Historic, archived document

Do not assume content reflects current scientific knowledge, policies, or practices.

TIMBER RESOURCES OF WESTERN SOUTH I IJAKOTA

Alan W. Green

TIMBER RESOURCES OF WESTERN SOUTH DAKOTA

Alan W. Green

RESEARCH SUMMARY

Reports findings of the comprehensive survey of western South Dakota's 1.4 million acres of forests, which include 1.2 million acres of commercial forest land. Presents statistics on area, volume, growth, mortality, and timber use. Also describes species, volumes per acre, stocking, site quality, ownership, trends in product harvesting and other factors that bear on timber management. Opportunities and problems related to future development are discussed.

THE AUTHOR

ALAN W. GREEN is Acting Project Leader of Renewable Resources Evaluation at Intermountain Station. His career has included research in silviculture and regeneration, economics of timber production, and foreign forestry resources. In addition to a degree in economics, he holds both bachelor and master of science degrees in forestry from Purdue University.

FOREWORD

This report presents basic statistics on western South Dakota forest area, timber volume, growth, mortality, and removals. it also discusses the outlook for future timber supplies from State and privately owned forest land.

The area covered in this report includes all of Harding, Butte, Lawrence, and Fall River Counties, as well as all lands west of the l03rd Meridian in Meade, Pennington, and Custer Counties. Timber statistics for South Dakota reported by Choate and Spencer (5) were for the entire State and so cannot be compared directly with data reported here.

Data are from timber inventories conducted from 1971 to 1974 by the South Dakota State Department of Game, Fish, and Parks, Division of Forestry; and the Rocky Mountain Region, Forest Service, in cooperation with the Intermountain Forest and Range Experiment Station, Forest Service, Ogden, Utah.

A 2-MINUTE SUMMARY

- There are $1,246,800$ acres of commercial forest land in western South Dakota; 63,200 acres less than in 1970 (7).
- Most of it is in public ownership, but farmers hold over 154,000 acres, 70,000 acres less than in 1960.

Land productivity is relatively low, but climate and soils make

- good tree growth possible. Average annual net growth is $32 \mathrm{ft}^{3}$ per acre per year.

There are 1.6 billion ft^{3} of wood, 5.6 billion bd.ft. (International

- 1/4-inch rule) of sawtimber. Pennington, Lawrence, and Custer Counties have the most timber.
- Mortality is low, but increasing due to greater insect activity. Because of prolific regeneration and resultant dense stands, an
- intensive thinning program is required to keep stands in a productive condition.

State and private lands have the potential to produce in excess of - 12 million ft^{3} per year. Only about 192,000 acres are presently operable, with a potential output of 8.5 million ft^{3} per year.

Planned output for State and private lands is about $6.2 \mathrm{million} \mathrm{ft}^{3}$

- per year from the operable area. In order to assure wildlife, grazing, recreation, and esthetic goals are achieved, managed stands will have fewer trees than would be required to maximize timber output.
- Removals from National Forest and private ownership have increased since 1970.

Maintaining markets for small size material and management money are - key items for achieving planned goals and objectives for western South Dakota's forest resources.

SIGNIFICANT CHANGES

- The area of commercial forest land is 63,200 acres less than reported in 1970 (7).
- Commercial forest land owned by farmers is 70,000 acres less than in 1960 (4).
- Growing stock volume and sawtimber volume increased $6 \mathrm{million} \mathrm{ft}^{3}$ and 2.2 billion bd.ft., respectively, since 1960 (4).

Sampling techniques, revised land classification, and changes in land status account for much of the reduction in area. The loss of farmer-owned CFL is due, in large part, to withdrawals for nontimber uses.

The increases in volume are due, in part, to growth rates in excess of removals over the period and, in part, to changes in sompling techniques used in more recent inventories.

CONTENTS

Page
FOREWORD i i i
A 2-MINUTE SUMMARY iv
SIGNIFICANT CHANGES v
A BRIEF HISTORICAL FLASHBACK 1
TODAY'S FOREST 4
The Size of It 4
Who Owns It 5
How Productive Is It 6
Timber Kinds and Sizes 6
How is it Used 8
THE TIMBER RESOURCE 9
How Much Wood 9
Growth--Mortality 10
Removals 11
PROSPFCTS FOR FUTURE WOOD SUPPLIES FROM STATE AND PRIVATE LAND 12
Potential Versus Available Output 12
Available Output. 14
The Existing Timber Resource 15
Stand Age and Size 15
Stocking 16
Growth and Mortality 19
Opportunities for Increasing Timber Supplies 20
In Total 21
ABOUT THE BLACK HILLS NATIONAL FOREST 23
Resource Use and Management Direction 23
Consequences of Timber Management 23
Recreation 23
Water 24
Grazing and Wildiife 24
Other Effects 24
Key Issues for Future 25
PUBLICATIONS CITED 26
APPENDIX 27
Glossary 28
Tables 54

A BRIEF HISTORICAL FLASHBACK

Any discussion of western South Dakota forests is primarily one of the Black Hills. This 4,500 square mile uplifted granite, limestone, and metamorphic rock island in the Great Plains is a major geographic landmark of the United States, attracting hundreds of thousands of visitors each year (12). These visitors are more likely to look at the Black Hills as a suitable setting for Gutzon Borglum's transformation of Mt. Rushmore than an important source of timber. But although the area is heavily used for recreation, significant values are derived from the water, wildiffe, livestock grazing, and timber associated with the forest.

The values of the timber and related resources of the Black Hills have been recognized for more than a century. Before 1870, these were the hunting grounds for Plains Indians. The ponderosa pine forests were subject only to the vagaries of nature and to fires set by the lindians to drive game. As a consequence, the stands of timber were generally sparse or open (10).

With the discovery of gold and the subsequent opening of the area to white settlement came significant changes in the use and nature of the forest. The timber resources were exploited for mining and the attendant construction of houses and other buildings, and later to supply timber needs for construction of railroads (3,10). Fires continued to go unchecked. Concern for what was happening to the resources of the Black Hills led to much of the area being set aside as a forest reserve in 1897. That reserve later became the Black Hills National Forest.

The increased density and vigor of the timber, consequences of protection and management of the forest since the turn of the century, are clearly seen in the remarkable comparative photographs taken from the same locations in 1874 and $1973 .{ }^{1}$

[^0]The 1874 photographs were taken by William H. lllingsworth during a 60-day expedition into the Black Hills to gather extensive information about the terrain and resources. The expedition of some 1,200 troopers of the 7 th Cavalry and assigned civilians was under the command of Lt. Col. George A. Custer, elevated to the rank of Brevet Major General for the occasion (10). Custer and his command left Fort Lincoln for the northwestern edge of the Black Hills July 2, 1874. Two years later (June 26, 1876), he was to die in the battle of the Little Bighorn.

The "today" pictures were taken by Richard H. Sowell, South Dakota State University, for Dr. Donald R. Progulske during a study to show man's impact on the environment and resources of the Black Hills. The Progulske publication (10) is a delightful and most informative look at the history and development of the Black Hills.

General Custer's 1874 encompment near Dearfield, Iooking up Silver Creek, near the confluence of Castle Creek....

... and in 1973 (above). (Belou) another 1874 vieu of the same encampment area...

```
\(+5{ }^{2}\)
```


... and in 1973.

TODAY'S FOREST

About 20 percent of the land area is forest...
and 91 percent of the forest is classed commercial.

The Size of It

There are nearly 1.4 million acres of forest land in western South Dakota. Over 1.2 million acres are classed as commercial forest land (CFL), suitable and available for timber-growing activities. About 11,000 acres of productive forest land are reserved from cutting because of uses that preclude timber harvesting. Most of this land is in Mt. Rushmore National Memorial, Wind Cave National Park, and Jewel Cave National Monument.

Commercial timberland	$1,246.8$
All other forest land:	
Productive reserved	
Other reserved	11.1
Other forest nonreserved	1.3
Total forest land	$\underline{108.1}$
Nonforest land	$\underline{5,511.3}$
Total land area	$6,878.8$

Most of the noncommercial forest land is relatively unproductive; either the site conditions are unfavorable for economic production of useful wood, or the sites are occupied by kinds of trees not commercially useful.

Who Owns It

Over 80 percent of the commercial forest land is publicly owned or administered:

Owner Group
Public:
Federal
Area
Percent of Total
(Thousand acres)

The bulk of the CFL is publicly owned.

The Forest Service has the most CFL.

State
County and municipal

Subtotal
Private:

Forest industry ${ }^{2}$	--	--
Farmer	154.6	12.4
Misc. private	60.8	$\underline{4.9}$
	$\underline{215.4}$	$\underline{17.3}$
	$1,246.8$	100.0

The principal owner is the Forest Service. Its 952.5 thousand acres represent 76 percent of the total and 83 percent of the publicly owned commercial forest land. The biggest part of its holdings are the Black Hills National Forest in Pennington, Custer, Meade, and Lawrence Counties with minor areas in Fall River County, and small areas of the Custer National Forest in Harding County.

