oue las a different value from that taken from the other of the same species. Yet every tree has some characteristics in common with all those grown under similar conditions. But even these common properties differ in degree in different individuals. Individual variation tends to obscure relationship.

The factors which determine the quality of timbers are found directly in the structure of the wood, and it is possible from a mere ocular oxamination to judge to some extent what qualities may be expected from a wiven piece of timber, although even in this direction our knowledge is very incomplete, and but few definite relations between structure and quality, or hetween physical and mechanical properties, are established. We know that the width of the annual rings, their even growth, the closeness of grain, the length, number, thickness, and distribution of the varions cell elements, the weight, and many other physical appearances and properties of the wood influence its quality, jet the exact relation of these is but little studied. Conjectures more or less plansible, suppositions, and a few practical experiences preponderate over positive kuowledge and results of experiments. Again we know, in a general way, that structure and composition of the wood must depend upon the conditions of soil, climate, and surroundings under which the tree is grown, but there are only few definite relations established. We are largely ignorant as to the nature of our wood crop, and still more so as to the conditions necessary to produce desirable fualities, and since forestry is not so mach concerned ir producing trees as in producing quality in trees, to acquire or at least eularge this knowledge must be one of the first aud most desirahle undertakings in which this Division call engage.

Accordingly a comprehensive plan has been put into operation to study systematically our more important. timber trees.

It will at once be understood that as long as the rualities are to be referred to the conditions under which the tree is grown, the collection of the study material must be made with the greatest care, and the material must be accompanied with an exhanstive description of these conditions. Since, further, so mach individual variation seems to exist in trees grown nuder seemingly the same conditions, a large number most be studied in order to arrive at reliable average values. For the present it has been decided to study the pines, especially the white pine and the three Simthern lumber pines.

In selecting localities for collecting specimens, a distinction is made between station and site.
13y station is understood a section of country (or any places within that section) which is characterized in a general way by similar climatic conditions and geological formation. Station, then, refers mainly to the general geographical situation. Site refers to the local conditions and surroundings wilhin the station, such as difference of elevation, of exposure, of physical properties and depth of the soil, nature of subsoil, and forest conditions, such as mixed or pure grow th, open or close stand, etc.

The selection of characteristic sites in each station requires considerable judgment.
On each site five full-grown trees are to lee taken, four of which are to be representative average trees; the fifth or "check" tree, however, should be the best developed tree that can he found on the site. Some additioual fest trees will ho taken from the open and also a few younger trees. The trees are cut into varying lengths, and from each log a disk of G-inch height is secured, after having market the north and south silles and noter tho position of the loy in the tree.

The disks are sent for oxamination of the physical and physiological features to the Michigan University, while the logs, and later on special parts of the disks are to he sent to the test lahoratory of the Washington University of St. Louis. Here, for the first time, a systematic series of beam tests will be made and compared with the tests on the usual small laboratory test pieces. Such tests with full-length heams in comparison with tests on small specimens promise important practical results, for a few tests have lately developed that large timbers seem to have but little more than one-half the strength they were credited with by standard authorities, who relied upon the tests on small specimens.

From the "check" tree mentioned before only clear timber is to he chosen, in order to ascertain the possibilities of the species and also to establish, if possible, a relation between such clear timber and that weel in general practice, where elements of weakness are iutroduced ly knots and other blemishes.

An anthority on engineering matters writes regarding this work:
"Inasmuch as what passes current among engineers and architects as informatiou on tho strength of timber is really misinformation, and that no rational designing in timber cau be done until something more reliablo is furnisherl in this drection, the necessity for making a competent and trnstworthy series of such tests is apparent. This is a work which the Government should undertake if it is to be impartial and general."

A careful record of all that pertains to the history and conditions of the growth from which the test picees come, aml of their minute physical examination, will distinguish these tests from any hitherto undertaken on American timbers.

The disk pieces will be studied to ascertain the form and dimensions of the trunk, tho rate and mote of its growth, the density of the wood, the amount of water in the fresh wood, the shriukate consequent mpon drying, tho structure of the wood in greatest detail, the strength, resistance, and workiner qualities of the woot, and lastly, its chemical constituents, fuel valne, and composition of the ash.

In Bulletin 6 we are introduced to the science of "timber physics" in the following language:

Whenever human knowledge in any particular direction has grown to snch an exteut and complexity as to mako it desirable for greater convenience and better comprehension to gronp it, correlato its parts, and organize it into a systematic whole, we may dignify such knowlerge by a collective name as a new science or branch of science. The need of such organization is especially felt when a moresystematic progress in accumulating new knowledge is contemplated. In devising, therefore, the plans for a systematic and comprehensire examination of our woods it has appeared desirable to establish a system under which is to be organized all the knowledge we have or may acruire of the nature and behavior of wood.

To this new branch of natural science I propose to give the namo of "timber physics," at term which I lave used first in my report for 1887 , when, in devising a systematic plan of forestry science the ahsence of a collective name for this class of knowledge became apparent.

While forest biology contemplates the forest and its components in their living coudition, wo comprise iu timber physics all phenomena exlibited in the dead material of forest production.

The practical application of timber or wood for human use, its technology, is based upon the knowledge of timber physics, and under this term wo comprise not only the anatomy, the chemical composition, tho physical and mechanical properties of wood, lut also its diseases and defects, and a knowlerge of the infuences and conditions which determine structure, physical, chemical, mechanical, or technical properties and defects. This comprehensive science, conceivel unler the name here chosen, although developed more or less in some of its parts, has never yet been dignified by a special name, nor las a systematic arrangement of its parts been attempted beforo. It comprises various wroups of knowledge derived from other sections of science, which are neither in themselves nor in their relations to each other filly developed.

While plant physiology, biology, chemistry, anatomy, and especially xylotomy, or the scienconf wood structure, are moro or less developed and contribute toward building up this new branch of scionce, bat little knowledge exists in regard to the interrelation botween the properties of wood on one side and the modifications in its compusition and structure on the other. Fven the relation of the properties of varions wouls, as compared with cach other, and their distinct specilic pecnliarities are but little explored and established. Less knowledge still exists as to the relation of the conditions which surround the living tree to the properties which are exhibited in its wood as a result of its life functions. Suppositions and conjectures more or less plausible preponderate over positive kuowledre derived from exact oleservation and from the results of experiments. Still less complete is onr knowlede in regard to the relation of properties aud the methods aud means used for shaping or working the woot.

Tho close intervelation of all branches of natural science is now so well recomized that I need not remind my realers that hard and fast lines can not bo drawn whereby each field of inquiry is confined and limited; there must necessarily be an overlapping from one to the other. Any system, therefore, of divialing a larger field of inquiry into parts is only a matter of convenience; its divisions and correlations must bo to some extent arhitrary and raried according to tho point of view from which we procoed to divide and correlate.

There are two definite and separate directions in which this branch of natural science needs to le developed, and the knowledge comprised in it may be divided accordingly. On one side it draws its substance largely from the more comprehensive fields of botany, molecular physics, and chemistry, and on tho other side it rests upou investigations of the wood material from the point of view of mechanies or dynamics. In the first direction wo are led to deal with the wood material as it is, its nature or appearance and conditions; in the second direction wo consider the wood material in relation to external mechanical forces, its behavior under stress.

The first pert is largely descriptive, concerned in examining gross and minute 3tructures, physical and chemical conditions and properties, and ultimately attempting to explain these by referring to causes and conditions which produco them. This is a field for investigation and research by the plant physiologist in the laboratory in connection with studies of euvironment in the forest. The second part, which relies for its development mainly upon experiment by tho engineer, deals with the properties which are a natural consequence of the structure, physical condition, and chemical composition of the wood as exhibited under the application of oxternal mechanteal forces. It comprises, therefore, those studies which contemplate the wood substance, with special referonce to the uses of man, and forms ultimately the basis for the mechanical technology of wood or the methods of its use in the arts.

