

$$
54-c b
$$

TRANSACTIONS

OF THE

ROYAL SOCIETY OF EDINBURGH.

VOL. VI.

PRINTED FOR CADELL AND DAVIES,
LON DON,

AND
ARCHIBALDCONSTABLE \& CO. AND BELL\& BRADFUTE, EDINBURGH.

CONTENTS

OF THE
 SIXTH VOLUME.

HISTORY of the SOCIETY.

$\begin{array}{ll}\text { Carta Nova Erectionis Societatis Regalis Edinburgi, } \\ \text { 1808, } & -\quad \text { Page ii }\end{array}$
Laws of the Royal Society of Edinburgh, enacted 23d
May 1811,
Presents made to the Royal Society of Edinburgh since the Year 1809,
I. A Description of the Strata which of ur in ascending from the Plains of Kincardineshire tc the summit of Mount Battoc, one of the most elevated points in the Eastern District of the Grampian Mountains. By Lieutenant-Colonel Imrie.

11. A Geometrical Investigation of some curious and interesting Properties of the Circle, \&c. By James Glenie, Esq.

III. Account of a Series of Experiments, shewing the Effects of Compression in modifying the Action of Heat. By Sir James Hall, Bart.

> IV. Of the Solids of Greatest Attraction, or those which, among all the Solids that have certain Properties, Attract with the greatest Force in a given Direction. By Mr Playfair.
V. An Account of a very extraordinary Effect of Rare- faction, observed at Ramsgate, by the Reverend \mathbf{S}. Vince. Communicated by Patrick Wilson, Esq. 245
VI. Some Account of the large Snake Alea-azagur, (Boa Constrictor of Linnæus), found in the Province of Tipperah. Communicated by Mr James Russell. 249
VII. Chemical Analysis of a Black Sand, from the River: Dee in Aberdeenshire; and of a Copper Ore, from Arthrey in Stirlingshire. By Thomas Thomson, M.D. 253
VIII. New Series for the Quadrature of the Conic Sections, and the Computation of Logarithms. By Mr Wal- lace. 269
IX. Remarks on a Mineral from Greenland, supposed to be Crystallised Gadolinite. By Thomas Allan, Esq. 345
X. On the Progress of Heat when communicated to Spherical Bodies from their Centres. By Mr Play- fair. 353

CONTENTS.

XI. Experiments on Allanite, a new Mineral fromGreenland. By Thomas Thomson, M. D.371
XII. A Chemical Analysis of Sodalite, a new Mineral from Greenland. By Thomas Thomson, M. D. 387
XIII. Demonstration of the Fundamental Property of the Lever. By David Brewster, LL. D. 397
XIV. On the Rocks in the vicinity of Edinburgh. By Tho- mas Allan, Esq. 405
ata $5=1$ - 5

 7) 4 :

HISTORY

OF THE

$\mathbf{S O C I X} \mathbb{E} \mathbb{T}$

IN the original charter of the Royal Society, it was provided that the collections of the Society should be deposited, if belonging to Natural History, in the Museum of the University, and if to Antiquities, in the Library of the Faculty of Advocates. Much inconvenience, however, could hardly fail to result from this arrangement, especially when the researches of the Society, having, as of late, been much turned to Geology, it became an object to collect together the specimens which served to illustrate the subjects under discussion, and to have them at hand when reference should be necessary.

In a Museum arranged with a view to public lectures, (like that of the University), such an order as was required for this purpose could not easily be preserved; the Professor of Natural History must feel himself interrupted by the examinations which the Members of the Royal Society might wish Yol. VI.-P.II. a
to
to make ; and it would often be a point of delicacy, not to give him the trouble that such examinations would require.

These considerations induced the Society to apply for a new charter, under which its collections should remain in its own possession, so as to be at all times accessible to its Members.

As the interest of the two bodies just mentioned, might be somewhat affected by these alterations, the first step taken was to give them information of the intentions of the Society, and to request their concurrence in a measure of such manifest justice and utility. The Faculty of Advocates readily assented to this proposal; and the University, though at first in doubt whether it were not bound in duty to resist the alteration, on more mature deliberation, resolved to withdraw all opposition.
As it was not meant that the new charter should have any retrospect, the Huttonian Collection, with a great number of other articles, the property of the Society, still remain in the University Museum. The foundation of a new collection, in the Society's apartments, has been laid, by a cabinet presented by Mr Allan, containing specimens of the rocks round Edinburgh; a collection by Colonel $I_{m r i e}$, illustrating the section of the Grampians which he has given in the 5th volume of the Transactions of the Society; and a collection of specimens from Sir George Mackenzie, illustrating the Mineralogy of Iceland.

The New Charter, which follows, hardly differs in any thing from that contained in the first volume of the Transactions of the Society, except in what respects the two restrictions that have just been mentioned.

CARTA

NOV ERECTIONIS

SOCIETATIS REGALIS EDINBURGI;
 1808.

GGeORGIUS TERTIUS, Der gratia; Britanniarum Rex; Fidei Defensor ; omnibus probis hominibus ad quos prasentes litera nostra pervenerint, salutem: Quandoquidem Nos considerantes, qued petitio humilis nobis oblata fuerit a Regali Societate Edinburgi, et prafideli nostro et predilecto consanguineo Henrico Duce de Buccleuch, ejusdem praside, in nomine et vice Societatis, et omnium ejusdem Sociorum ; in qua petitione enarratur, quod per regiam nostram cartam, dutam vigesimo nono die mensis Martii anno Domini millesimo septingentesimo et octogesimo tertio, Nobis benignè placuisset constituere, erigere et incorporare quosdam ibi nominatos in corpus politicum et corpo-

[^0]ratum, nomine tituloque Regaifs Societatis Edinburgi, ad promovendas literas et scientiam utilem, cum facultatibus et privilegiis ibidem concessis, et speciatim, ut potens et capax sit tenendi proprietatem realem et personalem, causasque agendi et defendendi, Prasidem et Socios eligendi, canones ordinandi, et perpetuam successionem sub tali nomine habendi: quod, virtute pradicta carta, Regalis Societas Edinburgi, ita creata, substituerit, suisque officiis a prima institutione, ritè functa sit : quod cartâ pradictâ ordinatum fuerit, cunctas res antiquas, tabulas publicas, librosque manuscriptos, quos acquisiverit Societas, in Bibliotheca Facultatis Juridica deponi ; atque universas res ad historiam natioralem pertinentès, quasque Societas acquieiverit, in Musco Academia Edinensis deponi: quod, ab hac constitutione incommodum haud parvum ortum fuerit; cùm Regalis Societas, nullum jus in Bibliothecarios Facultatis Juridica, nec in Custodes Musai Academia Edinensis, habeat, nec horas eorum ministerii regulasve admissionis ad ea repositoria prascribere possit, nec Societati licitum sit congressus suos in eorum alterutro tenere; que cùm ita sint, hactenus Societati non licuit suas collectiones ita disponere, ut Sociorum aliorumve studio et disquisitioni aptè subjiciantur, undè et alia dona expectanda essent : Quod pradicta Societas, causâ hac incommoda amovendi, nostraque bona proposita in hac institutione ad effectum perducendi, sapientice nostra regia humiliter subjiciat, ut detur Societati jus collectiones suas cujuscunque generis uno in loco deponendi, quo sibi ordine placuerit, sub custodibus a Societate eligendis ejusque potestati subjectis; itaque ut cartam, cum privilegiis idoneis humilibus nostris petitoribus concedere dignemur ; ut et in hac petitione oratum sit, ut Nobis benignè placeret de novo Cartam Nostram Regiam concedere dicta Regali Societati Edinburgi, ejusque Sociis, qua iterum darentur jura, facultates, et privilegia, in carta regia per
quam corpus istud creatum fuerat concessa, et qua insuper provideretur, uti nobis in regia nostra sapientia idoneum videatur, ut Societati potestas daretur collectiones suas anteà memoratas in uno cedificio deponendi, eis legibus, et eis ministris, qui Societati placerent, hosque sibi subjectos haberet: Et nos certiores facti hanc petitionem justam esse rationique consentaneam, et.certis conditionibus et modis, in prasentibus expressis, concedi debere: IgItUR, constituimus, erigimus et incorporavimus, sicuti Nos regiâ nostrâ prarogativâ, et gratiâ speciali, pro Nobis notrisque regiis successoribus, per has presentes, constituimus, erigimus, et incorporamus, pradictum Henficum, Ducem de Buccleuch, Sociosque dicte Regalis Societatis, atque alios qui postea eligentur Socii, in unum corpus politicum et corporatum, vel legalem incorporationem, nomine et titulo Regalis Societatis Edinburgi, ad promovendas literas et scientiam utilem, utque talis existens, et tali nomine, perpetuitatem habeat et successionem; declarantes, Quod dicta Societas capax sit capere, tenere, et frui proprietate reali seu personali, et petere, causas agere, defendere et respondere, et conveniri, in jus trahi, defendi et responderi, in omnibus seu ullis nostris Curiis Judicature; et declarantes quod dicte Societati fas sit, sigillo, tanquam Societatis sigillo, ūti; dantes potestatem dicta Societati, per majorem suffragiorum numerum corum qui aderunt, eligendi Prasidem aliosque officiarios pro negotiorum administratione; necnon ordinandi canones, ad quos Socii sint eligendi et res Societatis sint administranda, conditionibus hujus carte sive donationis haud incongruentes, nec legibus et praxi nostri regni Scotice contrarios; et declarantes, quod hujusmodi canones sanciri nequeant,* nisi ritè propositi fuerint in congressu habito saltem uno mensi ante illum congressum quo sanciendi sint : dantes etiam potestatem Societati ordinandi et administrandi collectiones re-
rum antiquarum, tabularum publicarum, librorum manuscriptorum, et rerum ad historiam naturalem pertinentium, quas Societas posted acquisiverit, easque in Musao et Bibliotheca, tali ordine et modo ut Societati placuerit, deponendi: salvis tamen conditionibus, in hac nostra carta provisis; declarantes insuper hanc cartam nostram concessam esse sub his conditionibus sequentibus, videlicet, Quod jura, facultates, et privilegia, per prasentes in dictam Societatem collata, nullo modo detrahent de ullo jure dominii quod competit Academia Edinensi in collectiones antehac depositas in Musao Academia, virtute carta nostra Societati Regali data, pradicto vigesimo nono die mensis Martii millesimo septingentesimo et octogesimo tertio; antedicta Societate quantum in se est astricta, omne jus, ad collectiones antehac factas et in Museo predicto depositas, in dictam Academiam transferre; et quod Historice Naturalis Professori copia introitûs in Muscum et Bibliothecam Societatis Regalis detur aquè ac Sociis ipsius Societatis; et quod dicta Societati non sit licitum constituere Professorem, pralectorem seu Doctorem Mineralogic, Geologia, aut Historice Naturalis, nec suis collectionibus uti ad talem institutionem promovendam, nisi qua vel nunc sit, vel posthac fuerit, in Academia Edinensi. -In cujus rei testimonium, sigillum nostrum per Unionis Tractatum custodiend., et in Scotia vice et loco Magni Sigilli ejusdem utend., ordinat., presentibus appendi mandavimus; Apud Aulam nostram apud St James's, vigesimo septimo die mensis Decembris anno Domini millesimo octingentesimo et octava, regnique nostri anno quadragesimo nono.

Per signaturam manús D. N. Regis supra script.
Written to the Seal, and registered the thirtieth day of August 1811.

James Dundas, Dep:
Sealed at Edinburgh, the thirtieth of August, One thousand eight hundred and eleven years.
James Robertson, Sub ${ }^{\text {. }} £ 80$ Scots.

This charter, as well as the former, having left the Society in possession of the power of making By-laws for the regulation of its affairs, it was proposed to revise the whole of those laws, and to make such alterations as, after the experience of thirty years, might appear to be necessary.

The Society, therefore, having at several General Meetings taken this subject into consideration, after mature deli-
beration,
beration, and with due attention to the clause in the charter that respects the enactment of such laws, did, at a General Meeting, on the 23d of December 1811, sanction the Laws that follow, and declare them to be the rules by which the Society is to be governed, till all, or any of them are regularly repeal ed.

LAWS

OF THE

ROYAL SOCIETY OF EDINBURGH,

Enacted 23d May 1811.

I.

THE Royal Society of Edinburga shall be composed of Ordinary and Honorary Members.

II.

Every Ordinary Member, within three months after his election, shall pay as fees of admission Three Guineas, and shall further be bound to pay annually the sum of Two Guineas, into the hands of the Treasurer.

III.

Members shall be at liberty to compound for their annual subscription, each paying according to the value of an annuity on his life, determined as in the ordinary insurance on lives.

The power of raising the annual subscription shall remain with the Society.

IV.

Ordinary Members, not residing in Edinburgh, and not compounding for annual subscription, shall appoint some persou residing in Edinburgh, by whom the payment of the said subscription is to be made and shall signify the same to the Treasurer.

V.

Members failing to pay their subscriptions for three successive years, due application having been made to them by the Treasurer, shall cease to be Members of the Society, and the legal means for recovering such arrears shall be employed.

VI.

None but Ordinary Members are to bear any office in the Society, or to vote in the choice of Members or Office-bearers, nor to interfere in the patrimonial interest of the Society.

VII.

The number of Ordinary Members shall be unlimited.

VIII.

The Ordinary Members shall receive the volumes or parts of the Society's Transactions, when published, at the booksellers price, or the price at which they are sold to the trade. This regulation to continue in force for five years from the date of its enactment; and it is left to the Society then to consider, whether the volumes cannot be afforded gratis to the Members.

IX.

The Society having formerly admitted as Non-resident Members, gentlemen residing at such a distance from Edinburgh as to be unable regularly to attend the Meetings of the Society, with power to such Non-resident Members, when occasionally in Edinburgh, to be present at the Society Meetings, and to take a part in all their inquiries and proceedings, without being subjected to any contribution for defraying the expences of the Society ; it is hereby provided, that the privileges of such Non-resident Members already elected shall remain as before; but no Ordinary Members shall be chosen in future under the title and with the privileges of Non-resident Members. The Members at present called Non-resident shall have an option of becoming Ordinary Members; if they decline this, they shall continue Non-resident as formerly.

X.

The Honorary Members of the Society shall not be subject to the annual contributions. They shall be limited to Twenty-one, and shall consist of men distinguished for literature and science, not residing in Scotland.

XI.

The election of Members, whether Ordinary or Honorary, shall be by ballot; it shall require the presence of Twenty-four Members at least to make a quorum, and the election shall be determined by the majority of votes.

XII.

The election of Members shall be made at one General Meeting annually, on the fourth Monday of January.

XIII.

No person shall be proposed as an Ordinary Member, without a recommendation presented by a Member of the Society, and subscribed by Three, to the purport mentioned below *; which recommendation shall be hung up in the Rooms of the Society, at least during Three Ordinary Meetings (of the Classes) previous to the day of election.

XIV.

In order to carry on with facility and success those improvements in science and literature, which are the objects of the institution, the Society shall be divided into two Classes, the Physical and the Literary Class ; the former having for its department the sciences of Mathematics, Natural Philosophy, Chemistry, Medicine, Natural History, and what relates to the improvement of Arts and Manufactures; the latter having

$$
\mathrm{b}_{2} \quad \text { for }
$$

[^1]Election of Mem bera.
for its department the inquiries relative to Speculative Philosophy, Antiquities, Literature and Philology.
XV.

The Classes shall meet alternately on the first and third Mondays of every month, from November to June inclusive. It shall be competent, however, to bring matters of a Physical or Literary kind, before either Class of the Society indiscriminately. To facilitate this, one Minutebook shall be kept for both Classes; the Secretaries of the respective Classes either doing the duty alternately, or according to such agreement as they may find it convenient to make.

XVI.

The Society shall from time to time make a publication of its Transactions and Proceedings. For this purpose, the Council shall select and arrange the papers which they shall deem worthy of publication in the Transactions of the Society, and shall superintend the printing of the same.

The Transactions shall be published in Parts or Fasciculi, and the expence shall be defrayed by the Society.

XVII.

There shall be elected annually for conducting the publications and regulating the private business of the Society, a Council, consisting of a President; Two Vice-Presidents; a President for each Class of the Society; Six Counsellors for each Class; one Secretary for each; a Treasurer; a General Secretary; and a Keeper of the Museum and Library.

XVIII.

The election of the Office-bearers shall be on the fourth Monday of November.

XIX.

Four Counsellors, Two from each Class, shall go out annually. They are to be taken according to the order in which they presently stand on the list of the Council.

XX.

The Treasurer shall receive and disburse the money belonging to the Society, granting the necessary receipts, and collecting the money when due.

He shall keep regular accounts of all the cash received and expended, which shall be made up and balanced annually; and at the General Meeting in January, he shall present the accounts for the preceding year to be audited. At this Meeting the Treasurer shall also lay before the Society a list of all arrears due above twelve months, and the Society shall thereupon give such directions as they may find necessary for recovery thereof.
XXI.

At the General Meeting in November, a Committee of Three Members shall be chosen to audite the Treasurer's accounts, and give the necessary discharge of his intromissions.

The report of the examination and discharge shall be laid before the Society at the General Meeting in January, and inserted in the records.

XXII.

The General Secretary shall take down minutes of the proceedings of the General Meetings of the Society and of the Council, and shall enter them in two separate books. He shall keep a list of the Donations made to the Society, and take care that an account of such Donations be published in the Transactions of the Society. He shall, as directed by the Council, and with the assistance of the other Secretaries, superintend the publications of the Society.

XXIII.

A Register shall be kept by the Secretary, in which copies shall be inserted of all the Papers read in the Society, or abstracts of those Papers, as the Authors shall prefer; no abstract or paper, however, to be published without the consent of the Author. It shall be understood, nevertheless, that a person choosing to read a paper, but not wishing to
put it into the hands of the Secretary, shall be at liberty to withdraw it, if he has beforehand signified his intention of doing so.

For the above purpose, the Secretary shall be empowered to employ a Clerk, to be paid by the Society.

XXIV.

Another register shall be kept, in which the names of the Members shall be enrolled at their admission, with the date.

XXV.

A Seal shall be prepared and used, as the Seal of the Society.

XXVI.

The Librarian shall have the custody and charge of all the Books, Manuscripts, objects of Natural History, Scientific Productions, and other articles of a similar description belonging to the Society; he shall take an account of these when received, and keep a regular catalogue of the whole, which shall lie in the Hall, for the inspection of the Members.

XXVII.

All articles of the above description shall be open to the inspection of the Members, at the Hall of the Society, at such times, and under such regulations, as the Council from time to time shall appoint.

PRESENTS made to the Royal Society of Edinburgh since the Year 1809.

The Sixth Volume of the Scriptores Logarithmici.-From Mr Baron Maseres.
Treatise on the Gout, by the late Dr Hamilton of Lynn-Regis.-From the Author.

Traité de Mineralogie, par M. xe Compte de Bournon, 3 vols. 4to.-From the Author.

An Engraving, representing all the Mountains of the World, by R. Riddel, Esq; together with the History of Mountains, by Joseph Wilson, Esq; vols. 1st and 2d.-From Messrs Riddel and Wilson.

Recueil de Quelques Antiquités trouvées sur les Bords de la Mer Noire, par M. Leon de Wexel.-From the Author.

Nova Acta Petropolitana, tom. 14.-From the Imperial Academy of St Petersburgh.

Philosophical Essays, by Thomas Gordon, Esq; 2 vols. 4to.-From the Author.
Transactiens of the Linnean Society, vol. 8th and 9th.-From the Linnean Society.

Asiatic Researches, vol. 10th and 11th.-From the Bengal Society.
Philosophical Transactions, for 1809, 1810, 1811.-From the Royal Society or London.

Memoirs of the American Academy, vols. 1st, 2d, and 3d.-From the American Academy.

Transactions of the American Philosophical Society, vol. 6th, part 2d.-From the American Philosophical Society.

Observations on the Hydrargyria, by George Alley, M. D.-From the Author.
'Transactions of the Geological Society of London, vol. Ist.-From the Geoloeical Society.

Travels in Iceland, by Sir George Mackenzie, Baronet. Annals of Iceland, from 1796 to 1804. Manuscript copy of the Sturlinga Saga. History of Iceland during the 18 th century. A compendium of Anatomy, translated into Icelandic, from the Works of Martinet. Pope's Essay on Man, in Icelandic verse.-From Sir George Mackenzie.

Essay on the Natural History of the Salt District in Cheshire, by Dr Holland:From the Author,

Collection of Specimens, illustrating the Mineralogy of the Country round Edin-burgh.-From Thomas Allan, Esq;

Collection of Specimens, illustrating the Section of the Grampians, at the beginning of this volume, with a descriptive Catalogue.-From Lieutenant-Colonel Imrie.

Model in Relief, representing the Granite Veins at the Windy Shoulder in Gal-loway.-From Sir James Hall, Baronet.

Collection of Specimens, illustrating the Mineralogy of Iceland-From Sir George Macrenzie, Raronet.

1. A Description of the Stirata which occur in afcending from the Plains of Kincardineshire to the summit of Mount Battoc, one of the moft elevated points in the Eaftern Diftrict of the Grampian Mountains. By Lieutenant-Colonel Imrie, F.R.S. Edin.

[Read 5th March 1804.]

THE moft mountainous parts of Scotland are fituated in its weftern and north-weft diftricts. From thofe parts of the country, feveral chains of mountains branch off, and continue their courfes in various directions, and to various extent. The moft extended of thofe chains is that of the Grampians. This chain takes its rife from nearly about the centre of the above alpine diftrict, and continues its courfe in a direction almoft due eaft, or perhaps a little to the fouth of that point, until it difappears in the German Ocean, betwixt the towns of Aberdeen and Stonehaven.

This chain, in its eaftern diftrict, confifts of three ranges, running nearly parallel to each other; the two lateral ranges being. confiderably lower than the central one. To the lateral mountains are attached a range of lower hills, that flope down into undulated grounds, which fkirt the adjacent plains.

The general fhape of the individual mountains compofing thofe three ranges, is oblong, rounded, and fometimes flattifh on the tops; their length is always in the direction of the A2
chain,
chain, that is to fay, from weft to eaft: and I have obferved, not unfrequently, that the weftern ends of thofe oblong mountains are more bulky than their eaftern extremities, and that they nlope and taper in fome degree towards this quarter. Their general covering is that of a coarfe gravelly foil, produced by their own decompofition ; and the produce of this foil is heath. But upon fome of the heights in the central range, I have found beds or layers of that fpecies of turf called Peat, from fifteen to twenty feet in thicknefs, which repofe upon the gravelly foil that there covers the native rock.

At this eaftern part of the Grampians, where I am now about to endeavour to give a defcription of the fratification, the mountains feldom fhow any confiderable extent of naked rock.

In their courfe to the ealtward, as they approach the fea, they begin to contract in breadth, and cover much lefs fpace of country; and where they finifh their courfe at the fea, their height will fcarcely entitle them to the appellation of hills: but although they become fo diminutive in height and in breadth, yet the materials of which they are formed continue the fame as thofe which compofe the ranges where they are in their greateft altitude, and their exterior characters, as to form and figure, alfo continue the fame.

Among the rivers which have their fource in the Grampians, that of the North E/k is not the firft in rank as to fize, nor is it the moft diminutive. At a confiderable diftance from the plains in the interior of the mountains, a fmall lake called Loch Lee is formed, in a rocky bafon, by a rivulet, and fome fprings and rills flowing from marfhy grounds. From this lake the North Efk iffues, not in a very confiderable flow, but, being foon joined by other ftreams and alpine torrents, it fwells to a confiderable fize, and continues a courfe from this lake almoft due eaft, betwixt the central and fouth lateral ranges of the mountains, for an extent of about feven miles: it then fkirts Mount-Battoc, and be-
ing there impeded, in its eaftern direction, by fome of the hills forming the bafis of that mountain, it then changes its courfe, almoft at a right angle, and from thence flows in a due fouth direction. In this laft direction, it opens a way for itfelf through the fouth lateral range, and enters the plains of Kincardine, and Forfar fhires, where it immediately becomes the line of divifion of thofe two counties. It leaves thofe plains by a hollow betwixt the two low hills of Garvoke and Pert, and after a courfe of nearly thirty miles from its fource, it joins the fea fomewhat to the eaftward of the town of Montrofe. It is in the bed of this river that I have examined the ftrata of the Grampians of which I am now to give a defeription. The fection extends about fix miles, from the horizontal grit or fandfone in the plain, to the granite of Mount Battoc, which is one of the mountains in the central range, and one of the higheft of the chain in that part of the country. My direction, in this examination, is about due north, piercing through, almoft at right angles, the ftrata of the mountains, which are here nearly in a vertical pofition.

In this fhort ftretch of fix miles, a great deal of matter highly interefting to geology prefents itfelf. In it, we pafs from the fecondary horizontal ftrata of the neweft formation, to the vertical, contorted, primary ftrata of the oldeft date, and terminate with granite, the primitive rock in the conception of many geologifts. Thus, it embraces a complete range of the foffil objects, which in this part of Scotland intervene between that which is deemed the oldeft and what is accounted the moft recent in point of formation. From the various ftrata ftanding in a pofition vertical, or nearly fo, and the river North Efk, cutting acrofs thefe ftrata, at right angles, the fucceffion is uncommonly well exhibited to view, and a fair difplay of the ftructure of this country, and of the materials compofing it to a great depth, is open to the attentive obferver. In addition to this fine difplay of the fucceffion of ftrata, the arrangement of them, will
be found to offer fome very curious and important facts, particularly the gradual elevation, and the final perfect vertical pofition of the fandftone and puddingftone, as well as the rather unufual manner in which the fecondary and the older ftrata meet each other.

