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ADVERTISEMENT. 

Tue Society as a body is not to be considered responsible for any 

facts and opinions advanced in the several Papers, which must rest 

entirely on the credit of their respective Authors. 

Tue Sociery takes this opportunity of expressing its grateful 

acknowledgments to the Synpics of the University Press for their 

liberality in taking upon themselves the expense of printing this 

Volume of the Transactions. Sm 



N June 1899 the University of Cambridge celebrated the completion of 

the fiftieth year of the tenure of the Lucasian Professorship by Sir George 

Gabriel Stokes. The Memoirs in this volume were presented to the Cambridge 

Philosophical Society in response to a desire on the part of the Society to 

commemorate the long and intimate connection of Sir George Gabriel Stokes 

with its imterests and welfare. 

April. 1900. 
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» 932. In regard to § 7—11, reference onght to have been made to the results of 

Lie, Wath. Ann. xiv. pp. 373—378, or to Darboux § 325, from which the special type of surfaces 

considered might also be derived. 
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ORDER OF PROCEEDINGS 

AT THE 

FORMAL CELEBRATION BY THE UNIVERSITY OF CAMBRIDGE 

OF 

THE JUBILEE OF 

Str GEORGE GABRIEL STOKES, Barr., M.A., Hon. LL.D., Hon. Sc.D 

Thursday, 1 June, 1899. 

In the evening the Vice-Chancellor was present at a Conversazione in the 

Fitzwilliam Museum. About one thousand guests accepted the invitation of 
the University. 

Lord Kelvin, on behalf of the subscribers to the marble busts of Sir G. G. 

Stokes by Hamo Thornyeroft, R.A., offered one of them to the University, 

and the other to Pembroke College. The former was accepted on behalf of the 

University by the Vice-Chancellor, the latter on behalf of the College by the 
Reva ©. He Prior, MA: 

Friday, 2 June, 1899. A Congregation was held this day at 11 a.m. 

Sir G. G. Stokes sat on the right hand of the Vice-Chancellor. 

The Delegates sent by Universities, Academies, Colleges and Societies were 

presented to the Vice-Chancellor in the chronological order of the Institutions 
represented, 

The names of the Institutions and of the Delegates were announced by 

the Registrary, as follows 

University of Paris Professor Gaston Darboux, Doyen de la Faculté 
des Sciences. 

University of Oxford Sir William Reynell Anson, Bart., M.P., and 

Robert Edward Baynes, M.A., Lee’s Reader 

in Physics. 

University of Heidelberg Professor Quincke. 



vill ORDER OF PROCEEDINGS. 

University of St Andrews 

University of Glasgow 

Academies of Upsala, Copenhagen, Helsingtors 

University of Aberdeen 
University of Edinburgh 

University of Dublin 

Royal Society 

Académie des Sciences, Paris 

University of Pennsylvania 

American Philosophical Society \ 

Gesellschaft der Wissenschaften zu Gottingen 

New York, Columbia University 

Princeton University, New Jersey 

Imperial Academy of Military Medicine, St 
Petersburg 

Bataafsch Genootschap voor Physika, Rotter- 
dam 

Académie Royale des Sciences des Lettres et 
des Beaux Arts de Belgique 

Manchester Literary and Philosophical Society 
Royal Irish Academy 

Royal Society of Edinburgh 

St Edmund’s College, Ware 

Ecole Polytechnique, Paris 

Ecole Normale Supérieure, Paris 

Royal Institution 

P. R. Scott Lang, M.A., Regius Professor of 
Mathematics. 

Very Rev. Robert Herbert Story, D.D., Prin- 

cipal, and Lord Kelvin, M.A., Hon. LL.D., 

G.C.V.O. 

Professor Mittag-Leffler. 
Sir Wilham Duguid Geddes, LL.D., Principal. 

George Chrystal, M.A., Professor of Mathe- 

matics, and G. F. Armstrong, M.A., Pro- 

JSessor of Engineering. 

George Salmon, D.D., Provost, and Benjamin 

Williamson, M.A., D.Se. 

Lord Lister, Hon. LL.D., President. 

Alfred Bray Kempe, M.A., Treasurer. 

Michael Foster, M.A., Professor , 

of Physiology. 

Arthur William Riicker, M.A. |} Secretaries. 

(Oxon.), Professor of Physics, 

Royal College of Science. 
Professor Becquerel. 

Professor G. F. Barker, Vice-President. 

Edward Riecke, Professor of Physics. 

Robert S. Woodward, Ph.D., Professor of 

Mechanics and Mathematical Physics, 

Dean of the Faculty of Pure Science. 
Professor Edgar Odele Lovett. 
Professor Egoroff. 

Dr Elie van Rijckevorsel. 

Professor Alphonse Rénard, Professor G. Van 
der Mensbrugghe. 

Reginald Felix Gwyther, M.A., Secretary. 

Earl of Rosse, K.P., President, George F. 

FitzGerald, M.A., Professor of Natural 

and Experimental Philosophy, Trinity 
College, Dublin. 

Lord Kelvin, M.A., Hon. LL.D., President, and 

Sir John Murray, K.C.B., Hon. Se.D. 

Right Rev. J. L. Patterson, M.A. (Oxon.), 

Bishop of Emmaus. 

Professor Cornu and Professor Becquerel. 

Professor Borel. 

Sir J. Crichton Browne, M.D. (Edinb.), 
Treasurer. 
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Philosophical Society of Glasgow 
University of Bonn 

Cambridge Philosophical Society 
Royal Astronomical Society 

University of Toronto 

St David’s College, Lampeter 

Institution of Civil Engineers 

King’s College, London 

British Association 

University of Durham 

Solar Physics Committee, Science and Art 
Department 

Cambridge Ray Club 

University of London 
London Chemical Society 
Queen’s College, Belfast 
Queen’s College, Galway 

University of Sydney 

Royal College of Science, London 

The Owens College, Manchester 

University of Bombay 
University of Madras 

London Mathematical Society 
University of New Zealand 

Durham College of Science, Neweastle-on- 

Tyne 

University of Adelaide 

University College of Wales, Aberystwyth 
Physical Society of. Paris 
Yorkshire College, Leeds 

Physical Society of London 

Mason College, Birmingham 

Lord Blythswood. 

Professor Kayser. 

Joseph Larmor, M.A., President. 

George Howard Darwin, M.A., Plumian Pro- 

Jessor of Astronomy, President. 
R. Ramsay Wright, M.A., B.Se., Professor of 

Biology. 

A. W. Scott, M.A., Trinity College (Dubl.), 

Professor of Physical Science and Mathe- 

matics. 

William Henry Preece, C.B., President. 

Archibald Robertson, D.D. (Durham), Prin- 

cipal. 

Sir William Crookes, President. 

Ralph Allen Sampson, M.A., Professor of 

Mathematics. 

Prof. G. H. Darwin. 

Alfred Newton, M.A., Professor of Zoology 

and Comparative Anatomy. 

Sir H. Roscoe. 

Dr T. E. Thorpe. 

Thomas Hamilton, D.D., President. 

Alexander Anderson, M.A., President. 

Philip Sydney Jones, M.D. (Lond.), Fellow of 

the Senate of the University of Sydney. 
John Wesley Judd, C.B., LL.D., Dean; W. A. 

Tilden, Professor of Chemistry. 

Alfred Hopkinson, Q.C., M.A., Principal. 

Dr H. M. Birdwood, M.A., C.S.I. 

Hon. H. H. Shephard, M.A., Puisne Judge of 

the High Court of Madras. 

Lord Kelvin, M.A., Hon. LL.D., President. 

Edward John Routh, M.A., Se.D. 

Henry Palin Gurney, M.A., Principal. 

Horace Lamb, M.A., Professor of Mathematics 

in Owens College, Manchester. 

Robert Davies Roberts, M.A. 

M. Henri Deslandres. 

Leonard J. Rogers, M.A., Professor of Mathe- 

matics. 

Oliver J. Lodge, D.Sc., Professor of Physics, 

University College, Liverpool, President. 
John Henry Poynting, Se.D., Professor of 

Physics. 



x ORDER OF PROCEEDINGS. 

Johns Hopkins University, Baltimore 

Firth College, Sheftield 

University College, Bristol 

City and Guilds of London Institute for 
Advancement of Technical Education 

University College, Dundee 
Univeisity College, Nottingham 
Victoria University 

Royal University of Ireland 
Royal College of Science for Ireland 

University College, Liverpool 
University of the Punjab 

University College of South Wales, Cardiff 

University College of North Wales, Bangor 
Royal Indian Engineering College, Coopers 

Hill 
University of Allahabad 

University of Wales 

Simon Newcomb, Hon. Sc.D., LL.D., Professor 

of Mathematics and Astronomy; and 

Professor Ames. 

William Mitchinson Hicks, Se.D., Principal. 

Frank R. Barrell, M.A., Professor of Mathe- 

matics. 

Sir Frederick Abel, K.C.B. 

John Yule Mackay, Principal. 
John Elhotson Symes, M.A., Principal. 
Nathan Bodington, Litt.D., Vice-Chancellor. 
Right Rey. Monsignor Molloy, D.D., D.Sc. 
Walter Noel Hartley, Professor of Chemistry. 

Richard Tetley Glazebrook, M.A., Principal. 

Sir Charles Arthur Roe, M.A., late First 

Judge of the Chief Court, Punjab; late 
Vice-Chancellor of the University. 

H. W. Lloyd Tanner, M.A. (Oxon.), Professor 
of Mathematics. 

Henry R. Reichel, M.A. (Oxon.), Principal. 

Prof. A. Lodge, M.A. (Oxon.), Professor of 
Mathematics. 

G. Thibaut, Ph.D., Principal of the Muir 
Central College, Allahabad. 

J. Viriamu Jones, M.A., Vice-Chancellor. 

The following Institutions sent Addresses : 

Yale University. 

American Academy of Arts and Sciences, Boston. 

Royal Academy of the Netherlands. 

Imperial University of Tokio. 

Reale Accademia dei Lincei di Roma. 

A telegram was received from the Hungarian Academy, and a letter from 

Professor Pascal, in the name of himself and the University of Pavia. 

At 1.30 p.m. the Vice-Chancellor gave a luncheon at Downing College, at 

which the Chancellor, Sir G. G. Stokes, the Delegates, the invited guests of 

the University, and many members of the Senate were present. 
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A second Congregation was held at 2.45 P.M. 

A Procession was formed at the Library at 2.35 p.m. in the following 

order : 

The Esquire Bedells 

Ql hf aN A a a = Sir G. G. SToKEs THE CHANCELLOR 

The Recipients of the Degree of Doctor in Science, honoris cuusd : 

1. Marie Alfred Cornu 2. Jean Gaston Darboux 

3. Alfred Abraham Michelson 4. Magnus Gustaf Mittag-Letter 

5. Georg Hermann Quincke 6. Woldemar Voigt 

The Lord Lieutenant The Vice-Chancellor accompanied by the Registrary 

The Representatives in Parliament 

The Heads of Colleges 

Doctors in Divinity 

Doctors in Law 

Doctors in Medicine 

Doctors in Science and Letters 

Doctors in Music 

The Public Orator 

The Librarian 

Professors 

Members of the Council of the Senate 

The Proctors 

The Procession passed round Senate House Yard, and entered the Senate 

House by the South Door. 



Xll ORDER OF PROCEEDINGS. 

The following Address, as approved by the Senate, and sealed with the 

University seal, was read by the Public Orator, and presented to Sir George 

Gabriel Stokes by the Chancellor. 

Baronetto insigni 

Georgio Gabrieli Stokes 

Luris et Scientiarum Doctori 

Regiae Societatis quondam Praesidi 

Scientiae Mathematicae per annos quinquaginta inter Cantabrigienses Professori 

Sh 1A Ib) 

Universitas Cantabrigiensis. 

Quop per annos quinquaginta inter nosmet ipsos Professoris munus tam praeclare 

ornavisti, et tibi, vir venerabilis, et nobis ipsis vehementer gratulamur. Jluvat vitam tam 

longam, tam serenam, tot studiorum fructibus maturis felicem, tot tantisque honoribus 

illustrem, tanta morum modestia et benignitate msignem, hodie paulisper contemplari. Anno 

eodem, quo Regina nostra Victoria insularum nostrarum solio et sceptro potita est, ipse 

eodem aetatis anno Newtoni nostri Universitatem iuvenis petisti, Newtoni cathedram postea 

per decem lustra ornaturus, Newtoni exemplum et in Senatu Britannico et in Societate 

Regia ante oculos habiturus, Newtoni vestigia in scientiarum terminis proferendis pressurus 

et ingenii tanti imaginem etiam nostro in saeculo praesentem redditurus. Olim studiorum 

mathematicorum e certamine laurea prima reportata, postea (ne plura commemoremus) 

primum aquae et immotae et turbatae rationes, quae hydrostatica et hydrodynamica 

nominantur, subtilissime examinasti; deinde vel aquae vel aéris fluctibus corporum motus 

paulatim tardatos minutissime perpendisti; lucis denique leges obscuras ingenii tui lumine 

luculenter illustrasti. Idem etiam scientiae mathematicae in puro quodam caelo diu vixisti, 

atque hominum e controversiis procul remotus, sapientiae quasi in templo quodam sereno 

per vitam totam securus habitasti. In posteram autem famam diuturnam tibi propterea 

praesertim auguramur, quod, in inventis tuis pervulgandis perquam cautus et consideratus, 

nihil praeproperum, nihil immaturum, nihil temporis cursu postea obsolefactum, sed omnia 

matura et perfecta, omnia omnibus numeris absoluta, protulisti. Talia propter merita non 

modo in insulis nostris doctrinae sedes septem te doctorem honoris causa nominaverunt, 

sed etiam exterae gentes honoribus eximis certatim cumulaverunt. Hodie eodem doctoris 

titulo studiorum tuorum socios nonnullos exteris e gentibus ad nos advectos, et 1psorum 

et tuum in honorem, velut exempli causa, libenter ornamus. In perpetuum denique obser- 

vantiae nostrae et reverentiae testimonium, in honorem alumni diu a nobis dilecti et ab 

aliis nomismate honorifico non uno donati, ipsi nomisma novum cudendum curavimus. In 

honore nostro novo in te primum conferendo, inter vitae ante actae gratulationes, tibi 

omnia prospera etiam in posterum exoptamus. Vale. 

Datum in Senaculo 
r te ‘ TN 

mensis Iunii die secundo (rR 

A. S. MpCCCXCIX. ; 
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A Commemorative Gold Medal was presented to Sir G. G. Stokes by the 

Chancellor. 

Professor Cornu and Professor Becquerel presented the Arago Medal to 

Sir G. G. Stokes on behalf of the Academy of Sciences, Paris. 

The following degrees were conferred : 

Doctors in Science (honoris causa) 

Marie Alfred Cornu 

(Professor of Experimental Physics in the Ecole Polytechnique, Paris) 

Jean Gaston Darboux 

(Dean of the Faculty of Sciences in the University of France) 

Albert Abraham Michelson 

(Professor of Experimental Physics in the University of Chicago) 

Magnus Gustav Mittag-Leftler 

(Professor of Pure Mathematics, Stockholm) 

Georg Hermann Quincke 

(Professor of Experimental Physics in the University of Heidelberg) 

Woldemar Voigt 

(Professor of Mathematical Physics in the University of Gottingen) 

The Public Orator made the following speeches in presenting the several 

recipients of honorary degrees to the Chancellor. 

Primum vobis praesento artium plurimarum Scholae Parisiensis professorem, quem in 

hoe ipso loco die hesterno perspicuitate solita disserentem audivistis, virum non modo solis 

de lumine in partes suas solvendo, sed etiam orbis terrarum de mole metienda per annos 

plurimos praeclare meritum. Lucis in natura explicanda, quanta cum doctrinae elegantia, 

quanta cum experimentorum subtilitate, quam diu versatus est. Idem quam accurate 

velocitatem illam est dimensus, qua per aeris intervallum immensum lucis simulacra 

minutissima transvolitant, 

‘suppeditatur enim confestim lumine lumen, 

et quasi protelo stimulatur fulgere fulgur.’ 

Lucis transmittendae in dAapradynpopia quam feliciter lampada a suis sibi traditam ipse 

etiam trans aequor Atlanticum alii tradidit. 

Duco ad vos ALFREDUM CORNU. 

Vou. XVIII. € 
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Sequitur deinceps vir insignis Nemausi natus, Parisiensium in Universitate illustri 

geometriam diu professus et scientiarum facultati toti praepositus. Peritis nota sunt 

quattuor illa volumina, in quibus superficierum rationem universam inclusit ; etiam pluribus 

notum est, quantum patriae legatus deliberationibus illis profuerit, quae a Societate nostra 

Regia primum institutae, id potissimum spectant, ut omnibus e gentibus quicquid a 

scientiarum cultoribus conquiritur, indicis unius in thesaurum, gentium omnium ad fructum, 

in posterum conferatur. Incepto tanto talium virorum auxilio ad exitum perducto, inter 

omnes gentes ei qui rerum naturae praesertim scientiam excolunt, sine dubio vinculis 

artioribus inter sese coniungentur. 

Duco ad vos IOHANNEM GASTONUM DARBOUX. 

Trans aequor Atlanticum ad nos advectus est vir insignis, qui ea quae professor 

noster Lucasianus de aetheris immensi regione, in qua lux propagatur, orbis terrarum 

motu perturbata, olim praesagiebat, ipse experimentis exquisitis adhibitis penitus exploravit. 

Lucis explorandae in provincia is certe scientiarum inter lumina numeratur, qui olim 

fratrum nostrorum transmarinorum in classe non ignotus, lampade trans oceanum e Gallia 

sibi tradita feliciter accepta, etiam exteris gentibus subito affulsit, velocitatem immensam 

eleganter dimensus, qua lucis fluctus videntur (ut Lucretii verbis utar) 

‘per totum caeli spatium diffundere sese, 

perque volare mare ac terras, caelumque rigare.’ 

Duco ad vos ALBERTUM ABRAHAM MICHELSON. 

Scandinavia ad nos misit scientiae mathematicae professorem illustrem, qui studiorum 

suorum velut e campo puro laudem plurimam victor reportavit. Idem Regis sui auspiciis, 

qui praemiis propositis magnum huic scientiae attulit adiumentum, etiam exterarum 

gentium ad communem fructum prope viginti per annos Acta illa Mathematica edidit, quae 

in his studiis quasi gentium omnium internuntium esse dixerim. Ipse Homerus (ut Pindari 

versus verbo uno tantum mutato proferam) a@yyeXov éodov ea Timav peyliotay mpayyate 

mavtt dépew* avferar kai MaOnaors 8 ayyedias dpbas. 

Duco ad vos MaGNum Gustravum MirraG-LEFFLER. 

Universitatem Heidelbergensem abhinc annos quadraginta professorum par nobile 

spectroscopo invento in perpetuum illustravit. Adest inde discipulorum plurimorum in 

scientia physica praeceptor, qui et in instrumentis novis inveniendis sollertiam singularem 

et in eisdem adhibendis industriam indefessam praestitit. Ei qui in scientiae physicae 

ratione universa versati, viri huiusce inventis utuntur, etiam de sua scientia verum esse 

confitebuntur, quod de arte oratoria praesertim dixit Quintilianus:—‘in omnibus fere minus 

valent praecepta quam experimenta.’ 

Duco ad vos GeorGiumM HERMANNUM QUINCKE. 
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Universitatem Goettingensem, a Rege nostro Hanoveriensi Georgio secundo conditam, 

vinculo non uno cum Universitate nostra coniunctam esse constat. Constat eandem etiam 

per annos prope quinquaginta Caroli Frederici Gaussu, scientiae mathematicae et physicae 

professoris celeberrimi, gloria esse illustratam, qui cum ingenio fecundissimo disserendi genus 

consummatum coniunxit. Iuvat inde professorem ad nos advectum excipere, qui scientiae 

eiusdem pulcherrimam nactus provinciam, etiam lucem ipsam et crystalla mgenii sui lumine 

illustravit. 

Sex virorum insignium seriem consummavit hodie WoLDEMAR VoIG?. 

In the evening the CHANCELLOR presided at a dinner in the Hall of 

Trinity College (kindly placed at the disposal of the University by the 

Council of the College), at which Sir George Gabriel Stokes, the Delegates, 

and the invited guests of the University were entertained. 

JOHN WILLIS CLARK, 

Registrary. 

Cae, 





LA THEORIE DES ONDES LUMINEUSES: 

SON INFLUENCE SUR LA PHYSIQUE MODERNE*. 

Par ALFRED CORNU, 

DE L’ACADEMIE DES SCIENCES ET DE LA SOCIBTE ROYALE DE LONDRES, 

PROFESSEUR A L’ECOLE POLYTECHNIQUE. 

THE REDE LECTURE (1% JUIN 1899). 

Notre €poque se distingue des Ages précédents par une merveilleuse utilisation des 

forces naturelles; l'homme, cet étre faible et sans défense, a su, par son génie, acquérir 

une puissance extraordinaire et plier a son service des agents subtils ou redoutables, dont 

ses ancétres ignoraient méme |’existence. 

Cet admirable accroissement de la puissance matérielle de homme dans les temps 

modernes est di tout entier 4 l'étude patiente et approfondie des phénoménes de la 

Nature, 4 la connaissance précise des lois qui les régissent et & la savante combinaison 

de leurs effets. 

Mais ce qui est particulierement instructif, c’est la disproportion qui existe entre le 

phénomene primitif et la grandeur des effets que l'industrie en a fait jaillir. Ainsi, ces 

formidables engins fondés sur |’électricité ou la vapeur ne dérivent ni de la foudre, ni 

des volcans; ils tirent leur origine de phénomeénes presque imperceptibles qui seraient 

* En dehors de l’intérét que présente un coup d’ceil 

d’ensemble sur les progrés et l’influence de l’Optique, cette 

lecture offre les conclusions d’une étude approfondie du 

Traité d’Optique de Newton. On verra que la pensée du 

grand physicien a été singuliérement altérée par une sorte 

de légende répandue dans les traités élémentaires ot la 

théorie de 1’émission est exposée. Pour rendre plus claire 

la théorie des accés, les commentateurs ont imaginé de 

matérialiser la molécule lumineuse, sous la forme d’une 

fléche rotative se présentant alternativement par la pointe 

et par le travers. Ce mode d’exposition a contribué a 

faire croire que toute la théorie newtonienne de |’émission 

était renfermée dans cette image un peu enfantine; il n’en 

est rien, Nulle part, dans son Traité, Newton ne donne 

une représentation mécanique de la molécule lumineuse: il 

se borne a décrire les faits, puis les résume dans un énoncé 

empirique, sans explications hypothétiques. Il se défend 

méme de faire aucune théorie, quoique l’intervention des 

ondes excitées dans l’éther lui apparaisse comme fort pro- 

bable. De sorte que l’impression générale résultant de la 

lecture du Traité d’Optique, et surtout des ‘‘Questions’’ du 

troisiéme livre, peut se résumer en disant que Newton, 

loin d’étre l’adversaire du systéme de Descartes, comme on 

le représente généralement, est, au contraire, trés favo- 

rable aux principes de ce systéme: frappé des ressources 

qu’offrait Vhypothése ondulatoire pour l’explication des 

phénoménes lumineux, il l’aurait sans doute adoptée, si 

Vobjection grave relative 4 la propagation rectiligne de la 

lumiére, résolue seulement de nos jours par Fresnel, ne 

len avait détourné. 
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demeurés éternellement cachés aux yeux du vulgaire, mais que des observateurs pénétrants 

ont su reconnaitre et apprécier. 

Cette humble origine de la plupart des grandes découvertes dont l’humanité béneéficie 

montre bien que c'est l'esprit scientifique qui est adjourd’hui le grand ressort de la vie 

des nations et que c'est dans le progrés de la Science pure qu'il faut chercher le secret 

de la puissance croissante du monde moderne. 

De la une série de questions qui s'imposent a l’attention de tous. A quelle occasion 

le gotit de la Philosophie naturelle, si chére aux philosophes de |’Antiquité, abandonnée 

pendant des siécles, a-t-il pu renaitre et se développer? Quelles ont été les phases de 

son développement? Comment ont apparu ces notions nouvelles qui ont si profondément 

modifié nos idées sur le mécanisme des forces de la Nature? Enfin, quelle est la voie 

féconde qui, insensiblement, nous conduit a d’admirables généralisations, conformément au 

plan grandiose entrevu par les fondateurs de la Physique moderne ? 

Telles sont les questions que je me propose, comme physicien, d’examiner devant 

yous: c’est un sujet un peu abstrait, je dirai méme un peu sévére; mais nul autre ne 

m’a paru plus digne d’attirer votre attention, & la féte que lUniversité de Cambridge 

célebre aujourd’hui, pour honorer le cinquantenaire du professorat de Sir George-Gabriel 

Stokes, qui, dans sa belle carriére, a précisément touché d'une main magistrale aux 

problémes les plus profitables 4 l’avancement de la Philosophie naturelle. 

Ce sujet est d’autant mieux A sa place ici qu’en citant les noms des grands esprits 

qui ont le plus fait pour la Science, nous trouverons ceux qui honorent le plus Université 

de Cambridge, ses professeurs ou ses éléves, Sir Isaac Newton, Thomas Young, George 

Green, Sir George Airy, Lord Kelvin, Clerk Maxwell, Lord Rayleigh; et le souvenir de 

gloire qui se perpétue a travers les siécles jusqu’au temps présent rehaussera l’éclat de 

cette belle cérémonie. 

I 

Cherchons donc, dans un rapide coup d’ceil sur la Renaissance scientifique, 4 reconnaitre 

influence secréte, mais puissante, qui a été la force directrice de la Physique moderne. 

Je suis porté & penser que I’étude de la lumiére, par l’attraction qu’elle a exercée 

sur les plus vigoureux esprits, a été l'une des causes les plus efficaces du retour des 

idées vers la Philosophie naturelle, et & considérer l’Optique comme ayant eu sur la 

marche des Sciences une influence dont on ne saurait exagérer la portée. 

Cette influence, déja visible dés la création de la Philosophie expérimentale, par 

Galilée, a grandi dans de telles proportions qu’on prévoit aujourd’hui une immense synthése 

des forces physiques, fondée sur les principes de la Théorie des ondes lumineuses. 

On se rende compte aisément de cette influence lorsqu’on songe que la voie par 

laquelle arrive & notre intelligence la connaissance du monde extérieur est la lumiere. 

C'est, en effet, la vision qui nous fournit les notions les plus rapides et les plus 

complétes sur les objets qui nous entourent; nos autres sens, l’ouie, le toucher, nous 

apportent aussi leur part d’instruction, mais la vue seule nous fournit une abondance 

d'informations simultanées, forme, éclat, couleur, qu’aucun des autres sens ne peut nous 

donner. 
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Il nest done pas étonnant que la lumiere, lien perpétuel entre notre personnalité 

et le monde extérieur, intervienne a chaque instant, par toutes les ressources de sa 

constitution intime, pour préciser l’observation des phénomenes naturels. Aussi chaque 

découverte relative & quelque propriété nouvelle de la lumiére a-t-elle eu un retentissement 

immédiat sur les autres branches des connaissances humaines; souvent méme, elle a déter- 

miné la naissance d'une science nouvelle en apportant un nouveau moyen d’investigation 

d'une puissance et d’une délicatesse imattendues. 

L’Optique est véritablement une science moderne; les anciens philosophes n’avaient 

pas soupgonné la complexité de ce qu’on appelle vulgairement la lumiére: ils confondaient 

sous la méme dénomination ce qui est personnel & homme et ce qui lui est extérieur. 

Ils avaient cependant apergu une des propriétés caractéristiques du lien qui existe entre 

la source lumineuse et l’ceil qui percoit impression: la lumiére se meut en ligne droite. 

L’expérience vulgaire leur avait révélé cet axiome, en observant les trainées brillantes 

que le Soleil trace dans le ciel en pergant les nuées brumeuses ou en pénétrant dans 

un espace obscur. De la étaient résultées deux notions empiriques: la définition des 

rayons de lumiere et celle de la ligne droite; la premiere devint la base de l’Optique; 

Vautre, la base de la Géométrie. 

Il ne nous reste presque rien des livres d’Optique des anciens; nous savons, toutefois, 

quwils connaissaient la réflexion des rayons lumineux sur les surfaces polies et l’explication 

des images formées par les miroirs. 

Il faut attendre bien des siecles, jusqu’a la Renaissance scientifique, pour rencontrer 

un nouveau progres dans l’Optique; mais celui-la est considérable, il annonce l’tre nouvelle: 

cest linvention de la lunette astronomique. 

Liere nouvelle commence a Galilée, Boyle et Descartes, les fondateurs de la Philo- 

sophie expérimentale ; tous trois consacrent leur vie & méditer sur la nature de la lumiére, 

des couleurs et des forces. Galilée jette les bases de la Mécanique, et, avec le télescope 

a réfraction, celles de l’Astronomie physique; Boyle perfectionne l’expérimentation ; quant 

a Descartes, il embrasse d’une vue pénétrante l’ensemble de la Philosophie naturelle ; 

il repousse toutes les causes occultes admises par les scholastiques; il pose en principe 

que tous les phénoménes sont gouvernés par les lois de la Mécanique. Dans son systéme 

du monde, la lumiére joue un role prépondérant*; elle est produite par les ondulations 

excitées dans la matiere subtile qui, suivant lui, remplit tout l’espace. Cette matiére 

subtile (qui représente ce que nous appelons aujourd’hui l’éther), il la considére comme 

formée de particules en contact immédiat; elle constitue done en méme temps le véhicule 

des forces existant entre les corps matériels qui y sont plongés. On reconnait ld les fameux 

tourbillons de Descartes, tantot admirés, tantot bafoués aux siécles derniers, mais auxquels 

@habiles géometres contemporains ont rendu la justice qui leur est due. 

Quelle que soit l'opinion qu’on porte sur la rigueur des déductions du grand philosophe, 

on doit rester frappé de la hardiesse avec laquelle il aftirme la liaison des grands problémes 

cosmiques, et de la pénétration avec laquelle il annonce des solutions dont les générations 

actuelles s’approchent insensiblement. 

* Le Monde de M. Descartes ou le Traité de la Lumiére. Paris, 1664. 



XxX ALFRED CORNU, LA THEORIE DES ONDES LUMINEUSES: 

Pour Descartes, le mécanisme de la lumieére et celui de la gravitation sont inséparables ; 

le sitge des phénoménes qui leur correspondent est cette matiére subtile qui remplit 

Univers et leur propagation doit s'effectuer par ondes autour des centres actifs. 

II 

Cette conception de la nature de la lumiére heurtait les idées en faveur; elle souleva 

de vives oppositions. Depuis l’Antiquité, on avait coutume de se représenter les rayons 

lumineux comme la trajectoire de projectiles rapides lancés par la source radiante, leur 

choc sur les nerfs de l’ceil produisant la vision; leur rebondissement ou leur changement 

de vitesse, la réflexion ou la réfraction. 

La théorie cartésienne avait toutefois des aspects séduisants qui lui amenérent des 

défenseurs: les ondes excitées & la surface des eaux tranquilles offrent une image si 

claire de la propagation d’un mouvement autour d’un centre d’ébranlement! D’autre part, 

n’est-ce pas par ondes que nous arrivent les impressions sonores? Lesprit éprouve done 

une véritable satisfaction & penser que nos deux organes les plus précis et délicats, l’ceil 

et loreille, sont impressionnés par un mécanisme de méme nature. 

Cependant, une grave différence subsiste; le son ne se meut pas nécessairement en 

ligne droite comme la lumiére; il tourne les obstacles qu’on lui oppose et parcourt les 

routes les plus sinueuses presque sans s’affaiblir. 

Les physiciens se partagerent alors en deux camps: les uns, partisans de |’émission, 

les autres, partisans des ondes. Comme chacun des deux systemes se prétendait supérieur 

a lautre, et l’était. en effet sur quelques points, il fallait en appeler a d’autres phénoménes 

pour trancher entre eux. 
Le hasard des découvertes en amena plusieurs qui auraient di décider en faveur 

de la théorie des ondes, ainsi qu’on le reconnut un siecle plus tard; mais les claires 

vérités n’apparaissent jamais sans un long labeur. 

Un compromis singulier s’établit entre les deux systemes, a l’abri d’un nom illustre 

entre tous, et la victoire fut attribuée, pendant un siécle, a la théorie de l’émission; 

en voici l’étrange histoire : 

En 1661, un jeune éléve plein d’ardeur et de pénétration entrait & Trinity College 

de Cambridge; il se nommait Isaac Newton; il avait déjé lu dans son village l’Optique 

de Kepler. A peine entré, tout en suivant les legons d'Optique de Barrow, il étudie 

avee passion la Géométrie de Descartes; il achéte sur ses économies un prisme pour 

étudier les couleurs et, entre temps, médite déja longuement sur les causes de la 

gravité. Huit ans apres, ses maitres le trouvent digne de succéder & Barrow dans la 

chaire lucasienne, et il enseigne A son tour l’Optique. L’éleve dépasse bientdt le maitre 

et annonce une découverte capitale: La lumitre blanche, qui semblait le type de la 

lumitre pure, nest pas homogéne; elle est formée de rayons de diverses réfrangibilités. 

Et il le démontre par la célébre expérience du spectre solaire, dans laquelle un rayon 

de lumitre blanche est décomposé en une série de rayons colorés comme l’are-en-ciel ; 

chacune de ces couleurs est simple, car le prisme ne la décompose plus. Telle est 

lYorigine de l’analyse spectrale. 
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Cette analyse de la lumiére blanche amena Newton A expliquer les colorations des 

lames minces qu'on observe en particulier sur les bulles de savon; l’expérience fonda- 

mentale, dite des anneaux de Newton, est l'une des plus instructives de lOptique, et 

les lois qui la résument sont d’une admirable simplicité. Il en exposa la théorie dans 

un discours adressé & la Société Royale sous le titre: Hypothése nouvelle concernant la 

lumiere et les couleurs. 

Ce discours provoqua de la part de Hooke une vive réclamation. Hooke avait 

antérieurement observé aussi les colorations des lames minces et cherché a les expliquer 

dans le systeme des ondes: il avait eu le mérite (que Newton lui-méme reconnut sans 

peine) de substituer & londe progressive de Descartes une onde vibratoire, notion 

nouvelle et extrémement importante: il avait méme apercu le réle des deux surfaces 

réfléchissantes de la lame mince, ainsi que l’action mutuelle des ondes réfléchies. Hooke 

efit été ainsi le véritable précurseur de la théorie moderne, s'il avait eu, comme New- 

ton, la perception claire des rayons simples; mais ses raisonnements vagues pour ex- 

pliquer la coloration dtent toute valeur démonstrative & sa théorie. 

Newton fut trés affecté de cette réclamation de priorité; il combat les arguments 

de son adversaire en rappelant que la théorie des ondes est inadmissible, parce qu'elle 

ne rend pas compte de l’existence du rayon lumineux et des ombres. I] se défend 

davoir constitué une théorie, il déclare qu'il n’admet ni Vhypothése des ondes, ni celle 

de l’émission; seulement il est obligé, pour abréger le discours et faire image, d’avoir 

recours 4 l'une et A l'autre, comme sil les admettait. 

Et, en fait, dans la XII* Proposition, au II*® livre de son Optique*, qui constitue 

ce que l’on a appelé depuis la théorie des accés, Newton reste absolument sur le terrain 

des faits. 

Il dit simplement: “Le phénoméne des lames minces prouve que le rayon lumineux 

est mis alternativement dans un accés de facile réflexion ou de facile transmission.” 

Il ajoute, toutefois, que si lon désire une explication de ces alternances, on peut les 

attribuer aux vibrations excitées par le choc des corpuscules et propagées sous forme 

dondes par |’éthert+. 

En résumé, malgré son désir de rester sur le terrain solide des faits, Newton n’a 

pas pu sempécher d’essayer une explication rationnelle; il a trop lu les écrits de Des- 

cartes pour n’étre pas, au fond, comme Huyghens, partisan de l’universel mécanisme et 

pour ne pas désirer secrétement trouver, dans les ondulations pures, l’explication du 

beau phénomene qu'il a réduit en lois si simples. 

Son admirable livre des Principes porte la trace de ses profondes méditations sur la 

propagation des ondes, car on y trouve, pour la premiere fois, expression mathématique 

de leur vitesse, aussi bien pour les vibrations longitudinales des corps compressibles que 

pour les vibrations transversales des surfaces fluides. 

* Prop. XIJ.—Tout rayon de lumiére dans son passage _—réfringente, et entre les retours, a étre aisément réfléchie 

& travers une surface réfringente est mis dans un certain par elle. 

état passager qui, dans la progression du rayon, revient a (Sir Isaac Newton, Opticks or a Treatise of the Re- 

intervalles égaux et dispose le rayon, & chaque retour, 4 flections, Refractions, Inflexions and Colours of Light.— 

étre facilement transmis 4 travers la prochaine surface London, 1718, second edition, with additions, p- 253.) 

+ Loe. cit., p. 255. 

Vou. XVITI. d 
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Mais c’est surtout le troisitme livre de son Optique, qui témoigne le plus vivement 

de ses aspirations cartésiennes et surtout de sa perplexité. Ses fameuses “ Questions” 

sont un exposé si complet des arguments en faveur de la théorie des ondes lumineuses 

que Thomas Young les citera plus tard comme preuve de la conversion finale de 

Newton 2 la doctrine ondulatoire. 
x 

Newton aurait certaimement cédé a ce secret en- 

trainement si la logique inflexible de son esprit le lui avait permis; mais, apres avoir 

énuméré toutes les ressources dont la théorie des ondes dispose pour expliquer la nature 

intime de la lumitre, arrivé aux derniéres questions, il s’arréte comme pris d’un remords 

subit et la rejette résolument. Et le seul argument qu'il donne, c’est quil n’y voit 

pas la possibilité de rendre compte du rayon lumineux rectiligne *. 

* Voici, d’abord, un extrait des ‘‘ Questions” qui prouve 

la tendance des vues de Newton vers la théorie ondulatoire 

et les idées cartésiennes. 

“Question 12.—Les rayons de lumiére, en frappant le 

fond de l’wil, n’excitent-ils pas des vibrations dans la 

tunica retina? Ces vibrations, étant propagées le long des 

fibres solides des nerfs optiques dans le cerveau, causent la 

sensation de la vision... 

‘‘ Question 13.—Les diverses sortes de rayons ne font- 

elles pas des vibrations de diverses grandeurs, qui, suivant 

leurs diverses grandeurs, excitent les sensations des diverses 

couleurs, de la méme maniére que les vibrations de lair, 

suivant leurs diverses grandeurs, excitent les sensations 

des divers sons? Et, én particulier, ne sont-ce pas les 

rayons les plus réfrangibles qui excitent les plus courtes 

vibrations pour produire la sensation du violet extréme ; 

les moins réfrangibles, les plus grandes, pour produire la 

sensation du rouge extréme, etc.?... 

“ Question 18.—La chaleur d’un espace chaud n’est-elle 

pas transmise 4 travers le vide par les vibrations d’un 

milieu beaucoup plus subtil que l’air, qui reste dans le vide 

apres que lair en a été enlevé? 

“Bt ce milieu n’est-il pas le méme que le milieu par 

lequel la lumiére est réfractée et réfléchie, par les vibra- 

tions duquel la lumiére communique la chaleur aux corps 

et est mise dans les accés de facile réflexion et de facile 

transmission ? 

“Et ce milieu n’est-il pas infiniment (exceedingly) plus 

rare et subtil que lair et infiniment plus élastique et actif? 

Et ne remplit-il pas tous les corps? Et (par sa force 

élastique) ne se répand-il pas dans tout l’espace céleste?” 

Newton examine ensuite le réle possible de ce milieu 

(Véther) dans la gravitation et dans la transmission des 

sensations et du mouvement chez les étres vivants (ques- 

tions 19 & 24). Les propriétés dissymétriques des deux 

rayons du spath d’Islande attirent également son attention 

(questions 25 et 26). 
Puis arrive cette volte-face soudaine, cette espéce de 

remords d’avoir exposé avec trop de complaisance les 

ressources de la théorie cartésienne fondée sur le plein: il 

fait, en quelque sorte, amende honorable et continue ainsi: 

“‘ Question 27.—Ne sont-elles pas erronées toutes les 

hypothéses qui ont été inventées jusqu’ici pour expliquer 

les phénoménes de la lumiére par de nouvelles modifica- 

tions des rayons? 

“ Question 28.—Ne sont-elles pas erronées toutes les 

hypothéses dans lesquelles la lumiére est supposée con- 

sister en une pression ou un mouyement propagé a travers 

un milieu fluide? 

‘Si elle (la lumiére) consiste seulement en une pression 

ou un mouvement propagé instantanément ou progressive- 

ment, elle se courberait dans l’ombre. Car une pression 

ou un mouvement ne peut pas se propager en ligne droite 

dans un fluide au dela de l’obstacle qui arréte une partie 

du mouvement; il y a inflexion et dispersion de tous cétés 

dans le milieu en repos situé au dela de obstacle... 

‘«« .. Car une cloche ou un canon peuvent s’entendre au 

dela d’une colline qui intercepte la yue du corps sonore, et 

les sons se propagent aussi bien a travers des tubes courbés 

qu’ travers des tubes droits. Tandis que l’on ne voit 

jamais la lumiére suivre des routes tortueuses, ni s’in- 

fléchir dans l’ombre.” 

Devant cette objection, Newton se voit obligé de revenir 

4 la théorie corpusculaire. 

“Question 29.—Les rayons de lumiére ne sont-ils pas 

de petits corps émis par les substances brillantes?... 
“« Question 30,—Les corps grossiers de la lumiére ne sont- 

ils pas convertissables l'un dans l’autre?... Le changement 

des corps en lumiére et de lumiére en corps matériels est 

trés conforme au cours de la nature, qui se plait aux trans- 

mutations.” 

La logique le force & poursuivre ’hypothése du vide et 

des atomes et méme a invoquer (question 28, p. 343), A ce 

sujet, Pautorité des anciens philosophes de la Gréce et de 

la Phénicie: on ne doit done pas s’étonner de voir sa per- 
plexité se traduire par les paroles suivantes : 

** Question 31° et derniére.—Les petites particules des 

corps n’ont-elles pas certains pouvoirs, vertus ou forces, 

par lesquels elles agissent 4 distance non seulement sur les 

rayons de lumiére pour les réfléchir, les réfracter ou les 

infléchir, mais aussi les unes sur les autres pour produire 

une grande partie des phénoménes de la Nature?” 

Mais il s’apercgoit qu'il va peut-étre un peu loin et qu'il 

va se compromettre: aussi ses secrétes tendances, dévelop- 

pées dans la premiére question, reparaissent-elles un in- 

stant: 
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Considéré & ce point de vue, le troisiéme livre de I’Optique n’est plus la discussion 

seulement impartiale de systemes opposés; il apparait comme la peinture des souffrances 
x 

dun génie puissant, tourmenté par le doute, tour a tour entrainé par les suggestions 

séduisantes de l'imagination et rappelé par les exigences impérieuses de la _ logique. 

Nous assistons & un drame, a Il’éternel combat de l'amour et du devoir, et c'est le 

devoir qui a été le plus fort. 

Telle est, jimagine, la genése intime de la Théorie des acces, mélange bizarre des 
x 

deux systemes opposés; elle a été beaucoup admirée a cause de l’autorité du grand 

géometre qui a eu la gloire de ramener l'ensemble des mouvements célestes & la loi 

unique de la gravitation universelle. 

Aujourdhui, cette théorie est abandonnée; elle est condamnée par lexperimentum 

crucis d’Arago, réalisé par Fizeau et Foucault: on doit pourtant reconnaitre qu'elle a 

constitué un réel progres par la notion précise et nouvelle quelle renferme. Le rayon 

de lumiére considéré jusque-la était simplement la trajectoire d'une particule en mouve- 

ment rectiligne: le rayon de lumiere tel que le décrit Newton possede une structure 

périodique réguliere, et la période ou longueur d’accés caractérise la couleur du rayon; 

cest la un résultat capital. Il ne manque plus qu'une interprétation convenable pour 

transformer le rayon lumineux en une onde vibratoire; mais il faut attendre un siécle, 

et cest le D™ Thomas Young qui, en 1801, aura lhonneur de la découvrir. 

Til 

Reprenant l'étude des lames minces, Thomas Young montre que tout s’explique 

avec une extréme simplicité, si l’on suppose que le rayon lumineux homogéne est 

Yanalyse de Vonde sonore produite par un son musical; que les vibrations de |’éther, 

soumises aux lois des petits mouvements, doivent se composer, c’est-a-dire interférer, 

suivant l’expression qu il propose pour exprimer leur action mutuelle. Quoique Young 

eft pris Vhabile précaution de se réclamer de l’autorité de Newton*, l’hypothése n’eut 

aucune faveur; son principe d’interférence conduisait a cette singuliere conséquence que 

la lumiére ajoutée & de la lumiére pouvait, dans certains cas, produire Jobscurité; 

résultat paradoxal, contredit par l’expérience journaliére. La seule vérification que Young 

apportat était lexistence des anneaux obscurs dans l’expérience de Newton, obscurité 

due, suivant lui, 4 l’interférence des ondes réfléchies aux deux faces de la lame; mais, 

comme la théorie newtonienne interprétait le fait autrement, la preuve restait douteuse; 

il fallait un experimentum crucis, Young ne réussit pas a lobtenir. 

“Comment ces attractions (gravité, magnétisme et élec- _initiateur de la théorie de |’émission. En réalité, il hésite 

tricité) peuyent-elles se produire, je ne m’y arréte pas ici. 

Ce que j’appelle attraction peut étre produit par des impul- 

sions ou par d’autres moyens que j’ignore...” 

Il y aurait encore bien des remarques curieuses 4 faire 

sur létat d’esprit du grand physicien, géométre et philo- 

sophe, qui se révéle naivement dans ces ‘‘ Questions.” Les 

courts extraits qui précédent suffisent, je crois, a justifier 

la conclusion qui ressort de cette étude, a savoir, que 

Newton n’avait pas, sur le mécanisme de la lumiére, les 

idées arrétées qu’on lui préte en le considérant comme 

entre les deux systémes opposés dont il apergoit claire- 

ment l’insuffisance et, dans cette discussion, il s’efforce de 

s’éloigner le moins possible des faits bien établis: voila 

pourquoi il ne formule aucune théorie dogmatique. I] 

serait done injuste de rendre Newton responsable de tout 

ce que les partisans de l’émission ont abrité sous son 

autorité. 

* The Bakerian Lecture, on the Theory of Light and 

Colours.—By Thomas Young. Philos. Trans. of the Royal 

Society of London, 1802, p. 12. 

d 2 
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La théorie des ondes retombait done encore une fois dans l’obscurité des contro- 

verses, et le terrible argument de la propagation rectiligne se dressait de nouveau 

contre elle. Les plus habiles géométres de |’époque, Laplace, Biot, Poisson, s’étaient 

naturellement rangés 4 l’opinion newtonienne: Laplace en particulier, le célébre auteur 

de la Mécanique céleste, avait méme pris l’offensive; il était allé attaquer la théorie 

des ondes jusque dans le plus solide de ses retranchements, celui qui avait été élevé 

par lillustre Huyghens. 

Huyghens, en effet, dans son T'raité de la Lumiere, avait résolu un probléme devant 

lequel la théorie de l’émission était restée muette, 4 savoir, l’explication de la biré- 

fringence du cristal d’Islande; la théorie des ondes, au contraire, ramenait 4 une con- 

struction géométrique des plus simples la marche des deux rayons, ordinaire et extra- 

ordinaire ; l’expérience confirmait en tous points ces résultats. Laplace réussit, & son 

tour, a l'aide d’hypothéses sur la constitution des particules lumineuses, & expliquer la 

marche de ces étranges rayons. La victoire de la théorie particulaire paraissait done 

complete: un nouveau phénoméne arrivait méme tout & point pour la rendre éclatante. 

Malus découvrait qu'un rayon de lumiére naturelle, réfiéchi sous un certain angle, 

acquiert des propriétés dissymétriques semblables a celles des rayons du cristal d’Islande; 

il expliqua ce phénoméne par une orientation de la molécule lumineuse, et, en consé- 

quence, nomma cette lumitre, lumiére polarisée; était un nouveau succes pour I’émission. 

Le triomphe ne fut pas de longue durée; en 1816, un jeune ingénieur, A peine 
sorti de Ecole Polytechnique, Augustin Fresnel, confiait & Arago ses doutes sur la théorie 
en faveur et lui indiquait les expériences qui tendaient & la renverser; s’appuyant sur 
les idées d’Huyghens, il avait attaqué la redoutable question des rayons et des ombres et 
Pavait résolue; tous les phénoménes de diffraction étaient ramenés & un_probléme 
d’analyse et Vobservation vérifiait merveilleusement le calcul. Il avait, sans les connaitre, 
retrouvé les raisonnements de Young, ainsi que le principe des interférences; mais, plus 
heureux que lui, il apportait leaperimentum crucis, lexpérience des deux miroirs; 1A, ° 
deux rayons issus d'une méme source, purs de toute altération, produisent par leur 
concours, tantot de la lumiére, tantét de Yobscurité. Liillustre Young fut le premier 
4 applaudir au succts de son jeune émule et lui témoigna une bienveillance qui ne 
se démentit jamais. 

Ainsi, grace 4 l’expérience des deux miroirs, la théorie du D*™ Young, c’est-a-dire 
l’analogie complete du rayon lumineux et de l’onde sonore, est solidement établie. 

En outre, la théorie de la diffraction de Fresnel montre la cause de leur dissemblance; 
la lumiére se propage en ligne droite parce que les ondes lumineuses sont extrémement 
petites; au contraire, le son se diffuse parce que les longueurs des ondes sonores sont 
relativement trés grandes. 

Ainsi s‘évanouit la terrible objection qui avait tant tourmenté l’esprit du grand 
Newton. 

Mais il restait encore & expliquer une autre différence essentielle entre l’onde 
lumineuse et onde sonore; celle-ci ne se polarise pas, comment se fait-il que l’onde 
lumineuse se polarise ? 

La réponse A cette question paraissait si difficile que Young déclara renoncer A 
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la chercher. Fresnel travailla plus de cinq ans & la découvrir; elle est aussi simple 

qu inattendue : 

L’onde sonore ne peut pas se polariser parce que ses vibrations sont longitudinales ; 

la lumiére, au contraire, se polarise parce que ses vibrations sont transversales, c’est-a-dire 

perpendiculaires au rayon lumineux. 

Désormais, la nature de la lumiére est complétement établie; tous les phénoménes 

présentés comme des objections absolues s’expliquent avec une merveilleuse facilité, jusque 

dans leurs plus minutieux détails. 

Je voudrais pouvoir vous retracer par quel admirable enchainement d’expériences et 

de raisonnements Fresnel est arrivé 4 cette découverte, lune des plus importantes de la 

science moderne; mais le temps me presse. I] m’a suffi de vous faire comprendre la 

grandeur des difficultés quil a fallu vainere pour l’accomplir; j'ai hate d’en faire res- 

sortir les conséquences. 

IV 

Vous avez vu, au début, les raisons purement physiologiques qui font de l'étude 

de la lumiére le centre nécessaire des informations de lintelligence humaine. Vous devez 

juger maintenant par les péripéties de ce long développement des théories optiques, quelle 

préoccupation elle a toujours causée aux puissants esprits qui sintéressent aux forces 

naturelles. En effet, tous les phénomenes qui se passent sous nos yeux impliquent une 

transmission 4 distance de force ou de mouvement; que la distance soit infiniment grande, 

comme dans les espaces célestes, ou infiniment petite, comme dans les intervalles molé- 

culaires, le mystére est le méme. Or, la lumiere est l’'agent qui nous amene le mouve- 

ment des corps lumineux: approfondir le mécanisme de cette transmission, c’est approfondir 

celui de toutes les autres, et Descartes en avait eu l’admirable intuition lorsqu’il embrassait 

tous ces problémes dans une méme conception mécanique: voila le lien secret qui a 

toujours attiré les physiciens et les géométres vers l’étude de la lumiere. 

Envisagée 4 ce point de vue, l’histoire de lOptique acquiert une portée philosophique 

considérable; elle devient histoire des progrés successifs de nos connaissances sur les 

moyens que la Nature emploie pour transmettre a distance le mouvement et la force. 

La premiére idée qui est venue a lesprit de lhomme, des |’état sauvage, pour 

exercer sa force hors de sa portée, c’est le jet d'une pierre, d’une fleche ou dun _pro- 

jectile queleonque; voila le germe de la théorie de l’émission: cette théorie correspond 

au systéme philosophique qui suppose un espace vide ot le projectile se meut librement. 

A un degré de culture plus avancé, homme, devenu physicien, a eu l'idée plus 

délicate de la transmission du mouvement par ondes, suggérée d’abord par l'étude des 

vagues, puis par celle du son. Ce second mode suppose, au contraire, que l’espace est 

plein: il n’y a plus ici transport de matiére, les particules oscillent dans le sens de 

la propagation, et c’est par compression ou dilatation d’un milieu élastique continu que 

le mouvement et la force sont transmis. Telle a été Vorigine de la théorie des ondes 

lumineuses; sous cette forme, elle ne pouvait représenter qu'une partie des phénoménes, 

ainsi qu’on l’a vu précédemment; elle était done insuffisante. Mais les géométres et 
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les physiciens avant Fresnel ne connaissaient pas d’autre mécanisme ondulatoire dans un 

milieu continu. 

La grande découverte de Fresnel a été de révéler un troisitme mode de trans- 

mission, tout aussi naturel que le précédent, mais qui offre une richesse de ressources 

incomparable. Ce sont les ondes a vibrations transversales excitées dans un milieu 

continu incompressible, celles qui rendent compte de toutes les propriétés de la lumiére. 

Dans ce mode ondulatoire, le déplacement des particules met en jeu une élasticité dun 

genre spécial; c’est le’ glissement relatif des couches concentriques a l’ébranlement qui 

transmet le mouvement et Jeffort. Le caracttre de ces ondes est de nimposer au 

milieu aucune variation de densité, comme dans le systeme de Descartes. 

La richesse de ressources annoncée plus haut provient de ce que la forme de la 

vibration transversale reste indéterminée, ce qui confére aux ondes une variété infinie 

de propriétés différentes. 

Les formes rectiligne, circulaire, elliptique, caractérisent précisément ces polarisations 

si inattendues que Fresnel a découvertes et a laide desquelles il a si admirablement 

expliqué les beaux phénomenes d’Arago produits par les lames cristallisées. 

Lexistence possible dondes se propageant sans changement de densité a modifié 

profondément la théorie mathématique de lElasticité. Les géométres retrouvérent dans 

leurs équations ces ondes a vibrations transversales qui leur étaient inconnues; ils apprirent, 

en outre, de Fresnel la constitution la plus générale des milieux élastiques, A laquelle 

ils n’avaient pas songé. 

C'est dans son admirable Mémoire sur la double réfraction que le grand physicien 

émet lidée que, dans les cristaux, l’élasticité de l’éther doit étre variable avec la direction, 

condition inattendue et d’une extréme importance qui transformera les bases fondamentales 

de la Mécanique moléculaire; les travaux de Cauchy et de Green en sont la preuve 

frappante. 

De ce principe, Fresnel conclut la forme la plus générale de la surface de l’onde 

lumineuse dans les cristaux et retrouva (comme cas particulier) la sphére et lellipsoide 

que Huyghens avait assignés au cristal d’Islande. 

Cette nouvelle découverte excita ladmiration universelle parmi les physiciens et les 

géométres; lorsque Arago vint l’exposer devant |’Académie des Sciences, Laplace, si long- 

temps hostile, se déclara convaincu. Deux ans aprés, Fresnel, élu membre de TAcadémie 

& Vunanimité des suffrages, était élu, avec la méme unanimité, membre étranger de la 

Société Royale de Londres; ce fut Young lui-méme qui lui transmit la nouvelle de cette 

distinction avec lhommage personnel de son admiration sincere. 

V 

L’établissement définitif de la théorie des ondes impose la nécessité d’admettre l’existence 

dun milieu élastique pour transmettre le mouvement lumineux. Mais toute transmission 

& distance de mouvement ou de force n’implique-t-elle pas la méme condition? C'est 

a Faraday que revient l’honneur d’avoir, en véritable disciple de Descartes et de Leibnitz, 

ace cacn aaa timieae 
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proclamé ce principe et d’avoir résolument attribué aux réactions du milieu ambiant 

Yapparente action & distance des systémes électriques et magnétiques. Faraday fut ré- 

compensé de sa hardiesse par Ja découverte de linduction. Et, comme l’induction s’exerce 

méme a travers un espace vide de matiére pondérable, on est forcé d’admettre que le milieu 

actif est justement celui qui transmet les ondes lumineuses, |’éther. 

La transmission d’un mouvement par un milieu élastique ne peut pas étre instantanée ; 

si c'est vraiment l’éther luminitére qui est le milieu transmetteur, linduction ne doit-elle 

pas se propager avec la vitesse des ondes lumineuses. 

La verification était malaisée; Von Helmholz, qui tenta la mesure directe de cette 

vitesse, trouva, comme autrefois Galilée, pour la vitesse de la lumiére, une valeur pratique- 

ment infinie. 

Mais l’attention des physiciens fut attirée par une singuliére coincidence numérique: 

le rapport de l’unité de quantité électrostatique & lunité électro-magnétique est représenté 

par un nombre précisément égal & la vitesse de la lumieére. 

Lillustre Clerk Maxwell, suivant les idées de Faraday, n’hésita pas A voir dans ce 

rapport la mesure indirecte de la vitesse dinduction, et, par une série d intuitions 

remarquables, il parvint a élever cette célébre théorie électro-magnétique de la lumiére, 

qui identifie, dans un méme mécanisme, trois groupes de phénoménes en apparence 

completement distincts: Lumiere, Electricité, Magnétisme. 

Mais les théories abstraites des phénomenes naturels ne sont rien sans le contréle 

de lexpérience. La théorie de Maxwell fut soumise a I’épreuve et le succes dépassa 

toute attente. 

Les résultats sont trop récents et trop bien connus, ici surtout, pour qu’il soit 

nécessaire d’y insister. 

Un jeune physicien allemand, Henry Hertz, enlevé prématurément A la Science, 

empruntant & von Helmholz et & Lord Kelvin leur belle analyse des décharges oscil- 

lantes, réalisa si parfaitement des ondes électriques et électro-magnétiques, que ces ondes 

possedent toutes les propriétés des ondes lumineuses; la seule particularité qui les dis- 

tingue, c’est que leurs vibrations sont moins rapides que celles de la lumiere. 

Il en résulte qu’on peut reproduire, avec des décharges électriques, les expériences 

les. plus délicates de lOptique moderne: réflexion, réfraction, diffraction, polarisation 

rectiligne, circulaire, elliptique, ete. 

Mais, je m’arréte, Messieurs; je sens que j'ai assumé une tache trop lourde en 

essayant de vous énumérer toutes les richesses que les ondes a vibrations transversales 

concentrent aujourd’hui dans nos mains. 

J'ai dit, en commencant, que l’Optique me paraissait étre la Science directrice de 

la Physique moderne. 

Si quelque doute a pu sélever dans votre esprit, j’espere que cette impression 

s'est effacée pour faire place & un sentiment de surprise et d’admiration en voyant 

tout ce que l'étude de la lumiére a apporté d'idées nouvelles sur le mécanisme des 

forces de la Nature. 

Elle a ramené insensiblement 4 la conception cartésienne d’un milieu unique rem- 

plissant Tespace, siege des phénoménes électriques, magnétiques et umineux; elle laisse 
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entreyoir que ce milieu est le dépositaire de l’énergie répandue dans le monde matériel, 

le véhicule nécessaire de toutes les forces, l’origine méme de la gravitation universelle. 

Voila l’euvre accomplie par l’Optique; c’est peut-étre la plus grande chose du siécle! 

L’étude des propriétés des ondes envisagées sous tous leurs aspects est donc, 4 

Vheure actuelle, la voie véritablement féconde. 

C'est celle qu’a suivie, dans sa double carritre de géométre et de physicien, Sir 

George Stokes, & qui nous allons rendre un hommage si touchant et si mérité. Tous 

ses beaux travaux, aussi bien en Hydrodynamique qu’en Optique théorique ou expéri- 

mentale, se rapportent précisément aux transformations que les divers milieux font subir 

aux ondes qui les traversent. Dans les phénoménes variés quil a découverts ou 

analysés, mouvement des fluides, diffraction, interférences, fluorescence, rayons Réntgen, 

Vidée directrice que je vous signale est toujours visible, et c’est ce qui fait l’harmo- 

nieuse unité de la vie scientifique de Sir George Stokes. 

Que l'Université de Cambridge soit fiere de sa chaire Lucasienne de Physique 

mathématique, car, depuis Sir Isaac Newton jusqu’a Sir George Stokes, elle contribue 

pour une part glorieuse aux progrés de la Philosophie naturelle. 
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I. On the analytical representation of a uniform branch of a monogenic function. 

By G. Mirrac-LEFFer. 

[Received 25 April, 1899.] 

Ler a denote a point in the plane of the complex variable z, and associate with 

a an unlimited array of quantities 

BiG), FOG) pi ON ayer) (a) eee eee (1), 

where each quantity is completely determinate when the position which it occupies in 

the array is known. 

Suppose that, as is possible in an infinite number of ways, these quantities F are 

chosen so that Cauchy’s condition*, that the series 

P (z\a)= = 
n=0 

1 
ae AC) HB (Thr eq, COKOOOOOOOE COCO Stafalotelstalsial= 2), ihm (a) (e—a) (2) 

shall have a circle of convergence, is satisfied. 

In the theory of analytic functions constructed by Weierstrass, the function is defined 

by the series P(x a) and by the analytic continuation of this series. The function is 

completely determinate provided the elements 

PG), LEM LIMO) soos 5 LE) (@)y o0e 

are given. We denote generally by #(#) the function in its totality which is defined 

by these elements. 

If K is a continuum formed by a single piece, which nowhere overlaps itself and 

encloses the point a, and if it is such that the branch of the function F(x) formed 

by P(a#a) and by its analytic continuation within K remains uniform and regular, I 

shall denote this branch by FA (x). The problem to be discussed here is that of finding 

* Cauchy, Cours d’Analyse deUV Ecole royale polytechnique, is a finite magnitude. It is known that, if this finite 

1** partie, Analyse Algébrique, Paris 1821, chapitre 9, § 2, 

theoréme 1, p. 286. Expressed in modern phraseology, 

Cauchy’s condition would be formulated thus: The upper the circle of convergence of the series (2). 

limit of the limiting values of the moduli 

1 

aoe a 

Vou. XVIII. 1 

magnitude be denoted by = , the quantity r is the radius of 
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an analytical representation of a branch FK(x) which is to be chosen as extensive as 

possible. 

Merely from the definition of the analytic function F(x) and from that of the branch 

FK (a), there follows at once a kind of analytical representation of the branch FK (x) 

in question. In effect, such a representation is always given by an enumerable number 

of analytical continuations of P(«|a). But as the radius of the circle of convergence 

of such an analytical continuation is given only by Cauchy’s criterion already quoted, 

this mode of representing FK(«) becomes extremely complicated and rather unworkable. 

The analytical continuation ought rather to be regarded as the definition of the function 

than as a mode of representation. 

There is another mode of representation which arises immediately from the principles 

upon which Cauchy’s theory of functions is based. Such a representation is given by 

the formula 

PK (x)= | % = = de ee heen ete Seen (3), 

where the integral is taken along a closed contour S within K. By the definition of an 

integral, it is clear that the integral (3) can be replaced by an infinite sum of rational 

functions of wz, the coefficients of which are expressed by special values of 2 (there being 

an enumerable number of these) and the corresponding values of FX (#). This observation 

was the point of departure of the investigation of M. Runge* as well as of the subsequent 

investigations of MM. Painlevé, Hilbert and others. The analytical representation thus 

obtained accordingly requires a knowledge of the value of FA (x) at an infinite and 

enumerable number of points. Now in the customary problems of analysis these values 

are not known. In general it is, on the contrary, the series of values 

F(a), F(a), F°(a),... 

which is given. Adopting the usual point of view, it is thus for instance in the problem 

of the integration of differential equations. 

When, then, we have to find the analytical representation of FA (2), it must be drawn 

from the elements (1) and, by means of those elements alone, a formula must be constructed 

to represent the branch FK («) completely. Let C denote the circle of convergence of the 

series (2), The expression 

S 
“ 

1 
— Fe (a — a) ra (a) (a — a) 

0 

then gives the analytical representation of FC (x), the equality 

: 21 
FC («)= > — F (a) (e#-a)t 

w=0h: 

holding for all points within C. This expression is constructed by means of the elements 

F(a), F(a), F(a), ... 

* “ Zur Theorie der eindeutigen analytischen Functionen,” § 1, pp. 229—239, Acta Mathematica, tome 6. 

a? eo 
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and of the rational numbers — independent of the choice of the elements: and it is to 

pw! 

be remarked that the expression is formed without any a priori knowledge of the radius 

of the circle @. This radius is determinate, in connection with the elements, by Cauchy’s 

theorem, and there are various methods of obtaining it from them; but it does not enter 

explicitly into the expression. Thus Taylor’s series is formed simply by the elements 

(a), HEN (Gy eELCN (G) ieee, 

when these are the derivatives of the function. 

The following question may therefore be proposed: Is it possible to obtain for a branch 

FK (x) with the greatest range possible an analytical representation of this nature? As I 

have shewn in various notes, published in Swedish by the Stockholm Academy of Sciences 

during the past year, the reply is in the affirmative, and consequently it is possible to fill 

an important lacuna in the theory of analytic functions. In fact, hitherto it has been 

impossible to give for the general branch FX (x) an analytical representation similar to that 

found from the very beginning of the theory for the branch FC (z). 

For a fundamental treatment of the question which has been proposed, it is first 

necessary to define a domain A which shall be as great as possible. This I shall do by 

the introduction of a new geometrical conception—a Star-figure. 

In the plane of the complex variable a, let an area be generated as follows. Round 

a fixed point a let a vector / (a straight lme terminated at a) revolve once: on each position 

of the vector, determine uniquely a point, say a, at a distance from a greater than a 

given positive quantity, this quantity being the same for all positions of the vector. The 

points thus determined may be at a finite or at an infinite distance from a When the 

distance between a, and a is finite, the part of the vector from a, to infinity is excluded 

from the plane of the variable. 

The region which remains after all these sections (cowpures) in the plane of a have 

been made is what I call a Star-figure. Manifestly the star is a continuum formed of a 

single simply-connected area. 

Associate with a the elements 

LAG), THON LEO) coae L8G); ac 

satisfying Cauchy’s condition; and form the series 

P (a|\a)= 5 + Fw (a)(~@—a)'. 
w=0K: 

Construct the analytical continuation of P(#\a) along a vector from a. It may be the 

case that every point of this vector belongs to the circle of convergence of a series which 

itself is an analytical continuation of P(#|a) obtained by proceeding along the vector; but 

it is also possible that, on proceeding along the vector, a point is met not situated within 

the circle of convergence of any analytical continuation of P(«# a) along the vector. In the 

latter case, I exclude from the plane of the variable that part of the vector comprised 

1—2 
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between the point thus met and infinity. On making this vector describe one complete 

revolution round a, a Star-figure (as defined above) is obtained. 

This star being given in a unique manner as soon as the elements (1) are assigned, I 

call it the Star belonging to these elements, and I denote* it by A. In defining the star, 

straight lines have been used as vectors: it is easy to see that curved lines, suitably 

defined, might have been chosen for the purpose. 

In accordance with the phrase the star belonging to the elements (1), I speak of the 

function F(a), as well as of the functional branch FA (x), belonging to these elements. 

These preliminaries being settled, my main theorem is as follows:— 

Denote by A the star belonging to the elements 

F(a), F(a), F®&(@), .....- 

and by FA(a) the corresponding functional branch belonging to the same elements; let X 

be any finite domain within A; and let o denote a positive quantity as small as we 

please. Then it is always possible to find an integer 7 such that the modulus of the 

difference between FA(ax) and the polynomial 

GA = Sc F*(a) (a —a)’ 

for values of n greater than i, is less than o for all the values of x belonging to X. The 

coefficients c™ are chosen a priori and are absolutely independent of a, of F(a), F(a), 

F(a), ..., and of «. 

It is very important to observe that the explicit knowledge of the star is not 

necessary for the construction of the function g,(z). When the elements F(a), F(a), 

F(a), ... are once given, the star belonging to them is definite; but it does not enter 

explicitly into the expression g(x). The case is precisely the same as for Taylor's 

series where the radius of the circle of convergence does not enter explicitly into the 

expression. 

The theorem can be proved by very elementary considerations, using especially the 

fundamental theorem established by Weierstrass in his memoir Zur Theorie der Potenzrethen, 

dated+ 1841. 

Passing from the same theorem for functions of several variables, we can easily obtain 

a generalisation of my main theorem which includes the case of any finite number of inde- 

pendent variables. 

The coefficients denoted by ec are given @ priori. They are quite independent of 

, : : ‘ iis ; : 
the special function to be represented just as are the coefficients a in Taylor's series. 

But the choice of these coefficients is not unique. On the contrary it can be made in 

an infinitude of ways; and when conditions are given, the problem arises of making a 

choice which is the best adapted to these conditions. 

* As the first letter of the word aoryp. + Ges. Werke, Bd. 1, p. 67. 



OF A UNIFORM BRANCH OF A MONOGENIC FUNCTION. 9) 

The formula 

ne nt nen 1 Grass act Bad fa — a\nthot.-- tha 
mh — LaT wee in y, WOS 20 Sol oS (@(= (4) 

hy=0 hg=0  Iin=0 Ma: bye «es Mn: nv 

gives an expression for g,(x) which perhaps is the simplest of all as regards the mere 

form. There are other forms in which the coefficients c®” are rational numbers, or are 

numbers depending in a special manner upon the transcendents e and 7, and which are of 

great simplicity. 

Upon this I shall not dwell: but I enunciate another theorem which is an almost 

immediate consequence of my main theorem. 

Denote by A the star which belongs to the elements 

IE@), L2O(@\, IBEX), sooo ; 

and by FA(«) the corresponding functional branch belonging to the same elements. This branch 

FA(«) can always be represented by a series 

where the quantities G(x) are polynomials of the form 

G, (x) = Se F(a) (w — a)’, 

each coefficient ¢" being a determinate number (which can be taken as rational) depending 

only upon pw and v. The series 
wo 

py G2), 
n=0 

converges for every value of « within A, and it converges uniformly for every domain within 

A. For all values within A we have 

i Ms 
G,.(z) = Lim g,(2), 

0 “ i) 

where g,(“) ws the polynomial in my main theorem. 

In what precedes, a definition has been given of the star belonging to the elements 

TEE (Gi) WHOM (Ga). CIC) ee RMR see Ce (1). 

In accordance with this terminology, we can speak of the circle belonging to the 

elements (1) which, in fact, is the circle of convergence C of the series 

P(a@|a)= = a F(a) (a@— a). 

It is evident that this circle is inscribed in the star which belongs to the same elements. 

The circle may be regarded as a first approximation to the star. To the circle C corre- 

sponds an analytical expression P(«x|a) which has the property of representing F'A (2) 

within C, of converging uniformly for any domain within C, and of ceasing to converge outside 
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C. Between the circle and the star, intermediary domains C, (w=1, 2, 8, ...),—exist, 

unlimited in number; each of them in succession includes the domain that precedes it: 

and they can be chosen so that, corresponding to each domain C™, there is an analytical 

expression representing F'A(#) within C™ which converges uniformly for every domain 

within C™ and ceases to converge outside C™. On this question there is an interesting 

study to be made which I have merely sketched in my Swedish memoirs; to it I shall 

return on another occasion. 

The only writer who, so far as I know, has found a general representation of FA («) 

valid outside the circle belonging to the elements (1) is M. Borel. In two important 

memoirs*, M. Borel is concerned with what he calls the summability of a series. It appears 

to me that the chief interest of this imvestigation of M. Borel is that the author really 

finds an expression valid for a domain which in general includes the circle C. The 

domains which I have called C) can easily be chosen so that C® becomes this domain 

K: so that M. Borel’s domain AK becomes the second approximation to the Star, the 

circle being the first as already indicated. 

But M. Borel has discussed the same class of ideas in another publication. In his 

book+ published without any acquaintance with my Swedish Notes of the same year, the 

author says} :— 

“Pour résumer les résultats acquis sur le probleme de la représentation analytique 

“des fonctions uniformes, nous pouvons dire§ que nous en connaissons deux solutions 

“completes; l'une est fournie par le théoreéme de Taylor, l’autre par le théor’me de 

“M. Runge}. Ces deux solutions ont une trés grande importance & cause de leur 

“généralité; mais chacune d’elles a de graves inconvénients dont les principaux sont, pour 

“Ja série de Taylor, de diverger en des régions ot la fonction existe; et, pour la repré- 

“sentation de M. Runge et celles de M. Painlevé, détre possibles d’une infinité de 
“manieres 4). 

“Le but idéal a atteindre, c’est de trouver une représentation réunissant les avantages 

“de la série de Taylor et des séries de M. Runge ou de M. Painlevé, sans avoir aucun 

“de leurs inconvénients**, et le but immédiat, c’est de trouver une telle représentation 

“pour des classes de fonctions de plus en plus étendues++.” 

* Journal de Mathématiques, 5™: Sér., t. ii. (1896), 

“‘Fondements de la théorie des séries divergentes som- 

mables,” pp. 103—122; ‘Sur les séries de Taylor admettant 

leur cercle de convergence comme coupure,” pp. 441—454. 

+ Lecons sur la théorie des fonctions, Paris, 1898. 

t pp. 88 ff. 

§ All that follows on the analytical representation of 

uniform functions can be applied, mutatis mutandis, to the 

functional branch FA (<x). 

|| I have indicated above that, in M. Runge’s theorem, 

there is nothing which is not already in principle contained 

in the representation by Cauchy’s integral. 

‘| In what precedes, I have pointed out what appears to 

me a graver inconvenience, viz. that these expressions 

require the knowledge of an enumerable number of values 

of the function which correspond to points that approach 

indefinitely near the limit of existence of the function. 

** Tt will be seen that I have achieved this aim, not only 

for uniform analytic functions but also for the functional 

branch FA (x). It might be asked whether it would not be 
possible to achieve the same aim for the function F (x) in 
its totality. It is not so: such a question is too general. 

The problem was mainly that of limiting the question so as 

to make a solution possible without diminishing the 

generality more than was necessary. I believe that this 

problem is solved by the introduction of the star and of the 
functional branch Fd (x). 

++ It appears that M. Borel has not regarded his own 
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There exist a certain number of other investigations having relations with my theorems 

but belonging to a range of ideas quite different from M. Borel’s. 

of the representation which follows from Cauchy’s integral 

1 pre 
Q71. 

I have already spoken 

FA (a) = dz. 
Z—2£ 

With M. Runge, we can transform this integral into a series every term of which is a poly- 

nomial in w But in order to construct these polynomials, it is necessary to know not only 

the star A but also the values of the function for an enumerable number of points 

approaching indefinitely near the boundary of A. 

in which the elements F(a), F (a), F (q),... 

function. 

Investigations have been carried out 

are substituted for these values of the 

But these investigations always abut, in a manner more or less direct, upon 

the conformal representation of the circle of convergence on another figure known before- 

hand: and they still require that we should know, as to the function which is to be 

represented, that it is regular within the domain represented on the circle. The most 

interesting and the most significant theorem in this range of ideas appears to me to 

be that of M. Painlevé*: 

Given a convex domain D and an internal point a, a set of polynomials 

1 ,5.(@),) Wy (@)-- 5 Wi. au lads); 

can be constructed such that any function F(x) holomorphic in D is developable in that 

domain in the form 

F(a)= & {F,(a) Uy (2) + Fo (a) Wy (x) +... + F™ (a) Ty (@)}- 
w=0 

The resemblance between M. Painlevé’s formula and mine is obvious. Writing 

TI, (2) = ¢ (w@—a) 

in M. Painlevé’s formula, mine follows. Yet the resemblance is entirely formal, because the 

formation of the polynomials II,,(v), II, (z),..., U,,.(@) requires the a priori establishment 

of the domain D and the knowledge of the function F(x) that it is holomorphic in D: 

whereas with me the formula of representation, so far from supposing any a priori know- 

ledge of the star A, gives on the contrary the means of determining the start. 

In other publications, it is my intention to develop other theorems in the same range 

of ideas as well as to return to the numerous applications that can be made of my 

theorems: I restrict myself in this place 

explained that, besides the circle C and the 

to the following indications. I have just 

star A, there is an infinite number of other 

inyestigations on the summability of series from the point appeared in the Comptes Rendus (23 May, 1899). In the 

of view just indicated so clearlyin his book, Otherwise he 

rather might have said: that the immediate aim was to 

find a general representation valid for a domain still more 

extensive than this domain K (that is, Cl). 
* Comptes Rendus, t. cxxvi (24 Jan., 1898), pp. 320, 321. 

+ While the present note was passing through the 

press, a new and interesting note of M. Painleyé’s, dis- 

cussing the relation of these investigations to my own, has 

same number of the Comptes Rendus, there is a note by 

M. Borel related to my investigations. The reader is also 
referred to an addition to the ‘‘mémoire sur les séries 

divergentes par i. Borel” (Ann. de VEc. Norm., 1899), and 

to two important notes by M. Picard (Comptes Rendus, 

5 June, 1899) and M. Phragmén (Comptes Rendus, 

12 June, 1899): all of them are connected with these 
investigations. 
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stars CO, C®, C®,... each of which is circumscribed to that which precedes it and is 

inscribed* to that which follows it; to these there correspond expansions PC" (a\a), 

PC® («\a), PC (a\a),... which preserve all the principal characters of the Taylor's series 

PC(a\a). The expression PC («\a) is merely a («+1)-ple series with limited convergence. 

There is another method of generalising Taylor’s series as follows: 

Denote by A a star with its centre at a, and by A® an associate star, concentric 

with A and inscribed in A, defined with reference to A in some suitable manner. This 

star A® is to be such that it becomes a circle when 8=1 and that it encloses m tts 

interior every domain within A when the quantity § ts sufficiently small. 

Now suppose that A is the star belonging to the elements F(a), F(a), F°(a),..., 

and construct the series 

Ps (a\a)= F(a) 

+ 5 (a, (8) Fo (a) (w@—a) + ha (8) F® (a) (ea +... + 1O(8) F (a) (@— a} «..(5). 
A=1 

The coefficients 
=i Leck petty 

as 
77 > pee > 

he (8), see; De iB er, SE 

can be assigned a priori, independently of a, of F(a), F” (a), F®(a),... and of x, 80 

that the series possesses the following properties: it converges for every point within A® 

and converges uniformly for every domain within A®. If convergence takes place for any 

value, the value necessarily belongs to the interior of A® or is a point of the star A®. 

When 6=1, the series becomes Taylor's series. 

The equality 

FA (2) = Ps (c\a), 
exists throughout the interior of A”. 

Among other differences between the two generalisations of Taylor’s theorem, this 

may be noted: that in the first the stars CM, C®, C®,... form, so to speak, a discontinuous 

sequence of domains of convergence, while in the second there is a continuous transition 

from the circle C(= A") to the star A (= A"). 

The star which belongs to the elements F(a), F" (a),... is given at the same time 

as these elements, just as the circle which belongs to the elements also is given. But 

in order actually to construct the star on the circle, we must in the first case know 

the points of the star (it is thus that I describe the points formerly denoted by a,) 

and in the second case the distance between a and the nearest point of the star. 

It might be difficult to deduce this knowledge simply by the study of the elements 

F(a), F® (a), F®(a),..... But in some problems the points of the star are directly given: 

e.g. the determination of the general integral of a differential all of whose critical points 

are fixed, being finite in number. In this case, we can construct the star directly and 

can obtain an analytical expression for the integral valid over the whole plane except 

* A star is inscribed in another which circumscribes it if the whole of the first star belongs to the second and if 

the two stars have common points such as aj. 
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at a finite number of determinate sections. Notwithstanding the remarkable researches of 

M. Fuchs and M. Appell and others, this problem of finding a representation, which at 

once is unique for the whole plane and is sufficiently simple, has not hitherto been 

solved. 

The beautiful researches of MM. Fabry, Hadamard, Borel and other French writers, 

which have their origin in M. Darboux’s memoir* “Sur l’approximation des fonctions de 

trés-grands nombres” and which aim at the development of the criteria whether a point on 

a circle belonging to the elements F(a), F(a), F” (a),... is a singularity of the function 

or not, are well known. My theorems make it possible to study this problem from a 

more general point of view than these writers and to find the criteria which distinguish 

the points of the star belonging to the elements F(a), F” (a), F(a), ... from other points. 

It can be stated that, to each selection of the coefficients called c™, there corresponds 

a special system of criteria. 

For these investigations, the following theorem can serve as the point of departure :— 

If «x is a point within the star A belonging to the elements F(a), F(a), F® (a),..., 

and if € ws a positive quantity sufficiently small, it is always possible to choose a positive 

number & so that, o being a positive quantity as small as we please, a positive integer 

X exists such that 

|h,™ (8) F (a) (1 + €) (@— a) + hy (8) F® (a) (1 + €) (a@—a) 2+... +2%(a) F(a) {(1 +6) (a2—-a)}\ |<, 

provided+ A>. 

If on the contrary, « does not le within A, this property does not hold. 

M. Poincaré has pointed out a certain substitution which is of great value in the study 

of certain mechanical problems, particularly in that of n bodies. When this substitution is 

used, a development of the function in powers of the time can be obtained which is valid 

for real values of the time as far as the first positive or negative singularity nearest the 

origin. But the mechanical problem requires in general a knowledge of the first positive 

singularity, and not merely the nearest singularity, positive or negative. It is obvious that 

the resolution of this problem can be brought within my theorem. In fact, knowing the 

elements F'(¢,), F" (t,), # (t,),... at a given epoch ¢,, we can obtain a development which 

represents the function and is valid for all real values of ¢>¢, up to the first singularity of 

the function, 

Recently I had an opportunity of giving an account of a portion of my investigations 

before the Academy of Sciences of Turin. My friend M. Volterra then made the following 

interesting communication. 

If in any dynamical problem the unknown functions be regarded as analytic functions 

of the time, the problem will be solved completely from the analytical point of view when 

it can be shewn that the real axis of the time falls completely within the stars of the 

* Liouville, Journ. de Math., 3™° Sér., t. iv. (1875), + The quantities 5 and h” (6) have the same significance 
pp. 5—54. : bn 

as in the formula (5). 

Wor. SVAN 2 
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unknown functions, the centre of the stars being the initial value of the time. In fact, 

it is sufficient to employ M. Mittag-Leffler’s expansions to obtain the unknown functions 

for any value of the time. The coefficients in the expansions will be determined by the 

initial conditions of motion. 

1°. A very extensive class of dynamical equations can be reduced to the integration 

of differential equations of the type 

Fie. (r) 

Ps = Bs 2x Asn PxPrs 
11 

where a” +a=0. Since in this case a finite strip enclosing the real axis is contained 

in the stars of the functions p,, the centre being ¢=0, new forms of the integrals of 

these equations can be derivable by M. Mittag-Leffler’s expansions*. 

2°. Passing to the problems of attraction, it may be remarked that the problem of 

the motion of a point attracted by fixed points placed in a straight line, the force being 

according to Newton’s law, has not been resolved when the number of attracting points 

is greater than two. Let us consider the general case and suppose that the moment of 

the initial velocity of the moving point m, with reference to the axis x of fixed points, 

is not zero. Then 9 being the angle which the plane ma makes with a fixed plane 

through x, and r being the distance of m from the axis x, we have the areal integral 

7°$ = C = constant, 

and the integral of vis viva 7—P=h=constant, where 

T =}m (#7 + °¥ + 2), a 

T being the vis viva and P the potential: in the latter expression the masses of the 

fixed point are denoted by M; and their distances from m by 7;. It is at once obvious 

that 7 cannot vanish. In effect, if for t=¢,, 7 can become indefinitely small, let us 

take this quantity as an infinitesimal of the first order. On account of the areal 

integral, $ would be infinitely great of the second order, and consequently °° (= C3) 

would also be of the second order: Z therefore would be infinitely great of the second 

order. But P if it become infinitely great, can be so only to the first order because the 

quantities 7; are greater than 7; hence if 7 could become infinitely small, the integral of 

vis viva would not be verified. It therefore is to be inferred that the real axis of the 

time is contained in the stars of the unknown elements: and consequently these elements 

are expressible by Mittag-Leffler’s series. 

3°. Given n points repelling one another according to the Newtonian law of force, 

the integral of vis viva may be written 

mm, 
h, 33m; (@2+ 97 +27) +5 

i ts Tiss 

* I have studied this class of equations in three Notes class can be still further extended so as to include many 

published by the Academy of Turin in 1898 and 1899. The of the classical problems in dynamics. 
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where 2;, y;, 2 are the coordinates of the moving points, m, their masses, 7;,, their 

distances, and / is a constant quantity. By noting that in this equation all the terms 

are positive, we infer that the points cannot collide and that their velocities are finite. 

Hence in this case also, the real axis of the time lies within the stars. But we can 

pass from the case of repulsion to that of attraction by changing ¢ into ¢,/—1. Through 

this transformation, the components of the velocities become imaginary if they were real, 

and vice versa. But if at the beginning of the time they were zero, the transformation 

leaves them zero. Hence we deduce the very curious theorem: 

Consider the problem of mn bodies in the most general case, with the sole condition 

that the initial velocities of the bodies are zero: then taking the origin at the beginning 

of the time, the real axis is not included within the stars of the coordinates, but the 

imaginary axis is always completely included. That is to say, M. Mittag-Leffler’s expansions 

will be valid for imaginary values of the time even if they are not so for all real 

values. 

4°. Finally it may be remarked that M. Mittag-Leffler’s expansions can be used for 

the motion of straight and parallel vortices. Reference may be made to Lecture XX. in 

Kirchhoft’s Mechanik for the differential equations of the motion. 

The interest of this development is manifest. I remark, however, that the main im- 

portance of my theorems so far as concerns mechanics appears to me to be that they provide 

a means of finding a real and positive poimt of my star, and of determining whether 

this pomt is at infinity or not. M. Volterra on the contrary supposes as always known 

beforehand that this point is at infinity. My principal theorem also provides in this case 

a means of representing the function, with any approximation desired for any real domain 

whatever, by a polynomial into which there enter no elements taken from the function 

other than a limited number of the quantities F(t), F(t), # (é),.... It appears to me 

that this point of view may become useful in applications to mechanics. 

PERUGIA, April, 1899. 



II. Application of the Partition Analysis to the study of the properties of 

any system of Consecutive Integers. By Major P. A. MacMaunoy, R.A., 

D.Se., F.R.S., Hon. Mem. C.P.S. 

[Received 15 May, 1899.] 

INTRODUCTION. 

THE object of this paper is to solve a problem, concerning any arbitrarily selected 

set of consecutive integers, by the application of a new method of Partition analysis. 

I will first explain the problem, and afterwards the analysis that will be used. 

In the binomial and multinomial expansions, the exponent being a positive integer, 

every coefficient is an integer. This fact depends analytically upon the circumstance 

that the product of any m consecutive integers is divisible by factorial m; we have 

ese 
an integer for all values of x. 

The present question is the determination of all values of a, a, 4, ... %m for 

N+1\% (n+ 2\2 (n+3\% (/n+m)\% 

a ae 

is an integer for all values of n; in particular the discovery of the finite number of 

ground or fundamental products of this form, from which all the forms may be generated 

by multiplication. 

which the expression 

There is a parallel theory connected with the algebraic product 

é = =)" (7 = =)" 1 meee as ¢ = —) 

1—2@ 1-2 ue “"\ 1l—a™ : 

where a, %, 43,-++. Gm have to be assigned so that the product is finite and integral 

for all values of n. This has been discussed by me in the ‘Memoir on the Theory 

of the Partitions of Numbers, Part II.’ Phil. Trans. R. S. 1899. It will be observed 

that the algebraic product merges into the arithmetical product for the particular case 

«=1, so that all algebraic products which are finite and integral produce in this manner 

arithmetical products which are integers. This, however, is as much as can be said, for 
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otherwise the theories proceed on widely divergent limes; as might be expected the 

arithmetical products form a more extended group than the algebraical. 

Denote, for brevity, 

fg Aa n+s =e daa ie 
1-2 

by X, and JN, respectively. 

The principal X theorem, that has been obtained loc. cit. is to the effect that con- 

structing any X rectangle 

AG X» AG XG eA 

X, XG -con AGA 

XG NG, Xx; AG con AGES 

XxX, Xx, O00 Xi+s 

a 5 5 5 G 

Mon AGrne Xinis XGrets cee Xitm+ 

1 and m having any values, with the law that any X has a suffix one greater than 

the X above it or to the left of it, the product 

Xx 1X 7X 3 OUD Xitm—1 ) 

obtained by multiplying all the X’s together, is finite and integral for all values of the 

integer n. There are other forms as well, e.g, the product 

DCD. EX.ED.G IG. 

which are not expressible in the rectangular lattice form, the theory of which is not yet 

complete. 

We see therefore that the product of V’s contained in the rectangle 

N, N, NG eee 

N, N; NG eee Vs 

N; N, NG eee Nie 

Nin Nina Ninte alse Nim 

is an integer for all values of n. 

It will appear moreover that no product exists which is free from N,, so that all 

these products, being irreducible, are fundamental solutions of the problem. 

The method of partition analysis is concerned with the solution of one or more rela- 

tions of the type 
AQ, + Ak. + Asks + .-. + AsOls 

2 4B, + foo ar Mss te ees ate ern 

the coefficients X and p being given positive integers, and it is required to find the 

general values of a, a... , o,-.., bemg positive imtegers, which satisfy the one or 

more relations, 
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This is accomplished by constructing the sum 

Da, 7,274% ... Te YaPryPrysPs ... yeh 

for all sets of values of a, a ...8;, B2,... Which satisfy the relation. The expression 

obtained is found to indicate the ground solutions of the relations and the syzygies that 

connect them. 

The sum is expressible in the crude form 

.@) 1 

> 1—m*a,.1—m*2,... l—m™ a,.1—m™y,.1—m "yp... 1 —m™ ¥ 

where the symbol of operation 

Vo 

is connected with the auxiliary symbol m in the following manner :— 

The fraction is to be expanded in ascending powers of a, 22... %;, Yo) ++»; all 

terms containing negative powers of m are to be then deleted; subsequently, in the 

remaining terms, m is to be put equal to unity. 

Slight reflection will shew that the conditional relation will be satisfied in all 

products which survive this operation, and ‘that if we can perform the operation so as 

to retain the fractional form we shall arrive at a reduced generating function which 

will establish the ground solutions and the syzygies which connect them. 

As a simple example of reduction which is of great service in what follows take 

a, > 8; 

this leads to Q 1 
> 2 1 

1—ma,.1—-~ 

and observing that 

a 
1 os 1 ‘- m 

} Ll l—ma.1l—2« it = 
1—ma.1-— : ss 1-7 w-l-ay 

we find e f i — 3 
ihe tee —2,.1-—amy, 

ma,.1 sell 

a 
also os ee SS : 

Aaa Bay wigs 

which is the solution of a,>Bi+s; 
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so that the solution of a >P, 

1 
is given by v ue az 

; l-a,.1-—my, 
1l—ma,.1—- a Yy 

Again, if a, > 8, +P, 

we have 

the solution. 

Also the solution of a>B,+P. 

1s 
1l—a.1—amy,.1— ay. 

Lastly, m+ %> Pi 

gives, by repeated application of the above simple theorem, 

1—a4,22%, 

1l—a2,.l—a.1—my,.1— my, 

In general the subsequent work merely involves processes easily derivable from these cases. 

Particular theorems will be given as they become necessary, and for the general theory, 

which is here not needed, the reader is referred to Part 1m. of the Memoir on Partitions 

which may appear shortly in Phil. Trans. B.S. 

To come to the object of the paper I commence with 

ORDER 2. 

m+ 1\% /n+2\" mien 

(er ) (“3 = Bete; 

this product is an integer when n is even, but when m is uneven we must have 

A, > Ay; 

i 

eae Naa 
and LV aN 

1 

oN, 1= 0; 
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shewing that the ground products are ,, N,N., 

or (ras) — (0) en): 

ORDER 3. 

n+1\" n+ 2\% /n+ 3\% ee 

( 1 ) 2 ) eg erie 

When n is of form condition is 

4m + 1, a + 2a; > a (a), 

4m + 3, 2a, + a; > M% F 

3m + 1, A > a; (bd), 

3m + 2, a > A (c). 

We may omit the second of these as being implied by the first and fourth and introducing 

the auxiliaries a, b, c in the relations marked (a), (6), (c) respectively we write down the 

© function 
@) 1 
> b 
1—acN,.1—7 N2.1- N; 

a> 

be 

as the expression of the sum >N,"V."N,™. 

It must be observed that the operating symbol ©, has reference to each of the three 
> 

auxiliaries a, b, c. 

These must be dealt with in the most convenient order, so that unnecessary labour 

may be avoided; this order is not always obvious without some preliminary experiments. In 

the present instance it is clearly advisable to commence with b because a occurs to the 

second power, and operation upon ¢ will introduce a*. It should be remarked that operation 

upon one letter may cause two letters to vanish; this would indicate that the relations 

associated with these letters are not independent members of the system of relations. 

It does not follow conversely that if the relations are not all independent two letters 

must vanish as the result of operation upon some one letter. This does follow for a 

certain order of operation upon the letters, but not for all orders. 

Eliminating b we obtain 
Q 1 
Sn a a 

1 —acN,.1-=N,.1-2 N,N, 

Observe that this expression would have presented itself if for the two relations 

a SE as 2 a, 

a 2As, 

we had constructed the sum > N41 Ni (N,N;)*. 
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The fact is that we can reduce the three relations (a), (b), (c) to two by writing a+ 4; 
for 4, a tranformation that the relation (6) permits, and then we have to write N,N, for 
N, in the sum 

> NN N°. 

We next eliminate c, obtaining 

@ 1 
> 1 

1—-aN,. 1—_ .. 1—a@N,N,N; 

an expression that would have presented itself if we had been summing 

LNV,2 Ni (N,N,N) 

for the single relation a, + 2a, > a, 

obtained from the relation 

O% + A; 2 A, 

by writing a,+a, for a, a transformation permitted by the relation 

O > as. 

The process employed is therefore equivalent to a gradual reduction in the number 

of the conditional relations associated with a proper transformation of the product to be 

summed. 

To eliminate a we require the subsidiary theorem 

1) 1 1+ ay — xyz — xyz? 

~T=2@.1—y.1—yz.1—a2? 2 1 
1—a’r.1—ay.1——z 

and thence we derive 

1+N,N2N,— N2N2N,— NY NSN, 

1—N,.1—N,N..1-— N,N.N,.1— NiNSN, 

= 1— N?2N2N,— NYNSN, — NPNANS + NENA + NENONS 

7 DSnge Tl SSN ENN SINE © 

In this result the denominator indicates the ground products, and the numerator the 

simple and compound syzygies which connect them. 

It is manifest that the ground products are 

Nig, Why ARMING IEINING, INCI 

connected by the simple syzygies 

(A) = (M1) (NPN s) — NN2) NNN) = 0, 

(B) = (MN) NiNSNe) — (NN2) NiNENs) = 0, 

(C) = (N,N.N,) (NNEN;) — (NNN)? =0; 

Wore poe lililr 3 
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and the compound syzygies 
(N,)(C) — (N,NN;) (B) = 0, 

(N,N2N;) (B) — (NNEN;) (A) =0; 

indicated by the numerator terms: 

ad N;N2N;, 7z N?N2Ns, a NyNSN;, +N, Py, oN, a5 NEN, oN; 

respectively. 

The generating function takes also the suggestive form :— 

1— NV;7NSN, 

1—N,.1—WN,N..1— N,N.N;.1 — N,NSN, 

: N,Ne2N, 
1— N,N,.1—N,N.N,.1—N,NON, 

By proceeding in this manner we not only obtain the new ground products appertaining 

to the order but also those of lower orders previously obtained. It would be desirable to 

exclude the latter, and in the case before us we see @ posteriori that this could have been 

secured by impressing the additional condition 

O = a3; 

but no method, similar to this, seems to be available for an order higher than 3, as no 

equation invariably connects the indices of the ground products. 

ORDER 4. 

(" : *)" ee 2\" (“ : a (* 2 “\" = NaN aN es 

When 7x is of the form condition is 

4m +1, a, + 2a, > a, + 2a,, 

4m + 2, AO > A, : 

4m + 3, Qa, + a; > a. + 2a,, 

3m +1, A > Ay 5 

3m + 2, a, + ay > As ; 

The © function which can be at once written down is somewhat troublesome to deal 

with, so that I find it appropriate to divide the generating function into two parts according 

aS G23, a, >a. 

Case 1. a, >a;. 

The conditions reduce to 
a, > as (a), 

a +2a,>a+2a, (b), 

Ay > Oy (c), 

a, > as (d), 
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and it is convenient to add the implied condition 

a, > a, (e). 

We obtain, for [N,N N aN 4, 

9) 1 

> ? ee ee a ee, 
b ad b?ce 

and, eliminating d and e, this is 

@ 1 

> co be : Ge 
1—abN,. 1 —,- 1 — a Nes. 1 — po NN: 

which, eliminating ¢, is 

” = ; V.eN.N, 

z 1 iy ie 
b 

a 
P NLN.N,.1—N,N.N3N, ee : V,N,.1— 

and, eliminating a, this becomes 

O 1—N2N2N,N, 

> ae I 1—bN,-U— -N,.1 == 
? 

NiNLN,.1—2N,N.N,.1 — NV,NN,N, 

1 Ser F 
the term 1 — p NWS NA , disappearing. 

This is equal to 

1— NEN N,N. ol — are Tae | 

1—N,N.N.N, " —0N,.1-NNa” ee in | 

1 a 
x 4 

\ 
—— — + fe 

— }2N.N_N. — N2N2N_N Ie BNNLN,.1 — N2N2N.N, ee : V.N.N,. Ne¢N2N, wy, 

1 

Neal. LN VN 

1 

A® 5: A lhe 
zs NT Lay, yea, Vane > 1-0N,NWN,.1— 5 W, 1—N,N,.1—N,N.N.N, 

ANN, : 
42 

: SANG LNLNLNDN: 

2 1—bM,.1- 5 WW. IE ANN gg Uh ANAL IA 
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u 
as sae. a ae a ee ee 

N,N2N, + VLNSN, 

Lt b= N,N,.1—N,N.N;.1—N,N.NN,.1— N,NSNs 

"T—W,.1—N,N,.1—N,NN.N,. 1 — N20, 

Cese 2. a;>a@. 

The conditions become 

as > a; (a), 

2a, +a; > a + 2a, (b), 

A 2 Oy (c), 

A D> As (d), 

a, + a,> 4; (e); 

to which it is convenient to add the implied conditions 

a 2a; (5 

as > a, (9): 

the © function is 

1 
fe) a 

> bef ail abg ,, Qa 
iL eee eo op ere 

1 
AO a 

7S ea = cds in oe ia 
1——JN,.1 ee 1 — ae Ns: 1 ~ oq Ns 

b 

=o de® 
7 3 

aha 2 V,N,.1- : Nee = N,.1—-eN,N,N,N, 

b W.N.N AN. _ 1 ie) d 1 2 3 4 

acer ah mateo 7 M,N,.1— € N..1-3N,N.NN, 

_ MNeNeN, 0 1 

ENN N, > arene + Ny.1—W,NeN;M, 

" N,N 2N2N, (1 + N,N2N,) 
~1—N,N,N,.1—N,NeN,.1—N,N,N,N,.1—N,NeNe Ne 
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Hence the complete sum 

TN NNN, 

: il 

3 P=, Sve, ANNAN, 

i N,N2N, + N,NSN, 

1—N,N,.1— N,NLN,.1— N,N.N;N,. 1 —N,N2Ns 

* NNN, 

1-WN,.1-—WN,N,.1—N,N,N,N,.1— N3NLN, 

+ an Z ™, NPN, ¢N,(1+ N,N2N;) 

1 N, N.Ns a N, NSN, . 1 re N, N.N;N, .l- N, NZNZN, 

and we have three ground products of order 4, viz.:— 

NNN, 

ENGNG Nas 

N,NZN2N,, 

and every product of order 4 can be compounded of these and of ground products of 

lower orders. 

I pause to observe that the form N,N,N, is one of a kind that always presents 

itself for an even order. The system is : 

Nia NN No... Nos, 

and may be separately examined. For the order 6 the ground products 

N2N.N,, NYN,NN,, NSN.NZN,, NEN.N2Ng, 

and for the order 8 NYN.N,N.N;, N3N.NN2N;,, NENSNN,, 

NUN NANGN,, NN MeN Ne, 

are easily obtained. 

ORDER 5. 

We now come to a very complicated system of forms, which includes no fewer than 

13 ground products of order 5. These I find to be 

NiNLN,N,N,;, N,N.NZNN;, N,NZNNNs, 

N,N2N2ZN,N,, N,NZNZNZN;, NiNZNSN2N,, 

N,NSN2N,N,, N,NZNSNEN;, NiNANZNN:, 

NeNENINENZ, NANZN,NZN;, NENINZNEN-, 

NYNANSN SE. 
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The complete generating function can be obtained without difficulty, but, on account 

of its great length, I restrict my endeavours to the establishing of the 13 ground 

products. I find it necessary to adopt abridged notations, and in future, where it is con- 

venient, I denote 

NNN NN by (0 ,420%30,0). 

Further, if a portion of the generating function presents itself, which involves merely 

ground products already obtained in the previous work, I enclose it in brackets [ ] and 

thencefurward omit it. For example, I write 

A=[B]+C=C=[D]+E=E; 
and so on. 

N+I\™ (n+ 2\% (n+ 8\% (n+ 4\% (rn + 5\% 

Hor GSU eSrGa hear = 

= NaN NN N25 = (0 0100,2,0;). 

When x is of form condition is 

4p + 1, a, + 2a; + 4; >a,+ 2a,, 

4p + 2, A, > @,, 

4p + 3, 2a, +4, + 2a; >a. + 2%, 

3p+1, Hy + As Ss, 

Bp + 2, a + a > 4s, 

dp +1, a, >a, 

Dp + 2, a; > as, 

5p +3, a >a; omit, 

5p + 4, % S45: 

the eighth of these conditions may be omitted as being implied by the second and 

sixth. I separate the generating function into six portions corresponding to 

Case 1. % SM, %>4s; 

Case 2. O, 22, As > Ay; 

Case 3. Wy >, FG, % +4534; 

Case 4. @ >), G2 >a, a, >a, +4;; 

Case 5. >%, Ag>%, %+a,>4;; 

Case 6. CHSSCK, CHSSCH. as > Oy + G5. 
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For Case 1. The conditions become 

for which the generating function is 

10) 1 
> 7 5 - 7 

iG ee ee ip ey 7 Se 
a Cc “if 

which, eliminating b and ¢, is 

Q 1 

men ANAN. aap NNeNS ee ee e 4yi- ef 14Vo- Z 14VolV3. af de W's 

and eliminating d, e, and f, 

9) 1 —(2211) 
5, a ea eS ae 1—N,N,.1—aN,N,N,.1 =i Nae ae ese (na yee nid) 

1 0 
Now = 

— 

1—a@a.1—ay.1—az.1——=w 
we 

oc ee ees 
~ 1—aw > [" —wu.l—ay.1 ae? 

1—ay.1—az.1—* | 

1 as 2w + yzw 

l—a2.1—y.1—z2.1—aw 1-—aw.1—z.1—2w 

OQ wy? 
as Z 

s> 

1=ay.1-az.1-—.1 — 2w 

ne 1 ie _ Fw + yew 

~ l-#.l-y.1—z.1—aw’ 1l-aw.1—-2.1—Zw 

yw yw (pw + yzw) 
ar ; + = as = 
l—-y.1l—2.1—2w.1—aw 1-y.1—yw.i—2w.1— cw 
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Hence, putting c= NV,N.N;, y= N,, z=(11111), w=N,N.N,, we have 

aw = (2211), 

yew = NE N.N,, 

zw = (33232), 

yzw = (32121); 

and we arrive at the three ground products 

(11111), 
(32121), 

(33232), 

which, as far as this case is concerned, are irreducible. 

Case 2. Qys>Cs, Oy > Aye 

The system of conditions reduces to 

Ob gears alah elcve arch whovwapsltopera rs sateroa wen omoetarnm qeseces (a) 

Opa, Menace ee ne seicots foeeis wosnes efi oadac mentee (0), 

OBE Og eecre este ance sche ose eee ieee Oaeane whee eeeee (c), 

Gy AE Opes Crate nse aon sticioaienae snes cece obkoc eee coe Ree (d), 

Ogee Og Wis amwnse sahis ene eeaminebisesmeot eens dears eee (e), 

and TN ANN Ns 

1 

_2 b 

* 1 =aN,.1-2 N12 N,.1—2,. 1 

a a 
5 Sr Ree ee as a 

e * NNN, 
Se ar =< ree 

1 —N,. 1 —cN,N.N;. 1 — GN NW. 1-- M. 1 es 

Es (11211) 
LN. 1— NNN Lao (ae) F 

yielding the new ground product 

(11211). 
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fal an 
Case 3. A, >, 24, &U+A,>4;. 

The reduced conditions are 

CU tea OC Time retereleletorelstokelstnlalelatatelstsisis\eleisis{sleleleieieieiewereisievee sera ccieeatels (a) 

Gis SSC ht qa cadsdadnbononedaaCouS UE NSeCOOSHOO EEE meCEere (bd), 

CLT MCLs peal umes etctatleletedeelelctetelelctetlelertetsteistecistetecietacismtaciceiteraeieieticee (c), 

Cinta Zs terres rapate ne Olapersiastacome ict aieeae ante eiseke aeiace re cieisiocis nigitsiainteres (d), 

GECEUAPICtY | Guadondadddooneccous dodcuOrne caTc a mnoeUor RAE eee (e), 

Cred OL a mer atererelatetelonekel Vateaele(elerotersisicleraisiescielsaversicle aierarsieteietersvoistereteteie (Ga)s 

Gin 20h, cacndondsqc noes apocondodsscodoboonosnDaqqooouosooaC (9), 

Oly SPU Se aciawerecnw ace sinelemeernemaseseatamieueaerumeeecnns (h) 

Obs Oh ger marcrataresoVoratatoteravovoherovatatassVeietereletararalateteretelevafaraveralotavnvatae frejeresare (2) 

of which the generator is 

a : 
= N,.1 Se N, aN a I 

0 an 
a 1 — beef N,N..1— ie 1— ae N,.1- at 1 —ced N,N.N,N,N; 

; d bee df 

the result of eliminating a, g, h and 7. 

It might be thought advisable at this stage to eliminate b or f, but experiment shews 

an advantage in proceeding with d. 

Consider 
Pp 

.@) d 
> w 

tee Pan” 
d 

y w 

fei Dre eri il di 1 d 
~ 21-ay.1—zw\ 1- de re 1 —dz 1_@ 

a2 aed 

i Ly 
_a d 19) gee 

alls aoe al deen w 
~ L-ay.1—2w.1—dix.1—5 

1 

,2 qs PY 
2 
1l—-—ay.1—zw.1—dz.1— y 

d? 

Wom, OVID. 4 
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= : iY ee ee pz _ 

" [=—e#.1l—ay. l—-zw 1—2#.1—2.1—ay.1—zw 

prw | 1+ rw) pyz 
+ = 

l—z.l—ay.l—zw. l—aw” 1—z.1 — zy 1l—ew.1- y2 

Hence the generator is :— 

Jt’ 

— | | jes 4 

1 e 
ine —bfN, r>=—N,, 2 =-N,, Z=> h 1111 ( putting p=bfN., «x a N3, y fa. ced ( 1)) 

j / 

JL N.N, 
ce 

nn 

i = , ae 
—~N,.1— N,N,.1— 12111).1 —bcef N,N. ie bef Vy 1 beef ( ) cej Vi LV, 

beef (12111) 

ewe T 
1 — — N,.1—ce(11111).1 — — N,N. 1 —bcef (12111). 1 — beef N,N, 

bce bef : : 

| be? (34343) 

N Ow 

1—c(11111).1— =. NM,.1—bof (12111).1 =, (22282) .1—bef NN, bef 

of ven, (1 +L N, N,) 
| 

= 

ce 

| eS Ie tae ; je ey 
ae SS = 9 aE — he ‘6 1 bce Ne: bof NaN} beef (12111). 1 * N2N,.1 beef NN] 

A+B+C+D, suppose. 

Zh ay ae 
ce QO 

A= 7 

1—bdee N,N, .1— bee (12111).1—e (12221).1 Sie N, 

co) bees sae 
in — T 

1—bceeN,N,.1—e(1111).1—e(12221).1 Fits N; 

ce Wes (1- M.NeN, (11111)} 

>1—ceN,N,.1—ce(12111). 1 —e (12221). 1 — NV, N,N, . 1 — (12211) 

oD Oh. be 
"> ben,N,.1—e (lil). Se ae22)) pS nnei 

(13211) {1 — (121) (11111)} 

7 P21). 1 — G21) A Sees) 

n (121) {1 —(121} (11111)} 

1—(11).1—(111). 1 — (42111). 1 — (12211). 1 — (12221) 

#] (121) (1111) 
1=(1). 1 —@1) AS) 

TO 
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a result which indicates the new ground forms 

(12111), 

(12211), 

(12221), 

(13211). 

B is easily shewn to have the expression 

(12111) 
i— (1) -1— Gi) a) td) = GT) 

i (12211) 
(Del dit pr = Ot) i= Geom): 

C, by elimination of 6 and c¢ (in one operation), becomes 

(34343) o 1 
=((aN aa EL) aan San CRC TL 7 an 
eee) PT) 1=f(12111).1=f(11).1 = 5 (22282) 

1 
" (34453) co) ‘K 

Seb) = 1-(2221) > PUEDE SEES ub Gurr) 1 — f(42141)..1—7, (22282) 

2 (34343) {1 — (45348)} 
= 7—-(l).1—(lll.1—(iliil). 1 —(22111). 1 — (4348). 1 — (33232) 

= (46564) 
Senin tyr = (ei) el =(1229 1) = era 4943), 

wherein observe that (45343) = (11) (34343), 

(46564) = (12221) (34343) ; 

so that (34343) is the only new ground product that emerges. 

Separating the numerator terms of D it can be written D,+D.. 

For D, we require the result 
Ww 

e 

w 
e 

0 
2 Zz 
1-ew.1—ey. 1-7 .1— 

yw cw aw? 

rll w lool 7. lee Mee ae aw Vy 

% YP Zw / 

l-y.l—az.1—yz.1—yw’ 
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= 
which (putting x=bef (12111), y=bef (11), z= — = Ns» — NY W.) brings it to 

@) bey (131) 
2 

1 = N;N,.1—f (12211). 1 — ?f# (131). 1 — bef (11) 

Q bef? (14211) 
esa ; 

1- bop eM. 1 —f (12211). 1 —b2f* (131). 1 — bof (11). 1 — bef (12111) 

" 9) bi 75 (28422) 
2 a ; 

= pep eM. 1 —f (12211). 1 —b2f8 (131). 1 — bef (12111) .1 — 82/3 (14211) 

fa) befs(121)2 
aa 

i= pM V,.1—f (12211). 1 —8 2181). 1 = bef A) .1— FA11) 

id (131) 
eh) Seas yea) 

(14211) {1 — (11) (12221)} 
+ 7-11. 1— (lll). 1—(3i). 1 (12111). 1— (42211). 1 — (12231) 

(14211)? . 
* 7-31). 1 — (2iil). 1 — (12211). 1 — (12221). 1 —(14211) 

(121) 
(stl) A Cae SdamaL=solte 

yielding the single new ground product 

(14211). 

For D, we require the result 

p 
9) e 
> 

l= ex). ley ee 
e e 

7 p \ieveeec tere 8 xe ow 2 

~ 1l-a2z.l—yw \l-y [7 Tarlo Seta Sy ee , 

. Of sro : 
and putting p= = NEN, «=bef (12111), y= bef (11), 

1 : bf? 
z=— N,, es N2N,,; 
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and observing that we may put b=f=1 and that moreover 

vz=(12111), yw=(131), 

py =(121) (131), pry = (121) (14211), 

px? = (13211) (14211), pakw = (13211) (14211)2, 

pyz =(121)8, aw=(14211), yz=(111), 

while operation upon the remaining letter ¢ produces no new form, it is clear that no new 
form arises. 

Case 4. a)> 0), O > dy, & >a, +45. 

The reduced conditions are 

VU imeoletl iotioocqocana nan CORO OSE OODEEOOG ComUnUGC ae Eaereaacn: (a), 

CRE HE aE LaG SONI SA CeO ER EEE COE EE CER CoE TT Eee (b), 

Og ONTO we car ncustciecs sce conc nincn acta nion tenet oeeeeeeren (c), 

7 Hier a ye ed Pa: bx iS. ree a neon do Cac SOS CaR BEAD OEGLHORCETG OHS (d), 

Omar CR S564 cosoaocancono sas scm0onobbonGoUDEBDS oaooDbOOOKbOS (e), 

OE Og h Samtlectarsrsisestseocee scelsisstsiesicectactacaececaltenec (7), 

CRESCE ocoacodoonsdnos abscnanogdscopoosnooucdasGboose Rasen (9), 

CR ESCH sonbogdnagou0c soasCa0DNGSR0806 MagaanooBaDuES Adobe (h); 

leading to {N.> N27 N= NN ,* 

= 
_o ac ; 

ee eet Sy ae 
ac d be d*f egh 

and this by elimination of a, b, c, e, g and h becomes 

1 = 
zB N,N,N, 

V2) Se EEUU EEEEEE UE ESE RRR eeeeeeeeeeeeeemeeemmemmeeerieemeeeeneeee= te 

71 —a@f(ui).1—a@f(1221).1-F 7,1 al Me NN, 

; c@) 1 
and since 

2 ; : : 1 
De ee aa 

i 1 a yw 

~ l=-a@.1l-y.l—2.l—2w  l—y.1—yw.1 —zw 

fs LW a aw 

Va loy.l—yu. 1 —2w 1l—z.1—aw.1—yw.1—zw 
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this becomes :— 

eee. |. i ae 
(putting g=d?(111), y=d?(12211), z= GN w=5M,) 

1 

9) ples. 1 

2! WW, 1) = (111) a 2). + Noo ey 
Cp j ; Gris aie. * 

12221 . (i222) 
1 — d2(12211).1 — 5, NM. 1 — (12221) 

(1111) ; 
=F T ; 

1 —d*(111). 1—d?(12211).1—— N,N, . 1 — (12221) as 

the fourth fraction being omitted as obviously contributing nothing new. 

Now writing #=(111), y=(12211), z=V., w= N.N,N,, 

p=N.N, 

w 
Qa d? a yw(1+y"p) 
> w = <= , = ; Spey 

Ra Ree ae eS 
d? d* 

w 
co) d? ‘ yw(1 + yp) 
2 p 1l—y.l—«w.l—-yw.1—y¥p eee es 

w@e®(l+y+y?)1+p) aw 

l—a.1—ap?.1—yp? 1-—aw 

yA+p) ww 
l—-«w.1—y.1—ysp** 1—aw 

aC 

K aw 

+] ap. 1— yp 1—aw’ 

where K=1l+et+yt+et+ayt yr eyt ay + ry 

+ (a? + ay + y?+ ay + xy? + xy") p 

+ (a°y + wy? + ay") P* 
Ww 

(0) d? 
> 
1-—d*x.1—d*y.1— all est pe ee 

_ yw (1+ yp) (1+ yz) Ee yowp 

Sl=—y.L—aw.1—yw.1—yp?.l—y2 1—aw.l—yw.1—yp*.1—ye 
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vw (1+az)(1+y°?p) aw (yz +y?2zp) 

aes #.1—y.1—aw.l—a2.1—yp? l—y.l—aw.1-yp? 

sf ww (xyp + xyzp + xp? + ayp® + xizp® + xyrp® + ay? op? + wiy2*p? + Ye) 
l—2.1—aw.1—a22.1—<2'p’. 1 xp? 

In verifying these laborious calculations the relations 

i 1+ dyz d 

Zz 1—y#.1—dy ae ae ae 
1-d'y.1—- 1—y2?.1 q 

PB, YE" = 
1 1+dy'p Op 

p 1—yplody” - 
1-dy 1-4 yt y agp i= 

will be found useful. 

On examining these results we find that 

yw = (13321) 

is a new ground form, and that every other term is expressible by means of it and 

of ground forms previously reached. 

Case 5. @>4%, dg>%, @ +4;>43. 