[^1]Collectively, private individuals own more CFL than any owner except the Forest Service.

Some poor soils and exposed bedrock reduce the average productivity of the land.

But the land is well suited for growing crops of timber.

The Bureau of Land Management administers most of the other federally owned commercial forest land.

Other publicly owned land belongs to the State, administered and managed through the State Department of Game, Fish, and Parks, Division of Forestry. Its biggest single holding is Custer State Park.

Privately owned commercial forest land is dominated by small private owners, largely farmers, who collectively control 154,000 acres, or 12 percent of the total and 72 percent of all privately owned commercial forest land. This is 70,000 acres less than reported for 1960 (4). These holdings are rather evenly distributed throughout the seven counties.

How Productive Is It

Compared to other important timber producing areas in the West, the commercial forest land in western South Dakota is not highly productive. Only about 3 percent of the land is capable of growing as much as $60 \mathrm{ft}^{3}$ of wood per acre per year.

Shallow soils with low moisture-holding capacity are common. Also, there are many areas where exposed bedrock prevents the establishment of trees. In such areas, stands tend to be sparse-to-open, and over a given time period cannot produce the amount of wood possible with more dense stands.

But although the productive capacity of the CFL is limited, the area is well suited to timber culture. As Boldt and Van Deusen (3) point out, "This basic premise is neither speculative or theoretical--its validity has been demonstrated by actual forest responses to nearly a century of consumptive use."

Timber Kinds and Sizes

Were it not for some 24,000 acres of spruce type (mostly in Lawrence, Pennington, and Custer Counties), the softwood (evergreen) forest would appear to be a single species, ponderosa pine (Pinus ponderosa). As a forest type, it occupies nearly 1.2 million acres of the CFL.

Hardwoods are not a significant resource for timber purposes.

Two-thirds of the CFL area is occupied by sawtimber stands.

Hardwoods (broadleaf species) cover only about 50,000 acres and include localized pockets or small stands of aspen (Populus tremuloides), as well as a mixture of oak and other species in the hills, and considerable cottonwood (Populus deztoides) along major streams and rivers.

Sawtimber stands dominate the commercial forest land in all counties. Although Custer, Lawrence, and Pennington Counties have the most sawtimber stand area, Lawrence County has the highest proportion of sawtimber and none of the counties has less than 50 percent of the CFL in that size class.

This does not mean there are no small trees in these stands. Stand-size classification can be misleading in terms of the diameter distribution simply because of the way stand sizes are defined ${ }^{3}$.

Percent of commercial forest land by standsize class.
${ }^{3}$ Softwood sawtimber trees need be only 9.0 inches d.b.h. (hardwoods, 11.0 inches); sawtimber stands need have only half the total stocking in sawtimber and poletimber trees, with sawtimber at least equal to pole timber stocking.

Only 8,700 acres are classed as nonstocked.
sitors won't find grizzly bears or wolves...
but they may see some 60 varieties of other animals, as well as birds and fish.

Major nontimber uses of the forest include outdoor recreation.

There is little nonstocked area and most of it is in Fall River County. This attests to the ease with which natural regeneration becomes established following harvesting activities.

How Is It Used

The grizzly and the grey wolf are gone and the black bear and mountain lion are rarely seen. But, there is abundant wildlife to be seen by the hundreds of thousands of people who annually visit the Black Hills.

Deer, elk, wild turkey, antelope, beaver, buffalo, and even Rocky Mountain goats and Big Horn sheep can be found. Many of these animals and birds have been introduced or reestablished over the past 50 years or so (12). In the streams and lakes, fishermen find several varieties of trout, most of which have been introduced and maintained by the State.

Outdoor recreation is the dominant use of much of the forest today. Management of the forest is designed to integrate recreation opportunities, esthetics, protection of wildlife habitat, and production of usable wood. Tree harvesting is a necessary part of maintaining wildife habitat and a varied landscape, as well as a heal thy forest.

The diverse recreation opportunities of the Black Hills National Forest are used at the rate of about 2 million visitor-days annually. Much of the recreational activity is in developed sites for camping, picnicking, and boating. However, about 70 percent of the present use is for dispersed activities such as hiking, hunting, and sightseeing, the most common activity (12).

Livestock grazing, though sometimes a controversial issue, is a controlled use on the Black Hills National Forest during the summer. In 1975, 26,900 cattle and horses and 4,700 sheep grazed over 125,000 animal unit months on the National Forest (12).

THE TIMBER RESOURCE

How Much Wood

Although only about 1.6 percent of the total wood volume in the Rocky Mountain States is in western South Dakota, it is an important resource.

Custer, Lawrence, and Pennington Counties are the most heavily timbered.

Nearly three-fourths
the volume is in
trees less than 15 inches d.b.h.

In 1974, CFL in western South Dakota contained an estimated volume of 1.7 billion $\mathrm{ft}^{3}, 1.6$ billion of it in growing stock trees, most of it softwood timber. About 1.25 billion ft^{3} are in sawtimber size trees (9.0 inches d.b.h. and larger for softwoods and 11.0 inches for hardwoods), estimated at 5.6 billion bd.ft. (International $1 / 4$-inch rule), 2.2 billion bd.ft. more than in 1960 (4).

The bulk of the standing volume is in Custer, Lawrence, and Pennington Counties, the latter having the most, 589 million ft^{3}. Lawrence County accounts for about half the hardwood volume $\left(8.6 \mathrm{million} \mathrm{ft}^{3}\right)$. Nearly 73 percent of the cubic foot volume is in trees less than 15 inches d.b.h.

Votrome by diometer ctass

$\frac{\text { Net annual growth }}{\text { is higher than the }}$
average of the Rocky
Mountain States.

Ninety percent of the growth occurs on 90 percent of the CFL...
but growth rates vary by county.

Insect activity
is increasing in some areas...
and mortality may be underestimated in terms of current conditions.

In spite of the low productivity of the forest land, relative to the rest of the Nation, growth of timber in western South Dakota is above average for the Rocky Mountain States. Gross annual growth is about 43.7 million ft^{3} or $35 \mathrm{ft}^{3}$ per acre. That is about the average for the other States. However, a low estimated mortality rate ($3 \mathrm{ft}^{3}$ per acre compared to $11 \mathrm{ft}^{3}$ for all the Rocky Mountain States and about $9 \mathrm{ft}^{3}$ for the Nation), results in a net annual growth of growing stock of $32 \mathrm{ft}^{3}$ per acre, $8 \mathrm{ft}^{3}$ more than the average.

About 90 percent of the net annual growth is in Custer, Lawrence, and Pennington Counties, about the same proportion as CFL area, but that does not mean all the counties are equally productive:

County

Butte, Harding, 32 Meade Custer 28
Fall River 21
Lawrence 36
$\begin{array}{ll}\text { Pennington } & \frac{34}{32} \\ \text { All counties }\end{array}$

Recent increases in mountain pine beetle activity indicate that current tree mortality is probably somewhat higher than that found during the last inventory. Hardest hit seems to be Lawrence County, but no current accurate estimate of the amount of damage is available. There is a real need for damage survey in areas of most severe infestations.

Western red rot and other fungi have caused substantial volume losses in older stands (8). But, the continuing conversion of older stands to faster growing young stands will significantly reduce the impact of these diseases as well as that of insects (3).

It should be noted also that in contrast to ponderosa pine areas in other parts of the West, the Black Hills ponderosa pine is free of dwarf mistletoe (1, 3).

Snowbend and windthrow losses vary from year to year, but currently are the third ranked cause of mortality. Snowbend and breakage occur more often in sapling and small pole-size stands; windthrow is a more common hazard to large pole and small sawtimber sizes (3).

Removals

A record high volume of 17.9 $\frac{\text { million } \mathrm{ft}^{3}}{\text { was cut in 1974... }}$
but, $700,000 \mathrm{ft}^{3}$
were left as logging residues.

In 1974, 17.9 million ft^{3} of roundwood products were harvested (11), two-thirds of which were saw logs, amounting to 76.7 million bd.ft. (International $1 / 4$-inch rule). The remainder, about 6 million ft^{3} were pulpwood, poles, posts, and fuelwood.

Removals from growina stock were $17.7 \mathrm{mil}-$ lion ft^{3} (or 44 percent of net growth) and about $0.114 \mathrm{million} \mathrm{ft}^{3}$ came from dead trees. The latter represents only about 0.2 percent of the salvable dead volume and a percent of the annual estimated mortality.

Three-fourths of the total output came from National Forest and almost all the rest from private land. More than half the total came from Lawrence County.

The estimated output for 1977 (appendix tables 10 and 11) is about 19.7 million ft^{3} if present trends continue. That would represent an increase of 31 percent over 1970.