The correlation of the results of these two directions of study as cause and effect is the highest aim ami ultimate goal, the philosophy of the science of timber physics. Timber physics, in short, is to furmshall mocessary knowledge of the rational application of wood in the arts, and at the samo thme, by retrospoction, such knowledgo will enable us to proluce in our own forest growth qualities of given character.

Conceived in this manner it becomes tho pivotal science of the art of forestry, around which the practice both of the consumer and producer of forest grow th moves.

The first part of our science would rerfuire a stady into gross and minute anatomy, the structure of the wood, form, dimensions, distribution, and arrangement of its cell elements and of groups of structural parts, not only in orler to distinguish the difierent woods, but also to furuish the basis for an explanation of their physical and mechanical properties. We next would class here all investigations into the physical nature or properties of the wood material, wheh necessarily also involves an investigation into the change of these properties under varying conditions and intluences. A third chapter would occupy itself with the chomical composition aul poperties of woods and their changes in the natural process of life, which predicate the fuel value and durability as well as the use of the wood in chemical technology.

Although, philosophically speaking, it would hardly socm admissiblo to distinguisli between physical and mechanical properties or to speak of "mechanical" forces, for the sake of convenience and practical purposes it is dosirable to make the distinction and to classify all phenoment and changes of nomliving bodies, or bodios without reference to life functions, intochemical, physical, and mechanical phenomena aut changes. As chemical phenomena or changes, and therefore also conditions or properties, we class, then, those which have reference to atomic structure; as physical phenomena, chauges, and properties those which refer to and depend on molecular arrangement, and as mechavical (molar) changes aud properties those which concern the masses of hodies, as oxhibited under the inhnence of external forces, without altering their physical or chemical constitution.

There is no dombthat this division is somewhat forced, since not only most or all mechanical (as here conceived) changes are accompanied or preceded by certain alterations of the interior molecular arravement of the wass, but also many plysical phenomena or moperties, like deusity, weight, shrinkage, having reference to tho mass, might le classed as mechanical; yet if we conceive that physical phenomena are always concerned with the "(1uantity of matter in molecular arrangeneut" and with the changes produced by interior forces, while the latter are concerned rather with the "position of matter in molecnlar arrangement" and with changes under application of exterior forces, the distinction assumes a practical value.

Our conception of these distinctions will be aided if we refer to the physical laboratory as furnishing the evidence of physical phenomena and to the mechanical laboratory as furnishing evidence of mechanical phenomena.

These latter, then, form the subject of our second or dynamic part of timber physics, which coucerns itself to ascertain mainly by experiment, called tests, under application of the laws of elasticity, the strength of the material and other properties which are exhibited as reactions to the induence of applied stresses, aud those which need consideration in the mechanical nse of tho material in the various arts.

Haviner investigated the material in its normal condition, wo would necessarily come to a consideration of such physical aud chemical comlitions of the material as are abormal and known as disease, decay, or defects.

Finally, having determined the properties and their changes as exhibited in material produced under changing conditions or differiner in physical and structural respects, it would remain the crowning success and goal of this science to relate mechanical and physical properties with anatomical and physiological development of the wood sulostance.

The subject-matter comprised in this branch of applied natural science, then, may be brought into the following schematic view :

TIMBER DHYSIUS, OR THE SCIENCE OF WOOD.

1.-WOOH MTRUCTERE OR XYLOTOMY.
(a) Exterior form.

Here wonld be described the form devolopment of timber in the standing tree, differentiated into root system, root collar, bole or trunk crown, branches, twigs; relative amonnts of material fiumished by each.
(b) Interior struchual uppearance; ditferentiation and arraugement of groups of structural elements.

Here would he described the gross structural features of the wood, the distribution and size of medullary rays, vessels, fibro-vascular bundles, as exhibited to the naked eje or under the magasfying glass on tamential, radial, and transverse sections; the appearance of the anumal rings, their size, regularity, differeutiation jnto sumucr and spring wood, and all distingmshing features due to the arrangement and proportion of the tissues composing the wood.
(r) Minute anatomy or histology; differentiation and arrangement of structural elements.

Here the revelations of the microscope are recorded, especially the form, dimensions, and structure of the different kinds of cells, their arrangement, proportion, and relative importance in the resulting tissues.
(d) Comparatire classification of woods, according to structural features.
(e) Lau's of woorl yrowth with reference to structural results.

Discussion of the factors that infuence the formation of wood in tho standiug tree.
(f) Aluormal formations.

Burls, burd's eye, curly, wavy, and other structural abnormities and their causes.
[I.-Minsical mionerties, i. e., properties based on molecular (physical) constitution.
(a) Exterior appearance.

Such properties as can be observed throngh tho unaided senses, as color, exloss, grain, texture, smell, resunance.
(b) Material condition.

Such properties or changes as are determined by measurements, as density or weight, water contents and their distribution, volume, and its changes by shrinkage and swelling.
(c) Classificution of woods according to physico-technical properties, i. e, such physical properties as determine their application in the arts. III.-Cirmical rronerties, i. e., properties baserl on atomic (chemical) constitution.
(a) Cicneral chemical analysis of rood (qualitative and quantitative).

Here wonld be discussed the chemical constitution of different woods and iliferent parts of trees and their changes due to physiological processes, age, conditions of growth, etc.
(b) Carbohydrates of the wood.

Here wonld be more specially disenssed cellulose and lignin, cork formations, organic contents and their changes, and such properties as predicate the fuel value of wools, their manufacture into charcoal, their food value, pulping inalities, etc.
(c) Extractice materials.

A knowledge of these mulerlios the application of wool in the manfucture of tan extracto, resin, and turpentine, tar, gras, alcohol, acids, vanilliu, ete.
(d) Antiseptic materials.

A knowledge of those chemical properties which predicate durahility and underlie processes of increasing the same.
(e) Mineral constiluents.

A knowledge of these in particular will establish the relation of wood growth to mineral constituents of the soil and also serve as basis for certain technical uses (potash).
IV.-Mechanical fiomerties, i. e., properties baserl on elastic conditions exhibited by the aggregate mass under inflnence of exterior (mechanical) forces.
(a) Form changes without destruction of cohesion, commonly called elasticits, flexibility, toughness.
(b) Form changes with destruclion of cohesion, commonly called strength (temsile, compressive, torsional, shearing), clearability, harduess.
V.- T'ecinnical pronerties, i. e., properties in combination.

Here wonld be considerel the woods with reference to their technical use, their application in the arts, which is invariably based upou a combination of several physical or mechanical properties.
VI.-Diseaseg axi raults.

Here wonld be treated the changes in structure and properties from the normal to aboormal conditions, due to influences acting upon the tree during its life or upon the timber during its use.
Vil.-Relation of properties to eacli other.
Here wonld be eliscussed the connection which may be established between structure, physical, chemical, and mechanical properties, and also between these and the couditions of growth under which the material was produced. The philosophy of the entire preceding knowledge would here he bronght together.
To contribnte toward this important branch of human knowlegge and to help in the buileling of its fundation, the work undertaken by the Division of Forestry described in this bulletin was designed by the writer; and, in orter to build with a knowledge of what has lueen done before on this structure, a brief review of the progress in the development of timher physics seemed adrisable.

This historical review is then given. From this we deem it appropriate to quote the portion Which refers to efforts in the United States up to the time of the writing to establish data regarding the mechanical properties of our timber:

AMERICAN WORK.

While it mas be possible to work out the general laws of relation between physical and mechanical properties on material of European origin, for practical purposes we can not rels upon any other data than those ascertained from American timbers, and so far as dependence of fuality on conditions of growth are concerned this truth is just as patent. Although in the United States probably more timber has been and is being used than in any other conntry, but little work has been done in the domain of timber physics.