The reduced conditions are 

Oy > Oy (a) 

As; > A (bd), 

4 + 45> 4s (c), 

A > Oy (d) 

A, > Os (e), 

Oh 2 &, (7); 

from which 

eu 
oO ab 

2 Chee == - i) =o e Cae e ap Ad ia ee 1 Neon N, cael 1 quel eae 

Gy 
= Vee e 

le (ULLAL) ot - © N.N,. 1 -£Ny.1 dt). 1 —5N, 

e d (23422) 

71 _ (12211). 1=d (11). 1-5 N,.1-(@111).1- (11211) 
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_ (12211)(11211) | (12211) 

~ J—(11111).1 — (11211) (1 — (42211) . 1 —@11). 1 —Q 11) 

(12221) ) \ 

— (12221). 1— (1110) ’ +7 —(2211).1 
so that new forms do not arise. 

Case 6. a) >%, d3>G, @>4,+4,. 

The reduced conditions are 

As > A> (a), 

A; > a, + 4; (b), 

2a, + a, + 2a;,>a,+ 2a, (c), 

Os > Oy (d), 

a+ a; > 4; (e), 

a, +a, > a, a); 

a 2 a; (9); 

leading to 

2 
@) ab 

sie are - EM. (ae -=N, 

which is readily thrown into the form 

é = OF eee ae ae ‘5 pW, (1 — 5 MANN ) 
> ; [are om (a Ona aaa eee 
1-e(11l).1—-{ WLNN,.1—7 N,.1—-7 NNNN;.1—> NNNs.1— 551 i4); 

and eliminating 6 this is 

oO ¢ (12321) — 3 (11) (12321)? 
> aes 1 e811). 1-5 NLW.N,.1- (1111). 1 eo? (12211), 18 (11211) .1 = (12221) 

Q c (12321) 
> 

1 —(1111).1 —(12221).1—c8(11211).1—e(111).1 - 5 NNN, 

e§ (12211) (12321) 

1 — (12221).1—¢§(11211). 1 —¢c?(12211).1—c(111). 1-5 WWW. 

(Q) c 

2 1 
l-—cw.l—cy.1—=2 e 

1 az+a2°+ a°25 

l-#.1—-y.1 yet I —“.1—yz.1 — gz" 
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and 
OD é 

2 T 
1—¢w.1—cly.1—cw.1— 2 

1 Zz 

Tle lae Peele gel— wl we 
2 

a ae i ya" 

l-@.1l—y.l—wz.l1—-yz 1-y.1—wz.1—-yz 

“e+ azt+ a2° 

l—a«.l—wz.1—yz.1—a@2*" 
a 

Putting now 
«=(11211), y=(111), w=(12211), 2=(0111), 

we can examine the generating function. 

It is clear that 
a2 = (12321) 

is a ground product. 

Also az? = (12321) (13431) = (25752) 

is a ground product, (13431) not being a solution of the conditions. 

Further 
(12211) (12321) z = (12321) (13321), 

wz = (13321), 

(12211) (12821) yz? = (121) (25752), 

(12211) (12321) x2? = (138321) (25752) ; 

so that there are no more ground products. 

We have therefore in Case 6 obtained the new fundamental forms :— 

(12321), 
(25752). 

The investigation that has been given does not establish that the 13 forms obtained 

are ground products gud the whole of the six cases, but it does prove that all the ground 

products are included amongst these 13. But it is clear that all forms in which a=1 are 

necessarily ground products. This accounts for 9 of the 13 and it is easy by actual experi- 

ment to convince oneself that the remaining 4, viz.:— 

are, in fact, irreducible. 

Vou. XVIII. 5 
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Hence the 13 ground products of order 5 are established. 

Finally, to resume the foregoing, it has been shewn, in respect of the arithmetical 

i ney" n+ 3\% ah (“Ey 

( 1 ( 2 ( 3 / ( + 5 = (%, &, As, Ay, as)’ 

n being any integer whatever, that all integral forms are expressible as products of 

function 

{) order 1, 

{(11) order 2, 

(111) 
fos order 3, 

(131) 

(1111) 
{aio order 4, 

(1221) 

(11111) 
(11211) 
(12111) 
(12211) 
(12221) 
(12321) 
(138211) order 5. 

(13321) 

(14211) 

(25752) 

(32121) 
(33232) 

'(34343) 



Ill. On the Integrals of Systems of Differential Equations. 

By Professor A. R. Forsyra. 

[Received, 28 July, 1899.] 

INTRODUCTORY. 

THE present paper deals with the character of the most general integral of a system 
of two equations of the first order and the first degree in the derivatives of a couple 
of dependent variables with regard to a single independent variable, the integrals being 
determined with reference to assigned initial values, It will be seen that corresponding 
results can be established for a system of n equations, of the first order and the first 
degree in the derivatives of n dependent variables. 

When the equations are given in the form 

dy Z 
= =f (a, Y; 2), naa, (2, Y, Z); 

then Cauchy’s existence-theorem shews that, if c=a, y=b, z=c be an ordinary combina- 

tion of values for the functions / and g, so that f and g are regular in the vicinity of 

z=a, y=b, z=c, there exist integrals y and z of the equations, which are regular 

functions of # and which acquire values b and c¢ respectively when «=a; these solutions 

are the only regular functions satisfying the assigned conditions; and it may be (but it 

is not necessarily) the case that they are the only solutions of the equation (whether 

regular or non-regular functions of #) determined by the assigned conditions. 

If however a, b, ¢ be not an ordinary combination of values, then the character of 

the integrals of the equations depends upon the character of the functions f and g in 

the vicinity. One important form, which includes a large number of cases, occurs when 

a, b, c is an accidental singularity of the second kind for both f and g, that is, the two 

functions are each of them expressible in the form 

IA GS Gy iy B=) 

Q(a@—a, y—b, z-c)’ 

where P and Q are regular functions of their arguments, each of them vanishing when 

x=a, y=b, z=c. It is necessary to obtain an equivalent reduced form of the equations: 

and one method is the appropriate generalisation of Briot and Bouquet’s method as applied 

to a single equation of the first order. This has been carried out in the case of 

5—2 
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n variables by Kénigsberger*, and in the case of two variables by Goursat?. For our 

system, the most important reduced equivalent form is 

dU : 
t 7, =U + Bd +mtt...=6(U,V,t)| 

= by cree eee cna (A), 

t= aU + BV + yt... = (0, Ve t) | 

where @, and @, are regular functions of their three arguments each of which vanishes 

with U, V, ¢. The relations between the variables are 

x—a=t¥, y—b=( +0), z—c=(4+V)*, 

where 6, ¢, % are positive integers with no factor common to all three, and 6, and cq 

are appropriately determined constants. The new conditions attaching to the dependent 

variables U and V are that U=0 and V=0 when t=0; these correspond to the initial 

conditions that y=b and z=c when r=a: and the matter to be discussed is the determ- 

ination of integrals of the equations (A) subject to the condition that U=0 and V=0 

when t=0. 

The integrals, so determined, are either regular or non-regular functions of ¢: their 

existence and their character are affected by the nature of the roots of 

(E — a) (E — Bs) — a8, =0, 

which may be called the critical quadratic. Various theorems have been from time to 

time enunciated in various investigations. Thus Picard? proved that the equations possess 

integrals, satisfying the required conditions and expressible as regular functions of ¢ 

provided neither root of the critical quadratic is a positive integer; and Goursat shewed§ 

that, if the real parts of each of the roots of the critical quadratic are negative, then 

the equation possesses no integrals other than the regular functions of ¢ satisfymg the 

required conditions. Also Poincaré) and, following him, Bendixson{, have discussed the 

integrals of n equations of the form 

du, 

: dt 
=O; (tz, Uasiores tn) op (is ces 2) 

the functions 6, being regular functions of their arguments and vanishing when 1% =0, 

us =0,..., Un=0: these can be made to include the system (A) by writing »=3, and 

taking the third equation in the form 

du 
deme 

with the condition that u,, ws, vs all vanish with # Im this case, there is a critical 

* Lehrbuch der Theorie der Differentialgleichungen, 743—745; see also his Cours d@’Analyse, t. m1, ch. 1. 

Leipzig (1889), pp. 352 et seq. § Amer. Journ. Math., vol. x1, p. 342. 

+ Amer. Journ. Math., vol. xt (1889), pp. 340, 341. || Inaugural Dissertation, 1879. 

+ Comptes Rendus, t. Lxxxvit (1578), pp. 430—432, § Stockh. Ofver., t. ut (1894), pp. 141—151. 
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cubie corresponding to the critical quadratic specified above; one root of the cubic being 

unity. But all the alternative possibilities for the general equation are not set out in 

detail in the memoirs specified, so that all the possibilities for the limited cubic would 

have to be considered independently. 

Again, a considerable portion of Chapter v. of Kénigsberger’s treatise, already cited, 

is devoted to the corresponding discussion for n equations; some difficulties as regards 

adequacy of proof of the theorems, independently of the general statement, prevent me 

from thinking the investigation entirely satisfactory, that is, if I understand it correctly*. 

Some papers. by Horn+ may be consulted: further references will be found in them. 

My intention in this paper is to take account of the different general cases that can 

arise owing to the various possibilities of the form of the roots of the critical quadratic. 

For this purpose, the method used by Jordan? for the corresponding discussion of a single 

equation is adapted to the system of two equations. The different cases are :— 

I. The quadratic has unequal roots :— 

(a) neither root being a positive integer : 

(b) one root being a positive integer, the other not: 

(c) both roots being positive integers. 

II. The quadratic has equal roots :— 

(a) the (repeated) root not being a positive integer: 

(b) the (repeated) root being a positive integer. 

It should be added that a further assumption will be made for the present purpose, 

viz. that the critical quadratic has not a zero-root. As a matter of fact, the existence 

of a zero-root would imply (as for a single equation of the first order) that the reduced 

form of the system belongs to a type different from that here considered. 

* The investigation seems to imply (p. 397) that, taking are 

n=2, the non-regular integrals of bB cB? a me AGE ARE rey 88 yee 2 | , 
tM tle, Y,; ¥al | 

4 A? 
ae Vaasa Wee sof — (2+ BR+BBza+... aY, T40-Ag 7 My=ay 2 ; x =h Y,+[2, ¥,, va) 
ie a 

when the real parts of \, and \, are positive, are 
the unexpressed terms being 

2, §, &, and &, & denoting 

only way in which z\ ean be 

terms of higher order in 

Ay 2, 2 yespectively. The 

a factor of x is by haying 
Y,=0™" =e git Aw tAavie | 

? 

Yo=a™ Delgo t Avant Aaven B=0, and then z® is not a factor of y; and similarly as 

that is, c™ is a factor of Y, and x a factor of Y,. But regards Zand 2’. 
+ Crelle, t. exv1 (1896), pp. 265—306, ib., t. cxvi 

(1897), pp. 104—128, 254—266. 

+ Cours d’ Analyse, t. 111, §§ 94—97. 

the integrals of 

li 2 
z = =hye+azx + bzy + cy? | 

az 

d 9 
at = hoy + azx + Bzy +yy" 
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It is convenient to transform the variables. When the roots of the critical quadratic 

(E—a) (E—B2) — a8, = 

are unequal, say &, and &,, we introduce new variables u and v, such that 

u=r~AU+pV, v=NU+yp'S,7 

where (4 —&)A+ ap = 0) (a, — &) XN’ + aap’ ay, f 

BA+(B.— &)u=0) , BW’ + (Bo— &) pw’ =0 y 

the ratios ©: and 2’:p’ are unequal, and consequently the new variables u, v are 

distinct. The equations become 

ot = But gil v, t) 

dv : 
ia 0 + dh, (u, 2, t) 

where ¢,, ¢ are regular functions of their arguments, vanishing with them; except for 

a term in ¢, they have all their terms of the second or higher orders in u, v, t combined. 

When the roots of the critical quadratic are equal, having a value & say, we 

introduce a new variable wu such that 

u=rAU +z, 

where (4, — &)X+a"=0, BiA+(B.— &) nw =0. 

Then we have 
du. 
ta Eu + o,(u, v, t), 

por Sutil tg, (u, V, t) 

=Kut+té&V + ¢.(u, V, bt), 
say. 

It therefore appears that the equations corresponding to the cases I(a), 1(b), I(c), 

are 

oS = Fut d, (u, 2, | 

a ov + dp (u, 2, o| 

where £, and & are unequal to one another: and that the equations corresponding to 

the cases II (a), II (6), are 

Ot = Ent $y (u, v, t) 

= = Kut Evt do (U, v, p| 
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In both forms, the functions ¢, and ¢, are regular functions of their arguments 

and vanish with them; and the only term of the first order in ¢, and @, is possibly 

a term in ¢. For both forms, the initial conditions are that w=0, v=0, when t=0. 

For brevity, integrals, which are regular functions of ¢, will be called regular 

integrals: and integrals, which are not regular functions of ¢ but are regular functions 

of quantities that themselves are not regular in ¢, will be called non-regular integrals. 

The results are obtained for the transformed equations in uw and v; since U and V 

are linear homogeneous combinations of w and v, the results apply to the original equations. 

REGULAR INTEGRALS. 

Case I (a): the critical quadratic has unequal roots, neither being a positive integer. 

1. If the equations 

du dv 
te = Fut ¢, (u, Vv; t), ty = be + he (u, Vv, t), 

possess regular integrals vanishing with ¢, these integrals must have the form 

That they may have significance, the power-series must converge; that they may be 

solutions, they must satisfy the equations identically. 

Accordingly, substituting the expressions and comparing coefficients of t”, we have 

(n- &) An ine (n — &,) = Gop 

where f, and g, are the coefficients of ¢” in ¢, and @, respectively after the expres- 

sions for uw and v are substituted. From the forms of ¢, and @,, it is clear that f, 

and g, are linear combinations of the coefficients in ¢, and ¢,, that they are rational 

integral combinations of the coefficients a, d:,..., 6, b.,..., and that they contain no 

coefficient a after a,, and no coefficient b after 6,. in the respective sets. Since 

neither £ nor &, is a positive integer, the equations can be solved in succession for 

increasing values of n, so as to determine formal expressions for all the coefficients. 

In particular, a, and b, are obtained each of them as sums of quotients; the numerators 

of these quotients are integral algebraical functions of the coefficients in ¢, and ¢y, 

and the denominators are products of powers of the quantities 

1-&, 2-&,..., n—-1—-&, n-&4, 

tes, PAE cane n—-1—&,, n— &. 
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To discuss the convergence of the power-series, we introduce an associated set of 

dominant equations. The functions ¢, and ¢, are regular in the vicinity of u=0, v=0, 

t=0: let their domain of existence include a region |t}|<r, u|<p’, |v\|<p”: of the 

two quantities p’ and p’, let p denote the smaller, so that ¢, and ¢, are certainly 

regular in a region |t|<r, |u|<p, ‘v\<p. Within that region, let M’ denote the 

greatest value of |¢,| and M” the greatest value of |: of the two quantities MM’ 

and M”, let M denote the larger, so that 

¢/<M, |¢.|<M, 

within the region specified, and M is a finite magnitude. Then if fj, and gi, are the 

coefficients of u'vt* in d, and ¢, respectively, it is known that 

Bee, ll i 
Fel <r pe Sie] < Serpe 

Further, no one of the quantities m—&, m—£&, for integer values of m vanishes; 

there is therefore a least (and non-zero) value of |m—&,|, |m—&,|, for the various 

values of m; let it be denoted by «. 

Now consider the equations 

Mu eee! 
X= Tt+S ake 

| 

M i, meee ake 
eY—— t+ oH rea 

where the summation is for integer values of 7%, 7, k such that i+j7+h>2. Clearly 

X =Y; and each of them is given by 

M Ti+j 4k 
pu rk Xt XaU i+ 

and therefore 

si M\ / Ge 2 X(e+27)(1-) = =u (1-2) 
5 

In this cubic equation, the term independent of X vanishes when t=0, and the 

term involving the first power does not vanish because € is not zero. Hence when 

t=0, the cubic equation has one root and only one root which vanishes. It therefore 

follows, from the continuity of roots of an algebraical equation, that the cubic has one 

root which vanishes with ¢ and which is a regular function of ¢ for values of |t| less 

than the least modulus of a root of the discriminant, that is, for a finite range. 
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To obtain the expansion of this root as a regular function, it is sufficient to determine 

the coefficients in the power-series 

X=At+Al+...+Ant"+..., 

so that the equation 

M M 
as Ss Ti+] ke eX = = Ot 2 itp Xt 

is identically satisfied; because the root which vanishes with ¢ is the only root of the 

cubic of that type, and the series for X is known to converge within the finite range 

indicated. Clearly we have 

where F,, is the coefficient of ¢ on the right-hand side of the equation for eX. When 

this value of A, is used for successive values of n, and the new expressions for 

A,,..., An4 are substituted in F',, the ultimate formal expression obtained for F,, is the 

quotient of an integral algebraical expression in the coefticients aap by a power of e. 
p= d 

Comparing the quantities |7f,| and F,,, we note that a quantity greater than | f,| is 

obtained when in its numerator every term is replaced by its modulus; that this greater 

quantity is further imcreased when the modulus of the coefficient of w'v/t* in ¢, or in 

d M Se re ae: : : 
¢, is replaced by arr and that this increased quantity is still further appreciated 

when every factor of the type |m—é&) in the denominator is replaced by e«. But, on 

s clear that these three changes turn = comparing the two coefficients a, and A,, it 

Fn into F,,; accordingly 

if Se 

Similarly for g, and F’,, so that 

a \Giall <5. 

Also \n—&|>e, |n—&,|>e; 

hence lee 4le, Dalle Alp. 

The series Awt+A 0+ Ae +... 

converges absolutely within a finite region round ¢=0; therefore also the series 

at + al? +a +..., 

bt + 6.02 + b+... , 

converge absolutely within that region. 

Hence the differential equations possess regular integrals which vanish with t. It is 

not difficult to prove that they are the only regular integrals which vanish with t. 

Wott, S<WADUE 6 
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Case I (b): the critical quadratic has unequal roots, one of which is a positive integer 

and the other of which is not a positive integer. 

2. The equations may be taken in the form 

t LS mu + at+O(u, 2, t) ) dt | 

tO = Ev + Btt b(u v, d) 

2 

where m is a positive integer, € is not a positive integer, @ and ¢ are regular functions 

of their arguments, vanishing with w, v, ¢t, and contain no terms of dimensions lower 

than 2. 

If regular solutions exist, which vanish with ¢, we can take 

u=t(X+%), v=t(wt+r), 

choosing the constants X and p so that uw, and », vanish with ¢ Then @ is a factor of 

@ and ¢ after this substitution is made, say 

0 (u, v; t) = 20,’ (%, VY, t), > (u, v, t) = td, (2h, UY, t); 

but @,° and ¢,’ do not necessarily vanish when ¢, w%, v% vanish. The equations for the 

new variables are 

du, 

a = 

pan (E-1)p+B+(E—1)y4+td (uw, v1, 0) 

t (m—1)X+a+(m—1)u,4+ tO) (w, %, 6) 

Now as wu, % are regular functions of t, the expressions on the left-hand side vanish 

when t=0; hence 
(m—1)X¥+a=0, (E-1l)n+8=0. 

If 4,(0, 0, 0)=m, ¢,'(0, 0, 0)=£,, the equations are | 

t ues (m—1)u,+4,t + t0,(u,, %,, | 

ars = (€-1)v,+A,t+td,(u,, 2, ») 

where @, and ¢, are regular functions of their arguments and vanish when u,=0, v,=0, 

t=0. The equations are, in form, the same as before, except that the coefficients of 

the first power of the dependent variables on the right-hand side have been reduced by 

unity; and the relation between the two sets of dependent variables is 

8 a \ a 

i Vis al + % - 7 Cs F=T + n) > 

It is manifest that the equations in », and », can be subjected to a similar trans- 

formation with a corresponding result; and that, as m is a positive integer while & is 
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not, the process can be carried out m—1 times, but not more. Denoting the dependent 

variables after all these transformations have been effected by uw’, v’, we have equations in 

the form 

du’ ; Ba Ca u fat thw, v, t)| 

t s =x + bt+k(u, v, ‘)| 

where «, =&—m-+1, is not a positive integer; h, k are regular functions of their 

arguments, vanishing with ¢ and containing no terms of order less than 2. The 

relation between the variables wu, v and w, vw’ is of the form 

Ure Ce Oe le 

where Py. and Q,,. are algebraical polynomials of degree m—1 vanishing with ¢; 

and u’=0, v'=0 when ¢=0. The coefficients a@ and 6 are algebraical functions of the 

original coefficients. 

The equations can possess regular integrals only if a is zero. For regular integrals 

must be of the form 

b=pb+ peP+..., VU = gibt got? +...; 

substituting these, remembering that h and k& are then of the second order at least in 

t, and equating coefficients of ¢ in the first of the equations, we must have 

P=p—pt a, 

which is possible for non-infinite values of p, only if @ is zero. 

Suppose now that @ is zero. Since uw’ and vo (if they exist as regular functions 

of ¢) vanish with ¢, we can assume 

; : 
uU=tn, VY =, 

the sole transferred condition being that », and », are regular functions of t, which 

now need not necessarily vanish with ¢t. We have 

pd 
oa h(tm, tm, th=CH (m, m, 0) 

2 We (e—1) tm, + Ot + kom, tm, t) 

=(k—1)t.+bt+lK (m, m, 0), 

where H and K are regular functions of their arguments. The second equation shews 
that, when ¢=0, then («—1)7,+6=0; accordingly taking 

b 
ieee ep b, 
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we have & vanishing when t=0. As regards 7, there is, as yet, no restriction upon 

its value when t=0; denoting it by A, we take 

m=A+&, 

where & vanishes when t=0. Both & and & are regular functions of ¢ When the 

values are substituted, 4 remains undetermined by the equations; and therefore an 

arbitrary (finite) value can be assigned to A. The equations for & and & now are 

mS Gat (A+S, oe) 

b 1a (eI) 4K (446, mth t) 

with the condition that & and & must be regular functions of ¢ vanishing with t. 

Let them, if they exist, be denoted by 

BSC G=s lies 
n=1 n=1 

substituting in the equations which must be satisfied identically, and equating coefficients, 

we have relations 
Ndn=fn, (N—K+1)b,= gn, 

similar to those in the Case I (a). 

These equations are treated in the same way as in the Case I(a). Since « is 

not a positive integer, no one of the coefficients of 6, vanishes; and thence it is easy 

to see that the whole of the treatment in I(a) subsequent to the corresponding stage 

can, with only slight changes in the analysis, be applied to the present case. It leads 

to the result that the power-series for & and & converge absolutely for a finite region 

round t=0; and from the form of the equations for & and &, it is clear that the 

coefficients in the power-series will involve the arbitrary constant A. 

Hence it follows that, unless the condition represented by a=0 be satisfied, the 

equations do not possess regular integrals vanishing with t=0. Lf that condition be 

satisfied, the equations possess regular integrals vanishing with t=0 and tnvolving an 

arbitrary constant: in other words, they possess a single infinitude of regular integrals 

vanishing with t=0. 

The condition represented by a=0 can be obtained from the original equations 

d 
t oe =mu+at+0(u, v, t) 

dv 
ta = fu + 8t+(u, », t) 

as follows. Let 
m—-1 

u= > f,t?+t"U, 
p=1 
m-1 

= & gpt? +i"V; 
p=l 
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substitute in the equations, and determine (by comparison of the coefficients) the values 

of fi, -»-, finas Gis +++) Ima. Then the condition is that the coefficient of ¢” im 

m-1 m-1 

at + 6 ( Sif age’, t) 
p=1 p=l / 

shall be zero. This statement can easily be verified. 

Case I(c): the critical quadratic has unequal roots, both of which are positive integers. 

3. Let m and n be the two unequal roots, of which m is the smaller, so that 

the equations may be taken in the form 

du 
to =mu+at+@(u, »v, t) | 

fale: 

du 
ty et Rt+ ou n,t)| 

These equations can be transformed, as in the Case I1(b), by m—1 substitutions in turn; 

and ultimately they acquire the form 

du’ aot 
bee u fabs ie a ON 

co =k + bt+k(w, v, » | 

where «,=n—m+1, is a positive integer greater than unity, vw’ and v’ are regular functions 

of t vanishing when t=0, and the functions h, k have the same signification as in I(b). 

If the equations possess regular solutions, the latter must be of the form 

= OS fit, Us > opie 
zu 1=1 

substituting these values and equating coefficients, we have 

h=Pp+a, g=«n+, 

(l—1) p,= coefficient of ¢’ in h(w, v’, t), 

(U = K) Gy = -recererecneeee Gainer): 

It is clear that, if @ is different from zero, the first equation cannot be satisfied; and 

therefore as one condition for the possession of regular integrals, @ must be zero, 

Assuming this satisfied, we see that p, is left undetermined: let a value a, provisionally 

arbitrary, be assigned to it. 

Solving now the remaining equations for the values J=1, 2,..., «—1 in successive 

sets, each set being associated with one value of J, we have the values of py,..., Dea, 

Qis++) Gea; all these in general involve a. In order that g, may have a finite value, 
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so that (J—«)q, vanishes for 1=x«, we must have the coefficient of # in k(w, 2’, t) zero. 

If this coefficient be zero, the value of g, is undetermined; let a value 8, provisionally 

arbitrary, be assigned to it. For the remaining values of J, the equations determine 

formal expressions for the remaining coefficients, involving a and 8: and no further 

formal conditions need to be imposed. When the values of py,..., Pea, Qir++ Gea are 

inserted in k(u’,v’, t), the coefficient of t* in that quantity may be an identical zero; 

involve two arbitrary constants a and 8 so that, if the 

functions actually exist, there is a double infinitude of regular solutions vanishing with t. 

, 
in that case, the functions w’, v 

Or the coefficient may be zero only if some relation among the constants of the original 

equations be satisfied; if the relation is not satisfied, there are no regular integrals of 

the original equations vanishing with ¢: if the relation is satisfied, there is a double 

infinitude of regular integrals. Or the coefficient may be zero only if some relation 

among the constants of the original equations and @ be satisfied; this relation is then 

to be regarded as determining a, and then for each value of @ so determined, there is a 

single infinitude of regular solutions vanishing with ¢. 

These results are stated on the assumption that the power-series, as obtained with 

the coefficients p and qg, converge: the assumption can be justified as follows. Let 

A, = pit + pol? +... + Deal, 

Ba = Qt t+ Gt + ... + Gat, 

the coefficients p and g being known; then if functions wu’ and v’ exist of the specified 

form, we can assume 

hh SEE 

v=Bi+t°V%, 

where U’ and V’ are regular functions of ¢ that vanish with ¢ Thus, assuming a= 0, 

we have 

dA,_, dU’ =a) ay 
ae ape ee 1’ =A, tO + h(Aa tt, Batt Vv, 6). t 

Now the quantity 
dA, my 

td ee 
is equal to the aggregate of the terms involving ¢, @,..., #7 in 

Ce I 0) 

Also in h(w’, v’, t) there are no terms of dimensions lower than 2 so that, in 

Ae te U5 Bea eae) (Ape eb enraut)s 

the coefficients of t#7"U’, t#1V’ are of dimension at least unity, and therefore this 

expression may be taken as equal to 

Ean (Ul aVaient)s 



DIFFERENTIAL EQUATIONS. 47 

where H, is a regular function of its arguments, which vanishes with them and contains 

no terms of dimension lower than 2. Also let the terms in h(A,,, B,4, t) of order higher 

than «—1 be 

Ob + Cea, OO + LS 

then 

aU’ ity, ania 
tas TES) OM Sire oC ge ab 655 Te EE (OM, WS ay, 

and therefore 

dU’ . 1) 
ta 2a eU +c¢,t+ H(U’,V’, t), 

on absorbing the other powers of ¢ into H, and denoting by H the new function which 

has the same character as H,. Similarly 

dV’ 
ta =V' +b¢+ K(U’, V’, 2), 

where the terms in k(A,_,, B,,, t) of order higher than «—1 are 

aie Sona 

and K is a function of the same character as H. 

As « 1s a positive integer >1, 2—« is not a positive integer >1. Thus the coefficient 

of U’ is not a positive integer, while the coefficient of V’ is unity; and thus the two 

equations for U’ and V’ are a particular instance of the general form discussed in 1 (0b). 

There is no regular integral vanishing with ¢ unless b,=0; the significance of this 

condition, either as an identity, or as a relation among the constants of the original 

equations, or as an equation determining a, has already been discussed. Assuming the 

condition b,=0 satisfied, it is known from the preceding result that the equations in U’ 

and V’ possess regular integrals, which vanish with ¢ and involve an arbitrary constant 

that does not appear in the differential equations. The inferences stated earlier are 

therefore established. 

It appears from the investigation that two conditions must be satisfied in order to 

the possession of regular integrals: one of them is a relation among the constants of the 

equation represented by a=0: the other of them is the relation represented by b, =0. 

To obtain them directly from the original forms, we can proceed as follows. Let 

w= Zit, v= zag, 
t= t=% 

be substituted in the original equations: and determine p,, ..., Pm, Gi, +++» Gna. The first 

condition is that the coefficient of ¢” in 

m—1 m-1 

@( Spt, = gts t) 
t=1 l=1 



48 Pror. FORSYTH, ON THE INTEGRALS OF SYSTEMS OF 

shall vanish. Take p,,=a; and then from the original equations determine Pnii,---, Pn: 

Gms+++, Yn. The second condition is that the coefficient of ¢” in 

n-1 n-1 

Co) ( > pit’, > qt, t) 
= t= 1 1 

shall vanish. It is not difficult to verify these statements. 

Summarising the results, it appears that, wnless one condition be satisfied, the equations 

possess »o regular integrals vanishing with t. When the condition is satisfied, another relation 

must be satisfied. If this relation determines a parameter, the equations possess a single 

infinitude of regular integrals; if it involves only the constants in the differential equations, 

then, when it is not satisfied, there are no regular integrals vanishing with t: and, when tt is 

satisfied, there is a double infinitude of such integrals. 

Case II (a): the critical quadratic has equal roots, not a positive integer. 

4. The equations are 

du 
ta but hunt) | 

dv _ 

DFE eu + E+ gu (2, t) 

where £ is not a positive integer; the functions ¢, and ¢, are regular and (with the 

possible exception of a term in ¢) contain no terms of order lower than 2. If they possess 

regular integrals vanishing with t, they must have the forms 

w= > pal D= Bat 
n=1 n=1 

Substituting these expressions and equating coefticients, we find 

(n— &) Pn=fn 

(n— é) Qn = Gn + KPn 

where f, and g, are the coefficients of ¢” in ¢, and ¢, respectively, when the series for 

and v are substituted. It is clear that 7, and g, are linear in the coefficients of ¢, and 

do, that they are integral algebraical combinations of p,, Ps,+--, dis Qe ++: and that they 

contain no coefficient p or g in the succession later than pj, and q,4. As & is not an 

integer, the foregoing equations, taken for successive values of n, determine formal ex- 

pressions for the whole set of coefficients p and q; in particular, p, and g, are obtained as 

sums of quotients, the numerators of which are integral functions of the coefficients in ¢, 

and ¢,, and the denominators of which are products of powers of the quantities 

1—& 2-&..., n-& 

To discuss the convergence of the power-series for wu and v with these coefficients, we 
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introduce an associated set of dominant equations. Let a common region of existence of 

¢, and ¢, be determined by the range 

|= |uj<p, |vuj<o, |tl<er; 

within this region let the greatest value of |¢,| be J/, and that of |¢,| be N, so that 

within the region 

Idil<M, |d.\< VN, 

M and N denoting finite magnitudes. Also, let e denote the smallest value of | m—&| for 

values of the integer m; and let |«|=c. Then we consider the dominant equations 

given by 

xs Sees r piar 

Ale Vit, 
i eis po o/7 

s Vv eY=eX +— t+ 

where the summations on the right-hand side are for integer values of 7, 7, & such that 

i+jt+k>2. 

The general course of the argument is similar to that in I (a). In the first place, X 

and Y can be determined by the simultaneous equations 

M Me 0 oie 
\ o 

From these we have 

NeX = M(eY —cX), 

so that 
Wax (at +‘); 

M 

when this value is substituted for Y in either equation, say in the first, we have 

(+5 +54 +)x(1-3) 1-= (G+ ) 

Sey (Soe 
t Pp. Mimae/\e ilps 
= 

a cubic equation in X. The term independent of XY vanishes when t=0; and the term 

involving the first power of X does not vanish when t=0, because ¢€ is not zero. Hence 

the cubic has one (and only one) root vanishing when t=0. 

Wore ovale “J 
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lt follows, as before, that this root of the cubic vanishing with ¢ can be expressed as a 

regular function of ¢ in the form of a power-series, which converges absolutely for values 

of |t| less than the least modulus of a root of the discriminant, that is, for a finite range. 

When the power-series for X has been obtained, the power-series for Y is given by 

Sue / IN) Ve 
Y=X (57+): 

a i | 

Y= Qt+ QO+...+ Qnrt™+...)7 

In the second place it can, as before, be shewn that the analysis, effective for the 

determination of p, and g, in connection with the original equations, is effective for the 

determination of P, and @, in connection with the dominant equations by merely making 

literal changes, and that these literal changes are such as to give 

WealkeZeas | Qal< Qn 

for all values of n. It therefore follows that the series 

pitt pol +psh+..., 

htt got + gl+..., 

converge absolutely within a not infinitesimal region round ¢=0. Consequently the 

equations possess regular integrals vanishing with t: and it is not difficult to prove that 

these regular integrals are unique as regular integrals with the assigned conditions. 

Case II (b): when the critical quadratic has equal roots, the repeated 

root being a positive integer. 

5. The equations are 

du 
t,t at + O(u, v, t) 

dv : t 7, = Kut mut Bt + o(u, v, b)| 

where m is a positive integer, the functions @ and ¢ are regular, vanishing with uw, »v, ¢, 

and containing no terms of dimensions lower than 2. 

We transform the equations as in I (b) by successive substitutions, each of which 

leads to new equations of a similar form with a diminution by one unit in the 

coefficients of w and of v after each operation. We take 

u=t(X+u), v=t(wtr), 

choosing > and pw so that uw, and v, vanish with ¢: then uw and » are regular functions 

of t, if the equations possess regular integrals. To secure this form of transformation, 

we must have 
(m—1)X +a=0, 

KN +(m—1)u+B8=0, 



DIFFERENTIAL EQUATIONS. 51 

so that 

a Ka B 

Ta EGP mel? 

and the new equations are 

d ; : 
t—2 =(m—1) my +at+ (um, %, 8) | 

d , 
a = ky +(m—1)%4+ Bt+o.(%H, uw, a) 

A similar transformation can be effected upon this pair, with a similar result; and the 

process can be carried out m—1 times in all, leading to equations 

, 
dw 

aa 
=u +at+h (wv, v, t) 

dv’ to anu +0 bt +k wv, | 
where h, k are regular functions, vanishing with w’, v, t, and containing no terms of 

dimensions lower than 2; also w’, v’ are to vanish with ¢. 

There are two sub-cases to be considered, according as « is zero and « is different 

from zero. 

First, let « be 0; so that the equations are 

_ =u +at+h(u, v, t) 

dv’ ; Fonds 
are +bt+k(u,, v’, t) 

It is easy to see, by substituting expressions of the form 

“’=pttpelt+..., v=gqt+gt+..., 

that the equations cannot possess regular integrals vanishing with ¢ unless 

=O, =O. 

Assume, therefore, that a=0, b=0. If the equations then possess regular integrals 

vanishing with ¢t, we can take 

oes vet 

where now the only transferred condition to be imposed upon U’ and V’ is that they 

are to be regular functions of ¢. Substituting these values, we find 

t° sath =h(¢U", tV’, t) =e (U’, V’, 0), 

i > =k (tU’, tV’, t) =eK (U’, V’, 8), 
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so that 
dU’ aye +s 

-=H(U’,V’,t), = =K(U’, V’, 6), 
dt dt 

where H and K are regular functions of their arguments. To these equations, Cauchy's 

general existence-theorem can be applied; it shews that they possess integrals which 

are regular functions of ¢ and assume assigned (arbitrary) values when t=0. Accord- 

ingly, the equations in wu’ and v’, in the case when the conditions a=0, b=0 are satisfied 

and when the constant « is zero, possess a double infinitude of regular integrals which 

vanish when t= 0. 

Secondly, let « be different from zero. If the equations possess regular integrals, 

they are expressible in the form 

w=at+tat?+.., v=bt+be+...; 

substituting these, and taking account of the first power of ¢ on the two sides of both 

equations, we have 

a =a+4, b, = xa, +b, +b. 

Hence we must have a=0; then b, is undetermined, and 

b 
a — 

K 

a finite quantity because « is not zero. 

Assuming that the condition a=0 is satisfied, and assigning an arbitrary value 

A to b,, let 

so that 7, and », are to be regular functions of ¢ vanishing with ¢; the equations 

for m, and 7, are 

d pM ah (to + tm, tA = th, t) 
dt K 

= CH (m, No» t), 

In. b 
bop = atm + k(t + im, ta + ty, t) 

t K 

= xtn, + OK (m, m, 0), 

that is, they are 

d 
to = tH (m, M2, t) 

dno : 
t= aN, + tK (m, Nos ol 

where H, K are regular functions of their arguments and involve the arbitrary constant A. 
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These equations are now the same as in the Case II (a) when & is made zero. 

Accordingly, all the analysis of that earlier discussion applies when in it e is taken 

equal to unity. The equations in 7, and 7, possess regular integrals vanishing with ft, 

and their expression involves A, the arbitrary constant; and therefore the original 

equations in uw and v possess no regular integrals vanishing with t unless the condition 

represented by a=0 be satisfied; but if that condition be satisfied, they possess a simple 

infimitude of regular integrals vanishing with t. 

The conditions represented by a=0 and b=0 in the sub-case when « is zero, and 

the condition represented by a=0 in the sub-case when « is different from zero, can 

be expressed as before. For the former sub-case, we determine coefficients a and b so 

that 

U = Ot +... + Oma US +...) 

v=bt+...+bn 14+ i 

satisfy the equations 

pot mu + at + @(u, », t) | 

=mv+ Pt+ o(u, 2, a} 

and the conditions are that the coefficient of ¢” in 

m—1 m1 

at + 0 ( Scat, be t), 
il 1=1 

and the same coefficient in 

m—-1 =1 ™ 

Bt+ $( = af 
l=1 l=1 

byt? t) 

shall vanish. For the latter sub-case, we determine the 2(m—1) coefficients in w and 

v so that the equations 

S = mu + at+ @(u, v, t) 

- =Ku+mv+ Bt+t ¢ (u, », t) 

are satisfied; and the single condition is that the coefticient of ¢” in 

m—-1 m-1 

at + 0( = at, = byt! t) 
T=1 i=1 

shall vanish. 

This completes the discussion of the regular integrals vanishing with ¢, with the 

respective results as enunciated in the various cases. 



54 Pror. FORSYTH, ON THE INTEGRALS OF SYSTEMS OF 

NON-REGULAR INTEGRALS. 

6. It has been seen that, either in general or subject to certain conditions, the 

equations 

= SW eB at Se EE | 

dV yn ai 
tp = Ut BV + yet +... = 800, V, 2) | 

possess regular integrals which vanish with ¢: and these are unique as regular integrals. 

Denoting them by w%, %, let 

=e, ca aay 

so that if functions « and y exist, different from constant zero, they are non-regular 

functions of ¢, and they must vanish with t because U, m, V, % all vanish with t= Then 

= a(uta, wU+Yy;, t)— (wu, %, t) 

i 0 =~ 2 - ar = (2 aun, +ye)" 6, (1, %, t) 

2 _ = a = 

tit =25(¢ Ou, fed ae 0, (%4, VN; os 

are equations to determine « and y. On the right-hand sides there are no terms 

involving ¢ alone; the only terms of the first order are 42+ ,y, a+ 8.y respectively; 

and the coefficients of the other powers of « and y are functions of ¢ and of %, x, 

that is, after substitution of the values of m4, 1%, these coefficients are regular functions 

of t. Hence we may take the equations in the form 

dx 
to = met By +(e, Y, é)| 

d 

toe = ar + By +%(@, y, t) | 

where 3, and S, are regular functions of a, y, t, vanishing when «=0, y=0, and con- 

taining no terms of dimensions lower than 2 in 2, y, and ¢. The dependent variables 

x and y, if they exist as other than zero constants (which manifestly satisfy the 

equations), are to be non-regular functions of ¢ which vanish when ¢=0. 

It is convenient to transform the equations by linear changes of the dependent 

variables, as was done for the discussion of regular integrals: the new forms depending 

upon the roots of the critical quadratic 

(E — a) (E — By) — a8; = 0. 



DIFFERENTIAL EQUATIONS. 55 

When the roots of the quadratic are unequal, say & and &, we take new variables 

t=rAc+py, t=Ne+p’y, 

where 
(a — E:)%+ Ape = 0) (ay — &) M+ tap’ = 0) 

BrA+(B.—£)p=0f BA +(Bi—E)ui= OJ” 
the equations become 

at, 
t dt an Eh or di (h, ty, t) 

> 

ty 
top = bate + bet t,t) 

where the regular functions ¢, and ¢, vanish when 4,=0, t,=0, and contain no terms 

in ¢,, t, t of dimensions lower than 2. 

When the roots of the quadratic are equal, the common value being &, the cor- 

responding forms are 

dt, _ 
ty = bat tilt, t,t) 

dt. 
) 

ta = Kt + Etat bolt, to, t) 

with the same characteristic properties of the functions ¢, and ¢, as for the former 

case; here t,=y and t=Ar+py, where 

(a — €)AX + ap = 0, BA + (8B. — —) wh =0, 

and the constant « is given by cA= a. 

We proceed to deal with the various alternative cases, as for the regular integrals : 

merely remarking that, for those instances of the original equations which do not possess 

regular integrals because the appropriate condition is not satisfied, it will be necessary 

to return to those original equations for the discussion of the non-regular integrals. 

7. Some indication of the character of the solutions may be derived from the 

consideration of two simple examples, one of each form. 

A simple example of the case when the roots of the critical quadratic are unequal is 

d 
t z = At, + att, 

i 
dt, 

t a ty + btt, 

integrals (if they exist) are required which vanish when t=0. The solution of these 

equations, which are linear, can be made to depend upon that of a linear equation 
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of the second order having t¢=0 for a singularity: it appears that the integrals are 

normal in the vicinity of f=0. Their full expression is 

abe (ably \ 

n= AM tag Rad sp GEA 
a ( abt? (abt?) 
— Ber il+s. + ; SE ets +T=p | 7 2@-p) 2.48—p)G—p) 

b res | abt? (abt?)? ; 
= 1 = cee Sater l+5@40124G+GF—* 

abt? (abt?) | 
+Br {i+ sat et ets 

2(1—p) 2.4(1—p)(3—p) 

where p=A— wz: in order that the solution may be satisfactory, it is manifest that p 

may not be an integer, positive or negative. For the present purpose, the general 

integrals must be chosen so that they vanish with t; and consequently the most 

important terms in the immediate vicinity of t=0 are 

t= AP + — Be] 
1—p 

b (aa 
4£=— A+ Be 

1 =P /D 

the quantities A and B being arbitrary. 

If the real part of X and the real part of , be both positive, then, when the 

variable ¢ approaches its origin not making an infinite number of circuits round that 

origin, 4, and ¢ ultimately vanish when ¢t=0, that is, as X and pw are not integers, 

there is a double infinitude of non-regular integrals vanishing with ¢ 

If the real part of X be positive and the real part of ~ be negative, then, when 

t tends to zero as before, t, can tend to zero only if B be zero: and if B=0, then 

t, and ¢ ultimately vanish when ¢=0, that is, there is a single infinitude of non- 

regular integrals vanishing with ¢. 

Similarly, if the real part of X be negative and the real part of m@ be positive, 

there is a single infinitude of non-regular integrals vanishing with t¢. 

If both the real part of 2X and the real part of mw be negative, then ¢, and & 

vanish with ¢ only if 4=0, B=0: that is, non-regular integrals vanishing with ¢ do 

not then exist. This last result is in accordance with Goursat’s result already quoted 

in the introductory remarks. 

It will be noticed that the parts depending upon ¢* alone, when they exist, are of 

the form 

4 =tp,, t= po, 
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where p; is an arbitrary finite quantity and p, is zero when t=0; and that the parts 

depending upon ¢ alone, when they exist, are of the form 

Z=to,, t= a, 

where o, is another arbitrary finite quantity, and o, is zero when t=0. These particular 

results are general and, in this form, can be established by an appropriate modification 
of Goursat’s argument (/.c.). They are included in the more general theorems that will 

be considered immediately. 

A simple example of the. case when the roots of the critical quadratic are 

equal is 

dt, t GP = Ah + att) 

dt, 
t dt = ki, + At, | 

integrals (if they exist) are required which vanish when t=0. The solution of these 

equations can, as for the preceding example, be made to depend upon the solution of 

a linear equation of the second order, having t=0 for a singularity ; and their expressions 

can be obtained in the form 

t, = Aat1(1 + daxt+...)+ Ba fant (1+ dant+...) log t+ (1 — fare? — ...) A}, 

t= At (1+ axt+...) + B {act (1+ act + ...) log t+ (ak — wet —...) }. 

When the real part of X is positive, these integrals vanish with ¢; and there is a double 

infinitude of them. When the real part of » is negative, then it is necessary that 

A and B both vanish: that is, the integrals do not exist if they are to vanish 

with ¢. 

When B is zero, then the integrals become of the form 

L= tpn, ,= t po, 

where p, is an arbitrary finite quantity, and p, is zero when ¢=0. This result is 

general. There is no corresponding simple inference from the parts that depend solely 

upon B: the complication is caused by the term «f, in the second equation. 

The special results here obtained are included in the theorems relating to the 

equations in their general form: they suggest that integrals exist which are regular 

functions of ¢, #4, and # log ¢, when the real part of X is positive. 

Vou. XVIII. 8 
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Case I (a): the critical quadratic has unequal roots, neither of them being 

a positive integer. 

8. It has been proved that the original equations in this case possess regular 

integrals vanishing with ¢: and therefore, in order to consider the non-regular integrals 

(if any) that vanish with ¢, we transform the equations as in § 6, and we study the 

derived system 

dt, 
t= Eth + gilts ts d) 

dt _ 
th = Et. + ho (h, te, t) 

where ¢, and @, are regular functions of their arguments, vanishing when ¢,=0, t,=0, 

and containing no terms of dimensions less than 2 in 4, tf, t The integrals 4, and t% 

are to be non-regular functions of t, required to vanish with ¢. 

The main theorem is as follows :— 

When the roots of the critical quadratic & and &, have their real parts positive, 

and are such that no one of the quantities 

A-N&+p&+y, ARt+M-1E+y, 

vanishes for positive integer values of 2X, mw, v such that X+p+v>2, then the equations 

possess a double infinitude of non-regular integrals vanishing with t, these integrals being 

regular functions of t, t&, t. 

Immediate corollaries, when once this theorem is established, are as follows :— 

If the real part of & be positive and that of & be negative, there is only a single 

infinitude of non-regular integrals vanishing with t: they are regular functions of t 

and t®. 

Likewise, if the real part of & be positive and that of & be negative, there is only 

a single infinitude of non-regular integrals vanishing with t: they are regular functions 

of t and t. 

Tf the real part both of & and of & be negative, there are no non-regular integrals 

of the equations that vanish with t. 

These results (the last of which is due to Goursat in the first instance) will be 

found sufficiently obvious to dispense with any proof subsequent to the establishment 

of the main theorem. 

9. In discussing the equations, it will be convenient to replace # and ¢ by new 

variables, say 

thoz, th=z, CANS) 

so that, by the general theorem, regular functions of 2, 2, ¢ are to be established as 
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solutions of the equations. Accordingly, regarding ¢, and ft, as functions of these three 
arguments, assume 

GeO ert) 
> 

=> Omen zyMos"tP) a 

where the summation is for all positive (and zero) values of the integers m, n, p, with 
the conventions 

oon = 9, Deon = 0. 

Moreover 

He a a 
Oa tay Ye iag Orage? 

Hence the differential equations are 

ot ot ot 

t at a Ez 22, + E25 3a, =Ft+o G, ts, t) 

ts at, at, 
t at ate Ez az, =F E25 a, = Ents Te de (4, t, t) 

Substituting the assumed values of # and ft, and afterwards equating coefficients of 

2,{"z."tP, we have 

\((m—1) & + n&+ p} Gnnp = al 

{m&, +(n — 1) & + p} Bmnp =P mnp 

where @,,, 1S a rational algebraical function of the coefficients in gi, of the coefficients 

Gmin'y’ 1 t such that 

m<m, ven, p<p, m+n+p'<m+n+p, 

and of the coefficients Djwxy in t, with the same restrictions: and likewise for np 

in relation to @,. 

As there is no term in ¢,(t, t, ¢) of dimension unity in #, t, t, there can be 

no term of dimension unity in 2, 2, ¢ after substitution of the values of t, and t: 

hence 

{(m = 1) & + n&, ate Pi Onnp = 0, 

when m+n+p=1. Accordingly 

Ain=0, Amn =0 ; 

but there is no limitation upon ao, so that it can be taken arbitrarily: we assume 

Ay = A. 

For similar reasons 

{mé, ate (n = 1) &, + p} Drevin = 0, 

when m+n+p=1; and we infer that 

Droo =0, Door = 0, Bs = B, 

where B is arbitrary. 
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Suppose now that no one of the quantities 

(m-1)&+n& +p, m&+(n—1)&+p, 

for positive integer values of m, n, p such that 

m+n+p>2, 

vanishes. Then when the equations 

{(m —1) E+ nEs+ P} Gnnp = @'mnp | 

{m&, + (n— 1) & + p} bmnp = Pas | 

are solved in groups for the same value of m+n+p, and in successive groups for increas- 

ing values of m+n-+p beginning with 2, they lead to results of the form 

Amnp = Imnp> Des = Pawns 

where @mnp, Smnp are rational integral functions of the coefficients that occur in ¢, and ¢y, 

these functions being divided by a product of factors of the forms 

(m—1)&+n&+p, m&+(n—1)&+ p, for m+n+ p22. 

It has been seen that dq, =0, bo, =0: we easily see that ao,=0, bo,=0 for all values 

of p. For every term in ¢,(, ft, ¢) and every term in ¢,(4, t, £) involve 4, or #, or 

both: and the equations for ap, Boop are 

(Ga &,) Qoop = Ap, (Ga= &,) boop = Boop; 

where A,o,, Bo, are integral functions of the coefficients m ¢, and ¢,, and of coefficients 

pop’, Poop Such that p’<p, these integral functions being divided by factors of the form 

p—&, p—&. No term occurs either nm Ay, Bop independent of dep’, boop because there 

is no term in ¢, or in ¢, independent of 4 and #. Hence if all the coefficients dp, 

Bop vanish when p’<p, then dyp, bop also vanish. But do, =0, boi =O: hence ado: = 0, 

boos =O: and so on with the whole series. 

Consequently in the expressions for 4 and #, there occur no terms that involve ¢ 

alone without either z,, or 2, or z, and z,: which is therefore one general characteristic of 

the non-regular integrals if they exist. 

From ¢, and ¢,, let all the terms which do not involve z be gathered together. 

By what has just been proved, there are no terms which involve ¢ alone: hence the 

aggregates of the selected terms contain z, as a factor, and the aggregates of the remainders 

contain z as a factor, so that we can write 

4 =24p + 2,0, 

t = 27 + 2,02, 

where p and 7 are regular functions of ¢ and 2, which will be proved to be such that 

p=<A, 7=0, when t=0, A being an arbitrary constant: and ©,, ©, are regular functions 
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of t, 2%, 22, which will be proved to be such that @,=0, ©,=B when t=0, B being an 

arbitrary constant. 

The first stage of the proof will establish the existence of the parts ap, 2,7: the 

second stage will establish the existence of the parts 2,0,, 2,0,. It may be added that, 

had it been deemed desirable, a selection from ¢, and ¢, of terms that do not involve 2, 

might first have been made: the forms of ¢ and t, would then have been 

t, = 2pi + 4V,, t=a4m1+4WVo, 

where p,=0, t,=B when t=0, and p,, 7, are regular functions of ¢ and z,: also V,= A, 

V,=0 when t=0, and W,, V, are regular functions of ¢, 2,, %. Further, it will be seen 

from the forms of the functions that p, tT, W,, VW, all vanish when A=O: and that 0,, ©, 

pi, ™ all vanish when B=O. 

10. It is clear that if the equations under consideration possess integrals of the 

form 

h=pa, th=T%, 

where p and 7 are to be regular functions of z and z,, then, taking account of the forms 

of ¢, and ¢., the quantities p and 7 must satisfy the equations 

op Op _,dp _ 
Fe Sp os ew ( T, 4%, t) | 

OT OT dr i 
WA ir a dg = (&— GT oh ho (p, T, %, t) | 

The functions y,, wy are regular in their arguments: both of them vanish when p=0, 

7=0: in each of them, every term, which is of dimensions X% in p and 7+ combined, 

possesses a factor z,\7: and no term is of dimensions less than 2 in p, 7, ¢ combined. 

Because p and 7 are to be regular functions of ¢ and 2, they will be expressible in 

the forms 

(ve LLhmn Zant”, T = LIne” ; 

substituting these values and equating coefficients on the two sides of both equations, we 

find 

(n ar mé,) Bonn = hima 

{n + (m+ 1& = &,} Lan = Urum 5 

where km, and U’;,, are linear in the coefficients of y, and w, respectively, and are 

rational integral functions of the coefficients Kiyy, In im p and + such that m’<m, n’ <n, 

m+n <m+n. 

From the forms of the functions yw, and w., we have k’,=0, ly)=0. Hence when 

m=0, n=0, the first of the coefticient-equations leaves k, undetermined: we therefore 

make it an arbitrary (finite) quantity A: the second of the coefficient-equations gives 

Ino =0, for & and & are unequal. 
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Since no one of the quantities 

(m—1)&,+n& +p, m&+(n—- 1)&+p 

vanishes for integer values of m,n, p such that m+n+p22, it follows that no one of the 

quantities 
n+m&, n+(m+1)&—-& 

vanishes for integer values of m and n such that m+n2>1. Hence when the coefficient- 

equations for k and J are solved in groups for the same value of m+n, and in 

successive groups for increasing values of m+n beginning with 1, they lead to results 

of the form 
om =Ymn> lennon 

where y and 2 are integral functions of the coefficients that occur in y, and y,, each 

divided by a product of factors of the forms 

n+mé&,, n+(m+1)&—&.. 

Moreover each of the coefficients k and J, thus determined, contains 4 as a factor. 

It now is necessary to prove that the series for p and +, the formal expressions 

of which have been deduced, are converging series. For this purpose, we construct 

dominant equations as follows. 

Let a region of common existence of the functions y, and y, be defined by the 

ranges |t|<7r, |al<n, |p| <4, |7|<: so that y, and y, are regular functions of their 

arguments within these ranges. In this region, let J, be the greatest value of || 

and M, the greatest value of |.|: let Jf denote the greater of the two quantities 

M, and M,. Further, since the quantities n+mé&,, n+(m+1)&—& do not vanish for 

integer values of m and n such that m+n>1, there must be a least value for the 

moduli of the quantities for the various combinations of m and n; let this value be 

m, so that 
n+mé, <n, |n+(m4+1)&—&| <7, 

in all instances. Also let |A|=A’. Then the dominant equations are chosen to be 

n(P —A’)=nT 

ae eo aS aS. 

meres i a) 48 a 
| 

Clearly P—A’=T: their common values are given as the roots of the cubic 

equation 

(os Moar He 28) 8-22) 
M (A’ ey eal, eaten) | 1 — -T?—. 

leqtae rap) rap ) 
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When t=O and z,=0, the term in this equation independent of 7 vanishes: but the 

term in the first power of J’ does not vanish because 7 is not zero. Hence there is 

one root, and only one root, of the cubic equation which vanishes when t=0 and 

4=0; it is a regular function of ¢ and z in the immediate vicinity of t=0 over a 

region which is not infinitesimal. Actually solving the equation for this root, we find 

v= MA (i aL ae 2) + higher powers of ¢ and 2; 
nr\a \r Ta 

and then 

P=A’'+ = ( + x «) +higher powers of ¢ and 2,. 
nna\r ra: 

Now knowing that such a solution of the dominant equation exists, we can obtain its 

formal expression otherwise. Let 

P= A’ +33 20 Von 

T= Dp» 2" Tin 

substitute these values in the dominant equations, expand their right-hand sides in the 
form of regular series, and equate coefficients of z”"¢” on the two sides. We find 

7 

Dror SK mn 

Instead of actually evaluating K’,,,, the analysis used to determine yn can be adopted. To 

this end, construct the value of |‘, | and, in its expression, effect the following changes in 

succession :— 

1. Replace every modulus of a sum by the sum of the moduli of its terms: 

u. Replace each denominator-factor |n+m£,| and |n+(m+1)&—&| by 7: 

i. Replace the coefficients of p™7™2,%t% in g, and ¢, by M+a™ Br," 7%, for all 

values of mm, %, Pi, qr: 

iv. Replace |A| by A’. 

The final expression, so modified, is A’m,. But the effect, upon the initial expression for 

lYmn|, of each of these changes is to appreciate the value: hence, taking the cumulative 

result, we have 

| Ymn < Warne 

Similarly 

seal < TP ea 

But the series 

A$ ES 20D pm 
converges for a finite region round the origin t=0; hence the series 

(eS A+ 2> aie, 

T= LE inn ert” 
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converge absolutely: that is to say, the formal expressions p and 7 have significance, being 

regular functions of z, and ¢. The equations accordingly have integrals 

of the characteristics indicated. 

This completes the first stage of the proof. 

11. For the second stage, let 

ms aae i eras’ ihe 

the equations for 7, and 7, are 

r, 
ee Cee 72, +7, t) — b,(p%, TA, t) 

=£7,4+,(fL,, AS Ay t) | 

dT, , 
are = &T, +.(Ti, T2, &, t) 

after substitution for p and 7. Here y, and y, are regular functions of their arguments 

vanishing when 7,=0, 7,=0; they contain no terms of aggregate dimensions lower than 2 

in 7,, T., z, t. In accordance with the statement in § 9, it has to be proved that these 

equations possess solutions of the form 

T,=20,, T,=2.8:, 

where ©, and ©, are regular functions of ¢, 4, 2: it will appear that ©,=8B (an arbitrary 

constant) and ©,=0, when ¢=0. Substituting these values for 7; and 7,, we find 

aes, 56, , Sone er ee , 
i +&2, =F =f ee S (& &,) 0, =h (©,, @., 21, 22; t)| 

We 
00, 00, 00, , : 

t Et ae oF E325 ae =f (©), @,, 421, Za, o| 

the functions f, and f, are regular in their arguments, every term involves ©, or ©, 

or both, and a term involving ©, and ©, in the form ©,'@," has also a factor z,\t#™. 

If quantities ©,, ©, exist, being regular functions of ¢, 2%, 2 and satisfying these 

equations, the substitution of expressions of the form 

0, = LD=pPimn ZZ", 0, = 2 =2dimn 2,20", 

in these equations must lead to identities. Accordingly, equating coefticients of 2,!2.”"t” 

on the two sides of both equations, we have 

(nm at (l st 1) & 3F (m SF 1) £,} Pimn = Gir are 

(n ar lE, 3° més) dimn = Kim , 
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where 7Timn, “mn are linear functions of the coefficients in f, and f,, and are integral 

functions of the coefficients pymn and grmn, Such that 

Vel, mem, wen, V4+m +n’ <l+men. 

Owing to the forms of f, and f:, we have 

Too = Oe on: 

Hence poo = 0, and qo is left undetermined; we take 

qoo = B, 

where B is an arbitrary constant. Moreover, no one of the quantities 

n+(l—1)&+mé, n+l&+(m—-1)&, 

vanishes for values of 1, m, n such that n+l+m2>2; hence in the equations for 

Pimn, Yimn, DO One of the coefficients of Pynn, Ymn Vanishes when n+1l+m2>1. Hence 

these equations can be solved for all the coefficients p and q after poo, Goo. They 

are most conveniently solved in groups for the same value of n+l+m, and in 

succeeding groups for increasing values of n+1+m, beginning with 1; the results are 

Pimn = Tima» Yimn= Kimn> 

where Timn, Kimn are sums of integral functions of the coefficients in f, and fi, each 

divided by products of factors of the types 

n+(l—1)&+(m+1)&, n+lé&+mé,. 

Expressions thus are obtained as formal solutions of the equations: it is necessary to 

establish the convergence of the infinite series. As before, we construct dominant 

equations for this purpose, as follows. 

Let a common region of existence of the functions f, and f,, which are regular 

in their arguments, be defined by the ranges 

|¢| <r, |2:|< pi, | Za | < Po, |, | <a, | @3|< os: 

and within this region, let N denote the maximum value of |f,| and |f,|, so that NV 

is a finite quantity. Also let » denote the least among the values of 

|n+(J—1)&4+(m+1) &], |n + LE, + mé, |, 

for the various combinations of the integers /, m, n such that 1+m+n2>1; and let 

B\= 5’. Then the dominant equations to be considered are 

nP, = 7 (®, — B’) 

ai N 
2 (cera) iB Pi P2F/ P2F2 

: N _ We, No) 
(1 ey (1 *) P21 P2 
\ #/ pr 

Vou. XVIII. 9 
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The common value of ®, and ®,—B’ is determined as a root of the cubic equation 

/ N N NB’) / 2D ZB 2,P,) {o,(n+ = + <_) + Lee 1-2 )\(1- es) 
P21 P22) pan) \ aa P2F> Pon 

r > y 

\P271 P2% P21 p'a,02) Gaga) \ Lp Pi 

When t=0, 2,=0, 2=0, the term in this equation independent of ®, vanishes: but 

the term in the first power of ®, does not then vanish, because 7 is different from 

zero. Hence there is one root, and only one root, of the cubic which vanishes when 

t=0, z=0, 2 =0: and it is a regular function of t, 2, 2 in the immediate vicinity* 

of t=0. Actually solving the equation for this root, we find 

®, = she (- tke 22) + terms of higher orders; 
P22 \T Pi 2a 

and then we have 

®, = B+ AAD (- aes oe ) +terms of higher orders. 
NP2F2\T Pi Px 

As in the preceding stage of proof of the main theorem, we can obtain the 

expression of these particular quantities ©, and ®, otherwise. Knowing that ®, and 

®, — B’, equal to one another, are regular functions of #, 2,, Zo, let 

OD SS by) SS 2 A 

substitute in the dominant equations, expand the right-hand side in the form of regular 

series, and equate the coefficients of z,’z,"t" on the two sides. We find 

ener = 1D Tere 

But instead of actually deriving [jn, from the equations so obtained, we can utilise 

the analysis that leads to the quantities 7imn, imn, as follows. Construct | im»! and, 

in its analytical expression, effect the following changes in succession :— 

i. Replace every modulus of a sum by the sum of the moduli of the terms: 

u. Replace each denominator-factor |n+(l -—1)&+(m+1)é, 

by 7: 

iii. Replace the coefficient of 0,%O,™2,%2,~t? in fi and f, by N+oa,)™oa.™p,"p.™r?, 

for all values of m,, ms, %, ts, p: 

iv. Replace |B} by B’. 

and |n+l&,+mé,| 

The final expression, after all these modifications have been made, is Ijn,. But the 

* It remains a regular function so long as |t is less than the least of the moduli of the roots of the 

discriminant of the cubic. 
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effect, upon the initial expression for |7mn|, of each of the modifications is to appre- 

ciate the value; hence taking the cumulative effect, we have 

| Timn |< Wrens 

Similarly | ee || < Wee 

Now the series for ®,, when Pin, is replaced by Tn, converges for a finite 

region round the origin; hence the series 

@,= — LESminn ata") 
©, = B+ 222 kimnZ'Z"t") 

also converge for that region. Consequently the modified equations have integrals of the 
character 

T,=2z0,, T,=2z@,: 

and therefore the original equations have integrals 

h=p4t+20,, t=72,+ 202, 

where p and 7 are regular functions of ¢ and z,: and ©,, ©, are regular functions of 

Un Pay Zoe 

This completes the proof of the main theorem with the specified conditions. 

CasE I(b): one root of the critical quadratic is a positive integer, the other is not 

@ positive integer. 

12. Let the integer root be denoted by m, the non-integer root by &; the equa- 

tions can be taken in the form 

du 
tT = mu + at +0 (u, v, t)) 

1G = bv + Bt+ (1 v, d| 

5) 

where @ and ¢ are regular functions of their arguments, vanish with wu, v, ¢ and 

contain no terms of dimensions lower than 2. The same transformations as were used 

in § 2, viz. 
“ : 

C= (-—*, +4), v=t(- “7 +n), 

can be applied m—1 times in succession: and ultimately we have equations 

dt 
t= htat +filh, t, ) 

dt. B (hg 
t dt = kt, + bt +e (4, ty, D)) 

9-9 
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where x, =E—m+l1, is not a positive integer, the functions f, and f, are regular 

functions of their arguments of the same type as @ and @ above, and the integrals 

t, and ¢ are to vanish with t. 

It has been proved that there are no regular integrals of the equation vanishing 

with ¢ unless @ is zero: and that, if a=0, there exists a simple infinitude of regular 

integrals satisfying the equations, We proceed, not in the first place to the complete 

theorem but only to a partial theorem, by shewing that when a ts not zero, there 

exists a simple infinitude of non-regular integrals vanishing with t, these integrals being 

regular functions of t and tlogt: and when a is zero, these non-regular integrals do 

not exist. 

To establish this result, we proceed from equations 

(Oo mon att A(a, y t) 

1 = xy + bt + 0, (a, y, t) 

where o is taken to be a real positive quantity, a little less than 1 initially and 

equal to 1 ultimately: and, as the explicit forms of @, and @, are required, we 

suppose 
A(x, y, t) = LDaypxtyt?, 

((+j+p22). 
A(x, y, t) = TEXDjpaiyit?, 

With these equations, we associate a set of dominant equations. Let 

\Qijp| = Aaj, |Dijp| = Bip, |a|=A 

then the dominant equations are 

—— oX + At=@, (X, Y, »| 

ae tS eV + B= 0,(X, ro 

where 
@,(X, Y, )=2azAye ee 

@,(X, Y, t|)= 22> By, X* Vite 

If « be real, not being a positive integer, we choose that sign for the term + Bt, 

which makes 
B 

k-—1 

a positive quantity; if « be complex, we choose a term + Bt, such that 

B 
ck—1 

is a real positive quantity and |B) >|). 
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By the theorem of § 10, we know that solutions exist, which vanish with ¢ and 

are expressible as regular functions of ¢ and ¢%. Let a new variable @ be introduced, 

defined by the equation 

t?—t=(l—o)@; 

and, in the solutions indicated, replace t? by t+(1—oc)@; they then become regular 

functions of ¢ and 6, expressed as converging power-series. To obtain their coefficients 

in this form directly, let 

Ne nmol 

VES (0 (YE 

where d=0, b,,=0; then since 

dé 
t dt = of = t, 

we have 
dX 

t a LZainn {NO™t” + mb" t” (cA — t)} 

= TE {(n +om) Ot” — MO" t")} Ann, 
and 

OV ts = 
ty = {((n+ om) Ot? — MO" Bins 

Substituting in the differential equations and comparing coefficients, we have 

(n+ oM—C) Onna —(M41) Onn, ra= Hm, ‘| 

(n+ om — kK) lire a (m at 1) (Dra, n—1 — Am, n 

where H,,, and K,,., are sums of terms of the form 

Sr 
3 Fee = = ‘A sin Om, se Omni; Dmy'ny ode Dmny ’ 

and similarly for K,,,,, such that 

t+j+p22 

M+... +M; +m +...+mj =m 

ptmt...Fu+n/+...+nj =n 

N beimg a numerical quantity, representing the number of integer solutions of the last 

two equations. 

As regards the initial coefficients, we have the following expressions. 

For m+n=0, so that m=0, n=0; then 

Gon = 0) (6. — 03 

For m+n=1, so that m=1, n=0: and m=0, n=1; then 

OB aay — OM (G—16))0 9) 108 

(l—o)d,-—aQ,=—A, (l—«)b, —b,.=F B; 
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so that 
Qy=(l—c)an+A, (l—«)bnx =FB, 1, =0; 

thus a, is undetermined and therefore can be taken arbitrarily, say =C, where C is positive. 

Thus @, yp, b, are positive. 

For m+n=2, so that m=2, n=0: m=1, n=1: and m=0, n=2; then 

Cla Aenean 

(26 — kK) bay = By? , 

Ay, — 2Aoy = 2A 299 Ay Aor + ArroGr000 + Arn Go 

(1+ ¢—£) by — by = 2Boo Gidea + Byodioba + Birr dr 

(2 — ©) Ay. — Ay = Ag Gy) + Apo Dan + A o29 bd? + Ain Gn + Aon dor + Aco 

(2—k) be — by = Boyan + Brodaba + Boob a + Bindn + Bobo + Boos 

And so on, taking in succession the groups of terms for increasing values of m+n, and 

taking, in each group, the equations for increasing values of x beginning with zero. 

The result is to give 
Oran = Orns) Oren = bmn; 

where Om, and mn are sums of a number of terms; each term is a quotient, the 

numerator being a positive integral function of the coefficients of @, and @, and 

containing a,” as a factor, and the denominator being a product of quantities of the 

form 
nN+om—a, n+om—kK. 

It can be proved, by an argument precisely similar to that in Jordan’s Cours d’ Analyse, 

t. iii, §97, that the number of quantities entering imto the denominator product for 

each of the terms in @n, and mn 1s 

~€m+2n-—1. 

On account of the theorem of § 10, establishing the existence of the integrals as regular 

functions of ¢ and ?%, it follows that the series 

Llama",  ZLOmnO™” 

converge absolutely. 

Now proceed to the limit in which o increases to, and ultimately acquires, the value 

unity; then @ becomes —tlogt, the differential equations become 

> a ee (== X+ At=@,(X, Y, é) | 

dy i E [> 

er? + Bt=0,(X, ¥, t)| 

and the integrals change to 
Ded ant, ODO an Os, 

where @m_ and b’n, are the values of Gn and bm, when o is replaced by 1. 
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In @,n, let LT be any one of the terms, and let 7” be the value of 7 when co is 

replaced by 1. As regards the numerator in 7, it is the sum of a series of positive 
quantities: and it is unaffected by the change of o, except that a, is replaced by A, 
that is, by a diminished quantity; hence the numerator of J” is less than that of JT. 
As regards the numerical denominator, each factor n+om—co is replaced by n+m-—1, 

which is a greater quantity than the factor it replaces, unless m vanishes; but when 

m=0, then 

because then n>2. Also every factor n+om—x is replaced by n4+m—x«; the imaginary 

portions (if any) of these two are the same, but the real part of the new factor is greater 

than that of the old except when m=0, and then they are the same. The number of 

factors in the denominator is not greater than m+2n—1: hence 

N+om—-c n+om—K 
—, < 9 — o)mten-1 

| n+m—1 n+m—k ( ) 

<4 (2 = Gp) piace 

The changes made have diminished the numerator of 7’; thus 

<\ Intom—cao n+t+om—k | 
a < é = 

T | n+m—1 n+m—-k | 

< (2 es: Gp) pu 

Remembering that @,,, is a sum of terms 7 and bearing in mind the character of 7, 

we have 
/ 

| @ mn | < (2 poet ag )tnran. 

| Ann 

Similarly 
/ 

b mn | < (2 = Gp) are 

| Brora 

Now the series 

> 2Genn gm t, Dian (GE 

converge absolutely for a finite region round the origin. Let this be defined by |t|<r, 

|\0\<s; and let M,, WM, be the respective maximum values of the moduli of the series 

within that region. Then 
M, M, 

Amn < n? Dinn SS ens 
GUT AL sr 

and therefore 
; M, 

| mn | < m n? 
8 di 
(a= ml fe ma 

(Sea | < My 
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Consequently the series 

ZEa'mn OMe", L2D'mn Om” 

converge absolutely for a finite region round t= 0. 

If the original equations 
dx 
tt x+at+ 0, (a, y, t) 

(= ey + +8,(2, y, t) 

possess integrals vanishing with ¢ in the form of regular functions of ¢ and tlogt, these 

integrals may be assumed to be 

Dhan Oe 

135g eo] 
when substituted, they must satisfy the equations identically. Choose fi, so that 

lf |= C;, 

where C is the arbitrary constant in the integrals of the preceding equations. 

When the relations that arise from the comparison of the coefficients are solved 

so as to give finn, Jmn, it is easy to see that the same results are obtained as would 

be given by changing, in @m, and b’y»,, A into —a, B into #b, Aj» into ay, and 

Bijy ito by,, for all values of 7%, j, p. Bearing in mind that 

|a|=A, |b/<|Bl, |aipl=Aip, | bip| = Bin, 
it is manifest that the real positive quantities |a’,,,| and |b’,,,/ are superior limits for 

bis and | mn I, that 1S, 

iia < | O'mn |) \Gmnl< Girard | . 

But the series 
paper thats Depa aa) 

converge absolutely: hence also the series 

SafmnGet) 2 Omne wee 

also converge absolutely, and the equations accordingly possess integrals as stated in the 

theorem. 

Note. If a is zero, then a,,=0; a)=0, a@,=0; and it is immediately obvious 

that 
ann =0, 

for all values of m>0O and all values of x. Similarly 

Dinn = 0) 

for the same combinations of m and n. In this case, @ disappears entirely from the 

expressions 
Siena Oe Ores 

so that the integrals become regular functions of ¢, which are known to be solutions 

of the equations when a= 0. 
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13. The main theorems as to the equations 

dt, ; 
Ez ot tthG, t,o] 

dt, : ais 
topo kt bit fal te t)| 

so far as concerns the non-regular solutions, are :— 

When a is not zero, so that the equations do not possess any regular solutions that 

vanish with t, they possess non-regular solutions that vanish with t. If « have its real 

part positive, not itself being a positive integer, there is a double infinitude of such solutions ; 

they are regular functions of t, t* and tlogt. If « have its real part negative, there is 

only a single infinitude of such solutions ; they are regular functions of t and tlog t. 

When a is zero, so that the equations possess a single infinitude of regular solutions 

vanishing with t, then if « have its real part positive, not itself being a positive integer, 

there is a single infinitude of non-regular solutions vanishing with t which are regular 

functions of t and t*; but if « have its real part negative, the equations possess no non- 

regular solutions vanishing with t. 

These theorems can be established by analysis and a course of argument similar 

to those which have been adopted, wholly or partially, in preceding cases. The actual 

expressions for the integrals, when a is not zero, are 

t= a0 + Att EES Ginn Ot” 

b > 

=, _,t+Be+ 22 hime COME 

where the summation is for values of J, m, n such that 1+m+n>2, the coefficients 

A and B are arbitrary, € denotes ¢* and @ denotes tlog t. 

When a is zero, all the coefficients gym, hyn for values of m>Q0O vanish; so that 

@ disappears from the expressions for #, and ¢,. The resulting expressions then can be 

resolved each into the sum of two functions: one a regular function of ¢ which 

involves A, the other a regular function of ¢ and € which involves B, and vanishes 

when B=0. 

It may be noted that a slight degeneration occurs in the solutions when « is the 

reciprocal of a positive integer; a regular function of ¢ and ¢* is then merely a 

regular function of ¢* 

When the equations in their first transformed expression are 

d 
ie =mut+at+O(u, v. t) 

5) 

dv 
tr = &+ Bt + o (u, v, .)) 

the general results are the same as above; the value of « is £—m+1, and the 

critical condition, which is represented by a=0, is stated at the end of § 2. 

Vora NaValilile 10 
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Case I (c): the roots of the critical quadratic are unequal, and both 

are positive integers. 

14 Denoting the roots by m and n, of which m may be taken as the smaller 

integer, the equations can be transformed so as to become 

du 
t— =mu+at+0 , t Ar mu + at (u, 2%, 0) 

dv 
ee 525m) 

They can be modified by substitutions similar to those adopted in the preceding case ; 

such substitutions can be applied m—1 times in succession, leading to the forms 

dt . 
bo htat tilts ts) 

dt, _ > | t ai = xt, + bt + fo(h, te, t) 

where x, =n—m-+1, is a positive integer greater than 1, the integrals 4, and #, are to 

vanish with ¢, and the functions f#,, f. are regular functions which vanish with their 

arguments and contain no terms of dimensions lower than 2 in &, fy, ¢ combined. 

It has already been proved (§ 3) that the equations possess no regular integrals 

vanishing with ¢, unless two relations among the constants be satisfied; one of them 

is represented by a=0, the other by (say) C=0, where C is a definite combination 

of a, b, and the constant coefficients in f, and f,. The theorem as regards the non- 

regular integrals is: 

The equations in general possess a double infinitude of non-regular integrals which 

vanish with t; they are regular functions of t, and tlogt. If both of the conditions 

represented by a=0, C=0 are satisfied, the equations possess no non-regular solutions 

vanishing with t: they are known to possess a double infinitude of regular integrals 

which vanish with t. 

The method of establishing this theorem is similar to that for the case when «x 

is unity so that the critical quadratic has a repeated root. As that case will be 

discussed later in full detail, we shall not here reproduce the analysis and the argument, 

which follow closely the corresponding analysis and argument in that later discussion. 

It may be added that the conditions for the equations 

lu 
t a =mu tat + 0(u, v, | 

dv | 
eer: =nv+ Bt+ o(u, v, t) 

represented for the modified forms by a=0, C=0, have already (§ 3) been given. 
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Case II (a): the critical quadratic has equal roots, not a positive integer. 

15. It has been proved that, in this case, the original equations possess regular 

integrals vanishing with ¢: and therefore, in order to consider the non-regular integrals 

(af any) that vanish with ¢, we transform the equations as in §6, and we study the 

derived system 

dt, 
th = &t, 3 di (4, to, t) 

dt. 
Ca = xt, + &t. + bo(t, tr, t) 

where ¢, and @¢, are regular functions of their arguments, vanish when ¢,=0, t,=0, 

and contain no terms of dimensions less than 2 in 4, t,, t combined. The integrals t, 

and f, are to be non-regular functions of ¢, required to vanish with ¢. 

The non-regular integrals are given by the theorem: 

When the repeated root — of the critical quadratic has its real part positive, not 

itself being a positive integer, there is a double infinitude of non-regular integrals vanishing 

with t, these integrals being regular functions of t, #, # logt. 

When the theorem is established, there is an immediate corollary : 

If the real part of the repeated root & of the critical quadratic be negative, then 

the equations do not possess non-regular integrals vanishing with t; the regular integrals 

possessed by the original system of equations are the only integrals that vanish with t. 

The forms of the theorem and the corollary are indicated by proceeding nearly to 

the limit of the theorems for the case of I (a) when the roots of the critical quadratic 

are equal to one another. If &=£& +6, where 6 is infinitesimal, then 

t= t(1+4+6 logt+...), 

so that a function of ¢, t&, t becomes a function of ¢, t, #log¢; but further investi- 

gation is needed in order to shew that, in passing to the limit, the functions under 

consideration continue to exist. Instead of adopting this method of proof, we proceed 

independently. 

It is convenient to take 

f=8, —n=# logt. 

If therefore integrals of the character indicated in the theorem exist, they can be 
expressed in the forms 

G= 222 Ginn Sit”) ; 

to = DEE dimn Ent”) * 
10—2 
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and these values must, when substituted, satisfy the differential equations identically. Now 

dg dy 
‘= j-— = —& 

so that 
d 

ta (f'n™t”) = (v + lé + mé) Ghee =, me t1_m—1 yn, 

Hence equating coefficients of ¢'7”t" on the two sides of both equations after substi- 

tution ef the assumed values of ¢, and t,, we have 

{n Ta (l +m-—1) &} Aimn — MQ, ma, n = nan } 

{n aS (J +m — 1) E} bimn — mbys, m+, n — Oaimn + Bimn 

where @’mn, Bunn, being the coefficients of ¢’n™t” in ¢, and ¢, respectively, are linear 

functions of the constants in ¢, and ¢,, and are integral functions of the coefficients 

Qymin's Ormin', Such that V<l, m’em, nen, V4+m +n’ <l+mtn. 

Assuming that the real part of & is positive but that & is not a positive integer, 

we see that no one of the quantities n+(/+m—1)€ can vanish if 1+m+n>2. 

If l=m=n=0, then @’mn=0, B’imn=0; hence 

Qooo = O, 

ery ele (0) 

For values such that /+m-+n=1, we have 

Ol Gog =O} that Is) ap = AG, 

C—O) 

ON Gs =O wb hateis orgs 

SOs = Ost = UG 

la SO Ope), 

0. Diogo = 8. Gino = OL. 

In order therefore to obtain finite values for the coefficients a and b, we must have 

ie=@), J5=(): 

and then by, by are arbitrary; that is, we have 

Cpe, tha SO, Chae? 

ay el, lea SU, Vig = Ot 

To obtain the terms of dimension two in € », ¢ m # and ¢, we require the 

explicit expressions of ¢, and ¢,: let them be 

gb; = att, + btt. + ct? + etto + he 

db. = att, + Btt, + yt? + eht. + xt?4+... 
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The terms in ¢, and ¢, of dimension one, obtained as above, are 

%=0, t~=—Ct+ Bn, 

so that, as far as terms of dimension two in ¢, and @, after substitution, we have 

gs = bt (By + CE) + k (By + CS), 

$2 = Bt (Bn + CE) + « (Bn + CEY. 

Accordingly, for 1+ m+n=2, we have 

Edhong = KB*, dy, = bB, (2 — &) dum = 0, 

Gy, = OC, (1+ €) ayy — dom = 2kBC, 

Edog9 = KC? ; 

ED 09 = KB? + Oo, Don = BB+ Odor, (2 — E) Bow = Adon, 

Bin = BC+ Ody, (1 + &) dro — Boon = Oday + 2KBC, 

EDaq, = KC* + Odin 3 

and therefore the terms in ¢, and ¢,, of dimensions two in the arguments ¢, 7, ¢, are 

- 2kBC + ae z 
z 026+ ae n+ eon + bC&t + bBnt, 

in 4: and 
\ 02 ‘ / 0k ‘ Wai 

(e+ Ges +(e+ 5) E+ (3 +O) Che + (B+ 6b) Bat 
iS 

(1+ =) BG e (eBc+ 2B)! 

eS ee on 
in t. And so on. 

The equations, when solved in groups for the same value of 1+ m+n _ beginning 

with a zero value of J, and solved in successive groups for increasing values of 

l+m-+n, give values of Ajnn, Fim, which are sums of integral functions of the literal 

coefficients of ¢, and @,, and of the arbitrary coefficients B and C, each such integral 

function being divided by a product of factors of the form n+(/+m—1)&. Let the 

values thus obtained be 

Aimn = mn» Dimn => Binns 

As in § 9 for the former case, it can be proved that 

Gop =0, Doop = 0; 

for all positive integer values of p, so that there are no terms in f or in f, involving 

t alone; every term involves either € or 7 or both € and 7». 
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To establish the convergence of the series thus obtained, we proceed in two 

stages as in the corresponding question (§§ 10, 11) when the roots of the critical 

quadratic are unequal. 

Extract from ¢, and ¢, all the terms which are free from 7; as each of them 

involves ¢, their aggregate can be taken in the respective forms p, ¢7r; and the 

remaining terms then have 7 for a factor, so that we may write 

4= op te 1, 

t. = r+ 7O,. 

It will be proved, first, that solutions of the form 

4= fp, t. = Cr 

exist, where p and 7 are regular functions of ¢ and & p vanishing at t=0 and 7+ 

having an arbitrary value there: so that the functions involve one arbitrary constant, 

and there consequently is a simple infinitude of such solutions. 

Then substituting 

t=f+7®,, t=fr+7O,, 

it will be proved that functions @, and ©, exist, so that they are regular in their 

arguments ¢, 7, t, they involve an arbitrary constant C, ©, vanishes at ¢=0 and 0, 

acquires the value C there. Thus for an assigned value of B, these will represent another 

(and an independent) simple infinitude of integrals. 

In each stage, the details of the analysis follow the detailed analysis of the 

former case somewhat closely: it therefore will be abbreviated for the present purpose. 

16. Substituting =p, t,=¢ in the equations for 4 and #, we find p and + 

determined by 

dp 
ty a (P- cou) 

ro 
dt 
ty = Op + Yo (p, 7362) 

where the general character of y, and w, is as before. If these are satisfied by regular 

functions of ¢ and ¢, their expressions 

p= pp) ae (ele t", 

T= inne t”, 

must, when substituted in the above equations, satisfy them identically. Accordingly, 

comparing coefticients of €”¢" on the two sides of both equations, we have 

(n oo mé) Koen = Thao 

(n+ ME) jmn = J mn + kmns 
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where Km, J’m, are limear in the literal coefficients of p and 7, and are integral 

functions of Kyyy, jmn', Such that m’<m, n’<n, m'+n'<m+n. Also, from the form of 

vr, and yo, K’=0, J’m=0; hence we have 

Kea 0! 

But jo is undetermined, and it can therefore be taken arbitrarily: let its value be B, 

where B is any arbitrary constant. 

When the equations for kim, and jm, are solved, in groups for the same value of 

m+n and in succeeding groups for increasing values of m+n, they lead to results of 

the form 
Kenn =Kmn> Jmn = 'mn> 

where kmn, mn are sums of integral functions of the coefficients in y, and yw, divided 

by products of factors of the form n+ mé. 

The dominant functions are constructed as before. Let e denote the least value 

of |n+mé€| for integer values of m and n, so that € is a finite (non-vanishing) quantity ; 

and let |@|/=0, |C\=C’. Also, let a common region of existence for the functions y, 

and w, be given by the ranges |t}<r, |€|<m, |p|<h, |7|<k; and within this region 

let M be the greatest value of |y¥,| and W.). Then consider functions P and 7’, defined 

by the equations 

il M M plete fe 

ate 1 Win - 7) @ = =) ae Tin, Mi 
( =| ( hr, kr, r 

eT 1 M M ee eG 
ef = eC 2G Teoma _ pe iy ar: 

\ ar ( hr, ( kr,) r 

Clearly 
(e+ @)P=e(T-C’), 

that is, 
Gc SEGUE OP Pa (a 

The value of P is a root of a cubic equation which, when t=0 and €=0, has 

no term independent of P and has a non-vanishing term involving the first power of 

P: so that it has one and only one root vanishing with ¢ and € and this root is a 

regular function, To obtain its expression without actually solving the cubic, we take 

P= >> Kin om ”, 

where K,=0: we expand the right-hand side of the dominant equations as a regular 

function of t, & P, T, and compare coefficients. The analysis that leads to the values 

Of Kmn, tmn can be used to obtain the value of Kyp,, by making appropriate changes 

similar to those in the earlier corresponding case. These changes are now, as was the 

case before, such as to make 

|Kmn| < Kee \Garel < Iie 
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and therefore as the series 
Keen Grune 

converges, the series 

LakmnSMt”, C+ Ll S et", 

also converge. The existence of the integrals, connected with the first stage, is therefore 

established. 

17. Now writing 

t=Cp+70,, t=fr +7®., 

where p and 7 are the regular functions of ¢ and € as just determined, the equations 

for @, and ©, are 

dO, 
ta =A, @., & n, t) | 

e) 

| . aS G0, + f2(@r, Os, & m, t) |} 

where 7, and f, are regular functions of their arguments, vanishing when ©,=0 and 0,=0; 

the coefficients of the first powers of ©, and ©, vanish when ¢=0; and any term, 

involving ©, and ©, in the form 0,0“, contains 7***~ as a factor. 

The method of proof and the general course of it are the same as before (§ 11). 

The regular functions of £ 7, t, which are the formal solution of the equations, are 

proved to converge, by being compared with the functions which satisfy the dominant 

equations 

a AWeane —— Day = e ate 7 \ / 121) at / 1 TA, SAW ee = a = 2:3 
(2 r) ( ;) (2 oat, ) \e a ( Sl | 

1 M 
e®, = €|C| +|6|2,+— 

| "SE eee ee oes : 3) (1 5 A oH : oa,/ 

(ae = 
r/ p 

and are such that, when t=0, €=0, »=0, then ®, is zero and ®,=|C|. There exists a 

single quantity ®,, satisfying these equations and vanishing with ¢, which is expansible as 

a regular function of ¢, 7 in a non-infinitesimal region round ¢, the power-series which is 

its expression being consequently a converging series within that region. And therefore 

®,, being given by 
|4| ®,=|C|+(1+ 1), 

is also expressible as a regular function of t, & » which, when t=0, acquires the 

value | C|. 
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A comparison of the coefficients of ¢€'/nt” in ©, and ©, with those of the same 

combination of the variables in ®, and ®, is easily seen to lead to the inference that 

the moduli of the former are less than the modulus of the latter; consequently the 

former series converge and therefore integrals of the equations, defined by the specitied 

conditions, are proved to exist. Their explicit expressions, as power-series, are obtained as 

in § 11. 

Case II(b): the critical quadratic has a repeated root which is a positive integer. 

18. Denoting the repeated root by m, the equations are 

du 
t ag met at + O(u, v, t) 

d 
t s =Kku+mu+ Bt+ du, v, t) 

where the functions @, @ are regular, vanish with wu, v, ¢, and contain no terms of 

dimensions lower than 2 in their arguments. 

The equations can be transformed as before (§ 5) by the appropriate substitutions ; 

and this transformation can be effected m—1 times, leading to new equations of the 

form 

dt 
ty mh tatt A(t, tt) | 

dt, (ie tO) = Kh + t+ Ot + Os(ty, te, 6) 

where ¢, and # are to vanish with ¢; and @,, 6, are of the same type and_ properties 

as 6, ¢ in the first form. 

There are two sub-cases according as « is zero, or « is not zero. 

19. First sub-case: «=0. The equations can be taken in the form 

da 
ta erat+ A (a, y, t) | 

dy 

the integrals are to vanish with ¢; and the functions 6@,, 0, are regular functions of their 

arguments, which vanish when 2=0, y=0, t=0 and contain no terms of order lower 

than 2 in a, y, t combined. 

The integrals vanishing with t are defined by the theorem: 

The equations possess, in general, a double infinitude of non-regular integrals vanishing 

with t, which are regular functions of t and tlogt; and it is known that there are no 

More aval 11 
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regular integrals vanishing with t. If, however, both a=0 and b=0, the equations do 

not possess non-regular integrals vanishing with t; the only integrals vanishing with t 

are the double infinitude of regular integrals which the equations are known to possess. 

This theorem can be established, as in other cases, by the construction of dominant 

equations and comparison with their integrals which actually are obtained in explicit 

expression. 

For this purpose, consider the equations 

= —oX + At=32E Ay, Xi Vite 

5 pee Seat ol PIS 
Cap —pl + Bt=>>> Bijn X* Vit? 

where 1+j7+p2>2 in the two triple summations. The quantities o and p are real, positive, 

and less than unity: ultimately they will be made equal to unity. It follows, from the 

theorem of § 8, that there is a double infinitude of integrals vanishing with ¢, these 

integrals being regular functions of ¢, ¢7, ¢?. 

Let two new variables 6 and ¢@ be introduced such that 

i? =t—(c—1)0+(c—1) 9, 

et (pi Leads 
we easily find 

ty tt 8a -p)(1 2) = 86 | 
. 
t+ =(c+p-1) $=ag 

where @ and § are constants which, when p=1, c=1, are equal to 1 and 0 respectively. 

The regular functions of ¢, ¢7, t? are expressible in the form of absolutely converging 

power-series ; when ¢? and ¢? are replaced by their values in terms of @ and ¢, the new 

functions are regular functions of ¢, @, ¢. To obtain their expressions in this last form 

directly from the differential equations, we substitute 

X = D>E hinn tO” a 

V=22> Kinn to" 

in the equations which are to be satisfied identically. Now 

Gy 0) dd8 dp 0) 
Um at) deo aped exe 

= >rz {(1 +m + an) hin, t! O™ $” 

= Mhimn tin er o” bd Nhamn t! ern Ge ae Bimhinn t! gra p+} : 

s ae 
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hence, comparing coefficients of ¢/@”" on the two sides, we have 

(+m +an— oc) himn—(m+ 1) hpamun—(n +1) hy, m—,n4a + (m + 1) Bhi mia,n—a= Oimn- 

Similarly 

(L+m + an— p) kimn —(m + 1) kta, mian—(n + 1) ki,m—a,nu + (m+ 1) Bhi mi1,n— = B’imn- 
: e : 4 : : MS: : Here @ mn, B’mn are expressions which are linear in the coefficients Ajj, Bip respectively, 

being an aggregate of terms of the form 

N, Ag Upper. nec lorenere Kum’ m, Le Kuyamg nj» 

N, Bijy hi, m,n, weet mene Kitt my nm! soo lianas 

respectively; the subscripts are subject to the relations 

m+... +m +m’ +...+mj =m 

m+...+ m+ +...+n =n |; 

pt+tht+..t+ 4+ 1/+...4 Fal 

and the numerical factor NV, is the number of integer-solutions of these equations. 

In particular, we have 
hoo = 9, — Kroog = 0. 

When het: m+n=1, the equations for the coefficients in XY are 

(1 = ca) hisoo = lOc =-— A, 

(1 —o) how — hoo = 0; 

(a —a) hoo + Bho = 0, 

which are satisfied by 
hor = ad = a) leap ar A | 

les =(1—c) how | 

and fy is arbitrary. Similarly, 

hoo =(1 = p) Keon sF . 

kon =(1 — p) Keo 

and k, 1s arbitrary. 

When 1+m+n=2, the equations for the coefficients in X are 

(2 = co) lien = Tees = Caren 

(l+a-—c) hor +2 Bh 020 — hoor = Aon fF? 

(2a —) hoo + Bho = 4 oe 

(2 — &) hyo — 2hoe0 — han = & v1 

el Sp eh co) hin = Dawe =r Bho = Cro r 

(2 =) hoo a hiro = A099 

I= 
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The first three equations, when solved, determine he», hon, Aow; When the values of li 

and hy, are substituted in the next two equations, they determine hyo, hy; the last equation 

then determines the form of Aug. 

Similarly for the coefficients in Y. 

For values of 1+m-+n>2, the equations can be solved in a similar way. They are 

solved in groups for the successively increasing values of 1+m-+n. In each group, say 

that for which 1+ m-+n=W (so that the coefficients hym'n, Krmn, such that 

Vim +n ~<N-1, 

are supposed known), the convenient method is to arrange the equations in sets, determined 

by the values of / and in sequence according to increasing values of 1 beginning with 0: 

in each set, the equations are arranged in sequence according to increasing values of n 

beginning with 0. In each set, we use the equations in succession to express hymn In terms 

of h;y-1,. and previously known coefficients and constants; when the first W—J equations 

in the set have thus been used, the remaining equation, on substitution of the values of 

hio.w—t, has,~-14, then determines h;,y-7. and so also the values of all the coefficients 

himn, Such that m+n=N—I. Likewise for the coefficients kin. 

And then, as the solutions are known to be regular functions of ¢, 6, ¢, the series 

LEE himn EO" G", LZ KkimntO™ G", 

with the values of himn, Kin which have been obtained, converge absolutely. 

As regards the forms of the coefficients Rimn, kimn, they are the aggregates of positive 

terms 7. The numerator of each term 7’ is the sum of a number of positive quantities: 

it is an integral algebraical function of the coefficients Aj, Byp: it is also an integral 

algebraical function of hzimin, Kizmin Such that 1+m+n=1, The denominator of the 

term J is of the form 

P+ QB, 

where P is the product of factors of the types 

l+m+an—o, l+m+an-—p, 

and where Q is an aggregate of quantities, each positive and similar to P but con- 

taining two factors fewer than P. 

As regards the number of factors in P, being a part of a denominator in a term 

T in himn OF kimn, it can be proved, by an amplification of Jordan’s argument quoted 

in § 11, that this number 
<3l4+2m+n. 

It is known that, so long as o and p are different from unity, the convergence 

of the power-series is absolute: hence this will be the case when 

go=l-e p=l—-e«, 
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where € is a real positive quantity that can be taken as small as we please. Proceed 

therefore to the limit in which o and p acquire the value unity, so that e€ passes 

from small values to zero. The effect is to give to @ and ¢ the values 

d=-tlogt, ¢=4t(logt); 

to change the differential equations to the forms 

dX Bey t+ At= SES Ay XVI? | 

+5 
dY SS tVi¢p | 

and to change the integrals to the forms 

X = LPM mnt! (— t log ty” (£t (log t)*} ) 

V =S 23K mnt! (—t log t)™ {44 (log #)"\” J ’ 

where him, and ktm, are the respective values of hymn and hymn when c=1, p=1. 

It is necessary to compare the coefficients h’jm, and hyn,: and likewise the co- 

efficients Ktmn and Kym,. Let T be one of the terms in hym,, as explained above: and 

let 7’ be its value when o=1, p=1. The effect of the change on the numerator is 

to replace (l—o)hjw+A by A, ho by 0, (l—p)ko+B by B, ky by 0, in every case 

a decrease: and therefore, as the numerator is a sum of positive terms, the whole effect 

on the numerator is to decrease it, that is, 

numerator of 7’<numerator of 7. 

As regards the denominator of 7’, in the form 

P+ QB, 

the quantity 8 is of the second order of small quantities; Q is an aggregate of a 

hmited number of products, each containing a limited number of factors; hence QP is 

of the second order of small quantities. Let P’ be the changed form of P, obtained 

from P by changing 

l+m+an—o into 1+m+n—1, 

and l+m+an—p into l+m+n-—1. 

Now l+m+an—a0—(l+m+n—1)=— (2n—l)e, 

a small quantity of the first order unless n=0; so that, unless n=O, 

l+m+an—o _ 

l+m+ AE 
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where y is a positive small quantity of the first order. When n=0, 

l+m—oa0—(l+m—1)(2-—¢)=e€(2—l—m), 

so that as 1+m>2, we have 

lim-—o 

eee teas be ge 

where y is a positive small quantity of the first order, unless /+m=2, and then y’=0. 

Hence 

ies il 1 

Bin eye ea 

1 
Pil Se = 

1 
> 

the difference between the two sides being a small quantity of the first order. Also 

Qs 
WEP 

is a small quantity of the second order, that is, a quantity of an order less than the 

foregoing difference; consequently 

Ey # 1 
IPs Q8 (2 = Fp) EL : 

The changes depreciated the numerator of 7 into that of 7’: hence 

fi Tea ys) 
7 Ww Ps 

< (2 — Bp 

< (2 — Gp) ATI 

This result holds for every term in hijnn; hence 

, ' 
Winn 

hamn | 

< (2 = BPEL, 

Similarly, 

| ie | < (2 — o)stsmtan, 

Let the region of convergence of the power-series 

VV Thinnt OG", LEZ kimnt oO" gh” 

be defined by the ranges 

tre Ol an pra 
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and let M,, M, be the maximum values of the moduli of the series respectively within 

this region; then 
M, 

himn < repre ) 

M, 
Kimn < rpm rit 5) 

consequently 
M, 

h imn S ? l Ty yam r, n? 

Q=cyJ (26) ((2@—c) 

' M, 
k mn S = 

Hence the series 

LDN mnt! O™ db", Se Eat OL GE. 

converge absolutely for values of ¢ such that |t| <7. 

The existence of integrals of 

di BS a 
tae =a + at+ TUL ajypa'yit? 

d a: 
say =y t+ bt+ LIV; 2 yt 

can be deduced from the preceding result, by choosing 

JaJ=A, |b|=B, |aip|= Ay, | dip | = Bip, 
as the quantities A, B, Aj, By, for those dominant equations. The expression for the 

integrals is 
ll £ = >>> Hin ang”), 

y = SEEK inn FONG") | 
where Hym, is derived from h’jm,, and Kin from Kim,, by changing A into —a, 

B into — b, Ajj, into ayy, and By, into bij,. The effect of these changes is to give 

| Zim < Rape 

Greer < Keirants 

and therefore the series for # and y converge absolutely. 

The actual values are 

x=atlogt+Ct+ 22> Amn tmp") 

y = bt log t+ C+ EEE Kimn tl!) ’ 

where 0=—tlogt, ¢=4¢t(logt), the summation is for values of J, m, n such that 

1+m+n>2, and the coefficients C,, C, are arbitrary constants. 
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But the formal expression is more general than the actual value. The equations 

determining the coefficients are 

(I +m+n—-1) Hina — (m+ 1) eee a (n a5 1) H,, m—1,n+1— Pee 

(I +m+n-—1) am —(m +e 1) Ki-1, m+, i (n Si 1) K;, m—1, n+1 = Lipo : 

with 
Hyw=C,, Hu =—4a, Hm =0, 

Kyo = C2, Koyo =— 8, Ko = 0. 

It is clear that, when 1+m+n=2, 

nai: nO if n=l, 2; 

hence Hin, Kimn both vanish for 1+m+n=2 if n=1, 2. 

Thus for /+m+n=3, 

0! Lip (0), if n=1, 2, 35 

hence also Hin, Kimn both vanish for 1+m+n=3 if n=1, 2, 3. And so on: all the 

coefficients Hynn, Kian vanish if 

n>0; 

that is, the quantity @ does not actually occur in the expressions for « and y which 

accordingly are regular functions of ¢ and ¢ logt. 

The theorem is therefore established. 

Note 1, Any term in @ and y is of the form 

Kt (t log t)", 

that is, Ke*(logt)"; and therefore the index of logt¢ is never greater than the index 

of t. 

If, however, the equations were 

te aat at + ct log t+ TETZaijpg wiy’t? (t log or) 

dy G SS sd ty Jt? (t | al tay HY t bt + ct log t + SEZZbiing w'y't? (¢ log t) 

where i+j+p+q>2 for the summations, then the values of 2 and y satisfying the 

equations are 

x=— tet (log t+ at log t+ Cit + TEL Aimnt'O"'G") 

y=— et (log t? + bt log t+ C.t+ DEE Kimn tang”) ? 

where ¢, 6, ¢@ have the same values as above, and the summations are for values of 
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l, m, n such that 7+m+n>2: and the coefficients Hyp», Kim are determinable as 

before. Any term in @ is 
Heltmrn (log (ay earetes, 

that is, the index of logt is not greater than twice the index of t. 

Note 2. If a vanishes but not 0b, the solutions are still non-regular functions of 

t; likewise if b vanishes but not a. In these cases, it is known that no regular integrals 

vanishing with ¢ are possessed by the equation. 

If a=0, b=0, then H,,=0, Kim=0, if m>1: that is, tlogt disappears from the 

expressions for « and y, which then become regular functions and are the double 

infinitude of regular integrals that vanish with ¢. In this case, the regular integrals 

are the only integrals vanishing with ¢ that are possessed by the equation. 

20. Second sub-case: « not zero. 

The theorem is: 

The equations possess in general a double infinitude of non-regular integrals vanishing 

with t which are regular functions of t, tlogt, 4t(logt); and it is known that there 

are no regular integrals which vanish with t. If however a=0, then the integrals can 

be arranged in two sets; one is a simple infinitude of non-regular integrals vanishing 

with t which are regular functions of t and tlogt; the other is the simple infinitude of 

regular integrals vanishing with t which the equation is known to possess. (It is necessary 

that the constant « be different from zero: otherwise some of the coefficients in 

the second set are infinite unless 0 also is zero, in which form we revert to the first 

sub-case already considered.) 

The method of establishment is similar to those which precede: it need therefore 

not be repeated after the many instances of it which already have been given. 

The initial terms in the integrals of the equations as taken in § 15 are 

t,=a0+ At+..., 

t,=xap+(KA + b)0+ Bt+..., 

the unexpressed terms being of higher order in ¢, 6, @: here A and B are arbitrary, 

6=tlogt, and d=4¢t(logt). Any term in the expansion of ¢, or ft, which involves ¢ 

contains « in its coefficient; the disappearance of the terms in ¢@ from the integrals 

in the first sub-case is thus explained, for « then is zero. 

Concluding Note. 

21. Some sub-cases still remain over from Case I(a), when the roots &, and &, of 

the critical quadratic do not satisfy the conditions that (§ 8) prevent some one (or 

more) of the quantities 

A-lE+pE+y, AE+u—-1)E +», 

Vor, XVI 12 
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from vanishing for integer values of A, w, v such that A+m+v>2. The real parts of 

£,, &, are supposed to be positive. 

The instances that can occur are obviously for X=O in the first set and ~=0 in 

the second set; both are included in the form 

E=pnt+y, 

where & and 7 are the roots of the quadratic, and w+v>2. The cases p=0, p=1, 

have already been discussed. For the remaining cases, we have the theorem: The 

double infinitude of non-regular integrals vanishing with t are then regular functions of 

t, t, tw’ log t, where w and v are integers. It can be established in the same manner as 

the similar theorems in the preceding sections. 



IV. Ueber die Bedeutung der Constante b des van der Waals’schen Gesetzes. 

Von Pror. BottzMaANN und Dr Macugs, in Wien. 

[Received 1899 August 14.] 

In dem Buche von Professor Boltzmann “Vorlesungen iiber Gastheorie, 1. Theil” 

wurde die van der Waals’sche Formel aus der Vorstellung abgeleitet, dass die Gasmolekiile 

Anziehungskrafte auf emander ausiiben, deren Wirkungssphiire gross ist gegen den Abstand 

zweier Nachbarmolekiile. Der Fall, wo diese Annahme nicht mehr zutrifft, wurde in 

demselben Buche auf Seite 213 kurz behandelt. Es zeigt sich, dass dann Erscheinungen, 

wie sie bei der Dissociation zweiatomiger Gase vorkommen, nicht eintreten kénnen, falls 

die Anziehungskraft gleichmassig nach allen vom <Atomcentrum ausgehenden Richtungen 

wirkt. Die an jener Stelle abgeleiteten Formeln kiénnen aber beniitzt werden, um die 

Zustandsgleichung zu entwickeln. Es wurde dort die Annahme gemacht, dass die daselbst 

mit y bezeichnete Grésse constant ist. Lassen wir diese Annahme fallen, so tritt an 

Stelle der Formel 233 allgemein der Ausdruck 

= rdrekt), 

Ny V 

Tay Se i 

Es wird also jetzt angenommen, dass die Trennungsarbeit von der Tiefe abhingig ist, 

bis zu welcher das Centrwm eines zweiten Molekiils in den kritischen Raum des ersten 

eingedrungen ist. Dagegen soll zuniichst der Fall dahin vereinfacht werden, dass die 

Auziehungskraft innerhalb dieses kritischen Raumes constant bleibt. Dann wird 

f(r) =C (48-7) 
Schreibt man zur Abkiirzung 2hC=c und fiihrt die Integration durch, so hat man 

S 2 2irn? , 
Ma = 73 te [(co +1)? 4+ 1]—[(co + 641 41]} = > ny. 

Es gilt aber allgemein fiir ein Gasgemisch aus n, und n, Molekiilen verschiedener 
Art die Beziehung 

pV =— (m+n) = MRT (n, + n.). 

12—2 
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Nennen wir a die Zahl der Molekiile bei vollkommener Dissociation, so ist 

“= + 2ny=N, + KN? 

Hingegen ist die Zahl der freien Molekiile im betrachteten Zustand 

at+NH 
N=NM+hm=—>—- 

Durch Elimination von n, und Entwickeln der Wurzel findet man hieraus den Naherungs- 

: WK , - 
wert n=a—- und folglich auch weiters 

pveaunr—-oURE 
Ist aber m die Masse eines Molekiils, » das Atomgewicht, v das _ specifische 

m am_ 1 

ie aa 
? Volumen, endlich 7 die Gasconstante des betrachteten Gases, so ist M= 

Bee ae : 
endlich —=r und es wird auch 

mv 

oder wenn man auf den Ausdruck fiir « zuriickgeht 

wae ot Maat cal hes py 
ang Opa {e® [(co +1)? +1] — [(eo +8 +1)? +1)} ‘a 

Hiebei ist aber in v noch der von den Deckungsphiiren der Molekiile ausgefiillte Raum 

p= See abzuziehen. Wir erhalten also als Zustandsgleichung 
nL 

a rT A 

Pvp py 

Zur Discussion dieser Formel finde noch folgende Betrachtung Raum. Es ist, wie 

man sich leicht durch Rechnung tiberzeugt, 

ease) 
—— 1 ie 

e®[(co +1) +1] -[(eo +8 +1 +1] =e 'o%8 5 Ss S (e5)")= mie = + : 

1 1 2 2 2 (i 
5 oO \o 

Ferner ist Al = == Qro*br TS = ~ (eB) )- =, ian =saTHT| + aot: 

Es gilt weiters die Beziehung -¢-=2hC= S 5 uy 
7 ; : ) mr” T 

Setzt man endlich Ln 27076 = 4, oe =f, ve €, 
m mr é 

so ist auch p= 

| 

ee peg ae a 

ee ee Se. 
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und es liasst sich die obige Zustandsgleichung in der Form schreiben: 

oe ill arT = (5) (1 2 2 = y ae 
v—2ae (v— ae)? 24 T) In! n+1lle n+2!2 

Die Constanten dieser Gleichung haben folgende Bedeutung: 

Es ist a gleich dem halben im Volumen der Masseneinheit vorhandenen kritischen 

Raume, 
Y 

Br= 2 gleich dem Potential der Anziehungskraft auf der Oberfliche der Deckungs- 

sphare, 

endlich e=5 gleich dem Verhiltnis aus dem Durchmesser des Molekiils und der 

Distanz, auf welche die Anziehungskraft wirkt. 

Da die Gleichung 233, von welcher wir ausgegangen sind, voraussetzt, dass die 

Anzahl der Tripelmolekiile gegen die Anzahl der Doppelmolekiile verschwindet, so ist auch 

die obige Gleichung an die Voraussetzung gebunden, dass die Abweichungen des Gases 

vom Boyle-Charles’schen Gesetze noch klein sind. Es darf also auch das letzte Glied unserer 

Gleichung, welches ja den Innendruck darstellt, nicht iiber einen gewissen Wert himaus 

wachsen. Dies wird um so weniger der Fall sein, je grésser e ist. Aus den Versuchen 

von Amagat und Andrews iiber die Compressibilitét des Kohlendioxyds berechnet sich e€ 

fiir dieses Gas zu ungefahr 100. Nach dieser Vorstellung scheint also der Anziehungs- 

bereich sogar noch relativ klein zu sein gegen den Durchmesser des Molekiils. 

Wir haben bisher unsere Zustandsgleichung abgeleitet, indem wir fir f(r) ein 

bestimmtes einfaches Abhangigkeitsverhiltnis eintihrten. Liisst man f(r) ganz will- 

kiirlich, so ergibt sich leicht, dass dies den Typus der Zustandsgleichung, auf welche 

man kommt, in keiner Weise verandert. 

rl 
v—p (= a) 

Es wird stets p= und es ist nur noch A von f(r) abhangig. 

Dies gilt freilich nur solange man die Anzahl der Tripelmolekiile und der noch 

hdheren Congregationen vernachlissigen darf. Ist dies nicht mehr der Fall, so werden 

noch weitere Glieder hinzutreten, welche in ihren Nennern das v—p in der dritten, 

vierten und héheren Potenzen enthalten. Es ergibt sich dann fiir p eine Potenzreihe, 

wie sie fihnlich auch schon Herr Professor Jager von anderen Betrachtungen ausgehend 

aufgestellt hat. Leider begegnet die Auswertung ihrer weiteren Coéfficienten kaum zu iiber- 

windenden Schwierigkeiten. 



V. On the Solution of a Par of Simultaneous Linear Differential 

Equations, which occur in the Lunar Theory. By Ernest W. Brown, 

Se.D., F.R.S. 

{Received 1899 July 14.] 

In the calculation of the imequalities in the Moon’s motion by means of rectangular 

coordinates a certain pair of differential equations is continually requiring solution. The 

left-hand members are linear and always the same; the right-hand members are known 

functions of the independent variable—the time—and vary with each class of inequalities 

considered. It has been the practice to obtain the required particular integral by assuming 

the solution (the form of which is known) and then to determine the coefficients by 

continued approximation. This method is troublesome to put into a form which a com- 

puter can use easily and is besides peculiarly lable to chance errors; a large number 

of processes would have to be learnt before the computer could proceed quickly and 

securely. The main object of this paper is to put the solution into a form which will 

avoid these difficulties, but I believe that some of the results may be found to be of 

a more general interest. Further, the question of the convergence of the series used 

to represent the coordinates in the Lunar Theory may be somewhat narrowed. In fact 

it being granted that the series forming the ‘Variation’ inequalities and the elliptic 

inequalities depending on the first power of the Moon’s eccentricity are convergent, it 

is not difficult to demonstrate, by means of equation (14) below, that all the terms 

multiplied by a given combination of powers of the eccentricities, inclination and ratio 

of the parallaxes, that is, all the terms with a given characteristic, form a convergent 

series. 

The equations to be considered are 

xr dy A — In’ —2 = ag ag t Lx+L’'y=R, 

d*y ,dx / (TE ey of 
qe to” ar lert Sle 

in Sere Gas on 
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where 
E L’ 

Th 

h, of the forms S,q;°0° {i(t-—t,) +7 (¢—4t,)} (n—w) RP. “ii afin 0 i)5 ) 

tv, &, 7, , n’, q; bemg known constants, and 7 taking all positive and negative integral 

are of the forms iq; ae (20+1)(n—7')(¢-1t), 

values; 7 is either an integer, in which case #,=¢,, or is incommensurable with an 

integer. 

The corresponding particular integral required is, in general, 

Zs pi cos 
i =; Bain {¢(t—t) +7 (t—t)} (n—7). 

If we substitute this solution in the differential equations and equate to zero the 

coefficients of like periodic terms, we obtain an infinite series of linear equations with an 

infinite number of unknowns. The series are assumed to be convergent and in most cases 

the coefficients diminish rapidly as 7 increases, Nevertheless, it is frequently found 

necessary to proceed as far as 7= +5, demanding the determination of about 20 unknowns 

from the same number of equations. 

In the determination of the latitude the equation 

dz ; 
det 2-2 ) 

occurs; L,, R” are of similar forms to L, R’, respectively. If 2,, z. be two particular 

integrals of 

it is known that the particular integral required’ is 

Be C=a, [a Rat — 2, |z,R" dt 

where C is a constant given by 

dz, dz, 
C= 4, Ft 

I shall show in what follows how we may obtain a similar expression for the solution 

of the simultaneous equations above, having a sufficiently simple form to be of use in 

computations. Later the significance of the solutions is explained and certain exceptional 

cases occurring in the Lunar Theory are treated. The results obtained have in fact been 

used in the calculation of the terms of the third* and fourth orders in relation to the 

eccentricities, the inclination and the ratio of the parallaxes, 

* Mem. R. A. S., Vol. ui. pp. 163—202. 
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I. 

In order that the series which occur may be all algebraical instead of trigonometrical, 

we use the conjugate complexes wu, s, where 

U=L+ Yl, s=@2—YL. 

We also put 
€=exp..(n—w)(t—t), 

d 1 d 

a afar ay aren TS 

n 
nS sr (=) She 

The generality of the results is not affected by the last supposition. 

The simultaneous equations then take the form 

(D+m)+Mu+ Ns=A | 
f FS Saiconddnuou te necoercaso dee sant nec (1), 

(D—-m)y+Ms+Nu=4 J 

where M, N are of the form =p;¢, jc 
: 2 , L2=0,+1 

A is of the form =p,f%+* + Sp, ) 

M= WM. 

The bar placed over a letter or expression denotes here and elsewhere that « has been 

changed to —z, that is, €+ put for ¢ f 

To obtain the particular integrals of equations (1), it will first be necessary to obtain 

four independent particular integrals of 

(D+m)yu+ Mu+ Ns=0 ) 
= Liisi eia as cteaio en sta ainsi eeaseeee (2). 

(D—m)?s+ Ms + Nu=0 } 

Denote these integrals by 

W=G, §S—= 53) J — 12585) 45 

so that if Q; denote an arbitrary constant, the general solution of (2) is 

u= >; Q; Uj, s= 2; Q;5;, jek mh, 3} 4, 

By supposing the Q; to have variable instead of constant values we can then proceed i 

to find a particular integral of (1) and thence their general solution, > 

In order to make certain of the later arguments clear it is necessary to indicate the ; 

manner in which the equations (1) arise. 

The equations 

Du + 2m Du OE Te +s) i 
. 2 (us)3 : 

3 8 : 
D's — 2m Ds +5m*(wts)— 7 =O, | 

| 
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with their first integral, 

2k : 

(us)? 5 

3 
P= Du. Ds+ 7m (ut s+ 

admit a particular solution, 

Uy — Oe eS — Sa — > ee Cot 

containing two arbitrary constants; these constants are the quantities denoted by n, t, 
above. The coefficients a; are functions of n and the known constants present in the 

differential equations. 

Put U=Utwy, S=SH+S, 

and, after expansion in powers of %, s,, neglect: squares and products of these quantities. 

Omitting the suffix, and giving proper meanings to M, JN, the resulting equations 

become those denoted by (2) above. 

The first integral = C becomes 

b= oh U = Ee =i()) 
OU 08) 

If, however, we had deduced this first integral directly from (2), it would have been 

¢=C’, where C’ is an arbitrary constant. When the equations (2) are considered inde- 

pendently the constant C’ must be retained. 

Three independent solutions of (2) are known. In finding the principal part of the 

motion of the lunar perigee Dr Hill* gave one of them, namely, w= Du,, s=Ds,, and 

obtained the forms of the other two; the coefficients of the latter have been obtained 

by myselft. It is therefore only necessary to find a fourth solution, linearly independent 

of the other three, in order to obtain the generai solution. 

ue 

The Fourth Integral of the Equations. 

