$$
54-C 4
$$

TRANSACTIONS

OFTHE
ROYAL SOCIETY OF EDINBURGH.

> V O L. IV.

;

E D INBURGH:

PRINTED FOR T. CADELL JUN. AND W: DAVIES (SUCCEssors TO MR CADELL) IN THE STRAND, LONDON, AND
J. DICKSON, AND E. BALFOUR, EDINBURGH.

CONTENTS

OFTHE

FOURTHVOLUME.

> PART I
> HISTORY of the SOCIETY.

Four Theorems for refolving all the Cafes of Plane and Spheri-
cal Triangles, by the Reverend Mr Fifher, - Page 4:
Difertation on the Philofophy of Ligbt, Heat, and Fire, by
Dr Hutton,
Improvement of the Mercurial Level, by Mr Keith, - 17 .
Experiments on the Effects of Opium on the Living Animal, by Dr Wilfon, 18.
On the Diurnal Variations of the Barometer, by Dr Balfour of Calcutta, 25
On the Sulpburating of Metals, by Dr Hutton, 27.
New Obfervatory at Aberdeen, 29.
APPENDIX.
Office-Bearers of the Society, 31.
List of Members, continued from the third Volume, 33.
Members deceased, 36.
Donations, 38.
I. Biograpbical Account of Lord Abercromby, (1).
II. Biographical Account of William Tytler, Efq; of Wood- boufelee, (17).

III. Biograpbical Account of Mr William Hamilton, late
 Profefor of Anatomy and Botany in the Univerfity of
 Glafgore, - - Page (35).
 IV. Biographical Account of John Roebuck, M. D. . (65).

P A R T II.
 PAPERS READ BEFORE THE SOCIETY.

I.

Papers of the Physical Class.

1. Account of a Mineral from Strontian, and of a peculiar Species of Earth which it contains. By Thomas Charles Hope, Profefor * of Medicine in the Univerfity of Glafgow, - - Page 3.
II. Obfervations on the Natural Hifory of Guiana. By William Lochead, Efq;
III. On the Principles of the Antecedental Calculus. By James Glenie, Efq;
IV. Obfervations on the Trigonometrical Tables of the Brabmins. By John Playfair, Profeffor of Mathematics in the Univerfity of Edinburgh,
V. Some Geometrical Porifms, with Examples of their Application to the Solution of Problems. By Mr William Wallace, Afffant-Teacher of the Mathematics in the Academy of Perth,
$\mathrm{V} \dagger$. On the Latitude and Longitude of Aberdeen. By Andrew Mackay, LL. D. \& F. R. S. Edin.

* Now Joint Profeffor of Chemiftry in the Univerfity of Edinburgh.
\dagger By miftake No. V. is repeated.
VI. An Account of certain Motions which fmall lighted Wicks acquire, when froimming on a Bafon of Oil. By Patrick Wilfon, F. R. S. Edin. and Profeffor of Practical Aftronomy in the Univerfity of Glafgoze, Page 163. VII. Account of a Singular Halo of the Moon. By William Hall, Efq; of Whiteball, F. R. S. Edin.
VIII. A New Series for the Rectification of the Eliiphis, with Obfervations on the Evolution of a certain Algebraic Formula. By James Ivory, A. M.

177.

IX. Mineralogical Defoription of the Mountain of Gibraltar. By Major Imrie.
191.
X. Defcription of a Thermometer, which marks the greateft Degree of Heat and Cold from one Time of Obfervation to another. By Alexander Keith, Efq; F. R. S. \& F. A. S. Edin.
XI. Defcription of a Barometer which marks the Rife and Fall of the Mercury from two different Times of Obfervation. By Alexander Keith, Efq; F. R. S. \& F. A. S. Edin.
XII.- Metcorological Abftract for the Years 1794, 1795, 1796,

II.

Papers of the Literary Ciass.

1. On the Origin and Principles of Gothic Architecture. By Sir James Hall, Bart. F. R. \& A. S. S. Edin. -
II. M. Chevalier's Tableau de la Plaine de Troye illufrated and confirmed from the Obfervations of fubfequent Travellers and others. By Andrew Dalzel, M. A. F. R. S. Edin. Profefor of Greek in the Univerfity of Edinburgh,
[^0]
ADVERTISEMENT.

Edinburgh, February 15. 1798.

At a Meeting of the Council of the Royal Society it was, this day, Refolved, That a Publication of Papers, communicated to the Society, fhall hereafter be made annually, whether fuch Papers be fufficient to form an entire Volume, or only a Part: of a Volume.

HISTOR

$$
0 \mathrm{~F}
$$

THESOCIETY.

THE Third Volume of thefe Tranfactions brings down the Hiftory of the Society no farther than the end of the year 1792, though it contains feveral Papers that are of a later date.

Phyf. Cl. Dr Monro read a paper, entitled, Obfervations on the Mufcles, and particularly on the Effects of the Oblique Fibres. This paper is inferted in the Third Volume of the Tranfactions, Part II. No. XIII. p. 250.

Lit. Cl. Mr Stewart read the firft part of his Biographical Account of the late Adam Smith, LL. D. [See Vol. HII. Hift. p. 55.]
a. 2
${ }^{\circ}$ Lit

Th93.
Mar. 18. Biographical account of Dr Smith.

April 3. Mr Playfair on porifms.

Mr Fifher on trigonometry.

Lit. Cl. Mr Stewart read the remainder of the Biographical Account of the late Adam Smith, LL. D.

Phyf. Cl. Mr Playfair read fome Obfervations on Porifms, additional to thofe formerly communicated. Thefe were intended to prove, that the propofitions called Porifms do not, as fome mathematicians have alleged, involve in them any violation of the laze of continuity. This fubject belongs to the fecond part of the paper, No. VII. of the preceding volume; which fecond part has not yet been fully communicated to the Society.

At this meeting was alfo read a paper on Trigonometry, entitled, An Eafy and General Method for folving all the Cafes of Plane and Spherical Triangles, by the Reverend Walter Fisher, minifter at Cranftoun.

It has long been an object with mathematicians to reduce the rules of trigonometry to the fmalleft number poffible, and to give them the form moft eafily retained in the memory. Lord Napier, whofe difcoveries have fo much facilitated and abridged the labour of numerical calculation, applied himfelf to fimplify the rules of trigonometry with great fuccefs. He invented the rule of the Circular Parts, which gives an apparent unity to theorems, where a real unity is wanting, and is perhaps the moft fortunate attempt toward an artificial memory that has been made by any of the moderns.

Various improvements of this rule have fince been propofed. That of M. Pingré is one of the beft: He retains Lord Napier's arrangement of the circular parts, and reduces the rules of fpherical trigonometry to four ; the two firft of which are NAPIER's, and the other two a generalization of the common theorems refpecting the fegments, into which the perpendicular, drawn to any fide of a fpherical triangle, diwides that fide, and alfo the angle from which it is drawn. See

Mem. Acad. Sciences, 1756, p. 301. There is a fifth rule, it muft be obferved, neceffary for the cafe, when the three fides, or three angles of the triangle, are given, as this cafe refufes to fubmit to Napier's rule in any form of it.

The author of the paper, now communicated to the Society, has alfo been fuccefsful in his attempt to render the rules of trigonometry eafily retained in the memory. He employs the circular parts, and makes ufe of fewer rules than M. Pingré, as he has only four, including one for the cafe juft mentioned.

The theorems Mr Fisher employs are not new, but they are judicioully felected, and are lefs embarraffing in the application than either thofe of Napier or Pingré. They are as little as poffible fubject to ambiguity; they do not require the letting fall a perpendicular, and they apply both to plane and fpherical triangles.

1. M denotes the middle part of the triangle, and muft always be affumed betwixt two given parts. It is either a fide or the fupplement of an angle.
2. A and a are the two parts adjacent to the middle, and of a different denomination from it.
3. O and o denote the two parts oppofite to the adjacent parts, and of the fame denomination with the middle part.
4. 1 is the laft or moft diftant part, and of a different denomination from the middle part.

THEOR. I.

$\operatorname{Sin} \mathrm{A}: \operatorname{fin} \mathrm{a}: \mathrm{f} \operatorname{fin} \mathrm{O}: \operatorname{fin} \mathrm{o}$.

THEOR. II.

$$
\operatorname{Sin} \frac{A-a}{2}: \operatorname{fin} \frac{A+a}{2}:: \tan \frac{O-0}{2}: \tan \frac{O+0}{2} .
$$

THEOR. III.

$$
\operatorname{Tan} \frac{A-a}{2}: \tan \frac{A+a}{2}:: \tan \frac{0-0}{2}: \tan \frac{0+0}{2} .
$$

THEOR. IV.
$\operatorname{Sin} A \times \operatorname{fin} a: 1:: \operatorname{fin} \frac{A+a+1}{2} \times \operatorname{fin} \frac{A+a-1}{2}:{\overline{\operatorname{fin}} \frac{M_{2}}{2}}^{2}$.

Mr Fisher recommends, for the purpofe of remembering thefe rules, to commit to memory the words Sao, Satom, Tao, Sarfalm, formed from the abreviation of the terms of the above proportions. It is obvious that thefe four theorems apply to plane triangles, providing that, inftead of the fine or tangent of a fide, you take the fide itfelf.
1593.

Nov, 4. Dr Hope on a mincral from Strontian.

Pbyf. Cl. Dr Hope read a paper, giving an account of a Mineral from Strontian in Argylefhire, and of a Peculiar Species of Earth contained in it. A fhort abftract of this paper was inferted
ferted in the laft volume of the Tranfactions. The paper itfelf is the firft of the Phyfical Clafs in this volume. [See Part II. p. 1.]

Pbyf. Cl. Dr Monro read a paper, being Experiments on the Nervous Syftem with Opium and Metalline Subftances, with a view of determining the Nature and Effects of Animal Electricity. This paper is publifhed feparately.

At this meeting a paper was alfo communicated from Andrew Mackay, LL. D. containing an Account of a Series of Obfervations, made by him in the Obfervatory at Aberdeen, for determining the Latitude of that place.

Dr Mackay alfo promifed to fend his Obfervations for determining the Longitude of the Obfervatory. Thefe were not received till September 1796 . Both papers are inferted in this volume, Part II. No. VI. p. 135 .

Dr James Anderson read a paper, entitled, Obfervations on Peat Mofs. This paper has been publifhed feparately.

Phyf. Cl. A paper was read from Mr Lochead, F. R. S. Edin. on the Natural Hiftory of Guiana. It is inferted in this volume, Part II. No. II. p. 4 I.

Phyf. Cl. Dr Hutton read the firft part of a paper, being a Differtation on the Philofophy of Light, Heat, and Fire. This paper, which confifted of feveral parts, was read at the different Meetings of the Society in May, June, July, Auguft, and December, of this year. It has been fince publifhed feparately in one volume 8 vo. The following abftract contains an account'
1793.

Dec. 2.
Dr Monro on the nervons fyftem.

Dr Mackay on the latitude of Aberdeen.

${ }^{1794}$.

Jan. 6.
Dr Anderion on peat mofs.

March 3. Mr Lochead on the natural hif. tory of Guiana.

April 7. Dr Hutton on the philofophy of light, heat, and fire.
of the object of the Differtation, and of fome of the reafonings employed in it.

Dr Hutton was led into the fpeculations contained in the Differtation, by an account of two experiments made by M M. DE Saussure and Pictet of Geneva. In the firft of thefe experiments, two concave fpecula were placed oppofite and parallel to one another, about twelve feet diftant; and in the focus of one of them was a ball of iron, which had been heated to incandefcence, but allowed to cool till it was no longer luminous, even in the dark. In the focus of the other fpeculum a thermometer was placed, which prefently rofe 8° (of Reaumur's fcale) above another that ftood near it, but without the focus. Voyages dans. les Alpes, tom. II. § 926 .

To account for this phenomenon, M. de Saussure fuppofes, that there exifts what M. Lambert and fome other philofophers have called radiant beat, and that this heat may be obfcure, and not accompanied with light. This radiant heat he conceives to be reflected in the fame manner that light is, and by that means to have produced the effect on the thermometer that has juft been defcribed.

To this folution Dr Hutton objects, alleging, that it afcribes properties or capacities to heat which are inconfiftent altogether with our notions of it. We know heat only as a quality of Bodies, and as acting either in expanding them, when it is called fenfible heat, or in giving them fluidity, when it is termed latent heat. We never perceive it as exifting in any other fhape, and therefore, to fuppofe it capable of moving through face, independently of body, and of being reflected from a polifhed furface, is to afcribe to heat properties not predicable of it, and quite inconfiftent with its nature, fo far as we have information concerning it.

Dr Hutton therefore propofes another explanation. From experiments which he had made, long fince, he had found that
the different fpecies of light, when of equal intenfity, as eftimated by the eye, are of unequal intenfity when their effect is meafured by the thermometer. In thefe experiments he rendered light of different colours equally intenfe to the eye, by increafing or diminifhing the diftance from the luminous body, till he could juft read by the light of it. In this way he compared the red light from a fire of coals, with the white light of flame, and found, that while they were equally powerful in affording vifion, the red was incomparably the moft powerful in producing heat.

When a body, therefore, is heated to incandefcence, like the iron ball in M. de Saussure's experiment, it emits at firf the white or compound light, but as it cools, the light which it emits becomes of the red fpecies, and this is the laft that difappears. As the body cools, therefore, the power of its light, to produce heat, increafes in proportion to its power to afford vifiom, and, therefore, when this laft vanifhes, or ceafes entirely, the other may fill remain in a certain degree. Thus, in the experiment juft defcribed, the iron ball, after it had loft all light to the eye, continued to emit rays of light, which, though they made no impreffion on the organ of vifion, had power to produce heat, and expand the mercury in the thermometer. To the principle, therefore, of the irradiation of obfcure heat, by which M. de Saussure explains the above phenomenon, Dr Hutton fubftitutes that of obfcure, or invifible light, which, though it be in appearance more paradoxical, is in reality free from the very ftrong objections which prefs againft the other hypothefis.

We muft not onit to obferve, that M. Pictet varied the experiment, by placing a matrafs full of boiling water, inftead of the iron ball, in the focus of one of the fpecula. The thermometer in the other was ftill affected, and raifed a little more than a degree. The irradiation of invifible light explains this alfo; for it is natural to fuppofe, that fuch an irradiation takes place from

Vol. IV.
b
all
all bodies, when above a certain temperature, whether they be in the act of cooling down from incandefcence or not.

The fame ingenious and accurate obferver, made another change in the circumftances of the experiment, by fmoking the bulb of the thermometer ; in confequence of which it was heated fooner, and rofe higher than before. This appearance is perfectly conformable to Dr Hutron's theory, and feems quite inconfiftent with the other. The black coating of the bulb, by its well known property of abforbing light, tended to accelerate and increafe the effect of the light in heating the thermometer ; but the fame coating being of fmoke, and a very bad conductor of heat, muft have oppofed the tranfmiffion of heat through the glafs, and have both retarded and diminifhed its effect.

Nothing, indeed, can be more unlike than the laws which ufually regulate the propagation of light and heat. To move with extreme velocity through the tranfparent fubftance of fome bodies, without heating them in any fenfible degree; to be reflected from the furfaces of others, without entering them at all; and, laftly, to be abforbed by certain bodies, neither paffing through them, nor being reflected from them, thefe are the properties of light. Heat, on the other hand, is lowly propagated through all bodies, combines with them intimately in its paffage, and often remains at reft without any motion whatever.

The converfion of thefe experiments, which was very ingenioufly imagined by M. Pictet, led to a fact fill more fingular and unexpected. Inftead of the heated body, he placed a matrafs, with ice in the focus of one of the fpecula; the confequence was, that the thermometer in the focus of the other was fenfibly depreffed. When the cold was increafed, by pouring nitrous acid on the ice, the depreflion of the thermometer was alfo increafed.

To account for this phenomenon, M. Pictet confiders the thermometer as the body irradiating heat, and the matrafs with the ice as the body which receives it, fo that the experiment is the fame with the former, only that the obfcure heat moves in the contrary direction.

This explanation, however, is not only liable to the objections that have been made, in general, to the fuppofition of radiant and obfcure heat, but it involves in it new difficulties. It implies, for inftance, that the irradiation from the heated body is affected by the ftate of the body which receives that irradiation, a principle furely contrary to all analogy. In the irradiation of light from a luminous body, nothing fimilar to this is obferved: Whether the light of a candle fall on a white wall, by which it is reflected, or on a black wall, by which it is abforbed, no difference is produced in the quantity of light emited, but it remains in both cafes the fame. In no cafe, it fhould feem, can the quantity of the radiating matter depend on the condition of the recipient bodies; yet, according to the preceding explanation, a body muft be fuppofed to irradiate heat more copioufly when the body on which the irradiation falls is cold than when it is hot; a fuppofition which, being, as has been faid, contrary to analogy, cannot be admitted.

The Doctor next proceeds to offer his own explanation, but with the diffidence that ought to accompany every attempt to account for a phenomenon fo fingular as this, and having fo little analogy with any other fact that relates to the communication of heat. He fuppofes that all bodies irradiate invifible light, when they are of an ordinary temperature, and that this irradiation diminifhes as their heat diminifhes. The temperature of the thermometer, therefore, in the above experiment, is to be confidered, like that of all other bodies, as being maintained by the action of two caufes, viz. the irradiation of invifible light from the furrounding bodies, and the communication of heat from
them by contact. The thermometer, therefore, that is placed in the focus of one of the mirrors, in the above experiment, will be affected by any body whatfoever that is placed in the focus of the other. If that body be cooled below the temperature of the furrounding bodies, lefs light will be irradiated from it, and reflected on the thermometer ; the thermometer, therefore, will be depreffed, till the influx of heat from the air, or other bodies with which it is in contact, fupply the deficiency. This, however, is thrown out rather as a queftion to be refolved by future obfervations, than as a theory already eftablifhed. The experiments by which it muft fand or fall are not indeed difficult to be imagined. They are however of extreme delicacy in the performance; and Dr Hutton, who, in differing from the philofophers of Geneva, does juftice to the accuracy and judgment with which they have conducted their inquiries, expreffes a wifh, that the fkill and ingenuity of M. Pıctet were again directed toward this object.

By the preceding inquiry, Dr Hutton was led to confider the connection between light and fire, as well as between light and heat; a fubject which he had formerly treated of in feveral papers read before the Royal Society, and afterwards publifhed in his chemical differtations.

In thefe he objected to the theory of fire as laid down by M. Lavoisier, and the French chemifts; acknowledging, at the fame time, that the oxygenating of bodies, by vital air, is to be ranked among the greateft difcoveries in phyfics. It is a difcovery, however, in his opinion, that will by no means explain all the phenomena of burning, by which the exiftence of fome other caufe is clearly pointed out, betide the decompofition of the vital air, and the extrication of the calorique or latent beat, which maintained the air in a flate of fiuidity. The arguments in fupport of this affertion, which Dr Hutron emplays bere, are founded on the appearances exhibited by bodies burning without
without flame, and burning with flame ; that is, on the phenomena of combuftion and inflammation.

In the combuftion of a piece of charcoal, two diftinct effects may be traced, viz. I. The oxygenating of the carbonic fubftance, by which fixed air is produced, or carbonic acid in an elaftic ftate; 2. The production of a great quantity of light and heat, while the charcoal is undergoing this change. It is with refpect to this laft part of the procefs only that different opinions are entertained. The phlogiftic theory maintains, that in the oxygenation of the carbonic fubftance by the vital air, the phlogiftic matter of that fubftance is fet free from combination with it, and in making its efcape exhibits the phenomena of light and heat.

The antiphlogiftic theory, on the other hand, fuppofes, that, by the decompofition or the condenfation which the vital air undergoes, while it oxygenates the carbonic fubftance, the latent heat is transferred to that fubftance, and produces light and fre.

Now, if it can be fhewn that a burning coal, though placed in circumftances the moft favourable for its oxygenation, may neverthelefs, lofe its heat, and ceafe to burn entirely, it is certain, that it is not alone by the calorique of the vital air that the fire is fupported. Let then a coniolidated piece of charcoal, fuch as the mineral kingdom, in many places, affords in great perfection, be heated to the higheft degree of incandefcence, and expofed, infulated, to the atmofpheric air. Here every condition is united favourable to the oxygenation of the coal, a fufficient quantity of heat, and free accefs of air. If the heat, fupplied from the decompofition of the vital air, were able to maintain the heat of the coal, it would continue to burn; but the fact is, that, in fuch a fituation as is here defcribed, the coal lofes, its heat ${ }_{2}$ and it is at laft extinguifhed. It is plain, there-
fore, that more heat is loft by communication with the atmofphere than is acquired from the decompofition of the vital air.

Now, let the experiment be fo far varied, that the incandefcent coal, inftead of being fufpended fingly in the atmofphere, is furrounded with other burning coals, that are likewife fufpended, and at fuch a diftance from it as to leave room for the free paffage of a current of air: We know, with certainty, that the central coal will now continue to burn as long as thofe that furround it are incandefcent, or emit a certain degree of light. But the circumftances of the coal, in this experiment, are in nothing more favourable to the receiving of heat from the decompofition of the vital air than they were in the former ; for if it be faid, that the air afcends through the greater mafs of burning matter, with more rapidity than before, and fo depofits more of the calorique, it muft be remembered, that it alfo abftracts more heat from the coals, juft in the fame proportion, or in proportion to its rapidity. If then the antiphlogiftic theory be true, the heat acquired by the coal, in the one of thefe experiments, fhould be to the heat abftracted from it, in the fame ratio that the heat, acquired in the other experiment, is to the heat abftracted. But this does not hold; for the heat acquired, in the firft experiment, is lefs than the heat abftracted, and in the fecond it is not lefs, but is either equal, or greater. Therefore the antiphlogiftic theory is not true; that is to fay, the theory which derives the fupply of heat, in burning bodies, entirely from the calorique of the vital air.

We muft therefore admit another caufe, before we can fully explain combuftion; and this can be no other than the extrication of the phlogiftic matter of the body which is oxygenated, the converfion of that matter into light, and then the production of heat.

In the phenomena of inflammation, Dr Hutton thinks that the proofs of his theory of fire are no lefs conclufive than in
thofe of combuftion. The inconceivable rapidity with which fire is propagated through an inflammable and tranfparent vapour, is among the moft remarkable of thofe phenomena, and is certainly inconfiftent with the new theory of burning, and indeed with every other that makes fire to be produced by heat alone. Let an inflammable fluid be heated till it boil, and to the top of the column of vapour emitted from it let the fmalleft fpark of flame be applied. The vapour is kindled, and, however high the column, the flame defcends in an inftant to the furface of the inflammable fubftance, and fets fire to it. Now, it is impoffible that mere heat could defcend in this manner, againft the fream of vapour that is continually rifing from the boiling fluid. :This is quite contrary to the laws by which it is ufually propagated; and it fhould feem, that the fact can only be accounted for by the celerity with which light moves through tranfparent, bodies, and by fuppofing that the extrication of light is the immediate caufe of burning.

The above inftance is conformable to the experience of every day : Another example, which Dr Hutron gives of the celerity with which fire is propagated through an inflammable and tranfparent vapour, is more fingular, and may perhaps be thought hypothetical, but it is at leaft a very happy application of his theory. This example is the meteor, which was feen in 1783 , over all Great Britain, and as far fouth as Paris. There can be no doubt, fays he, that this was a ftream of inflammable vapour which had iffued from the mineral regions of Iceland, at that time laid wafte by fubterraneous eruptions. This train of inflammable vapour, about 60 miles high in the atmofphere, had been kindled at the north end, probably by an electrical fpark, and the inflammation ran the fpace of feveral hundred miles, (at leaft 1000), in a minute of time, or little more.

Thus the inflammation of a body of pure vapour, in contact with the atmofpheric air, is made with a rapidity quite incon. fiftent
fiftent with the propagation of heat. Inftances, ftill more remarkable, of the rapid progrefs of fire, are found in the inflammation of fuch vapours, when mixed with that proportion of vital air which is neceffary for decompofing the phlogiftic fubftance.

On the whole, Dr Hutton concludes, that in no cafe is the light which appears in burning, an effect of the heat obtained from the decompofition of vital air, but that it is the extrication of phlogifton, of fixed light, or a certain modification of the folar fubftance, which had exifted in the inflammable bodies, and had been chemically combined with their elements. It appears alfo, that it is light which is immediately produced in burning, and that it is only mediately that heat is excited : This is true both of combuftible bodies which burn in an affociated ftate, and of thofe inflammable fubftances where the emerging light heats both the inflammable body, and the contiguous atmofpheric fluid.

The Doctor proceeds to explain, more at large, his notions of the folar fubftance, of which he conceives light, heat, phlogifton, and electricity, to be fo many different modifications. His notions on this fubject are very peculiar, as he conceives the folar matter to be without gravitation, without inertia, and, it may be added, without extenfion. The nature of this abftract does not admit of entering further on the argument: It is fufficient to remark, that the theory of heat feems to be arrived at a point where it muft almoft unavoidably ftand ftill, till fome experiments fhall determine how far the gravitation of bodies is affected by the heat, whether fenfible or latent, that is contained in them. The experiments already made, though ingenioufly contrived, and ably executed, are not fufficient to decide a queftion of fuch extreme delicacy; nor does it feem probable, that, without having recourfe to the pendulum, a fatisfactory folution of the difficulty will ever be obtained.

Phyf. Cl. Dr Monro read a paper, concerning the Communication of the Ventricles of the Brain with one another, in Man and Quadrupeds. This paper is publifhed in Dr Monro's book, entitled, Three Treatifes, \&c.

Mr Keith alfo communicated an Improvement of the Mercurial Level, defcribed in the Second Volume of the Tranfactions of the Society.

This improvement confifts in a contrivance for avoiding the trouble of pouring the mercury out and into the level, every time it is ufed. Befide the canal of communication at the bottom, between the two upright columns of mercury, on which the flots fwim, (fee Vol. II. Part II. No. III.), there is, in the new conftruction of the inftrument, another canal, parallel to the former, cut in the upper part of the wood, which allows the air to circulate freely, according as the mercury below rifés or falls. The whole is made perfectly clofe, fo that no air can get admittance.

The inftrument may be carried about in this manner, with the mercury remaining in it; and though by agitation that fluid calcines, and is converted into a grey powder, this only happens when it has free accefs to vital air ; and as all fuch accefs is here preyented, the mercury will not lofe its metallic luftre.

The level, in this form of it, as it requires no previous adjuftment, is very commodious, and, when much accuracy is not required, may be ufed with advantage.

Phyf. Cl. Dr Anderson read a paper, entitled, Obfervations on Wool-bearing Animals.

Phy. Cl. Mr Playfair communicated an Abftract of a Journal of the Weather, kept at his Houfe in Windmill Street, Vol. IV.
c
1795°
Jan. 5. Dr Anderfon on wool-bearing animals.

Feb. 2.
for the year 1794. This abftract, with thofe for 1795 and ${ }^{1796}$, make the laft of the Phyfical papers in this volume.

At this meeting Dr Anderson alfo read a paper on the Making of Indigo at Tranquebar, by Dr Anderson of Madras.

An extract of a letter from W. Hall, Efq; of Whitehall, Berwickfhire, was read, giving an Account of a Great Degree of Cold which he had obferved on the Evening of the 22d of January, when the Thermometer ftood between 5 and 6 degrees below o of Fahrenheit's fcale.

Pby. Cl. Dr Alexander Wilson read the firft part of a paper, concerning the Effects of Opium on the Living Animal. This paper has been publifhed feparately: An abftract of it follows.

The difference in the refults of the experiments that have been made to afcertain the effects of opium, and the inconfiftency of the conclufions deduced from them, led Dr Wilson to enter on the experimental inveftigation contained in this paper. The firft point which he endeavours to afcertain is, whether opium, applied to the internal furface of the heart, is capable of fo affecting its nerves, as to act on thofe of every part of the body, producing the general convulfions obferved on injecting a folution of this drug into the heart or blood-veffels. It 'appears from his experiments, that the only effects of the application of opium to the internal furface of the heart; are thofe of interrupting its motion, and deftroying its irritability; and that when convulfions fucceed, they are owing to the opium being conveyed along the aorta, and immediately applied to the brain. It has alfo been afferted, that opium, applied to diftant parts of the body, is capable of affecting the motion of the heart, through the medium of the nervous fyftem. Injected into the cavity of the
the abdomen, for inftance, it almof immediately impairs the action of the heart. It is only, however, when applied to an extenfive furface that it has this effect ; and if Dr Wilson's obfervations be juft, this effect is not produced through the medium of the nervous fyftem; but is the confequence of the opium deftroying the mufcular power, and, confequently, the circulation in thofe veffels to which it is applied ; thus fuddenly diminifhing the fupply of blood to the heart, and at the fame time oppofing an additional obftacle to its perfect evacuation. The experiments, next related; demonftrate that opium, immediately applied to the brain itfelf, although it excites violent and univerfal convulfions in all the mufcles of voluntary motion, is incapable of affecting at all the contractions of the heart. It even appears, from thefe experiments, that although opium be applied at the fame time to the brain and fpinal marrow of a frog, in confequence of which, (if the folution employed be ftrong), the animal inftantly expires, as if thundertruck, the motion of the heart is not in the leaft affected by it. It continues to beat with the fame frequency and force after, as it did before, the application of the opium. We arrive, then, at this conclufion, that opium, applied to a diftant part of the body, does not affect the motion of the heart, through the medium of the nervous fyftem; nor, on the other hand, does opium, applied to the heart, affeet any other part of the body, through the fame medium. But the heart is not the only mufcle, which opium, applied to a diftant part, feems incapable of affecting through this medium. Many confiderations render it highly probable, that the fame is true of all the mufcles of involuntary motion, without exception. That it is fo of the mufcular coat of the alimentary canal, which, next to the heart, may be confidered the chief of this clafs of mufcles, appears from the experiments next related. On comparing the experiments above alluded to, with thofe in which opium thrown into the ftomach
and inteftines, the cavity of the abdomen, \&c. is found to produce convulfions, it appears probable, that in the latter cafes, as in the former, the convulfions do not proceed from any action of the opium on the nerves of the part to which we apply it, but from its being received into the fanguiferous fyftem, and immediately applied to the brain. The experiments which follow, in the treatife, confirm this conjecture. On comparing together all the experiments there related, and thofe alluded to in the introduction, it appears, that the various effects of opium on living animals may be divided into three claffes. The firft comprehending its action on the nerves of the part to which it is applied, not differing effentially from that of any other local irritation. The fecond comprehending its effects on the heart and blood-veffels; that of increafing their action, when applied in a fmall quantity; and that of impairing, or altogether deftroying their power of action, when applied to them more freely. The third comprehending its effects, when immediately applied to the brain; which, when the dofe is moderate, are impaired fenfibility, languor, fleep; when applied more fully, convulfions and death. In all its effects on the living animal body, opium has much, in common with other fubftances, but at the fame time fomething in each peculiar to itfelf. It may appear an omiffion, Dr Wilson obferves, that he has not ranked among the effects of opium, received into the fyftem, thofe which it feems to produce on the mufcles of voluntary motion. In fome of the foregoing experiments, the irritability of thefe mufcles was found much impaired after death, although the opium was not applied directly to the mufcles themfelves. But it appears, both from an experiment related in the Treatife, and others alluded to, that the impaired irritability of thefe mufcles is owing, not to any direct action of the opium on them, but to the violent convulfions excited in them, in confequence of the opium being applied to the brain.

The

The doctrine of the fympathy of the nerves has been fo much employed in accounting for the effects of opium, that Dr Wilson judged it proper to make fome obfervations upon it ; in which he endeavours to prove, that no fuch law of the animal œconomy exifts; and that all the phenomena, which have been referred to this fuppofed law, depend on certain changes taking place in the fenforium commune.

In an appendix, he relates fome experiments, made with a view to determine the manner in which tobacco acts on living animals. From thefe experiments it appears, that the fymptoms which tobacco produces, when thrown into the heart, are the fame with thofe excited by its immediate application to the brain. That thefe fymptoms, when the tobacco is exhibited in the former way, proceed from no action of the tobacco on the nerves of the heart, but from its being conveyed along the aorta, and immediately applied to the brain; fince they do not follow its injection into the heart, when the aorta is previoufly fecured by ligature ; although it was found, that interrupting the circulation does not unfit the nervous fyftem from undergoing the change neceffary for the production of fuch fymptoms. It alfo appears from thefe experiments, that tobacco produces the fame effects, though more flowly, when thrown into the ftomach and inteftines as when thrown into the heart: That in the former cafe, as in the latter, they are ftill to be afcribed to the tobacco being received into the fanguiferous fyftem, and immediately applied to the brain; and that the effects of this drug, when it acts merely on the nerves of the part to which it is applied, do not effentially differ from thofe of any ftrong topical irritation. It may alfo be collected from thefe experiments, that the prefence of tobacco in the fyftem, like that of opium, only affects the irritability of the mufcles of voluntary motion, when it produces convulfions in them; $i . e$. when it is applied in confider-
able quantity to the brain. It appears, therefore, that the modus operandi of tobacco, on the living animal body, is in every inftance analogous to that of opium.
1795.

April 6. Mr Play fair on the trigonometry of the Brahmins.

May 5. Mr Wilfon on motions of wicks in a bafon of oil.

Pbyf. Cl. Mr Playfair read a paper on the Trigonometry of the Brahmins. The paper is inferted in this volume, Part II. No. IV. p. 83.

Pby. Cl. Mr Playfair communicated a letter from Mr Profeffor Wilson of Glafgow, giving an Account of certain Motions obferved in fmall lighted Wicks, when made to fwim on a Bafon of Oil, or any other Fluid which can maintain Flame. [See this volume, Part II. No. VI. p. 163.]

June I . Dr Wilfon on the effects of opium on the living animal.

Dr Anderfon on making chinam.

June 15 . Mr Marlhall on the Argonautic expedition.

Aug. 3. Mr Keith on different thermometers.

Nov. 2. Dr Monro on the internal hy. drocephalus.

Pbyf. Cl. Dr Alexander Wilson read the remaining part of his paper on the Effects of Opium on the Living Animal.

Dr James Anderson alfo read an Account of the Method of making Chinam at Madras, communicated by Dr Anderson of Madras.

Lit. Cl. Mr Dalzel read an Effay on the Argonautic Expedition, by the Reverend Mr Ebenezer Marshall, Minifter at Cockpen.

Pbyf. Cl. Mr Keith read a Defcription of different Thermometers, accompanied with figures, by which the Degree of Heat may be recorded for every hour and minute throughout the year.

Pby. Cl. Dr Monro read a paper on the Internal Hydrocephalus. This, with fome other papers, already mentioned, by the fame Author, have been publifhed feparately; and as an account of
the difcoveries, which Dr Monro has made in the Structure of the Brain, the Ear, \&c. could not be fufficiently underftood without the numerous plates by which they are illuftrated, it is unneceffary to attempt any detail of their contents.

Pbyj. Cl. A paper, by Dr.Balfour of Calcutta, was communicated, on the Diurnal Variations of the Barometer.

Dr Balfour's Obfervations, on the Diurnal Variations of the Barometer, were made at Calcutta, and communicated to the Afiatic Society in 1794. A copy of them, which he fent to a friend in Edinburgh, was the paper now read in the Royal Society.

The fituation in which thefe obfervations were made, entitles them to peculiar attention; for it is well known, that, between and near the tropics, the barometer is very fteady, and free from thofe great and fudden changes that take place in higher latitudes. It is in fuch fituations, therefore, that the fmaller periodical variations of the barometer, if they exift at all, are likely to be difcovered, as being feparate from thofe accidental irregularities with which they muft be complicated in our northern climates.

Dr Balfour's diligence, in obferving the barometer, has alfo been fingularly great. He impofed on himfelf the tafk of obferving the flate of that inftrument every half hour, for an entire lunation, from the new moon on the 3 ift of March, to that of the 29th of April 1794 .

The refult was, the difcovery of a periodical variation in the barometer, confifting of two ofcillations, which it performs regularly every twenty-four hours.

1. On every day, that Dr Balfour obferved, with fearce any exception, the barometer conftantly fell between ten at
night and fix in the morning; and this it did progreffively, without any intermediate rifing but in one inftance.
2. Between fix and ten in the morning the barometer conftantly rofe; it alfo did fo progreffively, and rarely with any intermediate falling.
3. Between ten in the morning and fix at night the barometer fell progreffively, without a fingle exception.
4. Lastly, between fix and ten at night the barometer rofe progreffively, without any intermediate falling, except in one inftance.

These are Dr Balfour's general conclufions; and, accordingly, on cafting an eye over the table into which he has reduced his obfervations, one is immediately ftruck with the appearance of two maxima, viz. at ten at night and ten in the morning; and, again, two minima, alfo diametrically oppofite to one another, at fix in the morning and fix at night.

The quantity of thefe diurnal variations is not very confiderable, but fufficient, at the fame time, to leave no doubt of their reality. The difference between the contiguous maximum and minimum is fometimes $\frac{1}{\square}$ of an inch, though in general it is lefs than half that quantity.

It does not appear that the above variations have any relation to the heat and cold of the atmofphere, or to the changes of the temperature of the mercury in the barometer, though, with refpect to this laft, we are not furnifhed with fufficient information.

Till thefe obfervations are further multiplied and extended, it will be in vain to attempt any explanation of the facts to which they relate. It feems not improbable, however, that they are connected with the reciprocations of the fea and land winds, during the day and night, or with the heating and cooling of the fuperincumbent atmofphere. It would be of great ufe to
have the obfervations repeated at different feafons of the year. An obferver equally affiduous with Dr Balfour will not be eafily found; but it will perhaps be fufficient to obferve the barometer every three hours, and particularly at the ftationary points.

It is proper to remark here, that fome obfervations of a fimilar fort have been made in Europe; where, though the fituation is far lefs favourable, than in India, for difcovering the true law of fuch minute variations, refults have been obtained tolepably confiftent with one another, yet differing confiderably. from thofe that are fated above.

A series of fuch obfervations was inftituted by M. Planer of Erfort in Germany, and is defcribed in the Ephemerides of the Meteorological Society at Manheim for 1783 . Before thefe obfervations, it had been remarked, that when the barometer is rifing, it ftands lower at noon than at any other time of the day, and higher at the fame hour when it is defcending. M. Planer's obfervations feem to extend and modify this conclufion; for they make it appear, that between ten and two, both of the day and night, that is, for two hours before, and two hours after the fun is on the meridian, the elevations and depreffions of the mercury are lefs than at any other time of the day; and that between fix and ten in the morning, and, again, between fix and ten at night, thefe elevations and depreffions are the greateft. The fame rule feems to be confirmed by the obfervations of M. Cotte in France, of which he has given an account in the fournal de Pby/ique for ${ }^{1} 79^{2}$ and ${ }^{1} 794$.

These laft conclufions feem to indicate fome periodical retardation of the movement of the mercury in the barometer, whether afcending or defcending; but it is difficult to form any notion of the force by which fueh an effect can be produced. Perhaps the only general inference that is yet deducible, from comparing all the circumftances, is, that certain diurnal va-

Vol. IV.
d
riations
riations of the barometer do actually exift; that more information on the fubject is neceffary before any explanation of them can be attempted; and that it is in the countries lying near to the equator that we are to look for thefe periodical variations leaft interrupted and obfcured by accidental irregularities.

March 7. Mr Wallace on geometrical porifms.

Pbyf. Cl. Mr Playfair read an Account of the Weather for 1795 , extracted from his Journal kept for the Society.

Lit. Cl. Mr Mackenzie read his Biographical Account of Lord Abercromby. [See Hiftory of the Society, Appendix, p. (1)].

Pbyf. Cl. A paper was communicated, containing Certain Geometrical Porifms, with their Application to the Solution of Problems, by Mr William Wallace, Affiftant-teacher of the Mathematics in the Academy of Perth. [See this volume, Part II. No. V. p. 10\%.]

Lit. Cl. Mr Stiwart read the firft part of his Biographical Account of the late Dr Robertson.

March 21.Biographical account of Dr Robertion.

April 4. Biographical account of Dr Roebuck.

Phyf. Cl. A Biographical Account of the late Dr Roebuck was read, communicated by Mr Profeffor Jardine of the Univerfity of Glafgow. [See Hift. Appen. No. IV. p. (65)].

May 2. Extract of a letter from W. Hall, Efq;

Phyf. Cl. An Extract of a Letter from Mr Hall to Sir James Hall, Bart. was read, giving an Account of an Extraordinary Halo of the Moon, obferved on the 18th of February laft. [See this Volume, Part II. No. VII. p. 173.]

Phyf. Cl. Mr Stewart read a paper by Dr Hutton, viz. An Examination of a New Phenomenon which occurs in the fulphurating of Metals, with an Attempt to explain that Phenomenon.
1796.

May 9. Dr Hutton on the fulphurating of raetals.

An account that was given, fome time ago, in the Literary Journals, of certain experiments made in Holland on the fulphurating of metals, gave rife to this communication. According to that account, when metallic filings are mixed with fulphur, and expofed in a clofe veffel to a certain degree of heat, the mafs kindles, and burns not only without vital air, but in any air whatfoever, or even in a vacuum. In the experiment, as thus reprefented, Dr Hutton readily faw a ftrong argument againft the theory which explains the phenomena of fire by the extrication of the calorique of vital air; and in this light he confidered it in the end of the Differtation on the Philofophy of Light, $\& c$. of which an abftract has been already given. Dr Hope having however fuggefted to him, that, in making the experiment, he had feen reafon to doubt the reality of the inflammation, they agreed to repeat the experiments together. Dr Hutton was then convinced that this fact had been mifreprefented, or rather mifunderftood ; and therefore thought it neceffary, in this paper, to correct the error into which he had been led by that mifreprefentation, defcribing the real appearances, and endeavouring to explain them on known principles. "In doing this," fays he, "I fhall deftroy the argument which the experiment feemed to afford againft the doctrine of calorique, but I fhall have no reafon to change the conclufion that I formed againft that doctrine, founded on facts that are univerfally acknowledged."

The fact, as thefe gentleman obferved it, is this: The metal and fulphur being mixed in due proportions, and expofed to heat in a clofe glafs veffel, the fulphur firft melts, then undergoes a kind of ebullition, emitting vapours which condenfe in the upper part of the veffel, and are a fublimation of the fulphur. 'In
this ftate, and while the heat communicated was ftill under that of incandefcence, there appeared in the bottom, or hotteft part of the mafs, an incandefcent fpot, which increafed in fize. The glafs veffel was now removed from the fire, and carried into a dark room, that the light emitted from it might be the more accurately obferved. There the incandefcence was plainly perceived, fpreading from the place where it firf began, and gaining ground continually, till the whole became very luminous. The heat, when thus diffufed through the mafs, begins inftantly to diminifh, and the body quickly cools, as a fimilar mafs of any other fubftance would do. Thefe are the appearances obferved in the experiment; and are what Dr Hutton proceeds to explain.

It is evident that the incandefcence, which has juft been defcribed, is an operation proceeding from the mafs itfelf, and not from the intenfity of the heat communicated to it, for that heat is not fenfibly incandefcent; whereas the heat which the mafs acquires, after the veffel is removed from the fire, is confiderably luminous. We have here, therefore, a fpecies of kindling like that of burning bodies; but, at the fame time, diftinctly different from it. In burning, a phlogiftic fubftance is decompofed, by means of the oxygenating principle; and the matter of light, which was contained in that fubftance, being fet at liberty, is emitted in the form of light, and heats thofe bodies by which it happens to be extinguifhed or abforbed. But, in this experiment, though the mafs is a phlogiftic fubftance, there is no decompofition of the phlogifton, no appearance of inflammation; fo that its incandefcence proceeds from another caufe than that which operates in burning. On attending to the circumftances, however, we fhall perhaps difcover that the phenomena of this experiment are not anomalous, but follow a rule, exemplified in many inftances, though not precifely with the fame appearances.

This rule feems to be no other than that which regułates the extrication of latent heat, when bodies pafs from a fluid to a folid ftate, though this cafe is fomewhat more complicated than ufual, and attended with circumftances that are yet but imperfectly underftood. It muft therefore be confidered, whether the fources of latent heat in the bodies, here combined, be fuch as we can reafonably fuppofe adequate to the effect produced.

First, then, we have the latent heat of the fulphur, when it is fimply in its melted ftate ; it has then an aqueous of perfect fluidity, to which the quantity of its latent heat neceffarily correfponds. But this is not precifely the fate in which the fulphur combines with the metal; for before that happens, and while the fenfible heat increafes, the fulphur becomes vifcid, and lofes its perfect fluidity. We have nothing with which we can compare this phenomenon, or by which we can eftimate the latent heat now contained in the fulphur. There is however reafon to think, that this heat is of the fpecies which Dr Hutton, in his Differtations on fubjects in Natural Philofophy, diftinguifhes by the name of the latent beat of ductility. The reafon for this fuppofition is, that when the fulphur, in its vifcid ftate, is plunged into cold water, it does not concrete into its ufual, hard, friable, and cryftallized ftructure, but is changed into a tranfparent ductile mafs. This ftate it feems to owe to the latent heat contained in it; for after fome hours expofure to cold, it gradually lofes its ductility, and undergoes another change of ftructure, fo as to refume its ordinary appearance, as if it had been concreted and cryftallized from the ftate of fimple fluidity.

But the fulphur alfo emits another fpecies of heat, on its combination with the metallic fubftance. This is what may be called the conftitutional heat of a body, or that by which its volume is preferved in oppofition to any force endeavouring to
diminifh it. The volume of the fulphur is obvioully much diminifhed on its combination with the metal ; and therefore a quantity of its conflitutional heat muft be expelled, correfponding to the condenfation or diminution of bulk which it has undergone. This quantity may be very great; but it is what at prefent our fcience has not the proper means of eftimating.

Such are the fources of heat contained in the fulphur. The metal alfo, by lofing its ductility, may emit a certain quantity of latent heat, and may thus contribute to increafe the fenfible heat of the compound mafs. The quantity of this effect, like the former, it is difficult to eftimate.

These, then, are the different fpecies of latent heat, which may be fuppofed to emerge, and become fenfible, on the combination of the fulphur and the metal in the preceding experiment, and on the inftantaneous concretion of the compound mafs. The confequence of this muft be, that the mafs already heated, from without, nearly to a red heat, having this additional heat communicated, muft become incandefcent, and emit light. This muft happen, even if the latent heat emerging fhould be but in a very fnuall quantity; and thus the leading fact of the incandefcence feems to be fufficiently accounted for.

It may alfo be ufeful to remark, that there are other cafes in which incandefcence feems to be produced, on the principle here affigned, though not perhaps in a degree equally remarkable.

In the affaying of filver on the teft, when the lead is fufficiently feparated, fo as to leave the filver ftill fluid, but in a degree of heat inferior to what is required to melt it, or to preferve its fluidity, the button of filver inftantly concretes, and appears at the fame time much more luminous. Here there is evidently no caufe that operates, but the latent heat of fluidity, emitted, as on all occafions, when concretion takes
place; and had the filver been here, in the loweft degree of incandefcence, or the higheft degree of obfcure heat, the phenomenon would have been as remarkable as in the fulphurating of metals.
O_{N} the fame principle it feems to be, that, in a very common, but very inftructive experiment, a bar of cold iron is made incandefcent, by hammering it with a certain degree of rapidity and force, fo that the condenfation may be fufficiently quick to expel the heat all at the fame time, or nearly fo. In this cafe, it is the latent heat of ductility that is made to appear, as in the congelation of water it is the latent heat of fluidity.

Iron alfo furnifhes another example of the fame kind, where the incandefcence is very confpicuous, but where the procefs is not fo fimple as in the former inftances, becaufe a part of the light is probably produced from another caufe. This example is found in the converfion of pig iron into malleable iron by Mr Corte's procefs, viz. by keeping the iron melted in a reverbatory furnace, and expofed, by being agitated, to the influence of the atmofphere. When the caft iron comes in this manner to its malleable ftate, it quickly difplays the brighteft incandefcence poffible, coagulating, at the fame time, from its melted ftate. Now, there can be no doubt that this extreme incandefcence arifes from the commutation of latent into fenfible heat, and the commutation of that heat again into light, in which ftate it is emitted by the incandefcent body. In this cafe, however, it is probable, that there is alfo light emitted immediately on the principle of burning, and that the iron is in part fcorified, by being oxygenated and lofing its phlogifton. But this alfo is in a great meafure owing to the extreme heat produced by the congelation of the iron; for the heat of melted iron is not alone fufficient for that effect.

The theory above laid down will enable us to explain all the different fteps in the complicated procefs of the fulphurating
of metals. When the mixture of the metal and fulphur is expofed to heat, and the fulphur melted, it is not immediately combined with the metal; for it requires a greater degree of heat, and one which is perhaps nearly that of incipient incandefeence, to produce the compound fubftance of the fulphurated metal. The moment, however, that this combination is formed, that part of the mafs, in which it began, lofes its fluidity, and is made to concrete, and at the fame time becomes ftrongly incandefcent. In this ftate, if the glafs veffel be removed from the fire, the procefs of the combination of the fulphur with the metal will be carried on, as has been defcribed above. For the firft incandefcent part is that which had been moft immediately expofed to the heat of the burning coals, and had, by that means, acquired the temperature neceffary for the combination of the two fubftances ; but at this time the part immediately contiguous to the concreted portion of the mafs is in the next degree of heat; confequently, upon the emerging of the latent heat of the firft portion, this fecond portion, having its heat increafed, is made to combine, and, by its inftant confolidation, produces incandefcence. This incandefcence of the fecond portion produces a like effect upon the third; and thus the heat, combination, concretion, and incandefcence, fpread quickly through the whole mafs, without any further affiftance from external fire.

In all this there is fo great a refemblance to the phenomena of burning, that fome attention is neceffary to enable an obferver to diftinguifh the one procefs from the other.

When a mafs of charcoal, properly prepared for combuftion, is kindled in one part by the heat of incandefcence, the oxygenation begins, attended with the decompofition of phlogifton, and the emiffion of the fixed light. The neighbouring parts being then heated, by the light emitted from the firft kindled part, are alfo kindled themfelves, and ferve to augment both
the intenfity of the heat and the extent of the burning. In this manner the parts of the mafs are kindled in fucceffion, until the whole is incandefcent ; it is at the fame time gradually confumed, the vital air uniting with the carbonic principle, and this laft being deferted by the fixed light of the phlogifton.

In the fulphurated mafs, though there be the fame appearance of ignition propagated fucceffively from a central point to the adjacent parts, yet it is not real ignition, but fimple incandefcence, produced from the extrication of latent heat, in the manner already explained. It is diftinguifhed from ignition by this circumftance : that, as foon as the incandefcence has ipread over the whole mafs, there is an end of the generation of heat, and the fulphurated metal cools from its incandefcent ftate, like any other incombuftible body heated to the fame degree. In the whole procefs there is no oxygenation; no production of fixed or carbonic air ; no apparent wafte ; nor any thing emitted from the mafs, except the light of incandefcence.

Thus, Dr Hutton concludes, that, in the procefs of the fulphurating of metals, we perceive the action of the fame laws as in the converfion of water into ice, and mult explain both on the great principle, by the difcovery of which his friend Dr Black rendered fo important a fervice, not to chemiftry alone, but to many other branches of natural philofophy.

He is aware, however, that an explanation of it will alfo be attempted by fome chemifts, on the principle of the change of the capacity for heat ; an explanation which he confiders as extremely fallacious and unphilofophical. When he applies thefe epithets to the doctrine of the capacities for heat, he does not mean to object to the phrafe, capacity for beat, or to the application of that phrafe to exprefs a mere matter of fact, viz. the difference of the fpecific heat of bodies, or the unequal quantities of heat contained in different fubftances, when their

Vol. IV.
maffes and temperatures are equal. But what Dr Hutron calls fallacious and unphilofophical is, the affigning the change in the capacity of a body for heat, as the caufe of the abforption or emiffion of heat, at the moment when that change takes place. This fuppofition is grounded, as he contends, on a falfe view of the facts concerning the tranfition of water from a hard to a fluid ftate, or the contrary. The chemifts, for example, who maintain this doctrine, hold, that when water is cooled down to a certain temperature, it neceffarily freezes and becomes ice, a fubftance that has a much lefs capacity for heat than water has; on which account a certain quantity of the heat contained in the water is expelled, and enters into the furrounding bodies. Now in all this it is fuppofed, that water, at a certain temperature, is neceffarily changed into ice, which is by no means true; becaufe it is well-known, that water may be cooled feveral degrees below what is called the point of congelation without lofing its fluidity. Dr Hutton tells us, that he has found means to cool it no lefs than 30° below that temperature, without its being changed into ice. Though it be true, therefore, that water muft be cooked to a certain temperature before it can freeze, it is not true, converfely, that it does freeze whenever it is cooled to that temperature. It follows, as a neceffary confequence, that fomething elfe befide a change of temperature is effential to congelation, and is the caufe of that wonderful change which water undergoes in paffing from a fluid to a folid flate. The feparation of the latent heat feems a caufe more adequate to the effect, and ferves to explain the cooling of the water below the point of congelation, without the lofs of its fluidity, becaufe this only happens when the efcape of the latent heat is prevented.

That the heat, abforbed by the water, is the true caufe of its fluidity, appears from the facility with which this hypotheis
explains all the other phenomena of congelation. There is, as has juft been faid, a certain fixed temperature, at which water and ice are convertible into one another. At this temperature, however, a mixed body of ice and water may remain for ever without any of the water being congealed, or any of the ice melted ; but let there be added to this compound mafs a quantity of heat, by communication from a warm body, and there is a certain quantity of the ice melted, while the mafs remains in its former temperature. Now, if we meafure the quantity of the heat, communicated to this compound mafs, without changing its temperature, and alfo the quantity of ice melted, that is, the quantity of fluidity produced, it will be found that they are in all cafes proportional to one another, and have therefore the relation of caufe and effect. This certainly amounts to no lefs than a full demonftration, that the heat abforbed, or rendered infenfible to the thermometer, is the caufe of fluidity. To fay, that the change of the capacity for heat is the caufe of the abforption of the heat, is, in fact, to affirm, that the fluidity of the water is the caufe of that abforption, and, of confequence, leaves the fluidity as a phenomenon without a caufe: for it has been fhown that mere change of temperature is not the caufe of $i t$.

Dr Hutton has been remarkably happy in his explanation of the manner in which heat produces fluidity. Heat, fays he, has two diftinct effects on body: The one of thefe confifts in its power of diftending the fubftance of the body, or increafing its volume, and this is the effect that is meafured directly by the thermometer : The other effect of heat is to move the particles of hard bodies on their axes, and by this rotatory motion to feparate their poles of attraction, which were united in their ftate of hardnefs and folidity. The particles of the body, in confequence of this rotatory motion, are in a ftate
of equilibrium ; they have no difpofition to cohere together, and are ready to obey the impreffion of the fmalleft force.

Such are the ideas which Dr Hutton had formed on the fulphuration of metals, and the theory by which it mult be explained; and they are rendered more interefting, by being the laft communication made by that ingenious and profound philofopher.
1796. June 20. Biographical account of W. Tytler, Efq;

Lit. Cl. Mr Mackenzie read a Biographical Account of the late William Tytler, Efq; of Woodhoufelee. [Hiftory, No. II. p. (17)].

July 4 . Dr Walker's ftatiftical account of Collington.
Nov. 7.
Mr Ivory on the rectification of the ellipfis.

Dr Mackay's determination of the longitude of the Oblervatory at Aberdeen.

Pbyf. Cl. Some Paffages from Dr Walker's Statiftical Account of the parifh of Collington were read.

Phyf. Cl. Mr Plaffair communicated an Extract of a Letter from James Ivory, A. M. containing a New Series for the Rectification of the Ellipfis. [See Part II. of this volume; No. VIII. p. 177.]

At this Meeting Dr Mackay's Determination of the Longitude of the Obfervatory at Aberdeen was alfo communicated. [Part II. of this volume, No. V. p. 140.]

The eftablifhment of a New Obfervatory, where there are fo few as in Scotland, is an event of too much importance, in the literary hiftory of the country, to be paffed over without notice: The eftablifhment of that at Aberdeen ought the more to be recorded, that it does great honour to the public fpirit and fcientific zeal of the Principal and Profeffors of the Marifhall College, and of the other gentlemen by whofe voluntary fubfeription it was brought about. From the funds which their fubfcription afforded, an Obfervatory was built in 1781, on a part of the Caftle Hill, which was given in a prefent to the

College

College by the Magiftrates and Town-Council of Aberdeen. The building confifted of three rooms, two of which, forming the wings, were circular, about 12 feet in diameter, with conical roofs. The eaftermoft of thefe was for the quadrant, and had its roof moveable, and furnifhed with flits; the wefternwas the tranfit room ; its roof had flits, but was not moveable; the room in the middle ferved for the accommodation of the aftronomer.

The inftruments, with which the Obfervatory was furnifhnifhed, were a tranfit inftrument by Ramsden ; a moveable aftronomical quadrant, of 2 foot radius, by Maculloch; an equatorial inftrument by Sisson and Ramsden ; an achromatic telefcope and a divided object glafs micrometer by DolLOND; an aftronomical clock, with a gridiron pendulum, by Mariotte. To thefe were added an afliftant clock by Gadby, Aberdeen ; an alarm clock; a barometer and thermometer, the two laft by Milier, Edinburgh.

The tranfit inftrument, and the equatorial, were prefents from the late Earl of Bute, at that time Chancellor of the Univerfity. They are both inftruments of great value; the tranfit, in particular, is faid to be of fingular excellence, and altogether worthy of the great artift by whom it was conftructed.

The Obfervatory, however, fuch as it is here defcribed, has: been but of fhort continuance. About three years ago barracks were built on the Caftle Hill, immediately to the north of the Obfervatory ; and as it appeared to be of confequence; that the ground occupied by the latter fhould belong to the barracks, it was purchafed by Government, and the Obfervatory demolifhed. It is to be rebuilt, howéver, on an improved plan, and in a fituation where it will be lefs incommoded by the vicinity of the town than formerly, and where, it is hoped, the
feries of obfervations may be continued, which Dr Mackay has begun with fo much diligence and accuracy.

According to Dr Mackay, the latitude, from a mean of 64 obfervations of the fun's meridian altitude, is $57^{\circ} \cdot 9^{\prime} \cdot 1^{\prime \prime}$, or becaufe the fun's femidiameter, taken from the Nautical Almanac, is about $1_{2}^{\frac{1}{2}}$, too great, it is more exactly $57^{\circ} \cdot 8^{\prime} \cdot 59^{\frac{1}{2} \prime \prime}$, and this agrees to $\frac{1}{4}$ of a fecond with the mean of 8 obfervations of the meridian altitudes of fixed ftars.

The longitude, determined alfo by a mean of feveral obfervations, is $0^{h} \cdot 8^{\prime} \cdot 3^{\prime \prime}$ of time, or $2^{\circ} \cdot 8^{\prime}$ weft of Greenwich.

Hence it appears, that the beft maps and charts require fome correction in the pofition they affign to Aberdeen, and probably to a great part of the eaft coaft of Scotland. Ainsley's map places Aberdeen in latitude $57^{\circ} \cdot 5^{\prime} \cdot 9^{\prime \prime}$, which is $3^{\prime} \cdot 50^{\prime \prime}$ too far fouth : It is however very exact in the longitude, which it makes $I^{\circ} .6^{\prime}$ eaft of Edinburgh; fo that, reckoning the longitude of Edinburgh 3°. $14^{\prime} \cdot 45^{\prime \prime}$ weft of Greenwich, as it is nearly, there remains $2^{\circ} 8^{\prime} .45^{\prime \prime} \mathrm{W}$. for the longitude of Aberdeen.
M. de la Rochette, in a chart of the north fea, conftrueted with great 1 kill and accuracy, lays down Aberdeen in latitude $57^{\circ} \cdot 5^{\prime}$, and in longitude $2^{\circ} \cdot 21^{\prime} .3 \mathbf{1}^{\prime \prime}$ welt from Greenwich ; fo that there is an error of nearly 4^{\prime} in the latitude, and 13^{\prime} in the longitude. It is likely that the latter affects the pofition of the coaft for a confiderable extent.
1797.

Feb. 6. Mr Playfair on the weather of 8796.

Phyf. Cl. A Report concerning the Weather in 1796 was communicated by Mr Playfair. [See this volume, the laft Article of Part II.

A P P E N D I X.

Office-Bearers of the Society.

Office-Bearers elected for the enfuing Year, at the General

Office-bearerso the Society. Meeting held for that Purpofe, 25 th November 1793.

Prefident.
His Grace the Duke of Buccleugh.

Vice-Prefidents.
Lord Dunfinnan. | Right Hon. Henry Dundas.

Secretary.
Profeffor Yobn Robifon. | Mr Alexander Keitb.

Mr Benjamin Bell.
Mr Gxeenfield.
Mr George Fergulfon.
Dr Gregory.
Dr Rutherford. Profeffor Stewart.

Lord Craig.
General Fletcher Campbell.
Mr Mackenzie.
Lord Dreghorn.
Commiffioner Edgar.
Mr David Hume.

Office-Bearers of the Society.

Physical Class.
Prefidents.

Dr Black.	Dr Home.
Dr Hutton.	Dr Monro.

Secretaries.
Profeffor Playfair. | Dr Walker.

Literary Class.

Prefidents.

| Mr Baron Gordon. | Dr Hugb Blair. |
| :--- | :--- | Sir William Miller. | Dr Adam Fergulon.

Secretaries.
Mr Frafer Tytler. | Profeffor Dalzel.

At the General Meetings in 1794, 1795, and 1796, the fame office-bearers were elected.

> LIST of Members or Fellows of the Royal Society of Edinburgh, continued from the third Volume. [Hiftory of the Society, Appendix.]

The following Members were elected at the General Meeting, Jan. 2\% 1794

Members cho fen, Jan. 27. 5794.

NON-RESIDENT.

The Reverend Gobn Brougbam of Brookhill, county of Cavan, Ireland. L.
The Reverend Dacre Carlyle, A. M. L. Fames Glenie, Efq; F. R. S. Lond. P.

The following were elected at the General Meeting, Jan. 26. 1795.

Members chofen, Jan. 26. 17.95.

RESIDENT.

The Reverend George Baird, D. D. Principal of the Univerfity of Edinburgh.
Robert Hamilton, Efq; Advocate.
The Reverend Thomas Hardy, D. D. Profeffor of Church Hiftory in the Univerfity of Edinburgh.
Francis Humberfon Mackenzie, Efq; of Seaforth. Alexander Pbillip Wilfon, M. D. Phyfician in Edinburgh.

Yobn Cooper, M. D. Phyfician at Fochabers. William Garfbore, Efq; of London. Fobn Gillies, LL. D. F. R. S. London, and Hiftoriographer to his Majefty for Scotland.

FOREIGN.

Fobn Godfrey Smeifer, A. M. \& F. R. S. London. Gafper Voght, Efq; of Hamburgh.

Members chofen, June 27. 1796.

The following were elected at the General Meeting, June 27. ${ }^{1} 796$.

RESIDENT.

Lieutenant-Colonel Alexander Dirom, F. R. S. London. P. The Right Honourable Lord Fincafle. P. The Reverend Sir Henry Moncrieff-Wellzoood, Bart. D. D. La Patrick Murray, Efq; of Ochtertyre, Advocate. P.

> NON-RESIDENT.

Andrew Berry, M. D. Madras. P.
Sir Henry Englefield, Bart. F. R. S. London. P. Dr Freer, Profeffor of Medicine in the Univerfity of Glafgow. P. Dr fames Gafcoigne, Phyfician at Plymouth. $\quad P$. Richard Kirwan, Efq; F. R. S. London. P.

FOREIGN.

Mark Ausuffus Pictet, Profeffor of Philofophy in the Academy of Geneva. P.
M. P. Prevoft, Honorary Profeffor in the Academy of Geneva. \dot{P}.

The following were elected at the General Meeting, June 26 : ${ }^{1797}$.

RESIDENT.

Robert Beatfon, Efq; of Kilrie. P. Dr Andrezv Duncan junior. P.

NON-RESIDENT.

The Reverend Walter Fißber, Minifter at Cranftoun. $\quad P$.
The Rev. George Gleig, L L. D. Epifcopal Minifter at Stirling. L. Charles Hatchett, Efq; F. R. S. London. P.
Major fames Rennel, F. R. S. Lond. P.

FOREIGN.
Fobin $\mathcal{F e f f o t}$, M. D. F. R. Coll. of Phyficians at Stockholm, and Profeffor of the Practice of Medicine at Upfal. P.

Members deceared.

LIST of Members who bave died fince the Publication of the laf: Volume.

Colonel Edmonfone of Newton. June 24. 1793.
Honourable fames Veitch of Elliock, (Lord Elliock), one of the Senators of the College of Juftice. July 1. 1793.
Honourable Francis Garden, (Lord Gardenfone), one of the Senators of the College of Juftice. July 22. 1793. Abrabam Guyot of Neuchatel. May 22. 1794.
Fobn Roebuck, M. D. July 16. 1794.
Reverend Dr Bell, Minifter at Coldftream. Auguft 9. 1794.
Right Honourable Lord Daer. Nov. 5. 1794. Cbarles Scott, M. D. Phyfician in London.
Sir William Yones, one of the Judges of the Supreme Court at Bengal, and Prefident of the Afiatic Society.
Alexander Gerard, D. D. Profeffor of Divinity, King's College, Aberdeen. Jan. 22. 1795.
Sir Francis Kinloch of Gilmerton. April 16. 1795.
Rev. Fobn Main, D. D. Minifter at Newton. May 13. $\mathbf{1}_{795}$ William Smellie, Printer in Edinburgh. June 24. 1795°
Adair Craweford, M. D. Phyfician to St Thomas's Hofpital, London, and Profeffor of Chemiftry in the Academy at Woolwich. Auguft 5. I795.
Honourable Alexander Abercromby, (Lord Abercromby), one of the Senators of the College of Juftice. Nov. 17. 1795.
Fames Robertfon, D. D. Profeffor of Oriental Languages in the Univerfity of Edinburgh. Nov. 25. 1795.

Fobn Anderfon, L L. D. Profeffor of Natural Philofophy in the Univerfity of Glafgow. Jan. 13. 1796.
George Campbell, D. D. Principal of the Marifhall College, Aberdeen. April 6. 1796.
Thbomas Reid, D. D. Emeritus Profeffor of Moral Philofophy in the Univerfity of Glafgow. Nov. 7. 1796.
Honourable Fobn Maclaurin, (Lord Dreghorn), one of the Senators of the College of Juftice. Dec. 24. I796.
Thomas Gordon, Profeffor of Philofophy, King's College, Aberdeen. March 11. 1797.
fames Hutton, M. D. March 26. 1797.
Archibald Arthur, A. M. Profeffor of Moral Philofophy in the Univerfity of Glafgow. June 1797.

Lift of Dona. tions.

DONATIONS prefented to the Royal Society of Edinburgh, continued from the preceding Volume.

From the Author.

Charts of the China Navigation, fol. by Gearge R bertfon, Efq; F. R. S. Edin. and now Commander of the Berrington, Eaft Indiaman.

From the Author.
Hiftorical and Biographical Sketches of the Progrefs of Botany in England, 2 vol. 8vo, 1790, by Richard Pulteney, M. D. and F. R.S.
General View of the Writings of Linnetus, 8 vo , 178 I , by the fame.

From the Reverend Andrew Brown.
A Model of an Indian Canoe, with the Belt and Pouch of an Indian Hunter. 1794.

From the Author.
Syftem of Mineralogy, 2 vol. 8vo, 1795, by J. G. Smeifer, F. R. S. Lond. \& Edin.

From the Author.
Report of a Survey of the Thames, 8vo. 1794, by Mr Fobn Rennie, Engineer, F. R. S. Edin.

From the Literary and Philofophical Society at Manchefter. Manchefter Memoirs, vol. iv. Part 2. I 794.

From the American Academy of Arts and Sciences.
Memoirs of the Academy, vol. ii. part 1. Bofton, 1793.
From the Author.
Ueber die Bleyglafur unferer Topferwaare, vom Hofrath, G. A. Ebell. Hannover, 1794.

From the Editor, Francis Maferes, Efq; Curfitor Baron of Exchequer.

Scriptores Logaritbmici, or a Collection of Curious Tracts on the Nature and Conftruction of Logarithms, 3 vol. 4 to. 179 r, 1796.

From Fohn Thomas Stanley, Efq;
Three Views of Geyfer, a hot Spring in Iceland, from Drawings taken on the Spot.

From the Royal Society of London.
Tranfactions of the Royal Society of London from 1790 te I794.

From the Author.
Remarks on the Antiquities of Rome and its Environs, 4to, 1797, by Andrew Lumifden, Efq; F. R. S. Edin.

From M. Chevalier, F. R. S. Edin.
On the pretended Tomb of Homer, 4to. 179%.

I. Account of the Life of Lord Abercrombr. By Henry Mackenzie, E/q; F, R. S. Edin.

[Read by the Autbor, Feb. 15. 1796.]

THE life of which I am about to give fome account to this Society cannot be called a literary one; of literary lives only it is perhaps the proper bufinefs of the Royal Society to record the particulars; but it has been in the practice of allowing a wider range to this cuftomary notice of its deceafed Members. Of the lives of fuch as were eminent in ftation or in ufefulnefs, in abilities or in virtue, it has been accuftomed to hear a narrative, which, though not important to learning, is interefting to humanity. Under this title, it will indulge me with a fhort account of the life of Lord Abercromby.

He was the youngeft fon of George Abercrombi of Tullibody, a gentleman of a refpectable family and confiderable fortune in Stirlingfhire, and of Anne Dundas, daughter of Mr Dundas of Manor. He was born on the 15 th day of October 1745. His father ftill lives at the very advanced age of 91, and has had the fingular good fortune to fee two of his elder fons, who were both bred foldiers, appointed Commanders in Chief of the Britifh forces, one in the Weft and the other in the Eaft Indies, the moft important ftations with which their country could entruft them. His age indeed has, within Vol. IV.
(a)
thefe
thefe few months, been clouded by the death of him who is the fubject of this paper ; but it is fomething for a father, it is fomething for his friends, to mix their forrows with the general regret of his country.

His youngeft fon Alexander was early deftined for the profeffion of the law, to which his father had himfelf been bred, at a time when the Faculty of Advocates comprehended one half of the gentlemen of Scotland. At that period, commerce and manufactures had not attained, in this part of the kingdom, that extenfion and improvement which renders them objects of purfuit to men of birth or fortune. The fword and the gown were here the only profeffions fuited for fuch men ; for our church did not, like thofe of England and France, offer endowments confiderable enough to attract the interefted or to excite the ambitious. In Scotland, however, the profeffion of the law was adopted by the eldeft fons of the gentry, rather as conferring a fort of fafhionable diftinction, than as one from which they looked for bufinefs or emolument. It led to a learned, or at leaft a polite education, and gave a fort of dignity beyond the mere idlenefs of a man of pleafure. Hence perhaps there was in thofe times an elegance of manners, joined with a degree of knowledge and information, among the Faculty of Advocates in Scotland, not to be met with among any fimilar body of men in any other country. I mention this hiftorically, becaufe it does not perhaps exactly fubfift at prefent, from caufes which may be held not to improve the manners fo much as, in a political and commercial view, they may be fuppofed to meliorate the fituation of a country.

Mr Abercromby, with a view to the law, which his profpects made it neceffary for him to follow as a profeffion, received the cuftomary education at the Univerfity of Edinburgh. There the writer of this memoir firft knew him. He had abilities which qualified him for being more a fcholar, than the
vivacity of his difpofition then allowed him to become. With uncommon beauty of countenance and pleafantnefs of manner, the favourite of every relation and acquaintance, he did not then (as is common with young men fo circumftanced) apply to his ftudies with the conftant and unremitting affiduity which is calculated to attain deep learning. But he had a readinefs and acutenefs that could eafily perform his exercifes when he wifhed to perform them. After going through the ordinary courfe of claffes at the Univerfity, confifting of the Latin and Greek languages, of Logic, Philofophy, the Civil and Scots Law, he was admitted Advocate in the year 1766.

For fome time after his coming to the bar, he retained fomewhat of that gaiety of deportment and of conduct, which are not exactly fuited to the dry and uninviting paths that conduct men to legal eminence. His manners and difpofition were better fitted for the lefs ferious and more engaging fociety of men of fafhion and pleafure. During feveral years he lived a good deal in fuch fociety, and gave but little promife of that attention and application to bufinefs for which he was afterwards diftinguifhed. Though not unremittingly attentive, however, to his profeffion, he was never neglectful of its duties; and when any particular cafe was put into his hands, he gave very convincing proofs, both of his general talents, and of his power of application to bufinefs in detail.

But it was not long before he felt the propriety of fecluding himfelf more than he had hitherto done from the fcenes of conviviality and amufement, which had interfered with a more ferious and determined application to his profeffion. He had lent to lighter fociety a certain gaiety and fportfulnefs of mind, which, in a character of lefs native vigour and ability, might have been fatal to the future profpects of his life. But he poffeffed an intrinfic character, which it was not difficult for him to refume; and from that pride and dignity of foul which he

Acconint of Lord Abercromby.
always maintained in an uncommon degree, he felt it unworthy of him not to make every effort for rifing into eminence in the profeffion which he had chofen, from which, being a younger fon, and not likely to be poffeffed of a large patrimony, he was to derive fupport and independence.

An opportunity foon occurred of drawing the attention of the Court in which he practifed, and indeed of the country at large, to the talents which he poffeffed, and to that exertion of them which he could command. He was counfel in a caufe, which, from its peculiar circumftances, had attracted much public curiofity, and divided for fome time the public opinion. This was the cafe of Wilfon and Maclean, in which a particular fact (the period of the death of a fhipmafter, from whom a receipt was produced in bar of the plaintiff's claim, but which receipt was alleged to be a forgery) was involved in fo much uncertainty, and that uncertainty frengthened by the oppofite depofitions of fuch a number of witneffes, that it became a queftion of uncommon notoriety and expectation, not only from the extraordinary circumftances of that individual caufe, but as involving a general legal confequence of the incertitude of oral teftimony in fixing the date of not very diftant events. In this caufe Mr Abercromby was employed for the purfuer or plaintiff, and made a fpeech, in oppofition to one of equal ability from Mr Blair, now Solicitor-General, fo confpicuous for the clofenefs of its deduction, the force and clearnefs of its argument, the eloquence and impreffive fenfibility of its declamation, as to excite a very ftrong fenfation at the bar and in the public, and to mark him as an Advocate from whom the mof ftrenuous and fuccefsful exertions were to be expected. It is feldom that at the bar of Scoilcud, any appearance, however brilliant, has much effect in bringing a counfel into profeffional celebrity or employment. From the conftitution of the Supreme civil Court in this country, where trial by jury does not take place,

$$
A P P E N D \dot{I} X
$$

and from the nature of its proceedings, which are chiefly carried on by written arguments, a fpeech, however remarkable, is rarely followed by thofe important confequences to a barrifter's future bufinefs, of which there are daily inftances in Weftminfter Hall. But in this cafe Mr Abercromby's appearance made fuch an impreffion in his favour as very foon to place him among the moft rifing young men of the profeffion. He took advantage of this circumftance by a ftep, of which the expediency was doubted by many of his friends at the time, but was afterwards allowed by them all. Soon after his being called to the bar, he had been appointed Sheriff-depute of Stirlingfire, which he now (in 1780) refigned for the lefs lucrative and more precarious fituation of Depute-Advocate, on the idea of the latter office being more beneficial in its confequences, as not precluding him from bufinefs arifing within the county of Stirling, where he had many connections both from relationthip and acquaintance, but rather tending to advance his employment, from the opportunities it afforded him of appearing in public and criminal cafes. This appointment of Deputeadvocate he held under Mr Henry Dundas, then Lord Advocate for Scotland, in conjunction with Mr Blair, fince his Majefty's Solicitor, and Mr Craig, now a Judge in the Courts of Seffion and Jufticiary. Thofe two gentlemen and Mr Aberскомву were as much connected in private friendfhip as in public bufinefs; a friendfhip to which one who has known them long and intimately, may be pardoned for afcribing a confiderable advantage towards the attainment of that profeffional eminence, as well as of that general eftimation and refpectability which they have all enjoyed.

Mr Abercromby now rofe with great rapidity in his profeffion, and was among the beft employed barrifters of his ftandingin Scotland. To this fuccefs he was not more entitled by his talents than by his affiduity; and it was a peculiar merit in him, who

Account of Lar. 1
Abercromby.

Account of Lord Abercromby.
who had once indulged fo much in gaiety and amufement, and who was fo much fitted by nature to fhine among the gay and the amufing, to devote himfelf now to bufinefs with a rigid attention and punctuality not always met with even among men of the moft grave and ferious difpofitions. His fpeeches and his papers were held in equal eftimation. His general method in both was, to ftate the fact which gave origin to the caufe fimply and perfpicuoufly, and then to apply thofe principles and arguments in law which bore upon the cafe, from which he drew the conclufion in favour of his client. When the cafe admitted of it, he was fond of illuftrating his argument by fome appofite claffical allufion, or fome anecdote of ancient or modern times, with which his memory was abundantly ftored. His expreffion was always elegant, and when the fubject called for it, rofe to a degree of animation and eloquence much beyond what bufinefs-men might think neceffary in a mere legal pleading. He excelled particularly in that indignant tone in which a good man rebukes injuftice or oppreffion, and that pathetic in which he pleads the caufe of the unfortunate; a ftyle which his own mind, nice as it was in honour, and open to compaffion, naturally prompted.

The laborious employments of his profeffion did not fo entirely engrofs him as to preclude his indulging in the elegant amufements of polite literature. He was one of that fociety of gentlemen, who, in 1779, fet on foot the periodical paper, publifhed at Edinburgh, during that and the fucceeding year, under the title of the Mirror, and who afterwards gave to the world another work of a fimilar kind, the Lounger, publifhed at Edinburgh in 1785 and 1786 . To thefe publications he was a very valuable contributor, being the author of ten papers in the Mirror and nine in the Lounger. His papers are diftinguifhed by an eafe and gentlemanlike turn of expreffion, by a delicate and polifhed irony, by a ftrain of manly, honourable
nourable and virtuous fentiment. In fome of them we find that unaffected tendernefs, of which I took notice above as frequently diftinguifhing his profeffional labours. One of thofe papers I have often read fince his death, with feelings which I believe to be fo much in unifon with thofe of my prefent audience, that I hope I fhall not be thought to trefpafs on their time or patience, if I quote the conclufion now. In $\mathrm{N}^{\circ} 90$. of the Mirror, he mentions as one of the calamities of extremely lengthened life, the lofs of friends, and gives a very natural and affecting account of his own feelings on an occafion of that fort. The picture contained in that paper is no fancy-drazeing; it is a portrait of one of the earlieft and moft excellent friends of Mr Аbercromby, and of the writer of this memoir, Mr Gordon of Newhall, whofe accomplifhments and whofe virtues will not be foon forgotten by fome members of this Society. Alas ! I did not imagine, when I heard Mr Abercromby read that paper of the Mirror, that, in a few years, it fhould be applicable to the lofs of its Author! If any of thofe who now participate in this reflection, fhould one day have occafion to recal in this place the remembrance of him who reads the prefent account, may his memory be as dear to his friends, and as valuable to fociety, as thofe to whom his feeble words now endeavour to do juftice!
" There is one circumftance (fays Mr Abercromby, in the paper I allude to) which with me is alone fufficient to decide the queftion (whether long life be an object much to be defired). If there be any thing that can compenfate the unavoidable evils with which this life is attended, and the numberlefs calamities to which mankind are fubject, it is the pleafure arifing from the fociety of thofe we love and efteem. Friendfhip is the cordial of life. Without it, who would wifh to exift an hour ? But every one who arrives at extreme old age, muft

Account of Low Abercromby.

Accoune of Lord Abercromby:
muft make his account with furviving the greater part, perhaps the whole, of his friends. He muft fee them fall from him by degrees, while he is left alone, fingle and unfupported, lize a leatlefs trunk, expofed to every form, and fhrinking from every blaft.
" I have been led to thefe reflections by a lofs I lately fuNained in the fudden and unlooked-for death of a friend, to whom, from my earlieft youth, I had been attached by every tie of the moft tender affection. Such was the confidence that fubfifted between us, that, in his bofom, I was wont to repofe every thought of my mind, and every weaknefs of my heart. In framing him, nature feemed to have thrown together a variety of oppofite qualities, which, happily tempering each other, formed one of the moft engaging characters I have ever known. An elevation of mind, a manly firmnefs, a Cafitian fenfe of honour, accompanied with a bewitching fweetnefs, proceeding from the moft delicate attention to the fituation and the feelings of others. In his manners fimple and unaffuming; in the company of ftrangers modeft to a degree of bafhfulnefs; yet poffefling a fund of knowledge, and an extent of ability, which might have adorned the moft exalted ftation. But it was in the focial circle of his friends that he appeared to the higheft advantage ; there the native benignity of his foul diffufed, as it were, a kindly influence on all around him, while his converfation never failed at once to amufe and to inftruct.
" Nor many months ago I paid him a vifit at his feat in a remote part of the kingdom. I found him engaged in embellifhing a place, of which I had often heard him talk with rapture, and the beauties of which I found his partiality had not exaggerated. He fhewed me all the improvements he had made, and pointed out thofe he meant to make. He told me

$$
A P P E N D I X .
$$

all his fchemes, and all his projects. And while I live, I muft ever retain a warm remembrance of the pleafure I then enjoyed

Account of Liord Abercromby. in his fociety.
" The day I meant to fet out on my return, he was feized with a flight indifpofition, which he feemed to think fomewhat ferious; and, indeed, if he had a weaknefs, it confifted in rather too great anxiety with regard to his health. I remained with him till he thought himfelf almoft perfectly recovered; and, in order to avoid the unpleafant ceremony of taking leave, I refolved to fteal away early in the morning, before any of the family fhould be aftir. About daybreak I got up, and let myfelf out. At the door I found an old and favourite dog of my friend's, who immediately came and fawned upon me. He walked with me through the park. At the gate he ftopped, and looked up wifhfully in my face; and, though I do not well know how to account for it, I felt, at that moment when I parted with the faithful animal, a degree of tendernefs, joined with a melancholy fo pleafing, that I had no inclination to check it. In that frame of mind I walked on (for I had ordered my horfes to wait me at the firft ftage) till I reached the fummit of a hill, which I knew commanded the laft view I fhould have of the habitation of my friend. I turned to look back on the delighful feene. As I looked, the idea of the owner came full into my mind ; and, while I contemplated his many virtues and numberlefs amiable qualities; a fuggeftion arofe, if he fhould be cut off, what an irreparable lofs it would be to his family, to his friends, and to fociety. In vain I endeavoured to combat this melancholy foreboding, by reflecting on the uncommon vigour of his conftitution, and the fair profpect it afforded of his enjoying many days. The impreffion ftill recurred, and it was fome confiderable time before I had ftrength of mind fufficient to conquer $i t$.
Vol. IV.
(b)

Account of Lord Abercromby.
" I had not been long at home when I received accounts of his being attacked by a violent diftemper, and in a few days after I learned that it had put an end to his life.
" This blow, for a time, unmanned me quite. Even now, the chief confolation I find is in the fociety of a few chofen friends. Should they alfo be torn from me, the world would to me be as a defert; and, though I fhould ftill endeavour to difcharge my duty in that ftation which Providence has affigned me in life, I fhould never ceafe to look forward, not without impatience, to thofe peaceful manfions where the weary are at reft, and where only we can hope to meet again with thofe from whom we have been parted by the inexorable hand of death."

In 1792, when in this high and advancing fituation at the bar, an offer was made to him of the appointment of Judge of the Court of Seffon, in the room of Lord Rockville, deceafed. This appointment he hefitated for a confiderable time to accept, from an idea he had formed of the difficulty of executing the office in that manner in which he conceived it ought to be executed, and of the laborious and fatiguing application and exertions of mind which its various duties required. He was at length prevailed on to accept of it, principally from the very handfome manner in which it was offered to his acceptance, and in compliance with the wifhes of his friend $\mathrm{Mr} \mathrm{Se}-$ cretary Dundas, who knew, from early and continued acquaintance, the value of that acquifition which he wifhed the Bench to make, in the appointment of Mr Abercromby to a Judge's feat. That appointment accordingly took place on the 30th of May 1792; and on the 14th of December following, he was called to a feat in the Court of Juficiary, on the vacancy occafioned by the death of Lord Hailes.
'The manner in which he executed thofe very important offices, is frefh in the memory of every one. To the moft affiduous and unremitting attention to his duty, and the moft accurate confideration of the legal principles which were to determine his decifion, he joined a talent for announcing that decifion, and the grounds on which it refted, in fuch a manner as to give fingular weight and dignity to his opinion, and to make the ftrongeft impreffion on his audience. He did not fpeak often, but when he did, he never failed to throw light on the cafe before the Court. He never forgot, (what is liable to be forgotten in a Court which, from the number of its Judges, partakes fomewhat of the nature of a popular affembly), that he was delivering the opinion of a Judge, not arguing the caufe of a barrifter. He never replied to any of his brethren, remembering that a Judge does not fpeak for victory; that it is his bufinefs to pronounce his own opinion, not to combat the opinions of others. He fpoke fhortly, feldom on the circumftances of the cafe in detail, but on fome leading and prominent point on which the opinion he was to deliver was founded. His expreffion was clear and perfpicuous, correct, at the fame time, and elegant. His fpeaking was flow and deliberate, and in that cool and folemn manner which becomes a judicial opinion; yet, like his appearances at the bar, it did not fail in animation when it was directed to the cenfure of unfairnefs, to the detection of difhonefty, or to the rebuke of oppreffion. He was of particular ufe in the civil Court, by an attention to the proceedings, and to the checking of any impropriety in the conduct of the bufinefs. On this ground, his own ftrict obfervance of propriety gave him great advantage. When he did cenfure, even when there was occafion for feverity, it was with fo much gravity and dignity of manner, and fo much temperance of expreffion, as to enfure the approbation (b 2)

Account of Lorid Aberctomby.
eceount of Lord Abercromby.
of the impartial, as to imprefs conviction, as well as to impore filence, on the cenfured. Lord Abercromby poifeffed thofe virtues and accomplifhments which inveft the flation of a Judge with an authority the moft venerable and the moft perfuafive. Purity of mind and of character, a nice fenfe of honour and decorum, a delicacy of private and a dignity of public deportment ; thefe are at all times moft important qualities in a Judge ; at no time perhaps fo much as at the prefent, when they are fo effential to conciliate the efteem and to command the reverence of the people for the magiftracy and conflitution of their country.

To the criminal Court thofe qualities are peculiarly appropriate. In that Court, the Judge is the organ of the offended majefty of the law; his deportment ought to be fuited to that function, grave, deliberate, decided. Above the atmofphere of the paffions, he may fpeak with feverity, but never with refentment; and his duty is too folemn and too majeftic, to admit of the light or the frivolous, either in manner or expreffion. Yet, amidft the unbending declaration of the law, and the fteady decifion of its minifter, he may, and in fome cafes ought to feel that dignified compaffion for human frailty, that tempers the rigour, but does not detract from the awfulnefs, of juftice. Such was the deportment of Lord Abercromby. The firmnefs of his mind, and the dignity of his demeanour, were particularly called forth at that momentous juncture, when the decifions of the criminal Court of Scotland vindicated the laws, and upheld the conftitution, againft the daring attacks of turbulence and fedition.

The laft piece of duty which Lord Abercromby performed as a Judge of the Court of Jufticiary, (immediately after the admiffion of his friend Lord Craig as a colleague), was the northern circuit in the fpring of the year 1795. On that jour-
ney he felt himfelf a good deal indifpofed, but returned to Edinburgh, reftored, as he faid, to his ufual health, though his altered looks and appearance ftrongly excited the apprehenfions of his friends. Thofe apprehenfions were but too foon verified. He was attacked in fummer 1795 with a breaft-complaint, attended with dangerous fymptoms, for which, after fome palliative means, to which his diforder never at all yielded, he was advifed to try the milder climate of Exmouth in Devonflhire, a voyage to the Continent being, in the prefent fituation of public affairs, difficult to accomplifh, and particularly difagreeable to his inclinations. He was accompanied in this journey by his nephew, the eldeft fon of his brother Sir Ralph Abercromby, who watched the laft days of his uncle with that tender affiduity which, though the world can neither fee its merit nor feel its fufferings, is one of the mof important and moft difinterefted of all the domeftic duties. On the road to Exmouth, he was feized with fill more violent fymptoms than any his diforder had hitherto exhibited; and though he experienced, during the fpace of about two months, fome temporary relief, he never gained any material advantage, and the difeafe made progreffive advances, till at laft it carried him off on the 17th day of November 1795. He bore its fufferings with the greateft patience and fortitude; and though for fome time he entertained hopes which his phyficians and friends faw to be but too ill founded, he met its conclufion with perfect compofure and refignation.
The diforder which terminated fo fatally was perhaps only the effect of a gradually debilitated conftitution, not of any determinate and immediate caufe. Yet fome of his friends, with an anxiety natural in fuch a circumftance, have traced it to various fources. An accidental fall into the uninclofed foundation of a houfe in the New Town of Edinburgh, was by

Account of Iord Abercromby.

Account of Lord Abercromby.
fome, I believe not on any medical authority, fuppofed to have produced the complaint to his breaft. The anxiety and application he beftowed on the duties of a very laborious profeffion, might contribute to exhauft the ftrength of his conftitution; and, if mental affections are to be allowed fuch force, the uneafinefs which for fome years he experienced on the fubject of public affairs and the political ftate of his country, might impair and weaken his health and fpirits. Deeply impreffed himfelf with the excellence of the Britifh conftitution, and of the happinefs derived from it, he faw with horror and indignation (at a period confiderably earlier than that which excited the apprehenfions of moft other people) the efforts of defperate and defigning men to overturn it; he lamented the delufion of thofe who were mifled to join them; and he trembled for the effects of that delufion in eftimable and benevolent but vifionary minds, who might indulge the pride of political theory and fpeculation, to the danger, as he conceived, of all good order and regular government, of all focial happinefs and focial virtue.

Of the public virtues of Lord Abercromby, I have given a pretty full detail, becaufe thofe fpeak loudeft in example, and are moft generally ufeful to mankind. Of his private virtues and accomplifhments I might fpeak in this Society on the teftimony of many of its Members, who will long remember the excellence of his difpofition, the worth and honour of his heart, the amiable and engaging manners which he exhibited. From birth, from education, from native fentiment, and improved fociety, he cultivated, and was never a moment unimpreffed with the feelings of a gentleman, with that delicacy of mind, " above the fixed and fettled rules," which polifhes the manners, which refines morality, which dignifies virtue; of which fuch an example is the more valuable in thefe days, when

${ }^{r} A P P E N D I X$.

I am afraid a ftyle of life and manners has become in fome de-

Account of Lord Abercromby. gree fafhionable, which deftroys this honourable diftinction; which degrades the higher ranks by vices and follies that ufed to be a reproach to the leaft worthy among the lower ; in which name and ftation fanctify groffnefs in pleafure and coarfnefs, in demeanour, and wealth fhoots out into caprice and abfurdity, inftead of expanding into generofity and ufefulnefs.

The Society will pardon this digreffion, which I confefs to be unneceffary, and to fome may appear ungracious; they will forgive it to him who, looking from the tomb of his friend on the world he has left, with that gentler mifanthropy (if it fhall be thought to merit that term) which is made up rather of regrets than of refentments, naturally enough indulges in an aggravation of what he has loft, and, it may be, in an unfavourable eftimate of what remains for him to enjoy.

Independently, however, of the eftimation of friendflip, it may certainly be affirmed, that in the death of Lord Abercromby fociety has fuftained a lofs of no light nor common kind; a lofs which his friends and acquaintance will long and deeply lament ; and which, without difparagement to the virtues or the abilities of his furvivers, will not be eafily repaired to the public.

II. A Bort Account of the Life and Writings of William Triler, Efq; of Woodboufelee, F. R.S. Edin. By Henry Magkenzie, Efq; F. R. S. Edin.

[Read by the Author, June 20. 1796.]

T'HE cuftom which this Society has eftablifhed, of giving fome account of the lives of its deceafed members, is in every cafe gratifying to friendfhip, in many interefting to curiofity, but in thofe which ferve to record the purfuits and occupations of men of letters, it is more ftrictly and properly an object coming within the views of a literary inftitution. The hiftory of the authors is always in a great degree the hiftory of the literature of a country; and even exclufive of an immediate relation to their works, the narrative of their private and domeftic habits is often, in a moral point of view, ufeful and interefting to the fcholar and the author. In both thefe refpects, I may claim the attention of the Society to the following fhort account of the life and writings of our late worthy colleague, Mr William Tytler.

