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I. An Algebraically complete system of Quaternariants. By Daviw B. Mair, 
B.A., Fellow of Christ's College. 

[Read 26 February, 1894.] 

In the Transactions of the Cambridge Philosophical Society, Vol. XIV. Part IV. 
Dr Forsyth discusses the differential equations satisfied by the concomitants of quater- 
nary forms. As point-, plane-, and line-variables are taken 

@, Ly, Ls, Ls, 

Uy, Ug, Us, Uy, 

Pw Ps Ps> Ps Ps» Ps: 

the line-variables being expressible in terms of two sets v, w of plane-variables in the 
form 

Py = VW, — VM, Ps = VWs — VWs 

Po = VMs — VWs Ps = Vs; — VWs 

Ps = VsWs — VWs Ps = VWs — VM. 

The leading coefficient of a quaternariant, ie. the coefficient of the term contain- 

ing only 2, p;, and wm, satisfies four differential equations, which Dr Forsyth writes 

Ve — 0 — 0: ee — Oy iO. 

Of these either of the last two may be omitted as it is satisfied in virtue of the 

remaining three: and any solution of these equations, integral in the coefficients of the 

quantic, is the leading coefficient of a concomitant, determined except for an additive 

multiple of 

Pips + P2ps + PsPs- 

1. The present object is to derive from the differential equations a complete 

system of concomitants for any quantic, the number in a complete system being less 

by 5 than the number of coefficients of the quantic. For this purpose it is convenient 

to use NV, rather than M,, and to introduce a new differential equation ®=0 which is 

satisfied in virtue of the original equations. Solutions ¢ of V,=0 are first found, next 

functions y of the quantities ¢ which satisfy M,=0, then functions y of the quantities 

y which satisfy @=0, and finally functions » of the quantities y which satisfy V,=0 

and are therefore leading coefficients. The method is first applied to the cubic. 

Vou. XVI. Parr I. 1 
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The cubic being 

agen; + 3a07r, + 3a.1,074+ are +32, Ay 2? + 2a,'x,25 + ay'x3? 

+ 83b,220, + 6b,0,050. + 3.722 + Qbp'2,2 + 2b, x52 

+ 86 em 2,7 + 30,052," + 22 

+ dyx,? 

+ 322 Qp'@, + 0y'%3 | +a) 23 

+ bya. 

we take as first three solutions of V,=0 

6,=a;, 6=a, G.=c.- 

Also Nii, = ae 

this quantity }, is taken as variable of reference. 

As third solution we take G5 da. 

For the fourth, since V.b, =a, 

b, Nib, — bN.b, = (b,, aoa, — bo) = A, say; 

now WV.6,=0, and we take as fourth solution 

0,=(b,, a2Ya,, — by). 

Again N,c, = 2b,, and therefore ; 

Qe .No by — byNo Cy = 2 (Co, b,¥a,, — bo); 

calling this expression 26,,, we have 

0; Nb, — b)N2Os = (Co, b1, Goh, — bo); 

as this last satisfies V.=0, we take as fifth solution 

6;=(C, b,, aa, —b). 

As sixth solution we take GL= GA. 

And since V,6,/=a,, we form the expression 

by Ns by — bNo by = (bs, eG, — bo), 

which gives the seventh solution 

6, = (b;', a Ya, — bo). 

In the same way we derive four solutions from as, b, ¢, d, three from ay’, by’, ¢’, 
’ mr 

two from a,”’, b,”, and have besides the solutions a,’ and a,’”. 

The solutions @ are not in a convenient form. If each be multiplied by an appro- 

priate power of @,, there results the set of 19 solutions ¢, given in Table I, such that 

M,¢, (for all values of r except 2) is a solution of V, =0. 

2. The solutions of M,=0 are found in a similar manner. The effect on the 

functions ¢ of the operator a,?M;, which will be called A, are given in Table I. 

For three solutions we take 

= bo W=, Wn = 9, 
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Also Ads= do; 

the function ¢, is taken as variable of reference. 

We have next, since Ag, = 2¢, 

2p, Ad, — PAs = 2 ($5, Pil bs, — Hs) ; 

this expression satisfies A=(0 and we take as third solution 

Vs = (;, Pidds, ed dy). 

As fourth solution we take Wi = >. 

And from A¢,=¢, we have 

PAds — P.Ads = (hs, $:0bs, — ba), 

which is a solution so that we put 

vs= (5, ;0¢;, = ps). 

In this way are found the 17 solutions y which are given in Table II. 

3. The operator ® is, with the present notation, 

a,M, —b,N,. 

Its effect on the functions ¢ is given in the first table, the effect on the functions 

is thence calculated and given in the second table. It appears that Py, is also a 

function 1. 

Hence, as before, by the use of y, as variable of reference, are deduced the 16 

solutions y of ®=0, which are given in Table III. 

1 ah : : 
The effect of the operator a on the quantities ¢, , x is calculated in succes- 

1 

sion, as shewn in the tables, and it appears that ms N,x, is also a function x. 
1 

From these, using y, as variable of reference, we find 15 solutions » of NV,=0. 

4. Since the solutions of each equation are expressed in terms of solutions of the 

preceding equation, it follows that the quantities @ satisfy the three equations 

Ne — 05 a= 0) Ve "0: 

Also, although the ¢’s are not integral in the coefficients, the @’s are integral functions, 

as is proved by expressing them in the symbolical form. Thirdly, to see that the o's 

are independent, consider the system ¢. The coefficient a, is introduced into the system 

by do, a by gi, a by ¢,, and 
, , »,) , ” 

dy, b,, Cy, Gd, by, Ms ds, bs, CQ, dy, ay, b, ? Co aq, by 
“u 

> 
ut 

A ; 

by ds; ds; ds; ds; ¢d;, ds; ds, dis du; Pi, dis, Piss is; Piss diz dis, 

respectively. Since every function added to the system introduces a new coefficient there 

can be no relation among the functions ¢. The set 

ho. vi vo, vs, vi, vs; ve ve; vs; Yo, Yo, vu Yio, vis, Vis Vis, Vis 

introduce do, di, ds, ds, ¢$;, ds, ds, gra, gu, hr, ds, dis; dis; dis; diz, dis; dis; 

1—2 
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respectively, and are therefore independent. The set 

Xo» Xi» X2> Xs» Xs» X5> Xe. Xz» Ke» Xa» Xo» Xu» Ki2» Kis» Xis> Xis 

introduce Wo, th, vs, Ws, VWs, Vrs, Vv, vi, vis Vis: Vs; Viv, Vis, Ws, Vis vio; 

respectively, and so are independent. The final system 

@y, M1, We, Wy, Ws, M5, We, W;, Ws, My, Mo, Mu, Miz, M3, Mis 

introduce in succession 

Xo» Xa. Xs» Xs» Xs» Xe» Xo» Xz» Xs» Xu» Ns» Kis» Xia» Xz» Xo» 

and are therefore independent. 

Lastly the cubic has 20 coefficients, and we have obtained 15 independent solutions 

of the equations 
N= M,=N,=0, 

they are therefore the leading coefficients of a complete set of concomitants. 

5. The complete concomitant belonging to each leading coefficient may be found 

from other differential equations given in Dr Forsyth’s paper. A shorter method is to 

express the leading coefficients in symbolical form, For this purpose the functions $, y, x 

are first expressed symbolically; they are given in the tables with the use of the contrac- 

tions 
(a8) = 4,8. — a8; 

At = All, — Asby = — (AB) B? 

dp = a8: — a:8, 

(aBry) = Go, Gg, Ay | 

1A, By Bi | 
| v2, Yo Ys | 

and the identities 
a8 — a8;= (a8) ay 

ag — (a8) ao = (aBy) 9°. 
In Table IV. the symbolical form of the leading coefficients is given, the contraction a; 

being retained for shortness. 

To obtain the complete concomitants it is now only necessary to replace 

m, az, (48), (a8) 

by az, (aBp) BA a (aBp), coal (aByu), 

where Oy = M2, + An, + AX + O54, 

(aByu)=| %, %, Os, O% 

hi, Bo, Bs, By 

Yu. Ya, Yas Ye 
Ten! MI, BONS MOP 

(aBp) = (4.8; — a3») Pit (a;B; — 4,8;) P2+ (a8. — 28,) Ds 

+ (G63 — a,P;) pst (a.8,— a8.) Pst (a8; — a,8s) ps. 

The degree in w, p, and w may be then seen by inspection; the leading terms of the 

15 concomitants U are given in Table IV. 
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6. It may be mentioned that two of functions » may be replaced by simpler forms. 
Since 

(a8) y¢ + (Bry) a + (ya) Be =0, 
we have (aP) (By) ary Biy, = $ (By) arin {(a8) Ye — (27) Be} 

aa 4 (By) ar Bin, i— (By) ae 

=— W.0;. 

Hence ws = (a8) Biyireye (By) ae + (a8) ye| 

=—@,.@;+ @, . (a8)? a:8;, 

so that w, may be replaced by 

(48)° a8. 
Similarly @y = — @,. Wj + @,. (4B) (ay) Binnye, 

so that w, may be replaced by 

(a8) (ary) Bins: 

7. In Table V. are given the leading coefficients for the quartic in symbolical form, 

the contraction a; being used for (as8,— 4.8) 8, 

Table VI. gives the leading coefficients for the simultaneous concomitants of two 

quadratics. In the literal form small letters denote the coefficients of the first quadratic, 
capitals those of the second; in the symbolical form undashed letters denote the former, 
dashed letters the latter. This set is however quite unsymmetrical with respect to the 
two quadratics, and a more symmetrical set will be found. 

A system of two quadratics. 

8. The equations V,=0, M,=0, satisfied by the leading coefficient of the two 

quaternary quadratics, shew the coefficient to be a concomitant of two binary quadratics 

with , b,, a, and Cy, B,, A,, as coefficients and with four sets of variables a,, —b,; 

a, —b'; Ai, —B; A,’, —B,. The equations are also satisfied by the six quantities 

Hh = %, q2= Ao, 

M=%, gs =A, 

h =, @=—A,. 

Consider then the functions 

UY, = (Cp. d, Gar, — b), v, = (C,, B,, As¥A,, — Bo), 

W, = (C, 0, aQa, —bYA,, —B,), w, = (Cy, By, A.YA,, —BYa,, — by), 

2,= (6, b,, da§-A,, —B,)’, 2. = (Cy, B,, Asha,, —b)’, 

v= (ce, b, a.Na,, — b, Va’, — b,’), ve = (C,, Bi, AsGA, — BG Ay’, — B,), 

0," =(e, b,, aay’, — by’), v, = (Cy; BAA, — By 

W,' = (6, b,, a29-A,, — By Yay’, — by’), ws =(Cy, By, Asa, — Ay’, — By’), 

hy = 2 — b2, ha= C4 — bs 

eA Ca The 
fa—COae A,{aq, >= 0). 
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Of these all containing no dashed letters are solutions of V,=0, and for the rest 

No —'a,ly, Nyy = Axhe, 

Nay = Dah, Nv = 2A hs, 

Nw. =Ash,, Nav. = ahs. 

From these we see that 

r= % — qh, Ty = Vs! — gz hs, 

8 =" — Gy, $= Vs — Ga he, 

t= Wy — gin, n= We — Qi hs, 

are solutions of V,=0. 

We can now choose a complete set of 15 solutions; we take 

n> Ry Diy Tin Sis bass 

Ga, hy, V2, T2) 82, tn « 

Tas; Fass U- 

The five q, du, %, ™, &, belong to the first quadratic and are independent since they 

introduce a, d, , @, @, In succession. Then A, is introduced by g.; A, and B, | 

by w, and f, which are independent of one another since the elimimation of A, from 

FS = (Bo, Aifa,, — bo) 

W; = (C, b,, d2%a,, — bY A, — By) 

does not eliminate B,; C,, B,, A, are introduced by 2, hy, he, which are independent 

for a similar reason; A, by &.; By, Ai by 72, ty; and A,” by s,. 

The corresponding concomitants are 

QS er = Qty +... 

V,=(@8p) (yp) Baye = tip? +... 
H, =} (@Bpy =hp?+... 

R,=4 (aByu)(aBp)yz = NMpwy+... 

S, =—1(aByu)? = $+... 

T= 4 (aBa’u) (ap) a =terpyt... 

with the symmetrical six 
ORVAR eH lta iSa5) earls 

and H,, = (aa'py = hp + ... 

FP, = —(aa'p) a0’, Spicy th ae saz 

W, =(@8p) (aa'p) Bre. = wyeepet.... 

There remain three solutions 2,, z, w. not used as members of the complete set. 

They are given in terms of the set by 

Wy? — 42, + hy fi? = 0, 

We — Wk. + hf? = 0, 

hyo fir + 2wyw, — VV. — 22. = 0. 
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By reason of these relations w, may be replaced by w,, 2, or z,. Or a symmetrical but 
less simple set is obtained by replacing h,, by wy. 

9. The unsymmetrical set of solutions of Table VI. are expressed 

present set as follows, the functions w,, 2,, 2, being retained for simplicity : 

®=h> 

@, =, 

w,=h,, 

@;=7,, 

oO; = 2: 

@, =fia, 

@, = WW, 

hos = PW, — Yt, 

@ = 2, 

Fis@r = WZ. — VjWe, 

Oy = hy, — Iz, 

Nyho fr@ = — ty hye — tyhsy24 + PZ. + HhwW,Z, 

hyhs fir@,s = (VW, — WZ») co) + (Uv, — Wy) 1, 

hPhe fires = — fh hy? + 26° — 2wdy + vf’, 

where b = beryh. — rh, — TywWyhs, 

vr = tyr). 

A system of three quadratics. 

in terms of the 

10. The concomitants of three quadratics might be found by the general method 

but not in a symmetrical form. 

We take with the two quadratics of § 9 a third with Greek letters as coefficients. 

We have then as solutions of the equations functions of the types 

3 h> VY, Ta) S15 la, Ts his, te, 

to which may be added 

n= | (Of “ae | ; T=| a, by a |. 

Ca By Asn HCA Ee | 

yo Bi % | m Bo a | 

Also the binary variables in v, may be replaced in whole or in part by d4,, —B,, and 

@, — 8); this will be denoted by additional suffixes, e.g. 

Vi, 2 = (Co, b,, a, dy, = bY A,, = B,), 

VY, 2,3 = (Co, (iis a,\A,, = Bea, = Bo). 
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The 25 leading coefticients of the complete system of concomitants are obtained in the 

same way as for two quadratics. We take 

hs U; Ti, Ss h, 

for the first quadratic, and with these 

q: introducing the coefficient A o> 
Ose) Wes snesaninee cote on onsteenee euee Qo, 

Fists cnaneice ou eeercesen aanane <<a AGeeBs. 

U Be] EO OS IOLEO COLEUS BOBO RER OOS on sh 

Masta, Rij. 7s cnaae CROMER es ocala cs eee Ala Baia. 

B55! Dy 5 ago ee renee nae cak iene eee CA eh She 

PAI 355,65: 50 74 ae OR EERE ese Ae 

Cis; See Go Stine coo ek eee ees ne 

Ts 5 ba Be RR aan Sas SRE Vala one 

75, bets, Ae co eee 7H [Shy 

Boo SRNR REE oo Sov asme See oe ReL REE AG 

Ge Cenk bias oa TO Oe as. 

11. Now we have the relations 

Uo, =U +h fi? 

Vist = Ys? + hy fi? 

VasgUo = Vos? + hy fos? 

Uses = Uso" + hs fos? 

Diesjas = Dieslfe = Via fxs 

Us fa = — Vj foes + Uys fas 

“Res fies” = Vals + VossUs2 — 2VegVs2 

Ngo Fes? = VjsgVo + VyosVo33 — 2V 05025 

Nas foes? = Vizeds + VissVsx2 — 223030. 

These give an expression for h., in terms of members of the complete system among 

which v,, occurs. The equation may therefore be looked on as expressing 2%, in terms 

of the remaining members of the system and h,;, so that v4. may be replaced by A,;. 

Again tes fis + ta fos + To fin + hol = 0 

ties + te fis + Ms ers +h,l=0 

tofa ths fit fos + ll = 0, 

so that te, ts, ta, t: may be replaced by various other sets of four ¢’s or by l and a set 

of three. 

Lastly, & is given in terms of the system by relations of the type 

Kf? = Us jy?) + U3 jrs( A?) — 2g Jrs(@A ) 

pil) = — Vy + Vn 

jaA) = — UV. + UnUoni ; 
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where Ju(@) = "OB, 
— Ch, 

CoA 
—0,a, | — Ba, 

b,A, |Ga,, —b,) 

the Jacobian of v, and v,,, and 7, (aA), ete., denote the polars of j,,(a*) in the other sets of 

binary variables A,, — B,; a, — PB). 

set, but the set would not be symmetrical. 

The simplest and most symmetrical has then for leading coefficients 

Ns Wey 

Vi; V2, 

TY), To, 

$1, So, 

h,, he, 

ST» Sta 

hes, ha, 

he, tog, 

L. 

VE 

Us, 

Ts, 

83, 

hs, 
Su 
hy, 

ts, ’ 

TasLE I. Solutions of V.=0. 

The quantity & might be used as one of the complete 

Solutions of N,=0 inbratitice M,| Ealect of | Effect of x N, pas oro 

po = 0 0 0 a? 

fi = ay. 0 0 1 a7a, 

gs = a,7a; 

bs = 00, 2, 0 0 aaa? 
ds =a7 (b,, aha, = by) ds 0 0 Gy", a3 

ds = (Co, by, dea, — by)? 0 0 0 aae 

ds =a 4 $; ps ds Aya, 5 
$; = (by, Ym, — by) 0 $s; ds , 2, a¢ 

gs =A" 0 2¢, 2d; aa? 

hy =a *ds 3d. 0 0 a, *a,° 

du =m * (bz, asc, — by) 2¢n 0 0 A, * a7 ae 

gu =a, (a, ba, ashy, = b,)? drs 0 0 a; ag" 

Ps = (dy, Q, bs, as Ya, = b)° 0 0 0 a? 

dis =a, 2s dr dy a, *a,a,° 

pus =a," (by, ay Yay | ore by) dis du Pio Cy yA Me 

Pis = (cy, by’, as Ya, Gas by) 0 dw bu a,a;? 

Gis = a 1a,” dir 2dr 2drs ayaa, 

Paz = (b0"; ay” Yar, — bo) 0 2d15 2b ara: 

dis =a" 0 3dr; 3his a’ 

2 Vout. XVI. Pant I. 
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TABLE II. Solutions of M,=0. 

Solutions of M,=0 Effect of ® Effect of 5 Ns Symbolical form 

| Wo = ho 0 0 te 
Wh =4h 0 1 aya, 

ts = ds 0 0 a, ae" 

Ws = (ds, b:0¢s; = ds) 0 0 $m B, (a8)? 

vi = $7 Ye ps Oy Ay he 

bs = (bs, bbs, — $4) 0 Vs 44,8; (a8) ap 

Vs = 9s 2, 2hs* (Ws + Wihs) Oh, | 

— 0 0 ae! 
| hs = (du; gi dds, = ds) 0 0 ae BzB, (a8) 

ro = (dro, du, b.0bs 7 bs)? 0 0 arBiy:Bin (a8) (ay) 

Wo = (do, Pr, du, bids, = $s) 0 0 Beye 5:8, wel 8; (aB) (ay) (a8) 

Vu = dis Vv; bs (Ws + Wis) Og ate 

Vio = (hus dis dds; - ¢$,) Ws dbs? (hs + Webs) aa: 8:8, (a8) 

Vis = (gis, piss Pls, — Gs? | Vs bs * (Wo t+ Wods) a, Beye Pin (48) (ay) 

1s = Diz 2Wn 26; 7 (Wie +n $s) af ag 

Wis = (dis dir Qds, = $s) Qn» 2d; * (Wis =e risa) a2B:B; (a8) 

Vis = dis BV, 3¢5 7 (Wis =r Wis ds) as 

TABLE III. Solutions of ®=a,M,—b,N,=0. 

Solutions of 6=0 Effect of aM Symbolical form 

Xo = Vo 0 a3 

Mm Hh 1 0, @, 

x2 =v 0 ace 
Xs = Vs 0 44,8, (a8) 

X= Vs Xs 30,8, (@8) ap 

Xs = (Ws, Palit, — Ws) 2X4 4,8, a5" 

Xs =W 0 a 

a (Wn, WO, = abs) Xa0 a’ B: Bi ap 

Xs =i, Va, vty, —W,) 2Xn1 ae Beye Bry tp Oy 

1 Xe = (Wiss Vis Vin Wr, — hs)? 3X12 Beye8:Biyi8:0 8% % 

Xow = Vs 0 a 8:8, (a8) 
Xu = (Wie, sO, —vW;) Xs arBeyeBiy, (a8) ay 

X2= (vis, Vie, Vsti, _ vrs) 2y15 BeyedsRi 8; (a8) ay as 

Xis= Vo 0 az Beye Pir: (48) (ary) 

X= (Nis, Povo, — Ps) Xs Bey:8:Biy. 8: (a8) (ay) a 

| Xis = Vio : 0 BeyedeBiy 8s (a8) (ay) (a8) 
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TABLE IV. Solutions of V,=0. 

Solutions of N,=0 Symbolical form 

® =Xo a," 

@® = X2 O, og" 

@, = Xs 4au,P, (ap) 

®, = (Xs; x01, = Xi) $a, By," (a8) (aBy) 

oO, = (Xs; Xs x01, = Xa) $0,817,268; (aBy) (a8) 

Ms = Xs a; 

M, = Xw a? BrB, (4B) 

@;, =(Xr> Xa 1, — x1) a? BB, (aBy) 1° 
@s = Xs arBeye Bin (48) (ay) 
@s =(Xu; Xs 1, = X1) 

Do = (Xs Xu> X31, = Xa)? 

Oy = X15 

Oo = (Xu X01, = X1) 

3 = (X12. Xu Xs Ql, = Xa)? 

O4= (Xo, Xaz» Xs» Xs 01, = x) 

a Berye 81918," (48) (ary8) 
as Beye Bi yi O:2e7 (a 88) (aye) 

BeyedeBiy. 8 (28) (ay) (08) 

BeyedeRid; (a8) (ay) (adm) m.* 

BeyedeBins 8, (48) (ayé) (a8n) En? 

Beye: Bin: 8 (aBe) (ary) (adn) ,°E,2n? 

LL 

Corresponding 
concomitants 

U, =a nu; +... 

U, =O,2;°p\ +... 

(Of =@,0;°p+... 

U; =a5a'p,, + ... 

U, =a,2,5u,? +... 

U, =0,2°p; + ... 

Ug= a. ipe to. 

U7 =a, pin -- 

U, =ag0,5p;' + ... 

U, =0,2,° py, +... 

Uy) = Oy 72 p2u?+... 

Us=onr pe... 

Dy = 0.0 pt, +... 

O15 = 0D t+. 

Ui,= O47)" pPus+... 

bo | by 
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TABLE V. Leading coefficients of concomitants of quartic in symbolical form. 

a,’ 

a? a" 

4a;°8,? (a8)? 

4 a,°B,? (a8) (@By) De 

da,°8 (aBy) (488) 7:38 

a, a8 

a,a:°B, Bz (a8) 

a, a2 8,°B: (aBy) y:° 

a By? ar Beye (48) (ary) 
a, BP yPaeBerye (a8) (aye) €,8 

a, Beyaz Be ve (a8) (aye) 5363 

& By*91°8" Beye de (a8) (ary) (a8) 

a Bey?" Beye 8: (a8) (ay) (adn) m8 

0 B,°9727 8; Beye de (48) (ayE) (adn) Em! 
a Bry? 8 BeryeSs (aBe) (ay) (adm) 4° Em. 

ast 

Bias 8: (a8) 

ay'Be (a8) 8 
BiyPas’ Beye (a8) (ay) 
Boy as Beye (a8) (aye) a 

Bey iar Beye (488) (aye) Oe° 

Bey2 bP aeBeyede (48) (ay) (a8) 

Boy? dP aeBeryede (48) (ay) (adn) m8 
BeyrdPasBeye 8: (a8) (aE) (adm) E,ms° 

Boy? d2aeBeyede (aBe) (ay) (adn) a Em 

By? be Beyedeee (48) (ary) (28) (ae) 

Bey? da? Beye dees (a8) (ary) (a8) (ae) «8 

Bry? ds? €:* Beye Sz ee (a8) (ary) (088) (ren) O,°;° 

Boy? de Beye dece (48) (aryn) (488) (aex) 9:90:51 

B78) €:? Beye Seer (a BE) (ary) (088) (wen) E59; O,9x,° 
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Taste VI. Leading coefficients of concomitants of two quadratics. 

Oo, —t,— cd, 

@, =a =(¢, bd, aa, — by)? 

, =} (a8) = cya, — b? 

ws =$% (48) (aBy) = (Co, by, dean, — Ya’, — by’) — ay’ we 
@, = 498, (aBy) (488) = ay” w, — 2a’ ws — ay'2@, — (by a, — a b,)? 

ORES Ale 

@, = 00, (aa’) = (B,, A,Ya,, — by) 

@, =— apa,’ (aa’) = (¢, by, a ha,, — bi, — B,) 

@s = a2, 8B, (aBa’) = Aya, — ay w, — (by a, — ay'b) wg 

@, =a;"=(C,, B,, A.Ya, —b,)? 

@y=— aa; (aa’)=| cB, C) Ag b, A, Qa, — b,) 

— Cb, —Cya |—Ba, | 

@y = 228 (aa’) (Ba’) = CQ, be Cb, a, Ca? \Ya, —b! 

—2B,c,b, | —B, (C) dz +b,*) | —2B, b, a, 

+ A.c? + A, cb; +A, b,? 

@1. = 4302 B, (aBa’) = w, (Ba, — A,/b,) — w, (by ay — ay by) — @y ay 

®)3 = — as Bey (aa’) (Brya’) = @, (Gis bs, a0, = BUA, — By)- Dio (by a 3 ay by) — @y, A, 

eBid: (Gye) (aba) = an Av! Oem, (Bic, — Ay aa) 
— 2a, A’ (Cy, by, do Qa,, — boy’, — By’) + Les ao’ (bya, — ay’ by) + ey, 52. 



II. Forced Vibrations in isotropic elastic solid spheres and spherical shells. 

By C. Curez, M.A., Fellow of King’s College. 

INDEX. 

SECT. SECT. 

1. Historical introduction. 13. Solid Sphere; Surface forces derivable from potential. 
2. Notation, Fundamental Equations, &c. 14. 3 3 Displacements near centre. 

3. General Solution. 15. “ . Pure transverse vibrations, general case. 

4. Expressions for Stresses, 16. eS “1 < bs +, rotatory vibra- 

5. Surface Equations. tions. 

6. Relation between bodily and surface forces in in- 17. Thin Spherical Shell; Surface equations. 

compressible material. 18. Thin Spherical Shell; Displacements, mixed radial 

7. Solid Sphere; Pure radial vibrations. and transverse vibrations. 

8. Solid Sphere; Mixed radial and transverse vibra- 19. Thin Spherical Shell; Alternative formule in terms 

tions, general case. of frequencies of free vibrations. 

9,10. Solid Sphere; Mixed radial and transverse vibra- 20. Thin Spherical Shell; Pure radial vibrations. 

tions, incompressible material. 21. 5 = F Pure transverse vibrations. 

11. Solid Sphere; Mixed radial and transverse vibra- 22. Pa a A Results collected. 

tions, case of 2nd harmonic, 23. Thin Spherical Shell; Simplest analysis of displace- 

12. Solid Sphere; Application to elastic solid ‘‘earth.” ments. 

§1. The free vibrations in an isotropic elastic sphere or spherical shell have been 

treated in some detail by several writers, but comparatively little attention has been 

given to the motion which accompanies the application of periodic forces. In Vol. XIV. 

of the Society’s ‘Transactions’* I wrote down the equations determining the arbitrary 

constants whose substitution in the general solution gives the amplitude of the vibrations 

corresponding to given systems of surface forces. 

In the ‘Proceedings’ of the London Mathematical Society, Vol. xrx., Mr Love arrived 

at equations for determining the forced vibrations of a spherical shell containing a given 

mass of liquid. In his Treatise on Elasticity Mr Love has also considered the subject 

of forced vibrations in a solid sphere due to bodily forces derivable from a potential; 

illustrating his method by application to the interesting case when the potential involves 

only a spherical harmonic of the second degree. Mr Love’s method is based on Pro- 

fessor Lamb’s} well-known solution in Cartesian Coordinates. Here, as in my previous 

treatment of the sphere, I adhere to polar coordinates. 

* lc. pp. 315—6. The method of treating the spherical | + Vol. 1., pp. 324—8. 

shell is described on p, 319. + Proceedings London Math. Soc., Vols. xm. and xty. 
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The most fundamental division of forced vibrations is into those which have, and 

those which have not, the same frequency as one of the free vibrations of the same type. 

In the former case the mathematical theory of elasticity makes the amplitude become 

infinite. In the latter case in an elastic solid the expressions for the displacements, 

even in a sphere or spherical shell, are usually too complicated to convey much _ infor- 

mation except through numerical application in particular cases. There are, however, two 

classes of cases in which results of a general character are obtainable which are at once 

elegant and of obvious physical significance. 

The first class consists of the vibrations of a solid sphere due to forces whose 

frequency is small compared to that of the fundamental free vibration of the same type; 

the second class comprises the forced vibrations of any frequency in a very thin spherical 

shell. It is to these two classes that attention is almost exclusively devoted in the present 

paper. 

As the whole investigation is based on my general solution* of the elastic solid 

equations of motion, it is convenient to reproduce these equations and their solution 

with some slight improvements in the notation, 

§ 2. Polar coordinates r, 6, @ are used, 6 being the ‘polar distance’ and ¢ the 

‘azimuth. The elements dr, rd@, rsin@df at any point are the fundamental directions 

along which are taken the arene u, v, w. The dilatation is denoted by A, or 

a Reta d ; 
A = de (ur =) ti aang 9 ag (or sin 8) + ino ap ("sin 8) Aascceareneccasos (1). 

The stresses in the notation of Todhunter and Pearson’s ‘ History’ are 

= (m—n) A+ 2n%, 

f= (m—n) A+ 2n ("4 g 1s). 

= u 1 dw 
i= (m—n)A+2n (240 = = cou ag manTD alk 

ARQ TOBORO SC UREA 2); 
= (Z- ah s 2); 
ee Ndr rr dO)” 
~_. (dw w 1 os) 
=n (5 - Aun dd)’ 

= ldw w 1 dv 
m= n(- ddr” Be are sin @ aa 

where m, n are the elastic constants in the notation of Thomson and Tait’s ‘ Natural 

Philosophy.’ 

Supposing periodic bodily forces to act derivable from a potential V satisfying Laplace’s 

equation, we may present this potential in the form 

pe Otten al ea COS Ct aera cepa sana sweeeamea arenas (3); 

* Camb. Phil. Soc. Trans., Vol. x1v., pp. 308 et seq. 
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where V;, V_;, are surface spherical harmonics of the same degree, 7, and ¢ is the time 

counted from any convenient epoch. Here and in what follows = denotes summation 

with respect to 7. 

The internal or “body-stress” equations are 

(m +n) r? sin = —n = +n oP + pr? sin 0 (- oe) = 0, 

(m+n) sin 6 = —n * +n = + pr sin 0 ( aD) =O Sy Ut. (4), 

(m + n) cosec 0 —n = +n oo pr (ano a5 oa) | 

where for shortness 

l= — 15 (wr sin 8) — a (or)| : 

= ee a = (wr sin 0)| he Where tet, (5). 

: d du 
€ =sin 6 lan”) — at 

It is convenient to concentrate attention on the terms actually appearing in (3), taking 

them as a type. Differentiations with respect to ¢ need not then appear explicitly, since 

for instance 
d2u 
ae ku. 

The representative term in (8) involving 7 can occur of course only in a spherical 

shell, 7 being regarded here as a positive integer. 

The surface forces are conveniently grouped under three classes. Thus in a spherical 

shell we may regard the forces over the outer surface 7=a@ as consisting of :— 

(i) Pure radial forces = (R; cos kt) ; 

(ui) Tangential forces derivable from a potential, whose components are 

> (Gr cos it) along ad@, > (eae AES cos kt) along a sin 0d¢; 

(iii) Tangential forces derivable from a stream function, whose components are 

> (=. 8 = cos kt) along ad@, = - = cos it) along a sin @d¢. 

The letters ;, 7;, 7; represent spherical surface harmonics of degree 7, R, being a 

constant and occurring in the case of uniform normal pressure. 

Over the inner surface r=b 

we may suppose similar surface forces to act, distinguished by the dashed letters R;’, 

De T%;. 
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The letters R, ©, ® without a suffix are employed to denote the total components 

of the forces on the outer surface along the fundamental directions, the same letters dashed 

having a like application to the inner surface of a shell. Thus 

R= (RK; cos kt), 

aT; 1 dry’ 
a (“10 ene aN er iy on (6). 

1 dT; dr; - 
&=3(_, as — 79 ) cos kt 

In the general case there may of course be any number of applied forces, whether 

bodily or surface, with different frequencies and epochs, but as the effects of each are 

independent of the existence of the others no confusion can arise through cos kt being 

made to do duty for the time factor in every case. 

The surface conditions which must be satisfied by the solution for the spherical shell 

are the following six :— 

over r=a over T= 

m= R, 7 = R,) 
ro =9, FO OF easetine cane ceteacsaaeiise sree (7). 

In the solid sphere there are of course only the first three. 

§ 3. In my original treatment of the vibration problem bodily forces were not sup- 

posed to act. Thus the complete solution of (4) requires the addition to my previous 

solution of terms which constitute a particular solution when V exists. This presents 

no difficulty, for by (1) and (5) we see that A, A, 33, © all vanish for values of u, v, w 

of the form 

where M is any constant, so long as V satisfies Laplace’s equation 

(an dl (9 tV\... eau | 
a (* 7) anode 7a) sm Odg* 

Thus a particular solution of (4) is obviously 

Eeviay “fe Saaer sD ar : Sere Brdo’ eaaiidds Latent eS (8). 

This is practically the equivalent in polar coordinates of Mr Love’s* treatment in 

Cartesians. 

Putting for shortness 

P P_ ps a, a BPM Rr a Les ectpa te cotecscson ces (9), 
m+n 

* Treatise on Elasticity, Vol, 1., Arts 139 and 201. 

Vout. XVI. Parr I. 3 
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we may represent the complete solution of (4) by the typical terms :— 

u=cos kt E £ = (FV; +7 V_.) 

+E =e 1 Jay (har) — 13 rien (har)} Y; +74, (Rr) Z 

- — {yr J_;4(kar)— rae i Ja (bar)} Y_34+77J__4(kBr) Zi] vageeat (10), 

d 
v = cos kt Ese: 

ri / 

Ve+7r Vz=) _ Pe CA i+} (kar) Y;+ J_;_,(kar) V4) 

ra d 

gee 1) dr rt (Jiss (kBr) Z; + Ji4(kBr) Z.1)} 

a! 
+ ne ag Otis BBP) Wet AT. (b8r) w.3| bles ee (1), 

w = cos kt Zi (Vit V. ; ya (% (kar) Y; + J_i, (kar) Y_; ) see Jer i -i-1 Bee t+4 i —i-4 -i-1 

nC ee. . A : : bya ; tape (Jess Br) Zi + J (KBr) +.) 

d 
ST {r4Ji44 (kBr) We+ 14 J_i-4 (kBr) W243] ROS EES enone (12); 

answering to which 

A = cos kt {r4Jj43 (kar) VY; + v4 Jy (hear) Vig} oo ecceececeeeeees (18). 

In these expressions Y;, Z;, Yi, Zi, Wi, Wir represent surface harmonics of 

degree 2 with constant coefficients. 

The form of these harmonics depends solely on the harmonics appearing in the bodily 

and surface forces; their constant coefficients are determined by the surface conditions. 

If for instance there be only a bodily force derivable from a potential r*V;coskt, then 

the surface harmonic appearing in, say, Y; is the same as that occurring in V;, and the 

ratio Y; : V; is found from the surface conditions. 

As usual J;4,(z) and J_;4(2),-where z=kar or kr, represent the two solutions of the 

Bessel’s equation 

dr’ r dr 

and their differential coefficients will be denoted by J’;,,(z) and J'_;_, (2). 

dz ee CN) D 

For our present work it is convenient to write 

; Se ee as Ss 
Tes a ! 2 (+3) + 2.4 Qi +3)(a+ 5) me 

+ 
: =L/7-4 & ie: 

fee asa fh +s@on tea @rSD SS | 
the values of the constants L;, L,’ beg immaterial. 
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§ 4. In dealing with the stresses it is convenient to use the following abbrevia- 

tions :— 

2 = 2 \ ra | CBr ae >) Fix (har) + 72 rae (kar) — = _ Dixy (kar) }|- rAj, | 

rAkBr [2's (kBr) — Tiss (kr) = 7B;, | 

| 
| 

1 
— rt fed saa Ci, 

ready kBr)?—2(i-1 ) 
—rt ‘any Bry— We \(i+2 2) Texy(hBr) + 2F"c4 (kr) — en - oie % ay) i 

~ | (ee 2) 2 i+ (kar) — fea" 4 (har) — 2 _T45 (kar) || =.5 

ar (kBr) = ,F, 

29 
ey: 7 Tixy (kar) = Gi, 

me Fe iy (k8r) + 20'euy (KBr) — < ar dis (kr) 05 2 | 

The expressions obtained by writing —7—1 for +7 on the left-hand sides of equations 

(15) will be denoted by ,A_;,...,-H_;, respectively. This substitution, it will be noticed, 

leaves the values of 7(¢+1) and (i—1)(¢+2) unaltered. 

Using these abbreviations we have for the typical terms in the stresses :— 

tr =n cos kt |-z {i (i —1)r°*V; + (+1) (¢+2) r7*V__} 

+ rA:Y; + BZ; + ,A_j4 ees + Biskos| sacri unica ints Waited solowalae ete (16), 

96 =n cos kt |- = {(i+ on) nV, — (i +1- aa) aoe 

+ £;:Y;+ Fi4;+ -EiiaYiit FiinZin 

+ Jot Coe, +1G 2.7 operas z+} 

1 ane as ig (oh a PW) ee a ord ee (17), 

ee eae d 1 ) 
=n cosit | - Bit e088 tg + Sa jag) — (i+1-cot @ 5 — aaa) Visa 

+ AY: + PZ; + bi aY iat Find 

1 @ +(sr006 ype wa) GY tel FG «Vg 5? His2-+} 

— Tea {r cosec 6(F; Wi + Fin Ww.) | She Meine AT 8 See eee (18), 
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78 =n cos kt |- Ba Pde {(t-1)rV,-(¢+ 2)r-0_,_,} 

d 
+ 99 Oi t+ D4i+ CiiPiit Dizi} 

+= a i {tr (,B:W:+,Bin Ww | FE BnR SHC DOSE ERO EEE eAae (19), 

hy 
1d 

BE aa ddd {(2 ad 1)r—7J; = (i + 2) rs Va ro =n cos kt |- 

Ce, 
+ and dé {-C:¥;+ »D4;++CizYi4+ rD_;.2_+} 

ut = itn BiWs42B <5 w.)| Tagan a eee (20), 

66 = n cos kt |- 4 108 {cosec 6 (r**V; + r*V_,_,)} 

d2 

+ dbdé {cosec 0 (,G;:Y;+,Hj;Z;+ »G@44Y 44+ -HiZ_i4)} 

@ wean So epee Ww.) tiene (21). 

§ 5. To get rid of the troublesome prefix r in the surface conditions, we shall write 

A;, B; ete. for ,A;, ,B; etc., 

A’;, B’; ete. for ,A;, ,B; ete. 

Referring to (16), (19) and (20) we see that the six surface conditions (7) lead to 

the following six equations :— 

AY; SF BZ; a AL Vin sr Bi4Z A 

=; {t(¢—1)a®?*V;+ (64+ 1) (@+ 2) a7 V__} + : HRs sah vi visa ox ddeeseneett (22), 

OY;+ DZ;+ CiiYi4 + DiiZ__ 

Bort a ; ene 1 < 
=pilt-Da' 2V;-—(2+2) a7 Via} +— 7% Saletetete etela ciinieie oiolelsicieieleisieisicielseeeiets (23), 

Aj Y;+ BjZ;,+ A’isYiit+ BiaiaZ is 

Oe Panta! Ce = 7, 66-1) B74 G41) 4+ 6-7} + 2 RY .... ie (24), 
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C/ ¥;+ D/Z, + C’i Yi + Di. Z_i, 

9 

= Fel E-1) BV, — 64 2) Bg} HE TY seanssnssrcossvsonnsvsnnessen (25), 

aBW;+ aBy,W ii, = z eg CE EP PCET AES EPR Por ROPES PRET Teer? (26), 

bB W, + bB’.Wia= 2 Oe rr eT yea (27), 

These equations constitute two independent sets. The first set, consisting of the 
first four equations, determines the four unknowns Y;, Z;, Y_;,, Zi. These have to 

do either with the bodily forces or the surface forces of the first two classes. The 
second set, consisting of the remaining two equations, determines W; and W_;,. These 

have to do exclusively with the surface forces of the third class, 

The values of Y;, Z;, Vi, Zi, may of course in any case be easily written 
down in the shape of determinants, the denominators having the common value Ij, 
where 

i B;, Az 1; Bix 

C;, Di, Clas, Dix (28). 
eer errr reer reer err reer eee eee ree) 

Cy, Di, Can, Daa | 

The values of the determinants are however somewhat complicated, and the deduction 

of numerical results answering to given numerical values of k, a, b, m, n would entail 

a good deal of labour. 

The expressions given by (26) and (27) for W; and W_j;, are comparatively short, 

and numerical values would not be hard to deduce, supposing tables of the Bessel’s 

functions with arguments + (i+ 4) existent. 

§ 6. Before proceeding further it is convenient to establish one very general relation 

between the displacements due to bodily forces and those due to surface forces when the 

elastic material is supposed incompressible. By an incompressible material is meant one in 

which the bulk-modulus m—4n is infinite, while the rigidity and Young’s modulus are 

finite; in other words, while n is finite n/m is zero. 

Referring to (9) we see that in such a material kaa vanishes compared to k§a. 
Here we assume k and a, and so k§a, finite. 

The general relation is as follows :— 

The displacements at any point of a sphere or spherical shell of incompressible material, 

due to bodily forces derivable from a potential V satisfying Laplace's equation, are identical 

with those due to pure radial surface forces equal to the product of the density p into 

the surface values of V. 
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For instance, in a spherical shell of radii a and 6 the displacements due to the 

bodily forces derivable from the potential 7‘V;coskt are identical with those due to the 

combined action of the radial surface forces 

R =pa'V;coskt over r=a, 

‘R = pb'V; cos kt » r=. 

It will be sufficient to prove the relation for the terms depending on surface harmonics 

of degree 2. 

Since by hypothesis kaa is vanishingly small, we may im any expression neglect all 

but the algebraically lowest power. 

We thus get from (15), 

A;=. La (kaa) {(kBay — 21(i — 1)}, 

C;, = — La (kaa) x 2 (i—1), 

Ajn= Lia (kaa) {(kBa)? —2(¢+1) (1+ 2)}, 
Cjiwj= Lja* (kaa) x 2 (t+ 2) 

Taking R;=0, and using the above values of A; and A_,;,, we see that (22) may be 

written in the form 

A; 1%. ta a (ka)-*+3 v% af BZ; + A_j, han = a (kay? ae _ [PVA 

E = (i (é—l) a0, 4 641) (6 42)a-- V4} 

+ pop, (ba) Vilao (aa) {(hi8a)*— 24 (i =1)} 

% => 7 (ka)i+# V_;_, La (kaa) {(kBa) — 2 (i +1) (i + 2)}, 

_ . (Vipa' + V_spa*) 

after reduction, using (9). 

Similarly (23), (24) and (25), in the absence of surface forces, may be written 

C; | en = (a)-t#3 vi 1D, elie { ano =< (leet)'+8 V2} tee 

ALLY phy (lei + Bide Al [Pat pay (had Vain} cB glib 

=* (Vipbi+ Vip), 

1 
Ly Gy 1%; * ae (deer) v; + DiZe + Cis {Pos +. (hat V4} Pa eas cer 
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Comparing these equations with (22), (23), (24) and (25), we see that the values of 

Yi+ ay (ea Mi, Zi, Vint pp (ha) Viand Z_, when there act only bodily 

forces derivable from the potential (r‘V;+7-*"V_,,) cos kt are identical with the values 

of Y;, 2, Yi, Zi respectively when there act only the pure radial surface forces 

R =p(a'V; +a" V__,) cos kt over r= a, | (30) HapGiicrer yeaa, ras f 5 PERE PR: Seamer nae ; 

Again, retaining only the algebraically lowest power of a, we may write (10) in the 
form 

= cos kt |- r-4D; (ka) {Fi 4 Er. (ka)-*3 vit +7 Ti (KBr)Z; 

+ 1244-1) Li (ka) an + _ (ka)i*8 aa +77J_i4 (kBr) 2] 

This shows that when there act bodily forces derivable from the potential 

('V;+7r— V_,_,) cos kt 

the expression for u is the same as when there act instead the surface forces required to 

give to Y;, Z;, Y_;, and Z_j;, respectively the values which belong to Y;+ a (ka)-*4 V;,, 

Z:; Vint pp (hay V_;, and Z_,, when the bodily forces act. The requisite system of 

surface forces as we have just seen is (30). 

Our theorem is thus established for the displacement uv. Its proof for v and w 

proceeds on the same lines and is even more easy, it being noticed that W; and W_;, 

in (11) and (12) vanish. 

The proof for the solid sphere is really included in the above; it is also easily 

given independently. 

The theorem, it need hardly be said, is not confined to forces varying with the time. 

If its deduction for the case of equilibrium, by regarding equilibrium as the limiting 

form of vibration when & vanishes, should seem questionable, it will be found a simple 

matter to deduce it directly from the equations of equilibrium, or to verify it in the 

explicit solutions I have given for the general case of equilibrium of the sphere* and 

spherical shell. 

A particular instance of the theorem was noticed by Professor G. H. Darwinf{ as 

long ago as 1879, and its truth in the general case of equilibrium of a solid sphere 

was established by myself in 1887$. In the future it is not unlikely a still more 
comprehensive result may be established applicable to all shapes of bodies. 

* Camb. Phil. Soc. Trans., Vol. xtv., equations (36) to t Phil. Trans. for 1879, pp. 6 et seg., and Phil. Trans. 

(38), pp. 264—5. for 1882, p. 200. 

+ Camb. Phil. Soc. Trans., Vol. xv., equations (92) and § Camb. Phil. Soc, Trans., Vol. xtv., p. 265. 

(93), pp. 362—5. 

7 ———— we 
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SOLID SPHERE. 

PurE RADIAL VIBRATIONS. 

§ 7. The case of pure radial vibrations accompanying the application of the pure 

radial surface forces 
R= R, cos kt, 

where &, is a constant, can be deduced from the general case of the radial surface forces 

R= R, cos kt. 

where R, is a spherical harmonic of degree 1. 

It is desirable however to treat the pure radial vibrations independently, both on 

account of their importance and because they may accompany the action of a type of 

bodily force not provided for by the general solution. The type in question consists of a 

radial force 
2V,r cos kt, 

where V, is a constant. 

The corresponding body-stress equations are found by writing V,7*coskt for V in 

(4). They thus answer to a species of potential, which does not however satisfy Laplace’s 

equation. Forces of this kind would arise in the case of rotation about an axis, if 

the angular velocity were a periodic function of the time. For supposing this angular 

velocity to be 
o cos k’t, 

and to take place about @=0, we may regard the “centrifugal” forces as answering 

to a potential 

V =} sin’ 6 cos* k't = 1 (w*r? — wr P;) (1 + cos 2K't), 

where P, is the second zonal harmonic. 

The potential 

2 (wr? — w°7* P,) 

is a form considered in my equilibrium solution* ; the potential 

—4o%P, cos 2kh't 

comes under the general case of bodily forces considered presently; and the remaining 

term in the potential 

4 w*7? cos 2h't 

is a special case of the problem we are just entering on, with 

Vio.=to%, k=2K. 

If from any cause gravity were supposed to contain any periodic terms, the corre- 

sponding forces would also be of the type specified. 

* Camb. Phil. Soc. Trans., Vol. xtv., pp. 286, et seq. 
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The problem proposed is to find the forced vibrations in a sphere of radius a due 

to the simultaneous or independent action of 

radial bodily forees 2V,7 cos kt, 

» surface ,, R, cos kt, 

where V, and &, are constants. 

Replacing V in (4) by V,r°cos kt, we find that a particular solution is 

SA eee a (31); 

for this makes A constant, while A, 35, © all vanish. 

The complete solution is thus 

u=cos kt |-z = Vor + Geary ay ae = cos kar} xo ecsteh sas Taste a (32), 

where A is a constant determined s 

sin kaa ‘sin kaa \ ? V, 
4 [im + n)- ian ~ Gey ( aa ee kaa) | = R,+2 (3m —n) Jeo (33). 

Substituting in (32) the value of A determined by (33) we obtain the solution in 

its complete form. From a mathematical standpoint this is all that is wanted, but a 

complicated mathematical expression such as ensues can be made to yield the sort of 

information a physicist desires only when definite numerical values are ascribed to k, 

m/n, p and a. One can not foresee what individual cases are likely to be of most use, 

and the construction of elaborate tables for a large variety of values of hk, m/n &e. 

might be a waste of time. Further attention is thus confined to the case when the 

frequency of the applied forces is small compared to that of the fundamental note of 

the pure radial type of free vibrations. 

The frequency equation of this type is obtained by equating to zero the coefficient 

of A in (33). Denoting Poisson’s ratio (m—n)/2m by », we know that for the funda- 

mental vibration* kaa/a7 increases from °6626 when 7»=0, to 1 when y»='5. Our 

hypothesis thus amounts to assuming kza a small fraction, so that the trigonometrical 

series for sin kaw and coskaa are rapidly convergent. 

This being our first example, the method of treatment will be shown in some 

detail. 

Expanding in powers of kaa we transform (33) into 

5m ade n 

10 (Bm — 

* See Prof. Lamb in Proc. Lond. Math. Soc., Vol. xmt., p. 202. 

Vou. XVI. Parr I. 4 

a eeeee 
A 7m +3n V, 
3 (3m —n) {1 — (kaa) \ = Ms = R,42(8m Ln) 2. 

ak ie ae) 280 (3m —n) Fy + 2(8m~n) ke 
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Thus we find from (32) 

u 3m—n \g OMm+N Ng lite on 

coskt 3 it Gon) 10 (8m — n) oe) 280 (3m —n) } 

_ 23m—n_  .. omt+n . 7m + 3n 

Soy es {1 — aay 70 Gm =n) t 2) 80 (8m —n) °°" } 

se {Ro+ 2 (3m —n) ua ; {1 = = + a om } 

=} Ror {1 — A, (kar)...... } 

5m +n 

3m —n 

° 3m —n ne E =i — 5 hee? ( (Tm + 3n \ at 1°) + hy Mat (SP at — rt) SBOoGC i; 
/ 

/ 
3m — n 

It is important to notice that the principal terms in the coefficient of V, cut out. 
But for this, the approximation need not have been carried so far, as the fourth and 
higher powers of kaa are neglected in our final result. Taking the coefficient of uw to 
the other side of the equation and reducing, we have to the specified degree of approxi- 
mation 

_ Ror cos kt 1 yo, (om +n) &@ — (38m —n) x? 

Y= ann E + is Hp (m+n) (3m — n) 

V.pr cos kt 3 : 
se Gas Gm) | (om +n)e@—(38m—n)r° 

kp Z 
—___F______ { Dan? Wer 

* 140 (m +n) (3m —n) {(245m? + 130mn + 29n?) a 

— 14(8m—n) (5m +n) wr? + 5 (8m — np | Fano 30008 (34). 

For the value u, of the displacement at the surface we find 

ee K°a*p (5m + 3n) } 

35 (m +n) (3m — n) 
_ ak, cos kt ( a kea%p ) 2a° Vp cos kt { 

lg = === = 
“ 3m—n 3m —n 5 (3m — n) 

When the terms containing /* in (34) are neglected, we obtain for the displacement an 

expression identical with that supplied by the equilibrium theory. This is I think obvious 

@ priori, and merely serves as a confirmation so far of the accuracy of the work. 

When we have only surface forces we may, to the present degree of approximation, 

start at once by neglecting terms in (kaa)* in the coefficient of A in (83). 

When however there are bodily forces it is quite different. The particular solution (31), 

as containing /* in the denominator, becomes infinite when /=0, and so the complementary 

solution is bound to supply a term in k~ to cut it out. Thus if in substituting for A in 

(32) one went only as far as the (kaa)? term, one would arrive only at the equilibrium 

value of wu. Terms in f* it is true would appear in the denominator, answering to the 

coefficient of A in (33), but in the absence of the terms of the same degree which should 

appear in the numerator their presence would be absolutely useless, if not misleading. 
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Unless the approximation is carried so far as to give correctly the terms of order 

(kaa)? in uw it is impossible to form a trustworthy estimate of the degree of accuracy of 

the equilibrium theory. Supposing for instance 

kaa = 1/10, 

it is quite true that (kaa) itself is small compared to 1, but until one knows the size 

of the numerical coefficients of the terms of order (kaa)’ it is illegitimate to characterise 

them as negligible. Strictly speaking, even when the terms of order (kaa)* are determined, 

one is hardly justified in drawing physical conclusions without having regard to the possible 

importance of terms containing higher powers of k. That these terms must in reality be 

very small may however be readily seen by reference to the rapidity with which a~ sina 

and a(x sin #—cos#) converge when «# is small. 

Returning to (34), we see that the coefficient of * is positive for all possible values of r 

in the case both of #, and V,. Thus the displacement is always and everywhere greater 

than according to the equilibrium theory. An idea of the magnitude of the difference 

between the dynamical and equilibrium theories is most easily derived from the surface 

value (35) of the displacement. 

In terms of Poisson’s ratio we thence deduce for the ratio of the dynamical to the 

equilibrium value :-— 

in the case of R, 

kepa® 1 — 2m —7 
a 10(1+7) ° ae OL + (kaa)? 1 a san, +7) 

in the case of V, 

Kepa? (1—2n)(4—87) {2 (4-82) . sas wi 1, or 14+ (kaa) 35(1+7) 

Taking /*pa*/n as constant, we see that as increases from 0 to ‘5 the term in /*, or 
2 02 oy? 

what may be called the dynamical correction, diminishes from — to 0 in the case 

of the surface forces, and from ——— ss to 0 in the case of the bodily forces. 

In cases where the frequency weal is compared with the frequency K/27 of the 

fundamental free radial vibration the following table will be found instructive. The quantity 

dynamical value of uw 
tabulated is equilibrium value of wa’ 

TABLE I. 

n= 0 25 3 a 5 | 

Case of Surface forces ke ie ke SPAS 
R, cos kt 1+ 0867 7 1+ 0789 7, 1+0753 75 140658 & 

Case of Bodily forces ke ke | ie ke 
= 5 = | 0-968 — 1+0°940 — ayer 1 +0990 7 | 140976 7; | 1+ zi | i+ EK | 

4—2 
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The dynamical correction is always more important for the bodily than the surface 

forces. In the case of the bodily forces the coefficient of k*/K? is wonderfully constant. 

SOLID SPHERE. 

Mrxep RADIAL AND TRANSVERSE VIBRATIONS. 

§ 8. The typical vibrations are those answering to the bodily forces derivable from 

the potential 7‘V;cos kt, and to the surface forces 

dT; 
dé 

coskt, B= ile af; cos kt. R=R;coskt, O= ana oe 

To determine the values of Y; and Z; in the general solution (10), (11), (12), we 

have by (22) and (23) 

AY; + B&=2i(i—1)a-Vi+~ Bi, 
yg wbvlincisebaadincetstreeee ees (36). 

CY;+ DZ,= EB (t—1)a*V;+ - T; 

al : af 1 
Thus Y;= = (¢—1)(@D;— B) a“ V+ = (R;D; — 7.8} = il 

soresasaueeen (37), 

Za {RG -W(As— 0) eV + * Bes ROD} =Th 
where Il; = A;D; = BC;. 

A;, B;, C;, D;, being obtained by writing a for r in equations (15), are known quantities; 

thus the substitution in (10), (11) and (12) of the values of Y; and Z; given by equations 

(37) supplies the complete mathematical solution of the problem proposed. 

We shall confine our further attention to the case when the frequency of the forced 

vibrations is small compared to that of the fundamental free vibration of the type mixed 

radial and transverse. This is equivalent to assuming kaa and k8a small compared to 

unity. For shortness we shall write 2 for kaa and y for ka. 

Taking (14) for the definition of the Bessel, we find 

i247 ie 
%+3 " 2Qi+3)7"  4(+3) Qi+5) 

1 2a (@— 4) (7+ 3) > 

+ 3@i43)Qi4¢5) 7” + wor hee | sS0do¢ (38), 

A;=La-ta3 |- 2(i—-1)+y?+ e 

a+1 t1+3 
a Ores dete cl eS Se a ee 

eee i 1— Faia) 4 +8 i438) Gite)” 

7a+5 oe ts a 
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yy oes <a oh iaveee oe ee 
Oj = Liat |-« 1+ 90543)” 8 (2+ 3)(Qi+5) 

1+5 ani 
+ 48 (21 + 3) (21+ 5) (2i+7) ~ “al Cece eres eesereseeseseeeseesssees (40), 

_ 7 2afyt/ CE) ig 2 a 
Bea) | (D+ 2(2i +3)" +8 (i483) Qi+5)” 

? + 6t+ 14 
~ 48 (2 + 3) (Qi+ 5) (+7) 7 el ee eeneapenerecetscesedensesecee (41) 

whence 

«a ay ROT eT By al 2c 
tees (hey 2 ly %+3° 4(i4+3)7” + 2(%i+3)Qir5)” 

(25-47) yas —2 (i + 2) a (42) 16 GEE 8) GEES) GEERT) | crreecerreerreeneeestreteee 2), 

1D, — B= Lantyttt 5 Neepes st ee PEE (43) Seta! (Gey @ies)|  SGrpey!  8Cie sen! | en ) 

Tl; = (LZ, 2am ta tyi tt (¢—1) (22 + 444 8) 7-2 (6-1) (@ + 1) (642) 22 
sew? TG 4 1) i +8) die 

i(2i? + 10: +9) ARAL U Geeny ay Ga) 
Peay 2 ne re an ai 

QW +1S+3+35 P+ 4P- 2-10 
8 (26+ 5)(+7) “+ 443) 45)" 

414 $2148, (C-1G+D G42) of 
LC CCE olen (=) 

Substituting these values of ;,... II; im equations (37), we get the values of ¥; 

and Z; to a close degree of approximation. These values of Y; and Z; are then to be 

substituted in the expressions supplied by (10), (11) and (12) for the solid sphere when 

kar and k8r are treated as small quantities, viz. 

u=cos kt | rY/, 
a 

— RB 

DVR ils t+2 aes t44 Bi ~7s 

Yl; (=) bs (i 2 (21+ 3) (far) 8 (22 +3) (22+ eo ‘ s, 

y eta i—) 1 {Te 2 Lane’ »\s 5 + ZL; (2) r {1 SY ORray Gi 3) (Br) + 8 (i+ 3) Gi 5) Br) | BO eee (45), 

v= cos kt = |- grrr 

a\e-3 Tt eeegirs Mat’ 1 seh li 
7 ViLi() if t — 3543)" + gait a)eis 5 OO} 

9A al Gtk ay Sabie a BS oh Bs ] +Z1:(2) aap it? sane HP? + grarzsyorre) #8} |--46) 
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w = cos kt - aie een 

(a\-4 i—1 1 1 \ -¥,L;(2) r 1 = sa7¢g) ar? + 5 Sit 3) Gis) Ae ar): . + 

y i+} 7-1 Z 14+3 i+5 "3 ; a 

+31; (2) ‘Ganitl- a@i43) "Pr ee Br) ay ..(47). 

By (87), (39), (41) and (43), and again by (87), (38), (40) and (42), we see that 

(L,a'*4y/TI; appears as a factor in both Y;LZ;2*? and Z,L;y'*4, while by (44) we see 

that II; contains the factor (Z;)?2*3y*, This factor thus cuts out in the expressions 

for the displacements. When this factor is removed it is easily seen that the terms 

containing k° in the denominator in (45), (46) and (47) cut out, precisely as in the 

corresponding case in §7. It is this that necessitates the carrying the approximation 

so far as in (44) to get correctly the terms of order (kaa)? and (48a)? in the dis- 

placements. 

Again the terms containing lowest powers of # and y in A;D;—B;C; cut out, so 

that for the degree of accuracy attained in (44) we require to find dA;, B; etc. to the 

degree of approximation shown by (38), (39) ete. 

When the expressions (45), (46), (47) are reduced as far as possible, we still have 

occurring in the denominator the complicated expression 

(i-1)| @e+ 47-43) (m4n)-2G4G42)0 

k°p 
2G) (Ok EG) ROE) {¢ (22 + 107 + 9) (m + n)? — (27 + 5) (Bi + 1) x (m+n) 

-—2(7- 1) (+ 2) 08]. 

By putting this into what is to the present degree of approximation the equivalent 

form, 

(t—1) {(22 + 404+ 3) m— (27+1) n} x 

7 (22? + 107+ 9) m? + (40° + 1407 + 7 — 5) mn — (67 + 1) nr? | 

2 {(22? + 47+ 3) m—(21+1) n} @—1) (214+ 5)n(m+n)] ” 
E +kp 

we get all the terms containing /* into the numerator. 

It is obvious, however, that the resulting expressions for the displacements must be in 

general cumbrous, and I have not thought it worth while to work out and record them. 

In any specified case the values of 7 and of m/n will be given, and the labour required 

to obtain the solution in its most convenient form from (45), (46) and (47) by usmg 

the particular values of Y; and Z; deduced from (37) will not much exceed that 



ELASTIC SOLID SPHERES AND SPHERICAL SHELLS, 3] 

required to convert into figures the general formulae resulting from the substitution of 

the general values of Y; and Z;. 

§ 9. I have worked out three cases explicitly. The first is that of incompressible 

material, ie. material for which n/m, and so «/y, is negligible. In this case we have 

for all integral values of 7 not less than 2, 

_ (B+ pat'V;) cos kt ira |. ns F 

n= Cara ror | te 

(k*p/n) 975 ‘4 :3 Q972 , 4 
+ &(G— 1) (+5) Qe +404 3) {(2¢ + 187 + 417 + 337 + 177 + 15) a 

—2(i-1)i(i+ QP +10: +9) ar + = 1 G+ NRE+ 4 +3)r5 | 

T;.cos kti (i +1) ra sg ae 3 
In (i — 1) (0 + 4a + 3) -« ee a 

a (k®p/n) Ne) ; loath) 

[SDs eraaaa), ot eh tt 9) 

— 2 (i —1) (2H + Gi* — 922 — 26% — 15) a2 +4 (i — 1)? (222 + 44 + 8) 4] ROL ON mm (48), 

£ (R; + pa'V;) cos ktr'a-* 

= Se [ii De 3) 
(k*p/n) on 5 _ _ ‘ ele 

+ £G=1) Git 5) e+e 3) 2 + 1804 + 412? + 332? + 177 + 15) a 

—2 (6-1) i(é + 8) (22 + 1084 9) a? + (6-1)? (6+. 5) (QE + 4+ yr 

dT; aa 
dg cos Ber om 

eae a anne eee 
— (+1) (®-1-3)24+(-1)iG+3)r 

= (k*p/n) ge Skene Gene NaeVee 
GS) Giese + 82 — 197? — 727 — 45) a 

— 2 (i-1) (i+ 8) (2% + 62? — 92 — 264 — 15) av? + (¢—- 14 (6 +5) (22 + 4+ 3) ... (49), 

w= | Expression obtained by writin oh. a for we I (49) eV NS latin dec otek (50). P y 8 smOdp — do 

When 7 is a given integer the somewhat long algebraic functions of 7 become 

When 27 is big the terms containing k* bear to the others— concise numerical quantities. 

Thus the dynamical correction Le. to the equilibrium terms—a ratio of the order 1: 2%. 

is relatively of less and less importance as 7 increases. 
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The surface displacements, being the only ones admitting of direct observation, claim 

special attention. Distinguishing them by the suffix ,, we have 

px Fito eoski@i+ial,, Kp 34h +8 +6143) 
i 2n (i — 1) (227 + 40+ 3) n 2(t—1)(204+1)(21+5) (22+ 47+3) 

T; cos kt 37 (i+ 1)a K*pa? 4a — 2022 — 324-15 

Qn (t—1) (22+ 4¢+3) are ee accent ne Liat (51), 

d A 
R. iV. _ £ 

i cap ous) os kee pat 4a? — 2017 — 321-15 
"a Tn l)Qe+ +3) {1- n Deere) 

ocos kt(22+7%+3)a 

+ onG@—1)@e4 a+ 3) 
| i k?pa* 4a — 82? + 227? + 632 + 45 

af I@= DOr Se se (52), 

Wa = | Expression obtained by writing ams a for = in value of | Sonseewccesteneces (53). 

We see that the radial displacement answering either to the bodily forces or the 

radial surface forces, and the tangential displacements answering to the tangential surface 

forces, are invariably greater on the dynamical than on the equilibrium theory. Since 

however 4:°—2072—32i-—15 is negative only so long as 7 is less than 7, the radial 

displacement due to tangential surface forces and the tangential displacements due to 

radial surface forces are greater on the dynamical than on the equilibrium theory only 

so long as 7 does not exceed 6. 

§ 10. For all values of k, p, nm, a there exists between the radial surface displace- 

ment due to tangential surface forces and the tangential surface displacements due to 

radial surface forces the simple relation 

Ua When tangential forces alone act 

T; 
Vq When radial forces alone act 

TR, 
dé 

ae Wq When radial forces alone act 

Sa Tah, 
EPRI 

_t@+l1) J(va)? + (wa)? when radial forces alone act (54) 
a (2 ce ae L 

dé ) (sn é ry) 

An interesting interpretation of this result is obtained by the aid of the following 

=i(i+)) 

lemma :— 

if a; be any surface harmonic of degree 7, in which the azimuth @ occurs only with 

integral coefficients, 

("| x | =) 3 (sca e t an Gugdeeoa tt) | [ay ETAT ean (55). 



ELASTIC SOLID SPHERES AND SPHERICAL SHELLS. 33 

To prove this, write cos@=, so that o; satisfies the equation 

doy | 1 do; 

aa 1—p? d¢? = i+ at 7 - a) 

Then 

"per((doi? | (_1_ doy 
(ih i(aa) + ( sin 

0 db we Odédd 

+12" (dg. do; day a 

=> 
eat 

i 
do; : 

F 

(eet Som 
is Fee ee ee: 

— d. j — 2 i 
d 

| do 

I tly ee ale le 
i le aia? ae

 

ae do; 1 da; zs bess ak vit ddd. 
fle a \ 7, aaa —p dd? Eee 

The single integrals obviously both vanish under the specified conditions of the 

problem, and the double integral reduces by means of Laplace’s equation to 

+1 f2r 

i+ [_ [oir duds, 
Tete 0, 

which proves the lemma. 

Now by (54), the value of the fractions being independent of 6 and ¢, 

Sa Qa 

| i (uq)?sin Od@dd when tangential forces alone act 
/ 0/0 

= a a a i a 
| | (7,)? sin Odd 
0/0 

| | vt {(vq)? + (Wa)*} sin @d@dd when radial forces alone act 
0 =?(i+1P— a 

Js {Caa') + Gara ‘ag,) } 20048 
and by (55) this is equivalent to 

mln 

| i (Uq)? sin Od@dg@ when tangential forces alone act 
oso 

m flr 

i | {(va)? + (wa)?} sin Od@d when radial forces alone act 
oso 

ie \(aa) ate (aa a
t sin 0dédd 

: 

(56). PP cee ae adode 00s cecccecscccceccuceas 

J 0/0 

Now the resultant tangential displacement and the resultant tangential force at any 

(= adT;\? 
point of the surface are respectively V(vq)?+(wa)? and oh (FF =a ) cos kt. 

Vou. XVI. Part I. 5 
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Thus (56) signifies that the mean square of the surface radial displacements due to 

tangential surface forces bears to the mean square of the surface tangential displacements 

due to radial surface forces the same ratio that the mean square of the former set of 

forces bears to the mean square of the latter. As the result (56) holds equally when 

k2 sin? kt is written for cos?kt in both numerator and denominator of the left hand _ side, 

we may regard the theorem as holding for the kinetic energies of the radial and 

tangential surface motions in the two cases instead of for the mean squares of the 

displacements. 

CasE 1=2. 

§ 11. The second case of mixed radial and transverse forced vibrations I have worked 

out is that when 7=2, there being no restriction on the value of n/m. 

The applied forces consist of 

bodily forces from the potential 7°V, cos kt, 

and the surface forces R= R, cos kt, 

ary. i 
O= de °° Kt, 

Lear. 
Oo= ae do cos kt. 

Putting i=2 in (38) to (44), and substituting in (37), we find Y, and Z,; then 

employing these values in (45), (46) and (47) we ultimately obtain for the displacements 

Balecosien 5. ee eae, 
ea (19m — 5n) | 2 (4m — n) a? — (8m —n)1 

kp ™ ee. - 

* 84n (m +n) (19m — 5x) {(2009m* + 1047 mn — 855mn* + 123n°) a 

— 4 (259m? + 113m2n — 141 mn? + 21n*) a*7* + (19m — 5n) (Tm? + Gmn — Bn’) | 

R, cos kt ra~ 

n\(19m — 5n) [
sm —n)@—3(m

—n)r 

kp $ 2, 2 3 4 
ats T2n(m +n) (19m — 5n) {(287m + 217mn — 82mn? + 12n) a 

— 4 (37m + 34m2n — 28mn? — n°) ar? + (19m — Sn) (m? + 2mn — 2n*) | 

T, cos kira | , 
; . 

+ 7 (193 (19m — 5n) E (m — n) (a? + 2r*) 

Kp 
oe 3 5a ="! 2 1 3 4 +e GaeLay Con = on) {(169m? + 5m?n — 122mn? + 18n°) w 

—(m—n) (23m? — 44mn — 19n?) a2r? — (19m — 5n) (m?+ 2mn — 2n*) 4] ree (57), 
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P= cdi “cos kt r 
| 9 —n)ai—(5m —n)12 = on =) (4m — n) a? — (5m — n)1 

kp —<$_*_______ f¢ 2 3 2n — 855 2 23n3 + o5, GES a) {3 (2009m* + 1047m*n — 855mn? + 128n*) at 

— 4 (1295m + 782m'n — 474mn? + 63n°) a*r* + (19m — hn) (49m?+ 42mn — Yn?) | 

dR, 
@ cos kt ra~* 

[sm —n) a? —(5m + 2n) 7° 

+ ae Ey = { 
362 (m+n) (19m — 5n) 

+ on (19m — 5n) 

3 (287m® + 217m?n — 82mn? + 12n*) at 

— 2 (870m + 402m2n — 21mn? + 19n*) a*r?+ (19m — 5n)(Tm?+ 14mn + 4n2) “| 

oS cos kt ra~ 

Ti Som=an) [2 (m—n) a? + 2 (5m + 2n) 7? 

kp 3 =D 2 3) qs oa Toe Cr Lon ba) {3 (169m* + 5m*n — 122mn? + 18n°) a 

— (115m — 345m?n — 309mn? + Tn’) ar? — (19m — 5n) (Tm? + 14mn + 4n*) | Shoe SUS: (58), 

d 5 < 
=| Expression obtained by writing - = dé Sas = UAT ANALG OLR | receoseneaeetaee (59). 

For the corresponding value of the dilatation we have 

7 Bln? + 33mn — 6n*) a— 8n (19m — 5n) r*) 

42n (m +n)(19m — 5n) j 

©” cos kt A= Tye aa | 2 V, {1+ kp 

+21R,a- \1 +Rp (62m? + 259mn + 29n?) a? — 9n (19m — 5n) “| 

126n (m+ n)(19m — 5n) 

re (5m? + 217mn + 44m?) a? — 9n (19m — 5n) 7? : —422a- | + kp ISSR TD Bat feeeseeee (60) 

T, 1 dT, 
The coefficients of Z.k°a%7* in (57), ‘S k*a?r? in (58) and = amar k*a*r* in (59) are the 

only ones whose sign alters as n/m varies from 0 to 1. 

The surface values of the displacements are rendered more concise by the employment 

of Poisson’s ratio »=(m—n)/2m. Thus we get 

pV. cos kt(2 + 7) a® | Kpa? 91 + 81 + 27° ; 
eT (GEST) 422-4 n 42(2+)(7 +57) 

R, cos kt (7 — 4) a 1 kepa? 35 — 4m + 267? 

2n (7 + 5m) | n 6(7 —4m)(7 + 5n) 

T, cos kt 9na {1 kpa® 7 + 55m — 117? 

n(7 + 5m) n 54m (7+ 5) 
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p cos kt(1 +n) a 

2n (7 + 5n) 
{1 x k*pa? 91 + 222n + 817? | 

n 126(1+%)(7+ 5m) 

dR, cos kt 3na 1 k°pa? 7 + 55n — at 

d@ 2n(7+ 5m) n 54m (7 +5n) 

ae cos kt (7 — n) a 
dé | Kpa? 49 —2n + 677 ) (62) 

Tal Loa) = Ga Geunie e ; 

: 2 38 1d ad. Wq =| Expression obtained by writing Tuas: for de value) (Of)! <2 .-.--s2-«( 68) 

The tangent of the angle which the resultant displacement at any point of the surface 
makes with the normal is given 

for the bodily forces by 

f / (aay. 3 1 aV,y 

Ve ae V ( dé / Sa 6 dd, ae A k*pa? 13 —12n (64) 

Ung V; 2(2+ 7) n 126(1+m)(2+)) 7" ; 

for the radial surface forces by 

af ey 1 — 
2 2 a5 GE e/a yes a2 2 2 Vg? + Wee ral ( dé , = 0 dd 3n (y , Mpat 7 +7 — 387") (65) 

= Ua =— = oh Ff = 4en { n 54m (7 = 4m) J > 

for the tangential surface forces by 

ah a +( 1 ee) 
Vg + Wa? = \sin @ dé / 7—n it: K*pa? 7 + 28m — ver (66) uP ae 5 SC ay L 

The coefficients of k*pa*/n inside the square brackets in (61), (62) and (63) are 

obviously positive for all values of » from 0 to °5, which we shall regard as limiting 

values. Thus in every case the dynamical correction supplies an increase to the numerical 

values of the surface displacements. 

dk, 
The coefficient of 7Z, in the value of wg bears to the coefficients of “ado and 

2 ese in the values of v4 and w, the ratio 6:1, or 2x3: 1. The results established 
sin 6 dd ; 

in § 10 for incompressible material thus hold for all values of » when i= 2. 

An idea of the size of the dynamical correction to the surface values of the displace- 

ments in the several cases will perhaps be most easily derived from the following Table II. 

The quantity tabulated is 

dynamical value of displacement 

equilibrium value of displacement’ 
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TABLE II. 

Fo 06 Displace- | ior a p 
noting ment = 0 25 3 y 

radial =| 1+: sas 1+- 144g “0° | 1+- 1495 Hew | 1+ 1386 — 
Bodily gee if 

tangential | 1 +1032 ae % : . stop = ES sy 1 + 71238 - Re 

radial 1 +1190 “P® | 1 + -1199 * ee 1 +1241 be 114-1386 La 
Surface n | 

dial 
aaa | tangential ) 1+ 1801 i =e 1 +1546 Ko | 1+: sess "0 ee 

radial © 1 +1801 Ke 14-1546 ‘eet 1 +1238 kp 
Surface n 

tangential 2 2? ees eee | 
8 | tangential | 1+ ‘05 ia - 205 z 1+ 0536 be 1+ 0583 K’pa? 

UG | nu 

Regarding = as constant, it will be seen that the influence of the value of » on the 

size of the dynamical correction is comparatively small, except in the case of the radial 

displacement arising from tangential surface forces and the tangential displacement arising 

from radial surface forces. These are cases in which the equilibrium values of the displace- 

ments absolutely vanish with 7. 

In the case of the radial surface forces the dynamical correction to ~ passes through a 

minimum when 7 is ‘11 approximately, and in the case of the tangential surface forces the 

corrections to vq and w, pass through a minimum when 7» is ‘20 approximately. 

From (64), (65) and (66) we see that the dynamical correction makes the direction 

of the resultant displacement at any point of the surface approach the normal in the 

ease of the bodily forces and the tangential surface forces, and likewise in the case of 

the radial surface forces when » exceeds ‘443. 

§ 12. The action of the bodily forces of the present case in a sphere of incom- 

pressible material has, as stated in § 1, been already considered in some detail by 

Mr A. E. H. Love. The result at which Mr Love arrives, |. c. p. 327, is with our present 

notation 

—38 kpa 29 | 

vial | Scale 189 | 
fen Bindi. \ i iso haa | win anita sin\olnlsty Hiclewin dare terete (67). 

a ta 189) 

From this result Mr Love draws the following conclusion :— 
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“For a sphere of the mass and diameter of the earth, and of the rigidity of steel 

or iron, executing vibrations of the species considered with a semi-diurnal period, we have, 

in C.G.S. units 

27/k =12 x 60 x 60, p=5°6, n= 800 x 10°, a= 640 x 105, 

so that kaVp/n=1/4 nearly. It follows from this that the neglect of (ka Vp/n)* would 

be fairly justifiable in the case of such a body. We conclude that in the case of an 

elastic solid earth the bodily tides would follow the equilibrium law.” (lc. p. 328.) 

As explained in a parallel case in § 7, the result (67) does not really proceed 

beyond the equilibrium value; what we have to consider is the magnitude not of (ka Vp/n) 

but of the term in (kaVp/n)? which actually occurs in u,. For this purpose we refer 

to Table II, and taking Mr Love’s hypothetical value ka Vp/n=1/4 we find that the 

ratio of the dynamical to the equilibrium value of w,q is 

1:009 : 1 approximately ; 

so that the dynamical correction is slightly under 1 per cent. 

The application to the earth of results obtained by the mathematical theory of 

homogeneous isotropic elastic solids is of course highly speculative. The best value to 

assign to the rigidity » im such an application is largely a matter of opinion. The 

elastic moduli of iron, however, are much higher than those of most known substances. 

It would thus perhaps be better—especially as the maximum error involved in the 

equilibrium theory is of more interest than the minimum—to assign to m a considerably 

lower value than Mr Love does. If there is any reason to suppose that the earth but 

for its rotation would be a true sphere, then a value such as 32x10’ grammes weight 

per square centimetre has something to commend it*, and it is at least a fair average 

value for known materials. With this alteration im Mr Love's data we find for the 

ratio of the dynamical to the equilibrium value of uw, the considerably higher value 

NODE 

Even with these figures, however, the approximation supplied by the equilibrium 

theory is still very close, so that Mr Love’s conclusion appears less open to criticism 

than the reasoning on which he based it. 

As the absolute size of the tidal disturbance due to the moon’s attraction in a 

hypothetical earth of this sort may possess some interest, I have evaluated (61) and (62) 

taking p=5°5, n=32x10" grammes wt. per sq. cm., 27/k=12 x 60x 60, a=64x 10’, 

accepting for V, the estimate given in Thomson and Tait’s ‘Natural Philosophy’ Part II. 

Art. 812. The departure of the earth from a spherical form and its mutual gravitation 

are left out of account, and the dynamical correction is neglected. Taking the foot as 

* See Phil. Mag. Sept. 1891, p. 250. 
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unit of length, and supposing the line joining the centres of the earth and moon taken 

as axis of the harmonic, I find approximately 

Ug = jp Jeb cos kt, 

Va = — $sin 26 cos kt. 

The amplitude of the displacements due to the sun’s action would be about half 

as big. 

Supposing simultaneous astronomical observations to proceed at two distant stations 

on the earth’s surface, there might under favourable conditions, under the joint influence 

of the sun and moon, be apparent fluctuations in their relative latitudes such as might 

possibly suggest a displacement of the polar axis, A second of are on the earth’s 

surface answers to nearly 100 feet, so that judging by the preceding figures any effect 

of the kind must be extremely small; still those conducting the very delicate observa- 

tions by which a displacement of the earth’s axis is attempted to be measured might 

do well to arrange their experiments so as to secure the elimination so far as possible 

of any effect of the kind. 

SURFACE FORCES DERIVABLE FROM A POTENTIAL. 

§ 13. In the third case of mixed radial and transverse vibrations referred to in 

§9 the surface forces, radial as well as tangential, are derivable from a potential of 

the form 

ra} §; cos kt, 

where S; is a surface harmonic of degree 7 This gives in terms of our previous 

notation 
Vij OVERS 4S, ol, = Soo csaet ees oneeapap eee E iecanpoce n= (68). 

The solution is easily obtained without any restriction to the values of 7 or m/n 

by means of the following artifice. The equilibrium terms* in the displacements are 

known to be 
wri q-it2 

u= 2n (i —1) S, cos Iti 

at ORAS A pae cans Nesecesane Omerc wasters (69), 

25S ae aS EL CES a 
dé sin@ dd 

and so are derivable by differentiation from the potential 

rq 

Daten) S; cos kt. 

Suppose now for a little we employ fixed cartesian coordinates x, y, z, the dis- 

placements relative to these being a, 8, y. Also let 

a=a,+ ka, 

* Camb. Phil. Soc. Trans., Vol. xv., Equations (109), p. 379. 
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where a, is the equilibrium value. Then as we have just seen 

Le ae ea ey me, iia Gace Hoes he vasisce teoe daec sec beeen (70). 

We notice that a, &o, Y themselves are solid spherical harmonics, and that the 

corresponding dilatation A, vanishes. There being no bodily forces, the first body stress 

equation is 

m = + nV72a — ia 
dx ane we 

The terms independent of /* vanish, and the terms in & give 

dA, 
m ae +nV%a,+ pa =0. 

Thus substituting the value of a from (70), we have 

A. att P d i Fea nV*a, + p ae Re 1) 78; cos ie} = Oss ceases eter (71). m 

This is identical with the ordinary equilibrium equation 

dA : dV 
m de t UV +P ae =0, 

for the case of bodily forces derivable from a potential V, provided 

qo 
V= GS 7S; cos kt. 

Again there are no terms in #* in the surface forces derived from the potential 

ra; cos kt ; 

thus the terms containing /° in the expressions for the displacements must by themselves 

satisfy the equations for a free surface. 

The terms /°2, &c. in the displacements arising from the given system of surface 

forces thus satisfy the same body-stress equations, and the same surface equations, as 

the displacements supplied by the equilibrium theory for the case when there act 

bodily forces derivable from the potential 

keg 

In (i — 1) rs; cos kt. 

Consequently the terms in &* in the displacements of the present problem must be 

identical with the displacements in the specified case of equilibrium. They are thus 

deducible at once from my general solution for the equilibrium of a solid sphere*. 

* Camb. Phil. Soc. Trans., Vol. xiv., Equations (36) to (39), pp. 264—265. 
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The expressions to which we are thus led are 

bd S:cos ktir’1a-i+# F a kp v {i +2)m—n} a?—(i—1) {(i+1)m—n} bid (72) 

© 2n.@—=1) n 2 (4 — 1) (20? + 40 +3) m— (21+ 1) n} = 

ae a. w _ cos kira 3 rege fal aca Ee aw —(i—1){%+3)m—n} | (73) 

a: iy aS; 2n («—1) n 2(¢—1) (2? + 4¢4+3)m—(2i+1)n} J 

d@ sin dd 

The corresponding dilatation is given by 

Aaa Sains COE aldol geen) wodtheire 20 1 (74). 
n 2@—1) (Qi + H+ 3) m—Qi+ 1pm} 

It is zero on the equilibrium theory. 

For the surface values of the displacements we have 

ape ta; cos kt K*pa? (ic) on 7 (75) 
“In (i—1) n 2(t—1){(2?+4¢+38)m—(2t4+1)n}} 

Ya _ Wa COS kt 1 k*pa? 3m —7n (76) 

dS; 1 dS; 2n(t—1) nm 2(¢—1) (2+ 4043) m— (224+ 1) nj} ; 
dé sin@ dd 

The dynamical correction tends as usual to increase the surface displacements ; it is 

relatively more important for the radial than the tangential displacements. Its importance, 

for a given frequency of vibration, diminishes rapidly as 7 increases. 

The results (72) to (76) may be verified for the case n/m=0 by putting R;/i=7;=S; 

in (48) to (53), and for the case t=2 by putting R/2=7,=S, in (57) to (63). It 

was in fact a study of the solutions found in these two cases that led me to the train 

of reasoning by which the results (72) to (76) are deduced here. 

§ 14. Before quitting the subject of mixed radial and transverse vibrations, it is 

worth noticing that near the centre of the sphere in all the preceding cases the dis- 

placements are deducible, to a close degree of approximation, from a species of potential 

function Q, such that 

This is easily verified in the several formulae, retaining in each only the lowest 

power of r. 

The values of @ in the several cases are as follows :— 

for incompressible material, with 7 any value, 

cos ktria~*2 27> + 18c4 + 4123 + 337? + 177 + 15) = D) 2 

o= Qn (i — 1) (2? + 47 + 3) [+ pi vi) {ia Be 4n (t —1) (20 +5) (22 + 4743) J 

oe ag U(2i + 8H — 19% — 725 — 45) 2 
— Ti+ 1) [Pi + pa a oe 

Vor. XVI Parr fF. 6 
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for case i= 2, with n/m any value, 

cos kt r* ‘ : 

os 2n (19m — 5n) [pa V, 
{2(4m —n)+k*pa? 

(2009m? + 1047m?n — 855mn? + a 

84n (m+ n) (19m — 5n) 

287m? + 217m2n — 82mn? + 12n8 
= a2 2 

+R,{8m SC SPLTEE 12n (m + n) (19m — 5n) 

a a ee Jana 3 

+7, {3 (m=—n)+ Kpas Or + Sen ee | Sea (79): 
6n (m+n) (19m — 5n) 

for case of surface forces derivable from potential r‘a~*18; cos kt, 

_ 8; cos kt ria? ig 7 {(i+2)m—n} 

Ss Qn (t—1) [1 +p Qn (i —1) {(2? + 4¢ + 3) m — (27 + 1) 2} 

SOLID SPHERE. 

PurE TRANSVERSE VIBRATIONS. 

§ 15. The typical surface forces are 

af dt; dt; - 
eae ® = — — cos kt, 

dé 

see § 2. For the value of W; in the general solution (11) and (12) we have by (26) 

aBW; = 2 Tee 
n 

When the frequency of the forced vibrations is small compared to that of the funda- 

mental vibration of the pure transverse type depending on a harmonic of degree 7, we 

may employ the approximation (39) for B;. Doing so we find eventually, retaining only 

terms in i? in addition to the equilibrium values, 

vw ___cosktria (t+1)e@-—(i-l1)r° 
“nah < da ECD E + kp SETICEOH sevadesten aeeee (81). 

sin 6 dd dé 

The dynamical correction obviously increases the numerical value of the displacements 

for all values of 1; this increase, relatively considered, diminishes however as r increases. 

For the surface values of the displacements we have 

Ve _—« Wa__ ~acoskt k°pa? 1 : 
a sD nm Gales) Cee (82). 

sin 6 dd dé 

For given values of k, p, a and n the relative importance of the dynamical correction 

falls off rapidly as 7 increases. 
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SPECIES t=1 OF PuRE TRANSVERSE VIBRATIONS. 

§ 16. This species, called by Prof. Lamb the rotatory, claims special attention. 

Taking for simplicity the axis of the harmonic as the line 6=0, we have the 

applied forces given by 

Dian RIN OICORIRD ase acade eae connate coh ee. (83), 

where 7, is a constant. Such a force system is not in statical equilibrium except when 

coskt=0, but has a resultant couple 

Sra*t, cos kt 

about the line @=0. 

If the time factor did not exist, the couple would produce a continually accelerated 

angular velocity about @=0, and the displacements might be regarded as tending to 

become infinite. When the time factor exists, however, this ceases to be the case. Treat- 

ing the sphere as a rigid body, the azimuth @, relative to a plane fixed in space, of any 

plane fixed in the body and containing @=0, satisfies, it will be found, the differential 

equation 
2 

= = — 7, cos kt. 

If we suppose @=0 when t=7/2k 

_ _ 51, cos kt 
we get o=—- outlay : 

This answers, so long as & is not zero, to a simple harmonic oscillation about a mean 

position corresponding to ¢=0. The displacement of the point (7, @) from its mean position, 

measured along the are of the small circle on which the point moves, is 

TISIN Ol OLN —1 977 SILO COS|ICti Tal] PUAlcr ae ceepeseeines esse eeeeeee (84). 

The formulae (81) and (82), if in them we put 7=1, lead to the obviously erroneous 

result that the displacements are infinite. This is due to the mathematical treatment, which 

assumed the value (39) of B; to be replaceable by 

B; = L;2a y3 (¢— 1) + {1 - saan 7} ; 

This is satisfactory unless i=1, but in that case we have instead 

B, =— L,2a-hy? . Bey? (1 — ey + AY) ccceeecceeccneceeeecesecees (85). 

Using this, we find in place of (81) 

pat F 5r k*p Tr? — 5a? =e 6374 — 1267°a? + 55a4 - 
w=—7, sin 6 coskt mal fra as YO + (= eae cas ewancsise OO); 

and in place of (82) 

a2 2 2 2\2 W_ =— 7, sin 6 cos kt op = es (Fee) | ond sath «ai (87). 
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The principal term in (86) taken alone would give 

Pees Cau COs Kb), oe ees ee, (88). 
park? 

Answering to this, however, we see by reference to (2) that the stresses are all zero. 

In other words (88) must represent a rigid body displacement, and comparing it with (84) 

we see it must stand for the displacement supplied by ordinary Rigid Dynamics. Omitting 

the rigid body displacement, we get for the true elastic displacement 

= kp 63r*— 126 7 ra? + 55a) a2 2 ‘ 
=7,S1 s kt —— 772 — 5a? — pi earn ated (Co }!))). w=7,sin 6 cos kt 1 1G 5a =. 259 | (89) 

and for its surface value 

: a k*pa? 
We = 7, sin 6 cos kt Tn {1 +5 “ee AEC SEC ease oan IOS ope on eee (90). 

If these results hold when & is small—and the proof seems pretty satisfactory,—it is on 

physical grounds difficult to see how the results 

w =7,s8In Or (Tr? — 5a*)/14na’, 

Wa = sin 6 a/7n 

can fail to hold for the elastic displacements in the sphere under the action of the 

surface force ® =7,sin 6. 

We thus appear to have hit on the solution of a problem which seemed insoluble when 

approached from the ordinary equilibrium equations. Our solution throws light on an 

aspect of the case left dark by ordinary Rigid Dynamics, viz. the mode in which the 

influence of the surface forces is transmitted inwards. We now see that the surface 

material forges ahead, following the lead of the applied forces, while the central material 

lags behind. The total displacement is in fact by (91) greater or less than the rigid body 

displacement according as the point considered les outside or inside of the spherical surface 

r— aN 5/1. 

and to elastic strains and 

stresses depending thereon, but these may be separately treated. They prescribe a hmit 

to the application of the elastic solid theory. 

The rigid body rotation gives origin to “centrifugal forces’ 

The dynamical correction is seen by (90) to increase as usual the surface value of the 

elastic displacement. 

THIN SPHERICAL SHELL. 

§ 17. We now proceed to consider the second class of forced vibrations referred to 

in § 1, viz. the vibrations of any frequency in a thin shell. By a thin shell is meant 

one whose thickness h bears to a, the radius of the outer surface, a ratio whose 

lowest power only need be retained in any mathematical expression occurring in the 

solution. This may imply of course a limitation in some of the results. 
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Supposing there to be only surface forces, given by (7), acting on the outer surface 

we find that equations (22) to (27) may be written 

y y , 1 
AiY;+B;4,+ A4iYi1+ Biiziu= = R;, 

OY; 4+ DiZ;4+ Ci aYii+ DiiZiu= : T;; 

(4:40) Yi+ (B-Sa5") Zi+ (4-1 — 2 gh) ) gras 
da a da da (92) 

h (tas 
ft (Bs = ike ea) a i= 0 

/ h_ de; h dD; I, GAO NY 
(G.—F0 ge) Fit (De- 54 Gg) Ht (Cr Ge i) 

+ (Dis — he o) MiGs =I) 
a da 

2 BBW Ee aB. ow = } 
a ee (93). 

{abs Loe (aby W;+ {ab i- ha. = 7 (0B. )f=0 0| 

The first four and the last two of these equations form independent systems. 

Taking first equations (92), we find for the value of the determinant IJ; formed of the 

coefficients as in (28), 

Tae (2 A;, B;, PAleraar ‘Bas 

. C;, D;, Cole DES 

afi wei dA_;+, dBi, 
eae in » @ da” a Ad | cort crete eee teeeeenee (94). 

dG; aD, Win Win 
Tre Ta dg 2. | 

In finding the values of II; and of Y;, Z, YV_ii, Zi. use is made of the 

following results obtainable from the definitions (15) :— 

g Wi 2 eC Se) ) 

” “da y? —2(1—1) (7+ 2) 

Eres — 4a? (# setae) 1 ibe AC Dae 
: y? — 2 (i— 1) (4+ 2) 

1 i _ FWD; ip=an es - 2B; {y? =3G=1) +2) 
* da —2(t—1) (t+ 2) 

—— 

. dC, _2A,{at— (6-1) (6+ 2)} — 40; {ye— a — =) G+2)} _ 
da y —2(¢—1) G+ 2) 

4 Di ee —4(i—1) (¢+2) 
da “yp —2(¢—1)(¢4+2) 

1 pes 2y? (2? + 21-1) +4(¢@—1) 1(4 +1) @ +2) 

Qi (t+ 1) {y2— 2 (i — 1) (+ 2)} ) 
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where as before 

r= k°aa?, y? = k°B?a?. 

Writing A_;.,...D., for Aj,...D; respectively in the above, we obtain without 

further change the values of ee — in terms of A_;4,...D_;,. This follows 

from the fact that the substitution of —z—1 for +7 leaves unaltered 7(i+1) and 

({—1) (i+ 2). 

Writing for shortness 

A;C_in = CAs = M; 

y—2(@—1)@+2)— o| (96) 
DB; = Bopl Sai ), 

y— 2-1 (@+2) 

we obtain from (95) and the corresponding formulae with the sufix —1—1 the 

following results :— 

Lape en a 4M; {y* — 442 (@ +448) + 160? 4 (i —1) (6 +2) +))} «.....97), 

d; dC_y_ is 
Aa Gg Ava a 2 AM, (op =a? S01) 0 2) oie cavecs see seocuseaes sakes Pua teantae (98), 

Ce es a (tip ES Todas = ST os Oy eR acer ee (99), 
da da 

S dC; dC_j 4.72 . C_s=,.a =— a Ca aa == as (i — ct feta cred isanteiteey deans ea «sneha << urine eer (100), 

dA; dCin_ @A-in aC; : pis a 
ee eae = M; {ya — y? (@ +74 2) — 2a (t— 1) (0 + 2) 

+2(¢—1) (i+ 2)(i— 2) (4 + 8)}......(101), 

pena — Bia ae =O (G9 1) Ne (op 16 — Yee Se arose ese caces Pee eee eee (102), 

dD; aD_;- 
B_j.a7 7 — Bia By E == — Nilfot SANGO GEE 2) sc seve ctcesece cette stecesons. cacemaene (103), 

ees Ep ge oN Fee (=I) (ie) lala nae ease Heh ERROR arc: (104), 
da da 

dD; dDz5 1 Bes eee. ; Perens : 
Dee De = aE ily - 2 + 2-1) +4 (i= 1) (6 +2)i@ + 1)}...105), 

i abe _ t= 4 dB; 

“da” da da da 
“= N; {y'- (Bi B62) + 26-1 +2) 6-2) 43)}-- .(106). 
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Returning now to (94), we have 

(a/hy M;=(A ed dA; A; aes ‘ (D ar Tah adD_,, ' 

da da 

+ (a 8B 8B) (0.0 — 
oe ae Ha (p Laas Bi; — Dia om 

“out te) laa 
kOe = OF A) (a4 dD; IB UB; Di 7 

da er PR da. 

+ (DBs .-BD)(a ag 22. aia ae ee (107). 

Substituting from equations (97)...(106), we find on reduction 

he MN; ; : F , pl Seen 
ET Cnu Ca {@- 1@+ 2) (By? — 4a?) — 4 (22 + 21+ 5) y' 

+ (P4044) ya? t hy}. (108). 

i= 

This expression is convenient for our present purposes. When desirable, however, 

the values of M; and JN; are easily substituted. For by the definitions (15), we get 

2 ; , 
M; = Be. 2 {J i+} (x) dian (x) = Ji4 (x) Af —i-} (a)}. 

Thus using the definition (14) of the Bessel’s, with the corresponding result 

@ {ST s44 (@) J-i-y (@) — Sing (©) J i-4 (@)} = (20+ 1) LLY, 
we have 

9 (9; 

M;= a Tie Li. 

Similarly 

Be ry. 
LOS wa+ljas Fala 

Hence finally 

MN, _ (26+1) LD) Aon) 
iG cea 

The employment of (109) in (108) supplies an elegant value for II;, showing 

exactly how it depends on the definition of the Bessel’s functions. 

§18. As we intend retaining only lowest powers of h/a we may regard the 

displacements as constant throughout the thickness, and so write a@ for r in the general 

formulae (10), (11), (12). We can then express the coefficients of Y;, Z;, Yi4, Zi. 

in these formulae in terms of A,, B; etc. 
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For instance the coefficient of Y;coskt in (10) is 

tac, ~ (kBay = 2(¢—1) i+ my 

Treating each coefficient in (10) in this way, and writing y* for (k8a)*, we find 

after reduction 

{a u/cos kt} {y? —2 (@ = 1) (a SF 2)} =— (A: Y; a BZ; ar Ae as + Be D3) 

—t(¢+1)(C,Y¥,+ DZ, + CiaY.4+ Di.Z_) + $y? (GY; + C_1.Y__). 

Whence by means of the two first surface conditions (92), we get 

1 R+iGeDZ GYe5C:, Wiss 
wm acos tt | a Ty tis STEEN Ree (110) 

Treating (11) and (12) in a similar fashion, we find 

d 1 R;+ 27; ey B24 Bij Zi 

PCOS ap [=s ny—2(¢—1)(¢+2) UG+D) yY—-2—-1) GF = ae Sa 

i d 2 
w= | expression obtained by writing = nb dd ree 6 MeL VEN: WED Son6coo0- (112). 

Taking now the four equations (92), and combining the determinants arising in the 

values of Y; and Y_,,, we find without serious difficulty 

OVE CEV Ge BM Malas a 
y—2%—-1)%4+2) na Tl; (i +1) 

R; {y'— 2y? (22+ 2i— 1) + 4¢ (@ 4-1) 24} 

+ Ty(3y¢ — 4°) wee (113). 

Similarly we find 

Ei sR ane LR; (39? — 402) — 47; (y* — 12y? + 1622)]......(114). 
y—2(i-1)\G+2) na 

MN; 

I; 
the resulting expressions in (110), (111) and (112), we find 

_acoskt{  R:+71@+1)7,; 
= ye —2(t—1) (t+ 2) 

a Ri {2Q#+2%— ly H+ Dae y| +2441) MBP 40°) ] G45) 
h 4(¢—1) (0+ 2) (By? — 4a?) + 4yra? (F@ +74 4) — 2p (224 WH 5/4 ys] ” 

_ acoskt d re R;+2T; 

n d@| y®—2(¢—1)(i4+2) 

wt 2R; (By? — 4a) + 7; {4 (By? — 4a) — 5 iE (as) 
ier ue x (2 +7 +4)— 2y! (Qe? + W+ 5) +y8 ; 

Substituting in (113) and (114) the value of * from (108), and then introducing 

n 

w= | expression obtained by writing —— in value of o| doch P onde eee seee (117). 
sin 0 ii for 76 

_— 
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In determining the values of O;V;+C_;,Y_;, and B;Z;+ BiszZi we neglected 
all but the algebraically lowest power of h/a, and thus to be consistent we must omit 
the terms 

— an” cos kt |R; +7 (6 +1) Ti} {yy —2(¢— 1) (+ 2)}> in the value of xu, 

1 P - 
— an cos kt rr (R; + 27;) fy? — 2 (¢@-1) (i + 2)}7 “4 

” ” Vv; 

— an cos kt x ies (R; + 27;) fy? -— 2 (¢- 1) (+ 2)} > w 
sin @dgp> * i Tee Pare * ha? ; 

The terms left in the values of the displacements are of the order 

a* applied force 
h n 

To put the expressions for the displacements into an immediately serviceable form, 

write in their values for 2 and y*, and divide out above and below by k% We then 

find after some simplification 

(2? + 20—1)m—n K*pa? m+n aby , 
na £98 kt Lo 3m —n (1 ~ Qn (2+ 2—1)m— =| EGU 2 a 

~~ Inh @—-1)@+2), _ pa (2+ 20+ 5)m —3n- % Ey m+n le) 
n 2(¢—1)(7+ 2)(8m—n) ( n / 4(¢4—1)(0+2)(3m—n) 

d k*pa? m+n 

a ae cos kt dé es (1 ~ dn 38m — -)} 119 

~ 2nh (i—1)(i + 2) ites k’pa®? (20° + 20+5) m —3n (Kepa?\? m+n ha 
n 2(¢(—1)(¢+2)(8m—-n) ( n ) 4(¢—1)(4+2)(8m—n) 

E: : ied Id, Ch : - 
w=j| expression obtained by writing Sai for qe Valuer Ot? |Neasccecess-cece-eess (120). 

§ 19. The displacements can be thrown into a form which is shorter and more 

suggestive physically, by the employment of the roots of the various types of free 

vibrations in the thin shell. 

The denominator in the equations (118), (119), (120) when equated to zero is of 

course the frequency equation for free vibrations of the type mixed radial and transverse 

depending on surface harmonies of degree 7 This equation may be written 

\23m— ) m Ls n oi ents = 

ek te Ain pa) m+n 
n (224+ 21+5)m—3 

pa- m+ 
f (ke) = ks — 2h 

This differs from the equation originally given by Lamb* only in the notation. 

Regarding this as a quadratic equation in k* we shall denote the roots, in ascending 

order of magnitude, by A, and K,. We shall also make use of K,* and K,, where 

K,/2m is the frequency of free vibrations of the pure radial type, and K,/27 that of 

* Proc. London Math. Soc., Vol. xtv. 

Vou. XVI. Part I. 7 
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free vibrations of the pure transverse type answering to displacements which contain 

surface harmonics of degree 7 For these quantities we have the expressions 

4n (38m —n) 
LG => ° 

pa’ (m+n) 

Sy eye = py 95 Ke = (EWC 42) 2 creer eee nee (123)+. 

As pointed out by Lamb, K,? is the real root supplied by (121) when 7=0, but 

its value is got most simply by treating the radial vibrations separately. 

Defining f(k*) as in (121) we easily find 

POO AED = it hye Geer eT NEG (124), 

FORTS TOES, pe ace (125). 
Kis R= (KA Rye CLIK co. eee eee (126). 

From (124) we see that K,° is less and K.? greater than either K,? or Ky. 

The denominator in (118), (119) and (120) is of course simply 

(1-3e)(0- az) 
and employing (122), (123), (125) and (126) we easily throw these equations into 

the forms :— 

(2? +27 —1)m—n ke 

Lg Saal: es Ce (1- Keak? PL) BC+ DE aa 
i Qnh(t—1)(14+ 2) (1— LG 3 es (127), 

\ K? Ke 

d ie MeN 722s 0. // T) ill 

2 at econ kas wot) x) 2 (128) 
~ Inh(i—1)(i+ 2) Se cielsicialsielelaiaieinialuleintel inlets alclalclelsisielelviel-iuleialateleteelte bh 

er 
' i z 

oe | expression obtained by writing = 9 for - — in value of o| © Saeeeeeeen (129). 

As no assumption has been made as to the magnitude of k, it may have any value 

which does not lead to infinite values for the displacements. These results are thus in 

one respect much more general than those found for the solid sphere. 

Putting k=0 we obtain results identical with those found by retaiming only the 

algebraically lowest power of h/a in my solution of the equilibrium problem}. This seems 

so far a satisfactory test of the accuracy of both dynamical and equilibrium solutions. 

The reservation made in obtaining the equilibrium solution that 7*h/a was small§ is equally 

necessary in the present case. 

* Lamb, l. c. p. 50. See also Camb. Phil. Soc. Trans., Vol. x1v. p. 321. + Ibid. p. 320, or Lamb 1. ec. 

~ Camb. Phil. Soc. Trans., Vol. xv. Equations (96) and (97) on p. 369. § le. p. 373. 
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From (127), (128), (129) we have at once 

u A 

iGanyT,’ when &; vanishes, 

=a =F / — ite — Tie’ when 7; vanishes.........++ (130). 

d@ snOdd WN ea +(axo dd 

This is the identical relation met with in § 10 in the case of the solid sphere. 

In discussing the influence of the value of & on the displacements, we shall call a 

displacement direct or reversed according as its sign is or is not the same as it would 

be on the equilibrium theory. 

The radial displacement depending on the radial surface force is direct when 

lec Ky, 
and also when K+ Kke—Ke <r < K?; 

it is reversed when K2<k< K2+kK?-K, 

and also when [SS IEG 

It vanishes when : ke=K?2+ K2— K, 

a value less than K,.?, but exceeding K,7+ K, when 7 is equal to or greater than 2. 

When k?< K,?, the radial displacement, being direct, is always greater than on the equi- 

librium theory; but though still direct it is less than on the equilibrium theory when 

k? only slightly exceeds K?+ Ke—- K°. 

The radial displacement depending on tangential surface forces, and the tangential dis- 

placements depending on radial surface forces, are reversed when & lies between A, and K,; 

otherwise they are direct. 

When direct they are greater or less than on the equilibrium theory according as /* is 

less or greater than AY? + KY. 

The tangential displacements depending on the tangential surface forces are direct when 

Teeca Kee 

and also when Gye] Reed Ge 

they are reversed when Reale <a Rigs 

and also when [PSSLG. 

They vanish, as is well worth noticing, when 

k= Ky, 

i.e. when the frequency equals that of the free radial vibrations. 

When direct these tangential displacements are greater than on the equilibrium theory 

except when & lies between 
K, and K,{1+4i(@¢+ 1}. 

When k/K, is large all the displacements are numerically very small compared to their 

values on the equilibrium theory. 

7—2 
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PURE RADIAL VIBRATIONS. 

§ 20. For the pure radial vibrations, answering to the uniform surface force 4 

R= R, cos kt 

over r=a, we find—either directly or by putting ~=0 in (118)— 

a m+n R, cos kt 
b= ah 4 (3m sat n) | 2a oe Sete cee eee eee e ce ceeserceees (131): 

n 38m—n 

: 55) a m+n R,coskt BS 
or, using (122 Sai Sin) ee Tan eres cnneeneerneeeees (132). 

KG 

The displacement is direct or reversed according as the frequency of the applied forces 

is less or greater than that of the free radial vibrations. 

When direct, the displacement is always greater than on the equilibrium theory; when 

reversed, it diminishes as & increases from K,, becoming very small when & is very large. 

PURE TRANSVERSE VIBRATIONS. 

§ 21. The values of W;, W_;. in the formulae (11) and (12) of the general solution 

are given by (93). Retaining only algebraically lowest powers of h/a we thence obtain 

n Uy 
eS aes Wik ore (133), 

SF n ney aD; 

where j aB;, oe 

Th a ge he och, (134) 
CNV) de (aB;), aa f (aBin) 

Employing (95) we find 
Ol we D; B=, — B;D_, : 

I = 22(¢+ 1) ha Fe C= OCD) {y®—@—1)G@+2)}.....cecceconsenes (135), 

where y=k@a as usual. 

Writing a for + in (11) we find that the terms in W; and W_;, may be written 

il se er 
ane: [{B:+2(¢+1) Dj} W,+ {B.4.4+7(74+1) Di} WH] 

ye —2(7—1) (+2) 

Substituting for W; and W_;, from (133), and thereafter for 

D; B=, — B; D4 i(i +1) 

y—2(—1)@+2) Tl 

v=-@ 

from (135), we find 

1 drt; i 

a? sin dp °°" A 
(CESSES ae hs aaa 
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and similarly we have 
dr; aml 

, o de cos kt a, 

vw=-— ye wy rer er TPR eee « . nhG@—l)a+2)—¥ a 

Equating to zero the denominator in (136) or (137) we obtain of course the frequency 
equation (123) for the free vibrations of the pure transverse type depending on harmonics 

of degree 7% Employing the value of K,? we may replace (136) and (137) by 

v eis OF coskt 1 (138 
1 dr; a = dt; ¥, nh (i =e 2) pe eee e eee eeesseescccesseseees 35) 

sin 8 dd de Ke 

The displacements are thus direct or reversed according as the frequency of the applied 

forces is less or greater than the frequency of free transverse vibrations depending on 

harmonies of the same degree as the applied forces. When direct, the displacements are 

always greater than on the equilibrium theory; when reversed, they fall off as k in- 

creases from K%. 

The exact analogy of the conclusions for pure radial and pure transverse vibrations 

is worthy of notice. 

§ 22. For facility of reference I collect the results obtained for the several species 

of forces in a thin shell of thickness fh. The forces are supposed to act over r=a, 

and to be 

radial R= R, cos kt + R; cos kt, 

c °° dT. a7 1 dr; Says 
tangential, along meridian, © = do cos kt + sin 8 dé cos kt, 

x perp: to), P= a a cos kt — = cos kt ; 

where R, is a constant, R;, 7;, 7; surface harmonics of degree 7%. The frequencies of the 

free vibrations in the shell are 

K,|20 pure radial, 

K,/2m and K,/2m mixed radial and transverse, depending on surface harmonics of degree 7, 

K,/20 pure transverse, depending on surface harmonics of degree 7. 

The displacements are as follows :— 

et ae | m+n R, 
ot mK |4 (8m —n) 1—/K? 

CORE ea (1- A) Bet i644 NT 
3m —n K2+ Ke- Ke (139) 

+——_3G-l@+2)—e]k:) eke) i ar seeeee ’ 

rd eet liodryy 

ait legiawandateet Cn RETS saad co! owlvon i 1 (140) 
Y= th G=DE+2) | Cae EAR) | 1 e/Ky| 
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[ 1 d (fale n2 | J” 2 4 dr; | 

wis coskt ew mee ET ae (141) w= G=NG+d I —7_ BRD OLAS) ERD UIE ED = ERs BE ees coin eee 

The corresponding value of the dilatation is 

_@ cos kt Ry cs (1 —k?/Ke) Ri + 40 (04 1) (/ Ke) T; 

kh 38m—n|1—F/Ke (1 — k*/.AY*) A — #2) kK.) 

Only the algebraically lowest power of h/a is retained, and the results are not to 

be trusted unless 7/a is small. 

Strains and stresses whose expressions contain no differential coefficients with respect 

to 7 may be deduced at once from the values of the displacements, and like them have, 

to a first approximation, the same value at all points on the same normal to the 

-shell. 

The value of the radial strain over 7=a@ is given correctly to the present degree 

of approximation by the relation 
d = ae dr], 2n 

If forces act over both the outer and inner surfaces, the above formulae will still 

hold when R, cos kt, R;cos kt, &c. are taken to represent the algebraical resultants of the 

forces applied over corresponding unit elements of the two surfaces, provided these 

resultants be of the same order of magnitude as the separate forces acting over the two 

surfaces. 

§ 23. Looking at (122) we see that in the case of pure radial surface forces, 

R= RB, cos ki, 

the expression (132) for the displacement may be written 

Ry, coskt _ R 
= ai (RG IG) a pl Kaas eee es 00 sae (143). u 

Similarly we see from (123) that im the case of the pure transverse surface forces 

1 dz; en = dt; a7 
ay dd cos kt, @ =— de cos kt, 

the formula (138) for the displacements may be written 

v w cos kt ee = z= = DES e he ai (144), 

snOdp dé 

or 

(3) ® 2 
v= ph (Ke— Fe) > w= ph (Kj — ) els{ejeleiuis[oisle,s(o[ale/s/etolelereiclareiete ters (145 DE 

When the surface forces are of the mixed radial and transverse type the expres- 

sions (127), (128), (129) for the displacements do not naturally fall into such simple 
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forms. For one thing the denominator contains the two factors K?—k and K2—k 

The simplicity, however, of the results in the other cases led me to try whether some- 

thing similar might not be effected for the mixed radial and transverse vibrations by 

separating the two vibrations whose frequencies are combined in (121). 

Eventually the following ‘line of reasoning produced the desired result :-— 

The one common feature of the pure radial and the pure transverse vibrations is that 

the direction of the displacement coincides with that of the applied force. Is it possible 

for this phenomenon to occur with mixed radial and transverse displacements; ie. can 

we have 

Ebon 
RO ® 

Putting k=O in (118), (119), (120) we see this relation is satisfied in the case of 

equilibrium if 
(224+ 2i-l)m—-n. .. ify Gee ‘ ae +7(¢+1) RT See REECE DEC CaO cee te CREA e (146). 

Employing (122), (123), (125) and (126), we find we can write (146) in the form 

R)*_ 4B; Kt+Ke—2Ky , (Ki KA (Ki- Ke) _9 
(rr) Ty Ke? BGs 

or 

Ri SEY Se (2 Kp ae F 
i a a 

The directions of the resultants of the displacements and the applied forces of the 

mixed radial and transverse type thus coincide when either 

FeSO Ra ea Sey Yea (148) 
or 

Ref PRS ee ee eae ee (149). 

In the general case when R&; and 7; are independent we split the forces into two 

sets by making 

R;= R; + Rk’, T,;= P+ 7! wales ak su stelaelatnicainteneietesientei (150): 

where 

Ry of he _3Ke R; —(K?— K2) T; 151) 
2(K2—Ka)~ Ke) = ré Ti Heke (151), 

Cea A OS 4k ee ee 
SR ke), kK; RK? (Ke Sc) Waa ines ceo (152). 

Substituting for R; and 7; in terms of R’, R;’, T/ and T;’, and using (122) &e., 

we easily replace (127), (128) and (129) by 

R;' cos kt : R;" cos kt 
oh(Ke— (K2—1) t ph Koy eres “= (153), 
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ee cos kt = cos kt 

OT ph(keae) | ph(ke= ey tae eecceecec essen ccssssseesrece (154), 

ET AN adudlipod Tala 
_sné dd cos kt an db cos kt (155) 

=> “ph (Ky — ih) (Ke = By ph (Kye — he) (Ke = Te) Cece reece cece scceseceeeces vo)). 

The object in view is obviously fully accomplished. We have split the applied 

forces of the mixed radial and transverse type into two sets. The first has for its 

components 

aT, , 1 T; 
R= Rk. cos kt, O1= cos kt, ®’=— ams cos kt, 

dé sin@ dd 

where Rj, 7) are given by (151); and the corresponding displacements w’, v’, w’ are 

given by 

uv w 1 
os terete nce eencaecccecseeseneceses 156). R’~ © ®~ ph (K2—P) Oe 

The second set has for its components 

uw " Sal u aT” Aect p “u 1 aT,” 
R’=R; coskt, ©’ = 10 coskt, ® Sane cos Kt, 

where R;’, 7,’ are given by (152); and the corresponding displacements wu”, v”, w” are 

given by 

Ue Oe a 1 ae 
R’ = 0” = ’ = ph (Ke =I) ateraisteleteleietcieateininietereretsietsietelelatetareleietere (157). 

” 
Since w’, v', w’ become infinite when k=4A,, while w’, v’, w” become infinite when 

k=K,, it might be assumed as practically certain on physical grounds that the directions 

of the resultant displacements in the two cases coincide with those of the resultant 

displacements in the free vibrations, of frequencies 4/27 and K,/27 respectively, which 

depend on surface harmonics of the specified forms. 

It is, however, unnecessary to rely on physical grounds alone, because the mathe- 

matical proof is easily obtainable. Thus take the equations (92) and put 

R= 0= 7.2 

Suppose the vibration frequency to be 4/27, and the surface harmonic appearing 

in the displacements to be S;. Then we find without serious trouble 

u it Vv < w 158 

S| Ee) Pade oe eee Tat oe) 
KG? Ke KAnae K?- Ke? K2- K2sin 6 dd 

Taking k= K,, we get 

w v a Ww 2 

iS Ke ds; Ke mE as? 

2(Ke—-Ke) dé 2(K2—K,*)sin@ dd 

and, supposing S;« 4K °R;-—(A?- 4K) 7;, 
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we recognise from (151) the identity in the directions of the resultant displacement 

in this free vibration and the forced vibration (156). 

Taking on the other hand k=, in (158) we get a free vibration which, supposing 

S,c -—4K2R;+(KS-— Ke) 7;, 

has clearly the same direction for its resultant displacement as the forced vibration (157). 

The conclusions we have reached for the thin shell may be presented as follows :— 

The applied forees may be split into: 

Pure radial forces one set; 

iving for representative 
Pure transverse forces Bee P ; one set: 

harmonic of degree 7 

: : iving for representative 
Mixed radial and transverse forces }8'V'78 ‘OF TP . » two sets. 

harmonic of degree 7 

In each set we have: 

Resultant displacement along the same direction at every point as the resultant 

force, and 

force 
displacement = PING Bad Ra aes, aK 

where 

k/2a =frequency of applied periodic force, 

=0 for equilibrium ; 

K/2m=frequency of free vibration of corresponding type (whose direction of motion 

coincides with the line of action of the applied force at every point). 

In the case of equilibrium phK? may be regarded as measuring the elastic resist- 

ance to the displacement. It is a quantity varying as the mass of the shell per unit 

area of surface, and as the square of the frequency in that species of free vibration in 

which the displacements involve the same surface harmonics and have the same direction 

for their resultant as the equilibrium displacement in question. 

This relationship between the phenomena of equilibrium and motion appears of 

great physical interest. So far as I know, no case of it has been previously noticed in 

elastic solids. 

Vou. XVI Parr L 8 



III. Distribution of Solar Radiation on the Surface of the Earth, and its 

dependence on Astronomical Elements. By R. Harereaves, M.A., formerly 

Fellow of St John’s College. 

[Read Jan. 27, 1896.] 

THE object of the following paper is to express in the form of a harmonic series 

the amount of heat due to the earth, in any latitude or for a zone of any extent, from 

solar radiation at any period of the year. In the main part of the paper, the earth’s 

atmosphere is taken to be diathermanous, but afterwards absorption is admitted according 

to a law of some generality, and the same methods are adapted to this case also. The 

coefficients are expressed in finite form by means of complete elliptic integrals of the three 

kinds, and also by series of zonal harmonics, and numerical results are tabulated for 

every ten degrees of latitude. Special attention is paid to the way in which the various 

terms are affected by changes in the values of the astronomical elements, obliquity of 

ecliptic, eccentricity of orbit, and longitude of perihelion. The harmonic form is suitable 

for application to meteorological questions, or the question of underground temperature 

near the surface of the earth, or to such secular changes of climate as are discussed in 

the theory of glacial epochs. 

As many are interested in these questions who would be unwilling to follow the 

manipulation of elliptic integrals, I have given a full outline of argument and con- 

clusions apart from the technical work. In this way and by the numerical results, 

obtained by somewhat laborious calculations, I hope to have made the material accessible 

for purposes of application, to those who do not care to face the mathematical work. 

It seems proper to mention that I have found in Ferrel’s tract on ‘Temperature of 

the Atmosphere and Earth’s Surface’ a table similar to table (B) below for latitudes up 

to 60°. He refers to Haughton’s Lectures on Physical Geography for the method, which 

is one of approximation by series of slow convergence. He does not appear to have 

considered specially the influence of changes in values of the astronomical constants. Also 

Sir Robert Ball’s book on Glacial Epochs contains a result for the hemisphere, which is 

a particular case of results given here for any latitude or for a zone of any extent. I 

may add that it was the feeling that results for the average of a hemisphere would 

Norr, Jan. 20. I have discovered that a paper by to Knowledge covers a certain section of this paper, my 

Meech (date 1857) in Vol. 1x. of Smithsonian Contributions results being in agreement with his. 
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lead to an understatement of the case, that induced me to attempt the more general 
problem. 

§ 1. General Outline. The annual variation in the amount of heat received from 
solar radiation in any latitude depends on two causes, the ellipticity of the orbit, and 
its inclination to the equatorial plane. In consequence of the first, the distance of the 

sun varies, in consequence of the second its declination, on which depend both the 

duration of daylight and the altitude attained by the sun, The heat-supply thus subject 

to an annual variation may be expressed in Fourier’s manner by a harmonic series, and 

this will contain a non-periodic term, an annual, a semi-annual term, We. 

Denoting by H/r* the amount of heat falling on unit surface exposed perpendicularly 

to the sun’s rays for unit time at distance 7, the element of heat-supply is 

= (L,+ L,sin 6 + L, cos 20 + L,cos 40 +...) or ee tL, sin + ...), 

t being mean time, and @ the orbital angle of the sun measured from the spring 

equinox. The formula gives the total variation due to the combined action of the two 

causes. The coefficient ZL, takes the simple form = sin Asin e, A being latitude, e obliquity 

of the ecliptic; and has opposite signs in the two hemispheres. The other coefficients 

I,, L, ... are also functions of X and e only, but do not change in passing from 

northern to southern hemisphere; they require for their expression in finite form, 

complete elliptic integrals of the three kinds, or they may be expressed in series of 

zonal harmonics with sind as argument, and zonal harmonics with associated functions 

with cose as argument. The astronomical constant h is introduced through the equation 

dé 
r a7 and with a year as unit of time its value is 27ab, a and b being semi-axes 

of the earth’s orbit. Since h varies as the minor axis it is dependent on the eccentricity, 

to a very minute extent however, as the square of the eccentricity is involved. Apart 

from this factor the amount of heat received while the sun travels through a fixed angle 

in its apparent orbit, is quite clear of the influence of eccentricity. The importance of 

this last element emerges when the results are transferred to mean time. 

If summer and winter denote the times between the equinoxes, summer and winter 

totals of heat-supply on unit area in latitude » are 

2 (Z,+sind sine) and = (Z, — sin sin e), and the annual total — : 
L 

The numerical values of the coefficients as far as Z, and their differential coefficients 

with regard to X and e are given in table (A). As regards ZL, it is sometimes con- 

venient to have its values expressed in percentage of the mean of the globe; these 

values are :— 

A=0° 10° 20° 30° 40° 50° 60° 70° 80° 90° 
DT,=122°4, 1207, 115°7, 1075, 967, 837, 696, 600, 525, 507. 
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Also the proportions in which these amounts are divided between summer and winter 

are as follows :— 

A=0° 10° 20° 30° 40° 50° 60° 70° 80° 90° 

Summer 50, 53°65, 57°51, 62°08, 66°88, 73:24, 81:59, 91:15, 97°65, 100 

Winter 50, 46°35, 42:49, 37:92, 3312, 26°76, 1841, 885, 235, 0 

Analogous formule are proved for zones of any extent. The summer and winter 

heat-supplies for a polar cap extending to latitude X take the form 

ae (Z, + cos? X sin e), 

where c is radius of the earth, and Z, a function of X and e which increases from zero 

at the pole to at the equator (this last bemg Sir R. Ball’s case). 

If we take the three zones into which latitudes 30° and 60° divide a hemisphere, 

the proportions of summer and winter heat-supplies are 554 to 446, 69 to 31, and 89:9 

to 10:1 respectively: while the total annual supplies for the same are 586, 33:4, 8 re- 

spectively in percentages of the total for the hemisphere; or 117°3, 91:3, 60-4 per unit 

area where the mean of the globe is 100. 

§ 2. The way in which Z£,, the quantity determining the annual total, depends on 

latitude and obliquity of the ecliptic deserves a special study. If e were zero the value 

of LZ, would reduce to cosd, varying from unity at the equator to zero at the poles. In 

A e= 90° 

D 
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Fig. 1. 

Fig. 1, AA’ corresponds to this case; the abscisse represent latitudes and the ordinates 

corresponding values of Z,. CC’ represents the course of Z, for «= 23°27’ taken as the 
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present value, and it is clear that for a middle range of latitude, the values of JZ, differ 

little from those in which e=0, but near the equator are somewhat less, and near the 

pole much greater. If e is further increased, the position of the pole becomes constantly 

more favourable, that of the equator less favourable. In the extreme case when e= 90", 

so that the arctic region has grown till it embraces the globe, the equator being the 

final position of the arctic circle, BB’ represents the course of £, which increases con- 
— 

, 3 2E 
tinuously from equator to pole. (In this case L,=— where cos2 is the parameter of the 

7 

elliptic integral, and so JZ, ranges from — or ‘6366 to 1.) 
STS) 

The various curves all have the tangent for X%=0 parallel to OA’, and the value of 

L, either a maximum or a minimum; a maximum for values of e€ less than 65°20’, beyond 

that a minimum. 

Again, excluding the case e=0, the tangent for %=90° is parallel to OA’, and the 

value of Z, is a minimum up to e=45°, beyond that a maximum. For values of ¢ 

less than 45°, Z, imcreases continuously as we pass from pole to equator, for values of 

e greater than 65° 20’ diminishes continuously. But for intermediate values of e both 

equator and pole have maximum values, and consequently there is an intermediate 

minimum, which in fact starting when e=45° at the polar end, shifts gradually across, 

till for e=65° 20’ it reaches the equator. The curves DD’, EE’ shew two of these cases, 

one with an arctic, the other a non-arctic intermediate minimum; and the locus of these 

minima is the curve UZU' of Fig. 2. 

§ 3. There exists a curious correlation in the way in which Z, depends on the two 

elements « and A, viz. if each is changed to the complement of the other Z, is un- 

changed. For example Z, is the same for «= 20°, X=50° as for e=40°, X=70°; the 

latitude being arctic in the one case, non-arctic in the other. 

Accordingly the statement L,=cosdX for e=0° has for its correlative that L,=sine 

for the pole X=90°. Thus taking any ordinate in AA’ for which e=0, say for latitude 

50°, this is also the proper value for the pole with e=40°. In exactly the same way 

the curve BB’ gives the values of Z, at the equator for different values of « The 

curves AA’, BB’ cross in latitude 36° 7’, and the correlative statement is that for 

e=53° 53’ the value of Z, is the same for pole and equator. The correlative of the 

theorem as to intermediate minima within the range 45° to 65° 20’ for e is, that for 

values of X less than 24° 40’, as e increases from 0° to 90°, Z, diminishes from a maximum 

value on AA’ to a minimum on BB’; for values of 2» greater than 45°, exactly the 

opposite is the case, AA’ giving a minimum, BB a maximum; while for values of X 

between 24° 40’ and 45° both curves give maxima values, and there exists for each latitude 

a minimum value. The curve XY in Fig. 2 represents the locus of these intermediate 

minima, hence for a latitude between 24° 40’ and 45° we begin for e=0 with a maximum 

value Q on AA’, drop to a minimum & on XY, and then rise to a final maximum S 

on BB’ where ¢€= 90°. 
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§ 4. Having dealt with the course of values of LZ, in the general case, it remains 

to notice the amount of variation that would accompany such secular changes as are 

thought possible by astronomers. 

The effect of a small departure from the present value of € is shewn by Table A 

which gives differential coefficients with regard to e. 

It appears that for low latitudes Z, is diminished by an increase in e, and increased 

by a fall in e, the amount of the change diminishing from equator to latitude 43° 20’; 

for higher latitudes the effects are reversed. Stockwell’s limits for the possible range of ¢€ 

are 21° 58’ 36” and 24° 36’. With these the total ranges in the value of Z, expressed in 
percentages of LZ, are :— 

A=0° 10° 20° 30° 40° 50° 60° 70° 80° 90° 
Range ‘93, 90, ih 5); 21, 50, 205, 651, 955, 10°56. 

As the present value (taken at 23° 27’ in the calculations) lies between these limits, 

the range is partly above, and partly below, the present value. The amounts are in- 

considerable below latitude 60°, but beyond that seem competent to produce sensible 

climatic changes. 

The mean value of Z, for a hemisphere or for the globe, as seems obvious @ priori, 

is independent of « and =f: In fact the smaller changes over the large area in latitudes 

below 43° 20’, exactly balance the much greater changes over the smaller area in higher 

latitudes, when the mean is taken. 
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. . . Yat . . . The corresponding range in the value of Z, or 5sinXsine the annual term is i 
“ 

n 

every latitude 104 per cent., and increase of ¢ everywhere causes increase in L,. On the 

equator LZ, vanishes, the appearance of the sun north of the equator in summer, here 

giving rise to a semi-annual term which has its maxima at the equinoxes, when the sun 
is in the zenith at midday. The semi-annual term diminishes in value as we recede 
from the equator, vanishing about 44°, changing sign and increasing with some rapidity 

towards the pole. It is generally much smaller than Z, and L,, with the exception as 
to L, at the equator just mentioned, and the exclusion of very high latitudes. Its 
changes with ¢ are on the same scale roughly through most of the range, as those of L,, 
and are therefore much greater in proportion. 

§ 5. The equation for transferring to mean time is 

6+ C=2rt+ 2esin 2rt + °F sin dart ers 

The constant C depends on the position of perihelion with regard to the first point of Aries, 
6 has been measured from HY as initial line, and ¢ will be taken to be zero at perihelion P. 

The transformation made for the case in which C=79° gives results which are tabulated 
in (B) for every ten degrees of latitude north and south. It will be remarked at once 
that the symmetry between the northern and southern hemispheres has disappeared. So 
far as secular changes of climate are concerned the cases of most i t 

interest are those of Figs. 3 and 4; in the former, summer has its GP 

maximum duration, in the latter, winter. As the amounts of heat 

received in summer and winter have for each latitude values which _ 

are independent of their relative duration, it is plain that when VAG 

summer is longest the division is most equal, and when winter is P Sy ay. 

longest most unequal. In so far as this is a cause for glacial and Fig. 4. 

genial epochs, Fig. 3, in which C=5 corresponds to the genial case, and if squares of e 

be neglected, the element of heat being 

= Qdt, YW=L,—(L,— 2el, —eL,) cos 2rt — (L, + 2eL,) cos 4rt... , 

while for the glacial case in which O=-T, 

Q = L, + (L, + 2eL, + eL,) cos 27t — (L, — 2eL,) cos 4rrt... 

both for the northern hemisphere. Each of these formule is derivable from the other 

by changing the sign of Z,, which is precisely the change by which we pass from 

northern to southern hemisphere. Hence so far as this cause is efficient, the northern 

hemisphere is in a glacial state when the southern is in a genial state, and vice-versd. 

Again as J, increases from zero at the equator steadily towards the pole, while 

I, diminishes, the modification produced in the annual term by the eccentricity is 
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greatest absolutely, and all the more relatively, in low latitudes. The difference between 

the two states is obviously wider, the greater the eccentricity. The maximum limit 

allowed by astronomers to the eccentricity in the course of secular changes is ‘07, 

and with this extreme value the coefficients of the annual term are :— 

A=0° 10° 20° 30° 40° 50° 60° 70° 

For extreme glacial epoch 1372, +2437, 3430, 4322, 5084, 5797, -6143, -6420. 

i - genial , — ‘1372, — ‘0367, + 0946, 1930, -2952, 3681, -4683, 5328. 

In the lower row the signs are reversed so as to make the midsummer of the 

hemisphere in question the zero of time in each case. Noticeable is the change of 

sign which implies that the maxima fall together for low latitudes on opposite sides of 

the equator, instead of half a year apart as for higher latitudes. The reason for this 

is that the fact of the sun’s being north of the equator in summer and south of it 

in winter, which generally produces the main part of the annual term, at the equator 

gives rise to a semi-annual term and near the equator produces only a small annual 

term. Hence the secondary influence of the change of distance predominates at and 

near the equator, and this influence is the same for north as for south. Near the 

equator, as at 10° say, we have the two influences concurring on one side of it to 

produce a sensible maximum and minimum, on the other side opposing each other and 

giving a small resultant term. The differences between these extreme cases seem to 

me sufficiently remarkable. For example at 70° N.L. in the genial epoch the annual 

term is about the same as at 43° in the glacial epoch, or in the southern hemisphere 

at the same time (=that of 62° N.L. at present): so also 50° in the genial corresponds 

to 22° in the glacial (39° N.L. at present); and 35° in the genial corresponds to 10° 

in the glacial (26° N.L. at present). For completeness the coefficients of the semi- 

annual term are added for the same extreme cases 

A=0° 10° 20° 30° 40° 50° 60° 70° 

Glacial epoch — 0294, — ‘0126, + ‘0076, + ‘0309, + 0575, + ‘0888, + °1302, + -2103. 

Genial _,, — 0294, — 0430, — ‘0522, — -0567, — -0551, — -0452, — -0214, + -0359. 

When the upper row applies to north latitude, the lower applies to south latitude, 
and vice-versd. 

Croll, in judging of the effects of eccentricity, assumed temperatures proportional to 
midsummer and midwinter receipts of radiation in any latitude. The inference from 
heat-supplies to temperatures is a very difficult one owing to the variety of modifying 
conditions; but even when the problem is stated in its simplest form, the solution of 
the conduction equation requires the separation of non-periodic and the several periodic 
terms, these terms are affected with different factors in the integration, and the periodic 
terms suffer a modification of phase. It seems to me, therefore, that a proper basis for 
argument on the question of secular climatic changes is afforded by comparing non- 
periodic terms in the two epochs, annual terms in the two epochs, and superposing the 
mean temperatures and annual variations separately deduced. For the purpose of such 

s 
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rough comparison as is possible between climates in distant epochs, the semi-annual 

term may be ignored. But until the comparison between heat-supplies and temperatures 

is put on a better footing as regards the present state of the earth, a considerable degree 

of uncertainty must attach to any such comparison. 

§ 6. Comparing briefly the influence of the astronomical elements on non-periodic 
and annual terms: 

(1) Eccentricity alters to a minute extent all terms, the minor axis of the orbit 

occurring as a divisor to the whole formula. 

(2) Otherwise the non-periodic term is not affected by the eccentricity. 

(3) The influence of eccentricity in modifying the annual term depends on longitude 

of perihelion. The positions of greatest influence are when the major axis of the orbit is 

perpendicular to the line of equinoxes, and when the eccentricity has a value at all approach- 

ing its maximum, the changes are quite considerable. In north and south hemispheres 

the effects are in opposite directions at the same epoch. In higher latitudes where the 

normal.annual term is considerable, these effects are a sensible increase or diminution 

of the amplitude; in lower latitudes, the normal annual term being much smaller, and 

the modifying term greater, the difference between the two hemispheres is quite remark- 

able, the place of zero amplitude being shunted from the equator greatly to the genial 

side. For example we may have a zero amplitude in 15°S.L, the amplitude increasing 

as we recede from this in both directions, so that at 15° N.L. it may be of notable 

dimensions. The character of this influence is obscured by taking a mean for either 

hemisphere. 

(4) All the effects due to obliquity of the ecliptic are in the same direction in 

the two hemispheres. 

(5) The non-periodic term is affected by this cause, and for latitudes higher than 

60°, the influence of alterations produced by the usually admitted secular changes in this 

element, is very sensible. 

These effects do not appear in the mean of either hemisphere. 

(6) The normal annual term, by which is meant Z, unmodified by terms depending 

on eccentricity, is affected similarly in all latitudes by changes in the obliquity of the 

ecliptic; but the effects on the annual coefficient in mean time are of a more complex 

character. 

In the sketch of absorption, the coefficient of transmission is taken to be of the 

form e,+e,cosl+e,cos*I+...... , where J is the angle between the sun’s rays and the 

zenith, and it is shewn that the results for each term admit of exact expression in the 

same forms as before, viz. either by complete elliptic integrals, or by series of zonal 

harmonics. One of the effects of the absorption is shewn to be a large relative increase 

of the periodic part in low latitudes, gradually tailing off when the pole is approached. 

Vou. XVI. Parr I. 9 
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MATHEMATICAL THEORY. 

§ 7. When the absorption of the earth’s atmosphere is ignored, the formal supply 

of heat or light on the surface of the earth depends on the strength of solar radiation, 

the distance from the sun, and the angle of exposure to the sun’s rays. Take for the 

element per unit area Hdt x cosJ/r?, dt being time-element, r the distance from the 

sun and J the angle between the normal to the surface and the direction of the sun’s 

rays. In latitude X this angle is given by cos{=sinAsiné+cosdcosdcosy where $ 

is the sun’s declination and y the hour-angle changing in the course of the day uniformly 

from —W, to +, Wr being the hour-angle at sunset. As the change of is uniform 

dt At 
we may put dann om where At is a day; then the heat-supply for a day 

= 7 | cos Ix di 

wy 

(sin \ sin 6 + cos X cos 6 cos) dy 
-—h 

HAt ia 

~ Irv? 

= a (xv, sin A sin 6 + cos A cos 6 sin Y,), aa 

yy or = + say, being determined by sin Asin 6+ cos cos 8 cos y,=0 or sin d= tan d tan 6, 

@ being positive in summer, negative in winter. The integral for the day then assumes 

the form 

Tr 
Hat 15 - ¢) sin 2 sin 6 + Vcos? \ — sin? af alae Eo an ances eee I (a). 

If @ is the orbital angle of the sun measured from the first point of Aries 

and e the obliquity of the ecliptic siné=sinesin 6, and if further we use hAt=rd@ 

the well-known astronomical relation, we obtain a second form of the element 

Hdée {( 
= (+4) sin \ sin € sin 8 + Veos? X= Shi esin® 6} dacoaschonadnocGe- 1 (0). 

This is taken as element of a continuous heat-supply through the year. We integrate 

in fact for the time of daylight ignoring changes of declination, and regard the result 

as a supply distributed uniformly over a complete day, the declination changing con- 

tinuously in the formula thus obtained. During the period of total day in the polar 

regions, the integration above is between the limits — 7 and +7, and the resulting 

formula a sin X sin e sin 6, or in effect the bracket is replaced by 7 sin) sin e sin 0; 

while during the period of total night the bracket is null. The comparison of supplies 

at particular times of the year in the same or different latitudes, is easily made by 

(1), but to obtain a general view of the annual variation we must express the bracket 

in (1), call it Q, by a harmonic series. Thus the element of heat-supply being — 

et ae 

a 

a 

> Se Re 

Tia CS ae 
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it will appear that Q admits of expansion in the form L, + L, sin 0 + L,cos 20+L, cos 40+... 
and this again is readily transformed to a series depending on mean time. 

. . : Tv 7 . . ° § 8. We begin with the non-arctic case r<(5 —«). The following notation is 

used :— 

a 2 dO 2 dé 
= — si 2 y= SSS > Tl — ee B I V1—Z sin 0d0, K i V1 —k* sin? @ I, (1 —sin’e sin? @) V1 — sin? 0’ 

2 eee ee! 2 cos 260d0 2 cos 26 dé 
= 2 V —k* sin? i= SS, — —- oe = — =. Ey i COB eOM Lk eminGdeyhR, hs V1 — ksin? 6 | (1-sin’e sin?6) V1 — sin? 

involving the relations 

Vi= Paint =* (5+ B, 00s 26+ £003 40 + eae ) 
7 \2 / 

V1 = Bint = * (F + K,c0s 20 + nee ) 
aw \2 / 

ea eaete es —.—~ 4/1 1/(1 —sin* esin® 8) v1 =F sin? @ =~ (5 TI + II, cos 20 + eet. ). 

Thus the last term in Q viz. 

Voos X= Sint esin® @= "°° ™ (= B+ H,cos 20-4 Hycos 40+ Poeae \e 

; F F tan \ sin € sin @ where k=sinesecd. For the expansion of @ we have sing@=————————-_ and _ there- 
/1 —sin?¢ sin? @ 

dp tan X sin e cos 6 4 tan X sin ecos 6 /1 fore >) = —_—______ = (2 + T, cos 26 + TN, cos 40 +... ) 
d@~ (1—sin?esin? 0) /1—# sin? 0 7 \2 ks ie 

‘s F 

= SAX SES {(II + 1) cos 8 + (I, + 1.) cos 30-+......} 
and so 

p= eae a + II,) sin @+ ; (II, + I.) sin 30 + = Gh +TII,)sin 50+...... ! : 
T * 

no constant being required as ¢ vanishes with @=0 or 7, 

Hence 

ieee by ee ee 2) SC {au + II,) + Aus II, — 11 + 1, } cos 26+ (= 11,+ IT, — 5 0. + 1.) cos 48 
7 3 \5 3 / 

Aaraiters 
and the whole value of @ is if 

Te tle gilli 2 Sok (SE+E. cos 26 + waceue ) | 
2 7 2 ; 

sin? A sin’ € on aR) (5 inet, +1.) cos 20 \eqoder hae Lis 
1 COS X i a Cy ig ; 

zeae se eh, | eee eae | 
\o 3 / j 
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Further by differentiation and a little reduction it may be shewn that 

TOO sin? a 1 

de cos A(1 —sin?e sin? @)/1—ksin?@ cosrJ/1—F sin? 0 III (a) 
a a), 

dQ = a ay Dp aBrA—Q=—seerJ1 —k sin? @ 

dQ _ 4sin?d /1 % ) 
01 Ge tan e—Q= > (9H + cos 26 + TH, cos 46+ aceoke 

~*~ (5 K+ K,00s 20+ K cos 46 + ) III (6) SSAC 5 COS 40 = Sree Phe 2.8 ; 

dQ a 4 1 
and ap tan A-—Q=— TS (5 B+ H.008 26 + £, cos 40 + wees ) 

We have thus in harmonic form the values of Q, - and = The annual term is 

the only one with simple trigonometrical coefficient, and is also the only one which changes 

sign with A, that is in passing from north to south latitude. The total amount of heat 
= 

received within any range of @ is given by Se 27, sin 6 + L, cos 20 +...... Ni and “ 

as the various coefficients LZ depend only on 2% and e, the result is independent of the 

relation between @ and mean time, only depending on the eccentricity through the 

constant fh which varies as the minor axis. Further the difference between north and 

south hemispheres only appears in the term Z,. If summer and winter be defined by 

the equinoxes, their total heat-supplies are = (Z,+sm2sine) respectively, and for the 

southern hemisphere the contemporaneous values have the signs crossed. 

§ 9. The calculation of the integrals E,, K,...... is effected by means of the sequence 

equations :— 

(2n +3) Binz: + (2n — 3) Boys + 4m Em (2 — *)/? = IV ( 
(On E51) Koss: (n= Die a9 are ROO ON ee a), 

or if both are required, more conveniently from the cross-equations 

8nBon =k (Kons — Kons) \ 
ren (2n4'8) Bo Gaal) Bee eee IV (0b), 

the last true to n=0, the rest to n=1. These with (K—K,)=2(K—E£) admit of 

easy proof and together determine the whole series in terms of KH and K. The 

advantage of IV(b) is that for the two functions only one division by /* is wanted 

for each step forward. The quantities K, K,...... are alternately positive and negative, 

converge rapidly at first, and ultimately im the ratio — tan’ where sn ¢=k. Of the 

quantities H#, £,...... a similar statement may be made, but Z, is the first negative term. 



AND ITS DEPENDENCE ON ASTRONOMICAL ELEMENTS. 69 

This ratio is —1 when k=1, and the K’s all become infinite. It will appear 

presently that this gives rise to no difficulty in the formule used. For the II’s the 

series relation 

5K + K, cos 20+ puss = (1 —sin? ¢ sin? 6) (5 1+ Mh cos | he Pe )» 

gives by equating coefficients of the various cosines 

I, = i —£ (1 —X), = 2, — Tl pie ty a TL, pp (Ie), Le 

the form of the relation remaining the same after the first, and p standing for 4/sin*e. 

On reduction (II, + IT) sin* « = 2 (K — II cos? e) 

(II, + I.) sint e = 8 cos? \ — 8K (cos? \ — sin? e) — 2 (4 — sin? e) (K — II cos*e) 

(II, + T,) sin® e = 2 (16 — 12 sin?e + sin‘ e) (A — II cos? e) a — 9sin? e+S8cos* X)(cos* A\—sin*e) 

SE 2 5 - a ork ae — 13 sin? € + 8 cos* X), 

For the K’s the corresponding expressions for the opening terms are :— 

K, sin? «= 2E cos? x — K (2 cos? X — sin? €) 

3K, sint e = — 8E cos*d (2 cos? — sin? e) + 16K cos? \ (cos? A — sin? e) + 3K sin*e, 

and for the 2's 

32, sin* e = E (2 cos? — sin’ e) — 2K (cos* A — sin® e) 

15£, sin‘ e = — Hsin‘ e— 16£ cos* A (cos? — sin? e) + 8K (cos? X — sin? e) (2 cos? \ — sin? e). 

With the help of these we obtain for non-arctic regions 

2 a TT is ‘ 
L,= aay {E co? +sin?A(K —Icos*e)}, L,= 5 Sindsine, 

4 2 in? <2 in? 
Le => ererencvenaeh {EB cos? X (2 — sin €) 2K (cos r sin €) 

— sin? (2 + sin? e)(K — II cos" e)}, 

ae ae E —I1 cos? e), = 5 cos Xsin ¢, 

Oe a Vecite—(2--sin eC — licoste)}, ME V. 

oe = — 50s {E cos? — K (cos? — sin? e) — sin’ e (A —II sin? ))}, 

=" 25) sin A cose, | 

dL, _ 4 cos € 
Papasan. eX {— Ecos’) (4+ sin® e) + X sin® e (cos? A — sin* e) 

€ oT 

+ (K — II sin? A) (4—2 sin’ € + sin‘ e)} 
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For later terms the direct expression by means of #, AK and IL gives too 

lengthy formule. It is better to apply numerical values to the successive sequence 

equations (IV). In each of these integrals it will be remembered k=sinesecd and the 

second parameter of II is —sin*e. On the Arctic circle we have the limiting case 

T == 

plied by (cos?A—sin*e), when the product vanishes, and also in conjunction with I in 

the form K—TIIcos*e«. But in the limiting case 

— e, and therefore k=1, H=1, and & and II both infinite. Now 4X occurs multi- 

wl sinkecos@d@ sine 1l+sine 
log, —, 

l—sine 
K — eos e=| 

» l—sintesin?6 =. 

and with this particular value, all the formule in (V) remain valid. As regards (II) 

2 cos (2n + 1) 6dé 
1 —sin’e sin? 6 ’ 

3 
and (III) it may also be noted that for the limiting case I.,+ Uni. = | 

Jo 

Sane = = — i sin? € cos 6 cos 2n6 de 

0 

, both finite. The values for Q, = and dQ 
~ 1 —sin?esin? 6 dx 

: ee . 2 dé 
are all finite at the limit. When A=0, II reduces to i =>; or Esece. 

» (1 —sin? esin? 6)3 

The values of Z,, L,...... are tabulated with their differential coefficients with regard 

to e« and 2 for every ten degrees of latitude. It will be seen that ZL, is very small 

except in Arctic latitudes, and subsequent terms are smaller still. 

§ 10. When we seek a similar expansion for the Arctic regions, the discontinuity 

in the form of @ needs attention; viz. for periods of partial day, it retains the same 

form as before, Q, say; for the period of total day it is wsinXsinesin@, Q, say; and 

for total night it vanishes. @, and Q, have the same value for the transition, and also 

Q, merges into zero at the other transition. If the expansion is denoted as before by 

[,+L,sin 6 + L,cos 20+ ...... we have 

QarL, =[Q,d0 + {Q.d0, wl, =JQ,d0 + fQ.d8, ...... 

To find limits for the integrations put cosX’=sinesin7z, then the periods of partial 

day are from @=0 to 7, from 0=7—7 to mw+7, and from 0=27—7 to 2x7. The 

period of total day is from @=7 to m—7, and that of total might from r+7 to 27-7. 

Q, is integrated through the periods of partial day, Q, through the period of total day. 

L, will be found to retain its original form 7 sin Asin €. 

YsmAsine[7, . 
—— édé. = ['s sin 

: : OM a ; : 
[,=sinX sin ecos r += [ cos? X — sin? e sin? 6d@ + 

~0 

[,=—sin sin € (cos T -5 cos 37) i [“ cos 26 ./cos? X — sin?e sin? 0d0 
e / To 

+ Seu aS | “sin @ cos 26d0 
“0 T 
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To transform these to complete integrals put sin @=sin7siny and so 

d@ __ sintcosy 
dy A 

we get 

where A=,/1 —sin?7 sin?y. As ./cos?\ — sin’ 7 sin® 0 = cos X.cos 1, 

7 

2 cos A sin T [ cos? as 2 sin sin e sin? t f * f sin cos ba 

0 

I, = sin 2X sin € cos t + = 
T Tv A 

4 cos X sin T fi cos 20 cos* wdy 
A 0 

, tsin Asin e sin? t i’ ¢ cos 26 sin cos dy 
T 0 A ; 

Lf, =— sin Xsin € (cos Atha cos 3r) + 
3 

The first integral in JZ, is 

2 sin € 2 f 
——— (H— K cos*r) or Smal {# sin? e — K (sin* e — cos*X)}. 

The first integral in L, is 

2 oe — 2 2 a ( cos? rT) (2A? — ee 4 sine, (2D — (1+ 2.cos? 7) + K cost 7}, 

T S10 T A 

2 
where Day (1 —sin?t sin? yr)? dy and so 3D = 2# (1+ cos? r)— K cos? rt 

4 

 3rrsine 

Obviously any term of this type may be integrated by expanding cos 2n@ in powers 

of sin*@ or sin? sin? and so of A*, ie. (1 — sin?7 sin? yp). 

sim Asin » ap sin X 
For the ¢@ terms we have sing = ean: and therefore pa cos nse 

| (2 cos? — sin? e) + K (sin? € — cos*)}. and the integral 

7 7 

2 is ¢ sin? 7 sin cos dy _ -| ga] i ee A sin X yp 

giving o 1 —cos? A sin? oar 

wiat sin X dy =—F co ot T aaa ~(k- II cos*e), where II = I (1 — cos?’ sin? y) A’ 

2, 

Hence i aa me sin? e — K (sin*e — cos?) + sin? (K — II cos? e)} 

are |# sin? € + cos* e (K — II sin? )}. 
7 

la Siidilntly [ psin’7 cos 20 — cos yy _ = 3 cos Tats Si ee ib : ee ¥ (5 As— A) 

in which the integrated section exactly cancels the first expression in L,. To transform 

the integral, a factor A is introduced in the denominator, and in the numerator 

1— cos? Asin? y= A’ sin? +cos*e is used. The integral then 

4 sin? 