(Da sin HEI Mite INS 0) caoascdenoddodooococapssoqnandgas (3), 

(Di hies ee! tb INNS (eankey One Renee BOE Cea REECE (3’). 

The known integrals may be denoted by 

Uy = pe Cte, = Dd, Gaue 

Ue = Dee gor, CR Pa an So oe (4). 

UU, = > (22 == 1) TG. 83 = > (22 = I) pee 

* Acta Math, Vol. yur. pp. 1—36. t+ Mem. R. A.S. Vol. x11. p. 94. 

Vout. XVIII. 13 
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If Q,, Qo, Q; be three arbitrary constants, then 

w= >i Oju;, $= >;Q)5;, i— de DF BOs release neeeaisisiceieenies eeeee (5) 

is a solution of the equations. Owing to the introduction of Q,, Q,, Qs, we can consider 

Uy, ... 8; completely known; ¢ is a constant which is supposed incommensurable with 

unity. 

To discover the fourth integral, the method of the Variation of Arbitrary Constants 

is used in the usual way, by assuming that 

u, DQ, + Ue DQ. + U;DQ;= 0. 

By substituting (4) in the differential equations we find 

Du,. DQ, + Di. DQs + Duz. DQ; = 9, 

DF (s;D?Q; + 2Ds;.DQ; — 2ms;DQ;) =0 viajeealele eeleie oe s)sioleisiels vaawieisle cic (6). 

Put Uo Dug — Uz Dis = 0, ete. 

Then DQ: _ Ds = DQ: = [, suppose. 
a, As As 

Substituting in (6), the equation for Z may be written, 

(Sas) D+ 20-D(zas) — L (SsDa + Qmdas) = 0... occ. nee eeoeceneene (6), 

where Das = 0,5, +48, + 4,53, ete. 

The last term of this equation can be shown to be zero. Substitute w,, s,; and wz, s, 

successively in (3): multiply the resulting equations by s., s, respectively and subtract. 

We thus obtain 
(D + 2m) (s,Dw — 8, Duz) + (m? + WM) (sy — U2S,) = 0. 

Also, treating (3’) in a similar manner, 

(D — 2m) (Ds, — uw, Ds.) + (m? + MW) (2.8, — 2%) = 0. 

The sum of these two equations is integrable and gives 

8. Du, — Wy Ds, + Uy Ds, = 8, Duty + 2M (S2ty — US8,) = Cy, 

where (C,, is a constant. It should be noticed that this constant is not arbitrary since 

the values of 2%, S,, V2, Ss, were definitely fixed, so that C), may be treated as a known 

constant. 

Denote the last equation by 

Multiply these three equations by wm, ww, us and add. Noticing the meanings attached 

tO 4, Q@, a, we obtain 

U, Cos + UpCy + Us Chg = Las. 

Similarly 0 = 4 Dfrs + Df + UsDfro 

= YsDa + 2m Sas. 
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Substituting the last result in (6’), we find 

DI D (as) _ 

ais ae ase) a 
0, 

which, on integrating, gives 

L, I, L= = = ; 
(Sas)? (Cy + UsCy + Us C2)?’ 

where JL, is a new arbitrary constant. 

a : etc., 
(2 Cy + UC + UsC 2)?’ 

Thence Q, =(Q,)+L,D> 
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in which (Q,) is a new arbitrary constant and D— denotes an integration, 1e. the operation 

inverse to D. 

If, finally, we now let Q,, Q, Qs, Q, represent four arbitrary constants, the general 

solution of (2) is 

U= Qty + Qos + Qyus + Qyus, 

— Q: 84 ar Q. 8. ae Oe, + Ojst 

5 
(U, Coz + Uo Cy + Ug Co)?’ 

where Us = ju; D> i) 1h Py By 

This result is true whatever particular solutions are represented by 

Tes SS Whe BH 2 Tha Se 

as long as they are linearly independent. As, however, the expression for wu, can be 

very much simplified by using the values given earlier, I shall immediately proceed to 

the special case under consideration. 

It is easy to show that C,=0=C,,. For, looking at the forms assumed, we see 

that uw, s, contain the factor €°, wm, s, the factor €~ and ws, s, have no such factor. 

Hence f, has the factor €°, f, the factor €~*. As ¢ is supposed incommensurable with 

unity, the equations (7’) are only possible if C,=0 and C,,=0. 

Hence we have 

Uy Dus, — UzDu u; Du, — u,Du U, Dus — u.Du 2 3 = 3 etl UD 3 1 = 1 SAE OD 1 2 2 oe 

Us" Us Us? 
Wg Ca ee 

The first two terms of the right-hand side are integrable and become 

that is, zero. Whence considering (C;,? as absorbed in the arbitrary Q;, we have 

Us = Uz D> ( - 
Us? 

aD) Ree ei) ti ptt (8). 

We may similarly show that 

if ae ea —— 
4: = 93 = i an Sia oS 

$3" 
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III. 

Although this is probably the simplest form obtainable for u,, it is unsuitable for 

calculation. The values of w,... are all of the form 

sum of cosines+e (sum of sines). 

To adapt u, to calculation it is best to express it in the form 

us (P + Qu) 

where P, Q are real. I shall show that 

% _ pa (a = — 

Us Us? 

S,Uy — Uy So (Che Silo — Uy So Du, Ds 27 CaS eh pa a eee (2m reer ) ee (9). 
a UsS3 (UsSs U3S3 Us Ss 

Since f;=0=f_ and fi2=Cy, we have 

1 Gis) Ua fis — thifas Wee Uy Duy — Uy Du, Z. UyDs, — Uy, Ds. + 8; Due — $2. Diy 

” Us83 Us Ss Us3S3 us” 2U383 

$,Us — US. Dus S$ Uy — Uy Se Duy — Us Du Sy Us — Uy So 
- —m ——— ; a 

2 UsSs U3S3 Ug Us85 Us 

__ 81Ue — WSs (= =e) — yy 8 

UsSs 

Submitting this to the operation D~ and transposing we obtain the required expression. 

It is easy to see that (9) is of the required form. For when we put —zc for «, that 

is, 7 for &, the expressions 

Uy, Uz, $1, Se, Us, Ss, D+, D respectively 

become Shy iohn hy Ung Sos ae —-D, -D; 

the first term of (9) is therefore unchanged, while the second term simply changes sign. 

Hence the first term is real and the second a pure imaginary. 

Tae 

It is necessary to examine the four solutions and especially the one last found a 

little more closely. Write 
u;=u;(P + D“P,). 

The expressions (4) show that P and P,, being both real, will be expressible as sums 

of cosines of multiples of the angle 2(n—7n’)t. As P, contains a constant term B, DP, 

contains a term of the form ¢Bt(n—n’), and therefore wu, is of the form 

us {uBt (n —n’) +a power series in £3}. 

It is therefore of the same form as us, except for the part 

iBtu; (n— 7). 

= 
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We saw earlier that the equations (2) admit of a first integral 

p=C, 

and that this should be derivable from the integral 

F=(C, 

of the non-linear equations when the former are considered as derived from the latter, 

The constant C’ should therefore in this case be zero. It is easy to see that the constant 

is zero when we substitute in @ the solutions wz, 8, or ww, 8: OF Us, 8. For the solution 

ws, Ss, the constant takes the value C, which is not zero. Hence though (u,, s;) belongs 

to the linear equations (2) it plays no part in the non-linear equations from which these 

were derived. 

The solutions ~%, s,; and w,, s, are those used in developing the Lunar Theory; they 

contain the terms dependent on the first power of the lunar eccentricity. It is necessary 

to see why the solutions u,, s; and w,, s, are not used in the development. 

The particular solution of the original equations of which use was made was 

U=Uy, S=Sp, 

where Up = Tia, F*1= Ta; exp. (21+ 1)(n—7n’) (t—t,). 

If we add a small quantity 6¢, to ¢, (which is an arbitrary constant of this solution) 

the resulting expression will still be a solution, Expand in powers of 8, neglecting squares 

and higher powers. The additions to w, s) will be 

oe Beis, e éu= 2h, 6t,=—Duw. dt, ds = 7k, bt) = — Ds,. Sto. 

These values when substituted for wu, s in (2) must satisfy them independently of the 

value of 6f. Hence w=kDu, s=kDs is a solution obtained merely by altering the arbitrary 

t, and is therefore unnecessary for the development of the Lunar Theory. 

The other arbitrary constant in % 1s n, and the coefficients a; are functions of n. If 

we make a small addition 6n to n and proceed as before we see that 

Weiony wits Ieee 
TN ie ae 

is a solution of the linear equations (2). It is only necessary to identify this with w, s,. 

The forms for both are evidently the same. For we have 

& S im + (2641) (tt) as} exp. (21+1)(n—n)(t—h) 

>; S exp. (20+1)(n —7’) (t—t,) +(t-—t) Dw. 

The terms with ¢ as factor agree (f, was put zero in the expression for u,) when 

the proper constant factor is introduced, and the remaining parts are of the same form. 

As no linear relation can exist between the first three solutions and either of the forms 
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for the fourth solution, these two forms must be the same except as to a constant 

factor. Hence 

{ 7 — poe u,D> ( u, Dus “0u) 

on \ us 

This relation is a somewhat remarkable one. In investigations where the arbitrary 

: eMELIs (ae? Posy 
constants are varied—and there are many such—we have a means of obtaining ant oe 

(which are the most troublesome to find) when the numerical value of the ratio n’/n has 

been used in finding 2, y. A direct proof of this relation is desirable. This and the 

theorems which I have given elsewhere* are probably particular cases of some much more 

general theorem. Thus, of the four integrals of the linear equations two only are required 

for the development of the lunar theory, the other two arising from additions to the 

arbitrary constants in the particular solution of the original equations. 

V. 

Having obtained the solution of 

(D+ m)?u+Mu+ Ns =0, 

(D —m)s + Ms + Nu=0, 

in the form = ZO es = Ors py — le Zsa, 

the next problem is to find the solution of 

(D+myu+Mu+ Ns = A, 

(D—m)s + Ms + Nu= A, 

where A, A are functions of the time. 

Following the usual method of varying the arbitraries we have 

>Du;.DQ;= A, =Ds;.DQ,=A 

Yu; DQ; = 0, Xs; DQ; =0 

These must be solved in order to find the variable values of the arbitraries. The only 

difficulty is to find these values in forms sufficiently simple to be of use. 

The expressions at the end of IL show that we can derive s,/s; from u,/u; by putting 

=> for € and changing the sign. For w, s, interchange as do w%, s,, while D changes 

sign: u, becomes —s,. Since 

Us = Us (P + Qt), 

we have 8,= 8, (— P+ Qu). 

Hence U4S3 — SyUz = 2UsS,P 

ig Cie stl GRINS AER sine wNaic anal saieis wistele etetae (11) 

by the result obtained in III. 

* Proc. London Math. Soc. Vol. xxvur. pp. 143—155. 
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Again, as the first integral obtained in II. is equally applicable to w,, s,, we have 

Os, = fos = 8, Dus + uy Ds; — Uy-Ds, — 8; Ditg + 2m (8,3 — UyS3), 

which, by inserting the expressions for u,, s, just given, becomes 

Oy, = — 2 (s3Dus — us Ds;) P — 20383 DQ + 2m (82, — UoS;), 

or, using the values of P, Q obtained in IIL, 

Sy Uy — Uy 82 
Os, = — (8; Du; — uz; Ds) ‘12 

U383 

Du, Ds 
+ (8, Uy — US») (2m —— _) + 2m (SU — S; U2), 

\ Us S83 

whence Gr Ohh cooncos ono oseunG esac ence ORE ee ee eerrreee (12). 

We can show as in II. that O,=0=(4,. 

Solving equations (10) we obtain 

where 
N= Dun Di Dieu, 

| kas D3 Ds;, Ds, 

Oh, Si Oly Yr 

S), Soy S83, Sy 

A= |7A5 Du Du Du, 

AR Ds) Ds sues 
5, GS: 

0) 

0, Som Sen Br 

In the determinant A the first minor of Du, is 

D3z (Us84 — 83s) + Dss (W482 — 8p) + Ds, (Uo; — Sottg), 

= 8. fra +S3 fio t Si fos, 

= 8, 0x, + 83.09 + 8,Co5. 

Also, the first minor of Ds, is similarly 

= (Uy Ogg + Us Cn + Ug Cr). 

The other minors of the elements in the first two rows of A are similar, the suffixes 

following a cyclical order. We have thus all the minors of the elements A, A in the 

determinants Aj. 

Remembering that C,,=—C, and that all the other constants Ci; are zero, we obtain 

(6,4 a AO 

A= (Aa Aes, 

A,= (s,A+1u,A) Cs, 

A= — (GAS A) OL 

and A= —(s, Du, — 8, Du, — 8,Dus + 8, Dus) Op. 
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But the effect of putting {7 for ¢ in A is only to interchange an even number of 

rows and columns and therefore to leave A unaltered. Making this change in the last 

equation we find 

A=-— (—u, Ds, + u. Ds, — u, Ds; + 8, Dus) Cs. 

Whence, by addition, 

2A = —{ fio — 2m (s2%y — UoS,) — fog + 2M (8,Us — UySs)} Cho 

=— (C,.— Cy) CG. = — 26,7, 

in virtue of (7) and (12). Hence A=—(C,,%. 

Ay sA+ UA 
Finally, AQ, = 7 C. ete. 

and Oh = a D> (s,A + U,A), ete. 

And the particular integral corresponding to the right-hand members, 4, 4, is 

u= a {uD (s,A + uA) — UD (s,A + u,A) 

—u,;D— (s,A +u,A) + u,D> (s;A + u,A)}  aen) (13), 

: =o {s,D- (8,4 + tA) — D> (8,4 + m4) 

—s,D(s,A + u,A) + 8,D7 (s,A + usA)}. 

It is easy to see that s is derivable from wu (as it should be) by putting €~ for € In 

fact, the coefficient of w, in the first term is conjugate to that of w. in the second term, 

that of u, in the third term is a pure imaginary and that of uw, in the last term is real. 

VI. 

In the applications of this result to the Lunar Theory 4 is always an expression of 

the form 

Digit + Ot Gomes uO; aE ile 35 2, tery 

where 7, q:, g: are known constants; A is derived from A by putting {> for & Thus A, 

A are conjugate complexes whose real and imaginary parts are respectively sums of cosines 

and sines. The corresponding particular integral should in general be of the same form. 

Hence a difficulty arises owing to the fact that w,, s, contain ¢ in a non-periodic form. I 

shall now show that in general all the non-periodic parts disappear from the particular 

integral. 

Put 

Uy = Us + Bust (n— n’), 

8, = s¢ + cBs,t (n — 1’). 
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Then w,’, s, are periodic. The sum of the third and fourth terms of (13) becomes 

— u,D— (s,/ A +uj A) + uj D3 (s,A + u,4) 

—[u;D> {(s,A +u;A) t} + uj¢D>(s,A + u,4)] cB (n—1’). 

The first line of this expression is in general periodic. The second line becomes, on inte- 
grating its first term by parts, 

u;BD~ (s,A + uA). 

The non-periodic part thus disappears. 

When we perform the double integration involved in this last expression, we obtain 

Us (Cy + Cie(n—n') t + periodic part} 

where C,, C, are arbitraries. The terms containing C,, C, are simply parts of the comple- 

mentary function and may be considered as contained in Q,u;+Q,u,. The particular 

integral may therefore be written 

u= = [uD (s,A + UA) — UD (s,A + u,A) + uj D- (8,4 +u;A) 
12 2 

—u;D— {s/A + u/A — BD (s,A + u;A)}]......(14), 
which is its final form. 

WAL 

In general this particular integral consists only of periodic terms. There are, how- 

ever, two cases in which non-periodic terms may arise. If t=an odd integer, that is, 

if A is of the form Yq", the integrals multiplied by wu,’ and wu, might give rise to 

terms of the form at where a is a constant. 

In this case, s,A4+u;,A is of the form =; (¢% —{-) and therefore its integral will 

be periodic. The last term of (14) is of the form 

— u,D~ (coust. + power series in €?), 

=—u,;(tk + k’ + power series in 7), 

k, k’ being constants, the former definite and the latter arbitrary. The terms — wu, (tkh+hk’) 

may be written 

5 kus 
B r= 7 
e(n—n') Be(n=n’) 

The first two terms of this may be considered as included in the part Q;u;+Q.u, of the 

complementary function; the last part is definite and periodic. Hence no non-periodic 

—k'us— \ustBe (n— nv’) + uy} 

part remains. 

The second case of non-periodicity occurs when 

A= DiGi Gaui ae Bigs CE, 

Here the first two terms of (14) may give rise to the non-periodic part 

{ute (n —n’) [8.4 + UA], — uote (n —n') [s,A + uA], + Cp, 

Vor, XVII. 14 
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where [yy], denotes the constant term in the expansion of Ww as a sum of cosines. Now 

sA+uA and s,A+u%,A are conjugate. Hence 

[s.A + wA],=[s,A + A], = [(s, +5) Ah. 

Thus the non-periodic part is 

(ate) Sass) PAN ce — 0) 6 Gin ne eoceoeeeaeceten escent (15). 

In the applications to the Lunar Theory, the part of the complementary function 

used is obtained by putting Q,=0=Q,, and the constants in ™m, uw. are so adjusted 

that we can put Q,=1=Q.. I shall show that (15) is equivalent to a small addition 

éc to c in the index of ¢€ in 

Uy + Us = TpegSFtt’ + Sie, 

squares and higher powers of 6c being neglected. 

Put e+6éce for ¢ in the last expression. It becomes 

Uy C8 + Uh EPC, 

Remembering that €=exp.c(n—n’)t and expanding in powers of S¢ we obtain 

Uy + Uy + (Uy — Uy) See (n — nr’) t. 

Comparing with (15) it is evident that we can put 

6c =[(s, +8.) A], + Co. 

This is nothing else than the general form of the expression which I obtained in 

a paper, “Investigations in the Lunar Theory*.” For 

Co =fio = [fxlo = 2) (27 + 1 +m +c) 62+ 5) (27 -1—-m+c)e;7, 

on substitution of the values (4) in f,. Also s,+s, is the same as the expression there 

denoted by s,. The comparison of A with the remainder of the equation of the paper 

just referred to will follow from what precedes that equation. The general case is given 

in my memoir on “The Theory of the Motion of the Moon, etce.t.” No useful purpose 

will be served by giving further details of the comparison of the two forms for &¢e. 

The final conclusion is that the non-periodic terms either disappear of their own accord 

or belong to a part of the complementary function which is not to be included in the 

general development. The last part of this investigation—concerning 6c—is of course only 

applicable to cases similar to those which occur in the Lunar Theory where we proceed by 

continued approximation and where we require to have only periodic terms. In the general 

problem the non-periodic terms will remain. 

* American Jour. Math. Vol. xvu1. p, 336, equation (16). + Mem. R.A.S. Vol. ur. p. 75. 
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I. [xrropuction. 

THE science of Meteorology deals with variable quantities which are subject to 
continuous and apparently irregular changes. Irregularities in the strict sense of the 
word do not however exist in nature; there is never absence of law, though often an 
appearance of lawlessness caused by the effects of several interacting causes. Our efforts 
must be directed to disentangle these causes, and to discover for that purpose the 

hidden regularities of the phenomena. 

If we look for instance at the curve which represents the barometric changes, we 

see at once that though irregular, there is a tendency towards an average position, 
large deviations from that position being less frequent than small ones. Prof. Karl 
Pearson has investigated statistically the laws of deviation from the mean, and obtained 
valuable and interesting results. But enquiries of this kind necessarily leave out of 
account one of the most essential points in the phenomena they deal with, which is 

the regularity which may exist in the succession of events. In taking the average daily 

values of barometric pressure and studying their deviations from the mean, the same 
importance is attached to an exceptionally high barometer when it follows another day 

of high barometer, as when it follows one of low pressure. But a high pressure is more 
likely to be followed by a high pressure than by a low one, and the regularity which 
this succession implies seems to me to be of greater importance than the laws of 

distribution based on the assumption that successive days are quite independent of each 

other, 

I intend in this paper to describe a method, applying it to a particular case, which 

seems to me to yield some valuable information concerning the hidden regularities of 

fluctuating changes, though it does not pretend to give a complete representation of all 

that it is important to know. 

14—2 



108 Mr SCHUSTER, THE PERIODOGRAM OF MAGNETIC DECLINATION 

The method has been suggested by the analogy between the variable quantities we 

are here concerned with, and the disturbance in the luminous vibrations. If we could 

follow the displacements in a ray of light, we should find them to present characteristic 

properties not unlike those of meteorological variables. There is the same irregular fluctua- 

tion combined with a certain regularity of succession, which becomes revealed to us by 

prismatic analysis, and shews itself in the distribution of energy in the spectrum. Absolute 

irregularity would shew itself by an energy-curve which is independent of the wave-length, 

i.e. a straight line when the energy and wave-length or period are taken as rectangular 

coordinates, while the perfect regularity of homogeneous vibrations would shew itself as a 

discontinuity in the energy-curve. 

Fourier’s analysis gives us a means of doing by calculation for any variation what 

the spectroscope does experimentally for the luminous vibrations, and if we construct a 

curve which represents the relation between the coefficient of Fourier’s series for a given 

period and that period, we have a simple way of representing the regularities of the 

quantities to be investigated. We shall also incidentally gain the great advantage of 

separating in a clear and definite way the fluctuations which take place im definite 

periods, such as the lunar and solar variations, from the more complex changes on which 

they are superposed. 

Il. THrE PERIODOGRAM. 

Let f(t) be any function of t, and consider the quantity R determined by the 

equations 
ttuT ttnT 

ynTA=[  f(t)cosetdt, 4nTB= I Faysman as (1), 
T 

where «=27/7 and n is an integer. In these equations 7 represents a certain interval, 

and + a time which can be varied. In the class of functions f(t) to which this paper 

refers, a change in 7 with a constant value of n and 7’ will cause R to fluctuate round 

some mean value. Let S? be the mean value of R? which, still keeping m constant, will in 

general depend on 7. With 7 as abscissa and S* as ordinate, draw a curve, which may be 

called the “Periodograph.” I define the “Periodogram” as the surface included between 

this curve and the axis of 7. It will be seen that the “Periodograph” corresponds 

exactly to the curve which represents the distribution of energy in the spectrum. The 

treatment of a few special cases will render this clear, and lead gradually up to the 

complex phenomena which form the chief subject of this investigation. 

Casz 1. Let f(t) be a simply-periodic function, so that we may put 

T(t) =cos (gt + 8). 
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The integrals A and B are easily calculated and expressed in the form 

nTA=2 E (aD) peas | sin $gnT, 
J+K g-K ji 

nTB=2 ee gl) + ass =| sin dgnT, 
g+K =k ahd 

where 2a=aq4+ &, 2b=6,+ B., 

and a, = KT, 8,=97 + 6, 

m=K(T+nT), Br=g(r+nT)+6. 

2 
Hence nTR= ¢ San sin }gnT' [2 (g? + «°) + 2 (g? — kK”) cos 2b} 5 

If the average of R® is formed for different values of 7, the term containing cos 26 

will disappear, and therefore writing 

y=4t (g—Kn)nT=7 c— 
& i 

it follows that ee. 

J2(g +e) siny 
gtk y 

S= 

If n is large, S will only have appreciable values when g and « are very nearly equal, 

and in that case we may put with sufficient accuracy 

goth 
af 

This is the well-known expression, giving the distribution of amplitude in the 

focal plane of the telescope, when a homogeneous vibration is examined by means of 

a prism or grating. If we wish to plot down the curve of intensities of vibrations as 

analysed by a grating-spectroscope, we may define any direction by the period 27/« which 

has its principal maximum in that direction. If the incident lght has a period 2/9 

the expression for the distribution of amplitude is 

sin[a V (g — «)/«]* 

aN (g—K)/K 
? 

which is identical with S if NV, the number of lines on the grating, is equal to n, the 

number of periods included in the integration. In obtaining the “ Pericdogram,” we have 

done by calculation precisely what the spectroscope does mechanically. The analogy is 

complete, and just as a ray of homogeneous light does not appear homogeneous in a 

spectroscope, there being secondary maxima owing to the finite resolving power, so does a 

purely periodic function when analysed by Fourier’s series shew apparent periodicities 

* This expression may be obtained either from the in my paper “On Interference Phenomena,” Phil. Mag. 

original papers by Lord Rayleigh on the resolving powers Vol. xxxvit. p. 509 (1894). 

of spectroscopes, or more directly from an expression given 
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having secondary maxima near the principal one. These secondary maxima I have termed 

“spurious ” periods. 

Their intensity remains the same when the “resolving power” m is increased, but 

they approach nearer and nearer to the principal maximum. They are therefore dis- 

tinguished from the true periodicity by the fact that their position changes with n. 

CasE 2. The function to be analysed consists of two overlapping simple periodicities. 

The integrals A and B will split up into two parts which we may call A,, A,, 

B,, B, respectively. Hence 

R?=(A, + A.) + (B, + By. 

The products A,Ad, and £B,B, will vanish in the expression for S* when the 

average is formed for varying values of 7. Hence 

S= 424+ B2+ A2+ B2= R2+ Re, 

or the Periodogram of two simple periodicities may be formed by the superposition of 

the separate periodograms *. 

CasE 3. The function varies uniformly with the time. Putting f(f)=ct, and per- 

forming the integrations, it is found that 

Cun 2c 
A=—sin«t; B=——cosa«r, 

K K 

R= 8 = 42/2 = CT?/ 2°. 

Hence the Periodograph is a Parabola. 

The consideration of this case, which has no analogy in the analysis of luminous 

disturbances, is of importance in the treatment of secular variations, such as that of the 

magnetic elements. 

Case 4. So far the function f(t) has been taken to be continuous; but cases 

arise, where f(t) is given numerically for a number of values of ¢, which we may for 

the sake of simplicity assume to be equidistant. As Fourier’s analysis applies also to 

discontinuous functions, we may include cases of this kind. Let the different detached 

values of f(t) follow the law of errors so that, V being the total number of ordinates, the 

: : : SNORT Hee. 
number having a value intermediate between 8 and @+d8 is asi e-"® dB. I have 

7 
shewn+ that in this case 

2 

Sg Ni?’ 

* In my paper ‘On hidden periodicities” (Terrestrial change to the latter form is apparent from the above. 

Magnetism, Vol. ut. p. 13) I defined the ordinate of the + On the investigation of hidden periodicities, loc. cit. 

Periodogram to be S instead of S*. The advantage of the 
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so that the periodograph is a straight line, parallel to the axis of ZY, the distance 

between the two lines being inversely proportional to the number of ordinates. 

CasE 5. The function is given in the form of an irregular curve which satisfies 

the condition that there is a definite law of probability that the quantity A should 

he within assigned limits; this probability being independent of the initial time 7. If 

we consider for instance the curve representing the height of the barometer, excluding 

lunar and solar periodicities, the changes in the curve will apparently be quite irregular 

but will satisfy the above conditions. Let dA, and B, be taken to be components of 

a vector defined by the equations 

~T+mT t+mT 

hnPA,=[ — f(eosatdt, $n TB,=| f(t) sinetdt 
Se ar 2 

-T+2mT -T+2mT 

Similarly tn7A,= | J (t) cos xtdt, 4nTB, =| F(t) sin xtdt, 
“rt+mT timT 

-t+smT ptt+smT 

and so on until 3x74, =| F(t) cos xtdt, 4nTB,= | F(t) sin xtdt, 
r+ (s—1) m7 “r+(s-1)mT 

with the condition that sm=n, m not being necessarily an integer number. 

We may choose m7’ sufficiently large to secure complete independence of successive 

vectors, all directions of the vectors bemg equally probable. In that case the vector R 

which is the resultant of the separate vectors A, B, etc., will, as shewn by Lord Rayleigh*, 

have a value such that the expectancy of R® is proportional to the number S of vectors; 

hence keeping m constant and increasing S, the ordinates of the periodograph will vary 

inversely with nZ’. This is the only general conclusion we can draw in this case. 

CasE 6. The function f(t) is formed by the superposition of one or more simple 

periodicities superposed on the irregular curve of case (5). This includes the important 

cases of barometric, thermometric or magnetic changes. The Periodogram may in all these 

instances be used to separate the real from the accidental periodicities. For the value of 

the ordinates of the Periodogram has been shewn to be independent of the range of time 

over which the integration is performed when the periodicities are real (Case 1), but to 

vary inversely with the time when they are accidental (Case 5). Hence we may obtain 

a conclusive criterion to distinguish between the two cases. The fundamental proposition 

on which the separation depends may be stated thus: 

T 
The value of | re) cos xtdt fluctuates for the functions under consideration about 

/0 

some value which is proportional to 7 when f(t)=cosx«t and proportional to J/7 when 

f(t) contains no real periodicity of periodic time 27/x. 

* Phil. Mag., Vol. x. p. 73 (1880). 
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The separation of regular and irregular oscillations, by an increase of the time 

interval, is identical with the spectroscopic separation of bright lines and continuous 

spectra (e.g. in observing the solar chromosphere) by an increase of resolving power. 

III. CabLcuLaTioN OF THE PERIODOGRAM OF MAGNETIC DECLINATION. 

I chose as an example of the treatment indicated in the previous pages the record 

of magnetic declination at Greenwich. The subject interested me chiefly on account of 

an alleged magnetic effect connected with solar rotation, and special attention was 

therefore paid to the periods in the neighbourhood of 26 and 27 days. It will appear 

that the magnetic declination is not at all a favourable quantity to fix upon for the 

discovery of possible outside magnetic effects; but as the only real pieces of evidence, 

so far produced, in favour of a period approximately coincident with that of solar 

rotation, were derived from magnetic declination and the occurrence of thunderstorms, and 

as the latter does not lend itself easily to accurate treatment, I had no choice but to 

attack in the first instance the records of declination. The publication of the Greenwich 

Observatory contains the average daily values of declination to 0°1 minutes of are. There 

are occasional gaps of a few days duration. The way of dealing with these gaps was 

quite immaterial on account of the large quantity of material used, and a rough process 

of interpolation was adopted. Thus if there were no records during three days, and if 

the values given for the days preceding and following the gap were 1771 and 15’8, 

the intermediate values were put down as 16°8, 164, 161. In the few instances in 

which the records extending over a considerable portion of an adopted period were 

missing, the whole period was excluded. 

The first object of the calculation was to find the Fourier coefficients corresponding to 

a sufficiently large number of periods, so that the curve representing the periodograph 

might be drawn continuously through the points obtained. The original series of figures 

were for this purpose arranged according to the usual procedure, in rows corresponding 

to the selected period. In order to obtain, for instance, the Fourier coefficient for the 

24 day period, the first row would begin with the magnetic declination of Jan. 1, 

1869, and end with that of Jan. 24, the second row including the values from Jan. 25 

to Feb. 17 being written underneath the first. Subsequent rows were added until a 

date was reached as near as possible to Jan. 1, 1870. This meant 15 rows, the last 

number being that corresponding to Dec. 26, 1869. The arithmetical sum of the 15 rows 

was taken as basis for the treatment of the 24 day period during 1869. A similar 

group of rows was written down for 1870, beginning, in order to secure continuity, with 

Dec. 27, 1869; but the third group, beginning with Dec. 22, 1869, and ending with 

Jan. 9, 1872, included 16 rows. I thus obtained a new set of 25 rows (there being 

25 years), each of which consisted of a sum of 15 or 16 of the original rows. The sub- 

division into years was chosen so as to divide the whole material into convenient portions. 

It will be understood from what has been said that a row corresponding to a particular 

year has been obtained by making use of observations, the great bulk of which fell 
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within that year, but some of which may have belonged to December of the preceding 

or January of the following year. 

Table I. gives the figures for the 24 day period, the last three columns indicating 

the date of the first and the last observation made use of in the corresponding row 

and the number of rows included in the year, 356’ 70 meaning the 356th day of 1870. 

The unit in the first three Tables is 0°1 of a minute of are; in the remaining Tables, 

unless otherwise stated, it is the minute of are. 

The columns of Table I. and of the corresponding ones for other periods were added 

up, and the results, after subtracting a constant for each row, are given in Table II. 

Table II. clearly shews the effects of secular variation, and we must consider in 

how far it is necessary to take any notice of this variation. If our observations extended 

over an indefinite time, Fourier’s analysis would itself perform all that is required, and 

each period would be totally imdependent of all others. But our investigations have 

been limited to a range of time of 25 years, and the secular variation involves a period 

much longer than this. The progressive change of declination will add terms to the 

periodic series which it is easy to evaluate with sufficient accuracy. If we take the 

change to be uniform and equal to —ct, Founer’s theorem applied to the interval 0 to 

T gives us 

CIV CH 5 Pm A ge Sats. I . Garts 2 
—ct=— a= sn Pp +5 sin . +5 sin aed ; a oeaieseeserne (3). 

The effect of such a uniform progressive change would be to leave the cosine 

fe 3 : : 
terms unaffected, and to add ©" to all sine terms of period 7’. 

7 

As it is our object to separate all real from accidental periodicities, we are justified 

in eliminating all known effects either totally or partially according to convenience. 

The average magnetic declination at Greenwich during the year 1893 was 2°52°7 

less than during 1869, giving during 25 years a change of almost exactly 3°. Throughout 

this investigation the magnetic declmation has therefore been assumed to be made up 

of a uniform progressive diminution of 72 per year added on to more or less irregular 

changes, the latter only being subjected to Fourier’s analysis. No assumption is made 

as to the ‘secular variation being either uniform in character or having exactly the 

above magnitude. We have eliminated from our results a large portion of the secular 

variation, but it is immaterial whether it is entirely eliminated or not. Should it be found 

desirable to return to the uncorrected figures and to calculate the Fourier coefficients, 

including the effects of secular variation, it will be easy to do so with the help of 

equation (3). As the unit in Table II. is 0-1 of a minute, the correction is made 

by adding to successive columns, successive multiples of 1800/n, where nm is the number 

of days in the period. For example, in the 24 day period, 75 is added to the second 

number, 150 to the third, and so on. 

Wore xevallllr 15 
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Table III. gives the figures so corrected, and these were plotted down on a suitable 

scale, and curves drawn, joining the ordinates by straight lines. The Fourier coefficients 

were obtained by means of Coradi’s Harmonie Analyser, belonging to the City Guilds 

of London Institute, which Prof. O. Henrici kindly placed at the disposal of his assistant 

Mr H. Klugh for the purpose. 

Table IV. gives the values of the coefficients of the series 

a, cos Kt + a, cos 2xt+...... 

+6, sin xt +b, sin 2et+...... 

TABLE IV. 

Days in No. of 

Period eet Oia es b, “, b, a, b, a, | 6, | Periods 

| | dint 
24 |+7-52 | + 8-92 | + 6-48 | + 0:08 | — 2-32 | — 4-48 | — 3°32 | + 5-44 | 41-24 | + 3°08 | 380 

To obtain comparable figures a further reduction is necessary. The number of rows 

included in Table III. and indicated in the last column of Table IV. differs according 

to the period, being larger for the shorter periods. If Fourier’s analysis had been 

applied to the original series of numbers made up of the actual observed values of 

declination, the factors obtained would have been smaller than those given in Table HI. in 

proportion of the number of periods included. It is not necessary to perform the 

division for each coefficient separately, as the ordinates of the Periodograph depend only 

on the square of the amplitude, viz. r°=a?+ b?; 72=a2+b,2; etc. Table V. gives the 

reduced squares R,*, R2, which correspond to R* in (2), 7 being the Ist of January, 

1869, 7 the number given in the first column of Table V., and n the number given 

in the last column of Table III. 

It is seen that the values of R? are subject to considerable variations, R,° being 

for instance more than 100 times larger for the 26 day period than for the 25 day 

period. According to the reasoning uniformly employed by previous investigators, this 

would prove a real existence of the 26 day period, but the theory of probability shews 
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that such variations are not more than we should expect. Assuming the ordinates of 

the Periodograph to vary uniformly between the periods of 24 and 30 days, we obtain, 

by taking the mean of the columns of Table V., the ordinate S? of the Periodograph 

corresponding to a period of 27 days. The value of S, or the amplitude of mean 

square, ae. the square root of the expectancy of £&,°, is thus found to be 0°0317 (see 

Table V.). This therefore is the order of magnitude we should expect for the amplitude, 

TABLE V. 

Days in Period R2 R2 | Re | Re Re 

| 

24 946-9x10-® | 290-7 x 1078 | 176-5 x 10-* | 281-9 x 1078 76-5 x 107° 

25 17 205°1 189-6 416-4 | 146-0 

26 | 1392-4 434-5 | 125:3 134-2 121-7 

27 1099-7 | 7443 | 448-7 204-2 23-5 

28 657-6 | 396-2 80-2 284-4 | 89:8 

29 225-0 299-9 | 1338 39-0 1711 

30 2705'8 2933 | 234-0 74 | 143-9 

Mean (8?)=1005:6x10-" | 380-6 10-°| 198310") 195-4 10-8 | 110-4 x 107° 

S=  0°0317 0/0195 0'-0141 0/0140 0/0105 

if Fourier’s analysis is applied to a record of 25 years of Greenwich declination, the 

period being in the neighbourhood of 27 days. As the expectancy of amplitude varies 

inversely with the square root of the time-interval, the expectancy of amplitude is as great 

as 0°1585 for a single year’s record. 

The ordinates of the Periodograph may be obtained in another way, agreeing more 

closely with the theoretical definition given on page 108. If each of the rows of 

Table I. is separately treated by Fourier’s analysis, and the coefficients afterwards are 

divided by the number of periods included in each row, we obtain the amplitude of the 

24 day period for each year; the mean square of this amplitude is the ordinate of the 

periodograph for the interval of one year. It was considered sufficient to confine this 

method of treatment to the 26 and 27 day periods. If Fourier’s series is put into 

the form 
7, cos (Kt — dy) + 72 cos (2at — fo) +....-. ; 

Table VI. gives the values of r,2, r.2...... rs for the 26 day period, Table VII. the same 

values for the 27 day period, and Table VIII. the angles ¢, and ¢, for the same periods. 
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TABLE VI. 26 Day PERIOD. 

Year rn re ry re rs Periols 

186 10-574 3-480 1-116 0-122 0-930 14 

1870 1:082 1-478 1150 0-824 0-580 14 

1871 1-992 4°526 1-682 2-497 0-284 14 

1872 13-744 4-802 0-268 07128 2-401 14 

1873 12:109 0-603 0-404 3°803 0-716 14 

1874 8-488 0-601 1-892 0-504 0-213 14 

1875 3-624 0-284 1-016 0-678 0-692 14 

1876 4-004 2-511 2-949 0-771 1:604 14 

1877 1-297 2-339 2-180 0-569 0-008 14 

1878 1-758 0°328 | 0-811 0-216 0-179 14 

1879 5-673 0-578 | 0-433 0-876 0-194 14 

1880 1-403 0-305 | 1151 0-265 1:300 15 

1881 2-448 1504 0-392 0-216 0-149 14 

1882 7-092 2-932 0-014 0-532 0-005 14 

1883 2°500 2-938 0-758 1341 0-190 14 

1884 3°379 0-437 0-464 1386 0-052 14 

1885 0-315 2-512 0-041 0-592 1-632 14 

1886 3-118 1-850 0°503 0-116 1-182 14 

1887 4-180 4-640 1638 0-763 0-058 14 

1888 1-946 2:269 1550 0-847 1-847 14 

1889 2-064 2-694 0°354 0-184 0-029 14 

1890 1-790 0-240 0-573 0-531 0-834 14 

1891 0-715 0-090 0-303 0-132 0-382 14 

1892 0-784 1:271 0-784 2°726 O-754 14 

1893 9-143 9-541 0°362 0-583 0-471 14 
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TABLE VII. 27 Day PeErRiop. 

Ne —, | 

1869 | 3-667 0-923 1-205 0-457 0 339 ee | 

1870 | 13-875 4-326 3-968 1375 1-800 14 

1871 18-320 1181 | 1-978 L-071 0-301 13 

1872 22-859 1-256 0-447 0-113 0-088 14 

1873 3-963 6-470 0-708 2609 | 1-871 13 

1874 5-044 1-073 1-260 1330 2-624 14 

1875 0-440 0-743 0-008 0-951 1-404 13 

1876 5-297 0-473 3-910 2-403 0-092 4 

1877 0-673 0-548 0-105 0-509 0-148 4 

1878 5-264 0-192 0-142 1-823 0-709 13 

1879 2-078 0-016 0-227 0-036 0-142 14 

1880 | 5-722 0-794 1-456 0-269 0-331 13 

1881 2-258 3-589 2-960 2-662 0-305 14 

1882 | 12-857 1561 0-693 0-163 0-146 13 

1883 | 2-198 9-844 0-155 1-992 0-680 14 

issa | 4-348 1-619 0-098 0-875 | 1-060 13 

1885 | 1-190 0:519 0-816 0-009 | 1-657 14 

1886 8-555 1-403 0-094 1-567 0-062 13 

1887 4-692 0-167 0-560 0-685 0-033 14 

1888 1-742 0-004 0-268 1-079 0427 14 

1889 1-270 2-347 0-804 0-270 1-116 13 

1890 1-396 1-074 0:373 1-038 0-211 14 

1891 6-548 0-710 0-536 0-715 0-591 13 

1892 5-177 1177 3:533° Pl 0-307 0-035 14 

1893 14-654 3-059 0-908 | 0-252 1-190 13 
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TABLE VIII. 

| Period of 26 Days || Period of 27 Days || Period of 26 Days || Period of 27 Days 

Year | l a] i] =a 

$, td || 4, $, r, r r, ry 

1869 73° | 155° soz | 318° || 325 | 1:87 192 | 96 

1870 | 271 354 || 56 280 104 | 1-21 372 | 2-08 

is71_ | 293 275 141 51 1-41 213 || 428 | 109 | 

is72 | 257 | 201 297 303 371 | 219 || 478 | 112 | 

1873 | 253 263 289 268 3-48 | 0-75 1:99 | 254 

1s74 | 250 | 349 280 | 143 291 O75 225 | 1:03 

1875 | 261 193 135 70 1:90 | 0-53 66 | 0-86 

is76 | 135 | 43 84 338 200 158 230 | 0:69 

is7z7_ | 253 | 158 226 271 114 | 153 || -82 | 0-74 

1878 30 133 78 115 1:33. | 0-57 2:29 | O14 

1879 51 89 151 251 238 | 0-76 1-44 | 0-13 

1880 7 344 317 298 118 | 0-55 2:39 | 0-89 

iss1_ | 238 | 55 110 346 157 | 1-23 150 | 1-90 

1882 | 283 294 261 133 266 | 171 3:59 | 1-25 

1883 67 | 356 267 34 158 | 171 148 | 1-69 

1884 | 163 177 221 267 184 | 066 2:09 | 1:27 

1885 87 110 || 238 245 0:56 1-58 109 | 072 

1886 | 185 290 || 198 297 1:79 | 1:36 293, 118 

1887 31 233 | 126 54 204 | 215 217 | 0-41 

1sss_ | 290 | 134 | 258 45 1-40 | 1-51 132 | 0-06 

1889 51 288 161 342 144 | 1-64 113 | 1:53 

1390 | 287 359 272 49 134 | 0-49 11s | 1-03 

1891 | 208 206 266 153 0:85 | 0:30 256 | O84 

1892 64 249 350 350 089 | 113 228 | 1-09 

1893 | 233 211 310 65 3:02 | 3:09 383 | 1-75 
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The number n of periods included in each row of figures is given in these Tables, 

and if S? in accordance with the previous notation represents the expectancy of the square 

of amplitude : 

The values of S? found in this way are entered in Table IX., the last column 

giving the average of the two values found for the 26 and 27 day periods respectively. 

TABLE IX. 

Amplitude of Periodogram for interval of one year. 

(The unit is the square of one minute of arc.) 

Period in zs Period in | Average of 
Days S? Days S two Periods 

ai =| 
26=1 02147. | 27=1 “03145 -026460 

26+2 “Olan | weet 32 00777 009471 

26=+3 00462 27 +3 00583 005225 

26+4 00432 | 27 +4 00537 “004846 

26=5 00337 | 27 +5 -00384 -003606 

According to the theory founded on the laws of probability the values of S? for the 

one year interval should be 25 times greater than for the 25 years interval, and we 

may obtain an important confirmation of the theory by the comparison given in Table X. 

TABLE X. 

Period Ordinate of P. G. | Ordinate of P. G. : k Soe 
in Days for one year for 25 years Ratio Final Mean Secular Variation 

27 26460 x 106 1006 x 10° 26:3 1052 x 10°° 28704 x 10° 

13°5 9471 381 24°9 379 7176 

9 5225 198 26-4 208 3189 

6-75 4846 195 24°8 192 1794 

5-4 3606 110 32°7 139 1148 

between the values of S? which have been found from the 25 years curves (Table V.) 

Vou. XVIII. 16 
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and those just deduced for the shorter interval. The latter being the mean of values 

obtained for the 26 and 27 day periods should, strictly speaking, be put down as belonging 

to a period of 265 days, but for our purpose it is sufficient to neglect the difference of 

half-a-day. Considering that the value of S* for the 25 years interval represents the 

mean of only seven values, the approximation of the ratio of the numbers given for 

the intervals of 25 years and one year respectively to the theoretical number 25 is very 

remarkable. 

Incidentally this agreement shews that the secular variation has been eliminated 

sufficiently to leave no appreciable effect on the Periodogram. The last column of 

Table X. gives the ordinates of the P.G. for a uniform progressive change of 7°2 per 

minute. The original uncorrected figures would have given, according to our previous 

deductions (Cases 2 and 3), values for the Pp. G. made up of the sums of Columns vi. and 

Il. or Il. respectively, and the ratios of these sums would have been widely different from 

25. Further consideration of the figures shews that, while possibly a small change in 

the assumed value of the secular variation would have brought the numbers of Column Iv. 

into still nearer agreement with the theoretical number, such a change would amount 

to less than a percent., and would be quite uncertain. 

The surface of the Periodogram having been determined with sufficient accuracy for 

periods varying between 5 and 27 days, it seemed desirable to extend the investigation 

1 Unit=0'-0001 
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Fig. 1. 

to shorter and longer periods. The calculation for a period of 2 days gave very little 

trouble. If the alternate numbers in each of the rows of Table I. are added together, 

and the differences of these sums are taken, we obtain numbers which, after division by 
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the proper factor, give the Fourier coefficients. The average square of amplitude for 

the year was found to be ‘003460 and this has to be divided by 25 to get the 

ordinate of the periodograph for the 25 years interval. The number 138'4x10-* so 

obtained is almost identical with that previously found for the 5:4 day period, which 

tends to shew that for short periods the expectancy of a Fourier coefficient is indepen- 

dent of the period. Fig. 1 gives the shape of the Periodogram for periods up to 30 

days. The vertical ordinates give the heights actually determined, while the curve is 

drawn continuously so as to pass nearly through these points. 

For longer periods the monthly averages, as published in the Greenwich records, 

served as basis of calculation. To obtain the coefficient of the annual period, the 

interval of 25 years was divided into 5 groups of 5 years, and the harmonic analysis 

was applied to each of these 5 groups. The average square of amplitude then gave the 

ordinate of the Periodograph for a range of 5 years, which has to be divided by 5 in 

order to reduce it to our normal interval of 25 years. 

Periods of 11 and 13 months were treated similarly and the coefficients obtained 

for 5 groups of 55 months and 4 groups of 65 months. The average squares of ampli- 

tude have in these cases to be divided by 60/11 and 60/13 to reduce to the normal 

interval. The results are given in Table XI. and it will be noticed that the Period- 

TABLE XI. 

Period in Months Ss? S2 S37 S2 S$ | 

11 | 04591 00475 “00158 | “00079 ‘00054 

12 08828 | -01610 700842 =| -00287 -00218 

13 09344 | “01082 00891 | :00237 | 00196 

Average 07588 =| = -01055 | *00630 00201 | -00156 

Period in Months 12 | 6 | 4 3 21 

ogram continues to increase rapidly with increasing lengths of period. The conclusion 

we must draw from the curve in Fig. 1 and the figures of Table XI. is, that the 

causes which produce the variations of declination are on the whole persistent in 

character, so that the variations of short periods have on the average a much smaller 

amplitude than those of longer periods. 

IV. APPLICATION OF THE THEORY OF PROBABILITY. 

In a previous paper* I have applied the theory of probability to the solution of 

the question whether the value of any particular coefficient of Fourier’s series indicates 

* Terrestrial Magnetism, Vol. 11. p. 13. 

16—2 
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a true periodicity or may be accounted for by purely accidental causes. The principal 

results arrived at may be shortly stated here, as far as they concern the present dis- 

cussion. 

The average daily value of magnetic declination, leaving the secular variation out of 

account, oscillates round some average value. If 8 is the difference between any observed 

value and its average, there will be some function #(8) such that f(8)d8 will represent 

the number of cases in which the value lies between 8 and 8+d8; for instance, if the 

ordinary law of errors holds, the number of cases in which the deviation from the average 

lies between 8 and 8+df will be un 
T 

e® 18, where h is a constant and WN the 

total number of days considered. In this case it is found that the probability that the 

Fourier coefficient of any particular period lies between p and p+ dp is 

Nh2e*"** p dp. 

This expression holds on the assumption that the values on successive days are 

entirely independent of each other. 

The expectancy (Z) of the square of Fourier’s coefficient is in that case 

+ 2 2 Nh2e—-t Nh’? ndp = |p . Whe?" odp Whe’ 

and the probability that p? should exceed a value «# is simply e*. This latter ex- 

pression still holds when the law of distribution is not that of errors, and even if the 

successive daily values are not independent of each other, as is eg. the case when 

the causes which produce the deviations from the average persist for several days. In 

the last case the expectancy must be obtained by trial, the mean square of the Fourier 

coefficients being taken. This expectancy, which according to our definition is the ordi- 

nate of the periodograph, should serve as the basis of any attempt to discover real 

periodicities, and Table XII. will give at once the probability that a coefficient of the 

Fourier series is due to a periodic cause and not to accident. If for instance the 

square of a coefficient has been found to be equal to about twice the expectancy, we 

obtain by the Table the value of e* for «=2 as ‘135, which means that in one case 

out of about seven, accidental circumstances will cause the coefficient to be even greater 

than this, and therefore no conclusion can be drawn as to a real periodicity. 

When the square of amplitude which for shortness we may call the “intensity” 

amounts to about 12 times the expectancy, the probability of mere chance is only one 

in 200,000 and we may then begin to be fairly certain of a real effect, or if we are 

satisfied with a probability of one in 1000, we may begin to count effects as probably 

real when the intensity becomes equal to about 7 times the expectancy. 

We may follow the theory of probability a little further in another direction; the 

expectancy has in most cases to be determined by trial, and for this purpose the mean 

of a certain number of calculated intensities is taken. The question arises how many 
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such numbers must be combined in order to obtain a sufficiently approximate value for 

the expectancy. 

TABLE XII. 

K Caan K Orts 

05 | 9512 6 2-48 x 1078 

10-9048 8 3°35 x 107* 

20 ‘8187 10 454 x 1078 

‘40 | 6703 12 6-14 x 1078 

60 5488 14 8°32 x 1077 

80 4493 16-113 1077 

100 | 3679 18 | 152x107 

1:50 2231 20 2:06 x 107° 

200 | +1353 95 | 1-39x10-" 

3:00 | -0498 | 30 | 9:36 x 107" 

4-00 0183 | 40 | 4:25 x 10-8 

|. 5-00 00674 | 50 2 x10 
| | 

To calculate the probability with which an average of a finite number of cases 

approaches the expectancy, we take two quantities such that the probability of either 

exceeding a certain value «# is given by e~* and find the probability that their sum 

exceeds 2p#. If the first lies between «H and («+dx)H the second must be greater 

than (2o—«)# as long as « is smaller than 2p, if greater the second may have any 

value. Hence the required probability becomes 

2p 
ew? + | e*e-@—") de =e” (1 + 2p). 

0 

By a repeated application of the same process it is found that if there are n 

quantities, the probability that their average exceeds «H is 

i 1 
—NkK if 22 3 3 mn—1 .~n-1 e | + nk + dn?« +53 0e sr Gani K I; 

which is equal to 

n” 
——— 2—1 p—NK sole e—”™ dk, 
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so that the probability that the average of n values should lie between «# and 

(«+dk) FE is 

n 2—1 p—NK Game e™ dx. 

If nx is large, we may simplify the numerical calculation by putting approximately 

according to Stirling’s theorem 

log (n — 1)! =(n —4) logn —n + $ log 27, 

from which it follows that 

n n Pe RIE ty ee 
(n—1)! s Qa 

In order to illustrate the law according to which a gradually increasing number of 

intensities tends to approach the value of the expectancy, I have plotted in Fig. 2 

the curve 
n* 

4 (n=1)! 
gr (Free 

Fig. 2. 

for the three cases that n equals one, five, or fifty; fifty being the number on which 
our Periodograph in the neighbourhood of the 26 day period rests. 
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The lme HK gives the position of the expectancy, and the curve 4A,4,, which 

represents the case n=1, shews how a single value of a Fourier coefficient generally 

does not give us even approximately the value of the expectancy. For n=5, and still 

more for n=50, the probability-curve approaches the line HK. 

In the conclusions which we shall have to draw on the reality of periodicities 

much depends on the law of distribution of accidental Fourier coefficients. According 

to the theory the probability that the square of any coefficient exceeds « times the 

expectancy is e-*; and although the theory rests on a sound basis, it is interesting to 

obtain an experimental verification. 

The material collected for this investigation includes the Fourier coefficients of five 

terms for each of 25 years, for the 26 day and the 27 day period. Hence 250 separate 

values of amplitude have been obtained. For each of the five terms the average value 

of intensity gives the expectancy, and calculating the ratio of the intensity to the 

expectancy we find 250 values of «. Table XIII. shews the comparison between the 

TABLE XIII. 

| 
Caleulated | Observed | 

Range of « number of cases | number of cases | 
| | 
| | 

Above 3 12:5 14 

Between 2 and 3 a 25 | 

eS Mabe | 220 19 | 

3 i140) 65. dle 36:2 D2) 

- Bie aaenil (i 20-4 20-5 | 

eS 6. 8 24-8 23 | 

i Aes 6 30-4 27:5 | 

5 Sere ok: BH/(eil 48°5 

Under -2 45:3 40 

Altogether over | 92-0 90°5 

fe under | 158-0 | 159-5 

calculated distribution of these values of « and that actually found, the agreement being 

very satisfactory. The fraction one-half appears in the column of observed values, because 

if the value of « agreed to 2 decimal places with a limiting value, it was considered as 

being half-above and half-below that value. Thus «=-60 was entered as one-half into the 

compartment including the values of « between ‘6 and ‘8, and as one-half into the 

compartment including the values of « lying between “4 and ‘6. 
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V. CALCULATION OF AMPLITUDES IN SPECIAL CASEs. 

The Fourier coefficients having been calculated for the 26 and 27 day periods in each 

year, we are able to obtain the amplitudes for periods not differing too much from these 

values. To shew the process of calculation to be adopted for this purpose, let A,, Ag, 

ete.; B,, B,, etc. be defined by the equations 

nT -2nT snT 

ie | f (t) cos gtdt, A,=| f(t) cos gtdt, An=| f(t)cosgtdt, 
0 “nT (s-1l) 27 

nT 2nT nT 

Ba | F(t) sin gtdt, B= | F(t) sin gtdt, Bn= i] J (é) sin gtdt, 
0 bar i (s-1)2T 

where g = 27/T. 

It is required to find 

air eo ee, d —— t) cos «tdt, ‘=—. t) sin x«tdt, |, fo pr), F sine 
where « = 27/7". 

If « and g do not differ much from each other we may put approximately 

mnt mnT 

J (t) cos xt = | F @) cos (gt + om) = Am COS Am — Bm SIN Ay, ....2.2-200000 (4). 
(m—1) nT J (m-1) aT 

The greatest approach to equality is assured when the curves cosx«t and cos (gt+ an) 

are made to coincide as nearly as possible throughout the interval, and hence the phases 

should agree in the middle of the interval, so that for t=(m—4)nT, nt=gt+ an. 

This gives 

a4, = Qn ( — 7) (m — 4 yn ] 

a NE Te = E 

We may now put 

snT m= m=s 7 s v7 

| J (t) cos xtdt = } A» COS Gm — > Bm Sin Om, 
0 m=1 1 m= 

snT . m=8 : m=s 

| Ff (@sin ctdt =X Am sin 4m + = By COS Om. 
“0 1 m=1 m= 

The coefficients which we suppose to have been calculated are 

2 2 
a=—A b,=—,B,, ete. 1 nT 1> 1 nt 1> ’ 

2 -snT 

so that aT | F(t) cos xtdt = - Y (An COS Oy, — Vy SID Ap). 
0 : 

_ 
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If snZ=pT’ and p is an integer, the left-hand side would represent the coefficient 
of period 7” obtained by analysing the record of p successive periods. If p is not an 
integer we may still take this to be approximately the case if sn is large, for we 
may always put 

-snT *(pt+e) T’ 

| F(@) cos etdt = =) "F(6) 008 eid + | FCS Rta reercrerrrnse (5), 
oa0) 

p being the nearest integral to sn, and e a fraction, The second integral will be small 
compared to the first, if the first includes a large number of periods. 

We have therefore finally for the required coefficients a’ and 0’ 

Fie Bi LS 
a= pT” » = = (am COS Gp — bmn sin am) = ~ pT’ xy m COS (Am ats dm), | 

eee (6), 
pe Le (LL 
— yale = = (am sin am 2 Din cos bm) = 3 iva 27 m SIN (@m + $m); 

where @m =7m COS dm, bm =Tm SID bm- 

The fraction n7’/pT’ may generally be taken to be equal to 1/s. 

The values of a are those given above, so that 

ee T—T' TT 
Oy = 7 — Fs a, = 377n T° Am =(2m —1) 712 To ittteseeees (7). 

It remains to be shewn what error has been introduced by the assumed equality 
(4) and the neglect of the second integral of (5). For this purpose we imagine the 
function f(t) to be accurately represented by cos«t, so that 

mnT ae nknT 

An, =] cos xt cos gtdt = - 5 —4) nT, 
“(m-1)2T 

and as Om =(K —g)(m—4) nT, 

Am=+t =singd«nT cos ap, 
e—g 

where the lower sign is taken when n is odd. 

Similarly 

Bae 2g ,sin$«nT sin ap. 
Kg 

> 

By substitution it follows that, using equations (6), 

y 2 : F 
a =P a= 9 sin danT ¥ (« cos? a, +9 Sin? Gp) 

2 1 : & 
=o ag sin $anT ¥ {(« +9) + (« —g) cos 2am}, 

Wor, SOV 17 
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or writing y= = nT’, 

nT sin .K— 
a=—, = bat ead, cos Baal 

pr ys | ekg j 

ESS ad SIN 2. 
k+g 

Similarly b=. 

The factor sin y/y only having appreciable values when y is smali, the value of ae 
g 

will be small compared to unity, hence the sum of s terms containing that factor will 

be small compared to s. This reduces the coefficients to 

,_nsT siny 

BESTT 

p is defined as the nearest integer to ns7/T’, and as ns, the total number of 

periods included, was about 350 in the cases to which the above investigation will be 

applied, we may with sufficient accuracy write 

gaan 

UY 

The original function vestigated cos xt, having unit amplitude, it is seen that the 

approximate method of calculation gives an amplitude which is reduced in the ratio 

sin y/y or an intensity reduced in the ratio sin? y/7*. 

A Table of sin*y/y? is given in Mascart’s Optique, Vol. 1, p. 324, from which it 

appears that as y takes the values 15°, 30°, 45°, 60°, the function becomes 977; “912; 

‘811; ‘684. If it is simply desired to decide whether a period is real or accidental, 

the intensity need not be accurately known, and we may allow ourselves considerable 

latitude therefore in the value of y. If we fix the extreme value of that angle as 45° 

which means a reduction of intensity of about 20°/,, we obtain a relation between 7 and 
lo? 

T’, for in that case 

=7™m — Zid a pe Sh 

or & fae 
Saeed 

If 7 is 26 days, and n=14, there being 14 periods of 26 days in the year, we 

find that by the method indicated all amplitudes may be calculated which lie between 

25°54 and 2647 days. If the coefficients of the 26 day and 27 day periods are 

known for each year we shall be able to calculate those of all intermediate periods 

with sufficient accuracy, for the extreme reduction in amplitude when T—T’=tday will 

be ‘789, and it is only when the intensity comes very near the point at which it is 

difficult to distinguish between real and accidental periods that this reduction will make 

a material difference. 
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VI. NumericaL APPLICATIONS. 

Some investigators have come to the conclusion that several meteorological and 

magnetic phenomena shew a periodicity having a time not far different from 26 days 

and, not uncommonly, this period is supposed to be connected with solar rotation. 

I proceed to apply the methods of this paper to test the reality of this period. 

Hornstein*, on the strength of the declination records for Prague, assigns to it an am- 

plitude of ‘7 minute of are or an intensity of 5. Such an intensity would be equal 

to 500 times the expectancy, if an interval of 25 years is submitted to examination ; 

and if real and approaching Hornstein’s value in magnitude, it should stand out above 

the accidental periods to such a degree that every doubt would be removed. Adolph 

Schmidt+ was led by a discussion of Hornstein’s results to a duration of 25°87 days 

as being the most probable periodic time, while von Bezold finds a slightly shorter 

period for the frequency of thunder-storms. 

More recently Professors Eckholm and Arrhenius} have published a paper in which 

a periodicity of 25°929 is put forward as probable or even proved. As opposed to these 

investigators Professor Frank H. Bigelow gave a considerably longer time (26°68 days) to 

the periodicity and has endeavoured to shew that it exists in many meteorological 

phenomena. 

To shew whether the Greenwich records confirm or disprove these results, it 1s 

necessary to calculate the intensities for each periodic time, and its corresponding half 

period. This I have done, the results being collected in the first section of Table XIV. 

TABLE XIV. 

. Square of : < Square of 
Period capita K Semi-period Amplieade K | 

25°87 “001001 “95 12:935 000316 83 

25-929 001027 93 12-965 “000200 oy) 

26°68 000242 23 13-340 “000132 35 

25-809 006168 5°86 12-905 “001060 2-80 

25-825 004182 4:07 12°913 (001286 3°39 

26°181 001144 1:09 

26:255 001081 1:04 

26°814 005936 5-64 

27-061 002943 2°80 

* Wiener Ber. uxtv. p. 62 (1871). + Kongl. Svenska. Akad. Vol. xxxt. No. 3 (1898). 

+ Ibid. xcvr. p. 989 (1887). 

17—2 
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The column headed « gives the ratio of the intensity (square of amplitude) to the 

expectancy; and there is a remarkable unanimity in the smallness of this factor, shew- 

ing that the amplitudes are even less than the average amplitudes calculated on the 

theory of chance. This result must definitely disprove Prof. Eckholm and Arrhenius’ 

period of 25°929, as well as that of Bigelow, as far as the Greenwich records of declin- 

ation are concerned. 

The interval of 25 years which forms the basis of this investigation is, however, 

so long that unless the periodic time is very accurately known beforehand, the exist- 

ence of the periodicity may escape attention. Hornstein’s investigations, as treated by 

Schmidt, do not claim any great accuracy, and a period of say 25°84 days might give a 

large amplitude. In other words, we can only say that there is no periodicity having 

a length between about 25°86 and 25°88 days, but a further investigation is necessary 

if the possibility of an error of more than ‘01 day in Schmidt's value is admitted. 

Both Bigelow and Eckholm and Arrhenius claim to have fixed their period to three 

places of decimals and our result must be considered as conclusive against them. 

In order to be certain that no periodicity of sufficient magnitude has remained 

unnoticed the investigation was extended in the following way. 

A diagram was prepared (Plate I.) in which the phases of the 26 day period, 

as they are given in Table VIII. for each year, are measured off as ordinates in 

equidistant vertical lines which represent successive years. If there is a period in the 

neighbourhood of 26 days. which has a large amplitude, the points representing the 

phases should group themselves more or less round a straight line and from the 

inclination of the straight lines we may calculate the length of the period giving the 

increased amplitude. In order to include possible periods which may differ as much as 

+5 from 26 days, the diagram must be repeated three or four times so as to admit a 

phase variation of several revolutions of a circle. Thus for the first year the phase 

was 73° and a point is marked on the diagram, not only on the horizontal line corre- 

sponding to 73° but also on that of 433°, 793° and 1153°, all differing by 360°. In 

order to be able to give more weight to those years in which the amplitude is great, 

the points are marked differently according as the amplitude is great, intermediate or 

small. The manner of marking is best seen on the Plate. If the eye is suddenly 

moved towards the Plate so as to obtain a general view of the grouping of points, I 

think there will be no doubt that these shew a decided tendency to group round a 

straight line marked A,A,. To bring the phases of the points which lie along this 

line into agreement the phase of the 25th year which is 593° must become equal to 

that of the 5th year which is 1333°. This gives a shift of phase of 37° per year. 

To obtain the period corrected so as to bring the phases into agreement we may use 

equation (7), putting 
v 

Lm — Am— = 2arNn ii ae Bile 

If 7=26 and n=14 the corrected time Z’ is found to be 25°809. 
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The amplitude was next calculated for this corrected period and its square entered 

into the second section of Table XIV. The intensity now exceeds the expectancy, being 

5°86 as great. There appeared also to be a minor tendency of groupings about the lines 

B,B, and C,C,, and to bring the phases along these lines into agreement the corrected 

periods were calculated to be 26:255 and 26181. Table XIV. however shews that the 

intensities corresponding to these times barely exceed the expectancy. 

Plate II. gives similarly the distribution of phases for the 27 day period, the 

straight lines along which there seems a_ possibility of clustering are marked on the 

Plate, the corresponding periodic times being 27:061, 26°814, 27327 days. The inten- 

sities of the two first of these periods are entered into Table XIV. It will be noticed 

that the two periods which shew the greatest amplitudes are those of 26814 and 25-809 

days. As regards the latter, reference to Table XII. or independent calculation shews 

that it will happen about once in every 350 trials that, owing to accidental circum- 

stances, the square of a Fourier coefficient exceeds 5°86 times the expectancy. It 

will of course be noticed that the period which gives the high value for the 

amplitude has been selected with that special object in view, and regard must be had 

to the fact that it represents the greatest intensity that can be obtained within the 

range of periods extending from 25°5 to 27°5 days. The question how many independent 

trial periods that range may be considered to contain may be answered by our previous 

investigation (p. 130) from which it appears that two periods 7 and ZJ” may be con- 

sidered as independent when 

T-T’ 1 

TI hn? 

n being the total number of periods included in 7. For Z7=27, n was 338, and hence 

T—T’ is almost exactly ‘02 day. As our range covered all periods between 25°5 

and 27:5 days, we must consider that we have dealt with 100 independent periods and 

found the two greatest intensities to be respectively 564 and 5°86 times the expect- 

ancy. What it comes to therefore is this, that 100 trials have given us one intensity 

5°86 times the expectancy, while on the average this should only happen once in 350 

trials. Or taking the two greatest amplitudes into consideration, it ought according to 

chance to happen once in every 150 trials that an intensity of 5 times the expectancy 

is found, while in the actual case this happened twice in 100 trials. It is obvious 

that no conclusions as to the reality of the periodicity can be drawn from this argu- 

ment. There are however two considerations which lead me to pause before finally reject- 

ing the 25°809 period; the high amplitude is accompanied also by a considerable amplitude 

of the half period, and if these half periods are plotted in a manner illustrated in Plates 

IIT. and IV., it is found that a somewhat greater value is obtained if the time were altered 

to 25°825 days. This however gives a decidedly smaller value for the main period (see 

Table XIV.). The coincidence of two high intensities for a period and its semi-period 

much increases of course the probability of its reality, but even if this is taken into 

account, the excess of intensity over the expectancy is insufficient to establish the period. 

The second consideration lies in the fact that the most definite result so far in the 
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search of periodicities has been that of Prof. v. Bezold whose work had reference to 

the frequency of thunder-storms. He gives 25°84 days as the length of his period, but 

it was really only the semi-period which shewed a large amplitude. The numbers 25°84 

and 25°825 lie so near together that it will be wise to keep an open mind as to the 

possibility of some real periodic time of that length. But it must be understood that 

the record of Greenwich declination extending over 25 years shews nothing beyond a 

slight indication, of such a period. An intensity of ‘006 corresponds to an amplitude 

of ‘O77 minute of arc, and it can be definitely asserted as the result of this enquiry 

that there is no period between 25°5 and 27:5 days which had a larger amplitude at 

Greenwich during the years 1871—1895. 

VII. Lunar PERIODICITIES. 

One of the principal objects of this investigation was to prove or disprove the 

suspected lunar period in the daily average of magnetic declination. The clustering of 

phases round the line BB’, Plate IV., shews that observation gives a somewhat larger 

amplitude than the average for a period of 27327 days which lies very near the length 

of the tropical month. The two periods, that of tropic revolution and that of synodic 

revolution, were therefore specially treated, the result being exhibited in Table XV. It 

TABLE XV. 

| f | | | 
Period earaee | kK Semi-period io aiae | Kk | 

27°32 002352 2°24 13-66 000819 | 2-16 | 

29°53 000026 25 14:77 002876 | 7:56 | 

is seen at once that there is a strong indication of a period having as its time half 

the period of the synodic month. The value of « which is 756 is considerably higher 

than any other given within the whole range of investigated periods. An accidental 

coincidence is not excluded, for as calculation shews 1t may happen once in every 2000 

trials that such a large value should be found for «. We can only assert therefore 

that there is a probability of 2000 to 1 that the moon has a true effect on magnetic 

declination. The amplitude is only ‘054 minute of are and the strong evidence afforded 

of the real existence of a periodicity having such a small amplitude shews, I think, 

the value of the method which has been adopted in this investigation. As regards the 

phase of action no certain conclusions can at present be drawn; the maximum westerly 

declination occurred on the average during the years under examination between 2 and 

3 days after new and full moon. Nothing is of course asserted as to the reason why 

the moon should affect the declination needle, but the action is probably a very indirect 

one. It would be important to extend the investigation to the other components of 

magnetic force and to other localities. It is highly improbable that a westerly force 
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should act simultaneously all over a circle of latitude, for that would imply considerable 

currents across the earth’s surface. It is more likely that the principal action takes 

place along a geographical meridian; and if that is the case, the horizontal force should 

shew stronger evidence of these lunar periodicities than the declination. There is also the 

possibility that what is observed in the daily average of declination is only a remnant of a 

variation having the lunar day for its period. In that case the periodicity should dis- 

appear when the average position of the needle in a lunar day is subjected to calculation. 

If this is the correct explanation it should not be difficult to prove it, for it would 

require a much greater amplitude within the lunar day to account for the 0°06 amplitude 

found in the daily averages. How much greater may be seen from the following considera- 

tion. If from a periodic function cos xt another is formed by taking averages over a 

period 27 we obtain 

1| t+r 1 ’ 

— [ cos ctdt = — sin xr cos xt, 
Q7 J KT t-r 

s : : é fee P 5 
that is a reduction in amplitude of —sinxr. If 27 is one solar day, 27/« one lunar 

KT 

day, 7 9953° hence «rt equals 174° and the amplitude of the curve obtained by taking 

averages is only about the 29th part of that of the original curve. The comparison of 

averages of successive days will therefore produce an apparent period having the lunar 

month as periodic time and, if the period found above is due to this cause, the amplitude 

of the original lunar variation should be 1°74. Such an amplitude ought to be traceable 

without much difficulty. 

A thorough enquiry into the nature of lunar periodicities of magnetic records seems 

to me to be of special importance, but requires considerable arithmetical labour; for, to be 

conclusive it must be complete. I have been assisted in the numerical calculations which 

were necessary in the present investigation by Mr J. R.' Ashworth, to whom I desire to 

tender my thanks. The expense connected with the numerical work was partially covered 

by a small contribution from the Government Grant Fund of the Royal Society. 
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VII. Experiments on the Oscillatory Discharge of an Air Condenser, with 

a Determination of “v.” By Outver J. Lopez, D.Sc, F.RS.. and 

R. T. Guazesroox, M.A., F.R.S. 

[Received 9 August, 1899.] 

PART I. 

GENERAL DESCRIPTION OF THE METHOD. 

AFTER a considerable number of experiments on the discharge of Leyden jars, and 

a qualitative study of the electric oscillations accompanying such discharge, it seemed 

desirable to make an exact determination of the frequency of alternation given by a 

standard condenser through a circuit of known self-induction, in order to ascertain 

whether the well-known theory of the case was accurate or only an approximation. 

The absolute determinations necessary were three, viz. :— 

(1) The capacity of a condenser, which is K times a length; 

(2) The self-induction of a coil, which is » times a length; though it 

would be natural to measure it indirectly by comparison with the already carefully 

determined standard of electrical resistance ; 

(3) The period of one oscillation of the discharge, under circumstances when 

the damping influences are not appreciably disturbing. 

The resistance of the circuit might possibly enter as a correction into the result, 

and many other minor determinations might have to be made, but these three are the 

main quantities involved, and the relation between them is 

T = 2a /(pl, . Kl.), 

and the formula would be verified if the resulting value for the product of the as yet 

entirely unknown constants, ~ the permeability and K the inductive capacity of the 

medium, agreed at all closely with the already otherwise determined value, viz. the 

square of the reciprocal of the velocity of light. 

It was hoped indeed that the method might turn out sufficiently accurate to give 

a useful re-determination of this important quantity. It was with this idea in mind 
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that the followmg research was undertaken, and much care was accordingly bestowed 

upon it. 

It may be here noted that Lord Kelvin himself, in one of his popular lectures*, 

suggests this method of electric oscillation as just conceivably one of the methods by 

which v could be practically determined; and he puts the matter in a geometrical way, 

which it may be interesting freely to paraphrase thus: 

Take a wheel of radius equal to the geometric mean of the following two lengths, 

the electrostatic measure of the capacity of a condenser, and the electromagnetic measure 

of the self-induction of its discharge circuit; make this wheel rotate in the time of 

one complete electric oscillation of the said condenser (as if it were being driven by 

an electrically oscillating piston and crank), then it will roll itself along a railway with 

the velocity v. 

And indeed (as Maxwell discovered) ethereal waves excited by the discharge are 

actually transmitted through space at this very speed. 

GENERAL REQUIREMENTS OF THE MetTHOD. 

The first essential is a condenser of capacity directly measurable from its dimen- 

sions. Its dielectric must accordingly be air, its plates must be a reasonable distance 

apart, and they should be either spherical or have a guard-ring. The necessary small- 
ness of capacity of a condenser satisfying these requirements is a difficulty, especially 
when a quantity so large as the velocity of light is the subject of measurement. A 
difficulty of the same sort is, however, common to all methods, and is what makes “v” 

a quantity so much more difficult to determine than for instance “the ohm.” 

To compensate for the smallness of practicable electrostatic capacity a discharge 

circuit of very great inductance must be employed, or else the time-determination will 

be difficult from its excessive minuteness. 

The inductance must be secured in combination with as much conductance as 

possible, or the discharge will fail in being oscillatory. To this end Messrs W. T. Glover 

and Co. were requested to supply a regularly wound hank or coil of No. 22 (s. w. G) 

high conductivity copper, very thinly india-rubber covered, of shape such as to give 

maximum self-induction, and of size estimated to give between 5 and 6 secohms, ie., in 

magnetic measure, a length of 5 or 6 earth quadrants. 

This would be afforded by a coil of 4 inches cross-sectional area and mean diameter 

15 inches, with three or four thousand turns of wire. But to guard against the danger 

of sparking or leaking between layers it was decided to reduce the dangerous tension to 

one-quarter by having the coil in two halves. Accordingly it was made as follows (to 

quote Messrs Glover's statement) : 

* Sir W. Thomson’s Lectures and Addresses, Vol. 1. p. 119. Lecture on Electrical Units to the Inst. C. E. 

Vou. XVIII. 18 
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“4,330 yards of No. 22 tinned copper wire covered with 2 coats of pure india- 

rubber to the diameter of ‘035 inch. This was the only covering. In two parallel 

coils, internal diameter 102 inches, 4 inches deep, and 2 inches wide.” See Figure 1. 

This pair of coils were then packed carefully and permanently in a round walnut 

box or drum, with a thin sheet of glass between them, and the 

terminals of each coil were led to the outside and finished off on four 
Q" 
a 

| 4" aE = ebonite pillars. 

1 y They could, therefore, be connected up in series, or parallel, or 

used separately; but in practice they were usually joined in simple 

series. With this coil many preliminary experiments were made at 

Liverpool. 

The  self-induction of the double coil was estimated as about 

5 secohms or “quadrants,” but no attempt was made to measure it with 

any care at this time, because it was better to do it when all the 

Bio. 1. apparatus was in position in the basement room set aside for the 

experiments described in Part II. 

The chief part of the whole business consisted in taking clear images of a spark 

on a moving sensitive plate, getting every detail of the oscillation clearly recorded on 

the negatives, so that they could be subsequently analysed under a microscope and the 

time of an oscillation accordingly determined. 

The sparks used were extremely feeble, and each was drawn out by motion into 

a band, so that in order to get every detail clear the plates had to be super-sensitive. 

For such plates we were indebted to the kindness of Mr J. W. Swan, who sent on 

several occasions a special packet of Messrs Mawson and Swan’s most highly sensitized 

plates, which answered admirably. 

The next principal part consisted in the micrometric reading of the records on the 

photographic plates. The reading is rather a tedious process as a great many numbers 

have to be recorded for each plate, and care is necessary to disentangle the several 

sparks, which to economise time and labour at the experimental end were usually taken 

during a single spin. 

The details of the method of obtaining the record will now be described. 

TIME OF ONE OSCILLATION. 

The long-established method of observing spark oscillation by means of a revolving 

mirror was at first used; but this plan, though easy for observation, does not readily 

lend itself to precise measurement. It is desirable to obtain a photographic record 

which can be studied at leisure, and it seemed therefore best to form an image of 

the spark on a plate moving so rapidly that its constituent oscillations were clearly 

visible. 

2 ee ee here 

a 
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For metrical purposes there are many advantages in thus moving only the sensitive 

plate, though for mere display Mr Boys’s more recent plan of spinning a succession of 

lenses is able to give more striking results. 

Accordingly an old packing case was made light-tight, and used as the camera. In 

it were contained: first the spark-gap, a pair of adjustable brass knobs about half-an- 

inch in diameter, clamped to a glass pillar, one vertically over the other and with a 

clear space, on the average about 2 millimetres, between them; next the lens, an 

ordinary camera lens on a special stand; and lastly the sensitive plate in its conjugate 
focus, arranged so that the image was not very much smaller than the object. The 
photographic plate is supported firmly in a revolving wooden carrier or frame fixed to 
the horizontal axle of a whirling machine (one of Weinhold’s) which was firmly clamped 
to a stone pillar outside the camera and was driven by a long carefully spliced whip- 
cord belt by means of one of Bailey’s “Thirlmere” turbines standing on a distant 
sink, and having a large grooved pulley to give the necessary “gearing up.” One end 
of the whirling machine axle passed through into the box in a light-tight manner, and 
it was supplied with a self-oilimg syphon wick. The ordinary speed at which it was 
driven was 64 revolutions per second; occasionally it rose as high as 85, but the 
water pressure was not often enough for this. 

The turbine could have been fed from a cistern in the roof, but greater pressure 

was attainable in the mains, and though lable to fluctuation this was found at certain 

times in the day or evening regular enough for good observation. 

MopE OF CONTROLLING AND DETERMINING THE SPEED. 

Uniformity of rotation was essential, and to secure it the method employed by 
Lord Rayleigh in his determination of the ohm was imitated. A small cardboard 
stroboscopic disk was painted with several circles of radial markings, or “ teeth,’ the 
ones chiefly used being 3, 4, 5, 6, 8 teeth respectively in a circumference, especially 
the pattern 4. 

This disk was watched through a pair of slits carried by the prongs of a large 
electromagnetically maintained Koenig fork, whose loads were adjusted to give 128 vibra- 
tions per second precisely. The slits permitted vision at the middle of each swing, 
consequently 256 glimpses a second. Hence whenever the 4 pattern on the stroboscopic 
disk was distinct and stationary as seen through the slits, it meant that the sensitive 
plate on the same axle was spinning 64 times in a second. 

Photographs of sparks were taken only when the pattern was stationary and the 
speed thus known to be regular. 

To determine the speed absolutely it was necessary to calibrate or specially observe 

the period of the fork. To this end two methods were employed: one the ordinary 

method devised by Lord Rayleigh, for comparing an electromagnetically maintained fork 

18—2 
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with a large free standard fork *; the other by means of a simple four-figure mechanical 

counter attached to the axle of the stroboscopic disk. This counter recorded mechani- 

cally the actual number of revolutions made by the disk, during say five or ten 

minutes, and all this time the disk could be watched through the jaws of the electro- 

magnetic fork and some definite pattern kept, on the average, absolutely steady. 

The control over the speed was obtained, as in Lord Rayleigh’s case, by passing 

the driving cord through the fingers of the observer as he watched the disk through 

the jaws of the fork, thus keeping on the cord a slight frictional pressure, which, 

whenever necessary, was increased or relaxed, and thereby regulated the speed. With 

practice this method of personal government is susceptible of surprising accuracy. It is 

always however much easier to keep a pattern still on the average, that is, to bring 

a tooth back if it has slipped forward a little, so as not to allow any unknown escape 

of the steady pattern from control, than it is to keep the pattern constantly steady, 

as it ought to be when a photograph is being taken. At the same time it may be 

noticed that at the customary working speed a retardation or acceleration at the rate 

of one tooth interchange every second (which is conspicuously bad) makes an error of 

only 1 in 256, or less than one-half per cent.; and as it is not a systematic error it 

is likely to disappear from an average, even if so great as this. When the water 

pressure is regular, and the oiling also regular (a superabundance of paraffin is the 

easiest way of securing this latter condition) the regulation of the cord is easy. But 

if the water pressure varies much a duster or pad is necessary between the cord and 

the fingers, to save them getting burnt, and then some of the delicacy of manipulation has 

departed. 

It will be observed that in the experiments for determining the rate of the fork 

there is no need to run the stroboscopic disk very fast. The 8 or the 12 pattern may 

be the one kept still; corresponding to 32 or 214 revolutions per second, a moderate 

speed which is not liable to heat or otherwise overstrain the counter. 

The multiplication necessary to get the speed for any other steady pattern is of 

course precise. 

The fork was not found to vary on different days; it was set very accurately to 

128 vibrations per second (viz. close to the mark 256), and this part of the determi- 

nation, viz. the absolute speed of the revolving plate, was entirely easy and satisfactory. 

EXAMPLE OF A RATING OF THE FORK. 

The following may serve as an example of one of the observations for calculating 

the speed of the fork. There were three observers: one to watch the disk and control 

the driving string, so as to keep any selected pattern steady; another to watch the 

counter and make a tap whenever a figure changed on the 100 dial (the units flew 

past invisibly, and the tens were inconveniently quick); and the third to read a 

chronometer and record the time of occurrence of every other tap to the nearest half 

second. 

* See Phil. Trans., 1883, Part 1, p. 316. 
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The correctness of absolute time was secured by comparing the chronometer every 

day with a standard clock which was rated from the Observatory. The error in the rate 

of the chronometer was thus found negligible, being certainly not more than one or two 

seconds a day. 

Although it was possible to keep the speed constant for ten minutes or so, it was 

rather wearying and was really unnecessary, two or three minutes being quite sufficient, 

on this method of observing. Table I. gives a set of readings taken on the 28rd July, 

1889, the “eight” pattern being kept steady and every other tap, or every 200th revolu- 

tion, being timed: 

TABLE I. 
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Analysing these figures it will be found that the average time for 16 “taps” of 

200 revolutions each is 100 seconds; as it happens exactly. And this corresponds to 

32 revolutions per second; appropriate to the steadiness of the “eight” pattern. 

After this the speed could be increased till the “four” pattern was steady, with the 

certainty that the plate was then revolving 64 times a second with extreme accuracy. 

Thus the fork was used merely as an intermediary time-keeper to the chronometer, the 

media of comparison being the counter and the stroboscopic disk. 

PROCESS OF TAKING A SERIES OF SPARK PHOTOGRAPHS. 

The room being thoroughly darkened one of the sensitive plates was extracted 

from its case, and by the light of an exceedingly dim red glimmer fixed into the 

rotating frame holder. The spark knobs had previously been focussed on a dummy plate 

so that the spark length would be exactly radial, and near its outer margin. The 

packing-case cover being well covered, light was admitted to the room so as to make 

visible the stroboscopic disk which was watched between the jaws of the vibrating fork, 

and the turbine was turned on. The patterns were seen steadying themselves one after 

the other until the 4 pattern was reached and just passed; the water was regulated 

close to the point by past experience; the cord was then gripped by the observer and 

the escaping pattern brought back steady. 
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Meanwhile a small Voss machine, attached to the spark knobs, which formed the 

terminal of a circuit containing the condenser and the coil, had been excited with its 

knobs in contact. At a signal from the observer watching the disk they were drawn 

apart, and one, two, three, or four sparks listened for inside the case. The machine 

was then short-circuited again, and the lens slightly shifted a felt amount (which 

could be done without opening the “camera”) so as to bring the spark image a trifle 

nearer the centre, and another ring of sparks was then taken; sometimes with the 

conditions varied, sometimes with them just the same. Then a third, a fourth, and some- 

times a fifth circle of sparks were also taken. The number of sparks which without 

too much fear of unintelligible superposition could be taken in a single circle depended 

partly on their strength. With a large condenser a single spark might overlap its own 

record; with a very small condenser 6 or 8 sparks could be safely taken. 

In practice either 4 or 5 was the commonest number, and though chance frequently 

caused some overlap it was not usually difficult to disentangle the records when reading 

the plate. 

It was customary to get about 2 dozen sparks on a single plate, though sometimes 

it would have been wiser to try for fewer. But a bad overlap after all is no worse 

than if neither record had been attempted. 

Lastly, a needle point was held on the still spinning plate near its middle so as 

to centre it by a small circular scratch, and then the turbine was stopped, the room 

darkened, and the plate removed. 

An assistant, Mr Robinson, to whose careful manipulation we are much indebted, 

then proceeded to develop the plate, sometimes using an intensifier when the markings 

were too faint. 

Meanwhile whatever conditions had to be varied were attended to, other measurements, 

such as that of the self-induction of the coil, or the timing of fork, were made, and things 

were got ready for another spin. 

This process went on without interruption for some weeks, and a large number of 

negatives were obtained. The plate at first used was the ordinary half-plate size, but in 

order to permit larger circles, Mr Swan subsequently sent us square plates, 4 inches 

square, and on these the final records were taken. 

The spark-trace exhibited the alternate oscillations very distinctly: one end (probably 

the cathode) being always brighter than the other, and this brighter end alternated 

from side to side with every half-period. The beginning and end of each oscillation 

though clear enough to ordinary vision became furry under magnification, and by far 

the most definite things to set the crosswire on was a narrow bright radial line or sharp 

spit, due evidently to the sparking of the knobs into one another: a phenomenon which 

accompanied the main oscillations of the condenser and marked the beginning of each 

electrical surge. These spits were so instantaneous that the rotation of the plate had 

absolutely no effect on their sharpness. They were narrow lines no wider than the 

crosswires. 
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READING OF THE RECORD. 

The negative when thoroughly finished was subjected to careful micrometric examina- 

tion. 

To this end the plate was fixed on a horizontal circular graduated plate, part of 

a spectrometer, reading with verniers at opposite ends of a diameter, and capable of 

rotation with a slow motion tangent screw. Above the plate was clamped a microscope 

of moderate power, with crosswires in its eye-piece; and below the plate a scrap of 

mirror was arranged inclined at 45° to throw the light up. 

The centre of the plate was made to coincide with the centre of rotation, and the 

microscope was placed over one of the spark rings. The plate was turned until the 

beginning of a spark-trace appeared. Some definite feature of it was then brought 

under the crosswire, and the verniers were read. Then another feature was sighted, 

and the verniers read again, and so on, all along the trace of that spark; and similarly 

with every spark round that circle. Then the microscope was shifted till over another 

circle, and the process repeated. 

By far the most distinct features, and the most useful for precise setting, were 

the sharp spits or radial lines already referred to and visible in the positives or rough 

copies of some of the preliminary plates. 

All the readings were done on the negatives, and the best or final series of plates 

have had no positive copies taken from them as yet. 

PART 

THE MEASUREMENT OF THE SELF-INDUCTION OF THE COIL. 

Theory of the Method. 

The method adopted for the measurement of the self-induction is that devised by 

Maxwell, in his papers on “A Dynamical Theory of the Electromagnetic Field,” Collected 

Papers, Vol. 1. p. 549. 
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The coil whose coefficient of self-induction Z is required forms one of the arms of a 

Wheatstone bridge, Fig. 2. Let P be the resistance of the arm. Two of the other arms 

R and S are two resistances whose ratio—preferably one of equality—is known, and a 

balance is obtained by adjusting the fourth arm @. When this balance is found we 

have the relation P/Q=R/S. 

If the connections in the battery circuit be now reversed, a current due to self- 

induction in the arm P-. passes through the galvanometer. Let a the first throw of 

the galvanometer be observed. 

Now alter the resistance Q@ by an amount 6Q. In consequence there will be a deflec- 

tion of the galvanometer needle; let @ be this deflection; let w, x be the currents in 

the arm P before and after the alteration of Q, X the logarithmic decrement, and 

let 7 be the time of a complete oscillation. Then, remembering that P and Q are 

equal, we have (Rayleigh, “On the Value of the British Association Unit in Absolute 

Measure,” Phil. Trans. Part 11., 1882) 

L=39* Se 

THE RESISTANCE BOXES. 

In our experiments the coil P, already partly described, was wound in two sections 

each with a resistance of about 100 ohms, so that when both. sections were in use 

P was approximately 200 ohms. The other resistances were taken from two boxes of coils 

of platinum silver wire by Messrs Elliott Bros., correct in “Legal Ohms” at 17°C. The 

boxes had been calibrated in previous experiments, and the coils agreed closely with 

each other. R and S were two coils of 100 ohms from one of these boxes; for the arm 

Q an arrangement of two resistances in multiple are was used. One of these was 

205 ohms, the other was a large resistance of about 8000 ohms, and by varying this a fine 

adjustment could be easily obtained. 

DESCRIPTION OF THE GALVANOMETER USED. 

The galvanometer employed was a ballistic instrument of about 64 ohms resistance. 

It has two channels of rectangular section. Each channel contains 20 layers of thin 

copper wire and 16 layers of thick, making about 465 and 202 double turns respectively, 

so that there are 667 double turns in each channel, and about 2668 single turns on the 

galvanometer. 

The two thicknesses of wire were employed in order to fill the channels, and at 

the same time permit the resistance of the galvanometer to be varied as required. The 

ends of the wires are connected to binding screws on the bobbin marked 4, B, &c., a, b, &e. 

‘ae ar, « 
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A to a is one wire, B to b another. In our experiments the coils were connected up in 

series, the total resistance being about 64 ohms at a temperature of 13°2 C. 

The needle of the galvanometer was suspended from the Weber suspension by three 

single cocoon fibres of 60 centims. in length. 

The magnet was a small bar of hardened steel 1°5 centim. long, ‘6 centim. broad, 

and ‘12 centim. thick; its weight was ‘708 grm. The magnet was attached by two 

small screws to a brass stirrup to which the mirror was fixed. A piece of brass wire 

66 centims. long, with a screw thread cut on it, was fixed to this stirrup at right angles 

to the plane of the murror, projecting equally on either side of the mirror. Two small 

brass cylinders could be screwed along this brass wire, and by means of them the moment 

of inertia and time of swing of the needle could be adjusted as required. The stirrup 

and mirror weighed 6°6 grms. 

The galvanometer has a solid wooden base of about 18 centims. diameter, and 

this base was supported on three levelling screws. A graduated circle is fixed to the 

base, and the coils can be turned about a vertical axis, and their position read by 

means of a vernier. This was found useful in adjusting the coils parallel to the magnetic 

meridian. 

The galvanometer rested on a stone bracket built up from the ground. A_ scale 

placed approximately north and south at a distance of about 3847 centims. from the 

magnet was reflected in the mirror and viewed through a telescope. 

The scale rested on a solid stone support on the floor of the room. The miuror, 

about 1°5 centim. square, was a specially good one, selected by a fortunate chance from 

among a number in the laboratory. The divisions of the scale were in millimetres, and 

after practice these could be subdivided by the eye with great accuracy to tenths. The 

scale itself was of paper; though this material is unsuitable for many purposes because of 

the changes produced in it by the weather, in our experiments these changes are of 

small consequence, four wé require only the ratio of the throw produced by the induction 

current to the steady deflection produced by the permanent current; and the time which 

elapsed between the measurements was only a few minutes. Any shrinking or altera- 

tion of the scale will go on very approximately uniformly throughout its length and 

not alter the ratio of two lengths, which were never very unequal, as measured by the 

scale. The scale had been carefully compared with the standard metre and the necessary 

correction applied to the readings. 

The distance between the mirror and the scale only enters our result in the small 

correction necessary to reduce the scale readings so as to give the ratio of the sine of 

half the throw to the tangent of the deflection. It was unnecessary, therefore, to 

measure it with any great accuracy or to take steps to ensure its remaining the same 

from day to day; so long as it did not change during the half-hour occupied by each 

experiment, all the conditions required by us were satisfied. 

The scale was carefully set so that the line joining its middle point to the centre 

Wor; .WA00 19 
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of the mirror was east and west, while the scale itself ran north and south. By taking, 

however, throws and deflections on both sides of the zero which was at the centre of 

the scale, the effect of any small error in setting was eliminated from the result. 

GENERAL THEORY OF THE METHOD. 

In making the observations the double amplitude, «ae, the distance between an 

extreme elongation to the right and a corresponding one to the left, was noted. Let 

a be this double amplitude in scale divisions for the induction throws, ¢ for the deflection 

due to the alteration 6Q, and let d be the distance between mirror and the scale. 

Then tan 2a= 45, tan 20=45, and from this we find 

2sinfa_ a fy _ lla*— 8c? 
tan@d cc | 128d? J’ 

neglecting higher powers of a/d and c/d. The values of (1la*—8c*)/128d* varied for the 

different arrangements from ‘00173 to ‘00023. 

The value of the ratio 2’/x was obtained as follows: 

Let E and E”’ be the values of the potential difference between the points where 

the current enters and leaves the bridge, in the two cases when the values of Q are 

Q and Q+6Q respectively. 

e the E.M.F. of the battery, which we suppose does not alter *. 

Let X and X’ be the resistances between the pomts A and D where the current 

enters and leaves the bridge in the two cases, and Y the battery resistance. 

Then putting P=Q=200 in the small terms, and R=S=100, we find 

E’ =x (Q+ 6Q + 100 + 328Q), 

E =x (Q+ 100), 

a | y Udtaoin 
also r= aa 

lis, 

if a term of the order Y8Q/90,000 be neglected. Y is of the order 1 ohm, and 6Q of 

4 or 5 ohms. 

ax Q +100 

Hence zw Q+100+3208Q° 

* A combination of large Daniell’s cells was used. themselves will afford a test of this. A small change in 

Except for the correction now discussed, the results are the E.m.r. would only produce a first order change in the 

independent of changes in the battery E...r., provided value of the correction, and therefore a second order change 

such (if they occur) go on uniformly, and the experiments in the whole result; it may therefore be omitted. 
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In a second series of observations the approximate value of Q was 100, and in 

a @ + 100 

x @+100+ 236Q" 
this case the formula becomes 

The actual value of the ratio will vary with the value of 6Q in the various 

experiments; in most cases it is from one to two per cent. greater than unity: 6Q being 

negative. 

Introducing these the formula for £ expressed in terms of quantities which can be 

directly observed is 

1=8Q 7-1 +2) 95 1 
100 + 33 8Q Be ~ 128d? 
Q + 100 a{, lla&— =I 

[The coefficient of 6Q in the denominator is in some of the experiments ?3.] 13° 

THEORY OF THE ACTUAL OBSERVATIONS. 

The above simple theory of the experiment assumes (A) that a perfect resistance 

balance can be (1) obtained and (2) maintained during the experiment, and (B) that in 

measuring a throw the galvanometer needle can be brought to absolute rest before a 

reversal of the current. The coil is made of copper wire; slight changes of tempera- 

ture therefore affect its resistance, the current itself produces a small heating effect in 

the wire, and it is practically impossible to maintain an accurate balance. Again to bring 

the needle accurately to rest before each throw involves time, while to avoid undue 

heating it is necessary to be rapid in observations; it is better therefore to make a 

correction for any small swing which may exist at the time of making a reversal. Lord 

Rayleigh has shewn how actually to make the observations, provided the reversal takes 

place as the needle passes its equilibrium position (Phil. Trans. 1882, Pt. u., p. 680). 

The following quotation gives his theory and practice of the method of observation. 

“In the simple theory of the method the induction throw is supposed to be taken 

when the needle is at’ rest, and when the resistance balance is perfect. Instead of 

waiting to reduce the free swing to insignificance, it was much better to observe its 

actual amount and to allow for it. The first step is, therefore, to read two successive 

elongations, and this should be taken as soon as the needle is fairly quiet. The battery 

current is then reversed, to a signal, as the needle passes the position of equilibrium, and 

a note made whether the free swing is in the same or in the opposite direction to the 

induction throw. We have also to bear in mind that the zero about which the vibra- 

tions take place is different after reversal from what it was before reversal, in consequence 

of imperfection in the resistance balance. At the moment after reversal we are there- 

fore to regard the needle as displaced from its position of equilibrium, and as affected 

with a velocity due jointly to the induction impulse and to the free swing previously 

existing. If the are of vibration (ve. the ditference of successive elongations) be a before 

reversal, the are due to induction be a, and if b be the difference of zeros, the subsequent 

vibration is expressed by 

4 (a+ aq) sin nt + b cos nt, 
19—2 
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in which ¢ is measured from the moment of reversal, and the damping is for the 

present neglected. The actually observed are of vibration is therefore 

2/{¢ (ata)? + Bt, 

or with sufficient approximation 
2 

Gata)+ f 
a 

so that 
in 26° 

a=observed are F ad — 7a 

“In most cases the correction depending upon b was very small, if not insensible. 

The ‘observed arc’ was the difference of the readings at the two elongations immediately 

following reversal. As a check against mistakes the two next elongations also were 

observed, but were not used further in the reduction. The needle was then brought 

nearly to rest, and two elongations observed in the now reversed position of the key, 

giving with the former ones the data for determining the imperfection of the resistance 

balance. As the needle next passed the position of equilibrium, it was acted upon by 

the induction impulse (in the opposite direction to that observed before) and the four 

following elongations were read.” 

To find then the correct double throw a, if a, be the observed throw, a, the throw 

at the time of reversal, and b the difference between the equilibrium positions before 

and after reversal, we have 

2b? 

ay, 
a= $A — 

The sign to be attached to a, depends on the directions of a, and a). 

After two throws right and left respectively have been observed, and the equilibrium 

position is taken with the battery key im one position—denoted by R, say, in the 

table—then Q is altered by 6Q and the new equilibrium position is found. This was 

done by bringing the needle approximately to rest near the new position, by the proper 

use of the battery key (Maxwell m.) and an auxiliary damping circuit, and reading 

three elongations in the usual way. From these the position of rest was found. The 

difference between the two equilibrium positions gives ¢, the deflexion to the right; 

the battery key is then reversed and a deflexion to the left found; the resistance 

8Q is then removed and a second zero reading taken; from these two, we find the 

deflexion c, to the left. 

The sum of ¢, and ¢, gives ¢ the double deflexion required. 

The values of Q and Q+6Q are calculated from the resistances on the multiple 

are in the arms of the bridge. 
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Thus, on July 18th, for the balance the resistances were 205 and 7750 ohms, for 
a deflexion 205 and 3950 ohms. Hence 

1 il 
Q 205 ' 7750’ 

1 __ palpi 
Q+6Q 205 ° 3950° 

Whence Q = 199-713, 

Q + 6Q = 194884, 

6Q =— 4829 “legal ohms.” 

The temperature of the box was 185. 

Having obtained a value for ¢ as described, a second series of throws were taken, 
then another series of deflexions, and so on successively. 

Table II. gives as a specimen the observations for July 20th. 

Temperature 17°5 C, 

Battery 1 Daniell cell 

Resistances for Balance 205 and 6760 

+ for Deflexion 205 and 3460. 

Whence 
Q = 198:9662 legal ohms 

6Q = — 5°4329 5 

Ilia? = 8c? ag = 00107, 

pole 

8|8 
ll — >) bo paar — 
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TABLE II. 

] 

Mean Mean 
Time | Zero a, a, h a throw deflexion 

5 a c 
11.10 | L. 75:65 1 | 80:3 05 80-2 80-2 

Throw R. 75°6 2 80 80-2 

Deflexion |g, ce c | 
2 aE e5s6D ilalyy | 41°35 82-5 82°5 

Defiexion | R. 75:6 Bate - 41°15 

Mo a, 6 a | 

TESTE RE (ae) | 80 05 80 80 | 
Throw L. 75-65 1 79-9 80 

Deflexion C Cy c 
TALE Ue |] Late 7aki3)3) 34:5 41-05 82:3 82:3 

Deflexion Ibs, (ORL 116-95 41-25 

a, ay b a 
TM beatsy |) 1s eer 2 79-9 “15 80-1 80-05 

Throw R. 75:55 1 80:1 80 

Deflexion | Gh Gs ¢ 
TG PH | 1s ASR es 117 41:3 82-4 82-4 

Deflexion R. 75°65 34:55 41-1 

MN a b a 

a Raios0D “1 19-7 05 79-8 79:85 
Throw Ty 727 “2 79:7 79:9 

———eEE—E——— Heed See) ee ee ae | 

IL. 26 Final| Means...) 80-025] 82:40 

Thus the complete set of 4 throws and 3 deflexions took sixteen minutes. 

We see from the last two columns that there has been a slight change in the 

value both of the throw and of the permanent deflexion: the current has decreased 

slightly, but very slightly, during the observations. 

We can get a series of values of the ratio of a/e by combining an observation of 

deflexion with the throws on either side, or an observation of throw with the deflexions. 

The mean value of a/c for this series is ‘97118. 
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TIME OF SWING OF NEEDLE. 

The time of swing was found in the usual way by observing the transits of the 

zero reading over the cross-wire of the telescope. 

In this case 12 transits were observed and then after waiting for an interval of 

16 transits 12 more were taken. 

We thus found the mean of sets taken on several occasions, always both before and 

after the series of throws and deflexions:; 77=10:713 mean solar seconds. The time was 

taken on the chronometer already mentioned in Part I. of the paper. 

The greatest error from the mean in any one of the 12 observations was less than 

2 parts in 1000. Thus the time of swing is very accurately known. 

The value of X was found by reading a series of 42 deflexions. The average value of 

a large number of observations (which lay between 0134 and -0131) was ‘01524. 

From thesé observations we obtain for the value of L 

L= 46488 Legal Quadrants. 

The result requires a small correction because 6Q was at 17°5 instead of at 17° 

at which the box is right. 

Introducing this we find as the value 

46494 Legal Quadrants. 

Four sets of observations were taken on the two coils arranged in series. 

Table III. gives the details, from which the results have been calculated. The 

mean value of 01324 has been employed throughout for the logarithmic decrement d. 

TABLE III. 

Date [tempera a e | 5Q P L beer) 

July 18th | 18-5* 80-71 73°87 | 10-742 — 4-829 199-684 4-6480 4:6499 

July 20th 18:9 7701 71:46 10716 — 4:903 199-909 46460 4-6485 

July 29th | 17-5 80-025 82:40 | 10-713 —5-4329 | 198-966 46488 4-6494 

July 30th 18-9 80°725 77-25 | 10°723 — 5:0553 199-640 4-6471 46496 

| | | 

Mean 46493 legal quadrants. 

* There was a slight uncertainty about this temperature. 
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It appears that the greatest difference between two results is ‘0014 in a total of 

46500, or less than 1 part in 3000. 

It will be noticed also that the agreement is very decidedly improved by the 

temperature corrections of the last column. Thus the value of the coefficient of self- 

induction has been determined to an accuracy which requires that the temperature of 

the various coils used should be known to a fraction of a degree. 

The value given, 46493, is in legal quadrants; ve. the resistance of a column of 

mercury 106 em. long has been taken as 10° CGS. units. To reduce it to “Henry’s” 

or “International Quadrants” it must be multiplied by the ratio 106/1063. We then 

find as the value of the coefficient of self-induction of the coil 

46362 Quadrants, 

or 46362 x 10°, centimetres. 

SELF-INDUCTION OF EACH HALF OF THE COIL. 

Since the coil was wound in two parts and one of the parts occasionally used 

alone, it was thought well to find the coefficients for the two parts separately, and to 

check the result by observing also the value when they were arranged so that the 

mutual induction of the two opposed the self-induction. Let Z,, L, be the two coeffi- 

cients of self-induction of the two parts, M the coefficient of mutual induction between 

the parts, L’ the coefficient of self-induction of the whole with the two parts opposed. 

Then L=1,+1.4+2M, 

L’ =f, + f,=— 2M 

=2(L,+L.)—L. 

Thus L=2(£,+ L,)— TL’. 

The coefficients are all small and the probable errors of the measures are greater 

than those in the direct measurement. 

The following values, however, were obtained : 

LZ, = 1-405 Quadrants for semi-coil marked A. 

Tig = 1393 a : = een: 

LT’ = 0963 . 

Whence L = 4633 legal quadrants; agreeing fairly well with the true result. 
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ACE Tell 

CORRECTIONS TO THE SIMPLE THEORY OF THE EXPERIMENT. 

(i) THe ELEcTROSTATIC CAPACITY OF THE COIL. 

The chief cause of difficulty in comparing the experimental results with theory 

arises from the fact that the coil has considerable capacity, and further that this is 

not distributed uniformly along the length of the wire. 

The coil consists of two similar portions almost identical. 

Each half is wound with about 60 layers of gutta percha covered wire containing 

about 30 turns to a layer. The interior diameter is 27°5 cm. and the exterior 

is 48'7.cem., while the axial depth of the coil is about 52cm. The number of turns 

of the coil were not counted exactly when it was wound. 

After the experiments the case was opened and the coil measured as far as_practic- 

able. It was found that the number of layers in a radial direction as estimated from those 

which could be seen and counted was 64, and they occupied 10°35 cm. Thus the average 

distance between the centres of consecutive layers is 1035/64 or -164cm. The inner 

layer contained 28 turns, and of these 25 lie in a space of 3:9 cm.; thus the distance 

between consecutive turns is 156cm. The thickness of the uncovered wire was found 

to be ‘049 cm.; thus the thickness of two coverings is ‘107 cm. 

The two halves are separated by a sheet of glass with a circular hole in its centre ; 

the sheet is about *27 em. in thickness. 

The whole coil is enclosed in a wooden box, the ends of the wires being brought 

to terminals which are well insulated from the wood. 

Now if we consider any turn of the one coil lying near the glass, it is faced on 

the opposite side of the glass by a similar turn, which during the experiments will be 

at a very different potential. Charges will thus accumulate on these turns and_ their 

capacity must be considered in the theory. If we consider a turn in the centre of 

either coil it is surrounded by other turns at nearly the same potential as itself, and 

does not therefore become much charged. 

The outer layers of the coil will have some capacity, but if the wood case be 

treated as an insulator this will be .small, and thus we may consider that the chief 

capacity of the coil les in the faces in contact with the glass. 

We may thus represent the two coils in the following diagrammatic manner : 

Consider a number (n—1) of equal condensers, each of capacity S’; each plate of a 

condenser represents two adjacent turns of the wire, which lie on the same side of 

the glass, and face two corresponding turns, representing the second plate of the condenser, 

on the opposite side of the glass, 

WoL; XeVINE 20 
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In strictness, since the diameters of the turns increase from 27 to 48 cm., the 

capacities of the condensers ought not to be taken as equal; but unless this is done the 

solution is very complex, and when the correction is small the error introduced cannot be 

great. 

Let the positive plate of each condenser be connected to the positive plate of the 

two adjacent condensers by wires of self-induction L, and likewise for the negative plates. 

Each loop of wire represents two adjacent layers in the coil itself. 

The one set of condensers and loops represents one coil, the other set the second 

coil. Connect the two plates of the condensers at one end of the series by a loop of 

wire of inductance 2Z, and connect the plates of the condenser at the other end of 

the series by wires of inductance L to the two plates respectively of a condenser of 

capacity S. 

We have thus a representation of the condenser and coil in which the oscillations 

occur. This is shewn diagrammatically in Fig. 3. 

Case i. 

Let a, a be the currents in the wires connecting the positive and negative plates 

of the first and second condensers, #, «, those in the wires connecting the corresponding 

plates of the second and third condensers, and so on. Let Q,, Q,... be the charges on the 

positive plates. 

Then since the rates of increase of the charges on the opposite plates of any one 

condenser are equal and opposite, 
d , 

=, = — Dy 

d 2 , , 
m—m=—- Poa, Ate 

Ly = Ly, 

3 = %4, etc. 

Now let V,, V;, V; be the potentials of the positive plates, V,’, V.’, etc. those 

of the negative plates, R, Z the resistance and inductance of the wires joining consecutive 

plates, Ly 

be, + Ra, = V,— Vs, 

Lay’ + Ray = Vy — Vy’. 

But CS ae 
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, = a. a has -V/= V.— Vz = 9 

Q: Q. Sie + 2 Re = Vi= Veo a(Ve— V)=3-9- 

Now if L’, R’ denote the inductance and resistance of the 

plates of any two consecutive condensers, then 

L’=2L, R=2R. 

Then if R is the whole resistance, Z the whole inductance, 

R=nR’, L=nl'. 

And the equations to find the period are 

L'a, + R’a, = = 2 

=: Qs 

Din + R’tn = i 

a 
ae 

etl 
2 Gh 

1Qn 
In ima 

Hence we have 

fas fie (1 1 

Lit, + Ray + (a+ 7) aa # 

il 
FO — a= 

CO i ie i ii 

=, 0, + Ls, + R'e 4 

= bight si Fy Ln + Ra, + yen= 0. 

Put a, = Xe, 

and let 

S| 

S’ pel’ — Rr} —2=Q, 

S’ el’ - RaA}-1=R. 

s’ {er Bis —1=P, 

Then the equations become 
PX,+ X.=0, 

X, + QX, + X;=0, 

X,+QX,+ X,=0, 

Xna+ RXy, =0. 

two wires joining 

155 

the 
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Whence to find the periods we have the determinant 

IP ik Oe Wane = (I) 

iy Ord 40:13 

01 Q1.. (to » columns). 

| 2 vy | 

Now the determinant 

EP Orel 2. ee le-U oes Oe | 
| 

| 2 ce Q1 ‘(n—1) columns @ 4 i p, (#=Decolumns 

1 Rk 1 Ov] 

=) P| Ry A ss SE (Si) 3 zeal | 

if @ i Q1 (n — 1) columns — aaa (n — 2) columns. 

| pear 1 Q 

Now 

(eed | =R\|Q 10 +G1)j">|1 0 O.nT 
| | 

| oS a0 | (m) columns | . : : (m — 1) columns : ‘ : 

| 1 Q \iestseraeee 

=0||@) il Sac SS uF (4) ak 

1 Q 1... |(m—1) columns 1 Q 1 |(m—2) columns 

Ge popbs-sronee 

= Te — Am-2, 

if A,, stands for Q 1 0 0... | to m columns. 

iO, Hue Ore: 
Gg) ih a} al 

Q 

Thus the given determinant 

= IP {RAs = Anes ae {RA, -3 A, a} =0. 

Now if Q=2cos 6, then we know that 

_sin(m+1)0 pp. aa: 
4. = — ae (Rayleigh, Sound.) 

Hence we have as the equation for the periods 

P{Rsin (n—1) 6 —sin (vn — 2) 6} — {Rsin (x — 2) @—sin(n — 3) Oo} =0. 
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In the first instance neglect the terms depending on the resistances, then 

SL’ —2= Q =2 cos 8, 

\9 / A) SL = 2 (1+ cos @) = 4cos? 5. 

Now if the whole of the capacity 8, were concentrated at one part of the circuit 
connected by a wire of inductance LZ we should have 

1 1 

De SL n(n— PSE 

In the most important of the cases with which we have to deal a large part of the 
inductance is so concentrated in the capacity S. We shall suppose therefore in solving 

the equation that \2S’L’ is a small quantity of the order 1/n*. So that 2 cos 5 1s of the 

order 1/n, and @ is not much different from 7. Put 0=7 — @: ultimately @ will be 
treated as small, though for the present the solution is general: then 

SL’ = 2 (1 + cos 0) = 2 (1 — cos op). 

Whence substituting 

(S’A2L’ — 1} {(S’A2L’ — 1) sin (n — 1) d + sin (n — 2) op} 

+ (SL — 1) sin (n — 2) $6 + sin (n— 3) ¢ 

_ a (S’2L' — 1) sin (n— 1) + sin (n— 2) o} =0. 

Thus 2S°L’ {sin (n — 2) p — sin (n — 1) $} 

+ sin (x — 1) $+sin (n— 3) 6 —2sin(n— 2) 

- * sin (n — 2) $—sin (n—1) 6+S 21’ sin (n— 1) op} 

+ S*4L sin (n—1) b = 0, 

“. 28°L’ {sin (n — 2) 6 —sin (n — 1) >} 

+ 2 sin (n — 2) $ (cos ¢ — 1) 

- = {sin (n — 2) 6 — sin (n —1) $+ S’7L’ sin (n — 1) op} 

+ S?\4L? sin(n —1) 6 =0. 

But 2 (COS til) tS ONT Pee S85 c ic sesncdnoeieeoeaseeact (A) 

“. WL’ {sin (n — 2) d — 2 sin (n — 1) >} 

= 5 {sin (n — 2) $—sin (n—1)6+S8’A2L’ sin (n — 1) $} 

gS SHU VAY (C1 \C a0) ares. or cs aee ee eee ae (B). 



158 Messrs GLAZEBROOK ann LODGE, EXPERIMENTS ON THE OSCILLATORY 

On eliminating ¢ from (A) and (B) we obtain an equation for X% 

Now we have seen that 4sin?¢/2 is of the order S’L’/=Z, where = stands for the 

whole capacity. In the most important cases S, the external capacity, is large compared 

with §S,, the capacity of the coil; and in this case the whole capacity is large compared 

with S,. In the general case on substituting in (B) from (A) we find 

1’ {sin (n — 2) 6 — 2 sin (n— 1) $+ 2sin(n—1) P(1 —cos ¢)} 

=; {sin (n — 2) @ — sin (n— 1) 6 + 2 (1 — cos d) sin (x — 1) PF}. 

YAR es oa sin(n—1)¢ 
Whence MES Sin (9) = coe RO 

a _ sin(n—1)¢ 

sin nd 

=1-—cos $+sin ¢ cot ng, 

5 MES — AS!) SSI COG ND ye mc sence cencas. Comme anyaeeees (C), 

or substituting for A*L’ from (A) 

Oran e (SEG) Scotian ee eee (C’), 

the fundamental equation for the periods. 

Up to the present no assumption has been made as to the relative values of S 

and S’. In our case S’ is small compared with S,, and then ¢ is small; S may have 

any value. 

In the more important cases S is large compared with S,. In this case ng is of the 

order (S,/S)!. We may expand cotr@ and cot ¢/2 and use 1/SZ as an approximate value 

for X° in the small terms. 

Now we have 2(1—cos gd) =A2L’ 8’. 

Thus p= MLS’ (1+ Arvel'S’ + ...). 

b 
Hence P=rvL'S’ {1 +5454 al 

where a, b, etc. can be found approximately. Hence expanding in Bernouilli’s numbers, 

n/n (1-5) (i+< md ) 
nm nt 

by {i ‘ 2 Bed? iF Bani! 

Ib Ts 

(4 aS By = Bd! 
{ EP TA eee 

Now, as a first approximation, 

549 LS IS, Ns ils 

Ue = aS 3 ( ). 
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Hence n*f*? is of the order S,/S, 

; Se =) its se Roe == || == or To00 \ a 
n Co) is of order ne (2) a 1000 & 

since n= 30 approximately in the experiments. 
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Again, the value of S is in the final experiments 5853 cm. while S,, when the two 
coils (A) and (B) are used, is about 1600 cm. (See Part IV.) 

Thus the important terms are those in n°, néf..., while a term such as one in 
n’p* is, when S, has its largest value, of the order (S,/S)*; and when S, is only 100 cm. 
it is of order (S,/S)* 

Hence retaining the most important terms, 

MES {1 -5 a st = 1 — Se _ eae 

and B=x mge= (144). 

Thus MIS —3 Gps -55 +c. 

Hence MLS = -5 = 1! - ros , 

18, 1 

=1- 35 !- saga} 

omitting terms of the order 1/n? in the coefficient of S,/S. 