Among the earliest American experiments falling in the domain of timber physics may be cited those of Marcns Bull to determine "the comparative quantities of hoat evolved in the combustion of the princinal varieties of wood aul coal userl in the United States for fuel," made in the jears 1823 to 1825 and published in 1826 . Here the experiments of Lavoisier, Crawford add Dalton, and Count Rumford on similar lines are discussed and followed by an able series of experiments and discussion on American woods and coals.

The only comprehensive work in timber physics ever undertaken on American timbers is that of Mr. T. P. Sh:1ples, in combection with the 'euth ('ensus, amd published in 1881, Vol. IX, on the Forests of North America. Gomprehemsiveness, howerer, las bean songht rather in trying to bring under examination all the arhoresent speries than in furuishing fuller data of pactical applicahility on those from which the bulk of our useful material is clerived. "The results obtained," the author says, "are highly suggestive; they must not, however, be considered conclusive, but rather valuable as inticating what liues of research should be followel in a more thorough study of this subject."

Not less than 412 species were examined in over 1,200 specimens. The results are given in five tables, besides four comparative tables of range, relative values, averages, otc. The specimens were taken "in most cases from the butt cut and free from sap and knots;" the locality and soil from which the tree came are given in most cases, and in some its diameter and layers of heart and sapwood; determinations were male of specitic gravity, mineral ash per cent, and from these data fuel values were calculated.

The sperimens tested were "caretally seasoned." For transperse strain they were mato itentimeters (1.57 inches) squaro, and a fow of doublo these dimensions, with 1 meter (3.28 feet) span.

One table illnstrates "tho relation between the specific gravity and the transverse strength of the wood of species, upon which a subticiont mumber of tests has been mate to render such a comparison valuable." 'Hhis table scems to show that in perfert specimens weight and strength stand in close relation. A few tanning determinations on the hark of a few species are also given.

The object of the work as stateri, hamely, to be suggestive of a more thorough study of the subject, has certainly hecn fully and creditably attained. Of compilatory works, for use in practice and for reference, the following, published in the United States, may be cited:

Do Volnon Wook : Resistance of Materials (1871), containing rather scanty refereuces tos the work of Chevandier

R. (i. Hattiold: Theory of Transverse Strain (1877), which, besides other references, contains also twenty-threo tables of the anthor's own test on white pine, Georgia pine, hemlock, spruce, white ash, abd black locust, ousticks 1 by 1 inch bey 1.6 feet in lemerth.

William H. Burr: The Elasticity and Resistance of Materials of Engineering, third edition, 1890, a comprelonsive work, in which many reforences are made to the work of varions American experimenters.

Gactano Lanza, in Applied Mechanics, 188, , lays especial stress on the fact that tests on small select pieces give tob high values, aul 'photes the following experiments on long pieces. He refers to the work of Capt. T. J.
 without wiving any reference to clensity or other facts concerning the wood; and to Col. Laidloy's United states Navy tost (Nenato Lix, Doc. I2, Forty-seyenth Congreas, first session, 1881), who conducted ib series of experiments on Pacilic slope timbers, "white and yellow pine," 12 feet long and 4 to 5 by 11 to 12 inches square, giving alsu account of density and average width of rings.

Lastly, the anthor's own experiments, mate at the Watertown Arsenal for tho Boston Manufacturers' Mutual Fire Insurance Company, on the columnar strength of "yellow pine" and white oak, 12 feet long and 6 to 10 inches thick, are bronght in support of the claim that such tests show less than half the unit strength of those on small pieces. I)ata as to density, moisture, or life history of the specimens are everywhere lacking.
R. If. Thuston, Materials of Engineering, 1882, contains, perbaps, more than any ofher American work on the snbject, dovoting, in Chapters II aud III, 117 pages to timber and its strength, and in the chapter on Fuel several jages to wood and charcoal, thd the products of distillation. 'It also gives a description of some twenty-five kinds of American and of a fes foreign timber trees, with a description of the structure and their wood in general; directions for felling and seasoning; discusses brietly shrinkage, characteristics of good timber, the intluence of soil aud climate ou trees and their wood, and of the varions forms of decay of timber, methods of preservation and adaptation of varions wools for various uses, much in the same manuer as lankine's Manual of Civil Engineering, from which many conclusions are adopted. The author refers, besides foreign authorities, to the following American investigators:
(i. H. Corliss (unpublisherl?) is quoted as claiming that proper seasoning of hickory wood increases its strength by 15 per cent.
R. (. Hatfield is credited with some of the best experiments on shearing strength, published in the American House Carpenter.

I'rof. G. Lanza's experiments are largely reproduced, also Trantwine's on shearing, and some of the author's own work on California spruce, Oregon pine, and others, especially in torsion, with a specially constructed machine, an interesting plate of strain diagrams accompanying the discussion.

In connection with the discussion by the author on the influence of prolonged stress, there is quoted as one of the older investigators, Herman Haupt, whose results on yellow pine were published in 1871 (Bridge (Oustruction).

Experiments at the Stevens Institute of Technology are related, with the important conclusion that a load of 60 per cent of the ultimate strength will break a stick if left loaded (one small test piece having becu left loaded fifteen mouths with this result).

In addition the following list of references to American work in timber physics is here inserted, with a regret that it has not heen possible to include all the stray notes which may be in existence but were not accessible. Those alble to add further notes are invited to aid in making this reference list complete:
Abbott, Arthur V. 'Testing machines, their history, construction, aud use. With illustrations of machinea, including that at Watertown Arsenal. Van Nostraml's Magazine, 1883, vol. 30, pp. 204, 325, 382, 477.
Day, Frank M., University of Penusylvania. The microscopic examination of timber with regard to its strength. Read before American P'hilosophical Society, 1883.
Estradi, L. D. Experiments on the strength and other properties of Caban woods. Investigations carried on in tho laboratory of the Stereus Institute. Van Nostrand's Magazine, 1885, vol. 29, pp. 417, 441.
Flint, -_. leport of tests of Nicaraguan woods. Journal of Frankliu Institute, October, 1887, pp. 289-315.
Goodale, l'rof. George L., Harvard Unirersity. 1'hysiological Botany, 1885, chapters 1, 2, 3, 5, 8, 11, and 12.
Ihlseng, Magnus C., Ph. D. On the modulus of elasticity in some American woods, determined by vibration. Van Nostrand's Magazine, $1878,19$.

- On a mode of measuring the velocity of sounds in woods. Read before the National Academy of Science, 1877 ; published in American Journal of Science and Arts, 1879, vol. 17.
Johnson, Thomas II. On the strength of columns. Paper read at anual convention of American Society of Civil Ensineers, 1r8J. Transactions of the Society, vol. 1\%.

Fidder, F. E. Experiments at Maine State College on transverse strength of southern and white pine. Van Nostrand's Magazine, 1879, vol. 23.
——Experiments with yellow aud white pine. Van Nostrad's Magazine, 1880, vol. 23.
——Experiments on the strength anil stiftiness of small spruce beams. Van Nostrand's Magazine, 1880, vol. 24.
_- Influence of time on bending streugth and elasticity. Journal of Franklin Institute, 1882. Proceedings Iustitute of Civil Engineering, vol. 71.
Lanza, Gaetano, professor Massachusetts Institute of Technology. Address before American Society of Mechanical Engineers, lescribing the 50,000 pound testing machine at \mathbb{W} atertown Arseual and tests of strength of large spruce beams. Journal of Franklin Institute, 1883.