Mr Tytler was the fon of Mr Alexander Tytler, writer in Edinburgh, by Jane, daughter of Mr Wilciam Leslie, merchant in Aberdeen, and grand-daughter of Sir Patrick Leslie of Iden, Provoft of Ab̌erdeen. He was born at Edinburgh, October 12. 1711. He received his education at the High School and Univerfity of his native city, and diftinVol. IV.
(C)
guifhed

Account of W. Tyıler, Efq;
guifhed himfelf by an early proficiency in thofe claffical ftudies, which, to the lateft period of his life, were the occupation of his leifure hours, and a principal fource of his mental enjoyments.

In the year 1731, he attended the academical lectures of Mr : Alexander Bayne, Profeffor of Municipal Law in the Univerfity of Edinburgh, a gentleman diftinguifhed alike for his profeffional knowledge, his literary accomplifhments, and the elegance of his tafte. The Profeffor found in his pupil a congenial fpirit, and their connection, notwithftanding the difparity of their years, was foon ripened into all the intimacy of the ftricteft friendfhip. So ftrong indeed became at length that tie of affection, that the worthy Profeffor, in his latter years, not only made him the companion of his ftudies, but when at length the victim of a lingering difeafe, chofe him as the comforter of thofe many painful and melancholy hours which preceded his death.

At the age of thirty-one, Mr Tytler was admitted into the Society of Writers to bis Majefy's Signet, and continued the practice of that profeffion with very good fuccefs, and with equal refpect from his clients and the public, till his death, which happened on the 12th of September 1792. He married, in September 1745, Anne Craig, daughter of Mr James Craig of Dalnair, writer to the Signet, by whom he has left two fons, Alexander Fraser Tytler, his Majefty's Judge-Advocate for Scotland, and Profeffor of Civil Hiftory in the Univerfity of Edinburgh, and Major Patrick Tytler, Fort-Major of the Caftle of Stirling; and one daughter, Mifs Christina Tytler. His wife died about nine years before him, and previoufly to that period, he had loft a-fon and a daughter, both grown to maturity.

It is perhaps only in fmaller communities, like that of Edinburgh, that the union of bufinefs and literary ftudies can eafily take place. In larger focieties, fuch as that of London, here

$$
\begin{equation*}
A P P E N D I X \tag{19}
\end{equation*}
$$

the profeffional objects are greater and more extenfive, and the different claffes of men are more decidedly feparated from one another, there is a fort of divifion of mind as well as of labour, that makes the lawyer or the merchant a perfect lawyer or merchant, whofe mind and time are wholly engroffed by the objects of his profeffion, and whom it might confiderably difcredit among his brethren of that profeffion, were he to devote any portion of either to claffical ftudy or literary compofition. In Edinburgh it is otherwife; the profeffional duties are not in general fo extenfive as to engrofs the whole man, and his connections in fociety extending through many different claffes of his fellow-citizens, he has opportunities of converfing, of reading, and of thinking on other objects than merely thofe immediately relating to the bufinefs which he follows. This is perhaps the moft agreeable ftate of fociety of any, which, if it may fometimes prevent the higheft degree of profeffional eminence and fkill, (though even on that ground many arguments might be offered in its favour), certainly tends to enlarge the mind, and to polifh the manners ; to give a charm and a dignity to ordinary life, that may be thought ill exchanged for the inordinate accumulation of wealth, or the felfifh enjoyment of profeffional importance.

Among that Society of which Mr Tytler, at the period I have mentioned, was admitted a member, the Writers to the Sig$n \in t$, there were always many individuals poffeffed of much general learning and knowledge; and the claffical education which was generally beftowed on young men deftined for that Society, frequently led them to indulge in hiftorical and literary difquifitions, little connected with the ordinary courfe of their profeffional employments. Mr Tytler was one of thofe who, from his earlieft years, had applied himfelf to letters and claffical ftudy ; and amidft an accurate knowledge and unremitting attention to his bufinefs, he never ceafed to cultivate and to enjoy them.

The moft remarkable feature of Mr Tytler's character was an ardour and activity of mind, prompted always by a ftrong fenfe of rectitude and honour. He felt with equal warmth the love of virtue and the hatred of vice; he was not apt to difguife either feeling, nor to compromife, as fome men more complying with the world might have done, with the fafhion of the time, or the difpofition of thofe around him. He feldom waved an argument on any topic of hiftory, of politics or literature; he never retreated from one on any fubject that touched thofe more important points on which he had formed a decided opinion. Decided opinions it was his turn to form ; and he expreffed them with a warmith equal to that with which he felt them. He took ftrong common-fenfe views of objects, not from want of acutenefs to perceive lefs palpable relations, but from that warm and ardent caft of mind to which fuch views are more congenial than the fubtleties of abftract or metaphyfical difquifition.

Nor was it in opinion or argument only that this warmth and ardour of mind were confpicuous. They prompted him equally in action and conduct. His affection to his family, his attachment to his friends and companions, his compaffion for the unfortunate, were alike warm and active. He was in fentiment alfo what Johnson (who felt it ftrongly in himfelf, and mentions it as the encomium of one of his friends) calls a good bater; but his hatred or refentment went no further than opinion or words, his better affections only rofe into action. In his opinions, or in his expreffion of them, there was fometimes a vehemence, an appearance of acrimony, which his friends might regret, which ftrangers might cenfure ; but he had noafperity in his mind to influence his actual conduct in life. He indulged oppofition, not enmity ; and the world was juft to him in return; he had opponents, but I fincerely believe not a fingle enemy. His contefts were on opinions, not on things; his difputes were hiftorical and literary. In converfation, he carried
carried on thefe with uncommon intereft and vivacity; and the fame kind of impulfe which prompted his converfation (as is juftly obferved by an author, who publifhed fome notices of his life and character in the periodical work entitled $T b e$ Bee) induced him to become an author. He wrote not from vanity or vain-glory, which Rousseau holds to be the only inducement to writing; he wrote to open his mind upon paper ; to fpeak to the public thofe opinions which he had often fpoken in private ; opinions on the truth of which he had firmly made up his own conviction, and was fometimes furprifed when he could not convince others; it was fair to try, if, by a fuller expofition of his arguments, he could convince the world.

With this view, he publifhed, in 1759, his "Enquiry, hifto" rical and critical, into the Evidence againft Mary Queen of " Scots, and an Examination of the Hiftories of Dr Robert" son and Mr Hume with refpect to that Evidence;" in which he warmly efpoufed the caufe of that unfortunate Princefs, attacked with feverity the conduct of her enemies, and expofed the fallacy, in many parts the fabrication, of thofe proofs on which the charges againft her had been founded. This work was the firft on that fide of this celebrated queftion which interefted the public in general, and appealed in behalf of the Queen to the judgment and feelings of the people. The learned and induftrious Mr Walter Goodall had feveral years before publifhed his examination of the Letters of MARy, on which hitr accufers had fo much refted as evidence of her guilt ; but that examination, however elaborate and acute, was not well calculated, either in form or ftyle, for general perufal. Mr Tytler's work gave to the arguments of Goodall. the concifenefs and compreflion neceffary to command the attention. of the reader, fupported them by a variety of new proofs and illuftrations, and drew from the general hiftory of the period in queftion, and from the characters of the leading actors of the fcene, arguments more impreffive and interefting than any which

Account of W. Tytler, Efq;
which mere verbal criticifm of the letters, or an examination of cotemporary documents, could fupply. The firt editions of the Enquiry were in one volume 8vo ; but the author afterwards confiderably enlarged it, particularly in the hiftorical part, and publifhed, in 1790 , an edition (being the fourth) in two volumes of the fame fize.

The problem of Mary's guilt or innocence, (to ufe the language of a near relation of Mr Tytler's, expreffive indeed of Mr Tytler's own fentiments on the fubject), if confidered merely as a detached hiftorical fact, would appear an object which, at this diftance of time, feems hardly to merit that laborious and earneft inveftigation to which it has given rife; though, even in this point of view, the mind is naturally ftimulated to fearch out the truth of a dark myfterious event, difgraceful to human nature; and our feelings of juftice and moral rectitude are interefted to fix the guilt upon its true authors. But when we confider that this queftion involves a difcuffion of the politics of both England and Scotland during one of the moft interefting periods of their hiftory, and touches the characters, not only of the two fovereigns, but of their minifters and flatefmen, it muft then be regarded in the light of a moft important hiftorical enquiry, without which our knowledge of the hiftory of our own country, and of that political connection with England which from that time influenced all State-affairs in Scotland, muft be obfcure, confufed, and unfatisfactory. In addition to thefe motives of enquiry, this queftion has exercifed fome of the ableft heads both of the former and of latter times; and it is no mean pleafure to engage in a conteft of genius and of talents, and to try our ftrength in the decifion of a controverfy, which has been maintained on both fides with confummate ability.

If to perfons, however, of cooler and lefs fanguine tempers, it fhould ftill appear fingular, that any ancient hiftorical difquifition fhould fo keenly engage the minds and the paffions of li-
terary men, it may perhaps be obferved, that it is on objects of this fort that thefe are frequently more occupied and excited than on others which might at firft fight appear better calculated to occupy and excite them. On objects of prefent and immediate concern, the mind and the affections have certain limits to which the actual and known intereft neceffarily confines them. The others have a fort of ideal range which no fuch fixed and certain boundary reftrains. The intereft is created, not found, and the fancy fofters and nourifhes the fubject of its own creation, till it engroffes the attention and excites the paffions to a degree that muft appear very extraordinary to thofe who confider it in its natural and unexaggerated colours. Difputes of literary as well as political enthufiafm, have therefore been generally the moft obftinate and warm of any; and this, which is quaintly termed the Marian controverfy, of all fuch difputes the keeneft. Even Mr Hume, placid as he was from nature, and accuftomed, from his earlieft literary life, to contradiction and attack, loft fomewhat of his ufual temper on the occafion, and fubjoined an angry note to the latter editions of his Hiftory, which I thall not quote, becaufe, from my refpect for his memory, I am rather inclined to wifh that it had not been written.

Without venturing any opinion on the queftion itfelf, it may be fufficient in this place to fay, that Mr Tytler acquired high reputation by his difcuffion of it. The Enquiry was univerfally read in Britain, and very well tranflated into French, under the title of "Recherches Hiftoriques et Critiques fur les " principales Preuves de l'Accufation intentée contre Marie " Reine d'Ecoffe." The intereft it excited among literary men, may be-judged of from the character of thofe by whom it was reviewed on its publication, in the periodical works of the time. Dr Douglas, now Bifhop of Salifbury, Dr Samuel Johnson, Dr John Campbell, and Dr Smollet, all wrote reviews of -Mr Tytler's book, containing very particular accounts of its

Account of W. Tytler, Efq;

Account of W. Tytler, Ef;
merits, and elaborate analyfes of the chain of its arguments. As an argument on evidence, no fuffrage could perhaps be more decifive of its merit than that of one of the greateft lawyers, and indeed one of the ableft men that ever fat on the woolfack of England, the late Lord Chancellor Hardwicke, who declared Mr Tytler's Enquiry to be the beft concatenation of circumftantiate proofs brought to bear upon one point, that he had ever perufed. What effect that body of evidence, or the arguments deduced from it, ought to have upon the minds of thofe to whom the fubject becomes matter of inveftigation, I do not prefume to determine. The opinion of the late Dr Henry, author of The Hifory of Great Britain on a neze Plan, may perhaps be thought neither partial nor confident; who fays, in a letter to Mr Tytler, publifhed in the volume of Tranfactions of the Antiquarian Society of Scotland, That he would be a bold man who fhould now publifh an hiftory of Queen Mary, in the fame ftrain with the two hiftorians, (Mr Hume and Dr Robertson), whofe opinions on the fubject the Enquiry had examined and controverted.
I cannot help obferving, in juftice to Mr Hume's impartiality, that no poffible motive could be affigned for the prejudice which the favourers of Queen Mary have fuppofed him to entertain againft her. As a party queftion, in which view Mr Tytler has placed it in his Introduction to the latter editions of his work ${ }^{*}$, Mr Hume had furely no bias to miflead him

* "The character, accomplifiments and misfortunes of this Princefs, (fays the Introduction), have been the fubject of much writing and controverfy among the Britifh hiftorians. Republican writers, equally averfe to monarchy and to the Houfe of Stuart, have drawn her picture in the blackent colours, by traducing her as an accomplice with the Earl of Bothwell in the murder of the Lord Darnley her hufband. On the other hand, the writers attached to the ancient conflitution of their country, and to the Family of Stuart, have regarded that unfortunate Princefs as one of the moft virtuous and accomplifhed characters of that age, and as a victim to the fecret confpiracies carried on by fome of the heads of the reformed party in her kingdom for her deftruction."
him in the confideration of it; and it is a circumftance rather fingular, that while he has generally been charged with Toryifm by one party, he flould, on the other hand, be accufed by implication of Republicanifm in this queftion on the hiftory of the unfortunate Queen of Scots.

The other illuftrious hiftorian, whofe opinions Mr Tytler controverted in his Enquiry, though of oppofite fentiments from Mr Tytler as an author, lived with him in habits of private friendfhip and familiar intercourfe. The laft time Mr Tytler dined at Dr Robertson's, he faw with peculiar fatisfaction Hamilton's hiftorical picture of Queen Mary, with the portrait of the Doctor on one fide, and his own upon the other. Dr Robertson, talking accidentally with the writer of this account on the fubject of the Marian controverfy, faid, " I have told Mr Tytler, that nothing but a regard for what I conceive to be hiftorical truth, could have given my hiftory that complexion which is fo different from what he thinks it fhould have worn. Mary was the natural heroine of my hiftory, if truth had allowed me to make her fo."

SUCH would have been the natural vanity of an author ; nor was the national vanity of a Scotfman lefs interefted in the fate of this beautiful and unfortunate Queen, whom her evil deftiny tranfplanted from the funfhine of a gay and gallant court to a barbarous and unfriendly clime; to a clime, fhaken by the ftorms of faction, and defolated by the furious contentions of a tyrannical and favage ariftocracy. It has been matter of regret with fome who feel for the Princefs in this view of her hiftory, that her advocates have not left her caufe to thofe feelings, but have pufhed very far her pretenfions to unimpeachable conduct and princely virtues, inftead of pleading an apology for error or weaknefs, from the circumftances of the times and the intricacies of her fituation. Even in the pages of Robertson, after all that he has allowed of prefumptive evidence for her impruVol, IV.
(D)
dence
dence or her crimes, the fentiment of the reader, let his hifto rical opinion be ever fo adverfe to the Queen, prevails over his juftice, and the dramatic effect of the ftory is uniformly, compaffion for the Princefs, and refentment againft her enemies.

To him who looks on that portion of hiftory rather with the eye of a moralift than of an antiquarian, her marriage with Bothwell is the moft unfavourable paffage of her life, both as affecting the propriety of her conduct in that particular, and as tending to corroborate the evidence produced by her enemies on the great charge of privacy in the murder of her hufband. Of that marriage, Dr Henry thus expreffes himfelf, in the letter I mentioned above, written to Mr Tytler on the 20th of July 1 ig90, a few months before his (Dr Henry's) death. "Her laft marriage (fays the Doctor), was the moft unhappy, and there feems ftill to be fopme difficulty in vindicating her conduct in contracting that marriage. Was fhe feized by Bothwell in her paffage from Linlithgow, in confequence of a pre-concert, and with her own confent ; or was it by mere violence, and without her having any intimation, that fuch an attempt was made? If I could anfwer that queftion, I fhould know what to think of feveral other things."

In confequence of this letter from Dr. Henry, Mr Tytler wrote a Differtation on the Marriage of: 2ueen Mary with the Earl of Bothwell; which, with the letter that occafioned it, was publifhed, in 1792, in the Tranfactions of the Antiquarian Society of Scotland, of which Mr Tytler was one of the Viceprefidents. In this differtation, he maintains, in conjunction with Whitaker and Steuart, that the Queen's marriage with Bothwell was an object which the treacherous Murray and his affociates had all along wifhed to accomplifh, and that it was at laft brought about by the daring ambition (encouraged by them) of Bothwell himfelf, who, having feized the Queen on her return from vifiting her fon at Linlithgow, carried her prifoner to Dunbar, where, by the moft flagitious and violent

$$
A P P E N D I X .
$$

violent means, he firft obtained the privilege, and then the legal character of a hufband.

I have placed this Difertation next in order to the Enquiry, becaufe both relate to the fame hiftorical fact, though in point of time it was the laft of Mr Tytler's compofitions. Before that Differtation, he had produced feveral other works on hiftorical and literary fubjects, namely,

1. The Poetical Remains of James the Firft, King of Scotland,

In one volume 8vo, publifhed at Edinburgh in 1783 . The volume, of which the above is the general title, contains a Differtation on the Life and Writings of King James the Firf, one of thofe Princes, in whofe lives, difaftrous rather than unfortunate, adverfity was the parent of wifdom and of virtue, and was cheared by religion, philofophy, and the mufes. This Differtation introduces two well known ancient poems, which Mr Tytler, on very ftrong grounds, afcribes to the King, viz. The King's 2uair, and Chrift's Kirk on the Green. The poem of T'be King's quair, or in modern Englifh the King's book, is a very ftriking proof, not only of the poetical genius and imagination of its author, but of a tafte cultivated and refined by an acquaintance with the claffical poetry of the ancients, and the works of thofe eminent bards who were his cotemporaries, Chaucer, Gower and Lydgate. The fubject of the poem is the paffion of James for his lovely miftrefs Jane, daughter of the Earl of Somerfet, who afterwards became his Queen; and the chief circumftances of the poet's life, the misfortunes of his youth, his long captivity, the incident which gave rife to his love, its purity, conftancy, and fuccefs, are well defcribed under the quaint, but at that time fafhionable figure of poetry, allegorical vifion. This work, which is mentioned by Jонм Major as the compofition of James, and which in later times had been feen by Bifhop Tanner in an ancient MS. among
the Seldenian archieves in the Bodleian library at Oxford, was, in confequence of a diligent fearch made at Mr Tytler's inftigation, happily recovered, and by him now for the firft time given to the public, with explanatory, critical and hiftorical notes. The poem of Cbrift's Kirk on the Green was well known to the public, and had long been admired for its wit and humour; but it had been afcribed, even by antiquarian writers, to JAmes the Fifth of Scotland, the author of The Gaberlunzie Man, and other ludicrous compofitions. It occured to Mr Tytler, that the public was in a twofold error refpecting this favourite poem; firft, in confidering it merely as a jeu d'efprit, or fanciful difplay of the author's imagination and powers in the ludicrous; and fecondly, in attributing the compofition to James the Fifth. - In the Differtation on the Life of James the Firft, he has argued, with much ingenuity, that the fcope and view of the work was political and patriotic ; its end, the beft purpofe of a Sovereign's writings, the improvement of his people. The Englifh at that time excelled all other nations in the ufe of the bow. James, on his return to his kingdom, was mortified by the ftriking inferiority of his own fubjects in that particular to their warlike neighbours. The practice of archery, and of weapon-fobawing, a military exercife, had gone into thameful neglect during the weak adminiftration of the Regents of the kingdom. To remedy this defect, a more regular difcipline was enforced by the young Monarch, by ftatutory regulations; who tried at the fame time the efficacy of ridicule in compofing this ironical fatire (for fuch, according to the ingenious fuppofition of Mr Tytler, is Cbrift's Kirk on the Green) on the awkward management of the bow, and the neglect of archery among the Scots. In the age of James the Fifth, the vulgarly reputed author of the poem, the ufe of fire-arms had completely fuperfeded the bow as an engine of war. The laws of James the Fifth required, that every man fhould arm himfelf with a hackbut or mufquet. In that era, therefore, the fatire on the
want of fkill in archery would have been loft or mifapplied, its irony no longer felt, its falutary end no more perceived. Befides this argument from the general tenor of the poem, Mr Tytler has adduced the intrinfic evidence arifing from the language of the piece, as clearly afcertaining its date to belong to that period to which he has affigned it.

At the end of the poem of Chrifis Kirk on the Green, is a note by Mr Tytler, in which he pays a juft tribute to the worth as well as genius of our celebrated paftoral poet Allan Ramsay, and contradicts, from his own perfonal knowledge, the abfurd ftory of Ramsay's not being the author of the well known paftoral drama, The Gentle Shepherd.

Subjoined to the Differtation and Poems, is an Effay by Mr Tytler (firft annexed to Arnot's Hiftory of Edinburgh, publifhed in 1788) on the Scottijh mufic. This laft was very properly included in the volume above mentioned, from its connection with the hiftory of the Prince, whofe poems it was the chief purpofe of that volume to record and illuftrate; the fyftem maintained by Mr Tytler in this effay on the Scottifh mufic, being, that the ftyle of the ancient melodies of this country was firft introduced by King James the Firf. This was chiefly founded on a paffage in the penfieri diver $/ \mathrm{o}$ of $\mathrm{T}_{\text {assoni }}$, better known as the author of the celebrated mock-heroic la fecchia rapita, who, mentioning the mufical talents of this Monarch, afcribes to him the "invention of a new kind of mufic, plaintive and melancholy," which Mr Tytler, in this effay, fuppofes was the original of thofe beautiful and pathetic airs which are known and diftinguifhed as the national mufic of Scotland.
H. Objer-

Account of W. Tytler, Eiq;

Account of
W. Tytler, Efq;
> II. Obfervations on the VISION, a Poem firfl publifoed in Ramsay's Evergreen.

'Thefe obfervations, which vindicate Allan Ramsay's title to the poems in queftion, were publifhed in the before-mentioned volume of the Antiquarian Tranfactions in 792.
> III. An Account of the faßionable Amufements and Entertainments of Edinburgh in the laft Century, with the Plan of a grand Concert of Mufic [performed there] on St Cecilia's Day 1695.

Mr Tytler was likewife the author of a paper in the Lounger, No. 16. "Defects of modern Female Education in teaching the Duties of a Wife."

On all Mr Tytler's compofitions the character of the Man is ftrongly impreffed, which never, as in fome other inftances, is in the fmalleft degree contradicted by or at variance with the character of the Autbor. He wrote what he felt, on fubjects which he felt, on fubjects relating to his native country, to the arts which he loved, to the times which he revered. A zealous Scotfman, a keen mufician, an old man with his youthful remembrances warm in his mind, he wrote on the hiftory of Scotland, on mufic, and on the amufements of former times in Edinburgh; and I confefs, that from a knowledge of this circumftance, I read his works with an intereft which I fhould not feel, if I confidered them as flowing from a pen which was the inftrument of the author's ingenuity rather than of his heart.

His heart indeed was in every thing he wrote, or faid, or did. He had, as his family and friends could warmly atteft, all the kindnefs of benevolence: he had its anger too; for benevolence is often the parent of anger. There was nothing neutral
neutral or indifferent about Mr Tytler. In philofophy and in hiftory, he could not bear the coldnefs, or what fome might call the temperance of fcepticifm; and what he firmly believed, it was his difpofition keenly to urge.

His mind was ftrongly impreffed by fentiments of religion. His piety was fervent and habitual. He believed in the doctrine of a particular providence, fuperintending all the actions of individuals, as well as the great operations of nature ; and he had a conftant impreffion of the power, the wifdom, and the benevolence of the Supreme Being.

His reading was various and extenfive. There was fcarcely a fubject of literature or tafte, and few even of fcience, that had not at times engaged his attention. In hiftory he was deeply verfed; and what he had read his ftrong retentive memory enabled him eafily to recal. Ancient as well as modern ftory was familiar to him, and in particular the Britifh hiftory, which he had read with the moft minute and critical attention. Of this, befides what he has given to the public, a great number of notes which he left in MS. touching many controverted points in Englifh and Scottifh hiftory, afford the moft ample proof.

In mufic as a fcience he was uncommonly fkilled. It was his favourite amufement; and with that natural partiality which all entertain for their favourite objects, he was apt to affign to it a degree of moral importance which fome might deem a little whimfical. He has often been heard to fay, that he never knew a good tafte in mufic affociated with a malevolent heart; and being afked, what prefcription he would recommend for attaining an old age as healthful and happy as his own? " My prefcription, faid he, is fimple : fhort but cheerful meals, mufic, and a good confcience." In his younger days, he had been a good performer on the harpfichord ; but his chief inftrument was the German-flute, which he thought peculiarly adapted to the expreffion of thofe natural and fimple melodies in which:
which he moft delighted, the Scottifh airs. He was one of the original members of the Mufical Society of Edinburgh, in which he continued, during a period of near fixty years, till his death ; during the greateft part of which time, he was a Director of that Society, and felt for its permanence and profperity that warm and lively intereft, which animated him alike in bufinefs, in ftudy, and in amufement.

In perfon, Mr Tytler was rather thin, and fomewhat below the middle fize. His walk, even at the lateft period of his life, was of that quick and fpringy fort which accorded with the activity of his mind. In his youth, he was fond of manly exercifes, and often talked with regret of thofe which the gentlemen of Scotland had loft in the refinement or effeminacy of modern times.

Endowed with fo many qualities adapted for friendfliip, Mr Tytler had many friends, and among thefe were fome of the moft diftinguifhed literary characters of the age. In that number were the late Dr John Gregory, Principal Campbell and Dr Gerard of Aberdeen, Dr Reid, Dr Beattie, Lord Kames, and Lord Monboddo. A man who lives fo long muft neceffarily lofe much of his cotemporary fociety; but the lofs was compenfated to him more than it generally is to perfons of his age, by that intereft which he took in the converfation and in the amufements of the younger people who were the acquaintance or companions of his children.

He was indeed of a temper remarkably focial, and found, from the congenial ardour of his own mind, particular delight in the company of young people; to whom, from the ftore of anecdotes he poffeffed regarding the incidents, the manners, and the habits of former times, his converfation was equally inftructive and entertaining. He was, however, one of thofe fortunate praifers of times paft who are perfectly alive to the enjoyment of the prefent; whofe partial recollection of former times and former joys refults from the fame warm and active temperament,

$$
A P P E N D I X
$$

temperament that ftill preferves cordiality for prefent friends and fpirit for prefent amufements. He retained this ardour and activity to the clofe of life; and at fourfcore, was as ready as ever to join in the converfation, to participate the mirth, even to enter into the innocent convivial frolic of his young friends and relations. At his country-feat of Woodboufelee, diftant about fix miles from Edinburgh, where he faw them with peculiar fatisfaction, he had erected in a private and fombre walk, an urn, with this infcription:

> Hunc lucum
> Caris mortuis amicis
> Sacrum dicat
> W. T.

Yet from this walk, from the indulgence of the remembrance and regrets which it infpired, he would return to the focial circle within, with unbroken fpirits and unabated cheerfulnefs.

In domeftic life, Mr Tytler's character was particularly amiable and praife-worthy. He was one of the kindeft hufbands and moft affectionate fathers. At the beginning of this account, I mentioned his having loft, at an advanced period of life, an excellent wife, and a fon and daughter both grown to maturity, who merited and poffeffed his warmeft affections. The temper of mind with which he bore thofe loffes, he has himfelf expreffed in a MS. note, written not long before his death; with which, as it conveys a fentiment equally important in the confideration of this life, and in the contemplation of that which is to come, I fhall conclude the prefent Memoir: " The lenient hand of time, (fays Mr Tytler, after mentioning the death of his wife and children), the lenient hand of time, the affectionate care of my remaining children, and the duty which calls on my exertions for them, have by degrees reftored me to Vol. IV.
(E)
myfelf.

Account of W. Tytler, Ef?

Aecrunt of
W. Tytler, Efq;
myfelf. The memory of thofe dear objects gone before me, and the foothing hope that we fhall foon meet again, is now the fource of extreme pleafure to me. In my retired walks in the country I am never alone; thofe dear fhades are my conftant companions! Thus, what I looked upon as a bitter calamity, is now become to me the chief pleafure in life."
> III. A Biographical Account of Mr William Hamllton, late Profeffor of Anatomy and Botany in the Univerfity of Glafgow. By Robert Cleghorn, M. D. F. R. S. Edin. Lecturer in Cbemiftry in the Univerfity of Glafgoze.

[Read 6th Nov. 1792.]

IN writing the life of a perfon who himfelf publifhed nothing, it is extremely difficult to fatisfy the expectation of his particular friends, without incurring the charge of adulation from the reft of the public. How far I have fucceeded in doing juftice to Mr Hamilton's merit, without infenfibility or exaggeration, muft be determined by thofe who knew him, and by thofe who can appreciate the worth of fuch profeffional remarks as I fhall lay before them in the fequel. Mr William Hamilton was born in Glafgow Iuly 31. 1758*. Having finifhed the ufual courfe at the Grammar School, he went to Glafgow College in 1770 , and continued there ftudying with great diligence till 1775, when he became Mafter of Arts at the age of feventeen.
(E2) Having

[^1]Account of W. Hamilton.

Having fhewn an early and ftrong predilection for the ftudy of phyfic, he went to Edinburgh, which was then, as it is ftill, the moft celebrated fchool of medicine in Europe. During the fummer of 1775 , he ftudied botany under the late worthy Dr Hope; and during the two enfuing winters he ftudied with great ardour under all the medical profeffors, and enjoyed the friendfhip of Dr Cullen and Dr Black, who having been formerly members of the College of Glafgow, were the companions and friends of his father.

Mr Hamilton intended to have remained a third feafon in Edinburgh, but the ftate of his father's health rendered it neceffary for him to give up this plan. Accordingly, in fummer 1777, he accompanied his father to Bath, and from thence to London, where he was recommended to the particular notice of the late Dr William Hunter, and of his brother Mr John Hunter. Each of thefe gentleman was connected with Mr T. Hamilton by early friendfhip, and a conftant intercourfe of good offices. Under their direction Mr Hamilton quickly diftinguifhed himfelf by that ardent purfuit of anatomical and profeffional knowledge, which marked every part of his fubfequent life. Though left at an early age to his own conduct, in a city abounding above all others with objects of pleafure and amufement, he refifted the blandifhments of both, devoting his time to the acquifition of knowledge, applying not only to thofe parts of ftudy which were entertaining, but to thofe alfo which the young are apt to neglect as uninterefting, or to defpife as ufelefs, and manifefting, on every occafion, a diligence difcouraged by no difficulty, and interrupted by few avocations.

Such conduct did not efcape the eye of Dr Hunter. Indefatigable himfelf, he was delighted with appearances of profeffional zeal among his ftudents; and he was fo particularly pleafed with them in the fon of his old friend, that, after the firft feafon, he invited Mr Hamilton to live in his houfe, and committed the dif-
fecting-room to his care. In this fituation, the beft that a ftudent of anatomy could wifh for, Mr Hamilton continued two years hearing the lectures, and enjoying the converfation, of the firft anatomift in London. How far, in Dr Hunter's opinion, he improved this opportunity, appears from the following letter addreffed to Mr T. Hamilton, December 31. 1778: "Your fon makes me very happy on your account, and for his own fake. I fee and hear much of him; and every body regards him as fenfible, diligent, fober, and of amiable difpofitions. He is now in the direct road for acquiring knowledge, as director in the diffecting-room. It obliges him to apply, becaufe he is to anfwer any queftion, and folve any difficulty that may occur; and which is beft of all, he is to demonftrate all parts of the body again and again to ftudents. This is a moft inftructive province, and a fine introduction to giving lectures, as it gives facility in public fpeaking, and a habit of demonftrating diftinctly and clearly, both of which are eafily acquired while we are young; and yet, for want of that very opportunity, are poffeffed by few. In this way he will acquire not only knowledge, but a character for knowledge with the public, which a young man cannot procure but by being in fome public ftation."

In another letter to the fame gentleman, dated May 18. ${ }^{1} 780$, Dr Hunter fays: "Your fon has been doing every thing you could wifh, and from his own behaviour, has profited more for the time than any young man I ever knew. From being a favourite with every body, he has commanded every opportu-. nity for improvement which this great town afforded during his ftay here ; for every body has been eager to oblige and encourage him. I can depend fo much on him, in every way, that if any opportunity fhould offer for ferving him, whatever may be in my powet 1 thall confider as doing a real pleafure to myfelf."

The opportunity hinted at foon occurred. Mr Hamilton came to Glafgow in 1780, and taught for his father during the enfuing winter. Having given moft fatisfying proofs of knowledge in anatomy, and of talents as a lecturer, he was appointed in 1781 fucceffor to his father, who had refigned fome time before. When confulted about this appointment, Dr Hunter faid to the Marquis of Graham, now Duke of Montrose, " That from an intimate knowledge of Mr Hamilton, as a man, and as an anatomift, he thought him every thing that could be wifhed for in a fucceffor to his father, and that it was the intereft of Glafgow to give bim, rather than his to folicit the appointment."
$H_{1 s}$ father lived till January 1782 ; but the whole burden of lecturing, and the greateft part of the bufinefs, devolved on the fon. The bufinefs was very extenfive, as old Mr Hamilton was connected with many of the moft refpectable families in Glafgow and its neighbourhood. His profeffional character, too, was high as a fuccefsful practitioner, and a fkilful operator ; and being withal a man of great hilarity, and genuine humour, his company was courted by all who relifhed wit and good fellowfhip. From the co-operation of fo many favourable circumftances, Mr Hamilton's progrefs was extremely rapid, his outfet being encumbered with few of thofe difficulties, which have often obftructed the courfe of other young practitioners. His father lived long enough to introduce him fully. His youth did not diminifh the confidence of his patients; becaufe, befides knowing that he had ftudied with uncommon care, in fituations the moft favourable for acquiring knowledge, they believed that he had ready accefs at all times to the experience of his father. By gentlenefs of manners, by unaffected benevolence, by the moft prudent circumfpection in all his conduct, and by unremitting attention to his patients, he not only retained moft of thofe who had employed his father, but added
many to the number. While he practifed extenfively as a furgeon, his fkill in anatomy made him be confulted by many furgeons, older than himfelf, before they performed operations; and, in a few years, thofe who had been his pupils, practifing in diftant parts of the country, confulted him on fimilar occafions. Befides anatomy, he taught botany and midwifery; which laft he practifed with fuch fuccefs, that he was called to almoft every difficult cafe near Glafgow. In October in 83 , he married Mifs Elizabeth Stirling, an accomplifhed lady, connected with feveral opulent families in Glafgow and its neighbourhood. From thefe connections, his practice, already extenfive, was very confiderably increafed.

Anxious to excel, not only as a fkilful phyfician, and an expert furgeon, but as a public teacher, he was led to confider every cafe that he treated more accurately than is ufually done by thofe who confine their attention to practice merely. Though naturally convivial, and endowed with a confiderable degree of his father's humour, he avoided company as much as he could with prudence, and devoted every vacant hour to ftudy, and efpecially to writing. He kept a regular account of all uncommon cafes, accompanying the conclufion of each with remarks fuggefted at the moment, and forming, at the end of each year, a general table of the difeafes which had prevailed during the different feafons. This plan facilitated his practice, and was highly gratifying to his patients, by convincing them, that their former complaints were diftinctly remembered: But he had a higher object in view than the affifting of his own memory, or the gratifying of particular patients. His object was to have publifhed a Syftem of Surgery, illuftrated with cafes, of which feveral are fully and accurately drawn up. As a fpecimen of what might have been expected from this work, had he lived to finifh it, I fhall mention a few particulars, which, on account of their

Account of W. Hamilton.
their novelty or importance, feem moft worthy of being recorded.

Upon performing lithotomy for the firft time, he was ftruck with the difficulty of introducing the gorget, and, on examination, he found it blunt at the point, where fharpnefs was moft needed, fo that inftead of cutting, it tore the urethra. The cuttler finding it difficult to fharpen the gorget, as commonly made, up to the button which goes into the faff, Mr Hamilton directed him to make it in two feparate pieces, which, locking together, had all the firmnefs of the old inftrument, with the advantage of being eafily fharpened when taken afunder. This inftrument he always employed afterwards in operating, which he did often, and with great fuccefs.

In midwifery he met with feveral uncommon cafes, of which the moft remarkable are inftances of two women who furvived a complete inverfion of the womb*. He detailed thofe cafes to his pupils, along with others that ended fatally ; and took occafion from them all to enforce the neceflity of avoiding force, or even hafte, in delivering women. The following extract, nearly in his own words, proves with what caution he treated his patients, and with what care he confidered their cafes afterwards: " I have feen four cafes of inverted uterus, of which two patients died, and two recovered. This recovery is fo fingular, that I know only one cafe by Thomas Bartholinus fimilar to it.
" The great object in all cafes of fuch danger, is to underftand fully how the accident happens, that fo we may be able to prevent is occurrence. It is evident, that the uterus can never be inverted when it is contracted, or even beginning to contract itfelf; it therefore muft happen when the fibres of it are relaxed,

[^2]selaxed, allowing themfelves to be bent in any direction, and when the uterus is ftill large. This is the condition of the uterus; when the child has been forced away, either by the action merely of the abdominal mufcles and diaphragm, or by the af fiftance, as it is called, of the midwife, fhould the placenta adhere to the very fundus or near it, a fmall degree of force, applied to the cord, may invert the uterus while large, flaccid, and empty.
" The fureft method of preventing fuch an accident, then, is to produce a complete and regular contraction of the uterus, which may be accomplifhed more eafily than fome have imagined. For we know, that as long as any ftimulus is applied to the cavity, and efpecially to the mouth, which is the moft irritable part of the womb, a contraction will take place, in order to expel the ftimulating caufe. Therefore, by allowing the child to be born folely by the pains of labour, by giving no affiftance in the extraction, (except where the fize of the child, or the malconformation of the pelvis, render affiftance abfolutely neceffary), and by preventing the delivery of the body from being accomplifhed by the abdominal mufcles folely, we force the uterus to contract itfelf, and to expel its contents. After the delivery of the body, by allowing the legs to lie for a flort time in the vagina, and to prefs on the mouth of the womb, we enfure its contraction.
" By fuch management, the uterus having been made to contract itfelf properly, we have the placenta feparated, and ready for extraction. Thus, together with the danger of inverfion, we are freed from two more common accidents, viz. a retained placenta and a flooding. Befides, the child is lefs hurt, when the Alow delivery allows time for the dilatation of the paffage ; and it runs no rifk of thofe fprains and bruifes which often happen in attempting to pull away the child without the affiftance of a la-four-pain.

Account of W. Hamilton.
" I have paid particular attention to this fubject, and I have always found, that where the womb was inverted, where the placenta was retained, or where much flooding followed the birth, the child had been born, head and body at once, by a fingle pain. An attention to this point, procured Dr Hunter part of the fame which he fo juftly poffeffed, on account of his fkill and caution in midwifery. He has often told me, that many women had been under his care, who, with other practitioners, had loft much blood, and been expofed to much danger, from the fpeedy extraction of the after birth. By allowing it to feparate flowly from the uterus, and after feparation to lie for half an hour in the vagina, he completely avoided the flooding, and the danger that attends it."

Mr Hamilton was called to many cafes of luxation, both of the fhoulder and thigh joint ; in reducing which, he fucceeded by very fimple means, after other furgeons, who employed the force of machinery, had failed. On this fubject he wrote an accurate paper ; in which, after defcribing the joints, with the ligaments and mufcles that furround them in a natural ftate, he confiders fully the change brought on every part by luxation, deducing partly from the ftructure of the parts, chiefly from his own extenfive experience, the following directions concerning the beft mode of reducing the joint to its natural pofition.
" The fituation of the mufcles round the joint differs much according to the kind of diflocation.
" In all cafes the deltoid is ftretched, but particularly when the bone is thrown directly downwards. The long head of the biceps muft be fometimes torn, but, where it is not, it will be extended, and the ligament through which it paffes, and which binds it to the humerus, will be always lacerated in a greater or lefs degree. The mufcles that are moft deranged, are the fuprafpinatus, fubfcapularis, and infrafpinatus. Thefe two laft we fhall call the lateral mufcles of the joint.
"In the diflocation downwards the fuprafpinatus will be on the ftretch, the fubfcapularis and infrafpinatus will have, their fibres lengthened, and their direction altered, in confequence of the head of the humerus being thrown below the glenoid cavity.
"When the bone is diflocated outwards, and refts on the dorfum fcapulæ, the fituation of the mufcles will be nearly the following: The fubfcapularis and fuprafpinatus will be both very much ftretched, while the infrafpinatus, having the humerus thrown under it, will be relaxed, and a number of its fibres will be torn from the fcapula, to make room for the head of the bone.
" In the third fituation, when the bone is luxated inwards, the fuprafpinatus and infrafpinatus will be on the ftretch, while the fubfcapularis will be relaxed, and in the fame fituation as its oppofite mufcle has been defcribed in the preceding fpecies of diflocation.
"This account is drawn from the natural fituation of the parts, and the few cafes of diflocation where there has been an opportunity of diffecting the arm. It may be obferved, that in all the three fpecies of luxation, the fuprafpinatus and dekoid are put much upon the ftretch, the laft in a lefs degree. From this we may infer the propriety of relaxing thefe mufcles completely during the time of reduction; and this is another reafon for raifing the arm when we attempt to replace the bone.
" Mr Thomson * fpeaks of the head of the humerus being caught between the tendons of the infrafpinatus and teres minor, as in a noofe; this can happen only in the luxation outwards, and is one reafon for relaxing them completely in attempting reduction, by throwing the arm towards the fide of the fcapula, oppofite to that where the head of the bone is lying. Having mentioned the fituation of the mufcles, I fhall now (F 2 2) point

[^3]Ácount of W. Hamilton."
point out the changes that take place on the joint, when left unreduced, as being our proper guide in judging what line of practice is to be followed in fuch cafes. An unreduced luxation may be defcribed in three fituations: The firf, when the parts. are little changed from the ftate they are in, immediately after diflocation happens. The fecond, where motion is beginning totake place, and when the foft parts become adapted to the diflocated ftate of the bones. And the laft, when a new joint is formed. After the head of the bone is lodged on fome part of the fcapula, it is found to confolidate the cellular membrane and mufcular fibres under it, fo as to form a kind of foft focket for itfelf, which, by the preffure of the cartilage on the end of the humerus, and by the motion the arm admits of, gets a fimooth furface. The burfal ligament torn on that fide next the humerus, is pulled acrofs the glenoid cavity, and the mufcles will be found in the ftate I have already defcribed.
"After the inflammation and fwelling, confequent upon the injury, have gone off, the patient will be plagued with pains in the ftretched mufcles, and will be incapable of moving the joint with eafe. The inflammation will however make the lacerated parts grow together, fo as to obliterate the paffage through which the head of the bone efcaped from the joint. This may be reckoned a luxation in a recent ftate. After fome time the mufcles begin to adapt themfelves to the ftate of the bones, thofe that were overftretched are lengthened, and the relaxed ones contract, fo that the perfon is capable of moving his arm, and by degrees the motion becomes more confiderable. The burfal ligament now gets adhefions to the edges of the glenoid cavity, over which it lies, and the opening in it, through which the bone paffed, is filled up, fo that it embraces the humerus clofely. The torn paffage in the foft parts has become as firm as if no laceration had ever take place. The focket, formed in the cellular fubftance, between the head of the humerus and the fcapula,

$$
\mathcal{A} P P E N D I X
$$

fcapula, begins now to be removed, from the conftant preffure made upon it; and before this, which we would call the fecond ftate of the diflocation, is completed, that bone is refting on the furface of the fcapula itfelf. It is much to be wifhed, that it were afcertained, by accurate obfervations, when thefe changes take place, and particularly when the third ftate, which we are next to defcribe, begins. This laft ftate of a diflocation is, when nature is beginning to form a new joint to fupply the place of the old one.
". The foft focket having been completely removed, the humerus is refting on the furface of the fcapula. By preffure, and frequent motion, a cavity is formed for the head of the bone; the furface of this new cavity becomes fmooth, and is covered with a cartilaginous cruft; the attachment of the humerus to the parts around anfwers the purpofe, and at laft affumes the appearance of a ligament, fo that a new joint may be faid to be formed completely in all its parts. That this can happen, has been proved by diffection; and particularly in a man, after whofe death my father had an opportunity of examining his arm, which had been diflocated for upwards of thirty years. This perfon was a fencing-mafter, and, as it was his right arm, he was obliged to perform with it a great variety of motions. He had acquired fo completely the ufe of it, that he could perform all the different motions neceffary in the fmall fword, except pufhing a high carte *.
" Monfieur Moreau \dagger gives two cafes fimilar to this, of old luxations of the thigh, where the head of the femur had formed a new acetabulum for itfelf in the os innominatum. Another cafe, though not of a diflocated fhoulder, I fhall likewife defcribe,

* Mr Thomson diffected a man with a new focket, formed in the infide of the fcapula, Med. Obf. vol. 2.

[^4]fcribe, as illuftrating the efforts of nature, to fupply the motion between bones after diflocation, and where a procefs for forming a new joint, that, fo far as I know, has never been defcribed, is taking place. The bones are from a woman, who was diffected in the theatre here, about four years ago; the thigh had been long diflocated, and the woman had been able to walk about. The neck of the os femoris lay on the edge of the acetabulum, while the head, which is changed in its fhape from the preffure of the furrounding parts, was on the dorfum ilii beyond this cavity. The edge of the acetabulum filled up the hollow at the neck of the femur, which is made deeper by its preffure. There are two proceffes of bone growing into the acetabulum from the os femoris, and which at laft would have formed a kind of head to play in this the cavity of the old joint, and thus have made a new one confiderably different from that in the cafes already mentioned. By one or other of thefe different ways, nature attempts to remedy the injury done to a limb after luxation. At the time the head of the humerus is forming a new focket for itfelf, the glenoid cavity is deftroyed, its fides approach each other, and the hollowed part is filled up by granulations of bone. The burfal ligament adheres to the furface -of this cavity, and is thus to all appearance loft.
" The patient continues in this ftate, with a joint either more or lefs perfect, and, when proper attention has been paid, the new joint may be made a very ufeful one; and to this point alone our treatment of old diflocations ought to be directed. The treatment of luxations muft differ according to the ftate of the difeafe. When they are recent, reduction in the eafieft and fafeft manner is the furgeon's object : And here we fhall make a few obfervations, drawn partly from what we have already fhown to be the ftate of the joint and mufcles, and partly from experience.
" The head of the humerus being in all cafes pulled beyond the glenoid cavity, and lodged on the fcapula, the firft ftep to-
wards replacing it, muft be to draw it out, fo as to bring it over

Account of W. Hamiltors that cavity out of which it was thrown.
"This is to be done by making the extenfion of the arm, with fuch a degree of force as to feparate the bones from each other, and fo applied that it may act only upon the parts round the diflocated joint. When extenfion is omitted, as was the cafe among the old furgeons, the attempts made by the lever to force the humerus into its place, fo far from having falutary, were attended with very bad, confequences. Extenfion, however, in the modern practice, is our firft view. The refiftance to the extention is owing to the contraction of the furrounding mufcles, which is partly voluntary, and partly the effect of their being much ftretched, from the new fituation of the bone. The firft it is feldom in our power to prevent, as the terror of reduction, and the uneafinefs confequent upon moving: the arm, makes the patient exert his mufcles to refift what gives him pain ; and fo far as no refolution in him can prevent this action, it may be faid to be involuntary. Were it poffible to deceive him, and make him fuppofe we were only examining the ftate of his arm, when we were really making the proper extenfion, this caufe of difficulty might be overcome in fome degree. The refiftance from the overftretched mufcles is of more importance, as it is in our power to prevent it, and, when not attended to, muft increafe the furgeon's difficulty, and by extending the mufcles, already too much on the ftretch, may produce greater laceration than from the difeafe intended to be remedied.
" The obfervations we have already made on the ftate of the mufcle after diflocation, muft now appear neceffary, being on a fubject little attended to, though of great importance, and particularly as they lead us to place our patient in fuch a manner as to remove this caufe of difficulty and danger.
"Another caufe preventing reduction, is the bone being pulled in fuch a direction by the furgeon, as not to pafs through
the cavity it formed for itfelf in diflocation, but is made to prefs on the furrounding parts, fo that if the force is continued to be exerted in the fame direction, a new paffage muft be torn for it. This, like the laft, may be avoided, by attending to the moft probable pofition of the limb when the accident happened. We have attempted to prove, that, in general, diflocation is moft apt to happen when the arm is raifed ; and therefore that this pofition is the preferable one for reduction. I fufpect in many cafes, where improper attempts to reduce the bone have been made, that the difficulty is increafed by the bone tearing a paffage for itfelf in a new direction, and thus, by twifting the mufcles, preventing reduction from being accomplifhed.
" The laft obftacle is from the burfal ligament. As in no cafe of diflocation the head of the bone can pafs out without lacerating it, fo, in reduction, it cannot be replaced, unlefs it is brought through the fame opening by which it went out; for if we attempt to bring the humerus over the glenoid cavity in a wrong cirection, the ligament will get between it and the fcapula, and thus, when apparently reduced, the bone will return to its old fituation, as foon as the arm is let loofe. This can be avoided only by the porture of the limb; and here alfo, in the raifed ftate of the arm, the bone will return moft readily through the opening in the ligament, as being put into the fame pofition in which it was luxated.
" These three great difficulties in reduction, then, are to be remedied by a proper pofition of the patient and of his arm; and this, I think, there can be no doubt, is by placing him fo, that the extenfion may be made when his arm is raifed. In order to this, I make him fit on the ground, the fcapula, with the glenoid cavity upwards, being kept fixed by two affiftants who are placed behind him. I put a towel round the humerus, immediately above the elbow, both to give me a firmer hold of the part, and likewife, that, if neceffary, I may have a place for an affiftant

$$
A P P E N D I X
$$

or two in the extenfion to lay hold by. The fore arm is bent up, fo as to relax the biceps completely; and this I prefer to the ftate of half flexion, as the extenfor triceps is not one of the mufcles that gives any difficulty in reduction. When the bone is luxated directly downwards, I make the extenfion ftanding oppofite to the patient's fide; but, when it is either outwards or inwards, I place myfelf towards that fide, oppofite to where the head of the bone is lying, and I carry the arm in the fame direction. If, for example, the head of the humerus is under the pectoral mufcle, I carry the arm outwards towards the patient's back, and vice verfa.
" I then begin to make the extenfion with a flow and fleady force, but of fuch a kind as I find is capable of overcoming the refiftance of the mufcles, and of bringing the bone out of its place. After it is completely difengaged, it is pulled into the glenoid cavity by the action of the furrounding mufcles, fo as not to require any preffure in the axilla to raife it up. In this manner I have reduced feveral diflocations of the fhoulder ; and in none have I failed, or been obliged to ufe the force I have feen applied in other modes of reduction, and without effect. Among the cafes 1 have fucceeded in, there were feven where all the other methods had been tried in vain; and in three of thefe the arm had been out for three weeks. Mr White of Manchefter * has employed a mode of reduction fimilar to this, as to the pofition of the arm; but I think the other parts of -his plan are not equal to that here defcribed. The raifed ftate of the arm is likewife advifed by Mr Тhomson, from the fituation he found the mufcles in the diffection of two men with diflocated humeri, who had died before reduction had been effected.
" In this manner of reduction, all the extended mufcles are relaxed by the arm being raifed; the fuprafpinatus and deltoid

> (G)
in

* Medical Obfervations, vol. 2. p. 373.
in the diflocation downwards; and in that to the fide, by turning the humerus towards the fide of the fcapula oppofite to that on which its head is lodged, the lateral mufcle is taken off the ftretch it was put into by the diflocation. When thefe overftretched mufcles are thus attended to, the reduction becomes more eafy to the furgeon, and much lef's hazardous to the patient, as laceration is guarded againft.
" After long and violent attempts to reduce the fhoulder, particularly with the mufcles on the ftretch, I have heard of the bone becoming fo loofe, that when it had been at laft got into its focket, it fell out again very readily. This I imagine muft have been owing to the mufcles round the joint, and the ligament, having been very completely torn, fo that the humerus had loft its natural fupport. In the two modes of reduction moft commonly made ufe of, the ftate of the mufcles is not enough attended to. When the arm is at an acute angle with the fide, as when we attempt to force in the bone with the heel in the axilla, the fuperior mufcles are very much on the ftretch; and when the patient is placed on a chair, and the arm forms a right angle with the body, they are ftill not fufficiently relaxed to prevent additional difficulty and danger; and I muft agree with Mr Thomson in thinking attempts in thefe directions often the caufe of fucceeding bad confequences. Another advantage of reduction with the raifed arm is, that as foon as the humerus is difengaged from the fcapula, the mufcles, that from the nature of the diflocation were moft extended, contracting, pull it into its focket. In other modes of reduction, a confiderable force is required to prefs the bone into its place, after the arm is fully extended. When this force is great, the parts that lie over the bone muft be bruifed, particularly if a hard body is ufed to effect this purpofe. On this account the Ambe, both of Freack and Petit, appears to me a bad inftrument. It pulls out the arm at right angles, and therefore it requires confiderable ac-

$$
A P P E N D I X
$$

tion of the end of the inftrument as a lever to force the humerus into its place, while the preffure on the patient's fide is equal to the force of the extenfion. It can likewife be properly ufed only in the diflocation downwards.
" In all diflocations of the humerus, the extenfion, I think, fhould be made with the hands, in place of pulleys, as by the firft, the direction of the bone can be better adapted to the refiftance and fituation of the furrounding parts.
" In what we called the fecond ftate of an unreduced diflocation, the obftacles are more numerous than in the recent. The mufcles have now adapted themfelves to the fituation of the bones, the hole in the ligament is in part grown up, and the lacerated paffage in the foft parts is obliterated, the fides of it having, by inflammation, adhered to each other. Thefe being added to the difficulties in recent luxations, render the reduction here both more difficult, and more apt to be attended with laceration, than in the other. Thefe obftacles are to be got over, however, by the fame means. The patient ought to be put into the fame pofition, and the extenfion made in the fame manner, only it will require the force to be greater, and to be longer continued, before it accomplifhes the end in view. I do not think, however, it will be neceffary to employ any other method, (as that of Mr White), as every thing may be done by the hand, that can be expected from pulleys.
" In the laft ftate, and even in the latter part of the fecond, inftead of reduction, we fhould attempt to render the new joint that is forming as perfect as poffible. This is to be done principally by making the patient ufe his arm as often, and for as long a time as he can, without pain or fatigue, and to perform with it a variety of motions.
" In this way we will haften the formation of the new joint, and render him fooner capable of ufing his arm. That this is poffible is evident from the cafe of the fencing-mafter already
mentioned, who followed his profeffion for upwards of five and twenty years before his death, and who, by being obliged to ufe his arm, acquired the motion of the new joint fooner than if he had been under no fuch neceffity.
" It is a matter of importance to afcertain when the changes, we have defcribed, take place. I imagine the recent flate may continue for a fortnight or three weeks: But ftill we want obfervations to point out when the mufcles become completely adapted to the new fituation of the bones; when the glenoid cavity begins to lofe its flape, and the ligament to adhere to it ; and, particularly, when the furface of the fcapula begins to become hollowed and fmooth, fo as to receive the head of the hut merus. Thefe, however, may be gueffed at, by the quality and degree of motion enjoyed in the diflocated joint. Were thefe points fully afcertained, they would guide us in our practice, and prevent attempts being made to reduce old diflocations, where the furgeon, from want of knowledge of the procefs carrying on by nature to form a new joint, and the obliteration of the old cavity, racks the patient's limbs to no purpofe; and even fhould he be fuccefsful, he might be faid not to reduce, but really to diflocate, as he defroys a new joint beginning to enjoy motion, and throws the end of the bone on a furface which has now loft every thing neceffary to make it a part of a joint."

Mr Hamilton had occafion once to open the cheft of a Lady, who had water in her breaft. The quantity at firft drawn off amounted to fixteen ounces; a great deal oozed out aiterwards, and fome of the fymptions were for a little relieved, but the patient died in a few weeks. On the beft manner of performing this operation, he makes the following remarks:
'6 In Mr Bell's mode of operating, which I here followed, fimply drawing off the water, and avoiding every thing that may bring on inflammation on the cavity, is not fufficiently kept in view. An extraneous body, a canula, is introduced and kept in

$$
A P P E N D I X .
$$

for two or three days. The effect of this practice is crident; inflammation may be brought on over the cavity; fuppuration will fucceed, and the cafe will be converted into one of empyema, with an opening in the cheft. The effects of keeping in a canula in the abdomen were found, by the old furgeons, to be fo bad, that the practice was given up, even before the faintnefs, from drawing off the water at once, was fo well underftood as to be capable of being prevented. In our patient, fymptoms of inflammation from the canula were beginning when it was withdrawn, and had it been kept in another day, the inflammation would probably have become fo confiderable, that it might have been expected to produce the worft confequences.
" The view with which a canula is introduced and kept in, is, to allow the water to run off only when we choofe it, and to prevent air from getting into the cavity. The firf intention it does not anfwer; as in our patient, though it was introduced through the pleura when only a fmall perforation had been made in it, fo that it might be clofely embraced, the water oozed out by its fides, and more was difcharged in this way than by the canula itielf.
"Air is likewife more apt to get into the cavity by the canula, than if the water was difcharged without it. It is impof fible to ftop it fo accurately and quickly with the finger or cork, as to prevent the accefs of air, when there is little water left, or when the lungs are not in a fituation to fill the cavity, and efpecially when the patient is infpiring. This I found to be the cafe, when I drew off the laft water by it. But before I left the patient, I evacuated the air as completely as poffible, by depreffing that fide of the cheft during expiration.
"From the ftructure of the thorax, air is apt to be drawn in by the external wound, and is again not eafily expelled. The moft ready method of evacuacing it, is by compreffing that fide

Account of W. Hainilton.
of the cheft during expiration, at the fame time preffing up the vifcera of the abdomen, fo as to make the diaphragm afcend; and thus, by leffening the cavity, while the patient, by fhutting the glottis, prevents the air from efcaping, but forces it into the collapfed lung, we force out as much of it as poffible. Other ways of evacuating it hath been fuggented by different writers. Sucking it out by a fyringe, or an elaftic bottle, are common propofals, but I am afraid can never be put in practice. The bottom of the wound between the ribs is fo irregular, that they can never be applied when the canula is out; and when it is in, more air would be admitted during the time the fyringe, or bottle, was fitting on, than could be extracted by them. But after all the water is evacuated, the wound muft be healed up, for if not, fuppuration will come on the wound, and when the canula is then withdrawn, the 1kin, that was intended to act as a valve, will have become fixed by the inflammation, and will not come down over the hole in the pleura, fo that air muft be admitted, though it was excluded before.
" Whether common air does hurt to any cavity, I doubt much. Water, with a penetrating wound, would be as bad. The inflammation of the wound is what is moft to be dreaded, as it fpreads from that over the whole cavity. The canula, therefore, as inducing inflammation, muft, in my opinion, be very hurtful.
" In place of the operation defcribed by Mr Bell, I would propofe doing it in the following manner: I would place my patient in the common pofture, and, after the fkin was well pulled up, make my incifion in the ufual place and manner, till I came down to the pleura. I would then make an opening through it, about half an inch in length, merely dividing the membrane. In cutting into the cavity, great care fhould be taken not to do it rafhly, left an adhefion of the lungs to the pleura be over the incifion. At the fame time we muft expect to find
the pleura much thicker than it naturally is, owing to the cifeets of inflammation, and the preffure of the water, fo that a timid operator, not aware of this circumfance, (which is not taken notice of , might defift, from an idea of having met with an adhefion, when he was really only half way through the membrane. In a cafe of hydrothorax I opened, I found the pleure coftalis a fifth of an inch thick. I would then allow as muciz water to run off as I thought proper, two affiftants making fuch a degree of preffure on the ribs of that fide as to prevent their being raifed in breathing, during the time the fluid was difcharged. After I had drawn off fuch a quantity as fiowed readily, and the patient could bear without faintnefs, I would bring the loofe fkin over the hole in the pleura, and fix it there with flips of emplaft. adhefiv.; I would then lay the patient on the difeafed fide, fo as to allow the water to ooze off by the wound, while air would be prevented from getting in, by the fkin acting as a valve. If the patient grew faint, from the evacuation being too quick, it could eafily be leffened, or ftopped, by making him turn more and more towards his back, or oppofite fide, fo as to make the hole in the pleura lefs a depending opening; or, by making preffure upon the flkin over the opening, the difcharge might be completely ftopped. If the lung was not difeafed, as the water flowed off, it wounld be more and more filled with air, and expanded. If it was fo much difeafed as to be incapable of expanfion, by no mode of operation can more water be drawn off than what diftended the cavity; a quantity muft be left equal to the want of enlargement of the lung ; if we draw off more than this, air mult fupply its place; for we are not to imagine we can take away all the water, and leave a vacuum. The wound will admit of the water oozing long enough to evacuate all that fhould be taken away; and it will not be prevented from healing, fo as to endanger the patient, from the rifk of internal inflammation. If we find a
large quantity thus evacuated, it will prove the lung of that fide to be found; as, air being entirely excluded, the cavity muft be filled up by that alone, after the water is difcharged. If little runs off, it is probably one of thefe cafes where the lung is fo much indurated as to be for ever incapable of performing its function. In the firf cafe, the patient may derive benefit from the operation; the difeafe may be prevented from recurring. In the other we have done him no hurt; he will breathe more eafily as long as the oozing continues, by taking away the redundant water, but, as this cannot be kept up long, he muft at laft be left to his fate.
" Laying the patient on the difeafed fide after the operation mult be of fervice, as it both allows the water to run off, and it prevents him from enlarging that fide of the cheft, and thus running a rifk of drawing in air by the wound. When a canula is kept in, this is impracticable; the patient cannot be laid much towards that fide without the canula preffing on the bedclothes. In the manner I have propofed, the operation will, I think, be more fafely performed, and might therefore be oftener tried.
"What I have faid applies only to hydrothorax. In empyema an opening muft be kept in the cheft, to difcharge the matter as it forms. The two difeafes certainly require different furgical treatment. In the firft, inflammation has not come on, and is to be guarded againft In the other, the collection of matter is the effect of it, and its being regularly difcharged will, if any thing can, abate it. I fhould therefore follow Mr Bell's plan* in this, though I would differ from it in the other; and as the fteps of the operation in thefe two cafes would be the fame, except leaving in the canula in empyema, we may attempt
it

* The canula recommended by Mr Betl has no lip or margin round the opesing. By fuch an addition it has a hold of the parts round the opening, and can be kept much feadier.
it when proper, though we may not be certain of the nature of the fluid contained. In moft cafes we may afcertain this before from the fymptoms; but, at all events, the puncture in the pleura will put it beyond a doubt."

Mr Hamilton had an opportunity of feeing feveral herniz in women, upon fome of whom he operated fuccefsfully; and, from confidering all the cafes he had feen, he was led to make the following remarks, fome of which he thought new.
"When I began the practice of furgery, as I had never met with a cafe of hernia in women, I believed implicitly in the doctrines we find in every writer on the fubject, viz. that women have feldom bubonocele, but are more fubject to femoral hernia. Soon after I had begun to practife, I was called to a confultation about a woman with a hernia, which had been ftrangulated for two days. As it was placed in the groin, I at firft fight thought it a femoral hernia; but, upon examining it attentively, I found it was a bubonocele that had gone towards the thigh, in place of towards the labium. The operation which was performed put the matter beyond a doubt, and fhowed that it came through the ring of the mufcle. In a few months I was called to another patient in the fame fituation, and I faund, to my furprife, the fame appearances which in the firft I took to be a lufus naturce; the hernia in the groin, at the top of the thigh, and yet evidently coming through the ring; having all the appearances at firft fight of femoral hernia, but in reality a bubonocele. The operation here, likewife, which I performed, made me certain of the fact. In a third, under ftrangulation, I found the fame appearances, and operated.
"Finding the hernia bubonocele in thefe three cafes, yet with all the appearance of that fpecies where the gut is pufhed out under Paupart's ligament, I began to fufpect that the common account given by authors was erroneous, and that buVol. IV.
bonocele
bonocele had, from inaccurate obfervation, been often defcribed for femoral hernia. From the time I began to have thefe fufpicions, I have miffed no opportunity of determining my point; and I have been lucky enough to have the diffection of two women, with the apparent femoral hernia; which turned out bubonocele. I have likewife had five or fix living patients with hernia, where I had an opportunity of a careful examination, and have again operated in a fimilar cafe. As the refult of thefe ten or twelve cafes is againft the common opinion, I fhall ftate my obfervations at full length.
"The idea that a bubonocele in women was to take the fame road with a fimilar hernia in men, has, I fancy, mifled; for we find, that this is the account commonly given of the difeafe, that the gut paffes down into the labium. Now, if we compare the two cafes, we will find there is no fimilarity. In men, the gut and fack are furrounded by the cremafter, and are therefore conducted towards the tefticle. The cellular membrane of the fcrotum is free of fat, and therefore yields more eafily to the preffure of the gut than that of the parts around; and thus the hernia paffes more eafily in this direction than in any other. In women, when the hernia has paft the ring, it has no cremafter to conduct it to the labium, it may therefore pufh in any other direction ; but as the cellular membrane of the labium, and from it to the ring, is very much loaded with fat in moft women, it will find more obftruction in this direction, and will therefore be pufhed where the parts yield more readily. The parts on the groin are lefs loaded with fat, the gut therefore will be preffed here. This I found corroborated by all the three cafes, where I either operated or was affiftant ; and in the two diffections the hernia was pufhed outwards from the ring, and in one it had gone up along the belly above the ring. This only takes place when the hernia is fmall. If the ring is much opened, and a great quantity of gut forced out, the motion of
the thigh preffes it inwards and downwards, and it then goes towards the labium. This I have inftances of in fome women I have lately examined with herniæ.
" The appearances of the bubonocele, when fmall, will deceive a practitioner if he is not on his guard, and make him imagine it a femoral rupture. The marks by which the one may be diftinguifhed from the other, though fituated in the fame place, are few and fimple.
" As the fafcia of the thigh joins Paupart's ligament, the femoral hernia is always under this fafcia; it is therefore more compreffed ; it is not loofe, and we cannot fo well grafp it with the hand; and, inftead of being rounded on the top, it is more or lefs flattened. The bubonocele again is only under the fkin and cellular membrane, is therefore loofer, can be grafped, and is rounded on the top.
" In femoral hernia the fwelling begins at the edge of PAUpart's ligament, and goes down, and we feel the ring and the parts above the ligament uncovered by the hernia. In the bubonocele of women it goes over Paupart's ligament, and fometimes up upon the mufcles over the ring, and extends more to each fide along the bending of the thigh than the other.
"From thefe marks not having been attended to, I fufpect much that the place where the hernia lay was alone taken into view, and cafes fimilar to mine had been called femoral ruptures. Indeed I have every reafon to fuppofe fo, as fome of the cafes where I was moft certain of their being bubonocele, had been looked on as of the other kind.
" I would therefore recommend to practitioner's attention to thefe marks, fo as to determine how far the obfervations I have been led to make are juft.
" The bubonocele in this fituation in women, from its often lying in parts over the ring, makes the reduction much more uncertain, as we cannot grafp the part of the hernia juft coming
through

Account of W. Hamilton.
through the ring, fo as to force it back, which is effentially neceffary to ready reduction, and which we can always do in men, from the loofenefs of the fkin at the top of the fcrotum.
" Upon examining the ftate of the parietes of the belly in women, and comparing them with thofe of men, I fee no reafon for their being more fubject to femoral hernia than bubonocele, though in general I think them lefs liable to the difeafe altogether than men. The figure of the pelvis makes Paupart's ligament a little longer in them, but the face under it is in proportion as well filled up by mufcles, veffels, and fat ${ }_{2} \varepsilon^{\circ} c$. fo that no more room is allowed for the vifcera to be forced out in the one tian in the other. The rings of the mufcle in women, though lefs apt to yield, as being more contracted than in men, are in proportion the weaker part, and therefore the paffage through which a vifcus will be more readily pufhed. In operating upon this fpecies of bubonocele, I varied a little from the common method. As the tumor extended along the bending of the thigh, my incifion being made in this direction, was parallel in fome meafure to the ring. This made the introduction of the biftory, to cut the tendon, a little more difficult, but it gave me advantages to counterbalance this inconvenience. I had after the reduction a piece of integuments above the incifion, which when preffed down covered the ring. This foon formed adhefion with the parts below, and effectually excluded the expofure of the cavity of the abdomen, which adds much to the danger of the operation. In the common operation, where the ring is laid in view, and is at the bottom of the wound, the integuments over it having been divided, I fufpect the inflammation on the edges and bottom of the wound, which is kept open, extends through the ring to the peritonæum, altogether independent of the expofure, and produces very fatal effects. Now, in my method, this was prevented; the integuments being found immediately over the ring. In dreffing the wound
wound I ufed ftitches to keep the lips together, which was likewife affifted by bending up the thigh. This I look on as of confequence in every operation for hernia, as the healing the parts by the firft intention over the ring muft be of effential fervice in preventing inflammation in the abdomen; and the only objection that has been made to it, the rifk of the gut flipping out, may be eafily prevented by a comprefs over the opening in the tendon for a few days: And after this, as adhefions will have taken place, unlefs great force is ufed, no protrufion can happen."

To thefe fpecimens others might be added, were not this memoir already too long, and were not thefe fufficient to juftify what has been faid of the unremitting attention and found judgment of a gentleman, whofe premature death was regarded by all his friends as a lofs to fcience and to fociety. His conftitution, fomewhat enfeebled by early and intenfe application to ftudy, was worn out with the toil of bufinefs and thought, in which he was continually engaged; and, after a tedious illnefs, he expired, March 13. 1790, in the thirty-fecond year of his age, leaving a widow and two fons.

Having lived according to the laws of religion and virtue, and being naturally of a placid, cheerful temper, he bore much fuffering without complaint, looking forward to death, which for fome time he knew to be unavoidable, with thofe fenfibilities indeed which every good man feels on the profpect of leaving his deareft friends, and entering into an untried exiftence, but without unmanly dejection or timidity. Befides the approbation of his own mind, he was foothed with the affectionate attentions of all his family, and with the regrets of his brethren and the public, who from day to day teftified the utmoft folicitude concerning his health; uttering not the unmeaning language of ceremony, or the interefted one of flattery, but that of

Account of W. Hamiltcn.
fincere efteem and gratitude. Even when his funeral paffed along, many among the crowd were obferved to fhed tears for one whofe kindnefs had foothed their minds, and whofe fkill had relieved them in the hour of diftrefs; nature prompting them to pay this grateful tribute to him who could no longer obferve or reward them.

The foftnefs and tendernefs with which he fpoke to his patients; the attention with which he liftened to all their complaints, however frivolous; the readinefs with which he fympathized with their feelings; to a byeftander in health might fometimes appear exceffive, but, to the fame perfon in difeafe, the whole appeared but a reafonable exertion of humanity. Delighted with the kindnefs of his manner, his patients vied with each other in their commendations, of which he proved himfelf worthy, by the utmoft delicacy of converfation, and the ftricteft purity of conduct, no lefs than by exertions of fuperior fkill, and by a punctual laborious attendance. His prudence, which was uncornmon for his years, led him to avoid all oftentatious difplay of the extent to which he was employed; by which means, together with the moft modeft demeanour, he, in part, ftifled that envy which is apt to rife in the old, when they fee themfelves overtaken or outftripped by the young.

As a lecturer, his manner was remarkably free from pomp and affectation. His language was fimple and perfpicuous, but fo artlefs, that it appeared flat to thofe who place the beauty of language in the intricacy of arrangement, or the abundance of figures. His manner of fpeaking correfponded with his ftyle, and was fuch as might appear uninterefting to thofe who think it impoffible to be eloquent without violent geftures, and frequent variations of tone. He ufed nearly the tone of ordinary converfation, as his preceptor Dr Hunter did before him, aiming at perfpicuity only, and trufting for attention to the importance of the fubjects he treated. Thefe he felected with great judgment.
judgment. Holding in contempt all hypothefes unfupported by

Account of W. Hamiltor. fact, and inapplicable to the improvement of practice; omitting or paffing flightly over parts remarkable for curiofity more than utility; he demonftrated with great diftinctnefs and precifion thofe parts which it is neceffary to know accurately ; accompanying his demonftrations with fpecimens of morbid parts, and with every remark, phyfiological or practical, which he was able to collect from extenfive reading, and careful reflection on his own practice. To excite emulation among his ftudents, and to honour the memory of his friend, he gave a gold medal, bearing the figure of Dr William Hunter, as a prize to the beft differtation on a furgical fubject. By thefe means, he had the fatisfaction of contributing to increafe the number of medical ftudents in Glafgow ; and while his ftudents became from year to year more numerous, they began to difcover alfo that ardour, which it is impoffible either to excite or maintain where the ftum dents are few.

 .

IV. Account of $\mathfrak{F o h}$ Roebuck, M. D. F. R. S. Edin. Communicated by Mr fardine, F. R. S. Edin. and Profeffor of Logick in the Univerfity of Glafgowe.

```
[Read April 4, 1796.]
```

DOctor John Roebuck was born at Sheffield in Yorkfhire, in the year 1718. His father was a confiderable manufacturer and exporter of Sheffield goods, who, by his abilities and induftry, had acquired a competent fortune. JoHn, his eldeft fon, the fubject of this memoir, was intended, by his father, for carrying on his own lucrative bufnefs at Sheffield; but was, from his early youth, irrefiftably attached to other purfuits, more calculated to gratify his ambition, and give fuller play to his powers. Notwithftanding this difappointment in his favourite object, his father had liberality enough to encourage his rifing genius, and to give him all the advantages of a regular education.

After he had gone through the ufual courfe of the Gram-mar-fchool at Sheffield, both his father and mother being ftrict diffenters, they placed their fon, for fome years, under the tuition of the late Dr Dodoridge, who was, at that time, mafter of an Academy at Northampton, and had jufty acquired high reputation among the diffenters, both as a divine and as an inAructor of youth. Under the Doctor's care Mr Roebuck made great proficiency, and laid the foundation of that claffical tafte and knowledge for which he was afterwards eminently diftin-

[^5]guifhed.

Accorvit of Dr Rocinck.
guifhed. It would appear that Dr Doddridge had been much pleafed with the ardour and enthufiafm, in the purfuit of knowledge, difcovered by his pupil; for, Mr Roebuek, in an after period of his life, ufed frequently to mention the fubjects of converfations and inquiries of various kinds, in which the Doctor had engaged him. It was during his refidence at this Academy, that he contracted an intimate acquaintance with his fellow - ftudents, Mr Jeremiah Dyson, afterwards much known in the political world, and Mr Mark Arenside, afterwards Dr Akenside, which terminated only with their lives.

From the Academy at Northampton, he was fent to the Univerfity of Edinburgh, where he applied to the fudy of medicine, and particularly to that of chemiftry, which, about that time, began to attract fome attention in Scotland. While he refided there he diftinguifhed himfelf much, among his fellowfludents, in their literary focieties and converfations, by great logical and metaphyfical acutenefs, and by great ingenuity and refource in argumentation. The late fagacious Dr Porterfield, to whom he had been introduced, obferved and encouraged his rifing genius, and was greatly inftrumental in promoting his improvement. There, too, he formed an intimate acquaintance with Mr Hume, Mr Robertson, afterwards Dr Robertson, Mr Pringle, afterwards Lord Alemoor, and feveral other perfons of literary eminence ; a circumftance which produced, in his mind, a partiality ever afterwards in favour of Scotland, and contributed not a little to his making choice of it for the chief field of his future exertions and induftry.
After Mr Roebuck had gone through a regular courfe of medical education at Edinburgh, being now determined to follow the practice of phyfic, he next fpent fome time at the Univerfity of Leyden, then in high reputation as the firft fchool of medicine in Europe : There, after the ufual refidence and courfe of trials, he obtained a degree in medicine; and his diploma,
dated 2 Ift February 1743, has affixed to it the refpectable names of Muschenbroer, Osterdyk, Van Royen, Albinus, Gaubius, \&c. He left Leyden, after having vifited fome part of the north of Germany, about the end of the year 1744.

Soon after his return from the Continent, fome circumftances induced Dr Roebuck to fettle, as a phyfician, at Birmingham. Before that time, Birmingham haḍ begun to make a rapid progrefs in arts, manufactures, and population, and, by the death of an aged phyfician, an opening was prefented to him, which afforded an immediate profpect of encouragement in that line. His education, talents, and interefting manners, were well calculated to promote his fuccefs as a phyfician. He accordingly met there, at a period more early than he expected, with great encouragement, and was foon diftinguifhed, in that town, and the country adjacent, for his fkill, integrity, and charitable compaffion, in the difcharge of the duties of his profeffion.

It appeared, however, foon after his refidence was fixed at Birmingham, that his ftudies and induftry were turned to other objects befides thofe of his profeffion. Strongly attached to the rifing fcience of chemiftry, he conceived high views of extending its ufefulnefs, and of rendering it fubfervient to the improvement of arts and manufactures. With this view, he fitted up a fmall laboratory in his own houfe, in which he fpent every moment of his time, which. he could fpare from the duties of his profeffion. There, in the true fpirit of his great mafter, Lord Bacon, of whofe philofophy he was a great admirer, he carried on various chemical proceffes of great importance, and laid the foundation of his future projects, on well tried and well digefted experiments*.

The

[^6]Account of Dr Roeback.

The firft efforts of his genius and induftry, thus directed; led him to the difcovery of certain improved methods of refining gold and filver, and particularly to an ingenious method of collecting the fmaller particles of thefe precious metals, which had been formerly loft in the practical operations of many of the manufacturers. By other chemical proceffes, carried on about the fame time in his little laboratory, he difcovered alfo improved methods of making fublimate, harthorn, and fundry other articles of equal importance. After having received full fatisfaction from the experiments upon which fuch difcoveries and improvements were founded, he next digefted a plan for rendering them beneficial to himfelf, and ufeful to the public. A great part of his time being ftill employed in the duties of his profeffion, he found it neceffary to connect himfelf with fome perfon in whom he could repofe confidence, and who might be, in other refpects, qualified to give him fupport and affiftance in carrying on his intended eftablifhments. With this view, he chofe as his affociate Mr Samuel Garbet of Birmingham, a gentlemen well qualified by his abilities, activity, and enterprifing firit, for bearing his part in their future undertakings. Their firt project was the eftablifhment of an extenfive laboratory at Birmingham, for the purpofes above mentioned, which, conducted by Dr Roebuck's chemical knowledge, and Mr Garbet's able and judicious management, was productive of many advantages to the mannufacturers of that place, and of fuch emolument to themfelves, as contributed greatly to the boldnefs of their future projects. That laboratory has, ever fince that time, continued at Birmingham, and is ftill conducted by Mr Garbet. Dr Roebuck, long before his death, had given up his intereft in it.

About this time, in 1747, the Doctor married Mifs Ann Roe of Sheffield, a lady of a great and generous fpirit, whofe temper and difpofition equally fitted her for enjoying the pro-
ferous circumftances of their early life, and for bearing her

Account oit Dr Roebuck equal fhare of thofe anxieties and difappointments in bufinefs which fhaded, but did not obfcure, the later period of their lives.

Dr Roebuck's unremitted perfeverance in his chemical ftudies, together with the fuccefs that attended them, led him, ftep by ftep, to other refearches of great public and private benefit.

The extenfive ufe of the vitriolic acid in chemiftry, and the profpect of its application to fome of the mechanic arts, had produced a great demand for that article, and turned the attention of chemifts to various methods of obtaining it. The late Dr Ward had obtained a patent for making it; and, though the fubftances from which it might be obtained, as well as certain methods of obtaining it, had been known to others, and particularly pointed out by Lemery the elder, and by Glauber, yet Dr Ward was the firft, it is believed, who eftablifhed a profitable manufacture upon the difcovery. Much, however, was wanting to render the acid of univerfal ufe in chemiftry, and of extenfive utility in the arts, where great quantities of it were required. The price of it was high, arifing from the great expence of the glafs veffels, which were made ufe of by Dr Ward in procuring it, and the frequent accicidents to which they were liable in the procefs.

Dr Roebuck had been, for fome time, engaged in making experiments with a view to reduce the price, and at length difcovered a method of preparing it, by fubftituting, in place of the glafs veffels formerly ufed, lead ones of a great fize; which fubftitution, together with fundry other improvements in different parts of the procefs, completely effected his end.

After the neceffary preparations had been made, Meffrs Roebuck and Garbet eftablifhed a manufacture of the oil of vitriol at Preftonpans, in Scotland, in the year 1749. This eftablifhment not a little alarmed Dr Ward, who attempted to de-
feat their plan, by taking out a patent for Scotland, in addition to the one he had formerly obtained. In this attempt he failed. Dr Roebuck's difcovery was found not to come within the fpecification of Dr Wár d's patent.

The Preftonpans Company, convinced that patents are of little avail in preferving the property of new inventions or difcoveries, in conducting their vitriol works refolved to have recourfe to the more effectual methods of concealment and fecrecy. By that method they were enabled to preferve the advantages of their ingenuity and induftry for a long period of years, and not only ferved the public at a much cheaper rate than had ever been done formerly, but, it is believed, they realized, in that manufacture, a greater annual profit from a finaller capital than had been done in any fimilar undertakng. The vitriol work is ftill carried on at Preftonpans; but, long before Dr Roebuck's death, he was obliged to withdraw his capital from it.

About this time Dr Roebuck was urged, by fome of his friends, to leave Birmingham, and to fettle as a phyfician in London, where his abilities might have had a more extenfive field of exertion. He had been early honoured with the acquaintance of the late Marquis of Rockingham, who, as a lover of arts, had frequently engaged him in chemical experiments at Rockingham-houfe. It was there, alfo, he became acquainted with the late Sir George Savilie, and with feveral other perfons of rank and influence. His old friend and fchool fellow, Mr Dyson, too, by this time, had acquired confiderable name and influence, and preffed him much to take that ftep. Under fuch patronage, and with the energy of fuch talents as Dr Roebuck poffeffed, there could be little doubt of his foon arriving at an eminent rank, as a phyfician in London. But the chemical concerns, with which he was at that time deeply occupied, held out to him a profpect of a richer harveft, determined him to give up the practice of medicine altogether,
and to fix his refidence, for the greateft part of the year, in Scotland.

The fuccefs of the eftablifhment at Preftonpans, which had far exceeded their expectation, enabled the Doctor and his partner Mr Garbet, to plan and execute other works of filt greater benefit and public utility. In the profecution of his chemical ftudies and experiments, Dr Roebuck had been led to beftow great attention on the proceffes of fmelting ironftone, and had made fome difc̣overies, by which that operation might be greatly facilitated, particularly by ufing pitcoal in place of charcoal. Mr William Caddell of Cockenzie, in the neighbourhood of Preftonpans, a gentleman earneftly intent upon promoting manufactures in Scotland, had, for feveral years, laboured, without much fuccefs, in eftablifhing a manufacture of iron; a circumftance which may have probably contributed to turn Dr Roebuck's attention more particularly to that fubject. As the capital which he and his partner Mr Garbet could appropriate for carrying on the iron manufacture was not equal to fuch an undertaking, and chiefly depended upon the profits of their other works, their firft intention was to attempt a fmall eftablifhment of that kind, in the vicinity of their vitriol works at Preftonpans. But the flattering profpects of fuccefs, arifing from a courfe of experiments which Dr Roebuck had lately made, encouraged them to extend their plan, and to project a very extenfive manufactory of iron. A fufficient capital was foon procured, through the confidence which many of their friends repofed in their abilities and integrity. In fact, the eftablifhment which they made, or rather the capital which gave it exiftence, was the united capital of a band of relations and friends, who trufted to Dr Roebuci and Mr Garbet the management of a great part of their fortune. When all previous matters had been concerted, refpecting their intended eftablifhment, the chief exertions of chemical and mechanical
chanical Ikill, neceffary in the execution, were expected from Dr Roebuck. It fell to his fhare alfo to fix upon the beft and moft favourite fituation for erecting their intended works. With that view, Dr Roebuck examined many different places in Scotland, particularly thofe on both fides of the Frith of Forth; and, after a careful and minute comparifon of their advantages and difadvantages, he at length made choice of a fpot, on the banks of the river Carron, as the moft advantageous fituation for the eftablifhment of the iron manufacture. There, he found, they could eafily command abundance of water for the neceffary machinery; and in the neighbourhood of it, as well as every where both along the north and fouth coaits of the Frith, were to be found inexhauftible quarries of ironftone, limeftone, and coal. From Carron, alfo, they could eafily tranfport their manufactures to different countries by fea. The communication with Glafgow, at that time, by land-carriage, which opened up to them a ready way to the American market, was fhort and eafy.

Many other things, which need not be here enumerated, fell to Dr Roebuck's fhare in preparing and providing for the introduction of this new manufacture into Scotland, particularly with refpect to the planning and erection of the furnaces and machinery. To infure fuccefs, in that department, nothing was omitted which ability, induftry, and experience could fuggeft. With this view, he cafled to his affiftance-Mr Smeaton, then by far the firft engineer in England. It was from him he received plans and drawings of the water-wheels and blowing apparatus, which, notwithftanding all the mechanical improvements which have been made fince, remain unrivalled in any of the other ironworks erected in Britain. This was "the firft introduction of? Mr Smeaton into Scotland, and "was the occafion of various other difplays of the fkill and experience of that celebrated engineer in that part of the ifland.

With

With the fame view, and to the fame effect, in a future period of his operations, he employed Mr James Watt, then of Glafgow, and had the merit of rendering that inventive genius, in the mechanical arts, better known both in this country and in England.

The neceffary preparations, for the eftablifhment of the ironworks at Carron, were finifhed in the end of the year 1759 ; and on the ift January 1760 the firft furnace was blown : and in a fhort time afterwards a fecond was erected.

No period of Dr Roebuck's life required from him more vigorous and laborious exertions than that of the eftablifhment of the Carron works, and the firft trials of the furnaces and machinery. His family and friends remember well the ardour and intereft which he difcovered; the inceffant labour and watchfulnefs which he exerted on that occafion. Every thing was untried, the furnaces, the machinery, the materials, the workmen; the novelty of the undertaking in that country, its extent and difficulty, and the great ftake at iffue, were circumftances that muft have occafioned much ferious thought and anxiety to the partner, upon the credit of whofe knowledge and experience the work had been undertaken. But the Doctor had great powers and great refources : and the firft trial gave fufficient indications of future fuccefs.

For fome time after the eftablifhment of the Carron works, Dr Roebuck continued to give his attention and affiftance in the general management and fuperintendance of them, and with him all meafures of future operations were concerted. During this period, fome alterations of great importance were fuggefted by him, and carried into effect. By carefully obferving the progrefs of fmelting in the furnaces, at firf worked by bellows, befides their being fubject to various accidents, the Doctor difcovered the neceffity of rendering the blaft both ftronger and more equable; and propofing, as a problem to Mr Vol. IV.

Smeaton,

Account of
Dr Roebuck.

Smeaton, the beft method of effecting that end, that celebrated engineer foon gave the plan of a blaft by three or four cylinders, which was afterwards tried, and fucceeded even beyond expectation.
When the bufinefs at Carron funk by degrees into a matter of ordinary detail, and afforded lefs fcope for the Doctor's peculiar talents, he was unfortunately tempted to engage in a new and different undertaking; from the failure of which he fuffered a reverfe of fortune, was deprived of the advantages refulting from his other works, and, during the remainder of his life, became fubjected to much anxiety and difappointment.

The eftablifhment of the Carron works, and the intereft Dr Roebuck had in their fuccefs, had naturally turned his attention to the ftate of coal in the neighbourhood of that place, and to the means of procuring the extraordinary fupplies of it which the ironworks might in future require. With the view, therefore, of increafing the quantity of coal worked in that neighbourhood, by an adventure which he thought would alfo turn out to his own emolument, he was induced to become leffee of the Duke of Hamilton's extenfive coal and falt works at Borrowftounnefs. The coal there was reprefented to exift in great abundance, and underftood to be of fuperior quality ; and as Dr Roebuck had made himfelf acquainted with the moft improved methods of working coal in England, and then not practifed in Scotland, he had little doubt of this adventure turning out beneficial and highly lucrative. In this, however, he was cruelly difappointed. The opening of the principal fratum of coal required much longer time, and much greater expence, than had been calculated; and, after it was opened, the perpetual fucceffion of difficulties and obftacles which occurred in the working and raifing of the coal, was fuch as has been feldom experienced in any work of that kind. The refult was, that after many years
of labour and induftry, there were funk in the coal and falt works at Borrowftounnefs, not only his own, and the confiderable fortune brought him by his wife, but the regular profits of his more fuccefsful works; and, along therewith, what diftreffed him above every thing, great fums of money borrowed from his relations and friends, which he was never able to repay: not to mention, that, from the fame caufe, he was, during the laft twenty years of his life, fubjected to a conftant fucceflion of hopes and difappointments, to a courfe of labour and drudgery ill fuited to his tafte and turn of mind, to the irkfome and teafing bufinefs of managing and ftudying the humours of working colliers. But all thefe difficulties his unconquerable and perfevering fpirit would have overcome, if the never ceafing demands of his coalworks, after having exhaufted the profits, had not alfo compelled him to withdraw his capital from all his different works in fucceflion; from the refining work at Birmingham, the vitriol work at Preftonpans, the ironworks at Carron, as well as to part with his intereft in the project of improving the fteam engine, in which he had become a partner with Mr Watt, the original inventor, and from which he had reafon to hope for future emolument. It would be painful to mention the unhappy confequences of this ruinous adventure to his family and to himfelf. It cut off for ever the flattering profpect which they had of an independent fortune, fuited to their education and rank in life. It made many cruel encroachments upon the time and occupations of a man, whofe mind was equally fitted to enjoy the high attainments of fcience, and the elegant amufements of tafte. As the price of fo many facrifices, he was only enabled to draw from his colliery, and that by the indulgence of his creditors, a moderate annual maintenance for himfelf and family during his life. At his death, his widow was left without any provifion whatever for her immediate or future fupport, (K 2)
and without the fmalleft advantage from the extraordinary exertions and meritorious induftry of her hufband.

Dr Roebuck had, fome years before his death, been attacked by a complaint that required a dangerous chirurgical operation. That operation he fupported with his ufual fpirit and refolution. In a fhort time he was reftored to a confiderable fhare of his former health and activity. But the effects of it never entirely left him, and feveral flighter returns of the complaint gradually impaired his conftitution. He ftill, however, continued, till within a few weeks of his death, to vifit his works, and to give direction to his clerks and overfeers. He was confined to his bed only a few days, and died on the 17th July 1794 , retaining to the laft all his faculties, his fpirit and good humour, as well as the great intereft which he took, as a man of fcience and reflexion, in the uncommon events which the prefent age has exhibited.

From a man fo deeply and fo conftantly engaged in the detail of active bufinefs, many literary compofitions were not to be expected. Dr Roebuck left behind him many works, but few writings. The great object which he kept invariably in view was to promote arts and manufactures, rather than to eftablifh theories or hypothefes. The few effays which he left, enable us to judge of what might have been expected from his tale ts, knowledge, and boldnefs of invention, had not the active undertakings in which, from an early period of life, he was engaged, and the fatiguing details of bufinefs, occupied the time for ftudy and invefligation. A comparifon of the heat of London and Edinburgh, read in the Royal Society of London June 29 . 1775, Experiments on ignited bodies, read there 16th February 1776, Obfervations on the ripening and filling of corn, read in the Royal Society of Edinburgh 5th June 1784, are all the writings of his, two political pamphlets excepted, which have been publithed. The publication of the effay on ignited bodies was occafioned
occafioned by a report of fome experiments made by the Comte de Buffon, from which the Comte had inferred, that matter is heavier when hot than when cold. Dr Roebuck's experiments, made with great accuracy before a committee of the Royal Society at London, feem to refute that notion.

It is the works and eftablifhments projected and executed by Dr Roebuck, with the immediate and more remote effects of them upon the induftry, arts, and manufactures of Scotland, which urge a juft claim to the refpect and gratitude of his country. This tribute is more due from the difcerning part of mankind, as this fpecies of merit is apt to be overlooked by the bufy or the fuperficial, and to fail in obtaining its due reward. The circumftances of Dr Roebuck have, in this refpect, been peculiarly hard : For though, moft certainly, the projector and author of new eftablifhments highly ufeful to his country, and every day becoming more fo, he was, by a train of unfortunate events, obliged to break off his connexion with them, at an unfeafonable time, when much was yet wanting to their complete fuccefs: and thus he left others in the poffeffion, not onlv of the lucrative advantages now derived from them, but even, in fome meafure, of the general merit of the undertaking, to a confiderable part of which he had the moft undoubted claim.

The eftablihmment of the laboratory at Birmingham, in the year 1747, the firft public exhibition of his chemical talents, was, at that particular period, and in the ftate of the arts and manufactures at that time, highly beneficial, and fubfervient to their future progrefs: and the continuance and fuccefs of it, in that place, is a proof of the advantages which many of the manufacturers receive from it. Much had already been done, and many improvements made in arts and manufactures, chiefly by the fuggeftions of that ingenioufnefs and experience, which, in the detail of bufinefs, might be expected from the practical artift. Dr Roebuck was qualified to proceed a ftep farther; to, direct:
direct experience by principles, and to regulate the mechanical operation of the artift by the lights of fcience. The effects of that eftablifhment extended, in a particular manner, to all that variety of manufactures in which gold and filver were required, to the preparing of materials, the fimplifying of the firft fteps, to the faving of expence and labour, and to the turning to fome account what had been formerly loft to the manufacturer. It is well known, that, while Dr Roebuck refided at Birmingham, fuch was the opinion formed of his chemical knowledge and experience by the principal manufacturers, that they ufually confulted him on any new trial or effort to improve their feveral manufactures; and, when he left that place, they fincerely regreted the lofs of that eafy and unreferved communication they had with him, on the fubjects of their feveral departments.