~ 37 sin’ {2.E sin? e — (2 + sin? e) (4 — II cos*e)}, 
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and the whole value of Z. is 

4 
Snsinte {|#’sin’ e (2 — sin* e) — 2X (sin* e — cos? X) — cos? e (2 + sin? e) (K — II sin?X)}. 

dQ To find qQ we may either differentiate or argue as follows: qe tane— Q is a function 
de 

1 / sin? X 
rhich by III (a)= : = 

hee y (@) cosh VE ain? see Nau @ \1 — sin’ e sin 

day, and vanishes for total day or night, Q being =7sindsinesin@ for total day. If 

this be expanded in the form m+ m, cos 20+...... : 

9-1) for the periods of partial 

7 dé ( sin? X 1) 
Qaim, = + : ——— 
srt 1 — sin? sin? @ y 0 cos A V1 — sin? esec? A sin? 6 

or transforming by sin @=sin7sinw 

2 dw / sin? X 

m= ae |, V1—sin’t sin’ ee 7 sin 7 bere 

So also m= a — 2H sine + 2K (sin® e — cos? A) + (2 — sin’? e) ( — II sin? ))}. 

dQ ‘ The same method applied to expand a end Q in the form n+, cos 20+ ...... 

2 : ae Ban, rd a 1 RO 
gives No Se ae {E sin? e — K (sin? e — cos* d)} 

4 2 in2 2 a aT {E cos? + (K — £) (sin? e— cos? A)}. 

For 2» =5 the m’s all vanish leaving = tane-—Q=0, and the ms are all finite 

leaving a =0. Collecting results for Arctic regions we have :— 

ae Til ce , 

eee 7 sine€ asine (2 Sine + cos? e(K — I sin*a)}, L, = 3 Sin Asin ¢, 

4 ; 
awe 2 = Vo ‘a 2 

cae {EB sin? e (2 — sin? e) — 2K (sin? e — cos? A) | 

— cos? e (2 + sin?e) (K — II sin? X)}, 

dL, _2cose 
Ga (EZ —K + II sin?), Ss =a 5 sin Neos e, 

a 

dL,  4cose 
; 

{— EB sin* e (4+ sin? e) + 4K (sin? e — cos? d) 

+(4—2 sin? e + sin‘e) (K — II sin? Q)}, 
‘de 37 sin‘e 

dL, 2sinX aL cae * 5 a dL, 7 
tT ese koa e+ K (sin? e — cos? X) + cos?’ (KX — II cos* €)}, ae os cos X sin ¢, 

De 4si : : : : 
= = aes {EB sin‘ e — K sin? ¢ (sin? e — cos* A) — cos* A (2 + sin? e) (K — II cos? e)} | 
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cos Xx =e 
In these formule / = =k. and the second parameter of II is —cos?d\, whereas 

: . sin € _ dle’. 
for non-arctic regions we had coe and —sin*e. On the Arctic circle the parameters agree, Os 

dy thy 
de’ dr’ 

A= 90°, Q=7sinesin# from @=0 to 7 and =0 from 0=7 to 27. The expansion of 

and the values of J,, Wigs tue will be found to agree. At the other limit 

such a function by Fourier’s theorem is sine (1 + 5 sin 6 — > cos 26 — = cos AMG ees ) ; 

This limiting form, which will be found to result also from using b=K==5 in the 

above, is also the case in which the convergence of coefficients is slowest. 

§ 11. The way in which LZ, depends on 2X and e presents some interesting features 

which we proceed to discuss. On comparing the formule for arctic and non-arctic 

regions, it is clear that sine plays the same part in the one, as cos in the other. Hence 

if other values »’ and e’ be taken so that »’ is the complement of ¢, and &’ of X, the 

arctic formula of each is transformed to the non-arctic formula of the other. Also if 

A¥+e€< 90°, so that A» is non-arctic for ¢ ’ +e’ is > 90°, and therefore »’ arctic for &’, 

making the correlation complete. The use of this theorem of correlation is both con- 

venient and suggestive. Thus when e=0 the value of Z, takes the simple form cos); 

therefore when X= 90°, Z,=sine, a result already noticed. Again on the equator L,="2 

a a 2E : 
where sine is the parameter; hence for e= 90°, L,= = where cosdA is the parameter, 

giving the form for Z, in the extreme case when the earth’s axis is supposed to lie in the 

plane of the orbit (BB’ in Fig. 1). In this last case Z, increases continuously from 

equator to pole, the first being a minimum, the second a maximum, whereas for e=0 

the equator has a maximum. 

aL 
Now for all values of e, a for X=0, and for all except e=0, the same is true 

at the pole, and the question is suggested, where does maximum change into minimum 

at each end? Differentiating III (a), we get 

ao : (x-4), ~ cos X 

but in arctic regions the right-hand member is replaced by zero for total day or night. 
Hence 

@L, 2 - 2 sine 

dye thy = = hes ae aR i), 

Wor, SOWIE Tee I 10 
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: ; : : . _ sine cos X 
for non-arctic and arctic regions respectively, k being ——. or ——. 

cos Xr sin € 
On the equator 

2 
= —(K — 22) parameter sin «. 

T 

Up to «=65° 20’, K <2H#, after that >2#; hence up to 65° 20’ the value at the equator 

is a maximum, but beyond that a minimum. At the critical point 

(kd Fe aL, 2H 
aa? =0 and aD! SeC* €, 

so that the point counts as a minimum. At the pole Z,=sine and K—F£ vanishes. 

Expanding the right-hand member, we get 

iL, 1 3 cos? X 

dn? ==— jae ts) 

aL, . i 5 : : 
Hence D2 18 Positive up to e=45°, and after that negative, so that the pole gives a 

minimum up to e=45°, and after that a maximum. For the critical case 

dL, aL, 3/2 
Fe oer eit 

and the point is a minimum. Thus from e=0 to 45°, 2, has a maximum at the 

equator, and a minimum value at the pole, while from e=65° 20’ to 90° the conditions 

are reversed, but in the range «=45° to 65° 20’, equator and pole are both maxima and 

an intermediate minimum is suggested. The correlative statement is that from %=0° to 

24° 40’, e=0 gives a maximum, and ¢=90° a minimum value; from %= 45° to 90° the 

conditions are reversed, while between X= 24° 40’ and 45° these are both maxima and an 

intermediate minimum is suggested. 

§ 12. Take this statement first, and examine the points for which Oe 0. 

) 

For arctic regions = 2 ees (£—K +I sin?2), by (VI) and vanishes for « = 90°, 
% 

giving the curve BB’ of which BX is the minimum, and XS’ the maximum section; 

or for 

Dig <6 EM ULSHVTEy —¥\ 0) one ca coponoteacooeoneceacearepopdocbonc7 (a), 

: 2E x : 3 : F 
which reduces L, to —— (parameter oe iF this constituting with (a) the equation to 

7 sin € sine 

the arctic section XZ of the curve of intermediate minima. 

dl, 2 sin X 
For thi === 

ca ia dX =msinecosr 
{(K — E) sin? e — II cos? ecos* 2} by (VI), or substituting 

from (a) 

_2 (K — EF) (sin e — cos* d) 

7 sin €sin A cos X 
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The arctic range must be taken from ¢=90° to the boundary of arctic and non-arctic 
F : i dl, . oe A A ds. Sey regions given by sine =cos A, and aD 8 always positive in this range, diminishing from 

Z SSeS ar (parameter cos 2), 

when e= 90°, to zero when sine=cosrX. When ¢=90°, I sin?\=Z, and therefore by (a), 
K=2E (parameter cos), the value of » is therefore 24° 40’, and the values of Z, and 
dL, 
dx 

touches BB’ at that point. At the arctic boundary H=1 and therefore by (a) 

are the same as for the curve BB’, so that the curve starts at X in the figure and 

1K = Wain eee 1+ sine rn 
9 Bene = O88 d log, cot 3° 

This is satisfied by 1=33°20}’ or e=56°39}', and makes LS at the point Z 

where the tangent is parallel to OA’. 

For the non-arctic section 

dL, 2 cos € 

de msinecos?r 
{II sin? sin? A — (K — EZ) cos? A}, 

: : ES. : 
and the range of ¢ is from zero to sine =cosX. ali is zero firstly for e=0 which makes 

de 

both terms vanish, giving the curve AA’ of which YA’ is the minimum, YA the maximum 

section; and secondly for 

HF simfersinsAy— (he) \COSW Nese ae enema ere ae ean ene ane eae eee (d). 

This condition, with the value of Z, from (V), gives the equation to the non-arctic section 

ZY of the curve of intermediate minima. For this curve, quoting (V) again, 

dl, 2sinr 2 (K — E) (cos? X — sin? e) 

7 a (— £+K — II cose) = — 7 Sin Asin? € 

by means of (b); this quantity vanishes at the arctic boundary and after that is negative, 

7 
attaining its greatest numerical value when e=0. In the limit when e=0, l=35, 

and (K — £) cos? = 7 sin? e, therefore by (0), sin’ b= 5, and X= 45°, and a = limit of 

ew 
om sinte 2’ 

so that the non-arctic section ranges from Y, where it touches the curve AA’ in latitude 

45°, to Z where it has a tangent parallel to OA’, and is continuous with XZ. 

10—2 

EE 
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It appears then that AA’ and BB’ represent maxima and minima values, AY and BX 

being maxima, A’Y and BX minima, while XY is a curve of minima. For any latitude 

between 24° 40’ and 45°, the value of Z, is a maximum for e=0 on curve AA’, falls with 

increasing ¢€ to a minimum on curve XY, and with further increase rises to a maximum 

for «= 90°, that is, on curve BB’. Each curve LZ, touches XY at some point, Y for e=0, 

Z for «= 56° 394’, and X for «=90°. P is the point for which the total range is a 

minimum, viz. latitude 36° 7’, there being a correlative theorem that for e=53° 53’ L, is 

the same for equator as for pole, the total range for this value of e« being the least 

possible. 

dL, 
By starting from aX =0, we may obtain the locus UZV (Fig. 2) of the intermediate 

minima for the bushel of Z, curves from e=45° to 65° 20’. 

The ordinates are the same as those of the curve XY, and the latitude to which any 

ordinate belongs is the complement of the value of e to which the same ordinate refers in 

XY. For example. U and X have the same ordinate, one referring to %=0, the other 

to e=90°; so also Y and V, Z is common to both, and the tangents at U, Z and V are 

parallel to OA’. If the relation between and e were explicit, one curve could readily be 

deduced from the other. Ordinates at special pots are:—B ‘6366, C or X ‘7389, Z ‘7620, 

P -8078, Y or U ‘7070. 

The movements of Z, with small range on both sides of its present value are readily 

followed with Table A and the statements in the outline. The percentage values given are 

100 dz, ,,, 7 
ue ral (A e—A €), 

where e+ Ae’ is greatest value, e+A”e least value of e. 

§ 13. The element of radiation mtercepted by the whole earth is 

Hdt 4 Hdé P se Hdé 
a Xm? or —>— x qe%, or per unit area 7 7— , 

, : Hr HAH ‘ : é 
and therefore the year’s total per unit area = Oh aa whereas for a particular latitude it 

is a Hence the mean value of JZ, for sphere or hemisphere is = (It may be worth 

remarking that 47H represents the total radiation of the sun’s surface in a year.) 

The mean value of Z, may also be obtained by direct integration. In the integral 

2 

E={ Vi=snie ca ae ae 
0 
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and other integrals used for the non-aretic case, write sin @=sinesin 6, then 

7 ©. cae (cos* b= sin’ X cos? ) db 7L,= 
2 0 cos cos p Jin? € — sin? d) (cos? A — sin? ob) 

In the arctic regions write sin ¢=cos) sin 6, then 

7 he (cos* @ — sin? A cos*e) dd 

ee an b a (sin? € — sin? g) (cos? X — sin’ d) ‘ 

The mean of L, for the hemisphere 

27° 3 
=| T,cos doh +{ costa. 

0 T 

a2 ae pan arf (cos* @ — sin? X cos? e) db 

0 cosh J( (sin? € — sin? ) (cos? — sin? d) 

2210 we (cos* p — sin? d cos e) dp _ 

The. 0 cos d J (sin? e — sin? ¢) (cos — sin? ) 

a2) : cos A (cos* @ — sin? d cos? €) dX 

~ Jo COS al = € — sin? d) (cos? X — sin’ d) 

_1yfs__cospdd ~ 
—=—————* — {eos? e + 2 (sin? e — sin? =— 

2 Wane SanG ( %)} 

It is clear that the same process of integration is possible where any even power of 

sin A occurs multiplying Z,cos \ under the integral sign, and therefore also where P., (sin X) 

occurs multiplying Z, cos under the integral sign, P,, being a zonal harmonic. 

We might therefore by this method determine the coefficients in the expansion of L, 

in zonal harmonics of even order. This expansion may, however, be obtained in a more 

general way, giving also Z,... in this form, as follows. The value of Q is 

(5+) sin \sin 8 + Jcos? A — sin? 5, 

and by application of III (a) it is easily shewn that 

&Q ia caus tan com 3a 
de dn d& dé * 

For the period of total day in the arctic regions Q=7sin Xsin 6, which satisfies the 

same differential equation. Now if any term in the expansion of Q by zonal harmonies 

be M,P,(sind), then for this term 

Gass — tan 6 ee n(n+1)M,, ee So ae 1) A P,,(sin X) or qs 7 
d& dé 
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and therefore M, « P,,(sin 6), and the expression now stands 

Q=bh+ 3 P, (sin X) P, (sin 8) +P, (sin 2) P, (sin 8) + 6,P,(sin X) P,(sin 8) +...... VII: 

the annual term being the only zonal of odd order. When 

e=0, P.(nd)=0) Pia 5, Pie. 7 Pa 

but @ then reduces to cosA, and this, expanded by even zonals of sinX, is 

5 13-5 (5) gPe(sina)—9 (5-4) gP.—13 (5-2) oP 2 

Hence 

57 37 eae eea esos) Gr 
a. b SaEyer b,=-——, sees by = —l)y> 4n+1 SSS a 0 : 32 ee ee Ae 

Each term P,, (sin) may be expanded in cosines of multiples of @. 

For this purpose put 

5 T . GY Li T 
sin 6 = COs € Cos 5 + sin € sin 5 cos G -8), 

so that @ appears as an azimuthal angle; and apply the general theorem 

i i—s Ps (oom) = 842 ET" coss (6 #) x0i0"Pe (a) Pew), 

in which P;*(w) denotes aaPi (x), cosy = pu’ + vv’ cos (d—¢’), and the factor 2 is omitted 

for s=0. In the present case i=2n, p’=0, v’'=1, w=cose, v=sine; therefore as 
P.,2+1 (0) =0 and 

whe |2n + 2s saya z 7 
23) = 2 [n+a|n—s and cos 2s (F — 8) =(-1) cos 286, 

Pp,(sin 8) =" 2 x (1 |2n—2s anes 280 
nba |n ae sin® ¢P,,, (cos €) cos 280 ; 

the factor 2 omitted for s=0. The substitution of these values in (VII) gives the com- 
plete expansion of Q in cosines of multiples of 6, and the coefficients are series of zonal 
harmonics of sind, with these and associated functions of cose. Thus writing 

J 1 = p? = dy + GP, (4) + 0,P, (4) +... 
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Ly = a) + deP, (sin X) P, (cos €) + a,P, (sin X) P, (cos €) +... 

LT, = sin? € {5 a,P, (sin dX) P,? (cos €) + = P,(sin X) P? (cos €) 

+ x6 P, (sin X) P,? (cos €) + ... —— Gon Pon (S10 X) Pon?(Cos €) | 

(n+1)(2n—1) ak | 

| 
\ 
| 

L,=sin‘e tre P, (sin X) P (cos €) + aa P,, (sin 2X) P,;* (cos €) VIII 

Ag mi — denPon (sin r) Pon' (cos €) 

+ a700 PoP! ++ 34 1m +2) (Qn—1)(Qn—3) *° 

LD, =sin' ¢ {st P, (sin X) P,f (cos €) + aS550 P, (sin 2) P,f (cos e) 

| 
Gon Pon (Sin X) Pon’ (CoS €) | + 23 +1) (w+ 2) (n +3) (Qn —1) (2n—3)(Qn—5)* -t | 

As before L,=5 sin sin e. The coefficients a), a2, ..., converge rather slowly; with 

€= 23°27’ the zonal expansion of L, is 

7854 — 3743 P, (sin X) — 0351 P, (sin d) + ‘0064 P, (sin A) + ‘0109 P, (sin A) + 0068 P,, (sin 2d) 

+:0018 P,, (sind) +... ; 

the reason of the set-back being that P, (cos €)=—°3827, while P, (cose) =— ‘1277. 

The values of P,, (cose) with increasing x become ultimately indefinitely small, though 

the diminution is not steady from term to term, but accompanied by a rocking to and fro, 

according as cose lies near roots or maxima or minima of the equation P,, (uw) =0. 

§ 14. For most purposes, I think, the formule for a particular latitude give in- 

formation as useful as those for finite zones, and excepting the 

case of the hemisphere are simpler in form. I propose therefore 

to shew how the zone formule may be obtained, but with less 

detail. 

The method given is that used by Sir Robert Ball for the 

hemisphere, viz. we project the area illuminated at any moment 

by the sun, on a plane perpendicular to the sun’s rays, and dis- 

tribute this evenly in longitude over the whole zone. 

Consider the polar cap extending to latitude » (<90°—e unless otherwise mentioned). 

In Fig. 5 OS is the direction of the sun, PQ is a small circle of latitude », SZ a 

quadrant, and PQT7 represents half the illuminated portion of the cap with the sun at S. 

We require the projection of the surface 2P7Q on the plane BOT at right angles to 
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OS. In ae 6 this projection is represented by TQMQ’ for summer, and by 7QM’Q’ 

for winter, where QMQ’M’ is an ellipse, whose semi-axes are c cos X 

: aN and c cos 2 sin 6. 
Q’ 

Ne The area 27NQ=c?(y—sin xy cos x) where siny=cos) sin ¥. 

all The area QMQ’ is the projection of 2PNQ on the plane, and 

therefore 

i 6. = c* cos? A (Wr — sin ¥ cos Wf) sin 6, 

giving for the total projection 

ce {y — sin x cos x + sin 6 cos? A (yr — sin cos )} ; 

ay is the hour-angle at sunset determined by sind siné+cosdX cos é6cosy=0 for which, 

as before, we write ae @ so that ¢ is positive for summer and negative for winter. 
2 

In any non-arctic latitude = —2 is the maximum value of x, its range is small in 

low latitudes, greatest on the arctic circle, viz. from 0 to « Using the relations 

sind=sinesin@, sin@d=tandAtan d, cos y = sin A sec} 

the above may be written :— 

G {5 cost Asin esin 8 + + 6 sin esin @ cos! A—sin 2 cos dW sini eee" sin 8} sabe Ix. 

The element of heat-supply for the cap is got = multiplying this projected area by 

ia or oe ; ane == © 240, 2 

where Z is the bracket. When > (90° — e), Z takes the value 7 cos?\ sin esin@ for periods 

of total day, and vanishes for total night, the range of x being from 0 to 57> for 

partial day. 

cHdé 

h 
On an indefinitely small zone the amount is (-Ka), and this must equal 

the result previously obtained, namely 

ae (27c? cos X dX), or = = — 2Q cos i, 

which of course admits of easy verification. We may write 

Z+Qsind=F sin esind +y + sin esin 0. 

6, Seo ee 

7 fe 

a 
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§ 15. The only new element with which we have to deal is y, which is expanded 

in a manner analogous to that for ¢, with this difference, that in integrating the series 

for x, it is to be remembered that y=; —2 for 0=0. 

Result for non-arctic regions 

T 4 tan Xr 
X=5-% ar (1 — cos 26) {£ cos? — K (cos? A — sin? e) — (K — II cos? e)} 

4 te ty : : : 
aa (1 —cos 46) cx — II cos? €) (2 — sin* e) + © (cost dX —sin’ e) (6 — 3 sin’ e + 4 cos? d) 

so eke — 5 sine + 4 cos* whe. 

For arctic regions 

4 sind Ty sin 
(1 — cos 26) {# sin? e — (K — II cos? e)} 

os or sin® € 

fat Ls (1 - cos 40) }(K —II cos* e) (2 — sin? ie -_ © (sint € — cos* d) 
7 sin’ € 

= ao, (6 — 5 sin? e + 4 cos? r)p+ 

From previous work, for non-arctic regions 

¢ sine sin 8 = — zal (K —II cos? e) + Ae cos 26 {— (K — II cos? e) (2 + sin?e) 

— 2K (cos? \ — sin? e) + 2F cos* A} 

4 tan X = P phe : , : ae . : ——_—— 0 {(K — II cos* e) (24 — 8 sin* e — sin‘ e) + 8K (cos? \ — sin® e) (3 — sin? + 2 cos? X) 
157 sin‘ € 

— 8E cos?X(3 — 2 sin? e + 2cos?r)} +... , 

and for arctic regions 

2 sin X 4 sin aii 
sin € sin 9 = ae (K — II cos? e) +35 cos 26 {— (K — II cos* e) (2 + sin?) + 22 sin? e} 

ae 

157 
os 40 {(A — II cos* €) (24 —8 sin? — sin‘ e) — 8K (sin* « — cos* d) sin? € 

— 8E sin? e (3 — 2 sin* e + 2 cos*A)} + 

Summer and winter heat-supplies are, for caps extending at least as far as the 

polar circle, 

= (25 cos* \ sin e — #' sin A cos X + sin Xcos A (A — IT cos* e) + 2 x») ; 

and for caps reaching not farther than the polar circle 

2 Paty 
= (£5 0 cos? \ sin e — Hsin X cos X + zk = (sin? € — cos? d) 

sin X cos* X 7 
a K = 3 5 o}> a (X —II cos 2) +5 x) 

Vou. XVI. Parr I. 11 

ee 
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‘ mr : , : sin 
where x is the non-periodic term in the expansion of y, and in the first formula laa 

: cosxX.. n a moe 
in the second k= eo the first formula the second parameter of II is —sin*e, in the 

s 

second, — cos?X. 

Or with Z expanded in the form 

Z, += cos*d sine sin 6 + Z, cos 20a 

the summer and winter heat-supplies are 

He? : 
a (Z, + cos? sin e). 

It may be shewn that for non-arctic regions 

dZ, 2E 2 sin X cos A cot 2 tan d cot e : 
9 us —_—— (K —II sin? 2), "= — — cote sin A cosA + ——_—_—_——__ (K — TI cos’ e) + —— 

de 7 T T 

and for arctic regions 

Z, 2E . 2 cos € sin X : 2 sin © 
dZy _ — — sind cose+ eee (A sin? A) + Ene G a2 (K — II cos’), 
de 7 vg 7 sin® € 

with the usual parameters for the two cases. These last give the alteration in the non- 

periodic term, due to change of obliquity of the ecliptic, for any polar cap. When a 

complete hemisphere is taken X=0, and therefore ¢=0, X=5, and the formula for 

the heat-supply reduces to 

aH c'dt 7Hedé 
= (1+sinesin @) or Dh, (1 +sin esin @). 

: : : wHe (7, . 3 : 
In this case summer and winter supplies are = é + sin c| respectively, or per unit 

Bie area (5 + sin e), and for the year - Sir Robert Ball’s results. 

2 
The mean supply per unit area in latitude X% was denoted by a Hence the 

mean value of ZL, for the hemisphere is A (belonging to a latitude 36° 35’ approximately), 

as was proved by direct integration above. Z, increases from 0 when %»=90° to 5 

dZ, . oe : 5 : : 
when X=0; de 3 always positive, vanishes for X=0° and 90°, and has a maximum where 

ath that is, about latitude 43° 20’. (See Table A.) 
de 
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§ 16. The values for zones being got by subtracting one polar cap from another, it 

‘ ; ; , dZ, . P 
is clear that for zones both of whose margins are below this latitude, de 18 negative, 

€ 

for zones with both margins above this latitude, positive; while zones which embrace this 

‘ dZ, =e , é 
latitude may have Ae positive, negative, or zero according to the extent to which the 

€ 
margins pass to the two sides of latitude 43° 20’. As an illustration, I give figures for 

the three zones into which the northern hemisphere is divided by the parallels of 30 

and 60°, 

The polar zone here extends beyond the arctic circle even with e at its maximum 

value. The heat-supplies for the three zones are given by the following series, multiplied 

by ede: namely for 
h 

Tropical zone ‘9208 + *1563 sin 0 + ‘0356 cos 26... , 

Temperate zone 5246 + ‘3126 sin 6 —‘0017 cos 20... , 

Polar zone 1249 + °1563 sin 6 — ‘0339 cos 20... ; 

or as the areas of these zones are me*, me?(V/3—1), we?(2— 4/3), the mean supplies per 

unit area are ad multiplied by series for 
ah 

Tropical zone 9208 + 1563 sin @ + 0356 cos 26... , 

Temperate zone ‘7168 + "4270 sin 6 — ‘0023 cos 24... , 

Polar zone 4740 + 5833 sin 6 — +1265 cos 26... . 

The values of a for X=0°, 80° and 60° are respectively 0, 1693, and *1559; hence 

for the zones the values — +1693, +°0134 and ‘1559 in the order tropical, temperate, polar. 

With Stockwell’s limits for e the total changes in Z are ‘007754, 000623, and ‘00714, or 

for the non-periodic term of the second series ‘0075, 00085, 0266; or in percentages 

‘84 per cent. for the tropical zone, hardly appreciable for the temperate zone, and for the 

polar zone nearly 53 per cent. These figures give the whole range up and down from 

the present value; by an increase in e the tropical zone loses, the temperate very slightly 

gains, and the polar zone gains considerably. The annual term, exactly like that for a 

single latitude, has a total range of 104 per cent. 

The application of the zonal harmonic method gives results much simpler in form, 

but the convergence is a little slow. We have “7-29 cosa, and therefore 

| i 

Zi 2Q cosr da. 
JA 

11—2 
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Integrate the whole zonal expansion of Q given in VIL, p. 78; we obtain an expression for 

sin X cos? X 
Z, viz. P,(sinX) is replaced by cos*A, P; by sind cos*r, P, by 4 (7 sin? — 3), 

sin cos? X 
P, by 8 (33 sin* X — 30 sin? + 5), 

by sin A cos? xr 

Ee 64 
(715 sin® \ — 100) (sin* A + 385 sin?A — 35)... , 

cos? X 
and generally Ps, by im 1 P m—1— Poni), be. n(2n+1) 

Pm (sin 2). 

For example, the integration of the non-periodic term in VIII. gives 

A= 2a —sin d) + a.P, (cos €) sin X cos* A + ues (cos €) sin X cos?A (7 sin? A—3).... 

§ 17. The transformation of the various results to mean time presents no difficulties. 

We use the relation 

0+ 5 —o=y+2esin y+ 7 sin2y..., 

where y=27t, ¢ measured from perihelion, @ from T the spring equinox. Taking into 

account el, eL,, eZ, but not @L,, and omitting eL,, sd, sin 6...) transforms to 

: 
aa dt multiplied by 

7e ‘ : 
LI, + cos (wv + @) \- L, (1 ~ = + ecos w (2L,+ 1.) +sin(W+o)(2L, — L,) esmo 

+ cos 2 (r+ @) {- DL, + 2 L, cos 2a — 2eL, cos a} + sin 2(y+o)( > a, sin 2 — 2e, sin ) 

+ cos (3x + 2a) 5 ue L, cos w — 3el,} — oer, sin @ sin (8% + 2) 

+ L,cos4(+o).... 

For numerical results see Table B. 

In this formula Z, changes sign in passing to the southern hemisphere. 

If e is ignored, the formula is 

L, — L, cos (+ @) — L, cos 2 (+ @) + [, cos4¢ (r+ o).. 

Regarding this as a normal form, it is most modified by the ellipticity of the orbit, 

when, in the course of secular changes, has the values 0 and 7. 
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2H’ 2HO a, 
h 

To the same order as above, the heat-supply being we have for o=0 

perihelion in midwinter 

Tie {bs (1- e = ab, el} cos 2at — {b Beaty, + 2eL,} cos dart 

27e 
- (Sed. + = L, | cos 6rrt + [, cos 8rt..., 

and for #=7, perihelion in midsummer, the sign of Z, must be changed. 

As in the outline »=0 belongs to the genial period, #=7 to the glacial; and a genial 

period in one hemisphere due to this cause corresponds to a glacial one in the other. 

7 31 - : ; HE 
The values o=5, —; make summer and winter of equal length, and give the minimum 

departure from standard form; for the first, perihelion in conjunction with vernal 

equinox 

V=L,+L, (1 - *) sin 2art + e(2L, — L,) cos 2art + (Z. + 2 L,) cos 47rt + 3eL, cos 6rrt 

27e Fe) i 
+h, sin 67t + L,cos 87t... . 

As an example of zone formule transferred to mean time take first the hemisphere, 

for which the element of supply per unit area is a +sinesin @) or — 

multiplied by :— 

for genial epoch = =1— {sin € (1 - i) - 2e} cos 2rt — (2e sin € — *) cos 4rrt 

bo 
Lat 

PA 
er sin e cos 6z7t ... , 

C 
Te é 5 +) a 24} cos 2art + (20 sine + BE) cos 4art » glacial _,, 1+ {sin € (1 ag 

Ne 
+ —g~ sin € cos Garbiseae 

O 

,» present position 1 — {sin € (1 - =| — 2e cos ol cos (27t + w) + 2e sin w sin (27¢t + @) 

9 : 5e De. ; Die. “4 
- 2e sin €— “7 COS w cos (4r¢ + w) + > sin w sin (dart + w) — = — sin ecos(67t +@).... 

In figures these are :— 

for genial extreme 1 — ‘2562 cos 2art — ‘0435 cos 4art — 0066 cos 67... , 

» glacial > 1 + 5362 cos 27t + ‘0680 cos 4rt + 0066 cos b7rt..., 

» present position 1 — 3669 cos (27t + 11° 56’) — ‘0128 cos (47¢ + 11° 37’) 

— 0004 cos (67# + 11°)... , 

Qe 
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with w=11°, e='0168 for present position, and with e=-07 for the extremes. In every 
case time measurements start from perihelion. 

As a further example the second type of series on p. 83, referring to the three zones 
0° to 30°, 30° to 60°, 60° to 90°, are in mean time for 

oe ; ‘9208 + °2871) — 0025) | —*0049) 
Tropical zone —-0241/ cos 27t _ 0463) ° os 4art —-0101| cos 6rt ..., 

m a ‘7168 + 5255 aaa WO) + 0075) 
Temperate zone _-395 cos 2rt _ weal S4art _ 0065) cos 67t... , 

4740 + 6561 +2140) + 0356) Polar 
S Ort... ; olar zone se ene me 0506| cos dort | 01765 cos Ort ... ; 

the upper figures belonging to the extreme glacial, the lower to the extreme genial epoch. 

By comparison of these results for broad zones with those just given for the hemi- 
sphere, it is seen what an unsatisfactory view of the effects of eccentricity is given by 
taking the average for the hemisphere. 

§ 18. Absorption. It is usual to allow for absorption of light or heat in passing 
through an absorbing medium by the use of a formula e~”, where z is the thickness 
traversed, For a considerable range from the zenith, when the earth’s atmosphere is in 
question, ¢ is taken proportional to secZ, J being the angle between the zenith and the 
sun’s rays, but near the horizon, the formula is modified and z made to approach a limit 
depending on the value assumed for the height of the atmosphere. The formula is easy 
of application when the object is to compare the amounts of absorption at different times 
of the day, but seems to present considerable difficulties, if we wish to integrate for the 

annual supply. Moreover it involves the assumption that rays after passing through a mile 

of the earth’s atmosphere, experience the same proportionate absorption in passing through 
the second mile. I suggest the use of a formula e,+e,cos7+e,cos?J+... to represent 
the proportion of heat or light transmitted, and that this formula be compared directly 
with observation at different zenith distances. This would give the relative values of 
€, @ +.. Which is sufficient for all terrestrial problems. For the determination of the solar 

constant, absolute values are needed, and these involve some such hypothesis as to 

absorption as is given above. The exact integration of each term of the above can be 

effected by the methods hitherto used, and some answer can be given to the interesting 

enquiry, how far the proportions of the coefficients of the non-periodic and various periodic 

terms are affected in different latitudes. 

Thus for example the e, term gives for the day’s integral 

e,HAt later : . ; ; i: ; ¢,HQ,.d0 

Sarr | Bes Asin 6 +cosr cos dcos yp) dy or — 5 

where = 5(5 ate $) feos X + sin? e (5 sin? — u (1 — cos 20)! 

+ <sin X cos X sine sin @ V1 — sin? sec? A sin? 6. 
ods ey) 
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Here cos 26 is the only even multiple of @ that occurs, this and the non-periodic term 

being simple trigonometrical functions. The expansion of ¢ has sines of odd multiples 

of @, and the last term contributes the same type, both expansions being the same as 

in previous work. The types alternate, the transcendental terms contributing for Q, Q.... 

to the non-periodic term and even multiples of 6 (cosines), for Q,, Q,... 

of @ (sines); the other set of terms in each case being purely trigonometrical. Instead 

of pursuing this method which for succeeding terms becomes heavy, though presenting 

to the odd multiples 

no special difficulties, I propose to apply the method of expansion by zonal harmonics. 

yy 

§ 19. Let X%o= | (sin A sin § + cos X cos 6 cos W)? dy, 
~0 

where y, is the hour-angle at sunset, so that 

sin X sin 6 + cos X cos 6 cos Yr, = 0, 

for non-aretic regions, but for arctic regions y, is m during the period of total day, and 

zero for the period of total night, giving at the pole y,=asin?é for summer when 

siné is positive, and zero for the winter when siné is negative. 

Since i {sin y (sin X sin 6 + cos A cos 6 cos W)?—} 

=cos (sin A sin§+...)?-?—(p—1)cosX cos 6 sin? y (sinA sin 6+...)?~, 

(p—1)cosX cos 6 [ sin’ vy (sin X sin § + cos A cos 6 cos Wr)? dy 
- 0 

vy 

=) cos vr (sin \ sin 6 + cos X cos 6 cos YW)? dy, 
0 

fittne : oo : é 
or  (p—1)cos*X cos? 5 sin? x (sin sin 6 + cos X cos 6 cos W)?* dr + xp Sin A sind =x p. 

0 

vi ae 
Also cos? cos? | cos? y (sin X sin 6 + cos cos 6 cos W)?—? dy 

Jo 
=x, — 2y,- sin Asin § + y,p-» sin? A sin? 6. 

Therefore by addition and reduction 

(p — 1) Xp-2 (cos? A — sin? 8) = py, — (2p — 1) xp-rsim Asin ..............000 (a), 

which is the sequence equation. Again, it is easy to shew that 

dy , : ; 
cos X a + PX» SUAS i a SEN On os teas sodas nsec ec tnce es (b), 

and by a second differentiation 

d? d a. 
ag — tan KX? +p (p +1) Xv = hy (PXv— (2p — 1) Xp sind sin 8 + (p— 1) xp-asin? 8} 

7S Aicobe gocce sone c coe roY “SSK ORORRE OnE eA ROSAS BEA (c). 

All these results remain true in arctic regions up to the pole for the values assumed 

in total day. Each function is thus connected with the alternate one by an equation 
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suited for the comparison of corresponding zonals; and identical results hold for differ- 

entiation with regard to 6. Now y is the same as Q@ which was expanded in VII. p. 78, 

and this gives us the starting-point for the odd functions. We seek, therefore, an expansion 

for x, to furnish the starting-point for the even series. In non-arctic regions 

Tv 
XN=_gth | 

but in arctic regions during the period of total day y,= and for total might = 0. 

We prove 
d Pete sind — 
= S 

dn Vcos?X — sin? d’ 

and therefore 

d*p dp sinasnd _ do dd 

oa OA oe (cos? X — sin? 7) age *0 3 dd" 

which suggests 

Xo = = +$=~+0P, (sin 2) P, (sin 8) + ¢sP, (sin 2) P; (sin 8) +.... 

But when >»=0, 

d 1 : il6.8} 
“= tand=5 3 x } P,(sin’)+7(5) ie * P, (sin 8) + ll (= sa) a P,(sin8).. +, 

quoting the expansion of ar in Todhunter’s Laplace’s Functions, p. 115. 
V1 —p 

; ; 3 735i 20a 
Also - IAN, 12 Ore wo. Pent (0) =(— 1) oe pee. 

31r V1 lla n—1 4 
Cis ae os = = Tee Cs = 39 » o) Cny= 5 (dn +8) oC IL) ¥e 

al. 7 [} or this is emia = (4n +3) 5 | Pani (am) da. 
0 

2 > * . 5 T GAO 

But if we expand by odd harmonics P2,,,(sin6) a function which => for positive values 

o vin 2 O 5 . a 5 

of sind, and = for negative values of sin 6, this is the coefficient required. Now 

when M=as P,,(sinX)=1, and so the value of x, given by the series reduces at the 

pole to m for summer and zero for winter, as it should do. 

§ 20. The coefficient ,b, of any term P, (sind) P, (sin 6) in y, 3s derived from the 

=—p(ps}) 
(n—p)(n+pt+1) 

equation (c), and a repeated application brings us to the term in x, or x, whose coefficient 

corresponding one in xp» by the factor as appears from substituting in 

is known. But this leaves that of P, in y, undetermined in each case, this being the highest 

of the odd or even set of terms, according as p is odd or even. To determine terms of this type 
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compare the coefficients of sin’? in the values of y,, and in the series, when A=0, p 

ax 
being even; and in the value of 5 , p being odd. Thus to take the even case when A=0, 

4 

Xp = [cos 8. cos? dap = ao = 5 cos 5, 

and in the series the only term containing sin” 6 is .,b.,P.,(0) P.,(sin 8). Now 

Py (= hg PI iy 

and the highest power of siné in P,,(siné) is 

1.3. .4p-1. 

Treat the odd term with the help of 

d ‘ 
da Xt = (2p +1) x2) sin 6, 

ise 
when A=O0 derived from (b), and it appears that the formula 5a oe - bn holds 

whether p is odd or even. 

When the difference of p and n is even we have for the coefficient »b, in yy 

pat Ont Dp 
STARA = nolo s: ee De 

In this case m does not exceed p, and when n=p, 2. ..p—n must be taken =1. 

When the difference of p and n is odd, 

(Qn +1)|p.1.3...(n+p) nist» 
22.4...(n+pt+1).(n—p)(n—p+t2)...(n+p) ae) j nDp = 

and in this case either p or » may be the greater, and the denominator may contain 

negative terms. 

The aie terms are :-— 

Xo == al = (sin X) P, (sin 8) — — as (sin X) P; (sin 6) a 5 Ps (sin X) P; (sin 8) ... 

x1 = - = q Pe (sin 2) P, (sin 8) — : P, (sin X) P, (sin 8) 

+ YF" p, (sind) P, (sin 8)... 
‘ - S10) 

xe= 2 +27 P, (sin 2) P, (sin 8)+ 7 P, (sin 2) P, (sin 8) + 17 P,P, — 54 PP. 
T 38 137 X= 5 aq bits ip 5 PP ie Lay is aN ye 10 7 P,P; ... (the rest even) 

lla 
Y= Tela ee = 2 BE at ee 5 PPit 355 Pal .. (the rest odd) 

Vou. XVI. Parr I. 12 
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x; for example contains the infinite series of even zonals, and the odd series up to P;, 

xX contains the infinite series of odd zonals, and the even series up to P,. 

In x; all the coefficients are derivable from those in y% by the factor 

Fe Ae 
(n — 3)(n + 4) 

except that of P;, for which we are thrown back on the special method, but in any case 

the coefficients are all determined without reference to any previous series by the two 

formule above. 

In Arctic regions, at the transitions from total to partial day or night, the series 

are continuous, the first differential coefficient of y., the second of y,, the third of 

X2,-.. With regard to either variable being discontinuous. 

With these values we have, when e,+e,cos2+e,cos*J+... represents the amount of 

light or heat transmitted for the inclination J, the element of heat-supply 

Hdé Sab Hdé 
= (Xa + GrX2 + GX3 +...) mm leu of eke 

with no absorption. The first term y,, which does not appear here, and was introduced for 

analytical purposes, is the supply-function as it would be if with the existing duration of 

daylight, light or heat came with equal strength that of the zenith during the 

whole day. 

It might be applied to the heating of a cloud in mid-air presenting an equal surface 

to the sun through the course of the day, the meaning being clear when we remember that 

the use of one factor cos J was necessitated by the exposure of a surface at a varying 

angle. 

To transform P, (sin 6) into a sine or cosine series with regard to @, for even values 

of n, the result is given above, p. 78; for odd values it is 

s=n 2(—1)"|2n — 2s 
Pini (sin 6) = =, Plas Sige sin**+? eP*") (cos €) sin (2s + 1) 8, 

and this completes the expression of any member of the group in the standard form 

L,+L, sin 6+ L, cos 26 + L£,sin 36+ £,cos40+4+.... 

For x2, the cosines go as far as cos 2p, and the sines of odd multiples take all values, 

for Yopi; the sines go as far as sin(2p+1)@, and the cosines of all even multiples occur. 

§ 21. At the pole y,=7sin’6 or wsin’esin’@ from @=0 to 7, and vanishes from 

6=7 to 27. The expansion of such a function may be effected imdependently, and the 

opening terms are: 

es w= - 
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TB exits 0 D5 36 hes 50 
XM =5 +2sind +, sin 36 += sin 58... 

aie 2 2 
xi=sine (1 +5 sin @ — 5 cos 26 — 7, ~ cos 46. . 

: wr 4. T + ee ee me Va = ms fa) We aaaedeas (e). X2 = sin (7 i sin 6 4 08 20 = sin 36 105 sin 50 ) ¢ 

: 2 : 4 
x= sin e(5 +57 sin 0 — 2 cos 20 — < 7 sin 30+ 4 cos 46 . a) 

: 37 («16 16 
= 4 = = | = Xs = sin (7g +738 é- 700s 3s 20-— 35 sin 36 + 7, c0s 40 ...) 

If in the general forms (d) X be put = oy and the comparison of a term of type 

sin (2s +1), or cos 2s0, be made with the simplified form (e), the result is an expansion 

of the type sin™e in terms of P% (cose) or Pxii(cose) or P.,; s being fixed in the 

series in question, and n not less than s. The series are finite if m is even, infinite in 

the other case, and form a generalization of formule already quoted in Todhunter’s 
Laplace's Functions, pp. 114, 115. 

The means of the successive functions y,, x:-.. for the globe or for a a hemisphere are 

T Tv Tv 7 

AGC ee a0 

for succeeding terms of series (d) the coefficients diminish at a less rate or even increase, 

and from this we infer that the periodic terms, and the element in non-periodic term 

dependent on latitude and obliquity of the ecliptic, increase relatively as we pass from y, 

to the succeeding functions. 

It is not easy to judge at sight the effect in any particular latitude, say, on the non- 

periodic term, because this derives a section from each of the zonals of even degree. But 

at the pole, as appears from (e), we have 

Gn on oe TB cee 
—sin?e, =sime, -—~sim‘e..., sim ¢, 4 3 16 

where the means for hemisphere are 

suggesting a rate of decrease growing as we pass from equator to pole. This may be proved 

generally, but with a view of shewing it more readily, I give numerical values in Table (C) 

for latitudes 0°, 30°, 45°, 60°, 90°. 

As regards the annual term which derives a section from each odd zonal, we have in 

low latitudes absolute increase, and so a conspicuous relative increase. In latitude 30°, the 

figures for the successive functions are nearly the same, for higher latitudes the annual 

term diminishes in absolute value, but still at a less rate than the non-periodic term, and 

- 12—2 a 
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finally at the pole there is little difference in the rates at which these two terms diminish 

in passing from the normal function to those with absorption. 

§ 22. We readily obtain summer or winter totals of radiation received by finding 

[7 Paina) a8, 

The opening terms are 

[Py Gind) do =2 sine, ia P.d0 = ($sin* e~ 5) iz ["P.de=—3sine + sin’ 
0 0 4 2 0 3 

i) Pie = = (1 Lee = sin‘e), p Pao = "7 (1—ssinre+ sin‘ e) ie 

For winter the terms of even order are the same, those of odd order have the sign 

reversed. 

Also average values of the various terms for the hemisphere may be obtained by in- 

tegrating 
7 

i P,, (sin 2) dx. 
Jo 

Even terms except that of zero order vanish, 

2 1 7 1 3 1 
[ Pa=5, i Pdr=—s, pS ae 

Again the series in (d) may be transformed into zonal formule (or more properly polar- : 

cap formule) by the substitution given at the end of § 16, and noticing that the polar-cap 

element is a while the ordinary element in latitude % which is per unit area is | 

Hdé . Bs ; = , 
“ah? it appears that the factor mc? is also required. With these changes we have values q 

of polar-cap formule down to any latitude for the various absorption functions used, and 

by subtraction formule for a zone of any extent. 

The constants @, @, ... may be different for different wave-lengths. Also if the absorption 

is different at different seasons of the year for the same angle of incidence, the quantities 

contain annual or semi-annual terms, and these should be introduced in the expression 

Ha + GiXa + «--) = 0XA 1X2 es 

Deer 

when transforming to mean time. Or if the absorption is different in different latitudes 

for the same angle of incidence, then e,... are functions of latitude. The discussion of such 

points would involve a survey of radiation with a bolometer in different latitudes, and at 

different seasons of the year, as well as at different times of the day. 
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(A) Table of coefficients in the expansion of Q in the form 

L,+L,sin 0+ L, cos 20+ L,cos40+..., 

and of their differential coefficients with regard to « and X. (€ = 23° 27’) 

| 
dLy aL, aL, aL, || dZ, aL, dL, dL, 

r Ly I, Ly I, de de de de | dy dy dy dy 

= _ = = = — - ———— = - 

0° || 9591 | -0 0412 |—-0004 ||—1950 | -0 | 1987 —0051 || 0 6251 | ‘0 0 
10° || 9458 | 1085 | -0394 |—-0004 ||\—1856 | -2502 | -1897 —0042 —1520 | 6156 —0221 -0004 
20° || 9065 | 2138 | :0334 |--0003 |—1570 | -4928 | -1600 —0032 |—2973 | 5874 —0456  -0008 | 
30° || 8429 | 3126 | -0232 |—-0001 ||—1088 | 7205 | :1088 —0007 ||—-4306 | 5413 —-0715 | ‘0014 
40° || ‘7577 | -4018 | -0081 |+:0002 ||—0348 | 9263 | -0330 +0025 \—"5419 | 4789 |—-1034 | -0024 
50° || 6557 | 4789 |—-0138 |4+-0009 ||+-0722 1:1039 —0807 +:0092 |—-6193 -4018 —1509 -0049 
60° || 5455 | 5413 |—0477 |4+-0024 |/4+°2441 |1:2480 |—-2688 +:0274 ||—-6260 | 3126 —4795 | ‘0289 
70° || 4543 | 5874 |—-1225 |+-0116 ||+°6462 |1°3541 |—7357 +0604 |\—3547 2138 —6437 0250 
80° || 4112 | 6156 |—2255 |—-0207 |+°8569 |1-4192 |—-6873 —1671 |—-1546 | 1085 —4499 —2797 
90° || 3979 | 6251 |—-2653 |—-0531 ||4+-9174 11-4411 —6116 —1223 | -0 Is 0 0 ‘0 

The mean value of ZL, for the globe is A: 

Unit value of Z, is what it would be at the equator if « were =0, in which case LD, 

would reduce to the form cosX. 

I, is negative for southern hemisphere, L,, L,,... alike for both hemispheres. 

(C) Table of coefficients when the absorption functions are used. 

Ly for L, (sin @) for L, (cos 26) for 

x | ray X2 Xs Xs x X2 Xs X4 4 Xe Xs Xs 

0° || 9591, °7232, 5893, +5012 | -0 ‘0 ‘0 0 0412, -0622, ‘0764, +0859 

30° || 8429, 5735, 4316, 3446 | 3126, 3260, 3191, 3039 | 0232, 0155, -0020, —-0018 
45° || "7084, °4230, 2868, °2107 | 4420, 3803, 3176, 2640 —-0018, —-0311, —-0514, —-0621 
60° || °5455, -2741, 1602, °1013 | 5413, °3460, -2272, 1453 | —-0477, —-0777, —-0761, —-0645 
90° || 3979, 1244, 0419, -0148 | 6251, ‘2115, ‘0841, 0268 | —-2653, —-1244, —-0504, —-0195 

L, (sin 36) for | DL, (cos 48) for 

: X X2 X3 Xs | Xi X2 X3 Xs 

o || 0, 0, 0, 0 —0004, 0, 0009, 0018 
30° 0, 0063, ‘0108, °0133 — 0001, -0, —-0006, —-0014 
45° || 0, 0055, 0044, 0006 | +-0005, 0, —-0010, —-0020 
60° 0, —0007, —-0080, —-0144 +0024, -0, —0007, +:0001 
90° || 0, —-0422, —-0247, —0165 | -—-0531, -0, +0072, +-0049 

In this table y, is the normal case of no absorption, y, = Q. 
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In x2 absorption is proportional to cos J, 

IMG onasbooané senenoanananeqnq00sno9080 10 cos? J, 

Tih cosnagacooosoasdnooabcosnnbmabersoosace cos? I. 

(B) Expansion of Q in mean time W=27t, ¢ measured from perihelion, unit time 

1 year. Kccentricity e='0168. Longitude of perihelion 79°. 

0° ‘9591 + 0328 cos (r+ 0° 27’) — 0406 cos (2 + 22° 54’) — 0021 cos (By + 22°), 

10° N. 9458 — 0769 cos (we + 15° 25’) — 0424 cos (2 + 21° 24’) — ‘0021 cos (By + 21° 37’), 

S: » +:1403 cos (y+ 8° 35’) — 0352 cos (2 + 23° 34’) — ‘0019 cos (Br + 22° 36’), 

20° N. 9065 — 1834 cos (Wy + 12° 47’) — 0399 cos (2 + 21° 51’) — 0019 cos (Bye + 20° 48’), 

8. » +2442 cos(r+ 9° 40’) — 0257 cos (2 + 22° 24’) — 0015 cos (Bx + 23° 33’), 

30° N. °8429 — 2845 cos (yr +12° 4’) — 0330 cos (2 + 16° 37’) — ‘0015 cos (BW + 19° 42’), 

S. $3407 cos (Yr + 10° 6’) — 0128 cos (2p + 37° 55’) — 0009 cos (Bp + 25° 49’), 

40° N. -7577 —-3766 cos (yr + 11° 44’) — 0214 cos (2 + 15° 18’) — 0008 cos (By + 16° 15’), 
S. » +°4268 cos (+ 10° 21’) + 0068 cos (24 — 3° 26’) + 0001 sin (By + 22°), 

50°. N. 6557 — 4574 cos (yr + 11° 32’) — 0079 cos (2+ 0° 42’) + 0016 cos (3 + 64°), 
S. » +5001 cos (YW + 10° 31’) + 0360 cos (2 + 16° 51’) + 0013 cos (3x + 18° 6’), 

60° N.  °5455 — 5240 cos (yr + 11° 24’) + “0304 cos (2yr +28°13'-5)-+ 0019 cos (By + 25° 2’), 
S. » +5585 cos (Wr +10°375)+ 0660 cos (2+ 7° 52’) + 0029 cos (Br + 20° 2’), 

70° N. -4543 — 5726 cos (x + 11° 20’) + 1035 cos (2x + 23° 56’) + 0057 cos (Br + 23° 6’), 

S. » +6019 cos (Yr + 10° 41’) + 1422 cos (2 + 20° 31’) + 0067 cos (3x + 21° 4’), 

80° N. 4112 — 6056 cos (yr + 11° 19’) + ‘2055 cos (2 + 23° 24’) + ‘0109 cos (By + 22° 34’), 

S. » +6253 cos (ve +10°416)+ 2461 cos (2 + 21° 3’) + 0119 cos (By + 21° 28’), 

90° N. -3979 — 6162 cos (x + 11° 19’) + °2450 cos (2 + 22” 55’) + 0128 cos (By + 22° 32’), 

S. » +6337 cos (+ 10° 42’) + 2862 cos (2p + 21° 11’) + 0140 cos (By + 21° 30’). 



IV. The Contact Relations of certain systems of Circles and Conics. 
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[Read Nov. 23, 1891. Revised Oct. 19, 1896.] 

[Lhe author is indebted to Mr A. Larmor for suggestions as to revision.) 

CHARTER: 

A FUNDAMENTAL THEOREM. 

SECTION I. 

ENUNCIATION. 

1. I pRoposE to show that if Fig. 1 represents four circles on a sphere intersecting 

so that either the four pomts A, B, C, D (and therefore also A’, B’, 0’, D’) or the four 

A, B, C’, D’ (and therefore also A’, B’, C, D) are concyclic [a condition which may be 

otherwise expressed by saying that the difference of the arcual angles OAB and OBA 

equals the difference of the arcual angles OCD and ODC irrespective of sign] then the 

incireles of each of the following tetrads of arcual triangles are touched by two other 

circles besides OAC and OBD:— 

CATR emt) AUP eee CLD). OG er emake Pe. (1), 
OU a MOC es OCDE QIOUY: sie ass He (2), 
OAR MOAB “OCD. «QOD a 4c eee. (3), 
Cae Owe OCD! OCD ae aoe (4), 
OAAe MONE “OCD 06D oe eS (5), 
OBE SOARS -O'CD*® OC Diao (6), 
CABO OCD). \ OCD ieee eee (7), 
OAR MOAB. OCD * AOC Dran tstee ee (8), 
OBS BROUBO’-OCD!- MOOD ioe ch heads (9), 
CARI OUR “OCD OCs Lo Mae: (10), 
OAR er OAR’ OCD OCD. eee (11), 
OAR BaW AR “OCD! * OCD Bin eee (12), 
Cibo sGnn OOD!" OCD. iar ee (13), 
(AMR OAn. OOD, - ODE wa eae (14), 
aoa BR. OCD. COU. 5 (15), 
ABS ABs ¢ OCD, =OEDE 2 1 ee, (16). 

* “The incircle of O'CD’” means the circle touching OAC, OBD, CDC'D’ and containing within it these three 

circles. This notation seems natural from analogy with the case in which these three circles are great circles. 

A similar remark applies to “the incirele of O’4B’.” 

Wore “vil, Rant Tle 13 
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SECTION II. 

Two LEMMAS. 

2. I shall use as Lemmas a particular case of a theorem given by Mr Jessop in 

the Quarterly Journal of Mathematics, Vol. XxiU, and its converse. His theorem is enun- 

ciated :—“The sum or difference of the angles any two fixed generating circles of the 

same family of a Bicircular Quartic make with a variable generating circle of any other 

given family is constant.” It might also be enunciated:—“If P,Q, R, S be four generating 

circles of a Bicircular Quartic, P, Q belonging to one family and R, S to another, then 

a circle can be drawn through one of each pair of intersections of P with R, P with S, 

Q with R, and Q with S (and therefore another circle through the remaining four of 

the same intersections).” The same theorem of course follows, by inversion, or stereo- 

graphic projection, for Sphero-Quartics also. The particular case referred to is that m 

which the Quartic consists of two circles on a sphere (or in a plane). As Mr Jessop’s 

proof does not readily enable us to select the concyclic points I give a proof for the 

particular case depending on Casey’s relation among the angles of intersection of four 

circles that touch a fifth. (It may be worth while pointing out how to write down 

this relation. Let the points of contact be K, L, M, N as in Fig. 2: write down the 

analogue of Ptolemy’s theorem, viz.:— 

sin} KM. sin} LN =sin}KL.sin} MN +sin4 KN. sin3LM, 

and substitute for each great are joining two of the points K, LZ, M, N the supplement 

of that angle between the tangent circles at its extremities within which the circle KZMN 

lies.) Let Fig. 3 represent two circles of each family touching the two circles S and S’. 

Since the four circles touch S we have 

Pes 6 @ Opes a yee: 
sin 5 C08 5 + COS 5 cos 3 = SIN 5 COS 5 Deed tae Se |. 5 eae (a@b\e 

and since they touch S’ we have 

CW Oe eo (SGI o @ isin = sine cos Cos 2 cos 5 SIN 5 = Sin 5 Cos 5 + cos 5 cos Q ceeeseeeseetseeeesceeeeeees (2). 

From these relations we obtain the equation 

a+é . Bry 
sin —— = sin—>~ 

therefore either a+d6=68+y7 or a+d=27-B-y, 

therefore either a—S8=y—6 or a+8=27-y-6. 

If the former relation hold dA, B, C’, D’ are concyclic, if the latter, A’, B, C’, D, 

Mr Jessop’s theorem thus being established on either supposition. 
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It is however necessary for the present purpose to show that it is the former of 

these alternatives which is true and not the latter. If a third circle be drawn touching 

S and S’, of the same family as AB and CD and having a position intermediate between 

them, and if 0, be the angles that correspond to y and 6, we have 

either a—B=y—56 or a+8+7+6= 27; 

and at the same time 

either a—B=0—¢ or a+ 8+0+ = 27: 

and at the same time 

either y—8=0—¢@ or y+6+0+6=2r7. 

If the former alternative be not taken in the first case it must either be taken in one 

only of the other cases or not be taken in any case, as if taken in both the other cases 

from the equations a—B=0—¢, y—&8=0—¢, we deduce the equation a—B=y—6. Now 

if we take the former alternative in the second case only, we deduce a=6, B=q¢. Thus 

the equation 

sin * cos oe cos ~ cos _ sin = cos = 
2 2 2 DS a) De 

which corresponds to (1) for the.cireles concerned, reduces to 

sin = cos B. cos = cos ee sin 2 cos B 
rar, 2 Pa a Dre a De 

which cannot be true since neither @ nor © is 7. Similarly we cannot take the former 

alternative in the third case only. 

Again, if we take the latter alternative in every case, we deduce 

a+B=y7y+6=0+o=7. 

Equation (1) then reduces to 

sin 2 Silleben 2 cae ae 
ea ae 2 Ae wee, oy 

which cannot be true since neither » nor w’ is 7. The former alternative must therefore 

hold in the first case; (the same argument shows that it must hold in all three cases). 

The points O’D’ having been proved concyclic with A and B, if the circle CDC’D’ 

be made to vary continuously, touching S and 8’, it is obvious that in any position 

the instantaneous positions of C’ and D’ are always concyclic with A and 8B, it being 

noted that © and C’ (or D and D’) interchange as the varying circle passes through 

the position in which they coincide. When the concyclic points have been determined 

for the intersection of two given circles P and Q of one family with any two of the 

other family this consideration suffices to determine them for the intersection of P and 

Q with any other two. 

3. Conversely if in Fig. 3 COC’, DOD’ be two circles of one family touching S and 

S' and CDOC'D’' be a circle of the other family and A, B be two points one on each 

of the circles COC’, DOD’ concyclic with OC’, D’, then through A and B there can be 

described a circle touching S and S' of the same family as CDC’D’. For through A 

two circles of that family can be described. If a circle of that family be made to vary 

13—2 
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continuously from coincidence with CDC’D’ first mto coincidence with one of these circles 

and then, restarting from the position CDC’D’, into coincidence with the other, im one 

ease C, and in the other C’, will move continuously into coincidence with dA. The 

former of the circles will pass through B, because from what has been proved if it do 

not pass through B but cut DOD' in E and EL’ the circle C’D‘A will pass either 

through £ or £’, which is impossible, since by hypothesis the circle C’D’A cuts DOD' 

in B; therefore the result stated is true. 

SECTION IIL 

PROOF OF THE FUNDAMENTAL THEOREM. 

4. In applying the Lemmas to the proof of the theorems stated in Art. 1 the 

following notation is adopted: the incircle of the tmangle OAB is denoted by 4 and 

the escribed circles of this triangle opposite the angles A, B, O are denoted by 1, 2, 3, 

and the inverses of 1, 2, 3, 4 with respect to the circle cutting OA, OB, and AB 

orthogonally are denoted by 1’, 2’, 3’, 4 respectively: the incircle of the triangle OCD is 

denoted by Iv and the escribed circles of this triangle opposite the angles C, D, O are 

denoted by 1, Il, lI respectively, while the imverses of I, II, lI, IV with respect to the 

circle cutting OC, OD and CD orthogonally are denoted by I’, m1’, m1’, Iv’ respectively. 

I have found it impracticable to get good figures for all the tetrads without varying 

the sizes and positions of the four circles OA, OB, AB and CD. In all the figures 

(Figs. 4—12) however O lies within and 0’ without the circles AB and CD; the points 

of intersection of these circles lie in the angles AOD’, BOC’; and A, B, C’, D’ lie on 

a circle; this circle is not drawn. Of the two circles whose existence the theorem asserts, 

in each case one only is drawn, the dotted circle m the figures. 

Fig. + shows the circles of tetrad (1) denoted by the numbers 3, 4, lI, Iv, placed 

at their centres. Two circles can be drawn having contact of the same kind with the 

circles 3, IV and of a different kind with 4; let FHE’F’ be one of these circles. Then 

since ABA’B' and FEE’F’ both touch 3 and 4, by the first Lemma A, B, #, F are 

coneychic and 

ZOAB—2zZOBA=2ZOFE—2ZOEF 

(angles between small circles being meant in every case), but 

Z OFE —Z OEF=2 OE'F’ —2OF'E’, 

since F, E, F’, E’ are concyclic, and 2O0AB—2ZOBA=ZO0CD—ZODC since A, B, C’, D’ 

are concyclic; therefore ZOE’F’ —z OF'E’=ZO0CD—2ZODC and therefore (by the second 

Lemma) the circle FEE’F’ (and not the other circle through £’, F’ touching Iv) touches 

the circle mr. In a similar manner the other circle having contact of one kind with 

3, tv, and of a different kind with 4, can be shown to touch IU. 
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The eight circles that can be drawn to touch three given circles consist of four 

circles and their inverses with respect to the circle cutting the given three orthogonally ; 

there are two species of tetrads of these eight circles which are touched by a fourth 

circle; a tetrad of one species consists of two circles and their inverses with respect 

to the orthogonal circle of the given three; a tetrad of the other consists of circles 

analogous to the inscribed and escribed circles of a plane triangle (the radical centre 

of the three given circles being supposed to lie within each of them). No distinctive 

names appear to be in use for the two species; in the present paper the former species 

will be called inverse tetrads, and the term Hart tetrad restricted to the latter species. 

The existence of a second circle touching 3, 4, mI and iv, thus indeed follows from 

that of the circle FEE’F’ as the circles 3 4 I IV form an inverse tetrad of the circles 

touching OAC, OBD and FEE’F’. A similar remark applies in the cases of tetrads 

(2)—(8). 
If A, B, C, D be concyclic instead of A, B, C’, D’ a figure for that case can be 

obtained by erasing the circle CD and redrawing it, of the same family touching 11 

and Iv but so that A, B, C, D are concyclic, C and D denoting points on OA and OB 

respectively, both to the right of O. In a similar manner, in the cases of the other 

fifteen tetrads, the case in which A, B, C, D are concyclic may be deduced from that 

in which A, B, C’, D’ are concyclic or wee versa. 

If without altering the figure the letters A and D’, B and C’, C and B, D and 

A’ be interchanged in the figure and proof, the figure and proof apply to tetrad (4). 

Fig. 5 shows the circles of tetrad (2); the proof is precisely similar. 

If in proof and figure A and A’, B and B’, C and C’, D and D’ are interchanged we 

establish tetrad (8). This particular interchange of letters might be objected to as a mode of 

deducing one tetrad from another in other cases on the ground that it changes a figure in 

which the order of points on AC is O, A, C, O', and on BD, O, B, D, O' into one in which 

the order on AC is O, C, A, O’, and on BD, O, D, B, O'. In this case however if the 

portions drawn of the circles AB and C’D’ did not extend to their point of intersection 

there would be nothing to show m which order the points actually occur, and therefore 

a proof valid for one order is valid for the other. 

Fig. 6 shows the circles of tetrad (5); the proof is similar except that A, B, H’, F’ 

are concyclic instead of A, B, EL, F. 

Fig. 7 shows the circles of tetrad (6); in this case also A, B, H’, F’ are concyclic 

instead of A, B, E, F. 

If in figure and proof we interchange A and D’, B and C’, C and B’, D and A’ 

we establish tetrad (7). 

Fig. 8 shows the circles of tetrad (8); it has not appeared practicable in this case 

to draw the circles so that both 1’ and 1 contain within them the three circles they 
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are respectively drawn to touch, as they would do if drawn in Fig. 1. In this figure 

also A, B, E’, F’ are concyclic. 

Fig. 9 shows the circles of tetrad (9). In this case A, B, EZ, F are concyclic. 

The existence of a second circle touching 1, 2, m1, IV follows from that of the circle 

EFF’E’ as the circles 1, 2, 111, Iv form a Hart tetrad of the circles touching OAC, OBD 

and EFF'E’. A similar remark applies in the cases of tetrads (10)—(16). 

If A and D’, B and C’, A’ and D, B’ and C be interchanged we establish tetrad (15). 

Fig. 10 shows the circles of tetrad (13). In this figure also A, B, H, F are concyclic. 

If in figure and proof A and D’, B and C’, A’ and D, B’ and C be interchanged 

we establish tetrad (11). 

Fig. 11 shows the circles of tetrad (10). In this figure also A, B, EZ, F are concyelic. 

If in figure and proof A and D’, B and C’, A’ and D, B’ and C be interchanged 

we establish tetrad (16). 

Fig. 12 shows the circles of tetrad (14). In this figure also A, B, #, F are concyclic. 

If in figure and proof A and D’, B and C’, A’ and D, B’ and C be interchanged 

we establish tetrad (12). 

The fundamental theorem stated in Section I. has only been established for one 

configuration of the four original circles, but by the principle of continuity must be true 

for all modifications of the figure. 

5. Tetrads (1)—(8) are analogous to inverse tetrads and each is in fact such a 

tetrad of circles touching four others as has been shown in Art. 4 If as a particular 

ease the circle CDC’D’ coincide with ABA’B’, C coinciding with A and D with B 

tetrads (1), (4), (5) and (8) merely consist of two circles taken twice, tetrads (2) and (3) 

become the same inverse tetrad of circles touching OA, OB and AB, and tetrads (6) 

and (7) become another inverse tetrad of circles touching OA, OB and AB. In the 

case of each of these last-mentioned four cases one of the two common tangent circles 
whose existence has been established, becomes the circle AB, and the other becomes 

the fourth circle that touches an imverse tetrad. 

Tetrads (9)—(16) are analogous to Hart tetrads and each is in fact such a tetrad 

of circles touching four others as has been shown in Art. 4. If as a particular case, 

the circle CDC’D’ coincide with ABA’B’, C coinciding with A and D with B, tetrads 

(9) and (13) become the same Hart tetrad of circles touching OA, OB and AB; so also 

do (10) and (14), (11) and (15), (12) and (16). In each case, one of the two common 

tangent circles whose existence has been established, becomes the circle AB, and the 

other becomes the Hart circle which touches that Hart tetrad. 

6. With the notation that has been adopted, the tetrads analogous to inverse tetrads 

are 1210, 121711, 1 2’1n, 341mrIv, 3411’ Iv, 3’ 4 rr Iv, and 3’ 4’ 1’ Iv’; and the 

ea = 

Se 

- 
— 
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tetrads analogous to Hart tetrads are 121Iv, 121n’Iv’, 1’2'urtv, 1’2’m'iv’, 3410, 

341, 3’4 111, and 34’ 11’. (The order of the tetrads here is not the same as 

in Section I.) Thus however the circles be situated when we know the Hart tetrads 

of the circles that touch OA, OB, AB, and the Hart tetrads of those that touch OA, 

OB, CD, and have identified a single tetrad of either kind of the sixteen above, the others 

of each kind can be easily identified. 

7. There also exist of course, among the circles touching AB, CD, Od, and AB, 

CD, OB respectively, sixteen tetrads of circles touched by two others besides AB and CD. 

CHAPTER II. 

CoNTACT RELATIONS AMONG THE CIRCLES TOUCHING TRIADS OF THE EIGHT 

THAT TOUCH THREE GIVEN CIRCLES. 

SECTION IV. 

THE CIRCLES TOUCHING TRIADS OF A Harr Group. 

8. In Fig. 13 let AB, BC, CA represent three circles intersecting on a sphere or 

in a plane, let A’'B'C’ be their other points of intersection which do not appear in 

the figure, and let 1, 2, 3, 4 be the Hart tetrad of circles touching AB, BC, CA, 

which are escribed and inscribed to the triangle ABC (4 has not been drawn). By 

Mr Jessop’s theorem or otherwise, two of the points P, P’, Q, Q’ are concyclic with A and 

B; which two are they? If the Hart circle change continuously, still touching 1 and 2, 

it can pass into the position AB without either P coinciding with P’ or Q with Q 

in any intermediate position, and when it does come into the position AB the point 

P’ coincides with A and Q’ with B. Therefore by the concluding paragraph of Art. 2, 

A, B, P, Q are the concyclic pomts. In the same way if the Hart circle change 

continuously, still touching 1 and 3, before it can pass into the position CA, P and P’ 

would coincide and interchange, viz. at the point of contact of BC with 1. Hence P, R, 

A, C are concyclic. If again the Hart circle change continuously, still touching 2 and 3, 

before it can come into the position BC both Q and Q’, R and R’ would interchange, 

so that B, C, Q, R are concyclic. This is one way of getting these results. Hence the 

four circles BC, CA, AB, PQR satisfy triply the condition of Section I. 

9. Let us find in which are of the Hart circle its point of contact with 4 is 

situated. Let 12 denote the direct and 1/2 or 12’ the transverse common tangent of 
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1 and 2, with a similar notation in the case of the other circles. By Casey’s relation 

we then have from the circle BC, 

sin }(12') sin} (34) +sin$ (14) sin} (23) =sin}(13’/) sin} (24), 

from CA, sin} (23') sin} (14) =sin$(24’) sin} (13) + sin} (1 2’) sin} (3 4), 

from AB, sin 4 (23’) sin (14) =sin $(13’) sin} (24) + sin $ (3 #) sin $ (1 2). 

Adding the first and second equations, subtracting the third and omitting terms common 

to each side, the resulting equation is 

sin }(1 4’) sin} (23) =sin$(24’) sin $(13) — sin} (3 4’) sin} (1 2), 

showing that the points of contact of 1, 2, 3, 4 with the Hart circle form-a quadrilateral 

of which the second and fourth lie on a diagonal; that is to say, the point of contact 

sought for lies between P and R’. 

10. Let us now apply the theorem of Chap. I. to obtain contact relations among 

the circles touching BC, CA, AB and the Hart circle of ABC (denoted respectively by 

a, b, c and d) in sets of three. Suppose the concavities of BC, CA, AB are towards 

A, B, C respectively; denote by abe the circle which has contact of the same kind 

with a, 6 and c¢ and is neither 1, 2, 3 nor 4; denote by abc’ the circle which has 

contact of the same kind with @ and b and of the opposite kind with ec’ and is neither 

1, 2, 3 nor 4, and adopt a corresponding notation in the case of other circles. Consider 

circles touching a, 0, ¢ and circles touching a, b, d; since A, B, P, @ are concyclic, of the 

abd circles abd and abd’ (i.e. the circle escribed to the triangle CP’Q’ opposite the 

angle C and the circle inscribed in the same triangle) and of the abe circles 3, 4 form 

an inverse tetrad. Hence writing down the abe circles as 1, 2, 3, 4, 

and abe, ab’c, abc’, abe, 

the first row forming a Hart group and each circle in the first row being the imverse 

of the one below it with respect to the circle cutting a, b and ¢ orthogonally, 

and the abd circles as Ie 2D: eS hy ieee 

and ab’d, a’bd, abd’, abd, 

which we do in accordance with the rule indicated in Art. 6, the first two circles of 

the second and fourth rows form an imverse tetrad, as also do the last two circles of 

these rows, and the first two circles in either form with the last two in the other a 

Hart tetrad. Each of the other twelve tetrads of Chapter I. either consists of two of 

the circles 1, 2, 3, 4 taken twice or is a tetrad of circles touching three circles, ie. either 

a, b, c, or a, b, d. Thus only four of the sixteen tetrads are new. The notation alone 

is sufficient to enable us to write down the two new tetrads of each kind. For an 

inverse tetrad consists of four circles of one family touching a, b, and there are only 

two such tetrads which are new, and a Hart tetrad consists of two circles touching 

a, b, c and belonging to the same family of circles touching a, b, and two circles touching 

a, b, d and belonging to the other family of circles touching a, b, and of these also 

only two are new. 
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So too considering the abe circles and the acd circles, writing down the former as 

ie A 2sreto, | a 

abe, ab'c, abc’, abe, 

and the latter as Le De eae 

acid, acd’, aed, acd, 

we see that the first and third circles of the second and fourth rows form an inverse 

tetrad as also do the second and fourth circles of the same rows, while the first and 

third in either with the second and fourth in the other form a Hart tetrad. 

And considering the abe circles and the bed circles, writing down the former as 

and the latter as [not mioe 4: 

bed’, be'd, b’ced, bed, 

we see that of the second and fourth rows the first and fourth circles form an inverse 

tetrad as also do the second and third, while the second and third of either with the 

first and fourth of the other form a Hart tetrad. 

Again if we consider the cda circles and the cdb circles, a consideration of the figure 

shows that if we write the former as 1, 2, 3, 4 

acd, acd’, a’cd, acd, 

and the latter as non “oe Fd, 

bed’, be'd, b’cd, bed, 

> 

of the second and fourth rows the first and second circles form an inverse tetrad, as 

also do the third and fourth, while the first and second of either with the third and 

fourth of the other form a Hart tetrad. 

Similarly for the eda circles and the abd circles, and for the abd circles and the bed 
circles. 

11. Hence:—If we take any Hart tetrad of circles touching three others and describe 

circles touching them in threes we get four sets of four circles [exclusive of the original 

three and of another which with them in every case forms a Hart tetrad of circles 

touching the Hart group with which we started], each set of course being a Hart tetrad; 

we can form twenty-four tetrads of circles each consisting of two out of one of the 

above sets and two out of another such that each tetrad is touched by two circles 

besides the two which they have been constructed to touch in common; twelve of these: 

tetrads are Hart tetrads and twelve are inverse. 

Wiig D-OVAR usw UE 14 
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12. All these tetrads can be shown in a table as follows. Write down the numbers 

1, 2, 3, 4 and underneath each the letters denoting the conjugate one of the other 

four touching each of the four triads. 

a er 3 + 

bed’ | bed | Wed | bed 

| ac’d | acd’ | acd | acd 

| abd | abd | abd’ | abd 

| abe | abc | abe’ abe | 

Consider any two horizontal rows of this table (other than the first); they represent 

four circles touching in common two of the four circles a, b, c, d; take out of one row 

two belonging to one family of circles that touch the common circles of a, yes GAP 

take out of the other row two belonging to one family (but either) of circles touching 

the same; these circles form a tetrad touched by two other circles besides two of 

the four a, b, c, d; if all are of one family it is an inverse tetrad, but if two are of 

one family and two of another it is a Hart tetrad. Each inverse tetrad consists of 

two circles and two vertically under them, each Hart tetrad of two circles and two not 

vertically over or under either of them. 

13. As a particular case, if we take the inscribed and escribed circles of a plane 

or spherical triangle and describe circles touching them in threes we get four sets of 

four circles [besides the sides of the original triangle and its Hart circle], each set of 

course being a Hart tetrad; we can form twenty-four tetrads of circles each consisting of 

two out of one of the above sets and two out of another such that each tetrad is 

touched by two circles besides the two which they have been constructed to touch in 

common; twelve of these tetrads are Hart tetrads and twelve are inverse. 

These tetrads can be found by the rule given in the preceding section from the 

annexed table, the notation being the same as in the previous one: 

a b c d 

1/937] tee. 2st || 198 
234 | 2'34 | 23’4 | 234’ 

1/384 | 134 | 134 | 134’ 

124 | 194 | 124 | 124’ 
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SECTION V. 

THE CIRCLES TOUCHING TRIADS OF A GROUP CONSISTING OF THREE MEMBERS OF A 

Harr Group AND THE CONJUGATE OR INVERSE OF THE FourRTH. 

14. Suppose as before that a, b, c, d are a Hart tetrad of circles touching 1, 2, 3 

(three circles in a plane or on a sphere) and that their inverses with respect to the 

circle cutting 1, 2, 3 orthogonally are denoted by A, B, C, D respectively; then the 

circles a, b, c, D like a, b, c, d satisfy triply the condition of Section I. (Fig. 14 repre- 

sents these circles, D being the circle XY’ZX’YZ’.) For B,C, Y, 7; C, A, Z, X’; 

A, B, X, Y' are respectively concyclic by Mr Jessop’s theorem. Let abc, abc’ denote the 

same circles as before, let abD, abD’ denote respectively the circles touching a, b and D 

with contact of the same kind, and touching a and b with contact of the same kind, 

but D with contact of the other kind, and which are neither 1, 2, 3 nor the abD circle 

which forms a Hart group with 1, 2, 3. Let this last circle, the incirele of C’X’Y, be 

denoted by [abD’]. 

Then considering circles touching a, b, ¢ and circles touching a, b, D, since A, B, 

X,Y’ are concyclic 1, 2 of the abe circles and 3, [abD’] of the abD circles form a Hart 

tetrad; and writing down the abe circles as 1, 2, 3, 4, 

and abe, ab’c, abc’, abc, 

and the abD circles as 1 PB |lez/2]I, 

and a’bD, ab'D, abD, abD’, 

we see that of the sixteen tetrads given by the theorem of Chapter I., and formed by 

taking the first and second or the third and fourth circles in either the first or second 

rows with the first and second or third and fourth in either the third or fourth rows, 

all are new except those in which 1 and 2 occur. Therefore we obtain five new 

inverse and four new Hart tetrads. Exclusive of those in which 3 occurs there are 

two new inverse and two new Hart tetrads. 

Similarly among circles touching a, b, ¢ and a, c, D respectively we obtain two new 

inverse and two Hart tetrads exclusive of those in which 2 occurs. We write the abe 

circles as aoe 2h 3, 4, 

and a’‘be, ab’c, abc’, abe, 

and the acD circles as le 7, oy laeDy|; 

and a’cD, acD, ac’D, acD. 

Similarly there are two new inverse and two new Hart tetrads (excluding those which 

contain 1) among circles touching a, b, c and circles touching b, c, D; the same number 

among circles touching a, b, D and circles touching a, c, D; the same number among 

circles touching a, b, D and circles touching b, c, D; and the same number among circles 

touching a, c, D and circles touching b, c, D. 

14—2 
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15. These tetrads are shown in the annexed table, very similar to that of Art. 12, 

and formed as follows :— 

[oa | | 

beD | b'eD | be'D | beD’ 
| a acD | ac'D | acD' 

| aD | ab'D| abD | abD' 
r | abe | ab’c | abe’ | abe 

Write down in a row the numbers 1, 2, 3, and underneath each the letters denoting 

the conjugate circles touching the various triads; in the fourth column write down the 

letters denoting the circle which forms a Hart tetrad with the other three in the same 

row. The rule for writing down the tetrads is the same as that given in Art. 12. 

There are twelve of each kind, There are other tetrads not given by this table in 

each of which however one at least of the circles 1, 2, 3 occurs. 

SECTION VI. 

THE CIRCLES TOUCHING TRIADS OF A GROUP CONSISTING OF THREE MEMBERS OF A 

Hart GROUP AND THE CONJUGATE OR INVERSE OF ONE OF THEM. 

16. Let Fig. 15 represent the circles 1, 2, 3; a, 0, c, B; the last four consisting 

of three members of a Hart tetrad and the inverse of one of them with respect to the 

circle cutting 1, 2, 3 orthogonally. The circles a, b, c, B satisfy singly the condition of 

Section L, A, C, Z, X’ being concyclic. Therefore considering the circles that touch a, b, ¢, 

and those that touch a, B, c; 1, 3 of the former and 2, [acB’] of the latter form a Hart 

tetrad ({[acB’] denotes the circle touching a, c, B, and forming a Hart tetrad with 1, 2, 3, 

i.e. the incircle of B’X’Z); therefore writing down the abe circles 

as i 2: 3; 4, 

and abc, ab’c, abc, abe, 

and the aBce circles as iF 2) 3, [aB'c], 

and aBe', aBc, aBe, aB'e, 

we see that of the sixteen tetrads given by the theorem of Chapter I and formed by 

taking the first and third or second and fourth circles in either the first or second rows 

with the first and third or second and fourth in the third or fourth rows, those in which 

1 and 3 do not occur appear to be new. But the circle [aB’c] is the same circle as 

[acD'] in Section V., since a, c, B and D form a Hart tetrad of circles touching 

1, 2, 3, and the fourth circle touching them is [aB’c] or [acD’]. Hence any tetrad in 

which 2 and [acB’] occur has been already considered, Thus there are only three new 

tetrads of each kind; or excluding those in which 1, 2, or 3 occurs there are two of 

each kind. 



CERTAIN SYSTEMS OF CIRCLES AND CONICS. 107 

17. Again, let us consider circles touching b, B, a, and circles touching b, B, c. We 

shall have in this case to adopt a notation to distinguish any circle touching three from the 

conjugate one (its inverse with respect to the circle cutting the three orthogonally). So let 

bBa’ for instance now denote the circle touching b, B, a which lies outside b and B but 

inside a, and similarly in other cases. Since CX’ and AZ are drawn across the arcual 

angle X’Y’C, so that C, X’, A and Z are concyclic, we see that 2 and abB’ (the incircle 

of CX’Y’) as being abB circles and 2 and beB’ (the incircle of AYZ) as being bcB 

circles form an inverse tetrad. So writing the abB circles 

as abB’, 2, ab’B, abB, 

and Bal, aiey,  ahtisifexe 

the former row being the inscribed and escribed circles of CX’Y’; and the bcB circles 

as beB’, 2," eB, “be'B; 

and 1 oy UGB: | (b'eBe 

the former row being the inscribed and escribed circles of AZY’; we obtain four new 

Hart tetrads, 2 occurring in all, and five new inverse tetrads in one of which 2 occurs. 

Omitting those in which 1, 2, or 3 occurs there are four new inverse tetrads but no 

new Hart. 

SECTION VIL. 

THE CIRCLES TOUCHING TRIADS OF AN INVERSE GROUP. 

18. Let Fig. 16 represent the circles 1, 2, 3; a, b, A, B. In this figure the relative 

positions of the circles 1, 2, 3 have been altered, as otherwise the figure seems somewhat 

puzzling. The circle CPO’ is b, DPD’ is B, CQC’ is a, and XQX’ is A; the former 

two being supposed concave below. These circles satisfy the condition of Section I. 

doubly, C, D, X, Y and also C, D’, X’, Y being concyeclic. 

Consider first circles that touch a, A, b and circles that touch a, A, B. Since across 

the angle CQX, CX and DY are drawn so that C, D, X, Y are concyclic, 1, 3 of the 

aAb circles and 1, 3 of the aAB circles form an inverse tetrad. Hence writing the 

aAb circles with the notation of the previous article 

as DAG TOT OrALO WOT tos (04ND GAL Ds 

and aA’b or 2, aAb, aAb, aAb’, 

the former row being the inscribed and escribed circles of the triangle CQN; and the 

aAB circles 
as aAB or 1, QA'B or’ 3, - aA aA, 

and acd Br or 2, @aAiB, aA'B’, aA’B, 

the former row being the inscribed and escribed circles of DQY; and noting that the 

second circles in the second and fourth lines are the same, we see that all the Hart tetrads 
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we obtain are merely Hart tetrads of circles that all touch a, A, 6 or that all touch 

a, A, B. We obtain four new inverse tetrads by taking the third and fourth circles 

in either the first or second row with the third and fourth circles in either the third 

or fourth row. 

19. Again, since across the angle CQY, CX’ and D’Y are drawn so that C, D’, X’, Y 

are concyclic, we see that 2, 3 of the aAb circles and 2, 3 of the aAB circles form an 

inverse tetrad. Hence writing the aAb circles 

as QeAlD Or) -2awaeALOm Orme. 1 AtoeemaeAlbe 

and a@Ab’ or 1, aAb, : aw Ab, aA’b, 

the former row being the inscribed and escribed circles of CQX’; and the aAB circles 

as @ AcBor 25 oPAGS OGEo une AL BD aeAIB. 

and a@aAB oor 1, aAB’, wAB’, aA'B, 

the former row being the inscribed and escribed circles of D’QY; we see that we obtain 

no new Hart tetrads but four new inverse tetrads by taking the third and fourth 

circles of either the first or second row with the third and fourth circles of the third 

or fourth row. 

20. From the two last articles we see that from the two squares 

| aA’b’, aA’d, aAB, a AB’, | 
; and 

a Ab, a Al, aA’B’, aA’B, 

we can obtain eight new inverse tetrads by taking either horizontal row of the first 

with either horizontal row of the second and either diagonal of the first with either 

diagonal of the second. 

Similarly by considering circles that touch b, B, a and circles that touch b, B, A it 

can be shown that from the two squares 

YBa, Ba, | DBA’, ObBA, 
and Nie ay 

bBa’, bBa, | OBA, BBA’, | 

we can obtain eight new inverse tetrads by taking either horizontal row of the first 

with either horizontal row of the second and either diagonal of the first with either 

diagonal of the second. 

21. Furthermore the four circles A, B, a, b cut the same circle orthogonally. Hence 

if any circle touches three of these circles its inverse with respect to the above 

circle also touches them. But any two circles and their inverses with respect to any 

circle form an inverse tetrad touched by four other circles. Therefore if we take two 

inverse circles (with respect to the circle cutting A, B, a, b orthogonally) touching any 

three of the four circles A, B, a, b and two inverse circles touching any other three of 

the four, they form an inverse tetrad touched by two other circles besides the two 

they have been constructed to touch in common. As before tetrads containing 1, 2 or 3 

are only the known inverse tetrads of circles touching three given circles. Exclusive 
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of these we get twenty-four inverse tetrads, being four for each combination in pairs 

of sets of three of the four circles A, B, a, b. For the sets Aab and ABa the tetrads 

are obtained by taking either vertical column of the first square in Art. 20 with either 

vertical column of the second square. And similarly for the sets Bab and ABb. 

Thus if we take any inverse tetrad of circles touching three given circles, to 

touch them in threes there can be drawn four sets of four circles (exclusive of the 

original three and of one which with them forms an inverse tetrad); by. taking two 

circles out of one set with two out of another we can form forty inverse tetrads, such 

that each tetrad is touched by two other circles besides the two they have been constructed 
to touch in common. 

SECTION VIII. 

GENERAL STATEMENT OF THE THEOREMS OF THIS CHAPTER. 

22. From the preceding articles we obtain the following result:—Eight circles can 

be described to touch three given circles; these eight circles form fifty-six triads; to 

touch any triad we can describe a set of four circles exclusive of the original three and 

of one which with them forms either a Hart tetrad or an inverse tetrad; each set is 

known to form a Hart tetrad or an inverse tetrad; by taking two out of one set and 

two out of another drawn to touch triads which have two members common, we can 

form in addition two hundred and eighty-eight Hart tetrads and seven hundred and 

twenty inverse tetrads, each touched by two circles besides the two they have been 

constructed to touch in common. 

23. These tetrads are classified in the following table : 

Number of tetrads 
among circles touching | 5 : groups of | Total number of new 

Type of a group of four circles different ees of ths | the stated | tetrads thus obtained. | 
touching three given circles. ErOUR: | type. 

Hart. | Inverse. Hart. Inverse. 

Number of | 

Hart group, abed ...........- 12 12 8 96 96 

group and the inverse of 
the fourth with respect to 
the circle cutting 1, 2, 3 

| 
Three circles of a Hart | 

} 

orthogonally, abcD ...... iz | 12 8 96 96 

Three circles of a Hart | 
tetrad and the inverse of | | 
either of them, abcB 2 6 48 96 288 

Inverse tetrad, ABab ... OF i= 40 | 6 0 240 
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CHAPTER III. 

EXTENSION TO CONES AND CONICS. 

SECTION IX. 

THE FUNDAMENTAL THEOREM. 

24. Every two antipodal circles being the intersection of the sphere with a right circular 

cone, when the four circles OA, OB, AB, CD in Fig. 1 are great circles by combining 

each of the tetrads in Art. 1 with the tetrad composed of their antipodals we get the 

theorem :—If four planes P, Q, X and Y passing through a common point are such that 

a right circular cone can be described through the intersections of P with X, P with Y, 

Q with X, and Q with Y, then there can be formed eight tetrads of right circular cones 

each consisting of two touching X, Y, P, and two touching X, Y, Q, such that each 

tetrad has two common tangent circular cones (besides the planes X, VY); four of these 

tetrads are analogous to Hart tetrads and four to inverse tetrads. A similar theorem 

is of course true of cones touching P, Q, X and P, Q, Y. 

The enunciation of the reciprocal theorem is obvious. 

25. Hence by projection, using the term “U-conic” to denote a conic having double 

contact with a given one, U:—If four straight lines P, Q, X, Y, are such that through the 

intersections of P with X, P with Y, Q with X, and Q with Y, there can be described 

a U-conic, then there can be formed eight tetrads of U-conics each consisting of two 

touching X, Y, P, and two touching X, Y, Q, such that each tetrad has two common 

tangent U-conics (besides the lines X, Y); four of these tetrads are analogous to Hart 

tetrads and four to inverse tetrads. A similar theorem is of course true of conics touching 

P, Q, and X, and P, Q, and Y. 
The enunciation of the reciprocal theorem is obvious. 

26. Let us next extend to cones and conics the fundamental theorem when the four 

circles OA, OB, AB, CD are small circles. Any two covertical right circular cones intersect 

in four lines two of which lie in each of two planes perpendicular to the plane containing 

the axes of the cones. Let us restrict to these planes the title “planes of intersection” 

of the cones. If P, Q, X be any three covertical circular cones there are four sets of 

planes of intersection of P and Q, Q and X, X and P which pass through a common 

line. If P, Q, X, Y be any four covertical circular cones, we can take in eight ways 

planes of intersection of P and X, Q and X, and of P and Y, Q and Y such that 

through the intersection of the first two and the intersection of the last two can be 

drawn a plane of intersection of P and Q; and if the cones be those obtained from the 

circles OA, OB, AB, CD of Fig. 1 and their antipodals, we can choose these planes of 
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intersection in one way such that in them le pairs of intersections of P and X, Q and X, 

P and Y, Q and Y respectively, possessing the property that four of them, being one of 

each pair, lie on a circular cone (and therefore the other four lie on another circular 

cone). We obtain the theorem that in such a case out of certain eight of the thirty-two 

circular cones touching X, Y, P, and certain eight of those touching X, Y, Q, there can 

be chosen sixteen tetrads each consisting of two touching X, Y, P, and two touching 

X, Y, Q, such that each tetrad has two common tangent circular cones (besides X, VY); 

eight of these tetrads are analogous to Hart tetrads and eight to inverse. A similar 

theorem of course holds for cones touching P, @, X, and P, Q, Y. 

The enunciation of the reciprocal theorem is obvious. 

27. By projection we obtain from the four right circular cones of the previous Art. 

four U-conics possessing a certain property. Any two U-conics meet in four points and 

two of their common chords pass through the intersection of their chords of contact 

with U; let us restrict to these two the title “chords of intersection” of the conics. If 

of the 

three conics in each of which there meet a chord of intersection of P and Q, a chord 

of intersection of Q@ and X, and a chord of intersection of XY and P. (The chords of 

intersection are the six lines joining the radical centres.) If P, Q, XY, Y be any four U-conics 

” P, Q, X be any three U-conics there are four points called “radical centres 

we can take in eight ways chords of intersection of P and X, Q and X, and of P and Y, 

Q and Y, such that through the intersection of the first two and the intersection of the 

last two there passes a chord of intersection of P and Q, and we can in the case in point 

choose these chords of intersection in one way such that of the four pairs of intersections of 

P and X, P and Y, Q and X, Q and Y, which lie on them, four points (being one of 

each pair) le on a U-conic (and therefore the other four on another U-conic). We obtain 

the theorem that when this condition holds, out of certain eight of the thirty-two U-conies 

touching X, Y, P, and certain eight of those touching X, Y, Q, there can be formed sixteen 

tetrads each consisting of two touching X, Y, P, and two touching X, Y, Q, such that each 

tetrad has two common tangent U-conics (besides X, VY); eight of these tetrads are 

analogous to Hart tetrads and eight to inverse. A similar theorem of course holds for 

U-conics touching P, Q, X, and P, Q, Y. 

The enunciation of the reciprocal theorem is obvious. 

28. If from any radical centre of three U-conics pairs of tangents be drawn to them, 

through the six poimts of contact a U-conic can be drawn. This conic has been called 

by Casey (among others?) a conic “orthogonal” to the given three. (See “Memoir on 

Bicircular Quartics,” Chap. v., Transactions, Royal Irish Academy, Vol. xxtv.) 

As there are four radical centres, there are four orthogonal conics. The thirty-two 

U-conics that touch the three conics consist of sixteen pairs, the members of each pair 
and some one of the orthogonal conics being the projections of two small circles and 
a circle with respect to which the one is the inverse of the other. Four pairs are so 

related to each orthogonal conic. There are thus four sets each consisting of four pairs. 
The eight conics touching X, Y, P that enter into the tetrads of the theorem stated in 

Vou. XVI. Parr II. 15 
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the last Art. are the set corresponding to the particular orthogonal conic of X, Y, P derived 

from the radical centre which is the intersection of the particular chords of intersection 

which satisfy the condition of the theorem. A similar statement holds for the conics 

touching X, Y, Q. 

A statement of analogous character holds for the tetrads of cones in Art. 26. 

SECTION X. 

An EXTENSION OF THE THEOREMS OF Sections IV., V., IN A PARTICULAR CASZ. 

29. Suppose the three original circles of Chap. Il. are great circles; A and a, 

B and b, C and e¢, D and d are then antipodals, Let us see how many tetrads of each 

kind we obtain among two sets of circles, the first touching one of each of the pairs 

A and a, B and b, C and ¢, and the second touching one of each of the pairs A and a, 

B and b, D and d. From each of the following pairs of triads there can be obtained, as 

in Sections IV., V., two tetrads of each kind, each consisting of two circles touching one 

triad of the pair and two touching the other triad, viz. :— 

ABC and ABD, 

ABC and ABad, 

ABec and ABD, 

ABe and Akbd, 

AbC and AbD, 

AbC and Abd, 

Abe and AbD, 

Abe and Abd, 

and as many more their antipodals by interchanging A and a, B and b, C and c, D and 

d; there are thus thirty-two Hart tetrads and thirty-two inverse. 

30. By joming the circles in the last article to the centre of the sphere by night 

circular cones we obtain the following result:—If four circular cones be described touching 

three given planes, to touch any three of these we can describe sixteen other circular cones 

besides the three original planes and four cones each of which touches all the given four; 

we thus get four sets of sixteen cones; besides the tetrads of cones having a common 

tangent cone which we can form by taking four cones out of the same set, we can form 

thirty-two tetrads by taking two cones out of any one set and two out of any other, 

such that each tetrad is touched by two cones besides the two they have been constructed 

to touch in common; sixteen are analogous to Hart tetrads and sixteen to inverse 

tetrads; and as the four sets can be combined in six ways we obtain ninety-six tetrads 

of each kind. 

31. Hence by projection and reciprocation:—If four U-conics be described touching 

three given lines or passing through three given points, to touch any three of these we 

can describe sixteen other U-conics (exclusive of the original lines or points and of four 
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conics each of which touches all the given four); we thus obtain four sets of sixteen U-conies ; 

besides the tetrads of conics touched by another U-conic which we can form by taking 

four conics out of the same set, we can form thirty-two tetrads by taking two out of 

any one set with two out of any other, such that each tetrad is touched by two other 

U-conics besides the two they have been constructed to touch in common; sixteen are 

analogous to Hart tetrads and sixteen to inverse tetrads; and as the four sets can be 

combined in six ways we obtain ninety-six tetrads of each kind. 

SECTION XI. 

AN EXTENSION OF THE GENERAL THEOREM OF CHAPTER II. 

32. Supposing the three original circles of Chap. II. to be small circles the following 

result may be obtained from the general theorem stated in Art. 22, by combining anti- 

podal circles in pairs and then projecting. Take three U-conics, U,, U., U;, and consider 

the eight U-conics touching them which correspond to any definite one of the four ortho- 

gonal conics. To touch any three of these there can be described thirty-two U-conics; these 

consist of four sets of eight (corresponding to the four orthogonal conics of the chosen 

three); in one set of eight there occur the origimal three conics and one which with them 

forms either a Hart or inverse tetrad; consider the remaining four of this set of eight. 

We have four such conics touching every triad of the eight touching U,, U,, U;. It is 

already known that every such set of four forms either a Hart or an inverse tetrad; we 

can however obtain in addition two hundred and eighty-eight Hart tetrads and seven 

hundred and twenty inverse, each consisting of two conics touching one triad of the eight, 

and two touching another triad, the two triads having two members common. 

SECTION XII. 

A FURTHER EXTENSION OF THE GENERAL THEOREM OF CHAPTER II. 

33. The results of Chap. II. can be further extended to circular cones and to conics 

having double contact with a given one, but the results as will be seen are too complicated 

and indefinite to be of much interest. 

Any two circles of one family touching two given circles and any two of the other 

satisfy the condition of Art. 1. 

Let us consider the eight circles touching any three circles 1, 2, 3, and the eight 

touching 1, 2, and any fourth circle 4; let P, Q be any two circles of the former 

eight and X, Y be any two of the latter eight, such that, of the circles touching 1, 2, P, Q 

belong to one family and X, Y to the other. Among the circles touching P, Q, X, and the 

circles touching P, Q, Y, we obtain by Chap. I. sixteen tetrads touched by two circles besides 

P and Q. But 1, 2, as touching P, Q, X, and 1, 2, as touching P, Q, Y, will be found to 

constitute one of these tetrads. No tetrad into which 1 and 2 enter is new, being merely 

15—2 
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a Hart or inverse tetrad touching either P, Q, X, or P, Q, Y. We thus obtain four 

new Hart tetrads and five new inverse. We obtain as many from the circles touching 

X, Y, P, and the circles touching X, Y, Q. And we can so choose P, Q, X, Y in seventy- 

two ways. 

Again, if of the circles touching 1, 2, P and X belong to one family and Q and Y 

to the other, we obtain four new Hart tetrads and five new inverse from circles touching 

P, X, Q, and circles touching P, X, Y, and as many more from circles touching Q, Y, P 

and circles touching Q, Y, X. And we can choose P, Q, X, Y m two hundred and fifty- 

six ways. 

Thus we obtain in all (328 x 8=) 2624 Hart tetrads and (328 x 10 =) 3280 inverse 

by taking all combinations of two circles touching 1, 2, 3 and two touching 1, 2, 4. 

34. Again, if P, Q, Rbe three circles touching 1, 2, 3, and X a circle touching 1, 2, 4, 

such that, of the circles touching 1, 2, P, Q belong to one family and R, X to the other, 

we obtain, by Chap. I, sixteen tetrads each consisting of two circles touching P, Q, R, 

and two touching P, Q, X. 

If P, Q, R be three members of a Hart tetrad touchmg 1, 2, 3, then 1, 2, 3 are 

members of a Hart tetrad touching P, Q, R, and excluding as before of the sixteen tetrads 

those in which 1, 2, or 3 occurs, there remain three new Hart tetrads and three new inverse, 

And there remain four new Hart tetrads and five mverse from among the circles touching 

P, R, X and the circles touching Q, R, X. P, Q, R, X can be so chosen in one hundred 

and twenty-eight ways. 

If on the other hand P, Q, R be three members of an myerse tetrad of circles 

touching 1, 2, 3, then 1, 2, 3 are members of an inverse tetrad touching P, Q, R, 

and excluding those of the sixteen tetrads in which 1, 2, or 38 occurs, we obtain two 

Hart tetrads and four inverse from the circles touching P, Q, R and the circles touching 

P, Q, X; and four Hart and five inverse tetrads from the circles touching P, R, X and the 

circles touching Q, R, X. And we can so choose P, Q, R, X in thirty-two ways. 

Thus from all combinations of three circles touching 1, 2, 3 and one touching 1, 2, 4, 

we obtain (7 x 128+ 6 x 32=)1088 Hart tetrads and (8 x 12849 x 32 =) 1312 inverse. 

35. Now let us take on a sphere any three circles 1, 2, 3, and their antipodals 

which we will call 1, u, ur We can describe sixty-four circles antipodal in pairs, touching 

one of each of the pairs 1 and 1, 2 and u, 3 and m1. Let us take four of these sixty- 

four circles such that none is the antipodal of any other and see how many Hart and 

inverse tetrads we obtain among circles touching two different triads of these four. If 

the four circles all touch 1, 2, 3 we obtain [Art. 22] 288 Hart tetrads and 720 inverse; 

as many if all touch 1, 1, m1, or if all touch 1, 2, 11, or if all touch I, Uy, 3. Thus we 

obtain 1152 Hart tetrads and 2880 inverse and as many more, their antipodals. 

By taking different fours, of which three touch 1, 2, 3 and the fourth touches 

I, 2, 3, we obtain, as shown in Art. 34, 1088 Hart tetrads and 1312 inverse among the 
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circles touching different triads of the four, and by combining the groups 1 2 3, 1 2 3, 
1m 8, 1 2 wm, 1 Ww MI, I 2 WW, 1 © 3, I 1 WW in pairs which have two circles 

common, we obtain (1088 x 12=) 13056 Hart tetrads and (1312 x 12 =) 15744 inverse, with 

as many more their antipodals. 

And by taking different fours, of which two touch 1, 2, 3 and two touch 1, 2, 3, 

we obtain, as shown in Art, 33, 2624 Hart tetrads and 3280 inverse among circles touching 

different triads of the four, and by combining the different groups in pairs having two 

members common, we obtain (2624 x 6 =) 15744 Hart tetrads and (3280 x 6=)19680 inverse 

tetrads, and as many more their antipodals. 

36. By joiming the circles of the last Art. to the centre by right circular cones and 

projecting we obtain the following results :— 

Take three U-conics, U,, U., U, and consider the thirty-two U-conics that touch them. 

By taking various fours of these corresponding to the same indefinite one of the orthogonal 

conics, we obtain among the U-conics touching one triad of the four and the U-conics 

touching another triad of the four and belonging to that set of eight which includes the 

three original conics U,, U,, U;, 1152 tetrads analogous to Hart tetrads and 2880 analogous 

to inverse. (This is merely the theorem of Section XI. repeated, all the orthogonal conics 

beg now considered instead of some definite one.) 

By taking various fours consisting of three that correspond to an indefinite one 

of the orthogonal conics and one that corresponds to another indefinite one, we obtain 

among the U-conics touching one triad and the U-conics touching another triad and 

belonging to that set of eight which includes two or more of the original conics 

U,, U,, Us, 13056 tetrads analogous to Hart tetrads and 15744 analogous to inverse. 

And by taking various fours consisting of two that correspond to an indefinite one 

of the orthogonal conics and two that correspond to another indefinite one, we obtain 

among the U-conics touching one triad of the four and the U-conics touching another 

triad and belonging to that set of eight which includes two or more of the original conics 

U,, U;, Uz, 15744 tetrads analogous to Hart tetrads and 19680 analogous to inverse. 

SECTION XIII. 

A METHOD OF FURTHER EXTENSION. 

37. By polarizing Hart and inverse tetrads of circles on a sphere Mr A. Larmor has 

obtained new contact relations among systems of circles and has extended the results to 

cones and conics (“On the contacts of Systems of Circles,” Proc. Lond. Math. Soc. Vol. xxit.). 

The results of Chaps. I. and II. might also be extended in this manner. Apparently however 

the process would involve a careful examination of the nature of the contact of many of 

the circles considered, and would not lead to results which could be expressed simply. 



V. Change of the Independent Variable in a Differential Coefficient. 

By E. G. Gattop, M.A. 

Let y and w be functions of an independent variable z The problem to be considered 

is that of expressing i in terms of = a and = —- as ar 2 

The problem is equivalent to that of the reversion of series or, what is the same 

thing, the expansion of one function in powers of another. A solution, though in a very 

undeveloped form, is therefore afforded by Burmann’s theorem, as usually given in treatises 

on the Differential Calculus. If we put uw=/f(z) and y=¢(z2), the solution may be 

expressed in the form 

du A EE ee (€) (E — a)" I] 

dy” [dé (ib (E)— $ (@)}") Je=2’ 

where after the differentiations have been effected £ is put equal to 2. 

More developed solutions have been given in four different forms by Sylvester*, 

Schliémilch+, Hess} and Leudesdorf§. Sylvester’s result is expressed in a fully expanded 

form with the coefficient of each term evaluated. The proof which he gives is inductive, 

but the result can be obtained directly from a formula due to Jacobi||. Herr Schlomilch’s 

result may be regarded as a development of Burmann’s form; though not well adapted 

for the purpose, it can be made to produce Sylvester's expanded formula. (See § 12.) 

Herr Hess has used the same equations as Schliémilch, and obtained a result in the form 

of an elegant determinant, the elements of which are calculated by a simple rule. Mr 

Leudesdorf’s form is very important in connexion with reciprocants, being purely symbolical 

and expressed in terms of an operator which in the particular case when u=«# reduces 

to V, the annihilator of pure reciprocants. 

In 1855 Sylvester communicated without proof to the Royal Society (Proceedings) a 

fully expanded formula for the change of any number of independent variables, and the 

results were reprinted with corrections, but again without proof, in the Quarterly Journal 

* Phil. Mag., Vol. vit. 1854, p. 535. § Proc. Lond. Math. Soc., Vols. xy. p. 197 and p. 329 

+ Compendium der hiheren Analysis, Bd. um. pp. 16—20, and xvim. p. 235. 

and Sitzungsberichte der Kinigl. sdchsischen Gesellschaft || Crelle’s Journal, v1. 1830, p. 257. ‘‘De resolutione 

der Wissenschaften zu Leipzig, 1857. aequationum per series infinitas.” 

+ Zeitschr. f. Mathem. u. Phys., Thi. xvu. p. 1. 
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of Mathematics, Vol. 1, 1857. Treating the question as the reversion of series Cayley* 

deduced Sylvester's results from the theorem of Jacobi already mentioned. 

.This communication is restricted to the case of one independent variable, though it 

is hoped that it may be possible to extend the results to two or more variables. An 

Raat c du 
expression is obtaimed for 5—, 

dy" 

and may be deduced from it. (See § 12.) At the same time it leads at once to Sylvester's 

which is closely allied in form to that given by Schlémilch, 

formula, and may indeed be regarded as a concise expression for it; whilst it also leads 

naturally to Mr Leudesdorf’s symbolical result and introduces the operator V in a form 

convenient for transformation. The formula was originally obtained by induction, and an 

inductive proof is given in § 5; but a better insight into the nature of the solution 

is obtained by following Cayley’s method, and establishing the formula directly, as 

in § 6. 

The following notation is used throughout the paper. The differential coefficients 

dy dy du du 
de? dg? are denoted by 4%, Yo ---, a0 5 nee bY tastes =; and 2 stands for 

aE The result of suppressing all terms of an expression in which y occurs explicitly is 

indicated by a zero suffix; thus [D"y"], and [D"(uy’)], represent the result of expressing 

Dry” and D"(wy") m terms of y, y%, Yyo---, and then suppressing the terms in which y 

occurs explicitly. Similarly Ay” and A” (wy”) represent the result of suppressing all terms 

which contain y and y, in Dy” and D”(uy"), whilst A,” (wy”) is the result of suppressing 

the terms which contain y, y%,, w and uw, in D” (uy’). 

The functions thus defined play an important part in the theory of the change of 
the mdependent variable, for not only do they enable the results to be expressed in a 
compact form but they appear as coefficients in all the operators connected with ordinary 
reciprocants. In fact, the general multilinear operator investigated by Major MacMahon+, 
which includes as particular cases the operators of the theories of reciprocants and 
invariants, has for its coefficients numerical multiples of D"y” if y, 7, yo, ... are replaced 

by a, b, 2!c, 3!d,.... There is distinct advantage in expressing the coefficients in this 
way, especially in the more complicated operators, as the transformations of the operators 
are offen considerably simplified thereby. See $$ 9, 10. 

: 5‘ d aie : 
§ 1. Consider the function D”(w,7"), where =o. . The coetticients of the terms in 

Lagrange’s theorem on expansions are of this type. The expanded form may be easily 

obtained by direct differentiation, but it is still simpler to proceed as follows. It is 

obvious by Taylor's Theorem that, if 
2 

Z a a a 
(tue tu 5 + 1) (y+ ine + ys oT + Ys 317 > 

* **Note sur une formule pour la réversion des séries,”’ second note. Collected Works, Vol. 1v. 229 and 234. 

Crelle’s Journal, tom. ti. 1856, and “ Deuxiéme note &e.”’, + Proc. Lond. Math. Soc. Vol. xvm. 

Crelle, tom. Iv. 1857. Sylvester’s results are proved in the 
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is expanded in powers of z, the coefficient of 2” will be 

D" (wy") 

ole 

Hence by the multinomial theorem 

D (wy) _ s r! Un a (Bry? (ya? p= 2 prac Go ) (#) eee enc are i (1), 

where summation extends to all terms of degree one in ws, of degree r in y’s and of 

weight n+1 in ws and y’s together; on the understanding that weight r is assigned 

to u, and y,. Zero values are admissible for a, b, c, ... but not for h. The same relation 

may be written 

Duy’) _»s n! Ne =) . Spe ome (a A ee (2). 

Putting «,=1, we have also 

D"y" n! On b Yo c 

WY ost yt (#) (2) att Se eee (3), 

where summation extends to all terms of degree 7 and weight n. 

The expanded forms for [D" (u,y")}, [D°y"} will be obtained by omitting terms con- 

taining y explicitly, whilst to get A"(w,y") and A”(y’) all terms containing y or y% must 

be suppressed. 

To obtain A,” (w4y") we must suppress all terms containing y, y or %. 

Since [D"(2,")]) 1s equal to the coefficient of 2” in 

2 7 

(+ Uz+...) (ne+y. =r x ; 

it is obvious that [D"(w,7")], vanishes when n is less than r. Similarly A” (w,y") vanishes 

when v is less than 2r. 

The general result of this section may be stated 

(u +2 +05; + )(yt net nest 

§ 2. To obtain an expression for the differential coefficient of A”(w,7") write 

2 

U=u%+ Maz + Us 5 + nos 

2 a 

and regard z as independent of z Then by (4) 

5S = Muay UF? i.e). a (5). 
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Differentiate with respect to «; then 

ad s . a ; 2 Fg 
> =I dy O” (Hy NS Ne (u.+ Use + Wes + ) +rU yr (ms ty9 - +) f 

Differentiate (5) with respect to z; then 

Ae = 2 \ 

Ga A” my") = Y" (ut et Maite ) Tate UY (met m5 it Yen, mit vs) 

Hence by subtraction 

ae = = A” (my i= ee Goi (my" =—1YoZ Of) i ry,2 = A"(uy'—). 

Whence, comparing coefficients of 2”, we have 

d A” (oy) _ An (1% ye ‘ A? yf) 

dx n! n! —TYs (n—1)! ? 

AnH (wy) _ d A» (ts A” (w7/’) AXE) 
= as 7 + NY =) ie Cece cere cece tere eee seeeeseseee (6). or 

Putting w=, we have 
Atm r d A™% A yr 

ee ee G =e oR tctr ase tiotensebacktan comedee (7). 

Again, (6) may be written 

N+1 4/7 n+1 r Nor n r N—-1y;7—-1 n—-1 ar 
uy anty i (my ye a [ aAty es A; hy | + ny, E Anty 2 Ao" (wy >| } 

r! r! da: r! r! ES han! 

and therefore by (7) 

AM (uy) _ d Am (my") 
r! Rh) ple 

A n—-1 (wy) 

Bak + NYs =i es sce ccccencversccesecs (8). +4 

In the same way as (6) was proved it may be shown that 

[De Coy _ & (D* Quy), , [DY Cay )] 
> ate ae aes, + Y2 = (Snes olelajatatajasatatalatulstalatatstalticiatstra (9) 

[D1 y"], + ad [Dry'h ,, (Uae El, 

ro a SReiniete ee 

§ 3. The partial differential coefficients of D"(my") with respect to y, %, Ys, ... are 

easily obtained from the equation 

~ and 

gr 2 ‘ 2 r 

xo De (4 7") = (utme+ Us at Zs) (y + 2+ Yr art =) ; 

Differentiate with respect to y,; then 

3 yD ua)= = 7 (Y + IZ + oe) (th + ez + «.) 

z= D" (w, afm) 

Vou. XVI. Part II. 16 
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Comparing coefficients of 2", we have 

e D» (my) he Drs (my) 

ay, ni si(n—s)! ” 

or - ID ROP NSO) AOE CR DP) aegseetosetacoseqncananne seen: da); 
& 

where (n); = G=aE 

The result is of course zero if s>n. 

Similarly = LD Gif) = (1) DW Ree hes cee aces cade eee saree (12). 
8 

Particular cases of these results are obtained by replacing D by A or A,, or by putting 

Uj — eis 

= (NO EOP 79 (QD) NES CG Jaco ncnansactossconaaneoecongadocacce: (15), 
Ys 

= [NEP (@) en NES HEU conpon ansbHonce aopdoesonoRboSnducocouccr (14), 
Us 

a 
ay, INSP (DB) VN (AG? 2) pace ase aadBan spoon scsesstoadodeso a5: (15), 
Ys 

0 
aan IN (THO) SGD en AOL ocd sontodueascoassobuaobeassovonoodscc (16), 

& 

= ; A”y" = ()) pC ae 2 Ba po cod SHOR EIG COOPER OSCR DOBOENE 5: Son (17). 

In particular 

ra) i as ra) [NaROP 

ae (Yn) = ay, 2 

= (n + i) Anettig, 

= (WE DW) aige ss seccest RE. ee (18). 

§ 4. Various expansions for the functions may be obtained in powers of y, or of y 

and %, or of y, y, and y%, &c. The method will be sufficiently evident from the following 

example, which will be required later in § 12. We will prove that 

[Dy"]o pe au r Ary n—2 A?- Naa es 

=| + ny, ——~_— C= +(n)oy je ea t Ow = 3 $b. thay prietas eeeeece (19). 
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It is evident by Taylor's Theorem that the coefficient of y,* is equal to the result of 

suppressing terms containing 4, in 

eS y Meal 

1\Oy,/ or! 

a aa Sots eee (yee oh Ee EL that is, in gr dn 1)...(n—s+1) = 

by repeated applications of 11; the coefficient is therefore 

A Any" 

(x); ———- veo 

§ 5. Equations (6) and (7) may be used for verifying the formule for the change of 

the independent variable. 

It is easy to verify by direct differentiation for small values of n that 

dmx A” Aty il [Nap il Any8 

dy" ye yh yn OQ! ~ yes 3! + 

Lt il " Anrv-1 ” on il n—-1 A? n—1 

ist ch ene a 2 ar yer r! yen @-D! Gian aiatdisfale/ain/alatelelala cjainre\e's 

The result for general values of n follows at once by induction with the help of (7). 

In the same way it may be verified by direct differentiation that for small values 

of n 

d™u i: 1| 1 A™ (u 2) 

Un — a A™ (my) + re ee 
dy", n 

a| Am An (uy) (- Dy Atr-i (% JO 

Ae ae 3! nt yn 7! 

(- HD) A222 (my") ’ 

SF fom Reece) S eee eee eee eee eee ee (21) > 

and as before the result for general values of n is proved by induction with the help of (6). 

If now the functions A”47?, Av+*y3,... A" (wy), A" (47°), ... are expanded by formule 

(3) and (2), we obtain the milly-developed forms given by Sylvester (Phil. Mag. Vol. vut., 

1854). 

From (20) we have 

dx (-1)' (n+r—-1)! Ys\? (Ys\° aan ge ar (BY (#) (Oe cee ener (22), 

where r=a+b+c+..., and the summation extends to all sets of a, b, c,... which satisfy 

the equation a+ 2b4+3c+...=n—-1. 

16—2 
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From (21) 

hee een = Dee _f a (2) sia (23), 
dy ~ y" a! bic!... (k—1)!\2!/ \3! 

where r=a+b+c+..., and summation extends to all sets of h, a, b,... which satisfy the 

equation h+a+2b+3c+...=n, zero values of h being excluded. 

Another form may be given to equation (21). Expand A" (m.y¥), A" (w4.7’), ... by 

Leibnitz’ theorem for the differentiation of a product. We then find 

cae = = =U _ de 
dy =X." — +X.” Be epee osc oo ad (24), 

where 
: 

i we 1 An x 

2 ee a peek ie Samp e 

1 = oye il pases 

ys (n+ 2) tet Se aa Gs ae 

rye Ieee 5 ; A222 AS raitane as 

eo (2n —r — 1),, ——— Gea Srnerend C5) 

Obviously 

nae 
1 = dy” . 

Symbolically we may write 

where X,” is expressed as in (20). 

§ 6. A direct proof of the formule of the previous section can be obtained from the 

theorem of Jacobi already mentioned. As the proof of the theorem is very simple in the 

case of one independent variable, it is reproduced here for the sake of completeness. 

Let 7 be a quantity given in terms of & by the equation 

n= & + a,&+ a,b + 

Denote the right-hand of this equation by X, and put Y =a,&(1+P). 

Let F(&) be any function of & expansible in powers of £, which it is required to 

expand in powers of ». Suppose the result to be 

F(E) =), + dyn + by? + 

Now, if f(&) is any function containing & only in the form of powers, positive or 

negative, 

[er®]_=o 
where [ ];> denotes the coefficient of €~* in the development of the function enclosed in 

brackets. 
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Hence, if m be any quantity except — 1, 

‘m aX 1 d ine! = 

[ee least ae" |= ° 
where it is understood that YX” is developed in the form 

Xm = (aé)m [i+mp+™ C=) D Pah. i) 

and P, P?,... are expanded in powers of &. 

, 1 dX 
Again, E Ele Pi =|5 dé log x], & 

1 
= lz log {aE (1 +P))| = eta dé log (1 +P)| = 

since log (1+ P) contains only powers of &. 

Now the equation F(E)=b, + 0X + b,.X? + 

is an identity. Differentiate and then divide by X”. Therefore 

ne ee 
xX = dé iT St 

and hence, by the preceding work, 

+... +P + (n+ 1) ba + (n+ 2) DnioX + * ; 

nbn = E 1 nite ahd s te EAN EN 3s mee (26). 

To apply this result, let y=$(z), w=f(«). 

Let « be increased by &, and let the consequent increments in y and wu be » and », 

where 

ze a Sioa a : N=E+ Yo t Yogi t---=X, Say ; 

3 

ptt 
Then when v is developed in powers of , the coefficient of »” is by (26) 

and V=MHEt UL 

1d 
XP dE |e" 

But the coefficient of »” is aa Therefore 

1 d™u eee 

ae ates les: 

U = + WET e+ Po 

Now write 

Fay g tet 
so that X=nF+V. 
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Therefore Ft=(n—1)t| Uwern(14+ 4) "| 
_(n—1)! 

yy" 
= (v- n aE +(n+ 1), aE —(n+2)s vet Ne 

Hence, expanding UY, UY?, UY*,... by (5) of § 2, we have Fp = coticient of &> in 

(n—1)! i= OY ei aa gay ee +1)! 5 — a (n+ 2)! s AS (my) pee 

yi" yea 21 yn = Te: 8! 

n n at 2 n+2 

and therefore - 2 = se -- ak = Ak ae mS ato) = we See 

y n Yn :. Hn -- n 3! 

This is the formula (21), and putting «=a we obtain (20). 

§ 7. Mr Leudesdorf’s symbolical forms for these results may now be easily deduced. 

First consider the form (20) for ae We have 

Amy = (r+ 1) A" (ys) 

=(r +1) A (yyy) 

= (r +1) [(m), A8(yyn). A™ Fy" + (m), A* Cyn) AMY 

+(m); A® (yy). A™>y" + ...] 

= = al) 0 ) 
ES (0) za ey a SO a, (yy) aT :,| Amy"

 

by (17) of § 3. Therefore 

Arian) r+1 iL jany 

aly gates 

r r! 

r) P rs) 
where V= A (yy) ae A (YI a FA (YY) aH vee nsec eee ee rece teen ees (27), 

OY: Cys 

and therefore V is the annihilator of pure reciprocants, that is, 

é Re 
V=3y2 ae + 107243 <— aa 

See Mr Leudesdorf’s paper, Proc. Lond. Math. Soc., Vol. XviL, p. 199. 

The expression for V may also be written 

a, V=k av ag toy mie “4 sveas locate eee eee (28). 
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Hence also 
AR,» 1 - AM 

(r+1)! ~ p(r—1) “(r—1)! 

=+ Vr Nigra, 

1 
= ry Vey. Ym—r-+1 ee ee es ( 29). 

The formula (20) may now be written 

Ga. . il ee eee Len 
dy" et yet Yn yr? 1! ys 2! ye 3! 

BS 

= ne "Yn Sepco AREA SRE PCEEEGS och Settee ce Ee (30). 
1 

This is Mr Leudesdorf’s result (Proc. Lond. Math. Soc., xvit, p. 208). As he shows in 

a second paper in the same volume of the Proceedings, p. 333, this result is fundamental 

in the theory of pure reciprocants. For, if f(y, 4, ...) is any homogeneous isobaric 

function of degree 7 and weight w, it is easily deduced that 

Wiss Bese) (a) a if (oh, Maps): 

§ 8. The formula (21) for at may be transformed in a similar manner. We have 

i a - eS h aa A" (my) + a Boe = = Sa, ¥) 

= u,X,"+ ante Ay’ wy - at — AY (my) +: = eel ee ive Agee ae y) . 

where AGS oe, = a as 

and A,” (w%y”) denotes the result of suppressing y, y, and wm in D” (wy). 

Now Aj"? (uy) =A," @ny.y") 

=(m a 1),A3 (my). A™*y" + (m +1), Agi (qy). A™ yy" +... 

= (m).A,° (uy). A" y” + (m), Ags (Hy). A" y" +... 

+ (m),A,° (ay) . A™y” + (m), Ao! (yy). A™ Sy" + ..., 

since (m), +(m),. = (m+ 1),. 

Now by (16) of § 3 the first line of the last expression may be written 

0 
E Cana + Ait (uy) ms + AS (my) Ee | Ao” (uay") = Wy. Ao” my’), 

3 ‘4 5 

where W, denotes the operator in square brackets. 
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The ond line is equal to 

7 [(m),A° (ay) A" (yA y1) + (Mm) Ack (uy) A" (YT) + J 

=r Ag” (ty 4791) 

=r Am (yp. uy") 

=r [(m),A%(yn Ao” (My) + (Mm), A4(y 1) Ao” (HY) + «+ ] 

3 a ™ Tr = [acu ae A*(y¥%h) ae Z| Ay (my’) 

= Vay? anys): 

See equation (15) § 3. 

Now write W=W,+V, so that W is the operator considered by Mr Leudesdorf (Proc. 

Lond. Math. Soc., Vol. xvut, p. 239), allowance being made for difference of notation. 

In order to make the notation agree with that used in the paper just quoted we 

should have to write 

and substitute y, z, # for wu, a, y. 

We have therefore 

AGE (arf) a We NGre (ee) 

SIN OO) 

=WHArru 

Fn Aen et Nantes: cabo pee CH OARS eoanasSbodood (31). 

The formula for os therefore becomes 

du — hae hata oe ji-T+ a(x) ~ a (Fy + a Un n dy” ma ee I 2! on 31 A 

Vv wv 
=a € Yn. ty tye € “Un 

1 ee 
= prs @ Yi 4p stg —— Mei) ea aetna crepe ent ge oss «aia essa eo se a see Re (32); 

at 

since W, when operating on y's only, is equivalent to V. 

' 
This is Mr Leudesdorf’s result, which, as he shows, may be generalized like the 

previous one and is fundamental in the theory of certain extensions of the ordinary 

theory of reciprocants considered by him in the paper referred to. 

2 
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§ 9. It appears that the usual operators of the theory of ordinary reciprocants can 

be conveniently expressed in terms of the functions considered in this paper. The formula 

necessary for the transformation of the operators when written in this form are given in 

§§ 2, 3. There seems to be considerable gain in simplicity and directness by the use of 

* this method. As illustrations two important transformations of operators are given in this 

and the next section. The first will be used to prove a theorem established by Mr Leudesdorf 

in the paper last referred to. 

Defining W as in § 8, the operator W’ is defined by the equation 

W'=Ak (uy, + Ayt (wan) ae + AP (wy) ire atts 
5 

ee 
OYs OY 

+ AS(um) Pores (wi) =f + A (uu yee ~ 
Ch MCR hme Coasts EY dls, 

so that W’ is obtained from W by interchanging w and y. 

The theorem is that W and W’ are commutative. 

We proceed to form the product WW’. Write 

WW'=W.W'+WeW’, 

where W. W’ denotes the product as formed by ordinary multiplication, and W+* W’ denotes 

the result of operating with W on the coefficients of W’. The expression for W is 

a a) 0 
W=A? @,y) Due + Aoi (my) 5u, + AP (my) ai rads 

Ys 

0 i) 0 
FAK YI) 5° + Ast (yr) ay, + AF (YI) ay ree 

Hence the coefticient of a) in W* W’ is 
OU, 

ES (uy) + Ad (my) sf + AS (uy) # oa | A,” (um) 
Us OU, Ou; 

=(r+1),A3 (Hy) ur» + (7 +1), Act Any) Gs + (7 +1548 (HY) Hat. 

by (18) of § 3, 

=A (My .u) = A (yuu). 

Again, the coefficient of s in W* W’ is by (15) and (16), after interchange of u and 

y in these equations, 

AP (ny) a+... + AP (yi) a+... | Ast (ugn) ae Chyat - A ag | As th 

=A (my) .(7)s o 4, + A,t (wy) - (7), Ag? *y, + Ae (uy) : (r)sAc” > +... 

+ AS(yy:). (7r)Ag™@u + As(yyr). (7)sAc 2 u + AK(YI). (7) Ac u +... 

The first line is equal to Ay’ (yy). 

Vou. XVI. Parr II. 17 
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In the second line writing (r),=(r+1),;—(7);, &c. we obtain 

(r+ 1);A8 (yy) Ao @u + (7 + 1)sAct (yn) Aout ... 

— [0r)sAe? (yy) Ac ru + (7) AS (yg) Ao ry + ---] 

= Al (yy. u) — Ar” (Ym. %). 

The coefficient of i is therefore A,’ (wy). 

Hence WW’'=W. W'+ Ag (yurg) @ + A$ (yur) +... 
4 5 

0 a 
5 ; es 6 —— + AY (uy) on + AS (wy) one SES pe acemrrreacocaserdccus (33). 

This result is, I believe, new. Being symmetrical with respect to w and y it shows 

that WW’=W’'W. 

The transformations of 

ad sea ad ed 

and the other operators of Mr Leudesdorf’s paper can be effected in the same way. 

§ 10. In this section we consider the operator (4, v; m,n) discussed by Major MacMahon 

(Proc. Lond. Math. Soc., vol. Xvut., p. 61). By definition 

(mw, v3; mM, n)= >i 0 w+sv) As m —— , 
OAn+s 

_s (m—1)! 
where A, m= >2— eC, aeaiees 

Ky wie ikea lene 

and summation extends to all terms of degree m and weight s. If we write 

M=Y, d= Y/l!, d=y/2!,..- 

Asm= m si’ 

ieee. Dey a ad (Hy 95 m,n) = SIEe (ut ov)(m +8)! 5 

Now the product of two such operators 

(mw, v's; m,n’) (mw, v3 mM, nN) 

consists of two parts, one formed by ordinary multiplication, the other by operating with 

(wv, v'; m,n’) on the coefficients of (wu, v; m,n). The latter is denoted by 

(mw, v'; m’, n’)* (Bn, v3 mM, n). 
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The coefficient of (w+ sv) = — in the last expression is 
n+8 

wily ss ‘ , Dey r) Dey" 

mim [2 =o (H+ e'v')(n' +8)! aie OYniae| 8! 

1 i ‘ D*1 m DES —* yn) 
= sea =s—n' (a +s'y')— hed Va 

m sg! (s—n'—s’ )! 

The coefficient of uz’ is, by Leibnitz’ Theorem, 

i Ce in me — 
= Ales ie mM (s =! ‘I Ni s—n', Mm+m'—1 

The coefficient of v’ is 

wi=s- a DENG a) 1D eS 

Ties (s—1)! (s—n’=8)! 

i Deo ( af th) 

(s—n'—1)! 

1 Ds Ya 

~m+m—1 (s—n —1)! 

= (s = n’) Jel og m+m'—1+ 

The coefficient sought is therefore 

m+m —t1 
jst ww + (s— n ) v ee m+m'—1+ 

Hence (mw, v's m’, n’)* (mw, v3 mM, n) 

m +m 0 
op eee at lied ‘+(s—n')p v (w+sv) As_n, mpm’ —1 A 

nts 

This is the fundamental result of Major MacMahon’s paper. 

§ 11. The formula (20) can be established more directly from (7) than in § 5 by the 

following process. 

Equation (7) may be written 

d n n+1 N—-1 4/71 da Aly — ry, Ay 

which may be formally expressed as 

0 0 a) "a 

(4- vax ay)4 ee 

Hence, if f denotes any integral function, 

da 
£ F(A, y=(A-n 5x ay) Fs y). 

17—2 



130 Mr GALLOP, CHANGE OF THE INDEPENDENT VARIABLE 

d Any" _ 1 a gO tee ) ny Again, da yi" ~ ye (a Ye oA Oy Y ya) Avy 

|e OR — ES oA ay ] ee 2 

hs SH) ES ol po (fie Therefore dyy" | yy, 0A 5 all aoa 

and if m is any positive integer and f an integral function, 

dad{ an “¥)|= |e -Y aa (& A | An (42) 
dy Foue. a nA 0A eS yet on : 

Now choose f so that 

0 *) 5 (221 ae 2Y\ 29, 

Cae J NY 

=Ay 
and therefore #(~) =e nh, 

The last formula then gives 

d i2s “n) Amn _Ay 
n»)= dy \y™ ae 

Ay 

Now dx = 1 = ik eh; 

dy hh wh 

a2 Ah =s8 
therefore ape ae ni 

d®x An _4Y : 

and dy yi OMI ge Sue teeleseeaaeslosts seine tones anlet Sloseeeeee (34) 

ONG - s\=3) RSV Ec SE... (35), 

which leads to the expanded form 

dx An Ay Ay? Asys | 

—_—— = i= = ACE 

dy” yy" [ h + Oty? Bl ys ‘i 
TL 1 [Morty il Ave 

~ Ty Any + ye? 2h yes 8B! Hee, 

which is equation (20). It is to be noted that since A”y”’=0 when n< 2r, the last term 

of the series will be 
1 Metso 

SD \ ia a ION 

CI Gar 

f (=) e=f(F). Ante 

=3 é 1 > =f(-3,)-4 erin 

From (34) it follows that 
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d™u : : j 
The formula (24) for dy may be obtained in precisely the same way. In symbolical 

form it will be found that 

d®u Arm Ay a\" _Ay 

d 
= IY fe (2) ; erie and uf ( i 

§ 12. The connexion of these results with Herr Schlémilch’s form will be shown by 
deducing the formula (21) from his results. In his notation [Compendium der héheren 
Analysis, Bd. 11, pp. 19, 20, equations (35) and (36)], 

Xo = (nl) Pe 

re n! (n+7), 

~  ri(n—r—1)!  y” 

| o Dy (r). 1 : [Dy], 

nm+1lyrt+l n+2y27(r+1)(r4 2) 

(r), 1 [Drty5], 

n+3 y3 (r+1)(r+2)(r+3) 7" to r terms} A 

Expanding the functions [D"+*y*],, &c., by formula (19), we find that the coefficient of 

rs in the bracket is equal to (—1)?7 A’*”y? multiplied by 

Op 1 S@ee Crp) (pe l)e 1 
n+p (r+1)(r+2)...7+p) nt+pt+l1 (rtl)...(r+p4l]) 1! 

(r)pie (7+ pt+2)(r+p+1)(p+2)(pt)) 1 _ 
n+p+2 (r+1)(r+2)... (r+p+2) Phe 

+ 

= E = (@)p 2 = (T)pir 9 are = Gah RaNGsep) [| Pee 508 fh eee = P+ 

(7)p+2 / , oye 
eae fae Oe sae |r 

Now l-(r)e@4+(r),2+...=—-2)". 

Differentiate p times; therefore 

(1)? [(r)p 1.2.3... p—(Mp 2-8-«:- (Dt1). 2+ (r)pad.4 .. (pt2) 2—...] 

=(—1)’r(r—-1)... 7-—pt+1)Q-2)™. 
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Multiply by #"*?-, and integrate between limits 0 and 1 for «; therefore 

()p = (T)pa te ee peepee ee ht) es 

=r(r—1)... (r-p+1)| ome (1-2)? dx 

_r!(n+p—1)! 
- @Fryle 

Hence the coefficient of = may AO as 
1 

! ! *! ! =): x xp n! (n+7r) ) ri(n+p 

SUN Ea Gea. (Caan 
Arte 

= (= 10+ P— Vrs 

which is the same as the coefficient in X"_, as given by (25). 
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SECTION I. 

HoMOGENEOUS SOLID CORE AND OCEAN, 

§ 1. The first problem treated here is the influence of disturbing forces from an 

external source acting on a non-rotating “Earth,” which consists of a homogeneous isotropic 

solid core and a completely enveloping liquid ocean. The forces arise from a potential 

represented by a single term which involves a surface harmonic of degree 7. When i=2 

the problem becomes that of the equilibrium theory of the tides. This problem is dealt 

with in Thomson and Tait’s Natural Philosophy*, but not I think altogether satisfactorily. 

It is doubtful whether Thomson and Tait absolutely limited their conclusions to the case 

when the solid is incompressible, but Professor Karl Pearson+ in his discussion of 

Lord Kelvin’s researches in Elasticity shows that the elastic solid part of their work is 

satisfactory only on this limitation. Though a great limitation mathematically, this is 

seemingly unimportant so far as concerns numerical estimates of tides on the actual earth. 

Further, the problem, as presented by Thomson and Tait, has been solved by Professor 

Pearson? himself without any assumption as to the compressibility of the solid. 

* Art. 842. t+ Todhunter and Pearson’s History of... Elasticity ..., 

+ Todhunter and Pearson’s History of... Elasticity..., Vol. m., Art. 1723 et seq. 

Vol. u., Part 1., Art. 1724. 
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The problem discussed here is more general than that solved by Lord Kelvin or 

Professor Pearson; but the chief occasion for the present work is that Thomson and 

Tait’s presentation of the tidal problem seems to possess two distinct defects. Of the 

first the authors were fully conscious, they “neglect the mutual attraction of the waters.” 

In their Art. 815 they had calculated for the case of a rigid core the influence of the 

gravitational action of the ocean itself on the height of the tide, and in Art. 817 they 

speak of this as a correction of the order of 10 per cent. which may be neglected owing 

to the numerous uncertainties prevailmg in the problem as presented by nature. Pre- 

sumably in treating the elastic solid “earth” they took the same view of the uncertainties, 

and did not think it necessary to make the calculations requisite to allow for the liquid’s 

gravitation. 

The second defect, though somewhat more important, has I think hitherto escaped 

detection. It is simply that the tidal ellipticities im the ocean and solid core being 

different, the liquid pressure on the surface of the core is not uniform and must be 

taken into account. This conclusion is obvious enough, when pointed out, but I was led 

to it by no @ priori considerations, but from having to assure myself that a somewhat 

conspicuous discrepancy between the result I obtaimmed by a straightforward analytical 

treatment and the result built up by Thomson and Tait was not due to error on my 

part. 

§ 2. Let p+p’ and p be the respective densities of the solid core and ocean, m 

and n the elastic constants of the core in Thomson and Tait’s notation. 

It is supposed that in the absence of the disturbing forces the surfaces of the core 

and ocean would be spherical—though this is merely for brevity—and that the liquid 

completely covers the solid. 

If then the potential of the disturbing forces be represented by 

rVioi, 

where og; is a surface harmonic of integral degree 7, and V; a constant, the equations 

to the equilibrium forms of the common surface of the core and liquid and the outer liquid 

surface will be respectively 

Here 0;/b and a;/a are very small, and their squares and product will be neglected. 

Under these conditions if V, be the potential in the core, V, in the liquid, we have 

V, = 2mpa? + 2rp'b?— 32 (ptp)r+rVio.+ we (pag ay 4-/ pba *2D,)\- asseees (3), 

2 2 , b8 iW Aro; cos i =4 645 V.= 2mpa? — 2mpr° + 47p ae rViopt a1 (ORG BOR aT MRI) tN)) soonascananc (4). 

Let u, v, w be the elastic displacements at the point 7, 0, ¢ in the core, in the 

directions of the elements dr, rd@ and rsin @d@ respectively; and let rr, &c. denote the 

stresses, in the notation of Todhunter and Pearson’s History of Elasticity. 
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Also let 

_du , Qu, ld he on 
Beek ay ie cot + - ane Ga: 

_ aaa tay; ae 

“7? sin 0 \d0 7" ~ ag or), 
1 Eee d é), pahivaveien sacaven oad ccaes (3): 

=ain 0 \dé dr wr sin 

F dur du 
C=sin a (F a) 

Then the body-stress equations in the solid are 

aa ES CN aR is Rta OV 
(m +n)r?sin 0 7 -— ny +n <n iae ed a 

(m+n) sin @ Ge dn oe = ns +20 ae | 6 1 ett ~ =—(p +p)sin _ ( ee scence eet (6). 

d& 8 ie dV, 
COS OBE CoC aR ae +n ae =, Pita ene G7 | 

The equations to be satisfied at the surface of the core are 

do; = ie on — (6;/b) aa ro — a FS Di decacwensnsadeureetterenss cee teen (7), 

a — (b:/0) Siw — (b;/b) cosee @ ands |b) aq _ =i cary acchtiaabaciste qk (8), 

S @ — (b;/b) cosec 6 Te $6 =p (b;/b) cosec g 2% as eendonenoceee (9), 76 — (b;/b) 

where p is the pressure at the common surface of the core and ocean 

It has been tacitly assumed that the equilibrium (not the undisturbed) surface is that 

where the surface equations apply 

The body-stress equations are satisfied by 

So Ce a a o 

Benes {e+ Decne. amt 2) (ote) (pa ait pbb) im — 
2 (214+ 3) m+n 

2n 

2%+1 m+n n Yi} .20), 

do; 
nas w / cosec 0 —* pepe Ts 
alicag 7 (e+e )Vi , Ar (ptp')(pa a +p bb) | (6+3)m+t 2n y 
a5 PS ICrs=s) lame. (22+ 1)(m+n) 

11 
(¢+1)n a0); 

where Y,, Y; and Z; are arbitrary constants to be determined from the surface conditions 

Of these constants two, Y; and Z;, are of the order a;/a or b;/b 

Vou. XVI. Parr II. 18 
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§ 3. As a preliminary to determining the constants, we require the formulae for the 

stresses, and the value of p. 

The stresses are as follows: 

= 4 (Bm=n) Vet der (04 py 89 2 G1) whe 
m+n 

ro; {(21+3)m4+(?+i-1)n j , 4 (pa~14; + p'b*1D;) 
- aes m+n (p+ p) {Pi + 2+1 

}—— 

: —~ — bo ~— > + {(@?-i-3)m4n} VY; 

OWS 
7/ doy _ =  /cosee dos =- a ) nr Z; 

dé dd 

ri Gales) F eer oe 4h @t2)m—n 

- sical m+n es + 935 Tyo ape bd} + a+1 Fr) Go 

@ = 33 =1(38m—n) Y,+ Sr(pt+p’y omen r?+terms of order a;/a .......... (14), 

G—=termsxof Ordern ck di es.-n acre tecens donedtte eee seen csee sacar aatosesoe ses eceeee (15). 

In the surface equations #, @ and 43 occur multiplied by 0,/b, so that we require only the 

terms appearing in (14) and (15). 

We have next to find the value of p at the surface of the core. 

The hydrostatical equations in the lquid require 

where C is a constant. At the surface (2) p must vanish exactly, and so the constant terms 

and the terms containing o; must vanish separately. We have thus 

Ce her (pat ds yD) see eich (17), 

0=a'V; —47aa;(p +p Bas) 4 ee = {past-p) O/a) Abi)... ccsegenee eee (18). 

Employing in (16) the value of C supplied by (17), and the value of V, obtained 

by writing b+ ;0; for r in (4), we have the required value of p. 

*s ” Depth of ocean small compared to “ eart radius. 

§ 4. Thus far no restriction has been put on the depth of the ocean. In the actual 

earth, however, the depth is very small compared to the radius, and our further attention 

will be limited to the case when (a—)/a is very small. 

In this case (18) becomes 

— ; 47a 5 
0=a'V; —ir (p +p’) dai + ay (pai + p'bi) SRO HoSHOSOUseuOnscsogep.cosacs (19), 
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and the liquid pressure at the surface of the core is given by 

P=Fmp (P+) {Gi —D;) TEA. — OD}... ccererscoccecccsccersesseenssssoeseves (20). 

For our present purpose the part of p independent of o; may be omitted. It would 

merely add to the value presently found for Y, a term of the order (a—b)/a, which 

would be negligible in (28), the only equation which depends on the value of Y;. 

Writing b+b;o; for r in the expressions for the stresses, substituting in (7), (8) 

and (9), and employing the value of p given by (20), we obtain three equations deter- 

mining Y,, Y; and Z; Of these equations one comes from the constant terms and one 

from the terms containing o; in (7), while the third comes from either (8) or (9). Terms 

of order a—b being neglected when terms of order a@ exist, these equations give 

Y,=— 37 (p+ p')? a? (5m +n) + {(m +N) (BM —N)}..cvececeeceeceeeereees (21), 

2 (t—1) naZ; — Coe ue: CROP ainacene ateameresdieciae sone ose (22), 

AG ee ee) ye wy, 2; 
= na Z;— G+1)Qi+3)° Y; =( @ s(e o\o[evidlela.s a,n'ae)eleleapclelelsene- eu s voli (23), 

where for shortness 

P= _(2t+3)m++1- Le aie 
(21+ 3) (m+n) 

4mrp (p +p.) a(a;— bj) : , : ; 
ICE CHEGEC ENS ae 1) (27+ 3) m+ (i+ 2) (i+ 3) n} 

_ _4r(p t+ pl G1) adj 
15 (20 + 1) (27 +3) (m+n) 

: ree 
(p+!) {a Vi+ oT 

_ 4ar(p +p’ @—1) (82 +9) nab; 

{10 (2¢ + 8) m—(110 + 18) m} «0... eee eereeeeee (24), 

Q= t+1 n 

W+3m+_n 

ACA Een ee bee (25) 

The solution of (22) and (23) is 

Y; = (4 +1) (214+ 8) a (P—1Q) + {(22 + 40 + 8) m—(20 41) nh... eee (26), 

7, ema my PHC (Gata 8)maape) 8). 
2(¢—1) n (22? + 40 + 3) m — (2+ 1) x} 

§ 5. By (21), Y, is determined explicitly to the required degree of approximation ; but 

(26) and (27) do not yet give Y; and Z; explicitly because the values (24) and (25) of P 

and Q contain the still unknown quantities a;—; and );. 

To determine a;—b; and b; we have as yet only the one equation (19). A second is 

easily got as follows: 

By hypothesis the undisturbed surface of the core is 

r=b, where 6 is a constant. 

18—2 



a 

eo eee ee @uy,+ aZ, 

_ 2mp(p +p’) a? (a; — bj) {20 (20+ 1) (2t + 8) m? + (1008 + 127? — 114 — 12) mn + (87? + 262? + 317 + 12) 7} 

_ 2m(p +p) ad; {107 (27 + 1) (22 + 8) m? + (4278 + 440° — 617 — 60) mn — (1674 + 4878 + 267? — 491 — 36) ) n*} 
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Thus the equation to the equilibrium surface when the disturbing forces act is 

r=b+u(with r=b +);o;), 

but it is also r=b+b;0;; 

consequently b;=coefficient of o; in the value of uw when for r we write b + b;a;. 

We thus find 

m(p+p')y3bb; (i+2)(p +p’) VY 
b: =40;:Y,+3% 

m+n 2 (22+ 3) (m+n) 

_ 2m (t+ 2) (p +p’) OB pa~a; + pb“; 

(27+ 1) (27+ 3) m+n 

im— 2n SATE 
U+B)n [iat ee cas) Pen ARE min oan-(aoc deep ococoo sodas (28). 

Neglecting (a—b)/a as before, substituting for Y, from (21), and combining terms, we 

convert (28) into 

G42 (p+p)aHV! Amp (p+ p')(i +2) a2 (a; — bi) 
Bes 2 (21+ 3) (m+n) 2 (20+ 1) (20+ 3) (m+n) 

na ap (16i2— 134 — 78) m — (161? +174 — 18) n 
Hee (pp) es — ogy een ae a a 

im—2n__,.. = — FEE BR OLY, ASI Pee eae coc nccenn tecnees eee (29). 

Again from (24), (25), (26) and (27) we find 

am — 2n 

2(2i+3)n 

_ (p+) Vi fi (t+ 1)(21+3) m+ (224 + 1078 + 97? — 57 — 6) mn — (27° + 52? — 2) n?} 
2(¢—1) (21 +3) n(m +n) (22 + 404.3) m — (2141) n} 

3 (20+ 1) (20+ 3) n(m +n) {(222+ 40 + 8) m — (274-1) n} 

15 (27 +1)(21 +3) n(m +n) {(2i2 + 44 + 3) m —(27 +1) n} 

och seeetidens (30). 

Substituting in (29) and reducing, we finally obtain 

ai (p+ p')iVi ((2i+1)m—n} 
o= 9G —T)n [Qe +H+3)m— (it Lr} 

_ dp (p + p') @ (ai— b;) {2 (2¢ +1) m + (27? + 274+ 1) n} 

3 (20+ 1) n {(21? + 4¢ + 3) m— (27+ 1) n} 

_ 4r(p +p’ @b; {152 (2¢ + 1) m?— (82? + 62? — 27 — 9) mn + (403 — 2i? — 31 — 8) n?} 

15 (21+ 1) n (Bm—n) {(2274+4¢04+3)m—(20-+1) no 
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This is to be taken with (19), thrown most conveniently into the form 

a Vy — dra? (a — b) | (p+ 6) dor (p + p’) a? ue Po.=0. eae ol Cy) } iy = 

ea 

From (31) and (32) we find 

oe BB tact aga — (40? — 40 — 9) m — (21? — 27 — 3) n ay re E fr (pte) gna PRED ACELDA 

Le (ep +p’) {(2t +1) m —n} — p {u (20+ 1) m + (202-74 — 2) n} 

os: 2(¢—1) n {(20? + 44 + 3) m — (27 + 1) nn} 

= ayy +[1— 3 p +4 der (p + p’) a? ! 
a 2+1ptp (15 (20+1)n (Bm —n) ((20 pada 

x {(p + p’) (152 (2% + 1) m? — (Si? + 67? — 2 — 9) mn + (418 — 21? — Bi — 8) n*) 

~p (15i(2i+1) m*+ (Si? 81-3) mn — (4 +5 —1) wt) | ‘pd seaharalanith (33). 

If the material though of finite rigidity be incompressible, we have n finite but m 

infinite, and so 

ees 2 (i—1) (2774+ 404+ 3)n (ai—b) $r(p +p) = BT & 
- any, 34 

Sn PA (E707 eee (34). 

—24+1 p+p ° n (207+ 47 +3) 

Case 1=2, luni-solar tides. 

§ 6. In the case of most physical interest, when the disturbing forces are due to 
the action of the moon or sun on the earth, i=2. Also if M be the mass, R the 

distance of the disturbing body, # the earth’s mass, and g “gravity” at the earth’s 
surface (neglecting “centrifugal force”), 

1) CMG HEL) (GREG?) ee senme sae eaten ctoas sscinecheet saeco (35) 

to the present degree of approximation. 

Consistently with our previous work, which neglects (@—b)/a, we may put 

ATED: 12 Py EG ras. Geciskir. Boe paseed: akaetee- aes. «es (36). 

Thus for the lunar or solar tides we get for the general case of isotropy from (33) 

g(p + p')a(m+n) (a, — by) + {1 * 5 (8m —n) (19m — sh 

= bn (19m — 5n) + {9 (p+p')a (5m —n- F rr (5m + 2n))| 

a (M/E) (a/ Ry 

3g (p+p')a {Ome — 5 5mn +n? — a ot (150m? + 13mn — Viney} 

3 ine 
pt+p 5n (38m —n) (19m — 5n) 
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When the core is incompressible, this becomes 

ge PO eto Me (38). 2 2 2 ~ 5gp'a ete 2 2gp'a 
°p+p 19” 

The equations to the equilibrium surfaces of the liquid and solid are respectively 

r=a+az(3 cos? @—1)/2, 

r=b+b,(3 cos? @—1)/2, 

the disturbing body being in the direction 6=0. 

Thus the extreme height of the apparent ocean tide (high to low water) is 

3 (as —b,)/2, 
and the extreme height of the true solid tide is 

3b,/ 2. 

If in (37) or (38) we suppose the solid rigid, ie. of infinitely large elastic constants, 

we have 
b,=0, 

: (2 ‘ dy = a (M/E) (a/RY = ( en = a at ape (39), 

agreeing with Thomson and Tait and the result (xm) on p. 367 of Prof. H. Lamb’s 

Hydrodynamics. 

§ 7. The result found by Thomson and Tait in place of (38) is equivalent to 

dy — b, = a (M/E) (a/R) = {1 + 2gpa/19n}, 

where p=the earth’s mean density 

=p+p' to the present degree of approximation. 

The simplest way of stating the case is that Thomson and Tait’s result neglects the density 

of the ocean relative to the mean density of the earth. 

We have approximately 

p/£5 = p=(p + p')/55, 
and it will be found that Thomson and Tait’s estimated height of the tide is about 

12°/, too small when gpa/n is negligible, and about 22°/, too small when gpa/n is 

infinite. These are the two extremes for incompressible material. 

In the earth we have approximately 

gpa = 35 x 108 grammes wt. per sq. cm. 

The value to ascribe to n is largely hypothetical. If the accepted ellipticity of the earth 

be due to its rotation we have some reason to regard 

n=11 x10’ grammes wt. per sq. cm. 

as an inferior limit to the rigidity. 
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Taking these values we should find Thomson and Tait’s estimate nearly 20°/, too 

small. 