Report of Boston Manufacturers' Muthal Fire Insurance Company of tests made with Watertown machine on columns of pine, whitewood, and oak of dimensions used iu cotton and wooleu mills. See summary and tables of same in Burr's Elasticity and Resistance of the Materials of Engineering, p. 480.
Nacdonald, Charles. Necessity of government ail in making tests of materials for structural purposes. Paper read hefore the American Institute of Mining Engineers. Van Nostrand's Magazine, 1882, vol. 27, p. 177.
Norton, Prof. W. A., Yale College. Lesults of experiments on the set of bars of wood, iron, and steel after a transverse set. Experiments discussed in two papers read before the National Acalemy of science, 1874 and 1875. Published in Yan Nostrand's Magazine, 1887, vol. 17, p. 531.
- Description of maching userl is givem in proceerlings of the A. A. A. S., eighteenth meeting, 1864.
Parker, Lient. Col. I'. II., United States Ordaance Department. Report of tests of American woods by the testing machine, United States Arsenal, Watertown, under supervision of Prof. C. S. Sargent, for the Census Report, 1880. Senate Ex. Doc. No. 5, Forty-eighth Congress, tirst session, 188:-83.

Report of experiments on the adbesion of nails, spikes, and screws in varions woods, as made at Watertown Arsenal. Senate Ex. Doc. No. 35, Forty-ninth Congress, first session, 1883-84, and in report on tests of metals and other materials for industrial purposes at Watertown Arsenal, 1888-84.

Also in report on tests of iron, steel, and other materials for industrial purposes at Watertown Arsenal, 1886-87, एp. 188, 189.

Report on cubic compression of rarious woods, as shown by tests at Watertown Arsenal, 188:-86, in report on tests of metals, ote, for inclustrial purposes.
Philbrick, Professor, Iowa University. New practical formulas for the resistance of solid aud built beams, girders, ete., with problems and designs. Yan Nostrand's Magazine, 1886, vol. 35 .
Pike, Prof. W. A. Tests of white pine, made in the testing laboratory of the University of Minmesota. Van Nostraud's Magazine, 1×85, vol. 34, p. 472.
Rothrock, Prof. J. T., University of Pennsylvania. Some microscopic distinctions between gooul and bad timber of the same species. Read beforo American Philosophic Society.
Smith, C. Shaler, C. E. Summary of results of 1,200 tests of full-size jellow-pine columns. See IV. II. Burr's Elasticity aud Resistance of the Materials of Engineering, pp. 485-490.
Thurston, Prof. R. H., Cornell University. The torsioual resistance of materials. Journal of Franklin Institute, 1873, vol. 65\%.

Experiments on torsion. Van Nostrand's Magazine, July, 1873.
Experimeuts on the strength, elasticity, ductility, ete., of materials, as shown by a new testing machine. Vau Nostrand's Magazine, 1874, vol. 10.
-. The relation of ultimate resistance to tension and torsion. Proceedings of Institute of Civil Engineers, vol. 7, 1878.
-. The strength of American timber. Experiments at Stevens Institute. Paper before A. A. A. S., 187 y. Journal of Franklin Institute, vol. 78, 1879.

Effect of prolonged stress upon the strength and elasticity of pine timber. Journal of Franklin Institute. rol. $80,1880$.
. Influence of time on bending strength and elasticity. Proceedings A. A. A. S., 1881. Proceedings Institute of Civil Engineers, vol. 71.
Watertown Arscual. Summary of results of tests of timber at, in Ex. Doc. No. 1, Forty-seventh Congress, second session. See Burr's Elasticity and Resistauce of Materials of Engineering, pp. 486 and 53\%.
Wellington, A. M., C. E. Experiments on impregnated timber. Railroad Gazette, 1880.

Organization and Metiods.

Although in the course of the investigations many minor and some more important changes in methods became necessary, the general plan was in the main adhered to. We consider it, therefore, desirable to restate from the same bulletin such portions as will explain the methods pursued. The work at the test laboratory at St. Louis, Mo., was described in full by Prof. J. B. Johnson, in charge, and the methods in the examination of the physical properties of the test material by the writer.

There are four departments necessary to carry on the work as at present organized, namely:
(1) The collecting department.
(2) The department of mechanical tests.
(3) The department of physical and microscopic examination of the test material.
(4) The department of compilation and final discussion of results.

The region of botanical distribution of any one speoies that is to be investigated is divided into as many stations as there seem to be widely different climatic or geolocical differences in its habitat. In each station are selected as many sites as there seem widely different soils, elevations, exposures, or other striking conditions occupied by the species. An expert collector describes carefully the conditions of station and site, under instructions and on blanks appended to this report. From cach site live mature trees of any one species are chosen, four of̈ which are arerage representatives of the gencral growth, the fifth, or "check" tree, the best developed that can be fonm. The trees are felled and cut into logs of merchantahlo size, and from the butt end of each log a disk 0 inches in height is satwed. logs and disks are marked with numbers to indicate number of tree and number of \log or disk, and their north and sonth sides are marked; their height in the tree from the ground is noted in the record. The disks are also weighed immediately, then wrapped in oiled paper and packing paper, and sent by mail or express to the laboratory, to serve the purpose of physical and structural examination. Some disks of the limbwood and of younger trees are also collected for other physical and physiological investigations, and to serve with the disks of the older trees in studying the rate of growth and other problems.

The logs are shipped to the test laboratory, there sumed and prepared for testing, carefinly marked, and tested for strength.

The fact that tests on large pieces give different values from those obtained from small pieces being fully established, at number of large sticks of each species and site will be tested full length in order to establish a ratio between the values obtained from the difierent sizes. Part of the material is tested green, another part when seasoned by varions methods. Finally, tests which are to determine other working qualities of the varions timbers, such as adapt them to varions uses, are contemplated

The disks cut from each log and correspondingly marked are examined at the botanical laboratory. An endless amount of weighings, measurings, countings, computings, microsconic examiuations, and drawings is required here, and recording of the observed facts in such a manner that they cau be handled. Chemical investigations have also been begun in the llivision of Chemistry of the Department of Agriculture, the tannic contents of the woods, their distribution through the tree and their relation to the conditions of growth forming the first series of these investigations.

It is evident that in these investigations, carried on by competent observers, besides the main object of the work, much new and valuable knowledge unsought for must come to light if the investigations are carried on systematically and in the comprehensive plan laid out. Since every stick and every disk is marked in such a manner that its absolnte position in the tree and almost the absolute position of the tree itself or at least its general condition and surroundings are known and recorded, this collection will be one of the most valuable working collections ever made, allowing later investigators to verify or extend the studies.

This siguificant prophetic language also occurs in this connection, which has finally been realized by the discovery of the relation between compression and beani strength:

[^3]
WORK AT THE TEST LABORATORY AT S'T. LOUIS, MO.

SAWING, STOIING, AND SEASONING.
On arrival of the logs in St. Lonis they are sent to a sawmill aud cut into sticks, as shown in fig. 103.
In all cases the arrangements shown in Nos. 1 and 2 are u sed, except when a detailed study of the timber in all parts of the cross section of the log is inteuded. A fow of the most perfect logs of each species are cut up into small sticks, as shown in Nos. 3 and 4 . The logs tested for retermining the effects of extracting the turpentine from the Sonthern pitch pines were all cut into small sticks.

In all cases a "small stick" is nominally t inches square, but when dressed down for testing may be as small as 31 inches stlutre. The "large sticks" vary from 6 by 12 to γ by 16 inches in cross section.
dll logs vary from 12 to 18 fert in leugth. Thes all have a north and south diametral line, together with the number of the tree and of the log plainly marked on their larger or lower ends. The stenciled lines for sawing are
aljusted to this north and south line, as shown in the figures. Each space is then branded $15 y$ heep dies with three
 the steuciling is recorded in the log look, and the sticks there mumbered to correspond with the mmbering on the logs. After sawing, each stick can be ilentilied and its exact origin determined. These three numbers, then, become the identification marks for all specimens cut from this stick, and they accompany the results of tests in all the rerords.