On account of fimilar circumftances, the benefit to the public, from the eftablifhment of the vitriol works at Preftonpans, in the extenfion and improvement of many of the arts, cannot now be exactly afcertained. The vitriolic acid is one of the moft active agents in chemiftry, and every difcovery which renders it cheap, and acceffible to the chemift, muft be greatly fubfervient to the progrefs of that fcience. By the eftablifhment at Preftonpans, the price of that valuable acid was reduced from fixteen to four pence per pound. It is to Dr Roebuck, therefore, that chemifts are indebted for being in poffeffion of a cheap acid, to which they can have recourfe in fo many proceffes.

But Dr Roebuck's object, in the profecution of that fcheme, was not fo much to facilitate the chemift's labour, as to render that acid, in a much higher degree than it had formerly been, fubfervient to many of the practical arts. By rendering the vitriolic acid cheap, great ufe came to be made of it in preparing the muriatic acid, and Glauber's falts from common falts. Its ufe has been farther extended to many metallic proceffes; and it has lately been employed in feparating filver from
the clippings of plated copper, the ufe of which is very exten- five.

The application of the vitriolic acid in bleaching linen, or a fubftitution of it for four milk, was firft publifhed by Dr Francis Home. But it is well known to feveral of Dr RoeBUCK's chemical friends, that he had tried it, found it effectual, and had frequently recommended it to bleachers before the date of that publication. The quantity of it now confumed in that art is very great. Of late it has been ufed in decompofing common falt, with the addition of manganefe, in order to obtain the oxygenated muriatic acid, by which the procefs of bleaching fine linen is amazingly fhortened. Much of it too is ufed in preparing the beft kind of aquafortis, or nitrous acid, from faltpetre, which was decompofed formerly, and ftill is, in many cafes, by vitriol, inftead of the vitriolic acid; but the vitriol gives an aquafortis of inferior ftrength and purity. The dyers alfo employ great quantities of it in different procefles, particularly in diffolving indigo, in one of their methods of dying with that drug.

At firft, the manufactories of the vitriolic acid in Britain fupplied foreign nations as well as our own, though foreigners, having fince difcovered or learned the art, now make it themfelves. But it would be tedious to mention all the applications of it which have been already made, and it is impoffible to fay how far the ufe of this powerful agent in chemiftry, and the arts, may be carried. Enough has been faid to fhow, that Dr Roebuck's difcoveries, in that department, have been of the greateft advantage to fcience and the practical arts, in facilitating the procefs for procuring this acid, and in rendering it of general ufe; and it is but fair that the name of that perfon fhould ftand on record, to whom chemifts and artifts are fo much indebted for their fubfequent fuccefsful labours.

Account of - Dr Roebuck.

The project and eftablifhment, however, of the ironworks at Carron, the moft extenfive eftablifhment of that kind hitherto in Britain, muft be confidered as Dr Roebuck's principal work. The great and increafing demand for iron in the progreffive ftate of arts, manufactures and commerce in Britain, and the great fums of money fent every year to the north of Europe for that article, turned the attention of chemifts and artifts to the means of promoting the manufacture of iron, with the view of reducing the importation of it. No perfon has a better founded claim to merit, in this particular, than Dr Roeвиск. The fmelting of iron by pitcoal, it is indeed believed, had been attempted in Britain in the beginning of the laft century. In the reign of James I. feveral patents feem to have been granted for making hammered iron by pitcoal, particularly to the Honourable Dud Dudley and Simon Starlevant. It does not appear, however, that any progrefs had been made in the manufacture in confequence of thefe patents. In later times trials have been made by fo many different perfons, and in fo many different places in England, nearly about the fame time, that it may be difficult to fay where and by whom the firft attempt was made, particularly as the difcoverers of fuch proceffes wifhed to conceal the knowledge they had gained as long as they could. But Dr Roebuck was certainly among the firft, who, by means of pitcoal, attempted to refine crude or pig iron, and to make bar iron of it, inftead of doing it by charcoal, according to the former practice: And he was, without all queftion, the perfon who introduced that method into Scotland, and firft eftablifhed an extenfive manufacture of it. It is not meant to afcribe to him the fole merit of the eftablifhment at Carron. No man was ever more ready than he was, to do juftice to the abilities and fpirit of his friends and partners, Meffrs Garbet, Caddell, \&c. who firft embarked with him in that great undertaking. But ftill it may be faid with truth, that
the original project of the ironworks at Carron, the chemical

Account of Dr Roebuck.

Account of Dr Roebuch.
ing to the projector and promoter of the eftablifhment at Carron, that Scotland is, at this moment, benefited to the amount of many hundred thoufand pounds, in working up the raw materials of that manufacture found in the country itfelf, and which, previous to that eftablifhment, was of no value whatever. Such are the prefent, but fcarcely any idea can be formed of the future advantages to this country, which may be derived from the extenfion of the iron manufacture. About 60,000 tons of iron have been annually imported into Great Britain for more than twenty years paft, and though there has been, for fome time, about 20,000 tons of bar iron made in Britain by pitcoal, yet the foreign imported iron has fuffered little or no diminution in quantity. This great confumption of iron, no doubt, is owing to the various improvements of late years, and the general extenfion throughout all Europe of commerce and the arts. The manufacture of iron muft therefore continue to increafe, and Scotland, abounding every where in ironftone, pitcoal, and in command of water for machinery, has the profpect of obtaining the largeft fhare of it.

To the eftablifhment of the Carron works, and to the confequences of that eftablifhment, may be afcribed alfo the exiftence of other public works in Scotland of great importance and utility. The opening of a communication by water betwixt the Forth and the Clyde had long been projected, and frequently the fubject of converfation in Scotland, but nothing in fact had been attempted. The eftablifhment of the ironworks at Carron foon called forth fufficient intereft and enterprife to bring about the execution of this grand defign. Some of the partners of the Carron Company, forefeeing the advantages they would derive from fuch a communication, propofed, at their own expence, to execute a finall canal; and, after taking the preparatory fteps, actually applied to Parliament to obtain authority for that purpofe. But the project of the fmall canal
not meeting with the approbation of fome noblemen and gentlemen in that part of Scotland, they oppofed the bill, and obliged themfelves to execute a greater canal, which has now been many years finifhed, and is found to be of the greateft advantage to the trade and commerce of Scotland. - The merit of this undertaking is not meant to be afcribed to Dr Roebuck, excepting in fo far as it neceffarily arofe from the eftablifhment of the Carron Company, of which he was the original projector; and it may reafonably be doubted, whether, without that eftablifhment, it would have yet taken place. Several other canals have, fince that time, been executed in different parts of Scotland, and other very important ones are at prefent projected.

The different eftablifhments which Dr Roebuck made at. Borrowftounnefs in carrying on the coal and falt works there, though ultimately of no advantage to himfelf, were attended, during the courfe of thirty years, with the moft beneficial effects upon the trade, population, and induftry of that part of Scotland. They were the means alfo of adding very confiderably to the public revenue. Previous to the time thefe works fell under Dr Roebuck's management, they produced no advantage either to the proprietor, or the adventurers, or to the public. But by his mode of conducting them upon a more extenfive plan, by opening up new feams of coal, and of ketter quality, he was enabled to export a very confiderable quantity, to increafe the quantity of falt, and, of courfe, the revenue arifing from thefe articles. In thefe works, and in the management of a large farm, Dr Roebuck gave employment to near \dot{a} thoufand perfons at Borrowftounnefs, and in the neighbourhood.

Nor was it folely by the different eftablifhments which he projected and executed, but by many other things neceffarily connected with them, that Dr Roebuck's labours were beneficial to Scotland. Along with them he may be faid to have introdu-

Account of Dr Roebrick.
ced a fpirit of enterprife and induftry, before that time little known in Scotland, which foon pervaded many other departments of labour, and gave birth to many other ufeful projects. He brought from England, then much farther advanced in arts and induftry, many ingenious and induftrious workmen, at great expence, who, by their inftructions and example, communicated and diffufed fkill and knowledge to others. At all times Dr Roebuck held out liberal encouragement to rifing genius, and induftrious merit; and fpared no expence in making trials of improvements and difcoveries, which were connected with the different projects and works which he was carrying on.

Such was the active and ufeful life of Dr Roebuck, a man of no common caft, who united, in a very high degree, a great number of folid and brilliant talents, which, even feparately, fall to the lot of but few individuals. Diftinguifhed by an ardent and inventive mind, delighting in purfuit and inveftigation, always afpiring at fomething beyond the prefent ftate of fcience and art, and eagerly preffing forward to fomething better or more perfect, he thus united energies the moft powerful, with the moft unwearied and perfevering induftry. To that peculiarity of imagination, fo fitted for fcientific purfuit, which readily combines and unites, which fteadily preferves its combinations before the eye of the mind, and quickly difcovers relations, refults and confequences, was added, in his character, great promptitude and firmnefs in decifion. Strongly and early impreffed with the great importance of applying chemical and phyfical knowledge to the ufeful arts, to the melioration of civil life, he never loft fight of that favourite view, and difcovered great boldnefs and refource in the means and expedients which he adopted to promote it. He was certainly mafter of the beft philofophy of chemiftry known in the earlier parts of his life, and though, in every fage of that fcience, he marked and underftood the progrefs of the difcoveries, yet his
numerous avocations did not permit him to follow them out by experimental proceffes of his own. Upon that, and indeed almoft upon every fubject, his mind readily grafped the moft ufeful and fubftantial points, and enabled him to throw out fuch hints, and hypothefes, as marked him the man of genius.

During the courfe of a regular education, both at Edinburgh and at Leyden, Dr Roebuck ftudied the claffic authors with great attention, particularly the hiftorical and political parts of their works. Upon thefe fubjects he had read much, felected with judgment, and was well acquainted with the facts and philofophy of ancient governments. This tafte he carried with him, and improved in every period of his life, and in every fituation. It abundantly rewarded him for the earneftnefs and diligence with which it had been acquired. It became his favourite refource, and indeed one of the chief enjoyments of his life. Poffeffing the happy talent of turning his mind from ferious and fatiguing, to elegant and recreating purfuits, it was no uncommon thing with him to return from the laboratory or the coalpit, and draw relaxation or relief from fome one or other of the various ftores of claffical learning.

No man was better acquainted with the hiftory of his country than Dr Roebuck, or more admired and revered the conftitution of its Government. By temper and education he was a Whig, and at all times entered, with great warmth, into the political difputes and controverfies which agitated parties, in the different periods of his life. If the natural warmth of his temper, and his enthufiafm on thefe fubjects, led him, on fome occafions, beyond the bounds of candid argumentation, his quick fenfe of decorum, and his perfect habits of good manners, produced an immediate atonement, and reftored the rights of elegant and polifhed converfation.

The general acquaintance which Dr Roebuck had acquired with natural and experimental philofophy, together with his

Aecount of Dr Rombuck.

Account of Dr Roebuck.
claffical and political knowledge, rendered him an agreeable companion to the learned, almoft of every department, and procured him the attachment and friendrhip of many of the firft literary characters in Britain. With his friend Dr Black he lived, till his death, in clofe habits of intimacy ; and he often acknowledged, with much franknefs, the advantages which he derived, in his various purfuits, from a free and unreferved communication with that eminent chemift.

The amiable difpofitions of fenfibility, humanity, and generofity, which ftrongly marked his character, in the general intercourfe of fociety, were peculiarly preferved and exercifed in the bofom of his family, and in the circle of his friends. In the various relations of hufband, father, friend, or mafter, and in the difcharge of the refpective duties arifing from them, it would not be eafy to do juftice to his character, or to determine in which of them he moft excelled; nor muft it be forgot, for it reflected much honour on his benovelent heart, that his workmen not only found him at all times a kind and indulgent mafter, but many of them, when their circumftances required it, a fkilful and compaffionate phyfician, who cheerfully vifited the humbleft receffes of poverty, and who attached them to his fervice by multiplied acts of generofity and kindnefs.

We cannot conclude this narrative, without expreffing our regret, that talents fo great, and fervices fo ufeful to his country, as were thofe of Dr Roebuck, fhould have turned out of fo little account to himfelf and his family. But this is, in fact, no uncommon cafe. The great benefactors of fociety have never been men actuated by gain or intereft, but thofe whofe ambition was fixed on promoting the convenience and happinefs of men. The Doctor had in fact too little regard for money, and was generous in the extreme. It mult be confeffed, too, that his confidence and ardour prevented him from forefeeing fome of the difficulties and obftacles he met with, and frequently tempted him

$$
A P P E N D I X
$$

him to lay out large fums, in the profecution of fome of his projects, without fufficient œconomy, and, of courfe, without proper returns. His open, unfufpicious temper, alfo, led him frequently to put too much truft and confidence in fome of thofe who had the charge of his works, which proved to him the caufe of many cruel difappointments. But even from his errors and failure the public have derived advantage; and it is furely indifputable, that a man, who paffed fixty years in acquiring knowledge, and enlightening his countrymen, is well entitled to the gratitude of his country. During his life, his public fervices were not altogether overlooked. He often met with flattering marks of approbation from many liberal and public fpirited noblemen and gentlemen in this country; and the City of Edinburgh, then under the aufpices of Provoft Drummond, when they honoured him with the freedom of their City, was pleafed to add in his diploma, "That it was given for eminent fervices done to his country." But enough has not yet been done. Some farther tribute is due to his memory : For there is a juft debt of gratitude conftituted againft the public, which cannot be confidered as difcharged, as long as the Widow of Dr Roebuck, whofe fortune was funk in thefe great undertakings, is left without any provifion for her immediate or future fupport.

[^7]The Biograpbical Account of Dr Robertson, read before the Society March 21 . and May 9. 1796, will appear in the next Volume of the Tranfactions.

I.

PAPERS OFTHE PHYSIGAL CLASS.

1. Account of a Mineral from Strontian, and of a peculiar Species of Earth which it contains. By Thomas Charles Hope, M. D. F. R. S. Edin. Profefor of Medicine in the Univerfity of Glafgow, and Pbyfician to the Glafgow Royal Infirmary.

[Read Nov. 4. I793.]

THE mineral, of which I have the honour to lay an account before the Society, was brought to Edinburgh in confiderable quantity about fix years ago by a dealer in foffils, though indeed it had found its way, long before this period, into one or two collections.

By fome it was miftaken for fluor. Its great fpecific gravity, its fibrous appearance, and its quality of forming an infoluble fubftance with fulphuric acid, made it generally be received as the native carbonate of barytes. From a few experiments, I was led at that time to entertain fome doubt of its being any form of barytes; and for feveral years, when I filled the chemical chair in the Univerfity of Glafgow, I ufed, when I exhibited the mineral itfelf, to mention in my lectures fuch of its properties as I had difcovered, and which indicated that it did not belong to the barytic genus. Towards the end of the year
A 2
I791,

1791, I commenced and executed a feries of experiments, the detail of which I laid before the College Literary Society of this place in March 1792. Thefe not only fatisfied me that I had been right in my conjecture, which was, that this mineral differs from aërated barytes, but alfo gave reafon to imagine, that it contains a peculiar and hitherto unknown kind of earth. Other experiments, more lately performed, ftrongly confirm, and perhaps I may add, eftablifh this notion.

Dr Grawford, having remarked the confpicuous difference in the form of the cryftals of the muriate of this foffil and of the muriate of barytes, and in their folubilities in water, has thrown out a conjecture to the fame purpofe. at the end of his paper on the Muriated Barytes, in the fecond volume of the London Medical Communications.
2. The mineral of which I have been fpeaking, I am informed, is found in the lead-mine of Strontian in Argylefhire. It lies imbedded in the metalliferous vein, fcattered among the ore and the different fpecies of fpar that are moft commonly met with in fuch fituations. I have fpecimens in which portions of lead-ore are attached to this mineral, and others in which it, calcareous and ponderous fpars, are intermingled in large and confiderable maffes.

More obvious 2ualities.

3. The appearance of this foffil varies in different famples. It univerfally poffeffes the fparry ftructure, and fometimes bears a ftrong refemblance to fome forts of calcareous or fluor. fpars. Its texture is commonly fibrous. The fibres fometimes are flender, and in clofe contact with each other, fo as to give the maf's a confiderable degree of compactnefs. At other times the fibres are much more grofs, and affume a kind of columnar appearance. The fibres or columns have, in the greater number of fpecimens, a degree of divergency, iffuing as radii from
a centre. The uniformity of this radiation is frequently interrupted by the fibres proceeding from different points of convergence, croffing and interfecting each other. Occafionally on the furface, but more frequently in vacuities within the mafs, the mineral is difcovered fhooting into flender prifmatic or columnar cryftals of various lengths. Some of thefe end obtufely, others of them in a fharp point; they are generally ftriated, and have fix fides. I have feen thefe cryftals traverfing the cavities in the form of the fineft and moft delicate fpiculx, and when difpofed in a radiated form, equalling in delicacy, and refembling in appearance, the moft exquifite zeolites. In other portions, the ftriated fibrous contexture is fcarcely difcernible. Sometimes the Strontian fpar is tranfparent and colourlefs, more commonly it has a tinge of yellow or green, and fome diverfity is obfervable in the depth of the tint.
4. It is not fo hard as to fcintillate; it may be feratched by a knife; it readily yields to the ftroke of the hammer; it has no particular fracture, though it commonly breaks alorig the direction of the fibres.
5. It is a heavy fpecies of fpar, having a fpecific gravity, going between 3.650 and 3.726 .

Gbemical Qualities.

6. This mineral to the tafte is infipid, and is only in a fmall degree foluble in water. 1 boiled ten grains of it, reduced to a very fine powder, in four ounces of diftilled water for fome time; about two grains and a half were diffolved.
7. It is powerfully attacked by feveral of the acids; and a folution takes place in fome of them. This is accompanied by a lively and brifk effervefcence, which in this as in every other inftance, proceeds from the difengagement of an aerial fluid.
8. The gas that arifes during a folution of this mineral in muriatic acid, extinguifhes the flame of a candle, and is ab-
forbed by water. The water thereby acquires the tafte of water impregnated with fixed air or carbonic acid, and the property of precipitating lime-water and of rediffolving the precipitate when added to excefs; from which circumftances I infer, that the elaftic fluid that is difengaged is carbonic acid gas.
9. To difcover how much of this acid it contains, I diffolved in diluted muriatic acid 960 grains, ufing every precaution to prevent any thing but elaftic fluid from efcaping during the effervefcence. The diminution of weight that took place amounted to 290 grains. This correfponds with the refult of feveral other experiments made with the fame intention. This fpar confequently contains 30.2 per cent. of carbonic acid.
io. Having premifed thus much with regard to the action of acids in general on the foffil, and concerning its compofition, I fhall delay mentioning its habitudes with each till I have detailed the efrects of heat upon it.
10. When heat is applied to the Strontian fpar, it crackles a little, and as the temperature increafes it lofes its tranfparency, becomes white, opaque, and in fome meafure friable. It requires, however, a very ftrong fire to produce any further change.
11. I put two pieces, weighing together 320 grains, into a finall crucible, and inverting another over it, I placed it in an open fire. In this fituation it remained for three hours, the fire being good, and at different times animated by means of belJows. Thefe pieces retained their form; they were white, opaque and brittle, and had loft only two grains of their weight. Their chemical properties were unaltered.
12. A very vehement heat occafions remarkable changes. A fmall mafs was inclofed in a crucible, made of pure Stourbridge clay, already prepared for forming glafs-houfe pots, having a lid fitted to it of the fame materials. The crucible, gra dually heated, was kept for forty-five minutes in the intenfe heat excited by the well managed fire of a finith's forge. At
the expiration of this time, the crucible itfelf became foft and from being turned in the fire was diftorted in its fhape. Un examination after cooling, part of the fpar was found to have undergone fufion, and was converted into a glafs of a bottlegreen colour. The vitrified portion occupied the furface; the internal part was to appearance fimilar to the refult of the laft experiment, but it felt much lighter. It now had an acrimonious tafte; it attracted water with great avidity, and imbibed it with a hiffing noife; it was rendered foluble in this fluid. The lofs of weight which the fpar fuftains when the action of the fire has produced its fulleft effect, amounts to 38.79 per cent. When a little water is poured on the calcined mineral, it fwells, burfts with a hiffing noife, and becomes hot with more rapidity and in a greater degree than lime; like it, it falls into a dry powder, but the particles are not fo fine.

The powder unites with acids into the fame fort of compounds as before, but no effervefcence attends the combination. When the glafs is dropped into muriatic acid, it is flowly acted upon; at length a jelly is formed, which becomes perfectly fluid on the addition of water, a minute portion of powdery matter, which probably comes from the crucible, remaining undiffolved. If the calcined fpar be left expofed to the atmofpheric air, in the courfe of twenty-four hours, it fwells, cracks and crumbles into powder, at the fame time attracting carbonic acid, and becoming effervefcent.

I4. UNDER the blowpipe the fpar becomes white and opaque, and lofes a part of its carbonic acid. I have not been able to vitrify it per Se. With borax, mineral alkali and microfmic falt, it melts readily into a white vitreous matter. An effervelcence attends the fufion, particularly when borax is employed.
15. It appears from the experiments already recited, that the Strontian mineral lofes a greater weight when fubjected to heat than during folution in acids. This muft be afcribed to the expulfion of moifture in the one cafe, and the retention of it in
the other. The difference marks the quantity of water which enters into the compofition of the fpar. By heat 38.79 per cent. is expelled, while there is a lofs by folution of 30.20 .

Hence 100 parts contain of earthy bafis,
carbonic acid, 30.20
water,

100
16. As I hope to be able to render it probable, that this earthy bafis differs from any of the hitherto known fpecies of earth, I fhall, to fave circumlocution hereafter, take the liberty of calling it by the name of Strontites; by which I wifh to be underftood to mean the earthy matter in a ftate of purity, in the fame way as lime and barytes denote the pure earthy bafes of calcareous fpar and of aërated barytes.
17. Of the qualities of the Strontites it will be proper to add fome more particulars.

Strontites has a pungent acrid tafte. When brayed in a mortar, the fubtle powder that arifes is penetrating and offenfive to the noftrils and lungs. It is foluble in water in the proportion nearly of 2.7 grains to the ounce, at temperature 60 . The folution is clear and tranfparent, poffeffing a ftrong tafte, not unlike that of lime water; it changes to a green, papers ftained with the juice of violets or radifhes. On expofure to the air, ftrontitic water quickly acquires a cruft on the furface, in confequence of the earth attracting carbonic acid and becoming infoluble.
18. Нот water diffolves a much larger quantity than cold, and depofits the Strontites as it cools in the form of colourlefs and tranfparent cryftals. The moft ready way of obtaining thefe is to pour a quantity of boiling water into a Florence flafk, and then to throw in the recently calcined fpar in fmall pieces. After the ebullition that enfues has ceafed, fhake the flafk well,
and place it fo that it fhall cool flowly' and without difturbance. The cryftals will be found attached to the infide of the reffel, fhooting beautifully through the water to the length of an inch or more. The form of the cryftal is abundantly diftinct ; it is a thin quadrangular plate, which is fometimes fquare, though more frequently a parallelogram; the largeft of them feldom exceed a quarter of an inch in length, and that is ufually fomewhat more than their breadth. Sometimes the edges of the plates are plain, oftener they prefent two facets meeting like the roof of a houfe. They, for the moft part, adhere to each other in fuch a manner as to form a thin plate an inch or more in length, and half an inch in breadth, the margin being irregular from projecting rectangles, the whole terminated by a regular cryftal. Sometimes the plates are thicker, and form folid parallelopepids, and occafionally are feen perfect cubes.
19. In the courfe of expofure to the air for a few hours, thefe cryftals ceafe to be tranfparent; they become white, powdery and effervefcent. The gain of carbonic acid does not compenfate the lofs of humidity; for they fuffer a diminution of weight which amounts to nearly io par cent. To preferve them, we muft have recourfe to phials very clofely corked. When fubjected to heat, they lofe the fuperficial moifture with a hiffing noife; as the heat approaches to near a dull red, they undergo fufion, which feems to be of the watery kind; for as foon as all the humidity is diffipated, there remains a white powder that refilts an extreme degree of heat. Water enters largely into their compofition; 100 grains of them loft by the expulfion of the moifture, 68 grains. Water diffolves them but flowly, particularly when they have not been bruifed, in the proportion of 8.5 grains to the ounce at temperature 60. An ounce of water, in a heat fufficient to keep the folution boiling, diffolved no lefs than 218 grains. This is an aftonifhing degree of folubility in an earthy matter, and affords a diftinguifhing feature of Strontites. Thefe folutions are poffeffed of all the

Vol. IV.
properties of Strontitic water above recounted. In acids the cryftals are diffolved without effervefcence, and there refult the fame products as when the native mineral is employed.
20. When I firf obferved the Strontites in a ftate of cryftallization, I imagined it was the only earth that could, in confequence of its greater folubility in warm than in cold water, be obtained in this form, and I noted this property as characteriftic of it. I have however been fo fortunate as likewife to procure cryftals of barytes.

Habitudes of Strontian Mineral with Acids.

With Sulphuric Acid.

21. When a folid piece of fpar is dropped into fulphuric acid, a few air bubbles arife, but thefe foon ceafe, and the mafs remains undiffolved. If, however, the fpar be firft reduced into fine powder, and then added to the acid in fmall portions, an effervefcence takes place, a combination is formed, and the compound falls to the bottom. The acid, in very minute quantity, renders Strontitic water turbid, which arifes from the formation of the fulphate.
22. The fulphate of Strontites is in the form of a white powder. It has no tafte, and very little folubility in water. I boiled one grain for fome minutes in four ounces of diftilled water, half a grain was diffolved. The folution became turbid on the addition of the carbonate of potafs, of barytic water, and of muriate of barytes. Sulphuric acid, when aided by heat, readily diffolves it. An effufion of water caufes the acid to part with the earthy falt.

With Nitrous Acid.

23. When the nitrous acid in its ftrongeft fate is poured on a mafs of native carbonate of Strontites, no action enfues; but if fome water be added, the acid commences to act with energy, and a folution, attended with a brifk effervefcence, is the confequence. Very little will be diffolved, though the fpar be finely powdered, if the acid be highly concentrated. A fimall increafe of temperature, it may be remarked, enables the ftrong acid to attack the folid fpar, and to accomplifh the folution. If you employ an acid previoufly diluted, the ebullition inftantly begins; for this purpofe, an equal quantity of water at leaft mult be mixed with the acid. If much lefs be added, the effervefcence and folution will commence, but they will both foon ceafe. When the quantity of water is fufficient, the acid free from adulteration, and the fpar pure, no refiduum is left, and a clear and tranfparent folution is obtained; but if fomewhat lefs of the water be employed, the falt that is formed by the union of the acid and earth immediately affumes a folid cryftalline form. It was by a folution carried on in this manner that I procured the moft regular, though by no means the largeft cryftals of this nitrate.
24. The folution has a ftrong pungent tafte. It is perfeotly neutral, and readily by evaporation yields cryftals. Thefe are rarely produced in fo regular a manner that their form can be eafily afcertained. By a flow and fpontaneous evaporation, cryftals were formed that were hexagonal truncated pyramids. The moft perfect cryftals, obtained in the way a little ago defcribed, were octohedral, confifting of two four fided pyramids united by their bafes. Sometimes the apex is truncated, and the cryftals terminate like a wedge; often likewife the angles are truncated in different degrees, which gives a confiderable variety to the fhape of the cryftals.
25. This falt is very foluble in water. One ounce of difilled water at temperature 60 diffolved an equal weight. With the aid of a boiling heat, the fame quantity diffolved one ounce, feven drachms and fourteen grains. The folution, faturated in a boiling heat, parts not with the falt immediately on cooling, but depofits it llowly in the form of a confufed mafs of cryftals. The nitrate of Strontites in a dry air lofes its water of cryftallization and efflorefces ; in a moift, it attracts humidity, and runs per deliquium.
26. This, as all other nitrates, deflagrates on hot coals. Subjected to heat in a crucible, it decrepitates gently, and then melts. When the heat rifes to rednefs, it begins to boil, and the acid is diffipated. If a combuftible fubftance be at this time brought into contact with it, a deflagration, with a very beautiful vivid red flame, is produced. By the operation of the heat, the falt fuffers a complete decompofition, the acid is expelled, and the earth remains in a fate of purity, unlefs inflammable matter has gotten accefs to it, in which cafe it will prove a carbonate.

With Muriatic Acid.

27. Very fimilar phenomena to thofe already defcribed, as attending the action of nitrous acid on the Strontian fpar, are exhibited on pouring muriatic acid on this fubftance. When the acid is concentrated, and the fpar is in folid pieces, no action whatever, or very little, takes place. The effervefcence is brifk, and the folution rapid, when the acid is diluted with about an equal weight of water. A gentle heat, applied to the ftrong acid. has the fame effect as dilution.
28. The folution in the weak acid is tranfparent and free from colour, and affords cryftals moft readily. On diflipating part of the fluid by heat, and permitting the reft to cool, the muriatic falt cryftallizes in a beautiful manner. The cryftals.
are delicate flender prifms, fometimes two inches long, having a foft filky appearancé. If the refrigeration has been very gradual, the prifms will be formed lefs delicate, and of a more diftinguifhable fhape. All of them are hexagonal, fome having all their fides equal, others having two broad fides, with two intervening narrow ones, while another fort is feen with three broad alternating with three narrow fides. At one time they end abruptly, at another an obtufe trihedral pyramid terminates them, and now and then they are feen pointed like a needle.
29. By the facility of cryftallization, and by the peculiar form of the cryftals, this earthy falt may be eafily detected wherever it exifts in folution. For this purpofe, put a few drops on a plate of glafs, and the muriate will foon difcover itfelf by fhooting into its long flender needles, which are often difpofed in a radiated form.
30. These cryftals, after they are thoroughly dried; fuffer little change from expofure to air, yet when the atmofphere is greatly loaded with moifture, they are apt to deliquefce. Their folubility in water is great. At temperature 60, one ounce of diftilled water is capable of diffolving one ounce, four drachms and one fcruple. To the fame quantity of diftilled water, kept boiling on a fand bath, I added in fucceffive portions four ounces of the falt, which became fluid, and I imagine I might have added any quantity more with the fame event, as the temperature of the folution, when boiling, feems fufficient to enable the water of cryftallization itfelf to diffolve the faline matter.
31. If into a faturated folution, fome ftrong muriatic acid be thrown, a precipitation inftantly happens. The matter that falls down is the falt in fmall needle form cryftals, and the feparation of them from the water arifes from the force with which the acid attracts the fluid, being greater than that exerted by the falt to retain its folvent.

[^8]32. The tafte of the falt is peculiar, fharp and penetrating. When urged quickly by heat, the muriate of Strontites undergoes the aqueous fufion, and by lofing the water of cryftallization, and with it 42 per cent. of its weight, becomes a white powder, which, as foon as the crucible is heated to rednefs, melts. A quantity of this falt was kept in the red heat of a ftrong open fire, occafionally enlivened by bellows, for above an hour. It had been in perfect fufion, yet its acid was not expelled. It could not, however, when contained in a fmall fpoon of platina placed upon charcoal, endure, without decompofition, the ftronger heat excited by the blowpipe.

With Acetous Acid.

33. Ordinary diftilled vinegar diffolves the Strontian foffil, after being reduced to a very fine powder, but with no great energy. An effervefcence, as ufual, accompanies the diffolution. The liquid acetite is tranfparent, and without colour. It changes, though flowly, the colour of violet teft papers to a green. By fpontaneous evaporation, it dries up into a friable falt, compofed of minute cryftals.

These are perfiftent, though expofed to the atmofphere. They render green the vegetable colours. They feem to be nearly equally foluble in hot and cold water; for a quantity of water, kept in a ftate of ebullition, which diffolved them at the rate of 196 grains per ounce, depofited no cryftals on cooling.

With Oxalic Acid.

34. The Strontian mineral muft be in fine powder, elfe it will remain untouched by this acid. When finely pulverized fpar is thrown into oxalic acid, an oxalate of little folubility is generated, which falls to the bottom of the veffel, under the form
form of a white powder. This acid, poured into Strontitic water, unites with the earth, and precipitates with it.
35. This is one of the moft infipid, and one of the moft infoluble of the combinations into which Strontites enters. Ten grains were boiled in four ounces of diftilled water for fome minutes, there remained undiffolved fully nine grains. The clear liquor had the flighteft poffible degree of milkinefs produced in it, on the addition of fulphuric acid, or of carbonate of potafs. By heat the oxalic acid is deftroyed, and the earth remains partly pure and partly united to carbonic acid.

With Tartarous Acid.

36. With this acid the mineral exhibits appearances nearly fimilar to thofe now defcribed. There is however, for a fhort period, an extremely feeble effervefcence. Here I may remark; that for the fake of promoting the union of Strontites with the weaker acids, I frequently employ what I call the artificial carbonate of Strontites, by which I mean this earth precipitated from an acid by an effervefcent alkali. On this powder the acid of tartar acts with vigour. When dropped into Strontitic water, it carries down the Strontites in union with it.
37. The tartrite is nearly infipid. I boiled ten grains of it in four ounces of diftilled water; fix grains were diffolved. This folution, after it had ftood fome weeks in a clofe phial, depofited during frofty weather feveral fmall but very regular cryftals, the form of which is a triangular table, having the edges and angles fharp and well defined. Thefe cryftals undergo no alteration from expofure to the air. When acted upon by heat, they at firft fwell and are puffed up after the manner of borax, and at length with ignition lofe their acid, which is the firft change that the powdery tartrite fuffers under fimilar treat-ment.

With Fluoric Acid.

38. Scarcely any perceivable effervefcence happens when Strontian fpar is thrown into acid of fluor. It is brifk if the artificial carbonate be ufed, but little is diffolved, as the fluate falls to the bottom. Fluor acid occafions a milkinefs in Strontitic water by the formation of a fluate, which is poffeffed of nearly the fame folubility as the preceding.

With Phofphoric Acid.

39. This acid attacks the fpar, though in a folid form, but the progrefs of the effervefcence and folution is exceffively flow. A bit, weighing two or three grains, was not completely diffolved in twenty-four hours, though the difengagement of carbonic acid went on without interruption. The folution continues clear as long as the acid is confiderably in excefs; but as foon as the point of faturation approaches, it becomes thick, from the depofition of a white powdery phofphate. When the acid of phofphorus is dropped into Strontitic water, a precipitate appears, which is rediffolved when the acid comes to be redundant. The phofphate, if perfectly neutral, has little folubility in water. Ten grains of it, treated with four ounces of boiling diftilled water, left a refiduum of nine grains.

With Succinic Acid.

40. The acid of amber, diffolved in water, affaults, but with no remarkable activity, the artificial carbonate of Strontites. A clear folution refults, which, by fpontaneous evaporation, yields a cryftalline fuccinate, which is perfiftent in the air.

With Acid of Arfenic.

41. The arfenic acid diffolves with tardinefs fmall but folid pieces of the foffil. With the artificial carbonate the effervefcence is lively. In either cafe, the compound continues diffolved till the acid is almoft faturated, when the liquor grows thick, from the depofition of a white powder, which is the arfenicate. A precipitate is formed by pouring Strontitic water on acid of arfenic; but agitation makes it difappear. This happens till the acid is nearly faturated ; after which the precipitate will not be taken up, unlefs upon the addition of fuch a quantity of acid as fhall make it predominate. The arfenic acid being dropped into Strontitic water, a copious precipitate defcends to the bottom, which vanifhes when the acid comes to prevail.
42. Having diluted a quantity of this acid with about twice its volume of water, I threw into it the artificial carbonate to nearly perfect faturation. A clear folution refulted, which evaporated on a plate of glafs, gave a gelatinous fubftance, that by longer expofure to the air dried into a white powder. Cryftalline forms fhowed themfelves on the infide of a glafs, which contained fome of the folution after it had food for fome time. It is fomewhat curious, and deferving of notice, that this folution lets fall the greater part of the arfenicate it contains as foon as it is made to boil by the application of heat.

The arfenicate fully neutralized is only in a fmall degree foluble in water ; an ounce of which, when boiling, takes up rather more than a grain.

With Boracic Acid.

43. To the acid of borax diffolved in hot water, I added a minute portion of artificial carbonate of Strontites; a llight Vol.IV.
effervefcence and folution took place; and this happened when fimilar fparing quantities were thrown in for two or three times, after which the powder united with gentle effervefcence, and fell to the bottom. I poured Strontitic water into a fimilar folution of the acid; at firft no difturbance of tranfparency was obfervable, but when the point of faturation was not far diftant, a copious precipitate appeared. This I wafhed with cold water, that feems to act little upon it, and diffolved it in boiling, of which it requires about an hundred and thirty times its own weight. The folution changes to a green, the colour of paper ftained with the juice of violets.

With Carbonic Acid.

44. The combination of Strontites with carbonic acid we have in the Strontian mineral, the properties of which I have been detailing. The earth, foluble in water, becomes fcarcely fo by uniting with this acid. With an excefs of acid its folubility increafes confiderably, as is the cafe with barytes and lime. The folution of Strontites is precipitated by water impregnated with carbonic acid, and the precipitate is rediffolved by the addition of more of the fame fluid.
45. Strontites, and all its combinations, poffefs a remarkable property, and one which I long confidered as peculiar to them: I allude to the quality of tinging the flame of combuftible bodies of a red colour. The muriate has this power in the moft eminent degree. Its effects are well exhibited by putting a portion of the falt on the wick of a candle; it caufes the flame to affume a beautiful deep blood-red colour. All the other compounds, and Strontites itfelf, occafion more or lefs of the fame appearance. The nitrate approaches the neareft to the muriate; and it is in confequence of this property that the deflagration of this falt with an inflammable fubftance exhibits fo brilliant and vivid a red flame. It is a pretty experiment to extinguifh
tinguif a candle by means of carbonic acid gas, as it iffues from a brifkly effervefcing folution of the fpar in muriatic acid. After the nitrate, comes Strontites in cryftals; the acetite holds the next place. Thofe that follow give but a faint tinge of red. I fhall enumerate them in the order of their power: Tartrite, fulphate, oxalate, fluate, arfenicate, carbonate, phofphate and borate; the effect of the two laft is extremely feeble *.
46. It is worthy of remark, that a certain portion of humidity is abfolutely requifite to enable thefe fubftances to alter the hue of the flame. By way of illuftration, dry by a gentle heat the moft powerful of them all, the muriate, and by that bring it to the ftate of a dry white powder. In this condition it will not affect the flame; moiften it, and inftantly you reftore its former power. This holds true with regard to all the reft; fo much fo indeed, that thofe which have not much moifture in their compofition will not affect the flame without an addition of humidity. This is the cafe with the fulphate, tartrite, oxalate, phofphate, arfenicate, borate, fluate, carbonate and calcined fpar. Nay, it is even true with refpect to the acetite, though in a cryftalline form.
47. All the combinations of Strontites with different acids, excepting the carbonate, are decompofed by the three alkalis in their ordinary effervefcent ftate, by virtue, in part, of a double elective attraction. When a folution of carbonate of potafs, for example, is dropped into the muriate, at firft a tramfparent gelatinous precipitate is formed, which, upon agitation, after further additions of alkali, acquires a white curdy appearance. Similar phenomena accompany the precipitations by the carbonates of foda and ammoniac; no effervefcence attends any of them. The precipitate, when dried, proves to be a white

[^9]fubtle powder, and is what I have hitherto denominated the artificial carbonate. In diluted muriatic acid, I diffolved 200 grains of Strontian mineral, and then added falt of tartar, which had run per deliquium as long as it occafioned any precipitate. By the teft of fulphuric acid, I difcovered that the alkali had feparated the whole of the earth, which was well walhed, and afterwards dried before a fire, being towards the conclufion of the exficcation brought very near the bars; it weighed 19^{8} grains. This deficit of two grains I afcribe to accidental lofs, as during wafhing, by adhering to the filter, $\mathcal{E}^{\circ} \mathrm{C}$. The artificial carbonate poffeffes all the chemical qualities of the native, with this difference, that it parts with its acid more readily when urged by heat.
48. The pruffiate of potafs and of lime did not difturb the tranfparency of a folution of a pure colourlefs mafs of Strontian mineral in nitric acid. Sometimes, however, thefe fubftances threw down from folutions in the muriatic acid a fparing precipitate of a blue colour, which denotes the exiftence of a minute portion of iron in fome fpecimens. The precipitate is moft abundant when a coloured fpar has been employed; whence I conclude, that the colour which the fpar occafionally exhibits is adventitious, and is owing to the iron it contains.
49. With fulphur, Strontites combines into an hepar. Equal weights of calcined Strontian mineral and flowers of fulphur were triturated together, and expofed to heat in a covered crucible. The heat was continued till a few minutes after the blue flame had ceafed to appear at the chinks of the cover. The mafs had been in fufion. Being pulverifed, part was thrown into muriatic acid; an effervefcence enfued, and the hepatic odour became offenfive. Boiling water was poured on the remaining portion; a yellow-coloured fluid refulted, which was decompofed by acids, and gave with acetite of lead a very abundant black precipitate. In the humid way likewife a hepar may be formed. On a mixture of equal parts of flowers
of fulphur and cryftals of Strontites, I poured fome hot water, which I caufed to boil for fome time. A liquid hepar, of a dark yellowifh brown colour, was the product, and fhowed the fame qualities as the preceding.
50. Crystals of Strontites were diffolved, but faringly by alcohol. The tincture was of a yellow colour, and burned with a reddifh flame.
51. Having detailed all the properties of the Strontian mineral, and of its earthy bafe, with which I have made myfelf acquainted, my next object thall be to confider, and, if poffible, to determine, whether this earth be really different and diftinct from all thofe that are already known. There are two kinds to which the Strontitic bafis bears in its properties no inconfiderable refemblance, I mean barytes and lime; yet it feems to me to differ as much from both of them as they differ the one from the other. In external appearance, it muft be acknowledged, fome fimilarity is obfervable among the native carbonates of thefe earths. The Strontian foffil refembles moft the barytic fpar. Indeed this is fo much the cafe, that many perfons admitted it into their collections as the aeerated barytes. Nay, a French chemift of fome note, M. Pelletier, informs us, that having analyzed a mafs, which he received from the Honourable Mr Greville, he did not publifh the refult, for the reafon, " qu'elle ne m'avoit fourni rien de particutier *."
52. These two productions of nature agree in exceeding other earthy fpars in fpecific gravity; in retaining their carbonic acid, unlefs when urged by a very intenfe heat-; in diffolving when cauftic in water; in affording the pure earth in cryftals; in diffolving in acids with nearly fimilar phenomena; in forming falts of difficult folubility with feveral of the acids, and cryftallizable ones with the nitric and muriatic. In thefe refpects a ftrong analogy prevails between them, yet it is but an analogy; for in the points now enumerated';

[^10]
AGCOUNT of a MINERAL

enumerated, as well as in others, a confiderable difference actually prevails.
53. Therr fpecific gravities differ, that of native carbonate of barytes being 4.33^{8}, while that of Strontitic fpar goes from 3.650 to 3.726 . The laft mentioned parts with its acid fomewhat more readily, and without being fufed itfelf, or acting fo powerfully on the clay of the crucible; and when calcined, it imbibes moifture with much greater avidity, fplitting with more heat and noife. There fubfifts a greater difference between the folubility of pure Strontites in hot and cold water than of barytes*; moreover, the forms of their cryftals difagree widely. Strontites generates with fulphuric acid a lefs ponderous and more foluble earthy falt than barytes. It is true that both barytes and Strontites form cryftallizable falts when combined with nitric or muriatic acids, but the cryftals have no fimilarity either in property or afpect. Thofe, into the compofition of which Strontites enters, fuffer changes from expofure to the air, which do not happen to the nitrate or muriate of barytes, and they are vaftly more foluble in water. In the figure of the cryftals alfo the difference is very remarkable. A ftrong and weighty argument in favour of the diftinct nature of thefe earths is furnifhed by the circumftance, that folutions of Strontites in acids fuffer no decompofition from pruffiate of lime or potafs; for here I put out of confideration the change that is occafionally produced when the minute portion of iron is prefent; while, as every body knows, a prominent and difcriminating feature of barytes is its precipitation by either of thefe fubftances. A mark of diftinction not lefs decided is the quality that Strontites and its compounds poffefs of tinging the flame of combultible bodies of a red colour; a property that does

[^11]does not belong to barytes, the muriate of which gives a very faint greenifh hue. To thefe add, what affuredly carries great weight with it, that thefe fubftances do by no means agree in the order of their attractions. On the whole, I think it abundantly manifelt, that the foffil from Strontian is not aërated barytes, and that it has not this earth for its bafis.
54. It has been above remarked, that this mineral occafionally affumes the appearance of fome forts of calcareous fpar ; and it has likewife been noticed, that fome analogy prevails between the properties of their component earths. In no circumftance does this appear fo ftrongly as in the quality of tinging flame, which I have difcovered to belong alfo to the compounds of lime, though in a much fmaller degree. The muriate of lime gives the flame of a candle, when applied in the manner formerly defcribed, a red colour, which is confiderably lefs vivid and brilliant than that produced by muriate of strontites, and fhort of that occafioned by the nitrate of this fubftance. It is eafy, however, to fhow, that Strontites and lime materially differ. The fpecific gravity of the Strontian far exceeds that of calcareous fpar, which is commonly about 2.700 . The former retains its carbonic acid much more obftinately in the fire. But the incomparably greater folubility of the pure earth in hot water, and its cryftallizing, are characters of themfelves fufficient to difcriminate Strontites from lime, and I fhall only further obferve, that Strontites forms a lefs foluble compound with fulphuric acid, yields a cryftallizable nitrate and muriate, and difplays a power of attraction different from lime ; whence I reckon it certain, that the earth of Strontian mineral is not lime.
55. I need not draw a parallel between the appearance and properties of this foffil and any of the other earthy bodies, as it is not in the moft diftant degree like any of them.
56. It perhaps deferves notice, that the mineral I have been treating of, though different from the native carbonates of ba-
fytes and lime, holds a fort of intermediate fpace, and forms a kind of link between them. To illuftrate what I mean, I may obferve, that in fpecific gravity, fufibility, capability of decompofition by heat, and in the folubility of the compounds it forms, it fands in the middle. Thus, heavier than calcareous and lighter than barytic fpar, it is more eafily melted than the one, lefs fo than the other. When fubjected to heat, it parts with its carbonic acid more readily than barytes, lefs fo than lime. The fulphate, nitrate and muriate of it are all more foluble than the fame falts of barytes, and lefs foluble than thofe of lime. In one refpect indeed it exceeds both, and that is, folubility in hot water, which perhaps is fo great as may make fome perfons, over fond of nice diftinctions, deny it a place among the earths altogether *.
57. This kind of intermediate fituation fhall perchance induce fome to imagine, that this earth is a peculiar combination of the other two. At firft, I confefs, when this idea fuggefted itfelf to me, I did not deem it improbable; but now, after full inveftigation, I muft reject the notion. This, I hope, I do with good reafon, fince I have found that, like the acknowledged fimple earths, this fubftance bears repeated folutions, cryftallizations and precipitations, without fhowing the fmalleft difpofition to a feparation of principles; and fince the means that difunite an artificial mixture of the two earths, fuch as diffolving in muriatic acid and cryftallizing, or precipitating by pruffiate of potafs or lime, have no effect in occafioning a disjunction of its parts.
58. As the earthy bafis of the Strontian fpar poffefles remarkable qualities that are peculiar to it, and forms with acids combinations unlike thofe generated by the known earths, and differs from all of them in the order of its attractions, I cannot hefitate to conclude, that it is an earth fui generis, a new
and diftinct genus. It belongs decidedly to the ancient order of them called alkaline or abforbent, of which the moft abundant feecies, the calcareous earth, has been long known. To my illuftrious mafter in chemiftry, Dr Black, we are indebted for eftablifhing the diftinct nature of magnefia. Dr Gahn and Mr Scheele have the merit of difcovering barytes.
59. Considering it as a peculiar earth, I thought it necerfary to give it a name: I have called it Strontites, from the place where it was found; a mode of derivation, in my opinion, fully as proper as from any quality it may poffefs, which is the prefent fafhion. My reafon is, that I think there is lefs chance of difcovering two new earths in the fame fpot, than of finding two poffeffed of the fame property any where. The denomination, however, is of little moment, provided it be well underftood what it is intended to denote, and there be no room for miftake.
60. To complete the hiftory of Strontites, it remains for me to ftate what I have difcovered refpecting the order of its attractions. I fhall begin with pointing out the order in which the principal acids attract it, and then I fhall fhow the place due to its attraction among thofe of other fubftances for acids.

6I. Sulphuric acid attracts Strontites with the greatelt force; for when added to a folution of the nitrate, muriate, tartrite, arfenicate, fuccinate, fluate, acetite and borate, it inftantly caufes a difturbance of tranfparency, and a white precipitate falls to the bottom. When poured upon the oxalate, which is fcarcely foluble in water, and permitted to remain for fome hours upon it, this acid expels the oxalic, and takes its place. I may here remark, that the precipitates formed by the fulphuric acid do not defcend fo rapidly as the ponderous fulphate of barytes; they have oftentimes in their fall more the appearance of fulphate of lime. On this account, Strontites, though a good one, is by no means fo delicate a teft of the prefence of this acid as barytes, nor can it be employed altogether

Vol. IV.
D
with
with the fame advantage in the purification of nitric and mutriatic acids from the fulphuric.
62. The acid of fugar, or oxalic acid, follows the fulphuric. This acid takes the new earth from a!l the folutions above mentioned, and with it falls in a powdery form, excepting from the fluate. Ir is a curions fact, that the oxalate is foluble in muriatic acid with partial decompofition. I obtained an oxalate by dropping the acid of fugar into muriate of Strontites, which I wafhed well with cold water, and dried. I then introduced it into muriatic acid, that did not diffolve it till a very little diftilled water was added. The folution, in a few hours, had depofited a finall quantity of cryftals, which I dried on blotting paper. They were perfiftent in the air, they diffolved in water, and imparted to it the tafte of oxalic acid. This fluid was not difturbed in its tranfparency by fulphuric acid, and it occafioned in lime water a copious precipitate of very little folubility; whence I inferred thefe cryftals were oxalic acid, and their form did not contradict the conclufion. On evaporating the liquor from which they had been depofited, I procured a powdery oxalate and cryftallized muriate. The reafon of this partial decompofition I cannot at prefent affign; it cannot be explained in the fame way that the partial decompofition of fulphate of potafs or foda by nitric or muriatic acid is accounted for.
63. The third place belongs to the tartarous acid, which decompofes and caufes a milkinefs in the folutions of the earth in nitric, muriatic, fuccinic, arfenic, boracic and acetous acids.
64. Then comes the acid of fluor, which precipitates the earth from its folution in all the acids I have tried, excepting the three already mentioned as exceeding it in force. It is remarkable, that a folution of fluate is not rendered turbid by oxalic acid, though it be certain, that the oxalic has the ftronger attraction; perhaps a triple compound is formed.
65. Nitric
65. Nitric acid holds the next place. When this acid, in a ftate of concentration, is poured into a faturated folution of the muriate, a precipitate immediately defcends. This confifts of minute cryftals of the nitrate. An affufion of water reftores fluidity. The liquor on evaporation affords the nitrate in cryftals.
66. Muriatic acid, as ufual, fucceeds the nitric. As it forms a very foluble compound with Strontites, the decompofitions accomplifhed by it are made apparent by evaporation. The phofphate of Strontites is diffolved readily by this acid. The liquor, when the moifture is diffipated by a very gentle heat, yields cryftals of the muriate and phofphoric acid in a concrete ftate. The arfenicate is taken up fill more readily; and from the folution, by an evaporation not puthed fo far as to deprive the arfenic acid of its humidity, are obtained cryftals of the muriate. The borate diffolved in this acid exhibits phenomena fimilar to the phofphate. By adding this acid to the acetite, and evaporating, we get the muriate.

Succinic acid, if it do not rank before the two laft mentioned acids, without doubt, holds the place immediately following.
67. Phosphoric acid comes next in order. It makes no change in the combinations containing any of the acids already noticed, but inftantly throws down a precipitate from the acetite, arfenicate and borate. With regard to the two laft of thefe, care muft be taken not to add more phofphoric acid than is fufficient, elfe the precipitate will be inftantly rediffolved, and will elude obfervation.
68. After phofphoric ftands acetous acid, which unquefionably has a feebler attraction than any of the preceding, and I think a greater than the acid of arfenic, becaufe this acid, dropped into, the acetite, difturbs not the tranfparency. Boracic acid follows the arfenic, and laft of all comes carbo-
D 2

nic
nic acid, which is expelled by all the others, as appears from the narration already given.

Order of Attractions among the Principal Acids for Strontites.

> | Strontites. |
| :--- |
| Sulphuric acid. |
| Oxalic. |
| Tartarous. |
| Fluoric. |
| Nitric. |
| Muriatic. |
| Succinic. |
| Phofphoric. |
| Acetous. |
| Arfenic. |
| Boracic. |
| Carbonic. |

69. The attraction of the new earth for acids ranks high. For fulphuric acid, barytes has unqueftionably a ftronger attraction than Strontites. I added barytic water to a folution of fulphate of Strontites; and though only an extremely minute portion of this earthy falt be contained in the fluid, yet an immediate milkinefs end precipitation was the confequence. This earth however comes next; for I find that, when I pour Strontitic water into folutions of fulphate of potafs, of foda, or of lime, the liquor becomes turbid, and the Strontitic fulphate falls to the bottom.
70. I have not afcertained how the attraction of Strontites ftands with oxalic acid further than that the force of its attraction for this acid is fuperior to that of potafs, and confequently of all thofe fubftances that are inferior to it.
71. The earth attracts tartarous acid more forcibly than alkalis do. Add Strontitic water to tartrite of potafs, and tartrite of Strontites will defcend; but its attraction is weaker than that of barytes or lime, for the folutions of either of thefe earths renders tartrite of Strontites turbid. The fame place is due to this earth in its attraction for fluoric acid as with acid of tartar; barytes and lime exceed it, potafs is feebler.
72. With refpect to nitric and muriatic acids, the order feems fomewhat different. Here fixed alkalis appear to predominate. Yet of this, after feveral trials, I was fomewhat uncertain, in confequence of peculiar phenomena that occur. When abfolutely cauftic potafs is dropped into a diluted folution of muriate of Strontites, tranfparent cryftalline flakes appear ; but long before all the earth is difengaged, the alkali ceafes to occafion more precipitation, and it may be afterwards added in quantity, without producing any vifible effect. If, however, an effervefcent alkali be now poured in, a copious curdy precipitate will be formed. Two hundred grains of Strontian fpar were diffolved in muriatic acid. To the folution, diluted with more than an equal quantity of diftilled water, L. added potafs, till it no longer occafioned depofition. I permitted the precipitate to fubfide, and then poured in fome potafs, which caufed no vifible change. The clear liquor was decanted off, and the remaining portion filtered. The precipitate, when collected and weighed, amounted only to 24 grains. With the clear liquor, I mixed carbonate of potafs, and I obtained an abundant white precipitate This I wathed, and dried by a gentle heat; it weighed 170 grains. On another occafion, I diffolved a fimilar quantity of the mineral in the fame acid, and after dilution I added the alkali very flowly. The matter feparated affumed the form of quadrilateral lamellar cryftals, fome of which, unattached to any others, fhowed the wedge fhaped margin like an ordinary cryftal of Strontites; frequently they adhered to each other, fometimes appearing in arborefcent figures.
figures. I continued to pour in potafs as long as any precipitation followed, and I certainly confumed more alkali than would have been fufficient to faturate the whole of the acid. The cryftalline depofite, when dried quickly, effervefced very feebly with muriatic acid; it was much more abundant than the former; it weighed 74 grains. From the fupernatant liquor, carbonate of potafs feparated effervefcent Strontites to the amount, when dry, of 132 grains. The matter thrown down by potafs, when diffolved in muriatic acid, cryftallizes in every refpect like ordinary muriated Strontites. It is alfo foluble in water, and generates Strontitic water. From thefe experiments it appears, that potafs precipitates only a portion of the Strontites, which is in the ftate of cryftals, and that this portion is variable in quantity, which I imagine in fome meafure depends upon the ftate of dilution. How this comes to pafs it is not eafy to fay. I am difpofed to afcribe it either to the production of a triple compound, or to the folubility of Strontites in pure alkali. The weight of the two precipitates, in neither experiment, exactly amounted to that of the fpar employed; nor was this to be expected. In the former it was deficient by fix grains, in the latter it exceeded by as much. The deficit of the one may arife in part from the lofs of matter adhering to the filter, but principally from the heat employed in drying, expelling too much moifture from the firft precipitate. A priori, it might be imagined, that there fhould always be a deficiency, fince part of the earth is difengaged in its pure flate, as invariably happens with lime. Inftead of this, however, in the latter experiment there was rather an increafe of weight. This I impute to the cryftalline form in which the Strontites is feparated; for in this fate it is united to a greater weight of water than it contains of both carbonic acid and water when it is effervefcent.
73. The impracticability of precipitating all the Strontites from muriatic acid, fuggefted fome doubts whether the alkali
really poffeffed a ftronger attraction or not. Thefe were removed by the refult of the following experiments: I diflolved a quantity of nitrate of potafs in boiling water, and threw in fome maffes of recently calcined Strontites. The heat generated commenced an ebullition, which I prolonged by the heat of a fand bath, the mouth of the flaik being ftopped by a perforated cork. During the cooling, cryftals of Strontites were depofited. I next diffipated by boiling much of the water of the clear fluid. managing the operation fo that the atmofpherical air fhould have as little accefs as poffible. By this procefs I obtained cryftals of nitre, intermixed with a finall quantity of cryftallized strontites. I performed a fimilar experiment with a folution of muriate of foda, and the refult only differed in this, that the cryftals of common falt were depofited during the evaporation of the liquor, and thofe of Strontites, for the fecond time, during the fubfequent refrigeration; whence the inference is deducible, that strontites cannot detach the nitric or muriatic acid from the alkalis with which they are united in faltpetre and fea falt.
74. The attraction of barytes for muriatic acid exceeds that of the new earth. To a folution of Strontitic muriate I added fome native carbonate of barytes lately calcined and reduced to fine powder. Soon marks of decompofition were apparent, and the liquor confifted of muriate of barytes. Muriated barytes, on the other hand, fuffers no change from the earth I have been defcribing. The attraction of lime for this acid is feebler than that of Strontites. Muriate of lime became. muriate of Strontites, fome time after I had introduced the powder of calcined Strontian fpar into it. Ammoniac was inftantly difengaged from the muriatic acid by Strontites.
75. Putass attracts acetous acid more forcibly than Strontites, and diflodges it.
76. Phosphoric acid is one of thofe that prefer Strontites to alkalis. Strontitic water immediately caufes a precipitation
in phofphate of potafs or foda. Strontites in its turn gives place to lime and barytes.
77. The fame order as in the preceding is obferved with regard to the acid of arfenic.
78. Borate of Strontites fuffers no vifible change from lime-water or potafs, but is turned muddy inftantly by barytic water. A folution of borax is decompofed by diffolved Strontites.
79. The attraction of Strontites for carbonic acid is powerful. It renders mild alkalis cauftic, and becomes thereby itfelf a carbonate. I was defirous of determining the relative attractions of barytes, lime and Strontites for this acid, but found it not an eafy matter. The difficulty proceeds from all the three being entirely or nearly equal in power. Bergman was not able to decide between the two firft of them. In hopes of afcertaining this point, with artificial carbonate of Strontites in fubtle powder, I mixed a quantity of barytic and of lime water, and kept them in phials accurately clofed. I had the bottles fkaken very often during a week. At the expiration of this time, I decanted carefully from both the fupernatant fluid, and faturated it with marine acid. The liquor of the one, treated in this manner, gave, on evaporation, muriate of barytes; from the other I obtained muriate of lime. Thefe experiments feem to fhow, that Strontites will not yield carbonic acid to either of thefe earths. Again, when Strontitic water, poured upon the carbonates of barytes and of lime, is managed in the fame manner as the former, the clear liquors, faturated with the fame acid, afford, both of them, muriate of Strontites. This earth confequently had not taken the fixed air from either. Since then neither lime nor barytes can attract carbonic acid from Strontites, and fince this acid will not defert either of thefe to combine with Strontites, I am led to the conclufion, that the forces of their attraction are equal, or very nearly fo. This alfo appears from the following experiménts: Into a mix-
ture of nearly equal parts of Strontitic and barytic waters, I threw diftilled water impregnated with a quantity of fixed air lefs than was fufficient to faturate either of the earths. I fhook the whole well for fome time, in the expectation that the earth, whofe attraction preponderated, would attach to itfelf all the acid, and become infoluble. On examination, however, I found, that the precipitate confifted of the carbonates of both. When a folution of lime, inftead of barytes was ufed, the event was fimilar.
80. Strontites precipitates metallic calces from their folutions in acids, but with no particular phenomena. When Strontitic water is poured into a folution of muriate of mercury, a brownifh yellow precipitate, like to that produced by barytic or lime water, prefents itfelf. The fame fluid caufes a dark green precipitate in fulphate of iron, a greyifh white in fulphate of zinc, a light blue in fulphate of copper, and a white one in acetite of lead.

TABLE to Jow the Place due to Strontites in the Order of Attractions:

\left.| Sulpburic Acid. | Oxalic. | Tartàrous. | Fluoric. | Nitric. |
| :--- | :--- | :--- | :--- | :--- |
| Barytes | Barytes | | | |
| Strontites | Lime | | | |
| Potafs | Strontites | | | |$\right\},$| Lime | Lime |
| :--- | :--- |
| Barytes | Barytes |
| Soda | Potafs |
| Strontites | Sotafs |
| Lime | Soda |
| Sotafs | Potafs |
| Soda | Strontites |
| Soda | Soda |
| Sime | |

Muriatic.	Phofphoric.	Arfenic.	Borracic.	Carbonic.
Barytes	Lime	Lime	Barytes	Lime Barytes Strontites
Potafs	Barytes	Barytes	Lime	
Soda	Strontites	Strontites	Strontites	
Strontites	Potafs	Potafs	Potafs	Poda
Lime	Soda	Soda	Soda	

To make a fmall addition to the hiftory of barytes, and to correct a miftake that has prevailed refpecting the native combination with carbonic acid, I beg leave to add a few words.
I. All the chemifts who have made native carbonate of barytes the fubject of their experiments, concur in afferting, that the carbonic acid cannot be difengaged from it by heat alone; and upon this fuppofed fact, a theory of pretty extenfive application has been founded. Dr Withering, in his admirable paper, Phil. Tranf. vol. lxxiv. p. 298. fays, " It is very remarkable, that " the terra ponderof fpar in its native fate will not burn to lime. " When urged with a ftronger fire, it melts and unites to the cru" cible, but does not become cauftic." " May we not conjec" ture then, that as cauftic lime cannot unite to fixed air with" out the intervention of moifture, and as this fpar feems to " contain no water in its compofition, that it is the want of " water which prevents the fixed air affuming its elaftic aërial "ftate." This fuppofition becomes, in his opinion, ftill more probable from the circumftance, that the artificial aërated terra ponderofa, which contains water, lofes its fixed air by the action of heat.
2. Di Priestley adopted this notion, and adds his teftimony to the fact upon which it refts. In the Phil. Tranf. vol. lxxviii. p. I 52. we have the following words: "Terra ponderofa aërata " gives no fixed air by mere heat. But I find, that when " fteam is fent over it in a red heat in an earthen tube, fixed " air is produced with the greateft rapidity, and in the fame " quantity, as when it is diffolved in fpirit of falt, and making " the experiment with the greateft care, I find that fixed air " confifts
"confints of about half its weight of water." From thefe ob fervations Dr Prifetley infers, that water enters into the compofition of fixed air, nay, that it is this ingredient which is effential to the aerriform condition of the acid. He extends the idea to all aërial fluids, and hence draws a futile argument againft Mr Cavendish's glorious difcovery of the compofition of water.
3. It is unneceffary to tranfcribe the words of Mr Watt junior, who fpeaks on the authority of Mr Josiah Wedgewood junior, to nearly the fame purpofe or thofe of M. Sage, Four: croy and Pelletier, who ftrangely affert, that this fubftance is abfolutely unchangeable by heat.
4. From this general opinion, however, I am obliged to diffent, having found, that the fixed air can be expelled from the native aërated barytes by heat alone, if fufficiently intenfe; a circumftance that muft prove fatal to the theory founded on its fuppofed impracticability. The heat which anfwers this purpofe is that of a fmith's forge, when the fire is fkilfully managed. By its affiftance, I have oftentimes deprived the barytic fpar of its acid either entirely or nearly fo.
5. I need not detail the particulars of more than of one experiment. In feveral trials, however, it may not be improper to remark, I was difappointed, in confequence of the barytes, vehemently heated, acting as a flux on the clay of the crucible, corroding holes in it and making its efcape, leaving as its only veftige a green-coloured vitreous glazing on the infide of the crucible. At firft I employed crucibles made of pure Stourbridge clay, but was, from the circumftance this moment mentioned, obliged to have recourfe to thofe compofed of black lead, which are able to refift and confine the heated fpar; yet fometimes I fucceeded even with thofe of clay.
6. A solid and pure mafs of the far, weighing 338.4 grains, was put into a black lead crucible, having a lid of the
fame fubftance fitted to it. The crucible, gradually heated, was kept in the flrong fire of a fmith's forge for the fpace of half an hour, when it became very foft. On breaking it after it had cooled, indubitable proofs appeared of the mafs having undergone complete fufion. From being previoufly angulated, it now accommodated itfelf to the thape of the crucible, and encrufted the bottom and fides of it a little way up. The cruft externally, where it flightly adhered to the crucible, was of a dark greyifh colour, internally it had a greenifh fhade. The matter was light, fpungy and porous like pumice fone, and being carefully collected weighed only 261 grains. The fpar had therefore loft 77.4 grains, which is at the rate of 23 per cent. nearly.
7. The calcined mafs imbibed water with a hiffing noife and confiderable increafe of temperature, but without fwelling or fplitting like lime, and was foluble in this fluid. On dropping. it into diluted muriatic acid, a very flight effervefcence took place; but this foon ceafed, and the diffolution proceeded in perfect quiet. The folution had a greenifh caft.
8. From another mafs, weighing 530.5 grains, I expelled 136.5 grains or 25.60 per cent. and ftill it was not altogether non-effervefcent. I however obtained it once abfolutely cauftic or free from carbonic acid, having employed a crucible of Stourbridge clay, which endures a ftronger heat than the black lead. But I could not in this cafe afcertain the lofs of weight, as part of the mafs had efcaped through a hole it had made for itfelf.
9. Even by the common blowpipe and candle, a part of the acid may be difengaged. Suppofing that the heat excited by this inftrument, employed in the ufual way, would be very inadequate to produce the defired effect, I tried pure air, in the manner I had feen M. Lavoisier ufe it. This mode confifts in directing a fream of oxygenous gas againft ignited charcoal, and.
and produces an extreme intenfity of heat. By this heat the fpar was rapidly melted, but finking into the pores of the charcoal, it eluded further impreffion. I then had recourfe to the ordinary blowpipe. The fmall mafs readily melted, and on being kept in fufion for fome time, boiled with fo much violence as to fcatter around it minute particles of the liquid matter. After two or three minutes, it was kept fluid with more difficulty; and, finally, it covered the furface of the charcoal with a thin powdery cruft. Though it ftill effervefced brifkly with muriatic acid, a portion of the fixed air had been feparated ; for a part of it, thrown into diftilled water, imparted to it the power of changing to a green violet teft-papers, and the water acquired a cruft on its furface from expofure to the air.
Io. These experiments, I hope, fatisfactorily fhow, that the native carbonate of barytes can be decompofed by heat alone, and further afford proof of the infufficiency of the theory that has been deduced from the fuppofed impoffibility of accomplifhing it.
II. I have found that barytes is vaftly more foluble in hot than in cold water, and that it is depofited from the former in the ftate of cryftals. To obtain thefe I commonly employ the calcined barytic fpar, and the mode I follow confifts in throwing into water, that has juft ceafed to boil, fome pieces of a recently burned mafs. The heat that is generated caufes the water to boil, and I prolong the ebullition for a little time. The clear part of the liquor being decanted off and permitted to cool, depofits fooner or later a quantity of cryftals. The fhape and appearance of thefe vary confiderably, according to the rapidity with which they have been formed, and this depends upon the greater or fmaller quantity taken up by the hot water over what can be retained by it when cold; the moft faturated yielding cryftals the moft fpeedily, the lefs fo not for feveral days.
12. The cryftal in its perfect condition feems to be a flatted hexagonal prifm, having two broad fides, with two intervening narrow ones, and terminated at either end by a quadrangular pyramid, which, in fome cafes, conftitutes the larger part of the cryftal. When the cryftallization goes on at great leifure, the cryftals are often diftinct and folid, of no inconfiderable magnitude; but more commonly with a quicker depofition, they are more flender and delicate and are attached to each other in fuch a manner as to affume a foliaceous form of beautiful appearance, refembling fome of the fern tribe in their pinnated frons, to fpeak botanically; but in this arrangement, a confiderable diverfity occafionally happens.
13. The cryftals obtained from calcined barytic fpar, in the manner now defcribed, diffolve in water, and impart the qualities of barytic water; they change vegetable colours to a green, they unite with acids without effervefcence, and generate with the muriatic and fulphuric. compounds fimilar to the fulphate and muriate of barytes; hence I infer they confift of pure barytes.
14. These cryftals are perfectly tranfparent and colourlefs, but when expofed to the air, become white, opaque and effervefcent, lofing during this change nearly 30 per cent. of their weight. Subjected to the heat of boiling water, they undergo the aqueous fufion and become fluid; from which ftate, if allowed to cool flowly, they concrete into a folid cryftalline mafs. When a ftronger heat is applied, and continued till all the moifture is diffipated, there remains a white powder, lighter by one half than the cryftals employed, which, urged by the heat produced by the blowpipe, is melted with more difficulty than the native carbonate.
15. The folubility of thefe cryftals in water furprifed me a good deal. One ounce of diftilled water, at temperature 60 , diffolves almoft twenty-five grains, while boiling water appears to
be capable of diffolving any quantity of them, however great. This arifes from the circumftance, that the earth becomes fo extremely foluble at an elevated temperature, that the water of cryftallization itfelf, which fcarcely furpaffes the weight of the barytes, when heated to the two hundred and twelfth degree, is able to accomplifh the folution of the earth without the affiftance of more fluid.
16. In this amazing folubility barytes and Strontites nearly agree, but materially differ from lime, which, fo far as I can difcover, is diffolved as fparingly by hot water as it is by cold.
II. Observations on the Natural History of Guiana: In a Letter from William Lochead, Efq; F. R.S. Edin. to the Rev. Dr Walker, F. R. S. Edin. Regius Profefor of Natural Hijory in the Univerfity of Edinburgh.
> [Read March 3. 1794.]

Dear Sir,

ALLOW me at prefent to trouble you with a few general obfervations on natural hiftory, which I had an opportunity of making while on a botanical excurfion, with my friend Mr Anderson, to the Dutch colony of Demerary. Guiana is a country but little known in Europe, though its animals and vegetables have added confiderably to the catalogue of natural productions. It is not however the organic kingdom which I mean at prefent to touch upon; all I aim at is to give you fome idea of the face of the country, as leading to the knowledge of its formation and prefent flate. It is not a field for the mineralogift, as its interior is unexplored. But to the geologift, who wifhes to trace revolutions of the lateft date, it is not uninterefting to contemplate fuch a recent and fingular country as Guiana.
I need not inform you, that under Guiana is comprehended all the coaft of South America from the Amazons to the Oroonoko ; that it trends nearly N. W. and S. E. ; that it is in general a very low and flat country, efpecially the Dutch or weftermoft part of it ; and that it is watered by feveral rivers and creeks, which rife in a chain of mountains running nearly E.
Vol. IV.
and W. and dividing Guiana from the inland parts of South America, which form the banks of the Amazons and its numerous branches.

Coaf.-No coaft can be more eafy to make than that of Guiana. The changed colour of the water indicates foundings long before you make the land, and you may run on in feven fathoms before you can difcover it from the deck. The bottom is at that diftance a foft mud. All along the coaft near Demerary, you have only about two fathom at a good league from the fhore ; to leeward of Effequebo, it deepens ftill more gradually. In ftanding off or on five or fix miles, you will hardly deepen or fhallow the water as many feet. When a high fea fets in upon fuch a coaft, it is eafy to conceive, that at a very confiderable diftance from the land it muft be affected by the bottom. The interval betwixt wave and wave becomes more diftinct. As they roll on in fucceffion, the lower part is retarded, the upper furface accelerated, each billow of courfe becomes fteeper and more abrupt, till at laft it gradually ends in a breaker, when it has come to the depth of only a few feet. Thefe rollers, as they are called, are the dread of feamen, efpecially betwixt Effequebo and Pomeroon, where the water is fhallow, and the bearing of the coaft very much north and fouth, expofes it fully to the action of the trade-winds. In fmall craft, thofe acquainted with the navigation do not hefitate to run along the coaft, even among the rollers themfelves; but veffels drawing from eight to twelve feet water, efpecially if the fwell be heavy and it falls calm, can hardly get off. If anchor and cables fail, they drift on till they are faft in the mud, and there they will continue, fometimes for weeks together, before they go to pieces. The fea-water becomes exceedingly thick and muddy within a few leagues from the coaft of Demerary, as much or more fo than the Thames is at London. A ftranger would naturally take this for the difcharge of large
flooded rivers after a rainy feafon. By and by I fhall explain the true caufe of it.

On approaching the continent of South America, a change on the face of the key will ftrike the attentive obferver. The clouds become lefs diftinct from each other, and the intervals between them lefs clear. They are blended into one another as it were, and fuffufed more generally over the atmofphere. They appear to be furcharged with vapour, or to have a ftronger difpofition to depofit it.

There is a particular preyailing appearance of the heavens within the tropics when you are at a diftance from continents. or very high iflands, which has fo often ftruck me that I wonder it has not been taken notice of. I call it a tropical Jky, and thus defcribe it. The clouds in fine weather are in a fingle feries or ftratum, failing away regularly with the trade-wind. They are fmall and diftinctly feparated from each other. The intervals or fky above them of a clear azure. The lower furface of the clouds is perfectly horizontal. As the temperature is commonly very equal over the fea, the condenfation takes place eyery where at an equal height from the furface of the water. In the clouds that are over-head, you cannot indeed perceive this; but it becomes more and more vifible as the eye recedes from the zenith. The lower limb of each diftant cloud appears perfectly level and well defined, brighter than the fuperincumbent part. At a diftance, nothing is to be feen but thefe limbs clofer and clofer in gradation one behind the other; and the whole horizon round refembles the roof of a ftage, with an infinity of half dropt curtains as far as the eye can reach. In two voyages from Europe, I have met with this tropical fky as far north as Cape Finifterre. It came with a fair wind, which continued with us like a regular trade-wind, accompanied with the fame appearance of the clouds, till we made the Weft Indies. In running down the trade-winds, every one has an opportunity of verifying this defcription, and muft be ftruck with the beauties
which this fky prefents at the fetting of the fun. The inhabitants of the lower iflands may alfo be well acquainted with it. In the higher ones, the attraction of the mountains ever forms fets of clouds of other appearances, as being produced by other caufes. With our prefent knowledge of meteorology, hardly any other caufe can be affigned for the phenomena above mentioned, than the conftant equal temperature that every where prevails on the intertropical feas. One analogous fact however may be mentioned ; the exceedingly fmall range of the barometer in the torrid zone. Does the fame caufe regulate fo exactly the height of the clouds, and maintain the uniform fufpenfion of the mercury? We might almoft fufpect it did, were it not well known, that the barometer varies as little upon continents, and in the vicinity of mountains, in thefe regions as elfewhere, though the condenfation of vapours is in fuch cafes much more irregular. Upon the continent you will frequently obferve this tropical fky alfo, efpecially in fine fettled weather ; but much more commonly you will find the fky there, and even before you make the coaft, covered with heavy large dark clouds in fome places, and in others, at a greater height, the ferene dappled fky , fo often feen in Europe.

Winds.-The trade-wind generally prevails all the day long, and on the fea-coalt feldom fails even at night ; but in lefs than fifty miles up the river it is a dead calm at night, and the breeze is not able to penetrate fo far till towards noon. Still farther up we had whole days of a ftark calm, and the heat very intenfe.

Dezes, fogs and temperature.-The dews, following the law which they generally obferve, are very heavy when and wherever there is but little wind, and the hotter the day and evening, they fall the more copioully ; they were of courfe more abundant up the river than near the fea-coaf. The exhalations in the day-time from
from a hot and mifty country covered with vegetables being very great, the condenfation occafioned by the abfence of the fun, and the cold accompanying that condenfation, are in proportion. Near the coaft the diurnal difference of temperature is but trifling, the conftant trade-wind preferving in the air nearly the fame medium of heat as in the body of the ocean; but far up the river the range of the thermometer was very great. The heat of the day was intolerable. In the fhade it was frequently above 90°. This, when there is no breeze, forces you into the woods for fhelter. Towards evening it cools; during the night the cold increafes, and is greateft about five in the morning. The thermometer would then be from 72° to 74°. The body of the river being large enough to retain its heat, the evaporation goes on from its furface through the night, and is condenfed into thick fog, which hangs over it, and is feldom difperfed before eight or ten next day. While the air was as above in the morning at 72°, the water along-fide gave 80° to 83°, and feldom rofe two degrees higher at noon-day. We had an opportunity of verifying an obfervation made by the few inhabitants who live far up the river Demerary; that when it feels very cool in the morning before day-break, they are fure of fine weather; when, on the contrary, it feels warm, they expect rain. They fleep in hammocks, and the houfes they have are pervious enough to the air, fo they are fenfibly affected by any change in its temperature.

Seafons.-As to the feafons, it is not an eafy matter, from the accounts given by the colonifts, to afcertain them exactly. All feem to agree, that fince cultivation has been fomewhat extended, they are not fo regular as before ; that the dry feafon encroaches on the rainy, and that during the latter, they have often feveral dry days in fucceffion. The account given by Dr Bancroft was the one generally allowed; that it is dry about the equinox, and rainy about the folltices; that of confequence
they have two wet and two dry feafons every year. We thought it difficult to reconcile this with the account given of the feafons of other countries in fimilar climates, and with what actually takes place in the Carib illands. I will give you my ideas on the fubject. It is within the tropics a very general rule, that the vicinity of the fun brings the rainy feafon. To the northward of the line therefore this muft be in our fummer months. It is another invariable law, that as in lunar influences, fo in the change of feafons produced by the fun, fome time is neceffary after the maximum of the 'caufe to produce the full effect. The higheft tides are not till two or three days after the full and change. The greatef heat of the day is two hours after noon, and the hotteft months in Europe are July and Auguf, not June, when the fun is higheft. Among the Weft India illands, the full effect of the fun's vicinity is ftill later. I have found Auguft, and more efpecially September, to be the hotteft months in the year, and they are accordingly the height of the rainy feafon. It begins thus: No fooner has the fun come to the northward, and begun to be vertical among the iflands in April and May, than his force is felt, the fley is more difturbed, the wind is more frequently from the fouthward and in fqualls, and now and then there are heavy fhowers. In June the fame effects continue, and increafe in July, when the proper rainy feafon may be faid to begin, and continues in force more or lefs till the middle of October. Auguft and September, with part of July and October, when thefe effects are at their greateft height, are ftyled the hurricane months, and by the French l'bivernagi. During them, the full force of the great luminary which diftributes light and life, however neceffary, feems fometimes too much for nature. She is oppreffed and fickens ; her refpiration is difordered by intenfe heat ; fometimes calms, fometimes heavy fqualls; the agitated elemento vent themfelves in lightning, with thunder and torrents of rain, or are fometimes thrown out into thofe horrid convulfions, hurri-
canes which feem to threaten inftant diffolution. Guiana is happily free from thefe fcourges of the Antilles. Their force has lately been partially felt at Tobago, which was thought beyond their reach. In Trinidad, the greateft ftorms they have hitherto experienced, do not deferve the name of hurricanes; and to the fouthward, on the main of America, they are utterly unknown. The difference then between Guiana and the illands is this: In the former, the rainy feafon fets in earlier, as indeed the fun is fooner vertical. Their principal rains are in the end of April, in May, June and July. They are alfo fooner over; for Augult, September and October, and I believe part of July, are commonly fair weather. But again, November in part, December, January and February, reckoned dry months among the inlands, are in Guiana a fecond rainy feafon. The caufe of this I take to be as follows: North-eafterly winds, pretty ftiff, cold, and bleak comparatively in thefe climates, are frequent among the iflands during the winter months. They are well known by the name of Norths. They are often accompanied with rain, but it is not very heavy, nor thought of confequence enough to give the denomination of a rainy feafon. Thefe winds we know to reach as far as the coaft of Guiana; and there I have reafon to believe they are productive of more rain than in the iflands. The face of a large continent, and its effects upon the atmofphere, may very probably make them give up more of their humidity than they do among the Antilles, though, at the fame time, their force and bleaknefs may not be fo much felt. If this conjecture hits the truth, the following ought to be corollaries, and are left to future obfervation. In this rainy feafon, when the fun is near the fouthern folftice, their rains will be with pretty fteady northerly breezes on the coaft. They may be of longer continuance at a time, but they will not be fo heavy as thofe of fummer, and they will be chiefly on the fea-coaft, and probably will not extend a great way up the country. It remains even a query with me,
whether the rain that accompanies the norths among the iflands, efpecially thofe moft remote from the line, be not generally in a greater proportion than is commonly fuppofed.

Country.-I will now endeavour to give you fome idea of the face of the country. Though, as is well known, Guiana is flat and fwampy, yet it affords to the attentive eye an interefting variety. The fea-coaft is little, if at all, raifed above the level of high water, and it continues at this level for many miles inland. It is properly an immenfe woody fwamp, never dry in the drieft feafon, covered with feveral feet of water in the wet. Next the fhore, as far as the brackifh water extends, it is covered with mangroves, which grow to a confiderable height, and form a thick fhade. They are elevated on their branchy intermingled roots from the bare wet clay or mud, on which there is fcarcely one herb or plant, but which feems to be all in motion, from the prodigious number of crabs which make: their holes in it. Further on, when the under-water is frefh, you meet with a new fet of vegetables, principally fmall trees, which, from their fituation, are obliged to adopt the habits of mangroves, having the bottom of their trunks fupported three or four feet above ground by their ramified roots. Several climbing plants are mixed with them. Arunis, in great variety and profufion, emerge from the water, or embrace the ftems of the trees; and feveral broad-leafed plants of the hexandria and triandria claffes, affift the Arunis in forming an herbage. In all this low part of Demerary, there is not one tree of a large fize, nor "among them all above two or three fpecies which can be applied to ufe as timber. Proceeding ftill up the river, its banks are found generally to raife themfelves above the level of the water; and when you have gone up one tide, (betwixt twenty and thirty miles), they are fo high, that there is no farther occafion for dams to keep the plantations from being overflowed at high water, as below;
canals or ditches are fufficient to drain the land, which is fill perfectly flat. The trees are here different in fpecies and larger in fize than below, and the woods are much more practicable. As they are drier, the ground has acquired a regular fort of furface, and there is neither that plexus of roots, nor the fame number of vines, (the common name in the Weft Indies for all climbing plants), to entangle thofe who choofe to traverfe them. The foil here is generally a ftiff, cold, reddifh clay, mixed a-top with a portion of vegetable mould.

The fand-hills prefent to the admiring eye a fcene very different from what it had been accuftomed to below. The firft you meet with upon the Demerary, is upwards of thirty miles from the mouth of the river, and on the right hand afcending, or on its weftern fhore. There are of them further down in the country, but not clofe by the river-fide. This one is the extremity of a ridge which extends to the weftward feveral miles. As you afcend the river, you meet with many more of the fame kind on both fides, whofe direction feems likewife to be eaft and weft, or nearly at right-angles with the average courfe of the ftream. They vary from 50 to 100,150 , or 200 feet of perpendicular height above the level of the river and the intervening flat country. Their breadth and extent varies fometimes only a few hundred paces, fometimes many miles. Their length is great; with fome interruptions, I have reafon to believe they are generally continued from one fide of the colony to the other, only interfected in different places by the rivers and their branches. They confift of a pure filiceous fand, fo white that it dazzles the eyes, commonly fine grained and loofe, but not unfrequently mixed with little ftrata of coarfer pebbles, moftly quartz, and fometimes concreted into a proper fand-ftone. In the laft cafe, a black or reddifh tinge is in many cafes communicated to it, from clay, decayed vegetables, or other extraneous matter. There is no regular ftratification to be found in it, more than what is common to all

Vol. IV.
G
fands,
fands, the produce of depofitions of different dates, and as they are of different materials, thicker in one place, thinner in another, fometimes horizontal, but oftener inclined, and convex or concave according to circumftances. We could meet with no appearance of fhells or other marine productions, but in a few places, pieces of broken vegetables buried in the fand where it was concreted. They were black as all the foffil vegetables that I have ever feen in fand-ftone. Upon, and by the fides of the fand-hills, grows the moft valuable timber of thefe colonies. The trees there are of a good fize, and very clear of obftructing underwood or vines. The Wallabba, (Parivoa grandiflora of Aublet) ; the Sipiri or green-heart, (a new fpecies of laurel); the Coumarou or Tonquxbean-tree, Coumarouna odorata of Aublet ; the Mora, valuable for boat-timbers, and many others, whofe wood is equally hard and beautiful.

Continuing to afcend the river, the fand-hills become rather more frequent, but the intervals ftill remain a perfect flat, though now feveral feet above the level of the fream, and the foil is ftill a ftiff clay. Hitherto the river is deep all over, generally from two to five fathoms; the bottom is mud or clay, and the fhores on either fide at low water covered with ooze. About 130 miles up, however, or juft before it begins to fhallow, the bottom is covered with banks of a hard white or brown fand. It was a problem for fome time whence all this fand originated in fuch a country. It was foon folved. Leaving here the veffel that had hitherto carried us, we proceeded in a canoe; and at about 160 or 170 miles diftance from the mouth of the river, we met with the firft proper hills of folid materials. The neareft to us was a rock of granite projecting into the ftream, whofe direction it gave a change to at this place, and it ferved for a landing-place to the higheft piece of cleared land upon the river next to the poft-holders. It was part of a low ridge of the fame ftone which croffed the country, probably to Berbia or beyond it, and was fucceeded by many other feries of
hills more inland, and as far as we could examine them, of the fame materials. "The granite was both of the red and the gray kinds, but chiefly of the latter. A number of feams or dikes croffed it here and there in all directions, not diftinctly feparate, but firmly united to the reft, making as it were but one body with it, and confifting of the fame materials differently modified. Their component parts were generally fmaller ; they were more compact and clofer in the texture than what furrounded them; and where they had been equally expofed to the action of the weather, they appeared to have born it much better than the furrounding granite. The origin of the fand was now accounted for. This ftone, in fome cafes exceedingly firm and durable, is in others very liable to decay; and the wafh of thefe enormous chains of hills was able to furnifh abundance of fuch fand as we had met with below. The granite afforded many varieties, indeed every fhade, from large and diftinct grained, to that whofe component parts of feltfpar, fchorl or quartz, were fo fmall as to refemble pretty compact, compound lavas, or fome of our mixed whin-ftones in Scotland. All thefe varieties would be found at no great diftance from each other. I brought fome fpecimens, from Tiger's berg, a hill about 500 feet perpendicular height, which have every appearance of having undergone the action of fire. They refemble half-vitrified fcorix, and would be taken for them, but that they were actually broken off from the granite, and difcover all its parts in the fracture. The fummit of this hill is irregular, with feveral pits and holes among the rocks. A little higher than it, and I fuppofe nearly about 200 miles from the fea, you meet what are called the Falls. They are only five or fix rapids, within the fpace of a mile or two, formed by ledges of very clofe-grained gray granite that run acrofs the river. There are breaks in each of them, through which the dextrous Indians are able, in their light canoes, to pafs up at any feafon, even the drieft ; and when the river is fwelled by
the rains, they become totally obliterated. Two days journey, or two and a half above this, is the great fall, where the ftream comes over the face of a rock, as we were informed, twenty feet high.

Savannatis.-Savannahs, ever fince the difcovery of America, have been known to occupy large fpaces in the fouthern parts of that continent. They are to be met with abundantly in Guiana, and are of two kinds very diftinct from each other, the wet and the dry. Of the former, many are extenfive as the eye can reach, immenfe verdant plains occupying the whole face of a country, with or without a few ftraggling infulated patches of wood. In the dry feafon, they appear meadows of long grafs or reeds, and are feldom practicable for any diftance, for the bottom is very rarely dry. In the wet feafon, they are all one entire plain of water, over the furface of which the grafs ftill rifes, but which may be every where navigated in the courialls or canoes. Towards the end of the drought, the Indians fet fire to them. The young growth which fucceeds attracts the deer, and the native, on the return of the half-deucalion days, purfues them in his little bark acrofs their former plains. The foil upon thefe favannahs can neither be very deep nor very good; yet water may be always commanded, and labour and induftry might convert thefe deferts into rice-fields. It is a queftion whether the days of flavery will ever fee that event. The culture of this ufeful vegetable, which in the eaft has for ages been the ftanding food of millions, brings too moderate a return, at leaft in an infant colony, for the rapacious agricultural fyftem of the Weft Indies.

The dry favannahs are neither fo frequent nor fò extenfive, yet we have paffed through fome of them feveral leagues in circumference. They are formed along the flats on the top of the fand ridges, and covered by a very thin coat of verdure. They refemble, exactly enough, fome of the bare moors in Scotland.

Many beautiful plants of the clafs gynandria are their chief ornaments, as is alfo the orchis, which grows in fimilar fituations with. you. Some Melaftomas, and more Rhexias, fupply the place, and bear fomewhat of the habit of the Ericæ ; for your Sedums and Saxifrages is the little Sauvagefia; and in hollows of the fame favannahs, where moifture prevails, what I never could have expected to fee within five degrees of the line, and not more than 50 or 100 feet above the level of the fea, the Drofera lifts its humble head from a bed of the Sphagnum paluftre.

Besides thefe two kinds, there are alfo what we may denominate balf-favannabs, formed upon the tops of fand-hills, higher and more irregular than in the cafe of thofe juft defcribed. Some of thefe are alfo very extenfive. Few herbaceous: vegetables are to be met with upon them. Broad fpaces of arid fand are interfected by clumps of fhrubery. Nothing grows to the height of a tree; but a particular fet of plants, different from thofe in other parts of the country, find fubfiftence enough to rife to fifteen or thirty feet. How nature, after all her efforts, fhould have failed to induce a foil upon thefe, is furprifing. It appears chiefly owing to the great porofity of the fand, which every where admits the decayed vegetable matter deftined for that purpofe, to be carried down through it, and filtered off by rain. Even thofe fand-hills which are covered by tall trees, ftill fhew proofs of this.. The trifling layer of mould formed upon them is exceedingly thin. When cleared they are very barren; and when you dig in them to a great depth, you ftill firid fmall portions of black vegetable earth difperfed among the fand. What corroborates the above fuppofition, is the appearance of the fprings. Abundance of thefe are found gufhing out copioufly round the verges of the hills; and notwithftanding the extreme whitenefs and purity of the fand from whence they flow, there is not one in an hundred whofe waters are limpid. They come out not muddy, but of a brownifh colour, very much like the water which runs from:
peat-moffes, and they are certainly tinged by the fame caufe. The rotten leaves of trees, and other decayed parts of vegetables on the hills, inftead of being collected on the furface to form foil, are wafhed down into the fandy ftrata by every rain; fo that the refervoirs of the fprings, and the water which proceeds from them, is always coloured with thefe fubftances. There follows a corollary alfo from this general principle, and when compared with facts I believe it will hold good: The more the fand is concreted into ftone in any of the hills, the more and better will be the foil upon them. Where clay in fmall beds, or in a certain proportion, is mixed with the fand, the vegetable mould will likewife be better retained.