§ 8. As no material can well be wholly incompressible, considerable interest attaches 

to the influence of a slight compressibility on the height of the apparent tide. This 

we find from (37) by retaining terms in n/m while neglecting those in (n/m), &e. 

Thus we get 
a(M/E) (a/R) 

n p MiGente 

1-%— (1924904070) 2gp'a 

m 

In the true earth 

19 rie 2= 22 approx., 

so that the coefficient of n/m in the denominator in (40) is necessarily negative. Thus 

the rigidity n being supposed constant, the apparent tide is greater for a slightly com- 

pressible than for a wholly incompressible earth. The difference is, however, extremely 
small under any probable contingency. 

Thus take the figures suggested by seismological phenomena* 

n/m = 1/24, 

/ n=35 x 10" grammes wt. per sq. cm.; 

with g(p+p)a=35 x 108 - os e 

p/p’ = 2/9. 
These data give 

1 (19 P_9 1 Go +P) a) _ 
tem (199 al 9n )=uls: 

and the corresponding increase in a,—b,, relative to the value for absolute incom- 

pressibility, would be little over 1 part in 500. 

Under the same conditions as in (40) we find 

Oy, Opa a. p torp = 0 pa (195-24 ag 2 | eee (41), 

showing that for a given rigidity the tide in the solid decreases slightly relative to the 

apparent ocean tide as the resistance to compression diminishes from an infinite value. 

§ 9. The relative importance of the tide in the solid is, I think, not in general 

sufficiently appreciated, thus attention may be called to a few numerical results obtained 

for the case of the incompressible material. 

Ascribing to gp’a the value 285 x10’ grammes wt. per sq. em., a close approximation 

in the case of the true earth, we have the following results: 

n (in grammes wt. per sq. em.) = 80 x 107 | 35 x 107 | 11 x 10’ 

b,/(az—b.)= “94 21 68 

* See Phil. Mag., March 1897, p. 200. 
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According to these figures the true tide in the solid earth may be very considerably larger 

and is not likely to be much less than the apparent tide in the ocean. 

Case when 7% large. 

§ 10. The general equation (33) is complicated unless numerical values be ascribed to 

the several quantities it contains. When, however, 7 is very large there is a simple first 

approximation, viz. 

&Vi/g=a,—bi= 
2im (b;/a) (4 _ gp +p')a(2m = 

9g (p’m— pn) 5m (3m — n) 

According to this, as 7 increases (a;—,)/a'V;’ tends to a constant value, while b;/a; tends 

to vanish. It would thus appear, at least if inertia be neglected, that an external dis- 

turbing influence which is either local, or very variable with the angular coordinates, is 

likely to have a much larger tidal influence on the ocean than on the solid earth. 

SECTION IL 

CorE AND LAYER OF DIFFERENT HOMOGENEOUS SOLIDS. 

§ 11. In treating the solid part of the earth as homogeneous, we make so large a 

departure from known facts that it seems worth while to try to form some idea of the 

influence of heterogeneity. The simplest heterogeneous solid consists of a core and 

enveloping layer, each homogeneous in itself, but differing the one from the other. 

The second problem considered here is the influence on such a solid of disturbing 

forces from the potential 
rVioi, 

the notation being as before. 

The addition of an enveloping ocean would make the problem resemble more closely 

that presented by the earth, and so would enhance the physical interest of the results. At 

the same time the present discussion will be found, I think, to throw considerable hight on 

the actual problem presented by the earth, and to be at the same time quite sufficiently 

complicated. 

In the preliminary work the materials of the core and layer are supposed to be any 

two different elastic solids, and the surface conditions first presented are perfectly general. 

These equations are not, however, solved in their most general form. To do so would have 

entailed very laborious, though not intrinsically difficult, analysis, and in view of certain 

considerations which will be duly explained, I did not feel disposed myself to devote the 

necessary time. 

§ 12. It will be supposed that in the absence of the disturbing forces both surfaces of 

the layer are truly spherical, and that under the action of these forces the equations to the 

outer and inner surfaces become respectively 
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Here a, aj, b, 6; are constants, while a;/a@ and b;/b are so small their squares and product 

may be neglected. 

The density is p in the layer, p+p in the core; the elastic constants m, n in the 

layer, m’, n’ in the core. 

The potentials being V, in the core, V, in the layer, we have 

V, = 20 (pa? + p'b*)— 2a (pt prt rVioi+ + Spa, +p O-H410;). .cccenseee (3), 

V, = 2p (a? — 47°) + inp abr Vioit o srk Pig mes CgtIp late DF: asus sese se scce (4). 

The body-stress equations in the core are obtained by writing m’, n’ for m, n in equations 

(6) of Sect. I; while the corresponding equations in the layer require the substitution in 

these equations of p for p+p’ and V, for V;. 

The equations to be satisfied at the outer surface (1) are 

7 mee a 9 —(a;/a) cosec gM = =0, 
dg ™ 

7 (ai/a) 92 © 3 —(a;/a) eee dg 
7 — (a;/a) = —(a;/a) cosec 0 os @=0 

Sia =O) cm ee cinta Oe es (5). 

At the common surface (2) of the core and layer there must be continuity in the values 

of the displacements wu, v, w, and also of the stress components 

doi > do; 
rr — (0; |b) 76 — (b;/b) cosec @ dd 76, 

— (b;/0) Ga — (b, |b) cosee 8 a P 

7 — (0; |) 76 ase 66 — (b;/b) cosec @ pA $6 

Of the surface equations six occur in pairs, each pair furnishing only one independent 

equation. We have for instance a pair of equations of the type 

F(a, m, Aes =(=f(a, m, n) cosec om 

holding all over a spherical surface, from which we obtain but the one equation 

F(a, m, n...)=0. 

§ 13. The body-stress equations in the core are satisfied by 

re oa ha ey, 
U=4trY, +7 —__,_ tr 14a; 

“ m+n 

- rite, (’+2)(p+0') Vi 4 4dr (i+2)(p +p’ )(paa; +p bar. im’ —2n’ y;\ (6) 

2(20+3) |. m’+n' 24 +1 m+n’ n’ 5 aa 

Vou. XVI. Parr II. 19 
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| do; 
7 = w | epeeaess ee me dd 

og OS Dy roe!) (oar ort phe) AEA) 2 Nir: 
a © 2(22+3) n't n/ ' 2i+1 m +n (¢+1)n’ 

where Y,’, Y,, Z; are constants to be found from the surface conditions. 

In like manner the body-stress equations in the layer are satisfied by 

mp rs Tp piUs eee 
= 2Z TT RL = 2 pe 17, t 

ik Camis ec om+n eal Wd Z 

moe. \@+2) p>, ave dor (i+ 2) p'a'a;__ im — 2n yi 

— 2(2i+3)|( min * (214+ 1) (m+n) n 

fe ro; (4 (t—1) pp’ bi; | (ut 1) mt+2n,, — igel  elels 
2 (21 —1) | Cra) Gace) art Veep tie Lage oeccactemeens (8), 

/ do; do; 
J ary w/ cosec 6 dd 

al pay Ae pit pV, Aas 4rrp'a-*4; (t+ 3) m+ 2n,, 

74 "2 (2i+3) mtn" (204+1) (m+n) (i+1)n : 

rv (_ 4arpp'b**b; (i—2)m—2n,, ¥ ey, 
t9 (27-1) \(2i +1) (m + n) 33 in Yin Aa Die vvvesens (9). 

The terms containing o; or its differential coefficients are all of the order a;/a or b;/b 

The terms independent of o; would alone exist if the disturbing forces were absent and 

the surfaces (1) and (2) truly spherical. 

To the present degree of approximation we may neglect subsidiary terms when they 

have a multiplier a;/a or 0b;/b; hence in dealing with the surface equations we need 

consider only principal terms in @, 46 or %6. 

Thus the stresses in the core, so far as required in the surface equations, are 

given by 
5m’ +n 

m +n 
w@=1(3m'—n)Y+2r(p+p') r+2(%—1) nr Zo; 

PG meen, (SER — Tee Seah tL ay A. ro; aa +(727+i-1)n (pie By igen (pa-"Ma; + p’b a 

~~ %+3 m +n 1s = 2i+1 

+{(?-t—3)m' +n'} vi Spaodaceca (10), 

a/ ari =76/ /conec 0 a = — nr Z, 

re [(@+1)n' (p +P) dor (pam "a; + p ae t(i+2)m'—n',,, 
; Mond @til)), 

-sx3l m +n {P+ 2+1 5 a+1 - (12) 

= OS 5m’ — 3n' 
6= 66=1(38m'—n) VY +% apm 0) era < csesotiee seestnccomeetes (12), 

a6 = 0 
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Similarly the stresses in the layer, so far as required in the surface conditions, are 

wr =4 (3m —n) Y,— 4nrZ_, + rp" (5m +n) 1? — 4rpp' m —n b* 
m+n Pe m+nr 12.6, — Dani Aaes 

ro; [(20+3)m+(i2?+i-l1)n ,, 4rpa-*a; nde S mapats [oem A (Y, + eT) (@-i-3)m4n)¥,| 

ra; [(2t—1) m— (1? + 7-1) n 4rrpp'b'**d; 3 : 
= =—= a — $(72 = F 

21-1 | m+n 2+1 ahead) 0) 1s] 

= 2i(4 42) nr FZ _ p05 6-20 (14), 

aos. | do; _2(t—1) sgn 
on ae | cosec 6 dé wu Z; 

rm (Gt1)np/y. , arpa “a;\  1(¢+2)m—n,,) 

a3 | m+n (vi+ 2+1 )+ t+1 Vir 

rv (darpp'inb'**b; | (t?—1)m—n 5, ees ‘ 
= oH = oe + Ps } =| +2 Ee] n7 V (er oe ceceecenssccecce (15), 

@ = $6 =1(3m—n) Y,4+ 2nr7Z_,+ uC aS ls (16) =¢¢=4 0 = + 35 7P For 47 pp GeGie laws 

R=0 

§ 14. If the disturbing forces were absent and the surfaces (1) and (2) truly spherical, 

the only arbitrary constants would be Y,, Z, and Y,’, and their values—deduced from the 

vanishing of 7 over the outer surface, and the continuity of w and 7 over the common 

surface of the core and layer—would be given by 

Y, [(8m —n) (4n + 3m’ — n’) a? + 4n {3m' — vn’ — (3in — n)} 6°] 

™p” 
=-2 = {(5m +n) (4n + 38m’ — n') a — 4n (5m +n — 3m’ +n’) Bb? 

4crpp’b* es aa es 172] 16 no 
eect [(m—n)(4n+3m'—n’) a+ 2n{3m'—n' —2(m—n)} b?]— 18.7 (p + p’P nb®...(18), 

Z_, [(8m — n) (4n + 3m’ — nv’) a? + 4n {3m' — vn’ — (3m —n)} B*] 

Sikes [(5m + n) {8m’ — n’ — (3m —n)}a? + (Bm — n){5m + n — (3m’ — n’)} B*] 

+4 meee [(3m —n) {3m’ — n! — 2 (m—n)} a+ 2 (m—n) {8m —n — (3m' — n’)} b] 

— sh (pt p’)? (Bim — 2) AD? «oc. ce cc eee cece cseeceeaeeeceneesaetsesaneseneeceeeseeeeceeaenes (19) 

YY [(8m — n) (4n + 8m’ — n’) a® + 4n {3m’ —n’ — (3m — n)} D* 

=— 2p? {3 (5m +n) a’ — 5 (3m —n) ab? — 8nb*} 

— 4arpp'b? {(3m — n) a® — 3 (m — n) a*h — 2nb*} 

\2},2 ’ 
= a [(8m —n) (4n+ 5m’ +n’) a? + 4n {5m' + nv’ — (3m — (| Hil Reeeoneece (20). 

m +n 

19—2 
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Substituting these values in (6) and (8), and neglecting all terms in o;, we should get 

the elastic displacements in a gravitating truly spherical “earth” consisting of a core and 

outer layer of different materials whose common surface is spherical. 

When the disturbing forces act, the values of these 3 constants contain terms of 

order a;/a, &c.; but these subsidiary terms would not be required for the determination of 

a; and 0$;. 

The remaining 6 constants Y;, &c., appearing in terms containing o; explicitly, may be 

determined in terms of V;’ by means of the surface equations whatever values we attribute 

to m, n, m’ and n’. Unless, however, we ascribed definite numerical values to the elastic 

constants, and to b/a, the resulting expressions would be very cumbrous; and if the 

numerical values of these quantities were known it would probably be simplest to insert 

them at once in the surface equations. 

Materials highly incompressible and of equal rigidities. 

§ 15. Partly for this reason, further consideration of the problem is limited to the 

case when n’=n, these quantities being finite, while n/m and n/m’ are negligible. 

The presumably enormous pressures under which the earth’s deep-seated materials exist 

seem a probable cause of wholly exceptional resistance to change of volume, whether we 

suppose the material to be wholly elastic or partly “set”; but there is no obvious reason 

why the resistance to change of shape should be exceptionally large. Thus on physical 

grounds alone, we should be disposed to suppose n’ of moderate size, but n'/m’ exceptionally 

small; and unless the layer were very thin similar reasoning would apply to n and n/m. 

A perhaps even more important consideration, leading to the same restriction, is that 

unless much larger values than any hitherto found, even for steel, be ascribed to the 

constant m’—and to m also, except in a very thin layer—the numerical values deduced 

for the strains and displacements are too large to be consistent with the fundamental 

hypothesis of the mathematical theory of linear elasticity. 

From the above considerations we should regard an increase in m with the depth as 

the most plausible hypothesis for an elastic solid earth; but there does not appear the 

same reason for expecting an increase in 1. 

The principal reason, however, for supposing n’=n in the rest of this investigation 

is the great simplification thus introduced in the mathematical work. 

§ 16. The physical conditions presupposed in the remainder of the paper are briefly 

that the core and layer have the same rigidity but different densities; and that the 

resistances to compression though not equal are both very large. 

Putting for brevity 

8 (i—1) wp*aa; dorpp'b'*?a-*b; | 42a = ae See ee ee » pa'V; 3@i+1) 4orpp'b’a a; + aT P isisecccomscoane(alyy 

Bh ee ES se Maes 99): pb V; 41 + 37pp bb; + ~ 3 (i+ 1 =Q eee c cee cc ccc cecccces (22): 
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we have for surface conditions 

gee ad 

2(¢—1)a'*Z;- peas i (=) ay; 
24+3 \n 

i? + 3i—1 
aa a (“a ae) eV Oe Sa od ee (23), 

2(—1) waz ti(i+2) m 

ge lg saeesl- arr, 

meat 2 (i+ 2) i(Qi = 1) (“) a Ln) foe - fae a Viera, HU cccccccccccc-seevees (24), 

9 — i-2 4 V=s=8 ( i + 31-1 TN ‘ . = 2D — Seg GPM ST (Geer 264 ber, 
: @—i-3 /m’\,..,, 2 —2 (6-1) 0A + (“) Paget) See he (25), 

Wi—Nye ay 6642) (m\ poy 1 (my ay 204 Dye pL Gye esy a) OF gars (G)P Pet py 
ae aes G8) Ne f=) ey a ee dete (26), 

b27, — a é z) v= 7+1 5 (e) ety aba 

2Qi+3) 2(2i—1) 

OE + ory (S LN ce eee cee ses eee (27), 

Aa 2(i oye +3) (7) DMESE CR Ta : 1) =) eS ae ee 

a5 be Dh + hei a5 (=) Ti Ce ee eet NN (28), 

It will be noticed that the constants Y;, Y_;, and Y; in these equations have 

for multiplier (m/n) or (m’/n), quantities which by the present hypothesis are extremely 

large. 

This implies of course that Yj, for instance, is very small compared to Z;, and any 

term in which Y; appeared would be negligible compared to one in which Z; appeared 

provided the other factors were of like order of magnitude in the two cases. As appears, 

however, by reference to the formule (6) to (9) the coefficients of the Y constants in the 

expressions for the displacements bear to those of the Z constants ratios of the order 

(m/n) : 1; so that the terms depending on the Y and Z constants are really of like 

importance. 
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§ 17. The equations (23) to (28) are satisfied by 

(¢+1)(2¢ + 3) P 
44443 n 

_ i G41) +2) (2+3-Ci +1) (/a)4 (bay Q 

(m/n) a Y;= 

(21+ 1) (2? +44 3) D TETE Stet eeeateeeeeeeeaeeeees (29), 

ee. eel @ekee) ye 
GIN eneweeas) i 

i(b/ay 215+ 51*—5r7+404+3 : ae 
— Fis aE aryl G=p Gree "1+ )G+2Hb/a4% ...(30). 

——1 7. a Q (m/n)b“7Y__.= Ct DO (31), 

“ay US wd) YO) b f= 94+ 3) CT EDSEEELI Steet aaeccceeaeeceeetescneeaessaeecsacsateseeesaseaes (32), 

spy G41) (2+8) (bP 
(m'[n) bY = 277+ 4443 (V2 n 

_ tbl fF 7(7 + 2) (20+ 3 — (27 + 1)(b/a)*) (b/a)**) Q 3 
a4] 4 as = Sa EBOGOR nc date I0ESGOG 353)) 

poagr = 242) Ola" P "2 (i—1) (277+ 404+3) n 

a t+1 (25+ 51*§- 50? + 40 + 3) os 
VICE oe a 1) (22 — 1) (222 + 4+ 3) 0%) 

2i+1 _t(v+1) (+ 2) (6/ay"™) Oe (34). 

2744143 n 

The values of P and Q are given explicitly by (21) and (22) when the values of a; 

and b; are known. 

To determine a; and }; in terms of JV,’ we proceed as in Section I We substitute 

in (8) a+.a;o; for 7, and note that the coefficient of o; in the resulting equation must 

be a;; similarly we substitute b+6;0; for r, and equate the coefficient of o; to ;. 

In this way we find, for n/m and n/m’ negligible, 

-=qa7.—.- v (=) tHy.— a+] (=) ih Vas — is 5 a;=aZ; 243) \n ayy; 2(@i—1) \n TV Aes Bi is an Rocesocu soe (330))) 

i+l 
— ji-1 m iny. m —7 —ij—2 

a ee xeisy (a ;) Y;- 2 (21 — ae mb oa ie me) Aare brn shoo (30) > 

Substituting for Y;, &c. from equations (29) to (32), and inserting their values (21) and 

(22) for P and Q, we are left finally with two simple equations from which to determine 

a; and b; in terms of V,. These two equations are true for all values of b/a, and the 

explicit determination of a; in the general case has no difficulty except in the length of 

the expressions. Through considerations of time I have limited myself to the most 
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interesting case when the thickness a—b of the layer is small compared to a. Before 

passing to the solution in this case, we may however draw one interesting conclusion in 

the general case. Neither m nor m’ appears in the values (21) and (22) of P and Q, 

and both are likewise absent from the expressions (29) to (32) for (m/n)Y;, Z;, 

(m/n)Y_i, and Zi. It is thus clear from (35) and (36) that the values of a; and 

b; do not contain m, m’ or m/m’. Consequently so long as the layer and core are both 

highly incompressible, a difference in their resistances to compression has no appreciable 

influence on the shape of either surface of the layer whatever be the nature of the 

disturbing forces. 

Special case of relatively thin layer. 

§ 18. Putting a—b=t, and neglecting (t/a)? we find 

ae Vine Gri eon, Maree Pre 
w= FG) @e+h+3) n talG—NQr+hsa) nT 3), 

b/b = ee) Eee on Ee er (88), 2G—-1)Qe+N+3) n 'a2G—-lQ?+H+3) 2 

Now P—Q does not vanish with ¢, thus to a first approximation 

a (2¢ + 1) P-Q 
b/b=a;/a= CINCH EW ESE) marge care a (39), 

Likewise subtracting (37) from (38), we have 

ee (t/a) 3° P-Q 
b;/b - a;/a= TCL OBE ETO Vee Wer ee ere (40). 

Combining (39) and (40), we get 

Be b/d = (ax/a) (1 tori a) nebo BA ta Sosth ae pion: (41), 

i-l1lt , 
or b; =a; (2 proee 1 =) Mialelafeicinteteaicieeiwuleleisesiattic/<lselaltweteciesiasscsislee re (41 )y 

a result independent of the densities of the core and layer. 

To obtain the absolute values of a; and 6b; we substitute their values for P and Q 

in (37) or (38), or preferably in an equation obtained by combining the two. In the latter 

way I find 

Peg yee er ete 2.8 Cat lp tp yas 
(pai + pi) Ui +3 rs ait 8)nf — 2G—-D@F+4+3)n 

ee (t/a) (pep +p’) foo. a: 4ar(p +p'Pa? (t—1)i (2t +1) a 
a 21+1 we 47 (p+ pax Oe 3 (217+ 4743) n } ==) 

3224 4643) n 

In obtaining (42) use has been made of the fact that in terms multiplied by (t/a) 

b; and a; are interchangeable. 
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Finally combining (42) and (41’), we find 

4 (pt+p' Pat )1(2i+1)(pt+p)a'V,y 

3(Q7+4¢4+3)nj 2G—1)(Q?2+424+3)n a;/a= {1 4p 

1 (t/a) (p'/(p + p’)) ee Sr(p +p’aX(i—1) i(7 +) 
<a gee SS eae {26 er (43). 

3 (20° + 404 3) n 

After determining a;/a from (43) we obtain b;/b immediately from (41). 

If we neglect t/a altogether we obtain 

t(2i+1)(et+p')avVy’ . {1 4or (p + p' aa 
A GIN (eee Sn 14+3 (217+ 4¢+3)n 

This refers of course to the case of a homogeneous elastic solid “earth” of uniform 

density p+p’, and agrees with the result I obtained directly in a recent paper* when 

we allow for the difference in notation and neglect n/m. 

A comparison of (43) and (44) shows how much less a;/a is owing to the lesser 

density of the layer than if the whole “earth” had possessed the greater density of 

the core. 

§ 19. A more instructive comparison may be made by reference to the case when the 

homogeneous “earth” has the same mass, and so mean density, as the composite one. 

If this mean density be p, then to the present degree of approximation 

P= PtP — Sp t/a... cccosoeesoesraodweree svedsost cer soseeee (45); 

also if g be “gravity” at the surface 

OFS *TuTOEP onoanancononopsocD DD DDODODADNSDDODoBSAVNNNSHSONS > (46). 

Of course g is the same as in the hypothetical composite earth. We may now write (43) 

in the form 

Ja={1+ ee ee 
ala= [+ oars 2-1) Q2+ 4+ 3)n 

2 (¢—1)(20? + 47+ 3) 
xf - —o.e'/a) 24-1) 5 SL eer boston pe 

S11) (1 encom Cos )( + 274 4043 

As: the coefficient of t/a in (47) is essentially negative, we see that the lesser density of the 

layer always makes the disturbing forces less effective in altering the spherical form than 

if the density were uniform. 

* Phil. Mag. March, 1897, p. 193, equation (52). 

| 
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Case i=2, luni-solar tides. 

§ 20. In the case of most physical interest when the disturbing forces represent the 

tidal influence of the sun or moon 
1—=2, 

Vy =g (M/E) (a°/R, 
in the notation of equation (35) of Sect. I. 

In this case by (47) 

is (gpa/n) (M/E) (a/R) E _ 4(¢/a) ee hee) 
1+ 45 (gpa/n) 14+ ;9pa/n 

a,/a = 

Here the percentage reduction in a,/a due to the lesser density of the layer is 

80 (t/a) (p'/p) {1 + gpa/n} + {1+ Bgpa/n} ...........:. cece cece ee ees (49). 

In the actual earth we have approximately 

gpa = 35 x 10° grammes wt. per sq. em., 

and this we shall employ in the following estimates. 

Our work assumes t/a small, so as a convenient example suppose 

t/a = 1/20. 

Suppose likewise as an approximation to actual conditions 

(p/p) =4 (20/19)? = 583 approx. ; 

and as representative of extreme and mean rigidities take the three cases 

G) n=80x 10" grammes wt. per sq. cm., 

@i))  =35 «107 55 : 

Gitte — ie 7 * 

Then by (49) for the percentage reductions in the value of a,/a due to the lesser density 

of the layer, we have the following approximate values: 

Case 1 il il 

Percentage reduction 5 7 10 

As the above hypothetical layer would in the case of the true earth be nearly 

200 miles thick, and the effect varies directly as the thickness, we may expect variations 

of density within 30 or 40 miles of the earth’s surface to have but little influence on 

the lunar or solar tides. 

In the case of disturbing forces which are local, or vary rapidly with the angular 

coordinates, variability in the surface strata is probably more important, for the coefficient 

of t/a inside the bracket in equation (43) tends in general to increase with 7. 

Vou. XVI. Parr II. 20 
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VII. Cireles, Spheres, and Linear Complexes. By Mr J. H. Grace, B.A., 

Fellow of St Peter's College, Cambridge. 

[ Received, July, 1897. Read, 25 October, 1897.] 

In this paper there are discussed certain theorems concerning circles and spheres, 
and analogous theorems concerning linear complexes. 

The whole is divided into seven sections. 

In I. we discuss certain relations between systems of linear complexes; these we 

apply to the exposition of the analogy, due to Klein, between line geometry and sphere 

geometry in four dimensions; and also to the transformation of Lie in which a 

straight line corresponds to a sphere and two intersecting straight lmes to two spheres 

which touch. 

In II. the theorem, that the circum-circles of the triangles formed by four lines 

meet in a point, is proved by a method depending on the theory of curves; a similar 

method is applied to shew that there is no corresponding result in three dimensions 

and again to prove the analogous theorem in four dimensions. 

Then the theorem, that, given three points one on each side of a triangle we get 

three circles meeting in a point, is extended to three and four dimensions. Finally the 

results are transformed by both methods explained in I. 

In III. we prove the set of theorems given by Clifford (“Synthetic proof of Miquel’s 

theorem”), and also another set of theorems, of which the first are particular cases, viz.: 

“Given three coplanar lines and a point on each of them, we obtain three circles 

meeting in a point.” 

“Given four lines and four concyclic points, one on each of them, we have four 

sets of three lines and the points derived from these four sets, by the first theorem, 

lie on a circle.” 

Vor %. VI. “Pane IL. 21 
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“Given five lies and five concyclic pots, we have five sets of four and from 

each set of four a circle; these five circles meet in a point.” And so on ad inf. 

IV. contains the proof of a corresponding set of theorems in space of three 

dimensions, as follows :— 

“Given three planes and a point on each line of intersection, we have four points 

in all and they determine a sphere.” 

“Given four planes and a point on each line of intersection, we have four sets of 

three planes, and from each set of three a sphere: the four spheres so obtained meet 

in a point.” 

“Given five planes and a point on each line of intersection, we have five sets of 

four, and from each set of four a point; the five points so obtained lie on a sphere.” 

And so on ad inf. 

In V. the general configuration of points and spheres derived from the theorems 

in IV. is discussed. ; 

If we take x planes we obtain a system of 2”7 spheres, 2”7 O-points and 

n(n—1)(n — 2) n(n —1)(n—2) ewe MES) UAE 2 Vie 
6 6 

points; each O-point les on n spheres and each A-point on 4 spheres. 

2% A-points; each sphere contams n O-points and 

In VI. certain symmetrical systems of points and spheres are obtained, viz. : 

(i) A set of sixteen points lying by eights on ten spheres, there being five 

spheres through each point. 

(i) A set of seventy-two points lymg by sixteens on twenty-seven spheres, there 

being six spheres through each point. 

(ii) A set of 576 poimts lying by 532’s on 126 spheres, there being seven spheres 

through each point. 

Similar sets of points probably exist m which there are eight, nine...spheres 

through each point, but as the number of points increases the difficulties as to 

notation become very great. 

Finally in VII. some of the results are transformed in accordance with the methods 

of I. 
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SECTION I. 

Systems of Linear Compleces. 

1. In line geometry, as the subject has been treated by Pliicker and others, a 

line is determined by six homogeneous coordinates connected by a quadratic relation : 

the line in fact depends really on four quantities, but two others are introduced for 

convenience in analysis. 

Supposing that ayy,2,0, and «#,y.2z.0, are two points on the line; Lmnr,, lmmnr. 

two planes passing through the lne; then J, m, n, X, mw, v, its six coordinates, are 

defined by 

Limi ni r: wi v=. — LO, + Yy@s— Yo, 2 Z@.— 2D, : YZo— YoRy 2 Lo — Zo, 2 LYo — Ley 

= MyNo — MM, 2 Mylo — Nol, : Lame — Lem, : Lyre — lor, : Myo — Mey 2 NF. — Ney, 

the equivalence of the two sets being easily proved. 

[It has been considered generally by Pasch, Crelle LXxv. p. 108.] 

The coordinates are connected by the relation 

N+ me +nv=0 

and are independent of the particular pair of points or planes chosen. 

Further, two such lines intersect if only 

Lo + LoAy HF My bo + Maly + Vo + Nov, = O. 

2. If the coordinates of a line satisfy a linear relation 

XX 4+ Yu t+ Zv+Ll+ Mn+ Nn=0, 

the line belongs to a Linear Complex of which ZL, M, N, X, X, Z are called the 

coordinates. 

As regards a linear complex X,¥Y,Z,1,M,N,, L,X,+ M,Y,+N,Z, is called the invariant 

and we shall denote it by $a. 

For two linear complexes we have the mutual invariant 

L,X,+ L,X,+ M,Y,+ M.Y,+ \,Z.+ N.Z,, 

denoted by a, If this vanish the two are said to be im involution. 

Thus if the invariant of a linear complex vanish its coordinates are those of a line 

and the lines of the complex are the lines meeting this line. 

If the mutual invariant of two lines be zero then the lines intersect, and if the 

mutual invariant of a line and a complex be zero the line belongs to the complex. 

21—2 
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3. If we consider J, m, n, 2X, #, v each replaced by a linear function of six 

variables 2,, %, @3, %, Zs, % We get a new system of coordinates, in which the 2’s are 

connected by a quadratic relation 
p=0 

when they are the coordinates of a line. 

Further, whereas in the original system the vanishing of a coordinate meant that 

the line in question met one of the edges of the fundamental tetrahedron, the vanishing 

of one now indicates that the line belongs to a certain linear complex 2,=0 for the 
w’s are linear functions of 1, m, n, », w, v. (Klemm, Math. Ann. 01.) 

The complexes 2,=0, #,=0, 7,=0...%;=0, are called the fundamental complexes, 

and we shall now obtain the relation ®=0 in a form which involves only the mutual 

invariants of these complexes. 

4. For this purpose suppose 

T,, M;, Ni, X1, Yi, 4%, &e. 

are the coordinates of fourteen linear complexes 

12d; Apeo OMe Deemer eG male 

then we have 

EN in| Moai eXG, BV eae 
Pile WE ee, X. cv ares 

oF a B77" 

the relation between the mutual invariants of two sets of seven linear complexes. 

Suppose now that 1’, 2’, 3’, 4’, 5’, 6’ are the same as 1, 2, 3, 4, 5, 6 respectively, and 

denote the others by a, b, then the foregoing relation obviously gives a, in terms of 

Bq +++, Ty--., Le. it gives the mutual invariant in terms of the coordinates. By making 

zqa=0 we get the condition that the complexes @ and b should be in involution, and 

by making b the same as a, and then making a,q=0, we get the relation between the 

six coordinates of a line, the coefficients being functions of the mutual invariants of the 

six fundamental complexes. 
i. 
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The relation (A) is precisely similar to that which occurs in the theory of circles 

and spheres (Lachlan, Phil. Trans., 1886), and is obtained in the same manner. 

By supposing certain of the mutual invariants to vanish the relation may be made 

to take a simpler form; two cases will be considered, 

(I) when all invariants o,,, in which m+n vanish, ie. when the six fundamental 

complexes are mutually in involution ; 

(II) when all invariants a,, except a, vanish where m+n and oy=0, a, =0. 

5. In (1) the relation becomes 

GaPn , Pa2Piz Bag FP hy 
Bah = et) Soe 

On hore) Dig 

and if we replace Sq, DY ay ete See 

on by JN on-.., 

we get Bary = LY) + LoYo «+» Le Yo, 

and consequently with these coordinates the condition for a line is 

ae 

Now in the geometry of circles a circle is given by four coordinates 2, #, 7, #,, and 

when the four fundamental circles are mutually orthogonal the condition for a point 

may be written 

LY + ay +ay+ ze =0; 

also the condition that two circles should cut orthogonally is 

LYi + LyYot L3Ys + sys = O. 

In the geometry of spheres we have five coordinates 2,, 2, 23, 2, #3; the condition for 

a point is 

UP + @y + Lye + oP + ae = 0, 

and the condition that two spheres should cut orthogonally is 

LY + TYo +... + L5Y;=0. 

Similarly in space of four dimensions we have a geometry of hyperspheres in which a 

sphere is given by six coordinates 

De Bayan hes 

the condition for a point being 

Gea o.. Le — Os 

and for orthogonal section 

LY + CoYo +++ LeYs =O, 

and a point lies on a sphere if the coordinates of two satisfy the conditions for 
orthogonal section. 
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6. Thus comparing these results we see that there is an exact analogy between 

the geometry of linear complexes, and geometry of spheres in four dimensions, in which 

(i) a linear complex corresponds to a hypersphere ; 

(ii) a straight line corresponds to a point ; 

(iii) two lmear complexes in involution correspond to two spheres cutting at right 

angles ; 

(iv) a complex and a straight line belonging to it correspond to a hypersphere 

and a point on it. (Klein, Math. Ann. Vv.) 

Thus if we can prove any theorem involving the stated geometrical relations in the 

one set, we can immediately infer a corresponding one in the other. For example, to the 

result that four such hyperspheres have two points in common corresponds the fact that 

four linear complexes have two lines in common. 

To a linear complex and two polar lines correspond a hypersphere and two inverse 

points, for on the one hand every linear complex containing the given lines is in involution 

with the given complex, and, on the other, every sphere passing through the two points 

cuts the given sphere orthogonally. 

7. If we suppose the coordinate a, to vanish, the condition for a line is 

THEE aos ips 

and the geometry is that of lines in a linear complex and complexes in involution 

with it. 

Thus geometry in a linear complex is equivalent to the geometry of spheres and 

points in three-dimensional space, the correspondence being exactly the same as in the 

last article, with the exception that all linear complexes in this system are in involution 

with the given one. 

So, if the coordinates #; and #; vanish, we find that geometry in a linear congruence 

is equivalent to the geometry of circles and points in a plane. 

It is to be remarked that there is nothing in line geometry corresponding to the 

element at infinity in sphere geometry, and consequently all propositions involving planes 

in the sphere geometry must be inverted so that the planes become spheres before they 

can be transformed. The element at infinity is in fact replaced by a line which has no 

particular property with reference to other lines. 

8. In case (II), Art. 4, by taking suitable multiples of a, &. we can obtain an 

equation of the form 

Bry = LY + LoYo+ L3Ys— LyYs — 3 (Ys ar UYs) =i()3 

and the condition for a straight line is 

xz + 1S = vee — one — £0, = 0, 

a form which is most useful for this article. 
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Now supposing a sphere to be given by its equation in ordinary Cartesian coordinates 

e+ y+ 2+ 2a + Ay + 2dz + e=0, 

we have r=b?+c+d —e, 

or introducing a quantity a to make the equation homogeneous, we have 

B+ c+d?—ae—r’=0, 

and the sphere is given by the six coordinates a, 6, c, d, e, r which are connected by 

the same relation as above. 

Thus we have an analogy between the geometry of spheres and straight lines, but we 

have still to discover the analogy to a linear complex and the fact of such a complex 

containing a given line. Also while a line is replaced by a unique sphere, a sphere 

corresponds to two lines because the sphere is unaltered by changing the sign of r, 

whereas a line is changed by this process into its polar line with respect to the complex 

corresponding to r=0. 

9. To complete the discussion we observe that if two spheres a, b, c, d, ¢, r; 

wv, Uc’, d,e, 7’ cut each other at an angle a, then 

2bb' + 2cc’ + 2dd’ — ae’ —a’e — 2rr' cosa =0, 

where @ is so taken that 

cosa=+1 for external contact, 

and cosa=—1 for internal contact. 

Thus if a=0, we find 

2bb' + 2cc’ + 2dd’ — ae’ — a’e — 2rr’=0 

as the condition that two spheres should touch externally. 

Now the first sphere is replaced by the two lines 

a, b, ¢, d, @e +7, 

a, b, ¢, d, &, —7, 

and similarly for the second; consequently to two spheres which touch externally correspond 

two pairs of lines, such that each of one pair intersects one of the other pair. As each pair 

of lines are conjugate with respect to a linear complex one intersection is a necessary 

consequence of the other. 

For internal contact the +r lme meets the — 7‘ line,) 
; pace . (Lie, Math. Ann. v.) 

and the —r line meets the +7’ line } 

10. To illustrate this, consider the problem of describing a sphere to touch four 

given spheres. We have in the transformation to draw a line meeting four given lines, 

Suppose we have to get a sphere having like contacts with the four given ones, then 

we take the four lines a, b, c, d corresponding to the (+7’s) and the four a’, b’, c’, d’ 

corresponding to the (—7’s). 
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There are two lines meeting the former four and two meeting the latter four, viz., 

the polars of the first two with respect to the fundamental linear complex; therefore 

there are two spheres having like contacts with the four given ones. 

If the sphere sought has to have like contacts with a, b, c, and the opposite kind 

: bed’ 
with d, we take the two quartettes ate d and thus get two more spheres. 

For the condition for external contact being 

2bb’ + 2cc’ + 2dd' — ae’ — ae + 2rr' = 0 

simply expresses the fact that the +7 line meets the —7" line and vice versd. 

Hence as we can choose the quartettes 

abed’, 

a'b’e'd 
D4 

in ==8 ways, we have 8 pairs of spheres touching the four given ones, as ought to 

be the case. 

11. We have so far obtained no meaning for the transformation of a _ linear 

complex, but the equation 

2bb' + 2cc’ + 2dd' — ae’ — we—2rr’ cosa=0 

gives us the interpretation at once, since it shews that if a line belongs to a linear 

complex the corresponding sphere cuts a given sphere at a given angle; but a system 

of spheres cutting a fixed sphere at a constant angle and the system which cut it 

at the supplementary angle correspond to the same system of linear complexes. In fact 

a sphere is represented by two lines which are polar lines with respect to the linear 

complex, and therefore taking a sphere and an angle associated with it the spheres which 

cut the given sphere at the associated angle are represented by the totality of lines 

belonging to two linear complexes which are inverse (we may say) with respect to the 

fundamental one, viz., each is the locus of the polar lines of the other. 

Changing the sign of cosa only interchanges these complexes, and so the lines 

which are the transformations of the two sets of spheres are identical. 

Taking 6, c, d, a, e, r as the coordinates of the line they satisfy the relation 

2b’ (b) + 2c’ © + 2d’ (d)—e' (a) — a’ (e)—7 (2r' cos a) =0, 

the line b, c, d, a, e, —r satisfies 

2b’ (b) + 2c’ (c) + 2d’ (d) — e' (a) — a’ (e) — (— r) (— 27” cos a) = 0, 

the inverse complex to the foregoing and as stated interchanging the sign of a inter- 

changes these two complexes. 
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12. If we take five lines and their polar lines, the pair of complexes containing 

them become the sphere cutting the corresponding spheres at equal angles, where the 

five lines are (+7) lines and the five polar lines are (—7r) lines; if we take a complex 

containing four of the (+7) lines and one (—r) line and the inverse complex, we get 

a sphere cutting four of the given spheres at equal angles and the remaining one at 

the supplementary angle, and so on. 

There will thus be in the extended sense of the word 16 spheres cutting five 

given ones at equal angles, where an angle and its supplement are not taken to differ. 

13. To enable us to translate theorems regarding spheres which pass through a 

fixed point we must remark that if a sphere becomes a point r=0 and the pair of 

lines in this case coincide, and further the united line belongs to a fixed linear complex 

corresponding to *=0, which has been called the fundamental linear complex. 

Finally a sphere is replaced by two lines which are conjugate with respect to 

r=0, and it has with the totality of complexes having this pair of polar lines for 

conjugate lines a relation which may be stated as follows; viz. if we associate our 

sphere with various angles in the sense already stated, then the singly infinite set of 

linear complexes correspond to the sphere and the angles thus associated. 

14. If the equation of a circle in ordinary Cartesian coordinates be 

a +y"+ 2ba + 2cy +e= 0, 

then its radius 7 is given by 

r=b+ce—e, 

or, introducing a quantity a to make this equation homogeneous, we find that a circle 

may be considered as having five coordinates a, b, c, e and r connected by the equation 

B+ c—ae—r=0; 

and if two circles cut each other at an angle a, then we have 

2bb’ + 2cc' — ae’ — a’e — 2rr’ cosa=0, 

where a is so taken that 

a=0, cosa=+1 for internal contact, 

a=7, cosa=—1 for external contact. 

Thus, to put the matter briefly, we see that 

(1) The geometry of circles is equivalent to that of lines in a linear complex (A). 

(2) A given circle is represented by two lines which are conjugate to a complex 

(B) in involution with the one (A) in which the system lies. 

(83) To circles which touch correspond lines which intersect. 

(4) Being given four lines and their polars with respect to (B), we have a 

complex containing the four and in involution with (A), and another containing the 

Vou. XVI. Part IID. 22 
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polars and in involution with (A); corresponding to this system in the circle geometry, 

we have four circles and a circle cutting them at equal angles, exactly analogous to 

the corresponding proposition in sphere geometry. 

Reckoning an angle and its supplement as being not distinct, then there are eight circles 

cutting four given ones at equal angles; but there is only one which really cuts them at 

equal angles, the remaining seven cut some of the circles at the one angle and the other 

circles at the supplementary angle. 

Thus, when we have given any theorem regarding lines in a linear complex, and 

lmear complexes in involution with the given one, we can at once derive a proposition 

concerning circles in one plane, where the complex contaiming four lines is replaced by 

the circle cutting four given circles at equal angles. 

We have already shewn that there is an exact connection between the geometry 

of spheres and poimts in three dimensions and geometry in a linear complex: hence 

we see that there is a connection between theorems regarding spheres and points in 

space and circles in a plane. 

SECTION II. 

15. There is a theorem in plane geometry to the effect that, bemg given four 

straight lies, the circumeircles of the triangles formed by omitting each lne in turn 

meet in a point; we are naturally prompted to inquire whether there is a corresponding 

proposition in three dimensions and also in four, since the latter case leads to theorems 

regarding lines and linear complexes. 

For the purpose of this inquiry it is convenient to regard the proposition in plano 

as a particular case of the theorem that all cubic curves that pass through eight fixed 

points pass through a ninth. In fact take as the eight points the six vertices of the 

quadrangle and the two circular points at infinity, then since each circumeircle and the 

corresponding omitted line form a cubic through the eight points, the four such cubics 

have a ninth point in common, consequently the four cireumcircles have a point in 

common. 

16. In three dimensions we consider cubic surfaces passing through the circle at 

infinity (cubic cyclides, in fact) and also through all the 10 vertices formed by five planes, 

and observe that the circumsphere of the tetrahedron formed by four planes and the 

remaining plane is such a cubic. 

These cubics satisfy 10+7=17 linear conditions, for the section at infinity instead 

of being a general cubic is a known conic and a variable line, and as a cubic can be 

made to pass through only 19 arbitrary points, all these cubics pass through the points 

of intersection of any three of them. 
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To find how many points three sueh cubics (cubic cyclides) have in common, we 

consider the case in which each of them is a sphere and a plane and thus see at once 

that the number is 
242.34+2.341=15. 

(This is in fact Schubert’s principle of the fixity of number, Abzahlende Geometrie, 

passim. ) 

Hence as our systems have already 10 points in common they have five further 

points common to all, but by the line theorem just proved the four circumspheres which 

are got by always including a certain one of the planes meet in a point on that plane 

and therefore the five further points lie one on each of the planes, and we infer at once 

that there is no corresponding theorem in three dimensions. 

17. This does not preclude the possibility of there being such a theorem in four 

dimensions, and in fact there is one which we proceed to prove. 

We take six hyperplanes in four dimensions; any four of them meet in a point, 

consequently omitting one of them we get five points through which there is a hypersphere, 

then the six hyperspheres so obtained by omitting each hyperplane in turn meet in a 

point. 

For this purpose we consider cubics in four dimensions passing through the imaginary 

sphere at infinity and through the eS es vertices of the six “solids” so formed. 

The section by the plane (hyperplane) at infinity is a known sphere and a variable 

plane therefore involving only three instead of nineteen constants, hence the cubics are 

subjected to 
15 +16=31 linear conditions. 

Such a cubic can be made to pass through a Sere 1=34 points, and therefore 

all through 31 fixed points pass through a number of other fixed points. 

To find the number of these we have to tind the number of the intersections of 

four such cubics by considering each to be a sphere and a plane, thus the number is 

242.442. 2°542.441=31, 

and therefore such cubics pass through 31 —15=16 other fixed points. 

Now we get one such point clearly on the plane of intersection of two hyperplanes* 

(by the line theorem); as there are 15 points of this nature there is one other common 

point and hence the six hyperspheres meet in a point, which is the theorem we set out 

to prove. 

* Because the section of the figure by the plane of intersection of two such hyperplanes will be four lines 

and the circles circumscribing the triangles formed by them in threes, hence the application of the line theorem. 
‘ 

22—2 
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18. Translating this proposition into the language of linear complexes and _ straight 

lines it manifestly becomes the following: “taking six complexes having a line in common 

then any four of them have another line in common, and therefore from a set of five of 

them we get five lines through which one linear complex may be made to pass; then 

from the six complexes we get six sets of five, and as from each five we get another 

complex, we thus derive siz new complexes, then the theorem is that these siz complexes 

have one common line.” 

19. Now in the hyperspace system we had 31 points such that all hypercubic 

surfaces of the particular kind mentioned which pass through 15 of them pass through 

the complete system. 

Inversion gives us a set of 32 points such that all hyperquartics passing* twice 

through the imaginary sphere at infinity which pass through 16 of the points pass 

through the remainder, hence in the line geometry we get a system of 32 lines such 

that all quadratic complexes through 16 of them pass through the remaining 16. 

To prove the theorem without having recourse to the geometry of four dimensions, 

we would remark that all quadratic complexes through 16 lines pass through 16 other 

fixed lines (for any four quadratic complexes have 32 lines in common); so we consider 

the system of quadratic complexes through the first line, and the common lines 15 in 

number of the six complexes taken four at once; this gives 16 lines common to the 

complexes, and proceeding im this way we get the theorem, but it seems clearer to first 

state it for four-dimensional space because then we have the analogues in two and three 

dimensions to guide us. 

In hyperspace, we may mention finally that we have 32 points lying by 16’s on 

12 spheres, so that there are six spheres through each point, and 

In line geometry we have 32 lines lying by 16’s on 12 linear complexes, there being 

six complexes through each line. 

20. We remarked that in the hypersphere geometry there was one common point of 

the cubics on each plane of intersection of two hyperplanes; this corresponds in the line 

geometry to the following :— 

Denote by a, b, c, d, e, f the six original complexes, and by A, B, C, D, E, F the 

complexes derived by omitting each of the original ones in turn, then such sets as 

A, B, C, D, e, f have a line in common. 

Thus we get 32 sets of six having a line in common, viz. 

abcdef ... 1 of this type 

abcdHF ...15 ,, ” 

AUB CO Dieter. to- hs, » 
ASB GED EE elie. lan ee, “s 

shewing the complete symmetry of the system. 

* Such a quartic is represented by the general equation of the second degree in hyperspherical coordinates 

in a manner exactly analogous to the bicircular quartic in circular coordinates, hence it is the analogue of a 

quadratic complex in line coordinates. F 



Mr GRACE, ON CIRCLES, SPHERES, AND LINEAR COMPLEXES. 165 

21. <A particular case of the foregoing theorem may be here mentioned. 

If we have five lines meeting a given line, as in the figure, a, b, c, d, e meet O, then 

any four of them as a, b, c¢, d have another line in common; thus we get five such lines 

and from the theory of the double sixers of a cubic surface we know that these five lines 

are met by another line F. 

Now our theorem comes in, viz., if we take six lines a, b, c, d, e, f, then from each set 

of five we get a line like F, and the property is that these six lines are all met by 

one and the same straight line. 

22. The transformation of these results by means of Lie’s method, explained 

previously, gives rise to several results which, so far as I know, have not been noticed 

before. 

In the first place it is to be remarked that in any such example of the general 

transformation two systems of lines conjugate with respect to the fundamental complex 

are really transformed from the line geometry, but as the descriptive properties of two 

such systems are identical, we need only concern ourselves with one of them. 

23. Thus then to five lines meeting a given line we have five spheres touching a 

given one in prescribed senses, then for any four such spheres there is another tangent 

sphere associated with the given one. Thus from five spheres touching a given one we 

derive five others, viz., they are the inverses of the given sphere with respect to the five 

spheres cutting the tangent spheres at right angles in sets of four, and then the theorem 

is that these spheres are all touched by one and the same sphere. 

Taking six spheres touching a given one we get six sets of five, from each set of 

five we derive by the preceding a sphere; our main theorem then shews that these six 

spheres so derived are touched by one and the same sphere. 

24. Again suppose we have four spheres A, B, C, D passing through a common point; 

then since the representative lines for a point coincide and belong to the fundamental 

complex, the four pairs of lines corresponding to the four spheres meet one and the 

same straight line. 

Let them be a, a’, b, b’, c, ce’, d, d’ and apply the theorem of Art. 21, to the 

five lines a, a’, b, c, d; then the sphere corresponding to the line (abed), ie. the other 

line meeting a, 6, c and d, is a sphere touching our four original spheres (A, Bb, C, D) 

in certain prescribed senses, and the sphere corresponding to the line (a’bed) touches BCD 

in the same sense as (abcd) does, but touches A in the opposite sense. 

The line aa/be meets also b’ and c’ since it belongs to the fundamental complex 

R of which a and @’ are conjugate lines, hence the representative sphere is simply the 

other point of intersection of ABC. 
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Similarly aabd gives the other point of section of ABD, 

and aa’cd ” » ” » ” ACD. 

Hence, taking A, B, C, D to be planes, we infer at once that if PQRS be a tetrahedron 

the eight spheres touching its faces are divisible into four pairs such that each pair 

touch the same sphere through the vertices Q, R, S, and similarly for any other three 

vertices. 

25. The manner of dividing the eight touching spheres into the four pairs for 

the vertices Q, R, S is this (as follows from the above); viz. take any sphere touching the 

faces in prescribed senses, then the sphere paired with it is the sphere which touches 

the faces g, 7, s on the same side as the original one, and the face p on the opposite 

side. 

Thus in the usual sense of the word the inscribed sphere and the escribed sphere 

opposite P touch the same sphere through QRS. 

The verification in the case where QRS is any triangle and P is at an infinite 

distance, is immediate: for let O be the cireumcentre, 7 the incentre and JP=7r, then 

the theorem is that the sphere, with O as centre and radius OQ, touches the sphere, 

centre P and radius JP, and this is so for 

OF? = 0F + IP? 

= 00 — 20Q.r+r° 

=(0Q—r/, 
which gives the verification required. 

This is trivial, but it shews how to derive the expression for OJ from purely 

descriptive properties. ; 

Taking five planes, or, what is practically equivalent, five spheres through the 

same point, we have in the line system five pairs of lines aa’, bb’, cc’, dd’, ee’, meeting 

one and the same straight line; we apply our six line theorem to the lines a, a’, b, ¢, d, e, 

and then translating our result into the language of spheres we get the following 

theorems. 
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“Given five planes they form five tetrahedra and taking definite sides of the planes 

we derive an inscribed sphere from each of these tetrahedra, the five spheres so derived 

are touched by one and the same sphere.” 

(This is in fact the translation of the double siwer theorem.) 

“Taking one of the planes A, and definite sides of the others BODE, then we 

derive from each set like ABCD two inscribed spheres touching the same sphere 

through the circle circumscribing the A formed by the lines S, y, 6 in which B, C, D 

meet A; so we get four spheres, call them S,, S,, S,, S;; then also by the translation of 

the double siwer theorem, by taking one side of A we get one sphere, and by taking 

the other side a different sphere; we can assert in virtue of our theorem that these 

two latter spheres touch one of the spheres tangent to the spheres S derived above.” 

Again, taking the six lines a, a’, b, c, d, e, we know from our theorems that the four 

lines derived from the sets 

auwbed, aa'bde, aa'cde, aa’bce, 

and the lines a, a’ are met by one and the same straight line. Now a line meeting 

both @ and a’ belongs to the fundamental complex and hence corresponds to a_ point, 

so we infer forthwith that the spheres S,, S,, S,, S, above meet in a point on the plane 4. 

(This is really just the application of the four line theorem to the lines S, y, 6, ¢, 

but the foregoing serves to explain the theory.) 

26. Taking the elementary proposition in plane geometry to the effect that if ABC 

be a triangle and P, Q, R points on the sides taken in order, then the circles AQR, 

BRP, CPQ meet in a point. I proceed to prove it and to develope similar propositions 

in three and four dimensions. 

B P C 

For this purpose we remark that all circular cubics through A, B, C, P, Q, R pass 

through one other fixed point; hence as three such cubics are 

(1) the circle AQR, and the line BC, 

(2) 5 BRP, 2 ee CAR 

(3) » CPQ, si al costae capes 

we at once infer that the three circles meet in a point. 

Se 



168 Mr GRACE, ON CIRCLES, SPHERES, AND LINEAR COMPLEXES. 

27. To prove the corresponding property of a tetrahedron take A, B, C, D for the 

vertices, a point P,, on the edge in which the faces opposite A and B intersect, and 

so on, then I proceed to shew that the spheres through the four sets of points 

APxPyP%, BPyP.sPs, CPyPi2P os, DP,,P,;P x, 

meet in a point. 

In fact all cubic cyclides through ABCD and the pomts P (i.e. through 10 points) 

pass through five other fixed points; but taking the sphere through A and the face opposite 

A as one such cyclide, and similarly for all four vertices, we find that as the 2nd, 3rd, 

and 4th spheres meet in the A plane, there is one common point in each face: hence 

there is one other common point, and it at once follows that the four spheres pass 

through the same point; a theorem due to Mr 8. Roberts (Proc. L. M.S. 1890). 

28. For the property in four dimensions we take five hyperplanes meeting in sets 

of four in five points and a point on the line of intersection of each three (10 points 

in all), then the five hyperspheres, each of which passes through a vertex and the points 

(four in number) on the edges meeting in that point, have one common point. 

To prove this we consider cubics in four dimensions passing through the imaginary 

sphere at infinity and notice that all through the 15 points mentioned above pass 

through 16 other fixed points. (Cf Art. 17.) 

We take now the five degenerate cubics and remark that, by the last theorem, 

they have one common poimt in each hyperplane (by the 2nd theorem) and one in 

each plane of intersection of two hyperplanes (by the Ist theorem), 15 common points, 

and therefore there is one other common point, and it at once follows that the five 

hyperspheres meet in a point. 

29. The theorem concerning hyperspheres and points may be translated into the 

language of linear complexes and straight lmes as follows :-— 

mana 
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Take five linear complexes having a line in common, each set of four have another 

line in common, thus we get five more lines. Then on the ruled surfaces common to 

each three of the linear complexes take any straight line (10 lines in all). 

In each of the first five lines, these meet four complexes, then in each set of 

three of these, there is a line. Therefore there are four lines of the second set 

connected with any one of the first set and determining with it a linear complex; the 

theorem is that the five complexes so obtained have a line in common. 

Of course, if the second set of 10 lines all lie on the same complex containing 

the original line, this reduces to the theorem already proved. 

SECTION III. 

30. Starting from the proposition regarding the circumeircles of the triangles formed 

by four lines, Clifford, in his paper on Miquel’s Theorem, has shewn that this theorem is 

really the first of an infinite series of such theorems, viz., taking five lines we get five 

sets of four, from. each set of four a point, therefore we get in all five such points, and 

these points lie on a circle; then taking six lmes we get six circles by taking each set 

of five lines, these circles meet in a point, and so on ad inf. 

The theorems are proved by considerations depending on parabolas of class n+1 

touching the line at infinity » times, but as there seems to be no exact analogy to 

these parabolas in space of higher dimensions, the proof has to be modified before we 

can hope to find any corresponding propositions for spheres. 

In the first place we remark that inasmuch as there is no corresponding theorem for 

the five circumspheres of the tetrahedra formed by five planes, there are no exactly 

analogous theorems for space; but as will appear presently, there is an infinite series of 

theorems in space to which there are not similar ones in the plane. 

31. To explain the general principle of the proof adopted here, we remark that the 

theorem concerning the four lines becomes on inversion a theorem relating to four circles 

A, B, C, D meeting in a point, viz. the circles AB, BC, CA have each pair of them 

another point of section, and through the three points of section there is a circle, then 

the theorem derived by inversion is manifestly that the four circles so derived meet in 

a point. 

Thus we have in the figure eight points lying by fours on eight circles, there being 

four circles through each point; in this form there is consequently complete symmetry, as 

has been remarked by several writers (S. Roberts, Cox, de Longchamps, &c.). 

32. In like manner the five-line theorem gives 16 points lying by 5’s on 16 circles, 

and so on. 

But to prove the five-line theorem we have only to apply the four-line theorem in 

the inverted form. 

Vou. XVI. Parr III. 23 
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In fact denote the lines by 1, 2, 3, 4, 5, by C(123) the cireumeircle of the triangle 

re?) 

~ 

formed by 123, by P(12) the intersection of 1 and 2, and by 0(5) the point derived 

from the lines 1, 2, 3, 4 by the lme theorem. 

I apply the inverted four-lme theorem to the 

line 1, and the circles ((123), C(124), C(125) meeting in P,.. 

wf P(12) 

Taking the trio 1, (123), @(124) the derived circumcircle passes through P(13), 

P (14) and 0 (5), therefore it is ((134). 

Similarly from 1, C(124), C(125) we derive C (145); 

and 1, C(125), C1238) f C (135); 

while from C (123), C(124), C(125) we derive the circle through O(3), O(4), 0(5); but 

the former three circles meet in O(2), therefore 0(2), 0(3), O(4), 0(5) lie on a circle, 

and similarly 0(1) lies on the same circle, which is the five-lie theorem. 

For six lines we apply the four-circle theorem to the circles C' (123), C(124), C (125), 

C' (126); this shews that four of the five-line circles meet in a point, and hence they all 

meet in the same point. 
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For seven lines we apply the five-circle theorem to the five circles 

C(123), C(124)... (127), 
and so on ad inf. 

Thus we get Clifford’s set by means of the first only. 

33. Taking now the more general theorem for the triangle, viz. that if points PQR are 

taken on the sides, the circles AQR, BRP, CPQ meet in a point, we proceed to inquire 
whether under any, and if so under what, circumstances the four points so derived from 
four lines lie on one circle. 

Denoting the lines by 1, 2, 3, 4, the points on them by Q,, Q., Q;, Q., their points 

of section by Py», &e., the poimt derived from the triangle 123 by O(4), we then see 
that the following six sets of four points are concyclic, viz. :— 

a, Qo, 0(3), O(4): Q, Qs, 0 (2), O (4); Os. Qs, OF Ox Q:, Q;, 0 (1), O(2): 

Q», Qs, O(1), 0 (3); Q:, Qs, 0:; Os; 

therefore the eight points 

Q,; Q:; Q:; a; 0,, 02; 03, 0, 

are such that any bicircular quartic through seven of them passes through the eighth, 

and hence the necessary and sufficient condition that O,, 0., O,, O, should be on a circle 

is that Q,, @, Q;, Q; should be on one circle. 

34. Taking the points Q,, Q:, @, Q to be on a circle, I proceed to prove the 

result just arrived at, by means of the theorem for three lines. 

In fact through the point @, we have three circles, viz. 

1, through P;,, Q@,, Q@ say a, 

De eran oa 12s (Qh. (a men: 

ShecSemcanee (Vion Dry hte Th, seo 

a and b meet in zt) a point on ¢ is Q,, 

Dee Gieh cate rts (OPE erenoenose cee eee (0) 

C Sak Te Sdvacsindiae ts OO Nivaase shee b 0, 
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Hence the three circles through 

Ox: OF OR Qs, Q; Ore On OF 0. 

meet in a point. 

The latter pair meet again in 0,, 

therefore O,, O., O; and O, are concyclic. 

35. Next take five lines such that the five Q points on them are concyclic, and 

apply the three-cirele theorem to the circles ( (12), C(13), C(14). 

Three points on these circles are 

0(125), 0(135), 0(145), 

where OU (abe) is the point derived from the triangle a, b, ¢; and the circles mtersect by 

pairs in the points 

0 (134), O(124), 0 (123). 

Hence the circles through 

0 (134), 0 (135), 0(145);  0(124), 0(125), 0(145); 0123), 0125), 0135) 

meet in a point. 

The first of these circles is the cirele derived from the lines 1, 3, 4, 5 by the four- 

line theorem, say ('(2), therefore C2, C3, C4 meet in a point. 

Similarly by considering 

(12), @(13), C(15) 

we find that C(), C(3), (5) meet in a point. One point of section of C2, C3 is plainly 
0 (145), and ( (4) does not pass through this, so it at once follows that the five circles 

C(1), CQ), (3), C4), C() 
meet in a point. 

Thus given five lines and five concyclic points on them we get jive sets of four, from 

each set of four a circle, and the five circles meet in a point. 

36. Next take six lines with six concyclic points one on each of ‘them and apply 

the four-line theorem to the circles ((12), @(13), C (14), C(15) through Q,, there 

being on them the four concyclic points 

O (126), O (136), O (146), O (156), 

viz., these points lie on the circle C (16); but as this latter circle also passes through 

Q, we practically apply Clifford’s jive-line theorem to 

Cro, Gy, Ca C3, Cre: 

the point derived from the first four circles is the point derived from the lines (1, 2, 3, 4, 5) 

by the five-line theorem, hence the application tells us that given six lines we have 

six sets of five, from each set of five a point, and the six points so derived lie on a circle. 
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Then taking seven lines we apply Clifford’s six-line theorem to 

OUiDy, “(18), SPC. (7), 

and we get the next theorem, viz. 

Given seven lines, and seven concyclic points on them, we get seven sets of six, and 

from each set of six a point by the last theorem, the seven points so derived ure concyclic. 

Then taking eight lines, and eight concyclic points one on each line, we get eight sets 

of seven and from each set of seven a circle, these eight circles ineet in a point. 

And so on ad inf. as in Clifford’s theorems, viz, we prove the theorem for x lines 

by applying Clifford’s n—1 line theorem to the »—1 circles, 

Cs; Cr, ae Cu. 

This set of theorems reduces to Clifford’s if we allow the circle on which the Q points 

lie, to degenerate into a straight line. 

SECTION IV. 

37. Adopting a method similar to that already used for the triangle we proceed 

to investigate similar extensions of the tetrahedron theorem. 

For this purpose consider five planes 1, 2, 3, 4, 5 and a poimt P,, on each line 

of intersection. 

Let the planes 1, 2, 3 meet the line 45 in the pomts LZ, M, N and apply the 

inverted tetrahedron theorem to the four spheres meeting in P,,, viz., 

a, the sphere through LZ, Py, Pi, Ps; 

bs 55 . JE TP, Tere 

Csi ‘5 % IN TERS WER Je 

d, the plane 4. 

Then a, b, c meet in a point Q again, 

Eid tye. O(E25) 4: 
OO Gh. op 3 »  0O(135) 4, 

(Gh os ‘ »  O(285) 4. 

A point on a and b is 0 (1245), 

i dls Dmtide LE » O (2345), 

ee ee ©. 3145), 
ae inl cee ule 

wee a OF” |, Px 

See ee Cason a TEE 

And the notation shall now be explained. 
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In fact 0(125)4 denotes the point derived from the triangle in which the planes 

1, 2 and 5 meet the plane 4, by means of the triangle theorem. 

12n M=P o45 

x 5 

Viz., it is the point of intersection of the three circles 

DOP hg Me hg bss Peis sas os 

denoting by Py, the point where the planes a, b, ¢ meet so that 

Eee Ni oe 

Then 0 (1245) is the point derived from the tetrahedron formed by the planes 

1, 2, 4, 5 by means of the tetrahedron theorem; in fact it is the point where meet 

the four spheres, 

Brig, Paes bias easy ase ee eee Ps; 1 Pg Jeg Wei ERR. Tern Jeep Pr, Pra; 

and for shortness we may denote these spheres by 

Sus, Sos, Stu; Shas, 

respectively. 
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Thus, having explained the notation, we find that the four spheres 

abe, ab, be, ca, 

Q, 0(1245),  0(2345), 0(3145), 

abd, ab, bd, da, 

O (125) 4, O (1245), Po Pi, 

bed, be, cd, ab, 

O (235) 4, O (2345), 125. eae 

cad, ca, ad, cd, 

O (315) 4, O (3145), Te. 122, 

meet in a point. 

Consider the second of these spheres, its section by the plane 4 is the circle 

P,,, Py, 0(125)4, which manifestly passes through P,,,, and since the sphere passes 

through P,,, P,,, Ps, and 0(1245), it is simply the sphere P,,, Py, Py, Pw, or Sys. 

Similarly for the third and fourth, and hence we find that the four spheres 

Q, 0 (1245), O (2345), 0 (8145); Sy, Sis, Sus, meet in a point: 

and as the last three meet again in 0 (1234) we infer that 

O (1234), O0(8145), O (2345), O(1245), and Q 

are cospheric. 

Now Q is a point which may be denoted by Q,;, viz. it is the point of intersection 

of S145, Sas, Sous 

Therefore by considering the plane 5 instead of 4 in our application of the 

tetrahedron theorem, we find that 

O (1235), 0(3145), 0 (2345), O(1245) and Q,,, 

are cospheric, hence the five points, 

O (1234), O(1235), O(1245), O(1845), O (2845), 

le on a sphere which passes through Q,,, and therefore by symmetry through all such 

@ points which are ten in number. 

Hence we get the first extension, viz., taking jive planes and a point on each line 

of intersection, we have five sets of four, from each set of four a point is derived and 

the five points so obtained lie on one sphere. 

38. Consider now 6 planes, let the first four 1, 2, 3 and 4 meet the line 56 in 

L, M, N, R, and apply the tetrahedron theorem to the four spheres 

Sass; Sore ? Sass Suse; 
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meeting in P,,, then we denote by Q(56)4 the point of intersection of Sj55, Sas, Sass; 

and observe that this point les on the sphere S, obtained from the five planes 

1, 2, 3, 5, 6 by the preceding theorem. 

Calling the four spheres a, b, c, d for brevity, our theorem for the tetrahedron in its 

inverted form tells us that if we take a point on each circle of intersection of these 

four taken in pairs, then drawing a sphere through Py,, Pay, Pre, Pea the four spheres 

derived in this manner meet in a point. 

Now for Pw we may take O (1256), 

D abet Eos » 0O(3456), and so on. 

Consequently the four following spheres are concurrent, 

Q (56) 4, O (1256), O (2356), O (3156), 

Q (56) 3, O (1256), O (2456), O (4156), 

Q (56) 2, O (1356), O (3456), O (4156), 

Q (56) 1, O (2356), O (3456), O (4256), 

but the first of these spheres is simply S, since all its four points lie on S, and are 

not coplanar, similarly for the others, and therefore S,, S., S,, S, meet im a point. 

Consequently of the six spheres S,, Ss, Ss, S;, S;, S; any four meet in a point, and 

it at once follows that they all meet in a point. 

We may remark that the three spheres S,, S., S,, meet on S,, in virtue of the 

triangle theorem, so that this accounts for the other intersections of the six spheres 

taken in threes. 

39. Takimg now seven planes and a point on each lie of intersection we apply 

the five-plane theorem in its inverted form to the 5 spheres Sj, Sos; ... Sy, thus we 

find immediately that the points derived from the sets of six obtained by omitting 

1, 2, 3, 4 and 5 im turn lie on a sphere. 

Hence given seven planes we have seven sets of six, from each set of six a point ts 

derived and the seven points so obtained lie on one sphere. &c., We. 

40. Hence we get the following infinite set of theorems analogous to Clitford’s for 

plane geometry but possessing greater generality. 

Given four planes, and a point on each line of intersection, we get four spheres meeting 

in @ point. 

[Before this we might place the obvious fact that given three planes and a_ point 

on each line of intersection we get a sphere through four points. ] 

Then given five planes and a point on each line of intersection, we have five sets of 

four each giving rise to a point, the five points are on a sphere. 
——_ 
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Given six planes and a point on each line of intersection, we have six sets of five 

each giving rise to a sphere, the six spheres meet in a point. 

Given seven planes, we have seven sets of six, from each of these we get a point, and 

the seven points so obtained lie on a sphere. 

Given eight planes, we have eight sets of seven, the eight spheres so obtained meet in 

a point. 

Given nine planes, we get nine points on a sphere, and so on ad inf., viz., to prove 

the theorem for n planes we apply the inverted form of that for n—2 planes to the 

n—2 spheres S,, n—-1, n> S., n=l, Rss Sma aati 

41. As has been already remarked, greater symmetry is given to the results just 

obtained, by inversion with respect to any point. In fact the planes we start from now 

become spheres through a given point, and the edges become their respective circles of 

intersection. Let us briefly consider the system derived from five planes. 

Retaining our previous notation we perceive that a plane of the system contains 

15 points, viz, the point at infinity, six vertices, four P-points and four points of the 

type O(pqr)s. 
Again a sphere of the type S,,- contains 15 points, viz. one vertex, three P-points, 

two points of the type O(abcd), six points of the type O(abc)d, and three of the 

type Qav. 

The final sphere contains 

five points of the type O (abcd), and ten of the type Qu. 

Hence we have in all 16 spheres, each containing 15 points. 

The total number of points is 56, viz. one at infinity, ten vertices, ten P-points, 

20 points of the type O (abc) d, ten of the type Qs, and five of the type O (abcd). 

Through the following there pass five spheres :— 

The one at infinity, the P-points, and the points O(abed), and through the rest, viz., 

The vertices, the points O(abc)d, and the points Q,», there pass four. 

Thus the whole system consists of 56 points lying by fifteens on sixteen spheres, 

there being five spheres through sixteen of the points and four through the remaining 

thirty. 

SECTION V. 

42. I proceed now to the discussion of the system of points derived in lke manner 

from any number of planes. The processes involved are hardly more than mechanical, 

when once a comprehensive and luminous notation for the points and spheres of the 

system has been fixed upon. 

Such a notation I shall now endeavour to explain. 

Vou. XVI. Part III. 24 
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43. The planes with which we start are denoted by the letter S with a single 

suffix, as S,, &c. 

Then, from three planes we derive a sphere which we call Say. 

From five we derive a sphere Syycae, and so on. 

Again in the line of intersection of two planes we have a point Oy. 

From four planes we derive a point 0 (abcd), 

SIRS ceeds oe oiawveicceseckerseeceeccece O (abcdef ), 

and so on from any even number of planes. 

Further* Syzc, Sasa, Saca meet on S, (line theorem), 

ates, Sands Wate liosesecsceeee Saveae (five-plane theorem). 

Also, in our proof of the five-plane theorem we may write 
Ua U 

S’.=Sae, S’a=Sava, and so on, 

and then inasmuch as S‘cae, Seat, Saep meet on S'o, 

we find that Sanedes Saveas, Sadcer Meet on Save. 

Since also S‘caey S‘cag, S'cag meet on Scaeyg, 

we see that Savede, Saved, Sadedg Meet On Savedesy- 

Then applying these two results to the accented system we infer that 

Sanedefg Sristeriin Sabedehf meet on Sabedas 

Savedefg, Sabedephs Sadedefi Meet ON Sadedesonis 

and so on ad inf. 

44. The points where these sets of four spheres meet, lie on no other spheres of 

the system we are considering; but as regards an O-point, there are always n spheres 

through it, as we see as follows: 

Through a point O., we have 2 of the type S, and n—2 of the type Sy, 

wee cecccccccsccccccccce Oadeae wis cote et PUR RE isc toe se see NUS At, cotoake endian Sixes 

wee cee ecccccccececcsces Oabedes WEees See ee TO Roan neesecanseee abode Rik WSO eteens deena Sabedefg » 

and so on, x being the number of planes with which we start. 

On any sphere there lie x O-points. 

The sphere S, contains 0O,(at infinity) and n—1 points of the type Ou, 

aah bee See Bra Sabie -sesseeoct GOL UDO byPONOme secs Ute comcnciecccedeecesen Onneas 

SHOSOO SONG COOOL Sabdede aecinsoseey UD ine cen OE Oe RIVED dunassanwceronaeees Qaerys 

and so on generally. 

* S, S, S, meet on S,,, by hypothesis. 
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The number of O-points is 

n(n—1)(n—2)(n—38 em I)(n—2)(n— 8), | n(n—1) 

Sou papa 4! 

= 2n-1, 

The number of spheres is 

aah} ee ne n(n _ Dee 

=n 

There are n O-points on each sphere, and n spheres through each such point. 

We denote a point where meet Sz,  S;,  S, by A,(type), 

SOU GE REDS ESRC OE ST ODES BRC ea TEER Siro, Sirith She nde 4! 

af 
a eee cece cee e nee senccesessessseesecesesees atedas Sabeas Sands eee Jal, 

t 
sence A, ae ctoiors ete eine eleletsratenslcto eye Sater sisiavets Secs sw = DD BBEdA's 

A, lies on one sphere of the type Sure, 

and so on. 

Also we denote a point where meet Sgrc, Sava, Saca by A, (type), 

wale eclecise sic cscccuicenencievacecccceseccicessccacecs Sabedes Sabedy Sabcer eee A; 

A, lies on one sphere S;, 
ae Se i sens ea Soe 

Here is to be noticed that each A-point les on four spheres. 

The point of intersection considered being the one through which only four 

spheres pass. 

The number of points A, is fees 

n(n—1) (n—2)(n— 3)(n—4) 
Renew en ee ewww eee een eneeeeene Als eee 2! 3! 

A n(n —1)(n— 2) (n—3) (n—4) (n — 5) (n — 6) 
Pace Meeeenseata sewed sie Giateinet riche 31 : 

Beetaicneeeeeaas cn seneneseshise (C205, SBS Rcadeo des cHORCOSSTRRERT COREE DACRE ADOS- COR uOIScBREEAE ono 

Saha eichiew sama cele asien wsrbauleattine 7\5y 008 ce to 2) ; 
3! 

n(n—1)(n—2) (n—3)(n—4)(n—5) 
Sb acocntenTeoAnterecneerrocn 7: ae = = ; 

3! 3! 

AccodeeOnneencepcocmeoceeeenar (YDS ogoaer CaSO ood COCe EORO RO CER OOEE ELEC OCOICOGEERCEOC 

24—2 
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and therefore the total number of A-points is 

Se a | 
3! 

_n (n—1) (n=2) 5,5 

3! as 

n(n—1)(n—2) 

2! 45. Finally each sphere contains A-points, as we shall now prove. 

The sphere S, contains the following, Viz. : 

(n—1)(n—2) 1 points «Ao, 

—1)(n—2)(n-8 or) (nD 

or ioe ese! oe =2) 9 in all. 

The sphere S,»- contains 

1 poimt Ay, 

3 (n ar 3) ”? AG 

3 (n—3)(n—4) 
2 ! ” iélon 

(n— 3) (n—4)(n— 5) 
3 ! ” A;, 

Sa eS) ; 

viz. a : in all. 

The sphere Sgicae contains 

Looe eee 

5.4 
iho (n= 5) » AS; 

5. (n— — 6) 4 

(n— 5) (n—6)(n—7) 
3! 

_n(n=1)(n—2) 
in all 31 
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A sphere with (27 +1) suffixes contains 

(2r + 1) (2r) (2r — 1) 
points Ay», 

3! 

(2r +1) 2r 
7: iPr (n a 2r = 1) ”» Any 

n—2r—1)(n—2r—2 
(2r +1) § a “ = ) ” Ar, 

(n — 2r —1) (nm — 2r — 2) (n — 27 — 3) 
3! » Jalen cate 

On n(n —1)(n—2) a 
3! 

46. Thus, to sum up, we have a system consisting of 2” spheres, 2"-' O-points, 

n(n—1 —2 ; > - — —2 
and a! 2"-* A-points; each sphere contains » O-points and se is Be) 

A-points; each O-point lies on n spheres, and each A-point lies on four spheres. 

Eg, n=5 gives us 16 Q-points and 40 A-points, and there are 15 points on 

each sphere. 

n=6 gives us 32 O-points and 160 A-points, and there are 26 points on each 

sphere, 

The O-points form a system analogous to the whole system in Clifford's Theorems, 

viz., there are 2” of them lying by n’s on n spheres. 

SECTION VI. 

47. In the systems of points and spheres already considered, there are, it will be 

observed, two classes of points; through the smaller class of points in the general case 

there pass n spheres, while through the other only four spheres pass. 

There is not, then, complete symmetry in any system, except that derived from 

four planes, and here we have five points, through each point pass four spheres, and 

on each sphere there he four points. 

I proceed now to explain how systems of points may be derived from more than 

four planes such that through each point pass the same number of spheres, the 

complete set of points and spheres being analogous to the inverted form of Clifford's 
Theorems. 

48. For this purpose I remark that in the case of n planes, already considered, 

we took a point on each line of intersection; if these points be taken in one plane 

we get a system of points derived from n+1 planes, then taking each plane in turn 

as the additional one we have the foundation of the symmetrical system of points. 
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The general method is to apply the inverted form of theorems obtained previously 

to the case of the spheres passing through the point where three of the planes meet. 

The general systems seem rather complicated, though the difficulties are perhaps super- 

ficial rather than essential, so in the present pages only the complete systems derived 

from five, siz, and seven planes will be considered. 

49. It may be convenient to state the results at once and obtain them afterwards. 

They are as follows :— 

From five planes we get a system of 16 points lying by 8’s on 10 spheres, there 

being five spheres through each point. 

From six planes we get a system of 72 points lying by 16’s on 27 spheres, there 

being six spheres through each point. 

From seven planes we derive a system of 576 points lying by 32’s on 126 spheres, 

there being seven spheres through each point. 

In the case of eight planes the system will consist of a number of points lying 

by 64's on spheres and there will be eight through each point, but I do not go into 

this fully at present. 

50. I. Five planes. 

Here all is well known, viz, if the planes be a, b, c, d, e, the circumspheres of 

the four tetrahedra formed by e and the others meet on e, and similarly for a, b, c¢ 

and d. Thus we have 10 vertices and one point in each plane and then inverting 

with respect to any point we obtain the complete system as indicated. 

51. Il. In the case of six planes we use the following notation :— 

Py; for the point of intersection of the planes 1, 2, 3; Q,., for the other point 

of intersection of the three circumspheres through this point; S,; for the sphere derived 

from the first five planes by taking the subsidiary points on the 6th, and so on. Also 

O (abed)e means the point derived from a, b, c, d when the subsidiary points lie on e. 

Thus through the poimt Q,. there pass six spheres, viz. three circumspheres and 

the three spheres S,, S,, 8S; So far then we have 71 points and through each of 

them pass 6 spheres, viz. 

One at infinity through which the six planes pass. 

20 vertices through which pass three planes and three circumspheres. 

20 (-points. 

30 points, five in each plane, the five in fact derived by taking the other planes in 

sets of four. Through these pass one plane, one S,, and four circumspheres. 
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We shall now shew that the spheres S,, S,, S,, S,, S,, S, meet in a point. 

In fact, apply the inverted form of the tetrahedron theorem to the four spheres 

Sto, Sysis, Sons, Suos, Which meet in a point on the plane 5. Calling them a, b, c, d for 
shortness, we remark that 

a, b, c meet in the point O (1235) 4, 

on a, b is the point Qs, 

» Qus; 

7 Quis, 

hence the sphere derived from a, b, ¢ is simply S,. 

” Cc, a ”» ” 

Consequently S,, S., S;, S,, meet in a point, and in like manner so do any four 

of the six, consequently the six meet in one point. 

Now we have 72 points, and there are 27 spheres, viz., 

6 planes, 15 circumspheres and S,, S,, S;, S,, S,, S;. 

On a plane lie », 10 vertices, and 5 O-points. 

On a circumsphere lie 4 vertices, 8 O-points, and 4 Q-points. 

On an S sphere he 5 O-points, 10 Q-points, and the point last obtained. 

Thus inverting we have the complete system already indicated, and we may remark 

that starting from the six spheres meeting in any point we can derive the whole 

system in exactly the same way as we have derived it from the six planes. 

52. III. Taking now the case of seven planes we denote them by 1, 2, 3, 4, 5, 6, 7. 

S (1234) denotes the cireumsphere of the tetrahedron formed by the planes 1, 2, 3, 4. 

S(q, b) denotes the sphere derived by omitting the plane @ and taking the subsidiary 

points on the plane b, and in general @ means that the plane a is omitted; 6 means that 

the subsidiary points are taken on b. 

The three planes 1, 2, 3 meet in P,;, and the four circumspheres through this point 

meet again in sets of three in four new points. 

The sphere through these points belongs to our system, and we denote it by S(123). 

The further notation is explained as it is introduced. 

We apply some of our previous results to the system 

a B OY 6 

1, 2, 3, S(12384), S (1235), S (1236), S (1237), 

and denote the four latter, for brevity, by a, 8, y, 8 respectively. 



184 Mr GRACE, ON CIRCLES, SPHERES, AND LINEAR COMPLEXES. 

There is little difficulty in seeing that 

S (aBy/3) = (123), 
S(1Py78) = S(4 1), 

S (2878) = SG 2), 
and so on. 

Hence as S(1a88), S(1By8), S(1yaéd), S (ays) meet on 6, we infer that 

Sj.5 passes through the point on S(1237) in which concur S (41), S(51), S (61). 

By symmetry, then, through the same point also pass $(137), S(127), and hence 

through all such points as this we have seven spheres. 

From our six-plane theorems we infer that the spheres 

S (1878), S (2878), S(aB78), S38), S (By), 8(38) 
meet in a point; we proceed to shew that S(8) is simply the sphere S (125). 

One point on S(38) is the point where meet S(128a), S(12By), S(1288). 

Now S (128a) = 8S (1245), 

S (126y) = 8 (1256), 

S (1288) = S (1257), 

these being easy deductions from the theorem regarding the circumceircles of the triangle 

formed by four lines. 

Thus one point on S(38) is the point where meet S (1254), S(1256), (1257), or as 

we may call it, Q(1253). 

Another point on S (88) is the point on which meet 

S(12a8), S(12y8), S(layB), S(ay8), « 8. 

Now these are respectively 

S (1245), S(1265), S(71), S(72) and S(1235); 

therefore on S(38) is the point where meet 

S (1254), S(1256), S (1253); 

that is the point Q (1257). 

Similarly the points Q (1254), Q (1256) are on the sphere, and therefore it is the 

sphere S (125). 

In like manner S (3y) = S (126), 

S (38) = S(127), 
and hence we infer that 

S(41), S(42), S(123), S8(125), §(126), S(127) 

meet im a point. 

This point may be called R (124) without confusion. 
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53. Again S(®8yd) passes through the point on S(aPyé) in which concur 

S(18), S(28), S(3~), 
ze. through the point in which meet 

S(123), S(125), §(815), (235). 

Similarly through the point on S(18y8) in which meet S (28), S (38), S(a8). 

Now S(1By8) = 8 (41), 

. S@8) =S(135), 
S(3B) =8(125), 

and I proceed to prove that S(@8)=S8(45) so that in this point there meet 

S(41), (45), S(185), (125); 

therefore through the same* point pass S(165), S(175). 

Consequently S(bed) passes through the following points: 

R(154), R164), R174), 

R(254), R(264), R(274), 

R(354), R(364), R (374). 

If we interchange 3 and 5 four of these points are unaltered so the sphere is un- 

altered, and thus if any of the numerals 1, 2, 3, 5, 6, 7 are interchanged the sphere is 

unaltered; therefore this sphere may be consistently denoted by S(4) for it is symmetrically 

situated with respect to 1, 2, 3, 5, 6, 7. 

< 

54. We have now to identify 

S(a@B) and S (45). 

A point on S(@8) is where meet 

S (1238), S(128y), S(138y), 8 (23Ry), 
i.e. where meet 5, (1256), S$ (1356), $(2356) and S (1235), 

we shall call this point O (1236) 5. 

Another such point is manifestly where meet 

(1238), S(1288), S(1388), S(2388) or O(1237) 5. 

A third point is where meet 

S(12y8), S(1288), S(1y88), S (2788), 
or the point where meet 

S (1256), (1257), S(41), S(42): 
and through this same point pass also 

S (1253) and S(45) 

for it must be the point @ (125 4). 

* This point is R (154). 

Vou. XVI. Parr IIT. 25 
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A fourth point is where meet 

S(1387), S(1388), S(1y88), S (2788), 

and passing through this point we therefore have 

8 (1356), S(1357), S(41), S(42), S(1352), S (45). 

Similarly, we obtain a fifth point, and so on, and as all lie on S$ (45), we have 

S (a8) = 8 (45). 
Now we have proved that 

S(By8) = S(4), 

so in like manner S(yda) = S(5), 

S(8a8) = S(6), 

S(aBy) = S(7). 

But we have seen that S(@y8) passes through the point on S(a@yd) in which meet 

S(1p), S(28), S (38) (see p. 184, line 7), 

ue. S(4+) passes through the point in which meet 

(123), (235), (315), (125). 

Therefore four spheres of the types just written down meet in a point, and this 

point by symmetry is on S,, S; and S,. 

Hence S(By8), S(yda), S (8a8), S(aBy) 

meet in a point and therefore the spheres 

S(4), S(5), S(6), S(7) 
meet in a point. 

Thus any four of the seven S,, S,, S;, S,, S;, S;, 8, meet in a point, hence aa 

all meet in a point and this point completes the system. 

55. We shall shew the connection of the final poimts in the six-plane system with 

our present configuration. Viz., we know that 

S(1By8), S(2878), S(B8y8), 

S(a8), Sy),  S8(ad), 

meet in a point which is on S(@y8). 

Consequently 

SD, S42), S(43), S45), S46), S(42), 
meet in a point which is on S(4), and this point is manifestly the point derived 

from the six planes 1, 2, 3, 5, 6, 7. Calling it N,, we see that S(r) passes through 

N(r) for each value of r. 
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56. The complete system of points obtained then is as follows :— 

A. 1 at © through which pass the seven planes. 

7.6.5 
T2738 735 vertices through which pass three planes and four circumspheres. B. 

C. 7X Fa 105 points of the type 0(1234)5 through which pass one plane, 

four circumspheres, and two spheres S (65), S (75). 

D. 7X1=7 points of the type O(123456)7, through which pass one plane and 

the 6 spheres 

STD) S QTY sess S (67). 

= 6.5.4 F = . 
E. Xs = 140 points of the type @(1237), through which pass three 

cireumspheres, 

(123), S(71), S(72), 8 (73). 

6 4 F : : 
F. ce ee ae ts 140 points in which meet such sets of spheres as 

35° 
Tae 

S (123), S§(127), S(137), S(1237), S(41), S(51), S(61). 

6.5 : - 
G. 7X7—3= 105 points of the type (124), through which pass 

S(41), S(42), S(123), S(125), 8 (126), (127). 

Z-S-3=35 points in which meet such sets of spheres as 

S (123), S(234), $(341), (412), S(5), S(6), and S(7). 

J. 7 points N in which meet such sets as 

S(71), S(72), S(73), S(74), (75), S(76) and S (7). 

J. A final point in which meet 

Sty Si, Bey Sa Be We bial Se 

In all we have 

14+ 3854 105 + 7+140 + 1404 105435 +7 + 1=576 points. 

Of spheres there are 126 made up as follows: 7 planes, 35 cireumspheres, 35 of 

the type S(123), 42 of the type, S(41) and 7 of the type S(r). 

Also each sphere contains 32 points; we shall enumerate the points for each class 

25—2 
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of sphere in a table; for this purpose we denote the classes of points by the capital 

letters opposite them. 

A B C DD £ F G | I | J | Total 

a | — 
Plane contains 1 15 15 1 32 

| | 

Circumsphere et Wh abe 1D vi) awk 32 

a : : ote, aan 

S (123) | 4 12 | 12 4 32 [rasheyet 

S (41) | 5 1h LO AGiag| 5 1 Ae aes 
Be | — =] | 

S(r) | a | | ela 
| | | 

ee Sls 
il aay points} 1 | 35 | 105 | 7 | 140 | 140 | 105 | 35 | 7 | 1 | 576 

SECTION VII. 

57. In virtue of the general principles explained early in this paper, all our propo- 

sitions relating to spheres and points may be immediately transformed in two different ways. 

I. All points are replaced by lines belonging to a given linear complex, and all 

spheres by complexes in involution with the given one. 

II. Then we may replace all the lines by circles and the linear complexes by circles 

with associated angles in such a way that two intersecting limes correspond to two circles 

which touch, and a line belonging to a linear complex becomes a circle cutting a given 

circle at a given angle. 

58. I will not trouble to translate all the propositions obtained above in this way, 

but give only some general considerations, which will afford an idea as to the nature of 

the propositions obtained in each of the two classes. 

59. Let us take the tetrahedron theorem, viz. points PQR, P,Q,R, are taken on 

the sides of a tetrahedron as in the figure, then the spheres 

AQRP,, BRPQ, DP,Q,Rf,, CPQR, 
meet in a point. 

Taking a fixed linear complex R, the four planes become complexes in involution 

with it and having one of their common lines belonging to &. Any three of them and 
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R have a further lme common, the four lines so obtained correspond to A, B, C, D, 

call them a, b, c, d; also in the ruled surface common to each two and R we take a 

A R B 

line, the six lines so obtained correspond to P, Q, R, P,, Q,, R, and are denoted by 

P@ 7; Pr G, M1; then d, p,, %, ™ and similar quartettes determine a linear complex in 

involution with R, and the theorem is that one of the two lines common to the four 

hnear complexes so obtained belongs to R. 

Taking five linear complexes, in involution with a given one R and containing a 

given line of it, and a line in the ruled surface common to each pair and R, we get 

from each set of four a line belonging to R, these five lines belong to the same complex 
in involution with R&. 

Then taking six complexes (still in involution with R) we get six sets of five, from 

each set of five is derived a linear complex by the last theorem, and the six complexes 

so obtained are such that they have a common line belonging to R: and so on ad inf. 

Further, starting from five complexes in involution with R we can build up a set 

of 16 lines belonging to R lying by 8’s in 10 linear complexes in involution with R, 

there being 5 complexes containing each line. 

Then, starting from six complexes, we find a system of 72 lines in a linear complex 

lying by 16’s in 27 linear complexes in involution with the given one. 

Starting from seven complexes we find a system of 576 lines in a linear complex 

lying by 32’s in 126 linear complexes in involution with the given one. 

60. In circle geometry we get the following :— 

Four circles L, M, N, R cut a given one OU at angles X, yw, v, p respectively, cutting 

LI, M, N at angles A, pw, v we have an associated circle (viz. the inverse of QO with 

respect to the orthogonal circle of LZ, M, N); call this R’ and derive L’M’N’ in a similar 

manner. 

Then take any circle P, cutting WM and N at angles yp, 

Ree esos ctelostceeceres Merrett Vat ose Dr. doen se sesausp Dict 

Sisteittclelsitlals/<ia.aisiveintciaie/aein sia do oe cee eCOe | See Ce ea PEPER eee Oe TT? 

AccSsc Rees rebesreneac aaaHe 1 “codcéccoutie Dap Seo {EEC OPOREEARE) OY) 

2 OC COL SHORODEE ECCT BERCE Gilets BG MAT st St Se Kp 

SAQDOSE ARO ORCHEORO SANE Gee eee Nags LEG .ieece avons By ps 
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We have a circle D cutting R’P.Q.R, at equal angles 6 (say) 

He Dy coe: Aer 2) pape Muitrive, belie sag 
Ee ei Bee ae OO Re Be sa eR 
Pc eee OR RR PO: Se ey 

and the theorem is that there exists a circle cutting A, B, C, D at angles a, B, y, 6 

respectively. 

61. In this connection there arises a difficulty, which it is not very easy to satis- 

factorily explain, viz. as to which of the eight circles (in the extended sense of the 

word) cutting R’PQR at equal angles is to be selected. 

To settle this point we must remark that circles cutting a given circle at a given 

angle correspond to the same lmear complex as those which cut it at the supplementary 

angle, but in the one case their radius is taken positively, and in the other negatively. 

If now R’ cuts L, M, N at the same angles precisely as O does, then the radius 

of R’ is to be taken positively, but if it cuts them at the supplementary angles the 

radius must be taken negatively. 

Similar considerations apply to Z’M’N’ and also to the circles P.Q.R., P,Q,R,. 

Then the circle cutting R’P.Q.R, at equal angles in our theorem is that one which 

cuts those of negative radius at the one angle and those of positive radius at the 

supplementary angle, so that in point of fact there is no ambiguity about the theorem, 

though it is difficult to state it precisely and concisely. 

Like considerations must settle the sign to be given to the sign of the radius of 

the final circle. 

62. Then taking five circles cutting the given one at angles a, B, y, 6, € we 

derive from each set of four a circle by the foregoing, and its radius sign can be 

by one and 
” determined also, then the five circles so obtained are “cut at equal angles 

the same circle, and so on ad inf. 

63. Starting from five circles we can build up a system of 16 circles, such that 

they are cut in sets of 8 at equal angles by ten circles. 

From six circles we find a system of 72 circles, cut in sets of 16 at equal angles 

by 27 circles. 

From seven circles we build up a system of 576 circles, cut in sets of 32 at equal 

angles by 126 other circles, each of the 576 being cut by seven of the latter system 

of circles. 

In these enunciations an angle and its supplement are taken to be identical; it 

would take too long to make these theorems precise from this point of view. 

Fv 



VIII. Partial Differential Equations of the Second Order, involving three in- 

dependent variables and possessing an intermediary integral. By Prorgssor 

A. R. Forsyra. 

[Received 8 November, Read 22 November, 1897. | 

1. The theory of partial differential equations of the first order in one dependent 

variable and any number of independent variables may be regarded as fairly complete : 

and, though in a slighter degree, the same may be said of partial differential equations 

of the second order in one dependent variable and two independent variables. But for 

equations of order higher than the first involving more than two independent variables, 

the amount of progress made is slight as compared with what has been secured in the 

cases already mentioned.* 

The present paper deals with those partial differential equations of the second 

order, involving one dependent variable (say v) and three+ independent variables (say 

x, y, 2), and possessing an intermediary integral of the first order. The derivatives of 

v of the first order with regard to a, y, z are taken to be /, m, n; those of the 

second order are taken to be a, 6, ¢, fi g, h. 

2. The memoiw by Vivanti already quoted deals with such equations as in their 

intermediary integral contain an arbitrary function of two arguments. The general 

integral of this imtermediary equation will introduce another arbitrary function of two 

arguments; and thus, in the primitive, a couple of arbitrary functions, each of two 

arguments, will occur—a result which is a 

* The chief memoirs upon the subject with which Tam 

acquainted are the following :— 

Backlund, Math, Ann., t. x1. (1877), pp. 199—241. 

5 ib., t. xm. (1878), 68—108. 

51 ib., t. xm. (1878), 411—428. 
Beudon, Comptes Rendus, t. cxx1. (1895), pp. 808—811. 

Hamburger, Crelle, t. c. (1887), pp. 390—404. 
Sersawy, Wiener Denkschr., t. x~1x. (1885), pp. 1— 

104. 
Tanner, Proc. Lond. Math. Soc., t. vit. (1876), pp. 43—60. 

ib., t. vi. (1876), pp. 75, 90. 

ib., t. rx. (1878), pp. 41—61. 

ib., t. rx. (1878), pp. 76—90. 

particular case of a more general theorem. 

Vivanti, Math. Ann., t. xuvim. (1897), pp. 474—513. 

v. Weber, Math. Ann., t. xuvu. (1896), pp. 230—262. 

And it should be added that, in the development of the 

subject, I am indebted to the memoir by Imschenetsky, 

Grunert’s Archiv, t. trv. (1872), pp. 209—360, and the 

memoir by Goursat, Acta Mathematica, t. x1x. (1895), pp. 

285—340: both of which deal with partial differential 

equations of the second order in two independent variables. 

The present paper gives the extended form of several of 

their results. 

+ Many of the results can immediately be generalised to 

the case when the number of independent variables is n; 

it has not seemed necessary to state these explicitly. 
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Vivanti’s investigation is, in fact, the extension to three independent variables of the 

Monge-Boole problem in two independent variables; as he enters into considerable 

detail, it will be discussed only briefly here and by a different method. 

It need, however, hardly be remarked that the generalisation thus effected is not 

the only possible source of an equation of the second order having an intermediary 

integral. For example, if 

U=0 

be an equation involving v, 1, m, n, #, y, 2, then a combination of 

=i) dU 6; au = (0) ae) 
dia: dy 7] dz 

leads to an equation or equations of the second order having U=0 for an intermediary 

integral. It is unnecessary to specify the mode of combination; it might arise from 

the elimination of three arbitrary constants, or from the elimination of one arbitrary 

functional form and one arbitrary constant, or in other ways. But im view of the 

developments effected in connection with the Monge-Boole form, it is natural to begin 

with equations of a corresponding form. 

We accordingly, in the first place, assume the existence of an intermediary integral 

of the form 

FO, $, *)=0, 

where F is an arbitrary functional form and @, ¢, wW are definite functions of v, 1, m, 

n, «x, y, z Then in order to construct an equation of the second order having F'=0 

for an intermediary integral, it is sufficient to eliminate aioe between the 
00” db’? dv’ 

three equations 

OF dd, OF dp | OF dy _ 
20 da * ap de * dy dx 

oF dé oF dd , dF dy 
00 dy dpdy dy dy 

aF dd oF dd , OF dy _ 
So dzaneirde * ppide ty © 

=0 

= 0) . 

De Ge tl : 
where ie dy ae respectively denote 

Z. U ps a CE us 
aa rd) al am "7 an’ 

0 a) 0 

ay ta wth ath aa th me 

a) r) a r) a 

Bz nas apne: ott tam, to an’ 
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The result of the elimination is 

DA 

+PA+QB+ RO+2SF4+27G +2UH 

+Ia+Jb+Ke + 2L0f+2Mg +2Nh + W=0, 

where A =| a, h, g | =abe+ 2fgh — af? — bg? — ch’, 

h, 1b, f 

gfe 
A=lbe—-f*?, B=ca-g*, C=ab—Hh’, 

F=gh-af, G=hf—-—bg, H=fg—ch. 

Moreover, the coefficients of the various combinations of a, b, c, f, g, h depend 
upon @, ¢, W; in fact, we have 

D=(lmn), W =(ayz), 

P=(amn), Q = (lyn), R=(Imz), 

I =(ly2), J=(amz), K=(ayn), 

2S = (lzn) + (Imy), 2L =(anz) + (ym), 

2T =(zmn)+ (Ima), 2M=(nyz)+(ayl), 

2U =(ymn) + (lan),  2N =(myz) + (alz), 

where (a8y) denotes the Jacobian of 6, $, W with regard to a, 8, y, for the various 

combinations: the derivatives with regard to J, m, n being purely partial, and those 

) a 0 a a a F an thas» ay tay? ag t May respectively. 

It is manifest that, as the fourteen coefficients are dependent upon @, ¢, y, 

certain relations among them, some algebraical and some functional, must be satisfied. 

with regard to a, y, z being 

3. But though the form obtained for the equation of the second order is the only 

form which can possess an intermediary integral of the general functional type assumed, 

it does not follow that an equation of that form necessarily possesses such an inter- 

mediary integral, or indeed any intermediary integral; as already pointed out, conditions 

must be satisfied in order to ensure the existence of any intermediary integral. To 
obtain these conditions, we proceed as follows. 

Let an intermediary integral be supposed to exist, say in the form 

u=u (0; 2, ¥; 2, l, m, n)=0. 

Then writing 4 
U ou ou 

a SO aa! tad = 

nan, gad 
eve or ou Om 

du ou ou 

Vout. XVI. Part III. 26 
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we have 
Uz + AU, + htm + gun = 0 

Uy + hig + bum + fun = 0?. 

Uz + gtr t flim + Cun = 0 

The given differential equation must be satisfied in virtue of these equations; in 

other words, it must become an identity when taken in connection with them. 

Hence, solving the three equations for a, b, ¢ respectively and substituting in the 

equation 
Ia + Jb+ Ke + 2Lf + 2Mg + 2Nh 

+PA+QB+RC+2SF+ 27G +2UH + DA+W=0, 

the last equation must become an identity and the coefficients of the various combinations 

of f, g, h must vanish: the conditions of evanescence are the partial differential equations 

of the first order determining u. We have 

aaa tne Uz +245; 
TH | ii AS TORT 

as u 
writing oe Xe me a d, 

Usnln Uz 

My pgmnl ! 

UnUy a , 

Uz h 4, =», Ube fe. ain 
the equation is 

UmUn 
(X4+y+7); 

WU} 

and there are two similar equations for b and c. Again, 

A=be—f? 

=ui {YZ+o(V+Z)+y¥ +2 + by +o +09}; 
with two others; and 

F=gh—af 

= Untn {OX + y+ yn + nF}, 

with two others. Also 

A =~ Upltntn (Sy + yn + nb) (X + V+ Z)4+ XVZ 

+6(XV+XZ)+y(V¥X + YZ)+(ZX+ZY)}. 

Substituting and equating to zero the coefficients of the various combinations of 

¢, y 7, Which is the manifest equivalent of equating to zero the coefficients of the 

various combinations of f, g, h, we have the following equations. 

From the coefficient of ¢y, or yn, or nd, there arises the single equation 

— Duplin (X + Y + Z) 

+ Pu? + Quin? + Ruy? + 2S8Uptin + 2TUyuy + 2 UVrUyt, = 0. 

iia Ad, Wiese 
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From the coefficient of ¢, there arises the single equation 

ie Unt - Wu 
— Dujiyty (XY + XZ) -— JS on — K —"+2Im 

m Un 

+ Pu? (V+ Z) + Qun2X + Ru,2X + WumunX =0; 

from that of y, the equation 

— Duiltmun (YX + YZ) -I 
UmUn Utum a 

uy Un 

+ Pup Y + Quy? (X + Z) + Ruy? Y + 2TunmY =0; 

at 2Mu,, 

and from that of 7, the equation 

— D upltyln (ZX + ZY)-L ohn eee 2Nun 
uy Um 

+ PuZZ + QvnZ + Ru? (X + V) + 20 upt,»Z = 0. 

Finally, from the term independent of ¢, y, 7, there arises the equation 

— Duyn X YZ + Pup YZ + QuZ?PZX + Ruy2X Y 

u a a in 7 Sy — 0. 
Uy Um Ln 

4, These equations must be solved so as to obtain simpler algebraical forms, before 

proceeding to express the conditions of coexistence and to determine integral equivalents ; 

and a convenient form is that in which w,, u,, uz, are expressed in terms of ww, Un, Un- 

The first of the equations being 

Pre + Quin? + Ray? + 2S in + 2TUpty + 20 Um =D (yt + Uinly + Untlz), 

we introduce six new unknown quantities a, a’; B, B’; y, y’; defined by the relations 

Duy = Puy + yint Bun) 

Duty = yr + Qlin + @'Utn |. : 

Duz = But am + Ruy 

there being no initial assumption that the new quantities are independent of w, Um, Un- 

When these are substituted, it appears that the above equation is identically satisfied, 

provided 

Y ioe. | 

B+8=2T \. 

ata’ =28S 

These relations will accordingly be assumed: and there will thus be three unknown 

quantities left. 

Next, substitute the values of uz, uy, uz in the second equation: it becomes, on 

reduction, 

(2LD + 2SP — By — By’) m—(88’ + DJ — PR) _ ~ (yy + DK — PQ) “en =a 

26—2 
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Assume BB’ =PR-DJ, 

y¥ =PQ-DK; 

then, as wu; is not zero, we must have 

By + B’y’ =2LD + 28P. 

There is still one relation possible in order to the determination of the six 

quantities. Again, substituting in the third equation, we have 

(2MD + 27Q — ay — a'r) tm —(yy'+ DE — PQ) = (aa’ + DI + QR) = 0. 
Un Uy 

We assume aa’ =QR-— DI; 

and then, as u,, is not zero, it follows that 

ay +a'y’ = 2MD + 27Q. 

The six quantities a, 8, y, a, 8’, y can now be considered known. 

Substituting in the fourth equation, and using the condition that u, is not zero, 

we find that 
a8+a’‘B’=2ND+2UR: 

and the equation is then identically satisfied. 

Lastly, substituting in the fifth equation, and using the preceding relations, we find 

that it reduces to 

a’B’y’ + aby =2PQR — PID —- QUD— RED + DW. 

It thus appears that the system of five equations can be replaced by a number of 

sets of three homogeneous linear equations, each set being of the form 

Dui, = Puy + y/Umt Bun 

Drei = yr + Qtin + W Un 

Duz = By + ay, + Ru, 

the coefficients are determined by the equations 

a+a=28S, av’ =QR—-DI 

B+8'=2T, BR’=PR-DJ }; 

yty =2U, yy =PQ-DK 

and there must be satisfied four relations obtained by substituting for a, 8, y, 2’, 8’, y in 

By+ B'y =2LD + 28P, 

yat oa’ =2MD+ 2TQ, 

aB+ ap’ =2ND+2UR, 

aBy+a'B’y’ = DW —-D(PI+QJ+ RK) +2PQR. 

These equations are less restricted than Vivanti’s (J.c.). 
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5. But conversely, a solution of any one of the systems of equations which are 
satisfied by wu, should lead to the differential equation of the second order. Let such 
a solution be 

Uu=u(v, 1, m, n, 2, y, Z)=constant ; 

then we have Uz + ty + hin + Guin = 0, 

that is, substituting for u, from the partial differential equations satisfied by u, we have 

(aD + P) w+ (hD+¢') Um + (gD +B) un, =0. 

And similarly for the other two derivatives, with regard to y and z respectively. 
Eliminating ww : %4,: Un between these three equations, we have 

aD + P, hD+y, gD +B |\=0. 

hD+y, bD+Q, fD+da'| 

gD+B', fD+a, cD+R 

The term independent of the derivatives a, b, ¢, f, g, h is 

= PQR — Paa! + yaB — Ry’ + B'y'a’ — QBR 
= PDI + a8 + Bye’ —-2PQR+QDJ + RDK 

= /0R YI 

by means of the equations satisfied by a, 8, y, a’, By. 

Again, the coefficient of a@ is 

= D(QR—- aa’) = D*I. 
The coefficient of h is 

= D(aB— Ry +a’p’ — Ry’) 

=2ND?+2URD—2URD=D?.2N. 

The coefficient of ab—h?, that is, of C, is 

= IDF 

and so on for the others. Substituting and dividing out by D*, we have the original 
equation: which accordingly is satisfied by each solution of the subsidiary system of 
homogeneous equations of the first order determining wu, 

6. The only relations so far considered are of a purely numerative character: it 
will be assumed that they are satisfied, as preliminary conditions for the existence of 
an intermediary integral. It is now necessary to consider other conditions in order that 
the three partial differential equations for « may have a common solution or common 
solutions. 

ae he dons eeu eo 
Let A= ae t aD Pat! am toon) 

2 ae ie 
A= 5, +m —p 1 q+ wa t*x) : 

ipso a, eae 
A,=7, +"3— (8 Ee) 
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then the equations satisfied by wu are the linear set 

Ae al — OLN 0 

These must satisfy the Poisson-Jacobi conditions 

(A,A.)=0, (AA,)=0, (AA) =0, 
which are 

0 Fe (45-45) att (b-*d) gmt (D—OD) a 
0m at (pO) at (B25) amt (AB — 82D) a 

ons (8a BM (aS of) Bs (an B) 
respectively. 

Manifestly no one of these is satisfied in virtue of any linear combination of 

A,=0, A,=0, A,=0; hence each of them is either an identity or it is a new 

equation. 

7. Suppose, first, that each of the equations is an identity. Then each of the 

coefficients of ue ae a am in each of the equations must vanish. We thus have 
dv” ol’ dm’ On 

y=7 = 7, 
Sse 

a=a=S, 

; PL hie. 1S 
and also A D=A p> AL =A p> A. p= DH 

TT saps SOD Saale: aya 
As pj =42p> Asp = Asp: Asp =A: pf: 

dE IP S U R Te 
Ap = Asp: A.D = 4s p> Ap = Asp 

When all these relations are satisfied, the system of equations A,=0, A,=0, A, =0, 

is a complete system; as there are seven independent variables for wu, it follows that 

there are four functionally independent integrals, say 

CASO i, Oh & (hh we) 

Up =Us(V, &, ¥, 2, L, m, n), 

Ur, = Ug (newts 2,0, 105) 7); 

OSG OR AE ada 

The conditions to be satisfied that this may be the case are, (i) the foregoing set 
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of nine differential relations, (ii) an algebraical set, which can easily be obtained in the 

form 

S= ORe BE | TU=LD +SP | 
™=PR-DJ\, US=MD+T7Q} , 
U?=PQ-DK ST = ND + UR) 

DW =| Py Uj Bg 
iv. 9, S| 

To St Mie) 

The last seven equations may, in fact, be regarded as expressing J, J, K, L, M, N, W 

in terms of P, Q, R, S, 7, U. Using them for this purpose, we can, for the present 

case, write the differential equation in the form 

aD+P, hD+U, gD+T \=0. 

Pe. (DG) (D285 
gD+T, fD+S8, cD+R | 

From the form of the equations of which 4, w%, u,, wu, are functionally independent 

solutions, it is manifest that any functional combination of them is also a_ solution, 

say D(m, %, Us, UW) But it has been seen that any solution is an intermediary 

integral of the original equation; and so there is an intermediary integral of the form 

D=0, 

where ® is the most general arbitrary functional form. 

8. This is, however, an equation of the first order. In the present case we can, 

without further imtegration, actually obtain an integral of the original equation: all 

that is necessary for the purpose is to eliminate /, m, n between the four equations 

j= Cys) Ug—Os, Wz — Os, l= Cy, 

where @, d», a3, a, are arbitrary constants. In order to establish this result, we must 

prove that any two of the integral equations w=a (say they are @ = constant, 

@=constant) can be taken as coexisting imdependent equations. Now the condition that 

this may be the case is 

fag) v, l 

which, on substitution for as GEA ag op ae op from the differential equations identi- 
Ou’ oy’ 02’ du’ dy’ Oz 

cally satisfied by them, becomes 

» (08 0b df 00 » (08 Oh ae _ (00 Oh Ap 06) _ 

a=) (a am ol =) +(@-8) (= alan al Be a) (= on om =) 0 

But, under the present hypothesis, we have a=a’, B=’, y=7; the condition there- 

fore is satisfied. Accordingly the four equations «=a are four coexisting independent 
equations. 
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Eliminating /, m, between them, we have, in general, a relation involving 2, 

x, y, 2 and the four arbitrary constants. Suppose it to be of the form 

v=F'(a, ¥, 2, Gh, Mo, As, A). 

The fact that the Jacobi-Poisson condition of coexistence for each pair of equations 

u=a is satisfied, enables us to infer, as in the case of two independent variables, that 

the values of J, m, n, v deduced algebraically from those equations are such as to give 

v av 
l=—, m= —, n=— 

Ox * oy 

Now the complete system of differential equations 

ou ou ou ou ou D( + 1) - (Pat US +7) <0, 

Ou Ou Ou Ou ou’ 
D5 tm) -(Uqt sm t San) =o 

(OU ou ou 
D(x +n 5) -( tS +R) 

is associable with the four equations 

dv =Ildx +mdy + ndz 

—Ddl = Pdx + Udy + Tdz 

— Ddm = Ude + Qdy + Sdz 

— Ddn =Tdx + Sdy + Rdz 

as the customary equivalent in differential elements. 

> 

Hence it appears that the solution 

v=F (a, Yy; Z, h, Me, As, a) 

of the original equation is such that 

oF peta, Gp tein son 
daxdy Oudz 

oF or 

ap O50 Dames 

or 
02" 

+ 10, 
Oa? 

D +S=0, 

DRo+R=0. 

Moreover, the verification that it satisfies the differential equation is immediate by 

taking this equation in the form obtained in § 7. 

9. Now the solution which has been constructed is one that involves four arbitrary 

constants and so it is not a complete integral. But its importance lies in the fact 

that it can at once be changed so as to give the most general integral of the 

equation: a result due to the proposition that 7 ¢=¢(a, 8B) and ~=wW(a, 8B) denote 
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two arbitrary functions, then replacing a, M%, ds, a, by a, B, ob, Ww respectively, an 

integral of the equation is given by the elimination of a and 8 between 

v=F(a, y, 2, a, B, $ ) 
0= a OF op | OF ow 

Op da Ov Oa =f; 

O= PP ab | OF Oy 
0B 0h apt dp 0B 

and this integral is the general integral of the equation because it involves two arbitrary 

functions each of two arguments. 

The proposition will be proved by shewing that the postulated integral equations 

satisfy the differential equation. We take the integral in the form 

v=F, 

AP @ coh. 
ae ap 83 

the two latter implying complete derivatives with regard to a and to £ respectively. 

From the second and the third equations, we have 

oF oF 
O= Sade + oa + Gap *) 

oF oF oF 
= Faan + aaae * OB a) 

and two similar pairs for derivation with regard to y and to z respectively. 

Now from v=F, we have 

oF re 
— oan Was +2 Lye = > 

oF ae oF 

ae + 3a % +38 ay’ 

= ae +2 8.= OF | 

bois 08 ez” 

so that J, m, n have their form the same as when @ and @ are arbitrary constants. 

Next, 

2a or. oF 
da? * dada °* + a Box 

_OF (@F @F @F 
~ Oat - (Fae dae’? aga"? B2y. 

Vou. XVI. Parr III. OF 

Bz 
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Writing 

_@F @F @F 
Ph "~ Gai? 2098’ OB” 

we have 

a= F,,—(p, qs r Yaz, (sia)re 

and similarly 

h=F,,—(p, q, 7%a2, Br&ity, By), 

g =F, - (p, q raz, BrXa@,, B:), 

b=F,,—(p, 4% r) ay, By), 

S=Fryz—(P, % TRG, ByXaz, B:); 

c=F,, —(p, q raz, Bz). 

These values of v; 1, m,n; a, b, ¢, f. g, h; are to be substituted in 

=o.) ees nD Ue migiDi ele |i. 

|hD+U, bD+Q, fD+8 

|gD+T, fD+S, cD+R| 

The differences from the case when @ and £8 are arbitrary constants arise solely 

through the quantities a, b, c, f, g, h and not through the coefficients of those 

quantities. Now we have seen that 

DF.+P=0, DF,,+U=0, DF,+T=0, 

DF, + Q=0, DF, +S=0, 

Di + k= 0; 

hence, on substitution, we have 

@= (p, q TY ax, Bx): ? (p, q; rQay, By War, B;), (p, q; rQa:, B.Yaz, Bz) 

(p, % 7X42, Brtey, By) (PG ay, By) » (PG Thar, Be, By) 

(p, q; 7 Vaz, BrVaz, 8); (p, qd rQay, By Wa, Bz); (p, q ra, 8B.) 

Take two quantities X and yw such that 

a, + Aa, + pa,= 0), Br +B, + wB2=0; 

and multiplying the second column by 2 and the third by uw, add both to the first. 

Each constituent in that column‘is zero; and therefore © vanishes, or the differential 

equation is satisfied by the integral equation given. . 

10. The results can be summarised as follows :— 

To solve the differential equation 

aD+P, hD+U, gD+T \=0, 

AD+U, bD+Q, fD+8 

(gD+T, fD+8S, cD+R 
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the coefficients satisfying certain conditions, we construct the subsidiary system 

_ du dw 1/,0u r OW , py OU\ _ 

ean eg CRE. Gal - an) 

ou ou 1 du Ou du 

aa as | (u ae on 7a) ri 

Ci tes A fe , ou Ou\ _ 

oa a a eel al +S 5+ Re) =0 

which is a complete Jacobian system and therefore possesses four functionally independent 

integrals. Let these be wm, U, ws, ws. ‘hen from 

I= hy VH= Ch, WSCA, WASCire 

we eliminate /, m, n and obtain a relation between v, #, y, z and the four constants, 

say 
OSIM Oh FA the Cy Cay Gh)» 

Let (a, 8) and wW(a, 8) be two arbitrary functions, each of two arguments; then 

eliminating a and @ among the three equations 

=H far, Yy; 2, a, B, od (a, B), v (a, B)}, 

_aF 9_aF 
= fa? = 5° 

we obtain the general integral of the differential equation. And the conditions to be 

satisfied by the coefficients are 

0 

Seyi Aree. a.p= b> 

ey teas a a8. 
Page tabeind ym onl 

It may be added that 

a+r, h+y, 9+P =!) 

h+y, b+p, fte 

9g+B, f+a, c+(ay—Byu)l+ (By — ad)m+(Au—y’)n 

where a, 8, y, A, # are any constants, is a particular example of this case: as is also 

1++ av, lm + ha, In+gv | =0. 

lIm+hv, 1+m?+bv, = mn+fo 

In + gv, mn +fo, 1+n?+cv | 
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And another example is given by Professor Tanner* in the form 

ayz | a, h, g | —lyz | b, f | —mza | a, g | —nay | a, h 

| h, b, f | fc g, ¢ | ent 

lof ¢| 
+amna + ynlb + zlme —lmn = 0. 

11. It remains to consider the various alternatives to the hypothesis that the 
Jacobi-Poisson conditions are all satisfied identically. 

Any such condition, not satisfied identically, is a new equation; and accordingly the 

various cases for consideration are when these new equations are 

i. One new equation, 

ii. Two new equations, 

iii. Three new equations. 

First, when there is one new equation which arises from the conditions of co- 

existence of A,=0, A,=0, A;=0. Let it be A,=0. 

This can occur in various ways. (a) Two of the conditions may be satisfied 

identically, and the third then gives the new equation. (b) One of the conditions 

may be satisfied identically; and the other two give new equations which, in effect, 

are equivalent to one another. (c) No one of the conditions may be satisfied identically; 

the three are new equations which, in effect, are equivalent to one another. 

In general, we have several subsidiary systems: for the equations determining a, a’; 

B, 8’; y. 7 im general lead to two sets of values for each pair. If, however, a 

Jacobi-Poisson condition is identically evanescent, it is at once obvious from the form 

of the condition that the corresponding values are equal; thus if, in § 6, the condition 

ie : De A 
containing the term in (a—a’) = is evanescent, then a=a’=S; and the number of 

systems of subsidiary equations for w is diminished. 

It is simple to take account of the various ways in which we thus far have four 

equations in the system. Thus for (a), we can have two systems; for (b), we can 

have four systems; for (c), we can have eight systems. But though this number of 

systems can arise in the respective cases, it does not always arise of necessity: for 

the pair of sets of values of say a, a’ can be the same without the other conditions 

being satisfied and so, in (a), we might have only a single system. 

12. There are now four equations in each system: but additional Jacobi-Poisson 

conditions must now be satisfied, viz. 

(A,4,) = 0, (A.A) =0, (A,A3) =0. 

* Proc. Lond, Math, Soc., t. vu. p. 89. 
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If these are satisfied, either identically or in virtue of the four equations already 

established, the system is complete. It then has three functionally independent solutions, 

SAY %, Mw, Us; and the most general solution of the system, which is then a general inter- 

mediary integral of the original equation, is of the form 

P(t, Ue, Us) =0. 

It may happen that such an intermediary integral can be deduced from another 

system, given by different sets of values of a, a’; B, 8’; y, 7; let it be 

F(U,, U,, U;)=0, 

where F is perfectly arbitrary and U,, U,, U; are the three functionally independent 

solutions. We proceed to consider under what circumstances (if any) ® and F' can be 

treated as simultaneous equations, 

Since w%, %, us are solutions of a simultaneous system, ® is also a solution of that 

system: that is, we have 

Tb, = Pedy eae AO.) where ee ep oe 
Ox ov 

D ad ob 
D®, = yQ + QP, + ah, , P= a +m ae 

ee 
Do, = §'®, + a®,, + R®,, » d, = Aan an 

Now for the subsidiary system satisfied by F, let A, A’; B, B’; T, I” be the corre- 
sponding coefficients: so that 

A, A’ is either a, a’ or a’, a: 

the set of first alternatives in each case giving the system for ®. Then F satisfies 

DF,= PF, +1’ Fn + BF, 

DF, = TF, + QFin +A’F, " 

DF, = B’F,+ AF, =o RF, 

Now in order that # and ® may be treated as simultaneous equations, we must 

have 

FP, — F,®,, + F,®,, a, F',Py ar PF, 7 F,,®, =0. 

Substituting from the above systems and collecting terms, we find 

(P= 9) Fm + (LY — 7) Fim Bi + (B— 8’) Fn ®, + (B — 8) Fn + (A — 2’) Fin®, + (A’ — 0) F, Pm = 0, 

evidently identically satisfied when 

A, Al=a, a; B, B=B, B; 1D r= Y: 
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Hence we have the theorem :— 

If all the conditions for the possession of three functionally independent solutions be 

satisfied for each of the systems 

1 1 
Pz =F (PP+ ¥Pm + BPn) Fe = py (PRi+ Pm + BF nu) 

1 ra 
®, = D (v2, ar Q®,, + a’®P,,) , F, = D (y F, SF QF » i aF’,) ra 

=F (BO+ ab, +R®,)) Fe = 5 (BF + dF, + RF) 
then the general intermediary integrals 

o=0; F=0, 

deduced from the respective systems, can be treated as simultaneous equations. 

Further, it can be established that the linear equations in differential elements 

equivalent to F=0 are included in the Charpit-system subsidiary to the integration of 

©=0 as a partial differential equation of the first order. 

The simplest instance of all in the present case arises when two of the Jacobi- 

Poisson conditions (A,A,)=0, (A,A;)=0, (A;A,)=0 are satisfied identically, and the third 

is a new equation containing a term in = and when, further, the full system is complete. 

Of the three pairs of quantities a, a’; 8, 8 y, 7; two contain equal members, and the 

third contains unequal members. There are then two subsidiary systems; and thus we 

should have used all the subsidiary systems. I pass over, for the present, the discussion 

of the relation to one another of integrals derived through subsidiary systems not chosen 

according to the restriction in the proposition just established. 

An instance of this case is furnished by the equation 

|at+P, h+U, g+T7\+@(c+ R)=0, 

h+U, 64+Q, f+8) 

lg+T, F4+8 “ot RI 

where P, Q, R, S, 7, U, @ are constants. There are two subsidiary systems; and the 

intermediary integrals obtained can be treated as simultaneous equations. 

13. If the Jacobi-Poisson conditions 

(A,4,)=0, (A,A.)=0, (A,A;)=0 

are not satisfied in virtue of A,=0, A.=0, A,=0, A,=0, so that the system of 

equations is not complete, the new equations that arise through this set of conditions 

must be associated with the former four. We proceed as before and render the system 

ultimately a complete Jacobian system; and if in this state, the system contains n 

equations, there are 7 —n functionally independent solutions of the system. 
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Of the remaining two cases, viz. those in which the conditions for the coexistence 

of A,=0, A,=0, A,=0 lead to two new equations and to three new equations 

respectively, it is unnecessary to say much in general detail. The process is the same 

as in the last case; the system must be made complete. If it contain more than six 

equations in this state, there is no common solution and so there is no intermediary 

integral; but if it contain » equations, n being less than 7, then it possesses 7 —1 

functionally independent solutions and an intermediary integral exists. 

14. In the preceding investigation, the most general form of the prescribed type 

has been taken initially. Instead of making the necessary modifications for simpler forms, 

it is better to apply the method at once to the simpler forms. For example, in the 
ease of the equation 

wa + 2eyh + y°b + 2azg + 2y2f + #ce=0, 

we substitute for a, b, ¢ from 

Uz + At + him + Guin = 0 

Uy + hay + bin + fun = 0-3 

Uz + gia +fulm + CUn = ah 

then we equate to zero the coefficients of f, g, h and the term independent of these 
quantities. Solving the resulting equations, we find only a single system of simultaneous 
equations determining w, viz. 

Uys 2 Un 
CH AY, 82 , 

Lz + Ylly + ZU, = 0 

oe and so for u, and u;. where uw, denotes 
Ox 

It is easy to prove that this system is complete, and that the four functionally 
independent solutions can be taken in the form 

y la + my + nz 
£ 

= , v—(la+my +t nz). 
Zz 

’ =z 

Hence there are two intermediary integrals of the respective forms 

eSNG 2, y a) 
xz a ie x ? 

Oe 
v— (let my +ne)= (2, =), 

where ¢ and yf are arbitrary functions. Moreover, by § 12, these can be treated as 
simultaneous equations, for the initial system is complete as obtained; hence we have 

v=ap(%, “)e¥ (4 =) 

as a primitive, and manifestly it is the general primitive. 



208 Pror. FORSYTH, PARTIAL DIFFERENTIAL EQUATIONS 

15. Taking now more generally the case in which an equation of the second order 

possesses an intermediary integral, though not of the functional form previously considered, 

we have an equation 
F=0, 

satisfied in virtue of derivatives from 

u(v, x, y, 2, l, m, n)=0, 

that is, in virtue of 
lity + Ux + Amy + htm + gun = 0, 

My + Uy + hy + bum + fun = 0, 

NUy + Uz + G“urt+ fulm + CUn = 0. 

Hence when we substitute for a, b, c m F=0, the resulting equation must be 

evanescent: and therefore the coefficients of all combinations of f g, h that occur in 

the modified form must vanish, so that a number of relations will arise. Each such 

relation is homogeneous in the derivatives lu,+uz, MUy+Uy, NUy+Uz, U1, Um, Un; hence 

there cannot be more than five algebraically independent relations. On the other hand, 

there must, in general, be at least three relations; for if the result of the substitution 

is to give 

T+Pf+Qg+Rht...... = 0, 

then we must have 7=0, P=0, Q=0........ If these were equivalent to only one 

relation, this would occur through a common factor that vanishes, say 

[uy + Uz =O (Muy + Uy, NUy+ Uz, UH, Um, Un); 

where 6 is homogeneous of the first degree in mu,+Uy, Nuyp+Uz, UW, Um, Un. We thus 

have, for the construction of the equation of the second order, 

6 + amt hum + gun = 0, 

MUy + Uy + = ((). 

NUy + Uz + =(j), 

three equations involving four ratios uw, : uz: 4: Um: Un not homogeneously. The equations 

are insufficient for this elimination: and therefore, in general, the present case will not 

arise. 

Further if the relations are algebraically equivalent to two only, they may be taken 

in the form 

P (ly + Uz, MUy + Uy, NUy+Uz, U1, Uns Un)=0, 

Q (ty + Uz, My + Uy, Ny + Uz, Ua, Un, Un) =0, 

lay + Ux + AM + htm + gun = 0, 

My + Uy + hay + bum, + fun = 0, 

Ny + Uz t+ Guat fum + Cun =0, 
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five equations involving five ratios lity + Ug: mtly + Uy 2 Ny + Uz ULE Um iu, Not homogeneously. 

The equations are insufficient for the elimination: and therefore, in general, the present 

case will not arise. Hence there must, in general, be at least three equations, algebraically 

independent of one another. 

We thus have three cases to consider, according as the number of algebraically 

independent relations is 

(i) three in all, 

(ii) four in all, 

(iii) five im all. 

These cases will be taken in turn. 

16. Three algebraically independent equations. Suppose the equations solved for (say) 

Lily + Uy, MUy + Uy, Ny+Uz, In terms of wW, Um, Un: il, in a particular case, it proved 

possible or convenient to solve only for some other combination, a tangential transform- 

ation could be effected so as to transfer it to the above form. Let it therefore be 

L=Uz+ lly +X (Ui, Un; Un) = 0 

M= Uy + MUy + fe (1, Um, Un) =O}, 

N=tz + ty + (%Y, Un, Un) = al 

where A, #, v are homogeneous of the first order in wm, wm, wu, and the coefficients in 
X, #, v are (or may be) functions of v, «, y, z, l, m, n. 

But though these are, in the present case, the aggregate of algebraically independent 

equations thus derivable, they must satisfy the Jacobi-Poisson differential conditions of 

coexistence. Writing v, 2, y, Zz, 1, m, N=a&, a, Bs, Ly, Xs, Xe, Vz; ANA Uy, ..., Un=Pr, -+-) Pr 

similarly; we form the combinations 

u (e aM aL al 
Ox; Opi Op; 0x; : 

(L, M)=>% 
i=1 

for the three pairs; and these must each vanish. Now we have 

L=ap, + ps+X (ar, -.-, %, Ps> Pes Px) =, 

M=xp,+ ps + w( )=0, 

N=a;p,+pstv ( )=0, 

with A, w, v homogeneous of the first degree in p;, p,, p;: and so 

(Be, nee near 
This manifestly is not satisfied in virtue of L=0, M=0, N=0; and therefore it 

is either a new equation or an identity. 

Vor, soi, Parr ik 28 - 
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In order that it may be an identity, the term in p, must vanish, for p, occurs 

nowhere else in the equation; hence, as a first condition, we have 

Op om on 

Ops Ops 

Similarly, if (M, N)=0, (N, L)=0, 

are identities, we deduce, as first conditions 

oS oF 
Ops Opr’ 

ax _ av 
Op; Ops’ 

respectively. In order that these may be satisfied, a function © of p;, p., p; and a, ..., a 

must exist such that 

00 fale) GL) 
vinpae Ee Op,’ v Op: 

Evidently © must be homogeneous of the second degree in p;, Ps, p;- Taking 

Ps = Op;, Pcs = OPz 

we have 

@O=p7A (2), De, Z3, Ds, D5 Us, D7, A, o)=prA, 

where there now is no restriction upon A, the function of @ and ¢: and then 

oA 0A oA 0A 
= p- — = p- — a Ar —_— — an rn Pag? lied Paes 1 p, (24 0-4 #5) 

But these are not the full aggregate of conditions: thus, from (1, M)=0, we also 

have 

On On ON Om (»#)4 (2H) 4 (Z#)=0 
U— —@55—- +———Ha- +| 

0x, Ox, 0%; OM, \®s, Ds Ts, Ps ee 

Substituting the values of X and yw just obtained, and removing the factor p,, we 

have 

bs Oe aA eA OA fe G@A PA OA OA 
“@x,00 “da, 00,00 0x, 07500 000p 0x;0p 06° 

_#A PA_ FA BA, PA A_p PA _ A 
20,00 96? dmb 800@ * 07,00 (& abode? ag? 

BA (JA 8A « OA 
Taman (59 ~ 9 a - $ 599g) = 

Similarly, from (M, V)=0, we have the further condition 

4 OH ov MO (mr) (M2), (2) 9; 
“0a, ° On, 0x; 02, a Le, Pe Xz, Pz 
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and from (NV, 4)=0, the further condition 

ov Or On v, Xr foe R 

"Oe, ur Day Ga =) i ey ae lan a) Ba “an "Oa, On, 

each of these, when substitution takes place for 2, p, v, leading to another equation 

of the second order satisfied by A. The former equation is, on rejecting a factor p,, 

CA e (2 0A , oA oe,)+ GA -(2 0A A OA ) 
— Pana ae anos. ameds? Guabe \ de, and, ° dead 

A (0A pot PA aA) AAD GRA 
Danae (5a ~ 9 a - $5058) ~ ade@ (2 ae a= sa) 
A. (Ao 9 fA _4#A) oA (2 aA, 8A | A ) 
Bad Mod ve aa ae eae onde aaa 
ad pea aA 

earn (24 - 2055 38 — 255 gt O38 + 296 sa5, + e ag? ) 

seer eA way aA, A td ot 
Ep ave DEF) (om oa00 - $5055 7 

and similarly for the other. 

These three equations must be satisfied by A: and when any common solution is 

obtained, then we can construct the corresponding partial differential equation of the 

second order which has an intermediary integral. For the equations are 

0A 
> (lu, ae Uz) = Pr a0 ; 

but 
lity + Uz + Ay + htm + guy = 0, 

that is, 

5p, + Po + aps + hps + gp; = 0, 

in the present notation; and so, substituting for uz, we have 

0A 
— ag +a0+ho+g=0. 

Similarly 

a $ ee hd + bh+f=0; 

and 
aA 0A 

Bice PI tet e— 0 

the last of which, in connection with the other two, can be replaced by 

— 2A + a6? + 2hOg + bg? + 290 + 2fG+c¢=0. 

Eliminating 6 and @ between this equation and the other two, or what is the 

same thing, forming the discriminant of the equation regarded as involving two 

variables @ and ¢, we have the equation of the second order which possesses an inter- 

mediary integral. 

28—2 
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17. It is not difficult to verify that the three equations of the second order 

determining A all are satisfied when for A we substitute any function that involves 

@ and ¢ only and not the other variables. In this case, which corresponds to the 

case treated by Goursat (§ 1, note) for the case of two independent variables, the 

partial differential equation of the second order is obtained by equating to zero the 

discriminant of 
—2A (0, )+ a®+ 2hOg + bg? + 298 + 2fp+e=0. 

And the differential equations, satisfied by and determining the intermediary integral, are 

oA 
F,=0=p, + Ws Pi + Pr og 

oA 
f= 0= Bet ae Bras ’ 

P,=0=p.tepr+p-(2 A — 05-65) 

a system in involution. They must have four functionally independent common solutions: 

the more simply these are chosen, the more direct will be the construction of the in- 

termediary integral. It is easy to see that 

(Fi, pr) =9, (F,, pr) =9, (F;, pr) =9, 

for r=1, 2, 3, 4; so that we can take p,, ps, Ps, Ps as the common solutions. 

We therefore combine 

PrL=Hh, Po=Me, Ps=A3, Ps =A, 

with F,=0, F,=0, F;=0; so that we have 

= Op, 7 LPe— bp: 

where @, ¢, and p,; are determined i 

aA 
Pz 06 Sx a2; 

P oS As — 2, 7 ad S| 16 

p,(24— as —¢ 5B) — a,y— Q2, 

Now du = p,da, + ......... + p;da;, 

so that 
—d (UW — G2; — Ae, — O33 — Ay,) = — p; (da, + @dx; + dda;,). 

The right-hand side must be a perfect differential, say =dU. In order to evaluate 

U, we change the variables so that they are 0, @ and z,; writing 

0A 0A 

26) ad 
A,=AB,, A.=AB,, 

=A, 2A-—0A,—$¢4A,=A 
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we have 
Ay + 5 = (A, + A207) B,, 

Us + X= (A, + 2;) By, 

and therefore 

pera A (de, + Bid, + da) 

A d o + aa) | (a, +a4;) OdB, + pdB, 
SS 0) SS —————. 

A? a, ay A 

It is easy to verify that 

Od B, + dB, _ att 
A ms?” 

and so we have 

ANOS) E (a, ar ee, 

a, 

Consequently W= GX, + AX, + Ugly + AsLy — a 2 =e. 
1 

where ec’ is an arbitrary constant. Now the intermediary integral is u=0, or wu =constant, 

so that e’ may be dropped; that is, dividing by a,, and writing a, 8, y for a/a, 

;/d,, A,/a,, we have 

vt ant By +92 —(y +n =0, 

0A 

where a=24-0% = — b> 

4A is any function of @ and ¢, and the derivatives of v, viz., 1, m, n, are given by 

oA 0A 
TE oes 0% 3 - 65% 

atl B+m ytn 

These equations determine the intermediary integral of the equation of the second order 

given by 

Discrtgy (— 2A + a6? + 2hOp + bd? + 290 + 2fh +c) =0. 

18. In order to obtain a primitive of the equation, we note that the variables 

v%, ©, y, 2 occur only in the combination v+ax+ @y+yz, the quantities @ and ¢ im- 

plicitly involving J, m, n. Now of the system, subsidiary to the integration of the 

intermediary integral, two equations are 

—dl_-—dm_-dn 

at+l B+m y+n’ 

so that we have 
l+a 

= constant = p, 
n+y¥ 

m+B 

n+¥ 
= constant = c, 
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these equations satisfying the proper Jacobian conditions for coexistence with one another 

and with the intermediary integral; they therefore can be used for substitution in 

dy = Idx + mdy + ndz. 

But when these equations are used, @ and ¢ (as also A and A) are constants; and so 

ytn=AtA (vt axt By +2), 

l+a=p(y+n), 

m+B=a(y+n). 

Substituting and integrating, we have 

2(v+acx+ By +yzP=A7AA (pat cyt+z+7), 

where a, 8, y, p, o, 7 are arbitrary constants, A=24 == - 65 A is any function 

of @ and ¢, and @ and ¢ are determined in terms of p and o by the equations 

Lad 10d _ 
p 0d a dd 

It will be observed that the primitive contains six arbitrary constants, whereas a 

a4 ,0A 2A OR O55. 

complete primitive should contain nine. 

19. The intermediary integral which was obtained, viz. 

V =v a0+ By +92 (n-+7)! ———nrm = 0 
Al = <= 

(24 070 O55) 
dA =A dA (0A ’ 
Nag) Sage een ce og 
l+a m+B n+y 

contains three arbitrary constants a, 8, y. That these three can be eliminated by 

forming the derivatives, can actually be verified as follows. We have 

0x 

shies 7 

and therefore m+ B= i 5 

0A 0A\ Seen oe nty=E (2d 055-656). 
v+an+ Bytyz=&A. 

From the last equation, it follows that 

Les 0A 00. GA Oh F 0& 
et ye eee, 

_ (0A 00 0A 0b 0& 
m+B= Ga 

_ zp (04 00 , 0A 0d 0& 
mtr (6 5; + op a) * 2A ae 
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But from the other equations, we have 

_ (PAO, PA O6) , 04 a 
ang es de * a00@ ) 30 da’ 

_ ,(@A 00, BA Ap) 0A OE 
Hist (gs bet ORF oe) ap aa’ 

(0A 8A . 8A\00 (OA . A . AVG a4. dA\e sae (Oh 08h 0h) Be Ja (o4-vig 93 20 260g) aa + \ap ~ °agag ~ Page) anf 20° a6) az 

: ries _ (0400 0A dG\ , ,, OF 
and therefore ab +hp+g=E \ae ant ap sf) +2A ae 

atta 04 
E 00° 

Similarly differentiating the equations with regard to y, and to z, we find 

. 0A 
he + bd =e )i = ap 3 

0A oA : eg 
g9+fbot+e=2A 0-5 a5 

respectively. These, when combined, lead to the required differential equation of the 

second order. 

But the intermediary integral can be generalised. Suppose that a, 8, y are con- 

sidered functions of «, y, z instead of being constants: they must be subject to the 

limitation that the final differential equation must be the same in both cases. Now 

this final differential equation arises from the elimination of @ and ¢ among three 

equations, one of which is 
l+a 

ab+hd+g= oe 

and therefore these three equations must keep this form under the changed hypothesis. 

Now the effect of the change is to add, to the left-hand side of the equation quoted, 
terms 

9 4 68 
and, to the right-hand side, terms 

("ae toe * 2) 
tom woton (GSH 6D H-Dee 

(-D6-NE(-De-» 
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These three shew that a functional relation subsists between a, 8, y qua functions 

of 2, y, 2; say 
Y= T'(a, B). 

(0-§)da+(s—F)ae + (1-4) dy=0. 

that is, as the quantities a and § are independent of one another, we haye 

o-$+(1-4) 5 =0, 

And then we have 

E &/ 0a 

29 (2 2\e = a a om 
These equations, together with 

fiat r (a, B) =0, 

v+ar+ By +yz-FA=0, 

0A 
l+a—f~5 =()) 

m+ B-E 5g =0 

nty—£ (24 0% oz) =o. ao me? od 

lead by the elimination of the quantities a, 8, y, 6, ¢, & to the generalised inter- 

mediary integral involving one arbitrary function of two arguments. 

20. I leave on one side, for the present, the question of generalismg the primitive 

which has already been obtained: as also the wider question of generalising a primitive 

of any equation of the second order in three independent variables, when the primitive 

contains more than three arbitrary constants. 

Lastly, the preceding investigations are based upon the assumption that the initial 

system of three algebraical equations is a complete system. In the alternative assumption, 

the system must be rendered complete by the association of such new equations as 

arise out of the Jacobi-Poisson conditions: it will then contain more than three 

equations in each such case, and so effectively is included in the remaining possibilities 

of § 15, as yet unconsidered. 

21. Four algebraically independent equations. Suppose the equations solved for say 

Uz, Uy, Uz, Uz ID terms of tn, Un. The expressions for each must be homogeneous of 

the first degree in u,, and u,: or if we take u,=@u,, so that @ denotes um+ wu, for 

brevity, then we have 

R= Lsp; + Ps + PrPr (My «+» » Zs 0) = 0, 

S = xpi + ps + p01 (Hr, «-- 5 2, 6) =0, 

E = &p, + Ps + Pr (a, ..., 4, 0) =0, 

iP = Ps + Pm (21; eee 5 Uy é) = 0, 

Ps — p:4 =) 
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Forming the function (R, P), we require that it shall vanish: and therefore we have 

an equation of the form 

p, + terms independent of p., ps, py=9, 

so that we must have a new equation, say 

D, + pk (a, ...,a,, 0) =0. 

Let the others be transformed by means of this new equation, so that 

Ps + Pop ( )=0, 

Ds + pro ( )=0, 
Ps + prt ( )=0, 

Ps + prt ( ='(); 

Then we must form all the combinations (A, B) in pairs: and they must all 

vanish either identically, or in virtue of a single equation which determines @ as a 
function of a, ..., &. 

In the former case, the system is complete: and so it possesses two integrals 

functionally independent of one another. We thus can construct an intermediary integral 

involving two arbitrary constants. 

If, in the latter case, the system is complete, there is one solution; and we can 

deduce an intermediary integral involving one arbitrary constant. If the system is not 

complete, there is no intermediary integral. 

It should however be noted that, though the original four equations are deduced 

from a given equation of the second order, the latter is not the only equation of the 

second order satisfied in connection with them. In fact, we have 

Uz + Uy + hity + gun = 0, 

that is, on dividing by p,; (= wp), 

—p,—a7,+h0+g=0; 
and similarly 

—o,—hr,+b60+f=0, 

—7—-9m™+f0+c=0. 

When @ is eliminated, two equations of the second order (and not one alone) result: 
and the supposed given equation is satisfied in virtue of those two. 

22. Five algebraically independent equations. When there are five equations, they 
can be solved for (say) uz, wy, Uz, UW, Um in terms of u,: and the values will be of 

the form 
Uz = Ay, 

Us, = BU, 

Utils 

Uy = Sun 

Un = EUn 

Vou. XVI. Part III. 29 
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where a, 8, y, 5, € are functions of v, x, ¥, 2, l, m, n only. But assuming that these 

equations can coexist as a system of simultaneous partial differential equations, the 

supposed equation of the second order can be replaced by three equations of the 

second order, linear in the highest derivatives: these equations being, in fact, 

a +48 + he+g=0) 

B+hd+bet+ f=0l. 

y+gitfe+co=0 

The case is thus of highly restricted generality. 

23. Though only particular classes of equations have been considered, the methods 

indicated enable us to construct equations possessing an intermediary integral and also 

to obtain the intermediary integral for such equations as possess it. If, however, an 

equation of one of the proper forms be given but should not satisfy the necessary 

conditions, or if an equation not of any of the proper forms be given, the general 

method is inapplicable: the equation does not possess an intermediary integral, and some 

other process that may lead to a primitive must be adopted. The discussion of this 

part of the subject is reserved for another paper. 



IX. Reduction of a certain Multiple Integral. By Arruur Brack. 

*Communicated by Professor M. J. M. Hii, M.A., Se. D., F.R.S. 

Received June, 1897. 

1. To evaluate the multiple integral 

Read October 25, 1897. 

| V (exp — U) da, ... dx, 

where U and V are homogeneous quadratic functions of the n variables «, 

constant a, and all the integrations are from —2# to +o, it 

that U is essentially positive. 

.»e@ and a 

being further supposed 

n n 

If U= Zdr,r Dp + 22a,» TVs, 
0 0 

n n 

V = 2krip Of + 22 Ky 5 Bhs, 
0 0 

(where a;,;=@s,, and Ky, s= Ke, r); 

if A be the discriminant of U, regarded as a quadratic function of a... #,, 

if A,, be the coefficient of a,,, in A, and B,, the coefficient of a,,. in 

then the integral in question is equal to 

eee eee e ee esene 

nS exp = a") EB {Beet + DS kers Ay Axl he 4A {Es Bo 3F 2S Kr,s B, i . 
Aw An 0 0 1 i, foe a) 

* The Multiple Integral, to which this paper relates, 

is useful in the applications of the Theory of Probabilities 

to Statistics, It was evaluated by the late Mr Arthur Black, 

who died in 1893, in a manuscript work on the application 

of Mathematics to the Theory of Evolution, but not exactly 

in the form here presented, the discussion being spread 

over different portions of the manuscript, and the notation 

being slightly different to that here adopted. No altera- 

tion has been made in any essential point of the work 

or of the method. The whole of Mr Black’s manuscript 
work is in the hands of his sister, Mrs Constance Garnett, 

of The Cearne, Kent Hatch, near Edenbridge, Kent, and 

can be seen by any one interested in the subject. 

M. J. M. Hu. 
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2. The first step is to evaluate an expression of the form 

4 =/ dx, ... dtp (Cyo% + Cr % + --» + CrnEn) exp (— UV). 

r=n-1 n—1 = = 

U= Ann Xn? + 22 > Any Ly + > Oy, Dy? + 2 2, AygXy Xs; 
r=0 0 0 

2 n—1 2 n-1 | a a 
~ = rr Grn 

*. Onn = (anna +> Oni, | +2 2, 
0 / 0 Anr Ann 

"=1 | dre @ rn y 8 n 9 | r 7 

Ans Ann 
rXs, 

0 

il n n—-1 c Cc 

Te | doe ds = ee Ge) +e oe exp Oe 
n Gan 0 0 Anr Ann 

n-1 =—= 

Put Anny + = Any @y = Z Rae Pes 
0 

Cyr Cun 1 =a 
i — dz, “08 day, dz == cone fm + x a, ] exp (-2—-U’), 

Anr Ann 

By x,| ‘ 

After integrating with regard to z, the result is 

n—1 

ES) 
0 

Ars Ayn Ao RSA ie 
where |S os ba 

0 Ang Ann 

7 n-1 

Te i da. dey a expl= 0). Se 
n—-1 @nn P 0 | Anr Ann 

Cyr Cyn 

This is an expression of similar form to the one from which the integration commenced. 

Write for brevity 

Cy.» Cy. 3 
O05 = eel r=1 to n—l, 

An, r Grain 

bu 1 Ary Arn ie 1 | Ars Orn 
r > +s . 

Ann | Anr Onn Ann! Ang Anan 

Then the result of the next integration with regard to #,_, is 

[ 7 7 m2 =| 6 r) = Sol. vos v, n—1 
I | doy... dn-anf = E Dy 

~n-2 rm n—1, N—1 0 liner r (Pres n—1 
Jew 0”, 

i n—2 b bor < n—2 b b 
where U” =e! > ue | rr rT, 7i—1 JE 2 > x, Vs r,s 7, N—1 | , 

n—1, N—1 0 (is, r Ona, n—1 0 (rs s Dn, n—-1 

Now writing down the determinants 

Cyr Cy, n—-1 Cyn Gy,s Ayn Cy, n 

G—a,r AIn-a,n—-1 Ir-,n and Qn—-1,s A—1i,n—1 U—-i, n 

Qn,r GOnn1 Ann Qn,s QAnjn-1 Gn,n | 

* In order that U may be essentially positive, it is necessary that 

| Wan G-140 
A, Ag, Bu, 

| Gn-1 Ann 
should all be positive. 

a i ee ee 
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it follows from known properties of the adjugates of these that 

Cy, r Cy, n—1 Cun 

An—,7* G-1,n—1 4n-1,1n |> 
| &, r on n—1 

(ips oe jie nL M 
An, r An, nl Gn, n 

Gy,g Or,n—-1 Grn 
and b,., 8 b,. n—1 | 1 = 

| = Gn—-1,s UM-—1,n-1 Un—1, 10 | 
On, 8 On, n—1 Gn, n 

Qn,s OUn,n-1 Gn ! 

a = dee dz J 7 rae Cy, x Cyn = Cv,n | U” aoe fe ae ee exp (— U”"), 
ie Q-,n—-1 A-,n 9 GM—-,r G—-,n— n,n | 

Css cy | Qn,r Ann Ann |! 

where 

Gyr Arn Ar, n Gre Grn rn | 
n—-2 

+23 2,25 Gn-1,s G—-,n—-1 Cn—-a,a 
0 

Gn, n—1 Gn-1, 0 n-2 
uw 2 

a a | U"=% ® | An-a,r An-a,n—1 A%—-,n 
| “n, n—1 nn 0 

| Gnjxy Gn, n—1 Gn, n | Gn,s Gnjn1 Gna 

After integrating with regard to «, 2, 

= nif 1 8 C, C. 2 Cynara Cyn i b ty..dtns ; Sian, |r - Ome % ¥, |exp(—U”), 
Gj», n—2 Un—2,n—1 Un—2, n 0 An, r Un—s, n—2 An—2, n—1 Un—2, n 

Aa, n—2 Ma,na Ina, n Ur, r Ana, n—2 In-a,n—- Tr, n 

Gn,n—2 An,na GUnjn |) Gn,x Onn» Anna Gn 

Gn—2, n—2 Ane, n-1 Un», n U” 

Ar, n—2 Ira, rn I~, n 

Gn n—2 Unni Gn,n 

n-3 : | (SONU ARO Ee a Gy,s Gyno Gy noi Gyn n—3 | 

=> 2; +25 2,2, | 
0 Ano, r Un—2,n—2 An—2, n-1 Us, n 0 An», s Ano, n—2 U—2,n—1 U2, n 

> 

An, r Gna, n—-2 Gna,na UA, n Ap—a,s T—1,n—2 U—1,n—1 U—i,n 
| 

Qn,r Gn n—2 Anni Anan {| Gs Un,n—2 OUnn—1 Gn 

and so on, until after integrating with regard to a, 

n—1 1 T= |ae, Vor : aa | aes eee ay a apnea, 

Cisne en Oa, Oia msl cle alge dee ar 

Dahatcanes, On wy 
t Qn, r An, 2 tenes An n 
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where 

| p 1 . a 1 5 i eeeeee ge | yo) = SaZ Gy 7 Gye. r,7 a 232,a, | Ay, gs Ayo seoeee Gyn | 

ie 0 Qe y Myo -+0--» Aan | 0 | Ge, 3 Woo eevee Ann 
| . = | wee c eres cee ecesece eeesese eee eee ee 

| An, 2 eeuene An, n | | 

ey? “are (Thea | Wiha g Cacpedtose oa 

-| @ yo ete: a Ceres Og toinswess ath | = or Sa 0, 0 A, 2 —" | 4 Dea, 0,1 Mo, ™ Lge | Gy, Ae Gin 

ag | Ughateorees Qaim lg! Saeed Aen | TET pecans 

a, 0 Gy, 2 GOOCN Qn, n An, 1 Gn, 2 " ot) Gy, n | Any Ang +--+ Gnn 

= Ay a2 — 2A Me, + Ary 

A Ne AwAn = A, 
=A («- =" a ) eS 

Aw A” 

Ae axe A | Geos Gs 
= Aw (a 4" ) + 0" A wen ccvne ence seeeeee 3 

° WI) (Gis, “ebonos: Chas 

& (fv) = — — Aw (« = An nm) +a2 A 
Ga ES Gin ip IAG AP 

An, 2 -+-++- Ann 

To complete the integration put 

Au J il 
Oy a = : 

Then 

ee can 1 
= 2, anaes @ ear iim SN ee ees EA | 

Onsvmas sen Gan | 

Cy, 0 Cy, 2 veers Cun | Cy Cy, 2 eeeeee Cyn 

Rasta ction ca Ayn a ee Oe Soe pat 
where (Qs) ahi at ta X eT es |e — ty | 

ae Oe na wodttin’ 2) er Ris pees non enc Seren * 

(7s, Czeongass Osa peri ag Gols sek lax ae ] 

na 

—} 

because i ze*dz=0. 
bed) 

r= fF oe _ ag Zo A hay amoonondt a eT Cok Chak aces osu tay 
ee = A 00 | 

An, +++++-Aa,n | Co,9 Aa,geee++ Clon Gs, 1 Aso --y0++ Aon 

Age) scsatesenesevene } aaamieke as 

An, aeeeres Ann | & Qn,o An,o-+++++An,n lpg Grateec sac lates 

4 
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Now writing down the determinant 

Cigh HCMC ncn (len 

Cine Un ra ttacee se rel 

go Gg Cag srscee As.n | =E£, 

Any Any Ang s+reee Onn 

it appears that 

1 Cy,0 Cy,a scores Cun Ohan, (yey boncer Con | 

os | Aa,o Ong resssr dan a (Bi Ut eenateice (itive | (coefficient of c,,,) (coefficient of a,) ) 
Mia Eetetecetainicicaciays aici vielen Mall seGonedoocorcacmasc000 + (coefficient of Cy, 1) (-— coefficient of Ayo)\ 

Gn,o Anya +++ Ann An, One Onn 

(1 Aen a.m 

=E 

Onakaceeee Gren 

Cra iCuim Cra eases. Con 

a oan age Ginn Wn Mtb ceonce an 

ce] (Teer ia te Sh A, QR AG ROM et sp, 

(tlry (leet. GP) On GoG Onn 

=|| dary, ... Ain (Cy + Cyt, +... + Cnn) exp (— VU). 
n 

3. The particular case m which 

Co lee Cyn (Cy — sees) (Cy Oy, To — 

is very important. 