Substituting in the terms in n‘¢‘ and introducing the value of n in the last term, we 
have approximately 

jertehiy LS 1 4 /8,\? 
MES =1-3 (1-5 >) +a (=) 

In obtaining the coefficients of (S,/S) the terms in np have been retained when 
compared with terms in ¢. 

Hence for S,/S = -2733, 

MLS = 1 — -0896 + :0066 =-9169. 

In some of the preliminary experiments however the value of S,/S was greater than 
unity and the series method of solution will not apply. 

The following graphical method however will apply to all the cases, 
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The equations to be solved are 

2 (1— cos ¢) 

. > ean 

fan $ (= S— 1) =cot ng; 

n-1’ S 

for S=58:53 metres, S,=16 metres. 

Hence (- —1)=21 

Hence 218 x tan $= = cot 31¢. 

An inspection of the Tables and a trial shews that ¢ is nearly 56’. 

By plotting on a large scale the values of cot 31g and 218 tan ¢/2 at about 56, 

we find the curves intersect at 56’ 30”. 

Hence 6 = 56' 30”. 

Hence MLS =2(1— cos d) ae 

= 2(1 —cos ) n(n—1) = 
S; 

= 919, 

substituting for ¢, x and S/S,. 

Thus practically the same value is found as by the series. If we take S,=1 metre, 

as in the experiments with coil (A) or (B) singly, then 

S/S, = 58, 2(n—1)=60, 

and tan $/2 {58 x 60 —1} =cot 31¢. 

Thus 3479 x tan $ cot 31¢. 

A similar procedure gives for ¢@ the value 14’ 45”, and substituting in the equation 

for LS we obtain 

MLS = "9924. 

The solution by series already obtained was ‘9943. 

The case in which there is no outside condenser is given by putting S=S’ in the 

l 
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original equation; thus, supposing the coil to consist of » parts, so that nS’ = S,=16 metres, 
we have 

tan =cotnd, g= 
7 

2n+1’ 

2 

MLS, = 2n? (1 — cos $) = Grea ans 

T 1) : 4 
=a {1 = ar neglecting 1/n? 

= 2°38 if n=31. 

The case of a continuous coil of uniform capacity s and inductance J per unit of 
length may be treated as follows, 

We assume the frequency to be such that the current across each section of the 
wire is the same at any given moment. 

Let V be the potential at one end, that at the other being zero, a the length of 
the wire, » the potential at a distance « from the end at which the potential is zero, 

Then v= iz ; 
a 

The charge on an element da at « is 

pee as ads 
a 

V222 
Energy =4tquv=ts 7a dx. 

The total electrostatic energy of the coil is thus 

and thus =34x1iVsa=tV°S,, 

if S, is the capacity of the whole coil. 

Hence the total electrostatic energy of the coil and condenser is 

$V7(S + 1S8,). 

The electrokinetic energy is 4Zu? if w is the current. 

1 
Nee ee Henee DISSE 

This agrees with the result already found for a large number n of condensers 
connected by wires. (See equation (D), p. 159.) 

In some of the earlier experiments described in Part IV. in which the whole coil was 
Vou. XVIII. AI 
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used and the value of S, therefore was 16 metres, the values of S were approximately 

2, 5, 5°5 and 10°5 metres. The values of @ and X2ZS can be found for these cases in 

the same manner and we thus get the following Table. 

TABLE IV. 

s Si, S/S, ¢ LS 

2 16 "125 2° 37' 48” "2449 

5 16 “312 2 16 40 4582 

As, 16 344 2 12°20 4741 

10°5 16 656 1 52, 12 6498 

58:53 16 3°659 56 30 9169 

0 16 2°38* 

The experiments in which the external capacity is small are of no value as a means 

of finding “v.” They serve however to test the truth of the formula and of the cor- 

rections which we have applied. 

We may put the correction another way, and say that instead of employing the 

whole capacity S to calculate the frequency from the formula #ZS=1 we have to use 

a capacity S/k, where k has the values given in the last column of Table IV. 

Throughout the above we have taken L’, the effective coefficient of self-induction 

of 1/n of the number of turns, as 1/n of the whole coefficient, and neglected the 

mutual induction between the turns; we proceed to justify this. 

Now the effect of inductance in any wire is made up of the self-induction of that 

wire, and the mutual induction of the other wires; moreover the currents in the various 

turns are, owing to the capacity, not the same. 

Let 1, be the coefficient of induction of a wire in which the current is #, due to 

itself, mo, 73, etc. the mutual coefficients. 

Then the strict equations for any wire joining two of the condensers each of 

capacity S’ will be 

LG + Myo®%o +... + = (a, — X)=0; 

put DL'G, = hay + MypHe + «-.; 

and let ig — 2 + Ye, 

i= 2, + Ys, etc., 

LH, = (L, + mye + «--) B+ Maio + Mss + «.-- 

* For this case S, takes the place of S. 

— 
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Now y/% depends on S’/S, and mj, ete. are all finite and less than [Ks 

L’=(G+mo+...) + — m, 

where m is of the order of the arithmetical mean of Ms, Ms, CtC., 

, S. 

mee i, Hh + My +... + SM. 

Thus in the case of a large number of turns, if S,/S is small the equations 
already used are correct if LZ’ be 1/nth of the whole self-induction, for we may neglect 
the term Sjm/S compared with the sum J, + mp»-+ ete. 

There is now the correction for resistance to be considered. In the case of a simple 

cf 28)} 
A» being the uncorrected value; thus we may put 

eireuit 

i 
2 = — (lb: fe Vineet 

Now so far as the inductance of the circuit is concerned, 

1 
2 = —— (le) N= op ) 

And in the more important cases both k” and k’ are small. 

Pap, Therefore v= SL (l—k’—k’), 

where k” has the value already found from Table IV., 

v= 
In some of the experiments \, is about 2c x 10°, 

R=200x10° L=5~x 10°, 

approximately, 

and the correction is negligible. 

If the period be 1/120 second as in other experiments, 

Ao = 2m X 1:2 x 10°= 7-2 x 10? approximately, 

ky 1 eM na 
L799 2PProximately, 

f 1 ° eH ne a3 and k' =— i= 1900" which is also negligible. 

21—2 
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In some of the experiments only half the coil was used. 

We may represent this case diagrammatically thus (Fig. 4). 

The upper set of plates and loops represents the coil connected to the main 

condenser, the lower set represents the insulated coil, the ends of which are insulated. 

Fie. 4. 

Case ii. 

As the main condenser is discharged the electrostatic action of the upper plates 

causes the charges on the lower plates to vary and oscillating currents are produced in 

the lower coil. 

Let z be the current leaving the main condenser, y, y;, y, the currents between 

the lower plates of the coil condensers, then the currents between the upper plates of 

the same are 2—%, —Y;, etc., and the equations are 

LE G)= Weve 

EG) ae 

L'9na = V'n ae 

Hence n'a = V,— V,'+ Vy — Vy 

=V,-Vi+ ee 
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Qs =2(V,— Vi) — Ba’ — 4 

6 , ,_ 2Q Q» On (n+2) LZ ae —gte 

58 a Yo + Yn 
(n+ 2) LE=——Q- ave = 

L' (& — 242) = V2— Vs —(V,— V;') Also 

_ 
SS S’ > 

Le 2%y..) = — 

Li (— 2%,) = BEM, 
ries Yo+ 2y3 — ¥ 

Hence Li (& — 295) Re ; 

eee eee eee eee ee ee eee eee ee eee) 

Li (& — 2ijna) = Tat cs 

For superpose everywhere on the system a Now we may shew that y.=Yn4. 

And now choose v so that ‘the potentials of potential v; this will not affect the currents. 

the plates of the main condenser are equal and opposite, we. so that 

V,+v=—(V/' +»), 

v=3(Vi+ V1); 

the distribution is a symmetrical one and obviously in this case 

Ya = Yn 

Ys = Yn-2, ete. 

Hence if n= 2m 

and we have m—1 equations 

WAC . 2y.— Li (é — %,) ==, 

ase es = o+2 =F 
\ L’ (& — 23) = y “= Le 

Lk — 2ijm) = = a . ies 3 
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put M2, = %— 2%, t3—2,— 2yz, 

Yo=4(%—%), Ys= 4 (a,— as), etc., 

Ys — Yo = $ (2 — Zs), ete. 

Ae 1 (@, — %) gen gag og 

%— Hy y— Xs Hence { = 

| OE 

Lam = 4S" (2m — Lm); 

<y publune @— Xe, 

(| 25” {om +1) xi — st xs 1] Pee 0 

| X, + {28’r2L' — 2} X,+ X,=0, 

Ke OR NEI = 1) Kee =O. 

Solving these equations as previously, putting S’L’*=1—cos¢, we find as the 

equation for the periods 

Ul 1 = SME \n +e aa peo A se es (E). 

Expanding as far as ¢* and assuming that ¢* may be neglected, compared with 

mq, we have 

; m i 
2 e + i =i. 

3 

29r2mL’ i = mel =1. 
6 

Now QmL'=L, g=28 VL’, S,=(2m—1)S8’. 

A 1 mS) 
Hence Ins f+ § op gto) 

or neglecting the terms in (S,/S)?, 
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Thus so far as the term in S,/S is concerned the correction is one-fourth of that 

to be applied in the first case, and this, when the values of S, and S are 16 and 

58°53 respectively, comes to —°022. 

If we assume the coefficient of the term in (S,/S) to be also divided by 4 we 

have to add to this +'001. Thus to about one part in 1000 we have 

MLS =1 —-021 = ‘978. 

If however in the case represented in Fig. 4, we suppose that the lower coil is 

uninsulated, the equations can readily be shewn to be those of the first section of this 

Part, and the formula for the frequency will be 

MASE i OMG ON eecreercelerae sttectoctn sites temas scineycsscraclantese (G). 

There is however another possible arrangement to notice. 

Case ili. 

If in Fig. 5, AB, CD represent the two coils, we have supposed above in Fig. 3 

that B was connected to C, while A and D are connected to the main condenser. In 

some of the experiments however it appears possible that B was connected to D, and 

A and @ to the external condenser. The distribution of potential would then be as shewn 

in the figure, and the solution differs from that of the first case. We can write down 

the equations and solve this case, but it can be shewn thus that it reduces to the 

second case. 

For compare Fig. 5 with Fig. 6, which is obtained by putting the coil DC alongside 

AB, and placing above the two a second similar double coil A’B’D’'C’ with its ends 

insulated; the distance between this and the first coil being the same as for the two 

coils in Fig. 5. The distribution of currents is clearly the same. Now if S, be the 

capacity of the two coils AB, DC, or A’B’, DC’ in Fig. 6, the correcting term is 

— 8,/128. 
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But S,=2S,. Thus the correcting term in this case is me 8S or one half of its value 
68 

in the first case. 

We shall assume that if the higher powers of S,/S are included the correction is still 

one half of its value in the first case. 

The solution for the case in which there is no condenser attached is best obtained 

from the original equation (E), p. 166, by putting S=8S’, we. assuming the last section of 

the coil to be the externa] condenser. 

Thus we have 

2/77 1 = 

vee {n+ 1—cos¢ + sin ¢ cot rite 

S'L’ = 1 — cos ¢. 

Also SIS 2 — Ti 

Whence n(1 — cos ¢) cos (ne - $) = cos g cos ng. 

Now assume, guided by the solution on p. 161, that np=2_¥ where Ww is small. 

Then n(1— cos d) sin 5 ($+) = cos : sin ¥ and ¢ = = approximately: neglecting 2 ; 

HoPa-t 
Thus approximately y= = ., 

7 ) 7 
np= 5 \1- Tiat 

Now MSL = 2n28'L’h? = 2n? (1 — cos 6) = n°? = = : 
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Thus comparing this with the result on p. 161 we see that the frequency is the same 
whether the connexions be as in Fig. 8 or in Fig. 5. 

In order to solve when S, is not small compared with S we have with the same 
notation from the above equations 

sind ($+) {5 —n(1 —cos $)! = sin? cos e 
2 

Now we may suppose ¢ is small. 

nod? SS’ 
$ I +. ats -s 

H cot nd = t Woe Za ence i} = AD SS 

2 S' nd? 

Serr: 

Now if MSL = k= 2nrvr2SL’, 

since 2028'L’ = o°, 

S we have k=n¢? = : 
S 

Si k 
Co eee eeu 

fo OO) OE i $c 

0-9 
approximately, and when the connexions are as in Fig. 4, k=:25 

for S=2. Hence assuming k is not very different in the present arrangement 

cot 80g = $h(1 +12), 

cot 30 = #208 $= 168¢. 
2 a 

Now S’=45=} 

The solution of this gives ¢ = 2° 50’30” and k =-2873. 

If S=5, k is ‘45 in the first arrangement. Thus 

cot 30¢=6¢ approximately, 

whence b= 2° 30'30", 

and k=558 

For S=55, k=:574, 

while if S=105, k=-784, 

If then we write ZS=k we have the following values for k according as the 
connexions are made. 

Vou. XVIII. 
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TABLE V. 

k 

z Gusts Alois Nh deseo 
Coilas in Fig. 3 Half-coil used | Coil as in Fig. 5 

as in Fig. 4 

2 "245 | -287 

5 “458 558 

| 55 “474 DT4 

| 105 659 784 

30°5 1=—°152 1-076 

190 1-—-:028 1-007 1-—-014 

3000 1-—-002 1 — 0005 1--001 

58°5 1-—-081 1--021 1 — -040 

Again it appears from an approximate calculation founded on the measurements of 

the coil that the capacity of any one layer on those adjoining it is large, it may even 

be as great as 600 cm. It is therefore desirable to investigate if possible what effect 

this has on the formula for the frequency. 

We may perhaps represent this by supposing the coil to consist of a series of 

x 

loops without capacity with a series of parallel plates attached at the centre of each 

loop. 
Lt: = Va— Va, 

L’ ( é— te) = Vo— Vs, 
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IDS (a = i) — Voss = Vee 

Ts SV 

nL’ — L' (yy, + Yo+ Yn.) = V,— Vi = 4 

ips 1 
L (@— == Yo, 

pss) ost 1 
L (@— Yn) = Ss Yn» 

(SL — 1) Yy=(SYL2 -1) ¥,=S8/U eX, 

Eset, (@=2) Siam at 

ai Ke _ S00 aS 

—") 

Sie = SN, 

n—2S/ MSL=1-"—= 

Now it appears possible from the investigation in Part IV. p. 174, that S/ may 

be as great as 600 cm. so that S’/S=+ 

n—2 8, 
Also, taking the two coils, n=60 and 1—' aa Ste 1- a approximately, thus the 

correction is negligible, and we might give S’ a much larger value without modifying 
our final result. 

If we have no external condenser then S=S, and we have NIP eee approxi- 
n 

mately. So that in this case the capacity of each layer of the coil on the next may 

be the effective factor in determining the period. 

(ii) Errecr or RESISTANCE AND THROTTLING ON THE PERIOD. 

The critical resistance at which the discharge ceases to be oscillatory is 

4. 
ri 

S 

and in our case this is enormous, because of the small capacities. In the principal 

case, of the large air condenser, it is 

AG x 109 10° 

ro —. = - = 53000 ohms, 

When only one half coil is used the critical resistance is less, being about 30,000 ohms. 

22—2 
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Now the resistance of our wire circuit is only 200 ohms as ordinarily measured, 

but it is well known that under rapid oscillations the resistance of a conductor is 

increased by reason of the extra peripheral distribution of the current. The spark gap 

has also a certain resistance which it is not easy exactly to estimate. 

Some observations were made with a condenser discharging through several known 

circuits and the same air gap, in order to study the damping and make an 

estimate of what the resistance of the spark was. These indicate that for feeble 

discharge a spark resistance is high, while for powerful discharge it may be quite 

low. With our feeble spark it is undoubtedly large, and quite eclipses the resistance 

of the wire part of the circuit, though it does not amount to anything like the critical 

resistance at which the discharge ceases to be oscillatory; but it cannot be considered 

as constant, and its complete specification will be difficult. 

With regard to the throttling by reason of rapid alternation, it must be observed, 

Ist, that the alternations were not excessively rapid, always comparable to 1000 per second; 

and 2nd, that the wire on the coil was copper and very thin. 

The coil had a mean diameter of 38 centims. and consisted of 3493 turns of copper 

wire, half a millimetre in diameter. At 1000 alternations per second uniform distribution 

of current through such a wire would hardly be departed from, and neither the resist- 

ance or the self-induction would be greatly different from their ordinary values. 

It is important to note that no correction to self-induction is necessary, for even 

with infinite rapidity of oscillation, when all the current flows by the periphery, the 

value of the self-induction would not be greatly disturbed; though the throttling resistance 

would then be enormous. The reason why the self-induction is not very dependent on 

distribution in a thin wire is that it is only the space imside the wire which ceases 

to be magnetised by a peripheral distribution, and this is small in comparison with all 

the space outside. 

(iii) SELF-INDUCTION OF LEADING WIRES. 

The self-induction of the leading wires between condenser, coil and spark-gap, was 

about 100 metres; but as the self-induction of the whole circuit was considerably more 

than an earth quadrant this is entirely insignificant. 

(iv) Errect oF LEAKAGE. 

The insulation resistance between the two halves of the coil was measured and 

found to be 20 megohms; hence leakage during a discharge was practically non-existent. 

(v) Errect or Wave LENGTH. 

The electric oscillations have not been assumed quick enough to give waves com- 

parable in length with the circuit, else different parts of the circuit would be in different 

phases, and some complications would result. 
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The length of the circuit is 4 kilometres. 

The wave length in the chief cases is either 

3 x 10" . 3 x 10” 

880°" 1600 
and is always bigger than 100 kilometres, so no complication from difterent phases will 

arise. 

centims. 

PART IV. 

PRELIMINARY EXPERIMENTS. 

In the earlier stages of the work a large number of experiments were made with 

various condensers; some of these had a small capacity. It was thought at the time 

that it might be possible to use a guard-ring condenser of which the capacity could be 
» accurately determined and that thus a good value for “v” might have been obtained ; 

at this stage the importance of the correction for the capacity of the coil was not 

fully realized and it was the discrepancy which was observed when the results of these 

experiments were compared with a simple theory which led to the fuller consideration 

of this correction which has been given in Part III. 

The experiments therefore are chiefly of interest as a test of the theory and 

as enabling us to see the consequences of the correction. 

Several measurements were made with a small air condenser consisting of 7 concentric 

brass cylmders each 45°4em, high and ‘75 mm, thick and of internal diameters 13°25, 

9:90, 826, 6:92, 5:00, 3:40, and 1:60 cms. respectively. The capacity of this condenser 

making some allowance for the edges and for connecting wires was calculated at 5:5 

metres. 

Another condenser consisted of eleven circular discs of brass of total capacity, as 

calculated from the dimensions, of 5 metres. A list of these various condensers is given 

below. (See p. 175.) 

Two other condensers were used, one consisting of tinfoil plates on glass, the other 

a paraffin paper condenser. The capacity of the former calculated from its dimensions 

is 47°5 K metres, K being the specific inductive capacity of glass. Taking K as 5 this 

comes to 237 metres. An attempt made however to determine by observation the capacity 

of this condenser gave as the value 190 metres, corresponding to the value 4 for K 

which is very low. 

The capacity of the paraffin paper condenser was } microfarad or 3000 metres. 

The capacities of these condensers were also determined by the ballistic method, but 

it must be remembered that with such small capacities accuracy cannot be expected 

and the values found are therefore only approximate. 



174 Messrs GLAZEBROOK anp LODGE, EXPERIMENTS ON THE OSCILLATORY 

The correction to be made to the simple theory involves as we have seen in 

Part III. the capacity of the two halves of the coil treated as two plates of a condenser. 

We may obtain a very rough estimate of this by treating the two sets of opposed 

turns as two discs separated by the glass plate and insulated covering of the wire. 

Now we have from the dimensions given in Part III. p. 153 the following data: the 

thickness of the glass is ‘27 cm. and of the gutta percha ‘1 cm.: taking the inductive 

capacity of glass as 7 and of gutta percha as 3, we have for the equivalent air thickness 

Z or ‘072 cm. 

Hence since the interior diameter is 27°5 cm. and the exterior 48°7 cm. 

_7xX 76:2 x 21:2 

Ss 4a x 4x 072 
= 1400 cm. approximately. 

But the value of S, can best be found by the ballistic method. The two halves of 

the coil were charged like the two coats of a condenser to a potential difference of 60 volts 

and discharged through a ballistic galvanometer. A standard condenser of ‘01 microfarad 

was similarly charged, and the kicks compared. As a second experiment the galvano- 

meter was shunted with the 1/9th shunt and a condenser of capacity 02 microfarad 

discharged. 

A number of concordant readings were obtained with the result that the capacity 

came out as ‘0018 microfarad or 16°2 metres for rapid charging. 

If the time of charging is prolonged the capacity rises apparently and could be 

got as high as 22 metres; this was due in part to the action of the containing box 

which behaves as a conductor for slow charging. We have taken then the value 

16 metres as that to be applied in the corrections in the final experiment. 

We have seen that we may also require to know the capacity of one layer of the 

coil on the next. This it is difficult to determine with any approach to accuracy. 

In each layer there are about 30 turns of wire, its thickness being about ‘05 cm. 

The least distance apart of the surfaces of these wires is about ‘1 cm. while the 

distance between their centres is about ‘15. 

We may as a very rough approximation treat the two layers as two concentric 

cylinders 175 cm. (30 x 05) in height and -12 cm. apart. 

The mean diameter of these cylinders is 38cm. Hence if AK be the inductive 

capacity of the dielectric the capacity required is 

7x38 x 15K + 

4ar x 12 mae 

or about 120K cm. Assuming AK=3 for india rubber we get for the capacity of one 

layer on the next the value 3°6 metres. 
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List of condensers used in the preliminary experiments with their capacities as 
directly measured ballistically or estimated from their dimensions. 

Capacity. 

Cylinder condenser, already described, 55 K, metres. 
11 plate disc condenser, a 50 ., 
5 plate dise condenser, part of the above 2:0 3 
A Leyden jar about 20°5 3 
A flat sheet glass and tinfoil condenser about 190:0 s 

or as found by calculation 237 3 
A large paraffin paper condenser by Muirhead, 

consisting of six 2 microfarad condensers 

arranged in series about 3000 55 

After several preliminary photographs at various speeds and modes of connexion we 
took on 22nd July a careful series of spins with the fork adjusted exactly at 128 and 
with the 4 pattern of the dise extremely steady. 

The connections were made as in Figure 8. 

L being the self induction coil. 

C and C” the condensers arranged close together. 

S the spark gap in the dark box, and M the electrical machine. 

The point # was sometimes earthed. 

ie 

Fic. 8. 

Connexion with the machine was made through wooden penholders w, in order to 
avoid the capacity of the machine wires and terminals coming in as a disturbance, and 
the two condensers are shewn connected to each other also by penholders. This was not 
always done, and it is this circumstance which was specially varied; the object being 
to test the influence of wooden connexions, for subsequent use; eg. with a guard-ring 
condenser; where wooden connexion might preserve the potential uniform during slow 
charge but isolate the guard-ring during sudden discharge. 

The following are the circumstances of the chief plates taken this day. 
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PuiaTE No. I. 

On its first or outer circle several sparks were taken, with cylinder and disc con- 

denser joined by wood w’. 

Second circle, several more with the same. 

Third circle, with the cylinder condenser alone, the disc condenser being disconnected. 

Fourth circle, both condensers in parallel, jommed as in Figure 8, but by wire, not wood. 

The following is the micrometric analysis of this plate, the numbers being given 

rather fully as a specimen. It was the first plate carefully read. We do not quote the 

actual circle readings but the successive differences or lengths of the constituent half- 

oscillations; the last one was usually faint, and some were better marked than others. 

It will be seen that there were very few oscillations in each spark, because of the 

smallness of the condenser and the resistance of the circuit. It would not indeed have 

been surprising if the damping had affected the period perceptibly; but the only obvious 

effect is the lengthening out of the last swing by the high resistance of the decaying 

spark. 

Successive alternation intervals on fourth or inner circle of Plate No. 1 for different 

sparks :— 

Grae Gs, One, Le Gi 

6° 36’, 6°15, 6°40, 6° 54 

6° 29’, 6 41’, 6° 32’, 7° 6 (lower power object glass), 

6° 32’, 6° 35’, 6° 25’, 7° 11’ (plate recentred), 

6° 32’, 6° 35’, 6° 26’, 7° 7’ (repetition), 

6° 23’, 6° 33, 6°16’, 7° 2’ (plate recentred), 

6° 32’, 6° 38’, 6° 34’, 7° 28’ (apparatus reset). 

It is clear that the last or decaying half oscillation is unduly lengthened by reason 

of the high resistance of the dying spark, so, omitting it, we have as the average of a 

half oscillation for this circle 6° 31’. 

Similarly omitting the last reading, which in nearly all cases is longer than the others, 

the average length of a half oscillation on the third circle is 5°19’; on the second circle 

5°18’; and on the first or outer circle 5° 19’. 

Since the plate was making 64 revolutions per second, this gives as the observed 

frequency : 

For the cylinder condenser connected by wood to the disc condenser 2170 per second. 

For the cylinder condenser alone ; . : : : : . 2170 3 

For the cylinder and dise condenser properly connected . ; SUA) - 

These numbers shew that the wooden connectors separating the condensers act as 

expected, at least in preventing combined discharges, and thus act effectively in isolating 

the machine terminals from the capacity discharged. 
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It would be tedious to quote at full length the details of all the preliminary spins, 
and indeed all of the records have not yet been read. But such as seemed likely to 
be instructive were carefully examined, and a summary of them is given below. 

July 25. The 11-plate dise condenser arranged so that the machine charges it 

through a needle point, an inch or two distant, without direct contact. The needle 

point replaces the wooden connexion previously used. The following are the lengths of 

various half oscillations as recorded on a_ plate spinning 64 turns a second: 4° 42’, 

4°42", 4°47", 4°41’, 4°49", 4°41’, 4°44’ 4°38), 4°38’, 4°41’, 4°50, 4°48’, 4°37, 4°43’, 

4°38’, 4°29", 4°19". Average of these numbers 4° 40’, 

Frequency deduced from the observation, 2470 per second. 

Same date. Cylinder condenser, similarly arranged. Frequency 2370. 

Same date. 5-plate disc condenser, similarly arranged, average 4°30’. Frequency 2580, 

July 30. Cylinder condenser arranged in a different part of the circuit, viz. each set 

of plates connected to one of the terminals of the two halves of the coil as in Figure 11, 

p. 181. 

Average reading 4°34’. Frequency 2560. 

On other circles of the same plate, condenser detached and middle terminals of coil 

left msulated, so that the only capacity was that of the two halves of the coil: 

Readings an Abe Ao sem cers 2e 40. 27 DSO r 

Average 2°30’. Frequency 4630. 

July 31. Spins taken at the 12-pattern speed (i.e. 214 revs. per sec.) with the large 

Muirhead condenser in simple circuit with the whole coil. The outer circle was taken 

with the condenser attached to middle screws, as on July 30; for the others it was con- 

nected in the ordinary way. But no correction for coil or other capacity should be needed 

with this great condenser. 

Average reading 30°30’, the speed not perfectly steady. 

Frequency deduced 126 per second. 

August 1. Cylinder and dise condenser in parallel. 

Average of readings for spark alternations on outer circle 6° 32’ 

a Fs for another set ditto . : ‘ 56> 38) 

Ss 4 for spark on second circle . ; > BOY 

Ze a for another set ditto . : ; 5 OY 

Pe o. for spark on third circle. : 5 a Bey 

x nd for another set third circle : o (Py 

* 7 for spark on fourth circle . : Ons Or 

General average for this plate. : i : ‘ on oo ie 

Frequency deduced, 1766. 

The speed for the outer circle was steadiest. 

Vout. XVIIT. 23 
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Same date. Cylinder and disc again, with coil connexions reversed, otherwise every- 

thing the same. 

Average of readings off all alternations on outer circle 6° 13' 5” 

second circle 6° 15’5” 

a third circle 6°11’ 

fourth circle 6°17’ 

Speed for fourth circle was steadiest; weighted average 6° 15’. 

Frequency deduced 1830. 

Same date. Leyden jar added to cylinder and disc condensers. 

General average of readings 9° 48’. 

Frequency deduced 1180. 

August 2. Took a spin with the large Muirhead condenser connected not to the 

entire coil, but only one portion of it, the portion called B. 

Average of readings (one spark on each circle) at 4-pattern speed was 49° 40’, but the 

speed was not over steady, and with these heavy sparks the setting of the microscope on 

a leading feature of each alternation is less definite. 

Frequency deduced 232 or 233. 

Same date. Same condenser joined to coil A. 

Average of readings 50° 10’. 

Or omitting the last or drawn-out alternation, and taking the most probable average 

from the steadiest circle: 
Estimated reading 49° 42’, 

Hence frequency deduced, average 230; 

most probable 232. 

Same date. Muirhead condenser joined to complete coil, one spark attempted on each 

circle, but one apparently missed fire. 

Average of whole set (with 8-pattern speed) 45° 15'; 

or frequency 128. 

Same date. Muirhead with dise and cylinder condenser added. 

Speed deduced 127 and 124. 

August 3. Sheet glass condenser (glass as dielectric). 

Composed of 8 sheets of glass and 9 of tinfoil. 

Each tinfoil 38°1 x 542 centim, 

Combined thickness of the 8 plates 2°2 centim. 

Plate running at 6-pattern speed. 

Average of readings 17° 8’. 

Frequency deduced 450. 

* 
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Same date. Same condenser through B coil only; frequency 820. 

This is a sufficient account of the preliminary experiments, whose object was partly 
to gain experience and partly to find out what sort of condenser was best to use. Decided 
that a large simple air condenser was advisable, without complication of guard-ring or 
anything, but with edges that could be allowed for by calculation and with plates large 
enough to make the correction of relatively small amount. 

In order to compare these preliminary results with theory it seemed best to calculate 
the theoretical frequencies, using the formula »2LS =k 
each combination as given in Table V. in Part III. 

We thus obtain the following results : 

TaBLE VI. Both coils A and B 

where & has the proper value for 

being used. 

Capacity in Frequency | Frequency 
Date Condenser centimetres | calculated observed 

| 
| 

July 25 Five-plate dise 2 2590* 2580 

July 24 ; x : z By UNA 2403 July 25 Eleven-plate disc 5 2400 2470 

July 22 : = 2060 2160 Fuly 25 Cylinder OPteiles Sono 2370 

July 22 Cylinder and disc : vAR 1770 
Aug. 1 in parallel Ore nie 1766 

Cylinder, dise and (e is a | Aug. | eawiien dee 30°5 | 1170 1180 

Weare 
Aug. 3 Sheet Glass oar | Me | 450 

| | 
July 31 126 
Aug. 2 Paraftin condenser 3000 128 127 

” 9 128 

In the observations marked thus * the calculations have been made on the assumption 

that the connexions were as in Fig. 5. 

23—2 
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TaBLeE VII. using only one coil. 

| | 

Frequene |  Frequene 
Date Condenser | Capacity RE Re 

- ; 232 
Aug. 3 Paraftin condenser 3000 233 230 

| 
| 190 26 = | - 2 Glass condenser | 237 827 820 

Considering the nature of the experiments the agreement may be considered satis- 

factory. The capacity taken for the cylinder condenser is probably too high; if it were 

assumed as 571 instead of 55 the agreement in all the experiments in which it was 

used would be improved. It is also clear that the value 190 taken for the capacity of 

the glass condenser is too small; only one determination of this was made, and there 

may have been some leak which reduced the capacity as measured; an earlier attempt 

at measuring the capacity was a failure from this cause. 

It will be noticed that the corrections have been applied as though on July 24 

and 25 the coil connexions were those shewn in Figure 5, while on the other days they 

were those of Figure 3. There is no evidence in the note-book that this was the case; 

at the time these experiments were made the importance of the direction in which the 

current traversed the coils was not realized. 

The results of three of the preliminary experiments are not recorded in the table. 

On August 1, with the cylinder and dise condensers in use, the connexions were 

as shewn in Figure 9, and the frequency was 1766; this result is given. 

Spark gap 

Earth 

Fie. 9. 

The connexions were then altered so that the condenser was to the terminals B 
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and @ as in Fig. 10. A and D being connected together, the frequency rose to 1830; 

this result we have not been able to explain as satisfactorily as we could have wished. 

Earth 

Fie. 10. 

The following may however have been the cause. In the figure A and D are terminals 

connected with the outer turns of the coils, B and C those connected with the inner. 

Now the capacity of the outer turns is greater than that of the imner, while at the same 

time the portions of the coils which are nearest to the condenser, and in which there- 

fore the potential difference is the greater, will have most effect on the result. We 

have however taken an average value of S’, 16/30, in calculating the correction. It may 

be that this average is right for Fig. 9, but that for Fig. 10 it ought to be reduced, 

for the actual value of S’ near C is only 3/5 of that near A. If we assumed 

S,=3 x 16/5=10 say,-or S’=10/30, we should obtain as the frequency the value 1860 

which agrees closely with that given by experiment. 

Again on July 30 the cylinder condenser was connected to the coil as in Fig. 11, 

The observed frequency was 2560. 

Earth 
Fie. 11. 

The calculated frequency for this case, assuming the corrections already given, is 

2060, or if we assume the connexions to have been as in Case ii, 2270; in either 

case the result is much too low. 

It will be noticed however that im Fig. 11 the condenser is connected to the 

terminals B and C, i.e. to the inner terminals of the coil as in Fig. 10, and we have 

just seen that the assumption that the effective capacity of the coil is 10 metres 

when this is the case serves to reconcile theory and experiment. It becomes of interest 

then to evaluate the frequency, assuming S, equal to 10 and S’ to 10/30. 
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The resulting value for the frequency is 2470 which is still below that found by 

experiment, viz. 2560, but it has already appeared that the capacity assumed for the 

cylinder condenser, viz. 5°5 metres, is too high. The assumption that the value was 

5:1 which (p. 180) is required to reconcile with theory the experiments recorded in 

Table VI. would also bring the results of this case into greater harmony. 

On the same date (July 30) and immediately after the above experiment, the 

condenser was removed and oscillations taken with the coil alone. In this case, assuming 

the theory developed in Part III, we have 

1) _ 238, 
nN, 

8,In= 5 (1— 

or if we suppose the capacity uniformly distributed along the coil, 

S, DD? = 3. 

On substituting for S, the value 16 metres, and for LZ 463 secohms, we find for the 

frequency the values 3830 and 4300 respectively; the experimental result is 4630. In this 

case theory and experiment would be reconciled by the assumption that the capacity of the 

coil was 10 metres instead of 16, and this value fits, as we have seen, the experiments 

just discussed in which the condenser was used. . 

If we adopt the first of the two formule and take S,=10 we find the theoretical 

frequency is 4820, while the second formula based on the assumption of a uniform 

distribution of capacity leads to the value 5360. The observed value was 4630 which 

agrees best with the first of these two theoretical values, being rather below it. It will be 

observed however from the record on p. 177 that the experimental results are very variable. 

Thus these three sets of experiments in which the condenser was connected to the 

terminals B, C of the coil will be reconciled with theory by the assumption that when 

the experiment is so conducted that there is a large potential difference between the 

inner windings of the coil for each of which the electrostatic capacity is smaller than 

for windings near the outer edge, the effective capacity of the coil S, of the formula 

is about 10 metres, possibly rather over 10 metres. 

These results are given in Table VII. (a). 

TaBLE VII. (a). 

Both coils A and B being used, but the coil capacity taken as 10 metres instead of 16. 

| | [ 

| ; Frequency Frequency 
Date Condenser Capacity calculated | observed 

2 ia a! | = 

Aug. 1 Cylinder and disc | 10°5 1860 1830 

July 350 Cylinder Bs) 2470 2560 

&5 Coil only 4820 4630 
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The general concordance of the experimental results with theory appears to shew 
that the capacity of the coil, layer upon layer, has no marked effect; if it be taken into 

CY / 3 18 “ 5 account a correcting factor of the form 1 — 60 = must be introduced, where Sj’ may possibly 
[> 

be 3 or 4 metres. This would reduce the frequency in the case of the 2-metre condenser 
by about 1/30th, bringing it to 2510. 

For S=5 the correction would be 1/75. 

A sufficient account has now been given of these preliminary experiments; as a result 
we were led to construct an air condenser of considerable capacity which we could calculate 
with some degree of accuracy. 

IPARA Ve 

THE Ain CONDENSER. 

We proceeded to make an air condenser of eleven flat plate glass slabs very care- 
fully covered with tinfoil so as to offer a perfectly smooth metallic plane on both 
sides; folding the tinfoil round the edges so that they were practically slabs of metal. 

The plates were nearly square, and their size was measured individually, giving as 

the average result 59716 cm. long by 59°614 cm. broad. 

The boxwood scale which had been used was then compared with a brass standard 
metre, which we know to be accurate at 0°; and 60 centims. on it was found to be 
zy milhmetre longer than 60 centims. of the standard at 18°. The expansion of the 
brass would make the length of the standard too long by °2 millim., so the total 
correction is ‘025 centim. Hence the corrected size of the condenser plates is 

59°74 x 59°64 square centim. 

The thickness of the eleven plates clean and finished and lying close together was 
measured in eight different places and found to average 3:157 inches, or when clamped 
together tightly 3:116 inches, so the thickness of each plate was ‘284 inch or ‘721 centim. 

We then cut a number of plate glass distance pieces, measured them carefully, and 
arranged them in the 10 spaces between the plates, 5 in each space, like the pips on 
a card. Set the plates on end on a pair of ebonite wedges and clamped them in 
special wooden frames, making careful contact with each plate by a thin wire lying 
along the middle of an edge. Connected alternate plates together and proceeded to 
charge. But found that the glass distance pieces leaked in the most surprising manner. 
Four of them were sufficient to prevent the machine from charging anything. Tested 
them separately and found they leaked like wood, giving a distinct brush discharge 
from their corners. 
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Hence replaced them by pieces of ebonite all cut out of the same sheet; each 

piece 7 millimetres square: 52 pieces end to end, measured in vernier callipers, 

occupied 10°24 inches. 

So the thickness of each distance piece was 

‘1989 inch or ‘5001 centim. 

With 5 of these between each plate, one at each corner and one in the middle, 

the plates were once more clamped up, connexions carefully made, and an experiment 

begun. 

The plates stood vertically on a pair of sharp-edged ebonite wedges, at a height 

of 1 inch above the floor of the frame, which was tinfoiled to make it definite. The 

sides and top were at first open, so that the edges of the plates were then free; but 

afterwards in order to keep the inside air dry for all the best experiments, the box 

was panelled in. The distances of the wood panelling from the plates were as follows: 

From edge of plates to wall of case ......... 515 centim. 

» » 3 POOH a MBs Sa Histone 88 v 

ee ls tees ou SHOOE safe thc nose ace 2°5 » 

A simple wooden X formed the front and back at a distance from the outer flat 

of the plates, 4:0 on one face and 3:2 on the other. 

ESTIMATE OF CAPACITY OF CONDENSER. 

The method of correcting for the edges of a thin plate is given in Maxwell, 

vol. 1. § 293. A term has to be added to the linear dimensions as if an extra strip 

of a certain breadth were put on all round a uniformly charged plate. 

This extra breadth, on account of the extra density at terminations of thin parallel 

planes, is 
b 
7, loBe 2: 

where “b” is the distance between the plates. But the plates are thick and square 

edged, and a further correction has to be made for their thickness; Maxwell’s further 

correction for thickness £, cos ue assumes the edges to be rounded and is therefore 

inapplicable, but acoustic analogies suggest the addition to the dimensions of each plate 

of a quarter of its thickness, to represent the effect of the edges themselves. (Cf. Rayleigh, 

Sound, vol. i. §§ 307 and 314.) 

The total correction is thus 

22b + 258 =:11+°18='29 centim. 

to be added all round. 
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Thus the capacity of the condenser proper is 

10 (59°74 + °58) x (59°64 + °58) 

47 x 5001 : 

and this reduces to 5779 centimetres. 

To this has to be added a term for the proximity of the case to the edges, especially 

for the proximity of the floor; the floor correction is 

— 
een = 6-9 centims. 

4x 2°5 

The walls and roof together amount to 8°7, or altogether 15°6 centims. 

Next, the ebonite distance pieces must be allowed for. They are each 4 square 

centim. in area, and there are 50 of them; their specific inductive capacity may be 

taken as 3, so the extra capacity due to them is 8 centims. 

Adding all these we get for the condenser capacity, 5803 centims. 

Then there is a correction for the charged portion of the wires leading from the 

condenser and coil to the spark knobs. This was approximately 73 metres long and 

one millimetre thick, with a span of 14 metres between it and the walls. Its capacity 

730 
was therefore ~_—-—. = 50 centims. 

2 log, 150 

Thus the whole electrostatic capacity under charge was 

5853 centimetres. 

Connexions were as in Figure 12. The machine was usually connected only across 

an air space by needle points so as to take no part in the discharge. 

Vout. XVIII. 24 
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PART VL. 

FINAL EXPERIMENTS. 

With the air condenser described in Part V., a number of spark photographs on 

Mr Swan’s 4-inch square plates were taken with the plate revolving 64 times a second. 

From seven to nine circles were attempted on these plates with three or four sparks on 

each circle. 

Tin plates which are lettered from A to Z were afterwards read with great care 

by Mr J. W. Capstick who writes: “The measurements will be found to be within a 

very few minutes of the correct reading. In one case I accidentally went over a spark 

twice, and though I was then at the end of six hours’ almost continuous work at 

them, and the spark was an exceptionally indefinite one, the greatest divergence in the 

readings was only 3 or 4 minutes. 

“The plates are very much better than any I had done previously, and the setting 

of the microscope was generally a simple matter. The sparks were in general so 

definite and regular that I did not think it necessary to make drawings of them.” 

[This had been done with some of the earlier plates.] 

Mr Capstick remarks—as will be seen from the Tables—that there is some irregu- 

larity in the sparks, and that, unless it is desired to study this, greater accuracy of 

reading is hardly necessary. 

The analysis of this long series of plates has been a work of time; we give below 

the results of a study of all the plates from G@ to U. In the earlier plates, marked 

A to F, the work was in some respects of a preliminary character; there was no plate 

marked @. In the spin for plate P the coils were in multiple are, and the coefficient 

of self-induction for this arrangement was not determined. 

We give as an example the actual record for two of the circles on plate U*. 

This illustrates the method of dealing with the results. 

SpaRK RecorD ON PuatTe U. 

Coil B only used. 
Outer circle. 

Actual readings. Differences. Averages. 

Spark (1) 194° 0’ 

186 49 14° 36 
179 24 (14 45) —— 
a2 4) ide sige PE 2 

164 59 (14 24) 

157 40 

* The record for this plate happened to come first in one of the note-books in which results were recorded. 
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Actual readings. Differences. Averages. 
Spark (2) 155° 14’ 

(147 46) 

140 53 

133 34 

126 20 

Spark (3) 112° 40’ ; 
106 4 ie Sa 

wes (14 43) 
oe 0B BF A 

LAM ee a8? 
97 57 | 

ie) 
90 48 

: 4G 12)? 
83 45 

76 36 

General mean for this outer circle 14° 24’. 

14° 21’ 
14 12 1422 

Second circle. 

Spark (1) 136° 23’ 

129 4 14° 12’ 
122 11 14 11 | 

Spark (2) 118 29 b 14° 14’ 

114 58 14 19 

TG 

107 52 14° 18’ 
104 11 14 10 14° 18’ 
96 56 14 28 | 
89 43 

Spark (3) (Ge QE 

168 1 

(161 6) 
154 2 

146 25 

Spark (4) blurred. 

14° 18’ | 

14 0 | 14° 13’ 

Here there was some simple overlapping, giving no difficulty in sorting out. The 

general average for this circle is 14° 14’. 
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TaBLeE VIII. 

Pirate U. Coil B. 

Girolee||e me |) Sa: uae || ing v. 

Spark 1 | 14°36’ | 14°12’ | 14°33" | 14°17’ 

1445 |1411 | 1425 | 14 6 | 14 12 

14 25 14 19 14 19 14 25 

14 24 

2 | 14 21 14 18 14 31 | 14 9 14 12 

1412 | 1410 | 14 18 14.5 14 10 

14 33 14 28 14 22 14 15 14 11 

14 49 

1443 |} 14 0 | 14 19 14 20 | 14 20 

14 17 14 21 14 16 

14 9 

14a 

4 Nee cee eich The) 

11426 | 14 9 

14 36 | 14 25 

Meantorks|/<) sc 4n hae Seal Poe ee oar 
ris | 14° 24 14° 14 142 27 14°19 14°18 

Mean of | 

swings for 
central | y4°y6 | 14° 8° | 14°91’ hee | 14°12 

each circle 

General mean from plate 

Mean from central swings 

VI. VEIL VI. I< 

14°34’ | 14°39' | 14°46’ | 14°56’ 

1426 | 14 40 | 1418 | 14 41 

14 24 | 14 43 | 14 24 | 14 37 

14 56 

14 296° | 1445 | 1411 | 14 16 

1414 | 1493 | 1414 | 14 12 

14.94 | 14°36 | 1411, | 14-9 

15 5 

1 Tie | Tbe: Fe lame | eee 

14 5 | 1429 | 1420 | 14 10 

14294 | 1416 | 14 23 | 14 16 

14 14 14 21 

CB 

14 43 14 23 

14 38 14 20 

14 39 14 34 

14°26’ | 14°31’ | 14°22’ | 14°29 

1458" [14° 987 TAS 9" || Waa 

14° 23’. 

eae 
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Thus in Table VIII. will be found the actual length in degrees and minutes of all the 
oscillations on the plate. The Roman numerals at the head of the columns indicate the 
circles on which the sparks are to be found; the record for each spark is shewn separately. 

The mean length of oscillation from the 99 sparks here recorded is 14° 23’; the range 
of the readings is rather over 1°; the means for the various circles are given in the 
Table; they range over 17’. It is clear however that the oscillations in any one spark 
are not of equal length. As a rule the first oscillation is a long one. This is followed 
by one or more of shorter period while, as the spark dies away, the oscillations again 
lengthen; the cause of this has been discussed in Part Vis 

The lengthening of the latter oscillations is more plainly shewn on some of the other 
plates. If we omit the longer oscillations, and take only the more regular central swings 
on plate U, we get the following series of numbers, in which the 14° is omitted for 
brevity. 

TABLE IX. 

| | | 
| Circle...| 1 Il, ET, IV. Mo VI. | Vil. VII. Exe | | | Ee 

Pope eone'| «ag i ome Mogwai AoW Ste, ine 
120) |) 18 it || Gee) oe | 24 | 12 

| 17 0 | 19 5 wm SMBS toll WE 9 
9 20. -|| Tea) 38) | oon 1 ao 

26 | 9 | 14 | 290 | 16 
| 23 

20 
| 

Averages | 16’ | 8 | 21’ | 14 | 12° | 18 | 98° | 19° | a7 

These lead to an average length of oscillation of 14°17’. 

In taking the average in this manner we have given equal weight to each 
observation. 

Now the record of this plate taken at the time of the observation is 

PuLate U. 

Air condenser in circuit with B coil. 

Machine not in circuit but arranged to charge it through a pair of needle points 
from a distance so that its capacity should not interfere. 
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On the outer circle were taken 4 sparks, speed steady. 

= second ,, * 3 4 e we) fair 

26 third se se a 3 * » Steady. 

Fr fourth ,, * es 4 Ls fair: 

. fifth 4 is " 4 . Petar 

rm sixth a FS 3 4 e5 » quite steady. 

x seventh ,, x a 4 io » Steady. 

4 eighth _,, 2 ¥ 4 A » Steady on average. 

” ninth ” ” ”? or ” » ad a ad 

(The number of sparks taken is not with perfect certainty correct, because there 

was sometimes a difficulty in hearing them.) 

The remarks as to the speed were noted at the time according as the stroboscopic 

pattern had successfully been held still or not while the circle was being taken. 

If attention is paid to these speed remarks it would seem that circles I., IIL, VI, 

VII. and VIII. should have most weight attached to them. 

The averages for these circles are 16’, 21’, 18’, 28’, 19’, for the middle swings, and 

their mean is 14° 20’. 

The complete averages for these steadiest circles are 24’, 27’, 26’, 31’, 22’, and the 

mean of these is 14° 26’. 

It would thus appear that the best value for the wave length for this plate is 

14°20’; while if all the sparks be included which le on the circles retained, the 

number is increased by 6’; if all the circles are included, each of these numbers is 

reduced by 3’. 

We may claim then to know the length of the oscillation on this plate to 

about 5’, Le. to about °6°/,. 

The frequency corresponding to 14°20’ is 64 x 360/14°35_ or 

1608. ‘ 

PLATE S. 

Another series of wave lengths as recorded on plate S, in which coil A only was 

used, is given in Table X. 

The notes relating to this plate are as follows. 

On this plate the sparks photographed were taken from the air condenser through 

the A coil only. Machine charging via needle points. 
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TABLE - X. 

PiatE S. SUMMARY OF READINGS. 

Coil A. 

Circle... I. Il. Il. DVS Wo Wal Ta | VIII. 
| 

| 

| 

| 

| 14°31’ | 14°36’ | 14°37’ | 14°28" | 14°31’ | 14°53’ | (blurred) |(all overlap) 

14 11 14 20 | 14 29 | 14 3 | 14 2 15° 6’ 

14 24 | 14 28 | 14 28 | 14 16 | 14 43. | 14 33 | 14 26 

14 49 14 39 14 11 14 52 14 32 

14 15 

aero id aie Id | 14 35) | ddesg 14 56 

1S Tate elAce lade ale) |S) .5S). | al peedane pI ealioTaeoD 

14 11 14 22 14 17 14 9 14 11 14 22 14 14 

14 25 14 28 14 51 14 48 14 2 

14 32 | ( ) | 14 35 14 40 

14 13 14 15 14 33 

14 18 1419 | 14 34 14 44 

14 26 | 14 47 14 47 

14 38 14 45 

14 30 14 19 

14 26 14 25 

14 17 14 50 

14 42 

oo 14°22' | 14°98’ | 14°98’ | 14°96’ | 14°96’ | 14°38" | 14°97’ 
ean 

Mean of 

central ATI |) Wee IP ey NP et oI” | az GY || TMP age | aiveoye 
waves 

General mean 14° 28’. 

Mean for centre swings 14° 19’, 
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Four sparks were taken on each circle. 

Circle I. speed moderately steady. Circle V. speed _ fair. 

we - fair. Vie e steady on average. 

Ii. * quite steady for 3 sparks. \0 eo slightly backing. 

is . steady. WADE 5 fair. 

To save space only the differences are quoted. All the differences read are included. 

Sometimes overlapping prevented any reading being attempted. 

The general mean from Table X. is 14° 28’, while the central swings give 14°19’. 

These means include all the circles. The range of the mean readings is about the 

same as for plate U, and the frequency calculated for the central swings works out 

to 1610 oscillations per second. 

TABLE XI. 

PLaTE R. Complete Coil A+B. 

Circle... I. eases |) ine in |) NE VI., VIL 

} EE ee 

Spark 1 | 26°52’ | 26°53’ | 26°34’ | 26°43’ | 26°47’ 
| 

2616 | 26 22 | 2611 | 2619 | 26 23 

26.18 | | 

26 46 | | 
| 

| 2| 26 44 | 2655 | 2651 | 2652 | 27 1 a 
: 

| 26 4 | 2618 | 2615 | 26 20 | 26 23 i 
I 

| | 26 51 Bien a 
2 

| g 
| 3 26 59 | 26 51 | 26 55 | 26 46 Eo 
| joa 

26 4 | 26 12 26 19 = 
o 

26 50 26 37 6 

4 | 26 38 

| | 26 4 
| 

eS a a 
oe || 26°38! | 26°30" 9) 26327 Wl 2Gna%" |) 26°37" 
Mean 

> eee 
Central | 96°19 | 26°15’ | 26°13’ | 26°14’ | 26°21" | 
Mean | im 

' | 

General mean of plate 26° 34’. 

Mean from central series 26° 15’. 
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As an example of a plate in which the whole coil was used the record for plate R 
is given in Table XI. It will be seen that the means for the separate circles differ 
by 7 in the case in which all the sparks are considered, and by 9’ when only the 
central swings are dealt with; the difference between the two means is 19’. 

If we take as the length of wave 26°15’, the frequency is 64x 360/26:25 or 878 
oscillations per second. 

It is not necessary to give the results of the other plates in such full detail. 

The following Table summarizes them sufficiently. In each case the central sparks 
only are included. 

TABLE XII. 

Complete Coil A+B. 

Plate K L O R Dy 

Number of sparks | 11 13 9 15 22 

Length of wave 26° 14’ 26° 9 26° 16’ 26° 15’ 26° 5! 

Mean length of wave 26°11’. 

Coil A. 

Plate G H MW N Ss 

Number of sparks 20 28 7 27 33 

Length of wave 14° 14’ 14° 32’ 14° 25’ 14° 18’ TEES TIBY | 

Won. XeViLEE 

Mean length of wave 14° 20’. 
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Coil B. 

Plate J U 

Number of sparks 28 37 

Length of wave 14° 26’ 14° 20’ 

Mean length of wave 14° 22’. 

From these we find as the mean length of the wave when the complete coil 

A+B is used 26°11’. 

With regard to the observations made with the coils A and B in circuit separately, 

it will be observed that plates H and J give higher results than the others. Now 

there is a note in the book that for these two series the outer plates of the 

condenser were earthed; they were taken therefore under different conditions to the 

others; if they be omitted we have as the mean wave length for plate A 14°18’, 

and for B 14°20’; if we include plates H and J, the mean for A is 14°20’ and 

for B 14° 22’. 

The corresponding frequencies are, excluding plates H and J, 

for coil (A + B) 880 per second, 

for coil A 1611 per second, 

for coil B 1607 per second. 

If we take the whole series of sparks for A and B we get respectively for A 

1607, and for B 1603. 

While the frequencies given by plates H and J are 

for A 1583, 

and for B 1595. 

It is hardly necessary to work out the frequencies for each plate. For the complete 

coil A+B the greatest variation from the mean is four parts in one thousand. 

We may now determine from these spark records the value for “v.” 

We have the formula 

LS 
v = 2m . frequency x 5a 

where & is the constant, the values of which are given in Table V., occurring in the 7 OQ EOE ee 
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formula ZS)?=k. In the case in which the two coils were used there is no difficulty in deciding on the value of f. The formula for X is that given on p. 159 (D), 

elie inst 1 4 /S,\2 fe aia S }-sq=nl+e (3) Tipe? and hence k =:916. 

If only one coil is used two cases may arise; if the lower coil is completely in- sulated we have the case dealt with in Figure 4; the corresponding formula as far as terms in S,/S are concerned is (F) on p. 166, viz.: 
fev re], At eT: 

and the value of k resulting from this is ‘978. If on the other hand the lower coil is not insulated the correction necessary will be that indicated in (G), p. 167, and the resulting value of & will be the same as that for the two coils, viz. -916. 
As far as we know the coil was usually insulated; at any rate it was not in- tentionally connected to earth except for the two plates H and J. 
But there is another complication in this case. We assume in this case that the value of Z is that for either half the coil; now this assumes that there is no current in the unused coil; but in consequence of the electrostatic induction there is a current in the unused coil. This current will be of the order #S’/S if « is the current from the main condenser, and its effect will therefore alter the coefficient of self-induction L of the upper coil by an amount proportional to MS’/S or about M/120. Now the value of Z, is about 1-4, and of M about -91. Hence the value of I, in the experi- ments with the single coil is uncertain to one part in one hundred and seventy. 
Omitting however this correction we get the following Table of values, 

TABLe XIII. 

Coil used k Frequency L | S v Observations 

A+B 916 | 880 4636 | 58-53 3009 x 10" | Mean from seventy sparks 

A ‘978 1611 | 1-409 58°53 2-939 x 10” Unused coilassumedinsulated 
te | 1611 | 3-409 ese ESTE. JC! |) ene mere | 

‘916 1583 | 1-409 58-53 2-984 10" | Plate H, coil uninsulated | 

ee 

B ‘978 1607 | 1-393 58°53 2°922 x10" | Unused coilassumed insulated 
- 1607 1-393 58-53 3°020 x 10° 5 - » uninsulated 
916 1595 | 1-393 58°53 2-990 x10" | Plate J, coil uninsulated | | | 

25—2 
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In the fourth and seventh lines of this Table we give the velocity as obtained from 

plates H and J. We know that in this case the effective coil and one plate of the 

condenser was earthed originally, and we have therefore used the value of k& calculated 

on the assumption that the free coil was earthed throughout. It will be seen that the 

resulting values of “v” and that obtained from the experiments with the full coil are 

in close agreement, being respectively 2°98 x 10", 2°99 x 10" and 3:01 x 10”. 

If we take the other observations for coils A and B, excluding plates H and J, 

the results are not quite so satisfactory. The assumption that the free coil was insulated 

leads to the values 2°94 x 10° and 2°92x10", given in lines 2 and 5 of the Table; on 

the assumption that it was earthed we find from the same series of experiments the values 

3°04 x 10" and 3:02 x 10" respectively, given in lines 8 and 6. The truth would appear to 

lie between the two. 

If we take the experiments with the complete coil A+B in series, we can determine 

the corrections with greater accuracy, and we find as the result 

v=3009 x 10” centimetres per second, 

while since the corrections can be calculated with more exactness in this case, we 

attach far greater importance to the result. 

We do not however look upon the paper as one describing a very exact method 

of determining “v,” but rather as a study in the oscillatory discharge of a condenser 

which incidentally leads to a determination of “v” by a novel method. 



VILL. The Geometry of Kepler and Newton. By Dr C. Taytor, Master of 

St John’s College. 

[Received 25 August, 1899.] 

THIS paper consists of two parts (A) and (B), treating respectively of some things 

in the geometry of Kepler and some in the geometry of Newton, the finisher, in pure 

mathematics as in physics, of so much of his brilhant predecessor’s work. 

In Fontenelle’s Panegyrick of Newton, published in French and English under the 

title, The Life of Sir Isaac Newton with an Account of his Writings (London, 1728), 

the third paragraph begins thus, “In studying Mathematicks, he employ’d his Thoughts 

very little upon Zuelid, as judging him too plain and easy to take up any part of 

his time; he understood him almost before he had read him, and by only casting his 

eye upon the Subject of a Proposition, was able to give the Demonstration. He 

launch’d at once into such books as the Geometry of Des Cartes and the Opticks of 

Kepler. So that we may justly apply to him what Lucan has said of the Nile, whose 

Springs were unknown to the Antients, That it was not granted to Mankind to see the 

Nile in a small Stream.” 

(A) 

KEPLER. 

Kepler's new and modern doctrine of the Cone and its sections, which historians of 

mathematics have ascribed to a later generation, was propounded in cap. Iv. 4 of his 

Ad Vitellionem Paralipomena, quibus Astronomiw Pars Optica traditur, a work published 

originally in 1604, a century before Newton’s Opticks (1704), and edited with notes 

forty years ago by Dr Ch. Frisch im vol. UL. of his Joannis Kepleri Astronomi Opera 

Omnia in eight volumes. The passage containing the new doctrine is given below line 

for line, with the addition of numbers for reference, from the edition of 1604: 
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TAYLOR, THE GEOMETRY OF KEPLER AND NEWTON. 

4. De Coni fectionibus. 

Coni varii funt, reétanguli, acutanguli, obtufanguli: item 

Coni reéti feu regulares, & Scaleni feu irregulares aut compreffi: 

de quibus vide Apollonium & Eutocium in commentariis. O- 
mnium promifcue feétiones in quing; cadunt fpecies. Etenim 
linea in fuperficie coni per feétioné conftituta aut eft reéta, aut 

circulus, aut Parabole aut Hyperbole aut Ellipfis. Inter has li- 

neas hic eft ordo caufa proprietatis fue: & analogicé magis 

quam Geometricé loquendo: quod a linea reéta per hyperbo- 

las infinitas in Parabolen, inde per Ellipfes infinitas in circulum 

eft tranfitus. Etenim omnium MHyperbolarum obtufiffima eft 

linea reéta, acutifima Parabole: fic omnium Ellipfium acutiffi- 

ma eft parabole, obtufiffima Circulus. Parabole igitur habet ex 

altera parte duas natura infinitas, Hyperbolen & Rectam, ex 

altera duas finitas, & in fe redeuntes, Ellipfin & circulum. Ipfa 

loco medio media natura fe habet. Infinita enim & ipfa eft, fed 

finitionem ex altera parte affectat, quo magis enim producitur, 

hoc magis fit fibiipfi parallelos, & brachia, vt ita dicam, non vt 
Hyperbole, expandit, fed contrahit ab infiniti complexu, fem- 

per plus quidem compleétens, at femper minus appetens: cum 

Hyperbole, qué plus aétu inter brachia comple¢titur, hoc plus 

etiam appetat. Sunt igitur oppofiti termini, circulus & reéta, illic 
pura eft curuitas, hic pura rectitudo. Hyperbole, Parabole, Elli- 

pfis, interiecte, & recto & curuo participant; parabole ex zquo, 

Hyperbole plus de reétitudine, Ellipfis plus de curuitate. Pro- 

pterea Hyperbole quo longits producitur, hoc magis reéte feu 
Afymptoto fuze fit fimilis. Ellipfis qué longits vltra medium 

continuatur, hoc magis circularitatem affectat, tandemque coit 

iterum fecum ipfa: Parabole loco medio, femper curuior eft Hy- 

perbola, fi ezqualibus interftitiis producantur, femperque re¢tior 

Ellipfi. Cumdue vt circulus & reéta extrema claudunt, fic Para- 

bole teneat medium: ita etiam vt reéta omnes fimiles, itemque 

& circuli omnes, fic funt & parabola omnes fimiles; folaque 

quantitate differunt. 

Sunt autem apud has lineas aliqua punéta precipue confide- 

rationis, que definitionem certam habent, nomen nullum, nifi 

pro nomine definitionem aut proprietatem aliquam  vfurpes. 

Ab iis enim punétis reéte eduéte ad contingentes fectionem, 
punctag; contaétuum, conftituunt zquales angulos iis, qui fiunt; 
fi punéta oppofita cum iisdem puncétis conta¢tuum conneétan- 

tur. Nos lucis causa, & oculis in Mechanicam intentis ea punéta 

Focos appellabimus. Centra dixiffemus, quia funt in axibus fe- 

&tionum, nifi in Hyperbola & Ellipfi conici authores aliud pun- 

étum centri nomine appellarent. Focus igitur in circulo vnus 

eft A. isque idem qui & centrum: in Ellipfi foci duo funt BC. 
equaliter a centro figures remoti & plus in acutiore. In Parabole 
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vnus D eft intra fe€tionem, alter vel extra vel intra fectionem in 

axe fingendus eft infinito interuallo a priore remotus, adeo vt 

eduéta HG vel IG ex illo ceco foco in quodcunque punétum 

feétionis G. fit axi DK parallelos. In Hyperbola focus externus 35 

if 

F interno E tanto eft propior, quanto eft Hyperbole obtufior. 

Et qui externus eft alteri feétionum oppofitarum, is alteri eft in- 

ternus & contra. 

Sequitur ergo per analogiam, vt in recta linea vterque focus 

(ita loquimur de reéta, fine vfu, tantum ad analogiam complen- 

dam) coincidat in ipfam reétam: fitque vnus vt in circulo. In 

circulo igitur focus in ipfo centro eft, longiffime recedens a cir- 

cumferentia proxima, in Ellipfi iam minus recedit, & in parabo- 

le multO minus, tandem in reéta focus minimum ab ipfa rece- 

dit, hoc eft, in ipfam incidit. Sic itaque in terminis, Circulo & re- 

éta, coéunt foci, illic longiffimé diftat, hic plané incidit focus in 

lineam. In media Parabole infinito interuallo diftant, in Ellipfi 

& Hyperbole lateralib. bini aétu foci, fpatio dimenfo diftant; in 

Ellipfi alter etiam intra eft, in Hyperbole alter extra. WVndique 

funt rationes oppofite. 

Linea MN que focum in axe metatur, perpendiculariter in 

axem infiftens, dicatur nobis chorda, & que altitudinem often- 

PAGE 94. 

pie) 

PAGE 95. 

dit foci 4 proxima parte fectionis a vertice, pars nempe axis BR. 5 
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vel DK. vel E. S. dicatur Sagitta vel axis. Igitur in circulo fagitta z- 

quat femichorda, in Ellipfi maior eft femichorda BF. q fagitta 

BR. maior etiam fagitta BR. quam dimidium BP femichordz 

feu chord quarta pars. In Parabole, quod Vitellio demonftra- 

uit, fagitta DK precise equat quartam chorde MN. hoc eft D 

N eft dupla ad DK. In Hyperbole EQ plus eft, quam dupla i- 

pfius ES. fe. minor eft fagitta ES. q quarta chorde EQ. & fem- 

per minor, atque minor per omnes proportiones, donec eua- 

nefcat in recta, vbi foco in lineam ipfam incumbente, altitudo 

foci feu fagitta euanefcit, & fimul chorda infinita efficit, coinci- 

dens fe. cum arcu fuo, abufiué fic diéto, cum reéta linea fit. Opor- 

tet enim nobis feruire voces Geometricas analogie: plurimtim 

namque amo anaiogias, fideliffimos meos magiftros, omnium 

nature arcanorum confcios: in Geometria precipue fufpicien- 

dos, dum infinitos cafus interie¢tos intra fua extrema, medium- 

gue, quantumuis abfurdis locutionibus concludunt, totamque 

rei alicuius effentiam luculenter ponunt ob oculos. 

Quin etiam in defcriptione feétionum analogia plurimim 

me iuuit. Etenim ex 51. & 52. tertii Apollonii defcriptio Hyper- 

boles & Ellipfeos efficitur facilima; poteftque 

vel filo perfici. Pofitis enim focis, & inter eos ver- 

tice C. figantur acus in focis A. B. annectatur ad 

acum A filum longitudine AC. ad B. filum longi- 

tudine BC. Prolongetur vtrumque filum quali- 

bus additionibus, vt fi duplex filum digitis com- 

prehendas, iisque a C difcedentibus, bina fila paulatim dimittas, 

alterajue manu fignes iter anguli, quem vtrumque filum facit 

apud digitos, ea defignatio erit hyperbole. Facilius Ellipfis de- 

fcribitur. Foci fint AB. vertex C. Fige acus firmas in A.B. vtram- 

que filo ampleétere, fimplici amplexu, vt inter AB filum non 
interfit. Fili longitudo fit AC duplicata, & capita fili 

nodo fint connexa. Infere iam Graphium D in eun- 

dem fili complexum cum AB. & tenfo filo, quantum 
id patitur, circa AB circumduc lineam, hec Ellipfis erit. 

b Ctm hec tam facilis effet defcriptio, non indigens o- 

perofis illis circinis, quibus aliqui cudendis admiratio- 
“¢ nem hominum venantur; diu dolui, non poffe fic et- 

iam Parabolen defcribi. Tandem analogia m6- 

ftrauit, (& Geometrica comprobat) non multo 

operofiis & hanc defignare. Proponatur A fo- 

cus, C vertex, vt AC fit axis; is continuetur in 

partes A. in infinitum vfq;, aut quousq; Parabo- 

len placuerit defcribere. Placeat vfq; in E. Acus 

ergd in A figatur, ab ea fit nexum filtii longitudi- 
ne AC. CE. Teneas manu altera caput alterti fi- 

li E. altera graphium, citi filo extende vfq; in C. 

Sit etiam ad CE. ereéta perpendiculariter EF. 

a 
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igitur graphio C & manu altera E difcede equalibus interuallis 

a linea AE. fic vt manus altera & fili caput femper in EF maneat, 

filumque DG femper ipfi AE parallelon; via CD. quam Graphio 20 

fignaueris, erit Parabole. 

Dixi hec de feétionibus conicis tanto libentits, quod non 

tantum hic dimenfio refractionum id requirebat, fed etiam in- 

fra in Anatome oculi vfus earum apparebit. Tum etiam inter 

problemata obferuatoria mentio earum erit facienda duobus 2; 

locis. | Denique ad preeftantiffima optica machinamenta, ad pen- 

flem in aére ftatuendam imaginem, ad imagines proportiona- 

liter augendas, ad ignes incendendos, ad infinite comburen- /<¢/:amdé- 
2 4 ips. ta Optica 

dum, confideratio earum plane eft neceffaria. Porte. 

The headlines of the edition quoted are Joannis Kepleri and Paralipom. in 

Vitellionem up to page 221, and afterwards Joannis Kepleri and Astronomiw Pars Optica. 

PAGE 92. 

Kepler begins by saying that rays from the centre of a sphere do not become 

parallel after reflexion from its inner surface, but converge to the centre. Some other 

surface then had to be sought which would reflect all rays from some point into 

parallels. Vitellio in lib. 1x. 39—44, in part supplying what was lacking in Apollonius, 

had shewn that the paraboloid of revolution was of the required form. But the subject 

of the Conic Sections presented difficulties because it had not been much studied. 

Kepler therefore—pardon a geometer—proposed to discourse somewhat “mechanically, 

analogically and popularly” about them. 

Vitellio or Vitello (Witelo) had proved that at any point of a parabola the tangent 

makes equal angles with a parallel to the axis and the lne from the pomt to a 

certain fixed point on the axis. Rays of the sun impinging equidistantly from the 

axis upon the concavity of a reflecting paraboloid of revolution would therefore all be 

reflected through a fixed point on the axis, and fire might so be kindled thereat. 

Of cones right or scalene there are five species of sections (line 24), the right 

line or line-pair, the circle, parabola, hyperbola and ellipse. From the line-pair we 

pass through an infinity of hyperbolas to the parabola, and thence through an infinity 

of ellipses to the circle. Of all hyperbolas the most obtuse is the line-pair, the most 

acute the parabola. Of all ellipses the most acute is the parabola, the most obtuse 

the circle. 

PAGE 93. 

The parabola is of the nature partly of the infinite sections and partly of the finite, 

to which it is intermediate. As it is produced it does not spread out its arms in 

direction like the hyperbola, but contracts them and brings them nearer to parallelism, 

“semper plus quidem complectens at semper minus appetens” (line 5). The hyperbola 

Vou. XVIII. 26 
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being produced tends more and more to the form of its “Asymptote” (line 12). Para- 

bolas are all similar and differ only in “quantity” (line 19). 

He then goes on to speak of certain remarkable points related to the sections 

which had NO NAME (line 21). The lines from them to any point of the section make 

equal angles with the tangent. He will call them Focr (line 27). He would have 

called them centres if that term had not been already appropriated. The circle has 

one focus, at the centre: the ellipse has two, equidistant from the centre, and more 

remote as the curve is more acute. In the parabola one is within the curve, while 

the other may be regarded as either without or within it, so that a line hg or w 

drawn from that “cecus focus” to any point of the curve is parallel to the axis 

(line 35). 
PAGE 94. 

In the hyperbola the focus external to either branch is the nearer to its internal 

focus as the hyperbola is more obtuse. In the straight line (or line-pair), to speak in 

an unusual way merely to complete the analogy, the foci fall upon the line itself. 

Thus in the extreme limiting cases of the circle and the line-pair, the foci come together 

at a point, which in the one is as far as possible from the nearest point of the cir- 

cumference and in the other is on the line itself. In the intermediate case of the parabola 

the foci are infinitely distant from one another (line 12): in the ellipse and the 

hyperbola on either side of it they are a finite distance apart. 

PaGE 95. 

The line mn through the focus, ie. the latus rectum, is called the chord, and br 

or dk or es the sagitta (line 6). In the next line BF is a misprint for BP. The 

lengths of the sagitta and the chord are compared in the five sections, and it is said 

that in the line-pair the one vanishes and the other becomes infinite (line 15), whereas, 

if e be the eccentricity, they are in the finite ratio 1/2(1+e), and vanish together. 

Kepler commends the principle of analogy in glowing terms, saying that he dearly loves 

analogies, his most trusty teachers and conversant with all the secrets of nature 

(line 19). Analogy leads us to comprise in one definition extreme limiting forms, from 

the one of which we pass to the other by continuous variation through an infinity of 

intermediate cases. 

In the next paragraph Kepler shews how to describe an are of a hyperbola by means 

of threads fixed at the foci, the difference of the focal distances of a point on the curve 

being constant. An ellipse is described more easily (line 33), with one thread. 

PaGE 96. 

In line 1 “AC duplicata” is inaccurate, the length of the thread being ac+cb. He is 

shewing how to describe an ellipse by means of a thread fixed at the foci a and }, the 

point c being a vertex. Having given his construction for this curve without the 

troublesome compasses (line 6), he goes on to the parabola. To his grief he was long 

unable to describe this analogously. At length he thought of the construction in the 

text, in which adg represents a string of constant length ec+ca fixed at the focus a. 
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The horizontal line is a fixed ordinate, c is the vertex and d any point of the locus. His 
construction assumes a case of the theorem that the sum or difference of the distances of 
a point on the parabola from the focus and a fixed perpendicular to the axis is constant. 

In conclusion he refers to later passages for applications of his theory of the conic 
sections. See cap. v. De modo visionis, and cap. Xt. prob. 22—23 (p. 375 sq.). 

THE CONVERGENCE OF PARALLELS. 

Vitellio, as we have seen, had proved that rays of the sun impinging equidistantly 
from (i.e. parallel to) the axis upon a concave reflector of the form of a paraboloid of 
revolution would all be reflected to a certain point on the axis, whereat consequently 
“ignem est possibile accendi.” Hence in different languages the name “burning point ” 
for what Kepler called Focus, in a parabola or other conic. 

It would appear that the idea of the meeting of parallels at infinity came from 
the observed fact that solar rays received upon a reflector may practically be regarded 
as parallel. Moreover it was obvious that the distance, estimated on an infinitely 
remote transversal, between “equidistant” lines would subtend a vanishing angle at an 
assumed point of observation. Kepler does not say that his doctrine of parallels is 
altogether new and strange, when he writes at the end of page 93, “adeo ut...”, so 
that lines from the point h (or 7) are parallel—as if that would be allowed to follow 
from its being infinitely distant. But it was perhaps a new and original suggestion 
that h and 7 at infinity were the same point. 

Kepler states expressly that he gave the name Foct to certain points related to the 
conic sections which had previously “no name.” With their new name he associated his 
new views about the points themselves, and his doctrines of Continuity (under the name 
Analogy) and Parallelism, which would soon have become known, and would after a time 
have been taken up by competent mathematicians. 

An abstract of the passage now quoted at length from Kepler’s Paralipomena ad | 
Vitellionem was given by the writer in The Ancient and Modern Geometry of Conics*, 

_published early in 1881, and previously in a note read in 1880 to the Cambridge 
Philosophical Society (Proceedings, vol. tv. 14—17, 1883), both of which have been referred 
to by Professor Gino Loria in his writings on the history of geometry. 

Henry Bricas. 

Frisch (11. 405 sq.) quotes a letter of Henry Briggs to Kepler dated, Merton 
College, Oxford, “10 Cal. Martiis 1625,” which suggests improvements in the Paralipo- 
mena ad Vitellionem. In this letter Briggs gives the following construction. Draw a 
line CBADC, and suppose an ellipse, a parabola and a hyperbola to have B for focus 
and A for their nearer vertex. Let CC be the other foci of the ellipse and the 
hyperbola. Make AD equal to AB, and with centres CC and radius in each case equal 
to CD describe circles. Then any point of the ellipse is equidistant from B and one 

“The Ancient and Modern Geometry of Conics is hereinafter referred to as AMGC. 

26—2 
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circle, and any point of the hyperbola from B and the other circle. When C is at 

infinity on either side of D the circle about it becomes rectilinear. Hence any point P 

of the parabola is equidistant from B and the perpendicular DF to DA. This is ex- 

pressed by Briggs as follows: 
c 

c 

“Si A sit vertex sectionis, et B, C foci, et AB, AD aequales, et centro C, radio 

CD describatur peripheria: quodlibet punctum sectionis eandem servabit distantiam a 

foco B et dicta peripheria. Eruntque...in Parabola (cui focus alter deest, vel distat 

infinite, et idcirco recta DF vicem obtinet peripheriae) PB, FP aequales.” 

The writer comprehended and accepted Kepler’s way of looking at parallels as lines to 

or from a point at infinity in one direction or its opposite. 

DESARGUES. 

The famous geometer Desargues worked on the lines of Kepler, and is now commonly 

credited with the authorship of some of the ideas of his predecessor. 

Poncelet in the first edition of his Traité des Propriétés Projectives des Figures 

(1822) writes with reference to a letter of Descartes, “On voit aussi, dans cette lettre, 

que Desargues avait coutume de considérer les systemes de droites paralléles comme 

concourant & Vinfini, et qu’il leur appliquait le méme raisonnement” (p. xxxix.). Chasles 

on the Porisms of Euclid refers to this remark of Poncelet. In his Apergu Historique 

(p. 56, 1875) he writes that Kepler “introduisit, le premier, usage de l’infint dans la 

Géométrie,” but really with reference only “aux méthodes infinitésimales.” The saying 

that Kepler introduced the use of the infinite into geometry has been repeated by 

other writers unacquainted with his doctrine of the infinitely great. 

Dr Moritz Cantor in his Vorlesungen tiber Geschichte der Mathematik writes under 

the head of Girard Desargues (1593—1662), “Wir miissen einige wesentliche Dinge 

hervorheben und darunter zunichst die Anwendung des Unendlichen in der Geo- 

metrie...Auch Kepler hat 1615, Cavalieri 1635 in Druckwerken, deren Besprechung 

uns obliegen wird, wenn wir von den Anfangen der Infinitesimalrechnung reden, den 

gleichen Gedanken zu nie geahnten Folgerungen ausgebeutet, aber bei Desargues waren 

es ganz andere Unendlichkeitsbetrachtungen als bei diesen Vorgingern” (11. 619, 1892). He 

goes on to say that Desargues regarded parallels as meeting at infinity, and thus in 

effect that Kepler did not so regard them. Cantor (p. 620 n.), referrmg to Poudra’s 

ee eg: 
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uvres de Desargues 1. 103, states confidently that Desargues could not have held that “es gebe nur einen Unendlichkeitspunkt einer Gerade.” “Auch in I. 105...darf man 
jenen modernen Sinn nicht hineinlesen.” But the oneness of opposite infinities followed simply and logically from a first principle of Desargues, that every two straight lines, 
including parallels, have or are to be regarded as having one common point and one 
only. A writer of his insight must have come to this conclusion, even if the paradox 
had not been held by Kepler, Briggs, and we know not how many others, before Desargues 
wrote. 

In Poudra’s uvres de Desargues, 1. 210, under the head Traité des Coniques, we 
read, “ Nombrils, point brulans, Joyers—Crest & dire que les deux points comme Q et 
P sont les points nommés nombrils, brulans, ou foyers de la figure, au suiet desquel il y a beaucoup a dire.” Desargues must have learned directly or indirectly from the work in which Kepler propounded his new theory of these points, first called by him 
the Foci (foyers), including the modern doctrine of real points at infinity. 

(B) 

NEWTON. 

In the fifth section of the first book of the Principia, entitled Inventio orbium ubi 
umbilicus neuter datur, the determination of conic orbits from data not including a focus, 
Newton proves the property of the Locus ad quatuor lineas of which no geometrical 
demonstration was extant, shews how to describe conics by rotating angles and other- 
wise, and solves the six cases of the problem to determine a conic of which n points and 5—n tangents are given. Two more problems, each with its Lemma prefixed, 
complete the section, which ends with the words, “Hactenus de orbibus inveniendis, Superest ut motus corporum in orbibus inventis determinemus.” 

The following pages contain a summary of the greater part of the section, with 
suggestions for the simplification of some of its contents and a few additional econ- structions and propositions. The Lemmas and Propositions of the Principia are quoted 
by their Roman numerals, 

II. 

THE CoNICc THROUGH FIVE Pornts, 

Prop. A. Given five points of a conic to Jind @ sixth, 

het AS BG 1D! RP’ be given points of a conic. Through P draw PT7SO parallel to BA across BD, AC, CD. It is required to find the pot K in which it meets the conic again. 
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By a property of conics and by similar triangles, if AB, CD meet in J, 

OK.OP/0C.OD=IA.IB/IC.ID=O8. OT/OC. OD. 

Therefore OK .OP=OS. OT, 

which determines K when the other points are given. 

Inflect PR to CD parallel to AC. Then the point K ws found by drawing CK 

parallel to RT, and PRT, SCK are similar triangles. 

Cor. 1. Yo determine the conic through five given points A, B, C, D, P. Having found 

K, we find H where PR meets the conic again in like manner, namely by drawing BH 

parallel to TR. Having two pairs of parallel chords, we can draw their diameters and 

find the centre. This with either pair of the parallel chords determines the conic, if 

the pair be unequal. If they be equal, we can use the parallel chord through D in 

lieu of one of them. Given five points A, B, C, D, EH, two pairs of parallel chords 

can also be determined as in Prob. Ly. of the Arithmetica Universalis. Let AC, BE cross 

in H. Inflect DZ to AC parallel to BE, and HK to DI parallel to AC. Then, in 

order that 7D, EK may meet the conic again in F, G, we must have with Newton's 

notation for rectangles and proportions, 

AHC.BHE :: AIC.FID :: EKG. FED. 

Cor. 2. To determine the conic touching lines 7B, JD at B, D and passing through 

P. Supposing AC, BD in the figure to coalesce, find A as in the general case, and 
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draw the diameter of PK. Then draw the diameter through J, and find its vertices, and those of the conjugate diameter. 

Cor. 3. Hexagrammum M ysticum. The construction in Cor. 1 for two pairs of parallel chords gives three pairs, AB and KP, AC and PH, BH and KC Hence Pascal’s theorem for the case of parallels, 

Cor. 4. Given parallel chords AB, KP and a fifth point C of a conic, a sixth point D on the curve can be found as follows. Draw any parallel to 0K meeting PK in T and meeting the parallel through P to AC in R. Then BT, CR meet at D on the conic. 

Cor. 5. In this construction we may say that PR, PT are to be taken im a given ratio equal to SC/SK. See below on Newton’s Lemma xx, 

Cor. 6. The locus of the point (BT, CR) in Cor, 4 is a conic through A, K, C, PB: Hence the following construction. Take fixed lines PR, PT; fixed points B, CO; and a fixed point Z at infinity. Then as the line ZRT turns about Z the point (BT, CR) traces a conic through B and (C. Obviously it will likewise trace a conic in the general case when Z is not at mfinity. 

Cor. 7. In other words, the locus of the vertex D of a varying triangle RDT’ whose base slides between fixed lines PR, PT, while its three sides pass through fixed points B, C, Z respectively, is a conic, This may be shewn independently as follows. Draw CD in any assumed direction, and find R, and then 7, and then D. Thus one point D is found on the line through C, and it is a single point of the locus, By drawing the line BC we find that each of the points B, C is a single point of the locus, Thus CD cuts it in two such points, and the locus is therefore of the second degree. 
Cor. 8. The anharmonic point-property of conics. In Cor. 4, as D varies, the parallel RT to CK divides PR, PT proportionally, so that the cross ratios of R and T in any four positions are equal to one another. Hence 

B{D} ={T} ={R} = {D}, 
or any four points D of the conic are equi-cross with respect to B and C, which may be any assumed fifth and sixth. 

Cor. 9. Hence we can deduce the general case of Cor. 6. 

Cor. 10. Locus ad quatuor lineas. By similar triangles, PR/PT and SC/SK are equal ratios. Compounding with them other equal ratios we get 

PR. POPS PT= SC. SA/SK . SP = fg, 
if f, g be the focal chords parallel to AC, AB. See also below on Newton’s Lemma xvi. 

Cor. 11. The extension at the end of Cor. 6 follows from a simple transformation of the figure by which the parallels RY are turned into convergents. In the figure as 
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it stands suppose DBw drawn to PQ. Then, the points A, B, C, P being fixed and 

D variable, 

(0} = (R}=[T} = {0} 
But P is the position of O, and likewise of , when RZ vanishes. Therefore Ow 

passes through some fixed point F. When D is at A the line Ow becomes QS, and when 

RT passes through B it becomes CH. Thus F is the point (CH, QS), and as Ow turns 

about # the point D is found by drawing CO, Bo. 

Cor. 12. By the construction of Cor. 7, as is well known, we can describe the 

conic through five given points. For example, in the limiting case in which three 

points A, B, C and the tangents at B, C are given, we can take AB, AC for the 

fixed lines, and for the fixed points B, C and the intersection Z of the two tangents. 

Lemma A. To find the centre of an involution of four points. 

To find the centre of the involution in which P, K and S, 7 are conjugate points, 

through P and S (or 7’) draw parallels, and through ZY (or S) and K draw parallels 

meeting them in AR and C respectively. Then RC passes through the centre of the 

involution (AMGC, p. 258). The converse has in effect been used in Prop. A, where 

the conic and AC, BD cut a parallel to AB in points of an involution having O for 

centre. 

The six joins of any four points cross any transversal in three pairs of points in 

involution. In the above construction two of the four points are at infinity. 

2: 

Locus ap TRES ET QuUATUOR LINEAS. 

APOLLONIUS OF PerrGa. We shall see that Newton mentions Apollonius of Perga 

in connexion with the problem of the quadrilinear locus. What Apollonius says of the 

Tomos emi Tpels Kal Técoapas ypayuds is translated as follows by Dr T. L. Heath in 

his edition of the Conics of Apollonius in modern notation (p. Ixx. sq. 1896), “Now 

of the eight books the first four form an elementary introduction ;...The third book 

contains many remarkable theorems useful for the synthesis of solid loci and determinations 

of limits; the most and prettiest of these theorems are new, and, when I had dis- 

covered them, I observed that Euclid had not worked out the synthesis of the locus 

with respect to three and four lines, but only a chance portion of it and that not 

successfully; for it was not possible that the synthesis could have been completed 

without my additional discoveries.” This prepares us to find in the third book of the 

Conics of Apollonius, if not the synthesis of the locus, the elementary theorems on 

which it depends. 

Turning to lib. m1 54, 56 we see the property of the locus proved incidentally for 

the case of three lines in the proposition thus enunciated by Dr Heath (Prop. 75, p. 120), 
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TQ, TQ being two tangents to a conic, and R any other point on it, if Qr, Qir’ 
be drawn parallel respectively to TQ’, TQ, and if Qr, QR meet in r and Qr’, QR 
in r’, then 

Qr . Wr’: QQ? =(PV?: PT?) x (TQ. TQ: QV), 
where P is the point of contact of a tangent parallel to QQ’. 

Dr Heath shews (p. 122 sq.) that this proposition and his next (lib. mi. 55), for 
tangents to one branch and two branches of a conic respectively, “give the property of 
the three-line locus.” The constancy of Qr.Q’r’ being a corollary from the property of 
the trilinear locus, we can of course work back from the latter to the former. 

But more briefly, leaving out r, r’, draw the tangents TQ, TQ’ crossing any chord 
RR’ parallel to QQ’ in K, K’. 

Then, because the diameter through JZ bisects both KK’ and RR’, the intercepts 
KR, K’R’ are equal, and likewise KR’, K’R. 

ie L Q K 

Therefore RK .RK’ (or KR.KR’) varies as KQ?. 

This is the trilinear theorem as proved by Apollonius. 

Inflect RD to QQ’ parallel to Q7. 

Then RK.RK’ varies as RD?, and the theorem may be stated thus, 

The distance of any point on a conic Srom a given chord varies as a mean proportional 
to its distances from the tangents at the ends of the chord, each distance being parallel to 
any given line. 

Apollonius does not enunciate the theorem, but he proves and uses it in the course of 
his propositions mentioned above. 

Vot. XVIII. 27 
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The distances of any point on a conic from the tangents at fixed points dA, B, 

C, D being denoted by a, 6, c, d respectively, its distances from AB, BC, CD, DA vary 

as mean proportionals to ab, be, cd, da. 

Hence obviously the four-line theorem, AB.CD=k.BC.DA. Apollonius, who claims 

to have solved the Locus ad tres et quatuor lineas completely, may very well have deduced 

the four-line theorem from the three-lime theorem in this way. 

The Lemmas and Propositions quoted below by number are Newton’s, whose proofs 

and diagrams in lib. 1 sect. v. of the Principia should be referred to. 

Lemma XVII. Case 1. AC, BD being given parallel chords of a conic, through any 

point P of the curve draw the chord PK parallel to AC and crossing AB, CD in Q, R; 

and a parallel to AB meeting AC, BD in 8,7. Then PQ.QK/AQ.QB is a constant ratio. 

But, the intercepts PR, QK being equal, the rectangle PQ.PR is equal to PQ. QK, 

and therefore varies as AQ.QB or PS. PT. 

Thus Newton’s proof for this case is the same as that of Apollonius for the three- 

line theorem, which it includes, since the parallels AC, BD may be supposed to coalesce. 

In Case 2, with the help of Case 1, the theorem is shewn to hold when AC, BD 

are not parallel. In this general case Newton does not use the point X, which might 

have been found by drawing the parallel to RT through B. This construction leads to 

the proof of his Lemma xvi. in Prop. A, Cor. 10. The proof in question is given by 

Messrs J. J. Milne and R. F. Davis in their Geometrical Conics, followed by a corollary 

in which Lemma Xx. is deduced from Lemma XVIL, as by Newton. 

Lemma XVIII. Conversely, the locus of a point P such that PQ.PR/PS.PT is 

constant is a conic section. 

Corol. The trilinear theorem is deduced as a limiting case. 

Scholium. The term conic section includes the line-pair and the circle. For a 

trapezium may be substituted a re-entrant quadrilateral; and one or two of the points 

A, B, C, D may be at infinity. 

Lemma XIX. Any line being drawn through A, the point P in which it meets 

the locus again is determined. 

Corol. 1. The tangent at a given point is drawn. 

Corol. 2. It is then shewn how to find a pair of conjugate diameters, and the 

different species of conics belonging to the locus are discriminated. 

At the end it is said, with tacit allusion to the algebraic proof of the quadri- 

linear theorem by Descartes, “Atque ita problematis veterum de quatuor lineis ab Huclide 

incepti & ab Appollonio continuati non calculus, sed compositio geometrica, qualem 

veteres querebant, in hoe corollario exhibetur.” 

a 
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3. 

CurVARUM DEscRIPTIO ORGANICA. 

Lemma XX. AB, AC are given chords and P a given point of a conic. Through 
P draw parallels to AC, AB forming with them a parallelogram PQAS; and across PO: 
PS draw CRD, BDT to any sixth point D of the conic. Then will PR/PT be a con- 
stant ratio, and conversely, 

Case 1. The constancy of PR/PT is deduced from the four-line theorem proved in 
Lemma xvi. Interchanging P, D in this paragraph only, let A, B, OC, D in the figure 
of Prop. A be fixed and P variable. Through D draw a parallel to AG meeting CP 
m r, and a parallel to AB meeting BP in t. Then, CD being given, Dr varies as 
PR/RC, and therefore as PR/PS; and, BD being given, Dt varies as PTB and 
therefore as PT/PQ. Therefore Dr/Dt is a constant ratio. 

In like manner, with P fixed and D variable as in Lemma xx., IIR IONE (p. 206) zs 
a constant ratio. 

Hence the line RT is given in direction. See Prop. XxI. and Prop. xxutL, where 
Pt/Pr is made equal to PT/PR by drawing tr parallel to TR, “actA rectd tr ipsi 7'R 
parallela.”" Hence, K being the position of D found by drawing RT through C (p. 206), 
it follows that RT is parallel to CK. Thus Prop. A is in fact Lemma xx. 

Lemma XXI. Take a triangle BPC, and let angles equal to its angles at B and 
( turn about those points as poles, one pair of the lines or bars containing the angles 

Pp 

intersecting at M on a fixed line or director which cuts BC in MN. Then the other 
pair will cross at a point D lying on a conie through B and C. 

27—2 
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For inflect PR to CD, making the angle CPR equal to the constant angle CNM. 

Then PCR, NCM are similar triangles, and 

PR/NM = PC/NC. 

Inflect PZ to BD, making the angle BPT equal to the constant angle BVM. Then 

PBT, NBM are similar triangles, and 
PT/NM = PB/NB. 

Therefore PR varies as PT, and by Lemma xx., PR and PT being on fixed lines, 

the locus of (CR, BT) is a conic through B and C, and conversely. 

The lengths PR, PT in the figure, which differs somewhat from Newton’s, are as 

the perpendiculars from V to PB, PC. 

Given four points B, C, D, P, an infinity of conics can thus be drawn through 

them, for the given point D determines only one point M of the director. Given a 

fifth point of the conic, the director is determined, and one conic only can be described. 

To draw the tangent B7 at B, make D coincide with B. See Prop. xxi, Corol. 1. 

In other words, make the angle NCM equal to the angle PCB, and then the angle 

MBT equal to the angle PBC. 

To find the directions of the axes. If the arms BM, CM be made constantly parallel, 

the intersection D of the others will trace a circle through B and C. This will cut 

the conic again at the two points found by making the parallel arms successively 

coincident with BC and parallel to the director. Four points common to the circle and 

the conic having been found, the axes must be parallel to the bisectors of the angles 

between a pair of chords joinmg them. For Newton's construction see Prop. XXVIIL 

Scholium (p. 216). 

Prop. B. Jf two angles AOB, AwB of given magnitudes turn about poles O, a, 

and if the intersection A traces a curve of the nth order, the intersection B will in 

general trace a curve of the 2nth order. 

For a given position of the arm OB there are n positions of A and therefore n 

of B. When OB is in the position Ow all the B’s coincide with w, which is therefore 

an n-fold point on the locus of B, as is also the point O; and since any line through 

O (or @) meets the locus of B in n other points, the locus is of the order 2n. 

4, 

INVENTIO ORBIUM. 

Prop. XXII. Pros, XIV. To describe the conic through five points. This is done by 

Lemma Xx., and again by Lemma XxXt1. 

Prop. XXIII. Pros. XV. To describe a conic through four points and touching a 

given line. 

Case 1. When one of the points is the point of contact the construction is effected 
as in Prop. XXII. 

a 
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Case 2. In the general case, HZ being the given tangent and BOCDP the given 

points, draw HAJ, ICPG, GBDH, and make the ratio compounded of 

JEVLEEHD) STEMS CARE CID GND 5 (COIS » KO Ue LARs 

a ratio of equality. Thus HA/ZA is determined and the point of contact A is found 

within or without HI. 

This is Newton’s solution briefly stated, and it is identical with the modern solution 

by what is called Carnot’s theorem. When A is found the two conics can be described 

by the methods used in Case 1. 

Prop. XXIV. Pros. XVI. To describe a conic through three given points and touch- 

ing two given lines. 

Given two points and two tangents, Newton proves that the chord of contact must 

pass through one of two fixed points. This may be shewn as follows. 

Let b, D be the given points and GH, GK the given tangents. 

Take H and K in line with BD, and suppose BD and the chord of contact to 

cross at R. 

Then by the trilinear theorem, all the distances being measured along BD, we have 

BR?/DR?=BH. BK/DH. DK. 

Divide BD within and without at R in the ratio thus determined, and we have 

two points through one of which the chord of contact must pass. 

A third given point C taken with B or D determines two points S through one 

of which the chord of contact must pass. Thus there are four possible positions of RS, 
giving four solutions. 

When RS is found the conic can be described as in the first case of Prop. XXIII. 

Imaginary Points. In the second case of Prop. xxi. and in Prop. xxiv. Newton 
uses an auxiliary line which is supposed to cut the conic in points XY and Y. 

At the end of Prop, xxiv. he remarks that the constructions given will be the 
same whether the line XY cuts the trajectory or not. For the sake of brevity he 
gives no special proofs for the case in which, as we should say, the points XY and Y 
are imaginary. 

LemMA XXII. Figuras in alias ejusdem generis figuras mutare. 

Here Newton gives a method of homographic transformation, in which the loci of 
points G, g correspond so that the coordinates XY, Y of @ and «, y of g are connected 
by relations of the form, 

_OA.AB ya 04-y 
x 
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By this method, it is remarked, convergent lines can be transformed into parallels; 

and when a problem has been solved in the simplified figure, this can be retransformed 

into the original figure. In the solution of “solid problems” one of two conics can be 

changed into a circle. In the solution of “plane problems” a line and a conic can be 

made a line and a circle. 

Prop. XXV. Pros. XVII. To describe a conic through two given points and touch- 

ing three given lines. 

Transform the given tangents and the line through the given points into the sides 

of a parallelogram. 

Let these sides be hei, idk, kel, lbah, where a, b correspond to the given points 

and c, d, e are the points of contact. 

Take m, n mean proportionals to ha, hb and la, lb. 

Then he/m =ic/id = ke/kd = le/n, 

and each of these ratios is equal to the given ratio of hi+4l, the sum of the 

antecedents, to m+n+ki, the sum of the consequents. Thus the points of contact are 

determined. 

It may be remarked that this case is the reciprocal of Prob. xvi. Given two 

points B, D and two tangents GH, GK, the pole of BD must le on one of two fixed 

lines. A third tangent being given, we can thus find four positions of the pole of BD, 

Having then five tangents and the points of contact of two of them, we can trace 

the four conics in various ways. 

Prop. XXVI. Prop. XVIII. Yo describe a conic through a given point and touching 

four given lines. 

Newton’s solution is in effect as follows. Let P be the given point, and let two 

diagonals of the quadrilateral formed by the four tangents meet in 0. Draw OP to 

the third diagonal, and take @ a harmonic conjugate to P with respect to O, o. 

Then Q is on the conic, and the case is reduced to that of Prop. xxv. 

He transforms the given tangents into the sides of a tangent parallelogram; finds 

the centre 0; and finds Q the other end of the diameter PO. In the retransformed 

figure Q would therefore be found by the previous construction. 

Prop. XXVIII. Prop. XIX. To describe the conic touching five given lines. 

This is led up to by three Lemmas, one of which, with a transformation as in 

Prop. XXv. or Prop. xxVvL, would have sufficed for the solution of the problem, 

Lemma XXIV. Corol. 2. Using the figure of Lemma xxv., let AMF, BQI be 

parallel tangents to a conic; A, B their points of contact; FQ, IM any third and 

fourth tangents. 
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Then AM: AF=BQ: BI, and FI, MQ meet on the diameter AB. 

We can now solve the problem as follows, 

F 

Complete the parallelogram JKIM by drawing the tangent KL parallel to 7M. Then ZZ, KM cross at the centre of the conic, Conversely, from five given tangents we can determine the conic. 

Case 1. Let four of the tangents be the sides of a parallelogram, as in the figure. Its diagonals by their intersection give the centre, and FI, MQ also intersect on the chord of contact AB. The diameter AB being known, the conjugate radius is a mean proportional to AM, BI. 

Case 2. Let the tangents at A, B only be parallel. These with FQ, MI determine a point (FJ, MQ) on the chord of contact AB; and with 7M, KL they determine a point (JZ, KM) on AB. 

Case 3. When none of the tangents are parallel, the same construction determines AB; for one pair of them, or two pairs, can be transformed into parallels by Lemma Xx. All the points of contact can be found in this way, and the conic can then be traced by various methods. 

Lemma XXV. Corol. 1. If ITEM, IQK be fixed tangents to a conic and MK the diameter parallel to their chord of contact, then, HQ being any third tangent, the rectangle KQ.ME, or (1K -—IQ)(IM—TIE) is constant, This leads to a tangential equation of the form, 

a.JH.IQ+b.JE+c.1Q+d=0, 
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Corol. 2. The anharmonic tangent-property of conics. 

A sixth tangent eq is drawn, and it is shewn that 

KQ: Qq= Me: Ee. 

Thus the four tangents ZK, EQ, eq, LM determine equal cross ratios on the 

tangents 7K and JM. 

Corol. 3. A tangent quadrilateral being given, the locus of the centre of the conic 

is the straight line which bisects its diagonals. 

Prop. XXVII. Hence, five tangents being given, two tetrads of them give two 

lines through the centre. The parallel tangents can then be drawn, their points of 

contact found by Lemma XxXIv., and the conic described by Prop. xxm. 

Scholium. The preceding problems include cases in which the centre or an asymptote 

is given. For an asymptote is a tangent at infinity, and the centre with one point 

or tangent determines another point or tangent. 

To find the axes and foci of a conic described by Lemma xx1. Set the arms 

BP, CP (which by their intersection described the conic) parallel and let them so 

rotate. The intersection X of the other arms of the two angles will then describe a 

eircle through B, C. Draw its diameter KZ crossing the director at right angles in 

H. When X is at K, then CP is parallel to the major or minor axis according as 

KH is less or greater than ZH; and when X is at LZ, then CP is parallel to the 

other axis. Hence when the centre is given the axes are given, and the foci can be 

found. 

Newton does not explain his construction for the directions of the axes, which has the 

appearance of having been first made for the hyperbola, and then stated for the ellipse 

also as having imaginary points at infinity. Le Seur and Jacquier, in their annotated 

edition of the Principia, having explained the construction for the case of the hyperbola 

by means of its asymptotes, or tangents “ad distantiam infinitam,’ merely remark in 

conclusion that it applies also to the parabola into which the hyperbola is changed when 

the intersections of the director with the circle coalesce, and to the ellipse into which 

the parabola is turned when the director passes outside the circle*. 

The squares of the axes are as KH to LH. Hence a trajectory of given species or 7 
eccentricity can easily be described through four given points. Conversely a trapezium of 

given species, “si casus quidam impossibiles excipiantur,” can be inscribed in a given conic. 

There are also other lemmas by the help of which trajectories of given species 

can be described when points and tangents are given. For example, the middle point 

of a chord drawn through a fixed point to a conic traces a similar and similarly 

situated conic. “Sed propero ad magis utilia.” 

* Their words are, ‘‘Superior autem constructio non  Ellipsi in quam vertitur parabola, dum recta MN extra 

solum hyperbole convenit, sed & parabole in quam hyper-  circulum transit,’ the points IJ and m being the inter- 

bola mutatur, dum puncta m, M coeunt; atque etiam sections of the director MN and the circle. 

—iii_,2.0 Se ee 
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5. 

PERSPECTIVE AND CONTINUITY. 

In Lemma xxi (p. 213) Newton gives a construction made to illustrate his 

algebraical transformation of an equation of any degree into another of the same degree. 

After the proof that tangents remain tangents, he remarks that his demonstrations might 

have been put together “more magis geometrico,” but he aims at brevity. With this 

Lemma should be read his Enumeratio Linearum Tertii Ordinis, where again he has 

something to say about curves in general. 

At the end of the preface to his Opticks Newton writes, And I have joined with 

wt another small Tract concerning the Curvilinear Figures of the Second Kind, which 

was also written many Years ago, and made known to some Friends, who have solicited 

the making it publick. He is referring to the Hnumeratio above mentioned, in which 

curves of the mth order are called curves of the (n—1)th genus or kind, the straight 

line in this way of speaking not bemg counted among curves. In this tract he gives 

the theory of Perspective in space under the name Genesis Curvarum per Umbras, rays 

from a luminous point being supposed to cast shadows of geometrical figures on to an 

infinite plane. Thus, he says, the “Parabole quing; divergentes” generate by their 

shadows all other cubic curves, and so from “Curve quedam simpliciores” of any 

genus can be produced all the other curves of that genus. 

Such genesis of curves by shadows may have been suggested to Newton by some 

of Kepler's problemata obseruatoria (pp. 201, 203), in which he lets the sun shine through 

a small aperture into a darkened room, and observes the diurnal course of its projection 

on the floor, This varies with the latitude of the place, according to which the apparent 

path of the sun itself in any day cuts or touches or does not meet the plane of the 

horizon. 

Thus Perspective as a modern method may be said to have originated with Kepler. 

The idea of it was not altogether unknown to the ancients, but they were scarcely in 

a position to put it to effective use, for this could not be done without a more or 

less complete doctrine of Continuity, including especially the quasi-concurrence of parallels 

at infinity. See AMGC, p. lv., and the writer’s note on Perspective in vol. x. of the 

Messenger of Mathematics (1881). 

Newton’s Lemma XXII may have arisen from his genesis of curves by shadows. 

Having seen how to connect varieties of the same order of curve graphically, he would 

naturally seek to connect such curves algebraically; and this could obviously be done 

by his transformation of coordinates from X, Y to wz, y, with Xz and Ya/y constant. 

Page 200. 21 gquantumuis absurdis locutionibus] Poncelet used “ce quwil appelle le 

principe de continuité,” which is Kepler’s principle of Analogy under a new name. This 

principle Kepler formulated in terms suitable to its later applications. Including normal 

Vor. SVE. 28 
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and limiting forms of a figure under one definition, we are led to paradoxical ways of 

speaking, “sine vsu, tantum ad analogiam complendam” (p. 199. 5—6); as when we 

think of a hyperbola as a sort of ellipse, and postulate imaginary elements in the one 

analogous to what we see in the other. 

Newton in some of his constructions virtually uses imaginary points (pp. 213, 216), 

whether or not, like Boscovich, he thought definitely of geometrical figures as having 

imaginary elements. To say that equations in « and y, which represent coordinates, may 

have imaginary roots (Opticks, p. 151) is to say in effect that there are what may be 

called imaginary points. Newton doubtless used equations for his own satisfaction in 

some places where he does not fully explain his geometry. An equation representing 

the locus described in Lemma xxI. (p. 211), is given in Prob. Lut. of the Arithmetica 

Universalis (1707). By the method of Fluxions he discovered things which he gave to 

the world proved “more magis geometrico.” Thus he writes: 

“At length in the winter between the years 1676 and 1677 I found the Proposition 

that by a centrifugal force reciprocally as the square of the distance a Planet must 

revolve in an Ellipsis about the center of the force placed in the lower umbilicus of 

the Ellipsis and with a radius drawn to that center describe areas proportional to the 

times...... And this is the first instance upon record of any Proposition in the higher 

Geometry found out by the method in dispute.” 

Two imaginary points the Focormps (AMGC, p. 281), or “Circular Points at Infinity,” 

play a great part in modern geometry. Their existence may be proved in geometrical 

form as follows. 

Draw any circle in a given plane, and let ¢ and ¢’ be the two points in which 

it cuts the line Infinity. These will be the same for all circles in the plane. 

For take points A, B on the circle subtending any angle a at the circumference; 

and take any other two points a, b in the plane. 

Then the angle AdB is equal to a, because ¢ is on the circle; and the lines 

oA, ga are parallel, and likewise $B, $b, because ¢ is at infinity. 

Therefore 
Z agb= 2 A¢B=a, 

or any two lines through ¢ may be regarded as intersecting at any angle. 

Hence every circle in the plane passes through ¢, and similarly through ¢’. 

Conversely, a conic through ¢ and ¢’ is a circle. 

The orthoptic locus of a curve of the nth class is of the degree n(n—1), since its 

intersection with the line Infinity consists of @ and ¢’ taken $n(n— 1) times. 

From the equation 
e+ y=(et ty) (a—-ty)=0 

in rectangular coordinates it seems at first that @ and @’ are indeterminate, because 

x (or y) may have any direction. But the angles tan-'+7 are indeterminate. 

— 
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tan (0 + a) = tan 0 

tan a(1 + tan? 6) =0, 

The equation 

reduces to 

and when tan?@=—1, then @ is of the form a +78 with 8 infinite. 

Page 210 ab Fuclide incepti, etc.] Newton has in mind the words of Descartes 
in La (Géométrie, “commencée & resoudre par Euclide et poursuivie par Apollonius, sans 
avoir été achevée par personne.” Apollonius has indeed nothing to say about a locus 
related to more than four lines, but there is no reason to question his statement that 
he had solved the problem of the four-line locus. Its complete working out would have 
supplied ample materials for a book on the scale of his lib. v. on Normals*. 

Newton assumes Lemma Xvi. in Lemma xx., on which his Lemma xxI. depends, 

thus making the “Organic Description” of conics seem less simple than it is. Having 
proved Prop. A, make A, B, K, P, C fixed points and D variable, and we have at 

once RT parallel to the fixed line CK (p. 206) as in Lemma XX1. 

Page 216 Sed propero ad magis utilia] The Principia, all but some ten or twelve 

propositions composed previously, having been written in less than a year and a_ half 

(Dec. 1684—May 1686), Newton could not have had much time to spare for the two 

sections (lib. 1. 4—5) on Inventio Orbiwm. Maclaurin’s constructions of a conic by means 

of three (p. 207, Cor. 6—7) or more lines through fixed points grew out of a lemma 

Neutonianum, as we learn from the preface to Simson’s Sectiones Conic. Newton himself, 

with leisure, could have developed the said two sections into a comprehensive and 

essentially modern treatise. 

* Of this lib. v. Chasles tells us that it treats of ‘les mazximis et minimis, sur les sections coniques. Dans le 

questions de maxima et de minima,” and that, “On y 

retrouve tout ce que les méthodes analytiques d’aujourd’hui 

nous apprennent sur ce sujet.” This astonishing statement 

is a too brief summary of the words of Montucla on lib. v. 

and lib. y1., ‘‘Ils traitent l’un et l'autre un des sujets les 

plus difficiles de la géométrie, savoir les questions de 

cinquiéme Apollonius examine particuliérement quelles sont 

les plus grandes et les moindres lignes qu’on puisse tirer de 

chaque point donné 4 leur cireconférence. On y retrouve 

tout ce que nos méthodes analytiques d’aujourd’hui nous 

apprennent sur ce sujet.’ Chasles goes on to speak of 

normals as the subject of lib. v. 

28—2 



IX. Sur les Groupes Continus. Par H. Porncare. 

[Received 25 September, 1899.] 

I. INTRODUCTION. 

La théorie des groupes continus, ce titre immortel de gloire du regretté Sophus 

Lie, repose sur trois théoremes fondamentaux. 

Le premier théortme de Lie nous apprend comment dans tout groupe continu il 

y a des substitutions infinitésimales et comment ce groupe peut étre formé a I’aide 

des opérateurs 

Tf = OG) 
Considérons 7 opérateurs de cette forme 

(1) Aa Fong hs (Oped zis 5 Al Gays 

et convenons de poser : 

X;X;- X,X; — (X;X;). 

D’aprés le second théoréme de Lie si les symboles (X;X;) sont liés aux opérateurs 

X; par des relations linéaires de la forme: 

(2) (X;Xz) = =cusXs, 

ou les ¢ sont des constantes, les r opérateurs (1) donneront naissance 4 un groupe. 

Les relations linéaires (2) pourront s’appeler relations de structure puisqu’elles 

définissent la “structure” du groupe qui dépend uniquement des constantes c. 

Cest le troisitme théortme de Lie qui attirera surtout notre attention. Quelles 

sont les conditions pour qu’on puisse former un groupe de structure donnée, c’est-a- 

dire pour trouver r opérateurs X,, Xo, ...... , X, satisfaisant A des relations de la 

forme (2) dont les coéfficients c¢ sont donnés? 

On voit tout de suite que les coéfficients ¢ ne peuvent étre choisis arbitrairement. 

On doit d’abord avoir 

(3) Cis = — Ciks- 

SS ees ee 
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Ensuite d’aprés la définition méme du symbole (X;X;) on a identiquement 

(4) ((XaXy) Xe) + (Xo e) Xa) + (XX a) Xr) = 0, 
d’ou résultent entre les c certaines relations connues sous le nom ddentités de Jacobi. 

Une condition nécessaire pour que l’on puisse former un groupe de structure donnée, 

cest done que les coéfficients c satisfassent & ces identités de Jacobi auxquelles il 

convient d’adjoindre les relations (3). 

Le troisitme théoreme de Lie nous enseigne que cette condition est suftisante. 

Pour la démonstration de ce théoréme, nous devons distinguer deux familles de 

groupes. 

Les groupes de la 1° famille sont ceux qui ne contiennent aucune substitution 

permutable a toutes les substitutions du groupe. 

Les groupes de la 2° famille sont ceux qui contiennent des substitutions permutables 

& toutes les substitutions du groupe. 

En ce qui concerne les groupes de la 1°? famille, la démonstration de Lie, fondée 

sur la considération du groupe adjoint, ne laisse rien & désirer par sa simplicité. 

En ce qui concerne les groupes de la 2° famille, Lie a donné une démonstration 

entiérement différente, beaucoup moins simple, mais qui permet cependant de former les 

opérateurs X;(b) par lintégration d’équations différentielles ordinaires. 

Dans une note récemment insérée dans les Comptes-Rendus de VAcadénue des 

Sciences de Paris, j'ai donné une démonstration nouvelle du 3° théoreme de Lie. 

Les résultats contenus dans cette note étaient moins nouveaux que je ne le croyais 

quand je l’ai publiée. 

D’une part en effet, Schur avait dans les Berichte der k. sdchsischen (resellschaft 

der Wissenschaften 1891 et dans le tome 41 des Mathematische Annalen donné du 

théoréme en question une démonstration entiérement différente de celle de Lie. 

Cette démonstration présente la plus grande analogie avee celle que je propose; 

mais elle n’a pour ainsi dire pas été poussée jusqu’au bout. Comme le fait remarquer 

Engel, le résultat dépend de séries que Schur forme et dont il démontre la convergence ; 

au contraire Lie ramene le probléme a l’intégration d’équations ditférentielles ordinaires. 

Je suis arrivé comme Lie lui-méme & des équations différentielles ordinaires qui 

méme sont susceptibles d’étre complétement imtégrées. 

D’autre part Campbell a donné sous une autre forme quelques-unes des formules 

auxiliaires qui m’ont servi de point de départ (Proceedings of the London Mathematical 

Society, tome 28 page 381 et tome 29 page 612). 

Il m’a semblé néanmoins que cette note contenait encore assez de résultats nouveaux 

pour quil y ett quelque intérét a la développer. 
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Je raméne en effet la formation d’un groupe de structure donnée, 4 l’intégration 

d’équations différentielles simples, intégration qui peut se faire en termes finis. 

Ces équations sont moins simples que celles que Lie a formées pour les groupes 

de la 1% famille; mais méme dans ce cas, il peut y avoir intérét & les connaitre, car 

elles sont dune forme différente et me sen déduisent pas immédiatement. 

De plus elles sont applicables aux groupes de la 2° famille et dans ce cas elles 

nous fournissent une solution du probleme plus simple que celle de Lie. 

Il. DEFINITION DES OPERATEURS. 

Soit f une fonction quelconque de n variables a,, 2, ..., @p. 

Soit X un opérateur qui change / en 

dpe of, ect 
CS) 7a) Ge be ae 

ot les (X;) sont n fonctions données des n variables a, a, ..., @, de sorte que: 

X(N=3(X) S. 
Soient Y, Z, etc. d'autres opérateurs analogues de telle fagon que: 

7 =, Te df | Vea) df 

PP)=2VN Ts SA)=2AG or 

les (Y;), les (Z;), ... étant d’autres fonctions de a, a, ..., Zp. 

Dans ces conditions: 

X(f)=X(X(P)], XV (PN=XVP/)], LY PI=A[AV (Pf), XVZ(f)=X[V2(F)],--, 
seront des combinaisons linéaires des dérivées partielles des divers ordres de la fonction 

Ff, wmultipliges par des fonctions données des 2. 

Ainsi se trouveront définis de nouveaux opérateurs X*, XY, X*Y, XVZ,..., qui 

sont des combinaisons des opérateurs simples X, Y, Z, .... On voit que ces produits 

symboliques obéissent & la loi associative mais n’obéissent pas en général a la loi 

commutative de sorte que XY ne doit pas étre confondu avec VX. 

Ces opérateurs sont ainsi symboliquement représentés par des mondmes; mais on 

peut définir des opérateurs qui seront symboliquement représentés par des polynédmes 

tels que: 

1+aX, aX+bY, aX?+2bXV+cY> ...... 5 

en convenant d’écrire par exemple: 

(1+aX)(f)=f+aX(f); @X+bY)(f)=aX(f)+ bY (f) -ccccccee 

ae 
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On voit que les polynodmes opérateurs ainsi définis obéissent & la fois A la loi 
associative et & la loi distributive; de sorte qu’on aura: 

(aX +bY)(cX + dY) =acX*+adX V+ be VX + bd ¥?, 

et en particulier: 

(X+ YP=X?4+XV+ VX + V2, 

expression qu'il ne faut pas confondre avec X?+2XY+ Y*. 

On peut aussi introduire des opérateurs qui seront représentés symboliquement par 

des séries infinies. Je citerai par exemple l’opérateur : 

fea(Z+V)(f) +e (X + Y(f) 408 (K+ YR (f) teens, 
que je représenteral symboliquement par: 

em = > 

l-a(X+Y) (7), 

peers 
l-a(X+Y)’ 

ou plus simplement par 

et lopérateur: 
A. a = = a Ls ae “s 

ft HX Atq V+ % (f) + sinjelelere ) 

que je représenterai par e**(f) ou simplement par e™. 

On peut se demander si l’emploi de ces opérateurs représentés par des séries est 

légitime et si la convergence des opérations est assurée. 

‘ s ott cette convergence est certaine. C’est ainsi que Lie a démontré que Il y a des cas o q 

gas OPS ii Gre ie 090%) Sta)) 

ou les «’; sont définis par les équations différentielles : 

da; 7 F op 

Iie sag NA BY NOL, 2) +++) Ln); 

et par les conditions initiales: 
, 

Ly = 2; pour ¢=0. 