Rivers.-I will next give you what general obfervations I have been able to make upon the rivers and creeks of this part of America. The courfe of nearly all thofe of Guiana is from fouth to north. They originate in a chain of hills running eaft and weft, which feparates Guiana from the country on the Amazons, and likewife gives rife, on its fouth fide, to the numerous branches which fall into that river. The Demerary is a confiderable ftream, equal, if not fuperior to the Thames; yet it is by no means among the largeft of them. The Effequebo is five times larger at its mouth, forming a whole Archipelago of iflands; but its ftream foon divides, and, on account of rocks, fhallows and rapids, none of its branches are navigable fo high up as the former. Moft of the particulars I am now to give you muft be underftood as applying to the Demerary. The bar, if it may be fo called, is common to this with many other rivers, which difcharge themfelves into a flallow fea; but ftill with circumftances in the prefent cafe which diftinguifh it from others, where the bottom is not mud but fand. It does not run like a fingle narrow ridge, acrofs, or nearly acrofs the mouth of the river, but it is of great extent, and is properly a continuation of the mud-bank which runs all along the coaft. To the eaft and weft, and for two miles or more in the offing, you
have ten or twelve feet water with the utmoft uniformity, and ftanding in with the mouth of the river open, you neither deepen nor fhallow till you enter it, when you find two, three, four or five fathom, and it continues to average that depth for a long way, fo that any veffel which can enter, may, for draught of water, proceed up the river for 100 miles or more.

The mouth of the Effequebo, from the fand-hills and rocks being very near it, is exceedingly different. Three large iflands prefent themfelves in a breaft, and divide its entrance into four channels. The length of thefe iflands is with the current, fouth and north ; and from the tail or north end of each of them, as alfo from the banks of the main on either fide, run out fand-banks to a good diftance. They are perfectly firm, quick in very few fpots, and the body of them is above the level of low water. On the outfide of them you have the continuation of the mud-banks and fhallow water as above, only that the entranee of thefe channels is ftill fhallower than that of the Demerary. The ftream of this river runs very brown and muddy, and the fea is ftained with it for fome leagues off. A ftranger naturally imputes this to the wafhings of a large flat country, or the ftirring up of the muddy bottom by the tides. The latter may in part be a caufe, though I believe it contributes to it but very little, and the former, in a ftate of uncultivation, none at all. On afcending forty miles or fo, you find the water clear again, or rather of a darkifh hue, and fo it continues above that. I was at firft at a lofs how to account for this, but, from a number of circumftances, was foon led to conclude, that the thicknefs, and light brown colour of the water near the mouth of the river and on the coaft, were almoft entirely the effect of cultivation. Numberlefs ditches and canals have been opened by the inhabitants, which are receiving or difcharging water every tide, and each particular piece on a plantation is every way interfected with open little drains, which communicate with thefe ditches. In digging and hoeing this clayey foil, much of it is fufpended.
in the water, and carried off by the current of the tides. Nothing can be more certain, than that all up the river, and in all the creeks which difcharge themfelves into it, the colour of the water is conftantly clear or blackifh, even in the rainy feafon, when it is fwollen. On confidering thefe circumftances, I have been led to this general conclufion, which is fubmitted to the proof of obfervation in different parts of the world. The reddifh brown colour, fo common in frefhes of rivers, in Europe, and we may add every where, is almoft entirely the effect of cultivation ; and the natural colour of rivers, even in the higheft and longeft continued floods, where all the country is ftill in woods or paftures, is ever that of a very dark brown, or blackifh, pretty much like that of the ftreams which rife among peat-moffes, but rather more diluted. It is comparatively very clear, and depofits but a trifling fediment. The other is thick and opaque, and its fediment copious. Thus is man, in his tittle workings, made, in a fmall degree, one of the engineers of nature. We cannot doubt, that entire ftrata will owe to him their exiftence, accumulated in a feries of ages at the bottom of the fea, and deftined, in future revolutions, to act a more diftinguifhed part. It may be curious too to confider the differences that may be expected betwixt the ftrata formed by thefe different depofitions, which may be fuppofed between them to have been the origin of moft of the clays upon our globe. Clay, earth or loam, ftirred up by the labourer, gives rife to the one; minutely decayed parts of vegetables form the body of the other.

It muft alfo be obferved, that clearing the ground along the coaft, by cutting down the trees, and opening ditches for the difcharge of water, has expofed the land very much to the wafhing of the fea. The roots of the mangroves formed a plexus able to refift its force; and the former equal, and very flow deepening of the water, prevented its making a ftrong impreffion
imprefion on any phace. The difcharge from the ditches at low water cut out channels in the mud, and left the fides of thefe channels more expofed to the returning waves, which here beat continually upon a lee-fhore. We find therefore on the coaft, that the fea has made here and there confiderable encroachments, which generally begin on the weft fide of the canals or ditches, as being the moft acted upon by the waves. The mouth of the Demerary itfelf furnithes us with a ftrong inflance. That river is now nearly twice as wide as it was when the country firft began to be cleared; the fea and the ftream together having fince that fwept away a large portion of land from the weftern fhore.

Creeks.-A number of creeks fall into the Demerary on both fides, but fo fmall that they bear no proportion to the fize of the river. You can hardly diftinguifh their mouths in the woods which overhang the banks. They are fo narrow that it is difficult to run a fmall boat in them ; yet you will find in them throughout from two and a half to four fathom water, and they run winding fo far back that it will take five, fix, eight hours, or more, to carry you up to their heads, where they terminate in fmall ftreams from among the fand-hills. The banks of the creeks at their mouths are of the fame height as thofe of the river clofe by, from five perhaps to twelve feet above the water in the dry feafon. As you afcend the creek, you might naturally expect to find them rife. It is however the very reverfe ; they become gradually lower and lower, till at laft all round them is a fwamp; and the trees on each fide in like manner become fmaller and fmaller, and of different fpecies from what they were. It is now in fhort exactly a mangrove fwamp, with this difference, that the water is quite frefh, the vegetables are not the fame, and there are abundance of arunis and other low herbaceous plants. A little higher up,

Vol. IV.
you lofe the wood altogether, and find yourfelf in a beautifur deep canal, winding through a fpacious wet favannah, which is fometimes many leagues in circumference. The firf time we went up one of thefe creeks, (called Camouni), I was furprifed at this appearance, and thought it muft be a mere local circumftance peculiar to it. We found afterwards the fame in one or two more inftances, and were fatisfied upon enquiry, that it is common to them all. It was natural to look for an explanation of this phenomenon, and I foon found it in one of thofe laws, which probably extend to all rivers fubject to frequent inundations. It has been obferved, in particular, of the Ganges *, that the banks of that river are higher than the adjacent lands at a diftance from the flream, owing, no doubt, to the annual depofitions of mud, ξ°. during the fwell of the river. Apply the fame rule to the Demerary, and the difficulty will be folved. The wet favannah behind, and the fwampy woods around them, are the body of the low country at its natural level, fcarcely a foot or two above the fea. Whatever additional height the land has in the vicinity of the river, from the time you have afcended about twenty miles or fo , is all acquired. It has arifen from the fediment of the river during the rainy feafon, when the country is overflowed fo as that all the lower part of it is under water. This depofition muft be always more copious, in proportion as it is nearer the ftream, where additional quantities are always brought, and where it is kept in motion both by the current and the tide. Every thing which we afterwards faw confirmed this theory, and nothing more directly than the canals which run out at right angles from the river. Some of thefe extend four miles inward, and they prove to a demonftration, that the land becomes lower and lower the farther you recede from the

[^12]the river. The maps of the colonies confirm it ; for in all of them the main body of the low land of Guiana is laid down as favannah, and the woody country, which a ftranger or fuperficial obferver would fuppofe to be the whole or much the greater part of it, is in fact only a border on the fides of the rivers and of the fea, but of confiderable breadth, more or lefs, in proportion to the fize of the adjoining river, or, which is generally the fame thing, to the acquired height and extent of the foil on either bank. It followed as a confequence, and, as far as we had opportunities of obferving, we found it to be the cafe, that the low land was fomewhat higher, and continued fo farther down, about the Effequebo than the Demerary ; the woods confequently were of greater extent. We found, befides, in the foil adjoining the Effequebo, at leaft upon the eaff fide, a mixture of fand. The river is full of fand-banks; and it appears, that the finer parts of even this lefs fufpenfible fubftance are raifed by the floods and carried among the adjacent woods to be depofited with the mud. The Mahayka, a fmall river or creek which falls into the fea about twenty or thirty miles to the eaftward of the Demerary, though it runs a long way up the country, and fpreads into many branches, has but a very narrow, and often interrupted border of wood upon its banks ; it runs through an immenfe favannah, and fo do its branches, with little or no wood, till they approach the fand-hills. The Deltas of the river of Oroonoko, and its numerous mouths, make a figure even in the map of the world. It is to be regretted, that its noble flream has been fo long hid from fcience. What I learned in Trinidad from a gentleman, who had failed from its mouth to the Angufturas, about 300 miles up, confirms and illuftrates, in the fulleft manner, the above general rule. The weftern mouths of it oppofite Trinidad, are navigable only for launches drawing fix or feven feet wa-
ter. At and oppofite them, the bottom is fhallow and muddy, and the coaft a low mangrove fwamp, refembling, in all refpects, that of Guiana. You muft afcend thofe branches feveral days before you reach the main ftream; and in doing fo, you find the fame phenomena as in afcending the Demerary, but in a ftill greater degree. At firft you have the mangrove, or fome fimilar fwamp, and behind it on both fides for about twenty leagues, the land, if you can call it fo, hardly emerging from the water. Afterwards the ground appears; and, as you go up, rifes ftill higher and higher on the banks above the common level of the ftream. The trees become, in the fame manner, of different fpecies, and much taller than they were below, The channel in which you are, from being wide, grows narrower by degrees. It is from about one and a half to three-fourths of a mile broad near the entrance ; and, when it joins the main ftream, is not more than about 200 yards. It has then acquired a confiderable depth, and the banks may be about twenty feet high. Along the main ftream of the river, or Boca de Nafios, the gradual rife, and other circumftances attending it, are quite fimilar. All this height of the bank, I can make no doubt, is entirely acquired ground, formed by the fediment of the floods, greater near the ftreams tham at a diftance from them; and though I have no knowledge of the nature of the land in the deltas and their vicinity, I would not hefitate to fay, that great part of the interior body of each ifland, and moft probably of the main on either fide, where it is low country, confifts of nothing elfe than wet favannahs.

Floods.-Before we leave the rivers, it may be proper to take notice of their floods. In no inftance of a large river does the univerfal law within the tropics fail, that they annually overflow their banks for a certain feafon. What was a prodigy
in the Nile during the infancy of fcience, is now a well known phenomenon to every inhabitant of a continent in the torrid zone. From the fituation of the river Amazons, it amounts to a certainty, that the Demerary, Effequebo, and other rivers of Guiana, cannot originate very far up in the continent of South America. This is confirmed by what I could learn of the rife and duration of the floods of thefe two rivers. Enquiring about them at the plantations below, is to little purpofe, for there the floods are hardly difcernible; but by the poftholder and the fettlers fartheft up, I was informed, that they are there fenfible enough, and that, independent of all partial fwells from accidental rains, the Demerary generally rofe every year in the month of June, and continued high through July and part of Auguft. 'The rife there, upon the whole, might be about twelve feet; it is fufficient to lay the level parts of the country under water, and to render the woods, that cover them in feveral places, paffable in canoes. We could have wifhed for more exact information. This, however, was fufficient to prove, that the rivers did not rife very far inland, elfe the floods would have been later in the year; but at the fame time that they were of extent enough to follow the rule of all confiderable intertropical rivers, fo as to have a flood in the rainy feafon, that is, in the months when the fun is upon the fame fide of the line on which they have their origin and courfe.

The great Oroonoko, I have been informed, begins to rife a little in May, it continues increafing through the fummer months, and the inundation is at its height in September. At that time, as far up as the Angufturas, the rife is about forty feet perpendicular above the low water-mark. It diminifhes as you defcend till about the mouth, where it is only a very few feet.

Tides are of the utmoft confequence to the inhabitante of the coaft of Guiana. They enable them to drain a country which otherwife could never have been cleared, and they afcertain their journeys which are made by water up and down the rivers, and even along the coaft. At the mouth of the Demerary, it is high water at about half paft five, at new and full moon. The rife in fpring tides, a little way up, is twelve feet, or more, above low water-mark. The tide runs very rapidly near the mouth of the river, feldom lefs than four or five miles in the hour. It continues to run with force for a long way up, and was fufficient, without wind, to carry us up or down at 150 miles from the mouth. Above that it becomes feebler ; and for a confiderable diftance below the rapids, though there is a fenfible rife and fall of two or three feet, yet, even in the dry feafon, the current is conftantly down, only more gentle during the rife or flood, and there alfo the continuance of the rife is very fhort, not more than two or three hours.

Some obfervations upon the Soil of the different parts of the country, may be the fubject of a future communication. I will only add at prefent, what I think has more than conjectural foundation, viz. That this moft recent of countries, together with the large additional parts ftill forming on its coaft, appear to be the productions of two of the greateft rivers on the globe, the Amazons and the Oroonoko. If you caft your eye upon the map, you will obferve from Cayenne to the bottom of the gulph of Paria, this immenfe tract of fwamp, formed by the fediment of thefe rivers, and a fimilar tract of fhallow muddy coaft, which their continued operation will one day elevate. The fediment of the Amazons is carried down thus to leeward (the weftward) by the conftant currents,
which fet along from the fouthward and the coaft of Brafil. That of the Oroonoko is detained, and allowed to fettle near its mouths, by the oppofite iflands of Trinidad, and ftill more by the mountains on the main, which are only feparated from that illand by the Bocos del Drago. The coaft of Guiana has remained as it were the great eddy or refting-place for the wafhings of great part of South America for ages; and its own comparatively fmall ftreams have but modified here and there the grand depofit.

W. Lochhead.

$$
\mathrm{III}_{\mathrm{I}}
$$

$-$

III. A Sort Paper on the Principles of the Antecedental Calculus. By fames Glenie, Efq; M. A. F. R.S. Lond. \& Edin.
[Read Dec. 1. 1794.]

CEVERAL of my friends have fuggefted to me the propriety of publifhing fomething of the kind now offered to the Society, obferving, that the great brevity with which the Antecedental Calculus is written, and the very concife form in which it is delivered to the public, may lead fome to form erroneous opinions refpecting the principles on which it is founded. In compliance partly with their requeft, I have drawn up this fhort paper, which I hope will remove even the poffibility of mifconception on that head, and convince every intelligent reader, that the antecedental calculus has the fame geometrical principles for its ground-work, that the formulæ in the Univerfal Comparifon themfelves have, from which I originally derived it more than twenty years ago.

In the third page of that treatife, I have fhewn from the firft formula in the third theorem of my Univerfal Comparifon, that, when \mathbf{R} and \mathbf{Q} are any two given magnitudes of the fame kind, and A, N, B are any homogeneous magnitudes, the excefs of the magnitude, which has to B a ratio having to the ratio of $A+N$ to B the ratio of R to Q, above the magnitude, Vol. IV.
which has to B a ratio, having to the ratio of A to B the fame ratio of R to Q , is geometrically expreffed by

$$
\frac{\frac{R}{Q} \cdot A \frac{R-Q}{Q} \cdot N+\frac{R}{Q} \cdot \frac{R-Q}{2 Q} \cdot A \frac{R-2 Q}{Q} \cdot N^{2}+\frac{R}{Q} \cdot \frac{R-Q}{2 Q} \cdot \frac{R-2 Q}{3 Q} \cdot A \frac{R-3 Q}{Q} \cdot N^{3}+}{B \frac{R-Q}{Q}}
$$

or, which comes to the fame thing, that the expreffion,

$$
\frac{A \frac{R}{Q}+\frac{R}{Q} \cdot A \frac{R-Q}{Q} \cdot N+\frac{R}{Q} \cdot \frac{R-Q}{2 Q} \cdot A \frac{R-2 Q}{Q} \cdot N^{2}+\& c .}{B \frac{R-Q}{Q}} \text {, exceeds the }
$$

geometrical expreffion, $\frac{A \frac{R}{Q}}{B \frac{R-Q}{Q}}$, or
$A+\frac{R-Q}{Q} \cdot A \cdot \frac{A-B}{B}+\left.\frac{R-Q}{Q} \cdot \frac{R-2 Q}{2 Q} \cdot A \cdot \frac{A-B}{B}\right|^{2}+\& c$. by the aforefaid geometrical expreffion.

In the fame page, I have fhewn, that the excefs of the magnitude, which has to B a ratio, having to the ratio of A to B the ratio of R to Q above the magnitude, which has to B a ratio having to the ratio of $A-N$ to B the ratio of R to Q is geometrically expreffed by
$\frac{\frac{R}{Q} \cdot A \frac{R-Q}{Q} \cdot N-\frac{R}{Q} \cdot \frac{R-Q}{2 Q} A \frac{R-2 Q}{Q} N^{2}+\& c .}{B \frac{K-Q}{Q}}$, or, which comes to the fame thing, that the expreffion,
$\frac{A \frac{R}{Q}}{B \frac{R-Q}{Q}}$, or $A+\frac{R-Q}{Q} \cdot A \cdot \frac{A-B}{B}+\left.\frac{R-Q}{Q} \cdot \frac{R-2 Q}{2 Q} \cdot A \cdot \frac{\overline{A-B}}{B}\right|^{2}+\& c$. ex-
ceeds the geometrical expreffion,

aforefaid geometrical expreffion.
IT is almoft unneceffary to obferve, that the two expreffions, which have refpectively to B ratios, having to the ratios of $A+N$ to B, and $A-N$ to B the ratio of R to C , give us. $A \frac{R}{Q} \pm \frac{R}{Q} \cdot A \frac{R-Q}{Q} \cdot N+\frac{R}{Q} \cdot \frac{R-Q}{2 Q} \cdot A \frac{R-2 Q}{Q} \cdot N^{2} \pm+\& c$. $B \frac{R-Q}{Q}$
metrical magnitude, which has to B a ratio, having to the ratio of $A \pm N$ to B the ratio of R to Q. But as this expreffion muft vary indefinitely with the endlefs variations in the quantity of the magnitude B , its geometrical ftandard of comparifon, fo, when we fuppofe it to become numerical, we get an indefinite number of arithmetical formulæ, referring to different fandards of comparifon. For B may be then reprefented by

$$
\begin{aligned}
& 1,2,3,4,5, \& c \text {. } \\
& 1, \sqrt{2}, \sqrt{3}, \sqrt{4}, \sqrt{5}, \& c \text {. } \\
& \frac{I}{2}, \frac{I}{3}, \frac{I}{4}, \frac{I}{5}, \frac{I}{6}, \& c . \\
& \text { or \&c. \&c. fine limite. }
\end{aligned}
$$

And in that particular cafe, when it is reprefented by i or unit, this geometrical formula gives the arithmetical one, (putting r and q for R and Q ,)
$\mathrm{A} \frac{r}{q} \pm \frac{r}{q} \cdot \mathrm{~A} \frac{r-q}{q} \cdot \mathrm{~N}+\frac{r}{q} \cdot \frac{r-q}{2 q} \cdot \mathrm{~A} \frac{r-2 q}{q} \cdot \mathrm{~N}^{2} \pm \frac{r}{q} \cdot \frac{r-q}{2 q} \cdot \frac{r-2 q}{3 q} \cdot \mathrm{~A} \frac{r-3 q}{q} \cdot \mathrm{~N}^{3}+ \pm \& \mathrm{c}$.
which
which has to I , or unit, a ratio having to the ratio of $\mathrm{A} \pm \mathrm{N}$ to I the ratio of r to q. In it A, N, r, q, may be any numerical or arithmetical magnitudes whatever, whole, fractional, furd or mixed. This formula, or antecedent, is exactly what is commonly called the Binomial Theorem.

If we fuppofe \mathbf{B} to be reprefented by 2, we derive immedìately from this geometrical antecedent or formula, the following arithmetical one :

$$
\mathrm{A} \frac{r}{q} \pm \frac{r}{q} \cdot \mathrm{~A} \frac{r-q}{q} \cdot \mathrm{~N}+\frac{r}{q} \cdot \frac{r-q}{2 q} \cdot \mathrm{~A} \frac{r-2 q}{q} \cdot \mathrm{~N}^{2} \pm \frac{r}{q} \cdot \frac{r-q}{2 q} \cdot \frac{r-2 q}{3 q} \cdot \mathrm{~A} \frac{r-3 q}{q} \cdot \mathrm{~N}^{3}+ \pm \& \mathrm{c}_{\mathrm{a}}
$$

which has to 2 a ratio having to the ratio of $\mathrm{A} \pm \mathrm{N}$ to 2 , the ratio of r to q.

To fuch arithmetical formulæ there is no end or limit. And this I take to be the true and fyftematic method of deriving them, viz. from geometrical antecedents or formulæ, when they are fuppofed to become numerical.

When i or unit is the ftandard of comparifon, its various combinations with itfelf and the other numerical magnitudes, do not appear in the formula or antecedent. This circumftance renders it of all others the moft commodious for common ufe in algebra and arithmetic, though the leaft calculated of any for thewing the rationalia or ground-work of the various operations in thefe two fciences. For when the formula or antecedent fhows the different combinations of the confequent or ftandard of comparifon with itfelf and the other numerical magnitudes, it is a fort of language announcing or exhibiting the reafons of its formation.

It is evident, that half the excefs of the two geometrical expreffions taken together, which have refpectively to B ratios, having to the ratios of $A+N$ to B and $A-N$ to B, the ratio of R to Q, above twice $\frac{A \frac{R}{Q}}{B \frac{R-Q}{Q}}$, or twice the magnitude, which
has to B a ratio having to the ratio of A to B the fame ratio of R to Q , is truly expreffed by

$$
\frac{\frac{R}{Q} \cdot \frac{R-Q}{2 Q} \cdot A \frac{R-2 Q}{Q} \cdot N^{2}+\frac{R}{Q} \cdot \frac{R-Q}{2 Q} \cdot \frac{R-2 Q}{3 Q} \cdot \frac{R-3 Q}{4 Q} \cdot A \frac{R-4 Q}{Q} \cdot N^{4}+\& c}{B \frac{R-Q}{Q}}
$$

and that half the difference of thefe expreffions is

$$
\frac{\frac{R}{Q} \cdot A \frac{R-Q}{Q} \cdot N+\frac{R}{Q} \cdot \frac{R-Q}{2 Q} \cdot \frac{R-2 Q}{3 Q} \cdot A \frac{R-3 Q}{Q} \cdot N^{3}+\& c .}{B \frac{R-Q}{Q}}
$$

Before I proceed farther, however, in the confideration of thefe expreffions, it may not perhaps be improper to premife the few following lemmata, which are almoft too evident to require demonftration.

LEMMA I.

If any ratio be compounded with its inverfe, or the inverfe of any ratio the fame with it, the compofition produces a ratio of equality.

For of the three magnitudes A, B, A, by the definition of compound ratio, (5. Euc. Simson's edit.), the ratio of A to B, compounded with the ratio of B to A, is the ratio of A to A, or a ratio of equality; and if the ratio of C to D be equal to, or the fame with the ratio of A to B , its inverfe, D to C , is equal to, or the fame with the ratio of B to A, (Prop. B. ibid.) : Therefore, (Prop. F. Euc. 5. Simson's edit.), the ratio of A to B , compounded with the ratio of D to C , is the fame with the
rato of A to B compounded with the ratio of B to A, or a ratio of equality. Q.E.D.

LEMMA II.

If with the inverfe of any ratio there be compounded a ratio greater than it, the compofition produces a ratio of greater inequality, or a ratio of which the antecedent is greater than the confequent ; and if with the inverfe of any ratio, there be compounded a ratio lefs than it, the compofition produces a ratio of lefs inequality, or a ratio of which the antecedent is lefs than the confequent.

First, Let the ratio of C to D be greater than that of A to B. Then (10. Euc. 5.) the magnitude, which has to D the ratio of A to B , is lefs than C . If E therefore be that magnitude, the ratio of C to D , compounded with the ratio of B to A , is the fame with the ratio of C to D , compounded with the ratio of D to E , (Propofitions B. and F. 5. Euc. Sim.). Wherefore, the ratio produced by compounding the ratio of C to D with that of B to A , is the fame with the ratio of C to E . But fince C is greater than E , the ratio of C to E is greater than that of E to E; (10. Euc. 5.), or a ratio of equality. Q.E.D.

Secondly,

Secondiy, Let the ratio of F to D be lefs than that of A to B. Then (Io. Euc. 5.) the magnitude, which B A D F E has to D the fame ratio with that of A to B, is greater than F . If E therefore be that magnitude, the ratio of F to D , compounded with the ratio of B to A, is the fame with the ratio of F to D , compounded with the ratio of D to E, (Propofitions B. and F. 5. Euc. Sim.). Wherefore the ratio produced by compounding the ratio of F to D with that of B to A, is the fame with the ratio of F to E. But fince F is lefs than E , the ratio of F to E is lefs than that of E to E , (10. Euc. 5.), or a ratio of equality. C.E.D.

LEMMA III.

If any ratio be compounded with a ratic of equality, it is not altered thereby.

For the ratio of C to D, compounded with the ratio of A to A, is the fame with the ratio of C to D, compounded with the ratio of D to D, (Prop. F. 5. Sim. Euc.), which, by the definition of compound ratio, is that of C to D. Q.E.D.

These three Lemmata are alfo evident from Formula 1. Theorem I. Univerfal Comparifon.

Cor. From this and Lemma . with the definition of compound ratio, it is evident, that if with any ratio there be compounded a greater one, there arifes a ratio greater than it ; and that, if with any ratio there be compounded a lefs one, there arifes a ratio lefs than it.

LEMMA IV.

If from any magnitude there be taken the half, and from the remainder its half, and fo on, the halves fo taken, be their number ever fo great, are together lefs than the magnitude.

For let $A B$ be any magnitude, $A C$ the half of $A B, C D$ the half of CB, DE the half of DB, EF the half of EB , and fo on.

Then it is manifeft, that AC, together with CD and DE and EF, \&c. are lefs than AB, from which they are taken. Q.E.D.

Cor. I. The ratio of $A B$ to the fucceffive halves $A C, C D$, $\mathrm{DE}, \mathrm{EF}, \& \mathrm{c}$. taken together, be their number ever fo great, is greater than a ratio of equality; and the ratio of any one of the terms to all the fucceeding ones taken together, be their number ever fo great, is greater than a ratio of equality.

Cor. 2. Hence it follows, that of any feries or fucceffion of terms, in which the half of each term has to the immediately fucceeding one a ratio of equality, each term has to all the fucceeding ones, be their number ever fo great, a ratio greater than that of equality.

Cor. 3. Hence it alfo follows, that if CD, inftead of one half, be one third of AC or CB, DE one fourth of CD, EF one fifth of DE, and fo on, the ratio of any term to all the fucceeding ones taken together, exceeds a ratio of equality more than the ratio it has to the fame number of fucceeding terms, be that number ever fo great, exceeds it, when each term has to the immediately fucceeding one the ratio of two to one,

Scholium.

Scholium. In like manner is it flewn, that, if AC be a third part of AB, CD of AC, DE of CD, EF of DE , and fo on, the ratio of each term to all the fucceeding ones taken together, be their number ever fo great, exceeds the ratio of two to one; and, in general, if the ratios AB to AC, AC to CD, CD to DE , DE to $\mathrm{EF}, \& \mathrm{c}$. be refpectively the fame with that of A to N , that the ratio of each term to all the fucceeding ones, be their number ever fo great, exceeds the ratio of $\mathrm{A}-\mathrm{N}$ to N . This is alfo evident from the well known method of finding the aggregates of geometrical progreffions; and if the ratio of AC to $C D$ be greater than that of $A B$ to $A C$, the ratio of $C D$ to $D E$ greater than that of $A C$ to $C D$, and fo on, the ratio of any term to all the fucceeding ones, be their number ever fo great, exceeds the ratio of $\mathrm{A}-\mathrm{N}$ to N , more, than the ratio it has to the fame number of fucceeding terms, exceeds: it, when each term has to the immediately fucceeding one the ratio of A to N .

I now proceed to prove, that each of the general geometrical expreffions in p. 3. Antecedental Calculus, viz.
$\frac{\frac{R}{Q} \cdot A \frac{R-Q}{Q} \cdot N+\frac{R}{Q} \cdot \frac{R-Q}{2 Q} \cdot A \frac{R-2 Q}{Q} \cdot N^{2}+\frac{R}{Q} \cdot \frac{R-Q}{2 Q} \cdot \frac{R-2 Q}{3 Q} \cdot A \frac{R-3 Q}{Q} \cdot N^{3}+\& c .}{B}$,
and
$\frac{\frac{R}{Q} \cdot A \frac{R-Q}{Q} \cdot N-\frac{R}{Q} \cdot \frac{R-Q}{2 Q} \cdot A \frac{R-2 Q}{Q} \cdot N^{2}+\frac{R}{Q} \cdot \frac{R-Q}{2 Q} \cdot \frac{R-2 Q}{3 Q} \cdot A \frac{R-3 Q}{Q} \cdot N^{3}-+-\& c}{B \frac{R-Q}{Q}}$,
has to N a ratio nearer to the ratio of $\frac{\frac{R}{Q} \cdot A \frac{R-Q}{Q}}{B \frac{R-2 Q}{Q}}$ to B than any
given or affigned ratio, or than by any given or affigned magnitude, when $A+N$ and $A-N$ have either to A or B ratios nearer to that of equality than any given, or affigned ratio, or

Vol. IV.
K
thani
than by any given, or affigned magnitude, and R and Q are twe given magnitudes of the fame kind.

PROPOSITION I.

In this cafe, the firlt term in each of thefe general expreffions has to twice the fecond, the fecond to thrice the third, the third to four times the fourth, the fourth to five times the fifth, and fo on, a ratio greater than any given ratio.

For, if this be denied, let C and D be two given homogeneous magnitudes, and let the ratio of C to D be greater.

In each; the ratio of the firft term to twice the fecond, is that of A to $\frac{R-Q}{Q} \cdot N$, and its inverfe $\frac{R-Q}{Q} \cdot N$, or $\left(N+N \cdot \frac{R-2 Q}{Q}\right)$, to A, is the ratio compounded of the ratios of $R-Q$ to Q, and N to A, (For. I. Theor. I. Univerfal Comparifoni). Now, the ratio compounded of this ratio, and that of C to D , is a ratio compounded of the three ratios C to $\mathrm{D}, \mathrm{R}-\mathrm{Q}$ to Q , and N to A. But, fince R and Q are given magnitudes, $R-Q$ is a given magnitude, (4. Euc. Data), and the ratio of $R-Q$ to Q a given ratio, (I. Data). Wherefore the ratio compounded of the ratios of C to D and $\mathrm{R}-\mathrm{Q}$ to Q , is alfo given, (67. Data). This ratio, however, compounded with that of N to A , is the fame with the ratio compounded of C to D, and $\frac{R-Q}{Q} N$ to A. But fince that of A to N is by the hypothefis greater than any given ratio, the ratio compounded of C to D and $\mathrm{R}-\mathrm{Q}$ to Q , compounded with that of N to A , produces a ratio of lefs inequality,' (Lemma 2.). Confequently, the ratio of A to $\frac{R-Q}{Q} \cdot N$ is greater than any given ratio C to D . Wherefore, the fuppofition,
fition, that any given ratio C to D is greater than it, is abfurd.

And, fince the ratio of the fecond term to thrice the third, is that of A to $\frac{R-2 Q}{Q} \cdot N$, it is proved exactly in the fame manner, that this ratio is greater than any given ratio. And precifely in the fame way is it demonftrated, that the ratio of the third term to four times the fourth, is greater than any given ratio ; and fo on.

Cor. I. If $\mathrm{R}-\mathrm{Q}$ be equal to Q , the ratio compounded of C to D , and $\mathrm{R}-\mathrm{Q}$ to Q , is the fame with that of C to D , (Lemma 3.) ; and if $\mathrm{R}-\mathrm{Q}$ be greater or lefs than Q , the ratio compounded of C to D and $\mathrm{R}-\mathrm{Q}$ to Q , is accordingly greater or lefs than that of C to D , (Cor. to Lemma 3.).

Cor. 2. The magnitudes, $\frac{2 R}{Q} \cdot \frac{A \frac{R-Q}{Q}}{B \frac{R-Q}{Q}} \cdot N, \frac{R}{Q} \cdot \frac{R-Q}{Q} \cdot \frac{A \frac{R-2 Q}{Q}}{B \frac{R-2 Q}{Q}} \cdot N$, \&cc. $\frac{2 R}{Q} \cdot N, \frac{R-Q}{Q} \cdot N, \frac{R-2 Q}{Q} \cdot N, \& c$. are lefs than any given or affigned magnitude.

Cor. 3. The ratio of each term to all the fucceeding ones, be their number ever fo great, is greater than any given ratio, (Scholium to Lemma 4.).

Cor. 4. The magnitudes. $A \pm \frac{R-Q}{Q}, N, A \pm \frac{R-2 Q}{Q} \cdot N, \& c$. have refpectively to A ratios nearer to that of equality than any given ratio, or than by any given magnitude.

Cor. 5. The magnitude which has to B a ratio, having to the ratio of A to B the ratio of R to Q, has to twice the firft term, in each of thefe general geometrical expreffions, a ratio greater than any given ratio.

$$
K_{2} .
$$

PRO:

PROPOSITION II.

The ratio of each of thefe two general geometrical expreffions to N, is nearer to the ratio of $\frac{R}{Q} \cdot \frac{A \frac{R-Q}{Q}}{B \frac{R-2}{Q}}$ to B than any given or affigned ratio.

For, fince the firft term in each has to twice the fecond a ratio greater than any given or affigned ratio, (Prop. r.), and the fecond has to all the fucceeding terms, be their number ever fo great, a ratio greater than any given ratio, (Cor. 3. Prop. 1.) the ratio of the firft term to all the fucceeding ones is a fortiori greater than any given ratio, being greater than that of A to $\frac{R-Q_{0}}{Q}$.N. Wherefore each of thefe expreflions has to the firft term a ratio nearer to that of equality than any given or affigned ratio, or than by any given or affigned magnitude, (Cor. 4. Prop. 1.). Confequently the ratios which thefe expreflions have to N , are nearer to the ratio of the firft term in each to N , than any given or affigned ratio. But the ratio of the firft term in each to N, is that of $\frac{R}{Q} \cdot \frac{A \frac{R-Q}{Q}}{B \frac{R-Q}{Q}}$ to B. Therefore, \&cc. Q.E.D.

OTHERWISE:

In the firft expreffion, the firft term, with twice the fecond, is much greater than the whole of it, (Cor. 3. Prop. r.), and confequently has to N a greater ratio than the expreffion itfelf has to N , (8. E. 5.). But this ratio exceeds the ratio of the firft term to N lefs than any given or affigned ratio. For, if the ra-
tio of the firft term to N be decompounded with it, or its inverfe, the ratio of N to the firft term, be compounded with it, there arifes the ratio of $A+\frac{R-Q}{Q} \cdot N$ to A, which (Cor. 4. Prop. 1.) is nearer to a ratio of equality than any given ratio.

In the fecond, the excefs of the firft term above twice the fecond is lefs than the whole expreflion, and confequently has to N a lefs ratio than the expreffion itfelf has to N , (8. E. 5.). But if with it the ratio of N to the firft term be compounded, there arifes the ratio of $A-\frac{R-Q}{Q}$ N to A, which (Cor. 4. Prop. r.) is nearer to a ratio of equality than any given ratio. Q.E.D.

OTHERWISE:

If it be denied, that each expreffion has to N a ratio nearer to the ratio of its firft term to N than any given ratio, let the ratio of two given magnitudes C and D be nearer to it, and let the ratio of B to E , compounded with that of the firft term to N, or with the given ratio $\frac{R}{Q} \cdot \frac{\frac{R-Q}{Q}}{\frac{R-2 Q}{Q}}$ to B, be equal to the given ratio C to D. But the magnitude, which has to B the ratio compounded of thefe two ratios, is (For. I. Theorem I. Univerfal Comparifon), $\frac{R}{Q} \cdot \frac{A \frac{R-Q}{Q}}{\frac{R-2}{Q}}+\frac{R}{Q} \cdot \frac{A \frac{R-Q}{Q}}{B \frac{R-Q}{Q}} \cdot \frac{B-E}{E}$ to B, which is greater than the ratio of the firf term to N , and lefs than the ratio of the firft expreffion to N , by the fuppofition, and confequently lefs than the ratio of the firft term with twice the
the fecond to N. Therefore $\frac{R}{Q} \cdot \frac{A \frac{R-Q}{Q}}{B \frac{R-2 Q}{Q}} \cdot \frac{B-E}{E}$ is lefs thar $\frac{R}{Q} \cdot \frac{R-Q}{Q} \cdot \frac{A \frac{R-2 Q}{Q}}{B \frac{R-2 Q}{Q}} \cdot N$. But fince the ratio of $\frac{R}{Q} \cdot \frac{A \frac{R-Q}{Q}}{B \frac{R-2}{Q}}$ to E, being compounded of the firft term to N, and of B to E, is the fame with the ratio of C to D, E is a given magnitude, (2. Data), and $\mathrm{B}-\mathrm{E}$ a given magnitude, (4. Data). Wherefore the given magnitude, $\frac{R}{Q} \cdot \frac{A \frac{R-Q}{Q}}{B \frac{R-2 Q}{Q}} \cdot \frac{B}{E}$, is lefs than $\frac{R}{Q} \cdot \frac{R-Q}{Q} \cdot \frac{A \frac{R-2 Q}{Q}}{B \frac{R-2 Q}{Q}} \cdot N$, which (Cor. 2. Prop. 1.) is lefs than any given magnitude ${ }_{3}$. which is abfurd.

In like manner is it demonftrated, that the ratio of the fecond expreffion to N , is nearer to the ratio of its firft term to, N than any given ratio. Q.E.D.

```
SCHOLIUM.
```

If the fame reafoning be applied to the expreffion, $\frac{\frac{R}{Q} \cdot A \frac{R-Q}{Q} \cdot N+\frac{R}{Q} \cdot \frac{R-Q}{2 Q} \cdot \frac{R-2 Q}{3 Q} \cdot A \frac{R-3 Q}{Q} \cdot N^{3}+\& c .}{B \frac{R-Q}{Q}}$, which is half the difference of the two geometrical expreffions that have refpectively to B ratios having to the ratios of $A+N$ to B, and $A-N$ to B, the ratio of R to Q, we get the ratio of the firft term to twice the fecond, the fame with that of A to $\frac{R-Q}{Q} \cdot \frac{R-2 Q}{3 Q} \cdot \frac{N^{2}}{A}$, and the ratio of the fecond to four times the third,
third the fame with that of A to $\frac{R-3 Q}{Q} \cdot \frac{R-4 Q}{5 Q} \cdot \frac{N^{2}}{A}$, and fo on.

The general expreffion, (p. 5. Antecedental Calculus), gives $\frac{A . N+C . M+M . N}{D}$ for the excefs of the magnitude, which has to B the ratio, that is produced by compounding the ratio of $\mathrm{C}+\mathrm{N}$ to D with that of $A+M$ to B, above the magnitude, which has to B the ratio compounded of the ratios of A to B and C to D. But it is demonftrated in the fame manner as above, that if $A+M$ and $C+N$ have refpectively to A and C ratios nearer to that of equality than any given or affigned ratio, or than by any given or affigned magnitude, this expreffion alfo has to $\frac{\text { A.N }+ \text { C.M }}{\text { D }}$ a ratio nearer to that of equality than any given ratio, or than by any given magnitude. And the demonftration is exactly the fame, when any number of ratios are compounded.

In like manner, if the ratio of $\mathrm{C}+\mathrm{N}$ to D be decompounded with that of $A+M$ to B, we get the difference between the expreffion thence arifing, and the magnitude which has to B the ratio produced by decompounding the ratio of C to D with that of A to B, equal to $\frac{C D . M-A D \cdot N}{C \cdot \overline{C+N}}$. But it is readily demonftrated, as above, that if $\mathrm{A}+\mathrm{M}$ and $\mathrm{C}+\mathrm{N}$ have refpectively to A and C ratios nearer to that of equality than any given or affigned ratio, or than by any given or affigned magnitude, this expreffion alfo has to $\frac{C D \cdot M-A D \cdot N}{\mathbf{C}^{2}}$ a ratio nearer to that of equality than any given ratio, or than by any given or affigned magnitude.

It is manifeft then, that in this calculus no indefinitely fmall or infinitely little magnitudes are fuppofed, but only magnitudes lefs than any that may be given or affigned, and ratios nearer to that of equality than any that may be given or affign-
ed, and that it is equally geometrical with the method of exhauftions of the ancients, who never fuppofed lines, furfaces, or folids, to be refolved into indefinitely fmall or infinitely little elements. The expreffion infinitely little magnitude indeed implies a contradiction. For what has magnitude cannot be infinitely little.

This geometrical calculus, though it has no connection with the various modifications of motion, is equally convenient in its application with the method of fluxions, (which is unqueftionably a branch of general arithmetical proportion, in which 1 or unit is the common ftandard of comparifon, as well as the confequent of every ratio compounded, or decompounded).

EXAMPLE I.

In the circle ATB, (Fig. I. Pl. I.) let the diameter $A B$ be reprefented by D, TE perpendicular to it by Y , and AE by X . Then (I3.E.6.) Y^{2} is equal to the rectangle $\mathrm{DX}-\mathrm{X}^{2}$. But the antecedental of Y^{2} is $2 \stackrel{a}{\mathrm{Y}}$, and that of $\mathrm{DX}-\mathrm{X}^{2}$ is $\mathrm{D} \stackrel{a}{\mathrm{X}}-2 \stackrel{a}{\mathrm{X}}$, (p. 6. Antecedental Calculus). Wherefore $\mathrm{D}-2 \mathrm{X}$ is to 2 Y as $\stackrel{a}{\mathrm{Y}}$ to $\stackrel{a}{\mathrm{X}}$, that is, as TE to CE, (p. 9. Ant. Cal.). Confequently CE is a third proportional to EO and TE .

EXAMPLE II.

To find the furface of the fphere of which ATBA is a great circle, (Fig. I. Pl. I.).

The furface of the fpherical fegment, cut off by the circle, of which TE is the radius, has to the fquare on any given line B, a ratio compounded of the circumference of faid circle to B, and of the antecedental of the curve AT to B, (Ant. Girl. p. 9.) But the antecedental of the curve is a fourth proportional to 2 YD
and ${ }^{n} \mathrm{X}$, (ibidem). Wherefore, if ${ }_{2} \mathrm{Y} \times p$ reprefent faid circumference, the antecedental of the fpherical fegment is $p \mathrm{DX}$, of which the antecedent is $p \mathbf{D X}$.

EXAMPLEIII.

If it be required to draw a tangent to the parabola (Fig. a. Pl. i.) ATG at the point T; let the latus rectum be reprefented by L. Then L.X is equal to Y^{2}, and L. $\stackrel{\oplus}{X}^{\infty}$ to $2 \mathrm{Y} \stackrel{a}{\mathrm{Y}}$. Wherefore L is to ${ }_{2} \mathrm{Y}(2 \mathrm{TE})$ as $\stackrel{a}{\mathrm{Y}}$ to $\stackrel{a}{\mathrm{X}}$, that is, (Ant. Cal. p. 9.) as TE to CE , which is confequently equal to twice AE .

EXAMPLE IV.

In finding the area of the parabola, fince $\stackrel{a}{X}^{x}$ is equal to $\frac{2 Y \bar{Y}}{\mathrm{~L}}$, we get the antecedental of the area, or YX , equal to $\frac{2 \mathrm{Y}^{2} \mathrm{Y}^{a}}{\mathrm{~L}}$, the antecedent of which is $\frac{2 \mathrm{Y}^{3}}{3 \mathrm{~L}}$, or its equal $\frac{2}{3} \times X Y$.

OTHERWISE:

The ratios of the antecedentals of the area AET, and the rectangle under $A E$, and any given line B to the fquare on B, are $\mathrm{Y} \stackrel{a}{\mathrm{X}}$ and $\mathrm{B} \stackrel{a}{\mathrm{X}}$ to B^{2}. But Y^{a} is equal to $\frac{2 \mathrm{Y}^{2}{ }^{a}}{\mathrm{~L}}$, the antecedent of which is $\frac{2 \mathrm{Y}^{3}}{3 \mathrm{~L}}$, or its equal $\frac{2}{3} \times \mathrm{XY}$; and the antecedent of $B X^{a}$ is $B X$. Wherefore the area of the parabola is two thirds of the rectangle AE, ET.

Vol. IV.
L
EX

EXAMPLE V.

So to divide a ftraight line $A B$, that the rectangle under the two parts AC, CB fhall be the greateft poffible.

C

Let $A B$ be reprefented by $A, A C$ by X, and confequently $C B$ by $A-X$. Then the rectangle $A C, C B$ is equal to $A X-X^{2}$, the antecedental of which is $\mathrm{A} \stackrel{a}{\mathrm{X}}-2 \mathrm{X} \stackrel{a}{\mathrm{X}}$, which, when fuppofed equivalent to nothing, (according to Ant. Cal. p. 7.) gives A equal to 2 X , or AC equal to CB .

To multiply examples would be ufelefs. I will take an opportunity, as foon as I conveniently can, of applying this calculus to feveral phyfical problems of importance, and particularly fome refpecting the refiftance of fluids; and will fhew, that as it furnifhes a much greater variety of ways for expreffing antecedentals than the fluxionary calculus does for fluxions, fo it will open new and extenfive rules for finding antecedents, as yet altogether unknown in the inverfe method of fluxions.

Although the notation be in reality of no importance, I prefer $\stackrel{a}{\mathrm{X}}, \stackrel{a}{\mathrm{Y}}, \& c$. to $\dot{\mathrm{X}}, \dot{\mathrm{Y}}, \& \mathrm{c}$. as more indicative of the origin of this mode of reafoning, which was derived from an examination of the antecedents of ratios in general geometrical comparifon.

IV. Observations on the Trigonometrical Tables of the Brahmins. By Foh^{\prime} Platfair, F. R. S. Edin. and Profeflor of Mathematics in the Univerfity of Edinburgh.

[Read April 6. 1795.]

1. TN the fecond volume of the Afatic Refearches, an extract is given from the Surya Siddbanta, the ancient book which has been long, though obfcurely, pointed out as the fource of the aftronomical knowledge of the Brahmins. The Surya Siddhanta is in the Sanfcrit language: It is one of the Saftras, or infpired writings of the Hindoos, and is called the Jyotifh, or Aftronomical, Saftra. It profeffes, as we learn from Mr Davis, the ingenious tranflator, to be a revelation from heaven, communicated to Meya, a man of great fanctity, about four millions of years ago, toward the clofe of the Satya Jug, or of the Golden Age of the Indian mythologifts; a period at which man is faid to have been incomparably better than he is at prefent; when his ftature exceeded twenty-one cubits, and his life extended to ten thoufand years.

Interwoven, however, with all thefe extravagant fictions, this fingular book contains a very fober and rational fyftem of aftronomical calculation; and even the principles and rules of trigonometry, a fcience of all others the moft remote from fable, and the leaft fufceptible of poetical decoration. It is on the con-
ftruction of the tables contained in this trigonometry, that I now beg leave to offer a few remarks.
2. It is neceffary to begin with obferving, that the circumference of the circle is here divided into 360 equal parts, each of which is again fubdivided into 60 , and fo on. The fame divifion was followed by the Greek mathematicians; and this coincidence is the more to be remarked, that it relates to a matter of arbitrary arrangement, and one by no means neceffarily connected with the properties of the circle. There are indeed fome very obvious properties of that curve, that make it, though not neceffary, at leaft convenient, that the number of parts, into which the circumference is divided, fhould be a number divifible both by 3 and by 4 , that is, that it fhould be a multiple of 12 ; but nothing more precife can be determined from the nature of the curve itfelf. The agreement of two nations, therefore, in dividing the circumference of the circle precifely in the fame manner, as it cannot well be attributed to chance, muft be fuppofed to refult from fome communication having taken place between them, if it were not that another very probable caufe may be affigned for it. In Greece, and no doubt in every other country, the divifion of the circle, i ito equal parts, is of a much older date than the origin of trigonometry, and muft be as ancient as the firft circular inftruments ufed for meafuring angles in the heavens. The inventors of thofe inftruments naturally fought to make the divifions on them correfpond to the fpace which the fun defcribed daily in the ecliptic ; and they could eafily difcover, without any very precife knowledge of the length of the folar year, that this might be nearly effected by making each of them the 360 th part of the whole circumference. Accordingly the famous circle of Osymandias, in Egypt, defcribed by Herodotus, was divided into 360 equal parts.

This principle may therefore have guided the aftronomers, both of the Eaft and of the Weft, to the fame divifion of the circle, without any intercourfe having taken place between them. It has certainly directed the Chinefe in their divifion, though it has led them to adopt one different from the Hindoo and Egyptian aftronomers. They divide the circle into 365 parts and $\frac{1}{4}$, which can have no other origin than the fun's annual motion : and fome fuch divifion as this; may perhaps have been the firft that was employed by other nations, who changed it however to the number 360 , which nearly anfwered the fame purpofe, and had befides the great advantage of being divifible into many aliquot parts. The Chinefe, again, with whom the fciences became ftationary almoft from their birth, have never attempted to improve on the method that firft occurred to them.
3. The next thing to be mentioned, is alfo a matter of arbitrary arrangement, but one in which the Brahmins follow a method peculiar to themfelves. They exprefs the radius of the circle in parts of the circumference, and fuppofe it equal to 3438 minutes, or 6oths of a degree. In this they are quite fingular. Ptolemy, and the Greek mathematicians, after dividing the circumference, as we have already defcribed, fuppofed the radius to be divided into 60 equal parts, without feeking to afcertain, in this divifion, any thing of the relation of the diameter to the circumference : and thus, throughout the whole of their tables, the chords are expreffed in fexagefimals of the radius, and the arches in fexagefimals of the circumference. They had therefore two meafures, and two units; one for the circumference, and another for the diameter. The Hindoo mathematicians, again, have but one meafure and one unit for both, viz. a minute of a degree, or one of thofe parts whereof the circumference contains 21600 . From this identity of meafures, they derive no inconfiderable advantage in many calculations, though it muft be confeffed, that the meafuring of a ftraight line, the radius,
radius, or diameter of a circle, by parts of a curve line, namely, the circumference, is a refinement not at all obvious, and has probably been fuggefted to them by fome very particular view, which they have taken, of the nature and properties of the circle. As to the accuracy of the meafure here affigned to the radius, viz. 3438 of the parts of which the circumference contains 21600 , it is as great as can be attained, without taking in fmaller divifions than minutes, or 60 ths of a degree. It is true to the neareft minute, and this is all the exactnefs aimed at in thefe trigonometrical tables. It muft not however be fuppofed, that the author of them meant to affert, that the circumference is to the radius, either accurately or even very nearly, as 21600 to 3438 . I have fhewn, in another place ${ }^{*}$, from the Inftitutes of Aквar, that the Brahmins knew the ratio of the diameter to the circumference to great exactnefs, and fuppofed it to be that of 1 to 3.1416 , which is much nearer than the preceding. Calculating, as we may fuppofe, by this or fome other proportion, not lefs exact, the authors of the tables found, that the radius contained in truth $3437^{\prime} \cdot 44^{\prime \prime} \cdot 48^{\prime \prime \prime}, \xi^{\circ}$. ; and as the fraction of a minute is here more, than a half, they took, as their conftant cuftom is, the integer next above, and called the radius 3438 minutes. The method by which they came to fuch an accurate knowledge of the ratio of the diameter to the circumference, may have been founded on the fame theorems which were fubfervient to the conftruction of their trigonometrical tables \dagger.
4. These tables are two, the one of fines, and the other of verfed fines. The fine of an arch they call cramajya or jyapinda, and the verfed fine utcramajya. They alfo make ufe of the cofine or bbujajya. Thefe terms feem all to be derived from the word $j y a$, which fignifies the chord of an arch, from which the

[^13]name of the radius, or fine of 90°, viz. trijya, is alfo taken. This regularity in their trigonometrical language, is a circumftance not unworthy of remark. But what is of more confequence to be obferved, 'is, that the ufe of fines, as it was unknown to the Greeks, who calculated by help of the chords, forms a ftriking difference between the Indian trigonometry and theirs. The ufe of the fine, inftead of the chord, is an improvement which our modern trigonometry owes, as we have hitherto been taught to believe, to the Arabs ; and it is certainly one of the acquifitions which the mathematical fciences made, when, on their expulfion from Europe, they took refuge in the Eaft. But whether the Arabs are the authors of this invention, or whether they themfelves received it, as they did the numerical characters, from India, is a queftion, which a more perfect knowledge of Hindoo literature will probably enable us to refolve.

No mention is made in this trigonometry, of tangents or fecants; a circumftance not wonderful, when we confider that the ufe of thefe was introduced in Europe no longer ago than the middle of the fixteenth century. It is, on the other hand, not a little fingular, that we fhould find a table of verfed fines in the Surya Siddhanta; for neither the Greek nor the Arabian mathernaticians, had any fuch, nor had we, in modern Europe, till. after the time of Petiscus, who wrote about the end of the century juft mentioned.
5. Next, as to the extent and accuracy of thefe tables. The firft of them exhibits the fines to every twenty-fourth part of the quadrant, that is, the fine of $3^{\circ} \cdot 45^{\prime}$, and of all the multiples of that arch, viz. $7^{\circ} \cdot 30^{\prime \prime}, 11^{\circ}$. $15^{\prime}, \mathcal{E}^{\circ} c$. up to 90°. The table of verfed fines does the fame. In each, the fine, or verfed fine, is expreffed in minutes of the circumference, but without any fractions of a minute, either decimal or fexagefimal ; and, agreeably to the obfervation already made, when the fraction that ought
to have been fet down is greater than $\frac{1}{2}$, the integer next greater is placed in the table. Thus the fine $3^{\circ} \cdot 45^{\prime}$ being, when accurately expreffed in their way, $224^{\prime} \cdot 49^{\prime \prime}$, is put down 225^{\prime}; and fo of the reft. The numbers, therefore, in thefe tables, are only fo far exact as never to differ more than half a minute from the truth, and this very limited degree of accuracy gives no doubt to their trigonometry the appearance of an infant fcience: But when, on the other hand, we confider the principles and rules of their calculations, rather than the numbers actually calculated, we find the marks of a fcience in full vigour and maturity: and we will acknowledge, that the Hindoo mathematicians did not fatisfy themfelves with the degree of accuracy above mentioned, from any incapacity of attaining to greater exactnefs.

Their rules for conftructing their tables of fines, may be reduced to two, viz. the one for finding the fine of the leaft arch in the table, that of $3^{\circ} \cdot 45^{\prime}$, and the other for finding the fines of the multiples of that arch, its triple, quadruple, $\mathcal{E}^{\circ} c$. Both of thefe Mr Davis has tranflated, judging very rightly, that it was impoffible to give two more curious fpecimens of the geometrical knowledge of the Hindoo philofophers: the firft is extracted from a commentary on the Surya Siddhanta; the other from the Surya Siddhanta itfelf.
6. With refpect to the firft, the method proceeds by the continual bifection of the arch of 30°, and correfpondent extractions of the fquare root, to find the fine and co-fine of the half, the fourth part, the eighth part, and fo on, of that arch. The rule, when the fine of an arch is given, to find that of half the arch, is precifely the fame with our own:" The fine of an arch being given, find the co-fine, and thence the verfed fine, of the fame arch : then multiply half the radius into the verfed fine, and the fquare root of the product is the fine of half the given arch." Now, as the fine of 30°, was well known to thofe mathematicians to be half the radius, it was of confequence given: thence,
by the rule juft laid down, was found the fine of 15°, then of $7^{\circ} \cdot 30^{\prime}$, and laftly of $3^{\circ} \cdot 45^{\prime}$, which is the fine required. Thus the fine of $3^{\circ} \cdot 45^{\prime}$ would be found equal to $224^{\prime}, 44^{\prime \prime}$, as above obferved, and, the fine of $7^{\circ} \cdot 30^{\prime}$, equal to $44^{8^{\prime}} \cdot 39^{\prime \prime}$, and, taking the neareft integers, the firft was made equal to 225 , and the fecond to 449^{*}.
7. When, by the bifections that have juft been defcribed, the fine of $3^{\circ} .45$, or of 225^{\prime}, was found equal to 225^{\prime}, the reft of the table was conftructed by a rule, that, for its fimplicity and elegance, as well as for fome other reafons, is entitled to particular attention. It is as follows: " Divide the firf jyapinda, 225^{\prime} by 225 ; the quotient I , deducted from the dividend, leaves 224^{2}, which added to the firf jyapinda, or fine, gives the fecond, or the fine of $7^{\circ} \cdot 30^{\prime}$, equal to 449^{\prime}. Divide the fecond jyapinda, which is thus found, by 225 , and deduct 2 , the neareft integer to the quotient, from the former remainder 224^{\prime}, and this new remainder 222^{\prime}, added to the fecond jyapinda, will give the third jyapinda equal to $67 \mathrm{r}^{\prime}$. Divide this laft by 225 , and fubtract 3 , the neareft integer to the quotient, from the former remainder 222^{\prime}, and there will be left 219^{\prime}, M
which,

[^14]which, added to the third jyapinda, gives the fourth; and fo on unto the twenty-fourth or laft."

It is not immediately obvious on what geometrical principle this rule is founded, but a flight change in the enunciation will remove the difficulty. The remainder, it muft be obferved, from which the quotient is always directed to be taken away, is the difference between the two fines laft computed; and hence the rule may be expreffed more generally: Divide any fine by 225 , and fubtract the quotient, or the integer neareft the quotient, from the difference between that fine and the fine next lefs ; the remainder is the difference between the fame fine and the fine next greater ; and therefore if it be added to the former, will give the latter. If then, (fig. 3. Pl. I.), GA, GC, GE, be three contiguous arches in the table, of which the differences $A C, C E$, of confequence are equal, and of which the fines are AB, CD, and EF , the rule, as laft ftated, gives us $C D-A B-\frac{C D}{225}$, for the difference between $C D$ and $E F$, and therefore $E F=C D+C D-A B-\frac{C D}{225}=2 C D-\frac{C D}{225}-A B$, and alfo $E F+A B=C D\left(2-\frac{1}{225}\right)=C D\left(\frac{449}{225}\right)$. But 225 is the fine of the arch $3^{\circ} .45^{\prime}$, and 449 of twice that arch, as already fhewn; and, therefore, according to this rule, if there be three arches, of which the common difference is $3^{\circ} \cdot 45^{\prime}$, the fine of the mean arch will always have to the fum of the fines of the extreme arches, a given ratio, that namely, which the fine of $3^{\circ} \cdot 45^{\prime}$ has to the fine of twice $3^{\circ} \cdot 45^{\prime}$, or of $7^{\circ} \cdot 30^{\prime}$; now, this is a true propofition; and therefore we are in poffeffion of the principle on which the Hindoo canon is conftructed.
8. The geometrical theorem, which is thus fhewn to be the foundation of the trigonometry of Hindoftan, may alfo be more generally enunciated. "If there be three arches in arithmetical progreffion, the fine of the middle arch is to the fum of the fines
of the two extreme arches, as the fine of the difference of the arches to the fine of twice that difference." This theorem is well known in Europe ; it is juftly reckoned a very remarkable property of the circle ; and it.ferves to fhew, that the numbers in a table of fines conftitute a feries, in which every term is formed exactly in the fame way, from the two preceding terms, viz. by multiplying the laft by a certain, conftant number, and fubtracting the laft but one from the product.
9. Now, it is worth remarking, that this property of the table of fines, which has been fo long known in the Eaft, was not obferved by the mathematicians of Europe till about two hundred years ago. The theorem, indeed, concerning the circle, from which it is deduced, under one fhape or another, has been known to them from an early period, and may be traced up to the writings of Euclid, where a propofition nearly related to it forms the 97 th of the Data: "If a ftraight line be drawn within a circle given in magnitude, cutting off a fegment containing a given angle, and if the angle in the fegment be bifected by a ftraight line produced till it meet the circumference; the ftraight lines, which contain the given angle, fhall both of them together have a given ratio to the ftraight line which bifects the angle." This is not precifely the fame with the theorem which has been fhewn to be the foundation of the Hindoo rule, but differs from it only by affirming a certain relation to hold among the chords of arches, which the other affirms to hold of their fines. It is given by Euclid as ufeful for the conftruction of geometrical problems; and trigonometry being then unknown, he probably did not think of any other application of it. But what may feem extraordinary is, that when, about 400 years afterwards, Ptolemy, the aftronomer, conftructed a fet of trigonometrical tables, he never confidered Euclid's theorem, though he was probably not ignorant of it, as having any connection with the matter he had in hand. He, M 2 therefore,
therefore, founded his calculations on another propofition, containing a property of quadrilateral figures infcribed in a circle, which he feems to have inveftigated on purpofe, and which is ftill diftinguifhed by his name. This propofition comprehends in fact Euclid's, and of courfe the Hindoo theorem, as a particular cafe; and though this cafe would have been the moft ufeful to Ptolemy, of all others, it appears to have efcaped his obfervation ; on which account he did not perceive that every number in his tables might be calculated from the two preceding numbers, by an operation extremely fimple, and every where the fame; and therefore his method of conftructing them is infinitely more operofe and complicated than it needed to have been.

Not only did this efcape Ptolemy, but it remained unnoticed by the mathematicians, both Europeans and Arabians, who came after him, though they applied the force of their minds to nothing more than to trigonometry, and actually enriched that fcience by a great number of valuable difcoveries. They continued to conftruct their tables by the fame methods which Ptolemy had employed, till about the end of the fixteenth century, when the theorem in queftion, or that on which the Hindoo rule is founded, was difcovered by Vieta. We are however ignorant by what train of reafoning that excellent geometer difcovered it; for though it is publifhed in his Treatife on Angular Sections, it appears there not with his own demonfration, but with one given by an ingenious mathematician. of our own country, Alexander Anderson of Aberdeen. It was then regarded as a theorem entirely new; and I know not that any of the geometers of that age remarked its affinity to the propofitions of Euclid and Prolemy. It was foon after applied in Europe, as it had been fo many ages before in Hindoftan, and quickly gave to the conftruction of the trigonometrical canon all the fimplicity which it feems capable of attaining. From all this, I think it might fairly be concluded, even if we
had no knowledge of the antiquity of the Surya Siddhanta, that the trigonometry contained in it is not borrowed from Greece or Arabia, as its fundamental rule was unknown to the geometers of both thofe countries, and is greatly preferable to that which they employed.
io. Considerable light may perhaps hereafter be thrown on this argument, if it be found that the Surya Siddhanta contains a demonftration of this rule. It does not appear, however, from the fragment we are in poffeffion of, that any explanation of the rule is given, either in that work, or in the commentaryIndeed I am not certain that the Surya Siddhanta contains any thing but rules and maxims, or that the author of it condefcends to give any demonftrations of the propofitions which he enunciates. He may have felt himfelf relieved from the neceffity of doing fo, by his claim to infpiration; and as he probably valued himfelf more on the character of a prophet, than of a geometer, he may rather have inclined to exercife the faith, than the reafon, of his difciples.
However that be, by the rule above explained, the Brahmins have computed a fet of tables, limited indeed in their accuracy, but extremely fimple and compendious. The rule is eafily remembered by one who has been accuftomed to numerical calculation, and is fuch, that, by help of it, he may at any time compofe for himfelf a complete fet of trigonometrical tables, in a few hours, without the affiftance of any book whatever. For the purpofe of rendering it thus fimple, the contrivance of meafuring the radius, and all the fines, in parts of the circumference, feems to have been adopted: if we follow any other method, the rule, though it remain the fame in reality, will affume a form much lefs eafy to be retained in the memory ${ }^{*}$. It has the appearance, like many other things in the

[^15] ference.
fcience of thofe eaftern nations, of being drawn up by one who was more deeply verfed in the fubject than may be at firft imagined, and who knew much more than he thought it neceffary to communicate. It is probably a compendium, formed by fome ancient adept in geometry, for the ufe of others who were merely practical calculators.
if. If we were not already acquainted with the high antiquity of the aftronomy of Indoftan, nothing could appear more fingular, than to find a fyftem of trigonometry, fo perfect in its principles, in a book fo ancient as the Surya Siddhanta. The antiquity of that book, the oldeft of the Saftras, can fcarce be accounted lefs than 2000 years before our æra, even if we follow the very moderate fyftem of Indian chronology laid down by Sir William Jones *. Now, if we fuppofe its antiquity to be no higher than this, though it bears in itfelf internal marks of an age ftill móre remote \dagger, yet it will fufficiently excite our wonder, to find it contain the principles of a fcience, of which the firft rudiments
ference. It is remarkable that the Hindoos fhould have been thus led, at fo early a period, to put in practice a method, the fame in the moft material point, with one which has been but lately fuggefted in Europe as an important improvement in trigonometrical calculation. In the Phil. Tranf. for 1783, Dr Hurton of Woolwich propofed to divide the circumference, not into degrees, as is ufually done, but into decimals of the radius; and he has pointed out how the prefent trigonometrical tables might be accommodated to this new divifion, with the leaft poffible labour, in a paper which difplays that intimate acquaintance with the refources, both of the namerical and algebraic calculus, for which he is fo much diftinguifhed. His plan is, in one refpect, the fame with the Hindoo method, for it ufes the fame unit to exprefs both the circumference and the diameter; in another refpect it differs from it, viz. in making the radius the unit, while the other affumes for an unit the 360 th part of the circumference. Dr Hutton's plan has never been executed, though it certainly would be of advantage to have, befides the ordinary trigonometrical tables, others conftructed according to that plan.

* Afiatic Refearches, vol. II. p. III, U'c.
\dagger The obliquity of the ecliptic is ftated at 24° in the Surya Siddhanta, as in all the other aftronomical tables of the Hindoos which we are yet acquainted with.
(Tranf.
rudiments are not older in Greece than 130 years before our æra. The bare exiftence of trigonometrical tables, though they belong undoubtedly to a very elementary branch of fcience, yet argues a ftate of greater advancement in the mathematics than may at firft. be imagined, and neceffarily fuppofes the application of geometrical reafoning to fome of the more difficult problems of aftronomy and geography.

As long as the furveying of land, and the ordinary menfuration of furfaces and folids, are the only practical arts to which the geometer applies his fpeculatións, he will naturally content himfelf with conftructing his figures and plans by means of a fcale, and an inftrument for meafuring angles, as by doing fo he may attain to all the accuracy he can defre. But when, in the figures that are to be thus delineated, the fides happen to be extremely unequal, and fome of the angles very acute, or very obtufe, graphical operations become inaccurate, and a very fmall error in the meafuring of one thing produces an enormous error in the eftimation of fome other. Lines, therefore, that extend over a great tract of the earth's furface, and much more thofe that extend to the heavens, cannot be compared with the fmaller lines, which we have an opportunity of meafuring, by the bare confruction
(Tranf. R. S. Edin. vol. II. p. I64.) Mr Davis concludes from this, (Afiatic Refearches, vol. II. p. 23^{8}), that if the obliquity diminifh, at the rate of $50^{\prime \prime}$ in a hundred years, the Surya Siddhanta is at prefent about 3840 years old, which goes back. nearly 2000 years before the Chriftian æra. But the diminution of the obliquity of the ecliptic, is fuppofed confiderably too rapid in this calculation. According to Mayer it is $46^{\prime \prime}$ in a century; and according to De la Grange, (Mem. Berlin 1982), at a medium no more than $30^{\prime \prime}$. This laft is moft to be depended on, as it proceeds on an accurate inquiry into the law of the fecular variation of the obliquity, that variation being by no means uniform. Let us however take the mean, vir. $3^{8^{\prime \prime}}$, and the obliquity at the beginning of the prefent century having been $23^{\circ} \cdot 28^{\prime} \cdot 41^{\prime \prime}$, we fhall have 5000 years for the age of the Surya Siddhanta, reckoned from that: date, or: about 3300 years before Christ, which is near the æra of the Caly Yas
ftruction of triangles and parallelograms; and when ever fuch comparifons are to be made, fome other method mult be fought for. It was precifely in fuch circumftances, that the inventive genius of Hipparchus fuggefted the application of arithmetic to afcertain thofe ratios among the fides and angles of figures, which pure geometry afforded no method of expreffing. This union of geometry and arithmetic did not happen, however, till each of thefe fciences feparately had made great progrefs ; for before the days of Hipparchus, Euclid, Archimedes, and Appolonius, had all flourifhed in fucceffion, and had produced thofe immortal works, of which the luftre has not been obfcured by the higheft improvements of later ages. In the progrefs of fcience, therefore, the invention of trigonometry is to be confidered as a ftep of great importance, and of confiderable difficulty. It is an application of arithmetic to geometry, with which we are now too familiar, to perceive all the merit of the inventor; but a little reflection will convince us, that he, who firft formed the idea of exhibiting, in arithmetical tables, the ratios of the fides and angles of all poffible triangles, and contrived the means of conftructing fuch tables, muft have been a man of profound thought, and of extenfive knowledge. However ancient, therefore, any book may be, in which we meet with a fyftem of trigonometry, we may be affured, that it was not written in the infancy of fcience.
12. As we cannot therefore fuppofe the art of trigonometrical calculation to have been introduced till after a long preparation of other acquifitions, both geometrical and aftronomical, we muft reckon far back from the date of the Surya Siddhanta, before we come to the origin of the mathematical fciences in India. In Greece, the conftellations were firft reprefented on the fphere, if we take a medium between the chronology of Newton, and that which is now generally
nerally received, abocit 1140 years before the Chriftian æra*; and Hippatchus invented trigonometry 130 years before the fame æra. Even among the Greeks, therefore, an interval, of at leaft 1000 years, elapfed from the firft obfervations in aftronomy, to the invention of trigonometry; and we have furely no reafon to fuppofe, that the progrefs of knowledge has been more rapid in other countries.

A thousand years therefore muft be added to the age of the Surya Siddhanta, which we fuppofe here to be 2000 before Christ, in order that we may reach the origin of the fciences in Hindoftan, and this brings us very nearly to the celebrated æra of the Caly Yug, to which M. Bailly has already referred the conftruction of the aftronomical tables of that country. And here, I cannot help obferving, in juftice to an author, of whofe talents and genius the world has been fo unfeafonably and fo cruelly deprived, that his opinions, with refpect to this æra, appear to have been often mifunderftood. It certainly was not his intention to affert, that the Caly Yug was a real æra, confidered with refpect to the mythology of India, or even that at fo remote a period the religion of Brahma had an exiftence. The religious and civil inftitutions of Hindoftan, as they now exift, may be all pofterior to this date, and their antiquity is probably to be determined from principles that are not the objects of aftronomical difcuffion. All, I think, therefore, that M. Bailly meant to affirm, and certainly all that is neceffary to his fyftem, is, that the Caly Yug, or the year 3102 before our æra, marks a point in the duration of the world, before which

[^16]the foundations of aftronomy were laid in the Eaft, and thofe obfervations made, from which the tables of the Brahmins have been compofed.

On this, however, and on many more of the particulars of the hiftory of thofe remote ages, great additional light will undoubtedly be thrown, by the complete tranflation of the Surya Siddhanta. From the fpecimen which Mr Davis has given, we can neither doubt of the importance of fuch a work, nor of his abilities to execute it ; and we truft, that , to the zeal and liberality of our brethren of the Afiatic Society, the learned world will foon be indebted for the poffeflion of this ineftimable treasfure
V. Some Geometrical Porisms, with Examples of their Application to the Solution of Problems. By Mr William Wallace, Afiftant-Teacher of the Mathematics in tbe Academy of Perth. Communicated by Mr Plarfair.

[Read March 7. 1796.]

THE nature of thofe mathematical propofitions, which were called Porifms by the ancient geometers, is now no longer a matter of uncertainty. The relation which they bear to other mathematical truths, the way in which they may at firft have been obferved, the kind of analyfis to be employed in their inveftigation, their application to the folution of problems, have all been confidered by fome eminent mathematicians of the prefent age.

These propofitions appear to have been held in high eftimation by the mathematicians of antiquity, becaufe of their great ufe in the analyfis of difficult problems, as we learn from the writings of Pappus of Alexandria: And fome fecimens, which late inquirers into this fúbject have given us, of their application to the folution of problems, feem to juftify his very high eharacter of them.

The following paper contains fome porifms intimately connected with each other, and which feem capable of being applied to the folution of a number of geometrical problems. Ex-
amples of their application are added, fome of which are problems that have been long known, and others are new ; but the conftructions of the former, it is believed, differ from any hitherto publifhed. Although there are feveral of thefe examples, in appearance, little related to each other, yet their folutions are effected by the fame general principle, which is alfo the foundation of all the porifins.

PROP. I. PORIS M, Fig. 4, 5.' Pl. I.

Let $A B, A C$, be two ftraight lines given by pofition, let B, C, be given points in thefe lines, a point H may be found, fuch, that any circle whatfoever paffing through A, the interfection of the given lines, and H the point which may be found, fhall cut off from the given lines fegments BD, CE, adjacent to the given points, and having to each other the given ratio of α to β.

Suppose the porifm to be true, and that the point H is found. If a circle be defcribed through H, A, and B one of the given points, it muft alfo pafs through C the other given point, that the propofition may be univerfally true. Therefore H is in the circumference of a given circle. Join $\mathrm{BH}, \mathrm{CH}, \mathrm{DH}, \mathrm{EH}$. The angle DHE is equal to DAE, that is, to BHC_{3} (fig. 4.) or DHE is the fupplement of DAE, (fig. 5.) and therefore equal to BHC ; hence BHD is equal to CHE , but BDH is equal to CEH , therefore the triangles $\mathrm{BDH}, \mathrm{CEH}$, are equiangular, and BH is to HC as BD to CE , that is by hypothefis in the given ratio of α to β; therefore if BC be joined, the triangle BHC is given in fpecies, and BC being given, BH and HC are given; therefore the point H is given, which was to be found.

If the fegments BD, CE, cut off from the given lines, lie in the fame direction with refpect to $A B, A C$, (fig. 4.) the point H
will be in the fame fegment of the circle with the angle BAC; but if BD, CE, lie in contrary directions to AB, AC, (fig. 5.) then H will be in that fegment of the circle upon which BAC ftands.

The point H will be found by the following conftruction : Defcribe a circle through the points A, B, C. Join BC, which divide at G , fo that BG may be to GC in the given ratio of BD to CE, that is of α to β, and if the fegments to be cut off are to lie in the fame direction with $A B, A C$, find F the vertex of the fegment upon which the angle BAC ftands, (fig. 4.) ; but if BD, CE are to lie in oppofite directions, (fig. 5.) find F the vertex of the fegment BAC, and in either cafe join FG, which produce to meet the circle in H the point to be found ; that is, if any circle be defcribed through H and A to meet the given lines in D and E, BD is to CE as α to β. Join $\mathrm{HB}, \mathrm{HC}, \mathrm{HD}, \mathrm{HE}$. The triangles $\mathrm{BDH}, \mathrm{CEH}$ are fimilar, for the angle BDH is equal to CEH , and becaufe the angle BHC is equal to DHE, therefore BHD is equal to CHE ; hence BD is to CE as BH to HC , that is, (becaufe HG bifects the angle BHC), as BG to GC, or as α to β.

It is evident that the point H may be alfo found, by taking any fegments BD, CE, in the given ratio of α to β, and defcribing a circle through the points $\mathrm{D}, \mathrm{A}, \mathrm{E}$, to meet the circle BAFC in H the point required. If the given lines be parallel, and the points B, C, alfo the ratio of BD to CE , (fig. 6.) given as before, the indeterminate circle will be changed into a ftraight line paffing through a given point H , which will be without the given lines, or between them, according as BD, CE, are to lie in the fame, or in contrary, directions with $A B, A C$.

PROP. II. PORISM, Fig. 7. PI. I.

Let AF, AG be two ftraight lines given by pofition, a point H may be found, fuch, that any circle whatfoever defcribed through it, and A the interfection of the given lines, to meet them in D and E, fhall cut off from them fegments $A D, A E$, whofe fum flall be a given line M.
Suppose the porifm to be true, and that the point is found, and circle deferibed as above, let given points B, C be fo taken, that BA and AC may be together equal to DA and AE , that is, by hypothefis to the given line M , then BD will be equal to CE . If a circle be defcribed through the given points A, B, C, by hypothefis it will meet the circle paffing through A, D, E, in H the point which may be found. Join BH, CH, DH, EH. The angle BHC is equal to DHE, each being the fupplement of BAC, therefore BHD is equal to CHE; now, HDB is equal to HEC, and BD is equal to CE , therefore the triangle HBD is equal to HCE , and BH is equal to CH , alfo DH to EH ; hence the angle BAH is equal to CAH , and H is in a ftraight line bifecting the angle FAG, but it is alfo in the given circle BAC; therefore the point H is given, as was required.

Hence this conftruction: Take B and C two given points, fo that BA and AC may be together equal to M , and through A, B, C defcribe a circle. Draw AK bifecting the given angle FAG, and meeting the circle $A B C$ in H the point required, that is, if any circle be defcribed through H and A , to meet the given lines in D and E , the fum of DA and AE fhall be equal to the fum of BA and AC , that is, by conftruction to the given line M . The fynthetical demonftration follows readily from the preceding analyfis.

PROP. III. PORISM, Fig. 8. PI. II.
Let AF, AG be two ftraight lines given by pofition, a point \mathbf{H} may be found, fuch, that if any circle be defcribed through it, and A the interfection of the given lines, to meet them in \mathbf{D} and E, the difference between $A D$ and $A E$ fhall be equal to a given line N .

THE analyfis of this propofition will differ in nothing material from the laft, and the point required may be found thus: Take B and C, two given points, fo that the difference between $B A$ and AC may be equal to N. Through the points A, B, C, defcribe a circle. Draw AK bifecting the angle contained by FA one of the given lines, and $A L$ the other line produced at their interfection, and $A K$ will meet the circle $A B C$ in H the point which may be found; that is, if any circle be defcribed through H and A , to meet the given lines in D, E, the difference between AD and AE is equal to N the given line.

Join AH, BH, CH, DH. The triangles HCE, HBD are equal to one another in every refpect, for if BC be joined, the angle HBC is equal to HAL, that is, by conftruction to HAB , therefore HB is equal to HC ; in the fame way it appears that HD is equal to HE ; now, the angle DHE is, equal to DAE, that is to BHC , therefore BHD is equal to CHE , hence BD is equal to CE, and the difference between DA and AE is the fame with the difference between BA, AC, which by conftruction is equal to the given line M .

These two laft propofitions may be confidered as particular cafes of the following propofition.

PROP. IV.

PROP. IV. PORIS M, Fig. 4, 5. Pl. I.

'Two ftraight lines $A B, A C$ being given by pofition, and two lincs P, Q being given in magnitude, a point H may be found, (fig. 5.) fuch, that any circle defcribed through it and A the interfection of the given lines, to meet them in D, E, fhall cut off from them fegments AD, AE, fo that $\mathrm{P} \times \mathrm{AD}+\mathrm{Q} \times \mathrm{AE}$, fhall be equal to a given fpace. Alfo, the fame things being fuppofed, a point H may be found, (fig. 4.) fo that $\mathrm{P} \times \mathrm{AD}-\mathrm{Q} \times \mathrm{AE}$, fhall be equal to a given fpace.

Let given points B, C, be taken in either cafe agreeing with the hypothefis of the propofition, or fo that $\mathrm{P} \times \mathrm{AB}+\mathrm{Q} \times \mathrm{AC}$, (fig. 5.) may be equal to $\mathrm{P} \times \mathrm{AD}+\mathrm{Q} \times \mathrm{AE}$, and fo hat $\mathrm{P} \times \mathrm{AB}-\mathrm{Q} \times \mathrm{AC}$ may be equal to $\mathrm{P} \times \mathrm{AD}-\mathrm{Q} \times \mathrm{AE}$, (fig. 4.) then, in both cafes, $\mathrm{P} \times \mathrm{BD}$ will be equal to $\mathrm{Q} \times \mathrm{CE}$; therefore BD is to CE as Q to P , that is, in a given ratio, and the points B, C being given, the point H may be found, (Prop. r.).

Construction. Let given points B, C be taken as above directed, and if $\mathrm{P} \times \mathrm{AD}+\mathrm{Q} \times \mathrm{AE}$ is to be a given fpace, (fig. 5.) find a point H, (Prop. r.) fo that any circle defcribed through A and H may meet the given lines in D, E, fo that BD, CE may lie in contrary directions to AB, AC, and have to each other the given ratio of Q to P , then $\mathrm{P} \times \mathrm{BD}$ will be equal to $\mathrm{Q} \times \mathrm{CE}$, and adding the common fpace $\mathrm{P} \times \mathrm{AB}+\mathrm{Q} \times \mathrm{AE}$ to each, we get $P \times A D+Q \times A E$, equal to $P \times A B+Q \times A C$, that is, to the given fpace, as was required.

But if $\mathrm{P} \times \mathrm{AD}-\mathrm{Q} \times \mathrm{AE}$ is to be a given fpace, (fig. 4.) find H , (Prop. 1.) fo that any circle paffing through H, A may cut off fegments BD, CE, in the given ratio of Q to P , and lying towards the fame parts with AB, AC, then $\mathrm{P} \times \mathrm{BD}$ is equal to
$\mathrm{Q} \times \mathrm{CE}$, and $\mathrm{P} \times A \mathrm{~A}-\mathrm{Q} \times \mathrm{AE}$, will be equal to $\mathrm{P} \times \mathrm{AB}-\mathrm{Q} \times \mathrm{AC}$, that is, by conftruction to the given 〔pace.

L E M M A, Fig. 9. Pl. II.

If circles be defcribed through A and C any two angles of a triangle $A B C$, to meet each other at D a point in $A C$, and the remaining lines $A B, B C$, in E and F; their other interfection H, the remaining angle B, and the points E, F, are in the circumference of a circle.

Join DH, EH, FH. The angle AEH is equal to ADH or CFH , that is, BEH is equal to BFH , hence the points $\mathrm{H}, \mathrm{B}, \mathrm{D}, \mathrm{F}$ are in a circle. Q. E. D.

PROP. V. PORISM, Fig. io. PI. II.

Let $A B, A C, B C$ be three ftraight lines given by pofition, a point H may be found, fuch, that if any circle be defcribed through H, and B the interfection of any two of the given lines, to meet them in D and F, and if DF be joined meeting the remaining line at E . The line DF fhall be divided at E , into fegments having to each other a given ratio.

Suppose that the point H is found. Join $\mathrm{HA}, \mathrm{HB}, \mathrm{HC}$; join alfo HD, HE, HF. Since, by hypothefis, a circle may pafs through the point which is to be found, the interfection of any two of the given lines, and the points where $D F$ meets thefe lines, therefore the points $\mathrm{H}, \mathrm{A}, \mathrm{D}, \mathrm{E}$ are in a circle, and the angle HEF is equal to HAD or HAB ; now the points H, B, D, F are fuppofed to be in a circle; fince therefore in the triangle $A B C$, circles pafs through two of its angles A, B, and meet each other at D , a point in $\mathrm{AB},($ Lemma.) the points $\mathrm{H}, \mathrm{C}, \mathrm{E}, \mathrm{F}$ are
allo in a circle; therefore the angle HCF is equal to HEF, that is, (as has been fhewn), to HAB ; hence the point H , which may be found, is in a circle paffing through the points A, B, C, whatever be the given ratio of DE to. EF. Let this circle be defcribed.

Because the points $\mathrm{H}, \mathrm{A}, \mathrm{D}, \mathrm{E}$ are in a circle, the angle HAC is equal to HDE, and becaufe $\mathrm{H}, \mathrm{C}, \mathrm{E}, \mathrm{F}$ are in a circle, the angle HFE is equal to HCA; therefore the triangles AHC , DHF are fimilar. In the fame manner it appears, that AHB is fimilar to EHF, and CHB to EHD.

Let AC be divided at K , fo that AK may be to KC , in the given ratio of DE to EF , the point K will thus be given. Join HK meeting the circle in G. The triangles AHC, DHF being fimilar, and having AC, DF, fimilarly divided at K, E, the triangles $\mathrm{AHK}, \mathrm{KHC}$ will therefore be fimilar to DHE, EHF, which have been proved fimilar to BHC, AHB ; therefore the angle $A H B$ is equal to $C H K$ or $C H G$, and the arch $A B$ is equal to $C G$, hence G is a given point, and K being given, the line GH will be given by pofition ; therefore the point H is given which was to be found.

Construction. Defcribe a circle through the points $\mathrm{A}, \mathrm{B}, \mathrm{C}$, let $A B, B C$, be the lines upon which D and F, the extremities of the indeterminate line, are to be placed, and let $A C$ be the line which is to meet it in E, fo that DE may be to EF, in the given ratio of $d e$ to $e f$. Find K , fo that AK may be to KC as $d e$ to $e f$, draw BG parallel to $A C$, meeting the circle in G, join GK meeting the circle in H , the point which may be found ; that is, if any circle be defcribed through H, and B the interfection of any two of the given lines, to meet them in D and F , and if DF be joined, meeting the remaining line at E , the line DF fhall be divided at \mathbf{E}, fimilarly to the given line de f.

Let AH, BH, CH be joined, alfo DH, EH, FH. The angle HDF or HDE is equal to HBF , that is, to HAE , the points. H, A, D, E are therefore in a circle, now the points H, B, D, F
are in a circle, therefore (Lemma.) the points $\mathrm{H}, \mathrm{C}, \mathrm{E}, \mathrm{F}$ are alfo in a circle. The angle HDE is equal to HBC , that is, to HAK , and fince HEF is equal to HCF, therefore HED is equal to HCB , that is, to HGB or HKA ; hence the triangles HDE , HAK are fimilar, and fince HFE is equal to HCK , the triangles HEF , HKC are alfo fimilar ; therefore DE is to EF as AK to KC , that is, as $d e$ to ef.

Cor. I. The lines DH, EH, FH contain given angles, and have to each other the given ratios of $\mathrm{AH}, \mathrm{KH}, \mathrm{CH}$.

Cor.2. The line DF cuts off fegments DA, EK, FC from the given lines, adjacent to given points in them, and having to each other the given ratios of HA, HK, HC. For the angles HDB, HEK, HFC are equal among themfelves, and fince BCH or BGH, that is, AKH, is the fupplement of each of the angles HCF, HAD, HKE, the angles HAD, HKE, HCF are equal among themfelves, therefore the triangles HAD, HKE, HCF are fimilar, and $\mathrm{AD}, \mathrm{KE}, \mathrm{CF}$ are proportional to the given lines $\mathrm{AH}, \mathrm{KH}, \mathrm{CH}$.

PROP. VI. PORISM, Fig. in. PI. II.

Let $A B, A C, B E, D E$ be four ftraight lines given by pofition; a point P may be found, fuch, that if any circle be defcribed through it and B, any of the fix interfections of the given lines, to meet the lines through whofe interfection it paffes in G and L, and if GL be joined, meeting the remaining lines in H and K , the fegments GH, HK, KL have given ratios to one another, which ratios are to be found.
Because, by hypothefis, the points $\mathrm{P}, \mathrm{A}, \mathrm{G}, \mathrm{H}$ are in a circle, and alfo the points $\mathrm{P}, \mathrm{F}, \mathrm{H}, \mathrm{K}$, it will appear, as in the analyfis of laft propofition, that P is in a circle defcribed about the triangle ADF ; in the fame way it will be found, that P muft be in circles defcribed about each of the triangles $A B C, D B E$,

FCE. Therefore, that the propofition may be univerfally true, thefe four circles mult interfect one another at the fame point.

About any two of thefe triangles, as ABC, DBE, let circles be defcribed, the point P muft be at their interfection.

Because ADF is a triangle, and through two of its angles A, D, circles are defcribed, meeting each other at B, a point in AD , therefore (Lemma.) P , their other interfection, and the points F, C, E, are in a circle; and becaufe FCE is a triangle, and circles pafs through C, E, two of its angles, and meet each other at B, a point in $C E$, therefore (Lemma.) the points P, A, D, F are in a circle. Thus, it appears, that circles defcribed about each of the four triangles $A D F, A B C, D B E, C F E$, pafs through the fame point P as was to be inveftigated. It remains to inquire, whether the ratios of GH, HK, KL to one another be given. Join PB, PC, PE, alfo PG, PH, PK, PL. The angle GPH is equal to GAH, that is, to BPC, and PGH is equal to PBC , therefore the triangles $\mathrm{BPC}, \mathrm{GPH}$ are fimilar, and the angle PHK is equal to PCE; but HPK is equal to HFK, that is, to CFE or CPE, hence the triangles HPK, CPE are fimilar, and PKL is equal to PEL. Now, if PN be drawn, fo that the angle BPN may be equal to GPL, that is, to the given angle GBL, it is evident that the point N is given, and will be in a circle paffing through P, and touching AG at B; the angles NPE, LPK will thus be equal, and the triangles NPE, LPK fimilar. Since, therefore, the triangles BPC, CPE, EPN are fimilar to GPH, HPK, KPL, it follows, that BN, GL are fimilarly divided by the given lines CH, EK, therefore the ratios of $\mathrm{GH}, \mathrm{HK}, \mathrm{KL}$ are the fame with the given ratios of $\mathrm{BC}, \mathrm{CE}, \mathrm{EN}$.

Construction. About $A B C, D B E$ any two of the four triangles formed by the given lines, let circles be defcribed, they will meet each other at P, the point which is to be found.

Throngh

Throvgh P and B, the interfection of any two of the given lines, let a circle be defcribed to touch one of them at B, and cut the other at N , the line BN will be given, and the ratios of $\mathrm{GH}, \mathrm{HK}, \mathrm{KL}$, the fame with the given ratios of $\mathrm{BC}, \mathrm{CE}, \mathrm{EN}$ to one another.

The fynthetical demonftration follows readily from the analyfis, and for the fake of brevity is here omitted.

Cor. 1. The lines PG, PH, PK, PL, contain given angles ${ }_{2}$ and have to each the given ratios of $\mathrm{PB}, \mathrm{PC}, \mathrm{PE}, \mathrm{PN}$.

Cor, 2. The line GL cuts off from the given lines, fegments $\mathrm{BG}, \mathrm{CH}, \mathrm{EK}, \mathrm{NL}$, adjacent to given points, and having to each other the given ratios of $\mathrm{PB}, \mathrm{PC}, \mathrm{PE}, \mathrm{PN}$. For the points P, A, G, H, being in a circle, the angle PGB is equal to PHC ; and fince P, F, H, K, are in a circle, the angle PHC is equal to PKE, which in like manner will be found equal to PLN. Now, the angles PBA, PCF, PEF, PNB are equal among themfelves, therefore their fupplements PbG, PCH, PEK, PNL are equal, and the triangles PBG, PCH, PEK, PNL are fimilar, therefore BG , $\mathrm{CH}_{3} \mathrm{EK}$, NL are proportional to the given lines $\mathrm{BP}, \mathrm{CP}, \mathrm{EP}_{2}$ NP.

PROP. VII. THEOREM, Fig. 12. Pl. III.
Let PGAB, PFAC, PEAD, $\mathcal{E}^{\circ} c$, be any number of given circles, each of which paffes through the fame two points A, P; from A, either of thefe points let a ftraight line, given by pofition, be drawn, meeting the circles at $\mathrm{B}, \mathrm{C}, \mathrm{D}, \mathcal{E}^{\circ} \mathrm{c}$. and another meeting them at $\mathrm{E}, \mathrm{F}, \mathrm{G}, \mathfrak{E}_{\mathrm{O}} \mathrm{c}$. Let ftraight lines $\mathrm{GB}, \mathrm{FC}, \mathrm{ED}, \mathrm{E}_{\mathrm{c}} \mathrm{c}$. be drawn, joining thefe points, fo as to form, with the lines paffing through A, triangles $G A B$, FAC, EAD, E \mathcal{E}. in each of the circles. If, through P, the common interfection of the circles, and Q , the interfection
of any two of the lines, a circle be defcribed to meet them in K and L, a line joining $K L$, and meeting the remaining lines, will be divided by them into fegments HK, KL, LM, MN , $\mathfrak{i c} c$. having to each other given ratios.

Let $\mathrm{O}, \mathrm{R}, \mathrm{S}, \mathrm{E}_{\mathrm{c}} \mathrm{c}$. be the remaining interfections of GB, FC, ED, $\mathscr{O}^{\circ} c$. Eecaufe GRE is a triangle, and circles PGAB, PEAD pafs through G, E, two of its angles, and meet at A, a point in GE, the points P, R, B, D, are in a circle, (Lemma.) in the fame way it appears, that circles may pafs through $\mathrm{P}, \mathrm{S}, \mathrm{C}, \mathrm{D}$, and P, Q, B, C, B_{c}. Becaufe it is now proved, that in the triangle CDS, a circle may pafs through $\mathrm{P}, \mathrm{C}, \mathrm{B}, \mathrm{Q}$, and another through $\mathrm{P}, \mathrm{D}, \mathrm{B}, \mathrm{R}$; therefore the points $\mathrm{P}, \mathrm{S}, \mathrm{R}, \mathrm{Q}$, are in a circle. (Lemma.) Thus it may be fhewn, that circles defcribed about each of the triangles, formed by the intercepted fegments of the ftraight lines, will all pafs through the fame point P . From P draw ftraight lines to the points of interfection of one of the given lines, with all the others, as $\mathrm{PA}, \mathrm{PB}, \mathrm{PC}, \mathrm{PD}, \mathrm{E} c$. Join PH, PK, PL, PM, PN, $\xi^{\circ} c$.