It gives | aM Boe dz, exp(— U)= La exp (- 7): 
n Li 00. 

Se | EM a sdben Cin 24 (Cyo%y + CyB «2.0. + Cyn Lp). 
“nh 

The work proceeds as in the evaluation of J up to the end of the integration with 
regard to a. 

nt is oI 
Hence T= fosde, co ee Sz, | Cyr Cua seoeee Cyn ‘exp (— U"™) 

Ang veveee Aon ) 0 | oy Aga ooocne don 

bdo oh . 
Gaga tin. (Po 
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a exp (= 4) R 

I\Cyo Cy.s --oss Con Cra Ceaeweaee Con Ay 
Mere ae ae 

fis) Gacvcseces y (et 0 ereasoe: tr 00 
where Fi] omits hee S| Ved he S| ay |i dooce 2, exp — 

| led Wiad Cn Seo hy opens ec PL jen 8 aes A os | ee Gen | 
| we eeee | 

| Gn,o In,2 Qn,n An,1 Un, ++++++ Ann | | 

RGA Sesoae Onn) 

Gaps : Ag Li sie 
Putting =F ty +2 Talos ; 

80 uu Gan | 

no 

and neglecting the terms which vanish in virtue of the relation i ze" dz =0; 
-—o2 

G5 Gea eianoon Cea Gor iGusieee or (es 
—= 3 wa Nae Aa? Bes ee Anka as (iF od | agile vane fife 

J= == as aay RS dze = ee + 2 A =, 
JAg | tareee SM tee | - | Seer mtarcecete cat hn chccacen eee sere 

see al heed Ano Ano .-+--+ Ann | Any Ano. ----+ Ann 

«Ann 

| Clade oe I oon con 

ia Reale aes Ts 0 eeeoee (fis 
7 Fry aBacocorort |lWvl\) Beasseenccorcocosc 

| 
Heppoe GPE || | CER seqcae Grane! 

{ Crap Csse ences Cas CoEC a reeeee Gen 

—n 2 acA fe Se = ofa | 4.,| Gn Oe os. Glan | 4 Ay | Mar Maz sees Cin 
WAS Gace Ar 00 | sivisisivisiejeisieisie sisin svejegi|| Mn Nlll| | te sisfeeiniefoloietetsterolelefels 

ee Gag Unavsnceee Cin Oe Oy ances Onn 
thee cee Te, 

| Gee Eber Ca Gig RStae Cr 

1 he | 4 ae eee eeeeee An oe Peet As», 

PY. Ved Ree a lal (or eis scoc 

eeweee Ann Any Aye Seer Any a 

r (PE a (eae (oancoas ch CAM (2-5 acess Gray inl 

JES An? w2Ay | Ho Mn diz s+ yy, 1 | Ga Ap ...... (Pe 
= || (2p.9 9) Sa Sata aa P i) Age | Ga Gar Mop +++ ay, WY. Re ke Se ee 

| Poe PP ee eee eee eee eee ee | 

Ano Any Ang COIS Glyn | | ya Ans prewinitse Ann 4 
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5. Now let 
n n 

V= Liker,r Uy? =i QWLiker, aU Ly 
0 0 

Then V=_— key (Hey + Ky By + +000 + Kon Lp) 

Hy (Hyp Xy HF Hy 2 + oreo + Kin®p) 

wPoicteralerolbrevais ints siaiera ma mierein are sao aisia tata sia/atelaraia 

+ Bin, (King Lo + Kny®y + oee00e + Kyn Lp). 

ee | V exp (— U) dm ...... dx, 
n 

™ Az? = fF (oo) eae 00 00 

where 

Kon Ko, Kog «++0e- Kon Ky Ky Kyo veeeee Kin Kng Kyi Kng seers Kin 

L=Ay Ayo My Ng «esse Gin | + AR Ayo Ay Ayo «+++ Cin) ere Ae Ayo Ai Ap «+++ An 

(he RO beneee Grn Glaty Olan (ee oncene Gnn (CP ed (cere (s Jom 

n n 

= 2 Kerr Ag? + 23 Kr,s Aor Ao,s 
0 

and 

Rete Mass sis fo Kin Gi Gee ewans Tes Oi” Ws essen He 

M= 4Aq Ag, Ag nseveretaln Aon, se Ky Koo AROE OO Koy, de eee au Sr 5 

sree seeerccescesns | | eeeevereeseescseses An-1,1 An—-i,2 teens An-in 

Any Qe eeeeee Gan Any Ang eeeece Ann Kn King seeseeese Knn = 

n n 

M=44q [2B ie 23, .Br.| 
1 1 

Wow, SOVWb Ie We 30 
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X. On the Fifth Book of Euclid’s Elements. By M. J. M. Hitt, M.A., D.Se., 

F.R.S., Professor of Mathematics at University College, London. 

Received November 12, 1897. Read November 22, 1897. 

Abstract. 

Art. 1. The objects of this paper are 

(1.) To draw attention to the indirect character of the argument in the Fifth Book 

of Euclid’s Elements. 

(IL) ‘To reconstruct the argument showing how the indirectness may be removed. 

(III.) To develop the theory of ratio from the reconstructed argument. 

Art. 2. The indirectness of the argument arises in this way. 

Amongst the definitions of the Fifth Book there occurs one (No. 7) which furnishes 

a test for unequal ratios. 

This test plays no independent part in Euclid’s Elements, bemg merely used to prove 

certain properties of equal ratios. 

Now if the test for equal ratios, given in the fifth definition of the Fifth Book, be 

a sound and complete one, it ought to be possible to deduce all properties of equal 

ratios from it, without employing the test for wnequal ratios. 

This is in fact the case, as is shown in the reconstructed argument, which is given 

in the second part of this paper. 

The developments of the theory of ratio in the third part of the paper are 

(1) The proof of the fundamental proposition that two magnitudes of the same 

kind taken in a definite order determine a real number. 

This real number is defined to be the measure of the ratio of the first magnitude 

to the second. 

(It may be noted that this is the first occasion on which the term “ratio” appears 

in the theory as presented in this paper.) 

Vor. XVI. Parr IV. 31 
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(2) The proof of the fact that the definitions of the processes of adding and com- 

pounding ratios must in every case lead to consistent results; and that the commutative, 

associative, and distributive laws hold good for these processes. 

(3) The proof of the fact that the definition of the measure of a ratio and the 

definition of the addition of ratios lead to the result that the measure of the ratio, 

which is the sum of two ratios, is the sum of the measures of these ratios. 

From this it follows that the multiplicity of ratios 1s measwrable. 

(4) One ratio being defined to be greater than another when the measure of the 

first is greater than that of the second, the conditions which must be satisfied in order 

that one ratio may be greater than a second are deduced in the form given in the 

seventh definition of the Fifth Book, so that this definition is treated as a proposition 

to be proved, and is not laid down as a definition to start with. 

When this has been done it becomes possible to order the multiplicity of ratios. 

I. The Indirectness of the Argument in the Fifth Book of Euclid’s Elements. 

Art. 3. This will be seen from the following account of the contents of the book. 

The edition employed by the writer of this paper is the Oxford Edition edited by 

Gregory and dated 1703. 

It is convenient not to follow Euclid’s order. 

The contents of the book may be grouped as follows :— 

(1) There are five Propositions Nos. 1, 2, 3, 5, 6 which relate to magnitudes and 

their multiples but are not concerned with ratios. 

They relate to simple cases of the commutative, associative, and distributive laws. 

(2) Of the definitions only three are important. No. 3, which defines ratio, is only 

sufficient to distinguish ratio from absolute magnitude. No. 5, which furnishes a_ test 

for equal ratios. No. 7, which furnishes a test for unequal ratios. 

The 7th definition is only used twice, viz. in the proof of Propositions 8 and 13. 

(3) All the remaining propositions Nos. 4 and 7—25 deal with properties of ratios. 

These may be divided into three groups. 

(4) The first group consisting of Propositions 4 (with its very important corollary), 

7, 11, 12, 15 and 17, express properties of Hqual Ratios, and are deduced directly from 

the Test for Hgual Ratios. 

(5) The second group consists of Propositions 8, 10, and 13, which express Pe 

of Unequal Ratios, and depend on the Test for Unequal Ratios. 

This group of propositions is used in the Fifth Book to prove properties of Hqual 

Ratios, but nowhere else in Euclid’s Elements. 
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It follows that the Test for Unequal Ratios plays an indirect part only in Euclid’s 

Elements. 

(6) The third group consists of Propositions 9, 14, 16 and 18—25. All these deal 

with properties of qual Ratios, but their proofs depend directly or indirectly on Propo- 

sitions 8, 10, and 13, and therefore ultimately on the Test for Unequal Ratios. 

Il. Reconstruction of the Argument. 

Identity. 

Art. 4. Two objects are said to be identical when everything that can be said of one 

can also be said of the other (except that they occupy the same space at the same time). 

Two objects are said to be identical in respect of a particular property when every- 

thing that can be said concerning the possession of that property by one object can be 

said concerning its possession by the other. 

Number. 

Art. 5. When several objects are under consideration, all those which possess a 

certain property may be distinguished by saying that they constitute together a species, 

and that this property is characteristic of the species. 

One of the objects thus distinguished will be, in regard to this property, a unit 

of the species. 

Recognising the characteristic property in successive units, the simple conception of 

the whole number is obtained. 

Two units of the same species are equal, ie. equivalent in respect of the specific 

property. 

In this paper, except where otherwise stated, the word “Number” will be used as 

an abbreviation for “Positive whole number.” 

Notation for Number. 

Art. 6. A Number will always be denoted by a small letter. 

Assumptions with regard to Magnitude. 

Art. 7. (1) If one magnitude is given, it is possible to find any number of others 

identical with it. 

(2) It is possible to unify into a whole any number of identical magnitudes. 

The whole is then called a “Multiple” of any one of the identical magnitudes. 

31—2 
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Notation for Magnitude. 

Art. 8. A magnitude will be denoted throughout this paper by a capital letter. 

Homogeneous Magnitude. 

Art. 9. A homogeneous magnitude is one which can be regarded as consisting of 

any integral number of identical parts. 

It is to be understood that the integral number of parts may be any integral 

number whatever; that the “identical parts” are objects which are identical in respect 

of one and the same property, and that the object is identical with its parts when 

unified into a whole. 

Magnitudes of the same kind. 

Art. 10. Two homogeneous magnitudes are said to be of the same kind, if they 

can both be conceived as containing portions which are identical. 

Assumptions with regard to magnitudes of the same kind. 

Art. 11. (1) If two magnitudes of the same kind are given, it is possible to 

determine whether one is greater than, equal to, or less than the other. 

(2) If two magnitudes of the same kind are given, it is possible to form a 

multiple of the smaller which is greater than the larger. 

Equimultiples. 

Art. 12. If the same multiple be taken of each of two magnitudes A and B, 

these are called equimultiples of A and B. 

Scale of Multiples, or Multiple Scale. 

Art. 13. There exists a set of magnitudes depending on 4A, all of which are known 

when A is known; viz.— 
A, DASA, WARE... Alar: 

which can be carried on to any extent. These may be distinguished from all other 

magnitudes by calling them multiples of A (the first being called the first multiple of 

A for this purpose). 

The above set of magnitudes may be called collectively the scale of the multiples 

of A, or more briefly the Multiple Scale of A. 

Art. 14. If A and B be two magnitudes of the same kind, then however small 

A may be, or however great B may be, it follows from Art. 11 (2) that the multiples 

in the scale 
Ai, ‘DAngS Al wale eesae 7 Be sone 

will, after a certain multiple, all exceed B. 
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In like manner, after a certain multiple, they will all exceed 2B; and so on, 

multiples can be found, which will exceed 3B, 48, ...... Yat Seeger 

Hence it is possible to determine the positions of the magnitudes 

B, 2B, 3B, 4B, ...... RSD aac es 

with reference to the multiples in the Multiple Scale of A. 

Relative Multiple Scale of Two Magnitudes. 

Art. 15. It is possible to arrange im a single series the magnitudes occurring in 

the multiple scales of two magnitudes A and B of the same kind; eg. take the two 

lengths A and B, and an indefinite straight line OX, 

A B 

1d 24 3d 44 5A 6A 
Cp ee en eee eee 

1B 2B 3B 4B 

Starting from a fixed point O on this line mark off lengths equal to A above it, and 

lengths equal to B below it. 

With the above values of A and B the following magnitudes are in order of 
magnitude 

TA, 1B, 24, 2B; 3A, 3B; 4A, 5A, 4B, 6A, ...... 

and this may be continued to any extent. 

Now let vertical limes be drawn between consecutive multiples and let the multiples 
of A be moved upwards on to the line above, there being no horizontal motion. 
Then let the letters A and B be suppressed, and let A be placed at the commence- 

ment of the upper line, B at the commencement of the lower line. 

Then there remains the following :— 

and this can be continued to any extent. 

It appears therefore that the integers 1, 2, 3, ...... Aine Bacar all appear on each 
line; and the mteger 7+ on the upper line will be on the left of, above, or to the right 

of the integer s on the lower line, according as rd is less than, equal to, or greater 
than sB. 

The above arrangement of integers is called the relative multiple scale* of A, B; 
or more briefly, when no confusion is possible, the scale of A, B. 

* De Morgan remarks in his treatise on the Connexion For the form in which they are used in this paper I am 
of Number and Magnitude that the Theory of Relative indebted to Mr A. E. H. Love. 
Multiple Scales must have been known to Euclid. 

xX 
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The abbreviation [A, B] for the scale of A, B is very convenient. 

It is to be particularly noted that the order of the letters A, B cannot (unless A= 8B) 

be changed without altering the scale. 

Conditions which hold when the scale of A, B is the same as that of C, D. 

Art. 16. In order that the scale of A, B may be the same as that of C, D it 

is necessary and sufficient that for all possible values of the integers 7, s the following 

conditions be satisfied :-— 

(1) If rA be greater than sB, then must rC be greater than sD. 

(2) If rd be equal to sB, then must rC be equal to sD. 

(3) If rA be less than sB, then must rC' be less than sD. 

The fact that the scale of A, B is the same as that of C, D can be conve- 

niently expressed thus :— 
[A, B]=[C, D]}. 

Art. 17. The proofs of the following propositions, not concerned with ratios, present 

no difficulty, and will therefore be assumed. 

(1) r(A+B)=rA+rB. (Eue. v. 1.) 

(2) (r+s)A=7rA+sA. (Hue. v. 2.) 

(3) If A>B, then r(A—B)=rd—rB. (Euce. v. 5.) 

(4) Ifr>s, then (r—s)A=rdA-—sA. (Bue. v. 6.) 

(5) r(sA)=7s(A)=sr (A)=s(rA). 

(6) rA = 7B, according as A = B, and conversely. 

Proposition 1. (Eue. vy. 15.) 

Art. 18. To prove that 

[A, B] =[nd, nB}. 

For sA = rB, 

according as 

s(nA) = r(nB) ; 

.. [A, B]=[nA, nB]. 

(It may be noted that, since n may be any integer, nA and xB represent an 

infinite number of pairs of magnitudes having the same scale as A, B. 

Hence the scale does not determine the magnitudes corresponding to it, though the 

magnitudes determine the scale.) 
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Proposition 2. (Eue. v. 11.) 

Art. 19. If [C, D]=[A, B], 

and [Z, FF) =A; 2); 

then [C, D]}=[Z, F}. 

This is evident. 

Proposition 3. (Corollary to Eue. v. 4.) 

Art. 20. If [A, B]=[C, D], 

to prove that [B, A]=[D, C}. 

The scale of B, A is obtained from that of A, B by writing the lower line of 

the scale of A, B above the upper without displacing the figures horizontally. 

Now the scale of C, D is the same as that of A, B. 

Hence the altered scale will be the scale of D, C as well as that of B, A. 

a Bs Al =D Gil. 

PROPOSITION 4 (i). (Euc. v. 7. First Part.) 

Xm Pal be A=B: 

to prove that [A, C]=[B, C]. 

If AB: 

then rA =rB; 

ial = aC, according as 7B = sC. 

. [A, C])=[B, C). 

PROPOSITION 4 (ii). (Euc. v. 7. Second Part.) 

Art. 22, If A=B, 

to prove that [C, A]=[C, B). 

ite A=B, 

then Sasi, 
> . > 

. rC=sA, according as rC = sB. 
<= <= 

7 [CA [Oh BI, 
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Proposition 5 (i). (Euc. v. 9. First Part.) 

Art. 23. If [A, C]=[B, C), 

to prove that AB: 

If possible let A be not equal to B. Then one of them is greater than the other. 

Let A be the greater. 

Then A —B is a magnitude of the same kind as C. 

Then by Art. 11 (2) it is possible to find an integer n such that 

n(A—B)>C, 

* nA >nB+C. 

Hence some multiple of C, say rC, lies between nA and nB. 

Let WAS 70 SMBs &. Fcc ee tao ee dese Snes sees Set (1). 

But since [4, C] =[B, C], 

it follows that if yet 

a es ol Sok ode Ra ear ee (ID). 

Now (II) and (1) are contradictory. 

Hence A and B are not unequal, 
/| Slop 

PROPOSITION 5 (ii). (Euc. v. 9. Second Part.) 

Art. 24. If [¢, A}=[C, B], 

to proye that A= Bs 

If [C, A]=[C, B], 

then [4, C]=[B, C] (Prop. 3), 

a (Prop. 5 (i)). 

Proposition 6. (Hue. v. 16.) 

Art. 25. If A, B, C, D are four magnitudes of the same kind, and if 

[A, B]=[C, D], 

to prove that [A, C] =[B, D}. 

Take any multiples of A and C, say rA and sC. 

Then there are three alternatives, according as 

rA = sC. 
<= 
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If rA <sC, an integer n exists, such that 

n(sU—rdA)> B, 

nsC > nrA +B. 

Hence some multiple of B, say tB, exists such that 

ns > tB>nrA. 

Since [A, B]=[C, D], 

and nrA < tB, 

*, nr <tD, 

s(nrC) < stD, 

*. r(nsC) < t(sD). 

But tB < nsC, 

rtB <r (nsC), 

me TED —<t(s)); 

on (ple < eID) 

Hence if pAgcasOxmthenenD <'SI)) (ss scscteacaatecencaeececeseseee (1). 

In like manner if PAs. then’ 1 B16 Dy wre aseecacenseencse eer steer (II), 

if PE <SD etiCnenA:< SC. ~sssecse1.sneceesenencac: soeaeeas (III), 

and if oe Bil iS SO Oc ON (IV). 

From (1), (11), (III), (LV) it will follow that 

if (PLAN SOP Si aVSs ah aipp Stes 0). cen seaqacsanesononntaocodedbecdeno: (Op 

and if (lB) SSID) teva (AS OL ochareqpendenonseaucoadceeaquoocuce (V1). 

Suppose if possible that when rd =sC, rB is not equal to sD, then by (III) and (IV) 

the fact that 7B is not equal to sD involves the conclusion that rd is not equal to sC, 

which is inconsistent with the hypothesis, 

#) of rA=sC, then rB=sD. 

In like manner (VI) follows from (I) and (11). 

From (1)—(V1I) it follows that 

[A, C]=[B, D}. 

Note. The latter part of this proposition, viz. that (I)—(IV) involve the conclusion 

TA, C}=[B, D) 
is very useful, as it is required in some of the succeeding propositions. 

Corollary. Hence, the symbols being the same as in Prop. 6, A = C according as 

B =D. (Eve. v. 14) 

Vou. XVI. Parr IV. 32 



236 Pror. HILL, ON THE FIFTH BOOK OF EUCLID’S ELEMENTS. 

PROPOSITION 7 (i). (Eue. v. 18.) 

Art. 26. If [A, B]=[C, D], 

ee B= (One: 

Say Woosh [Oppel DY 
> . Si 

rA =sB according as rC = sD. 
<= =< 

to prove that 

r(A +B) 2 (r+s)B according as r(C +D) = (7+ s) D. 

. [44 B, B)=[C+D, D}. 

PROPOSITION 7 (11). (Hue. v. 17.) 

Art. 27. If [A, B]=[C, D], 

to prove that [A ~ B, B)=[C~ D, D). 

There are two cases: 

i A>B, then C>D. 

- [A, BJ=[C, DI, 
rA = sB according as rC = sD, 

“. provided 7<s, which is all that need be considered, 

r(A — B) 2 (s—r)B according as r(C—D) - (s—r) D. 

-. [A—B, B)=[C—D, D}. 

(2) A<B, then C<D. 

An esd); 

rA = sB according as rC = sD, 

*. provided r>s, which is all that need be considered, 

r(B—A) = (r—s)B according as r(D—C) = (r—s) D, 

[B—A, B|=[D-C, D}. 

Proposition 8. (Euc. v. 4) 

Art. 28. If [A, B] =[C, D], 

to prove that [rA, sB])=[rC, sD}. 

Pe rels Vea = |05 JON 

°. (pr) A = (qs) B according as (pr) O = (gs) D, 
EDAD) = q(sB) according as p (rC) = q(sD), 

.. [rA, sB]=[rC, sD). 
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Proposition 9. (Euc. v. 12.) 

Art. 29. If [4,, BJ=[4., B.J=...[An, Bal, 

all the magnitudes AR AG Ae epee eb, 

being of the same kind, then it is required to prove that 

[4,+4.+...+An, B+ B,+...+ Bi] =[A,, Bi]. 

‘* [Ay, B.]=[4,, Bi], 

Cee As = sB, according as rA, = sB,: 

. [A;, B3)=[4,, BJ, 

> . > 

. TA;=sB, according as rA,= sB,, 

> (4,, B,J] =[4i, Bi, 

mAs = sB,, according as rA, = sB,. 

Consequently 1 (A, +Ag+As+... + An) = 8 (B, + Bo + Bat... + Bn), 

. > 

according as rA, = shies 

- [4,4+4,.+4;4+...+ 42, B+ B+ Bj +...+ Br] =[Ay, Bi. 

Proposition 10. (Eue. v. 19.) 

Art. 30. If A, B, C, D are magnitudes of the same kind, and if [A, B]=[C, D], to 

prove that 
[4 ~C, B~D]=[A, B]. 

Of the two magnitudes A, C one is the greater. 

Let A be greater than C, then by the Corollary to Prop. 6, B is greater than D. 

- [4, B]=[C, Dj, 
. [4, C]=[B, D] (Prop. 6), 
*, [A-C, C)=[B-D, D] (Prop. 7 (ii)), 

*. [A-C, B—D]=[C, D] (Prop. 6), 

.. [A-C, B-D)]=[A, 8B] (Prop. 2). 

The case in which @ is greater than A can be dealt with in like manner. 

32—2 
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Proposition 11. (Euc. v. 25.) 

Art. 31. If A, B, C, D are four magnitudes of the same kind, and if [4, B)=[C, D], 

then the greatest and least of the four magnitudes are together greater than the sum 
of the other two. 

Suppose A the greatest of the four magnitudes, 

SHAS PBe 

and [A, B])=[C, D], 

= GS/s 

- [A, BJ=[6, Di 
and the magnitudes are of the same kind, 

*. by Prop. 6, [A, C]=[B, D]; 

but A>C, 

oie DP: 

Hence D is the least magnitude. 

Now, by Prop. 10, 
[A —C, B—D]=[A, B]. 

But A>B; 

.. A-C>B-D, 

o,, Vile IDSs JIE (GL 

Art. 32. In the preceding propositions Nos. I—11, one scale only is supposed to be 

given, and from it, in most cases, a new scale is derived. 

The three important propositions which next follow are of a more complicated nature, 

inasmuch as they show how to derive a definite scale from two given scales. 

PRoposITION 12, (Euc. v. 22.) 

Art. 33. If A, B, C are magnitudes of the same kind; 

if 7, U, V are magnitudes of the same kind; 

if [A, B]=[7, UV], 

and if [B, C]=[U, V], 

to prove that [A, C]=[2, V}. 

As in Prop. 6 there are three alternatives, according as 

rA = sC. 

_ 
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If rA <sC, 

integers n, t, exist such that 
nsC >tB> nr. 

.: urA <tB, 

and (A, B)=[T7, UV], 

. orl <t. 

Since tB<nsC, 

and [BS Cla val; 

tU <nsV, 

* orl <nsV, 

rl <svV. 

Hence ierAreOe Then “LS SVG cetscecncencecwwes+s21sssc-cteeteee (1). 

In like manner ThemAmss se Ghent lesa Vor atone occnsccame ees hee (II), 

if rf <sV, then rA <sC 

and hese then! 7A.>1sC. \s.seasaceemseeereseceesceencs (hy): 

And now, as in the latter part of Prop. 6, it follows from (I)—(IV) that 

[A, C]=[7, V}. 

CoroLtiary. (Eue. v. 20.) 

To show that, with the notation of Proposition 12, A ZC according as 7’ = Ve 

This follows immediately from 
[A, C]=[7, V]. 

ProposiTIoN 13. (Eue. v. 23.) 

Art. 34. If A, B, C be three magnitudes of the same kind: if 7, U, V be three 

magnitudes of the same kind, 

if [4, B]=[U, VI, 
and if [B, C]=[7, VU}, 
to prove that [A, C]=[7, V}. 

As in Prop. 6 there are three alternatives, according as 

rA =sC. 
<= 

If rA <sC, 
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then integers n, ¢ exist such that 
nsC>tB>nrdA; 

-; nrA <tB, 

and [A, B]J=[U, V], 

-, nrU <tV. 

tB < nsC, 

and [B, C)=[7, UV], 

tT <nsU, 

rtT <rnsU, 

rtT <s(nrU)< stV, 

rl <sV. 

Hence if rd <sC, then rT’ <sV 

In lke manner if, Ags Cie then 7 TES I5 Vas cts. acre nces <ciens Meaeoeeemeee ee (II), 

if, Wa<siVe, then 72Au <5 ee anc nee cae oe caeinue ene on eeees (IID), 

and ab eg eMail Get iale)n\, (ave Lest OeaepdeacanoadronnasaceponaconuosneHpon de (IV). 

And now, as in the latter part of Prop. 6, it follows from (I)—(IV) that 

[A, C]=[7, V}. 

CoroLiary. (Euc. v. 21.) 

To prove that, with the notation of Prop. 13, A= C according as TJ = We 

This follows immediately from 
[A, C]=[Z7, V}. 

Proposition 14. (Euce. v. 24.) 

Art. 35. If [4, C] = [X, 2], 
and if eC ye z: 

to prove that [4+ B, C])=[X+Y, Z]. 

-(BO=% 7] 
. [C, B)=[Z, ¥] (Prop. 3). 

And [4, C]=L4, 2] 
Sess £23]| = |G 14 (Prop. 12). 

- [44+ B, B)=[X+4+ ¥Y, VY] (Prop. 7 (i)). 

But [B, C]=[Y, Z] 

. (44+ B, C)=[(X + Y, Z] (Prop. 12). 



: 
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III. Development of the Theory of Ratio. 

Art. 36. It will have been noticed that throughout the preceding section on the 

reconstruction of the argument of Euclid’s Fifth Book the word “Ratio” has not been 

used. Nor has the idea of Ratio been employed. Demonstrations of all those propositions 

of the Fifth Book which express properties of equal ratios have now been given in a 

form expressing the sameness of two relative multiple scales. 

It is now necessary to show how the idea of ratio is introduced. 

Preliminary Discussion of Differing Relative Multiple Scales. 

Art. 37. Explanation of Terminology. 

If X, Y, A be three magnitudes of the same kind, and X greater than Y, then 

X is said to occupy a more advanced position amongst the multiples of A than VY 

does; and Y is said to occupy a less advanced position amongst the multiples of A 

than X does. 

PRoOpOSITION 15. 

Art. 38. To determine the ways in which differing relative multiple scales can differ. 

Let the scale of A, B differ from that of C, D. Take any multiple of A, say 

rA; and any multiple of B, say sB. 

Then there are three alternatives 

(1) rA > sB; 

or (2) rA=sB; 

or (3) rA <sB. 

Each of these alternatives is inconsistent with the other two. 

In like manner in the scale of C, D there are three alternatives 

(4) rC > sD, 

or (5) rC=sD, 

or (6) 70 < sD: 

On comparing the scales, no difference is shown between them if (1) and (4), or 

if (2) and (5), or if (8) and (6) coexist. 

On the other hand, any other combination of one of the alternatives (1), (2), (3) 

with one of the alternatives (4), (5), (6) shows a difference in the scales. 
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Hence the cases to be considered are the combinations of 

(1) and (5) giving rA > 8B, 10 = 8D .1.....00cec sce oeseeeeeeees (7), 

(1) and (6) giving fA > 8B, 10 < 8D ooo ici... sic. ccnsn scones (8), 

(2) and (6) giving rA = 8B, 71C < 8D onc. ..ceciicee cn cen tecenee (9), 

(2) ‘and (4)ipiving rAl— By Oe ree cecnnesnn cen ennaaee (10), 

(3) and.(4) givinp’rA < SB) 60> SD ein nccnccnracs-a nanos (11), 

(8), and) (5) giving Ao B. 9G senna ee ee (12). 

Art. 39. It will first be shown that if (7) or (9) exist, the existence of a relation 

of the form (8) with different values of the integers 7, s is necessarily implied. 

Take (7) in which 
7rA >sB, rC=sD. 

It is always possible to find an integer x such that 

n(rA —sB)>B, 

*. nrA >nsB+ B. 

Hence at least one multiple of B falls between nrA and nsB. 

Let tB be such a multiple. 
.. nrA > tB > nsB. 

-- tB > nsB, 

os Se 

~.. £D > nsD, 

6D Snr. 

Hence (nr) A>tB, (nr) C< tD, 

which is of the form (8) with 7 changed into (nr) and s changed into t¢. 

Taking next (9) in which 
rA=sB, r0<sD, 

let n be so large that at least one multiple of D, say tD, les between nrC and 

nsD. 
- nrC < tD < nsD. 

-- tD <nsD, 

t< ins, 

tB <nsB, 

.. tB<mnrd. 

Hence nrA >tB, nrC< tD, 

which is of the form (8). 

Hence the cases (7), (8), (9) are represented by the single form (8). 

Observing next that (10), (11), (12) may be obtained from (7), (8), (9) respectively 

by interchanging A and C, B and D, it follows that cases (10), (11), (12) are repre- 

sented by the single form (11). 
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Art. 40. The next point is to determine whether the scale of A, B can differ 

from that of C, D in one part in the manner indicated by (8), and in another part 

in the manner indicated by (11). 

*This will be shown to be impossible. 

The proposition to be proved is this :— 

If Ac RE MTL aR ant ee arse hee ceeoaccivevsveedvasaalees (8), 

then no integers 7’, s’ can exist such that 

NEO aE Oar OUST HID) nae «Ah eee eas neat ee eee (13), 

which is a relation of the form (11). 

If possible let (8) and (13) coexist. 

From (8) TEAS SHB, SRE AE A. OE ke (14), 

TS, ORG BSED 8 cAI A Sots ote Bd ce (15). 

From (15) WGA << GRUB... eRe. ea A a a Oa (16), 

WS ge GSED eas ccee dase costa cece oon ene Ome Li): 

From (14) and (16) rs A >r'sA 

FPS MOM nee ce BGAN OCRCEIC CONDE an coca nsec mn Done ae (18). 

From (15) and (17) rs'C < r’sC 

PNR INS. Sad tian ocean ree ee eee (19). 

But (18) and (19) are contradictory. 

Hence (8) and (13) cannot coexist. 

Now (13) is of the same form as (11). 

Hence the two ways in which two scales can differ indicated by (8) and (11) are 

exclusive of one another. 

But (8) represents (7), (8) and (9); whilst (11) represents (10), (11) and (12). 

Hence if two scales differ in any part in one of the ways represented by (7), (8), 

or (9); then they cannot differ in any other part in one of the ways represented by 

(10), (11) or (12). 

Art. 41. Now in (7), (8) or (9), rd occupies a more advanced position amongst 

the multiples of 6b than rC does amongst the multiples of D: which may also be 

expressed thus:—rC' occupies a /ess advanced position amongst the multiples of D than 

rA does amongst the multiples of B. 

On the other hand in (10), (11) or (12), rd occupies a less advanced position 

amongst the multiples of B than rC does amongst the multiples of D; which may 

also be expressed thus:—rC occupies a more advanced position amongst the multiples 

of D than rAd does amongst the multiples of B. 

* Compare the proof in De Morgan’s unpublished Tracts, of which there is a manuscript copy in the Library 

of University College, London. 

Vout. XVI. Parr IV. 33 
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The above distinctions may be conveniently expressed thus :— 

In (7), (8) or (9) the scale of A, B is above that of C, D; which may also be 

stated thus:—the seale of C, D is below that of A, B. 

In (10), (11) or (12) the scale of A, B is below that of C, D; which may also 

be stated thus:—the scale of C, D is above that of A, B. 

PROPOSITION 16. 

(Fundamental Proposition in the Theory of Ratio.) 

Art. 42. To prove that if there be three magnitudes, of which the first and second 

are of the same kind, then there exists one and only one fourth magnitude of the 

same kind as the thiré magnitude, such that the relative multiple scale of the first 

and second magnitudes is the same as that of the third and fourth magnitudes. 

Let the given magnitudes be A, B and C, of which dA and B are of the same 

kind. 

It is required to prove the existence of a fourth magnitude D, such that the scale 

of A, B is the same as that of C, D. 

(1) By Prop. 3 it is sufficient to find D, such that the scale of D, C is the same 

as that of B, A. 

(2) To show how, if D exist, it is possible to determine two magnitudes between 

which D must lie. 

Take any multiple of A, say rd. 

Then find an integer s such that 

Hence E is any magnitude such that the scale of #, C is below that of B, A. 

Next find two positive integers ¢, w such that 

WBA Os. 203.2 CE. Ee ee (3). 

Then it is always possible to find a magnitude F such that 

EH USS ACH ae eeee te ace Caen Aeaane ECE POLO On Gace ce (4). 

Hence F is any magnitude such that the scale of F, C is above that of B, A. 

The magnitudes # and F will be shown to possess the required property. 

It is necessary to prove first that # is less than F. 
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From (1) and (3) 
stB >rtA > rub, 

', &>ru, 

:, ttl > ruF, 

but ruF >rtC by (4): 

. stl > rtC; 

but P rt0 > st by (2): 

*. sth’ > stE, 

.. F>&. 

It will now follow that D, if it exist, must lie between # and F. 

If possible let D<E; 

-. SD < sH, 

but sE <r by (2); 

* sD<rC, 

whilst sB>rA by (1). 

Hence the scale of D, C differs from that of B, A. 

Next, if possible, let D> F. 
* uD >uF, 

but uF >tC by (4); 

UD te: 

whilst uB< tA. 

Hence the scale of D, C differs from that of B, A. 

Further D is not equal to # or F, because in neither case would the scale of 

D, C be the same as that of B, A. 

Hence D, if it exist, must he between /# and F. 

(3) It will next be shown that there cannot be two different values of D. 

If possible let G and H be two different values of D both satisfying the required 

condition ; 
-. [G, C]=[B, A], 

and [H, C]=[B, A]. 

Hence [G, C)=[A, ©} (Prop. 2). 

Hence Ge (Prop. 5 (i)). 

Hence G and H cannot be different. 

Hence, if D exist, it can have only one value. 

(4) To show how to obtain closer limits for D. 
33—2 
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This is done by showing that if H be a magnitude such that the scale of #, C 

is below that of B, A; then a magnitude greater than EH, say H’, exists such that 

the scale of EH’, C is below that of B, A; and by further showing that if F be a 

magnitude such that the scale of F, C is above that of B, A; then a magnitude less 

than F, say F’, exists, such that the scale of F’, C is above that of B, A. ? 

Suitable values of #’ and F’ are given by 

sh’ =7C, Z 

wi” = tC. 

For sE =r, 

rC>sE by (2); 

-, sE' > sE, 

os ME Seen 

Also sh’ =r1C, sB>rA, 

so that the scale of H’, C is below that of B, A. 

Further uF’ =tC <uF by (4), 

Gal Heed a 

Also uF” =tC, uB < tA, 

.. the scale of F’, C is above that of B, A. 

This is a process which can be continued for ever, for if sH’=rC, sB>rA; 

then other integers p, g are known by Art. 39 to exist such that 

pE' <qC, pB> qA. 

Then by taking £” so that pk” = gC, 

it follows that EY" > EF’, 

and sce pL’ = qC, pB > qA, 

the scale of #”’, C is below that of B, A. 

In this way the magnitudes between which D, if it exist, is shown to he, continually 

approach one another. 

This result may be stated thus :— 

There is no greatest magnitude H such that the scale of #, C is below that 

of B, A. 

There is no smallest magnitude F’ such that the scale of F, C is above that 

of B, A. 

(5) Suppose that it is found by carrying on the process above described that, if D 

exist, then 
Xi <P <3Ve 
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Then every magnitude Z between X and Y must be such that one of the following 

alternatives hold :— 

(i) The scale of Z, C is below that of B, A. 

In this case let Z be called a magnitude of the lower class. 

(ii) The seale of Z, C is above that of B, A. 

In this case let Z be called a magnitude of the upper class. 

(iii) The scale of Z, C is the same as that of B, A. 

In this case there is only one possible value of Z, if one exist at all. If such 

a value exist let Z be said to belong to neither class. 

It has been proved that each magnitude of the lower class is less than each 

magnitude of the upper class, and less than D, if it exist. 

It has also been proved that each magnitude of the upper class is greater than 

each magnitude of the lower class, and greater than D, if it exist. 

It has also been proved that there can be at most but one magnitude D, such 

that the scale of D, C is the same as that of B, A; but it has not yet been proved 

that there is any such magnitude. 

(6) It remains to prove that there is such a magnitude. 

Suppose if possible no such magnitude exists. 

Then every magnitude between XY and Y must belong to the lower or upper class. 

But if all the magnitudes between X and Y be divided into two classes, such 
that every magnitude of one class is less than every magnitude of the other class, the 
following are the only two possible alternatives*. 

(i) There is a magnitude R such that the magnitudes of the lower class are not 

greater than R, whilst the magnitudes of the upper class are greater than R. 

In this case the lower class has a greatest magnitude, viz.—R. 

(ii) There is a magnitude S, such that the magnitudes of the lower class are less 

than S, whilst the magnitudes of the upper class are not less than S. 

In this case the upper class has a least magnitude NS. 

Hence if the magnitude D such that the scale of D, C is the same as that of 

B, A do not exist, then all the magnitudes between XY and Y fall either into the 

lower or into the upper class; and either the lower class has a greatest magnitude or 

the upper class has a least- magnitude, both of which alternatives have been shown to 

be impossible. 

Hence one and only one magnitude D exists such that the scale of D, ( is the 

same as that of B, A; and therefore such that the scale of A, B is the same as that 

of C, D. 

* See the note at the end of the paper. 
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Note on Proposition 16. 

Art. 43. There is a certain resemblance between the line of argument adopted in 

the proof of Prop. 16 and that employed by Dedekind in his definition of a real 

number in his tract entitled “Stetigkeit und irrationale Zahlen.” 

The following proposition may be compared with the basis of the argument in the 

second article of the First Chapter of Jordan’s Cours d’Analyse. 

If B and A are two magnitudes of the same kind, and C any other magnitude, 

then there exist two magnitudes H and F of the same kind as C, possessing the 

following properties : 

(i) The scale of Z, C is below that of B, A. 

(ii) The scale of F, C is above that of B, A. 

(iii) The magnitude F—Z is less than any given magnitude K (however small) of 

the same kind as (. 

There are two separate cases to consider. 

Case (1). If B and A are commensurable, 

let B=7G. 

ALS Alt 

= pal Savey 

Take H so that soi —rG. 

Then take # and F' so that 
H-\K<E<H; 

and H<F<H+4K. 

Then F—E<K, which is (ii). 

Also sh < sH, 

sh<arG. sB=TA. 

*. the scale of #, C is below that of B, A, which is (i). 

Further, sF > sH, 

Se Gams Bi — 72 Ae 

-. the scale of F, C is above that of B, A, which is (11). 

Hence quantities Z, F satisfying all the required conditions have been found. 

Case (II). Let B and A be incommensurable. Then as in Art. 42 (2) take any integers 

r, s, t, wu and any quantities #, F such that 

Se eae aes aeiadetearatasesscneatendeteeces (1), 

SEN Ona x toca ees sdemanoabereses seclqe cee eee (2), 

QUB RAWAM test Sees secu. Sguncnasene Besse acme eset (3), 
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then # satisfies the Ist condition, and # the 2nd condition, but the 3rd condition will 

not be satisfied unless #-— Ll < K. 

If the third condition is not satisfied, it is always possible to find an integer n such 

that C<nk. 

Now take magnitudes 1, M, such that 

C=nL, 

A=nM. 

Then from (1), suB > runM, 

and from (3), suB < stnM. 

Now suppose that* pM < suB <(p+1)i. 

Then since runM < suB < stnM, 

it follows that runM < pM <(p+1)Mz strM. 

rn Sp <pt+1lestn. 

Now from (2), suk <runk, 

. suk < pL, 

whilst suB > pM, 

so that the scale of #, ZL is below that of B, M. 

Also from (4), suf > str, 

-. su >(p+1)L, 

whilst suB<(p+1)M; 

.. the scale of F, Z is above that of B, WM. 

Now take 2’, F” such that suk’ = pL, 

suk’ =(p+1)L; 

*. sul’ = pL, suB > pM, 

suk’ =(p+1)L, suB <(p+1)M. 

*. (sun) B’ = p(n), (sun) B > p(ni), 

(sun) F’ =(p+ 1)(rL), (sun) B<(p+1)(md): 

*. (sun) B’ = pC, (sun) B> pA, 

(sun) F’ =(p +1), (sun) B<(p+1)A; 

.. the seale of #’, C is below that of B, A, which is (1); 

and the scale of F’, C is above that of B, A, which is (ii). 

Further, su(f’ — Eb’) = L, 

and nb =C< nk, 

* suB cannot be equal to a multiple of M, for then sunB would be a multiple of 4, and then B and 4 would 

be commensurable. 
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IIE 

*, su(F’ — BE’) < K, 

ee Bs IRS 
which is (iii). 

Hence the existence of the two magnitudes B and A of the same kind renders it 

possible to separate all magnitudes of the same kind as C into two classes. 

The first or lower class contains all magnitudes such as #, having the property 

that the scale of H, C is below that of B, A. 

The second or upper class contams all magnitudes such as F, having the property 

that the scale of F, C is above that of B, A. 

Every magnitude # of the lower class is less than every magnitude F of the upper 

class. 

Further it is possible to find a magnitude # of the upper class, and a magnitude 

E of the lower class, such that /—Z is less than any magnitude AK (however small) 

of the same kind as C. 

Under such circumstances, the statement that the two classes define a certain 

magnitude would correspond exactly with Jordan’s definition of a real number. That 

the magnitude so defined is the magnitude D such that the scale of D, C is the same 

as that of B, A has been proved in Proposition 16. 

Definition of Ratio. 

Art. 44. It has been shown that a magnitude D exists such that the scale of D, C 

is the same as that of B, A; where A and B are any two magnitudes of the same 

kind, and C is any magnitude (Art. 42). 

If C be taken to be the unit of-number, then D is a magnitude of the same kind 

as the unit of number, and may therefore be called a real number. 

Hence corresponding to the magnitudes B, A of the same kind there exists a single 

real number p, such that the scale of B, A is the same as that of p, 1. 

This real number p is taken to be the measure of the relative magnitude or ratio of 

B to A. 

The ratio of B to A is written shortly B: A. 

Consequently B: A is the same as p:1, which may be written B:A=p: 1. 

When this relation holds, p is the measure of the ratio B: A. 

The measure of the ratio then is a real number, and may be distinguished from 

the ratio itself. 

Since this real number p is entirely determimed by the scale of B, A it follows that 

any two other magnitudes having the same scale as B, A will determine the same 

number. 
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Two ratios are considered to be equal when their measures are equal. 

If therefore the scale of A, B be the same as the scale of CU, D; 

251 

then the measure 

of the ratio of A to B is the same as the measure of the ratio of C to D, and therefore 

the ratio of A to B is equal to the ratio of C to D. 

Hence any of the preceding propositions in which it has been proved that the scale 

of A, B is the same as the scale of C, D, may be referred to as expressing the fact 

that the ratio of A to B is the same as that of C to D. 

Art. 45. 

may be greater than another. 

Unequal Ratios. 

PROPOSITION 17. 

Let p be the real number corresponding to the ratio A : B. 

In like manner let o correspond to the ratio C’: D. 

To obtain the conditions which must be satisfied in order that one ratio 

Then A: 8B is said to be greater than, equal to, or less than C: D according as 

p is greater than, equal to, or less than o. 

In order to make practical use of this condition, its form must be altered so as 

depend, not on the measures, but on the terms, of the ratios. 

If p>, 

then p—o is a magnitude of the same kind as the unit of number. 

Hence an integer 7 exists such that 

and 

r(p—oa)>1, 

rp >ro+l. 

Hence some integer s lies between rp and ro. 

Now 

but 

Again, 

and 

Consequently 

if integers 7, s exist such that 

Vou. XVI. Part IV. 

= Tp>s(l)>rTe. 

AR Bip ele 

rp >s(1), 

Sil Sey 

CleDi ares 

ro <s(1), 

men <agi): 

ASB > Ca: 

rA>sB, rC<sD. 

to 
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It is necessary to see if the converse proposition is true, before the test can be 

used; i.e. it must be proved that if 

rd>sB, r0<sD; 

then ATSB > Cea! 

Let p, o be the real numbers corresponding to A: B and C: D respectively. 

Hy Zales = Geile 

and rA>sB; 

eT ps8 (!): 

Also C6: D=c: 1, 

and rC<sD; 

~ To <s(1). 

. rp >s>ro. 

is p >o. 

SS ZU SISSON ID. 

Now the condition found which must hold in order that A: B may be greater than 

C: D, viz. that integers r, s, exist such that rA>sB, rC<sD, is precisely (8) of Art. 38. 

Hence, by Art. 39, the condition will hold whenever integers r, s exist such that 

any one of the conditions (7), (8), (9) of Art. 38 hold. 

Hence by Art. 41 it follows that 

Alb 10 2D 

whenever the scale of A, B is above that of C, D. 

In hke manner Als ING GD) 

whenever the scale of A, B is below that of C, D. 

PROPOSITION 18. 

Art. 46. It follows from the Test for Unequal Ratios exactly as im Propositions § 

and 10 of Euclid’s Fifth Book that 

if AZB, then A: CZ2B:C, and conversely ; 

and if A2B, then C : ASC: B, and conversely. 

PROPOSITION 19. 

Art. 47. To deduce from the test for unequal ratios that if 4:B>C:D, and 

C: D>E: F, then Aly E> Du. 

Since ABA ep) 

integers 7, s exist such that rA>sB, r0<sD. 
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Since C:D>E: F, 

integers ¢, uv exist such that tC>uD, th <uF. 

- re <sD. 

BN TKO Nea dD) he). sanct Ge SEED ORE RED OCE COCEECT re CREP EE (1). 

uD < tC. 

BU LNeOLOueienutis cecisgoe ross? 56. SAE OER COE (2). 

From (1) and (2) ruC < stC. 

SiR <a Sheil» ete. < eeeaseas- sen eeecds bake cseisutoae. 63 (3). 

° 9A > $B: 

Wh PU SOU ES Wanye Ny Mince racecrstras Secos nasa cays (4). 

From (3) stA>ruA. 

*, stA > suB. 

Se wabssi nay, 

but th < uf. 

Ey val Sasi 1 ee 

Note. The result of this proposition renders it possible to order the multiplicity of 

ratios. 

Addition of Ratios. 

Art. 48. Ist stage. The general idea at the root of the process of adding ratios 

is this :-— 

When it is desired to find the ratio of one magnitude to a second it is per- 

missible to break up the first magnitude into parts, then to find the ratio of each 

part to the second magnitude, and then to add up the results. 

(It should be carefully noted that it is the first magnitude, not the second, which 

may be broken up.) 

2nd stage. To make the idea quite precise, the following definition is necessary. 

Let the sum of the ratios X :Z and Y:Z be defined to be X+ VY: Z. 

(This is the same fact as that expressed in Euclid’s 22nd Datum.) 

3rd stage. To apply this definition to the addition of any two ratios A:B and 

C': D, the following process is to be followed. 

Take any arbitrary magnitude Z, and then find two others XY and Y (Prop. 16) 

such that 
ASB = eZ, 

GD = V¥e-Z. 

34—2 
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Then (A: B)+(C: D) 

=(X :2)+(V:% 

=X+4YV:Z. 

4th stage. The process described in the last stage requires justification, because 

the form of the resulting ratio depends on the arbitrary magnitude Z If the 

process is to be of any use, it is necessary to show that the value of the resulting 

ratio does not depend on the arbitrary magnitude Z This will be accomplished when 

it is shown that if any other magnitude Z’ be taken instead of Z, and the same 

process followed, the value found for the resulting ratio is the same. 

Suppose, then, that A:B=X':7, 

and OID SW oA. 

Then (A: B)+(C: D)=X'+ VY’: Z. 

Hence it is necessary to show that 

X'+ VY’: Z=X4+Y:Z. 

Now XG — PAN — PAGE Ze 

BORG SA 2G (ERO; 2) Gocosasnsoansacbsapesonossoosd (1). 

Also Wi a’ = (ls DSN 3% 

9 HS Vey (Bropie2) Meeecannecaesceaesseeeeeeees (2). 

«, X’4+ Y’:Z’=X+4+Y:Z from (1) and (2) by Prop. 14. 

Hence the process described in the third stage is justified. 

Art. 49. The next step is to prove the commutative and associative laws for the 

addition of ratios. 

PROPOSITION 20. 

Art. 50. To prove the commutative law for the addition of ratios, Le. 

(A : B)+(C: D)=(C: D)+(A: B). 

Let ANB Xe = Z- 

and Che DS We 

Then (A: B)+(€: D)=X4+V:Z2 

= VX 3h 

Also (C:D)+(A: B)=V+4+X:Z, 

. (A: B)+(C: D)=(C: D)+(A: B). 

Or, denoting a ratio by a single Greek letter, 

a+B=B+4a. 
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Proposition 21. 

Art. 51. To prove the associative law for the addition of ratios, ie. 

(A: B)+(C: D)]+ (2: F)=(A: B)+[(C: D)+(E: FY]. 

Let A:B=X :Z, 

CAD =Waez 

E:F=U:Z. 

. ((4: B)+(C: D)+(£: P)=[((X :24+(V:DJ]+(U: 7 

=(X+Y:2)4+(U:2Z) 

= ¥-- OZ, 

(A: B)+((C: D)+(E: FP) =(X : 2A4+[(Y:2)4+(U: Z)] 

=(X¥:Z7)+(Y+U:Z) 

=X+YV+U:2Z. 

(4: B)+(C: D)+(2: F)=(A: B)+[((C: D)+(E: PF). 

Or, denoting a ratio by a single Greek letter, 

(a+ B)+y=a+(8+y). 

PROPOSITION 22, 

Art. 52. To prove that the sum of the measures of two ratios is equal to the 
measure of the single ratio which is the sum of the two ratios. 

Let p, o be the measures of A: B, C: D respectively. 

Take any arbitrary magnitude Z, and then take X, Y so that 

A: B=X:Z, 

Cay — Vi eZ. 

Then (A: B)+(C: D)=X+4+Y:Z. 

Since AN? B= pi: 

and Coa: - 

1 

it 

1 

1, 

Bene ees i= pt; cle (Prop. 14.) 

Hence p+o is the measure of the single ratio, which is the sum of the ratios 

A:B and C: D. 

Therefore the measure of the single ratio which is the sum of A: B and C: D is 

equal to the sum of the measures of A: B and (': D, 

Hence the multiplicity of ratios is measurable. 
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The Compounding of Ratios. 

Art. 53. Ist stage. The general idea at the root of the process of compounding 

ratios is this :— 

When it is necessary to determine the relative magnitude of two magnitudes A 

and © of the same kind, it is permissible to make the comparison indirectly by taking 

another magnitude B of the same kind as A and C, and then comparing A with B, 

and B with C. 

From this point of view the relative magnitude of A and C is considered to be 

determined by the relative magnitude of A and B, and the relative magnitude of B 

and C. 

2nd stage. Euclid renders the above general idea quite precise by the following 

definition :— 

The ratio of A to C is compounded of the ratio of A to B and the ratio of 

B to C. 

(See the use made of the definition in the 23rd Proposition of the 6th Book, which 

gives a clearer view of the process than the 5th Definition of the 6th Book.) 

3rd stage. To apply this definition to the compounding of any two ratios P:Q 

and 7: U the following process is to be followed :— 

Take any arbitrary magnitude A, and then take B and C (Prop. 16) so that 

IP 2 (Dae wl § 18, 

N93 (Of SIRS CF 

Then the ratio compounded of P:Q and 7: U is the ratio compounded of A:B 

and B:C, and is therefore A :C. ; 

4th stage. The process described in the last stage requires justification, because 

the form of the resulting ratio depends on the arbitrary magnitude A. If: the 

process is to be of any use it is necessary to show that the value of the resulting 

ratio does not depend on the arbitrary magnitude A. This will be accomplished when 

it is shown that if any other magnitude A’ be taken instead of A, and the same 

process followed, the valwe found for the resulting ratio is the same. 

Suppose, then, that PQ ASB, 

and FAO BAC. 

Then the resulting ratio would be that compounded of A’: B’ and B’:C’, and 

would therefore be A’: C’, 

In order that this may agree with the former result it is necessary to show that 

ELS (CS Ay 3 (0) 
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Ai Beh O= A’: B, 

BrG= UB 3G, 

Ai B= Al: B, 

Pm Bi — bane 

peep C—. Feaen(8, (Prop. 12). 

Hence the process described in the third stage is justified. 

Notation for the Compounding of Ratios. 

Art. 54. The following notation is convenient. 

Let P:@Q compounded with 7’: U be written 

Consequently 
@ OQ) : 0). 

(ARR) a (BiG) — CANO), 

Note on the Compounding of Ratios. 

Art. 55. 

following rule :-— 

Let the ratios to be compounded be dA: B and C: D. 

257 

It is possible to compound two ratios by proceeding according to the 

Take the ratio of equality in the form H:#, where E£ is any magnitude of the 

same kind as C and D. 

Take P and Q so that 
E:-C=A:P 

Then P:Q is the ratio compounded of 4:8 and C: D. 

To prove this take & so that 

Then (A : B)*¥(C: D) 

=(4 : B)xX(B: R) 

Hence it is necessary to show that 

From (3) by Prop. 3, 

= Aw ry 

ees aA. lta cc dagncesteen coat tmeaeee nee se ee 

Dy OCS Boe) Be oc oa CE es eS 
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From (2) and (5) by Prop. 13, 

TORE ORES RON A Bessacn soo hag enone coos asae soaane ace seeHae sou (6) 

From (1) and (6) by Prop. 2, 

NRIPS IAL 

aby Brop. 6; Lhe 3 (0) 

which is the result (+) to be proved. 

This mode of compounding ratios is of interest on account of its connection with the 

extension of the idea of multiplication. 

The unit ratio is taken to be the ratio of equality #: £. 

One way of deriving from the unit ratio the ratio C: D (which corresponds to the 

multiplier) is to change the antecedent of the unit ratio in the ratio #:C, and the 

consequent of the unit ratio in the ratio #: D. 

Let these changes be performed on the ratio A: B (which corresponds to the multi- 

plicand). Then the antecedent becomes P by (1), and the consequent becomes Q by (2), 

so that the resulting ratio is P:Q (which corresponds to the product). 

(The above process contains an arbitrary element £, but its value does not affect 

the value of the resulting ratio, for P:Q=A:R, and R is determined by (3) into 

which # does not enter.) 

PROPOSITION 23. 

Art. 56. If Za 3 I= (4) 2 18, 

and CD Seer 

to prove that (2B) 3eC2D)=@2 A) (SB): 

Take AVCIBSIC 3 Ih, 

and C:D=L: M, 

then Q:R=K:L (Prop. 2), 

and S:T=L:M (Prop. 2), 

- (A: B)¥(C: D)=(K :L)*¥(L: MM) 

= Ke= Me. 

and (Q:R)*¥(8S:7T)=(K :L)*¥(L:M) 

= 13 Wh 

a : B)¥(C: D)=(Q: R)¥(S: TD). 

Art. 57. The next step is to prove the commutative, associative and distributive 

laws for the Compounding of Ratios. 
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PROPOSITION 24. 

Art. 58. To prove the Commutative Law for the Compounding of Ratios, Le. 

4 3B) 6 (C.D =(C = D) (A: B), 

Take (OID Ine ID, 

and SA iS Dar Mipetiame ettas caaeee ane atatocac seve ccsesa teegaas ( 

.. (A: B)*¥(C:D)=(A: B)*(B: £) 

=A:Z£, 

and (C: D)*(A: B)=(C: D)*(D: F) 

= (0 2 10 

2) 

Hence it is necessary to prove that 

A:H=C:F. 

Now (2) is Zl 3 13} ID) 2 Ja 

and from (1) B:E=C:D, 

.. by Prop. 13 A:H=C:F, 

-. (A: B)*(C: D)=(C:D)%(A: B). 

Or, denoting a ratio by a single Greek letter, | 

aX B=B*a. 

PROPOSITION 25. 

Art. 59. To prove the Associative Law for the Compounding of Ratios, i.e. 

[((A : B)¥(C: D)] *(E: F) 

=(A BOC : D) * (2: F)). 

Take (OG De 2A AR CE EBACE CCOOEB ROC SA a OPE EOC uCRLECoS: <OceSe (1), 

Then [((A : B)¥ (C: D)| ¥ (E: F) 

=((A : B)*(B: G)]* (4: A) 

= (4) 3G) (G4: A) 

= 4 3 Jal. 

Worm. XV. “Parr LV; 35 
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Also (A: B)¥[(C: D)* (Z: F)] 

=(A : B)*¥[(C: D)*(D: K)] 

(C21 213)) S252 70) 

=(A: B)*(B: TL) 

walt lye 

To prove the proposition it is necessary to show that 

Api —Ageel: 

and .. by Prop. 4 (ii) it is sufficient to show that 

il, 

From (2) and (3) by Prop. 2, 

From (5) and (6) by Prop. 2, 

Gh Gar. 

H=Tf, [Prop. 5 ()]. 

Hence, denoting a ratio by a single Greek letter, 

[a% 8B] * y=2*[B * 9]. 

4 

PROPOSITION 26. i 

Art. 60. To prove the Distributive Law for Ratios, ie. . 

((4 : B)+(C: D)] ¥ (4: F)=[((4: B) X¥ (FE: F)]+((C: D) X(E: F)). 

Take magnitudes P, Q, X, Y (Prop. 16) such that 

A:B=P:X, 

C:D=Q:X, 

E:F=X-Y. 

Then [(A : B)+(C: D)]¥(E: F) 

=[P: X)+(Q: X)] * (X: VY) 
=e sso Xa o(2k 3 3) 

=P+Q:Y, 

Geb 123) (UI) 3 10 = (UPS OV IO. 214) 

SIE Os 

[(C : D) x (E: Fl=Q:X)x(X:¥) 
=Q:Y; 



Pror. HILL, ON THE FIFTH BOOK OF EUCLID’S ELEMENTS. 261 

' (4: B)¥(Z:F))+((C: D) ¥(£: P)] 

(ere Mean (aang) 

SIAM) 5 Ve 

=((A : B)+(C: D)] * (LZ: F). 

Hence, denoting a ratio by a single Greek letter, 

(a+ B)Xy=(4*% y)+(B * y). 

Note to Art. 42, § 6. To explain why, on the hypothesis that no such magnitude as D, 

[which is such that the scale of D, C is the same as that of B, A,] exists, it is not possible to 

have a mode of division in which the lower class has no greatest magnitude, and the upper 

class has no least magnitude. 

If this were the case, then a magnitude must exist which separates the two classes, but 

itself belongs to neither class. 

Now if any magnitude D of the same kind as C be taken, only three alternatives are 

possible : 

(i) the scale of D, C is below that of B, A; 

(ii) the scale of D, C is the same as that of 5, 4; 

(iii) the scale of D, C is above that of B, A. 

Tf, therefore, a magnitude exist which belongs to neither class, let it be called D, and then 

the scale of D, C is the same as that of B, A. But this is contrary to the hypothesis made, 

viz.:—that no such magnitude exists. 

35—2 



XI. A New Method in Combinatory Analysis, with application to Latin 

Squares and associated questions. By Major P. A. MacManoy, R.A., 

Se.D., F.R.S., Hon. Mem. Camb. Phil. Soe. 

[Received January 11, 1898. Read January 24, 1898.) 

INTRODUCTION. 

Evter in the Verhandelingen uitgegeven door het Zeeuwsch Genootschap der Weten- 

schappen te Vlissingen, vol. 9, 1782, has a paper entitled “Recherches sur une nouvelle 

espéce de Quarrés Magiques.” 

He commences as follows :— 

“Une question fort curieuse, qui a exereé pendant quelque temps la sagacité de 

bien du monde, m’a engagé & faire les recherches suivantes, qui semblent ouvrir une 

nouvelle carriére dans VAnalyse, et en particulier dans la doctrine des combinaisons. 

Cette question rouloit sur une assemblée de 36 officiers de six différens grades et tirés 

de six Régimens différens, quil s’agissoit de ranger dans un quarré, de maniére, que 

sur chaque ligne tant horizontale que verticale il se trouva six officiers tant de différens 

caractéres que de Régimens différens. Or aprés toutes les peimes qu’on sest donné 

pour résoudre ce Probleme, on a été obligé de reconnoitre qu'un tel arrangement est 

absolument impossible, quoiqu’on ne puisse pas en donner de démonstration rigoureuse.” 

He denotes the six regiments by the Latin letters a, b, c, d, e, f and the six ranks 

or grades by the Greek letters a, B, y, 6, «, €& and remarks that the ‘character’ of an 

officer is determined by two letters, the one Latin and the other Greek, and that the 

problem consists in arranging the 36 combinations 

aa aB ay ad ae at 

ba bB by bd be bE 

OG) Ws) Gy @) CS Gg 

da dB dy dd de df 

ea eB ey ed ee ef 

fa JB fy fo fe fe 

in a square in such a manner that every row and column contains the six Latin and 

the six Greek letters. 

He finds no solution of this particular problem and gives his opinion that none can 

be obtained whenever the order of the square is of the form 2 mod 4. 
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In other cases as far as the order 9 he obtains solutions. 

The first step is to arrange the Latin letters in a square so that no letter is missing 

either from any row or any column, He calls this a Latin Square, and in regard to their 

enumeration for a given order observes, § 148, p. 230: 

“Jobserve encore A cette occasion que le parfait dénombrement de tous les cas 

possibles de variations semblables seroit un objet digne de lattention des Géomeétres, 

dautant plus que tous les principes connus dans la doctrine des combinaisons n'y 

sgauroient préter le moindre secours.” 

And again, § 152, p. 234: 

“J’avois observé ci-dessus, qu'un parfait dénombrement de toutes les variations 

possibles des quarrés latins seroit une question trés importante, mais qui me paroissoit 

extremement difficile et presque impossible dés que le nombre n surpassoit 5. Pour 

approcher de cette énumération il faudroit commencer par cette question : 

En combien de maniéres différentes, la premiére bande horizontale étant donnée, 

peut-on varier la seconde bande horizontale pour chaque nombre proposé n?” 

He in fact gives a solution of the last-mentioned question. Many different ones 

are now in existence and, incidentally, a new one is given in this paper. 

It is the well-known ‘Probléme des rencontres’ which was first proposed by 

Montmort. 

For the rest the paper is entirely concerned with the actual construction of what 

may be termed Graeco-Latin Squares, to which one is led by considering the problem 

of the officers above mentioned, and with their transformation so as to enable one to 

obtain many solutions from any one that has been arrived at. 

Euler himself admits the unsatisfactory nature of his investigation. He remarks 

§ 11, p. 94 “La formation des formules directrices est done le premier et le principal 

objet dans ces recherches; mais je dois avoiier, que jusqu’ici je navois aucune méthode 

stire qui puisse conduire A cette investigation. I] semble méme qu'on doit se contenter 

d'une espéce de simple t&étonnement que je vais expliquer pour le quarré latin de 49 

cases rapporté ci-dessus.” 

To explain the meaning of the phrase ‘formules directrices’ which will be referred 

to in the sequel, I take Euler's Graeco-Latin Square of order 7, writing with him the 

natural numbers instead of Latin and Greek letters and writing the latter as exponents 

to the former : 
IANS! AA(/57 G5 55.07 

PA anal? (5st 4h STAG! 
5s 6. 5s 7612 47 94 

paseg5*y 16%) US Wie Stags 

Foe dt? -2F) 62 (3% ia? 

Ges, (48 S28 BY ald 

7 48 93 62 38 It 5 
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Consider the Latin Square as given by erasing the exponent numbers. 

In order to find possible places for the exponent 1 we must select 7 different 

numbers, from the square, one being in each column and one in each row. 

Thus we may select the set 

LUG 7% 28h 

and give each the exponent 1 as above. 

bo or 

This is called ‘une formule directrice’ for the exponent 1. 

We may similarly find a formula for the exponent 2, viz.:— 

Ai a acs! is 

and if we are successful for each of the 7 numbers and can fill in all the exponents 

clearly the Graeco-Latin Square will have been constructed. In this case if ‘une formule 

directrice’ be written for each number, so that they form a square, it is clear that it 

must be a Latin Square. 

I pass now to the paper by Cayley, Messenger of Mathematics, vol. x1x. (1890), 

pp. 135—137. This is little more than a statement of the problem involved in the 

enumeration of Latin Squares. With Euler he reduces the number of squares by taking 

the top row and left-hand column in the same determinate order; say for the order 5, 

a 0 © bb G 

ye Oh Oh 

cy enna bi a 

Gi Tome cmb 

Bi a We Gh el 

and he remarks that “if the number of such squares be =, then obviously the 

whole number of squares that can be formed with the same n arrangements is = V [n]”.” 

This however is not so; the number is N.n!(n—1)! the factor x! appearing from 

permutation of columns and (n—1)! from permutation of the lower n—J1 rows. He 

speaks of the possible arrangements of the second line, the ‘Probléme des rencontres’ 

and of the difficulty of proceeding a step further to the enumeration of the arrange- 

ments of the second and third lines. This problem, previous to the present paper, had 

never been solved, and to quote from Cayley (Joc. cit.) “the difficulty of course increases 

for the next following lines.” He further makes the valuable, if obvious, observation 

“when all the lines are filled up except the bottom line, the bottom line is completely 

determined.” In the above quotation I have substituted ‘bottom’ for ‘top, as I read 

with Euler from top to bottom instead of with Cayley from bottom to top. 

The ‘Probleme des ménages’ involves to some extent the consideration of the 

second and third lines of the square and a fairly satisfactory solution has been obtained. 

(See post.) 

For the rest nothing of value has been accomplished and the whole question awaits 

elucidation. 
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SECTION 1. 

Art. 1. It occurred to me to attack the problem by the powerful methods of the 

calculus of symmetric functions, and I have been led to the complete analytical solution 

of the main and many allied questions. The enumerations are given in the form of 

coefficients in the developments of certain generating functions whose inner structures 

are seen to implicitly involve the solutions. 

In particular I have obtained the following simple and elegant theorem. 

If the symmetric function 

then K is the number of Latin Squares of order n and division by n!(n—1)! is merely 

necessary to obtain the number of reduced Latin Squares. 

I make the following references to papers by myself where the principles employed 

are set forth and employed in various interesting questions of combinatory analysis. 

“Symmetric Functions and the Theory of Distributions” (Proc. L. M. S., vol. X1x. 

pp. 220—256). 

“A theorem in the calculus of linear partial differential equations” (Q. M. J., vol. 

XXIV. pp. 246—250). 

- “Memoir on a new Theory of Symmetric Functions” (Amer. Journ. Math., vol. Xt. 

1889, pp. 1—36). 

“Second Memoir...... ” (ibid. vol. x11. 1890, pp. 61—102). 

“Third Memoir...... * bid. vol. xu. 1891, pp. 193—234). 

“Fourth Memoir...... ” (ibid. vol. x1v. 1892, pp. 15—32). 

“A certain class of Generating Functions in the Theory of Numbers” (Phil. Trans. 

R. S., vol. 185 a, 1894, pp. 111—160). 

“The Algebra of Multi-Linear Partial Differential Operators” (Proc. L. M. S. 

vol. XIX.). 

“The Multiplication of Symmetric Functions” (Mess. of Math. New Series, No. 167, 

March 1885). 

Art. 2. I reproduce, with slightly altered notation, the master theorem, given in 

the last but one quoted paper, which has special reference to the present investigation. 

Let w, we,... Us be any linear operators, whatever, in regard to the elements 

Dis (Des Ds; s-< 5 

O= rAyuy + Astle +... + Agtls 

= @,0,, + @.0p, +-0,0,,+ .... 

and put 
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Further let 
di, de; Pies dn 

be any m functions of p,, pe, Ps, 

and b = didods ------ Pin- 

Then 
dr (pi +@,, Pot @., Pst @,, ..-) 

© (ou = b+ 06+ G4 ort. 
(oe and o+0g+0? , bt or bet 

t= I i e: e 

Fincone Og eae a) b+ oe \, 

that is 

b+ (Ath + Actle + «+e +Asus) b +5; Out A Nally Fs sc00s + Vglls)? P+ ...0-. 

t=m 

ail C {6 + (Aqua + Astle + .-20ee + Agus) he + a1 a (8 + Acts + ...-- + Agus)? he + «0. | 
t=1 

We now compare the coefficients of 

on the two sides of the identity, and obtain the result 

(GRETA sc _ gp =3s (GaP soo PS Gh (uP ug?* ae 

x! or be Ne! a, ! rae 

where 

ug?) od, (24) By dae 

eed /eh ase 
[She 

: Us eka 

fy! FA ++ Ms! 

Oo + Brit... +h =X (— 2 3 . 8), 

and the double summation is in regard to every positive integral solution of these s 

equations and to every permutation of 

di, de, bs --» Pme 

This important result is similar to the well-known theorem of Leibnitz in form, 

but in form only, for here such an operator product as 

up uy” Aree us. 

does not mean 8 successive operations but the single operation of an operator of 

order =6 obtained by symbolic multiplication 

Art. 3. Putting s equal to unity we find 

(ux) = = ae oe , we) dm 
x! Taal 

and now putting 

pele 

u= Op, Pa si. + 

(u’) _ 
‘8! =D,;, 

Db = => Did, Dad» -- Dudm; 

where atB+...+H=X, 
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and the double summation has reference to every solution of this equation 

integers (including zero) and to every permutation of $,, d.,... dm- 

Art. 4. As a further particular case, 

Do" =ZZD.bDad ... Did, 

and we have a summation in regard to every partition of y into » parts, 

counted as a part, and to every permutation of the parts of each partition. 

267 

in positive 

zero being 

The operation ¥ Dad: Dp $s... Dudin; 

the summation being for every permutation of the parts a, 8,..., may be denoted by 

P LD apie; 

and thence we have the equivalence 
D, = madd) er yh ’ 

where the summation is for all partitions of y. 

It may happen that (48...) is the only partition of y, for which Dag... 6 does 

not vanish, so that 

dD, a Daa eas 

As will be seen the assignment of ¢, so that this may be the case, is the key to 

the solution of the problem of the Latin Square. 

Art. 5. Take the polynomial 

, a = (De + per SSC (w Fei a) (x aa a.) Ae (z a An): 

and, with the object of investigating Latin Squares with the n elements 

Who Why ode Uiry 
consider the symmetric function 

Sama... a, 

wherein a, @,,...@, are to be regarded as unspecified different integers. 

Let a +a,+...+a,=, 

and form the partial differential operator 

1 
Dy = ail (Qp, + PrOp, + Pp, + ---)”, 

the linear operator being raised to the power w by symbolic multiplication, so that D,, 

is an operator of order w. 

The symmetric function Daytiaste ... aye 

may be conveniently symbolised, in the usual manner, by the partition notation 

(iE: Beg Uy 

As is well known the operation of D is shewn by 

D(C {ig =+= An)\=(dg'>-='An), 

DDS (Cte Cte kp ate Lp, | ( Cy a a hg gt «ly, 

D,, (a) = 1, 

DED yD. Din (QhGsds '.. Oy) =A. 

Vou. XVI. Parr IV. 
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I now construct the symmetric function 
(Css Og) 

and suppose it multiplied out until its equivalent representation as a sum of monomial 

symmetric functions is arrived at. 

We have (Gidseee Gn) Ka(bibsbs--e)s 

and operating on both sides with 
Dy Dr Dies, 

we find Dy, Do, Dog +++ (he «-+ Gn)” = K, 

and we can calculate K by performing a definite series of operations. 

If we operate with D,, only those symmetric functions, on the right-hand side, survive 

which include a part w in their partitions, and, in each of these, the number of times 

w occurs as a part is diminished by unity. We must consider the operation of D,. upon 

the left-hand side 
(CHT 380 (Eh) 

First take for simplicity n= 4, and write 

(G@etag, ass a) —(as10; ond): 

and w=at+b+c+d. 

Let a, b, c, d be so assigned that 
(abcd) 

is the only partition of w=a+b+c+d into four or fewer parts, repeated or not, drawn 

trom the parts a, b, c, d. 

Ex. gr. we may take (@, fd, & EN H(Gy ay 2 Ay 

and it will be noticed that 15 has the single partition (8421) into four or fewer parts, 

repeated or not, drawn from the parts 8, 4, 2, 1. 

Then D,y(abed)* = D avea, (abed)* (see ante Art. 4), 

and D» (abcd)! = XD,, (abed) Dy, (abed) D,, (abed) D,, (abcd), 

wherein 1,v,02, is a permutation of the letters a, b, c, d, and the summation is for every 

such permutation. 

(Cf. Q. M. J. No. 85, 1886, “The Law of Symmetry and other Theorems in Symmetric 

Functions,” § 4.) 

Art. 6. It is this valuable property of the operation D, when performed upon a 

product, that is the essential feature of this investigation. The right-hand side consists 

of 24(= 4!) terms, each of which is 

(bcd) (acd) (abd) (abc), 
and we have the identity 

D,, (abed)s = 4! (bed) (aed) (abd) (abe), 

and clearly also 

Dy, (G,G20s -.. An An)"=N! (Gedy .«- Gn) (AyGs ... An)'-.- (QiAs «>: Gna): 
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As remarked above we may consider, in general, Latin Rectangles. If we consider 

a Rectangle of n columns and 1 row we obtain a trivial result, which however it is 

proper, for the orderly development of the subject, to notice. We are subject here to 

no condition. The whole number of rectangles is n!; of reduced rectangles 

n! 
ge it 

This we may take to be indicated by the above operation of D, upon 

(Gidareee pee 

To give it analytical expression, in the identity 

JOE (OR pa Oh) eH ree 0) hoe (GACH den tee) 

put Cy 10 

so that BONE ir eer =) uel PR SY 

n!\n =n! = G i} Mm, 

where 7, is the number of reduced Rectangles of » columns and 1 row. 

I call to mind that the case is trivial, and n,= 1. 

Ds (G4, tee On)” Ja =a,=...=an=] 
Thence m= 

Art. 7. I pass on to consider D* (abed)* 

= 4! D,, (bed) (acd) (abd) (abe) 

=4!=D,, (bed) D,, (acd) Dy, (abd) Dy, (abc), 

where 2,v.v;2; is any permutation of the letters a, b, c, d, and the summation is for all 

such permutations. 

Now observe that certain terms out of the 24 vanish. D,, (bed) vanishes when 

v%,=a, Dy,(acd) when v,=b, D,,(abd) when v,=c, D,, (abc) when v,=d. We are only 

concerned with those permutations 

VVV3U4 

of a, b, c, d which are competent to form a Latin Rectangle of two rows, the top row 

being a, 6, ¢, d. 

We have in fact the ‘Probléme des rencontres.’ 

v,v,0v, can only assume the 9 permutations 

(D2 0h 01 

ada 

Ge tth Ce 

adh 

AY eye 2089 9 fo & 

QR — ao 
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9 being the solution of the corresponding ‘Probleme des rencontres, and representing 

the number of Latin Rectangles in which the top row is abed but in which the first 

letter in the second row is not necessarily b. 

To obtain the number of reduced rectangles we must divide the number 9 by 

3 (=n-—1), and so reach the number 3. 

On the right-hand side of the identity 

D*, (abed)s 

=4!XD,, (bed) D,, (aed) D,, (abd) D,, (abe) 

we obtain, after operation, 9 terms; 3 for each reduced Latin Rectangle of two rows. 

Let nn, denote the number of reduced Latin Rectangles of » columns and two rows. 

On the right-hand side of the identity 

IDEA (Gs fos CS 

UID (PI aoe CE) IOLs (CHIE Bag 7) coe IDE (RO Gon (ren) 

we obtain after operation 
(n—1)n, terms, 

corresponding to the Latin Rectangles, reduced as regards columns but unreduced as 

regards rows,—or 
n!i(n—1)n, terms, 

corresponding to the totality of unreduced Latin Rectangles. 

We have 

_ sum of coefficients of terms in the development of D%, (aa -.. Gn)” 
aad ni(n—1) 

the development being that reached by the performance of D’, in the manner indicated, 

and the numerator of the fraction necessarily representing the number of unreduced 

Latin Rectangles of x columns and two rows. 

’ 

As before we can give m an analytical expression. 

Each of the n!(n—1)m terms in D* (aa, ...a,)” assumes the value 

nm !\" 

() 

my W\n 

ni(n—1) Gi 

which is a new solution of the much considered ‘ Probleme des rencontres*.’ 

{Ol 0, = aq — 1-0-1 — Ay — al 

Hence oo 

Art. 8. Observe that in the above process we have a series of operations correspond- 

ing to every unreduced Latin Rectangle. I pass now to the Latin Rectangle of three 

rows, a problem hitherto regarded as unassailable. 

* Another solution has been given by the author, Phil. Trans. R. S. vol. 185 a, 1894. 
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Suppose 
Uy Uy +0Uny 

Ws Ug ose Un, 

Udariecatnc; 

to be such a rectangle. 

In operating with Dy upon (aas...dn)", we get one term corresponding to 

Do, Dag ino Digs 

Operating upon this term with D,, we get one term corresponding to the double 
operation. 

Ds, Die aD 
Dap ¥ Dep i Dey rk, 

and again operating upon this last term with D,. we get one term corresponding to the 
treble operation 

De Do eat Dn Ks 

Dy * Doy * ».. Dey 

Dy, * Do * «+. Deg 5 

that is to say, in performmg D,, we have a one-to-one correspondence between the w? 

terms involved and the unreduced Latin Rectangles of n columns and 3 rows. ‘To 
obtain the reduced Latin Rectangles we have merely to divide the number of terms by 

n!(n—1)(n— 2). 

Hence calling »,; the number of reduced Rectangles, we have, by previous reasoning, 

Ny = [Di (Gite --- Gn)" Ja, ag= = ay =1 

n!(n—1)(n— 
2) ey 

Art. 9. It is now easy to pass to the general case and to demonstrate the result 

[Di, (did... dn)" Ja Se ois 

pieelya (=) 
“(n—s)!\s! 

ie — 

In the case of the Latin Square 

sS=Nn, 

and we should be able to shew, after Cayley’s remark, that 

Np = Nn- 

Now 

n, — eae (aay Sl Gn)" Ja, =ag= ++. =ay=1 

ee n!(n—1)!n" . 

My = [D* (Gd wee Ci eee es 

” n!(n—1)! , 

and it will be shewn that these expressions have the same value. 
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After performance of D** we obtain a number of terms of the nature 

(@)\(@yrosa (G5) 

and putting herein a4, ==... =4,=1, we obtain a factor n”. 

On proceeding to perform D,, again, before putting q=a=...=4a4,=1, we obtain 

simply unity and the quantities %, %,... 4, have disappeared. 

Hence 
oe (aay. : O=) =Gy= ++ =G_=1 

=" [D2 (Gide seen) eae ay = 19 

and thence Nn = Np: 

The expression for x, may be simplified because 

Di, (G42.- An)” 

is an integer and does not involve the roots @, Qs,---Qn. 

The numerator of the fraction is the coefficient of the symmetric function 

(w”) 
in the development of the power 

(Oreos ays, 

w being equal to a. 

Art. 10. In the symmetric functions the letters @,, @s,...@, are taken to represent 

different integers and so far their values have been unspecified. They must be ap- 

propriately chosen or the analysis will fail. 

It is essential that the number 

Q, + Ag +... On 

shall possess but a single partition, into » or fewer parts, drawn from the numbers 

@,, >, Ms, -.. Gn, Tepetitions of parts permissible. 

Thus of order 4 the simplest system is 

(4, Ce, As, a) = (8, 4, 2, 1), 

the number 15 possesses the single partition 8421, of four or fewer parts, drawn from 

the integers 8, 4, 2, 1, repetitions permitted. 

The system 7421 would not do because 14 possesses the partition 7, 7. 

In general, of order n, the simplest system is 

(Wan (ees aon Chey Wp) = ZS ona 2 1) 

To perform the operations indicated we have to express the function 

(Gila san) 
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in terms of the coefficients 

A Pi» Pas +++ Pas 

and operate with 
be > 

Dy = aan (Op, + PrOp, + +++ + Pn—Op,)”; 

: a S . n\ ; 
as many times successively as may be necessary. We then write 4 for p, and substitute 

in the formule. 

The calculations will, no doubt, be laborious but that is here not to the point, as 

an enumeration problem may be considered to be solved when definite algebraical 

processes are set forth which lead to the solution. 

In the case of the Latin Square we may write the result 
n 

(2022. 21)" =... 42! (n—1)! n, (2"—1)+4..., 

or in the form 

’ (Sa a2”... a dn) =... +0! (n—1)! nada” a2" ... ap +... , 

n!(n—1)!n, and m, enumerating respectively the unreduced and reduced Latin Squares 

of order n. 

It will be noticed that (2772"-*...21) is what I have elsewhere* called a perfect 

partition of the number 2"—1; that is, from its parts can be composed, in one way 

only, the number 2”—1 and every lower number. 

SECTION 2. 

Art. 11. I proceed to discuss the ‘Probleme des ménages’ by the same method. 

Lucas in his Théorie des Nombres thus enunciates the question :— 

“Des femmes, en nombre n, sont rangées autour dune table, dans un ordre de- 

terminé; on demande quel est le nombre des maniéres de placer leurs maris respectifs, 

de telle sorte quun homme soit placé entre deux femmes, sans se trouver 4 cété de la 

sienne ?” 

He then remarks that it is necessary to determine the number of ‘permutations 

discordantes’ with the two permutations 

12 a) AC... n— on 

Dime AGe Dc WI. Iz 

He remarks as follows :— 

“Nous ne connaissons aucune solution simple de cette question, dont |’énoncé 

donne lieu a |’étude du nombre des permutations discordantes de deux permutations déja 

discordantes et plus généralement, du nombre des permutations discordantes de deux 

permutations quelconques.” 

* «The theory of perfect partitions of numbers and the compositions of multipartite numbers.” Messenger 

of Mathematics, Vol. 20, 1891, pp. 103—119. 
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He gives solutions due to M. Laisant and M. C. Moreau of which the most con- 

venient is represented by the difference equation 

(n —1) Ang, = (? —1) An + (HN +1) 44+ 4(—1)” 

with the initial values 
(Aen Ay) = he): 

The reader, who has mastered the preceding solution of the problem of the Latin 

Rectangle, will have no difficulty in applying the same method here. 

Construct the symmetric function 

(GQ, ... Gn) (A,B, ..- An) (das... An)'-.. (Ass --- Ons); 

where the sth factor from the left is deprived of the symbols a,, ds,, (a suffix when 

>n being taken to the modulus n) by the operation of Da,Da,.,- 

We now operate with D,, and obtain 

Dy, (Gxity)--- On) Dy, (Gilly <2 En) --+ Dy. (Qty... On); 

the summation being for every permutation 

UVa =~ Up 
of the letters a,a.... dy. 

The number of products that survive is precisely the number of ménages denoted 

by Lucas by the symbol X,. Each factor of each product contams n—38 symbols @ in 

brackets and for 
05 — a 

has the value 

Hence OR Aco) (CR G55) oes (Pere te) eee ar 3) , 

or a G:) WDE (roc GC) (Hi can C000 | GATS 565 Wl pee 

As before we may take in the calculation 

(Bs Pn con Ol) City PSS one 1bE 

Art. 12. Similarly we can tind the number of permutations discordant with each of 

any two permutations whatever that are mutually discordant. 

If these two permutations be 
a Un ’ 

= Un’, 

we have merely to form a product in which the sth factor from the left is deprived 

of the symbols 2, v, and proceed as before. We thus arrive at a similar but, of course, 

not an identical result. 

Art. 13. It is equally easy to find the number of permutations discordant with 

each of two permutations which are not mutually discordant. 
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Let these permutations be 
UVa es Valgsy «901 Uy, 

; 
VitUnecaUitigr. cua. 

We take a product in which the left-hand factor is without »v,, the next without 

v,, &e....the sth without v,, but beyond this the tth factor is without the two symbols x, wy. 

Denoting this product by P we, by the usual method, reach the solution 

Ms! (7 Nae) 
Kn = (5) Gh) LD Te eee 

Art. 14. On a similar principle we can enumerate the number of permutations 
discordant with any number of given permutations whatever. 

Let Uy U5. U5 aceUn 
, i, / , 

VY Ug Us ---Un, 

Vy" Ve" Us) 4+.Un', 

/ 

> be the m permutations and of the m letters v,, 2, v,’,...; let the different ones be 

Ug, Ug, Us, --- Ks 1X Number, 

Take for the sth factor (Gi ye00 Ga) 

deprived of the letters Uae ugh eissic: § 

and form the resulting product P. 

Proceeding as before we obtain the result 

= me rail pit ste pelea 

fae (a+) | \G +1) | € = ST ca * [DioP Jeymaym.-smtg 

where j,, jo,---Js,--- are numbers, at once ascertainable, and =j =n. 

Art. 15. A more direct generalisation of the ‘Probleme des ménages’ is obtained 

by imposing the condition that no husband is to have less than 2m persons between 

himself and his wife. 

In the problem above considered m=1. If m=2 we must enumerate the permu- 

tations discordant with 

GM GM, Ags Ay... Ans Ane Una Qn 

es) Ch Lys Oust Ga On, Oy 

CE = RR ee) Se: 25 

% Gy Ue Gy +..Qm CG, Gy Gy 

and we form the product 

IZA (Gi3000 CCH ace UP) CAGRE pon?) coe (Gl dee) 

Vou. XVI. Parr IV. 37 
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the solution being given by 

number = (=) UD IZA eee semen 

and in general 
eT 

number = ( Gm t}) WePadeee ne 

SECTION 3. 

Art. 16. The notion of a Latin Rectangle may be generalised. Instead of n different 

letters we may have s, of one kind, s, of a second, s, of a third, and so on. The 

letters may be, ex. gr., 

where Ys=n. 

To obtain a Latin Rectangle of t rows we take ¢ permutations of the letters such 

that in no column does a, occur more than s, times, a more than s,, ad; more than 

s;, and so on. The reduced rectangles have the top row and left-hand column in the 

same assigned order and evidently we can obtain their number by dividmg the number 

of unreduced rectangles by 
n! me (n—1)! 

EU CUEN Res Sal (GS 

in the case when the rectangle is a square, and by factors of similar forms in the 

other particular cases. 

Examples of such quasi-Latin Squares are 

a LC QO Oo OO @ aad 

Oe ly OG ana 1D ons (WO @ 

OE 0 (iS i Gh @ am WW 

CerGumnD i Gh 1 by ana aa: 

Art. 17. We have Latin Squares and Rectangles associated with every partition of every 

number. The three, given above, correspond to the partitions 21°, 27, 31; we have already, 

in the first part of the paper, considered the case abcd corresponding to 1* and there 

remains the case aaaa, of partition 4, which is trivial. Part of this theory is intimately 

connected with certain chessboard problems that might be proposed. 

Take the unreduced Latin Squares on the letters 

aaaaaaa b. 

The enumeration gives the number of ways of placing 8 rooks on the board so 

that no one can take any of the others. a ag 
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Similarly the enumeration connected with 

aaaaaabe 

gives the number of ways of placing 16 rooks, 8 white and 8 black, on the board so 
that no rook can be taken by another of the same colour, 

Like problems can be connected with other cases. 

Art. 18. Let us consider the general question of the enumeration. 

First take the simple case 
a, ds, 

where (n—1) a+ a =w. 

Assuming a and a, to be undetermined integers and remembering the law of 
operation of D,,, we have 

Diy 4)" Gt)" = 0 (ay" aay)" (a,"). 

The coefficient indicates that for unreduced rectangles there are n possible first 
rows, viz.:—the n permutations of 

a,” do, 

and DAG ly)” =n (v = 1) (Gis an) (=D, 

the coefficient n(m—1) shewing that there are n(m—1) possible pairs of two first 
rows in unreduced rectangles. 

n! 
Also ID ie Gy)” = Gant (a7 dy)"-* (a,"—), 

! 
giving G=al unreduced rectangles of s rows. 

Hence Di (a,"~ az)" = 0! (da) (a,)"> 

D(a)" a)" = 0! 
intimating (as is otherwise immediately evident) that the number of unreduced rectangles 
of n—1 rows or of squares is 7!. 

To enumerate the reduced rectangles observe that in Row 1 we have one place 

for ad, instead of n places; in Row 2, n—2 places instead of n—1; in Row 3, n—3 

instead of n—2, &e. 

Therefore for the rectangle of s rows we have a divisor 

nn—-l n—2 n—-st+l1 
ee eee) weet n—s > 

ee n!} (n—s—1)! 
which is Gar ast 

Therefore the reduced rectangles, of s rows, are in number 

n—2)! 
or (s < n). 

37/—2 
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If s=n, the case of the square, the last fraction factor of the divisor must be 

omitted and we find the number 

(n—2)!. 

Suppose the symmetric functions to appertain to the quantities 

and in the identity 

De (Give: ly)” = Gun (Gas CAE (GEA 

suppose ChSCh= 53-2605 SO Sb 

n! f n! CS) (Geer 

noes oot eos ((n—s)!s! 

for sdn-1. 

\ < WG Aer eras 

When s=nx—1 we have also the case of the Square as before remarked. 

The right-hand side is therefore an analytical expression for the number of un- 
! 1)! 

reduced rectangles and we have merely to divide by meal : a a to obtain that 

of the reduced rectangles. 

Art. 19. This simple case has been worked out to shew that the desired number 

can be obtained as the result of definite algebraical processes performed upon a certain 

symmetric function. In the actual working it is essential to select a, and a, in such 

wise that 
a," ao 

is the only partition of 

w=(n—1)at+a, 

into n or fewer parts drawn from the symbols a, and a, each any number of times 

repeated. 

It will be found that the simplest system is 

a = 1, ag =, 

necessitating the consideration of the symmetric function 

(nits) 

Art. 20. If we next proceed to enumerate the Latin Rectangles of 

(Cmatlas 

we find that the Square enumeration is most easily expressed, those connected with 

Rectangles having complicated expressions. 
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The reason for this will be obvious from the results 

n 10},. (qa): — (3) ( an Gp) ia (apse As Vie 

Di (ay'-*az)" = (5) {Carta (a2) 
+ 2(n— 2) (a"azy-*(ay"*as) (a) 
a 3 “| (a:"“*a,?)"* (ar? ay , 

for it will be seen that the right-hand side of the identity just obtained, as containing 

terms of three different types, is not simply evaluated for unit values of the quantities 

%, A, as, wee An, 

and the terms will not have a single type until we reach D** which is the case of 

the square. 

Then every term is some permutation of 

(a1)" (a2). 

If K be the whole number of these terms, K is the number of unreduced squares, 

and then putting 
oe 

we obtain Se nes [Dee (Gate 20)” a a anna 

= De (i= a2)", 

n! (n—1)! 
and dividing K by (n—2)!2! “ (n — 38)! 2! 

we obtain the number of reduced squares. 

Art. 21. We get a precisely similar result for the enumeration of the squares derived 

from 

Xs =k 
(nS? ... ARSE 6 ) 

: % Ysa =w/]’ 

viz. for the unreduced squares 

K=n™ (Dr (ast as ... a8)", 

and then division by 

n! (n—1)! 
Soap!) (Ge — 1) last age! 

gives the number of reduced squares, 

The choice of a, dy, ... a, is determined by the circumstance that, for the validity of the 

process, «70 = Zsa must possess no partition of n into n or fewer parts drawn from the set 

Mh, Ag, ++. Ap, 

each repeatable as many as n times (n= %s), except 

(aa, ... a5). 
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This condition is satisfied if 

Qs > 8,0;, 

As > 8A, + 82M, 

Ay, > 8,0, + S20g +... + Spa Ga: 

Putting therefore a,=1, we can take 

a,=1, 

a Sie 

ds = (8, + 1)(s. +1), 

a, = (8, + 1) (8. +1) (83 + 1), 

dy = (8: +1) (6241)... (441+), 

and the symmetric function to be considered is 

{1% s+ 7 (a+ D@+i) watt (& +1)(%@+1)... (Sat 1) }. 

Observe that the partition, which here presents itself, is of necessity a perfect partition. 

Ex. gr. To determine the Latin Squares on the base aabb, we take the function 

(a°b*)s, 

or (371?)4, 

(3°1°) = p? ps — 2p, psp t+ 2pF — PiPsPs + BpsPs + Spr°Ps— Ipsps— SPrp; + 12ps, 
(ie ola Clomete ay 

Ps dps Ps dp, Ps PP dps > Da. ( d +p +n + Ps 
: Upo Ps dp, dp; dp, 

Dg (3712)'= 6 (321)? (BL, 

D2 (BL) = 6 (3°) (PP + 4 (8°) B1P (1?) + BD, 
D3 (3°12) = 90 (3 (VD, 
D; (371°)! = 90. 

and I find 

Hence the number of unreduced Latin Squares is 90, and to obtain the reduced forms we 

divide by (3) (7) =18 and obtain 5 for the number of reduced squares. 

These are aabb aabb aabb 

aabb abab abba 

bbaa baba bbaa 

bbhaa bbaa baab 

aabb aabb 

abab abba 

bbaa baab 

baba bbaa 
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SECTION 4. 

Art. 22. Let us take into consideration the Greco-Latin Square of Euler (see 
Introduction). 

Instead of Greek letters I find it more convenient to use accented Latin letters, so 
that for instance a Greco-Latin Square is 

av” be Ch aad be’ cb’ 

bY c* a*, or more conveniently bb’ ca’ ac 

co bt, ceo ab’ bb’. 

I remark that the Latin and accented Latin letters form, separately, Latin Squares, and 
that two other Latin Squares are obtainable, 

(1) by taking the bases to the exponents a’, b’, c’ in succession, 

(2) by taking the exponents to the bases a, b, ¢ in succession. 

In order to apply to the question the method of this paper it is necessary to con- 
struct suitable operators and operands for use in the master operator theorem of § 1. 

It is necessary to form symmetric functions of two systems of quantities 

CERCA ong (lap 

/ CNUNCON eeu eee 

Write (1+ qa + a'y)(1 + ax + ayy) «(1+ a0 + on'y) 

=1+ pot + Pay +--+ Pw? y” + ..., 

910 = = Pw, w OPrww 3 Jr= =Pw, w—1 Pwwis 

Gavw = al wit 9 inte 

where gg" denotes that the multiplication of operators is symbolic, or non-operational, 

as in the symbolic form of Taylor’s Theorem. 

The reader should refer to the author’s paper “Memoir on Symmetric Functions of 

the Roots of Systems of Equations,” Phil. Trans. R.S., 181 4, 1890, § 3, p. 488 et seq. 

Denote the symmetric function 

Say cy! e182 15/2 343 45% 

by (ayay’ aga a4, -..), 
and observe the results given (loc. cit., p. 490), 

ee (Gee Ga...) (aes 
Gaas (i’)= 1, 

Goa, Gaay --» Ganan' (Gidi WeMs' ... AnQn) = 1. 
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Also (see § 10, p. 516 et seq.) if 

Sir Sy Say Fm 

denote, each, any symmetric functions and 

= IRE tee Tins 

Grow aa = (Gan) (Goatys) cee (Cpe) i Are Vita, 

where the double summation is for every partition 

(ayay’ dad’ ... Ogits ) 

of the bipartite number ww', 

and for every permutation of the m suffixes of the functions f,, fr, fi, -.- fm 

We may denote the operation indicated by the single summation 

> (Ga,a Jr) (Gaza J) “99 (Gaatfs) fev 3s Fm 

by ChE FE «4 

so that there is the operator equivalence 

Game = 2G aay aay... wae) 

the summation having regard to every partition of the bipartite ww’. 

Let Q, +a +... +d, =W 

Qy ds +... $On =W, 

and suppose the integers he. Py cee, UES 
ve 

M,, Mg, «6» An 

so chosen that on the one hand w possesses the single partition (aa... @,) composed 

of n or fewer parts drawn from the parts a, qd, ... @, repetitions permissible, and on the 

other hand w’ possesses the single partition (a‘a,'... @;’) composed of n or fewer parts 

drawn from the parts ay’, d.', ... Gp’ repetitions permissible. Then we have 

Sf —— 
Grw = =G aaa sty) «+» Usp Mtn’) 

where CES ado Gay pon Ue 

are some permutations of 1.2.3... respectively, and the summation is in regard to 

every association of a permutation 

SHS coo ae 

with a permutation (Abedio: te 

Art. 23. First take n=3 

WwW =, +d, + ds 

w' =a, + a + a5, 

and, as operand, the product 

(yay, aydty ays’) (yey) aaety) yy’) (ayes) act,’ asQo’) 



AND ASSOCIATED PROBLEMS. 283 

where a, ad, a; are in the same order in each factor, and the dashed letters in suc- 

cessive factors, being written in successive lines, a Latin Square is formed, viz. :— 

We find 

(Cont (aya, Ayl, sity ) (a,as’ oly, A(t,’ ) (aya, AA As,’ ) 

= (ayy ayy) (aay aay’) (aay agar’) 

+ (aay asas') (aya. aa) (aa! a,0,') 

+ (aay aa!) (ax, a0’) (aay asa’) 

three terms respectively derived from the partition operators 

G@ay aay aa) 

Gay aay aay) 

Ga, aa," ayat,')* 

Operating again with G.~” we obtain 

(a,a,’) (a,a.’) (a.m) ts (a,a,') (aa) (a,a,') 

+ (aya’) (asa) (aaas’) + (asa) (aae’) (aser’) 

at (aya, ) (asa) (a,a,’) + (a,a,’) (a.a;) (a,a,’) 

terms respectively derived from the operators 

Gaal @,a,' aya5')> Gea aay ast’) 

Gay aay aay), F@a/ any aay) 

Gea GxQt3 Asts')> Gia! aya,’ a5) 

Operating again, on each term with the corresponding partition operator, we obtain 

the number 6. 

We have obtained this number from the six combinations of operators 

Giaay aay aay ) ( Fiend aya’ aes) ) Gea aay aay) 
Geet aay eax) | \ Teas aay aay) oS ana, aay) 
Gina? aay waz) \Giay aay aay) \Gqay any! aay) 

Gea? aa ans) ) (Giaay asa’ a03) | Giaay aay aa;') 

Giqay an) aay) Gieay aay aay) | \ Faas aay oes) 

Gay aay aa) \Gaa any ans) \Faay an! a0) 
Vou. XVI. Part IV. 38 
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and to these correspond the six Graco-Latin Squares 

, ’ , / , ’ , / Y (0; Aes’ Aga Onda) Ost, (G,05 gly Ay’ Any 

pis THT rer Wide 00. Os: THIEL FIRS Tere 

, , ’ / ‘ , y ’ , 

GH RIES (a Qs AAs Ad, Gee MT eG Ts 

G0, AA; Age x: A Ac A a 

‘ , , ’ , , ' ' , 

UsMy Az3Q, AAs Asdz Ag =A GQ Arxls AsMly 

Ajy A, At’ Ay Ass’ ght’ Golly Ag,’ As, 

By forming the operand, as above, we have insisted upon the left-hand column of 

the square involving only the three products 

Myth’, Alyy gh', 

but by permuting a’, a,, a,’ we get an additional factor 6 and by permuting the 

2nd and 3rd columns a further factor 2! we find that the unreduced number of 

Greco-Latin Squares of order 3 is 

If we insist upon the suffixes appearing in numerical order in the left-hand column 

for both undashed and dashed letters and also in the top row in the case of undashed 

letters, we obtain the reduced squares. In this instance there is but one, viz. 

A,0y’ Ayla’ 

GY URGE! G(x 

G33 Az) Ay’. 

In general the enumeration of the reduced squares is obtained by dividing the 

number of unreduced squares by 
(n!¥ (n—1)!. 

Above an operand was formed corresponding to the single reduced Latin Square, 

a, Gs as 

of order 3. 

Operating with G®,, viz.:—three times successively with Gy» », we obtained the 

number 6 and this has been shewn to give 3! times the number of reduced Graco- 

Latin Squares for, as remarked above, 3! is the number of ways in which the products 

Gd), As’, asd; can be permuted. 

Hence the number of reduced Greco-Latin Squares is 

6 
Ny ag 
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In general we shall find that we must form an operand corresponding with each 

reduced Latin Square in the dashed letters, operate upon each, with Gy. n times 

successively, take the sum of the resulting numbers, and divide by 7!. 

The result will be the number of reduced Graco-Latin Squares of order x. 

Art. 24. To elucidate the matter I will work out (not quite in full) the case of 

order 4 and deduce the reduced Greeco-Latin Squares. There are four operands, since 

there are four reduced Latin Squares of order 4, viz. :— 

CE ORE GR ah a GE.” Gh QyemiGa (dee (Oy ee (iE Tai nih 

Gaus dg san WH me Whe tae Gian Qe i GI GEE aay 

dy a G ay Qs Gy Gh a. ds Gy Gy Gy Qj  & dy 

Qk aie ae Ci eee OA i Re, Ct ae 

These are 

(A) (aya, Ay’ Aglty. aya; ) (aa,’ nity Agly ay ) (aya, Ay Ugly aay ) (a,a, Atty, Ass aya; ), 

(Bb) (aya AsQly Aghly aya ) (ayay’ ty’ Usits, Att; ) (aay Ash, Asay’ ays ) (a,a/ nls Aste aay), 

(C) (a,a, Ay, Ags, aya; ) (ayas (pty Ugh, ayy ) (aya, Aly Ass. a) ) (aa, a.ay Ast, aay ), 

(D) (a,a, Ayly' Ayits aya’) (ayas’ oly yh,’ ay; ) (a,as, Cally Ugly asa ) (a,a, Ayats, Aly, aay’). 

The operation of D*‘, upon (A), (C) and (D) causes them to vanish and on (B) 
ww 

the result is 48; hence the number of reduced Greco-Latin Squares is 

48 
—_=2. 

4! 

These are 
’ ’ , ' ’ , , / 

AA, Ally’ Ags’ AyAly G0, Aclls Ag Ate 

Anlly ys) Ag’ Ags’ Aly Ay js) Ag, 

Ass Ags) Ay gly’ Ass Ay’ yy’ Agty" 
' tf / , , , , , 

Ag, Ast, AAs AA, Ady Asta Ath Ads 

Observe that the undashed Latin Square is the same in both cases and that the 

second square is obtainable from the first by a cyclical interchange of the 2nd, 3rd and 

4th columns of dashed letters. By the method we can, by regular process, determine 

the number of Greco-Latin Squares appertaining to any given Latin Square. The 

enumeration, however, in all but the simplest cases is so laborious as to be impracticable. 

And I do not see the way to prove that no Greco-Latin of the order 6, and 

generally of order = 2 mod 4, exists. 

38—2 
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SECTION 5. 

Art. 25. It naturally occurs to one to seek other systems of operators and operands 

which lead to the solution of interesting problems. In the master theorem 

(MUX. UX 8) Pay (UB. US) Gy (UP iUg.. UP) hy (UUs... Us) Pm 

Milinatennet 7 ba! asta! « BU BSIIBRh Gi ily pegticcs eet 

where od = digs tee din : 

put o) = (ais y= aes 

Na ee 

and R= Vs 

Then 

(Ox{0z- «Oz, O® = => (XG) 8 (XG) 02... () 0. 

where ENGNG ene Ale — Oe Ones Ores 

and as usual we must take every factorization of the operator and then distribute the 

operations upon the right-hand side in all possible ways. 

Take 06=2,2,...z, and puttmg n=3, we have 

(02,02,02,) (L,Lo03)? = (0702025) (L:VaXg) « (12g) . (4,423) 

+ (48043) . (Oz,0x,0.r,) (U2) . (XTX) 

+ (&,@pX5) . (X05) . (Ox, 0xr,0x,) (X23) 

+ (A2,0x,) (P25) « Oz, (WL) « (#5) 

+5 similar terms 

+ (Ax,02,) (G23) « Ox, (4 T2Ls) « (LLCs) 

+5 similar terms 

+ OxOz, (@Xails) « Ox, (Lats) . (Xy2s) 

+5 similar terms 

+ Oz, (@,2o%s) . Oz, (Lay) . On, (2X2) 

+5 similar terms. 

In all 27 (=3%) terms corresponding to the 27 permuted partitions of 27,7; into exactly 

3 parts, zero being reckoned as a part. 

Selecting any term on the right-hand side, say 

Ox,On., (XyLx3) « Ox, (@yLas) - (Cas) 

we obtain (a). (aa). (arts); 

and if we were to proceed to perform the operation 0,,0,,0,, a second time, of the whole 

number of 27 operations, into which the operator is seen to break up, only a certain 

number will be effective in producing a non-zero term. 

ores, 

Sf 6 Ue ce 
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We are subject to the conditions 

(1) 1st operator factor must not contain 0,, or 0,,, 

(2) 2nd factor must not contain d,,. 

As one operation we can take 

(3) » Ox,0x, (2X2) « Ox, (X23), 

resulting in - (3) (+) (@rat2)e 

Again operating with 0;,07,0,,, we find that only one of the 27 operations can be per- 

formed, and we have 

On, (3) - (+). 0x02, (48s), 

resulting in Ges Csi): 

Forming a square table of these operations we find 

Oz, Ox, Ox 

Oz, Or, Ox 

Or, 3 | 

and it will be seen that each of the three operators 0;,, 0,,, dz, occurs exactly once in each 

row and in each column. 

This feature is a necessary result of the process. 

Art. 26. We may symbolise the above taken successive differential operations by the 

scheme 

12 3 

3 12 

and selecting the operations in any manner possible, so that an annihilating effect is not 

produced, we will obtain a Square of order 3, having the property that each of the three 

numbers 1, 2, 3 appears exactly once in each row and column without restriction in 

regard to the number of them that may appear in each compartment. 

We have in fact the Latin Square freed from the condition that one letter must 

appear in each compartment. Hence it is seen that these squares are enumerated by the 
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number of terms which survive the operations performed on the right-hand side of the 

identity after three successive operations of 07,0202. 

Therefore the enumeration is given by 

(0z,02,02,)° (ai°a2825*) = (3!)*. 

In general for the order x the enumeration of these squares is given by 

(Oz,0z, +++ Oxy)" (&,"H2” «.+ Zn”) = (n hr 

We may state the problem in the following way :— 

“72 different towns form a square and there are n® inspectors, of each of n different 

nationalities. Find the number of arrangements of the inspectors in the towns subject 

to the condition that one inspector of each nationality must be in each row or column 

of towns combined with the circumstance that no restriction is placed upon the number 

of inspectors that may be stationed in a particular town.” 

The result is, as shewn, (7!)”. 

Art. 27. We may also consider the operator 

(707,2-. 02)", 

in conjunction with the operand 
(Ge coo 

> 

where m 2M 

Thus, in particular, taking (@,,0z,)*(772)*, we find arrangements such as 

| 

which is a square of 3? compartments, and the numbers 1, 2 are arranged, in such 

manner, that each is contained once in each row and in each column, 

The enumeration is given by 

(Oz, Ox,)° (@&)° = (3!), 

and in general the result 
(Oz, 0x, «++ Ox_)™ (4 %2 «++ Zn)” = (m!)” 

shews that, in a square of m® compartments, the » numbers 1, 2, 3,...” can be arranged, 

in such a manner, that each is contained once in each row and in each column in exactly 

(m!)" ways. 
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Art. 28. It is very interesting to see that these results can also be obtained by 
means of the symmetric function operators employed in the body of the paper. 

For take as operand \() (2) (aig) «-» (An)}”, 

where of course (a) = Zam, &e.; 

and as operator ee CU nraeeane ee 

Where as usual w possesses the single partition (a,a)...a@,) into n or fewer parts drawn 

from @, @,.-.d,, repetitions permissible. 

For simplicity take n= 3, and write 

(Gy, Gy, G;)— (a, 0; c): 

Then ((a) (b) (¢)§ = (a+b +0) + (a+b, c)+(a+e, b) + (b+¢, a) + (abc)}’, 

and Dave = Diaro+e + Dior, o + Dare, » + Dore, a) + Diare) ; 

according to the notation explained above (Art. 4). 

Now Dio+o+e {(@) (b) (©)}8 = Dazore (a)? (b) (6)? 

= Dare) (a)* (6) (cP? = (319, 

and, performing the developed operator upon 

(a+b+c)+(a+b,c)+ (atc, b)+(b+¢, a) + (abc)}, 

we have to consider the 125 terms of which the expanded power is composed. 

One of these is (a+b+c)(a+e, b) (abc), 

and, performing Dz.),-, we obtain two terms, 

F (a+c,b) (abe) 

+(a+b+c) (b) (ac), 

and now it is easy to see that 

Disvrce(a +b +c) (a +e, b) (abe) =0. 

But selecting out of the 125 the term 

(a+b, c)(a +e, b) (abe), 
the operation of D,.».- produces 

(c) (a+c,b) (ab) 

+(a+b, c) (b) (ac) 

+(a+b) (a+c) (bc); 

the terms corresponding respectively to 

Daso* a. Sit Dex 

*KDaye * - Dex 

DED, Dik, 

and, selecting the first of the terms produced, 

Dd. *K Dy * Da * 

yields (a+c)(b); 

and now operating again, = ID RES aD < 

yields unity. 
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Hence we obtain one resulting term corresponding to the operator scheme 

a+b c 

c b a 

| a+c¢c b | 

or say 

2 3 

3 2 1 

13 Pages| 
| 

which is a square having the desired property, viz.:—each row, as well as each column, 

contains each of the three numbers, without restriction in regard to the number of 

numbers appearing in a compartment. 

And when we carry out the whole process we must arrive at 

(3!)° 
such squares, each square typifying a succession of operations. 

Art. 29. Hence we establish the general theorem, above enunciated, as the enume- 

ration is given by 
Dy ats ee (Ga) (Gs) =. 3(Gn)*s 

which is Dyaay...0n) (Aa”) (3") «+ (@) x (n!)", 
or (n!)”. 

Clearly, the enlarged theorem corresponds to 

DD Pertti (a) (Gs)... Gn) 

which gives (m!)", 

as before. 

Art. 30. This interesting result shews that we may expect to meet with many 

pairs of operators and operands differing widely in character which conduct to the same 

theorem in combinatory analysis. I believe that the method of research, above set forth, 

is of considerable promise and worthy of the attention of mathematicians. It is probable 

that known theorems in combinatory analysis will lead conversely to theorems connected 

with operations which will prove both interesting and valuable. 



XII. On some differential equations in the theory of symmetrical algebra. 

By Proressor A. R. Forsyru. 

[Received February 5. Read February 21, 1898.} 

In a recent memoir*, I have discussed the theory of partial differential equations 

which are of order higher than the first and involve more than two independent variables. 

Most of the investigations apply, as indicated in the title of the memoir, to equations 

which are of the second order and involve three independent variables. The cause of this 

limitation was a desire to secure brevity in the formule; it is however evident from the 

course of the analysis (and there is a statement to this effect) that the investigations 

apply, mutatis mutandis, to equations which are of order m and involve n independent 
variables. 

It is an inference from the theory of partial differential equations there given that the 

most general solution of an equation of order m in n variables involves m independent arbi- 

trary functions and that each of these functions involves n—1 (or fewer) arguments. The 

arguments are shewn to satisfy an equation which, reproducing itself for all transformations 

of the independent variables, is called the characteristic invariant; and the form of this 

equation depends, in the first instance, only upon the aggregate of the derivatives of 

highest order that exist in the original differential equation. When the original equation 

is denoted by 
Ii eles 8 Ne BPS) Ya 

om z 
Zm,, m Wis aa) Ga Ce Woe ry May ey Mn 7M, A pig ayrln? 

TL ''O2. oon é 1 Ok, ox" 
(where 

and m+m,+...+m,=m which is taken to be the order of the equation), then the 

characteristic imvariant is 

s f or ay (= ae £6 

Menem ha) \Oa) > day fi 

where the summation extends over all terms that arise through derivatives of F with 

regard to all the partial differential coefficients of z of order m which occur explicitly 

in F. 

* “Memoir on the integration of partial differential when an intermediary integral does not exist in general,” 

equations of the second order in three independent variables read before the Royal Society on 16 December, 1897. 

Vou. XVI. Parr IV. 39 
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The characteristic invariant is only one of a set of subsidiary equations, which can be 

obtained as follows. Denoting an argument of an arbitrary function by uw, let the inde- 

pendent variables be changed from the set 2, 2, ..., Gr, Ln tO m%, HM, ».+, Ina, U, 

differentiation with regard to the latter set being denoted by d and to the former by 0 

when the differential operator is expressed. To effect the change, we may consider z; as a 

function of a, ..., 2,4, u, and we write 

dz, 
dx, r> 

accordingly, we have 

dz, &, & 

ae a 2a (Sestales D-Shy Br hls es Sa =F Pr2s,, 8, «5 8n—-1) 148n>? 
ath 

for r=1,2,...,n—1. By means of the aggregate of these relations, each of the derivatives 

of order m can be expressed in terms of 2,9, ...,0,m and of new derivatives with regard to 

Dy, BZ, ..-, Ly Of differential coefficients of order m—1. Now assuming that the solution 

of the original equation is of the type known as free from partial quadratures, we have 

il d m 

20, 0, 0, m— dz, aa Zz, 

au 

so that 2), o,...,0,m involves derivatives of the arbitrary function with regard to w of order 

m higher than those which occur in the value of z, while the derivatives of order m—1 

involve derivatives of the arbitrary function with regard to w only of order m—1 higher 

than those which occur in the value of z. Accordingly, when the transformed equation is 

arranged in powers of 2,9, ...,0,m, 1n the form 

a —1 a-2 a 

Z,0 | Oy ARAL Oh mn ATED Opener OE 0} 

we must have FSS IR=O, JES coccue : 

the first of these being the characteristic invariant. This is an aggregate of subsidiary 

equations. If there be any integrable combination, it is proved to be of the nature of an 

intermediary integral of the original equation; and there may be as many of these as 

there are distinct values of u, or sets of values of uw, determined through the characteristic 

invariant. 

There are various classes of partial differential equations, discriminated according to the 

resolubility of the imvariant into equations of lower degrees in the first derivatives of uw. 

In particular, if the invariant is resoluble into m equations, each linear (and homogeneous) 

in the derivatives of w, then each of the m arbitrary functions involves n—1 arguments, 

being the n—1 functionally independent solutions of the corresponding linear equation. But 

if the resolubility of the invariant into linear equations is not of this complete character, 

there is a corresponding declension from the number of arguments in some or all of the 

arbitrary functions. 

Pe a alee ce, — — 

aetna 
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If for none of the arguments wu there should exist an integrable combination, then we 

take the deduced equations 

Le ee 
} 0a, 

0, 

which must be satisfied identically by the solution of #. This is a set of m equations, each 

of order m+1 and linear in the derivatives of highest order. Each of them is treated by 

the preceding method as to the derivatives of order m+1 instead of order m: it appears 

that the characteristic invariant of each of them is the same for all, being the characteristic 

invariant of #: and-each of them provides one other equation, so that, in addition to the 

characteristic invariant, there is an aggregate of n subsidiary equations involving new 

derivatives with regard to @,, a, ..., %— of the differential coefficients of z of order m. 

When an integrable combination, other than F=0, of the subsidiary equations exists, it 

leads to an integral equation of order m that can be associated with the original equation : 

and so for each value of uw, or set of values of uw, leading to an integrable combination. 

If there should be no integrable combination of this set, then we take the deduced 

equations 

Cad =()) coo (Ge fon, 2 n) Gemma) rare 10) 

and proceed from derivatives of order m+ 2 as before: the characteristic invariant persisting 

throughout. Of the corresponding new set of equations, integrable combinations other than 

7) oF 
an pam seeeee ’ Tt F=0, 

are required: if and when obtained, they lead to equations which can be associated with 

the set just indicated. And so on, for successive systems of deduced equations. 

There is another method of proceeding which, dispensing temporarily with the sub- 

sidiary equations other than the characteristic invariant, proves effective (partially or wholly) 

in individual examples. It consists in effecting the actual transformation from 

%, Xq, +06, Gn, Ln tO XH, Lo, ».-, Tn, U 

upon the original equation: when the new form is obtaimed, it is regarded as a new 

equation; and it may happen that this new equation can be solved wholly or in part. 

Examples of both methods of proceeding are given in the memoir referred to: the special 

example to which the latter method is applied being Laplace’s equation. The purpose of 

the present paper is to indicate the application of the latter method to a set of equations, 

the most general solution of which can be obtained explicitly and completely. These are 

the equations 

(2+e Ug aan +2, e) u=0 
Seen Or om. 7) Dan 2 

where the multiplication of the operator is symbolical and not operational: they are of 

39—2 
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importance in the theory of symmetrical algebra*, and there is accordingly reason for 

obtaining their most general solution. 

SINGLE EQUATIONS. 

1. As the representative equation is of order m and involves x independent 

variables, the most general solution must contain m arbitrary functions. Every argument 

of any one of these functions must satisfy the characteristic invariant of the equation, 

which is 

(= Loe Ou +2, eu" 0 an, Dy Oa, Do Oat, eecees n—1 aa, =v. 

The invariant is resoluble, consisting in fact of the m-fold repetition of an equation 

of the first degree in the partial derivatives of uw; hence the arguments of all the m 

arbitrary functions are the same, they are n—1 in number and, in value, they are 

any n—1 functionally independent solutions of the equation 

As the arbitrary functions involve only those n—1 quantities and as there is no 

limitation on the arbitrary character of the functions, it is sufficient for the purpose 

in view to choose as simple a set of n—1 functionally independent solutions as may 

be possible. These solutions are integrals of the subsidiary system 

der, _ ity _ ity _ _ diy 
1 zy a eeeeee eee 

which can be otherwise represented in the form 

dz. 
ao (S23 yi ae-s1t); 

and therefore 
dz, an 

ike 

Hence the integrals are 

_% 
Ly = 2! + Ur, 

ry 
zs = 3! + Ust, + Us, 

a a a 
Ds a G3)!" Gaye weenieie + QUs— + Us, 

* See MacMahon’s memoirs “On a new theory of  ib., vol. xm (1891), pp. 193—234; ib., vol. x1v (1892), pp. 

symmetric functions,” American Journal of Mathematics, 15—38. 

vol. x1 (1889), pp. 1—36; ib., vol. x11 (1890), pp. 61—102; 



IN THE THEORY OF SYMMETRICAL ALGEBRA. 295 

for s=2, 3,...,”. When these n—1 equations are solved for w,, u,..., Una, they give 

the explicit forms of the requisite n—1 arguments, as follows: 

aa . 
a laa (ay, T, 161, — 2%), 

ee AN es wl - 
m= 3) (ay, @, TN, ri} ’ — a), 

, Ua , 

Uy = = (as, @ gy, +++, Uy, TW, 191, — %)F, 

for s=2, 3,..., n: the quantities «,', 2,',...., z,/ being defined by 

, 

Tecan 

for r=2, 3,..., n. The arguments are therefore known quantities. 

The similarity of form of the arguments to the leading coefficients of the (Hermite) 

covariants associated with the quantic 

@G 2, Da, Df) Ding Qed yaye 

is complete. 

2. Instead of pursuing the general theory, it proves to be more direct (owing to 

the special character of the equation) to proceed to the final solution by introducing 

%,, Uz, Us, ---, Un aS the imdependent variables in place of 2, 2, 4 3,..., %. Denoting 

any function of the variables by P, and differentiations with regard to the new variables 

ge saan d 
by es SFiS mes SRD then in order to obtain the transforming differential 

relations, we have 

dP dP dP dP 
aE da, + Pag duty + Fe tise monaee + ai, dun 

= dP 

oP 
=> aur, da, 

aP 
+ ae (ada, + dito) 

+ a (ada, + x,du, + dus) 
Ox: 

oP 2 \ 
a an, (ade, db 21 dus + adu, + du, 

—2 a—3 

+ ob; {rade + Pees dus + Meee oe Aig Bio veees + 2,dus_ + ae! 
as s—2)! s—3)! i} 
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and therefore 

& =~ +25 + 25 +a, 2 4 4aGaA + Lg a AG Beets. + 2p, & 

fo Fea b Ot et tie 

ia raz t sae +on ant Joes de + oan: 

= Biles ey eee 
eee cee eee ete eet eee eee RE OEE EE ESTEE EEE EEE SEH EEO EEE EE SEH EEE EEE Ernsseeeesssesees 

The operators which, as will presently be seen, are required are, in addition to 

d 
dz, 7 the set 

Q +2, Z + & d + @. g + 
Ot, | Ox. "On, Oats 

a +2. g + & g =F ate 
Oise we ae On 

he PI ae Sd tA 
Guy NTO) GOD Tok 

d a 
say these are do, ds, dy,...... ; and denote aes by d,, so that the whole series is 

d,, ds, ds, d;,..., d,. By the above relations, we easily find 

pe pees oy 
diy dig dily = Gilet 

eater aos Le tee 
> Midi an cee aig (die wee 

= Lees Care & +U Le 
dan ee sSUiia ey eS CH San aGiTs We 

eee ee eee erent eee eee eens een eeeeneeeeee © 

which are the expressions of the operators in terms of the transformed system of 

variables. 

These operators possess the commutative property—the verification of the statement 

is easy—that 
d,ds = d.d,., 

when operating upon any variable quantity, for all combinations of r and s; consequently 

when the operators are combined operationally and not solely symbolically, they obey 

the laws of ordinary algebra. 
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3. In order to distinguish between symbolical and operational combinations of 

these differential operators, we shall use d to imply a purely symbolical expression for 

the operator and shall retain d to denote the fully operational expression. Since d, is 

the operator 

it follows that, with the notation just indicated, the original differential equation can 

be expressed in the form 

aU =0. 

It proves desirable to change the expression so that the operators which occur are 

operational and not solely symbolical; in other words, it is desirable to express d," in 

terms of operational quantities that are not purely symbolical. The necessary expression 

is given by a particular case of a theorem in linear differential operators, due to 

MacMahon*: it is as follows: The relation 

eud: = evry? ds+h yrds} y'd,+... 

holds for any value of y, when expansion of both sides in powers of y is effected: on the 

left-hand side the powers of d, are symbolical only, on the right-hand side the powers of 

the operators are operational. 

Consequently, we have 

d, =d,, 

gid? = aid — 5 cadet 5 ds 

i= i mae sn 3 

ae i (4-5) 

Gai f pin 15 a+5 (53 a.d,)| 

San , {i det 53(g ytd tg de) +555} 

* Quarterly Journal of Mathematics, vol. xx1v (1890), the relative signification of da," and d,” which is implied 

pp. 246—250. It should be added that, for simplicity of (but not explicitly used as regards the operators) in the 

notation and printing in the present paper, I have reversed paper referred to: see pp. 247, 248. 
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the coefficient of — d,"* is 
1 

(m— 8) 

~ 1 

applet A te Cea je: )P: ($ds)¥» (— Fy) 

the summation extending over all the terms corresponding to integer solutions of the 

equation 

2po+ 3p,+ 4pyt ... =S. 

These results are most simply obtained on expanding e¥ and e7}¥@+3u°dés—tu'd.+.. separately, 

and then multiplying: for a reason that will soon appear, it is convenient to arrange the 

expression in powers of d,. 

4. The transformation having been now obtained explicitly, let it be written in 

the form 
d,” = d,” + dA, + dA, zk dA, to 5438 

consequently the differential equation is 

(dy + dA, + d,™-A, + am, zr eS) U= 0. 

Let a, a, ..., % denote the roots of the equation 

=m 2. Em A, ts EMSA, + Em A+ Be = 0, 

where it is easy to see that a, a, ..., %m are distinct from one another. 

Also, let A,, As, ..., Aj, denote m independent arbitrary functions, each of them 

involving the n—1 arguments ws, Us, ..., Un quite arbitrarily. Then the solution of the 

equation can be expressed in the form 

uss eas A: 
s=1 

a form which however is only symbolical and for any effective use of which moreover the 

solution of the foregoing algebraical equation of degree m would be needed. Such a 

necessity is superfluous: and the expression of the solution can be changed as follows. 

5. Manifestly, we have 
ye 3 4 _ a a } 

U = Wy +2 + Fy Me + By Ue + Al "hs “Foca ‘ 

where ug = 2A, +a8A,+...+0°A,,. 

Replace the m independent arbitrary functions A by other m arbitrary functions 

Pas Pa, SIS) Je 
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defined by the relations 

A,+ Big fswcece 4 Ain el 

GA, + Ay +...... + GnAn=P, 

aAr+ @Ayt oo... eA = P, 

aA, + AP Ast icd + aA, = Pr 

the m functions P are evidently independent of one another. Denoting 

1S ae ec iat | 

Gi OS Ca men rear acs 

2 2 2 GeO Ok: «GPAs caee cee 

Crt en me ee strce at Se Oe 

by oO, we have 

Du, =090 A, +0890 A,+ ...... +a° OA» 

=| iC Hae ear tens \Ceoesabe ik, emily ee fied Ne naa Me eee ae 1 fc ae ; 

| Gea {Gey aLceats: On Cons ed asl Bee nd aes 

2 2 2 2 2 a; OR tacos) a, Citccn Og mera Tuas a 

an as ein 3 Gar Chas qm ee a 

where the (operator) coefficient of P, differs from oO by having a’, a, ..., a% in the r* row 

PS CCAC Oe Ate w Ore tere) (Qre 

Let H, denote the sum of the integral homogeneous functions of the roots %, a, ..., Om 

which are of weight «: in particular, 

Hy =m +a,+...... +n = 0, 

and in general, these functions are given by 

(1 + 2A, + 27A, + 2A,+...... )04+2H, + 2H,+2H,+...... y=1, 

on introducing a term zA, which is zero. We thus have 

0=H,+A,, 

0= H,+ H,A, + Az, 

O0= H,+H,A,+ HA, + A,, 

Vou. XVI. Parr IV. 40 
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and therefore H,(=0), H., Hs, ... are operators which can be regarded as known. Then 

by Jacobi’s theorem on alternants*, we have 

I Ge. Len coe ee Slee ae vii me We +) en . ee 

Ba os ase sos | ae a: ree Mare Nie on. mesa 
tien eae eee Oh Ole, e--, oe mag re ee pe shad uy | 

ay ay bel oa del J GE. ee eee eee eee eee ee eee eee eee eee eee eee eee eee ee rr) | 

a” CH heh qa | 0, 0 3 > te eeee > 0 > 0 5 tee ’ Jeb, ; Heme | 

i ee , a, OF 10sec oe : Oi ate alr, ieee 

= || Jel H,, H,, cenece > lela 2 gees } 

1 ? H,, F,, Povo Sy ? Fn 335 He_, | 

0 > 1 ? Sale secave ? Jakes He | 

A es ON Ae RA Siig te Ae | 
Oi, OSE nO ok ers 7 Rene 7 Sk BS 
| 

0: ROW AIO eras te all, yee Hg ee 

the latter determinant being the value of the former because the first r—1 constituents 

in the diagonal of the former are each of them unity and all the constituents below 

the diagonal and belonging to the first r—1 columns are each of them zero. To 

evaluate the new determinant, multiply the second row by A,, the third by A,, the 

fourth by A,, and so on down to the last row which is to be multiplied by Ay_,: 

and then add each of these rows to the first, replacing the first row by the new 

constituents thus obtained. These operations do not alter the value of the determinant. 

But now, in the first row, every constituent except the last is zero; and the last is 

Tepe nb) ele peas Nd ho ep Gacoce BE)! spa 

S— (Gye e—m + JN veda 6—m—1 + «.-<-- a5 AnH, ror) 

= E,., 6» 

say: hence the determinant 

=(— 1)"*E,,¢ I, H,, H,, > Tih ose, 

0, 1 > H,, ? Hes —2 

| 0, 0 > 1 2 , lila 

=(— l 1 Dis ry 

* Ges. Werke, t. 11, pp. 441—452; Scott’s Theory of Determinants, p. 124. 
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But the coefficient of P, in the expression for us 

i Ue eee ie! | 

a 
a, ’ (7 ee ecm ’ Gn 

—2 —2 = 
Caer Ci aired t: fi On 

6 CH ae Ce. Sener 5 Ce 

r Cimaent CLAR cy. teiee bei 

a | 

(se a PR =n 

(en) acai 1 ame Sage centri 3 awl 

a 
ee ee eee 5 Gh 

r—2 r—2 —2 ier Anne Ge wslesatee ees 

CUS SC en Stare ee 

ae aay, oscars 4 CR 

@ 6 (eid i NGS he a ee eae 

= fy 6; 

and therefore 

Ug = Ey oP, ar Eo 9P.+ Es,6Ps+ was + EnoPm,; 

for values of 6 greater than m—1. Accordingly, we have 

m Za 

es Elleemt 2 8 ‘Bo P| ’ 

where £,, is an operator defined as 

E,6 = Ag_s41 =e A, He_s + A. Hes SP cod ar Vira) o ere 

and the quantities P are m arbitrary independent functions of the 

Us, Us, +++ Un This is the most general solution of the equation 

a ) ra] ra) ™m 

Ger ae) OF 

301 

n—1 arguments 

where the multiplication of the operator is symbolical and not operational. 

6. A few simple cases occur for the lowest values of m. 

First, taking m=1; we have 

(PSION OAS Ue Peas C5) 

where F is an arbitrary function, as the most general solution of 

ap st ale ae 
(a arta 8 ana + +24 an -| U=0. 

40—2 
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Secondly, take m=2. The subsidiary algebraical equation is 

&—d,=0; 

and accordingly we have 

u=(14 +o + a d+ oe .-) ® (us, Te pmeere qe) 

+( ae 1) ¥ y THe sey OS 

where ® and Y are arbitrary, as the most general solution of 

Gy 0 é 
fe Sah aa +. -+ Pn 5 <) U=0: 

Thirdly, take m=3. The transformed differential equation is 

(d; — 3d,d, + 2d;) U=0, 

and the subsidiary algebraical equation is 

& — 3éd.+ 2d,=0, 

so that 

4,=0, A,=—3d,, A,;=2d;. 

Then H, denoting the sum of the homogeneous products of p dimensions of the three 

roots, we have H,=coefficient of 2 in the expansion of 

1 

1 — 3d,2* + 2d,2* 
im ascending powers of z, that is, 

H, = (3d, (— 2d," Se Gree 

where the summation extends over all the terms that correspond to integer solutions of 

20+ 3 =p. 

Then for the present case, 

E,9 =H, + A,He_, + AsxHy_,=— AsHy_, = — 2d,He_, 

E,9=He.+ A,Hy»= Hy, 

E;,9= Ho; 

and accordingly we have 

— opt 5 

U= {1 _ (FH + ze HA, + z Ho+ =) ad, | P, (QR the) 

— H, + A; Se ae, pe j Ps (istetigneeeee its) 

2 Pid 4 =) 

5 + gh +7 H,+3 H,+ r Je ORS WS, sean Cs 
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where P,, P., P; are arbitrary, as the most general solution of 

/0 Ci) a a \3 
lan + an, + aq, bo + teas) Wi A0) 

7. In the form in which (§ 5) the solution has been obtained, it is easy to associate 

the result with Cauchy’s existence-theorem*, Let it be proposed to obtain that solution of 

the differential equation which is such that, when #,=0, the values of 

a) IU ona U 

an, Anaspco 5 aa ml 

are respectively equal to 

O(n G5) coon HPD) CORP Rass Son Ca) chon Ce ay Cy coon 

On referring to § 1, it is at once evident that, when «,=0, we have 

Us ite Sin 

Again, taking the general solution as given in § 5, we have, when 2, =0, 

aU 
a = 12 (Ch, By coon 0) wen Gh =O@ 

1 

= r+1 (a2, Ty, v0, in): 

But the value should be $)4; (#2, #3, ..., %): so that 

Pras (Ga; 3, eee), Ln) = Pr4. (a; Dy, sary rn) 

and therefore [Pre Cy coon Up Sana (Cay Wp cen UE) 

for all values of r. Hence all the arbitrary functions are determined in accordance with 

the assigned conditions. 

8. In the preceding investigation, the multiplication of the operator has throughout 

been supposed symbolical and not operational. Corresponding results occur in the case of 

equations for which the multiplication of the operator is partially or wholly operational. 

The three kinds of cases that can arise can, in the notation previously adopted, be repre- 

sented in the forms 
dU =0, 

dd” +U = 0, 

dU =0. 

In each instance, the most general solution involves m arbitrary functions independent of 

one another: and the functions involve the n—1 distinct arguments wm, us, ..., Un. 

The solution of the first has been obtained. That of the second can be made to 

depend upon it; it is derivable from the solution of the first by noting that the trans- 

formed equation is . 

dy (dy * + dy" 2A, + dy #A +... )U=0, 

* Jordan, Cours d’Analyse, t. m1, p. 306. 
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so that in the final expression obtained above in § 5, we only need to replace the quantities 

H, by their modified values: or what is the same thing, we replace H, by H,’, the sum 

of the homogeneous products of p dimensions in the roots of 

aie _ I VAN! te fala VAN +...= 0. 

The operators E,,. for s=1, 2, ..., w are each zero. 

The third is the limiting case of the second. All the operators E are zero: and the 

solution is 
m—1 

SS art DE (is tls aeons 
0 s— 

where all the functions ® are arbitrary. 

9. The equation which has been discussed is one of a series that arise in the theory 

of symmetric algebra and it appears, at present, to be the most important of the series. 

There is one class of equations of a similar form; and their general solutions can be con- 

structed in a similar fashion. They all can be represented in the form 

( 0 0 r) fa) 
RS Sh ee Se i ae ee 
Ons 9 cones Op 42 "? Oa 

"u=0, 
where the multiplication of the operator is symbolical only and not operational; with the 

previous notation, this can be represented by 

ad™U =0. 

The case already discussed corresponds to p=1; for the remaining cases, p has the values 

2, 3, 4, ..... We proceed to the integration of the equation, retaining a general value for 

p, so as to include all the cases: the march of the integration is similar to that in the 

earlier part of the paper. 

10. The most general solution of the equation 

a™U =0 

contains m independent arbitrary functions, each of »—1 arguments. These arguments 

satisfy the equation : 

du ou ou ou \™ 

(am, ee O%p 41 i Batpys ei) = = © 

This equation being resoluble, as before, into the m-fold repetition of a linear equation in 

the derivatives of u, the n—1 arguments of each function are the same for all the m 

arbitrary functions; and they are any n—1 functionally independent solutions of the 

equation 

As they are the arguments of quite arbitrary functions, it is manifestly sufficient to obtain 
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the n—1 solutions in the simplest forms possible. Accordingly, we require the simplest 

integrals of the equations 

dit, _Uitty _Aiixy _ diay _ 
ay 

dip+r —_ Uap er _ disp +r =<. 

By Tp+r Lop+r 

for r=1, 2, 3, ..., p—1. These integrals are given by 

Ly = Us, (s=1, 2, ..., p—1); 

Ly 
Tap =o, + Usp, 

cA 
Lp = CW ese Deh 

; CA pcria aes 
pe a ask (= 2) ay CCST 3) wet +H Ly ca) p + Ucp; 

for values of «=2, 3, ..., up to the integral part of - and 

Lpty = LyLp + Up+r, 

a 
Lop+r = Ly art pUp+r + Urspir, 

oem fae 
U3p+4~ = Ly ait at Upir + Lp Usp+r a Usp+r> 

a cat tees 
Teper Or ‘ocec==ty («—1)! Uptr ig) —2)! Uspir + +++ + Lp U (ea) ptr + Uxptrs 

for values of «=2, 3, ..., up to the integral part of a and for values r=1, 2, ..., p—1. 

The quantities ~ are the arguments of each of the m arbitrary functions: their values are 

easily proved to be 
Us = Xe, (s=1, 2, ..., p—1); 

hae ; 
Wap = oy (@ aps Li Gaajps e-1 Laps Bp, LOL —ay)5 

for the values 2, 3, ... of «, the quantities 2',, being defined by the relation 

Dep — 0! Zep; 

1 A Ul / 

and Ueptr = 25 (Hep, & (n—3) ptr> A Ans £ opirs Lpir, a,Q1, — &p)*, 

for the values 1, 2, ..., p—1 of r, for the values 1, 2, 3, ... of «, the quantities 2’g,, 

being defined by the relation 

2 opty = 6 Lopir- 
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11. The next step is the transformation of the variables from the set a, a, ..., @% 

to the set w, Us, ..., Upa, Lp, Upir, ---) Ur. For this purpose, we denote derivatives 

: : d d : ; 
with regard to the new set of variables by du’ du’) 8° that, denoting any function 

1 2 

by P, we have 

P= = ah = = Le as dP 

$= =i du, Raa di, te = Gia dep a =H Te tte deptr 

= dP 

a pe 
9=1 0X@ 

auoke 
= 3 pal 2G du, 

OR). SOM (pas oa 
+ an, diy + « Oixp |enndey Ge 7 2) jhe +O = 3) ! ditzy =F = 

p-l oP {ax j fe ome 

aL = anaes te deer +B (e—ayppr Ay + (ox Cal dtp yy + (<—2) Map +r aL a : 

Hence 
d 0 F iG) nm ew) a 0 

du, 0h, cre Dilan) Silom 

for the values s=1, 2, ..., p—1; also 

d Cae pal a 
SS SS aR = x x1) ptr =—— day day * = M? Big, 1" Pept aa ae 

ae + &: d a g +... Fe, 
Pe Ce Ge n? Oa, 

=d): 

also the series 
edi 0 6 (BO ts Ot @ 

dilsy ~ dex, "Sey Big By * Aidey * | 
d 0 0 ie kin | 

ditsy Qiiey ' ? Baty | 21 Baty | 31 Ary (3 
da a ie @ | 

dus, Gam ? Day * 21 Day * a 

and the set 

Gis agen 0 ia © a 0 

ding” Oigt, tage PONE ONE s 

d — om +2 2s + x, 0 

debyy + OLep+r 4 Osi, 2! O%sp 47 ae b 

cae ie | 
Asn, 7 OXsp4r “p Ora sae 

this set existing for the values r=1, 2, ..., p-l. 
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From these, we have 

Similarly, we find 

a + =u _ de = ale é 

duisy s=1 “ Ottigts Op s=1 | Olay is 

= dy, 3 

and so on. 

The series of operators dy, dy, dy, dy, ... are (as will be seen from the next 

section) the only operators required for our immediate purpose; the transformation from 

the old set of variables to the new set of variables has been effected for each of them*. 

The remaining operators do, however, occur in other connections: the necessary trans- 

formations are easily effected, and they lead to the result 

+U ef +2 
” disper 

Sr aoc RR Tay Se =p dttp+r ditsp+y 

p-l 

E(u go +u ———— + Usps 3——_ + ) 3 +8 +8 see 
a=1 WEG i diag ors TET dtietrte 

g 3 hayes Cy 
OSpirda Op +142 

ll ae 

* The invariantive form of all the sets of operators, marked: their simplest (monomial) expressions are ob- 

that occur in connection with the class of differential tained in § 24. 

equations under consideration, can hardly fail to be re- 

Vout. XVI. Parr IV. 41 
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. : : th oe 
where it will be noticed that the term uw, 5 a the one term which is absent from 

2p+r 

the transformed expression for d,:,. As a matter of fact, this expression can be regarded 

as the expression for all the operators when values 1, 2, 3, ...... are assigned to r: 

one term in each case being absent from the transformed expression. 

12. We now proceed to change the equation 

dmU=0, 

in which the repetition of the operator is symbolical and not operational, into an 

equation in which the operators are not solely symbolical. For this purpose, another 

particular case of MacMahon’s theorem (quoted in § 3) is effective, as follows:— 

The relation 
git = el -hwrdopt hySdap—lysdapt... 

holds for any value of y, when expansion of both sides in powers of y is effected: on 

the left-hand side, the powers of d, are symbolical only; on the right-hand side, the 

powers of the operators are operational. 

Consequently, we have 

d,—d,, 

ee noanh-5en 
lee eeel 1 

iE m 1 
ue geal d™ + > 7ST de @).05 
mi Mone => (a —'s) ae 

where ©, ,, denotes DP 
1 > er ee 

Qo! Qs! Qu! .-- 
_ (= $day)” (Ady) (— 4dyp)™..., 

in which the summation extends over all the terms corresponding to integer solutions 

of the equation 

2q.+ 393 + 4qu4+-..=5. 

It is also to be noted that, when the number n of original variables # is finite, the 

highest suffix that can occur in the symbol of an operator occurs in d,,, where « is the 

integral part of a but that when n is infinite in value, there is no such restriction upon 

the number of the operators that can occur. Manifestly, 

0,, ii $ doy, 

©; >= 4dsp, 

©; => + (dsp > 4d;,); 

et ie 
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and so on, Writing 
m! 

7a - 0, , 
(m—s)! *? 

Asy™= 

the equation d"U=0 is transformed to 

(dm +A, ,d™*+A,,d"*+...)U=0. 

13. The analysis that leads to the solution of this equation is, mutatis mutandis, 

precisely similar to that given in § 4, 5: the result for the present case is as follows. 

Let H,,, denote the sum of the integral homogeneous functions of weight « in the 

m roots of the equation 

Em + EMA, y+ EMA, pt EMA, p+... = 05 

and let 

Pi 2 Tz lie Ges enya Pee ety. nye Pee 

for r=1, 2, ..., m and for all values @ given by m, m+1,.... Further, let Q,, Qs, .... Qn 

denote m independent arbitrary functions of the arguments 

ly, Un; oan s Up a, Uppiy Uptas «os tn. 

Then the most general solution of the equation 

0 fa] a 
3 \m a 

Ge a OLp41 sista Op +2 sie) ote ote Tn—p sa) U=0 

Sooty (rae: ee ] 

aes ls = at 5 s]e 

i 
- s=1 Heep: peo

 E,,0,»¢ Q 

14, As in § 8 with the operator d,, so here with the operator d,, we may consider 

equations associated with the equation just solved given by 

dedm-+U =0, 

dU =0. 

The solutions of these equations are derivable from those of the equations as given in § § 

in the same manner as the solution of 

a™U =0 

has been derived from that of 

7 dr U=0. 

15. In the preceding examples, the characteristic invariant is in every case an exact 

power of a single linear equation: with the result that the arbitrary functions, which 

occur in the respective solutions, are merely different arbitrary functions of the same set 

of arguments. 

It is however easy to suggest other equations in which the characteristic invariant 

is in every case resoluble into equations each of which is linear but all of which are not 

41—2 
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the same. Thus, e.g., we might take 

ae a0: 

the characteristic invariant of which is the product of m distinct linear equations; or 

Ge. de. 5.5 ae 0, 

the characteristic invariant of which is the product of p distinct equations repeated 

m, times, m. times, ..., m, times respectively. 

Only a single example, as simple as possible, will be discussed: it will provide a 

sufficient indication of methods of solution. 

16. Consider the equation 

d,d,U = (d,d, — d,) U = 0. 

The arguments of the arbitrary functions, which are contained in the general solution 

satisfy the equation 
(d,8) (d,0) = 0, 

that is, they satisfy either 
d,é=0 

or d.6 = 0. 

As regards the equation d,@=0, we know that it possesses »—1 functionally independent 

solutions denoted by ws, Us, -.-, Un; and that when the independent variables are changed 

from the set 2, %2, Xs, .--, Ln tO %, Us, Us, ---, Un, then 

d 
d, dx,’ 

h= u + u +2 d aL 
Sian dae. ik dakaiae ; 

d. z ae + @ + a aa le F ; Us Tees ; 

Next, consider the equation 
dé = 0, 

in the first place when the variables are ws, Us, -.., Un. It possesses n—2 functionally 

independent solutions, say 2, 2%, ..-, Un, given by the expressions in § 10 when p=2; and 

when the variables wz, w;, ..., Um, are changed to the set ws, v3, ..., Un, then 

D ANY ‘ : , , 
where Do denotes derivation with regard to the last set of variables. The differential 

equation thus becomes 
d (2 

ia ag 
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Let Ot, v5, %, Us, Us, %, ---) be any arbitrary function of the arguments, say @; and 

denote by /®du,, the value of U which is such that 

DU 

Die 
<b denoting any function of the arguments contained in ©. Then the solution of the 

equation can be expressed in the form 

Taek. x, | d,Odu,+ 3 | @; Odudi +S | | Gesindudin +... 

Another form can be given to the solution. Take a series of variables 

Ue 
Us = 5% + Ws, 

2 

ee 
Up gi Us ate + Ms 

1D ees 
Vo = 41's ar om We + VsWs + Wy, 

Us = Ws, 

vs 
Vo = or Ws + UVzgW; + Wyo, 

the explicit values of the variables w being given in terms of the variables v as in § 10. 

Then when the variables 2, %,...,%, are replaced by 2, w,,...,W,, the operator d, 

becomes simply 2 , Where £ implies the partial differentiation when the variables are 
3 3 

Dy, Us, Vz, Ws, Ws, --., Wn; and now the differential equation is 

d /DU\ 8U 

da, (Dig) ~ Bn,” 
the quantity U being a function of the variables 2,, %, v3, Ws, ..., Wp. All the derivations 

being partial, we may write the result in the form 

eu _av 
0a, 0 OVg 

The form of solution already obtained is, of course, still effective, all that is necessary 

by way of change being that the function © it contains should be regarded as a 

function of wy, vs, Wy, Ws, +..: and then, in the integrations, d; is replaced by 4 . The 
3 



312 Pror. FORSYTH, ON SOME DIFFERENTIAL EQUATIONS 

other form of solution indicated is as follows. Let # denote any arbitrary function of 

Ly, Uy, Wy, Ws, +.-,Wn, the argument v, being omitted; then the solution of the equation can 

be expressed in the form 
v=(1 aC wl ori cee A, \F 

TE ae du, 2! dat ous | 8! Oates 
This is a solution deduced by using one of the argument-equations, viz. 

d,6=0. 

17. Turning now to the other of the argument-equations, viz. d,@=0, a corresponding 

investigation will be carried out, though this, indeed, is unnecessary, as we have dealt 

with the whole equation ab initio when once a form of argument was suggested. Before 

passing, however, to the other argument-equation, some remarks upon the solution 

should be noted. 

First, the equation 
eU aU 

Ga, 0Ur Vg 

can be solved (not in the most general way) by taking 

U =e% V, 

where a is a constant and V is independent of v,, so that we have 

eV 
=aV: 

02, CUy 

here V is a function of a, uw and the variables w,, w,, ... which are parametric for 

the last form. But this equation is a special instance of Laplace’s linear equation in 

which the invariants are equal: as they are constants, the Darboux-sequence is infinite 

and therefore the solution (which contains linearly one function of a, w,, w;,... and its 

derivatives, and linearly one function of w,, w,, w;,-.. and its derivatives) is not expressible 

in finite terms. To compare the two solutions, we have V=F, provided the arbitrary 

function F’ of the first solution be limited so as to satisfy 

oF ee 

02, 0Uy 

consequently the solution e*V is less general than the former. 