The methods of sawing shown in Nos. 2 and 4 are callerl "hosing the heart;" that is, all the heart portion is thrown into one suall stick, which in practice may be theown away or put into a lower grade withont serious loss. In important hridge, floor, or roof timicrs, the heart should alwass ho cither excluded or "bosed" in this way, since its presence leads to checking and impairs the strength of the stick.

After sawing, the timbers are stored in the laboratory until they are tested. The "green tests" are made usually within two months after sawing, while the " bry $^{\text {ry }}$ tests" are mate at various subserfuent times. One end (60 inches) of each small stick is testet green, and the other end reserved and tested after seasoning. The seasoning is hastened in some cases by means of a drying box. The temperature of the intlowing air in this drying box is kept at about $100^{\prime} F^{\prime}$, with suitable precautiou agaiust checking of the wood, and the air is exhansted by means of a fan. The air is, therefore, somewhat rarefied in the box. The temperature is at all times under control. It operates when the fan is running, and this is only during trorking hours.

The mechanical and moisture test are then made according to known methods.

ESAMINATION INTO THF I'HXSICAL PROPERTIES OF TEST MATERIAL.
The physical examination consists in ascertaining the specific weight of the dried material, and incidentally the progress and amoust of shrinkage due to seasouing; the counting and measuring of the annmal rings, and noting other microscopic appearances in the growth; the microscopic investigation into the relation os spring and summer wood from ring to riug; the freguency and size of medullary rass; the amber of cells and thickuess of their walls; and, in short, the consideration of any and all elements which may elucidate the structure and may have influence upon the properties of the test piece. The rate of growth and other biological facts Which may lead to the finding of relation between physical appearance, conditions of growth, and mechanical properties are also studied incidentally.

SHAPING AND MAIBINIF OF THE MATERIAL.
The object of this work being in part the discovery of the differences that exist in the wood, not only in trees of different species or of the same species from varions localities, but even in the mood of the same tree and from the same cross section, a carefnl marking of cach piece is necessary. The disks are split, first into :a north and sonth piece, and each of these into smaller pieces of variable size. In one tree all pieces were made but 3 cm . thick radially, in another 4 cm , in still others 5 cm ., while in some trees, especially wide-ringed oaks, the pieces were ieft still larger. In the conifers the outer or first piece was made to contain only sapwood. Desirable as it appeared to have each piece contain a certain number of rings, and thus to represent a fixed period of growth, it proved impracticable, at least in the very narrow-rmged disks of the pines, where sometimes the width of a ring is less than 5 mm . (0.2 inche .
II. Doc. 181 - 25

Some of the disks were split to a wedge shape from center to periphery, so that each smaller piece not only represents a certain period of growth in quality, but also in quantity, thus simplifying the calculations for the entire piece or disk. Other pieces were left in their prismatic form, when to calculate the averago density of the entire piece the density of each smaller piece is multiplied by the mean distance of this smaller picce from the center, and the sum of the products divided by the sum of the distances.

Each piece is marked, first by the mumber of the tree, in Arabic; second, by the number of the disk, in lioman numbers; and if split into small pieces, each smaller piece by a letter of the alphabet, the piece at the periphery in all cases bearing the letter a. Besides the number and letters mentioned, each piece bears either the letter N or S , to indicate its orientation on the north or south side of the tree. To illustrate: 5 -VII N a means that the piece bearing the label belongs to tree 5 and disk vir comes from the north side of the tree, and is the peripheral part of this disk piece. From the collector's notes the exact position of this piece in the tree can readily be ascertamed.

The entire prisms sent by freight are left in the original form, unless used for special purposes, and are stored in a dry room for future use.

WIEIGIIIN(: ANI) MEASURIN(:
The weighing is done on an apothecary's balance, readily sensitive to 0.1 gram with a load of more than 200 grams. Dealing with pieces of 200 to 1,000 grams in weight, the accuracy of weighing is always within 1 gram.

The measuring is done by immersion in an instrument illustrated in the following design: l^{+}is a vessel of iron; s represents one of two iron standards attached to the vessel and projecting

above its top; B is a metal bar fastened to the cup A, which serves as guard to the cup and prevents it going down farther at one time than another by coming to rest on the standards S. The cup A dips down one-sixteenth to one-eighth of an inch below the edge of the linee-like spont. In working, the cup is lifted out hy the handle which the bar l forms, water is pourd into the vescel until it overflows through the spont, then the enp is set down, replacing the mobile and fickle natural water level by a constant artificial one. Now the instrument is set, the pan P is placed under the spont, the cup is lifted out and held over the vessel, so that the drippings fall back into the latter, the piece of wood to be measured is putinto the vessel and the cup replaced, and pressed down until the bar I rests on the standards S. This is done gently to prevent the water from rising above the rim of the vessel. This latter precaution is supertho us where the cup fits closely, as it
does in one of the instruments thus far used. 'The pan with water is then weighed, the pan itself being tared by a bag of shot. 'Whe water is poured out, the pan wiped dry, and the process begius anew. To work well it takes two persons, one to weigh and record. The water pan is a seamless tin pan, holding about 1,500 ce. of water and weighing only 144 grams. The temperature as well as density of the water are ascertained, the latter, of course, omitted whel distilled water is used. Io maintain the water at the same temperature it requires frequent changing.
1)RYING:

After marking, the pieces are left to dry at ordinary temperature. Then they are placed in a dry kiln and dried at $1000^{\circ} \mathbf{C}$.

The drying lox used is a double-walled sheet-iron case, lined with asbestus paper, and heated with gasoline. The air euters below and has two outlets on top. The temperature is indicated by a thermometer and maintained fairly constant.

After being dried, the pieces of wood are weighed and measured, in the same way as described for the fresh wood, and from the data thus gathered the density, shrinkage, and moisture per cent are derived in the usual manner.

The formula employed are:

> (1) Density of fresh wood $=\begin{aligned} & \text { Weight of fresh wood. } \\ & \text { Volume of fresh wood. }\end{aligned}$ (2) Density of dry wood $=$ Weight of dry wood. Volume of dry wood. (3) Shrinkage $=\frac{\text { Fresh volume -dry volume. }}{\text { Fresh volume. }}$ (4) Moisture in wood $=\begin{aligned} & \text { Fresh weight-dry weight. } \\ & \text { F'resh weight. }\end{aligned}$

In presenting these values they are always multiplied by 100 , so that the density expresses the weight of $100 \mathrm{~cm} .^{3}$ of wood; thus the shrinkage and the amount of moisture become the shrinkage and moisture per cent.

SHHINKANE FXPFRIMHNTS.
'Io discover more fully the relations of weight, hmmidity, and shrinkage, as well as "checking" or cracking of the wood, a number of separate experiments were made. A number of the fresh specimens were weighed and measured at variable intervals until perfectly dry. Some dry pieces were placed in water and liept inmersed until the maximum volume was attained. Without describing more in detail these tests and their results, it may be mentioned that in the immersed pieces studied the final maximum volume differed very little, in some cases not at all, from the original volume of the wood when fresh; and also that in a piece of white pine only 15 cm. long and weighing but 97 gs . when dry, it required a week before the swelling ceased.

To determine the shrinkage in different directions a number of measurements are made in pieces of various sizes and shapes. In most cases pins were driven into the wood to furnish a firm metal point of contact for the ealiper. A number of pieces of oak were cut in various ways to study the effect of size, form, and relative position of the grain on checking.