Since P, Q, K, L, are in a circle, the angle $B K P$ is equal to CLP; now, the angles PBG, PCF, are each equal to PAG; therefore the angles $\mathrm{PBK}, \mathrm{PCL}$, are equal, and the triangles PBK, PCL, fimilar ; hence $K P$ is to $P L$ as $B P$ to $P C$; now the angle $K P L$ is equal to $K Q L$, that is, to $B P C$; therefore the triangles KPL, BPC, are fimilar, and the angle PLM will be equal to PCD. But the points $\mathrm{P}, \mathrm{S}, \mathrm{C}, \mathrm{D}$, having been proved to lie in a circle, if PS be joined, the angle PCD will be equal to PSD, therefore PLM is equal to PSD or PSM, hence the points P, S, L, M are in a circle. In the fame way it may be fhewn, that $\mathrm{P}, \mathrm{G}, \mathrm{H}, \mathrm{K}$ are in a circle, as alfo $\mathrm{P}, \mathrm{D}, \mathrm{M}, \mathrm{N}, \mathcal{E}^{\circ} c_{0}$ and that the triangles PAH, PDM, $\xi^{\circ} c$. are each fimilar to PBK and PCL, and hence that PHK is fimilar to PAB, and PLM to PCD, $\mathcal{E} c$. Through P defcribe a circle to touch $A G$ at A, and meet $A D$
in V , which will be a given point, fince $G A, A D$, are given by pofition.

Join PV, the angle PVA is equal to PAE or PDS, that is, ($\mathrm{P}, \mathrm{D}, \mathrm{M}, \mathrm{N}$ being in a circle) to PNM, and PDV is equal to PMN, the triangle PMN is therefore fimilar to PDV ; and fince the angle PVA is equal to PDS, alfo PNV to PMD , the triangles PDM, PVN are fumilar. Thus it appears, that HN and AV are fimilarly divided by the lines BK, CI., DM, o $^{\circ}$. ; now, the points $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{V}, \mathcal{E}^{\circ} \mathrm{c}$. are given; therefore the ratios of HK, KL, LM, MN, $\hat{O}^{c} c$. to one another are given. Q. E. D.

Cor. i. The lines PH, PK, PL, PM, PN, Esc. contain given angles, and have to each other the given ratios of $\mathrm{PA}, \mathrm{PB}, \mathrm{PC}$, PD, PV, $\mathcal{E}^{\circ} c$.

Cor. 2. The line HN cuts off from the given lines, fegments HA, KB, LC, DM, VN, $\varepsilon^{\circ} c$. adjacent to given points, and having alfo to one another the given ratios of $\mathrm{PA}, \mathrm{PB}, \mathrm{PC}, \mathrm{PD}$, PV, $\underbrace{\circ} c$; for the triangles PAH, PBK, PCL, PDM, PVN, $\underbrace{\circ} c$. have been proved equiangular ; and therefore $\mathrm{AH}, \mathrm{BK}, \mathrm{CL}$, $\mathrm{DM}, \mathrm{VN}, \delta^{\circ} c$ are proportional to $\mathrm{PA}, \mathrm{PB}, \mathrm{PC}, \mathrm{PD}, \mathrm{PV}, \mathcal{E}^{\circ} c .{ }^{*}$.

PROP. VIII.

[^17]PR O P. VIII. P ORISM, Fig. 13. Pl. II.
Let $C A, C B, A B$ be three ftraight lines given by pofition, a point H may be found, fuch, that if through H, and B, C, any two of the interfections of thefe lines, there be defcribed circles $\mathrm{HBEF}, \mathrm{HCDE}$, to meet each other at E , a point in BC , and the remaining lines at D and F . If $\mathrm{DE}, \mathrm{EF}, \mathrm{DF}$ be joined, the triangle DEF fhall be fimilar to a given triangle def, and fhall have its angles upon the given lines in a given order.

Becausf. circles are defcribed through C, B, and meeting each other at E , a point in CB , therefore their other interfection H, the remaining angle A, and the points D, F, are in a circle. (Lemma.) Let a circle be defcribed through $\mathrm{H}, \mathrm{C}, \mathrm{A}$, to meet CB in G , and another through $\mathrm{H}, \mathrm{B}, \mathrm{G}$, to meet AB in K . Join HA, HG, HK, alfo HD, HE, HF. The angles ADH, GEH, KFH, are equal to one another, and the angles CAH, CGH, BKH are equal, therefore HAD, HGE, HKF are equal, and the triangles HAD, HGE, HKF are fimilar ; therefore DH is to HE as AH to HG, and EH is to HF as GH to HK ; now, the angles DHE, EHF are equal to DCE, EBF, that is, to AHG, GHK; hence the quadrilateral HDEF is fimilar to HAGK, and the triangle DEF is fimilar to AGK; now, the angles EDF and DEF are given by hypothefis, therefore GAK and $A G K$ are given; but A is a given point, and $A K$ is given by pofition, therefore $A G$ and the point G are given; therefore $G K$ and the point K are alfo given, and H, the interfection of the given circles GAC, GBK, will be given, which was to be found.

Construction. Take a given point, which, to render the conftruction more fimple, may be at A , one of the interfections
of the given lines. Let AG; GK be fo drawn as to form a triangle $A G K$, fimilar to the given triangle def, and having its angles placed upon the given lines, in the given order. Through A, G, any two of its angles, and C, the interfection of the lines upon which they are placed, defcribe a circle; through G, K, and B , the interfection of CG, AK, let another circle be defcribed, meeting the former in H , the point to be found, which will alfo be in a circle paffing through K, and touching GA at A.

The demonftration follows eafily from the preceding analyfis.
Cor. r. The lines HD, HE, HF contain given angles, and have to each other the fame ratios, with the given lines HA, HG, HK.

Cor. 2. The lines $\mathrm{AD}, \mathrm{GE}, \mathrm{KF}$ have alfo to each other the given ratios of HA, HG, HK.

PROP. IX. THEOREM, Fig. 14. Pl. III.

Let Ea, $b b, \mathrm{~F} c, \mathrm{G} d, \mathrm{E}^{\circ} c$. be any number of Atraight lines given by pofition. Let P be a given point. Through P , and E, the interfection of any two of the given lines, let a circle be defcribed to meet them in A and B; through P, B, and H , the interfection of $\mathrm{B} b$, with one of the remaining lines, let a circle be defcribed to meet that line in C. Through P, C, and K , the interfection of $\mathrm{C} c$, with one of the remaining lines, let a circle be defcribed to meet that line in D , and $f o$ on if there be more lines. Join $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}, \mathcal{E}^{\circ} \mathrm{c}$. DA. The rectilineal figure $\mathrm{ABCD}, \xi^{\circ} c$. is given in fpecies.
Take a, a given point in EA, through P, E, a, defcribe a circle to meet EB in b, through $\mathrm{P}, \mathrm{H}, b$, defcribe a circle to meet HC in c, through $\mathrm{P}, \mathrm{K}, c$, defcribe a circle to meet KD in d, and f_{0} on if there be more lines. Join Pa, PA, alfo $\mathrm{PB}, \mathrm{P} b, \mathrm{PC}$,
$\mathrm{P} c, \mathrm{PD}, \mathrm{P} d, \mathrm{E}^{\circ} c$. Becaufe the points $\mathrm{P}, \mathrm{E}, \mathrm{A}, \mathrm{B}$, are in a circle, the angle $\mathrm{PA} a$ is equal to $\mathrm{PB} b$; now $\mathrm{P} a \mathrm{~A}$ is equal to $\mathrm{P} b \mathrm{~B}$; for $\mathrm{P} a \mathrm{E}$ is equal to $\mathrm{P} b \mathrm{E}$, the triangles $\mathrm{P} a \mathrm{~A}, \mathrm{P} b \mathrm{~B}$ are therefore fimilar. In the fame manner it may be fhewn, that $\mathrm{P} b \mathrm{~B}$ is fimilar to $\mathrm{Pc} c$, and that again to $\mathrm{P} d \mathrm{D}, \varepsilon^{2} c$. Therefore PA is to PB as Pa to $\mathrm{P} b$, and PB to PC as $\mathrm{P} b$ to $\mathrm{P} c$, and PC to PD as $\mathrm{P} c$ to $\mathrm{P} d, \mathcal{B}_{0} c$. ; now the angles $\mathrm{APB}, \mathrm{BPC}, \mathrm{CPD}, \mathcal{E} c$. are equal to $\mathrm{AEB}, \mathrm{BHC}, \mathrm{CKD}, \varepsilon^{\circ} c$. that is, to $a \mathrm{P} b, b \mathrm{P} c, c \mathrm{P} d$, $\varepsilon \circ c$. therefore if $a b, b c, c d, \xi^{\circ} c$. Ad be joined, the rectilineal figure PABCD, $\xi^{3} c$. is fimilar to $\mathrm{Pabcd}, \xi_{c} c$; and leaving out the fimilar triangles $\mathrm{PAD}, \mathrm{Pad}$, the rectilineal figure $\mathrm{ABCD}, \mathrm{E}^{\circ} c$. is fimilar to $a b c d$, $\mathcal{E}^{\circ} c$. Now the points $\mathrm{P}, \mathrm{E}, a$, being given, the circle paffing through them is given; therefore b is a given point; in like manner $c, d, \xi^{\circ} c$. are given points; therefore the figure $a b c d, \xi c$. is given; therefore ABCD, $\mathcal{E} c$. to which it is fimilar, is given in fpecies. Q. E. D.

Cor. 1. The lines PA, PB, PC, PD, $E^{\circ} c$. contain given angles, and have to each other the given ratios of $\mathrm{P} a, \mathrm{P} b, \mathrm{P} c, \mathrm{P} d$, $\xi^{\circ} c$.

Cor. 2. The fegments $\mathrm{A} a, \mathrm{~B} b, \mathrm{G} c, \mathrm{D} d, \varepsilon^{\circ} c$. of the given lines, adjacent to the given points $a, b, c, d, \dot{\delta} c$. have alfo to each other the given ratios of $\mathrm{P} a, \mathrm{P} b, \mathrm{P} c, \mathrm{P} d, \xi^{\circ} c$.

Cor. 3. If there be any number of ftraight lines given by pofition, there may be innumerable rectilineal figures fimilar to one another, and having their angles upon the ftraight lines given by pofition.

> PROP. X. PORISM, Fig. i5. Pl. III.

Let A and B be two given points in the circumference of a given circle. Let C be a given point in KC , a ftraight line
given by pofition. There may be found a ftraight line KD given by pofition, and alfo a given point D in that line, fuch, that if AE, BE be inflected to any point in the circumference of the given circle, they fhall cut off from KC , KD, fegments FC, GD, adjacent to the given points, and having to each the given ratio of α to β.

Suppose the line KD, and the point D to be found. If AH , BH be inflected to the circle, fo that AH may pafs through C, then BH muft pafs through D, the point which may be found, otherwife the propofition would not be univerfally true. Now, C being given, the point H , and the line BH , will be given by pofition. Let AL be drawn parallel to KC , then BL muft be parallel to KD, the line to be found ; hence it appears, that the angle GKF is equal to ALB, that is, to GEF; therefore the points $\mathrm{E}, \mathrm{K}, \mathrm{G}, \mathrm{F}$ are in a circle, and the angle DGB is equal to CFA; now DBG is equal to CAF; therefore the triangles $\mathrm{DBG}, \mathrm{CAF}$ are equiangular, and AC is to BD as CF to DG , that is, by hypothefis, as α to β; now AC is given, and BH is given by pofition, therefore the point D is given, but BDG is equal to the given angle $A C F$, therefore $D G$ is given by pofition.

Construction. Join AC, meeting the circle in H. Join BH , and, as α is to β, fo let AC be to BD. Through H, D, C defcribe a circle to meet FC in K. Join DK ; then D is the given point, and DK is the line given by poiftion, which are to be found ; that is, if AE, BE be inflected to any point in the circumference, to meet the given lines in F, G; CF fhall be to $D G$ as $A C$ to $B D$, or as α to β. The demonftration is eafily derived from the analyfis.

The foregoing propofitions, in one point of view, may be confidered as exhibiting innumerable folutions of certain geometrical problems of the indeterminate kind, to each of which,
if fome condition, unconnected with the hypothefis of the propofition, be added, there will be formed a problem perfectly limited in its nature.

The method of applying the porifms to the folution of many problems is obvious enough ; and, as fome of thefe may be of a very extenfive nature, and fuch as many others can be reduced to, therefore the utility of the porifms will by this means be greatly extended. The condition that may be joined to the hypothefis of each porifmatic propofition, it is evident, may be greatly varied: And, hence, it were eafy to form abundance of problems, differing from any hitherto propofed: but this would extend the paper to too great a length. We fhall therefore only give a few examples, of which, let the firft be the Sectio Rationis of the ancient geometers.

PR O P. XI. P R O B L E M, Fig. 16. Pl. III.

'Two ftraight lines AB, AC are given by pofition, and two points B, C are given in thefe lines. It is required to draw a line through P , a given point, without them, to meet them in D and E , fo that BD may have to CE the given ratio of M to N .

Because the ratio of $B D$ to $C E$ is given; if a circle be defcribed through the points $\mathrm{A}, \mathrm{B}, \mathrm{C}$, there is given a point H in the circumference, fuch, that the points A, H, D, E are in a circle, (Prop. 1.) therefore if HD, HA be joined, the angle HDP is equal to HAE, that is, to a given angle; now H and P are given points, therefore D is in the circumference of a given circle, but it is alfo in $A B$, a line given by pofition; therefore D is a given point, and PE is given by pofition, which was to be found.

Construction. Through A, B, C defcribe a circle; inflect BH, CH to the circumference, fo that BH may be to CH in the given ratio of $B D$ to $C E$, or of M to N^{*}, thus H will be a given point. If the fegments $B D, C E$ to be cut off, are to lie in the fame direction with $A B, A C$, the point H muft be found in the fame fegment with BAC; but if they are to lie in contrary directions, then H muft be taken in that fegment upon which BAC ftands. Join AH and PH, upon which defcribe a fegment of a circle, that may contain an angle equal to HAC, which is given. This circle may cut $A B$ in two points D, δ. Join PD and $\mathbb{F} \delta$, meeting the remaining line in E and ε; thefe lines cut off fegments BD, CE, or $\mathrm{B} \delta, \mathrm{C}_{\varepsilon}$, having to each other the given ratio of BH to HC , or of M to N .

Join HD, HE. Becaufe the angle PDH is by conftruction equal to HAE, the points A, H, D, E are in a circle; therefore the angle HEA is equal to HDA, that is HDB is equal to HEC ; now, HBD is equal to HCE, for HBA is equal to HCA, therefore the triangles HCE, HBD are fimilar, and BD is to CE as BH to HC, that is, by conftruction, as M to N .

It is evident that this problem may admit of four folutions in general, if there be given no limitation with refpect to the direction in which the fegments are to be cut off from the given lines; but the data may be fuch as to render it capable of three and alfo of two folutions only.

The next example fhall be the Sectio fpatii of the ancients:

PROP. XII. PROBLEM, Fig. 17. Pl. III.

Two ftraight lines $A B, A C$ are given by pofition, and two points B, C are given in thefe lines. It is required to draw

[^18]> a ftraight line through P, a given point, without them, to meet them in D and E , fo that the rectangle BD, CE may be equal to a given fpace.

Suppose that DE is drawn as required. Join PC which will be given in pofition and magnitude. Draw PF parallel to AC, and take F , fo that the rectangle CP, PF may be equal to the given fpace, the point F will therefore be given; draw FL parallel to CP , meeting AB in K , and PD in L , then FL and the point K will both be given by pofition. The triangles LFP, PCE are fimilar ; therefore LF is to FP as PC to CE, and the rectangle LF, CE is equal to the rectangle FP, PC, which, by hypothefis, is equal to the rectangle BD, CE, therefore FL is equal to BD ; now, B and F are given points, and BK, FK are lines given by pofition ; therefore (Prop. I.) if a circle be defcribed through K, B, F, there is a given point H in the circumference, fuch, that $\mathrm{K}, \mathrm{H}, \mathrm{L}, \mathrm{D}$ are in a circle; therefore, if this point be found, and HD, HL, HK joined, the angle HDL is equal to HKL; therefore HDP is equal to HKF, that is, to a given angle; but H and P are given points, therefore D is in the circumference of a given circle ; but it is alfo in a ftraight line given by pofition; therefore D is a given point, and PD is given by pofition,

Construction. Join P and C , either of the given points in the given lines; draw PF parallel to CA, and take F, fo that the given fpace may be the rectangle CP, PF. Draw FL parallel to CP , meeting AB in K , and through the points $\mathrm{F}, \mathrm{B}, \mathrm{K}$ defcribe a circle. Find H in the circumference, fo that BH may be equal to FH. Join HK and HP, upon which defcribe a fegment of a circle, that may contain an angle equal to HKF ; this circle may meet AB in two points D, δ. Join PD and $\mathrm{P} \delta$, meet-
ing AC in E and ε. The rectangles BD, CE, and $\mathrm{Bo}, \mathrm{C}_{\varepsilon}$, are each equal to the given rectangle FP, PC.

Let ED meet FK in L, join HL, HD. Becaufe by conftruction the angle HDP is equal to HKF ; therefore HDL is equal to HKL ; therefore the points $\mathrm{H}, \mathrm{K}, \mathrm{D}, \mathrm{L}$, are in a circle, and the angle HLK is equal to HDK , that is HLF is equal to HDB , now HFL is equal to HBD , alfo HF is cqual to HB ; therefore the triangles HFL, HBD are in all refpects equal, and FL is equal to BD. Again, the triangles LFP, PCE are fimilar, therefore FL is to FP as CP to CE, and the rectangle $F L, \mathrm{CE}$ is equal to the rectangle FP, PC, but FL is equal to BD , therefore the rectangle BD, CE is equal to the rectangle FP, PC, that is to the given fpace. In the fame way it may be fhewn that the rectangle $\mathrm{B} \delta, \mathrm{C}_{\varepsilon}$ is equal to FP, PC.

PROP. XIII, PROBLEM, Fig. i8. Pl.IV.
Fouk ftraight lines $\mathrm{DB}, \mathrm{DF}, \mathrm{CG}, \mathrm{BG}$ are given by pofition, it is required to draw a line to meet them in the points $\mathrm{N}, \mathrm{O}, \mathrm{P}, \mathrm{Q}$, fo that the line NQ may be divided at thefe points, fimilarly to a given divided line nop q.

Suppose the line NQ drawn as required. Becaufe DB, DF, BF are three ftraight lines given by pofition, and that NQ is divided by one of them at O into fegments, having to each other a given ratio, if a circle be defcribed through the points B, D, F, there is a given point E in the circumference, fuch, that the points E, B, N, Q are in a circle, (Próp. 5.). Again, becaufe $\mathrm{CB}, \mathrm{CG}, \mathrm{BG}$ are three lines given by pofition, and NQ is divided by one of them at P into fegments, having to each other a given ratio, if a circtle be defcribed through B, C, G, there is a given point A in the circumference, fuch, that A, N, B, Q are in a circle, (Prop. 5.): Thus it appears, that there are given three
three points $\mathrm{A}, \mathrm{E}, \mathrm{B}$ in a circle, paffing through N and Q , therefore NQ is given by pofition.

Construction. Let DB, BG be the lines upon which the extremities of NQ are to be placed. About the triangles BDF , BCG, defcribe circles, draw BH parallel to FD, meeting the circle DBF in H , and draw BK parallel to CG , meeting the circle CBG in K . In DF find L , fo that DL may be to LF as $n \circ$ to oq, and in CG find M, fo that CM may be to MG as $n p$ to $p q$, join HL meeting the circle DBF in E , join alfo KM meeting the circle CBG in A. Through the points A, E, B defcribe a circle meeting DB, BG in N and Q , join NQ meeting the other lines in O and P , and NQ fhall be divided fimilarly to $n q$.

It has been proved in Prop. 5. that the point E being found as above, if any circle pafs through E and B , and meat DB, GB in N and Q , the line joining NQ fhall be divided at O , fo that NO will be to OQ as DL to LF, that is by conftruction as no to oq. Likewife, that the point A being found as above, if any circle be defcribed through A and B, to meet DB, BG in N and Q , the line NQ being drawn, fhall be divided at P, fo that NP will be to PQ as CM to MG , that is by conftruction as $n p$ to $p q$. Hence, it is obvious, that NQ is divided fimilarly to $n q$.

It may be remarked, that the preceding conftruction points out very clearly, a circumftance which appears to have efcaped the notice of fome Mathematicians that have given folutions of the problem, with a view to its application to Aftronomy. It is that the given ratios of $\mathrm{NO}, \mathrm{OP}, \mathrm{PQ}$, to one another may be fuch as to render the problem indeterminate. Now, this it is evident will be the cafe, if the points A, E fhall both fall at \mathbb{E} the interfection of the circles. This cafe forms Prop. VI. of this paper, fo that it may be fufficient to add here, that the ratios which
which render the problem indeterminate, are thofe which are required to be found, in the propofition juft now quoted.

PROP. XIV. PROBLEM, Fig. 19. Pl. IV.
Three ftraight lines $A B, A C, B D$ are given by pofition, and P is a given point. It is required to draw PE to meet BD in E, and $P G$ meeting $A B$ in F, and $A C$ in G, fo that the angle EPG may be given, and fo that EP may have to FG the given ratio of α to β.

Suppose the lines drawn as required. In GP take PH equal to FG , therefore the ratio of EP to PH will be given, now the angle EPH is given, therefore H is in a ftraight line given by pofition, (Apoll. Laci Plani, Lib. 1. Prop. 6.) let this line be LC. Bifect $P F$ in K, then becaufe P is a given point, and $A B$ is given by pofition, the point K will be in a ftraight line given by pofition, (Loci Plani, Lib. I. Prop. 4.) let this line be LM. Becaufe GF is equal to PH , and FK to PK , therefore GK is equal to KH , but the lines $\mathrm{ML}, \mathrm{MC}, \mathrm{CL}$ are given by pofition, therefore, (Prop. 5.) a given point N may be found in the circumference of a circle paffing through $\mathrm{M}, \mathrm{C}, \mathrm{L}$, fuch, that the points N, M, G, K are in a circle, therefore if this point be found, and NG, NM joined, the angle NGK or NGP is equal to the given angle NML, now N and P are given points, therefore G is in the circumference of a given circle, but it is alfo in a ftraight line given by pofition, therefore the point G is given.

Construction. Find LC a ftraight line given by pofition, fuch, that if PE, PH be drawn meeting BD, CL, and containing an angle EPH equal to the fupplement of the given angle

EPG, the ratio of EP to PH may be the fame with the given ratio of α to β. (Loci Plani, Prop. 6. Lib. r.) Find alfo a ftraight line LM given by pofition, fuch, that PF drawn to any point in $A B$, may be bifected by it in K. Through L, M, C, the interfections of the given lines LM, AC, LC, defcribe a circle. Draw CO parallel to LM , meeting the circle in O ; bifect $M L$ in Q; join $O Q$ meeting the circle in N; join $N M$, and inflect NG, PG to AC, fo that the angle NGP may be equal to NML ; draw PE, fo that the angle EPG may be fuch as is required.

Let GP meet CL in H , and AB in F , alfo LM in K ; join NH , NK, NL. Since NGP is equal to NML, the points N, K, G, M are in a circle, and the angle NKH is equal to NMG or NMC, that is to NLH ; therefore the points $\mathrm{N}, \mathrm{K}, \mathrm{L}, \mathrm{H}$ are in a circle, and the angle NHK is equal to NLQ; now NKH is equal to NMG or NOC, that is (OC being parallel to ML) to NQL ; therefore the triangles NKH, NQL are fimilar. In like manner it appears, that NKG, NOM are fimilar; therefore $M L$ and GH are fimilarly divided at Q and K, but $M L$ is bifected at Q; therefore GH is bifected at K ; now PF is alfo bifected at K ; therefore GF is equal to PH , and EP is to FG as EP to PH , that is, by conftruction, as α to β.

PROP. XV. PROBLEM, Fig. 20. Pl. IV.

Three ftraight lines $\mathrm{AB}, \mathrm{AC}, \mathrm{BC}$ are given by pofition, and three points $\mathrm{D}, \mathrm{E}, \mathrm{F}$ are given in thefe lines. It is required to draw a ftraight line GHK to meet them, fo that DG, EH, FK may have to each other the given ratios that P, Q R have among themfelves.

Suppore

Suppose that the line is drawn as required. Becaufe the ratio of DG to EH is given, there is given (prop. 1.) a point M in the circumference of a circle paffing through $\mathrm{A}, \mathrm{D}, \mathrm{E}$, fuch, that the points $\mathrm{A}, \mathrm{M}, \mathrm{G}, \mathrm{H}$ are in a circle. If this point be found, and $\mathrm{MG}, \mathrm{MH}, \mathrm{MD}, \mathrm{ME}$ joined, the angle GMH is equal to GAH or to DME. Alfo if MA, DE be joined, the angle MHG is equal to MAG or to MED. Therefore the triangle MHG is fimilar to thegiven triangle MED, and the angle MHG is given.

In like manner, becaufe the ratio of EH to FK is given, there is given a point N in the circumference of a circle paffing through $\mathbf{E}, \mathrm{C}, \mathrm{F}$, fuch, that $\mathrm{N}, \mathrm{C}, \mathrm{H}, \mathrm{K}$ are in a circle. If $\mathrm{NH}, \mathrm{NK}, \mathrm{NE}$, NF, NC, EF be joined, it may be proved, in the fame way, that the triangle NHK is fimilar to NEF, hence the angle NHK is given. Now, the angles MHG, NHK being each proved to be given, the angle MHN is given, and the points M, N being alfo given, the point H is in the circumference of a given circle; but it is alfo in a ftraight line given by pofition; therefore the point H is given, and the angles MHG, NHK being given, the line GK is given by pofition, which was to be found.

Construction. Through the points A, D, E defcribe a circle, and inflect DM, EM to the circumference, fo that DM may be to EM as P to Q . Defcribe alfo a circle through C, E, F, and inflect EN, FN to the circumference, fo that EN may be to FN as Q to R. Join DE, EF, and inflect MH, NH to the ftraight line AE, fo that the angle MHN may be the fupplement of the fum of MED and NEF ; draw HG, fo that the angle MHG may be equal to MED ; then NHK is equal to NEF.

Join MG, MA. Becaufe the angle MHG is equal to MED or to MAG, the points $\mathrm{M}, \mathrm{A}, \mathrm{H}, \mathrm{G}$ are in a circle; hence the angle MHE is equal to MGD ; now MEH is equal to MDG; for MEA is equal to MDA; therefore the triangles MEH, MDG are fimilar, and DG is to EH as DM to ME , that is as P to Q .

In like manner it may be proved, that becaufe the angle NEF is equal to NHK , the points $\mathrm{N}, \mathrm{C}, \mathrm{H}, \mathrm{K}$ are in a circle, and hence that the triangle NEH is fimilar to NFK; hence EH is to FK as EN to FN, that is as Q to R. Therefore GHK is drawn as required.

PROP. XVI. PROBLEM, Fig. 20. Pl. IV.

Ir is required to defcribe a triangle DEF fimilar to a given triangle def, having one of its fides EF paffing through P a given point, and having its angles in a given order upon three ftraight lines $A B, A C, B C$ given by pofition.

THE conftruction of this problem follows readily from the 8th propofition, as follows:

Draw AG, GK, fo as to form a triangle AGK, fimilar to the given triangle $d e f$, and having its angles' upon the given lines in the given order.

Through A, G, any two of its angles, and C, the interfection of the lines upon which they are placed, defcribe a circle. Through G, K, and B, the interfection of GC, KA, defcribe a circle meeting the former in H . From the points H, P inflect HE, PE to CB, fo that the angle HEP may be equal to HGK; let PE meet AB in F . Through $\mathrm{H}, \mathrm{C}, \mathrm{E}$ defćribe a circle to meet $C A$ in D; join $D E, D F$, and the triangle DEF flall be fimilar to AGK or to d e f.

Join HD, HF, HA, HK, HB, HC. Becaufe, by conftruction, the angle HEF is equal to HGK or to HBK , the points $\mathrm{H}, \mathrm{B} ; \mathrm{E}$, F are in a circle, and the angle FHE is equal to FBE or KHG, therefore the triangles EHF, GHK are fimilar. In like manner, becaufe a circle paffes through $\mathrm{H}, \mathrm{C}, \mathrm{D}, \mathrm{E}$; the angle DHE is equal to DCE or AHE, and HDE is equal to HCE or HAG, therefore
the triangles EHD, GHA are fimilar. Now the triangle HEF was proved fimilar to HGK. Therefore the quadrilateral HDEF is fimilar to HAGK, and the angle DEF is equal to AGK ; alfo DE is to EF as AG to GK; therefore the triangle DEF is fimilar to AGK or to $d e f$, as was required.

PROP. XVII. PROBLEM, Fig. 21. PI. IV.

A and B are two given points in the circumference of a given circle. C and D are two given points in ftraight lines CE, DE given by pofition. It is required to inflect AF, BF to the given circumference, meeting the given lines in G and H, fo that the rectangle CG, DH may be equal to a given fpace.
Because A and B are given points in the circumference of a given circle, and D is a given point in a line DE given by pofition, a line $L M$, and a point M in it, both given by pofition, may be found, (prop. 10.), fo that BF, AF being inflected to any point in the circumference, meeting the given line DE in H ; and the line LM, which may be found in N , the ratio of DH to MN, may be given.

Suppose the line ML found, fo that MN may be equal to DH , then the rectangle MN, CG is equal to DH, CG, which by hypothefis is given. Now A is a given point, and C, M are given points in ftraight lines given by pofition. Therefore the problem is now reduced to the 12 th propofition of this paper.

Construction. Join B and D, the given point, in the line whofe fegment is to be intercepted by BF. Let BD meet the circle in K ; join $A K$, and take AM equal to BD. Through the points $\mathrm{D}, \mathrm{M}, \mathrm{K}$ defcribe a circle cutting DE in L , and AK in M. Join LM, and from the point A (by prop. 12.) draw a ftraight line to meet $C E$ in G, and $L M$ in N, fo that the rectangle
tangle MN, CG may be equal to that which is to be contained by CG, DH. Let AN meet the circle in F ; join BF meeting DE in H .

The angle HDB is equal to LMK or AMN, and the angle DBH is equal to MAN; now BD is equal to AM ; therefore the triangles $\mathrm{BDH}, \mathrm{AMN}$ are in all refpects equal, and DH is equal to MN. Therefore the rectangle DH, CG is equal to MN, CG, that is, (by conftruction), to the given fpace as required.

It is eafy to fee, how, in like manner, by drawing AGN, fo that CG may be to MN in a given ratio, (prop. 11.), the lines BF, AF fhall cut off fegments DH, CG, having to each other a given ratio.

V. Determination of the Latitude and Longitude of the Observatory at Aberdeen : In Two Letters from Andrew Mackar, L L. D. \& F. R. S. Edin. to fohn Playfair, F. R.S. Edin. and Profefor of Mathematics in the Univerfity of Edinburgh.

LETTER I.

[Read 2d Dec. 1793.]

Dear Sir,
Aberdeen, 18th September 1793.
COME time ago I promifed to fend you the refult of a feries of obfervations, made to determine the fituation of this place. Having, however, been much hurried of late, I am only able at prefent to tranfmit you the determination of the latitude, deduced from a feries of obfervations of the fun's meridian zenith diftances. With refpect to the longitude, as foon as it is in my power, I will reduce fome obfervations of occultations, and of the late folar eclipfe, and fend you the refults.

The following obfervations of the fun's meridian zenith diftances were made with a moveable quadrant of two feet radius, conftructed by Mr Macculloch of London. This quadrant has two feparate fets of divifions: the quadrantal arc of the inner fet is divided into ninety degrees as ufual; and the exterior arc is divided into ninety-fix primary divifions ; each of which
which is fubdivided into eight equal parts; and the vernier gives one thirty-fecond part of a fubdivifion, or $13^{\prime \prime}, 18$. A micrometer fcrew is attached to the vernier, which ferves to regulate the motion of the index, and by which, the excefs in feconds above the next lefs divifion of the vernier is fhown.

Each zenith diftance was read off, at leaft, three times, both from the ninety and ninety-fix arcs, and the means of each were taken. Thefe ferved as a check on each other ; however, the zenith diftance, as given by the ninety-fix arc only, is ufed for obvious reafons. The ninety-fix arc was found to be about $12^{\prime \prime}$ lefs than 90°; and the error of the line of collimation at the vertical radius was about a fecond and a half, fubtractive.

As the tranfit inftrument and quadrant were placed in adjacent rooms, it was therefore in my power to obferve both the fun's tranfit and zenith diftance the fame day; however, the paffage of the fun's weft limb over the fifth wire, and that of the eaft limb over the firft wire, were by this means loft. Hence, alfo, the zenith diftance of one limb only of the fun could be obferved; and the true zenith diftance will be affected by the error of the fun's femidiameter, as given in the Nautical Almanac, and by the irradiation, which according to M. du Sejour, exceeds three feconds.

The middle wire in the telefcope of the quadrant fubtended an angle of no lefs than $20^{\prime \prime}, 6$; therefore, as it was fcarce poffible to bring the fun's limb exactly to the middle of the wire, I conftantly made the lower edge of the wire a tangent to the fun's apparent lower limb. The zenith diftances in the following table are the differences between thofe obferved and the femidiameter of the wire, the tenths of a fecond being neglected.

The fifth column of the table contains the error of the line of collimation, combined with that of the ninety-fix arc, taking it for granted that this arc is accurately divided. In column fixth is the fun's femidiameter, from the Nautical Almanac, to the
neareft fecona: The next column contains the aggregate of the three preceding columns, and is the fun's apparent central zenith diftance. The eighth column contains the mean refraction, anfwering to the apparent zenith diftance of the fun's limb; hence the allowance for the contraction of the femidiameter at low altitudes is avoided. The next column contains the mean refraction reduced to the true, by the application of the corrections depending on the heights of the barometer and thermometer, as they are found in Table VIII. of my book on the Longitude: In column tenth is the fun's parallax; and the quantities in the two laft columns, applied to thofe in column feventh, give thefe in column eleventh, being the true zenith diftances of the fun's centre. The following column contains the fun's declination, reduced to the meridian of this place; and in the laft column is the latitude.

Obferved Diffances of the Sun's Upper Limb-from the Zenith of the Obfervatory.

Having the following obfervations of fixed ftars reduced, I have alfo fent them.

Obferved Diftances of Fixed Stars from the Zenith of the Obfervatory.

The declinations of the above ftars were taken from M. DE la Lande's catalogue of the declinations of 350 ftars , adapted to the beginning of the year 1790 .

I shall conclude by obferving, that the differences in the above latitudes are to be attributed to the error of obfervation, to the inaccuracy of the divifion of the quadrant, and to the uncertainty of the refraction, efpecially at low altitudes. If the refraction at 45° be affumed a little greater than that by Dr° Bradley, the refults will agree much better. It muft alfo be obferved, that the fmoke of the town will increafe the refraction.

Your obedient fervant,
Andrew Mackay.
R 2
LET-

$\mathbf{L} \quad \mathrm{E} \quad \mathrm{T} \quad \mathrm{T} \quad \mathrm{E} \quad \mathrm{R} \quad \mathrm{II}$.

Dear Sir,

Aberdeen, 20th September 1796.

HAVING finifhed the comparifon of a confiderable number of obfervations, made in this place, in order to determine its longitude, with correfponding obfervations made at Greenwich, I now fend you the feveral refults. The obfervations ufed for this purpofe are, eclipfes of the fatellites of Jupiter, particularly thofe of the firft and fecond fatellites, folar and lunar eclipfes, occultations, Eic. Thefe obfervations were made with one of Dollond's three and a half foot achromatic telefcopes, and powers of about feventy, and one hundred and fifteen, were applied to the telefcope, according to circumftances. The obfervations at Greenwich were made with one of Dollond's for-ty-fix inch achromatic telefcopes.

As the refults, deduced from a comparifon of the correfponding obfervations of the firft and fecond fatellites of Jupiter, are much

[^19]much more to be depended on than thofe inferred from the obfervations of the third and fourth fatellites, I have therefore rejected the obfervations of the two laft. This I was inclined to do, partly from the difagreement of the refults of the correfponding obfervations of thefe two fatellites, and partly upon account of the fmallnefs of the number of correfponding obfervations. Indeed, as thefe two fatellites take a confiderable time to immerge into, and emerge out of the fhadow of Jupiter, and as the ftate of the atmofphere, at the times of obfervation at Greenwich and Aberdeen, may be very different, and as powers will be applied to the telefcopes according to the fate of the atmofphere, it is not wonderful, that there fhould be a confiderable difference between the refults of the actual obfervations; and hence the propriety of rejecting the obfervations. of the third and fourth fatellite will be obvious; efpecially in the cafe when the correfponding obfervations are very few, and the number of immerfions unequal to that of the emerfions. The longitude of this place, as deduced from the comparifon of the actual obfervations of the firft and fecond fatellites of Jupiter, made here and at Greenwich, feems to be lefs than the truth, or, at leaft, lefs than what I had been accuftomed to ftate it; but the near agreement of the final refults of each of thefe fatellites is really furprifing.

Of all the other obfervations which I have compared, I have fent you only two, as being the moft to be relied on, namely, a folar eclipfe, and an occultation, befides a lunar eclipfe, which I had publifhed formerly in my Treatife on the Longitude, and which is not far from being a mean between the refults of the other obfervations. I had, indeed, only one other occultation, of which the obfervations at Greenwich and Aberdeen were complete, namely, that of β ws of 15 th October 179°; my other obfervations of that kind, being either incomplete, or having no correfponding obfervations at Greenwich.

I have made the calculations for the longitude from the folar eclipfe and occultation, firft, on the fuppofition that the figure of the earth is a perfect fphere; and, fecondly, upon Sir Isaac Newton's fpheroidal hypothefis, in which the equatorial diameter is to the axis of the earth as $230: 2.29$; between which limits, it is probable, is the real figure of the earth. In the rules which I gave, in my Treatife on the Longitude, for making the calculations by means of the nonagefimal, I followed the method of calculating the parallaxes in latitude and longitude, which had been given by M. de la Lande, in the firft and fecond editions of his Aftronomie: But, in the prefent calculations, I have ufed the method which was given for the firft time by M. Mayer, in the fecond volume of the Memoirs of Gottingen, publifhed in the year 1753; and, again, in his Solar and Lunar Tables, printed at London, by order of the Board of Longitude, in the year 1770. This fame method has alfo been employed by Meffrs Lexell, De la Grange, and De Lambre: And it has been adopted by M. de la Lande, in the fecond volume of the third edition of his Aftronomie, printed at Paris in the year 1792*. It may alfo be proper to mention, that I have followed M. du Sejour, and M. de la Lande, in ufing an irradiation of $3^{\frac{1^{\prime \prime}}{}}$ for the fun's femidiameter, and an inflexion of the fame quantity for the moon's. See Sejour's Traité Analytique, \&c. vol. I. p. 253 and 264 ; and De la Lande's Aftronomie, third edition, vol. II. p. 445.

As fome perhaps will be inclined to repeat the calculations for the longitude, from the obfervations of the folar eclipfe and occultation, it will therefore be neceffary to inform

[^20]inform them what tables I ufed for that purpofe. The logarithmic tables were Taylor's, Callet's, and Sherwin's. From Taylor's Tables were taken the logarithm fines and tangents of arches, and converfely. The logarithm fines, and converfely of the parallaxes, were taken from Callet's Tables: and the logarithms of numbers from Sherwin's. By this means much time was faved in thefe extenfive calculations. The natural verfed fines were taken from my Treatife on the Longitude; and the augmentation of the moon's femidiameter was taken from M. de Lambre's Tables, for finding it by means of the altitude and longitude of the nonagefimal, which, therefore, faved the trouble of calculating the altitude of the moon. The fun's parallax was taken from the Connoiffance des Temps; and, as I had not the Nautical Almanac for the year 1788, the elements for the folar eclipfe were taken from the Connoiffance des Temps for that year ; but the elements for the occultation were taken from the Nautical Almanac for 1787.

Determination of the Longitude of the Obfervatory at Aberdeen, by the Eclipfes of the Firft and Second Satellites of Jupiter.

Year, Month, and Day.	Apparent Time of Obfervation at			Longitude in Time, by
	Greenwich.		Aberdeen.	
	Immer.	Emer.	Immer. Emer.	Immer. ${ }^{\text {Emer. }}$
§ Jan. 3. 1786.	h. '	h. $\prime \prime$ 8 15	h. ' $" 1$h. \therefore 8 7 39	$" \|$$\prime \prime$ 8 15
DSept.18.	$16 \quad 737$			$8 \quad 40$
\%-20.-	$1036{ }^{6}$		102740	$8 \quad 58$
\% Dec. 30.		94520	93743	737
\% Jan. 31.1787 :		$\begin{array}{lllll}6 & 15 & 32\end{array}$	6 7 8	824
\% Feb. 23.		63157	62346	8 II
- Dec.14. 1788.	83455		82712.	$7 \quad 43$
§ Mar. 1.1791.	9148		$9 \quad 523$	$8 \quad 45$
\% Apr. 9		- 448	$\|95649\| \mid$	759
			Longitude,	$\begin{array}{cc\|ccc} 126 & 26 \\ 8 & 315 & 26 \\ 8 & 51.2 \\ 8 & 31.5 \end{array}$
			Mean,	818.3

Determination of the Longitude of the Obfervatory at Aberdeen, from the Apparent Times of Obfervation of the Beginning and End of the Solar Eclipfe of 3d June 1788: Obferved at Greenwich and Aberdeen.

Computation of the Apparent Time of Conjunction at Greenwich, on the Spherical Hypothefis.

| App. time beg. | $192446 \frac{x}{2}$ |
| :--- | :--- | :--- |
| Sun's R. A. | $45130 \frac{1}{2}$ |
| R. A. meridian, | 01617 |
| | 6 |

Par. in long. at begin.	307.0		at end	$2234 \cdot 2$	
Sum,	5349.8	3.5091756	Diff.	141.2	2.0051805
Rel. mot. in long.	5531	ar. co. 6.4774254			6.4774254
Obferved interval,	$13^{6} 37^{\frac{1}{3}}$	3.7632408			3.7632408
	h. , "				
Int, bet. beg. and conj.	13341.4	3.74984 l 8 b	t.end	n.	2.2458467
App. time of beg.	192446.5	Apparent tim	of en	21	
App. time of conj.	205827.9			205	

Computation of the Apparent Time of Conjunction at Aberdeen.

App. time of begin. Eftimated longitude,	$\begin{aligned} & \text { h. } \quad \text { " } \\ & \text { ig } 3319 \\ & +\quad 836 \end{aligned}$	App. time of end.	$\begin{aligned} & \text { h. } \quad 11 \\ & 204929 \\ & +\quad 836 \end{aligned}$
Reduced time,	194155		$2058 \quad 5$
Moon's true long.	213308	at end.	2141657
Par. in long. nearly,	+ 2449		+ 1945
Moon's app. long. nearly	2135457		${ }_{2} 143^{6} 42$
Moon's hor, parallax,	6033.3		6034.8
Sun's	8.7		8.7
Diff, hor. par.	6024.6		6026.1
App. time of begin.	193319	App. time of end.	204929
Sun's right afcenfion,	45134		45147
Right afcen. meridian,	02453		1 4116

Now, with the right afcenfion of the meridian at the beginning, increafed by fix hours, or $6^{\mathrm{h}} 24^{\prime} 53^{\prime \prime}$, the latitude of the place of obfervation $57^{\circ} 9^{\prime} 0^{\prime \prime}$, and the obliquity of the ecliptic $23^{\circ} 28^{\prime} 3^{\prime \prime}$, the altitude of the nonagefimal is $41^{\circ} 39^{\prime} 6^{\prime \prime}$, and its longitude $35^{\circ} 46^{\prime} 6^{\prime \prime}$; hence the moon's apparent diftance from the nonagefimal is $38^{\circ} 8^{\prime} 5 \mathbf{1}^{\prime \prime}$, with which the altitude of
the nonagefimal, and difference of the horizontal parallaxes of the fun and moon, the parallax in longitude is $24^{\prime} \cdot 47^{\prime \prime} \cdot 9$, and in latitude $45^{\prime} 8^{\prime \prime}$.2.

Again, with $7^{h} 4 I^{\prime} 16^{\prime \prime}$, the fum of the right afcenfion of the meridian and fix hours, the latitude and obliquity of the ecliptic, the altitude of the nonagefimal, is $47^{\circ} 17^{\prime} 40^{\prime \prime}$, and longitude $4^{\circ} 8^{\prime} 35^{\prime \prime}$; the apparent diftance of the moon from the nonagefimal is, therefore, $26^{\circ} 28^{\prime} 7^{\prime \prime}$; from whence, the altitude of the nonagefimal, and the difference of the horizontal parallaxes of the fun and moon, the parallax in longitude is $19^{\prime} 47^{\prime \prime} .6$, and parallax in latitude $40^{\prime} 59^{\prime \prime} \cdot 3$.

The true motion of the moon in longitude is $40^{\prime} 48^{\prime \prime} .2$, and that of the fun $3^{\prime} 2^{\prime \prime} .1$; hence the moon's relative motion in longitude is $43^{\prime} 46^{\prime \prime} .1$; from which, fubtracting the difference of the parallaxes in longitude $5^{\prime} 0^{\prime \prime} \cdot 3$, the remainder $38^{\prime} 45^{\prime \prime} .8$ is the apparent relative motion of the moon in longitude.

The true motion of the moon in latitude, in the obferved interval, is $4^{\prime} 20^{\prime \prime} .4$; from which, fubtracting $4^{\prime} 8^{\prime \prime} .9$, the difference of the parallaxes in latitude, the remainder is the moon's apparent motion in latitude.

Now, with the apparent motions of the moon in longitude and latitude, the apparent inclination is found to be $17^{\prime} \circ^{\prime \prime}$, and the apparent motion of the moon in its relative orbit is $2325^{\prime \prime} .8$.

Wirt the altitude and longitude of the moon at the beginning and end of the eclipfe, the augmentation of the moon's femidiameter at the beginning is $9^{\prime \prime} .0$, and at the end $11^{\prime \prime} .4$; hence the moon's femidiameter, corrected by the augmentation and inflexion, is $16^{\prime} 35^{\prime \prime} \cdot 5$ at the beginning of the eclipfe, and $16^{\prime} 37^{\prime \prime} .9$ at the end; and the fum of the femidiameters of the fun and moon, at thofe times, are $32^{\prime} 20^{\prime \prime} .5$, and $32^{\prime} 22^{\prime \prime} .9$ refpectively; with which, and the moon's apparent motion in relative orbit, the central angle at the beginning of the eclipfe is
$53^{\circ} 15^{\prime} 20^{\prime \prime}$, and at the end $53^{\circ} 9^{\prime} 39^{\prime \prime}$; hence arch firf is $53^{\circ} 32^{\prime} 20^{\prime \prime}$, and arch fecond $52^{\circ} 52^{\prime} 39^{\prime \prime}$.

With thefe arches, and the fum of the femidiameters of the fun and moon at the beginning and end of the eclipfe, arches third and fourth will be found equal to $19^{\prime} 13^{\prime \prime} .2$ and $19^{\prime} 32^{\prime \prime} .6$ refpectively. Now, the fum of arch third, and the parallax in longitude at the beginning is $44^{\prime} \mathrm{I}^{\prime \prime} . \mathrm{I}$, and the difference between arch fourth, and the parallax in longitude at the end, is. 15".0. Now, with this fum and difference, the moon's true relative motion in longitude, and the obferved interval, the difference between the beginning of the eclipfe and the conjunction is $\mathrm{I}^{\mathrm{h}} 16^{\prime} 36^{\prime \prime} .1$, and between the end and the conjunction $26^{\prime \prime} .1$. Hence the apparent time of conjunction, inferred from the beginning, is $20^{\mathrm{h}} 49^{\prime} 55^{\prime \prime} .1$, and from the end it is alfo $20^{\mathrm{h}} 49^{\prime}$. $55^{\prime \prime} \cdot 1$, But the apparent time of conjunction at Greenwich is $20^{\text {h }} 58^{\prime} 27^{\prime \prime} \cdot 9$; hence the longitude of Aberdeen in time is. $8^{\prime} 32^{\prime \prime} .8$ weft.

Computation of the Apparent Time of Conjunction, on the Spheroidal Hypothefis, at Greenwich.

At Aberdeen.

App. time of beginning,	$\begin{array}{cc} \text { h. } \\ 19 & 33 \\ \hline \end{array}$	App. time of end,	204929
Sun's right afcenfion,	$451-34$		45147
Right afcen, of meridian,	- 2453		14116

Hence

Hence the interval between the beg. and conj. is	h. ." 11649.2	Interval between the end and conjunction is	h. $=39.2$
App. time of beginning,	193319.	App.time of ending,	2049 29.
App. time of conj.	20508.2		205082
App. time of conj, at Green.	$2058,44.8$		
Longitude in time,	836.6		

Determination of the Longitude of the late Obfervatory at Aberdeen, from the Apparent Times of Obfervation of the Immerfion and Emerfion of $\eta \mathrm{I}$: Obferved at Greenwich and Aberdeen, D November 26. 1787.

App. time of immer. at $\mathbf{G r}$ Emer.	$\begin{array}{cc} \text { h. } & \prime \prime \prime \\ 11 & 22 \\ 12 & 51.7 \\ 125 & 45 . \end{array}$	At Aberdeen,	$\begin{array}{llll} \text { b, } & & \prime \prime \prime \\ \text { 11 } & 18 & 8 \\ 12 & 23 & 12 \end{array}$
Obferved interval,	1853.3		154

Computatron of the Apparent Time of Conjunction in the Spherical Hypothefis, at Greenwich.

At Aberdeen.

Ef. par. in longitude,	+ 2045.2	
Eff, appt. longitude, 301334		
,	- "	
Moon's true latitude,	2016.9	
Eft. par. in latitude,	- 37 6.ז	
Approx. appt. latitude,	5723.0 S	
Horizontal parallax,	6111.3	
Alt. nonag. - -	53859.	
Longitude nonag.	652936	
Par. in longitude,	2029.1	
Par. in latitude,	3724.9	
Moon's true mot. in long.	. 4044.8	Moon's true mot. in latitude,
Diff. of par. in longitude,	, 742.9	Diff. of par. in latitude,
Moon's appt. mot. in long. $\quad 331.9$		Appt. mot. in latitude,
Appt. inclination,	32856	
Moon's femidiameter, 1640.1		
Augmentation,	+ 12.9	
Inflexion,	- 3.5	
Moon's corrected femid. 1649.5		
Central angle, 103540		
Appt. inclination,	32856	
Arch firf, - $\quad 7644$		Arch fecondi;
Arch third, - 16.41 .7		Arch fourth,
Par. in longitude, - $2029 . \mathrm{x}$		
Sum, - - 371008		Difference,
Hence the interval be- h. ' " In		Interval between the emer. and conjunction,
App ${ }^{\text {c }}$. time of immer.	11188	APpt time of emerfion,
Appt. time of conj.	12.1730.3	
At Greenwich,	$1226 \quad 2.5$	\cdots.
Longitude in time,	832.2	

T2:
Com -

Computation of the Apparent Times of Conjunction in the Spheroidal Hypothefis, at Greenwich.

At Aberdeen.

If we fuppofe, with Meffrs du Sejour and la Lande, that the difference between the equatorial and polar diameters is $3 \div$ of the equatorial diameter, in that cafe the longitude will be $8^{\prime} 33^{\prime \prime}$.6.

Determination of the Longitude of the Obfervatory at Aberdeen, by Obfervations of the Lunar Eclipfe of roth September 1783, made at Aberdeen and at Chiflehurft in Kent, $19^{\prime \prime}$ in Time Eaft of the Royal Obfervatory at Greenwich.

Determination of the Longitude of the Obfervatory at Aberdeen by a Chronometer, conftructed by Mr Arnold of London*.

The chronometer was fet to mean folar time at Greenwich, 16 th June 1788, ant loft $7^{\prime \prime} .5$ in eleven days. It was fent to Aberdeen by fea; and being compared with the Obfervatory clock, 15 th July, it was found to be $7^{\prime} 26^{\prime \prime} .6$ faft, and was lofing 64.4 daily: It is hence probable that the motion of the thip had altered its rate. Now, fuppofing this alteration to have commenced when the fhip left London, which was on the 8th of July, its error at that time, for the meridian of Greenwich, would therefore be $15^{\prime \prime} .0$; from this time, till 15 th July, it loft $44^{\prime \prime} .8,\left(=6^{\prime \prime} .4 \times 7,\right)$ its rate being fuppofed uniform. Hence its error, for the meridian of Greenwich, 15 th July at noon, was - 59".8. But its error, for the meridian of the Obfervatory at Aberdeen, at the fame time, was $+7^{\prime} 26^{\prime \prime} .6$. Hence the longitude of Aberdeen, in time, is $8^{\prime} 26^{\prime \prime} .4$ weft.

This laft method of afcertaining the longitude of Aberdeen, although it agrees very well with the former, yet it is not to be fo much depended on, as there are fome fuppofitions introduced which may be objected to.

From a comparifon of the preceding refults, it may be prefumed, that the longitude of this place, in time, is probably not lefs than $8^{\prime} 18^{\prime \prime}$, as deduced from the obfervations of the eclipfes of the firft and fecond fatellites of Jupiter, nor greater than $8^{\prime} 36^{\prime}$, as inferred from the folar eclipfe of 3 d June 1788. The difference between thefe limits is only $18^{\prime \prime}$ in time; which in this latitude does not amount to two miles and an half. Upon account of the near agreement of the refults of the folar eclipfe and occultation, as well as from other obfervations, I am led to believe

[^21]believe that $8^{\prime} 32^{\prime \prime}$ or $2^{\circ} 8^{\prime}$ is not far from the exact longitude of this place. Hence the latitude of the Girdlenefs is $57^{\circ} 8^{\prime}$, and longitude $2^{\circ} 6^{\prime} \mathrm{W}$. and the latitude of Greigfnefs $57^{\circ} 7^{\prime} 20^{\prime \prime}$, and longitude $2^{\circ} 6^{\prime} \mathrm{W}$. alfo.

The latitude and longitude of Aberdeen, as determined above, differ confiderably from the fame as given in moft books of geography and navigation, where indeed they are ufually ftated with great inaccuracy. Mr Downie, to whom, at his requeft, I communicated the refult of my obfervations, has, in his New Pilot, placed Aberdeen nearly as above, and of courfe has laid down the adjacent coaft, with much more precifion than had been formerly done. This was in 1793 ; I then fuppofed the longitude $2^{\circ} 9^{\prime} \mathrm{W}$. which is I^{\prime} greater than the above determination

Vol. IV.

$\therefore i$

4

VI. An Account of certain Motions which Small Ligbted Wicks acquire, when froimming in a Bason of Oil; together with Observations upon the Phenomena tending to explain the Principles upon which fuch Motions depend: Communicated in a Letter from PATRICK Wilson, F. R. S. Edin. and Profeffor of Practical Aftronomy in the Univerfity of Glafgow, to \mathcal{O} ohn PLarfair, F. R. S. Edin. and Profeffor of Mathematics in the Univerfity of Edinburgh.

> [Read May 5. 1795:]

Dear Sir, Glafgow College, April 28. 1795.

INow fit down to give you fome account of the little hydroftatical lamp, which I fo briefly mentioned to you in a former letter. As I am far from being fure whether what I have to offer upon this fubject may be entitled to the notice of the Edinburgh Royal Society, fo I will refer this point to your determination, after you have had leifure to confider the contents.

The phenomena, treated of in the fequel, were quite new to me a few months ago, and, fo far as I know, have not hitherto been attended to, or defcribed by any body elfe. What I have called the Hydrofatical Lamp, conffits of a fmall circular patch of common writing paper, about three eighths of an inch in diameter, having about a quarter of an inch of foft cotton thread
ftanding up through a puncture in the middle to ferve as a wick; and the phenomena, in queftion, are certain motions which fuch minikin lamps acquire, when lighted and made to fwim in very pure falad oil.

A shallow glafs bafon, with fides rifing nearly perpendicular, or a common glafs falver, will conveniently contain the oil for thefe experiments. As foon as the lamp is lighted, it will immediately fail brifkly forward, in fome direction, till it meets the fide of the veffel, and afterwards will take a circular courfe, always bearing up to the fides, and fo will perform many revolutions.

Sometimes the circulation is from right to left, and fometimes in the contrary direction, according as that point of the paper bafe, which in the direct failing kept always foremoft, turns away from the fide of the glafs a little to the right or to the left hand of that which comes to be the point of contact. This turning away, of what may be called the Leading Point of the bafe, is diftinctly obfervable by a partial rotation of the lamp round the wick as an axis, as foon as it arrives at the fide of the veffel. Sometimes, though rarely, the leading point itfelf attaches to the fide, and forms the vinculum, in confequence of the well known corpufcular attraction between the elevation of oil around the bafe, and that belonging to the fides of the glafs; and when the vinculum fo correfponds to the leading point, the lamp will be found to ftand ftill, without any tendency to circulate.

When the little wick has any fenfible excentricity upon the circular paper bafe, the lamp will fail fo as to make that part of the bafe which lies neareft to the wick the Aern ; and if the bafe of the lamp be clipped of an oval form, and the wick placed in the longer axis excentrical, that end of the bafe, neareft the wick, will alfo keep hindmoft, when the lamp fails acrofs the falver. In the fame manner, if the bafe be
an equilateral triangle, having its wick in the perpendicular which bifects any of the fides, either the vertex or fide will become the fern, and keep hindmoft, according as the wick is placed neareft the one or the other. Lamps, fo conftructed, are found alfo to circulate upon their arrival at the fide of the veffel, when the leading point turns away from the glafs, as it commonly happens.

Whatever be the caufe of the failing of the lamp directly foreward, the perpetual circulation, after it arrives at the fide, feems to proceed from the force, which formerly impelled it, ftill acting in the fame manner, but in a direction inclined to that of the corpufcular attraction, which forms the vinculum; and it is evident, that this inclination will be greater or lefs, according as the leading point is more or lefs averted from the glafs. When it fo happens that the leading point and vinculum coincide, it fhould feem that both forces, juft now mentioned, muft urge the lamp in a direction perpendicular to the fide of the glafs; in which cafe it muft ftand ftill, agreeable to obfervation.

The next thing which I had occafion to take notice of, when the lamp failed in a direct courfe, was, a feemingly very active repulfion between its ftern and the oil at the furface contiguous to it. This became manifeft, when very fine charcoal duft was lightly fcattered around the lamp. As it then proceeded in its courfe, it marked out a fpreading or diverging wake behind it, entirely clear of all duft, in confequence of the particles being chaced backwards, and laterally with a motion much more than merely relative.

Desirous of learning how this difperfion of the duft would take place when the lamp was ftationary, I conftructed one of a fine wafer, and with an excentric wick, confifting of a foft cotton thread doubled; and to prevent the wafer or bafe from catching fire, I coated its upper furface with gold leaf. When
this was made to reft immoveably upon the oil, the duft retired in all directions, fo as to leave the fpace, adjacent to the wafer quite free from every particle. But here it was obfervable, that this difperfion of the duft, by the feeming repulfion of the bafe of the lamp, was much more rapid at that fide which lay neareft to the wick than at any other part, and leaft of all fenfible at the fide diametrically oppofite.

The circumftances laft mentioned, feem fufficiently to account both for the progreffive motion of the lamp, and for the general law of this motion, formerly defribed. For, regarding this difperfion of the duft, as yet, only in a general way, and as the effect of fome repulfion between the bafe and the oil contiguous to it, the facts above mentioned plainly indicate, that, in all cafes, this repulfion is ftrongeft at that part of the bafe neareft the wick or flame : and as action and reaction are equal and contrary, the lamp muft therefore be impelled, in the direction of a line drawn through the wick, towards that part of the bafe moft remote from it, and where the reaction is the leaft.
But in order to obtain a fill more competent knowledge of the phyfical caufe of thefe motions, it feemed now neceffary to inquire more particularly into this apparent repulfion between the bafe of the lamp and the furrounding oil, as indicated by the difperfion of the duft, in the manner above defcribed: and here the following confiderations prefented themfelves.

THE oil in the bafon, when of an uniform temperature, has all its parts in a ftate of equilibrium and of reft. When the lamp is lighted, it is evident we have a very active caufe introduced, tending to deftroy that equilibrium. This caufe is the flame, which broods over a fmall portion of the oil, and is feparated from it only by the intervention of a piece of paper or a waffer. The oil, in fuch circumftances, in confequence of being violently heated, muft fuddenly increafe in volume, and mult now, on account of the decreafe of its fpecific gravity, be

When froimming in $B A S O N$ of OIL, \&c. 16%
preffed upwards by a force fufficient to raife part of it above the general level. But this heated portion of oil, in its endeavour thus to rife up, will meet with a refiftance equal to the weight of the incumbent lamp, which will determine it, in feeking a vent, to flide out from under the bafe in a tbin fuperficial ftream; and it feems to follow; with equal certainty, that this conftant ftream will flow moft readily and moft copioufly towards that fide of the bafe of the lamp where the refiftance is leaft, or where it has the fhorteft way to prefs forward; that is, from under the wick or flame, to the edge of the bafe which is the neareft, according to what we have feen to be agreeable to the phenomena. But, from the laws of motion, it is certain, that the rem action of this ftream of rarified oil, thus iffuing moft rapidly and moft copioufly from a particular fide of the bafe, muft impel the lamp in the contrary direction, and make it fail in the manner we have feen. It may further be remarked, that the heated oil, fo retreating from the flame, and endeavouring to rife fomewhat above the general level, in confequence of its diminifhed fpecific gravity, may more or lefs lift up that fide of the bafe neareft the wick, and aid the reaction of the recoiling ftream, by making the lamp fail in the oppofite direction, as it were dozon-bill.

That the rarified oil under the bafe has really a conftant tendency to rife above the general level, feems undeniable, from the following facts, namely, that after any of the lamps has burned a little while, and has got its, bafe foaked with the oil, as foon as the flame is blown out the lamp finks to the bottom; and even a lamp, with its bafe made of a thin lamina of talck, fails very well till the flame is extinguifhed, and then it immediately finks.

Agreeable to the explanation which has now been attempted, I found, that when a topical beat was applied to the furface of the oil, by bringing the point of a poker, dully red hot, near-
ly into contact, there was foon produced a fuperficial ftream or efflux from the iron in all directions, which cleared the face of the oil from the charcoal duft, in a wider and a wider circle, till at laft the whole particles were crowded together at the confines of the bafon.

When the oil in this experiment was fhallow, having gold leaf beat into very minute parts mixed with it, an oppofite ftream was obferved below, fetting in towards the poker in all directions, and then rifing upwards. But this general tendency of all the parts of the fluid of moving in queft of an equilibrium, is illuftrated in a very entertaining manner as follows : Into a tea-cup or punch-glafs, nearly filled with pure water, pour a defert fpoonful of very clean falad oil, with minute particles of gold leaf in it. If the water be cold, the oil, when poured on at the centre, leifurely and continuedly, will reft upon the furface in the form of a lens, and remain infulated or equidiftant from the fides of the veffel. A little lamp, when put upon this lens of oil, and lighted, will fail and circulate as larger ones do in the bafon. If it be now made to ftand ftill, it is very amufing to obferve the minute particles of the gold perpetually thrown out brifkly at the ftern in the fuperficial current, whilft the particles in the fund of the lens creep in all directions towards the lamp, and at laft rife up under the bafe towards the flame, as the great centre of attraction, till they are caught by the retreating fuperficial ftream, in which they rapidly trend off to fome diftance, when again they fink to renew. the circulation.

When a patch of paper, or a wafer, or fuch light body, fwims upon the oil in the bafon, the point of a hot iron held near to it makes it flit its place, and move away by a feeming repulfion; but, in reality, by the heat generating a fuperficial ftream, flowing from the iron in all directions.

Again, if upon oil of turpentine, xther, alcohol, or any of the inflammable fluids poffeffing much tenuity, you throw a wafer much heated, it will immediately glide away, and continue in motion till it cools; when the ftream, which iffued from fome part of it moft copioufly, ceafes. Double rum, melted tallow, bees wax, and rofin, alfo afford the fame continued efflux at the furface, upon a topical application of heat, and the fame phenomena as the oil does, when little lamps are made to fwim in them. It is fomewhat remarkable, however, that though the inflammable fluids all agree in this, yet the topical application of heat, at the furface of water, does not produce fimilar effects.

FOR if the point of a poker nearly red hot be held very clofe to the furface of water in a bafon, the particles of the charcoal duft do not at all glide away as they do in the cafe of oil, but feem to acquire only a flow irregular circular motion, which in time fpreads wider, whilft the floating motes or particles of duft keep nearly their relative places; and the fame thing happens, though the point of the iron touches the water, fo as to make it fimmer.

I do not well know how to account for this, unlefs it may be a confequence of the known much lefs expanfibility of water by heat, compared to that of the inflammable fluids, and which may be fo inconfiderable as not to deftroy the equilibrium, fo far as to produce an efflux from the lighter and expanded fluid immediately under the heated body. Poffibly, too, the parts of the water, as foon as heated, may tranfmit the furplus temperature to the contiguous colder water much more rapidly than the inflammable fluids do in like circumftances, and thereby refift the high temperature, neceffary to that degree of expanfion, which would difturb the equilibrium, and produce an efflux; not to mention that the maximum of this temperature can never, at any rate, exceed 212°, the boiling point of water.

Vol. IV.
X
That

That the equilibrium, however, amongft the parts of water, is difturbed by the local application of heat, though in a much fmaller degree that what obtains among the inflammable fluids, appears from an experiment I was led to make with a fmall thin cup fwimming on water, and fo contrived as to carry and feed with oil a wick, placed a little way down from the lip in the infide, fo as to be on a level with the water. The confequence of this conftruction was, that the cup moved upon the water very flowly, but always with the flame evidently fternmoft. The fame cup, when taken from the water, and put into a bafon of ftrong rum, failed a great deal fafter, and according to the fame ufual law.

I AM much afraid, that by this time I have wearied you by fuch a detail of minute facts and circumftances, and by thofe frequent repetitions which every new fubject more or lefs requires. And I ever remain,

Dear Sir,

Your moft obedient faithful fervant,
Pat. Wilson.
P. S. Should you be inclined to repeat any of the experiments, the following directions and mifcellaneous obfervations may be attended to: The thread I made ufe of for the wicks was of that foft kind commonly employed in the flowering of muflin. After making the puncture in the bafe, you put through a bit of the thread, which clip fhort off below, and with a pin force in the burr gently round the thread, to give the bafe a proper hold of it. Then clip away the fuperfluous thread above, leaving the wick about a quarter of an inch long; and fo the lamp is completed. Set it then upon the oil, by taking hold of the wick, that the paper bafe may not be bent or diftorted by
handling it; and, after the wick is touched with a drop of oil, it is ready for being lighted. For this purpofe, a bit of pack thread, which has been fteeped in oil, is a cleanly and convenient match, and fheds no impurities on the oil, as a candle or wax taper would do.

When you want the lamps to circulate, the oil muft be very pure, and brought into full contact with the fides of the glafs. The oil, and the bafon or falver, fhould all be allowed to come to the fame temperature, between 55° and 60° of Fahrenheit. For if any part of the brim be much hotter than the reft, the lamp, on arriving there, will leave the fide, by the current iffuing from the heated part forcing it away.

Sometimes the lamp, when failing, veers a little into a different direction, by the bafe altering or warping by the forching heat of the flame, which determines the ftream to flow out moft copioufly at a different part of the bafe.

In the melted greafe which lies round the wick of a common candle when lighted, there are fometimes obferved atoms, which have been left by the fnuffers, moving to and from the flame continually. Thefe motions have been conceived by fome as occafioned by attractions and repulfions, in confequence of an electrical quality imputed to the flame. It fhould feem, however, that they depend merely upon oppofite currents at the furface, and immediately below the furface of the melted greafe, according to the principle above explained.
VII. An Account of a Singular Halo of the Moon. Communicated in a Letter from WILLIam Hall, Efq; of WhiteHall, F. R. S, Edin. to Sir Games Hall, Bart. F. R. S. Edin.
[Read May 2. 1796.]

Dear Sir James, Whiteball, near Berwick, April2. 1796.

ISend under cover the reprefentation of a very fingular Halo of the Moon, (See Pl. V.), feen here on the night of the 18 th of February laft, about 10 o'clock, and this I have hitherto delayed, in order, if poffible, to gain farther information in the neighbourhood concerning it.

During the fhort continuance of the fmall halo, which did not exceed io minutes after I got notice of it, I could not lay my hands on any other inftrument to take the angles, but a Sisson's theodolite, which, unluckily, having been conftructed fo as not to admit of a vertical angle fo great as the moon's altitude then was, I laid it afide, not recollecting that it might have meafured feveral of the fmaller angles. But I obferved fundry marks, from which I took the angles as exactly as I could next day.

The moon was about S. W. and her altitude nearly 54°, which of confequence was alfo the altitude of the limb of the greater halo, where it was higheft, and where it paffed through.
the moon; the altitude of its oppofite limb was 14°; fo that its diameter fubtended an angle of no lefs than a hundred and twelve degrees.

The diameter of the fmall halo, 'which appeared to be a perfect circle, with the moon in its centre, I found, after repeated trials, was under 12°, and more than 8°; but as the different diameters of the large halo were not meafured, it cannot pofitively be affirmed that it was an exact circle ; on the contrary, its limb did not feem to interfect the fmall circle quite fo much at right angles, as the circular arch delineated in the plan. It may therefore have been fomewhat eliptical.

The fmall circle was remarkably bright, particularly at Weft Refon, about five miles to the northward, the only other place where the halo was obferved, and where it was thought to fend forth flame. The fmall halo alfo continued there much longer than here, where fome thin fleecy clouds foon put an end to it, but the large halo continued with us near an hour.

The weather about this time was, for the feafon, remarkably mild, particularly on the day of the halo. The 1 ky was pretty clear all that day, and alfo in the evening; but at the time of the halo there was a fmall degree of hazinefs, particularly towards the north, which did not however prevent the moon from fhining with brightnefs; and the ftars were even vifible within the circle of the fmall halo: there was little or no wind.

The circles or belts of both halos are reprefented in the plan, nearly of their apparent breadth, or perhaps a little broader; the light of both was whitifh, and confiderably bright, without colour; that of the large circle was the paler of the two, particularly where it paffed through the fmall circle : to the northward it was fomewhat obfcure.

By means of the angles taken as above, after having afcertained, on a vertical circle of the heavens, the fituations of the
moon, of the fmall halo, and of the north-eaftern limb of the large halo, whofe fouth-weftern limb paffed through the moon, the whole was projected on the horizontal plane, as in the figure already referred to. The moon, a little more than half, is placed in the centre of the fmaller halo; and both halos are reprefented in their true fituations, relatively to the horizon, and in the circular fhape which they appeared to have, though they ought perhaps to have been fomewhat-forefhortened, and thrown into an elliptic form.

This halo, as you will fee by the above defcription, appears to be of the kind called by the learned a Corona; and as it fomewhat refembles the famous one of the fun, obferved at Rome in the year 1629, and defcribed by Scheiner*, it deferves the more attention, efpecially as the great halo, on the prefent occafion, having its fouth-weftern limb elevated to the height of 54°, and its north-eaftern depreffed to within 14° of the horizon, was in an oblique pofition, not eafily reconciled with the theory of Huygens, which feems to require that fuch circles fhould be equally elevated above the horizon all round. It alfo fhews, that Scheiner's original plan of the halo at Rome, which reprefented it as oblique, may have been right, and that Huygens's correction, which makes it parallel to the horizon, was probably an erroneous conjecture.
I am,

Dear Sir James,
Your humble fervant,

Will. Mall。

[^22]

6

$$
\begin{aligned}
& \text { iterjuiee of ne 'tlrelro stimel the . Aloom erem ind } \\
& \text { Berwick shice on the } 18 \text {. of Febry } 1796 .
\end{aligned}
$$

VIII. A New Series for the Rectification of the Ellipsis; together with fome Observations on the Evolution of the Formula $\left(a^{2}+b^{2}-2 a b \operatorname{cof} \varphi\right)^{n}$. By fanes Ivorr, A. M. Communicated by $\mathcal{F} O H n$ Platfair, Profeflor of Mathematics in the Univerfity of Edinburgb.
[Read Nov. 7. 1796.]

Dear Sir,

HAVING, as you know, beftowed a good deal of time and attention on the fudy of that part of phyfical aftronomy which relates to the mutual difturbances of the planets, I have, naturally, been led to confider the various methods of refolving the formula $\left(a^{2}+b^{2}-2 a b \operatorname{cof} \varphi\right)^{n}$ into infinite feries of the form $\mathrm{A}+\mathrm{B} \operatorname{cof} \varphi+\mathrm{C} \operatorname{cof} 2 \phi+\& \mathrm{c}$. In the courfe of thefe inveftigations, a feries for the rectification of the ellipfis occurred to me, remarkable for its fimplicity, as well as its rapid convergency. As I believe it to be new, I fend it you, inclofed, together with fome remarks on the evolution of the formula juift mentioned, which, if you think proper, you may fubmit to the confideration of the Royal Society.

> I am, Dear Sir,

Your's, \&c.

To Mr Oohn Playfair, Profelfor of Mathematics, Eoc.
Vol. IV.

178 REGTIFIGATION of the ELLIPSIS, \&c.
Let ε denote the excentricity of an ellipfe, of which the femitranfverfe axis is unity, and w the length of the femicircle, radius being unity: Then,

$$
\text { if we put } e=\frac{1-\sqrt{1-\varepsilon^{2}}}{1+\sqrt{1-\varepsilon^{2}}},
$$

half the periphery of the ellipfis will be
$=\frac{\pi}{\mathbf{I}+e}\left(\mathbf{1}+\frac{\mathbf{r}^{2}}{2^{2}} e+\frac{\mathbf{1}^{2} \cdot \mathbf{1}^{2}}{2^{2} \cdot 4^{2}} e^{4}+\frac{\mathbf{x}^{2} \cdot \mathbf{1}^{2} \cdot 3^{2}}{\mathbf{2}^{2} \cdot 4^{2} \cdot 6^{2}} e^{6}+\frac{\mathbf{x}^{2} \cdot \mathbf{1}^{2} \cdot 3^{2} \cdot 5^{2}}{2^{2} \cdot 4^{2} \cdot 6^{2} \cdot 8^{2}} e^{8}+\& \mathrm{c}.\right)$,
the coefficients being the fquares of the coefficients of the radical $\sqrt{I-\varepsilon^{2}}$.

The common feries is,

$$
w \times\left(1-\frac{1}{2} \cdot \frac{1}{2} \varepsilon^{2}-\frac{1.1}{2.4} \cdot \frac{1.3}{2.4} \varepsilon^{4}-\frac{1.1 .3}{2.4 .6} \cdot \frac{1.3 .5}{2.4 .6} \varepsilon^{6}-\& c \cdot\right) .
$$

The firft of thefe feries converges fafter than the other on two accounts: firft, becaufe the coefficients decreafe more rapidly; and, next, becaufe ε is very fmall in comparifon of ε, even when ε is great: Thus, if ε be $\frac{4}{5}, e$ will be $\frac{1}{4}$, and $e^{2}=\frac{1}{16^{\circ}}$.

In order to point out the way in which the preceding feries was difcovered, let us fuppofe $\left(a^{2}+b^{2}-2 a b \operatorname{cof} \varphi\right)^{n}$ $=\mathrm{A}+\mathrm{B} \cos \varphi+\mathrm{C} \operatorname{cof} 2 \varphi+\& \mathrm{c}$; and to determine the coefficients, A, B, C, \&c. let us, with M. de la Grange, confider the quantity ($\left.a^{2}+b^{2}-2 a b \operatorname{cof} \varphi\right)$ as the product of the two imaginary expreffions $(a-b c 甲 \sqrt{ }-1)$, and $(a-b c-p \vee-1)$, where c denotes the number whofe hyperbolic logarithm is unity. Then, by expanding the powers $\left(a-b c^{\varphi}-\mathrm{I}\right)^{n}$, and $(a-b c-\phi V-\mathrm{I})^{n}$ into the feries $a^{n}\left(\mathrm{r}-\alpha \cdot \frac{b}{a} c^{\varphi} V^{-1}+\beta c^{2 \varphi} \vee\right.$ - $^{\mathrm{I}}-\gamma^{3 \varphi} \mathrm{~V}^{-1}+8 c \mathrm{c}$.
and $a^{n}\left(1-\alpha \cdot \frac{b}{a} c^{-\phi} V^{1}+\beta c^{-2 \varphi V}-1-\gamma^{-1}-3 \rho \sqrt{ }-1+\& c\right.$. we have $\alpha=n, \beta=\frac{\pi . \overline{n-1}}{1.2}, \gamma=\frac{n . \overline{n-1 .} \overline{n-2}}{1.2 .3}$ \&c.

Then multiplying thefe two feries together, and putting $2 \operatorname{cofm\varphi }$ for its imaginary value $c^{+m \varphi \sqrt{ }-1}+c^{-m \varphi \sqrt{-1}}$, we fhall find, on equating the terms,

$$
\begin{aligned}
& \mathrm{A}=a^{2 n} \times\left(\mathrm{I}+\alpha^{2} \cdot \frac{b^{2}}{a^{2}}+\beta^{2} \cdot \frac{b^{4}}{a^{4}}+\gamma^{2} \cdot \frac{b^{6}}{a^{6}}+\& \mathrm{c} .\right), \\
& \mathrm{B}=-2 a^{2 n} \times\left(\alpha \cdot \frac{b}{a}+\alpha \beta \cdot \frac{b^{3}}{a^{3}}+\beta \gamma \cdot \frac{b^{5}}{a^{5}}+\& \mathrm{c} .\right),
\end{aligned}
$$

and fo on.
Of the feveral feries for $\mathrm{A}, \mathrm{B}, \mathrm{C}, \& \mathrm{c}$. the firft deferves particular attention, on account of the fimplicity of the law of its terms. It deferves the more attention, too, that the whole fluent $\int \dot{\varphi}\left(a^{2}+b^{2}-2 a b \operatorname{cof} \varphi\right)^{n}$, generated while φ from \circ becomes $=\pi$, half the circumference of the circle, is $=A+$ w all the other terms of the fluent then vanifhing.

Suppose now, in an ellipfis, the femi-tranfverfe $=1$, the excentricity $=\varepsilon$, and φ an arch of the circumfcribing circle, reckoned from the extremity of the tranfverfe: then the fluxion of the correfpondent arch of the ellipfis, cut off by the fame ordinate, will be $=\dot{\phi} \sqrt{1-\varepsilon^{2} \operatorname{cof}^{2} \varphi}$.

IN this expreffion, I write $\frac{1}{2}+\frac{1}{2} \operatorname{cof} 2 \varphi$, for $\operatorname{cof.}^{2} \varphi$: and put the refult, $\dot{\phi} \sqrt{1-\frac{\varepsilon^{2}}{2}-\frac{\varepsilon^{2}}{2} \cos 2 \varphi}=\dot{\varphi} \sqrt{a^{2}+b^{2}-2 a b \operatorname{cof} 2 \varphi}$, a and b being indeterminate quantities.

To determine a and b, we have $a^{2}+b^{2}=1-\frac{\varepsilon^{2}}{2}$, and $2 a b=\frac{\varepsilon^{2}}{2}$: whence $a+b=1$, and $a-b=\sqrt{1-\varepsilon^{2}}$ fo that $a=\frac{1+\sqrt{1-\varepsilon^{2}}}{2}$ and $b=\frac{1-\sqrt{1-\varepsilon^{2}}}{2}$.

I thus obtain $\dot{\phi} \sqrt{1-\varepsilon^{2} \operatorname{cof}^{2} \varphi}=\dot{\phi} \sqrt{a^{2}+b^{2}-2 a b \operatorname{cof} 2 \varphi:}$ and, taking the whole fluent, while φ from \circ becomes $=w$, it is manifeft, from what has been premifed, that the femiperiphery of the ellipfis is $=$

$$
\varpi \times a \times\left(\mathbf{1}+\frac{1}{2^{2}} \cdot \frac{b^{2}}{a^{2}}+\frac{\mathbf{1}^{2} \cdot \mathbf{1}^{2}}{2^{2} \cdot 4^{2}} \cdot \frac{b^{4}}{a^{4}}+\frac{\mathbf{1}^{2} \cdot \mathbf{1}^{2} \cdot 3^{2}}{2^{2} \cdot 4^{2} \cdot 6^{2}} \cdot \frac{b^{6}}{a^{6}}+\& \mathrm{c} .\right),
$$

or putting $\frac{b}{a}=e=\frac{1-\sqrt{1-\varepsilon^{2}}}{1+\sqrt{1-\varepsilon^{2}}}$, and $a=\frac{a}{a+b}=\frac{1}{1+\frac{b}{a}}=\frac{1}{1+\varepsilon^{\prime}}$,
the femiperiphery of the ellipfis $=\frac{x}{1+e} \times$ $\left(1+\frac{\mathbf{1}^{2}}{2^{2}} e^{2}+\frac{\mathrm{I}^{2} \cdot 1^{2}}{2^{2} \cdot 4^{2}} e^{4}+\frac{\mathbf{1}^{2} \cdot 1^{2} \cdot 3^{2}}{2^{2} \cdot 4^{2} \cdot 6^{2}} e^{6}+\& \mathrm{c}.\right)$

In this feries, as was before obferved, e is a fmall fraction even when s is very confiderable, and the coefficients are more fimple in the law of progreffion, and converge fafter, (efpecially in the firft terms), than in the common feries.

If we fuppofe the ellipfis to be infinitely flattened, in which cafe $\varepsilon=1$, and $e=1$, and the femiperiphery $=2$, this feries gives. $2=\frac{\pi}{2} \times\left(1+\frac{1^{2}}{2^{2}}+\frac{1^{2} \cdot 1^{2}}{2^{2} \cdot 4^{2}}+\frac{1^{2} \cdot 1^{2} \cdot 3^{2}}{2^{2} \cdot 4^{2} \cdot 6^{2}}+8 c\right.$. $)$, and fo

$$
\frac{4}{\pi}=1+\frac{x^{2}}{2^{2}}+\frac{\frac{1}{}^{2} \cdot 3^{2}}{2^{2} \cdot 4^{2}}+\frac{x^{2} \cdot 1^{2} \cdot 3^{2}}{2^{2} \cdot 4^{2} \cdot 6^{2}}+\frac{1^{2} \cdot x^{2} \cdot 3^{2} \cdot 5^{2}}{2^{2} \cdot 4^{2} \cdot 0^{2} \cdot 8^{2}}+\& x c .
$$

But, we may remark, that as we have here obtained the fum of the fquares of the coefficients of the binomial when the exponent is $\frac{1}{2}$; fo, from the fame fource, we may determine the fum of the fquares of the coefficients correfponding to any other exponent, at leaft by a fluent.

For taking the whole fluent when $\varphi=\varpi$, we have
$\int\left(a^{2}+b^{2}-2 a b \operatorname{cof} \varphi\right)^{n} \dot{\varphi}=a^{2 n} w\left(1+\alpha^{2} \cdot \frac{b^{2}}{a^{2}}+\beta^{2} \cdot \frac{b^{4}}{a^{4}}+\gamma^{2} \cdot \frac{b^{6}}{a^{6}}+\& c_{c}\right)$. and fo when $a=1$, and $b=1$,

$$
\int\left(\frac{a^{2}+b^{2}-2 a b \operatorname{cof} \varphi}{a}\right)^{n}=1+\alpha^{2}+\beta^{2}+\gamma^{2}+\& c
$$

Now $_{\text {; }}$

Now, when $a=1$, and $b=1, \int \dot{\varphi}\left(a^{2}+b^{2}-2 a b \operatorname{cof} \phi\right)^{n}=2^{2 n} \times$ $\int \dot{\varphi}\left(\operatorname{fin} \frac{\varphi}{2}\right)^{2 n}$ becaufe $_{2}\left(\operatorname{fin} \frac{\varphi}{2}\right)^{2}=1-\operatorname{cof} \varphi:$ we thus obtain

$$
\frac{2^{2 n} \times \int \dot{\varphi}\left(\operatorname{fin} \frac{\varphi}{2}\right)^{2 n}}{x}=1+\alpha^{2}+\beta^{2}+\gamma^{2}+\& c
$$

the whole fluent to be taken when $\varphi=w$, or $\frac{\phi}{2}=\frac{w}{2}$.
If we put $x=$ fin $\frac{\varphi}{2}$, we fhall have

$$
\frac{2^{2 n} \times \int \frac{x^{2 n} \dot{x}}{\sqrt{1-x^{2}}}}{\frac{1}{2} \pi}=1+\alpha^{2}+\beta^{2}+\gamma^{2}+\& \mathrm{C},
$$

the whole fluent to be taken when $x=1$; and in this formula n is any number fractional or integral, pofitive or negative; and $a, \beta, \gamma, \& c$. the coefficients of the binomial raifed to a power of which the exponent is n.

When n is a whole pofitive number, $\int \frac{x^{2 n} \dot{x}}{\sqrt{1-x^{2}}}=\frac{1 \cdot 3 \cdot 5 \ldots(2 n-1)}{2 \cdot 4 \cdot 6 \ldots{ }^{2 n}} \cdot \frac{\pi}{2}$, in the cafe when $x=1$: And fo, $2^{2 n} \times \frac{\mathrm{x} \cdot 3 \cdot 5 \cdots(2 n-1)}{2 \cdot 4 \cdot 6 \cdots \cdot 2 n}=\mathrm{I}+\alpha^{2}+\beta^{2}+\gamma^{2}+\& \mathrm{c}$.

Now, $2^{2 n} \times \frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{2.4 .6 \ldots)^{2 n}}$ is no other than the coefficient of the middle term of a binomial, raifed to the power expreffed by $2 n$: Hence we have a very curious property of thofe numbers: viz. that the fum of the fquares of the coeficients of a binomial, the exponent being n, is equal to the coefficient of the middle term of a binomial, of which the exponent is $2 n$.

Another remark, which I have to offer on this fubject, 'may be confidered not only as curious, in an analytical point of view, but as, in fome meafure, accomplifhing an object that has much engaged the attention of mathematicians.

In the computation of the planetary difturbances, it becomes neceffary to evolve the fraction $\left(a^{2}+b^{2}-2 a b \operatorname{cof} \varphi\right)^{-\frac{3}{2}}$ into a feries
feries of this form, $\mathrm{A}+\mathrm{B} \operatorname{cof} \varphi+\mathrm{C} \operatorname{cof} 2 \varphi+\& \mathrm{c}$. The quantities a and b reprefent the diftances of the difturbing planets from the fun; and when thefe bear fo great a proportion to one another, (as in the cafe of Jupiter and Saturn, or Venus and the Earth), that the fraction $\frac{b}{a}$ is large, it becomes extremely difficult to compute the coefficients $\mathrm{A}, \mathrm{B}, \& \mathrm{c}$. by feries, on account of the great number of terms that muft be taken in. This matter not a little perplexed the firft geometers who confidered this fubject, and they were obliged to approximate to the quantities fought by the method of quadratures, and by other artifices.

Two things are to be attended to with regard to the quantities $\mathrm{A}, \mathrm{B}, \mathrm{C}, \& \mathrm{c}$. The firft is, That it is not neceffary to compute all of them feparately by feries, or by other methods: They form a recurring feries; and the two firt being fo computed, all the reft may be derived from them. The fecond thing is, That the quantities A and B having been computed for any exponent n, the correfpondent quantities are thence derived, by eafy formulx, for the exponents $n+1, n+2 ; n-1, n-2$; and in general for the exponent $n+m, m$ being any integer number, pofitive or negative.

From thefe remarks, it follows, that the whole difficulty lies in the computation of the two firft quantities, A and B; and that we are not confined to a given exponent n, but may choofe any one in the feries, $n+1, n+2, \& \mathrm{c}_{\mathrm{i}} ; n-\mathrm{I}, n-2, \& \mathrm{c}$. ; that will render the computation moft eafy and expeditious.

Thus, in order to compute the quantities A and B, for the exponent - $\frac{3}{2}$, M. de la Grange makes choice of the exponent $+\frac{1}{2}$, which, in the whole feries of exponents $+\frac{3}{2},+\frac{1}{i}$, $-\frac{1}{2},-\frac{3}{2}, \& c$. is the moft favourable for computation, on account of the convergency of the coefficients of the feries for \mathbf{A} and B.

RECTIFICATION of the ELLIPSIS, \&c. 183
In confidering thefe fubjects, however, I have fallen upon a method of computing the quantities A and B for the exponent $-\frac{1}{2}$ by feries that converge fo faft, that, even taking the moft unfavourable cafe that occurs in the theory of the planets, two or three terms give the values required with a fufficient degree of exactnefs. This is what I am now to communicate.
We are then to confider the expreffion $\left(a^{2}+b^{2}-2 a b \operatorname{cof} \varphi\right)^{-\frac{2}{2}}$ $=\frac{1}{\sqrt{a^{2}+b^{2}-2 a b \operatorname{cof} \phi}}$: for the fake of fimplicity in calculation, I write $\frac{b}{a}=c$, throwing out a altogether ; and I fuppofe

$$
\frac{1}{\sqrt{\left(1+c^{2}-c \operatorname{cof} \varphi\right)}}=\mathrm{A}+\mathrm{B} \operatorname{cof} \varphi+\mathrm{C} \operatorname{cof} 2 \varphi+\& \mathrm{c}
$$

LeT ψ be an angle, fo related to φ, that fin $(\psi-\varphi)=c$ fin ψ : It is obvious, from this formula, that $\psi=\phi$ when fin $\psi=0$, that is, when ψ is equal to 0 , or to $w, 2 \pi, \& c$.

We have then, $\operatorname{cof}(\psi-\varphi)=\sqrt{1-c^{2} \mathrm{fin}^{2} \psi}$: and taking the fluxions, $\dot{\psi}-\dot{\varphi}=\frac{c \operatorname{cof} \psi \times \dot{\psi}}{\operatorname{cof}(\psi-\psi)}=\frac{c \operatorname{cof} \psi \times \dot{\psi}}{\sqrt{\left(\pm-c^{2} \sin ^{2} \psi\right)}}$;
whence $\varphi=\dot{\psi} \times \frac{\sqrt{1-c^{2} \operatorname{tin}^{2} \psi}-c \operatorname{cof} \psi}{\sqrt{1-c^{2} \sin ^{2} \psi}}$
$\operatorname{Bur}\left(\sqrt{1-c^{2} \operatorname{fin}^{2} \psi}-c \operatorname{cof} \psi\right)^{2}=1-c^{2} \operatorname{fin}^{2} \psi+c^{2} \operatorname{cof}^{2} \psi$ $-2 c \operatorname{cof} \psi \sqrt{1-c^{2} \mathrm{fin}^{2} \psi}=1+c^{2}-2 c^{2} \mathrm{fin}^{2} \psi-2 c \operatorname{cof} \psi$ $\sqrt{1-c^{2} \text { fin } 2 \psi}$, (becaufe $\left.c^{2} \operatorname{cof}^{2} \psi=c^{2}-c^{2} \operatorname{fin}^{2} \psi\right)=1+c^{2}$ $-2 c \times\left(c \operatorname{fin} \psi \times \operatorname{fin} \psi+\cos \psi \sqrt{1-c^{2} \operatorname{fin}^{2} \psi}\right)$. Now, if we write for c fin ψ its equal, fin $(\psi-\phi)$, and for $\sqrt{1-c^{2} \operatorname{fin}^{2} \psi}$ its equal, $\operatorname{cof}(\psi-\phi)$, we thall have $c \operatorname{fin} \psi \times \operatorname{fin} \psi+\operatorname{cof} \psi \times$ $\sqrt{1-c^{2} \operatorname{fin}^{2} \psi}=\operatorname{fin}(\psi-\phi) \times \operatorname{fin} \psi+\operatorname{cof} \psi \times \operatorname{cof}(\psi-\varphi)$ $=\operatorname{cof} \varphi:$ which being fubftituted, there comes out $\left(\sqrt{1-c^{2} \operatorname{fin}^{2} \psi}-c \operatorname{cof} \psi\right)^{2}=1+c^{2}-2 c \operatorname{cof} \varphi$.