In the feries here to be defcribed, the repeated occurrence of rocks of the whin and of the porphyry formation; refpecting the origin of which opinions are fo much divided, adds confiderable intereft ; efpecially when the form and fituation in which they occur, and the condition of the contiguous rocks, are taken into confideration.

In the account which I am now about to give, I fhall endeavour to lay down a fair reprefentation of the facts as Nature prefents them, unbiaffed by any of the prevailing theories of cofmogony. I fhall avoid every geological difcuffion whatever, leaving it to others to draw thofe conclufions, in relation to their own fpeculations, which they flall imagine the facts to warrant.

IN that part of the plains of Kincardinefhire from which I take my departure, the native rock confifts of Siliceous Grit or Sandftone, which is here divided into an immenfe number of beds or layers, of various thickneffes, from one inch to four feet, folid ftone. In many places, gravel of various fizes is found imbedded in this grit; which gravel confifts moftly of water-worn quartz, and fmall-grained granites. The colour of the general mafs of this grit is a dark-reddifh brown, and in fome few places it fhows narrow lines and dots of a pearl-grey colour. The component parts of this grit confift of fmall particles of quartz; and fill more minute particles of filvery-luftred mica: thefe owe their cohefion in mafs to a martial argillaceous cement, to which this rock alfo owes its colour. Thofe lines and dots of pearlgrey colour, generally occur in the moft folid and thickeft beds
of the rock: they are formed of the fame materials with the other parts of the ftone; but into them the ferruginous ftaining matter has not apparently been able to penetrate, and they derive their prefent greyifh appearance from the natural colour of its particles of quartz, which are here per fe of a bluifh-white tint. This rock, in the plain, is perfectly horizontal in its pofition; but upon its approach towards the undulated grounds, which here form the loweft bafis of the Grampians, it begins to rife from its horizontal bed, and, gradually increafing in its acclivity towards the mountains, it at laft arrives at a pofition perfectly vertical.

For the firft quarter of a mile from where this grit begins to leave its horizontal pofition, the rife is very gradual ; but after that diftance, it becomes more rapid, and in a mile it gains its vertical pofition.

Where this grit or fandftone rock is in its moft folid ftate, and where its pofition is perfectly vertical, betwixt two beds or layers of it, there occurs a bed of Whinftone forty feet broad.

The main body of this bed of whin interfects none of the layers of grit, but ftands upright betwixt two of them, to both of which it is clofely joined. The river, at this place, has, in its paffage, worn down this bed of whin equally with that of the adjoining grit, and a perpendicular face of it can be examined upon each fide of the river, from fifty to fixty feet in height.

Upon examining the fection of this bed, I found upon the eaft fide of the river two branches, which fprung from the main body of the whin, nearly where the water of the river at prefent wafhes the bafe of its perpendicular furface. One of thofe branches fprings from the right fide of the trunk, and the other fprings from the left fide : they at firft diverge from the trunk as they afcend, and where they pufh out laterally, they interfect the contiguous ftrata, and penetrate them in a zig-zag manner; but at laft, in a pofition betwixt two of the layers of the grit, they con-
tinue their direction upwards, decreafing in their diameters as they afcend, until they finifh their courfe near to the fuperficial foil which here covers the rock. The grit contiguous upon both fides to the bed of whin, is confiderably harder and more compact than it is in any other part of the ftratification; and that angle of the grit which lies between the body of the whin and its branches, is more indurated than the ftrata of the grit upon each fide.

This fpecies of whin is not very compact in its texture. Its fracture is fomewhat earthy, and is of a brownifh-black colour ; but it has a confiderable degree of induration, and has fome fpecks of luftre in it. Having paffed this bed of whin, the grit continues in the fame pofition as immediately before the whin occurred ; but, foon after, the gravel, which I have mentioned to be in fome places imbedded in the grit, increafes in quantity, and at laft the ftrata are formed of a rock compofed entirely of that fpecies of gravel, and which may be called Gravel ftone or Plum-pudding-rock. This aggregate conftitutes a Aratum four hundred yards thick. Its ftretch is nearly from weft to eaft, and it is vertical in its pofition. Its compofition confilts of quartz, porphyries, and fome fmall-grained granites, all of which have evidently been rounded by attrition in water : they
àre of a valt variety of fize, from that of a pea to the bulk of an oftrich egg. Thefe are all firmly combined by an argillaceous ferruginous cement. In fome parts of this gravel rock, are to be feen thin lines of a fine-grained grit, ftretching through it from weft to eaft; it is by thofe lines alone that the verticality and the ftretch of this mafs is difcoverable. Its general colour, in mafs, is that of a ferruginous red.

This plum-pudding rock is immediately followed by a fucceffion of ftrata of fine-grained grit, in thin layers: it has a very confiderable degree of induration, and is of a dark ferruginous brown colour. This deviates a little from the vertical pofition, and inclines to the fouth : the ftretch is from weft to eaft, and its extent towards the north is two hundred and fixty yards. To this rock immediately fucceeds a fpecies of Porphyry, the principal mafs of which confilts of an indurated argil. Its colour is of a purple or lilac brown: its induration is very confiderable, and its fracture is rough and earthy. The materials which are imbedded in its mafs, confift of fmall particles of quartz, felfpar, blackifh-brown mica, and fpecks of iron ochre; all of thefe are but thinly fcattered. The fpace in the courfe of the river occupied by this porphyry is two hundred and twenty yards: its ftretch is nearly from weft to eaft, and it inclines in a fmall degree to the fouth. The rock which fucceeds to this porphyry, and which is in contact with it, is difficult to defcribe ; and this difficulty arifes from the great diforder of the ftratification, and the variety of materials compofing it. The ftrata of this bed do not fucceed each other in a regular manner. Portions of them of various dimenfions lie together, but very varioufly difpofed: fome are vertical, fome horizontal, fome dip to the fouth, one only to the north, affording a folitary inftance of a northern inclination of the ftrata in this field of examination.

The materials of this mafs of confufed ftratification, are of very different defcriptions. In one place, a quartzofe fone

Vol. VI.-P. I.
B
abounds,
abounds, of a granular texture: it here, in general, refembles a fine-grained, highly indurated, and compact quartz fandftone : fometimes, however, it approaches to hornftone, and even fometimes to quartz in mafs. Much of it has a white colour: the reft is tinted of an ochery brown, of different fleades. In other places, the fratified matter confifts of a ftone of a-laminated texture, with undulating lamellæ of a ferruginous tint, looking like an indurated fhale; and various gradations of both kinds prefent themfelves. This jumble is in thicknefs three hundred yards; and to it immediately fucceeds a very narrow ftratum of Argillite, which is of a greenifh-grey colour, and very thinly lamellated.

This argillite is fucceeded by a bed of Whin, thirty-three feet broad. This whin is of a dark blackifh-brown colour, and is of a more compact texture, than the whin which I have defcribed occurring in the grit, and is poffeffed of more induration: the materials of compofition are nearly the fame in both.

ITs general ftretch is nearly from weft to eaft; but in this ftretch, where it has been expofed to the eye by the river, it is fomewhat curved, and prefents its convex fide to the mountains. To this bed of whin fucceeds a narrow ftratum of Argillite, perfectly fimilar to that which I have juft now defcribed upon its fouthern fide. To this fucceeds a feam of Limeftone, fix feet broad. This limeftone is of a pale blue colour, and is much interfected by fmall veins of quartz trending through it in all di rections:

In this limeftone, I was unable to trace the remains of any animal or vegetable production. Its pofition is vertical, and it is immediately fucceeded by another narrow: ftratum of argilliee, thinly lamellated.

To this narrow ftratum of argillite fucceeds a bed of Whin, feventy-five feet broad. This whin is, in its texture, more compact; and its fracture difplays a fmoother furface than either
of the two former whins which I have had occafion to mention. Its colour is of a dark-bluifh black. In tracing, with my eye, its vertical cracks and fiffures, I thought I could perceive a rude tendency to prifmatic forms. It is vertical in its pofition; and its ftretch is from weft to eaft.

This bed of whin is fucceeded by an Argillite of fhivery texture, and confufed ftratification; but as it recedes from the whin, and approaches the mountains, it becomes regularly ftratified. This ftratum of flate is of great extended thicknefs; and it contains a vaft variety of colour and of tint. The colours are, pale greyifh-blue, yellowifh-green, reddifh-brown, purple and black, with a great variety of tints of all thofe colours; but the predominant colours are the greyifh-blue and the yellowifhgreen; of which two there are two forts; the one foft, and the other much indurated. The foft is thinly laminated, and frequently paffes over into the highly indurated fort, in which the appearance of the laminated texture is almoft loft.

In this long fucceffion of argillite ftrata, fome fubftances occur that are heterogeneous to its rock, fuch as jafpers, limeftone, $\& c$.

The jafpers are in general of a blood-red colour, and are much veined with white quartz: they occur in large amorphous maffes, and in nefts, of eliptic forms, of great variety of fize. One of thofe bodies of jafper, in the eliptic form, has been cut through by the river, and is now to be feen in the face of the perpendicular rock, upon each fide of the fream. Its fize is thirty feet long, by ten broad: the points of its tranfverfe axis are fharp; and it ftands upright in the argillite. The maffes of this matter which occur amorphous in the argillite, are of great magnitude. I have traced one of thofe for thirty yards in extent. All of thofe jafpers are of great induration, and take a high polifh. Both the amorphous and the eliptical formed maffes are found imbedded, where the argillite is of a greenifh-grey colour,
thinly lamellated, of a filky luftre, and faponaceous to the feel : it clings round thofe maffes in all their variety of direction, and of courfe its texture is there much twifted. When the argillite ftratification has extended its thicknefs to near three quarters of a mile, the limeftone which I have mentioned above then occurs, in a bed of twelve feet thick. Its colour is bluifh-black; and it is much pervaded by veins of quartz, and of calcareous fpar ; the laft of thofe are, in many places, of confiderable breadth, and are of a pale flefh colour. Where this limeftone has been wrought, I obferved it forked; that is to fay, the bed is there fplit or divided into two, by the intervention of an argillaceous body. Upon each fide of this bed of limeftone the argillite occurs of two colours. That which is next to, and in contact with the limeftone, is black, of a fhaly texture, foils the hand, and has veins of ferruginous-coloured quartz trending through it. The argillite which is more remote from the limeftone is of a dark purple colour.

Immediately after this narrow bed of fhale, the argillite reaffumes its greenifh-blue colour, and flaty texture, and becomes highly indurated : here fome fpecks of granulated quartz begin to appear, thinly fcattered in its mafs, and, foon after, it is feen to pafs over into an aggregate rock, chiefly compofed of grains of quartz, felfpar, and minute particles of mica. The particles of quartz and of felfpar feldom occur in this aggregate larger than the eight of an inch : thefe have very little the appearance of having fuffered attrition: they are much mixed, and are frequently feen to take lineal directions; and in thofe lines the particles of felfpar have frequently a compreffed appearance, and an eye-like form. This rock; in mafs, has a greyifh-blue colour: it is of great induration, and although lamellous or flaty in its texture, a crofs fracture is often more eafily obtained than one with the lamellæ. Its crofs fracture is pretty even, but appears more granular than foliaceous. This rock occurs frequently in
the diftrict of blue clay flate, and may almoft be faid to alternate with it. I have been perhaps more minute in the defcription of this rock than it "deferved; but I have been fo, becaufe doubts have arifen relative to what name ought to be given to this aggregate. In all my geological refearches, I have found this rock only twice ; once, where I have here defcribed it; and, again; near to Banff, on the Moray Frith. In both of thofe fituations, the aggregates are of the fame compofition, and fimilar in pofition: they both lie among blue clay flate.

In this long alternation, two fubftances occur which are heterogeneous to the rocks among which they lie. The firft of thofe, is a bed of compact Felfpar, of great induration. This bed is ten feet broad : its ftretch is nearly from weft to eaft : its pofition is vertical; and it ftands between two of the layers of the blue clay flate. Its colour is of a reddifh-brown, with a fmall admixture of purple ; and its general fracture is conchoidal, fomewhat rough, but not earthy.

Not far diftant from this bed, an appearance occurs worthy of fome notice. Where the aggregate and the blue clay flate are alternating, a furface of confiderable extent of the aggregate rock is expofed to view, parallel to its ftratification. This furface is regularly undulated in fmall undulations, bearing a very ftrong refemblance to thofe that may be feen upon the fand of the fea-beach, when recently left by the tide. After paffing the bed of compact felfpar, the blue clay flate and aggregate rock again alternate; but here the blue clay flate predominates. Near to this, the fecond fubftance heterogeneous to thofe alternating rocks occurs. It is a bed of Whin, the form of which is fomewhat fingular. It confifts of a principal trunk, which the river, here cuts nearly at right angles. Upon the eaft fide of the river, this principal trunk is feen to fplit into three branches; and thofe three take an eaftern direction, between the frata of the aggregate rock and the blue clay flate, where thofe two rocks are of great induration. The breadth
breadth of this bed of whin is thirteen feet; and where it fplits, its three branches are, fix, four, and three feet in diameter. The trend or ftretch of this bed is from weft to eaft; but upon the weft fide of the river, it curves fomewhat to the fouth-weft. Its compofition is nearly the fame with the three other beds of whin which I have before mentioned. It is of a brownifh-black colour, and, when placed in certain directions, it fhows fpecks of luftre. It is vertical in its pofition, has a great degree of induration, and its general fracture is roughly conchoidal.

Upon paffing this bed of whin, the river ceafes to be deeply imbedded in the rocks; but the aggregate rock and the clay flate ftill continue to be feen for a fhort diftance, in a fhelvy acclivity, where they are loft to view in a long narrow plain, deeply covered with a bed of gravel, compofed of the debris of the interior mountains. The river here flows over this bed of gravel for a confiderable fpace; and upon this narrow flat, we pafs through between two of the moft elevated points in the fouth lateral range of this part of the Grampians. Although the obtrufion of this mafs of gravel cuts off from infpection the continuity of the laft-mentioned rocks, yet the broken and abrupt fides of the mountains, clofe upon each hand, clearly points out, that this part of the fouth lateral range is entirely compofed of micaceous fhiftus. Here, we are deprived of the junction of the micaceous fhiftus with the two former rocks; and the lofs of all
fuch junctions are always to be much regretted in mineralogical refearch.

Having paffed over this narrow plain, I advanced towards a fecond range of hills, which here form the bafis of the central and higheft chain. It is at this place where the river fo fuddenly changes its courfe from eaft to fouth, and where I was under the neceffity of leaving its bed, to continue my northern direction towards Mount-Battoc. This, however, I was enabled to do to great advantage, by following up the deep cut bed of a winter torrent, which led me into the direction which I wifhed to follow.

UPON entering the bed of this torrent, I found that the bafis of the hills here entirely confifted of micaceous fhiftus, much veined with quartz, and much twifted in its texture. The ftretch of this rock is here nearly from weft to eaft; and it has a foutherly dip of 45 degrees.

In paffing through among thofe hills towards the central range, I found in feveral of the beds of the torrents large blocks of reddifh-brown porphyry, with fcattered maffes of micaceous fhiftus and granite.

IN tracing up one of thofe torrents, I faw the micaceous fliftus rock and the porphyry both expofed to view, near to each other; and, foon after, in the bed of the fame torrent, I came to a cafcade which had laid bare both thofe rocks at a point where they are in contact; and near thofe a fecond bed of porphyry made its appearance, in the front of a near hill. From my firft view of thofe, and from their relative pofitions, I was led to imagine, that they might here alternate in vertical pofition; but upon more minute infpection, I found that the porphyry conftituted vertical dikes, ftretching nearly from fouth to north; which courfe cuts the line of direction of the Grampians here almoft at right angles : and, on the contrary, I found that the micaceous fhiftus which flanked thofe dikes of porphyry, had a regular ftretch
from.
from weft to eaft, and a foutherly dip. To endeavour to have thefe appearances more fully explained to me, I directed my fteps to the brow of that hill, where I had obferved the rock laid bare; and in paffing along the fronts of the hills from eaft to wefl, I foon came to a dike of porphyry fimilar to thofe which I had immediately left. This dike is fixty feet broad, ftretching nearly from fouth to north, and flanked upon both fides by micaceous fhiftus, ftretching and dipping as before defcribed. In proceeding farther along the faces of thofe hills, I found feveral other dikes of porphyry, of various breadths, and at various diftances from each other; but all of them fimilar in their lines of direction, and the micaceous fhiftus always interpofing between them, through which they feemed to rife. The porphyries of thofe dikes are generally of a ferruginous colour, tending fometimes to an orange-red, and of various tints of thofe colours. They have great induration, are coarfe-grained, and produce a rough fracture. The particles of quartz which are fcattered in their principal maffes, are fmall, amorphous, and are of a ferruginous colour. The particles of felfpar are of a light tint of the fame colour, and are moftly cryftallized. The furface of thofe dikes are in many places bare, and expofed to the eye for long extents, in their lines of direction; and in all thofe lines of direction which I have traced, I have never found any of them alter in their breadths, in their verticality, nor in their directions. Their furfaces, in general, confift of oblong fquare blocks, now loofe and unconnected with each other; and, in many places, the lines of fracture of thofe blocks are fo ftraight, that one might almoft fuppofe that they had been disjoined by the hand of art.

I have often obferved, in this diftrict, and in other parts of the Grampians, that the loofe and outlying blocks of both granite and of porphyry, (which have not been worn down by attrition),
trition), confift, in general, of oblong fquare fhapes. This obfervation, when I firt made it, led me to imagine, that thofe rocks here were perhaps ftratified. I have, however, as yet, not been able to trace real ftratification of thofe rocks in this diftrict of the Grampians.

Upon fome of the fummits of thofe hills which here form the bafis of the central range, I firf difcovered the granite in folid rock. In thofe fituations, the granite is only feen in patches, where the fuperincumbent rocks have worn off it. Thefe fuperincumbent rocks, which I here found in contact with the granite, are of two different compofitions, and occur on the fummits of different hills. The one of thofe rocks, and the moft prevalent one, is the micaceous fhiftus; the other is the granitelle, or a mixture of quartz and fhorl. In fome parts of this laftmentioned rock, I perceived a fimall admixture of hornblende: where this appears in the compofition, it perhaps ought to receive the appellation of granitine. In thofe elevated fituations, I found both of thofe rocks, (efpecially the micaceous fhiftus), in a ftate of decompofition, and faft leaving the granite expofed to the eye.

From thofe appearances, it is to be inferred, that the interior of thofe hills is compofed of granite, which is but thinly coated by the fuperincumbent rocks.

Upon leaving thefe hills, which, I have already faid, form the bafis of the central chain of the Grampians, I regretted very much, that all my endeavours proved abortive to trace out the whole extent, in line, of any one of thofe dikes of porphyry which interfect their fides. I conftantly loft them under peat or other foils, before I could trace them to their contact with the granite. It was my anxious wifh to fee how thofe two rocks of porphyry and granite connected with each other at their junction.

In purfuing my refearches towards the fummit of Mount Batoc, I proceeded up the bed of a torrent, which, after heavy rains, dathes down the immediate fide of that mountain. In this bed, the blocks of micaceous fchiftus and of porphyry, (which I had feen fo abundantly fcattered among the hills that I had juft left), totally difappeared, and no outlyers of any kind were to be feen, excepting fome granites, which were fcattered in large maffes; and in every part, where the torrent had carried off the fuperincumbent foil, the granite was to be feen in folid rock.

In my progrefs towards the fummit of this mountain, I fell in with a large face of the native granite rock expofed to the eye. By the cracks in this face being in long-extended horizontal lines, it had at firft the appearance of being ftratified; but upon a nearer and more minute examination, I found that it was not flratified, and that the cracks which gave it that appearance were only fuperficial.

Around this face were fcattered large blocks of granite, which were moftly in oblong fquare fhapes.

Soon after pafling this precipice, I gained the fummit of the mountain, which, though not very highly elevated, is in this part of the chain the higheft of the central range. It is about 3465 feet above the level of the fea; and is entirely compofed of a coarfe-grained granite, in which fhorl fometimes occurs; and its felfpar is very generally cryftallized.

Having here finifhed the extent of my intended inveftigation, I beg to be permitted to add, that the line which I have here given the defcription of, has been traced with much attention, and the true pofition of each foffil has been moft fcrupuloufly attended to, and is correctly placed in the annexed plate.

I Wish that fome more able pen than mine, would take up the further defcription of this extended field of geology, fo worthy of inveftigation; but if none will come forward for that purpofe, I may at fome future period prefume to give to this Society more extended, and more general lines of defcription of the Grampians, than that which I have now had the honour of fubmitting to their examination.
II. A Geometrical Investigation of fome curious and interefting Properties of the Circle, $E^{\circ} c_{0}$ By $\mathcal{F} A M E s$ Glenie, $E \int q$; A. M. F. R.S. Lond. \& Edin.

[Read April 1. 1805.]

Dear Sir,
Edinburgh, 22d March 1805.

AS the following paper refers in a great meafure to the general theorems publifhed by your father, I now commit it to your care, and that of my friend Mr Playfair, Profeffor of Natural Philofophy. I wifh it to be communicated to the Royal Society of Edinburgh, and, if approved of, to be inferted in their Tranfactions as foon as poffible. Indeed, I truft, that even fimple as it is, it will not be altogether unacceptable to that learned body.

I am,

Dear Sir,

Moft fincerely your, \&c.
JAs Glenie.
$\mathrm{T}_{\mathrm{Hat}}$ truly elegant and inventive geometer the late Dr Matthew Stewart, publifhed at Edinburgh, in 1746, without demonftrations, a number of general theorems, of great ufe in the higher parts of mathematics, and much calculated for improving and extending geometry. Such of them as refer to the circle, and to regular figures infcribed in, and circumfcribed about it, have not, as far as I can underftand, been yet demonftrated. Thefe, with an endlefs variety of other theorems, are derivable, as corollaries, from the following general though fimple geometrical inveftigation, that otcurred to me fifteen years ago, and which, I fuppofe, has remained fo long unknown and unattended to chiefly on account of its fimplicity.

Let A, B, C, \&c. (Pl. II. Fig. ı.) be any number of points in the circumference of a circle, and let that number be denoted by n. Let RA, RS, ST, \&c. be tangents to the circle, in the points A, $\mathrm{B}, \mathrm{C}, \& \mathrm{c} . ;$ and let POQ be any diameter. Let $\mathrm{Q} c, \mathrm{Q} d, \mathrm{Q} f$, \&c. be perpendiculars from the point Q to the diameters paffing through the points $\mathrm{A}, \mathrm{B}, \mathrm{C}, \& \mathrm{c}$., and $\mathrm{P} a, \mathrm{P} \cdot, \mathrm{P} c_{2} \& c$. perpendiculars from the point P to the fame diameters.

Then it is evident, that $\overline{\mathrm{PQ}}^{2}=\overline{\mathrm{AP}}^{2}+\overline{\mathrm{AQ}}^{2}=\overline{\mathrm{BP}}^{2}+\overline{\mathrm{BQ}}^{2}=$ $\overline{\mathrm{CP}}^{2}+\overline{\mathrm{CQ}}^{2}$, $=\& \mathrm{c}$. Wherefore $\overline{\mathrm{PQ}}^{2} \times n=\overline{\mathrm{AP}}^{2}+\overline{\mathrm{BP}}^{2}+\overline{\mathrm{CP}}^{2}+$, $\& c .+\overline{\mathrm{AQ}}^{2}+\overline{\mathrm{BQ}}^{2}+\overline{\mathrm{CQ}}^{2}+, \& \mathrm{c} . \quad$ But $\overline{\mathrm{AP}}^{2}=\mathrm{AG} \times \mathrm{A} a=\mathrm{PQ}$ $\times \mathrm{A} a, \overline{\mathrm{BP}}^{2}=\mathrm{PQ} \times \mathrm{B} e, \overline{\mathrm{CP}}^{2}=\mathrm{PQ} \times \mathrm{C} b, \& c$. ; and $\overline{\mathrm{AQ}}^{2}+\overline{\mathrm{BQ}}^{2}+$ $\overline{\mathrm{CQ}^{2}}+, \& \mathrm{c} .=\mathrm{PQ} \times \overline{\mathrm{A} c+\mathrm{B} f+\mathrm{C} d+, \& \mathrm{c} .}$ Now $\mathrm{A} a, \mathrm{~B} e$, $\mathrm{C} b, \& c$. are refpectively equal to perpendiculars drawn from P to the tangents RA, RS, $\mathrm{ST}, \& \mathrm{c}$., as are $\mathrm{A} c, \mathrm{~B} f, \mathrm{C} d, \& \mathrm{c}$. equal to perpendiculars drawn from Q to the fame tangents. Confequently the fum of all the perpendiculars drawn from the points P and Q to lines touching the circle in the points, A, B; $\mathrm{C}, \& \mathrm{c}$. is equal to $\mathrm{PQ} \times n$, or a multiple of the diameter by n.

The fame may be proved othewife; for fince $\mathrm{O} a=\mathrm{O} c, \mathrm{~A} a$ $=\mathrm{G} c, \mathrm{~A} a+\mathrm{A} c=$ the diameter. In like manner, $\mathrm{Be}+\mathrm{Bf}=$ the diameter, and $\mathrm{C} b+\mathrm{C} d=$ diameter, \&c.

In the fame way, it is demonftrated, that if from any two points p, q, in the diameter PQ , equally diftant from the centre O, perpendiculars be drawn to the lines touching the circle in the points $\mathrm{A}, \mathrm{B}, \mathrm{C}, \& \mathrm{c}$. their fum is equal to a multiple of the diameter by n.