Sawtimber removals are expected to total 82 million bd.ft. for saw logs and account for about the same proportion as in 1974. "Other removals" associated mainly with land withdrawn from timber use, are expected to account for about 1 percent.

PROSPECTS FOR FUTURE WOOD SUPPLIES FROM STATE AND PRIVATE LAND

The future timber supplies from western South Dakota will be influenced by (a) the management goals of the owners or managers of the resource; (b) the potential of the land to grow wood; (c) the condition of the existing resource; and (d) the amount of money available for silvicultural treatment.
The major supplier will, of course, be the Black Hills National Forest. The planned cut through 1986 is in excess of $36 \mathrm{million} \mathrm{ft}^{3}$ per year (5). Because the bulk of the remaining CFL is in State and private ownership, the remainder of the report will examine the timber resource on those lands, an area of about 242,000 acres, excluding Custer State Park. ${ }^{4}$

State and private CFL has the potential for producing about $12.4 \mathrm{million}^{\mathrm{ft}}{ }^{3}$ of wood annually.

Even if achieving the potential were considered desirable, that level of output would be impossible to reach at present...
because not all the land is operable...

Potential Versus Available Output

Potential output of timber is a function of land productivity and the level of management or silvicultural practices applied to the timber resource (5). Given current and prospective future on-site costs for silvicultural treatments, State and private lands have the capacity of producing 12.4 million ft^{3} per year under a management program of a precommercial thinning at 10 years, commercial thinnings every 20 years, and a final harvest at the end of a 110-year period. Stand density would have to be maintained between 120 and $140 \mathrm{ft}^{2}$ of basal area per acre.

That output could be reached only if (a) the entire CFL area were operable; (b) the forest resource were managed strictly for timber production; (c) the forest were fully regulated, and (d) sufficient funds were available for on-site cultural activities when needed.

The fact is, however, nearly 20 percent of the CFL is now considered "inoperable." Along with a prudent logging operation that would protect the soil and other associated resources, steep slopes and other conditions make harvesting and management impossible or unwise with present harvesting techniques.

[^2]

Potential output and available output, State and privately owned CFI, westerm South Dakota.
and more management money is needed.

There are over 30,000 acres of dense young stands needing thinning. The State has placed these lands in the inoperable category because present and prospective future (short term) management money available is insufficient to realistically include them in its management plans. (The Black Hills National Forest has a similar situation; such lands are included in the Marginal land component).

At current costs, potential output on the operable area is estimated at $8.5 \mathrm{million} \mathrm{ft}^{3}$, and would cost $\$ 245,000$ annually for on-site management activities. For the 192,000 operable acres, this would amount to about $\$ 1.28$ per acre per year.

Should the entire 90,000 acres of inoperable area
Managing the currently inoperable area will cost more.

Management plans propose levels of output less than the land's potential...
to favor other forest resources and values.

Planned output could be achieved by intensively managing fewer acres...
non-Forest Service lands. The timber management objectives outlined in these plans are much the same as the Forest Service's multiple use goals. Timber is considered to be an important available commodity to be grown and utilized along with other commodity and noncommodity goods and services. Therefore, there is no intention to assume a management posture to maximize timber output on Stateowned land or to recommend such a program to private owners.

Maximizing timber output would require stand densities nearly twice those planned. Only with a more open forest can the nontimber objectives for livestock range, wildife habitat, water production, esthetics, and other recreational uses of the forest land be achieved.

Available Output -- The difference between potential and available output (planned for period following achievement of full regulation) indicates the trade-off between timber and the nontimber values achieved.

Because of uncertainty as to whether private owners will in fact act in accordance with plans, the "available output" has to be considered as the probable upper limit.

Potential and planned output for operable area, State and private lands.
but the overall management objectives would not be met.

To achieve the planned potential output of timber and nontimber values, the manager must begin with existing timber and nontimber resources.

Softwood timber
stands are relatively young...
but over half are sawtimber size.

Looking again at the potential and planned output, by intensively managing all the high-site land now operable and an additional 42,000 acres of low-site land, the total planned output could be achieved. In other words, only 136,000 acres would need to be intensively managed rather
than 192,000 to get the same annual output. This would result in a savings of about $\$ 66,000$ annually. But, in terms of overall management objectives, that would be a false saving.

The 56,000 acres of unmanaged land would not provide the water, wildlife, range and esthetic value objectives; nor would the intensively managed areas. Why? Because maximizing timber output on the 136,000 managed acres would require stand densities so high that good wildlife browse and herbage production would not be possible. The unmanaged areas would soon grow into such densities that they would provide about the same nontimber values as the high density, managed stands and little timber. They would also look worse.

Achieving the available potential timber output is not just a matter of scheduling intermediate cuts and harvesting. There are specific conditions that exist now, with respect to timber stands and to the forest in general, that need to be examined. The manager must begin with the current timber resource and manipulate it during the next few decades in a manner that will result in a timber resource of a kind and condition that will allow both future timber and nontimber goals and objectives to be met.

The Existing Timber Resource

Stand Age and Size -- Although there are some stands as old as 240 years, the bulk of CFL is occupied by stands in the 50- to 130 -year class, with heaviest concentration in the 50- to 100-year-old class.

Nearly 60 percent of the CFL is occupied by sawtimber stands:

Stand size
 class

Old growth sawtimber
Young growth sawtimber
Poletimber
Seedling-sapling
Nonstocked

Area \% Cumulative \%

21,493	9	9
116,601	48	57
62,129	26	83
36,629	15	98
5,424	2	100

Even though such a large proportion of the CFL is classed as sawtimber, board foot volumes per acre are relatively low; 96 percent of the area is carrying stands with volumes less than 10,000 bd.ft. per acre. The board foot-cubic foot ratio of 4.4 indicates that the average size of trees in these stands is relatively small.

Ninety-eight
percent of the CFL is stocked with trees..
but some acres
have too few trees, some have too many.

Stocking -- Only 5,400 acres (2 percent of the total) are considered nonstocked. No doubt part of the nonstocked area is unable to support trees and its burned sections lack sufficient seed to naturally restock such areas within a reasonable period.

However, having 98 percent of the CFL area classed as stocked doesn't mean there are just the right number of trees nor that only good trees are included. Eleven percent of the area actually capable of growing trees is either bare or is occupied by cull trees:

Area occupied by

Stockable area	Growing stock		
	trees	Cull trees	No trees ${ }^{5}$
211,482	188,110	3,490	19,882
$\%$ of total	89	2	9

Both situations are equally unproductive for timber.
An acre 60 percent stocked with growing stock trees is considered to have an adequate number of trees. About 33,000 acres of CFL are less than 50 percent stocked with live trees and some 64,000 acres are less than 60 percent stocked with growing stock trees. An estimated 40,000 acres have more growing stock trees than are needed to use the site effectively.

The latter condition is somewhat easier to deal with in a short time frame. A thinning program can bring overstocked stands into a more productive condition rather quickly and is consistent with other management goals. Understocked areas are not so easily dealt with, especially small treeless areas scattered through the forest. Over time, many such areas will "grow" into a more desirable condition and better utilize the site. They can also be planted, but at considerable cost. Planting, however, is much used to restock larger areas without a sufficient seed source.

Stand Density and Stmucture.--One of the objectives of the State's planned forestry program is to bring the State and privately owned CFL under full management and full regulation within 30 years through its public assistance program. Although many kinds of silvicultural treatments can be used (depending on the nature and condition of existing unmanaged stands), most will take advantage of the tendency of ponderosa pine to establish itself in even-aged stands. Intermediate harvest every 20 years with a two-cut shelterwood regeneration cut at final harvest is the system generally thought most appropriate for ponderosa pine in the Black Hills (1, 3).

[^3]Average stand density is about $80 \mathrm{ft}^{2}$ of basal area per acre...
but, there is
more in small-
size trees than desired.

Square-foot basal area by diameter class for the average acre.

Once the acreage of CFL is all under management, it would be occupied by individual stands of different ages and tree sizes. On a per-acre basis, the average of all these stands would have a density of about $80 \mathrm{ft}^{2}$ basal area distributed among the diameter classes as shown by the dotted line.

Currently, the average of all stands (some managed and some not), is about $80 \mathrm{ft}^{2}$ of basal area but distributed by diameter classes as shown by the solid line.

The apparent imbalance in basal area distribution indicates both the existence of stands needing thinning and the fact that the forest is not yet in a fully regulated condition.

In a fully regulated situation where a variety of roundwood materials (pulp, poles, and saw logs) are product objectives, the basal area in trees less than 10 inches d.b.h. should be about 40 percent of that in trees 10 inches d.b.h. and larger; or, 30 percent of the total basal area (6).

Currently the average stand has $40.6 \mathrm{ft}^{2}$ basal area (about 50 percent) in trees less than 10 inches d.b.h.