Les opérateurs définis par des séries symboliques obéissent évidemment aux lois 

distributive et associative, ce qui permet par exemple d’écrire des égalités telles que 

celle-ci : 
(e%etXeZ) (e-ZebX el) = eV elatv) Xe, 

Il y a aussi un cas ov ils obdissent A la loi commutative. Soient 

p(X) = DanX™, (X)= 2d, X", 

deux séries symboliques dépendant d’un seul opérateur élémentaire X. 

On a alors 

6(X) [v (X) (P= v (X) [6 (4) (PII. 

Les deux produits symboliques ¢(X) W(X) et W(X) d(X) sont en effet des sommes 

de monémes dont tous les facteurs sont égaux A WX. Si tous les facteurs sont 
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identiques, il est clair que l’ordre de ces facteurs est indifférent et que les opérations 

sont commutatives. 

Mais cela ne sera plus vrai si les séries symboliques dépendent de plusieurs 

opérateurs élémentaires différents; il ne faudrait pas par exemple confondre 

3 xAmyn 
exe¥ = > —_, 

m! n} 
avec 

yuyn 

evex — >, 
min! 

ni avec 

pe ey es yy 
p! 

III. Cancun pes PoLtyNoOMES SYMBOLIQUES. 

Solent A YA 7, 2 UG), coe. , n opérateurs élémentaires. Par leurs combinaisons on 

pourra former d’autres opérateurs représentés symboliquement par des monédmes ou des 

polyndmes. 

Deux mondmes seront dits équipollents lors quils ne différeront que par Jlordre de 

leurs facteurs; il en sera de méme de deux polynédmes qui seront des sommes de 

mondmes équipollents chacun a chacun. 

Nous appellerons polynéme régulier tout polyn6me qui peut étre regardé comme 

une somme de puissances de la forme: 

(aX +BY+yZ+...)?. 

Il résulte de cette définition: 

1°. Que si un polynéme régulier contient parmi ses termes un certain monéme, 

tous les mondmes équipollents figureront dans ce polyndme avec le méme coéfficient. 

Cette condition est d’ailleurs suftisante pour que le polynéme soit régulier. 

2°, Que parmi les polynédmes équipollents & un polyndme donné il y a un polynéme 

régulier et un seul. 

Le polynéme 
XY-—YX 

jouit de la méme propriété que les opérateurs élémentaires, c’est-a-dire que 

(XA V— YX) (f) 
est comme X(f), Y(f) ete. une combinaison linéaire des dérivées du premier ordre 

seulement de la fonction f multiplies par des fonctions données des a;. 

Nous supposerons que les opérateurs élémentaires et leurs combinaisons linéaires 

sont seuls & jouir de cette propriété. (Si cela n’avait pas lieu, nous introduirions parmi 

les opérateurs élémentaires tous ceux qui en jouiraient.) Nous devrons done avoir des 

relations de la forme: 
@, Re Oy): 
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ou (XY) est une combinaison linéaire des opérateurs élémentaires: nous reconnaissons la la relation de Lie dite relation de structure: 

X,;X, = XX; => Scie X «. 

Cela posé, deux polynémes seront équivalents lorsqu’on pourra les réduire Pun A autre en tenant compte des relations (1). 

Par exemple le produit 

(2) P[XY-YVX-(XY)]Q 
(ot le premier et le dernier facteurs P et @ sont deux mondmes quelconques) est équivalent 4 zero; et il en est de méme des produits analogues et de leurs combi- naisons linéaires. Les produits de la forme (2) sont ce que j’appellerai des produits 
trindmes. 

La différence de deux mondmes qui ne different que par V’ordre de deux facteurs 
consécutifs est équivalente A un polynoéme de degré moindre. 

Soient en effet X et YV ces deux facteurs consécutifs. Nos deux monémes s’écriront 

LPIA) IBV), 

P et Q étant deux monémes quelconques, et leur différence 

P[XY— YX]Q 
sera équivalente a 

P(XY)Q, 
dont le degré est d'une unité plus petit, puisque (XY) est du 1 depreyeX Va aXe 
du 2° degré. 

Soient maintenant M et M’ deux mondmes équipollents quelconques, c’est-d-dire ne différant que par l’ordre des termes. On pourra trouver une suite de mondmes 
TEES, 1M, is. ss, SMe 

dont le premier et le dernier sont les deux mondmes donnés et qui seront tels que 
chacun d’eux ne différe du précédent que par l’ordre de deux facteurs consécutifs. La différence M— ’ qui est la somme des différences TE Vin he M,—M’ sera x done encore équivalente & un polynéme de degré moindre. 

Plus généralement, la différence de deux polynomes équipollents est équivalente a un polyndme de degré moindre. 

Je dis maintenant qu’un polyndme quelconque est toujours équivalent & un polynéme 
régqulier. 

Soit en effet P, un polynéme quelconque de degré n; il sera équipollent A un polynome régulier P’,; on aura alors Péquivalence : 

Dee) Etna eal oo 

ot P,. est un polyndme de degré n—1 qui sera & son tour équipollent 4 un polynéme 
régulier P’,_,, dou Péquivalence : 

Pe Pa es 
Vor, X Vili. 

29 
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et ainsi de suite; on finira par arriver a un polynéme de degré zéro, de sorte que 

nous pouvons écrire |’équivalence : 

Y ere) eit A) colon ON copes trees > 

dont le second membre est un polynéme régulier. 

On a done un moyen de réduire un polyndme quelconque a un polyndme régulier 

en se servant des relations (1). I] reste & rechercher si cette réduction ne peut se 

faire que d'une seule maniere. 

Le probléme peut encore se présenter sous la forme suivante; un polynodme régulier 

peut-il étre équivalent & zéro? Ou bien encore peut-on trouver une somme de produits 

trindmes de la forme 
@) P[XY-Yx-(XY]@ 

qui soit un polynédme régulier non identiquement nul? Toutes les sommes de pareils 

produits sont en effet équivalentes a zéro. 

Le degré dun produit trindme sera égal a 2 plus la somme des degrés des 

polyndmes P et @. Si je considére ensuite une somme S de produits (2), ce que 

jappellerai le degré de cette somme S, ce sera le plus élevé des degrés des produits 

qui y figurent, quand méme les termes du degré le plus élevé de ces différents 

produits se détruiraient mutuellement. 

Le produit trindme (2) peut étre considéré comme la somme de deux produits, le 

produit binédme 
(2 bis) P[XY— YX]Q, 

ou je distinguerai le mondme positif PXYQ et le mondme négatif — PYXQ; et le 

produit 
—P(XY)Q, 

que jappellerai le produit complémentaire. 

Soit done S une somme quelconque de produits trindmes de degré p ou de 

degré inférieur; je pourrai écrire: 

=8,—T,+Spi-— Tpit ..-.- +8,.—T,, 

ou S; est une somme de produits bindmes de degré k. 

(2 ter) PX aveXG| iO) 

tandis que — 7; est la somme des produits complémentaires correspondants : 

—~P(XY)Q. 

Il sagit de savor si la somme S peut étre un polynédme régulier sans étre 

identiquement nulle. J’observe d’abord que si S est un polynéme régulier, il doit en 

étre de méme de S,; car S, représente l'ensemble des termes de degré p dans 8; 

tandis que (Ses — Ty), (Sp-2— Tyr), ---, (S2— 73), — 7, veprésentent respectivement 

l'ensemble des termes de degré p—1, p—2, ..., 2, 1. 
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On voit immédiatement que S, est équipollent a zéro; comme zéro est un polynéme 

régulier, et que deux polynémes réguliers ne peuvent étre équipollents sans étre identiques, 

il faut que S, soit identiquement nul. 

Soit en particulier p=3, 

S;= > [XY — YX] Z—- >Z [xX _ YX], 

le signe = signifie que lon fait la somme du terme qui est explicitement exprimé sous 

ce signe et des deux termes qu’on en peut déduire en permutant circulairement les trois 

lettres X, Y, Z. 

On aura: 
T,=>%(XVY)Z— XZ (XY), 

puis 

S,= > [(XV)Z—-Z(XY)I, 

1h ECan Al, 

S=8,;—7,4+8,-—T,= = [XY- YX -(XY)] Z-SZ[XV—-YVX-(XY)] 

+2 [(XV) Z—-Z(XY) - (XY) Z)}. 

Il est aisé de vérifier que S, et S,—7', sont identiquement nuls, de sorte que S 

se réduit A — 7). 

Or 

7, =((X¥) 2] + (FZ) X1+ (2X) VN] 
est un polyndme du 1” degré, car [(YY)Z] comme (XY) lui-inéme est un polynédme 

du 1° degré. 

Or dans un polynéme du 1° degré, chaque terme ne contenant qu’un seul facteur, 

on n’a pas & se préoccuper de lordre des facteurs. Tout polyndme du 1° degré est 

done un polyndme régulier. Si done le polyndme 7, n’est pas identiquement nul, la 

somme S sera égale & un polyndme régulier qui ne sera pas identiquement nul. 

Done pour quun polynéme puisse étre réduit d’une seule maniére & un polynéme 

régulier il faut qu’on ait les identités suivantes: 

(3) ((X¥) 2] +[(V2) X] + (ZX) Y]=0. 
On reconnait 1a les identités de Jacob’ qui jouent un si grand role dans la théorie 

de Lie. 

(Si dailleurs ces identités n’avaient pas lieu, les opérateurs élémentaires seraient 

liés par les équations (3) qui ne seraient plus des identités; ils ne seraient plus 

linéairement indépendants; on pourrait done en réduire le nombre.) 

Les identités (3) sont done la condition nécessaire pour que la réduction d’un 

polyndme & un polynéme régulier ne puisse se faire que d’une seule maniére. 

Il me reste & montrer que cette condition est suffisante. 

29—2 
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Je dirai pour abréger une somme réguli#re pour désigner une somme de _ produits 

trindmes qui est un polynéme régulier. 

Soit alors 
S=S,— 7+ Spa— Tpit -: 

une somme de produits trinémes; les deux premiers termes S, — 7’, représentent la somme 

des produits trinémes du degré le plus élevé, c’est ce que j’appellerai la téfe de la 

somme S. 

J’ai distingué plus haut dans un produit trinédme trois parties que j’ai appelées le 

monéme positif, le mondme négatif et le produit complémentaire. Je dirai qu’une somme 

de produits trindmes forme une chaine si le monome négatif de chaque produit est 

égal et de signe contraire au monéme positif du produit suivant. Le monéme positif 

du premier produit et le monéme négatif du dernier seront alors les mondémes extrémes 

de la chaine. 

Il résulte de cette définition que tous les monémes positifs d’une méme chaine ne 

different que par lordre de leurs facteurs. 

Une chaine sera jfermée si les deux monomes extremes sont égaux et de signe 

contraire. Si S,—TZ, est une chaine fermée de produits trindmes (S, représentant la 

somme des produits bindmes et — TZ, celle des produits complémentaires), il est clair 

que S, est identiquement nul puisque les monédmes positifs et négatifs se détruisent 

deux a deux. 

Nous avons vu que si S est une somme réguliére, S, est identiquement nul, d’ot 

il résulte que la téte d'une somme réguliere S se compose toujours d’une ou plusieurs 

chaines fermées. 

Si deux chaines ont mémes mondmes extrémes, leur différence est une chaine fermée. 

Nous nous servirons de cette remarque pour montrer qu'une chaine fermée peut 

toujours de plusieurs maniéres se décomposer en deux ou plusieurs chaines fermées. Une 

chaine fermée quelconque peut de plusieurs maniéres étre regardée comme la différence 

de deux chaines C et C’ ayant mémes mondmes extrémes; soit alors C” une troisitme 

chaine ayant mémes monédmes extrémes. La chaine fermée C—C” se trouve ainsi 

décomposée en deux autres chaines fermées C—C” et 0” —C". 

Il s'agit de montrer que toute somme réguliere est identiquement nulle et en ettet 

quand cela aura été démontré, il sera évident qu’un polynéme régulier dont tous les 

coéfficients ne seront pas nuls ne pourra étre équivalente & zéro, puisque tout polynéme 

régulier équivalent a zéro est par définition une somme réguliére. 

Supposons que le théoréme ait été établi pour les sommes de degré 1, 2, ..., p—1; 

je me propose de l’étendre aux sommes de degré p. 

Je remarque d’abord que si une somme régulitre de degré p est identiquement 

nulle, il en sera de méme de toutes les sommes régulieres de degré p qui ont méme 

téte. La différence de ces deux sommes serait en effet une somme réguliére de degré 

p—1 qui serait identiquement nulle d’aprés notre hypothése. 

a 



EEE: 

M. H. POINCARE, SUR LES GROUPES CONTINUS. 229 
Il me suffira done de former toutes les chaines fermées de degré p et de montrer que chacune d’elles peut étre regardée comme la téte d’une somme réguliére identique- ment nulle. 

Toute somme réguhére S d’ordre p a en effet pour téte une de ces chaines fermées, par exemple 8’; si done je montre que Tune des sommes réguliéres dont la téte est S’ est identiquement nulle, il en sera de méme de toutes les autres et en particulier de 8S. 
Pour établir ce point, je vais décomposer la chaine fermée envisagée en plusieurs chaines fermées composantes. 

Il me suffira de démontrer la proposition pour chacune des composantes. 
J’appellerai chaine simple de la 1%? sorte toute chaine ov le premier facteur de tous les mondmes soit positifs soit négatifs sera partout le méme. 
J’appellerai chaine simple de la 2° sorte toute chaine ow le dernier facteur de tous les monémes sera partout le méme. 

Une chaine simple peut d’ailleurs étre ouverte ou fermée. 
Tl est évident que toute chaine fermée peut étre regardée comme la somme d’un certain nombre de chaines simples, alternativement de la 1° et de la 2¢ sorte. 
Soit done S une chaine femméeiC; 10), <4. Ge edeswehatnes simples de la 1 sorte, Cam OS x. C2 :des chaines simples de la 2° sorte, on aura: 

S = Cy O40, + O44 20. +e Ch +C'n, 
le monéme négatif extréme de chaque chaine étant bien entendu egal et de signe contraire au mondme positif extreme de la chaine suivante, et le mondme négatif extréme de 0’, égal et de signe contraire au mondme positif extréme de C,. 

Soit XY le premier facteur de tous les monémes de ©,, Z le dernier facteur de tous les monédmes de Co Yawie premier facteur de tous les monodmes de C,, T le dernier facteur de tous les mondémes de C’, (je wexelus pas le cas ot deux des opérateurs X, Y, Z, 7 seralent identiques). 

Soit alors C” une chaine simple de la 2° sorte ayant son mondme positif extréme égal et de signe contraire au mondme négatif extréme de C’,; dont tous les monomes ont pour dernier facteur 7’; et dont le mondme négatif extréme a pour premier facteur XY. 

Soit C’”” une chaine simple de la 1%° sorte dont tous les monémes ont pour premier facteur X et dont les mondmes extrémes sont respectivement égaux et de signe contraire au mondme négatif extréme de 0” et au mondme positif extréme de C,. 
La chaine fermée § se trouvera décomposée en deux chaines fermées composantes, & savoir: 

Ss’ =(O" 4 C) He GH. ae GE af (Ge a oe”), 

S=— CO" £ O04 O54, Cre On OM. 
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S’ ne contient que quatre chaines simples; car (C’’+(C,) et (C’,+C”) sont des 

chaines simples; S” contient deux chaines simples de moins que S. 

En poursuivant on finira par décomposer S en chaines fermées composantes, formées 

seulement de quatre chaines simples. Il nous suffit done d’envisager les chatnes fermées 

formées de quatre chaines simples comme par exemple S’. 

Les monémes positifs extrémes des quatre chaines simples qui forment S’ ont 

respectivement pour premier et dernier facteurs : 

pour C’”+C,, Xetiel: 

»? Ce ? xX et Z, 

es Ce: Y et Z, 

yy Gat OF Y et Tf. 

Soient M,, M’,, M., M’, ces quatre mondmes. 

Tous ces mondmes sont équipollents entre eux et équipollents & un certain monéme 

que jappellerai XY PZT. 

Nous allons alors construire une série de chaines simples, comprises dans le tableau 

suivant, ot dans la premiere colonne se trouve la lettre qui désigne la chaine, dans 

le seconde le monédme extréme positif, dans la troisitme le monédme extréme négatif ; 

je fais figurer dans le méme tableau les quatre chaines simples qui forment S’ et je pose 

pour abréger: 

C= XVPZL: Ol KVP, =) XPT Os YXePZr: 

Nom de la chaine | Monéme positif | Monéme négatif || Nom de la chaine | Monéme positif Monodme négatif 

aera 
CY + C, M, —M, 1DY, M, — Q, 

C’, M’, _ M, D, M’, =O 
C, M, —M’, E, ah —Q' 

0", M’. —M, ja | f =) 
D, M, — Q: | E, Q. rr Q's 

D, mM’, Fai Q E’, Q’ pz Q: 

On peut supposer que tous les monédmes de la chaine PD, ont pour premier et 

dernier facteurs X et 7’; de sorte que D, est & la fois une chaine simple de 1° sorte 

et une chaine simple de 2° sorte. Il en est de méme des autres chaines D. On 

peut supposer de plus que les chaines # se réduisent & un seul produit trindme de 

maniére que par exemple : 

E, = XYP [ZT — TZ —(2ZT)). 

La chaine fermée : 

S’=(0" +0,)+01,4+6.4+C%. 
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\ 
peut étre décomposée en cinq chaines fermées composantes, & savoir : 

U,=C0" +¢,+ D',-—£#,-D,, 

(Of = C1i+ D, — EF’, — D',, 

U, = C,+ D, a E, = D,, 

U4 = 60-2622 SE a— D, 

Vi Eye 4 Het Eis 

I] s‘agit done de montrer que chacune de ces cinq chaines fermées est la téte 

dune somme réguliere identiquement nulle. 

Pour les quatre premieres, qui sont des chaines simples fermées, le théoréme est 

évident. On l’a supposé démontré, en effet, pour les chaines fermées d’ordre inférieur a 

p. Or il est clair que lon a par exemple: 

Ul = XGHE 

H étant une chaine fermée d’ordre p—1. 

Quant a V, ce sera la téte de la somme réguliére 

[XY — VX —(XY)] PZT + VXP [ZT — TZ -(ZT)| -—[XY — YX —(XY)] PTZ 

—XYP [ZT —TZ -(ZT)| + (XY) P [ZT —TZ—-(ZT)| — [XY — VX —(XY)] P (27), 

qui est identiquement nulle. 

Il reste a@ envisager ce qui se passe quand deux des opérateurs X, Y, Z, 7’ sont 

identiques, par exemple XY = Y, ou Y=Z. 

Nous devons alors distinguer le cas ou les divers mondmes positifs ou négatifs de 

notre chaine contiennent deux facteurs identiques, l'un jouant le réle de X et lautre 

le réle de Y (ou lun le réle de X et Vautre celui de Z); il ny a alors rien a 

changer aA l’analyse qui précede. 

Et d’autre part le cas ot ces mondmes ne contiennent qu'un seul facteur X. 

Le premier cas pourra seul se présenter si l’on suppose X=Z, ou X=TZ7, et sil 

y a plus de trois facteurs en tout. 

Le second cas pourra au contraire se présenter si l’on suppose par exemple X = Y; 

mais on posera alors: 

OOF — PZ On — eee Zs 

La définition des diverses chaines demeurera d’ailleurs la méme et on constatera 

immédiatement que la chaine V est identiquement nulle. 

Le théoreme est done démontré pour les sommes d’ordre p, sil lest pour les sommes 

ordre moindre. 

La démonstration précédente n’est toutefois pas applicable au cas de p=3; car la 
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chaine V n’existe que sil y a au moins quatre facteurs. Mais la seule chaine fermée 

du 3° ordre est la chaine S,;—T7, envisagée plus haut et nous avons vu quelle est 

la téte d'une somme réguliére qui est identiquement nulle si les identités (3) ont leu. 

Le théortme est done établi dans toute sa généralité. 

Toute somme réguliére est identiquement nulle. 

Done un polynéme régulier qui n’est pas identiquement nul ne peut pas s’annuler 

en vertu des relations (1). 

Done en résumé, 

Si les identités (3) ont lieu, les relations (1) permettent d'une maniére, et d'une seule, 

de réduire un polynéme quelconque a un polyndme régulier. 

TV. PROBLEME DE CAMPBELL. 

Soient 
LGA. OS Seno. 6 

r opérateurs élémentaires; supposons qu ils soient liés par les relations 

(1)  XaXp— XpXq = (XaX,), 

(X,X,) étant une combinaison linéaire des X;; supposons de plus qu’on ait les identités 

(3) ((XaXy) Xe) + ((XpXe) Xa) + (XX a) Xz) = 0. 

D’aprés le deuxiéme théoréme de Lie, ces opérateurs donnent naissance & un “groupe P 
continu,” qui admet 7 transformations infinitésimales indépendantes. Ces transformations 

infinitésimales changent / en 
t+ eX, Ga: 

e étant une constante infiniment petite. 

Soit 
T =t,X,+bX.+...+6,X,, 

une combinaison linéaire de ces opérateurs. Les t sont des coéfficients constants quel- 

conques. La transformation finie la plus générale du groupe s’exprimera par le symbole: 

cua): 

Soient maintenant 
T=tX,+hXot... +tX,, 

V=4,X, + Xet.-.. $Updr, 

deux combinaisons linéaires des X. Comme les transformations e? forment un groupe, le 

roduit 
a ever 

devra également faire partie du groupe, de sorte que nous devrons avoir: 

(4) eVeT=eW, 
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ou 
W =w,X, + wXo+... + w,X, 

est une autre combinaison linéaire des X. 

Les coéfficients w sont évidemment des fonctions des v et des f. 

Développons le produit : 

mn 
f= SS V 

m!n! 

VrTn : 
Le terme général fal est un polynéme d’ordre m+n. Par les relations (1) on 

m! n! 

peut le réduire A un polynéme régulier, et cette réduction ne peut se faire que d'une 

seule maniere. 

Nous pouvons done écrire: 

Sao 

a= =>, W (p,m, 0), 

ou W(p, m,n) est un polyndme régulier et homogéne d’ordre p(p = m+n); on a done: 

eVeT= Sa meaeps m™, n). 

Si nous réunissons les termes de méme degré et que nous posions 

Wo = 2m.aW (p, m, 1); 

il viendra : 
eS BYE = PM ire 

Le second théor’me de Lie, que je viens de rappeler, nous apprend que le second 

membre doit étre de la forme e”, et par conséquent que: 

WP 
= Pp 1 - 

C’est 1A une proposition dont la simplicité serait imattendue, si l’on ne connaissait 

(5) W, 

pas la théorie des groupes. 

Si on pouvait la démontrer directement on aurait, comme l’a remarqué Campbell, 

une nouvelle démonstration du second théoréme de Lie. 

Mais il y a plus; on aurait aussi une nouvelle démonstration du troisiéme théoreme 

de Lie. 

Les égalités (1) nous font connaitre des relations entre les opérateurs ¢lémentaires 

et les combinaisons XY— YX; ce sont ces relations qui constituent la structwre du groupe. 

Cette structure est done entitrement définie quand on connait les r* coéfficients c¢ des 

r° fonctions linéaires (XY). 

Mais ces r* constantes c ne sont pas toutes indépendantes; tous les coéfficients de 

(XX) doivent étre nuls; les coéfficients de (YX) sont égaux et de signe contraire a 

iViots XoVallile 30 
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ceux de (XY).  Enfin les constantes ¢ doivent étre choisies de telle fagon que les 

identités (3) soient satisfaites. J’adjoins donc aux identités (3) les identités suivantes 

qui sont evidentes : 

(3 bis) (XX)=0, (X Y)=—(YX). 

Le 3° théoreme de Lie nous apprend qu’on peut toujours trouver un groupe de 

structure donnée; pourvu que les coéfficients c qui définissent cette structure satisfassent 

aux identités (3) et (3 bis), c’est-a-dire aux identités de Jacobi. 

Mais supposons inversement qu’on ait démontré directement Jlidentité (5) et par 

conséquent la formule (4). Les coéfticients w seront donnés en fonctions de v et de t; 

et je puis écrire: 
(6) We= Px (Vi, ti). 

Pour former les fonctions ¢,, il suftit de savoir former le polyndme W,, par consé- 

quent de savoir former les polyndmes W(p, m, n): c’est-a-dire de savoir réduire un 

polyndme queleonque en polyndme régulier; pour cela il suffit de connaitre les co- 

éfficients c. 

Soit 
evel — ei: )weWel—¢2 . Seleli—ed. 

O= su, X4, Z= AX, Y= DyyX;. 

Le caracttre associatif de nos opérateurs nous montre que l’on a: 

oil ee 

d’ot les relations suivantes : 

We= Oe (i, ti); Ye = he (Li, Ua). 

(7) = PE(Wi, Ui)= HEC, Yi)- 

Regardons dans les équations (6) les ¢ comme des constantes; ces équations (6) 

définiront une transformation qui transforme 2, 2%, ..., ¥- EN W;, We, -.-, W,. Les relations 

(7) nous enseignent que l'ensemble de ces transformations constitue un groupe. 

(C’est ce que Lie appelle la Parametergruppe.) 

Les substitutions infinitésimales de ce groupe sont: 

Ld ab -oonigetaas Cpa GEE 
ZC du, dt; ’ 

ou dans ¢,(v;, t;) on annule les ¢ apres la différentiation. 

Les r substitutions infinitésimales Y;(j) sont linéairement indépendantes. Et en 

effet, pour qu’elles ne le fussent pas, il faudrait que le déterminant fonctionnel des 

go, par rapport aux ¢ fat nul, quels que soient les v quand les ¢ s’annulent. Or cela 

n'a pas leu car ce déterminant devient égal & 1 quand les v sannulent. 

Ayant ainsi défini les opérateurs élémentaires X;(/), leurs combinaisons 7’ = >t; X;(f), 

e”. ete. se trouvent définis eux-mémes. 
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Ces opérateurs étant associatifs, on aura 

eX (f)=e7e™(f), 
cest-a-dire, en négligeant les quantités du 3° ordre par rapport aux ¢ et aux x: 

rary op MUaur 
D’autre part, d’aprés la maniére dont ont été formées les fonctions bz, On vérifie que 

Y= yer U + 3 (TU)= Dt X; + TG + 3 > (t; Up — tyuz) (X;X;,), 

et la comparaison de ces deux identités donne: 

X;X, — XX; =(X; Xx); 
ot les coéfficients des fonctions linéaires (X;X;) sont bien les 73 coéfticients ¢ donnés. 

Le groupe ainsi formé a donc bien la structure donnée et le troisiéme théoréme de Lie est démontré. 

C'est au fond la démonstration de Schur. 

Ce que j’appellerai le probleme de Campbell consiste donc & démontrer directe- ment la formule (5), ce qui démontre A la fois le second et le troisitme théor&me de Lie. 

V. Le Sympore ¢ (6). 

Considérons 7 opérateurs élémentaires 

Ca Ce Baan) Goa 

et une de leurs combinaisons linéaires : 

REX eX, <2. tN 

Soit ensuite V un autre opérateur élémentaire qui pourra étre ou ne pas étre une combinaison linéaire des opérateurs X, 

Supposons que les opérateurs V et X soient liés par des relations de la forme : 
VA XV b 5X by Ret Orplee 

(C1, eo r), 
on aura alors: 

VT -TV = Su,X;, ou 

UE = Db;.zt;. 
Je poserai 

VT—-TV=6(T). 

Done @(T) est comme 7 une combinaison linéaire des X; et les coéfficients de 0(T) se déduisent de ceux de 7 par une substitution linéaire, 

30—2 
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Je poseral 

A[(L)\=@(L), 0 [6 (Ly]=0™ (7), 
de sorte que 6”(7') sera comme 7 une combinaison linéaire des X, les coéfficients de 

oe (7) se déduisant de ceux de 7 en répétant m fois cette méme substitution linéaire. 

Si maintenant 

$ (9) = ge 

est un polynéme ou une série ordonnée suivant les puissances croissantes de @, j’écrirai: 

$(8)(T) 

X90" ( Ty 

au lieu de 

Considérons |’équation, dite caractémistique : 

b, — 6, lis Mires by, 

(1) es Bese 4 =(?). 

ty wre 
Si cette équation a toutes ses racines distinctes et si ces racines sont 6,, 0, ..., %,, 

il existe » combinaisons linéaires des X;, A savoir: 

(2) VY,= Xan Xi, 

telles que: 
VY; — YipV = OY x. 

Si alors on a: : 
T=st,X;==t;Yp, 

on aura: 

Si nous posons: 
$ (0) (L)=3hiX;, 

nous yvoyons d’abord que les coéfficients h; sont des fonctions linéaires des ¢; ce sont 

d’autre part des fonctions des b; étudions ces fonctions. 

Si #(@) est un polynome entier d’ordre p en @, les A; seront des polyndmes 

entiers d’ordre p par rapport aux b. Si done @(@) est une série ordonnée suivant 

les puissances de 6, les h; se présenteront sous la forme de séries ordonnées suivant 

les puissances des b. Nous allons voir bientét quelles sont les conditions de conver- 

gence de ces séries. 

Des équations (2) on tire en effet: 

Xi==hx Yi, 
dou: ° 

ty, = DBti, 

(8) (LT) == (Ox) C0. Xi, 
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dou enfin : 

hy = St (9x) « dix Bix. 

Pour déterminer les produits 4,8), faisons 

1 
$ @ =e , 

& étant une constante quelconque. 

On a alors: 

1 
—— 1 =>, lily = FSM. hex; = H, 

ou 

bn Bix i Syd Ik h;=> EGR 

On tire de lA 

(E-0)(H)=T, 
ce qui peut s‘écrire: 

Eh; — Tbyhy => tj. 

De ces équations on peut tirer les h en fonctions des ¢; on trouve: 

ay Bs 3) = Se ee) 
ou Py est un polynéme entier par rapport aux b et A &; quant a F(&) cest le 

premier membre de l’équation (1) ot @ a été remplacé par &. 

Le second membre de l’équation (3) est une fraction rationnelle en £; décomposons 

la en éléments simples; il viendra: 

eae Sb aT 
FP’ (Ox) (& — Ox) 

ou P;* est ce que devient Pj; quand on y remplace & par 6. 

On a donc: 

_ Pi 
On Bix SACP: 

d’ot enfin pour une fonction ¢(@) quelconque: 

ty Pishb (Ox) Xi 4 0)(T) == 7 47 : () g(@(T)= 8 Es 

On voit que les h; s’expriment rationnellement en fonctions des b, des 6, et des (0). 

La formule (4) peut se mettre sous une autre forme; nous pouvons écrire: 

lyin dE (E) St Pi X; (4 bis) $ (0)(T) = a= Jaa! Fe” 

Vintégrale étant prise dans le plan des & le long d’un cercle de rayon assez petit pour 
que la fonction $(&) soit holomorphe a lintérieur; nous le supposerons de plus assez 
grand pour que les points 0,, 6,, ..., 6, soient A l’intérieur du cercle. Cela nous améne 
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4 supposer en méme temps que le rayon de convergence de la série $(&) est plus 

grand que le plus grand module des quantités @,, @2, ..., 6,. 

On a alors pour tous les points du contour d’intégration : 

|E|> 6, |, &—|>| 6], seeeee > E|>|6,|, 

dou il résulte que la fonction rationnelle 

Py. 
F(&) 

est développable suivant les puissances croissantes des b. Il en est done de méme 

des A,. 

Nous avons dit plus haut que les h; sont développables en séries procédant suivant 

les puissances des b; et d’aprés ce qui précéde, il suffit, pour que ces séries convergent, 

que le rayon de convergence de la série $(&) soit plus grand que la plus grande des 

quantités 
Wea IGANG Gascon 5 Cie 

Si done $(£) est une fonction entiére, les h; seront des fonctions entieres des b. 

Quw’arrive-t-il maintenant si |’équation caractémstique 

F(6)=0 

a des racines multiples? Il est aisé de s’en rendre compte en partant du cas général 

et en passant a la limite. 

Je suppose par exemple que 6, soit une racine triple. Alors F(&) contient le 

facteur (£—6,). Si je décompose le second membre de (3) en éléments simples, trois de 

ces éléments deviendront infinis pour &= @,. 

Soient 
A, A, A," 

g—0, " €—ay * E-4) 
ces trois éléments simples. Alors il faudra dans la formule (4) remplacer le terme : 

sy GPO) Xi 
ee de) 

(qui n’aurait plus de sens dans le cas d'une racine multiple) par les trois termes 

suivants: 

2A," Xip (A,) — (1!) 5A, Xi! (A) + (2 !) AB Xi" (A). 

On opérerait de méme pour les autres racines multiples. 

Done les h;, dans le cas des racines multiples, sont des fonctions rationnelles des b, 

des 6, des $(0,) et de leurs dérivés $'(O;), pb’ (Ax), -.--+ ; on pousse jusqu’a op) (6) si 

6, est une racine multiple d’ordre p+ 1. 

\ 
Remarquons que je n’aurais pu faire ce raisonnement par passage a la limite, si 

je m’étais restreint dés le début en supposant que V est une combinaison linéaire des 
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X, et que les X sont liés par les relations (1) et (3) du N° IV. (relations de struc- ture et identités de Jacobi). 

Alors en effet les cas ov l'équation caractéristique a des racines multiples ne pour- raient plus étre regardés comme des cas particuliers de ceux ot toutes les racines sont distinctes. On aurait pu, il est vrai, démontrer directement la formule (4 bis) et se servir de cette formule: mais Jai préféré ne pas m’imposer au début cette hypothése restrictive, quitte & Vintroduire dans la suite du caleul, de facon & avoir le droit de raisonner par passage A la limite. 

Quoi qu'il en soit, le cas le plus intéressant au point de vue des applications a la théorie des groupes, cest celui ot cette hypothése restrictive est satisfaite. Sup- posons done que V soit une combinaison linéaire des X: 

V=uX,+0,Xo+...4+0,X>. 
Supposons de plus que les XY soient liées par les relations (1) du Ne précédent 

X;X;— X;X;= dcy,X,, 
et que les constantes c¢ satisfont A des relations telles que les identités (3) du N° pré- cédent aient lieu, 

On aura alors : 

0 (T) = Leijg dit; Xs, dot: 

bi-k = C).5-40, + Ca.5-K7Vo +... aCe Uys 

Les résultats, démontrés dans le cas genéral, seront évidemment encore vrais dans ce cas particulier ; si done on pose : 
b (0) (T)= 3 h,X;, 

les h; seront des fonctions lingaires des ¢, et des fonctions rationnelles des v, des @,, des (0) et de quelques unes de leurs dérivées, Les #; sont les racines d’une équation algébrique dont le premier membre est un polynéme_ entier homogéne de degré r par rapport aux v et A linconnue 6. 

De plus les h; ne dépendent que linéairement des $(,) et de leurs dérivées, 
Si ¢(E) est une fonction entire de E, les h; sont des fonctions entidres des v. 
Dans tous les cas, le symbole $()(Z’) se trouve entidrement défini. 
Je terminerai par deux remarques : 
1°. Si x (&) est le produit des deux fonctions $ (£) et W(£), on aura: 

(9) [¥ (8) (T)] = (8) [ (0) (1)] = y (6) (7). 
2°, Si on a: 

$ (9) (T) = U, 
on aura : 

1 q 
oO \Y=F. 

Cette derniére égalité n’a de sens que si $(&) ne s’annule pas pour &=0, de telle fagon que a soit développable suivant les pulssances de @. 
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VI. ForRMULES FONDAMENTALES. 

Considérons |’expression 
(1) Coane, 

V et T ayant méme signification que dans le § précédent, tandis que @ et 8 sont 

des constantes trés petites. Développons cette expression en négligeant les termes du 

3° ordre par rapport a a et a @; il viendra: 

(1 eV E*2 ) (1 + = (1 +aV4"0), 

ou 

1467+ = _ap(vT—TV), 

ou avec la méme approximation : 

e8T—ag (VT-TV). 

On aura donc, toujours avec cette approximation : 

(2) e- 2 eT eeV— 80 oh U=T— af (T), 

ou encore avec la méme approximation : 

(2 bis) e-o¥ BT eeV— BU ot U=e (L). 

Je me propose maintenant de démontrer que la formule (2 bis) est vraie quelque 

loin que l’on pousse l’approximation; et dabord qu’elle est vraie quand on néglige le 

earré de 8 et qu’on pousse l’approximation par rapport & a aussi loin que l’on veut. 

Supposons done quon pousse lapproximation jusqu’aux termes en 8 et jusqu’aux 

termes en a” inclusivement. Dans |’expression (1) nous remplacerons e®? par 1+ 7, 

erY et e*¥ par les m+1 premiers termes de leurs développements; en effectuant le 

produit (et néglgeant dans ce produit @#”*) nous obtiendrons un polynéme symbolique 

que nous pourrons rendre régulier par les procédés du N° III. Soit 

p (a, 8)==ATl, 

le polynéme régulier ainsi obtenu; [I est un mondme symbolique, et A son coéfficient qui 

est un polynome entier en a et B. 

Nous avons alors : 

(3) d (a de da, B) = e—(atda) V e8T platda) V — p—da-V ri (a, B) ete V. 

En effectuant le produit du 3° membre de cette double égalité, et néglhgeant le 

earré de la différentielle da, on obtiendra un polynéme régulier de méme forme dont 

les coéfficients sont eux-mémes des polynédmes du 1* degré par rapport & da d’une 

part, par rapport aux coéfficients A d’autre part. Telle est la forme du polynéme 

$(a+da, 8). 

aooooooooorrreeerrrrr_ 
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D’autre part on a: 

(3 bis) $ (a+ da, 8)— > (a, B)=das 11, 

Cette égalité, rapprochée de la remarque que nous venons de faire, montre que Oe 
da 

est une combinaison linéaire des coéfficients A. 

Done ces coéfficients A, considérés comme fonctions de a, satisfont 4 des équations 

linéaires 4 coéfficients constants. 

De plus pour «=0 ils doivent se réduire aux coéfficients de e®” Ces conditions 

suffisent pour les déterminer. 

Or je dis que lon peut y satisfaire en faisant (conformément a la formule 2 bis): 

icy 3))— 16> Ue l(a) 

En effet cette formule nous donne: 

(a + da, B)=&U", U' =¢e-@tdajo(f), 

et il s'agit de vérifier que: 
e-da.V BU pla. V — oBU' 

Or la formule (2 bis) démontrée quand on néglige d'une part le carré de ~, d’autre 

part le carré de a, peut s'appliquer ici puisque nous négligeons le carré de 8 et celui 

de da. Nous avons done 

eda. V eBU gia. V— BU" [J = ¢-da.9(TJ), 

dow: 
U" = e-aa. 8 [e-a8 (T')] = «eta 0 (7) = U’. 

On a done bien: 
¢(a+da, 8) = ea V e8U eda. V = o8U", 

CG, @p 1k, 1D) 

La formule (2 bis) satisfait done A nos équations différentielles et comme ces équations 

ne comportent qu'une solution, cette formule se trouve vérifiée. 

Poussons maintenant l’approximation aussi loin que nous voulons tant par rapport 

a 8 que par rapport a a. 

Nous avons: 

d (a, B) =e" eh Fert ; 
dot: 

(a, B+ dB) =e-2V B+ 4B) TeV — (e-aV e8T e2V) (e—-2V ei. TeV), 

ou 

(a, B+d8)=$(4% B)d(a, dp). 

Comme nous négligeons le carré de df, je puis écrire: 

¢(a, dB)=e8-", U=e“(T); 
Vou. XVIII. 31 
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dou: 
(4) (4, B+dB)=$(a, B) et?" 

Cette formule (4) représente sous forme condensée des équations différentielles de 

méme forme que les équations (3 bis), auxquelles doivent satisfaire les coéfficients A de 

$(a, 8)=SA.TI. 

Cest ainsi que la formule (4) représentait sous forme condensée les équations 

(3. bis). 

On peut satisfaire & ces équations par la formule (2 bis); cette formule donne 

en effet: 
b (a, B+dB) =elb+40)U = BU ot8.U — (a, B) e@8-U, 

Les équations différentielles ne comportant comme les équations (8 bis) qu'une seule 

solution, la formule (2 bis) se trouve vérifiée dans tous les cas, 

Cette formule (2 bis) nest d’ailleurs que la traduction symbolique d’une formule 

bien connue et, si j'ai développé la démonstration, c’est uniquement pour mieux faire 

comprendre les symboles employés et pour faire connaitre un mode de raisonnement 

applicable a des questions analogues; je veux parler de celui ot s‘introduisent les 

équations différentielles (3 bis) ou les équations analogues. 

Il importe avant d’aller plus lom de préciser la portée de la démonstration que 

nous venons de donner. Pour quelle soit valable, il faut que tout polyndme puisse étre 

réduit d’une maniére et d’une seule a étre régulier. Or, d’aprés le N° IIL, cela a lieu 

dans deux cas. 

1°. Si V et 7 sont des combinaisons linéaires des opérateurs X, 

Vi peng, Sik, 

et si ces opérateurs sont liés par des relations 

XX, — XpXi= Dine Xs, 

les constantes c satisfaisant aux identités 

(Xa (X,X.)) Us (X, (X,Xq)) + (X. (X,X)) a 0; 

si en d’autres termes les opérateurs X définissent un groupe de Lie et si e*’, e8? sont 

deux transformations quelconques de ce groupe : 

Dans ce premier cas la formule (2 bis) est toujours vraie. 

2°. Elle sera done vraie en particulier si on suppose que 

Py xX, Xs, POH A 

sont 7+ 1 opérateurs liés par les relations 

(5) 2 Va — ak Pee 
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et 

(6) X,X;,— X;,X; = 0. 

Ces relations entrainent en effet l’identité 

(V(X; Xx)) + (Xi (XEV)) + (Xe (VX;)) = 0, 

en désignant suivant la coutume par (VX,;) et (X;X;) les seconds membres des relations 

(5) et (6). On aura done dans cette hypothese : 

(2 bis) ine ee eae Teen ea Gans (CT): 

On aura de méme en permutant V et 7: 

(2 ter) GTEC GEES GS NY = GEA). 

e-® étant un symbole analogue a e~* et défini de la maniére suivante: le symbole 

m est formé avec 7 comme le symbole 6 avec V; on a donc, si VY est un opérateur 

quelconque : 

4(Y)=2Y=YVP.- 
On aura donc: 

n(V)=TV—VT=-6(f), 

et en vertu des relations (6) 

7(X)=0; (V)=0; ™(V)=0, 

ei (V)—V —Bn(V)=V +80 (7). 

La formule (2 ter) devient ainsi: 

(2 quater) e~ BT ecV BT — gaV top0(7), 

Si lon suppose maintenant que les relations (5) subsistent, mais que les relations 

(6) naient plus leu, les formules (2 bis) et (2 quater) cesseront d’étre vraies quels que 

soient a et BP. 

Cependant supposons que l’on regarde les opérateurs X comme trés petits et qu’on 

en néglige les carrés; & ce degré d’approximation, les relations (6) dont les premiers 

membres sont du 2° ordre par rapport aux X se trouvent satisfaites d’elles-mémes. 

Les relations (2 bis) et (2 quater) sont done vraies, si l’on néglige les carrés des X, 

ou, ce qui revient au méme, si l’on néglige le carré de 7, ou encore si on néglige 

le carré de 8 (puisque 7’ ne figure qu’affecté du facteur £). 

Si done V et les X sont r+1 opérateurs liés par les relations (5), les relations 

(2 bis) et (2 quater) ont liew aux quantités pres de Vordre de 8°. 

Au méme degré d’approximation la formule (2 quater) peut s’écrire : 

erV + ape (7) = eV = BTeV fk et! BT, 

ou encore: 

etV +268(T) = erV — eT eo V 4. er¥ BT 

31—2 
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ou en vertu de la relation (2 bis): 

eV +ap0(T) — ery — et e8U 4 er eft: U = es (L): 

ou, toujours en négligeant le carré de f: 

er V+ape (7) = eV (1 pas BU+ BT) = etV eB (T- U). 

Si nous posons: 

+a0(T)=W; T—U=Y; 

il vient : 
as ; l-—e-* 

(7) ecVteW — etVeb¥; Y= __(P). 
a@ 

Soit 
W= Sw; X; 

une combinaison linéaire queleonque des X;; peut-on déterminer les coéfficients ¢ de la 

combinaison 7’=Xt;X; de telle fagon que lon ait 

+20(T)=W? 

Cela est évidemment toujours possible si le déterminant des coéfficients bj, n’est pas 

nul. Dans ce cas la formule (7) est vraie quel que soit W. 

Si maintenant ce déterminant est nul, il suffit de partir du cas ot ce déterminant 

nest pas nul, de faire varier les coéfficients b d’une maniére continue de fagon que ce 

déterminant devienne de plus en plus petit et de passer a la limite, pour démontrer 

que la formule (7) est encore vraie quel que soit W. 

Si enfin V, au lieu d’étre un opérateur indépendant des X, n’est qu'une combinaison 

linéaire des X, la formule (7) est évidemment encore vraie, puisqu’elle ne peut cesser 

de l’étre par suite de lintroduction de nouvelles relations entre nos opérateurs. 

Remarquons que ce raisonnement par passage A la limite n’aurait pas été possible, 

si nous nous étions restreints dés le début en supposant que V et 7 sont des com- 

binaisons des opérateurs X, que les X définissent un groupe de Lie, que e*” et e®? sont 

deux substitutions finies de ce groupe de Lie. Dans ce cas en effet le déterminant des 

bz, aurait été constamment nul. 

La formule (7) peut sétablir directement: 

En effet en négligeant le carré de 8 on a: 

y @V+e8Wy 
exV+BW — 

n! 

n-1 
ts +B%—- (V"2W+V2WV + Vow? 

SE oa a a Pee 

Or on trouve aisément 

n-1 n—2 pe 1 n! n-1 n—2 V2 W+V"2WV+...4 WV = Ga SL W- Ce igh 20(W) 

n! 

Fst aay a 
Ven 

Sn 
a—1 ( W), 
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dot: 
qn —_ = 

etV+BW — eoV 4 BS =|: = pie “oe V P(— 0)? a) |. 

ss ( 6 0 aV+BW — paV s | (Vr? (— 28)? > eV: 5 (= 20)?7 eran —e¥+ ps | | er |1+e3 oF |, 
ou 

V+ew V 4 Len er + = e* al +BY) =eVehF ; Y= ad = (W). 

CLG TEND: 

VII. FORMATION DES SUBSTITUTIONS INFINITESIMALES D’UN GROUPE DE STRUCTURE 

DONNEE. 

Soient done X,, Xz, ..., X, 7 opérateurs élémentaires liés par les relations 

(1) XX, — X~Xi=(K:Xe) = Veins Xs, 

les ¢ étant des constantes telles que les identités de Jacobi du N° III. aient lieu. 

Soient 
T= >4;X;, U=wX;, V= dX; W= dw; X; 

diverses combinaisons linéaires de ces opérateurs. 

Considérons le produit 
eal BT 

effectuons le produit qui sera une série de polyndmes symboliques; réduisons chacun de 

ces polyndmes & des polynédmes réguliers en nous servant des relations (1); je me 

propose d’étudier la nouvelle série ainsi obtenue que j’appelle ¢(a, 8); le raisonnement 

sera le méme que dans le N° précédent, mais je le développerai un peu plus. 

Tous les termes de cette série (4,8) sont des polynomes réguliers; et les co- 

éfficients de ces polynomes se présentent eux-mémes sous la forme de séries développées 

suivant les puissances de a et de 8. Je puis ordonner (4, 8) suivant les puissances 

croissantes de 8, en groupant tous les termes qui contiennent en facteur une méme 
puissance de 8. J’obtiens ainsi: 

(a, B)=6+8o.4+ Bdo4+... 

D’autre part j’al: 

$ (a, B+ dB) = eVerTe.T — (a, B)e?-? = (a, B)(1 + df. 7), 
ou: 

ou: 
(3) mom = Pm el 

ces conditions jointes a 

(4) dy = er 

suffisent pour déterminer ¢. 
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Or on y satisfait de la maniére suivante. Faisons : 

o(a,8)=e", (a, 8+d8)=e"ta"; 

soit 7 un symbole qui soit a W ce que @ est a V. 

Il s’agit de satisfaire 4 l’équation (2) ou ce qui revient au méme & 

$ (4,8 + dB) = (a, B) e®-?, 

on doit done avoir: 

eW+dW — Weds. 7. 

Or en vertu de la formule (7) du N° précédent, on satisfera 4 cette condition si l’on a: 

i 
e” (dW). 

n 
(5) dp.T= 

Cette formule (5) représente symboliquement un systeme d’équations différentielles 

auxquelles doivent satisfaire les coéfticients w;. 

En vertu de la formule (4 bis) du N° V,, ces équations peuvent s’écrire : 

Bee 1 rd&1—e$s=r 
b t£:dB = a > dw;P;; (5 bis) B al E PE) es 

(@=1, 2,..., 7) 
Si lon a: 

WX; — X;W = dex. :,.weXs, 

F(&) est le déterminant dont |’élément est (pour la 7 ligne et la s* colonne) 

— (C1. 4.8W1 + Co, i,gWe +... + Crier), 

sauf les éléments de la diagonale principale (¢=s) qui sont égaux a 

= (C14. 1Wr + C2, i,5We Hoe + Cri iWr) +E; 

les Pj sont les mineurs de ce déterminant. L’intégrale du second membre de (5 bis) 

est prise dans le plan des &, le long d’un contour fermé enveloppant toutes les racines 

de l’équation F(&)=0. 

La condition (2) sera donc satisfaite, si les w satisfont aux é€quations (5 bis); la 

condition (4) le sera également si les valeurs initiales des w pour 8=0 sont 

Wj = Vie 

Les équations (5 bis) admettant toujours une solution telle que pour B=0, on ait 

w;=v;, et dautre part les conditions (2) et (4) suffisant pour déterminer ¢, on aura: 

d (a, B) = e”, w= Xw;X;, 

les w étant des fonctions de 8 définies par les équations (5 bis) et les conditions initiales 

W; = Vj. 

La série ¢(a, 8) nest done autre chose qu'une exponentielle dont l’exposant est 
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une combinaison linéaire des X;; c'est le théoreme que j’ai annoncé au N° IV.; et comme 

dautre part ce théoreme a été établi en s'appuyant simplement sur les relations (1) et 

en en faisant des combinaisons purement formelles, le probleme de Campbell est résolu 

et le troisieme théoréme de Lie, en vertu de la remarque faite dans ce N° IV., se 

trouve démontré. 

Il est aisé de se rendre compte de la forme relativement simple de ces équations 

(6 bis), Soient &, &, ...... , & les p racines distinctes de l’équation F'(&)=0; ce sont 

des fonctions algébriques des w, puisque #'(&) est un polynéme entier par rapport a & 

et aux w. Les ae, seront donnés par des équations linéaires dont les seconds membres 
dB 

seront des constantes ; tandis que les coéfficients des premiers membres seront des fonctions 

rationnelles des w, des & et des e-**; ces coéticients ne dépendront d’ailleurs que liné- 

airement des exponentielles e~**; ce seront des fonctions symétriques des racines. 

; F : dw; 
Résolvons ces équations par rapport aux —~, nous trouverons : q I PI dB 

: dw; 
(6) West set Phe + A, jty, 

les coéfficients A étant rationnels par rapport aux w, aux & et aux e—%, 

Le probleme qui se pose a propos du troisieme théoreme de Lie est ainsi com- 

pletement résolu. 

I] s'agit de trouver 7 opérateurs 

XG (GB ZENG Ey. acec86 : [EGS 

satisfaisant aux relations (1); on y satisfait en faisant 

OG Ae Ag oe A 
‘1 hw, 2 hy, 

Les équations (5 bis) peuvent se mettre sous plusieurs autres formes. 

Soit 
SS Cputa e—Oee 

On aura (puisque les P;; sont les mineurs du déterminant F’): 

EP; = Lyi Pr =i() 

pour 727 et 

EP — hei Pic =F 
pour 7=y. 

Nos équations 
ee IP». (5 bis) 448 = 1 | l—et 5 du;Pi 

Seay eae ae (9 
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donnent : 

dB >itibs = a foes Re 5 Spar HN Dp 

dou 
S.dw:P.: , 3 

dB Sitsbis = 5 — ze —e-*) sie 
st , Je gael 1 = : 

La deuxiéme intégrale étant nulle, nous pouvons écrire tout simplement: 

(Ster) tbr= a T= Jaga —e hs 

(k= 29 n): 

D’autre part l’équation (5) peut s’écrire: 

dW a 
dp ta) 

(7) 

dot 

dw; _ 1 Edé Li Py 

de ova (ie Fee 
ce qui donne: 

6) | eee Oe Jaa Jae) FOF dey; 

Cette derniére intégrale doit étre prise le long d’un contour enveloppant toutes les 

racines de F(£)=0, mais n’enveloppant pas les points 

£=2%rV—-1 (k=+1, +2, ... ad inf). 

VII. ForMuULES DE VERIFICATION. 

Soit 
eV +8V — eVeF, 

V = >0, Xj, 8V = 60, X;, Y= LyX; ; 

on aura en vertu de la formule (7) du N° VI. 

mee 

(posant : 
0(T)=VT—TV 

comme dans le N° V.). 

Soit maintenant 
e-VeTe¥ = eU, 

on aura par la formule (2 bis) du N° VI. 

Ujex CL): 
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Soit 
e-\V+8V) eTeV+5V — QU’, 

on aura: 
U’ =e 9+ (7), 

ot 6+ 66 est un symbole qui est & V+6V ce que 6 est & V. On aura d’autre part: 

eu —\em teaver evel —emucler. 

d’ou en négligeant le carré de Y qui est infiniment petit: 

eU' = eV — VeV + eUY = cU+UY-YU. 

Dot 
U’—U=UY-YU. 

Si je conviens de poser: 
e +80) _ 9-9 — § (¢-), 

il viendra: 
U’ — U =8(e~*) (TP). 

Nous arrivons ainsi a la formule symbolique suivante: 

@ se) r=ler| Ger) ]- |S“ er) tran 
Pour mieux expliquer le sens de cette formule rappelons que nous avons trouvé 

plus haut: 

2) $(0)(L)= = — | deb) SX, 

ott les h; sont des fonctions rationnelles des ¢, des v et des & données par les équations: 

(8) Ehi— Vee =ti; du = kr + Co. bie H vee + Cree Ur- 

Alors on aura: 

Se-8 (T') = [adee-#38h.X,, 1 

2a —1 

ou les 6h; sont les accroissements que subissent les fonctions h; quand les variables v; 

subissent les accroissements 6v;. 

Si alors les h’; sont ce que deviennent les h; quand on y remplace les ¢ par les 

dvz, la formule (1) pourra prendre la forme 

l—-e= 

é 

Dans le 1* membre le signe = se rapporte aux r valeurs de l’indice 7; dans le 

@ebis), 20/1 3x, | dée-tSh, = 3 (X,X,— X,X,) Jag hy / déeh;. 

2" membre aux r(r—1) arrangements des deux indices i et k (arrangement 7, k étant 
regardé comme différent de l’arrangement hk, 7). 

Cette formule nous fait connaitre un certain nombre de relations auxquelles doivent 

satisfaire les expressions X;X;,—X,X; ou (X;X;). Ces relations sont curieuses: mais 

Wor, 2 WIUUL Bo 
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la plupart ont déja été démontrées par Killing et il semble que les autres pourraient 

se démontrer facilement par les procédés de Killing. Je n’y insiste done que comme 

sur un procédé de vérification. 

Les deux membres de cette équation sont d'une forme particuliére. 

Le premier membre est linéaire a la fois par rapport aux symboles X;, par rapport 

aux ¢;, aux 6, aux exponentielles e-® (les 6; étant les racines de l’équation F=0). 

Les coéfficients de cette fonction linéaire sont eux-mémes des fonctions rationnelles des 

v et des @;. 

Le second membre est linéaire A la fois par rapport aux symboles (Y;X;), par rapport 

aux ¢;, aux vg, aux exponentielles e~® et e-%-* (0; et O étant deux racines de F=0). 

Les coéfficients de cette fonction linéaire sont encore rationnels par rapport aux v et 

aux 6;. 

Les @; étant les racines de léquation F=0 sont des fonctions algébriques des ». 

Dans les deux membres de l’équation (1 bis) entrent en outre linéairement un certain 

nombre de fonctions transcendantes; il y a d’abord les exponentielles e~* et il y ena 

autant que léquation #=0 a de racines distinctes. Il y a ensuite les exponentielles 

e~®**) qui peuvent étre distinctes des précédentes, mais qui peuvent également ne pas 

en étre toutes distinctes si l’une des racines de l’équation F=0 est constamment égale 

a la somme de deux autres racines. 

Supposons qu'il y ait g exponentielles et soient 

CHUSECMES OS 

ces exponentielles. 

Les deux membres de léquation (1 bis) seront alors des fonctions linéaires des 

produits de la forme 
(4) tm Ovne, 

ou m et h peuvent prendre les valeurs 1, 2,..., 7, et ot mw peut prendre les valeurs 

il, 7S coon CE 

Les coéfficients de ces produits sont des fonctions algébriques des v, ne dépendant 

ni des ¢, ni des 6v. Pour que Jidentité puisse avoir lieu, il faut que lon puisse égaler 

dans les deux membres de (1 bis) les coéfficients dun méme produit (4). 

Nous aurons ainsi un certain nombre de relations linéaires entre les symboles X; 

d'une part, les symboles (X;X;,) d’autre part; les coéfficients de ces relations linéaires 

sont des fonctions algébriques des v. Ces relations linéaires doivent étre identiques aux 

relations de structure ou en étre des conséquences. 

J’examinerai seulement le cas particulier ot F(&)=0 a toutes ses racines distinctes. 

Je puis alors supposer que les opérateurs élémentaires X; ont été choisis de telle 

sorte que: 
V2 é& = AV = 0; X;, 

@; étant Pune de ces racines. 
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Egalons alors dans ’équation (1 bis) les coéfficients de tmév,; il vient: 

@h; 

vy, At» = (XmX;) Se Jager 
2a /—1 

Le premier membre ne dépend que des exponentielles e-%, mais le second membre outre l'exponentielle e~’ contient encore e-%~, 

Egalons les coéfficients de em Si 6,46, n'est pas égal & une racine de F=0, cette exponentielle ne figurera pas dans le 1% membre; nous aurons done 

(Xm X),) (0) 

On reconnait lA l'un des théorémes de Killing. 

Si au contraire O,+ 6m est racine de F=0. l'exponentielle pourra figurer dans le 1" membre et (X,,X,) pourra ne pas étre nul. 

Je mniinsisterai pas sur les autres verifications, ni sur le cas ot les racines ne sont pas distinctes et ot on retrouverait les autres théorémes de Killing. 

Je me bornerai a faire remarquer que la verification de la formule (1 bis) n’est 1 1 
pas immeédiate, et qu'il faut pour la faire avoir recours aux identités de Jacobi et aux théorémes que Killing en a déduits, 

IX. INTEGRATION DES EQUATIONS DIFFERENTIELLES ET FORMATION DES SUBSTITUTIONS 
FINIES DES GROUPES. 

Soit 
(1) eVtadv = eV et 

V=30,X;; dV = Xdy;. XxX; dA sda. X. 

On aura en vertu de la formule (GO) Glu INP Wal 

WO (2) dA ————s (aia 
g 

Cette formule, identique sauf les notations A la formule (5) du Ne VIL, comprend, sous la forme symbolique, r systemes d’équations différentielles; ainsi que je Tai déja fait remarquer au N° VII, 

Annulons tous les da, sauf da; égalons ensuite les coéfficients de X,, XG ENG dans la formule (2). Nous aurons équations différentielles qui définiront 

du, du, dv, 

da,’ da,’ da. 

en fonctions des v. Ce sont 14 comme nous Yavons vu au N° VIL, les équations diffé- rentielles qui définissent une des substitutions infinitésimales du groupe, si l’on prend les vy comme variables indépendantes. 
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En donnant 2 Vindice f& les valeurs 1, 2,..., 7, on obtiendra r systemes d’équations 

différentielles correspondant aux r substitutions infinitésimales du groupe. 

Nous devons prévoir que ces équations peuvent se ramener, au moins dans le cas 

des groupes de la 1° famille (vide supra N° I.), & des équations linéaires, puisque c’est 

la un résultat bien connu obtenu par Lie. 

Voici le changement de variables qu’il faudrait faire pour retrouver ces équations ; 

soit : 

U=Su;,X;; e~YeVeV=eh; L=31;X;; 

on aura: 

(3)  L=e-*(U). 

Cette équation symbolique (3) nous apprend que les /; sont des fonctions des v 

et des u, linéaires par rapport aux wu, et nous permet de former ces fonctions. Si alors 

on pose: 
e-V-aV eUeV+aV — gL+aL, 

on aura: 
eltdL — g-dApl gia, 

ou, puisque A est infiniment petit: 

(4) dL=LdA-—dA.L. 

Cette formule (4) représente symboliquement 7 systémes d’équations différentielles qui 

ne sont autre chose que ce que deviennent les 7 systemes d’équations différentielles 

représentées symboliquement par la formule (2) quand on prend les 7; pour variables 

nouvelles. 

Celui de ces systémes que |’on obtient en annulant tous les da sauf da s’écrit: 

(4 bis) a = LX, — X;,L. 

Ces équations sont linéaires et A coéfficients constants et sintégrent immédiate- 

ment; ce sont celles auxquelles Lie arrive par la considération du groupe adjoint. I] 

importe de remarquer que la réduction des équations différentielles (2) aux équations (4) 

par le changement de variables (3) n’est pas immédiate et qu’on ne peut la faire qu’en 

tenant compte des identités de Jacobi. 

Considérons de plus prés le cas des groupes de la 2° famille. Nous pourrons alors 

choisir les opérateurs élémentaires X; de telle maniére qu’on en puisse distinguer de 

deux classes. Ceux de la 2% classe seront permutables & tous les opérateurs, ce seront 

les X”;; quant & ceux de la 1% classe que j’appellerai les .X’;, ils seront caracterisés 

par la propriété suivante: aucune combinaison linéaire des X’; ne sera permutable & tous 

les opérateurs, 

Pour mettre en évidence cette distinction, j’écrirai quand il y aura lieu: 

LX; = DX’ + Do" X"; VH= IX; VW = WX; VaV'+ Vv". i> a) 

————— rt” eee 
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Les v’; seront ainsi les coéfiicients des X’; et les v@eceux kdesiiX'%.. Tea lettres Un Wiel: OF. Uf; “; L’, L: ete. auront une signification analogue. 

Il est clair qu’on aura: 

[ef YO — Vy ut fits PRPS Pee = 0, 

dou 

6(T)= VI-TV=V'T'-T'D’. 

Jintroduis alors un symbole nouveau ; soit: 

VL = TEV = SN kee DED Gabe 
je poserai : 

O (T) = =n';X';; 0" (T)= ZA X”,, 

et je définis $(0’) & Vaide de 6’ comme Jai défini $(@) & Vaide de 6. On a alors : 

O(X")=0; O[6’(T)]=0; $(6)(2")=0; 
et on trouve aisément : 

$O(D)= 6) (P)= 40) (2) + 0" [PO SO) 2) +802". 
Remarquons que les expressions : 

A(T), @(T), 0’ (), 
dépendent des v’ et des # mais sont indépendantes des v” et des ¢” ; et il en est de méme de $(6).(Z) si $(0) est nul. 

Les J; étant linéaires par rapport aux wu, je puis écrire: 

l; -35t UZ. 

dl; : : : : Les Tu, Sont des fonctions des ». Voyons combien de ces fonctions sont indépen- k 
dantes les unes des autres. Je dis d’abord que ces fonctions ne dépendent que des 2’. Nous avons en effet (e? étant une substitution quelconque du groupe): 

CIEE = GVieV’ gaV gletiiaiame 
dou 

el — eV —V" eUeV'+V" — eV" e-V' eU eV’ ev” = en eUeV | 

ce qui montre que Z ne dépend que de V’, mais pas de V”. 

: : ; Gs Je dis maintenant que le nombre des fonctions dy indépendantes les unes des 
autres est précisément celui des variables vy’. En d'autres termes, si l’on pose : 

eL=eVeUeV, el, = e- VieUeN, 
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Videntité Z=Z, si elle a lieu quel que soit U entraine lidentité V’=V,. Si en effet 

L=T,, on aura quel que soit U: 

elie VeVeVe hh =e, 

ce qui montre que ee" est permutable a toutes les substitutions du groupe. C'est 

done une substitution qui ne dépend que des X”; de sorte que je puis écrire: 

eVe-M = eh", 

W’” étant une combinaison linéaire des X”;; on en tire: 

eV = eF" eerie” 

dou 

V =V,+ W", 

V' = We ‘ ye = Vv", at Ww”. 

Done V=V4. 
(CG) Shae LD) 

: : dl : 
Nous pourrons prendre comme variables les Tie les v”, au lieu des v' et 

des v”. 

dl nes een: : ay . : 
Les = sont définis par les équations (4 bis), qui étant par rapport a ces variables 

du 

des équations linéaires & coéfticients constants sintégrent immédiatement. 

; di 
Les équations (4 bis) nous font done connaitre les = et par conséquent les v’ en 

du 

fonctions de la variable «;. 

Pour obtenir les v”, revenons aux équations (2); si nous posons: 

1-—e%=60+ 6 (8), 

elles peuvent s’écrire : 

dA’ =dV’' +0’ W(@") (dV), 

dA” =dV" + 0"wW (0) (dV’). 

On a 
dA’ = Sda',.X’,; dA” = Xda",X”;. 

Si on annule tous les da’ et tous les da” sauf da”,, nos équations donnent 

simplement : 

v';=const.; v”;=const.(tZk); v”,=a",+ const. 

Si on annule tous les da’ et tous les da” sauf da’, les équations deviennent 

X’,.da’,=adV' +O (0’)(dV), 

0 =dV" + 6’ (0) (dV). 



M. H. POINCARE, SUR LES GROUPES CONTINUS. 255 

La premiére de ces équations, équivalente aux équations + bis, est susceptible comme nous l’avons vu d’étre ramenée & la forme dun systéme d’équations linéaires a co- éfficients constants. Lintégration est immédiate et nous donne les y’ 
la variable a’,. 

en fonctions de 

La seconde équation est équivalente A un systéme d’équations de la forme: 

dv”; + dv’, F, + dv’, Fi, + ... +dvF,=0, 
les F étant des fonctions données des v’. En remplacant les »’ par leurs valeurs en fonctions de a’,, elle prend la forme: 

dv”, 3 co) (a’,) da ie = 0 

et sintégre immédiatement par quadrature. 



X. Contact Transformations and Optics. By Professor E. O. Lovert. 

[Received 15 September 1899.] 

‘‘Ayant vu combien les idées de Galois se sont peu & peu montrées fécondes dans tant de branches de 

Tanalyse, de la géométrie et méme de la mécanique, il est bien permis d’espérer que leur puissance se manifestera 

également en physique mathématique. Que nous représentent en effet les phénoménes naturels, si ce n’est une 

succession de transformations infinitésimales, dont les lois de l’univers sont les invariants?*’—Sorxts Liz*. 

Ir is the object of this note to elaborate, and in fact in n dimensions, certain 

ideas which the lamented Sophus Lie sketched for ordinary space in a short paper + 

presented to the Leipzig Scientific Society in 1896 and which were more or less developed 

for the plane in the first volume of the geometry of contact transformations; which 

appeared with the cooperation of Scheffers in the same year. 

1. Attending to a few preliminary details, consider a family of o' transformations 

in m variables a, %, ..., Un: 

Di ON (Gis eae Gy, 1) neta ON Greets, inne seo, NCO aN) (RG sadn Cerone (1) 

where the functions X,, ..., X, are regular analytic functions of a, ..., #, and an 

arbitrary constant a; suppose in particular that the family contains the identical 

transformation, that is, that for some value of a, say a=0, the equations (1) reduce to the 

form 
P= fo A 

T = %, La =Ly, ---, Ln =%y- 

Then for a value of a, say 6t, infinitesimally different from zero, the equations 

(1) will yield an infinitely small transformation. With the assumptions made relative 

to the functions X,, ..., X, the transformation (1) for a= 6¢ has the form 

Oe em a (Coy Span, Le) Cle ban 

Yq = Xy + Ey (a), -.., Gn) OE+..., | 

TA (RAE IE (mp sees in) OFF... | 

Under this infinitely small transformation (2) a, 

increments 

.., @, Yeceive the infinitesimal 

CAS eisaay COUN = (Ste hoog, cosh UPN Salle ecu —onesnonoscecs soc (33) 

* Le Centenaire de VEcole Normale, p. 489.—Paris, Math.-Phys. Classe, Bd. 48, 1896, pp. 181—133. 

Hachette et Ci*, 1895. + Geometrie der Beriihrungstransformationen, dargestellt 

+ “Infinitesimale Beriihrungstransformationen der Op- von Sophus Lie und Georg Scheffers, Bd. 1, Leipzig, 

tik,” Ber. ii. d. Verh. d. k. stichs. Ges. d. Wiss. zu Leipzig, Teubner, 1896. See in particular, pp. 97, 100—103. 
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Such a transformation is called an infinitesimal transformation. The expression 

apap Uf= pee 24 2 2a ce ee ere (4) 

is adopted as its symbol, since Uf.é¢ is the increment assigned to any function 

SF (@, ++.» &,) by the infinitesimal transformation. 

2. If the transformations of the continuous ensemble (1) are so related that the 

successive application of any two of them is equivalent to a transformation belonging 

to the same family, (1) is called a continuous group of oe! transformations. 

Let the family (1) be a continuous group; suppose further that the group contains 

the inverse transformation of every transformation in it: that is, that the resolution 

of the equations (1) with regard to a, ..., @, gives a system of the form 

7 / / A U ~ 

GS NG acy 645 OD) GhSOR(GR, ooom: Cin Ds coon RSAC CAS soon Bin Wood)» 

where b is a constant depending only on a. 

Under these conditions it is easy to see that the group contains an infinitesimal 

transformation; for, if J, is the transformation of the group corresponding to the 

parameter value a, the inverse 7, of TY, is also found in the group. Further the 

transformation 7,5, corresponding to the parameter value a+ 6a, is the transformation 

of the group differing infinitesimally from 7,. The product Ta4s. Zu? which, by the 

assumed group property, belongs to the group, differs then infinitesimally from the 

transformation 7,77; but the latter is the identical transformation; thus the group 

contains a transformation possessed of the properties attributed to an infinitesimal 

transformation in the preceding paragraph. 

3. Conversely, every infinitesimal transformation is contained in a _ determinate 

continuous group. This may be made clear in the following manner. The given infini- 

tesimal transformation assigns the infinitesimal imcrements 

SU SSA, sdban a) Clap Bone Olen snl Che, cobs. Map)! ClthceoonappooenasnOdnac (6) 

to the variables 2, ..., 2,, on neglecting infinitely small quantities of a higher order; 

if t be interpreted as the time, 2, ..., %, as point-coordinates in a space of x dimen- 

sions, 6¢ as a time imcrement, and 62,, ..., dv, as the corresponding increments of 

@,, «++, @, then the equations (6) determine a stationary flow in space of n dimensions. 

After an interval of time ¢ the point (a, ..., #,) will have assumed the new position 

(aj, ..., @); the latter position will be obtained by integrating the simultaneous 

system 

da Bs da, ‘s dx, x 

eee) AG! ee) ea) 

Wore xvas 33 
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with the initial conditions that «a, ..., 2,’ shall reduce respectively to a, ..., 2 for 

t=0. The n integral equations may be taken in the form 

U; (Gq, oes Dy) = U; (%, ---, Ln); 

EGS. soon He) = BCs Boog 2). 

BRSOOOOOOOOOOOOOOUOOOOOOOOC OG eo ir votecucueceaeereskeceeee(ONE 

UO, (ac see ny) Ue @, seen aa) 

Un (@y, tees an) = Un Gr seey Ty) + t; 

the form of these equations shows that when resolved with respect to a, ..., @,' they 

represent a group with the parameter ¢; accordingly the given infinitesimal transforma- 

tion is said to generate a one-parameter continuous group. 

4. Consider in particular the case where the preceding transformations are contact 

transformations. The equations 

a =X, (a, SOO) Zn,2Z,Pry S500 /Da)k seenilr Nin (Gas OOO) Ln, Z, Pris son /is)) 2=Z(m, se+> Dn, 2, Pis — 

pi =P; (Gi, --- 5 Fn, 2) Pry ==» Pn)» 
(CS cacin (0) codnodceocobaco das guSodoodSbaooadsescca0Gntc (9) 

are said to define a contact transformation when they give rise to a differential relation 

of the form 

dz = = pi der =) (Gp oson nn “A Hog econ LO) CE — = pide) SESE eaoe (10); 

the corresponding geometric characterization is that the property of tangency is an 

invariant property under contact transformations. Point transformations are then a 

particular category of contact transformations. 

The explicit formulation of this notion, contact transformation, is due to Lie; 

implicitly it is to be found in particular form in many directions and may be traced 

to Apollonius. 

Lie has determined all infinitesimal contact transformations in a space of n+1 

dimensions, in the following manner. 

By definition the equations 

f= Clie, ascy Day £5 Drs s--y' Pn) OF Ao <sx5 Oy — OR Hhee Cas eagle Pia ens Pri) Ol te at 

8 = pat ms (Beis “cy, Bins 25 DPas) 140g) Ob te maeig) CY 0 a owas Mh) > ans see (11) 

can represent an infinitesimal contact transformation only in the case where the relation 

(10) is a consequence of these defining equations (11). 

On substituting (11) in (10) we have 

det dGSe-2n= > (orgie) Gece dE =p Ge da) ene: (12). 
t=1 t=) 
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The left-hand member of this equation is a series of ascending integral positive 

powers of dt; thus the function p must be an ascending series in integral positive 

powers of 6¢; as the term of zero degree in the left-hand series is dz— Xp;dz;, p must 

therefore have the form 

SIEGE dcr mph bellcn Rear a ame omen neeapee? (13). 

Inserting this value of p and equating the coefficients of corresponding powers of 

dt we have 
dt — Spidé; = X7;da; = a (dz “= Xpida;) 

or d(€— =piéi) + BEdp; — Vajda; =o (dz — Updaz)......ccccecceeceveee (15). 

This linear and homogeneous condition in dz, dz;, dp; must be true for all values 

of these differentials; hence, writing 

Gap eye = (2a Semana ees h Da) eee saan aes ovens ne (16) 

for convenience, we have 

Ornar Cylon Ono 0)». (5: 3) joancoopodcossonaspan|ccoo) (17) 

Eliminating o and solving (16) for € we find 

E; = Oe c= LpiQy,; — OF i Or = piQz seen eee ec eeeeeeeeee (18). 

The infinitesimal transformation is therefore completely determined, £, &;, 7; being 

given by an arbitrary function 0. 

5. Let the preceding results be now applied to the infinitesimal contact transfor- 

mation defined by the characteristic function 

OQ =V1i+ pet pet... + pre 

The formulae (18) show that the coordinates of a surface element, by which we 

mean the ensemble of a poimt anda plane through it, receive the infinitesimal increments 

Pi —1 
62; = == sd ot, oz = ———~— §f, JOR SW! oon dooocadbc bddcoapod |; 1 Virose rasa op (19) 

This infinitesimal transformation generates a one-parameter group of contact  trans- 

formations, namely the group of dilatations, whose finite equations are found by 

integrating the simultaneous system 

V1 + = pi" da =...= V1 + Spi” dz, = V1 + Spi dz= dp, = = dpm 
Pr Pn i saa Ct c 

where ¢ is an arbitrary constant. 
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These transformations are obviously characterized geometrically by the property of 

changing the surface-element (2, ~.., Zn, 2, Pi, +--+») Pn) imto the surface-element 

(a, ..., @', 2, py’, ..., Pn’) In such a manner that the point of the second lies on the 

normal to the first and at a constant distance ¢ from its surface. They transform the 

surface-elements of a point into those of a sphere, and change parallel surfaces into 

such. 

6. As Lie has pomted out for ordimary space the theory of wave-motion in an 

isotropic elastic medium is intimately related to the one-parameter group of dilatations of 

the space filled by the medium. 

Consider a wave-motion originating at a center of disturbance P, of an isotropic 

n+ 1-dimensional elastic medium; in an interval of time the motion will have advanced 

to all pomts P of a sphere whose center is at P, and whose radius is ¢, say, in 

precisely the same manner as the dilatation (21) would change the surface-elements of 

the poimt P, mto those of the last-named sphere. Every point P of this sphere can 

now be regarded as the center of new elementary waves which in a second interval 

of time, say 4, will have advanced to spheres of equal radu f about the points P as 

centers. These elementary waves have an outer envelope, which by Huygens’ principle 

is the identical wave that would have been developed from the original center P, in 

the total time elapsed. But in exactly the same manner the dilatation 

, Dib pr i ty 
—— 2. , (=D, sinie(sieie (=1, ese WM) wccvee 22 J+ Spe essen! a ) +++++(22) 

carries every point P of the sphere about P, into a sphere of radius ¢, about P as 

center, so that the sphere of center P, will be changed by the dilatation (22) imto 

the sphere of center P, and radius t,+%, that is imto the sphere into which the point 

P, is changed by the successive application of the dilatations (21) and (22). 

Thus the principle of Huygens finds its mathematical expression in the fact that 

all dilatations form a one-parameter continuous group. 

The importance of this particular group of contact transformations is further 

exhibited by observing that reflections and refractions from one isotropic medium _ to 

another are contact transformations which leave the infinitesimal dilatation invariant ; 

the reflections have the additional property of being commutative with the latter. To 

establish these facts it is only necessary to make the ordinary illustrative constructions 

in a space of n+1 dimensions and apply the principle that all the surfaces of a 

complex f that touch a surface @ have in general an envelope ®, and hence the 

passage from ¢@ to ® is a contact transformation. 

7. Let the characteristic function be an arbitrary function of bh, 5007 fry SENy 

(OE SINI(( Seen consy #7) acdacos sbancocoonepee coor napeagnas=ce (23); 

the infinitesimal transformation defined by [I is represented by the equations 

6a; = I1,,6t, 62= =p: T,,— I, dp;=0, ...... (GSAl yess Mge) actue Sosaseeeeee (24). 
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By integrating the simultaneous system 

da, Oram dz’ _ dp a dpn’ 

Il apie lee cg ONT oO 

we have the corresponding one-parameter group of contact transformations 

Py 

oe 2 —2-+ (Spl, — egy — peer as (CSA) hactten esc (26). 

Let t have for the moment a fixed value; the corresponding contact transformation 

of the group changes the point (a, ..., #,, Z) into a surface whose equation in current 

coordinates (a, ..., @, 2) is obtained by eliminating the p; from the first n+1 

equations; this elimination yields the equation 
, , , 

LT —-X Ly — Xo @3 — 3 In — Ln Z2—Z 5 
oy ( t 2 > 3) elslely t ) t = 0 sec er ec eeceee (27 )); 

The form of this equation enables us to find the characteristic property of these 

transformations as the following considerations will make evident. 

1°. In the first place it is clear that contact transformations in n + 1-dimensional 

space may be determined by a system of 7 equations 

Cin CA Seca NG Pag Cay, Boba an Oy CRO) sony 1a Os soacoseqmentacsoc (28), 

where r may have all values from 1 to n+1; in the last case the transformations it 

existent will be point transformations, since the n+1 relations will give the n+1 

quantities «;, 2’, as functions of the n+ 1 quantities x;, z alone. 

In fact the problem of determining all finite contact transformations of a space 

of n+1 dimensions is that of resolving the total differential equation 

dz — Spi da! —p(dz— pide) =i), Sueoss (Gr oonah il) ebedecsbonecone (29) 
1 1 

where the z’, #;, p; are functions of the 2n+1 variables z, «;, p; to be determined. 

This equation shows that there ought to exist at least one relation between the variables 

2’, 2, 2, % containing z and z*. Taking the general case of r different relations ex- 

pressed by (28), the equation (29) ought to be a consequence of 

dor 0) dos— Ole ORO ee ee ee ee (30) ; 

that is, it ought to be possible to find 7 coefficients X,, ..., %, such that the identity 

n n a 

dz — Xp; dx; — p (dz — Xp;dzx;) = Xr;do; 
at 1 2! 

exists. This demands the following equations : 

, Co; r Co; 

1=),; —s p; = — Din; — 
1 oz Pj 1 * Oa; 

aarti My oseraeriaa ace (31) ; 

= Sy, Oe: ese: 
= Ratiag tpi oeted * Oa’ 

* See Goursat, Lecons sur les Equations aux dérivées partielles du premier ordre, Paris, Hermann, 1891, p. 258, 
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the 2n+2+,r equations (30) and (31) in general determine the 2n+2+7 functions 

2’, a, pi, 3, p as functions of 2, x;, pi. 

Eliminating p we can write the followmg n+7+1 equations for 2’, 2, dj, 

Ss Sg a j=l... 1, 
i=1 5 qs2n1 08 (32) 

Sn =a) o,= 0, on — 0 | 
i=1 02 

resolving these for 2’, z/, Xj, the remaining functions p;, p are found by substituting 

the values of the former in the remaining equations of the system (30) and (81). 

2°. In the second place two transformations S and 7 are commutative when the 

symbolic equation 
ST= TS 

obtains. Consider the contact transformation S and the point transformation 7. That 

the point P is changed into the point P, by the transformation 7 is expressed by the 

symbolic equation 

(P) T= (Py). 

In the same manner, that S transforms P into the surface = is expressed by the 

equation 

(P)S=(2). 

Then if (P) ST =(P) TS, 

we have also Cys) ie 

That is, if S transforms the point P into the surface =, and 7’ changes the point 

P into the point P,, the latter is changed by S into the surface into which the 

surface = is changed by 7. 

3°. In the third place let S be a contact transformation of an n+ 1-dimensional 

space commutative with all translations 7 of that space. If S changes a definite point 

P into the surface =, the surfaces into which all other points are changed by S may 

be determined, for there always exists a translation which carries the point P to any 

other arbitrary position P,; then by the second paragraph above, the point P, is 

changed by S into the surface =, into which = is changed by the last-named trans- 

lation; hence all points are changed by S into congruent surfaces similarly situated. 

Accordingly the contact transformations that are commutative with all translations of a 

space of any number of dimensions are determined by a single function of the form 

NOM (NEE ig ton Gee C Paty et) | 0) Gobpanqnqaoutdedeoadkace (33) ; 

it is not to our purpose to construct the explicit forms of these transformations here; 

the most general one in the plane has been given by Lie in his geometry of contact 

transformations to which reference has been made. 
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Thus the equations (27) and (33) show that all the transformations of the one-parameter 

group (26) are commutative with all translations. 

8. It is evident either from the last-named property or directly from the form of 

equations (27), that by varying ¢ and thus operating on a point (a,...,@,, 2) with all 

the transformations of the group (26), the point is changed successively into similar 

surfaces and similarly placed. The point P, is changed by the transformation whose 

parameter is ¢#, into the surface =. Operating on all the points P of = with the 

transformation whose parameter is ¢,, these points P will be changed into congruent 

surfaces that are similar and similarly placed to =. These latter surfaces have an outer 

envelope, a surface >, into which the surface © is changed by the second transformation. 

The successive application or product of the two transformations is equivalent to the 

transformation whose parameter is 4+; the latter transformation carries the point P, 

directly into the new surface %,, and this surface must then be a similar and similarly 

placed surface to ¥. 

The preceding geometrical operations and their results suggest the phenomena of 

wave-motion in an elastic n+1-dimensional medium. If such a space is filled with 

such a medium in which motions originating at a point advance in different directions 
with velocities depending only on the direction, then a center of disturbance P, gives 

rise to a series of waves similar and similarly placed with the common center of 

similarity P,; accordingly the above geometric operations present a pure mathematical 

interpretation of Huygens’ principle for a non-isotropic elastic medium, and this principle 

finds its equivalent in the fact that the o’ contact transformations (26) form a group. 

9. The group (26) may be generalized and specialized. 

1°. Much more general wave-motions may be designed by using in a_ similar 

manner the most general infinitesimal contact transformation defined by the characteristic 

function 

O(Gip coon #57 fo coon JO7))5 

a simple geometric construction shows that the normal velocity of the wave is given 

by the expression 

Q)/V1 + Spe2. 

2°. The case applying to the optics of a double refracting crystal is given by 

the particular form 

Q= af a + S aep?, (Gea ceo 0) agen nase toon tetecaEeeenenane (34). 
1 

Observing that 

Vi HIG Orem soc rects ceo seraclosiesjsisbincaeisese cies (35), 

we have 

D2 ROI ea (CO at ad So Hae ee eee oe Sader (36); 
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hence the finite equations of the group of contact transformations generated by the 

infinitesimal transformation (34) are 

Ci =ZzeHASP OT, 2 =SH—APFODE, Py =HPNp ocersoecesveosereoaes (37); 

eliminating ¢ by means of the first x +1 equations, we have the ellipsoid 

(x, =&)? | (a — a)? (an =n), (2 — 2)? AY 2Q). (ab? (at? et (at)? =i (ade = dg fdssiisedeeete (38) ; 

thus the transformations of the one-parameter group (37) change the points of space 

of any dimensions into ellipsoids of that space; any particular point is changed by all 

the transformations of the group into similar ellipsoids similarly placed and concentric 
with the point as common center. 

10. Lie might have included in this order of ideas certain other contact trans- 

formations *. 

Thus far the finite contact transformations studied in detail have been defined by 

a single equation connecting the coordinates of the points of the two spaces. The 

following however is an interesting example giving a category of such transformations 

which are determined by two equations in the point variables. 

Consider the two equations 

22— 2+ 

+ Me 
(x" — a2) = 0, 

a ’ i i ere PUN a (39), 
(22 +3 aj/x; — hk? (224+ 3 2;?) (24+ 3 22)=0 | 

a ne 1 

where & is a constant. 

By means of the formulae developed in §7, 2°, the finite equations of the 

transformations can be determined, and the fact that they form a one-parameter group 

established. 

If 
Ril Rays it yee teehee eRe (40) 

are the infinitesimal rotations of n+ 1-dimensional space written in the symbolic form 

(4), the expression 

= e/ es es eee eee eee (41) 

may be taken as the characteristic function of the infinitesimal contact transformation 

which generates the one-parameter group of contact transformations determined by the 

equations (39). 

Observing that two infinitesimal contact transformations are commutative only in 

the case when the relation 

ENE BF CLF DTS RS: Se RRR re RES 1 2 (42) 
* “ Beitriige zur allgemeinen Transformationstheorie,” Leipziger Berichte, pp. 495—498. 
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exists between their symbols, we can verify by this principle that the transformations of the above group are commutative* 1° with all dilatations, 2° with rotations about the origin, 3° with all spiral transformations starting from the origin, 4° with all pedal transformations, 5° with all point and contact transformations commutative with all rotations about the origin, 6° with all transformations of the infinite group whose characteristic function is 

Xe. Xe eae iy talaays | ov (s. pe Go =) Pe Pecans oct. a3 (44), 
where 

ee 07 2 (2 Seay : ®, Zama tes, = | ad (ro) Bee (45), 

The first case of commutation is especially interesting because of reasons given in § 6. The second may be shown even more simply by introducing polar coordinates. 
The aequationes directrices (39) themselves exhibit certain geometrical properties of the transformations. For example they show that every point (z, a, ..., Gan)) aK changed into a circle whose points are at the same distance from the origin as the point (2, %, ..., %) itself. Further the radii vectores of (Z, %, ..., &) and (CAB neon aa) make an angle with each other whose cosine is k. 

11. The particular transformation of the above group, namely that corresponding to &=0 and accordingly defined by the two equations 

n 
n 

Z2— 24> (4,2 — i) XO) Cause eee le Le Ne (46), 2 1 
was first studied as a contact transformation by Goursat, in three dimensions +. 

If in equations (AG) zee a” he regarded as constants and Zien wosa © Gn was current coordinates, these equations define a certain circle C in n+1-dimensional space, the locus of (z, x, 703),)) | Lhat is) the equations make a circle @ correspond to every point (2’, a’, ..., ,), and similarly, since the equations are symmetrical in both sets of variables, to every point (2, %, ..., @) there corresponds a circle © in the current coordinates (z’, a’, ..., Zn). When the point (z, a, ..., I) describes a surface Sbhe circles C’ relative to the several points of =} form a congruence. The focal surface of this congruence is the surface >’ into which = is transformed. 3’ is also the locus of _ 
the points (z’, 2,', ..., a,’) such that the corresponding circles C’ are tangent to SN. 

The focal surface of the congruence of circles C’ is a plane passing through the radius vector OP and the normal PN to the surface at P. Thus to construct the point P’ corresponding to P it is only necessary to draw, in the plane passing through OP and the normal PN, the perpendicular OP’ to OP, cutting off a distance OP’ equal to OP. 

* In the last loc. cit. Lie shows indirectly that the enumerated commutative properties appertain to these transformations in three dimensions. 
+ See loc. cit. p. 267. 

Vote XeVGk 
34 
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The geometric construction shows that we have here the long known construction 

by which the apsidal surface of a given surface is derived. Accordingly the above 

contact transformation is possessed of the very important property of changing ellipsoids 

into Fresnel wave surfaces. 

The finite equations of the transformation (46) expressing z’, 2, p/ as functions 

of z, x;, p; may be obtained without difficulty by the method of § 7. If this trans- 

formation be combined with those of the one-parameter group (37) we shall have o? 

contact transformations which change the points of space of any dimensions into the 

wave surfaces of that space. 

12. This suggests the interesting problem of finding all those contact transformations 

which change every wave surface into a wave surface, that is, those contact transfor- 

mations which leave the family of all wave surfaces invariant. 

Analytically the problem may be approached either by determining the finite 

transformations or the infinitesimal transformations which leave the partial differential 

equation of the wave surface invariant. From either starting point the difficulties in 

the way of integrations to be effected are well-nigh insurmountable. This ought not to 

be surprising since all contact transformations of ordinary space changing plane into 

plane have not been determined (though Lie has found all those that change surfaces 

of constant curvature into surfaces of constant curvature in ordinary space, and lately 

the most general contact transformation leaving unaltered the family of developable 

surfaces of n+ 1-dimensional space has been found). 

An indirect method for finding contact transformations transforming wave surfaces 

into such may be employed by using the results of a beautiful memoir of M. Maurice 

Lévy, “Sur les équations les plus générales de la double refraction compatibles avec la 

surface de l’onde de Fresnel,” Comptes Rendus, t. 105, pp. 1044—1050. 

Without making any assumption whatever relative to the nature of a luminous 

vector Lévy proposes to find its most general form compatible with the Fresnel wave 

surface. His problem narrows itself to determining the most general expressions of the 

second derivatives, with regard to the time, of the three components of the luminous 

vector as functions of the various second derivatives of these components with regard 

to the coordinates of the point of the medium which produces the light, by means of 

the condition of reproducing the equation of velocities and hence the wave surface. 

The equations to be invariant in this method are more numerous, but simpler in 

form than the partial differential equation of the surface of waves. 

For reference Lévy’s system of equations is appended here. Letting u, v, w be 

the components of the luminous vector, ¢ the time, z, y, z the coordinates of the 

point of the medium which produces the light, a, b, ¢ the reciprocals of the principal 

indices of refraction, 2, 8, y three arbitrary constants, and X, gw, v three other arbitrary 
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constants entering only by their mutual ratios, Lévy finds the following 4. * solutions of 

the proposed problem : 

CD r, Ou ae u poe “gs ew 

ae aa & 

Ga) Ov ite Ou 

OW gt oa te q 
ew 7,0°w ow ow Xr Ou we iCal 

a ay EM aaa soak 

ferent odie wm fpacbestseeBuconngecta-os 
= att et ae bam 

poe Gets ) +h B-a a aay ag Bees 

One oo Geb) ota-nte dent 
- Be 18 (Set aye) to On) Sabet s BOO ay 

Ear eeGeiefe nS te ods 
© fear Gt) ate- ooo, 

Pro Sgeo (Bel) hon diste-m 
However, these half-dozen possibilities or tentatives towards the solution of the 

problem of finding contact transformations which leave the family of wave surfaces 

invariant have so far yielded no further result than the trivial one formed by the 

repetitions of the reciprocal apsidal transformation. 

13. Assuming the rectilineal propagation of light the theory of optics becomes a 

branch of line-geometry. This familiar view opens up other possibilities in the applica- 

tions of contact transformations to optics. 

Confining ourselves to ordinary space for convenience of expression these applications 

may be made either by means of the contact transformations which change straight 

lines into such, or by means of other correspondences set up by contact transformations 

between two spaces such that straight lines are changed into the elements of some 

other four-dimensional manifoldness. 

34—2 
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The simplest four-dimensional manifoldnesses in three-dimensional space are that 

of all straight lines and that of all spheres. For this reason those contact transformations 

between two three-dimensional spaces or which change a three-dimensional space into 

itself in such a manner that straight limes are changed into spheres, are the first to 

attract attention and have so far been the most fruitful. Lie constructed such a 

transformation in his memoir on complexes in the fifth volume of the Mathematische 

Annalen which has led him to a generalized form* of the theorem of Malus. 

Lately this manner of changing straight lines into spheres by contact transforma- 

tions has been found not to be unique; in fact infinite groups of infinite numbers of 

such line-sphere contact transformations have been constructed. 

The above observations increase the demand for the resolution of the problem of 

determining all continuous groups in four variables. But such contact transformations 

need not necessarily be contact transformations of a three-dimensional point space into 

itself; for example, if the four variables be interpreted as line-coordinates or sphere- 

coordinates, the corresponding invariant Pfaffians by no means provide that the conditions 

for contact transformations of the three-dimensional space into itself be satisfied. It is 

precisely because of such a confusion that we find these notions used loosely in a 

recent memoirt+ on the employment of infinitesimal transformations in optics. 

* “Lichtstrahlen, die in Pseudonormalensystem bilden, Pseudonormalensystem auf die Pseudokugel des betreffenden 

gehen bei jeder Reflexion und Refraction in ein Pseudo- Raumes,” Leipziger Berichte, 1896, loc. cit., p. 133. 

normalensystem iiber. Sind bei einer solchen Refraction + Hausdorff, ‘‘ Infinitesimale Abbildungen der Optik,” 

die beiden in Betracht kommenden Pseudokugeln (d. h. Leipziger Berichte, 1896, pp. 79—130. 

Wellenflachen) wesentlich verschieden, so bezieht sich jedes 



XI. On a Class of Groups of Finite Order. By Professor W. BuRNSIDE. 

[Received 30 September 1899.] 

AmonG the groups of finite order that earliest present themselves, from some 

points of view, to the student are the groups of rotations of the regular solids. An 

admirable account of these from the purely geometrical stand-point is given in the 

first chapter of Klem’s Vorlesungen iiber das Icosaéder. Of the six types included in 

this set of groups there are three which, though quite unlike in other respects, have 

a distinctive property in common. These are (i) the dihedral group of order 2n (n odd), 

(i) the tetrahedral group of order 12, and (iii) the icosahedral group of order 60. 

They are defined abstractly by the relations :— 

@) ales, Beas (Uap, oo wells 

(Gi) eels — a2 — sl CAB) 

(mM w= B=1 (AByoSL 

The order of each of these groups is even, while the only operations of even order 

which they contain are operations of order two. While they have this property in 

common they are otherwise of very distinct types. 

The first has an Abelian (cyclical) self-conjugate subgroup, order n, which consists 

of the totality of its operations of odd order. The second contains a self-conjugate sub- 

group of order four, this being the highest power of two which is a factor of the 

order of the group. The third is a simple group containing five subgroups of order 

twelve, each of which has a self-conjugate subgroup of order four. It can be repre- 

sented as a triply-transitive substitution group of degree five. 

I propose here to determine the groups of even order, which contain no operations 

of even order other than operations of order two. The determination is exhaustive; and 

it will be seen that the groups in question arrange themselves in three quite different 

sets of types of which the groups (1), (ii) and (i), defined above, are representative. 

1. Let G@ be a group of even order N, which contains no operations of even order 
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other than those of order two. To deal first with the simplest case that presents 

itself*, let 
N = 2m, 

where m is odd. Since no operation of order two is permutable with any operation of 

odd order, G must contain m operations of order two which form a single conjugate 

set. Let these be 

If A,A, were an operation of order two, 1, A,, As, and A,A,, would constitute a 

subgroup of G of order four. No such subgroup can exist, and therefore A,A, is an 

operation of odd order. The m operations 

Zl vlen, Jalil. sooo 5 eledal an. 

which are necessarily distinct, are therefore the m operations of odd order contained 

in G. These m operations may similarly be expressed in the form 

AAS GABA SE Absit srl Acs: 

and since 
An ASAT pA =A An. 

A, transforms every operation of G, of odd order, into its inverse. Hence 

A,A,.A,A,=A,A, = A,A,.A,A,; 

and this shews that every pair of operations of G, of odd order, are permutable. Hence 

the m operations of G@ of odd order, including identity, constitute an Abelian group, 

and this is a self-conjugate subgroup of G. Conversely, if H is any Abelian group of 

odd order m, generated by the independent operations S, 7, ..., and if A is an 

operation of order two such that 

ASA = S82) AA a5 

then A and H generate a group G of order 2m, whose only operations of even order 

are those of order two. 

When r is given, s can always be taken in just one way so that A,A, is any 

given operation of G of odd order. Hence every operation of G of odd order can be 

represented in the form A,A, in just m distinct ways. This property will be useful in 

the sequel. 

The groups thus arrived at are obviously analogous to the group (i) above. 

2. Next let N=2"m, 

where m is odd and n is greater than one. The operations of order two contained 

in G form one or more conjugate sets. Suppose first that they form more than one 

such set; and let 
CARAT 

and IBY BS ceses 

* This first case is considered in my Theory of Groups of Finite Order, pp. 143 and 230. 
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be two distinct conjugate sets of operations of order two. The operation AB must 

either be of order two or of odd order. If it were of odd order, wu, the subgroup 

generated by A and B would be a dihedral subgroup of order 2u; and in this sub- 

group A and B would be conjugate operations. Since A and B belong to distinct 

conjugate sets in G, this is impossible. Hence AB is of order two, or in other words 

A and B are permutable. Every operation of one of the two conjugate sets is there- 

fore permutable with every operation of the other. The two conjugate sets therefore 

generate two self-conjugate subgroups (not necessarily distinct) such that every operation 

of the one is permutable with every operation of the other. The order of each of 

these is divisible by two, and therefore the order of each must be a power of two; 

as otherwise G would contain operations of order 2r (7 odd). The two together will 

generate a self-conjugate subgroup H’ of order 2”. If n’ is less than n, there must 

be one or more conjugate sets of operations of order two not contained in H’. Let 
17 

(ORO acy 

be such a set. As before every operation of this set must be permutable with 

every operation of H’. Hence finally G must contain a self-conjugate subgroup H of 

order 2”. No operation of G is permutable with any operation of H except the 

operations of H itself; and G is therefore a subgroup of the holomorph* of H. It 

follows that G can be represented as a transitive group of degree 2”. Moreover, since 

G contains no operations of even order except those of order two, the substitutions 

of this transitive group must displace either all the symbols or all the symbols except 

one. Hence m must be a factor of 2”—1; and G contains 2” subgroups of order m 

which have no common operations except identity. With the case at present under con- 

sideration may be combined that im which G has a self-conjugate subgroup of order 

2”, the 2”—1 operations of order two belonging to which form a single conjugate set. In 

this case m must be equal to 2”— 1. 

We thus arrive at a second set of groups with the required property of order 2m, 

where m is equal to or is a factor of 2"—1. They have a self-conjugate subgroup of 

order 2”, and 2” conjugate subgroups of order m; the latter having no common operations 

except identity. These are clearly analogous to group (ii) above. 

3. Lastly there remains to be considered the case in which the operations of @ 

of order two form a single conjugate set, while G@ contains more than one subgroup 

of order 2”. 

If H and H’ are two subgroups of @ of order 2”, and if J is the subgroup 

common to H and 4H’, then since H and H’ are Abelian (their operations being all 

of order two) every operation of J is permutable with every operation of the group 

generated by H and H’. This group must have operations of odd order, since it contains 

more than one subgroup of order 2”. Hence Z must consist of the identical operation 

only; or in other words, no two subgroups of order 2” have common operations other 

* Theory of Groups, p. 228. 
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than identity. It follows from an extension of Sylow’s theorem that the number of 

subgroups of order 2” contained in G must be of the form 2" +1. 

If K is the greatest subgroup of G which contains a subgroup H, of order 2”, 

self-conjugately; then A must be a subgroup of the nature of those considered in the 

preceding section, and its order must be 2", where » is equal to or is a factor of 

2"—1. Also no two operations of H can be conjugate in G unless they are conjugate 

in K*, The 2”—1 operations of order two in K therefore form a single conjugate set; 

and hence » must be equal to 2"—1. The order of G@ is therefore given by 

N = (2% + 1) 2” (2"— 1). 

That G must be a simple group is almost obvious. A self-conjugate subgroup of even 

order must contain all the 2"%+1 subgroups of order 2", since the operations of order 

two form a single set. In such a subgroup the operations of order two must form a 

single set, and therefore a subgroup of order 2” must be contained self-conjugately in 

one of order 2"(2"—1). Hence a self-conjugate subgroup of even order necessarily 

coincides with G. If on the other hand G@ had a self-conjugate subgroup J of odd 

order r, Z would by the first section be Abelian and every operation of G of order 

two would transform every operation of J into its inverse. This is impossible; for if A 

and B were two permutable operations of order two in G@ which satisfy the condition, 

then AB is an operation of order two which is permutable with every operation of J, 

contrary to supposition. Hence G@ must be simple. 

If A and B are any two non-permutable operations of order two in G, AB must 

be an operation of odd order w, and A and B generate a dihedral group of order 2. 

Hence G contains subgroups of the type considered in the first section. Let 2m, be 

the greatest possible order of a subgroup of this type contained in G; and let J, be a sub- 

group of G of order 2m, and J, the Abelian subgroup of order m, contained in J;. Every 

subgroup A of J, is contained self-conjugately in J,; and, for the reason just given in 

proving that G is simple, no two permutable operations of order two can transform K 

into itself. Hence J, must be the greatest subgroup that contains K self-conjugately; as 

otherwise 2m, would not be the greatest possible order for the subgroups of this type 

contained in G. 

Let p* be the highest power of a prime p which divides m,; and let K be a subgroup 

of J, of order pt. If p* is not the highest power of p which divides NV, then K would be 

contained self-conjugatelyt+ in some subgroup of G@ of order ps. This has been proved 

impossible. Hence m, and N/m, are relatively prime. 

Again no two subgroups conjugate to J, can contain a common operation other than 

identity; for if they did 4 would not be the greatest subgroup of its type contained 

in G. 

If J, and the subgroups conjugate to it do not exhaust all subgroups of @ of order 

2u (wu odd), let 2, of order 2m, (m, odd) be chosen among the remaining subgroups of G of 

* Theory of Groups, p. 98. + Ibid. p. 65. 
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this type so that m, is as great as possible; and let J, be the Abelian subgroup of J, of 
order m,. Then J, has no operation other than identity in common with J, or with any 
subgroup conjugate to J,; also no two subgroups conjugate to J, have a common operation 
other than identity, and m, and N/m, are relatively prime. All these statements may be 
proved exactly as in the former case. 

If the subgroups of G of order 2 (« odd) are still not exhausted, a subgroup J, of order 
2m, containing an Abelian subgroup J; of order m, may be chosen in the same way as 
before; and the process may be continued till all subgroups of @ of the type in question 
are exhausted. Now J, is one of N/2m, conjugate subgroups and each contains m,—1 
operations which enter into no other subgroup conjugate to J, or to J, or J;.... | Hence 
the subgroups conjugate to Jy, J., Js, ... contain 

N N N 
Im, (m, = 1) + 2m (mz — 1) + 2m, (ms = 1) ate scl 

distinct operations other than identity. If Z; actually existed, this number would be equal 
to or greater than NV, which is impossible. Hence there can at most be only two sets of 
conjugate subgroups such as J, and J,. 

It was shewn in section 1 that each of the m,—1 operations of J, other than identity 
can be represented in m, distinct ways as the product of two operations of order two. 
Similarly each of the m,—1 operations other than identity of J., if it exists, can be represented 
as the product of two operations of order two in m, distinct ways. Moreover these and 
the operations conjugate to them are the only ones which can be represented as the 

product of two non-permutable operations of order two. Now G@ contains 

(2% +1) (2"—1) 

operations of order two, and any one of these is permutable with exactly 2"—1. Hence 

the number of products of the form AB, where A and B are non-permutable operations 
of order two and the sequence is essential, is 

(2° + 1) (2” — 1) 2% (2" —1) = Nk (2"—1). 

On the other hand as shewn above this number is 

T Ve 

Sm - 1)+ A (m, — 1) 

N 

or 2 (m,— 1) 

according as J, actually exists or does not. 

Hence if J, does not exist 

m, = 2k (27—1)+1; 

and at the same time m, is a factor of 

(27% + 1)(2"— 1). 

Vor, VII 35 
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These conditions are obviously inconsistent. Hence J, does exist, and 

M+ mM, = 2 {k(2"—1)+ 1}. 

It follows that, m, and m, being positive numbers of which m, is the greater, 

m >2k+1—k. 

On the other hand, since no two operations of order two contained in J, are permutable, 

while @ contains only 2"%&+1 subgroups of order 2”, 

m,<2°k+1. 

Hence there must be an integer /, less than k, such that 

m, = 2" +1 —1, 

and My = 2"k+1+4+1—2k. 

Now m, and m, are relatively prime factors of 

(2° +1) (2"—1). 

Hence (27k + 1)? — 2k (2 + 1) + 2hl —P < (2"k + 1) (2"— 1), 

and @ fortiori since I is less than k, and 2"k+1 is positive, 

2k&+1—2k< 2-1, 

i.e. kel. 

The group @ can therefore only exist if & is unity, and this necessarily involves that 

l is zero. Hence 

N= (2"+1) 27(2"-1), m=2"+1, m=2"—1, 

and these are the only values of NV, m,, and m, consistent with the existence of a 

group @ having the required property. 

Since G@ is simple, it can be represented as a substitution group of degree 2"+1. 

The subgroup of degree 2", which leaves one symbol unchanged, has a self-conjugate 

Abelian subgroup of order 2”, and 2” conjugate Abelian subgroups of order 2”—1; 

the latter having no common substitutions except identity. 

Hence the subgroup of G which leaves one symbol unchanged is doubly-transitive 

in the remaining 2” symbols; and therefore @ can be represented as a triply-transitive 

group of degree 2”+1. 

The Abelian subgroup of order 2”—1 which transforms a subgroup of degree 2” 

is shewn in an appended note to be cyclical. Assuming for the present this result, 

the subgroups of G@ of order 2”(2"—1) are doubly-transitive groups of known type. 

Now @ contains just 2"—1 operations of order two which transform each operation 

of a cyclical subgroup of degree 2"—1 into its inverse. Since each of these leaves 

only one symbol unchanged, each must interchange the two symbols left unaltered 
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by the cyclical subgroup of order 2”—1. But there are only just exactly 2"-1 

substitutions of order two in the 2”+4+1 symbols which satisfy these conditions. Hence 

for a given value of n the group, if it exists, is unique. 

That such groups exist for all values of mn is known*. In fact the system of 

congruences 

(mod. 2), 

where a, 8, y, 6 are roots of the congruence 

A1=1, (mod. 2), 

such that ad— By+=0, (mod. 2), 

actually define such a group; and the permutations of the 2”+1 symbols 

CA UE ON Mastodon AP oer 

where X is a primitive root of 

w"=1, (mod. 2), 

which are effected by the above system of congruences, actually represent it as a triply- 

transitive group of degree 2”+4 1. 

The set of groups thus arrived at are the analogues of group (111) above. 

Finally, every group of even order, which does not belong to one of the three sets 

thus determined, must contain operations of even order other than operations of order 

two. 

NOTE. 

Let H be an Abelian group of order 2” whose operations, except identity, are all 

of order two; and suppose if possible that H admits two permutable isomorphisms of 

prime order p one of which is not a power of the other, such that no operation of 

order two is left unchanged by any isomorphism generated by the two. So far as a set 

of p? operations of H are concerned the two isomorphisms, being permutable, must have 

the form 

(CARA A.) (Ala tAl at Airc (Amant As.\. 

and (Cel AS) (AAS A ee (Ale Aley eA): 

* Moore: ‘On a doubly-infinite series of simple groups,’ Chicago Congress Papers (1893); Burnside: ‘On 

a class of groups defined by congruences,” Proc. L. M. S. Vol. xxv. (1894). 

35—2 
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being the p? operations. Moreover any cycle of an isomorphism generated by these two 

has the form 

CAR s Aleta Sty» ceeeee Ay+(p—) a, tt(pony)> 

the suffixes being reduced mod. p. 

Since no operation of H except identity is left unchanged by any one of these 

isomorphisms, the product of the p operations in any one of the cycles must give the 

identical operation. 

Hence Jeleviley Sosos Ylo Sil 

Jiliegalseocee Jil Sails 

Jaliedéles Gosade Ane 

eee eee eee ee 

and therefore on multiplication 

AP = ls 

or rar —oe 

The supposition made therefore leads to a contradiction. Hence if H admits a 

group of isomorphisms of order p™”, no one of which leaves any operations of H except 

identity unchanged, this group has only a single subgroup of order p. It is therefore cyclical *. 

If then p™ is the highest power of p which divides 2"—1, the subgroup of order p™ 

in the Abelian group of order 2”—1, considered above, is cyclical. Hence the Abelian 

group is itself cyclical. 

* Theory of Groups, p. 73. 
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THE main object of the present communication is to obtain the Green’s function 

for the circular disc, and for the spherical bowl. The function for these cases does not 

appear to have been given before in an explicit form, although expressions for the 

electric density on a conducting dise or bowl under the action of an influencing point 

have been obtained by Lord Kelvin by means of a series of inversions. The method 

employed is the powerful one devised by Sommerfeld and explained fully by him in 

the paper referred to below. The application of this method given in the present paper 

may serve as an example of the simplicity which the consideration of multiple spaces 

introduces into the treatment of some potential problems which have hitherto only been 

attacked by indirect and more ponderous methods. 

THE SysTEM OF PERI-POLAR COORDINATES. 

1. The system of coordinates which we shall use is that known as peri-polar co- 

ordinates, and was introduced by C. Neumann* for the problem of electric distribution 

in an anchor-ring. A fixed circle of radius a being taken as basis of the coordinate 

system; in order to measure the position of any point P, let a plane PAB be drawn 

through P containing the axis of the circle and intersecting the circumference of the 

circle in A and B; the coordinates of P are then taken to be pale ae. 6 which 

is the angle APB, and ¢@ the angle made by the plane APB with a fixed plane 

through the axis of the circle. In order that all points in space may be represented 

uniquely by this system, we agree that @ shall be restricted to have values between 

—7m and 7, a discontinuity in the value of @ arising as we pass through the circle, 

so that at points within the circumference of the circle, @ is equal to 7, on the upper 

side of the circle, and to —7 on the lower side of the circle, the value of @ being 

zero at all points in the plane of the circle which are outside its circumference. As 

* Theorie der Elektricitiéts- und Wiirme-Vertheilung in einem Ringe. Halle, 1864. 



278 Dr HOBSON, ON GREEN’S FUNCTION FOR A CIRCULAR DISC, 

P moves from an infinite distance along a line above the plane of the circle up to 

any point inside the circle, and in its plane, @ is positive and increases from 0 to 7, 

whereas as P moves from an infinite distance along a line below the plane of the 

Fie. 1. 

circle up to a point within the circumference, 6 is negative, and changes from 0 to 

—a. The coordinate ¢ is restricted to have values between 0 and 27, and the co- 

ordinate p may have any value from —x2 to +%, which correspond to the points A, B 

respectively. The system of orthogonal surfaces which correspond to these coordinates 

consists of a system of spherical bowls with the fundamental circle as common rim, a 

system of anchor-rings with the circle as limiting circle, and a system of planes through 

the axis of the circle. If we denote by & the distance CN of P from the axis of 

the circle, and by z the distance PN of P from the plane of the circle, the system 

Ecos, Esing, z will be a system of rectangular coordinates, which can of course be 

expressed in terms of p, 6, ¢. Let the lengths PA, PB be denoted by 7, r’ respec- 

tively, then r/r’ =log p; we have 

Qrr’ cos = 7? + 7? — 4a? = 2rr’ cosh p — 4a?, 

F 2a? 
hence hh 

cosh p — cos @ 

Again, z.2a=rr' sin 6, 

ansaa 
hence ee 

cosh p — cos @ 

also since r+ 7? = 2a? + 2CP*, 

we have CP? =rr cos 6+, 

= 
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whence we find CP po ae 

= azisinhzon 

uoree "= (cosh p— cos OF 
thus &, z are expressed in terms of p, @ by means of the formulae 

_ __asinh p peal GSU Ojos 
~ coshp—cos@’ ~~ cosh p—cos@° E 

2. To express the reciprocal of the distance D between two points (p, 6, ¢) and 

(po, 9, Po), we substitute for & z and &,, z, im the expression 

pa ena + B+ BP BEE, 008 ($ - 4) 

their values in terms of p, @ and p., @; we then find 

1 1 (cosh p — cos 0)* (cosh py — cos 0) 

IDS BNO {cosh a — cos (8 — 8,)}# ; 

where cosh « denotes the expression cosh p cosh p, — sinh p sinh p, cos (6 — ¢,). If we 

suppose the expression {cosh a—cos(@—6@,);*? is expanded in cosines of multiples of 

: ; sayreoe fim cos mr 
@—6,, the coefficient of cos m(@— @,) is as) (Ge acna dyy which is equal*. to 

Bue Qm—+4(cosha) when Q,-; denotes the zonal harmonic of the second kind, of degree 

m — ; thus a= = (cosh p — cos @)} (cosh p, — cos A)? = 2,4 (cosh a) cos m (A — @,), where 

the factor 2 is omitted in the first term, for which m=0. The series in this expres- 

sion for 1/D may be summed, by substituting for Q,-;(cosha) the expression 

1 i eau : Y; 

V2/, (cosh u— cosh ar Mie) cs pol) 

we find 

Ue te, (cosh p — cos 6)! (cosh p, — cos 4,)* Ir =e {1 + 23e—” cos m (6 — 0,)} du 
D™ wraNv2 gf h J _ (cosh u— cosh a)! ‘ y ; 

and thus we have the formula 

1 “Aa le 1 sinh 
== = (cosh p — cos 0)? (cosh py — cos A)? ———— du, 
D wav? (Coppi cs Ok fe I, Vcosh uw — cosh a cosh wu — cos (6 — 0,) 

where @ is given by 

cosh a = cosh p cosh p, — sinh psinh p, cos (¢ — ¢,). 