But if from any two points V, W, in PQ produced, equally diftant from the centre O , lines drawn perpendicular to any diameter B. r, paffing through any point of contact B , fall beyond its extremities B, r, the difference of the perpendiculars drawn from W, V, to the line touching the circle in B, is equal to the diameter, and fo on.

So alfo, when perpendiculars from the points V, W in PQ , produced to the diameters paffing through the points of contact $\mathrm{A}, \mathrm{B}, \mathrm{C}, \& \mathrm{c}$. do not fall beyond the extremities of any of thefe diameters, perpendiculars from V and W to right lines touching the circle in the points $\mathrm{A}, \mathrm{B}, \mathrm{C}, \& \mathrm{c}$. are taken together equal to a multiple of the diameter by the number of the faid points.

Cor. I. Perpendiculars drawn from P and Q , or p and q, to lines touching the circle in the points $\mathrm{A}, \mathrm{B}, \mathrm{C}, \& \mathrm{c}$. are together equal to a multiple of the radius by $2 n$.

Cor. 2. The fum of perpendiculars drawn from P, Q, or \dot{p}, q, to the fides of any regular figure circumfcribed about the circle, is equal to twice the fum of perpendiculars drawn to the fides of a regular figure of the fame number of fides circumfcribing the circle from any point within the fame regular figure.
Cor. 3. $\frac{\overline{\mathrm{AP}}+\overline{\mathrm{BP}}^{2}+\overline{\mathrm{CP}}^{2}+, \& \mathrm{c} \text {. }}{d}=$ fum of the perpendiculars drawn from P to right lines touching the circle in the points A, $\mathrm{B}, \mathrm{C}, \& \mathrm{c} . d$ denoting the diameter.

Or a third proportional to the diameter and the chord AP, together with a third proportional to the diameter and the chord BP, together with a third proportional to the diameter and the chord
chord CP, \& c. is equal to the fum of the perpendiculars drawn from the point P to right lines touching the circle in the points A, B, C, \&c.
$\mathrm{A}_{\mathrm{N} D} \frac{\overline{\mathrm{AQ}}^{2}+\overline{\mathrm{BQ}}^{2}+\overline{\mathrm{CQ}}^{2}+, \& \mathrm{c} .}{d}=$ fum of perpendiculars drawn from Q to the fame lines.

Again, fince by a well known property of the circle, $\overline{\mathrm{A}}^{2}+\overline{\mathrm{AQ}}^{2}=\overline{\mathrm{BP}}^{2}+\overline{\mathrm{BQ}}^{2}=\overline{\mathrm{CP}}^{2}+\overline{\mathrm{CQ}}^{2}=\& \mathrm{c} .=2 r^{2}+2 \overline{\mathrm{OP}}^{2}$, r denoting radius, the fum of the fquares of lines drawn from the points $\mathrm{A}, \mathrm{B}, \mathrm{C}, \& \mathrm{c}$. to any two points. p, q, in the diameter equally diftant from the centre, is $=2 n r^{2}+2 n \times \overline{O^{2}}=$ a mul tiple of r^{2}, by twice the number of the points $\mathrm{A}, \mathrm{B}, \mathrm{C}, \& \mathrm{c}$. together with the fame multiple of the fquare of $\mathrm{O} p$ or $\mathrm{O} q$.

In like manner, $\overline{\mathrm{AV}}^{2}+\overline{\mathrm{AW}}^{2}+\overline{\mathrm{BV}}^{2}+\overline{\mathrm{BW}}^{2}+\overline{\mathrm{CV}}^{2}+\overline{\mathrm{CW}}^{2}+$, \&c. $=2 n r^{2}+2 n \times \overline{\mathrm{OV}}^{2}=$ a multiple of r^{2} by twice the number of the points $\mathrm{A}, \mathrm{B}, \mathrm{C}, \& \mathrm{c}$., together with the fame multiple of $\overline{\mathrm{OV}^{2}}$ or $\overline{\mathrm{OW}}^{2}$.

And fince the fquares of the chords $\mathrm{AP}, \mathrm{BP}, \mathrm{CP}, \& \mathrm{c}$. are to gether equal to the fum of the fquares of the perpendiculars drawn from P to the right lines touching the circle in the points $\mathrm{A}, \mathrm{B}, \mathrm{C}, \& \mathrm{c}$. together with the fum of the fquares of the perpendicular diftances of P from the diameters paffing through thefe points, the fum of the fquares of $\mathrm{A} p, \mathrm{~B} p, \mathrm{C} p, \& \mathrm{c}$. is in like manner equal to the fum of the fquares of perpendiculars from p to thefe lines, together with the fum of the fquares of the perpendicular diftances from p to the faid diameters.
IN like manner, $\overline{\mathrm{A} q}^{2}+\overline{\mathrm{B} q}^{2}+{\overline{\mathrm{C}}{ }^{2}}^{2}+, \& \mathrm{c}$. $=$ fum of fquares of perpendiculars from q to the lines touching the circle in A, $\mathrm{B}, \mathrm{C}, \& \mathrm{c}$. together with the fum of the fquares of the perpendicular diftances of q from the diameters paffing through A, B, C, \&c.

Wherefore the fquares of the perpendicular diftances of either \mathbf{P} or Q , from diameters paffing through the points of contact A, B, C, \&c., are, taken together, equal to the excefs of the rectangle under half the diameter PQ , and the fum of perpendiculars from P and Q to right lines touching the circle in the points $\mathrm{A}, \mathrm{B}, \mathrm{C}, \& \mathrm{c}$. above half the fum of the fquares of faid perpendiculars $=n r^{2}-r s$, (s being equal to the fum of perpendiculars from O , as, in what follows, to right lines touching the circle, of which $O Q$ is the diameter, in the points $c, d, f, \& c$.). And the fum of the fquares of thefe perpendicular diftances from both P and Q , is $=2 n r^{2}-2 r s$. This is alfo evident, from all angles in a femicircle being equal to right ones.
 $=4 n r^{2}$; and $4 n r^{2}-2 n r^{2}-2 r s=2 n r^{2}-2 r s$.
Consequently, when the whole circle is divided into equal parts, in the points $\mathrm{A}, \mathrm{B}, \mathrm{C}, \& \mathrm{c} . \overrightarrow{\mathrm{A} p}^{2}+\overrightarrow{\mathrm{B}}^{2}+\overrightarrow{\mathrm{C}}^{2}+\& c .=$ $\overrightarrow{\mathrm{A}}^{2}+\widehat{\mathrm{B} q}^{2}+\overrightarrow{\mathrm{C} q}^{2}+\& \mathrm{c} .=n r^{2}+n \times \overrightarrow{\mathrm{O} p}^{2} ;$ and $\overline{\mathrm{AV}}^{2}+\overrightarrow{\mathrm{BV}}^{2}+$ $\overline{\mathrm{CV}}^{2}+\& \mathrm{c} .=\overline{\mathrm{AW}}^{2}+\overline{\mathrm{BW}}^{2}+\overline{\mathrm{CW}}^{2}+\& \mathrm{c} .=n r^{2}+n \times \overline{\mathrm{OV}}^{2}$. For the fum of perpendiculars drawn from p to the fides of any regular figure circumfcribing the circle, is then equal to the fum of the perpendiculars drawn from q to the fides of the fame figure. The fame obfervation holds with regard to perpendiculars drawn from the points V , W .
From the foregoing general inveftigation, when the circle is fuppofed to be equally divided in the points A, B, C, \&c. Dr Stewart's firft, fecond, third, and eleventh theorems can be immediately derived.

I shall, however, proceed regularly with the inveftigation; and, in the firft place, take the fquares of the perpendiculars from P and Q to the right lines touching the circle in the points $\mathrm{A}, \mathrm{B}, \mathrm{C}, \& \mathrm{c}$. which perpendiculars are refpectively equal to $\mathrm{A} a$, $\mathrm{A} c ; \mathrm{B} f, \mathrm{~B} e ; \mathrm{C} d, \mathrm{C} b ; \& c$.

Vol. VI.-P. I.

$$
\begin{aligned}
& \text { Now: } \overline{\mathrm{A} c}^{2}+\overline{\mathrm{A} a}^{2}={\overline{r+c \mathrm{O}^{2}}}^{2}+\overline{r-c \mathrm{O}}^{2}=2 r^{2}+2 \times \overline{c \overline{\mathrm{O}}}^{2} \\
& \overline{\mathrm{~B} f}^{2}+{\overline{\mathrm{B}}{ }^{2}}^{2}=\overline{r+\mathrm{Of}}^{2}+\overline{r-\mathrm{Of}}^{2}=2 r^{2}+2 \times \overline{\mathrm{O} f}^{2} \\
& \overline{\mathrm{C} d}^{2}+\overline{\mathrm{C} b}^{2}=\overline{r+\mathrm{O} d}^{2}+\overline{r-\mathrm{O} d}^{2}=2 r^{2}+2 \times \overline{\mathrm{O} d}^{2} \\
& \& \mathrm{c} . \& \mathrm{c} .
\end{aligned}
$$

Wherefore the fum of the fquares of perpendiculars from P, Q to lines touching the circle in the points $A, B, C, \& c$. is $=2 n \times r^{2}+2 \times \overline{\overline{\mathrm{O}}{ }^{2}+\overline{\mathrm{Of}}^{2}+\overline{\mathrm{Od}}^{2}+\& \mathrm{c}}$. But the points c, d, f, are in the circumference of a circle, of which the diameter is OQ or r, and by Cor. 3. the fum of $\overline{\mathrm{O} c}^{2}+\overline{\mathrm{Off}}^{2}+\overline{\mathrm{O} d}^{2}+\& \mathrm{c} .=\mathrm{OQ} \times$ into the fum of perpendiculars drawn from O to lines touching the circle, of which OQ is the diameter, in the points c, d, f, \&c. Call the fum of thefe perpendiculars s. Then we have the fum of the fquares of perpendiculars drawn from P, Q to lines touching the circle APQ in the points $A, B, C, \& c .=2 n \cdot x^{2}$ $+2 r s=($ Cor. 3. $) \overline{\mathrm{AP}}^{4}+\overline{\mathrm{BP}}^{4}+\overline{\mathrm{CP}}^{4}+\& \mathrm{c} \cdot+\overline{\mathrm{AQ}}^{4}+\overline{\mathrm{BQ}}^{4}+\overline{\mathrm{CQ}}^{4}+\& \mathrm{c}$.
When the circumference is divided into equal parts by the points $A, B, C, \& c$. or the angles at O are equal, $s=\frac{n}{2} \times O Q$ or $\frac{n}{2} \times r$ and $2 n r^{2}+2 r s=3 n r^{2}$.

If a regular figure be infcribed in the circle, having its angles at the points $\mathrm{A}, \mathrm{B}, \mathrm{C}, \& \mathrm{c}$. or a regular figure be circumfcribed about the circle, having its fides tangents to it in the points $\mathrm{A}, \mathrm{B}, \mathrm{C}, \& \mathrm{c}$. we get from the general expreffion $\frac{\overline{\mathrm{AP}}^{4}+\overline{\mathrm{BP}}^{4}+\overline{\mathrm{CP}}^{4}+8 \mathrm{c} \text {. }}{r}$ or $\frac{\overline{\mathrm{AQ}}^{4}+\overline{\mathrm{BQ}}^{4}+\overline{\mathrm{CQ}}^{4}+\& \mathrm{c}}{r}=4^{n r^{3}}$
$+4 r^{2} s=4 n r^{3}+2 n r^{3}=6 n r^{3}$, or third proportionals to radius, the chords drawn from either P or Q to the points A, B, $\mathrm{C}, \& \mathrm{c}$. and the cubes of thefe chords equal, when taken together, to fix times a multiple of the cube of radius by the num-
ber of the fides of the infcribed or circumfcribed figure; or to fpeak algebraically, the fum of the fourth powers of the chords is equal to fix times a multiple of the fourth power of the femidiameter of the circle, by the number of the fides of the figure. This is Dr Stewart's 23d theorem.

In like manner,

$$
\begin{aligned}
& \overline{\mathrm{Ac}}^{3}+\overline{\mathrm{Aa}}^{3}=\overline{r+\mathrm{O}}^{3}+{\overline{r-\mathrm{O}_{c}}}^{3}=2 r^{3}+6 r \times{\overrightarrow{\mathrm{O}} c^{2}}^{2} \\
& {\overline{\mathrm{~B}}{ }^{3}}^{3}+\overline{\mathrm{Be}}^{3}=\overline{r+\mathrm{Of}^{3}}+\overline{\mathrm{C}-\mathrm{Of}}{ }^{3}=2 r^{3}+6 r \times \overrightarrow{\mathrm{Of}}^{2} \\
& \overline{\mathrm{C} d}^{3}+\overline{\mathrm{C} b}^{3}=\overline{\mathrm{rO} d}^{3}+{\overline{r-\mathrm{O}} d^{3}}^{3}=2 r^{3}+6 r \times \overline{\mathrm{O} d}^{2}
\end{aligned}
$$

\&c.
\&c.
\&c.
And the cubes of perpendiculars from P and Q to right lines touching the circle in the points $\mathrm{A}, \mathrm{B}, \mathrm{C}, \& \mathrm{c}$. are taken together
$=2 n r^{3}+6 r \times \overline{\overline{\mathrm{O}}}{ }^{2}+\overline{\mathrm{Of}}+\overline{\mathrm{O} d^{2}}+\& \mathrm{c} .=($ by Corollary 3.) $\frac{\overline{\mathrm{AP}}^{6}+\overline{\mathrm{BP}}^{6}+\overline{\mathrm{CP}}^{6}+\& \mathrm{c} \cdot+\overline{\mathrm{AQ}}^{6}+\overline{\mathrm{BQ}}^{6}+\overline{\mathrm{CQ}}^{6}+\& \mathrm{c}}{d^{6}}$.

But $\overline{\mathrm{O} c}^{2}+\overrightarrow{\mathrm{O} f}^{2}+\overline{\mathrm{Od}}^{2}+\& \mathrm{c} .=\frac{n r^{2}}{2}$, when the circumference is equally divided in the points $\mathrm{A}, \mathrm{B}, \mathrm{C}, \& \mathrm{c}$. or when a regular figure is circumfcribed about the circle, with its fides touching the fame in faid points. Wherefore the cubes of perpendiculars from P and Q to the fides of a regular figure of a greater number of fides than three circumfrribed about the circle, are taken together $=5^{n r^{3}}$. This is Dr Stewart's 19th theorem.

AND if a regular figure of a greater number of fides than three be infcribed in the circle, having its angles in the points A, B, C, \&c. third proportionals to the cube of the diameter and the cubes of chords drawn from P and Q to the points A, B, G, \&c. will, taken together, be equal to $5^{n} r^{3}$; or third proportionals to the cube of the diameter and chords drawn from either P or Q to the faid angular points, will taken together, $\mathrm{be}=\frac{5 n r^{3}}{2}$;
or, to fpeak algebraically, the fum of the fixth power of chords drawn from either P or Q to the faid points, will be equal to twenty times a multiple of the fixth power of radius, by the number of the fides of the infcribed figure.

In like manner,

$$
\begin{aligned}
& \frac{\overline{\mathrm{A} c}^{4}+\overline{\mathrm{Aa}}^{4}}{r}=\frac{\overline{r+\mathrm{O} c}^{4}+\overline{r-O}^{4}}{r}=2 r^{3}+12 r \times \overline{\mathrm{O} c}^{2}+\frac{2 \times \overline{\mathrm{O} c}^{4}}{r} ; \\
& \frac{\overline{\mathrm{Bf}}^{4}+\overline{\mathrm{B} e}^{4}}{r}=\frac{\overline{r+\mathrm{O} f}+\overline{r-\mathrm{O} f}}{4}=2 r^{3}+12 r \times \overline{\mathrm{O} f}^{2}+\frac{2 \times \overline{\mathrm{O} f}^{4}}{r} \\
& \frac{\overline{\mathrm{Cd}}^{4}+\overline{\mathrm{C} b}^{4}}{r}=\frac{\overline{r+\mathrm{O} d}^{4}+{\overline{\mathrm{O}}-\overline{\mathrm{O} d}^{4}}_{r}^{r}=2 r^{3}+12 r \times \overline{\mathrm{O} d}^{2}+\frac{2 \times \overline{\mathrm{O} d}^{4}}{r}}{\& \mathrm{c} .} \mathrm{\& c.}
\end{aligned}
$$

And third proportionals to radius, perpendiculars from P and Q to right lines touching the circle in the points $\mathrm{A}, \mathrm{B}, \mathrm{C}, \& \mathrm{c}$. and the cubes of faid perpendiculars are, taken together, equal to $2 n r^{3}+12 r \times \overline{\overline{\mathrm{O}} c^{2}+\overline{\mathrm{O} f}^{2}+\overline{\mathrm{O} d}^{2}+\& \mathrm{c} .+2 \times \frac{\overline{\mathrm{O} c}^{4}+\overline{\mathrm{Of}}^{4}+\overline{\mathrm{O} d}^{4}+\& \mathrm{c} .}{r} ~ . ~}$ $=$ (by Cor. 3.) $\frac{\overline{\mathrm{AP}}^{8}+\overline{\mathrm{BP}}^{8}+\overline{\mathrm{CP}}^{8}+\& \mathrm{c} .}{d^{4} \times r}+\frac{\overline{\mathrm{AQ}}^{3}+\overline{\mathrm{BQ}}^{8}+\overline{\mathrm{CQ}}^{8}+\& \mathrm{c}}{d^{4} \times r}$

But $\overline{\mathrm{O} c}^{2}+\overline{\mathrm{O} f}^{2}+\overline{\mathrm{O} d}^{2}+8 \mathrm{c} .=\frac{n r^{2}}{2}$ when the circumference is equally divided in the points $\mathrm{A}, \mathrm{B}, \mathrm{C}, \& \mathrm{c}$. or when a regular figure is circumfcribed about the circle, with its fides touching the fame in faid points, and i2 $r \times \frac{n r^{2}}{2}=6 n r^{3}$. Alfo $2 \times \frac{\overline{\mathrm{O}} c^{4}+\overline{\mathrm{Of}}^{4}+\overline{\mathrm{O}}^{4}+8 \mathrm{c}}{r}$. is then $=\frac{3 n r^{3}}{4}$. Wherefore thefe third proportionals are taken together equal to $8 n r^{3}+3 \frac{n r^{3}}{4}=$ $\frac{35 n r^{3}}{4}$; and four times their aggregate is equal to $35^{n} r_{3}$. Or,
to fpeak algebraically, eight times the fum of the fourth powers of perpendiculars from either P or Q to the fides of a regular figure of a greater number of fides than four circumferibed about the circle, and touching it in the points A, B, C, \&c. are equal to thirty-five times the multiple of the fourth power of radius by the number of the fides of the figure. This is Dr Stewart's 25 th theorem.

And if a regular figure of a greater number of fides than four be infcribed in the circle, having its angles in the points $\mathrm{A}, \mathrm{B}, \mathrm{C}$, \&c. the eighth powers of the chords drawn from either P or Q to the points $\mathrm{A}, \mathrm{B}, \mathrm{C}, \& \mathrm{c}$. (to fpeak algebraically) is equal to $70 n r^{8}=n \times \frac{\mathrm{I} \cdot 3 \cdot 5 \cdot 7}{\mathrm{I} \cdot 2 \cdot 3 \cdot 4} \cdot 2^{4} \cdot r^{8}=$ feventy times a multiple of the eighth power of radius by the number of the fides of the figure.

In like manner,

$$
\begin{aligned}
& \frac{r+\mathrm{O} c^{5}+\overline{\mathrm{O}}^{5}}{r^{2}}=2 r^{3}+20 r \times \overline{\mathrm{O} c}^{2}+\frac{10 . \overline{\mathrm{Oc}}^{3}}{r}, \\
& \frac{\overline{r+\mathrm{O} f^{5}+r-\mathrm{O} f^{5}}}{r^{2}}=2 r^{3}+20 r \times \overline{\mathrm{O} f}^{2}+10 \times \frac{\overline{\mathrm{Of}}^{4}}{r}, \\
& \frac{{\overline{r+\mathrm{O}} d^{5}}^{5}+\overline{r-\mathrm{O} d}^{5}}{r^{2}}=2 r 3+20 r \times \overline{\mathrm{Od}}^{2}+10 \times \frac{\overline{\mathrm{O}}^{4}}{r} \\
& \& \mathrm{c} .
\end{aligned}
$$

WHEREFORE $\frac{{\overline{r+O}{ }^{5}}^{5}+\overline{r-O} c^{5}}{r^{2}}+\frac{\overline{r+\mathrm{O} f}^{5}+\overline{r-\mathrm{O} f}^{5}}{r^{2}}+\frac{\overline{r+\mathrm{O} d^{5}}+\overline{r-\mathrm{O} d^{5}}}{r^{2}}$ $+8 c .=2 n r^{3}+10 n r^{3}+\frac{15 n r^{3}}{4}=\frac{63 n r^{3}}{4}$ equal (by Cor. 3.) to $\frac{\overline{\mathrm{AP}}^{\mathrm{ro}}+\overline{\mathrm{BP}}^{10}+\overline{\mathrm{CP}}^{10}+8 \mathrm{c} \cdot+\overline{\mathrm{AQ}}^{10}+\overline{\mathrm{BQ}}^{10}+\overline{\mathrm{CQ}}^{\circ}+8 \mathrm{c} \text {. } \text {, when } \text {, } d^{5} r^{2}}{}$, the circle is equally divided in the points $A, B, C, \& c$.

And generally when m is any integer whatfoever, we have $\frac{{\overline{r+\mathrm{O}_{c}}}^{n}+\overline{r-\mathrm{O} c}^{m}}{r^{m-3}}+\frac{{\overline{r+\mathrm{Of}^{n}}}^{r^{m-3}} \overline{\mathrm{Of}}^{n}}{n}+\frac{\overline{r+\mathrm{Od}}^{m}+\overline{r-\mathrm{O} d}^{n}}{r^{m-3}}$ $+\& c$. equal to $2 n r^{3}+\frac{m}{\mathrm{I}} \cdot \frac{m-\mathrm{I}}{\mathrm{I}} \cdot r \times \overline{\overline{\mathrm{O} c^{2}}+\overline{\mathrm{O} f^{2}}+\overline{\mathrm{O} \bar{d}^{2}+\& \mathrm{c} .}+}+$ $\frac{m}{\mathrm{I}} \cdot \frac{m-\mathrm{I}}{\mathrm{I}} \cdot \frac{m-2}{3} \cdot \frac{m-3}{4} \times \frac{\overline{\mathrm{O}} \mathrm{c}^{4}+\overline{\mathrm{Of}}^{4}+\overline{\mathrm{O} d}^{4}+8 c_{.}}{r}+\frac{m}{\mathrm{I}} \cdot \frac{m-\mathrm{I}}{\mathrm{I}} \cdot \frac{m-2}{3}$. $\frac{m-3}{4} \cdot \frac{m-4}{5} \cdot \frac{m-5}{6} \times \frac{\overline{\mathrm{O}} \mathrm{c}_{6}+\overline{\mathrm{Of}}+_{6}^{r^{3}} \overline{\mathrm{Od}}^{6}+\& \mathrm{c} .}{r^{3}}+\& \mathrm{c} .=($ Cor. 3.) $\frac{\overline{\mathrm{AP}}^{-2 m}+\overline{\mathrm{BP}}^{2 m}+\overline{\mathrm{CP}}^{-2 m}+\& \mathrm{c} .}{d^{m n} r^{m=-3}}+\frac{\overline{\mathrm{AQ}}^{2 m}+\overline{\mathrm{BQ}}^{2 m}+\overline{\mathrm{CQ}}^{2 n}+\& \mathrm{c} .}{d^{m} r^{m-3}} ;$ which, when the circle is equally divided in the points $\mathrm{A}, \mathrm{B}, \mathrm{C}$, \&c. by the circumfcription or infcription of a regular figure, coincides with the 36 th and 38 th of Dr Stewart's general theorems.

AND 'univerfally if \grave{m} have to l any ratio whatfoever,
 is $=2 n r^{3}+\frac{m}{l} \cdot \frac{m-l}{l} \cdot r \times \overline{\overline{\mathrm{Oc}^{2}}+\overline{\mathrm{Of}}^{2}+\overline{\mathrm{Od}}^{2}+\& \mathrm{c} \cdot}+\frac{m}{l} \cdot \frac{m-l}{l} \cdot \frac{m-2 l}{3^{l}}$. $\frac{m-3 l}{4^{l}} \times \frac{\overline{\mathrm{O}}^{4}+\overline{\mathrm{Of}}^{7}+\overline{\mathrm{O} d}^{4}+\& \mathrm{c}_{.}}{r}+\frac{m}{l} \cdot \frac{m-l}{l} \cdot \frac{m-2 l}{3^{l}} \cdot \frac{m-3 l}{4^{l}} \cdot \frac{m-4 l}{5^{l}}$ $\frac{n-5 l}{6 l} \times \frac{\overline{\mathrm{Oc}}^{6}+\overline{\mathrm{Of}}^{6}+\overline{\mathrm{Od}}^{6} \times \& \mathrm{c} .}{r^{3}}+\& c . \& c$.

This laft theorem, or expreffion, is more general than any of Dr Stewart's theorems, and will furnif an endlefs number of new and curious infinite feriés, with their fummations. It may alfo be extended to the chords AP, BP, \& c. and expreffed in terms of them. And as to the truth of the binomial
nomial and refidual theorems, when m has to l the ratio of any two homogeneous magnitudes whatfoever, I muft refer the reader to my general demonftration of both in Baron Maseres's Scriptores Logarithmici, vol. 5. and to fome of the geometrical formulæ in my Univerfal Comparifon.