Removing more of the smaller diameter trees (thinning from below) automatically will increase average stand diameter. Normal tree growth, during the period between thinnings will increase the diameter of residual trees and, therefore, the basal area in each diameter class.

Nontimber benefits achieved through timber management activities stretch the nontimber resource management dollars.
$\frac{\text { Heavy thinning in }}{\text { stagnated stands }}$ can produce some startling results.

There is a good case for thinning investments.

If the annual harvest could be increased at the same rate as volume growth...

Fewer but larger trees will be the result and will create a more open forest capable of meeting both timber production and other management objectives. In addition, maintaining the vigor of young stands will help control mountain pine beetles and reduce mortality losses.

As an example of what thinning stagnated stands can do, Boldt (2) reported in a case study in 1970 some startling results of a sequential thinning effort. A 70 -year-old stand containing 2,000 trees per acre, with an average diameter of 4.2 inches was thinned from below to 476 trees, then 7 years later to 105 trees. The result: in an ll-year period, removal of smaller trees increased diameter growth of remaining trees, and a stagnated sapling stand was transformed into a small sawtimber stand averaging 9.1 inches d.b.h.

Such a thinning program may not always be prudent, however, because of the susceptibility of residual trees to damage from snow or wind. A series of lighter cuts is usually recommended to reduce the likelihood of such losses (3).

How good is an investment in precommercial and commercial thinnings? Although the forest land is not as productive as that of other timber-producing areas in the West, there are opportunities for generating both timber and nontimber values.

The major silvicultural requirement for growing timber is stocking control. The average cost for precommercial thinning in young stands is about $\$ 60$ per acre. On an average site, a management regimen consisting of one precommercial thinning and three commercial thinnings to a growing stock level of $80 \mathrm{ft}^{2}$ would generate a total output of some $4,600 \mathrm{ft}^{3}$ per acre over a 100 -year rotation. That is about $30 \mathrm{ft}^{3}$ per acre per year more than if no thinning were done. Also, an additional 20 cents per acre per year worth of forage would be produced. There are several ways to look at and interpret such an "opportunity."

First, if there is sufficient old-growth sawtimber reserve, the "allowable cut effect" would indicate that an additional $30 \mathrm{ft}^{3}$ per year could be harvested for each acre brought under such a management regimen. Assuming a stumpage value of $\$ 0.25$ per ft^{3}, that represents an increase in income per acre of $\$ 7.50$ per year, in addition to the annual income from grazing estimated at $\$ 0.20$ per acre per year.

If the rotation were 110 years and the thinning were done at 20 years, there are 90 years in which the grazing income and the additional wood values would be captured.
the rate of return on the $\$ 60$ thinning is about 11 percent.

The rate of return on the initial $\$ 60$ investment generating this series of annual incomes is 11.05 percent. But, again, remember this rate of return could be earned only if the annual cut could be increased at the same rate as the expected average annual yield increase.

Given the following management schedules, in terms of the difference in yield between such a management program and the "do nothing but harvest" plan, the rate of return is about 5.05 percent:

If capturing the
"allowable cut effect ${ }^{11}$ is not possible, the rate of return is about
5 percent.

A: With management.

Year	Stand Age	Activity	Volume Removed $\mathrm{cu} . \mathrm{ft}$.	Cost	Income*	Difference in:	
						Volume Removed $\mathrm{cu} . \mathrm{ft}$.	Net Cost or Income*
0	- 20	Precommercial thin	0	\$60	0	0	-\$60
20	40	Commercial thin	400	20	\$100	400	+ 80
40	60	Conmercial thin	500	20	125	500	+105
60	80	Conmercial thin	700	20	175	700	+155
80	100	Harvest	1,500	30	375	800	+200
90	110	Harvest	1,500	30	375	900	+225
		Total	4,600	--	--		
All	A11	Grazing	. 10 AUM	0	. 20		

B: With no management.

0	20	Nothing	0	0	0	--	--
80	100	Harvest		700	$\$ 30$	$\$ 175$	--
90	110	Harvest		$\underline{600}$	30	150	--
			Total	1,300			--
A11	All	Graze		.03 AUM	0	.06	--

*Assume stumpage value of $\$ 0.25 /$ cubic foot.

Gross growth is
now 8 million
ft^{3} per year
but could be
increased.

Mortality is probably understated...
and so net
growth may be less than estimated.

Even though they cannot be measured in monetary terms, other key values--scenery, water yield, wildlife habitat, recreation, and fire hazard reduction--are also generated.

Growth and Mortality -- Gross growth on State and private land is about $8 \mathrm{million} \mathrm{ft}^{3}$ per year. A program to adequately stock the nonstocked or understocked area could increase the gross growth to about $11 \mathrm{million} \mathrm{ft}^{3}$ annually.

Mortality is difficult to estimate, especially with the inventory procedures used. Also, increased insect activity since the inventory has made a substantial increase in the number of trees dying, and therefore, a reduction in net growth. There is some evidence that mortality actually may be 3 or 4 times that calculated from the basic inventory data.

The estimated annual mortality of softwood growing stock and major causes are:

	$\frac{M f t^{3}}{72}$
Insects	56
Disease	36
Weather	$\underline{25}$
Other	$\underline{189}$
Total	

Opportunities for Increasing Timber Supplies

Future timber supplies will be influenced by land use objectives of owners and by bringing additional areas of CFL under management.

Management objectives for State-owned land have been established.

Objectives of nonindustrial private owners vary, and can change.

Increased wood prices could bring inoperable areas under management.

Basic factors that will influence future timber supplies from State and private lands include: (a) land use policies and programs for joint resource use on State lands; (b) objectives of nonindustrial private timberland owners; (c) technical advances in logging and utilization to bring currently inoperable areas under management; and (d) management money for stocking control.

A fully integrated resource use and protection posture is State policy, and land use policies and management objectives are already established. Management will be directed toward enhancing scenic values, recreation opportunities, and critical winter range for deer and elk, toward protecting the critical watersheds, reducing wildfire hazards, controlling mountain pine beetles, and maintaining the timber stands in a productive condition. Proposed timber supplies that reflect these nontimber land use objectives have been established for these lands and are included in the county timber management plans.

The intent of small private owners, largely farmers, who hold much of the non-Federal CFL is an important matter. Although cutting has been increasing on such lands, substantial areas of otherwise productive forest land are being withdrawn from timber use in favor of summer or year-round homesite development. In 1960, the area of CFL in farmer ownership was estimated at 224,000 acres, some 70,000 acres more than 1977 (4).

The CFL now considered inoperable supports a good supply of timber. Harvesting it without damage to other important resources is not possible at the present. The price of wood will influence the speed with which cable, balloon, or helicopter techniques will invade the Black Hills.
being generated), there are only a few ways supplies from State and private forest lands will be increased. First, there needs to be a...

Access to timber is good.

Regeneration is a natural...
but usually comes in too great numbers.

Continued thinnings will be necessary...
and much material will be available for pulp, posts, and poles.

In Total -- Aside from making maximum timber output the sole objective of forest management (which would mean giving up much, if not all, the nontimber values now

Access is not much of a problem. Almost all the CFL is within 5 miles of a haul road and 90 percent is less than 1.5 miles of an existing road. In addition, 90 percent of the CFL is within 35 miles of a sawill or other wood-processing plant. Access to railroads is not quite as good.

Probably the most critical issue for future timber supplies has to do with stocking control. Regeneration in cutover stands is generally of little concern to managers after harvest. The frequent heavy seed crops combined with timely and abundant spring and summer precipitation make overstocking of seedlings the rule (1, 2, 3). Forty thousand seedlings per acre are not uncommon.

Such constant and heavy regeneration makes thinning a necessity for sustaining a reasonable growth rate and concentrating the growth on larger more valuable trees.

Intermediate thinnings pay for themselves through pulp, posts, and pole sales. The usual management regimen is a precommercial thinning, additional entries for commercial thinning every 20 years, and ending with two shelterwood cuts for regeneration.

A major increase in timber output would mean giving up other forest values.

Markets for merchantable material and management money are key items for...
$\frac{\text { continued and in- }}{\text { creased stocking }}$ control.
management less expensive (net income rather than net cost action) and reduce the volume of usable wood left lying in the woods. Which brings up...

Increased utilization. Better utilization of usable wood during logging operations could increase wood supplies. Present logging residues are estimated to be about $700,000 \mathrm{ft}^{3}$ per year.

Mill residues are being well utilized at the present except for sawdust and shavings. Slabs, edgings, and trimmings are being converted into chips and most of the bark is being utilized (il). But, meanwhile, back in the woods, there are lots of...

- Salvable dead trees. The volume of products realized from dead trees could be increased. In 1974, the total of such volume was $114,000 \mathrm{ft}^{3}$ for all ownerships. That represents only 0.2 percent of the total volume of salvable dead material. If more such trees could be economically removed, not only would timber supplies be increased, but there would also be room for...