184 RECTIFIGATION of the ELLIPSIS, \&c.
Our fluxional formula thus becomes $\dot{\varphi}=$
$\psi \frac{\sqrt{1+c^{2}-2 c \operatorname{cor} \varphi}}{\sqrt{1-c^{2} \operatorname{fin}^{2} \psi}}$; whence $\frac{\dot{\phi}}{\sqrt{1+c^{2}-2 c \cot \varphi}}=\frac{\dot{\psi}}{\sqrt{1-c^{2} \operatorname{lin}^{2} \psi}}$.
I NEXT transform the quantity $\sqrt{1-c^{2} \text { fin }{ }^{2} \psi}$ as in the inveftigation for the elliptic feries, and putting $c^{\prime}=\frac{1-\sqrt{1-c^{2}}}{x+\sqrt{1-c^{2}}}, \mathbf{I}$ find $\sqrt{\sqrt{I-c^{2}} \mathrm{fin}^{2} \psi}=\frac{\sqrt{1+c^{\prime 2}+2 c^{\prime} \operatorname{cof} 2 \psi}}{1+c^{\prime}}$, and fo $\frac{\dot{\phi}}{\sqrt{1+c^{2}-2 c \cos \varphi}}=$ $\frac{\left(1+c^{\prime}\right) \dot{\psi}}{\sqrt{1+c^{2}+2 c^{\prime} \cos 2 \psi}}$.

Now, taking the fluents when $\varphi=w$, and $\psi=w$, we fhall have $\int \frac{\dot{1}}{\sqrt{1+c^{2}-2 c \cot \varphi}}=\mathrm{A} \times \tau:$ And according to the method of M. dela Grange, $\int \frac{\dot{\psi}}{\sqrt{1+c^{\prime 2}+2 c^{\prime} \operatorname{cof} 2 \psi}}=w \times$ $\left(1+\frac{\mathbf{1}^{2}}{2^{2}} c^{\prime 2}+\frac{\mathbf{1}^{2} \cdot 3^{2}}{2^{2} \cdot 4^{2}} c^{4}+\& c \cdot\right):$ Hence $A=\left(1+c^{\prime}\right) \times$ $\left(1+\frac{1^{2}}{2^{2}} c^{\prime 2}+\frac{x^{2} \cdot 3^{2}}{2^{2} \cdot 4^{2}} c^{\prime 4}+\& c\right.$.). And in this value of A, c^{\prime} will be a fmall fraction, even though c be large; and the feries will therefore converge very faft.

But, taking the value of A directly in a feries, we have $\mathrm{A}=\mathrm{I}+\frac{\mathbf{1}^{2}}{2^{2}} c^{2}+\frac{\mathbf{1}^{2} \cdot 3^{2}}{2^{2} \cdot 4^{2}} c^{4}+\& \mathrm{c}$. And for $\mathrm{I}+\frac{\mathbf{1}^{2}}{2^{2}} c^{2}+\frac{\mathbf{1}^{2} \cdot 3^{2}}{2^{2} \cdot 4^{2}} c^{4}$ $+\& c_{0}=\left(1+c^{\prime}\right) \times\left(1+\frac{1^{2}}{2^{2}} c^{\prime 2}+\frac{1^{2} \cdot 3^{2}}{2^{2} \cdot 4^{2}} c^{\prime 4}+\& c\right.$. $)$. Now, the two feries being exactly alike, it is evident that we may transform the one, as we have transformed the other, and that, if we put $c^{\prime \prime}=\frac{1-\sqrt{1-c^{\prime 2}}}{1+\sqrt{1-c^{\prime 2}}}$ we fhall have $1+\frac{\frac{1}{}^{2}}{2^{2}} c^{\prime 2}+\frac{1^{2} \cdot 3^{2}}{2^{2} \cdot 4^{2}} c^{\prime 4}=$ $\left(\mathrm{I}+c^{\prime \prime}\right) \times\left(\mathrm{I}+\frac{\mathrm{I}^{2}}{2^{2}} c^{\prime \prime 2}+\frac{\mathrm{I}^{2} \cdot 3^{2}}{2^{2} \cdot 4^{2}} c^{\prime \prime 4}+\& \mathrm{c}.\right):$ whence $\mathrm{A}=\left(\mathrm{I}+c^{\prime}\right)$ $\left(1+c^{\prime \prime}\right)\left(1+\frac{x^{2}}{2^{2}} c^{\prime \prime 2}+\frac{\frac{1}{}^{2} \cdot 3^{2}}{2^{2} \cdot 4^{2}} c^{\prime 4}+\& c_{0}\right) \cdot$

RECTIFIGATION of the ELLIPSIS, \&c. 185
IT is manifeft we may proceed in this manner as far as we pleafe, and that, if we put $c^{\prime \prime \prime}=\frac{1-\sqrt{1-c^{\prime \prime 2}}}{1+\sqrt{1-c^{\prime 2}}} ; c^{\prime \prime \prime \prime}=\frac{1-\sqrt{1-c^{\prime \prime \prime 2}}}{1+\sqrt{1-c^{\prime \prime 2}}}$ and fo on, we fhall have the value of A in an infinite product, $A=\left(1+c^{\prime}\right) \times\left(1+c^{\prime \prime}\right) \times\left(1+c^{\prime \prime \prime}\right)\left(1+c^{\prime \prime \prime}\right) \times \& c$, the quantities $c^{\prime}, c^{\prime \prime}, c^{\prime \prime \prime}, c^{\prime \prime \prime \prime}, \& c$. converging very rapidly.

Nothing more feems to be wifhed for, with regard to the computation of the quantity A : fince we can, by methods fufficiently fimple, exhibit the value of it in feries that fhall converge as faft as we pleafe. By a fimilar mode of reafoning, I find the feries $\mathrm{x}-\frac{\mathbf{x}}{2^{2}} \gamma^{2}+\frac{x^{2} \cdot 3^{2}}{2^{2} \cdot 4^{2}} \gamma^{4}-\frac{\mathbf{x}^{2} \cdot 3^{2} \cdot 5^{2}}{2^{2} \cdot 4^{2} \cdot 6^{2}} \gamma^{6}+\& c$. (which occurs in determining the time of a body's defcent in the arch of a circle $)=(1-c)^{\circ} \times\left(1+\frac{1^{2}}{2^{2}} c^{2}+\frac{1^{2} \cdot 3^{2}}{2^{2} \cdot 4^{2}} c^{4}+\right.$ $\frac{x^{2} \cdot 3^{3} \cdot 5^{2}}{2^{2} \cdot 4^{2} \cdot 6^{2}} c^{6}+\& c^{6}$) where $c=\frac{\sqrt{x+\gamma^{2}}-1}{\sqrt{1+\gamma^{2}}+1}:$ fo that the fummation of this feries alfo is accomplifhed by the method above.

I have now only to explain the method of computing B. For: this purpofe I refume,

$$
\frac{1}{\sqrt{1+c^{2}-2 c \cos \varphi}}=A+B \operatorname{cof} \varphi+C \operatorname{cof} 2 \varphi+\& c
$$

Multiply by $2 \operatorname{cof} \varphi$, and there refults

$$
\frac{2 \operatorname{cof} \varphi}{\sqrt{1+c^{2}-2 c \cos \varphi}}=\mathrm{B}+(2 \mathrm{~A}+\mathrm{C}) \cos \varphi+\& \mathrm{c}
$$

whence it is manifeft that the whole fluent

$$
\int \frac{2 \operatorname{cof} \varphi \times \dot{\phi}}{\sqrt{1+c^{2}-2 c \operatorname{cof} \varphi}} \text { when } \varphi=w \text {, is equal to } \mathrm{B} \times w \text {. }
$$

From the preceding inveftigation we have $\frac{\dot{\varphi}}{\sqrt{1+c^{2}-2 c \operatorname{cof} \varphi}}=$ $\frac{\dot{\psi}}{\sqrt{1-c^{2} \sin ^{2} \psi}}$, and $\cos \varphi=c \operatorname{fin}^{2} \psi+\cos \psi \sqrt{1-c^{2} \operatorname{fin}^{2} \psi}$, Vol. IV. Z whence

186 RECTIFIGATION of the ELLIPSIS, \&c. whence $\frac{2 \phi \operatorname{cor} \varphi}{\sqrt{1+c^{2}-2 c \cos \phi}}=\frac{2 c \dot{\psi} \operatorname{cin}^{2} \psi}{\sqrt{1-c^{2} \operatorname{lin}^{2} \psi}}+2 \psi \cos \psi$. Again, 2 fin ${ }^{2} \psi=I-\operatorname{cof} 2 \psi$, and $\frac{1}{\sqrt{1-c^{2} \sin ^{2} \psi}}=\frac{\left(1+c^{\prime}\right)}{\sqrt{1+c^{\prime 2}+2 c^{\prime} \cos 2 \psi}}, c^{\prime}$ being $=\frac{1-\sqrt{1-c^{2}}}{1+\sqrt{1-c^{2}}}$: thefe fubftitutions being made, we get $\frac{2 \dot{\varphi} \operatorname{cof} \varphi}{\sqrt{1+c^{2}-2 c \cos \varphi}}=c \times \frac{\left(1+c^{\prime}\right) \dot{\psi}}{\sqrt{1+c^{\prime 2}+2 c^{\prime} \cos 2 \psi}}-c \times \frac{(1+c) \dot{\psi} \cos 2 \psi}{\sqrt{1+c^{\prime 2}+2 c^{\prime} \cos 2 \psi}}$ $+2 \dot{\psi} \operatorname{cor} \psi$.
SUPPOSE NOW, $\frac{1}{\sqrt{i+c^{2}+2 c^{\prime} \cot 2 \psi}}=\mathrm{A}^{\prime}-\mathrm{B}^{\prime} \operatorname{cof} 2 \psi+c^{T} \operatorname{cof} 4 \psi-\& \mathrm{c}$. it is evident, from what goes before, that, taking the fluents of the above fluxions, when φ and $\psi=w$, we fhall have $\mathrm{B} \times m$ $=c \times\left(\mathrm{I}+c^{\prime}\right) \times\left(\mathrm{A}^{\prime}+\frac{\mathrm{B}^{\prime}}{2}\right) \times w$, and fo $\mathrm{B}=c \times\left(\mathrm{I}+c^{\prime}\right) \times$ $\left(A^{\prime}+\frac{B^{\prime}}{2}\right)$.

The values of A^{\prime} and B^{\prime}, in feries according to the method of M. de la Grange, are

$$
\begin{aligned}
& \mathrm{A}^{\prime}=\mathrm{x}+\frac{\mathrm{I}^{2}}{2^{2}} c^{\prime 2}+\frac{\mathrm{x}^{2} \cdot 3^{2}}{2^{2} \cdot 4^{2}} c^{\prime}+\frac{\mathrm{x}^{2} \cdot 3^{2} \cdot 5^{2}}{2^{2} \cdot 4^{2} \cdot 6^{2}} c^{\prime 6}+8 \mathrm{c} . \\
& \frac{\mathrm{x}}{2} \mathrm{~B}^{\prime}=\left(\frac{\mathrm{x}}{2} c^{\prime}+\frac{\mathrm{x}}{2} \cdot \frac{\mathrm{x} \cdot 3}{2 \cdot 4} c^{\prime 3}+\frac{\mathrm{x} \cdot 3}{2 \cdot 4} \cdot \frac{\mathrm{x} \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} c^{\prime 5}+\& \mathrm{c} .\right)
\end{aligned}
$$

which feries converge very faft, on account of the fmallnefs of c^{\prime} in refpect of c.
I_{F}, however, it be required to find the value of B by feries ft] more converging, we may eafily do fo: For it is manifeft that B and B^{\prime} are fimilar functions of c and c^{\prime} : and that if we make $c^{\prime \prime}=\frac{1-\sqrt{1-c^{\prime 2}}}{1+\sqrt{1-c^{\prime 2}}}, c^{\prime \prime \prime}=\frac{1-\sqrt{1-c^{\prime \prime 2}}}{1+\sqrt{1-c^{\prime 1 / 2}}}$, and fo on, and put
$A^{\prime \prime}, A^{\prime \prime \prime}, \& c . ; B^{\prime \prime}, B^{\prime \prime \prime}, \& c$. to denote the correfponding values of A^{\prime} and B^{\prime}, we fhall have

$$
\begin{aligned}
& \mathrm{B}=c \cdot\left(\mathrm{I}+c^{\prime}\right)\left(\mathrm{A}^{\prime}+\frac{\mathrm{B}^{\prime}}{2}\right) \\
& \mathrm{B}^{\prime}=c^{\prime} \cdot\left(\mathrm{I}+c^{\prime \prime}\right)\left(\mathrm{A}^{\prime \prime}+\frac{\mathrm{B}^{\prime \prime}}{2}\right) \\
& \mathrm{B}^{\prime \prime}=c^{\prime \prime} \cdot\left(\mathrm{I}+c^{\prime \prime \prime}\right)\left(\mathrm{A}^{\prime \prime \prime}+\frac{\mathrm{B}^{\prime \prime \prime}}{2}\right) \& \mathrm{c} .
\end{aligned}
$$

Now, remarking that $A^{\prime}=\left(1+c^{\prime \prime}\right) A^{\prime \prime} ; A^{\prime \prime}=\left(1+c^{\prime \prime \prime}\right) A^{\prime \prime \prime}$, \&c. we have the following values of B :
$\mathrm{B}=c \times\left(\mathrm{I}+\frac{c^{\prime}}{2}\right) \cdot\left(\mathrm{I}+c^{\prime}\right) \cdot\left(\mathrm{I}+c^{\prime \prime}\right) \mathrm{A}^{\prime \prime} \pm \frac{c}{2} \cdot \frac{c^{\prime}}{2}\left(\mathrm{I}+c^{\prime}\right)\left(\mathrm{I}+c^{\prime \prime}\right) \mathrm{B}^{\prime \prime}$.
$\mathrm{B}=c \times\left(\mathrm{I}+\frac{c^{t}}{2}+\frac{c^{\prime}}{2} \cdot \frac{c^{\prime \prime}}{2}\right)\left(\mathrm{I}+c^{\prime}\right)\left(\mathrm{I}+c^{\prime \prime}\right)\left(\mathrm{I}+c^{\prime \prime \prime}\right) \mathrm{A}^{\prime \prime}+\frac{c}{2} \cdot \frac{c^{\prime}}{2} \cdot \frac{c^{\prime \prime}}{2}\left(\mathrm{I}+6^{\prime}\right)$
$\left(1+c^{\prime \prime}\right)\left(1+c^{\prime \prime \prime}\right) \mathrm{B}^{\prime \prime \prime}$.
And we may proceed in this manner to find the value of B in feries that fhall converge as faft as we pleafe.

As the quantities $c^{\prime}, c^{\prime \prime}, c^{\prime \prime \prime}, \& c$. diminifh very faft, the feries $A^{\prime}, A^{\prime \prime}, A^{\prime \prime \prime}$ will approach rapidly to unity, and $\mathrm{B}^{\prime}, \mathrm{B}^{\prime \prime}, \mathrm{B}^{\prime \prime}$ will decreafe rapidly to nothing : Hence we have ultimately,

$$
\mathrm{B}=c \times\left(\mathrm{I}+\frac{c^{\prime}}{2}+\frac{c^{\prime}}{2} \cdot \frac{c^{\prime \prime}}{2}+\frac{c^{\prime}}{2} \cdot \frac{c^{\prime \prime}}{2} \cdot \frac{c^{\prime \prime \prime}}{2}+\& \mathrm{c} .\right) \times\left(\mathrm{I}+c^{\prime}\right)\left(\mathrm{I}+c^{\prime \prime}\right)\left(\mathrm{I}+c^{\prime \prime \prime}\right)
$$

\& c.

$$
\begin{aligned}
& \text { or, fince } \mathrm{A}=\left(\mathrm{I}+c^{\prime}\right)\left(\mathrm{I}+c^{\prime \prime}\right)\left(1+c^{\prime \prime \prime}\right) \& \mathrm{c} . \\
& \qquad \mathrm{B}=c \times\left(\mathrm{I}+\frac{v^{\prime}}{2}+\frac{c^{\prime}}{2} \cdot \frac{t^{\prime \prime}}{2}+\frac{c^{\prime}}{2} \cdot \frac{v^{\prime}}{2} \cdot \frac{c^{\prime \prime \prime}}{2}+\& \mathrm{c} .\right) \times \mathrm{A} .
\end{aligned}
$$

We fhall beft fee the degree of convergency of the quantities $c, c^{\prime}, c^{\prime \prime}, \& c$. if we take the infinite feries by which they are derived one from another. Now, if $y=\frac{1-\sqrt{1-x^{2}}}{1+\sqrt{1-x^{2}}}$, then alfo $y=$ $\frac{x^{2}}{4}+\frac{x^{4}}{8}+\frac{5 x^{6}}{64}+\frac{7 x^{8}}{128}+8$ c. : whence it is obvious, that in the feries of quantities $c_{2} c^{\prime}, c^{\prime \prime}, \& c$. the fourth part of the fquare of Z. 2
any term is nearly equal to the following term, and the rapidity with which the feries decreafes is therefore very great.

The method, then, that refults from the preceding inveftigations for computing A and B , is fhortly this:

$$
\begin{aligned}
& \text { Put } c^{\prime}=\frac{1-\sqrt{1-c^{2}}}{1+\sqrt{1-c^{2}}} \text { : and compute } \\
& \mathrm{I}+\frac{\mathbf{I}^{2}}{2^{2}} c^{\prime 2}+\frac{\mathbf{I}^{2} \cdot 3^{2}}{2^{2} \cdot 4^{2}} c^{\prime 4}+\frac{\mathbf{I}^{2} \cdot 3^{2} \cdot 5^{2}}{2^{2} \cdot 5^{2} \cdot 6^{2}} c^{8}+\& \mathrm{c} .=\mathbf{M}, \\
& \text { and } \frac{\mathrm{I}}{2} c^{\prime}+\frac{\mathrm{x}}{2} \cdot \frac{\mathrm{I} \cdot 3}{2 \cdot 4} c^{\prime 3}+\frac{\mathrm{I} \cdot 3}{2 \cdot 4} \cdot \frac{\mathrm{I} \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} c^{\prime 5}+\& \mathrm{c} .=\mathrm{N} \text {. } \\
& \text { Then } \mathrm{A}=\left(\mathrm{I}+c^{\prime}\right) \times \mathrm{M} \text {, and } \\
& \mathrm{B}=c \times\left(\mathrm{I}+c^{\prime}\right) \times(\mathrm{M}+\mathrm{N}) .
\end{aligned}
$$

The feries M and N will converge fo faft, even in the moft unfavourable cafe that occurs in the theory of the planets, that the firft three terms will give the fums fufficiently exact ; and it will therefore not be neceffary to have recourfe to the more converging feries $\mathrm{A}^{\prime \prime}$ and $\mathrm{B}^{\prime \prime}$.

Such is the method that I had firft imagined, for facilitating thefe fort of computations. I have fince found, however, that by means of the common tables of fines and tangents, the quantities A and B may be computed in a ftill eafier way from the expreflions,

$$
\begin{aligned}
& \mathbf{A}=\left(\mathbf{I}+c^{\prime}\right)\left(\mathbf{I}+c^{\prime \prime}\right)\left(\mathrm{I}+c^{\prime \prime \prime}\right) \& \mathbf{c} \\
& \mathbf{B}=c \times\left(\mathrm{I}+\frac{c^{\prime}}{2}+\frac{c^{\prime}}{2} \cdot \frac{d^{\prime \prime}}{2}+\frac{c^{\prime}}{2} \cdot \frac{c^{\prime \prime}}{2} \cdot \frac{c^{\prime \prime \prime}}{2}+\& \mathrm{c}_{0}\right) \times \mathbf{A} .
\end{aligned}
$$

FOR if $c=\operatorname{fin} m$, then $\sqrt{\mathrm{I}-c^{2}}=\operatorname{cor} m$ and $c^{\prime}=\frac{\mathrm{x}-\operatorname{cof} m}{1+\operatorname{cof} m}$
$=\tan ^{2} \frac{m}{2}$: confequently $\mathrm{I}+c^{\prime}=\mathrm{fec}^{2} \frac{m}{2}$. In like manner, if
$c^{\prime}=\operatorname{fin} m^{\prime}, c^{\prime \prime}=\operatorname{fin} m^{\prime \prime}, \& \mathrm{c}$. we fhall have fin $m^{\prime}=\tan ^{2-\frac{m}{2}} ;$

RECTIFICATION of the ELLIPSIS, \&c. 189
fin $m^{\prime \prime}=\tan ^{2} \frac{m^{\prime}}{2}$, and fo on: And $\mathrm{I}+c^{\prime}=$ fec $^{2} \frac{n^{\prime}}{2} ; 1+c^{\prime \prime \prime}=$ $\mathrm{fec}^{2} \frac{m^{\prime \prime}}{2}$, and fo on. Thus:

$$
\mathrm{A}=\operatorname{fec}^{2} \frac{m}{2} \times \operatorname{fec}^{2} \frac{m^{\prime}}{2} \times \operatorname{fec}^{2} \frac{m^{\prime \prime}}{2} \times \& \mathrm{c}
$$

To find the logarithm of A, we have then only to add together the logarithm fecants of the angles $\frac{m_{2}}{2}, \frac{m^{\prime}}{2}, \frac{m^{\prime \prime}}{2}, \& c$. to diminifh the fum by as many times the radius as there are fecants, and to take twice the remainder. As the angles $m, m^{\prime}, m^{\prime \prime}, \& c$. decreafe very faft, it will feldom be neceffary to compute more than two or three of them.
The feries ($\mathrm{r}+\frac{c^{\prime}}{2}+\frac{c^{\prime}}{2} \cdot \frac{c^{\prime \prime}}{2}+\frac{c^{\prime}}{2} \cdot \frac{c^{\prime \prime}}{2} \cdot \frac{c^{\prime \prime \prime}}{2}+\& \mathbf{c}$.) is alfo readily computed from the tables; becaufe the logarithms of $c^{\prime} ; c^{\prime \prime}, c^{\prime \prime \prime}, \& \mathrm{c}$. being the fines of the angles $m^{\prime}, m^{\prime \prime}, \& c$. are all found in the tables.

As an example, let $c=0.72333$: which is the fraction that arifes from dividing the mean diftance of Venus from the fun, by the mean diftance of the Earth; and this is the moft unfavourable cafe that occurs in the theory of the planets: Then to compute A, I find, in the table of natural fines, that 0.72333 correfponds to $45^{\circ} 19^{\prime} 48 \frac{1^{\prime \prime \prime}}{3}$: we have therefore

$$
\begin{aligned}
& m=46^{\circ} 19^{\prime} 4^{8^{\frac{1}{3}}} \\
& \text { L. } \tan \frac{m}{2}=1 . \tan 23^{\circ} 9^{\prime} 54 \frac{1}{\prime \prime}^{\prime \prime}=9.63{ }^{\mathrm{I}} 3206 \\
& \text { L. } \text { fec } \frac{m}{2}=10.0365070 \\
& \text { L. } \operatorname{fin} m^{\prime}=9.2626412 \\
& \text { L. } m^{\prime}=10^{\circ} 32^{\prime} 57^{\prime \prime} \\
& \begin{array}{r}
\text { L. } \tan \frac{m^{\prime}}{2}=1 \cdot \tan 5^{\circ} \mathrm{r} 6^{\prime} 28 \frac{1_{2}^{\prime \prime}}{2}=8.9652949 \\
\text { L. } \operatorname{fin} m^{\prime \prime}=\overline{7.9305898}
\end{array} \\
& \text { L. } m^{\prime \prime}=0^{\circ} 29^{\prime} 18^{\prime \prime}
\end{aligned}
$$

190 RECTTIFICATION of the ELLIPSIS; \&c. L. $\left.\tan \frac{m^{\prime \prime}}{2}=1 . \tan 0^{\circ} \mathrm{I} 4^{\prime} 39^{\prime \prime}=\begin{array}{r}7.6295664 \\ \text { L. fin } m^{\prime \prime \prime}\end{array} \right\rvert\,$ L. fec $\frac{m^{\prime \prime}}{2}=\frac{10.0000039}{5.2599^{\prime} 328}$
0.038353^{8}

As $m^{\prime \prime \prime}$ will only be a few feconds, it may
L. $A=\overline{0.0767076}$ be neglected.

Hence $A=1.19318$

$$
\text { To compute } \mathrm{B}, \text { let } \mathrm{S}=1+\frac{c^{\prime}}{2}+\frac{c^{\prime}}{2} \frac{c^{\prime \prime}}{2}+\& \mathrm{c}
$$

L. $c^{\prime}=1$. fin $m^{\prime}=9.2626412$;
L. $c^{\prime}=1$. $\operatorname{fin} m^{\prime}=7.9305898$

1. $c^{\prime} \cdot c^{\prime}=\overline{7.1932310}$

$$
\mathrm{B}=c \times \mathrm{S} \times \mathrm{A}
$$

$$
\text { L. } c=\overline{1} .8593365
$$

$$
\text { L. } S=0.0381948
$$

$$
\text { L. } A=0.0767076
$$

$$
\text { L. } B=\overline{\mathrm{I}} .9742389, \text { and } B=0.942408
$$

IX. A Short Mineralogical Description of the Mountain of Gibraltar. By Major Imrie. Commwnicated by the Reverend Yohn Walker, D. D. Profeflor of Natural Hifory in the Univerfity of Edinburgh.

[Read fuly 3. 179.7.]

THE mountain of Gibraltar is fituated in $36^{\circ} .9^{\gamma}$ north latitude, and in $5^{\circ} \cdot 17^{\prime}$ eaft longitude from Greenwich. It is the promontory which, with that of Ceuta upon the oppofite coalt of Barbary, forms the entrance of the Straits of Gibraltar from the Mediterranean; and Europa Point, which is the part of the mountain that advances moft towards Africa, is generally regarded as the moft fouthern promontory in Europe. The form of this mountain is oblong; its fummit a fharp craggy ridge; its direction is nearly from north to fouth; and its greateft length, in that direction, falls very little fhort of three miles. Its breadth varies with the indentations of the fhore, but it no where exceeds three quarters of a mile. The line of its.ridge is undulated, and the two extremes are fomewhat higher than its centre.

The fummit of the Sugar Loaf, which is the point of its greateft elevation towards the fouth, is 1439 feet; the Rock Mortar, which is the higheft point to the north, is 1350 ; and the Signal Houfe, which is nearly the central point between thefe two, is 1276 feet above the level of the fea. The weftern
fide of the mountain is a feries of rugged flopes, interfperfed with abrupt precipices. Its northern extremity is perfectly perpendicular, except towards the north-weft, where what are called the Lines intervene, and a narrow paffage of flat ground that leads to the ifthmus, and is entirely covered with fortification. The eaftern fide of the mountain moftly confifts of a range of precipices; but a bank of fand, rifing from the Mediterranean in a rapid acclivity, covers a third of its perpendicular height. Its fouthern extremity falls, in a rapid flope, from the fummit of the Sugar Loaf, into a rocky flat, of confiderable extent, called Windmill Hill. This flat forms half an oval, and is bounded by a range of precipices, at the fouthern bafe of which a fecond rocky flat takes place, -fimilar in form and ex tent to Windmill Hill ; and alfo, like it, furrounded by a precipice, the fouthern extremity of which is wafhed by the fea, and forms Europa Point. Upon the weftern fide, this peninfular mountain is bounded by the bay of Gibraltar, which is in length nearly eight miles and a half, and in breadth upwards of five miles. In this bay the tide frequently rifes four feet. Upon the north the mountain is attached to Spain by a low fandy ifthmus, the greateft elevation of which, above the level of the fea, does not exceed 10 feet, and its breadth, at the bafe of the rock, is not more than three quarters of a mile. This ifthmus feparates the Mediterranean, on the eaft, from the bay of Gibraltar on the weft.

This mountain is much more curious in its botanical, than in its mineralogical productions. In refpect to the firft, it connects, in fome degree, the Flora of Africa with that of Europe. In refpect to the latter, it produces little variety; perhaps a few fubftances and phænomena that are rare, but none that are peculiar.

The principal mafs of the mountain rock confits of a grey, denfe (what is generally called primary) marble; the different beds
beds of which are to be examined in a face of 1350 feet of perpendicular height, which it prefents to Spain in a conical form. Thefe beds, or ftrata, are of various thicknefs, from 20 to upwards of 40 feet, dipping in a direction from eaft to weft, nearly at an angle of 35 degrees. In fome parts of the folid mafs of this rock, I have found teftaceous bodies entirely tranfmuted into the conftituent matter of the rock, and their interior hollows filled up with calcareous fpar; but thefe do not occur often in its compofition, and its beds are not feparated by any intermediate ftrata.

In all parts of the globe, where this fpecies of rock conftitutes large diftricts, it is found to be cavernous. The caves of $\mathrm{Gi}-$ braltar are many, and fome of them of great extent. That which moft deferves attention and examination is called $\mathrm{St} \mathrm{Mi-}$ chael's Cave, which is fituated upon the fouthern part of the mountain, almoft equally diftant from the Signal Tower and the Sugar Loaf. Its entrance is 1000 feet above the level of the fea: This entrance is formed by a rapid flope of earth, which has fallen into it at various periods, and which leads to a facious hall, incrufted with fpar, and apparently fupported in the centre by a large maffy ftalactitical pillar. To this fucceeds a long feries of caves of difficult accefs. The paffages from the one to the other of thefe are over precipices, which can only be paffed by the affiftance of ropes and fcaling ladders. I have, myfelf, paffed over many of thefe to the depth of 300 feet from the upper cave; but at that depth the fmoke of our torches became fo difagreeable, that we were obliged to give up our purfuit, and leave caves fill under us unexamined. In thefe cavernous receffes, the formation and procefs of ftalactites is to be traced, from the flimfy quilt-like cone, fufpended from the raof, to the robuft trunk of a pillar, three feet in diameter, which rifes from the floor, and feems intended by nature to fupport the roof from which it originated.

Vol. IV.
A a
The

The variety of form, which this matter takes in its different fituations and directions, renders this fubterraneous fcenery ftrikingly grotefque, and in fome places beautifully picturefque. The ftalactites of thefe caves, when near the furface of the mountain, are of a brownifh yellow colour ; but, as we defcended towards the lower caves, we found them begin to lofe their darknefs of colour, which by degrees fhaded off to a whitifh yellow.

The only inhabitants of thefe caves are bats, fome of which are of a larg fize. The foil, in general, upon the monntain of Gibraltar, is but thinly fown; and in many parts that thin covering has been wafhed off by the heavy autumnal rains, which have left the fuperficies of the rock, for a confiderable extent, bare and open to infpection. In thofe fituations, an obferving eye may trace the effects of the flow, but conftant, decompofition of the rock, caufed by its expofure to the air, and the corrofion of fea-falts, which, in the heavy gales of eafterly winds', are depofited with the fpray on every part of the mountain. Thofe uncovered parts of the mountain rock alfo expofe to the eye a phenomenon worthy of, fome attention, as ittends clearly to demonftrate, that; however high the furface of this rock may now be elevated above the levell of the fea, it has once been the bed of agitated waters. This phænomenon is to be obfenved in many partssof the rock, raind is conflantly fotind in the beds of torrents. It confifs of pat-like hodes, of various: fizes, hollowed out of the folid rock, and formed apparently by the attrition of gravel or pebbles, fet in motion by the rapidity. of rivers, or currents in the fea. One of thofe, which had been recently laid open, d examined, with attention. Iffound it to be five feet deep, and three feet in diapmeteri; the edge df its mouth rounded off as if by art, and its fides and bottom retain-s ing a confiderable degree of polifh. From its mouth, for three and a half feet down, it was filled with a red argillaceous earth;
thinly mixed with minute parts of tranfparent quartz cryftals; the remaining foot and a half, to the bottom, contained an aggregate of water-worn ftones, which were from the fize of a goofe's egg to that of a fmall walnut, and confifted of red jafi pers, yellowifh white flints, white quartz, and bluifh white agates, firmly combined by a yellowifh brown ftalactitical calcareous fpar. In this breccia I could not difcover any fragment of the smountain rock, or any other calcareous matter, except the cement with which it was combined. This pot is 940 feet above the level of the fea.

Upon the weft fide of the mountain, towards its bafe, fome frata occur, which are heterogenial to the mountain rock: the firft, or higheft, forms the fegment of a circle; its convex fide is towards the mountain, and it dlopes alfo in that direction. This ftratum confifts of a number of thin beds; the outward one, being the thineft, is in a tate of decompofition, and is mouldering down into a blackifh brown or ferruginous coloured earth. The beds, inferior to this, progreffiyely increafe in breadth to 17 inches, where the ftratification refts upon a rock of an argillaceous nature.

This laft bed, which is 17 inches thick, confifts of quartz of a blackifh blue colour, in the fepta or cracks of which are found fine quartz cryftals, colourlefs, and perfectly tranfparent. Thefe cryftals are compofed of eighteen planes, difpofed in hexangular columns, terminated at both extremities by hexangular pyramids. The largeft of thofe that I have feen does not exceed two-eights of an inch in length: They, in general, adhere to the rock by the fides of the column, but are detached without difficulty. Their great degree of tranfparency has obtained them the name of Gibraltar diamonds.

At no great diftance from where thefe cryftals are found, upon the fame llope of the mountain, but rather nearer to the level of the fea, a ftratum of argillaceous matter has been laid A 2 open
open, divided into many thin beds, the broadeft of which does not exceed a foot in thicknefs. Its general colour is of a whitifh grey, with a fmall mixture of yellow, and it is divided tranfverfely by ftraight fepta or cracks, both fides of which are covered with dendritical figures, of a yellowifh brown colour, beautifully reprefenting the objects of landfcape. At the weftern bafe of the mountain, on a level with the fea by which it is wafhed, a very extenfive ftratum occurs, of the fame nature as the laft defcribed, bearing from north to fouth, parallel with, and dipping towards, the mountain, nearly at an angle of 40 degrees.

In fome parts of the weftern flope of the mountain, towards the fouth, are found nefts of a dark red fhivery clay, in which are embedded flints of a dirty fap green colour: Of thofe no regular ftratum is to be perceived; many of them are unfhapely maffes; but they, in general, tend to the rhomboidal form, and are from three to four inches long, by two or three broad, and an inch and a half thick. They are not incrufted as the flints found in chalk, nor have they the appearance of having been worn by attrition.

Upon different parts of the mountain, towards its bafe, are found large quantities of fand, compofed of different materials, and affuming various appearances as to colour. "The largeft bank of this arenaceous matter is upon the weftern fide of the mountain, and confifts of fmall particles of cryftallized quartz, colourlefs, and perfectly tranfparent perfe, but of an ochreous colour in the mafs, on account of a red argillaceous earth which adheres to them. The fand of this bank is perfectly loofe and uncombined : one half of it has been levelled into an extenfive parade, its furface having been combined by the lime and rubbifh from the ruins of the town. The fouthern extremity of the bank is ftill to be feen in its natural ftate, and forms the bir rying-ground of the garrifon.

Upon the eaft fide of the mountain is found another of thefe banks, of confiderable extent, and, as I mentioned before, rifing from the Mediterranean in a rapid acclivity, and reaching to one-third of its entire elevation. This bank is compofed of fmall particles of cryftallized quartz, of teftaceous bodies rounded by attrition, and of a few minute particles of the calcareous rock; the whole has a whitifh grey colour. The rain-water, which falls from the bare mountain rock above the fand, brings along with it calcareous matter, which is depofited upon the bank, and combines its furface into a cruft, which in fome places is fo much indurated as to bear the preffure of the foot.

In other parts of the mountain, where this fand is furrounded by the calcareous rock, and covered in and protected from the action of the air, and corrofion of the fea-falts, it is found in a perfect indurated flate, combined by ftalactitical fpar, and forming a minute breccia. A quarry of this arenaceous ftone has been opened upon the fouth-eaft quarter of the mountain, and is made ufe of, with great propriety, to line the embrafures of fome of the new works belonging to the garrifon. Its inapritude to fly off in fplinters, when ftruck by a ball, gives, in fuch fituations, additional fafety to the defenders of the place.

The weftern fide of the mountain's bafe, around Rofia Bay, and the new Mole, is a rock compofed of an aggregate of fmall fragments of every foffil that has been here defcribed, with the addition of two different feecies of marble that are probably adventitious, as their native beds have not been found in the mountain. The one of thofe is black, and the other of an olive green colour. The whole of this mixture produces a moft beautiful breccia, and is firmly combined by a calcareous cement of a yellow, verging towards an orange colour. It is fufceptible of a high polifh, except where fragments of the argillaceous ftrata occur: Thefe can be eafily fmoothed down, but cannot be brought to a perfect polifh. The fragments in this breccia are angular,
angular, and none of them have the appearance of being waterworn.

IT. only now remains for me to mention what are generally called the foffil bones, found in the rock of Gibraltar. Thefe have been much talked of, and by fome looked upon as a phernomenon beyond the power of explanation. The general idea, which exifts concerning them, is, that they are found in a petrified ftate, and inclofed in the folid calcareous rock; but thefe are miftakes, which could only arife from inaccurate obfervation and falfe defcription.

In the perpendicular fiffures of the rock, and in fome of the caverns of the mountain, (all of which afford evident proofs of their former communication with the furface), a calcareous concretion is found, of a reddifh brown ferruginous colour, with an earthy fracture, and confiderable induration, inclofing the bones of various animals, fome of which have the appearance of being human. Thefe bones are of various fizes, and lie in all directions, intermixed with fhells of fnails, fragments of the calcareous rock, and particles of fpar ; all of which materials are ftill to be feen in their natural uncombined ftates, partially fcattered over the furface of the mountain. Thefe having been fwept, by heavy rains at different periods, from the furface into the fituations above defcribed, and having remained for a long feries of years in thofe places of reft, expofed to the permeating action of water, have become enveloped in, and cemented by; the calcareous matter which it depofits.

The bones, in this compofition, have not the fmalleft appearance of being petrified; and if they have undergone any change; it is more like that of calcination than that of petrifaction, as the moft folid parts of them generally admit of being cut and fcraped down with the fame eafe as chalk.

Bones combined in fuch concretions are not peculiar to Gibraltar: They are found in fuch large quantities in the country
of Dalmatia, and uponits coafts in the iflands of Cherfo and Ofero, that fome naturalifts have been induced to go fo far as to affert, that there has been a regular ftratum of fuch matter in that country, and that its prefent broken and interrupted appearance has been caufed by earthquakes, or other convulfions, experienced in that part of the globe. But, of late years, a traveller, (Abbé Alberto Fortis), has given a minute defcription of the concretion in which the bones are found in that country: And by his account it appears, that with regard to, fituation, compofition and colour, it is perfectly fimilar to that found at Gibraltar. By his defcription it alfo appears, that the two mountain rocks of Gibraltar and Dalmatia confint of the fame fpecies of calcareous fone ; from which it is to be prefumed, that the concretions in both have been formed in the fame manner and about the fame periods,
Pertiaps if the fiffures, and caves of the rock of Dalmatia were fill more minutely examined, their former communications with the furface might yet be traced, as in thofe defcribed above; and, in that cafe, there would be at leaft a ftrong probability, that the materials of the concretions of that country have been brought together by the fame accidental caufe, which, in my opinion, has collected thofe found in the caverns of Gibraltar. I have traced, in Gibraltar, this concretion, from the loweft part of a deep perpendicular fiffure, up to the furface of the mountain. 1 As it approached to the furface, the concretion became lefs firmly combined; and; when it had no covering of the calcareous rock, a finall degree of adhefion only remained, which was. evidently produced by the argillacedus earth, in its compofition, having been moiftened by rain and baked by the fun.

The depth, at which thefe materials had been penetrated by that proportion of flatactitical matter, capable of giving to the concretion its greateft adhefion and folidity, I found to vary according tor its fituation, and to the quantity of matter to be combined:
bined. In fiffures, narrow and contracted, I found the concretion poffeffing a great degree of hardnefs at fix feet from the furface; but in other fituations more extended, and where a larger quantity of the materials had been accumulated, I found it had not gained its greateft degree of adhefion at double that depth. In one of the caves, where the mafs of concretion is of confiderable fize, I perceived it to be divided into different beds, each bed being covered with a cruft of the ftalactitical fpar, from one inch to an inch and a half in thicknefs, which feems to indicate, that the materials have been carried in at various periods, and that thofe periods have been very remote from each other.

At Rofia Bay, upon the weft fide of Gibraltar, this concretion is found in what has evidently been a cavern, originally formed by huge unfhapely maffes of the rock, which have tumbled in together. The fiffure, or cavern, formed by the difruption and fubfidence of thofe maffes, has been entirely filled up with the concretion, and is now expofed to full view by the outward mafs having dropped down, in confequence of the encroachments of the fea. It is to this fpot that ftrangers are generally led to examine the phænomenon ; and the compofition, having here attained to its greateft degree of hardnefs and folidity, the hafty obferver, feeing the bones inclofed in what has fo little the appearance of having been a vacuity, examines no further, but immediately adopts the idea of their being incafed in the folid rock. The communication from this former chafm, to the furface from which it has received the materials of the concretion, is fill to be traced in the face of the rock, but its opening is at prefent covered by the bafe of the line wall of the garrifon. Here bones are found that are apparently human; and thofe of them that appear to be of the legs, arms, and vertebræ of the back, are fcattered among others of various kinds and fizes, even down to the fmalleft bones of fmall birds. I found here the complete jaw-bone of a fheep; it contained its
full complement of teeth, the enamel of which was perfect, and its whitenefs and luftre in no degree impaired. In the hollow parts of fome of the large bones was contained a minute cryftallization of pure and colourlefs calcareous fpar; but, in moft, the interior part confifted of a fparry cruft of a reddifh colour, fcarcely in any degree tranfparent.

At the northern extremity of the mountain, the concretion is generally found in perpendicular fiffures. The miners there, employed upon the fortifications, in excavating one of thofe fiffures, found, at a great depth from the furface, two flkulls, which were fuppofed to be human; but, to me, one of them, if not both, appeared to be too fmall for the human fecies. The bone of each was perfectly firm and folid; from which it is to be prefumed, that they were in a ftate of maturity before they were inclofed in the concretion. Had they appertained to very young children, perhaps the bone would have been more porous, and of a lefs firm texture. The probability is, that they belonged to a fpecies of monkey, which fill continues to inhabit, in confiderable numbers, thofe parts of the rock which are to us inacceffible.

This concretion varies, in its compofition, according to the fituation irr which it is found. At the extremity of Princes Lines, high in the rock which looks towards Spain, it is found to confift only of a reddifh calcareous earth, and the bones of fmall birds cemented thereby. The rock around this fpot is inhabited by a number of hawks, that, in the breeding feafon, neftle here, and rear their young; the bones in this concretion are probably the remains of the food of thofe birds. At the bafe of the rock, below King's Lines, the concretion confifts of pebbles of the prevailing calcareous rock. In this concretion, at a very confiderable depth under the furface, was found the under parts of a glafs bottle, uncommonly fhaped; and of great thicknefs; the colour of the glafs was of a dark green.

Vol. IV.
B. b

IN

In many parts of the rock I have found concretions, in which there are no bones of any kind ; and on the elevated parts of the mountain, where the flopes are rapid, I have found a breccia, (if I may fo call it), entirely confifting of fnail-fhells, combined in a mafs of opaque ftalactitical fpar of a yellowifh brown colour. The various progreffive augmentations of this matter were to be traced in various fhades of the fame colour, which, like the zones of the antique alabafter, curve round, and follow the form of the fhell. The purer matter of this fpar has penetrated the fhells, and in their interior hollows has formed a lining of fmall cryftals, generally colourlefs and perfectly tranfparent.

I have beftowed more time in endeavouring to defcribe the compofition, and the real fituation, of this concretion of bones; than the fubject, in the eftimation of many, will feem to deferve, and indeed more than it deferves in my own opinion; but where an erroneous opinion has obtained a footing, in confequence of inaccurate obfervations and partial defcription, it is the duty of every new obferver to endeavour to correct it.
X. Description of a Thermómeter, which marks the greatef Degree of Heat and Cold, from ane Time of Observation to another, and may alfo regifter its own Height at every Instant. By Alexander Keith. Efq; F. R. S. \& F. A. S. Edin.

$$
{ }^{\wedge}[\text { Read Auguft } 3 \cdot 1795 \cdot]
$$

THERMOMETERS have hitherto been defective for meteorological purpofes, in fo far as they only point out the degree of heat at the moment of infpecting them, but do not fhow what the difference of temperature has been, from the time of one obfervation to that of another: Nor has any inftrument been yet conftructed, fo far as I have been able to learn, which will record the intermediate degrees of heat.

The ingenious Robert Hook, in the end of the laft century, mentions his intention of making a thermometer for the above. purpofe; but it does not appear that it was ever executed: Neither does he explain how it was to have been done.
'The thermometer, invented by M. James Six, as defcribed in the 72d volume of the Pbilofopbical Tranfactions of the Royal Society of London, is made to fhow its greateft rife or fall from one period of obfervation to another. This is done by means of two fmall pieces of black glafs, which float on two different B. b_{2}
furfaces
furfaces of mercury, within two glafs tubes hermetically fealed. Thefe floats, when raifed to their greateft height, adhere to the fide of the tube, by means of a fpring of glafs, and become ftationary, although the mercury falls. After the obferver has taken a note of the temperature, he, by a magnet held in in is hand, draws down the float to the furface of the mercury, in confequence of a fmall bit of fteel wire inclofed in the floar, and the inftrument is prepared for another obfervation. This is an ingenious invention, but requires too delicate workmanfhip to be fit for common ufe; befides, it cannot be made to record the degrees of heat at intermediate periods. The thermometer, lately invented by Dr Rutherford of Balilifh, and defcribed in the 3 d volume of the Tranfactions of this Society, is alfo an ingenious contrivance, but has the fame defect of marking only the extreme points, to which the liquor has rifen or fallen, in two feparate glafs tubes.

Several years ago it occurred to me, that an air thermometer might be ufed for the purpofes required, providing the weight of the atmofphere could be excluded, or a counter-balance formed to it; and as the whole inftrument could be made to rife and fall by the temperature of the atmofphere alone, it might be adapted to a piece of clock-work, which would record the degrees of heat at every inftant through the year : And accordingly I read to this Society a defcription of the inftrument. But having formed another inftrument, of a more fimple conftruction, to anfwer the fame purpofe, I beg leave to give a defription of it.

AB is a tube about 14 inches long, (Pl. VI.) and three-fourths of an inch caliber, of thin glafs, fealed or clofe at top. To the bottom, which is bent upwards, there is joined a glafs tube 7 inches long, and four-tenths of an inch caliber, open at top. The tube
$A B$ is filled with the ftrongeft fpirit of wine or alcohol, and from B to E is filled with mercury.

Ir will be evident, from infpection, that if the fpirit of wine is expanded by heat, the mercury in the fmaller tube will rife, and, if the fpirit of wine is contracted by cold, the mercury will fall: And although they are both fubjected to the preffure of the atmofphere, yet, as liquids are incompreffible by weight in any perceptible degree, neither the fpirit of wine nor mercury will be altered in bulk by the different weight of the atmofphere.

FD is a fcale of brafs or ivory, about $6 \frac{1}{2}$ inches long, divided in the ufual way.
E is a fmall conical piece of ivory or glafs, of a proper weight, made to float on the furface of the mercury in the fmaller tube : to which float is joined a wire, reaching to H, having a knee bent at a right angle, which raifes one index, and depreffes another index, according as the mercury rifes or falls, which wire fhall be termed the float-wire.

II is,a glafs tube, 7 inches and a half long, clofed at top and open at bottom, fo wide as to flide eafily over the fcale, and, by means of a brafs rim cemented to it, is made to fit exactly to the circular bafe of the fcale, fo that, when this tube is put on, it covers the whole fcale and indexes, and defends them from wind or rain. This cover need not be taken off, except when the inftrument is to be prepared for an obfervation.

The operation of the float and indexes will be better underftood from fig. 2. which reprefents them of the full fize.

FG is the fcale fixed to a circular piece of wood or brafs, through which the top of the fmall tube is made to pafs.

From G to K is a piece of the fmalleft harpfichord wire, or rather of the fmalleft gold wire, ftretched along the fcale, fixed at the ends by two brafs pins.
LI. are two indexes, formed of thin black oiled filk, pierced by the fmall wire in fuch a manner as to flide upwards and downwards with a very fmall force, not more than two grains.

H , the knee of the float-wire before defcribed, is made to encompafs the fmall wire between the two indexes, fo that, when the float rifes, the upper index is moved upwards, and, when it defcends, it leaves the upper index ftationary, and pufhes down the lower index, which is alfo left ftationary, when the float rifes.

When the inftrument is to be prepared for an obfervation, the one index is to be pulled down, and the other raifed, by means of a bit of wire bent for the purpofe, until both indexes touch the knee of the float-wire: And, when it is again obferved, the upper index will point out the greateft degree of heat, and the lower the greateft degree of cold, fince the time they were fet.

If this thermometer is to be adapted to a piece of clock-work, in order to record the degrees of heat at each hour and minute of time, it ought to be made of larger dimenfions. The large tube may be 40 inches long, and not increafed in diameter, but the fmall tube ought to be enlarged in diameter, and not in length. By enlarging the tube, which contains the fpirit of wine, in length only, it will be affected by heat and cold in as fhort a time as that before defcribed.

It is unneceffary at prefent to explain the clock-work. It is fufficient to fay, that a hollow cylinder of any light fubftance, 7 inches long, and 5 inches diameter, is made to revolve upon a vertical axis once in thirty-one days or a month; a piece of fmooth or vellum paper is put round this cylinder, pafted only at the joining, but fo as to make it adhere clofe to the cylinder; on this paper are drawn thirty-one equal perpendicular divifions, numbered at the top $1,2,3, \&$ c. to correfpond to the thirty-one days of the month, each of which is fubdivided into fix parts, to anfwer to four hours. The length of this cylinder
is divided by lines furrounding it, or zones, in fuch number as correfpond to the fcale of FAhrenheit's thermometer, viz. from o to 100 degrees. Thefe divifions ought to be engraved on copperplate, and a great number of impreffions thrown off on fmooth or vellum paper, in order that one may be ready to put on each month.

Fig. 3. MN reprefents the cylinder covered with one of thefe impreffions. PP is the fcale fixed to the frame on which the cylinder turns. This fale is divided into ioo of Fahrenheit's degrees, exactly correfponding to the divifions of the cylinder.
Q is a piece of black-lead pencil, joined to the end of the flot-wire in the place of the knee before mentioned. This pencil is made to prefs lightly on the cylinder, by means of the fmall weight R. And as the pencil rifes or falls by heat and cold, it will mark the degrees on the fcale of the cylinder ; and the cylinder being conftantly revolving, the divifion for each day and parts of a day will fucceffively be marked by the pencil, which will leave a trace, defcribing an undulated line, diftinctly delineating the temperature of each day through the month. Thefe papers, when taken off and bound together, will make a complete regifter of the temperature for the year ; or, if they are pafted to one another, they will form a thermometrical chart, by which the variations of heat and cold, during the year, may all be feen and compared by one glance of the eye.

By infpecting fig. 3 . the effect of the inftrument may be feen. It appears that the paper had been put on the cylinder the firft day of the month, at midday, when the thermometer ftood at 45°; that it fell gradually till midnight to 25°; thereafter it rofe till the 2 d at 1 P . M. when it ftood at 4°; then it defcended at midnight to $35, \& c$. ; that on the 4 th, at midday, it rofe to 50 ; and at noon, the 10 th of the month, it ftands at 40°.

If three inches be added to the length of the cylinder, it may be made to delineate the variations of the barometer as well as the thermometer, and thereby to form a complete chart or view of the progrefs of both of them. And if inftruments of this kind were kept in different parts of the country, and their charts compared together, it would afford much information with regard to meteorology.

XI. Description of a Barometer, which marks the Rise and Fall of the Mercury from two different Times of Observation. By Alexander Keith, Efq; F. R.S. \& F. A. S. Edin.

$$
\text { [Read } \mathcal{F a n . ~ 5 . ~ 1 7 9 6 .] ~}
$$

IN Auguft laft, I read to this Society the Defcription of an Air Thermometer, intended to record the various degrees of heat at every inftant; and mentioned my intention of conftructing a barometer, which would, in the fame manner, record the variations of the weight of the atmofphere: Both which I propofed to adapt to one piece of clock-work.

This piece of machinery appearing too complicated and expenfive for general ufe, I contrived a thermometer, which marks the extreme points of heat and cold from any two times of obfervation. Of which inftrument I alfo lately read an account, and produced the machine itfelf.

I now intend further to lay before this Society the defcription of a barometer upon fimilar principles, of a very fimple conftruction, which alfo marks the variation of the atmofphere from one time of obfervation to another.

[^23]C c
Fig. 1.

Fig. 4. ABCD is a glafs tube, bent in the manner reprefented, open at D, and hermetically fealed at A. From A to B is 8 inches long, and about $\frac{3}{4}$ of an inch caliber. From B to C $31 \frac{1}{4}$ inches long, and about $\frac{1}{4}$ of an inch caliber. And from C to $\mathrm{D}_{4 \frac{1}{2}}$ inches long, and $\frac{1}{2}$ inch caliber.

The tube is filled with mercury, the length from B to E being $29^{\frac{x}{2}}$ inches. When the tube is hung perpendicular, the mercury will fall from B to E, leaving a vacuum in the upper half of the tube from B to A. When the atmofphere becomes heavier, the mercury falls in the tube DC, and when lighter it rifes. The range of the fcale is about 3 inches, being equal to that of a common barometer of the beft conftruction, which has a bafon with a very broad furface. This inftrument moves in a direction contrary to the common barometer, the one rifing while the other falls.

Fig. 5. reprefents the tube DC, with the fcale placed above it, of half the real dimenfions. Fis a piece of ivory or glafs, of a conical hape, of a proper weight, made to float on the furface of the mercury, having a wire fixed to it reaching to G . From H to H is a piece of fmall harpfichord-wire, or rather gold-wire, ftretched along the ivory or brafs plate on which the fcale is engraved. II are two indexes formed of the thinneft black oiled filk, pierced in fuch a manner by the fmall wire as to move upwards and downwards upon it with a very fmall force, not more than two grain weight ; and thefe indexes, being not the weight of half a grain, they do not defcend the wire by their own weight, but remain where they are placed.

The wire fixed to the float, (which we fhall call the float-wire), has a knee bent at a right angle, and made to encompafs the fmall wire between the two indexes, fo that, when the float rifes, the upper index is carried up, and, when it falls, it leaves the upper index, and pufhes down the under index.

In order to prepare this barometer for an obfervation, the one index is to be brought down, and the other raifed, until both touch the knee of the float-wire.

The next time the inftrument is obferved, the upper index will point out the greateft depreffion of the mercury, or lightnefs of the atmofphere, and the lower index the greatelt rife of the mercury or weight of the atmofphere, from the time the fcale was prepared.

By this means the variations of the atmofphere are much more truly pointed out than by the common barometer. For it often happens, that, during tempeftuous weather, or before it, the mercury both rifes and falls within the fpace of a few hours, or during the night time, which variations cannot be difcovered by any of the barometers prefently in ufe.

During the late very high winds, in November and December laft 1795, I have frequently obferved the mercury to rife and fall within the fpace of two or three hours before the wind begins; and, during tempeftuous weather, it will fall very confrderably, and foon after rife higher than before, and ofcillate, or rather undulate, upwards and downwards, the undulations becoming gradually lefs, until the atmofphere is more fettled; which fhows, that, like other fluids, when put in agitation, it undulates till it come near an equilibrium ; for it appears feldom to be in a ftate of perfect tranquillity.

The fudden fall and rife, or even the rife and fall of the mercury, always denote an extraordinary agitation in the atmofphere. And therefore, to foretell tempeftuous weather, it becomes of importance to obferve how many degrees the one index is removed from the other; for example, at night, I take note of the common barometer as ftanding at $29^{\frac{1}{2}}$ inches, and when I examine it in the morning find it at the fame height; from which I naturally conclude, that, as there has been no agitation of the mercury, there will be calm or fettled wea-
ther. But, if I ufe the barometer before defcribed, and examine it in the morning, I find the common barometer has deceived me; for although the furface of the mercury ftands at $29^{\frac{1}{2}}$ inches, yet I obferve, that one of the indexes has been raifed $\frac{2}{10}$, and the other lowered $\frac{4}{20}$ during the night. Hence, inftead of denoting calm weather, it fhows that, the mercury having been agitated, tempeftuous weather is to be expected.

The regifter of the weather, kept from an inftrument of this kind, will be much more fatisfactory than thofe hitherto ufed, and regifters kept at different places can be more accurately compared with one another.

The levity of the atmofphere, at great heights, might alfo be difcovered, by fufpending this inftrument to an air-balloon.
XII. Meteorological Abstract for the Years 1794, 1795, and 1796. Communicated by John Playfair, F. R. S. Edin. and Profeffor of Mathematics in the Univerfity of Edinburgh.

[Read at the Meetings in Feb. 1795, 1796, \& 1797.]

THE Journal of the Weather, of which an abftract is here communicated, has been kept in a houfe in Windmill Street, on the fouth fide of Edinburgh. The latitude of Edinburgh College, as deduced from a feries of aftronomical obfervations made at Hawkhill, is $55^{\circ} \cdot 57^{\prime} \cdot 5^{\prime \prime}$ nearly. Windmill Street is about 500 yards farther to the fouth.

The barometer ufed in thefe obfervations is a portable one, of the conftruction invented by Dr Lind, phyfician at Windfor; the mercury was boiled in the tube, and the fcale is divided into the five-hundredth parts of an inch. The place where it ftands is 265 feet above the level of the fea, or of the mean high-water mark at Leith. The height of it is marked every morning at ro o'clock, as well as that of a thermometer, in the fame room, which gives the temperature of the mercury.

The thermometer, which gives the temperature of the air, is placed on the outfide of a window that looks towards the N. W. about
about 18 feet above the furface of the ground; and though, in a town, it is impoffible to prevent local caufes from affecting the thermometer, yet the current of air is generally fo confiderable as to prevent thefe irregularities from rifing to any great amount.

The regifter contains the fate of the thermometer for three different hours of the day, viz. $8 \mathrm{~A} . \mathrm{M} .10 \mathrm{P} . \mathrm{M}$ and alfo about 2 o'clock, when the thermometer is higheft. The hour of this laft obfervation is not however fixed ; it is fuch as to give nearly the greateft heat of the day, and varies from 1 to half paft 2 , or even 3 o'clock. The abftract contains the greateft and leaft heights of the thermometer, that have been obferved at any of thefe hours in the courfe of each month: It contains alfo the mean of the morning, mid-day, and evening obfervations; and likewife the mean of all thefe means, as being nearly the medium temperature of the whole month.

The rain is put down for 1794 and 1795 from a rain-gage kept in Edinburgh, and for 1796 from one kept in the Botanic Garden with great accuracy, under Dr Rutherford's particular infpection. The Botanic Garden is half-a-mile north of Edinburgh, and about 100 feet above the level of the fea.

In the remarks, reference is fometimes made to the Meteorological Journal kept fome years ago at Hawkhill, near Edinburgh, of which an account is given in the Pbilofopbical Tranfactions of London 1775, p. 462.

METEOROLOGICAL TABLE FOR 1794.

$\begin{aligned} & \text { 品 } \\ & \text { 亮 } \end{aligned}$									
January，	29.661	49.30	51.5	21.0	$39 \cdot 32$	41.43	4120	40.65	1.40
February，	29.397	59.0	54.25	$35 \cdot 5$	$43 \cdot 5$	46.00	44.30	44.10	2.145
March，	29.631	51.00	53.0	38.5	44.43	48.09	45.93	46.15	0.995
April，	29.595	55.25	64.5	39.25	49．50	52.98	48.30	50.26	2.150
May，	$29.75{ }^{2}$	56.32	62.0	42.0	50.22	56.16	47.22	51.20	1.9 .10
June，	29.884	64.50	73.0	48.5	60.4	62.30	57.40	60.70	1.07
July，	29.768	66.70	75.0	52.0	61.7	66.42	58.61	62.24	2.12
Auguft，	29.720	64.32	72.0	49，0	59.98	63.03	55.40	59.47	I． 84
September，	29.662	58.71	64.0	41.0	． 54.90	57.45	52.06	54.08	3.14
October，	29.516	54.85	62.0	36.5	50.26	52.43	47.29	49.66	3.53
November，	29.416	48.90	53.5	32.5	43.58	$45 \cdot 54$	43.47	44．19	4.51
December，	29.691	48．58	50.5	26.25	4I． 33	42.50	40.10	4I．3I	3.92
Means， TotalRain，	29.641	55.72			49.79	52.84	48.34	50.32	28.73

$\begin{array}{llllll}\mathrm{R} & \mathrm{E} & \mathrm{M} & \mathrm{A} & \mathrm{R} & \mathrm{K}\end{array}$

The weather in January and February 1794 was very mild and open．The prevailing winds were from S．W．and S．S．W．；ufually a brifk tteady gale，but fometimes more violent，particularly in February．The thermometer was as high as $50 \frac{1}{2}$ ih January，and 54 in February；and once in January fo low as 21，only for 2 fhort time，however，during a N．W．wind；the froft lafted fome days．Very little fnow fell．The temperature of thefe months was 6° or 7° above the mean of the Hawkhill obfervations．There was a great deal of clear weather，and，though the atmofphere was moift，there fell but little rain．

March and April continued to maintain a fuperiority of 3 or． 4 degrees in tem－ perature above the fame months in ordinary feafons．March was very dry，and the wind frequently in the eaft．In the end of April，the weather was fqually，with the wind varying from S．W．to S．E．

Is May the heat fell down nearly to the common average of that month, viz. $50 \frac{9}{2}$, fo that it feemed cold, compared with the reft of the feafon. The wind was often in the eaft, and the nights cold.

JUNE and July were very favourable: warmer than the mean by 1 or 2 degrees. In June, the temperature was remarkably uniform; and the wind was moftly in the weft. The weather in July was alfo fine; the wind moderate, and generally weft.

The Harveft began with Auguft; the weather tolerable, though more rainy than ufual, and colder. The temperature of this month is almoft 2° below the mean.

The wind was generally weft; but a furface wind was to be obferved at the fame time blowing from the eaft. This is often obferved with us in the fineft weather : it feldom fails to happen at the time of the great changes of the wind from the eaft to the weft.

September was rainy; its temperature rather below the mean, with eafterly winds about the middle and end of the month.

October rainy; the wind variable, though moftly S. W.; the barometer low; and the mean temperature $49^{\circ} .66$, a very little under the mean.

November was warm for the feafon, though rainy, with the wind variable, and often very high from S. W.

December was alfo warmer than ufual, by nearly two degrees: The wind was eafterly till near the end of the month, when it changed to the N.E: A good deal of fnow fell on the 25 th ; and, on the laft day of the year, the thermometer, in the evening, was at 26 : The weather clear, with little wind.

On the whole, the mean temperature of this year exceeded that of ordinary feafons by almoft 2°. This excefs of heat is very confiderable; but, as it fell chiefly in the winter months, it was not attended with any particular advantage. The rain that fell was 28.73 inches.

METEO.

METEOROLOGICAL TABLE FOR 1795.

$\begin{aligned} & \text { 岂 } \\ & \text { 寍 } \end{aligned}$												茄	
		28.885	Inches． 29.891	42.0	46.0	16	1.11	\％ 32.80	3 E .20	$31^{\circ} \cdot 7 \mathrm{c}$	［nches． 2.732	4	7
F	30.450	28.636	29.484	41.8	＋0．c	21.0	30.14	30.89	28.46	29.83	3.875	6	2
March，	30.12 .5	28.992	29－573	46.5	51.5	26.0	39.92	42.96	37.80	40.23	1.372	23	8
April，	30.146	28.948	29.503	52.0	56.5	39.0	77.09	49.52	44.73	47．11	1 C	16	14
May，	30.320	29.275	29.913	$55 \cdot 1$	65.5	39.5	50.98	53.83	47.03	；0．34	1.200	18	［ 3
June，	30.272	29.128	29.743	5\％－5	67.0	42.5	54.49	57.17	50.54	54.06	3.920	10	20
July，	30.238	29.286	29.806	60.2	72.0	50.0	60.42	62.85	54．97	$59 \cdot{ }^{11}$	2.520	15	16
Aug．	30.040	29.210	29.674	64.2	73.5	52.0	61． 11	64.21	58.58	51.3 C	3.620	24	7
Sept．	30.282	29.314	29.853	62.0	73.8	53.2	59.89	53.48	57.63	60.00	1.	21	9
Oct．	29.944	28.340	29.280	57.5	63.5	44.5	53.66	55.55	51.48	53.56	4.870		
Nov．	30.490	28.475	29.570	47．5	51.5	25.2	240.60	41.61	39.27	40.49	$4 \cdot 58 \mathrm{c}$		4
Dec．	30.220	29.080	29.560	50.5	5．5－7	36.0	45.43	16.23	$42.96 \mid$	＋4．87	3.81 c	25	6
Means， Totals，			9.654	53．1			7.9 C	0．04	$\|75 \cdot 44\|$	7.75	35．72	31	34

The mean temperature of the whole year is 47.75 ．

R E M A R K S．

The winter of 1795 was remarkable for the feverity and continuance of the cold．The year began with a fharp froft，which had fet in on the 26 th of the pre－ ceding month，but which lafted only till the $3^{\text {d }}$ of January，when the wind came round to the S．W．and was followed by a thaw．On the roth the froft returned， the wind varying from N．W．to N．E．with heavy falls of fnow between the 1 gth and 20th．On the 20 th the cold became very fevere；and on the 22d the thermometer，about 8 in the evening，ftood at $4^{\frac{1}{2}}{ }^{\circ}$ ，the loweft that I oblerved it du－ ring the whole feafon．This intenfity of the cold lafted，however，but a thort time； for by 10.0^{\prime} clock the thermometer had rifen to $x \frac{x}{2}^{\circ}$ ．On the fame night，in the Bo－

V．os．IV．
D．d
tanical．
tanical Garden, which lies between Edinburgh and the Frith, and is about $\mathbf{I} g 0$ feet lower than the place where I obferved, a thermometer, which marks its loweft point, according to the conftruction defcribed in the 3^{d} volume of thefe Tranfactions, fell as low as 5°. The cold at Glafgow, on this night, was fill more intenfe. Mr Profeffor Wilfon, who watched the motions of the thermometer, with his ufual diligence and accuracy, found it fand at rero, from In at night till 3 in the morning, when it began to rife, and about break of day was at 10°.

The night preceding this was alfo obferved, in fome places, to be remarkably cold. At White Hall, in Berwickfhire, 7 miles W. N. W. of Berwick apon Tweed, and about $3^{8} \mathrm{E} . \mathrm{S}$. E of Edinburgh, Mr Hall obferved the thermometer, in the open air, about 10 that evening, at 6° below zero. This was the greateft cold that I have heard of being obferved in Scotland; and is, at the fame time, an example of the locality of thefe great colds. The weather at this time was clear; the wind very gentle, between N. N. W. and N. N. E.; a great deal of fnow had fallen from the 15 th to the 20 th, and lay at this time more than a gard thick on the ground.

From about the 22 d the intenfity of the cold relaxed gradually for feveral days; the thermometer was a degree above freezing on the 24 th . From that time the cold increafed; on the 29 th the thermometer was at $16^{\frac{3}{2}}{ }^{\circ}$ in the evening; in the Botanic Garden at 4°; and at Glafgow, on the afternoon of the 3 oth, it was between 4° and zero for feveral hours together. This was again followed by a relaxation of the cold, though not fo confiderable as before. On the sth and 6th of February it was again very cold, the thermometer here was at 19°, at Glafgow it defcended to xero.

After another remiffion the cold became very fevere on the $13^{\text {th }}$, both here and at Glafgow. This was fucceeded by a fimilar change, only the remiffion was longer and more confiderable, fo that a good deal of fnow was melted on the $24^{\text {th }}$ and 26 th ; but on the $27^{\text {th }}$ and 28 th the cold once more became fevere, the thermometer ftanding at 19 and 20 degrees. It continued much in this flate till the 3 d of March, when the wind came about to the $\mathrm{S} . \mathrm{W}$.; the thermometer rofe in the evening to $40 \frac{1}{2}^{\circ}$; and a very moderate thaw fucceeded, which carried off the fnow, without any of thofe great inundations which did fo much mifchief in the fouthern part of the Illand.

The whole duration of the froft was 52 or 53 days; and the medium temperature, during that time, 29°.6. The alternate intenfions and remiffions of the cold, all the while were very remarkable; our climate feemed to lofe nothing of its ufual inconftincy, and its viciffitudes were only lower down in the fcale of heat. By this means, however, many of the bad confequences of a long and fevere winter were prevented. The infides of houfes were never fo much cooled, that fpirits or beer, or even water, was frozen in them. The room where my barometer is kept, though without fire, was never colder than 37°, and this only for a few days in the end of January. From the fame caufe, the mills in the country were rarely fopped; and, except from the blocking up of the roads by the fnow, almoft no inconvenience was experienced.

The roads were rendered impaffable, both from the depth of the fnow, and the degree of thaw which now and then took place, by which they became flippery, and uneven in the extreme. The whole fnow that fell, reduced to water, meafured 6.607 inches, which, had it fallen at once, would have covered the ground to the depth of about 7 feet.

The feverity of this winter extended over all Europe ; and, on the Continent, the freezing over of the Rhine and the Meufe was accompanied with circumftances that will be long remembered.

The barometer was above 30.3 at the beginning of the froft, and continued high till the end of January, notwithftanding the heavy falls of fnow, which came almoft all from eaft and N. E. On the 3 rft of January it fell greatly, with fnow; and, during the firft 12 days of February, it was generally below 29 inches. It ftood at 30.4 on the 17 th, from which it fell gradually till the thaw, when it was under 29.5. No connection could be traced between the ofcillations of the barometer, and the intenfions and remiffions of the cold.

From the breaking up of the froft on the 3 d, till about the 20 th of March, the fnow did not difappear entirely, even in the plains; it ufually froze a little in the night, and the medium temperature was under $3^{8^{\circ}}$. On the difappearance of the fnow, the thermometer rofe fuddenly about 10°, which muft be afcribed to the ceafing, at that time, of the abforption of the latent heat, that had raken place during the melting of the fnow.

The fpring which fucceeded was tolerable; and the temperature of the latter part of March, the whole of April, and the beginning of May, rather above the mean. About the 1 oth of May the wind, which had for fome time been in the S. W. came to the eaft and N. E.; the weather, of courfe, was cold, and continued fo, with the wind generally N. E. all the month of June, and till the 24 th of July. June and July were alfo very rainy months. The wefterly winds prevailed in Auguft, and the weather was good, though a confiderable quantity of rain fell. September was uncommonly favourable; and the crop, which was extremely late, owed much of its maturity to this month. It proved, however, very fcanty, and was got in but indifferently, October being a very rainy month.

November was cold, and very wet: On the 18th the rain was remarkably heavy, and was followed by the greatelt floods that had been known for feveral years. In December the weather became much milder, and fomewhat lefs rainy; but, on the whole, the rain of this year very much exceeded the average, and amounted to 35.729 inches.
N.B. In the two laft columns of the table for this year, it is marked whether the wind blew from the weftern or eaftern femicircle. The fouth wind is fuppofed to belong to the firt of thefe; the north wind to the fecond.

METEOROLOGICAL TABLE for 1796.

$\begin{aligned} & \text { 品 } \\ & \text { 髟 } \end{aligned}$													
	Inches.	Inches.		0			\bigcirc	\bigcirc					
Jan	29.792	28.175		50.0	56.0	35.0	43.94	47.12	45.94	49.66	3.280	3 C	1
Feb.	30.380	28.682	29.556	49.0	51.5	34.0	39.85	43.77	40.79	41.47	I. 093	16	13
March,	30.408	29.375	28.886	48.5	51.0	30.0	38.35	43.88	$3^{8.67}$	40.30	.414	12	19
A pril,	30.208	29.040	29.873	56.0	68.25	41.0	48.37	55.40	47.49	50.42	1.156	16	14
May,	29.995	28.53 C	29.585	56.75	66.5	40.5	+7.77	53.60	46.33	49.23	1.852	17	14
June,	30.100	29.315	29.662	59.0	73.0	47.0	53.80	60.20	52.23	55.41	1.070	26	4
July,	30.021	29.054	29.445	61.25	66.5	+7.0	55.99	61.45	54.57	57.33	2.305	25	6
Aug.	30.240	29.316	29.828	64.75	74.25	50.0	58.86	68.5 c	57.22	61.52	.323	26	5
Sept.	30.166	29.362	29.739	61.62	70.5	45.5	54.85	60.12	54.63	56.66	2.187	18	12
Oct.	30.492	29.114	29.339	54.0	62.0	34.0	45.02	50.49	44.47	46.66	1. 668	28	3
Nov.	30.322	29.026	29.638	47.75	48.5	26.0	39.0	42.00	39.40	40.13	2.393	19	11
Dec.	30.262	28.978	$29.66 c$	40.37	51.5	29.0	31.76	34.05	31.66	32.49	1.664	0	II
Means, Totals,			29.614	54.08			47.38	5 x .71	47.10	48.1	9.3951	253	113

The mean temperature of the whole year is 48°. a.

$\begin{array}{lllllll}R & E & M & A & R & K & S .\end{array}$

The winter of this year was remarkable for its mildnefs, and, compared with that of the former year, may give an idea of the two extremes between which the winters of this part of the Illand will generally be confined. About the middle of January, the thermometer food for 10 days conftantly above 50°, day and night; and the mean temperature of the month, viz. $45^{\circ} .6$, is at leaft 11° above the medium, and nearly the fame with that of the ordinary January of Marfeilles. This extraordi-
nary degree of warmth was maintained by a high wind, that blew conftantly from S. W. and S. S. W. bringing with it the air and temperature of the fouthern parts of the Atlantic. This wind prevailed over fuch an extent of the ocean, and blew with fuch violence, that it forced back a fleet of Britifh men of war, afier it had endeavoured, in vain, for fix weeks, to make its paffage to the Weft Indies.

It muft be remembered, that the great cold of the preceding winter was witli a wind N. N. E. and fometimes N. N. W which blew very moderately.
On^{-}the 23^{d} of January there was a hurricane from S. S. W. that blew down trees and unroofed houfes: The barometer fell very low, and did not rife to its ordinary height for more than ten days.

In March the weather was cold, 5° below the middle temperature of February; eaft winds prevailed, and the premature appearances of vegetation, produced by the mildnefs of the preceding feafon, fuffered a fevere check. April was more favourable; but in May the weather again became cold, with eaft winds, remarkably dry and parching. The grafs every where fuffered extremely from this month.

On the $3^{\text {oth }}$ there was a hurricane at London, and at Portfmonth on the 3 ff . On both thefe days the barometer here was very low, 28.53, though the wind was no more than a brikk gale at S. W.

In June the mean temperature was not fo high by 2° as in ordinary feafons. The wind, though weft, was ufually from the northern points of the femicircle.

July was worfe than June, and its mean temperature 3° under that of a tolerable feafon. Great apprehenfions were entertained for the crops, which, without the fine weather that fucceeded in Auguft, muft have been ruined. The heat of this month, which was at a medium about $6 \mathrm{I}_{\frac{1}{2}}{ }^{\circ}$, was not fo remarkable for being great as for being uniform; the thermometer, for a great part of the month, was not below 63°, even in the night. There was a great deal of funfhine, and the wind almoft confantly W. S. W.

The firft half of September was little inferior to Auguft. On the 21 ft , the wind, from the S. W. came round to the N. E.; a confiderable fall of rain followed, and the weather became colder, and continued to be fo in October: the medium temperature of which was 3 degrees lower than the average.

A smart froft fet in on the 2 gth of November, and next morning the thermometer ftood at 26°. This froft continued till the 10th of December, with an intenfity very unufual fo early in the winter. On the evening of the 5 th the thermometer was at $2 \mathbf{I}^{\circ}$. Between the 10 th and $13^{\text {th }}$ the froft had almoft difappeared; but it returned on the $14^{\text {th }}$ with confiderable feverity, and continued till the 28 th, when it broke up entirely. The thermometer was at 19° on the 26 th, and in many places lower. The fame froft was felt in England, where there were local colds of much greater intenfity, the thermometer, in fome places, having been as low, it was faid, as - 10. A tract of very mild and open weather began on the 31It of December.

Vol. IV.
E.

The
222. METEOROLOGIGAL ABSTRACT.

The mean temperature of the whole year is $48^{\circ} .1$, about $\frac{3}{3}$ of a degree greater than the common average.

The greateft fingularity in this year is its drynefs. The whole rain amounted to no more than 19.395 inches, not much above the half of what fell in 1795. This guantity of rain was, however, perfectly fufficient for the purpofes of vegetation, as the crop of corn was very plentiful.

END OF PAPERS OF THE PHYSICAL CLASS

II.

PAPERS OF THE LITERARTGLASS.
I. On the Origin and Principles of Gothic Architecture.

By Sir fames Hall, Bart. F. R. \& A. S S. Edin.

> [Read April 6. 1797.]

INTRODUCTION.

LONG after the arts of ancient Greece and Rome had been loft, and before any effectual attempt was made to revive them, a ftyle of building, known among us by the name of Gothic Architecture, began to appear in Europe.

At firft, a few only of its peculiar forms were employed, which, in fome old buildings, are to be met with, intermixed with the remains of a ftill more ancient fyle. Afterwards, rifing by degrees into favour, it fupplanted, in all the departments of architecture, every other fpecies of defign, and maintained an unrivalled dominion during three hundred years.

In the early part of the fixteenth century it underwent a fudden reverfe of fortune; not, however, (I am inclined to think), from any difcovery of its defects, or any inquiry into its merits, but entirely from the general temper of the times. A paffionate admiration of the works of antiquity, which had then recently attracted the attention of the moderns, produced a contempt for whatever was not profeffedly formed upon the models of Greece and Rome. At the fame time, an indifcriminate hatred againft every production of the middle ages, ftrongly felt by men juft emerging from the gloom of that period, led them to overlook the merit of this very brilliant exception to its general barbarifm.

But the excefs of thefe impreffions has of late very much abated; authors of the greateft eminence have teftified a refpect for Gothic architecture, by advancing various fyltems to account for its forms; and, whilf they acknowledge the fuperior excellence of the works of the ancient Greeks, they allow that, in airy lightnefs, and in bold grandeur of effect, thofe of the Gothic ftyle have not been furpaffed, if ever equalled, by the moft celebrated of our modern productions. The period, too, in which it prevailed, being at a diftance from our times, and that diftance being magnified in our imagination by the obfcurity of its hiftory, we are inclined to rank its monuments with the works of remote antiquity, which feldom fail to excite even a greater intereft than thofe poffeffing the charm of novelty.

In concurrence with thefe favourable fentiments, my object, in the following Effay, is to reftore to Gothic architecture its due fhare of public efteem, chiefly by fhewing, that all its forms may be traced to the imitation of one very fimple original ; and, confequently, that they are connected together by a regular fyftem : thus proving, that its authors have been guided by principle, and not, as many have alleged, by mere fancy and caprice.

Having endeavoured to inveftigate the theory of Gothic architecture, I fhall prefent a view of what I have been able to collect concerning its hiftory; and, without pretending to dif+ pel the very deep obfcurity which ftill furrounds this curious fubject, I fhall venture to fuggeft fome hints, which may be of fervice in guiding the refearches of antiquaries. By this hiftorical view, I hope, likewife, to refute an opinion, which has contributed greatly to difcredit the Gothic flyle, namely, that it prevailed only in barbarous times ; fince I fhall fhow, that, although it made its firft appearance in a period of that defcription, it continued to flourifh, while the arts of defign were advancing in excellence, and ftill maintained its pre-eminence, when they had attained to the higheft degree of modern fplendour.

Lastly, by inftituting, between the Gothic and other ftyles, a comparifon, founded upon the general and fundamental principles of architecture, I fhall endeavour fairly to appreciate its merits, and to fhow the high eftimation to which it is entitled, in point both of beauty and of utility*.

Before

[^24]Before we enter upon this inquiry, which is chiefly directed towards the inveftigation of a principle of Imitation, it will be proper to premife a few obfervations, on the mode in which the forms of nature have been introduced into works of art; a fubject which hitherto feems not to have met with the attention it deferves.

Although the connexion between beauty and utility be ftill involved in fuch obfcurity, that we are unable to decide concerning the univerfality of that connexion, of one thing we are certain, that, in a work intended to anfwer fome ufeful purpofe, whatever vifibly counteracts that purpofe always occafions deformity. Hence it is, that, even where ornament is principally intended, the oftenfibly ufeful object of the work, if it have any fuch, mult be provided for, in the firft place, in preference to every other confideration.
But, in moft ufeful works, fome parts occur, the fhape of which is quite indifferent with refpect to the propofed utility, and which, therefore, the artift is at liberty to execute as he pleafes; a liberty, which has opened a wide field to the tafte and invention of ingenious men of every age and country, who have turned their attention to the compofition of ornaments; and whofe exertions have been more or lefs influenced by the fate of civilization in which they lived. It would feem, however, if we may judge by thofe various efforts, that little has been effected by mere human ingenuity ; fince we fee, that recourfe has been had, almoft univerfally, to Nature, the great and legitimate fource of beauty; and that ornament has been attained, by the imitation.

[^25]imitation of objects, to which fhe has given a determinate and characteriftic form.

Thus, among the Greeks, in the period of their higheft refinement, we find the handles of vafes in the fhape of vine branches, or of ferpents twifted round each other. Some urns of ancient Egyptian workmanfhip terminate in the head of an owl. The heads of our fhips are decorated with figures of men and of animals; and the hatchets and canoes of Nootka Sound are covered with rude images of various natural objects.

The imitation, however, in fuch cafes, differs from that in a ftatue or in a picture. In the one, the fole object is to reprefent fome natural object; whereas, in the other, the forms of nature have been partially adopted, and modified in various ways, in order to fuit the ufeful deftination of the work. In this manner, artifts of every age have been led to felect, among the forms of a natural object, fuch as anfwered their purpofe, to the exclufion of the reft; and have exhibited modified imitations of nature, which, being juftified by the circumftances of the cafe, do not fuggeft the idea of mutilation. Thus we meet with the foot of a table executed like that of a lion, or the hilt of a fword like the head of an eagle, without afking what has become of the body of the animal, and without being ftruck with any impropriety in the omiffion.

Frequentily, where the materials employed are themfelyes poffeffed of variety and elegance, the object of ornament has been fufficiently attained, by allowing the natural forms, in whole or in part, to remain in the finifhed work. For inftance, cups are made of fhells, of cocoa nuts, or of oftrich eggs, the character and beauty of which depend upon the natural form of the materials. And in the cafe of the bottles, ufed by the Roman Catholic pilgrims, an example occurs of an utenfil, in which
the natural form has undergone little or no variation, fince it confifts of the hard outward fk in of a gourd, of the fame fhape in which it grew upon the plant*.

This laft clafs of forms has been introduced, by Imitation, into works compofed of fhapelefs materials. Thus we have filver cups in the form of thofe made of fhells, and fruit-difhes of ftoneware in the form of bafkets. The ancient Peruvian vafes of pottery are executed in exact imitation of gourds; a practice which had probably fucceeded the ufe of gourds as bottles. In fuch cafes, the defect of real character in the object is fupplied by a fictitious one, which, in the hands of a man of genius, is often productive of the moft happy effects; fince it enables him to confer upon his. work the merit of confiftency, and truth of character; qualities, which influence the mind of the fpectator as powerfully, when founded on fiction as on reality. For we judge of fuch a work, as we do of a romance, in which we are fcarcely lefs interefted than if we believed it to be: true.

We may now confider the application of thefe principles to every kind of ornamental architecture. As ftone is not naturally poffeffed of any peculiar fhape, and as the ufeful object propofed, by ftructures formed of it, may be accomplifhed in various ways, very great latitude is left to the invention of the artift. We fee, accordingly, that, in every country where much refinement has been introduced, great pains have been beftowed in ornamenting fone buildings, with figures reprefenting various natural objects. It would feem, that the latitude has even been too great; for experience hews, that the artift

[^26]artift has fucceeded beft, where his imagination has been circumfcribed, and forced into a regular channel.

For this purpofe, recourfe has frequently been had to the device laft mentioned; the building being executed in imitation of a ftructure, compofed of materials, which naturally poffefs a determinate and characteriftic form. Such was the method followed by the architects of ancient Greece, who conftructed temples, and other public edifices, in imitation of a ruftic fabric, compofed of fquare beams, fupported upon round pofts or fterns of trees; and who derived the numerous ornaments of that beautiful ftyle, from circumftances which would naturally take place in fuch a ftructure *.

Vol. IV.
b
A

[^27]A faint and diftant refemblance, however, of the original, has generally been found to anfwer all the end propofed by the imitation; a refemblance, which may fometimes be traced in the general diftribution of the edifice, fometimes in its minute parts, and not unfrequently in both.

But the forms of nature, thus introduced, have been greatly modified by thofe of mafonry. For though ftone is by nature fhapelefs, yet, in the courfe of practice, many peculiar forms have been long eftablifhed, and currently employed, in working it ; fuch as ftraight lines, plain furfaces, fquare angles, and various mouldings ufed to foften the effect of abrupt terminations; all of which, originating in motives of mechanical convenience, and of fimple ornament, had, in very early times, been appropriated to mafonry, and confidered as effential in every finifhed work of ftone ; fo that, when the imitation of nature was introduced, thefe mafonic forms fill maintained their ground, and, being blended with the forms of nature, the two claffes reciprocally modified each other.

This combination of art with nature, of which we fee the moft perfect example in the Corinthian capital, produces what
are
appropriated to buildings of fone. The latter part, which relates to the principle of imitation in general, is fufficiently clear. The paffage, in Englifh, is nearly as follows:
" Thus, in the works of the Greeks, denticles were never placed under a modillion, becaufe it is impoffible that the afferes can be under the cantherii. If, then, what is fituated over the cantherii and templa in reality, be exhibited as under them in the imitation, the principle on which the work proceeds is belied.
" In the fame manner, the ancients never approved of, or directed, the introduction of modillions or denticles in the frontifpiece, but preferred a plain cornice; for this reafon, that neither the cantherii nor afferes lie towards the gable, nor can they project beyond it, but are placed with an inclination to the guttur.
" Thus, they efteemed it a departure from principle to exhibit, in an imitation, what could not occur in reality. For in finifhing their works, they introduced every ornament in an appropriated manner, and according to a real analogy borrowed from nature; and they approved of nothing, which could not be theoretically accounted for, on the principle of its refemblance to truth."
are called architectonic forms, in which the variety of nature, being fubjected to the regularity of art, the work acquires that peculiar character, which, in a natural object, we confider as offenfive, under the name of formality; but which, in architecture, we admire as a beauty, under the name of symmetry : thus, we reprobate the formality of an avenue, and praife the fymmetry of a colonnade.

Such is the nature of architectonic imitation; a device, which probably originated in accident, but to which architecture is indebted for its higheft attainments.

I was firft led by Mr Byres, a very refpectable member of this Society, to obferve, among the remains of antiquity at Rome, many beautiful examples of the application of thefe principles by the ancients; and though my view of the fubject was then very obfcure, the theoretical folution of the queftion not having occurred till long after, I was fully aware of the very great practical advantages which they had derived from the employment of the principle of imitation.

Occupied with this view of ancient art, as I was travelling through the weftern provinces of France, in my return from Italy, in the end of 1785 , I was ftruck with the beauty of many Gothic edifices, which, far from appearing contemptible, after the mafterpieces of art I had feen in Italy and Sicily, now pleafed me more than ever. I was thus induced to believe, that thofe extenfive works, poffeffed throughout of fo peculiar a character, and fo eminent for unity of ftyle, could not have been carried on, unlefs the architects who built them, like thofe of ancient Greece, had been guided, in their execution, by fome peculiar principle; and being diffatisfied with all the theories of the art which I had heard of, I undertook the inveftigation, which has given rife to the following Effay *.

Conceiving

[^28]Conceiving that fome ruftic building, differing widely from the Grecian original, might have fuggefted the Gothic forms, I had made it my bufinefs to fearch for fuch a one, when the following accidental circumftance greatly affifted my fpeculations.

It happened that the peafants of the country through which I was travelling were then employed in collecting and carrying home the long rods or poles which they make ufe of to fupport their vines, or to fplit into hoops ; and thefe were to be feen, in every village, ftanding in bundles, or waving, partly loofe, upon carts. It occurred to me, that a ruftic dwelling might be conftructed of fuch rods, bearing a refemblance to works of Gothic architecture, and from which the peculiar forms of that ftyle might have been derived \dagger. This conjecture was at firft employed to account for the main parts of the ftructure, and for its general appearance only; but after an inveftigation carried on, at different intervals, during the courfe of thefe eleven years, with the affiftance of fome friends, both in the collection of materials, and in the folution of difficulties, I have been enabled
in number. At the time here alluded to, I was acquainted with an opinion, which I have fince found to have originated with Dr Warburton, that the Gothic Atyle was copied from an alley of trees. I was aware of the advantages of this theory in fome effential points, yet it always appeared to me unfatisfactory in many others; and I conceive it to be at beft far too vague to ferve as a guide to the artift.

[^29]to reduce even the moft intricate forms of this elaborate ftyle to the fame fimple origin.

In the prefent ftate of the queftion, the following inquiry muft be confidered as falling under the denomination of, what is called by Mr Stewart *, "Theoretical Hifory," and by fome French authors, "Hifoire raifonnée ; being an attempt to trace, by conjecture, the fteps through which an art has paffed, in attaining the ftate in which we obferve it. Indeed it is probable, that few inveftigations have been undertaken, which more completely correfpond to that definition, fince, in moft fubjects of this kind, many fteps of the progrefs are known, and nothing is required but to fill up, by theory, the interval between them; whereas, in the prefent cafe, as all direct teftimony is wanting, and as no fteps of the actual progrefs of the art have come to our knowledge, our opinions on the fubject, hitherto, can only amount to prefumptions, founded upon the correfpondence of the theory with the monuments of the art now in exiftence; and, the more numerous and complicated the cafes are, in which this coincidence takes place, the greater probability there is in favour of the fyftem.

But, though fuch be the actual fituation of the inquiry, we may hope to fee it, hereafter, affume a different form ; for, fhould the conjecture, brought forward in the following Effay, carry with it fufficient plaufibility to excite a fpirit of refearch among perfons beft qualified to purfue the fubject, there is reafon to expect, that difcoveries may be made, of a literary or architectural nature, by which its truth or falfehood will be eftablifhed beyond difpute.

What has juft been faid will, it is hoped, ferve as my apology for having advanced a fyftem, which, ftrictly fpeaking, is founded on conjecture alone; and, on the other hand, for having enumerated a multitude of particulars, many of which might

[^30]might juftly be confidered as fuperfluous, were the theory fupported by direct teftimony.

OF THE ELEMENTS OF GOTHIC ARCHITECTURE.

$W_{\text {HEN }}$ we enter a Gothic church, our attention is firft attracted by a double row of cluftered pillars, compofed of an affemblage of long and flender fhafts, which, reaching from the ground nearly to the fummit, there feparate and fpread in all directions, forming the ribs or groins (as they are called) of a vaulted roof. In the meeting of thefe groins, and in the windows of the fides and ends, we fee the form of the pointed arch, the principal characteriftic of Gothic architecture.

Such buildings have, I conceive, been executed in imitation of a ruftic dwelling, conftructed in the following manner :

Suppose a fet of round pofts, (Pl. I. fig. 1. \& 5.), driven firmly into the ground in two oppofite rows, the interval between the neighbouring pofts in the fame row being equal to that between the rows; and each poft being raifed above the ground to a height equal to three of thofe intervals.

Then a fet of long and flexible rods of willow, being applied to each poft, (fig. 2. \& 6.), let them be thruft into the ground at its bafe, and bound to it by two tyings, one near the ground, and another at two-thirds of its height; the rods being left loofe, from this laft point upwards, and free to be moved in any direction. Let three rods be connected with each outfide corner poft, (as A or H of the ground-plan fig. 6.), and five with each
each of the others, (as B or G), and let their pofition be fuch as to cover the infide of the poft, (as marked by little circles in fig. 6.), fo that, when feen from between the rows, the lower part of each poft fhall be concealed from the view, and prefent the appearance of a bundle of rods, (fig. 2.).

Things being thus difpofed, the fkeleton of a thatched roof may be formed, by means of the loofe ends of the rods. This is reprefented complete in Plate II. figure $15 . \& \mathrm{~m} 6$; but the ftructure being rendered intricate, by the mixture of different fets of forms, I have, for the fake of diftinctnefs, defcribed each of them feparately, and have reprefented them by feparate drawings, with each of which a ground-plan is connected.