In like manner, if $p g, p h, p i$, \&c. be perpendiculars refpec-
 $+r \overline{-O g}^{2}+{\overline{r+O b^{2}}}^{2}+\overline{r-O b}^{2}+\& \mathrm{c}=2 n r^{2}+2 x$ ${\overline{\overline{\mathrm{O}}^{2}}+\overline{\mathrm{Og}}^{2}+\overline{\mathrm{Ob}}^{2}+\& \mathrm{c} .}=2 n r^{2}+n \cdot \overline{\mathrm{O} p}^{2}$, when the circle is equally divided in the points $\mathrm{A}, \mathrm{B}, \mathrm{C}, \& \mathrm{c}$. or when a regular figure is circumfcribed about it, with its fides touching it in thefe points. This is Dr Stewart's third theorem, of which he gives. a demonftration of confiderable length.

In like manner,

$\overline{r+O i}^{3}+{\overline{r-\mathrm{O}^{2}}}^{3}+{\overline{r+\mathrm{O}^{\prime}}}^{3}+\overline{\mathrm{-O}}^{3}+{\overline{r+\mathrm{Ob}^{3}}}^{3}+{\overline{\mathrm{O}}{ }^{-}{ }^{3}}^{3}$ $+\& c$. are equal to $2 n r^{3}+6 r \times \overline{\overline{\mathrm{O}}^{2}+\mathrm{O}^{2}+\overline{\mathrm{Ob}}^{2}+\& \mathrm{c} .}=2 n r^{3}$ $+3 r \times \overline{\mathrm{O} p}^{2}$, when the circle is equally divided in the points, A , $\mathrm{B}, \mathrm{C}, \& \mathrm{c}$. or when a regular figure circumfcribing it touches it in thefe points. This is Dr Stewart's 20th theorem.

In like manner,
$\frac{\overline{r+O}^{4}+\overline{r-O}^{4}}{r}+\frac{{\overline{r+\mathrm{Og}^{2}}}^{4}+{\overline{r-\mathrm{O}_{g}}}^{4}}{r}+\frac{\overline{r+\mathrm{Ob}}^{4}+{\overline{r-\mathrm{O}}{ }^{4}}_{r}^{r}}{r}$
$+\& \mathrm{c}$. is equal to $2 n r^{3}+12 r \times{\overline{\mathrm{O}}{ }^{2}+\overline{\mathrm{Og}}^{2}+\overline{\mathrm{O}}^{2}+\& \mathrm{c} .}+2 \times$ $\frac{\overline{\mathrm{O}}^{4}+\overline{\mathrm{O} g}^{4}+\overline{\mathrm{O} b}^{4}+\& \mathrm{c}}{r}=$ to $2 n r^{3}+6 r \times \overline{\mathrm{O} p}^{2} \times n+\frac{3^{n \cdot \overline{\mathrm{O} p}^{4}}}{4^{r}}$,
when the circle is equally divided in the points $\mathrm{A}, \mathrm{B}, \mathrm{C}, \& \mathrm{c}$. or when a regular, figure, circumfcribing it, touches it in thefe points. And a multiple of this by four, or eight times the aggregate of third
third proportionals to r, the perpendiculars from either p or q to the fides of the regular circumfcribing figure, and the cubes of thefe perpendiculars is equal to $8 n r^{3}+24 n r \times \overline{\mathrm{O} p}^{2}+3 n \times$ $\frac{\overline{\mathrm{O} p}^{4}}{r}$; or, fpeaking algebraically, eight times the fum of the fourth powers of perpendiculars from either p or q are equal to $8 n r^{4}$, together with 24 times a multiple by n of the fourth power of the line whofe fquare is equal to $r \times \mathrm{O} p$, together with thrice a multiple by n of $\overline{\mathrm{O} p}^{4}$. This is Dr Stewart's 26th theorem.

In like manner,
$\frac{\overline{r+O}_{i}{ }^{5}+\overline{r-O}_{i}{ }^{5}}{r^{2}}+\frac{{\overline{r+\mathrm{O}^{g}}}^{5}+{\overline{r-\mathrm{Og}^{g}}}^{5}}{r^{2}}+\frac{{\overline{r+\mathrm{Ob}^{2}}}^{5}+\overline{r-\mathrm{Ob}}^{5}}{r^{2}}+\& c$.

$=2 n r^{3}+10 n r \times \overline{\mathrm{O} p}^{2}+\frac{15 n \cdot \overline{\mathrm{Op}}^{4}}{4^{r}}$ when the circle is equally divided in the points $\mathrm{A}, \mathrm{B}, \mathrm{C}$, \& c . or when a regular figure circumfcribing it touches it in thefe points.

AND generally when m is any integer whatfoever, $\frac{\overline{r+O} i^{n}+\overline{r-O}^{n}}{r^{m-3}}+\frac{{\overline{r+\mathrm{Og}^{m}}}^{m}+{\overline{r-\mathrm{O}_{\mathrm{g}}}}^{m}}{r^{n-3}}+\frac{{\overline{r+\mathrm{Ob}^{m}}}^{m}+\overline{r-\mathrm{Ob}}^{m}}{r^{n-3}}$ $+\& \mathrm{c} \cdot$ is $=2 n r^{3}+\frac{m}{1} \cdot \frac{m-\mathrm{I}}{\mathrm{I}} \cdot r \times{\overline{\overline{\mathrm{O}}^{2}+\overline{\mathrm{Og}}^{2}+\overline{\mathrm{Ob}}^{2}+\& \mathrm{c} \cdot}+\frac{m}{\mathrm{I}} \cdot \frac{m-\mathrm{I}}{1} ~ . ~ . ~}_{\text {. }}$ $\frac{m-2}{3} \cdot \frac{m-2}{4} \times \frac{\overline{\mathrm{i}}^{4}+\overline{\mathrm{Og}}^{4}+\overline{\mathrm{Ob}}^{4}+\& \mathrm{c}_{.}}{r}+\frac{m}{1} \cdot \frac{m-1}{\mathrm{I}} \cdot \frac{m-2}{3} \cdot \frac{m-3}{4}$. $\frac{m-4}{5} \cdot \frac{\dot{m}-5}{6} \times$ into $\frac{\mathrm{O}^{6}+\overline{\mathrm{Og}}^{5}+\overline{\mathrm{Ob}}^{6}+\& \mathrm{c} .}{r}+\& \mathrm{c}$. \&c.; which, when the circle is equally divided in the points $\mathrm{A}, \mathrm{B}, \mathrm{C}$, \&c. or when
when a regular figure circumfcribing it touches it in faid points, gives Dr Stewart's 37th theorem, fince the fame reafoning and mode of demonftration holds good in regard to half the amount of this expreffion, whether the points p and q be in PQ , or in PQ produced.

AND univerfally if m have to l any ratio whatfoever,

$=2 n r^{3}+\frac{m}{l} \cdot \frac{m-l}{l} \cdot r \times \overline{\overline{\mathrm{O}}^{2}+\overline{\mathrm{Og}}^{2}+\overline{\mathrm{O}}^{2}+\& \mathrm{c} \cdot}+\frac{m}{l} \cdot \frac{m-l}{l} \cdot \frac{m-2 l}{3^{l}}$.
$\frac{m-3}{4^{l}} \cdot \times \frac{\overline{\mathrm{Oi}}^{2}+\overline{\mathrm{Og}}^{4}+\overline{\mathrm{Ob}}^{4}+\& \mathrm{c}}{r}+\frac{m}{l} \cdot \frac{m-l}{l} \cdot \frac{m-2 l}{3^{l}} \cdot \frac{m-3^{l} l}{4^{l}} \cdot \frac{m-4}{5^{l}}-$

This laft theorem or expreffion is more general than any of Dr Stewart's theorems, and from it may eafily be derived an endlefs number of new and curious infinite feries, with their fummations.

IT is almoft needlefs for me to obferve, that befides thefe theorems of Dr Matthew Stewart, an unlimited number of other theorems, refpecting figures both regular and irregular, circumfcribing and infcribed in the circle, may eafily be derived from the foregoing inveftigation, as well as a great number of geometrical infinite feries, with their fummations. And as to theorems refpecting given points, right lines and figures either regular or irregular, given by pofition, and right lines interfecting each other either in one point or in different points in angles either equal or unequal, that are deducible from it, they are innumerable.

Vol. VI.-P. I. E

Now,

Now, let a circle (Fig. 2.) be divided into an uneven number of equal parts, by the points A, B, C, D, E, \&c. and let PQ be any diameter; from P let $\mathrm{P} a, \mathrm{P} b, \mathrm{P} c, \mathrm{P} d, \mathrm{P} k, \& \mathrm{c}$. be drawn perpendicular to the diameters paffing through the points A, B, $\mathrm{C}, \& \mathrm{c}$. and from Q let $\mathrm{Q} e, \mathrm{Q} f, \mathrm{Q} g, \mathrm{Q} b, \mathrm{Q} i, \& \mathrm{c}$. be perpendicular to the fame diameters.

Then it is evident, that $\mathrm{A} a, \mathrm{~A} e$ are refpectively equal to perpendiculars drawn from P, Q, to a tangent to the circle in the point A ; and fince $\mathrm{O} a=\mathrm{O} e$, their fum $\mathrm{A} a+\mathrm{A} e=$ $\overline{r-\mathrm{O} a}+\overline{r+\mathrm{O} a}$. In like manner, the fum of the perpendiculars from P, Q to the tangent at B is $=\overline{r-\mathrm{O}} c+\overline{r+\mathrm{O}} c$, to the tangent at C is $=\overline{r-\mathrm{O} k}+\overline{r+\mathrm{O} k}$, to the tangent at D is $=\overline{r+\mathrm{Ob}}+\overline{r-\mathrm{Ob}}$, and to the tangent at E is $=\overline{r+\mathrm{Od}}+$ $r-\mathrm{O} d$. But $r-\mathrm{O} a+r-\mathrm{O} c+r-\mathrm{O} k+r+\mathrm{O} b+r+\mathrm{O} d=$ $r+\mathrm{O} a+r+\mathrm{O} c+r+\mathrm{O} k+r-\mathrm{O} b+r-\mathrm{O} d ; 2 \times \overline{\mathrm{O} b+\mathrm{O} d}=$ $2 \times \overline{\mathrm{O} a+\mathrm{O} c+\mathrm{O} k}$ and $\mathrm{O} b+\mathrm{O} d=\mathrm{O} a+\mathrm{O} c+\mathrm{O} k$, and fince $\overline{-\bar{O} a}^{2}+{\overline{-O} c^{2}}^{2} \overline{r-\mathrm{O}}^{2}+\overline{r+\mathrm{Ob}}^{2}+\overline{r+\mathrm{O} d}^{2}=\overline{\mathrm{+O}}^{2}+$ ${\overline{r-\mathrm{O}_{6}}}^{2}+{\overline{r+\mathrm{O}^{2}}}^{2}+\overline{r-\mathrm{O}^{2}}{ }^{2}+\overline{r-\mathrm{O} d}{ }^{2}$, we have this equation $4 \times \overline{r \times \mathrm{O} b+r \times \mathrm{O} d}=4 \times \overline{r \times \mathrm{O} a+r \times \mathrm{O} c+r \times \mathrm{O} k}$, or $\mathrm{O} b+$ $\mathrm{O} d=\mathrm{O} a+\mathrm{O} c+\mathrm{O} k$.

But if from a point in the circumference of a circle, perpendiculars be drawn to the alternate fides of a regular figure of an even number of fides circumfcribing the circle, or, which comés to the fame thing, beginning with any one fide, perpendiculars be drawn to the $1 \mathrm{ft}, 3 \mathrm{~d}, 5$ th, 7 th, \&c. fides, the fum of thefe perpendiculars, the fum of their fquares, the fum of their cubes, \&c. to the fum of their $\frac{n-1}{2}$ or $\frac{n-2^{\text {th }}}{2}$ powers, is refpectively equal to the fum of the perpendiculars drawn from the fame point
point to the other fides, viz. the $2 \mathrm{~d}, 4 \mathrm{th}, 6 \mathrm{th}, 8 \mathrm{th}, \& \mathrm{c}$. the fum of their fquares, the fum of their cubes, \&c. to the fum of their
$\frac{n-2}{2}$ powers, but not in powers above $\frac{n-2}{2}$ (n being the num-
ber of the fides).
Thus for inftance, if a regular hexagon circumfcribe a circle, and from any point in the circumference perpendiculars be drawn to the alternate fides, that is, to the fides of an equilateral triangle circumfrribing it, the fum of thefe perpendiculars, and the fum of their fquares, are refpectively equal to the fum of the perpendiculars drawn to the other three fides, and the fum of their fquares. For the fum of the perpendiculars to the three fides of an equilateral triangle, is equal to half the fum of the perpendiculars to the fides of the hexagon, and the fum of their fquares in the one, equal to half the fum of their fquares in the other. But this does not hold in regard to the fum of their cubes, as the fum of the cubes of perpendiculars to the fides of the triangle is not invariable.

In like manner, if perpendiculars be drawn from a point in the circumference to any four fides of a regular circumfcribing octagon, taking them alternately, that is, to the fides of a circumfrribing fquare, their fum, the fum of their fquares, and the fum of their cubes, are refpectively equal to the fum of perpendiculars to the other four fides, the fum of their fquares and the fum of their cubes. But this does not hold in regard of the fum of their fourth powers, which to the fides of a fquare are not invariable.

In like manner, the fum of perpendiculars to the alternate fides of a regular circumfcribing decagon, that is, to the fides of a pentagon, the fum of their fquares, the fum of their cubes, and the fum of their fourth powers, are refpectively equal to the
fum, the fum of the fquares, the fum of the cubes, and the fum of the fourth powers of perpendiculars to the other five fides. But this equality does not hold in the fifth powers, which to the
fides of a pentagon are not invariable. For $\frac{10-2}{2}=4$. And fo on.
N. B. The fame holds true if the perpendiculars be drawn from any point within the figure for odd powers, and either within or without, in even ones.

But as it was obferved in the preceding page, that the equality between the fum of the powers of perpendiculars, drawn from any point in the circumference of a circle, to the alternate fides of any regular figure of an even number of fides, and the fum of the powers of perpendiculars drawn from the fame point to the other fides, exifted only to the $\frac{n-2^{\text {th }}}{2}$ power ; fo the equality between the fum of the powers of perpendiculars drawn from the extremities P and Q of any diameter to the fides of a regular figure of an odd number of fides circumfcribing the circle, and the fum of perpendiculars from either of thefe, or any point in the circumference, to the fides of a regular circumfrribing figure of double the number of fides, exifts only to the $\overline{n-2}{ }^{\text {th }}$ power.

A wide field is here opened for the geometrical folution of both determinate and indeterminate problems.

For inftance, having two equal right lines given, to cut one into two parts, and the other into three, fo that the fum of the fquares on the two parts, into which the one is cut, fhall be
equal to the fum of the fquares on the three parts, into which the other is cut.

Solution.
With radius equal to one-third part of either of the given lines defcribe a circle. If a regular hexagon circumfcribe it, perpendiculars drawn from the point where any fide of the hexagon touches the circle, to the other five fides, are refpectively equal to the parts into which the two given equal right lines are required to be divided. Calling the fide, from a point in which the perpendiculars are drawn, the ift, the perpendiculars drawn to the 3 d and 5 th are the parts, into which one of the two equal given right lines is cut, and thofe drawn to the 2d, 4th, and 6th fides, the three parts into which the other given line is cut.
N. B. If the perpendiculars be drawn from any point in the circumference, that is not one of the points of contact, three of them taken alternately, are together equal to the other three, and equal to either of the given lines, and the fum of their fquares equal to the fum of the fquares of the other three. And if they be drawn from a point in the circumference equally diftant from two points of contact, the $1 \mathrm{It}=$ the 6 th , the $2 \mathrm{~d}=$ the 5 th, and 3 d $=$ the 4 th.

Again, let it be required to divide each of two equal given right lines into four unequal parts, fo that none of the parts of the one fhall be equal to any of the parts of the other, but the fum of the fquares of the parts of the one fhall be equal to the fum of the fquares of the parts of the other, and alfo the fum of the cubes of the parts of the one equal to the fum of the cubes of the parts of the other.

Solution.

Solution.

With a fourth part of either of the equal given right lines as radius defrribe a circle. If a regular decagon circumfrribe the circle, and from any point in the circumference, that is neither one of the points, where the fides of the figure touch the circle, nor at an equal diftance between the points of contact, perpendiculars be drawn to the fides of the octagon, thefe taken alternately are the parts into which the given right lines are required to be divided.

If the point coincide with one of the points of contact, one of the given lines is cut into three parts, and the other into four.

If the point be equally diftant from two points of contact, the Ift perpendicular is $=$ the 8 th, the $2 \mathrm{~d}=7$ th, the $3 \mathrm{~d}=6$ th, and the 4 th $=5$ th. $\frac{3-2}{2}=\frac{6}{2}=3$ the higheft power.
$W_{\text {ITh }}$ fuch problems one might proceed without end.
SINCE (fig. I.) $\overline{\mathrm{AP}}^{2}+\overline{\mathrm{BP}}^{2}+\overline{\mathrm{CP}}^{2}+\& \mathrm{c} \cdot \overline{\mathrm{AQ}}^{2}+\overline{\mathrm{BQ}}^{2}+\overline{\mathrm{CQ}}^{2}+\& \mathrm{c}$. are equal to the fquares of lines drawn to P and Q from the angles of a regular infcribed figure of the fame number of fides with the irregular circumfcribing figure, or from the points where the fides of a regular circumfcribing figure touch the circle, it is evident, that the fum of the fquares of perpendiculars drawn from P and Q to the fides of any circumfcribing figure, regular or irregular, of a given number n of fides, together with the fquares of the perpendicular diftances of P and Q from the diameters paffing through the points of contact $\mathrm{A}, \mathrm{B}, \mathrm{C}, \& \mathrm{c}$. viz. $\overline{\mathrm{P} a}^{2}+\overline{\mathrm{P} b}^{2}+\overline{\mathrm{P} e}^{2}+\& c \cdot+\overline{\mathrm{Q}}^{2}+\overline{\mathrm{Q} d}^{2}+\overline{\mathrm{ff}}^{2}+\& \mathrm{c}=$
 $\overline{\mathrm{Pa}}^{2}+\overline{a \mathrm{O}}^{2}=\overline{\mathrm{Pb}}^{2}+\overline{b \mathrm{O}}^{2}=\overline{\mathrm{Pe}}^{2}+\overline{c \mathrm{O}}^{2}=\overline{\mathrm{PO}}^{2}$ whether the angles
angles at O formed by the diameters paffing through the points of contact $\mathrm{A}, \mathrm{B}, \mathrm{C}, \& \mathrm{c}$. be equal or unequal, or whether the circumference of the circle, of which the diameter is PO, be equally or unequally divided in the points $a, b, e, \& c$. ; and the fumof perpendiculars from P and O , to the fides of a circumfcribing figure, touching this circle in the points $a, b, e, \& x c$. is the fame whether the figure be regular or irregular.

Otherwise,

$\mathrm{A} a+\mathrm{A} c=2 r: 4 r^{2}=\overline{\mathrm{A} a}^{2}+\overline{\mathrm{A} c}^{2}\left(\overline{a \mathrm{G}}^{2}\right)+2 \mathrm{~A} a \times a \mathrm{G}$ $\left(2 \times{\overline{\mathrm{P}}{ }^{2}}^{2}\right)$. In like manner, $4 r^{2}=\overline{\mathrm{C}}^{2}+\overline{\mathrm{C}} d^{2}\left(\overline{b b}^{2}\right)+2 \mathrm{C} b$ $\times b b\left(2 \times \overline{\mathrm{P}}^{2}\right)$ and fo on: $4^{n r^{2}}=\overline{\mathrm{Aa}}^{2}+\overline{\mathrm{A} c}^{2}+{\overline{\mathrm{C}} b^{2}}^{2}+$ $\overline{\mathrm{C}}^{2}+\overline{\mathrm{B} e}^{2}+\overline{\mathrm{Bf}}^{2}+8 \mathrm{c} .+2 \times \overline{\mathrm{P}}^{2}+\overline{\mathrm{Pb}}^{2}+{\overline{\mathrm{P}}{ }^{2}}^{2}+\& \mathrm{c}$. whether the angles $\mathrm{AOB}, \mathrm{BOC}, \& \mathrm{c}$. at O be equal or unequal.

In like manner, the fum of the cubes of perpendiculars drawn from P and Q to the fides of any circumfcribing figure, regular or irregular, of a given number n of fides, together with thrice the folid, which has the fquares of perpendiculars from P and Q. to the diameters paffing through $\mathrm{A}, \mathrm{B}, \mathrm{C}, \& \mathrm{c}$. for its bafe, and r for its altitude, is an invariable quantity; that is, $2 n r^{3}+6 r \times$ $\overline{\mathrm{O} a}^{2}+\overline{\mathrm{O} b}^{2}+\overline{\mathrm{O} e}^{2}+\& \mathrm{c}+\overline{\mathrm{P} a}^{2}+\overline{\mathrm{P} b}^{2}+\overline{\mathrm{P}}^{2}+\& \mathrm{c}$. is an invariable quantity, being $=2 n r^{3}+6 r \times n \times \overline{\mathrm{PO}}^{2}=8 n r^{3}=n \times$ $\overline{2 r}^{3}$. For $\overline{\mathrm{O} a}^{2}+\overline{\mathrm{O} b}^{2}+\overline{\mathrm{O} e}^{2}+\& \mathrm{c} \cdot+\overline{\mathrm{Pa}}^{2}+\overline{\mathrm{P} b}^{2}+\overline{\mathrm{P} e}^{2}+\& \mathrm{c}$. $=n r^{2}$. Confequently, when $\mathrm{AB}, \mathrm{BC}, \& \mathrm{c}$. are unequal among themfelves, the fum of the fquares, cubes, \&c. of perpendiculars drawn from P and Q to lines touching the circle in the points $\mathrm{A}, \mathrm{B}, \mathrm{C}, \& \mathrm{c}$. is not invariable.

$$
\overline{\mathrm{AP}}^{2}+\overline{\mathrm{BP}}^{2}+\overline{\mathrm{CP}}^{2}+\& \mathrm{c} .+\overline{\mathrm{AQ}}^{2}+\overline{\mathrm{BQ}}^{2}+\overline{\mathrm{CQ}}^{2}+\& \mathrm{c} . \mathrm{be}-
$$ ing $=4^{n} r^{2}$, whether $A B, A C, \& c$. be equal or unequal, is invariable.

variable. But their 4 th, 6 th, 8 th, \&c. are not invariable, when $\mathrm{AB}, \mathrm{BC}, \& \mathrm{c}$. are unequal among themfelves.

IT is manifeft, that when AB, BC, \& c . are equal among themfelves, whatever be the number of the points $\mathrm{A}, \mathrm{B}, \mathrm{C}, \& \mathrm{c}$. or whatever be the part of the circumference they take in or extend to, the fum of the fquares, cubes, \&c. of perpendiculars drawn from P and Q to lines touching the circle in thefe points, is the fame with the fum of the fquares, cubes, \&c. of perpendiculars drawn from P and Q to the fides of a regular circumfcribing figure having the fame number of fides as there are points, A, B, $C, \& c$. Thus, if the number of the points be five, and thefe be comprehended in a femicircle, a quadrant, or any fector, the fum of the fquares, cubes, and fourth powers of perpendiculars drawn from P and Q to lines touching the circle in thefe points, is the fame with the fum of the fquares, cubes, and fourth powers of perpendiculars drawn from P and Q to the fides of a regular pentagon circumfcribing the circle. And fo on.

Perfendiculars drawn from P, (fig. 2.), one extremity of the diameter PQ , to the fides of the figure of an uneven or odd number of fides circumfribing the circle, and touching it in the points $A, B, C, D, E, \& c$. are refpectively equal to perpendiculars drawn from Q, the other extremity of the diameter, to the fides of a circumfcribing figure of double the number of fides, which touch the circle in the points $\mathrm{H}, \mathrm{I}, \mathrm{K}, \mathrm{L}, \mathrm{G}, \& \mathrm{c}$. or $\mathrm{H} g=\mathrm{B} c, \mathrm{G} e=\mathrm{A} a, \mathrm{~L} b=\mathrm{E} d, \mathrm{~K} f=\mathrm{D} b, \mathrm{I} i=\mathrm{C} k, \& \mathrm{c} . ;$ and perpendiculars drawn from Q to the fides of the figure of an odd number of fides, are refpectively equal to perpendiculars drawn from P to the fides of a figure of double the number of fides, which touch the circle in the points $\mathrm{H}, \mathrm{I}, \mathrm{K}, \mathrm{L}, \mathrm{G}, \& \mathrm{c}$. or $\mathrm{D} f=\mathrm{K} b, \mathrm{C} i=\mathrm{I} k, \mathrm{~B} g=\mathrm{H} c, \mathrm{~A} e=\mathrm{G} a, \mathrm{E} b=\mathrm{L} d, \& \mathrm{c}$. Wherefore, the fum of the m powers of perpendiculars, drawn from P and Q to the fides of any circumfcribing figure of an odd number of fides, is equal to half the fum of the m powers
of perpendiculars drawn from P and Q to the fides of a circumfrribing figure of double the number of fides.