* See page 521 of my memoir ‘On a type of spherical harmonics of unrestricted degree, order, and argument,” 

Phil. Trans. Vol. cyxxxvu. (1896) A. 
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— 

GREEN’S FUNCTION FOR THE CIRCULAR DIsc. 4 

3. In order to obtain Green’s function for an indefinitely thin circular disc, which 

we take to coincide with the fundamental circle of our system of coordinates, we shall 

apply the idea originated and developed by Sommerfeld*, of extending the method of 

images by considering two copies of three-dimensional space to be superimposed and 

to be related to one another in a manner analogous to the relation between the sheets 

of a Riemann’s surface. In our case we must suppose the passage from one space to 

the other to be made by a point which passes through the disc; the first space is 

that already considered, in which @ lies between —w and 7; for the second space we 

shall suppose that @ lies between 7 and 37, thus as a point P starting from a point 

in the first space passes from the positive side through the disc, it passes from the 

first space into the second space, the value of @ increasing continuously through the value 

m7, and becoming greater than 7 in the second space. In order that a point P starting 

from a position P,(p), , ¢), say on the positive side of the disc, may after passing 

through the disc get back to the original position P,, it will be necessary for it to 

pass twice through the disc; the first time of passage the point passes from the first 

space into the second space, and at the second passage it comes back into the first 

space. Corresponding to the point p,, @, ¢) where @, is between —7 and 7, is the 

point (p), @.+27, ¢) in the second space, whereas the point (p), @+47, ¢o) is regarded 

as identical with the poimt (p, @, ¢.). The section of our double space by a plane 

which cuts the rim of the disc is a double-sheeted Riemann’s surface, with the line of 

section as the line of passage from one sheet into the other. Let po, ®, gd, be the 

coordinates of a point P in the first space, on the positive side of the disc, thus 

0<6,<7; taking the expression for the reciprocal of the distance of a point Q (p, 0, ¢) 

from P, given in the last article, we have, since 

ee ik cecal 

sinh x Jigl sala Seo . 1 sinh 5 

coshu—cos(@—@,) 2 cosh 5 u — COs (6 — 6) 2 Pe a 4 fete 2 (0-6) 

1 l = l sinh 3 u 

—. = =—>— (cosh p— cos @)' (cosh p, — cos a | ne (]/ 
¢ /9 PQ” 24/2:ra a Vcosh w— cosh @ oosh 2 ras cos 5 (6 — 6.) 

need 
1 53 l sinh 5 u 
aa a AN aah ee i. te 4 ; +5 ome (cosh p — cos 6)! (cosh p, — cos 8,) i inne du; 

sh u — cosh a cosh 5 u— cos 5 (0 0, — 27) 

we thus see that 1/PQ is expressed as the sum of two functions, the first of which 

involves the coordinates po, @, $) of P, and the second is the same function of the 

* See his paper ‘‘ Ueber verzweigte Potentiale im Raume,” Proc. Lond. Math. Soc. Vol. xxvm. 
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coordinates p,, 0,+27, , of the point P’ in the second space, which corresponds to P. If @ moves up to and ultimately coincides with P, we have cosha=1; it will then be seen that the first function becomes infinite at the lower limit, but that the second one remains finite at that limit, 

Consider then the function W (Po, %, bo) given by 

Ween ye aE (cosh p — cos 6)! (cosh py — cos 0,)4 
Ta 

eel - 1 sinh 5 
| VET =hG le ee ees a ee me coon cos (610) 

the above equation may be written 

1 
PQ- W (po, a, go) + W (pos A+ 27, dy). 

It is clear that the function W is uniform in our double space as it is unaltered by increasing @ by 4s; it will now be shewn that it is a potential function. We may express W in the form 

1 a 1 m W= : cosh p — cos 6)? (cosh p, — cos 6,)2 | a {1 2>e—™ cos—(6 — 4, \ du, 2 es a y Be ) Ja Vcosh u — cosh a id me 3 , i 
which may be written in the form 

W= = (cosh p — cos 6) (cosh p, — cos A)! {Qs (cosh a) + 2 5S Qm 1 (cosh @) cos = (0— a} : 

since the formula 

en (n+4) uU 

V2 Qn (cosh ae ih (cosh u — cosh a)? du, 

holds for all values of n such that the real part of n+4 is positive (loc. cit. p. 519). Now (cosh p — cos 6)! (cosh Po — COS )4 cos s (8 — A) Qs 4 (cosh a) is a potential form whatever s may be, and thus W is a potential function, and is expressible in the form 

W= es (cosh p — cos )} (cosh p, — cos 6,)! |@ (cosh a) + 2Q, (cosh a) cos : (9-6) 

+ 2; (cosh a) cos (0 — @,) + a ; 

the value of W(p,, @,+ 27, dy) being 

= (cosh p — cos 6)! (cosh Po — cos 0,)# 04 (cosh a) — 2Q, (cosh a) cos : (0—6,) 

+ 2Q_; (cosh a) cos (8 — 0,) — +} ; 

the two expressions added together give the expansion of 1/D obtained in Art, 2. 
Vou. XVIII. 

36 
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ae Sn : ; : 1 
4. To evaluate the definite integral in the expression for W, write cosh ;u=<, 

cosh - =o, Cos : (@—6,)=7, then 

sinh u 
(i pill. sinaee du =2 | lei 
Ja Vcosh u — cosh a aoa x eos (6 — 6) Jo Vat— o?(@—7) 

42 @ ee z) 

A Gti? NZ) ayia 

where the inverse circular function has its numerically least value; we thus obtain the 

expression 

1 (cosh p—cos 0)! (cosh py — cos)! [a | sy Ved 6 h i t] 

WaT {cosh a — cos (6 — 0,)}* 7s eo Eee 3 ( 2 

which may also be written in the form 

SNe | aah th Men had p i 1] 
W = PO E on [eos 5 (@ —8,) sech 3% | nusatseanns te ected (1). 

This expression W has the following properties:—it is, together with its differential 

coefficients, finite and continuous for all values of p, @, @ in the double space, except 

at the point P in the first space, and it satisfies Laplace’s equation; when Q coincides 

with P, the inverse circular function approaches = and the function becomes infinite 

as 1/PQ; when however Q approaches the point in the second space which corresponds 

: : : 7 . 
to P, the inverse circular function approaches —>, and the function does not become 

infinite. The expression (1) is then the elementary potential function which plays the 

same part in our double space as the ordinary elementary potential function 1/PQ does 

in ordinary space. 

5. In order to find a potential function which shall vanish over the surface of 

the disc, and shall throughout the first space be everywhere finite and continuous 

except at a point P(p., %, ¢)) in the first space on the positive side of the disc 

(0<@,<7), we take the function W(p,, , do)—W(p., 2r—@, do) which is the 

potential for the double space due to the point P and its image P’(p,, 27—@, do), 

which is situated in the second space at the optical image of P in the disc. This 

function is equal to 

1 (cosh p — cos 6)! (cosh py — cos 6)! 

maN2 {cosh a — cos (6 — 6,)|4 

1 (cosh p—cos 8)! (cosh py + cos 0)! [ar . _, il 1 t] Sane (eclukaasiecs @OERCTE zt sin {- cos 5 (8+ 6) sech 5 a} |, 

E + sin {oos XG — 6,) sech : a | 

{ 
SERA] 
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which is the same thing as 

U= £6 E - * sin {eos : (@ — 6,) sech : a | - PO E = * sin . cos 5 (6 + @,) sech : a 

Secret anceeet ( 

where P’ is the optical image of P in the disc. On putting in this expression (2), for 

U, the values 0=7, @=-—7, and remembering that over the disc PQ=P’Q, we verify 

at once that U vanishes on both surfaces of the disc. If @ coincides with the point 

(po, —%, $) the function U remains finite. 

The Green’s function Gpg which is a function that is finite and continuous throughout 

the whole of ordinary (the first) space, everywhere satisfies Laplace’s equation, and is 

equal to 1/PQ over both surfaces of the disc, is given by Ga — U, hence the 
PQ 

required value of G ) is 

Gpg= a Eee a sin 105 = *(0- @,) sech oa a} |+p : ab + - sin- |- cos ; (@+ @,)sech : al | 

= Fo'= L cos? feos (@—86,) cane 9% Po-= —cos |eos 5 =(0+86 ») ech 5 54 eiey seas als (3), 

the numerically smallest values, as on of the inverse circular functions being taken. 

It will be observed that in interpreting these formulae (2) and (3), the second copy of 

space, having served its purpose, may be supposed to be removed. 

THE DISTRIBUTION OF ELECTRICITY ON A CoNDUCTING DISC UNDER THE INFLUENCE 

OF A CHARGED Poin’. 

6. If we suppose a thin conducting disc to be placed in the position of the funda- 

mental circle of the coordinate system, to be connected to earth, and influenced by a 

charge q at the point P(p, 0, ¢)) on the positive side, the potential of the system at 

any point Q is qU where U is given by (2), and the potential of the charge on the 

dise is —q.@pe. We shall now throw these potentials into a more geometrical form. 

We have 

1 cos 5 (6 — 6) ) 
sin— = Joos 5 (@—- @,)sech 5 a =tan— yas | 

» | 

a/ cosh: 5 a— cos? 5 (@—@,) 

Nicos Can cy) 
= tan 
Cam f 

now take an auxiliary point Z, of which the coordinates are p,, 07, qd, the upper 

or lower sign being taken according as @ is positive or negative (-7<@<7). Thus L 

and Q are always on opposite sides of the disc; using the formulae of Art. 1, we find 

— 2a* cos 0 — 2a? cos 0 
gee ae Z P= (CH= —— = 

Core cosh p, + cos 6 ’ a Ge cosh p—cos 0’ 

Ley 1 + cos (4 — 0) i cosh p — cos 6)2 
cosh a — cos(@—@,)) cosh Po +cos Of ’ PQ” 

36—2 
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hence 

? sin7 jeos : (@—8@,) sech 2 a} =+tan™ (Fo tis) 

Fie. 2. 

in order to determine the sign on the right-hand side, we observe that the inverse 

sine is positive unless @ lies between —(7—@,) and —7, that is unless Q lies within the 

sphere passing through P and the rim of the disc, and is on the negative side of the 

dise; thus the sign on the right-hand side is to be taken positive unless Q lies within 

this spherical segment. 

Similarly we find 

; 1 1 = P'L /@-Ce 
eh ee 2 me = 9ay—l v sin | cos 5 (0 +8) sech 5a} + tan Gaza a) 

where the negative sign is to be taken unless Q is on the positive side of the disc and 

within the sphere which contains the rim and the point P’. We have thus as the 

expression for the potential of the system at any point Q (p, 0, ¢) 

a — CQ) q a Ph {POG 

OL? — =| ~2P@ E +7 ig Cr 2) em 
when the ambiguous signs are assigned in accordance with the above rules. 

The auxiliary point Z may be found from the following construction : 

Draw a spherical bowl through the rim of the disc on the opposite side to that on which 

Q lies, and equal to a similar bowl which passes through Q; draw a plane PA’B’ through 

P and the axis, cutting the rim in 4d’, B’; this plane intersects the bowl in a circle; on 

this circle Z lies, and is found by taking it so as to satisfy the relation 

TAS GBI = AY) PB. 
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In the case in which the influencing point is on the axis of the disc, we have p, =0, 
hence a=p, and the auxiliary point Z is on the axis of the disc at the point where this 
axis is cut by the sphere through the rim and the point Q, on the opposite side of the 
dise to Q; the formulae for the potential then become 

V=39 E + = sin“ jeos : (@— 6@,) sech : Pt | - PO E + E sin - cos : (@ + @,) sech ; P| 

ee Seite CO Ge (EL fat COs ae IPO E t= tan ep oa 2P'Q 1 Te ban ul \PQ res) soon (8) 

the sign in the first bracket is positive unless Q lies in the segment ApB, and the sign in 
the second bracket is negative unless Q lies in the segment Ap’B. 

7. To find, in the general case, the induced charge on the disc, it is sufficient to 
examine the limiting value of the potential at a point Q, as Q moves off to an infinite 
distance from the disc in the direction of the axis. In the expression for —g¢.@pg given 
by (3), let 6=0, p=0, then a=po, and PQ, P’Q become infinite in a ratio of equality ; 
the expression for the potential of the induced electrification on the disc bas therefore 
the limiting value 

9 

== “50 cos} (cos 5 sech : pa) : 

therefore the whole charge on the dise is 

. —1 —q-— cos (cos 

which is equivalent to 

when Z is a point in the plane of the disc which lies on the bisector of the angle APB. 
This expression may be interpreted thus :— 

Fic. 3. 

Let PL be the bisector of the angle APB, draw the chord NZM perpendicular to 
AB; the total induced charge is 
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When the point P is on the axis of the dise, the induced charge is brasil where @, 
Tv 

is the angle subtended at P by a diameter of the disc. 

When P is in the plane of the disc, the angle VPM becomes the angle between the 

tangents from P to the circular boundary of the disc. 

8. The surface density at any point of the dise is given by the formula 

Leah 
paar ov’ 

when dy is an element of normal and is given by 

+ adé 

”~ cosh p — cos 0° 

We thus find for the density p, at the point (p, 7, @) on the positive side of the disc, 

Die. ; 1 q z 2 += sin“ (sin 78, sech >t 
7 2 4 Po de PO 

ty 
q 1 coshp +1 did Oe ; 

Tao! Tce, > ei es 
rE, a/ cosh? 5a sin’ 56, 

this expression can be put into a more geometrical form by introducing the auxiliary 

point Z (p,, 9-7, ¢,) of Art. 6. The point Z is now in the plane of the disc, and external 

to the disc; denoting this position of Z by Z,, its coordinates are p,, 0, ¢,. We have 

Rae (aoe 1 ye. /PL, - /@=CR 
sins (sin 2% sech 54) =a helriee \PQ CL2—a:) 5 

Sane é a Bey se) fe ae tales which is equal to 3 7 tan Sat a—C@ ) ; 

on reducing the second term in the expression for p, remembering that 

asin 0, 
z= ——— 

cosh py — cos 6,’ 

ey (Es 
Wie JEG IED; a? — CQ’ 

and thus the expression for the density at any point Q on the positive side of the 

dise is given by 

we find that it becomes 

nese pai PN (J th hee eG: = 
Po 97° PQ Ie’ PIPL, @—0@ =" \Pr,V a— OG ’), 

PN 9  PN(PQ /CLi—@ /PQ nee a 

where PN is the perpendicular from P to the plane of the disc, and Z, is a point on AB 

produced, such that AL, : BL,=AP : BP. 
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The value p, of the density at the point (p, —7, @) on the negative side of the disc is 

found in a similar manner to be 

eg ENCE CL? — a? _ as Wess PQ Oke ere ah) 

Pa ~ art IPG PL. a? — C2 UPT; CQ 

Thus the densities at corresponding points on opposite faces of the disc satisfy the relation 

+t eo 
foe Oe aeons 

When P is on the axis of the disc, Z, is at infinity, and the formulae (7), (8) become 

Gq) URINE sag Te PQ ~ tan ( PQ )t 

po Ie PQ 20° PP Wag. BO VAQ. BQ 
= Gf PN PQ 2s PQ p= — ce ae aes Can aT ast (9). 

The expressions (7), (8), (8) agree with those obtained by another method by Lord 

Kelvin*. 

When P is in the plane of the disc it coincides with Z£,; in this case we find 

that the density on either side of the disc is given by 

a yey) ee CP? — a 
p=—5 PON Geos irre eeeeeeeeoceensnnneeee (10). 

9. If the influencing point P is on the axis at @,, we find from (5) the following 

expressions for the potential at points on the axis:—On the positive side of the disc 

¢ 

PQ7 te PQ O- %)~ a5 py (9+) when @>6,, 

eile q 
PQ' 27 159 (6- 8) — On PQ? t )» when 0<4@,. 

On the negative side of the axis 

Qt = "9 8- 0) + 5" pO im PO (9+96,), when @+ 4, is positive, 

PQt i Poe 0) — PO (0+ 6), when 6+, is negative. 

If we denote by 2 the distance of P from the disc, and by z the absolute value of 
the distance from the dise of a point @ on the negative side of the disc, the potential 
at @ is given by the expression 

q q ( —; 20) q hetpnbs 2 Z ao ae cot = cot Diet CObm |) 
Z2+2 w(z+%) 7 iy a 1 (2)—2) (0 a coe a 

* See his papers on “ Electrostatics and Magnetism,” p. 190. 
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if z, be given as a multiple of a, say z,=na, the expression 

g / z ( Zz 

oe aetna) (Org toot n) Tas) (hi Ee al ae n) 

might be used to tabulate the values of the potential at points on the negative side 

of the axis. When z=0, z= this expression is zero, and it will have a stationary 

negative value z for some value of z which may be approximately determined by plotting 

out the value of the function. Corresponding to this value of z there is a point of 

equilibrium which is completely screened from the effect of the influencing point P by 

means of the disc; the lines of induction from P which pass through this point, separate 

those lines of induction which end on the disc, from those which go to infinity. 

10. The potential of the electricity induced on the disc, which is connected to 

earth and placed in a field of constant potential, may be deduced from the expression 

(5) by taking the point P on the axis, and letting it move off to an infinite distance, 

the strength q of the charge increasing so that the ratio 1 yemains finite, say equal 
PQ 

THE ELECTRIFICATION INDUCED ON A DISC PLACED IN ANY FIELD OF FORCE. 

to —A. We can easily shew that 

‘ 1 1 Ge a 2a 
sin? = = = — — YY sin (cos 3 @ sech 3 p) 3 — sin (5 =) : 

where 7,, 7 are the greatest and least distances of the point (6, ¢,p) from the circular 

rim of the disc. We thus find for the potential of the electricity on the disc, the 
€ 
< 

sin , which is the potential of an insulated disc elec- 
ui 1 

trified freely to potential A. 

well-known expression 

11. To find the potential due to the charge on the dise when placed in a field 

of force of potential jaw, when a is a coordinate measured from the centre of the 

disc in a fixed direction in the plane of the disc, suppose charges of strengths q and 

—q to be placed at the two points P(p., 0, 0), P’(—po, 0, 0) on the axis of x; the 

potential of the charge induced by these on the disc is at any point (p, 0, ¢) 

1 
a il 2 C08 5 (] 2q 1 be COS 5 (] 

mee pg 7 he Pore ; 
cosh 3% cosh 5 a’ 

where cosh a = cosh p cosh p, — sinh p sinh p, cos ¢, 

cosh @’ = cosh p cosh p, + sinh p sinh pcos ¢ ; 
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now let p, become very small, as P, P’ move away from the origin, the expression 
for the potential becomes, when higher powers of po than the first are omitted, 

1 1 aie | ag! = ) cos cosh 5 p 3 008 5 @sinh 5 p cos 
== (Ap tS=) 4cos— SS 0  OeQqQQQYQYQYYe ; Y 1 D2 1 

1 2 1 
ene Oe | cosh gP a/ cosh? : p- cos" 5 6 cosh? QP | 

seal 5 cos Lg egiey * cos x sinh + pcos 1 x 2 2 2 2 2 +4 (ap - Ge) {cos Sa ees 7 ee SS hee 
si cosh 5P a/ cosh? 5P— cos" 5 r) cosh? 5 p 

asinhp, — 2a : : : 2q now CP=———_°’ _=~" hence if q be made indefinitely great so that Cp = we coshp,—1 py 
find for the required potential 

Lame 5 1 1 cos 5 @ sinh p 
—— p+ cos (cos 5 @sech 5 p)—a cos ¢. i. = ae 
is | r v2 cosh? = p Veosh p — cos | 

2a _ Vcosh p— cos 0 a sinh p now =—_—————-, © = 00s co) +1, cosh p — cos 8’ V2 cosh : p 

hence we find that the potential due to the induced electricity, in a field of force of potential yz, is 

2 : 2a 2a V(r, + 7? — 4a?) == pa 4sin — SAT ama | NOC DUO IECCCEEA RCo 11). cae | M+ 1% (7 + 72)? J oS) 

12. In order to find an expression for the potential of the induced electricity on the disc, when it is placed in a given field of force, we apply the well-known theorem that if o is the surface density at the element dS of the surface of a conductor when acted on by a unit charge placed at an external point @, the potential function at Q which has values given at every point of the conductor is [VoedS, the integration being taken over the whole surface of the conductor. Suppose V(p, ¢) to be the given potential function at the element p, @ whose area we denote by dS, on either side of the disc; the potential function at the point (py, Oy, ¢.) external to the disc which on the dise takes the values V(p,$) is then, using the expressions found in Art, 8, 

1 (1+ cosh p) cos = 8, ——____ 1 2 Zz l—cos@ Dea ———————— 
SSE tan ee a V 4 ds, 27° Ra my rail ™ Re Vcosh a+ cos 6, oy | cosh? 5 %4— sin? 5 0, 

Vout. XVIII. 
37 
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the value of the required function, R denoting the distance PQ. We now introduce 

new coordinates r, 7, @ instead of p, 6, ¢, these being given by 

c= J/r+a?sinncosd, y=J/r+a?sinnsing, z=rcosn; 

to express 7 in terms of p, 0, we have 
2 

e+y= (7+ a) sin?n = ( =a a?) sin? 7, 
cos* 

CQ2— a 2 

hence cos‘ + od cos? n =S¥ where CQ?=a°+ y°+ 2°; hence we have 2 

VCQ?—a? ~ V(CQ@ — a?) + 4022 
cos? 7 = — Oa Da? 

Ree. 
cosh p—cos 0’ 

2a? cos 8 N gg ee ee 

ie cosh p — cos 6’ 
and it is easily found that V(CQ? — a®)?+ 4a%z? 

ae ay) I —cos 6 
1M cosh p—cos 6” 

and therefore cos m=, / Scola 
cosh p,— cos 0, 

hence we have 

Also as P is on the plane of the disc (r=0), we have CP=asinyn, hence e&= ee , 
ay, 7) 

from which we find 1+ cosh p=2sec?y. Remembering that 

in del V1+ cosh p Veosh p, — cos 0, 

R av2 cosh a + cos 8, 

: 1— cos 0, @ COS 7H COS Hy 

oe V cook a+cos 0, R ' 

and also 

hp) cos £8 hh tise ere (1 + cos p) C08 5 Mi ree + cos pices tet ND} : Qe 

R° Vcosh py — cos 0, R* cosy’ a V2 cos m aR cos 7 cos ” ac ah 
a/ cosh? 5 asin? 58, 

then since dS=a?sinyncosndndd, we have for the potential function at an external 

point 7%, , $, which has the value V(y, ¢) at the point 7, @ of the disc, the 

expression 

¥ Zz folie { @COSN COS],  _ @ COS 7) COS \) é 
eral Res Vm, #44 ae Sarr) a tan ee dnd eecces (12); 

here the coordinates of the external point at which the potential is found are the 

elliptic coordinates given by 

Z=7,Ccosm, 2=Vre+a?sinycosd, y=Vr2+a?sin m sin do, 

the coordinate 7) alone appearing explicitly in the expression. This formula agrees with 

one obtained by Heine by a different and somewhat complicated procedure*. 

* See his Kugelfunctionen, Vol. 11. p. 132. 
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THE DISTRIBUTION OF ELECTRICITY ON A CONDUCTING BOWL UNDER THE INFLUENCE 

OF AN EXTERNAL ELECTRIFIED POINT. 

13. In order to adapt the method of this paper to obtain corresponding results 

for the case of a spherical bowl, we must suppose the surface across which the passage 

from the first space to the second takes place, to be a spherical bowl with the funda- 

mental circle for its rim. If the angle of the bowl is 8, we must suppose that in 

the first space @ has values from @—2z7, on the negative side of the bowl, up to 8 

on the positive side, and that as we then pass through the bowl into the second 

space, @ increases from 8 up to 8+27, when the positive side of the bowl has again 

been reached. If the convexity of the bowl is upwards, @ is less than 7; if down- 

wards, 8 is greater than 7. 

The image of a point P(p,, @, ¢$,) in the first space and above the bowl is the 

point P’(p,, 28—@,, ¢) in the second space, and below the bowl. 

The expression 

1g ele ely i! 1 
UG [ rio sin {eos 5 (@- @,) sech 3 at | 

cosh p, — cos 6, 1 a a eae 1 5 1 fi 
= hes a= 008 (28—6,) PO E +7 sin {cos 5 (0+ 8 28) sech >t| Sade (13) 

corresponds to the expression in (2); it is a potential function which vanishes over 

the disc, and of which the only infinity in the first space is at P, where it becomes 

infinite as 1/PQ. 

The Green’s function Gp, is therefore given by the formula 

Cope = cos— {eos : (@—8@,) sech 5 a} 

+ V aS or 8.) Fy E +> sin Joos (6 + 0,— 28) sech 3 a\| S900 (14). 

By introducing an auxiliary point LZ whose coordinates are p,, 9+, qo, this 

expression may be thrown into a geometrical form corresponding to (4), and the 

expressions obtained by Lord Kelvin for the density on either side of the disc may be 

deduced; it is however hardly worth while to give the details of the process, as it 

is precisely similar to that which has been carried out in the case of the circular 

disc. 

37—2 



XIII. Demonstration of Green’s Formula for Electric Density near the Vertex 

of a Right Cone. By H. M. Macponatp, M.A., Fellow of Clare College. 

[Received 13 October 1899.] 

In a footnote in his Hssay on Electricity Green makes the following statement*: 

“Since this was written, I have obtained formule serving to express, generally, the law 

of the distribution of the electric fluid near the apex O of a cone, which forms part 

of a conducting surface of revolution having the same axis. From these formule it 

results that, when the apex of the cone is directed inwards, the density of the electric 

fluid at any point p, near to it, is proportional to r”*; r being the distance Op, and 

the exponent n very nearly such as would satisfy the simple equation (4n+2)8=37; 

where 28 is the angle at the summit of the cone. If 28 exceeds 7, this summit is 

directed outwards, and when the excess is not very considerable, n will be given as 

above: but 2¢ still increasing, until it becomes 27—2y, the angle 2y at the summit 

of the cone which is now directed outwards, being very small, n will be given by 

2n log = 1. The method by which he obtained these results was never published and 

the problem was not again attempted} till 1870 when Mehler; gave a solution for the 

electrical distribution on a right cone under the influence of a point charge; but the 

expression given by him for Green’s function is so complicated as to make it difficult 

to obtain results from it, and the form of the expression does not exhibit the fact that it 

is discontinuous. In the following analysis a solution for the distribution near the vertex 

of a right cone forming part of a surface of revolution freely charged (Green’s case) is 

obtained; also solutions for the distributions on a right cone, and on a surface whose form 

is the spindle formed by the revolution of a segment of a circle about its chord, under the 

influence of point charges on the axis. Solutions for both these latter problems have also 

been given by Mehler§. The cases when the point charge is not on the axis can easily be 

deduced, but present no special interest. 

The solutions here given are examples of a general method, which depends for its 

application on the fact that the writer has recently been able to determine the values of 

nm in terms of « for which the harmonic P”() vanishes. 

* Green, Essay on Electricity and Magnetism, 1828; + I have been unable to obtain Mehler’s paper con- 

Mathematical Papers, p. 67. taining the results for the cone and have had to rely on 

+ Green’s statement is quoted and applied by Max- Heine’s account of it, Theorie der Kugelfunctionen, Vol. 11. 

well, Cavendish Papers, 1879, p. 385, with the remark pp. 217—250. 

that no proof had ever been given. , § Cavendish Papers, loc. cit. 
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§ 1. Green's case. 

With the usual notation, the expression V,— Ar” P,(y) is a solution of Laplace’s 

equation in the neighbourhood of the vertex of the cone which is equal to V, on the 

surface of the cone for which P, (cosa) vanishes, where a is the semivertical angle of 

the cone. That it may be the required solution P,,(«) must uot vanish for any value of @ 

between a and 7; for if it vanished for a value a’, where a’>a, the expression would then 

be the solution for the space between the two coaxal conducting cones whose semivertical 

angles are a and a’, or for some other space not entirely bounded by the cone whose semi- 

vertical angle is a Hence n must be such that P, (w) does not vanish for a value of @ 

which is greater than a; now the kth zero of P,(m) considered as a function of n 

diminishes as @ increases*, therefore n must be the least zero of P,, (cosa). Therefore 

the potential in the neighbourhood of the vertex of a right cone of semivertical angle a, 

forming part of a conducting surface which is charged to potential V,, is V,— Ar”P, (u), 

where 7 is the least zero of P,(cosa) and A is a constant depending on the form and size 

of the surface. Hence+ the density of the distribution im the neighbourhood of the vertex 

of the cone varies as r®, where r is the distance from the vertex and n is given by 

n=«x,/a« where a is the least zero of J,(#), when @ is small, by (4n+2)a=37, when a is 

nearly 7/2, and by 2n eg sae when a is nearly 7 and t—a=y. Thus Green's results 

are verified. 

§ 2. Mehler’s cases. 

(1) The distribution of electricity on a right cone under the influence of a charge 

on its axis. 

Let the space to be considered be the space bounded by the two concentric spheres 

r=b, r=a and the cone 6=a, where r, 0, ¢ are polar coordinates, and let there be 

a charge g at the poimt r=7", @=0. The conditions to be satisfied by the potential are 

V=0, when r=a and a>6@>0, 

V =0, when r= 0) and a>6>0, 

V=0, when 0=a anda>r>b, 

a Viz ovale | oV) 
and = a 

Ge Gp Ton 
(1 = p’) Bill + 4p =0 

throughout the space. Put r=ae™, then the equation to be satisfied by V becomes 

Gy Oe 1G \\ RECNG ore 
Dina tae) ga + Aaa p=0; 

* Macdonald, “On the zeros of the harmonic P,,”(u) considered as a function of z,” Proc. Lond. Math. Soc. 1899. 
+ Loc. cit. 
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A 

and, writing V = Ue?, U has to satisfy the equation 

5A 

Ul Uineed ee) ser apa te 
men et 1-H Go| + trae p=0, 

with the same boundary conditions as V. Assume 

oa 5 » 
TS We sin : 

a Ao 

where No= log Fs this satisfies the first two boundary conditions and will be the solution 

required if W,, can be determined to satisfy the conditions 

W,»,=0, when 6=a2 and a>r>b, 

mmr -3 
+ 47a’e ~p=0, 

and also 

Pa) OW. men? 1 : hl ee a ) Ved = [2 fom" - (Cadre) em 
that is 

r) OWm mr 1 Sra? (As) Sein 
a=) at (= +3) Wat ze | pe 2sin r, dy = 0. 

Assuming 

VWe= DAtm ln (1), 

all the conditions are satisfied if this summation extends to all the values of m which 

make P,(cosa) vanish and A,,, is determined so that 

LOE ein ne a UL 
> = —- =—— —— ZAnm {(n4+5) SRE j Pa@) Se 2 sin dx, 

that is, if 

( A\ ys ania i Ne =F ff -» . mmr Ann | nts) +5 _(Palw)itdu=S™ | | pe 2 Pa (w)sin So dnd 

where »,=cosa. Now 

u 2 = ih bo OPn (p) =I 
[ew du=- 5" | on On pie tt 

therefore 

2 2 0 5A 1 =e OP 0Pn_ _ 87a ik hi nes (u) ne oa 

No ~ bo 0 Xo 

/ 1 m7 
Ae {(n 3 5) ae ie | 

Making p vanish except at the point r=7r’, 0=0, where 

q=— 27pa° edn’ dy’, 

In+1 on op 
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the expression for V becomes 

mr . mmr se (2n+ 1) sm—— sin —— P, (un) 
Va neo ee EEE! 

ANy 1 ; oP, oP. IN ne |) 1 =& 2 n n ( , ) 

Di re Cais i seo) anes 

effecting the summation with respect to m, this becomes 

At’ cosh (2 + Z Ny —A+NX’) — cosh ( n + u (Ay — A — 2’) V. 2ge 2 s! 2 2) P 

ue sinh (» at 5) Ao (1 — p42) OPn OP n n(H) or Dy one ais 
when A>2X, and 

AtX" cosh (» aE =| (XA) — Xr’ + X) — cosh (» sy 5) Osi — 70) 2) 2 / 
2 

Pa age s / 

ee: h( Ag ae ee ke ee. sin nv 5) 0 Mo Ar Oe 

when X<2. Making »,=0 the space becomes that bounded by the cone @=a and 
the sphere r=a; and the potential inside an uninsulated hollow conductor of this form 
under the influence of a charge gq at the point r’=ae-* on the axis is given by 

“x +4) (A-A’) ( (A 2ge 2 — e-(MtH(A-N) __ p—(m+4) (AtN) Vases sy $$ Pur) 
a 1 2) ot n OP 

ela On Op 

when A>2, and by 

MeN } rn 2¢0e o- (n+) (A-A’) _ e— (m+) (A+A’) Faces > —___—— Pu) 
a a 2) JPSOR= 

eo) On Op 

when X<2X’, that is by 

ete 2 x ( yr ie Te) Je. (“) 

Sot yp nt qent 

when 7’ >r, and by 

y’n pry n TP, (“) =_— 9 5 Sait eae n+ ; 
fa 

V q (a a} Gas) OP n OP n 
BAT Op 

when r>r’. To obtain the potential in Mehler's case when the cone extends to infinity 
put @=o and then 

YatgS 2 lS nn a ee 2) OP ny OPn ? 

on Om 
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when 7’ >r, and 

nr 12 (uw) 

se Sb rs » OP OP’ 

Po) On Om 

when + >7’, where the summations extend to all the positive values of n which make 

P,, (cos a) vanish, When a=7/2 

OE Os £5 
On Cu : 

an 
and V= 2q> pn IE, (#), 

when 7’ >r, where the summation extends to all the positive odd integers, that is 

Vs g = q 
= a7 -\ 

Vr +r2—2rr'cosO V22+ 7 + Ir’ cos O 

which agrees as it ought to with the expression for the potential due to a charge q 

at a point distant r’ from an infinite conducting plane at potential zero. 

(2) To find the potential at any point due to the spindle formed by the revolution 

of a segment of a circle about its chord, when its surface is freely charged. 

This is immediately obtained by inversion from the above case. Let & be the angle 

in the segment of the circle whose revolution describes the spindle, € the angle in 

= 105 
any other segment of a circle on the same chord, n=log—, where 7,, 2 (71>) are 

2 

the distances of a point on a segment from the extremities of the chord; then putting 

q=-—V,r' and observing that the cone of angle & in the dielectric inverts into the 

spindle the generating segment of which contains an angle &, the potential at any 

point due to the spindle when charged to potential V, is given by 

eh P,, (cos €) 

OPn aE | ; 

(Ls) E Om M=Ho 

V=V,+2V, V2 (cosh n — cos €) = 

where ,=cos &, and the summation extends to all the positive values of » which make 

P,,(cos &) vanish. The case of the sphere is that when £=7/2. It may be verified 

that the density of the distribution on the spindle near one of the conical points agrees 

with that found §1. For the density at any point on it is given by 
V, if d Me e— (n+h) 7 

— Bap? (2 (cosh 9 — cos &,)}? = ———a5 ; sin &, a 
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and near one of the conical points this becomes 

Va yr 1 

Dire gee eile 

where 7’ is the length of the axis of the spindle, 7 the distance of the point on the 

surface from the conical point and n is the least zero of P,(cos&). Now when &, equal 

i WD, 7 : 
to m—y, is nearly 7, aa er ae and the values of n which occur are k+m, where 

as 

k is any positive integer and 2n,log-=1*; on substitution and summation, the ex- 

Vomr’ 
pression for the density at any point becomes — 

* Loe, cit., Proc. Lond, Math, Soc. 1899. 

WO, SS\A00L 38 



XIV. On the Effects of Dilution, Temperature, and other circumstances, 

on the Absorption Spectra of Solutions of Didymium and Erbium Salts. 

By G. D. Liverne, M.A., Professor of Chemistry. 

[Received 15 October 1899. ] 

In November 1898 I made a preliminary communication to the Society giving 

results of observations on the absorption spectra of aqueous solutions of salts of didy- 

mium and erbium in various degrees of dilution. Since then most of the observations 

have been repeated with improved apparatus, whereby several anomalies in the photo- 

graphs have been removed, and a great many additional observations made, so that it 

will probably be best to make this communication quite independent of the preliminary 

one, and, at the risk of a little repetition, complete in itself so far as it goes. 

APPARATUS. 

The observations were made in part directly by the eye with an ordinary spectro- 

scope, and partly by photography. On the former I rely only for the part of the 

spectrum below the indigo, on the latter for the more refrangible part. The spectro- 

scope chiefly used for the former had two whole prisms of 60° and two half-prisms, 

all of white flint glass, telescopes with achromatic object glasses of 12 inches focal 

length, and eye-piece of very low magnifying power. It was useless to employ higher 

dispersion or magnification, because the absorption bands, even the sharpest of them 

which is that of didymium at about 2427, are all diffuse, and higher dispersion or 

magnification renders some details invisible. In comparing by eye the spectra produced 

by two solutions, one was thrown in by reflexion in the usual way, and, after making 

the comparison, the positions of the solutions were interchanged and the observation 

repeated, in order to correct any error arising from a difference of intensity between 

the light entering directly and that coming in by reflexion. 

For photography the spectrum was formed by one prism of 60° and two half- 

prisms, all of calcite, the object glasses of the telescopes were quartz lenses of 18% 

inches focal length for the sodium yellow light. The photographic plate was of course 



Pror. LIVEING, ON THE EFFECTS OF DILUTION, TEMPERATURE, erc. 299 

inclined to the axis of the telescope so that, as far as the doubly refracting character 
of the calcite prisms allows, the image might be in tolerably good focus across the whole 
width of the plate, two and a half inches, 

To concentrate the light, and make it, for the parts of the spectrum not subject to 
absorption, nearly uniform whatever the thickness of the absorbent stratum of liquid, 
a quartz Jens of three inches focal length was fixed at that distance in front of 
the slit, and a similar lens fifteen inches further off, and three inches beyond the 
second lens was fixed a screen with a circular hole in it about one-eighth of an inch 
in diameter, and beyond that was of course the source of light. The centres of the 
hole in the screen and of the two lenses were aligned with the axis of the collimator. 
The distance between the lenses was fixed so as to allow of the interposition of the 
longest trough, used as a water bath for maintaining the temperature of the tubes 
containing the solutions. These troughs were of brass fitted with a plate of quartz at 
each end, and each had in it two V-shaped septa on which the tube with solution 
rested, and thereby took up at once its right position in the course of the pencil of 
hight between the lenses. The tubes holding the solutions were of glass, fitted at the 
ends with quartz plates. These plates were held in position by outer brass plates with 
central cireular perforations, connected by three wires passing along the outside of the 
tube and furnished with screw nuts by which the plates could be firmly pressed against 
the ends of the tube. The joint between the quartz plate and the end of the tube 
was made water-tight by a washer of thin rubber. The washers all had the same 
sized circular opening which determined the cross section of the pencil of rays falling 
on the slit. This seemingly complicated arrangement was adopted because it was 
necessary to have joints which would not be affected by a temperature of 100°, or by 
dilute acids, or by alcohol, and could be easily taken to pieces for cleaning the tube 
or plates. 

Each tube had a branch on its upper side which was left open for the purpose of 
fillmg the tube, and to allow of expansion of the liquid when it was heated. Tubes 
of four lengths in geometrical progression, namely of 38mm., 76mm., 152°5 mm., and 
305 mm., and a cell with quartz faces having an interval of 67mm. between them, 
were used to hold the solutions; and for a few observations a cell of only 5mm. thickness 
was used. 

For observations on the effects of temperature, the trough containing the tube with 
solution was filled with water and a photograph of the spectrum taken at the tem- 
perature of the room; the trough was then heated by one or more gas lamps until 
the water boiled, the gas lamps were then lowered so as to maintain the bath 3 or 4 
degrees below the boiling point, bubbles adhering to the quartz plates swept off with 
a feather, and when the whole appeared to be in a steady condition another: photograph 
was taken. Unless the solution in the tube were a very dilute one there was not much 
trouble with bubbles in the solution, but bubbles in the bath were very troublesome, 
and had to be removed because they impeded the passage of the light, and thereby 

38—2 
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affected the photograph. A similar effect is produced by convection currents of unequal 

density. These were pretty well avoided within the absorbent liquid, but could not be 

completely avoided in the water of the bath. The difference of temperature, and con- 

sequent difference of density, of the currents in the water was, however, small, and 

the thickness of water between the end of the tube and the quartz window of the 

trough also small, so that the currents were not of much consequence. Attempts to 

use temperatures below that of the room were abandoned because of the dew which 

settled on the quartz windows. Wetting the quartz with glycerol was no remedy, because 

the glycerol gravitated, destroyed the plane figure of the window, and dispersed some 

of the light. Very fair observations by eye of the effect of heat on a solution, not 

too dilute, were made by fixing two similar test tubes containing the solution, one in 

front of the slit and the other in front of the reflecting prism, and after adjusting 

their positions until the two spectra, seen simultaneously, were identical, heating up one 

of the test tubes by placing a lamp under it. For dilute solutions, requiring a greater 

thickness to give absorption bands of sufficient intensity, two of the tubes used for the 

photographs were employed, one of them being heated up in its water bath. 

As a source of light a Welsbach incandescent gas lamp without chimney was chiefly 

used. This was placed 5 or 6 inches from the screen so that the network of the 

mantle was quite out of focus at the slit. It gave a good light up to a wave-length 

of 2370, but beyond this point it would not produce a good photograph without an 

exposure too prolonged for the less refrangible part of the spectrum. For the region 

above 360 a lime-light was used. 

Inasmuch as the bands observed are all more or less diffuse, and fade away gradually 

on either hand, any variations of the intensity of the source of light, of the sensi- 

tiveness of the photographic plates, or of the development of the image, tend to mask 

the effects of varying the composition, or the temperature, of the solutions; so that 

two photographs can be fairly compared, for the sake of determining these effects, only 

when they have been taken with the same light, on the same plate, with equal times 

of exposure, and have been developed together. This has been attended to throughout. 

The photographs to be compared with each other have always been taken in succession 

on the same plate, with no other change than the necessary shift of the plate and the 

substitution of one tube of liquid and its bath for another. The photographs taken 

thus in succession do very well for comparison of the intensities and other characters 

of the absorption bands, but cannot be depended on for the detection of a very small 

shift in the position of a band. That could be done if the two spectra to be com- 

pared were in the field at the same time, one of them reflected in, but I have not 

attempted to photograph two spectra in this way, and have been content to detect 

alterations of wave-length, in the bands most easily visible, by the eye without 

photography, 
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THE SOLUTIONS EXPERIMENTED ON. 

These have been chiefly those of salts of didymium and erbium. Most coloured salts 

have only very wide absorption bands which fade on either hand very gradually, so that it 

is extremely difficult, or even impossible, to recognise small changes in them. On the 

other hand, didymium and erbium salts have a great many absorption bands, of various 

degrees of sharpness and of intensity, and distributed through a wide range of the 

No other salts seem so well adapted for my purpose. However, I made a 

number of observations on uranous chloride, but found it so prone to chemical change 

spectrum. 

when in solution that I could not with certainty distinguish the effects of dilution, or of 

elevation of temperature, from those due to chemical change. The absorption spectra of 

salts of cobalt have already been investigated by Dr Russell, though not exactly from my 

present point of view, and they are not as good for my purpose as the salts of the two 

metals to which I now confine myself. 

Both series of salts had been purified as far as possible, by my assistant Mr Purvis, 

by a long series of fractional precipitations. 

lanthanum, but it had not been found possible to get it, or the erbium, so free from 

The didymium was spectroscopically free from 

yttrium *. 

there is no method at present known for separating the various metals of which ordinary 

erbium is Indeed for 

advantage in doing so; though for a quantitative estimation of the concentration of 

No attempt was made to separate the neodymium from the praseodymium, and 

supposed to be a mixture. my purpose there would be no 

absorbent material in the solutions it was important to get rid of an admixture of 

unabsorbent salt. In order to obtain solutions of the salts of different acids in equivalent 

concentration the metal was precipitated as oxalate, washed, dried, and ignited in air 

until it was reduced to oxide. Weighed quantities of this oxide were dissolved in the 

several acids, and, in the case of nitric and hydrochloric acids, the solutions evaporated and 

excess of acid driven off. The residual salts were then dissolved in measured quantities of 

water. The most concentrated solutions of didymium employed contained, respectively, of 

the nitrate, 611°1 grams to the litre, and of the chloride the equivalent quantity, namely 

4629 grams of anhydrous chloride+. These each contain 1862 gram-molecules of the salt 

* Lanthanum and yttrium cannot be recognised by 

any absorption bands, but when induction sparks are taken 

of three sets in the green and citron of which the brightest 

begin at 15599 and 45380 respectively, and the third at 

from solutions of their salts, each gives a very character- 

istic channelled spectrum, by which it is easily recognised 

in a solution containing one per cent., or even less, of the 

salt. The yttrium channellings are in the orange, the 

brightest of those of lanthanum in the citron and green, 

and both fade towards the red. Thalén in his paper (1874) 

on the Spectra of Yttrium and Erbium, and of Didymium 

and Lanthanum, gives the wave-lengths of the sharp, 

more refrangible edges of the yttrium channellings, one 

set beginning at \6131 and the other at \5970°5. He does 

not give those due to lanthanum. These I find to consist 

\5173. There is another weaker set in the orange beginning 

at 15865, and two sets in the indigo beginning at \4419 and 

44370 respectively. My measures were not made with any 

large dispersion and the last figure of the measured wave- 

length may not be quite correct, but near enough for recog- 

nition of the channellings which are easily seen with a 

small spectroscope, especially the two first mentioned. 

+ The (crystalline) didymium chloride in this solution 

was dissolved in just about twice its weight of water; the 

equivalent solution of nitrate had still less water. 



302 Pror. LIVEING, EFFECTS OF DILUTION, TEMPERATURE, ETC. ON THE 

per litre, and as the specific gravity of the solution of chloride is 8-295, it appears to 

contain one molecule of the chloride to between 27 and 28 molecules of water. 

Didymium sulphate is rather sparingly soluble in water, so that the most concen- 

trated solution of it employed contained only 58°11 grams of it per litre. For comparison 

with it, the strongest nitrate, or chloride, had to be diluted to 9°16 times its bulk. 

Of erbium the most concentrated solutions used contained, respectively, of the nitrate 

935°2 grams to the litre, of the chloride 7266 grams. These each contain 2°67 gram- 

molecules of the salt per litre. The solution of the nitrate was a saturated one at a 

temperature of about 15°. 

Less concentrated solutions were also prepared and used, containing, respectively, 

566 grams of nitrate of erbium, and 440 grams of the chloride to the litre, or about 

1-61 molecules in grams to the litre. 

The more dilute solutions were obtained from these by taking measured quantities of 

them and diluting up to the required volume. In fact the most concentrated of these 

solutions were the stock solutions, and may conveniently be described as of strength 

No. 1. Half strength will mean such a solution diluted until the bulk was doubled, 

one-quarter strength will mean No. 1 diluted until its bulk was quadrupled, and 

so on. 

Other salts and solvents were employed, and will be described when the experiments 

upon them are described. The solutions of nitrate and chloride above mentioned were, as 

a rule, the standards of concentration. 

THE ABSORPTION BANDS OBSERVED. 

The didymium absorption bands of which I have taken notice in this investigation, are 

as follows: 

A band in the red at about 2679. 

A weak band at about A 623. 

A rather weak band at about 596. 

The strong group extending from about 2590 to 2570, consisting of a number of 

bands overlapping one another. 

A rather weak band at about 531. 

A strong group of about four, more or less overlapping, bands, extending from about 

528 to X 520. 

A less strong group of two diffuse bands with the centre about 2510. 
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A well marked triplet at about 483, 476 and 469, of which that in the middle is 

decidedly weaker than the other two. 

A broad weak band, with its centre at about 4462, and extending nearly down to the 

most refrangible band of the triplet above mentioned. 

A very broad band with its centre about 444. 

A very weak band i * NAS: 

A strong, narrow, sharply-defined band at about \ 427. 

A very weak diffuse band with its centre about 418. 

A still weaker one with its centre about 415. 

Another weak diffuse band at about 2» 406. 

A very broad strong band with its centre about 403. 

A very weak diffuse band at about 391. 

A diffuse band at about 380. 

Another, wider, at about 375. 

A weaker band at about 364. 

Four, nearly equally distributed between 2358 and 2350, which in all but the 

weakest solutions run into one broad band extending beyond the above-mentioned limits. 

A weak diffuse band at about 338. 

And a broad diffuse band with its centre about 2» 329. 

These bands appear all to belong to didymium, or to the metals associated under 

that name, for though they may be modified in character, and even in position, by the 

solvent and other circumstances, they all disappear in the absence of didymium, and 

they retam so much the same general character under all circumstances, that it is 

reasonable to infer that they have the same primary cause. A reference to plate No. 19 

(at the end of the volume) on which are reproduced photographs of the spectra of 

didymium chloride in solution in water, in alcohol, and in alcohol charged with hydro- 

chloric acid, will make my meaning evident. 

The erbium absorption bands of which I have taken notice in this investigation 

are as follows: 

A group of four bands in the red, of which the most refrangible but one is much 

the strongest and has a wave-length about ) 653. 

A group of four, of which the more refrangible two are much stronger than the 

others, lying between 536 and 2 549. 
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A weak band at about 2 527. 

A very strong one at about 4523. 

A weaker one at about 520. 

A rather broad band, strongest on its more refrangible side and fading towards 

the less refrangible, with its strongest part at about 491. 

A strong band at about 2 488. 

A weaker one at about 486. 

A broad but weak band with its centre about 472. 

A sharp but weak band at about 2 467. 

A broad, diffuse band with centre about 454, reaching almost up to a stronger, and 

narrower, band at about 2449. These two are merged into one with concentrated 

solutions. 

A weak band at about 2 441. 

A narrow one at about A 422. 

A weak one at about 418. 

A broad band, fading on its less refrangible side, and extending from about » 415 

nearly down to the band at 418. 

A pair of nearly equal bands, rather strong, at about \ 404 and » 407. 

A very faint but broad band extending from about 1396 to » 402. 

A well-marked, rather narrow band at about 379, 

And a weaker one almost touching it on the more refrangible side, which 

becomes merged with it, and with a still weaker diffuse band at about 2377, in solu- 

tions a little stronger. 

A weak diffuse band with centre about » 367. 

A strong band at about 2365, accompanied by 

One rather less strong at about 2363, which become merged together when the 

solution is rather stronger. 

A band rather weaker than the last at about 2357, and 

A broad weaker band with centre at about 4353, which soon merges in the former 

when the solution is a little increased in strength. 

All these bands more refrangible than 2404, expand rapidly and become very 

diffuse at the edges as the solution is more concentrated, so that they may easily be 
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confounded with a diffuse continuous absorption which extends from the ultra-violet down the spectrum as the solution becomes more concentrated; but they are common to the nitrate and chloride, and may be seen with a solution of the former when with an equivalent solution of chloride the advancing continuous absorption has obliterated them. The superposition of this continuous absorption, even when it is very weak and scarcely otherwise perceptible, strengthens and widens the bands, 

EFFECTS OF DILUTION. 

For observing the effects of dilution equal volumes of the stock solutions were diluted to 2, 4 8, 45°5, 61 or 91 times their original volumes, and the absorptions produced by thicknesses of these solutions proportional to their dilutions observed and photographed. 

In the spectra of either didymium or erbium chloride, starting with solutions half the strongest, or less strong, in thickness of 38 mm., I can find no change with dilution, when accompanied by proportional increase of thickness, below 2390: see plate 3, at the end of the volume. With the strongest solution in a thickness of 38mm. a diffuse absorption creeps down from the most refrangible end of the spectrum, as may be seen in the uppermost spectrum in each of the plates 10 and 11. Above 2 375, or thereabouts, it seems to cut off all the light, but the diffuse edge extends with the strongest didymium chloride as low as 415, making the absorption bands look wider and stronger by its superposition. On comparing with the eye the spectrum of a thickness of 5 mm. of the Strongest solution of didymium chloride, with that of 305 mm. of the same solution diluted to 61 times its volume, both spectra being in the field of view at the same time, I could detect no difference between them. 
Again, photographing the spectrum of a thickness of 6:7 mm. of the strongest didymium chloride, and that of 305 mm. of the same solution diluted to 45°5 times its original bulk, I can find no difference between the photographs, which take in a range from about 1350 to 2600. Plate 7 is a reproduction of these photographs. This identity of the spectra extends to the intensities, even of the weakest bands that I can see, as well as to the positions of the bands, and even to the apparent extinction of the diffuse absorption which is produced by a greater thickness of the strongest solution at the ultra-violet end. 

Also erbium chloride of half the strongest concentration, in a thickness of 5 mm., gives a spectrum which cannot be distinguished by my eye from that given by 305 mm. of a solution 61 times as dilute. And photographs of the spectrum of the same solution, half the strongest, in a thickness of 6-7 mm., are identical with those of 305 mm. of the same solution diluted to 45°5 times its bulk, below a wave-length of about 2380. Plate 9 is a reproduction of these photographs. The triple band at about » 378 comes out more strongly with the stronger solution, but I am not sure whether this is not an effect due to the Superposition of the diffuse absorption creeping down from the more refrangible end. In the region above 2355, a thickness of 152 mm. of a very dilute solution of didymium Vor XVilnL, 
39 
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chloride transmits a sensible amount of light as high as 315 (the highest part of the 

spectrum included in my photographs) but with a gradually fading intensity from about 

348 upwards. And this diffuse absorption creeps further down as the solution is stronger 

until with a solution half the strongest, in the same thickness, it reaches 1360. Didy- 

mium bromide produces a similar diffuse absorption which extends lower than in the case 

of the chloride; and didymium sulphate shews something of the same kind. 

This diffuse absorption, which creeps far down the spectrum of the most con- 

centrated solutions of the chlorides of both didymium and erbium, seems to belong 

to a different category from that to which the other bands belong. For not only 

is it diminished by dilution when the thickness of the stratum is proportioned to 

the dilution, but it is diminished by diminishing the thickness of the strong solution, 

without diluting it, at a greater rate than the other bands are diminished, for some 

of the ultra-violet bands which are quite obscured by it when the liquid is 38 mm, thick 

are visible in the photographs when the same liquid is only 6-7 mm. thick. The obvious 

suggestion is that it is due in some way to the common element, the chlorine. Most 

chlorides, however, produce no such absorption. I have tried solutions of calcium, zine, 

and aluminium chloride, respectively, and found them, in a thickness of 305 mm., very 

nearly as transparent as water for the range of the spectrum included in my photographs, 

namely below 4355. One chloride I have found, when in a concentrated solution, to 

behave like the didymium and erbium chlorides, and that is hydrochloric acid, whether 

it be dissolved in water or in alcohol. Plate 12 is a reproduction of a photograph of 

the spectra of solutions in alcohol, and in water, of hydrochloric acid, in several thick- 

nesses, and in proportional degrees of dilution, along with one of distilled water for 

comparison. 

The increasing extent of the absorption with increasing concentration of the solu- 

tion is manifest; and the most probable cause is some action between the molecules of 

acid during their encounters, for it seems to depend on the number of molecules of 

acid (or salt) and on their concentration, jointly. We cannot ascribe the absorption to 

the chlorine ion, because the number of chlorine ions increases with dilution; but the 

close correspondence of the effects strongly suggests a common cause in all the solutions 

which give those effects. It should be observed that the percentage of chlorine in the 

concentrated solution of the acid used in these experiments bore to that in the most 

concentrated solution of didymium chloride the ratio of about 39 to 145. The extent, 

down the spectrum, of the absorption now in question, is increased, as might be ex- 

pected, by adding hydrochloric acid to the didymium solution, and also by raising the 

temperature as described below. In connexion with this it may be remarked that con- 

centrated neutral solutions of didymium, and erbium, chloride lose the clean pink tint, 

by transmitted light, of their dilute solutions, and take up more of an orange hue, 

due of course to the diminution of the rays at the blue end of the spectrum. 

As above stated I have been unable to obtain a solution of didymium sulphate so 

concentrated as my strongest solution of chloride; but using the solution containing 
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5811 grams to the litre, and diluting it to twice, four times, and eight times its bulk, 

I could find no change in the absorption spectrum produced by it when the thickness 

of the absorbent liquid was proportioned to the dilution, either when directly viewed 

or when photographed. See plate 4, which however does not include any part of the 

spectrum below the green. Nor could I detect any difference between the spectrum of 

the sulphate and that of an equivalent solution of the chloride. 

Didymium nitrate in four dilutions, beginning with the strongest in thickness of 

38 mm., and ending with one-eighth strength in thickness of 305 mm., gave spectra 

which could not be distinguished from each other, in the range photographed. See plate 

11, where the spectra are those of equivalent solutions of the chloride and nitrate alter- 

nately, beginning with 38 mm. of the strongest solution of chloride, next the equivalent 

nitrate, then 76 mm. of the solutions of half strength, 152 mm. of one-quarter strength, 

and ending with 305 mm. of the two solutions of one-eighth strength. This appearance 

of identity is brought about, however, by the diffuseness and strength of the absorptions 

by which the details of the groups of bands are obliterated. When the spectra of the 

same solutions in much less thickness are examined, it is seen that the bands of the 

stronger solutions of nitrate are more diffuse, or wider, than the bands produced by 

equivalent solutions of the chloride. The weak bands look washed out, the strong are 

wider than the corresponding bands of the chloride, and in the strong groups the 

component bands are merged together. By increasing dilution the several bands contract 

themselves and become better defined, until, with solutions of », strength, I am unable 

to see any difference between the bands of the nitrate, chloride, and sulphate in 

equivalent solutions. In the stronger solutions the weak bands look weaker as _ well 

as broader with nitrate than with chloride, the strong bands are broader but look no 

weaker; but I think that when an absorption is very strong the eye does not perceive, 

nor a photographic plate always record, a small difference of intensity. There is no 

indication of an increase of intensity of the bands of the nitrate by dilution with cor- 

responding increase of thickness. There are, on the other hand, indications of a shift 

of the positions of greatest absorption in the bands in the yellow and green, which 

remind me of the much greater shift of these bands by the use of alcohol and other 

solvents instead of water. 

‘Comparing small thicknesses (5 mm.) of solutions, the big band in the yellow expands 

with the nitrate beyond that produced by the equivalent solution of chloride, especially 

on the less refrangible side. Of the four strong components of this band the least 

refrangible seems, with the nitrate, to be displaced a little towards the red, and a less 

strong diffuse band extends still further beyond the corresponding band of the chloride 

on the red side. The less refrangible of the two strong groups in the green, which 

for the chloride consists of two nearly equal strong bands separated by a narrow chink 

of light, and of a fainter very diffuse absorption extending some way down towards 

the red, has for the nitrate the less refrangible strong band widened out by diffusion, 

some way beyond its limit for the chloride on the red side, and the more refrangible 

is weaker with the nitrate. The more refrangible group im the green appears with the 
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nitrate as a single band narrower than the two given by the chloride, and the middle 

band of the triplet in the blue is more diffuse with the nitrate. 

The apparent shift above mentioned may be an effect of the overlapping of the 

diffuse bands, and though a real shift does not seem to me improbable, it is not in 

this case sufficiently decided to found an argument upon. 

Plate 6 reproduces the spectra of 67 mm. of the strongest solution of didymium 

nitrate and of 305 mm. of the same solution diluted to 45°5 times its bulk. The bands 

of the strong solution are more diffuse and look somewhat washed out, notably the 

narrow band about 2427, and the middle band of the triplet in the blue; and the 

strong group in the yellow extends further towards the red and has the appearance of 

being stronger with the strong solution than with the dilute. 

Erbium nitrate behaves quite in the same way as didymium nitrate in regard to 

the greater diffuseness of its bands with strong solutions, and their gradual contraction 

and growing sharpness as the solution is diluted, until they come to be identical with 

those of the chloride. This is better seen in the photographs of the erbium spectra 

than in those of the didymium: see plate No. 5. 

In plate 8 the spectrum of 67 mm. of solution containmg 467 grams of erbium 

nitrate to the litre is contrasted with that of 305 mm. of the same solution diluted 

to 45°5 times its bulk. The greater diffuseness of the bands of the upper spectrum, 

which is that of the strong solution, and apparently greater intensity of the ultra-violet 

band on the left will be noticed. It may be compared with the corresponding plate No. 9 

for the chloride, in which however the lower spectrum is that of the stronger solution. 

Plate 10 contrasts the spectra of equivalent solutions of erbium chloride and nitrate, in 

four degrees of dilution, the uppermost spectrum being that of the strongest chloride. 

The greater diffuseness of the bands of the nitrate can be seen, and the gradual 

approximation to identity in the spectra of the two solutions as they become more 

dilute. It is the counterpart for erbium of plate 11. 

The nitrates, as well as the chlorides of both metals, shew a general absorption 

creeping down from the most refrangible end of the spectrum with increased concentration 

of the solutions; but though similar in the two salts, that given by the nitrates is not 

identical with that of the chlorides. Its edge is not so diffuse, but cuts off the spectrum 

more sharply than that of the chloride; and in the strongest solutions it does not extend 

so far down the spectrum as that of the chloride. On the other hand with the weak 

solutions of didymium it extends lower than that of the chloride. With a solution 

of didymium nitrate of 4; strength in thickness of 152 mm. all light above 2333 

seems to be absorbed, while with the chloride light gets through beyond 2315; 

and the strongest solution of the nitrate in a thickness of 38 mm. does not entirely 

cut off the light below 2360, while the equivalent solution of chloride cuts it off much 

lower. 
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There are here four facts to deal with: 

1. The identity of the spectra of the different salts of the same metal in the 

dilute condition. 

2. The constancy of this spectrum in the case of chloride and sulphate in different 

dilutions so long as the thickness of absorbent is proportional to the dilution, a constancy 

holding good in the chlorides for a great range of concentration. 

3. The modification, for I take it to be only a modification, of this spectrum in 

the case of the nitrate, by some cause which has increasing effect with increasing con- 

centration. 

4. The absorptions at the most refrangible end of the spectrum, which are somewhat 

different for different salts of the same metal, and diminish with increased dilution. 

The first of these facts is certainly strongly suggestive of the interpretation put on 

it by Ostwald, that the spectrum common to all the salts of the same metal is due to 

the metallic ions. Against this the second fact militates, for the ionization is supposed to 

increase with dilution, and the absorptions by the ions should increase in intensity by 

dilution when the total quantity of salt, dissociated and undissociated, through which the 

light passes remains the same. The third fact points to some cause, affecting the ditfuse- 

ness of the bands, which is more effective in concentrated solutions. This cause may be 

encounters between the molecules of the salt, or of its products in solution, which would 

be more frequent in more concentrated solutions. 

Ionization should be increased by heating the solutions, and diminished by the addition 

of acid. I proceed to describe what I have observed of the effects of heating and of 

acidification on the absorption spectra. 

EFFECTS OF TEMPERATURE ON THE SPECTRA. 

The rise of temperature which could be employed was, as described above, only from 

the temperature of the room, about 20°, to a few degrees below the boiling-point of the 

water bath, or to about 97°. This rise of temperature produced the same kind of effect 

on all those absorption bands which are common to all the salts of the same metal, whether 

it be didymium or erbium, and that effect was to render them more diffuse, to spread 

them out, make their limits less definite, and in the case of weak bands make them appear 

weaker. The effect of heat was also the same in kind on dilute as on concentrated 

solutions. Heat also caused the broad diffuse absorption at the most refrangible end to 

extend itself downwards in a marked degree. Plates 13, 14 and 15 are reproductions of 

photographs of the spectra of three salts, in various degrees of dilution, cold and_ hot. 

It will be noticed that the absorption bands are not increased in intensity by heat, but 

from the greater diffusion they seem weaker, except the very strong bands which are so 

intense that they bear diffusion without letting enough hght through to affect the plate. 

The creeping down with the higher temperature of a diffuse absorption from the most 
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refrangible end is seen in all, and with the nitrate and sulphate seems to be independent 

of the concentration, while with the chloride it is barely noticeable with any but the most 

concentrated solution. In the last exposure with the sulphate the light is a little weaker 

throughout. The solution was the weakest and in the longest tube, and therefore most 

likely to be troubled with bubbles on the inner faces of the terminal quartz plates which 

could not be removed. I have no doubt this general weakening of the light was due to 

this cause. A general weakening of the light has the effect of making the absorption 

bands appear stronger. This appearance is deceptive; for the examination of a great many 

photographs, as well as direct observations of the spectra by eye, have led me to the 

conclusion that the effect of heat is to diffuse and not to strengthen the absorption bands 

which are ascribed to the metals. On the other hand it looks as if the diffuse absorption 

at the most refrangible end, which certainly creeps down lower with hot solutions, were 

strengthened as well as diffused, for in the region above that included in the plates, the 

limit of complete extinction of photographic effect is considerably lower with the hot than 

with the cold solutions. 

On the whole the effects of heat on the spectrum afford no confirmation to the sup- 

position that the absorptions are due to an increase of the number of ions; but rather 

suggest that they may be due to the increased energy of the motions of translation of the 

molecules, causing more frequent encounters. 

EFFECTS OF ACIDIFYING THE SOLUTIONS. 

The solutions compared with a view to ascertain these effects had in every case equal 

quantities of the metallic component per litre, but while one was neutral the other had 

twice as much of its acid component as the first; and they were usually compared in 

various degrees of dilution and in thicknesses proportional thereto. With didymium salts, 

chloride and nitrate, the acid made very little difference in the bands, as will be seen 

by examination of plate 18, which gives the spectra of four solutions of the chloride, 

two neutral and two acid. The creeping down of the absorption at the most refrangible 

end is, however, very evident in the most concentrated solution of acidified chloride ; 

and some diffusion of some of the bands of the nitrate by the addition of the 

acid is just traceable in photographs of some of the weaker bands of the more con- 

centrated solution. The increased diffusion of the bands of the nitrate by the addition 

of nitric acid can be easily seen directly by eye, using weak solutions in no great 

thickness. The addition of acid also produces a slight shift of the places of greatest 

absorption in the strong groups in the yellow and green. Whether this is due only to 

the expansion, and consequent overlapping, of the several bands in these groups, or 

whether there is a real shift, I have not been able to satisfy myself; but the general 

appearance resembles the changes produced in those bands by the use of different solvents 

which are described below, and it is very likely that similar causes are at work in the 

two cases. Nothing of this kind can be seen on the addition of hydrochloric acid to 

the chloride. 



ABSORPTION SPECTRA OF SOLUTIONS OF DIDYMIUM AND ERBIUM SALTS. 311 

With erbium nitrate the addition of acid produces more marked effects: see plate 17. 

All the bands which are more diffuse with the neutral nitrate than with the equivalent 

chloride solution, are still more diffuse with the acid nitrate; and the effect regularly 

diminishes as the solution is made more dilute. There is however no indication that 

there is any weakening of the intensity of the bands by the presence of acid, but rather 

a strengthening of them. 

With the chloride, on the other hand, there seems to be no more difference 

between the absorptions of the neutral and acid solutions than there is between the 

corresponding solutions of didymium chloride. Comparing the spectra by eye, I can see 

no appreciable difference between the acid and neutral solutions of equal thickness and 

equal erbium concentration. Plate 16 gives a reproduction of photographs of the 

absorptions of two pairs of equivalent neutral and acid solutions of erbium chloride, the 

upper pair being those of the strongest solution. The creeping down of the continuous 

absorption with the acid solution is visible in both pairs of spectra, but more evident 

with the stronger solution, where it sensibly affects the apparent intensity and breadth 

of the broad band at about 2451. The second pair of spectra on this plate were 

taken with solutions made by diluting those used for the first pair of spectra until their 

volumes were three times as great as before, and they were put into tubes four times as 

long as those used for the first pair. There is no indication of any weakening of the 

absorptions by the addition of acid. 

The absence of any diminution of intensity either of the didymium or erbium bands 

by the addition of acid, taken in conjunction with the fact that rise of temperature 

does not increase their intensity, go a long way to negative the supposition that these 

bands are produced by the metallic ions; and the facts recorded in the preceding pages 

rather suggest that the metallic bands are the outcome of chemical interactions between 

molecules of the salt with each other and with those of the solvent, while the general 

absorption at the most refrangible end, which is evidently of a different class and 

resembles the absorptions of glass and many other substances which absorb the more 

rapid vibrations but are transparent to waves of less oscillation-frequency, may perhaps 

be due to encounters of molecules without chemical change. The effects on the spectrum 

when different solvents are used may throw some light on this question. Accordingly 

I made some experiments with didymium salts in various solvents. 

EFFECTS OF DIFFERENT SOLVENTS. 

Didymium chloride solution evaporated at 100° retains some water, and seems to have 

the composition of the crystalline salt. Dried at a higher temperature it may be had 

anhydrous, but in that state appears to be quite insoluble in alcohol. Dried at 100° 

it dissolves with tolerable facility in absolute ethyl-alcohol, and in glycerol, but will not 

dissolve in benzene. The alcoholic solution deposits beautiful pink crystals on evaporation. 

The absorption spectrum of this solution shews the same bands as an aqueous solution, 

but they are somewhat modified. They are more diffuse so that the weaker bands look 

as if they were washed out, and the positions of maximum absorption are all moved 
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towards the less refrangible side, and the diffuse absorption at the most refrangible end 

extends lower down the spectrum than with an aqueous solution of equal concentration. 

The general relation between the spectra of the two solutions will be seen on com- 

paring photographs (1) and (2) of plate 19, of which the former is given by the aqueous, 

the latter by the alcoholic solution. The shift of the bands towards the red is visible 

in the photographs, but as the plate had to be shifted between the exposures, no reliance 

can be placed on the appearance of a shift in such photographs, when the amount of 

displacement of the bands is small. This defect is, however, met by direct eye-observations, 

with the two spectra in the field of view at the same time. In this way it is seen 

that all the bands that are visible are shifted towards the red, but are by no means 

all equally shifted. At the same time the strong groups of bands in the yellow and 

green have, by the action of the alcohol, undergone a modification of their general 

appearance which simulates the addition of some new bands; but by examining solutions 

of different concentrations I have satisfied myself that no new bands make their 

appearance, but the simulation of them is due to the widening and unequal shift of 

the bands, whereby their overlapping, and the consequent relative positions of the maxima 

of absorption, are modified. The modifications are such as we may reasonably ascribe 

to the influence of the bulky colloid molecules of the alcohol, amongst which the vibrating 

absorbent molecules move and from which they can hardly ever get free, loading them 

but loading them unequally, and on the whole degrading the rates of their vibratory 

motions. 

A very remarkable, and by far the most excessive, modification of the bands that I 

have observed, is produced by passing dry hydrochloric acid into the alcoholic solution. 

The third photograph of plate 19 shews the effect. The colour of the solution is changed 

by the acid from pink to bluish green, and the reason of this is obvious from the 

photograph. The molecules seem so loaded as to be nearly incapable of taking up the 

more rapid vibrations corresponding to the bands in the indigo and blue, while they 

seem to absorb more strongly those of slower rate in the yellow and citron. At the 

same time these are more degraded than by alcohol alone, and the group in the yellow 

so spread out that some of the components are distinctly separated. Of course the acid 

makes the solvent a complicated mixture, including ethyl-chloride and water as well as 

the unaltered components. 

The modifications of the spectrum by glycerol are of the same character as those 

produced by alcohol. The bands are generally shifted towards the red, and are more 

diffuse, but otherwise not much modified. Plate 20 shews the spectrum of the glycerol 

solution above and below that of an aqueous solution of didymium nitrate of nearly, 

but not exactly, equal concentration. Observed directly by eye it is seen that the 

band in the red at 2679 is not sensibly affected, the group in the yellow and the 

less refrangible of the two groups in the green, are distinctly shifted towards the red, 

but otherwise not affected in character; while the more refrangible group in the green 

is not sensibly shifted, but appears weakened by diffusion. The still more refrangible 

bands are all rendered more diffuse by glycerol, and are also degraded with the exception 
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of the middle band of the triplet in the blue, which does not appear shifted, but of this I am not sure for the photographs shew a trace of a washed-out band about mid- way between the two extreme bands of the triplet in addition to the stronger band which 
is more refrangible. With glycerol the continuous diffuse absorption also creeps down the 
spectrum as with alcohol. 

In order to observe the effect of a crystallizable solvent other than water, some 
didymium acetate was prepared and dissolved in glacial acetic acid, and for comparison 
with it an aqueous solution of didymium nitrate was made of equal concentration. 
Plate 20 shews the photographs of their spectra, Comparing the absorptions directly by eye, the band in the red appeared stronger in the acetate and sensibly shifted to the less refrangible side, the feeble band in the orange also was shifted in the same direc- tion, the strong group in the yellow considerably extended towards the red but its more 
refrangible edge not apparently shifted, doubtless because the widening of the bands 
compensated the shift which was visible in all the other bands of the acetate though 
they otherwise had the same general appearance as those of the nitrate. The shift 
and change of character produced by acetic acid was less than was produced by alcohol. 

Didymium tartrate is very insoluble in water, but the compound produced by 
potassium hydrogen tartrate acting on didymium hydroxide dissolves in a solution of 
ammonia. The spectrum given by this solution is contrasted with that of an aqueous 
solution (not exactly of the same concentration), of didymium chloride in plate 23. With the exception of the group in the yellow, the less refrangible of the groups in 
the green, and the narrow band in the indigo, the bands seem all a good deal washed 
out. All the bands are shifted towards the red, and the apparent shift increases as the 
bands become more refrangible, but probably this appearance is the effect of the greater 
dispersion of the more refrangible rays. 

I had no crystals of didymium salts sufficiently large to enable me to see how 
the diminished freedom of the molecules in the solid would modify the spectrum, but 
had a rod of fused borax coloured with didymium. This was made by mixing weighed 
quantities of didymium oxide and dried borax, fusing the mixture, and sucking the 
fused mass into a hot platinum tube. After cooling the rough ends were cut off and 
polished, and I was thus able to compare the spectrum given by a thickness of 25 mm. 
of this glass with that of an equivalent solution of didymium chloride. Photographs 
of these spectra are shewn in plate 21. They are somewhat marred by dust on 
the slit of the spectroscope, but this does not prevent a fair comparison. It will be 
seen that the modifications produced by the glass are on the whole similar in character 
to those produced by some of the liquid solvents. The strong group in the yellow 
is much expanded and the components of the group unequally shifted towards the red, 
the less refrangible of the groups in the green is shifted and its appearance modified 
for the same reason. The more refrangible bands are much washed out and their shifts 
appear very unequal. Nevertheless they appear to be still essentially the same bands 
modified as to their rates of vibration by the diminished freedom of the molecules 
producing them. 

Vou. XVIII. 
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On a review of the whole series of observations I conclude that the characteristic 

absorptions of didymium compounds, namely those which are common to dilute aqueous 

solutions, and are only modified by concentration, by heat, and by variations of the 

solvent, are due to molecules which are identical in all cases, though their vibrations 

are modified by their relations to other molecules surrounding them. The like conclusion 

holds for erbium compounds. It appears to me quite incredible that the atoms of 

didymium should retain in chemical combination so much individuality and freedom as 

to take up their own peculiar vibrations unaffected by the rest of the matter combined 

with them, as must be the case if we supposed the combined didymium in the molecules 

to give the common spectrum of all the salts in dilute solution. When I speak of 

atoms of didymium in the salts, I mean of course masses equal to the atoms of 

didymium metal, but having different energy, which means different internal motions, 

probably different structure, and different capabilities of vibration. No chemical com- 

pounds shew the absorptions which their separate elements exhibit. Sodium vapour, 

though monatomic, has a very strong absorbent power which is quite lost when it has 

parted with energy in combining with chlorine. Nevertheless the molecule of a chloride 

breaks up, in general, into masses equal to those of the atoms of its elements more 

easily than in any other way, and there is pretty good evidence that in encountering 

a molecule of water this also is sometimes broken up, and ultimately, if not immediately, 

new molecules of hydroxide and acid are formed, as well as, by a similar process, new 

molecules of the salt. In the interval between the rupture of a molecule and the 

recombination of its parts with each other, or with parts of other molecules, the parts 

have a certain freedom, and capability of vibrating, which they do not possess in com- 

bination. Now if we suppose the number of such parts as have the capability of taking 

up vibrations of frequency corresponding to the characteristic absorptions of didymium 

to be directly proportional to the concentration of the didymium salt and to the time 

of their freedom, the observed facts will be all in agreement with the hypothesis. 

Increased concentration, and increased temperature, will mean more frequent encounters 

amongst the molecules, and more frequent ruptures, but at the same time more frequent 

encounters of the parts and consequent shortening of their times of freedom. These 

effects will exactly compensate each other and leave the average number of absorbent 

parts of molecules constant under changes either of concentration or of temperature. 

The continuous absorption of the more rapid vibrations increasing with concentration 

and rise of temperature points to an action depending only on the number of encounters 

of the molecules of the salt with one another. It is not every encounter which is 

attended with disruption, and the continuous absorption may be due to molecules in 

encounter without rupture, but at all events it seems due to the condition of the 

molecules during encounter, but not to occur at the encounters of a molecule of salt 

with the very much less massive molecules of water. Encounters of a molecule of salt 

with a molecule of acid will in all probability cause effects very similar to those of 

encounters between two molecules of salt, and this supposition is quite im agreement 

with the observed facts. 

The time of complete freedom of a vibrating part of a molecule must be very 
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short, but probably shorter when the complementary part is more massive, as in the 

case of a nitrate, than it is in the case of a chloride. But between complete freedom 

and complete incorporation in a chemical compound there is a considerable gradation, 

and the capacity of the part to vibrate at particular rates will have a corresponding 

gradation, and the part may moreover be frequently under the influence of molecules, 

or parts of molecules, with which it does not combine. This influence will probably be 

greater as the molecule exerting the influence is greater whether more massive, or, as 

in the case of such colloids as alcohol, more voluminous. These considerations reconcile 

all the facts as to the spectra I have observed with the hypothesis I have made. 

There are, however, other facts to be reconciled with that hypothesis. I mean 

the facts of ionization, of osmotic pressure and the correlative facts of the rise of boiling 

point, and fall of crystallizing point, of solutions. In regard to all these effects the 

freedom of the parts is the primary postulate, far more definitely so than in the case 

of vibrations such as my observations relate to. The laws I have tried to investigate 

appear to hold good up to the point of saturation of the solutions, which is not the case 

with the laws of osmotic pressure and of change of boiling and freezing points, which 

have been established for dilute solutions. Further, ionization implies a certain distri- 

bution of energy in the field, the ions are charged with electricity. That is not neces- 

sary for the absorption of light, which will depend, primarily at least, on the form of 

the internal energy of the vibrating mass, that is on its structure. That a redistribu- 

tion of energy occurs at every rupture of a molecule seems certain, solution is attended 

with thermal effects and so is dilution, and it is only when equilibrium is reached, 

and as much change takes place in one direction as in the opposite, that the mani- 

festation of such redistribution ceases. How much of the intrinsic energy of the 

molecules takes the form of heat and how much is retained in the field at the rupture 

of the molecules we do not know. It is however quite conceivable that the circum- 

stances under which the rupture takes place may determine whether any, or how much, 

energy is retained by the field, that is whether any, or how many, of the ruptured 

parts become ions. 

The plates, which are all reproductions of photographs, will be found at the end of the 

volume. 
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XV. The Echelon Spectroscope. By Professor A. A. MIcHELson, Sc.D. y, Pp y 

[Received 19 October 1899.] 

THE important discovery of Zeeman of the influence of a magnetic field upon the 

radiations of an approximately homogeneous source shows more clearly than any other 

fact the great advantage of the highest attainable dispersion and resolving power in the 

spectroscopes employed in such observations. 

If we consider that in the great majority of cases the separation of the component 

lines produced by the magnetic field is of the order of a twentieth to a fiftieth of the 

distance between the sodium lines, it will be readily admitted that if the structure of the 

components themselves is more or less complex, such structure would not be revealed by 

the most powerful spectroscopes of the ordinary type. 

In the case of the grating spectroscope, besides the difficulty of obtaining sufficient 

resolving power, the intensity is so feeble that only the brighter spectral lines can be 

observed, and even these must be augmented by using powerful discharges—which usually 

have the effect of masking the structure to be investigated. 

Some years ago I published a paper describing a method of analysis of approximately 

homogeneous radiations which depends upon the observation of the clearness of interference 

fringes produced by these radiations. A curve was drawn showing the change in clearness 

with increase in the difference of path of the two interfering pencils of light,—and it was 

shown that there is a fixed relation between such a “visibility curve” and the distribution 

of light in the corresponding spectrum—at least in the case of symmetrical lines*. 

It is precisely in the examination of such minute variations as are observed in the 

Zeeman effect, that the advantages of this method appear,—for the observations are entirely 

free from instrumental errors; there is practically no limit to the resolving power; and 

there is plenty of light. 

There is however the rather serious inconvenience that the examination of a single line 

requires a considerable time, often several minutes, and during this time the character of 

the radiations themselves may be changing. 

Besides this, nothing can be determined regarding the nature of these radiations until 

* In the case of asymmetrical lines another relation is necessary, and such is furnished by what may be called 

the ‘“‘ phase curve.” 
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the “visibility curve” is complete, and analyzed either by calculation or by an equivalent mechanical operation. 

Notwithstanding these difficulties, it was possible to obtain a number of rather interest- ing results, such as the doubling or the tripling of the central line of Zeeman’s triplet, and the resolution of the lateral lines into multiple lines; also the resolution of the majority of the spectral lines examined, into more or less complex groups; the observation of the effects of temperature and pressure on the width of the lines, ete. 
It is none the less evident that the inconveniences of this process are so serious that a return to the Spectroscopic methods would be desirable if it were possible (1) to increase the resolving power of our gratings; (2) to concentrate all the light in one spectrum. 

It is well known that the resolving power of a grating is measured by the product nm of the number of lines by the order of the spectrum. Attention has hitherto been confined almost exclusively to the first of these factors, and in the large six-inch grating of Prof. Rowland there are about one hundred thousand lines. It is possible that the limit in this direction has already been reached; for it appears that gratings ruled on the same engine, with but half as many lines, have almost the same resolving power as the larger ones. This must be due to the errors in spacing of the lines; and if this error could be overcome the resolving power could be augmented indefinitely. 
In the hope of accomplishing something in this direction, together with Mr §. W. Stratton, I constructed a ruling engine in which I make use of the principle of the interferometer in order to correct the screw by means of light-waves from a homogeneous source. This instrument (only a small model of a larger one now under construction) has already furnished rather good gratings of two inches ruled surface, and it seems not unreasonable to hope for a twelve-inch grating with almost theoretically accurate rulings. 

As regards the second factor—the order of the spectrum observed, but little use is made of orders higher than the fourth, chiefly on account of the faintness of the light. It is true that occasionally a grating is ruled which gives exceptionally bright Spectra of the second or third order, and such gratings are as valuable as they are rare, for it appears that this quality of throwing an excess of light in a particular Spectrum is due to the character of the ruling diamond which cannot be determined except by the unsatisfactory process of trial and error. 
If it were desirable to proceed otherwise—to attempt to produce rulings which 

Fie. 1, 

should throw the greater part of the incident light in a given spectrum, we should try to give the rulings the form shown in section in Fig. 1, 
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I am aware of the difficulties to be encountered in the attempt to put this idea 

into practical shape, and it may well be that they are in fact imsurmountable—but in 

any case it seems to be well worth the attempt. 

Meanwhile the idea suggested itself of avoiding the difficulty in the following way: 

Fie. 2. 

Plates of glass (Fig. 2), accurately plane-paralleled and of the same thickness, were 

placed in contact, as shown in Fig. 2. If the thicknesses were exactly the same, 

and were it not for variations in the thickness of the air-films between the plates, the 

retardations of the pencils reflected by the successive surfaces would be exactly the 

same, and the reflected waves would be in the same conditions as in the case of a 

reflecting grating—except that the retardation is enormously greater. 

The first condition is not very difficult to fulfil; but m consequence of dust particles 

which invariably deposit on the glass surfaces, in spite of the greatest possible pre- 

cautions, it is practically impossible to imsure a perfect contact, or even constancy m 

the distances between surfaces*. 

If now instead of the retardation by reflection we make use of the retardation by 

transmission through the glass, the difficulty disappears almost completely. In particular 

the air-films are compensated by equivalent thicknesses of air outside, so that it is no 

longer necessary that their thickness should be constant. Besides, the accuracy of 

parallelism and of thickness of the glass plates necessary to insure good results is now 

only one-fourth of that required in the reflection arrangement. 

In Fig. 3 let ab=s, the breadth of each pencil of rays; bd =¢, the thickness of each 

element of the echelon; @, the angle of diffraction; a, the angle adb; m, the number of 

waves of length X corresponding to the common difference of path of the successive 

elements. The difference of path is mA = pt—ace. 

t 
Now ac = —— cos(a+ 8), 

cos a 

* Nevertheless I have succeeded with ten such plates, phenomena such as the Zeeman effect, the broadening of 

silvered on their front surfaces, in obtaining spectra which, lines by pressure, etc.—but evidently the limit has been 

though somewhat confused, were still pure enough to show _ nearly reached. 
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or, since @ is always very small, 

t i 
ac =~ (cosa—@sina)=t¢(1—@ tana), COs a 

and hence NUN) (AMOI NS Ole meeneseeee atc cr set oeces coe ee te (1). 

Fic. 3. 

To find the angle corresponding to a given value dy, differentiate for X and we find 

d@_1/,_ du 
ah ts (m a 

Putting in this expression the approximate value of 

m=(u-1)s, 

: dé oe dy ual we have ia [ur] foo! Ba EGOBOTD ca CaSO Rad ON ae erase (11). 

For the majority of optical glasses b varies between 0°5 and 1-0. 

The expression (II) measures the dispersion of the echelon. To obtain the resolving 
power, put e=dd/dA for the limit. For this limiting value the angle @ will be 2X/ns, 
where » is the number of elements: whence ns=the effective diameter of the observing 
telescope. Substituting these values we find 

xr 
TS bat nislolejeielv\via[eis\slels\aisiaisialels(e]siuialelalele/eteislcisiisisisicteleverale 

(IIT) 

To obtain the angular distance between the spectra, differentiate (I) for m; we find 

d@ X 
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or putting dm = unity, 

The quantity d\/A=Z£ corresponding to this is found by substituting this value of 

d@ in (II), whence 

Hence the limit of resolution is the nth part of the distance between the spectra. 

This fact is evidently a rather serious objection to this form of spectroscope. Thus in 

observing the effect of increasing density on the breadth of the sodium lines, if the 

broadening be of the order of A/bt the two contiguous spectra (of the same line) will 

1 

17000° 
to examine lines whose breadth is greater than the fourteenth part of the distance 

between the D lines. It is evidently advantageous to make ¢ as small as possible. 

overlap. As a particular case, let us take ¢=7 mm, H= It will be impossible 

Now the resolving power, which may be defined by = is proportional to the product 

nt. Consequently, in order to increase it as much as possible it is necessary to use 

thick plates, or to increase their number. But in consequence of the losses by the 

successive reflections, experience shows that this number is limited to from 20 to 35 plates, 

any excess not contributing in any important degree to the efficiency. 

I have constructed three echelons, the thickness of the plates bemg 7 mm., 18 mm. and 

30 mm. respectively, each containing the maximum number of elements—that is, 20 to 35, 

and whose theoretical resolving powers are therefore of the order of 210,000, 540,000 and 

900,000 respectively. In other words, they can resolve lines whose distances apart are the 

two-hundredth, the five-hundredth and the nine-hundredth of the distance between the 

D lines. 

Consequently the smallest of these echelons surpasses the resolving power of the best 

gratings, and what is even more important, it concentrates all the light in a single 

spectrum. 

The law of the distribution of intensities in the successive spectra is readily deduced 

from the integral 
s/2 

A= | cos peda, 
—s/2 

2a 
where p= = 0. 

Hence As 
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This expression vanishes for @=+2/s which is also the value of d@,, the distance 

between the spectra. 

Hence in general there are two spectra visible as indicated in Fig. 4. 

e7 7 0 7 em 

Fic. 4. 

By shghtly inclining the echelon one of the spectra is readily brought to the centre 

of the field, while the adjacent ones are at the minima, and disappear. The remaining 

spectra are practically invisible, except for very bright lines. 

As has just been indicated, the proximity of the successive spectra of one and the 

same line is a serious objection, and as this proximity depends on the thickness of the plates 

—which for mechanical reasons cannot well be reduced below 5 or 6 mm.—it is desirable 

to look to other means for obviating the difficulty, among which may be mentioned the use 

of a liquid instead of air. 

In this case formula (II) becomes 

Gi LL CA ysey | ae 

ar Fe Piz: Sane le Gas: 
and formula (IV) becomes 

wae 
dm ys" 

Repeating the same operations as in the former case, we find 

fet Xr 

~ net’ 

Xr 
and E=-—. 

ct 

The limit of resolution is still the nth part of the distance between the spectra, 

but both are increased in the ratio b/c. 

Suppose for instance the liquid is water. Neglecting dispersion the factor would 

be 3°55. Hence the distance between the spectra will be increased in this proportion, 

but the limit of resolution will also be multiplied by this factor. But as there is now 

a surface water-glass which reflects the light, the loss due to this reflection will be 

Wot, XOVWIURE 4] 



322 Pror. MICHELSON, THE ECHELON SPECTROSCOPE. 

very much less, so that it will be possible to employ a greater number of elements, 

thus restoring the resolving power. At the same time the degree of accuracy necessary 

in working the plates is 3°55 times less than before. 

For many radiations the absorption due to thicknesses of the order of 50 em. of 

glass would be a very serious objection to the employment of the transmission echelon. 

I have attempted therefore to carry out the original idea of a reflecting echelon, and 

it may be of interest to indicate in a general way how it is hoped the problem may 

be solved. 

Among the various processes which have suggested themselves for realising a re- 

fleeting echelon, the following appear the most promising : 

In the first a number of plates, 20 to 30, of equal thickness, are fastened together 

as in Fig. 5, and the surfaces A and B are ground and polished plane and_ parallel. 

They are then separated and placed on an inclined plane surface, as indicated in Fig. 6. 

aS 3) eee 
Fic. 5. 

Fia. 6. 

If there are differences in thickness of the air-films the resulting differences in the 

height of the plates will be less in the ratio tana. An error of X/n may be admitted 

for each plate—even in the most unfavorable case in which the errors all add; and 

consequently the admissible errors in the thickness of the air-films may be of the order 
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r/na. For instance, for 20 plates the average error may be a whole wave-length if the 

inclination @ is ;4. As there is always a more or less perfect compensation of the 

errors, the number of plates, or the inclination, may be correspondingly greater. Accord- 

ingly it may be possible to make use of 50 elements and the plane may be inclined 

at an angle of 20° to 30°. It would be necessary in this case however to use a rather 

large objective. Possibly this may be avoided by cutting the surface A to a spherical 

curvature, thus forming a sort of concave echelon. 

The second process differs from the first only in that each plate is cut indepen- 

dently to the necessary height to give the required retardation. The first approximation 

being made, the plates are placed on a plane surface as in Fig. 7 (side view) and Fig. 8 

(front view). 

Set Ses ee | 

Fie. 7. 

The projections a and b are then ground and polished until the upper surfaces are 

all parallel, and the successive retardations equal. The parallelism as well as the height 

is verified by means of the interferometer. 

Fie. 8. 

These processes are, it is freely conceded, rather delicate, but preliminary experiments 

have shown that with patience they may be successful. 

41—2 



XVI. On Minimal Surfaces. By H. W. Ricumonp, M.A., King’s College, 

Cambridge. 

[Received 10 November 1899.]} 

1. In a short paper read before the London Mathematical Society on Feb. 9 last, 

and since printed in the Proceedings of the Society, Vol. xxx. p. 276, Mr T. J. PA. 

Bromwich has noted an interesting form of the tangential equation of a minimal surface, 

by which the determination of such surfaces is made to depend upon a particular type 

of solution of Laplace’s equation. The idea of thus establishing a connexion between 

certain of Laplace's functions and minimal surfaces is one that presented itself to me 

several years ago, and led me then (in 1891-92) to consider at some length to what 

extent the study of these surfaces given by Darboux in Part I, Book III, of his 

Théorie générale des Surfaces might be modified by this connexion. Although the 

familiar treatment of Laplace’s equation led me, (in many instances by simpler paths 

than Darboux), to a number of the chief known theorems concerning minimal surfaces, 

yet I never succeeded in reaching untrodden ground, and for this reason laid aside 

my work; but the appearance of Mr Bromwich’s paper has caused me to look through 

my notes, and to consider with some fulness a special family of algebraic minimal 

surfaces to which the method is peculiarly applicable. 

So thorough a discussion of the history and properties of minimal surfaces is given 

by Darboux, in Book III. of his Théorie générale des Surfaces, that it will seldom be 

necessary to refer to other sources of information: references to Darboux will be made 

simply by the letter D. followed by the number of the paragraph in question ;—thus 

(D. § 175). In all that follows it is supposed that a system of real rectangular 

Cartesian axes is employed. 

2. The tangential equation of a surface, 

d(p, l, m, n)=0, 

(where $ is a homogeneous function of p, 1, m, n, but not necessarily algebraic), ex- 

presses the condition that the plane 

[RSET PAR OA YO Saoaccocosssnoosse8e esascHessbas35000007 (aby, 

should be tangent to the surface. Should ¢ be rational, integral and homogeneous of 

the kth degree, the surface is algebraic and of the kth class. 
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The equation $(p, 1, m, n)=0 will always be regarded as defining a dependent 

variable p as a function of three independent variables /, m, n;— 

(D=IP(H Ws, TW) bococeosadvoocsdacopboosbodoeapendobodgeTaDd @)5 

but the function is of necessity homogeneous and of the first degree. The coordi- 

nates of the point of contact of the plane (1) with the surface enveloped by it are 

Di, vena nme EP al Yam! By TTT Teenie eeetetessseneeesaces e= 

so that 2, y, z are expressed as homogeneous functions of J, m, n, of degree zero, 1.e. 

as functions of the ratios 7:m:n. It is therefore possible to eliminate J, m, n from 

equations (3) and so to obtain a relation in «, y, z, alone, the equation of the surface 

in point coordinates. The condition that the surface should be minimal is established 

without difficulty, viz. 

0? dm? dn? 
EPP CEG Ee ee OR Nie ay (4). 

Hence:—When p is a function of 1, m, n, homogeneous and of the first degree, 

which satisfies Laplace’s equation, the envelop of the planes (1), or the locus of the point 

(3), 7s a minimal surface. When the condition (4) is satisfied, I shall say that p has 

a minimal value, or is a minimal function of 1, m, n. 

It is of importance to observe that, in what precedes, the condition 

P+? +r2=l, 

is not imposed: provided only that p is of the first degree in J, m, n (which is 

always to be understood in future), it is absolutely immaterial whether the sum of the 

squares of these quantities be equal to unity or no. When (4) is satisfied it is easy 

to establish the theorem of M. Ossian Bonnet (D. §§ 202, 203), that the horograph of 

a minimal surface is a conformable map of the surface. 

3. I now consider very briefly to what results the common manipulation of Laplace’s 

equation leads. Since p satisfies the equation, so also do its three partial differential 

coefficients, which, as we have seen, are the coordinates of points of the surface, expressed 

in terms of the ratios 1: m:n. Now the solutions of Laplace’s equation which are of 

degree zero in the variables are of the form, 

F (u) + F, (uw), 

lL+im r+n l—im r+n 
where b= Oh = — 

r—n tl—iwm r—n Ut+im 

and r=(P+ m+ n°). 

These quantities w and w, are thus the same as those of Darboux (cf. D. § 193, 

195). The formulae of Weierstrass (D. § 188, equation 17) are readily deduced; while 

if. we take new variables v and v,, the former a function of w and the latter of w, 

we reach the solution of Monge (D. §§ 179 and 218). 
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Although the integration of Laplace's equation presents no difficulty, it is not easy 

to say what is the best form of solution of the first degree in the variables which 

we should take as the value of p. The formulae due to Weierstrass (D. § 188, equations 

18), may be obtained from the value 

p=r[f +f (m)] — @— mm) f(w) — (+ im) fi): 

but a value which is preferable for the present purpose, in that it is more naturally 

attained by integration and leads to simpler results, is 

p=r[uy’ (uv) + wx (tH)] — 2 [XK (W) + yr (UH) ween eee ee cence ee eee (5); 

and this is the value which will be used in the following applications. From it I derive, 

by differentiation with respect to J, m, n, the expressions 

, in 2 uM () 1 9 ” 

z=’ (u)+ 3% (1 — wu) x” (uw) + x0" (4a) + 3 Uy (1 — 7) yr” (tH): 

er, iy. as ae 1a Sa 
y=X (u) +5 tu (1+) x” (u) — iy (4) — 3g mal + Uy?) ¥1"" (4); 

z=—x (u)t ux’ (vu) + wy” (uw) — x4 (ta) + tay’ (ta) + 2D” (tm). 

It will be seen that the two forms are in agreement if 

FwM=uxy (uw); A 4) = tH 4_1 (%4). 

4. As an illustration of the use of these results I consider two methods of solving 

the problem of determining a minimal surface which has a given plane as a plane of 

symmetry, and cuts that plane at right angles along a given curve; or, as Darboux 

(§ 251) expresses it, has a given plane curve as a geodesic. It is clear that if y=, 

(which in the case of a real surface implies that y is a real function), the surface 

has 20a as a plane of symmetry and cuts it orthogonally: moreover, if we fix directions 

by Euler’s two angles, @ the colatitude and ¢ the longitude, (so that 

l:m:n:7::sin @cos¢:sin@sing: cos@: 1, 

and u=e't cot 6 ee bot 6) © 2 > ty a o 2 ? 

the functions y and xy, are determined by the equation 

x (cot : é) =x (cot 5 6) =~ 5 cosee 6. | pd®, 

the quantity p being the length of the perpendicular from the origin on any tangent 

of the given plane curve, laid in the plane 20s, and @ the inclination of that per- 

pendicular to Oz. 

5. But the following solution is of greater interest, in that it is adapted to cases 

when the given plane curve is irregular, being composed of portions of known curves 
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or straight lines, united so as to form a closed contour. Let this contour be enveloped 

by a straight line which moves round it, turning always in the same direction; let 

the plane of the contour be «Oy; let p, denote the perpendicular from O on the 

enveloping line, and ¢, the inclination of that perpendicular to Oz. 

In a complete circuit of the contour, the enveloping line will turn through some 

multiple of two right angles, and return to its original position; p, is therefore a 

periodic function of ¢),—the period being a multiple of m,—and may be expanded in 

a Fourier’s series even when p, or its differential coefficients have discontinuities: thus 

Po =X (a; sin kg, + by cos ky). 

In the case of an oval curve or a closed convex polygon the period of p, is 27; k 

will then receive only integer values. In a cardioid the period is 87, and 3h will 

always be an even integer, etc., etc. 

The minimal surface sought will be represented by the tangential equation 

p= > {(é — cos @) cot} 6+ (k + cos @) tant 5 a} (a, sin kh + b;, cosk) + 2h. 

For this typical term may be obtained trom the general formulae (5) by making 

x (Ww) = K (uk —u-*), yy (th) = K (mt — w*); 

K and K, being constants suitably chosen; and we may deduce 

z= X(k—k*) (cot! : @ — tan ; @) (ax sin kh + by cos kd) ; 

1 : 
so that, when 0=57, z vanishes and p has the correct value. 

Interesting special cases arise when the given plane curve is an epicycloid or hypo- 

cycloid; for the series for p, then reduces to a single term 

po = A cos kd, 

and the required surface is obtained by making in (5) 

x (u)=B(uF—u*), x1 (ty) = B(w* — u-*). 

It is clear however that special surfaces such as this fall under the cases to which 

the methods of Darboux are applicable; I therefore pass on to a result which I do 

not remember to have seen explicitly stated, (although it follows almost immediately 

from several theorems of Darboux), and to some considerations suggested by it. Enough 

has been said to shew that integration of Laplace’s equation leads rapidly to many of 

the chief known results concerning minimal surfaces. 

6. Since Laplace’s differential equation is lmear, the sum of any two of its solutions 

is itself a solution: if then p, and p, be two minimal functions of 1, m, n, p,+p. is also 

a minimal function, Stating this theorem in geometrical language, we enunciate the note- 

worthy property :— 
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If any two minimal surfaces be taken, the locus of the middle points of lines which 

join the points of contact of parallel tangent planes is also a minimal surface. 

But, conversely, the possibility that a given minimal value of p may be resolved into 

the sum of two or more simpler values is suggested by the theorem. I propose to carry 

through this idea in the case of rational algebraic minimal functions;—to prove that every 

rational algebraic minimal function may be expressed as the sum of a finite number of 

such functions each belonging to certain standard types, much in the way that every 

rational fraction may be broken into partial fractions. In other words, I hope to establish 

that by taking a finite number of minimal surfaces of certain normal types, disposed in 

space with various orientations, and constructing the locus of the centre of mean position 

of the points of contact of parallel tangent planes, we may arrive at any minimal surface 

whatever, for which p is a rational algebraic homogeneous function of J, m, n, of the 

first degree. 

When p is such a function, the surface, whether minimal or not, will have one and 

only one tangent plane parallel to any given plane: if the surface be of class &+1 it will 

have the plane infinity as a k-fold tangent plane, and must therefore be reciprocal to 

what Cayley called a Monoid surface: (Comptes Rendus, t. 54, 1862, pp. 55, 396, 672). A 

paraboloid is the simplest instance of the surfaces we are considering. Now the analogous 

curves in plane geometry presented themselves to Clifford’s notice in the course of that 

wonderful chain of reasoning, the Synthetic Proof of Miquel’s Theorem, (Collected Works, 

p- 38), and were named by him double, triple, ... k-fold, parabolas. Following his example, 

I call a surface of class &+1, which has the plane infinity as a k-fold plane, a k-fold para- 

boloid; and the family of such surfaces, (the value of & not being specified), Multiple 

Paraboloids. 

- 7. The tangential equation of a k-fold paraboloid will be written as 

p=V +U, 

U and V being rational integral homogeneous functions of J, m, n, of degree k and k+1 

respectively. If for the moment partial differentiations with regard to J, m, n, be indicated 

by suffixes 1, 2, 3, respectively, the condition (4) that the surface should be minimal gives 

us the identity 

V (Uy + Ug + Uys) — U (Vin + Viz + Vis) + 2 (U,V + U,V, + UV) = 2V (U2 + U2+ U3) =U; 

and so proves that (U2 +U2+U02) +U 

is a rational integral function of J, m, n:—a result possible only if U be the product of 

factors which are powers either of 

P+m+ nn’, 

or of linear functions such as al +bm-+en, 

in which e+b6+c=0. 
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But it will appear further that ?+m?+n* cannot be a factor of U; for if in the 

above identity we substitute 

U= (2+ m2? 4+ v7 = rT, 

and take account of the fact that V and 7 are homogeneous functions of degree k+1 

and /—2s respectively, we find that 

(2s? + 3s) VI? +7? 

is identically equal to an integral function of /, m, n: but this is an absurdity and we are 

compelled to infer that s=0. 

8. The denominator U of a rational minimal value of p is thus wholly composed 

of factors, each an integral power of a linear function of 1, m, n, 

al +bm-+en, 

whose coefficients a, b, c, are such that the sum of their squares vanishes. Any one 

such factor vanishes for one and only one real system of values of the ratios 1: m:n; 

and, if the corresponding real direction be taken as the z-axis in a new coordinate- 

system, is reduced to the form 

C(l + im), 

the quantity C being a complex constant. Proceeding now to the consideration of minimal 

values of p in which the denominator U is a power of a single linear function of 

l, m, n, we may without loss of generality suppose the linear function thus reduced, and 

confine our attention to values of the form 

p=V=+(l+im)'. 

That such values actually exist is shewn by the formulae (5), in which if we make 

xu) =A (= Uys yn (en) =A (ny; 
we obtain a value of p of the kind sought, viz. 

p=—A {(n—hr) (nr + (n+ hr) (n— rh} = (U4 im 
The numerator of this fraction, when the special value 

1 = 2% (% — 1) 

has been assigned to A, will be denoted by p,x(n); thus 

2* (hk —1) x(n) +(n — kr) (n+r)F + (n+ kr)(n—r)F= 0. 

The function p,z(n) is real and may be expanded in powers of n and 7°; or, by 

rearrangement of the terms, in powers of n and (/?+m)?: moreover on account of the 

value given to A the coefficient of the highest power of » in the latter form is unity: 

we might in fact write 

p(n) = nF + yn (2 +m) + mn (PF + m?P + ..., 

Vou. XVIII. 42 
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mm, M,... being real numerical constants. The corresponding minimal value of p is of 

the form 

p=Ex(n) + (1+ im) = nk = (1+ im) + W+ (1+ im), 

W denoting some rational integral homogeneous function of J, m,n (with complex numerical 

coetticients), of degree k. 

It will be seen that of integer values of # the value &=1 alone fails to give a 

function yz(n). It may be easily proved, and will be assumed in what is to come, 

that no minimal value of p exists whose denominator is /+7%m and whose numerator 

is a rational integral function of the second degree. 

9. In order next to determine the most general rational integral function V of 

degree k+1 such that the surface 

p=V+(l+im)y 

is minimal, it will be convenient to write for a time 

fz=lt+im, g=l—im, 

and to use f, g, 7, as Independent variables in place of 1, m, n. The differential equation 

of a minimal surface is now 

Spi ysem s 
ant ’ ofog 0, 

and is to be satisfied by 
p= Vi= fF 

Substituting and multiplying by /*, we find that 

og tft an integral function = 0, 

and deduce that the part of V that does not contain f must consist of a single term, 

Cink, 

C being a constant. It follows that by subtracting a numerical multiple of the fore- g A g p 
going particular solution we obtain a new minimal function p,, viz. 

Pi = {V = Chi (n)} =f", 

in which a factor f is common to numerator and denominator, and may be removed. 

By repetition of the argument and process we continually diminish the class of the 

surface, and finally establish the theorem :— 

The most general rational minimal value of p which has (L+im)* for its denominator is 

pH=al+ Bm+ yn+ VC,u, (n)+(L+ im)’; (s=2, 3, 4, ... k); 

the quantities ¢, 8, y, Cs, Cs, ... C, bemg complex constants. 
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10. The same method is applicable to the case when the denominator U contains 

other factors besides f: for if we substitute 

(OS WSs Gas) 

in the differential equation we find on multiplying by /f” that, if S do not contain f 

as a factor, 

must be divisible by 7, and infer that the terms in V that are independent of # must be 

equal to those in S multiplied by n** and a constant. If h be equal to unity we must 

therefore have 

V=A.n?.S+terms divisible by /; 

but substitution in the differential equation proves that A must vanish: if on the other 

hand / be greater than unity, we may. by subtracting a properly chosen multiple of 

Bn (n) =f, 

obtain a new minimal function whose denominator does not contain so high a power of f 

as f". It follows that the most general rational minimal function with denominator 

(L+im)e 8 

may be obtained by adding to a value with denominator S the terms 

DC, fe (rn) = (U+im) : (6 =2) 3) 4, ... h): 

C,, C;, ... Cy, being complex constants. 

The factors of S may now be subjected to the same treatment; that is to say, 

first reduced to the form /-+7¢m by a real transformation of axes, and then made to 

yield a series of fractions of the types already discovered. The most general minimal 

value of p which is a rational function of /, m, n, may therefore be resolved into the 

sum of a number of terms each separately capable of being reduced by a real trans- 

formation of axes to one of the types already quoted. 

11. The simplest value of p of the kind we are considering is obtained when 

k=2) viz. 

2p (L+ im)? = 2n? + 3n (7 + m’), 

and leads to a surface, 

2 (a + ty = 18 (@ + ty) 2 + 27 (a: — ry), 

of class and order three: but, as imaginary surfaces such as this are of minor interest, 

we may pass on to the discussion of the case when the surface is real. 

In order that the surface should be real, each of the typical complex terms into 

which p was broken up must be accompanied by the conjugate complex term, the 

numerical constants multiplying each also being conjugate imaginaries: a rotation of the 

42—2 
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coordinate planes about the z-axis will bring both these numerical coefficients to the 
same real value A. For real values of p the typical real component fractions are 
therefore 

A. uy, (n) {(U + im + (L— im} = (2 + m2 ; j, b= 23 w aks 

Every real minimal value of p which is a rational function of 1, m,n, may be expressed 
as the sum of a finite number of real fractions, each separately reducible by real trans- 
Jormation of axes to one of the forms just quoted. Terms such as 

al + Bm+yn 

may also be present, but are ignored since a change of origin will remove them. 

If we again introduce Euler’s angles @ and @, as in § 4, the surface corresponding 

to the above value is 

pHA. pe (n).\(U+im) + (l—im)} = (P+ m2); (ESP BY GK ook) 

=B.coskd. Sin — cos 6) (cot 5 a) —( + cos 6) es tan A )| l > (q@zcce 
and may be described as the standard minimal multiple paraboloid of the kth type: the 

origin of coordinates is called its centre and the z-axis its axis. The class of every real 

multiple paraboloid that is a minimal surface is necessarily odd; thus the above standard 

surface is a 2k-fold paraboloid and is of class 2k+1. The theorem established now admits 

of the following statement :— 

By placing a finite number of standard surfaces (defined above) with their centres co- 

inciding but with various orientations, and taking the locus of the centre of mean position 

of the points of contact of parallel tangent planes, we can obtain every minimal surface 

which is a multiple paraboloid. 

Corresponding to any selected real direction, a multiple paraboloid has, as was pointed 

out, one and only one tangent plane; there is therefore no ambiguity in the foregoing 

construction: certain of the planes may however be at an infinite distance. If the surface 

be minimal, the number of infinitely distant tangent planes must be finite, their directions 

being normal to the axes of the standard surfaces from which the given surface may be 

derived. Given a minimal multiple paraboloid, the directions of the axes of the component 

surfaces are thus plain geometrically. 
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§$ 1. Iyrropucrion. 

THE theory of the Abelian integrals associated with an algebraic plane curve can 
be generalised in two distinct ways when we pass from a plane curve to a surface in 
three dimensions, that is when we are dealing with an algebraic function of two indepen- 5 5 

dent variables. Given an algebraic equation, J (#, y, 2)=0, between three non-homogeneous 

variables, we may study either double integrals of the t pe R(x, y, 2) dxdy, where J ) g YI ¥ y 

R is rational, or single integrals of total differentials of the type | (Pax + Qay), where 

P, Q are rational functions of «, y, z, which satisfy in virtue of f=0 the condition of 
integrability 

ar _ 0g 
Oy ox’ 

Such integrals of total differentials were introduced into mathematical science by 
Picard about fifteen years ago*, and have been the subject of several memoirs by 
himt+. They have also been studied to some extent by Poincaré}, Noether§, Cayley|| and 
others. The most important results hitherto obtained are given in the “Théorie des 

* Comptes Rendus, t. 99 (1 Dec. 1884). driicke,” Math. Ann. t. 29 (1887). 
+ The most important appeared in Liouville, ser. 1v. | Note sur le mémoire de M. Picard “ Sur les intégrales t. 1 (1885), and ser. ry. t. 5 (1889). There have also been de différentielles totales algébriques de premiére espéce,” a series of notes in the Comptes Rendus. Bull. des Sciences Math. ser. 1. t. x. (1886): Coll. Math. + Comptes Rendus, t. 99 (29 Dec. 1884). Papers, t. x11. no. 852. 
§ “‘Ueber die totalen algebraischen Differentialaus- 
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Fonctions Algébriques de deux variables indépendantes” recently (1897) published by 

Picard and Simart, a book to which it will in general be convenient to refer. 

Integrals of total differentials, like ordinary Abelian integrals, fall into three classes, 

of which the first consists of integrals which are always finite. But whereas the 

uumber of linearly independent integrals of the first kind associated with a plane curve 

is at once expressible by a simple formula in terms of the singularities of the curve, 

and such integrals always exist if the curve has less than its maximum number of 

singularities, the corresponding problem for integrals of total differentials is far less 

simple and has only been solved for special classes of surfaces. On a cone, an integral 

of a total differential is equivalent to an Abelian integral on a plane section of the 

cone, so that no new problem arises. Moreover, according to Cayley*, any ruled surface 

may be birationally transformed into a cone, the genus (deficiency) of a section of which 

is equal to that of a general plane section of the original surface; hence the number of 

integrals of the first kind on a ruled surface can at once be determined, but I am not 

aware that there is any known process whereby the transformation can in general be 

effected or the integrals actually constructed. For other classes of surfaces the most 

important results so far obtamed are negative in character; thus it is evident that no 

integrals of the first kind can exist on a rational (unicursal) surface, and the same 

proposition has been established+ for surfaces without any singular points or singular lines. 

The determination of surfaces or classes of surfaces which admit integrals of the 

first kind of total differentials appears therefore to be a problem of some interest. 

Since quadrics and cubic surfaces (other than non-singular cones) are rational, they 

can possess no integrals of the first kind. Two non-conical quartics possessing such 

integrals were discovered by Poincaré}, and stated to be the only possible ones. 

Poinearé’s results have been adopted by Picard, who has given a proof in outlineS. 

The object of this paper is to establish the existence of certain other quartic 

surfaces which have the property in question, but have apparently been overlooked by 

the two eminent mathematicians just named. The method which I have adopted appears 

to shew also that the list given is complete. 

§ 2. ANALYSIS OF THE FUNDAMENTAL DIFFERENTIAL EQUATION. 

It has been shewn by Picard) that if a surface of order », of which the equation 

in homogeneous point coordinates is f(a, y, z,w)=0, admits of an integral of the first 

kind, then f satisfies the partial differential equation 
ay - 

of of of Oem 
spre ie gente ay Orta Ue hte aaa (1), 

Comptes Rendus, t. 99 (29 Dec. 1884). 

Picard et Simart, pp. 135, 136. 

Ib., Chapter V. 

* “On the deficiency of certain surfaces,”’ Math. Ann. 

t. mi. (1871): Coll. Math. Papers, t. vii. no. 524. 

+ Picard et Simart, pp. 113, 119, 120. 
Sr ++ 
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where 6,, @,, 0;, ; are quantics of order n —3, which satisfy the equation 

00, i 08, a 06; % 06, 

Ox Oy 02 dw 

These equations being satisfied, the differential 

dz, dy, dz of 

2 5 ow 

,, Os, 9; 

satisfies the condition of integrability, and its integral is finite everywhere with the 

possible exception of certain singular points and lines. 

When n=4 the quantics @ are linear and the equation (1) becomes a familiar 

partial differential equation. 

If we write 

0; =aae+ by + OS + daw, (2 =, 2 eh, 2h 

then, in accordance with the usual elementary theory, the integration of the equation 

(1) depends upon the roots of the algebraic equation 

Aor bie on (ie WIV iascadttin ingeaccosebascere (3) 

(ls, b,— 8, on ds | 

(ls, lids. C3 — 8, ds 

Gis Brg ae Cho | 

If the roots of this equation are all distinct we can at once obtain three inde- 

pendent integrals of the auxiliary system 

Se eRe ee tee (4), 
GO VAT Ve: 

and deduce the general integral of the partial differential equation. But if two or 

more roots of A=0 are equal the integration of the system (4) is less simple, and one 

or more of the integrals is in general logarithmic, though these integrals may again 

become algebraic if the coefficients of the @s satisfy certain further conditions. Although 

the complete discussion of these cases by quite elementary methods presents no serious 

difficulty it is rather long and tedious, and the work can be considerably abbreviated 

by reducing the equations (4) to a standard form by means of the method which was 

given by Weierstrass as an application of his theory of bilinear forms*. This method, 

stated in a form applicable to our particular problem, depends on the resolution of the 

determinant A into “elementary factors” (Elementartheiler). If s—a occurs p-tuply as 

a factor of A, p,-tuply as a factor of each first minor of A, p,-tuply as a factor of each 

* “Bemerkungen zur Integration eines Systems linearer Differentialgleichungen mit constanten Coefficienten,” 

Mathematische Werke, 1. pp. 75—6. 
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second minor, and so on, and if p—p,=2, pi—po=a@, ..., and B, B’...,y, y ... are the 

numbers corresponding similarly to the other factors, s—b, s—c,... of A, then 

(s—a)t, (s—a)*..., (s—b)®, (s—b¥ ..., 

are defined as the elementary factors of A. 

These factors are shewn by Weierstrass to be invariant for linear transformation of 

the variables, and the system of differential equations 

dw 
a doe dt = 
dt a ah 

Le dt Os, 

is shewn to be reducible by linear transformation of the dependent variables to a 

standard form, in which there are as many distinct sets of equations as there are 

elementary divisors of A, the set corresponding to an elementary divisor («— a)? being of 

the form 

dx - 
aE SS i Abie =nootopaanooebdendonasabad (5). 

da, 

dt 

diy 
—— = 2, + Ty, «<0 
dt 

Ie 

Applying this theory to our equation we see that the possible ways in which A 

can be resolved into elementary factors are as follows: 

(I) (1) 

(ii) 
(iii) 

(iv) 

(v) 

(1) 
(al) 
(iil) 

(III) Two pairs of roots of A=0 equal: 

All the roots of A=0 equal: 

(II) Three roots of A=0 equal: 

(IV) One pair of roots of A=0 equal: 

(V) All the roots of A=0 distinct: 

(s—a)}, 

(s—a)’, (s—a), 

(s—a/y, (s—a)’, 
(s—a), (s—a), (s—a), 

(s—a), (s—a), (s—a), (s—a). 

(s—a)*, (s—b), 

(s— a), (s—a), (s— 6), 
(s—a), (s—a), (s—a), (s—)). 

G) (s—a), (s—b), 

(i) (s—a), (s—b), (s—d), 
(iil) (s—a), (s—a), (s—b), (s—b). 

(i) (s—a), (s—6), (s—o), 
Gi) (s—a), (s—a), (s—b), (s—c). 

(s—a), (s—b), (s—c), (s—d). 

Also the equation (2) shews that the sum of the roots of A=0 vanishes, so that 

we must have in 

Case I. a=0, 

Case II. = —3a#0, and we may evidently take a=1, b=—3, 
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Case III. b=—a+#0, and we may take a=1, b=—1, 

Case IV. 6+c=-— 2a, 

Case V. a+b+c+d=0. 

It follows at once that the Case I. (v) is impossible. 

For the purposes of our problem we do not want the general integral of the 

equation (1), but only such integrals as are homogeneous quartics; we may also leave 

cones out of account, and we must reject solutions giving degenerate (reducible) quartic 

surfaces; we find also that in one or two other cases we arrive at surfaces which are 

obviously rational and must therefore be rejected. 

§ 3. INTEGRATION OF THE DIFFERENTIAL EQUATION, LEADING TO FIVE POSSIBLE SURFACES. 

We have in all (after rejecting I. (v)) thirteen cases to consider, which will now 

be dealt with seriatim. In each case the transformed variables will still be denoted 

by 2, y, z, w, and the auxiliary equations will be expressed in the usual Lagrangean 

form, the variable t used by Weierstrass being omitted. 

I. (Gi). The auxiliary equations are: 

da_dy_dz_ dw 
O: mater y Tae: 

three integrals of which are: 

z=const., y?—2ze=const. y+ 3a°w — 3dxyz=const., 

so that the general integral of the equation (1) is 

fH=O(@, y—-22n, y+ 3x°w — d3xyz), 

where ¢ is an arbitrary function. 