More growing stock trees. It is estimated that only about 183,000 acres (75 percent of total) of State and private CFL are occupied with growing stock (GS) trees. The open area and that occupied by cull or dead trees and stagnated stands contribute little to current growth. In effect then, the approximately 8 million ft^{3} of gross growth is being generated on three-fourths of the area. It would seem reasonable that getting the nonproducing area stocked with growing stock trees would increase growth and therefore supplies of timber. The theoretical possibility is that the potential of 12 million ft^{3} per year can be achieved.

Here is a situation that is, however, probably only masquerading as a 4 million ft^{3} opportunity. Nearly a third of the CFL is now inoperable and the acreage of the inoperable area not stocked with GS trees is not known. Also, establishing more GS trees on understocked operable areas can only happen gradually over the next 30 years, the planned period for achieving regulation. In the long run, the biggest opportunity for increasing supplies is to...

- Bring as many inoperable areas as possible under management. The areas totaling 90,000 acres now included in the "inoperable" category have the potential to grow nearly 3 million ft^{3} per year. Probably not all such areas can be brought under management. But, getting even part of the potential will require two important things: logging techniques not now being used to manage the new stands and money.

Such high-priced methods as balloon, cable, or helicopter logging will result in higher prices for the products generated. More management money will be required. It costs more to operate on steep slopes than on flat ground. Also, there will be more acres to treat annually once the steeper slopes in the inoperable area are opened up.

ABOUT THE BLACK HILLS NATIONAL FOREST

Resource Use and Management Direction

Planned management of the timber resources of the Black Hills National Forest will...
increase timber
output to 190 million bd.ft...
provide more varied and pleasing landscape...

Use and management of the resources of the Black Hills National Forest are directed toward sustaining the high quality environment while capturing the multiple benefits potentially available from the existing resources (12).

Major objectives are to enhance key values of scenery, recreation, and wildlife, as well as providing timber, watershed, and range values. And one of the most important vehicles for achieving these goals is manipulating the timber resource.

Consequences of Timber Management

The timber management proposed for the Black Hills National Forest ${ }^{6}$ will result in an annual output of 36 million ft^{3} of roundwood, (190 million bd.ft. Scribner rule or 213 million, International 1/4-inch rule), a substantial increase over current output (152 million bd.ft. Scribner). All associated resource values will be affected in a positive way, even though planned timber output will not reach as high a level as would be
 possible if the goal were to maximize timber production.

Recreation

Recreational use of the National Forest is expected to rise to an estimated 3 million visitor-days by 1990. Scenery is important to Black Hills visitors, else they would not be there. Increased harvesting and thinning will reduce the visual monotony of dense stands and create a more varled landscape.

${ }^{6}$ The effects of management are from the final Environmental Impact Statement for the timber management plan on the Black Hills National Forest (12).

Water

increase water
supplies by 7,500 acre feet...
double big game browse and provide a threefold increase in grazing potential...
and reduce mortality from pine beetles and potential loss to wildfires.

Reducing stand densities will provide more water. Planned management is estimated to increase surface flow by 2,000 acre-feet per year and subsurface water by about 5,500 acre-feet during a year of average rainfall. More snow will reach the ground and drift. This will result in a slower and larger addition to streamflows in the spring.

Grazing and Wildlife

Planned management activities for the timber will increase both the acreaoe available for livestock grazing and the amount of herbage produced. Also, wildlife habitat will increase in area and quality. The values so generated by increased tree removals are substantial.

To maximize wood output, stands should be maintained at about 120 to $140 \mathrm{ft}^{2}$ of basal area per acre. At such density, herbage production is only about 60 pounds per acre (9, 12). If a cow could walk through such a stand, she would need about 32 acres of it to feed herself and her calf for a month, at the recommended utilization rate of 40 percent.

> At the planned stand density of about $80 \mathrm{ft}^{2}$ of basal area, there will be 260 pounds of herbage per acre (9,12), requiring only about 10 acres to feed them for a month. That is more than a threefold increase in arazing capacity over that from a program to maximize wood output. In addition, wildife browse

Other Effects

The proposed timber management plan would also help control the present mountain pine beetle outbreak and reduce chances for future losses by increasing the vigor of stands susceptible to attack. The overall effect would be to reduce mortality and increase net growith.

In addition, the potential for destructive wildfires will be reduced and so also the probability of loss of timber and associated resource values.

Key Issues for Future

The key issues are maintaining markets for small-size trees...
and adequate management money.

The prospects for the future of the resources of the Black Hills National Forest pivot on the same basic issues as for State and private lands: markets and management money.

If lack of markets for small trees slack off, thinning may become more costly. Fewer acres would be treated annually and the total benefits associated with the scheduled thinning would be reduced.

PUBLICATIONS CITED

(1) Alexander, Robert R.
1974. Silviculture of central and southern Rocky Mountain forests: a summary of our knowledge by timber types. USDA For. Serv. Res. Pap. RM-120, 36 p. Rocky Mt. For. and Range Exp. Stn., Ft. Collins, Colo.
(2) Boldt, Charles E.
1970. Sequential thinnings boost productivity of a ponderosa pine stand in the Black Hills of South Dakota. USDA For. Serv. Res. Note RM-172, 7 p. Rocky Mt. For. and Range Exp. Stn., Ft. Collins, Colo.
(3) Boldt, Charles E., and James L. Van Deusen.
1974. Silviculture of ponderosa pine in the Black Hills, the status of our knowledge. USDA For. Serv. Res. Pap. RM-124, 45 p. Rocky Mt. For. and Range Exp. Stn., Ft. Collins, Colo.
(4) Caporaso, A. P.
1964. Forest area and timber volume in western South Dakota. USDA For. Serv. Res. Note INT-20, 4 p. Intermt. For. and Range Exp. Stn., Ogden, Utah.
(5) Choate, Grover A., and Johin S. Spencer, Jr.
1969. Forests in South Dakota. USDA For. Serv. Resour. Bull. INT-8, 40 p. Intermt. For. and Range Exp. Stn., Ogden, Utah.
(6) Green, Alan W.
1976. Assessing the timber situation on a working circle using inventory data. USDA For. Serv. Res. Pap. INT-183, 43 p. Intermt. For. and Range Exp. Stn., Ogden, Utah.
(7) Green, Alan W., and Theodore S. Setzer.
1974. The Rocky Mountain timber situation, 1970. USDA For. Serv. Resour. Bull. INT-10, 75 p. Intermt. For. and Range Exp. Stn., Ogden, Utah.
(8) Hinds, Thomas E.
1971. Decay of ponderosa pine sawtimber in the Black Hills. USDA For. Serv. Res. Pap. RM-65, 11 p. Rocky Mt. For. and Range Exp. Stn., Ft. Collins, Colo.
(9) Pase, Charles P., and Richard M. Hurd.
1957. Understory vegetation as related to basal area, crown cover, and litter produced by immature ponderosa pine stands in the Black Hills. In Proc. Soc. Am. For., Syracuse, N.Y., 3 p.
(10) Progulske, Donald R.
1974. Yellow ore, yellow hair, yellow pine--a photographic study of a century of forest ecology. South Dakota State Univ. Agric. Exp. Stn. Bull. 616, 169 p. Brookings.
(11) Setzer, Theodore S., and Michael K. Barrett.
1977. Western South Dakota timber products output and plant residues. USDA For. Serv. Res. Note INT-233, 7 p. Intermt. For. and Range Exp. Stn., Ogden, Utah.
(12) USDA Forest Service.
1977. Environmental statement for timber management plan for the Black Hills National Forest. USDA For. Serv., RM Reg., Lakewood, Colorado.