Secondly, only one of the two argument-equations has been used. In one form of 

solution, the arguments of the arbitrary function are wu, ,.-.. which are solutions of 

d,@=0; in the other form, the arguments of the arbitrary function are ay, ws, Wy, Ws, - 

all of which save the first are solutions of d,@=0 and the first of which is a solution 

of d,@=0: that is to say, in both cases the arguments are solutions of 

(d,0) (d.0) = 0, 
in accordance with the general theorem. In each case, however, there has been obtained 

only one arbitrary function in the solution. This is not in real contradiction with the 

theorem that the general solution contains two arbitrary functions: for the theorem is 

proved to apply only to those equations whose integrals are expressible in finite terms 
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and are free from partial quadratures, neither of which conditions is satisfied in the 
present case, 

18. Reverting to the argument-equation 

00 00 00 00 
dad = = mo " on, Ora eed op 

. it possesses the n— 1 eat independent solutions «, 1, U4, .-., %,, Where 

nee 
1 

%= 3, H+ Hoty + Ug, 

1 
= 7% a+ Fitts + aa + Us, 

Ls = BMA, + Uz, 

1 
rs = gy tats t+ Lilly + Us, 

ib 1 
Wy = 5 Mey + 9) Us Us + Ls + Uz, 

Proceeding as before, we make a, a, Us, Us, -.., Up, the new set of variables and, using the 
former notation, we find 

ad. 0 0% 0  & 0 
de on G5 OURE Mecano ar 

(he oe <6} 0 0 0 
Far ea reas ea 

eer ck 0 ra 0 eG 

dus  0as Cie an, 2) day i Ol oma, 
ior Hae} Gh by 

From these, we find 

d d d md 7) oO oO 

aa Mai dhe rc cag ee 

a 
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a a Gi) 
so that Meee oa On 

ds + &: Ba aT + 2, pee oon, ee 

d = ( 0 A ae) 

Re Reha ar ME an mara OT 

; ri) 0 C) 0 C) 0 woo 

ean lea aaa cya Ce Pine ohana 

a 0 We a 
=) om + (7s + Us) aan + (3 Us + Lg + a) a= +... 

= Masa ries oo one 

; d d d 0 0 0 
and also i, Gil + Us dig + Us die Song SB oes + a; oat, + &; Bar eee 

0 Oy G0 
so that d. — iz + @ aa, = 2! das ao ra) 

= IN rae id 9 i ee een ae 
ae: Gigs «die ee ie ie Pte, 

=A,; 

and therefore d= os + Zu + a, (d, — Ay). 
G2," yay Witrsy 4 3 

: d d d 0 0 7) 
Again, te die ee 4 ee ee 

Lv + u + u 3 = & OF a Eb eee 
1 du Gl od oe he * Oa, * Oar, * Oils P 

d d d d d 
g fi — : a and therefore din + 2 di, + Us ie + Us dl. + Us di, + 

0 a 0 0 

02s Bis: Ca, ee 0a; ig aie ne 

= (i), 

Denoting by A, the operator 

u + U, w sr a =P 
dx," °du, se le i 

we have d,=A,+ a, (d,—A,); 

and accordingly the equation becomes 

{a,d; — (aA, — A,) d, — d;} U =0, 

a 
da." 

where d, denotes 

) 

TN ari nails ji gag lee 
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19. A solution of this equation is obtainable in the form 
2 qe 

U= Vo+0,V,+— Vit p Vato 
3 

where V,, V, are arbitrary functions of a, us, %,--.,U,, and the remaining coefficients 

V are expressible in terms of these two according to the law 

2, Vinge + (A, — 2,43) Vins — ds V,=0, 

font —O) Uae 8 

This form of solution is, however, not so convenient as that which was given in 

the preceding investigation. 

It seems paradoxical that, of the same equation, quite general solutions should exist 

which are so different in type that one of them involves a single arbitrary function 

and another of them involves a couple of independent arbitrary functions. The explana- 

tion is similar to that which explains the corresponding paradox in the case of the 

equation * 

eu Gu 

dat” Ot 

SIMULTANEOUS EQUATIONS. 

20. Major MacMahon, who indeed originally proposed to me the solution of the 

equations E 
dU =0 

by asking whether they could be treated according to the theory contained in the 

memoir to which a reference has already (§ 1) been made, tells me that the theory 

of symmetric functions indicates that solutions of the simultaneous equations 

ati 0m a0, ..-5.2 
(any in number), exist. 

A full investigation of the problem thus suggested seems difficult, not on account 

of the general theory of the equations, but on account of the elaborate analysis 

required in all cases except the very simplest. It is, of course, possible to deal with 

particular cases: and it also is possible to infer some of the characteristics of the 

solutions in the most general cases. All that will here be discussed is the solution 

of a couple of simultaneous equations of the above type: the extension to the case of 

more than two is obvious on a review of the analysis in § 26. 

21. As an example, consider the simultaneous equations 

@U=0, &U=0. 

* See my Treatise on differential equations, § 257. 

Vou. XVI. Part IV. 42 
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The most general solution of the former has been shewn to be 

v=(1+3 sas ae ...) ® 

+ (a+ Rae o hee ‘a+ eA ae 

the solution of the second is of the same type, and therefore it is necessary to 

determine the limitations upon the arbitrary characters of ® and W in order that this 

quantity U may satisfy G 
d;U =0, 

that is, 

(d? — 3d,d, + 2d,) U=0. 

Now 

(d} — 3d,d, + 2d;) U 

=2 (1+ Anas LE .) (db = a) 

Dy +2 (n+ Boe B+. .) (Y= d®); 

in order that the equation may be satisfied, this expression must vanish identically 

and therefore 
d,® = d, aay 

db =d.vf 

shewing that both ® and W satisfy the equation 

which is of the third order. The operators d, and d, are 

= ap me + U 2 + u cm 
ie hee * dus dee aes 

d 
— Eis eg + u 

‘du, 

d d 
a + Us De + Us Afi 

respectively; and © is some function of ws, us, ..., Un. The general theory of differential 

equations shews that every general solution © of the equation involves three independent 

arbitrary functions; that each of these arbitrary functions imvolves n—2 arguments; 

and that each of these arguments satisfies the equation 

00 06 06 0 : 
ie + Us a i + laa Ws on + =) = (0). 

As this characteristic invariant is the triple repetition of a single equation, it follows 

that the arguments of the three arbitrary functions are the same for each of them; 

moreover, these arguments are (the simplest) n—2 functionally independent solutions of 

the equation 

ae ae) 06 00 
ahs + u — + Us — 

JG Gis 
ou, +...=0. 

§ 
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As in § 10, 16, these can be taken to be »,, v,, ..., v,, where 

1 2 
Us = 1 Ug + U5, 

2 

ley 
U= 31 Us + Ugly + Ug, 

re 
Us = i! Us + om Ug, + Ung + Ue, 

Us = Vs, 

Us = Vglle + Us, 

Us 

= % 51+ UUs + Uz, 

3 2 

Us = Us 3! sk 2! Us + Ug; + Ug, 

the explicit values of the variables v being 

1 
Vas = 55 (W's, Wiogen, ote thas Us, 101, = Us)*, 

ee r , 
Yses = 5 (Wests, Uberti a nesa5) Us Us, Us 0ils —Us)?s 

where 
Weasel Ven, Oewag sie Ta 

To solve the equation for ©, we change the variables from the set ww, ws, Uy, -.-, Un 

to the set ws, U3, %, -.., Um. We denote differentiations with regard to this new set by 

DD: UD Dy. 

Du,’ Dos’ Dog “"? Duy’ 
§ 11 and, in particular, we find 

De Ad d d d 
Du, dus ah dus are du; yee du; ci 

= ds, 

the modified expressions of the operators are obtained as in 

spe ar, ii ay hp 
Baie be | dug Sd 

= ds. 

Accordingly, the equation for ©, which is to be determined as a function of w, 2, v, 

Deacees) Ue, DOW: 1S 

2 Na 
Dus 

where the operator d;, expressed in terms of the variables 2, 2, v;, ... does not 

involve Ws. 

d:@ = 0, 

42—2 
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22. Let F, G, H denote three independent arbitrary functions of the n—2 arguments 

U3, Uy, Us, «+> Un; then the most general solution of the equation for © is 

@=(1+ Bar eas +3 d+ ae 

+ (ut ase 2 ty a e+ 26 4! 3 10! ° 

Us Uses itl Tsp 6 
Hay + pet git tai Gt ye: 

We have seen that both ® and W are solutions of the equation for ©, subject to the 

relations 
d@=dV, 2db=d,V: 

consequently, let the three arbitrary functions in ® be denoted by F,, G,, H, and the three 

in VW by F,, G,, H,. As the relation 

d,® = d,V 

must be satisfied identically, we find, on substituting the values of ® and Y, that 

d,F,=G2, d;G,=H,, d;H,=d;F.; 

and similarly from the relation 
id=d,V 

we find that 

ET — (Ca en He — a Gann ls Gill 

all of which are satisfied by taking F,, G,, F, as three independent arbitrary functions, 

say L, M, N; and then 

Ih, Grail , ih Sif 

G,=d,L, H,=d,M, H,= ae 

When these are substituted, we possess the values of © and VW; and when these values 

of ® and YW are inserted in the expression for U, we have the following result :-— 

The most general solution of the simultaneous equations 

dU =0, 20 —0, 

is given by 
U a S biel One p eta n aan Sh L 

ee leat Gp—m)! S + @m +1)! (Ce eek 

sp—m+1 agit 3p—m+2 sy Sart mae dy us an \ 

mp (2m! ee —m-+1)! + (Om +1! (8p —m-+2)! 

fel Oise ie oe eame 

JL SSS | +1 

np (2m! (8p—m+ a1 % a + Om +1)! (8p—m)! 
dz? j N, 

where L, M, N are three independent arbitrary functions of the n—2 arguments 

Us, Us, +++) Une 
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23. Another example in which the ultimate solution is differently obtained is as 

follows: required the most general simultaneous solution of 

aU—0; aU =0: 

Now we have 

d? = d} — 3d,d. + 2dz, 

d> = d} — 10d? d, + 20d?d, — 30d, (d, — $d?) + 24d, — 20d.d, 

= (d; — 7d.) (d} — 3d,d, + 2d;) 

+ 6 {3did, — d, (5d, +d?) + 4d; — dod;} ; 

therefore any solution of d?U =0, which satisfies d'U =0, satisfies also 

RU = |3did, — d, (5d, + d3) + 4d; — d.d;} U=0, 

and any solution of d'U=0, which satisfies RU =0, satisfies also d}U=0. Consequently, 

we may replace d/U=0 by RU=0. 

The general solution of d}U=0 is known, being given by 

v-\1-23 a H, ds Pi ay 
Dp 

p=3 

2 ap 

+ fr >) a H,.\ J. (ig Way ot05 We). 
3 Pp: p= 

x 2 pP . 

ae te SS at Ha iPS 23 pi} OO n +{5 al p—2 (Us, U Un) 

he Hy =3 Bay) (— 2a 2H 
the summation in H,, extending over all the terms that correspond to integer solutions of 

20+ 3 =p. 

This solution must satisfy RU=0 identically: consequently when the value is substituted, 

the coefficients of the various powers of #, must vanish. Writing 

®, = H,.P; + HyP.— 2d;Hp-sP,, 

we have 

USP Aap Pi S| = wo: = 11+ % at oi JAP 1B? 
: p=3 P 

so that, substituting in RU and equating to zero the coefficients of the various powers of 

v,, we find 

SLI SO Sse =) 

3d,®, = D,P3 +- D;P» = 0, 

3d,2, —D,P®, +D;P;=0, 

and 3d,P,,» = D,Pp+ a D,®, = 0, 

for p=3, 4, 5, ...: here, D, and D, denote 5d,+d} and 4d; —d.d, respectively. 
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Now from the expression given above for ®,, and remembering that 

lik a 3d.H js SF 2d;Hm_—s =0 > 

we have ®,,, — 3d Pino + 2d, Pm_3= 0; 

consequently 

3d,®,..— D,®,., + D;®, = 3d, (8d;P, — D,Pp_, + D; Py») 

a 2d, (3d,0,_, a DPB,» + D;®,_.). 

The difference-equation for ®, is therefore satisfied for p, if it is satisfied for p—2 

and for p—1; and therefore it is satisfied for all values of p, if satisfied for p=2 (with 

the justifiable convention that ®,=P,;), p=3, p=4. Moreover, we have at once 

3d,©, — D,®, + D,®, = H, (3d; P; — D,P, + D;P,) + H.(3d,®, — D,P; + D;P:), 

on using the relation H,=H;; and 

3d,®, — D,&, + D,®, = H, (3d,&, — D,P;+ D;P.) + H.(3d;®,— D,®,+ D;P;), 

in a similar manner. Consequently the first three equations are all that need be retained ; 

when rearranged, these three equations are 

0=3d,P, — D,P, + D;P, 

02 SDP +(D;+9d.d;) P, —6d2P, 

0 =(D, + 9d,d;) P; — (8d.D, + 6d?) Ps + Lae 

Let A denote the operator 

2d, D — 3d.D* D;, — 54d,d3 D, — 18d;D,D,;+ D} + 18d,d; D; + 81d3d; D; + 108d; ; 

then P,, P., P, are each of them a solution of the equation 

NP = (0) 

It may be added that, as indeed is to be expected, A is the eliminant of d{ and d) 

when d, is eliminated between them: when expressed in terms of ds, d;, d,, d;, the value 

of A is 

+ a2 (240d,d.) 

+ dy (—300d2d, — 360d,d: — 120d,d: + 120d2d2 — 12d”) 

+ 250d3d, + 225d2d,d2 — 180d,d°d, + 60d,d,dé 

+1085 —100d2d? + 5d,d8, 

where it will be noticed that, the sum of the positive coefficients being 1072, the sum of 

the negative coefficients is — 1072. 

24. The quantities determined as solutions of this equation are functions of 

Us, Ugy «sey Un Or, in order to facilitate the construction of an algorithm, say of 

Un, Us» Us» ++) Um: the values of these in terms of the original variables being known. 



IN THE THEORY OF SYMMETRICAL ALGEBRA. 32] 

Let there be now introduced a succession of sets of variables, denoted by 

Uso Wyn, Usa, Wary se, Une: 

Tia ac dP petll ep Cee ae 

TEAR Te areca ree 

Dm Poca ee 

and defined by the respective sets of equations 
9 

Udy 

Un = 5, t Ue, Us, = Use, 
ame 

ue 

a 
Ug = 3! H+ Ue, Use + ea, Us), = Usy Use + Usa, has 

Ue Ue uz 
Ugy = + Aye + Uny Wee + Use, Un = = Usa + Un Us + Uyo, =A a! 1 = >, Use 1 Use 7 

ues ) 
Uso = 2! + Uses, | 

; | 
U sg | 

Uo = 31 + Ugo Uggs + Ugg, | 

Up = Us, | 

Uqo = Ugo Wag + Urs | 

10 >> 
82 

tho, 2 = 2! Usg + Us. Uzy + Up, 35 | 

Us. = Ussy | 

Ugo = Ugo sg + Wes 5 | 

Alsg 
Un, 2= 2! Usg + UyoUss + Un, s 

) 

and so on. Of the new sets, the first contains two groups of variables, the second three 

groups, the fourth three groups, and so on. At the respective stages, the sets of x 

independent variables are as follow*: 

Ty, Un, Us, Ua, Un, Us, Un, Us,» -++> Unie 

2, Usy » Use, Use, Us2, Uge, Une, Uso, seey Uno: 

Ty, Un, Uso, Us, Uss, Wes, Ups, Usa, +++, Uns: 

2, Un» Uso, Ugg, Ussy User, Ura, Usts eee, Una? 

eee ee eee nee wens 

* The vertical lines in the tableau shew the variables which are unchanged in passing from one set to the next. 
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The operators at the respective stages are as follow. 

With the variables in the first line, 

d 

me dae 

and the remaining operators are multiple-termed. 

d 

With the variables in the second line, 

d d 

dar, eens du,” 

and the remaining operators are multiple-termed. 

d, = 

With the variables in the third line, 

d d d 

Td 2s = dase mn ae 

and the remaining operators are multipie-termed; in each case being of the form in § 11. 

d, 

And so on. 

If then, in any differential equation, the operator of highest suffix is d,, it 

will be sufficient to effect the first s of the above transformations in order to be able 

to use the preceding simplified forms of d,, d., d;, ..., ds. 

25. In order to obtain solutions of AP=0O in § 23, where the highest suffix in the 

operators is 5, let it be taken in the form 

d;P+d;4,P + d,A,P + A,P =0, 

and suppose the variables changed to those in the fifth row in the preceding tableau: 

then as P is independent of 2, it is a function of wy, Us, Wass, Usiy Wess Ursy s++> Uns: 

The operators d,, ds, d,, d; that occur are 

d d d d 

Wik,” Gilg ig’ a? 

respectively: and the quantities w,;, ws, -.., Uns are independent of uy, Up, Uy, Us for 

the purposes of partial derivation. 

By proceeding as in § 4, 13, we obtain the solution of AP=0 in the followig form: 

Let H, denote the sum of the integral homogeneous functions of weight « in the 

roots of the equation 
& 3 BA, + EA, = A; — 0, 

so that H, is a rational integral algebraical function of d,, d;, d,. Further, let 

E,, = Fo —+41 oF A, A _, ee [NB 5 hs 

(so that FE, contains one term, E,, contains two terms, and #,,, contains three terms), 

Finally, let A, B, C denote three independent arbitrary functions of Uy, Us, Us, Uss, 

Uns, +++5 Uns, that is, of the set of independent variables other than w,;,; then the most 

general solution of the equation AP=0 is 



. 
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This is accordingly the form of each of the quantities P,, P,, P,; let the functions for 

the three quantities be A,, B,, C,; A,, B,, C,; A,, B;, C, respectively. 

Let WV. denote 

EA, + HB, + ExC,, 

where EL; = H; + AH, + A,H, =— A;, 

£y,=HH,+A,H,, E,=H,. 

0 = 3d,P, — D,P, + D;P,, 

0=— D,P; +(D;+9d.d;) P, — 6d? P,, 

0 =(D, + 9d.d;) P; — (8d.D, + 6d?) P, + 2d;D,P,, 

the resulting equations must be identically satisfied: that is, the coefficients of the 

various powers of ws, are zero. There thus arise three sets of equations, each singly 
infinite in number and similar in form to the set in § 23 for ®,: it appears, as in 
that investigation, that each set is satisfied in virtue of three equations; and the three 
sets of triplets are 

Then when the values of P,, P., P; are substituted in the three equations 

— 4B, = 3d,A, — D,A, — did,A, 

— 40, = 3d,B, — D,B, — d.d,B,}, 

— 4V, = 3d,0, — D.C, — d.d,C, 

— 4B, =— DA, + 8d.d,A, — 6d? A, 

— 40, = — D,B, + 8d.d,B, — 6d? B, 

— 4V¥,=— DC; + 8d.d;C, — 6d; C, 

— 4B, = 8d.d,A, — (8d,D, + 6d?) A, + 2d,D,A, 

— 40, = 8d.d,B, — (8d,D, + 6d?) B, + 2d,D,B, 

— 4V, = 8d.d,C; — (3d.D, + 6d?) C, + 2d,D,C, 

The three first equations give B,, B,, B, in terms of A,, As, A,; the three second 

equations give C,, C,, C; in terms of B,, B,, B, and so in terms of A,, As, A;; and 

with these values, the three third equations are identically satisfied. 

Accordingly we retain A,, A,, A; as the arbitrary functions. The values of P,, P,, P, 

are then known: when these are substituted in U, we have the most general solution 

of the equations t " 
aa i— ON da Ui— 0) 

Vor: XVI Parr iv. 43 
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expressed in the form of a doubly-infinite series in powers of #, and of us, the coeffi- 

cients of the various power-combinations being the appropriate derivatives of three 

independent arbitrary functions of wn, Us, Wiss Wes, Uys, +++» Unss derivation of the arbitrary 

functions taking place solely with regard to ww, Us, “ss. 

26. The last special example has been worked out in full, because it is sufficiently 

significant of the march of the analysis required to solve the simultaneous equations 

a@u=0, d?U=0. 

We assume g>p, n>q: if the latter be not justified, some modifications would be 

required, analogous to those in the last case if the number of variables were less 

than 5. 

The most general solution of 
d?U =0, 

is known; it contains p arbitrary functions P of the variables uy, wa, ..-, Ua. Tt must 

now satisfy the equation 
dU =0. 

The necessary conditions are that p homogeneous linear relations involving derivatives 

of the functions P may be satisfied. It follows immediately that each of the functions 

P satisfies the equation 

where A is the resultant of d?, d? and has the form 

d?+d?70,+...=0, 

while @,, ... involve the differential operators d., d;, ..., daa. 

Transform the variables so that they are the gth line in the tableau of § 24: 

then the operators are 

d d d d 
At, : ds dag do a duga, q-2 : dy Zz dug,q4 , 

= 

The solution of the equation 
AP=0 

is obtained as in the corresponding case of § 25: it is a series proceeding in powers 

of wq,g.1, and the coefficients in the series are derivatives of p arbitrary functions of 

dns OP cca renew syn Uibeiinn coos Zar derivatives with regard to Wn, Uo, +.) Wg—,q—2 

alone occurring. This form, therefore, is characteristic of each of the p functions P that 

oceur in U: selecting accordingly p functions Q for each of the functions P, there are 

linear relations among these functions Q@ and they are such that, out of the p® functions 

Q thus introduced, p?—p of them can be expressed in terms of the remaining p which 

thus remain arbitrary functions. Let these be Q;, Qo, ---, Qp- 
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Then each of the functions P is expressible as a series of powers of w)44, the 

coefficients being aggregates of derivatives (with regard to wy, ty, -.-, Ug—a,g—) of the 

p arbitrary functions @ which involve the arguments Lars ibe. dens: Te gels 7 “a7 betas 

Finally, when these values of P are substituted in U, the result is the most general 
solution of 

u q-1,q-* 

di:u=0, d?U=0, 

in the form of a doubly-infinite series of powers of a, and u,,4, the coefficients being 

the appropriate aggregates of derivatives of the p arbitrary functions Q,, Q., ..., Qp. 

The form of the solution is not unique: another form would be obtained were we 

to begin with the most general solution of d?U=0; and we afterwards should require 

to transform the variables in A, which now would be 

di + dO +..., 

only to those which occur in the pth-line in the tableau in § 24. As however both 

solutions are quite general, they can be changed into one another (and so also for other 

forms) in a manner similar to that which marks the corresponding transformation for 

the case already (§ 19) quoted. 



TNX” TO Oda. Na. 

Absorption of solar radiation, 86 

Algebra symmetrical, some differential equations in, 

291 

Brack, ArtHUR. Reduction of a certain multiple 

integral, 219 

CHReEE, C. Forced vibrations in elastic spheres, 14 
Tides on the equilibrium theory, 133 

Circles, spheres and linear complexes, 153 

Contact relations of systems of, 95 

Combinatory Analysis, a new method in, 262 
Complexes, linear, 153 
Conics, contact relations of systems of, 95 

Contact relations of circles and conics, 95 

_ Differential coefficient, change of variables in, 116 

Differential equations, partial, of the second order, 

191 

Differential equations in symmetrical algebra, 291 

Earth ; application of theory of elasticity to, 38 
Solar radiation on the surface of, 58 

Tides on, 138 
Elasticity, equations of, for forced vibrations in a solid 

sphere, 14 
Equations, partial differential, of the second order, 

191 

Differential in symmetrical algebra, 291 

Equilibrium theory of the tides, 133 

Euclid’s elements, on the fifth book of, 227 

ForsyrH, Professor. Partial differential equations of 

the second order, 191 

— Some differential equations in the theory of sym- 

metrical algebra, 291 

Gatiop, E. G. Change of the independent variable in 

a differential coefficient, 116 

Grack, J. H. Circles, spheres and linear complexes, 

153 

Graeco-Latin squares, see Squares 

Haroreaves, R. Distribution of solar radiation on 

the earth, 58 

Harmonie analysis of solar radiation, 58 

Hart, tetrad, and Hart circle, 100, 102 

Hitt, M. J. M., D.Sc. On the fifth book of Euclid’s 

elements, 227 

Independent variable, change of, 116 

Integral, reduction of a certain multiple, 219 

Invariant, characteristic, of a partial differential equa- 
tion, 291 

Latin squares, application of combinatory analysis to, 
262 

Lie, correspondence of spheres and straight lines, 

159, 165 
Luni-solar tides, 139 

MacMawon, Major P. A. A new method in com- 

binatory analysis, 262 

Magic squares, see Squares ' 

Marr, Davin B. An algebraically complete system o 

Quaternariants, 1 

Multiple integral, reduction of a certain, 219 

Ocean, tides in, 133 
Orr, W. M°F. The contact relations of circles and 

conics, 95 8 

Proportion, see Ratio 

Quadratic, concomitants of, 7 

Quaternariants, an algebraically complete system of, 1 

Radiation, solar, its distribution on the earth, 58 

Ratio, theory of, 231, 241, 244, 250, ete. 

Rectangles, Latin, 269 

Series, reversion of, 117 

Shell, thin spherical, vibrations of, 44 

Solar radiation, its distribution on the earth, 58 

Spheres, circles and linear complexes, 153 

Squares, Latin, Graeco-Latin, Magic, application of 

combinatory analysis to, 262, evc. 

Symmetrical algebra, some differential equations in, 291 

Symmetric functions, theory of, 265 

Tides, on the equilibrium theory, 133 

Variable, change of independent, 116 
Vibrations, in solid spheres and spherical shells, 14 

CAMBRIDGE : PRINTED BY J. AND C. F. CLAY, AT THE UNIVERSITY PRESS. 



TRANSACTIONS 

OF THE 

CAMBRIDGE 

PPHILOSOPHICAL SOCIETY. 

VOLUME XVII. PART I. 

CAMBRIDGE: 
AT THE UNIVERSITY PRESS. 

M. DCCC, XCVII. 



ADVERTISEMENT. 

Tue Society as a body is not to be considered responsible for any 

facts and opinions advanced in the several Papers, which must rest 

entirely on the credit of their respective Authors. 

Tue Society takes this opportunity of expressing its grateful 

acknowledgments to the Synpics of the University Press for their 

liberality in taking upon themselves the expense of printing this 

Part of the Transactions. 

Se 



CONTENTS. 

PAGE 

I. Theorems relating to the Product of two Hypergeometric Series. By Prof. W. M°F. Orr, 

Nigen, Lovell Chiles Ge Siremes, IDs liay | Speossessooceencosopposo cebceedeccoodcassascusocecouneac 1 

II. On the possibility of deducing magneto-optic phenomena from a direct modification of 

an electro-dynamic energy function. By J. G. Leatuem, M.A., Fellow of St John’s 

OMe eo rleecorssa es essrm em ceacereatse enna ce Serato cneh eh. ee eis svnaliedls eect neatamlosues scene asics 16 

III. On the solutions of the equation (V°+x°)=0 in elliptic coordinates and their physical 

applications. By R. C. Macraurin, St John’s College ...............sececececneeeeeceseen ees 41 





I. Theorems relating to the Product of two Hypergeometric Series. By 

Prof. W. McF. Orr, M.A., Royal College of Science, Dublin. 

[Received June 1897.] 

1. Tue following theorem is stated without proof by Cayley (Phil. Mag. Nov. 1858, 

and Collected Papers, Vol. 11. page 268), viz. writing as usual 

a.B a.atl.p.8+1 , 
TS AE) ett Meg.” 2 I, ay ye | 

then the product F(a, B; y+4; 7). F(y—4, y-B8; y+; 2) 

is connected with (l=2)*tF-7, F (2a, 28; 2y; x) 

by a simple relation; for if the last-mentioned expression is put equal to 

1+ Be + C2? + Da +..., 

then the product in question is equal to 

etna 
Y y-y+1 y-ytl.y+2 

Mpeg See 8) Oza: : 
y+ yt+h.yt+3 yt+t.yt+$.yt+3 

The object of this paper is to establish the above and other similar theorems. 

1 Ba+ 

2. Having given any series DS DOT AE cpio eB ECor ice OSRECACAEL CONOREA oo Unc 4 (1), 

if we form from it another Ao Ose ence tac s wove oconce ee slot eakeeec ontemeem remote (2), 

brs 7 +O Ort 
by means of the relation He eed Ge ee eee (3), 

where @ and ¢ are constants we shall express the connection between v and wu by writing 

Wi (Ge eh), OF Di | 0s Digby le ves avianriee nmr sneenecax sae (4). 

The method of proof pursued is to take the normal forms of the equations satisfied 

by two independent hypergeometric functions, obtain the linear differential equation 

satisfied by the product of the solutions of these, and investigate in what cases it can 

be identical with that satisfied by 

ae eka 10s hs: (Ll — Bre) aca cacaxvies voesntenentetadaes (5), 

where z is a third hypergeometric function, all three functions having 2 as argument. 

Vor. X VIL. Parr TI. 1 
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8. Considering any two equations of the types 

CD26 = 0) (CD? 6. OR crnneeeenenen arson eee (6), (7), 

it is easily found that the product £€' satisfies the equation 

By +2 
p [Put SeyityPt|+dy=0 el A (8), 

where 7+ 1’=P, I—I'=Q; D denoting differentiation with respect to # (Compare 

Schafheitlin, Pr. (No. 99), Sophien-Realgymn. Berlin, 29 S. 4°.) 

If (6), (7) are the normal forms of the equations satisfied by 

n=F(a, B; y; 2) and 7 =F, B; 7; 2) 

1-- NM-pw4+r?-1, 1-v 

aig aaa +o: respectively, we have T=4 | 

where A=1l-y, p=a-P, v=y-a-B, 

with corresponding relations in case of the dashed letters. 

The most general solution of (8) in this case then is 

y= at (y+) (1_- yt (atB—-y+a +B —y +2) {Amn + Bnyn.’ + Cnn’ + Dnm,} Nts (9), 

where 7, 72 are any independent solutions of the equation satisfied by 7; m’, ,’ are any 

independent solutions of that satisfied by 7’, and A, B, C, D are arbitrary constants. 

4. We now proceed to find the equation whose solution is given by (5) where 2 

is the most general solution of 

n(1— 2) 42 + (A — Ba) © — 07 =0 OM TI (10). 

Writing (1 —.«)-7z=u, we have | 

wD*u + (B+ 2c) «Du + {6 (co —1)+ oB + C} vu 

— {22D %u+ (A+ B+ 2c) cDu+ (cA +C) uj +eDu+ ADu=0......... (11). 

If a solution of this be u = a,x", 

we obtain the relation 

{(r —1) (r — 2) +(B + 2c) (r—1) + ¢(¢-1) + oB+Cha,4 

—{2r(r—-1)4+(A4+B420)r+oA4+Cla,+ (r+ 1) (7+ AGH =0......0. (12). 

Making the transformation indicated in (2), (3), and writing D’ for ey we obtain 
dz 

the equation 

a (D' + 6+1)(D' +6) {D' (D’—1)+ (B+ 2c) D'+a(o—-1)+oB+C}v 

— (D' + 6) (D' +$—1) {2D (D’—1) + (A + B+ 20) D'+cA4+C}v 

+2 (D614 6-2) DD ¢ A= 1) 0 =O errr crrerer erences (13). 
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On writing y'=a-"y the equation for y may be obtained from (13) by changing D’ into D’+h, and on writing 

A+2h=A’ 
B+ 20 + 2h = B’ 

h(h+A-1)=L 
2h(h—1)+h(A eae ce etl <= | Gs al i (14) h(h—1)+h(B+2c)+o(c¢-1)+oB40=N 
O6+h+1=0 

ot+h+1=¢' 

2p’ + A’ = P, 
20' + B’—24'— A'+4=Q, 

2($’—1) 4’ + $'($'-1)+ L=P, 
29'(0 — # +2) +(0'+ §)(A’ + B)—4(¢'-1) A’+ M91 9, ee Eb eR A) a ae (f' — 2) {(g’-1) A’ + 20} =P, 

oss(15), (p' — 1) {0 (4’ + BY) — 2 (g’— 2) A} +64 $ — 2) M—4(¢’-2)L=Q, 0'(8'—$' + 2) B'-(0'—g'+ 2)($'—1)A'+2(’— 2)L—(0' + ¢'—2)M+20N=R, ($' — 2) (¢’-3) L=P, 
($' — 2) {(@' -1) M—2(¢'-8) 1} =Q, 
a — 1) N—- 1) — 2) M+’ —2)(¢' 3) b= R, 

and rearranging, this equation becomes 

Hetae tae BP ty tag] of = 0. .:.5.(16). 

If we now write y =(«—-1)*y, 

we finally obtain as the equation for y 

PL, Q4+4« P, Qs + 8«P, RR, + 3xQ, + 6x (xe —1) : Pita par] Yt ees Behe tele 2) py, 
+ fie Get Paks 5 Hat Bu Qe Bu (C1) P, | 2ekhs + Be (e—1) Q+ de (eI) (e-2) wv a (a—1) a(a2—1) (a—1)8 | Dy 

ane On-treles Ry + «Qs + «(«—1)P, wR + (4 — 1) Qa + («— 1) (« — 2) P, Sie eae a(e—1y ~ @(@—1) ; 
gael = Daal eae ED F< et ee ae eee (17). 
This then is an equation two independent solutions of which are given by (5). The other two will be considered later. (See Art. 8.) 

1— 3 =< 
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5. Let us now examine whether the last equation can be identical with (8). If (8) 

be written in a form in which the coefficient of D*y is unity, that of D'y is -5 5 

hence it is evident that the equations cannot be identical unless Q be of the form 

a-™(a—1), where m, n are some constants, positive or negative; but the most general 

value of P is of the form 

a b c 

*< et a@-1) * @=1 

and of Q gat = ace 
y a2 ° a(a—1)° (a—1)’ 

hence there are six cases in which the above condition is satisfied, viz. 

L m=1, n=2, a =0, '=—c’, ie. W=VA3, W=p?; 

Il. m=1, n=1, v=0, c =0, MH=A2, =v"; 

Til. m=2, n=1, ce’ =0, a =-0’, w=p?, P=v?; 

IV. m=2, n=0, b'=0, c =0, y=v?, 2—-wW=rA?—p?; 

V. m=0, n=2, a =0, 0'=0, MHA, wW- v= p?—-v?; 

VI. m=2, n=2, c=a’, b=—2d¢’, w=p?, V-v=r2— dv", 

6. In Case L, writing Q=c’a—7(«#—1)-*, equation (8) can be written in the form 

1 2 a b c 

Dy+ Bs 2 yt 2fS+ ta tayt by 

+ 4a —b fe b + 2c 2c 

as x (2 —1) e@_ iy" Gos J 

4a b—4a =p 02 6) 2c 2c" ache ce + {et God te@nir- eGo TE y= nen (18), 

Comparing (17) and (18) we obtain 14 equations connecting the 16 quantities 

re Q:, lees Qe, Rs, Ps Qs; Rs, P,,; Q; Ri, ¢, a, b, C, K. 

Eliminating the 12 first we obtain the equations 

Crp ia +5 ral (Cate 1) Oss aa Ssnenaa scone soonee ndSscuo soo Da8 (19), 

Ges 1) e+ Ge-2-b42" =" ch =o den Sisree ciate «sles aeetaele aoe (20), 
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which are both satisfied by k=—4, 

and we thus obtain Ji 

Q: =4 

P,= 2a 

Q. = 2b + 

R, = 2¢ + § 

DN ate ie (21), 
Q, =6a—b 

R, = 3b + 2c — 3 

P,=4a 

Q, = 6 — 6a 

3a—3b-—c. 38 
Dieser 16 

noe ec 
and c= | (22). 

The alternatives to «=—4 involve two relations instead of one among 4a, b, ¢, c’, 

and thus cannot lead to cases of equal generality. 

Using the above values in the 11 equations (15), connecting the 7 quantities 

0, ¢, A’, BY, L, M, N with a, b, c, they are found to be satisfied for any values of 

a, b, c, by 

@=4, ¢'=1, A’=-1, B’=0, L=2a, M=2b+4a, N=2a+2b+42c—3 ....(28), 

and cannot hold in any other case of equal generality. 

: 3 oe 
/ — f =_ t ‘2 => _— = The relations a — 000 C; © =TE-5> 

which characterize this case are equivalent to 

WSN, poesesk ey web Sab Il consonssconsnctcnnoniososooseoce (24). 

Consider first the case in which all these ambiguous signs are taken positive, that 

is to say, in which 
, y=y7, a—-Ba=a—B, at Bt+at+ Ph =I —1............. cee (25). 

The values given in (23), when substituted in equations (14), lead to 

Here also we take the ambiguous sign positive and further obtain either 

- 
iy) (OLs ey 2 eases cece oc oesoee acs «a aaseteecessn (27). 
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Taking the former alternative we arrive at the results 

A=2y7-1 

B=2a+28-1 
C= ie" SES en ee (28) 
@=y-4 

p= 

It will be found that if in case of the ambiguous equations (24), (26), (27) we 

make any other choice of alternatives than that above, the theorems thereby deducible 

will be of exactly the same type as those which follow. 

If z=F(a’, 8’; y’; x) be a solution of equation (10) the values given in (28) are 

equivalent to the equations 

oS OU OR! ao ae Ce eee (29). 

7. We now insert the values we have found in the solution given by (5) of the 

equation (17) which has been proved identical with (8) whose solution is given by (9), 

and on dividing both sides by (1—)tayY we obtain the theorem that if z be any 

solution of the equation satisfied by F(2a, 28; 2y—1; 2) then (y—4; y; 2(1—a)**#+Fy) 

is a linear function of the four independent functions which are the products of a 

solution of the equation satisfied by F(a, 8; y; x) and a solution of that satisfied by 

F(y—4-4, y-4-8:; 7; x). If we denote the general solutions of the last-mentioned 

equations by 7, 7, respectively, and use the suffixes 1, 2, &c. to distinguish the 

particular solutions as in Forsyth’s Differential Equations, a consideration of the general 

forms of z, 7, 7 shows that unless 2y be an integer, positive or negative, if in this 

theorem we write z=2,=2, then the function of 7, »’ mvolved is 

mn = MM = 1% = 1M» 

and the theorem thus gives the equations 

fy—45 ¥3 Ga)? F (2a, 28; 27-1; @)} 
or {y—43 y3 (L—a)r-* AF (2y — 2a—1, 2y -28—-1; 2y—1; 2)} 

FG, Boye) FG ne pe ss cates eee (30) 

= (1 —2)*t8P FP @ 8B; 73 %) FASE, BASS 75 2) ccccecce-.seervenesesewnens (30’) 

=(1l—2z) F(y—a, y—B3 73 ZF (GAE BASS 75 2) coeceeceereereereereeees (30”) 

=(1—2)r*4 F(y—a,y—B; 7; 2) F(y—2—-4, y—B—-4; 13 2)nnneeeee (30”’). 

The type of the theorem is the same whether the first or the second form of the 

left-hand member be used. 

If we take the first form, Cayley’s theorem and equation (30) are identical, and if 

in the latter y were changed into y+4 they would be expressed by the same symbols. 
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If we write z=z2z,=2,, then the function of 7, 7 involved is 

MMs = NM = 16s = 144 ; 

and the equations obtained are of exactly the same type as those above but expressed 

in different symbols. 

It will also be found that we obtain equations of exactly the same type by choosing 

appropriate functions of z, », 7 which proceed in descending powers of @. 

8. A question naturally arises as to the other two solutions of (17) which are not 

given by (5). Its most general solution is of the form 

y =(e@—1)-*a-, 

where v is given by (13). The relation (12) which exists among the coefficients when 

v is expanded in powers, shows that there are values of v which proceed in ascending 

powers of x of which the first terms are respectively 

Thy FETE RN Yi 28 

of these the first two are, but the last two cannot be, given by (5). 

If however, reversing the train of substitutions by which v is derived from z we 

write w’=(%; 6; v) where v is given by (13), the relation between successive coefficients 

in wv is not (12) but the result of multiplying equation (12) by 

(0+7r)(0@+r—1)(6+7r)(d6+r—-1), 

this relation being obtained from (13) in a manner similar to that in which (13) is 

obtained from (12). 

The relation thus obtained leads to a differential equation for wu’ identical not with 

(11) but with the result of performing on (11) the operation indicated by 

(wD + 0)(a@D + 0—1)(#D + ¢)(w@D + $—1). 

Such an equation is of the sixth order; four and only four of its solutions (combined 

linearly) are admissible from which to derive v by means of the relation v=(@; $; w) 

for our theorem. This equation is equivalent to that obtaimed by equating the left- 

hand member of (11) not to zero but to 

(Oi SE OMFS IES OK te Ol OF So caaemeaeecote sone ton eee sCoane (31), 

C,, C., O;, OC, being arbitrary constants. Changing in such an equation the value w’ 

into 2 by means of the relation u’=(1—«x)-%2 it becomes 

[2 (1 —a) D?+ (A — Br) D—O) 2 = (Cia * + C.a-¢ + Cyr? + Cya'*) (1 — x) ....(32). 

By expanding the right-hand member in powers of « its solution can be deduced 

from that of a series of equations of the type 

[w (1 — 2) D?+ (A — Br) D—C] 2 =<, 

or [x (1 — @) D? + (y” —(a” +B’ +1) 2) D—a"'B") fH a8... (35). 
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It may be easily established that a solution of this is 

as Fae (e+a”+1)(e+ 8” +1) 

“(Fy EF) +7) FY + DEF DEF) 
which we will write in the form, 

lieth Dena 

, ath 

“(+7 (e+) 
It should be noted that the natural numbers do not here occur factorially in the 

denominators of the coefficients of the powers of z. 

F(a’ +e4+1, B’t+et ]; y’te4], €4+2;3 2)... (34). 

A solution of the equation 

[e (1 — x) D? + (y” —(@" +B" +1) 2) D— aR") 7 =a (1-2) ........ ..-(35), 
is therefore 

F ae oF oF : a : 

Hey yee tet], BY t+etl]; y’ +e41, +2; z) 

(o—1)a*¥ 

~ Lie 9 4+1) (e+ 2) 

(o — 1) (o — 2) at*8 

1.2.(e+7'° +2) (€+3) 

the complementary function being the most general value of z, as given by (10). 

F(a’ +e4+2, Bo +e+2; y’ +e4+2, +3; x) 

F(a’ +e+3, B°+e+3; y’+e4+3, «+4; z)—-...... (36), 

On forming wv by the relation 

= (02 D3 (Ua) rSiZ)) i ces tectcescssersnscdes sdeceoeoecers (37), 

it appears that the leading term of v has the same index as the leading term of 2 

so that in order to obtain the expressions for v, the indices of whose leading terms 

are respectively 1—¢, 2—¢, we must (unless @ differs from @ by an integer which is 

not the case here) write C;=C,=0. 

The two values of z to be inserted in (37) in order to obtain thereby the missing 

solutions of (13) may thus be obtained from (36) by giving e the values —¢, 1—#¢. 

Since 
(Cia-* + Ca) (1 — #)7 1 =(C,+4+ C,) a? A — 2)" 1 — Car (1-2), 

another solution may be obtained from (36) by giving e the value —¢, and increasing 

o by unity. 

9. The two linear relations which connect the two independent solutions of (17) 

last obtained with the other two solutions of (8) may of course be expressed in an 

infinite number of ways. We may specify the following 

Cie (5; Tete Sat 

a+B+t—-your gi Gints lets Saas 

PQa—y+l, 22=—y+1; y, 2—y;3 #) 

= ae ei +2, 28—y+2;y7+1, 3-4; 2) 
me <a : _G@tBts yeas DSF Gx-48, 2B—y+3; yt+2, 4-43 2) +... \) 

= F(a, B; 7; &).FP(R—G, $= B35 275 @) i... cc cecesecteenstencteoecewecencensesens (38). 

—— 
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The right-hand member of this equation and that of nearly all those which follow 

may be written in other forms, showing a power of 1—« as a factor. 

By interchanging a and 4—a, 8 and 4—£, y and 2—y we obtain another form 

for the left-hand member. 

Another relation among the same solutions independent of the last may be obtained 

from it by interchanging a and y—a—4, B and y—B—k on... cececececseceeeeee ceeees (39). 

10. If Case II. of Art. 5 be investigated in a similar manner it will be found 

that similar theorems hold provided in addition to the preliminary conditions = +2’, 

v=+tv’, the relation «+ y’=+1 also holds, and that without loss of generality we may 

as in Case I. take all these ambiguous signs positive. These conditions are equivalent to 
[oye te te ee Molo rs yO). RESCH AAFOPT SBE OP REC Ona ee CRE (40). 

In this case we obtain the following values: 

o=y-a4—B+h (or c=at+B—7+4), 
h=-y¥ (or h=y—2) 

c=—1 

Gaya 
ee DP we i ee te (41) 
A=2y-1 

B=2a+4+ 28 

C= 28 (2a—1), 
the last three leading to Ce — 20 St — 2S enya cy 

As in Case I. the alternatives rejected only lead to theorems of the same type as 

do those chosen. 

The equations which correspond to (30)—(30"’) in this case may be written in the form 

{y-43 93 (l- a)? Fa 1, 28; 2y-1; 2)}, 
or fy—4; vy; G—a)r* 44 F(2y— 2a, 2y— 28-1; 2y—1; =)} 

(lees) Pae re (Cn) Oiuey swat) eH (Oat ict Aas. sudh)) sone en ance oace sere eaece=s (42) 
SIME (35 G78 Decl G7HC tes Gale — 758 GYR a) neecacccndocneesccnascecerocoe (42’) 

th (iO Yi Sisk ys) GD) Ll (is tay Vis BB) ecewe coee sere ecsetewsatensacestes (42”) 

=(1—2)"~? F(y—a, y—-B; ¥; @).Fy—at+4,7—B-4; ¥; &) «---.. (42’”). 
As in Case I. if we consider the product of those solutions of the equations satisfied 

by F(a, 8; y; ~) and F(a—4, 8 +4; 7; 2) which, proceeding in ascending powers of 2, 

begin with a'-7, the equations obtained are of exactly the same type as these, but expressed 

in different symbols. 

Relations among the other two solutions of (8) and of (17) may, after dividing by 

ay, be written in the form 

(1+ 28-24) (7-1) {hs 1; ay (Ly PQa—y, 28-7415 2-73 8) 

4 SPE TIE pea 741, Dey oe oy Fi Say a) 
1 

+ GERRY PETER yt) 2 PQs +2, 2B-y+3; y+2, 4-74; 2)+..)} 

= (2—2a) F(a, 8; y; 7). F(§—a, 4-8; 2—-y; 2) 
+(28—-1)F (1—a, 1—B; 2-7; 2). F(a—4, B+4; 7; 2&0... (43). 

5) Wit, MOVIN IBA TE 2 
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Another independent relation may be obtained by writing in the above 

a—y+l1 fora, B—yt+1 for B, 2—y for y, 

and using an obvious alternative form of the right-hand member .........--+++.00++- (44). 

Another relation among the same solutions may be deduced from (43) by changing 

a into y—-a+4 and 8 into y—8-—}, 

and using a similar alternative form of the nght-hand member.............000: eee (45). 

A fourth relation may be obtained from (43) by changing 

a into 3-4, B into 4—B, y into 2—47........ eee eee eeeeeee (46). 

The left-hand members of (45), (46) involve the alternative value of o [see (41) and 

(36)] and the corresponding values of a”, 8”, y”. 

By taking the solutions of equations (8) and (17) which proceed in ascending 

powers commencing with 2*-¥ we obtain a fifth relation which, after dividing by a’, 

may be written in the form 

ofa: 25 0-2 
at+B—-y+4 

(8-y)(y¥+))1 

ee 
(2-9) ¥ 

aF (Qa—y+2, 28B—y+3; y+2, 4-4; 2) 

F(Qa—y+1, 28-y+2; y+1, 3-7; «) 

+ 

@+S8=7ts) GB 97t3)5 ‘ pe 
sf @—y)(y+2)1.2 Ee FQa—y+8, 2B—y +4; 9 +3, 59; e+...) 

2 
3 - 8 ao 

= @aEg =p ey eee Ge Bee ee ree) 

—F(a—4, B+4; 7; 2). £A—a, 1—B; 2a; @)]s.-2.-- 2.2 <.ceeneer ee (47). 

As the right-hand member is unaltered by changing at the same time « into 1—8, 

8B into 1—a, and y into 2—y, so also must the left. 

11. If in Case II. we choose appropriate solutions proceeding in descending powers 

of # we arrive at Case III., in which similar theorems hold provided in addition to 

the preliminary conditions »=+y’, v=+v', the further relation \ +’=+1 is satisfied. 

This case may also be investigated independently in the same manner as the others. 

The equations which in this case correspond to (30)—(30) may be written in 

the form 

fy +3; yt1; (L—a)tt#-7-1 F (2a, 28; 2y; a}, 
or fy+4; y+1; (1—a)-* #4 F (2y — 2a, 2y — 28; 27; x)} 

=F(y—a,y—B; 7; ©). F(@4+4h, BS; YI ©)... cecceccccceeceseeeee ence (48) 

=(1—2)st#-7 F(a, B; 7; &). FP (ats, BHSs YI; @). 00. e eee een eeees (48’) 

= (1—2)r-*8 F(y—4, y—B; 9; *).FP(y—2+4,7-B8+3; y+1; 2) ...(48") 
=F(a, 8B; y;3 2). F(y—atdh, y—Btd; YA1LS &) .cccccrcececccecceeeseenee (48””). 
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A relation among the other two solutions of (8) and of (17) may, on division by 

a-Y, be written in the form 

(y=) ]hs 15 Ga) (Fa 9, 28-95 » 1-73 2) 

+ SPB 18S Peay +1, 28—y+1; y+1, 2-4; 2) 

_ (@+B-y-s)(@+B-yt+h) @ 2, ’ eo } ee pe ih a a 2B—y+2; y+2, 3-9; z)+...)} 

=F (a, B; y; x). F(4—a, }-—B; 1-y¥; a) 

: (=) 8-4) pq —a,1—B; 2-y; 2). F(a+}, B+4; y+]; @)...(49). 
y(-¥) 

Another relation among the same solutions may be obtained from this by changing 

a into 4-—a, 8B into 4—B, y into L—y¥ .........--cervceseerees (50). 

A third relation among the same solutions may be obtained from (49) by changing 

a into y—a, £§ into y—8, 

and using an obvious alternative form of the right-hand member ............0csee+++ (51). 

A fourth relation may be obtained from (49) by changing 

aintoa+4—-y, £B into 8+4-y, y into 1—y, 

and using an obvious alternative form of the right-hand member .................. (52). 

A fifth relation on division by 2-Y may be written in the form 

f i 
1—v) 48; 2; @—a2)t8 74 | ———— FP Qa—y +1, 28B—y +1; y +1, 2—9; ¥( ”{3 (1-2) (ces) (2a—y Bo-y+lsy¥ Y3 2) 

ceases | Se ERs ORY ho: Latah + I Ganesa. yt2, 28B-—y+2; y+2, 3-¥7; 2) 

(a+B—y+4t)(at+B—y+$) a dhe Prec th mere )t + ae Goneaan a y+8, 28—y+3; y+3, 4 Tat) 

=F —a 1—8; 243 @). FES BASS PHIL; &)o.c.-.cccesecceecesceeeens (53) 

=F(a—y+1, B—y4+1; 2-4; 2). F(y—at+h, y-B+h; y4+1; @) ...... (53). 

By interchanging a and y—2, 8 and y—£, which does not alter the value of the 

right-hand member, we obtain another form of the left-hand member. 

12. Of the three relations which have been obtained in Case I. in equations 

(30)—(80”), in Case II. in equations (42)—(42”), in Case III. in equations (48)—(48”), 

any two can be deduced from the remaining one by changing the constants and using 

the relations connecting three hypergeometric series whose constants differ by integers 

(Gauss, Complete Works, Vol. 11. p. 133). 

18. Cases IV., V., VI. of Art. 5, will be found on examination to lead to no 

theorems of equal generality with those above. 

2—2 
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14. We next proceed to consider some special cases in which the relations we 

haye obtained can be expressed more simply. 

Suppose in Case I. we have y=a+8+4. Using this relation in equations (30)— 

(30) the left-hand member becomes a hypergeometric series of the third order and 

we obtain the relations 

F (2a, 28,a+ 8; 2a+ 28,a+8+4; 2)=[F(a, 8; «+844; a) ......... (54) 

=(1l—2)!F(a, 8; 4+8+4; 2). F(at+4, B+4; a+ 84+4; wo... (54) 

= (2 a) Baas Coe ee ee eee (54. 
The natural numbers do occur factorially in the denominators in this hypergeometric 

series of the third order and in others below. 

Equation (38) now identical with (39) becomes 

F(a—B+4, B—at+}, 3; 4+B+3, 3-4-8; @) 
=F(a, 8B; a+B8+4; 2). F(4—a4 4-8; 3-a-B; 2).............5. (55), 

which can also be expressed in other ways by taking out a power of 1—« as a factor. 

It may be shown more easily directly that the linear differential equation satisfied 

by the square of the hypergeometric series F(a, 8; y; ©) becomes identical with that 

of a hypergeometric series of the third order if, and only if, y=a+ +4. This has 

been done by von Clausen, Crelle’s Journal, Vol. 11, where equations (54), (55) are 

given. On equating the appropriate third independent solutions of the two equations 

to each other the result is of the same type as (54)—(54”) expressed in different 

symbols. 

If y=a+ 8-4 relations are obtained of the same type as (54)—(55) expressed in 

different symbols. 

If in Case II. the same relation y=a+ 8+4 holds, equations (42)—(42”) become, 

taking the second form of the left-hand member, 

F(a, 28+1, a+ 8; 2a0+28, a+ 68+; x) 

SW(Gh sje Chat /starees Mo I(eh (JaRILS GISb/s}4e0~5 4) oooononcoapanspsncn9b0000K (56) 

=F(a+4, B+4; a+8+4+4; ~).F(a—i, B+4; at+B+h; 2)... (56’). 

Equations (45), (46) are now identical and reduce to the form 

(1+ 28— 2a) F(B—a2+%, a—B8+4, 3; a+8+4, $-a-—8; za) 

=(1—2a) F(a, 8; a+ 8+; 2). FQ—a, $-B;}$-2-Bs 2) 
+2BF (a—4, B4+4;a4+8+4; x). F(1—a, 1—B; 3-a—B; 2@) «neers (57), 

in which the right-hand member may be written in a variety of forms. 

Equation (47) may now be written in the form 

P@—B—%, 6-44 4.8012 aoe) 
1428-2 = oe aR pF @ Bi at B+4; 2). FQ—a 4-83 4-0-8; 2) 

—F(a—4, B+4; 2+ 84+4; x). F(1—a, 1-8; $-2-8; @)]......... (58). 



PRODUCT OF TWO HYPERGEOMETRIC SERIES. 13 

If instead of the relation y=a+8+4, y=a+8—4 holds, equations (43), (44) reduce 

to one of the same type as (57) expressed in different symbols, while (47) again reduces 

to one of the same type as (58). 

In Case III. also if we suppose y=a+8+4 or y=a+8—4, the results already 

obtained may be expressed more simply and both suppositions lead to equations of the 

same type; we choose the latter. Equations (48)—(48”) then become 

F (24, 28, 2+ 8; 24+28-1,a+8+4; «) 

=F(a—4, B—4; a+ 8-4; 2). Fath, B+4; a+ Bth; z)..........08. (59) 

tHE ist Cl-t-)/o desi) ele (Cl Oop it | eb eaah) we seticceieneasioes’ene toe rere sasse sc (59’). 

Equations (49) and (52) are now identical and reduce to 

F(a—B+4, 8—at+4, 3; a+ 8-4, $-a-8B; a) 

= F(a, 8; a+8—%; x). F($—a, 4-8; 3-2-8; 2) 

perp gat delat | ree eae=nG=c= a nse B; $-a—B; 2). F(a+3, 8+4; a+8+4; ~)...(60). 

Equations (53), (53’) now become of the form 

{$3 2; 1—-a)" F(a—B+4, B—-a+};a+8+4, $-a-B; o)} 
=F(1—a, 1-68; §-a—-B; x). F(a+4, B+4; at B+h; 2)............ (G1) 

=F (8—a, 3—B; §-a—B; 2).F(a, B; at Bt; &) -.cccccececeececeeees (61’). 

The relations obtained also admit of some simplification in all three cases if y and 

a+ differ by half any odd integer. 

15. We have seen in the preceding article that if y=a2+ +4 all the solutions of 

the linear differential equation satisfied by [F'(a, 8; y; «)P are solutions of an equation 

of the type of (17); and, which is the same thing, that if y=a+$—4 all the solutions of 

the differential equation satisfied by (1 —2)[F(a, 8: y; ~)f are solutions of an equation 

of the same type; the theorems deducible in these cases being stated in (54)—(55). 

The cases discussed include two others in which all the solutions of the equation 

satisfied by (l1—«a)*F[a, 8; y; 2]? are solutions of (17), viz. if in Case II. we write 

8+4=a, and if in Case III. we write y=4 (or 3); it seems unnecessary to give the 

forms which equations (42)—(53’) then assume. 

The theorems obtained involving the square of a hypergeometric series require that 

either A, uw, or v should be +4. 

It appears probable that in other cases than these three all the solutions of the 

equation satisfied by (1—2)*[F (a, 8; y; «)} satisfy an equation like (17). 

16. In connection with the preceding remark the writer has investigated in what 

eases the linear equation satisfied by [F'(a, 8; y: z)]} may have one or two solutions 
but not all three in the form of a hypergeometric series of the third order. The 
method pursued, (that of examining in what cases the successive coefficients of the 
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latter series can obey the law required in F*), was very tedious; it is believed however 

that the following cases include all. 

The existing relations in the various cases, after division in some instances by a power 

of z, may be written as follows: 

Case I. cee ag ee 

Peseta] )= LPG. sae) 
Wei aa he a , Dias it Soke SEEM oe (62), 

or = F(w—-1, —p—-1; 4; a+ (2 =F) 2327) scope annuatoonoc[s (62’), 

(Ae Bs so) PG $5 5 2) =F to 4 1-20 Be 4-244 @)-..(68) 
= F(p—4, —w—4; 3; 2) +4aF(ut+t, —wth; 85 a)... ee. (63’), 

[PCat es & +O) = [PG -§ 8 
en re re ee (64). 

Case I v=y—a—B=8, w=a—B=+}. 

[F(-3: eae fea e)f=FOa-1, 1p On3 = aie BN gay 28 = Ns a) 

War! 
ae pes — = = 4 ee eae — ‘4 nak. . , =F(-r-1, —rA-4; —2A4+1; 2)- =i any eC A, —A+4; —2A42; «)...(65’). 

Another relation of the same type obtainable by changing the sign of X...... (66). 

And 

eae . eee 2 F(-5, AS) =a; 2) .F (5, Ao 14a; z)= Lt ppt (67). 

Case II]. w=§, A=+4. 

ee og ee es es 
—2y7?+3v+3 , —2v+v+1. 

=F(-»-4, Sa tA, Sag gre mene SOO z) teen eee eceser cence (68) 

ee eee a) — 4? oF +4, ee eet Bee (68’), 

—v-1 = —v+3 Wr Prete Jay [Reg Hh wl 
( v+v+) : SP (=, 94, 2) Lee ene (69) 

Dou vt ke ee eo (ao eee ee 
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ree etn) [ee at) : ne 

Case IV. w=4, r~»A=+3 

vy —v-l 2=) B=). Ne £ Dae . 

F-5, ke tia) .F 2° g a)=F(4 ye 8 ay? #).(7) 

=F (t—», 1-0; 9; 0) +2 EtYE—™) orgy, 2—»; 4; 2) Beate (71’), 

pth one eee aLeeae gta 
ss Se OY ONL Beige 2 =F(-» L -y-h 5 ; 2) ine aot (72 

= F(—v—-1, —v—4; —4; w)+(v4+1)aF (—v, $-—v3 $3 &)... cece eee (72’), 

biles acag ie 2) [-@S-*) [FEZ Esl hy 2] 

= F(-y=1, - 77; - 75) a= - a (2) $55 (73). 

Case V. w=4, A=44 

F(-5, 4 hie B(+5”, 757s hs e)=FG-» 1-5 Pi pean hi (74), 

|F(-3. = - 0) | — ote EG =, — 8; *)[=a-ay ee (76). 

In each of the foregoing five cases the equation satisfied by [F(a, 8; 7; #)} has 

two independent solutions which are also solutions of that satisfied by a hypergeometric 

series of the third order and a third independent solution of the type #*(1 -—«)’ (1+ cz). 

If in Cases I, IJ. the left-hand member be transformed by means of the identity 

F(a, B; y; 7)=(1—2)r-28 F(y—a, y—B; y; 2), we obtain Case VI. v=—8, AXA=H}, 

and Case VII. v=—3, w=+4. In each of these last cases the differential equation for 

the square of a hypergeometric series has one solution which is a solution of the 

equation satisfied by another hypergeometric series of the second order and is in fact of 

the form «#*(1—«)’(1+cx); two other independent solutions in these cases are the 

product of a power of 1—# and a solution of another hypergeometric series of the 

third order. It does not seem necessary to give the results in these cases. 
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INTRODUCTION. 

1. THE method initiated by Maxwell for the explanation of the Faraday effect 

depended on the direct insertion of a magneto-optic term in the energy. This method 

was extended by FitzGerald! and others to the explanation of Kerr's effect, namely the 

modification introduced in the circumstances of optical reflexion by magnetisation of the 

reflector. A difficulty occurred however in satisfying all the interfacial conditions, which 

virtually shewed that such a scheme was not formally self-consistent. The origin of 

the discrepancy has been traced by Mr. Larmor® to omission to secure what may for 

shortness be called the electromotive incompressibility of the medium: in the ordinary 

problem of optical reflexion there is no tendency for this to be disturbed, but when 

Maxwell’s magneto-optic energy terms are included the reaction against compression 

introduces what may be termed an electric pressure, which must appear in the equations. 

It was necessary to compare the modified scheme thus obtained with experimental 

knowledge: and the calculations given in this paper shew that im fact it does not 

represent the phenomena. 

The paper is only a summary of the actual calculations; because since they were 

completed I have shewn* that the other rigorous theory formulated as an alternative 

by Mr. Larmor‘, which leads to a system of equations practically the same as those 

advanced on various hypotheses by FitzGerald, Goldhammer, Basset, Drude, and others, 

is in much more satisfactory agreement with experiment. 

1 G. F. FitzGerald, Phil. Trans. 1880. 
2 * “Report on the Action of Magnetism on Light,” 

Brit. Assoc. Rep. 1893. 

had become enveloped. I had myself stated in the memoir 

that my system of equations was, as far as I could judge, 

formally the same as those of Goldhammer and Drude: 

3 “On the magneto-optic phenomena of Iron, Nickel, 

and Cobalt,” Phil. Trans. 1897. Considerable discussion 

has taken place in Wiedemann’s Annalen, both before and 

subsequent to the publication of this memoir, on the 

question of the formal identity of the sehemes of equations 

employed by these various writers. That this should have 

been possible is in itself a sufficient indication of the ob- 

security in which the fundamental principles of the subject 

but the theoretical principles from which they were derived, 

though bearing considerable resemblance to those of the 

former of these writers, seemed to me to be free from the 

empirical and tentative character of both. Indeed the 

relations of these theories to each other and to the one 

which I adopted had been fully indicated by Mr Larmor 

in 1893 in the Report above referred to. 

4 Loe. cit. : 
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This brief history of the subject shews the desirability of also examining how far 

the former method of explanation agrees with the phenomena. The result is however 
what was to be expected by those who adhere to the more recent formulation of 
optical theory’, which treats a material medium as free aether pervaded by diserete 

molecules involving in their constitution electrons considered as nuclei of intrinsic 

aethereal strain: on such a view a continuous energy function is not the starting point, 

and the influence of these discrete nuclei could hardly be expected to modify the 

propagation in the intervening aether in so fundamental a manner as an_ electromotive 

pressure would demand. 

2. Mr. Larmor’s modification of FitzGerald’s scheme consists in the introduction of 

a new quantity A, naturally suggested by the analysis, which may be interpreted as 

an irrotational or pressural wave propagated along the surface of separation of two 

different media. In the Report above referred to he obtains on this hypothesis the 

equations of propagation in a dielectric, and the conditions which must be satisfied at 

an interface between two non-conducting media. It is unnecessary to recapitulate here 

the results arrived at; but it may be well to mention that while in §§ 8 and 11, 

Mr. Larmor inadvertently states that % must be continuous across a bounding surface, 

he has since pointed out that this is not the case, as the pressure is not A but is 

the coefficient of 6f in the variation of the action integral, and it is this pressure 
which must be continuous. 

In the present paper it is proposed, by using the principle of Least Action and 

introducing a Dissipation Function, to obtain from the above hypotheses the differential 

equations of propagation in a conducting medium, and the boundary conditions which 

hold good at an interface between two such media. These will then be applied to 

the solution of the problem of the reflexion of light from a magnet; and the formulae 

so arrived at will be compared with the available experiments in this subject, with a 

view to testing to what extent the theory is capable of accounting for the observed 

phenomena. 

NOraTION, AND ASSUMPTIONS. 

3. The notation is the same as Maxwell’s; and there are introduced quantities 

&, », & defined by the relation 

(a, B, y)=d/dt (E, », £). 

For brevity we put 

d d d_d 
“often rial OF ae 

(%, Bo, Yo) being the intensity of the imposed magnetisation; this is slightly different 

from the definition of d/d@ given by FitzGerald, but the alteration is justified by the 

consideration that magneto-optic rotations are proportional, not to the magnetic force, 

but to the intensity of magnetisation of the material medium. 

1 Cf. Larmor, ‘‘A Dynamical Theory of the Electric and Luminiferous Medium,” Part III. Phil. Trans, 1898. 

Vor XVI. Panr I. 3 
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The form of 7’, the magneto-optic part of the energy, given by FitzGerald 

(Larmor’s Report, § 9) applies only to insulating media: it will be assumed that the 

corresponding expression for conducting media is 

p= ff a(S 2) 3 (E-2 + 8 Sle) cat 
This is one of several possible forms of 7” which, for the particular case of a non- 

conducting medium, would be identical with that assumed by FitzGerald; it is of no 

importance which we choose, as they differ from one another only as to a complex 

factor in the magneto-optie constant C. 

EQUATIONS OF PROPAGATION, AND BouNDARY CONDITIONS. 

4, The equations of propagation and boundary conditions are to be derived by the 

principle of Least Action from the energy functions 7’, 7’, and W; but for conducting 

media it is necessary to combine with these Rayleigh’s Dissipation Function. 

The Dissipation Function F is a homogeneous quadratic function of the velocities 

(which in the present instance are a, 8, y) representing half the rate at which energy 

is being dissipated. 

In general if 7 be kinetic energy, V potential energy, and F the dissipation 

function, the Lagrangian equation of motion corresponding to a coordinate p is 

d (at) af a AP 
dt (iw, dy day * dy 

This equation cannot be arrived at by introducing F before variation into 6 | ([—V)dt; 

but if we treat the energy and dissipation functions separately and afterwards piece 

together the results of the variations we shall get the desired result. For, neglecting 

terms at the time limits, 

ar\ af gad 
KC Oe *Halag) bs Op pee 

d 8 | Fdt=+=]— d&pdt; an | dt = + yh 

and so the Lagrangian equation is obtained by adding the coefficient of dy under the 

integral in —6 | Fae to the coefficient of Sy under the integral in +6 1c —V) dt. 

5. In the present instance the coordinates £ 7, § are not independent, being 

subject to the limitation _ + re += ; and so, to get the conditions of the motion, 

we have to add the coefficient of 6a under the integral in —6 [Fe to the coetticient 

of 5& under the integral in 

3 fr +1" — W)dt +] ais ||| d (F + i + = dedy dz, 
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where the notation is now that of Larmor’s Report, namely 7 and W representing the 

kinetic or electromagnetic and the static parts respectively of the energy of the medium, 

and 7” the magneto-optic part. The introduction of 2» is the characteristic feature of 
the theory. 

6. F is given by the relation 

ar= {if (Pp+ Qq + Rr) dadydz, 

and as 

P 4 
p=" fF and p=— Saale 

o 

where o is specific resistance, it follows that 

P= all (Pot +B) dadyde, 

To express this in terms of a, 8, y, we notice at 

uf _dy_ dg 4 (p+ F) = eS Bae 

and p=(4r/ck)f, 

d\, dy ag 
een te (Tt aT aye de 

In the case of light oscillations we assume all the variables proportional to e”*%, 

where « denotes V—1, and p is not to be confused with the « component of the 

conduction current; the above relation then becomes 

ae 1 (Ft dp \ 

der (4er/a KK +p) \dy dz!” 

and therefore 

is 1 dy dB\? sda dy? (dB da 

Hs Qo (47r/o + mail | a = =) + ( = Zz) ar 
(- = 1 dxdy dz. 

Varying, and integrating by parts in the usual way, we obtain 

= oe eee dy _d8) (ddy _ d88 
ah poet ame ae dz) (G Get | indie 

ee da_dy\_, (WB _d 
~ a (40/0 + pKY LT (a é ie) ih (a: =) ani ane similar ee 

=[f | liz (“- a) - al — =) da + t
wo similar dedyds|, 

where J, m, nm are the direction cosines of the outward normal to the element dS of 

the bounding surface, and the surface integral is taken over all bounding surfaces. 

3—2 
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7. The value of 7 being 

t= SCG) + Ga) + G@) jar 
the corresponding variation is 

fra fa [EE +8 + EOF ain. 
=-/a#|| [ig 8+ oe 

terms at the time limits being neglected. 

ee ap et dedy de, 

8. From the expression for Z’ assumed in § 3 we derive 

ea pies dg_dn\ , din d dé _d ddsed (dn dé 

| rat=c fat Ll {76 di (ay ao eee 5 (ae- ae) fai 
dso ddn\ , dn (dd—_ dd ae (din dé 

-| {| ie (a y eae saa (cde “dx ) + dOdé ea ~ dy } rade ae] 

=C | dt | i | (al + Bum + yon) 5; ai wae o) d&dS + two similar 

+ | [(» a po ) d&dS + two similar 

ad (df dy Pe: 
- {Ila dedt (Ge - Z) d&dxdydz— two similar | : 

Also [at 3 fac |{] r(F + at — dx dy dz 

= {ae | [fa G28 + mBn + 8b) a8 — — f[f( gee wean + 3g) dedy ae]. 

9, The static part of the energy of the medium is given by 

w= (2n/K)[[|r+ gt + he) dee dy de 

~ Sirk Ee + all IG rs 7 = ee =I s & a = | da dy de ; 

from which, noticing that (a, 8, y)=(& 2, ©), it follows that 

8 fi— Wy ae= fat eae ray WG 2) (Ge ae) 

-2 (i - 2) +(@-A) Ga) eae 
= [ae rae ae ry; wt (E- “) —m (2 - ali d&dS + two similar 

-|[)i (2 = *) - i (- Al d&dxdydz — two similar : 
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10, If now we bring together the results of the last four paragraphs in the manner 
specified in a we obtain the following expression of the conditions of the motion :— 

a4 

+C i + Bum + yr) = (- on) S£dS + two similar 

+ {[(m == —n pad d&dS + two similar 

28 | i — (- on) Sédadydz — two similar | 

+ cae fe (E-S)-» (fea oe site 
a i | | ie (¢- a) 5 (Z- Al S£dadydz —two similar 

+[pr (1BE + min + n8E) dS — We SE + in By 2 8t) dxdyde 

~ SEES [ i | |n (S- a) —m (FP - * )t Sek avec eS: 

ilies (3 a ay) a = (- 7) d&dxdydz — two similar 

Taking together the volume integrals we get the bodily equations of propagation, of 

the type 

d* t dé d d (dn d ad (dé d dr , 
eee el ee eae) ee ae 

From the surface integrals we obtain the boundary conditions which hold good at 

an interface between two different media; in this case of course the integrals extend 

over both sides of the surface of separation. If, for the sake of simplification, we take 

the axis of z normal to the element of surface considered, we have 1=0, m=0, n=1. 

Now 6£ and 6) must be continuous across the interface, and therefore so also must be 

the expressions which are their coefficients in the surface integral: 5€ is not necessarily 

continuous, for reasons explained by Mr. Larmor in the footnote to § 11 of his Report; 

he has however pointed out to me that the supposition that it is continuous is perfectly 

allowable and involves no inconsistency. Thus we have analytically the alternative of 

supposing that both 6¢ and its coefficient in the surface integral are continuous across 

the interface, or on the other hand of supposing that 6 is discontinuous, and that 

therefore its coefficient vanishes at both sides of the bounding surface. Of these the 

former supposition seems the more natural, but the consequences of both will be in- 

vestigated, 

dp da 
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The boundary conditions are accordingly as follows: 

(1) & and 7 continuous, 

: — ip (dE df\ _ dn d (dg _dy : 

(Dalek eo Te) ~ 470 gaan t APO a (ay Tz) continuous, 

__p (dt _dy cia d (dg aby 
OO) emia lay 7) + AC agaa t #eCw a G 7) continuous, 

(IV) Either (1°) € continuous, 

and 7~+C 2 (2 - = continuous 
j Y dt \dx dy g 

or (2°) A+ Orn © ( = = z) = 0 at both sides of the boundary. 

PLANE WAVES. 

11. In dealing with the problem of the reflexion and refraction of plane waves at 

a plane surface of magnetised metal, it is convenient to take the reflecting surface as 

the plane z=0, and the plane of incidence as the plane y=0; the positive direction 

of the axis of z is from the metal into the air. 

If we suppose that the expressions representing the optical circumstances in the 

incident wave depend on the exponential e(’+™+P), then those which represent the 

circumstances in a corresponding reflected or refracted wave must, in so far as they involve 

x and ¢, depend on the exponential e+, Hence the most general assumption that 

we can make about a reflected or refracted wave is that its rotational part depends on 

one or more exponentials of the type e#+™?+”), and its condensational part on others 

of similar form, say et(*+m’=+79, Tn fact, for such a wave 

E = DAei(rtmz+y) + Sdg/dx 

7 = {Be a+metp) + Sdd/dy 

C= SE (—L/m’) Atm et vb) 4 Sdpldz \ veseveeeeeevereeeeseeeeeeens (v), 

$ = Ae (la+m"z+-pt) 

i Dd Let (a+m'z+pt) 

where A, B, A, and LF are constants, real or complex. 

The form of ¢ has been so chosen that the rotational parts of &, 7, £ satisfy the 

condition 

the substitution of their irrotational parts in this equation leads at once to the con- 

dition /?+m’*?=0, which shews that there are only two possible values of m”, namely 

m’ =+i and m’=—uil. The corresponding exponentials are e-“e(+") and et¥e(*+P), of 

which the former can occur only in a reflected, the latter only in a refracted wave, an 

amplitude which increases without limit in the direction of propagation being impossible. 
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The parts of (&, », ¢) corresponding to different exponentials are really different waves, 

travelling each with its own velocity; the above condition shews that the velocity of 

propagation of either of the irrotational waves is infinitely great, since its square is equal 

to p/(? +m”). 

12, In order to obtain further information about the various constants which occur 

in the assumed expressions for &, », ¢ we substitute these values in the equations of 

propagation. In the case of the irrotational terms this leads to the relation 

From the rotational terms we get, for each value of m’, two relations which readily 

reduce to the form 

2 +m? l i : Pe 
A {usp iy TOY dae 87rC (al + yom’) mB, on 

Soneeeea (VILL) 
P +m? ‘ »,2+m? 

B mp + oe a =+ 870 (al + yom’) a A 

Eliminating from these the ratio B/A, we get 

+m’. . = f 2 t. yn’2\t pup + mer +4. 87 (aol + yom’) (F + 2*)8... 2. eeenceceeeens (ix), 

an equation which determines m’, In this, to avoid ambiguity, we shall make the con- 

vention that (/?+m’)!, or ow’, as it may for brevity be called, is a complex whose 

imaginary part is negative: As the equation is a quartic, there are four possible values 

of m’; and if we neglect the second and higher powers of C, which for all media is an 

exceedingly small quantity, these four values are found to be of the form +m, —™m, 

+m, —M,, of which the two former correspond to the positive, the two latter to the 

negative sign on the right-hand side of the equation in m’. We complete the definition 

by the supposition that of the complexes +m, and —m, the former is that which has 

its imaginary part negative, and +m, is chosen in the same way; as a matter of fact 

it is found that m, and m, so defined have their real parts positive. 

If (A,, B,), (Ay’, By), (As, B.), (As’, B.’) be the pairs of values of (A, B) corresponding 

to the roots +m, —m, +m, —m, respectively, and if we make the abbreviations 

BE a rap AE sk Sp coe sole sean anne nor axpainie (x), 

either of the above relations between dA and B readily yields the following 

A,wo,=— Bym,, Ayia, = + Bm, | 

Ata, =+ Bym,  Ae't®, = — B,’m, 

The consideration that a wave whose amplitude increases continually in the direction 

of propagation cannot occur, indicates that in the problem of reflection the reflected 

waves involve only those exponentials corresponding to m’=—m, and m’=—m., while 

the refracted waves involve only those corresponding to m’=+m, and m’=+ im. 



24 Mr LEATHEM, ON DEDUCING MAGNETO-OPTIC PHENOMENA FROM A 

13. In the particular case when a and y are zero, m, and m, are equal and 

their common value may be denoted by M; the corresponding common value of o, 

and », may be called ©. To evaluate these quantities we have only to change the 

right-hand side of equation (ix) to zero, when we find 

02 = — pup (47/0 + pK), 

whence of course Me =— 0? — pep (40/0 + pk 1 

Returning to the general case, we see that m, and m, differ from M, and @, and 

w, differ from ©, by quantities which have C for a factor and which are therefore 

small of the first order compared with M and ©. If we neglect small quantities of 

the second order we may substitute © for w’ and M for m’ on the right-hand side of 

equation (ix), which may therefore be written in the form 

oo? — OF 
dala +pK +14.870 (ab + yA) QO. 

On introducing the abbreviation 

w=—..870 (al + IM) (40/6 + pK)/O, 

= (Sr) pp) C (gl 4 yo) ecacacnceaeeuse+>-esecteueseorrenee- eae (xii), 

equation (ix) further reduces to 

(I OF ESS CaO}! 6 Breed pnqactoqsdacmsabsdoaassospscoobre (xiv) 

Hence we have eS (Abc ROS ye (Sb a) 0 so oecnacanonsdsosassosanbesose (xv), 

and therefore also TEP SUDO Gi WEE AO sonsooanooooadcaphoonoseensons (xvi); 

and as @ is small, these lead to 

w, = (1-4) 0, w, = (1 +40) 9, 
m=(1- 5 ys) a m= (145 n=) | a aeeees oe ITER (xvil), 

expressions which will prove exceedingly useful in the subsequent analysis. 

14. For a medium in which there is no magneto-optic effect the relations (xi) do 

not hold good. In fact, as for such a medium C is zero, the equations (vill) and (ix) 

all reduce to the same form, namely 

P+m? 
oo 4jo+ pK” 

and the ratio A/B is left quite arbitrary. If, as in the case of air, the medium is 

also a non-conductor, o is infinitely great, and equation (ix) assumes the form 

P+m?— pK =0, 

which expresses the fact that, if V be the velocity of propagation of light, V*=(wi)-. 

There are two values of m’ of the forms +m and —m. 
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THe REFLEXION PROBLEM. 

15. On passing now to a more detailed investigation of the problem of magnetic 
reflexion, the preceding paragraphs justify the representation of the optical circumstances 

in the air by the following expressions :— 

&= A,e! (la+mz+pt) 4 A et ewe ave dd /de, 

n = Byes e+mztn) 4 Bet (la—metpty + dd /dy, 

f= — (Um) A.etetmesn0 4 (Ym) Aertemeren + dg/de, 
b =Ae-® et txt v0), d= (p'/4ar) Be-# et tx+00, 

wherein A,, B, represent the incident wave and A, B the reflected wave; the system 

of units being the electromagnetic, w for air is equal to unity. 

In the metal the refracted light may, in accordance with § 12, be represented by 

£ = Ayes etmetrh 4 Aer rrmeteh + dp/da, 

1 = = U(coy/m,) Aye 240 + 1 (ws/m,) Ase etme + d/dy, 
€ =—(l/m,) Aye @+m2z+P — (L/m,) Aget @+mz+") + d/dz, 

p=DHerk eter, — = (pu/4ar) Diet” et xt 00, 

Getting rid of the ¢’s, the values of & 7, ¢ and > in the two media may with 

advantage be rewritten as follows :— 

In the air 

a A,e (la+-mz+pt) + Ae (la—inz+pt) a5 dAe—® e (atpt) | 

n= Be (le+mz+pt) de Be (a—me+pt) 

ROseACOMreee XVill), 
c= = (l/m) A,e' (la+-mz-+-pt) + (l/m) Aet (a—mz+pt) — IAeZerar1t | ( ) 

r= (p*/4ar) De et (la+pt) 

In the metal 

é = Ae (lat+m,z+pt) + A.et (a+ z+pt) st lA ‘ee (atpt) 

n = —t(@,/m) Aye +2479 + ¢ (w./m.) Age’ @tmz+P), (zis) 

— (L/m,) Aye (la+m,z+pt) —(L/my) A,e' (la+-m,z+pt) ah 1F'ee Cztph | 

A= (p?n/ 407) Dez et (a+pt) 

15a. Let us first consider the second of the alternative hypotheses referred to at 

the end of § 10, namely that which supposes € discontinuous. 

The boundary condition (IV, 2°) must now be used, and from it it appears that, 

since in air C is zero, Q must also be zero. A slight simplification thus takes place in 

the expressions representing the optical circumstances in the air. Substituting these 

expressions in the boundary conditions we obtain :— 
Vou. XVII. Parr I. 4 
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(I) From the continuity of & and » 

7 BES. TES 1s BY. Be Srl: URN pe en scocor oeceeemAbe senceoees 4 (xx), 

By + B= —t(a,/m,) Ay +t (Wo/IMe) Ag. ...ecerereccrvecseersenetenes (xxi). 

(II) From condition (IT) 

1 ob +m 

RK’ a= 
= — (2 +m; P+m2 . } 

ate 4or/o + up K’ EY m aoe Ms As 

+ darCp {(atgl + yum) (— 0eo,/m,) Ay + (Aol + yore) (+ t@2/mz) Ag} 

Agr Coty (1 @ Ayia Als) lovectoneee cere pecbses+ereres senen ear (xxi). 

(III) From condition (IIT) 

1 
RO um) (By— B)= po ge A, + @2A,) 

— 4arCp {(aigl + yor) Ay + (ol + yore) As + (vated + ryol) IA’) 

+ 4arCryup {. z a A,+t E ome a.) sophia Pere ee ee (xxiii). 
1 2 

(IV) From condition Sie ee 

In these results the specific inductive capacity of the metal is denoted by K’ to 

distinguish it from that of air. Equation (xxiv) shews that when y, is zero so also is 

Q’, so that when the reflexion is equatorial there is no condensational wave; it also 

shews that Q’ is small of the first order compared with A, or dA,, and may therefore 

be omitted from equation (xxiii). 

If we eliminate @’ from these five equations, and, neglecting small quantities of 

the second order, substitute in terms containing the factor C the first approximations 

Q for , or , and M for m, or m., we obtain 

4arC yy 
A,+A=A,+A,+ Ge eo (As Pay’: 5) hee Pen ASABE 0 Sry Be CARRE Es (xxv), 

¢ (By-2B) = (@,// Tr) "A (alas) Agen emet erences eee eee erecese ene series (xxvi), 

1 @ Ea up o; os 

Km See 4or/o + pK’ (ee rks Mz Ay} 

+ 47Cp oy cl + 2y,MW) (A, — As)... (xxvii), 

L 1 2 Pp Km (B, — B)= deen ean 

2 

4+ 4erCp (al + yoM) (Ay + As) + deep Sop (dy + As) ooeeeceeee (xx¥iii). 

{@,A, = wA,} 
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On substituting the values of m, mm, @,, @, from § 13 and remembering result 

(xii), these become 

Ay mea, pa ee 4 Ay pe M 

(By +B) = (A, — ~ 4) +. Me (aj) + yp) (A, + Az), 

1 w z= (A, — 4) = FP (4, + Ay) + 4erCp $7, (al? + yO 2M) (A, — Aa), 

em (B, - By ="# (4, A, )+4nOpy wr (A: +-A,) 

From the first and second of these equations we obtain, to first order of small 

quantities, 

Ay + Ay= Ay + A — (B, + B), 

ay (4s — 4s) = 0 (By +B)- =. Wr (tol + ell) (Ay + A); 

and if we substitute these values in the an and third equations, and remember that 

1/K = V*=p*/@’, we get relations which 4 reduce to 

== —A)= mo a A) aye e+ Yl *)e(B, + B), 

a hs Zonccce (xxx). 

“¢(B,—B)= paee(B, +B)- pare Cl! ~ Yell?) (Ao +A) 

Solving these for A and B we have 

Soy EN ee 8xrCm pe (m M 
he m+ hes) Ao— pio? (ad + yo) B,) (C+ 4) (2 + HG) 

w\ /m M laser M noel 6:6-0.81) | 

Ba | SC (ats — yA?) A, + (= +4) (4-5) B,| / (= +4) (S+ ud) 

which, since A and B specify the reflected light, constitute the complete formal solution 

of the problem of metallic reflexion. 

15 b. Turning now to the consideration of the first of the alternative hypotheses of 

§ 10, namely that which supposes € continuous, we proceed exactly as before, save 

only that we use the boundary conditions (IV, 1°) instead of (IV, 2°). In this case, 

of course, A is not zero. 

Substituting the full expressions (xviii) and (xix) in the boundary conditions we 

obtain :— 

(1) From the continuity of & 7, and € 

4,+A4+dAa=A,+ 4,4 da’, 

Bo + B= —1(@,/m) A, + ¢ (@,/m,) As, 

= G,-A)-@=-> 4,2 4.+@. Mm, - Ms 



28 Mr LEATHEM, ON DEDUCING MAGNETO-OPTIC PHENOMENA FROM A 

(II) From condition (IT) 

1 ee +m? ak ag ay Per LL 
“i ee ae Arlo + pK’ | m mae My 4, 

+ 4arCp {(a,1 + yy) (— t@,/m,) Aj + (al + ypirs) (@s/ mM.) Ao} 

+ 4rCyup (— @,A, + @,A.). 

(III) From condition (IIT) 

= Gen RED (OTS) 
4ar/o =: pk’ 

— 4arCp {(aol + yom) Ay + (aol + ome) Ao + (val + yol) 1A} 

+ Cup {+ P ae aoe ae cea “Ash. 

(IV) From condition (IV, 1°) 

(p?/4ar) A = (p*u/4ar) A’ — Cry pl {— ce (@,/m,) A, + ¢ (@./mms) As}. 

If we substitute in these equations the values of m,, ms, @,, @, from § 13, replace 

(47/0 + pK’) by +O2/up in virtue of (xii), and omit small quantities of the second and 

higher orders, we obtain :— 

A,+A+U8=A,+A4,4 dQ, 

4rrC PO? (By +B) = (4 Ay) + aps (al + yoM) (Aa + Ae), 

wae =A) +B = Fp(Ast A) +E Te (al + go) (As = A, 

k m = (A, =) = Fe yy + Ay)+ 4nCp <7 1B (4,25 + yO? ) (A; — A2), 

= mu (B, — B) t+ (A, — As) + 4Cpy, = (A, + As) + 4orCpl? (vay +70) BW, 

10, 
PA = ip wA’ — 4arCpy, Tr (A, — A,). 

Solving the second and third of these for (A,+A,) and (4, —4A.,), substituting the 

values. so obtained in the others, and remembering that 1/K =p*/*, we get :— 

(M-— d) @+ da’ =A, pe Cans =A) (ol + typ) «(By + B), 

pya =— pe" = ey A) + 4rCpa,le (B, + B), 

— 4rCp = (408 — yoM*) A + dar Cpl? (1009 + Yo) 

p M 1 1 =P «(By — B) = p'w G1 (By + B) + 4nCp 5 (aol — pM) = (Ao — A), 
PA — —p pW =— 4rCpy,le (B+ B). 
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When we assume, as it is usual to do, that for magnetic forces alternating as 

rapidly as those in light waves, the magnetic permeability is unity, the form of these 

equations becomes simpler; and the elimination from them of @ and @’ which are 

now seen to be small of the first order, leads to :— 

Ay A= (4,= -4)+ 0 ay (esl + Yo?) (By + B)=0, 

mv y “+ (By— B)— 4,1 (By+B) + ry (oe? — Yl?) (A,—A)=0. 

Solving for A and B, we get 

1 1\f/n M 8rCm 1 1\/m MM 

=[Ga-a) Ge) 4o— paren OP + vol) Ba] + a) (G+) 
a = 1\ /m M 1 LN (7. 

BO pins toy oes Ge m +1) a a) iB WG a i) be a = F 

Now the expressions here obtained for A and B are identical with those of equa- 

tions (xxxi) when in the latter w is, as usual, put equal to unity. Thus it appears 

that the alternative hypotheses as to boundary conditions discussed above lead to 

precisely the same results, and it is a matter of indifference which we adopt. The 

subsequent calculations apply equally well to the two views. 

16. The value of © is determined by the consideration that {?/w?= R’e**, where 

Re is the quasi refractive index of the metal*. The quantities R and @ are con- 

nected by the relations 

R?cos2Qa=n2(1—k), R'sin 2a=— 2n’k, 

with Drude’s optic constants, whose values for different metals are quoted in Thomson’s 

Recent Researches+. The value of WM is obtained from that of © by the relation 

M?=0?—(, and it will be convenient to denote M/w by the symbol #1, so that 

ES CRF te awanteise coarse sasesseesenceseetesene se (xxxii). 

If 7 be the angle of incidence, and if we suppose the direction of the incident 

light to lie in the quadrant between the positive direction of the axis of w and the 

negative direction of the axis of z, then, w and p being assumed essentially positive, 

we have 
arises = NU = +). COS Ben svescciiecssaes scene sees + <aees (xxxiii) ; 

of course p= Vw, and w=27/d where X is the wave length of the light in air. 

_ We shall also put #=1, as it is usually taken for granted that for magnetic forces 

alternating as rapidly as those in light waves the magnetic permeability is unity. 

* J. J. Thomson, Recent Researches, p. 419. 

+ Drude, Wied. Ann. xxxix. p. 481. For the constants of Cobalt see Drude, Wied. Ann. xuvt. p. 407. 
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When these substitutions are made, equations (xxxi) assume the following form :— 

(§¥1- cos 7) ({MRe* +. cos t) Ay + 1622 CVA= (cos*t/ HV) (% Sin? 1— —y, fH) iB, 

(4¥1 + cos 7) ({PURe* + cos 7) 

— 167° CV7A7 GHA (a, sin’ t+ y, ft?) A, — ($¥1 + cos 7)({PLRe* — cos 7) cB, 

({#1 + cos 2) ({4URe* + cos 7) 

A= 

B= 

It is to be noticed that these expressions contain only one undetermined constant, 

namely (; this we may assume complex, of the form Cye*, where is defined as lying 

between —90° and +90°, and C, may be positive or negative. The test of the theory 

consists in ascertaining whether it is possible, by attributing, for each metal, suitable 

values to (, and a, to derive from these formulae results in numerical agreement with 

those arrived at experimentally. Should the values of these constants indicated by the 

different experimental observations or series of observations prove to be the same, the 

theory may be regarded as offering a satisfactory account of the phenomena ; but if the 

different series of observations point to considerably different values of the constants, it 

must be concluded that the theory is at fault. 

THE Kerr EXPERIMENTS. 

17. In the original experiments on magnetic reflexion, namely those of Dr Kerr, 

the incident light was plane polarised; and observations were made, for various incidences, 

of the angle between the direction of the major axis of the ellipse of polarisation of 

the reflected light and that direction which it would have had if there had been no 

magnetisation, We may denote this angle by @; it is the rotation required to bring the 

analyser from the position of extinction or greatest darkness before magnetisation of the 

mirror into the corresponding position after the magnetising current has been made, and 

it is to be reckoned positive when, as seen by the observer, it takes place in the direction 

contrary to that of the hands of a watch. 

When the incident light is polarised either in or perpendicularly to the plane of 

incidence the theoretical value of 6, which in these particular cases we shall denote 

by 6; and @, respectively, is very simply obtained from the formulae (xxxiv). For, as 

in the former case B,=0, and in the latter A,=0, we have 

=real part of {B cost/A}z,=0 

162%Cye* VATE (a, sini + yo SEV) cost 
CNcoseT (AUR Sto cee) sidiogoisissvesasesats XRD) 

6,=—real part of {A/B cost} 4,0 

1672uCye* VA (cost/ HB) (a, sin?i—yo FBP) F 
($Bl cost) (GWMR—e-"— cost) (XXXvVi). 

=real part of 

=real part of 

When the reflexion is equatorial, so that y,=0, it was observed by Kerr that 4, 

vanishes when the angle of incidence is about 75°, the mirror being of iron. Later 
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experiments point to a rather greater value of the angle of incidence for which 6, is 

zero, the results obtained by different observers being as follows: 

Kerr 75° Sissingh 80° 

Righi 78° 54’ Kundt 80° to 82° 

Drude 79° 

Now when @, is zero, the complex of which it is the real part must have its vector 

angle equal to an odd number of right angles; and from (xxxvi) we see that this vector 

angle is ¢, where 

¢=«+90°—the sum of the vector angles of {#1, ({#1+cos7), and ({#R~e* — cos 7). 

For any assigned value of 7 the values of these three vector angles may be calculated 

from relation (xxxi), utilising the tabulated values of the optical constants for iron; the 

calculations, though tedious, are quite straightforward. The following table shews values 

of @ obtained in this way: 

75° | 78° 54’ 80° 

ob | a+80°18’ | «+98°1’ | «+103° 36’ 

Angle of Incidence 

Hence the theory agrees with Kerr’s observation provided « + 80° 18’= 90°, or 

x=+9° 42’; but according to Righi’s result «=—8° 1’, and according to Sissingh’s 

«= —13° 36’. Thus the uncertainty of the observations renders it impossible to draw 

from them any definite conclusion as to what value ought to be attributed to the con- 

stant 2 in the theory. We can, however, determine the sign of C,; for all the observers 

agree that, for angles of incidence less than 75°, 6, has the same sign as a,*; but for 

such incidences cos ¢ is positive, and accordingly C, must also be positive. 

When the reflexion is polar, so that a,=0, the mirror still being of iron, it was 

observed by Kerr that @, has the sign opposite to that of y, for all angles of incidence. 

In order that this should be in accordance with the theory it is necessary that, if 

¢’ =a+90° + vector angle of {#2—the sum of the vector angles of 

($1 + cosi) and ({#¥1Re-** — cos 7), 

C, cos @’ should be positive for all angles of incidence. Now the values of @¢’ lie between 

x + 219° 43’ corresponding to i= 0, and wz + 342° 40’ corresponding to i= 90°; so that 

either C, is positive and « between 50°17’ and 107° 20’, or C, is negative and w# between 

— 72° 40’ and —129° 43’. This experiment was repeated by Kundt, who found that 6, 

vanishes, changing sign, when 2 is about 82°; the corresponding value of ¢’ is 2+312° 37’, 

and as the cosine of this is to vanish, either =+137° 23’ and GC, is positive, or 

“= — 42° 37’ and C, is negative: as by definition # is numerically less than 90°, only 

the latter of these values is admissible, 

* Kerr, Phil. Mag., March 1878, p. 166. 
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With regard to 6;, the experiments shew that in the case of polar reflexion it has 

always the sign opposite to that of yo, and that in the case of equatorial reflexion it 

has always the sign opposite to that of #. Hence if we define g¢” and ¢” by the 

relations 

” =x+90° + vector angle of §#—the sum of the vector angles of 

(#1 —cosz) and ({#UR~“e* + cos 7), 

¢'” =x+90°—the sum of the vector angles of 4H, (fF — cosz), and ({#LR-e-** + cos 7), 

the theory requires that C,cos¢” and C,cos¢” shall be negative for all angles of 

incidence. Now the values of $” lie between x+39° 43’ corresponding to i1=0°, and 

x —17° 20’ corresponding to 7= 90"; and the values of ¢’” he between «+ 200° 43’ corre- 

sponding to 7=0°, and «+ 148° 44 corresponding to 7=90°. And therefore, when we 

remember that 2 has by definition been restricted to be numerically less than 90°, it 

appears from the first condition that C, must be negative and « somewhere between 

—72° 40’ and +50° 17’; while the second condition indicates that C, must be positive, 

and « somewhere between — 58° 44’ and + 69° 17’. 

Thus it appears that there are very serious discrepancies in the values of C, and « 

indicated by the four original Kerr experiments for iron. 

THE EXPERIMENTS OF SISSINGH AND ZEEMAN. 

18. A more decisive test of the present theory is obtained by comparing its results 

with the elaborate series of experiments which have been recently made by Drs. Sissingh, 

Zeeman, and Wind, at the laboratory of Leyden. These consist in observations of the 

amplitude («) and phase (m) of the “magneto-optic component” of light reflected from 

magnetised mirrors of iron, nickel, and cobalt, for various angles of incidence. The details 

of the definition of these quantities will be found in Sissingh’s paper in the Archives 

Néerlandaises*; is always reckoned on the supposition that the amplitude of the meident 

light is unity, and m is defined as retardation of phase calculated relatively to that 

component of the ordinary metallic reflexion which is polarised in the plane of incidence. 

The values of these quantities corresponding to the particular cases when the incident 

light is polarised in, or perpendicularly to the plane of incidence, are distinguished by 

the suffixes (;) and (,) respectively. It may readily be shewn that the components of 

the incident light in the directions defined by Sissingh as “principal directions,” are in 

the present notation represented by — A, sec? and —B,; while the corresponding principal 

components of the reflected light are — A seci and — B, 

19. When the incident light is polarised in the plane of incidence B,=0; and 

in formulae (xxxiv) the incident ray is represented by —A,sec?z, the magneto-optic 

component of the reflected ray by —B, and the component relatively to which phase 

* Sissingh, ‘‘ Mesures relatives au phénoméne de Kerr,” Archives Néerlandaises, vol. xxvu. 
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is to be measured, by —A sect. Hence 

360° — m; = vector angle of {Bcos7/A}p,<0 

= vector angle of so ett VA SN (a, sin*i +7, $81") cos 7 = vector angle 0 ($81 — cos ) (f{¥LR— ce" + cos i) 
vematedeuers (xXxxvii). 

When the incident light is polarised perpendicularly to the plane of incidence 

A,=0, and the incident ray is represented by —B,; the magneto-optic component of 

the reflected ray is —Aseci, or rather that term of —Asec7z that contains the factor 

B,. The ray relatively to which phase is measured is represented by that term of 

—Aseci which contains the (vanishing) factor A,. If A, be supposed to be only just 

not zero, then, since the incident ray is supposed to be plane polarised, B,/A, is a real 

quantity. Hence we have 

5 » 167?Cye*1 VX (cos? a/ #1) (4, sin? 1 — yo SEV? 
360° — m, = vector angle of ( is HY cee .».(XXXVIil). 

From (xxxvil) and (xxxvili) we see at once that when the reflexion is equatorial, 

that is when y = 0, 

M;= Mp =m (say) ; 

this agrees with the observation of Sissingh who, from the results of his experiments 

on equatorial reflexion, came to the conclusion that for any given angle of incidence 

the magneto-optic component has the same amplitude and phase, whether the incident 

light be polarised in or perpendicularly to the plane of incidence. 

We also see that when the reflexion is polar, that is when a =0, 

M; = Mp, + 180°. 

Now Zeeman*, as a result of experiments on polar reflexion, came to the con- 

clusion that for all angles of incidence m;=m,: here therefore is a discrepancy, 

20. When the reflexion is equatorial, we see from (xxxvii) that 

167°C eV Aa, sin’ 7 cos 7 
$81 ($= cos 7) (Re + cos 7)" 

In determining m from this expression there is an ambiguity to the extent of 180°, 

for in defining m Sissingh requires that it shall not be altered when a, changes sign. 

Examining his paper, we see that his standard case corresponds to 2, negative. We shall 

also assume C, negative; in what follows the consequences of the alternative assumption, 

viz. Cy positive, are obtained by adding 180° to the calculated values of m. We now find 

360° — m= vector angle of 

m= 270°—a#+the sum of the vector angles of 

SH, (FH — cos), and ({¥UR-“ 4 + cos 7).........(xxxix), 

and, to get m accurately for any particular angle of incidence, these three vector angles 

must be calculated from formula (xxxii), using the known values of R and a for the 

particular metal considered. 

* Zeeman, “ Mesures relatives au phénoméne de Kerr,” Archives Néerlandaises, vol. xxv. p. 252. 

Vou. XVII. Parr I. 5 
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The following table shews the results of Sissingh’s observations on the phase 

for various angles of incidence, and the theoretical values of the phase for the same 

incidences, calculated from the present theory. 

Equatorial Reflexion from Iron. Yellow Light. 2 = —1400 c.G.s. 

Pipl eatedanes |) Caloclatal gate owe | eee ao | ieee oer) 

86° Oo | «199° 55’ —@ 209° 26’ 3 t2- . 

Day a ewe ee Meee 

[yeso | Ciss'51’—2 =| lea? 4o” | 10°58’ +a ar; 

[> yates: — - |e siyaeas =e) 9 masons, yon aT no mee 
61°30’. | «*171°38’—-2z «| ~~ 181° 49! 10°11’ +2 

sae | Pere | Tg ee aa 

36°10 | 162°47’—« 174° 9! 11°22) 42 

In order that there should be agreement of theory with experiment it is necessary 

that the value of « for iron should be about —11°; if this be so the agreement is 

extremely good. 

21. When the reflexion is polar we see from (xxxvili) that 

— 167°C ,e71 VA, cos? 7H¥E 

($¥1 — cos 7) ({¥URe** + cos 2)” 

Taking y, positive in the standard case, and still assuming C, negative, we find that 

My = 270° — x— vector angle of fH? 

+the sum of the vector angles of ({#l—cos7) and ({#UR“e* + cos z)...... (xl); 

and m; differs from this by 180°. 

360° — m, = vector angle .of 

Observations of the amplitude and phase of the magneto-optic component, in the 

ease of polar reflexion from an iron mirror, have been made by Zeeman. An account 

of these experiments will be found in the paper which we have already referred to ; 

he confines himself to one angle of incidence, viz. i=51°22’.. His result as regards 

phase compares with theory as follows— 

Polar Reflexion from Iron. Yellow Light. yo=+850 C.G.s. 

| Angle of incidence Calculated value of m; Zeeman’s observed tsxcess of m (observed) 
| 

al value of m over m; (calculated) 
| —$<<— | ———___________ - - 

| 51°99" | 151° 14 — 2 | 229° 55’ 78° 41’ +a 
| 

Thus the agreement of m; with Zeeman’s m requires that e=— 78°41’. The same 

value of # would correspond to agreement between m, and Zeeman’s m if C, were 
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assumed positive; both results are at variance with that of the preceding paragraph. 

Values of w numerically greater than 90° are excluded by the definition in § 16, and 

so, of course, need not be discussed. 

22. In considering the amplitude of the magneto-optic component, it is to be 

noticed that, when the incident light is polarised in the plane of incidence, the incident 

ray is —A,sect and the magneto-optic component is —B; when the incident light is 

polarised perpendicularly to the plane of incidence, the incident ray is —B, and the 

magneto-optic component is — A sec?, Hence 

Bcosi A . 
i= = = a | ttt eter renee eeeeee li). 4; = mod ( a Jie /» = mod (x aa Jane (xl) 

Thus, for equatorial reflexion, we readily derive from (xxxiv) 

167°C,e* .V— Aa, sin? 7 cos 7 

S#L (41 + cos 7) (G4UR“e* + cos 2)’ 

/y =the same ; 

#; = mod 

and therefore «#;=, = (say), which agrees with Sissingh’s result. 

If for brevity we put 167°C, VA“, = L, then 

sin’ 7 cos 7 
EL (41 + cos 7) (H¥URe4 + cos 7)’ 

and the latter factor may be calculated for any angle of incidence. 

w=L. mod 

In the following table the values of jw derived from theory for various angles of 

incidence are compared with the values observed by Sissingh. 

Equatorial Reflexion from Iron. Yellow Light. a,=—1400 cas. 

Angle of incidence sa Ppa of Saree obseried (ceed et ue) 

86° 0 [) Saiaen  F 284, 49°57 

pcsatsor A Saas PRE en ees 

ea usa ky vis. |... 4102S 

oor epee eo! .g15. |. | asso | 

a eS ee ee eee ee 

‘pros Sl —eee03- | 700 | 867 - 

gee] CTO! 630 | 1499 ~ 

TS 35853 Tina eee, 

aaa oeeer| 60 Spare 1:60 

eso a ea 423000 
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In order that the theory should agree with experiment it is necessary that all the 

numbers in the last column should be equal. Obviously this is not the case; and 

their inequality is so pronounced, and depends in such a regular manner upon the 

angle of incidence, that it cannot possibly be attributed to accidental errors of obser- 

vation. We must therefore conclude that here the theory is distinctly at variance with 

experiment. 

23. For polar reflexion, we derive from (xli) and (xxxiv) 

— 167° C,e%. VA fy, cost 
(§¥1 + cos 2) ( f¥LR~e* + cos 2) 

=~ p;=p (say). 

py = mod 

Comparing this with the amplitude in equatorial reflexion, we find 

og E @) sin® | 

# (polar) % f° | 

If —a,=1400, y,=850, i=51°22’, the value of this ratio for iron, as calculated 

from theory, is 0122. But the values ascribed to @,, y,, and 7 correspond to the 

experiments of Sissingh and Zeeman; and the latter found experimentally 

» (equatorial) _ 

# (Sissingh) _ 294 

pw (Zeeman) 

so that here again there is a serious discrepancy between theory and experiment. 

Nickel. 

24. In the paper of Zeeman’s already quoted there are given some measurements 

which he made upon polar reflexion from nickel. He also quotes experimental results of 

Kundt* and Drude+, which he expresses in a form similar to his own. These I have 

used to form the followimg tables, wherein the theoretical values of the phase and 

amplitude have in all cases been calculated for yellow light. 

Equatorial Reflexion from Nickel. White Light. 

| Angle of incidence | Galeulated value of m | Kundt's observed | Excess Of ms (Cory 

30° 6 [Meek = eles Oram 29°59 +a 

| 40° | 148°50’— 15°42 | —38° S42 
50° 0 |aso°dS a ll oe 36°59 +2 
61°30—| = s158° 17°22 127°39" | —30°38'+a 

| esie” | ier vie | )aeeaa a)” Seances 
| 7s 0 | ivo°4s’2 | 130° 6 | —40°39'42 

* Wied. Ann. vol. xx. + Wied. Ann. vol. xtvt. 
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The value of @ indicated by the figures in the last column is about 4+35°; this 

would give fairly good agreement except in the case of the first angle of incidence. 

Equatorial Reflexion from Nickel. White Light. 

Angle of ieidence | Called value of m | Prades obgervedl | Bxoess of m (observed) 
60° 157°19'—« | 181°38 | —25°41’ +a 

S pene | tesa | gees) | oes aa | 

me | ayoras’'—a2 =|. ora’ =| 20°56 ta 

ge Pre ye iS | ee ee 

If the third angle of incidence, for which Drude’s result differs widely from that of 

Kundt, be left out of account the mean value indicated for 2 is about +17°. 

Equatorial Reflexion from Nickel. 

Angle of incidence | Talo | value of 10n, | “omer tr) 
30° 6 38199 il | 31-46 

40° 0! 21366 vii 17-79 

50° 0’ 23527 1:39 16-21 

61° 30’ 25017 ‘90 3528 

65°18’ «-F5978 ‘84 40°14 

75° Of 25334 23 145°1 

The inequality of the numbers in the last column shews that the theory does not 

here agree with experiment. > 

Polar Reflexion from Nickel. Yellow Light. 

Zeeman’s observed Excess of m (observed) Angle of incidence | Calculated value of m; Aeon over m,; (calculated) 

50° 160° 19’ —a# 191° 40’ 32° 21’+ 2 

so that the value of w required for agreement is — 32°21’. 
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The experimental results used in the following table are due to Dr C. H. Wind*. 

Polar Reflexion from Nickel. Yellow Light. 

| 

Angle of incidence Calculated value of m; | Observed value of m; See nae | 

394 86 | «155° 35’ 14° 32 —141°3' +2 

pao) 0. |. 168° We way | —145° sabe 

750 | ~+—:180°30’—2 geros’ | 1485 

As the value of x here indicated, viz. about +145°, is inadmissible, it appears that 

this set of experiments requires C, to be positive; the value of « then indicated is 

= 3) 

Cobalt. 

25. Experiments made by Zeeman and by Drude on mirrors of cobalt are used in 

the following tables. 

Polar Reflexion from Cobalt. White Light. 

| | 

Angle of ineidence | Calculated value of m; ee oben oe GleeeD 

45° 157° 55’ —@ 200° 34’ 42° 39’ 4+ & 

GOUDE slim 165°. 6.e 207° 40’ do? 3a UO 
73° (ie 64 Se | Weir satieal nme ar ee 

Here the value indicated for « is — 42° approximately. 

Polar Reflexion from Cobalt. 

Angle of incidence | Calculated value of m; Zeamanis cpeere pre eA 

50° 159° 55’ — 2 205° 9 45°14 +2 

60° 165° 6-2 212° 30’ 47° 24 + x 

72° 174? 47’ — 2 ats Ge a ce 

The indicated value of « is about — 47°. 

* Communications from the Leiden Laboratory of Physics, No. 9. 
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Equatorial Reflexion from Cobalt. 

Angle of incidence | Calculated value of m | Prades obrerved — Exeous of (ee 

35° 146° 49’ — « 102° 36’ ade 1B 
BON |) SRA Se 154° 83° See 

ie hares 168° 29’ — a GPa = ieR a | 

83° 182° 19’ —« 167° 3’ =15°16' 42 | 

No value of a will make the theory agree with this series of experiments; the 

mean of the indicated values is about + 15° 30’, 

The experiments used in the following table are described in the Communications 

from the Leiden Laboratory of Physics, No. 5. 

Polar Reflexion from Cobalt. White Light. Y= 430 C.G.S. 

Angle of incidence 
Caleulated value of 

1ogyo Mp — logy) L’ 

Zeeman’s observed 
value of 10° x u 

Calculated value of y,/L’ 

Observed value of u ) 
45° 5559 1:58 2276 

60° 5349 1°50 2284 

73° “4.690 L117 2516 

In this, Z’ is an abbreviation for —167°C, VA y,. 

the numbers in the last column indicates a very good agreement of the theory with this 

The approximate equality of 

set of experiments. 

CONCLUSION. 

26. On comparing with one another the results of the last six paragraphs it is 

readily seen that, while it is possible to assign to the w of any one of the metals 

considered such a value as will bring the theory into a more or less rough agreement 

with the experiments on equatorial reflexion, or again such a value as will bring about 

agreement with the experiments on polar reflexion, yet these two values of # are so 

widely separated from one another that they cannot be reconciled even by the utmost 

allowances for errors of observation. The results as regards amplitude moreover, in the 

cases of nickel and iron, shew that no two of the experiments can be accounted for 
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by the same value of C,. The discrepancies between the theory and the Kerr experi- 

ments are also very noticeable, though their importance is perhaps not so great on 

account of the extreme delicacy which is required in these experiments. On the whole 

then, it is clear that the theory which we have been considering does not account for 

the observed facts. A confirmation of this conclusion is afforded by the absence of A, 

from the formulae (xxxiv), which signifies that, according to the theory, the component 

of magnetisation perpendicular to the plane of incidence produces no effect; but such 

an effect does exist, and has been measured by Zeeman*. 

* Communications from the Leiden Laboratory of Physics, No. 29. 



Ill. On the solutions of the equation (V?+«’)b=0 im elliptic coordinates and 

their physical applications. By R. C. Mactaurin, St John’s College. 

[Received and read 16 May, 1898.] 

Ir is well known that the solution of a very large number of physical problems 

depends almost entirely on the successful treatment of the differential equation 

(V?+«*)W~=0. The difficulty in any case is to obtain a solution in terms of coordinates 

that lend themselves readily to the symbolic expression of the “boundary conditions” 

of the problem. When the boundaries are either right circular cylinders or spheres all 

the analytical difficulties have been most successfully overcome, but comparatively little 

headway has been made with other forms of bounding surfaces. 

The present paper deals with problems relating to elliptic cylinders and spheroids. 

The two-dimensional problem seems first to have been attacked by Mathieu 

[Mémoire sur le mouvement vibratoire d'une membrane de forme elliptique, Journal de 

Liouville, t. xu, p. 137]. This was in 1868. In the following year H. Weber published 

a paper in the Math. Annalen (Bd. 1) dealing with the subject. Further references 

will be found in Heine [Handbuch der Kugelfunctionen, Bd. u., p. 208] and im a recent 

work by Pockels (1891) Ueber die partielle Differentialgleichung Au+«cu=0. 

The three-dimensional problem is from an analytical poimt of view very similar to 

the one for two dimensions. It has been attacked by C. Niven in the Phil. Trans. 

1880, in a paper on the “Conduction of Heat in ellipsoids.” 

The present essay will be found to contain very little in common with any of the 

above—except that the physical problem that occupied Prof. Niven in 1880 receives a 

brief mention here, although the method of treatment is quite different. Since this 

paper was written, my attention has been called to a short article by Lindemann, 

“Ueber die Differentialgleichung der Functionen des Elliptischen Cylinders” [Math. 

Annalen, Bd. 22, p. 117]. He uses independent variables practically the same as those 

of this essay (p. 43, et seq.) and obtains some of the results reached here, but is 

mainly occupied with proving some theorems about the product of two solutions of the 

differential equation. 

Vor. XVIL. Parr I. 6 
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In dealing with elliptic cylinders, we may define the position of any point by its 

distance z measured along the axis from some fixed normal section and by the semi- 

axes a@ and a’ of the confocal ellipse and hyperbola that pass through the point. 

We may develope W (regarded as a function of 2) in a Fourier series of the form 

XA, cos(nz—e,), where the coefficients A, are functions of a and a’. Since 

2s cos (nz — t,) = — WA, Cos (nz — Ep), 

we see that the equation (V?+x«?)~=0 reduces to (V°+x«")W=0, where «?=x«?—n® and 

ve== +55" Thus practically the whole difficulty is reduced to finding a suitable 

solution of the equation (V+ «) ~=0. 

2 

Now with the usual notation ae= 5 +o : 

5 h,o hy 0 

ee Vey hata| (eae) +a Ge =e) 
and if we take w=a/h; a’ =a’/h where 2h is the distance between the foci of the 

confocal system we get 

Ef 1 2 oy Oy {oom oy Y oy 

Vib = ea’) G tee 1e aa?” Barf |: 

If then (V,°+4*)=0, we have, putting he=, 

wenayp=—|@-1) eK) sen ee Me, 

dy ye ee eat ee ae el ae 
ox? 

Now put w=yy' where y is a function of w# only and zy’ of 2’, and we get 

(@ a= afte ety| = 7 |e Daa aga t o ane | 

=p say, where p? is some constant. 

dy 
Hence we have aot (Na? —p)y=0, 

and a similar equation for y’ in terms of a’. 

We have oae= . Thus a is the reciprocal of the eccentricity of the ellipse and 

so is always greater than unity. 

Also 2 =a’/h= re and a’, being the reciprocal of the eccentricity of the hyperbola, 

is always less than unity. 
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We see then that everything now depends on the solution of the equation 

(a? —1) y" + wy’ + (Aa? — pp’) y= 0. 

This equation has three critical points, c=+1, ¢=—1, c=a. 

Hence we must endeavour to obtain suitable solutions for the three domains corre- 
sponding to these critical points. 

To obtain a solution in the neighbourhood of #=1 we make the substitution 
#«=—z+1 in the above equation, which becomes 

2(2—2)y"+(—2+1) y+ [0 (2-1)-p']y=0. 
If we write this in the normal form (i.e. with the coefficient of y’ unity) we see 

at once, by Fuch’s Theorem, that its integrals are regular in the neighbourhood of 
z=0. 

Hence y is of the form :— 

Y= Woe Fe ee... + a,2™" +0000, 5 

there being at the most only a jinite number of negative powers of z. 

The indicial equation proves to be m(2m—1)=0, so that we have two series corre- 
sponding to m=0 and m=4#. 

Equating the coefficient of 2"*” to zero we get :— 

—(m+n4+1)(2m+ 2n4+1) day +(m+r24+2% — Pp’) An — 2 Ay + Mayo = 0. 

Thus for the series corresponding to m=0, we have 

—(m +1) (2n + 1) nya + (0? + 2 = p®) An — 22 y_y + Ngo = Oveceeeeeeeee a); 

and for that corresponding to m=, 

— (n+ 1) (2n4+ 8) day t+ (m + P+ A= p?) dn — QAPGn_y + N2Gpn_o = 00. ee (2). 

Now consider the first series (#=0) and put v4) =Qns:/dn. 

= n+ AZ — p? 7 22 ‘ x2 

PE Late Memeo) Ge DOr elm Gt iy Gnt a, 

eae Ant B... 22 re » 
2° M+) Q@nrn4+1) @F+)DQrt+ly* M+DQnt 1) %,%—. 

Thus when n is very large, either vp is indefinitely small or v, approaches the 
limit + 4. 

The series is therefore convergent if |z| <2. 

It is easy to show that the series also converges if |z|= 2. 
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For this purpose, put z=+ 2z,, then we have 

(2) = Yan = Ubnz,"=¢,(%) say, where b,=(+ 2)" an, 
0 0 

(n +1) (2n +1) bay = 2 (rn? + = p*) bn — 8A? (bn — Dn»), 

_ 2(n?+ =p’) aoa 

basa = (n+1)@n+1)”" Qn4+1)(r+ 1) Ora — bys). 

res a Ores 
Thus when vn is very great bj,,=b,, so that Gn @a) is negligible and we 

2 (n? + A? — p) 
may write ba = (n+1)(Qn41) b,. 

Lt n S -1)=8, and as this is greater than unity it follows that the series 
n—1 ‘ 

Xb, =; (1) is convergent; so that @(+ 2) is convergent. 
0 

We can prove in exactly the same way that the other series (corresponding to 

m=) is convergent if |z| }2. 

We have thus obtained two solutions of our differential equation appropriate to the 

neighbourhood of the critical pomt c=1. These are :— 

P=4(2)= Sanz" [a, given by (1) p. 43, a, =1], 
0 

Q=4 (2) = Sa,ertt [Giteecnceccease (2) Pecans Ca— |: 
0 

The ‘domain’ of these functions P and Q is the interior of the circle, whose centre 

is 2=0 and radius =2; ie. the circle with centre at the critical point «=1, and 

passing through the next critical point e=—1. We shall call this the domain D,. 
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P=¢(z)=¢(1—«2) is a ‘uniform’ function, returning to its original value, when 

the argument z traces out any closed contour. On the other hand 

Q=2'y(2)=(1—-2)! p (1-2) 

is ‘multiform’. y(z) is uniform, but z! changes sign if z makes a tour round the pole 

z=0. If p is the modulus and @ the amplitude of z we may take 

A=+vp (cos $ + isin eh. 

Our fundamental equation is not changed if for « we write —#. Hence following 

out the same argument as above we shall get two solutions in the neighbourhood of 

the critical point «=—1, viz.:— 

P=$(lt+e), Y=(1+a)¥0 +2), 
where ¢ and y are the functions already obtained. 

The domain of these functions P’ and Q’ is the interior of the circle with centre 

at the critical point «=—1 and passing through the next critical point e=1. We 

shall refer to this as the domain D_,. 

(ey 
NUL 

We must now turn to the consideration of the integrals in the neighbourhood of 

the third critical point z=. For this purpose we make the substitution #= a a 
Xy 

substitution which is simply and elegantly represented in a geometrical form by the 

aid of Neumann’s sphere—in the well-known manner. 

Our equation now becomes :— 

x,‘ (1 — a?) y” + x3 (1 — 2a,?) y’ + (A? —p*a,) y = 0. 

The critical pots of this equation are 

%=0, 4=+1, 

corresponding to T— oO, ot I. 

We have to consider the solutions in the neighbourhood of «, = 0. 
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Writing this equation in the normal form 

y+ py! + py = 9, 
we see that z,=0 is a pole of p, of order 1 and of p, of order 4 It follows from 

Fuch’s theorem that the integrals in the neighbourhood of #,=0 are irregular, We must 

not then expect quite the same simplicity in the treatment here as that which 

characterised the earlier work. 

From the form of our equation we see that if y be expanded in powers of 2, 

the coefticients of even and odd powers will be quite independent so that we may 

assume two solutions in the forms :— 

Y= 08 (Ay Oye 4... + Ont +... 

+ a4/ae+...+d_y/a2" 4+...) 

n=2 
——taee > on 
= % Ant”, 

n=—@ 

; n=D 

and 9) — ee ee ire 
n=-@ 

Take the first series y=a, = a,0,°" and substitute in the equation 

xf (1 — 22) y" +2, (1 — 22,7) y' + (?— pa?) y = 0. 

We must have :— 

a4 (1 — a?) [CaP e +64 2) (s+ 1)a,+(s+4)(s+3) aaPt... 

+(s+2n)(s+2n—1) a,aer 2+ =| 

|+2 —s) es Hae ee eat bie ns) (2n+1 =a... | 
os Cy ae 

+a (1 — 203) E 
ine 

+(s +2) aa, +(s+4) aoait ... + (8s + 2n) ave" +... 

(2—s)a, (4—-s)a, (2n — 8) G_2n 
gai gin ea 

+ (2 — pa’) [es + ae t on. + Oya" +... 

Hence we must have: 

Ma, +[(2—s)?—p*?]a,—(8—s)(4-s)a, =()) 

Ma, +([s?—p"] a —(2—s)(1-s)a, = (0) 

Gna +[2n+s?— pp] an —(2n—1+48)(2n—2+8)an,=0. 

The last equation holding also if for n we write —n. 
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Considering the ascending part of the series (for which n is +) we see at once 
from the last relation that in the general case (s unrestricted) the series Op, Gny,.. 

will continually increase with n, so that the series formed in the way indicated on the last 

page will usually be divergent and so useless. But by properly choosing s it may be 

possible to make a,=0 for indefinitely large values of m, in which case as we shall 

prove our series will converge in the region |#,|$1. It is easy to see that if the 

ascending part of the series converges, the descending part will also converge, 

For we have (2n+1—s) (2n + 2 —8) a_(ny) — (2n —8?—p?) d_n — Ma_ in») = 0. 

ren (- ile Cn 

II (2n—s) 

Meni + [Qn — s?— p?] c, —(2n — 8) (Qn —s —1) ec, = 0. 

Let a»= where II (x) is Gauss’ function =['(@+1) and we get 

Comparing this with the relation between aj4,, a, and ad,4, we see that for very 

large values of n, the relations are practically identical. It is easy to see that c, cannot 

be infinite for any finite value of x, hence it follows from what has just been said 

Kr” (— 1)" da : : 
that for large values of n we may put a»= =n Gi=ae where « is finite. 

If then the ascending part of the series converges, the descending part will do so 
with great rapidity for any finite value of the argument. 

We have said that c, cannot be infinite for any finite value of n. For, putting 

p— n-s=— Nae 

(2n—s)(2n —s—1)=—-N Uo, 

we have ¢4;+UnCn +Un—-1en=0. Suppose we make 

4 =0, 
Cre 

then we have a system of equation to determine ¢,, ¢;... Cn... 

C2 =— Uo, 

Cy + Volo = 0, 

Cy + Uglz + Url. = O, 

Cs + UsCy + UsCy = 0, 
and so on. 

Solving we get 
C= — Uy, 

—u 1 
C3 = = Uva, 

0 ww 

rat m0 al 
| 

— Oy 

0 “vw Us| 

and so on; the determinant in the denominator of c, being =(— 1)”. 
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Thus as the denominators cannot vanish and the numerators cannot become infinite 

for finite values of n, we conclude that c, is necessarily finite when x is so. 

Returning now to p. 47, we have seen that s must be chosen so as to make a, =0, 

if the series is to converge. 

The condition a, =0 is of course a necessary, but not a sufficient, condition for con- 

vergence. But it is easy to show that when this relation is satisfied the series does 

converge in the region ' 
[<a lite a(t. 

The series we are considering is 

Dun = 22 Dayz", 

where Nana + [(2n +s) — p]an—(2n+s8 —1)(2n+8—2)an,=0. 

For large values of n we have @,,, very small, by hypothesis, and then the above 

relation gives 
2 — = Gm _y, (nts 1)(QQn+s 2) _ 

Li Qn (2n + sl — p? 
Ibs 

Un 
Lt =a, [we are considering the ascending powers of the series]. 

Una 

Hence the ascending series is convergent if | 2, |< 1, and divergent if | 2, | > 1. 

When | 2, |=1, we have Lt ™ —1, so that the higher test Lt n ES - 1] must 
Un—- Unt 

be used. This limit is $, so that the series converges on the circle | 2, | =1. 

Thus we have proved that the ascending part of the series converges when 

| aw, | + 1,-1e. |e] 41 

But by p. 47 if a, is finite the descending part converges for all finite values of the 

argument. Of course when the ascending part converges a, is finite, so that the whole 

series converges in any region in which the ascending part is convergent. Clearly also, 

if the ascending part diverges the series as a whole is divergent. 

Summing up then, we find the necessary and sufficient condition for the convergence 

of the series we have obtained as a formal solution of our differential equation im the 

region | 2,| $ 1 is that s should be a root of the equation a, =0. 

For brevity, put 

(Qn+s?—p?=NMop; (2n+s—1)(2n+s—2)=—NuyRA, 

and we have Ona + UnGn + Uni dna = 0. 

Some of the constants are necessarily arbitrary. Taking a,=1, a,;=0, we have 

a, = —%, 

Ay + U,Q, = — U, 

ly + Udo + U,d,=0, and so on. 
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Solving, we get 
0h » 1 0| 

Uy 
h=—%; = a= —| Uy L hl=|%m %, 1]: 

U VY, 

0 wy %G 10 ww, 

Ue i BO OO tO) Oh. 

Ais) ie OOP Ole (Oe 

Oe OOP One. 

Ae = 0 Us Us 1 0 0 +e - 

OO) Oe aye ah Or. 

OF 80; 10) VOR Ruer ae Lee 
Ove srenateete vs 

and s is determined as a root of a, =0. 

We proceed to show how s may be developed in a series of ascending powers of \. 

Let Un =n, Un = p? —(2n+5s)?, 

then we have @ ny = UnW'n +A? (8s + 2n — 1) (s+ 2n—2) any; a =%; 

tly = 0, + 28 (8+ 1) = Hr, E pee 
_ i 

o%1 

a’, = UV» E +2. ee ~ eee >) ; 

and so on. The equation determining s is a’, =0. 

It is clear that this equation is equivalent to 

UpUz Vg 00 Veo [1 + Ag*™Sy + Act Ss + Ag®S, -..] = 0, 

5 2 4. ee : 
Saisie + (eb2Gs) yeas Dal ... (mode of formation is obvious), 

Up» Vy UV - Vo Uo. Us 
where ,S,= 

oS.=sum of products of every two non-adjacent terms of the last series, 

oS; =sum of products of every three non-adjacent terms of that series; and so on. 

If X=0 we have v,=0 where n is zero or any positive integer, and this gives 

s=+p—2n. 

To indicate the method of procedure let us obtain a few terms of the expansion 

of s, corresponding to v,=0, as a first approximation. 

5 1 
We have tee zat ae St 

Up . V; 

Seg Ss S+2.8s4+8 
oy = gSr-FaSe; 15s =———— 55, + aS, 

Up - Vy; VyUo 

s.stl s+2.8s+3 
oS3 = ——— .S5+.18;; 1S; = ————_, 8. + 8, 

U » h Uys 

and so on. 

Vou. XVII. Parr I. N 
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Our equation to determine s is [1+ S,+ MM Sot+.... 10; 

te nt es at PAPAS AGS, +0.) LS ee HO. 

First approximation : 
»=0, p?—s'=0, s=p (taking + sign). 

Second : 

Tae ae esi) 
VY 

»P(@+1)~ mh es p-s Leer cyte i 0; s=p ye 

Third: 

op: BRED Fg ot Cee ane eee) 
VY, VY, VY 

Pe (Gan!) eG dean te e ee 7, 
V; U,V2 

be Spay aa Pa 
o> ieee pSepaaiy 

and so on. 
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We have now shown how to obtain six different solutions of our fundamental 

equation :— 

P=$(1-«); and Q=(1-2) y(1-~), 

which are applicable to the domain D,, 

P’=¢$(1+2); and Q’=(1+2)W(1+a)...... DE 

P" =2, Saya," = c* Sa, a" = a ® (2), 

and Q! =a" tao? Se" Day oS a O(a). 

The last two series are convergent for all finite values of # such that |#>1. 

Thus the domain D,, is the ring bounded by the two circles |v|=1, and |z|=@. 

If we draw these various domains we see that they overlap. 

ae + eee ae Aion. | —— Lon 
ie ee ACH i 

i My 
as 

The region common to two domains such as D, and D_, will be referred to as the 

domain D,_,. 

In the domain D,., we have four solutions P, Q, P’, Q’, and there must conse- 

quently be a linear relation between any three of these. 

7—2 
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We proceed to determine the values of the various constants in these linear relations. 

In the domain D,_, we have P’= AP + BQ, 

ie. $(1+2)=Ag(1—2)+B(1—2) p(1—2). 

Make « approach the pont «=1 and we get $(2)=Aq¢(0)=A. 

[We have proved, p. 44, that ¢(2) is finite.] 

Next, keeping # real let it approach the point z=—1, so that the amplitude of 1-a 

is 7, then we get 
1=¢(0)=A¢(2)+ Bi V2 (2). 

i —14+¢°(2) 
v2 (2) | 

Also we have in the same domain Q’=A’P+ BQ, 

ie. (+a) y(1+a)=A’'o(1—2)+ B (1-2) pl —2). 

Making «=1 we get V2(2)=4’6(0)=A’. 

Thus we have A=¢(2); B=— 

And making x move along the real axis to w=— 1, 

we get 0 = A’ (2) + Bi v2 w(2). 

Hence we have A’="2y(2); B’=+i$ (2). 

A Bless 
AB = a 

We may note that 

P’=AP +BQ 
We have then, Q'=A'P + BQ’ from which we deduce 

» lez |@ #1: BY=BP), 

leh 
nina Q=1(- AG + APY, 

These relations having been found we can determine with what solution of the 

differential equation we shall reach any point 8 (say) in D, or D_, when we start with 

a definite solution from a point « in D, or D_, and move along a given path to 

8, provided the path avoids the critical points 1, and —1. 

As an example of this we shall work out a particular case that will afterwards 

be of service. Suppose we start at a on the real axis in the region D, and move 

along the dotted path in the figure so as to come back to a. 

The only poles of the functions involved are the points 1 and —1, so that the 

effect of going along the dotted road is the same as going along the path a@yéde, 

round the loop enclosing —1, then back along edy8a, then along aPydy'a. 
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Suppose then we start at a with the solution P which is appropriate to D,. As 
soon as we get to 8 we can (if we choose) express P in the form i(BQ’— BP’) for 

we are now in the domain D,,. The functions QP’ hold throughout the domain D_, 

and so are suitable for use when we wish to make a tour round —1. On making 

the circuit round —1, P’ will be unaffected, while Q will change sign. Thus we get 

back to e« with the solution —7(BQ’+ BP’). We are again in the domain D,_, so that 

we can express P’ and Q in terms of P and Q by the help of the relations just 

obtained. We have, in fact, 

—i(BQY + BP’) =—i[B(A'P + BQ)+ B (AP + BQ)] 

=—1[(AB’+ A’B) P + 2BB'Q). 

P and @ hold all along the path edy8a, so that we arrive at a with the solution 

—i[(AB’ + A’B) P + 2BB’. Q). 

Starting now with this solution and going along aSyéy’Ba we note that P and Q 

hold all along the path, and that on making the circuit round 1, P is unaltered 

while Q changes sign. We conclude then that if we start from a with the solution P 

and go along the dotted path we shall return to a with the solution 

—i[(AB’ + A’B) P —2BB'Q). 

In exactly the same way we might show that if we had started with the solution 

Q we should have returned with —7i[(AB’+ A’B) Q—2A4’. P]. 

Next consider the various solutions that we have in the domain D,.. They are:— 

P =$(1—2); Q Re SS ae 
P" =¢"® (a); Q’ =a" ¥ (2) , 
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We must therefore have relations of the form 

a*® () =P” =aP +BQ=ad (1-2) + 80-2) PA -2), 
2 (e)=Q’ =P +8'Q=4'6 (1-2) +8 (1-2) f(A 2). 

The work on the last page will enable us to get a relation between a and 8. 

For suppose we start with the function P” from a point such as @ on p. 53 in the 

domain D,, and describe a contour enclosing the points 1 and —1 but entirely 

confined to the domain D, so that P” holds throughout this path. We shall retum 

to a with the function (cos 2sm7—7sin 2sr) P”. 

But in the region D,., P’=aP+Q, and from page 53 we see that if we start 

with the function aP + Q and describe a path such as the one we have just followed 

with P” we return to the starting point with the function 

—ia[(AB’ + A’B) P —2BB'.Q)—i8 [(AB’ + A’B) Q— 244’. P}. 

This then must be identical with (cos 2s7 —7 sin 2s7)(aP + 8Q). Equating the coefficients 

of P and Q in these identities we get 

a(cos 2s7 —7 sin 2s7r) = — ia (AB’ + A’B)+7.2A4A’. 8, 

B (cos 2s7 —7 sin 2s7) =—i8 (AB + A’B) +7. 2BB. a. 

These two equations are really identical, they give us 

B 2BB 
a cos 2sr —isin 2s7 +71(AB’ + A’B)" 

Now we have a*@®(x)=ad(1—2)+ 8 (1-2)! p (a). 

Putting z=1 we get ®(1)=ad(0)=a, so that we have 

2iBB’. ® (1) 
a OKs ES cog n= ean ent Pe CRN), 

Similarly we can determine a’ and #’. 

We have now completed the formal solution of our differential equation. It is an 

equation of the second order with three critical points, and we have obtained two 

solutions in the domain of each critical point and determined the constants in the 

linear relations that connect different solutions in a common domain. There is no 

finite region of the plane for which we have not obtained an appropriate solution. 

But for dealing with physical problems which it is the main object of this paper to 

attack, the solutions in the vicinity of the origin are not in a very convenient form. 

In the domain |#|<1 we want solutions expressed in powers of a. It is easy to 

build up such solutions by taking proper linear functions of P.Q.P’.Q’, but we may as 
well attack the problem directly. 

Our equation is (#—1)y" + ay +(2a*—p*?)y=0. Assuming a solution of the form 

Yy=ar"+ He" +... we find, on equating the coefficient of the lowest power of 2 to 

zero, that we must have m(m—1)=0. 
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Thus we have two solutions of the forms :— 

YHA + a+... + ayo" +... 

YY =Ce +¢o,0° +... +c, +... 

The equations connecting the coefficients are :— 

—2a,— p'a,=0; — 12a,+ (4 —p*)aq + Va, =0 

— (2n +1) (2n + 2) dni, + (4n? — p*) ay + MGn = 0’ 

\ — 6c, + (1— p*®) eq =0; — 20c, + (3° — p*) cq + Ne, = 0 

— (2n + 2) (2n + 3) Cra, + [(2n + 1)? — p*] en + Mena = 0° 

[We may note here that if %=0 our equation reduces to (#*—1)y" + ay’ —p*y=0, 

which is satisfied by y= Acosp0+Bsin p@ where =cos@; |#| 1. For some purposes 

it is convenient to take z=)a as variable and then we have (z*—2*)y" + zy +(2—p*)y=0, 

which, when X%=0, reduces to Bessel’s equation and gives y= AJ,(z)+ BK, (z).] 

Let us examine the convergence of these series. 

We have — (2n +1) (2n + 2) dnig + (An? — p?) an + MGna = 0. 

4n? — p? a 1 

Tietilte = GrialGn and Wa Tee tao aay eae) | (ne lyn ta 

at 6n+ 2+ p? ~ 

~ Qn+) Gn+2)t QrtDQ+2 mo" 

Thus either v, is very small when n is large, in which case v, approaches the 

limit ae or U, is not indefinitely small and approaches the limit 1. In 

the former case the series converges for all finite values of the argument. In the 

latter it converges when |#|<1, and also, as we can easily show by proceeding as on 

p. 44, when |z|=1. Thus in the most unfavourable case the series converges when 

|z|>1 and this quite independently of the value of p. Exactly similar reasoning 

applies to the odd series cw+.... Denoting these solutions by /(#) [two functions, 

one odd, and the other even] we have four solutions of our differential equation 

expressed as series of powers of z. Two solutions (f) are confined to the region 

\a|<1, the other two (P” and Q”) to the region |z|¢1. All these series hold on the 

circle |#|=1. 

If we start from A (see next page) and go with f, or f, along the real axis to C and 

back again to A, we must return to A with the same function with which we started if 

the functions involved are suitable for use in physical problems dealing with the 

complete cylinder. 

For a tour round the cylinder must bring us back to the same physical conditions 

from which we started. 

Now on the circle |#|=1 we can express f, and f, as linear functions of P” and 

Q”. And starting with f from A and going along AOCOA must bring us to the same 
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result as going along ABCDA. But along this latter path we can replace f by a 

linear function of P” and Q’; hence it follows that, in dealing with physical problems 

concerning the complete cylinder, P” and Q” must be such that they return to their 

C 

Py Q’ 

D 

original values when taken round the contour ABCDA. It is at once obvious that 

this requires that s and s’ should be either zero, or positive integers (we can take them to 

be zero), 

But if s and s’ are zero, the condition for the convergence of the series P” and 

Q” will restrict us to a particular set of values of p, viz. the roots of a,=0, [p. 48]. 

Now a few pages back, in dealing with the convergence of the / functions, we 

saw that there were two alternatives—v, tends either to zero or unity in the limit. 

In the latter case the series is convergent in a@ certain region f whatever be the value 

of p. In the former the series is convergent for all finite values of the argument. 

If then we choose p as a root of v,=0, we shall have series that are convergent for 

all portions of the w plane at a finite distance from the origin. 

Now if s=0 the relations connecting the coefficients on p. 46, are the same as 

those that connect the coefficients of the 7 functions, 

We see then that in this case the particular values of p to which we are confined 

for the convergence of our functions P” and Q” are identical with the roots of v,=0. 

[To distinguish the odd and even series we shall refer to these as the roots of a,=0 

and c,=0 respectively.] Thus the f functions are convergent for all finite values of the 

argument and our problem is to a certain extent simplified by the fact that we can 

use the same functions [an odd and even power series of wz, respectively] for all 

finite values of 2 However, this simplification is counterbalanced by the fact that the 

two solutions on p. 55, ie. the odd and even series correspond to different values 

of p*, so that we are obliged to complete the solution of our differential equation by 

the aid of new functions. 
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As the determination of the appropriate values of p* is important for the physical 

applications, we must consider this part of the problem in some detail and obtain some 

numerical results, 

Considering the even series (the discussion of the odd series proceeds on exactly 

the same lines), we have seen that p* must be chosen so as to be a root of a, =0. 

Putting a)=1, the various coefficients are given by the equations 

2a, =— p’, 

12a, = (4 — p?) a, + 3, 

(2n + 1) (2n + 2) anys = (4n? — p*) dy + Man. 

Before proceeding with the actual calculation of the roots of a,=0, we shall notice 

some points as to the position of the various roots of a, =0. 

The equation a,=0 considered as an equation in p* is clearly of the nth degree. 

Its roots are all positive, for it is obvious that when p* is negative a, is necessarily 

positive. For if this is true of a, and a,_,, then since 

(2n + 1) 2n + 2) Many = (40? — p*) Qn + Mana, 

it is true also of a. But it is clearly true of a, and a, so that, by induction, it must 

be true for ay. 

For some purposes it is rather more convenient to replace a, by (—1)"a,’, so that 

we have :— 
2a, = p?; 12a,’ =(p?— 4) a +, 

(2n + 1) (Qn + 2) @’nas = (p? — 4m?) ay’ + Va‘. 

It is now obvious that all the roots of a’n,,=0 are less than 4n*. For if we put 

p? = 4n? or any greater quantity aa,’...... @n4, are all positive. 

Again when p?=(2n — 2)%, a,'a...... a,’ are all positive and 

— 8n+4 ; NAO 
+ 

7m (On + 1) (Qn +2)" * (Qn +1) (Qn + 2) 

For large values of n the last term on the right is negligible compared with the 

first, and as a,’ is positive it follows that for large values of n, @’,,, will be negative. 

[Our interest is centred mainly in the roots of a,=0 when n is large, and in what 

follows we shall suppose n large enough to make the right-hand side of (1) negative 

when a,’ is positive.] 

We have seen then that a’,,, is positive when p?=(2n)*, and negative when 

p? = (2n — 2). 

Hence the equation a’,,,=0 has a root between (2n— 2)? and (2n)* 

Won, DANE Iain Ik 8 
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We have seen that all the roots of a,’=0 are less than (2n—2)% Let p,? be any 

such root. Then the expressions 

Pr? — (20); Pn? — (2m + 2)*; vee 
are all negative. 

Also since p?=p,? satisfies a,’=0 we have these relations :— 

(2n + 8) (2n + 4) nyo = [pn —(2n + 2)")] @nn, 

(2n + 5) (2n + 6) ans = [pn — (22 + 47) Une $V On. 

etc. ete. 

Thus when p*=p,? we see that any. is of opposite sign to a’n.,; and a’n,; is of 

opposite sign to a’,,, and so on [nm being large enough—see remark on last page]. 

If a’, is positive then a’,,, is positive, @’n,. is negative, and so on. 

Now let pn? be the next root of a,’=0 greater than p,’. 

Suppose the graph of a,’ is as in the figure, the dotted lie representing @’yi:. 

We have taken a,’ to be negative when p* is a little less than p,*. For this value 

of p®, any, must be of opposite sign to a,’ and so positive. Next consider a value of p* 

slightly less than p,*. Here a,’ is positive and a’,,, consequently negative. Thus a4; 

has changed sign in the interval. Hence we see that a root of a’,,,=0 les between 

each pair of roots of a,/=0. From what was said above this is true also of a’,,.=0, 

nist; ete. Each of these equations has a root lying between any pair of roots of 

One =10; 
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From the relation (2n +1) (2n+ 2) @n4.=(p? — 4n’) ay’ + a'n_, we see that when 

A, =0, @’n4, and a’,, have the same signs and that for large values of n, a’,,, is then 

but a small fraction of a@’,_,. 

Thus if in the figure P,P, is finite, P,Pyp4, is very small (for large values of n)— 

so that the roots of @,,,=0 are very close to those of a,’=0. 

We conclude then that as nm increases the roots of a ,,,=0, approximate more and 

more closely to the roots of a,’=0 and so in the limit when n=~, the roots of 

a. =0 are definite in position and independent of n. 

We shall now proceed to calculate some of the roots of a,=0 and c,=0. As 

on p. 49 we can express these quantities a, and c, as infinite determinants. But 

the second method there referred to is the practical one, Le. we develope p* in a series 

of powers of X*, the series being rapidly convergent if X? is not too large. 

: u 
For brevity let v,=4n?—p?; a,= Pn , then we get 

Unter = UnUn + 2. (2n—1) 2n. Uy. 

Taking u,=1 we have 

Uh =U 

; a2 
waa [1495 i 

Up. V4 

A ese: 
Us = UpVVo E +r ( + )| 5 

Chon eechos 

egrets e010 
Us = UpVyVas E +r ( + + ) 

Ua; Uy. Va Vo- Us 

+o 255! 

UpVyVVs 

and so on. 

We see then that the equation a, =0 is equivalent to 

UVpVe «+= Van [1 + AGS, + Ag'Se + Acs + --.] =O, 

1b Bek Bee 
= + 

Up-% U.Va Vg. Us 
where St 

»S,=sum of products of every two non-adjacent terms of the last series, and so on; 

as on p. 49. 

If X=0 we have wv,...¥.=0, giving p?=(2n)*, where n is zero or any integer 

and leading to Bessel’s functions [JwJ,...]. 

We shall denote the values of p* that correspond to roots of %=0, 7,=0, ete, by 

Po» pe, ete., respectively. 
8—2 
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po? (corresponding to v)=0). 

2 Sie 
+ 

Mo. Dy | Dy Vy 

second term) and similar notation for ,S,, etc. 

We have ,S,= Seas ‘ae (the same as ,S, but beginning with 

1.2 
oS. +S; and so on. 

Vp - 2; 
Gleave eign genes SON ae Y Wt 0; Wi; aa Tey ala Y23 3s = 

3.4 3.4 
WS; = —— .8,+;S.; 1S;=——,S.+.8; and so on. 

V;,. Ve UV. Ue 

So that our equation v,[1+)*,S8,+...]=0 may be written 

2 
Up + (A + AG, + AKG. +...) + UA? GS, + AAS, + «..) = 0. 

tl 

First approximation : %=0, .. p2=O0. 

2, lee it hee, 
Second. M+ 7 2=0, . u=— - =-53 Pray 

. QN27 INS 2 

Third. V sk 5 ec S; _ a . Sy = 0, 
1 Yy 

rs cla IE) 

v a 

202 24. 1 
=-—p- 4 2 =o 

0S or + ae Gab op 
ee) 

AS eS 

SB 

Ze DPN 2r8 INT Bye) 
Fourth. 0=% +—_+ — Si + ze So + = a n*) GS, + 228.) 

VY Vy UV, OF VV. 

2r2 Dn! PING 3.4 ) 
=U + VU et dy (oS, I S)) Ur v; (.s. - 1h aF VV ASH 

DAE DNAs 23 4 ACS aieiS eae OO 
=Uyt+ = + ( + ) 

Vy VW, —-VyVo Vi «UV, \ Ve VVs 

eile: 22 24.12 24n! (= sn 
eee foe 16—™) 16.16 4. 16 * 16.36) 

Tom aTG ( a 5) ( 2 

x? Xt : : 
== Pi toi 95 (coefficient of A® vanish). 

Thus up to »* the expansion of p,? in terms of 2 is 

s ped rv? 

Pi= 9 — 33° 



IN ELLIPTIC COORDINATES AND THEIR PHYSICAL APPLICATIONS. 61 

pe (corresponding to root v,=0). 

Our equation is Y, [1 + AS, + AS, + AVS; + ...] = 0. (1). 

oe, woe 
fs) = a = Y 

: ara a 

Lt peso sorta aes 
So = —— WS, + —.,9, + 2), 

UY i 

iL 3.4 
wo) = — 9 Se shes 6 
“aes a enw Sst Ss 

; ; LB 
(1) is equivalent to v, + Sar rN? (1 + AAS, + AMS, +...) + at rN? (1 + A248, + A4,S,) 

0 2 

+ U,A* (oS, + A45, + ALS, +...) =0. 

First approximation : %4=0, .. p2=2?=4, 

Second. nem (* 42-4) <0, ay n=— Fi mass, 

had 0 we (+=) I, (54° st ipa aa - #5 s,) 

=n 4012 42-4) 4 [24 65,9) 
amee( 249-4) ye 58 3S, 

Up Vo 

Proceeding as before this gives p.2°=4 fee Plea 
y 4 PS ANC 

The Sees hai ee Le) 
Fourth O=u+™ ( + ; 

Vo Vg Uy Us Up"Us UgUs Vs 

—2 12 
Sew Bf a, Se 

Ale UY OG rE, 

ne 5.6 /_ 30 | Za 
? ToD (aa 32.60)" 

Here again the coefficient of A° vanishes and we have up to A‘, 

TSS a ea ae 

We shall turn next to the odd series. We have the general relation 

(2n + 2)(2n + 8) Caos = [(2n + 1)? —p*] Cn + MCpa- 

1 
2 E u 

In this case put Up, =(2n+1)—p?; Ca= == 7 

and we have Uns = Unlln + 2. (2n + 1) (22) Up 
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Taking w=1 we get Uy =, 

y= an Us = VqV; (1 35 as 2:3), 

: 3 AnD) 
Us = UpV:Vo [ree (=: i Li ale 

Just as before the equation to determine p® is 

UVVo «++ Vo [1 + AS, + AS. + ...] =0, 

Fc z : 
where gee $59 JOn0 + 

Up. V,  U,.V_ Vo. Ve 

and so on. 

[Everything is exactly as before except that 

2.3 is associated with vv, instead of 1.2, 

and so on.] 

pe (corresponding to root v%=0). 

First approximation : H=0; «. pe=l. 

Dis 3 , 3 

Second. U +X. - =e vy=— GN pi= 14h. 

Third. 
4 tig eee Op enne 5 

Y ULV. 

3, 24 
4 

O25. Qaetco ae RET fate, 22) 
Fourth. 0O=uy+ ue = M+ 

VY Ve2V> V1 V2 UjUo Vas 

, ego 2.3.4.5. 
=l1-—p?+ ar eee Ce "eee ona 

8- Gh + ies = Ge 4 io ae 

eos — 5 oe 
3-94 \eros er 

1 241 
oe 4 6 - pr=1+5NS Ips * 12x (Gaye te 
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ps (root corresponding to v,=0). 

Our equation is Orr [Reacts Ne tetac te etal = Olcvec ers dencaceseotevse re cecetauneere (1), 

ea gu2-8, 45 ena 2 4.5. 
VU. VzeVq Vy. UU UUs 

2.8 y 4.5 3 daet td 
aa 1+: BS ? = St? 8,4, 

2.3_, 
Hence (1) becomes UE era MLL + AVS, +48, + ...] 

0 

who sp 5 ; eae 2 [1 + A2S, + AMS, +...) + OA? (QS, +78, + ...). 

First approximation: v,=0; .. pg=9. 

Second. 0=7,+- (734 Eis =) 
Uo V2 / 

2 1 
=9- pire; ob pe=9+5™. 

D.¢ 5 2. 5 
Third. =n 40 (= “3 442) 4 ]*3 5, Ss as ~*~ s,] 

Vo U Vo Vp Vo 

2 =n4n (7-3 44%) a4. 5. Gail 

U% OP V-2Vs 

5 . 