W(OO) STISICTURE:
The most time-robbing, but also the most fascinating, part of the work consists in the study of the wood as an important tissue of a living orgauism; a tissue where all favorable and unfavorable changes experienced by the tree during its loug lifetime find a permanent record.

```
giENERAL ADPEABANCE:
```

For this study all the specimens from one tree are brought together and arranged in the same order in which they occurred in the tree. This furnishes a general view of the appearance of the stem; any striking peculiarities, such as great eccentricity of growth, unusual color, abundance of resin in any part of the stem, are seen at a glance and are noted down.

A table is prepared with separate columns, indicating-
(1) Height of the disk in the tree (this being furnished by the collector's notes);
(-1) hadius of the section;
(3) Number of rings from periphery to center;
(1. Number of rings in the sapwood;
\therefore Width of the sapurood; and
(6) Kemarks on color, grain, ete.

The results from each disk occupy two lines, one for the picees from the north side and one for those of the sonth side. The radins is measured correct to one-half millimeter (0.02 inch), and the figures refer to the air-dry wood.
'To connt the rings, the piece is smoothed with a sharl knife or plane, the cut being made oblique, i. e., not quite across the grain, nor yet longitudinal. Begimning at the periphery, each ring is marked with a lot of ink, and each tenth one with a lime to distinguish it from the rest. After counting, the rings are measured in groups of ten, twenty, thirty, rarely more, and these meas. urements entered in separate subcolumns. In this way the rate of growth of the last ten, twenty, or thirty years throughout the tree is found, also that of similar periods previous to the last; in short, a fairly complete history of the rate of growth of the tree from the time when it had reached the height of the stump to the day when felled is thus obtaned. Not only do these rings furnish information conceming the growth in thickness, but indicating the age of the tree when it had grown to the height, from which the second, third, etc., disks were taken, the rate of growth in height, as well as that of thickness, is determined, any unfavorable season of growth or any series of such seasons are found faithfully recorded in these rings, and the influence of such seasons; whatever their cause, both on the quantity and on the quality or properties of the wood, can thins be ascertained.

In many cases, especially in the specimens from the longleat pine, and from the limbs of all pines, the study of these rings is somewhat difficult. Kones of a centimeter and more exist where the width of the rings is such that the magnitier has to be nsed to distinguish them. In some cases this dificulty is increased by the fact that the last cells of one year's erowth differ from the first cells of the nest year's ring only in form and not in the thickness of their walls, and therefore produce the same color effect. Such cases frequently occur in the wood of the upper half of the Jisks from limbs (the limb supported horizontally and in its natural position), and often the magnifier hus to be reenforced by the microscope to furnish the desired information. For this purpose the wood is treated as in all microscopic work, being first soaked in water and then sectioned with a sharp knife or razor and examined on the usnal slide in water or glycerin.

The reason for beginning the counting of rings at the periphery is the same which suggested the marking of all peripheral pieces by the letter \boldsymbol{u}. It is convenient, almost essential, to have, for instance, the thirty-tifth ring in Section II represent the same year's growth as the thirty-fifth ring in Section $工$. The width of the sapwood, the number of ammal rings composing it, as well as the clearness and uniformity of the line separating the sapwool from the heartrood, are carefully recomed. In the columns of "remarks" any peculiarities which distingnish the particnlar piece of wood, such as defects of any kind, the presence of knots, abundance of resin, nature of the grain, ete, are set Gown.

When finished, a variable number, commonly 3 to if small pieces, fairly representing the woorl $_{\text {when }}$ of the thee, are split off, marked with the numbers of their respective disks, and set aside for the microscopic study, which is to tell us of the cell itself, the very element of structure, and of its share in all the properties of wood.

The swall pieces are soaked in water, cut with a sharp knifo or razor, and examined in water, glycerin, or chlorionde of zinc. The relative amount of the thick-walled, (lark-colored bands of summer wood, the resiu ducts, the dimensions of the common tracheids and their walls, both in spring and summer wood, the medullary rays, their distribution and their elements, are the principal subjects in dealing with coniferous woods; the quantitative distribution of tissues, or how mnch space is occupied by the thick-walled bast, how much by vessels, how much by thinwalled, pitted tracheids and parenchyma, and how moch by the mednllary mays; what is the relative value of each as a strength-giving element; what is the space occupied by the lumina, what by the cell walls in each of these tissues-these are among the important points in the study of the oaks.

Continued sections from center to periphery, magnifed 25 diameters, are employod in finding the relative amount of the summer wood; the limits of the entire ring and that of spring and

Fig. 105.-liesult of physical examination. (Sample.)

Lon(ileaf rine (TP. patustrin), tree 3.
Licality: Wallace, Ala.
Nite: Upland forest, quite dense.
suil: Sandy.

White pine (1 ", Ntrolus), tree 116. Localiey: Marathon County, Wis. Nite: Grown in dense mixed forest. Aroil: Sandy, with sandy subsoil.

Lequend.

D. Denotes density or specitic gravity of the dry wool.

TV. Denotes perceatago of water in the fresh wond, related to its weight.
S. Denotes percentage of shinkage in kiln drying.
$\boldsymbol{R} . \pi$. Denotes widh of ring (average) in millimeters ($25 \mathrm{~mm} .=1$ inch).
N. IF. Denotes jerecatage of summer wooll as related to total wrood.

Loman numbers refer to mmber of disk, placed in position of disk.

1 Height is giveu in feet from the ground ; scale, 10 feet = 2 inches. Radius, north and south (dotted line), in millimeters; scale, 10 mom. $=$ 0.1 inch.

Median line represents the pith.
Right-liand numbers relate to north side, left-hand numbers to south side.
Outer lines represent outlines of trees.
summer wood are marked on paper with the aid of the camera, aud thus a panorama of the entire section is brought before the eye. The histology of the wood, the resin ducts, the tracheids and medullary rays, their form and dimensions, are studied in thin sections magnified 580 diameters and even more. Any peculiarity in form or arrangement is drawn with the camera and thus graphically recorded; the dimensions are measured in the manner described for the measurement of the summer wood, or with the ocular micrometer. In measuring cell walls the entire distance between two neighboring lumina is taken as a "double wall," the thickness of the wall of either of the two cells being one-half of this. The advautage of this way of measuring is apparent, since the two points to be marked are in all cases perfectly clear and no arbitrary positions iuvolved. The length of the cells is found in the usual way by separating the elements with Schultze's solution (nitric acid, chlorate of potassium). All results tabulated are averages of not leas than ten, often of more than one hundred, measurements.

In the attempt to find the quantitative relations of the different tissues, as well as the density of each tissue, various ways have been followed. In some cases drawings of magnified sections were made on good, even paper, the different parts cut out, and the paper weighed. In other eases numerons measurements and computations were resorted to. Though none of the results of these attempts can be regarded as perfectly reliable, they have done much to point out the relative importance of different constituents of the wood structure, and also the possibility and practicability, and even the necessity, of this line of investigation.

INSTRITGTIONS ANO BLANK FORMS, WITHI ILLUSTRATIVE REUORDS'.

Insmbuctrons fole the Collection of Test Preces of l'ines for Thebere Investigations.

A.-(OB.JECT OF WORK,

The collector chonlal understand that the ultimate object of these investimations is, if possible, to establish the relation of quality of timber to the conditions under which it is grown. To accomplish this olject he is expected to furnish a very careful description of the conditions under which the test trees have grown, from which test pieces are taken. Care in ascertaining theso and minuteness and accuracy of description are all-important in assuring proper results. It is also necessary to select and prepare the test pieces exactly as described and to make the records perfect as nearly as possible, since the history of the material is of as much importance as the determination in the laboratory.
B--LOCALITIES FOR COLLECTING.

As to the locality from which test trees are to be taken, a distinction is made into station aud site.
By station is to be understood a section of conntry (or any places within that section) which is charactorized in a general way by similar climatic conditions and geological formation. "Station," then, refers to the general geographical sitnation. "Site" refers to the local conditions and surroundiugs within the station from which test trees are selected.