The only quartic of this form is a sum of terms 

a, w(y?—22x), (y?— 22a), v(y?+ 3a°w — 3xyz), 

so that w occurs linearly or not at all, and the surface is therefore a cone or rational. 

I. (i). The auxiliary equations are: 

dx _dy_dz_ dw 
Ohana 7 wo. 

three integrals of which are: 

x=const., y=const., 2°— 2yw=const., 

so that 

S=O(@, y, 2 2yw). 

Vou. XVIII. 43 
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The general quartic of this type is 

(22 — Qyw)? + 2 (2? — 2yw) (w, YP AC, YY HO reeceeceereereneenes (6), 

where (z, y)” denotes an arbitrary quantic of order n. 

J. (ii). The auxiliary equations are: 

de _dy_de_dw 
ON BPO Be 

leading to «=const., z=const., yz — #w=const., and 

S=O(a, 2, yZ— aw). 

The general quartic of this type is 

(yz — aw)? + 2 (yz — ww) (@, ZP+(@, ZH Oo eee eee eee eee eee ees (7). 

I. (iv). The auxiliary equations are: 

dx dy dz_dw 
Ore a Oren On 

leading to the cone 
F=o@, 2, w)=0. 

II. (i). The auxiliary equations are: 

dx dy dz dw 

a 2ty yt2 —Bw’ 

of which one integral only, viz. 2*w=const., is algebraic, the other two being logarithmic. 

Thus the only possible form of f is ¢(a*w), leading to a set of planes. 

II. (ii). The auxiliary equations are: 

dz dy dz dw 

zZ ety 2 —3w’ 

three integrals of which are: 

y/x —log «= const., z/z=const., «w= const., 

so that the only algebraic form of f is $(z/x, zw), and the quartic is the degenerate 

surface 
@ 2) w=0: 

II. (ii). The auxiliary equations are: 

dx _dy_dz_ dw 
ZY 1 2 V=3wr 

three integrals of which are: 

y/x =const., z/r=const., «w= const.. 

which lead as before to a degenerate surface 

(a, y, zPw=0. 
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TE Gi) se Ehre auxiliary equations are: 

dx _ dy whdzen dw 

2 e@+y —Z) 2=w’ 

three integrals of which are: 

y/« —log «= const., w/z+ log z=const., z#=const., 

so that the only possible quartic is the degenerate surface 

irs =). 

III. @i). The auxiliary equations are : 

dx _ dy _dz_ dw 

Z ety —z —w’ 

three integrals of which are: 

y/« —log «=const., za = const., z/w =const., 

leading to f=d(za, z/w), which gives a cone. 

III. (iii). The auxiliary equations are: 

dz _dy dz _ dw 

& Y -2Z —w’ 

leading to 

yx =const., #z=const., mw = const., 

whence f=¢(a#z, ww, y/x), so that the quartic is quadratic in a, y and in Zz, w, viz. 
of the form 

IV. (i). The auxiliary equations are: 

dz_ dy _dz_ dw 
? ax xtay bz cw 

where 2a+b+c¢=0. 

If a#0, three integrals are: 

ay/x —logz=const., 2%/x”=const., w/a? = const., 

of which the first is essentially logarithmic, so that we have S= (24/2, w/a’), leading 
to a cone. 

If a=0, so that c=—b+#0, three integrals are: 

x=const., «log z—by=const., zw =const., 

so that f= (zw, x), leading again to a cone. 

43—2 
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IV. (ii). The auxiliary equations are: 

de _dy_dz_dw 
ax ay bz cw’ 

where 2a+b+c=0. 

We may distinguish at once three sub-cases which may arise, viz. 

(a) a=0, b=—-c #0. 

(8) b=0, c=—2a#0. 

(y) a#0, b#0, c#0. 

In sUB-CASE (a), three integrals are: 

#=const., y=const., 2w = const., 

so that f=¢(a, y, zw), and the quartic is 

ZI S AI Ge, Op) 4>\ G2, 2) == OscosesenasvaosaeodesnooaoEoscoonobas (9). 

In suB-CASE (8), three integrals are: 

z=const., y/z=const., zw =const., 

so that S=o (eu, y/a, 2). 

The only possible quartic terms are: 

2w (x, yy, 2, 

so that the surface degenerates. 

In SUB-CASE (vy) it is a little simpler to work directly with the corresponding 

partial differential equation 

a a O\ a 
(ax a, t YY 7) + bz ag +cw 5) f= 0, 

and to consider the possible terms in /. 

Since the differential operator only alters the coefficient of any term, each term of 

f must separately satisfy the differential equation. 

We verify at once that the terms 2‘, w*, («, y)* cannot exist. 

If a term of the type (a, yz exists, then 3a+b=0, whence a=c, contrary to 

hypothesis; similarly no term of the type («, y)’w can exist. Similarly no terms of the 

types (2, y2, (#, y)'w* can exist, as their existence would involve b=c. 

Any term of the type (a, y)*zw satisfies the equation. 

If a term of the type (a, y)2 exists, then a+3b=0, whence c=5b, so that the 

equation is 

— 3 (afx + yfy) + 2fz + 5th = 0, 

ee 
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of which the general integral is 

f=¢o (2a, 22w, y/zx), 

leading to 

2 (0, y)+2w(@, y=, 
a degenerate surface. 

Similar reasoning shews that no term of the type (#, y)w* can exist. 

If a term (x, y)2*w, or («, y) zw* exists, then a=b or a=c, contrary to hypothesis; 
and if a term z*w or zw* exists, then also a=b or a=c. 

Thus the only possible terms are of the type (#, y)? zw and the surface consequently 

degenerates. 

V. Since no two of a, b, c, d are equal, one of them at most can vanish. We may 

therefore distinguish two sub-cases: 

(2) d=0, a+b+c=0, 

(8) a+#0; b+ 0; ¢c-0;, dO! 

SUB-CASE (a). Proceeding as in IV. (ii) (y) we see that the terms 2*, y‘, 2* cannot 

exist in f, but a term w* may exist. 

If a term a*y exists, then b=—3a, c=2a, so that the differential equation 

reduces to 

the ~ Bufy + 2efs=0, 
whence S=o(ey, 2/x, w), 

so that the only possible terms are ay, ayzw, w. The quartic is therefore rational, 

since y only occurs linearly, if at all. 

If a term 27 exists, then a+b=0, and therefore ¢=0, contrary to hypo- 

thesis. 

For the same reasons no terms of the types (y, 2)', (z, x), (z, y)! can exist. 

If a term a*yz exists, then 24+b+c=0, whence a=0, contrary to hypo- 

thesis. 

Thus no term of the type (#, y, 2)‘ can exist, so that f contains w as a factor 

and is degenerate. 

SuB-casE (8). Under the conditions assumed it is evident that no terms such 

as «4, or #yz can exist; and there cannot be more than one term belonging to a 

group of the type (2, y)*. 

Let the term z*y exist, then b=—3a, c+d=2a, and no other term involving 
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# can exist. If a*z* exists also, then a+c=0, d=3a. The differential equation 

is now 

If x — By fy — 22+ Buf» = 0, 

whence S=o (ay, aw, x2), 

so that the most general form of the surface is 

(CA0h URES ORI, CEM) p=" Saspasroosdoncosbaaoced (10). 

Let the terms a*y, wxz* co-exist, then b=—8a, a=—3c, d=—Tc; and the 

differential equation is 

= 3h a 9ufy ot 7 —Twfw = 9, 

whence f= (ay, x2’, zw), 

and the only possible quartic terms are ay, xz*, zyzw, so that the surface degenerates. 

If the terms a*y, wyzw co-exist, then we get the surface (10) again. The cases 

thus considered and those obtained by a mere interchange of variables exhaust all 

possibilities, if a term such as ay exists. 

If no term cubic in any one variable exists, then the possible terms to be 

considered are of the two types a*y?, xyzw. If only one or no term of the former 

type exists the surface degenerates; if terms such as a*y*, 2° co-exist, then b=c; 

if ay", zw? co-exist we revert to the case of (10). 

We have thus considered all possible cases. 

§ 4. TaBuLAR STATEMENT OF RESULTS. 

The preceding analysis shews that if we exclude conical and degenerate surfaces, 

there are five and only five types of quartic surfaces, given by equations (6), (7), (8), 

(9) and (10), which satisfy Picard’s differential equation, and are not prima fucie rational 

surfaces. Surfaces which can be obtained from one another by linear transformation of 

the coordinates are of course not counted as distinct. 

After making some slight changes of notation with a view to greater uniformity, 

arranging the surfaces in the order (9), (8), (7), (6), (10), and adding for convenience the 

corresponding values of 6;, 02, 3, @,, we get the following table: 

OT 

OE 

a 
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Surface 6, 0, 05 64 | Reference letter 

| 
vy? + 2ry (z, wP+(z, w)t=0 & -y 0 0 A 

u [as | | 

2 (a, y)?+2w (x, y)2+w (2, y)e=0 a | Yi Pz ee B 

(aw — yz) + 2 (ew — yz) (z, wP + (Zz, wt =0 z | w | 0 0 C 

2 

(2ew — P+ 2(2aw — y*)(z, wP+(z, w)t=0 y 2 || 0 0 | D 

i 

aay? + b2*w + cayzw + daw + eyz? = 0 3a —3y Z —w | E 

| 

Of these surfaces (A), (B) are the two which Poincaré discovered*; the existence 

of integrals of the first kind on the other three surfaces was pointed out by the author 

in a note published in the Comptes Rendus for 2 Sept. 1899. 

§ 5. BrraTIONAL TRANSFORMATIONS OF THE SURFACES INTO CONES. 

Corresponding to each of these surfaces we can at once construct a total difterential 

by the formula already given (§ 1); and since the 6’s are unique, there cannot be on 

each surface more than one such differential, the integral of which remains finite. But 

it has not been proved that such an integral does actually remain finite everywhere. 

This could be done by examining its behaviour at each singularity of the surface. But 

it is of interest to shew that each surface can be birationally transformed into a non- 

singular cubie cone, and as such a cone admits necessarily of an integral of the first 

kind, we are thus incidentally assured of the finiteness of our integrals. The trans- 

formations which effect this object are as follows: 

(A) We write the equation in the form 

{ey + (2, w)}?={(z, w)}P?—(z, wy) 

and choose as a new variable w one of the factors of the right-hand side, so that the 

latter becomes w(z, w)® 

The quadric transformation : 

Bry sziwa=cw—(@, wy): y2: 7 > yw) 
, i} fi GO) BAe Sin AC, Oe B Oe Boy 8 Oe 

* Loe. cit. 
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then leads to 

Fit Te iran) each ronince Saoeeondcoricochaeodann Coasts 

(B) Choosing as a new variable y one of the factors of (a, y);, we can write the 

equation : 

2(a, y)P+z2w (a, y)P + wy (a2, yy =0. 

The quadric transformation : 

then leads to 

OP Gis OP Ye ARE (las OL)YS SEES (Cis 07) = On Ssnanamoeedooseeocodvac 

(C) The coordinates can evidently be chosen so that the point e=y=2z=0 lies on 

the surface; z is then a factor of (z, w)4, which may accordingly be written 2z(z, w)’. 

The quadric transformation : 

J 

C2 y 322 wW=2 (a +4) saya ye": we 
° , 

eiy i 2 Ww =aw—yzi yz: 2: Zw 

then leads to 
GEV AEN Ey OP, Gi) ==10) gnasaoosboossscooobeendanchoses 

(D) Changing the variables as in (C) and employing the quadric transformation: 

Was 
Biy:z:w=_5(e2+y)sy'w : Zw’: w 

[9 

wily 2's w= 2aw— yf: yz 22: ew | 

i 
we get EP aS aA, QP aE (2g DIR SO ebssscosoundondsosoocsnese4c 

(E) The cubo-quartic transformation : 

By 2 Wi Yeerrne Ww Nance Aue 

ey ie iw =2w : ow: cyz: cyw ; 

converts the surface into 

Cass enciy eo Hoje ab mn seanthy == (0); .onoeysoosesonanage70ce 

The five surfaces (A’)—(E’) are cubic cones, which are in general non-singular, so that 

each possesses an integral of the first kind. The birational transformation of such an 

integral converts it into an integral of the first kind on the corresponding quartic surface. 

Moreover, if the coefficients which occur in the equations are left arbitrary, the 

five cones are perfectly general cubic cones, though they occupy special positions rela- 

tively to the coordinate planes. Hence we see that a quartic of any of the five types 

can be birationally transformed—if necessary wa a cubic cone—into a quartic belonging 
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to any one of the other types. But im order that two such quartics with given co- 
efficients should be transformable into one another it would of course be necessary that 
there should be a relation between their coefficients equivalent to the condition that 
the corresponding cubics should have their absolute invariants equal. 

It should be noted moreover that we have supposed our quartic surfaces to be 
the most general of their respective types. For special relations between the coefficients 
one of the quartics might become a cone—a case that we have excluded—or the cor- 
responding cubic cone might become rational or degenerate, in which cases no integrals 
of the first kind could exist. 

§ 6. NuMeErIcAL GENUS OF SURFACES WHICH ADMIT OF INTEGRALS OF THE FIRST KIND. 

It appears from the preceding analysis that the only quartic surfaces which admit 
of integrals of the first kind are cones or birational transformations of cones; conse- 
quently the (numerical) genus* is in each case negative; the numbers being —3 for 
a non-singular quartic cone, —2 for a quartic cone with one double line, and otherwise — 1. 

In the course of an investigation dealing with quintic surfaces I have met with 
several surfaces which admit of integrals of the first kind, and these surfaces likewise 

have negative genus. On the other hand Humbert in his well-known memoir on hyper- 
elliptic surfaces+ has given some octavic surfaces which admit of integrals of the first 
kind but are of positive genus. Whether such integrals can exist on any surface of 
order 5, 6, or 7 with positive genus appears to be at present unknown. 

§ 7. GEOMETRICAL CHARACTERISTICS OF THE FIVE SURFACES. 

The surface (A) occurs in Kummer’s well-known paper on quartic surfaces which 

contain families of conics}. The surface touches itself at each of the points, y=z=w=0, 

x=z=w=0; any plane section through these points consists therefore of a plane quartic 

curve touching itself twice, that is of a pair of conics having double contact. The 

two points belong to a class of singular points of surfaces which seem to have been 

little studied; such a point may be defined as a uniplanar double point, which is further 

a quadruple point on the section by the tangent plane, and is consequently a tacnode 

on a general section through the point. Kummer speaks of a “ Selbstberiihrungspunct ” ; 

tacnode or tacnodal point seems a convenient English name§. It can easily be seen 

that a tacnode diminishes the order of the reciprocal surface by 12, so that for this 

purpose it is equivalent to six ordinary double points. As Picard and Simart point out, 

* Genre numérique, deficiency. Cf. Cayley’s paper + Liouville, sér. 1v. t. 9 (1893). 

“On the deficiency of certain surfaces,’ quoted before; t{ Crelle, t. 64 (1864). 

Picard et Simart, ch. vit. § iv; Castelnuovo & Enriques: § According to Picard and Simart this is the name 

“Sur quelques récents résultats dans la théorie des surfaces given by ‘les géométres anglais,’ but I have not been able 

algébriques,” Math. Ann. t. xuvut. (1897). to find any such authority for it. 

Vout. XVIII. 44 
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the surface can be transformed by linear substitution (# =«+iy, y’=x—vty) into the 

general quartic surface of revolution. 

The birational transformation employed in § 5 establishes a one-one correspondence 

between points on the conics and points on the generators of the cubic cone. 

The surface (B) is the well-known quartic scroll with two non-intersecting double 

lines, which is Cayley’s first* and Cremona’s eleventh+ species of quartic scroll. 

The surface (C) is Cayley’s fourth and Cremona’s twelfth species of quartic scroll, 

and is the limiting form assumed by the preceding surface, when the two double lines 

coincide without cutting one another, thus giving rise to the higher singularity some- 

times called a tacnodal line}. 

The generators of the surfaces (B) and (C) correspond to the generators of the 

cones into which the surfaces can be transformed. 

The surface (D) has a double point at y=z=w=0, which is for some purposes 

at least equivalent to two tacnodes, as defined above; and the surface can be regarded 

as a limiting form of the surface (A) when the two tacnodes coincide. A section by 

a plane through 2=w=0 breaks up into two conics which have contact of the third 

order at the singular point. This singularity can be defined—in a form applicable to 

a surface of any order—as a uniplanar double point such that a section by an arbitrary 

plane through some fixed tangent line at the point has two branches meeting one 

another in four points at the singular point. This property implies that in the case of a 

quartic the section: breaks up into two conics. As far as I am aware neither this 

singularity nor the surface has hitherto received any attention. 

As before the conics correspond to the generators of the cubic cone. 

It may be observed that though the surfaces (C) and (D) can be regarded, from 

a geometrical point of view, as limiting cases of Poincaré’s surfaces (A) and (B), they are 

not analytically special cases of them, that is, the equations (C) and (D) cannot be 

derived from (A) and (B) by giving special values to the coefticients. 

The remaining surface (E) does not appear to have been studied hitherto. It has two 

precisely similar uniplanar points of a rather complicated character, which can be stated 

in a form applicable to a surface of any order somewhat as follows. The section by 

the plane tangent at the point has a triple point, there, as always happens with a 

uniplanar or biplanar point; but in addition the three branches at the triple point 

coincide in direction, and if we call their common tangent the singular tangent line, 

this line meets the surface not merely in 4 but im 5 coincident points: thus in the 

quartic case this tangent line lies wholly on the surface. At an ordinary uniplanar point 

a section by a plane through a singular tangent line has a tacnode (equivalent to two 

* «A Second Memoir on Skew Surfaces, otherwise + ‘“Sulle superficie gobbe di quarto grado,” Mem. di 

Scrolls,” Phil. Trans., t. 154 (1860): Coll. Math. Papers, Bologna, ser. 11. t. vir. (1868). 

t. vy. no. 340. + Salmon’s Geometry of Three Dimensions, § 556. 
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ordinary double points), but in this case the singularity of the section is of a higher order, one of the branches having an inflexion, so that the singularity is equivalent to three ordinary double points. In the quartic case the section is a cubic and a tangent to it at an inflexion. 

When the surface is birationally transformed into the cone (E’) the generators of the cone correspond to a family of twisted cubics on the quartic. For to the generator x =ny’, y= 2’ (where X, # are connected by a cubic equation), corresponds in the ”, Y, 2, W space the variable part of the curve of intersection of the quadrics 2*=)aw, w*=pyz; but these have in common the fixed straight line z=w=0, so that their residual curve of intersection is a twisted cubic. 

44__2 



XVII. An Electromagnetic Illustration of the Theory of Selective Absorption 

of Light by a Gas. By Professor Horace Lamp, M.A., F.R.S. 

[Received 13 December 1899.] 

THE calculations of this paper, so far as they are new, were undertaken with a 

view of obtaining a definite mathematical illustration of the theory of selective absorp- 

tion of light by a gas. The current theories of selective absorption apply mainly to 

the case. of molecules in close order, and it has not been found possible to represent 

the dissipation of radiant energy except vaguely by means of a frictional coefficient. 

It seems therefore worth while to study in detail some case where the dissipation can 

be exactly accounted for; and to consider in the first instance the impact of a system 

of plane waves on an isolated molecule. 

If we assume that the molecule has a spherical boundary, then, whether we adopt 

the electric or the elastic theory of light, the requisite mathematical machinery is all 

ready to hand. It is necessary, however, for our present purpose to devise a molecule 

which shall have a free period of vibration, whether mechanical or electrical, of the 

proper order of magnitude. The mechanical analogy was in the first instance pursued, 

the aether being represented by an incompressible elastic medium. This enables us to 

illustrate many special points of interest, but for the purpose of a sustained comparison 

with optical phenomena the elastic-solid theory proved in the end to be unsuited from 

the present point of view, as well as on other well-known grounds. 

As regards the electric theory, the scattering of waves by an insulating sphere has 

been treated by various writers*, with however the tacit assumption that the dielectric 

constant (K) of the sphere is not very great. In the present paper attention is specially 

directed to the case where K is a very large number. On this supposition free 

oscillations (of two types) are possible, whose wave-lengths (in the surrounding medium) 

are large compared with the periphery of the sphere, and whose rates of decay (owing 

to dissipation of energy in the form of divergent waves) are comparatively slow. And 

when extraneous waves whose period is coincident, or nearly coincident, with that of 

a free oscillation encounter the sphere, the scattered waves attain an abnormal intensity, 

and the original wave-system is correspondingly weakened. 

* Lord Rayleigh, Phil. Mag., Feb., 1881, and April, 1899; Prof. Love, Proc. Lond, Math. Soc., t. xxx., p. 308; 

G. W. Walker, Quart. Journ. Math., June, 1899, 
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The conception of a spherical molecule with an enormous specific inductive capacity 

is adopted here for purposes of illustration only; and is not put forward as a definite 

physical hypothesis. In order to comply with current numerical estimates of molecular 

magnitudes, it is necessary to assume that for the substance of the sphere K has 

some such value as 10%. This assumption may be somewhat startling; but it is not 

necessarily inconsistent with a very moderate value of the specific inductive capacity 

of a dense medium composed of such molecules arranged in fairly close order. And 

it may conceivably represent, in a general way, the properties of a molecule, regarded 

as containing a cluster of positive and negative ‘electrons. In any case the author 

may perhaps be allowed to state his conviction, that difficulties (such as they are) of 

the kind here indicated will prove to be by no means confined to the present theory. 

The main result of the investigation may be briefly stated. For every free period 

of vibration (with a wave-length sufficiently large in comparison with the diameter of 

a molecule), there is a corresponding period (almost exactly, but not quite, coincident 

with it) of maximum dissipation for the incident waves. When the incident waves 

have precisely this latter period, the rate at which energy is carried outwards by the 

scattered waves is, in terms of the energy-flux in the primary waves, 

where is the wave-length, and n is the order of the spherical-harmonic component 

of the incident waves which is effective. In the particular case of n=1, this is equal 

to 4772. Hence in the case of exact synchronism, each molecule of a gas would, if 

it acted independently, divert per unit time nearly half as much energy as in the 

primary waves crosses a square whose side is equal to the wave-length. Since under 

ordinary atmospheric conditions a cube whose side is equal to the wave-length of sodium- 

light would contain something like 5 x 10° molecules, it is evident that a gaseous 

medium of the constitution here postulated would be practically impenetrable to radia- 

tions of the particular wave-length. 

It is found, moreover, on examination that the region of abnormal absorption in 

the spectrum is very narrowly defined, and that an exceedingly minute change in the 

wave-length enormously reduces the scattering. 

It may be remarked that the law expressed by the formula (1) is of a very general 

character, and is independent of the special nature of the conditions to be satisfied 

at the surface of the sphere. It presents itself in the elastic-solid theory; and again 

in the much simpler acoustical problem where there is synchronism between plane waves 

of sound and a vibrating sphere on which they impinge. 

It has unfortunately not seemed possible to render this paper fairly intelligible 

without the preliminary recital of a number of formule which have done duty before, 

notably in Prof. Love’s paper. The analysis has however been varied and extended in 

points of detail, with a view to the requirements of the present topic. In particular, 
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the general expression for the dissipation of energy by secondary waves, which is 

obtained in § 5, is found to take a very simple form, and may have other applications. 

Some notations which are of constant use in the sequel may be set down for 

reference. We write 

aay esine Ge: 1 Bute es worst} 6 

on(8) = (- Fae) Wild. «GrtDlt a 2Casa 2Canensa dae 

ON ECOS Ge died oes le) ee la eo aay | 4. 

¥n(O)=(— sag) gp =e Se $e Se) op © 
These may be taken as the two standard solutions of the differential equation 

2(n+1)dF 
oe — =P |) ccd sccceahous Sam catee res eRe 4)*; 
ie a al © 

the solution ~,(¢) being that which is finite for €=0. In the representation of waves 

divergent from the origin we require the combination 

Jn (E) = (- 92) oF = Vn OH) ss 8 a he ee ee (5). 

The functions W,(f), Ya(S), fr() all satisfy formule of reduction of the types 

AG ae alrna (Gy cone ccccarcoes sees Sree (6), 

Glen (0) tet les (6) ain 3 (O)ice ccc aa eeteceteeas eee (7), 

from which (4) can be verified. 

We have also the formula 

vn’ (£) Vn (£)— Vn (0) Vn’ (0) = aa ged hotebincatey eee (8)t. 

1. The equations to be satisfied in a medium whose electric and magnetic per- 

meabilities are K and w may be written, as in Prof. Love’s paper, 

Ky _dy dB Ky da dy K, dB de 
ea ae v= dz dz? eo Steen eee eee eeeeeee (9), 

iti, AL AY. Appia MA Reiman 
e. dy eae epee RE GER oe’ de dy ee ee cece ecccnce (10), 

where (X, Y, Z) is the electric force, (a, 8, y) the magnetic force, and c denotes the 

wave-velocity in the aether. Assuming a time-factor e', we find 

(V2+h)X=0, (+h) V=0, (VFR) Z=H0 vccccccceccsccceeee (11), 

: CG aaa Z, with Gdn * dy 1 dg Oren sncncn (12), 

where | Fd (Trl (eeepc cs COeuOROR ACE Peace oGecdson aura. (13). 

* See Hydrodynamics, §§ 267, 305. + See Lord Rayleigh’s Sound, § 327. 



OF SELECTIVE ABSORPTION OF LIGHT BY A GAS. 351 

When values of X, Y, Z satisfying these equations have been found, the corre- 

sponding values of a, 8, y are given by (10). Or, we may reverse the procedure, 

determining the general values of a, 6, y by means of equations similar to (11) and 

(12) and thence the values of X, Y, Z by means of (9). 

The solutions of (11) and (12) subject to the condition of finiteness at the origin 

are of two types. In the first place we may have 

= {hry (hr) + (n + 1) vn (hr)} S rT, — nhrvr (hr) xr” Th, 

= {hrvy’ (hr) + (n + 1) vr, (hr)} i rT, — nhrwy' (hr) yr® Th, Sere (14), 

Z = {hrvpy (hr) +(n + 1) Wn (hr)} S rT, —nhryp,! (ir) zr” a 

where 7, is a spherical surface-harmonic of order n*. These make 

ey oe (hr) yy dz a)" PAllin, 

K | pa— (ir) (2 Bo EVO, csnsesiesnsete (15). 
ick Arn (hr) int =y5) | a 

It follows that 

MCAS) EET ASAT O(a eI) IES (iA) Gal Eo onoandeswondobomencebon6dt (16), 

Gal 36 ]/s) 447 Veppoodepnasogaesb00dDe oagodecaduaKdacecoooxoadouees (17); 

also that 

Z—2zY = thrwp,! (hr) + (n+ 1) wn (hr)} ly bps 2+) rT,, S&e., &e (18) 
¥y L n 2 \ n J) dz dy n> eee cee eeeeee A 

yy — 28 = aif Wn (hr) (e" T — nar TE) EOE ANCE G Rae MRO SGN SEER ES eee eee (19). 

In the solutions of the second type we have 

a= {hrvy’ (hr) +(n +1) vn (hr)} a Uy, — nhrvp,! (hr) ar? Un, 

B= fhryy’ (hr) + (n+ 1) Vn (hr)} 5 Of, = Toran (Wor) ofr Ulie Ss sennnee (20), 

= {hry (hr) + (n+ LD) Wn (hr) } cal Un — nhrrvby’ (hr) zr” Uy, 
v dz 

* These are equivalent to the forms given in Hydro- formule relating to spherical solid harmonics, such as 

dynamics, § 305 (6), divided by 2n+1. The proof of the a 7 (Ga—ro-h Gh aie ) 

equivalence requires the use of (6) and (7), together with ‘ n= ond dx da 72nt1 } © 
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where U,, is a surface-harmonic. From these we deduce 

,_ top -\ | ie ee n xA= - Yn (hr) y ae cere 7 

y=" » (tr) (2 aX) Ua. ea nae (21). 

Z= -- n Gin) (© yan)! “U, | 

Hence ea + YB + 2y = (+ 1) ben (AN) Ty cece see erree renner sense (22) 

Ca la) aloe Hie Ror et doc dori hbo ACUR SRO EEO SEBAGACOOSOCOOSOneHOCE (23); 

also yy — 2B = shrva’ (hr) +(n +1) vn (hr)} (v5 2 =) TOs A055, (AES Goon sabar (24), 

yZ—2zV= — “ys Wh, (hr (s = ar-*U,) PROC ACOICARY. cca RU ER cE econ: (25). 

It is known that the most general solution of our equations, consistent with 

finiteness at the origin, can be built up from the preceding types, by giving n the values 

Toko ae 

2. Let us now suppose that a sphere of radius a, having the origin as centre, whose 

electric and magnetic coefficients are A and yw, is surrounded by an unlimited medium 

(the aether) for which A=1 and w=1. The disturbance in this medium may be regarded 

as made up of two parts. We have, first, the extraneous disturbance due to sources 

at a distance; this is supposed to be given. Secondly, we have the waves scattered out- 

wards by the sphere. 

The general expression for the extraneous disturbance is conditioned by the fact that 

if the medium were uninterrupted the electric and magnetic forces at the origin would 

be finite. It is therefore made up of solutions of the type already given, provided we put 

K=1, w=1, and replace h by k, where 

| GES Co | RPP RRBEE sos SABRA Son aBED bec ROG cE A cddAddos (26). 

As usual, 27/k is the wave-length of plane waves of the period 27/c. 

In the corresponding expressions for the divergent waves, we must further replace 

wr(hr) by fr (kr), where f, is the function defined by (5). This is necessary in order that 

the formule may represent waves propagated outwards, the complete exponential factor 

being then e*(t™, 

It is necessary to have some notation to distinguish the surface-harmonics used to 

represent different parts of the disturbance. Those harmonics which occur in the expression 

for the imposed extraneous disturbance will be denoted by Zn, U,, simply; those relating 

to the scattered waves by T7;,, U,‘; and those relating to the inside of the sphere by 

a Ore 
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We have next to consider the conditions to be satisfied at the surface r=a. It 

appears at once from (16) and (22) that the solenoidal conditions of electric and magnetic 

induction require that 

lhe (Cae) Mee rs CR) TES = LEG (2) IE soopeoneoocenpnceoeaceEss se (27), 

Nin (He MOF eye (te) (UL > = jiath. (ia) OS brine ndeonacodceoapanaapeane (28). 

Again, it is easily seen that the continuity of the tangential components of electric 

and magnetic force implies the continuity of the vectors 

(y¥Z—zY, zX —aZ, «Y—yX) 

and (yy—2B, 24—ay, «B—ya), respectively. 

Hence from (18), (19), and (24), (25), we have, in addition 

kann’ (ka) + (n+ 1) Wy, (ka)} Tr + {haf,’ (ka) + (n +1) fr (ka); 7 

= fharry (ha) + (+1) Wn (ha)} Dy s.....scccecsecseaccosseees (29), 

and [hayrn' (ka) +(n +1) Yn (hka)} Un + {hafy’ (ka) + (n+ 1) fy (ka)} Un’ 

= {hasb, (ha) = (que 1) teen (lie) Ue sada seaetcans daege wees secs (30). 

Hence 

T, ef. Ky (ha) kan’ (ka) + (n +1) Wn (ka)} — {hay (ha) + (n +1) Wn (ha)} Wr (ka) 

TS Ky, (ha) {kay (ka) + (n+ 1) fn (ka)} — {hawrn’ (ha) + (n + 1) Wn (ha)} fr (ka) 

it tae aed, (31), 
Ue — HN (ha) {kayn’ (ka) + (m+ 1) Wn (ka)} — fhawpy’ (ha) + (n+ 1) Wn (ha)} Wn (ka) 

(op BY n (ha) (kafn’ (ka) + (nm + 1) fn (ka)} — Shay’ (ha) + (n+ 1) vn (ha)} fr (ka) 

We shall suppose that the wave-length of the disturbance in the aether is large 
compared with the circumference of the sphere, so that ka is a small quantity. If we 
were further to assume that K and yw are not greatly different from unity, so that ha 
is also small, we should obtain at once approximate expressions equivalent to those given 
by Prof. Love, viz. 

TAN Ses (n a Ie 1) (ka) : 

soe nK +(n+1) {ies Cn emai teen eee teen ee (33), 

7 (n+ 1)(w— 1) (kaya ; 

Un = 77 2 5 Wiringgo0aono 3¢ 
me+(n+1) ~ {1.3...(2n—1)}?(2n + 1) Un sreeesereereens (34). 

It is our present object, however, to examine the case where K is large. For 
simplicity we shall suppose that ~=1, so that K=h2/k*. It will be found that the first 
factors on the right hand of (33) and (34) must be replaced by 

(n+1)(K —1), (ha) —... ft RGREaren Va (ia) SRO soe (35), 

Vout. XVIII. 45 
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and 

_ han (ha) + ... 
Wn (ha) + ey oo ese et ee ee 

respectively, where the terms omitted are of the order /*a* compared with those retained. 

It appears that there will be nothing abnormal in the amplitude of the scattered 

waves, except when ha is nearly equal either to a root of a(ha)=0, or to a root of 

ar,-.(ha)=0, in which cases the preceding approximations cease to be valid. 

3. If the extraneous disturbance consists of a system of plane waves, then, assuming 

that the direction of propagation is that of 2-negative, and that the electric vibration 

is parallel to y, we may write, symbolically, 

If this be resolved into a series of disturbances of the types (14) and (20) we 

must have, by (13) and (19), 

SDI Coe Ral) es Ue) ce ES 1G sos onansoonaponaasopaacsasonsec¢ (39), 

re (rt -F ly ir (er) eg — ree ence ee eee (40). 

Now if we put 

tz=reos@, y=rsn@coso, z=rsmOsin@ ..............0.-+--- (41), 

we have 

ikye* = > (2n + 1) (ckr)" Wp (Ar) sin 8 cos @ Pp’ (COS B) «.....-e reece (42)*, 

where P, (cos @) is the ordinary zonal harmonic. We infer, by comparison with (39), 

that 
2n+1 

ae GED (sic) =" sim) @ cos eel?s(COS\@) i n--eeseee= eee eee ae (48). 

Similarly, we find 
2n+1 ae 

CE: ACSC (aie) "= sins 6) Sin ople nt (COSiO) eas cnesensene scence (44). 

In particular 

11s ey roe 3 2 : STS Se ene (45), 

oe ; 3z 
U,=—5sin@sin o=—5- Hee San Sons SE OeNO eee poe ewe sds (46) 

* Proved most easily by differentiating with respect to cos 6 the known identity 

elk CoS OS (2n+1) (ikr)" Yp (kr) Pp (cos 8). 
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If we substitute the above values of T, and U, in the formule (31) and (32) we 
obtain the expressions for the scattered waves. 

4. We have now to examine the form which the scattered waves assume at a great 
distance from the origin. When kr is large we have 

Hence, in the first type of solution, analogous to (14), we have 

- qr om d \ 

DS De aye \ 

a qa a / d apy \ yy? T. \ \ (48) ~ (ery ° Nag mT, —nyr ys Sesser a Sac tath cee ; 

n—1 

Z= a e—ikr (¢ yn ips — nzgrr— iE) 

qr ei Gs ad —— —ikr [ , yn op: N 

t= Fpnpnt © (y dz a) oe 

n—1 ey oar; d F B= pean e7ikr 2 aaa x =) TERR en es tate ican aaa cect (49). 

qn-l ee d ad nip 
Y= Fnpn & : (25,-9 a) rT, 

We notice that X, Y, Z are ultimately of the order 1/r, whilst the radial electric 
force («aX +yV+2Z)/r is zero to the present order of approximation. It is really of 
the order 1/r2 The radial magnetic force (wa+y8+2y)/r is accurately zero, If the 
contour-lines of the harmonic 7', be traced on a sphere of large radius 7, for equal 
infinitesimal increments of T,,°, the (alternating) magnetic force is everywhere in the 
direction of these contours, and its amplitude is inversely proportional to the distance 
between consecutive contours. The electric force is everywhere orthogonal to the contours, 
and its amplitude is in a constant ratio to that of the magnetic force*, 

For instance, in the case n=1, if 7,’ be of the type (45), the lines of electric 
and magnetic force have the configuration of meridians and parallels of latitude, the 
polar axis being represented by the axis of y. 

In the second type, analogous to (20), we have 

qr Te d F ~ ‘ 

a Fae El nO, ieee (OL 
= (kr) da 

qn + d f As ‘ B= ny enh Ge rT, —nyr? = Ui, ) »  odogouRpoancostonecrotasesd (50), 

we —tkr d nT pn—2 U, . Y= (kr) é AE 7 n — N27 n 

* Cf. Proc. Lond. Math. Soc., t. xu., p. 194, 
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w4sss1fld d b " 

X=— herp \y dz wa =) r U), ? 

ea git a ( ig Saleh 
antl z dz oe [aa in ? PiatalctcsclelelalulstaiatetelnicieintetsteTetnibinistetefave 
hy x ey | 

qn d d k 

Teale dy =| AT 

with a similar interpretation. The contour-lines of U,° are the lines of electric force, 

and the lines of magnetic force are orthogonal to them. 

5. The calculation of the energy carried outwards by the scattered waves leads to 

some very simple results. By Poynting’s theorem*, the rate at which the energy in 

any given space is Increasing is equal to the integral 

Z| | tr — 62) + m (a2 —yX) + n(BE = AV) dS coe (52), 

taken over the boundary of the space, J, m, n denoting the direction-cosines of the 

normal drawn inwards from the surface-element dS. The ambiguities which are known 

to attend a partial use of this theorem will disappear if the space in question be that 

included between a sphere of radius 7, in the region of the scattered waves, and a 

concentric sphere of radius so great that we may imagine it not to have been as yet 

reached by the waves. The rate of propagation of energy outwards is therefore given 

by the integral 

a i Gel) eV Ge Nae) ey (GeV pak) eee (53), 

taken over the sphere of radius r. 

Before applying this result, the values of a, 8, y and X, Y, Z must of course be 

expressed in real form. To take first a solution of the first type, since 77,', as given 

by (31), will in general be complex, let us write 

gl ERE RAL Vo BCE anarene nO TeeOdcO neBenca sO Sar (54). 

Restoring the time-factor in (48) and (49), and taking real parts, we find 

1 d d\. : ae 
aire (y Eee = {®, cos (ot —kr+e€)— >, sin (ot —kr+e)}, &e., We, ......... (55), 

and 

yZ—2Y= fee y a= iz -) {@, cos (ot — kr + €)— d, sin (ot —kr+.e)}, &e., We.,...... (56), 

where e€ may be 0, or +47, or 7, according to the value of n Hence the mean 

value of the expression (53), per unit time, is found to be 

jhe. Hy d®,, _ ,2Pn\? aD, oes / i yo) 

Sark?" =| dz dy / File da Cae 

Idn Ibn ddn see don doy, 3 

CaP sae Gan a q Mae -yE) fas 
* Phil. Trans., 1884, p. 343. 
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which may also be written 

c (/d®,, d®,\? _ (d®,\) wae, 

aterm || ae) + Cay) + ae) - 2 ® 
ddbn\? ~/ddbn dd, ) ae 

fe) |e (2) — nee} as RRCOOHOT (58). 

The expression under the integral signs im (58) is equal to the sum of the squares 

of the tangential components of the vectors 

(d®,/dx, d®,/dy, d®,/dz) and (dd,/dx, dd,/dy, dd,/dz). 

Now if S, be a surface-harmonic of order n, we have 

dS, dS, plr far 2 k 7 

I {C i(' > a) + es a ) sin 6d@dw=n(n+ 1) ihe ii 'S,2sin 0dOdw ...... (59)*. 

Hence (58) may be written 

c ih eae 2 ; \j2 n(n+1) aaa || (®,72+ $,°) dS, or n(n+1)——— or im ffir. RGkorsoogddeadase (60), 

where |7,\| denotes the modulus of 7, and dw is an elementary solid angle, viz. 

dS =rda. 

In a similar manner, a solution of the second type gives the result 

n (n+ 1) oem om If 

It appears, further, on examination, that the parts of the expression (53) which 

arise from combinations of the two types, or from combinations of the same type with 

different values of n, will disappear in virtue of the conjugate property of surface-harmonics 

of different orders*. 

Hence, if = be a sign of summation with respect to n, the general expression for 

the rate at which energy is dissipated by the scattered waves is 

Cc n(n+1 V9 oy eh Wn eee ts Sete Be (62). 

In the case of plane incident waves the harmonics are tesseral, of rank 1. Writing, 

for shortness, 
TEN Be Ue OSU ee eenee nan oreecacce cnc onceteein (63), 

* Proved easily by partial integration, making use of 

the differential equation 

i Gi ja. pals 1 @&S, 
sin 6 0 (sine rT ) a ametpaan 

+ The integrals which arise from combinations of the 

two types are of the form 

[ee @%- 

1)S,=0. 

Zz i) a aH. Las. 

This involves products of surface-harmonics of orders 

m—1 and n, and will therefore vanish unless m=n+1. 

But writing it in the form 

if IXn (Am _ 
4} {= ~ dy 

we see that it also vanishes unless n=m-+1. 

vanishes in any case. 

y sn) 4. a6. att. Las, 

dz 

Hence it 



358 Pror. LAMB, AN ELECTROMAGNETIC ILLUSTRATION OF THE THEORY 

where the values of B, and C, are as given by (31), (32), and 7,, U, have the forms given 

in (43), (44), then since 

Ale 2 ‘ . 

| | {sin 8 cos wP,, (cos@)}? da =n(n +1). = ee (64)*, 

the expression (62) reduces to 

gp 2 (2n+1) {I Bal? + (aN. sk caceas peereeeneee (65). 

The proper standard of comparison here is the energy which is propagated per unit time 

across unit area in the primary waves represented symbolically by (37). On the scale 

of our formule this is c/87. Hence, if J denote the ratio which the energy scattered per 

unit time bears to the energy-flux in the primary waves, we have 

T= Fe Em) {BaP [Cal ----2--saeeanseeceese renee (66). 

For example, in the case to which the formulx (33), (34), refer, the constants HK and 

uw for the sphere being not greatly different from unity, we have 

2K-1 2-1 
B, => 3 K - 5) hea’, C; => 3 FEED TRUS cece cance eee eee (67), 

and thence 
aA (SSN 7 ee 

= 3 Ta iG) a= =) (ka) teen eee e eee n eee eereeeeneee (68)+. 

6. We may proceed to examine more particularly the case where K is a large 

number, whilst » is (for simplicity) put =1. The types of free vibration which can exist 

in the absence of extraneous disturbance are found by making 7,=0, U,=0 in (81) 

and (32). In the first type we have 

harpy’ (ha) + (m+ 1) Wn (ha) _ 7, kafn' (ka) + (n + 1) fp (ha) a aa (69), 

where, it is to be remembered, k/h =1/K?. We are specially concerned to find the 

solutions of this equation for which ka is small. On this hypothesis we have 

harp,’ (ha) + (mn + 1) Wn (ha) i§es 
a) UE cp inet emesis (70), 

nearly. This is satisfied approximately by ha =z, where z is a root of 

Nal) — Oe eer meRRR eas nvic enol cen'h onus «aw one OSRORe (71), 

and more exactly by 

ha= (1 — =z) 7 Sa gOaco OOO TOO ICUCROR ONO SER OF O53 50: (72). 

* Ferrers, Spherical Harmonics, 1877, p. 86. 

+ This agrees with a result given by Lord Rayleigh, Phil. Mag., April, 1899, p. 379. 
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In the case n=1, the equation (71) takes the form tan z=z; whence 

Apo 8\03}, CRE), BIOS), cea. cooopsenscousoscencopade (73)*. 

orresponding to any one of these roots we have a simple-harmonic electric oscillation of C ling t y f tl t have a simple-harmo lect llat ft 

frequency 

and wave-length 

To calculate the rate of decay of the oscillations, which is relatively very slow, we should 

have to proceed to a higher degree of approximation. 

In the second type, we have, from (32), with w=1, 

har, (ha) — kafn’ (ka) * SIS NE) "cee eT eee 76), Faia), 7 fal) Se 
Ge Mire=st 2) ire ee (77), 

Yn(ha) fr (ka) 

This is satisfied approximately by ha=z, where z is a root of 

AU pen (23) =O) co dseccosvon once csbocnsocboccDDobebodbo0Gd (78), 

and more accurately by 

1 = 
ha = {2 = a yrt BD wvvvccrvecvvcvevcoccvevecersecseees (79): 

When n=1, (78) takes the form sinz=0, whence 

/Afipil, 2), Bh, fico coaaodabanenosvopedondddeonoosoboKonC (80). 

7. When in the problem of § 2 the extraneous disturbance has a period coincident, 

or nearly coincident, with that of a free vibration, the approximate formule (33) and 

(34) will no longer apply. If in the accurate formula (31) we make the substitution 

VAC) = We, Ut) = Ola (HO) oa cancncoeoccacbeseauneasgneccoud (81), 

we find that it takes the form 

where g(ha) stands for the expression in the numerator + of (31), and G@(ha) is derived 

from g(ha) by the substitution of WV, (ka) for Ww, (ka) The modulus of the expression 

* The lines of electric force in the sphere are for the in Electricity and Magnetism, p. 317. 

most part closed curves in planes through the axis of the + Which may be regarded as a function of ha since the 

harmonic 7,. Their forms are given in Phil. Trans., Pt. 11. ratio of k to h is fixed. 

1883, p. 532; and in J. J. Thomson’s Recent Researches 
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on the right hand of (82) never exceeds unity; but it becomes equal to unity, and the 

intensity of the scattered waves is therefore a maximum, when 

harry’ (ha) + (n +1) Yn (ha) _ K ka WV! (ka) + (n + 1) Wn (ka) 

Wn (ha) 7 WV, (ka) ee ceeceeneee or 

When K is large, the lower roots of this, considered as an equation in ha, are easily 

seen to be real and to be very approximately equal to the real parts of the roots of (71). 

When the period of the incident waves is such that (83) is satistied exactly, we have 

If the incident waves be plane, the dissipation-ratio (68) takes the form 

- 2(2n+1)7_2n+1,, 
= = ae Saag if 

If we compare this with (68), we find that in the case n=1 the effect of synchronism 

is to increase the dissipation in the ratio 

9 5 (kay. 

The wave-length of maximum scattering is of course very sharply defined. If we 

put 

[ik (IE) 7) cenesedeeenboosdonodoh cocofcoanconsankesonor (87), 

where z is a root of (84), and e is a small fraction, I find 

x a Wn (ha) _ _7.1.3...Q2n —1) = 
g (ha) = wie (C= G (ha) = “hay AE (Ui ola@S Bemanacnc (88), 

approximately, whence 

Ti a ee 89). 
Te n {ll 73... — I) ae ( 

1 ar oe (kaye = iKe 

For example, in the case n=1 the dissipation sinks to one-half of the maximum when 

the wave-length deviates from the critical value by the fraction (ka)*/K of itself. 

The second type can be treated in a similar manner. Writing (32), with ~=1, in the 

form 

US g (ha) To dha) wig Wha) eee escenene (90), 

the equation G(ha)=0 which determines the wave-lengths of maximum dissipation may 

be written 

Vna(ha) Vy (ka) Vathay = Wi (hay (rrreirisesesseeeeeeeeeeee (91). 



OF. SELECTIVE ABSORPTION OF LIGHT BY A GAS. 361 

The lower roots (in ha) which satisfy this are very nearly the same as in the case 

of (78). When (91) is satisfied exactly we have 

US Ae Up c5 ee: (92), 

leading to the same formula (86), as before, for the dissipation-ratio when the incident 

waves are plane. 

Also, if we write 

eG ee eeriteiasisissosievidecinciens aceseawessenainays (93), 

where z is a root of (91), I find 

n (ha) 1 .3...(2n —1 2 
g(ha) = t x oe 1)’ G (ha) = a ) Aes (0G) oEococacnono oc (94), 

approximately. Hence 

On _ a . 
Ge = SS aCe = Di Se i ee (95) 

1+ —— ——~. iKe 
(ka)y" 1 

The definition is now less sharp than in the case of (89), in the ratio ha’. 

8. It remains to examine what sort of magnitudes must be attributed to the 

quantities @ and # in order that our results may be comparable with ordinary optical 

relations. 

Since ka(=27a/X) must in any case be small, and since ha must in the case of 

synchronism satisfy (71) or (78) approximately, and must therefore be at least comparable 

with 7, it follows that if our molecules are to produce selective absorption within the 

range of the visible spectrum, the dielectric constant AK (=h?/k?) must be a very large 

number. 

Again, it appears from two distinct lines of argument* that im a gas composed 

of spherical dielectric molecules the index of refraction (#,) for rays which are not 

specially absorbed is given by the formula 

8  K=1 (ASS i) ra. oe eo ad vende Sacer (96), 

4 id 
where p— Ne 3 Fifth atneio oOraHaOOUSCHCOCOR ORC COD CHE neroan (97), 

N denoting the number of molecules in unit volume. On our present hypothesis this 

takes the simpler form 

* Maxwell, Electricity, § 314; Lord Rayleigh, Phil. Mag., Dec. 1892, and April 1899. 

Vou. XVIII. AG 
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Hence if yp, = 10003, we have p=2x10~. This determines the product Na’, for 

a gas such as oxygen or nitrogen under ordinary atmospheric conditions, but not N or a 

separately. If in accordance with current mechanical estimates we take N=2 x 10%, 

we find a=13x10-°cm. Hence if X=6 x 10 cm., we find 

ka = 14x 105% 

so that, if ha=7, we must have 

K =h?/F=5 x 105 

In a dense medium composed of the same molecules the formula (98) is replaced by 

py+2 

where the accents refer to the altered circumstances. Comparing, we have 

, 21 2 
eg po Mn ee (100). 

The fact that the refractive indices of various substances in the liquid and in the 

gaseous state have been found to accord fairly well with this formula shews that the 

observed moderate values of K’(=w") for dense media, taken in the bulk, are not 

incompatible with an enormous value of A for the individual molecules. 

The formula (86) for the dissipation-ratio in the case of exact synchronism is 

independent of any special numerical estimates. It can moreover be arrived at on 

widely different hypotheses as to the nature of a molecule and of the surrounding 

medium. Its unqualified application to an assemblage of molecules arranged at ordinary 

intervals may be doubtful, since with dissipation of such magnitude it may be necessary 

to take account of repeated reflections between the molecules. It is clear however that 

a gaseous medium of the constitution here imagined would be absolutely impenetrable 

to radiations of the critical wave-length. 

As regards the falling off of the absorption in the neighbourhood of the maximum, 

the formula (95) in the case n=1 would (on the numerical data given above) make 

the absorption sink to one-half of the maximum when the wave-length varies only 

by -00,000,000,028 of its value. The formula (89) would give a still more rapid 

declension. The range of absorption in a gaseous assemblage must however be far wider 

than these results would indicate. So far as it is legitimate to assume that the 

molecules act independently, the law of enfeeblement of light traversing such a medium is 

Wie NEL TI «eet ta eee (101). 

* This is Lorentz’ result. Lord Rayleigh’s investigations shew that it will hold approximately even if p’ be 

not a very small fraction. 

+ Lord Rayleigh, U. c. 
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We may inquire what value of the dissipation-ratio J would make the intensity diminish 

in the ratio 1/e in the distance of a wave-length. If we write 

so that J,, denotes the maximum value of the dissipation-ratio for n=1, the requisite 

value is given by 

i £2 N 103) mS as == Oy? gOS HOCEC OAC ES RECROOLOCnS CeO TnCner core € Tare 
On our previous numerical assumptions this is about 4x 10-7. The corresponding value 

of € in (95) is about 4x10. This is comparable with, although distinctly less than, 

the virtual variation of wave-length which takes place, on Doppler’s principle, in a gas 

with moving molecules, and which is held to be sufficient to explain the actual breadths 

of the Fraunhofer lines. Having regard to the very much sharper definition which we 

meet with in the vibrations of the first type, and to the increase of sharpness (in each 

type) with the index x of the mode considered, it would appear that there is no 

prima facie difficulty in accounting, on our present hypothesis, for absorption-lines of such 

breadths as occur in the actual spectrum. 

46—2 



XIX. The Propagation of Waves of Elastic Displacement along a Helical 

Wire. By A. E. H. Love, M.A., F.R.S., Sedleian Professor of Natural 

Philosophy in the University of Oxford. 

[Received 4 December 1899. ] 

1. Iv is known that the modes of vibration of an elastic wire or rod which in 

the natural state is devoid of twist and has its elastic central line in the form of a 

plane curve fall into two classes: in the first class the displacement is in the plane 

of the wire and there is no twist; in the second class the displacement is at right- 

angles to the plane of the wire and is accompanied by twist. In particular for a 

naturally circular wire forming a complete circle when the section of the wire is circular 

and the material isotropic there are two modes of vibration with n wave-lengths to 

the circumference; these belong to the first and second of the above classes respectively, 

and their frequencies (p/2m) are given by the equations 

by gee Lebicrar (ie): 

Pe a pat ln? ” 

ae a) 

and Parag pat l+yn+n’ 

where @ is the radius of the circle formed by the wire, c the radius of the section, p, the 

mass per unit of length, # the Young’s modulus and 7 the Poisson’s ratio of the material. 

These results may be interpreted as giving the velocities with which two types of waves 

travel round the circle. 

So far little or nothing appears to be known about the modes of vibration of wires of 

which the central line in the natural state forms a curve of double curvature, except that 

the vibrations do not obviously fall into two classes related to the osculating plane in the 

same way as the two classes for a plane curve are related to the plane of the curve. 

The equation connecting the frequency with the wave-length when waves of elastic dis- 

placement are propagated along the wire has not been obtained; and although this 

equation would obviously be quadratic when rotatory inertia is neglected, and so would 

give two velocities of propagation for waves of a given length, it is by no means obvious 

what would be the distinguishing marks of the two kinds of waves with the same wave- 

length. 
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It seemed to me that it would be not without interest to seek to answer the 

questions thus proposed in the case of a wire which in the natural state has its elastic 

central line in the form of a helix. As regards the free vibrations of a terminated portion 

of such a wire with free ends, or fixed ends, or under the action of given forces at 

the terminals, it would be possible to form the equation for the frequency, but the 

equation appears to be so complicated as to be quite uninterpretable; and in fact in 

the simpler problem presented by a circular wire with ends, which has been treated 

in some detail by Lamb*, it appears that to interpret the results the total curvature 

must be taken to be slight, and the results which can then be obtained are such as 

might be reached by suitable approximate methods. In the case of a helical wire the 

most important of all the problems of vibration is that of a spiral spring supporting 

a weight which oscillates up and down; and this can be treated adequately by means 

of an approximate theory in which the wire is taken to have at any time the form 

of the helix corresponding to its axial length and to the position of the load. The 

problem of the propagation of waves along an infinite helical wire remains. I have 

found that in general for a given wave-length two types of waves are propagated with 

different velocities; in both types all the kinds of displacement (tangential, normal and 

torsional) are involved, and there is no rational relation between the different displacements 

which serves to distinguish the types of the two waves, but these types are finally 

and completely separated by a circumstance of phase in the different components of 

the displacement. 

2. The helix which is the natural form of the elastic central line of the wire 

may be thought of as traced on a circular cylinder, and then any particle on this line 

undergoes a displacement which may be resolved into components u, v, w along the 

principal normal, the binormal and the tangent to the helix. The principal normal 

coimcides with the radius of the cylinder, and the displacement w is reckoned positive 

when it is inwards along this normal; the displacement w is reckoned positive when 

it is im the sense in which the are is measured, and then the positive sense of the 

displacement v is determined by the convention that the 

positive directions of wu, v, w are a right-handed system 

for a right-handed helix. Further there is an angular 

displacement by rotation of the sections, of amount 8, 

about the tangent to the helix, and § is reckoned positive 

when 8 and w form a right-handed rotation and trans- 

latory displacement. Now it is found that in general the 

two waves of given length that can be propagated are 

distinguished according as the displacements v and w are 

in the same phase or in opposite phases at all points of 

the helix. If 1/p and 1/o are the measures of curvature 

and tortuosity of the helix, and 27/m is the wave-length, then in the quicker wave v 

and w are everywhere in the same phase, and in the slower wave they are in opposite 

phases, provided m?>1/p?—1/e°, but if m*<1/p?—1/c7 this relation is reversed. 

* Proc. Lond. Math. Soe., xtx. 1888. 
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The fact that there are two waves with different velocities suggests an analogy 

with the optical theory of rotatory polarization, and leads to the question whether in 

any sense the two waves can be regarded as right-handed and left-handed. The most 

obvious possibility of this kind would be that 8 and w should be always in the same 

phase for one wave and in opposite phases for the other; it is found however that 

this is not the case; another possibility would be that the component displacements 

parallel to the axis and to the circular section of the cylinder on which the helix is 

traced should be everywhere directed like a right-handed system of axial and circular 

translatory displacements for one wave and like a corresponding left-handed system for 

the other; this also is found not to be the case. It appears that up to the degree 

of approximation which is usually included in the theory of elastic wires there is no 

rotatory effect involved. 

In three particular cases it is found that the equation for the frequency of waves of 

given length breaks up into two separate equations. This happens (a) when m?=1/p?+1/o°, 

(b) when m?=1/p?—1/o*, (c) when the helix is very flat or 1/o can be neglected. In 

ease (a) one of the modes of deformation is equivalent to a rigid body displacement 

of the helix at mght angles to its axis, and the corresponding speed of course vanishes ; 

in case (c) the types correspond to the two already known for a circle; in case (b) the two 

types are distinguished by the vanishing of the flexural couples in and perpendicular 

to the osculating plane; this case occurs only if the angle of the helix is less than 47. 

3. The wire is taken to be of uniform circular section (radius c), and of homo- 

geneous isotropic material, and in the natural state the line of centres of its sections 

forms a circular helix of curvature 1/p and tortuosity 1/c¢. The displacement of a point 

on the central line is specified by components u, v, w along the principal normal, the 

binormal and the tangent in the senses already defined, but it is necessary to fix the 

meaning of the angular displacement 8. For this purpose we suppose a frame of three 

coorthogonal lines to move along the helix so that the three lines always coincide 

with the principal normal, the binormal, and the tangent; if the origin of the frame 

moves with unit velocity the lines of the frame will rotate with an angular velocity 

which has components 1/p about the binormal and 1/¢ about the tangent. We can 

construct a corresponding frame for the strained wire by taking as origin the displaced 

position of a point on the strained elastic central line, as one line of reference the 

tangent to the strained elastic central line through the point, and as one plane of 

reference the plane through this line which contains the tangent to that line of particles 

which in the natural state coincided with the principal normal; when the displacement 

is everywhere very small the lines of this frame very nearly coincide with those of the 

frame attached to the unstrained wire, and the plane of reference just defined makes 

a very small angle with the osculating plane of the helix at the corresponding point; this 

angle is 8. The “twist” of the wire is expressed by 

La cae) 
GES fy 8 Gays 

where ds is the element of are of the helix. 
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4. The action of the part of the wire for which s is greater upon the part for 

which s is less, across any section, can be reduced to a resultant force at the centre 

of the section and a couple. The force may be resolved into components V, along the 

principal normal, V, along the binormal, and 7 along the tangent, in the senses in which 

u, v, w are reckoned positive. The couple may be resolved into two flexural couples G,, Gs 

and a torsional couple H about the same three lines. The couples are expressible in terms 

of the displacements by the equations 

l/ow vw 
Co (55 are 1 p | 2 

ol [Oy GL= ON 

fie E as & #5) 

ee Ga) HiGKih a) Oh il (ov u GA leet = = (ze ale erat eee (1), 

,| 08 u H= o|2 = +(B+5)| 

in which A,=+}#7c', is the flexural rigidity, and C,=42#7ci/(1+ 7), 1s the torsional 

rigidity. 

Further, the displacements u, w are connected by the relation of inextensibility of 

the wire 
ow u 
SS Moat soboa em etionrees soniyau:s sehadamcnsawolid cabot 2). as p (2) 

When rotatory inertia is neglected the stress-couples are connected with the stress- 

resultants and with each other by the three equations of moments 

= = - +2 -N=0 

ine = #5 NE = (0), }oecaconcodecnocccoboonscpoccsanooo (3) 

aH _G, a, 
ds) p is 

The equations of small motion are the three equations of resolution 

ON Nay. £ 2 Ou 

One wa ph LS One 

oN, iN ov 
as pee leer SISOOOOROOOOOOOOOOCOOON OOOO OOO OOO IG (4), 

a a. 
G2 fp Bi acer 

in which p, is the density of the material of the wire and , =7c’, is the area of the 

cross-section. 

5. We shall now suppose that simple harmonic waves are propagated along the wire, 

and take as expressions for the displacements 

u=— mp W sin (ms—pt), v=Vcos(ms — pt), w= W cos (ms — pt), 

8B = B cos (ms — pt) 
base (5), 
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in which uw and w have been adjusted so as to satisfy the equation (2) of inextensibility. 

Further, we shall take the forms of G,, G., H to be 

G, = dg, cos (ms — pt), G, = Ag. sin (ms — pt), 

H =(mp)~ Ag, sin (ms — pt) 

in which G, and H have been adjusted so that the third of the equations of moments (3) 
is satisfied identically. We then find by (1) 

hee (ne + =) V+ (=P = =.) W, 
p o (on po 

2 mp m = 
=== + (mp + a Seite ess aaseinccea tiene (7), 

ta 
1 = Cm (B+ a 
mp o 

of which the first and third give 

a Nei aces 1 7 aes | 
(1+ Gass) =! Se | Jeldeeosatceee sane (8), 

and the second is 

& v2 4W(m—445) Rs date athe oe (9). 
mp po Buenos 

1 1 A : 
If Tea does not vanish we can solve for V and W and obtain 

ee AW et ol ce fy H(i =) = wh (1+ Gia) (™ Sage) er eee 

» «---+( 10): Cares eee eae la), Dea se Gal eo 
( Poko pn Cm?p?/ po Is mp OA Mas } 

The first two of the equations of moments (3) now give us 

N,=—A (- at mgs) cos (ms — pt), 

Y edearetetecouenieaee (11). 
= 1 1 : N,=— n= ae = N, A {(m =5) Gaia o.h sin (ms pt) 

We eliminate 7 from the equations of motion (4) and obtain 

GEG, ah iL GE . an 
ae + o Fay = Pomp? (1 + mp’) (W/p) cos (ms — pt), 

oN, , N. 
== = = — p,wp*V cos (ms — pt), 

or, on substituting for WN, and N,, 

2 1 
A E & Ga - a + Mpgo ( m — 2 + =| = poop? (1 + mp?) W,| 

oe eee (12). 
rd! tee! 2m = 

A|o.(m— 243) +9. | = puap't 
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6. We may now substitute for g, and g, in terms of V and W and obtain by 

elimination of V and W the equation for p? 

poop? : )( A ) - Bee (2 2 aaa) ( a =) 
( A ) (1 + ep ae Cm*p? A oi mp? + Cmep* ue rl ee 

OC ae 1 ay iN See a eee +(m—— =) =0 horas (13). 

il : : , : 
If m?— ——— does not vanish this equation can be written 

FE o 
2 

{1 — (1 + wo) a} {1 — (1 + oe) a} (1 — t= te)? = Bea (2 + eo — 1) =O eoreereree (14), 
by putting 

ky = A/Cm'p®, «,=1/m'p*, Kk. = 1/m?o* 

a= A (1—k, — kK) powp?m™ 

Since A/C=1+ 7, where 7 is the Poisson’s ratio of the material, 

Ky —Ki = 1K), 

and this is always positive; so that, if for « in the left-hand member of the above 

equation (14) we substitute the values ©, 1/(1+«,), 1/1+«,), 0, the expression has 

the signs +——+, and thus one of the two values of # exceeds 1/(1+«,) and the 

other is less than 1/(1+x,), both values being positive. It follows that there are two 

possible velocities for waves of given length, the speed of one exceeding 

le mp? (m* — 1/p* — i 
no) 1 + mp? 

and that of the other being less than 

A. mip (mt — 1p 1/89) 
Po® l+y+ mp? ’ 

these two expressions become the speeds of the corresponding waves round a circular 

ring by writing n for mp and omitting 1/c. 

The left-hand member of the equation (14) for # breaks up into factors rational 

IM Ky, Ky, Ko if 

[(2 + ko + Hy) (1 — Hy — Hy)? + Bq (2 + ky — 1)? — 4 (1 + He) (1 +) (1 = 4, — 12)! 

is the square of a rational function of , «, . This is the case when 24+ «,—«,=0, 

or when 1—x«,—«,=0, or when «,=0, or when 1—«,+«,=0, for in the last case the 

expression becomes 

16 (1 = 4)? [1 = ey) (Ko — 1) — 2 (eo + 1) PP. 

Of these cases the first cannot happen since «,>,, and the third is the limiting 

case in which the helix becomes a circle; the two remaining cases will be discussed 
later. 

Vou. XVIII. 47 
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7. With the view of determining the character of the motion corresponding to 

one value of p? we observe that by the second of (12) combined with the first of (10) 

A 2 1 XL 2m ( oh f = 1 Vie. a I+ {1 —2x (1 + Gre =i (m - ae =) + 92 i +a u =) (I) Beapoch oe (16), 

where z is given by (15), and it has been assumed that m*—1/p?—1/c? does not vanish. 

Hence we find 

(gece =) 2m 

— si \™ po +9: om 

W/E LN 2m 1 WEN 
wn +G ) [ae Jo 3 Ce Gas) 

and therefore 

1l-—a#(1+«)=—- we la 4 (G- i) z a} | (me — 5-5) 
mp") 

& 1 r=; | a fe (A NPS ie 1\? a 
= {1 +5 Poy Ee = Sof Ay} = aa s) mip*| (m <5 =) godase (17) 

It follows that in the wave for which «(1+«,)<1 we must have 

1Hew eb we 1+ 5p077 (m2- =e =) ZO 1.20 ee a (18). 

Again, by combining the first of (12) with the second of (10) we find 

Oy fy eel Serle nt | (1- = wap) tel + He) (l+m)|+g2 Ae) flo(l+<)}=0 03) 

Hence - 
2 1 

HR ia Ql ae wa 9s (me = ae #) ; eG 
z(1+“4)=- ca ; 

(+6) 9, (m— +5 py te 
and therefore 

2 2h fo 571) cat /(w- 4-4) 1 a) ea ea & 1 mip? (m ae) 

Pre Sh oe keene 2p 5 | 2 1) 5 +/ pel esl Ne £ 
--l7 (m— e —+ =) + = (me Sle A + (4- mpi (1 + &) (m-— RE -=) Ree (20). 

Tt follows that in the wave for which x(1+x,)>1 we must have 

Vi ipo QUE Sates ee : 
W (m ia + =) ae (m - = BS (Dieicacids =i neitasis onepsen eemnetine (21). 

The two inequalities (18) and (21) are not mutually exclusive for all values of 
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V/W, but in the present case V and W are not independent. The equation connecting 

them is obtained by eliminating 2 from (17) and (20) in the form 

ee Ue eal Cay (on? 1 ) We We Lee ell 
— — Se — 2 —— == = = is = = (Kp k;) (m p =) ( aE mp? ) | a @ aE mp E ats 2 po V (a p? AF =) | 

2 lr peer a =) =e ( 4 =) |} 
= ACL aR CH as m——)|}, 

po for Gr o pal 

Wal 9(V2— We mp2) | m? — — — or 2{V W? (1 + mp°)} (m Sie) 

8 A/C-1 TAS 
— WP RALPE ne / Oya: = = 29 

uA E Po Imp? + A/C— 1 (m p> 2) | Bane (22), 

which gives two values for V/W, having a negative product, and thus showing that 

in the two waves the values of V/W have opposite signs. We now substitute for V/W 

the values 

o 

1 20 / / 

#5008) 0} -& (me — 545), — 7 (m: —=.) |(me- 545), 
Z p o [A Ne ar 

placing these values in order of decreasing algebraic magnitude. For shortness we write 

and then ae 8 according as (m? = 1/p? +1/0*) 5 0. There are three cases depending on 

the signs of m?—1/p? and of m*—1/p?+1/o*, In any case when we substitute V/W=a, 

the left-hand member of (22) becomes 

eee oN AN ee 
pol 2m? + A/C—1 (m p” 3) (m p* 2 oe)” 

and when we substitute V/W=£ the left-hand member of (22) becomes 

gee MOR ie 8 
Now in the slower wave we have 

l-a + <0, 

which shows that if m*—1/p?+1/c* is positive 

0>V/W>a, 

and if m?—1/p?+1/o" is negative 

a>V/W>0. 

In the quicker wave we have 
3 

(m3 — 1/¢?-+ 1/3) Gr- B) >0. 

47—2 
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Thus when m?—1/p?+1/o? and m?— 1/p* are both positive we have 

V/W>B, 

when m?—1/p*+1/c? is positive and m*—1/p? is negative 

V/W>B>0, 

when m?—1/p?+1/c*? and m*?—1/p? are both negative 

0>B8>V/W. 

When m?—1/p? and m?—1/p?+1/c? are both positive we obtain after substitution 

in the left-hand member of (22) the signs shown in the table 

I] Wai—paco, SOR Sena, —oco 

eS a 

When m*—1/p? is negative and m?—1/p?+1/o? is positive we obtain 

VW, = SogeBee0 eo —co 

+--+ + 

When m?—1/p? and m?—1/p?+1/c? are both negative we obtain 

VIW = 02 a0 B —-o 

By comparison of these results we see that when m?—1/p?+1/o? is positive V/W 

is positive in the quicker wave and negative in the slower one, but when m?—1/p?+1/o* 

is negative the reverse is the case. When V/W is positive the displacements v and w are 

in the same phase at all points of the helix, and when V/W is negative these displace- 

ments are everywhere in opposite phases. 

8. If the helix of angle a is wound on a cylinder of radius a@ the displacement 

parallel to the axis is aseca(w/o+v/p), and the displacement parallel to the circular 

section is aseca(w/p—v/c), and the wave is in a certain sense right-handed or left- 

handed according as 
(Wip —V]a)+(Wle+V/p) 

is positive or negative. We write & for this, and then the values of & in the two waves 

satisfy the equation 

2 [(1/p — e/a)? — (1 + mp’) (E/p + 1/a)"] (m? — 1/p*+ 1/0") 
ey ENGELS A/C-1 ( ae 

=| o=5 (E+ 2) |S 00 sae ao iG p° = =0; 

and the two waves will be respectively right-handed and left-handed if the roots have 

opposite signs. To show that this is not always the case it is sufficient to take m 

very great and substitute for € in the left-hand member the values 

0 — pio — 0; 

the signs are = 3F = 5 
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showing that both values of € are negative, and both waves are left-handed in this 
sense when m is sufficiently great. 

A similar method may be applied to show that there are values of m for which 
both values of B/w have the same sign, and thus the waves are not respectively right- 
handed and left-handed in regard to 8 and w. 

9. We have already noted that in three special cases the equation (13) for p? can be 
solved rationally in terms of m, Pp, o 

Taking m?=1/p?+ 1/c? =a~ cos® 4, it is convenient to put ms=6, and then @ is the 
angle turned through by the radius of the helix about the axis of the cylinder in 
passing along the curve from the point from which the are is measured to the point 
at which the arc is s. 

In this case equations (12) become 

_ Powp” ain Va 
q |b 

g i + la? = oe 

and equations (8) and (9) become 

f A sade Fare ypie le 

a Cale i Ae 

_ 2m / p o ‘ (V+ 4W e), 

sony fee 
so that mgt gle= 1+ as nant (VW), 
and thus either V+ Wp/c=0 and p=0, or else 

V=W ; (1 + m’p’), 

poop? , ie = ( mm Cp? ) (5 ; “ii 
and a (1 + m’p?) ANS tem + Omep? +1+m’p? 

The second kind of motion is an example of the quicker wave, and the speed p 
is given by 

8A (p?+ 0? (A +C) o? + 2Cp? 1 

poo pot (A+C)o*+ Cp* (207+ p?)* 

2 p= 

In the displacement for which p=0 the equation V+Wp/o=0 shows that there 
is no displacement parallel to the axis of the helix; we also have 

W cosa—V sina=W (cosa +sin a tan a) = W seca, 
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and thus the displacement along the tangent to the circular section of the cylinder is 

W sec acos 6; 

the displacement along the radius vector outwards is —asec?a a~cosa Wsin ms, or 

W sec asin 0, 

and thus the displacement is Wseca at right angles to the plane from which @ is 
measured. The helix is displaced bodily, and there is no deformation. 

10. Again, taking m?=1/p?—1/c?, where o® is supposed >p* or a<41m, we find that 

equations (16) and (19) show that either 

A (m?—1/p?—1/c°? 1— mp? 
92=90, p= poo 1+A/Cmp? 1+ mp?’ 

gel p : Sq Slee 
or n=0, p= poo (m? — 1/p? — 1/0°) mp? 

The motion for which g,=0 is an example of the slower wave, the speed p of this wave 

is given by 

ae p? (a? — p*) 

BS pow o (2a*= pi) (1 + A/C) a = pi)’ 
and the flexural couple G, in the osculating plane and the displacement v along the 

binormal both vanish at all points of the helix. 

The motion for which g,=0 is an example of the quicker wave, the speed p of 

this wave is given by 
p 

op 
= 
Pot 

P 4 
p= = 

and the flexural couple G, about the principal normal, the torsional couple H, and the 

displacements w and w along the principal normal and the tangent all vanish at all 

points of the helix. 

~ 



XX. On the Construction of a Model showing the 27 lines on a Cubic 

Surface. By H. M. Tayutor, M.A., F.R.S. 

[Received 27 January 1900.] 

THE general equation of a cubic surface contains 19 constants: 9 conditions are 

required to make it pass through a given plane section: 6 more are required to make 

it pass through a second: 3 more to make it pass through a third. It follows that 

a cubic surface would be determined by three plane sections and one poimt on the 

surface. 

Any data which determine the surface necessarily determine the straight lines on 

the surface. It is known that twenty-seven straight lines lie on the general surface of the 

third degree, and that these lie by threes in forty-five planes, the triple tangent planes to 

45 x 32 x 22 

ircotes 
pass through the same line*. 

the surface. There are sets of three triple tangent planes, no two of which 

There would be no loss of generality in the form of the cubic surface caused by 

choosing arbitrarily one of the 5280 sets of three triple tangent planes instead of three 

ordinary plane sections: among these 5280 sets there are 240 sets such that a second set 

passes through the same nine lines. 

If ABC, A’B'C’, A” B’C” be the triangles formed by the three planes of such a set, 

the letters may be arranged in such a manner that 

BCB’'C’B’C”’, CAC’A'C’A”, ABA'B'A’B’ 

are planes. 

In this paper and in the model, of which a representation is given (Plates XXIV., 

XXV.), each of the twenty-seven lines on the surface is denoted by one of the numbers 

In agreement with a notation adopted in a former paper*. In accordance with this 

notation, the lines in these three planes are denoted by Arabic numbers as follows :— 

BC, 1 BO’, 6 TEAOM, I) 

CA, 2 CA’, 4 CAG 2 

Zl J35, -B) ACB, 5 AUG ae mal 

For convenience of reference a complete list of all the triple tangent planes of the 

surface, showing those in which each line appears, is given in the following table :— 

* Philosophical Transactions of the Royal Society, Series A, Vol. 185 (1894), p. 64. 
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Table showing the triple tangent planes which pass through each line on the surface. 

i, 2 3 1, 6, 15 1g 1, 16, 19 Se Bae 

Dales 2, 4, 12 2, 8, 14 2, 20, 23 2, 21, 22 

ae ae ory 3, 10, 13 3, 24, 27 3, 25, 26 

4, 2, 12 4,5, 6 4, 9, 13 4, 16, 27 4, 17, 26 

meee 5, 4, 6 5, 11, 14 5, 18, 21 5, 19, 20 

6, 1, 15 6, 4, 5 6, 8, 10 6, 22, 25 6, 23, 24 

Ts. 5 (ue ee 7, 12, 15 7, 16, 23 7, 17.02 

8, 2, 14 8, 6, 10 Baeritee 9 8, 18, 27 8, 19, 26 

9,1, 11 9, 4, 13 a 9, 20, 25 9, 21, 24 

10, S013 10.6 8 10, 11, 12 10, 16, 21 10, 17, 20 

Lis 1} ll, 5, 14 11, 10, 12 11, 22, 27 11, 23, 26 

12, 2, 4 12, 7, 15 12, 10, 11 12, 18, 25 12, 19, 24 

1G CAT 13. 4° 9 13, 14, 15 13, 18, 23 13, 19, 22 

14,2, 8 14, 5, 11 14, 13, 15 14, 16, 25 14, 17, 24 

ele 6 15,.7, 12 15, 13, 14 15, 20, 27 15, 21, 26 

16, 1, 19 16, 4, 27 16,- %e.28 16, 10, 21 16, 14, 25 

ilps 17, 4, 26 Vie ote 17, 10, 20 17, 14, 24 

TS) ila Je 18, 5, 21 Seas) a 18, 12, 25 18, cB23 

19, 1, 16 19, 5, 20 19, 8, 26 19, 12, 24 19, 13, 22 

20, 2, 23 20, 5, 19 20, 9, 25 20, 10, 17 20, 15, 27 

21, 2, 22 21, 5, 18 21, 9, 24 21, 10, 16 21, 15, 26 

22, 2, 21 22, 6, 25 Boe den ali 22, 11, 27 22, 13, 19 

23, 2, 20 23, 6, 24 ony IG 23, 11, 26 23, 13, 18 

24, 3, 27 24, 6, 23 24, 9, 21 24, 12, 19 24, 14, 17 

25, 3, 26 25, 6, 22 25, 9, 20 25, 12, 18 25, 14, 16 

26, 3, 25 26, 4, 17 26, 8, 19 26, 11, 23 26, 15, 21 

bo = 1 a to rs bo on > (or) bo ot 0 _ 194) bo oa — _ bo bo bo SS = a bo oO 
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In the model the six lines, forming the sides of the triangles ABC, A’B’C’, are 

drawn on the surface of two brass plates which are carefully hinged together in such 

a manner that the straight line XYZ, which passes through the intersections of the 

pairs 
BC BiCey CAC At 5 eAl3. -AcBr 

is in the line of the hinges. Each of the remaining twenty-one straight lines is repre- 

sented by a stretched string. On each plate the point at which any straight line cuts 

the plate is marked by the Arabic number which denotes the line. In the explanation, 

where it is necessary to distinguish between the points where any line, say 9, cuts the two 

plates, the point where it cuts a side of the triangle ABC, in the left-hand figure, will 

be denoted by 9;, and the point where it cuts a side of the triangle A’B’C’, in the 

right-hand figure, will be denoted by 9,. 

It will be observed that the lines 7,12,15;, 7,12,15,, in which the sides of the 

triangle formed by the lines 7, 12, 15 cut the sides of the triangles ABC, A’BC’, meet 

on the line XYZ. 

We have now chosen three plane sections of the cubic surface, and we have one more 

condition at our disposal. This is exhausted by the choice of the point 8, that is, the 

point where the line 8, which cuts the three non-intersecting straight lines 2, 6, 7, cuts 

the line 2. This determines the line 8, and therefore the point 8,. 

As the lines 7, 8, 9 are complanar the straight lime 7,8; cuts BC in 9 and cuts 

the line XYZ in a point such that the straight line joing it to the point 7, gives the 

points 8,, 9,. 

In a similar way 
4, and 9; give 13, 

6; ” 8: ” 10; 

1, ” 9; ” ike 

2, ” 8, ” 14, 

Since 10, 11, 12, and 13, 14, 15 form triangles, 

10; and 12; give 11, 11, and 12, give 10, 

WS, dle Ge Ales, 4 elton eee all3. 

Lines 1 to 15 are now determined. 

The remaining lines 16 to 27 form a double six. 

Any triple tangent plane which passes through one of these twelve lines passes 

through two of them, and also through one of the lines 1 to 15. We must, therefore, adopt 

a different method to find one of the lmes 16 to 27. 

One of them must be found by some quadratic method, and then all the rest can 

be found as before. The line 17 was found by a method of trial and error from the facts 

that 17, lies on BC and 17, on O’A’, and that the pairs of lines 7,17;, 7,17, and 14;17;, 

Vou. XVIII. 48 
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14,17, meet on the line XYZ All the other points were then obtained by drawing 

straight lines in the following order, in which the suffixes are omitted because the 

description applies equally both to the left-hand and to the right-hand figures. 

7, 17 give 22 

LOT eO 

95-20) =p 20 

1225) sel 

13,18 ,, 23 

135 22) ey 9 

U2, LO ae 24 

9,24 , 24 

LD eu peas 0 

15,20 , 27 

LOM 2 eG 

All the lines on the surface are now fully determined. 

The diagrams represent not only the lines used in finding the points, but each 

diagram gives the 32 straight lines which represent the intersections with the plane of the 

triangle of each of the 32 triple tangent planes that do not pass through a side of the 

triangle. From these 32 straight lines a selection of 8 limes can be made to pass 

through all the 24 points in the diagram. This selection of 8 lines can be made in 

40 ways. The following numbers give such a set of eight straight lines for the left- 

hand figure (triangle ABC) :— 

6514s bSloy 2 Satie Os 20s (25s 3 26. 16, aloe Os 10K 2 

17, 14, 24; 18, 8, 27. 

It may be noticed that in the left-hand figure the points 4...15 he by threes on 

eight straight lines, two of the lines passing through each point. 

From these eight lines two sets of four can be chosen passing through all the twelve 

points. 

We cannot draw a pair of conics through the twelve points. 

Of the remaining twelve points, 16...27, no three lie on a straight line, but eight 

conics can be drawn, each passing through six pots, and there are four pairs of conics 

passing through all the twelve points. 

There are also 48 conics, each of which passes through 6 points in the diagram, and 

12 of which pass through each of the 24 points, and from these 48 conics a selection of 

4 can be made so as to pass through all the 24 points; such a selection can be made in 

168 ways. The following numbers give one such set of four conics for the left-hand figure :— 

Wie oa, 9; LS) 12; 0s. (6) 20025) doye23. oO soe LO: ell) DAR es 

16, 14, 24, 19, 8; 27: 
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Let us consider the section of the surface made by a plane passing through one of 

the lines; for instance, the line 1. We shall find five pairs of points, 2, 3; 6, 15; 9, 11; 

16, 19; 17, 18, on this line and the other sixteen points will lie on a conic. In this 

case there are 40 straight lines, each of which passes through three of the points. 

Through each point on the conic 5 of the lines pass, and through each point on the 

line 4 lines pass. 

Next, let us consider a section of the surface not passing through a line. 

It will be a cubic curve and the points on it where the 27 lines cut the plane 

he by threes on 45 straight lines, five straight lines passing through each point. From 

these 45 straight lines a selection of 9 can be made, to pass through all the points. This 

selection can be made in 200 ways. There are, also, 360 conics, each of which passes 

through six of the points, 80 conics passing through each point. From these 360 conics 

a selection of four can be made to pass through all the points except three lying on a 

straight line. This selection can be made in 168 ways for each particular set of three 

points, that is in 7560 ways altogether. 

48—2 



XXI. On the Dynamics of a System of Electrons or Ions: and on the Influence 

of a Magnetic Field on Optical Phenomena. By J. Larmor, M.A., F.R.S., 

Fellow of St John’s College. 

[Received 24 January 1900.] 

THE DYNAMICS OF A SYSTEM OF INTERACTING ELECTRONS oR Ions. 

1. In the usual electrodynamic units the kinetic and potential energies of a region 

of aether are given by 

T =(87r)> IG + 8? ++") dr, 

W = 2m? | (f2+9?+h) dr, 

wherein 67 represents an element of volume, (a, 8, y) is the magnetic force which 

specifies the kinetic disturbance, and (jf, g, h) is the’ aethereal ‘displacement’ which 

is of the nature of elastic strain. These two vector quantities cannot of course be 

independent of each other: the constitutive relation between them is, with the present 

units, 

dyd8 da dy dB da), d,, 

Gs dz’ de , ae" dm Fa 9"), 

or say curl (a, £, ase (y g, h), 

which restricts (f, g, h) to be a stream vector satisfying the equation of continuity: 

it also confirms the view that (a, 8, y) is of the nature of a time-fluxion or velocity. 

It is assumed that (a, 8, y) is itself a stream vector, which must be the case if 

electric waves are of wholly transverse type. On substituting in these expressions 

(€, », €), the independent variable or coordinate of position, of which (a, 8, y) is the 

velocity, so that (4, 8, y)=d/dt(&, », €), the dynamical equations of the free aether can 

be directly deduced from the Action formula 

6 fir- W)dt =0. 

It is well known that they are identical with MacCullagh’s equations for the optical 

aether, and represent vibratory disturbance propagated by transverse waves. 

-e ke 
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It will now be postulated that the origin of all such aethereal disturbances consists 

in the motion of electrons, an electron being defined as a singular point or nucleus 
of converging intrinsic strain in the aether, such for example as the regions of intrinsic 

strain in unannealed glass whose existence is revealed by polarized light, but differing 

in that the electron will be taken to be freely mobile throughout the medium. For 
all existing problems it suffices to consider the nucleus of the electron as occupying so 
small a space that it may be taken to be a point, having an electric charge e 
associated with it whose value is the divergence of (f, g, h), that is, the aggregate 

normal displacement lv +mg+nh)dS through any surface S enclosing the electron: over 

any surface not enclosing electrons this integral of course vanishes, by the stream 

character of the vector involved in it. Faraday’s laws of electrolysis give a substantial 

basis for the view that the value of e is numerically the same for all electrons, but may 

be positive or negative. 

As our main dynamical problem is not the propagation of disturbances in the 

aether, but is the interactions of the electrons which originate these disturbances, it will 

be necessary to express the kinetic and potential energies of the aether as far as 

possible in terms of the motions and positions of the electrons. The reduction of 7 

may be effected by introducing the auxiliary variable (F, G, H) defined by 

curl (F, G, H)=(a, B, 4). 

= (i(jaleh CG: (dF dH dG dF 
Thus T = (87) a - te) *t(g a =| Be ae ay) 7 oe 

= (87) fae — BH) 1+ (aH —yF)m+ (QF —a@) n} dS 

Ae ienidy. dC da dy dp da 

. rs lb tie pd eel df dg dh 

Om) | Re Ga tH ae male? ed = Oke 

| a, iB yf ' 

Now it follows from the definition of (F, G, H) that 

, d (dF dG dH\_ (dy dp 
ie dx = dy a i aca Ge x) 

Bes ii == tere > 

with two similar equations. Solutions of these equations can be at once obtained by 

taking dF/dz+dG/dy+dH/dz to be null: this makes F, G, H the potentials of volume 

distributions throughout the medium of densities i gs h, together with contributions as 

yet undetermined from the singular points or electrons. The most general possible 

solution adds to this one a part (F,, G,, H,) which is the gradient of an arbitrary 
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function of position y: but this part does not affect the value of (a, 8, y) through 

which (F, G, H) has been introduced into the problem, so that the definite particular 

solution is all that is required. 

Now the motions of the electrons involve discontinuities, or rather singularities, in 

this scheme of functions. One mode of dealing with them would involve cutting each 

electron out of the region of our analysis by a surface closely surrounding it. But a 

more practicable method can be adopted. The movement of an electron e from A to an 

adjacent point B is equivalent to the removal of a nucleus of outward radial displace- 

ment from A and the establishment of an equal one at B: in other words it involves 

a transfer of displacement in the medium by flow out of the pomt B into the point 

A: now this transfer can be equally produced, on account of the stream character of 

the displacement, by a constrained transfer of an equal amount e of displacement 

directly from A to B. Hence as regards the dynamics of the surrounding aether, the 

motion of such a singular point or electron is equivalent to a constrained flow of 

aethereal displacement along its path. The advantage of thus replacing it will be great 

on other grounds: instead of an uncompleted flow starting from B and ending at 4, 

there will now be a continuous stream from B through the surrounding aether to A 

and back again along the direct line from A to B: in other words the displacement 

will be strictly a stream vector, and in passing on later to the theory of a distribution 

of electrons considered as a volume density of electricity, the strictly circuital character 

of the electric displacement, when thus supplemented by the flow of the electrons, will 

be a feature of the analysis. 

For greater precision, let us avoid for the moment the limiting idea of a  point- 

singularity at which the functions become infinite. An electron will now appear as an 

extremely small volume in the aether possessing a proportionately great density p of 

electric charge. Its motion will at each instant be represented by an electric flux of 

intensity p(z, y, 2) distributed throughout this volume, which when added to the aethereal 

displacement now produces a continuous circuital aggregate. For present purposes for 

which the electron is treated as a point and the translatory velocities of its parts are 

very great compared with their rotational velocities, this continuous flow may be condensed 

into an aggregate flux of intensity e(#, y, 2), concentrated at the point (2, y, 2). 

At each point in the free aether, outside such nuclei of electrons, the original 

specification of ‘magnetic force, namely that its curl is equal to 4d/dt of the aethereal 

displacement, remains strictly valid. It has been seen that the effect of the motion 

of any specified electron, as regards the surrounding aether, is identical with the effect 

of an impressed change in the stream of aethereal displacement at the place where it is 

situated: thus the interactions between this electron and the aether will be correctly 

determined by treating its motion as such an impressed change of displacement. This 

transformation however considers the nucleus as an aggregate: it will not be available 

as regards the interactions between different parts of the nucleus: thus in the energy 

function constructed by means of it, all terms involving interaction between the electron 

as a whole and the aether which transmits the influence of other electrons will be 

ee ce a ee 



AND THE INFLUENCE OF A MAGNETIC FIELD ON OPTICAL PHENOMENA. 383 

involved; but the intrinsic or constitutive energy of the electron itself, that is the 

total mutual energy of the constituent parts of the electron exclusive of the energy involved 

in its motion as a whole through the aether, will not be included: this latter part is in 

fact supposed (on ample grounds) to be unchangeable as regards all the phenomena now 

under discussion, the nuclei of the electrons beimg taken to occupy a volume extremely 

small in comparison with that of the surrounding aether*. 

This principle leads to an expression for the force acting on each individual moving 

electron, which is what is wanted for our present purpose. But the equations of ordinary 

electrodynamic theory belong to a dense distribution of ions treated by continuous 

analysis, and we have there to employ the averaged equations that will obtain for an 

effective element of volume of the aether containing a number of electrons that practically 

is indefinitely great. 

We derive then the equations of the aether considered as containing electrons from 

those of the uniform aether itself by adding to the changing aethereal displacement 

G g, h) the flux of the electrons of type e(é, y, 2) wherever electrons occur. In the 

transformed expression for 7 we can, as already explained, treat the part of the surface 

integral belonging to the surface cutting an electron out of the region of integration 

(as well as any energy inside that surface) as intrinsic energy of the electron, of un- 

changing amount+, which is not concerned in the phenomena because it does not involve 

the state of any other electron. The contribution from the surface integral over the 

infinite sphere we can take to be zero if we assume that all the disturbances of 

electrons are in a finite region: the truth of this physical axiom can of course be directly 

verified. 

We have therefore generally 

Ta 5 [Put Gv + Hw) dr, 

wherein 

(F, G, H)={. v, w)rodt: 

and in these expressions the total electric current (wu, v, w) will consist of a continuous 

part Ga g, h) which is not electric flow at all, and a discrete electric flux or true current 

of amount e(#, ¥, 2) for any electron e. When the electrons are considered as forming 

a volume density of electrification, this latter will be considered as continuous true electric 

flow constituted as an aggregate of all the different types of conduction current, convection 

current, polarization current, etc. that can be recognized in the phenomena, each being 

connected by an experimental constitutive relation with the electric force which originates 

it. The orbital motions of the electrons in the molecule cannot however be thus included 

in an electric flux, but must be averaged separately as magnetization. Neither the 

true current nor the aethereal displacement current taken separately need satisfy the 

* For a treatment on somewhat different lines ef. Phil. Trans. 1897 A, or ‘Aether and Matter,’ Ch. v1., Camb. 

Univ. Press, 1900. 

+ It may be formally verified, after the manner of the formula for 7 in § 2, that this amount tends to a 

definite limit as the surface surrounds the electron more and more closely. 
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condition of being a stream, but their sum, the total current of Maxwell, always satisfies 

this condition. 

2. The present problem being that of the interactions of individual electrons 

transmitted through the aether, it will be necessary to retain these electrons as distinct 

entities. The value of (F. G, H) at any point is therefore of type 

1d 

rd 

; ex 
ages ice 
t r 

F= 

in which r represents the distance of the point from the element of volume in the 

integral and from the electron respectively. Thus 

T= 2 | Gig: + get hyhs) M1 dr,d7, 

+ Lex [Ars dt. + Ley [aera dt. + Lez phar dt. 

+ LLepes (dydig + PYo + 2122) Mos 

in which each pair of electrons occurs only once in the double summation. 

Also W= 270? li: + 9? + h’) dr. 

In omitting the intrinsic energy of an electron and only taking into account the 

energy terms arising from the interaction of its electric flux with the other electric fluxes 

in the field, we have however neglected a definite amount of kinetic energy arising 

from the motion of the strain-configuration constituting the electron and proportional to 

the square of its velocity: this will be the translational kinetic energy 

Liv 
bol 
Le? (a? + 7+ 2*): 

or we may write 

T,= i m (@ + +2), 

where m is thus the coefficient of inertia or ‘mass’ of the electron, which may either 

be wholly of electric origin or may contain elements arising from other sources. 

This transformation has introduced the positions of the electrons and the aether- 

strain (f, g, h) as independent variables. It is necessary, for the dynamical analysis, 

thus to take the aether-strain as the independent variable, instead of the coordinate 

of which (a, 8, y) is the velocity, which at first sight appears simpler. For part of 

this strain is the intrinsic strain around the electrons; and the deformations of the 

medium by which it may be considered to have been primordially produced must have 

involved the discontinuous processes required to fix the strain in the medium, as other- 

wise it could not be permanent or intrinsic. If the latter coordinates were adopted 
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the complete specification of the deformation of the medium must include these processes 

of primary creation of the electrons, and the medium would have to be dissected in 

order to reveal the discontinuities, after the manner of a Riemann surface in function- 

theory*. 

3. We have now to apply dynamical principles to the specification of the energies 

of the medium thus obtained. The question arises as to what are dynamical principles. 

It may reasonably be said that an answer for the dynamics of known systems constituted 

of ordinary matter is superfluous, as the Laws of Motion formulated by Newton practically 

cover the case. Waiving for the present the question whether the foundations of that 

subject are so simple as may appear, the present case is one not of ordinary matter 

but of a medium unknown to direct observation: and its disturbance is expressed in 

terms of vectors as to the kinematic nature of which we have here abstained from 

making any hypothesis. 

Now the dynamics of material systems was systematized by Lagrange in 1760 into 

equations which amount to the single variational formula 

8 |(1— W) dt =0, 

in which the variation is to be taken subject to constant time of passage from the 

initial to the final configuration, and subject to whatever relations, involved in the con- 

stitution of the system, there may be connecting the variables when these are not mutually 

independent,—the only restriction being that these latter relations are really constitutive, 

and so do not involve the actual velocities of the motion although they may involve 

the time. This equation is known to include the whole of the dynamics of material 

systems in the most general and condensed manner that is possible. It will now be 

introduced as a hypothesis that the cognate equation is the complete expression of the 

dynamics of the wltra-material systems here under consideration. Even in the case of 

ordinary dynamics it can be held that there is no final resting-place in the effort towards 

exact formulation of dynamical phenomena, short of this Action principle: in our present 

more general sphere of operations the very meaning of a dynamical principle must be 

that it is a deduction from the Action principle. This attitude will not be uncongenial 

to the school of physicists which recognizes in dynamical science only the shortest and 

most compact specification of the actual course of events. 

We have then to apply the Principle of Action to the present case. In the first place 

the coordinates im terms of which 7 and W are expressed are not all independent, for 

when the distribution of (fg, h) is given that of the electrons is involved. The connexion 

between them is completely specified by the relation 

(z dg ay rine 
as =aG. \det dy * dz 

* More concretely, the relation curl (a, 8, y)=4m(f,g,h) kind whose velocity is (a, 8, y); that are required to intro- 

involves f(t mg+nhk)dS=0: now {(lf+mg+mnh) dS isnot duce the existing intrinsic strain must involve discontinuous 

zero but is equal to Se: hence the displacements, of the processes. Cf. ‘ Aether and Matter,’ Appendix E. 

Vor. XVIII 49 
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provided this is supposed to hold for every domain of integration, great or small, it will 

follow that the electrons are the poles of a circuital or stream vector (f, g, h). If then 

we write 

a (df dg dh 

o=|v (E+ dy Ge qe) a7 30 
the variational equation will by Lagrange’s method assume the form 

5 (2+ T,- W+ Q)dt=0 

in which W is a function of position, initially undetermined but finally to be determined 

so as to satisfy the above condition restricting the independence of the coordinates. 

We have to vary this equation with respect to the displacement (f, g, h) belonging to 

each element of the aether, supposed on our theory to be effectively at rest, and with 

respect to the position (x, y, z) of each electron. All these variations being now treated 

as independent, the coefficient of each of them must vanish, at all points of the aether and 

for all electrons involved in it. 

We now proceed to the variation, Bearing in mind that so far as regards aethereal 

displacement 

4 [fdr involves 4 [[fifirw dnd, that is S3f fir dn8r, 

because each pair of elements appear together twice im the double integral of a product, 

but only once in a double summation, we obtain as the terms involving f in the complete 

variation 
déf 8 | at [Rar — Aero? [at [refer + abare dr, 

leading, through the sista integration by parts, to 

| F8fdr } = Jae [Pera ae | dt i fofdr+ | dt i Pfayae J 2 i dt | = ofan 

The coefficient of 6f must vanish in the volume integral, giving 

dF dv 
470° f = — an aa BOSON OOOOOOCOOOOOCOOOOSOOOOOOOM OOOO CCOCG (i). 

Similar expressions hold for g and h. Again, the terms in the variation involving the 

electron e at (a, y, z) are 

8 [dte(aF + yG42H) + bd {at @+p+e)— 8 |atew, 

yielding as regards en of the position of this electron 

[ate ree + Gdy + Hds + adF +98G +23H) + m Jat (@8é + 984 + 282) — fateav 

in which 8% means the change of the velocity of the electron, so that we have on integration 

— [ate {az Be eG by + 8) - eae bz) +. > 

by parts 

é Féa + Gdy + Hbz 
t dt d 

tite ia: S, dv 
—m [at ules ae ae (Ge ut zz bc) +m | ada + ydy +282 
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where DF/dt must represent the rate of change of F at the electron as it moves, 

namely 

IDM GRR CNM GM aia 

The vanishing of the coefficient of 6x for each element of volume gives 

# ( DEV dE dG a | 
ML = e\ — z 

dt me dx ant! dx rhe dx da 

Similar expressions hold good for mi and mi. 

The form of W shows that 47c? is the coetticient of aethereal elasticity corresponding 

to the type of displacement (f, g, h): the right-hand sides of equations (1) are therefore the 

expressions for the components of the forcive (P’, Q’, R’) inducing aethereal displacement: 

thus this force, which will be called the aethereal force, is given by equations of type 

dF dv 
P’=—-—--—. 

dt dex 

The form of equation (ii) shows that the right-hand side is the component of the 

force e(P, Q, R) inducing movement of an electron e: this force reckoned per unit electric 

charge is called the electric force (P, Q, R) and is given by 

or, in terms of physical quantities only, by 

P=yy- B2 + 4c? f. 

We do not now go into the case of a magnetically polarized material system, for 

which in certain connexions* (a, b, c) replaces (a, 8, y) mm this formula. 

These expressions for the aethereal force and the electric force, together with a 

complete specification of the electric current and the experimentally determined constitutive 

relations of the medium, form the foundation of the whole of electrical theory. 

Morion IN AN ImpRESSED MAGNETIC FIELD. 

When the electrons or ions constituting a molecule describe their orbital motions 

in a uniform magnetic field (a, 8); Yo), 1ts influence is represented by an addition to the 

vector potential (F, G, H) of the term 

(yoY — Boz, 2 — Yor, Boe — ayy). 

* Cf. loc. cit. ante. 

49—2 
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Thus 7,+T=13m (a+ y+ 2) +5 Se (Fé + Gy + He) +5 | (RF+ Gg + Hh) dr 
- a nw 

+55e| * y cee F geld. 

|a ¥ z | = TROT 

% Bo 90 | | ty Bo Yo 

As the aether is stagnant, so that the position of the element of volume 67 is 

fixed, these new terms will not modify the formula for the aethereal force (P’, Q’, R’) 

unless the impressed magnetic field varies with the time: but they will modify the 

electric forces acting on the ions by the addition of the term 

(yoy — Bod; oz = Yo, Bot zz Ai). 

THE SYSTEM REFERRED TO A ROTATING FRAME. 

It is part of the Action principle, of which the validity is at the foundation of 

this analysis, that its formal expression is not affected by constitutive relations involving 

the time explicitly, provided they do not involve the velocities of the actual motion. 

Let then the system be referred to axes of coordinates rotating with angular velocity 

(@r, @,, wz) measured with reference to their instantaneous positions, these quantities being 

either constant or assigned functions of the time. For the velocity, imstead of (a, y, 2) 

there must now be substituted, in the formula for 7’— W, 

(@— yoz+ 2oy, J — 2Z@z+ Taz, Z— LW, + Yor), 

and for ( iB gd, h) there must be substituted 

(f—go:+ho,, g—hez+foz, h— fw, + gor), 

while (#, y, 2) remain unchanged. Referred to these moving axes the kinetic energy, 

which was, so far as it involves the ion e,(#, %, 4), given by 

1 Sey ows j 3 ‘ 
T,+ T= 5m (é2+ yet 27) +e (Fit, + Gy, + MA) +... 

where (F,, G,, H,) is the value of the vector potential at the point (m4, %, %), has 

now additional terms which on neglecting the square of the angular velocity are 

—m|\e% f% 4\+talu Hh aA \+4(¢60F,4+9,5C,4 49H)), 

boa) eal aller ae 
@, Wy Wz) | we @y @: 

‘ Cody dr: 
wherein oF, =8 (= SS i=) 

Tis Tyo 

5 22(@y2a = @r2) oe “ 

Tie Tie 

The exact dynamical equations referred to moving axes may now be directly 

obtained by application of the Action principle. 
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As regards the electron e, the first of these terms is the same as that due to 

an impressed magnetic field given by 
2m 

(a, [shy %) = = 2 z 
1 

The others give rise to terms in the electric forces which are small compared with 

the internal electrodynamic forces of the system itself when the angular velocity is 

small: and in our applications these latter will be themselves negligible compared 

with the electrostatic forces. 

(@z » Wy, 2). 

Mutruat Forces or ELECTRONS. 

When a system of electrons or ions is moving in any manner, with velocities of 

an order lower than that of radiation, the surrounding aether-strain may be taken as 

at each instant in an equilibrium conformation: thus the positional forces between the 

electrons are simply their mutual electrostatic attractions. As regards kinetic effects, the 

disturbance in the aether can be considered as determined by the motion of the electrons 

at the time considered, so that the kinetic energy can be expressed entirely in terms of 

the motions of the electrons; and the motional forces between two of them are derived in 

the Lagrangian manner from the term in this total kinetic energy 

C00 1g) (4 L2 + YrYo t+ 2120) + FeV €.V2011»/ds, dsp, 

where ds,, ds, are elements of their paths described with velocities v,, v. The Weberian 

theory of moving electric particles involves on the other hand a kinetic energy term 

heer. 1 (dr,,/dt: in the field of the electrodynamics of ordinary currents it however 

yields equivalent results as regards mechanical force, and the electromotive force induced 

round a circuit, though not as regards the electric force at a point. 

THE ZEEMAN EFFECT. 

4. On the hypothesis that a molecule is constituted of a system of revolving ions, 

a magnetic field H impressed in a direction (/, m, n) adds to the force acting on an 

ion of effective mass m and charge e, situated at the point (a, y, z), the term 

eH (ny — mz, l2—n&, mx —1y), 

so that its dynamical equations are modified by change of #, ¥, 2 into 

Z—x«(ny—mz), y—« (l2—ne&), 2—K(me — ly), 

where « =eH/m, e being in electromagnetic units. 

If the ratio e/m is the same for all the ions concerned in the motion, so is x, 

and this alteration of the dynamical equations of the molecule will be, to the first 

order of «, the same as would arise from a rotation of the axes of coordinates to 

which the system is referred, with angular velocity $« around the axis of the impressed 

magnetic field. Hence the alteration produced in the orbital motions is simply equi- 

valent to a rotation, equal and opposite to this, imposed on the whole system. Each 

line in the spectrum would thus split up into two lines consisting of radiations circularly 

polarized around the direction of the magnetic field, and with difference of frequencies 

constant all along the spectrum, namely «/27, together with a third line polarized so that 
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its electric vibration is along the same axis while the frequency is unaltered. In fact 

each Fourier vibration of an ion, which previously consisted of a component disturbance 

of the type of an elliptic harmonic motion, is no longer of harmonic type when the 

precessional rotation 4« is imposed on it—this precession being imposed additively on 

the different constituents of the total motion: but it can be resolved into a rectilinear 

vibration parallel to the axis, and two circular ones around it, each of which maintains 

its harmonic type after the rotation is impressed and thus corresponds to a spectral line, 

and which are differently modified as stated. These three spectral lines would be expected 

to be of about equal intensities *. 

It is however essential to this simple state of affairs that the charges belonging 

to all the ions that are in orbital motion under their mutual influences should be of 

the same sign, as otherwise e/m could not be the same for all. It is also essential 

that the ions of opposite sign, or the other centres of attraction under which the orbits 

are described, should be carried round as well as the orbits with this small angular 

velocity 4« in so far as they are not symmetrical with regard to its axis. 

If we admit the hypothesis that the effective masses of these positive ions, or other 

bodies to which the negative ions are attracted, are large compared with those of the 

negative ions themselves, this state of superposed uniform rotation of the whole system 

may still be expected to practically ensue from the imposition of the magnetic field. 

For under the action of the mutual constitutive forces in the molecule, the orbital 

motions of the larger masses will take place with smaller velocities. As the additional 

forces introduced by the magnetic field are prcportional to the velocities, they will thus 

also be smaller for the positive ions. Let us then suppose these larger masses to be 

constrained to the above exact uniform rotation, with angular velocity o’, along with 

the negative ions, and find the order of magnitude of the forces that must be impressed 

on them in order to maintain this constraint. The motion of the negative ions will, 

as has been seen, be entirely free, the forces due to the magnetic field exactly sufficing 

to induce the additional rotational motion. As regards a positive ion of effective mass 

m, the radial and transversal forces, in the plane perpendicular to the axis of the 

magnetic field, that are required to maintain the motion will be altered from 

ee : md, 
m(*—re*) and rar (7) 

Fes heer LO Se F 
to m{F—r(@+o’)*} and zal ir? (@+ @’)}. 

Thus, » being small compared with @, the new forces required will be 

—2mree’ and = — (ra) ; 

whereas the force arising from the magnetic field acting on an ion moving with velocity 

v is 2mvw’ at right angles to its path. These two systems of forces are for each ion 

of the same order of magnitude: thus the forces required to maintain the imposed 

* For more detailed statement, cf. Phil. Mag., Dec. 1897. 
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uniform rotation in the case of the massive positive ions are small compared with the 

magnetic part of the forces acting on the negative ions. If these maintaining forces 

are absent, the system can still be regarded as a molecule in its undisturbed motional 

configuration rotating with uniform angular velocity, but subject to disturbing forces equal 

and opposite to those required to thus maintain it. Now this undisturbed motional con- 

figuration is a stable one: thus the effect of these slight disturbing forces is to modify it, 

but to an extent much smaller than the uniform rotation induced by the magnetic field. 

Our proposition is thus extended to a molecule consisting of an interacting system, 

constituted of equal negative ions together with much more massive positive ions, and also 

if so demanded of other massive sources of attraction. It would however be wrong to 

consider each negative electron as describing an independent elliptic orbit of its own, 

unaffected by the mutual attractions exerted between it and the other moving negative 

electrons: for the attractions between ions constitute the main part, if not the whole, of 

the forces of chemical affinity. But without requiring any knowledge of the constitution of 

the molecular orbital system, the Zeeman triplication of the lines, with equal intervals 

of frequencies for each line, will hold good wherever the conditions here stated obtain. 

It appears from the observations that the difference of frequencies of the components 

magnetically separated is not constant for all lines of the spectrum: so that this simple 

state of affairs does not hold in the molecule. The difference of frequencies seems however 

to be sensibly constant for those lines of any element which belong to the same series, as 

well as for those lines of homologous elements which belong to corresponding series* ; a result 

which cannot fail to be fundamental as regards the dynamical structure of molecules, and 

which supports the suggestion that in a general way the lines of the same series arise 

from the motions of the same ion or ionic group in the molecule, executed under similar 

conditions. The directions of the circular polarizations of the constituent lines were shown 

by Zeeman to be in general such as would correspond in this kind of way to the motions 

of a system of negative ions in a steady field of force. 

It remains to be considered whether we are right in thus taking the stresses 

transmitted between the electrons, through the aether, as those arising from the con- 

figuration of the electrons alone, and in neglecting altogether the motional forces between 

them. The former assumption is equivalent to taking the strain in the surrounding 

aether to be at each instant in an equilibrium state: this will be legitimate, because 

an aethereal disturbance will travel over about 10° diameters of the molecule in one 

of the periods concerned,—-the error is in fact of order 10-*. The motional forces between 

two electrons are of type, as regards one of them, 

KO Gh hs 
\ a aa, ~ a,) 2 

HL + Yo + 22, Ary, \ 

( Ti + au, Ets P 

To obtain a notion of orders of magnitude, let us consider the special case of two electrons 

+e, —e describing circular orbits round each other with radius r, Then mv*/}r=c*e/r%, 

* Preston, Phil. Mag., Feb. 1899. 
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while Zeeman’s measurements give e/m=10': thus v°=4c"e/mr, so that, taking r to be 

10-*, e=10™, we obtain »=10*c; thus the orbital period comes out just of the order 

of the periods of ordinary light, which is an independent indication that the general 

trend of this way of representing the phenomena is legitimate. With these orders of 

magnitude, the terms in the motional forces between two electrons are of orders ¢,¢4/r, 

€,@a°/r* as compared with their statical attraction of order c*e,e./r? and the forces arising 

from the impressed magnetic field H of order eH; the ratios are thus of the order 

of 10-* to 1 to 3.10-°H. Thus when H exceeds 10%, the forces of the impressed magnetic 

field are more important than the motional forces between the ions; and in all cases 

the effects arising from these two causes are so small that they can be taken as 

independent and simply additive. 

THE ZeEMAN EFFECT OF GyrRosTaTIC TYPE. 

5. Sensible damping of the vibrations of the molecule owing to radiation cannot 

actually come into account, because the sharpness and fixity of position of the spectral lines 

show that the vibrations subsist for a large number of periods without sensible change of 

type. In fact it has been seen above that the motion of the system of electrons, on the 

most general hypothesis, is determined by the principle of Action in the form 

6 |(Z- W)at=0 

where T=tim(@’+7+2)+4d«|\ a y 2 

Cay ae 

|o m n 

thus it comes under the same class as the motion of a dynamical system involving latent 

constant cyclic momenta, the Lagrangian function for such a system, as modified through 

the elimination of the velocities corresponding to these momenta by Routh, Kelvin, and 

von Helmholtz, being of this type. The influence of the impressed magnetic field is thus 

of the same character as that of gyrostatic quality imposed on a free system: and the 

problem comes under the general dynamical theory of the vibrations of cyclic systems*. In 

the special case above considered of massive positive ions, we can thus assert that the 

motion relative to the moving axes is the same as the actual motion of the system with 

its period altered through slight gyrostatic attachments to these positive ions. It is more- 

over known from the general theory of cyclic systems that each free period is either wholly 

real or else a pure imaginary, whenever the unmodified system is stable so that its 

potential energy is essentially positive: thus on no view can a magnetic field do anything 

towards extinguishing or shortening the duration of the free vibrations of the molecule, 

it only modifies their periods and introduces differences of phase between the various 

coordinates into the principal modes of vibration of the system. 

In the general case when « is not the same for each ion in an independently vibrating 

group in the molecule, the simple solution in terms of a bodily rotation fails, and it might 

* Cf. Thomson and Tait, Nat. Phil., Ed. 2, Part I. pp. 370—416. 
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be anticipated that the equation of the free periods would involve the orientation 

of the But if that these 
periods would not be definite, and instead of a sharp magnetic resolution of each 

molecule with regard to the magnetic field. were so, 

optical line there would be only broadening with the same general features of polar- 

ization. To that extent the phenomenon was in fact anticipated from theory, except as 

The definite resolution of the 

what would have been predicted on an adequate theory, and thus furnishes a clue 

regards its magnitude. lines is however an addition to 

towards molecular structure. 

A PossIBLE ORIGIN OF SERIES OF DOUBLE LINEs. 

The definiteness and constancy in the mode of decomposition of a molecule into 

atoms shows that these atoms remain separate structures when combined under their 

Each of them will 

periods of vibrations, slightly modified however by the 

mutual influence in the molecule, instead of being fused together. 

therefore preserve its free 

proximity of the other one. For the case of a molecule containing two identical atoms 

with their each of these 

identical periods would be doubled*: thus the series of lines belonging to the atom 

revolving at a distance large compared own dimensions, 

would become double lines in the spectrum of the molecule. It has been remarked 

that the series in the spectra of inactive elements like argon and helium consist of 

single lines, those of univalent elements such as the sodium group where the molecule 

consists of two atoms, of double lines, while those of elements of higher valency appear 

usually as triple lines. 

In other words, a diad molecule consists of the two atoms rotating round each 

Their 

vibrations relative to a system of axes of reference rotating along with them will thus 

other with but slight disturbance of the internal constitution of each of them. 

be but slightly modified: relative to axes fixed in space there must be compounded 

with each vibration the effect of the rotation, which may be either right-handed or 

left-handed with respect to the atom: thus on the same principles as above each line 

will be doubled. 

atom in the molecule, those of a molecule consisting of two such atoms would thus 

If the lines of a spectral series are assumed to belong to a definite 

be a system of double lines with intervals equidistant all along the series, but in this 

case without definite polarizations. 

But if the constituents of the double 

cations of the same modes of the simpler atomic system, it would follow that they 

should be similarly affected by a magnetic field) This is not always the case, so that 

lmes of a series were thus two modifi- 

* In illustration of the way this can come about, 

consider two parallel cylindrical vortex columns of finite 

section in steady rotation round each other. Each by 

itself has a system of free periods for crispations running 

revolution is different, and each single undisturbed period 

becomes two adjacent disturbed periods. Analogous con- 

siderations apply to the interaction of the two atoms of the 

molecule, rotating round each other. 

round its section: when one of them is rotating round the 

other, the velocity of the crispations which travel in the 

direction of rotation is different from the velocity of those 

that travel in the opposite direction: thus the period of 

Vout. XVIII. 

According however to Smithells, Dawson, and Wilson, 

Phil. Trans. 1899 A, it is the molecule of sodium that gives 

out the yellow light, that of sodium chloride not being 
effective. 

50 
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this kind of explanation cannot be of universal application: it would be interesting to 

ascertain whether the Zeeman effect is the same for the two sets of constituents of a 

double series such that the difference of frequencies is the same all along it. At any 

rate, uniformity in the Zeeman effect along a series of lines is evidence that they 

are all connected with the same vibrating group: identity of the effect on the two 

constituents of a doublet is evidence, as Preston pointed out, that these belong to 

modifications of the same type of vibration. 

NATURE OF MAGNETIZATION. 

6. The proposition above given determines the changes in the periods of the 

vibrations of the molecule in the circumstances there defined. But it is not to be inferred 

from it that the imposition of the magnetic field merely superposes a slight uniform 

precessional motion on the previously existing orbital system. That orbital system will be 

itself slightly modified in the transition. For instance, in the ideal case of the magnetic 

field being imposed instantaneously, the velocities of all the electrons in the system will 

be continuous through that instant: hence the new orbital system on which the precession 

is imposed will be the one corresponding to velocities in that configuration which are 

equal to the actual velocities diminished by those connected with the precessional motion. 

On the usual explanation of paramagnetic induction, the steady orbital motion of each 

electron is replaced by the uniform electric current circulating round the orbit which 

represents the averaged effect: the circuit of this current is supposed to be rigid so 

that the averaged forcive acting on it is a steady torque tending to turn it across the 

imposed magnetic field. This mode of representation must however @ priort be incom- 

plete: for example it would make the coefficient of magnetization per molecule in a gas 

increase markedly with length of free molecular path and therefore with fall of density, 

because this torque would have the longer time to orientate the molecule before the 

next encounter took place. It appears from the above that the true effect of the imposed 

magnetic field is not a continued orientation of the orbits but only a slight change in 

the orbital system, which is proportional to the field, and in the simple circumstances 

above discussed is made up of a precessional effect of paramagnetic type, accompanied 

by a modification of the orbital system which is generally of diamagnetic type, both 

presumably of the same order of magnitude and thus very small. 