Thus, if the figure be a pentagon, we get

$$
\begin{aligned}
& \overline{r+\mathrm{O}^{3}}+\overline{r-\mathrm{O} a^{3}}=2 r^{3}+6 r \times \overline{\mathrm{O} a}{ }^{2} \\
& r+\mathrm{O}^{3}+\overline{-\mathrm{O}^{3}}=2 r^{3}+6 r \times{\overline{\mathrm{O}}{ }^{2}}^{2} \\
& \overline{\mathrm{r}+\mathrm{O} k^{3}}+\overline{\mathrm{O}-\mathrm{Ok}^{3}}=2 r^{3}+6 r \times \overline{\mathrm{Ok}}^{2} \\
& \overline{r+\overline{\mathrm{O}}^{3}+r-\overline{\mathrm{O}}^{3}}=2 r^{3}+6 r \times \overline{\mathrm{O}}^{2} \\
& \underline{\underline{r+\mathrm{O}^{3}}+\overline{r-\mathrm{Od}^{3}}}=\underline{2 r^{3}+6 r \times \overline{\mathrm{O} d}^{2}}
\end{aligned}
$$

When the diameter PQ bifects the arcs BK , DH, or is perpendicular to one of the diameters paffing through a point of contact, $\mathrm{O} k, \mathrm{O} i$ vanifh, and it is then demonftrated exactly in the fame way as in figures of an even number of fides, that the fum of the cubes of perpendiculars drawn from either P or Q is $\frac{5^{n}}{2} \times r 3$, and confequently that the fum of the cubes of thofe drawn from P, is equal to the fum of thofe drawn from Q. But let the figure be a pentagon, and let the diameter AG be perpendicular to any fide in the point of contact A. Draw C $m, \mathrm{~B} n$ perpendicular to AG. Then $\mathrm{G} m$ is equal to each of the perpendiculars drawn from G to the fides touching the circle in the points C and D ; and $\mathrm{A} m$ to each of the perpendiculars drawn from A to the fame fides; $G n$ is equal to each of the perpendiculars drawn from G to the fides touching the circle in the points B, E, and $\mathrm{A} n$, to each of the perpendiculars drawn from A to the fame fides. Wherefore $2 \mathrm{G} m+{ }_{2} \mathrm{G} n+\mathrm{GA}(2 r)=$ $2 \mathrm{~A} n+2 \mathrm{~A} m$, or $r-\mathrm{O} m+r+\mathrm{O} n+r=\mathrm{A} n+\mathrm{A} m=r-\mathrm{O} n$ Voí. VI.-P. I.
$+r+\mathrm{O} m$, and $r=2 \mathrm{O} m-2 \mathrm{O} n$. Therefore $\mathrm{O} m=\frac{r+2 \mathrm{O} n}{2}$, $r-\mathrm{O} m=\frac{r-2 \mathrm{O} n}{2}=\mathrm{G} m$, and $r+\mathrm{O} m=\frac{3 r+2 \mathrm{O} n}{2}=\mathrm{A} m$. Confequently we have $2 \times \overline{r+\mathrm{Om}^{3}}=\frac{2 \mathrm{rr}^{3}+54 r^{2} \times \mathrm{O} n+36 r \times \overline{\mathrm{O}}^{2}+8 \times \mathrm{O} n^{3}}{4}$, and $2 \times \overline{r-\mathrm{O}^{3}}=2 r^{3}-6 r^{2} \times \mathrm{O} n+6 r \times \overrightarrow{\mathrm{O} n}^{2}-2 \times \overline{\mathrm{O}}^{3}$, and thefe added together give $\frac{35 r^{3}+30 r^{2} \times \mathrm{O} n+60 r \times \overline{\mathrm{On}}^{2}}{4}$. In like manner, $2 \times \overline{\mathrm{r}-\mathrm{O} m^{3}}=\frac{r^{3}-6 r^{2} \times \mathrm{O} n+12 r \times \overline{\mathrm{On}}^{2}-8 \times \overline{\mathrm{On}}^{3}}{4}$, and $2 \times \overline{\mathrm{r+O}}{ }^{3}=2 r^{3}+6 r^{2} \times \mathrm{O} n+6 r \times \overline{\mathrm{O}}^{2}+2 \times \overline{\mathrm{O}}^{3}$, and thefe added together give $\frac{r^{r^{3}}+18 r^{2} \times \mathrm{O} n+36 r \times \overline{\mathrm{O}}^{2}}{4}$, to which, if $\overline{\mathrm{GA}}^{3}=8 r^{3}$, the cube of the perpendicular to the fide touching the circle in the point A, be added, we get $\frac{41 r^{3}+18 r^{2} \times \mathrm{O} n+36 r \times \overline{\mathrm{O}}^{2}}{4}$.

But the fum of the cubes of perpendiculars, drawn from A and G to the fides of the pentagon is $25 r^{\circ}$, as has been demonftrated, when PQ coincides with AG. Wherefore $\frac{76 r^{3}+48 r^{2} \times \mathrm{O} n+96 r \times \overline{\mathrm{O}}^{2}}{4}$ or $19 r^{3}+12 r^{2} \times \mathrm{O} n+24 r$ $\times \widehat{\mathrm{O}^{2}}=25 r^{3}$ and $4 r \times \overline{\mathrm{O}}^{2}+2 r^{2} \times \mathrm{O} n=r^{3}$. Now, if for this value of r^{3}, there be fubatituted r^{3} in $\frac{41 r^{3}+18 r^{2} \times \mathrm{O} n+36 r \times \overline{\mathrm{O}}^{2}}{4}$,
we get $\frac{4 r^{3}+g^{r^{3}}}{4}=\frac{25 r^{3}}{2}$; and if r^{3} be fubftituted for its equal in $\frac{35 r^{3}+30 r^{2} \times \mathrm{O} n+60 r \times \overline{\mathrm{O}}^{2}}{4}$, we get $\frac{35 r^{3}+15 r^{3}}{4}=\frac{25 r^{2}}{2}$.
Wherefore the fum of the cubes of perpendiculars drawn from the point G to the fides of the pentagon, is equal to the fum of the cubes of perpendiculars drawn from the point A to the fame.
SINCE $2 \times \overline{r+\mathrm{Om}^{3}}+2 \times \overline{r-\mathrm{On}^{3}}=4 r^{3}+3 r^{2} \times \overline{2 \mathrm{Om-2O}}$
$+3 r \times 2 \times \overline{\overline{\mathrm{Om}}^{2}}+2 \times{\overline{\mathrm{O}}{ }^{2}}^{2}+2 \times{\overline{\mathrm{Om}^{3}}}^{3}-2 \times \overline{\mathrm{On}}^{3}=\frac{25 r^{3}}{2}$, and
$\overline{2 \times \overline{O^{2}}+\overline{O_{n}}}=\frac{3 r^{2}}{2}$, we have $3 r^{2} \times 2 \times \overline{\mathrm{O} m-2 \times \mathrm{O} n}+$ $2 \times \overline{\overline{0^{m}}-\overline{O_{n}}}=4 r^{3}$. But $2 \mathrm{O} n-2 \mathrm{O} n=r$; therefore

$I_{F} P$, inftead of bifecting the arc $B K$, be any point between \mathbf{B} and \mathbf{K}, the fum of the cubes of perpendiculars drawn from it to the fides of the circumfrribing pentagon, is equal to the fum of the cubes of perpendiculars drawn from Q to the fame. For fince $\mathrm{O} c+\mathrm{O} a+\mathrm{O} k=\mathrm{O} b+\mathrm{O} d$ and $\mathrm{O} c-\mathrm{O} b, \mathrm{O} d-\mathrm{O} a$ and $\mathrm{O} k$, begin together, and become maxima together, $\mathrm{O} c-\mathrm{O} b$ has to $\mathrm{O} k$ a given ratio. Let that be the ratio of m to r . Then $\mathrm{O} c-\mathrm{O} b=m \times \mathrm{O} k$, and $\mathrm{O} d-\mathrm{O} a=\mathrm{O} c-\mathrm{O} b+\mathrm{O} k=$ $\overline{m+1} \times \mathrm{O}_{\mathrm{k}} . \quad \mathrm{O} c=\mathrm{O} b+m \times \mathrm{O} k, \mathrm{O} a=\mathrm{O} d-\overline{m+1} \times \mathrm{O} k$. $\overline{O c}^{3}=\overline{O b}^{3}+3 m \times \overline{O b}^{2} \times 0 k+3 m^{2} \times 0 b \times \overline{O k}^{2}+m^{3} \times$ ${\overline{\mathrm{O}}{ }^{3}}^{3} \quad \overline{\mathrm{Oa}}^{3}=\overline{\mathrm{O} d}^{3}-3 \times \overline{m+1} \times \overline{\mathrm{O}}^{2} \times \mathrm{O} k+3 \times m+1 \times \mathrm{O} d \times$ F_{2}
${\overline{\mathrm{O}}{ }^{2}}^{2}-{\overline{\mathrm{O}}{ }^{3}}^{3}$. Wherefore $\overline{\mathrm{O}}^{3}+\overline{\mathrm{Oa}}^{3}+\overline{\mathrm{O}}^{3}=\overline{\mathrm{O}}^{3}+\overline{\mathrm{O}}^{3}+3 m \times$ $\overline{\mathrm{O}}^{2} \times \mathrm{O} k-3 \times \overline{m+1} \times \overline{\mathrm{O}}^{2} \times \mathrm{O} k+3 \mathrm{~m}^{2} \times \mathrm{O} b \times \overline{\mathrm{O}{ }^{2}}+3 \times$ $\overline{m+1}^{2} \times \mathrm{O} d \times \overline{\mathrm{O} k}^{2}+{\overline{\mathrm{O}}{ }^{3}}^{3}$. Now, let this be $=\overline{\mathrm{O} b}^{3}+\overline{\mathrm{O} d}^{3} \pm$ V^{3}. Then $3^{m} \times \overline{\mathrm{O} b}-3 \times \overline{m+1} \times \overline{\mathrm{O}}^{2}+3 m^{2} \times \mathrm{O} b \times \mathrm{O} k+$ $3 \times \overline{m+1}^{2} \times \mathrm{O} d \times \mathrm{O} k+\overline{\mathrm{O}} k^{2}= \pm \mathrm{V}^{3}$, and $m \times \overline{\mathrm{O}}^{2}=\overline{m+\mathrm{x}}$ $\times \widehat{\mathrm{O} d}^{2} \pm \frac{\mathrm{V}^{3}}{3}$, when $\mathrm{O} k=0$ But $m \times \overline{\mathrm{O}}^{2}=\overline{m+1} \times \overline{\mathrm{O} d}^{2}$, therefore $\mathrm{V}=0$. For when $\mathrm{O} k=0, \mathrm{O} b$ is the fine of 72°, and $\mathrm{O} d$ the fine of 36°. When $\mathrm{O} k$ is a maximum, it is the fine of $18^{\circ}, \mathrm{O} c$ is $=r, \mathrm{O}^{\prime} b$ is the cofine of $3^{6^{\circ}}$, and $\mathrm{O} c-\mathrm{O} b$ the verfed fine of $36^{6} \%$ Wherefore, $m+\mathbf{I}: m=\overline{\mathrm{O} b^{2}}: \overline{\mathrm{Od}}{ }^{2}=$ ver fed fine of $36^{\circ}+$ fine of 18° : verfed fine of 36°.

LET BD (Pl. IL. fig. 3) $=\mathrm{BH}=$ fide of an infcribed pentagon; bifect BD . in F , and draw OFC, AC, BC and DH . Then, fince the angle FOB is $36^{\circ}, \mathrm{CF}$ is the verfed fine of $36^{\circ}, \mathrm{OG}$ is the fine of 18°. But fince the triangles $\mathrm{CFB}, \mathrm{DGO}$, are fimilar $\mathrm{OG}: \mathrm{CF}=\mathrm{DG}$: $\mathrm{FB}=\mathrm{DH}: \mathrm{DB}$, and $\mathrm{OG}+\mathrm{CF}: \mathrm{CF}=\mathrm{DH}+\mathrm{DB}: \mathrm{DB}=\overline{\mathrm{DH}}^{2}$; $\overline{\mathrm{DB}}^{2}=\overline{\mathrm{DG}}^{2}: \overline{\mathrm{FB}}^{2}=$ fquare of the fine of ${72^{\circ}}^{\circ}$: fquare of the fine of 36°. For when DH is cut in extreme and mean ratio, the greater part is equal to the fide of the pentagon.

DH is cut in extreme and mean ratio in the point L, and LH $=\mathrm{BD}$; the triangle CDP is fimilar to the triangle DOB ; and the triangle MDN to the triangle BOC.

This demonftration, however, was unneceffary. For if the fum of the cubes of perpendiculars drawn from P to the fides of the pentagon, be equal to the fum of the cubes of perpendiculars drawn
drawn from Q to the fame, both when $\mathrm{O} k$ is $=0$, and when it is a maximum, this equality muft exift whatever be the magnitude of $\mathrm{O} k$ between thefe limits.

AND in a fimilar manner is it demonftrated, that the fum of the cubes of perpendiculars drawn from P to the fides of any other regular figure of an odd number of fides circumfcribing. the circle, is equal to the fum of the cubes of perpendiculars drawn from Q to the fame. For if $\mathrm{O} m$, \&c. or fuch parts of perpendiculars drawn from A to the fides of any regular circumferibing figure of an odd number, n, of fides as lie between O and G , be denoted by A, B, C, \&c.; and $\mathrm{O} n$, \&c. or fuch parts of perpendiculars drawn from G to the fame as lie between O and A , be denoted by $a, b, c, \& \mathrm{c} . \mathrm{A}+\mathrm{B}+\mathrm{C}+\& \mathrm{c}$, to $\frac{n-\mathbf{I}}{4}$ terms, $-a-b-\&$ c. to $\frac{n-\mathrm{I}}{4}$ terms $=\frac{r}{2}$, if $n-\mathrm{r}$ be a multiple of 2 by an even number. Alfo $\mathrm{A}^{2}+\mathrm{B}^{2}+\mathrm{C}^{2}+\& \mathrm{c}$. to $\frac{n-\mathrm{I}}{4}$ terms, $+a^{2}+b^{2}+c^{2}+\& \mathrm{c} \cdot$ to $\frac{n-\mathbf{1}}{4}$ terms $=\frac{\overline{n-2} \times r^{2}}{4} ;$ and $\mathrm{A}^{3}+\mathrm{B}^{3}$ $+\mathrm{C}^{3}+\& \mathrm{c}$. to $\frac{n-\mathrm{I}}{4}$ terms, $-a^{3}-b^{3}-c^{3}-\& \mathrm{c}$. to $\frac{n-\mathrm{r}}{4}$ terms s_{j} $=\frac{r^{3}}{2}$. But if $n-\mathrm{I}$ be a multiple of 2 by an odd number, $\mathrm{A}+$ $\mathrm{B}+\mathrm{C}+\& \mathrm{c}$. to $\frac{n+1}{4}$ terms,$-a-b-\& \mathrm{c}$. to $\frac{n-3}{4}$ terms, $=\frac{r}{2} ; \mathrm{A}^{2}+\mathrm{B}^{2}+\mathrm{C}^{2}+\& \mathrm{c}$. to $\frac{n+1}{4}$ terms,$+a^{2}+b^{2}+\& \mathrm{c}$. to

$$
\frac{n-3}{4} \text { terms }=\frac{n-2}{4} \times r^{2} \text {, and } A_{3}+B_{3}+C_{3}+\& \text { c. to } \frac{n+1}{4}
$$

terms, $-a^{3}-b^{3}-\& \mathrm{c}$. to $\frac{n-3}{4}$ terms, $=\frac{r^{3}}{2}$. Thus, in the heptagon $\mathrm{A}+\mathrm{B}-a=\frac{r}{2}, \mathrm{~A}^{2}+\mathrm{B}^{2}+a^{2}=\frac{5 r^{2}}{4} ;$ and $\mathrm{A}^{3}+\mathrm{B}^{3}-$ $a^{3}=\frac{r^{3}}{2}$. In the enneagon $\mathrm{A}+\mathrm{B}-a-b=\frac{r}{2}, \mathrm{~A}^{2}+\mathrm{B}^{2}+a^{2}$ $+b^{2}=\frac{7 r^{2}}{4}$ and $\mathrm{A}^{3}+\mathrm{B}^{3}-a^{3}-b^{3}=\frac{r^{3}}{2}$, and fo on. But in the enneagon, A is the cofine of 20°, or the fine of $70^{\circ}, \mathrm{B}$ is the fine of $30^{\circ}=\frac{r}{2}, a$ is the fine of 10°, and b the fine of 50°. Wherefore the fine of $70^{\circ}=$ fine of $10^{\circ}+$ the fine of 50°; the fquare of the fine of $70^{\circ}+$ fquare of the fine of $10^{\circ}+$ fquare of the fine of $50^{\circ}=\frac{3 r^{2}}{2}$; and the cube of the fine of $70^{\circ}-$ cube of the fine of 10° - cube of the fine of $50^{\circ}=\frac{3 r^{3}}{8}$, viz. thrice the cube of half the radius. And fo on.

$$
\begin{aligned}
& \overline{r=\mathrm{O}^{4}}=r^{4}-4^{r^{3}} \times \mathrm{O} c+6 r^{2} \times \overline{\mathrm{O}}^{2}-4 r \times \overline{\mathrm{O}}^{3}+\overline{\mathrm{O}}^{4}, \\
& \overline{r-\mathrm{O}^{4}}{ }^{4}=r^{4}-4 r^{3} \times \mathrm{O} a+6 r^{2} \times \overline{\mathrm{O} a}^{2}-4 r \times \overline{\mathrm{O}}^{3}+\overline{\mathrm{O} a}^{4} \text {, } \\
& \overline{r-\mathrm{O} \bar{k}^{4}}=r^{4}-4 r^{3} \times \mathrm{O} k+6 r^{2} \times \overline{\mathrm{O}} \bar{k}^{2}-4 r \times \overline{\mathrm{O}}{ }^{3}+\overline{\mathrm{O}} \bar{k}^{4}, \\
& \overline{r+\mathrm{O}^{4}}=r^{4}+4 r^{3} \times \mathrm{O} b+6 r^{2} \times \overline{\mathrm{O}}^{2}+4 r \times \overline{\mathrm{O} b^{3}}+\overline{\mathrm{O}} b^{4}, \\
& \overline{\mathrm{rO} d^{4}}=r^{4}+4 r^{3} \times \mathrm{O} d+6 r^{2} \times \overline{\mathrm{O}}^{2}+4 r \times \overline{\mathrm{O}}^{3}+\overline{\mathrm{Od}}^{4},
\end{aligned}
$$

Bur fince $5_{r}(=$ fum of the perpendiculars drawn from P or Q to the fides of the pentagon) $=\frac{\overline{\mathrm{AP}}^{2}+\overline{\mathrm{BP}}^{2}+\overline{\mathrm{CP}}^{2}+\overline{\mathrm{DP}}^{2}+\overline{\mathrm{EP}}^{2}}{2 r}$ $=\frac{\overline{\mathrm{AQ}}^{2}+\overline{\mathrm{BQ}}^{2}+\overline{\mathrm{CQ}}^{2}+\overline{\mathrm{DQ}}^{2}+\overline{\mathrm{EQ}}^{2}}{2 r}$; and fince the fum of the
fquares of perpendiculars drawn from P to the fides of the pentagon, has been demonftrated equal to the fum of the fquares of perpendiculars from Q to the fame, $\frac{\overline{\mathrm{AP}}^{4}+\overline{\mathrm{BP}}^{4}+\overline{\mathrm{CP}}^{4}+\overline{\mathrm{DP}}^{4}+\overline{\mathrm{EP}}^{4}}{4^{r^{2}}}$ $=\frac{\overline{\mathrm{AQ}}^{4}+\overline{\mathrm{BQ}}^{4}+\overline{\mathrm{CQ}}^{+}+\overline{\mathrm{DQ}}^{4}+\overline{\mathrm{EQ}}^{4}}{4 r^{2}}=\frac{15 r^{2}}{2}$. And as the circumference of the circle, which has PO for its diameter, is divided into five equal parts, in the points $a, b, c, d, k, \overline{\mathrm{O}}^{2}+\overline{\mathrm{O} a}^{2}$ $+\overline{\mathrm{Ok}}^{2}+\overline{\mathrm{O} b}^{2}+{\overline{\mathrm{O}}{ }^{2}}^{2}=r \times \frac{5 \times \mathrm{OP}}{2}=\frac{5 r^{2}}{2} ;$ and $\overline{\mathrm{O}}^{4}+\overline{\mathrm{O} a}^{4}+{\overline{\mathrm{O}}{ }^{4}}^{4}$ $+\overline{\mathrm{Ob}}^{4}+\overline{\mathrm{O} d}^{4}=4 \times \frac{\overline{\mathrm{OP}}^{2}}{4} \times \frac{15}{2} \times \frac{\overline{\mathrm{OP}}^{2}}{4}=\frac{15 r^{4}}{8} . \quad$ Wherefore,
 $+\overline{\mathrm{O} b}+\overline{\mathrm{O} d}=\frac{40 r^{4}}{8}+\frac{120 r^{4}}{8}+\frac{15 r^{4}}{8}=\frac{175}{8} \times r^{4}=\frac{35 \times 5}{8}$ $\times r_{4}=$ half the fum of the fourth powers of perpendiculars. drawn from both P and Q to the fides of the pentagon.

In the fame way is it demonftrated, that the fum of the fourth powers of perpendiculars drawn from P to the fides of any regular circumfrribing figure of an odd number, n, of fides, is equal to the fum of the fourth powers of perpendiculars drawn from
Q to the fame, $=\frac{35 n}{8} \times r^{4}=n \times \frac{\mathbf{I} \cdot 3 \cdot 5 \cdot 7}{\mathrm{I} \cdot 2 \cdot 3 \cdot 4} \times r$. When P coincides with $\mathrm{B}, \mathrm{O} c$ is $=r$, and $\mathrm{A}^{4}+\mathrm{B}^{4}+\mathrm{C}^{4}+\& c$. to $\frac{n-\mathrm{I}}{4}$ terms, $+a^{4}+b^{4}+c^{4}+\& c$. to $\frac{n-1}{4}$ terms, (when $n-1$ is a multiple of 2 by an even number) $1 \mathrm{~s}=\frac{3 n-8}{16} \times r^{4}$; and $\mathrm{A}^{4}+$ $\mathrm{B}^{4}+\mathrm{C}^{4}+\& \mathrm{c}$. to $\frac{n+\mathrm{I}}{4}$ terms, $+a^{4}+b^{4}+\& \mathrm{c}$. to $\frac{n-3}{4}$ terms, (when $n-1$ is a multiple of 2 by an odd number) is $=$ $\frac{3 n-8}{16} \times r^{4}$ 。

In like manner is it demonftrated, that the fum of the fifth powers of perpendiculars drawn from P to the fides of any regular circumfcribing figure of a greater number n of fides than 5 , is equal to the fum of the fifth powers of perpendiculars drawn from Q to the fame; and that $A^{5}+B^{5}+C^{5}+\& c$. to $\frac{n-1}{4}$ terms $-a^{j}-b^{5}-c s-\& \mathrm{c}$. to $\frac{n-\mathbf{1}}{4}$ terms, (when $n-\mathrm{I}$ is a
multiple of 2 by an even number) is $=\frac{r 5}{2}$, and $\mathrm{A}^{5}+\mathrm{B}^{5}+\mathrm{C}^{5}$
$+\& c$. to $\frac{n+1}{4}$ terms $-a^{5}-b_{5}-\& \mathrm{c}$. to $\frac{n-3}{4}$ terms, (when
$n-1$ is a multiple of 2 by an odd number) is $=\frac{r^{3}}{2}$.