APPENDIX

Glossary and Tables

Glossary

Land Use Classes

Forest 1 and	Land at least 16.7 percent stocked by forest trees
	of any size, or formerly having had such tree cover, and not currently developed for nonforest use. (Note: Stocking is measured by comparison of basal area and/or number of trees, by age or size and spacing with specified standards. The minimum area for classification of forest land is 1 acre. Roadside, streamside, and shelterbelt strips of timber must have a crown width of at least 120 ft to qualify as forest land. Unimproved roads and trails, streams, or other bodies of water or clearings in forest areas shall be classed as forest if less than 120 ft in width.) Also see definitions for land area, commercial forest land, stocking, unproductive forest land, and water.
Commercial forest land.	Forest land producing or capable of producing crops of industrial wood and not withdrawn from timber utilization (Note: Areas qualifying as commercial forest land have the capability of producing in excess of $20 \mathrm{ft}^{3}$ per acre per year of industrial wood under management. Currently inaccessible and inoperable areas are included, except when the areas involved are small and unlikely to become suitable for production and industrial wood in the foreseeable future.)
Deferred forest land	National Forest lands that meet productivity standards for commercial forest, but are under study for possible inclusion in the Wilderness System.
Unregulated forest land	Portions of commercial forest land and the noncommercial forest land that will not be utilized for sustained timber production.
Noncommercial forest land	(1) Unproductive forest land incapable of yielding crops of industrial wood because of adverse site conditions, and (2) productive-reserved forest land.
Productive- reserved forest land	Forest land sufficiently productive to qualify as commercial forest land, but withdrawn from timber utilization through statute, administrative designation, or exclusive use for Christmas tree production.
Unproductive forest land	Forest land incapable of producing $20 \mathrm{ft}^{3}$ per acre of industrial wood under natural conditions, because of adverse site conditions. (Note: Adverse conditions include sterile soils, dry climate, poor drainage, high elevation, steepness, and rockiness.)
Nonforest land	Land that has never supported forests and lands formerly forested where use for timber management is prevented by development for other uses. (Note: Includes areas used for crops, improved pasture, residential areas, city parks, improved roads of any width and adjoining clearings, powerline clearings of any width, and 1- to 40-acre areas

of water classified by the Bureau of the Census as land. If intermingled in forest areas, unimproved roads and nonforest strips must be more than 120 ft wide and clearings more than 1 acre in size to qualify as nonforest land.)

Ownership Classes

Ownership
$\frac{\text { National Forest }}{\text { land }}$

Bureau of Land Management lands

Miscellaneous
Federal lands

Other Federal lands
$\frac{\text { State, county, }}{\text { and municipal }}$ lands

Other public

Farmer-owned lands

Forest industry lands

Forest types

Major forest type

Commercial
species

Property owned by one owner, regardless of the number of parcels in a specified area.

Federal lands that have been legally designated as National Forest or purchase units and other lands under the administration of the Forest Service, including experimental areas and Bankhead-Jones Title $||\mid$ lands.

Federal land administered by the Bureau of Land Management.

Federal lands other than National Forest lands, lands administered by the Bureau of Land Management, and Indian lands.

Federal lands other than National Forest lands, including lands administered by the Bureau of Land Management, Bureau of Indian Affairs, and other Federal agencies.

Lands owned by States, counties, and local public agencies or municipalities, or lands leased to these governmental units for 50 years or more.

All Federal lands other than National Forest lands, and State, county, and municipal lands.

Lands owned by farm operators. (Note: These exclude land leased by farm operators from nonfarm owners, such as railroad companies and States.)

Lands owned by companies or individuals operating wood-using plants.

Forest Type and Tree Species

A classification of forest land based upon the species forming a plurality of live-tree stocking. (Note: Types shall be determined on the basis of species plurality of all live trees that contribute to stocking; that is, up to a maximum of 16 percent at each plot point based upon a 10point location.)

A grouping of local forest types into about 10 eastern and 10 western groups. The groupings are based upon similar and associated species.

Tree species presently or prospectively suitable for industrial wood products. (Note: Excludes species of typically small size, poor form, or inferior quality, such as hawthorn and sumac, scrub willow, and alder.)

Noncommercial species	Tree species of typically small size, poor form, or inferior quality that normally do not develop into trees suitable for industrial wood products.
Softwoods	Coniferous trees, usually evergreen having needles or scalelike leaves.
Hardwoods	Dicotyledonous trees, usually broad-leaved and deciduous.
	Class of Timber
$\frac{\text { Growing stock }}{\text { trees }}$	Live trees of commercial species meeting specified standards of quality or vigor; excludes cull trees.
Rough trees	(1) Live trees of commercial species that do not
	contain at least one 12 -foot saw log or two noncontiguous saw logs, each 8 ft long or longer--now or prospectively-and/or do not meet regional specifications for freedom from defect primarily because of roughness or poor form; (2) all live trees of noncommercial species.
Rotten trees	Live trees of commercial species that do not contain
	at least one 12 -foot saw log, or two noncontiguous saw logs, each 8 ft long or longer--now or prospectively--and/or do not meet regional specifications for freedom from defect primarily because of rot; that is, when more than 50 percent of the cull volume in a tree is rotten.
Cull	Portions of a tree that are unusable for industrial
	wood products because of rot, form, or other defect.
Salvable dead	Standing or down dead trees that are considered
trees	merchantable by regional standards.
Mortality trees	Growing stock trees dying from natural causes during a specified period, usually annually.
	Diometers and Size Classes
Diameter classes	A classification of trees based on diameter outside
	bark, measured at breast height (4-1/2 ft above the ground). (Note: "d.b.h." is the common abbreviation for diameter at breast height. Two-inch diameter classes are commonly used in Forest Survey, with the even inch the approximate midpoint for a class. For example, the 6 -inch class includes trees 5.0 through 6.9 inches d.b.h., inclusive.)
$\frac{\text { Tree size }}{\text { class }}$	A classification of trees based on diameter at breast
	height, including sawtimber trees, poletimber trees, and saplings and seedlings.
Seedlings	Live trees less than 1.0 inch d.b.h.
Saplings	Trees 1.0 to 5.0 inches d.b.h.

Poletimber trees

Sawt imber trees

Net volume

Growing stock volume
$\frac{\text { International }}{1 / 4 \text {-inch rule }}$

Gross growth

Net annual growth

Mortality

Allowable cut

Timber
removals

Timber
products

Trees at least 5.0 inches d.b.h., but smaller than sawtimber size.

Trees exceeding poletimber size. In the Intermountain States, the minimum d.b.h. for softwood sawtimber is 9.0 inches and for hardwoods 11.0 inches.

Votume

Gross volume less deductions for rot, sweep, or other defect affecting use for timber products.

Net volume in cubic feet of live sawtimber trees and live poletimber trees from stump to a minimum 4.0 inch top (of central stem) outside bark. Net volume equals gross volume less deduction for rot and missing bole sections.

The standard board-foot \log rule adopted nationally by the Forest Service for the presentation of Forest Survey volume statistics.

Growth and Mortality
Annual increase in net volume of trees in the absence of cutting and mortality. The total includes ingrowth and accretion.

The increase in net volume of a specified size class for a specific year. (Note: Components of net annual growth include the increment in net volume of trees at the beginning of the specific year that survive to the year's end, plus the net volume of trees that reach the size class during the year, minus the net volume of trees that died during the year, minus the net volume of trees that became rough or rotten during the year.)

Number of sound-wood volume growing stock trees dying from natural causes during a specified period.

Timber Cut

The volume of timber that could be cut on commercial forest land during a given period under specified management plans aimed at sustained production of timber products.

The net volume of growing stock trees, removed from the inventory by harvesting, or by such cultural operations as timber-stand improvement, land clearing, or changes in land use.

Roundwood products and plant byproducts. (Note: Timber products output includes roundwood products cut from growing stock on commercial forest land, and from other sources, such as cull trees, salvable dead trees, limbs, and saplings, or from trees on noncommercial and nonforest lands, and from plant byproducts.)
$\frac{\text { Roundwood }}{\text { products }}$
$\frac{\text { Plant }}{\text { residues }}$
Logging residues
$\frac{\text { Other }}{\text { removals }}$
$\underline{\text { Rotation }}$
Industrial wood

Logs, bolts, or other round sections cut from trees for industrial or consumer uses. (Note: Includes saw logs, veneer logs, and bolts, cooperage logs and bolts, pulpwood, fuelwood, piling, poles, hewn ties, mine timbers, and various other round, split, or hewn products.)

Wood materials from manufacturing plants not utilized for some product. (Note: Includes slabs, edgings, trimmings, miscuts, sawdust, shavings, veneer cores and clippings, and pulp screenings.)

The unused portions of trees cut or killed by logging.
The net volume of growing stock trees removed from the inventory by cultural operations, such as timber stand improvements, land clearing, and changes in land use.

The period of years between establishment of a stand of timber and the time when it is considered to be ready for cutting and regeneration.

Quality
All roundwood products, except fuelwood.
Site
A classification of forest land in terms of inherent capacity to grow crops of industrial wood.

Site classifications are based upon the mean annual growth of growing stock (not including thinnings) attainable in fully stocked stands at culmination of mean annual growth. Height-age relationships are usually used as indicators of the specified volume-site class.

Stand Size Classes

A classification of forest land based on the size class of growing stock trees on the area, that is, sawtimber, poletimber, or seedlings, and saplings. (Note: Only those trees that contribute to no more than 16 percent stocking at a plot point, based upon a lo-point location, will be considered in determining stand-size class.)
a. Stands at least 16.7 percent stocked with growing stock trees, with half or more of total stocking in sawtimber or poletimber trees, and with sawtimber stocking at least equal to poletimber stocking.
b. Stands at least 16.7 percent stocked with growing stock trees in which half or more of this stocking is in poletimber and/or sawtimber trees, and with poletimber stocking exceeding that of sawtimber.