A rod from one of the pofts, being fo bent as to meet a fimilar one from the poft immediately oppofite to it, in the middle of the fpace between them, let the two rods be made to crofs. each other, and let them be bound together at their croffing, (Pl. I. fig. 3.). Thus will be produced the exact form of the Gothic arch. The fame being done with each pair of oppofite pofts, and a fet of pointed arches being formed, let them be connected together by means of a ftraight pole, laid upon the forks of the croffing-rods, and bound to each of them, (fig. 7. \& II.).

Then let a loofe rod be brought from each of any two contiguous pofts in the fame row, fo as to form a pointed arch, fimilar to that juft defcribed, and nearly of the fame height. This being done with every two contiguous pofts, (fig. 8. \& 12.), and a new fet of pointed arches being thus produced, ftanding oppofite to each other in pairs, let each pair be bound by a horizontal pole lying on the oppofite forks, and croffing the longitudinal pole, defcribed above.

Two of the rods of each corner poft, and three of thofe of each of the others, being thus difpofed of, we have one of each corner poft, and two of each middle poft ftill to em-
ploy; which is done as follows: A pair of thefe unoccupied rods being brought from any two pofts which ftand diagonally to each other, (A and F, fig. 6.), and made to meet in the middle, not as in the firft cafe, croffing in an angle, but fide by fide, forming a femicircle, and joined together after the manner of a hoop, (fig. 4.) ; and the fame being done with every pair of diagonal ports, (fig. 9. \& I 3.), the whole rods will have been employed.

Each of the three fets of arches having thus been feparately defcribed, (fig. 7, 8, \& 9,), the complete ftructure, in which they are all combined, may eafily be underftood, (Pl. I. fig. 10. and 14., and Pl. II. fig. $15, \& 16$.).

In this manner a frame would be conftructed, fit to fupport thatch or other covering, and fuch a one has probably been often ufed. It would feem, however, that, for the fake of ftrength, the number of rods- has been increafed in each clufter, by the introduction, between every two of them, of an additional rod, which, rifing with them to the roof, till continues its middle pofition, as they fpread afunder, and meets the horizontal pole at an intermediate point. This is fhown in Plate III. figure 19, which is drawn with its covering of thatch; and the fame is exprefled in the correfponding ground-plan, figure 20.

From the imitation of a dwelling, fo conftructed, we may now trace the three leading characteriftics of Gothic Architecture, the pointed arch, the cluftered column, and the branching roof, (Pl. II. fig. 17, \& 18., and Pl. III. fig. 21, \& 22.) *.

The

[^31]The ruftic fabric might thus be covered completely, but would not be habitable, unlefs the openings of the fides and ends were clofed, fo as to refift the weather. This might eafily be accomplifhed, by means of bafket-work, covered, as is ftill practifed in many countries, with a mixture of clay and ftraw. In order to furnifh ribs for the bafket-work, a fet of upright rods would be thruft into the ground below, and bound to the arch above, dividing the opening into fpaces reaching from top to bottom, (Pl. IV. fig. 23.), which, being filled up with twigs wattled through them, would be entirely clofed, (fig. 24.), and the work would be tolerably ftrong. It might however be thought advifeable, for the fake of greater ftrength, to fplit all the upright rods, down to the level of the points at which the main rods of the opening feparate from their refpective pofts ; or, to borrow a term from architecture, down to the level of the impofts of the arch; and then to carry the half rods, fo fplit, acrofs the reft, in fuch a manner as to afford the opportunity of repeatedly binding them to each other, (fig. 25.).

But were the fpaces all fhut in this manner, the houfe would be rendered abfolutely dark. It would therefore be neceffary to provide for the admiffion of light, which might be done, without materially weakening the ftructure, by omitting fome of the wattled work in the middle, fo as to leave part of the ribs open and bare, (fig. 25.).

These naked ribs feem to have fuggefted the forms of the flender bars of ftone, called Mullions, which conftitute the framework of the glafs, in all Gothic windows; the moft common example of which may be feen in (fig. 27.).

The window, in the fabric of ftone, as well as in that of willow, being very confpicuous, would naturally become an object of attention in point of beauty. Accordingly we find, that, in the compofition of Gothic edifices, much pains have been beftowed in ornamenting the windows, by the introduction Vol. IV.
of a number of figures, which are often extremely elegant, and fometimes furprifingly complicated, though without confufion; for they can all be traced to fome variety or modification of the fimple elements juft laid down; as will be fhown, when we treat of the more complicated works of Gothic architecture ; at prefent, it is neceffary to mention only one other defign.

In this window, (fig. 26.), the halves of the neighbouring rods are brought to meet, but not to crofs, and are bound together fo as to touch each other, back to back; next, the halves of each rod being brought together again, they are bound face to face ; then again feparated, and bound a fecond time back to back, with the halves of the neighbouring rods; and fo on, till the whole fpace is filled with a fet of regular and equal compartments, bounded by waving lines, (fig. 26. \& 29.).

The form of the Gothic door may be traced to an origin fimilar to that of the laft mentioned window. One pair of rods, (fig. 31.), being brought from the pofts which form the upright fides of the door, are made to meet in a pointed arch, in the manner defcribed above; then, another pair of rods, longer than the firft, and connected with the fame pofts, are brought to meet above them, and are bound together face to face, like the half rods in the laft mentioned window; the fpace between the two pairs of rods being occupied by a circular hoop.

The reprefentation of the upper pair of rods, when dreffed with fome fimall ornaments, as in many Gothic buildings, produces a moft elegant effect. Figure 33. is a door of St Mary's, Beverley, reduced from a drawing taken on the foot, at my defire, by Mr J. Halfpenny.

The form of the fteeple, however various and apparently different from what has hitherto been mentioned, can eafily be reduced
duced to the fame principles. The common fteeple, or dharp pointed fpire, feems to have for its origin fimply eight long and ftraight poles thruft into the ground, one in each of the angles of an octagon; and fo inclined, that they all meet in a point, directly over the centre of the bafe, and raifed above it four or five of its diameters, the rods, thus placed, forming together a very acute octagonal pyramid, (fig. 34.). The original object of a ftructure of this kind would probably be mere ornament, as it is not calculated to anfwer any purpofe we know of, unlefs it were to fupport a bell. Perhaps the firft works of this kind, even thofe executed in flone, were placed upon the ground; but as a fpire is feen to beft advantage from a diftance, an architect would naturally think of raifing it in the air, by placing it on the fummit of a tower; which is the cafe with all the fpires of this kind I have feen. Figure 35. is a view of the fpire of Tuxford in Nottinghamfhire.

Besides the rectilineal fpire, we fometimes meet with others of a curved form, which may be accounted for in a manner no lefs fatisfactory, as fhall be fhewn in a fubfequent part of this. Effay.

Having now taken a view of all thofe parts of Gothic architecture, which conftitute its folid mafs, it remains, in order to complete the elements of the art, that we confider two fets of fmall ornaments, which very often occur, and which, though not neceffary in theory, nor univerfally obferved in practice, arife naturally from the principles already laid down, and contribute very much to give to Gothic architecture that peculiar appearance by which it is diftinguifhed. Both thefe ornaments may be traced to the effects of time upon the materials employed in the conftruction of our ruftic fabric ; one fet being connected with the vegetation of the rods, and the other with their death and confequent decay.

As it would frequently happen, that the willow rods, thruft into the ground, would ftrike root and grow, the architect feems to have taken advantage of this circumftance, by reprefenting them as decorated with buds and tufts of leaves, whenever he thought that fuch ornaments could be introduced with good effect.

This practice has been very generally followed in the execution of the door, as in that exhibited in figure 33. the upper part of which is a reprefentation of living rods, covered with tufts of leaves, like thofe in actual vegetation, (fig. 32.). Upon the fpire, too, a fet of fmall projections, placed at regular intervals, often occur, as in that of Bunny, in Nottinghamflire, (fig. 37.), which feem to be the reprefentation of buds fpringing from the poles of the original, (fig. 36.).

These ornaments, known by the name of Crockets, when placed on the floping part of doors, Iteeples, pinnacles, \&c. and of Finials, where they form a tuft on their fummit, univerfally and unequivocally reprefent foliage. The leaves, it muft be owned, however, feldom refemble thofe of trees, but more commonly fome plant of the cabbage kind. On this occafion, the artift has ufed the freedom to deviate from the ftrictnefs of the imitation, and has contented himfelf with adhering to the general idea of foliage. But, in fo doing, he has been in a great meafure juftified by the circumftances of the cafe; for the foliage of a tree, efpecially that of the willow, being compofed of a multitude of fmall and detached parts, could not, without much difficulty, be executed in ftone, and would produce a very frail and perifhable work, which could only be placed with advantage in very protected fituations. He has thus been induced, in moft cafes, to choofe fome plant having a maffy and compact form, better adapted to fculpture. This however is not without exception, as we do meet fometimes with croc-
kets formed of the leaves of various trees, efpecially of thofe of the vine; as may be feen in York-Minfter in feveral places; particularly in that very interefting collection of pediments and pinnacles, furrounding the infide of the nave and its ailles. Thefe are executed with amazing delicacy and elegance, and with fuch fertility of invention, that, though eighty-eight in number, not only every two of the pediments, but every two crockets on the fame pediment, differ from each other *.

UPON

> * One of thefe pediments, with its pinnacles, crockets, and finials, executed on a large fcale, may be feen in that beautiful collection of the ornaments of York-Minfter, now publifhing in numbers by Mr Halfpenny: in which work, likewife, are many other things applicable to the prefent fubject. I am happy to have it in my power to bear teftimony to the faithful accuracy with which the objects are there reprefented, from having examined feveral of the originals in that view, in the courfe of laft fummer, (1796), particularly that of Plate XLI, of which I made a drawing myfelf, in company with Mr Halfpenny; fo that I can vouch for its exactnefs in every refpect. I have been induced thus particularly to mention the fubject, by a fufpicion mentioned in Mr Halfpenny's feventh number, concerning the accuracy of his drawings; fome gentlemen having imagined, that he had placed the fculpture in too advantageous a light. To this he anfwered, that " in truth he has not been able, " in many initances, to come up to the fpirit and elegance of the originals." A declaration no lefs true than it is modeft. I am well convinced that the gentlemen, with whom this fufpicion has originated, have not been much accuftomed to examine our Gothic buildings of eminence, fince, in any of thefe, they would have met with numberlefs works, executed in too high a ftyle of defign to admit of embellifhment in the prefent ftate of the arts. Nor is it wonderful that fuch fhould be the cafe, when we reflect, that they belong to the $14^{\text {th }}$ and 15 th centuries; during which, a feries of artifts flourifhed in Italy, who, in point of chafte defign, and careful imitation of nature, have never fince been equalled, though they had not attained to many of the refinements which were introduced in the fubfequent age. Thefe artifts travelling over Europe, contributed greatly to the ornament of the Gothic edifices which were then building, as we learn from many curious facts collected by Lord Orford, in his Anecdotes of Painters.

> I shall enter more fully into this fubject, when I fpeak of the Hiftory of Gothic Architecture; and I am led to touch upon it now, though out of place, in order to call the attention of men of tafte to the fate of numberlefs beautiful ornaments of

Upon the monument of King John 1. and Queen Philippa, in the church of Batalha, are two canopies of frittered-work, conftructed in a manner which I fhall endeavour to explain in a fubfequent part of this Effay. The lower part of each of them confifts of an arch of contrary flexure, like that of the door of St Mary's, Beverley, (fig. 33.), but ornamented in a manner fomewhat different, having, in place of the crockets, a fet of leaves, in form and arrangement, greatly refembling thofe of the willow *.

Whoever

the Gothic ftyle, which are daily perifhing by the exertions of a miftaken zeal in their favour.

Every year, great fums are beftowed in dreffing up the old churches, in many parts of England, much to the detriment of thefe noble edifices. In fome cafes, this is done by befmearing the building with white or yellow paint, which chokes and confounds all the delicacy and elegance of the fculpture. This evil, however, is not of the deepeft kind; fince, here, the original forms of the work remain entire, and may be again reftored to their purity, when a better tafte prevails. But an injury of a much more ferious nature is occafioned by the operation of chipping, in which the mafon, with a barbarous hand, actually goes over the whole work, and chifels off the furface to a certain depth, leaving but a poor fhadow of the original form. By both operations, the building acquires the harf and glaring appearance of new work; which, however, is removed in a few years, by the influence of the weather, and the edifice recovers its former grandeur, as far as colour is concerned. But the havock committed by chipping is quite irreparable; for the fculpture, when once removed, can return no more.

I have been told, in vindication of this practice, that the forms of the old work were reftored exactly as they originally food. An idea worthy of the fimplicity of Mummus the Roman general, who demolifhed Corinth. As if it were in the power of every ftone-cutter to replace a matter-piece of the 5 th century :

I was happy to find, at York, that a different firit prevailed in the operations carrying on in the Minfter. In all thefe repairs, the ancient fculpture has been moft fcrupulouly refpected; and, in many places, the fone has been carefully freed from its load of paint, fo as to reftore it to its original purity. For thefe attentions, the public is greatly indebted to the good tafte and judgment of the Rev. Mr Eyre, one of the refidentiaries.

* See Mr Murphy's admirable publication; a work to which I fhall have very often occafion to refer, when I fpeak of the more complicated forms of Gothic architecture.

Whoever pays any attention to Gothic architecture, muft obferve, in the upper part of moft windows, an ornament projecting from the bars, formed by two curved lines meeting in a point. It would be difficult to defcribe this form in words, but it may be underftood eafily by figures $27, \& 28$. of Plate IV. which reprefent two contiguous windows of St Mary's, Beverley ; in one of which the bars have been executed plain, and in, the other they have been ornamented in this manner. Figure 30. is the window that lately ftood in the chapel of Holyroodhoufe at Edinburgh, and figure 29. the fame general form executed quite plain, as it fometimes occurs. As this ornament has not, that I know of, been characterifed by any peculiar name, I fhall apply to it that of cufp, by which mathematicians denote a figure of the fame kind*.

It was long before any fatisfactory explanation of this form occurred, though the frequency of its appearance, and the uniform manner in which it is introduced in all Gothic works, left little room to doubt that it had an origin, in common with the more fubftantial forms of the ftyle. At laft a friend fuggefted to me, that it may have been borrowed from the appearance affumed by the bark of the rods, when about to fall off, in confequence of decay. With this view, having attended particularly to branches in a fimilar fituation, I have met with feveral facts, which tend to confirm this conjecture. The dead branches of every kind of tree, after being expofed to the weather during three or four years, throw off their bark, which, immediately before it drops, curls into various fhapes, owing

[^32]owing to the unequal contraction of its different layers. This takes place varioully in different woods; in fome, the bark bends inwards, in fome outwards, in fome acrofs the branch, and in fome lengthways. I have had occafion to obferve, that, univerfally, the bark of the willow bends concave outwards, and lengthways with refpect to the branch. One of the firft diftinct examples I met with, of this kind, was on a rail at St Mary's Ine in Galloway, in the fummer of $\mathbf{1 7 9 2}$, (Pl. V. fig. 38.). The rail had been made entirely of frefh willow, and the pofts had all ftruck root, having then the third year's growth upon them; the horizontal bars had died of courfe, and were in the act of lofing their bark. This, in fome places, was feen feparated from the wood at one end, and adhering to it at the other, forming a gentle and continued curve with the mafs of bark, which ftill remained attached to the wood; fome pieces of bark, a few inches in length, had feparated at both ends, and remained adhering only by the middle; in fome places two contiguous pieces of rifing bark met, and exhibited a fhape very much refembling that of the cufped ornament which I have juft defcribed. In the fummer of 1795, I faw, at the fame place, a ftill more friking example of this, upon an upright poft of willow, (fig. 40.), in which the two pieces of curling bark formed, together, a cufp from nine inches to a foot in length. In a few days, the under piece of bark fell off; but the upper one remained for more than a month, lying clofe to the wood during rain, and rifing from it when the weather was dry. Figure 39. reprefents a large branch, which I cut from an old willow, having the curled bark-upon it, and which, being kept dry, fill retains its fhape.

There is great reafon to fuppofe, that this accident has fuggefted the cufped ornament : For if we fuppofe a window of the willow houfe, (fig. 41.), in the fame ftate of decay with the rails juft mentioned, to have come under the obfervation of an archi-
tect of genius, in the habit of borrowing all his ideas from a houfe of this kind, and eager to feize upon whatever contributed to add beauty or novelty to his work, it is natural to believe, that he would take advantage of the circumftance, by imitating, in ftone, the curling bark; and this being executed with that regular fymmetry, which architecture beftows upon the natural objects it reprefents, (fig. 42.), would produce a light and elegant effect, and the ornament would foon become general.

We know that to fuch accidents, the architecture of the Greeks was indebted for many of its principal embellifhments; of which the origin of the Corinthian capital is a ftriking and authentic example.

Finding that all the effential parts of Gothic architecture could thus be explained, by tracing its origin to the imitation of a very fimple ruftic edifice, I was defirous of fubmitting the theory to a kind of experimental teft, by endeavouring actually to conftruct a building fach as has been defcribed. With the help of a very ingenious country workman*, I began this in fpring 1792, and completed it, in the courfe of the winter following, in a manner which far furpaffed my expectation, and which has already met with the approbation of feveral Members of this Society. The method of conftruction anfwered fo well in practice, that I doubt if a better could be followed, with fuch fimple materials; and fo primitive is the mode of execution, that I believe, with a little ingenuity, the whole might be executed without the help of a fharp inftrument, or of any materials but fuch as the woods afford.

A SET of pofts of afh, about three inches in diameter, were placed in two rows, four feet afunder, and at the interval of four Vol. IV. d feet

[^33]feet in the rows. Then a number of flender and tapering willow rods, ten feet in length, were applied to the pofts, and formed in the manner already defcribed, into a frame, which being covered with thatch, produced a very fubftantial roof, under which a perfon can walk with eafe *.

This little ftructure exhibits, in miniature, all the characteriftic features of the Gothic ftyle. It is in the form of a Crofs, with a Nave, a Choir, and a north and fouth Tranfept. The thatch, being fo difpofed on the frame, as not to hide the rods of which it is compofed, they reprefent accurately the pointed and femicircular arches, and all the other peculiarities of a groined roof. The door is copied from that of Beverley. The windows are occupied by a number of defigns, executed, (by means of fplit rods), in exact refemblance of thofe which actually occur in various Gothic edifices. Round each window is a border of compact wicker-work, which, by deepening the fhade, adds greatly to the general effect. At a little diftance ftands the fpire, formed of eight ftraight poles of willow planted in the earth, and rifing in an octagonal pyramid to the height nearly of twenty feet. Various other Gothic forms are likewife introduced, which being of the more complicated kind, will be explained in a fubfequent part of this Effay.

The appearance of the whole, whether feen from within or from without, bears, I flatter myfelf, no fmall refemblance to a cathedral.

In the courfe of fpring and fummer 1793, a great number of the rods ftruck root, and throve well. Thofe of the door, in particular,

[^34]particular, produced tufts of leaves along the bent part, exactly where they occur in ftone-work; the vegetation did not however reach, as had been wifhed, to the very fummit, but was more than fufficient to juftify an artift in the execution of doors like that of Beverley, (fig. 33.). Three of the rods of the fteeple, alfo, fent out buds, at fmall intervals, to the height of eight or ten feet from the ground, fo as, at one flage of their growth, to refemble the budded fpire already defcribed.

I have likewife had the fatisfaction, in the courfe of laft autumn, (${ }^{7} 796$), of finding one entire cufp formed by the bark in a fate of decay, in a place correfponding exactly to thofe we fee executed in Gothic works.

In this manner, all the original forms of. Gothic architecture may be accounted for. But they feldom occur in the ftate of fimplicity, which, in order to facilitate their defcription, I have hitherto fuppofed; for, in a Gothic edifice, they are for the moft part complicated by varieties in execution, and by intermixture with each other. They have been modified, likewife, and fometimes difguifed, by the circumftances attending the tranfition from wicker-work to mafonry, which have occafioned changes, both in the general defign of thefe works and in the execution of their minute details. I fhall endeavour to fhow, however, (in the work I have already announced), by an examination of the actual monuments of the art, that the moft intricate of thefe forms may be traced to the fame fimple original. But to accomplifh this, it will be neceffary previoufly to inveftigate the tranfition to Mafonry ; an inquiry too extenfive to be comprifed within the limits of an academical memoir.

10
\therefore i,
17
apl
if
泉
\because pios
$i=0: 1+1$
 $i-$ 1
\therefore
\vdots
\vdots
\vdots

\therefore
\ddots
\therefore
\therefore
\therefore \ldots

- \because -

(t. isis

\qquad ध

-

- 19

21

20

22

Plate V

II. M. Chevalier's Tableau de la Plaine de Troye illufirated and confirmed, from the Observations of fubfequent Travellers, and others. By Andrew Dalzel, M. A. F. R. S. Edin. Profeffor of Greek, and Secretary and Librarian in the Univerfity of Edinburgh.

[Read Sept.4. 1797.]

AS the Members of this Society afforded to M. Chevalier an early and warm encouragement and patronage, and readily gave his Tableau de la Plaine de Troye a place in their Tranfactions*, as well as admitted the author to a feat among their number; and as that paper, fince the time of its publication, has excited a good deal of intereft and fpeculation, they will, no doubt, hear with pleafure, that it has now received, at leaft in all its material circumftances, a moft ample and fatisfactory confirmation.

The author, previous to his departure from England, in May ${ }^{1} 796$, had expreffed an anxious defire that a fecond edition of the Englifh verfion of his Effay fhould be publifhed, improved from fome materials I had collected, and by fuch amendments as he fhould communicate. But as this could not be done, without

[^35]without a new arrangement with the bookfellers, and as an obftacle occurred which rendered a delay neceffary, I have thought that it would, in the mean time, be agreeable to the Society to have a fhort Abftract of the moft material contents of the Effay, as now confirmed by fubfequent travellers, laid before them, preceded by an account of the manner of its firft reception, of the communications of thofe travellers, and of certain objections that have been made to it; and followed by an Appendix, containing the papers and letters referred to in the foregoing detail.

Account of the Reception which the Defcription of the Plain of Tray at firft met with.
M. Chevalier, after his return from the Eaft, and before he came to Edinburgh, vifited Paris, where he found the late M. l'Abbé Barthelemy, author of the Travels of the Young Anacharfis, to whom he gave fome account of his excurfions into the Troad. That celebrated and refpectable fcholar was fo much pleafed with the light he received, on this occafion, concerning that famous claffical region, that he introduced M. Chevalier to a party of his friends by the title of le Reftaurateur de la Troade: and it is probable that, if he had been favoured with M. ChevaLIER's information previous to the publication of his great work, he would have embellifhed his book with a more fatisfactory defcription of the Troad, than he found himfelf able to do from the imperfect and inaccurate accounts formerly given of it.

In the year 1792, when the Differtation in queftion, which the author had read in French before this Society, was publifhed in the Englifh tranflation of it, which, at his own defire, and with the approbation of the Council of the Society, I had made, it feemed to give great fatisfaction to claffical readers in general.
ral. In Germany, even before it was publifhed, it had found a warm fupporter in the celebrated Profeffor Heyne of Gottingen, with whom the author became acquainted, in a tour he made in that country, foon after he had read the original of his paper in the meetings of this Society. Having no copy along with him, when he went into Germany, he endeavoured to give Mr Heyne an idea of his refearches in the Troad, as diftinctly as he could from recollection, aided by fome travelling journals which he had retained in his cuftody. He found the fubject extremely interefting to Mr Heyne, whofe attention had been for fome time particularly turned to the poems of Homer, of which he had projected a new edition upon the plan of his Virgil, fo favourably received by the Public. At the united defire of the author and Mr Heyne, with the approbation of the Council of this Society, I firft tranfmitted a printed copy of the tranflation, with notes, to Gottingen, before the work could be publifhed here, and afterwards a copy of the maps, immediately upon their being finifhed by the engraver.

Mr Heyne was highly gratified with M. Chevalier's difcoveries, and pleafed with what he confidered as the very liberal manner in which they had been conveyed to him. That his countrymen might partake of the fatisfaction he had received, he employed Mr Dorneddan, a young promifing fcholar, to tranflate into German the Defcription of the Plain of Troy from the Englifh verfion. The greateft part of the notes, which I had fubjoined, were alfo tranflated by the fame ingenious fcholar; a preface and further illuftrations by Mr Heyne himfelf, with an Effay on the Topography of the Iliad, and a Differtation by Mr Kaestiner on the Height and Shadow of Mount Athos, were added; and the whole publifhed in Germany in an octavo volume, almoft as foon as the Englifh verfion, with notes, appeared in England*.

[^36]It had been perufed alfo, before publication, by feveral gentlemen of learning and tafte in this place, who had defired to fee it; fome of whom expreffed their fatisfaction in converfation, and others in writing: and, after publication, I received letters from feveral eminent claffical fcholars in England, by whom M. Chevalier's labours were highly approved of. Some of thefe teftimonies I have happened to preferve*.

But though M. Chevalier's refearches, thus given to the public in Englifh and in German, and afterwards in the French original in the third volume of the Tranfactions of this Society, were received in the moft favourable manner by claffical fcholars in general; yet fome, who had long before acquiefced in the account of the prefent appearance of this claffical region given by the late Mr Wood, could not conceive how that ingenious obferver fhould have gone fo completely aftray on the ground as had been alleged; and were difpofed to think, that an enthufiaftic admiration of Homer, common to M. Chevalier with many perfons of fenfibility and tafte, might have prefented to his fancy circumftances, and fcenes and appearances, of which a cool and unbiaffed examiner might not have perceived the reality.

Of the Communications of Jubfequent Travellers, and of certain Objections tbat bave been made.

I HAD reafon, therefore, to confider it as a fortunate circumftance, that, towards the end of the year 1793, Mr Robert Liston, my own moft intimate friend ever fince a very early period

[^37]period of life, was, after being employed in various honourable public miffions, appointed by his Majelty Ambaffador to the Sublime Porte. Having the pleafure of meeting with him previous to his departure for Conftantinople, I requefted that he would endeavour to find an opportunity of paying a vifit to the Troad, with M. Chevalier's book in his hand. This I found to be already his own inclination, as he ftill retained a fondnefs for claffical learning, in which he had greatly diftinguifhed himfelf, when a ftudent formerly at this Univerfity. I only regretted that my own fituation rendered it impracticable for me to accept of a moft kind and tempting invitation to be the companion of his voyage. In the courfe of our correfpondence, after he had been fome time at Conftantinople, I had the fatisfaction to receive from him a fhort letter, inclofing two others from Dr Sibthorpe. and Mr Hawkins, written immediately after an excurfion they had made to the plain of Troy, and confirming the principal circumftances of M. Chevalier's difcoveries. He afterwards tranfmitted extracts from another letter of Mr Hawkins relative to the fame fubject, to all of which I fhall have occafion to refer*.

In the beginning of laft year Mr Bryant publifhed his Obfervations upon a. Treatife entitled, A Defcription of the Plain of Troy, by M. Chevalier, of which he did me the honour to fend me a copy, accompanied with a letter. It appeared that this learned gentleman had, antecedently to the publication of M . Chevalier's Effay, been engaged in the compofition of a Differtation concerning the War of Troy, and the Expedition of the Grecians, as defcribed by Homer, Jherwing that no fuch Expedition zeas ever undertaken, and that no fuch City of Pbrygia exifted: but finding that the new Defcription of the Plain of Troy, by gaining. credit in the world, might be likely to prevent the fuccefs of his learned labours, he deemed it advifable to employ his ta-

Vol. IV.

[^38]lents in an attempt to invalidate and remove this obftruction, in order to pave the way for his Differtation; which now at length has likewife made its appearance, and of which I have alfo received a copy from the learned author.

I AM now ready to admit (as, in a fhort correfpondence with Mr Bryant, on the firft glance of the former of there productions, I promifed to do, if afterwards, upon a careful perufal of that pamphlet, I fhould fee good caufe), that he has difcovered what now appear to me to be inaccuracies and inadvertencies in feveral parts of M. Chevalier's performance, and fome errors in the notes which I had written. For, upon topics and inveltigations, where hypothefis muft fometimes take place, and where arguments may not always be conclufive, it is not to be wondered at if a perfon of Mr Bryant's learning and fagacity fhould have detected a few improprieties and inaccuracies. But after a careful perufal, which I have now given both to his Obfervations, and his Differtation, I cannot bring myfelf to go along with him in his views of this fubject; nor can I be perfuaded, by any thing Mr Bryant has written, to give up the pleafure received from remarking the friking fimilarity between thofe fcentes, which fill exift, and the defcriptions which occur in the poems of Homer. This fimilarity has been traced by Mr Heyne, in a moft convincing manner, in his Effay on the Topography of the lliad; a valuable piece of inveftigation, which of itfelf appears. to me completely to refute all Mr Bryan T's radical objections to M. Chevalier's Effay*. I fhall therefore decline following the learned gentleman through the minute parts of his elaborate performances, which indeed I want time as well as inclination to do: but hall content myfelf with introducing a few remarks upon his Ubfervations. I moft readily refign every attempt at framing an anfwer to his Differtation; as I find he has met with two antagonifts much better qualified to enter the lifts with

[^39]him than I am, the acute and ingenious Mr Wakefield , and a learned anonymous reviewer in the Briti/b Critic \dagger.

Mr Liston being to return from his embaffy at the Porte, towards the conclufion of the year $\mathbf{1 7 9 5}$, I was glad to find, by a fhort letter, that he himfelf had made an excurfion to the Troad; and underftanding that a new edition of M. Chevalier's Effay was projected, he defired it might be deferred till he fhould come home, as he had fome obfervations to communicate which would render the work more perfect. When I met with him at Edinburgh he was very much hurried, owing to his being under the neceffity of fetting off foon for America, as his Majefty's Plenipotentiary to the United States. Fie neverthelefs devoted a few hours to the revifal of M. Chevalier's Effay, whillt I fat by him and took notes of his remarks. As a great many of thefe confifted of fmall alterations of various parts of M. Chevalier's defcriptions, with a view to condenfe them where they feemed too diffufe, and to correct them where they feemed inaccurate, it would be tedious at prefent to enter into a particular detail. But, in the cafe of a new edition of the Effay, I am perfuaded that they would be extremely ufeful. It may be fufficient, here in this Introduction, to fay in general, that Mr Liston confirmed, from his own infpection, all the great points of M. Chevalier's refearches and difcoveries, after fpending many hours in walking over the ground. He faw the fuppofed fite of Ancient Troy, the fources of the Scamander, and the place where that river is now diverted into its new channel. In fhort, I found that Mr Liston, along with a great defire to render every thing as exact and accurate as poffible, had alfo caught that fort of intereft in the fubject, which is fo

[^40][^41]natural to a claffical mind, when engaged in furveying or defribing fuch pleafing fcenes.

In fome parts of M. Chevalier's map, alfo, he found fome inaccuracies, which he was enabled to rectify, both from his own obfervation, and from another map with which he had been furnifhed. This laft he expected to be fent after him from Conftantinople, and intended it fhould contribute to the improvement of M. Chevalier's in the new edition of the Effay*. Of all this I apprized M. Chevalier, in a letter directed to him in London, which found him about to fet off for the Continent. Previous to his departure, I received from him two letters in anfwer ; extracts from which will be found in the Appendix \dagger.

But one of the chief inducements for bringing the fubject before the Society at this time, is the recent publication of a very ingenious work, entitled, Conftantinople, Ancient and Modern, with Excurfions to the Shores and IJands of the Archipelago, and to the Troad. By James Dallaway, M. B. F. S. A. late Cbaplain and Pbyfician of the Britijb Embalfy to the Porte. This, learned author has been at great pains in afcertaining the topography of the Troad; and the refult of his inveftigations there has produced the fulleft confirmation of all the material parts of M. Chevalier's Effay, and a total but refpectful diffent on the part of the author from Mr Bryant's fcepticifm on this fubject. To this book, therefore, I fhall, in the enfuing paper, have frequent occafion to appeal.

ABSTRACT

[^42]+ No. VI.

Tratrs. R.e. Edin. to face page B- Zort. C\%.

TOPOGRAPHICAL SKETCH of the PLAIN of TROY'.

ABSTRACT of the mof material Parts of M. Chevalier's Efay, with the Confirmation of fubfequent Travellers.

In giving a fhort Abftract of M. Chevalier's inveftigations, I fhall not follow the order in which he himfelf proceeded, but that which feems to convey the cleareft idea of his difcoveries and obfervations, now that they have been made. For the cafe is quite different with a perfon, who gives a detail of the manner in which he himfelf advanced in the courfe of inveftigating objects, of which he had at firft but an imperfect notion, where the direct path leading to them was yet obfcure and unknown, and where he had to form conjectures that were fometimes erroneous; and with one who points out or elucidates fuch objects after they have been difcovered, and their relative fituations afcertained.

After M. Chevalier had formed the refolution of exploring the Afiatic coaft, where the Hellefpont unites with the Ægean Sea, with a view to afcertain the true topography of the Iliad, he happened to land firft at Cape Baba, the ancient promontory of Lectos. Thence he proceeded to Alexandria Troas, the ruins of which he examined, and has given an account of; and this account Mr Liston in converfation, and Dr Dallaway in his book, (p. 326.), have agreed in confirming; but of which a particular detail would be here unneceffary*.

[^43]
The Plain.

In advancing from Alexandria Troas, along the coaft, M. Chevalier's attention was particularly attracted by a tumulus, or barrow of immenfe fize, at a confiderable diftance*. This is now called Udjek Tepe, from Udjek, the name of the adjacent village. From the top of this at noon, (Ch. III.), he took a retrofpect of the ruins of Alexandria, now at the diftance of more than four leagues; towards the north he faw a large plain, encompaffed with delightful hills; to the eaft the foot of the mountains of Ida; and to the weft the Egean Sea, the iflands of Tenedos, Imbros, Samothrace, Lemnos, and all the way to the fummit of Mount Athos.

Dr Daliaway remarks, that " from the high ground near "Alexandria Troas, the view of Tenedos, and of the fea, with "Udjek Tepee, a vaft tumulus above the plain of Troy, on the " right under the horizontal line, is particularly pleafing." (p. 326.). And that " in the progrefs the country foon be" comes lefs woody, and fpreads into a wide heath, from whence " the whole plain of Troy is feen."

When M. Chevalier, in the courfe of his inveftigation, arrived at the eaftern extremity of this extenfive plain, on the eminence above the modern Turkifh village called Bounar-bafbi, and where he at laft concluded the citadel of ancient Troy to have been placed, he obtained a view of the whole extent of it; and it feemed to him of a femicircular fhape \dagger." Of the two chains

[^44]" of hills which embrace it, one appeared to run in a direction "towards the promontory of Yeni-cheybr," (or Sigeum), " and " the other towards the point of Y_{n}-Tepé-Gheulu," (or Rhœeteum). The part of the hills to the right, reaching between the villages of Atcbé and $\mathcal{T}_{\text {cbiblac }}$, appeared more cheerful than the reft, and which he had no doubt compofed the Callicolone of Homer. From this ftation he defcried "the iflands of Te" nedos and Imbros, Samothrace and Lemnos, the high top of " Mount Athos, and the Thracian Cherfonefus beyond the Hel" lefpont." (Ch. IV.). As to the foil of the plain, he obferved it to be " of a rich and blackifh colour, and of great fertility." The village of Bounar-ba/bi he reckoned to be " at the diftance " of four leagues from the fea." (Ch. XVII.).
Mr Hawkins and Dr Sibthorpe took horfes at Koum-kaleb on the coaft, and croffed the plain to the village of Bounar-bafhi, in three hours, "an extent," fays Dr Sibthorpe, " of nine " miles*." Mr Hawkins, in his fecond letter to Mr Liston, affures him that Tenedos is to be feen from the hill of Troy, and that even " the whole coaft of the ifland is vifible, from the " northern to the fouthern point."

Dr Dallaway remarks, that " the whole plain of Troy, " from the height faid to have been the citadel, is of uninter"rupted extent." (p. 346.). From the promontory alfo of Y_{e} -ni-cheybr, or Sigeum, at its lower extremity, the fame intelligent traveller looked over the plain, the whole fcope of which he commanded. "Its broadeft diameter," fays he "may be five " or fix, and its longeft twelve miles to Atché-keuy. It is natu" rally verdant and fertile, and now very generally cultivated, "excepting near the marfh, which occupies a fifth part." (p. 347.). This I take to be the marfh at the mouth of the Simois, of which afterwards.

[^45]
The Site of Ancient Troy.

Near the eaftern extremity of the plain, upon a gentle acclivity, is fituated, as has been faid, the Turkifh village of Bounarbajpi. While M. Chevalier advanced upwards to this village, by a pleafant and eafy afcent, rifing gradually from the plain, he paffed through a fpacious cemetery, where each of the tombs is adorned with a fragment of marble or of granite. Pafsing the village he continued to afcend for near a mile, till he arrived at the borders of a precipice of great height. (Ch. IV.). Beneath this precipice a torrent, coming down from the mountains above the plain, (but whofe bed in the fummer is commonly dry), runs in a curve direction toward the north; and, bending its courfe along the northern fide of the plain, flows down through the whole length of it, and difcharges itfelf into the Hellefpont, betwixt the modern Turkifh fort called Koumkaleb on the fouth, and a fort of haven called Karanlik-limani on the north, near Rhœteum. This river is undoubtedly the Simois. And upon the rifing ground extending upwards from the village of Bounar-baßi to the abrupt precipice encompaffed by rocks above and the river below, on every fide, except that which opens upon the village, and where the Scæan Gate may be fuppofed to have been, M. Chevalier concludes, that the ancient city of Troy was placed. From the fummit of this high ground, where he fuppofes the citadel to have been, and which the Turks now call Ballidabi, mountain of boney, he had a view, as has been faid, of the whole extent of the plain. This being an airy fituation, juftifies, in his opinion, Homer's epithet of $\eta_{\eta}^{\prime} \mu_{0}{ }^{\prime} \varepsilon \sigma \sigma \alpha$, fo often applied to Troy. (Ch. XVII.). The precipices which fkirt this eminence, and the Simois which runs at the foot of them, render the place impracticable to be affailed from any other quarter than from the fide towards the village. (Ibid.).
M. Chevalier further remarked, on this high fituation, four barrows or tumuli, three of which are fimilar to thofe on the fhore of the Hellefpont, (which fhall be afterwards mentioned), and the fourth confifts of an enormous mafs of ftones. This he conjectured to be the monument of Hector ; and thought it the remains of a demolifhed ftructure. (Ch. XVII.).

Mr Hawkins and DrSibthorpe" fpent a day in vifiting the " hill fuppofed by M. Chevalier to have been the fite of "Troy; and the fprings of water, which he confiders as the "fountains of the Scamander*." Mr Hawkins thought, that "the place pitched upon for the fite of the city has much natu" ral ftrength to recommend it, particularly the eaftermoft angle " of the hill, which, from its height above the Simois, and its. " perpendicular form, muft have been confidered as a very " ftrong natural faftnefs in thofe times of warfare, and could " have been eafily rendered an impregnable citadel; for it is not " large enough for the fite of the whole city."-" Some tumuli," adds he, " near the fpot, are certainly ftrong indices." Dr Sibthorpe obferved, that " the fituation, where the citadel is fup"pofed to have been, is particularly fteep and rocky:" and that " it is covered with prickly barnet, and a few thorny fhrubs. " The almond tree," adds he, " which grows wild, is not with" out its thorns. It has even more pleafing plants, the yellow " jafmine and the wild olive."
M_{R} Liston took particular notice of a contiguous place, where the ftones of what is called the tomb of Hector feemed to have been dug; and he remarked a fort of hollow all around the city, except fome part, which is rocky.

Dr Dallaway, who advanced towards the village from the northern fide, thus defcribes his approach: "As the fetting fun " was more brilliant than for many days paft, the village of Vol. IV.

[^46]"Bounar-bafbi opened upon us very pleafantly from the ford of " the Simois, which we paffed within a furlong of the chiftlik " of Hadgì Mehmèt Agha, the prefent proprietor of a do" main producing near L. 5000 Sterling per annum, and inclu" ding little lefs fpace, and the identical ground of the kingdom " of old Priam *. His houfe is mean, but many columns were " difperfed about it, which had been collected from the fites of " adjacent cities. From the village," adds he, " the hill rifes " rapidly, and foon becomes an infulated mountain. The lofty " wall of Troy, and the Scæan Gate, interfected the modern " village of Bounar-ba/bi. Afcending the hill, thickly ftrewn " with loofe ftones for the fpace of a mile, the firf object on the " brow is a ftony hillock, which Chevalier, with no apparent " reafon, calls the tomb of Hector. It has been opened and " examined, but we could not learn the refult. There are others "covered with grafs, appropriated likewife to Trojan heroes." Dr Dallaway has given a beautiful defign and engraving of the tumulus faid to be Hector's. This learned traveller is of opinion; that " upon the area and the intermediate ground " from the village of Bounar-ba/bi, there is undoubtedly fpace " enough for fuch a city as Troy is defcribed to have been." (p. 345.). And he obferves, that "the level falls abruptly on " the fouth, with a precipitate cliff, into a deep ravine, forming " a mural rock, now almoft covered at its bafe by the ftream " and fands of the Simois, for the length of forty or fifty yards, " and completing a fortification rendered impregnable by na-

[^47]" ture ; and that the face of the ground exhibits nothing worthy " of remark; bufhes and huge unhewn ftones only being to be " feen."

The Sources of the Scamander.

But the chief circumftance which afcertains the pofition of the city is the fources of the Scamander. Thefe M. Chevalier was fo fortunate as to difcover, and defcribes as ftill to be feen, a little below the village to the fouth, and as confifting : 1. Of a folitary copious fpring, rifing from the bottom of a bafon, bordered with pillars of marble and granite; of which fpring, in the month of September, he felt the water to be tepid; but was affured that it is much warmer about the middle of winter; 2dly, Several fmall fprings of cold and limpid water gufhing forth from crevices in the rock, at the bottom of the low hills at the head of the plain, and which uniting into one ftream, a little below, receive alfo the firft mentioned fountain, and thus form the Scamander*. (Ch. IV. xix.).
"We flept," fays Dr Sibthorpe, " at Bounar-ba/bi, a little be" low which rifes the Scamander, fed by numerous fprings of a "pure cryftalline water. One of thefe is faid to be warm in " winter ; it communicated to us no fenfation of heat." This was about the middle of September. Dr Dallaway, who was there in November 1795, fpeaking of the hot fpring, exprefsly fays: "It " is at leaft tepid; and the Agha (in the front of whofe houfe " it is to be feen, at a little diftance) told us, that, in the winter " months, efpecially during froft, it is hot and fmokes."-" Ho" MER," adds he, " muft be allowed the privilege of a hot " fpring, and a river full to the brink, if they happen once with-

$$
f 2 \quad \text { " in }
$$

[^48]" in the year." (p. 344.). M. Chevalier found the Turkifh women of the village of Bounar-bafbi wafhing their garments at the fources of the Scamander, as the wives and daughters of the Trojans were wont to do when they enjoyed the fweets of peace, before the arrival of the Greeks *. I repeat this circumftance, becaufe Mr Liston affured me that, when he was there, he made the very fame remark.

The Courre of the Scamander.

M. Chevalier examined the two rivers, the Simois and the Scamander, by tracing them upwards; the latter from the place where it now difcharges itfelf into the Archipelago, by a new canal ; and the former from its mouth upon the Hellefpent, a little to the north of Koum-kaleb. The new canal of the Scamander had been firft obferved by him, on his way from Alexandria Troas, as he came down from Udjék-Tepé, or monument of 庣syetes. About a mile to the northward of this monument, as you pafs the village of Erkefighi, and near an elegant Kiofk, or repofing place, conftructed by Hassan, the Turkifh Captain Pafcha, a confiderable fream flowing down upon the fouth fide of the plain, and then bending towards the Simois, takes a fudden direction to the fouth, being plainly diverted into an artificial canal, which carries it a confiderable way, in a floping courfe through a valley, and conveys its waters into the $\mathbb{K -}$ gean Sea. (Ch. III.). This new canal made a ftrong impreffion on M. Ghevalier's mind; and induced him afterwards to fearch for the ancient bed of this beautiful ftream, which he at length found, and traced, as marked on his map. (Ch. IV.). This was a moft important difcovery; and when, in the invefti-
gation,

- See Iliad, xxii. 154.
gation, he came again to the fream, where it turns into the new canal, and traced it up to its fources already mentioned, near Bounar-bafbi, no doubt any longer remained on his mind, that this was the true Scamander, which had formerly united its water with the Simois.

Succeeding travellers have, in the moft liberal and decided manner, confirmed the genuinenefs of thefe inveftigations, and acceded to M. Chevalier's conclufions.
"We faw the place," fays Mr Hawkins, in his firft letter to Mr Liston, " where the courfe of this river was diverted by "an artificial canal to the Archipelago." And he adds, more explicitly in his fecond letter: "The moft effential point in " fubftantiating the evidence of Chevalier is that of the canal, " made to divert the waters of the Scamander from their origi" nal courfe towards the Simois. This canal we can bear tefti" mony to. The errors of Wood feem to arife from the over" looking this circumftance. As for Strabo, he had never " vifited the fpot in all probability, and relied on the authority " of Demetrius of Scepfis *." Mr Liston himfelf afterwards examined the river with the greateft care, and particularly the new canal, and the old bed. This laft he croffed on bridges in different places, and was convinced, that when, occafionally, the ftream of the Scamander is more copious, part of it ftill flows into the Simois by this ancient channel. For he differed in opinion from M. Chevalier in the idea, that the Scamander is never fubject to any increafe or diminution; (Ch. IV. xi.); and faw no reafon why it fhould not occafionally fwell in the cafe of long continued and heavy rains; though by no means to fuch a degree as the Simois, which is fometimes dried up, and fometimes comes down with the utmoft magnitude and impetuofity.

[^49]impetuofity *. Moreover, Mr Liston affured me, that from M. Chevalier's defcription, the Scamander feems to be a more diminutive water than it really is \dagger.
" For feveral hours," fays Dr Dallaway, " we traced, with " the utmoft attention the courfe of the Scamander from the " cold or fecond fource, which is a collection of fmall fprings, " through the morafs, where for fome miles it is pofitively hid, " till we reached the new canal, and faw plainly the ancient bed. " The banks of this river, where expofed, are verdant and beau" tiful, and watered to the brink. M. Chevalier's topography " and general idea, after a fair inveftigation, we acknowledged " to be ingenious and plaufible." (p. 347.).

In characterifing the Scamander, M. Ghevalier mentions particularly " the tranfparency of the water, which runs upon " a bottom of fand and round pebbles, betwixt two verdant " banks"

Dr Dallaway fays of the two rivers: "Simois has broad " fands, with a fudden and rapid current; Scamander is tran" Sparent and regularly full, within a narrow channel, and fo " they continue to be till their junction, before they reach the "fea.". (p. 348.).
M. Chevalier further defcribes his having paffed the Scamander upon an old willow ftretched acrofs, near a mill. Mr Liston alfo mentioned to me this mill, and his having croffed the current in a fimilar manner.

[^50]
The Course of the Simois.

From Yeni-cheyr, which is the Sigean promontory, and which commands an extenfive view of the plain, M. Chevalier particularly obferved the Simois, which interfects the plain along the north fide. "Its waters were then dried up; but the width " and irregularity of its channel fufficiently demonftrated the " nature of its devaftations, and its rapidity." (Ch. III.). The Turks call it Menderé. An extenfive marfh occupies the ground at the place of its difcharge on both fides, and reaches almoft to the fortrefs called Koum-kaleb. This marfh is taken notice of by Strabo by the name of Σ זroua λ^{\prime} furn, the mouth lake. On his way from this place, M. Chevalier paffed the Simois near its mouth, and found it to be more than 300 feet broad. In the marfh, on its banks, he obferved certain fmall lakes of frefh and of falt water, and was ftruck with the prodigious quantity of reeds and tamarifks he met with, as he proceeded along the coaft. (Ch. IV.). He travelled onwards for half an hour, and faw a large barrow, the monument of AJAx, which he examined, as we fhall by and by mention. Having then proceeded as far as It-Guelmes or Erin-keu, he returned, and refolved to afcend towards the fource of the Simois; and had not proceeded far, when he was fo fortunate as to difcover, to the right, the bed of a fmaller river, at that time dry, and covered with plants and turf. This proved, on a nearer inveftigation, to be the old bed of the Scamander. If Mr Wood had adverted to this, inftead of ftill fearching higher up for the confluence of the two rivers, he probably would have given a more rational account than he has done of the prefent ftate of the fcene of the Iliad.

Aftermards, when M. Chevalier had examined the Scamander, its fources, and the fituation of ancient Troy, as already mentioned, he refumed the defign of tracing the Simois ftill
higher; and went down to its banks, from the village of Arabler, about half a mile to the fouth-eaft of Bounar-ba/bi. The torrent being then dried up, he refolved to afcend within its channel, fcrambling over trunks of trees and rocks borne down by the impetuofity of the current. (Ch. IV.). He walked for five hours between two chains of abrupt rocks, which border the valley, and came into a plain, with a village at its entry, called Iné or Ené. Here he found that a river difcharges itfelf into the Simois, and that it takes its rife near a village called Babarlar, to which he proceeded in five hours journey to the fouthward, through a rugged and mountainous country. This fream he found to be the fuppofed Scamander of Mr Wood. Returning to Ené he continued to trace the Simois, now the Menderé, up to the high mountain, whence he was affured it iffued. This proved to be Mount Cotylus, now called Cas-dabi, the mountain of the goofe, from which, mifled by Demetrius of Scepfis, Strabo makes the Scamander to flow down, confounding it with the Simois. M. Chevalier refolved to afcend to the fummit of the mountain, which, after being hindered from doing for fome days, in confequence of a great fall of rain, he at laft effected; of which expedition he gives an interefting defcription, particularly of the fublime profpects he obtained.

It does not appear that any of the fubfequent travellers I have mentioned, went to the fource of the Simois, or the fummit of Mount Cotylus, as M. Chevalier did: but Dr Sibthorfe remarks, that the fituation, where they fuppofed the citadel of Troy to have been, is particularly fteep and rocky, and is girt by the Simois, " which is now," fays he, " entirely "dry: but perhaps the winter torrents may raife it into a con" fiderable river. Its banks are fringed with plants, agnus ca" ftus, and tamarifk.".

[^51]D_{R} Dallaway croffed the Simois three times: i. On his way from Udjek-tepé, or the monument of Esyetes; and after he had refted during a tempeftuous night at the Cbiftlik, built by the famous Hassan Pafha, formerly mentioned, on the 5 th of November he croffed both the Scamander and the Simois, the latter of which the rains had increafed to a confiderable river ; the bed being from forty to fifty yards wide ; though it is frequently almoft dry, efpecially in the midft of fummer. 'This was on his way to the village of Thimbrek-keuy, and the temple of Apollo Thymbreus; which he paffed and defcended to the fhore, and proceeded as far as Cape Berbier ; and after exploring the fhores of the Hellefpont, he returned by fea to Koum-kaleb. Here having landed, he again croffed the Simois over a wooden bridge, near its embouchure; (p. 338.); and advancing upwards on the northern fide of that river, he repaffed it within a furlong of the Chiftlik of Hadgi Mehmèt Agha, at Buunar-ba/bi. (p. 343.). In viewing the fituation of the citadel, where the Simois runs under the rock, he fays, " That the divifion of the rifted rock " from the groupe of foref mountains, does not exceed 150 " yards, and is fcarcely farther afunder at the top, finking as " perpendicularly as an artificial channel."

The Monument of Esyetes.

M. Chevalier, as has been faid, began his refearches in Afia at Cape Baba, the ancient promontory of Lectos. From thence he proceeded to the ruins of Alexandria Troas ; his account of which has been minutely confirmed by Dr Dallaway. But though the narrative of both travellers be very agreeable and interefting, we did not before, nor do we now, think it neceffary to detail the particulars. On advancing, his notice was particularly attracted by Udjek-tepé, a barrow of an extraordiVol. IV.

[^52]nary fize, which already has been mentioned *. He had no notion at firft that this was the fame with the monument of Æsyetes. He contented himfelf with meafuring its dimenfions, and enjoying the magnificent profpect from the top of it. Its height he found to be not lefs than 100 feet, and its outline to be 400 paces. He remarked it to be of a conic fhape, and quite regular. After his third journey to the Troad, he had no hefiration in concluding it to be the monument of esvetes. (Ch. III. XII.).

Dr Dallaway fays, that " the tomb of 庣syetes, according " to Pococke, or, as it is now called, from the adjacent village, "Udjek-Tepee, is a barrow of extraordinary height and fmooth " furface, and was the fituation from whence Polites, the fon of "Priam, reconnoitred the Grecian camp, and the oppofite inland " of Tenedos, with its harbour and promontory \dagger."

Five other Tumuli.

After M. Chevalier had examined the new canal of the Scamander, he proceeded, from the place of its difcharge into the Ægean Sea, along the coaft, towards the village of Yeni-cheyr, in order to have a nearer view of feveral high mounds of earth, which had attracted his attention from the top of Udjek-tepé, or monument of Æsyetes. The firft he arrived at, called Be-Alik-tepe, is not by any means fo high as that laft mentioned. He next came to that, which, upon the map, he has called $A n$ tilochi tumulus, not finding any Turkifh name for it, and which feemed to be of the fame dimenfion with Be/hik-tepé. He then proceeded to the village called reni-cheyr, ftill inhabited by: Greeks, and fituate upon the extremity of the famous Sigean promontory,

[^53]promontory, where, juft as he was entering the Church, he faw the Sigean infcription, fo well known to the learned; and oppofite to it the bas relief of marble, of the fineft workmanfhip, of which Dr Chandler has given an exact account ; and there is an elegant engraving of it in Ionian Antiquities.

Dr Dallaway, too, faw this bas relief, as well as the Sigean infcription; which laft, he obferves, is now placed at the door of a low hut, confecrated as a chapel : and the letters are nearly worn out, the marble having been fo long ufed as a bench to fit on. Mr Liston told me, that the effacing feems to be premoted by a drop which falls from the eaves of the chapel.

From the top of the promontory M. Chevalier had another extenfive view of the plain of Troy, and faw particularly the mouth of the Simois, as already mentioned ; alfo the Turkifh caftle of Koum-kaleh, mentioned by all the fubfequent travellers. At the foot of the promontory he remarked two other $t u$ muli, of which the neareft is underftood to be the monument of Achilles; and the more diftant one M. Chevalier fuppofed to be that of Patroclus. Others take it for that of Peneleus; the afhes of Patroclus having been depofited in the fame monument with thofe of Achilles.
"Advancing fome furlongs over the promontory," fays Dr Dallaway, "we faw the barrow (befbik-tepè) called the "tomb of Antilochus by Strabo. On the other fide of the " village, under the brow of the hill, crowned by half a dozen " windmills, near the fea, are two fmaller tumuli, generally fup" pofed to be thofe, one of which is attributed, by the ancient " geographers, to the illuftrious friends Achilles and Patro-"clus, and the other to Peneleus the Bœotian." (p. 350.).

After remaining fome days near Koum-kaleh, M. Chevalier paffed the Simois; and, travelling for half an hour, came to a fifth tumulus of the fame kind with the reft, having a large aperture in its fide, which he entered. The monument being de-
molifhed from top to bottom, its whole interior ftructure was to be difcerned. This is fuppofed to be the monument of AJax, and is called by the Turks In-tepé-Gbeuleu, the monument of the mar/h. It is fituated at Rhœeteum, a promontory or tongue of land advancing into the plain oppofite to the Sigean promontory. (Ch. IV. XIV.).

Dr Dallafay, after croffing the Simois the fecond time, paffed over an extenfive level of ploughed fields, and Goulu-fui, a brook, which empties itfelf into the fea near $\mathfrak{f} n$-tepe, or the tomb of Ajax Telamonius. "This tumulus," fays he, " is now irre" gularly fhaped. Near the top is a fmall arched way almoft " choked up with earth, which was the entrance into the vault, " and over it a broken wall, where was once a fmall fepulchral "fane called Aiantéum." He thinks the whole to be of a much more modern date than the death of AJax.

Dr Sibthorfe, in his letter to Mr Liston, writes thus: "I " write to your Excellency in hafte, our veffel toffing about op" pofite the tomb of Ajax, where it has been juft drove by a " hard gale of wind *."

These monuments, with the others formerly mentioned upon the hill of Troy, appear to have made a ftrong impreffion on M. Chevalier's mind ; and many of the Members of this Society will recollect, that, in converfation, he ufed to lay great ftrefs on them. They are objects very confpicuous and ftriking to thofe who fail along the coaft, near the entrance to the Hellefpont, as Mr Liston particularly informed me. They feem to have made a ftrong impreffion likewife on Dr Dallaway, who, on viewing them from Halileli, near the village of T'imbrek-keuy, (p. 340.), remarks, that the fucceffion of the five tumuli, under the diftant horizon, tend more than any other proof to afcertain the Trojan war. He fays afterwards, (p. 349.) : Of all the " proofs advanced by M. Chevalier, the tumuli, fo connected " with

[^54]" with the Sigean and Rhœtean promontories, and the outpofts " of the Grecian camp, are the moft fatisfactory. The fite is " likewife confirmed by four others, which, to whatever heroes " they may be conjecturally attributed, with no additional " weight to the argument, give a certain degree of internal evi" dence, and afcertain the fcene of great military tranfactions, " or vicinity to a large city."

The Valley of Thymbra.

On quitting the monument of Ajax at the Rhotean promontory, and after taking a view of a fmall adjacent harbour called Karanlik-limani, the 乃but baven, M. Chevalier continued his journey to the village of It-Guelmes or Erin-keuy. It appeared to be of no confequence to the end in view to proceed in that direction any farther, and he returned, in order to trace the circumference of the great plain. On his way back, he foon defcended into a delightful valley, called Thimbrek-deré, the valley of Thimbrek, or Thymbra. On beginning to afcend towards the fource of a rivulet, which runs through it, he was ftopped on its left bank, oppofite to the village of Halileli, by a heap of ruins, among which were fome bas reliefs, columns, capitals, entablatures, and infcriptions. He took them for the ruins of the temple of Apollo Thymbræus, and copied fome of the infcriptions, which are now publifhed in the third volume of our Tranfactions.

Mr Liston faw thefe ruins, and told me that they are very confiderable; fome fragments of marble ones ftill remaining. Every year the inhabitants carry pieces of thefe to place over the dead in the adjoining cemetery, near the ruins of an old mofque ; fo that foon nothing will remain but the large pieces. M. Chevalier, in his map, has, in Mr Liston's opinion, placed
ced them too far up. They are at leaft half a mile from the village of Halieli, on the oppofite fide of the rivulet. Dr Dallaway has given an elegant engraving of them, and fays, that he " paffed the village of Thimbrek-keay, and a dilapidated mofque, " with a cemetery full of parts of fluted columns and cornices, " fet up as memorials, the probable fite of the temple and city "facred to Apollo Thymbræus." (p. 331.).

The Promontories.

M. Chevalier agrees with all preceding travellers, in holding the promontory of Sigeum to be at the modern village of Yenicheyr. That of Rhoteum he has no doubt in fixing at In-tepèGbeuleu, near the harbour called Karanlik-limani, where the barrow, fuppofed to be the monument of AJAx, is ftill to be feen. He concludes, with the greateft reafon, that M. d'Anville and Mr Wood are miftaken in placing the Rhœtean promontory at Cape Berbier, which, according to the latter, lies about 12 miles from the Cape of Yeni-cheyr or Sigean promontory. (Ch. XIII.). He was at the pains to meafure the diftance betwixt what he thinks the two promontories, and found it to be 3000 fathoms, which agrees with Pliny's account, who fays it is 30 ftadia. M. Chevalier thinks Strabo miftaken when he reckons it at 60 ftadia.

Dr Dallaway obferves, that " the entrance into the great " plain is formed by the Sigean promontory, and that called "Rhœteum, about four Englifh miles afunder, through which " the two rivers Simois and Scamander at length took an united " courfe. Between thefe promontories the Grecian fleet was "drawn up on dry ground, and probably remained fo during " the whole war." (p. 336, note.). "Wood," adds he, " mi"ftakes Cape Berbier. for the Rhœtean promontory, which "Strabo
"Strabo makes to be 6o ftadia, Solinus, 26, and Pliny, 30 , " from the Sigean; the latter is the true diftance. (p. 337. note.). " The city of Sigeum covered the fhore between the tumulus and " a bay, in which I anchored for a week, (Nov. 1795), and re" furveyed the whole with attention."

Some Miftakes admitted, and corrected.

After what has been fated, and thus confirmed by fuch refpectable authorities as have been adduced, no reafonable perfon can now doubt that M. Ghevalier has given a true and diftinct account of the prefent ftate of the Troad. But as he has had occafion to offer various hypothefes, and to make various obfervations and inferences, during the courfe of his Effay, it is not to be wondered at that a few miftakes fhould have been committed, and fome unneceffary animadverfions introduced. The author was himfelf fenfible of this, as appears from the late letters I received from him*. In the notes, too, which accompany the Englifh verfion, I now perceive there are fome errors, which I wifh to take the firft opportunity of correcting.

The Map.

M. Chevalier, upon information being communicated to him that Mr Liston, as well as Mr Hafkins *, had found fome inaccuracies in his map, anfwered as follows: "There is " nothing I defire fo much as to have any miftakes, that have " been committed in my map, rectified; and I moft cordially " give my aid to every improvement of which that performance " is,

[^55]" is fufceptible. But I will venture to affure you before hand, " that the alterations which may be made will not extend to the " monuments effential to the underftanding of the Iliad; fuch " as the fite of ancient Troy, the fources of the Scamander, " the tombs of the warriors, the promontories, \&c. All thefe " points are fixed relatively to one another, with a degree of " precifion fufficient to prevent any change that may be made " upon them from materially affecting my work. As to mo" dern monuments, fuch as Alexandria Troas, \&c. I own that I " did not think it neceffary to pay fuch a fcrupulous attention " to them. The line of the coaft was done with the greateft " exactnefs, as well as the mouth of the Hellefpont and the " ifland of Tenedos; and therefore I fufpect that upon this the " new map will make no alteration*."

Dr Dallafay obferves, that M. Chevalier has defcribed the artifical canal in his map of the Troad as having much too ftraight a direction. It is conducted round the hill upon which the Cbiftlik of Hassan Pafha is built. (p. 347\%).

Thbe Monument of ILus.

About an hundred paces up the Simois, from the place where it is joined by the old bed of the Scamander, and near the place where the city called New llium is fuppofed to have been fituated, M. Chevalier had obferved the ruins of a bridge, which had been built of hewn ftone, and of exquifite workmanfhip. Fronting thefe remains, on the right of the river, he faw a fort of rifing ground, which he took to be a demolifhed barrow. This he afterwards fancied to be the monument of Ilus, and probably the fame with Homer's ieworios $\pi \varepsilon$ dioo. In thefe conjectures,

[^56]jectures, however, he was, after a converfation with Profeffor Heyne, convinced he was miftaken; and readily admitted, that his whole XVIth chapter, which is upon this fubject, is good for nothing*. After that converfation, alfo, he was difpofed to think that this barrow might probably be that mentioned by Homer, (Iliad, VII. 337.), which was to be deftined as a common one for the warriors who had fallen in battle; äxgধтण है। $\pi \varepsilon \delta^{\circ} \dot{\omega}$

Situation of the Grecian Camp.

Chapter XIII, where the author treats of the fituation of the Grecian camp, now appears to me to require much amendment. That the camp was fituated fomewhere betwixt the Sigean and Rhœtean promontories is generally agreed ; but that it occupied the whole fpace or line of coaft in that interval, as M. Chevalier has fuppofed, cannot be admitted. This would have made it neceffary for the camp, which confifted of the tents, with the fhips drawn out upon the dry land, as was the ancient cuftom, to occupy the place on both fides of the mouth of the Simois, which M. Chevalier, and the other travellers, as well as Strabo, defcribe as being an extenfive marfh. M. Chevalier was evidently aware of this inconvenience; and therefore fuppofes that the Greeks, in the courfe of the war, frequently fhifted their ftation; and that, at laft, in the tenth year, during the fummer feafon, they encamped, in full force, at the mouth of the Scamander, or Simois, for, at the mouth, they were united.

I regret that, in the note, I have endeavoured to fupport this idea, by fuppofing, that " the Scamander, even in the fum-

Vol. IV. b " mer,

[^57]" mer, when the Simois was dry, continued to convey its pure " and perennial, though lefs copious, ftream through the midft " of the camp, in the fame channel through which the Simois, " after having joined it, difcharged its winter torrents." (p. 104.). Ever fince I read Mr Heyne's Effay, I have given up this hypothefis, and willingly accede to his idea, which fuppofes, that the camp only ftretched on both fides tozeards the promontories Rhœeteum and Sigeum ; and that on the north-eaft it extended no farther than the Simois *. In this way the whole is rendered clear, and free from every objection. This, however, makes nothing againf M. Chevalier, but that he was not fo fortunate in his hypothefis as Mr Heyne, on this occafion, which I am fure he himfelf would have been the firtt to admit.

Mr Heyne's notion of the fituation of the camp is confirmed by Dr Dallaway; and the more ftrongly, as the latter does not appear to have feen the former's Effay on the Topography of the Iliad, or to have known any thing of the coincidence of Mr Heyne's opinion with his own. In a very diftinct note on this fubject, (p. 336.), he obferves, that " between thefe pro" montories the Grecian fleet was drawn up on dry ground, " and probably remained fo during the whole war." And he concludes the note thus: "The purfuit of the Trojans by "Achilles, fixes the fituation of the Grecian camp between "the confluence of the rivers and Sigeum, for they retreated " over the Scamander to gain Troy, and he kills many of them " in the river."

Of fome otber Miftakes, and erroneous Criticifms.

The author, in fpeaking of the two tumuli near the Sigean promontory, (Ch. IV. XXI.), fays, that " he was informed by "a Greek inhabitant of the place, that the name given to the " more

[^58]" more confiderable of the two was Dios-tapé, which he inter" prets the divine Tomb." Mr Liston obferved, that the inhabitants fpoke of both monuments by the appellation of dtheo tepé, which, in their language, has no other meaning than the two tombs. He therefore concluded, that M. Chevalier had been deceived by the fimilarity of the found. This is alfo noted in Dr Dallaway's book, with an affertion, (but not of Dr Dallaway himfelf), that the miftake proceeded from M. ChevaLIER's ignorance of modern Greek ; which I have the greateft reafon to believe to be without foundation.

In examining carefully the furface of the rock of Balli-dabi, M. Chevalier thought he "diftinguifhed foundations of an" cient buildings, the mafonry of which had affumed the con" fiftence of the rock itfelf." Mr Liston, on a narrow infpection, was convinced that nothing could be difcerned but the real fubftance of the rock, which is indeed rough, of a chalky appearance, and, at firf fight, feems as if there was mortar adhering to it. He brought away a fragment of it, which I have here in my cuftody; and the gentlemen prefent may judge.

It feems furprifing that there fhould be a total difappearance of every ruin or veftige of a building, to mark the fite of fo famous a city. Strabo, however, gives a good reafon for this,

 For when all the cities around were laid wafe, but not entirely demolifbed; and while this one was totally overturned, all the fones were carried off from it to rebuild thofe others. Accordingly, they fay, that Archexanax of Mitylené with the fones taken from thence fortified Sigeum. Dr Dallaway, fpeaking of the city of Ilium, once fituated near the junction of the Scamander and Simois, and which owed its origin to Alexander and Lysimachus, fays,
(p. 338.), " It excites no wonder, that, after fo long poffeffion of "it by the Turks, not a ftone fhould remain ; yet fome con" tend againft the exiftence of Troy, becaufe no veftiges were " difcoverable when Alexander founded the fecond city, " whilft they admit the latter fact equally unauthorifed by pre" fent appearances *."

In a paffage quoted from Herodotus, in which an account is given of the march of Xerxes's army from Sardes to Aby-
 advancing towards the left branch of Mount Ida, different from the common way of rendering it, having Ida on the left. As this interpretation is difapproved of both by Mr Heyne and Mr Bryant, I have no inclination to difpute the point with fuch learned antagonifts, provided they can make it appear, that Xerxes could and did proceed, with Ida on his left. "Ida," fays Mr Heyne, " has many branches and ridges. The army " may have gone round one of thefe outlkirts of the mountain "' approaching towards the fea, in fuch a manner as to leave it " on the left \dagger."

From M. Chevalier's letters, it appears that he was fenfible that he had at times introduced unneceffary or inaccurate reflections; of which kind are thofe in Chap. VI. refpecting travellers

[^59]travellers of high diftinction, and the priefts in the early ages of Chriftianity : both of which he defires may be ftruck out in a new edition. The former, I obferve, has already been omitted in the German tranflation; and the latter, which begins thus: " But why did not the priefts of the lower empire demolifh "thofe monuments?"-has given great offence to, and has been cenfured and reprobated with uncommon afperity by, Mr Bryant, in his Obfervations. (p. 42. 43.).

Of the Notice that has been taken of Strabo.

In giving a defcription of the Troad, it was neceffary to advert particularly to what a geographer fo refpectable as Strabo has faid upon that fubject. This M. Ghevalier has done in his VIIth and VIIIth chapters. Strabo derived the greateft part of his information, relating to the Troad, from Demetrius of Scepfis, who, though he had his refidence in thofe parts, was evidently deceived refpecting the true fource of the Scamander, and has led Strabo into the fame error. They fuppofe that this river takes its rife in Mount Cotylus, far beyond the place where ancient Troy was fituated. M. Chevalier has fhewn this to be a grofs miftake; and it is evident that it was likewife the chief caufe of Mr Wood's errors. Strabo faw and frankly admitted the difficulty of reconciling this with Homer's account in the XXIId book of the Iliad, where the two fources are explicitly mentioned, the one a hot and the other a cold fpring, and both as being in the vicinity of the. Scæan Gate; but Strabo has not been fuccefsful in his attempt to obviate this difficulty ${ }^{*}$.
M.

[^60]M. Chevalier being clearly convinced of this error of Demetrius and Strabo, and ftruck with the confufion to which it has given rife, has perhaps fhewn too great a degree of fufpicion of the latter, in refpect to fome other paffages of his account of the Troad; and may have cenfured him fomewhat too keenly. Wherever this feems to be the cafe, Mr Heyne, in his notes on the German verfion, has taken the part of the ancient geographer, to whom fcholars have been fo long accuftomed to look up with the greateft refpect: and if I were to publifh a fecond edition of the Englifh, I fhould certainly, in confequence of carte blanche given by the author *, avail myfelf of Mr Heyne's affiftance to obviate, as far as poffible, every objection made to Strabo, except upon the great and fundamental error refpecting the fource of the Scamander. For this I take to be altogether untenable. "In general," fays Mr Heyne, in one of his notes, " nothing can be objected againft Strabo, but in " the fingle cafe where he has allowed himfelf to be feduced by "Demetrius, and changed the fources of the Simois and the "Scamander." M. Chevalier perhaps fhould have been fatisfied with gaining this point.

But though it fhould appear, that the author or his editor had, in one or two inftances, mifconceived or mifinterpreted Strabo, where the text is acknowledged to be obfcure, not yet having been properly elucidated by any able editor or commentator, this furely would furnifh no argument for fetting afide M. Chevalier's account of the Troad, founded on the author's actual obfervation, fupported by fo many fubfequent refpectable travellers. In the VIIIth chapter he has, with due refpect, taken occafion to quote and comment upon fome paffages of Strabo; from which it is clear, that the plain of Troy has not changed its appearance fince the days of that learned writer.

[^61]
The opening of Achilles's Monument.

The XXIft chapter contains a number of pleafing remarks on the fubject of the tumuli to be feen on the fhores of the Hellefpont ; and any perfon of fenfibility muft, on the perufal, feel his mind affected with a foothing, though folemn, fenfation; and be ready to confefs, that M. Chevalier has there expreffed himfelf in a moft elegant and interefting manner. Inaccuracies, however, and redundancies, may now and then be perceived, fome of which were pointed out to me by Mr Liston, and they ought to be corrected in a new edition.

It appears, in particular, that M. Chevalier had not received very accurate information refpecting what was found in the tomb of Achilles, in confequence of the operation of digging into it, which had been performed after his departure from Conftantinople, by the direction of Count de Choiseul Gouffier, the French Ambaffador. He had been told, that towards the centre of the pile were found "two large ftones leaning at an " angle the one againft the other, and forming a fort of tent, " under which was difcovered a fmall ftatue of Minerva, feat"ed in a chariot with four horfes; and an urn of metal filled " with afhes, charcoal, and human bones; which urn was encir" cled in fculpture, with a vine branch, from which were fuf"pended bunches of grapes done with exquifite art."

There does not appear to have been any foundation for the figure of a chariot. There were however fome curious reliques found there. Mr Liston faw at Conftantinople the very perfon who had been employed to conduct the operation of digging ; and who had retained fome of the fragments in his own cuftody, which he offered to difpofe of. It appears from a letter, publifhed in a note by Dr Dallaway, and giving a very particular account of this affair, that this perfon was the Signior

Solomon Ghormezano, fon of the late French Conful. After immenfe labour, he at laft difcovered the place where the reliques were depofited. When collected, they filled a large chef. He delivered them to his employer M. Choiseul, who repaid his trouble with thanks only: but he referved feveral fpecimens, which he afterwards fhewed and explained, when the Count was no longer formidable. Of thefe a lift is given in the letter ; fuch as, pieces of burnt bones; pieces of a metal vafe; charcoal of vine branches; a piece of mortar and ftone; a piece of metal of a triangular fhape; pieces of very fine pottery, well painted with wreaths of flowers of a dark olive colour, \&c. An account is then given of the ftrata of earth dug through. Dr Dallaway, in the text, fays, that "extreme age, and the " preffure of the ground, had crumbled into atoms of ruft all "the metallic fubftances. The urn or vafe, M. Fauval, an "ingenious artift, now refiding at Athens, received from M. " Choiseul in its decayed form, and made a model from it, " which has been exhibited to feveral conoiffeurs, as much to "their furprife as fatisfaction." Dr Dallaway adds: "And " the goddefs, with her chariot and four borfes, feems to prove that " the Troad continues to be the land of invention." Yet it is very remarkable that Mr Hawkins, who faw M. Fauvial at Athens, exprefsly fays, that this laft mentioned gentleman denied the exittence of an urn, but fpoke of a fmall bronze image of Minerva, of which he fhewed them a caft. "At Athens," fays Mr Hawkins in his fecond letter to Mr Liston, "we fell " in with M. Fauval, a very ingenious artift, long in the fer" vice of M. de Choiseul, who affured us, that M. Cheva" lier's account of the goblet, difcovered in the tomb of Achil"' les, is perfectly fabulous. It originated, it feems, from the " fragment of a fmall bronze figure, which, when he had clean" fed, and put together, proved to be a very curious image of "Minerva. He fhewed us a caft which he had made of it in " plafter,
"plafter of Paris *." According to M. Chevalier, then, there were both an urn and a figure of Minerva; according to Dr Dallaway an urn, but no figure or ftatue; and according to Mr Hawkins a fmall ftatue, but no goblet or urn. It fhould feem, therefore, that this affair ftill ftands in need of further elucidation \dagger.

But whatever may be thought of thefe barrows; " fuppo" fing," fays Mr Heyne, " that M. Chevalier was miftaken, " and that the eminences were not at all tombs, the main point " remains what it was. The fources of the Scamander are near "Bounar-bajbi, and in that neighbourhood is the fite of Troy \ddagger. ."

Of the Objections made by Mr Bryant.

Mr Bryant, whofe name has been long fo well known in the learned world, has, in the warfare he has thought fit to wage with M. Chevalier, been, no doubt, pretty fuccefsful in feve* ral affaults, where the latter has laid himfelf fomewhat open; (as we have admitted to be fometimes the cafe) ; but he has totally failed in obtaining any thing like a decifive victory.

This learned gentleman having, thirty years ago, embraced an opinion, not a new one indeed, but, I believe, almoft generally efteemed very extravagant and paradoxical, that no Trojan war, fuch as forms the foundation of the poems of Homer, was Vol. IV. i ever

* Appendix, No. V.
+In the above-mentioned letter, quoted by Dr Dallaway, an inflance of a very ftrange pitch of arrogance is recorded. It is there faid, that "when the bar" rows were clofed up, Count Chorseve caufed a fheet of lead to be placed on the " Bottom, infcribed, Ouvrage fait par le Comite de Choiseul Gouffier, l'an 1787 .
\ddagger Conclusion of his preface to the German verfion. See Appendix No. I.
ever carried on *, and that even no fuch city as Troy ever exifted, had employed himfelf occafionally, during that long period, in an attempt to eftablifh the truth of this odd opinion. The fubject had grown a favourite one; and the author feemed to himfelf to be upon the point of achieving his great undertaking; when M. Chevalier's performance appeared. This obliged him to ftop fhort for a little, and to paüfe. He took his refolution. Encouraged, by obferving fome flips committed by an author, as yet raw in the art of fyftematizing, it feemed more eligible to him to endeavour to reduce the obftructing fabric to a heap of ruins, than to demolifh and fupprefs his own occafional labour of thirty years. The avowed object, then, of Mr Bryant's pamphlet, is to fet afide M. Chevalier's Defcription, as unfound and fanciful. I once indeed heard, that, after the Ob fervations had come out, the author met with fome travellers, who affured him, that M. Chevalier's account of the prefent ftate of the Troad was a fair and true one; in confequence of which, it was reported, that he had renounced his heretical opinion upon the fubject, and was to fupprefs his Differtation. This I was very glad to hear, as I thought the fo doing would have redounded very much to Mr Bryant's honour. But I was foon convinced that this information was premature, by my receiving a printed copy of the Difertation, in a prefent, from the learned author himfelf; in the perufal of which, one, every now and then, regrets (at leaft this was the cafe with me) that $\mathbf{M r}$ Bryant had ever undertaken fuch a toilfome inveltigation, employed fo much learning, and wafted fo much ingenuity, which the appearance of M. Chevalier's work, thirty years fooner, might have prevented; and perhaps 'might have engaged thofe very talents to affift in fupporting and illuminating a fyftem, which

[^62]which they have now been employed to puzzle, perplex, and obfcure. After all, if the learned veteran had feen Mr Heyne's Effay on the Topography of the !liad*, and Dr Dallaway's late publication, in both of which M. Chevalier is fo ably fupported, I imagine he would have been deterred from publifhing his grand fceptical work, notwithftanding the great labour it had coft him.

Mr Bryant, in the introduction to his Obfervations, charges the author and his editor with indulging in fevere critical cenfure againft Dr Pococke, Mr Wood, Dr Chandler, and Straво. But I can't help thinking that the accufation is too ftrongly ftated. I hope it was not with an intention to create an early prejudice in the mind of the reader againft the perfons animadverted upon, and in favour of what was to follow.

With refpect to the firft of the above-mentioned authors, M. Chevalier had faid, that " his account of Troas, though full " of errors, and in every refpect obfcure, yet proved to him a "very ufeful guide in his refearches." (Ch. VI.). He, no doubt, found confiderable obfcurity, and a number of errors, in Dr Pococke's account; and where was the harm in faying fo? But Mr Bryant, in his complaint that Dr Pococke has been unjuftly accufed, does not fubjoin the qualifying claufe of the fentence, viz. that " notwithftanding thefe defects, the work pro" ved a very ufeful guide;" but he referves this latter part of the expreffion, till he find an opportunity of introducing it with more effect, and more fitly for his own purpofe afterwards. I am not fure if this way of difmembering expreffions, and expofing them in disjointed morfels, fhould be confidered as a very fair mode of attack. If M. Chevafier was convinced that Dr Pococke was mifled by Strabo, and regrets that he did not rather "truft to his own obfervation, which probably would

[^63]" have brought him to agree with Homer," I cannot perceive any very fevere cenfure in this: On the contrary, M. Chevalier finds out, and adds a very good excufe for Pococke, which is, that he could not, at that time, have the affiftance of a geometrical apparatus in his obfervations, as it was then hazardous to produce any fuch to the view of the Turkg. On other occafions, M. Chevalier pays compliments to Dr Pococke, calling him, in one place, " that excellent traveller," infomuch, that he appeared to me to have even over-rated his merit. In a note, therefore, (p. 100.), I have ventured to fay as much, in as far as related to the art of compofition. For, on reading Pococke's travels, I certainly thought him very deficient in point of arrangement, and very confufed in the communication of his ideas. This, however, was expreffed with all due deference to his veracity, which I believed to be quite unimpeachable. But, if it will give any fatisfaction to Mr Bryant, I am ready to admit, that I may have been miftaken in thinking Dr Pococke a confufed and inelegant writer. And yet the late Mr Gibbon, whofe acutenefs nobody will deny, when he pays a compliment to Dr Pococke's plan of the feven hills of Conftantinople, adds, "that this traveller is feldom fo " fatisfactory."

As to the manner in which Mr Wood is treated, it will no doubt feem very difrefpectful in the eyes of thofe who are difpofed to believe in his doctrine concerning the fource of the Scamander; but to M. Ghevalier this appeared fo palpably untenable and abfurd, and he was fo confcious of his victory, that he has, no doubt, purfued his triumph with a great deal of vivacity and pleafantry. Where Mr Wood appeared to have merit, it has been allowed him; but becaufe he viewed the Troad erroneoufly, Mr Bryant thinks it inconfiftent to admit that his defcription of the coaft is exact; and fmartly fays, (with what
what reafon I leave others to judge), "a man fo erroneous, and " fo exact, was never before feen."

Dr Chandler, in one paffage, is blamed for giving his readers too much credit ; but a good reafon for this is affigned inthe note. In another place, he is noted as having once inadvertently fpoken of the rivers, repugnantly to his own right notion of them. I have not had time to examine what foundation M. Chevalier had for this remark. Perhaps it might as well have been fpared. I find it is omitted in the German edition : very probably at the author's own defire. Of Dr Chandler, M. Ghevalier fpeaks elfewhere with the greateft deference and refpect; and I queftion, if Dr Chandler will thank Mr Bryant for coming forward as his champion, where he had not himfelf obferved any antagonift on the field.
It is furprifing that Mr Bryant, in his zeal for the reputation of Strabo, did not perceive that he himfelf is as guilty of rejecting the teftimony of that admired geographer as M. Chevalier, when it happens to difagree with his own ideas. An inflance of which we find in his Differtation. (p. 44.). "Of "Troy," fays he, "there is no fign : no remainder : nor was " there ever any upon record."-" Strabo endeavours to give a " reafon for this : but I believe that it will not be deemed fatis" factory." And fo he produces the paffage which we had occafion to quote above. (p. 59.).
Mr Bryant employs the firft three pages immediately fucceeding his introduction, in endeavouring to prove that the city of Troy, as defcribed by Homer, muft have been much nearer the fea than the fituation affigned to it by M. Ghevalier, which is afferted to be contrary to the very evidence of the poet himfelf.
I am glad I have it in my power to give a very fhort, and, I think, a very fatisfactory anfwer to this objection ; and I feel the more fo, becaufe Mr Bryant's arguments have, in this particular,
ticular, brought over to his fide a very learned and intelligent Reviewer in the Britifb Critic, (May and June 1797); infomuch that, after combating Mr Bryant fuccefsfully in the other parts of the Obfervations, he at laft feels himfelf under the neceffity of feeking for the fite of Troy farther down the plain, in which I am forry I cannot go along with him. The anfwer alluded to is furnifhed in a few words by Dr Dallaway; and coming from one who has been upon the ground, muft have more weight than any thing which could be faid on the fubject by a perfon who has not had that advantage. "The diftance " from the Grecian camp to the fite of Troy," fays this accurate obferver, " has fupplied thofe who contend againft its exiftence " with many plaufible objections. It is, however, certain, that "the prefent village of Koum-kaleb is fituate on' a fand-bank " more than a mile in extent, which will reduce the diftance, " fuppofing it to be an accretion from the Hellefpont, to lefs " than eight Englifh miles from Bounar-bafhi, where the Scæan " Gate once ftood. The advanced works, both of the Greeks " and Trojans, leffened the intermediate fpace. The diftance of " the moft advanced rank of thips from the fea is not mention" ed ; perhaps we might not be far from the truth in fuppofing "it half a mile, and a quarter of a mile farther from thence to " the fea. Allowing the firtt circumitance of the accretion at " Koum-kaleh, and the Grecian camp having been advanced in" to the plain, the diftance of Troy is perfectly reconcileable " with every incident mentioned by Homer.; It is likewife evi"dent from the circumftances of the war. Had the city been " very near, the firft work of the Grecians mult have been a " Atrong fortification to prevent fudden attacks; without it, " their deftruction muft be inevitable. Befides, there had not " been a theatre large enough for the actions of the war." (p. 336, 337\%).

Mr Bryant afterwards, (p. 14.), argues from a paffage of Hoo-
 Troy muft have been fituated in the plain, much nearer the fhips than M. Chevalier imagines. To this Dr Dallaway alfo gives the following fatisfactory anfwer: "The moft elevam " ted ground on the edge of a precipice was the Acropolis, other" wife called Pergamus, (Iliad, IV. 507. V. 460. and XXIV. " 700.). Ilion was lofty enough to be called windy, (pafim), yet " it was lower than Pergamus, (XXIV. 700.) ; fo that it is once " faid to be in the plain, $\varepsilon_{v} \pi \varepsilon \delta_{i}^{\prime}(\omega$, (XX. 2 ± 6.), as ftanding at the " head of the plain on an eafier acclivity, and being lower than " the mountains of Ida. It is, notwithftanding, incontrovertible, " that Troy ftood on the afcent, (VI. 74. XXIV. 390.); and the " ह́gusos, which was without the town, has the fame epithet win" $d y$, (XXII. 145.), from its unfheltered fituation. The wall ex" tended only in the front of the plain, the natural fortification " of cliffs above the Simois rendering its continuance unnecef" fary. Mr Bryant lays much ftrefs on the expreffion $\bar{\varepsilon} v \pi \delta \delta^{\prime}(\underset{y}{c}$, " which might have been ufed comparatively, and in contradi" ftinction to higher acclivities, and not pofitively." (p. 349.).

What Mr Bryant fays of the diftance between the promon-
 Dioso; (p. 4. to p. 13.) ; alfo his criticifms relating to Strabo, and upon a paffage of Herodotus, (p. 15.-28.), do not here require a particular anfwer or difcuffion, after the conceffions already made, and the amendments which have been propofed. In the cafe of a new edition of M. Chevalier's Treatife, it is admitted that feveral of Mr Bryant's remarks might furnifh affiftance in the correction of fome errors and inaccuracies, and would merit a tribute of praife to the learned author's acutenefs; but they can have no effect in fubverting the great and effential articles of M. Chevalier's inveftigations and difcoveries.

Nor will I enter any further into what is objected to the account of the Scamander, taken from the diminutive fize of the river; enough having been already faid upon that fubject to convince any unprejudiced perfon that the ftream, which has its fources at Bounar-bafbi, and which has been explored and defcribed by other refpectable travellers, as well as M. Chevalier, anfwers perfectly to all the defcriptions and hints to be found in the Iliad; allowance being always to be made for the poetic way of reprefenting fuch things*. Enough too has been already faid concerning the tombs.

The paffage in the defcription, where M. Chevalier has expofed himfelf moft to the power of Mr Bryant, is contained in two paragraphs in the VIth chapter, where Clemens Alexandrinus is referred to, and where the priefts of the lower empire are mentioned. The obfervations there made are evidently ill digefted, and rafhly thrown out. This the author has frankly admitted, by directing them to be totally rejected in the cafe of his book's being reprinted \dagger. But ftill this does not in the leaft affect the material parts of the Treatife; and fuch diminutive or partial victories as this will fcarcely entitle Mr Bryant to the honour of an ovation, far lefs to the glory of a triumph.

Mr Bryant, I find, willingly allows the author and the editor fome praife for exploding the idle notion of Hector's flight three times round the city of Troy; and fupports them in their endeavour to fhow the abfurdity of fuch a fuppofition. At firft I was afraid there might be fome fort of decoy in this, fome contrivance, like that of the wooden horfe, for deftroying us;

 having ftill had my doubts about the poet's acceptation of π sgi.
*See Mr Heyne's Preface, Appendix, No. I.
\dagger See Appendix, No. VI.

But I was foon convinced that Mr Bryant had no treacherous defign in making this conceffion; and the hypothefis having alfo the ftrong fupport of Mr Heyne *, there is now good reafon to be confident that it is well founded.
M. Chevalier, in the beginning of his XIIth chapter, had remarked, that Mr Bryant has endeavoured to prove "that " the Greeks were miftaken in fuppofing thofe to be the tombs " of heroes, which were in reality confecrated mounds." This obfervation, it feems, was of too general a nature。Mr Bryant meant what he faid to be taken in a limited, not a general, fenfe ; and thinks himfelf much injured by this mifreprefentation. He wifhes, therefore, that M. Chevalier had paffed him by unregarded ; and in this wifh I heartily concur: for I am fure M. Chevalier will fincerely regret that he fhould have written any thing that could be conftrued into a defign to injure Mr Bryant's reputation; which I am as much convinced he never intended, as I am confcious that I never meant, by the long unfortunate note fubjoined on the fubject of barrows, to fupport him in any fuch defign.

But in following Mr Bryant any further, I am afraid I thould trefpafs on the indulgence of the Society. I did formerly, and do now, entertain a high refpect for that gentleman's talents, learning, and character: at the fame time, I cannot help lamenting, that he fhould ever have mifemployed thofe talents, and that learning, in a taborious attempt which can never enlighten the mind with any cheerful rays of conviction; nor ever reach beyond a dreary and difguftful ftate of obfcurity and doubt, tending to blunt or extinguifh thofe pleafing fenfations which the poems of Homer excite in every breaft qualified to feel their genuine fpirit; and for a diminution of which, the efforts of a frigid and phlegmatic erudition, even if fuccefsful in proving them to have been derived entirely from fiction, would fcarcely be able to compenfate. But that "the war on which Vol. IV.

[^64]"Homer founded his famous poems was never carried on, and " that, if the city called Troy ever exifted, it muft have been in " Egypt, and not in Phrygia;-nay, that Homer himfelf, un" der the name of Ulysses, was the hero of his own Odyffey," are paradoxes, I fhould think, too whimfical, too violent, and too repugnant to the beft authorities of antiquity, ever to admit of any thing like a proof.

On the other hand, that the fcene of the Iliad has derived great light from the laudable refearches and fortunate difcoveries of M. Chevalier muft be allowed; and therefore he deferves the thanks of every admirer of the works of the great poet. This is the decided opinion of many; and particularly of one, whom the world allows to be qualified in an eminent degree to judge of this fubject, the learned and fagacious Profeffor Heyne; to whofe Effay on the Topography of the Iliad, which is annexed in the Appendix*, I beg leave to direct your attention.

* No. III.

APPENDIX, containing Papers and Letters referred to in the foregoing Detail.

No. I. (p. 31.).

> From Profeffor Heyne's Preface to the German Tranflation of. M. Cheyalier's Treatije *,

TO penetrate, at leaft with the mind's eye, beyond the narrow circle to which life is bounded, and to ftudy nature on a large fcale, is a propenfity in the conftitution of man. From this principle arifes the pleafure which we receive from the defcription of foreign lands, and in the reprefentation of natural fcenes and profpects. In the cafe of celebrated places, this pleafure is enhanced, when, in countries well known to fame, the remembrance of illuftrious actions is before us. The intereft rifes ftill higher, if the fpot be what is termed claffic ground, the mention of which in ancient authors is connected with important events; or where the topography is doubtful, and has become a fubject of controverfy.

This is the cafe with the Troad. Homer furnifhes us with fo much accurate obfervation, that we are ready to imagine our-

[^65]felves able to make a vifible reprefentation of the country. But if we try to complete the picture in all its parts, we fhall meet with gaps and with places which do not coincide with the reft of the defign. Accurate defcriptions of this diftrict have not been obtained.

Strabo is the only author who has furnifhed us with a minute account of the Troad, compofed not from the perfonal obfervations of this great geographer, but borrowed from Demetrius of Scepfis. Demetrius feems indeed to have a juft title to belief and refpect, as he was born in the neighbourhood of the Troad, and had in all probability furveyed it himfelf. Our good opinion of him is confirmed by the accuracy with which particular places are laid down, and by their coincidence with the defcriptions of the ancient poets.

This author, however, gives rife to a ftill greater embarraffment, not fo much refpecting the fituation of Troy, for it is affigned to what, in all probability, is its exact place, as in regard to the river Scamander and its fources, which are thrown far back in the mountainous region behind Troy.

Succeeding travellers have thrown little light on the Troad. Wood, alone, made it a ferious object to explore this claffic ground, and to form an accurate idea of it. He was prepared for the inveftigation by claffical erudition. He travelled, he fays, with his Homer in his hand, but he feems to have had Strabo alone in his eye. Without attending to fo many other circumftances, which might have directed his view, the fources of the Scamander were his only point, from which he furveyed every thing elfe; and as he was miftaken in the fituation of thefe, every thing elfe muft have received from him a falfe pofition and appearance *.