A is the cofine of $\frac{180^{\circ}}{n}, \mathrm{~B}$ is the cofine of $3 \times \frac{80^{\circ}}{n}, \mathrm{C}$ is the cofine of $5 \times \frac{180^{\circ}}{n}$, and fo on; and when $n-\mathrm{T}$ is a multiple of 2 by an even number, the laft of the terms A, B, C, \&c. is the cofine of $\frac{n-3}{2} \times \frac{180^{\circ}}{n}$, and a, the firtt of the terms $a, b, c, \& c$. is the cofine of $\frac{n+1}{2} \times \frac{180^{\circ}}{n} ; b$, the fecond, is the cofine of $\frac{n+5}{2} \times \frac{180^{\circ}}{n} ; c$, the third, is the cofine of $\frac{n+9}{2} \times \frac{180^{\circ}}{n} ;$ and the laft of the terms $a, b, c, \& c$. is the cofine of $\frac{2 n-4}{2} \times \frac{180^{\circ}}{n-}$ or of $\overline{n-2} \times \frac{180^{\circ}}{n}$. But when $n-1$ is a multiple of 2 by an odd number, the laft of the terms A, B, C, \&c. is the cofine of $\frac{n-1}{2} \times \frac{180^{\circ}}{n}$; the firft of the terms $a, b, \& c$. is the cofine of $\frac{n+3}{2} \times \frac{180^{\circ}}{n}$ and the laft of the terms $a, b, \& \mathrm{c}$. is the cofine of $\overline{n-2} \times \frac{180^{\circ}}{n}$. Univerfally, if m be any odd number lefs than n, we have $\mathrm{A}^{m}+\mathrm{B}^{m}+\mathrm{C}^{m}+\& \mathrm{c}$. to $\frac{n-\mathrm{I}}{4}$ terms, $-a^{m}-b^{\prime \prime \prime}-c^{\prime n}-\& \mathrm{c}$. to $\frac{n-1}{4}$ terms, $=\frac{r^{m}}{2}$, when $n-1$ is a multiple of 2 by an even number; and $\mathrm{A}^{m}+\mathrm{B}^{m}+\mathrm{C}^{m}+\& \mathrm{c}$., to $\frac{n+1}{4}$ terms, $-a^{m}-b^{m}-\& \mathrm{c}$. to $\frac{n-3}{4}$ terms, $=\frac{r^{m}}{2}$, when VoL. VI.-P. I. G

$$
n-1
$$

n - I is a multiple of 2 by an odd number. Thus, in the enneagon, or figure of nine fides, A is the confine of 20° or the fine of $70^{\circ}, \mathrm{B}$ is the confine of 60° or the fine of $30^{\circ}, a$ is the confine of 100° or the fine of 10°, and b is the confine of 140° or the fine of 50 , and $A^{m}-a^{3 n}-b^{m}=\frac{2^{m-1}-1}{2^{m i n}} \times r^{m}$ And if p be any even number leis than $n, \mathrm{~A}^{p}+\mathrm{B}^{p}+\mathrm{C}^{p}+8 \mathrm{c}$. to $\frac{n-1}{4}$ terms or $\frac{n+1}{4}$ terms $+a^{s}+b^{p}+c^{p}+\& c$. to $\frac{n-1}{4}$ terms, or $\frac{n-3}{4}$ terms, (according as $n-1$ is a multiple of 2 by an even or odd number) is $=n \times \frac{1.3 \cdot 5 \cdot 7 \cdots p-1}{1 \cdot 2 \cdot 3 \cdot 4 \cdot \cdots \frac{p}{2}} \times \frac{r^{p}}{2^{\frac{p+2}{2}}}-\frac{r^{p}}{2} \cdot$ Confequently, $\overline{\mathrm{A}^{p}+a^{p}+\mathrm{A}^{m}-a^{n}}+\overline{\mathrm{B}^{p}+b^{p}+\mathrm{B}^{n}-b^{m}}+\& \mathrm{c}$. to $\frac{n-\mathrm{I}}{4}$ terms, is $=n \times \frac{1 \cdot 3 \cdot 5 \cdot 7 \cdots p-1}{1 \cdot 2 \cdot 3 \cdot 4 \cdots \frac{p}{2}} \times \frac{r^{p}}{\frac{p+t^{2}}{2}}-\frac{r^{p}}{2}+\frac{r^{\prime \prime}}{2}=$ $\frac{p+2}{2} \cdot \frac{p+6}{2} \cdot \frac{p+10}{2} \cdots p-\mathbf{I}$ $2 \cdot 4 \cdot 6 \ldots \frac{p}{2} \times \frac{r^{p}}{2^{\frac{p+2}{2}}}-\frac{r^{p}}{2}+\frac{r^{m}}{2}$ (when
$n-1$ is a multiple of 2 by an even number) $=$ $\frac{p+2}{2}, \frac{p+6}{2}, \frac{p+10}{2} \ldots$ to $\frac{2 p-2}{2}$

$$
2 \cdot 4.6 \cdot . \text { to } \frac{p}{2}
$$

$$
\times \frac{I}{p+2}, \text { when } r=1 ;
$$

and when $\mathrm{n}-\mathrm{I}$ is a multiple of 2 by an odd number $\overline{\mathrm{A}^{p}+\mathrm{A}^{m}}$ $+\overline{\mathrm{B}^{p}+\mathrm{B}^{m}}+\overline{\mathrm{C}^{p}+\mathrm{C}^{m}}+\& \mathrm{c}$. to $\frac{n+\mathrm{I}}{4}$ terms, $+\overline{a^{p}-a^{m}}+$ $\overline{b^{p}-b^{m}}$
$\overline{b^{p}-b^{n}}+\overline{c^{p}-c^{m}}+\& c$. to $\frac{n-3}{4}$ terms, is equal to $n \times$ $\frac{1.3 \cdot 5 \cdot 7 \cdots \text { to } p-1}{1.2 \cdot 3 \cdot 4 \cdots \text { to } \frac{p}{2}} \times \frac{r^{p}}{\frac{p+2}{2}}-\frac{r^{p}}{2}+\frac{r^{n n}}{2}$, which when $r=\mathrm{I}$
is $=n \times \frac{\frac{p+2}{2} \cdot \frac{p+6}{2} \cdot \frac{p+10}{2} \ldots \text { to } \frac{2 p-2}{2}}{2 \cdot 4 \cdot 6 \ldots \text { to } \frac{p}{2}} \times \frac{1}{2^{\frac{p+2}{2}}}=n \times$
$p+2 \cdot p+6 \ldots$ to $\overline{2 p-2}$
$2 \ldots 4 \cdots$ to $\frac{p}{2} \times \frac{1}{2 \frac{p+4}{2}}$. Hence the fummation of
an endlefs variety of faeries, of which the terms are powers of the fines and cofines of angles; and though they do not confift of an infinite number of terms, they may confift of any number of terms whatever, fine $\frac{n-1}{4}$ may be equal to any given number
as well as $\frac{n+1}{4}$ and $\frac{n-3}{4}$. The expreffion $n \times \frac{1.3 \cdot 5 \cdot 7 \ldots \text { to } p-1}{1.2 \cdot 3 \cdot 4 \ldots \text { to } \frac{p}{2}}$

$\frac{\phi}{2}$ is equal to an even number, or p is a multiple of 2 by an even number. But when $\frac{p}{2}$ is an odd number, it is equal to $n \times$ $\frac{\frac{p+4}{2} \cdot \frac{p+8}{2} \cdot \text { to } \frac{2 p-2}{2}}{2,4 \cdot \text { to } \frac{p-2}{2}} \times \frac{1}{\frac{p+2}{2}}$,

The fums of thefe feries, however, vary with the variations. in the magnitude of r. For when $r=2,3,4, \& c .-\frac{r p}{2}+$ $\frac{r^{m}}{2}$ does not vanifh, and $\frac{r^{p}}{2^{\frac{p+2}{2}}}$ becomes refpectively $2^{\frac{p^{2}-1}{2}}, \frac{3^{p}}{2^{\frac{p+2}{2}}}$ $\frac{4^{p}}{2^{\frac{\beta+2}{2}}}$ \& C.

$$
\overline{\mathrm{A}^{n}-a^{n}}+\overline{\mathrm{B}^{n}-b^{n}}+\overline{\mathrm{C}^{m}-c^{m}}+\& \mathrm{c} . \text { to } \frac{n-1}{4} \text { terms }=
$$ $\frac{2^{j / n}}{2}$, when $n-1$ is a multiple of 2 by an even number, and the fum of the feries is conftant or invariable when m is given, let the number of the terms $\frac{n-1}{4}$ be great or frmall. This feries, when n is infinitely great, or $n-1$ has to 4 a ratio greater than any given or affignable ratio, may be confidered as infinite.

$$
\frac{\overline{\mathrm{A}^{n}-a^{n}}+\overline{\mathrm{B}^{m}-b^{m}}+\overline{\mathrm{C}^{n}-c^{n}}+\& \mathrm{c} . \text { to } \frac{n-1}{4} \text { terms }}{\overline{\mathrm{A}-a}+\overline{\mathrm{B}-b}+\overline{\mathrm{C}-c}+\& \mathrm{c} . \text { to } \frac{n-\mathrm{I}}{4} \text { terms }}=\frac{r^{m}}{2} \div \frac{r}{2}=r^{n-s}
$$

$$
\begin{aligned}
& \overline{\mathrm{A}^{m}-a^{m}+\overline{\mathrm{B}^{m}-b^{m}}+\& \mathrm{c}, \text { to } \frac{n-\mathrm{I}}{4}} \text { terms, } \times \overline{\mathrm{A}-a+\mathrm{B}-b} \\
& +\& \mathrm{c} . \text { to } \frac{n-\mathrm{I}}{4} \text { terms, }=\frac{r^{n+1}}{4} \cdot \overline{\mathrm{~A}^{m}+\mathrm{A}-a^{m}+a+\mathrm{B}^{m}+\mathrm{B}-b^{m}+b} \\
& +\& \mathrm{c} . \text { to } \frac{n-\mathrm{I}}{4} \text { terms }=\frac{r^{m}+r}{2}=\mathrm{r}, \text { when } r=\mathrm{x} \\
& \overline{\mathrm{~A}^{m}-\mathrm{A}-a^{n}-a}+\overline{\mathrm{B}^{m}-\mathrm{B}-b^{m}-b}+\& \mathrm{c}, \text { to } \frac{n-\mathrm{I}}{4} \text { terms } \\
& =\frac{r^{m}-\mathrm{r}}{2}=0, \text { when } r=\mathrm{I} .
\end{aligned}
$$

It may not be unacceptable to geometers to fee the foregoing conclufions in regard to regular figures circumfcribed about and infcribed in a circle, derived by making ufe of one point only; inftead of two, either in or not in the circumference, which is eafily effected in the following manner:

Let the fides of any regular figure of an even number of fides: touch the circle BRETCQLS (P1. II. fig. 4i) in the points B, R, E, T, C, Q, L, S, and let DN, DH, DM, DV, be perpendiculars from the point: D to the diameters joining the points of contact; and from the points of contact let chords be drawn to any point A in the circumference.

IF-GE, or the radius of the circle, be denoted by r_{3} and $\mathrm{A} a$, $\mathrm{A} b, \mathrm{~A} c, \mathrm{~A} d$, be perpendiculars to the diameters joining the points of contact, $a \mathrm{C}, a \mathrm{~B}, \mathrm{~T} b, \mathrm{~S} b, \mathrm{~L} c, \mathrm{E} c, \mathrm{Q} d, d \mathrm{R}$, are refeectively equal to the perpendiculars from the point A to the fides of the figure, and are alfo refpectively equal to $\frac{\overline{\mathrm{AC}}^{2}}{2 r}, \frac{\overline{\mathrm{AB}}^{2}}{2 r}$, $\frac{\overline{\mathrm{AT}}^{2}}{2 r}, \frac{\overline{\mathrm{AS}}_{2}^{2 r}}{2 r}, \frac{\overline{\mathrm{AL}}^{2}}{2 r}, \frac{\overline{\mathrm{AE}}^{2}}{2 r}, \frac{\overline{\mathrm{AR}}_{2 r}^{2 r}}{2 r}$. But if N denote the number of fides of the figure the fum of the perpendiculars is $=$ $\mathbf{N} \times$ Wherefore $\overline{\mathrm{AG}}^{2}+\overline{\mathrm{AB}}^{2}+\overline{\mathrm{AT}}^{2}+\& c .=2 \mathrm{~N} \times r^{2}$. This is Prop. 4. Dr Stewart's Theor.

AGAIN, the fum of the fquares of the two perpendiculars from A , paralle to BC , or $\overline{\mathrm{Ba}}^{2}+\overline{a \mathrm{C}}^{2}=2 r^{2}+2 \times \overline{\mathrm{Ga}}$; and the fquares of the two perpendiculars from A parallel to LE, or $\overline{\mathrm{E}}^{2}$. $+c \mathrm{~L}=2 r^{2}+2 \times \mathrm{GC} ; \mathrm{Tb}^{2}+\mathrm{S} b=2 \mathrm{r}^{2}+2 \times \overline{\mathrm{G}}^{2} ;$ alfo $\overline{\mathrm{R}}^{2}+\overline{d Q}^{2}=2 r^{2}+2 \times \overline{\mathrm{G}}^{2}$. Wherefore the fum of the quares of the perpendiculars drawn from the point A to the
fides of the figure, is $=\mathrm{N} \times r^{3}+2 \times \overline{\overline{\mathrm{Ga}}^{2}+\overline{\mathrm{Gb}}^{2}+\overline{\mathrm{G} c}^{2}+\overline{\mathrm{Gd}}}{ }^{2}$. But fince the angles $\mathrm{G} a \mathrm{~A}, \mathrm{G} b \mathrm{~A}, \mathrm{G} c \mathrm{~A}, \mathrm{G} d \mathrm{~A}$, are right ones, a circle paffes through the points $\mathrm{A}, a, b, \mathrm{G}, c, d$, having GA for its diameter. And becaufe the angles CGT, QGC, LGQ, are equal, this circle is equally divided by the points a, b, c, d. Confequently the fquares of the chords drawn from thefe
points to the point A , are together $=\mathrm{N} \times \frac{\overline{\mathrm{GA}}^{2}}{4}$; that is, $\overline{\mathrm{A} c}^{2}\left(\overline{\mathrm{G} a}^{2}\right)$

$$
+\overline{\mathrm{A} a}^{2}\left(\overline{\mathrm{G} c}^{2}\right)+\overline{\mathrm{Ad}}^{2}\left({\overline{\mathrm{G}}{ }^{2}}^{2}\right)+\overline{\mathrm{Ab}}^{2}\left(\overline{\mathrm{G} d}^{2}\right)=\mathbf{N} \times \frac{\overline{\mathrm{GA}}^{2}}{4}=
$$

$\mathrm{N} \times \frac{r^{2}}{4}$. Wherefore the fum of the fquares of the perpendiculars drawn from A to the fides of the figure, is $=\mathrm{N} \times r^{2}+2 \mathrm{~N}$ $\times \frac{r^{2}}{4}=\mathrm{N} \times \frac{3 r^{2}}{2}$. But the fum of the fquares of thefe perpendiculars is $=\frac{\overline{\mathrm{AC}}^{4}}{4 r^{2}}+\frac{\overline{\mathrm{AB}}^{4}}{4 r^{2}}+\frac{\overline{\mathrm{AT}}^{4}}{4 r^{2}}+\frac{\overline{\mathrm{AS}}^{+}}{4 r^{2}}+\frac{\overline{\mathrm{AL}}^{4}}{4 r^{2}}+\frac{\mathrm{AE}}{4 r^{2}}+\frac{\overline{\mathrm{AQ}}^{4}}{4 r^{2}}$ $+\frac{\overline{\mathrm{AR}}^{4}}{4 r^{2}}$. Therefore $\overline{\mathrm{AC}}^{+}+\overline{\mathrm{AB}}^{4}+, \& \mathrm{c}_{0}=\mathrm{N} \times 6 r^{4}=\mathrm{N} \times 2 r^{2}$ $\times 3 r^{2}=\overline{\overline{\mathrm{AC}}^{2}+\overline{\mathrm{AB}}^{2}}+, \& \mathrm{c} . \times 3 r^{2}$. Whence this propofition:
I_{f} a circle be divided into any even number of parts, and from the points of divifion chords be drawn to any point in the circumference, the fum of the fourth powers of thefe chords is equal to the fum of their fquares, multiplied by thrice the fquare of radius.
 $\times \frac{{\overline{3 \mathrm{GA}^{2}}}_{4}^{2}=\mathrm{N} \times \frac{3 r^{4}}{16} ; \text { and } \overline{\mathrm{DM}}^{4}+\overline{\mathrm{DV}}^{4}+\overline{\mathrm{DH}}^{4}+\overline{\mathrm{DN}}^{4} .4 \mathrm{D}^{4}}{}$
$=\overline{\mathrm{DM}}+\overline{\mathrm{DV}}+\overline{\mathrm{DH}}^{2}+\overline{\mathrm{DN}} \times \frac{3 \times \overline{\mathrm{DG}}^{2}}{4}=\frac{3 \times \mathrm{N}}{16} \times \overline{\mathrm{DG}}^{+}=$ $\frac{6 \mathrm{~N}}{2} \times \frac{\overline{\mathrm{DG}}^{4}}{16}$.
Now, it is evident, that perpendiculars drawn from the point D to the fides of the figures, are refpectively $r+\mathrm{DM}, r-\mathrm{DM}$, $r+\mathrm{DV}, r-\mathrm{DV}, r+\mathrm{DH}, r-\mathrm{DH}, r+\mathrm{DN}, r-\mathrm{DN}$.

$$
\begin{aligned}
& \text { But } \overline{r+D M}^{2}+\overline{r-D M}^{2}=2 r^{2}+2 \times \overline{\mathrm{DM}}^{2}, \\
& \overline{r+D V}^{2}+\overline{r-D V}^{2}=2 r^{2}+2 \times \overline{\mathrm{DV}}^{2}, \\
& {\overline{r+\mathrm{DH}^{2}}}^{2}+{\overline{-\mathrm{DH}^{2}}}^{2}=2 r^{2}+2 \times \overline{\mathrm{DH}}^{2},
\end{aligned}
$$

Wherefore the fum of their fquares is equal to $\mathrm{N} \times r^{2}+$
 the circle which paffes through the points $\mathbf{D}, \mathrm{M}, \mathrm{V}, \mathrm{G}, \mathrm{H}, \mathrm{N}$, is. equally divided by the points $\mathrm{M}, \mathrm{V}, \mathrm{H}, \mathrm{N}$. This is Prop. 5° of Dr Stewart's Theorems.

$$
\begin{aligned}
& \overline{{ }^{+\mathrm{DM}^{3}}}+\overline{r-\mathrm{DM}^{3}}=2 r^{3}+6 r \times \overline{\mathrm{DM}}^{2}, \\
& \overline{r+\mathrm{DV}^{3}}+\overline{r-D V}^{3}=2 r^{3}+6 r \times \overline{\mathrm{DV}}^{2}, \\
& {\overline{r+\mathrm{DH}^{3}}}^{3}+\overline{-\mathrm{DH}^{3}}=2 r^{3}+6 r \times \overline{\mathrm{DH}}^{3}, \\
& \overline{r+\mathrm{DN}^{3}}+\overline{\mathrm{-D}}^{3}=2 r^{3}+6 r \times \overline{\mathrm{DN}}^{2} .
\end{aligned}
$$

Wherefore, the fum of the cubes of the perpendiculars, drawn from the point D to the fides of the figure, is $=\mathrm{N} \times \mathrm{r}^{3}+$
$6 r \times \overline{\overline{\mathrm{DM}}^{2}+\overline{\mathrm{DV}^{2}}+\overline{\overline{\mathrm{H}}^{2}}+\overline{\mathrm{DN}^{2}}}=\mathrm{N} \times r^{3}+6 r \times \frac{\overline{\mathrm{DG}}^{2}}{4}$.
This is Prop. 23. Stewart's Theor. When DG $=r$, the fum of the cubes of the perpendiculars is $=\mathrm{N} \times \frac{5}{2} \times{ }^{r}=\mathrm{N} \times$
$\frac{\text { I. } 3 \cdot 5}{\mathrm{I} \cdot 2 \cdot 3}$. r^{3}. This is Prop. 22. Dr Stewart's Theor.
When $\mathrm{DG}=r$, or D coincides with A , the fum of the cubes of the perpendiculars is equal to $\frac{\overline{\mathrm{AC}}^{6}}{8 r^{2}}+\frac{\overline{\mathrm{AB}}^{5}}{8 r^{3}}+\frac{\overline{\mathrm{AT}}^{5}}{8 r^{3}}+$, \&c.; and, confequently, we get $\overline{\mathrm{AC}}^{6}+\overline{\mathrm{AB}}^{5}+\overline{\mathrm{AT}}^{5}+, \& \mathrm{c} .=\frac{5.8}{2}$ $\times \mathrm{N} \times r^{6}=\mathrm{N} \times 20 r^{6}=\mathrm{N} \times \frac{1.3 .5}{1.2 .3} \cdots 2^{3} r^{6}=\mathrm{N} \times 20 \times r^{6}=$ $\mathrm{N} \times \operatorname{ror}^{4} \times \overline{\mathrm{AC}^{2}+\overline{\mathrm{AB}}^{2}+\overline{\mathrm{AT}}}+, \& \mathrm{c}$.
I_{F}, therefore, the circumference of a circle be divided into an even number of equal parts, and from the points of divifion chords be drawn to any point in the circumference, the fum of the fixth powers of thefe chords is equal to the fum of their fquares, multiplied by ten times the fourth power of radius.

$$
\begin{aligned}
& \overline{r+\mathrm{DM}^{4}}+{\overline{r-\mathrm{DM}^{4}}=2 r^{4}+12 r^{2} \times \overline{\mathrm{DM}}^{2}+2 \times \overline{\mathrm{DM}}^{4}, ~}_{\text {, }} \\
& \overline{r+\mathrm{DV}^{4}}+\overline{\mathrm{-DV}}{ }^{4}=2 r^{4}+12 r^{2} \times \overline{\mathrm{DV}}^{2}+2 \times \overline{\mathrm{DV}}^{4}, \\
& {\overline{r+\mathrm{DH}^{4}}+{\overline{r-\mathrm{DH}^{4}}}^{4}=2 r^{4}+12 r^{2} \times \overline{\mathrm{DH}}^{2}+2 \times \overline{\mathrm{DH}}^{4}, ~}_{\text {, }} \\
& {\overline{r+\mathrm{DN}^{4}}+\overline{r-\mathrm{DN}^{4}}=2 r^{4}+12 r^{2} \times \overline{\mathrm{DN}}^{2}+2 \times \overline{\mathrm{DN}}^{4} . ~ . ~ . ~ . ~}_{\text {. }}
\end{aligned}
$$

Wherefore, the fum of the fourth powers of the perpendiculars drawn from the point \mathbf{D} to the fides of the figure, is $=\mathrm{N}$ $\times r^{4}+\mathrm{N} \times 3 r^{2} \times \overline{\mathrm{GD}}^{2}+\mathrm{N} \times \frac{3}{8} \times \overline{\mathrm{GD}}^{4}$; and eight times this
fum $=\mathrm{N} \times 8 r^{4}+24 r^{2} \cdot \overline{\mathrm{GD}}^{2}+3 \cdot \overline{\mathrm{GD}}^{4}$. This is Prop. 29. of Dr Stewakt's Theorems.
When GD $=r$, the fum of thefe fourth powers is $\mathbf{N} \times$ $4 r^{4}+\frac{3}{8} r=\mathrm{N} \times \frac{35}{8} r^{4}=\mathrm{N} \times \frac{1.3 \cdot 5 \cdot 7}{1 \cdot 2 \cdot 3 \cdot 4} \times r^{4}$, which is Prop. 28. of Dr Stewart's Theorems.
A_{ND} fince $\frac{\overline{\mathrm{AC}}^{\mathrm{s}}}{2^{4} r^{4}}+\frac{\overline{\mathrm{AB}}^{8}}{2^{4} r^{4}}+\frac{\overline{\mathrm{AT}}^{3}}{2^{4} r^{4}}+, \& \mathrm{c} .=\mathrm{N} \times \frac{35 r^{4}}{8}$, we get $\overline{\mathrm{AC}}^{8}+\overline{\mathrm{AB}}^{8}+\overline{\mathrm{AT}}^{8}+, \& \mathrm{c} .=\mathrm{N} \times \frac{35}{8} \cdot 2^{4} r^{5}=\mathrm{N} \times \frac{\mathrm{I} \cdot 3 \cdot 5 \cdot 7}{\mathrm{I} \cdot 2 \cdot 3 \cdot 4} \times$ $24 r^{8}$.

Awd by proceeding in this way, (the law of continuation being evident), we get Propofitions $39,40,4 \mathrm{I}, \& \mathrm{c}$. of Dr Stewart's Theorems, 'fince the powers of DM, DV, DH, DN, \&c. however high, may always be expreffed by thofe of DG and r. The fame reafoning holds in all even powers, when the point D is without the figure, by taking the powers of $\mathrm{DH},+r, \& \mathrm{c}$. when DH, \& c . is greater than than r, inftead of the powers of $r \pm \mathrm{DH}, \& \mathrm{c}$.

Let any regular figure of an odd number of fides, (PI. III. Fig. 5.), circumfcribe the circle, and touch it in the points B, E, $\mathrm{C}, \mathrm{Q}, \mathrm{L}$; and from any point D , let perpendiculars DP, DR, $\mathrm{DS}, \mathrm{DO}, \mathrm{DT}$, 'be drawn to the fides of the figure; and DF, DM, DN, DH, DV, perpendiculars to the diameters paffing through the points of contact:

> VoL. VI.-P.I.

Then, if radius be denoted by r, it is evident, that DP is $=$ $r-\mathrm{GN}, \mathrm{DR}=r-\mathrm{GF}, \mathrm{DS}=r+\mathrm{GH}, \mathrm{DO}=r+\mathrm{GM}$, and $\mathrm{DT}=r+\mathrm{GV}$; and calling N the number of the fides of the figure, the fum of the fquares of thefe lines is $\mathrm{N} \times r^{2}+2 r \times$
$\overline{\mathrm{GH}}+\mathrm{GM}+\mathrm{GV}-\overline{\mathrm{GN}}-\mathrm{GF}+\overline{\mathrm{GH}}^{2}+\overline{\mathrm{GM}}^{2}+\overline{\mathrm{GV}}^{2}+\overline{\mathrm{GN}}^{2}$ $+\overline{\mathrm{GF}}^{2}$. But fince the angles HGN, NGM, MGF, FGV, are equal, and the angles at $\mathrm{H}, \mathrm{N}, \mathrm{M}, \mathrm{F}, \mathrm{V}$, right ones, a circle, having its diameter $=\mathrm{GD}$, paffes through the points $\mathrm{G}, \mathrm{H}, \mathrm{N}, \mathrm{D}$, $\mathrm{M}, \mathrm{F}, \mathrm{V}$, and its circumference is divided into equal parts at the points $\mathrm{H}, \mathrm{N}, \mathrm{M}, \mathrm{F}, \mathrm{V}$. Wherefore $\overline{\mathrm{GH}}^{2}+\overline{\mathrm{GN}}^{2}+\overline{\mathrm{GM}}^{2}+\overline{\mathrm{GF}}^{2}$ $+\overline{\mathrm{GV}}^{2}=2 \times \mathrm{N} \times \frac{\overline{\mathrm{GD}}^{2}}{4}=\mathrm{N} \times \frac{\overline{\mathrm{GD}}^{2}}{2}$. But $\overline{\mathrm{DP}}^{2}+\overline{\mathrm{DR}}^{2}+$ $\overline{\mathrm{DS}}^{2}+\overline{\mathrm{DO}}^{2}+\overline{\mathrm{DT}}^{2}=\mathrm{N} \times r^{2}+\mathrm{N} \times \frac{\overline{\mathrm{GD}}^{2}}{}{ }^{2}$. (STEWART'S Theor. Prop. 5.). Therefore $2 r \times \overline{\mathrm{GH}+\mathrm{GM}+\mathrm{GV}-\mathrm{GN}-\mathrm{GF}}$ $=0$, or $\mathrm{GN}+\mathrm{GF}=\mathrm{GH}+\mathrm{GM}+\mathrm{GV}$. Whence this propofition: If, from any point, perpendiculars be drawn to the fides of any regular figure of an odd number of fides, circumfcribing. a circle, the fum of the parts by which thofe perpendiculars, which are greater than radius, exceed it, is equal to the fum of thofe parts by which the perpendiculars, which are lefs than radius, fall fhort of it. And this propofition is alfo true with regard to any regular figure, of which the number of its fides is a_{2} multiple of any odd number by 2 , fince the perpendiculars $D F$, $\mathrm{DM}, \mathrm{DN}, \mathrm{DH}, \mathrm{DV}, \& \mathrm{c}$. are the fame both in number and magnitude, in any regular figure of an add number of fides, and a; regular figure of double the number of fides. Confequently, in a hexagon, one of the three perpendiculars drawn from any point: D to the diameters joining the oppofite points of contact, is.
equal to the fum of the other two, and fo on; and if, in the hexagon, the point D be taken in one of the three diameters, the perpendiculars drawn from it to the other two are equal.