Sapling-seedling stands

Nonstocked land

Stand density

Stocking

Basal area
$\frac{\text { Growing stock }}{\text { level }}$
c. Stands at least 16.7 percent stocked with growing stock trees in which more than half of the stocking is saplings and/or seedlings.
d. Commercial forest land less than 16.7 percent stocked with growing stock trees.

Stand Density and Stocking
A quantitative measure of a stand in terms of square feet of basal area, number of trees, or volume per acre. It reflects the degree of crowding of stems within the area.

A relative term used to describe the adequacy of a given stand density in meeting the management objectives.

The cross-sectional area of a tree stem, in square feet, at a point 4.5 ft above the ground. Basal area per acre is the sum of the basal areas of all the trees on the acre.

Basal area (square feet) per acre that will remain after thinning when average stand diameter is 10 inches or more.
Table 1.--Land area by county and major Iand class; western South Dakota, 1977

[^4]

[^5]Table 3 (con.)

Table 3. (con.)

Table 4.--Net volume of growina stook ana sawtimber on conmerciar timberlana by county,

County	$\begin{gathered} \text { All owner } \\ : \quad \text { groups } \end{gathered}$	$\begin{aligned} & \text { : National } \\ & \text { : Forest } \end{aligned}$	$\begin{aligned} & \text { Other } \\ & : \quad \text { public } \end{aligned}$	$\begin{aligned} & : \text { Forest } \\ & \text { : industry }: \\ & \hline \end{aligned}$	Other private	\vdots	$\begin{gathered} \text { All owner } \\ \text { groups } \end{gathered}$		$\begin{gathered} \text { National } \\ \text { Forest } \\ \hline \end{gathered}$		$\begin{aligned} & \text { Other } \\ & \text { public } \end{aligned}$	$\begin{aligned} & \text { Forest }: \\ & \text { : industry : } \end{aligned}$	$\begin{aligned} & \text { Other } \\ & \text { private } \end{aligned}$
- - . - - - Thousand cubic feet - . - . - - - Thousand board feet ${ }^{1}$ -													
Butte, Harding, Meade													
Softwoods	81,311	52,904	4,404	--	24,003		242,092		162,926		11,766	--	67,400
hardwoods	2,503	300	227	--	1,976		7,728		287		530	--	6,911
All species	83,814	53,204	4,631	--	25,979		249,820		163,213		12,296	---	74,311
Custer													
Softwouds	436,480	355,279	56,185	--	25,016		1,504,119		1,241,461		197,338	--	65,320
Hardwoods	1,410	1,131	11	--	238		486		391		5	---	90
All species	437,890	356,410	56,226	--	25,254		1,504,605		1,241,852		197,343	---	65,410
Fall River													
Sostwoods	41,217	23,082	1,810	--	16,325		123,005		74,453		4,973	--	43,579
Hardwoods	106	48	8	--	50		206		9		27	---	170
All species	41,323	23,130	1,818	--	16,375		123,211		74,462		5,000	- -----	43,749
Lawrence													
Softwoods	482,608	375,896	13,637	--	93,075		1,726,936		1,336,572		48,821	--	341,543
Hardwoods	8,616	4,224	550	--	3,842		6,548		4,170		311	--	2,067
All species	491,224	380,120	14,187	\cdots	96,917		1,733,484		1,340,742		49,132	- - -	343,610
rennington													
Softwoods	585,153	537,823	2,771	--	44,559		2,000,775		1,875,216		6,903	--	118,656
Hardwoods	3,656	3,180	28	--	448		3,373		2,529		48	---	796
All species	588,809	541,003	2,799	--	45,007		2,004,148		1,877,745		6,951	- --	119,452
All counties													
Softwoods	1,626,769	1,344,984	78,807	--	202,978		5.596,927		4,690,628		269,801	--	636,498
Hardwoods	16,291	8,883	854	--	6,554		18,341		7,386		921	--	10,034
All species	1,643,060	1,353,867	79,661	--	209,532		5,615,268		4,698,014		270,722	---	646,532

${ }^{1}$ International $1 / 4$-inch rule.
Table 5.--Net volume of timber on conmereial timberland by county, timber class, and softwoods and hardwoods; westem South Dakota, 1977

	All timber classes			Growing stock			Sound cull trees			Rotten cull trees			Salvable dead trees		
County	$\begin{array}{cc} : & \text { All } \\ : & \text { species } \\ \hline \end{array}$	Softwoods	: Hard- : woods	: All	: Softwoods	Hard- woods	All species	: Soft- : woods	Hardwoods	All specie	Softwoods	Hardwoods	All species	Softwoods	Hardwoods
	- - -	- - -	- - -	- - - -	- - -	- -	Thousand	cubic		- -	- -	- -	- - -	- -	- -
Butte, Harding, Meade	86,582	83,109	3,473	83,814	81,311	2,503	1,543	825	718	338	103	235	887	870	17
Custer	454,378	448,978	5,400	437,890	436,480	1,410	7,489	3,998	3.491	1,125	626	499	7,874	7,874	--
Fall River	42,380	42,172	208	41,323	41,217	106	680	593	87	35	20	15	342	342	--
Lawrence	512,599	495,269	17,330	491,224	482,608	8,616	11,314	4,456	6,858	2,619	776	1,843	7,442	7,429	13
Pennington	609,623	600,940	8,683	588,809	585,153	3,656	7.949	4,277	3.672	2,218	863	1,355	10,647	10,647	--
All counties	1,705,562	1,670,468	35,094	1,643,060	1,626,769	16,291	28,975	14,149	14,826	6,335	2,388	3,947	27,192	27,162	30

Table 6.--Net volume of growing stock on commercial timberland by county, diameter class, and species; westem South Dakota, 1977

Table 6 (con.)

$\begin{gathered} \text { County and } \\ \text { diameter class } \\ \text { (inches) } \end{gathered}$							
Custer							
$5.0-6.9$	32,783	778	33,561	436	223	659	34,220
7.0-8.9	61,741	1,754	63,495	123	314	437	63,932
9.0-10.9	73,114	1,635	74,749	177	42	219	74,968
11.0-12.9	72,251	1,193	73,444	4	56	60	73,504
13.0-14.9	62,236	1,389	63,625	--	10	10	63,635
15.0-16.9	48,227	1,240	49,467	--	2	2	49,469
17.0-18.9	32,716	661	33,377	--	7	7	33,384
19.0-20.9	22,886	618	23,504	--	2	2	23,506
21.0-22.9	11,317	515	11,832	--	5	5	11,837
23.0-24.9	5,152	233	5,385	--	--	--	5,385
25.0-26.9	3,035	--	3,035	--	3	3	3,038
27.0-28.9	647	--	647	--	--	--	647
$29.0+$	359	--	359	--	6	6	365
Total	426,464	10,016	436,480	740	670	1,410	437,890

Table 6 (con.)

${ }^{1}$ Less than 0.5 thousand cubic feet.
Table 6 (con.)

dianter al (inches) \qquad							
Lawrence							
$5.0-6.9$	33,758	4:004	37,762	2,759	1,502	4,261	42,023
7.0-8.9	63,951	4,390	68,341	1.476	558	2,034	70.375
$9.0-10.9$	81,985	5.111	87,096	694	397	1,091	88,187
11.0-12.9	79,661	5,229	84,890	175	118	293	85,183
13.0-14.9	66,748	3,658	70,406	--	150	150	70,556
15.0-16.9	50,026	3,152	53,178	--	73	73	53,251
17.0-18.9	36,217	2,312	38,529	--	207	207	38,736
19.0-20.9	20,299	1,417	21,716	--	53	53	21,769
21.0-22.9	10,114	870	10,984	--	137	137	11,121
23.0-24.9	5,178	315	5,493	--	59	59	5,552
25.0-26.9	2,552	236	2,788	--	88	88	2,876
$27.0-28.9$	594	80	674	--	--	--	674
$29.0+$	751	--	751	--	170	170	92.1
Total	451,834	30,774	482,608	5,104	3,512	8,616	491,224

Table 6 (con.)

Table 6 (con.)

Table 7.--Net volume of sawtimber on commercial timberland by county,
diometer class, and species; western South Dakota, 1977

Table 7 (con.)

County and diameter class (inches)		$\begin{aligned} & \text { ETW O } \\ & \text { White } \\ & \text { spruce } \end{aligned}$	D S $:$ Total : softwoods	HA R DW O O D S: Other : Total : Total: hardwoods : hardwoods : all species			
Custer $\ldots-$ Thousand board feet, International 1/4-inch mule							
9.0-10.9	181,160	9,208	190,368	0	0	0	190,368
11.0-12.9	290,656	6,927	297,583	18	275	293	297,876
13.0-14.9	298,373	8,229	306,602	--	54	54	306,656
15.0-16.9	255,308	7,405	262,713	--	14	14	262,727
17.0-18.9	184,986	3,964	188,950	--	40	40	188,990
19.0-20.9	134,845	3,726	138,571	--	10	10	138,581
21.0-22.9	62,576	3,167	65,743	--	24	24	65,767
23.0-24.9	28,960	1,470	30,430	--	--	--	30,430
25.0-26.9	17,242	--	17,242	--	17	17	17.259
$27.0-28.9$	3,721	--	3,721	--	--	--	3,721
$29.0+$	2,196	--	2,196	--	34	34	2,230
Total	1,460,023	44,096	1,504,119	18	468	486	1,504,605

Table 7 (con.)