To

[^66]To the edition in 1775 of Wood's Efay on the Original Genius and Writings of Homer, was added his Comparative Vieze of the ancient and prefent State of the Troad. Some years afterwards, I read in the Society a paper attempting to explain the military tranfactions in the Iliad, according to the topography of the country*. Had, I kept by Homer I fhould have fallen into fewer miftakes : but, unfortunately, from confidence in fuch a man as Wood, who had vifited the country with his Homer in his hand, I took him and his chart of the Troad for my guides, and thus allowed myfelf to be entangled in fuch a labyrinth of errors, that I ftrove in vain to extricate myfelf.

The main blunder in Wood is the alteration of the fources of the Scamander, and the confequent placing of ancient Troy deep in the mountainous region of Ida. Every thing elfe was now confounded. Wood did not perceive that Demetrius of Scepfis, whom Strabo-follows, builds, in this inftance, on a mere hypothefis. Demetrius, I imagine, founded it on an erroneous interpretation of Iliad, XII. 18, \&c. \dagger, which he underftood geographically, without confidering that he had before him a poet, not a geographer. Wood, indeed, traced the courfe of a ftream, till at laft he found another that flowed into it : he then fought the fources of this new ftream, and difcovered them. Thus far, all is accurately obferved, and coincides with Demetrius's affertion. But was this ftream of courfe the Scamander? and was Troy to be immediately transferred to that fpot? Had not Strabo preceded him with a multitude of doubts? Woon helped himfelf out with changes of nature, which muft have taken place here, and have altered of confequence the face of the country. But fuch changes hiftory knows of only upon the coaft, or when occafioned by the overflow of rivers:

[^67]rivers: and fuch Homer himfelf defcribes, Iliad, VII. 459, \&c. XII. 13-33.

The transference of Rhœeteum to Cape Berbier is an error not peculiar to Wood : but the Grecian camp derives from thence an extent which again does not accord with Homer's defcrip tion. The poet is not indeed to be a geographer; but he muft not feign any thing which contradicts the firft glance at nature, or clafhes with the known accounts of the topography of the country. The epic poet muft reprefent nature as certain leading circumftances require. The main circumftance here is the general chart of the face of the country, and an eftablifhment of certain principal fpots. As to the reft of the fcene, fancy muft have full play in fuggefting its greatnefs and extent. The epic poet's chief engine is the marvellous. By an accurate determination of every particular, the illufion would quickly vanifh. Much muft appear only in great maffes. Some things muft be and muft remain in obfcurity, that the fancy of the hearers or readers may have room to work, to form to itfelf an idea of greatnefs and power. Homer therefore does not give an accurate determination of the Grecian camp, or of the field of battle. Here the fancy of the reader has room to operate, as that of the poet himfelf has been engaged in working up every thing into the great and wonderful. Every thing appears to him many degrees higher than it is in real nature. Muft he not raife the reader to the fame pitch? " I fee gods arifing" is the language of the poet; and when he is read as a poet ought to be, it will be the language of the reader alfo. If we are at any time to figure to ourfelves the Scamander as a tremendous torrent, which, as a god, fights with Achilles, and threatens to bury him in its waves, HoMer muft not inform us how diminutive its real fize is. He muft leave us, by affociation with the greatnefs of the effect, to give it all the bulk our fancy can grafp. He in no place gives the exact dimenfions of the town and fortrefs of Troy. This is
quite natural; for fuch accuracy could in no refpect have had an advantageous effect. The combat of Achilles and Hector is filled with the woonderful. The race of both heroes is traced by means of points, which the fancy of the reader may extend as far as it can; the walls, the wild fig tree, the watch-tower, the fources of the Scamander. But it may be premifed, that to a perfon who knew the topography of the country in the days of Homer, nothing would be reprefented, which he would have recognifed and declared to be falfe and erroneous, elfe the effect of the poem would have been loft.

When we fpeak of the Troad, it may be viewed in various lights. What is the prefent appearance of that country? What was it formerly, at different times, particularly in the days of Homer? and how can its prefent appearance be reconciled with the defcriptions of that poet? Or, again; in Homer there is a certain appearance of the country defcribed. How far does this actually accord with nature? Each of thefe views and queftions it is rather the province of the geographer and hiftorical critic to anfwer. There is Atill another view of the fubject. As the poet cannot be read with pleafure, without a fenfible reprefentation, what is the reprefentation he gives of the face of the country? To what extent does he give it? and how much of this kind of knowledge mult accompany or precede the reading of the liiad ?

The explainer of Homer is properly bound to difcharge only the laft tafk. With this view I had entirely new modelled the above mentioned Memoir, according to Homer, and had taken no further affinance from Srrabo than coincided with and illuftrated Homer's account. So much the more lively was my pleafure, when I perceived, in the paper of M. ChevaLIER, a greater coincidence with my ideas than I had found in Wood, or in any other work. This induced me to annex to
this publication my Memoir in a new drefs, in order, at leaft, to remedy the errors it may have formerly occafioned.

That the fources of the Scamander are ftill found near Bou-nar-bafbi;-that of its junction with the Simois the ancient channel ftill remains, as the ftream is now diverted into a canal, which falls into the fea below Sigeum ;-that the ftream which comes down from the hills is the Simois, and not the Scamander ;-and, alfo, that the other ftream, which the former receives, is no Scamander ;-that Bounar-bafbi exhibits the fite and veftiges of ancient Troy;-that even the citadel is ftill diftinguifhed by its abrupt precipice :-all thefe are leading remarks and obfervations which we owe to M. Chevalier. The coaft, the promontories, the tombs, the temple of Apollo at Thymbra, Callicoloné, and other places, receive from him all the diftinctnefs that readers of Homer can wifh.
M. Chevalier vifited the country about the year 1787. He was at that time attached to the embalfy of M. de Choiseul Gouffier at Conftantinople. The occafion both of his drawing up the paper, of its being read before the Royal Society of Edinburgh, and afterwards publifhed by Mr Dalzel, are detailed in the preface of this laft gentleman*.

I had the pleafure of M. Chevalier's acquaintance during his fhort refidence at Gottingen. The perufal of parts of his travelling journals made me defirous to communicate to my countrymen the whole work. This propofal, however, was attended with feveral difficulties, particularly, that the paper was the property of the Royal Society of Edinburgh, and that it was affigned to a place in the third Volume of their Tranfactions, which was not to be publifhed for a twelvemonth.

In the mean time, upon fignifying my wifhes, I experienced a complaifance and readinefs to oblige, which calls for the warmeft

[^68]warmeft and moft grateful acknowledgment on my part. Not only M. Chevalier gave me every affiftance, but, on the part of the Royal Society of Edinburgh, I was anticipated with affurances which fhew the liberal fentiments of thofe Literati, who are far fuperior to any little felfifh vanity. I had even immediate accefs to a tranflation of the Paper before it had appeared in the Society's Tranfactions. A copy of this tranflation was fent to me before its publication, and the earlieft impreffions of the maps were communicated to me. If ever the occupations of learned men merited the title of the ftudies of humanity, it was in the prefent inftance. To the exertions of Profeffor Dalzel, I am particularly indebted. He preferved, on this occafion, his character, already high in my eftimation, by fhewing himfelf in no ways actuated by envy, or by any little jealoufy, towards a profeffor in his own line.

I committed the German tranflation to a young promifing fcholar, Mr Charles Frederic Dornedden. According to the permiffion which I received from Edinburgh, and from the author, I have added fome remarks, which are chiefly critical, or relate to the interpretation, particularly of Strabo, or refer to a comparifon of paffages in Homer. On different points I have received from the author written explanations, and have, by his permiffion, made fome changes and additions. The particular ftate of literature in Germany would perhaps have required other changes, omiffions, and abbreviations ; but the work was not my property.

The author fets out always from tombs, and feems to lay the greateft ftrefs on the obfervations he has made refpecting thefe. There may have been particular reafons for this. For us they' decide little. Suppofing that M. Chevalier was miftaken, and that the eminences were not at all tombs, the main point remains what it was ; the fources of the Scamander are near Bou-nar-bafi ; and in that neighbourhood is the fite of Troy.

Vol. IV.

No. II. (p. 73.).
Mr Heyne's Note, additional to Mr Dalzée's, on Achilles's Purfuit of Hector. (Iliad, XXII. 165.).

LONG as this note has been*, I find it neceffary ftill to fubjoin another. We ought, I think, to take up the fubject in this way. Here, as frequently happens in regard to Homer, two diftinct queftions occur : 1. How the Ancients underftood HoMER? 2. How he may and fould be underfood ?

Unquestionably the ancients often underftood their Homer furprifingly ill; and in the inftance before us it may very well have happened that they miftook his meaning. His commentators have conftantly been deficient in point of acquaintance with the topography of the Troad. Seldom was this rugged coaft vifited by travellers; as no great road either led to or run through it. Over the precipices of Mount Ida it was hardly poffible that there fhould lie-any much frequented path. To the prefent hour this coaft continues to be but rarely vifited. Thofe tracts only are known to us through which caravans travel. Even where an accurate acquaintance with the topographyy of the country might have been moft confidently looked for, in Strabo for inftance, we find nothing more than an abridgment of the accounts of Demetrius of Scepfis; and that this laft mentioned author, in his examination of the ground, carried throughout in his mind a preconceived hypothefis, is evident in what relates to the fountains of the Simois and Scamander. This may perhaps have been the cafe too, when he affert-

[^69]ed, as follows, of the place which he had rightly marked out as the fite of ancient Troy, "Hector could not poffibly have " been purfued round about New Hlium, but he might very "well have been fo round ancient Troy,"一in $\delta_{\varepsilon} \pi \alpha \lambda \alpha i \tilde{\alpha}$ है $\chi^{\varepsilon i}$ megideouniv. (Strabo, p. 895. A.). In Quintes of Smyrna, who, as well as Demetrius, refided juft upon the weftern coaft of Afia, we find a fimilar deficiency in point of local knowledge. No wonder, then, that even he makes Hector be dragged around the walls, tं $\mu \not \emptyset$ по́ $\lambda \eta \alpha$. (I. If I. XIV. 132.)

Virgil's imitation of this incident, in the combat between Eneas and Turnus before Laurentum, (quoted and referred to in the Effay), can prove nothing more than that Virgil either adopted in his narrative a different plan from Homer, or endeavoured to give fomewhat more probability to his ftory; juft as in another paffage we find him fubftituting, for the triple chace of the combatants, the more probable incident of dragging the dead body of HECTOR round the city;

Ter circum Iliacos raptaverat Hegtora muros.

He obferved, in this, the fame rule by which he conducted himfelf on other occafions, not always to be anxious to tread in the very fteps of Ном er, but, where a different delineation fhould offer more poetical beauties, to carry his imitation at large through the whole circle of poets, epic or dramatic. In this particular, of the dragging of Hector's body, he followed fome other poet, probably Euripides. (See Excurf. XVIII. ad Æn. I.).

If it is to be maintained, that the paffage in Homer, refpecting this purfuit of the combatants, cannot mean that it was actually round about the city, and that fuch a purfuit could not poffibly have taken place, the main proof muft be drawn from the topographical fituation of the country. Ancient Troy was acceffible only on the fide next the fea. On the quarter of the

Acropolis it was furrounded by abrupt precipices, and deep ravines; and at the bottom lay the rocky bed of the Simois, as M. Chevalier, an eye witnefs, affures us. His teftimony, by the by, affords a folution why the Greeks, numerous as they were, never completely invefted the city, though this would have been a natural and effectual plan of operation. It explains, too, why they did not cut off all approach to the place; for we find frefh fupplies and provifions received without interruption from Phrygia; allies and auxiliaries arriving conftantly at Troy. On the fide next the mountains there muft therefore have been a free accefs to the town. Hence, too, it is no lefs evident, that Homer, intimately acquainted as he was with the ground, never could have faid what has been afcribed to him, that Achilles chafed Hector thrice round the walls. Still lefs can this be fuppofed, when what the poet is thus made to fay is palpably abfurd in itfelf, that two combatants fhould run three times round the walls of a city. For either, if we fhould reckon the thing poffible, our idea of the city muft be diminutive and contemptible; or, fhould we fuppofe the city to be large, the improbability becomes obvious, and we are ftruck with the abfurdity of the army's ftanding idle, waiting for the re-appearance of the runners from the oppofite fide of the walls. Add to this, that fuch an abfurdity is by no means neceffarily implied in the words; nor would it at all occur, were the paffage read without prejudice, and with proper attention to its meaning. All the combats take place before the Scæan Gate. Thus far had PAtroclus, the preceding day, driven back the Alying Trojans. (XVIII. 453. XVI. 712.). No battle, no tranfaction, is mentioned, as happening in any other quarter, or on the oppofite fide of the town. It is on the Scæan Gate that Priam and his Trojans itand, to be feectators of the fight. (Iliad, III. 145-154. XXII. 25.462.). Even during the flight of Hector, we do not find Priam running from one gate to another, from one
fide of the walls to the other; he continues ftanding on the Scæan Gate.-The whole narrative of the tranfaction in queftion is as follows:-

Hector at firft takes his ftation before the Scæan Gate, waiting on foot the approach of Achilles, (XXII. 96.); but as Achilles draws near, he is feized with a panic. To efcape from him, he takes his flight along the foot of the wall, ($\tau \varepsilon \pi \chi^{\circ} \mathrm{s}^{\prime}$ iño T T $\mathrm{g}^{\omega} \omega \mathrm{N}$. XXII. 144.), partly with the view of being protected from the walls, partly, perhaps, in order to get away towards the mountains: Achilees gets between him and the wall, and drives him to the oppofite fide againft the Grecian army. This track brings Hector to the watch-tower, the wild fig-tree, and the fources of the Scamander. Here he finds an opportunity to wheel round, and again approach the walls. Achilles, once more, interpofes betwixt him and the city; and drives him back towards the fources of the Scamander; and this is repeated four times, (v. 157. 165. 188. 194. 'O $\sigma \sigma^{\prime} \alpha{ }^{\prime} \pi-$). On this fpot, at a diftance from the walls, near the fources of the Scamander, HecTOR at length makes a ftand, and the laft combat, with his death, enfues.

When the fubject is taken up in this point of view, the word
 ftood in no other fenfe, than "about-before the city," without any idea of its meaning "round about the city itfelf." Even

 was: directed away from the city towards the fources of the Scamander; fo that no idea of a round about can be admitted. The matter is completely cleared up by verfes 194-208. The circle of the flight is there accurately marked out, as extending merely from the walls towards the fources of the Scamander; confequently verfes 230 , and 2.51 , cannot be underftood in any other feafe.

As Acuilles flew Hector before the Scran Gate, fo it was decreed that he himfelf fhould one day fall before the fame

After Hector is killed, Achilles expreffes the idea,-worthy of a warrior; but which would have embarraffed the poet in the execution, by giving the Iliad at once an inconvenient termination,-the idea of hazarding inmediately, while the panic of the Trojans was frefh, an affault upon the city ; v. 38 i .
 ceflary to fuppofe, that the troops were to advance towards the wall round about on every fide. The expreffion' implies only fomething indeterminate in regard to the place, provided other circumftances do not more accurately mark it out. In Quintus, (IV. 86. and 87.), Diomede fays,

Іорви $\alpha^{\prime} \mu ф \grave{\text { ® }} \pi о ́ \lambda \eta \alpha$.

Let us affault the city itfelf,-On one fide, is underftood,-in one place, where an affault is practicable. On the contrary, when Achilles drags the body of Hector round the tomb of Achilles, Tgis d’égúras wei oñua, -(Iliad, XXIV. 16.), it feems clear, from the nature of the thing, that, in this paffage, the expreffion may fignify round about.

Upon the whole, one muft here call to mind the remark, which I have elfewhere introduced,-What other poets do by art, in throwing into the fhade certain parts of their ftory, that the effect of the whole may be more forcible, Homer does here, certainly not from theoretical notions, but by the guidance of true feeling, and in the glow of imagination. The poet was now arrived at the great, the decifive moment, when his hero ought to appear with the higheft luftre. The combat itfelf is raifed to the marvellous; even deities muft take a part in it, and
contribute to the wonders of the feene. So terrible is the look of Achilles, that Hector, prepared as he was to ftand the conflict, lofes courage at his approach. The race of the two heroes goes far beyond human force; but how far,-over that the poet throws a vail. Fancy has now room to work, and may reprefent every thing as far beyond what is common and natural as fhe will or can. They run three times round at the city, -the fpace, the diftance, may be conceived as great as we choofe; but the poet neither does nor ought to determine them. Such determination would fall either into the gigantic or the diminutive. The cafe is different, when, by means of a comparifon, an idea and image can be enlarged or extended. The poet then makes ufe of what is defined, to render the undefined object more diftinct, and to throw light on what is obfcure. That however is not the cafe here.

> No. III. (p. 34. 67. 74.).

ESSAT on the Topography of the Mliad*. By Profeffor Heyn e of Gottingen, Aulic Counfellor to His Britannic Majefy, foc.

FOR nine years had the war between the Greeks and Trojans been carried on. The former now lay encamped in the neighbourhood of Troy, when the quarrel between Achilles and Agameminon, occafioned a divifion in the army.

Agamemnon,

[^70]Agamemnon, to convince Aghilles that, even without his affiftance, victory might be obtained, caufes the army to march out of the camp, and advance towards the city. Hitherto the Trojans had kept clofe within their walls, following the advice of their old men*, who faw plainly, that, if a fiege fhould actually take place, the Greeks could make little impreffion on the town: for the firft rudiments of the arts of attack were then hardly known. Encouraged, however, it fhould feem, by intelligence of the divifion in the Grecian army, the Trojans quitted the city, and met the Greeks in the field; -a new gratification to the proud fpirit of Achilees, that now, for the firf time, when it was known he was not with the army, the Trojans fhould venture out into the plain \dagger.

The two armies met. Four principal battles are defcribed in the Iliad. The firft, (the fubject of our prefent inveftigation), on
felf then to be milled by refpect for POPE and Wood, fo far as to renounce my own ideas, and to mould, according to the reprefentations of thefe gentlemen, the views I had drawn from Homer himfelf. I foon found, however, that I had trufted to bad guides, and at once refolved, laying afide all fecondary aids, to attempt, from the defcriptions given in the poem itfelf, a \mathbb{k} etch of the Topography of the Iliad, fuch as Homer exhibits it. This Effay I now prefent to the public. I had for a long time thrown it afide, when its coincidence with the information collected by M. Chevalier on the fubject, induced me to revife it, and now inclines me to fubmit it, for further inveftigation, to the friends of the poet. Amendment after this will be an ealy taik. H.

* Iliad, XV. 72 I, \& c. The fage Polydamas, afterwards, likewife, when the defign of an attack upon the camp feemed likely to mifgive, gave his advice rather to retire again within the city, and take refuge, as formerly, behind the walls. But the rafh Hector would not confent, (XVIII. 266: \& c.). Unqueftionably the long fiege muft have proved extremely harraffing. The provifions, as well as the treafure, of Priam were exhaufted, as Hegtor himfelf urges. (Ibid, 288.). H.

[^71]the plain between the camp and the city, (II. IV. 422. VI. 306.); -the fecond, when the Greeks were driven back to their camp, (Iliad, VIII. $55-213$.) ; -the third, which extends not only to the flight of the Grecians into their camp, but likewife to the ftorming of the camp itfelf by the Trojans, who break in and fet fire to a fhip, till at length they are repulfed, and purfued almoft to the city by Patroclus. Here Patroclus falls; and the Greeks, put to flight, are once more driven back to their camp. (Iliad, XI-XVIII.). In the fourth battle, Achilles beats back the Trojans again to the city, and crowns his victory by the fall of Нector.

No lively idea can be formed, either of there battles, or of the ftorming of the camp, without fome general conception of the environs of Troy.
From Mount Ida, run two hilly ridges from the eaft down to the fea, where two promontories bound a jutting beach. The promontory on the north is Rhoeteum ; that on the fouth Sigeum. Within thefe two ridges lies a plain, lloping down to the fhore, and inclofed within their femicircular compafs. (Straво, XV:III. p. 8.92. B.). In this plain run two rivers : on the north fide the Simois; on the fouth the Scamander, called alfo the Xanthus. The latter now difcharges itfelf into the fea to the fouth, below Sigeum, but formerly, before approaching the fhore, it muft have united with the Simois, fo that both rivers had a common outlet into the fea, above or to the north of Sigeum. This emboucbure was furrounded with many marfhes, and hence was called Stomalimné ; a name which occurs but once in Homer, in an interpolated paffage. (Iliad, VI. 4.). The exact fituation is laid down by Strabo, (XIII. p. 890. A. Pliny, V. 20. 33^{*}.).

Vol. IV.
m

[^72]The Grecian fleet was drawn on fhore at a place between the two promontories. The diftance betwixt the two, according to Strabo, (p. 890: B. 891. A.), was 60 ftadia, (about two German or nine Englifh miles), in a direct courfe by fea. The curvature of the land, however, would increafe the diftance in keeping along the fhore ${ }^{*}$.

It is generally fuppofed, that the Grecian camp extended from cape to cape. This notion involves very confiderable difficulty. Had it done fo, the camp muft have reached beyond the Simois, and the marfhes on both fides of it ; a circumftance by no means probable, particularly as the ftream is fo apt to overflow; and not the fmalleft trace occurs in Нomer, either of the river running through the camp, or of the left wing being ftationed beyond the river. When Homer, therefore, fays; that the fhips occupied the whole fhore \dagger between the two promontories, he probably fpeaks in a poetical flyle, to convey a magnificent idea; and it is more likely that the camp only ftretched on both fides towards the promontories Rhœeteum and Sigeum, and that on the north-eaft it extended to the Simois \ddagger.

Within this fpace were the fhips of the Greeks hawled up on the land, at a confiderable diftance from the fhore, with their fterns towards the land, and arranged in feveral rows $\|$. The rows,

[^73]rows, however, muft have been drawn backwards, according to the oblique direction of the whole camp, from the north towards Sigeum. Behind the foremoft row of the fhips the troops were encamped, fo that the fhips themfelves muft have ferved for a kind of rampart, as is plain from a comparifon of different paffages*. In the rear of the left wing muft have been the marhes called Stomalimné. Strabo affigns particular names to feveral parts of the coaft, though he has not put them down in geographical order \dagger. As only one part of the coaft bears the name of Station of the fleet, it may perhaps be inferred from this, that the Grecian camp occupied only a part of the beach.

The fhips ftood in the order in which they had been drawn afhore. The veffels of Protesilaus, accordingly, occupied the foremoft place ; and next to them were the fhips of Ajax, the fon of Telamon. (Iliad, XIII. 68ı. XV. 706, \&c.). Ajax was ftationed towards Rhœteum, confequently on the left wing of the camp; Achilles, with his Myrmidons, on the right towards Sigeum \ddagger. In regard to the two extremities there is no doubt; but the arrangement in the intermediate fpace cannot be fo exactly afcertained; unlefs, perhaps, thus far: Near to Ajax, and farther to the right, lay Idomeneus, with the Cretans, $m 2$
(Iliad,
*Iliad, XV. 653, \& cc. 408. 426. XIV. 34.
\dagger Strabo, (XIII. 890. A.). "After Rhoeteum follows Sigeum, a town in " ruins, then the ftation of the flect, ($\tau 0$ Navora月 $\mu \nu$), and the harbour of the Greeks,
 " and the mouth of the Scamander, (viz. of the Scamander united with the Simois), "then the promontory of Sigeum." Compare Mela, I. 19. Pliny, V. 30.33.
\pm Ilfad, XI. ad init. It is true that in XVII. 432. it is faid, that the horfes of Achilles would not return without Patroclus to the Hellefpont, äq $\begin{gathered}z \pi i \\ i\end{gathered}$
 the entrance of the ftrait, is more than once called the Hellefpont. (Iliăd, XVIII.
(Iliad, X. II2.) ; befide him Nestor, with his Pylians; then followed Menestheus, with the Athenians; next to him was Ulysises; near to whom were ftationed the Argives, Myceneans, and Lacedæmonians; after thefe came feveral other corps; and, laftly, on the right wing were the Myrmidons, with whom, it fhould feem, the other Theffalian tribes (the troops of Protesilaus excepted) were united.

By this arrangement, the following paffages appear both to be cleared up themfelves, and to throw light on others in their turn. The poft of AJax is all along the moft important. Towards this wing the main affault upon the camp takes place. To that fide alfo the battles tend. When Nestor conducts the wounded Machaon into his own tent, Achilles is at fuch a diftance that he fees only his back, and cannot diftinctly recognife his perfon, (XI. 596.610, et feq.). Patroclus, difpatched by Achilles to make inquiry; in returning from Nestor paffes the place where the fhips of Ulysses are lying. (XI. 805.). Juft at this fpot he finds Eurypylus, who was coming back from the engagement at the left wing wounded, and was going, it would appear, to the right wing, where probably his Theffalians were ftationed. Machaon, thốugh a Theffalian, was conducted by Nestor into bis tent, probably becaufe he was too much exhaufted to be able to reach the right wing. The fhips of Ulysses lay in the centre, fo that, from thence, the fhout, which called the troops to arms, could be heard on both wings*. To this the form of the camp, which, from its pofition, extended more in depth than in length, probably contributed. Hard by
150. XXIV. 346. Odyfí. XXtテ̄. 82، alfo Iliad, VII. 86. XII. 30. XV. 233° XX1II. 2.). And hence mult be derived the explanation of the epithets $\pi \lambda \pi \tau \nu_{5}$ and $\dot{\alpha} \pi$: \mathfrak{i} gu, which do not feem well applied to the proper Hellefpont ; though, indeed, broad and narrow are relative terms.

* Iliad, XI. 5. Thefe verfes are likewife inferted, though rather awkwardly; lib. VIII. 222. et feq.
by thefe fhips of Ulysses, and confequently behind the foremoft row, was the place for holding the public affemblies, and for the altars for the facrifices. (Iliad, XI. 806-7.). One of thefe, it fhould feem, was the altar of Jupiter Panomphæus *.

The order of the fhips in the catalogue, (Iliad, II.), appears to have fome connection with this arrangement in the camp, fo that the Bœotians, and thofe after them, as far on as the Salaminians, under AJax, belonged to the left wing. The Argives, and thofe next in order, as far as the Cretans, Rhodians, and other Iflanders, compofed the centre. The Theffalians, with the Myrmidons, formed the right wing.

The fucceffion and order of the troops, when afterwards drawn up in the field of battle, is fomewhat different. - AgaMEMNON runs through the midft of the battle; and after paffing fome, who are not named, he comes to Idomeneus with the Cretans, to Ajax and the Salaminians, to Nestor with his Pylians, to the Athenians under Menestheus, to Ulysses, and laftly to Diomede \dagger 。

Agamemnon, it appears, went from the left to the right wing. Ulysses was at fuch a diftance from the foot where the 'Trojans were preffing on to the affault, that he as yet knew nothing of their approach. (IV. 33 I.). In the battle itfelf all order

* Iliad, VIII. 249. 250. Ovid. Met. XI. 197. Apollo ftands on the Trojan hore,

> Dextera Sigeï, Rbateï lava profundi
> Ara Panompheeo vetus eft facrata Tonanti:

What notion the editors have had of this paffage, it is not eafy to divine. At all events, a point muft be put after profundi, and that line muft be underfood as a complete fentence.
tIliad, IV. 23I, \&cc. The leaders and the corps are by no means all particularifed by name. Thus, it appears from lib. XI. 808. II, 736. that the Theffa= lians, commanded by Eurypyius, were there:
der is loft ; and the combatants, individuals as well as fquadrons, are confufedly mixed with one another. (IV. 457, \&c.).

The ground in this neighbourhood muft have experienced alterations by the overflowing of the rivers, as well as by the operation of the Simois at its mouth. Homer himfelf intimates this, when he takes notice, that not a trace of the wall of the Grecian camp was remaining. (Iliad, XII. ad init.). Herodotus alfo quotes the fhore of Troy as an inftance of fuch changes. (lib. II. Io.). And fhould we even incline to reject the teftimony of Strabo, (lib. XIII. p. 890. A.), the fact may be regarded as certain. Whether the alterations of the ground, however, have been fo great as Wood fuppofes, is a different quertion*.

Before the camp, as already mentioned, a plain, gradually rifing, ftretched towards Troy, diverfified, it fhould feem, with feveral little eminences \dagger. That the two rivers Simois and Scamander inclofed this plain, and that farther down they united with each other, Homer exprefsly teftifies \ddagger; but he furnifhes us with no further or more accurate information $\|$. The field of battle lies in the neighbourhood of the Scamander \oint, and is called likewife the Scamandrian Plain \mathbb{I}, though it alfo receives,

* M. Chevalier anfwers this queftion.
 (Iliad, X. 160. XI. 56.). It lay juft before the place for croffing the Scamander, in going from the camp, on the road towards Troy; for in the laft battle the Trojans

 delineation, on M. Ghevalier's map, is erroneous. H. See above, p. 56, 57. D.
\ddagger Iliad, V. 713 . et feq. Vid. Strabo, XIII. p. 890. A. 892. C.
|| Strabo fays: "A little way before New Ilium the freams unite." It is. doubtful, however, whether by this expreffion he meass between llium and the fea, or on the inland fide of the town.

$$
\text { § Iliad V. 36. VII. 329. XI. 498-9. . I Iliad, II. } 465.467 .
$$

teives, at leaft in the more immediate vicinity of the city, the epithet of Trojan*. More precifely ftill it is faid, (Iliad, VI. i, \&c.), " the battle raged between Simois and Xanthus." The latter muft have been neareft the Grecian camp; for when the Trojans had advanced very nigh the rampart, and lay a night in the field before it, they are faid to be between the camp and the Scamander. (Iliad, VIII. 556.). At the Scamander \uparrow Hector holds a council of war; and when the Trojans are compelled to retire from before the camp, the wounded Hector is laid down at the fide of the Scamander. (Iliad, XIV. 433.). When, again, Patroclus drives the Trojans finally from the camp, he cuts off the retreat of a part of the fugitives to the city, forces them back towards the camp, and falls on them betwixt the ftation of the fhips, the river and the city \ddagger. Achilles, in advancing from the camp to the Xanthus, drives a part of the flying enemy into the river; the reft efcape to the town. (Iliad, XXI. r. et feq.). Here it feems to be plainly intimated, that, on the way between the camp and the city, the river muft be paffed. And this is confirmed by feveral paffages in the laft book, where Priam, in going from the city to the Grecian camp, after paffing the tomb of Ilus, arrives at the river,-undoubtedly the Scamander. Here he waters his horfes. (Iliad, XXIV. 349.). In returning, he comes again to the fame fpot, (v. 692.) ; and here
there

* Iliad, X. 11. XXIII. 464 Strabo, p. 892. C.

Here it is difficult to form a diftinct idea of the topographical fituation, unlefs we underftand it thus : Firft, between the fhips and the river; and farther on, between the river and the town.
there was a place for croffing the river *. Homer guides us no farther.

I formerly thought it probable that Homer meant only a near approach of the two rivers, not an entire confluence of their ftreams; but this opinion I have long fince abandoned. The Scholiafts, and even Eustathius, give us no aid here; they rather miflead ; they themfelves had probably no ocular knowledge of the place. The Scholia, however, on Iliad, II. 465. fay, "the Scamander comes from Ida, divides in the " midft the plain that ftretches to the fhore, and difcharges it"felf, on the left hand, into the fea." But how is this to be underfood? If the left hand from Troy is fpoken of, the prefent mouth, to the fouthward of Sigeum, muft be intended; and on that fuppofition this mouth would be of confiderable antiquity. If the commentator, however, means on the left hand,going from the fiore to Mount Ida, it is then the united flream of the Scamander and Simois, that is faid to fall into the fea at this place \dagger.

It is here that-M. Chevalier's obfervations on the fpot, and his delineation upon the map, give us fo much light. The Scamander, as it came near the fhore, directing its courfe obliquely over the plain, approached the Simois, and run into it, exactly as defcribed in Strabo. At prefent the' Scamander is condueted into a oanal, and difcharges itfelf into the fea below Sigeum. This is one important obfervation made by M. Chevalier. There is another, alfo, relating to the fources of the Scamander. Still it is a perplexing circumftance, that, neither in the advancing, nor in the retreat, of the armies, is any exprefs mention made of fo important a circumftance as croffing the river. -Almoft all the paffages, except perhaps the laft, rather imply that the rivers run on each fide. H. See above, p. 46. Note *. D.
\dagger I doubt whether any of the poets, Quintus of Smyrna, Tryphiodorus, or Coluthus, had an accurate knowledge of this neighbourhood. Tryphiodarus, for initance, lays, (lin. 3i6.);

Even in Strabo's time the fite of Old Ilium was unknown, and was a fubject of difpute; but he marks out diftincly a nere Ilium. Alexandria Troas was a different place from both, and lay more to the fouthward. New Ilium was twelve fladia (threeeights of a German mile, fomewhat lefs than two Englifh miles) from the Grecian harbour. Thirty fladia (almoft a German mile, or about four Englifh miles and an half) higher up, eaftward from New Ilium, and nearer Mount Ida, was fituate Old Ilium, on a fpot where then ftood a village named Ilium *.
The road from the city of Troy to the fea fhore ran from the Scran Gate, paft a beech tree, to the tomb of Ilus, on which ftood a pillar \dagger. Another monument was called Batieia, or the tomb of the Amazon Myrinna, an infulated hillock, where the Trojans took poft in the firft battle. (Iliad, II. 8II-15.). Upon another tomb, that of Esyetes, fat Polites, as a fcout on behalf of the Trojans. (Iliad, II. 793.). The Sca-

Vol. IV. mander
> "Loud roar'd the Xanthus, and the mouth of the Simois;" fo they were not then united at the mouth. A little after, (lin. 319.), "They were dragging the wooden "horfe, but were retarded, the way being interfected by rivers, and very uneven."

[^74]\dagger Iliad XI, 166. 371. Here Hector had his poft, on the night when he encamped before the Grecian camp. (X. 415.). Here Paris ftood behind the pillar, when he wounded Diomede with an arrow. (XI. 372.). Juft by the beech Apollo ftood near the city, and the place muft likewife have commanded a view of the country. (XXI. 549.).
mander could not be far from the hillock where the tomb of Ilus was. (XXIV. 349. 350. Compare 692, 693.). Nearer the city, on the fouth-weft fide, and juft under the walls, the Watch-tower muft have ftood, where the deities reforted ${ }^{*}$. Next to it was the wild fig-tree \dagger, and the fources of the Scamander ; and then the place where clothes were commonly wafhed \ddagger. Be-
 a pleafant hill upon the Simois, five ftadia in circumference, and ten ftadia from the village llium $\|$.

That it fhould ftill be poffible, after fuch a lapere of time, to recognife all thefe places, is not to be expected; but there is one of them which we fhould think could even yet be traced, and which, if difcovered, would furnifh at once the moft certain direction for all the reft, and even for the fite of ancient Troy it-felf;-that is, the fources of the Scamander, fo accurately and circumftantially defcribed by Homer, (XXII. 147. et feq.), the one of them a warm and fmoking fountain, the other, even

```
* Exотıцั. (XX. 136.).
```

$\dagger \mathrm{E}_{\text {givès. }}$ (XXII. 146. XI. 167.). Quite clofe upon the walls, and at the place where they were fo low that the Greeks had once attempted to force their way into the city from that quarter. (VI. 433-9.).
\ddagger See above, p. 44. D.
|| According to Strabo, (p. 802. D.), who borrowed this information from Demetrius of Scepfis. The Venetian Scholiaft A, upon Iliad, XX. 3, quotes the paffige refpecting Callicoloné, as if taken from the latter; but he miltakes this hillock for the $9_{\text {faiouios wisionc on the Scamander. He adds alfo, "Here it was that }}$ "Paris faw the three goddeffes." At v. 53 . the obfervation is repeated, more jufly indeed, but in a mutilated form. In all other refpects, the places hitherto mentioned are determined by M. Chevalier with great plaufibility and diftinctnefs. I find upon the map, which I had not an opportunity of feeing till too late, the hill Callicolone more rightly laid down, than, from the words of the Memoir, 1 had fuppofed; (fee p. 94.) ; and 1 retract what I there advanced. The paffages sefpecting Callicoloné (XX. 53.151.) are not, as I imagined, contradictory.
in the middle of fummer, of an icy coldnefs. Yet even here there is a very great chafm in our topographical knowledge. At the place, where (according to Demetrius of Scepfis, whom Strabо follows), the Scamander had its rife, one fpring only was to be met with; and Wood, with Strabo in his hand, fought and found this fpring, and this alone*.

After this preliminary fketch of the Topography of the Troad, let us now try whether it be poffible to get a clear idea of the battles of the Greeks and Trojans.

The firft battle took place on the plain between Troy and the Grecian camp. The Greeks were drawn out in the Scamandrian plain. (Iliad, II. 467.). The Trojans, on the other hand, had taken poft on the hill Batieia. (Iliad, II. 8II. The engagement commences. Paris and Menelaus foon defcry each other. Hector negociates a combat between them, which is not attended with any decifive confequences. The armies muft have been pofted at no great diftance from the city, for Priam, with his old men, fees from the walls the Grecian chiefs, and learns their names from Helen \dagger. The treacherous Pandarus,

[^75]by difcharging an arrow, brings on a general action. The Trojans attack the Greeks, (IV. 221.), and at length the armies clofe. (446.). The poet defcribes, as a poet muft, individual combats only. (457, \&c.). Thefe however muft have taken place in the neighbourhood of the city; for Apollo furveys the combatants from Pergamos, and animates them by his fhout. (IV. 507. V. 460. VII. 20.). For a long time the two armies alternately advance and retreat between the Simois and Scamander, (VI. 2, 3.), till AJax at laft makes the Trojans give way. When near the gate of the city, and not till then, they are rallied by the exertions of Æeneas and Hector, and again make a ftand. (VI. 73, \&c.). Hector, by the advice of HeLENUS, and on account of the impending danger, as may be conjectured, has recourfe to religious rites. He goes into the city, and gives directions for a female proceffion to the temple of MInerva. In the mean time, a fingle combat between Glaucus and Diomede terminates in a friendly parley. Upon the return of Hector, the battle is renewed. At length a fingle combat between Hector and Ajax is propofed. With this the narrative of the day clofes. (VII. 1-306.). Both parties retire, the one into the city, the other to their camp. (VII. $310, \& \mathrm{c}$.).

The following day an armittice is agreed upon for burying the dead. The Greeks avail themfelves of this interval, and rear in hafte a rampart round their camp. (VII. $325, \& c$.). Of this more will be faid by and by.

Next morning, by break of day, a new battle enfues; the fecond, on the plain between the city and the camp. (VIII. 60, \&c.). Towards noon a panic fpreads among the Greeks. They flee, and retreat in diforder to the very camp. (VIII. 68. \&c. ${ }^{1} 39, \& c .213, \& c \mathrm{c}$.). At one time, indeed, they again advance to the charge ; but ftill they are forced to give way ; and at laft thut themfelves up in their camp. $(336-343$.). Fortunately for them night intervenes. ($485, \& c$.).

Hector,

Hector, on this occafion, does not draw off his troops into the city, but makes them pafs the night at the river, in the open air, at fome diftance from the camp*, and orders them to kindle watch-fires. By the advice of Nestor, the Greeks likewife fet a watch \dagger. The fame night a deputation is fent by the Greeks to Achilles, and Ulysses and Diomede fet out on a fcouting party. The fituation of the Trojan encampment, at this juncture, is accurately delineated. (X. 415.428 .). Hector had affembled the chiefs at the tomb of Ilus. 'The watch-fires, like the foldiers, were fcattered over the field without any order. The troops extended themfelves down to the fea, (probably the right wing of the Trojans pointed on the north towards Rhoteum, beyond the Simois), and fome of their pofts reached as far as Thymbra. At the outermoft extremity lay the new arrived Thracians and Rhesus. (434.). This mult have been towards the fea or the mouth of the Simois, and farther out before the Trojan army towards the Grecian camp; for Ulysses and Diomede, who furprifed them, went along the ftream of the Simois \ddagger. The diftance cannot have been great, for they fet off a good while after midnight, and had returned to the camp by day-break.

What river now could this be? The Scamander is termed dovis!, eddying. The Simois, however, was fill more fo. Yet if the Scamander had its courfe obliquely thro' the plain, it muft be the river here intended.

 mis rixzos. Compare 180. 194. 198:
\ddagger Hence we find mention made of the heron, (Iliad, X. 274.); of the tamarifks, ($\mu \nu \rho^{\prime}$ ки) , and of the fedges, (466-7.). Homer does not take notice of their paffing the river. This, however, they muft have done.

Next day the Trojans affault the Grecian camp. And here it becomes neceffary to have fome idea of the newly conftructed fortification of the camp.

The fituation has been generally defcribed already. The camp, according to my fuppofition, did not occupy the whole intermediate fpace, but only a part of the ground, between the two promontories Sigeum on the fouth, and Rhoteum to the north. Perhaps on this fide it went no farther than to the Simois. By all appearances the camp muft have had an oblique front, the right wing receding towards Sigeum, the left bending forwards; and hence more expofed to the enemy's attacks *.

As the Greeks in the firft battle had not been fuccefsful, Nestor propofes, during the truce agreed upon for burying the dead, to fortify the open camp. Such a precaution was before unneceffary; the Trojans having till now kept themfelves fhut up within their walls. Nestor muft now have been terrified at the fuperiority of the Trojans, and the valour of Hector particularly, when there was no Achilles to oppofe him \dagger. The idea of fortifying

* This reprefentation feems to be corroborated by M. Chevalier's map.

+ To give a hiftorical probability to the circumfance of the Greeks having now, For the firf time, thought of fortifying the camp, we muft fuppofe, with ThucydiDes, (I. Ir.), that immediately upon their firft landing they had beat back the Trojans, or, at leaft, that the latter fought their fafety by remaining within their walls, while the Greeks were unacquainted with any means for catrying on a fiege. In the above quoted paffage of Thucydides, I may obferve, in paffing, there is

 be erafed. Should it be faid, Thucydides may have underfood the matter in a different light; the Greeks would not have been able to fortify their camp, had they not remained mafters of the field. This is contradicted, firt, by the time of their fortifying the camp, which took place in the tenth year; and, next, by the occafion of its being done: for it was when they were defeated that they firft thought of fortification. The Scholialt fays: This is to be underfood of a former flight fortification. But that is a creature of his own fancy, which only ferves to prove, that, even then, when he wrote, the 'sx was to be found in the MS.
tifying the camp was then entirely new, and the plan for accomplifhing it was fingular enough. Nestor advifes to rear, for burning the dead, a common pile on the outfide of the fhips, and upon and round this pile to throw up a hillock, from which a wall and ditch fhould be drawn in front of the camp. The propofal is agreed to, (Iliad, VII. $327-343 \cdot 434, \& c$.), the pile is erected, the mound thrown up, and befide it a rampart conftructed, (Iliad, XII. 29. 255, \&c.), which the poet terms a wall,
 and breaftworks, and was provided with gates, baftions, and turrets*. That all this was a very flight piece of work, may be fuppofed from the fhortnefs of the time in which it was conftructed. No wonder, then, if, in a fhort time, na trace of it remained. Homer, by an ingenious and highly epic turn, afcribes its annihilation to Neptune and Apollo. (XII. 1, \&c. 459, \&c.). It was, however, the firft attempt we know of to fortify a camp; and, in fo far, is fufficiently remarkable to merit fome attention.

A FEW elucidations refpecting the work of this fortification may be added. That the mound was raifed to the north-eaft, in front of the camp, can fcarcely be doubted. Its pofition muft therefore have been on the left wing, to which it muft have ferved for a protection; and it may be fuppofed, that NeSTOR, in propofing it, had this very end in view. But, as the river Simois ran on the fame fide, it is not clear what was the pofition of the mound in relation to the river, and what was the fituation of the left wing, and particularly what was the pofition of the fhips and of the poft of Ajax with refpect to both. In the affault on the camp, which took place on this wing, no mention is made either of the river or the mound. We only fee that the rampart mult have been conftructed at a confiderable diftance before the fhips; for here, between the fhips and

[^76]and the rampart，a fevere engagement enfued．（XIII． $1_{3} 6$ ，\＆c ． XIV． 30, \＆c．）${ }^{*}$ ．
The mound terminated in the rampart，properly a fence of earth，upon which turrets were erected，compofed of beams and ftones．（XII．29．）．That the rampart was low is clear，from the circumftance of Sarpedon＇s being able to catch hold，with his hand，of the battlements of the breatt－work．The fide on which the fhips of AJax were placed，is defcribed as the loweft． （XIII．682－3．）．What Quintus fays，（VII．474．），has a refe－ rence to this circumftance．

Through the rampart gates led into the plain \dagger ．Among thefe，it fhould feem，there was one principal gate，at the extre－ mity of the left wing of the camp．Through it the Greeks marched out to battle．（XII，118．Compare XIII．326．）．
O_{N} the outfide of the rampart，towards the plain，a ditch was drawn（VII．34r．）to break the firft onfet of the Trojans．In the ditch palifades were fixed \ddagger ．

The fortification feems not to have extended along the whole front of the camp．We do not find，at leaft，that it reached to the

[^77]\ddagger VII．441．XII．54．63，\＆c．Between the ditch and the wall no intermediate

the quarter where Achililes was ftationed. The oblique pofition of the camp muft have been the caufe of this. To the fame circumftance we mult have recourfe to explain how, from the fpot where the Trojans made a breach in the rampart, and at length fet fire to a fhip, the diftance could be fo great to the tents of Agamemnon, and the quarter where the remaining veffels were hauled up on the land*.

We now come back to the affault of the camp. At day break the Greeks, leaving their chariots behind them, (XI. 48.), marched out from the camp. The Trojans had taken poft on the field of battle, which had an acclivity towards Troy \dagger. Till about noon the fate of the day was equivocal; but then the Greeks made the Trojans give way. The Trojans fled, paft the tomb of Ilus, (XI. $16 \overline{6}, \& \mathrm{c}$.), through the midft of the plain, towards the wild fig-tree, (XI. 167.), and never ftopped their flight till they had reached the beech tree and the Scran Gate. (XI. 170.). Here the battle is renewed. ($21 \mathrm{I}, 8 \mathrm{cc}$.). During all this day Agamemnon diftinguifhes himfelf, till he is wounded. On this the Trojans take frefh courage, repulfe the Greeks, drive them back again patt the tomb of Ilus, where Paris lies in ambulh, and wounds Diomede with an arrow. (XI. 369, \&c.). The combat fpreads to a great diftance over the plain, for Hector fought on the left wing, towards the Scamander, (XI. 498, \&c.), againft Nestor and Idomeneus, and knew nothing of the defeat which Diomede, Ulysses and Ajax had given the Trojans towards the Simois. Hector flies to that quarter, and AJAx himfelf is now forced to fall back. ($52 \mathrm{I}, \& \mathrm{c}$.) 。 The Greeks flee to their camp, and fhut themfelves up in it. Hector purfues, and refolves to attack them in the camp, to
 0

[^78]break in, fet the fhips on fire, and annihilate the whole Grecian army.

This operation was fo new to the Trojans, that they did not know how to conduct the attack, fo as to make themfelves mafters of the camp. At length, by the advice of Polydamas, (Iliad, XII. 75.), the chiefs difmount from their chariots, and bring the infantry in five columns over the ditch. Asius alone remains in his chariot. He obferves, upon the left wing of the fhips *, the gate open, through which the Greeks had paffed to and from the field. He makes an attack here, but with an unfortunate iffue. (XII. iro, \&c.). The other divifions affault at different points the rampart and the entrances. (175, \&c.). As there were five columns of the Trojans, it is commonly fuppofed that the gates of the fortification muft have alfo been five in number. Hector's divifion exert themfelves to the utmoft to demolifh the rampart, (25 I.), particularly around and near one of the gates. (291.). Sarpedon affaults the rampart at the quarter defended by Menestheus, leader of the Athenians. (331.). Menestheus finds himfelf worfted, and calls for affiftance to Ajax and Teucer, who were engaged with Hector. By the abfence of thefe two, Hector is left at liberty to act. He burfts the gate with a piece of rock, and forces his way into the camp. (437. et feq.).

The terrified Greeks retreat towards their fhips. Here the two Ajaxes had joined. They rally the fugitives, and lead them on again againft the enemy. This column of the Greeks appears to have fome refemblance to a phalanx, the firft outlines of which it is believed may be found here; for the braveft troops, we are told, drew up in thick clofed ranks, and waited for the approaching foe. (XIII. 126, \&c.). The enemy, by this manœuvre, is quickly repulfed.

While

[^79]While the battle rages here among the fhips *, Idomeneus, accompanied by Merion, repairs to the left wing \dagger, and there, with the veffels in his rear, makes head againft the troops of Asius̀. The divifion commanded by eneas muft have joined the column of Asius, and the troops of Paris united with thefe two. At leaft, all the three detachments, as well as feveral others after them, muft have formed a junction to oppofe Idomeneus, in the place mentioned above. (XIII. 490.).
The Trojans, in the mean time, began to crowd in on all fides round the place where Hector was engaged. By the advice of Polydamas, (Ib. 726. et feq.), Hector calls the chiefs together to a council. He himfelf goes off, (Ib. 674. et feq. \ddagger. 754. et feq.), collects the braveft of the chiefs, with their battalions, and advances with them againft Ajax. (789.).

$$
02
$$

Matters

 of his own thips. The left wing of the camp, therefore, mult have extended beyond the ftation of AJax. Compare 679, \&cc. At that quarter, too, there were fhips

\ddagger A passage of confiderable difficulty, in refpect of the topography, occurs here. It is faid, (XIII. 675.) : "Hector knew not yet that, on the left hand of the hips,
 " where he had firft penetrated into the camp, befide the quarter where the fhips of "Ajax and Protesilaus were hauled up." (679-682.) The rampart, in front of the thips, wàs loweft at this fpot. Here the action was flarpeft. (v. 684.).

This laft expreffion embarraffes me. How could chariots be of any ufe in the narrow fpace between the fhips and the rampart? Homer fays further: "Here fought "the Bœotians, the Ionians, (Athenians), the Locrians, the Phthians," not thofe fubject to Achilles, but thofe who had come with Protesilaus, out of Phylace in Theffaly, (II. 695.), but at this time fought under the command of Podarces, (XIII. 693.), "the Epeans." I hardly think the fhips of thefe people lay there,

Matters had now advanced fo far, that Hector thought the completion of his wifhes at hand, when the Grecian chiefs, after getting their wounds dreffed, return to the combat. (XIV. 128. $365-387$.). Hector is wounded, and the Trojans driven from the rampart to the outfide of the ditch. (XVI. r.).

Hector recovers again, rallies the Trojans, affaults the rampart once more, fills up the ditch, (Ibid. 355 . et feq.), and renews the battle between the fhips and the tents. $(36 \%$. 384 . et feq.). The Greeks beaten back take fhelter behind and between the foremoft row of the fhips on the beach, and with their fhippoles ward off the Trojans as they prefs on. (lb. 653 et feq.). Ajax boldly encounters Hector. At length Hector catches hold of the ftern of a fhip, belonging to the fquadron of Protesilaus, and fets it on fire. (lb. 704. et feq. XVI. 124. et feq.).

Here the fuccefs of the Trojans ftopped. Patroclus came forward to the combat. The Myrmidons, to the number of 2500 , advanced in five divifions, drawn up in clofe columns*. The Trojans are defeated, and forced to retreat to the outfide of the ditch. (XVI. 366. et feq.). There a complete flight enfues. Patroclus cuts off one part from the city, and deftroys them betwixt the fhips, the river, and the town \dagger. Intoxicated with fuccefs, he purfues the fugitives, contrary to the orders of Achilees, to the very walls, and even attempts an affault upon the
but that the troops happened to come together in that place. Befides, fo far as I can find, throughout this whole paffage, even where $H_{k c t o r ~ i s ~ f p o k e n ~ o f, ~ t h e ~ l e f t ~}^{\text {f }}$ fide muft be underftood as referring to the Grecian camp. It is fo, where mention is made of Paris, (v.;65.), as well as, in apreceding paffage (v. 326.), of Idomeneus.

* XVI. 212. Achilles and his foldiers, we find, evidently excelled the reft of the Greeks in military fkill. Writers on the art of war, Puysegur for example, difcover, in this arrangement of the troops led on by Patroclus, the firft rudiments of cohorts.

the city. (698-710.). Hector, having halted at the Scæan Gate, rufhes again upon the Greeks and flays Patroclus. He purfues the flying Greeks to their camp; they bring off with them, however, the body of Patroclus. (XVII. 736.). The fight of Achilles, though unarmed, deters the Trojans from advancing farther.

This time too the Trojans pafs the night in the open plain before the camp. (XVIII. 243. et feq.). Hector oppofes the fage advice of Polydamas, to retire into the city, and defend themfelves behind the walls. (Ib. 274. et feq.). At day-break Achilees, clothed in new armour, comes out from the camp. (XX. i, et feq.). The Trojans draw up on the rifing ground* before the camp. This is the fourth and laft battle. At firft both armies difplay equal valour; but at length the Trojans give way, and fall back upon the Scamander. (Ib. 494. et feq.). Here Achilles feparates the flying army. (XXI. i. et feq.). One part are fortunate enough to effect their efcape acrofs the plain to the city. The remaining part he drives into the river, which, being choked in its courfe, fwells and overflows its banks. Achilles now comes clofe up to the city, (Ib. 520.), which the flying Trojans had already entered by the Scæan Gate. (Ib. 526.). Hector alone remains before the town; and then enfues the fingle combat, in which Hector is flain by Achilles.

No. IV.

[^80]> No. IV. (p. 32.).

The Reverend Dr Jackson, Dean of Chrift Church, Oxford, to $M r$ Daezel *.

I cannot permit myfelf to leave Oxford for the fummer, without paying you my very fincere thanks for the obliging manner in which you tranfmitted to me the prefent of M. Chevalifr's Effay; and I beg you, when you have an opportunity, to prefent my acknowledgments to M. Chevalier himfelf: accompanied, however, with a little reproach, for his having forgotten the promife he made me, of calling at Oxford whenever he came to the fouth of England.

I have had a very particular pleafure from the perufal of the work itfelf. No reader of Homer could poffibly be fatisfied with the accounts we had before of the Troad; and Mr Wood's book, in particular, was idle and childifh in the extreme.

It was impoffible, alfo, for the reader of Homer to doubt of the fituation of Troy, and the adjacent country, as defcribed in the Iliad ; and I had always, therefore, heard, from the few men who underfood Homer, one and the fame language; - a language which I thoroughly adopted, that we were mifinformed and miftaken as to the Scamander. And when I had the pleafure of meeting a fet of friends, a few weeks ago, at Lord Stormont's in London, I was not furprifed to find that we all agreed in the fame

[^81]fame opinion, that M. Chevalier had cleared up our difficulties, and brought every thing into its right place, by difcovering the true Scamander.-I have the honour to be, with perfect efteem and regard, \&c.

Gyr. Jackson.
$\left.\begin{array}{c}\text { Christ Church, } \\ \text { July } 7.1792 .\end{array}\right\}$

The late Earl of Mansfield, (formerly Lord Stormont), to Mr Dalzel.

I must not omit repeating my thanks for the Differtation you were fo good as to fend me, which is upon a fubject that has always interefted my curiofity, and which I read twice in the courfe of laft fummer. [After a compliment to the Tranflation and Notes, his Lordfhip adds]:-I underftand that you may foon expect an anfwer from a very ingenious gentleman *, but one who doubts even of the exiftence of the Trojan war. I can venture to foretel that he will not fhake my faith, which is, and long has been, that Homer refted upon hiftorical tradition, not only for the principal faets, but alfo for the leading differences in the characters of his heroes; and that they know little of his real excellence, who afcribe to him that fort of invention ${ }_{8}$ which is the paltry merit of a modern writer of romance.-I am, with great efteem, \&c.

Mansfield.

Portland.Place, June 17. 1793.

No. Vo.
*This proved to be the learned Mr Bryant.

```
No. V. (p. 33. 39. \(41.45 \cdot 48 \cdot 52 \cdot 65\). ).
```

Robert Liston, Efq; His Britannic Majefty's Ambaffador at Conftantinople, to Mr Dalzel, Greek Profeffor in the Univerfity of Edinburgh.

$$
\text { My dear Friend, Confantinople, Sept. 25. } 1794 .
$$

To day I have not time to fay a fingle word with regard to myfelf : but I cannot avoid the temptation of fending. you copies of letters from gentlemen who lately left me, and at my requeft promifed to infpect the Troad with attention. They are both ingenious men. Dr Sibthorpe is Profeffor of Botany in Oxford: The other, noted for his knowledge in mineralogy, and his geographical refearches, a brother of Sir Christopher Hawk:ns.

You will be glad to fee their obfervations tend to confirm M. Chevalier's fyftem. I ever am moft cordially yours,

Robert Listons.
J. Hawrins, Efq; to bis Excellency Robert Liston, His Britannic Majefy's Ambaffador at Conftantinople.

> At Anchor, oppofite Karanlik-limani, Sept. 15. 1794. Monday Eve.

I seize the firft oportunity of giving your Excellency fome account of our expedition to the Troad, but the time will not permit to enter into particulars.

We caft anchor at Koum-kaleb, about mid-day, on Saturday, engaged horfes; and croffed the plain in three hours to the village of Bounar-bajbi, where we flept. We fpent the whole of the next day in vifiting the hill, which M. Ghevaeier fappoffes to trave been the fite of Troy, and the fprings of water, which he confiders as the fountains of the Scamander. A day, I think, is fully fufficient for this purpofe, unlefs the traveller means to make topographical obfervations, which was the cafe with me:

We were well lodged and entertained in a Cbiftlik at Bounarbafbi, belonging to Hadgi Mehemet Bey, a perfon of forme confequence, who aetually refides at the Dardanelles, but is now on a pilgrimage to Mecca. His fubftitute or fteward received us in a manner which left us nothing to wifh for; and our arrival there feemed to caufe no furprife, as they were accuftomed to frank vifitors. We returned by a different rout this day, vifiting the tomb of Ksyetes, (fee Chevalier's map), and thofe near Cape Fenitcheri, fuppofed to be of Achileses and PatroCLƯ's.

Your Excellency naturally wifhes to hear our prefent fentiments refpecting the hypothefis of M. Chevalier. We ftill think it a very plaufible one; and although his map is incorrect'in the detail, it gives a pretty good idea of the Troad in general. He thas certainly pitched upon a place for the fite of old Troy, 'which has much natural ftrength to recommend it, particularly the eafternmoft angle of the hill, which, from its height above the Simois, and its peninfular form, muft have been confidered as a very ftrong natural faftnefs in thofe times of warfare, and could have been eafily rendered an impregnable citadel; for it is not large enough for the fite of the whole city. Some tumuli near this fpot are certainly ftrong indices.

There are two places diftant from each other about two hundred yards, in which the fuppofed Scamander iffues out of the Vol. IV.
earth ; in each, however, by many mouths. The water proved equally cold in them all : neverthelefs in winter one is faid to be warm.

We faw the place where the courfe of this river is diverted by an artificial canal to the Archipelago. We are now about to fhape our courfe for Samothraki. The bearer, our janiffary, fets out alfo on his return to the Dardanelles, where he will confign this to the care of our Conful, to whofe great attention and civilities, as well as to thofe of his uncle Mr Kaim, we are much indebted.

I beg leave to add, how much I am flattered by the civilities paid me at Conftantinople, and with what truth I have the honour to be, \&c.
J. Hawkins.

Dr John Sibthorpe, Profefor of Botany in the Univerfity of Oxford, to his Excellency Robert Liston, His Britannic Majefty's Ambaffador at Confantinople.

Dear Sir,
Troy, Sept. 15.1794.
I am juft returned from Troy, as perfuaded as a faithful Muffulman who has made his pilgrimage to Mecca, or as a pious crufader who has been at Jerufalem, that my eyes have beheld the tombs of thofe mighty heroes Homer has fung near two thoufand years fince. It was the "Campus ubi Troja fuit." The piety of former ages raifed tombs more lafting than marble or brafs, which time has not deftroyed. Troy and its temples have been fo completely rafed, that not a column, or even a ftone that has been ufed in architecture, remains to tell its fite ; and it is from the tumuli only, with their relative fituation to the Simois and Scamander, that we are to learn where it once ftood.
ftood. The fituation where we fuppofe the citadel to be, is particularly fteep and rocky. It is girt by the Simois, the bed of which is now entirely dry. Perhaps the winter torrents might raife it into a confiderable river. Its banks are fringed with planes, agnus caftus, and tamarifk. We flept at Bounar-bafbi, a little below which rifes the Scamander, fed by numerous fprings of a pure cryftalline water. One of thofe is faid to be warm in winter. At prefent it communicated to us no fenfation of heat. The courfe of the Scamander is often interrupted and choked up. It had overflowed the adjacent lands, which were become reedy, and offered a favourable fituation to wild ducks, fnipes, and coots. The plain of Troy is rich and fertile. We traverfed it from Koum-kaleb to Bounar-ba/bi, an extent of nine miles, and flept at the houfe of the Aga. He was himfelf gone to Mecca, but his bomme-d'affaires, or fteward, received us with much hofpitality. Your Excellency will find it the beft fituar tion to fleep at, when you vifit the Troad. Troy feems to have been built on a moft rocky fpot. We could not find on it even a fpring of water. It is covered with prickly barnet, and a few thorny fhrubs. The almond tree, which grows wild, is not without its thorns. It has even more pleafing plants, the yellow jafmine and the wild olive.

I WRITE to your Excellency in hafte, our veffel toffing about at anchor oppofite the tomb of AJax, where it has been juft drove by a hard gale of wind. The janiffary, who accompanied us from the Dardanelles, is waiting for my letter. He was recommended to us by our Conful, and has done credit to the recommendation. In appointing Signior Taragano, your Excellency has nominated a Conful very defirous to oblige and render every fervice to his countrymen, \&c.

John Sibthorpe.

A fecond Letter on the Subject of the Traad, from bis Excellency Robert Liston, LI. D. F. R.S. Edin. His Britannic Majefty's Ambaffador at Confantinople, ta Mr Dafzeh, Profeffor of Greek in the Univerfity of Edinburgh,

My dear Friend, Confantinople, April 25. 1795 :
Your letter of the 28th of December reached me after a long delay, occafioned by the interruption of the communication through Holland.

It gives me pleafure to obferve, that the circumftances I tranfcribed for you, on the fubject of the Troad, appeared interefting. I have fince had another letter from Mr $\mathrm{H}_{\text {awnins }}$, which confirms ftill more perfectly the topography of CHEVAliER, by removing the only difficulty that could poflibly caufe hefitation ; a difficulty which had been propofed to me in fo pofitive a manner, as to make an impreffion on my mind ${ }_{2}$ deeper (it feems) than it ought to have done. As I have not as yet any near profpect of vifiting the fpot myfelf, I will once more copy from Mr Hawkins.
"I AM extremely happy" (fays he) " that our communications " refpecting the Troad proved fo fatisfactory; and I am happy " that it is in my power to remove the only remaining doubt " expreffed in your letter, by affuring your Excellency, that Te" nedos is really to be feen from the hill of Troy; even the whole " coalt of the ifland is vifible from the northern to the fouthern "point.
" $\mathrm{T}_{\text {HE moft }}$ effential point, in fubftantiating the evidence of " Chevalier, is that of the canal made to divert the waters of " the Scamander from their original courfe towards the Simois.
" This
"'This canal we can bear teftimony to. The errors of Wood "feem to arife from the overlooking this circumftance. As for "Strabo, he had never vifited the fpot in all probability, and " relied on the authority of Demetrius of Scepfis.
" At Athens we fell in with Mr Fauval, a very ingenious " artift, long in the fervice of M. De Chorseul, who affured us; " that M. Chevalier's account of the goblet, difcovered in the "tomb of Achilles, is perfectly fabulous. It originated, it " feems, from the fragments of a fmall bronze figure, which, " when he had cleaned, and put together, proved to be a very "curious image of Minerva. He fhewed us a caft which he " had made of it in plafter of Paris.
"This gentleman fhewed us fome genuine Etrufcan vafes, " difcovered in tumuli he had opened in Attica. This will throw " new light on the hiftory of art. For my own part, I confider " the Etrufcan as nothing elfe than the early Greek ftyle."

I have copied more than I intended when I took Mr Hawkins's letter into my hand; but you will think probably that the whole is interefting. Ever moft truly and cordially yours,

Robert Liston:

No. VI. (36. $55,56,57.62 .72$.).
M. Chevalier to Mr Dalzel.

Monsieur et cher Ami, Londres,, ce in Avril $亠 796$.
J'Ar reçu votre reponfe du 2, et j'ai été enchanté d'apprendre que M. l'Ambaffadeur Liston avoit prit la peine d'aller verifier
lui-même mes obfervations fur la plaine de Troye. Son temoignage fera du plus grand poids dans la difpute qui s'éleve entre le Dr Bryant et nous. Quant aux fautes qu'il a trouvées dans la Carte, je ne demande pas mieux qu'on les corrige, et je prête de tout mon cœur les mains à toutes les ameliorations dont cet ouvrage eft fufceptible; mais je ne crains pas de vous affurer d'avance, que les changemens qu'on pourra faire ne fauroient tomber fur des monumens effentiels à l'intelligence de l'Iliade, tels que la fituation de l'ancienne Troye, les fources du Scamandre, les tombeaux des guerriers, les caps, \&c. Tous ces points font fixés relativement les uns aux autres, avec affez de precifion pour que les changemens qu'on y fera ne puiffent pas affecter fenfiblement mon ouvrage. Quant aux monumens modernes, tels qu'Alexandria Troas, \&c. j'avoue que je n'ai pas cru qu'il fut neceffaire de les traiter avec une auffi fcrupuleufe attention. La ligne de la côte a été faite avec la plus grande exactitude; ainfi que l'embouchure de l'Hellefpont et l'ile de Tenédos. Je doute, en confequence, que la nouvelle carte y faffe aucun alteration.

Au refte: encore une fois je vous donne carte blanche, et de tout mon cœur. Vous pouvez couper, tailler, rogner à votre fantaifie.

Lorseue vous publiez la feconde edition, mon ami, vous m'obligerez beaucoup de vous fouvenir du petit nombre d'obfervations que je vais vous faire; ou plutôt, que je crois déjà vous avoir faites.

Je defire, d'abord, que vous fupprimiez ma tirade contre les princes et les femmes voyageurs. Je defire, en feconde lieu, quel'autre tirade contre les prêtres des premièrs Chretiens foit auffi fupprimée; et Mr Bryant vous en a dit la raifon. 3°, Tout le chapitre du throfmos, et du tombeau d'Ilus, ne vaut rien. Mr Heyne m'a fuggeré autrefois une très excellent idée fur ce barrow qu'on voit fur les bords du Simois, en avant le
camp des Grecs. Ce monument eft certainement le tombeau commun que les Grecs éleverẹnt à leur foldats tués dans le combat. Vous voudrez bien profiter de cette idée, et l'arranger à votre façon. Un tombeau fi voifin du camp des Grecs ne pouvoit pas être un tombeau Troyen.-

Adieu, mon ami, vous aurez encore une fois des mes nouvelles avant mon depart.

Le Chevalier.

M. Chevalier to Mr Dalzel.

$$
\text { Monsieur et cher Ami, } \quad \text { Londres, ce } 5 \text { Mai i } 796 .
$$

***** Je joins ici les corrections que vous m'avez demandées, et qui font beaucoup trop longues pour être écrites à la marge d'un de nos livres, comme vous aviez paru le defirer.
\mathbf{I}^{mo}, J'infifte furtout fur la fuppreffion totale du Chapitre 16. page 112. de la traduction Angloife, qui traite du tombeau d'Ilus. Il eft évident que je me fuis groffièrement trompé ; premièrement, en confondant le İ $\rho \omega \sigma \mu \mathrm{o} s\}$ avec le tombeau d'Ilus ; et fecondement, le tombeau d'Ilus avec le monument que j'ai decouvert près des ruines du pont, à peu de diftance de l'embouchure du Simois. Mr Heyne, qui fait beaucoup mieux l'Iliade que moi, avoit foupçonné que ce monument pouvoit bien être le tombeau qu'on éleva en commun aux foldats Grecs après le premier combat, et dont il eft queftion dans le 7^{e} livre, verf. 334 , \&c. Il me fit part de fes idées, que j'adoptai fur le champ, et c'eft ce qui lui a fait dire, page 168. de fa traduction Allemande, dans une des notes, que M. le Chevalier, n'étoit pas éloigné de croire que ce tombeau, au lieu d'être celui d'Ilus, étoit vrailemblablement

120 TABLEAU de la PLAINE de TROYE.
blablement le tombeau commun. En effet ce tombeau commún n'étoit pas loin des vaiffeaux, puifqu' Homere le place',

et que le retranchement fut bati tout près de lui. Ces circorrftances s'accordent fort bien avec la fituation du monument decouvert prẹ̀s des ruines du pont.
2^{DO}, Je defirerois aufli que vous fupprimaffiez tout-à-fait le paffage qui a rapport aux princes voyageurs; vous n'imagineriez jamais qu'il y a eu des perfonnes affez malveillants pour m'accufer d'avoir voulu faire des applications auxquelles vous favez que je n'ai jamais fongé.
$3^{\text {TIO }}$, J'ai dit, à la page $\mathbf{1} 2$, que du fommet d'Udjek-tepè j'avois apperçu à l'oueft la mer Égée, les iles de Tenédos, d'Imbros, de Samothrace, et de Lemnos; j'ai dit, de plus, à la page 36. qu'en arrivant à Koum-kalè avec M. Casas, j’avois encore remarqué les mêmes pics d'Imbros et de Samothrace, \&c. Lorfque je faifois cette obfervation, j'ignoroit entièrement qu'Homere l'avoit juftifier dans le i 3^{e} livre de l'lliade, verf. in, \&̌c. où il reprefente Neptune obfervant les combats du haut du pic de Samothrace; Car de là, dit il , on apperçoit toute la chaine de l'Ida':

La marche de Neptune, quand il quitte Samothrace pour fe ,rendre au camp des Grecs, s.accorde auffitrès bien avec mon obfervation; car il laiffe fes chevaux à moitié chemin, entre Imbros et Tenédos:

$4^{\mathrm{To}}, \mathrm{Du}$ moment où nous fupprimons entièrement le chapitre qui traite du tombeau d'Ilus, je n'ai pas befoin de vous avertir qu'il faut fupprimer le même tombeau, encore mentionné à la page 63. comme faifant encore aujourd'hui partie des monumens cités par Strabon.

Voilà, mon ami, tout ce que je puis vous dire en pofte pour le moment. Recevez, pour la dernière fois, mes finceres remercimens pour toutes les marques d'amitié que vous m'avez données; et comptez fur la mienne à la vie à la mort. J'attends de jour en jour mon paffeport ; auffitôt qu'il arrive je me mets en route. Mes complimens à tous nos amis. Adieu.

Le Chevalier.

$\mathbf{E} R \quad \mathrm{R} A \mathrm{~T}$ A.
 HISTORY.

Page 1\% line 12, for flots, read floats.
30. line laft, for laft Article, Part II. read laft Art. Phyf. C1. Part II.

PARTII, PHYS, PAPERS.
Page ini. line 4r from the bottom, for M, read N.
12. from the bottom, for Join AH, read Join EH.
119. 4, from the bottom, for Appollonius read Apollonius.
120. II. from the bottom, for hence the quadrilateral, read hence, if $A G$, GK be joined, the quadrilateral, \&c.
132. 6. from the top, for fig. 20. Pl. IV. read fig. 13. Pl. II.
N. B. In Pl. IV. fig. 18. the points B and K muft be joined by a ftraight line.
\#35. This Paper is by miftake numbered V. inftead of VI. and the fame error is continued in numbering the remaining Papers of the Phyf. Cl.
138. line laft. for the latitude here given, viz. $57^{\circ} \cdot 9^{\prime} \cdot \mathbf{1}^{\prime \prime}$, read $57^{\circ} \cdot 8^{\prime} 59^{\frac{7^{\prime \prime}}{\prime \prime}}$, the fun's femidiameter, ufed in the reduction of the obfervations, having been $I^{\frac{x^{\prime}}{2}}$ too great.
178. 6. inflead of the term $\frac{\mathbf{x}^{2}}{2^{2}} \cdot$ e, read $\frac{x^{2}}{2^{2}} \cdot e^{2}$.
993. 4. from the bottom, for quilt-like read quill-like

PART III. LIT. PAPERS.
Page 86. line 21. for Achilles, read Patroclus, 101. :5. from the bottom; Notes, for tomb read trench

DIRECTIONS FOR THE BINDER.

The Binder is defired to obferve, that this Vol. confifts of Four Sets of Pages, to be arranged, after the Table of Contents, in the following Order, viz. : Part I. containing the History of the Society, with the Pages regularly numbered as far as 40 ; and afterwards going on with the numbers included between parenthefis, thus (1), \&c. to the end of Part I. Then follows Part II. confifing, ift, Of Papers of the Physical Class, with the Pages numbered in one Series; and, adly, Papers of the Literary Class, with the Pages numbered in another Series. The Binder will alfo obferve, that there are in all 13 Plates, 6 for the Physical Class, and 7 for the Literary, which are to be placed exactly according to the references marked on the margin of each.
$\frac{18}{8}$

\square

$\therefore \quad \therefore \quad$ in 1.1

*) 7 ก".

[^0]: 29.
[^1]: * His father was Mr Thomas Hamilton, an eminent furgeon, and profeffor of anatomy and botany in Glafgow; his mother Mrs Isabel Anderson, daughter of Mr Anderson, formerly profeffor of church-hiftory in the Univerfity of Glafgow.

[^2]: - Botr thefe patients are ftill alive; and the hiffory of one is given in the Medical Communications of London, vol. 2.

[^3]: * London Medical Obfervations, vol. 2. p. 354.

[^4]: \dagger Memores de l'Academie de Chirurgerie, tome v. p. 45. fmall edition,

[^5]: Vol, IV.

[^6]: *. Verus experientire ordo, primo lumen accendit, deinde per lumen iter demonftrat, incipiendo ab experientia ordinata et digefta, atque ex ea, et educendo axi, omata, et axiomatibus coniftitutis, rurfus experimenta nova.

[^7]: END OFTHE HISTOR

[^8]: 32. The
[^9]: * The beautiful experiment with the muriate was firft mentioned to me in the i 787 , by an ingenious gentleman, Mr Ash, who was then fludying phyfic at Edinburgh.

[^10]: * Ánn. de Chem. t. 10. p. 188.

[^11]: * I have, fince this paper was read, difcovered that the difference of folubility of barytes in hot and in cold water is fully as remarkable as that of Strontites. This mark of diftinction confequently mult be rejected.

[^12]: * Account of the Ganges, \&c. Phil, Tranf. 1781 , by M, Rennell.

[^13]: * Tranf. R. S. Edin. vol. II. p. 185. Phyf. C1. \dagger See Note, § 6.

[^14]: * By fuch continual bifections, the Hindoo mathematicians, like thofe of Europe before the invention of infinite feries, may have approximated to the ratio of the diameter to the circumference, and found it to be nearly that of x to 3.1416 as above obferved. A much lefs degree of geometrical knowledge than they poffeffed, would inform them, that fmall arches are nearly equal to their fines, and that the fmaller they are, the nearer is this equality to the truth. If, therefore, they affumed the radius equal to 1 , or any number at pleafure, after carrying the bifection of the arch of 30 , two fteps farther than in the above conftruction, they would find the fine of the $384^{\text {th }}$ part of the circle, which, therefore, multiplied by 384 , would nearly be equal to the circumference itfelf, and would actually give the proportion of 1 to 3.14159 , as fomewhat greater than that of the diameter to the circumference. By carrying the bifections farther, they might verify this calculation, or eftimate the degree of its exactnefs, and might affume the ratio of \mathbf{r} to 3.1416 as more fimple than that juft mentioned, and fufficiently near to the truth.

[^15]: fcience

 * This feems to me the moft probable reafon that can be affigned for the meafuring of the radius, and the other Itraight lines in the circle, in parts of the circum-

[^16]: *. The fphere of Chiron and Mus x us was conftructed, according to Newton, about the year 936 before Christ, (Newton's Chron. chap. i. § 30). According to the fyftem generally received, the ancient fphere, defcribed by Eudoxus, was conftructed about $\mathbf{1 3 5 0}$ years before Christ, (Dr Playfarr's Chronoley, p. 37). The medium is 1143°

[^17]: * It may be proper to remark here, that, in the preceding propofitions, the flraight lines given by pofition, as well as the indeterminate ftraight line, which is cut by them into fegments, having to each other given ratios, and which alfo cuts off from them fegments adjacent to given points, and having to each other given ratios, are tangents to a parabola, of which the point that is required to be found is the focus: This confideration fuggefts fome curious propofitions, relating to tangents to. the parabola. Some of them have been obferved by Dr Halley, in his tranflation of the Sectio Rationis of Appollonius.

 ONE very obvious application of the propofitions above hinted at, is to defcribe parabolas that fhall pafs through given points, and touch fraight lines given by pofi, tion.

[^18]: * Twe manner of doing this has been flewn in Prop. I.

[^19]: * Communicated 7 th November 1 j96.

[^20]: * In making thefe calculations, I was led to difcover an error in the method I had given in my Treatife on the Longitude, for finding the longitude of a place by an occultation. That error, and feveral others, will be corrected in a new edition of that work.

[^21]: * Sex Theory and Practice of finding the Longitude, \& co, vol, I. p. 208.

[^22]: * Smith's Optics, volv. I. § 534.

[^23]: Vol. IV.

[^24]: * This plan is now nearly completed, the whole Effay being written out, and accompanied with a fet of drawings fufficient to render it intelligible, but by no means in a flate for publication. To bring them to fuch a flate muft be a work of much labour and time, efpecially fince the nature of the fubject has hitherto compelled me to execute all of them with my own hands.

 I have judged it advifeable, therefore, to lay before the Society a part of the Effay, which requires but few drawings, while it announces the fundamental and effential views of the theory; referving the full illuftration of it to another occafion, when I hope to produce the whole in a feparate work.

 In the mean time, it may not be improper to obferve, further, with refpect to my general plan, that the firft part, comprehending the theory of Gothic architecture, has been arranged under three fubdivifions; the firft of thefe contains a view of its elements, all its forms being reduced to their fimpleft fate; the fecond treats of the deviations from thofe elements, which, in the courfe of practice, have been occafioned by various circumftances; and, the laft, combining the other two, contains an exa-

[^25]: mination of the monuments of the art now in exifence, and an application of our principles to every part of them.

 The prefent publication confif: of the introduction to the whole Effay, together. with the elementary part, illufrated by fix plates.

[^26]: * Even in this cafe, however, the natural form undergoes a certain degree of modification, by the device employed to produce the neck of the bottle. The fruit, while fmall and tender, is furrounded with a ftring, which remaining during: its growth, prevents the part, thus bound, from fwelling with the reft.

[^27]: * That they really did imitate a building of wood, is fated, in the cleareft manner, in the work of Vitruvius, particularly in his chapter, "De Ornamentis Columnarum." He there fpeaks of architectural work in ftone or marble, as a reprefentation, (imago), and of the timber fabric as a reality, (in veritate), as wilh appear by the following quotation.
 "Itaque, in Græcis operibus, nemo fub mutulo denticulos conftituit, non enimpoffunt fubtus cantherios afferes effe. Quod ergo fupra cantherios et templa in veritate debèt effe collocatum, id in imaginibus, fi infra conftitutum fuerit, mendofam habebit operis rationem. Etiamque antiqui non probaverunt neque inftituerunt in faftigiis mutulos,'aut denticulos fieri, fed puras coronas; ideo quod nec cantherii nee afferes contra faftigiorum frontes diftribuuntur, nec poffunt prominere, fed ad ftillicidia proclinati collocantur.
 "Ita quod non poteft in veritate fieri, id non putaverunt in imaginibus factum, poffe certam rationem habere. Omnia, enim, certa proprietate, et a veris naturæ deductis moribus, traduxerunt in operum perfectiones. Et ea probaverunt, quorum explicationes, in difputationibus, rationem poffunt habere veritatis."

 In one refpect, this paffage is extremely obfcure, but, in another view, it is fufficiently clear to anfwer the prefent purpofe. The obfcurity arifes from the difficulty, or rather impoffibility, of difcovering the meaning of feveral of the technical terms employed, thefe being very rarely ufed by authors, and relating to a mode of building different from any now practifed. But, whilft commentators differ as to the precife meaning of the words cantberius, affer, and templum, as ufed in this paffage, they all agree in confidering them as denoting parts of the timber frame of a roof. At the fame time, mutulus and denticulus are well known terms of architecture, and

[^28]: * After fating my own views at full length, I fhall enumerate and examine the various opinions of others on the fubject of Gothic architecture, no lefs than five

[^29]: + This refemblance, though very obvious in many cafes, has not, to my knowledge, been obferved by any one but the late Mr Grose; to whom it feems to have occurred in a tranfient way. He makes ufe of the fhape of a bower to affift his defcription of a Gothic roof, (Antiquities of England and Wales, p. 75.) ; but he does not go fo far as to afcribe the architectonic forms to this origin; a view, which probably, would not have efcaped him, had he not been preoccupied with a different one; for he confiders the rudiments of a Gothic arch as formed " of two flat ftones with their tops inclined to each other, and touching." I did not meet with this paffage till feveral years after I had undertaken the prefent inquiry, and had carried it a confiderable length.

[^30]: * Biographical Account of Mr Smith.

[^31]: * Is buildings of ftone, the arch or groin, which joins the diagonal piers, is very generally a real femicircle, fike that in the willow ftructure juft defcribed; as I have found to be accurately the cafe at Beverley and Melrofe. This rule of execution, with the deviations from it, which we meet with occafionally, will be fully confidered in a fubfequent part of the Effay; in which it will be fhown, that in the ufual roof, where the diagonal groin is a femicircle, it becomes the regulator of all the reft, determining their height and form in every refpect.

[^32]: * Assembrages of thefe cufps are fpoken of in the defrriptions of Gothic works, by the names of trefoil, quadrefoil, femi-trefoil, \&cc. but no proper word has been ufed to defcribe the form, wherever it occurs, or however combined. This, I truft, will fufficiently apologife for the liberty I have taken, of introducing a new term into architecture.

 An application of the word cufp, as ufed by mathematicians, may be feen in Dr_{r} Smith's Optics, Vol. I. p. 172. where he ufes it in defcribing the caultics formed by reflection.

[^33]: * John White, cooper, in the village of Cockburnfpath, in Berwickfhire.

[^34]: * The roof, being protected from the weather, is fill in perfect prefervation, though it has now flood about five years; but the windows and other parts, which are more expofed, are going faft to decay, though they have been often repaired. Soon after the work was finifhed, a very accurate drawing of it was made by an ingenious young artift, Mr A. Carse, which it is propofed to engrave for the illuftration of this Effay, when publifhed at full length.

[^35]: * See Vol. III. Lit. Cl. p. 1, \&c.

[^36]: *See Appendix, No. I.

[^37]: * In a card from Mr Home, author of Douglas, \&c. (who ftill takes great delight in ftudying his favourite poet Homer, particularly the Odyffey), I find the following expreflion: "I have read over your tranflation of M. Chevalier's Difcourfe, " which is the moff fatisfactory inveftigation and criticifm I ever read." See Appendix, No. IV.

[^38]: * See Appendix, No. V.

[^39]: * See Appendix, No. III.

[^40]: * See" A Letter to Jacob Bryant, Efq; concerning his Differtation on the "War of Troy: by Gilbert Wakefield, B. A. Lond. 1797.26 pp. 4 to.

[^41]: + For May and June 1797, vol. ix.

[^42]: * This map I have never received, owing to fome omiffion which I cannot explain. In the mean time, this paper is accompanied with a finall one, fomewhat amended, chiefly from that given by Dr Dallaway, the author of the book prefently to be mentioned.

[^43]: * The Turkifh name E/ki Stamboul; the warm baths called Lidga Hamam; the hill on whofe declivity thefe are fituated, and which is covered with tombs, whofe farcophagi of white marble the Turks break down and make bullets of, for fupply-

[^44]: ing the Caflles of the Dardanelles; the aqueduct of Herodes Atticus; the circuit of the wall fill almoft entire; the thickets of Valonea trees; are all likewife remarked by Dr Dallaway, or were mentioned to me by Mr Liston. The former obferves, that " the whole fite is now a thick foreft of Valonea, or dwarf oak, "peculiar to the Levant." Of this fhrub the latter brought away fome feeds.

 * See the Map. + Mr Liston adds, "on each fide."

[^45]: * See their Letters, Appendix, No. V.

[^46]: * See their Letters, Appendix, No. V.

[^47]: * M. Chevalier had faid, (Ch. XVII.) that " near the hill were fituate the " gardens of Priam, where Lycaon, when cutting wood, was furprifed by Achil" les; and on that fpot are fill fituate the gardens of the Agha of Bounar-bafhi, "who, after forty centuries, fucceeds to the king of the Trojans, \&c. (Forty, among the Errata, is corrected thirty: which Dr Dallaway, not obferving, has fuppofed the author guilty of a miftake), Mr Liston told me that he ate grapes in this very place.

[^48]: * Compare Iliad, xxii. 14\%

[^49]: * See Appendix, No. V.

[^50]: * If this hypothefis of Mr Liston be well founded, perhaps it may be inferred that the Scamander remains in the fame ftate in which it was in the days of HoMER, occafionally flowing into the Simois, but commonly, by what is thought a new canal, into the Ægean Sea. And if this is admitted, it may affif Mr Heyne in obviating a difficulty which occurs to him in his Effay on the Topography of the Iliad. See Appendix, No. III.
 \dagger Perhars I may be partly to blame for this, by calling it, in the tranflation, a rivulet, (p.13. 15.), and once a rill, (p.25.)" The original is ruifeau, which might have been rendered a Atream.

[^51]: * See his Letter, Appendix, No. V.

[^52]: g nary

[^53]: * See above. p. 38.
 t. Iliad, II. 792, feq.

[^54]: * See Appendix, No. V.

[^55]: * See his firft Letter, Appendix, No. VI.

[^56]: * See Appendix, No. VI.

[^57]: * See his Letters, Appendix, No. VI.

[^58]: * See Appendix, No. III.

[^59]: * See, in Mr Wakefield's letter to Mr Bryant, (p. i1, 12.), a remarkable fact refpecting the total difappearance of Flaxford Church, about five miles from Nottingham.
 + I observe, too, that this notion is fupported in a paper in the fixth volume of Commentt. Soc. Reg. Scient. Gotting. Ann. 1783, 1784 ; entitled, Herodoti ac Thucydidis Tbracia, Jos. Christoph. Gattereri : with a map, where Xerxes's march is traced accordingly. Mr Bryant enters into a long difcuffion upon the fubject, through which I have no inclination to follow him now, nor fhall I afterwards, I fuppofe, when I come to take more particular notice of his Obfervations; but will freely confefs myfelf refponfible for the whole blame of this miftake, having fuggefted the culpable interpretation to M. Chevalier, on my firft reading his paper; and I am anxious that he fhould here be cenfured only for paying fo much deference to my judgment as to introduce an equivalent expreffion into the French original.

[^60]: * Mr Heyne, in a note on the German verfion, (p. 85.), as well as in the preface to the fame work, (See App. No. I.), thinks it evident that Demetrius fet out on a wrong hypothefis, in confequence of mifunderftanding a paffage of the Iliad ${ }_{y}$ (XII, 19.). This paffage I had quoted and explained in a note. (p. 59. of the Englifh Tranflation.).

[^61]: * See his Letters, Appendix, No. VI.

[^62]: * See Mr Maglaurin's Differtation, to prove that Troy was not taken by the Greeks. Vol. I. p. 43, \&c. Lit. Cl. of Tranfactions of this Society.

[^63]: * See Appendix, No. III.

[^64]: * See his Note, Appendix, No. II.

[^65]: * I am indebted for the tranflation of the following Extracts, from the German of Mr Heyne's Preface and Notes, and of the Effay on the Topography of the Iliad; to a very ingenious young gentleman, now the Reverend Alexander Brunton, minifter of Bolton in Eaf Lothian ; formerly educated at this Univerfity, and who refided forme time at Berlin, as private fecretary to the late Joseph Ewart, Efip Britifh minifter at that court. My learned friend, Mr James Bonar of the Excife, took the trouble of revifing and preparing it for the prefs. D.

[^66]: * An ingenious criticifm on Wood's Effay on Homer, which appears in the original of this preface, is here omitted, as not immediately connected with the prefent fubject. D.

[^67]: * This paper is publifhed in Commentat. Soc. Reg. Scientiarum Gottingenfis, tom. VI. under the title of De acie Homerica, et de oppugnatione caftrorum a Trajanis facta.
 +See above, p. 6r.

[^68]: * See the Preface to the Englif Tranflation.

[^69]: * See the Englih Tranflation of M. Chevalier's Effay, p. I/35, \&ici; and the German, p. 2c6, \&c. D.

[^70]: *The prefent Effay follows out the train of ideas, fuggefted in a Paper read before the Royal Soeiety of Seiences at Gottingen, De acie: Homerica, at oppugnatione a Trojanis facta, in the yean $1783 *$ publifhed in the fixth volume of their Tramfictions. All the difquifitions, there introduced, refpecting the origin of military tactics, the manner of drawing up an army, and giving battle, and the art of fortifying and attracking. a poft, as deforibed in the Hiad, are here omitted; many topics, on the other hand, are now corrected and enlarged. That Effay was my firfi on the Topography of the lliad; a fubject involved in fo much difficulty. I allowed my-

[^71]: \dagger Once only Hector had ventured beyond the Scran Gate, as far as the beech tree; but on that occafion he with difficulty efcaped from Achilles. (Il. IX. 352, \&c.). H.

[^72]: * Of all thefe places, the charts of Pope and Wood give very different views; that of M. Chevalier, however, accords exactly with what is faid by Strabo and Pliny.

[^73]: * D'Anville, in his defcription of the Hellefpont, (Memoires de l'Academie des Inforiptions, tom. XXIV. p. 329.), allows only half the diftance; M. Chevalier does the fame, (Ch. Vill.), on the authority of the paffage in Pliny, (V.33.), 1 where the diflance is reckoned from Æanteum. Still, however, it is a contefted point, what part of the coaft muft properly be regarded as Rhœteum.

 He does not exprefsly name either Sigeum or Rhœeteum ; on the contrary; he always places the camp on the Hellefpont, in the more extenfive fignification of that term, as meaning the northern part of the Ægean Sea.
 \ddagger See above, p. 57, 58. D.
 $\|$ The fhips are therefore faid to have ftood mpóveoordi, (XIV.35.), parallel and behind one another, like the fteps of a ladder. That this is the meaning we learn from Herodotus, (VII, 188.).

[^74]:
 old habitation of Dardanus lay fill deeper in the mountains Il. XX. 216, 21%

 this is faid in refpect to Dardania, which lay among the mountains. Troy, however, actually ftood at the foot of the bill, at the entrance of the valley or the plain.

[^75]: * Strabo, p. 898.9: Wood, p. 323-4. (98. of the German tranflation). And yet Mr Wood did meet with a hot fpring, but in a place where he was not looking for the Scamander. (p. 329.). M. Chevalier was more fortunate in this refpect. He fearched for and difcovered the fources of the Scamander precifely at the hot fpring; and thus cleared up the whole matter in doubt.
 + The diftance, formerly ftated, of the city from the fhore, or more accurately from the harbour of the Greeks, making in all forty-two ftadia, (one and one-fourth German, nearly five and one-half Englifh miles), and the high commanding fituation of the town, render this circumftance by no means improbable.

[^76]: * Eiñat xecinjurs. (XII. 259.). Compare Lxcorhron, 29I. and the Scho. liaft.

[^77]: ＊The poet indeed fays，The mound was thrown up in the field，not far before

 The mound muf have been thrown up upon and round the fpot where the burn－ ing took place．Compare XXIII．255，\＆xc．and Virgil，fepulchrum imponit，VI． 292．in like manner upon the fpot where the funeral pile had been erected；which is precifely what Homer means by áц甲i лvén．In Quintus of Smyrna we find，in

 ＋Пú入ato（VII．339，340．438．）．The Scholiaft on v．339．feems to be in the right，when he fays，＂On the left hand of the thip－ftation（rav́rra日भos）was a large ＂gate，befides which feveral other gates were conftructed．＂

[^78]: * See Iliad, XIV. 3^{0}, \&c.; a paffage which I know not how to explain.

[^79]:

[^80]:

[^81]: * At M. Chevalier's defire, Mr Dalzel fent a copy of the Effay to the learned and refpectable Dean of Chrift Church, (to whom M. Chevalier was known), and received the above anfwer.