Again, $\overline{\mathrm{DP}}^{3}+\overline{\mathrm{DR}}^{3}+\overline{\mathrm{DS}}^{3}+\overline{\mathrm{DO}}^{3}+\overline{\mathrm{DT}}^{3}=\mathrm{N} \times r^{3}+3 r^{2}$
$\times \overline{G H+G M+G V-G N-G F}+3 r \times$
${\overline{\mathrm{GH}^{2}}+\overline{\mathrm{GM}}^{2}+\overline{\mathrm{GV}}^{2}+\overline{\mathrm{GN}}^{2}+\overline{\mathrm{GF}}^{2}}^{2} \overline{\mathrm{GH}}^{3}+\overline{\mathrm{GM}}^{3}+\overline{\mathrm{GV}}^{3}-$
$\overline{\mathrm{GN}}^{3}-\overline{\mathrm{GF}}^{3}=\mathrm{N} \times r^{3}+\mathrm{N} \times 3 r \cdot \frac{\overline{\mathrm{GD}}^{2}}{2}+\overline{\mathrm{GH}}^{3}+\overline{\mathrm{GM}}^{3}+$
$\overline{\mathrm{GV}}^{3}-\overline{\mathrm{GN}}^{3}-\overline{\mathrm{GF}}^{3}$. But fince $\mathrm{N} \times r^{3}+\mathrm{N} \times 3 r \times \frac{\overline{\mathrm{GD}}^{2}}{2}=$ $\overline{\mathrm{DP}}^{3}+\overline{\mathrm{DR}}^{3}+\overline{\mathrm{DS}}^{3}+\overline{\mathrm{DO}}^{3}+\overline{\mathrm{DT}}^{3} \cdot \overline{\mathrm{GH}}^{3}+\overline{\mathrm{GM}}^{3}+\overline{\mathrm{GV}}^{3}=$ $\overline{\mathrm{GN}}^{3}+\overline{\mathrm{GF}}^{3}$.

If \mathbf{D} be in a line perpendicular from G the centre, to a diameter drawn from any point of contact L, the odd chord GV vanifhes, (V coinciding with G), and $G N=G M, G H=G F$; and the expreffion for the fum of the cubes of the perpendiculars, drawn from D to the fides of the circumfcribing figure, is fimply $\mathrm{N} \times r^{3}+\mathrm{N} \times 3 r \times \frac{\overline{\mathrm{GD}}^{2}}{2}$
I_{F} the figure circumfcribing the circle be a pentagon, a line drawn from G, bifecting the angle $Q G d$ nearer to G. is perpendicular to LG; alfo, if D be in the line $\mathrm{G} d$, the point M coincides with D, GN $=\mathrm{GF}, \mathrm{GH}=\mathrm{GV}$, and GM coincides with GD, and twice the cube on GF or GN is equal to the three cubes on GD, GH, GV, or to the cube on GD with twice the cube on GH or GV; and the difference of the cubes on GF, GV, or on GN, GH, H 2
is then equal to half the cube on GD, or $2 \overline{\mathrm{GF}}^{3}-2 \overline{\mathrm{GV}}^{3}=$ $\overline{\mathrm{GD}}{ }^{3}$.

Hence an eafy folution of this problem.
Having two equal right lines given, it is required to cut one of them into two parts, and the other into three parts; fo that the cubes on the two parts, into which the one of thefe lines is cut, fhall, together, be equal to the cubes on the three parts, into which the other is cut, taken together.

Hence, alfo, an eafy conftruction for this problem: On a given right line, to conftitute a triangle, fuch that twice the difference of the cubes on the other two fides, fhall be equal to the cube on the given line.

Let AC be the given line, (Pl. III. Fig. 6.). With A as radius, defrribe an arc AB . Take the angle $\mathrm{ACB}=36^{\circ}$. Draw AG perpendicular to $C B$, and join $A B$. From A and C as centres, defcribe arcs with the radii $\frac{A B}{2}$, and CG, interfecting in the point F. Then CFA is the triangle required; and $2 \cdot \overline{\mathrm{CF}}^{3}-2 \cdot \overline{\mathrm{AF}}^{3}=\overline{\mathrm{CA}}^{3}$.

Demonstration.

Since the angle ACB is $36^{\circ}, \mathrm{AB}$ is the fide of a decagon infcribed in the circle, which has $A C$ for its radius; and CG is the perpendiculat to the fide of an infcribed pentagon. But it is well known, that $C G$ is $=\frac{A C+A B}{2}$, and $\overline{\mathrm{AC}}^{2}=\overline{\mathrm{AB}}^{2}+$ $\mathrm{AC} \times \mathrm{AB}$. Confequently $3 \overline{\mathrm{AC}}_{-}^{3}=3 \mathrm{AC}^{2} \times \mathrm{AB}+3 \mathrm{AC} \times \overline{\mathrm{AB}}^{2} ;$ add $\overline{\mathrm{AC}}^{3}$ to both, and we have $4 \overline{\mathrm{AC}}^{3}={\overline{\mathrm{AC}^{3}}}^{3}+3 \overline{\mathrm{AC}}^{2} \times \mathrm{AB}+$
$3 \mathrm{AC} \times \mathrm{AB}^{2}$, and $\overline{\mathrm{AC}}^{3}=\frac{\overline{\mathrm{AC}}^{3}+3 \overline{\mathrm{AC}}^{2} \times \mathrm{AB}+3 \mathrm{AC} \times \overline{\mathrm{AB}}^{2}}{4}=$
$\frac{\mathrm{AC}+\overline{\mathrm{AB}}^{3}-\overline{\mathrm{AB}}^{3}}{8} \times 2=2 \times \overline{\mathrm{CG}}^{3}-\overline{\mathrm{AF}}^{3}$. Thus, in any circle, the cube of radius is equal to twice the difference between the cubes on the perpendicular to the fide of the infcribed pentagon, and half the fide of the infcribed decagon.

Proposition. Let any regular figure of an odd number of fides, be circumfcribed about a circle, and let (n) be any odd number, lefs than the number of the fides of the figure; and from any point within the figure let perpendiculars be drawn to the fides of the circumfcribing figure; then the fum of the (n) powers of the parts by which thofe perpendiculars, which are greater than radius, exceed it, is equal to the fum of the (n) powers of thofe parts by which the perpendiculars, which are lefs than radius, fall fhort of it.
Hence thefe problems.
Having two equal given right lines, to cut one of them into two parts, and the other into three, fo that the cubes on the two parts, into which one of them is cut, fhall, together, be equal to the cubes on the three parts, into which the other is cut, taken together.

And having two equal right lines given, to cut one of them into feven parts, and the other into eight, fo that the cubes, the 5 th powers, the 7 th, 9 th, 1 Ith and 13 th powers, of the feven parts, into which the one is cut, fhall, together, be refpectively equal to the cubes, the 5 th, the 7 th, the 9 th, the 1 ith, and the $13^{\text {th }}$ powers, of the eight parts, into which the other is cut.

The firf of thefe two problems is effected by a pentagon, infcribed in a circle; and the fecond, by a quindecagon infcribed.

IF V be as much on the other fide of the centre G, towards L, as it is towards C, the lines GN, GM, exchange their values or magnitudes, as alfo do the lines GH, GF ; and the perpendiculars to the fides of the circumfcribing figure then become $r-\mathrm{GM}, r-\mathrm{GH}, r+\mathrm{GN}, r+\mathrm{GF}, r-\mathrm{GV}$; and the fum of their cubes $\mathrm{N} \times r^{3}+\mathrm{N} \times 3$ r. $\frac{\overline{\mathrm{GD}}^{2}}{2}+\overline{\mathrm{GN}}^{3}+\overline{\mathrm{GF}}^{3}-\overline{\mathrm{GM}}^{3}-$ $\overline{\mathrm{GH}}^{3}-\overline{\mathrm{GV}}^{3} ;$ which added to $\mathrm{N} \times r^{3}+\mathrm{N} \times 3 r_{0} \frac{\overline{\mathrm{GD}}^{2}}{2}+\overline{\mathrm{GM}}^{3}$ $\overline{\mathbf{G H}}^{3}+\overline{\mathbf{G V}}^{3}-\overline{\mathbf{G N}}^{3}-\overline{\mathrm{GF}}^{3}$, the fum of their cubes before found, and the aggregate divided by 2 , gives $\mathrm{N} \times r^{3}+\mathrm{N} \times 3 r$. $\frac{\overline{\mathrm{GD}}^{2}}{2}$, the fum of their cubes, when D is in the line drawn from the centre G perpendicular to LG.

Let a circle, (Pl. III. Fig. 7.), be defcribed on BC, with the centre G, and let BF be a fquare on the diameter $B C$; draw EGD from E, through the centre G, to meet the circle in D, and join D F.

Then, fince $B G \times C S$, or $C G \times C S=\overline{G S}^{2}, G C$ is cut in extreme and mean proportion in the point S, and GS is the fide of a regular decagon, infcribed in the circle. And fince the perpendicular from G to the fide of a regular infcribed pentagon, is $=\frac{\mathrm{BG}+\mathrm{GS}}{-2}, \mathrm{BS}$ is twice that perpendicular. $\mathrm{But} \frac{\overline{\mathrm{BG}+\mathrm{GS}^{3}}}{2}$, or $\frac{\overline{\operatorname{tGS}}^{3}}{8}-\frac{\overline{\mathrm{GS}}^{3}}{8}=\frac{r^{3}}{2}$. Confequently $\overline{\mathrm{BS}}^{3}-\overline{\mathrm{GS}}^{3}$, or $\overline{r+G S}^{3}$ $-\overline{\mathrm{GS}}^{3}=4 r^{3}$. Therefore $3 r^{3}=3 r^{2} \times \mathrm{GS}+3 r \times \overline{\mathrm{GS}}^{2}$, and
$\ddot{r}^{3}=r^{2} \times \mathrm{GS}+r \times \overline{\mathrm{GS}}^{2}$. But BS is cut in G , in the fame manner as GC is cut in S. Wherefore, if another circle be defcribed, with BS as radius, and a line be drawn from one of the angles of a fquare, defcribed on the diameter, through the centre, to meet the circumference in a point, and if this point, and the other oppofite angle of the fquare be joined, $\overline{2 r+G S^{3}}-r^{3}$ will in like manner be $=4 \times \overline{\mathrm{C}+\mathrm{GS}^{3}}$, or $4 \times \overleftarrow{\mathrm{BS}}^{3}$, and $7 r^{3}+12 r^{2}$. $\mathrm{GS}+6 r \cdot \dot{\mathrm{GS}}^{2}+\overline{\mathrm{GS}}^{3}=4 r^{3}+12 r^{2} \cdot \mathrm{GS}+12 \cdot r \cdot \overline{\mathrm{GS}}^{2}+4 \cdot \overline{\mathrm{GS}}^{3}$. Therefore $3 r^{3}=6 r \cdot \overline{\mathrm{GS}}^{2}+3 \overline{\mathrm{GS}}^{3}$, and $r^{3}=2 r \cdot \overline{\mathrm{GS}}^{2}+\overline{\mathrm{GS}}^{3}$ $=r^{2} \cdot \mathrm{GS}+r . \overline{\mathrm{GS}}^{2}$. Therefore $2 r . \mathrm{GS}+\mathrm{GS}^{2}=r^{2}+r . \mathrm{GS}$, and $\overline{\mathrm{GS}}^{2}+r$. GS $=r^{2}$, and $\overline{\mathrm{GS}}^{3}=r^{2}$. GS $-r . \overline{\mathrm{GS}}^{2}$.
I_{F}, therefore, from any point in the circumference of the circle BDC, perpendiculars be drawn to the fides of any regular figure circumfcribed about it, the fum of their cubes being $=\mathrm{N} \times \frac{5}{2} \cdot r^{3}$, (calling $\mathrm{N}^{\text {the }}$ thumber of the fides of the figure), is $=N \times{ }_{5} r . \overline{\mathrm{GS}}^{2}+\mathrm{N} \times \frac{5}{2} \cdot \overline{\mathrm{GS}}^{3}$; and twice the fum of the cubes of thefe perpendiculars is $\mathrm{N} \times 5$. $\overline{\mathrm{GS}}^{3}+\mathrm{N} \times 10 r . \overline{\mathrm{GS}}^{2}$; that is, equal to five times a multiple by the number of the fides of the figure of the cube on the fide of an infcribed regular decagon, and ten times a multiple, by the fame number of the folid, which has the fquare of the fide of the infrribed decagon for its bafe, and radius for its altitude; and if the perpendiculars be drawn from any point P, within the circumfribed figure, that is, not in the circumference of the circle $_{3}$,
circle, twice the fum of their cubes will be equal to $2 \mathrm{~N} \times$
${\overline{\mathrm{GS}^{3}}+2 r \cdot \overline{\mathrm{GS}}^{2}}^{3}+2 \mathrm{~N} \times 6 r \times \frac{\overline{\mathrm{GP}}^{2}}{4}$; that is, equal to twice a multiple by the number of the fides of the figure of the cube on the fide of the infcribed decagon, together with four times a multiple, by the fame number of the folid which has the fquare of the fide of the decagon for its bafe, and r for its altitude, together with thrice a multiple by the fame number of the folid; which has the fquare of GP for its bafe, and r for its altitude.

In like manner, may the fixth powers of lines drawn from the angles of any regular infcribed figure of a greater number of fides than three, to any point either in, or not in the circumference, be expreffed in terms of the fide of an infcribed decagon, fince their fum is a multiple of the fum of the cubes of the perpendiculars, to the fides of the circumfcribing figure, by $8 r^{3}$.

Again, fince $r+$ GS $: r:: r: G S:: G S: r$ GS, we have $2 r$ +GS $: r$ +GS: $: r+$ GS:r::r:GS::GS:r-GS.
Wherefore $\overline{3 r+2 G S}^{3}-\overline{+\mathrm{GS}^{3}}=4 \times \overline{2 r+G S}^{3}$, or $26 r^{3}+5 r r^{2} \cdot \mathrm{GS}+33 r \cdot \overline{\mathrm{GS}}^{2}+7 \overline{\mathrm{GS}}^{3}=32 r^{3}+48 r^{2} . \mathrm{GS}+$ $24 r . \overline{\mathrm{GS}}^{2}+4 \overline{\mathrm{GS}}^{3}$, or $3 r^{r} . \mathrm{GS}+9 r \cdot \overline{\mathrm{GS}}^{2}+3 \overline{\mathrm{GS}}^{3}=6 r^{3}$, or $r^{2} \cdot \mathrm{GS}+3 r \cdot \overline{\mathrm{GS}}^{2}+\overline{\mathrm{GS}}^{3}=2 r^{3}$.
Wherefore, fince four times the fum of the cubes of the perpendiculars drawn from any point in the circumference of the circle to the fides of any regular circumfcribing figure, is $\mathrm{N} \times 5 \times 2 r^{3}$; four times the fum of thefe cubes is $=\mathrm{N} \times$
that is, equal to five times a multiple, by the number of the fides of the figure of the cube on the fide of the infcribed decagon, $t_{\text {ogether }}$ with fifteen times a multiple, by the fame number, of the folid, which has the fquare on the fide of the infrribed decagon as its bafe, and \bar{r} for its altitude, together with five times a multiple, by the fame number of the folid, which has r^{2} for its bafe, and the fide of the decagon for its altitude.

Let the circumference of a circle be divided into any number n of equal parts, and from any point in the circumference let chords be drawn to the points of divifion, and let 3 m be any number lefs than n, the fum of the $2 m$ powers of the lines which have refpectively to $2 r$ the diameter, the ratios which the cubes of the chords have refpectively to $8 r^{3}$, the cube of the diameter, is equal to $n \times \frac{\mathrm{I} \cdot 3 \cdot 5 \cdot 7 \cdot \cdot 6 m-\mathbf{x}}{1 \cdot 2 \cdot 3 \cdot 4^{6} \cdot 3^{m}} \times \frac{r^{2 n n}}{2^{m}}$.

Let the chords be denoted by $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \& \mathrm{c}$. to n terms; and let $8 r^{3}: \mathrm{A}^{3}=2 r: a, 8 r^{3}: \mathrm{B}^{3}=2 r: b, 8 r^{3}: \mathrm{C}^{3}=2 r: c$, $8 r^{3}: \mathrm{D}^{3}=2 r: d, \& c$. Then $a=\frac{\mathrm{A}^{3}}{4^{r^{2}}}$, and $a^{2 m}=\frac{\mathrm{A}^{6 m}}{2^{4 n} r^{4 n}} b^{2 m}=$ $\frac{\mathrm{B}^{6 m}}{2^{4 n} r^{4 m}} \& \mathrm{c}_{0} ;$ and $a^{2 / n}+b^{2 n}+\& \mathrm{c}$. to n terms, is $=\frac{\mathrm{A}^{6 m}}{2^{4 n} r^{4 m}}$ $+\frac{\mathbf{B}^{6 m}}{2^{4 m} r^{4 n}}+\& \mathrm{cc}$. to n terms. If $p=3 m$, we have $a^{2 m}+$ $b^{2 m}+\& c .=\frac{\mathrm{A}^{2 p}}{2^{p+m} r^{p+m}}+\frac{\mathrm{B}^{2 p}}{2^{p+m} r^{p+m}}+\& \mathrm{c}$. But the fum of the $2 p$ powers of the chords $A, B, \& c$. is $n \times \frac{1 \cdot 3 \cdot 5 \cdot 7 \cdots 2^{p-1}}{1 \cdot 2 \cdot 3 \cdot 4 \cdots p} 2^{p} r^{2 p}$. Vol. VI.-P.I.

Therefore $a^{2 n}+b^{2 m}+\& \mathrm{c} .=n \times \frac{1 \cdot 3 \cdot 5 \cdot 7 \cdot 2^{p-1}}{1 \cdot 2 \cdot 3 \cdot 4 \cdot p} \times \frac{r^{n-m}}{2^{m}}=$
$n \times \frac{1 \cdot 3 \cdot 5 \cdot 7 \cdot \cdot 6^{n-1}}{1 \cdot 2 \cdot 3 \cdot 4 \cdot \cdot 3^{n-}} \times \frac{r^{2 m}}{2^{n}}$.
$\mathrm{I}_{\mathrm{F}} m=\mathrm{I}, a^{2}+b^{2}+\& \mathrm{c} .=n \times \frac{\mathbf{1 . 3 . 5}}{\mathbf{1 . 2 . 3}} \times \frac{r_{2}^{2}}{2}=\frac{5 n r^{2}}{4}$; and the diameter, (or $2 r$) $\times \overline{a^{2}+b^{2}+c_{0}^{2}+\& c .}=$ fum of the cubes of perpendiculars drawn from any point in the circumference, to the fides of a regular circumfcribing polygon of n number of fides, and $a^{2}+b^{2}+\& c$. is to the fum of the fquares of thefe perpendiculars as 5 to 6 ; and if the perpendiculars to the fides of the polygon correfponding to the chords A, B, C, D, \&c. and drawn from the fame point in the circumference that thefe chords are drawn from, be denoted by $\mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{S}, \& \mathrm{c} . a+b+$ $c+\& c .=\frac{\mathrm{A} \times \mathrm{P}}{2 r}+\frac{\mathrm{B} \times \mathrm{Q}}{2 r}+\frac{\mathrm{C} \times \mathrm{R}}{2 r}+\frac{\mathrm{D} \times \mathrm{S}}{2 r}+\& \mathrm{c} .2^{m} r^{m} \times$ $\overline{a^{2 m}+b^{2 m}+c^{2 m}+\& \mathrm{c} .}=\mathrm{P}^{3 m}+\mathrm{Q}^{3 m}+\mathrm{R}^{3 m}+\& \mathrm{c} .=$ the fum of the 3^{m} powers of thefe perpendiculars, $=n \times \frac{\mathrm{I} \cdot 3 \cdot 5 \cdot 7 \cdots 6^{m-\mathrm{I}}}{\mathrm{I} \cdot 2 \cdot 3 \cdot 4 \cdots 3^{m}}$ $\times r^{3 m}$ 。

Theorem Φ. From any point C, (Pl. III. Fig. 8.), let the chord CA be drawn ; let GAF be a tangent to the circle at A ; and fet AD be perpendicular to the diameter BC , and CF, BG to GF. The right line which has to $\mathrm{BC}(2 r)$, the ratio of $\overline{\mathrm{AG}}^{3}$ to $\overline{\mathrm{BC}}^{3}$, or the triplicate ratio of the chord of the arc AC, to the diameter, is $\frac{A C \times C F}{B C}$, or $\frac{A C \times C D}{B C}=a$ fourth proportional to the diameter, the chord and the perpendicular drawn from one extremity of the
the chord to the tangent to the circle at the other extremity, or a fourth proportional to the diameter, the chord and verfed fine of the arc AC.

For, the angle $\mathrm{CAF}=$ the angle $\mathrm{ABC}=$ the angle CAD.
Therefore $\mathrm{CD}=\mathrm{CF}$, and $\mathrm{AD}=\mathrm{AF}$. But $\mathrm{CD}=\frac{\overline{\mathrm{AC}}^{2}}{\mathrm{BC}} . \quad$ Confequently $\frac{A C \times C D}{B C}=\frac{\overline{A C}^{3}}{\overline{B C}^{2}}$, which has to BC the ratio of $\overline{\mathrm{AG}}^{3}$ to $\overline{\mathrm{BC}}^{3}$. Q. E. D.

Cor. 1. $\mathrm{BD}=$ perpendicular $\mathrm{BG} ; \mathrm{GF}=$ the chord AE of double the arc $\mathrm{AC}=$ twice the fine of the arc AC .

Cor. 2. $\frac{A B \times B G}{B C}$, or $\frac{A B \times B D}{B G}$, has to $B C$, the ratio of $\overline{A B}^{3}$ to $\overline{\mathrm{BC}}^{3}$.

$$
\begin{aligned}
& \text { Cor. 3. } \overline{\mathrm{CF}}^{3}=\frac{\overline{\mathrm{AC}}^{6}}{\overline{\mathrm{BC}}^{3}} \overline{\mathrm{BG}}^{3}=\frac{\overline{\mathrm{AB}}^{6}}{\overline{\mathrm{BC}}^{3}}, \overline{\mathrm{CF}}^{3}=\frac{\overline{\mathrm{AC}}^{2} \times \overline{\mathrm{CD}}^{2}}{\overline{\mathrm{BC}}^{2}} \times \\
& \mathrm{BC}=\frac{\overline{\mathrm{AC}}^{2} \times \overline{\mathrm{CF}}^{2} \times \mathrm{BC}}{\overline{\mathrm{BC}}^{2}} \text {, and } \overline{\mathrm{BG}}^{3}=\frac{\overline{\mathrm{AB}}^{2} \times \overline{\mathrm{BD}}^{2}}{\overline{\mathrm{BC}}^{2}} \times \mathrm{BC}=
\end{aligned}
$$

$\frac{\widehat{\mathrm{AB}}^{2} \times \overline{\mathrm{BG}}^{2}}{\overline{\mathrm{BC}}^{2}} \times \mathrm{BC}$; and the lines, which have to BC the ratios of
$\overline{\mathrm{AC}}^{3}: \overline{\mathrm{BC}}^{3}$; and $\overline{\mathrm{AB}}^{3}: \overline{\mathrm{BC}}^{3}$ are to each other as $\mathrm{AC} \times \mathrm{CD}$ to $A B \times B D$, or as $A C \times C F: A B \times B G$.