(ope | eee ee 
oe 1g6—™ 16°. 40 

2 2 

1 17 a= 2 
Bi! Sy eens 

2: 5 5 
Fourth. Onn (2 248) BEE Ty a 2 abs (¢: ie ae ~~) 

% OF Vo"Vs U2V3 UgUs aes 

a 9 6 =9—pegt+nr 7 a 17 7. (ae = 

+o 16.32 2 Pe = 

aOR Orel se 8. 
—>\ Ee 6 

a Or aT ae i640 Es 40:5 (16-3) (40-3) 
2, 2 

17/ 20287 
. —— 1 4 4 6 

a sag * Beccles 100 9° 

We have seen if we proceed to solve one fundamental equation in a series of 

ascending powers of z(= A) we get two separate series, one even and the other odd. 

But from what we have just done it is clear that these series correspond to different 

values of p?; so that for any particular value of p* we have really only one solution. 
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We shall denote this solution by f(z), using suffixes f,(z), fi(z), ete. to indicate the 

values of p? (p,?p2.--) to be taken in the series. One equation is 

(22 — 02) of” + 2y! + (22 — p?) YHO oc receeeeeneccnereceeeeneceeneees (1), 

of which we have one solution y=f(z). To get another solution assume y=2f+w. Sub- 

stitute in (1) and we get 

v[@—r fF" + of + E—PIFIF STE) 0" + 2) 
+2(2—N) Vf +(2—d) w’ + ew’ + (2 — p*) w=, 

Since f satisfies equation (1) the coefficient of v in the first line of the last equation 

vanishes. 

Since v is quite at our disposal we may choose it so that 

a) dv _ 
(2 =) aa te 

which is satisfied by v=log (z+ J(2?7—2’). 

Thus our problem is reduced to finding a particular solution (the simpler the better) 

of the equation 

dw dw dv df ——, df 
aKa ans ED) n= = Ne ee (=) Fo tea + a pws 2 (Pd) Fe BAN, ceerreccereee (2). 

Let w=J/2—22.u. Substitute in (2) and divide by /2—22, and we get 

5 na Ghul du poet: df 
(22 —d*) apt aga @ ae lju=—277. 

We shall obtain w in the form of an ascending series of powers of z. The form 

of the solution will be different for the odd and even series f,f.... and fi fy... 

Take first the even series for /- 

fe) Ha+ a2 «05 On ZF... 

a we OF os a ips df eee 
(2 —) at 84 at @ —-p+1lju=-2 de tutte — Ana, 2"I14.... 

Clearly « must be an odd series. 

Assume Uw=A ztAS+... + Ans™+.... 

(2 — dr?) [6.A,2+ 20A,29 +... +(2n+ 1) (2n) Anz” + ...] 

+ 32[A,+3A,2°+...+(2n+1)Anz™+...]+ (@—p?+1) [Anz+ Aiz+... + Anz™+...] 

=—4ajz+...-—4na, 2". 

Equating the coefficients of different powers of z, we get 

"GAGA (A 03) A AO oreo seiciee sitoeeincemeemevielelasieinsie hi eeetelter cer @; 

— 20A,d2+ (16 — p’) A, + A, = — 8a; 

— (Qn + 2) (Qn + 3) Angid? + [(2n + 2)?— p*] An + Ana=— 4(n +1) dnir...(2), 

which enable us to determine the coetticients successively. 
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As we require only a particular solution, we may give any values to A, or A, 
we choose, consistently with (1). 

We must now examine the convergence of the series u. 

In the first place we may prove, by proceeding as on p. 47, that A, cannot be infinite 

for any finite value of n. 

The relation connecting successive coefficients in f(z) is 

— (2n + 1) (2n + 2) dng? + (40? — pp) in + On =O oo. sc cescenccecececececsess (1). 

Tf Uni: =Gnii/an we have 

ol 6n+2+p + ee 
*n+1 33 (In +1) (Qn+2)a2 W2QAn+1)Qn+2)%- 

Hence when n is large we have 

; 1 
either y= (Qn +1) (Qn +2) dee cecucveccsceccencnsnescrcedcesevacucess (2), 

' : ; ; 1 : 
or Up is not indefinitely small, and approximates more and more nearly to 32 as m increases. 

But p® is chosen so as to make a, =0, hence we are confined to the first case (2). 

1 nest) (GED) and ad, to zero, we see that 

—4(n+1) a+: is indefinitely small for very large values of n. 

Since then », approximates to 

This being the case we see by comparing (1) above with (2) of p. 64, that 

when n is very large the coefficients of ware connected by the same relation as 

the coefficients of the convergent series f, Hence as the coefficients of wu are finite for 

finite values of n, it follows that the series ~ is convergent in the same domain as the 

series f. 

In exactly the same way we may proceed with the odd series for f, 

f (2) = z+ 28+... + en2"™414..., 

ee, du seit, oL df 
(2 —M) ae t 82a + yu gD 

= — 2¢, — 6¢,2"... —2 (2n +1) cnz™.... 

In this case we take w=C(,+C,22+...4C,2"+4+... 

and get (2 — 2) (20, + 12C.2?+ ... + 2n (2n —1) Chz"? +... ] 

+ 32 [20,2 + 40,28 + ... + 2nC,2"™7 +4... J+ (f-p+)[Q4+G2+...+C2"+...] 

=— 2c, — 6¢,25 ... —2(2n +1) cn2™+.... 

This gives — 202+ (1 — p*®) Ch = — 2c, 

— 120.2 + (9 — p*) C, + C, =— 6c, 

—(2n+ 1) (2n + 2) Chr? + [(2n 4+ 1 — p?] Ch + Cha =—2(2n+1) en, 

from which, as before, the coefficients may be determined in succession, and the conver- 

gence of the series w established. 

Vou. XVII. Part I. 9 
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We have now obtained two independent solutions of our equation, viz. 

T= JAG bepococesscaocoabeanpapseucs scoboko aon unaBosanuonsodbsscoRAer (1) 

y=f (2) log (2+ V2— 22) +u V2—™ 

HK 2) ies eR pocodeos on sauder sus oorodbsneonisdos ucgob chee aonenete (2). 

The complete integral is therefore y= Af(z)+ BF(z). 

The two series are convergent for all finite values of the argument. We shall now 

proceed to obtain two other solutions which represent y ‘asymptotically’ (to use 

Poincaré’s term)—i.e. we shall obtain two series which approximate more and more 

closely to solutions of our equation as the argument increases. These series will be 

very useful for numerical calculation when the argument is not small, and they will 

also help us to determime what linear function of f and F we must take if we are 

seeking a solution of our equation which is to vanish when z=%2—a problem that 

confronts us in many physical applications of our analysis. 

Our equation is (2-2) y" + zy’ +(2—p*) y=0. 

Let y=uet where t=7iz and the equation above becomes 

(P+ M)u" + (Ql 4+¢4 2d) w+ (t— pr? + VY) w=. 

Assuming a serial solution in descending powers of ¢ of the form 

u=t"(aqta/t+a/et+...], 

we find that we must have 2n+1=0, therefore m=—4, and equating coefticients of 

the various powers of ¢ to zero we get 

ce ens ae +M— p, 

As 9 ay (| Seah NE 9) salt Sia 
aa (G+ als Ms 

2n+1) 
2(n+1)dny= ee + P| An — (2n — 1) Man + (2n—1) (22+ 3) NGn-, 

= 

which enable us to determine the coefficients in succession in terms of a, which is of 

course arbitrary. 

Now let us examine the convergence of the series just obtained. 

Let tns2=Ani3/an. Then we have | 

w-p+1/4 o56 2n—1/1  2n+3 
n+1 eee) | hPa Ces eye |C 

Dis, E + 

c s 5 . 5 WL 
Hence when n is large, either u, is large, in which case w= 5 9 nearly, or wy, 1S 

small, im which case we have approximately when 7 is large 

0 2r2 E ont? |. 

Tort= | ietOn Un 
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This relation cannot be satisfied by a small value of u,, so that we conclude that 
when n is large u, is large, in other words the series is ultimately divergent. But, for 
large values of the argument, the series begins by converging rapidly, and so if we stop 
before the terms begin to diverge the series obtained will be quite well adapted for 
purposes of calculation. Suppose, for example, that in any numerical problem we agree 
to neglect terms of the order — and are dealing with values of the argument 

which make the nth term of the above series of the order —— 

If we stop at the nth term of our series and substitute in the differential equation, 
the equation will not be quite satisfied; but instead of having zero on one side of our 
equation we shall have a few terms of the order 1 —— In other words, the series 
we have taken (stopping at the nth term) satisfies our equation approximately, the 
error being of the order we agreed to neglect. 

The solution thus obtained is 

he = eee eae ee Gay 

ew Ud, Ay 
= 7 |u- 2-2... Jes say. 

Changing the sign of i we get another solution, viz, : 

y= [a+ E-S-... | = $ (2) say. 

The complete integral is y= C¢*(z)+ Dd-(z) where C and D are arbitrary constants. 

By taking certain linear functions of ¢+ and g we build up two solutions that 
will be of service afterwards. We shall denote these by x*(z) and x~(z), where 

Oe BO (a2...) +S (S-S+...) SF Paco = 
Zz 2 Zz Ge 

= =. [R cos z + Ssin 2], 
Nz 

a. where f= Oy — es SSS aN 
2 Zz 

=i HOOP OL [Asie — cos 2]. 
Zz 

These give $*=y*++ix-; ¢-=y--iy-, 

PE EIp (LS t+ x) = Ve (yt + 97), 
$* =i = (1 — i) (yt +7) = VBe-H (yt y-), 

bo == 
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We proceed to consider the linear relations connecting the functions 7, F, ¢* and ¢-. 

Let f=ad*+ Pq and suppose we are dealing with the even series f. 

f(2) is a uniform and continuous function of z, so that if we make a circuit round 

the origin we shall return to our starting point with the same value of f This 

however is not the case with ¢* and ¢ which are multiform functions. It follows 

then that to insure the continuity of f, the constants a and 8 in the above relation 

must be discontinuous. 

If we put z=r(cos@+isin 6), we shall find that a must change discontinuously 

as @ goes through an odd multiple of 7 and 8 as @ goes through an even multiple. 

We have e@ = e7"sin? gircos® so that the modulus of e% is e~"sin?®, 

But f=ag¢++ Bp = ae-7sin?(,..) 4+ Bersin?(...) and, when 6 lies between 0 and 7, 

sin @ is positive, so that @ ~ is (for large values of r to which we are confined 

when dealing with the functions $) exceedingly large compared with ¢*, and so is 

far more important than ¢*. But when @ passes through 7 these relations are reversed, 

The term ¢* is now the all important one. Hence as @ passes through mw the 

constant a must change discontinuously to insure the continuity of ff There is no 

possibility of another discontinuity till we get to @=27, ¢ must now become the 

important term so that 8 must change abruptly, and so on. We conclude then that 

a changes discontinuously as @ passes through an odd multiple of 7, and 8 when 

6 goes through an even multiple. 

We can obtain a relation between a and 8 by working on the same lines as on p. 52. 

I $I 
A’ —?\ 0 x A 

If we start with any of our functions at A (for which @=0) and go along the 

circle of very great radius ABA’ to A’(@=7), we must get to the same result as if 

we go along AQA’ [avoiding the points 4, O—2 by describing small semi-circles round 

them], for the space enclosed by these two paths contains no critical points of our 

functions. 

Suppose then we take f along AOA’ and its equivalent af*+¢~ along the great 

circle. 

Then f is valid all along its path and so is af*+d¢-, the functions ¢ being 

defined only for very large values of the argument. 
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Starting from A and going to A’ we increase 0 by w. f is even and so does 
not change sign, Hence we reach A’ with f; but f at A’ is not equal to ap++P¢- 
but to a’p++P¢~ (since a is discontinuous at @=7). For brevity we shall denote 
J (2)=f (r.cos @+isin@) by f(A). 

Thus we get ag*(0)+ 8~ (0) =f (0) =f (77) 

= a'b* (3) + BO- (7) 

=~ ix" (0) —i86* (0). 
Hence a=—i8 and B=— ia’. 

We have found then that when r>0>0, f=a($*++7¢-), and in exactly the same 

way we see that for the odd function we have f=a,(¢*—7¢-). 

Now consider the other function 

Fauv2—2 + flog (2+ V2—2?). 

To make this definite we may take V2—2=4+Vy (cos : +7sin 4 where yw is the 

modulus and @ the amplitude of 2—2*; and for log (z+Vz—22) take its principal 

value. i 

Suppose first f is even, then w is odd (see p. 64). 

Let F=Ad+t+B¢- and carry out the process of last page. On going round z=), 

V2— becomes iVz—2? and so F becomes iuV2—2?+flog(z+iV2—A2). Passing 

z=0 z becomes negative, and w being odd becomes —u; while f is unaffected. Thus 

F has become — iu V2—2?4+ flog(—z+%7Vz— 2), where of course z here means |z), 

Then going round —2r, F becomes uV2—2?+flog(—z-V2+X)=F+7if, where 

F means the value with which we started. 

Just as before A must be a discontinuous constant, changing as @ goes through 

an odd multiple of 7 and B as @ goes through an even multiple. 

If A becomes A’ when 0=7 we then have :— 

A'$* (1) + BG- (7) = F (0) + inf (0) 

= Ag* (0) + Bo- (0) + ira (h* + ig-); 

“. —tA’d- (0) — iBg* (0) = Ag* (0) + BH (0) + ira (P* + G7); 

». -tA’=B—na; —iB=A+ mia, 

and F=A (¢*+i¢-)—7ad-, [7 > @> 0). 

Treating the odd series f in the same way we get 

F=A' ($+ —ig-)+ ra¢-, [r >> 0]. 
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We have now only fwo undetermined constants, and these can be easily found by 

calculating the different series for one value of the argument. But for a large and 

important class of problems even this labour is not required. In these cases all that 

is wanted is the roots of f(z)=0 or f’(z)=0, or something of this form. The larger 

roots in these cases necessitate the use of the functions ¢, but it is at once evident 

that the value of the constant a is not required. We shall now investigate the larger 

roots of the equation f(z)=0. Taking the even series [fj, f2-..] we see from last 

page that our equation is $* (z)+7p~(z)=0, or x* (z)+ x (2)=9, 

T = T 
or Roos (2-7) + Ssin (2—F) =0. 

ios 

If tany=S/R= —— Pree eainie d Eas. (1), 
Og re ote ‘ 
ee 

then our equation becomes cos (2 = - +) =0,and z— = —Wv=(2m + 1) = where m 1S an 

integer, so that i 

samt oT 4 yp SoU owion a,c ons cebgeseideCeaintew ences Sant CA) 

When 2 is very large we see from (1) that y»=0, and thus the very large roots 

are given by z=mn+ on . diminishes as z increases, so that the difference between 

two consecutive roots is more and more nearly equal to 7 as the sign of the root increases. 

In the general case having got tan y from (1) in terms of z we use the expansion 

w=tanyw—tan'~+ttan’4..., substitute m (2) and proceed by successive approximations. 

The treatment of the odd series [f,, f;...] is of course precisely similar. Our 

equation is now $*(z)—7igp- (z)=0, Le. y*(z)— yo (2) = 9, or 

Rein (2-7) — Scos ( -7)=0, 

: 7 7 
sin (2-7-4) =0, Sk — mT 

where m is an integer, so that 

c= mm + T+ 

In exactly the same way we may deal with the larger roots of /’(z)=0. 

In most physical applications, the root of most importance is the lowest root; and 

it will sometimes happen that that root is too small to make the process just con- 
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sidered effective. In such a case there is no difficulty in finding the root directly from 

the ascending series, which converges rapidly (the argument being small), 

We shall illustrate this by finding the lowest root of /, (z) =0. 

2 4 

We have ee faae (up to A’)... and using this value of p* we get 

‘alle oR LRN Se Ln 
Gan A EGA ae a, 64 12.64 

Cn | ree ce ah Qs 1 af 

ae (Geey > WGaedaW —% ae p (2.4.6.8) 

n Se ees «| 1 Me Hence i752) al els-at|+ lan mat ~| 

= ee ele. s aa cpl 
Waaeys: selcacao- | N@areeee 

Now z=Av=xa; X=kxae, so that f,(z)=0 is equivalent to 

1 1 ia 1 e vei oil) Sa Lae ate apt a “len ata 

1 Saas a os 3 | + Sikes (1). 

The series on the right of (1) is rapidly convergent, and the terms are alternately 

positive and negative. If we stop at the nth term we get an algebraic equation which 

(for different values of e) can be solved by Horner’s process with very little difficulty 

if nm is not very great. The root thus obtained will not of course be exactly a root 

of f,(z)=0, but it will be a close approximation if n is not too small. Also it is 

clear that the roots of the equation corresponding to n and n+1 will be the one 

greater and the other less than the root of f,(z)=0. Thus by solving the equations 

corresponding to n and n+1 and taking z to lie between the two roots we shall get 

a close approximation to the real root. 

Retaining the first five terms of our series and putting ya we have to solve :— 2 

yi —'25y + yy? [015625 + 015625e"] 

— y [000434 + 001302e"] 

+ [000006781 + :000038e) = 0. 

For e=0, the equation becomes 

yt — 25y? + 015625y? — 000434y + 000006781 = 0. 
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Attacking this by Horner’s process we get 

1 — 25 15625 — +434. 0678 (1728 
1 ee 0625 — 8715 

—15 0625 — 3715 ee — 3037 
1 75 — 4375 2178°75 

=a — 4375 — 3809 — 8582 500 
i 5 ae 1121-75 5957 556 
5 685 31135 — 2624 944 

1 fo iis 2542°75 
aie 160-25 2854 000 

7 203 / 124778 
22 363-25 i 2978 778 
7 252 126514 

29 / 615 25 3105292 
7 864 

36 62389 
7 868 

430 63257 
2 

2 
434 

The equation y*— '25y* + 015625y —-000434=0 gives in the same way y=‘1748. 

Thus the real root must lie between ‘1728 and ‘1748. If we go to a higher order we 

find y=*1730 as a very close approximation, 

Since y =5 this makes z= 2404. 

Treating the equation corresponding to other values of e in the same way we get 

these results :— 

For e=0, 2=2404; e=04, 2=2'512. 

e=O01, z=2411; e=0°5, z= 2°585. 

e=02, 2=2429; e=06, z=2°774. 

e=0°3, z=2457; e=07, z=3:092. 

For larger values of e, we should take in more terms of our series to get a close 

approximation to the root, which is getting too large to make our approximation very 

accurate. For these larger roots it is better to use the descending series, and the 

method of finding the roots from them, explained on p. 70. 

We shall proceed to consider briefly several physical problems that can be solved 

by the aid of the functions we have been considering. 

Vibrations of elliptic membranes : 

If 7 is the tension, p the density and w the small displacement normal to the 

plane of the membrane, the equation of motion is j 

dw T 
Tia a V2w=cV2w where 7'= pe’. 
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Taking w to vary as e**, we get (V,?+x«*)w=0. Since w must be finite all over 

the membrane we are confined to the f functions—supposing the membrane to be a 

complete ellipse. 

Thus we take w=SA, fy (Aw) fy (Aa’) oleet, 

« (on which the frequency depends) is determined by the boundary condition; which 

is w=0 when z=. 

This gives f, (Aa) =0, or f, (xa) =0, where a is the semi-major axis of the ellipse. 

The nodal system is composed of a series of confocal ellipses given by f,(Av)=0, 

and a series of confocal hyperbolas /, (Aw’) =0. 

To determine the frequencies corresponding to the various fundamental modes of 

vibration we have to find the lowest roots of f,(z)=0, f\(z)=0, and so on, and we 

haye already seen how to do this. 

Taking the values found for these roots in the case of f,(z)=0, we find that the 

ratios of the frequency of the fundamental note for e=0, e=01, e=02, e=053,... 

e=07 to that for e=O are 1; 1:003; 1:013; 1:022; 1:045; 1:075; 1154; 1:286. Thus 

there is very little difference between the notes emitted in the different cases. The 

interval between the notes for e=0 and e=01 is less than a comma; between 

e=0 and e=02 just about a comma, between e=0-6 and e=0 about a minor third: 

and between e=0 and e=07 an interval between a minor third and a fourth. Of 

course the frequency rises as the eccentricity increases, 

The vibrations of an elliptic plate can also be determined. If FE be Young's 

modulus for the material, p the density, 2t the thickness, and yw Poisson’s ratio, then if 

w is the displacement normal to the plane of the plate the dynamical equation is 

Et 

3p(1—p*)” 
K=p*/ci our equation becomes (V#—«*4)w=0, or (V?+«?)(V?—«*)w=0. This can be 

solved in terms of our functions, and as w must be finite all over the plate we are 

confined to the f functions. 

We may take then w= Ae™t[ f(z) + wf(iz)] [f(2’) + uf (i2)], where z=dAax; 2 =rao’. 

w+c'Viw=0, where ci= If as usual we take w to vary as e” and put 

The nodal system consists of the series of confocal ellipses given by f(z)+ m/f (iz) =0, 

and the series of confocal hyperbolas given by f(z’) + w/f(iz’) =0. 

If the plate is clamped at the edge (c=), we must have w and aw 0 at the edge, 

nea (Sp) pepe (20) — 0} 

F' (2) + iuf (im) =0. 
Eliminating y»’ we get the frequency equation [2,=«a] 

S' (@) _ of'(%) 
SF (2) SF (%) © 

Von. XVII. Parr I. 10 
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Vibration of air in elliptic cylinders. 

If y is the velocity potential we have as usual TY = Vy, and taking w to vary 

as et we get (V2+e)p=0. 

As y must be finite at all points in the cylinder we take 

$= EAn fn (Aa) fa 2’) ot 
Since there is no normal displacement at the boundary we have oF _o when 

Oa 

x=, so that corresponding to w= Ane**f,(Xx)fn(Aw’) we have the frequency equation 

Fa (AX) =0, or fn (ka) =0. We have already explained (p. 70) how the roots of this 

equation are to be obtained from the descending series. 

We shall write down the results for the lowest note of the modes whose velocity 

potentials are 

y = Af, (Ax) fo (A*) e'***, 

and Y= Afi) fiOur)erst 
Any other mode may of course be discussed by the same method. 

Mode y= Af, (dz) fy (da) et, 

(c= 331,00 centimetres per second.) 

ca hee ieee ee cee eee 
that for e=0 

0 | 3832 20156 16400 1 

o1 | 38432 20221 1.6346 10033 

02 | 3:8720 20366 | 16230 10103 

03 | 39259 20650 16007 71-0245 

04 || 40578 21346 | 15495 10591 

05 | 4is74 | 92095 | 15008 | 1:0997 

06 | 43799 | 23036 | 14348 11430 

ov || 47328 | 24895 | 13277 12351 

(08 | 52923 | 27835 11875 1-4132 

We see from the above that there is an interval of rather less than a comma 

between the notes emitted in the case e=O and in e=0°2. 

note c then e=0'8 will sound F% very nearly. 

If e=0 gives out the 
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In order that e=0 may omit the middle c of a piano (264 vibrations a second) 
its radius must be 

a= 76°35 centimetres = 30°061 inches, 

Mode w= Af, (Az) f, (Az’) efx, 

[The lowest roots of f,/(Aw) is not very large and is best obtained by the method 

of p. 71.] 

Ratio of 
e Ka axfrequeney | wave length/a Preece ard 

0 | 180 | 9683 34135 1 
o1 || 1sui7 9687 34120 10005 
02 18421 9690 34112 | 10007 
03 | 18449 9705 34057 1-0024 
04 18494 9728 33979 1-047 
05 | 1ss27 | 9744 | 33900 | 1.0063 

06 | 18576 | 9772 33823 | 1-0093 
“ov | 1ses7 | 9813 | 33683 10135 
08 | 18758 9867 | 3:3496 10191 

09 | 1ss75 | 9929 3°3290 1-0255 

This is the gravest of the normal modes. The influence of eccentricity on the 

frequency is exceedingly minute. 

If the motion is not the same in every transverse plane we can still solve the 

problem as indicated on p. 42. Thus suppose, for example, the cylinder is bounded by 

rigid transverse walls at z=0 and z=J, then we take 

=A, cos se ; 

and get (V2+")An=0, 

27-2 

where Ke= Ke = ; 

so that we have finally 

ab = DB. fn (N2) fn (A'2’) cos aT ES 

where 1’=he’ and «’ is given above. 

10 —2 
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The lowest note corresponds to m=1, and 

iis Te 2— 7/2 4 
fe 

R Hey 
or (xa)? = (x«'a)? + as (1). 

The lowest values of «a for the different cases have just been written down for the 

case n=0, and the corresponding frequencies are thus obtainable with the aid of (1). 

Another problem that is readily solved by the help of our functions is the deter- 

minations of the tidal waves in a cylindrical vessel of elliptical boundary. 

If £& be the elevation of the free surface above the undisturbed level then it is 

well known that ‘the equation of continuity’ and the dynamical equations lead at once 

to oF V3 where c?=gh, (h being the depth). 

Thus we have €= 24, f, (Ax) fn(A2’) e**, the boundary equation being 0 or 

fn (Am) =9. This is the frequency equation, giving the admissible values of «, and the 

corresponding ‘speeds’ of the oscillations are then «c= « Vgh. 

Another hydrodynamical problem that naturally presents itself here is the consider- 

ation of certain possible forms of steady vortex motion in an elliptic cylinder. In steady 

motion in two dimensions the angular velocity () is constant along each stream line. 

But if w be the stream function we have V,*"=20, so that every possible form of 

steady motion is included in Vjxr=y(W) where y (yr) is an arbitrary function of wy. 

If we put y(W)=-—«'*h where « is a constant we get our equation (V.2+«°)y~=0, 

and as Ww must be finite at all points within the cylinder we have 

y= =A nti n (Aw) 7 n (A2’). 

As w must be constant along the boundary, we get for the case corresponding to 

Ww=Af, (Ax) fr(A2’), fr (A%)=0 or Ff, (xa)=0, the roots of which determine the admissible 

values of x. We have aiready shown how to obtain these roots and have written down 

the lowest root for n =0, corresponding to various values of the eccentricity, (p. 72). 

The periods of vibration of electricity in a cylindrical cavity of elliptic cross-section 

inside a conductor are readily obtained. 

Since everything is independent of z (measured along the axis) we have, with 

usual notation eta O3 thus there is a stream function wW, from which w and v 

; : ot ov. ow ze Ree . 
are got by differentiation Daa 0 =a By applying the circuital laws of Ampere 

and Faraday in the usual way we get Gas V2(Vyy) in the dielectric, where V is the 

velocity of propagation of electro-dynamic action through the dielectric. 
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Putting y. ce we get (V+x«*)y=0, and since y must be finite everywhere 
in the cavity, we thus get 

p= TAn fa (Ae) fr (o'eix"", 

Now the wave length will clearly be comparable in magnitude with the diameter 
of the cylinder, so that for ordinary sized cylinders the frequency is enormously high. 
But in such cases the currents are confined to a mere ‘skin’ on the surface of the 
conductor. Inside this skin (ie. in the conductor) there is no EM.F.; and the tangential 
E.M.F. is continuous on crossing the skin. Thus the tangential E...F. must vanish at 
the surface of the dielectric. Since the tangential E.M.F. vanishes, the tangential current 

Oy : a : : 
also vanishes, therefore a =0, at the boundary, or in our notation Ane when #=a). 

} aL 

Thus if p=Af, (Ax) f, (Aa’)e™"*, the admissible values of «(X=h«) are given by 

the roots of f,’(A%)=0. The roots of this are given (for 7=0 and n=1) on pp. 74, 75; 

the wave lengths there determined apply also to the electrical problem. 

If we are dealing with the problem of electric waves in the dielectric surround- 
ing an elliptic cylinder then we must replace f,(A7) above by @,~(Xx) and take 
We = LAndn (Ax) fy, (Aw’) e*”t in the dielectric. In this case the admissible values of « 

are given by the roots the equation ¢,/~ (ca) =0. 

If we wish to estimate the decay of magnetic force in a metal cylinder, the lines 

of magnetic force being parallel to the axis we have (neglecting polarisation currents) 

>», _ 47 de 
Vyc = air 

: 4mm 
or, if ¢. ce, (V2+«2)c=0 where @=— 

The appropriate solution is c= ZA, f, (Ax) f, (da) e-™. Now we are neglecting polar- 

isation currents so that ¢ is constant in the dielectric. Taking this constant value as 

J, and noting that the tangential component of the magnetic force is continuous, we 

have at the boundary (#= a») 

DAn Fat) fn (AG) en pel. 

In the case of free currents IT=0 and the admissible values of « are given by the 

roots of f,(A®)=0, or fy, (ka) =0. 

: m — 4rpa? 
The ‘modulus of decay’ is = Sri Sau 

m core a(xay 

values of («a), the slowest of all corresponding to the least root of f,(«a)=0. We shail 

write down the modulus for a copper rod semi-major axis 1 em, for which «= 1600; 

and for an iron rod of same size for which # = 1000, and c=104 

The decay is slowest for the smallest 
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lane RMeciniees@apper| Metin eon ese eer 
| (seconds) (seconds) e=0 

0 | 2-404 001359 2174 1 

o1 | 2411 | o01351 | 2169 0-9942 

02 | 2-429 001331 2130 | 09793 

03 | 2457 | 001301 | 2082 09573 

04 | 2519 001245 “1991 0-9158 

05 | 2585 001175 | “1881 08649 

| o¢ | 2774 001021 1633 0°7510 

07 | 3092 | 000803 1284 | 05907 _ 

In dealing with the case where the currents are longitudinal and the magnetic 

force transversal, we may express everything in terms of R the E.M.F. along the axis. 

Adopting the usual notation we have :— 

da__ OR. 0b _ OR. 
i BOG me ate an 

477 wipe = sep = Ava, 

In the cylinder we have (Ve2+x«2) BR, =0 where as and in the dielectric 

(V2+ x) Ry=0 where 12 = (5) . 

Thus R,=DAnfa (Ue) fr Aux’) e'?*, 

R= =Brabn (Avt) fn Aor’) ert. 

The E.M.F. parallel to the axis is continuous at the surface of the cylinder, 

« R,=R, when =”, ©. Anfn(%)= Badan (Ach). KR is a ‘stream function’ for a and 

ow b, so that the magnetic induction parallel to the bounding ellipse is proportional to Ap 

But the tangential magnetic force is continuous; so that we get another boundary 

Aim ’ , 

A if. n (42) = Bohn v7; (Aco). equation 

Eliminating the ratio of A, to B, we get:— 

Mh (Ar%o) * No hn (Ao) aS SSQun yy ke ae 

Since the currents will decay slowly p/V (and therefore X.) is very small. 
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Now if X=0, the equation for $,-(Aw) is 2? ee ne dy 24 (2 n) y= 0. 

Let y=ue’ where t=—iz and we get ? 2 ars i ~+(t—n)u=0. 

‘ ch : : a Solving this in an ascending series of the form mat re .., We get as the “in- 
dicial” equation m?—n?= 0. 

Thus we have ¢) (Aw) = approximately when X is small. 
ae 

Making use of this we find that (1), of p. 78, becomes 

Rtn. (4%) 

Mn (M2) 

or Mn (Ay @) + Moen (U%)= 90, 

which determines the admissible values of p. If, as in case of iron, pw is large we 
have f,(4,%)=0, which has just been considered for the case n=0 on p. 78. 

=- nd, 

Secrion II. SpHerorps. 

We shall proceed now to the more interesting problem of finding solutions of the 
equation (V*+«*)yr=0 that will enable us to deal with a variety of questions relating 
to spheroids. 

Generally if a, %, a; form a system of orthogonal coordinates so that the line 

element ds is given by ds*= oe +e — it is well known that 
3 

V2yp = Ighgh lala tet]: 

Also if a, %, 4 satisfy V*y=0, we have the simpler relation 

Vp = h? wt hee 4 nes 

We shall be dealing with prolate spheroids, and shall define the position of a 
point by the semi-axes a and a’ of the ellipse and hyperbola confocal with some given 
one that pass through the point, and by the azimuth ¢. 

We may take a=—4 | Hi ( = y (with the usual notation). 

» da a 
--' Be 80 that dey => 

ik! ee 
bD bVve@=—a? 

pdp=ada; | eA 
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=a? | b? da? 2 b? da. 

P WG i i oe 
In this way we get bigs eae z ane (eae ; 

a 
h? h? 

ie 1 a hy : Aas 1 1 \e 
1e. Vyr= 12 (2 mew |- ae (1 — «*)- Tay ee Hl bid +(i—a ale 5 

where z=a/h and a2’ =a'/h. 

If we take to vary as sin(n@+ ) we have a =— ny, 

and hence if (V2+.«*)y=0 we get 

fy 0 e 0 
l : ; 

We (2? — #*)Yp=a (1 - 2) ¥_ 2a) *) = +(=a- po) 

As before assume w=yy' where y is a function of # only and 2 of 2’ only. 

We then get Me hk =X) 

nv 
—-Me= — 1 nf? Ee 

Layee «) Te =a ae as These NE y OF 

=-—p say (where p is an arbitrary constant). 

Thus y and zy’ both satisfy an equation of the form 

d Aub ip a aia ae 
ag he ag Pe i cares eae: 

In case of symmetry about the axis we have n=0 and 

d 2 dy 22 — 
ag ag + Dae iy 0. 

Consider (1 — a) y” — 2a’ + (p — x? a) y— 7 y= 0: saisraertiewiclcewioe sjscre (1). 

Let y=(1 —@*)"".z. Substitute in (1) and divide by (1 —2)"*. 

This leads to the equation 

(1 — 2°) 2” —2(n +1) a2’ +[p—n(n+ 1)—d2*] z=0 

Everything now depends on the solution of this equation which we may therefore 

regard as the fundamental one of our problem. It corresponds to the equation of p. 43 

in our former work. 

This equation has the same critical points as that just referred to, viz. 1, —1, 

and 2». Its solution in the neighbourhood of these critical points might be investigated 

on exactly the same lines as before. The work however would be so nearly identical 

with our earlier work that it is hardly worth repeating it here. 

We shall proceed at once to obtain solutions in a form convenient for physical 

applications, Le. in a series of powers of 2. 
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Assuming 2=a,0"+a,0"*'+... and substituting in (2) of last page we find that 

we must have m(m—1)=0. Thus we get two independent serial solutions, one even 

and the other odd. 

Taking the even series first we have :— 

PTE I Bie ee, it) ae UN Sa 

Substituting in the differential equation and equating coefficients of different powers 

to zero we get 

2a, + pao =0; (2m +1) (2m + 2) duit [p’- 2m(2m +n — 15) eta CO 

where p’=p—n(n +1). 

4(n— lym—2=p | aN 

(2m + 2)(2m +1) — (2m 4-2) (2m +1) vp,’ 
Tf Uns = Om/@m we find Imi, =1+ 

Thus when m is large, either v%» is small in which case v, tends to the limit 
rn 

~ (2m +1) (2m + 2) 
is very large. In the former case the ultimate convergence is the same as that of 

the series for cos Xv, and the’series is convergent for all finite values of the argument. 

, OF Ym is not small and then v,, approaches the limit 1, when m 

We must consider more particularly the other case which is more unfavourable to 

the convergence of our series. In the first place we note that the series converges for 

all values of the argument whose modulus is less than unity. It is important to 

examine the convergence in the extreme case when |#}=1. 

The series is @+a@,+...+@n+... to @, 

where (2m +1) (2m 4+ 2) dia = [2m (2m + 2n +1) — p'] dn + Man. 

As we have already seen Lt ae =i 
man m 

Gm 2m (2m+ 2n+1) — p’ 

Gm (2m+1)(Qn+2) 

ai ( Qin 1) oy (2m + 1) (2m + 2) — 2m (2m + 2n+1)+p’ 

; 2m (2m + 2n+1)—p' 

=1—n in the limit when m=m. 

2 

and when m is very large we have approx.; 

Ama 

For all cases except n=0, this is less than 1, so that this test of convergence 

shows that all the series (corresponding to different values of n, except n=0) diverge 

when «= 1. 

For the case of n=0 we must use a higher test of convergence. 

We have in this case :— 

(log m) x [™ = = 1) is | = (log m): pms. 1) 

Gan 4m? + 2m — p’ 

Seen 
A om 

so that for this case also the series diverges when «= 1. 

Vor XVI. Parr i. 11 

ultimately = 7 : = ultimately = 0, 
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Now 2’=1 on the axis of the spheroid, so that if we are dealing with physical 

problems that require the dependent variable to be expressed in terms of x and 2 

throughout a region from which the axis of the spheroid is not excluded, we cannot 

make use of the series just considered. For such problems we are confined to the first 

case mentioned on p. 81. In other words we must have v,=0, and then the series 

we obtain converge for all finite values of the argument. As before this limits us to 

particular values of p. 

The series just considered are the even series: but of course precisely similar results 

are obtained from a treatment of the odd series. 

The cases that will prove most useful to us in the discussion of physical problems 

are those corresponding to »=0 and n=1, and we shall therefore consider these more 

in detail. 

For the case of symmetry n=0 we have faa) Ws (p—me)y=0. It will be 

rather more convenient to solve this im powers of Az, and taking 

Y =, + O (ALP +... +Gn(At)"+... 

we get 2a,r2 + pa, =0; 12a,.A*— (6 —p) a, — a = 0, 

(2n + 1) (2n 4 2) dnd? —[2n (2n+ 1) —p] Qa—G,r=9. 

We have seen that for most physical applications p is confined to the roots of 

a,» =0. The determination of these roots proceeds exactly as on p. 60, et seq., the 

only difference is that in the present case we take v, = 2n(2n+1)—p instead of (2n)?—p*. 

Thus we can use our former work to give us the values of p with comparatively 

very little trouble. 

po (corresponding to v,=0), see p. 60. 

First approximation: %) =v, ~. pPo=9. 

Le Aa nN 2 
Second. Oat ae w=O; & %=—Zi P= a: 

y. = 2 oO. 

Third. Saye oes aoe 
V4 V;7Vo 

ivin yn. = rv a oe OY. 
Bens Pa Sim ISbE a 

2? 4 6 § & 

Fourth. O=n¢ VE SA OES el, 
Vy Oy | ida Pon | thy ols Wats 

3s hat Dare eee ; 

ad Po 335 eso ere 

5 = 7 8 . DAN * . 5 . o/ Fifth. OR oY See ee ate 4, 5.6) 
VY VU, VyVo V, \ VV. VV VyVo / 

_ 2a ee ee eo ee 
UV; VVo | Vivo \ Vo Vas Va, \ VVo V3 —-VsVy 



IN ELLIPTIC COORDINATES AND THEIR PHYSICAL APPLICATIONS. 83 

eee 4 182) 
10 yw = Se Vt 6 Hence up to ” we have p, 3 ~ 135 AY + 3°57 e+ 37.58 73° 

Ps (corresponding to v,=0) see p. 61. 

First approwimation: v,=0, .. p.r=6. 

MoS ee. a 
Second. nr ; 3r =") = OF i P=6+ mM. 

Third. V+? (= 2k -*) _» mw (% Z pat °) =0, 
% Vo VY. " Usds 

Rr 
Pao on ge 

mee ee ee Sy ee, 
U Vo UsUs VU; UM, Ug 

So that pam 6457 + a ii tes Neo 
(21° ~ 99x 7 

ps (corresponding to v= 0). 

First approximation: v,=0, .. py= 20. 

egg (ee 2-6) a py nice Second. Vo +X ea a rie a 0, pPs=204 77 

Third. +2 e a »-8) - [Po 5 2 *|- 0, 
Vy Us Uy Us7Us 

Boy Sos Cs 
77 5 (6. Wie 18} 

Similarly with the odd series let 

Y = CAG +O (Aw +...+ Cn (Aw +... 

and we get (1 — 2) [6c,A8a + 20c,A5a? + ... + 2n(2n+1) cn Aa" + «J 

— 2a [oor + BeA8z? + ScASa* +... + (Qn +1) e,rA™Hae + ., <i 

+ (p — A?x*) [C Aw +, (Av)P+... + cn (Aa) + ...]=0, 

. — 6¢?+(2—p)eo=0; —20c.rA2+ (12—p)e,+¢,=0 

— (2n + 2) (2n + 38) Mens + [(2n + 1) (Qn + 2)—p] Cn Hen =O. 

In this case we take v,=(2n+1)(2n+2)—p and proceed on exactly the same 
lines as_ before. 

pi (corresponding to root v,=0). 

First approximation: %=0, .. p,= 2, 

Second. Uy + yee =() eyes : ru 
5 E 

11—2 
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Third. vy +d? —— — A ——_—_ = 0. 
v% Vo 

Bie S 12 ‘ 
Thus P= 2+" — 7 950% +... 

Ps (corresponding to v,=0). 

First approximation: v,=0, .. ps= 12. 

a f2io hE ees, slope 23... 
Second. 0 +r i +=) =0, os Ps= 12+ Gem. ‘ 

De .5 Ace 5 Grad 
Third. nee (? Bae °) Dall =0, 

Vo Ve VV; 

23 7229 
BS ae 

Pps (corresponding to v,=0). 

First approximation: v2=0, .. p;=30. 

SED oo 59 Second. nth (= ~ +=-)=0, - 2°. py= 80+ FM 

Third. mon (£2457) yy PB TE) <0, 

NS Uies a ts Udy Us Us 

a 59 63338 
giving Po= 80 +797 Mt oe ge 

Turning now from the case of symmetry (n=0) to the case »=1, our equation 

becomes (1-22) 94 — 4a WY + (p—2—r208) y=0. 

If Y =A) +; (ALP +... +n (AZ) +... 

we have 2a? +(p—2)a,=0; 12ad?+(p—12)q—a,=), 

— (2n +1) (2n 4 2) dnzid? + [(2n + 1) (2n + 2) —p] adn + an = 0, 

and in the determination of p we proceed as before, the only difference being that 

now we have v,=(2n+1)(2n+2)—p. In this way we get 

— 1 2 a 4 fecha 6 Po=2+znr — 753 tory 5 aPace 5 

. i Pew, 

See V+. LNB ep 
59 Vat. 13 
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For the odd series Y= CAL +O (AL)P+...+ Cr (Av +..., 

we have 6c? + (p—6)e,=0; 20¢,’*+(p — 20) ce, -—¢, = 0 

~ —(2n+ 2) (20 + 3) Cnr? + [(2n + 2) (2n + 3) — p)en + cn, = 0, 

giving by the usual method 

a Ore 4 8 Pri= 645M —ap55 M+ gg eM te 

87... 10640. 
Ps= 20+ 77M + + aap 13* =fois sists 

pase ne 

Just as on p. 63 the odd and even series obtained as solutions of our differential 

equation correspond to different values of p and so are really solutions of different 

equations. But having obtained one solution of our equation there is no difficulty in 

finding another. In the case of symmetry our equation is 

d dy ee 
da — 22) 2 + (p— 0) y = 0. 

Take y=uf+w where / is the solution already found. 

We then have 

dw ac du du df 
oie w) a + (Pp Ma)wt faa £0 at a = oo) a 

Choose wu so that 5 = == x?) a 0, which is satisfied by u=4 log = Ze a 

Our equation then reduces to Ge ny ~+(p- uM 2)w=- 2, and we want a 

particular value of w (the simpler the better) to ae this. 

If f=a,+aa°+... (even), we assume w=A,7+A,2°+... (odd). 

Substituting in the differential equation and equating coefficients we get 

6A,+(p—2)A,=—4a,; 204,+(p—12)A,—22A, =— 8a, 

(2n + 2) (2n + 3) Ang + [p—(2n +1) (2n + 2)] An — MA =—4(24+ I Gar, 

from which we can determine aS coefficients, in succession A, (or Ay) being chosen at 

pleasure. 

With the aid of these relations we can show just as on p. 65 that the series for 

w is convergent in the same domain as /. 

Thus we have two independent solutions of our equation 

y= f(x) and y=4 log — x f(x) +w=F (2), 

the complete integral beng y= Af(x)+ BF (~). 
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The series defining f is convergent for all finite values of the argument; but F 

becomes infinite when z=+1, and so must not be used in regions where « can have 

either of these values. 

We proceed to find some series that approach ‘asymptotically’ to solutions of our 

equation and that will prove useful for numerical calculation for large values of the 

argument. 

ie z=tre and y= ue’, the equation 

— w)4 2 + (p—Na® a) y=0 becomes (24 ny Ei 4 2(eretn)& +@e—ptru=0. 

Assume uae Oy, Sane . and we get 

(eo +m) [BD St -+n(n+1) ase 2 

: Dailtbye, 120 be 
—2(2+4+2+22) [a+ Bere | 

2) | 20, & bn 
+(2e—p+m)| B+ tt ht .|- 0. 

Hence + 2b,+(p—)b=0; 46,4+(p—2—M)b+VO= 

2nb, =[n(n — 1) +22 =p] bpa— 2 (n—-1) 2bna2— nr - n—2 “t 

So that if w,=bn/ba4 we have 

nce v2 Pit |e epee 2u,=n—1+——~-2Xr Ee (n 2) |. 
nu 

Thus when n is large, either u, is large and equal to 2 5 i approximately, or if 

Co hc a ST 

satisfied by a small value of w,, we see that uw, is ultimately large, so that the series 

is ultimately divergent. But as before it is useful for arithmetical purposes if we confine 

ourselves to the convergent part, the argument being large. 

2 ja 
u, is small we have when n is large 0= 1-¥ |= _ = and as this cannot be 

The solution thus obtained is (if z=Xz), 

= slit US 
== [-i2-S+...] = p* (2) say. 

=F [nsit-3t By. al (2), 
2 

and the complete integral is y= C$* (z)+Dd¢~(z) where C and D are arbitrary constants. 
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ht (z)+ f(z). p- (z)— p* (2) 
2 ‘ oT ae Ww) ? 

As on p. 67 we shall take y+ (2)= Va(2)=% 

giving xt (z) = : [R cos 2+ 8S sin 2], 

x (e)=2 [R sin z — S cos 2], 

where Bebe eee gat be 
2 z @ 

By proceeding very much as on p. 68 we can obtain some relations between the 

various solutions of our equation. Take z=r(cos @+7sin @), obviously we have 

$*(—2)=—¢ (2); $-(—2z)=—Gt(z) or P*(9+7)=-G"- (4); $- (0+7)=—F* (8). 

Z+X 
pa CFU) where w(z) is odd if f is even and Also we have F (z)=4 log 

even if f is odd. 

Taking f even, we have F(—z)=¢4 log = z TNC z)+w(—2z) 

=~ [slog 2** 7) + 0(2]=- Fe), 
and if f is odd we get similarly #(—z)=+ F(z). 

Then proceeding as on p. 69 we find these relations :— 

if f is even, f=a' (d+-g-)= ay, 

F=£8' ($+ +¢-)=8x*, 

and if f is odd, f= am! (ot +g¢-)=muxF, 

F=B8/ (¢*-$)=hAx- 

The larger roots of f(z) can be got from these results by the same process as 

on p. 70. 

For the even series (f,f:...) we require the roots of x~(z) =9, 

i.e. Rsin z—Scos 2=0. 

As before, putting 
by _ ds 

Y o3 

tan y= =- ; : 

Saertas 

our equation becomes tan(z—y)=0, so that z= m+ where m is an integer. 

Similarly with the odd series; and with the roots of f’(z)=0. The smaller roots 

may be got by Horners method as already illustrated on p. 72 directly from the 



88 Mr MACLAURIN, ON THE SOLUTIONS OF THE EQUATION (V?+«')y=0 

ascending series. For example, I find that the equation to determine the roots of f(z) =0 

is 0 =1— 322+ (017857 + 0034285e*) 24 

— (00059524 + 00031747 — 00003047e*) 2° 

+ (00006764 + 000011 1e* — 0000010885e*) 2 + ..., 

and the lowest root for e=0, e=01; e=02; e=03..., e=09 is 20815; 2:0825; 2°0848; 

9:0865; 20902; 20961; 21035; 21124; 21233; 21364. 

The treatment of the equation corresponding to xn=1 instead of n=O of our 

fundamental equation proceeds on quite similar lines. We have already seen that on 

putting y=V1—«*.%, the equation becomes (1 —2* ‘a a —4e—— = a (p—2—a*)y,=0 and 

we have obtained solutions of this in the form of eee? series of x To obtain a 

solution corresponding to that on p. 86 we put z=7a# and y,=ue’, and the equation 

becomes 

~ xe Gl net du E 
(2 +22) = +2 [22 +224 22] — + (42 -—pt+2+r)u=0. 

dz dz 

by br, bs Dn 
Assume w= Soh eat at 6? ene hes 

and we get 2b,=(2—p)b: 4b,.=(A°+2—p)b, — 4%, 

2(n +1) bps = [+n (n4+1) — pl bp t+ (Wt 1) [Mbp — 2b, 4]. 

As before the series is ultimately divergent, but is none the less useful for pur- 

poses of calculation. The work on p. 87 is, with very slight and obvious modifications, 

applicable to these functions. 

If y and y, are two solutions of our fundamental equation corresponding to different 

values of «, then y and y, have a “conjugate” property, which will be of use to us. 

We have ae a 1- wy v4 (p — 2") y = 0, 

d a 7 (l-# ) GE + (pi — Mite?) 4 n= 

if ENE S z a 
Hence | [p= -O8-r)eh]ynde=] ly 4 aay Fa-0)% 

us ai 3 dy|* _ 
-[y =a) A_ 9, —28 Ate 

By aid of this property we can determine the coefficients in the expansion of any 

function of « in a series of terms like f,(«’) by a process similar to that used when 

dealing with Legendre’s or Bessel’s functions. 

In the case where X=), but p+p, the conjugate property takes the simpler form 

1 
| yy, dx =0. 
J=1 
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The expansion of the function e* in terms of our functions is interesting in 
itself and leads to some results of importance. 

If a, be the ordinary Cartesian coordinate of a point (the axis of «, being the 
axis of the spheroid) we have #,=has in our notation. Now e¢**: obviously satisfies 
(V*+x*)~=0, and is finite when «=+1, so that it must be expressible in a series of f 

functions. 

Assume then eh! = TAn fa (Az) fa (Ac). 

By p. 88 we have in this case 

a fn (Ax’) ike (A
z’) dz =. 

1 1 
Hence | etex’ f(a’) da’ = An fn (Ar) | Fn (Aw)? a2’, 

—1 ~ 1° 

a relation which must hold for all values of Aw, (=z say). 

2/2 , 3 
Now eiArz’ — piza’ — ] +120 — ES = ean + 

2 6 
and Fn (4) = + m2° +... if n is even, 

and =o2+¢2?+... if n is odd. 

Hence, if n zs even, 

1 2 ay! , /3 

| (1 +i -“F sag ses) fr (Mat) da! 
=1 2 8 ; 

(. 1 

= {4x | Fa (ree)|? da’ (a + 0,2? + aye + «..). 
-1 

L 

Equating the coefficients of different powers of z we see that | a” Ff, (Aa’) da’ =0, 
=I 

as is otherwise evident since f, (Av’) is an even function. 

1 1 

We also get | Fu(az') da’ =a,A, | Fn (aa’y|? da’, 
-1 =i 

which determines A,, see p. 90, 

1 4 fy / , a, e / , and aia 2? fn (Aa) da’ =3 | Fn (ac’) dz’, 
|2 -1 My J -1 

ieee Ate. a (* ee a) jt faQe) de =O [fu Qa!) der, 
and so on. 

Similarly if x is odd we have 

1 2 a/2 S o8a'3 

| (1+ ia! — = =e ~ s+) fn (Ra) de! 
=i s 2 

= 4» \, Fa aly? de’ | (ope + 028 + 08 + one 
Sal 

Vou. XVI. Pars. 12 
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1 . . . . 

This gives | x2" f,, (rx) dx’ =0, as is obvious, since fy 18 an odd function. 
1 

1 ee 
Also if” faQa’yde!=adu |’ FQay%de, 

= -1 

which determines 4,, see below. 

1 L I , , qy Z , , , loa -3/ a® fi, (na!) da =2/ aif, (aa!) dat, 
3 -1 Col -1 

Laie aCe eee baie 
Bl a fy (dat) da! =* | Z fax Qe2 dz, 
oJ-1 Co J -1 

ity) Pare PF am x ; 

reer + fin (Ma) da’ = | wfa aa!) der 

Now when n is even fy (Az) = apt --- G (Ax)? + dy (Ax) +... 

: i Fada de=a |’ Fn (Xa) dz + an | af, (A
x) dz + ... 

-—1 
=3 

Se; 

1 “1 
=> prs ayn [2 + (IN |4 lf fs (Xz) dx, 

by p. 89. 

Similarly, when n is odd, we have f, (Aw) = Aw +e (AW) + 

i | i Faaz)l daz =< [e7A — ¢,7A8|3 + C°A?|5 + ...] in Lfn (AX) dz, 

by means of the relations above. 

Since | k Fa (ax) dx and i es fn(e)dx are easily determined by direct integration 
—1 J 

1 

of the series, we can thus determine | Fa (nx)|° ae. 
=u 

The above gives us the value of the constant A, of this and the last page. When 

nm is even we have 

| fa (ax) de 
ns 

a, { iF (Ax)|? dx 
a 

so that in this case A,=1/(ae — a7r?|2 + ay M4 + a) 

and similarly, when n is odd, we get 

A, =1/¢7A? — ¢fA3 3 + ch 5 “Eons 

We shall proceed to discuss some physical problems, involving the use of the 

functions now under consideration. 
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Vibrations of spheroidal sheets of air. 

[f c be the velocity of sound in air and y the velocity potential our characteristic 

equation is oF aot “f. Taking y to vary as e** we get (V?+«*)y=0. As we are 

confined to a thin layer we may regard # as a constant, and so our fundamental 

: l in @ ; aa 
equation reduces to (1 — wv) CE + (uta? — Nat) = 0. This is the same form as before 

with p=«a’. 

If the layer is complete the series for yy must be convergent for all possible 

values of 2’ (i.e. from a’ =—1 to a’=1, inclusive), and so we have y~=Af(z’); [F(z’) 

becomes infinite at the poles a’ =+1] and the necessity of convergence at the poles 

determines the hitherto arbitrary constant «, or rather confines it to certain definite 

values. See p. 82. 

If the layer of air instead of being complete is bounded by two parallels of latitude, 

then our solution is ~=A/f,(a’)+ Bf,(w’) where f, and f, are the odd and even series 

of p. 81. p is not now restricted by conditions of convergence, the series f(z’) being 

convergent (whatever p be) provided «’<1, which is the case in the present problem. 

At the bounding walls we must have oY =o; so that if 2’ =a, «=£ are the 

boundaries, we have 

Afy (a) + BF’ (a)=0, 

Af’ (8)+ Bf’ (8) = 0. 

Eliminating 4:B we get the frequency equation 

Fo (a), fr(a) |=0, 
Jo (8), fi’ (8) 

which determines the admissible values of «. 

If one of the boundaries (8) is the equator, then the frequency equation takes 

the simple form fj’ (a) =0. 

Returning to the case of the complete spheroid we shall determine the frequency 

corresponding to some of the simpler modes of vibration. 

Corresponding to py: (p. 82), 

2772 — ag 2 2 4 4 6 we have a ls a A i a a aivialeis biateloatemciert wide bia alelaleiatetsiate (1), 

and X=hk=xae, so that (1) becomes 

2 1 2 2 2 — Ka E 3° +735 eae + . |=0 

It follows from this that for our problem we must have «a=0. The expression 

in brackets [ ] cannot vanish for real values of «a, to which we are confined in 

the present case. 
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« being zero, yY is independent of the time—so that there is really no vibration 

at all, and this so called ‘mode’ is without physical interest. 

Corresponding to p,. This is the slowest periodic movement for the case of symmetry 

round the axis. The vibration is wnsymmetrical with respect to the ends of the 

spheroid. 

We have dat = p= 2+ 2 eM g Mt 

=2 +3 eae = ate +..., 

giving a? =2+1.2e + 692e + 38e8 + .... 

eae Ka? ax frequency | wave length/a 

ee ee 7439 4450 | 

01 | 20121 7461 4436 

02 20491 7528 4396 

03 | 21136 | veay | 4398 

lo4 | 2209 | veis | 4234 

05 | 23491 | 806i 4106 

ear 2-5397 8383 | 3-948 

07 27802 8786 3767 

08 31497 9385.—«| = B346 

09 | 36181 10,000 | 3310 

The ratios of the frequencies for e=01...e=0°9 to that for the sphere (e=0) 

are 1:003; 1:012; 1:028; 1:051; 1:083; 1126; 1181; 1-214; 1°330. 

The interval between successive cases is rather more than a comma, that between 

e=0°8 and e=0 is rather more than a minor third, and between e=0°9 and e=0 is 

just about a fourth. 

If then the sphere gives out the note ¢ (or Do) 

the spheroid e=-f, ,, = » »  @ (or Re) very nearly, 

3 5 e= 3s 3 » » € (or Mz) fairly nearly, 

> ey c= - » »  # (or Fa) very nearly. 
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For the sphere to sound the middle ¢ of a piano (c’; frequency 264) it must have 
a radius a=28 centimetres =11 inches. 

If the eccentricity is ;§, then a=31 centimetres (12} inches), 

» 4 oe stor $ (142 inches), 

The accompanying rough sketch will illustrate to the eye the influence of size and 
eccentricity on the note emitted. 

= : 

e=0 _ 

e=0°6 

e=0°56 

e=083 e=0°83 
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Corresponding to p. (the slowest symmetrical vibration), 

11,,, 94 21388 
a? = pr.=6+ 57 + Oip” go (p. 83) 

=6+ = ere + Gry Kate! — a Kase +... , 

so that a? =6 +3'14e + 2e4— 14e®+... 

(va ; : Ratio of 
| ea? axfrequeney | wave length/a | frequency to 

o | 6 | 1288s 2-569 1 

01 | 60314 12918 2-563 1-003 

02 61286 13020 2544 1-010 

03 | 62978 13201 2°507 1-024 

04 || 65459 13461 2-459 | 1045 

05 | 69136 13830 2393 1-073 

06 73238 14234 2325 1105 

o7 | 7-456 14734 2-247 1143 

08 | 84620 15301 2163 1-186 

0-9 9°3266 16063 2-061 1-247 

The interval between the notes corresponding to e=0 and e=-3, is just about a 

comma: between those for e=0 and e=-,5, about a major third. 

We shall now turn to the case of non-symmetry about the axis. Taking y to vary 

as sin @ (where ¢@ is the azimuth) we have n=1 im the equation of p. 80. 

Corresponding to p, (the gravest note we can get), 

8 Cee pe eee eee 
2) oo. . 

il 4 8 
=) = inp 4 pt oa 6 6 = 245 Kate 5a 7 eae + oy a, (ware +... 

giving ew = 2+ 0-4e + 0:062e + 0:006e+.... 

The values are tabulated on the next page. The lowest note in the series (that 

for the sphere) is the same as that in the mode discussed on p. 92. But for the 

same eccentricity (except e=0) the notes in this mode are rather lower than im the 

mode on p. 92. In the present case if the sphere gives the note Do (c), then the 

spheroid e=,°- gives out a note slightly lower than Re (d), while the note corresponding 
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to e= 7, in the mode of p. 92 is Fa(f). The spheroid e=,5, gives in the mode of 

p. 92 about the same note as e=,'; in the present mode. 

e a | axtrequeney wave length/a 

0 5 | 7439 4450 

o1 | 2004 7446. | had 

0-2 2-016 7468 4-432 

03 | 2037 7508 4-409 

04 | 2-066 7361. | 4377 

o5 | 2104 | 7630 | 4338 

06 2152 | 7716 | 4289 

07 221 | 7822 £231 

08 2282 79-44 4167 

09 2367 8093 £090 

Corresponding to p, 

Cee = ee a z Neer aor : 7 1029 33.79 

=643 cae 5099 (2) tas qe (xaye+..., 

so that a? = 6 + 2°57e? + 0:°96e! + 0°33e8 + 

eee | a? ax frequency | wave length/a 

oli @ 12883 | 2569 

o1 || 6027 | 12916 | 2562 

02 | 61032 | 12996 | 2546 

03 | 62303 | 13141 | 2519 

o4 || oas7s | iss4a7 | 2480 

os | 660e7 | 13598 | 2446 

06 | 70632 13980 2366 

ov | 75226 14427 2-294 

os | s1242 14994 2-207 

09 | 88902 15686 | 2110 — 
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The notes of this mode are rather Jower than in the corresponding cases on p. 94; 

e=, of this mode nearly corresponding with e=,§; of the former. 

Vibrations in a hemi-spheroidal sheet. 

The symmetrical vibrations (corresponding to p,, py...) make the equator nodal, 

so that we may at once adopt the above results to vibrations in a hemispheroid closed 

at the edge. The notes are given on p, 94 

The unsymmetrical type (corresponding to p,, ps...) make y=0 and therefore ~=0 

at the equator (z’=0). Thus in these modes there is no pressure variation at the 

equator, so that there is a loop there. If we make the rough assumption usually 

adopted in the elementary treatment of open ends—viz. that there is a loop at the 

end, we can thus apply our results to the determination of the notes in a hemi- 

spheroidal layer with an open end (open at the equator). The notes are given on pp. 

92 and 95. 

The case discussed on last page (n=1) gives us the gravest note in a quadrant of 

a spheroid, closed at the sides and open at the equator. 

A problem that is analytically closely analogous to the one just discussed is the 

investigation of the modes of vibration for the electrical oscillations tn a thin homeoidal 

layer of dielectric between two conducting spheroidal surfaces. There are clearly two 

perfectly distinct types of oscillation. In one the wave surges backwards and forwards 

between the bounding surfaces, the magnetic force being normal to the ellipsoid and so 

the electric force tangential. In this type the wave length will be comparable with the 

thickness + of the layer, and the frequency will be consequently excessively great. The 

longest wave will be that which crosses the layer and gets back again in a period, so 

that its wave length is 27 and there will be harmonics of wave lengths 7, 37, etc. 

For the other type—which we are now to examine—the waves advance along the 

ellipsoidal surface, the electric force being normal to the ellipsoid and the magnetic 

force tangential. 

The electric force R is normal to the spheroid. Let the line element on the 

spheroid be given by dst = 
1 2 

Then, on applying the fundamental circuital laws of Faraday and Ampére to the 

elements ABEF and ABCD, we get {with help of relation waa GI ; 

eR a (hy 1 AGB) , 0 (he LOR) 
a bee ae eee Soa ae rae ih 
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Owing to the symmetry about the axis rh is independent of ¢ and our equation 

becomes 

pots d/h, 107R 

be Sa — Bale a7 pt Oa" ) 

3 8 (10 = 
= Iyhe ont (7: = aa eee eee eee eee eee ee eee ee eee ee eee (1), 

if ~ is constant, as we shall suppose. 

a Pp = we : 2 1 

Noy hae hig? h? (a? — a2)’ le ~ h(a? —1) (1 — 2)’ 

and for a homeoid t=ap where a is a constant, or T= q he Men =i : 
Va? — a? 

Substituting in (1) we get 

OR _ 1 a R 
wK ot? ~ he Va — a? a? = (Gl a) Vo — 2 2 =a? 

i 2 2 ry Or a fi ow or if y= R/Va®— 22, wKh? (a? — 2") aE = aa! (1 — 2!) one 

: 1 ; : F : 
Putting Par so that c is the velocity of propagation and taking y to vary 

Mm 

as et, we get 

Line 2s Ov + a2 (a2 a!) =0, 

where X=/hk. 

This is exactly the same equation as we had to deal with in considering the 

vibrations of spheroidal layers of air. The solution is of course the same as before: 

p= =x«'a? being determined in the case of a complete spheroid by the condition of 

convergence at the poles. The only difference is that c, the velocity of propagation, is 

different for the two problems. The wave lengths are the same in both cases; and have 

been determined in some of the more important cases on p. 92 e¢ seg. 

If the surface is not complete, but is bounded by a parallel of latitude 2’, we must 

consider the condition at the edge. The layer of dielectric being supposed very thin, 

it is clear that the current (7) at the edge will be almost entirely tangential (along 

the parallel of latitude). Thus the boundary condition may be taken to be the vanishing 

OR 

Oar’ 

edge. 

Vou. XVIE Parr tl. 13 
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Since R= V2*—2?.w, the boundary condition becomes 

(a — a) oy z= 0. 
ox 

At the equator «'=0, and the boundary equation is then oY =o, so that the 

conditions are exactly the same as in the sound problem with a closed edge. See p. 96. 

Vibrations of air contained in a spheroidal envelope. 

If wW is the velocity potential our characteristic equation is OF =e Vp, to solve 

which we take y to vary as e*¢ and proceed as on p. 79. 

If we are dealing with a complete spheroidal surface we must confine ourselves to 

the f functions, and take 

p= DA, fn (@) fn @) eX. 

At a rigid boundary oF <0, so that the boundary condition is f,’(%)=0, which 

determines the admissible values of x. 

We have already shown p. 87 how the roots of this equation can be obtained in 

any case. The gravest note will be the fundamental one of the type y=/i(x)fi(2’)e*, 

the values of « being determined by roots of f,' (a)= 0. 

On p. 88 we have given the lowest root of this equation for different values of 

the eccentricity of the bounding spheroid. We thus get these results :— 

| Ratio of 
e | ka ax frequency wave length/a Pouseney to 

fo | 20815 | 10950 30186 1 

O1 | 20825 10955 30172 |  1-0005 

02 | 20848 10960 30158 10010 

03 | 20365 10975 30117 10024 

0-4 2:0902 10993. 30061 10042 

05 20961 | 11026 2:9978 1:0070 

o6 | 21035 | 11064 2-9876 1-0104 

oy | 241194 3 | 29745 1.0150 

08 21233 11170 2-9594 1020 

09 | 241364 11240 29411 1.0264 
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The most striking thing about these results is the exceedingly small influence of 

moderate eccentricity on the frequency. 

The interval between the fundamental notes for a sphere and a spheroid of eecen- 

tricity 35; is less than a comma. 

For the sphere to sound the middle c of a piano (c’) its radius must be 

a = 41487 centimetres = 164 inches. 

If the eccentricity is 4 then a =41'764 centimetres = 16°444 inches. 

” ” ty py he 42°57 ” =16°761 » 

If we wish to find the motion of the enclosed air due to a given normal motion of 

the bounding spheroid, we have 

a apne JS (a’k) et (say) when #=2,; 

and so we assume p=A/f(a’) f(x) e*, the boundary condition being Af'(x)=a, .. A= far ) 
X 

and our solution becomes w= a ©) VACA Gade 
“fF (@) 

To determine the motion of air contained between two confocal spheroids, we must 

use two independent solutions of our fundamental equation, neither of which become 

infinite anywhere between the spheroids. 

We may take y = [Af (x) + Bo (2) ] f(a’) e*. 

When x=2, and =a, we must have oF =o. Hence 

Af’ (a,) + Bo’ (a) =0, Af’ (a) + Bo’ (x2) = 0. 

Eliminating A:B we get 

SF (a), $' (a) 

SF (#2), (2) 

which is the frequency equation to determine «. 

On the communication of vibrations from a spheroid to the surrounding gas. 

We shall suppose the disturbance due to a periodic normal motion of the surface 

x=. If the normal displacement is ¢(#')e* we can expand ¢(«’) in a series of 

F@) et so that at the surface «=a, we have to deal with a boundary condition 

of the form ca =f (Am) ex. 

To represent the motion in the surrounding gas we want a solution appropriate to 

divergent waves: and so take w= Ag (z) f(z’) e*“, where z=da, 2 =a’. 

The boundary condition gives 1=AA¢g’—(z%) so that 

vag onl ee 
13—2 
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At a great distance from the spheroid z is very large, so that $~ (2) =b, — 

approximately. 

Hence at a great distance from the Sana we may take 

e (xct—z) 

Y= w SS 
etx (ct—a) 

are Wien ee rr 

where @ is the semi-major axis of the confocal Rte through the point in question. 

In estimating the energy emitted by the vibrating spheroid we may note that 

since there can be on the whole no accumulation of energy between two spheroidal 

surfaces, the energy transmitted across any of the confocal surfaces must be independent 

of z. Thus we may if we choose take the particular case when z is very great for 

estimating the transmission of energy across any one of the confocal spheroidal surfaces. 

e (xct—z) 

Now we have just seen that when z is very large we may take ~=A/f(z’) 

where A =b,/Ad™ (&). 

The energy transmitted across a spheroid z up to time ¢ is 

W= [au[[-ey as 

With the usual notation pdp = ada =h’adz ; p'dp' = h?a'dz’, 

dS = 2my. dp! = 20 dp! = Ih V1) =a). dp’ 

= ls, 7 LP SGe vz /#-1 

Bae peed pag 5 Ne 
3 ay a eee ts 

= Qath (a2 — nae 

W= a = aoa 1) aa. 

As already explained, we may take se expressions for y and = corresponding to 

large values of a. 
et (xct—2z) 

This gives =ixcAf (2’) 

e (xet—z) 

ao Af (z) 

when z. is large. 

—s 2) 

Hence W= | dt (ps pcr Af (ey 2th (S -1) de’ 
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If we integrate cosm«(ct—a) {m an integer} with respect to ¢ over any number 
of periods we get zero: while the integral of cos*«(ct—«) or sin*«(ct—a) is }t, where 
t is the time. Thus integrating over a long range of time—or rather over a range 
including a number of periods—we have 

W=}4.t. pwcd|A}? 2arh (= - 3) i. { f (Ax’)}? da’, 

AP (2) ” 
where |A| is the modulus of A = mod. 

: A 1 
Also since we are supposing z very large = may be neglected and we get (re- 

membering that = he) 

2 da’. ae Ap] FO) 

Scattering of waves by an obstructing spheroid. 

Suppose a series of plane waves with their fronts perpendicular to the axis of a 

spheroid move towards the spheroid and are scattered by it. The velocity potential of 

the impinging wave is 
o¢=e* (ct-+a,) — gixct em see p. 89, 

ee BAay n (Ac) f, n (r2’), 

where the coefficients A, are determined as on p. 90. 

For the scattered wave we take w=e'' [B,db,7 (Ax) fi, (Az’). 

At the surface «=a, we must have 

w Anfn’ (A) + Badn (AX) = 0, 

which determines B,, so that the velocity potential of the scattered wave is known. 
—ine 

At a distance from the spheroid we may take ¢n;~ (ua) = b, <— giving 

be (xct—Az) 

wv = TS TBafn (A2’). 

We shall now turn to a brief discussion of the electrical oscillations over the 

surface of a spheroid. 
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Consider the case where the currents are in meridian planes through the axis of 

the spheroid and the magnetic force in parallels of latitude. If a, b, ¢ denote the com- 

ponents of the magnetic induction parallel to rectangular fixed axes, ¢ being along the 

axis of the spheroid, we have c=0, and 

=sin d. x (#2’), 

b=—cosd.y (aa’). 

If as usual we take all variables proportional to et we have (V?+«*)a=0 in a 

dielectric, where «=p/V, V being the velocity of propagation in the dielectric; and 

(V2+«2)a=0 in a conductor, where «?=—4pip/o, the conductor being of specific 

resistance o and magnetic permeability y. 

Since in the present case a=sin $. x(a’), we see that y is a solution of the equation 

on p. 80 for the case n=1. ; 

Thus inside the spheroid we have 

a=Asing. f(Na)f (Nx) e”, 

=—Acos¢d.f (rx) f (N2’) es, 

c=0. 

And outside (in the dielectric) 

a= Bsin dh. B (rx) f (Ax’) e*, 

=—Bcos ¢. B- (Ax) f (Aa’) e'?*, 

c=0. 

Since the tangential magnetic force is continuous we have 

A 
7 Ff (2) = BE (Ax), 

x=, being the bounding spheroid. 

Another surface condition is got from the consideration that the electromotive intensity 

parallel to the spheroidal surface is continuous. Now the oscillations of the surface 

distribution of electricity are very rapid for ordinarily sized spheroids—the wave length 

being comparable with a diameter of the spheroid, and the velocity of propagation very 

great. 

But we know that in the case of very rapid oscillations the disturbance is confined to 

a very thin ‘skin’. 

Inside this skin there is no E.M.F. [or there would be an electrical disturbance, which 

does not occur]. Hence for continuity of E.M.F. we see that the tangential E.M.F. vanishes 

at the surface of the dielectric. 

To get an expression for the E.M.F. we make use of the circuital relation of Ampere, 

that the line integral of the magnetic force round a circuit =47x current through the 
circuit. 
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Apply this to the ring-shaped circuit in the figure and we find, if H is the 

resultant magnetic force and ( the intensity of the current, 

4arC . Qery .dp = £ (amy . HH) da, 

Now the E.M.F. parallel to C in the dielectric is ae and we have seen that 

this vanishes, so that our surface condition is 

4 (yl)=0, 
when «=a, and y =hV(e—1)0—2”), 

“ [Va,? — 1 @- (ra,)] =0. 

Now from p. 88 we see that 

2. Met 1 6- a= [+e - | ew 
nr. p 

so putting z=Xa,, the frequency equation becomes 

ee Ie -*) (0+ - =) | =(/. 

In the case of the sphere, X=0 and the series for pn” (Ax) are finite, so that 

the problem is very easy. The most important case corresponds to n=0, giving p)=2, 

b,=—b,, b, and all other b’s vanish, so that w (1 - 5) e-%=0, 22—iz-1=0, and 
dz 

i+ V3 
Dea ey tee UTNE 

2 

Vt -3V 
Thus ¢?=e*?t=¢ %¢ % ‘. Thus the frequency is vais and the modulus of 

4a, 

decay is =. so that for ordinary sized spheres the vibrations are almost “dead beat.” 

For values of 2% other than zero the question is not so easily answered. The 

modulus of z for the case of the sphere just considered is unity, and in the general 

case the series ee ... converges only for large values of the argument. For small 
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values of the eccentricity we can get z from this series sufficiently accurately, as 

the coefficients b., b,... will be very small; but for larger values of e it will be 

necessary to replace this descending series by the ascending ones f and F, in the 

manner indicated on p. 87. 

If we wish to consider the oscillations between two confocal spheroids (conductors) 

we must take, in the dielectric between the conductors, 

a=sin b. f (da’) ev [Cyt (An) + Dy“ 2)], 
b=—cos@...; c=0. 

By the same argument as before we must have yt )=0 when z=2, and =a, 

(the bounding surfaces), 

i = d = 
. ee {[Cy* (am) + Dy~ Qx,)] Va? — 1} = 0; AT {[Cx+ (ws) + Dy~ (Aa.)] V2 — 1} = 0, 

1 2 

and eliminating C:D from these two equations we get an equation to determine the 

frequency and modulus of decay. The case of a thin homeoid has already been discussed 

on p. 96. 

On the decay of electric currents in conducting spheroids. 

First take the case when the lines of magnetic force are parallels of latitude. 

Then just as on p. 102 the tangential magnetic force in the conductor is Af(\’z) f(X'z’) e, 

where oa . This must be continuous at the surface of the conductor, and if we 

neglect displacement currents it is zero in the dielectric. Thus the admissible values 

of « are given by f(’%)=0, where «=a, is the surtace of the conductor. 

We have already shown how the roots of this equation are to be found. The. 

tangential magnetic force is LA, f(A,/x) f(rs2’) e tH is where the summation extends to 

the different values of «x, given by the roots of f,(A’%)=0. The constants A, are 

determined in terms of their initial values by the usual process (see p. 88). 

Next take the case when the currents are in parallels of latitude. If P, Q@, R denote 

the components of E.M.F. (corresponding to a, b, c of last problem) we have :— 

Inside the spheroid P=Asin $f (X2) f (V2’) e?*, 

=—Acos¢...; R=0. 

Outside the spheroid (in the dielectric) 

P=Bsin d®- (Az) f (Az’) e?*, 

Q=—-Beos¢...; R=0. 

The continuity of the EMF. parallel to the spheroidal surface gives 

Af (Na) = BH- (ray). 
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Another “boundary equation” is got by considering the fact that the magnetic 

induction tangential to a meridian is also continuous. By making use of the circuital 

relation of Faraday and proceeding just as on p. 103 we get in this way 

bhi U a = * War —1f(r'm)] = Bo [Va — 1 @- (ra,)}. 

Eliminating the ratio A: B from the two salshel equations we get 

oo ENV aa al wo? —1f (r'%)] fe (Va? —1 ®- (ra,)] 

jet OQiah wh NELAGey ma 
This equation can be considerably simplified by noting that the currents will decay 

so slowly that p/V must be a very small quantity. Thus 2 is in this case exceed- 

ingly small. 

When A=0 the equation on p. 88 becomes 

at u at oa +22)" 4 (4e—p +2) n=0, 

while p=n(n+ 1). 

If we solve this in ascending series in the form u=4a,2-" +@ni,2-"*1+..., we have as 
enike 

the indicial equation m?—3m+2—n(n+1)=0, so that m=n+2, and we have y,=a. Qay 

approximately when 2 is very small. 

Hence when X is very small we have 
is e7e 

®,~ (Az) = aV a? — —— Oar? ; 

d aie 
dx ee nO) ne 

and ———— = —— . 

P,- (Ax) Ja —1 

So that the frequency equation becomes 

(1 + np) a fn (Aa) +’ (a? — 1) fi’ ('x,) = 0 

and when yw is very great this is practically equivalent to f, (\’2,) =0. 

Various problems on the conduction of heat in spheroids may be discussed on the 

same lines as above. 

For an isotropic solid of specific heat c, density p, and uniform conductivity x, 

: ses OD : 
the equation of conduction is a V*v, where v is the temperature, 

Suppose we have a spheroid with its surface w=, kept at uniform temperature v, 

and wish to ascertain how the heat diffuses into the interior. We take v—v, to vary 

Si, 
ase ® and so get (V*+x«°*)(u—»v,)=0 

i eee Up = SAnin (Ax) fn (A2’) ae. 

Vout. XVII. Parr I. 
iy 
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which represents a temperature gradually approaching v, everywhere. The surface con- 

dition gives 7, (A#)=0, and so determines the admissible values of x. 

Initially (when t=0) we have v=v, + LAnfn (At) fn (rx’), and to determine the 

constants A, we should require to expand the initial temperature in a series of this 

form. (See p. 88.) 

For example suppose that initially v=v,+Af,(Az) f,(Az’), then at time ¢ we should 

pa 2 
have v=y+Af, (Az) f, (Az’)e ” ‘. The ‘modulus of decay’ is oP _°P* —_. The values 

Rae hee (ae 

of «a are the different roots of fi(ca)=0. The decay is slowest for the smallest root. 

Calculating this by the method of p. 87, and taking ek for copper and =0:22 

for iron, we are led to these results :— 

1 
for Copper for Iron 

0 31416 08964 agisn on | Unica 

01 31538 | -osss3 | 4547 | 09877 

02 | 31902 08696 | 4467 09701 

03 | 32598 | -08381 “4295 0.9328 

o4 | 33476 | -o7s98 | 4057 | 08810 

05 | 34785 07319 3760 | 08166 

If the surface temperature is a given harmonic function of the time, say ve", we 

cp take v to vary as e@ and get (V?+«*)v=0, where bs. ee 
1 

To represent waves of heat travelling inwards from the surface we take 

v= DAngnt (Az) fn (Ax’) ef. 

The constants A, are determined from the surface condition which makes 

% = LAngn* (Ax) fn A’). 

Suppose the surface temperature is v,f,(Aa’)e'*, where v, is ‘a constant. [We know 

that when 2»=0, f, (Az’)=P,(“), so that for small values of 2, f,(A2’) differs very 

little from a constant.] 

Then the temperature at any point of the spheroid is given by 

bor (Az) per oman v=, 
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We have K=—io p= =—tom say, 

% enn 0-9; Z2=)L£ aoe ee = apn) Ad 

Now ®,* (Az) = Bt, (z) = =(1 ~%_b)a€ =- * Rew say, 

and @,+ (Am) = — Re™. 
0 

ae Mela % 
So y=. , — etl (2-20) +¥—Yotot] ra’ | 02 R, Fo(ne') 

aR =a / BE a -a) , i[ -/ Ee -a)+W-y +et] 
=NH—s e aa fora’) .€ Py ; E aR, 

This represents a wave moving inwards from the surface with velocity 

26/2, 
fern ep © 

The phase is not the same throughout, the change at the surface a from that at a, 

being y-—y,. The amplitude also diminishes as we go inwards, its ratio at a to that 
a, mo 

: 0 = “a to 59): 
at the surface a, being 7p . e 

0 

Making use of the relations connecting the coefficients 6,, b,... on p. 86, and 

using the value of p, on p. 82 we easily get, 

F J mo 1 (mo) 
wy — J] — | a 292 __ _-_-~_ q det |, 

as Gz 2 io) nese 

Pek fy eae ae ls oa, 'e* ] 

and of course Re is got from this by writing a, for a. 

ace /ma 8V2mo) aze?  2m?o7a,e 
GS [2 = ( mo + : . 

5 AUT hes Thus Eee 3a Te = a 45 3 

= (= ue st ) age — ca a,*e 
3a DB Uke ieee ty oaks 

and R= E = (5 > = =| ace? — ate.] + aes a Zo: Le (Ge) eats 

The quantity - is the “thermal diffusivity” of the substance. For copper we may 

take == 143 and for iron + = 022 We have seen that the velocity with which the 
me 7 
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a5 
wave travels inwards along the axis is ‘hs a If the period were ten minutes, this 

would give a velocity of 02367 centimetres per second for copper and ‘004609 for iron. 

The following table gives the change of phase and amplitude on the spheroid a= 20, 

the surface a,=30 being exposed to a fluctuating temperature, the period 10 minutes. 

eS. 
may, at a,=30  |a=20 and a,=30 

o | a |. ogtova 0 

01 | og999 | ogioea | 4 

o2 | 099954 | 091032 | 14’ 

03 | 099826 090915 | 28° 

~o4 | o9g7e1 | ogosse | 42 | 

Os | 099529 090644 50 wees 
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IV. Certain Systems of Quadratic Complex Numbers. 

By A. E. Western, B.A., Trinity College, Cambridge. 

[Received 24 October, Read 31 October 1898.] 

1. THE object of this paper is to discuss the Theory of quadratic complex numbers 

from the point of view indicated by Prof, Klein in his Lectures on Mathematics (1894), 

Lecture VIII. on “Ideal Numbers.” 

A quantity ¢ which is a root of an equation 

a+ qa" + ...+a,=0, 

the coefficients a, a,...@, being rational numbers, is called an “algebraic number.” 

(See Weber's Lehrbuch der Algebra, Vol. u1., Chapters 16 and foll.) In particular, if the 

degree of the equation of lowest degree satisfied by ¢@ is 2, @ is “an algebraic number 

of the second order,” or more briefly, a “quadratic number.” I do not propose to 

discuss non-integral quadratic numbers, and I shall therefore speak of “quadratic numbers,” 

meaning thereby “ quadratic integers.” [$ is an “integral algebraic number” when 

@, Az,... d, are all integers. ] 

Every quadratic number is then a root of an equation 

w2+a,r+a,=0, 

where a, and a, are integers. Solving this equation, we obtain 

—4+ Va,’ — 4a, p = a ps ° 

Let a,2—4a,= ed, where d does not contain a square; then 

—atevd 
Co) = 5 was F 

Note that d=1, 2, or 3 (mod. 4), for if d were =0 (mod. 4) it would contain a 

square, contrary to hypothesis. 

Vou. XVII. Part II. 15 
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There are now two cases to be considered :— 

(1) a even: then e is even, and d=1 or 2 or 3 (mod. 4), and therefore ¢ is 

of the form «+y¥d, where x and y are integers. 

(2) a odd: then e is odd, and d=1 (mod. 4), and therefore ¢ is of the form 

e+y Vd : 

2 

where x and y are odd integers; this may also be written 

ry pit 
sek eee 

xz and z' being integers, and y’ being odd. (In the volume above cited, pp. 601 and 

foll., Weber discusses these systems of quadratic numbers and obtains the above results.) 

I shall only consider the case d negative; the resulting quadratic numbers are 

“complex,” in the usual sense of the term. And I shall call numbers of the forms 
75 

chxd numbers of the first and second “type” respectively. It will a+yNd and #+y 

1+%d 
2 

be convenient to use the symbol @ in lieu of Vd, or of , so that for any 

assigned value of d, and whichever type is being considered, the general form of ‘the 

numbers of the system is 

z+ yO. 

In the first type, &—d=0; 

in the second, @—@+ = =0. 

By a “system,” I mean the totality of numbers of the form 2+ y@ of a given type, 

for a given value of d. 

2. The product of any two numbers of a system is a third number of the system; 

in fact, for a system of the first type, 

(a + y®) (a! + 7/8) = (aa! + dyy’) + (xy’ + x'y) 8, 
and for one of the second type, 

/ ’ u 1-d ’ , ’ , 
(@ + y8) (a +) = (au ~~" w) + (ay + xy + yy’) 0. 

Each system is therefore, for multiplication, complete in itself. 

When however the question of factorisation is considered, a system is not necessarily 

complete in itself. Evg. 

6=2x 8=(1+¥7—5)(1—- V— 5). 

Thus in the system of the first type, given by d= —5, the number 6 can be 

decomposed in two distinct ways into prime factors. In face of this difficulty, Dedekind 
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invented his theory of “ideals” (Supplement XI. to Dirichlet’s Zahlentheorie); and Weber, 

in his Algebra, follows the same method. This theory, owing partly to its generality 

and partly to the novelty of the conceptions introduced, is difficult; Klein’s treatment 

introduces clearness and simplicity. Gauss’ Composition Theory in the Theory of Binary 

Quadratic Forms is in fact the key to the factorisation of quadratic numbers. The 

connection between the Theory of Binary Quadratic Forms and the Theory of Quadratic 

Numbers is due to the fact that every principal form of a given determinant is the 

product of two conjugate quadratic numbers. 

When D=0 (mod, 4) =— 4d, the principal form of determinant D* is 2 yf, which 

is equal to (x+y V—d)(«—yV—d). 

And when D=1(mod. 4)=1-— 46, the principal form of determinant D is 

a+ vy + 87’, 

which is equal to (2+ x : meat (« ty) =) ; 

Since D is to be taken negative in this paper, d and 6 will henceforth denote 

positive integers. 

The product of a quadratic number and its conjugate will be called the “norm” 

of that quadratic number. The norm is evidently a real positive integer. 

The following notation will be convenient :— 

a, b, c,... denote quadratic numbers, a’, b’, c’, ... their respective conjugates, and 

A, B, C,... their respective norms, and 

A=aa =N (a)=N(a). 

If then a= be, 

it follows that A=BC, 

so that to every multiplication of quadratic numbers, corresponds a composition of 

quadratic forms. 

Now Gauss’ law of Composition asserts, that if f and f’ are two quadratic forms 

of the same determinant, then the product of any two integers representable by f and 

J’ respectively is representable by a definite form # (which according to circumstances may 

belong to the same class as either f or f’, or may belong to a different class to either). 

If A is an integer representable by the principal form, and if B and C are factors of 

A representable by forms belonging to classes other than the principal class, and if 

A=BC it is evident that there corresponds the factorisations a=be and a’ =b’c’, where 

b and 6 are the linear factors of B regarded as a quadratic form, and similarly ¢ and 

Gof. 

* As suggested by Klein, I write a quadratic form ax*+bry+cy?: its determinant is D=b?-4ac. 

15—2 
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To complete a system of quadratic numbers, it is therefore necessary to introduce as 

“numbers” of the system the linear factors of the representative forms of each class 

for the given determinant: the numbers thus introduced will be called “secondary,” in 

contradistinction to the “principal” numbers originally defined: they will be denoted by 

ai+yp, where x and y are any real integers. 

3. It is clear from what precedes that the properties of a system of quadratic 

numbers are very intimately connected with the number of classes of Quadratic Forms 

of the corresponding determinant D. Where there is only one such class, the corre- 

sponding system of quadratic numbers of the form a+y@ is complete, not only for 

multiplication but also for factorisation. The negative values of D for which this is 

the case are 

=3 =4 =7, —8, =i), —12; —16)—19) — 2%, — 237 —43) 6/3 — lbs 

(see table in Gauss’ Werke, Bd. 11. p. 450). 

The first two of these cases are well known; D=—3 gives the numbers 2 + yp, 

where p is a cube root of unity, and D=—4 gives the numbers «+ yz, « being a fourth 

root of unity. 

As my object is to consider the character of the secondary numbers, in the form in 

which Klein has presented them, I shall set aside the systems of quadratic numbers for 

the values of D above given, and shall devote the remainder of this paper to the con- 

sideration of the case which comes next in simplicity, when there are two classes only of 

quadratic forms. 

The negative values of D for which this is the case are given by —D=15, 20, 24, 32, 

35, 36, 40, 48, 51, 52, 60, 64, 72, 75, 88, 91, 99, 100, 112) 15, 123° WAT, L485 TST 232, 

235, 267, 403, 427. (Gauss, loc. cit.) ; 

When D=—15, the forms representing the two classes are 

a + xy + 4y?, 

and 2x7 + wy + 2y’. 

The former is equal to 

the latter may be written 

and hence it is 

(5+ a8 yo ee Sn ee, 
ee a I 

and therefore 
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The object of expressing the linear factors in this particular form is to ensure that 

the product of two secondary numbers should be a number of the system: this is now 

the case; for 

V54+V—38\2 14+V7-15 
r= ( > y= 2 = 6, 

V5 4+V—8)\ (V5—V—3) _. 
x ( 2 )( 2 )=2, 

an EON er ni J=35 and (aL > Hee SES Sf 

Also we have AO=A—Qyw, pwO= 2X. 

If, however, we took 

: 5,.,1+V¥—15 5.,1-Vv-15 

we should find that neither of these factors behaves as an integral number; for 

— seat eye Oy 

2v2 4 

which is a non-integral quadratic number. 

In the Lecture VIII. before referred to, Klein discusses generally this question of the 

proper factorisation to obtain the secondary numbers, and states that “it is always possible 

to bring about the important result that the product of any two complex numbers” of the 

system of the principal and secondary numbers “will again be a complex number of the 

system, so that the totality of these complex numbers forms, likewise, for multiplication 

a complete system.” 

When D=- 20, the forms representing the two classes are 

a + by’, 

and 2a? + 2ey + 3y°. 

The principal numbers are given by a+yV—5, 

the secondary numbers by aN2 py te 

Therefore in this case 

M=2, AM=14+0, w=—-24+6, M=—-A+2u, wO=—3BA+yp; 

1-V—-5 
v2 

Le. A—p, and NV(w)=p(A—p)=3. 

the number conjugate to mw is ? 
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This furnishes a full explanation of the paradox 6=2x3=(1+6)(1—6) mentioned 

above (§ 2). Neither 2, 3, 1+6, nor 1—@ are primes, but 

2—Ay 3=pn(A— Pp), 

1+0=rp, 1—0=A(A—p). 

In like manner the values of X% and ww may be determined for the other values of D 

given above; it is, however, unnecessary to do so here, as the general theory of any of these 

systems of quadratic numbers is to a large extent dependent of the particular numerical 

value of D; where this is not the case, I shall confine myself to the system D=— 20. It 

should be observed that in general secondary numbers are not quadratic numbers as defined 

in § 1: the latter are those which have in § 2 been given the name of principal quadratic 

numbers. In the case D=—20, the only exceptions to this statement are the numbers 2), 

whose square is 22%, and xrrxO =a (— +2), whose square is 102%, # being a real integer. 

4. A number whose norm is 1 is called a “unity”; a secondary number cannot 

be a unity, for 1 is representable only by forms of the principal class. 

If a+m@ is a unity of a system of the first type, then 4°+da’=1. 

Since d is positive, and >1, the only solutions of this are a=+1, %=0. 

Similarly for systems of the second type, we get 

G2 + Ay%, + 64,2 = 1. 

Since 6>1, this gives only q=+1, 4%=0. 

Therefore the unities of the systems now being considered are simply +1, and 

—1, just as in the theory of real numbers. 

There are three kinds of primes in any of the systems: 

(i) principal primes, which will be denoted by p, and whose norms P are prime 

numbers in the ordinary sense; 

(ii) secondary primes, denoted by g, whose norms @ are also ordinary prime 

numbers; and 

(iii) real primes, denoted by r, which are ordinary prime numbers not represent- 

able by either form of the determinant—D. The norm of r is 7. 

The primes, as thus defined, are evidently indivisible into actual factors belonging 

to their system. It will now be proved that they are primes in the full sense, so that 

any number can be expressed as the product of these primes in one and only one 

way. 

Let m be a quadratic number, principal or secondary, M its norm, m being such 

that M is odd, M, a prime factor (in the ordinary sense) of M; and let M=M,M,. 

Then M being a norm is representable by a quadratic form of determinant D, corre- 

sponding to the given system of quadratic numbers. It follows from the ordinary Theory 
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of Numbers that all the factors of M are also representable by forms of the same 

determinant. 

Let H, H,, and H, be forms respectively representing M, M,, and M,. Then the 

theory of Composition supplies the algebraical identity 

A CXG Vi) (a ay) x (a, 2), 

where X and Y are lineo-linear functions of a, y, a”, y’. 

Each linear factor of H,(«, y) therefore divides H(X, Y), and therefore must divide 

one or other of the linear factors of H(X, Y). 

Each linear factor of H(X, Y) is therefore the product of a linear factor of 

H, (a, y) and a linear factor of H,(a’, y'); each side of this equation may then, if 

necessary, be multiplied by the numerical factor required to bring the linear factors of 

H, H,, and H, to the correct forms (see § 3); lastly, if X, Y, 2, y, 2’, y’ be given the 

values for which the forms H, H,, and H, respectively represent the integers M, M,, 

and M,, the algebraic equation becomes numerical, and gives the factorisation of m in 

the form mm. If m, is not prime, it can be similarly treated. 

Thus finally we obtain a unique expression for m as a product of prime factors. 

A method is given later for actually carrying out the process of factorisation. The proof 

above given is not applicable to the factorisation of the determinant itself in quadratic 

numbers; in most cases the determinant has a unique factorisation, but when 1D (D 

being even) or D (if D is odd) contains a square, this is not the case; eg. D=—36: 

then 9=3?=— & 

Nor is it applicable to the factorisation of 2, though as a matter of fact, in most 

cases no exception to the general law of unique factorisation arises in connection with 

2. Besides the cases where = is a multiple of 4 (a particular case of = containing 

a square) there is only one exception, which arises in the case D=—60; the quadratic 

numbers are then of the forms e+yN — 15, and aVv3+y Vv —5, and so 

M-w=3+5=8, 

and therefore the number 8 can be factorised in two distinct ways, 2x 2x2, and 

(A+)(X—y). In these anomalous cases Klein’s method breaks down; it fails to give 

the ultimate prime factors. Apparently these cases can only be dealt with by Dedekind’s 

method. Putting aside those values of D with which we cannot deal, the following 

values of —D remain to be studied: 15, 20, 24, 35, 40, 51, 52, 88, 91, 115, 123, 148, 

187, 232, 235, 267, 403, 427. 

The systems arising from the latter values of D can be divided into three sets: 

(i) Those in which 2=)?; these are given by —D=20, 24, 40, 52, 88, 148, 

and 232. 

(ii) That in which 2=2yp, being the case D=—15. 
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(iii) Those in which 2 is a prime; these are given by —D=35, 51, 91, 115, 

123, 187, 235, 267, 403, 427. 

The numerical values of 6, X, and yw, and of their norms, and the values of AO, pA, 

etc, are given for these 18 values of D in Tables I. and II, at the end of the 

paper. 

5, All the elementary theorems of the ordinary Theory of Numbers in regard to 

prime numbers and divisibility are true for the 18 systems to which I now confine 

myself, since for each of them the law of unique factorisation exists. I shall therefore 

freely adopt, without definition, the technical terms, such as ‘modulus,’ “ residue,” 

“congruence,” of the ordinary Theory of Numbers, and the usual notation connected 

therewith. 

The operation of multiplication can be applied to any numbers of a system, whether 

secondary or principal. It follows at once from the theory of composition, applied to 

the case of determinants with two classes, that the product of two principal numbers, 

or of two secondary numbers, is a principal number, and that the product of a principal 

and a secondary number is a secondary number. Examples of these laws are given in 

§ 3, for the cases D=—15, and —20. On the other hand addition only operates 

between two numbers of the same class, either both principal or both secondary. For 

the quantity obtained by adding together a principal and a secondary number does not 

belong to and has no necessary connection with the system of principal and secondary 

numbers, and must therefore be considered as irrelevant to the present subject. 

6. Residues.—In accordance with the principle above stated, a principal number 

cannot be congruent to a secondary number. Complete sets of principal residues and 

of secondary residues to a given modulus are required: the most convenient complete 

sets are given by the following formulae, which relate to the case D=—20; the 

method of obtaining them is the same for each system, but the actual results differ 

slightly from each other. 

I. Principal modulus, n=g(«+y@), where x is prime to y; let M be a?+5y?, the 

norm of 2+ y8. 

(1) Principal residues:—A complete set is given by s+#0, where 

HS; Wy sect (Mg —1), 

C=O. Mo ncmaniete (g —1). 

+= Ohl (59 1), 

f Onalee (eg el) 

k being 1 or 2, according as ~+y is odd or even, ie. according as M is odd or even. 
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II. Secondary modulus, n=g(a\+ yu), where « is prime to y. M=2z* + 2xy + 3y', 

the norm of wr + yp. 

(1) Principal residues:—A complete set is given by s+ t@, where 

=O se (Mg —1), 

t=O) TS cos (g—1) 

(2) Secondary residues:—A complete set is given by s\+tw, where 

gin (ears (G9-1), 

(HU) here (kg —1), 

k being 1 or 2, according as y is odd or even, i.e. according as M is odd or even. 

It should be noticed that in all cases, the number of residues in a complete set 

is Mg, which is the norm of the modulus. 

The proof of I. (2) will be given as a specimen. If sX+¢u is a multiple of 
n, then 

N+ tu=g (x+y) (ur+ vp). 

Now A9=—2A+2yu, wO=-—3A+p, so equating coefficients of ~ on each side, we get 

t= {v(at+y) + 2uy} ; 
so, k being 1 or 2, according as #+y is odd or even, 

UAOM(MOO SEG). tencecvsee seen sasusucoesqsestas tata aceeere (i). 

Also, (sr + tu) (x — yO) = gM (ur + vp), 

therefore s(w@+y)+t(3y)=0 (mod. gM), 

8 (— 2y)+t(x— y)= 0 (mod. gM). 

Find & and 7», so that (7+y)n—2y&=k; then we get 

ks +t (3yn + v& — y&) = 0 (mod. gM). 

Now M=a"+5y*, where « and y are not both even, for they are coprime: if one 

is odd, the other even, M is odd, and k=1; if both a and y are odd, M is even, 

and k=2:; in either case M= 0 (mod. k). 

Therefore, dividing the last congruence throughout by hk, 

s +5.(8yn + #& — yé)=0 (mod. g 7) Baca ssec cae ee sae seats sees ae (ii). 

Congruences (i) and (ii) are the necessary and sufficient conditions that sX+ tu 

should be a multiple of n. 

No two numbers of the set s\+fu, where 

Se i Rare (F9-1), 

(sn oe (kg — 1) 
are therefore congruent for the modulus », and every other secondary number is 

congruent to one of them: in other words, this set is complete. 

Vou. XVII. Part II. 16 
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In the important case of the modulus being prime, the results are simpler, and 

admit of being stated generally for all the systems. 

(i) Modulus n, a principal or secondary prime, whose norm is J. 

Principal residues :—0, 1, 2, ...... , NV-1. 

Secondary residues :—0, A, 2A, ...... , (VW—1)\X, provided that n is not 2X. 

(ii) Modulus 7, a real prime. 

Principal residues are given by s +6, 

Secondary residues by s\ +t, 

where 3s =O ees ,r—-l, 

7. Factorisation of numbers—KEach real prime factor of a real number can either 

be represented by one of the quadratic forms connected with the system, in which case 

it is the product of two conjugate prime factors, or it is a real prime of the system. 

To factorise n=x+y0, or aX+yp, where x and y are coprime. Express WN, the 

norm of n, as the product of real prime factors d, B, ...... . Each of these numbers 

is representable by one of the quadratic forms connected with the system; therefore 

A=aa’, B=Dbb’, ..., where a, a’, ... are primes of the system. 

By the method shewn in the previous section, calculate the residue of n (mod. a); 

if this residue is 0, a@ is a factor of n; if it is not 0, a’ must be a factor of n. 

Similarly the other factors of n are determined. 

Example, in the system D =-— 20. 

55 (61+ 26). 

5 =— 6, 11 is a prime. 

The norm of 61+ 20 is 61°+5.2?=3741 =3.29. 43. 

3=n(A-p), 

29 = 3? +5. 2°=(3 + 20) (3 — 26), 

43 =2.4°4+2.4.143.1=(40 +p) (5A —p). 

If @ = a (mod. 3 + 28), 

(8 — x) (8 — 20) =0 (mod. 29); 

hence 3x2 —10=0 (mod. 29) 

se + 3=0 (mod. 29), 

and so « = 13 (mod. 29). 

Then 61+ 20= 61 + 2x=87 =0 (mod. 3 + 28). 

Similarly 61+ 2@ is a multiple of X— yp, and of 44+ yp. 

Therefore the number 55 (61 +26) is —11@7(A—,)(44 4+ pz) (3 + 28). 
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8. Congruences.—Precisely as in the ordinary Theory of Numbers, Lagrange’s theorem 
as to congruences may be proved:—a congruence of the nth degree, the modulus being 
prime, cannot have more than n incongruent roots, 

And if such a congruence appears to have more than n incongruent roots, it is an 
identical congruence. 

The linear congruence 

ex =f (mod. x), 

nm being any number, and e being prime to m, has one and only one root. 

E and N being the respective norms of e and n, real integers & and 9 can be found 
such that 

En —NE=1. 

Then since En =1 (mod. n), 

ee'nf =f (mod. n), 

where e’ is the conjugate of e. 

The solution is therefore x= e'nf (mod. 7). 

9. Fermat's Theorem.—I. For powers of a principal number h, prime to the 

modulus n, which is a prime of any one of the three kinds. 

Let K,, K,,... Ky-, denote a complete set (except 0) of principal residues to the 

modulus x. Then hK,, hKy,... hKy-, is also a complete set. 

Therefore WN-1 GK, ... Ky_1) = KK, ... Ky_1 (mod. n), 

and so AN-1= 1 (mod. n). 

II. For powers of a secondary number j, prime to the modulus n. 

In any system, a secondary number j, can be found whose square is a real integer, 

and which is prime to n. 

In systems of the first type, provided n is odd, j, may be taken to be A, and 

then j,?= 2. 

In systems of the second type, 7,=A+p, Or A—yw, one or other of which is prime 

to n. : 

Then j°=f, where f may be found for each system from Table I. 

Then MUGS WGA Con WEG 

and elGisr Je Kaste=s Jobnet 

are two complete sets of secondary residues to the modulus n. 

And therefore gX-1 =9.%-1 (mod. n). 
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For systems of the first type, we get 

poia2e (mod. 7) 

=(2/N) (mod. n) 

N?-1 

=(—1) ® (mod. n). 

For systems of the second type, 

Nei 
je — ae (mod. n) 

=(f/N) (mod. n). 

When a particular system is specitied, the expression of Fermat’s theorem can be 

simplified. Thus for the system D=— 20, the theory of generic characters shews that 

P (the norm of an odd principal prime p), being an odd integer representable by the 

principal form, satisfies the congruence 

P=1 (mod. 4); 

and that Q (the norm of an odd secondary prime gq) satisfies Q=—1 (mod. 4). 

Applying the general theorem that has just been proved 

N2-1 

jX=(-1) § (mod. n), 

first to the case of n=p, we obtain 

jP-1=+1 or —1 (mod. p), 

according as P=1 or 5 (mod. 8). 

P-1 
And therefore pus(-tl) (mod. p). 

Q41 
Similarly j2?-1 =(-1) * (mod. q), 

and ial (mod. 7), 

since R=r=1 (mod. 8). 

10. In the theory of real numbers, if a is an odd number 

a?=1 (mod. 8). 

I propose to consider the analogue of this for quadratic numbers, but here and in 

the sequel, whenever the properties of 2 are in question, I shall contine the discussion 

to the seven systems mentioned in § 4, for which 2=2*% In these cases 6=Vv-d 

—D 
where d= Paine . 
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Numbers will be called odd, semi-even or even, according as they are prime to A, 

a multiple of X% but not of 2, or a multiple of 2. As above A denotes a principal 

number, j7 a secondary number. 

If h is odd, h=1 (mod. 2), 

that is h=1+)k; 

therefore h?=1+ 2k + 2h? 

=1 (mod. 2), 

To proceed further, with higher powers of A for moduli, it is necessary to distin- 

guish the cases where d is odd, from those where it is even. 

First, the case d odd; then 0=V—d is odd. 

So, h being odd =1 or @ (mod. 2), 

that is h=1+2k, or 642k; 

therefore hW?=1+4k+ 4k, or — d+ 46k + 4h. 

Now, if k is odd, so are 6k and k*; and if k& is a multiple of A, so are 6k and k*: 

in either case k? +k and k?+ 6k are multiples of 2X. 

And so h?=1 or —d (mod. 4n), 

according as h=1 or @ (mod. 2). 

Similarly when d is even, and, as before, h is odd, 

h?=1 or 1—d +26 (mod. 4), 

according as h=1 or 1+@ (mod. 2). 

Similar results hold for squares of odd secondary numbers. First, the case d odd. 

=e, so fae Sen eg 

2 

As before we get j?=p? (mod. 4A), if j= (mod. 2), and j?=(A—p)* (mod. 4A), if 

j=X-— ph (mod. 2). 

Then 

And so peters or +596 (mod. 4n), 

according as j=e or X— p (mod. 2). 

Secondly, in the case d even b= ee == 

and so pH=- 2 or 2 ao 20 (mod. 42), 

according as j=m or X— yp (mod. 2). 

It is worthy of notice that the squares of odd numbers (principal or secondary) 

in any one of these quadratic systems can be congruent only to 4 out of the 16 odd 
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residues to the modulus A’, Le. 44; a result remarkably similar to the corresponding 

fact in the system of real numbers, viz. that all odd squares are congruent to 1 out 
of the 4 odd residues to the modulus 2°, ie. 8. 

It will be convenient for future use to gather up in tabular form these results 

and some other similar ones, for the particular system D=-— 20. 

Residue of Number Residue of Square Residue of Square 

to mod. 2 to mod. 4 to mod. 4 

0 0 0 or 4 

Principal | p+0 20 +20 

b numbers | 1 1 1 

0 —1 3 

0 0 0 or 4 

Secondary r 2 +2 
be numbers ‘i 246 260g 

A+ pw —2-6 —2-0 

11. Quadratic Congruences to a prime modulus—Since the square of either a principal 

or a secondary number is a principal number, the general form of congruence to be 

considered is 

w=h (mod. n), 

h being a principal number prime to mn, and nx an odd prime of any of the three 

kinds. According to circumstances, this congruence may have either principal solutions 

only, or secondary solutions only, or neither, or both. 

(i) Principal solutions :—the necessary and sufficient condition for solubility is 

ne 
h 2 =1 (mod. n). 

This condition is necessary, for 

N=1 
h ® =a%-1=1 (mod. n); (§ 9, 1) 

and also sufficient, for taking the complete set of principal residues to the modulus x 

in the form 
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: Pe ee ee ; : ’ wl. 
and squaring each, we obtain —j— different residues of squares of principal numbers; 

N-1 
each of them satisfies h ? =1 (mod. x), a congruence (in h as unknown) which cannot 

N-1 a 
have more than —5- roots; therefore every value of h such that h 2? =1 (mod. n) 

« 

is congruent to the squares of two of the principal residues of n. 

Ng an ; oe 
Further the = residues which are not congruent to squares of principal numbers 

are the roots of 
N=1 

h ? =—1 (mod. n). 

The symbol (h/n) will be used to denote the least residue (either +1, or —1) of 
v= w= 

h 2 (mod. n). This must be distinguished from the analogous symbol (A/B) in the 

ordinary Theory of Numbers. It should be noticed that (h/n) has no meaning, unless 

h is a principal number, and n is a prime number. 

(ii) Secondary solutions of — z=h (mod. n). 

N-1 

Then h 2? =a#%-1=41 (mod. n), 

the ambiguous sign depending on the system of numbers and the value of x (see 

§ 9, mm). : 

As before it may be proved that the condition be ae (mod. 7), (as the case 

may be) is sufficient as well as necessary for the existence of secondary roots of the 

congruence. 

For systems of the first type, this ambiguous sign may be expressed as (— 1) = 

(§ 9, 11). Accordingly if N=+1 (mod. 8), the congruence 22=h (mod. n) is soluble both 

in principal and in secondary numbers, provided that (h/n)=+1; but it is soluble in 

neither, if (h/n)=—1. On the other hand, if N= +3 (mod. 8) the congruence is soluble 

in principal numbers only if (k/n)=+1, and in secondary numbers only if (h/n) =—1. 

12. The value of the symbol (h/n) can always be expressed in terms of the cor- 

responding symbol in the ordinary theory of numbers, and so, when h and n are given, 

its actual value, +1 or —1, can easily be determined. The proof of this statement differs 

according as » is a real prime or not. 

First, let n be a principal or secondary prime. Then (§ 6) a real number h, may be 
N-1 N=1 

found congruent to h (mod. n). Hence (h/n)=h 2 =h, 2 (mod. xn); but 

N-1 
h, 2 =(h/N) (mod. NV), 

and so, since V is a multiple of n, 
N-1 

hy 2 =(ho/N) (mod. n); 

therefore (h/n) = (ho/n) = (ho/ ). 
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Secondly, let n=7, a real prime. 

Let h=x+y0, and its conjugate h’=«+ y@. 

If the system is of the first type, @=—d, and so 

Or = (— dy? 6 =(— d/r) 6 (mod. 7). 

Now (-d/r)=—1, for r is not representable by any form of determinant —4d; and 

—6=6'; therefore 6’= 0 (mod. r). 

The same result holds for systems of the second type: then 

20=14+VD, 26=1-VD: 

1 

so 276 =(14VDy=1+ D? VD (mod. r) 

Sup) (mod. 7) 

= 20 (mod. 7); 

also, 27=2 (mod. 7), 

and hence v=’ (mod. 1). 

Then, in either case, hh” =(e@+y0)"=a"+y'O (mod. 7). 

But w=a2, y=y, and &=0 (mod. r), 

so Weae+y0 al (mod. 7); 

therefore WH=hh’= H (mod. 7). 

And) so) fually, (eh aa (Hla) unadaea 

It should be observed that, if both the numbers a and 6 in the symbol (a/d) are real, 

the symbol is still different from (a/b). For in that case, 

e-1 b+1 

(a/b) =a 2 =(a’) 2 =1 (mod. BD), 

while (a/b) of course may be either +1. 

It is evident that (Iyhohs «../n) = (hi/n) (ho/n) (hs/n) «.-. 

13. Laws of Quadratic Reciprocity between two principal (including real) primes 

exist for all systems of principal quadratic numbers; these laws are analogous to, and 

indeed are deduced from, the Law of Quadratic Reciprocity in the ordinary Theory of 

Numbers. In determining these laws, systems of the first and second types must be 

separately considered, and the former will have to be subdivided according as 

d==) = 1 (mod. 2), or 2 (mod. 4). 

For the reason appearing in § 4, systems for which d=0 (mod. 4) are omitted. 
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The following notation will be used, in discussing the laws of reciprocity for 
systems of the first type: p=«+y@, and p’=«'+y'@ denote two (non-conjugate) principal 
primes; P=a*+dy* and P’=2"*+dy* are their respective norms. 

Then PP’ = (a? + dy") (a? + dy’*) = X?+dY?, 

where X =ax'+dyy', Y=a'y — xy’. 

Now we have identically 

wv (a + yO) = wa’ + dyy' + y'0 (a +y8), 

that is wp’ =X (mod. p), 

and so (x/p) (p'/p) = (Xp). 

Since a and X are real numbers, Gh) = (z/P), and (X/p) =(X/P). 

Therefore | (p/p) = (a/P)(X/P), 
Similarly (p/p) = (2’/P’) (X/P’), 

and so (p/p) (p'/p) = (#/P) (| P) (X/ PP’). 

This formula is true for all systems of the first type: in order to evaluate the right- 
hand side of the last equation, we must consider separately the cases when d is even 
or odd. 

14. First, let d be odd. Then since P=a*+dy*, either « is even and y odd, or 
vice-versa. If p=1 (mod. 2), then y=0 (mod. 2), and P=2*=1 (mod. 4); but if p=0 
(mod. 2), then #=0 (mod. 2), and P=d (mod. 4). 

In order to evaluate (w/P), three cases must be treated : 

(Gj) « odd, and y even. 

(i) w=2&, where & is odd, and y odd. 

(ili) #=2E, where & is odd, and w~>1, and y odd. 

(i) Here p=1 (mod. 2): then (#/P)=(P/zx), since P=1 (mod. 4) 

= (a? + dy?/a) = (dy?/a) = (d/x) 
z-1 d-1 

=(-1) 2° (@/d). 
(ii) «= 2, where & is odd, and y odd. 

Then P=4&+4dy?=4+d (mod. 8), 

folersi 
and so («/P)=(2/P)(E/P) = (2/P) (—1) 2 = (P/E). 

Now (2/P) = (2/44 d) = - (2/d), 

and a 5 : = pol (mod. 2), 

and (P/E) =(d/E). 

Wove, G0, Jenga IE 17 
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Therefore (a/P) = — (2/d) (— DF as (d/é) 

= — (2/d) (E/d) = — (#/d). 

(iii) «= 2", where w>1, and € is odd: also y is odd. 

Then P=d (mod. 8), 
eed 
2 a (Bye) therefore (a/P) = (2/P) (€/P) = (2/Py* (— 1) 

ale Gale 
= (2/d (—1) 2° 2 (d/é) 

= (2#/d) (E/d) =(2/d). 

Cases (ii) and (iii) can be summed up in one theorem: if w is even, then 

(a/P) = (— 1)? (#/d). 

15. While continuing to treat the case of d odd, we are now in a position to evaluate 

(p/p) (p'/p). Since PP’=X?+dY¥%, the results of the last paragraph give the value of 

(X/PP’), as well as of (#/P) and (2’/P’). 

Three cases must be separately considered : 

(i) p=p'=1 (mod. 2); 

(ii) p=1 (mod. 2), p’=@ (mod. 2); 

(iii) p=p' =@ (mod. 2). 

It will suffice to give the detailed working in the first of these cases only. In this # 

and a are odd, y and y' are even. So X =a’ +dyy'= a’ (mod. 4), and therefore X is 

odd, and Y is even. Hence the result of § 14 (i) gives 

z—-1 d-1 

(a/P)=(—1) 2" ® (@/d), 
Gl ash 

(2'/P")=(—1) 2 * 2 (#7/d), 
X-1 d-1 

and (X/PP’)=(—1) 2° 2 (X/d), 
az'—1 d-1 

=(-1) 2° = (aa’/d). 

Therefore (pip) (p/p) = (@/P) (e’/P’)(X/PP) 
d=) /z-1+a/-1lt+ae-1 

=(-—1)2¢ 2 ) ; 

Now e—1l+a’—1+4+ae'—1=(e4+1)(2'+1)—4=0 (mod. 4). 

And so the index of —1 on the right side of the last equation is even, and therefore, 

when p=p’=1(mod. 2), 

(p/p) (p'/p) = 1. 
The result when p=1 (mod. 2), p’=@ (mod. 2) is similarly found to be 

-1 -1 x d 4¥ 

(p/p’) (p'/p) =(—1) 2° 28; 
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7] 

that is, if d=1 (mod. 4), (-—1)?, 

et+y-1 

but if d=3 (mod, 4), (1) 2 

aba! d-1 y+y 

And when p=p’=6 (mod. 2), (p/p) (p'/p)=(-1) 2° 2° 2 ; 

zo! 

that is, if d=1 (mod. 4), (-1)2, 

ata'+yty' 

but if d=3 (mod. 4), (-1) 2 

Finally, the Laws of Quadratic Reciprocity for systems of the first type, for which 

d=1 (mod. 4), can be summed in the following simple and beautiful shape :— 

If either p or p’=1 (mod, 2), then (p/p’) (p’/p) =) ay 

ata 

If both p and p’=@ (mod. 2), then (p/p’) (p'/p)=(-1) 2 . 

This law holds for the systems D=— 20, —52, —148 (for which d=5, 13, 37 respec- 

tively); but it also holds for all other systems of principal quadratic numbers of the first 

type for which d=1 (mod. 4), as the existence of secondary numbers is irrelevant to its 

proof. 

In the case d=3 (mod. 4) we similarly have :— 
x (a@—1) y+ (1) ytuy 

2 If either p or p’=1 (mod. 2), (p/p) (p'/p) =(— 1) 

xta'tyty' 

If both p and p’=@ (mod. 2), (p/p’) (p’/p)=(—1) 2 

16. The case d=2 (mod. 4) remains to be treated, in order to complete the discussion 

as regards systems of the first type. 

The procedure is similar to what has been given, so that there is no need to set out 

the working, which is somewhat lengthy, owing to the number of different cases. 

a —1) y'+(2'—1) ytyy’ 
2 

ce 

If either p or p’=1 (mod. 2), (p/p) (p'/p) =(- 1) 

to 
Pew! 

If both p and p'=1+8@ (mod. 2), (p/p) (p’/p) = (— 1) 

17. It is a remarkable fact that the laws of reciprocity between a principal prime 

and a real prime, or between two real primes, are the same as would be obtained from 

the law between two principal primes by making one or both of them become real primes. 

That is to say, if in the formule for (p/p’) (p'/p) we write 2’=r, y'=0, we obtain the true 

expression for (p/7) (r/p). 

For, in every system of the first type, (p/r)=(P/r) and (r/p) =(7/P), (§ 12); and so 

LER eat 
(p/r) (r/p) =(P/r)@/P)=(-D? 2. 

Now if d=1 (mod. 4), P=1 (mod. 4), (§ 14), and hence 

(p/7) (r/p) = +1. 
17—2 
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This is what is obtained from 
uy" 

(p/p) (p'/p)=(-1) * 
when we put r for 2’, 0 for y'; but it need hardly be said that this substitution of r for p’ 

does not prove the result. 

Next, in the cases d=2 or 3 (mod. 4), P=1 or 3 (mod. +) according as y=0 

or 1 (mod, 2): that is 

ait = y (mod, 2). 

pol | 

And so we get (p/r) (r/p) =(—1)" =. 

And this is what we get from the formule for d=3 (mod. 4) G 15), and tor d=2 (mod. 4) 

(§ 16) on putting r for z’, 0 for y’. 

In the case of two real primes, r and 7’, since (r/r’)=+1, and (7/r)=+1, we get 

(r/r’) (r'/r) =+1, which agrees with the formule for (p/p’) (p’/p). 

18. Similar but more complicated laws hold for systems of the second type. Here, if 

p=2+y8, p=ar+y?, 

then P=x2+ay+by, P=a? +a'y' + by”. 

Also, p) being the conjugate of p’, p’ =a +y@=a +y'—-y 08; 

and so ppo = X + YO, 

where X =au + xy’ +byy’, and Y=a2'y—x2y’'; 

and so PP’ =X*?+ XY+68Y". 

The identities on which the theorem depends are . 

x(a’ + yO) =aa' + vy’ + Byy' — yO (ew + y?), 

and (a + y') (a+ yO) = wa’ + vy’ + Syy’ + yO (x+y), 

the latter being obtained from the former by changing # to w+y’, x to x+y, y to —y, 

y to —y, and @ to 6’. 

These identities may be written 

xz.p =X (mod. p), 

and (a +y').p =X (mod. p’): 

and therefore (p'/p) (p/p) = (a@/P) (a + y'/P’) (X/PP. 

Finally, we obtain the following results, in which for brevity I write 

(p'/p) (p/p) = (— 1)™. 

I. § even: here P=a*+ay (mod. 2), and so « must be odd, and y even, if Pi is odd; 

and therefore p=p'=1 (mod. 2). Then 
, , Cyl ae y 1 ee ae 

M= 3 es ott 5 
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II. &=1 (mod. 4). Here an odd prime p may be =1, or 6, or 1+ (mod. 2), so 
that there are six different cases: 

(1) p=p’=1 (mod. 2), 

(iil) p=1, p’=2@ (mod. 2), 

x 
M= 2 °9 

(iil) p= p’ =@ (mod. 2), 

_@bytl, aby el cyt 9 +1. 
San tale hed eam Ma ak as ea 

(iv) p=l, p'=1+4 (mod. 2), 

_ (v) p=@, p' =1+82 (mod. 2), 

etytl wt+y « a+]. 
f Seine pees se gas 

w (Vi) p=p'=1-+ 6 (mod. 2), 

poet ott gl yt 
M= aes 2 eo a 2 ogee 

III. 6&=83 (mod. 4). As before, there are six ditferent cases: 

G) p=p’=1 (mod. 2), 

—@+y—-l aty'-1 #-1 a1. 
M= 5) . 9 ti Salt won 

(ii) p= 1, p’'=8@ (mod. 2), 

«a—1 
Mao 

(ii) p= p’=@ (mod, 2), 

Pe ei ee yal 
oe eee a ea 

(iv) p=1, p’'=1+8 (mod. 2), 

eink, Scot Ay Heed ge 5 >° 

(v) p=9, p'=1+8@ (mod, 2), 

meatty-!} v+y+2 +2 v'- 1. 
oy 2 ‘ 2 ; 

(vi) p= p’ =1+4@ (mod. 2), 

[ea het ae es Tey. 
Rae ary 2) 4M 
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It is remarkable that for all values of 8, when p=p’=1 (mod. 2), the expression for 

M is the same. 

As in the case of systems of the first type, it may be proved that these laws remain 

true when for p is written r, or (and) for p’ is written 7. 

19. Just as in the ordinary Theory of Numbers, the Legendrian symbol was generalised 

by Jacobi, so the analogous symbol (h/n) may be generalised. In § 11, the symbol was 

only defined to exist when nm is a prime number. 

Now let n=7nonz..., Where 7, %, N3,-.. are odd prime numbers, all prime to h: then 

we define (h/n) thus 
(h/n) = (hrs) (hn)... 

Tt follows at once from this definition that 

(h/m) (h/n) = (h/mn), m and n being any odd numbers prime to /h; 

that (h,/n) (hy/n) ... = (hike... /n), In, ho... being prime to the odd number n: 

that if h=k (mod. n), then (h/n) = (k/n); 

and lastly, that if h is real, n being as before any odd number, whose norm is J, 

(hi /n) = (ho/ N). 

Now let p and p’ denote any two odd principal numbers in one of the systems which 

are specially considered in this paper (§ 4); then the prime factors of p or p’ are a certain 

number of odd principal or real primes, together with an even number of odd secondary 

primes. 

Then the laws of reciprocity for the product of the generalised symbols (p/p’) and 

(p’/p) are the same in form as those already proved when p and p’ denote odd principal 

primes. The reason for this is simply that throughout §§ 13—18 no use is made of the 

supposition that p and p’ are primes; all that is assumed about them is that they are 

odd principal numbers. 

20. To complete the Laws of Reciprocity, we must evaluate (Aq/p) (p/q) for systems 

of the first type, in which \?= 2. 

Let p=2'+7'0, gq=ari+ ypu. Then the following results may be proved: 

I. For the systems d=5, 13, 37, for each of which d=5 (mod. 8). 

(i) p=1 (mod. 2), then (xq/p) (p/q) =(— Its: 

(ii) p=0, q=p (mod. 2), then Qg/p) (p/¢) =(— 1)"F" 9; 

(iil) p=0, q=rX+4y (mod. 2), then (Ag/p) (p/g) =(— i)" = ; 

where el pre Det» 
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II. For the systems d=6, and 22, for which d=6 (mod. 8). 

(i) p=, q=m (mod. 2), then —_g/p) (p/q)=(-1) ® $5 
(ii) p=1, q=A+m (mod. 2), then (g/p) (p/q) =(— "4; 

aty+y' 
Git) p=1+0, q=p (mod. 2), then (rgip) (p/g)=(—1) 2 $; 

zl 

(iv) p=1+0, g=A+yu (mod. 2), then (Aq/p) (p/q) =(- 1) 2 ¢; 

z/4—-] 

where g=(—1) 8. 

Ill. For the systems d=10, and 58, for which d=2 (mod. 8). 

x(@'+y'-1) 
(i) p=1 (mod. 2), then (q/p) (p/)=(-1) 2 $3 
= : atyte'ty'-1 

(1) p=1+0, g=p (mod. 2), then —_(Aq/p) (p/q) =(— 1) 2 gd; 

(ii) p=140, q=A+m (mod. 2), then (Xy/p) (p/) =(-1) = 4; 
at] 

where g=(-1) 8. 

BINARY QUADRATIC FORMS. 

21. In this branch of the subject the analogy with the ordinary Theory of Numbers 

is not so complete as in the earlier portions of this paper. As in the ordinary Theory, 

the quadratic form az*+ bry +cy? will be denoted by (a, b, c); a, b, ¢, w and y denote 

quadratic numbers. A binary quadratic form with quadratic numbers for coefficients will 

be called throughout the paper briefly a “form.” The number m is represented by the 

form (a, b, c) when m=aa?+bary+cy?, « and y being numbers: it will always be supposed 

that x is prime to y, and that a, b, and c have no common factor. The determinant of 

this form is A=b?— 4ac. 

A is therefore always a principal number. 

As there is no distinction in the systems here considered between positive and 

negative numbers, there is nothing corresponding to the division of forms into definite 

and indefinite forms which occurs in the ordinary Theory. 

Forms may be divided into sets, according to whether their coefficients and variables 

are principal or secondary numbers. 

Remembering that a principal and a secondary number may not be added, the 

following kinds of forms exist :— 

(1) a, 6, and c principal numbers. 

(2) a, b, and ¢ secondary numbers; in this and the former case, 

either (a) x and y principal numbers, 

or (8) « and y secondary numbers. 
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(3) a@ and e principal, b secondary. 

(4) a and ¢ secondary, b principal; in this and in case (3) 

either (a) x principal, y secondary, 

or (8) «x secondary, y principal. 

These will be called the Ist, 2nd, 3rd and 4th kinds of forms. 

22. A different classification of forms can be made according to the residue of 

A (mod. 4), since A= b? (mod. 4). 

For the system D=— 20, d=5, the table in § 10 furnishes the following results :— 

(1) b=O0(mod. 2), the form (a, 6, c) being of any of the four kinds; then 

A= 0 (mod. 4). 

The form (1, 0, -=) is an example of this case. 

(2) b=1+ 4 (mod. 2), the form being of the first or fourth kinds; then 

A = 26 (mod. 4). 

(3) b=1 (mod. X), the form being of the first or fourth kinds; then 

A= +1 (mod. 4). 

(4) b=X (mod. 2), the form being of the second or third kinds; then 

A = 2 (mod. 4). 

(5) b=p(mod. 2d), the form being of the second or third kinds; then 

A = 2 + @ (mod. 4). 

And conversely for any value of A satisfymg one of the above congruences forms 

exist of the corresponding kinds; for ac=4}(6?—A); the number on the right can always 

be split into the principal factors 1 and 1(®—A), and it is fairly evident that out of 

the infinity of possible values of b, 1(b?—A) will often split into the product of two 

secondary factors. 

23. Forms are said to be equivalent when the substitution 

x =ax' + By’, 
y= ya + dy’, where ad — By =1 

transforms one of them into the other. 

Then the inverse substitution 

ioe de — By, 

yf = — yu + ay 

transforms the latter into the former, so that the relation of equivalence is a mutual one. 
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There are four “kinds” of such substitutions : 

(i) a, 8, y, 5 all principal; then « and y are both of the same kind, ie. both 
principal, or both secondary. 

(li) a, B, y, 6 all secondary; « and y are both of the same kind. 

(ili) a and 6 principal, 8 and y secondary; « and y are of different kinds. 

(iv) a and 6 secondary, 8 and y principal; # and y are of different kinds. 

The first and second kinds of substitutions alone are applicable to forms of the first 
or second kind; and the third and fourth kinds of substitutions alone to forms of the 
third or fourth kind. 

If the form (a’, b’, c’) is equivalent to (a, 6, c), being obtained from the latter by 

the substitution 6 ) , then 

a’ = aa? + bay + cy’, 

b' = 2aaB +b (2d + Bry) + 2cy6, 

ce’ = aB? + bBs + cd. 

Therefore a form is necessarily transformed into another of the same kind. 

Since b?— 4a’c’ = (a5 — By)? (0° — 4ac) = b? — 4ac, equivalent forms have the same de- 
terminant. 

me /ene »_(% B 
Let s=(* ve s=(", O) 

then the substitution arising from their composition in this order is 

SS’ = (a + Bry ap’ ie 
ya’ + by’ vB’ + 88’ ] 

Now let o, denote a substitution of the «th kind. 

Then o and c,? are of the first kind, 

o,0, and o,0, are of the second kind. 

Therefore the substitutions of the first and second kinds together form a group, of 

which those of the first kind form a sub-group. So also the substitutions of the third 

and fourth kinds form a group, of which those of the third kind form a sub-group, 

Other compositions of substitutions, e.g. o,c¢;, are impossible, for they would necessitate 
the addition of principal and secondary numbers. 

We can now give a more precise definition of “equivalence”; it is an essential 

part of the notion of equivalence, that forms that are equivalent to the same form 

should be equivalent to one another. 

In other words the set of substitutions, assumed to exist by the definition of 

“equivalence,” must form a group. 

Vou. XVII. Part II. 18 
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There are accordingly two kinds of equivalence, corresponding to the two groups of 

substitutions applicable to a given form. A form of the first or second kind will be 

called “narrowly equivalent” to any form obtained from it by a substitution of the first 

kind, but “widely equivalent” to a form obtained from it by a substitution of either 

the first or the second kind. Similar definitions of the terms “narrow” and “wide” 

equivalence apply to forms of the third and fourth kinds. 

Forms which are equivalent are said to belong to the same class, the class being 

narrow or wide, according to whether the equivalence is narrow or wide. 

A wide class obviously contains the whole of a narrow class, if it contains a single 

form belonging to the narrow class. 

Since all forms of a class are of the same kind, we can speak of the “kind” of 

the class. 

24. There is, as in the ordinary Theory, a close connection between any class of 

forms and the set of numbers representable by any form of the class. 

For, if a’ =ae2+bay+cy, a being prime to y, and @ and 6 be chosen so that 

ad —By=1 (§ 8), then the substitution is i converts the form (a, 6, c) into an 
Y 

equivalent form (a’, b’, c’). 

Conversely, if (a’, b’, c’) is equivalent to (a, b, c), then the extreme coefficients a’ 

and c’ are representable by (a, b, c). Hence the following theorems :— 

The set of the extreme coefficients of all the forms of a narrow class of the first 

or second kind coincides with the set of all numbers representable by a form of the 

class, the variables and y taking coprime principal values. 

The set of the extreme coefficients of all the forms of a wide class of the first or 

second kind coincides with the set of all numbers representable by a form of the class, 

the variables taking all possible coprime values. 

The set of first coefficients of all the forms of a narrow class of the third or 

fourth kind coincides with the set of all numbers representable by a form of the class, 

x taking principal and y taking secondary values; and the set of third coefficients of 

the same to the set of numbers representable by a form of the class, # taking 

secondary and y principal coprime values. 

Lastly, the set of the extreme coefficients of all the forms of a wide class of the 

third and fourth kind coincides with the set of all numbers representable by a form of the 

class, the variables taking all possible coprime values. 

If a’ is an odd number representable by (a, 6, c), and b’, c’ have the same meanings 

as before, then 

b? — 4a/c’ =A, 

and so b? = A (mod. a’). 
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Therefore, if a’ is representable by a form of the first or fourth kind (in each of 

which the middle coefficient is a principal number), a must satisfy the condition 

(A/a) =1. 

And if a’ is representable by a form of the second or third kind, the condition is 

(A/a) =1, or —1, according to the value of a’ and the system considered. (§ 11 (ii).) 

Conversely, if b*=A(mod.a’) is soluble, then writing L Sa =e, the form (a’, b’, c’) 

is of determinant A, and represents the number a’, 

25. In the ordinary Theory of Numbers, there is an elementary proof of the 

finiteness of the number of classes for a given determinant, which depends on the 

method of Reduction. This method of proof does not apply to the systems of numbers 

now being studied. 

It will be remembered that in the ordinary Theory the first step in the process 

is to apply to the form (a, b, c) the substitution ie i; thus producing the form 

(c, b', a’), where 
b’ = — b — 2c6, 

a =a+bd+cé; 

and 6 is then determined so that | b'| Zc. 

In this way a reduced form (A, B, () is obtained, such that 

CeAt|BI. 

Now, in any of the systems of numbers here considered the substitution lease ) 

is either of the first or fourth kind, according as 6 is principal or secondary. In either 

case, it is not always possible to find a residue b’ of —b to mod. 2c such that 

N (b’) < N (2c), and the process of reduction therefore breaks down. If this were possible 

when b and ¢ are any principal numbers, the Euclidean process for finding their 

greatest common factor would work, and there would be no need of secondary numbers 

to complete the laws of factorisation. And it is easy to prove the impossibility of always 

finding a residue 6'-such that N (b’)< N (2c), where either b or c, or both, are secondary 

numbers. Possibly Dirichlet’s analytical method of determining the class-number for a 

given determinant in the ordinary Theory would apply to these systems of quadratic 

numbers. 

GENERIC CHARACTERS. 

26. Just as in the ordinary Theory of Numbers, the classes for a given determinant 

may be divided into genera. Since the results mainly depend on the residues of 

squares to moduli consisting of powers of 2 or its factors, I shall confine the remainder 

of this paper to the case D=—20, ie. d=5; and for brevity I shall only consider 

forms of the first kind. 

18—2 
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All the results of this nature are derived from the simple identity 

4nn’ = x? — Ay’, 

where n= au? + buv + cv*, 

n =aw?+ bur’ + cv?, 

xv = 2auw’ +b (w’ + u'r) + 2c’, 

y=w' — wv, 

A =)? —4ace. 

Three cases will need separate consideration, according as 6 is even, semi-even, or 

odd, ie. according as A=0, 26, or +1 (mod. 4). (§ 22.) 

(1) When A=0(mod. 4) = 45, the above identity may be divided by 4, giving 

nn’ = x? — by", 

x here meaning half the expression above given for z. 

(2) When A= 26(mod. 4) = 28, 

2Qnn' = x — dy’, 

where ew = Qauw’ + b (uw! + u'r) + 2erv’. 

(8) When A= +1 (mod. 4), 

4nn’ = a? — Ay. 

With regard to narrow classes, in any of these three cases, there exist quadratic 

characters precisely analogous to the quadratic characters in the ordinary theory. 

For if t be any odd prime factor of A, we have 4nn’=2*(mod.t), where « is 

principal (since the form is of the first kind, and the numbers u, w’, v, v' are principal). 

Therefore (nn’/t) =+ 1, 

that is (n/t) = (n’/t). 

27. There exist besides supplementary characters, which depend on theorems as to 

the residues of n and x’ (being odd numbers) to moduli of the form A‘ 

These characters may be defined as follows: n=n,+n,@ is an odd number whose 

norm is V; then 

v (n)=(- 1)", 
N-1 

x(n)=C1)*, 
Lnp+-¥n,-1) (m+ ¥n,—3) 

w(n)=(- 
Where no ambiguity is caused, I shall write y for W(n), ete. 

Therefore yw =+1 or —1, according as n=1 or 6 (mod. 2); 

when x=+1, n= +1, or +(24+ 4) (mod. 4), 

when y=—1, n=+(1+ 26), or +0 (mod. 4). 
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And the following table is easily deduced from the definitions just given. 

Residues of 2 to 
modulus A°, i.e. 4A. vv x ® 

= ee 
+1, +3 36 a5 3° 

AN: =6 + + = 

14+20, —1+20 

From the definitions or from this table it may be verified that 

van'h= en) v(m’), x (mn')=xXM™)xX(m), on’) = o(n) o(n/). 

One specimen of the reasoning by which the existence of these supplementary 

characters is proved will be sufficient, and I shall then present a table shewing all 

the appropriate supplementary characters of narrow classes for the various values of A. 

In the case A= 46, and 6=+(1+48) (mod. 42). 

Then nv’ =a2°+(1+@)y¥? (mod. 4), 

where a must be odd, but y may be odd, semi-even, or even, both 2 and y being 

principal; then (§ 10, table) 

z?=1 or 3 (mod. 4X), 

y=t1, 26 or 0 (mod. 4), 

and so nv’ =2+0, —0, 440, 2—0, —14+20, 1 +26, 1 or 3 (mod. 4)). 

Therefore o(nr’)=+1, 

that is @ (n) =o (n’). 
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SUPPLEMENTARY CHARACTERS OF NARROW CLASSES. 

1 (NsSciny 

Cite ese) characters || ee “Characters 

+1 _o¥ 0 | xe 
£3 | + 4 s Ae: 
+ (1+ 20) wv +2 Wx 

+ (1 — 28) ee | ee a 
+6 Wx | 2+ 20 v, xe 

£440) -| yy || 228 ONE 
£@46) | oy + (1+) o 
+ (2-0) | x | #0-8) xe 

+ (3 +9) ee 
| | +£(8-84) yo 

Il A=26= 26 (mod. 4). 

Residues of 8 to mod. 4. Characters. 

+0 Nr 

+(2+6) 

Ill. A=+1 (mod. 4); there are no supplementary characters in this case. 

28. Two classes of a given determinant are said to belong to the same “genus,” 

when all their generic characters have the same values. 

Half the assignable genera of narrow classes of the first kind for a given deter- 

minant are impossible; this Tesult is obtained (as in the ordinary Theory) by applying 

the Law of Quadratie Reciprocity to the equation (A/n)=+1 (§ 24), n being here any 

odd number prime to A representable by some form of the first kind of determinant A. 

For example, let A=4ts*, s being principal and the largest square in A, and ¢ also 

principal and =¢#/,...; and suppose t=+6 (mod. 4). Then n being m+ 0, the law 

of reciprocity (§ 15) gives 
(A/n) = (t/n) = € (n/t), 

Ny ah 

where «=(—1)?, if m, is odd, but (—1)?, if m, is even. 
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That is, e=+1, if n=+1 or +6 (mod. 4), 

and e=—1, if n=+(14+20) or +(2+6) (mod. 4). 

Therefore e=Wy; and (n/t) = (n/t,) (n/t.) ...... ; 

so that the condition (A/n) = +1 

becomes ary . (n/t) . (n/t) .....- =+1. 

Similar applications of the law of reciprocity (§§ 15 and 20) to the numerous cases 

furnish the facts set out in the table below, which is arranged in a similar manner to 

Dirichlet’s table in the ordinary Theory (Mathews, Theory of Numbers, Pt. 1. p. 135), 

and to H. J. S. Smith’s table in his paper “On Complex Binary Quadratic Forms” 

(in the system of numbers «+yV—1) (Collected Papers, Vol. 1. p. 421). In the table 
s* denotes the largest square dividing 6 in cases (I) and (II), or dividing A in case 

(UID as 1 conebe are the different odd prime factors of t which is itself odd; s,, s,...... 

are those odd prime factors of s which do not divide ¢; and J is the index of the 

highest power of » contained in s. In each line is the complete set of characters for 

the corresponding value of A, those characters to the left of the vertical line being 

subject to the condition that their product is +1. 

POSSIBLE GENERIC CHARACTERS FOR NARROW CLASSES. 

Wh Nee, 

(1) 8=te 8 principal, and ¢= +1 (mod. 4), 
a or s secondary, and t= +(2+@) (mod. 4), 

=O Or il || (tals soccer dy, (C/N); cocnee 

f=2 (Wt). conbce sy 3%, ((IEM)y oncnos 

LSP (Ut) oan ar, xX, @, (n/s), ....-- 

2) S=ts s principal, and t= + (1+ 26) (mod. 4), 
Oi or s secondary, and t= +0 (mod. 4), 

I=) we Wh, (Bite), ance (WIEH)s cd6bec 

T=2 any (n/t); <.<- 06 y,, (N/S;)5 sewer 

2, ale (uit) sncecoes xX, @, (n/s), «.-.-- 

= s principal, and t= + @ (mod. 4), 

el {rr s secondary, and t = + (1 + 20) (mod. 4), 

a) aley,) (tufts); -o0see (Way, Beco 

i=l OPP | oy, (Wah Gooner (CIES), “cectoe 

{hey} We, > (n/t), ....0. Gs (2 /S:) reece 

of s principal, and t= + (2+) (mod. 4), 

EL = te s secondary, and t= +1 (mod. 4), 

ii) x, (n/t), --.+0 (OS) Scere 

F=1 or 2 |, (nfo... Ase (11/8); sees 

I>2 xy, (n/t), 00. In, @, (1/3), 2200. 
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5) S=nts? \; principal, and At= + (1+ 4) (mod. 4), 
( 7 ee eras secondary, and At = + (1 — @) (mod. 4), 

10 @ya (Mt) sats (COAG Socane 

IT=1 Dm iG), sone ar, (n/s:), ---.-- 

13> 1 ‘ay, ((olfel)s, Boone alr, x5) (nisi); sesee 

_\,9 {8 principal, and t= +(1—@) (mod. 4d), 

(Serene ie s secondary, and At = + (1 +@) (mod. 4), 

f=0 | xo, (n/t), ...-.. ((/EA, casos 

eal xo, (n/t), ...... aps (11/8;);, cere 

(SS x, @; (nf&), <-..0 Ws, (1i/Si); eee. 

M s principal, and At = + (3 + @) (mod. 4), 

Oe = s secondary, and At= +(3— 4) (mod. 4), 

IT=0 Wyo, (n/t), ...-- | (n/s), «+++ 

L=1 Wr, xo, (n/t), ...-.. (7u/'5;) eee ee 

jes Gene (ails WOE 

_\,. {& principal, and A= + (B3— A) (mod. 42), 

©) Os lor s secondary, and At = + (3 + @) (mod. 4), 

= 0 | vr, (n/é); <2... | (a5 eseone 

if=il vr, @, (n/t), 2.00.- ((aifst}5 aeonec 

IES il ab, @, (n/t), ...00. Psa (OES aaeete 

II. A=26(mod. 4) =26 = 2ts*. 

6 = + @(mod. 4) le, (ail), eooaee (OIE) cocose 

8=+(2+4 4) (mod. 4) | (n/t), ...... (UA), Gacsed 

II A=+1 (mod. 4)=¢s*. 

| (ota) coccee 1 (2/3); cocnec 

29. The generic characters of wide classes remain to be considered; we shall find 

that characters here occur of a kind which have no analogy in the ordinary Theory. 

Using the notation of § 26, if n is a number of the wide class represented by the form 

(a, b, c) of the first kind, w and v are either both principal or both secondary (§ 24). 

Similarly for w’ and v’; and so # and y are both principal, or both secondary. Let 

t be any odd prime factor of A. 

Then 4nn’ = x? (mod. ¢). 

If z is principal, this gives (nn'/t) = +1. 

[2-1 
If x is secondary (nn’/t) = zT-1=(—1) ® (mod. #). (§ 9, 11) 

Now either Z=+1(mod. 8), in which case (nn’/t)=+1, whether 2 is principal or 

secondary, and we get the quadratic character (n/t); or 72=+3 (mod. 8), in which case 
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(nn’/t) is +1 or —1, according as « is principal or secondary. Let t/ and t/ be two 
odd prime factors of A, both of whose norms are =+3(mod.8); then it follows that 
(nn’/t/t’) =+ 1, whether @ is principal or secondary; that is, (n/ty'te’) = (n'/t't’) ; thus in 
the case of wide classes, there is a quadratic character corresponding to every pair of 
those odd prime factors of A, whose norms are =+3(mod.8). These however are not 
all independent, but it is evident that if #/, ty, ...... t,, are the prime factors of A of 
this kind, then (n/t,t)), (n/t)'t;), ...... (n/tt,) are all independent, and form a complete 
set, r—1 in number; for 

(n/ty't’) x (n/t/tmn’) = (n/t'tm’). 

For certain values of A the supplementary characters y, , etc. occur; and there 

are also in some cases mixed characters, as > (n/t,’), ete. 

The latter arises when (nn’)=+1, and (nn’/t))=+1, if « is principal; but 
v (nn’)=—1, (nv’/t)=—1, if @ is secondary. Then ¥(nn’) (nv’/t{)=+1, in either case: 
and so -(n). (n/t’) =W (mv). (v'/t). 

I now set out in a table the supplementary and mixed characters of wide classes 

for the various values of .A; it will be observed that they are identical with the 

corresponding results for narrow classes, except that some of the supplementary characters 

are associated with (n/t). 

SUPPLEMENTARY AND MIXED CHARACTERS OF WIDE CLASSES. 

IL A=48. 

coast aA | Chameter, | Byam Residues of | Charactere, 

+1 we (n/t) 0 ¥ (n/t), X% Yo 

+3 ¥ (n/t) 4 ¥ (n/t), x 

+ (1 + 26) y (n/t) +2 % (w/t), x 

£(1— 28) (n/t) +20 (n/t) | 
+0 wx (r/o) || 2 +20 ¥ (n/t), vxo | 

+(440) Wx (n/t) 2—20 v (n/t), yo 

+(2+6) me +(1+8) ar tr/i) 
+ (2-8) x | +0-8) xo (n/t) 

| + (3+) ¥xe 

| +(3—@) yo 

Worn, OVINE IRN IE 19 
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Il. A=28=26 (mod. 4). 

| Residues of 8 to mod. 4. | Characters, 

| +0 | ve (n/t) 

+ (2+ 6) | none 

III. A=+1 (mod. 4). No supplementary, or mixed characters. 

30. In the following table, the notation is the same as in the corresponding table 

for narrow classes, the only difference being that the dashed” letters’, %, --4 Since 

denote prime factors of ¢ and s whose norms are = +3(mod. 8), the other factors being 

denoted by undashed letters: and 7 denotes the number of the former kind of factors 

of t It is evident that if 7=+1 (mod. 8), then r is even, and if 7=+3 (mod. 8), 

then r is odd; and it is easy to prove that if 

t=+1, (2406), +(A+ p), or +(2X—p) (mod. 4), 

then T=+1 (mod. 8); 

while if t=+(1+ 20), +6, +p, or +(A—yw) (mod. 4), 

then T=+3 (mod. 8). 

Bearing these results in mind as to r being even or odd, it will be seen that 

the product of the generic characters to the left of the vertical line is the same as in 

the previous table; this is of course necessary, since the product in question is a 

transformation of (A/n), and the latter expression is equal to +1, for either narrow or 

wide classes. 

In the event of there being no factors of the form t, or s,, or only one of them, 

the results given below need some modification; it is however easy to see in each 

such case what the complete set of characters is. For instance in the first line of the 

table, if there is no ¢’, but there is s,, ..., the characters are 

(njt), (n/t), ----.- Jar. (n/sy), (n/s,), ...--- ((OEREI y cacsoe 5 

but if s,/ is also absent, then the mixed character containing yy disappears, and the 

characters are 

(ft) (ate) Sse = (te/S3)5 snceees 
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PossIBLE GENERIC CHARACTERS FOR WIDE CLASSES. 

I. A=46. 

(1) 8=ts principal, and t= +1 (mod. 4) ) reap ire 
~ lors secondary, and ¢ = + (2+6)(mod. 4)) : 

IT=0 or 1 | (n/t), ..., (n/tt), ..., (n/t'te) | Ww (n/t), (n/s), ..., (n/t’s:), «-- 

[=2 (n/t), ..., (n/tt), ..., (r/t't-) (n/t), x, (n/s,), ..., (n/t), «.. 

sy (ijt); <=, (aftr te), -2.5 (a/b be) ve (n/ty), x, Yro, (n/s,), ..., (n/t,’s,’), ... 

- incipal, and t= + (1 + 20) (mod. 4)) ane {s principa eee 

(2) e lor s secondary, and t=+@ (mod. 4) | ey 

T=0 or 1| (n/t), (n/t), «.., n/t’), «.., (n/t’t,) | (n/s), ...) n/t’), «.- 

T=2 af (n/t), (n/t), ..., (n/t’t’), ..., (n/t't,) COED rece Wate) eee 

2 ap (n/t), (n/t), ..., (n/t/t), ..., (n/ tt) x, No, (r/ 8), os +3 (n/t 8), «--- 

(3) Sats : principal, and t= +6 (mod. 4) ) » odd 
or s secondary, and t=+(1 +20) (mod. 4)f 

T=0 Wey (r/t), (n/t), ..., (n/tte), ..-, (n/t'tr’) | (n/a), ..-, (r/ty‘sy), ... 

L=1 or 2 | Wy (n/t), (n/t), ..., (n/t'4), ..., n/t‘t-) | x, (n/a), ---, (n/t’s;), «-. 

HS& Wx (n/t), (n/t), -.. (n/t't), ..., (n/t’tr) | x, yo, (n/s,), ..., (n/ts,), ... 

(avis 248 : principal, and ¢=+(2+) (mod. 4)) ete 

3 e or s secondary, and t=+1 (mod. 4) | 6 

T=0 | x, (n/t), .... (n/t), -.-, (n/t) (WIEN 5 coo, ((CEAEH)S oe 

IT=1 or 2 | xX (raft) sree nay Uf tex tex) ) <5) (Peace) | cele (rata) (aS) wees (Tuftasr)s <2 

fv) | x, (n/t), -.. (r/t't), ..., (n/t'tr) | vr (n/t), yoo, (n/a), ..., (n/t's:), « 

. — 42 {8 principal, and t= + (mod. 4) | Soda 

hy Piesle ts: s secondary, and ¢=+(A—,) (mod. 4) 

L='0) Woi(altny (ulé)s ne. (n/its);, <--, (n/trt-)) || (n/s,); <-., (njtsi); --- 

F=1 | o (n/é), (n/t), ..., W/t’te}s.., (n/t/t-) | sro, (n/s,), ..., (n/t’s,), «.. 

I>1 | w(n/h), (n/t), ..., (n/t’t), ..., (n/tt-) | % Wo, (n/a), ..., (n/t’s,), ».-. 