For example, the drift deposits of the Gulf Coast plain may be taken for one station; the limestone country of northern Alabama for a second. But a limestone formation in West Virginia, which differs climatically, would necessitate another station. Within the first station a rich, moist hummock may furnish ono site, a sandy piece of uplaud another, and a wet savannah a third. Within the second or third station valley might furnish one site, the top of a hill another, a different exposure may call for a third, a drift-capped ledge with deeper soil may warrant the selection of another.

Choice of stations.-For each species a special selection of stations from which test pieces are to be collected is necessary. These will be letermined, in each case separately as to number and location, from this office. It is proposed to cover the field of geographical distribution of a given species in such a manner as to take in stations of climatic difference and different geological horizon, neglecting, howerer, for the present, stations from extreme limits of distribution. Auother factor which will determine choice is character of soil, as dopendent upon geological formations. Statious which promise a variety of sites will be preferably chosen.

Choice of site. -Such sites will be chosen at each station as are nsually occupied by the species at any one of the stations. If unusual sites are found occupied by the species at any one of the stations it will be determined by special correspondence whether test pieces are to be collected from it. The determination of the number of sites at each station must be left to the judgment of the collector after inspection of the localities; but before determining the number of sites the reasons for their selection must be reported to this office. The sites are characterized and selected by differences of clevation, exposure, soil conditious, and forest comditions. The difference of elevation which may distinguish a site is provisionally set at 500 feet; that is, with elevation as the criterion for choice of stations the difference must be at least 500 feet. Where differeuces of exposure occur a site should be chosen on each of the exposures present, keeping as much as possible at the same elevation and under other similar conditions. Soil conditions may vary in a number of directions, in mineral composition, physical properties, depth, and nature of the sulisoil. For the present, only extreme differences in depth or in moisture conditions (drainage) and decialed dilherence in mineral composition will be cousidered in making selection of sites.

Forest contitions refer, in the first place, te mixed or pure forest, open or closo stand, and should be chosen as near as possible to the normal character prevailing in the region. If what, in the judgment of the collector, constifutes normal conditions are not found, the listory of the forest and the points wherein it differs from normai conditions must be specially noted.
C.-Chotce of Tlikes.

On each site live trees are to he takon, one of which is to serve as "check tree." None of these trees are to he taken from the roadsido or open ield, nor from the ontskirts, Int, all from the interion of the forest. They are to be representative arerage trees-neither the largest or best nor the smallest or worst, preferably old trees aud such as are not overtopped by neighburs.

The "check tree," howover, shonld be selceted with special care, and should represent the best-teveloped tree that can be found, judged liy relative height and diameter duvelopment and perlect crown.

The distance between the selected trees is to he not less than 100 feet or thereabont, yet care must be exercised that all are found under precisely the same conditions for which the site was chosen.

There are also to he taken six young trees as prescribed under E.
If to be had within the station, select two trees from 30 to 60 years old or older, which are known to have grown up in the opeu, and two treos which are known to have grown up in the forest, but lare been isolated for a known time of ten to twenty years.
D.—PEOCEIUUE ANI OUTFIT.

The station determined upon, the collector will proceed to bxamine it for the selection of sites. After laving selected the sites, he will at once communicate the selection, with description and justification, to this office, negotiate with the owners of the timber (which might be done conditionally during the first examination) for the purchase or thomation of test trees; and the latter arrangements completed, without waiting reply from this oflice, he will at once proceed to collect test preces on one of the sites in regard to the selection of which he is not in doubt.

To properly carry ont the instructions, the following assistants and outfit may be required:
(1) Two men ${ }^{2}$ with ax and saw; a boy also may be of use.
(2) Team, wagon, and log truclss for moving tost pieces and logs to station.
(3) Frow or sharp hacking knife for splitting disks. Heavy mallet or medium-sized "maul" to be used with frow.
(1) A handsaw.
(5) Red chalk for marking. (A special marking hammer will be substituted.)
(6) Tape line and 2 -foot rule or calipers.
(7) Tags (specially furnished).
(8) Tacks (12-ounce) to fasten tags.
(9) Wrapping paper and twiue.
(10) Franks for mailiug test pieces (specially furnished).
(11) Shipping tags for logs.
(12) Scales, with weight power not less than 30 pounds.
(13) Barometer for ascertaining elevations.
(14) Compass to ascertain exposures.
(15) Spade and pick to ascertain soil conditions.
(16) Bags for shipping disks.
E.-METHOD GF MAKING TEST PIECES.
(a) Mature trees.
(1) Before folling the tree, blazo and mark the north side.
(2) Fell tree with the saw as near the wround as practicable, avoiding the flare of the butt and making the usual kerf with the ax opposite to the saw, if possible, so as to avoid north and south side. If necessary, srulure off the butt end.
(3) Before cutting off the hutt log mark the north side on the second, third, and further log leugths.
(4) Measure off and cut logs of merchantable length and diameters, beginning from the butt, noting the length and diameters in the record.

Should knots or other imperfections, externally visible, ocenr within 8 inches of the log mark, make the cut lower down or higher up to aroid the imperfection.
(5) Continue measuring the full Iength of the tree and record its length. Note also elistance from the ground and position on the tree (whether to the north, south, west, cast) of one large sound limh. Mark its lower side and saw it oft close to the trunk and measure its length and record it, the limb to be utilized as described later.

If the tree after felling prove unsound at the butt, it will be permissible to cut off as much or as little as necessary within the dirst \log length. If sound timber is not found in the first log, the tree nust be discarlen. Only sound timber must be shipped. Any logs showing imperfections may be shortened. Be careful to note change in position of test pieces.
(6) Mark butt end of each log with a large N on north side. Saw off squarely from the bottom ent of each log a disk 6 inches long, and bejond the log measnre cut ofil disks every 10 foct up to 2 -inch diameter. Place eack disk

[^4]on its boftom end, and after having ascertaned and marked the north and sonth lino on top whd. Split the disk with abhary hacking knifo and mallet along this line. Split from outside of the west half of the disk enongh woon to leavea prism l imehes thick. Split from tho east half two wedres with one plane in the south-north line and with their wedge aine throngh the heart of the disk; the outer are to he abont 4 inches.

Mark each piece as split off on top side with number of the tree (Arabic), the serial number (loman) of thes disk in the tree, beginning with No. 1 at hutt log, and with a distinct N or S, tho north or mouth position of the piece as in the tree.

Write the same data on a card and tack it to the piece to which they belong. Whenever disk pioces are small onough for mailiug, leave them entire. Whenever they can not be shipped hy mail, leave clisks entire, wrip in paper, and ship by express.
(7) Weinh each piece and record weight in notehook, using the same marks as appear on tho pieces.
(8) Wrap each piece in two sheets of heary wrappines paper aud tie securely.
(9) Mark on tho newly cut hotom end of oach lom with a heary pencil a north and sonth lino, writing N on the north and S on the south side of tho log, large and distinct. Also mark centrally with an Arabic number on each lor the muber of the tree in the series, and with a distinet Roman mumber the serial mumber of the log in the tree, counting the butt log as first.

Tack to the butt end of each log securely a card (ceutrally), on which is writton mamo of tree, species, locality liom which tree is taken, denoterl hy the letter corresponding to that nsed in the notebook, number of tree, and section. This card or tag is intended to insure a record of each log in addition to the marlaner already made.
(10) Limb wood.-Having, as before noted, selucted a limb, measured and recorded its distance from tho hutt and position on the trunk, and marked its lower side and sawed it off close to the latter, now take a disk 6 inches long from the butt end and others every 5 feet up to 2 -inch diamoter at tho top. Nimber these consecutively with loman number, calling tho butt disk No. 1. Note by letters Lad U the lower aud upper side, as tho limb appeared on the tree, aul place the (Arabic) number uf tree from which the limb came ou each. Euloreo the record hy cards containiur the same information, as done in case of other disk pieces.