The recognition of this mode of action of the magnetic field also avoids another 

discrepancy. If the field acted by orientating the molecules it must induce dielectric 

polarization as well as magnetic: for each molecule has its own averaged electric moment, 

as revealed by piezvelectric phenomena, and regular orientation would accumulate the 

effects of these moments which would otherwise be mutually destructive. But there is 

nothing either in the disturbance of the free orbital system into a slightly different 

free system, or in the precession imposed on that new system—nor in a more general 

kind of action of the same type,—which can introduce electric polarization. 

en 
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The polarization of a dielectric medium by an imposed electric field is effected in a 

cognate manner. The electric force slightly modifies the orbital system by exerting 

opposite forces on the positive and negative ions. In this case these forces are inde- 

pendent of the velocities or masses of the ions. The fact that the polarization is 

proportional to the imducing field shows that the influence produced by the field on the 

orbital system is always a slight one. Yet the numerical value of the coefficient of 

electric polarization is always considerable, in contrast with the very small value of 

the magnetic coefficient; which arises from the very great intrinsic electric polarity 

of the molecule, due to the magnitude of the electric charge e of an ion. Taking the 

effective molecular diameter as of the order 10-*cm., there will be 10% molecules per 

unit volume in a solid or liquid, and the aggregate of their intrinsic electric polarities may 

be as high as 10%.10-*ec electrostatic units, where ec is 3.10-°. Now the moment 

of polarization per unit volume for an inducing field F is (K —1) F/87; thus even for very 

strong fields this involves very slight change in the orbital configuration. A similar 

remark applies to the polarization induced by mechanical pressure in dielectric crystals. It 

would be unreasonable to expect any aggregate rotational effect around an axis, such 

as constitutes magnetization, from the polarizing action of an electric field; in fact if it 

were present, reversal of the direction of the field could not affect its total amount 

considered as arising from molecules orientated in all directions. 

The possibilities as regards the aggregate intrinsic magnetic polarities of all the 

molecules are of the same high order, viz. eAn/t, where A is the area and 7 the period 

of a molecular orbit, which is e/nv or 10-%v per cubic centimetre, where v is the velocity 

in a molecular orbit whose linear dimension J is 10. Thus the superior limit of the 

magnetization if the molecules were all completely orientated would be of the order 

10~*v, which is large enough to include even the case of iron if » were as much as one 

per cent. of the velocity of radiation. 

In the case of iron a marked discrepancy exists between the enormous Faraday 

optical effect of a very thin sheet in a magnetic field on the one hand, and the slight 

Zeeman effect of the radiating molecule, as also the absence of peculiarity in optical 

reflexion from iron, and the absence of special influence on Hertzian waves, on the other: 
which must be in relation with the circumstance that at a moderately high temperature 

the iron loses its intense magnetic quality and comes into line with other kinds of matter. 

This suggests the explanation that the magnetization of iron at ordinary temperatures 

depends essentially on retentiveness, owing to facility possessed by groups of molecules for 

hanging together when once they are put into a new configuration. This is the well-known 

explanation of the phenomena of hysteresis, which can be effectively diminished by 

mechanical disturbance of the mass. In soft iron the magnetic cohesion would be less 

strong and more plastic, and thus readily shaken down by slight disturbance in the 

presence of a demagnetizing field, so that retentiveness would not be prominent. It is 

conceivable that the primary effect of an inducing field is to slightly magnetize the 
different molecules: that then the molecules thus altered change their condition of 
aggregation, and so are retained mutually in new positions independently of the field, 

50—2 
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the effect persisting if the field is gently removed: that the field can then act afresh on 

the molecules thus newly aggregated: and so on by a sort of regenerative process, 

the inducing field and the retentiveness mutually reinforcing each other, until large 

polarizations are reached before it comes to a limit. For hard iron these accommodations 

take place more rapidly than for soft iron, when the field is weak, and thus are of sensibly 

elastic character over a wider range: cf. Ewing, Magnetic Induction, 1892, ch. VI. 

ON THE ORIGIN OF MAGNETO-opTIC ROTATION. 

7. The Faraday magneto-optic rotation is obviously connected, through the theory 

of dispersion, with the different alterations of the free periods of right-handed and 

left-handed vibrational modes of the molecules, that are produced by the impressed 

magnetic field. The ascertained law (infra) that the mean of the velocities of the 

two kinds of wave-trains is equal to that of the unaltered radiation, shows that the 

phenomenon in fact arises wholly from this difference, and is not accompanied by 

temporary structural change in the molecule such as would involve alteration of the 

physical constants of the medium. 

The general relation connecting the refractive index pw of a transparent medium 

with the frequencies (p,, ps, .-- Pn)/2~7 of the principal free vibrations of its molecules, 

which are so great that radiation travels over 10° molecular diameters in one period, 

is of type YP ieee 

we+2  ~ pp 

in which A, is a constant which is a measure of the importance, as regards dispersion, 

of the free principal period 27/p,. The quantity on the right-hand side of this equation, 

of form f(p*), is a function of the averaged configuration of the molecule relative to the 

aethereal wave-train that is passing over it. Now consider a circular wave-train, say 

a right-handed one, passing along the direction of the magnetic field: on the hypothesis 

that the spectrum consists of a single series of lines for all of which «x is the same, 

the influence of this train on the corresponding right-handed vibrations that it excites 

in the molecule will be to superadd a rotation of the molecule as a whole with angular 

velocity 4«. This will modify the configuration of the vibrating system relative to the 

circular wave-train passing over it in the same way as if an equal and opposite angular 

velocity were instead imparted to the wave-train. Thus the actual effect of the magnetic 

field on the light will be the same as would be that of a change in the frequency 

of the light from p/27 to p/27+x/47, the latter term arising from this imposed angular 

velocity: the value of the magneto-optic effect may therefore in such a case be derived 

from inspection of a table of the ordinary dispersion of the medium. 

The velocity of propagation of the train of circular waves will, on this hypothesis, 

be derived by writing p—d« or p+43« for p according as the train is right-handed 

or left-handed, thus giving when «* is neglected, 

pea <a ear 

pe+ 2 ps ep — p,? 

i 
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For the case when there is only a single free period this result coincides with FitzGerald’s 

formula (Roy. Soc. Proc. 1898), which has been shown by him to give the actual order 

of magnitude for a Faraday effect as thus deduced from the Zeeman effect. 

If we were to consider that each system of lines in the spectrum arises from an 

independently vibrating group of ions in the molecule, as (supra) there may be some 

temptation to do, then the value of (w?—1)/(u2?+2) in this formula would be obtained 

by addition of the effects of these independent groups: thus if the value of the Zeeman 

effect were known for each line of the spectrum of any substance, and the law of 

dispersion of the substance were known, the Faraday effect could be deduced by cal- 

culation. To our order of approximation we should have 

3(2—) _s + «,A,p 
we a 2 (p? — pr)? 

the circumstance that the mean of the velocities of propagation is unaltered points to the 

A coeflicients being unaffected by the magnetism, thus suggesting absence of change in 

the mean conformation, as already remarked. 

For the case in which the free periods that effectively control the dispersion all 

belong to the same series of spectral lines, so that « is the same for all of them, the 

formula for the dispersion need not come into the argument. The influence of the 

impressed magnetic field on the index of refraction of circularly polarized light is then the 

same as the change of p to p+4x according as the polarization is left-handed or right- 

handed. Because that influence is equivalent to rotation of the optically vibrating molecule 

with angular velocity $4, the molecule will now be related in the same way to a wave- 

train with angular velocity p+4« as it was previously to one with angular velocity p. 

Thus light corresponding to angular velocity p is now propagated with velocity V+4« ap 

instead of V. Now if X be the wave-length im a vacuum and yw the refractive index, 

we have V=0/u, p=27c/X: and the rotation of a plane of polarization for a length 

l of the medium, bemg 4p multiplied by the difference of times of transit, is 

4(1/V,—-1/V.).20c/X, which is rlc.8V/V2A, 
: lard 

where 6V=xdV/dp = 52 ud, so that the result is = ae 

é é 1 ; : : ; 
This expression, ea for the coefficient of magnetic rotation as a function of the 

wave-length, has been given by H. Becquerel* and shown by him to be in good 

agreement with actual values as regards order of magnitude, and also with Verdet’s 

detailed observations along the spectrum in the cases of carbon disulphide and creosote. 

The restriction on which it is here based, namely that the dispersion is controlled by free 

periods for all of which the Zeeman constant is the same, can be neglected for the case 

of the anomalous dispersion close to an absorption band, because there the dispersion 

* Comptes Rendus, Noy. 1897: it was based on the assumption that the magnetic field involves rotation of the 

aether with velocity 4x. 
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is controlled by that band alone*: thus the Faraday effect is there very large and of 

anomalous character, in correspondence with the experimental discovery of Macaluso and 

Corbino. From another aspect of the same effect, we can conclude that light of any given 

period, very near a natural free period of the medium, will travel in it with sensibly 

different velocities according as its mode of vibration corresponds to one or other of 

two principal types, elliptically (or in a special case circularly) polarized in opposite 

directions, and thus will exhibit phenomena of double refraction. 

THE INFLUENCE OF RoraTIONAL TERMS ON OPpricaL PROPAGATION. 

8. The purely formal, ie. non-molecular, theory of the magnetic influence on optical 

propagation may be developed in a simple and direct manner, by use of the device of 

a revolving coordinate-system as above employed. In a non-magnetizable medium the 

exact relations connecting the magnetic force (a, 8, y), the electric force (P, Q, R), and the 

electric current (u, v, w), are of types 

dy dB, dR_dQ__da 
dy dz aoe dy dz dt 

.p @ (dP dQ, dR\_, du 
Ehus WPF (Get det de) ai’ 
which will lead to the differential equations of the propagation when in it (wu, v, w) is 

expressed in terms of (P, Q, R) by means of the constitutive relation connecting them. 

Now for the aethereal elastic displacement we have (f, g, h)=(47c*)"(P, Q, R). 

To determine the nature of the most general formal connexion between the material 

polarization (f’, g’, h’) and the electric force, that we are at liberty to assume without 

implying perpetual motions, we must make use of the method of energy. The energy 

of this electric polarization in any region is 

W=4 ler + Qy’ +. Bh’) dr, 

where 67 is an element of volume: thus its intensity per unit volume is a quadratic function 

of (P, Q, R), and possibly also of d/dt(P, Q, R) and of the spacial gradient of (P, Q, R), 

and it may be of gradients of higher orders as well: if the first time-gradients alone are 

included we thus have the expression 

F,(P, Q, R) +a, PdP/dt + ... + a:PdQ/dt + an QdP/dt + ..., 
F, denoting a quadratic function. The variation of this energy must from the definition 

of (P, Q, R) as the force moving the electrons, be 

bW= (Py + Qay’ + Rah’) dr 

a ee f+ Qo’ + Rh’) dr— it FSP +9'8Q + W’SR) dr, 

* Cf. Proc. Camb. Phil. Soc., Mar. 1899: for similar who, by introducing dispersional terms of a certain simple 

explanations but restricted to anomalous dispersion, cf. type including a frictional part into the equations of optical 

Macaluso and Corbino, Rend. Lincei, Feb. 1899. propagation in a rotational medium, finds that each ab- 

Reference should also be made to the converse pro- sorption line is tripled, but with an asymmetry introduced 

cedure of Voigt (cf. Annalen der Physik 1. 1900, p. 390), by the frictional term. 
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so that, transposing, 

=|(/'3P +9'8Q + WR) dr, 

in which the independent variable is now (P, Q, R). 

On conducting the variation in the usual manner, and reducing from déP/dt to 6P 

by partial integration with respect to time (such as necessarily enters in the reduction 

of the fundamental dynamical equation of Action) this leads to a relation of type 

= clint a, dQ foiy OMAP 

J = aP* tare? dt 4nc? dt’ 
where (@,, 2, As)/4r 0” = (og — yz, Ag, — G3, Az — Aa). 

When the system is referred to its principal dielectric axes, 

KG aN oe K,-1 aT 

Pave 87rc? zi “870? @ +4 Bae 

This analysis shows that rotational quality in the relation connecting (f’, g’, h’) 

and (P, @, R) can come in through terms in the energy function that involve the 

time-gradients: or, as may be shown in a similar manner, it may enter through terms 

involving the space-gradients: but not otherwise. The latter terms introduce rotational 

quality of the structural type, with which we are not now concerned. The former terms 

lead to the magnetic type of rotation, here related to the vector (a, ds, ds), Which 

must be determined by the impressed magnetic field or other exciting cause of vector 

character: the existence of such mixed terms, involving (P, Q, R) and d/dt(P, Q, R), 

in fact adds to the polarization a part at right angles to d/dt(P, Q, R) and to this 

vector (a), %,, ), and equal to their vector product divided by 47c*, which is in all cases 

entirely of rotational character. Terms of the form of a quadratic function of the 

gradients of (P, Q, R) by themselves would merely modify the form of the function 

F, so that its coefficients depend in part on the period of the vibration, that is, they 

would be merged in optical dispersion of the ordinary type. The question also arises 

whether the ordinary dielectric constants, namely the coefficients of the function F,(P, Q, R), 

are sensibly altered by an impressed magnetic field. This point can be settled by aid of 

the principle of reversal. When the electric force and the impressed magnetic field and 

the time are all reversed, the effect on the induced electric polarity must be simple 

reversal: hence a reversal of the magnetic field cannot affect the coefficients in F,(P, Q, R): 

hence these coefficients must depend on the square or other even power of the impressed 

magnetic field: but the rotational terms depending on its first power are actually very 

small, therefore any terms depending on its second power are wholly negligible. This is in 

accord with Mascart’s experimental result. 

The right-hand sides of the equations of propagation in the material medium, as 

above indicated, can thus, for iy of is 27/p, be expressed in the form 

oe AGH dQ) 
pe (Kp ae de a 

_, &Q dR dP , oR a 
ESPs ia oo gpa ee atau 
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In the case of an isotropic medium for which K,, K,, K; are each equal to K, these 

equations of vibration can be restored to their normal form, when the square of the 

magnetic effect is neglected, by employing a coordinate system rotating with angular 

velocity 4A —p?(a,, dz, as). Thus the effect of the impressed magnetic field is that the 

vibrations of the electric force, propagated as if that field were absent, are at the same 

time carried on by a motion of uniform rotation around its axis: so also, in virtue of 

the second of the above circuital relations, are the vibrations of the magnetic force. The 

electric force is not exactly on the wave-front because under the magnetic conditions it 

is not exactly circuital: the magnetic force is exactly on the wave-front. Thus we have 

the direct result that a plane-polarized train of electric vibrations, of wave-length A, 

travelling along the direction of the impressed magnetic field H, is rotated around its 

direction of propagation through an angle proportional to eH/K)? per unit time, so that 

the rotational coefficient per unit distance is proportional to eH) K*2, where e is itself 

affected by dispersion and is thus to a slight extent a function of the wave-length. When 

the wave-train is not travelling in the direction of the magnetic field, it is the com- 

ponent of H along the normal to the wave-front that is effective: the other component 

of the rotation, around an axis in the plane of the wave-front, then gradually deflects 

the front so as to produce curvature of the rays, but so excessively slight as to be of no 

account. The magnetic effect is thus a purely rotational one whatever be the direction of 

the wave-train with respect to the field: and the phenomena in an isotropic medium may 

be completely described kinematically on that basis. 

When the medium is crystalline, its rotational quality is mixed up with its double 

refraction: yet in ordinary crystals the differences between K,, K,, K, are slight, so that 

the phenomena are still approximately represented by each permanent wave-train, polarized 

in the manner corresponding to its direction of propagation, rotated around that direction 

with velocity proportional to the cosine of the angle it makes with an axis which need not 

now be the axis of the impressed magnetic field. 

This direct method of exhibiting the nature of the effects may also be applied to the 

case of structural rotation, in which by an argument similar to the above, but dealing with 

energy-terms involving space-gradients of the electric force, we obtain for the material 

medium -a constitutive relation of type 

es d dR 
4crc? (fF = 10/5 h i— (K.P + ds ue — Ag dy > 

0+ a5— a, = K,R +a, yo *), 

when the principal axes of the rotational quality coincide with those of the ordinary 

dielectric quality. For a plane wave-train travelling in the direction (J, m, n), for which 

5) 

(72, (4) R) x expe ¥7 (Ix + my +nz—Vt), 

p=2nrV/N, V=cKk', 
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this may be expressed in the form aes fo - 
ee , _n OF NA; My Act (f’, 9, W)=-(Kp ee eee Me 

so that, when Ky, K., K, are each equal to K, the equations of propagation are reducible 

to the normal form for a non-rotational medium by imparting to the coordinate axes a 

velocity of rotation 20K *x-2 (lay, ma,, nds), Which implies a coefficient of rotation of a 

plane-polarized wave equal per unit distance to 27°K—A~“(la,, ma,, na,) where X is the 

wave-length in vacuum. This is the law of rotation for wave-trains travelling in various 

directions in a simply refracting medium with aeolotropic rotational quality. This law 

also applies approximately to crystals such as quartz, inasmuch as the difference between 

the principal refractive indices is not considerable: in quartz the vector (a, ds, @s;) must 

by symmetry coincide with the axis of symmetry of the crystal: thus the coefficient of 

the effective component, that normal to the wave-front, of the imposed rotation for a 

wave-train that travels in a direction making an angle @ with that axis is proportional 

to cos’ @, not to cos @ as in the magnetic case. In this case the rotational effect is 

superposed on the double refraction, so that a plane-polarized wave instead of being 

simply rotated will acquire varying elliptic polarization: it is however a simple problem 

in kinematics* to determine the types and the velocities of the two elliptically polarized 

wave-trains that will be propagated without change of form under the two influences, 

each supposed slight. 

It appears from this discussion that magneto-optic rotation is a phenomenon of 

kinetic origin, related to the free periods of the molecules and not at all to their 

mean polarization under the action of steady electric force: it is therefore entirely of 

dispersional character. 

Again the intrinsic optical rotation of isotropic chiral media is represented by a con- 

stitutive relation of type 

showing that the rotational term is proportional to the time-gradient of the magnetic field : 

this effect would therefore be entirely absent in statical circumstances, and only appears 

sensibly in vibratory motion of very high frequency. In this case no physical account of the 

origin of the term has been forthcoming: we have to be content with the knowledge that 

the form here stated is the only one that is admissible in accordance with the principles 

of dynamics. 

As the rotatory power, of both types, is thus connected with the dispersion as well as 

the density of the material, it is not strange that attempts, experimental and theoretical, 

to obtain a simple connexion with the density alone, have not led to satisfactory results. 

The existence of a definite rotational constant for each active substance has formed the 

main experimental resource in the advance of stereochemical theory: but the present 

considerations prepare us for the fact that no definite relations connecting rotational power 

with constitution have been found to exist,—that the quality, though definite, is so to 

speak a slight and accidental one, or rather one not directly expressible in terms either of 

crystalline structure or of the main constitutive relations with which chemistry can deal. 

* Cf. Gouy, Journ. de Phys., 1885; Lefebvre, loc. cit., 1892; O. Wiener, Wied. Ann., 1888. 
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GENERAL VIBRATING SYSTEM IN WHICH THE PRINCIPAL MopES ARE CIRCULAR. 

9. We are entitled to assert, on the basis of Fourier’s theorem, that any orbital 

motion which exactly repeats itself with a definite period can be resolved ito constituent 

simple elliptic oscillations whose periods are equal to its own and submultiples thereof. 

Such a motion would therefore correspond to a fundamental spectral line and its system 

of harmonics. The ascertained absence of harmonics in actual spectra shows either that the 

period corresponding to the steady orbit is outside the optical range, or else that the steady 

motion emits very little radiation as in fact its steadiness demands. The radiation would 

then arise from the various independent modes of disturbance, each of elliptic type on 

account of the absence of harmonics, that are superposed on the steady orbital motion. 

To ascertain the nature of the polarization of the vibrations when in a magnetic field, 

we have first to decompose each orbital motion into its harmonic constituents, which are 

elliptic oscillations: each of the latter can be resolved into a linear oscillation parallel to 

the axis of the magnetic field, another at right angles to it, and a circular oscillation 

around it; and of these the second linear oscillation can be resolved into two equal circular 

oscillations in different senses around it. Now when the uniform rotation around the axis 

is superposed on the components they all continue to be of the requisite simple harmonic 

type, but the periods of the two cirenlar species,—which as has been seen are of amplitudes 

different as regards the various molecules but equal in the aggregate——become different: 

they are the three Zeeman components. 

Nothing short of complete circular polarization of the constituent vibrations of permanent 

type in each molecule will account for the complete circular polarization of each of the 

flanking Zeeman lines. If these vibrations were only elliptical, but propagated with different 

velocities according to the sense in which the orbit is described, each would be equivalent 

to a circular vibration together with a linear one: and as the total illumination is the sum 

of the contributions from the imdependent molecules, the circularly polarized lght would 

then be accompanied by unpolarized light of the same order of intensity. This restriction 

of type of vibration suggests the employment in the analysis of variables each of which 

corresponds to a circular vibration, as do the &, 7 variables in what follows. 

For simplicity let us take the axis of z parallel to the impressed magnetic field, and 

let (XY, Y, Z) represent the statical forces transmitted by aether-strain from the other ions 

in the molecule to a specified one. The equations of motion of that ion are 

m(&#—Ky)=X, m(y+nr)=Y, me=Z. 

We now make no assumption with regard to the magnitude of the electric charges and 

effective masses of the various ions, which may differ in any manner. In this ion let us 

change the variables to 

E=a2+vy, n=x—vwY, 

f 
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so that 2a=E+m, 2w=E-—n, 

(Sty Up eet pied 
dé da dy’ dn dx dy’ 

and therefore 2 

the equations become F 
m (E +exKE) =X + cY, 

m (7 —ixn)= X —cY, 

mz =Z. 

If therefore X +cY is a function only of the & coordinates of the electrons, and X —vY 

a function only of the » coordinates, and Z only of the z coordinates, these groups of 

coordinates will be determined from three independent systems of equations. 

On our hypothesis of ions moving with velocities of an order below that of radiation, 

the mutual forces acting on them are derived from a potential energy function: thus 

= (d ad ad Cae 

where & may be supposed to vary from one ion to another, being equal to the electric 

charge when the mutual forces are considered to be wholly of electric origin. Then 

Mrs oe PA ae 2k dW 
pe Oe Ge mi —iY)=-— Etat 

The solution of the complete system of equations, three for each ion, will in any case 

involve the expression of &, 7, 2 for each ion as a sum of harmonic terms of the form e”* 

each with a complex numerical coefficient; but when the coefficients of one of them are 

assigned those of the others are determined. The vibration for each ion is thus compounded 

of a system of elliptic harmonic motions of definite forms and phases. Their components in 

the plane &, » will be circular vibrations only when the £ and 7» coordinates vary inde- 

pendently of each other, that is when dW/dy is a function of the £ coordinates of the ions 

alone and dW/dé a function of the 7 coordinates alone. This condition can only be satisfied, 

W being real, when it is a linear function of 2 and of products of the form &,», or &,n5: 

it may thus be any quadratic function of the coordinates which is invariant in form as 

regards rotation of the axes of #, y around the axis of z. Under these circumstances the 

free periods for € coordinates, 7 coordinates, and z coordinates will all be independent, and 

either real or pure imaginary*: in an actual molecule they will be real. For example a 

permanent vibration of & type will be represented by 

é,. = DA, etPeitiar 

a, being chosen so that A, is real: thus 

p= =A, cos(p;t+a,), Yp==A,sin (p,t + a,) 

representing a series of right-handed circular vibrations, each series having definite phases 

and also amplitudes in definite ratios for the various ions. Again for the 7 type we have 

Or = =B,eat + 8, 

* Routh, Essay on Stability, 1887, p. 78; Dynamics, vol. 1., § 319. 
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so that x, = =B,cos(qt+B8,), Yr=—>B,sin (qt + By), 

which represents similarly a series of left-handed circular vibrations. The vibrations of z 

type will of course be linear in form. 

Thus supposing the effective masses and charges of the various ions to be entirely 

arbitrary, the effect of an impressed magnetic field will be to triple the periods and 

polarize the constituents in the Zeeman manner, provided the potential energy of the 

mutual forces of the ions is any quadratic function of the coordinates of the vibrations 

which satisfies the condition of beimg invariant in form with respect to rotation of the 

axes of courdinates around the axis of the magnetic field. 

The essential difference between the type of this system and that of the one 

previously considered will appear when the latter is derived on the lines of the present 

procedure. The equations are 

On writing fa ht Ep! et 

they become BPE eae 

__ kaw 
“Tiare 

The form W will be unaltered when it is expressed in terms of €&, 7’, provided 

it depends only on the mutual configuration of the ions, and « is the same for all of 

them; hence when x* is negligible compared with unity, (&, 7’, z) are determined by 

the same equations as would give (& 7, z) on the absence of a magnetic field: and 

from this the previous results follow. 

10. We have thus reached the following position. Let the coordinates (x, y, 2) 

of an ion be resolved into two parts, namely (#, 7%, 4) which are known functions of 

the time and represent its mean or steady motion, and (a#’, y’, 2’) which are the small 

disturbance of the steady motion constituting the optical vibrations. When this substi- 

tution is made in the dynamical equations the quantities relating to the steady motion 

should cancel each other, as usual; and there will remain equations, of the original 

form, involving (z’, y’, 2’) from which the accents may now be removed. The forces 

relating to these new coordinates will still be derivable from a potential energy function: 
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and as by hypothesis the vibrations are all ‘cycloidal’ or simple harmonic, this function 

must be homogeneous and quadratic in these coordinates. The total potential energy 

must be determined by the instantaneous configuration of the system, and will therefore 

remain of the same form when referred to new axes of coordinates. This confines the 

quadratic part representing the energy of the disturbance to the form given above: 

the vibration of each ion will then in general consist of a system of elliptic oscillations 

of all the various free periods, equal in number to the ions: and the effect of an 

impressed magnetic field will be to triple each vibration-period and to polarize the 

constituents in the Zeeman manner. The steady or constitutive motion of the system 

must be so adjusted that it does not sensibly radiate: otherwise it would gradually 

alter by loss of its energy. 

As the axis of the magnetic field may be any axis in the molecule, the function 

which represents the potential energy must thus be such that the vibrations resolved 

parallel to any axis form an independent system: hence it is confined to the form 

W =—434,, (a, — ay)? + (yr — Ys + (Zr — Ze PB} + UE Bre (Cr ls + Yr Ys + Zr Ze ), 

=— 42 Ars {(E, ay iE) (ny = Ns) 3° (Ee = eee) =F LE Bre (E, Ns. + Ee ny ar 22,25). 

Thus in the absence of a magnetic field the vibrations of the a coordinates, of the 

y coordinates, and of the z coordinates of the ions will form independent systems of 

precisely similar character. It is in fact only under this condition that it is possible 

for the components, parallel to any plane, of the elliptic harmonic vibrational types of 

the various ions, to form a system of circular vibrations with common sense of rotation. 

If m/k=X and mk/k=X', the equations of motion are of type 

ou 20 N= N+ 2 =O, sanliesny NE + E+ 2 
Bes dn 

The periods of the right-handed circular vibrations, of type & x e”', period 2zr/p, will be 

given by the equation 

| =i Ai'p =2ZAt,, Cr, Cy, Cre era, Ci 0) 

Cu, = Gir De p — ZA,,, C3; Cus; Con | 

Oe Cis, = Asp” = dsp = Ae (Cin, tee Cr | 

in which C,,=A,.+B,,: those of the left-handed circular vibrations by changing the 

sign of each X’ in this equation: those of the plane-polarized vibrations, which are the 

natural periods of the molecule, by making A’ null. On account of the great number 

of the constants, compared with the number of free periods, simple relations among the 

periods can only arise from limitations of the generality of the system, 

The duplication or triplication observed in the constituent Zeeman lines would on 

this theory arise from the presence of two or three equal roots in the period equation 
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for natural vibrations of the system, which would be differently affected and therefore 

separated by the impressed magnetic field. 

This analysis is wide enough to apply to a system consisting of a continuous 

electrical distribution, whose parts are held together in their relative positions either 

by statical constraint or by kinetic stability: for then the potential energy still depends 

on the relative configurations of the elements of mass of the system. 

We have however not arrived at any definite representation of the dynamical 

system constituting a molecule, except that it consists of moving electric points either 

limited in number or so numerous as to form a practically continuous distribution: 

but reasoning from the definiteness and sharpness of the periods in the spectrum, and 

the facts of polarization of light, it has been inferred that the vibrations of the 

molecule form a ‘cycloidal’ system and therefore arise from a quadratic potential energy 

function: the total potential energy function must therefore consist of two independent 

parts, that belonging to the steady motion, in which the coordinates of the vibrations 

do not occur, and this part belonging to the disturbance which is quadratic in its 

coordinates: as a whole it must depend on the configuration of the system and not 

on the axes of coordinates, hence this quadratic part is invariant with regard to change 

of axes: this confines it to the form given above,—which had been found to be 

demanded by the existence of the Zeeman phenomena. 

It has thus been seen that the fact that the vibrations belonging to the Zeeman 

constituent lines are exactly circular, and not merely elliptic with a definite sense of 

rotation, requires that the right-handed and left-handed groups of vibrations shall form 

two independent systems: as the magnetic field may be in any direction as regards 

the molecule, this requires that its vibrations, when the magnetic field is absent, can 

be resolved into three independent systems of parallel linear vibrations directed along 

any three mutually rectangular axes. This again involves that an electric force acting 

on the molecule will induce a polarization exactly in the direction of the force, and 

proportional to it*: that in fact notwithstanding its numerous degrees of freedom the 

molecule is isotropic. Thus the source of double refraction in crystals or strained 

isotropic substances would reside in the aeolotropic arrangement of the molecules and 

not in their orientation: but there can also be an independent intrinsic electric polarity 

in the molecule depending on its orientation and not on the electric field, such as is 

indicated by piezoelectric effects in crystals. 

If the molecules were not thus isotropic as regards induced electric polarity, the 

electric vibration induced in the molecules, when a train of radiation passes across a 

medium such as air, would not be wholly in the wave-front. In the theory of optical 

dispersion the coefficients+ would then be averages taken for a large number of mole- 

* Cf. Kerr’s striking result, Phil. Mag., 1895, that in _ velocity of propagation affected. 

the double refraction produced in a liquid dielectric by an + e.g. K, Cy, Cy; --- Cy, Co’, «.. in Phil. Trans. 1897 A, 

electric field, it is only the vibration polarized so that its pp. 238. 

electric vector is parallel to the electric field that has its 
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cules orientated in all directions, such as may be considered to exist in an effective 

element of volume of the medium: and this averaging would constitute the source of 

its isotropy. But there would remain a question as to whether, when a_plane-polarized 

Wave-train is passing, those fortuitous components of the polarization of the molecules 

that are not in the direction of the electric vibration of the wave-train would not 

send out radiation as independent sources and thus lead to extinction of the light. 

The definite features of polarization of the light scattered from a plane-polarized train 

by very minute particles or molecular aggregations seems also to suggest in a similar 

manner that the individual molecule is isotropic. 



XXII. On the Theory of Functions of several Complex Variables. 
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THE present paper is primarily a reconsideration of the paper of M. Poincaré in 

the Acta Mathematica, t. Xxu. (1888), p. 89; and depends for its interest on the remark- 

able discovery of the expression of an integral function by means of the potential of 

the (n—2)-fold| over which the function vanishes, which is_ virtually contained in 

M. Poincaré’s paper in t. Ul. of the Acta Mathematica (1883), pp. 105, 106. The 

following points of novelty may however justify its publication. (i) By means of a 

generalisation of the theorems of Green and Stokes, for the transformation of multiple 

integrals, the imaginary part of the function of the complex variables is introduced con- 

currently with the real part; (11) and thereby, as would appear, the coefficients in the 

quadratic function used by M. Poincaré (Acta Math. t. xxt. p. 174) are shewn to be 

zero. (ili) The theory is put in connection with Kronecker'’s formulae (Werke, Bd. 1. 

p- 200), whereby it follows that the imaginary part of the logarithm of the integral 

function is a generalised solid-angle, just as M. Poincaré has shewn the real part to 

be a generalised potential. In general Kronecker's integral, unlike Cauchy’s, does not 

represent a function of complex variables unless the (n—1)-fold of integration is closed ; 

in the present paper there arises a Kronecker integral which is an exception to this 

rule (the integral ¢,,, §§ 12, 17). (iv) The definite formula here given for the integral 

function is not limited to the case of periodic functions; though on the other hand it has 

not that general application which belongs to the theory of M. Poincaré’s earlier paper, 

in the Acta Math. t. u. In that paper there remains in the resulting formula an integral 

function of which the existence is proved, for which however no definite expression 1s 

given; in the present paper, in order to have a definite expression, I have hasarded a 

limitation which may be regarded as a generalisation of the notion of the genre of 

functions of one variable. This limitation arises by regarding the (n—2)-fold integral 

which enters here as a generalisation of the sum which is obtainable by taking the 

logarithm in Weierstrass’s general factor formula for an integral function of one variable, 

The paper is divided into two parts, of which the former contains a formal proof of a 

theorem constantly employed in the theory developed in Part II. 

inal 
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Part J. PRELIMINARY. 

Formal proof of the general Green-Stokes theorem. 

1. In Euclidian space of n dimensions we can take near to any point P whose 

coordinates are (a, ...,2,) the n points 

P, with coordinates (2, + d,a, ..., 2 +d,%p), 

P,, with coordinates (#,+ dpa, ..., 22 +dn2pn), 

it being supposed that the determinant, M, of n rows and columns, whose (7, s)th element 

is d,#,, is not zero. At each of the points P,,..., P, we can similarly take n independent 

consecutive points, those at P, being Py, Py, ..., Pm; at each of these points of two 

suffixes we can take n others of three suffixes, and so on. Making the convention that 

the sth satellite point of P,, namely P,;, is the same as the rth satellite pomt of P;, or 

P,,, or in other words that the suffixes shall be commutative, we can associate the deter- 

minant M with the ‘cell’ which is defined by the 2” points 

Iz P}; MOOS) ae Jer VDOe] ee COOK sens 

whose suffixes consist of all the combinations of not more than n different numbers from 

1, 2, ..., nm. We may suppose space of n dimensions to be divided into such cells, and 

call the absolute value of the determinant M the element of extent of the space, denoting 

it by dS,. 

Similarly if we have in n dimensions a space of (n—r) dimensions, defined suppose by 

r equations 

fila, +s-, Zn) =O, ..., JAG tees In) = 0, 

with a certain number of inequalities, we can associate with every point P of this space 

(n—r) satellite points, P,, ..., P,_,, also lying in this space, the coordinates of these 

points being denoted by 

@, + AyX,, --., Ln + dtp; [py 2 conn (os 

and with each of these (n—r) others, and so on; and so we can suppose the space of 

(n—r) dimensions divided into cells, each defined by 2”~” points; with each of these cells 

we can as before associate an element of extent for this space, which we denote by 

dS,_,; this is defined as the positive square root of the sum of the squares of all the 

determinants of (x—r) rows and columns which can be formed from the matrix of 

m columns and (n—7) rows 

| day, dy, eee, dy @p |, Healt 2, sey (n—7), 

or, what is the same thing, as the positive square root of the determinant of (n—7) rows 

and columns which is formed by multiplying this matrix into itself, row into row, in 

the ordinary way. 

Vou. XVIII. 52 
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2. In what follows we call the aggregate of all the points of a space of (n—r) 

dimensions, limited or not, an (n—7)-fold. We also use @) quantities, called the direction 

cosines of the normal to the (n—vr)-fold; let the (m—1)-folds 

A) 

be always supposed taken in the same order, given by the suffixes; let 6, d, e, ...,h, k 

be any r of the numbers 1, 2, ..., n, no two of them equal; then the ratio of the 

Jacobian 

Ih = Of =» Fr) > I) 
(xp, ---> Ze) on an) 

to the positive square root of the sum of the squares of all the possible (") such 

Jacobians is denoted by x»,a,c,...,4,e, and is one of the direction cosines in question; we 

suppose in general the suffixes taken in their natural ascending order; from each of the 

©) direction cosines |r — 1 others can be formed by permutation of the suffixes, every 

interchange of two suffixes causing a change in sign in the direction cosine. 

We have then the following theorem: 

Suppose that a finite portion of the (non-singular) (n —7+1)-fold given by 

GPs 505 F 2=O, 

is completely bounded by a closed (non-singular) (n—7)-fold given by 

(Aa cot Fae (SO, 

and that throughout the limited portion of the (n—7r+1)-fold we have f,<0; let P be 

any function of a, ..., 2, for which it is supposed that itself and its first differential 

coefficients are finite and continuous (and single-valued) throughout the space considered ; 

then 
oP oP 

[Ic WA a (- ID ras: tk Opt +e. + Kbd...h | ASn—r3 

= Kea...tk P -ASp_r, 

wherein the second integral is taken over the complete closed (n—r)-fold, and the first 

integral over the enclosed portion of the (n—r+1)-fold; in the first integrand there are 

r terms, the suffix in any one of them consisting of (7—1) numbers in their natural 

ascending order. 

If we introduce & functions such as P, and make the rule that an interchange 1 8 

of two numbers of a suffix shall entail a change in the sign of the function, we can put 

the result in a clearer form 

f OP ae... -hkm 
[fete .— dS, 1 = Dikod...AkLba...Ak@Sn—r> 

Ox m 

ee 
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where on the left under the integral sign the first summation extends to every combination 

of (r—1) different numbers d, e, ..., h, k from 1, 2, ..., , and the second summation 

extends to the (n—7r+1) different values from 1, 2, ..., » which m can have so as not 

to be equal to any one of d,e,..., h,&k; on the right under the integral sign the 

summation extends to every combination of r different numbers 0b, d, e, ..., h, k from 

Ts OAS eens 

3. Of this result it will be sufficient to give a proof for the case r=3, the general 

case being similar. 

We suppose then a finite (non-singular) portion H,_, of an (m—2)-fold, which is given 

by the equations 

VA Charron 2) i Cescny Cn) Oy 

to be bounded by a closed (non-singular) (n —3)-fold H,_; given by 

TAM@Bp oe5 DSO, GACH cn, GDHO, j(Go o055 >) =O 

We can imagine H,,_, divided into cells in a manner before indicated, the satellite points 

of P, whose coordinates are (#7, ..., 2,), being denoted by P, whose coordinates are 

(+ dpa, ..., n+ adptn), k=) 2. 225, @—2); 

In general the differentials d,#, are arbitrary, save that the determinants of (mn —2) rows 

and columns formed from their matrix must not all be zero; but we shall ultimately 

find it convenient for our purpose to suppose that of the differentials 

Cyaaky > Un aXa; tee Un ohn 

all but three, say all but d, a, dpa, dn.x,, are zero; the ratios of these three will 

then be determined from 

Of. INOf or ee eae eee 
Oxy nao + 02, n—2%e + One An—2 Lp =0, 

Oe gn + Oh af, ie 
ax, nay + 02, dye + aa, An—s%p, = 0 ; 

it is clear, in fact, that we can draw on H,_, through every point P a one-fold (or 
curve) along which all the coordinates except , #,, %, are constant; taking then any 
point P and taking (n—3) of its satellite points P,, ..., P,_, arbitrarily, we can draw 
such a curve through P and each of P,, ..., Py_s, and take for the satellite point P,» 
a point near to P along the curve through P; we thus arrange the cells into ‘strips,’ 
each strip having (n—2) curves, such as those through P, P,, ..., Pys, as edges, 

4. A set of (n—3) neighbouring points Q,, ..., Qn; in which the curves drawn on 
H,, through P,, ..., Py, intersect the (n—3)-fold H,_; may then be taken as the 
satellite points on H,_, of the neighbouring point @ in which the curve through P 
intersects H,_,; we have thus a possible basis for the division of H,-; into cells, which 
it will later be convenient to adopt. We assume that the curve on H,-. which is drawn 
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through P intersects the closed H,_, in an even number of points; and to shorten the 

proof we shall speak only of two, say Q® and Q. Then if the differentials dyp_.a,, 

dn%, Ant, be always taken in the same direction along this curve Q® PQ, the 

expression 

Of; of: a 
Ons fs = A, Cymay ar a Ona at oie naa @h 

will have different signs at Q® and Q, and in fact, since f,<0 over H, 4, the expression 

will be positive at the point, say Q, where the curve through P leaves H,_,, and negative 

at the point Q, where the curve enters H,_». 

5. Considering now any point P of H,_,, and its satellite points 

(a ar dry, see y En Se dx), k = i 2 aise hs (vn = 2s 

in regard to which we do not until special mention is made of the fact introduce the con- 

vention that all but three of the differentials 

(dno, Bot pal) 

are zero, we have 

oS on x ae, dx, SP aao SF om AL, = (i), 

Of Of = 
a aya, +...+ ae, Gao, —0; 

and hence easily find 

ee aT Se =lEn=ay) SLY; 

wherein 

Jr. = gh oi > 
Oiaa Ons 

Ea 
OX,’ Oils 

and M,, denotes a determinant of (n—2) rows and columns, obtained by taking the deter- 

minant which remains when im the matrix of nm columns and (n—2) rows 

CRAs cos CBS |) 5 k=1, 2, ..., (n—2), 

the rth and sth columns are omitted, and prefixing to this determinant the sign (—1)**7 

or (—1)"** according as r<s or r>s. 

We require now to make it clear that we can suppose the sign of the ratios €,_, to 

be the same for all points of the limited H,_,; for this purpose suppose 

Py, With coordinates (a, + dn 2, -.., Gn + In+2n); 

and P, , with coordinates (a,+dn2, ..., n+dntn ), 
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to be satellite points of P of which P,_, is on f,=0 but not on fr:=0, and P, is not on 

either of the two A=0, £=0; then we have 

Jn nck Sen 
€xn—2 = 37 ce — 49 

‘ieee rl M ™m : 

eG Jn Chas Char coo ae Ua hn Bp 

VE pana ee eae eee 

Le (aha ee dna pez, 

_ ; 

where M, denotes the value obtained by taking the determinant left when in the matrix 

of m columns and (n—1) rows 

Ghehs coon Chee \\ 5 [PEL PX, Sao (GS A), 

the rth column is omitted and prefixing the sign (—1)"*” to this determinant; hence as 

dn f,=0 we have 

of: 
En—2  _ Oly 

aye 

Si of, 
Oa, OL, 

~ M, MY,’ 

Ores 1 
a Ge Gis 

T WhChaGe ao awe 

_ an fi 
Sie 

where WM is as before the determinant 

Cres coon Ch, || » aM PL oon 1 

Thus on the whole we have 

pa. Jy fr nS drs ze = anf » Ina fr «Una Sa 

nl Cerrames aan a ae ee 

We now make the assumptions (1) that for all points P of Hy» the satellite point P, is taken 

in space on that side of the (n—1)-fold f,=0 for which f,>0, so that d,f, ts constantly 

positive, (ii) that the satellite point P,_, is taken on f,=0 on that side of f.=0 for which 

f2>0, so that dr fz is positive, (111) that the satellite points P,, ..., Pn» are constantly taken 

on f,=0, fo=O in such a relation to P, and P, that M is constantly positive over Hy». 

Under these assumptions each of the ratios J,,/M,,; maintains a positive sign over 
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H., and the direction cosine x,, of the (n—2)-fold A=0, f.=0, which by definition is 

given by 

Krs = Jrs =| VSJ*5 i 

and is therefore equal to 

Sgn €n_o. My, + | VEN, 

where sgne,. means +1 or —1 according as €_, is positive or negative, has through- 

out H,_, the sign of M,,. Thus 

Keds. = M,, sgn (#2) = M,, sgn (- on fi tea) 5 oe 

6. Next we consider any point Q of H,_;, and its satellite points 

(@ +dya,, ..., Gn +dztn), b=1e 2s 5. (Ue) 

From the equations 

Aidit + ... + fidztn = 0, 

SodeX, + ... + fodeXn = 0, 

Fedex, + arte + frdyx, = 0, [p= LD oars ee (n— 3), 

we find as before 

Jk af = Syst = = r ap ae Ens, SBY; 

where , 

ie] B, BH es an 
02,” OX,” Oz, | 

H % *, 
OL,’ Ox,” Oat, 

We a a 
Om? Ox,” Ox, | 

and M,,. is the value obtained by omitting the rth, sth and &th columns in the 

matrix of n columns and (n—3) rows 

| dpa, ---, Uptn|, k=1, 2, ..., (w—8), 

and prefixing a certain sign to the resulting determinant. This sign is supposed to 

be given, as for the two previous cases and as in general, by the following rule ; 

consider the determinant of x rows and columns whose first (n—3) rows are formed 

by the matrix just described, whose (n—2)th row is Aj, ..., An, whose (n—1)th row 

is B,, ..., B,, whose nth row is C,, ..., Cy; then the expansion of this determinant is 

1ton 

DS> ABC Meret; 
r+s$l 

thus when r, s, ¢ are in ascending order the sign to be prefixed to the determinant 
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by which M,. is formed is (—1)"+*+*+*4, Hence, taking the satellite point Qn», of Q, 

upon 7,=0 and f,=0, but not upon f,=0, we have 

Tra ws Jy0 a — Sren 

8 Mi eg eens? 

= Tre Oh ih qr ooo Sr deen Oh ins p 

Mra dn 2%, + EM pn dn En’ 

here the numerator is 

ofr of d oye 

ax,’ Or,’ 

of. of s . 
ax, 5) On, ? An—of 2 

of: OF: 
we Js ? Ghrenyf 3 

and therefore, since dp» f,;=0, dnf,=0, is equal to 

es Ano fs; 

the denominator can be seen to be exactly equal to M,,; thus we have 

Irs 

En—3 = 1,0" af 3) 

and so obtain 

Krst = Syst > | NSS at | 

M rst Ts 

ase ok - nafs) 

the element of extent dS,_, being by definition equal to | VSM? 4 |. 

7. At this point it is convenient to recall the connection which has been established 

above (§ 4) between the division of H,_, and H,_, into cells. With that arrangement 

the J,, and M,,; now arising in the consideration of x, may be regarded as identical 

with those that arose just previously in considering «,,. We proceed to utilise this. 

Consider the determinant of n —2 rows and columns 

Chend@an Chenlity cot Chess 

wherein (2+d,2,...,7+d,.”) are satellite points of (#), upon H,_,, the columns con- 

taining @,, @s, # are omitted, and P,,. is a function which is single-valued, continuous 

and finite upon H,_, and H,_;, and possessed of single-valued finite differential coefficients. 

The suffix of P,. is not necessary for our present purpose; but it is convenient, as 

enabling us to define functions derived from this one by interchange of two elements 
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of the suffix, with corresponding change of sign of the function. The determinant, if 

r, 8, ¢ are in ascending order, is equal to 

oP. rst ) oP, rst aa ne + Ga Mr il: (—1)yt#+# kK hey = 

On the other hand, supposing as in § 3 that all the differentials d,.2,, ..., dno®n 

except* dp ot, Anois, Un—2% are zero, the determinant is equal to 

CG 1) see Ano Pret. Myst. 

Hence finally we can evaluate the integral 

(OP str OP res OP,, 

I (wee Gont kn are + Mra ae *) cis 

taken over H,_,. Suppose H,_, divided into strips as in § 3, and find the contribution 

of one of these strips. The integral is 

[ 2 / rs \ OP str OP vig OP rst 

II en (a,.) ° | Ma Ok, aie Ory + Mrs 0a, |’ 

which by the identity just found, and because we can suppose sgn (J;/M,s) to be the 

same over the whole of H,_., is equal to 

pf sade 
as we pass along the strip under consideration the determinant M,, is constant; thus 

the integration along the strip gives 

he aan (iz) | Melee — PO, 

where the single integral sign indicates an integration extending to all the strips, and 

P®,, P®, are the values of Py. at the points Q”, Q° where the curve of integration 

through the point P, along which only the three coordinates «,, as, a vary, respectively 

leaves and enters H,_,. We have seen that 

df s 
Kret@Sn—3 = Ma sgn oe (eae fi) ; 

and moreover that d,_,f, is positive at Q” and negative at Q; hence the element 

cgn (372) Mun [P= Pa) 
is the sum of the two elements of the integral over H,-; which is expressed by 

fora PradSn-s 

which arise corresponding to the cells at Q” and Q. Thus we have proved that the 

* In § 3 the differentials not zero were denoted by dy» %y, Ayo Xe, Ano The 
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latter integral, over H,_,, is equal to the integral from which we started which is taken 

over H,_.; and this is what was desired. 

We can then by a summation infer that 

i 2 Krst spat WS ,-.= || = Kr, = Se : USn—2, 
1, 8,t rT, 8 t Okt 

which is a convenient way in which to state the result. There are (5) terms in the left- 

hand integral, and (n — 2) (5) =3 ‘@) terms in the right-hand integral. 

A similar argument will be found to lead to the general result stated in § 2. 

8. If we put, in the case for which the proof has been carried out, 

ee ec rs t On, ? 

ee 
0x5 

we have = 0) 
o } 

as nm necessary conditions that the integral 

| | Se Krs ING: diSi=s5 

taken over a finite portion of an (n—2)-fold may be capable of being represented as an 

integral over the closed (n —3)-fold bounding this portion. If these conditions are satisfied, 

functions P,,, satisfying the equations 

: OP rst Xe nett 
Ts ; Ox 

must be found, in order that the expression may be possible; but it is necessary that 

the functions P,. so found should be finite on the (n—3)-fold (cf § 28). 

The equations 
yy xe 

= Xr _ 

s Os 
0 

have been given by Poincaré (Acta Math. 1x. (1887), p. 337) from a somewhat different 

point of view. We can as an application generalise Cauchy’s theorem to the p-fold 

integral 

| a, le (Gap ee abeeae 

where &, ..., & are complex variables. For example, for n=4, the integral 

||P Go &) dédé., 
Vou. XVIII. 53 
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taken over a closed (n—2)-fold, which (see § 9 below) may be interpreted as 

[Fe E.) (Heys + Uheyy + tas — Kas) TSy_o, 

is equal to the integral 

| Cc eae) (2 ny -) Fee) (e He x) r| dS 

taken over the (n—1)-fold bounded by the (n—2)-fold; and this vanishes identically on 

account of 
Gime Omer CMON 

It is supposed that the original (n—2)-fold of integration is not one given by the vanishing 

of a single equation involving the two complex variables, since otherwise (of § 9 below) 

Ky3= Ky, Ky = — Kos, and therefore 

Ky3 + Uky4 + Ukeg — Ko, = 0. 

Part IT. 

The expression of an integral function whose zeros are given. 

9. In what follows we consider a space of n dimensions, x being even and equal 

to 2p. The points of this space being as before given by the n coordinates 2, ..., Zp, 

we define from these p complex variables by means of the equations 

Ep — Capen te on, (r= il. 2; Ts) Pp) 

As it is desirable to take the various points separately we begin by supposing that 

we have defined in this space an (n — 2)-fold, given in sufficiently near neighbourhood 

of any point («,, ..., @,) of itself by the vanishing of an ordinary power series in the 

quantities £—&, .... &—&,, where — — 7 ,4+ 729. We proceed to shew that the 

(n—2)-fold can be given throughout its extent by the vanishing of a  single-valued 

integral function of &, ..., E, (§ 15). 

Such an (n—2)-fold, given by relations involving only complex variables, may be 

called a complex (n—2)-fold; its direction cosines satisfy particular relations, as we now 

prove. It is determined in sufficiently near neighbourhood of any point of itself by the 

two equations arising, say, from 

P(E, ---, E)=utrw=0, 

where wu, uv are real functions of the n real variables a, ..., #,, which satisfy the 

equations 
ou du ou ov 

Oba Ota) | Ona Omeee, 
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thus if we denote du/dz, and dv/dx, respectively by wu, and v,, the direction cosines of 

the (n—2)-fold, defined in § 2 ante, are given by 

Kr, ¢ = (UyUs — Usd,)/h, 

where fA is the positive square root of 

SE (py — Ugdp)? = (42 + eee HU P= (OE +o. En); 
r,s 

now we have 

Woyp—1 Vog—a — Ung—1 Voy—1 = — Voy Ung F Vog Use = — Usp Ung + UsyUos— 5 

Uoy—1 Vog — Ug Vor—1 = Voy Uog—y — Vos—1 Wor = Uny—1 Uog—1 + Uy Uog, 

so that 

Zz __ Uzy Urgs—1 — Wor—1 Uog 

ae aL uy” sEand + Up? ; 

Ker—1,28 — — Kor, 034 = ee 
a ey a Up+... Un? ’ 

and 

Rig + Ky Foe. + Kno = L. 

These relations are of importance to us. They of course require modification at any 
singular points of the (n—2)-fold; the present paper is so far incomplete that the con- 

sideration of the effect of the singular points is omitted; the final results obtained are 

expressed in a form which is believed to be unaffected by the existence of such singular 

points. 

10. Consider now a limited portion of an (n—2)-fold, bounded by a closed (n — 3)-fold. 
Denote by a, ..., %, the coordinates of a point on the (n—2)-fold or on the (n—3)-fold, 
and by (4, .--, tr) the coordinates of a finite point of space not on either of these, the 
corresponding complex variables being as before given by 

Te lee tbe BN OB cso ya 

Let L,, ..., In and R,, ..., Ry be single-valued functions of 2, ..., a, and of eco en 

which are continuous and finite, with their differential coefficients, so long as (a, ..., x») 
is upon the (n—2)-fold or (x —3)-fold under consideration, and the point (t, ..., t,) is 

in finite space and not upon the (n—2)-fold or (n—3)-fold; further suppose that these 

functions are such that 

OL; df; ; 
i Be (Gas = 2) 

cal oR, , oR, oR 
a +3, tot aa =, 

Consider the n integrals 

bpm [ela + one + kml) dus Gaia a 
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taken over the limited portion of the (n—2)-fold; we have 

OC, 0b, __ oR, oR OR, _ oR, 
at, ~ Ot, =-|(cn Oars +... +r Or, — Ky On, see — Ken =) dSn—2, 

and therefore, adding to the right hand the vanishing quantity 

oR, , oR, ORn 
[re (Fe ry nea a) dS,_2, 

we have 

Se eS 

ots Ot, i=1 

ie tls = $ (feet aR; oR; 
(« a ae =) Saas 

where i does not take the values r, s. Thus by the formula proved in Part I. we 

have 
OC, == [3 at, — 2, =/2 KR; SUAS as 

+= 

where the integral is taken over the (n—3)-fold bounding the limited (n—2)-fold over 

which the integrals &, ..., & are taken. 

11. It follows that if the (n—3)-fold integral vanishes, the expression 

Edt, + ...+ Grdtn 

is a perfect differential; on grounds further considered below (§§ 12, 22) we suppose that 

this (n—38)-fold integral does vanish; we suppose also that L,,=7L,.,, and that the 

(n—2)-fold is a complex (n—2)-fold; then from the equations 

Ker—1,23—1 = Ker,osy  Kor—1,08 = — Ker, 23-1 

it follows that 

Gy = [tem a AiGor's) I, AP ose ar (Ker, or) Tie +... + (ice. n= UKer, n) Dinah WSs 

ma i [fem SF UK 27-1, 2) q, SOO Sr (tara, or) Dp Seeetste (Kora, ett UK2y—1,n) Ly} aSp-2, 

so that 

oer = KEL 

and therefore 

a 
Otos tor Obra Otosa : 

which gives 

ce + iz)
 for = 0. 

Thus, under the hypotheses introduced, all the functions &, &, ..., are functions of 

the complex variables 7,, ..., Tp, and there is a function 

®d = [Ga ar f.dt, fora et Endtn) = [Gar aF Edt. + vee + Snap) 
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for which 

12. We now give a more special value to the functions Z,, ..., Z,. Let 

-2 

[(a, —t)? +... + (aa — ‘ace 
n—2 

¢ (x|t) =— 

and 

Ay,= Qe (ax|t) -—¢ (x|0) + € 2) a (2
|O)—... + S Die (: aie P (el0), 

m! 0a 

m being a finite positive integer ow zero, and 

0 0 0 
(+5) = t Fre Poon Nara 

When r, =#2+...+¢,7, is sufficiently small in regard to R?, =a,°+...+4,7, we have 

(—1)"# (-— 1yrn ( a) 

(m+ 2)! 

m+1 ‘ 

eC RRG by t=) a (x|0) + 

a) m+2 

ee @(z|0)+... to o, 

ypmrl x gmt 

~ Rem King (w) + Rum Kins2() +... to 0, 

where yw denotes (af, +...+@,tn)/Rr and is numerically less than unity, and K,() denotes, 

save for a factor independent of ~ but depending on n and s, 

( ies ae ( es aa 

Lal 5 dps ye 7 : 

As we can find a real angle 6=cosy, we have 

= 1 Le Ei eae oF ee —— 
@ (alt) — — - a1 Rie (-Re ) } 

by expanding the bimomials and considering the explicit expression for the coefficient 

of rt4/R7*k1 it is immediately obvious that this coefficient is not greater than if 6 

were zero. Thus when r<A& the absolute value of H,, is of the form 

rm (n—2)(n=1)...(n+m—2) 1 
Rat © jm +1 =e 

where, supposing n, m, r fixed, € is only unity when R=r, but for R>vr has zero for 

limiting value as & increases indefinitely. It follows that a value R, can be chosen 

such that for fixed n, m, r and all values of R>R,, we may have 

page, esate 
Reem ! 

with B a finite constant independent of R. 
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It is easily seen that 

an equation which holds also for negative m provided H,» be then understood to 

mean g («| t); and thus 

2 3 oe eee @ (aaa * aga t + ea) # (ars ons ) ae ar 
Hence if we put 

sks. Oleks 
Ti tLe (5 on a a) 

; ‘Maks j0Hma Re =the 3 —— ( Oly Or ' 2 

where m is to be kept the same throughout the investigation, we have 

aL, _ aR, 
Ote Oars 

g ORS Ror) _ ; Gre les et) - 

ey ae che Fe See ( OFsra = OX3y , 

so that the conditions of § 10 are satisfied. 

We suppose also the further condition, of § 11, namely that the integrals 

[2 = (Ky, 32k + UK, & ok) (ee * goer) dSn-s, 
OX Oxy, / 

taken over the closed (n—3)-fold, bounding the (n— 2)-fold under consideration, 

are all zero, to be satisfied. This hypothesis arises as follows. We suppose the 

(n—2)-fold, over a limited portion of which our (n—2)-fold integral is taken, to extend 

to infinity; when (t, ..., t,) is in finite space and (a,,...,%,) is very distant, the function 

Hy. is a small quantity of the order of (a°+...+.,2)+"*™™; we may therefore 

suppose that if the (n—3)-fold be taken entirely at sufficiently great distance from the 

finite parts of space and m be sufficiently great, the (n—3)-fold integral can be made 

less in absolute value than any assigned quantity. A particular examination is given 

below (§§ 20—24); it can be definitely shewn that the hypothesis is verified, even 

for m=1, for a large class of cases, which includes the case which arises in the 

consideration of periodic functions. The application of the present paper is limited to 

the cases where some finite value of m is sufficient; as will be seen this is a limit- 

ation which we may regard as analogous to that, for functions of one complex variable, 

to functions of finite genre. 

Connected with this hypothesis is a further one; supposing the (n—2)-fold integrals 

f,,...,€, to extend over the whole infinite extent of the (n—2)-fold, we suppose that 

they and their differential coefficients in regard to &, ..., tf are convergent. 
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Then we have the result ; the p functions 

. x “ OH m . 0H, 
Cora = 4 i = (Kor, os—1 + Uop—1, 2) ( tin 

8 =1 \OXo3 4 O2og 
) dS», 

extended over the infinite complex (n—2)-fold, are functions of the complex variables 
Ti, +++) Tp, and are the partial differential coefficients of a Function 

2 =| dr, + €,dt.+...+ GeidTp). 

13. We proceed now to put this result into a new form, from which it will 

appear that the real part of the function ® is equivalent with a result given by 
Poincaré, being a generalised potential function, and that the imaginary part is a 
generalised solid angle function. 

Putting Grey = 6a, + COs ’ 

we have, clearly, 

On 0H, 0H, al 

Oor—1 = ls 1 Ae Koy, 2 an pet Kor, n Ala ) dja; 
vy 2 n 

oH, OH. n OH», ul 
Cro [- Koy—1, 2 a, + Koy—1,1 aa + Koy, n-1 a ; ) GNSS ; 

of these the latter, in virtue of the equations 

Koyr—1, 23-1 = Koy, 08, Kar—1, 99 = — Kar, 28-1) 

can be written 

OH oH. 0H, i 
Sar = | ( Kor, a + Koy, 9 Bo + eee + Mor, n | AS 

Ox, 0X2 0Ly, 

We proceed now to shew that in fact 

pe) 

Ona = ees WSs bo, = — in. aSna, 
J Oo, J OX oy 

these integrals, like the others, being extended over the whole infinite complex (n— 2)- 
fold, and supposed convergent. Take the first of the two forms given for 6,,., namely 

in ET 0H m 
Soy = -| Kor—1, or = > WSn=a + | [+ 21 ar | + Koy, oe ; OTS oy 5 kaa 

orl k=1 Loe OW ng 

where & does not assume the value 7; over a finite portion of the (n—2)-fold, bounded 
by a closed (n—3)-fold, the integral 

i oH. OD n 0H, 
|(+s orl aE Koy, ok—-1 Dave, + Kok, ok Aya ) ASj-» 

Oop orl 

is by the results of Part I. equal to 

| Koki, 2k, 2r—1 Jal, m OSs 
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taken over the closed (n—3)-fold; assuming now, what is a similar assumption to those 

already made, that this integral diminishes without limit when the (n— 3)-fold passes 

to infinity, we have 

which, since 

Ky t Wy + 20 + Kya, n= 1, 

is the result stated, namely that 

memes Ns bs Hm a oH 
Beam |( tone Gye Kant gig too Maret gg) Sane 

Thus also = = bya =- | (2 —1 2s dS_s, 
r / rl 2r 

and, if we put (Poincaré, Acta Math. t. xxu. p. 168) 

V = Anas aS, 

so that V, which may be regarded as a generalised potential, of the (n — 2)-fold of 

integration at the point (4, ..., t,), is the real part of ®, or differs therefrom by a 

constant. 

14. Supposing that the integral is taken from the point 4=0=#=...=t,, which 

is supposed not to be on the (x —2)-fold of integration, we may write 

? =[ (fdr, ae dt, + 309F fop-14Tp), 
0 

= | (Sia Nae eee, a eee) 
0 

+i | (geste + one, FO dee): 
0 

of this, in virtue of the results of § 13, bearing in mind that Hy» 4, and therefore 

also V, vanishes for 4,=0, ..., f:=0, the real part is exactly V; the imaginary part is 

iQ where 
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Q =) (8, dt, +... + Sndtp) 
0 

, oa oH 0H, 2 Neches ipa ( CELE cbt My ose) ac n- att 1° er—1 | Ker—1, 1 On, + + Koy, n Oa, 

yah a TT 

+ dt», (n,1 5 a + Kor, n> Sk 
Ox, OLy 

lake ™ =[ [as,.¥ kro (die gy OE , 
Jo/ 7,8 Oils Ou, 

the summation extending to all pairs of different numbers 7, s from 1, 2, ..., n; now 

we have seen (§ 5) that if M,, denote, for r<s, the product of (—1)’+*~ and the deter- 

minant obtained by erasing the rth and sth columns in the matrix 

| Was OPER, coon heal, k=1, 2, ...; (n—2), 

then «,,dS,_./M,, is independent of r and s, and equal to +1 or —1; denote it here by 

e; thus © can be put into the form 

=i) fel de yi og cael 
0 

| On Hm 2H n 
Or, 0a OL, 

(eR “Ch cons Clnatien 

This shews that may be regarded as a generalised solid angle, namely that subtended 

at the point (4, ..., t,) by the (n—2)-fold of imtegration. (Compare Gauss’s well-known 

form given for instance in Maxwell’s Electricity and Magnetism (1881), Vol. 1. p. 39; or 

Gauss, Werke, Bd. v. p. 605.) The same will appear anew from a transformation of 0 

into an (n—1)-fold integral (§ 17). The result is not merely curious; the function Q is 

in fact a single-valued function of &, ..., t, save for imtegral additive multiples of the 

quantity 

| 

AES pol S Soe, 

ll 
_~ 3 

| — 
~— 

which is the complete solid angle in x dimensions, namely the total extent of the 

(n — 1)-fold 
Gate beeen le 

As the function V is clearly single-valued it follows that the function 

ans 2a 
a wm (Vti0) e= =eF 

is a single-valued function of (74, ..., Tp). 

Vou. XVIII. 54 
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15. The interest of the results just obtained arises from the following fact. 

Suppose that, in the neighbourhood of any point (f", ..., &) of itself, the equation 

of the (n—2)-fold of integration is expressed by $(& — &, ..., &—&)), the expression 

¢ being an ordinary power series of presumably only limited range of convergence; then, 

with a proper signification for the logarithm, the difference 

Qa 
sa @® (7, ---) Tp) —log o(m — &, ..., T—&™) 

remains finite and continuous as (7, --+) Tp) approaches indefinitely near to the (n—2)-fold. 

This capital result is taken from the paper of Poincaré, already referred to, Acta Math. xxu. 

(1898), p. 169. Other proofs, themselves important to us for another purpose, which shew 

how the result follows from Kronecker’s theory, are given below (§ 16); the most natural 

method of verification is however by direct evaluation of ® in the neighbourhood of 

the (n — 2)-fold of integration (§ 25). The result itself is a direct generalisation of well- 

known facts for p=1. 

If for the present it be assumed, it follows, putting 

2r 
mr PTs «+9 TH) 

— pw 1 Olay =, im) =e a 

that the ratio Siamese Tp) _ gat) Wao) 
$ (7) 

wherein $(7) is written for $(4—&", ..., t—&"), is not infinite or zero in the 

neighbourhood of the (n—2)-fold @(7)=0. It can be seen however from the form of 

the integrals by which @(r,, ..., tp) is defined that, for finite values of 4, ..., tm, this 

function can become infinite only when (4, ..., t,) approaches the (n—2)-fold of integration. 

Thus we have the main result of the enquiry. 

The equation of the arbitrarily given (n—2)-fold of integration is obtained by the 

vanishing of the integral function 

Olay ee) tp) = 0; 

which is equal to 
5) 

Peel Sh: i (= = =) as,+} , 
{ @ Jo By Oaoy—1 Oo, 

. = 2Qar f tg OH m4 . OHi as } 
o7 exp \2 ip a dt, I Bpsee a Oter ) dS)» . 

16. Denoting as before by @ any one of the series by the vanishing of which the 

(n—2)-fold of integration is defined, we have, as already quoted from Poincaré, the theorem 

that the difference 

2ar : 
= (V+7Q) — log d 

remains finite and continuous even indefinitely near to the (n —2)-fold on which ¢ vanishes. 
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To the proof given by Poincaré we may add the two following, both of which make use of 

some results in Poincaré’s paper. 

(a) Denote the (n—2)-fold of integration by Z; let (2, ..., z,) be the coordinates of 

a varying point on J, so that (a, ..., z,) are functions of (n— 2) parameters; then 

if (a, ..., «,') be current coordinates, and ¢ a fixed small quantity, the envelope of 

the spheres 

(a — a+... + (a) — ayn P = 

is an (n—1)-fold =, surrounding J, of which, when (a, ..., “,) is not a singular point of J, 

the points are given by 

Ge = azp+ 7 (tui 08 8 +; sin @), (GaN, Pe cory 0). 

where @ is a variable quantity, so that (a, ..., 2’) are functions of (n—1) parameters; 

here wu; denotes 0u/dx;, v; denotes dv/dx; and h is the positive square root of w2+...+ Un? 

The point (,’,...,2,') lies on one of the single infinity of normals which can be drawn 

to the (n—2)-fold I at (a,,...,@,), and is at a distance e from JZ. The direction cosines 

of the normal to = at (a,...,@,') are the quantities (w;cos@+4;sin @)/h; the element 

of extent of = at (a/,..., «,)') is dS, ,=ed@dS,_., ultimately, squares of € being neglected, 

where dS,_. is a corresponding element of extent for J. If &,=a,_.+ try, & =a 4 +i2's, 

we have 

Fi 15 Ep tty Dee 

CEE EY ee 

where (¢,) is the conjugate complex of d¢/0£,, and therefore equal to w,.—7%v,,; and, 

what is permissible to the first order of small quantities, @ is written for 

pi (&- &) +... + dp (Ep — E>). 

With these results we combine now the following, which is a particular case of 

a theorem of Kronecker’s. Let f(m,..., 7) be a single-valued function finite and con- 

tinuous upon a certain closed (n—1)-fold, whereof «,, ..., «, are the direction cosines; 

consider the integral 

1 f ; 0 =e ; 3 fi) 0 eh 
Ge anes) \@ + Uk) ee —i =| Q (a|t)+ ... + (Kn + Un) Ge —71 | g(x | o} Ship 

where (#,...,,) denotes a varying point upon the (n—1)-fold. By Green’s theorem 

it is immediately clear that this integral is unaltered by any deformation of the 

(n—1)-fold of integration which does not involve a crossing of the point (4, ..., t,) or 

of any point where f(m, ..., Tp) ceases to be finite, continuous and single-valued. For 

the condition for this is simply (Part I. of this paper) 

(pe tie) SE,» &) (Se -iZ) oC). =0, 

Gi +254...) p(e|)=0. namely ( ane 
Oa,2 

54—2 
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Hence, if f(t, .--, 7) be single-valued, finite and continuous for the whole interior of 

the (n—1)-fold of integration, the integral is zero when (t,...,f,) is outside, and, 

when (t,.-.,t,) is imside the (n—1)-fold, it is equal to. f(m%,.-.-, Tp), as. we see by 

supposing the (n—1)-fold of integration to be deformed to 

(a, — 6)? +... + (@n—fP=r, 

and then taking 7 to diminish without limit. 

Now consider, in the region of convergence of the series ¢, a (multiply-connected) 

closed region, bounded by (i) part of the (n—1)-fold = surrounding the (n— 2)-fold 

¢@=0 which has already been described, (ii) part of a closed (n—1)-fold S described 

in the region of convergence of ¢, the part being limited by the (closed) (nm —2)-folds in 

which S is intersected by =; and take 

f(r)= tog 6, 
where r is one of 1, 2, ..., p. Then when (4, ..., t)) is interior to the (multiply-con- 

nected) region above described, we shall have 

PO=L[PO lea ried (F -1Z) 0 CI0+--f dun 

where the integral is taken over the two partial (n—1)-folds denoted by (i) and (1). 

The part (ii) of this integral is finite for all the positions of (4, ..., f,) under con- 

sideration; consider the limiting value of the part (4) as the (n—1)-fold & is taken 

nearer and nearer to the (n— 2)-fold 7, namely by the decrease of the quantity denoted 

above by «. By what has been stated above we may ultimately put 

Kog— + Uog = — ($s) 7 ee i » f®= “ , G@Sr. = edédS,_.; 

then, if (t,...,f,) have some fixed position at finite, not infinitely small, distance from 

the (n—2)-fold J, we obtain, for this part of the integral, 

of =| do | Fed Sas {3 (gy 2" * (go = isa) eld) 

--7/% ae ($e) Gea igi) | 9} An 

now the direction cosines of the (n—2)-fold J are (§ 9) such that 

Mora Yona = Uog—1 Vora + 4 (Usp Vog — Uog Vor—1) 
Kor, 98-1 + 1K orl, he : 

a ‘ ‘ 
= le (Usp + Wor) (Uos—1 = Wag), 

= Es oy (bs) ; 
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thus this integral becomes 

Qqri F ue) 
[= (Ker, os—1 + UK ora, os) ( ego a) Q(x | t) Sa: 

Ow O8og—1 

Therefore it follows that f(r) differs from this integral by a function which is 

finite and continuous for all positions of (t,...,t,) in the region of convergence of 4, 

except actually upon ¢=0. 

Recalling a previous notation (§ 12) this is equivalent to the fact that 

0 Qar 
or, log $(r) a Cora 

remains finite and continuous: as (7,,..., Tp) approaches the (n—2)-fold J, so that also 

2ar log (7) — = | (fxd, +... + End) 
remains finite and continuous as (7, ..., Tp) approaches the (n—2)-fold; as was to be 

shewn. 

(b) By using Kronecker’s integral in a different way we can obtain the same 

result otherwise. Consider the region of convergence of one of the series @ by which 

the (n—2)-fold I is defined; describe in this region as before a closed (n—1)-fold S, 

containing in its interior a portion of the (n—2)-fold Z; about J suppose as before 

an (n—1)-fold = satisfying the condition that every point of it is at a small distance 

e from some point of Z. Then the portion of n-fold space imside S and outside = is 

multiply-connected; but it can be rendered simply-connected by supposing an (n—1)- 

fold diaphragm P to be drawn, bounded partly by the (n—1)-fold = and partly by 

the (n—1)-fold S, each of which it intersects in an (n — 2)-fold. 

Within the n-fold simply-connected space so constructed the function log is single- 

valued. Hence, if (7,,..., 7») be a point within this space, we have, as explained above, 

1 ; 0 S50 Ales, 
log ¢ (tT) = = | log $ (é) c + tks) = —1 a) @ (a|t)+ | OSna6 

where the integral consists of three parts:— 

(i) that over the part of S lying outside the closed (n—2)-folds in which S is 

intersected by >, and excluding the (n — 2)-fold in which the diaphragm intersects S; 

(ii) that over the part of = lying within S, excluding the (n—2)-fold in which P 

intersects &; 

(iii) that over the two sides of the (limited) diaphragm P. 

The part (i) remains finite and continuous for all positions of (7, ..., tT») within 

the n-fold space under consideration. The part (11) ultimately vanishes when the quantity 

e diminishes indefinitely; for we have seen that dS, ,=ed@dS,_., and it can be shewn, 

as by Poincaré (Acta Math. xxu1.), that as the point (&, ..., &’) on a normal of J, at 
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a distance e from J, approaches indefinitely near to J, the limit of e log ¢(&), when e 

and therefore $(£) vanishes, is zero. The part (iii) of the integral is equal to 

2 [l(a + ie (Z ie “)p@l)+.. | a8 

taken over only one side of the (limited) diaphragm P; for the values of logo at two 

near points on opposite sides of P differ by 27. 

Consider now the real part of this integral, namely 

2r [ (0p | 1, Of ; | (Geant) 
by the theorem of Part I. of this paper we can replace this by an (n— 2)-fold integral 

taken over the (x —2)-fold which forms the boundary of the diaphragm; this (n— 2)- 

fold lies partly on ¥ and partly on S; the (n—2)-fold is 

=F { (ee + Ky +... F Kn, 3) ~ (a | t) dSy=35 

as is immediately obvious on applying the theorem. If we now suppose that the 

diaphragm is so chosen that the bounding (n—2)-fold is a complex (n—2)-fold (§ 9), 

we can infer that, when (7,, ..., Tp) 18 within the region considered, log ¢ (7) differs 

only by a finite and continuous function from a function whose real part is equal to 

2Qar =F [9 (lt) dSn-s, 

where the integral may be supposed to be taken only over the part of J which lies 

within S; for we have seen (§ 9) that for a complex (n — 2)-fold 

Kyo + Kg +... + Kn—an = 1. 

The theorem to be proved can then be immediately deduced. 

17. Incidentally we have remarked in § 16 that if a finite portion of an (n—1)- 

fold be bounded by a closed complex (n—2)-fold, then, under certain conditions of 

continuity and single-valuedness for the function U, we have 

(7 oU oU e 
UdSh-s = | (1 Oat, — Ke Oa, apc 4 USn-a> 

the first imtegral being taken over the closed (n—2)-fold, and the second over the 

bounded portion of the (x —1)-fold. 

We now extend this idea to the (n—2)-fold J, given by the aggregate of the 

series @. We imagine this (n—2)-fold, which is defined only for finite space, to be 

completed into a closed (n—2)-fold by means of a complex (n—2)-fold at infinity; 

and, as before, we assume tentatively, that the part of the integrals under consideration 

which is contributed by the portion of the (n—2)-fold of integration lying at infinity 

vanishes (see § 22). 
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Then, firstly, we may put 

V = [Bir d8.-2= {f(e et — GE.) da 
Ly 

where the right-hand integral is taken over the infinitely extended (n —1)-fold diaphragm 

bounded by the complex (n — 2)-fold. 

And, similarly, we have (§ 14) 

a == |(« rl OP + Kren | ASp_-» 

E | i (- eae nh ae itn) (i (Cs foe PHN) 35 
= Ky 0a, 00, Xn (— Oat, Ot, nr ( On? arc joape =) An» 

=F [f(x OH m+ Ve bore OBm 
. oes Oay . Bsa 

where we have put 

CH pn PH Hm A oat 4. of Se 
OL, OL y= Ox,” 

thus, taking © to vanish when (&, ..., tr) =(0, ..., 0), we have 

9) =|f{(« OH ms fh oo bien os Obs ys 
Gs O2n, 

Thus, as has been indicated in connexion with the definition of 0 as an (n—2)-fold 

integral, © is a generalised solid angle. It is not a single-valued function of (fh, ..., tn); 

its values at two near points on opposite sides of the (n—1)-fold of integration differ 

by integral multiples of @; this follows, in a well-known way, from the fact that the 

value of the integral taken over the closed (n —1)-fold 

(2, — a)r Jen dk (@n oa tn? = 7 

is ultimately o when r diminishes indefinitely. 

Thus it is obvious that 

2" (7+i0) 

(S)(Cmig coon Ur) = 

is a single-valued function. 

18. We come now to the consideration of the question of the convergence and 

vanishing of the infinitely extended integrals used in this paper. 

Some guidance may be sought in the comparison of the general case, when p>1, 

with the case of functions of one variable, for which p=1. For this latter case there 

is no continuous (n—2)-fold of integration; the corresponding thing is a series of discrete 

points, in general of infinite number. We have in this paper found a formula, 

OlGis ---5 Tm) = 0; 
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to represent the equation of a given complex (n—2)-fold extending to infinity; let us 

apply this to find the equation of the (n—2)-fold constituted when n=2 by any 

enumerable system of discrete points &, &,..., having infinity as a point of condensa- 

tion, in regard to which it is assumed that for some positive integer, m, the series 

Em 4+ eae ee 

is absolutely convergent; this condition corresponds to the general one that the integral 

[Bema dS,-. 18 convergent; for instance the points may be those given by a formula 

a+ 2hkw + 2k'o’, 

where k, k are integers and o’/# is not real, in which case, as is well known, it is 

sufficient to take m=1. Taking 

Q (a\t) = z log [(a, — 4) + (#2 — &)*], 
= 

and, as in the general case (§§ 13, 14), 

V= lela, Sp» — LAs 

(- 1) fa] m+. 
ES oa feo alOve ous ; == [pip 9(2|0) +... +7, (ta) e(e\0)), 

where the summation extends to all the points &=2,+7z,, and 

a aGiales OH im 
.0) =| |(a& Oa = dt. i) dSn—a; 

we find easily 
aaa 1 | 

hence as a= 27 for n=2 we have 

eh ’ aml oman {a4 =), 
é 

namely the theorem gives the general integral function of finite genre*; whereas in 

Weierstrass’s factor formula for a general integral function the number of terms it is 

necessary to take in the exponential may increase beyond all limit as we take a more 

and more advanced factor of the product, our theorem limits itself to the case where 

the same finite value of m will suffice for every factor. 

19. In the case of functions of one variable a simple case of functions of finite 

genre arises for periodic functions, the value of m for the sigma functions being m=1. 

And in the general case the fundamental (n—2)-fold of integration may be periodic; 

* The usual exponential outside the infinite product being absent. 
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in the sense that it is possible to divide n-fold space into period parallelograms, the 

interior of any one of these being given by the p equations 

T.=N+ 20; 1A +... + 20; op Aap, (Ci Ecoony))) 

where 2» is a constant and 4, ..., Ax», are real variables each between 0 and 1, and to 

regard the portions of the (n—2)-fold lying within these various parallelograms as 

repetitions of one of these portions. Then it can be proved, under a certain hypothesis, 

that the value m=1 is sufficient for the convergence of the integrals. The hypothesis 

is that the extent of the (n—2)-fold contained in any one such parallelogram is finite ; 

and the truth of this hypothesis is deducible from the mode in which the (n—2)-fold 

of integration has been supposed to be defined. 

Of this result, which is given by Poincaré, the proof is included in the investigation 

below (§ 22); it may be remarked at once however that the formula obtained here is 

not limited to the case of periodic functions; as we may see by taking a simple example. 

We apply the formula when n=4, to form the equation of the complex (n— 2)-fold 

f=; 
putting y=a+v7b this is then the two-fold given by 2,=a, #,=b. The matrix 

d,2, d;%,- dt, ,%, |, 

ELM itu Bribe cel 

with the help of which the direction cosines may be defined, may be taken to be 

(OO ce, © |, 

|o 0 0 de 
so that «,,=0 except x,=1, and dS,_,=da,dx, As the integral 

mesos da,dx, =| "ae fe rdr 

(7@+0+af+aZP? Jo Jp, (D+r7P 

vanishes when #&, R, are infinite we infer that it is sufficient to take m=0(0, and 

therefore 

Hy = 9 (@\t)—E(¢\0), Anis =e (a|t)— e (w|0) + (« 2) e(x|0) ; 

then (§ 12) we obtain, for 

Sec OHm  .0Hm 5 (like, sO) = 
f= i | is ( an, v Ou, ) + (13 + 1k14) \ On, a, =) dis; 

5 ff . Om _ jem . OH in * 0H, 
&= ‘| \(«s + UKs) ( der, aa ") + Uk 34 ( O25 aU = dSn_2, 

the respective values 

g; =0 

j 1 —t,-—t(a@—t) @, — 1X> =—||ded = 4 SE 
If paiva i = th) Eesti (a4 ita) > eee = : 

Vou. XVIII. 55 
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wherein, in the latter, z,=a and 2,=b, and the integration in regard to 2, 2, is to be 

taken for each of them over the whole range —% to +. Hence we obtain 

which, as the general theory requires, is a function of the complex variables (in fact only 

of 7,=t,+%t,). Thence 

id = | (Sar, + &dr2) =7 e + log (
1 -")| ; 

0 
y Y 

and therefore, as a =277 for n=4, 

@(n, 7) = oP" =( =) er, 

which is precisely right. 

20. Transcendental functions of one variable which have no essential singularity in 

the finite part of the plane of the variable may be distinguished into two classes according 

as, to speak first of all somewhat roughly, their zeros become indefinitely dense or not, as 

we pass to the infinite part of the plane. If circles be described in all possible ways, each 

to contain a certain definite number, say J, of the zeros of the function, V being at least 

two, the areas of these circles may have zero as lower outside value as we pass to the 

infinite part of the plane, or may have some quantity greater than zero as lower outside 

value. More precisely, in the former case, however small A may be, and however great R 

may be, among the circles described to contain WV zeros whose centres are at distance at 

least R from some definite finite pomt of the plane taken as orgin, one or more can be 

found whose area is less than A; in the latter case it is possible to assign a quantity A 

finitely greater than zero, and a finite R, such that among the circles described to contain 

N zeros whose centres are at greater distance than #& from the origin, no circle can be 

found whose area is less than A. The most obvious example of the latter possibility is 

the case of a periodic function; here a period parallelogram necessarily contains only a 

finite number of zeros; and this parallelogram is indefinitely repeated to however great 

finite distance we pass. As example of the former possibility we may take the case of an 

integral function whose zeros are the real quantities log 2, log3, log 4, .... The length of 

the streak which contains the V zeros beginning with log R is at most 

log (R +.) — log R = log @ ae 

which diminishes without limit as R increases. 

21. Consider now an integral function of one variable of the former of the two kinds, 

for which circles containing a specified number NV of the zeros of the function are formed 

of as small area as we desire, however great be the distance R of their centres from a 

finite point of the plane. It is still conceivable that for proper choice of the constant m, 

independent of R, and not less than unity, the product 

R06, 
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where ( is the area of such a circle, may be finitely greater than zero for all values of R 

greater than a certain assignable R,. 

We proceed to shew that under this hypothesis the infinite series formed by the 

sum of the negative (2+ m)th powers of the zeros of the function is an absolutely 

convergent series. The case m=1 is that of the latter of the two kinds of functions 

considered in § 20. 

Let concentric circles be described with centre at a finite point of the plane; con- 

sider the greatest number of zeros of such a function which can lie in the annulus 

between two such circles of radii r and 7” (7’>r), the circles being supposed to be drawn 

so that no zeros lie actually upon them. By the hypothesis, if r be taken great enough 

(and finite), the annulus may be divided into regions each containing a finite number, 

say M, of zeros, such that if C be the area of every such region 

ym (f = iB 

where B is some quantity greater than zero. Let k be the number of these regions, 

which is finite so long as 7 is finite. Then 

T (7 — r) m1 = kB F 

as there are kM zeros in the annulus, the sum of the moduli of the inverse (2 -+m)th 

powers of these zeros is less than 

kM 
peatm? 

which in turn is less than 

aM (7? — 7?) 7m 
B pttm , 

which, if 7’ =r(1+e), is equal to 

l ™ (WY ek Sahl 
B ( +e) ( +€) (= ail 

we can suppose the successive circles drawn so that e¢ remains constant; then the sum of 
the moduli of the inverse (2+m)th powers of all the zeros of the function which lie 
beyond the circle of radius 7, is less than 

aM 1 lies m (2 2 
B (1 +e) Cade 

and can be made as small as we please by taking r large enough. This proves the 
convergence of the series. 

22. Pass now to consider an integral function of p complex variables, and consider 
the (n—2)-fold over which the function vanishes, this being supposed to extend to 
infinity. Imagine closed (n—1)-folds to be described everywhere convex, and as far as 
possible, for the sake of definiteness, of spherical form, with the condition that the 
extent of the zero (n—2)-fold contained in any one of them shall be some definite 

55—2 
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quantity, say A. In regard to the shape of these closed (n—1)-folds the important 

point is that the linear dimensions shall be always of the same order of magnitude in 

all directions. In regard then to the n-fold extent, V, of these closed (n —1)-folds two 

things are possible as we pass to the infinite parts of space. Either V may have a 

lower outside value B finitely greater than zero, which case arises in considering functions 

having 2p sets of simultaneous periods. Or, the zero (n—2)-fold may become so bent 

and crumpled upon itself that at sufficient (not infinite) distance from the finite parts 

of space it may be possible to find an n-fold extent V less than any assigned quantity, 

which shall still contain an extent A of the zero (n—2)-fold; or in other words, that 

the volumes V may have zero for lower outside value as we pass off to infinity. When 

this latter is the case it is conceivable, denoting by R the average distance of the 

points of a closed (n—1)-fold from some finite point, that its n-fold extent V may not 

diminish faster than some positive power of R increases, namely that there may be a 

quantity m, not less than unity, such that 

Tie 3) 

where B is a finite constant, for all values of R which are not too small. 

Under this hypothesis it can be shewn that the integral 

[ DSn_s i 
extended over the whole infinite (n—2)-fold, is convergent, R denoting the distance of a point 

of the (n—2)-fold from some finite point. 

For suppose concentric spherical (n—1)-folds to be described, with centre at the 

finite point from which R is measured, and consider the extent of the (n—2)-fold 

lymg in an annulus bounded by two of these spheres, of radii r and 7, (7,>r). In 

accordance with the hypothesis we can suppose the n-fold content of the annulus divided 

into regions each containing a finite extent, say M, of the (n—2)-fold, such that if V be 

the n-fold extent of any such region 

RTL 183, 

where B is some constant greater than zero, Let & be the number of these regions, 

which will be finite when 7, is finite. Then 

@ Nn yn -m—1 z=. . 
a (7; myn, Z2kB; 

as the total extent of the (n—2)-fold lying in the annulus is kM, the contribution to 

the integral 
GS 
pe 

which arises from the annulus is less than 

kM 
pntm ~ 
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and therefore less than 
a M GRE = 7”) Te 

n B putm ? 

which, if 7, =r(1+e), is equal to 

ao M (feel ty 
ppt Oe esa) 

we can suppose the spheres chosen so that e does not become infinite; it is therefore 

obvious that the integral is convergent. 

It is tacitly assumed in this arrangement that the extent of the (m—2)-fold lying in 

any finite n-fold extent taken entirely in the finite part of space is finite. This follows 

from the method by which the (n-—2)-fold is supposed to be defined; for it can be 

shewn that if (7m, ..., Tp) be a power series, the extent of the (n—2)-fold ¢=0 which 

hes within a closed (n—1)-fold lying within the region of convergence is necessarily 

finite*. This generalises the well-known theorem for functions of one variable, that a 

power series cannot have an infinite number of zeros lying within a region which is 

actually within its circle of convergence, that is, cannot have an infinite number of zeros 

with point of condensation actually within the circle of convergence. 

23. The investigation of § 22 applies to the integral (§ 13) 

V =| Aimi:dSn_; 

denote by (a, ..., @) as before a point of the (n—2)-fold, and by (4, ..., t,) a finite 

point not upon the (n—2)-fold of integration; when R*=a,?+...+,? is large, that is, 

for the very distant elements of the integral, and =4°+...+¢,? is finite, we have 

pre da 

Va fe = Rrim Kine (/) AP 60015 

and it will (§ 12) be sufficient for the convergence of the integral that for any assigned 

small quantity e it be possible to find a finite R, such that the integral 

ASn—» 
Rem a 

taken over the part of the (n—2)-fold of integration, extending to infinity, for which 

R>R,, shall be less than « We have in § 22 proved that this is so under the 

hypothesis advanced. 

24. The method just applied to the integral 

[HmesdSn-2 
avails to justify the assumptions which have been made in regard to the other (n—2)- 

fold integrals considered in this paper. 

* A sketch of a proof is added below, § 27. 
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There remain certain assumptions in regard to (n—3)-fold integrals, and in regard 

to (n—1)-fold integrals. 

We have assumed that if a finite portion of the (n—2)-fold of integration be 

bounded by closed (n—3)-folds, the corresponding (n — 3)-fold integrals 

p oH, 0H, & Caustic Oils = 3, kA Kr,s,2k) |= v 
| ¥ OXo.-1 OM /x=1 

ultimately vanish as these (n —3)-folds pass to infinity. 

This really follows from what has been demonstrated. The (n—3)-fold integral arose 

as equal to an (n—2)-fold integral. In the course of the proof above it has been 

shewn that this (mn —2)-fold integral is such that if taken over infinitely distant portions 

of the (n—2)-fold the corresponding contributions ultimately vanish. Thus it is legitimate 

to regard the (n—2)-fold as closed at infinity, namely by an (n—2)-fold for which our 

hypothesis (§ 22) remains valid. In which case the (n—3)-fold integrals that arise 

are mutually destructible. 

We have considered also the (n — 1)-fold integrals 

V=|{(« es zap OB ms ss 9 dso. 

Lo Ox, 

a= {(« OAs ne OH mss jas 
\ 1 0a, 2 Oa. 220 n—1) 

taken over the infinite (n—1)-fold bounded by the hypothetically closed (n— 2)-fold 

just considered. It is necessary to see that these are convergent. This follows because 

the portion of either of these (n—1)-fold integrals taken over the portion of the 

(n—1)-fold which lies at infinity can be replaced by an (n — 2)-fold integral taken over 

a closed (n—2)-fold lying entirely at infinity—and by the proof given above this 

(n — 2)-fold integral ultimately vanishes. 

25. Note to § 15. In the course of this demonstration we have utilised the fact 

that as (4, ..., tn) approaches indefinitely near to the (nm — 2)-fold of integration the integral 

Qar = |p (alt) dn» 

becomes infinite like log mod. ¢, where ¢=0 is the equation of the (n—2)-fold in the 

neighbourhood. The following direct verification of this fact is of interest. 

To a first approximation the points of the element dS,_, satisfy the following 

equations, the origin of reckoning being taken at the point of the (n — 2)-fold, 

UjX, + UX, +... + UnTn = O, 

U,X, + VoL +... + Unln = 0; 
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these give 

(UsV_ — Uys) 73+... (UyU3 — Usd) y+... 
= ———— , &=— = 5, ERS, HI B00 

UyVo — Usd UVe — Ug; 

whereby all the coordinates are expressed in terms of the (n—2) quantities 2, ..., Zn. 

Thence, using the equation «,.d@S,-,= M,,, we have 

Up +t... + Un’ a de = 2 n—2 
Uy? + Uy" 

FRY 35 Olina 

We can further suppose the axes so chosen that 

Cy = o00= Vi 0h = oo = On =O 

so that, for dS,., #,=0 and 2,=0; and dS,_,=da,da,...dz,. Also, the origin being 

at the point of dS,_, which is to be considered, ay, ...,@, are, for dS,., subject to a 

condition of the form 
RO Soa Gh RS Se ir) 

where a is small and fixed; these coordinates are otherwise unrestricted; we can there- 

fore put 
dSn—» = 1" sin” 46, sin” *9,... sin 0,_,.drd@, ... dAn, 

where the limits are 

r=0 toa, @,=0 to m, 6,=0 to m,..., O7.—0 to m 6,2,— 9) to 27. 

The point (4, ...,t,), as it approaches the (nm — 2)-fold, can be taken subject to 

Bib tee aly tigi — Opty taste teNlins "eos 

where 2,=0, 2, =0 and (0, 0, 25, ..., @) is any point of dS,_». 

Then to the integral 

Qa [ a 
= le (a\t) dSp_» 

the contribution arising from dS,_, is 

1 aa yn-3 dr Were | sin", ... sin Oy» d6,... Ons, 
n—-2oa) 

which is easily seen to be 
ra rr 3dr 

il (7? ae ey 2) 

putting n=2p, r? =z, 2+1=+t, this is 

ey es Le 
2 1 tP- 
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of which the infinite part, for diminishing € and fixed a, is exactly loge. But as we 

approach the (n—2)-fold in the way here taken we can put = hee®, (see § 16); so that 

the infinite part of log¢ is also loge. Thus in the limit the difference 

Qr [ ay 
= lp (it) dS,» — log 

remains finite, as stated. 

26. In this paper we have hitherto supposed the (n—2)-fold of integration to be 

given @ priori, by means of a succession of power series. Some remarks must be made in 

regard to the problem in which this conception has arisen. 

Suppose that a single-valued function F'(1, ..., Tp) is known to exist for all finite 

values of 7, ..., Tp, and to have no essential singularities for any finite values of 

7, ..., Tp, namely can be represented in the neighbourhood of any finite point (7,", ..., Tp) 

in the form 

F=, (1 —7:", -.-, Te— Te”) = Gol —1™, «--, Tp — Tp”), 

where yy), ¢) are ordinary power series (of positive powers) with a presumably limited 

common region of convergence. If the series w%, ¢ have a common vanishing factor 

at (4, ..., Tp”), that is, are both divisible by another convergent series which vanishes 

at (4, ..., Tp), this factor may be supposed divided out (Weierstrass, Werke, 11. (1895), 

p. 151). There is then a region about (7,", ..., Tp”), within the common region of 

convergence of y and ¢,, but not necessarily coextensive with it, such that, if 

(q+, +) Cp + Tp) 

be any point in this region, and the series yy, $ be written as power series with this 

point as centre, by putting ™%—7° =ch+uz, the resulting series in %, ..., Up have no 

common factor vanishing at u,=0, ..., up=O0 (Weierstrass, loc. cit., p. 154). This region 

we may temporarily call the proper region of (7,°, ..., tp”) for the function F. There 

may be points within this region at which Yr, ¢p both vanish without having a common 

factor vanishing there, such points lying upon an (n—4)-fold at every point of which 

F has no determinate value. If the series yy, ¢ as originally given have no common 

factor vanishing at (7, ..., tp”) there will similarly be a region about this point at 

no point of which have they a common vanishing factor. This region also we call the 

proper region of (7,, ..., Tp”) for the function F. 

By hypothesis there is then a proper region belonging to every finite point. We 

assume further, what is not quite obviously a deduction from the former hypothesis, 

that the whole of finite space can be divided into regions, each of finite extent, each having 

the property of being entirely contained in the proper region of every point of itself. 

The function F will then be represented in one of these regions K, by an expression, 

belonging to an interior point 7, 

=v eer 
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wherein yy, $ have no common factor vanishing at any point of K,; as we pass to 

a contiguous region A, we need a representation belonging to a point (7,”, ...) interior 

to K, of the form 

rev 
di 

By considering the equality 

iow we 
og fi 

in the region common to the proper regions) Of (Gases Tp), and (qj) 25 tm"))) we 

are then able to deduce that all the points for which y,=0 are also points for which 

vr,=0, and conversely. 

We thus build up the idea of a zero (n—2)-fold for the function F, and an infinity 

(n—2)-fold. If the former be represented by ©=0, and the latter by ®=0, the function 

F can be represented in the form 
(3) 

= sy Boe 

where A is an integral function; and ©, ® have no common zero other than points 

belonging to an (n—4)-fold at every point of which F is indeterminate. 

27. Note to § 22. If an n-fold space bounded by a closed (n—1)-fold be taken 

actually within the region of convergence of a power series in the complex variables 

&,, ..., &, say $(&, -.., &), where n=2p, the extent of the portion of the (n— 2)-fold 

given by ¢=0 which lies within the (n—1)-fold is finite. For consider the points of this 

portion for which &= yp, ..., &)= yp, where yo, ..., Yp are certain definite values; these 

points are given by the equation in &, #(&, y, ---, Y)=0, wherein &, is capable only of a 

limited range of values determined by the (n—1)-fold; as this range is included within 

the region of convergence of the &-power series @(&, yo, ---, Yp), there cannot be an 

infinite number of values of & within this range for which $(&, y, .--, yp)=0. Thus on 

the portion of the (n —2)-fold $(&, &, ..., &)=0 lying within the (n—1)-fold there exists 

only a finite number of values of &, corresponding to given definite values of &, ..., &. 

Let dS,_. be an element of the (n—2)-fold ¢=0; we have 

| i= | pass POT: | Anse 

the integrals being taken over the portion of the (n— 2)-fold which les within the 

(n-1)-fold; to prove that [ass is finite it will be sufficient to prove that every one 

of the integrals on the right is finite; we prove that the first of them is finite. Take 

upon the (n —2)-fold, ¢=0, (n— 2) independent sets of differentials given by the rows 

age, Chis, Ch DO, O5 O , 

(He, (he, 0, Cir. D5 OW. 

tim, Che, O , OW , Gee, UW. 

chim. thes, OU, O 5 O 5 che, 

Oo for) Wor, XOVOUE 
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where, for instance, d,,a,, de,,%, are determined in terms of di»,., by the equation 

1 (day1y + Uday 422) + Griid@er41 = 0, 

and dz,2,, d»,a, are determined in terms of daz,,, by the equation 

fy (doy; + Udy, L2) + Uy 41a 49 = Oe 

Then «,dS,-, may (§ 5) be replaced by 

dx,dx, ... Ain Ay 3 

since then the range of values for each of 2, %, ..., ,, for points under consideration, is 

finite, and, as proved, there is only a finite number of points of the (n— 2)-fold for which 

Ig, «++» ty have a given value, it follows that the integral 

dx, ... Atn 

taken over the whole extent of the (n—2)-fold within the region considered can only 

be finite. 

28. Note to § 8. The following example, relating to the transformation of integrals 

considered in Part I. of this paper, seems worth preserving. 

For n=4 we have for the transformation from a closed (n—2)-fold to an (n—1)-fold 

bounded thereby, the equation 

(42g. Pos + Ky Py + KP + Ky Py + Koy Pog + Po) dS» 

= + OP. , OPis , OP 
= [as,.. {1 = ~ an + =) 

ms { OP» OP. ae OP, 
se (oa, 02s ae) 

w (22s 4 Pe Ps) 
(ss Oa, ]\? 

= [a8 (4,Q) + 2 Qo + 3Q3 + K,Qs), say; 

(22s oP aPa) 
Gea em Ge 

thus Gling 2 SE ara 
OX> OL 02, Py 

OP os ge OP» = 

On. f0z,. Lotau <2 

OP OP., ORs Sg), 
OD, OX OX; 

OP a OP» OP Q,; 

02, 0X2 OL: 
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30 + oe + B05, OM =i), therefore Oa, ay 0%; Oars 

which is a necessary condition for the consistence of the four equations just written. It is 

satisfied for instance by 

Q=1Q=1 (7 | oj £), Q=10=-1(% +i), 
aa 1 

f being any function of 2, a, 2%, 2,; corresponding to these values the four equations just 

written are satisfied by 

P,=P,=0 P.=f, Pua Ps=f Pa=-f 

But it does not thence follow that 

[x + Ukyy + Utss — Ko) ifs Sj» 

SN aeeeaies) Lik P) (es tin) (5 GEN ee 
is 

for the first mtegral vanishes for a complex (n— 2)-fold, and the second integral does not 

necessarily vanish, as we see by taking for instance 

1 = (a, —4,)? +(@,-—h) 

2(& — 7) (&—t) (4 —hP + (m— bY + (% — 6)? + (4s —t,)?’ 
f= 

when we get 

y Of “Sere lige Cans (diane 
tae an Gm p (|e), On. oe Gates i) 9D 

whereby the second integral becomes 

ise ( Os On $ : GG 
= Jas ce + ik») lee =e) Q (@ t) + (Ks + Ux,) (= —1 sa) a) (wit) ; 

which is not always zero. 

In explanation it may be noticed that on the (n—2)-fold there are points where 

&,=7,; and for these f is infinite. 

25 July 1899. 
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DIAGRAM OF 27 DAY PERIOD. 
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Cambridge Philosophical Transactions, Vol. XVIII, Plate 

PLATES 3—23 ILLUSTRATING Proressor Livetne’s Paper (pp. 298—315), On the 

effects of Dilution, Temperature, and. other circumstances, on the Absorption Spectra of 

solutions of Didymium and Erbium salts. 

These plates are all reproductions, enlarged to double the size, of photographs of some 

of the spectra from which the conclusions in the text have been deduced. In the 

processes of enlargement and reproduction some of the fainter details visible im the 

original negatives have (perhaps unavoidably) been lost : but they present the salient 

features of the changes in the spectra produced by the variations of circumstance. 

The references to these plates in the text applied to the original negatives and 

were printed before the reproductions were ready. The latter, being positives, are 

reversed, and in order that the references may be easily intelligible it has been 

necessary to place the red ends of the spectra on the left hand. 

The figures at the top of each plate are the approximate wave lengths of the 

bands in the spectra beneath them, and sufficiently indicate the range of the spectrum 

photographed. 

PLATE 3. 

Absorptions of solutions of didymium chloride in four degrees of dilution in thicknesses inversely 

as the dilutions. The most concentrated solution contained 140-7 grams per litre, and the absorbent 

thickness of this solution was 38mm. 

solution 1/8 strength 
1 z " 

305 mm. thick 

6 strongest solution 

38 mm. thick 

: solution 1/4 strength 

‘ 152°5 mm. thick 

; solution 1/2 strength 

76 mm. thick 

It will be noticed how very nearly identical these four spectra are. The original photograph 

shews a number of faint bands which have not come out in the reproduction. They are however as 

nearly identical in all four spectra as are the stronger bands here reproduced. 

2 o. 





Cambridge Philosophical Transactions, Vol. ROVIAIE Plates A, 

PLATE 4, 

Absorptic ms ¢ f solution of didymium sulphate in four degrees of dilution. 

8 469 144 
) 

403 5 18: 

tbe 

The diffuse bands at about 380, 375 and 364, are visible in the 

lave nearly disappeared in the reproduction 

quite 

PLATE 5. 

Absorptions by solution of erbium nitrate in four deerees of dilution, 

566 grams of the salt to the litre. 

) 
SS 149 14] 

l 
404 387 

7 

bo 

increased concentration of the with The increasing diffuseness of the bands 

series; the weak band about 441 when the soluti 

that about A449 is much broader and the details within it obliterated. 

seeming to be washed out 

saturated solution 

38 mm. thick 

half-strength 

76 mm. thick 

quarter-strength 

152°5mm. thick 

one-eighth strength 

305 mm. thick 

original photograph, but 

the strongest containing 

one-eighth strength 

305 mm. thick 

quarter-strength 

152°5 mm. thick 

half-strength 

76 mm. thick 

strongest solution 

38 mm, thick 

solution is seen in this 

m is concentrated while 

a. 
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Cambridge Philosophical Transactions, Vol. XVIII, Plates 6, 7. 

PLATE 6. 

Absorptions by solutions of didymium nitrate, concentrated, and extremely dilute. The most concen- 

trated had 6111 grams of the salt per litr he othe is part of the same solution diluted to 

15-5 times its bulk 

= > ae =) x > 1. 
1D gS as = RD & 

stronger solution 

6-7 mm. thick 

1/45°5 strength 

305 mm. thick bo 

these two spectra except that the band in the vellow i little difference between 1eS¢ 

those at A476 and 427 more washed out. broader with the stronger solution, and 

PLATE 7. 

chloride of concentrations equivalent to those of the nitrate Absorptions by solutions of didymium 

used for plate 6: the stronger containing 462°9 crams of the chloride per litre. 

stronger solution 

6-7 mm. thick 

1/45°5 strength 

305 mm. thick 

There is no definite difference between these two spectra. 
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Cambridge Philosophical Transactions, Vol. XVIII. Plate 

PLATE 8. 

Absorptions of a solution of erbium nitrate containine 467°6 crams of the salt per litre, and of a 

solution made by diluting the former to 45°5 times its bulk. 

1 
104 8 7 

3 
188 140) 

stronger solution 

6°7 mm. thick 

1/45°5 strength 

305 mm. thick 

The bands are more diffuse with the stronger solution, that at about A377 being decidedly broader. 

the original and is more diffuse with the stronger The band at about A449 is more distinctly seen in 

solution than with the weaker, 

PLATE 9. 

Absorptions by solutions of erbium chloride of concentrations equivalent to those of the nitrate used 

the stronger solution containing 363°3 grams of the salt per litre. for plate 8; 

co oD L =) 10> =H io t 
oO nN 22 =H an S a > 
Yn Yes aa + SH an 

1/45°5 strength 

305 mm. thick 

stronger solution 

6°7 mm. thick 

any difference between these two spectra except that the band about 377 is rather 

probably to the overlapping 

end. The fainter 

There is hardly 

stronger with the more concentrated than with the dilute solution, owing 
of the general diffuse absorption of the concentrated chloride at the more refrangible 

bands which are visible in the original photograph can hardly be traced in the reproduction. 
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PLATE 10. 

Absorptions by solutions of erbium chloride and equivalent solutions of erbium nitrate, alternately 

four degrees of concentration, the strongest having 726°6 grams of the anhydrous chloride to the litre, (2 

and the equivalent nitrate 935'2 gsrams to the litre. 

~ 
188 149 141 

1 
104 

strongest solution of Er Cl* 

38 mm. thick 

strongest solution of 

Er (NO®) 

38 mm. thick 

half-streneth chloride 

76 mm, thick 

half-strength nitrate 

76 mm. thick 

quarter-strength chloride 

152-5 mm. thick 

quarter-strength nitrate 

152°5 mm. thick 

one-eighth-strength chloride 

305 mm. thick 

one-eighth-strength nitrate 

305 mm. thick 

The ecreater diffuseness of the bands with the more concentrated solutions of the nitrate is evident, 

and so is the extension of the general absorption at the more refrangible end of the spectrum with the 

most concentrated solution of the chloride, 

The difference between the absorptions by the chloride and nitrate diminishes with dilution and has 

almost, or quite, disappeared in the case of the weakest solutions. 

10. 
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PLATE 11. 

Absorptions by didymium chloride and nitrate, alternately, in equivalent solutions of four degrees of 

concentration, beginning with the strongest solution containing 462°9 grams of the anhydrous chloride to 

the litre, followed next with the equivalent solution containing 611°1 grams of nitrate to the litre. 

aS oS} + mre @ o 1p 
oo a) + ON or) ios 
1S no) sa x s+ sts oD 

strongest solution of DiCl* 

38 mm. thick 

: : strongest solution of 
2 Di(NO?#)3 38 mim. thick 

: E a half-strength chloride 

+ 76 mm. thick 

, : 9 7 half-strength nitrate 

: i 76 mm. thick 

a quarter-strength chloride 
5) . : 152-5 mm. thick 

Ps quarter-strength nitrate 
6 ¥ eae 5 

152°5 mm. thick 

F Ay one-eighth-strength chloride 7 
; 305 mm. thick 

be one-eighth-strength nitrate 
8 A 305 mm. thick 

The extension of the general absorption at the most refrangible end of the spectrum with the 

concentrated solution of chloride is evident in the uppermost figure. With such strong solutions as were 

used for these photographs other differences between the absorptions by chloride and nitrate can be seen 

only in the weaker bands such as those from 433 to A406. These are weakened by diffusion in the 

ee of the nitrate, but there is very little difference between the absorptions by chloride and nitrate 

in the most dilute solutions. 
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PLATE 12. 

Philosophical Transactions, Vol. X VIIL., 

Absorptions by solutions of hydrochloric acid in alcohol, and in water, compared with the absorption 

by pure water. 

The effect of the hydrochloric 

while diminished concentration 
] 
nas 

acid 

the absorption with diminished concentration of the 

at the more 

no ettect 

acid is seen in the aqueous solutions Nos. Oe teh 7, 

in the case 

refrangible end 

of the 

1S 

alcoholic solutions Nos. 1, 2, 

strongest solution of HCl] in 

aleohol, 38 mm. thick 

half-strength, do. 

76 mm. thick 

quarter-strength, do. 

152 5 mm, thick 

pure water 

305 mm. thick 

strongest solution of HC] in 

water, 38 mm. thick 

half-strength, do. 

76 mm. thick 

quarter-strength, do. 

152°5 mm. thick 

one-eighth-strength, do. 

305 mm. thick 

visible, and the diminution of 

Plate 12. 
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PLATE 13. 

Absorptions by solution of erbium chloride, cold and hot alternately, in two degrees of concentration. 

{88 149 104 

half-strength solution 

76 mm. thick at 23° C, 1 

half-strength solution 
») 

a 76 mm. thick at 97°C. 

stronger solution 

3 38 mm. thick at 253°C. 

stronger solution 

: 38 mm. thick at 99°C 

The extension of the general absorption at the more refrangible end of the spectrum by a rise of 

temperature is manifest in these photographs, and so is the greater diffuseness of the bands at about \449 

and A488. 
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PLATE 14. 

Absorptions by solutions of erbium nitrate, cold and hot alternately, in four degrees of dilution, in 

thicknesses inversely as the dilutions. The strongest solution had 566 grams of erbium nitrate per litre. 

D = 
x = 4 

{04 

strongest solution 

38 mm. thick at 22°C. 

do. 

do. at 94° C. 

solution 1/8 strength 
) 305 mm. thick at 

: do 
6 

do. at 94°C. 

a solution 1/2 strength 
i a vant 

76 mm, thick at 23°C, 

do 
5 

It will be noticed that the eftect of heating the solution is in general to render the absorption 

bands more diffuse, and that it is the bands that increase in difftuseness with increasing concentration 

of the solution which are most affected by the rise of temperature. 

The original photographs shew several fainter bands which have not come out in the reproduction, 

and also shew the lighter interspaces between the absorptions in the ultra violet much more distinctly 

than the reprodu 

distinct in the spectra of the cold solutions than in those of the hot solutions. 

ion. Even in the reproduction these lighter interspaces in the ultra violet are more 

Plate 14. 
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PLATE 15, 

Absorptions by solution of didymium sulphate, cold and hot, in two degrees of concentration. The 

stronger solution was a saturated solution at 20°C. 

= nN 
510 403 S80 

1 38 mm. thick, at 23° C. 

same solution and same 
9 : : 
= thickness, at 90° C. 

half-strength solution 

2 76mm. thick, at 243°C. 

half-strength solution 
I 76 mm. thick, at 92° C. 

The extension of the general absorption at the more refrangible end of the spectrum, and the increased 

diffuseness of the bands in the blue, by the rise of temperature is plainly seen in these photographs. 

PLATE 16. 

Absorptions by solution of erbium chloride, neutral and acid, in two degrees of concentration; the 

stronger neutral solution haying 726°6 grams of the chloride to the litre, and the acid solution having 

besides an amount of hydro hlorie acid equivalent to the amount of neutral salt. 

{S88 149 t1? 104 8 

stronger neutral solution 
1 

¢ 
38 mm. thick 

stronger acid solution 
”» 2 38 mm, thick 

one-third strength neutral 
a solution, 152°5 mm. thick 

one-third streneth acid 
4 solution, 152°5 mm. thick 

The thickness of the absorbent solutions is not proportional to the dilutions, so that the absorptions 

of figures 3 and 4 are produced by a quantity of salt one-third greater than that which gave figures 

1 and 2, which makes the bands of 3 and 4 stronger. 

The effect of the acid is chiefly to extend the general absorption at the more refrangible end of the 

spectrum. 

stronger solution of Di2(SO+4)* 

15, 16. 
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PLATE 17. 

Absorptions by solutions of erbium nitrate, neutral and acid, in two deerees of concentration. The 

stronger neutral solution had 935:°2 erams of the salt per litre, and the acid solution had in it besides 

as much nitric acid as was equivalent to the amount of neutral salt, 

) 88 
449 

] 
104 8 

stronger solution, neutral 
1 

38 mm. thick 

stronger solution, acid 2 
20 F 

2 
38 mm. thick 

half-strength, neutral 
3 

76 mm. thick 

half-strength solution, acid 
t 

76 mm, thick 

The eftect of the acid in rendering the bands more diffuse is seen in these photographs, and in the 

extension of the general absorption at the more refrangible end of the second figure, 

PLATE 18. 

Absorptions by solutions of didymium chloride, neutral and acid, in two degrees of concentration : the 

acid solutions containing the same amount of didymium per litre as the neutral solutions but with 

hydrochloric acid in addition. 

10 
t44 

) 
37 B80 169 103 oe 

5 

: 
stronger solution ef DiC], 

neutral, 38 mm. thick 

9 stronger solution, acid 

38 mm, thick 

_ half-streneth, neutral 
3 76 mm. thick 

{ half-strength, acid 

76 mm. thick 

The chief eftect of the acid is to extend the ceneral absorption at the more refrangible end of the 

spectrum, 

18. 
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PLATE 19. 

Absorptions by nearly equivalent solutions of didymium chloride in water, in alcohol, and in alcohol 
, charged with hydrochloric acid, The acid solution was prepared from the neutral alcoholic solution by 

passing hydrochloric acid gas into it and was found to be about nine-tenths of the streneth in didymium 
of the neutral solution. 
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1 neutral aqueous solution 

2 neutral alcoholic solution 

3 acid alcoholic solution 

The eeneral absorption at the more refrangible end is extended : little by the alcohol, and still 

more by the addition of acid. 

The bands are generally rendered more diffuse by alcohol and a little shifted towards the red end of 

the spectrum, the shift increasing as the refrangibility decreases. 

The acid seems to diffuse away the bands in the blue, the strong paw at ibout A520 are just 

visible in the spectrum of the acid solution considerably shifted towards the red. And the strong group 

in the yellow is still more shifted, and so spread out that several of the component bands are separated. 

PLATE 209. 

Absorptions by equivalent solutions of didymium nitrate in water and in glycerol. 

183 169 596 
5 

103 380 

aqueous solution 

alycerol solution 

No definite shift of the bands by the elycerol appears in the photograph, but there is an extension 

of the rene ral absorption at the more refrangible end ot the spectrum, and the bands are rendered More 

diffuse by the glycerol. 

cal Transactions, Vol. XVIII, Plates 19, 20) 
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PLATE 21. 

Absorptions by glass of borax coloured with didymium oxide and by a solution in water of didymium 

nitrate containing a quantity of didymium equal to that in the glass. 

10 
183 169 144 

) 

103 380 

borax glass coloured with 
didymium 

aqueous solution of 
didymium nitrate 

These photographs are disfigured with horizontal lines due to dust on the slit of the spectroscope. 

It will be seen that the bands are for the most part shifted by the borax but very unequally so: also 

that the bands are rendered more dittuse by the borax and some almost diffused away. 

PLATE 22, 

Absorptions by equivalent solutions of didymium acetate in acetic acid and of didymium nitrate in 

water. 

596 5 5 } 169 ti4 10; 380 

1 didymium acetate 
dissolved in acetic acid 

2 equivalent aqueous 
solution of nitrate 

The bands are generally shifted towards the red by the acetic acid, and in the photograph the 

shift diminishes as the band is less refrangible; but the dispersion of the spectroscope also diminishes 

as the light is less refrangible; so the apparent diminution of the shift is not altogether real. 

The acetic acid also increases the diffuseness of the bands, as is very manifest in the case of the 

band at about A476, and may be traced in others. 
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Cambridge Philosophical Transactions, Vol. XVIIT., Plate 23. 

PLATE bo we 

Absorptions by solutions of didymium chloride in water, and of didymium tartrate in water charged 

with ammonia, 

48 169 444 42 403 
E 

aqueous solution of 

didymium chloride 

ammoniacal solution of 
tartrate 

The tartrate has all its bands more diffuse than the chloride, some of them almost diffused away, 

and they are shifted towards the red. 





Cambridge Philosophical Transactions, Vol. XVIII, Plate X 







a 
J 

EZ, 
Se 

ee ‘Ail 



Cam. Phil Trans Vol XVI Plate XXV. 
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