19—2 

1438 
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s principal, and t= +(’— 2) (mod. I ay 

or s secondary, and t=+ p (mod. 4) 

IT=0 | xo (n/t), (n/t), ---» (n/ty'te), .--, (nfh‘tr) | (n/s,), .--, (n/ts1), --- 

T=1 | xo (n/t), (n/t), (n/t;'te), -.- (r/t'tr) | axe, (n/s,), --- (raltsn) sree 

I>1)\ x, 0 (n/4), (r/4), ---, (n/t'te), -.., (n/t't-) | yo, (n/s,), -.-. (n/t’s)), «--- 

(6) sats | 

(7) S=2ts? \: principal, and t= +A +H) (mod. 4) ! ree 

or s secondary, and t= + (2X—,) (mod. 4) 

T=0 | vyo, (n/t), «+ (n/t't), --» (n/t/t-) | (n/s,), ..., (n/t’sy), --- 

IT=1 Vxo, (n/t), tees (n/tt), tee (n/t't,) | vv (n/t), (n/s,), tees (n/t'sy/), tee 

I>1| x, vo, (n/t), --., (n/ty'ts), ---. (tte) |  (n/4), (72/53) secon (22) ttSy) rene 

7 s principal, and t= + (24 —p) (mod. 4) \ gs 
RS) aes ic s secondary, and t=+(A+ 4) (mod. 4) pee 

T=0 | Wo, (n/t), -.-, (n/t’t), ---, (@/titr) | (n/s), ---» n/t’), --- 

T=1 | wo, (n/t), ..-, (n/t't), ---, (n/t't,) | ap (n/t), (n/sy), ---, (r/t's), «-- 

I>1 | wo, (n/t), --- (n/ty'te), ---5 (nftvtr) | We (n/t), x, (n/s), --- (ORAS con 

TI. A= 26 (mod. 4) = 26 = 2¢s*. 

ap (n/t), (n/t), ---, (n/t’te), «-) (r/t't) | (n/si), «+>, (nj S:)s c= 

B= EOF DO Kmek OE tafe), ultita =. ftir) (n/s:), --5 (n/t'sr), «-. 
r even 

Ill. A=+1(mod. 4)=¢s?; 7 even. 

| (n/t), ..-, (n/i'tr), ---) (n/t't,’) | (n/s,), ..-, (nfs), ---- 

31. As an illustration of the results obtained in reference to Binary Quadratic 

Forms, I now consider the case A=—4. Let mn be an odd principal number, repre- 

sentable by a form of the first kind having this determinant; then (§ 24), m being any 

prime factor of n, 
(—4/n) =+1. 

Therefore (—1/N,)=+1, that is V,=1(mod. 4). But the norm of any odd secondary 

number =3(mod. 4), so mn, and therefore every prime factor .of x is either a principal 

or a real prime. And conversely all such primes and all numbers composed of them 

are representable by some form of the first kind with this determinant. 

I have searched for forms of the first kind in the same way as is done in the 

ordinary theory, and after eliminating all forms (within the limit of my search) narrowly 

equivalent to simpler ones, the following forms remain :—(1, 0, 1), (@, 4, —@), (@, —4, —@). 

: 
t 
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The form (—1, 0, —1) is equivalent to (1, 0, 1), the former being derived from 

the latter by the substitution 

Da, 

(9-2): 
First consider narrow classes; then the first line of the Table I. (§ 28) for A=46 

shews that there is one generic character w, which apparently can be either +1 

or —1; this is an exception to the general rule that half the assignable genera are 

impossible, this exception being due to the fact that when A=—4, there is no generic 

character (n/t), t not existing in this case. 

Both these genera in fact exist, the class represented by the form (1, 0, 1) having 

the character y~=+1, and the classes represented by (6, +4, —@) having the character 

yw=-—1; neither of the latter classes can therefore be narrowly equivalent to (1, 0, 1). 

Further, it is not difficult to prove that the forms (0, 4,—@) and (6, —4, —@) 

are non-equivalent (narrowly). I have accordingly proved the existence of at least three 

narrow classes of forms of the first kind; there may be more such, for, as pointed 

out in §25, I am not aware of any method of ascertaining the number of classes of 

a given determinant. 

Turning now to wide equivalence, the three forms above mentioned are all equiva- 

lent ; for 

] O=X?+ pw, 

2=AwtrA(A— p), 

—O=N+(A—pY/, 

m4 x = i; : 
and therefore the substitutions ie ; ) and ( a respectively convert AS NS me ee a) 
(1, 0, 1) into (6, 4, —@) and (0, —4, —@). There is apparently therefore only one wide 

class; it has no generic character (§ 30). 
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TABLE I. 

32. Systems of numbers of the first type; D=—4d, r= V2. 

=/)) 6=V—a B Aye we NG) fm) 

20 V=5 es -- ue) || eee Soe Wana 

24 V-6 V—3 6 - 3 Qu — 3r 

40 Vv-10 V—5 0 — 5 Qu — 5r 

52 |) sag.) |. WY ST tal gees pet occa od) eee 75 

88 V— 22 V—11 6 —11 Qu = 1 

148 | V—37 ae leet) 21826 Ae a) ALONE 

232 | V¥—58 V—29 r) — 29 oy | 20 
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TABLE II. 

Systems of numbers of the second type; D=—46+1, 0= J ses 7) A and 9. are 

conjugate. 

3: | arias d n? Be na | 48 

15 4 apes @ lag re, | 2n 

35 9 eee 6 3 = Op aes 

51 13 Ei 3+0 5 Sy Sp a 

91 23 EL 146 5 Bre ieee |i See Ve 

115 29 pees 440 7 Beet |) Oi ay 

123 31 Ves 9+6 AG | ee ONY = Nee tila 

187 AT eae 1+0 7 Ney VN re 

235 Pome fe NES 1040 13 | 1A—184 | 13\-10p 

267 67 shee 2146 23 | 22.— 234  2—2p 

403 101 ae 446 u Se bly, | wie. ae 

427 107 eee 1340 | 1m | 14.= 1%, ) Tey adap 
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TABLE III. 

33. The system D=—20; 0=V—5. 
Table of numbers, their prime factors and norms, in the order of magnitude of their 

norms. 

Principal Numbers. Secondary Numbers. 

Numbers. Prime Factors. Norms. | Numbers. Prime Factors. Norms. 
= | Lr aoe 

1 = 1 r = 2 

2 Ne 4 bh = 3 

r) o 5 eae = ‘ 

1+0 Ay 6 Noseyrie | = 7 

10 Qe je) 3 lp ere | - : 

3 Bh(A— p) 2) 2n | aN 8 

246 (=p) 4 A= 2 —n6 10 

2-0 — ms Qu Mu 12 

3+0 NA+ p) 14 2n — 2 (A= pw) 

Pe) d (2d — pw) h I+ 0(X— p) 15 

4 » Tt) eSpNes = Op i. 

20 re) 20 3r Aw (A— pb) 18 

440 bw (2X — p) 21 N+ 2p —rA(A- BY = 

4-6 CA OAD) pe lweseae. — yt : 

14.20) bi) (N=) (ON— ple Neen = 23 

1-206 —m(rX+ p) : 20 —3y = os 

2420 My 24 | Su 2 (A—p) 27 

2 — 26 A (A — bw) z 3A —3u H(A py 2 

5 — 6 25 BX +p = [lke » 

4X — —(A— pp » 



V. Partitions of Numbers whose Graphs possess Symmetry. 

By Major P. A. MacManon, R.A., D.Sc., F.R.S., Hon. Mem. C.P.S. 

[Received and read 28 November, 1898.] 

Ir will be remembered that in Phil. Trans. R. S. of London, Vol. 187, 1896 a. 

pp. 619—673, I undertook the extension to three dimensions of Sylvester’s constructive 

theory of Partitions. In Sylvester’s two-dimensional theory every partition of a unipartite 

number can be associated with a regular two-dimensional graph. In the present theory 

only a limited number of the partitions of multipartite numbers can be represented by 

regular graphs in three dimensions. But whereas Sylvester was only concerned with 

unipartite numbers, the three-dimensional theory has to do with multipartite numbers 

of unrestricted multiplicity. Though the partitions of such are not all involved the field 

is infinitely greater, and all which come within the purview of the regular graph are 

brought harmoniously together. If in this new theory we restrict ourselves to two 

dimensions but view the graphs from a three-dimensional standpoint, we obtain in 

general six interpretations of the graphs instead of two and multipartite numbers are 

brought under consideration as well as those which are unipartite. The enumeration of 

the three-dimensional graphs of given weight (number of nodes), the numbers of nodes 

along the axes being restricted not to exceed /, m, n respectively, was conjectured in 

Part I. but only established for some particular values of /, m, n. 

For msl it may be written 

T—a™ 1 —a™t\2 (1 — grt i 

Wee ==) -- GS) 

a il — gril iS gti l-—-am l 

1 — gz * il BR 2 Te aes l—a™ 

( a —- (’ = a) i= gether 

J — gm 1 —qgm ae 

The symmetry of this expression and its real nature are best shewn by a symbolic 

crystalline form. 

Vou. XVII. Part II. 20 
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Observing that it is composed of factors of the form (1 —.*)', where t may be positive 

or negative, put 

1 —a*=exp.(—u') in the case of every factor, 

and it will be found, after a few simplifications, to take the form 

exp. ca (1 — wv’) (1 — wi) (1 — wu). 

In the two-dimensional theory the generating function 

el a a) (1 — gl) ae qd — alm) 

(l—z)(— 2)... —2") 

has the symbolic crystalline form 

exp. a dG =u) (1 =), 

whilst in one-dimensional theory 
1-27 

l-« 

obviously leads to 
exp. u(1—w’). 

Hence we seem to have before us a system in « dimensions associated with the 

crystalline form 

exp. Weir. (=u) (1 =u)... (1 — we). 

In general a graph by rotations about the axes of a, y, and z 

ir 

may assume six forms. 

When these forms are identical the graph is said to be symmetrical or to possess 

wyz-symmetry. 

Such ex. gr. is 
©e 
e 

When the six forms reduce to three the graph is said to be quasi-symmetrical. If it 

be such that each layer of nodes is symmetrical in two dimensions or, the same thing, is 

a Sylvester self-conjugate graph, it is said to possess wy-symmetry. Ex. gr. 

©Oe 
© 
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Similarly the graph 
SB S418. 

possesses y2-symmetry, and by rotation about the y axis, or that of z, may be converted 
into one possessing wy or zu-symmetry. 

It is proposed to investigate generating functions for the enumeration of graphs 
possessing ay and wyz-symmetry, the former naturally including the latter. 

Algebraic theorems will be evolved in the course of the work by the method initiated 
by Sylvester. 

“vy-SYMMETRICAL GRAPHS. 

The self-conjugate Sylvester graphs which have 7 nodes along each axis can be 
formed by fitting into an angle of 2i—1 nodes any number of angles of nodes, any 
angle containing an uneven number, less than 2i—1, of nodes and no two angles pos- 
sessing the same number of nodes. Ex. gr. for i=7 we have the angles 

which by selection of the Ist, 3rd and 4th of the angles may be formed up into the 

graph 

Hence, as Sylvester shewed, the generating function of such graphs is immediately 
seen to be 

a (1 +a)(1+ 0)... (14a), 

Each layer of the three-dimensional graph has this form, and if there be two layers 
at most we may construct a generating function 

Oayay ... av" (1 + ax) (1 + dyaer’) ... (1 + ayy ... A027) 

x \(1 +=) (1 aad (1 + x \ ... ad int} 
ay AAs TM AgMs / 

where {2 is a symbol of Cayley’s which means that after multiplication all terms con- 

taining negative powers of a, @, @;...a; are to be struck out and then each of these 

letters put equal to unity. 

The first line of the expression following Q is derived from 

wv (1 + 2) (1 + 28)...(1+ 2) 

by placing as coefficient to each 2*— the product ad... ds. 
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The angles of the first or lower layer correspond to the powers of « in the first line, 

those of the second layer to the powers in the second line, and the operation of Q is such 

as to prevent any combinations of the former and the latter which give rise to an 

irregular graph. 

Summing this function from i=1 to i=? and supposing its value unity when 7=0 (a 

convention that is made only for convenience; no form exists for <=0) we obtain 

O.(1 + qe) (1 + ayaza*) (1 + ayazage*) ... (1 + agg... au") 

(/ i a xpi 
x (ee = Si teres (1+; ) ... ad inf.} 

\\a ieee tly att ) 

as the generating function which enumerates zy-symmetrical graphs of at most two layers, 

the number of nodes along an « or y axis being limited not to exceed z. 

Further if 7 be infinite this becomes :— 

QO (1 + qe) (1 + ayagz*) (1 + ayarasx*) ...... ad inf. 

x (1 + = = Q + a) BpeouE ad inf. 

It is moreover clear that the generating function of «y-symmetrical graphs which 

have at most 7 nodes along each of the axes 7, y and at most j nodes along the 

axis of z (i.e. which involve at most j layers) is:— 

Q (1+ qa) (1 + aqyaer*) (1 + a,a,a30°) ...... (1 + aay... au") 

x (a + b z) (1 se bibs 2) @ + bibabs 2) Bo ecee ad inf. 
a (na 1 \ 1s / A, A203 

Cy Clo 5 es ee 
x (1+ pa)(1+ pps a\(14+ oR? 2) ye ste « ad inf. 

x (2 + ci x) (1 + Git 2) ¢ si dds 2*) gees ad inf. 
Gy Co CCCs 

j rows, 

© operating in regard to all the symbols, a, 6, c, d, &c. ... 

If the graphs be unrestricted, as regards 7, we put 7=%; and, if they be totally 

unrestricted, we regard the tableau, upon which © operates, as possessing an unlimited 

number of rows and columns. 

The generating function is crude. One, which only involves 2, is ultimately to be 

desired. It should be possible, by algebraic processes, to perform the operation © and 

thus to pick out the terms of the product which constitute the reduced generating 

function. This appears to be a matter of considerable difficulty, and in order to determine 

the probable form of the reduced function I have examined many particular cases and 
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attempted its construction. My conclusion is that, writing (s) to denote 1—a%, the 
reduced function is, in all probability, an algebraic fraction of which the numerator is 

GLO BG By | sass-s (j+2i—1) 
x (QB +4)(BY+6)(Bt8) ss sasaee (2j + 4i—4) 

x (Qj +8)(Bj+10)(QBj+12) savas, (2j + 44-8) 

Miser ceamisredss discs sarscoaserescrammerencnstenedssnarcades teed 

x (27 + 4s) (2) + 48 + 2) (274+ 48 4+4)...... (27 + 41 — 4s) 

Od oH EUODUOCHOSIONOH-ODCOLE EAB Ec asnadon cae AMSbOCDOC DARE DEAE 

wherein, if 7 be even, there are 47 rows the last of which is 

(2) + 22); 

and, if 7 be uneven, there are $(i—1) rows the last of which is 

(2j + 2i — 2) (2j + 2c) (27 +2142); 

and the denominator is obtained from the numerator by putting j =0, viz. :—it is 

(CD) G)@) scan (2i—1) 

ai (4:) (6) (3) a eens (4i — 4) 

>< (3) GLO) (UY coes0c (4¢—8) 

Mo sav alee cie eisai Girls cisiecGiosstidleelne soltole elect 

x (4s) (48 + 2) (45 + 4) 000... (47 — 4s) 

Meceeeeasnssagesless ssncigseseeeesuuaeoneeses 

the last row being (22) or (2i—2)(2¢)(2i+2) according as 7 is even or uneven. 

The proof of this formula, the truth of which seems unquestionable, is much to be 
desired. 

When the number of layers of nodes is unrestricted we put j= and the numerator 

reduces to unity. When moreover both ¢ and j are unrestricted in magnitude the 
reduced function becomes 

1 

(1) (8) () (7) ... (+) (6) (8)? 0 (12¥' (14) (16)! (18)... 

or as it may be also written 

(2) (4) (6)? (8)? (10)? (12)8 (14)4 (16)... 

wherein the numerator denotes the generating function of Sylvester’s unrestricted self- 

conjugate graphs in two dimensions. 

Some particular cases are interesting. 

By putting 7=1 we should obtain Sylvester's result in two dimensions. 
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We find 
(2) (6) (10) (14) ... (42 — 2) 
(1) (3) () (7)... Qi-D) ’ 

which may be written 

(1 + 2)(14+.a4)(14 2°)(1+2")... (1+ 2%") 

and is right. 

When j= 2, we find re af 

(2i+1) (27+ 4) (274+ 6)... (4¢ — 2) (42) 

(1s (4) Ge Or 22a 

(25+ 2) (2144). 4i- 2) i) | G+ 4) Qi +6)... (4-2) (Hi) 
@) (4 ..8(@i—2)(@)'" (@)@ © .-@i-2) or 

For an even weight 2w~ we must take the coefficients of «” in 

(i+ 1) (6+ 2)... Qi—1) (2) 
ie 2a Gane) 

and this is the generating function of two-dimensional graphs of weight w, not more 

than i nodes being allowed along either the # or y axis. Hence a correspondence 

between the at-most-two-layer wy-symmetrical graphs of weight 2w restricted as to the 

x and y axes by the number 7 and the graphs in two dimensions of weight w restricted 

as to the axes by the number 7. 

Ex. gr. for w=4, i=8 the correspondence is 

ala ial iL al 22 vl 22 Wat al 

1 Heel I 2 2 2 Wit a 

1 1 Ie Ul 

For an uneven weight 2u~+1 we take the coefficients of 2” in 

(i+ 2)(7 +3)... (2¢—1) (22) 

(1) (2) 8). @-D 
and this is the generating function of two-dimensional graphs of weight w, not more 

than 7+ 1 nodes being allowed along the # axis nor more than 7—1 along the y axis. 

The correspondence established is that between the at-most-two-layer xy-symmetrical 

graphs of weight 2w+1 restricted as to each of the w and y axes by the number 7 

and the graphs of two dimensions of weight w restricted as to the w axis by the 

number 7+ 1 and as to the y axis by the number 7—1. 

Ex. gr. for w=5, 1=4 we have the five to five correspondence 

ESTEE TE Ths kth ak ah al il VEL lee Wel Qal 0 eal 222 

1 ia if ud iba i! Tet Tt 21 2)1 1 21 

1 1 1 Jick 1 ea 2 

a 1 1 
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where 7 is indefinite the generating function becomes 

_ite 
(1 — a*) (1 — a) (1 = a)... ad inf. 

This curious result shews that the number of at-most-two-layer «y-symmetrical 

graphs of weight w is equal to the whole number of partitions of 4w or of 4(w—1) 
according as w is even or uneven. 

There is another solution of the problem that has been under consideration. 

Instead of constructing a generating function from successive layers of nodes parallel 

to the plane of wy, we may build one up by first considering all the exterior angles 

of nodes; then those which become exterior when the former are removed; and so on. 

Thus if any graph were 
21 

it 

1 

WU) 

em bp bp Ww me et ob 

we first take 

as constructed by the superposition of Th ak al elalenl i il ile 

Le cer a cee eS SSS 

1 

1 

1 

a 

then WADI made up of Lea tek: 

2 i 1 
1 1 

then : : 

We are then led to the crude generating function 

1 

OG —m)(1 — max) (1 — max’) (1 — maba®)(1 — mabex") ... (1 — mabe ... x) 

(.- =) @ -5*) (1 - a 2) ...ad inf, 

(1-3) (1-52) (1- aa") ead inf, 
a ab ab'e . 

aden, 
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in the ascending expansion of which we must take the coefticient of m/, operating 

in regard to the letters 
Cg Or 
be ce 
a’, be ce’ 

We have, therefore, the identity 

OQ. (1 + ayx) (1 + ayaga*) (1 + ayayaza)... (1 + ayy... aja) 

x gees 14 a) 14 be as son. Exel Tas (ae cia / MAA 

Cc N CC. (re 1 10 3 10203 5 x (1+ b, x) (2 ae ee) (a+ Fs «) sop Exel wate, 

j rows 

1 
= ComiX 

(1 — m) (1 — mz) (1 — maa’) (1 — maba*) (1 — mabea?) ... (1 — mabe ... 2") 

ee a’ ab’ os) ? 

i) (1-52) (i-¢
 abe 7 ec ad inf. 

L a’ : ab! : 

(Se (==
 a b’e 7) -

 ad int. 

ad inf. 

and, when 7 is unrestricted, 

O (1 + qe) (1 + Gao’) (1 + Qyaeasz*) ... (1 + yan... aja") 

x (1422) (142 bibs o) (14 Heat). ad inf. 
ai Ag Ags 

Cy Cy Co C, CoC : (uct) rte a) (14 fee =) .. ad inf. 

ad inf, 
1 

=O — «)(1 — aw) (1 — aba?) (1 — abea’)... (1 — abe... «) 

ab’ F 
a-2) (1-Se \(1- Sw)... ad inf. 

ie al’ ab” F 

(1-3) (1-49) (1- ay) Pacem 

ad inf, 
a remarkable result, which it would be difficult to establish algebraically. 
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As it is necessary in the sequel we will now determine the generating function 
which enumerates the «wy-sywmetrical graphs, limited as above, but subject to a new 
restriction, viz. each layer of nodes is to be formed by, at most, s plane angles of nodes. 

The enumeration, it is easy to see, is given by the coefficients of mz” in the 
development of 

1 
a—— 2 (1 + mar) (1 + maya.z*) (1 + majaza,a’) ... (1 + maya, ... aja") 
l-—m 

x (1 + 1) (1 + bibs ) ¢ + Obibs “) ... ad inf. 
1 MA. AAs 

CQ C\Cy C1 CoC3 er x (14 %2) (14 2%) (14098). ad int ( ih x + bb. 1+ Mao ad inf 

j rows, 

and also by the coefficients of m/z” in the development of 

1 1 

l1—m “ (1 — mx) (1 — maa*) (1 — mabz*) (1 — mabea’) ... (1 — mabe ... 2) 

(1 = “\ (1 - 52) (1 x a 2) ... ad inf, 
ab abe 

(1-3) (1-42) (1-53). ad inf, 
a wb wb’'e 

§ rows. 

Let the coefficients of m* in the former of these generating functions be denoted by 

F;,,(x), and denoting the generating functions by A and B respectively, we have :— 

A=1+4+ mF; (x) + mF; .(x) +... + mF; .(x)+..., 

B=1+mF,,,(2) + mF,,,(@) +... + mF;,.(")+.... 

Moreover for j=, we have 

A=1+4mF,,() + mF... (x) + mF, 3 (x) +..., 

and for s=o, 

B=1+MmPF,,.. (x) + mF, («) + mF, . (2) +.... 

THE wyz-SYMMETRICAL GRAPHS. 

Just as Sylvester dissected the xy-symmetrical graph in two dimensions into plane 

angles we may dissect the #yz-symmetrical graphs in three dimensions into solid angles. 

Each solid angle is in the shape of a symmetrical fragment of half of a hollow cube. 

In each of the planes ay, yz, zx we find the same symmetrical two-dimensional graph. 

If this graph has 7 columns or rows the number of nodes which lie on one or other of 

the three axes is 1+3(i—1) or 3i—2. In the plane of wy we can place plane angles of 

Vou. XVII. Parr II. Dit 
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nodes so as to form a symmetrical graph in two dimensions. If w be the weight of the 

solid angle we have w—3i+2 nodes to dispose symmetrically in the three planes and 

this can be done in a number of ways which is given by the coefficients of 

ps (w—si+2) 

in (1+2)(1+2*)(1+2)...d+2>), 

that is, by the coefficients of 2” in 

Q: = x (1 + a5) (1+2°)(1 +2")... (1+ 2), 

which is therefore the generating function of the solid angles in question which have 

exactly i nodes along each axis. Observe that i—1 factors follow 2, and that, when it 

is convenient, we suppose the\yexpression to have the value unity when 7=0. 

Hence the solid angles which possess 7 or fewer nodes along the axes are enumerated by 

1 

+2 

+ a4 (1 + 2) 

+u7 (1+ 2) (1 +2°) 

+2 (1+ 25)(1+a°)(1+2")...(1 +a). 

Fitting solid angle graphs together when possible produces «yz-symmetrical graphs. 

When <=2, Q.=a'(1+ 2°), the two solid angles being 

Ors © oO 
: ene 

of contents 4 and 7 respectively. 

We cannot fit a solid angle into the first of these, for there is no node upon which 

it can rest. In the case of the second we can fit in the solid angle for which i=1, Q=a# 

represented by a single node e, and thus form the symmetrical graph 

ee, ot content 8. 

Synthetically we form the generating function 

Ow! (1 + az") € +20) =a2+a'+2° 

of all symmetric graphs having i=2. 

Observe that the construction of the factors, following the operator , permits the 

association of 

a and e 

and does not permit that of 
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Restricting ourselves to two solid angles when 

1=3, Q,=a7 (1 +2) (1 + 2) 

we are similarly led to the construction of the generating function 

Qa? (1 + aa) (1 + aba) x +5 ak (1 +2), 

whence after expansion and operation we find 

(a? + 0 + 6 =} @*) -- (@ + a + a) + (a + aw) + 2, 

and the correspondence is 

a a. an a? x aba? x’. ax. aba? 

33 Ila Seoul SeBh yy Behe 

1 Al By dheeil Sigh ly tl 

1 1 44 Taal | 

a aa = a’ aba? .= a ax. aba. — 

3-2) 1 33) & 3) 3)8) 

PAD) 3} 4 al 8 aol 

1 Pag k Bt JL al 

al eee a’. ax. aba® 
ab 

332 8h 3.33 

83.8) 2 33) 2 

PY 83 Qik 

Bia ihey, Cae 
ab’ a 

8} 83 83 

333 

3B 2 

In the form which arises from the product at. aba. the largest solid angle is given 

Se 

by 2’. abx*; that is, a gives the axial portion 1 , « yields : : in each of the three 
1 

3 3 2 

planes, so that the resulting angle is 3 11; the next largest solid angle is given by 
21 

and this fits ito the larger. 

21—2 
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a a rina ial : 
Again from a. aac? aba? . we get first 1 from a’, and then 1 and 1, in 

1 

ee 8 oN ; pe 
each plane, from a* and a, yielding 3 1 1 the outer solid angle; and —.— gives a solid 

ay hy Poe 
2 - : 22 

angle, composed of 1 and 1 fitting in each plane, viz. :— 24° and this fits into the 

333 
larger solid angle yielding 3 3 3. 

33 2 

It will be clear now that the generating function for symmetrical graphs having 

nodes along each axis and formed of at most two solid angles is 

Qa? (1 + a2) (1 + aqaet®) ... (1+ mae... Ga) 

a a 7 a a * 
«i424 (147 \4 Z ee a+ ) +. ad int 

ie nasa a)” AyAotts ay ays 

the general term in the series to infinity being 

38—5 2s 6S—15 

2 (+=) (+=) ae +). 
MAyAy «+. Asa ay Ay, A Ay ++. Aso 

Summing this function, for values of 7, it is found that the generating function, for 

the graphs composed of at most two solid angles and having at most ¢ nodes along 

each axis, is 

O {1 + at at (1+ qa’) + 2? (1 + aya*) (1 + ayagt*) +... 

+ a8 (1 + aya) (1 + aqaet®) ... (1 + aya ... ai 2) 

a 3 7 7s rl 

alps Be (1+%)+ z (1 +=) (1 + )+e-.ad int 
ik Gan Gy) ~— AyAnltg Ay yy 

If the graphs are to be composed of at most two solid angles but to be otherwise 

unrestricted we obtain 

QO {1+ a@+a4 (1 + qa*) + a7 (1 + qa*) (1 + a,a,2") +... ad inf} 

{ aaa, e iy a / x ; 
waht sate? (1+ =)+ e (1+2) (14+ = )+...ad int. 

il Gan GAG (yh) ~~ Ans hy ‘as 

It is now easy to pass to the general case in which the composition is to be from 

at most s solid angles. The generating function is 
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OQ {1 +e + a4 (1 + a,a*) + v7 (1 + aya) (1 + ayage®) +... 

+ a%*(1 + aya) (1 + ayaa)... (1 + yay». aia") 

eee a (1+ Ae) + w% (1 + at) (140 w) +...ad intl 
Ally on (d J 

xr + t+ of as (+e at) + pe (1+ 22 a) (1 +p a) +..-ad int} 

f 
( 
te eee a (a +f) 4 a (1 +S (1 + oe) +...ad int} 

12 C1CoCy Cy 

Ss YroOws. 

When the first row is also continued to infinity, and the number of rows is 

infinite, we have the crude form of generating function for xyz-symmetrical graphs quite 

unrestricted, 

When s=1 and i= it may be easily proved that the generating function may be 

written 

a ae 

Me eG i= a2) {=A C=e) =e. 
a (k—-1)— (k—2)8 

+ d-#) Gd —2) (1-2)... d—-a) * 

There is another mode of enumeration of «yz-symmetrical graphs which it is important 

to consider. 

Durfee has shewn how to dissect a symmetrical graph in two dimensions into a 

square of nodes and two appendages lateral and subjacent. 

Ex. gr. the graph 

where this is a square of four nodes, a lateral appendage a and one which is subjacent b. 

This dissection leads to the expression of the generating function in the form of an infinite 

series of algebraic fractions. Sylvester further applied the same dissection to unsymmetrical 

graphs and derived algebraic identities of great interest. 

In the case of three dimensions we also have a dissection of the same nature. This 

is not based upon the isolation of a cube of nodes as might at first appear. 

If we take such a cube, for example, 

OBS 
22 



162 Mason MACMAHON, PARTITIONS OF NUMBERS 

we may, it is true, attach appropriate lateral, subjacent, and superjacent graphs and thus 

obtain an zxyz-symmetrical graph; but a slight consideration shews that a large number 

of symmetrical graphs escape enumeration by this process. Ex. gr. the graph 

3.3 | 2 
321 
24 

is based upon the cube in question, whereas the graph 

33) 3 
3 rl 

Syke pal 
~ 

is not based upon that or any other cube, yet it is without doubt symmetrical. 

In the former of the two graphs observe that the appendages are 

lateral 

subjacent 2 1 

superjacent : : 

The fact is that symmetrical graphs are based also upon graphs other than those 

which are perfect cubes. 

The whole series is formed as follows -— 

We have, first, those based upon the cube 1, viz. 

the base is 1. 

Secondly, we have those based upon graphs such that there is a square of four nodes 

in each of the three planes of reference. These are of two kinds, viz. :— 

22 22 

21 22 

where the nodes of the former are in the shape of the half of a hollow cube and the 

latter is obtained from the former by combining with it the cube 1. 

Thirdly, we have four bases derived from the graph which has the shape of a half- 

hollow-cube of side 3; viz. :— 

333 333 333 333 

Sele 3 2 1 333 333 

33 I 3} iil 332 333 

where observe that the three latter bases are derived from the former by combination 

with the three bases previously constructed, viz. :— 

1 22 22 

2 1 Ded 
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Similarly, of the fourth order, we have eight bases, viz. :— 

444 4 444 4 444 4. 444 4 

Aye 4211 4331 4331 

edt sat 4111 4321 4331 

2a at Ae Ae 

444 4 444 4 444 4 444 4 

444 4 444 4 444 4 444 4 

442 2 443 2 444 4 444 4 

442 2 4422 4443 444 4 

the seven latter being derived from the former by combination with the seven forms 

previously constructed. 

The way in which the bases are built up is now plain and we see that, of order x, 

we can construct 2” bases of which 2"—1 are derived by combining with the half- 

hollow-square of order n, all the bases of lower orders in number, 

1424294 ... 4907 = 901, 

As one illustration take the graph 

a me bw ot 

the z axis being perpendicular to the plane of the paper. 

The graph is built upon the base 

33.3 
321 

By 1 Es 

a the lateral appendage being 321 

fat 

1; 

b the subjacent appendage being 311 

21 

1 

c the superjacent appendage being 3 i 

2 

1 



164 Mason MACMAHON, PARTITIONS OF NUMBERS 

From the lateral appendage we derive in succession the subjacent and superjacent 

appendages. 

The rule is to face the origin and give the lateral graph right-handed rotations 

through 90° about the axes of z and y in succession. We thus derive the subjacent graph, 

and a repetition of the process upon the latter then gives the superjacent graph. 

Thus starting with the lateral 

321 
17 ; 

i 

the two rotations give in succession 

et es old 
iL @ aol 2) il ‘ 

1 1 

the latter being the subjacent, and operating similarly on the latter we obtain in 

succession 
iL 2 33 3) 5 Il 

eleand en ; 

1 1 

the last written graph being the superjacent. 

As another example, if the lateral be 

22 1 

it i 4 

we obtain by operation 12 2 

12 and 21 ; 

1 1 

21 
giving 2 1 the subjacent: operating upon this 

1 
ie acts 3 2 

i 
giving 5 the superjacent. 

Compare the graph 
54/221 
41/11 

21 

21 

1 

bo bo ke bo 
upon the base 
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We have arrived at the point of shewing the construction of the bases and we have 

seen how to construct the graph, being given the base and the lateral; the base and the 

lateral completely determine the graph, and if they be of contents w,, w, respectively the 

complete graph is of content w,+3w,. For a given base we have now to determine the 

possible forms of lateral appendage preparatory to attempting their enumeration. 

Every line of numbers parallel to the axis of y in a symmetrical graph is of necessity 

a self-conjugate partition of a number, for otherwise more than one interpretation of the 

graph would be obtainable. Ex. gr. in the graph 

54221 

4 Todt 

Dell 

21 

1 

5 4 2 2 1 is a self-conjugate partition of the number 14, 

21 » » » » ” 3, 

the corresponding symmetrical two-dimensional graphs being 

oe?ee 

Hence this self-conjugate property appertains also to the lateral appendage, the lines 

of numbers being taken parallel to the axis of y, not parallel to the axis of # The 

reverse would naturally be the case if we were considering the subjacent appendage. This 

property imposes a limitation upon the possible forms of lateral appendage. 

Let w, be the content of the base, 7, its order ie, the number of nodes along an 

axis; also let w, and 7, refer to the lateral. 

Then for the complete symmetrical graph we have content w,+3w, and order 

4,+%, or say, w, 7 referring to, the complete graph, 

w=W,+3u2., t=U+% 

For the base 1 

w,=1, 7,=1 the lateral must have the form 

ni ie FL 

and the generating function for such laterals whose order does not exceed 2, is 

ce gat 

= See 
l-2z 

Vou. XVII. Parr II. 99 
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therefore if F(w) denote the generating function of the associated symmetrical graphs 

nig tl 

* Co a” F (x) = Co a F (x) =Co amt 7 — ‘ 

= Sigt8 
j 

. F(a j)= =z : ee ? 
1 

the generating function of symmetrical graphs on the base 1. 

Since 7,=i—1, we may write this 

— 
F(a )aat p= 

2 ~ : 2 1 ; 
1 the latefal may involve 1 and 1 but not L hence its form 

bo bo 
For the base 

must be 
ase Ain evra Wl atl beep 

lege eat 

If 7, be unrestricted the lateral generating function is 

1 . 

l—2z.1—2°’ 

otherwise we have to seek the coefficient of mz in 

1 . 

1—m.1—mez.1—mz’ 

and since W,=1, {=2, p=1— 2, 

we obtain the generating function of symmetrical graphs 

a’ 

1—m.1—ma?.1— ma?’ 

in which we seek the coefficient of m2”. 

Similarly for the base Bee since the lateral must be of the form 22, ee 
MY 22 us e form 9 9-4 4°" 

we are led to the generating function 

bi 

1l—m.1—ma.1—ma.1—mz’ 

in which we seek the coefficient of m* a”, 

If the base is at most of order 2 we may say that the enumeration of symmetrical 

graphs of content w and having at most 7 nodes along an axis is given by the 

coefficient of mx” in 

mz mg? m>tz8 
1+. -———__. =, 
ae wl Sao ola ee 

* Cox” F (x) denotes the coefficient of «¥ in the expansion of F(z). 
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If %, and therefore 7 be unrestricted this expression naturally becomes 

ie: 7 a ed a 

@ *1—@.1—a*1—a.1—a 1—a"" 

The question now arises as to the direct formation of the fractions appertaining to the 

bases of order 4. 

The form of the lateral appendage depends, as we have seen, upon the self-conjugate 

unipartite partition represented by the right-hand column or boundary of the base. We 

will call this partition the base-lateral. So far of the first four orders we have met 

with certain base-laterals, viz. :— 

Order 7i,= Base-lateral 

1 1 

2, 2 
2 
ri 1 2 

3 3 3 

3 1 3 3 

i 2 3 

4 4 4 4 

4 1 4 4 4 

1 2 4 4 

1 2 3 4 

Of order 7, there are 7, different base-laterals: for consider the formation of the base 

of order nx from those of inferior orders. Combination of the half-hollow-cube form of 

order 7, with the bases of orders less than 7,—1 can only result in base-laterals identical 

with that of the half-hollow-cube base; and assuming that base-laterals of order 7,—1 

are 7,—1 in number, it is plain that the combination referred to can only produce 

7,—1 additional base-laterals. Hence, on the assumption made, the whole number of 

base-laterals of order 7, is 1+7,—1=7%. By induction the theorem is established. 

The 7, base-laterals of order 7, are (writing them for convenience horizontally 

instead of vertically) 

Alig etn CR eso ee re ecera he 

We must discover the generating function of bases having a given base-lateral 1,%s'~*. 

The base-lateral in question is associated with 2°-*7 different bases if s<n, while 

i,» is associated with but a single base. Taking s=1, the simplest base, having 71° 

for base-lateral, is the half-hollow-graph of content %°—(%,—1). The remaining bases 

with this base-lateral are obtained by combination with the bases of the first 7—2 

orders. 

22—2 
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Denote by v,;—1 the generating function of the bases of the first s orders; then 

ee oO Se ane 

or Qi» = {1 + oe 

whence t,2=(1+e)(1+a°™")1+2°%)... {1+ hi asl 

Therefore the generating function of bases, having the base-lateral 7,1°~, is 

ga (1 42)(1+2°) (1 +2")... {14+ 269 G94], 

Next consider the bases having the base-lateral 

Geer 

The simplest base of this nature is derived by combining the half-hollow-cube 

form of content 73—(7,-1)* with the similar form of content (7,—1)*—({—2)' and thus 

it has the content 7°—(i,—2)% With this we can again combine every base of the 

first i,—3 orders without altering the base-lateral, which remains 7225-2. Hence the 

bases are enumerated by the generating function 

gh (1 +2) (1 +a") (14+ 2**)... (Lace of], 

In general the simplest base with base-lateral 7,8s:~* is obtained by combining the 

half-hollow-cube forms of orders 4, 4-1, 4—2,...4—s+1, and thus has the content 

a° —(4—s/ 

By reasoning before employed we arrive at the fact that the bases with base-lateral 

i,$ss-* are enumerated by 

gh 6-1 +2)(1 +2) Seep?) ofl =e a8 

In this expression, between the brackets [ ] there are 4—s—1 factors; if s=y4—1 

or i, we take merely a and 2** respectively. 

The next question is the ascertainment of the generating function which enumerates 

the lateral appendages that can be associated with the base-lateral 7%s"~*. When s=1 

this is easy because the lateral must be composed of columns 

1 2 Sh sos hh 

1 a! 

iu 
1 

not more than 7, being taken. 

The generating function is 

1 

T—m.1—mz.1—m2.1—m2....1— me’ 

where we seek the coefficient of m®a or of m‘bx since 1=%1+%. 
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Finally for the symmetrical graphs constructed on bases whose base-laterals are 7,17 
we have the generating function 

ohh" (1 + @) (1 +a*) (1 + 0%)... {1 + oth h-9}] 

(1 —m) (1 — ma*) (1 — ma*)... (1 = mati) ‘ 

in the expansion of which we must seek the coefficient of m’ia”. 

When the base-lateral is 7,'ss~* the matter is by no means so simple. The lateral 

appendage is composed of columns each of which is a self-conjugate partition of a 

number, and the possible forms of the columns are further limited by the form of the 

base-lateral. To explain take 7,=5,s=3 so that the base-lateral (written horizontally) is 

5 5 5 3 3. 

This has a graph 

e e e 

formed of three plane angles. Any column of the lateral must have a graph which can 

be superposed; the condition for this is obviously that it must be composed of not 

more than three plane angles, the largest angle containing not more than 9 nodes. So 

with base-lateral 7‘s'~* a lateral column must have a graph composed of not more 

than s plane angles, the largest angle containing not more than 27,—1 nodes. 

The complete lateral appendage constitutes a multipartite partition whose graph is 

symmetrical in two dimensions. We have therefore to enumerate the graphs of this 

nature, each layer being composed of at most s plane angles and no angle containing 

more than 22,—1 nodes and the number of layers not exceeding i—7, or 7. 

The crude form of this generating function was found earlier in the paper to be 

1 

o (1 —m) (1 — ma) (1 — maz*) (1 — mabe’)... (1 — mabe ... 2)’ 

(1 — =) (1 - © @) (1 - a” @) ... ad inf., 

a a’ ab” z 

(1 = “| (1 = ar) (1 = wa") ... ad mf, 

eee eee eee eee eee eee ee eee eee eee es 

S$ rows, 

in which we take the coefticient of ma”. 
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We can now assert that the symmetrical graphs which appertain to the base-lateral 

iss-’, and have at most 7 nodes along an axis, are enumerated by the coefficient of 

mba” in 

ai" [(1 + 2) (La) (14 a)... {14 2 yy 
(1 —m) (1 — ma*) (1 — maa’) (1 — mabe")... (1 = mabe ... a8)’ 

(a = =) (1 = Sa) (1 = a a) pedis 

(1 x =) (1 - 552) (1 = a a) ..ad inf, 

eee ee eee eee ee eee eee ee ee eee ee ee 

Denoting this expression by S(m, «), we see that 

q=t s=i, ars 

> = Sm, 2).mi~ 
t,=1s=1 

enumerates, by the coefficient of mx, the whole of the symmetrical graphs subject to 

the single restriction that more than 7 nodes are not to occur along an axis. 



TRANSACTIONS 

OF THE 

CAMBRIDGE 

PHlLOSOPHTCaL SOCIETY. 

VOLUME XVII. PART III. 

CAMBRIDGE : 
AT THE UNIVERSITY PRESS 

M.DCCC, XCIX. 



ADVERTISEMENT. 

Tue Society as a body is not to be considered responsible for any 

facts and opinions advanced in the several Papers, which must rest 

entirely on the credit of thew respective Authors. 

Tne Society takes this opportunity of expressing its grateful 

acknowledgments to the Synpics of the University Press for their 

liberality in taking upon themselves the expense of printing this 

Part of the Transactions. 



Waly 

WAU 

VUE 

IX. 

CONTENTS. 

On Divergent (or Semiconvergent) Hypergeometric Series. By Professor W. M°F. Orr, 

MAS Taal (Collligee cir Seems, ID Skin eeGesepeanoconocns onccboncodeonec bocagandencncHnanmaroces 

A semi-inverse method of solution of the equations of elasticity, and its application to 

certain cases of aeolotropic ellipsoids and cylinders. By C. Curez, Sc.D., F.R.S. 

On the Change of a System of Independent Variables. By HE. G. Gator, M.A., Fellow 

Ong Gonville sands Carusy Collegerss.aseemcess ces accord aceicarancenaewsicoeieeniecateemace sseeeeesetmoss 

On Divergent Hypergeometric Series. By Professor W. M°F. Orr, M.A. .......... 0.2.65 

PAGE 

171 

201 

231 

283 





INDEX TO 

Cayley, on the product of two hypergeometric series, 1 ; 
on change of independent variables, 231 

Characters, generic of quadratic forms, 135 
Curer, C., Se.D., A method of solution of the equa- 

tions of elasticity, 201 
Classes of quadratic forms, 139 
Currents, electric, decay of, in conducting spheroids, 

104 

Earth, the, equations of elasticity applied to, 210 
Elasticity, a method of solution of the equations of, 

201 

Elliott, Prof., on Cyclicants and Reciprocants, 231, 267, 

273, 279 
Ellipsoids and cylinders, elastic, 201, 213, 223 

Elliptic disc, rotating, elastic, 217 

Equation, the study of the differential, (v?+.x?)y~=0, 41 

Fermat’s theorem for quadratic complex numbers, 119 

Gatuor, E. G., On the change of a system of inde- 
pendent variables, 231 

Gauss’s law of composition of quadratic forms, 111 
Graphs, for the partition of numbers, 151 

Heat, equation of conduction of, 41, 105 

Hypergeometric series, on the product of two, 1; on 

divergent, 171, 283 

Kerr, experiments in magneto-optics, 30 
Klein, Prof., lectures on ideal numbers, 109 

Larmor, J., theory of the electric medium, 17 

LeaTHem, J. G., On deducing magneto-optic phenomena 
from an energy function, 16 

Mactaurny, R. C., On the solutions of (y?+ x2) ~=0, 41 

MacManon, Major P. A., Partitions of numbers whose 

graphs possess symmetry, 149 

Wor, SAVE 12d ME 

Wee eV EL. 

Magneto-optic phenomena deduced from an energy 
function, 16 

Numbers, Partitions of, whose graphs possess symmetry, 
149 

—— certain systems of quadratic complex, 109 

Optics, and magnetism, theory of, 16 

Orr, Prof. W. M°F., On hypergeometric series, 1, 171, 
283 

Oscillations, electrical, in a homeoidal layer of 
dielectric, 96 

Partitions, theory of, 149 

Physical applications of the equation (v?+ x2) ~=0, 41 
Pochhammer, on contour integrals, 173 

Quadratic, complex numbers, 109; quadratic forms, 
131 

Quantics, algebra of, 249 

Reciprocity, laws of quadratic, 124 
Reflexion, magnetic, 25 

Sylvester's constructive theory of partitions, 149; on 
change of independent variable, 231 

Tables of quadratic complex numbers, 146 

Variables, independent, change of, 231 

Vibration, of an elliptic plate, 73; of electricity in a 

cylindrical cavity, 76; of spheroidal sheets of air, 91 

Waves, reflexion and refraction of, at a plane surface 
of magnetised metal, 22 

scattering of, by an obstructing spheroid, 101 

Westery, A. E., Certain systems of quadratic complex 
numbers, 109 

Zeeman, experiments in magneto-optics, 32 

38 



Cambridge : 
PRINTED BY J. & ©. F. CLAY, 

AT THE UNIVERSITY PRESS. 



TRANSACTIONS 

CAMBRIDGE 

PHILOSOPHICAL SOCIETY. 

VOLUME XVII. 

CAMBRIDGE: 
AT THE UNIVERSITY PRESS 

M.DCCO, XCIX 



ADVERTISEMENT. 

Tue Society as a body is not to be considered responsible for any 

jJacts and opinions advanced in the several Papers, which must rest 

entirely on the credit of their respective Authors. 

Tue Soctery takes this opportunity of expressing its grateful 

acknowledgments to the Synpics of the University Press for their 

liberality in taking upon themselves the expense of printing this 

Part of the Transactions. 



IIt. 

Wu 

- VIII. 

IX. 

CONTENTS. 

Theorems relating to the Product of two Hypergeometric Series. By Prof. W. M°F. Orr, 

IMAC mLVOyaln Gollegsvots sciences Dublint esssaccsee.rddeneorere meecsserder setae acnenceasatees 

On the possibility of deducing magneto-optic phenomena from a direct modification of 

an electro-dynamic energy function. By J. G. Learuem, M.A., Fellow of St John’s 

Wollegowanasenestenc nether es ersistwceriss svecostesaccge aids nssoste at aoenees os onmontorntemesee ousesereee tees 

On the solutions of the equation (V*+x*)y=0 in elliptic coordinates and their physical 

applications. By R. C. Macuaurin, St John’s College ..............csccscccceseecsvcneceseee 

Certain Systems of Quadratic Complex Numbers. By A. E. Wesrern, B.A., Trinity 

Colleges Gam brid cen tewaaosssnnmesssnyascsenssseese siden. des eee sastenecden foeen ate nbees ane aoe ne oe ees 

Partitions of Numbers whose Graphs possess Symmetry. By Major P. A. MacManon, 

WAC HD) Srp ib dk e,h kl ONsay OMI ©abuSs, dasniaceneeome caster war coracstiees rece eeresaneecs ereeaeees 

. On Divergent (or Semiconvergent) Hypergeometric Series. By Professor W. M°F. Orr, 

MAS wRoyal Collegeof Science, sMubliny <.:cc-e-n.nccecessncdecsccisasteaesven ete nseeecsee ees one 

A semi-inverse method of solution of the equations of elasticity, and its application to 

certain cases of aeolotropic ellipsoids and cylinders. By C. Curer, Se.D., F.R.S. 

On the Change of a System of Independent Variables. By E. G. Gatiop, M.A., Fellow 

of Gonvalleyand!( Carus) Colleges eencceecccncs se secaretsnesscetissacs cp celescescnedeteendvesdseascecesce 

On Divergent Hypergeometric Series. By Professor W. M°F. Orr, M.A. ..............068 

PAGE 

16 

41 

109 

149 





VI. On Divergent (or Semiconvergent) Hypergeometric Series. 

By Prof. W. M°F. Orr, M.A., Royal College of Science, Dublin. 
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1. THE series 

CHE coo Gis @, (@, + 1) ay (a, +1)... Om (Am + 1) Hak bela eee, (1) 

I pyps--+ Pn 1.2. pi 4p; + 1) po(p2+1) .-- pn (pn+1) 

is convergent for all values of « if mn and convergent for values of z whose modulus 

is less than unity if m=n-+1; im such cases if its sum be denoted by 

1+ 

F(z, Ga, +2. Om 3 Pr P2,--> Pn; ©) 

the successive differential coefticients of this expression are represented numerically by the 

convergent series obtained by taking the corresponding differential coefficients of the terms 

of (1). The relation connecting the coefficients of two consecutive terms 2”, @,.,a7™, viz. — 

i 27)\(er-F 7) <- = (en ET) Ors = (Gi EF) (Ga +7)... (Cin FG) Gy ----2- 0022-0 (2), 

is equivalent to the differential equation 

{(0-+%) (0+ 04)... (0+ an) = 7 8(8 +p, 1) (0+ p.—1)-. (0+ px} y=0 ... (8), 

in which @ stands for the operator «d/dx. The series (1) is therefore, when convergent, a 

solution of this equation. Relation (2) is satisfied by n other series, convergent if (1) be 

convergent, one of which is 

2 F(a —pit 1, m—pi+1,...Qm—pit1l; 2—p,, pr—pit,... pn—pit1; z)...(4), 

the others being analogous. Each of these n series when convergent is therefore a solution 

of equation (3), and the n+1 series thus furnish the complete solution of this equation 

for all values of « if m+n, and for values of « whose modulus is less than unity if 

m=n-+1. It is supposed that no two of the quantities a@,...¢m, ~i,--- Pn, 1 are equal, or 

differ by an integer. 

Relation (2) is also satisfied by m series proceeding in descending powers of «, one 

of which is 

a, (% = pik 1) ose (a, T Pn at 1) 

1.(a)— @ + 1) mints (@ — Gp, a 1) 

a, (a + 1)(@ —pi+1)(% = Pie 2) see (a, = Prt 1) (a — Pn +2)1 + 5) 

1.2. (a, — a+ 1)(@—a +2)... (@:—@m + 1) (& — amt 2) xe re -++(9), 

Wor, XVIl Pann TE. 23 
= 

Lon {1 + 
1 

n—m+1 — 

+ 
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the others being analogous. These m series are all divergent when the former n+1 are 

convergent. The object of the present paper is to show that in such a case if the real 

part of (—1)"™*/x is negative, then provided s exceeds a certain number independent of 

x, the sum of the first s terms of such a series as (6) differs by some quantity whose 

modulus is less than that of the next term from a certain linear function of the n+1 

convergent series (1), (5), etc., and that whether the real part of (—1)"""~' & is positive 

or negative, for any specified value of s, x can be taken so great that the sum of the 

first s terms differs from the same linear function of the convergent series by a quantity 

whose modulus is less than that of the next term multiplied by 1+.e, where e is any 

assigned small positive quantity. 

It may be remarked that the theorem stated for the case in which (—)"""**z has its 

real part negative cannot be true without some restriction on the argument or the modulus 

of (-)y-"™4 a, It has been pointed out by Hankel (Math. Annal. Vol. 1) that such a 

theorem cannot hold for a series proceeding in powers of wu whose terms, after a certain 

one, are real positive and increasing as the three results to which it would lead on 

terminating the series successively before each of three consecutive positive terms, of which 

the first is less than the second and the second less than the third, involve an in- 

consistency. Hankel however appears to consider that it may hold for all other values 

of uw; this is a mistake unless the function of w to which the semiconvergent series is 

“equal” (in the sense above) is discontinuous on crossing some curve other than the 

positive part of the axis of real quantities, as it is evident that, with this exception, if the 

theorem be true for all save real and positive values of w it must be true even for these. 

The well-known semiconvergent expansions of J,,(«), for example, cannot therefore hold 

for complex values in the sense that for each of the two divergent series occurring therein 

the error committed in stopping after the sth term, provided s—n-+4 is positive, has a 

modulus less than that of the next term, without some restriction on the value of #; and 

in fact the demonstrations given by Lipschitz (Crelle, Lv1.), Hankel (loc. cit.), and Gray and 

Mathews (Treatise on Bessel Functions) are invalid unless « be wholly real. Lipschitz, who 

discusses only the case in which n is zero, appears in fact to consider only real values of «. 

The fallacies involved in the proofs by Hankel and by Gray and Mathews will be noted 

presently. The magnitude of the error in case 2 is complex has been discussed by 

H. Weber (Math. Annal. Vol. xxxvu..), who has not however explicitly referred to the 

fallacies in question. 

2. As a lemma to be used in establishing the theorem of the present paper I proceed 

to prove that if (1—t)~* be expanded in ascending powers of ¢, where the modulus of t¢ 

may be greater than unity, then provided a+s be positive the modulus of the error out- 

standing after s terms is, if the real part of ¢ be negative, less than that of the next term, 

and if the real part of ¢ be positive, and ¢ not wholly real, less than that of a certain 

multiple (involving the argument of ¢) of the next term. 

We have 
diets Cae we ON 
Z=t Gl eee Gee) Be Ss 
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(1 — 2)-* dz 
; » where (1—z)-* is equal to unity at the origin. and Qari = a 

Multiplying by 

integrating along the path ABCDEFA in Fig. 1, CDEFA being supposed a curve, every 
point of which is at an infinite distance from the origin, we obtain 

i 1, — —a 

(l—t)*=l+at+... (to s terms) + 5 We) : l 
2m J z*(z—t) si 

FIG I 

wherein the path of integration is the same and (1 —#)-« reduces to unity at the origin. 
If now a+s is positive the path CDEFA contributes nothing to the integral on the right 
and the remainder after s terms, which we will denote by R(a, s), is equal to the integral 
taken along the path ABO only. This may be written, following Pochhammer (Math. Annal. 
XXXV.), In the form 

— ts pO 1 —z)-* 

dei} A (@— 1)” 

Suppose first that 1—a is positive. We then have 

t : a [ic (G= Ure R(a, s)= seen Cay =) I os a dz 

fae “(z—1)- 
= = sin a | nae 

If the real part of ¢ be negative 

ies | Ae Se ec ee 1 #(—2) , an II (s) 

Therefore since II (a—1) TI (—a)=-mcosec ar we have 

#I1(s+a—1) 
mod. R (a, s) < mod. Il(s)M(a—1) A 

Le. <modulus of first term omitted as stated. 

23—2 
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If the real part of t be positive and t=r(cosp+7sin 9), 

[*(z—1)* Ae Ags le 

mod. it nG= ya =a ae ae dz, 

and therefore a “hy 
Gea) 

mod. R (a, )<? Tellie= THE 

Next suppose that 1—a is negative but that n+1—a is positive, n being a positive 

integer. By partial ei: performed n times in succession we obtain the result 

(—)ypae eam d® 1 

Q7i.(1 —a)(2—2)...(n— a) f° de. a) re 
a 

R(a, s)= 

> — I (n)t Pa-o-tae Ferg ee 1) 
~ Qri(1—a)(2—a).. all 2e-pent 1.28 (2—t? | 1.2.2 (2-8) 

s(s+1)...(s+n—1) 

TI (n). 2+" (zt) jae 

II (n) & sin (a— 72) 7 ns 1 s 

waa) @=a)*. -(n—- 5 | ») ite pen + ee @a=or 

s(s+1) ess 

II (n) 27" (z-7) 

If now the real part of ¢ be negative, this integral would be increased in absolute 

value by replacing every negative power of z—t by the same power of 2; if this were done 

the coefficient of (z—1)""*z*-"> under the sign of integration would be 

s  s(s+l1l s(s+1).. ae 

1494S 1.2. , 
which is equal to 

(s+ a ——- 

ieee 

Accordingly, since 

iF _U(n—a)T(st+a—1) 
ik (z = I) Se le a G re a) : 

we have 
sin (a—n) 7. I (s+a—1) U(—2) 

am. II(s) 

#Il(s+a—1) 

IL(s) Il(a—1)’ 

mod. R(a, s)< mod. 

< mod. 

ie. <modulus of next term as stated *. 

If the real part of ¢ be positive and t=r(cos$+isin@) the integral in (6) would 

be increased in absolute value by replacing every negative power of z—t by the same 

power of zsing, and we evidently can deduce that 

mod. R(a, s)< modulus of the next term multiplied by cosec"*'¢. 

* This result follows readily also from Lagrange’s form of the remainder in Taylor’s series, extended (as regards 

the modulus) to a function of a complex variable. See Darboux, Liowville’s Journal, 1876. 
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3. In discussing the functions of Art. 1 it will be sufficient to consider the case in 

which m=n. The case in which m=n+1 can be derived from this by making « and 

one of the p’s infinite together, and any case in which m<n by making one or more of 

the @’s infinite and « infinitely small and of the proper order. 

Omitting the case of n=0, the simplest of such cases is that in which n=1; this 

case will be considered somewhat fully. Equation (3) is now reduced to 

{R= (arp) acti Ole vectterassatiies ne evisceee tection (7), 

D denoting differentiation with respect to v. Its solutions in converging series have been 

fully discussed by Pochhammer (Math. Annalen, Vol. XXxvt.). 

If the series F(a: p: «) be considered merely as the limiting form of that for 

F(a, B; p; u) 

wherein w/8 is written for u, and 8 is then made infinite, the limiting form of the equation 

F(a, 8B; p; u)=(1—up** F(o—a, p—B; p; wu) 
shows that 

IGS 5 we) =r TI (WB )E, 8)) poasaebsod code sednecodecconccteece (8), 

and that 

oe F(a—p+1; 2—p; 2) =a ee F(1—a; 2—p; —2) .............-. (9), 

while another particular integral suggests another divergent series, viz. 

a =>) 1 ra (ee = = gor { 4 @=O0—01, 0-9 2-6-9 @-44)1, 1 gy 
| 1 wv 1.2 ie ) 

besides that of the type (5) which now is 

= = ae EID ee pS DE Het Dene ane | it. ht (11), 
1 Le 12 or 

A particular case of relation (8), in which p is written =2a=n and «@ is replaced by 

2x, is given by Glaisher (Trans. Roy. Soc., 1881, Part 3, page 774). 

Pochhammer shows that equation (7) is satisfied by the integral 

| e" (u— x) -2urPdu 

taken along a path which starts from any part and returns to the same point, provided 

the path is such that the initial and final values of e“(w—«)*u*? differ by zero, and has 

considered the two solutions 
r (x, 0,2—, 0—) 

| CE iirc) «RU PU Ueetnnete cot mance es as cat he <cneaeae see (12), 

T (,0) 
| GY (WAG) OALSEP Ole rcities sincioe wins Stesiae acme emcees (13). 

=o 

In the former the path starts from any arbitrary point c (which may be taken in the finite 

Ime joing the points 0, ), and returns to the same point after having made a circuit 

round the points 2, 0, in the positive direction, and then a circuit round the points 2, 0 in 
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the negative direction; this integral is a multiple of 2? F(a—p+1; 2—p; z). In the 

latter the path starts from the point — 2 and returns to the same point after making a 

circuit round the points 2, 0, in the positive direction; this integral is a multiple of F(a: p; 2). 

The identities (8), (9) might easily be established from these integrals by making the 

substitution u=a#—v2. 

In addition to (12), (13) the following integrals, not discussed by Pochhammer, also 

satisfy the necessary conditions and are therefore solutions of equation (7), viz. 

TO 
| Ce (TSAR coc nop do acco nae seoebe sabee se absaHosEae (14), 

T@ 

| BL (Whe 0) Ie 0-10 10 gon deenopeSecnonansosoonanSassonuene (15). 

We take the path of ~ in (15), both in going and returning, to pass above or below the 

origin according as « is above or below the axis of real quantities. 

Suppose in the first instance that the real part of a is positive. 

ne 

In Fig. 2 let A be a point near the negative part of the axis of real quantities and 

at a great distance from the origin. The path of w in (12) is equivalent to the paths 

AGBCDA, AEFGA, ADHEA, the value of the function e“(w—«)-*ut? at the end of one 

part being taken as the value at the beginning of the next part. But for the path 

AEFGA we may substitute A4EHDA, ADCBGA. Thus for the whole path in (12) we 

may take AGBCDA, AEHDA, ADCBGA, ADHEA. And as the distance of A from the 

origin increases indefinitely, the first of these becomes the path in (13), the third this 

reversed, the second the path in (14), and the last that path reversed *. 

fu —a /y\2-P E 

In the integral (12) writing (w—2)*us-?=a? ({-1) (=) , we will choose as 

—a / a-p 

Pochhammer virtually does those values of (=-1) and of (*) which, when the 

path of w crosses the production of the line joining the points 0, «, for the first time 

at C, are wholly real and positive, and that value of 2? whose argument lies between 

—pz/2, and + 7/2. Pochhammer, loc. cit., shows that this integral is 

evo-e) E(a—p+1,1—a)aPF(a—pt+1; 2—p; @) .........0.eeeeee (16), 
; 7,0, 1-, 0-) 

where & (a, 6) = ema) / VIN (Me) P=" AU sien sexta nee poten (17), 

ec 

* On some grounds it would be more convenient to choose as the initial and final point one near the positive 

part of the axis of real quantities and at a great distance from the origin. I thought it advisable in the present 

ease to follow Pochhammer. 
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c being an arbitrary point on the finite line joining the points 0,1 and v®, (1 —v)! 

having there initially values which are real and positive. (See Pochhammer, “Zur Theorie 

der Euler’schen Integrale,” Math. Annal. Vol. xxxv.) 

: ; II (a —1)T1 (b— 1) 
§ =—_— s ‘ bs) = mr / is 

But ( (a, b) 4 sin am sin br Ine p= 

the II functions having their extended meaning. The integral (12) is thus equal to 

é P E Il (a—p) Il(—a) : 
— ri la — > =< } = = SN! ml = i . ” te °) sin (a — p) 7 sin (— ar) mca) 2? F(a—p+1; 2—p; 2) ...(18). 

Also of the four portions by which we have shown the path in (12) can be replaced, 

the first AGBCDA contributes to the integral as shown by Pochhammer, 

: , © ees De T(1—p)F(a; p; 7) o me=) 

and the third ADCBGA contributes this same multiplied by —e?*-*. These two together 

then contribute 
4qre™@-) sin (a@ — p) ar 

II (p — 1) 
TE (Gs pina) ec eeececesemertecencedeee sss (20). 

Again for the integral along the second portion AHHDA, bearing in mind the 

alteration of the argument, we have 

(0) 
ert (a—2p) a | CES IE = PG iendaconmonae. -Scouseocsdceoe- (21), 

—2 

wherein at the point where the path of w crosses the line 0,2, the values of (1—u/xz)™* 

and of (w/a)*~? are real and positive and the argument of w~* lies between —am/2 and + a7/2. 

“one pie au a(at+l) wv Pet: 
Writing (1 — w/e) Se tag a 19 eae (to s terms) + Rg, 

and evaluating the several terms of the integral, (21) becomes 

ev? (a—2p) {ert (pa) = ert (a—p) | int (a we p) an 

eG ppl) tae DG et 1)(a—p+2)1 of 

Fg " 1 x T.2 ... to s terms + Ry Baal Qe) 

a) 7) j 
where Ri=| eur? Redu = | CHES Otis fuck sa os sate te tease (23). 

Now the origin of w is a multiple pot of order s on R,, or R, in the neigh- 

bourhood of the origin of w is of order w’, as may be seen by finding the limiting 

value of R,/u‘, and therefore provided «—p+s+1 is positive, 

ao) : , Q 
| eur? Re du = — (e7e—ets) _ e—ni(a—pts)) | Ped That 1 EC AY Bee Bese CARRS (24), 
—o J-o2 
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(the right-hand member involving a line integral and the argument of e“u*? R, being the 

same as that of R,/u’). And if a+s is positive the modulus of R, is less than that of 

the (s+1)th term in the expansion of (1—1/x)~*, accordingly R,’ is less in absolute value 

than the (s+1)th term of the series in (22). 

In this sense then provided 2+s, a—p+s+1 and the real part of « are positive, 

s terms of the series represent the whole of the expression, including R,’, in brackets 

in (22), an expression which we will denote by $(a,a—p+1; —1/z). 

The fourth and last portion of the path in (12) contributes to (12) an expression 

equal to (22) multiplied by — e7. 

Thus the second and last portions together contribute 

4e7i(e—P) sin pr sin(p— a). II (a—p)a-*o (a, a—pt1; —I1/a)............ (25). 

Equating (18) to the sum of (20) and (25) an equation is obtained which may be 

written in the form 

II (a—1) Il (—p) F(a: p; x) +1 (a—p) I (p—2) a? F(a—p+1; 2—p; x) 

=I (a—1) 0 @=p)a*¢(a,a—pt+1; —1/2) ............ (26), 

the argument of « lying between —7/2 and +7/2, and the argument of every power 

a” lying between — m7/2 and + mz7/2. 

Suppose next that the real part of 2 is negative and that the imaginary part is 

positive. Let us now take as the beginning and end of the paths of integration in 

(13), (14), (15) a point still at infinity, but whose argument instead of being 7 has 

some value between m7 and 37/2, say 57/4, and take values of the function under the 

sign of integration which are reconcilable with those formerly taken. These changes of 

path do not affect the values of the integrals. Proceeding as before, we have now to 

deal with (1—w/x)-* where the argument of wu is now 57/4 instead of 7; this is of 

the form (1—t)-* where the argument of ¢ is somewhere between 7/4 and 37/4 instead 

of between 7/2 and 37/2; the integral on the right-hand side of (24) has now the same 

absolute value as 
vati) 0 POD Lt+i\ee, 144 

i 2B NE (v a ) R, atk do, 
2 V2. a v2 

where v is real and negative and R, denotes the remainder after s terms of the expansion 

oe" By Art. 2, R, is certainly less in absolute value than the (s+ 1)th term of (1l— Varna 
i B 

of the expansion multiplied by 22 where 8 is a positive integer such that 8—a is positive, 

and as 
v(1+i) 

0 

i e Y2 ymdy, 

when m+1 is positive, is less in absolute value than 2 2 II (m), it follows that R,’ is 

less in absolute value than the (s+1)th term of the series in (22) multiplied by 
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a+B-p+s-+1* 
2 2 . As there is no superior limit to the value of s for which this is true, and 

as, by taking # great enough, terms at the beginning may be made to outweigh as much 
as we please any finite number of succeeding terms, it follows that « may be taken 
so great that for any given value of s the error in taking s terms of the series in 
brackets in (22) instead of the whole expression will have a modulus less than that 

of the next term multiplied by 1+, where e is any assigned small positive quantity. 

If both the real and imaginary parts of « are negative the same result follows by 
taking for the point at infinity in (13), (14), (15), one whose argument lies between 7/2 
and 7. 

Equation (26) is thus true in the sense indicated when the real part of « is negative, 

the argument of every power #” lying between —mm and —m7/2 or between +mr/2 

and + mr. 

I proceed to obtain the relation connecting the divergent series (10) with the two 
convergent solutions of equation (7). If in (26) we change a into 1—a, p into 2—p, 
x into ye~™, it becomes 

Ml (—a) I (p—2)F(1—a; 2-p; —y) +1 (p—a—1)M(— pet F(p—a; p; —y) 
=II(—a) I (p—a—1j ec ys 6(1—a, p—a; 1/y), 

wherein the argument of every power y” lies between 0 and 2m. After multiplication 

by e’, bearing in mind equations (8), (9), and writing # instead of y, this may be written 

in the form 

(ep —a—1)IN(—p) F(a; p; 2)+ 11 (—a) IL (p— 2) ec) al» F(a—p+1; 2-p; za) 

=II (— a) T(p—a—1) e&-97 e@ar-P 6 (1 —a, p—a; Iz) ............ (27). 

This is true in the sense that if the real part of w be negative the error in stopping 

the series on the right after s terms is less in absolute value than the next term, 

provided s+1—a and s+p—a are positive, and that whether the real part of w be 

positive or negative « can be taken so great that the error in stopping after s terms 

is less in absolute value than the next term multiplied by 1+e, where ¢ has any 

assigned positive value and s has any given value. 

The expression on the right of (27) is a multiple of (15) and may be obtained 

from that integral if « has its real part positive, by changing the starting point to 

some point at infinity whose real part is negative but which subtends with the origin 
an obtuse angle at the point 2, and writing w=a#+. 

Equation (27) may also be obtained directly by replacing the path of wu in (12) 

by four other portions in a different manner. For instance instead of (12) we may 

write 
r(0, z, O-, &—) 

= | e (u—ax)-* ur? du, 
ce 

(Pochhammer: “ Ueber ein Integral mit doppeltem Umlauf,” Math. Annal. Band xxxv.), and 

if the real part of « is negative and its imaginary part positive divide this path into 

* This reasoning, in fact, proves that if the argument of x is ++ vy, (y acute), the multiplier is 

[cosec (0 +y)P (see 0)*-P*S*1 provided 0 and 0++y are acute; also a and a—p+1 may be interchanged. 

Vou. XVII. Parr IIT. 24 
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four others, that in (13) taken forwards, that in (15) taken forwards, that in (13) taken 

backwards, and that in (15) taken backwards. If the point @ is differently situated a 

slight modification is necessary. 

In the ease which occurs in connection with Bessel Functions*, viz., that in which 

p=2a, Hankel (Joc. cit.) considers the integral 

| er yr (1 SE rir dr. 

40 

Although as Hankel proves, the remainder after s terms of (1+7i)""? is less in absolute 

value than the next term (provided n—s—4 is negative), his inference that a similar 

statement holds for the integrals, is only valid when z is wholly real. For if wu, v, w 

be complex functions of 7 which is wholly real, and if mod.w<mod.v, we are not 
rb b 

justified in inferring that mod. | uwdr < mod. | vwdr. 
/@ “a 

Gray and Mathews (Bessel Functions, p. 69) apply Lagrange’s form of the remainder 

E n—} 

in Taylor’s series to the case of a complex function (a +5) . Although this is 

a valid form of a superior limit to the modulus of the remainder, we are not justified 
n—sS—} "E\n—s—3 

in assuming that (1 ~ = and (1 - : 2 ) ; (n—s—4 being negative) are both less 

in absolute value than unity, where @, 6’, & are real, unless 2 be wholly real. 

4, The theorem indicated by equation (26) is a particular case of the following which 

will be proved by induction :— 

TI (a — 1) II (— py) Tp)... U1 (— pa) ’ a 
Il(- a) I (— a)... Il(- an) F(a, Qs, see Ons Pi P2> =P Pn; “) 

TT (a; — p) TT (pr — 2) TI (ps — po — 1)... HE (ps — pn — 1) 
II (p; — a — 1) II (p, —a, — 1)... I (p;— a — 1) 

=F 1 F(a —p, +1, ...@&—pit1; 

2— pi, po— pit 1,..-pn—pitl; 2) 

+(n—1) other terms analogous to the last 

ries II (a, — 1) II (a, — ps) see TI (a — pn) oa mae = ate — Ds he = Uh ose 

Maa) (ae) Waa Haass pastel ee sca 
a@—a,+1; —1/z)...... (28), 

wherein the argument of every power «” lies between —mm and + mr, the symbol of 

equality being interpreted in the sense that :— 

(A) If the real part of « is positive, the error committed by stopping the series 

on the right-hand side after s terms is less in absolute value than the next term, 

provided s exceeds a certain number. Of the series on the left we may select the 

first so that 1, p,,... pn, are in ascending order as also @, %,...@. If a is any 

* The semiconvergent series for J, (x) may be readily obtained by forming the equation satisfied by e* . I, (x) 

and using the analogues of (26), (27). 

a 

ee 
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fractional number let [a] denote, if @ is negative, zero, if a is positive the integer 

next higher than a Then s is not to be less than the greater of the integers 
r=n ren 

[a —a@ —1])+ = [2, — pr], [en — @ —1) + >> [a, — pr]. 
r= r=2 

(B) Whether the real part of « is positive or negative*, # can be taken so great 

that for any assigned value of s the error in stopping after s terms is less in absolute 

value than the next term multiplied by 1+ e, where e is any assigned positive quantity 

however small. 

It is to be noted that in the enunciation of (A) the additional factors occurring in the 

numerator and denominator of the second term omitted are all positive, and the argument 

of w is restricted to a range of 7, including that value which makes all the terms 

omitted real and of alternate signs; some restriction on the argument or on the amplitude 

of « being, as remarked in Art. 1, not merely incidental to our method of proof but 

essentially necessary from the nature of the theorem. 

5. We will first prove by induction that there is one solution of the differential 

equation satisfied by 
TE(Chg Ch cod he, fake [ary con on StH) 

which can be written in the form Ce~*x*(*-») where, as @ increases indefinitely, having 

its real part positive, C tends to a fixed limit. (The minus sign has been inserted 

before the w as it is easier to reason about a negative quantity when we call it —# 

than when we call it +.) This is true also if the real part of « is negative but not 

required for the present purpose. Let us assume that this is true when there are n 

a’s and n p’s, and introduce another « and another p denoted simply by a and p. The 

differential equation for the new hypergeometric function is satisfied by 

Mica) 
ai-P i (v— ap p*"1¢ (v) dv, 

where ¢(v) is the solution of the old series referred to (see Pochhammer). Writing 

 (v) = Cory” = Cory 

and making the substitution v=2+u, the above solution may be written in the form 

70) 
Curae | Cemursea’ (Ie \a4) a) “te littean see vsecateccecee tees (29). 

Let us assume in the first instance that p—a is positive; this is then a multiple 

(depending on the unspecified arguments) of the line integral 

Cre | Ceo*ur" (1 + u/x)ee> du. 
0 

If (1 + u/x)2*"— be now expanded in powers of u/# the modulus of the remainder 

after a certain term will be less than that of the next term, and it is accordingly 

* If the latter, it will also be shown that the error is less than a certain multiple of the next term 

(s restricted as before). 

24—2 
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evident that the above may be written in the form C’e~*a*-P*™ where, by increasing 2 

sufficiently, C’ can be made as nearly as we please equal to a certain constant. 

Also in case p—a@ be negative, on integrating (29) by parts the integral may be written 

in the form 

1 7 1 = i fatz 
= Ce up-* 1 +u/z a+m—1 as Fan em ype (1 + u/z atm—2 jo" aaa ed reer (1+ wfayem—s 1 o_oa 44/2) 

L 

+-(1 buje) aca cite 

The expression in the square brackets vanishes at the infinite limits, and by making z 

great enough dC/du may be made as small as we please by hypothesis, and the above 

integral, if « be large enough, can thus be made as nearly as we please equal to 

TO) = 
me = : Back NdeI SE fi ees ye C-Ca+ wa) du, 

from which it is evident that any limits to the value of p—a may be extended by 

unity, and therefore, for all values of p—a, (29) may be written in the form 

"one oe = (a-—pr) 

where C’ tends to a fixed limit as # increases indefinitely. 

6. The solution which does tend to this form is a multiple of 

II (— p,) 11 (—p.) .-. 1 (— pa) . ae 
ieai=acuee - Ay, +» Any Pir +++ Pn; — 2x) 

4's" T= 2) (p= p= 1) --- (pr = pn = 1) 
at II (p,—a@, — 1)... (py —an—1) 

aor F(a, — p, +1, ++ My — pr +1; 2—p,, pi— pr +1, 

w+ Pn— pr+1; —2), 

wherein the argument of «” lies between —mz7/2 and + m7/2. This may be seen by 

making in the theorem indicated by equation (28) the arguments of # in succession — 7 

and +7 and subtracting the results after having multiplied one of them by e”*. It then 

appears that the above solution is one which, when in it 2 is made real and positive and 

sufficiently great, can be made less than a certain multiple of any specified term of the 

series 
2% F(m,4—ptl,...; a@—-a4+1,...;+1/2), 

and therefore must be the one in question, as from equation (28), assumed to hold for the 

above functions, no other solution can be of this order for infinite values of « which have 

their real part positive. 

7. We require to evaluate the integral 

ip tl OM (Be CB nie CRT NY Oh BED [PACD ICH aGacbondenonasacacteasacc (30), 

when intelligible, that is when m-+1 is positive and m—a,+1 is negative, where a, is the 

algebraically least a. (When « is very great the hypergeometric series is of order #-%.) 
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The hypergeometric function is equal to 

II (p, —1) es I—pn (> — n—An—1 pyan—1 , ae 

P(e =) eae | Og me CO ah Plaes- Ba) Oe 

provided a, and p,—a, are positive. Substituting this value in (30) and changing the 

order of integration, which can be shown to be legitimate since m—a,+1 is negative, 

(80) can be written in the form 

— i (Pn Di al yx—1 . : ‘i M+1—pu ( u—an—1 7 Mel Gale UOT (0; 51... C1} Pry «-- Pr=i3 — 0) av : apn (a — yp dz; 

but the # integral is equal to 

I (an pL Toa 2) u (pn —4a,—1) 

II (pn — m — 2) 

gittl—a v m 

and accordingly (30) is equivalent to 

Tl (pn — 1) 1 (a, —m — 2) . 

TL (@ — 1) IE (pn — m — 2) Jo 
EH (Coss «on Onmaisy Pals ee Pasi) aU: 

In the same way provided a, and p,— 4 are positive 

TI (p, — 1) I (a, — m— 2) (* 
Il (a, — 1) IL (p,; — m — 2) Jo 

_ IT (p,— 1) Il (a —m— 2) 
~ II (@,—1) I (p,—m— 2) Gy 

ame dx I a” F(a; py; —") dx = 
0 

Therefore by induction we finally obtain for (30) the value 

r=n TI (p,— 1) II (a,—m-— 2) : 
Il (m) . we Tl (a, =i) I (p, = a — 2) eee cece cee ceesececccesesecs (31), 

provided, in addition to the conditions necessary to make (30) intelligible, all such 

quantities as a, and p,—a, are positive. 

These latter conditions may however be removed. Since 

F(a, +1, Ga, «++ Any P1> Pa +++ Pn — &) —- F(a, Oy, «0. Ans Pi, Pa: -++ Pn —) 

eS > F(a, Qs, +++ Any Pr, Pas +++ Pn — 2), 

by multiplying both sides by z™ and integrating we obtain 

| 2B (ay +1, G3, «0 ta; pis «-» Puy — 2) Ce — | OMIT (Cietewe ln Ors ea) Pas we) Cer 
0 Jo 

ae ret Lf 
-|* FG), <. On; Piss Pai —2) | ee GOEL (Chi reael ns Pusey) oe 

1 0 1 0 

If the second integral in the left-hand member is intelligible, so also is the first; the 

expression in square brackets then vanishes at the limits and 

| a (as, see Ans Pry +++ Pn3 — 2) dx= a-t2 1 / x” F(a, +1, Qe, +e» And Pris +++ Pnjy — x) dx, 
“0 0 a 
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and accordingly any inferior limit imposed on any a may be extended by unity, the 

other a’s and p's being kept unchanged, provided in (30) the integral remains intelligible. 

Also from the equation 

F(a, @, +++ &n> Pis Pr» +++ Pry —2)—F(%,%, see Bn Pi» Pe, «++ Pn—-1» pn—1; — 2) 

—a d 
= ——_ —_- <: _—f 9 melas ee BOR nee ea apoy/ yA ==) borongorosoond sagedgcatonee (32), 

by multiplying both sides by #” and integrating we obtain 

| 2B (a, Gy, «++ Bn Pir Pos +++ Pans —o)de— a” F(a, s+» Q&r3 Pry Pos +++ Pn pn—1; — x) dx 
0 

= = [ame (a, Qs, eee And Pir +++ Pans -2)| 
0 Pa— 

m+1 [* 
Sh HOI Can, con Cay [Sg Ep coo (2 SHA)CHD. conosacsdebooosuodsnse0e (33). 

Pa= 0 

If (30) is intelligible all the terms in this equation are finite and that in square 

brackets is zero at the limits and thus we obtain 

i x” F(a, Gy, ++» Any Piy Poy +++ Pry pasts — «x)dx 

Se he 
Be ela | GHOTH (Chg suo @h8, (Sip 606 [2R =) CMoovoocc0c (34), 

Pa — Is aie 

and accordingly any limit to the value of any p may be extended by unity, the other 

a’s and p's being kept unchanged. The result stated as to the value of the integral (30) 

has thus been established *. 

8. It is to be noted that the proofs given of the results of Arts. 6, 7 for functions 

of any order assume the truth of equation (28) for functions of the same order. We 

now proceed, assuming the results of Arts. 6, 7 and equation (28) for functions of any 

and the same order, to extend equation (28) to functions of the next higher order by 

the introduction of another p and another a. We do so in the present Article, taking 

the equation in sense (A) but subject to the restrictions that each of the quantities 

P2— 2, +++ Pn—m, p—4 %+1—p,,...%q+1—pa, ut+t1l—p, is positive. In Art. 9 we will 

extend the equation in the sense (B), and in Art. 10 the restrictions introduced in the 

present Article for the sense (A) will be removed. 

As indicated by Pochhammer the equation satisfied by F(a, @%, a2, -.. @n3 Ps Pry «++ Pn; +2) 

is satisfied by 

ai | (Oa) Swe B (0) dv eek eheceeesce Seog ee (35), 

where ¢(v) is any solution of that satisfied by F(a, %,... nj Pir ++» Pn; +) and the 

path of integration is a closed one such that the final value of (v— a -*1v7"¢(v) 

differs by zero from the initial one. 

* This result may be generalized by omitting any number of a’s, if the integral remains finite; write r=y/a 

and then make a infinite. 
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Let the path be one which makes a circuit round the point w in the positive 

direction, then round the origin in the positive direction, then round the point @ in 

the negative direction and finally round the origin in the negative direction. Suppose 

in the first instance the real part of # to be positive. 

Such a path is equivalent to the paths ABCA, ADBA, ACBDA which may be 

replaced by the four portions ABCA, ADBA, ACBA, ABDA, (Fig. 3). 

— 

Let A be a point h on the axis of real quantities and let ¢(v) be 

CF (a, Ao, vee an; Pi> Pe, =us Pn; +) 

r=n 

+> Cw F(a — py t+], ... tr—pr+1; 2—p,, pi—pr +1, .-. pa— perl; + v)seeeceeee (36), 
r=1 

those values being taken which make the initial arguments of every power of v zero 

at the point h (before multiplication by C, C,), and make the initial argument of 

(v—«x)-* diminish indefinitely as h increases indefinitely. 

On examining the values of the arguments at different points it will be seen that 

the second and fourth portions of the path together contribute to the integral (35) the 

expression 
(z) 

(en (a—p) — g2ria) gi—p if C (uv — ap ut F(a, Ms, -.. On; Pir +++ Pn; +2) dv 

r=n fx) 
iS (ei (e-P) = tien) af C,(v — £)p-2-} ya-er F (a, = pr + MS Sob, —prt+ L2 — Pr, ++ 

TL h 

+e Pn—Pr+1; +) AV.....00..0-- (37), 
the initial arguments being taken as above. 

If the differential coefficient of this expression with respect to h be written down 

it will be evident that in virtue of equation (28) assumed for the function of the 

(n+1)th order, i.e. that which satisfies the differential equation of the (n+1)th order, 

provided we take 

Tl (a aa 1) (= p:) oss TI (— pn) 

II (— a.) I[(—a,)... J (— a) 

II (a, —p,) I (p, — 2) II (o, — p, —1)... 1 (p, — pn — 1) 
II (p, — a — 1) I (p, —a;—1)... I (p,— an, — 1) 

(oH (e" (a—p) _ e27ai) = 

(6/3 (e7 (a—p) _ g2nt Car 

this differential coefficient when h increases indefinitely will be of the order he-=-*; and 

the same is true also for a complex value of A provided the argument of h is kept 

between —7 and +7 and the value of the function to be integrated is reconcilable 
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with that previously taken. Accordingly provided p—a,—1 is negative, a condition 

which we have for the present supposed satisfied, the expression (37) will remain 

finite when h increases indefinitely, and its value will be unaltered if for h we 

substitute any infinite limit whose argument les between —7 and +7 and if the 

value of the function to be integrated is reconcilable with that already taken. 

Now let be increased indefinitely. We have also supposed for the present that 

p— is positive; each symbol of integration in (37) may therefore be replaced by 

(en (p—a) __ | 

z 

in which the infinite limit is on the production of the line joining the origin to the 

point 2. 

With the above values of the constants C, C,, and assuming the theorem to hold for 

the functions of the (n+ 1)th order, the expression (37) may be written 

TI (a, —1) (a — (yoo WIN(CA — Pn) 
art (p—a) __ E 

ea TGs =a.) l(a en) Le) 
| ape (v — 2pm yoo 

~ Zz 

F(m,%—pitl,.-- G—patl; ma—-m+1, a—a; 41, ... | —a, +1; — 1/v) dv...(39). 

Expanding the divergent hypergeometric series in descending powers of v and 

integrating the terms successively we obtain 

II (p—a—1) 1 (4 —p)U (4 —1) 1 (a —p,)... 1 (um 

II (@, — a) I (a, — a)... IE (a, — an) 
(er! e-2) — 1) = Pa) oa F(@,a—p+i,... 

%—pratl; m-a+1,a—4,41,...q—a,+1; —1/z)...... (39a), 

the argument of a™ lying between — 7/2 and +4,7/2; and by expressing the error as 

an integral, the theorem being assumed for the function of the (n+ 1)th order, it appears 

that, provided @,+s and all the quantities of the type a,—p,+1+s are positive, the 

error in stopping the divergent series at the sth term has a modulus less than that of 

the next term. 

Returning to (35), the sum of the portions contributed by the first and third 

portions of the path is 

: f (0) 
(_-e™ ay ge CO (uy — 7 P-*1 9! F(a), ..- On} Pir --» Pn; +0) QY 

r=n Tf (a, 0) 
+S (1 — erie) | C,a0'-° (y — @)P-2 y-p 

7=1 h 

F(a —p,+1, ... @2—prt+1; 2—p,, ... pa—pr+1; +) dv...... (40), 

the initial values of the arguments at the point h being the same as in (36). The 

differential coefficient of this with respect to h is of the order h?-=~ owing to the 

particular values assigned to C, C,, and accordingly (40) like (37) remains finite 
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when fh is increased indefinitely provided p—a,—1 is negative. We now expand 

(v—a)y-* in ascending powers of #; the coefficient of #'-?t” in (40) is therefore 

— (0) II (a Pp ss | Corn F(a, pe ee ie < gs’ -t0)) 

SE Tap) I Gn) 
r=n 

+ Cye—m—i-er F(a, — prt 1, ...&— pr+1; 2—pr,--- pn—pr+1; + »)| Gil osess (41), 
r=) 

wherein all the powers of v are initially real before multiplication by the complex 

coefficients C, C,.. The successive values of m are 0, 1, 2, &e. 

We proceed to evaluate the integral in this when / is made infinite. By considering 

that, owing to the particular values assigned to OC, C,, its differential coefficient with 

respect to h is of the order }p-"-™~, it appears that the integral remains finite when 

h increases indefinitely, (provided p—m-—a,—1 is negative, which is certainly true if 

as already supposed p—a,—1 is negative), and as in the case of (37) this is true also 

for a complex value of h provided the argument of h is kept between —7 and +7 

and the value of the function to be integrated is reconcilable with that previously taken. 

Accordingly by changing the argument of h to ~—7 as in the path GFEABDAEFG, 
{0) 

(Fig. 4), the symbol of integration in (41) may be changed into | " where all the 

powers of vw in the function to be integrated have zero argument (before multiplication 

by the complex coefficients C, C,) at the point in which the path intersects the 

positive part of the axis of real quantities, and the initial and final limits of integration 

are not merely both negative and infinite but the same. (By changing the argument 
(0) 

of h to +7 instead, we might obtain the symbol | with different values for the 

arguments of the functions to be integrated; the evaluation of the integral would 

Vou. XVII. Parr III. 25 
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however lead to the same result as that to be presently deduced for the present case, 

as of course it should.) 

Let us first suppose that p—m-—1 and all the quantities p—m—p, are positive; 

the integral can then be expressed as a line integral, and attending to the values of 

the arguments and of C, C,, it is in fact 

i" [ene wsin(p—m)a I (a,—1)U(—p,)--- I (— pn) 

am) 

p—m—2 : ey 
Sn = ‘ ani AK ial e @,) uw F(a, +++ Any Piy+-+ Pns w) 

.sin (ep — m—p,)m 1 (a, — pr) II (p, — 2) Il (p,— p: — 1) --- II (p,— pn — 1) 
e(P + pr—2a) mi 

1 sin(p,—p)7 — IL (p,— a— 1)... I (p,— an — 1) 
2 YPM pr 

r i 

F(a, =p, +1, .:.@,—pr+1; 2—p,, pi—pr+1, ..-pPn—pr+1; -»)| du. 

Using the values given in (31) for each of the n+1 terms of this integral and 

making use of the relation II (n—1)II(—n)=cosec nz, the above may be written 

a Il (a,—p+m)II(a,.—p+m)... I (a,.—p+m) 

Il (p:— p +m) I (p.— p+m)... U(prx—p+m) UA—pt+m) 

Apneyat SIN @ 7 SIN 4 7... SIN &, 7 
sin p 7 SID p, 7... SID Py 7 

Mae ee is sin (% — p,) 7 Sin (3 — pr) 7... SiN (an — pr) 7 | ee a. (42) 

a sin p; 7 Sin (p — p;) 7 Sin (p; — pr) 7 «-- SIN (Pn — pr) T 

But the expression in square brackets is equivalent to 

sin (p — a) 7 sin (p — 4) 7... SIn(p — &) 7 

sin pT sin (p — p;) 7 Sin (p — ps) 7 ... SIN (p— Pn) 7’ 
ef —2a) ri ‘ epmi 

for it is easily seen that this last may be written in the form 

e(P—2a) wi f : A 2 ae 2 38 
(sin pw sin (p — p,) 7 J 

? 

where A, A,, etc. are quantities independent of p and their evaluation in the usual way 

leads to the result stated. 

The value of (41) is then 

U(a—p+m) Il (a, —p+m) I (a—p+m)... I (a,—p+m) 

II (a—p) IU (m)° I (p,—p+m) Il (ce. —p+m)... II (pn — p+ m) (1 —p+m) 

sin (p — &) 7 Sin (p — a) 7 ... SIN (p — Gn) T 

sin p7 sin (p — p;) 7 ... Sin (p — pn) 7 

(e2"" p—a) __ l)r 

The limit of the expression (41) when h is infinite still has the value (43) even if 

the additional conditions introduced in the process of evaluation (viz. that p—m-—1 and 

all the quantities such as p—m-—~p, should be positive) are not satisfied. For bearing in 

mind that 

Gy Ao.. l ; 
ap Fm Az, --- Ans Pi: Poy +++ Pn; v)= sy (h(a a Geet Warsi Anictaaks pi bl, see Put Ll; v), 

Pi1Po +--+ Pn 

efi ot 
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and that 

d 
qin F(a — at, en pi tl; 2— pr, Poa—pPpitl,...pn—pit1; v)} 

=(1—p,)v F(a,—p,+1,...a¢,-—p, +1; 1—p,, pp—pit1,... pr—pit+1; »), 

if we write the integral in (41) in the form 

fo) 
| ye—-m—2 & (y) dv 
wh 

and integrate by parts, we obtain 

1 h 1 7 (0) 
—m—1 = p—m—1 of’ , 

seul” bo] aul g P (v) do. 

But, attending to the values of C, C,, given by (38), it appears that the difference 

between the two values of the expression in square brackets when » is equal to h is 
zero when h is infinite and that —¢'(v) only differs from $(v) by having all the 
constants @,...@n, pi,.-. Pn mereased by unity, and accordingly we can increase all the 
quantities @. a,...2n, P, Pi,+-- Pn in the equation Lt. (41) =(43), keeping m unaltered. 

In a similar manner we can show, by writing the integral in (41) in the form 

ao) 
[cme e(v) do, 
Jh 

that we can increase p, by unity, keeping the quantities a, a),...0n, Ps Pis-+-Pr—is Preis-++Pns 

m unaltered, and still have the equation: —Lt. (41) = (43). 
h=a 

The initial value of m is zero and in that case (43) reduces to 

TI (p — 2) IL (p— p: — 1) UI (p —p,— 1)... I (p — pn— 1) I (a — p) 
I (p= SN pap Seah a oa 

and accordingly the expression (40) contributed by the first and third portions of the 

path is this multiple of 

— (e27i (e-2) _ ]) 

e- F(a—pt+1,m—ptl, wa—-ptl,...¢ar—p+1; 

2—ip; pr—p+ly2..ipn—pAls 4pm)... vec (44), 

wherein the argument of z'~? lies between =F —p) and +5(1 —p). 

- Again returning to (35), (36), 

(x, 0, w—, 0—) 

| (GOS SEA (are ayinne Ons Pion Pasieea Ona. U) QU: 
ce 

wherein the arguments have values reconcilable with those chosen, may be shown to be 

Tl (p—a—1)M(a—J) 

[1 (ep —1) 
— de (*-)) sin (9p —a—1)rsn(a—1)7 s 

tHE (iv chs asia Oley sayeth) Pais) eee eee a eee (45), 
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wherein the argument of 2° lies between — (p — is and +(p — 1)z, and making use of 

the values of C, C,, given by (38), the integral (35) may after some reduction be 

written in the form 

a II (p —a—1) TI (a, —1) I (— p) 0 (— ps)... Th (— pn) 2ri (p—a) _ “ . * 4 

(ate ay OS aya) ag aay FO Or Bad Ps Ps Bas 
"=" TI (p—a—1) 1 (a,—p,) I (p,—2) 11 (p,— p —1) I (p,—p, —1)--- 1 (p»—pn-1) ay >l—pr — 

pact II (p, —a—1) II (p, — a — 1)... If (pr — an — 1) PE a rts 

4 

Q&—p,rtl; 2—p,, pi—prtl,--- pa—prt1; »)| Score been coneecmnactcaachss (46). 

Equating (46) to the sum of (44) and (39a), and dividing by (e °-» —1)II(p—a—1), 

we obtain an equation of the same form as (28) and to be interpreted in the sense 

(A), but with an additional p and an additional a. 

I do not see how to remove the restrictions imposed at the beginning of this Article 

without first showing that the theorem is true in the sense (B). 

9. We now proceed in a different manner to extend the theorem in the sense (B). 

— ae The differential equation for F(a, a,...@23 P,Pi;-++ Pn; +) is satisfied by 

(—2z, 0, —x—, 0—) 

i Grea () 2h GPO (OND). so oaseoensnososososorace (47), 
c 

where @(—v) is any solution of that satisfied by 

IH(Cee sca GES fIxycna/Spy = OCD 

(It would be more consistent with what has gone before to change the sign of v 

in the above. The introduction of the minus sign has however the advantage that 

the function of —v with which we will be concerned does not involve 7 explicitly to so 

great an extent.) 

Fig 5 

The above path is equivalent to the four paths ABCA, ADEFA, ACBA, AFEDA (Fig. 5), 

A denoting a point h at a great distance on the positive part of the axis of real quantities, 
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It is assumed in the first instance that the real part of « is positive and the argument 

of a is taken to be between —(1—p) 7/2 and +(1—p) 7/2. Let @(—v) be 

AF (a;,...n} pis ++» Pn} —V) 

ae > Ao F (a, — pp +1, «0. an — pr #1; 2— pr, Pi— Prt+1,... pPa— prt 1; — v), 
r=1 

those values being taken which make the initial arguments of every power of v zero at 

A (before multiplication by A, A,) and make the initial argument of (v+)-*— diminish 

indefinitely as h increases indefinitely. 

On examining the values of the arguments at different points it will be seen that 

the first and third portions of the path contribute to the integral (47) 

y (=2, 0) 
(i es*) ase ik A (u+ @)P>° U2 (a, ... Gn Pr, --- Pn3 —V) av 

r=n T(—2, 0) 

+ (1-e (oat? | A, (v+a)P—2-1y2-Pr F(a, — py+ 1,...; 2 — py,-.- pn— Pr+1; —v)dv...(48), 
r=1 h 

the initial arguments being taken as above; and assuming the results stated to be true 

for the function of the (n+1)th order, if we take the differential coefficient of this with 

respect to h it will, by Art. 6, as h increases indefinitely, become of the order of a 

product of e~* by a certain power of # and therefore diminish indefinitely, provided 

ee “ee TI (—p,)..- 1 (— pn) — parat Qrpt __ == a (at+p)t —= [1 — e?r*) (e27? — 1) A =] 4e7 (**?)* sin am sin pr. A Tis). seas 

[(1 — etie—er)) (e2t(o— Pr) — 1) A, =] 4e7(@+P—2hr)t sin (a — p,) 7 Sin (p — p,) 7. A, 

A II (p, — 2) Il (pr — p1— 1) ... II (p, — Pn—1) 

II (p,—a, —1)... IL (p,— a, —1) 

pe eee (49), 
{ 

and therefore with these values this integral will remain finite when h increases in- 

definitely. 

In the expression (48) we now expand (v+w)?-*7 in ascending powers of z; the 

coefficient of w°*” is 

m U(a-—p+m) [ i ez 2 —m—2 . : ; 
(-) TI (a—p) II (m) ie aa excy) A ( uP F(a, axe © ans Piy oe Pn; = v) dv 

“T(-2, 0) € ‘a — ene-»9) A, | yr—m—1— Pr F(a, — py +1, ...3 2— py, ++» Pn—pPr+1; —v) ae] ...(50), 
7=1 h i Mi 

wherein all the terms are initially real, and the successive values of m are 0, 1, 2, &e. 

This too remains finite if 4 increases indefinitely for the same reason as (48). 

We will first suppose that all the quantities p—m—1, p—m—p,,...... p—™M—pn, 

are positive; the expression in square brackets can then be expressed as a line integral 
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taken between the limits 0 and h, and when / increases indefinitely, using the value 

given by (31) for the integral (30), it is in fact 

S11 (5 —1)I(@,— p+m) 
x (at+p)i _- = rae ger'e*0% sin am sin pm. ATI (p—m—2) Tl Tr ay Tp =p +m) 

ae TT Wiese pr) I as — p+ m)* 
= "geriat 2p) sin (a— p,) 7 Sin ,)7.A,Il(p —m—1—p, wi Aetna iL += (a— pr) (p — pr) (p pr) I Ht oll, Seen 

Attending to the values of A, A, and making use of the relation 

II (x — 1) Il (— n) = II cosee ur, 

this may be written in the form 

T s=n TI (as — p +m) ( SIN @7F SIN G7... SIN Ay 

Il (m —p+1) sai I (pp—p +m) \sin pyr sin ps. ah Da —p+t+2)7 

Jee sin (a@,—p,+1)msin(a,—p,+1)7... sin(@,—p,+1)7 

a 21 8in(p,— 1) 7 sin (p,— pr +1) 7... sin (pn — pr + 1)7sin(m+1+ p,—p)7\- 

But the expression in brackets is equal to 

sin (a, +m—p+2)rsin(a+m—p+2)7...sin (a,+m—pt+2)7 

sin(m—p+2)7sn(m+1+p,—p)7...sin(m+1+pn—p)7 (Se 

for it is readily seen that this last can be written in the form 

B r=n B 

+ | —____—~_____, 
sin(m—p+2)7 ;=.sn(m+1+ p,—p)7T 

where B, B, are quantities independent of p and their evaluation in the usual way leads 

to the result stated. 

Accordingly (50) reduces to 

(— Il (a—p +m) II (p —m — 2) II (p —p,—m—1)... TI (p — pa— m—1) 

II (a—p)II (m) I (p — a, —m—1) II (p —a—m—1)... 1 (p-—a, —m—1) 

This result may then be extended to cases in which the conditions that p—m—1, 

P—M— Pi eee p—m-—pn should be positive are not satisfied, as is done in a parallel 

ease in Art. 7. 

Therefore the portion contributed by the first and third portions of the path is, 

when / is made infinite, 

TI (p — 2) I (p— p:— 1)... I (p — pn — 1) 

Il (p —%—1)1(p—a@,—1)... I (p — an —1) 

2—p, pi—pt1, po—pt1,...pn—pt1; +2)..........-- (50a). 

vw F(a—p+1,a—pt+l,...@—pt+1; 

* For s=r, pg is to be replaced by unity. 
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Again, the second and fourth portions of the path contribute to the integral (47), 

: Oe 
(e?"P" — 1) wp [ A (vu + @)P91 9-1 (a, 6. An} Pry Pas +++ Pn} — V) dv 

r=n ; nO) 

+ (e2re—Pr) — 1) ate | A, (y + c)P-91 yt F(a, —pr+1,...d,—pr+1; 2—p,,... 
r=1 vh 

Pn — Pr+1; —v) dv...(51). 

We now expand (v+#)-*-' in descending powers of «; the coefficient of a-*-™ inthe 

above is 

(—)y™ I (a— p+m) 
Il (a—p) Il (m) 

7 (0) 
jer 1) A| ymra-1 F(a, ... An; Pr--- Pn; —v) dv 

oh 

+3 (enn = 1A, [ume-eF (a —Ppr+1...dn—pr+1; 2—p,... pa—pr+1; —v) ae] «»«(52). 
r= 

Suppose at first that the quantities m+a, m+a—p,4+1,...... m+a—p,+1 are all 

positive; this then reduces to a line integral and the value of the expression in square 

brackets may be obtained from the value obtained for the expression in square brackets 

im (50) by changing m into —m—1, interchanging « and p and then multiplying by 

—1; accordingly the value of (52) is 

Il(a—p+m) UW(m+a—1)1(m+a—p,)... I (m+a—p,) 

IIl(a—p)Il(m)° U(m+a—a) UW (m+a-—a,)... L(m+a—a,) 
(-)rm 

This value may as before be extended to the case in which the conditions that all the 

quantities m+a, m+a—p,+1,...... m+a4—p,+1, must be positive, do not hold. The 

successive values of m are 0, 1, 2... and accordingly we obtain for the part contributed to 

the integral (47) by the second and fourth portions of the path, the divergent series 

_H@—-)U @—p) =p.) ... 1 G@— pn) 
Il (a —a,) l(a —a,)... I] (a—a,) 

w* F(a4,a—pt+l,a—p,tl,...a—pratl; 

a—@q+1,¢@—-a@+1,...a—a,+1; —1/z)... (53). 

As regards the remainder in this series after s terms, the remainder after s terms in 

the expansion of (v+a)-* has the origin of v for a multiple point of order s, and has, 

by Art. 2, a modulus less than that of the next term provided a—p+1+-s is positive; 

and accordingly bearing in mind the order of ¢(—v) in the neighbourhood of the origin 

of v, the remainder in (53) may be written in the form of a line integral 

Ca-*-* | pur (— 2) do, 
“0 

provided, in addition, all the quantities «+s, a—p+1+s, a—p,+1+s,...... a—p,+l+s, 

are positive, C denoting the numerical factor, and p a quantity whose modulus is less than 

unity. We are not however justified m assuming that this integral would be increased 

numerically by replacing p by unity, and hence that the remainder in (53) is less in 
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absolute value than the first term omitted; for it seems possible that @(—v) may change 

sign between zero and infinity which would invalidate such reasoning*; (if this objection 

could be removed, this proof would establish the theorem in the sense (A) also). We will 

show however that if the inferior limit to s imposed by the conditions just laid down be 

raised by unity, the modulus of the remainder after s terms is less than that of a certain 
n 

multiple of the next term. Denoting =(a,—p,) by o, as v increases indefinitely ¢(—v) 
1 

becomes of order e~’v’. Suppose that of values of v lying between zero and infinity 2, 

is that which gives to v*"**$(—v), which owing to the inferior limit of s being raised 

is now zero when v is zero, its numerically greatest value. Choosing any positive quantity 

y less than unity, find a value v, of v so great that for all greater values ¢(—¥v) lies 

between the limits C’(1 + vy) ev’, C’ being a constant which we could find if desired. The 

integral in the above remainder is therefore less than 

Ke) (— %) + (6 al + | e-ryaitste 

y 

and therefore less than 

v%,6(—%)+ CO A+y) I (a-1+oa+s). 

Therefore the remainder is less in absolute value than a certain multiple, independent of 

a, of the first term omitted. 

If the real part of w is negative, the same may be proved, for a different multiple, 

depending on the argument but not on the modulus of w, in a manner similar to that 

in which the parallel case for the function F(a; p; x) was treated. 

Since by taking w great enough, terms at the beginning may be made to outweigh 

as much as we please any finite number of those that come after, and since there is in 

the above no superior limit to s, it is evident that x may be taken so great that the 

error committed by stopping the series at any assigned term is less in absolute value than 

the next term multiplied by 1+e, where e is any assigned positive quantity. 

Returning to (47) 

(—*, 0, —%—, 0—) 

| DP (UY -- e)Po tS UE (Ai, .-. On; Pir =» Pn; — 0) aU 
“¢ 

with the values of the arguments reconcilable with those already chosen may be shown 

to be 

—4et)™ sin (p— a) sina . ae trea re: &, ++» &n; Ps Pr» ++» Pn; +2), 

and 

ire 0,—2—, 0—) 

ai? (y + @)P-* yr BF (oy — py +1, ...3 2 — py, pi— pr + 1, .-.; —v) dv 
Je 

* As @(—v) is an integral of the form of that discussed therefore be proved in this manner subject to these 
in Art. 5 it may be seen that it does not change sign for restrictions which may be removed as in Art. 10. Art. 8 
values of v between zero and +o provided for all values (part of which had gone to press before this was noted) is 
of 7 from 2 to n, p,—a, is positive. The theorem might therefore to a great extent unnecessary. 

=. 
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to be 

II (a — p,) Il (p —a—1) 

Il (p —p,—1) 

%—prt+1,...én—pr+1;2—p,,;p—pr+1,... pn —pr+13 +2) 

— 4e'e+o—2") Ti sin (p — a) or sin (a—p,+1)7. oe F(a — pr +1, 

wherein the argument of a'~*r lies between —7(1—p,) and +7(1—p,), and making use of 

the values of A, A,, given by (49), the integral becomes 

by ] II (a — 1) HI (—p) Il (~p,)... U (= pn) 

II (a — p) II (— a) UW (— a)...  (— an) 

é. 1 S IT (a — p,) U1 (p, — 2) Il (p, — p — 1) IL (p, — p, Eyes Il (Pr — pn — 1) 

Il (a@—p)4 Il (p,—a@,—1) I (p,— a — 1)... IL (pp — &n — 1) 

(Gy, «06 On Ps Pry «+> Pn; @) 

aver F(a—p,t+1,aq—p,t+1,...d.—pr+1;2—-—p,,p—prt+1,... pn—pr+1;+2)...(54). 

Equating this to the sum of (50a) and (53) and then multiplying by Il (a—p) we obtain a 

result similar to that indicated by equation (28) in the sense (B). It differs however from 

that obtained in the sense (A), in having a and a, p and p, interchanged. 

10. Before proceeding to remove from equation (28) taken in the sense (A) the 

restrictions imposed in Art. 8 that certain quantities must be positive, we will first 

show that if a—a, is positive and if the theorem holds for the remainder after 

s terms of the function involving a, a, it holds also for the remainder after (s+1) 

terms of the function involving , %,+1, the other a’s and p’s being unchanged. 

Tf Wm, %,-.-G3 Pi, Ps --» Pn; £) denote either any one of the n+1 seres of the 

left-hand member of (28) including the constant multiplier, or the sum of the terms 

at the beginning of the divergent series on the mght (including the constant multiplier 

and the factor 2") up to and including the term involving a specified power of @, it is 

easily verified that 
Any, Qa; Onis Ag+ ls, Pry Pay --- Ps 2) 

=(a% — %) (a, Gz, +e» An-1, Gr; Pir Par +++ Pns z) 

—wv(a+1, Os, +++ Any, An; Pi, Pas +++ Pn; 2). 

If then R(s+1), R(s+1, a,+1), denote respectively the remainders after (s+ 1) 

terms of the right-hand member of equation (28) for the function involving %, a, 

and for that involving m, a,+1, and if R(s, a, +1) denote the remainder after s terms 

for that involving a+ 1, a, we have 

R(st+1, m+ 1l)=(m—%) R(s+1)—R(s, 1 +1). 

If then the theorem holds for R (s, a), a fortiori it holds for R(s+1, @,), and it 

also holds for R(s, a +1), for = [a,—pr] is not increased by increasing a; we 

thus have ie 

mod. R(s + 1) < mod. ai ae to ie ae ETE eat 

Vol. XVII. Parr IE. 26 
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and mod. R(s, 4 +1)<(s+1) times the same, therefore provided a,—a, is positive we 

deduce that 

II (a,+s)... I(aq—pat+1+s) 1 

TI (a,—@,+1+s)...11 (4-4, ~+1+s) II (aq —a, +s) I (s+1)ants*)? 
mod. R(s+1, a, +1) < mod. 

which is the result stated; this reasoning holds for all values of s including zero. 

We will next show that if the theorem holds for the remainder after s terms of 

the function involving 4, it also holds for the remainder after (s+1) terms of the 

function involving a,—1, the other a’s and p’s being unaltered. 

If (a) denote either the left-hand member of (28) or the sum of the terms at 

the beginning of the right up to and including the term involving a specified power 

of xz, we have 

a? ab (a4) = = fea U trea = Lia fv, coruseets ce seeees eee (55). 

If then we denote the difference between the left-hand member of (28) and s terms 

of the right-hand member by R(s, a, x), we have 

au Ri(s, a, 2) = = ociaeal £o| Cid bet Hemel aE tan sa ska tin (56), 

and therefore . : 

Ee R(s+1,a,-1, »| =| ATTA 3) Oh) CAB sceooanos05s76cc0" (57). 

For all values of s including zero, 2» R(s+1,a,—1, 2) vanishes when the modulus 

of « is infinite, whatever be its argument, since equation (28) is true in the sense 

(B) and since the first term omitted when multiplied by 2*' has for its index «+s, 

the being negative of which is one of the conditions that the theorem should hold 

fore (Gaceeee): 

Accordingly M 

Repel z)=— a | w3R (6, a, 2) U2 sacecsccceieeaeestew (58). 

By taking for the path of integration the production of the straight line joining 

the origin to the point 2, it appears that either member of (58) would be increased 

in absolute value by replacing R(s, a, 2) by the modulus of the first term omitted; but 

this change would replace the right-hand member by the modulus of the (s+2)th 

term in the series obtained from the right-hand member of (28) by diminishing a by 

unity; therefore R(s+1, 4—1, 2) is less in absolute value than the next term: 

this reasoning holds for all values of s including zero, 

We will now, having in fact proved the theorem for all values of s including zero 

subject to the conditions that for all values of + from 2 to mn inclusive a,—p,+1 and 

p,—4a, should be positive, proceed to examine what restrictions should be placed on s 

if these conditions are violated. 
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We suppose that a, is the greatest a and p, the greatest p. 

Suppose first that a,—p,+1 is negative lying between —a, and —a,+ 1, and that 

Pn—% 18 negative lying between —b, and —b,+1. Then a,—a,+1 must also be 

negative lying between —c, and —c,+1 where c, is either d,+6, or d,+6,—1. For 

the other values of 7 from 2 to n—1 let b, denote [a,.—p,], which for some values 

of r may be zero. 

The theorem then applies for all values of s to the function involving 

&%+Cn, a, — bs, see a, —bdy, 1, Pir» Pes «++ Pn» 

since the necessary conditions are satisfied. 

We may increase the value of a,—6, by unity 6, times in succession, keeping 

all the other a’s and p’s unaltered, provided at each such operation we increase the 

lowest value of s for which the theorem holds by unity, the condition for the validity 

of the last such process being that a,+¢,—(4,—1) is to be positive; thus when we 

attain the value a,, s has to be raised from zero to b,. Then for each other value 

of r in turn we may increase in a similar manner the value of a,—6, by b,, increasing 

the value of s at the same time by b, also, the condition for the validity of this 

being that a,+c¢,—(a,—1) should be positive, which is true since a, is the largest a. 

Thus when we attain the values a, a,...a,, the lowest admissible value of s is Sao 
r=2 

Finally we diminish the value of a,+¢, by unity c, times in succession without altering 

the other a's or p’s, at the same time increasing the value of s by cy. Thus the 
n 

lowest admissible value of s is [a,—a—1]+[a,—,], as the enunciation states. 
2 

Next suppose that a—p,+1 is positive but that p,—a, is negative; we have 

now two sub-cases according as a,—4a,+1 is negative or positive. 

Taking first the former: as before the theorem applies for all values of s to the 

function involving 

& + Cp, 2 — bo, Sinks an — Dn, ul. Pir Pa, +++ Pn> 

and we proceed as before, with the result that when we attain the function involving 

@, Go, .-. &, I, Pis +++ Pn> 

the lowest admissible value of s is ise & [a, —p,]. 

Taking the latter sub-case, the theorem now applies for all values of s to the 

function involving 
CR CRS UN meas I, hg Se. fare 
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as before, for each value of r+ in tum we may increase the value of a,—b, by },, 

increasing the value of s by 6, also, this being legitimate since a,—a,+1 is positive ; 

thus when we attain the values a, @&,... a, 1, pi,--- pn, the lowest admissible value 

r=n 

of sis = [a,—p;]. 
r=2 

Next suppose that a,—pnt+1 is positive and p,z—a, positive, but that for some 

values of r, p,—a, is negative. This is similar to the sub-case last considered and as 
r=n 

in it, the lowest admissible value of s is = [a,—p,;], the term [@,—p,] being however 
r=2 

zero. 

Finally suppose that @,—pnr+1 is negative, and p,—a, positive. The theorem 

applies for all values of s to the function involving 

% +[pr—%—1], dt — bo, Boo Cin ale Pis «++ Pn- 

As before, for each value of 7 we may increase a,—b, by b,, increasing s by b, 

at the same time, this being legitimate since 4+[p,——1]—4%,+1 is positive, p, 

being greater than a, and a fortiori than a,. Finally we reduce the value of 

a,+[pnr—a—1] to a and thus when we attain the values a, %,... Qn, 1, py, .-. pn the 
r=n 

lowest admissible value of s is [p,—%—1]+ = [a,—p,], the term [a,—p,] being zero. 
r=2 

These several limits are all included by the statement that s is not to be less than the 
r=n r=n 

greater of the two integers, [p,-—a—1]+ = [a,—p,], [an—u—1)+ = [a,—p,|. 
r=2 r=2 

11. We may in fact obtain a limit to the error even when the real part of 

x is negative. The reasoning of Art. 3 suffices to show that for the function aad (a, 

a —pitl; +1/x) if the argument of «2 be +¥, y being <7/2, the modulus of the 

remainder is less than that of the next term divided by (sin(@+-y))'*J (cos @)s—ts+. 

where 6 and @+¥ are each less than 7/2; and by changing in the integral (37) 

the point h to the point at infinity on the production of the line joiming the points 0, 

x, we see that the same statement holds for the function of the (n+1)th order if 

for all values of r from 2 to n, m—p,+1 and p,—4, are positive. Also a reference 

to the method by which these restrictions are removed shows that in the most general 

case the index of sin(@+ +) may be replaced by the greater of the integers [a,]+[a,—a—1], 

[mJ+[pn—%—1], while that of cos@ is left unaltered in form, affected only by the 

increase in s, s being the number of terms taken and subject to the same restrictions 

as before. We must bear in mind that every p is greater than 1, pn the greatest p, 
r=n 

a, the greatest a, and p, the p omitted from the sum > [a,—p,}. 
r=2 

We may investigate the numerical value in the case of the semiconvergent series 

for the Bessel functions. In this case we may write a=}—n, pj,=1—2n. Hence 

[mJ is 1, ma—p,+s+1 is }+n+s. The divisor is thus sin(@++y) (cos 6)#"*s; to make 

this as large as possible, @ should be nearly zero unless y be very small, and we 

deduce that the error is less than the next term divided by siny; if y be very small, 



HYPERGEOMETRIC SERIES. 199 

the greatest value is greater than when y is zero, in which case it is (4 +n+4s)id+™”. 

(}+n+s) t+" > this tends to equality with (f+n+s)“e+, even for moderate values 

of s, and the error is thus less than the next term multiplied by a number which is 

nearly (4+n”+s)!e. The multiplier thus obtained when y¥ is zero is considerably larger 
than that given by Weber (Math. Annal. xxxvut.) for all arguments, which is about 

shar cos nm. 

12. By reasoning similar to that by which it is shown that Lt. (1—«/a)*=e* we 

may show that by writing #=y/h, a=—h and increasing h indefinitely we can diminish 

the number of a’s in equation (28) successively by unity; we thus obtain very general 

results. From the theorem that as tr increases indefinitely the ratio_of II (7) to 

er’ V27r has unity for its limit it follows that if « and @ are positive quantities and 

t be increased indefinitely Teas 78 has unity for its limit, and making use of 

this result we see that the general theorem may be written in the form that if m}n 

VT Cees Og re ee ere So Rel (cys Cs, < MEO Mer eran seo 
2 Il (a —pi) UW (pi—2) Tl (px —p2.—1) 0c Il (p, = Pn—1) 

11 (py — a — 1) il (p;—a,—1)... I (p) —am— 1) 

++ Am}; Pi, Pa» +--+ Pn; (-)"—-™ a) 

a F(a, —p, +1, a—p,+1, Beni ny — Pict Ls 

2— pi, p2— pit, ee Pnu—Pitl A) eat) 

+(n—1) terms analogous to the last 

BN (Ge 1) 10 (cx) p,) <TD (= ps) 
© Wa, = aq) UL (a, — as)... Tea % — pit, gus % — pnt 1; a —a,+1, ys 

Cy — Oe Elsie). geaeee ee (59), 

in the same senses as those in which equation (28) is true. 
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SECTION I. 

PRELIMINARY, AND GENERAL FORMULAE. 

§ 1. IN two previous papers, here termed (A)* and (B)+ for brevity, I developed 

a new method of treating the elastic solid equations for isotropic material, which led 

to a complete solution of the problem presented by an ellipsoid of uniform density p, 

Oey TERT al ake Oat rm: | Ree ryt ee oe ER ee EL (1), 

acted on by bodily forces derivable from a potential 

V=4(P2?+ Qy + Re), 

and by normal surface forces Sa?+ T'y?+ U2. 

Here «, y, 2 are ordinary Cartesian coordinates; while P, Q, R, 8, 7, U are constants, 

any of which may be zero. 

* Proc. Royal Soc. Vol. tym. p. 39. t+ Quarterly Journal, Vol. xxv. p. 338, 1895. 
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The bodily forees are such as the gravitational forces arising from the self-attraction 

of the ellipsoid, the tide generating influence of a distant body, or the ‘centrifugal 

forces’ due to rotation about a principal axis of the ellipsoid. 

The present paper deals with the extension of the method to aeolotropic bodies. 

§ 2. The most general kind of elastic solid possesses on the usual theory 21 

independent elastic constants. The consideration of such material is laborious owing to 

the length of the expressions. I have thus considered im detail no case of greater 

complexity than that presented by material symmetrical with respect to three planes of 

elastic symmetry, coincident with the three principal planes of the ellipsoid. 

In such material there are three principal Young’s moduli #,, £,, £;, relating to 

tractions parallel to the axes of «, y and z respectively. There are six corresponding 

Poisson’s ratios m., 7, etc. Here the first suffix gives the direction of the traction, 

the second that of the corresponding contraction. For instance, 7. 1s the ratio of the 

contraction parallel to the y-axis to the extension parallel to the a-axis, in the case of 

traction parallel to the latter axis. 

Between the six Poisson’s ratios there exist the three relations 

Ne/ Ly = Na/ Le; ms) Ly =IVIGS GROSS TALE Beooasocqobossa600s boo (2); 

so that only three are really independent. There being nine independent elastic constants 

for this type of material, we shall take for our remaining three the principal slide 

coefticients 7;, M2, Ns. 

In the notation of Todhunter and Pearson’s History of Elasticity, the strains are 

given in terms of the stresses by the following relations 

8, = ( — Tyo) — ™s=*)/E, ; Sy = (Gy — 9 Be =o 22) / Eo; S2= (= — 92% — Ne w)/ Ey; (3) 
— —_ — " ee eeee © . 

Cyz = v2 /Ny Oz — 22) Me 5 xy = 2y/Ns 

A second and simpler type of material dealt with here is that which in addition 

to symmetry with respect to the planes of za, wy and yz is completely symmetrical 

round the axis of z. 

For such material we have 

Eee 

E; = E, 

Ns = Ns = 7); 

he = Na = 7, WN) bt ME ee ach ett ee ee (4). 
Ms = Ns =7 5 

0 /E' = 0/E, 
Nz = 1 =N, 

n, = E'+{2(1+7')} 

There are in this case only five independent elastic constants. 
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§ 3. For any kind of elastic material the stresses must satisfy the three body-stress 

equations 

di dz dz x. 
anid +a, t+ pPa=0, 

dx dw de TaN BB 4S LO UY) & Ge rinpbeccpceica PRL cOe MONE oe (5), 

ie Te d= 

dx ty 2) dz eieeG 

and the three surface equations 

(a/a*) & + (y/2) + (e/ct) F = (a/a*) (Su? + Ty? + Ue), 
(a/a*) ay + (y/b*) w + (2/c*) % = (y/b*) (Sa? + Ty? + UX), 
(ala) & + (y/b) F + (z[c*) & = (z[c*) (Sa + Ty? + Ue") 

From the six equations of compatibility* between the strains, viz. three of the type 

a d's, Pox, = 
da? dady — Peer e er eenset essere sessssssesess cesesesee Gh); 

and three of the type 

2dMe ; Boye Cm PO ay _ (8) TE eee ey, 

we get six corresponding equations bet:yeen the stresses. 

These equations necessarily vary with the nature of the material. Thus for material 
symmetrical about the coordinate ee we have three aie of the type 

ce d? a 
EB. dy 5 (2% — M197 — M3327) + > E = ag = Ny — Nx ==) — a aay SU eeeaacene (9), 

and three of the type 

2, a? LEG feed ol tC Ih rE 
E, pda 7 ta ie da ert dady *~ n, idee are (10) 

In the present instance the equations of type (10) are identically satisfied and need 
not concern us further. 

When the material is symmetrical round the z-axis we find in place of (9) 

ES eee d? eas 7) 20+9) .@ - 
TCE) een oleae dady 

oie ye Spee TE a* > Re 1 @ 
dz ("> = Be) eC E a (= — nxx — Nv) — = dydz y= Ose qi ). 

@ (/z—qw 14-\ , 1 1 @ =e 
dz ( (a a 2) + E Be- a) n dxdz” 

* See Todhunter and Pearson’s History of Elasticity, Vol. 11. Part i. p. 74; or Love’s Treatise on Elasticity 
Vol. 1. p. 122. 

Vou. XVII. Parr III. 27 
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§ 4 The greater complexity of (9) or (11), as compared to the corresponding 

equations for isotropy, does not affect the type of solution; and, as im the papers (A) 

and (B), we may assume 

we = A, + A.w? + A,y? + A,’2’, 

m= B+ Bat + Bly + B’2, 

z= C0, + Ca? + Cry? + C.'2, 

w =2QLyz, 2 =2Maz, z= 2Nery| 

Here A,, A,... NV are constants to be determined from the body-stress equations 

(5), the surface equations (6), and the equations of compatibility, the latter of which 

alone vary with the type of material. 

Fortunately there is an immense economy of labour owing to my having in papers 

(A) and (B) expressed all the A, B, C constants in (12) in terms of the three L, M, N. 

In effecting this simplification I employed only (5) and (6), equations which, as pointed 

out above, apply to all kinds of elastic material. We are thus enabled at once to 

replace (12) by the following equations established in the two earlier papers :— 

= Se? + Ty + UP 48 [age + 7)(1-2-F—2) 
GB UP 

a b? 
a b2 Ce 

Ba Se + Ty + UP+e | Rp + U)(1- 2 -F-2) | 
By? 2 3a yx 2 

+L -3-$- )+ar(-3-¥-2)| 

gw =QLyz, m=2Maz, w=2Nay 

§ 5. The results (13) apply to all kinds of elastic material, whether possessed of 

2 or of 21 independent elastic constants; but the values of LZ, M, N vary of course 

with the material. The expressions for the strains corresponding to (13) vary. Thus, 

for material symmetrical with respect to the three coordinate planes, we find from (3) 

82H, = (1 — 92 = Ms) (Sa? a Ty + Uz) + {a? (4Pp Ep S) — M2)" (4Qp +T) 
\ 

ee nal 

| 

+(@M —mbl) (1-2-4 —*2) 4 @N — meth) (1-2 -F -2) 
2 aye 2 

= (nd? N + nyc*M)(1 — ae 

Oyz = 2Lyz/n, 
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The expressions for the other four strains may be written down from symmetry. 

If the material be symmetrical round the z-axis we have 

1 , 

se = ( —t _ j) (Set + Ty + Ue) + | a (4 Pp +S) — 1/0 (4Qp + 7)) | 

m,n i — Te (dRp + uv) (1-5-4 -2) 

ie (“oe (1 es BURN =) a (Gr ney ¢ Be OY s “) 

E’ E 

Sy = expression obtained from that for s, by interchanging a with b, # with rE 

y, L with M, P with Q, and S with 7, tite (15) 

Es, = (1 — 2n) (Sa® + Ty? + Uz*) + {c? (4p + U) — na? (4Pp + S) — nb? (4Qp + T)} 
| 

a@ 8 ¢ | 

2 2 
2 2 | 

—n(@M +¥1)(1- 2-2) 4 (en naeN)(1— sy | 

+(eM—qbN) (1-30-42), we ob 

ye = 2Ly2z/n, o72,=2Maz/n, oey=4(1 +7’) Nay/E’ 

§ 6. Results which depend only on the form of equations (13) are true irrespective 

of the nature of the elastic material. For instance* if S, Z and U vanish, or there 

be no surface forces, the resultant stresses across parallel tangent planes at their points 

of contact with the system of confocals 

@/a?+y/b+2/C=r 

are all parallel; and their intensity varies as 1—X. 

§ 7. We have now to consider how Z, M and N are to be determined. Substi- 

tuting from (13) in the equations of compatibility, whether (9) or (11) as the case may 

be, we obtain three simple equations of the form 

ay + aM +a,N =a, 

QoL + de + desN = Ge,}....---- ja pusedsch saat ts dyeorcaaeews (16), 

sl + a3M + a,N =a, 

where @,,... 3... are known functions of the elastic constants, the bodily and surface 

forces, and the semi-axes of the ellipsoid. Representing by IJ,,, II,., &c. the minors of the 

determinant 
Qi, a, Gs | 

=| Cisse Gans! gall ws Wee et co eee ce nou eee (17), 
| | 

|-Chs, ez, Ass | 

* Cf. (A) § 2. 
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we have from (16) 

L=(oa,Ih, + oI. + asIl,3) = I, 

(Gam Pee en ory UP ord MI) lM 550 ec oseeqoce esuseuoee00° (18). 

N = (@, 0h; + @olles + ws 115) + I 

§ 8. When the material is symmetrical with respect to the three principal planes 

of the ellipsoid 

otal a ed |e ili (19) 
= Fr = atte 2 — abt — ca? a 

and the other a’s can be written down from symmetry, the relations (4) being borne 

in mind. 

For the same kind of material 

2 i? E, \ 

=, =(3Pp +S) E (m2b* + msc?) + EB, [4% (nc? — b?) + re (1 — 9) E, aw v| 

= E. +5 | tRp (nab c+) +0 {nad ge |, | 
be 

m= | BP (mt — 0°) + 840° — 10) a] +042) 7p Cme+ me) | te 

ar Fe [2p (qn@ — &)+ Ula Ce nm) 4p 7Ar ‘ol |, | 

“Lie (nb — at) +815 — na) et | 
ee | 

2 yale B; —b? ee 2 2 + 5 | 89p (naa? = 0) +7 forme) GU} | + Gp + 0) pe (ret + nab 
Under like conditions 

8 4p 4¢3 bict 

II, =8 i ak: BE. (9 = MN) +o (9 = MMs) +9 E.E, qd — NesNs2) - 

ab? /(3 Ame ae (3 4ms Free WEL 2ms\ (1 2me se 2n = 

> oR (= 2)+aG rae ae \G— eas me) ee vy 

abc? (= = 2ms = ahs 43 a*b*ct B | 1 ae 2m. is “e) 

E, \t. E, E, 3) Tt, Fy, DR Ib? (21) 

bic! 3 : 
Tl. = EB, is US — 532) + Tel 35 ame — Mtn) — 3 aq5 ae (lie Mss) 

+8 
bic? ames rs pete 2) 

+ = 

S By EF, % / 

a*b>c* (3 4 mse 2 ese, (a 4 LOmsths _ *) 
E, E, - ra E, \ Ep E, % 

EE (n2b* + nasc*) + 

Ey 

The other four minors of the determinant (17) may be written down from symmetry. 
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* In obtaining (20) and (21) free use has been made of the relations (2), by means 

of which various alternative forms can be obtained. 

The full expression for II is too long to write down. In practice, after determining 

the minors as above, one would determine I from such an equation as 

lier, snp tan Waals yg Wiigecterece sens aseheccsrente at <uesorseres (22), 

§ 9. When the material is symmetrical round the z-axis 

te LON tain 
tn =3 (grt Gy) +00 (— Fr), 

afl Eee ie *) 

m= 3 (Foy + nm) tee ij E)’ 
disg = (3a! + 20°? + 3b9/E", 

Seepere cep cece ce Pecerr ee are (23). 
Ce eje I te =F {c? — n (a? + B*)} — 30°B : 

hs = e (b — n/a?) —¢ Z (3a? + b?), 

a 

v 

| 
| 

bas = Fy (a? — 7'b*) —¢ 4 (a? + 36%) | 
} 

The corresponding os and II’s may be obtained from (20) and (21) by making 

use of (4); it would occupy space unduly to record them in full. In particular cases 

it is frequently simpler to employ the primitive equations (16) than to substitute their 

values for the o’s and II’s in (18). 

My present object is rather to exemplify the utility of the method than to aceu- 

mulate lengthy expressions, complete from a mathematical standpoint but indigestible 

by the ordimary physicist; I thus proceed to the consideration of some special cases. 

SECTION ILI. 

SPHERE OF MATERIAL SYMMETRICAL ROUND AN AXIS. 

§ 10. Let us first consider the effect of mutual gravitation of the material. We have 

S=T=U=0, 
P= 0 — hi ——9/ a, 

where a is the radius of the sphere, g ‘gravity’ at its surface. 

The equations (16) take the form 

yD + de M + aN = aL + 2M + aN = bgpa° (7 : ae ) i 

dsl + dayM + aN = gpa® oe =4) | 
where a,, &c. are obtained by putting b=c=a in (23). 
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The formal solutions of (24) may ae be written 

bes Sy te ra) 
Ii = sgpa° SS a A (II, + Ths) + 2 en gE. a 11, , 

MU =4gpa' (CS ee 7") (Tyo + Hm) +2 ew == 4) 11s] me ners (25). 

NIL = topa* ( = fn 1 =! . (IL; + Il.) + 2 (= _ 11. 

Here it is easily seen that 

and so M= 

It is also easily verified that 

(tape Clip) Eee 

Pry L6n? , 8(2—n= mr), Q=1)G1+0) | 4 
— ES {- E =F EE’ E? +t Niiaews (26). 

= Oh Sea ee 
mo p+ E + 

Thus we can get rid of the common factor a* be E ages t: which is an immense 

simplification. 

In passing, the following simple way of obtaining the value of II may be noted. 

We have 

TT = ay Uy + Qethe + Gsths 

= (dy — Ge) y — Thy) + (Qn TT: + holly + &I1,3). 

But Gy =A», and dhs = drs, 

so Ay ITs + Grell + aysIhy = QyelTy + del + ArglI,, = 0, 

as being the value of a determinant of which two columns are identical. 

Hence 103A?) (is 1 3) socnocb bocedooagadonecupsob5aca9sa08 (27). 

Returning to (25) we find 

L=M=-_ # (ort = 2) CET 
2 all’ EE’ EF E 

Pye Pa. 28), 
yale SO a 

2 all’ EE’ Ey MD HL E * 2n 

where 
miles. oF ; ) (dey) 

I Sa ea me oad = oo sheet edict (29). 
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Employing these values of Z, M and N, with 

S=T=U=0, and P=Q=R=-g/a, 

we have the stresses given by (13) and the strains by (15). 

§ 11. It is often best to retain the general formulae (13) and (15) as long as 
possible, and only substitute for Z, M and N in the final result. Suppose, for instance, 
we wish to find the change of length in radii along and perpendicular to the axis of 
material symmetry, due to the gravitational forces. Let 8a, represent the change of 
radius along o (and so perpendicular to the axis of symmetry), da, the change along 
oz. Then, remembering that 

M= L, 

we have from (15) 

oa, -{" S,da =— ; {( se = 4 (gpa — 2La?) — et : 

ba, = |" s.dz = Sh Oa upg a(t oat 
0 3H 

After reduction I find 

Be pe: | (i sD ee 2 ered A a1) ere) ee 
Sa — Tr l(Ce"-2) \- + EE + Bt *+npl— 2-29) ppp | --- (80), 

__ 1 gpa 87° | 2(4—5n— 37’) , l—-m/)G14+7’/), 4 
8a/0=— 3 pip ja 7 - Et EE + EP yy 

1-7 9\ /(3—2n+7 + 2n7’ uN : : 
-2(—2 - f) (a sembocecc sar (31); 

where II’ is given by (29). 

There is, as will presently appear, a reason for not multiplying up by the factors 

ae an 

§ 12. If we suppose £’/# very small, or that the stretching of a bar under given 

longitudinal traction is very much less when its axis is along than when it is perpen- 

dicular to the axis of material symmetry, we have as first approximations 

, 1-7’ 1 ‘ Voty’ 

Bula =— gpa n') {2 FE eis ee dd (32). 
da,;/Sa, = expression of order E’/E 

The change of length of the diameter along the axis of symmetry, which is here 

the direction of high resistance to extension, is thus relatively negligible. 

If on the other hand £/H”’ be very small, we find as first approximations 

(Ng EON (1c ert RE tie RE es ER To (33), 

8a,/a = gpan/(4£), me 
Atl 2 5D eee a 
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In this case $a, and 6a; are in general of the same order of oe only da, 

is absolutely positive. 

If while # and £” are of the same order of magnitude 7 vanishes, or traction 

parallel to the axis of material symmetry causes no lateral contraction in a bar, we have 

6a,/a=—gpa(1—7 et = as ies t+ (HEE) Bae tanseteeen (35), 

busla=—gpe | a+ Coe “t+ (GIMEEY,: HURL ee. sole (36), 

; ; 1-7) (1 ti I = Pie pad = +70) +a since elses (eden (37). 

Both (85) and (86) show contraction of diameters. 

§ 13. If we apply our formulae to a sphere of the earth’s mass the numerical 

results, when we attribute any ordinary values to the elastic constants, are inconsistent 

with the fundamental assumption of the ordinary mathematical theory of elasticity, 

according to which strains are small quantities whose squares are negligible. 

In an isotropic “earth” consistency is attained only by supposing the material 

to be nearly incompressible, or (1 — 2)/# very nearly zero. This happens only if 7 be 

nearly 5, unless # be enormously greater than for any known material. The former 

alternative is much the less improbable, because it implies that whilst resistance to 

change of volume is enormous—as it may well be under enormous pressure—resistance 

to change of shape need not be excessive. 

When the material is not isotropic, but of the 5 elastic constant type symmetrical 

round an axis, the ordinary criterion for incompressibility is 

1-7 7» 1—2n 2 = = 2 ( Pi t) Hiker OD ici Sean cane ce Seem (38). 

This ensures that no change of volume will follow the application of uniform 

pressure however large; but it does not prevent change of volume under pressure 

which is not uniform. To provide against any change of volume two independent 

conditions must be satisfied, viz. 

TEAOH =O cui ad Moe eel 8S ame (39), 

See) se BEA ceric seer Sree ec (40). 

If these hold simultaneously, of course (88) holds likewise. If (39) and (40) both 

hold, then (30) and (31) show at once that da, and 6a, absolutely vanish. If however 

(38) holds alone, or if one only of the two conditions (39) and (40) is satisfied, then 

neither 6a, nor 6d, vanishes. 
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§ 14. As the case when the material is only nearly incompressible is of special 
interest, it merits our attention. 

Let us suppose then 

1—2n=p, | (aq) /El a/R ag) Bh ttn (41), 

where p and q are very small. 

We easily reduce (30) and (31) to 

a 7) -3eRt° 
Sala=— pip EE tet ag’) ~ 3 EE - 

Sepa sdaeetane (42) Bi Tigpai\ish 69. iation Gi Rite lie I 
ba:/2= 3m? (me amtae)~24(e- 2m) 

where p*, pq and q’ are neglected, and 

ads oh ag 
Il — BE’ 4+ nk iialaln(sedlesa'a, sys arutaraletete vic aterm ae siete nao iatt (43). 

If, in addition, the material be absolutely incompressible under uniform pressure, 

p+2q=0, 
and so 

Oa 7) 
Sa,/a= SE (sea 4 t nk’)? a 

+i 2 EY acaaeac en yi. 
Sa,/ -- 2 (ae a ai | 

10 SRI’ \EE 42 nE’ ne 

Unless E and £#’ are widely different in magnitude, 8a, has here the same sign 
as p, while 6a, has the opposite sign. 

These illustrations will, I hope, suffice to show how very varied are the possibilities 
in a gravitating elastic solid “earth.” 

ROTATING SPHERE OF MATERIAL SYMMETRICAL ROUND AN AXIS. 

§ 15. The discussion of the influence of gravitation on an elastic solid earth 
naturally suggests that of rotation. 

I have already* considered the influence of rotation on a spheroid of material 
symmetrical round the axis of rotation; and shall thus merely write down, for com- 

parison with (30) and (31), the expressions for the changes in the equatorial and 
polar semi-axes of a sphere. These expressions may be obtained from the formulae (96) 
and (97) of the paper just quoted. 

* Camb. Phil. Trans. Vol. xv. pp. 1—36. 

Vou. XVII. Parr III. 28 
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Employing II’ as in (29), and denoting the angular velocity by o, I find 

ata ili 2 4-37-77’ , 2(1-71 2 w*pa* (1 DI fy = 39m 2) | z| — (45), 6a,/a = EW == ‘ — 

E! | EE’ E® ‘ne \* EE’ 

2@%0a? > 9 F Re / ie , / 

Sa,/a = a | | 2 (4 — 5y — 397) , ( WAL +7) ai 
mayne E BE’ E® nb’ 

a et ee 
st BE ( — E lp Meee ee (46). 

I have manipulated these expressions so as to facilitate comparison with the corre- 

sponding results (30) and (31) for the influence of gravitation. 

If in (45) and (46) we suppose #’/E very small, we have 

w’pa? (1 — 7’) (2d—") 1 \ 

ied 0 jane 27 nj’ 

Sa,/Sa, = expression of order E’/H and so nevliaible! 

6a,/a = 

The similarity with the corresponding results (32) for gravitation is noteworthy. 

If on the other hand E/E’ be very small, we find, remembering that I’ is 

approximately equal to — 16y*/H°, 

ba,/a = — w*pa’n/(3E), ) 

Sa,/Sa, = expression of order #/E#’ and so negligible) SaaS G8): 

If we suppose both (39) and (40) to hold, or the material to be absolutely incom- 

pressible, we find 

Leet ds 32, 
bala = Sohn (gar upto)

 

sea pad es Oa allan 1)| cooeeten teeta eee (49), 
: SEI \EE’ 4E62' nE ME 

where II’ is given by (43). 

In the case of rotation, unlike that of gravitation, a slight departure from incom- 

pressibility has very little effect; we may thus regard the results (49) as close 

approximations when the material is slightly compressible. In particular, if the material, 

though absolutely incompressible under uniform pressure, is slightly compressible under 

other circumstances, we find under combined gravitation and rotation from (44) and (49) 

<EGPOn tial nG” oe Baeppersian, 
8a/4= "omy  \ BE! near | 

Sa/q=— get orew ( 10 7 <n’ mk) 
| 3EIV = 4? nH’ InE 

na eete A8ce 5: (50). 

So far as changes in the lengths of diameters are concerned, the gravitational and 

rotational influences are thus exactly parallel. 
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In the actual earth we have approximately 

gpa) w*pa* = 289, 

and in such a case the gravitational and rotational effects on the diameters would be 

exactly equal if 
p =1/289 = ‘00346 approx., 

or » = ‘4983 approx. 

If it were possible for » to equal ‘5017, the gravitational and rotational effects 

would in this case neutralise one another. 

SECTION IIL. 

FLar ELLipsor. 

§ 16. The next case considered is that of a very flat ellipsoid of material symmetrical 
with respect to the coordinate planes. 

Supposing the axis of z taken along the short diameter 2c, and retaining only 

terms independent of c, we have as first approximations, with our previous notation, 

dy = 8b/E,, dy = 3a4/ Ey, ds = 3 (a'/E,) + 3 (b4/ EB.) + a°b? {(1/ns) — 2 (M/E), ) 

os Seal eu (BE) and BOB. | 
Ba? a (=- za) | 

| 
| 
| 

II, oes. tb Ee cian) Ny E, }? 

ie atbs 3 4nn 
IT = Rat EE, (9 — nina) + Ge (3 = 7), 

II, = 9a‘b‘ (1 — y9n)/L,E2, | 

_ ath (1 — Sunn Sas) 4 8a2b? ‘ | 
wa (+ + Fp, at" + mpb*), | 

| 
J 

2 

I; = Il, =— 3a*bi (1 = mn)/ E\Es, ' 

=< 1 = mann Sat Sbé op (= a at 

po EE, I Tg lee Tita )) 
Assuming 1 > 72%; 

which can hardly fail to be universally true, Il is essentially positive. 

ROTATION ABOUT SHORT AXIS. 

§ 17. When the flat ellipsoid rotates with uniform angular velocity » about its 

short axis, P=Q=o*, R=0, and the equations (16) take the form 

QyL + doM + a43N = $ wpb? fa? (m./ L,) — b*/ £3}, 

QoL + dy M + do, N = $ w*pa? |— a?/ EB, + 6? (ny) £,):, 

hy L + dM + a3;N ==10' ly a (a? — Hyb®) + ne (b? — na? ah, 

where a, &c. are given by (51). 
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Referring to the values found above for the determinant IT and its mimors, we find 

on reduction, remembering (2), 

Pelion (Zot. 20 ae 
L=M==5 Tl’ (ote sans nw) (52); 
sea pays Pickcuietiow Sara s> uc eR Re oe ; 

Ne-G(RtE- oe) | 
where 

,_ 8a* Sb ao(2  4Me : 
II STi oe & = infalataletelstslaieterelsietstaletaleistcteteleinistersintaiatete (53). 

We may reasonably regard Z, M and JN as essentially negative. 

In our subsequent work the following result will be found useful, 

3(L1+M)+2N=2(3L4 N)=2 (8M 4+ VN) =— ep... eee eee (54). 

Putting in (13) 

S=T=U=R=0, BQ or, 
we have 

ve/a? =(40°79 + M+ N) (1 = 22/u? — 77/6’) — (40% + 3M + VN) 2/8 — 2Ny?/b. 

Having regard to (54) we see that the coefficient of z*/c? vanishes, and deduce 

we = — 20°D (1 — 2/2 — y?/b*) — 2Ny?a?/b?, 

where Z and WN are given by (52) and (53), 

Similarly we find 
= = 200 (1 — 227/a? — 2y/b? — 2/c*), 

But we have been treating terms of order c* as negligible and so may regard = as 

vanishing. 

Again we have 
ve =2Lyz, 2 =2Mzr; 

or these two shearing stresses are of order c, and so though they are large compared 

to = we may neglect them for a first approximation, The complete stress system re- 

maining may be written 

ae = — 20D (1 — 2/0? — y?/b?) — 2Narb*y?/b4, 

wy =— 2670 (1 — a2/a? — 97/6?) — 2 Na2b7a?/a, | ....0.ceeececeececeeees (55), 

zy = 2Nay 

with Z and N given as above by (52) and (53). 

§ 18. If w be the inclination to the a-axis of one of the principal stress axes in 

planes parallel to wy, we have 

cot 2p = 4 (xe — w)/ x7 

= cot 26 — (a? — b*) (1 — a°/a? — y?/b*) + (2N ay) .....cceee eee (56); 

where ¢ is the inclination to the a-axis of the normal to the confocal 

e/a + y/P =r, 

which passes through the point a, y, 2. 
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This gives very readily the angles w and 5t¥ made with the a-axis by the two 

principal stress axes which lie in the plane parallel to xy. The third principal stress 

axis is always parallel to the z-axis, 

Without any reference to the values of Z and N we see from (56) that 

v=, 

for all values of w and y if B= a3, 

and for all values of b/a if e/a? + y?7/b? = 1. 

We thus see that in a flat rotating spheroid, whatever be the relative values of 

the Young’s moduli or Poisson’s ratios, any perpendicular on the axis of rotation is a 

principal axis of stress at every point of its length. 

Again for any shape of flat spheroid the principal stress axes at the rim in the 

central section z=0 coincide everywhere with the normal and tangent to the bounding 

ellipse. 

The stress along the rim normal vanishes in accordance with the surface conditions, 

while the stress @ along the tangent is given by 

T= p* {(y'[b) & + («°/a) w — 2 (yja’b?) 3}, 
where p is the perpendicular from the centre on the tangent at «, y. 

Referring to (55), and remembering that 

e/at+ a/b = p>, 

we easily find 

tet =k ON a2 | ate te eats na sls oeddctae emcee eae anea oe (57); 

or, writing in its value for N, 

Ey ec at 6! 2a%b%,.\ . (8a*  S8b4 a2 (3 _ +m e 
@ = 2w°p (a°b?/p) ae E. \+ iF - E, + a’b ae =) senognyo: (58). 

The stress along the tangent to the rim in the central section is thus a traction, 

which varies inversely as the square of the perpendicular from the centre on the 

tangent. 

§ 19. The strains which do not vanish are, as a first approximation, 

Sz = — 2(L/E,) (a? — nyb*) (1 — 22/0? — y*/b*) — 2 (N/E,) (@y?/2 — fgstlie 

Sy = — 2(L/E,) (b? — nna?) (1 — a*/a? — y°/b*) — 2 (N/E,) (b%x*/a* — nna*y*/b*), | (59); 

s, = 2(L/E,)(nua? + nub?) (1 — a2/a? — y?/b*) + 2(N/E,)(na?y?/b?+ neb/a’), em ; 

Czy = 2Nay/ns 

where L and N are given as before by (52) and (53). 
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To the present degree of approximation, the strains, like the stresses, do not vary 

with z; and at the rim in the central section z=0 they depend on the constant N only. 

Along the axis of rotation the strains are constants given by the simple expressions 

= — 2(L/E,) (a? — nb’), 
ey ny (60) ; 

sz = 2 (L/Es) (na? + nssb*)! 

where Z, as shown by (52), is a negative quantity. 

An 7 in excess of 0° is at least highly exceptional, thus supposing a to be the 

longer semi-axis we may regard s, at the axis as essentially positive, or a_ stretch. 

On the other hand s, at the axis is positive or negative according as 

b/a > or < Vn. 

For the changes in the lengths of the semi-axes we find from (59), by integration 

and substitution for Z and JN, 

2 ees Spel lt 12) A abt 

Balam 5 parm) Lg tg + 8 (GB) Oma 
/ 2 s 4 2 2) The 2 oy Nat 36/b= 5 a atc - nat) | + pte (-- R)t- (a? — mb?) | Ae 56D) 

2 2b*) a3b 
de/c rat nt (n@ ar Nsab* ) (Get si ie te = ) 

where II’ is given by (53). 

In passing, the following elegant relation may be noted 

3 (a2da/a — b°6b/b) Me 28c/c 
as/E, — b4/ EB, (Qa@ + sb? VE, 

Regarding II’ as essentially positive, we see that 6c/c is invariably negative; or the 

short axis, about which the rotation occurs, necessarily shortens. The two perpendicular 

axes if similar in length in general both lengthen. If 6, however, is much smaller 

than @ it will usually shorten. 

For instance, if 3/3 apy aneisane sess eceeestesievsciscckcinesien sence (63), 

we have 8b/b = — 2@°pa? (m2/E£,) (1 — mann) + (8 + 4meta + BI Hi/Ns). 00. eee eee (64). 

The relations (60) and (57), it should be noticed, supply simple physical meanings 

to the constants Z and WV of the solution. 
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SECTION IV. 

THIN ELureric Disk ROTATING ABOUT THE PERPENDICULAR TO ITS 

PLANE THROUGH THE CENTRE. 

§ 20. In a previous paper* I have shown that in isotropic material the first 

approximations to the stresses and strains in a thin elliptic disk may be derived by 

applying the constant multiplier 

{4a* + (3 + 7) a®b? + 4b} + (Bat + 2a*b? + 3b4) 

to the values of the corresponding stresses and strains in a flat ellipsoid of the same 

(central) section zab, and equal axial thickness 2c or 2/. A similar result holds when 

the material is of the more general type dealt with in the present paper, the constant 

multiplier being alone different. To find the suitable constant multiplier we may pro- 

ceed as follows: 

The mean values of the stresses, as | showed in an earlier papert+, are given by 

simple formulae of the type 

| | [Fava ydz = If} Xadadydz + If d dior PS epne cee pee acCoO REC CTEL (65): 

where X is the a-component of the bodily forces per unit volume, and #' the z-com- 

ponent of the surface forces per unit surface. The volume integrals extend throughout 

the entire volume, the surface integral over the whole surface of the solid. 

In the present case we thus have 

i |[Feaeayae =n) |[[ednayae ape NOE roo hee Moa (66). 

Supposing C to denote the constant multiplier required for transformation from the 

flat ellipsoid to the thin disk, we find for the disk from (55) 

we = — 20 La? (1 — 22/0? — 7°/b*) — 20 Narb*y?/b', 

where Z and WN are given by (52) and (53). 

Substituting for x: in (66) and integrating, we tind 

—C.2mrabe.a?(L+3N)=o'p.27abe. a*/4; 

whence =—'p/(4L + 2N), 

=(83L+ N)/(2L4+N) by (54). 