Table 7 (con.)

Table 7 (con.)

County and diameter class (inches)	$\begin{aligned} & : \frac{S}{:} \text { Ponderos } \\ & : \quad \text { pine } \\ & \hline \end{aligned}$	$\begin{array}{lr} \text { F T W O } \\ \hline: \quad \text { White } \\ : \quad \text { spruce } \end{array}$	$\begin{aligned} & \text { D S } \\ & \hline: \text { Total } \\ & \text { : softwoods } \end{aligned}$	H A R D W O O D S: Other : Total : Total: hardwoods : hardwoods : all species			
Pennington							
9.0-10.9	262,438	16,786	279,224	0	0	0	279,224
11.0-12.9	409,348	16,475	425,823	506	475	981	426,804
13.0-14.9	389,852	15,895	405,747	--	137	137	405,884
15.0-16.9	322,885	14,650	337,535	--	217	217	337,752
17.0-18.9	235,691	8,910	244,601	--	471	471	245,072
19.0-20.9	157,717	6,642	164,359	--	385	385	164,744
21.0-22.9	72,911	4,141	77,052	--	384	384	77,436
23.0-24.9	35,849	1,945	37,794	--	--	--	37,794
25.0-26.9	20,770	--	20,770	--	258	258	21,028
27.0-28.9	4,799	--	4,799	--	--	--	4,799
$29.0+$	3,071	--	3,071	--	540	540	3,611
Total	1,915,331	85,444	2,000,775	506	2,867	3,373	2,004,148

Table 7 (con.)

County and diameter class (inches)	$\begin{aligned} & : \frac{\mathrm{S}}{} \mathrm{P} \\ & \text { Ponderosa } \\ & : \quad \text { pine } \end{aligned}$	$\begin{array}{cc} \hline \text { W F W O O O } \\ \hline: \quad \text { White } \\ : \quad \text { spruce } \\ \hline \end{array}$	$\begin{aligned} & \text { D S } \\ & : \text { Total }: \\ & : \text { softwoods }: \end{aligned}$	Aspen	$\begin{aligned} & \hline \text { HARDWO O } \\ & \hline: \text { Other } \\ & : \text { hardwoods : } \end{aligned}$	$\begin{aligned} & \text { D S } \\ & \text { Total } \\ & \text { hardwoods }: ~ \end{aligned}$	Total all species
All counties	- - -	- - Thou	usand board fee	et, Inter	mational 1/4-	nch rule -	- - - - -
9.0-10.9	721,193	53,043	774,236	0	0	0	774,236
11.0-12.9	1,120,545	53,800	1,174,345	1,459	2,296	3,755	1,178,100
13.0-14.9	1,104,447	45,837	1,150,284	--	1,486	1,486	1,151,770
15.0-16.9	909,957	41,126	951,083	--	781	781	951,864
17.0-18.9	668,243	26,452	694,695	--	2,205	2,205	696,900
19.0-20.9	436,565	18,794	455,359	--	932	932	456,291
21.0-22.9	200,206	12,802	213,008	--	1,711	1,711	214,719
23.0-24.9	99,230	5,459	104,689	--	794	794	105,483
25.0-26.9	54,521	1,294	55,815	--	1,981	1,981	57,796
27.0-28.9	12,626	451	13,077	--	--	--	13,077
$29.0+$	10,336	--	10,336	--	4,696	4,696	15,032
Total	5,337,869	259,058	5,596,927	1,459	16,882	18,341	5,615,268

Table 8.--Net annual growth of growing stock and sowtimber on conmercial timberland by county,

${ }^{1}$ International $1 / 4$-inch rule.
${ }^{2}$ Less than 0.5 thousand bd. ft.
${ }^{3}$ Less than 0.5 thousand ft^{3}.
Table 9.--Annual mortality of growing stock and sawtimber on cormereial timberland by county,

${ }^{1}$ International 1/4-inch rule.
${ }^{2}$ Less than 0.5 thousand ft^{3}.
${ }^{3}$ Less than 0.5 thousand bd. ft.

Table 10.--Projected output of roundwood projects from timberlands by county, softwoods and hardwoods, and owner group; western South Dakota, 1977

County	:All owner : groups	$\begin{gathered} \text { National : } \\ \text { Forest : } \end{gathered}$	Other public	$\begin{aligned} & \text { : Forest : } \\ & \text { : industry } \\ & \hline \end{aligned}$	Other private
	- - Thousand cubic feet -				
Butte, Harding, Meade					
Softwoods	1,076	672	1	--	403
Hardwoods	--	--	--	--	--
All species	1,076	672	1	--	403
Custer					
Softwoods	3,451	2,982	85	--	384
Hardwoods	--	--	--	--	--
All species	3,451	2,982	85	--	384
Fall River					
Softwoods	--	--	--	--	--
Hardwoods	-	--	--	--	--
All species	--	--	--	--	--
Lawrence					
Softwoods	10,329	7,085	81	--	3,163
Hardwoods	--	--	--	--	--
All species	10,329	7,085	81	--	3,163
Pennington					
Softwoods	4,800	3,922	49	--	829
Hardwoods	--	--	--	--	--
All species	4,800	3,922	49	--	829
All counties					
Softwoods	19,656	14,661	216	--	4,779
Hardwoods	--	--	--	--	-
All species	19,656	14,661	216	--	4,779

Table 11.--Projected removals from growing stock and sawtimber on cormercial timberland by county,

.

Green, Alan W.
1978. Timber resources of western South Dakota. USDA For. Serv. Resour. Bull. INT $-12,56$ p. Intermt. For. and Range Exp. Stn., Ogden, Utah 84401.

Reports findings of the comprehensive survey of western South Dakota's 1.4 million acres of forests, which include 1.2 million acres of commercial forest land. Presents statistics on area, volume, growth, mortality, and timber use. Also describes species, volumes per acre, stocking, site quality, ownership, trends in product harvesting and other factors that bear on timber management. Opportunities and problems related to future development are discussed.

KE YWORDS: timber supplies, forest land, statistics.

Green, Alan W.
1978. Timber resources of western South Dakota. USDA For. Serv. Resour. Bull. INT-12, 56 p. Intermt. For. and Range Exp. Stn., Ogden, Utah 84401.

Reports findings of the comprehensive survey of western South Dakota's 1.4 million acres of forests, which include 1.2 million acres of commercial forest land. Presents statistics on area, volume, growth, mortality, and timber use. Also describes species, volumes per acre, stocking, site quality, ownership, trends in product harvesting and other factors that bear on timber management. Opportunities and problems related to future development are discussed.

KEYWORDS: timber supplies, forest land, statistics.

Headquarters for the Intermountain Forest and Range Experiment Station are in Ogden, Utah. Field programs and research work units are maintained in:

```
Billings, Montana
Boise, Idaho
Bozeman, Montana (in cooperation with
    Montana State University)
Logan, Utah (in cooperation with Utah State
    University)
Missoula, Montana (in cooperation with
    University of Montana)
Moscow, Idaho (in cooperation with the
    University of Idaho)
Provo, Utah (in cooperation with Brigham
    Young University)
Reno, Nevada (in cooperation with the
    University of Nevada)
```


[^0]: lPhotographs courtesy of Agricultural Experiment Station, South Dakota State University, Brookings, South Dakota.

[^1]: ${ }^{2}$ Forest industry data have been combined with miscellaneous private data to avoid disclosure of an individual owner.

[^2]: ${ }^{4}$ Custer State Park is excluded from much, but not all, of the more detailed examination of the resource that follows. Although timber will be harvested from the Park, such removals will be requirements to enhance the other values and meet the overall management goals of the Park, rather than representing any specific timber production goal.

[^3]: ${ }^{5}$ This area represents open areas in sparse stands in which trees could grow.

[^4]: This and all later tables include only the portions of Custer, Meade, and Pennington Counties west of the l03rd meridian.

 $$
 { }^{2} \text { From U.S. Bureau of the Census, Land and Water Area of the United States, } 1970 .
 $$

 land by the Bureau of the Census.
 ${ }^{4}$ Less than 0.05 percent.

[^5]: ${ }^{\text {l }}$ Forest industry has been combined with Miscellaneous private to avoid disclosure of an individual owner. on this and all tables that follow.