Weigh and wrap aud mail in tho same manner as the other pieces.
(11) Check trecs.-From the "check tree," which is to be the very best to be found, only three disks or three logs are to be secured, from the butt, midhle, and top part of the tree Absolutely clear timber, free from all knots and blemishes, is to bo chosen. Tho disk pieces are to ho of tho same size, and to be secured in the samo manner as those described before; the logs to bo not mecessarily more than 6 feet; less if not enough clear timber can be fomud.

Nute the position of each piece

 in the tree by measuring from tho butt cut to the lutt eud of the pricero.
l'repars and mark all piecos in the same mannor as those from other trees, adding, howerer, to each piece a \times mark to denote it as coming from the "check tree."
(12) Founy trees.-Sclect six trees from each sito approsimately of following sizes: Two, finch diameter, hreast high; two, 4-inch diameter, breast high; two, - -inch diameter, breast high. Nark north and south sides and chop or saw all close to the ground aud cut each tree into following lengths: First stick, ∂ feet long; scond stick, 4 feet long; the remaining cuts 4 feet long up to a top end diameter of about 1 inch. Cut from the basal end of each log a disk 6 inches long. Mark and ticket butt end of each \log as in case of large trees. Mark a north and sonth lino on top end of each disk, with N and S at extromities to denote north and south sides; and also ticket with same data as given ou large disk pieces. Weigh and wrap as before. Of these trees only the disk pieces are to be mailed.

F.-SHIPPING TEST PIECES.

Ship all pieces without delay. To each low tack securely a shipping card (furnished), so as to cover the marking tag. The logs will go to J. IB. Johnson, St. Lonis, Mo. The elisks and other picces are to be mailed to F. Noth, Anu Arbor, Mich., using franks, securel p pasted, for mailing, unless, as noted before, they must bo sent by express.

Mail at once to the above abdresses notice of each shipment, and a transcript of notes and full description to this oftice, from which copies will be forwarded to the recipients of the test pioces.

If free transportation is obtained from the railroad companies, special additional instructions will be given under this head.
A.-RECORDS.

Caretul and accurate records are most essential to sccure the success of this work. A set of specially prepared record sheets will be furnished, with instructions fur their use. A transcript of the record must be sent to this ofice at the time of making shipment; also such notes as may seem desirable to complete the recurl and to give additional explanations in regard to the recorl aml suggestions respecting the work of collecting. Original records and notes must be greserved, to avoid loss in transmission by mail.

FORM OF FIELD RECORD.

(Folder.)
Name of collector: (Charles Mohr.) Species: Pinus palustris.
Station (denoted hy capital letter): Λ.
State: Alahama. Comnty: Escambia. Town: Wallace.
Longituele: $86^{\prime} 12^{\prime}$. Latitude: $31^{\circ} 15^{\prime}$. Average altitude: 75 to 100 fect.
General configuration: Plain-hills-plateau-mountainous. General trend of valless or hills
Climatic features: Subtropical; mean annual temperature, 65°; mean annual rainfall, $6{ }^{2} 2$ inches.
Site (denoted by small letter): a.
Aspect: Level-ravino-cove-bouch-slope (angle approximately).
Exposure: Elevation (above average station altitude): 125 fect.
Soil conditious:
(1) Geological formation (if known): Southern stratified drift.
(2) Mineral composition: Clay-limestono-loam-marl-sandy loam-loamy sand-sand.
(3) Surface cover: Bare-grassy-mossy. Leaf cover: Abundant-scanty-lacking.
(4) Depth of vegetable mold (humus) : Alsent-moderate-plenty-or give depth in inches.
(5) Grain, consisteucy, and admixtures: Very fine-fine-medium-coarso-porous-light-loosomoterately loose-compact-binding-stones or rock, size of.
(6) Moisture conditions: Wet-moist-fresh-dry-arid-well drained-liable to overllow-swampy-near stcan or npming or other kind of water shpply
(7) Color: Asliy-gray.
(8) Depth to sulisoil (if known): Shallow, 3 to 4 inches to 1 foot- 1 foot to 4 feet, inelpover 4 feot, very deep-shifting.
(9) Nature of subsoil (if ascertainable): Red, ferruginous sandy loam; moderately loose, or rather slightly binding; always of some degree of dampness; of great depth.
Forest comlitions: Mixed timber-pure-dense growth-woterately dense to open
Associated species: Noue.
Primutheme of these
Average height: 90 feet.
Undergrowth: Scanty; in the origiual forest often none.
Conditions in the open: Field-pasture-lawn-clearing (how long cleared): In natural clearings untonched by fire, dense groves of second growth of the species.
Nature of soil cover (if any): Weeds-brush-sod.
(Inside of folder.)
Station: A. Sitf: a. Siecies: P. palustris. Tiree No. 3.
Position of treo (if any special point notable not appearing in general description of site, exceptional exposure to light or dense position, etc., protected by buildings, note on back of sheet): In rather dense position. Origin of tree (if ascertainable): Natural seedling, sprout from stump, artificial planting.

Dianetel breast high: 16 inches.
Heicilit to first limb: 53 feet.
AGE (aunual rings on stamp): 183.

Heigilit of stump: 20 inches.
Liengtin of felled tree: 110 feet 4 inches. Total height: 111 feet 8 inches.

Limbwond:

Distance from butt:
Position on trunk:
Total levgth:
Number of disks taken:
Note.-As much as possible make description by underscoring terms used ahove. Add other deseriptive terms if necessary.

SAMLIA RECORIOS OF TESTS.

CROSS BREAKDNG TE\&T.

Mark, $\left\{\begin{array}{l}116 . \\ 1 . \quad \text { White pino. } \\ 3 .\end{array}\right.$
Leogth, 60.0 inches.
Height, 3.74 inches.
13roadth, 3.75 inches.

Strength of extreme fiber,	
Monlulus of clasticity	$=1,320,000$ pounds per square inch
Total resilience	$=3,460$ inch-pounds. El. Rese., 55
Resilience, per cubic	$=4.11$ inch-pounds. El. Res., 0.6

[Number annual rings per inch $=19$. .

Deplection in inches.

CROSS BREAKING TEST.

Mark, $\left\{\begin{array}{l}3 . \\ 3 . \\ 1 .\end{array}\right.$ Longleaf pine。
Length, 60.0 inclies.
Meight, 3.50 inches.
Ireadth, 3.72 inches.

Strength of extreme fiber;
where $f=3 \frac{31 / l}{2 h h^{2}}=10,230$ pounds per square inch.
Modulus of elasticity $=1,760,000$ pounds per siluare inch.
Total resilience $\quad, 110$ inch-pumbls. El. Res., 1,780.
Resilience, per cubic inch $=6.5!$ inch-pounds. El. Res., 2.28.

Deflection in inches.

FINAL IRECORD OF TIMBER TESTS.

[^0]: ${ }^{1}$ The one view does not exclude the other.

[^1]: ${ }^{1}$ Ann. Chem. (Liebig), 227, 300; Ber. d. Chem. Ges., 21, 1527. ${ }^{3}$ Allen, Com. Org. Anal., 2, 441.
 ${ }^{2}$ Allen, Com. Org. Anal., 2, 437. 4 Jour. Anal. and Appl. Chem., 6, 5.

[^2]:

[^3]: By and hy it is expected that the mumer of tests necossary may be reducet considerably, when for each species the relation of the difierent exhibitions of strength can bo sufticiently established, and perhaps a test for compression alone furnish sulicient data to compute the strength in other directions.

[^4]: ${ }^{1}$ Ouly men familiar with felling and cutting timber should be chosen.