Referring to (52), we have at once 

5 (Sat She _ 4m =a . (6a! es Rise 1 2ms\) me. 
Cale te tee (oe) ae + 2a%b ‘= E)} hp eee (67) 

Thus, writing for shortness 

6a4 6b aa fe 2ma\ pt pt 2e8 (| m= eanes musica (68), 

* (A), p. 49. + Camb. Phil. Trans. Vol. xv. equation (109), p. 336. 
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we have as first approximations to the stresses and strains in the thin rotating elliptic 

disk :— 
2n92f,974  Dhs 2}2 x 2 4 4 3\ yf? 2a [EFF Deleon] a 42 1g 1 2 1 

—~ «wpb? [/2at  2b'  a?b* ( oy te UE ie Gaaee a e == 

oS THE IG i E, 33 =) ; a* =) FN, bee at E,/ a |’ | sisisiess (69) ; 

~  2wip/at , =) = 

ame (atz- ET) 
=z=r = yz =0 

_ op 5 Zar 2b aad ay \ 
a 7 1G [( = mab ) (Fe ar E, at Ng ) (e a 5) 

9 (& ee ope ™2\ (VY? _ bra*\ 
+2 (p+ 20) (Gemma) | | 

arp: a Ay ea 2b! —a*b*) Sieh ) | 
= PM’ lo UP ) & a5 E, ats Ns ) ( fie i | 

4 4 2 2 2,2 | 

2 os 0 2a: ) (OS a) 

rie G i ey ae aaa) (70). 
| 2 

ee ee eee 
et BM" | (rs + Mab Nes a E, * Ns (2 a & 

22 20g (2 
hal Sy Be = E, 

Cgz (Cuz 0 

arb?) LY, BE) 4 

§ 21. The position of the principal stress axes in the disk is given by the same 

equation (56) as applies to the flat ellipsoid. Again, over the perimeter of the disk 

the normal stress component vanishes and the tangential component, in the plane of 

the cross-section, is given, cf. (58), by 

4 4 242. 4 4 

F = 2etp(b'|p') (G+ pp) + = + + 20% (7 — 2) ee (71), 
1 2 Ns 

where p is the perpendicular on the tangent from the centre of the ellipse. 

The increments da, 6b and él (J=c) in the semi-axes of the ellipse and the axial 

semi-thickness are given by (61) when II’ is replaced by II”. The relation (62) 

applies equally to the disk. 

Employing 6/ as above, we find from the value of s, that the displacement yv 

parallel to the axis of rotation is given by 

(OUND (Ul SHANE = IAIN). coonscohoedqoond sce dncscooa sence (72); 
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where 

» (20%  2b¢ ab? ( 2a* 2b* arb “a A? = (N30? + nob?) | i a = ) + ym (= +h +2) +n (; + 2 ) ; 
- 1 2 3 3 od | 

» (2a*  2b' ah? 1 4ny' 2a‘ 2b* a%b*\) a 2 5? a res bss! 2) aA nd pate bP = (naa + mb?) (Fe ay as ) jm (7+ E, ja +1 (Fe Pers y} 
2 Ns 

Since 6/ is negative, assuming II” positive, (72) shows very clearly how the originally 

plane cross-sections parallel to the faces of the disk become paraboloids whose concavities 

are directed away from the central section, and whose curvature increases with the 

distance z from that section. 

The curvature at the centre of an originally plane section is greatest in the zy or 

in the za plane according as 
a@f> or <b,7 

The value of a,*/b,2 depends on the shape of the section as well as on the elastic 

properties of the medium. Assuming as before a >b, we easily find a2>6,? if either 

Ns2/ Qa = 1, 

or (HD REST PA G Pate | la ssen6 | pecnenasnacta ane poe nne een re (74). 

Thus the curvature is greatest in the plane containing the shorter axis of the ellipse if 

Ns: and ns, are equal or if (74) holds. 

Whilst the reduction in the thickness of the disk diminishes as we retire from the 

axis of rotation it remains a reduction right up to the rim. For it is obvious from 

(70) that ys, the value of y over the curved surface, is given by 

a Oe pea) { ay? bat te ee) (mae te =) Pht RAS (75), 2 =— 2 (2e%p/ E11”) ( 

a bf a*b*n 

a 2, E, 
It may be worth noticing that the reduction in the rim thickness is greatest at the 

ends of the minor axis or at the ends of the major axis according as 

can hardly fail to be positive. 

any > Or <b yp. 

SECTION V. 

THIN ROTATING CrrcULAR Disk oF MATERIAL SYMMETRICAL ROUND THE AXIS. 

§ 22. When the disk is complete the approximate solution can be deduced from 

the results of the previous section by putting 

b=a, H,=H,=L', &c. 

To include, however, the case of an annular disk, we must make a fresh start. 

In obtaining the following results I freely availed myself of a previous solution*, with 

* «Qn thin rotating isotropic disks,’ Camb. Phil. Soc. Proc. Vol. vu. pp. 201—215, 1891. 

Vou. XVII. Part III. 29 
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which I foresaw that the present solution would agree in type. It will suffice to indicate 

generally the method of procedure. 

Representing by 2/ the thickness of the disk, by a and a’ the radu of its outer 

and inner cylindrical boundaries, and employing cylindrical coordinates r, @ 2, let us 

assume 
m = A (a?—7*) (1 —a/r?) + B(E — 32°), 

$8 = C+ Dr? + Fr“ + B(P — 32), Pradsouoenpspocebocebndade (76). 

habs r =e = 

From the body-stress equation 

ice pee ee en 0s 
sb ae Or a OPO, 

we find 
C=A(ae+a"), D=o'p—3A, F= Aa'a’. 

Only two of the equations of compatibility are not identically satisfied, and these two 

give us 

A =o'p (3 +7')/8, 

B= o'py (1 +7’) H+ {61 — 7’) E}. 

Substituting in (76) the values thus found for the constants, we have 

EAS / - "\ 1 wpn(1 +7’) EH’ Fagor Bay (ae—r)(1— F) 45 MOREL (e — 30%, | 
asl , » , ea’? ; 1 w’py (1 +7’) E’ bah cain dl ; 
a = 500 O40) (@+a%4 2) — 4 aay} a 5 OCD (2 — 32%), (77) 

The displacements (wu along r, and w parallel to z) are easily obtained from the 

relations 
ulr = 9 = — 9 B/E, 
dw ae 
dp =e TN + YE; 

whence we have, as w must vanish with z by symmetry, 

1 2 ’ , oz i , , 2q/? u= 5 ay (a=) ta) +a’) —C =) + MB) TH 

Leoipni(L 1) gags $y PR rE 829), beers (78). 

__ 1 @’pnz , pai lame yee) soa shapes 2 
(ie 4 E (3 + 7) (@ +a”) 2 (1 + 7’) 1°} 3 (1 — 7’) E? z(P—2) 

§ 23. If in (77) and (78) we put a’=0 we obtain the correct values of the stresses 

and displacements in a complete disk of radius a. 

It should be noticed, however, that the strains and stresses near the inner surface 

of a nearly complete disk (i.e. one in which a’/a is very small) are totally different 
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from those at the same axial distance in a complete disk. This is due to the fact that 
even supposing (a’/a)* negligible, (a'/r)? approaches unity as r approaches a’. 

The results supplied by (77) and (78) for a complete disk differ from those we 
should deduce from the formulae of Section IV., but only through containing the terms 
in /?—32* and z(l?—2*). Now we neglected terms of this order in Sections III. and 
IV., where terms in (c/a)’—i.e. terms of order (l/a)'*—were omitted. 

It is obvious in (77) and (78) that the mean values of 7, # and wu taken between 
z=—/ and z=+1, or through the thickness of the disk, are unaffected by the presence 
of the terms in /? and 2, and the same is true of the values of w over the faces of 
the disk. 

§ 24. It may be well at this stage to make the status of our solution for the 

circular disk perfectly clear. It is not in general a complete solution of the mathematical 

equations. It satisfies indeed all the internal elastic solid equations, and all but one of 
the surface equations; but instead of making * identically zero at every point of both 

+1 
i 7 dz=0 

—l 

cylindrical surfaces, it only gives 

over these surfaces. In other words, it only makes the statical resultant of the radial 

forces along a generator vanish. The solution is thus based on what Prof. Pearson terms 

the theory of equipollent systems of loading. According to the theory, which is very 

generally if not universally accepted, the error in such a solution is insensible, except 

in the immediate vicinity of the surfaces of small thickness—here the circular rims— 

where there is failure to satisfy the exact surface conditions. As the rim values of > in 

the present case are only of the order /* of small quantities, our solution is presumably 

an exceptionally favourable specimen of its class. Still it would not be legitimate to 

apply it without further investigation to the species of anchor ring which arises when 

a—da’ is comparable with /. 

At first sight, it might appear better to have omitted the terms in F? and 2 

altogether; because in their absence * would vanish exactly over both rims. If, how- 

ever, we omitted those terms, we should be unable to satisfy all the internal equations. 

Such a failure, in the absence of special knowledge, is much more serious than failure 

to satisfy a surface condition. For in dealing with internal equations we get, through 

differentiating, contributions of like magnitude from terms that are of widely different 

importance in the displacements and stresses. It is thus almost impossible to judge whether 

failure to satisfy an internal equation is trivial or absolutely fatal. 

In the present case, while the terms in / and 2 serve mainly to save the pro- 

prieties and silence criticism, they fulfil a useful purpose in indicating the degree of 

approximation reached and the circumstances modifying it. For instance, the solution 

29—2 
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becomes absolutely exact if 

7=0, or H/E=0; 

and it is the more exact the smaller 7 or E/E is. 

On the other hand if £’/Z be large the solution has a very limited application. 

§ 25. When E and £’ are of the same order of magnitude we may omit the 

terms in /? and 2 in ordinary practical applications. When these terms are omitted I 

shall use the notation rr, u, &ec. When the material is isotropic the values of u, w, &c., 

constitute what I have called elsewhere* the ‘Maxwell solution, as being the solution 

to which Maxwell’s treatment of the problem would have led him in 1853 but for 

some small inaccuracies in his work, 

It is noteworthy that rr and ¢f depend on no elastic constant other than 7’, 

while w is independent of 7 or #. Thus the stresses and radial displacement are 

exactly the same as in an isotropic material whose Young’s modulus in £#’ and Poisson’s 

ratio 1’. 

The longitudinal displacement # on the other hand depends on 7 and £, but 

even in its case the law of variation with the axial distance depends only on 7’. 

For the increments in the radii a and a, and in the semi-thickness at the two 

rims, we find 

(Sa/a)=(w%p/4B)A—a)ae+ Benya) (79); 
(a’/a’) = (w*p/4E’) {(3 + 9’) a2 + (1-9) a} J 
(81/2) pa = — (w*pn/4B) (1 —9') a + (3471) a4.) 
(81/l),-a = — (w*pn/4E) (3 +7'/) a +(1—7'/) a} ) 

From these we deduce the following elegant relations 

(8l/l) rma = — 0 (E/E) (8a/a) =—n" (8a/a), 
(81/l),-a = — 9 (E'/E) (8a' Ja’) = — n” (Sa Ja’), beveeeee entree cess (81). 

(81/0) rma + (81/Yenu == 0*p (n/E) (a? + 0’) 
The arithmetic mean of the reductions in the thickness at the two rims of the 

disk is thus independent of 7’ or #’. The reduction in thickness is invariably greatest 

at the inner rim. 

Originally plane sections parallel to the faces he during rotation on paraboloids of 

revolution, the radius of curvature at whose vertices equals H + {w*pn (1+7’) 2}. 

The curvature increases as we approach the faces z=+/. The general character of 

the phenomena is the same as when the material is isotropic (see Camb. Phil. Soc. Proc. 

Vol. vu. pp. 201—215). 

* Camb. Phil. Soc. Proc. Vol. vu. p. 209. 

ae 
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SECTION VI. 

ELONGATED ELLIPSOID, c/a AND c/b VERY LARGE. 

§ 26. Retaining only the highest power of ¢ in each case, we have for three-plane 
symmetry 

dy = 8c4/E3, dy = 3c/E;, dy=3 (a4/E,) + 3 (b4/E,) + a*b? {1/ns — 2m,/ E}}, 

Qe= C/E, ay=—c (80°95)/B; + b°N5o/E5), des =— Cc? (a*ny + 3b? Ns2)/ Es, 

‘L 2me Wms Tl, = (ct /B)| Oa nuneoe E; “G — Matha) + Ba°b? (—- -F- ee NE 
1 1 

( 1 2 2nxMs 
Ila = (c*/E;) Es (1 = mss.) + z “(9 — NxM) + 3a*b? ( ie a 7 i =|, 

| 
| 

Ts = 8¢°/E,?, Noes (82). 
[ 

3a‘ 3b 10nae 7) on | | 
Ths = (ct/E3) |- E (i= MMs) a E, (1 = nex) + rl Somat E. — zx) | ’ | 

II,, = 8c°a*n,3/(L,E;), | 

IL, = 8¢°D*n.,/(H,E:), | 

2m2 — 2m 
is 8 (c°/E; i) EB (Ui sade E, 2a = nate) + abe (2 — EE | 

ROTATION ABOUT THE LONG AXIS 2c. 

§ 27. The values of the a’s in equations (16) are as follows: 

CS op= 4o%pc* (an + b'ns2)/ Es, 

@;= 40" \e (mb? — a?) + = (qne — v»h 

Substituting the above values of the II’s and o's in the equations (18) we have 
the values of the constants LZ, M, N of the general solution. Thus for NV we find 

4 bs 22h? 

2@"p | a d > Ma) = E, d =e Nossa) oF Ee (me s= nm) 
= 3a4 hs we [oS 

cB (1 = msn) + E, (1 = neq) + 2b = = E = 

It is unnecessary to record the values of LZ and M as I have eliminated these 
quantities by aid of the following relations, which are not very difficult to verify :— 

o (L — M)= (nua? — neob*) N, 
2 (L + M)= (nna? + nb?) (N + jw’p)) 

whence CL =n aN + to*p (naa? + et (86), 

OM = 7h N+ top (nt neh) a : 
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Retaining V (given explicitly by (84)) for brevity in the expressions for the stresses 

and strains, we have 

ie [Ger +N) (1 = = Be a) =(ho*p +30) | 

ed w= »|- (Joi + 3N) 2 + hotp +) | fie ,-5)| é 

Qn? Dy? 22 Ba Ae (87); 
z= (ne =e Ned?) (4@*p _ N) ( a: be <) se (qa = Nob? \N € == ) > | 

xy = 2Nay, | 

y% and = of order a/c or b/c, and so negligible J 

cea am Daye 27) 54 (0'p/B) (amb) (I= FZ) — dena mal) (1 — fe - Sh | 
2 Qa? 2) 3a2 2 2 | 

+(N/E,) ie (1 — mss) (1 — =— = > = — b? (m2 + ms92) (2 — we -% = a) , | 

Gey Z Z 2a? 2 2 : ee — mt) (1-5 BS) — dom tnd) (1- eat | ee 
; é ae oDee Yee ee de Be 

=P (N/E,) {ma — NxNs2) ( = Go : wal “)- a? (2 2 + Nasi) (15 Fags 2 -*)k ’ | 

8,=— 4 op (nna? + Nab*) (1 — 2°/¢)/Es, | 

Oxy = 2Nay/ns, | 

oy: and oz, of order a/e or b/c and so negligible J 

§ 28. For the displacement parallel to the long axis we have 

1 
y= — bo%p (nat?-+nab)2 (1-5 5)/ B, asaisse seesle se sonwe eee (89). 

Sections perpendicular to the axis of rotation thus remain plane. The shortening of 

the long semi-axis is given by 

dc/e=- 4@"p (730° + Tee) Be. “cv asic sdhws'tocemcstnceesesteeeeeeree (90). 

Using undashed letters as immediately above for the case of the long ellipsoid, 

and dashed letters for the case of the flat ellipsoid of Section III., the velocity of 

rotation, the material and the axes 2u, 2b being the same in the two cases, we find 

from (90), (61) and (53) 

(Befe) = (Be'fe)=1—4 inte ne + ab" (= + +b) (P+ +S) ae (91). 
E i, £, 

Thus the shortening per unit of length in the axis of rotation is less in the 

elongated than in the flat ellipsoid. 

2 si Pe OP TT A 

2 vt See 
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For the increments in the other principal semi-axes of the elongated ellipsoid we have 

lw 2 N 
3 > {a — Mb — 4s (Mad + Nab*)} + 3 a (1 — 37x), 

; LD eh oe. (92). 
1 wo 2 N 

db/b =54° {b? = Nyt? — tn (nat? + Nb*)| ap 3 EB. B* (1 = gesno.) | 

ba/a= 

3 2, 

The values obtained for 6$a/a and 6&b/b when its value (84) is substituted for NV 

are somewhat lengthy even for a spheroid (b=a). 

As, however, the influence of the elastic structure is very clearly exhibited in the 
case of a spheroid, I shall record the value obtained for the difference in the expan- 
sions of the two semi-axes taken along the directions of the two principal moduli Z, 
and £,. It is given by 

da — da, {3 3 1 2 ' 2 ae 

“wipa z iz (1 = mss.) 1 (1 = aos.) + ata i i 7 

PAL 1 1 1 1 

- 3 \P, c z) IE (1 — 37x) + E, (1 = mos32) + ad 

: 2 ; ; d 1 1 = 6m» 67:2 + 12° E, (ns? — Nao”) te (1 = msn) + E, (1 — 32) — Pa E. E, Nere tel (93). 

By supposing equality first between £, and £,, and secondly between n, and np», 

we readily see how 6a,—6a, depends on the difference between elastic moduli and on 
the difference between Poisson’s ratios. 

SECTION VII. 

Lone ELLiprtic CYLINDER ROTATING ABOUT ITS LonG AXIS. 

§ 29. By a long elliptic cylinder is meant one whose length 27 is very large com- 

pared with the diameters 2a, 2b of the cross-section. The solution for the elliptic 

cylinder—terms of order a/l or b/l being neglected—is obtained from that for the elongated 

ellipsoid by simply omitting all the terms in 2. We thus have 

= a 2 . j) 
as [oa (1-2) - Gop tay) f], | 

2 2 

ae |- (ftp +3N) = + (Sa% + WV) (1 = | | 

2. 22 9. 2 u : ee 2 

= = (Nn? + Noob?) F wp +N)( + = p) + (7310? — N32b*) N Vas ) , 

xy = 2Nay, 

= =%=0 ) 
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1 * 2a? 2 \ 
sz= se {a- 7120") (1-2. = a = P) - $m (ni + Ns2D*) (1 sale ioe = \ | 

2 952 

+7 fe (l= MMs) (1 = <- -) —F (m2 + ™3Ns2) a-* ey, eas =—¥) > | 

_ lop a ae -*) 
a= a — a0) (1 == Bos (i 0? + nab*)( )} | aie cad Ane (95); 

+ z {i (1 — ns 732) (1 = = = r) — @ (x +12) (1 2 ant 

8, =— to’p (nna? + 2b*)/ Es, 

Cxy= 2Nay/nsz, 

ne ES ES xz = Tyz=0 

where NV is given by (84). 

§ 80. The conclusion that the above solution applies to an elliptic cylinder may be 

justified as follows: 

The terms containing z in equations (87) contribute nothing to the body-stress 

equations because d=/dz, &c., are of the order of small quantities here neglected; thus 

the expressions (94) for the stresses will satisfy the body-stress equations. (This is 

easily verified of course directly.) 

Again over the cylindrical surface 

e/a+ p/P = 

we have from (94) 
az = — 2Na*y?/b, yw =—2ND'a/a?, ty = ANY «2... ereeerneeonee (96); 

whence 
(w/a?) zz + (y/b*) zy = 0, 

(w/a?) ay + (y/b*) w = 0. 

The equations over the curved surface are thus completely satisfied. 

Over the terminal planes z=+J/ the normal stress # does not vanish everywhere, 

as it strictly ought to do, but instead we have 

| 2 dady = 0. 

Thus, according to the theory of equipollent systems of loading, the solution is satis- 

factory, except at points in the immediate vicinity of the terminal sections. 

§ 31. The increments in the semi-axes a and b are given by the same formulae, 

viz. (92), as apply in the case of the elongated ellipsoid. The reduction in the half 

length J of the cylinder is given by 

81/1 = — Lwp (0? + Tab?) / Bes ...c cee eec ese ce nec eeceeeeeeeewees (97). 

Comparing (97) with (90), supposing 1=c, we see that the shortening in a long 

cylinder is greater than the corresponding axial shortening in an elongated ellipsoid 
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in the ratio 3:2. This arises from the reduction in the strain s, near the ends of 

the axis of rotation in the case of the long ellipsoid. 

If undashed letters refer as above to a long cylinder, and dashed letters refer to 

the awial thickness of a thin disk of the same material and elliptic section rotating at 

the same speed, we find comparing (97) with (70) of Sect. IV. 

+ RDIFIN — L{a* 6 eye 2m2\ _ (2a* , 2b , ar? 
(3Y/t)+ (BU /l)=1-5 {+ + eb Ge Te) + (F + mae —) ChCP’: (98). 

Thus the reduction per unit of length in the axis of rotation is invariably less in 

the long cylinder than in the thin disk. 

As in the case of the disk, the tangential stress # in the plane of the cross-section 

has a very simple form at the surface. For if p be the perpendicular from the central 

axis on the tangent plane at a point w, y on the surface, we easily find from (96) 

Bie 50 Nati [pie tes aera eek ee ee (99), 

N being given by (84). At least as a rule WV is negative and @ a traction. The formula 

(99) differs from the corresponding result for a thin disk only in the value of WN 

(cf. (71). 

We can easily attach a simple physical significance to N. Thus let % and # represent 

the minimum and maximum surface values of @, occurring respectively at the ends of 

the major and minor axes of the elliptic section, then 

NV = di Ge tte ye (GPA eeaaes aed Sdeeat s andico eee (100). 

SECTION VIII. 

LONG ROTATING CIRCULAR CYLINDER OF MATERIAL SYMMETRICAL ROUND THE AXIS. 

§ 32. When the cylinder is solid, the solution can be obtained by putting 

b=a, H,=H,=E£', &, 

in the results of last section. When the cylinder is hollow, an independent investigation 

is necessary. 

In obtaining the following results I made use of the solution* published in 1892 

for the case of isotropy, recognising that the type would remain unchanged. As the 

method adopted is practically identical with that applied in Section V. to the circular 

disk, I pass at once to the results. The origin has been taken at the mid-point of 

* Camb. Phil, Soc. Proc. Vol. yt. pp. 283—305. 

Vou. XVIL. Parr TIL. 30 
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the cylinder’s axis, and r, ¢, z are ordinary cylindrical coordinates. The expressions for 

the stresses are as follows: 

7 = wp (3 + 9 — 2n?(E’/E)} (a?- 7°) (1 — a2/r*) + {8 (1 — 7° E/E), 

$ = w'p [{3 + 9 — 2m? (E’/E)} (a2 + a? + aa? /r?) — (1 + 39 + 29? E/E) r*] = (81 — E/E), 

2 =o'pn(1+7) (a+ a2— Wr) + {4(1 — E/E), 
6 =7rze = bz: =0 } 

Se Eve decee se (101). 

The displacements w parallel to the z-axis, and w along 7, are given by 

w=—o'p7n(a?+a")z/(22), 

= 41 ep (Can) Sane ee (ye - 2) 3 
W577 || Re BiiAe Leap ae tall) Naren as) aoe (102). 

+ ast (3 + 1 — 277k’/E) wa" | Be 

An alternative form for uw, worth recording, is 

_1 wp 
“8 El —rE/E w ) [1 -—7')(B47')(@4+ a*)r—-(1—9*) 84+ +7)84+7/) @a?/r 

— 2? (E’/E) {2 (a? + a%)r—-(+7)r+(14+7'/) @a*/r}]...... (108). 

I shall assume 1—72H'/E to be positive; if it could be zero the expressions for 

the stresses and displacements could become infinite. 

§ 33. The solution, except when »=0, is dependent on the theory of equipollent 

systems of loading, in so far as we have to substitute for the exact surface equation 

z=O0 over z=+1, 

| 2arzdr=0. 
a 

If we put a’=O0 in (101), (102) and (103) we obtain the correct values of the stresses 

and displacements in a solid cylinder of radius a. The stresses and strains, however, 

near the inner surface of a nearly solid cylinder are, as in the case of the disk, totally 

different from those at the same axial distance in a wholly solid cylinder of the same 

external radius. 

Comparing (101), (102) and (103) with (77) and (78), we see that when 7 or H’/E 

vanishes the formulae for the stresses and displacements in the long cylinder and thin 

disk become identical. This is true irrespective of the absolute values of 7 or EZ’. 

§ 34. The stress system (101) possesses several features of interest. The radial stress 

7 is everywhere positive, or a traction, except at the surfaces, where it vanishes; it 

has its maximum value where 
r=Vad. 

The orthogonal stress $$ is everywhere a traction. Its largest and smallest values occur 
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respectively at the inner and outer surfaces. Distinguishing these values by the suffixes 
; and ,, we have 

$0; = h@%p (a? + a") + Fw*p (1 +77’) (a? — a)/(1 — ih'/E),\ 
ay , 4 EA 4, pee ets hdddeh doce (104). 
Bo = hep (a? + a) — fo'p (1 +-0') (a? = a'*)/(1 — 9 2'/ EB) | 

This shows very clearly how 43; and 6% approach equality as the thickness of the 
cylinder wall diminishes. 

The third principal stress 2, parallel to the axis of rotation, is a traction inside 

a pressure outside the cylindrical surface 

r=} (a?+a"). 

The surface values of 2, using suffixes as above, are given by 

4 = — 2% = tw'pn (1 +7) (a? — @)/(1 — 9B /E)...... 2 ec eec eee eeees (105). 

The numerical equality of 2; and 2, seems curious. 

The following relation is also a neat one 

Big — Bag = 7) ($b; — $80) icac soe ceececeesscavdscnesccstesesese (106). 

It somewhat reminds one of the results (81) established for the annular disk. 

§ 35. Coming to the displacements, we see from (102) that the cross-sections— 

unlike those of the disk—remain plane. Further, if 6/ and él’ denote the changes in 

the length of a hollow and a solid circular cylinder of equal length, the material, section, 

and velocity being the same, we have 

OU OU AGS Ga occecacccnass come aemetracasereanee se (107). 

The influence of rotation on the length thus increases notably as the wall of the 

hollow cylinder becomes thinner. Comparing the first of equations (102) with the last 

of equations (81) we see that the change per unit length in the length of a long hollow 

cylinder is the exact arithmetic mean of the changes per unit thickness in the rim 

thicknesses of a thin disk of the same section and material rotating with equal velocity. 

For the increments in the radii of the two surfaces of the long cylinder we find 

from (102) 
da/a = (w*p/4B’) {1 — 7') a? + (8 +7’) cal 

8a'/a’ = (@'p/44’) {(3 + 9’) a + (1 — 19’) a} 
formulae in exact agreement with the corresponding results (79) for the annular disk. 

A variety of interesting relationships exist amongst the different displacements. Thus 

if A represent the cross-section 7 (a? — a”), and ¢ the wall thickness a — a’, we have from (102) 

(da/a) + (8a’/a’) = wp (a? + a")/ EB’, 

— (dl/l) = {(8a/a) + (8a'/a’)} =— nH" /(2E) =— 319", bee eceeeceeceenececeees (109), 

(6a’/a’) — (6a/a) = w’p (a? — a”) /(4ns) | 

(Gal Een CHES UIE) (CVI) Sesaceeceeceer ebcenccce (110), 

(8t/t) = wp {(a — a’ P— 9 (a +a’) (AB) oe cece see eeeee (LED): 
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If the increments in a, a’ and J could be measured, the relations (109) would give EH’, 
7! 7 and n; immediately. 

From (110) we see that the area of the cross-section of the material is always 

increased by rotation; while (111) shows us that the cylinder wall becomes thicker or 

thinner according as 
7) <a We (WO (BARGE sesocshosenssotasosondoceoesscs (112). 

For »' =1/4 the thickness of the wall is unchanged when 

7 (11189 esacocansoneTnbouodosse oo ndouKossapsos 300035 (113), 

and it is reduced when a’/a exceeds 1/3. 

§ 36. The case when ¢/a is very small, or the cylinder wall very thin, merits 

separate attention. Of the stresses, 7 is then small compared to =, while & in its 

turn is small compared to $$; and to a first approximation the sole stress left is 

Sonat. ee, Wl ere Ven (114). 

Under like conditions first approximations to the displacements are 



VIII. On the Change of a System of Independent Variables. 
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THE main object of this paper is to establish a symbolical form for the result of 
changing a system of n independent variables in a partial differential coefficient. This 
form is a generalization of that obtained by Mr Leudesdorf* in the case of a single 
independent variable. The method adopted is the same as in a previous paper+ in 
which I obtained another proof of Mr Leudesdorf’s result. 

formula given by Jacobit for the reversion of series. 
It consists in developing the 

An advantage of adopting this 
method is that the relation between the symbolical form and the fully developed form 
given by Sylvester§ and proved by Cayley|| is readily perceived, so that from the 
symbolical form the developed form can be written down. 

The first of the fundamental formulae of this paper is equation (10) of § 2. This 
formula may be developed in two ways. By the detailed work of §§ 1, 3  Sylvester’s 
expanded form, just referred to, is deduced from it; in the succeeding sections it is 
developed into the symbolical formulae (21) and (22) of § 11, and (26), (27), (28), (29), 
(80) of § 14, 15. Of these formulae (29), or its equivalent (30), seems to be the most 
important. The crucial point in the establishment of these formulae is the proof of 
equations (18a, b, c) in § 9. The somewhat complicated work of § 1, 3 is introduced 
for the sake of showimg the connexion between the symbolical formulae and Sylvester's 
expanded form; it is not required in the subsequent developments. In § 17 a symbolical 
formula is obtained for the differentiation of implicit functions, and in § 18 this formula 
is applied to determine a solution of the general equation of infinite degree involving a 
dependent variable y and an independent variable 2, when the equation has been 
deprived of the constant term. 

The remainder of the paper is taken up with applications of the symbolical formulae 

(26)...(80). In several papers’ published in the Proceedings of the London Mathematical 

* “Second Paper on Change of the Independent Vari- 

able,’ Proc. Lond. Math. Soc. Vol. xvi. 

+ ‘Change of the Independent Variable in a Differential 

Coefficient,’ Camb. Phil. Trans. Vol. xv. 

+ “De resolutione aequationum per series infinitas,” 

Crelle’s Jour. Vol. v1.; Gesammelte Werke, v1. pp. 26—61. 

§ Proc. Roy. Soc. Vol. vut., 1855; and Quar. Jour. Math. 

Vol. 1. 1857, with corrections. 

\| ““Deuxiéme note sur une formule pour la réversion 

des séries,” Crelle, Vol. tiv.; Collected Works, Vol. 1v. 234. 

4 ‘‘On the Linear Partial Differential Equations satisfied 

by Pure Ternary Reciprocants,” Vol. xvur. pp. 142—164. 

“On Pure Ternary Reciprocants and Functions allied 
to them,” Vol. x1x. pp. 6—23. 

“On Cyclicants, or Pure Ternary Reciprocants, and 

allied Functions,” Vol. xrx. pp. 377—405. 

“On Projective Cyclic Concomitants, or Surface Differ- 
ential Invariants,”’ Vol. xx. pp. 131—160. 

‘‘On the Reversion of Partial Differential Expressions 

with two Independent and two Dependent Variables,” Vol. 

xxu. pp. 79—104. 

‘‘On the Transformation of Linear Partial Differential 

Operators by Extended Linear Continuous Groups,” Vol. 
xxix. p. 466. 
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Society, Prof. Elliott has considered the theory of Cyclicants and Reciprocants, mostly 

for the case of two independent variables. It is shown in this paper how most of 

Prof. Elliott’s general theorems can be obtained for any number of independent variables 

as deductions from the general symbolical formulae. In § 19 the result of the change 

of variables by the general linear transformation is exhibited in formula (39), which 

Prof. Elliott has 

also considered the conditions which must be satisfied by the functions which are the 

may be regarded as fundamental in the theory of Pure Cyclicants. 

generalized forms of ordinary Reciprocants when there are two dependent and two inde- 

pendent variables. In §§ 29—31 these conditions are deduced from the general formulae 

of the paper for any number of variables, and it is also shown that Prof. Elliott's 

conditions are not independent and may be reduced in number. 

For the sake of conciseness all the general results of the paper are worked out 

for the case of three independent variables, but care has been taken to use only such 

methods as would be applicable to any number of independent variables. 

Summary of Contents. 

$1. Definition of the function D,? D,? Dz (tu/v%w*), | § 15. Modified form of the general symbolical formula 
and its development as required in § 3. in § 11; equations (27) to (80). 

§ 2. Formula for the change of a system of indepen- The operators @,,, Q,.,...; their alternants. 

dent variables obtained from Jacobi’s Theorem; | § 16. Symbolical formulae for the interchange of the 

equation (10). dependent and independent variables. 
§ 3. Digression to deduce Sylvester’s form from equa- | § 17. Symbolical formula for the differentiation of 

tion (10). implicit functions. 

§ 4. Modified form of equation (10). § 18. Solution, in symbolical form, of the general alge- 

§5. Definition of the operators {U,U,}, {U,U, },.-- braical equation of infinite degree; or of a 
{U, x}, {U, y},... system of such equations. 

§$§ 6, 7. Commutative character of the operators {U, 2}, § 19. Application to the general linear transformation. 
{U, Yyse- § 20. Various forms of the result of linear transforma- 

§ 8. Effect of the operators {U,U,}, (U,U,},-- on tion in the case of two independent variables ; 
the function D,? D, D,? (tf). cyclical interchange of the dependent and 

§ 9. First transformation of the result in equation Halle) pea Gi Geta ues. a= : 
(10) to a symbolical form; equations (19 a, § 21. Alternants of the operators ® and MY, V,, Vin 

fae) the case of the linear transformation. 

§ 10. The operators @,,, oz.,...; their alternants. §§ 22, 23. Application to the theory of Cyclicants. 

$11. Final symbolical formula for the change of the jee Peto ofa theorem due “2 Prof. Elliott. ‘ 

independent variables in a partial differential SYE yal Dteie Os deo Bass Sranistoraauion on 
coefficient by means of an operator involving the Gperatore V and @; cyclical interchange 

{U, 2}, {U, Y}yu++ zy, Onzy---; equations (21, 22). FS OSES GS 
$12. Various forms for that part of the operator § 28. Example illustrating the use of the last results. 

which involves the w’s; determination of the § 29. Definition Of EBLY, ESOS ER NES conditions 

four forms for the case of two independent SEES loyp oo SURG HOUS. 
Seka § 30. Example of this class of reciprocants. 

§ 13. Case of one independent variable. § 31. Proof that the conditions of § 29 are not inde- 

Definition of the operators [U, z], [U, y],..., 

CAUARS 
pendent, and that they may be reduced in 
number. 
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§ 1. Let w, v, w, t be functions of three independent variables 2, y, z; and let 

any differential coefficient 

OP+atT y 

Oa? Oy? Oz" 

be denoted by wp; let also the quantities 

Upgr _ Upqr Wpgr boar _ 
piqirl’ plqitr!’? plqir!’ pigir! 

be Genoted by ayer, Oper, Cyor, & 
par: 

Further, let D,? D,? D7 (tu/v%w") denote the result of suppressing all terms which 

explicitly contain ¢, u, v, w or first differential coefficients of u, v, w in 

optrqtr 

Aer oytae CO 

The expanded form of this expression is easily obtaimed. Let & 7, € be quantities 

independent of a, y, 2; let 

(Dian cao Greg a Ui SoC hr tas) tecpese UE nisoae aec , eenonoenoce-ononee (aie 

let V and W denote similar expressions with b’s and c’s instead of a’s, and let 

ey = ana tgs Cogn rt anole tat ais) tena &* oie elec oe os oe vee deres a (2). 

Then 

TOVOW=3 = z "De DypDg (LUVIW") 
P 

where, after the differentiations indicated by Deg, D,, Dz, & , € are made to vanish. 

But obviously, on this understanding, 

Dy D,!? Dz (TUTV2 W") = D,? D,t DZ (tufoow*). 

Therefore 

D,? D,? D7 (tufo%w") 

pigir! 

is equal to the coefficient of €?y7g" in TUV9W*. Therefore by ordinary algebra, pro- 

vided p+q+r>2f+29+ 2h, 

Dz? Dy? Dz (tufvow") 1 
ata anes S 2 daw FET (Qu 

(ju, be 

1 

Gi! gat... rainy) 
(Dayasivst) eee 

1 FTI Omtestnt™ Ont) con onennescesseeeceee (3), 
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where summation extends to all zero and positive integral values of fi, fo, --. 91, ge,-+ 

hy, hy... 2 My VY, i, fa» M1, --- Which satisfy the conditions 

Aitht--=ff Atget.-=9 ntht...=h 

A+ DAA + Tri’ + ThA” = p, Atptv<el, | (4) 

B+ Ship t+ 2g’ + Thy” =49, EE he Bin 2228 | 

+ Sf. + Sq’ + Shy,” =r, My +p + £2, &e. 

Therefore, writing [p, g, 7; fig, hi X% w V3 Ms fas 1; &e.] for the typical term on 

the right hand of (3), we have 

D,” D,? D7 een) S 
Fila ne => [py Goats feGnales Aske Bal Any apa base WoC le eee (5). 

Again, on differentiating the equation 

Uf 1 

DHE PT amn (tap. BE 9B 
with respect to & we find 

UU: sy fi. EBA Bun Ein 
Csi fide (Gaye) «-- FA girs C2, 

But 

TU! VOWS, = SD_? DA Dz (toute) g saa 

therefore, by comparison of coefficients of powers of &, 9, 

D2POD,ADZ (tud v9 wuz 
@=ny “a a D! a) pin = hm Wy CAre TE CA LOS WS [in 8 Wg fg VAR Cred bad(B)) 

> 

And similarly 

DPD, D2 (tuf v9 wuz ; 
@=D! Gem! oa as pia Sgn [p.9.73 ig h3 Ar oY; A, Ma, 1; &e.] 

DPD, AA Dz (tut 094" yWz) 

C=) G=—DuiGS hig iG i 

ARCH S 1A GEOR Ws [PA Do: Wn [Mg VAS S20] bococossanosee (8), 

= 5. Sf. Sgyn! . Shy” 

where the limits of summation are the same as in (4); and similar expressions can 

be written down with 2, y, z interchanged. 

It is obvious that, if p+q+r<2(f+g+h), 

D,?D,2Dz7 (tufv%w") = 0, 

since the coefficient of &?n2¢" in TUS V2W* will be zero. For similar reasons 

D?D,2D7 (tuf wuz) =0, if p+q+tr s 2f4+29 + 2h+1, 

D,?D,2Dz (tufvIwuv,) =0, if p+ qtr = 2f+ 294 2h4+ 2, &e. 
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§ 2. We now proceed to establish the formula for the change of the independent 

variables in a partial differential coefficient. It is first necessary to state the theorem 

of Jacobi on which the method is based. Let v, v, w be three quantities given in 

terms of three independent variables & », € by equations of the form 

UV = E+ AaoE? + Gono? + Coons? + duofn +... + dank? +... 

=&+X, say; 

V = 1 + Dao& + «.. + Dyn +... = 9+ Y, 

© = C+ Cok? + ... + CmeE+... =C6+Z, 

where the as, b’s and c’s are any quantities independent of &, », € It is important 

to remark that the linear part of each of the expressions must consist of a single 

term. If these equations are solved for & », € in terms of v, v, w one set of values 

will vanish when v, v, » vanish, and can be expanded in series proceeding by integral 

powers of v, v, w. Supposing that & 7, € have these values, we can then expand 

a general function /(&, 7, €) in powers of uv, v, @, and Jacobi’s theorem states that the 

coefficient of v'y"w" in the result is equal to the coefficient of &~¢> in the 

expansion of 

0 (vu, v, w) 1 

OCR (ee OAC Oak (Sas 

where the expansion is effected by first arranging (£+X)-'*», &c. in powers of X/E, 

Y/n, Z/€ and then substituting for X, Y, Z and multiplying together the various terms. 

F (Em, ©) 

Now let wu, v, w, ¢ be given functions of three independent variables w, y, z; and 

let it be required to change the variables from a, y, z to uw, v, w and express 

aitmtnt/owdv™dw" in terms of differential coefficients of ¢, u, v, w with respect to a, y, 2. 

To this end let x, y, z receive increments & 7, €, and let the consequent increments 

in u, v, w, t be v, v, w, t. The first differential coefficients of u, v, w, t will be 

denoted by special letters according to the following scheme 

, ” 

U0 = 4, Un = 4, Un = , 

, uu 

Vio = b, Uno = 0, Voor = 5”, 

ae = , = ” 

Wi = C; Wu=C; Wm =C, 

ho = d, too = d’, boo = a’. 

Then 
v=aéE+an+a’E4+ U, 

v=bE+ b+ bE + V, 

o=cE+cen+c'54+ W, 

ae 

where U, V, W, TZ have the same values as in the previous section. 

Vou. XVII. Part III. 3] 
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But if t be regarded as a function of wu, v, w, we have also 

gitment vip™e” 
ep se Ua Oi 

Ouldv™w" lL! m! n!’ 
T= 

and therefore d'+™+¢/du'dv™dw" may be determined as the coefficient of v'v™w/l! m! n! 

in the expansion of 7 in powers of v, v, @. 

To apply Jacobi’s theorem we make the transformation 

EF =aE+ant+a's, 

‘= bE+b'n +b'6, 

=cE+ cm +0°S; 

so that JE= AE + Br’ + CL, 

Jn = A’E’ + By + C8, 

Je= AE + Bly +08, 
where 

and A, B, C,... are the first minors of J. We now have 

v=£40U', v= 41- Vi, o=F+W’, gel, 

where U’, V’, W', T’ are the values of U, V, W, T in terms of &, 7’, &. 

To express these values take D;, D,, Dg as in § 1, and write 

Des (ADs + A'D, + A" Dp), 

De > (BD; + B'D, + B’De), 

Dee : (CD; + C'D, + C’Dp, 

and denote D:!D,”"D,2U’, &e., by w'imn, &e.; and wWimn/l! min! by @’ima, &e. 

Then Vii aioe 

Vi= 2D ' por EP 090", 

Wi eC eo meer 

TL" = Xd por EP 20", 

where in U’, V’, W’, p+q+r¢ 2, and in 7’, pt+qt+r<¢l. 
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If also we take D,, D,, D, as in § 1 and write 

= 5 (AD, + A'D, + A”D,), 

ine + (BDz + BD, + B’D,), 

D, = 5 (OD, + OD, + O”D,), 

then 
De? Dy Det (T'U'1V'OW") = DPD AD, (tulv7w"), 

provided that products of the operators D,, D,, D, are formed by mere algebraical 

multiplication; that is to say, in the product D,D, it is supposed that D, does not 

operate on the coefficients of D,, D,, D, which occur in D,. 

Therefore by Jacobi’s formula 

1 gltm+n ¢ 

I! m!n! dulddv™dw™ 

is equal to the coefticient of & ny’ in 

y 0 (y, Vv, @) a5 1 

ia} (€, n, &) (E+ (Oar (7 a Vij G Je Wir d 

or 

ee ee pan (Eth) (m+g)i(n+h)! 

Seer et UW flmiginth! 

0U’ ov’ ow’ PAO VEE 
| 1+ OF , oF’? of | ern nmtoH c/nthti? 

Ua eave ah RO 
| On’ » ) On’ > dn’ 

i, neue ov’ ow’ | 
GE AN BR? Nik ae 

that is, in 

et pees egen L+F)i (mm +g)! (n + h)! 
Sap nadie Ufimtgtnth! 

Spenane | Leer al OVO oye ee eee 
; | Us, 1+, We piqint 

Us, VW, 1+ws 

where w%, %, W:, We. stand for Du, D,», Dyw, &e. 

To obtain the term containing £7’ ¢’ we take p=/+f, q=m+g,r=n +h. 

31—2 
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Hence 

+-m+ OMIM Soe, 9-0, h=2 (—1)/t9th DAS Dnt Deth 
= 27=0, 9=0, h=0 1 2 A ouldu™ aw" 

1+%, 0, w,|  whyIw 
—— (10). ‘ Sots A Tuatha ee 

ins V3, 1+ ws; 

Although in this expression summation extends to all values of f, g, h, it is obvious 

from the remark at the end of § 1 that terms for which f+g+h>l+m+n will 

be zero. In particular, if J/=1, m=0, n=0, the only term not zero is that for which 

FSU, G=Q, CSO. 

It is easily verified that 

| 1l+u, , W, A/J, B/J, C/J ’ G+tuz, b+%z, CHUWz 

Us, 1+; W> Al Is (Bide (CHS) a +Uy, B+, ¢o +, 

ls, vw, L+w,; IPL fy al 2x Fuel OZ Bf a’ +uz, b+, e+ wu, ! 

_1| atu, b+, C+Wz 

J Gi tetas (Deal Uy se UCiact Wall sencetene sasncnemeec erect es (11), 

a’ +uz, b’ +, c+ w, 

Ug, Uy, Uz, — I 0, 

| Uz; Vy, Uz, 0, a ts 0 

Wz, Wy, We, 0, 0, -1 

| A B C 
=| Ul, 0, 0, af ? iz i DOCOOCOCDNODDUCOUOOOUOOOGOG (12) 

A Dad 
0, ul, 0, ap > IT ’ It 

A” B" Q” 

0, 0, I, ai ? ei ? i 

It must be understood that when the determinant (11) or (12) is substituted in 

the expression (10) the operators D,, D., D, affect uz, Vz, Wz, &e. but not a, b, c, &e.,, 

or A, B; C, &e. 

§ 3. To obtain Sylvester’s expanded form of the result we use the form (12) for 

the determinant and expand D,'+/D,”"*9D,"** in powers of D,, Dy, Dz. This operator is 

equal to 

s +f)! (mtg)! @+h)! 

~ py! po! ps! qi! qo! gs! 71! 72! Ts! 

(AD ay (AD Ne (ACD Del aan ie = (ena (ee Eareace: (5 Ti Tj a fh Tita 
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where summation extends to all zero or positive integral values of p,, p., ps, &e. for 
which 

Ptpotp=l+f, At+t@m+tg=mt+y, r++ =n+h. 

We now re-arrange the grouping of the terms and transform (10) into 

ol+m+n t 
Sac. 082, haw (= 1)/+9+h-3 DI Dmg Dpto 

oulau™ Own = S=0, g=0, h=0 

(uD;), (uD,), «DD, D, 0, O ut vr 

(vDz), (vDy), (wD), 0, Dy, 0} Sigh? 

(wD,), (wDy), (wD, 0, 0, D, 

ee. ben woe 
| Te eu ectie 

Rema a ies Dt 
where (wDz), (uDy), (uD) are the same in effect as D,, D,, D, but operate on wu only, 
whilst (vD,),... operate on v only, and (wD,),... on w only. 

We can now make use of the results of § 1 and obtain finally 

(L+f—1)! (m+g—1)! (n+h-—1):! Glimtn ¢ si/=2, 9=2, haw ~ 

ee (= yes 
Butoum™oum — —Bemoa=o (— 1Y Pi! po! ps! = ul ga!qs! = ry! Ta! 15! 

x =(p: +@a +7 -—1)!(pt+q@t+rn—- 1)! (ps + Gs +73 —- 1)! 

x J—emintf+gth) AP: A’P2 APs BX B'S BY’ ON C2 O"s 

X[(P+G+N), (Pot G+), (Pst stra); fg hs As wv; My By 1; &e.] 

>A, Sita, tAn, l+f, 0, 0 

GTA pli Di 0, m+4q, 0. 

x Shim", Shyu", Shan", ° We AIT wie (13), 

Ba+ratn, 0, 0 pP, Q> ry, | 

0, po+Qa+7e, 0, Pay qa Ts | 

0, 0, Pst qs+7s, Psy Is i 

where the limits of summation are given by (4). 

A little consideration is needed to see the truth of the last result. It is obtained 

by regarding the determinant as expanded, then expanding the various terms by § 1 

and grouping together all the terms which give rise to the particular term denoted by 

[i+ Qtr) (Pat Gtr), (Prt Gtr); FAI ry wy Ys My My 13 &e] 

The last result agrees with that given by Sylvester but differs in sign from that 

-obtained by Cayley when the number of independent variables is odd. 
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In the case of certain terms, such as those which occur in the evaluation of 

ot 

ou?’ 

explains, there is no difficulty in deducing the proper value. 

the coefficients as given by (13) take an indeterminate form, but as Sylvester 

§ 4. In order to obtain a symbolical expression for the result of the change of 

variables we return to equation (10), and by a re-arrangement of terms write it in 

the form 

= — >a fy ae (= 1y+ gth Di Dry Dpto 

D,—(uD,), —(vD,), —(wD,) 
Syd —(uD.), D,—(wD.), —(wD,) | t pas “ Ae, ee ee (14), 

—(uD;), —(vD;), D,;—(wD;) | 

where, as in the previous section, (wD,), (wD.), (wD;) are equivalent to D,, D,, D; but 

operate on w only. This re-arrangement is effected by grouping together terms homo- 

geneous in D,, D,, D;, (wD,), (uD,), ...-.-- 

The operators required for the purpose of expressing the result symbolically will 

be considered in the following sections. 

§5. Taking U, V, W, T as in § 1, let suffixes 1, 2, 3, 4 indicate that (& m, &), 

(&, m2, &),-.. are substituted in them for &, 7, €; so that 

Ty = Gogg E,? + Aono? + --- 

Let also U;, U;,,... denote & Ue “ U,,.... Let {U,U;} denote an operator formed 

by replacing terms such as &?,7¢" in the product U,U;, by = . The particular 

brackets { } will be used to indicate this operator and to distinguish it from a mere 

algebraical product. Similarly let {U,V:,) be an operator formed from U,V;, by replacing 

EP .267 by eer | Let also {U,W;,} and {U,7;,} be formed by replacing &?,%&" by 203 
Oper : ; 0pm 

See and &?n, 26" by rele 

We shall also suppose eight similar operators {V,U;}, {V.V¢},... to be formed in 

like manner, and twenty-four others by writing 7 and € for &. 

Written at full length for a few terms the first operator is 

fa) () é 0 fe) 
{ U, Us} = 2A» Oalann mae Aq20 A190 Daless ae Aono 5 Adlon a BA Ahr Oden = (2@a00@oa0 a5 Go) Bam 

Baers a 
+ Bo Cin Oden + (2dh099 Goo2 + Bin) 5— a ae (Apo9 G01 + Gon G0) 5— Oden 

+ (Ahi Move + Godin) ait (2299 Mon + 220i) 5— ‘i 

AF oss 
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Similarly 

a a a : a 
{U, V;,) = 2a. boo Osos + Gyo Dr9 Doan + dobro ODoos + (doo D130 + 2419 b aon) ODav Fieve 

If it is desired to work with wpor, Upgr, &e. instead of apr, Dpgr, &c., the operators may 

be formed in similar fashion. Thus {U,U;,} is formed from 

a 2 ft 3 2 
(1 e “ts ee 57 + Udon 51 + th bm + «+. + Us00 2 a S) (uaE: + thio + tan G1 + Uso = are. =} 

by replacing £7,276" by p!q!r! ze : 
OUpgr 

And therefore the operators may be also expressed in the following manner 

{U,U;,} => D,?D,2Dz (uuz) = 7 
Upgr 

{U,V;,} == D,?D,'Dz (urs) — é 
par 

{U,W,,} = % D,?D,2Dz (uw;) ce , 
OWpar 

(U0, =ED.”D,2Dz (ut) =, ‘par 

&e. ; &c., 

where summation may be supposed to extend to all positive integral values of p, q, 7, 

though in the first three operators the coefficients of g ; g : a will be zero if 
OUpgr’ Opgr OWpgr 

p+q+r<3, and in the fourth the coefficient of a will be zero if p+q+7r< 2. 

The operators actually required will be nine formed by combinations of the above, viz., 

1a; x} = {U,U;} a5 {U,V;,} ar {U,W:,} + {U,7;}, 

(U, y} = {UU} + [U2V2, + {Us W,,} + (U.T,,}, 

&e., &e. 

§ 6. The first theorem to be established with regard to these operators {U, 2}, 

{U, y},... is that they are all commutative with one another. But before proceeding 

to the proof of this theorem it is necessary to make a few preliminary remarks. 

Let F(&, 7, €) be any integral function consisting of terms £?y%f" such that p+q+r<¢2 

and let {F(&,m, &)}, {F(&:, m, &)},... be operators formed as in the preceding section. 
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It is then obvious that 

{F(é, N> &)} U;, = F(&, > &), 

{F(é, ™m> &)} UZ SIF (E- Ne» &), 

a 
ag, 22 

é 
= OF, {F(&, hy &)} U; 

{F(&,, ™m> &)} Uz, = {F(&, ™m> &)} 

é 
= 9g PE. ™)> o), 

{F(&, > &)} U:,= apf (Eo 12, &2); 

{F'(&,, ™m> &)} V,= 
0. 

A number of other similar results might be written down by interchanging suffixes 

and the quantities U, V, W, 7, & », €& Again 

{F(é, My» &)} U,U:, a Us, (F(&, m, &)} U,+ U, {F(é, ™) f)} U:, 

Ee Gee ee U, se Fb ea 

{F (&, No» &)} U,V«, =U, {F (2, m2, §2)} ve 

rs) 
— ise P(E m> &). 

Many similar results could be obtained, but these will be sufficient to indicate the 

mode of procedure about to be adopted for forming the products of the operators 

Ee ee 10 OR eee 

§ 7. The essentially distinct cases to be considered are the products (U, 2} {U, y}, 

{U, x}{V, x}, {U, x} {V, y}. We will take these cases in order. 

Let {U, a} {U, ys={U, a} -{U, yi +{U a *{U, y}, 
where the first term on the right is the result of algebraical multiplication, and the 

second is the result of operating with {U, a} on the coefficients of {U, y}. It is only 

the second term that can possibly be unsymmetrical. We have 

AUR IUUATSUAALSUALALSUA IE IUAME SUA AES LAAT SLA a 
={U,U,} * (U,0,} + (0,0) *{U.V_.} + (UUs) * (UaW,} + (Wie) * (0.2,} 
+ {U,V_} #{U.V_} + {T,W} * (UxW) + (UL) # (UL) 

= (Uy, Tse} + {Us 5d a dh + WryVeVe} + (Wr a0) + (LUT 
3 pirditetenss Q +02 Wah + {Ue UW adh + age leh 



INDEPENDENT VARIABLES. 243 

= (U, (O10 gy, + 2U¢,U,,)} + (U2 (UsVen, + Ue,Vn, + Uy Ve,)} 

+ {Us(Us We», + U¢,We, + Uo, We} + {Us (UL in, + Us,T, + Uy,T%)} 

={U, y} *{U, a}, 

from the symmetry of the expression with regard to — and 7. 

Again we have 

{U, a}*{V, a} =[({U,U2} + (ULV ¢,} + (Us We} + {OL e}] * Vi Ue} + {VV} + {VW} + {V2} 

= {U, Uz} * {ViU,} + {U.Ve,} * {Vi0g} + {UV e,} * {Vee} + {U2 Ve,} * {VW} 

+ {U,Ve,} PRA ie oe oe 

=| ize (UU e)} + (Ty UiVe) + (VeUeVeh + + |Vase (UV e)} 
E, 

+ (Ue) + (MUM) + Voge (OW adh + {Vase (Tled} 
= {V,U, U2, + ViU%, + UU, Ve} + {V0 Veg, + VU, Ve, + U.V%,} 

+ {U;VsWee, + We, (VsU¢, + UsVi,)} + {UV Tee, + Te, (UVe, + Vie} 

={V, «}*{U, a}, 

from the symmetry of the result with respect to U and V. 

Finally 

{U, a} *{V, yJ=[(CUe} + (UV) + {Us We,} + (U2e3] * [Vi Ui} + (VeVn} + {Vs Wa} + {VL 3] 
U, Uz} * {VU,,} + {UV} * {ViU,,,} + {UaVe,} * {VoV,,} + {O2Ve,} * {V;W,,,} 

+ {U,V ;,} * {V.T,,} + {Us We} * {V5 W,,} + {U7} * {V.T,,} 

( 

= {Vi (WUs)} + (0.0.2) + (Vo.aVe) + {Voge (Ve) + (Wy UV 
0 a ) + (DUN) + | Page OWa)t + {Ve Wate) 

= {OiV, Us, ar Vy U;,U,, 15 U, O;, V, J st {U2 V2V en + V.U,,Ve, at U, ne WV, ‘a 

ar {U, V; Wenn, ar We, V; Te + We U; Vz, 1 {UV Tey, a5 Ts, V, U,, a se U, Vi}. 

This expression is unchanged when U, V and &, » are interchanged and likewise 

the suffixes 1, 2. Therefore 

{U, x} *{V, y}={V, y} * {U, a}. 

By interchanges of U, V, W and a, y, z, the products of all pairs of the nine 

operators can be reduced to one or other of the three preceding. It has therefore been 

fully established that all the nine operators {U, z}, {U, y}, {U, 2}, {V, 2}, {V, y}, {V, 2, 

{W, wt, {W, y}, {W, z} are commutative with one another. 

Vou. XVII. Parr III. 32 
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§ 8. Now, taking U, V, W, T as in § 1 we have 

(U,U,} Ul = fU! (U,U,} U =U. 00; = (0) AU eee, (15a), 

Se 5g Us U;,} US -5 (Ux 1 A eae (15 b), 

(U0) = Ul =e (UUs) Us =7 (U2) Re ee ae (150), 

(U,V;,} Vo =gV0 (UV;,} V=gV9 UV; = Us ott ee eke (15 d), 

LAA i Vo= “e (U.Vs} Vo = we (Ug Pale fhacertne eee (sie) 

{U,V} x vo=s o Ueh Ve 2 (ux) Mbox Ate e (15 f), 

(U.0s} T= ue pth Doerr atl ceed st af Semin (159) 

By comparison of the coefficients of &?7%" on the two sides of these equations the 

following formulae are deduced: 

(U,U_} DePDyeDzul = DePDytDz (wo wl) ceccceeesneesserrenres (16 a), 

3 a ne {U,U;,) DPDyDi = wl = D,?D,2Dz = (u = w) Ls te SOR (16 b), 

[U.U,} DerDeDs 2 w= Dedede 2 (uZ w’) sddnceeecnegagntc (16 c) 
1 é, x yu Zz oy x y Zz oy On ee ae A 

(UV. DED EDs = DP DaDen” po eae ee (16 d), ( &, y 7] On 

AWeet (U,Vz} Dz?DyDe “ w= DzPDyiDe 5 (uz. v’) RR te (16 6), 

U.V;,} DDD © v9 = DD, eds 2 (u = i) ce (16 f), 
= ay oy 

at [UsLe,| De?D,Dz t= DzrDeDz (we) Mere cr any (16 g). 

The form of the above results shows that they may be generalized by replacing 

D,”D,!D7 by any function consisting of integral powers of D,, D,, D:. These examples 

seem sufficient to show the effect of the operators. It will be noticed that the effect 

is to introduce a solitary w and to make certain alterations in the symbols of differen- 

tiation. The effects are perhaps best seen by examination of (16 e) and (16/). 

With a view to the application of these formulae to the result in § 2 it is con- 

venient to re-write them in another form. Let (wD,), as on previous occasions, represent 

D, when operating on w only, and let [wD,] act only on the solitary w which is 

introduced into the last set of formulae. 
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With this notation (16 a) becomes, if F(D) represents any function of D,, Dy, D,, 

{U, Uz, F(D)w = F(D) {(uD,) — [wDz)} wu. wv. 

Moreover, since {U,U;} does not operate on V, W or 7, the equations (15 a, b, c) 

0 
still hold if the functions operated on, viz. UY, ag U ..., are multiplied by powers of 

V, W, T and their differential coefficients. Thus from (15 b) we have, for example, 

= a a a (Tis) . 5p. VOVWW,T = = (Ux U) VoV.WW, 7; 

and corresponding to (16 a) 

{U,U;} F(D) $ (wD, wD, tD) ufviw't = F (D) 6 (wD, wD, tD) \(uD,) — [uD,z)} uw. ul w"t, 

where @(vD, wD, tD) represents a function of (vD,), (vDy), (vDz), (wDz), .... 

Similarly 

{U,U,,} F(D) $ (wD, wD, tD) wi w't = F(D) ¢ (vD, wD, tD) {(uD,) — [wD,)} wv. ut vw" t, 

{U,U;} F(D) $ (oD, wD, tD) uv wt = F (D) $ (wD, wD, tD) {(uD,) — [uD,)} u. uf wt, 

and therefore 

Ei (TU) +4 (00, } +4 (0, Us} F(D) (wD, wD, tD) wrw't 

= F(D) b(vD, wD, tD) {(uD,) — [wD,]} wu. wi w"t........ (17 a), 

whilst similar results hold for D, and D,. 

Again, from formulae of which (16d) is a type are deduced formulae exemplified 

by the following 
A” 

A cAg [Fara + 7 (OMG tan) F(D) ¢ (uD, wD, tD) ufv9w"t 

= F(D) 6 (uD, wD, tD)(vD,) vu. wiv9wt....... (17 5). 

And, from formulae of which (16 e) and (16 f) are types are deduced others which 

are exemplified by 
A” 

J 

= F(D) $(wD, tD) {(vD,) + [uD,)}} (vD,) uw. wet wt te... (17 c). 

5 {U.Va} + (U,V) + (U.Ve)| F(D) $ (wD, tD) (vD,) uSoowt 

If in this last formula (vD,) is replaced on the left by (vD,), then on the right 

{(vD,)+[uD,]} must be replaced by {(vD,)+[uD,]}; and if on the left A, A’, A” are 

replaced by B, B’, B’, then on the right the second (vD,) must be replaced by (vD,). 

§ 9. Return now to the expression (14) in § 4 and write, for brevity, 

D,— (uD,), — (wD,), — (wD,) 

—(uD,), D.—(vD.),  —(wD,) |= A. 

—(uD,), —(vD;), D;—(wDs) 
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By adding the second and third columns to the first it is evident that 

(tD,), —(vD,), — (wD,) 

|A|=] (éD.), D.—(wDs), —(wD.) |. 

(tD;), —(vD;), Ds— (wD) 

By use of this form and consideration of the rules exemplified in the preceding 

formulae it then becomes evident from (17 a) that 

[5 (Ut) + 1G U,} + Ay (UiUc} | DiDDar| A\ wher 

(tD,), —(vD,), = (wD,) 

= D,'D,"D;"\ (tD.), D.— (wD), —(wD,) | {(wD,) — [uD,}} w. whorw*t. 

(tD;), —(vD;), D;—(wDs) 

Also from (17 }) and (17 c) 

E (U.Ve} +5 (UV) +5 (0. v3} DEDmDy| A| uleurt 

| (¢D,), — (wD,) — [wD,], — (wD,) 

= D!D "D;"| (tD.), D.—(vD2) — [uDz), —(wD,) |(vD,) u. wh vrwtt. 

(tDs), — (vD;) — [wD,], D; — (wD) 

Again by interchange of v and w in (17 6) and (17 ¢) it is obvious that 

E [U.W.} +5 (UW) — (Us) DADIMDj'| A | wf owt 

(tD,), —(vD,), —(wD,) — [uD,] 

= D|'Dy"D;"| (tD.), D,—(vDz), — (wD,) —[uD,] | (wD,)u. ufvrwtt. 

| (tD;), —(vD,), D;—(wD;) —[uDs] 

Similarly by interchange of v and ¢ in (17 6) and (17 c) it follows that 

[5 (eee ae 4 (00s) DEDmD, | A\ uhrowrt 

(tD,) + [uD], — (vD,), —(wD,) 

= D,'D."D;"| (tD,) + [uD], D.—(vDs), —(wD,) | (tD,) wu. ufoow*t. 

(tD;) + [wD,], —(vD,), D;—(wD;) 

Now add these four equations together. The operator on the left will become 

FU, a} +5 {Uy} +5 (0, 4 
which it will be convenient to denote by {U, 1}. 
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On the right-hand side all the terms containing [wD,], [wD,] and [wD,] disappear. 

For the coefficient of [wD,] in the operator is easily seen to be 

(tD,), — (wD,), —(wD,) 

=y DD,"D," (tD,), D, = (vD,), og (wD.) 

(tD,), —(vD;), Ds- (wD) 

(tD,), —(vD,), —(wD,) 

+ D/D"D;"| (tD,),. D,—(vD,), —(wD,) 

| (tDs), —(vD,), D,—(wDs) 

=0, 

The coefficient of [wD] is 

(tD,), = (vD,), =a (wD) 

D'D,"D;"| (tD,), — (wD,), —(wD,) |= 0. 

(tD;), —(vD,), D;—(wDs) 

The coefficient of [wD,] is 

(tD,), —(vD,), —(wD,) 

DD,"D;"\ (tD,), D,—(vD.), —(wD.) |=9. 

(tD,), —(vD,), —(wD,) 

Hence 

{U, 1} D! DD," | A | ufo9wtt = DDD," | A | {(wD,) + (vD,) + (wD,) + (ED,)} wor w"t 

= DUD EDA, ait eau re seatccs/snsesntceseueeltes fetta sacar os (18 a). 

We note that {U, 1} may be written 

{U, e}, {U, y}, (UY, 4 
1 a” == b, b’, b 

ic y J / ” 6 e, c 

If we take similarly 

a, a, an ; 

(V, =5 | (Va, yh (V4 |=FIBIV, 4B IV, y+ B(V, ah 
C, Cc, c” 

and 
at, a, a” . 

(W3=5] % 8, oY | FLOW, a} +0°(W, 9} +0" CM, af} 
{W, a}, {Wey}, {(W, 2} 

we shall find 

{V, 2} DED ID," | A | wlotwt = D!D"D," | A| uloI wht .....eeeeeee es (18 b), 

{W, 3} D2D.™D. | A| wort = DEDMD PY | A | ufo «2.0... ree eeeee (18 c). 
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We have therefore 

DAA Det pe |A} ut vIw"t { U, 1} Di Dito) thi | A| ut—yow"t 

{U, 1}/ DADmraApmtia | Al ywnt 

={U, 1 {V, 2)9 (W, 3}* DAD Ds | A It. 

But |A|t= D,D,D,t, so that the expression becomes 

1G; 17 {V, .2)2{W, 3)". DED. Devs. 

Therefore 

sates 2 = as (— 174 DaADmt9-D nth | A ee 

=S(-1)ftot ee BE ee at ie a DED D,rt 

ap Maat: 00) ea Ane AOR rrp es (19 a), 

since the operators are commutative. The fact that the operators are commutative has 

been proved independently, but it is pretty obvious from the circumstance that the 

D,, D., D; are commutative, so that the above reduction might have been effected in 

different orders. 

If it is desired to bring the independent operators {U, a}, {U, y}, &c. into prominence 

the result may be written 

A A’ A” B B BY oltmt ng Si ap = = Soe of = = fen 2 SS, & = —{V, yr = —4{V, 
Sarai 7x4 ten zi Ae Aires Ne ral aie ral hy 7 2} 

C Cc’ (ola 
-=—{W, x} -—{W, y} - —{W,z eo TU EE og gh gg Pt oD are haael oe Ah tio teen (19 b). 
: 1 gitmt nt 

If we write Dinn = It m! n! duldu™ouw™? 

ay ane a DED. mJ)” 

we have Dis Se ON BSS ge ee eee (19 c) 
lim! n! 

LDN ED a De 
Ul! m!n! 

Since DD."D." is merely a linear transformation of D,'D,"D7, the operators required 

for the purpose will be simply the ordinary operators of the theory of invariants. 

These operators we shall define as follows :— 

§ 10. It remains to express by means of operators acting upon djnn- 

0 
Dzy as {ET} — S (q + 11) Che. q+, ies ; 

p=1, q=0, 7=0 

0 
Oye = {T's} a pS » P+ den, es. rag > 2 

p=0, q=1, r= 

Wg2 = [ET 3} = > tba, 
Pp = 

7) 
rt1 a7 > 

=1, q=0, r Od par 
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- 0 
cde at ea aiid Pt don, arrag ’ 

=0,qg=0,rTr= por 

“ 

o,={(nTji= REN ae he — 7 eae | ¢} oi ie di ) dp, q~1, ie a 

a 

a oe ee Ag¥t) d; q+ Od’ 
=0, q= = 7) 

where 7’ is as in (2), and the operators are formed by expanding &7,, &c., and replacing 

EPnity by = The upper limits of p, g, r in the summations are all infinite. 
‘par 

These operators w are identical with the operators © discussed in Elliott's Algebra 

of Quantics, Chap. XVI. Their properties are there obtained by forming the alternants, 

but as the formation is simplified by use of the symbolical method the process by 

this method is given here. 

We remark that the operators 0/0& and {£&7,} are independent and therefore, if 7; 

denotes an algebraical expression, 

(ET) Te= (0) 3p T = ap lET) T= 5p (ET) 
Hence 

Wx Oyx — Oyr@zy = {ET} {n Te} — {nT e} {ET} 

a a) = |nggEt,)} — {ES nt} 
= (ap ala Ted pls ch caa cn aerntae cates sual tox emma *s soamaerane (20 a) 

@ry@xz — Ox2Ory = {ET} {ET} — {ET¢} {ET} 

Gy é ) = {Ese EM) - LES ED} 
ace crocs ct ee en ee (20 b), 

WryWzx — OzxOry = {ET} {ET} — {STs} {ET} 

Cd) C) = |Z) - fee ero} 
sail ETT leigy oo ronan Sosa teatae slseig< rene v-sesiaccieaeons soaagecs (20 c) 

Similarly 

Dy Yaz Dy Drags — Tt Org ce sea tens eames vanpavenaeesane woes cise «5+ dcaceneas seen (20d), 

Dry Orga Oey vari — | Ol aneenenceee ss seotea nea steasesnencke ices ase suas coer ssaaee (20 e). 

Equation (20a) shows that if a function is annihilated both by @,, and @,, and 

is isobaric in first suffixes it must also be isobaric in second suffixes and the partial 

weights must be equal, and if the function is further annihilated by @,, and o@,, it 

must also be isobaric in third suffixes and all the partial weights must be equal. 

Equations (206) and (20e) show that any two o's are commutative if they have the 
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same letter for their first suffix, or the same letter for their second suffix. Equations 

(20c) and (20d) show that the ’s are not independent but that any one of them can 

be expressed as the alternant of two others, so that if a function is annihilated by 

the three operators @,z, @zz, @zy, it is also annihilated by all the others. 

When the case of more than three independent variables is considered there will 

be pairs of o's which have no common letter in their suffixes, and reference to the 

above proof of equations (20) shows that such pairs are commutative. 

That the operators {U, x}, {V, a}, ... are not commutative with any of the o's is 

easily seen by forming the alternants of typical pairs. Thus 

{U, 2} Wy — Waxy {U, x} ={UTs,} {&.7,.} — {G73 {Us} 

(ee) a) 
a if On, ( urs) = {Dose er.) 

= {&.U,,0r} — {U.T,,}, 

{U, 2} wy — @yx {U, x} = {UT} {nT} — (mTe} {UsTe} 

a OMFG 
Ns ae, (O.2.)} = ‘ces (nts) 

— Uz T:}, 

(U, a} coye — coy (U, 2} = {U.Le} tn.Pe)} — fnPs} (ULe) 
pee 3 
=i ag, ( ust.) = \Uuag (03) 

= (n.Uz,T:.. 

§ 11. We can now express 
DED2AD 

Um! nt! 

by means of these operators acting upon dimn. 

We have, in the first place, 

@z2A. mn => (n + 1) ay=n m, n+1) 

+p)! 
@z? dimn — we A a dip, m, N+p> 

n+p)!(m+q)! 
Ox! @z2? dimn = ee dp-9, m+q, n+p: 

Therefore 

DiDmDPt_ 1. (ADz+ A'Dy+ A”D\t 7 
lim!n! Sarat eo), ) eae 

abate Eee ib 
J itmini~ pigil-—p—¢! 

Al-14 A't A"? D714 Die Det 
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ee ote 
Jt mini~ p!q! 

i (A\is = : ae a) ( (ay Wy! Wzz" Chinn 

rir hey ITH) 
Al-?-9 A’a A"? (m +q)!(n Fp) Nidpop—o, m+q, np 

\J/) ~ pig! \ 4, 
1p Aen Awe 

= (5) é sa Chins 

since @,, and @,, are commutative. 

To express D,'D,"D,"t in a similar manner we proceed thus. We have 

JD, = AD, + A’D, + A”D,, 

JD, = BD, + BD, + B’D, ; 

whence AD, = BD, + c”D, — c'D,. 

It may be noticed here that, if we were dealing with more than three independent 

variables, ec’ and —c’ would be replaced by second minors of J. 

We have therefore 

DD." Dt A ee . 

~ imint =D!
 (BD, + cD, Dy" D t 

Am ry, " rD 

= Fit © piigt rt BPD (CDs) (Dey Dt, where p+q+r=m 
Aa-m " A\ts 2eetsies 

Saal a an q(— dy Up) qntr)!(5) e Orbe aree 

A! wry + Al wre 
TANG COUN rare 1 /AB\P/ c\r “ 

=(5) Ga) © * peter) (=a) oe? 2 dn 
Alaryt+A"wr: AB c! 

(5) ic carr pas ieieera ae d; 

=| — = p + Gimn- 
J, (4 

Finally, since D,=a''D,+b’D, + ¢"D;, we have 

maT tfm 
DED: Ds t D, D, Cant (Dz = aD, = b’D,)"t Umint  Uimin! 

i c nr 

1 n= p! ae (—a’)a(—b"y D7 Di" Dt, where p+q +r=n, 
mi) 

“ ” A! wry+ A" wre AB ¢ ( a’’)4(— b yr A l+q ‘e ie SSS oye S wy: <i 

!m! : pigir! = Fi ¢ & (1+9)!(m+r)! p! disg, mer,p 

A wry + Al wx: AB , 7 wwe A wnyhm 7 FT Tet en coy s 1 / a’ A\@ bc = M(B) GY me Bm Sh AY EY oneal te 
uw A! wry+ Awe: AB aA ~ bla!" ow: Alm e’mn ‘a Oe ge" yz = Wye ‘ Fi ee ae ae 

=F eae . . . 

Vou. XVIL Parr IIL. 33 

ae i 
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Now, for brevity, write 

A’ i“ Jae 
a=, ® — @zz 1 A xy A az> 

AB ic: 
@. =F Myx — 7 @ 2 Jc” Ux ce’ uzZ> 

a’ A bc” 
ae iia Wa 

{U, V, W} =U,  +{V, 3+{W, 3} 

=F[A (0, a} +AU, y} +4" (U, 2] 

+ F(BIV, 2 + BV, yh + BV, 2]] 

+ F[C{W, 2} +0 (W, y} +0" (W, 2}]. 
il gh t 

hen Dinn = Im! n! duldv™dw” 

Al-m cm 

=i 

Now if © denotes any linear operator which acts on two functions P and Q, 

we have 

EAU, Vs WH. eer’, GP | 6. Digan ses bdo se sneen (21). 

e@P 62 Qe 6% PO) 

where 9,, ©, are equivalent to but act respectively on P and Q alone. Therefore 

eUPe2@ eon. PO 

iP) 

By repeated applications of this principle we find that 

A 1+U—m—m' ec” m+m—n—n' 

Jie Dimn Demin = @ (UF, Wi ems Fees Sema dimn Ar m'n'- 

And more generally if F(dimn, drmn’,-..) represents any function isobaric in each 

set of suffixes being of weights p,, po, ps mm first, second and third suffixes, 

APi-P2 ¢Pa-Ps 
Te eG, V, WI meres I (damn, Armin'y «+-) «+++ (22). TCD ree rata se) 

§ 12. The asymmetry of that part of the operator which depends on the o’s is a 

consequence of their non-commutative character. By arranging the work a little differ- 

ently nine different forms of the result could have been obtained. In the case of two 

independent variables the number of different forms will be four, and it will be 

convenient for some of the subsequent applications to have these four forms set out 

at length. 
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In modifying the work of § 11 for this case it is obvious by reference to the 

argument that only two @’s will be required, viz. 

0 
@z, = {ET,} = pines (¢+1)dpa, gi Adpy’ 

; 0 
Oyr = {n T's} = ee ED dy+1, q-1 Ad pq ; 

and their effect on d;, is seen to be this :— 

a oo — 
Wry” din diy, m+p> 

l ! 

yz? dyn =f +P) Airy, m—p- 

Moreover, reference to the work shows that c” must be replaced by unity, and that 

Therefore 

eee eee ee eee 

ipjm l m A comp AB 

“r= (5) = ete din 

We will next obtain the second form of the result. We have 

DiD,."t = . (AD, + A'D,)! Dj t 

=Fi25 2D,” Dt, where p+q=l. 

Therefore 

Dj! Dj"t _ =. 1 y(m aa APA dnp 
l!m! m! p 

ANNE 1 ANP S (5) ai (=) Reps 

t 4. 
-(4 “) et Ant. 

Now JD, = AD,+ A'D,, 

JD, = BD, + B'Dy; 

therefore, eliminating D,,, 

A’D, = BD, — D;. 

33—2 
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Hence 

DiDnt = ana (B'D, — D,)" D,!t 

= 5 ™ pe (_ 12 DH? Dest 
A’™ pq! 

= = a Be (—1)91 (1+ p)!q! (4) a den th S 

Therefore 

Bi (2 eae ae 
willl (-oil ie 2 lly (Al Re ai 
= G ( ) a) ( es 

=(-1)" — La at oc’ a OR rete ope (23 b) 

Interchanging B, B’ with A, A’ and J with m, and writing —J for J, we shall 

find similarly 

ae yG) &) Ran a ir tt ete Oe => (23) 

= (Gy (Fe) Pare aect me Wa) cee Dee (23 d). 

From these results it follows that, in the case of two independent variables, if F 

is isobaric and of weights p,, p, in first and second suffixes, 

F (Dig ee) = BOs CHOU HET dpdhon ace ieee eee (24 a), 

where {UV} =F{A (UW, a+ A'(U, + BUY, a+ BV, yl] ovrrrerecceee (24 b), 

and the quantity K and the operators @;, @, may have either of the two sets of values 

APi-Pa AL AB 
rae Ona a a> yy Oe atatale atelalaiateiajarcloielalttcrseielarere (24 ¢), 

nce B AB 
K= Jaan? 1 = Py Oye, @, = yi Ory sec c cere cece cncccccccs (24 d). 

And, as another form, 

FE (Digs jos Ce ene BL OGae cna)’ wast cate doses cc teen eee (25 a), 
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where K, @,, », may have either of the two sets of values 

'Di~Pa d 4 oud 

K= (- 1)? a » a= yz, O,=— - Day vscrececccsccseses (25 b), 

K=(-1)" — So CS ate o— a ee Oust a atrcseadadacces (25 c) 

Here A, A’, B, B’ are the first minors of J, and therefore A=b’, A’=—b, B=—-d’, 

Bia. 

§ 13. In the particular case when there is only one independent variable 2 which 

is transformed to u, we have J=u,, A=1, 

{U, V, W}={U, a} ={U,0;,} + {UT ,,} ; 

there are no ’s, and we have, if F is an isobaric function of weight p, 

f 

and Di=——=—e 

This form is not quite the same as that given by Mr Lendesdorf (Proc. Lond. 

Math. Soc., Vol. Xvi.) and also established in my previous paper (7rans. Camb. Phil. 

Soc., Vol. Xvi.), but one formula can be deduced from the other by the method of the 

next section. 

§ 14. Another form of the general result is often more useful than that stated in 

equation (21). It is obtained by exhibiting separately the terms containing first 

differential coefficients of ¢. For this purpose modified forms of the operators {U, 2}, ... 

must be used; let [U, z] denote the result of suppressing all terms in {U, 2} which 

contain dye, duo, don, 80 that [U, 2] may be formed in exactly the same way as {U, za}, 

except that in the process of formation the value of 7’ used is 

dag? af oon? aR dof? + dy EN +... 

instead of that given in (2). Let [V, «], [W, «], [U, y],... represent similar modifications 

of {V, a}, {W, a}, {U, y},.... Therefore 

{U, x} =[U, xv)+ Dio [U4], 

{U, y} =[U, y) + doo [U4], 
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The twelve operators [U,], [V.], [W.], [U, z], [U, y], -- . are easily seen to be all 

commutative with one another. For, by § 7, 

{U, a} {V, y}-{V, y} {U, a}=0; 
therefore 

{[U, 2] + doo [Us}} {[V5 yl doo [Va]} — {[V; y] + dow [Vs]} ([U, 2] + dro [ Us]} = 0. 

Hence, by selection of the coefficients of Gyo, dno, Arodoo, it follows that 

[U, z](V, y]-LV, yw [Y, z]=9, 

(ULV, yI-LV, y] (UJ =9, 

[U, x] [V.]—-[V.] [U, «]=0, 

[U,] [V4] -—[V.] [U.]=0; 

and in similar fashion it may be proved that the alternants of all other pairs of the 

operators are zero. 

Now, by (19¢e), 

-{U, vy, Ww} DED "Dr 

Ui min! ~ 

Therefore if [U, V, W] is the modified form of {U, V, W}, so that 

Dimn =e 

(U, V, WI=F(ALU, 2]+4'(U, y] +4’, 2) 

+5 (BV, o]+ B[V, y] +B’, 2) 

+5(CLW, a] +0'[W, y]+0"(W, 2), 

(u,v, -(4a+4'a'+4"a") (Ug —1 (Bat Ba +B"ANL va —-Lca+eva'+e"a") (Wa DD" Ds" De i J ff imn = @ oa me 6 
Lim! n! 

Now D'D,"D3% is a linear function of dyg,, Therefore the effect of [U,], [V4], 

[W.] operating on DD."D,"t is to change dyg into Apgr, bygr, Cpgr and therefore to 
produce 

DiEDED Su, DEDED sy, DED Dw; 

whilst repeated operations by [U,], [V.], [W.] produce zero results. 

Hence 

Dinn =" "I ALS. DID MD ot —(Ad + A’ + A’d’) DED "Dy 

—(Bd + B’d’ + B’d’) DiD™Dv — (Cd + C’d’ + 0A”) Di DPD yw] 

“1 ce, wy | DIDMDS, DEDDou, DiD"Dym, DLDMD Zw | 
Si b c 
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§ 15. Up to the present there has been no restriction on l, m, n except that 

they be not all zero; the last formula holds when 1+m+n=1 on the understanding, 

assumed throughout, that D,!D,"D,"u, D,D"Ds"v, DD "Dw all vanish when l+m+n= 1. 

But it is necessary to assume, in what follows, that 1+m+n>1. 

Corresponding to the operators » of § 10 we introduce six operators 2 given by 
the equations 

Oxy = [6 Un.) + [EV 5) + [Es Wa] + [ET], 

Oye = [Ue] + [mV e.] + [ns We,] + [Ze], 
Ore = [FU] + [EV] + [6s W,) + [E.2e,], 

Ore = [6:U¢,) + [SV e,] + [We] + (8.2), 

Oy2 = [Ue] + [Ve] + [ns We) + [Tc], 

Oey = [8105] + [SV] + [on] + [80], 

where Oi a0 ons Vi=Oyee ees 

Wa = Cams? + +. ; T's = dao E e+... , 

0 C) 
m= 3p, On Vu = ap, Var ones 

and after expansion of the expressions [£,V/,,], ..., £m!" is replaced by ae : 
pyr 

f) ri) a 
EPIC" by aban , €PnC" by cee EPn ac’ by ll 

par pyr pyr 

The four components of each operator are independent of one another and therefore 

commutative with one another; but as in § 10 the ’s are not all commutative. 

In fact, applying the results of § 10 to corresponding pairs of the partial operators, 

we find the alternants of various pairs of ’s to be 

OgyQyz — QyzQey = — [6:Us,) — [82 Ve,) — [Es We] — [ELe.] + Pm U9.) + P02Vo.) + 92 Wo] + Pn], 
NyyQzz — Az2Azy = 0, 

Oe — De Ay = Azy, 

Quy Qyz — AyzAzy = — Azz, 

QQ — zy Ary = 0. 

From these relations deductions can be made similar to those in § 10. 

We next write 

A’ A” 

AB ec 

Dares rate 
eA b"c" 

0, == =F Oe = Oy 
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DID" D St a Abm (om m—n 4 J 

Hao agica, Sh.) op ek 
D. ‘DoD ny Alum (oh m—n 

rf m! = ae af Cree iam =: 

Therefore 

ee St ee 
J d a b e | 

is hea, | Shae (27) 

qd’ a b” c" 

Now write IFS |) ol b c =Ad+A'd'+ A’d’, 

d’ we 
da’ b” ec’ 

df= || @ d c = Bd+Bd + Bd’, 
4 Gk c 

a” ae c 

d= || @ b d = Cd+ 0'd'+C"d’; 

a’ b d’ 
a” bY da’ 

therefore 
Alm mn 

Da = yee el, y, WeM%e%e0s (Sdimn = aCe = Dian = EGran) Kjeteisiatelpiaiaia’wieisiate (28), 

and as in § 11, if F denotes a homogeneous function of degree 7%, which is also 

isobaric of partial weights p,, Ps, Ps; 

APi?2¢''Pi Ps 
F (Dim; ---)= yp, e- (U, Vs WleMe%e% F (Idan — Syn — Fabimn — FsCimns +++) «+-(29), 

or using the operators [U,], [VJ], [W.] defined in § 14 

APiP2¢"'P-Ps 
Ti (Dry 50) = JP 

ws ai = a 
e-[U, Vs MeMeMg%g— FEU 9 FV oT F(dinn, ---) 

This last form does not require F to be homogeneous, though it must be isobaric. 

§ 16. If in (27) we put t=a, y, 2 in succession we obtain formulae for the 

interchange of the dependent and independent variables. Write 

1 gitmtny, 

Aimn= Tj m! n! duldv™dw”’ 

1 giimtny 

Benn = Ll! m! n! duwdv™dw”’ 

if! glimtng 

Cunn = 1! m! n! duldv™dw™ 
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Then, provided 1+m+n>1, 

A —nc!’m—n 

Alin a ja —e-lU,¥, W) 76% 16%. e% (Adinn by Bhunn 4 Counn) 

Ahm” //m—n | h 
c -(U, ¥,W)] of a a Aimn imn Cimn 

——— ya é merge eo. 67. Ee 

a’ by Cima Wesead (31a), 
ae ie cc’ 

A —me//m—n 
— T y / ve 

Bimn = Jin Cag at WleMe%eNs (A Gimn + Bbimn ar C Cimn) 

eno ’m—n 
mt ane SRA ee py, |! b c yn e eo .e.e 

Aimn loprers Clmn | ceeeesere (315), 

a” b” cr 

Ammen 
= “4 o “u" ua ” 

Comn = — - Jin e— LU, V, Wi eMigMe0s (A”dimn + B’Bimn + C”Cimn) 

l—mp’m—n 
ee Aes e-LU, V, Wle%gM%e0s b ¢ 

Jim , , , a b CB Wi eeececsc cess (31e). 

Amn Dimn Ctmn 

And if F(Dimn, Ain, Biman, Cimn; ---) 18 a function homogeneous of degree i in 

Aimn; Bimn, Cimn, Din; -.. and isobaric of weights p,, p., p; in first, second and third 

suffixes, we have 

AM —Poc!/Ps—Ps 
eae W1 @Mg%g05 

1 
F (Dimn, Amn; Beans Cuan = = i 

. F(S,Qimn == Jobimn SF J sCimn = Jdimn; Adimn + Blinn ae Coumns 

A’ Gimn sr Bbinn a OCs AD tisnn ar Born: + Co Cimas o° -) o ccccceeenas (32). 

Since there are no d’s occurring in equations (3la), (31b), (8lc) the operators 

occurring in these equations, but not im (32), may be simplified by the omission of 

differential operators which affect only d’s. Thus [U,7;,] may be omitted from [U, 2], 

fedeulietrom: O75 «-..- 

It will be noted that Aim, Bimn, Cimn ave the coefticients of v'v™#" in the expansions 

of &, », € when the series 

= Gok SRose 4 GimnE'n™E” + ..5 5 

V = bro& + +--+ OunnEé'n™l® +... , 

@ = Ci + 0. + CimnE'N”E" + ..., 

ave reversed, and & 7, € expanded in powers of v, v, @. 

Yo) oem. 0) Ol (ie oats oO I 34 
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§ 17. The formulae of § 15 may be adapted so as to give a symbolical form for 

the differential coefficient of an implicit function. The method is applicable to any 

number of variables, but for the sake of brevity the work will here be restricted to 

the case when there is only one dependent and one independent variable. 

As in § 16, let 

u=F(x, y), v=G(#, y); 

1 oy. 
m! dum? 

is obtained on the assumption that w is constant, so that if we take G@(«, y)=#, we 

then formula (31b) shows how to determine B,,, or this difterential coefficient 

™, 

shall obtain a ou on the assumption that #, y are connected by the equation 

F(a, y)=const. As in § 16 let ay, stand for 

ORE ee 
PP! gq) Caray?’ 

the b’s of § 16 are in this case all zero except b, which is equal to unity. Now 

we have 

J= Gh Gi 

i @ 

Ay dn 

0) 

=— yy 

so that A=0, and therefore the forms of ©,, ©, used im (27) are not applicable. 

Instead of these forms we may use forms similar to those given in (25a, 6) and obtain 

S a 
K=1,, O=0, O;—=—— 0. 

01 

We have therefore, if m>1, 

B, + tw, vig-gtaw | % 1 
mm Ga 

Amo Ono 

Now, in general, when dealing with special values of the letters, it is necessary 

to carry out all the operations imdicated and then substitute the special values. But 

in the present case, where all the b’s involved in the operators are zero, it is allowable 

to suppress in the operators all terms which involve b's; for it is obvious from the 

form of the operators that they never diminish the degree of any function in b's, though 

they may increase the degree. It therefore follows that the terms which arise from the 

b-parts of the operators will all be zero. We therefore have 

[U, VI=-1U, y= SPF] 
1 9 

re [( Gop + Gu En + Aon? + AoE? +...) (AnE + 2m + dn & + ...)], 
01 

Oy = [EF] = [E (ané + 2an9 + anE+ «..)], 
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0 
on the usual understanding that £m? is replaced by Demy Hence finally the value of 

Co Pq * 

diy ; ; y= Re 
Jam 38 found from the equation F(a, y)=0 is given by 
fr cs 

Ldmy__ 1 o-Acrr) -“*(er, 
Bom a: m! da” a.” am Namrata Mat ein tat lane adie Od aly © dpaceinie os vena e (33). 

§ 18. The determination of the differential coefficients of implicit functions is equi- 

valent to the solution of equations by series, so that the method of the last section leads 

to a symbolical form for the solution of a set of equations of infinite degree. It will be 

sufficient to illustrate the method by considering the case of a single equation, 

O= F(x, Y) = Ayyt + Any + Aah? + Ay LY + Ayo y? + Ago? +... 5 

it is required to determine that value of y which vanishes when # vanishes. The 

solution is 
y=Byct+ Beet... 

a 
where B,=— a 

o1 

, and B,, is given by (33). Now let P denote the terms of F(z, y) 

which are independent of y; then the required solution of the equation F(z, y)=0 may 

be written 

1 + [rr] 2" (Fy) 
ag er A Mn Oa Guts ChRE te-ceaddenancdcetneesssetse: serine (34), 

ol 

where the operators [FF,], [EF,] are the same as in the last section. For an equation 

of finite degree n it is necessary to suppose all the operations carried out, and then all 

the coefficients ap, for which p+q>n must be made zero. 

If f denotes any rational integral function 

%o 5 , Ene a af EN 
TY =C@ & LFF] ~@ A Leal Ff (- rE) aia ereleiciciciele viaiviciee sin win'eien ainie (34a). 

§19. As an illustration of the general methods established, we will employ them to 

effect the change when the variables are linearly transformed. Let the scheme of transfor- 

mation be 
N= an + aly + a’g+ at, 

V =f0+By+6’+p"t 
Z=yat yt et yt 

T.= da+ Syt+ 82 +8", 

and 7 being regarded as the dependent variables. Let 

1 Qitment 

U! m! n! datoy™ez”’ 

i giminT 

lim! n! ex'eY™oZ” 

d inn = 

Dian = 

34—2 
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It is required to express Dimn in terms of dimn, dymn')---- In the formulae T, X, Y, Z are 

to be written for ¢, u,v, w so that a,b, c,... will denote first differential coefficients of TY 

not ¢, and therefore 
a=at+a't,, b=B+B'tz,... 

Now equation (27) shows that by writing X, Y, Z, T for u, v, w, t the value of Dimn 

can be found in terms of differential coefficients of X, Y, Z, 7 with respect to a, y, z 

and therefore expressed in terms of fyg,,---- But the operators [U, «],... which produce 

the expression can be replaced by others involving differential operators Maer 

For the operator [U, x] or [X, x] may be written 

a Q a 
ZA, PAA? (XXz) aXset ES AzPA {AY (Xz) Ven + SAPA SAS (XZ) a7 — 

+ EA, PA, 007 (Xs) a 
pqr 

where p+q+r>2. 

Now since all first differential coefficients are removed after operation with A’s it 

is obvious that in A,?A,2A,7(XX,),... X, Y, Z, T ‘may be replaced by at, B'”'t, yt, 8”. 

Moreover, if p+q+r¢ 2, 

X pg = O"bpar » Yyqr = Boar» Spar = boar » Lyge = 8" boar 5 

and therefore, for operations on a function Of eXpors Lipa 2oers Lear ees 

) mt 0 uy 7) ut 0 ir 0 

Ot par 4% OX por at OV yar tae OZ par ve OL par j 

Also SA PAYAL (XXz)=a' 27D APA, AZ (tz), 

TAPA MAS (XVz) =a"B” SAzPA,IAS (tte), &e. 

Therefore [U, #] becomes 

0 0 0 é wey Pp q rT wn Ua we nt 

a >A, A, Az (ttz) E ake =F B ave Of Aine 5 | 

=a" SAPAIAY (ite) =. 
‘par 

Now denote the operators 

0 

Ot por 

0 
>> A,PA {Al (ttz) > > A,PA,IA7 a > DA PAYA, (tt, Oh: 

‘par ‘par 

by Vi, Vo, V;. When working with d ‘nq ©nstead of pe it will be more convenient to 

form the operators V by writing 

Vi=trd, Velen), Ve=lrrd 
where T = ogy E? + don? + --- 

and after the algebraical multiplications £?n7£" is replaced by aa 
par 
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We shall then find that [U, w), [U,y], [U, 2], [V, a],... become 

263 

ol’ V, F al” Ve. al” V;, 

Bovawens and it finally appears that [U, V, W] becomes 

Aa” + BB” + Cr” 7 Ala!” + BBM! + Oy” Alege: BY BY + Cl” = i Vi+ 7 -_ Y, —— V,=V, say, 

so that 
Piz seat a yen 

d/ a a a’ al’ 

b b’ b” [si 

c c cc’ ff” 

wil V, Vz V; 0 | 
di) at Cates a + at, a” + at, a” | 

B+Btz, B+ Bt, BY’ + Bt, BY 

yty"t of tet ? Ye +t, yf” i 

Vitae eos, O 
Jf a a’ a’ al” 

: ” P}, ll (oa To dUodoodeNOnbg cba HcOOAESaECuRAROCceCE: (35). 
Pee hae es 
Y y yy” yf” 

When there are n independent variables the corresponding formula for V is 

Teh ee is | Wor V2, os Wo ? 0 

“ ee A) 5 a™ 

DC a cyte ee een ee ee (36). Bees = ar), Be 
Vey eye oo po aay 

eee Seo ae ey eo 

The formula (26) then gives 

D Almem—n pe DIDO D YT. dD! D DX, Di! ‘Dm dD. Ve DED" Ds LRA 
Mm —. 

JH ie ie Ve Zz (37) 1, x, y, Z, meeeec(an): 

Te XxX, Ve Zz. 

Now, 1+ m+n being greater than unity, the determinant becomes 

Oe al” (sy yf” D, 1 D, m Dj" 

é+ Oy at alt, B+B't: yt ote 

OFF Ok a’ + Cat B+ Bue of +7ty 

8" ef Ot a’ te ae Be 4 Bitte yf” + 9y'"tz 
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= al!’ BY” mw Di Dr Dt 

B 

OL a “Ria 

Of Gy Beenie 

=ja B vy 8 |DID™D 

aay, 
a) BR shy lity Ou 

ee ee ote 2) 

= ME DED D i asays 

so that M is the modulus of the linear transformation. 

To transform D,!D."D,"t we use the operators 

Oxy =[Et,], zz = [Ere], 

@yz=[nTe], — @y2=[T¢), 

@2=[Ste], ay = [Sr], 

where T= do &+dyen?+..., and the operators are formed in the usual way by replacing 

Bene with 5 
investigated in § 10, and just as in previous cases we find that if we write 

The properties of these @’s are precisely similar to those of the o’s 

A’ PAu 

Oa, Way + Ai xz; 

AB c 
O, ae eu Dyx — Za Dyz; 

a’A bc” 

Ory Oe tae 
we shall have finally 

Almne!/m—n 

Duan = M — 6 Vetiaias Dem ntuccet. ase eee reece (38). 

And if F(dimn, drmn’,..-) is a pure homogeneous function of degree « and isobaric 

of weights p,, ps, ps; in first, second and third suffixes, 

F (Danan; Dem’ pee =) — =e APi-?Pi¢’P2Pae- VeM% eg iM (dimn; Adymn’ os 3) pecoud (39). 

The value of J is 

at a’’d, a +ad, a” + ald” 

B+A"d, pte", 8" +—"0" 
fy a Sy Ry ee oy enya 
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and A, B, C,... are the minors of this determinant. It will be noticed that products 

of d, d’, d’ do not appear in J, which is therefore a linear function of these quantities. 

In fact another form is 

J= a, a, a”, a” 

Bs §8 ee RY 

% Hs Co 
| <a. "aud? wwetdiee 1h) 

SN MW A  EE UER Os ae (40), - 

where A, A’, A”, A” are the minors of 6, 8, 8’, 6” in the determinant MW. 

§20. As in § 12 the part of the operator which depends on the w’s may be 

expressed in different forms. 

For instance in the case of two independent variables we have 

ED eas) = Wien Lecgoatln (Gupeene )nesosoaitace cree sn eeee a vexe se (41), 

Fi 
where V=- , Le Ve g 

a al ie se hc waastaehen nase tea cseees (41a), 
B B’ Bp" | 

and K, 9,, ©, may have either of the two sets of values 

MAP: A’ AB 
ten =F Dry, 0, = > OT (41D); 

M'* Br: B A’B’ 
Le ae Or BR or oO;= Ti Dry eee ce scescccnscne (41¢). 

And, equally well, 

TE (ID 9, Sg) LO EMG cog) aadocpensonedccnesccoschene (41d), 

where V is as before, and K, 0, ©, may have either of the two sets of values 

MiA'?:?: A A’B' 
K=(- 1 ey ee me ; =a Myx, 0, =— a Dyy serererereeeees (4]e): 

M* BP B AB 
K=(- tame oe » Q= Bow Og= => (SF) Soecnpndodar act (41f). 

For example, suppose it is required to change the variables cyclically so that 

t, z, y are changed to w, y, ¢ and w is the new dependent variable. Let «,, stand 
1 Qumy 

T Tm! ayoe™ 
The scheme of transformation is 

X=0.e+1.y¥+0.¢, 

Y=0.%+0.y4+1.4, 

F=1.¢2+0.y+0.t 
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Therefore = | © 1 | =—& M=1; 

5 aa 

pee a = 
Jl o ee OMe 

0 0 1 | 

Here B’=0 and therefore the form (41c) is not applicable, but the form (41b) gives 

fyjPx—Ps pas AE 
=Car? te ty is O82 TE (dumesccs). asecce eee ace (42a); 

and the forms (41e), (41) give identical results, viz., 

EN (Gens eee 

(- ty) Pie ou =e 
(Gms -- )= DD" Cpe ty) 2 @ tt, HI 1IK(Gbns aac) 

ele ee 
=(- 1) pe te te PP (dm, ---) vdee nana Sauapanesoeets (42D). 

If it is required to make the second cyclical change from ¢, 2, y to y, t, @ so that 
l+m 

y is the dependent variable, let ym = =. Then the scheme of transformation is 

X=0.2+0.y¥+1.2, 

Y=1.2+0.y+0.4, 

T =0.¢+1.y4+0.t. 

Therefore Jf =|te ty |=—ty, 

a) 0 
Vi ae 

see Ac | 2s 
i 0 ty” 

1 0 0 

Here A=0, and the form (41b) is not applicable, but the other forms give 

t,)pP. Vn _ ty te 
F (Ym, 500) = & year? ty @ tz” ty HEM (Cams ea) arotete aislayetelsravelovereinetalotere (43a) 

¥. 

and 

(-ayerm Ta tay, 
FY im; +) = (= ae Pee we ty ” F (dma; «-+) 

Ve 
=(- i) a HOU ty 5 Fig, <=) 

_V, ho 
Sei: ne tier Ge (deaies Vek (43b). 
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§21. The alternants of the operators » with,one another have been already examined 

in § 10; it remains to examine the alternants of the operators V combined with @’s. 
These alternants have, in the case of two independent variables, been given by Prof. 
Elliott (Proc. Lond. Math. Soc. Vol. x1x. p. 9); but the proof is much simplified by 
making full use of the symbolical form for the operators. Only typical cases sufficient 
to establish the general results will be considered. We have 

Y= [TT], Vey = i Dyx = [nT], Oyz >= [nT], 

where 7’= dy &+..., and after multiplication £?n7f" is replaced by xy ; 
par 

Therefore V,V.—V.V,=[TT;](7T,] —[TT7,](TT:] 

‘yyy yy fj 0 L4 i- yy 0 = ht, se an| = [PEt + Te (2,)| 

Very — Oxy Vi = [TT:] [er = [é7,,] [TT] 

= E on) iw lente sé) | 

SPRATT RE a ee coe 2k (44), 

Vioys — yz V,= (PT nF) — [nT] [PTA 

= | nge Ot) |- | ott + Tn] 

Vi@ye — @yzV1 = [TT] [nPe] — [nq] [LT] 

= |nz¢ n)| = [nsf + rs (ot)| 

Similarly ee Vp asa ane dee to Me (44e), 

and generally V, or [77;] is commutative with all w’s except those which have z for the 

first suffix, whilst all the V’s are commutative with one another. 

§ 22. The applications to the theory of pure cyclicants are easily made. A cyclicant 

is defined as a function of differential coetficients which is unaltered when the dependent 

and independent variables are interchanged in any way whatever, save for the introduction 

of a factor which involves first differential coefficients only. The cyclicant is pure if it 

involves no first differential coefticients. 

In the case of three independent variables, and the method will be perfectly 

general for any number, we shall show that if the function, supposed pure, is invariable 

Vou. XVII. Parr ITI. 35 
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save for the factor mentioned above, when ¢ is interchanged with x and y, z are 

unaltered, and also unaltered when ¢ is interchanged with y and z, # are unaltered, 

and also when ¢ is interchanged with z and a, y are unaltered, then the function is 

invariable when any interchange whatever is made, and moreover the function is 

invariable when the general linear transformation is applied. We shall find that the 

necessary and sufficient conditions for the mvariance of a homogeneous and isobaric 

function are that it be annihilated by the three operators V,, V., V; and the six 

operators @zy, @zz, Wyz, @yz:, @zz, @2y. These conditions, though necessary and _ sufficient, 

are not independent. For it is evident, as in § 10, that annihilation by three o’s 

such aS @yz, @zz, @z, Will ensure annihilation by the remaining o's, and it is proved 

in § 21, that annihilation by the @’s and JV, will ensure annihilation by V, and J. 

Now annihilation by the o’s implies that the function is invariable when the independent 

variables only are linearly transformed, so that a pure function will be a cyclicant 

if it is unaltered by linear transformation of the independent variables and unaltered 

also by the interchange of the dependent and one independent variable. 

In consequence of annihilation by the o’s any pure cyclicant will be an invariant 

of the system of quantics in & , §& 

Aso = aE dean? a5 opal? ate di EN aF din EG + dunf, 

Ag +... + dyn En + ... + dnEn§, 

SSS ee i) 

and conversely any invariant of these quantics which is annihilated by V, will be a 

pure cyclicant. 

When the number of independent variables is n, there will be n operators of the 

V type and n(n—1) operators of the w type. 

§ 23. To make the transformation by interchange of ¢ and x the scheme will be 

X=0.2+0.y+0.24+1.4, 

Y=0.2+1.7+0.2+0.¢, 

Z=0.e2+0.y4+1.2+0.¢, 

T=1.£+0.y¥+0.2+0.¢, 

: . f D 1 b il gitming 

Se ne CEE eee Se caper aa atoy™oz” © 

Here M=-—1, 

Tae Ue ee 

0 1 0 

0 0 1 

A=4, A=—0, AV=0) B=—f ce —0,7 a —t.,)0 =O) cr 
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Therefore O,=0, O,== m Oye, O=— 4 rip 
z x 

and V= | V;, Ve Ke Ons Ve 

| 0 0 0 1 

| 0 1 0 

| O 0 1 0 

Therefore if F (dinn, dymn,...) is a pure homogeneous function of degree i and 
isobaric of weights p,, po, p; in first, second and third suffixes, 

; Vi t t (- 1) Sat SS tes 

EF. (Dimns Dyin’; j= titPr te ty ae ty f= Bl (yaa drm'n’; vee)e 
x 

- : : 1 4 : 
The right-hand side can be arranged in powers of 8 7, z, and since these are 

x Zz xz 

independent quantities it is obvious by observing the coefficients of their lowest powers 

that, in order that 2 (dim,,...) may be invariable, save for a factor, it is necessary 

that the function be annihilated by V,, ow, and o,,. These conditions are obviously 

sufficient, and therefore if the conditions are satisfied we have 

aa\e 
FD sce Decem = Fe Fg 2 

Similarly the necessary and sufficient conditions that F may be invariable when t 

is interchanged with y, and wz, z are unaltered, are that F be annihilated by V2, ox, 

and ,,; and, when ¢ is interchanged with z and «, y are unaltered, the necessary 
and sufficient conditions for the permanence of F' are that it be annihilated by Vs, 

yz and @y,. 

If F is annihilated by all the operators V and o, equation (39) shows that F will 

be permanent in form, save for a factor, when any interchanges of variables are made or 
when both dependent and independent variables are changed by any linear transformation. 

Since the annihilation of a function isobaric in first, second and third suffixes by 

the w’s implies that the three weights are equal, equation (39) shows that if F be a 

pure cyclicant the effect of the general linear transformation upon it is to transform 

it into 

Mw 
Jee 

where 7 is the degree of F and p the weight in either set of suffixes. 

In order that a function may remain permanent in form when the variables are 

changed by the general linear transformation it is therefore necessary that it be 
homogeneous and isobaric in each set of suffixes throughout. 

35—2 
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§ 24. As another illustration we will give a proof of a theorem established by 

Prof. Elliott in a paper “On Pure Ternary Reciprocants, and Functions allied to them” 

(Proc. Lond. Math. Soc. Vol. x1x.). In this paper he considers two independent variables 

x, y with a dependent variable z. His operators V, and V, are the same as those 

considered in $19, 20 and 21, with z written instead of t: his Q, is w,, and his ©, 

1 QPt%@z 

p! q! dar dy?” 
(Pe, Pastas eect ean) a nO), 

is @z,; and he writes 2,, for He considers a “reciprocantive covariant” 

where wu, v are any quantities and Py, P,,...Pm are functions of 29,... where p+q¢ 2, 

such that P, is a homogeneous and isobaric function annihilated by V,, V2 and @,,, and 

@x,Po=MP;, OnyL. = (i —1) Passe. Onl — ms Oay Lan — Os 

In consequence of these conditions the function is a covariant of the emanants 

(dsp, dy, du Qu, v), (dso, din, Can, dys Ou, v)§, 

Therefore, if w,, w. are the partial weights of P,, m=w,—w, and the function is 

only altered by the factor (—1)" when w, v are interchanged. Hence if in P, each 

quantity 2,s 1s replaced by 2s, the result is equal to (—1)”P,,_,, and the quantities 

P therefore satisfy the conditions 

@yzPm=MP ma, SyzPma=(m—1) 1 epace Opin ey Oya) 

Prof. Elliott shows also that all the P’s are annihilated by V, and V,; this property 

following from the relations 

Oya Vi — Viedyz = 0, Oxy Vo — Vex, = 0, 

Ory Vy — Vi@zy = Vs, @yzV2— Voeye = Vi. 

See § 21. 

Now let the variables be cyclically transformed from z, x, y to «, y, z so that « is 

; 1 92t2e 
the new dependent variable. Let «,, denote Alli ByPOe4 ’ and let P,(x) denote the result 

of substituting 2,,,... for 2)4,-.. in Py. 

Similarly when the variables are transformed from z, 2, y to y, 2, x so that y is the 

: OP+4y 
new dependent variable, let y,, denote allel ae and let P,,(y) denote the result of 

substituting y,,,-.. for Zp... i Pp. Then Prof. Elliott’s theorem states that* 

P, (2) iG) 
(— 1)it Th mF =(- yarat = = (Ce 1%. IES, tee ie) (— 21; Zn 

where 7 is the degree of Py. 

* Prof. Elliott gives different powers of (—1) in his statement of the theorem, but there is a slight error 

in his work which accounts for the difference. 

A a ate 
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The theorem follows at once from the results of § 20. Using equation (42a), we 
have 

EF ad ato Vy he FF at is 

Py (a yy a 2, #30 ty "6%, ” P,(z). 

But @,, annihilates P,(z), and V, annihilates not only P,(z) but ‘every function of the 

form @x,’P,(z); therefore 

LE 
a ay” Pris) Le (2) = (- zg am 

= zy" 2x ll /e3\2.. = 

= Ee Zz ee E — 2, Oxy + aie) Oxy — a 12 (z) 

1 _  m(m—1 

= apyinm [Poo mPa t+ BONED Paste t— a + (Pate 
(-1 = Fra (Pas Pay Pas ve P)( 2p 60)" 

_C 1 jit. 

eae i+, (PoP iees 0m) (= Zas 2) 

Again, the first and second partial weights of P,, are w, and w, respectively; there- 

fore by equation (43 a) 
_Va iy Zyl —2 _2 

Pr(y)= es Guwenmene 7 Ps (4). 
Z yet 

But @,, annihilates P,,, and V, annihilates not only P,, but every function of the 

form @yz”P,; therefore 

x 

ae. fer 2y LU eee Sup *y\" m =Cz,)Fe E = 5 tie 31 € yx? — ..e + mal 2 ge | tlre 

ae [P. (— Zy)™ + MP, (— 2y)™ 1 22 + gee), P,(— 2)" 7277 +... + Paes 
~ (—2y)r ite 22 

1 

> (az yirte, (Po, Pas P, mee Pin) (— 2y, Zn). 
¥, 

The two results establish the theorem. 

§ 25. It has been seen that when the variables are linearly transformed from 

t, a, y, 2 to T, X, Y, Z a pure function of differential coefficients will be unaltered 

in form, save for a factor, provided it is annihilated by the operators Vis Vacs and 

eg Ond; <6.) Lb, willbe convenient temporarily to denote V,, V2, Vs by Vz, ee 

It is evident that this permanence of form would be ensured if the transformed 

function expressed in terms of differential coefficients of 7 with respect to X, Y, Z 
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were annihilated by operators Vy, Vy, Vz, wxy, wxz,... formed with the quantities 

Dyor, Apgr, --- In the same way as Vz, Vy, Vz, wzy, @zz,--. are formed with yor, Gor) ---- 

It must be possible therefore to express the effect of these operators Vy, Vy, Vz, 

@xy, ®xz,-.. on the transformed function by means of the original operators acting on 

the original function. It is now proposed to examine into the manner in which these 

operators Vy, wxy,... can be so expressed. 

The scheme of transformation is, as before, 

X=ar +ay +a"z +a't, 

Y =Br+ B’'y+p'2+B"'t, 

Zaye toy +y'2 + "4, 

T =6a + &y +82 + 8", 

and ¢, 7’ are regarded as the respective dependent variables. 

Suppose now that a, y, 2 receive increments & 7, € and let the consequent 

increments in ¢, X, Y, Z, T ber, &, 7’, ©, 7’, so that 

T=AywE +doon +dmf + dong? + Aoogn? +... , 

T= Dyook’ + Doon’ + DenS’ + Doyo&’? + Dyson’? + -- « 

Then VA = Vz = (T = DyooE >= don = dof) (Tz i, yoo). 

Bry = S (tT, = doo); 

Oye =] (Te a Ay), &e., 

where after expansion £72" is replaced by a : 
Py 

Therefore also 

' f , f 0 

Vy = (7 a Dayo = Dion = Donk ) & = Din) ; 

oxy =& & a Dan) > 

, (Or 
@®yx = (se - Pw) , &., 

when &?n 2%" is replaced after expansion by a : 
OD par 

Now let F(&, 7’, &) be the symbolical expression for an operator obtained by 

expanding F’(£’, 7’, €’) in powers of &, 7’, & and replacing &?n'9f’" by = it being 
par 

understood that # contains no term for which p+qg+r<2. Then Prof. Elliott has 
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, , . . seRO TU. ‘ P 
proved* that the expression for this operator in terms of aq... 8 obtained by expanding 

Oo par 

a certain expression in powers of & », € and replacing £?n%f" by - - This expres- 
Od nar 

sion is 

i ; Or OT Or’ ay F U ’ TTA A or Ae a Sw BAN ” zit HP, 1, 6) (A"-aF wears), 

where M=| a, a’, (4 ce 

B, [sit Bas Bee 

| | 

| Yr ta is, aan 

oe iene ae 
and A, A’, A”, A’” are the minors of 6, 8’, 8”, &” in MV. 

The application of this rule to the operators considered here is simplified by use 

of formula (47) which we now proceed to establish. The rule itself may also be deduced 

from this formula, but Prof. Elliott adopts a different mode of proof. 

We have, in consequence of the scheme of transformation, 

EB =aE+ an + a’O4+ a's, 

n =BE+ B+ B'S+ B's, 

CayEtyntyo +77, 

7 = 6& + 8 +06 + 87. 

The simplest way of finding Dio, Doo, Do. is to determine them as the coefficients 

of &', 7’, ¢’ when 7’ is expressed in terms of these quantities. 

Now, neglecting higher powers of & », € than the first, the last set of equations 

may be written 

EB’ = (at adiy) E+ (a +.a”dow) 9 + (a” + @don) § 

1 =(B +B dro) E+ (B +B" doo) 7 + (B" + B' den) & 

C= (9 + 9dr) E+ (oy +. dowo) 9 + (y" +9" don) & 

7 = (8 + 8d) E + (8 + 8’ dao) 9 + (8” + 8’ doar) & 

Therefore, eliminating &, , € we have 

la+ abs: a ap a” duos al” if al” doer 

B+PB''diw; i Rae B'+ Bo den, 7 

ms , m ” m” , — 0 see eeeeeeees (46). 

y+ 9"diw, y +9douo, y+ "den 4 

§ + 6 di, 8 + 8douo, 6" + 8"'dun, T 

* «The Transformation of Linear Partial Differential Operators by Extended Linear Continuous Groups.” 

Proc. Lond. Math. Soc., Vol. xx1x. 
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Write this equation in the form 

7 = Diy E’ + Doon’ + Donk’, 

and Dy, Doo, Do: are immediately determined. 

As previously, write 

J= | ata’ dy, a +a’ doo, a + a"don | _0(X, Y, Z) 

B+B"dm, B+8du, B"+B"dm | 2 ¥ 2)” 
y+ yy rw, yy 35 yd ’ y a5 door 

The increments £, 7, € 7 have only been temporarily assumed small for the purpose 

of finding Dy, Dao, Do. Let them now be regarded as finite; then the determinant 

on the left of equation (46) will be the value of 

J (7 — DywE’ — Doron’ — Dont’). 

Multiply the first three columns by —& —y, —@ and add to the last. We then 

find, by means of equations (45), 

J (7' — DywoE’ — Down’ — Df’) 

= (7 — Ayo — Anon —AonS) | & + roo, a’ + a dy, a” + a dun, a” | 

B ote B dro; Isy SF B' duo; [x ae Bidens Be 

yt" dw, +7 "da, oY +7", 
6 + 6'di, +0 du; 8 +8'"du, &” 

Multiply the last column by do, dno, @o and subtract from the first, second and 

third columns respectively. We then obtain the important equation 

, ; ; M 
T = DyoE — Daon — Doo = 7 (7 — dio& — dow — dons) soanuasadcacesd («!i/)). 

This theorem is the generalization of a statement by Prof. Elliott (Proc. Lond. 

Math. Soc., Vol. xv, p. 147) made with reference to two independent variables when 

the linear transformation consists of a cyclical interchange. 

§ 26. Now 
/ f ’ va 0 4 

Vy=(7 F Dioo& — Doon — Donk ) & 7 Dw) . 

Therefore the transformed expression for Vy is obtained from 

1 , / , / Or’ uw Or , OT uw Or 
vad — Dyk —Daon — Do f’) (ae — Dae) (a —A Aare A on A = 

by expressing it in terms of & », € The first factor is transformed by equation (47) 

which gives 
/ f , lA M 

LD — DywE — Dawn’ — Din =F (r- Ayo — Ano — don). 

Again, from this last equation 

pom T (Palit aga) 
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where 5 a e are to be obtained from equations (45). These equations give 

‘a m OT\ 0& nm OT\ On Te Te OTN GG 1=(a+a se )ae + + (a! +a a) ae t (« +4 at) ae” 

/ we Or)\ 0& 7 yy 1 OT ag 0=(8+,'"" ( fe =) ae +( ; 8 B ae) ae’ + +( 8’ +8" in) OE \8 + p" 5t) é ae 

= ye gm 2) BE (pg on BVO (rg aw Or) Of 
0=(y+y a) oe tv +9” mee +(y +9" 56) ag 

Now let 

i — a + on OT a’ +. m OT al’ ae i ot 

a | oF’ en’ 0g 

Me OT nor ss ite! +e" =, + p's at Se ee a 
m” Or , m” Or mw Or 

ere: ae? bia Soret of +y¥ at 

iy On, Are OT, 
Hee T an SOE? 

and let @, A’, A” denote the minors of the first row of J; therefore 

pete es Ob ees 
ee! ae re Ani ae’ eine 

Hence 

Or’ M rn iy 
I (je—Dw) = 7 fi \a (eo dw) +B (=- day) +2 (3 og - den) 

M r) a 
mk =F th Dig ae don 

| vet OT wi ae r 0 +8", A+R", BRS 
wt Or (jie mt za: se uw Or | 

M | or Or Che 
aay ae ti: Bn a0 ae do | 

B+B' dm, B +B" du, B’ +B’ dun 

yt dw, +9" du, ¥ +7'"dun | 

M 
” =7 {4 (F-dw) +4’ (3 (je— dns) +4 (F-an)| pers (48) 

where A, A’, A”,... 

Wits SAVANE 

are the minors of J. 

Parr III. 36 
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The Page, expression for G is therefore 

, (OT n(@ 
a a dro & — doom — eon g) \4 @ = din) +A (i — da) +A Ga a dn.) 

= wid V,+AV,+ A’ V,), 

or, in the previous notation, 

2 (A Vik Ve ACV ee, Arcee te anes (49). 

Similarly the transformations of Vy and Vz are 

= (BV, + B'V,+ B’V;), = (CV. HO, Clie ee (49a). 

; , (Or 
Again Oxy=& & = Daw) > 

and the transformation of xy is therefore 

me &- Dayo) (A Aa — a" 5) 

= aC +a'nta’f+a’r) \B (F — dh) +B (= = day) + +B” (= ag tha) 

as in equation (48), 

1 wn , aw a mr wt 

= {(a +a!” do) E+ (a +a doo) 9 + (a + don) § a" (7 = dio E — dnon — don £)} 

(n(n) +7 da) 3 Gaal 
Now let G,, G, G; be operators defined by the equations 

Or a 
G=€ (ae = de) = pd por Od par’ 

0 ) 

é 0 
G,= iS (Fe — dae) = Srey ae 

5 p 

where in each case p+q+r>1. 

Then the transformation of w yy is 

1 mn ’ mr / a” wm A 7 {(a + a” diy) BG, + (a! + a” do) B’G, + (a" + a” dy) B’ Gs} 

1 wae A , mn" Wa ” mt ty (a+ dyo)(B ory +B’ wxz) + (a + 2”do) (Bey + B’@yz) + (a" +0” don) (Boz +Box)} 

al” * 

+5 (BV, + BV s+ BYVs) coeeeessssssee sonsssseeseessnessnecsssesseceansnnncscensanneasse (50). 
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If the function F' operated on is isobaric, and of weights w,, ™,, w, in first, second 

and third suffixes, we have 

GF=wu,F, G.F=wF, GF =w,F. 

If further w, = w,=w,, since 

B (a+ a” dy) + Bi (a! + a” do) + BY (a" + a” don) = 0, 

we find for the transformation of wyy, a linear function of the operators V and wo, viz. 

5 {(a-+.0'"dyy,) (B’ wny + B’ tye) + (a! +.0”doyo) (Beye + BY toyz) +(a” + dy) (Boze + B’w,,)) 

“ur * 

+ - EN FY BPO arose gh tv at net ies a IS SD srs ca le (51). 

The transformations of the remaining operators yy, wyz,... can be written down at 

once from this last expression. 

> § 27. For example, suppose a cyclical interchange is made from z, a, y with 2 

for dependent variable to «, y, z with a for dependent variable. Using the symbolical 

notation, let 

Vi = (= 20& — 200) (S¢ — 210) 5 Vo = (€— 20& — 2019) (5 — 201) 5 

Way = E (F, — 2) 5 Oyxz = 1 (& — 2); 

Vy =(& — Xn — nb) (E, — U0) ; Vi! = (€ — aon — nb) (Eg — 2m) ; 

@yz =) (& — fin); Oz, = €(E, — 2p). 

The scheme of transformation is 

X=0.2+1.y7+0.z2, 

Y=0.2+0.y+1.z, 

4=1.¢2+0.y¥+0.z, 

so that M=1, and 

df= || (0 1 | =—2. 

The transformations of the operators are therefore respectively, if for simplicity we 

suppose them to act on pure isobaric functions with equal partial weights, 

ie, 2 s I Ber Wy — ea a) se nel e oe See anaes aenrecs coed Saigeape sie wa ran vad=~ <~aNMawenaps (52a), 
210 

es aa 
Vig = Aa Vi Binlelele(eleie'e:wia-v.0.u,siniu(dinie’em/ela'a'aieie elueisWin'a'neieinia wala bala\viow « ntle'a'a a\plein 6/c\a'n' erute ela s’a setgine ae (52b), 

, 1 9 
Myz ee Wyz TOT errT ere ee ree eee eee eee eee eee eee ee rr (52c), 

, 1 1 ) 
On, = — Zu (20 Vi- ZV) = Zao {210 (— 20) Wyy + 2)» Zo, » Myx} 

2 uot ; 52d =— a (2 Vi — ZV 2) + e EROS e ir) ) Bacdnes Jodngnace cece epireeeeaGal scr ene (52d). 

36—2 
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§ 28. As an application of the last results we may employ them to prove two 

formulae which are fundamental in Prof. Elliott’s paper “On the Linear Partial 

Differential Equations satisfied by Ternary Reciprocants,” Proc. Lond. Math. Soc., Vol. Xvi. 

Let F(Zpq,-.-) be a pure function of the differential coefficients, and let w be any 

number. It is required to evaluate 

é F fa) ins 

alee ee Eb 

where in the differentiation with respect to aw, it is assumed that a, a», @,,... are 

regarded as constant, and, in the differentiation with respect to a), @ , ©», @y, ++. are 

constant. We shall, for simplicity, assume F to be homogeneous of degree 7 and isobaric 

with equal partial weights w. 

Now the change from a, yz to z, wy is the second cyclical interchange from a, yz; 

therefore by making suitable interchanges of letters in equation (43b) we have 

Vy Zio 

1 
” 1 be ——w'y 

F (2p9; = (— 1)7 tre ° TE Xo LT Gina S06 

where V,’ and @,,’ are the same operators as in the preceding section. It may be 

remarked that V,’ and @,,/ are commutative by §21. Therefore since fo=— 
ol 

0 F pot w 1 1 Do , - Shee a. ==). 
a = = | ab va ie Wy: (= 1)§ vat i—we me TM F (Gin; =) 

La Toy 01 

by (52b) and (52c). 

Similarly 

0 /(F 1 1 ; a ea 
aig (Aut) 7 age (Tag) OH OD garam HH Oa F Gea) 

1 
= — Fp Oval pas mee) 

by (52c). 

These are Prof. Elliott’s formulae. 

§ 29. The theory of cyclicants is a generalization of the theory of ordinary 

reciprocants; in the case when there are two independent variables it plays a part 

which has the same reference to the theory of surfaces that the ordinary reciprocant 

has to the theory of plane curves. But the ordinary reciprocant may be looked at 

from another point of view. Regarding y as a function of «, let us suppose & 7 to 
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: : a 1 dy — 1 ae be corresponding increments of « and y; then writing a, for — —” and A, for — ; 
n! da ni dy" 

we have 
N= GE + a€?+..., 

E=A,.n+ Asay’ +.... 

The second series is that obtained by reversion of the first, and a reciprocant may 
be looked upon as a function of the coefficients of a series which is unaltered in value, 
save for a factor involving a,, when the series is reversed. From this point of view 
the generalized reciprocant may be defined in the following manner. Using the notation 

tt "i . OPt+ItTy 

of § 16 let u, v, w be functions of a, y, z, and let Gpgr Aenote ——— —_____ 
Pp: 4:7! dxPoytoz 

1 opta+ry 

pi qi r! durevidw" 
and let A, , denote Then F'(Gpor, Bpgr, Cpgr, ---) Will be a reciprocant if 

F (Agger, Bygr, Cpgr, +++) = PF (Gpqr, Bpars Cpars -++)s 

where w is a function of first differential coefficients only. The function will be called 
an n-ary reciprocant if there are mn independent variables involved, and F will be a 
pure function if it is free from first differential coefficients. This kind of reciprocant 
may also be regarded as a function of the coefficients of series which is unaltered, save 
for a factor, when the series are reversed and the coefficients of the reversed series are 
substituted for those of the original series. 

Sufficient conditions to ensure the permanence of such functions, when pure, are easily 
obtained from the results of § 16. 

Reciprocants of the kind here considered have been discussed by Prof. Elliott* for 
the case of two independent variables. The conditions here obtained for n variables 
agree with those obtained by Prof. Elliott, who however does not examine into the 
question of the independence of his conditions. 

Suppose F (dimn, Bima, Cimn,---) to be a homogeneous function of degree i and 

isobaric with equal partial weights w. Then 

ci); 
F (Aina; Berns Ch ce . -) = Jive e7[U, Vs W) eM eM es 

F (Adimn aF Blinn 5F Commas A’dimn sf BOimn 3° CCimn ’ A Cian 3 B’bimnn 30 ClCmaa . .) at (53). 

The function will therefore be permanent in form if it is an invariant of the system 
of emanants 

Aso E? + Aya? + oon F* + Gro En + ..-, (Sey a eee ts) 

Doo E? +... Osteo se was "a. \P. sae eee (54), 

Cana E* + -: | 

* «On the Reversion of Partial Differential Expressions with two Independent and two Dependent Variables.” 
Proc. Lond. Math. Soc., Vol. xx1r. pp. 79—104. 
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which remains an invariant when Au+pv+vw, Nutpety'w, Mut+p'vt+v’w are sub- 

stituted for u, v, w, and which is further annihilated by the various operators [U, <], 

[V, 2], [W, 2], (U, y],.... The operators as defined in § 14 contain terms with 

differential operators involving ¢; such terms will of course be omitted here. 

It is obvious that functions which satisfy the conditions just laid down will be 

unchanged or at most changed only in sign when wu, v, w are interchanged; and that 

they will be unchanged or changed only in sign if first, second and third suffixes are 

interchanged. Such functions therefore, if homogeneous, will be of equal partial degrees 

IN) pers 'o=*> Opors ==> Gpgrs =-- ° 

When linear functions Av+pu+vw,... are substituted for uw, v, w im a combinant 

the function is multiplied by the 7th power of 

A, Bb Vi; 
uy ’ ‘¢ 

| Ne) a ee. 

Ie ise yp’ | 

where 7 is equal to any one of the equal partial degrees of the combinant. 

In the case of the reciprocants here considered the determinant is 

| ae Be Cae 

Wee Peers Bere? 
| A”, Ba (64 

which is equal to J*; and the determinant is equal to J” when there are n inde- 

pendent variables. 

Reference to equation (32) then shows that the factor for a reciprocant of equal 

partial degrees 7 and equal partial weights w is 

(- 1 ye Ja) i K (- 1 ynt 

Jnirw tru 

so that 
(- 10} 

7 (pers Opgrs Cpgrs +++): F (Aper; Bears Ohren no0)) = 

§ 30. One example of such reciprocants is easily seen to be the eliminant of the 

quadratic emanants just written down. For this is an invariant of the required type, 

and since it involves no differential coefficients a,,. for which p+q+r> 2, it is obviously 

annihilated by [U, ], [V, a],.... 

This example for the case of two independent variables is given by Prof. Elliott. 

The eliminant in this case is 

(Gao, — boa.) (@irDo2 — Oe) — (GaDo2 — boy on)*- 
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The partial degree i=2, and the partial weight w=4; therefore by the last result of 
§ 29 this expression is equal to 

J* {(AwBy — By An) (AnBu — Buda) —(AnBu— ByA o)*}; 

where J =ab'—ab. 

The invariant character of the function just considered corresponds to a simple 

theorem in the theory of the reversion of series. Let 

UV = MoE + Ayn + Ay E? + AnEn + dyn? +... , 

V = DdyoE + dan + byE* + buEn + bun? +... , 

and suppose that from these equations are deduced the series 

E= A,ut Ayv + Anu? + Ayuy + Ayy?+..., 

n= By + By + Bov? + Byvy + Boy? +.... 

The theorem then states that, if the quadratic terms in the original series have a 

common factor linear in &, », the quadratic terms of the series obtained by reversion 

will have a quadratic factor linear in v, ». 

The theorem is easily proved independently. The property referred to is one un- 

altered by a linear transformation, and therefore we may take & for the common factor. 

The method of successive approximation then shows at once that the quadratic 

terms in the last two series must have a common factor. 

$31. The conditions for pure reciprocants laid down in § 27 although sufficient 

are not independent. This statement can be proved by forming the alternants of various 

operators. If we assume F to be an invariant of the system of emanants (54) which 

remains unaltered save for a factor when Au+pv+vw, Nut+pouty'w, Nutpv+ vw 

are substituted for uw, v, w, then it can be shown that annihilation by one of the 
operators [U,«#] will ensure annihilation by all the others. In fact since F is invariant 
when Au+uv+vw is substituted for u, therefore # must be annihilated by the operators 

which in the usual symbolical notation will be denoted by [V,] and [W,], so that 

a 
or dla 

[Vi] = [Dak + ...] = 6 =P ecc'5 

[W,] = [Caaf + ---] = Caw 5 Pal 
200 

Similarly F must be annihilated by [U,], [W.], [U3], [Vs]. 

Now, in the present case, we have 

[U, #] =[U,U¢,] + (U.V:,] + (Us We); 

therefore 

(U, «)[Vi]—[VA](U, 2] =[02V%,] * [Vi] — [Vi] * [U, Ue,] — [Vi] * [02%] — [Vi] * [U,We,). 
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7 

And [Varese a, [Gi Uy = 72 1) v=o. 

Therefore 

[U, #)[¥)- (VALU, #]=(0,Ve)-[0e,%a + U,Ve.1-[%%e]—-1V2 Me] 
=—[V,U;,]—[V.V:,]—[VsW,] 

= = [Vy Gl) esacesctes bisa ctissinetow ios soot sets dasoeese eoee doseee (55a). 

Similarly 
LU el Wolter | Weta oa eon es (555); 

and other equations can be written down with y, z in place of #, and with U, V, W 

interchanged. 

Again Oy = [EU y+ [EV 9,1 + [Es Wag] ; 

therefore 

Oz, [U, 2] -[U, ©] Ory = (&,U;,] * [UU] + [& Uy, * [UV] + [60,1 * [Us We] 

+ [&Vn,]* (V2V2,] + [&W,,] * [Us We] 

—[U,U¢,] * [&U,,] — [U2Ve,] * [&V5,] -—[Us We,] * [EW ,] 

= | 0,,Us, + Usp GUy)| +1EUe, Ved (660, Wel + | Uaze EM) | 

+[0.26"_)|-[62 Cr)|-[b9 Gr» |-[ae cmp 
=([U,U,,]+[U2V,,]+ [Us W,,] 

8 1/0 I ea aN MR ne Sn hee (550). 

Similarly 
OF Oe 23 — NO a] Ore [kU alle oce ace sistent eee eee reece (55d); 

and other equations can also be obtained with V, W in place of U, or with a, y, z 

interchanged. 

Equations (55a), (55b) show that any fuaction annihilated by [U, 2], [Vi] and [W,] 

will also be annihilated by [V, z] and [W, x]; and then equations (55c) and (55d), 

with similar equations in which V, W are written for U, show that the function will 

also be annihilated by [U, y], [V, y], [W, y]. [U, 2]. [V, 2], [W. 2]. 

Hence defining a combinant of the emanants (54) as an invariant which remains 

invariant when wu, v, w are replaced by linear functions of wu, v, w, we see that any 

combinant of the emanants which is annihilated by any one of the operators [U, 2], 

[U, y],... will be annihilated by all the others and will therefore be a reciprocant in 

the sense defined in § 29. 



IX. On Divergent Hypergeometric Series. By Prof. W. M°F. Orr, M.A., 

Royal College of Science, Dublin. 

Addition*. [Received 3 April 1899.] 

13. WE have obtained the complete solution of equation (3) in divergent series 

only in the case in which m=n+1. It has been shown by Stokes (Camb. Phil. Soc. 

Proc. Vol. vi.) that in any case in which m<n+1, as & increases indefinitely, remain- 

ing real and positive, the ratio of 

TI (a, — 1) 0 (@—1)... W(a.—1) 

TI (p, — 1) 1 (p, — 1)... 1 (en— 1) 
m—-nh 

to (Evie pat (27771) ay ag a eat a ane cae se ateee ae one (60), 

TU (CAREY Roce Yigtend (OTe) 

where y™-™=, has unity for its limit. The form of this expression, which admits 

for a complex « of n+1—m independent values, suggests that n+1—m (the missing 

number) further independent solutions may be obtained each as the. product of one of 

the values of (60) by a divergent series proceeding in descending powers of y. The 

form of this series, even when no attention is paid to its arithmetical significance, is 

somewhat complicated even for the case in which m=n and its complexity increases 

with every increase in the value of n+1—m. We will therefore content ourselves 

with establishing the forms towards which as «# increases indefinitely the equations con- 

necting the convergent and divergent functions tend. It may be convenient to use 

Lord Kelvin’s symbol for approximate equality, viz. =, to denote that under certain 

circumstances, obvious from the context, the ratio of the two expressions it connects 

may be made as nearly as desired equal to unity, 

It may be readily proved by induction that when « is great 

Il (—a,) U(—a)... (- On) F(a, Gy, ++» An; Pi» Pay +++ Pns a) 

II (p, — 2) Il (p,— po — 1)... (pi — pn — 1) ras ti i ke 

His et (9, a a oe) OSES Se aaa 

a 

2—pi; P2— Pit 1] Pass Piet 1; —2) 

+(n—1) other terms analogous to the last 

* See Trans. Camb. Phil. Soc., Vol. xvu. Part ut. p. 171. 

Vou. XVII. Parr III. 37 
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the argument of every power 2” lying between —mm and +m. (As limiting forms 

of this equation are required, it may be well to examine its genesis more fully.) In 

establishing this result we may follow the procedure of Art. 8; we consider 

aap le — 2 Pat aaa ch (—9)) (AU aeeanancececcen cen eeces cheese (62), 

where ¢(—v) is a solution of the equation satisfied by F(a, ... an; pi, --- pn} —v) and 

the path of integration is the same as in Fig. 3. 

Equations (38) are now to be replaced by 

siz) _ U(—p,) TE pn) 
pace =e Il (—a@)... Ul (— an) 

G (e277 (a—P) — e2ri (a—pr)) = I (pr — 2) II (pr = pi = I) oocd Ml (Q= Pn— 1) 

(= SU) Sa) 
hence if we assume equation (61) to hold for the function of the (n+ 1)th order, the 

integral remains finite for each of the four paths considered without any restriction on 

the values of the a’s and p’s. The expression which replaces (39) may be written in 

the form 

| eT CT) tL) ee (64), 
ee) 

(ar —pr) 

where as v increases indefinitely w (v) =e” ene mand initially the argument of y(v) is 

zero. It may be shown as in Art. 5 that when «@ is increased indefinitely this tends 
to equality with 

(e7§—9) — 1) TT (p—a—1) ee art Ome eeeeeeeeneees (65). 

The expression which now replaces (41) may be shown to be equal to 

II (p — 2) U(p—p, — 1)... I (p — pn —1) 
Il (p—a, —1) 11 (p—a,—1)... I (p—a,—1) 

Bp .. On ip thee =o, py pit ly es. Pr pick loi) a eancces (66). 

—(e@7ie-2) — 1) ae F(a—p+ il, 

The value of the whole integral (62) is now, instead of (46), 

II (— p) 1 (— p,) ... 1 (— pn) 5 - 

ia) Gay <a Saneene oa, ing ae 
ae II (p, — 2) IN (p, — p; — 1) ... IN (eo; = pn — 1) 

rai IL (p, -—a—1) I (p,— am — 1)... I (p,— a, — 1) 

(erte-9 <1) TM (p a1) | 

= vr F(a—p,+1,... 

On — pr+1; 2—p,,p—prt+1, 1: p= pr#1i—2)| RPonsticn! (67). 

Equating (67) to the sum of (65) and (66) and dividing by (e'®-? —1)II(p—a—1) 

an equation is obtained of the same type as (61) but with an additional a and an 

additional p. This equation, omitted through considerations of space, we will number (68). 

Equation (61) holds even if the limits for the argument of x be extended to — 37/2 
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and +3¢r/2, for the difference between the two values of the left-hand member which 
are thus stated to be approximately equal to the same multiple of the right-hand member 
may be shown to be a linear function of the n solutions which when « is great are 
respectively of the orders 2%, ... a, and therefore when the real part of « is negative 
is very small compared with the right-hand member. 

We now desire to find the limiting form of (68) when we write 2=-—h, a=y/h 
then make h increase indefinitely and finally suppose the modulus of y to be large. 
Multiplying the equation by Il (h) the limiting form of the left-hand member, whatever 
be the modulus of y, is 

II (— p) I (— p,)... 1 (— Pn) P : PewmmCam CK ay (ean ses On3 Py Pires» Pn; +Y) 

TI (p — 2) I (p—p,—1)... I (p—pa-1) 3 
spare Seen ee ee ee 

Ppi—ptl,...pn—pt+1; +y) 

+n other terms analogous to the last ............c:sescceseecesscnces-sovascoee (69); 

while the right-hand member, 7.e. a certain multiple of (64), for any value of y becomes 

II (h) zi ss —P (y — y/fyetha yh 
I GFh=T In 2 (v— y/hyprh 1 oa (uv), 

or as / increases indefinitely 
> 00 

yi? | OPT CaUll ale (Q) ints cats vates nessa teMemee vac nee naanese (70), 
Lee 

where (v) when v is small is of the order of a power of v, and when »v is great is 

approximately equal to evi", provided the argument of v lies between — 3/2 and 
+37/2, and ¢ is an indefinitely small positive quantity. It should be noted that the 
limitations placed on the argument of « in the integrals which have been expressed 
by divergent series were only imposed in order to make those series arithmetically 
intelligible in the sense of equation (28), but that while the integral forms are retained 
no such limitations are necessary. We may accordingly suppose that in (70) the limits 
of the argument of y are still further extended to —27 and +27; for in evaluating 

Fig. 6. 

the integral when the argument of y lies between —37/2 and —27 we may change 

the lower limit to a point whose argument is — 37/2 without altering its value, and 

so have all along the path of integration y(v)=e-"v*@-»), As regards the path of 

37—2 
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v a consideration of (37) of which it is a limiting form, and of Fig. 3, shows that if 

the argument of y lies between 0 and 27 the path must be such as ABC, or A’BC’, 

(Fig. 6), while if the argument lies between 0 and —2z7 the path must be such as 

the image of this with respect to the axis of real quantities. 

We can take y so great that wW(v) is as nearly equal as we please to evi“ °? 

for values of v for which e~”’” is as small as we please, and accordingly so that the value 

of (70) is as nearly as we please equal to that obtained by replacing y(v) by this 

approximation. We would then have to consider an integral of the type 

[erred nce a my 
ey 

This is a particular case of another with which we will have to deal, viz.:— 

hea) 

| GME OG IAL weet £1 NG Lis Ee eee (72), 
ey 

s being a positive integer, and e an indefinitely small positive quantity, the argument 

of v at the infinite lmit being zero, and the argument of y lying between —(s+1):/s 

and +(s+1)7/s, the path of integration thus bemg permitted to make round the 

origin a number of revolutions determined by the initial argument. See Fig. 7, in 

Fig. 7. 

which ABCDEFG represents a case in which the argument of y is positive, as we will 
at first suppose. 

The value of e*’-""™ is stationary for values of v given by the equation 

G8 UPR 0 cine waters sansfenie'dieceiseeree ore onenenoeetes (73); 

let v, be that root whose argument is s/(s+1) times the argument of y, and thus lies 

between 0 and +7. It may be noted that if the point corresponding to any other 

solution of (73) lies in the region traversed by the path of integration in (72), the 

real part of v at any such point is very much greater algebraically than the real part 

of v,, and therefore the modulus of e*’-*"™“ very much less than that of e~-wn, 

We will now suppose the path of integration to pass through »v,, and consider separately 

the two portions of the path from v, to » and from ey to v,. Considering the former, 

let part of it be a straight line starting from », in a direction whose argument is 
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half that of »,, a direction which makes an acute angle with the positive part of the 

axis of real quantities and an obtuse angle with the line joining », to the origin. 

Expanding v~* in powers of v—v, we have for points on this line 

sv + yeu * =(s +1) 0, +8(8+1)(v —,)/20, + R, 

where mod. R<s(s+1)(s+2)(v—,)*/6v" (see Art. 2). We can thus take y so great that 

along this line F# is less than any assigned quantity for a range such that throughout it 

the ratio of v to v is as nearly as we please equal to unity, and at the end of it the 

term s(s+1)(v—»,)?/2v, is greater than any assigned quantity. If v, denote the value of v 

at the end of the range this may be done by increasing », and making v,—¥, vary as v7" 

(say). Along such a range then v?e-s’-¥"* is as nearly as we please equal to 

VP e— 8414 e—8ls+1) (o—0,)7/20, 

while at the end of it the final factor of the last expression is less than any assigned 

quantity, since (v—»,)*/2v, is real and positive. 

The portion contributed to the integral (72) by this range is thus as nearly as we 

please equal to 
aI 

v,P eof Cal aN cain genie ie hardener ee (74), 
0 

[ TY P p—(8+1)0, (75) 
or SS) OEE Li giajaiu'n paw O(ninl @ alse ae Sas nen ale slcinian Jeene 2 

\2s(s+1)/ * ; 

wherein the argument of v,?*!? is p+1/2 times the argument of 2. 

We next proceed to show that the portion contributed to the integral by the path 

from v to % can at the same time be made less than any assigned quantity. Consider 

the expression 
su + yu? — {sve + yds * + & (V — V2) (1 —C)}..--eceeeeecececeecreceeee (76), 

where c¢ is real, positive, and less than unity. This expression vanishes when v=v,, and 

its real part is infinitely great and positive when, and only when, v is infinite and has its 
real part positive. It is therefore evident that a curve can be drawn from wv, to x, in the 

negative direction round the origin, such that along it the real part of (76) increases con- 

tinually. Everywhere along such a curve we would have 

mod. e~s-¥t< mod. E82 y8r,-8 p—8 (0—ts) (1—C) | 

The part contributed to the integral by this curve would be increased if each term were 

replaced by its modulus, but if the argument of v, is 7—a this would replace 
“2 

| E78 (l—%2) (Ie) yPdy 

J 

by something certainly less than 
oi see sao 

2) 

which is finite while the factor e~*-¥™"* is less than any assigned quantity, therefore this 

part is less than any assigned quantity. 

IL (p) \sa —c)sin 
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We next consider the portion of the integral contributed by the path from ey to 2. 

By means of the substitutions 
s+1 1 

fie = US y/S2 BW 

this portion can be made to depend on an integral similar to that just discussed, except 

that s and 1/s are interchanged, and can be shown to be also equal to (75) when y is 

very great. : 

Thus (72) tends to equality with twice (75); and a similar result is true when the 

argument of y is negative. 

We now write in (75) 

s=1, p=p—2+2(a,—p,), 
1 

and accordingly when y is increased indefinitely (70) tends to equality with 

ah yt Sa- 30+) eau) 

=p now including p. 

This result refers to the function of the (n+2)th order. If we now reduce the order 

by unity, omitting a, and p, and change y into 2, we have the equation 

Tee) as a) 

II (p, — 2) I (p: — po— 1)... I (p, = pn — 1) 

II (pi—a% — 1)... I (p: —a, 4-1) 
oe F(a —p,+1,...%ma-patl; 

2—p., Pa Pict, e+ Pn — Pit 1;+2) 

+(n—1) other terms analogous to the last 

Sq it Gatet®) gras coc). Jando (77). 

As this relation holds while the argument of @ ranges from —27 to +27, it is 

equivalent to two independent relations among the functions considered. 

It also holds even when the limits of the argument are extended to — 37 and + 37, 

for the difference between the two values of the left-hand member which are thus stated 

to be approximately equal to the same multiple of the right-hand member may be shown 

to be small compared with either. 

We next write in equation (68) a=—h, m=—k, w=y/hk. Let h and k increase 

indefinitely, and finally suppose the modulus of y large. On multiplying the equation by 

Il(h) I (hk) the limiting form of the left-hand member, whatever be the modulus of y, is 

similar to (69) except that there is no a, while the right-hand member considered as a 

limiting form of (70) becomes for any value of y 

UTD | BOO ee Or [hy erk— A (0) AY o.oo noceeeeene (78), 
y/ 
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where y(v) when » is small is of the order of a power of v, and when v is great is 

approximately equal to 

ar yt (Sa-3pr+4) e- 20h 

provided the argument of v lies between — 3a and +37. When h is increased in- 

definitely (78) becomes 
“PD 

ye | G4 MIRO UN Mais aeha usin xd aits wdévcano uo dhosvas (79), 
oY 

wherein, as may be seen by considering the integral of which this is a limiting form, 

the argument of every power of v at the upper limit is zero; the argument of y will 

be supposed to lie between — 3a and +37 in order that the approximate form for 

x (v) may be applicable. 

By the substitutions v=v?, y=y?, e=e?, (79) is reduced to the same type as (72), 

s having the value 2, and its evaluation thus leads to the result 

I cE) tear it ac re Reise ee ee (80), 

Yp now including p. 

The resulting equation is thus obvious; it is established for values of y (or 2) 

whose arguments lie between —37 and +37, and thus gives three independent  rela- 

tions. As in the preceding case the limits of argument may be extended to — 4a and 

+47. This result is used in establishing the next case, and so on. 

Thus we obtain the general result expressed by the following equation 

TI (— a) I (— a)... I (— @n) 

emer ee II (p; — pn — 1) 

II (p;— a, —1)... I (p:— am — 1) 

F’(@, Qe, +. Gm; Pi, Par -+ es. (ets ) 

a F(a —pit1,...am—pitl; 

2 — Pir ++» Pn— Pi +1 F (—)"-™41 7) 

+(n—1) other terms analogous to the last 
n-m n-—m 

+Sa- Zp 
=(n+1—m)+(27) 2? » 2 Cea Cee eH se ccinniestanen estes (81), 

where »,"-"=e and the argument of v, may have any value between —7 and +7. 

This equation is thus equivalent to »+1—m independent equations. 

I have verified that if, by means of the linear equations thus obtained, one of 

the convergent series be expressed in terms of the divergent functions, the result 

obtained for a real positive 2 agrees with that of Stokes (Joc. cit.). 

A complicated series may be obtained for the integral (72), by integrating by parts, 

writing y=v'4, sv+eo*—(s+1),=w, and expanding v?*? in powers of u by 

Lagrange’s theorem. 
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If we denote 2*°(1+22+32°+...sz°*)” by $(z) the result thus obtained is 

eee, te ad? : 1 } 4 p—(stl) 2%, Sols f 3 —— art y,Ptt eH) iy . + E (2? {pb (z)} )| 

dé 1 y ie rs E (2? db | ae 2 a bn aes (82), 

Thus. if there are no as and s p’s the right-hand member of (81), m order that 

the equation should be exact, should be increased in the ratio of the above series to 

its first term, p being (s—1)/2— Xp. If s=1 we may thus derive the semi-convergent 

series connected with the Bessel Functions. For other values the series is complicated. 

If there are any a’s the result is still more complicated. 

In the case in which m=n, the result in case there is only one @ and one p is 

given in equation (27). 

If another’a and p are now introduced it may be shown that to make equation 

(61) exact the right-hand member should be multiplied by the infinite series of 

divergent series :— 

$(pi— %— G +1, px—a%; —1/x)— eS ia —@—%+2, p.—a; —1/2) 

yg 2 Sie) Ciel) 

au 2a 
b(pi—% —%) +3, ps—O; —1/x)+... 

Another a and p make this series triply infinite, and so on. 

If there is one a and two ps the limiting form of the above shows that the 

right-hand member of (77) should in that case be multiplied by 

eR $(p.-p-a+ 3/2, a+ pa— pr — 1/2; z) 

1— Nae | 5 ~FaMEH9 4 (5, 9, a4 5/2, a+ pm 3/2; 5) 
, G=%)2—4) (r= 4) (p:-a +1) —— b(m— p.—24+7/2, atp—pi—5/2i 5), 

where v=. Each series here is a semi-convergent series connected with the Bessel 

functions. Another a and p make this series triply infinite, and so on. 

It is to be noted that in the case in which m=n-+1 no numerical connexion 

has been here established between the series which proceed in ascending and _ those 

which proceed in descending powers of a. 
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