See Fig. r. and Theorem Φ. Since the part of the tangent at the point A, that would be intercepted between perpendiculars drawn to it from P and Q , is equal to $2 \mathrm{P} a$, or $2 \mathrm{Q} c$, the part of the tangent at the point B, that would be intercepted between perpendiculars drawn to it from P and Q , is $=2 \mathrm{P} e$, or ${ }_{2} \mathrm{Q} f$; and the part of the tangent at C , that would be intercepted between perpendiculars drawn to it from P and Q, is $=2 \mathrm{P} b$, or $2 \mathrm{Q} d$, we have (when AB, BC, \&c. are equal, or when the diameters paffing through $\mathrm{A}, \mathrm{B}, \mathrm{C}$, \&c. make equal angles with one another at the centre O) the fum of the fquares of thefe parts of the tangents, (calling n the number of the points of contact), $=n \times \frac{\mathrm{I}}{\mathrm{I}} 2 r^{2}$; the fum of their fourth powers $=n \times \frac{1.3}{1.2} \times 2^{2} r^{i} ;$ and the fum of the $2 m$ powers of thefe parts (m being any integer lefs than n) $=n \times \frac{\mathbf{1} \cdot 3.5 \cdots 2 m \text { - } \mathbf{I}}{1.2 .3 \ldots m}$ $\times 2_{m} r^{2 m}$ (r being the radius OP or OQ) $=$ the fum of the $2 m$ powers of the chords drawn from either P or Q, at right angles to the diameters paffing through $\mathrm{A}, \mathrm{B}, \mathrm{C}, \& \mathrm{c}$. = the fum of the $2 m$ powers of chords, drawn to any point in the circumference from the angles of a regular infcribed figure of n number of fides, or from the points where a regular infcribed figure of n number of fides, touches the circle, $=$ the fum of the 2 m powers of perpendiculars, drawn from P or Q to n number of right lines paffing through Q or P, and interfecting each other at equal angles. And the fum of the 2 m powers of the halves of thefe parts of the tangents, or of the parts intercepted between the points of contact and perpendiculars drawn from either P or Q to the fides of the equal fided figure circumfcribing the circle, or fegment, is
$=n \times \frac{\mathbf{1} \cdot 3 \cdot 5 \ldots 2 m-\mathrm{I}}{1.2 \cdot 3 \ldots m 2^{m}} \times r^{2 m}=$ the fum of the $2 m$ powers of
the fines of the angles formed at the centre O, by $O P$ or $O Q$; and the diameters paffing through the points of contact to the radius OP or OQ ; that is, $=\overrightarrow{\mathrm{Pa}}^{2 m}+\overline{\mathrm{Pe}}^{2 m}+\overline{\mathrm{Pb}}^{2 m}+, \& \mathrm{c}$. or $\overrightarrow{\mathrm{Q} c}^{2 m}+$ $\overline{\mathrm{Qf}}^{2 m}+\overline{\mathrm{Qd}}^{2 / m}+, \& \mathrm{c} .=$ the fum of the 2 m powers of perpendiculars drawn from any point in the circumference of a circle defcribed from P as a centre, with PO as radius to n number of right lines, interfecting each other in P, and making all the angles equal, $=$ the fum of the m powers of the rectangles $\mathrm{A} a \times$ $a \mathrm{G}, \mathrm{B} e \times e r, \mathrm{C} b \times b b, \& \mathrm{c}$. ; or of the rectangles $\mathrm{G} c \times c \mathrm{~A}$, $r f \times f \mathrm{~B}, b d \times d \mathrm{C}, \& \mathrm{c}$. when the regular figure circumfcribing the circle has an odd number of fides; but equal to twice the fum of the $2 m$ powers of faid fines, or to twice the fum of the ${ }^{m}$ powers of faid rectangles, when the regular figure circumfcribing the circle has an even number of fides, fince the number of the diameters drawn through the oppofite points of contact, and making equal angles with each other, at their interfection in the centre O , is only half the number of the prints of contact or fides of the figure. But thefe rectangles are refpectively equal to $\overline{r-\mathrm{O} a} \times \overline{r+\mathrm{O} a}, \overline{r-\mathrm{O} e} \times \overline{r+\mathrm{O} e}, \overline{r-\mathrm{O} b} \times \overline{r+\mathrm{O} b}$, \& c . or $r^{2}-\overline{\mathrm{O} a}^{2}, r^{2}-\overline{\mathrm{O} e}^{2}, r^{2}-\overline{\mathrm{O} b}^{2}, \& \mathrm{c}$. ; and the fum of their $m^{\text {th }}$
 $+\frac{m}{\mathrm{I}} \cdot \frac{m-\mathrm{I}}{2} \cdot r^{2 m \sim+} \times \overline{\overline{\mathrm{O}}^{4}+\overline{\mathrm{O} e}^{+}+\overline{\mathrm{O}}^{4}+, \& \mathrm{c} \text {. to } n \text { terms }}+, \& \mathrm{c}$. $\& \mathrm{c} .+\overline{\mathrm{O} a}^{2 m}+\overline{\mathrm{Oe}}^{2 m}+\overline{\mathrm{Ob}}^{2 m}+$, \&c. to (n) terms, or to $-\overline{\mathrm{O} a}^{2 m}-\overline{\mathrm{O} e}^{2 m}-\overline{\mathrm{Ob}}^{2 m}-$, \&c. to (n) terms, according as m is even or odd.

Fig.1.

Fig.2.

Fig.

Fig. 4.

Fig. 5.

Fig. 7.

Fig. 8.

III. Account of a Series of Experiments, fhewing the Effects of Compression in modifying the Action of Heat. By Sir fames Hall, Bart. F. R.S. Edin.
[Read fyune 3. 1805.]

1.

Ancient Revolutions of the Mineral Kingdom.-Vain attempts to explain them.-Dependence of Geology on Chemiffry.-Importance of the Carbonate of Lime.-Dr BLACK's difcovery of Carbonic Acid, fubverted the former theories depending on Fire, but gave birth to that of Dr Hur-ron.-Progrefs of the Author's Ideas with regard to that Theory. —Experiments zeith Heat and Compreflion, fuggefted to Dr Hurton in 1790.—Undertaken by the Author in 1798.-Speculations on which bis bopes of fucce/s were founded.

WHOEVER has attended to the ftructure of Rocks and Mountains, muft be convinced, that our Globe has not always exifted in its prefent flate; but that every part of its mafs, fo far at leaft as our obfervations reach, has been agitated and fubverted by the moft violent revolutions.

Facts leading to fuch ftriking conclufions, however imperfectly obferved, could not fail to awaken curiofity, and give rife to a defire of tracing the hiftory, and of inveftigating the caufes, of fuch ftupendous events; and various attempts were made in this way, but with little fuccefs; for while difcoveries
of the utmoft importance and accuracy were made in Aftronomy and Natural Philofophy, the fyftems produced by the Geologifts were fo fanciful and puerile, as fcarcely to deferve a ferious refutation.

One principal caufe of this failure, feems to have lain in the very imperfect ftate of Chemiftry, which has only of late years begun to deferve the name of a fcience. While Chemiftry was in its infancy, it was impoffible that Geology fhould make any progrefs; fince feveral of the moft important circumftances to be accounted for by this latter fcience, are admitted on all hands to depend upon principles of the former. The confolidation of loofe fand into ftrata of folid rock; the cryftalline arrangement of fubftances accompanying thofe ftrata, and blended with them in various modes, are circumftances of a chemical nature, which all thofe who have attempted to frame theories of the earth have endeavoured by chemical reafonings to reconcile to their hypothefes.
$F_{\text {IRE }}$ and $W_{A T E R}$, the only agents in nature by which ftony fubftances are produced, under our obfervation, were employed by contending fects of geologifts, to explain all the phenomena of the mineral kingdom.

But the known properties of Water, are quite repugnant to the belief of its univerfal influence, fince a very great proportion of the fubitances under confideration are infoluble, or nearly fo, in that fluid; and fince, if they were all extremely foluble, the quantity of water which is known to exift, or that could poffibly exift in our planet, would be far too fmall to accomplifh the office affigned to it in the Neptunian theory *. On the other hand, the known properties of Fire are no lefs inadequate to the purpofe; for, various fubftances which frequently occur in the mineral kingdom, feem, by their prefence, to preclude

[^2]clude its fuppofed agency; fince experiment fhews, that, in our fires, they are totally changed or deftroyed.

Under fuch circumftances, the advocates of either element were enabled, very fuccefffully, to refute the opinions of their adverfaries, though they could but feebly defend their own : and, owing perhaps to this mutual power of attack, and for want of any alternative to which the opinions of men could lean, both fyftems maintained a certain degree of credit ; and writers on geology indulged themfelves, with a fort of impunity, in a ftyle of unphilofophical reafoning, which would not have been tolerated in other fciences.

Or all mineral fubftances, the Carbonate of Lime is unqueftionably the moft important in a general view. As limeftone or marble, it conftitutes a very confiderable part of the folid mals of many countries; and, in the form of veins and nodules of fpar, pervades every fpecies of ftone. Its hiftory is thus interwoven in fuch a manner with that of the mineral kingdom at large, that the fate of any geological theory mult very much depend upon its fuccersful application to the various conditions of this fubflance. But, till Dr Black, by his difcovery of Carbonic Acid, explained the chemical nature of the carbonate, no rational theory could be formed, of the chemical revolutions which it has undoubtedly undergone.

This difcovery was, in the firft inftance, hoftile to the fuppofed action of fire ; for the decompofition of limeftone by fire in every common kiln being thus proved, it feemed abfurd to afcribe to that fame agent the formation of limeftone, or of any mafs containing it.

The contemplation of this difficulty led Dr Hutton to view the action of fire in a manner peculiar to himfelf, and thus to form a geological theory, by which, in my opinion, he has furnifhed the world with the true folution of one of the moft inte-
Vol. VI.-P. I.
K
refting
refting problems that has ever engaged the attention of men of fcience.

He fuppofed,
I. That Heat has acted, at fome remote period, on all rocks.
II. That during the action of heat, all thefe rocks (even fuch as now appear at the furface) lay covered by a fuperincumbent mafs, of great weight and ftrength.
III. That in confequence of the combined action of Heat and Preffure, effects were produced different from thofe of heat on common occafions; in particular, that the carbonate of lime was reduced to a flate of fufion, more or lefs complete, without any calcination.

The effential and characteriftic principle of his theory is thus comprifed in the word Comprefion; and by one bold hypothefis, founded on this principle, he undertook to meet all the objections to the action of fire, and to account for thofe circumftances in which minerals are found to differ from the ufual products of our furnaces.

This fyftem, however, involves fo many fuppofitions, apparently in contradiction to common experience, which meet us on the very threfhold, that moft men have hitherto been deterred from the inveftigation of its principles, and only a few individuals have juftly appreciated its merits. It was long before I belonged to the latter clafs; for I muft own, that, on reading Dr Hutton's firft geological publication, I was induced to reject his fyftem entirely, and fhould probably have continued ftill to do fo, with the great majority of the world, but for my habits of intimacy with the author; the vivacity and perfpicuity of whofe converfation, formed a ftriking contraft to the ob-
fcurity of his writings. I was induced by that charm, and by the numerous original facts which his fyftem had led him to obferve, to liften to his arguments, in favour of opinions which I then looked upon as vifionary. I thus derived from his converfation, the fame advantage which the world has lately done from the publication of Mr Playfair's Illufrations; and, experienced the fame influence which is now exerted by that work, on the minds of our moft eminent men of fcience.

After three years of almoft daily warfare with Dr Hutton, on the fubject of his theory, I began to view his fundamental principles with lefs and lefs repugnance. There is a period, I believe, in all fcientific inveftigations, when the conjectures of genius ceafe to appear extravagant; and when we balance the fertility of a principle, in explaining the phenomena of nature, againft its improbability as an hypothefis : The partial view which we then obtain of truth, is perhaps the moft attractive of any, and moft powerfully ftimulates the exertions of an active mind. The mift which oblcured fome objects diffipates by degreee, and allows them to appear in their true colours; at the fame time, a diftant profpect opens to our view, of fcenes unfufpected before.

Entering now ferioully into the train of reafoning followed by Dr Hutton, I conceived that the chemical effects afcribed by him to compreffion, ought, in the firft place, to be inveftigated; for, unlefs fome good reafon were given us for believing that heat would be modified by preffure, in the manner alleged, it would avail us little to know that they had acted together. He refted his belief of this influence on analogy; and on the fatisfactory folution of all the phenomena, furnifhed by this fuppofition. It occurred to me, however, that this principle was fufceptible of being eftablifhed in a direct manner by experiment, and I urged him to make the attempt; but he always rejected this propofal, on account of
the
the immenfity of the natural agents, whofe operations he fuppofed to lie far beyond the reach of our imitation; and he feemed to imagine, that any fuch attempt muft undoubtedly fail, and thus throw difcredit on opinions already fufficiently eftablifhed, as he conceived, on other principles. I was far, however, from being convinced by thefe arguments; for, without being able to prove that any artificial compreffion to which we could expofe the carbonate, would effectually prevent its calcination in our fires, I maintained, that we had as little proof of the contrary, and that the application of a moderate force might poffibly perform all that was hypothetically affumed in the Huttonian Theory. On the other hand, I confidered myfelf as bound, in practice, to pay deference to his opinion, in a field which he had already fo nobly occupied, and abftained, during the remainder of his life, from the profecution of fome experiments with compreffion, which I had begun in 1790 .

In 1798 , I refumed the fubject with eagernefs, being ftill of opinion, that the chemical law which forms the bafis of the Huttonian Theory, ought, in the firft place, to be inveftigated experimentally; all my fubfequent reflections and obfervations having tended to confirm my idea of the importance of this purfuit, without in any degree rendering me more apprehenfive as to the refult.

In the arrangement of the following paper, I fhall firft confine myfelf to the inveftigation of the chemical effects of Heat and Compreffion, referving to the concluding part, the application of my refults to Geology. I fhall, then, appeal to the volcanoes, and fhall endeavour to vindicate the laws of action affumed in the Huttonian Theory, by fhewing, that lavas, previous to their eruptions, are fubject to fimilar laws; and that the volcanoes, by their fubterranean and fubmarine exer-
tions,
tions, muft produce, in our times, refults fimilar to thofe afcribed, in that Theory; to the former action of fire.

In comparing the Huttonian operations with thofe of the volcanoes, I fhall avail myfelf of fome facts, brought to light in the courfe of the following inveftigations, by which a precife limit is affigned to the intenfity of the heat, and to the force of compreflion, required to fulfil the conditions of Dr Hutton's hypothefis : For, according to him, the power of thofe agents was very great, but quite indefinite; it was therefore impoffible to compare their fuppofed effects in any precife manner with the phenomena of nature.

My attention was almof exclufively confined to the Carbonate of Lime, about which I reafoned as follows: The carbonic acid, when uncombined with any other fubftance, exifts naturally in a gafeous form, at the common temperature of our atmofphere; but when in union with lime, its volatility is repreffed, in that fame temperature, by the chemical force of the earthy fubftance, which retains it in a folid form. When the temperature is raifed to a full red-heat, the acid acquires a volatility by which that force is overcome, it efcapes from the lime, and aflumes its gafeous form. It is evident, that were the attractive force of the lime increafed, or the volatility of the acid diminifhed by any means, the compound would be enabled to bear a higher heat without decompofition, than it can in the prefent fate of things. Now, preffure muft produce an effect of this kind; for when a mechanical force oppofes the expanfion of the acid, its volatility muft, to a certain degree, be diminifhed. Under preffure, then, the carbonate may be expected to remain unchanged in a heat, by which, in the open air, it would have been calcined. But experiment alone can teach us, what compreffing force is requifite to enable it to refift any given elevation of temperature ; and what is to be the refult of fuch an operation. Some of the compounds of lime with acids
are fufible, others refractory; the carbonate, when conftrained by preffure to endure a proper heat, may be as fufible as the muriate.

One circumftance, derived from the Huttonian Theory, induced me to hope, that the carbonate was eafily fufible, and indicated a precife point, under which that fufion ought to be expected. Nothing is more common than to meet with nodules of calcareous fpar inclofed in whinftone; and we fuppofe, according to the Huttonian Theory, that the whin and the fpar had been liquid together; the two fluids keeping feparate, like oil and water. It is natural, at the junction of thefe two, to look for indications of their relative fufibilities; and we find, accordingly, that the termination of the fpar is generally globular and fmooth; which feems to prove, that, when the whin became folid, the fpar was ftill in a liquid ftate; for had the fpar congealed firft, the tendency which it fhews, on all occafions of freedom, to fhoot out into prominent cryftals, would have made it dart into the liquid whin, according to the peculiar forms of its cryftallization; as has happened with the various fubftances contained in whin, much more refractory than itfelf, namely, augite, felipar, \&c.; all of which having congealed in the liquid whin, have affumed their peculiar forms with perfect regularity. From this I concluded, that when the whin congealed, which muft have happened about 28° or 30° of Wedgivood; the fpar was ftill liquid. I therefore expected, if I could compel the carbonate to bear a heat of 28° without decompofition, that it would enter into fufion. The fequel will fhew, that this conjecture was not without foundation.

I shall now enter upon the defcription of thofe experiments, the refult of which I had the honour to lay before this Society on the 30th of Auguft laft (1804); fully aware how difficult it is, in giving an account of above five hundred experiments, all tending to one point, but differing much from each other in vari-
ous particulars, to fteer between the oppofite faults of prolixity and barrennefs. My object fhall be to defcribe, as fhortly as poffible, all the methods followed, fo as to enable any chemift to repeat the experiments; and to dwell particularly on fuch circuraftances only, as feem to lead to conclufions of importance.

The refult being already known, I confider the account I am about to give of the execution of thefe experiments, as addreffed to thofe who take a particular intereft in the progrefs of chemical operations: in the eyes of fuch gentlemen, I truft, that none of the details into which I muft enter, will appear fuperfluous.

II.

Principle of execution upon which the following Experiments were con-ducted.-Experiments with Gun-Barrels filled with baked Clay, and welded at the muzzle.-Method with the Fufible Metal.-Remarkable effects of its expanfion.-Neceffty of introducing Air.-Refults ob. tained.

When I firf undertook to make experiments with heat acting under compreffion, I employed myfelf in contriving various devices of fcrews, of bolts, and of lids, fo adjufted, I hoped, as to confine all elaftic fubftances; and perhaps. fome of them might have anfwered. But I laid afide all fuch devices, in favour of one which occurred to me in January 1798 ; which, by its fimplicity, was of eafy application in all cafes, and accomplifhed all that could be done by any device, fince it fecured perfect ftrength and tightnefs to the utmoft that the veffels employed could bear, whether formd of metallic or earthy fubftance. The device depends upon
the following general view : If we take a hollow tube or barrel (AD, fig. r.) clofed at one end, and open at the other, of one foot or more in length; it is evident, that by introducing one end into a furnace, we can apply to it as great heat as art can produce, while the other end is kept cool, or, if neceffary, expofed to extreme cold. If, then, the fubftance which we mean to fubject to the combined action of heat and preffure, be introduced into the breech or clofed end of the barrel (CD), and if the middle part be filled with fome refractory fubftance, leaving a fmall empty fpace at the muzzle (AB), we can apply heat to the muzzle, while the breech containing the fubject of experiment, is kept cool, and thus clofe the barrel by any of the numerous modes which heat affords, from the welding of iron to the melting of fealing-wax. Things being then reverfed, and the breech put into the furnace, a heat of any required intenfity may be applied to the fubject of experiment, now in a fate of conftraint.

My firf application of this fcheme was carried on with a common gun-barrel, cut off at the touch-hole, and welded very ftrongly at the breech by means of a plug of iron. Into it I introduced the carbonate, previoully rammed into a cartridge of paper or pafteboard, in order to protect it from the iron, by which, in fome former trials, the fubject of experiment had been contaminated throughout during the action of heat. I then rammed the reft of the barrel full of pounded clay, previoufly baked in a ftrong heat, and I had the muzzle clofed like the breech, by a plug of iron welded upon it in a common forge; the reft of the barrel being kept cold during this operation, by means of wet cloths. The breech of the barrel was then introduced horizontally into a common muffle, heated to about 25° of Wedgwood. To the muzzle a rope was fixed, in fuch a manner, that the barrel could be withdrawn with-
out danger from an explofion *. I likewife, about this time, clofed the muzzle of the barrel, by means of a plug, fixed by folder only; which method had this peculiar advantage, that I could fhut and open the barrel, without having recourfe to a workman. In thefe trials, though many barrels yielded to the expanfive force, others refifted it, and afforded fome refults that were in the higheft degree encouraging, and even fatisfactory, could they have been obtained with certainty on repetition of the procefs. In many of them, chalk, or common limeftone previoully pulverifed, was agglutinated into a ftony mafs, which required a finart blow of a hammer to break it, and felt under the knife like a common limeftone; at the fame time, the fubftance, when thrown into nitric acid, diffolved entirely with violent effervefcence.
In one of thefe experiments, owing to the action of heat on the cartridge of paper, the baked clay, which had been ufed to fill the barrel, was ftained black throughout, to the diftance of two-thirds of the length of the barrel from its breech. This circumftance is of importance, by fhewing, that though all is tight at the muzzle, a protrufion may take place along the barrel, greatly to the detriment of com-
plete

[^3]VoL. VI.-P.I. L.
plete compreffion: and, at the fame time, it illuftrates what has happened occafionally in nature, where the bituminous matter feems to have been driven by fuperior local heat, from one part of a coaly bed, though retained in others, under the fame compreffion. The bitumen fo driven off being found, in other cafes, to pervade and tinge beds of flate and of fandftone.

I was employed in this purfuit in fpring 1800 , when an event of importance interrupted my experiments for about a year. But I refumed them in March 1801, with many new plans of execution, and with confiderable addition to my apparatus.

In the courfe of my firf trials, the following mode of execution had occurred to me, which I now began to put in practice. It is well known to chemifts, that a certain compofition of different metals *, produces a fubftance fo fufible, as to melt in the heat of boiling-water. I conceived that great advantage, both in point of accuracy and difpatch, might be gained in thefe experiments, by fubftituting this metal for the baked clay above mentioned: That after introducing the carbonate into the breech of the barrel, the fufible metal, in a liquid fate, might be poured in, fo as to fill the barrel to its brim: That when the metal had cooled and become folid, the breech might, as before, be introduced into a muffle, and expofed to any required heat, while the muzzle was carefully kept cold. In this manner, no part of the fufible metal being melted, but what lay at the breech, the reft, continuing in a folid ftate, would effectually confine the carbonic acid: That after the action of ftrong heat had ceafed, and after all had been allowed to cool completely, the fufible metal might be removed entirely from the barrel, by means of a heat little above that of boiling water, and far too low to occafion any decompofition of

[^4]the carbonate by calcination, though acting upon it in freedom ; and then, that the fubject of experiment might, as before, be taken out of the barrel.

This fcheme, with various modifications and additions, which practice has fuggefted, forms the bafis of moft of the following methods.

In the firft trial, a ftriking phenomenon occurred, which gave rife to the moft important of thefe modifications. Having filled a gun-barrel with the fufible metal, without any carbonate; and having placed the breech in a muffle, I was furprifed to fee, as the heat approached to rednefs, the liquid metal exuding through the iron in innumerable minute drops, difperfed all round the barrel. As the heat advanced, this exudation increafed, till at laft the metal flowed out in continued ftreams, and the barrel was quite deftroyed. On feveral occafions of the fame kind, the fufible metal, being forced through fome very minute aperture in the barrel, fpouted from it to the diftance of feveral yards, depofiting upon any fubftance oppofed to the ftream, a beautiful affemblage of fine wire, exactly in the form of wool. I immediately underftood, that the phenomenon was produced by the fuperior expanfion of the liquid over the folid metal, in confequence of which, the fufible metal was driven through the iron as water was driven through filver * by mechanical percuffion in the Florentine experiment. It occurred to me, that this might be prevented by confining along with the fufible metal a fmall quantity of air, which, by yielding a little to the expanfion of the liquid, would fave the barrel. This reL 2 medy

[^5]medy was found to anfwer completely, and was applied, in all the experiments made at this time *.

I now propofed, in order to keep the carbonate clean, to inclofe it in a fmall veffel; and to obviate the difficulty of removing the refult at the conclufion of the experiment, I further propofed to connect that veffel with an iron ramrod, longer than the barrel, by which it could be introduced or withdrawn at pleafure.

A smali tube of glafs \dagger, or of Raumur's porcelain, about a quarter of an inch in diameter, and one or two inches in length, (fig. 2. A) was half filled with pounded carbonate of lime, rammed as hard as poffible; the other half of the tube being

Abstract

* I found it a matter of much difficulty to afcertain the proper quantity of air which ought to be thus inclofed. When the quantity was too great, the refult was injured by diminution of elafticity, as I thall have occafion fully to thew bereafter. When too fmall, or when, by any accident, the whole of this included air was allowed to efcape, the bàrrel was deftroyed.

I hoped to afcertain the bulk of air neceffary to give liberty to the expanfion of the liquid metal, by meafuring the actual quantity expelled by known heats from an open barrel filled with it. But I was furprifed to find, that the quantity thus difcharged, exceeded in bulk that of the air which, in the fame heats, I had confined along with the carbonate and fufible metal in many fuccefsful experiments. As the expanfion of the liquid does not feem capable of fenfible diminution by an oppofing force, this fact can only be accounted for by a diftention of the barrel. In thefe experiments, then, the expanfive force of the carbonic acid, of the included air, and of the fufible metal, acted in combination againft the barrel, and were yielded to in part by the diftention of the barrel, and by the condenfation of the included air. My object was to increafe the force of this mutual action, by diminifhing the quantity of air, and by other devices to be mentioned hereafter. Where fo many forces were concerned, the laws of whofe variations were unknown, much precifion could not be expected, nor is it wonderful, that in attempting to carry the compreffing force to the utmoit, I fhould have deftroyed barrels innumerable.

[^6]being filled with pounded filex, or with whatever occurred as moft likely to prevent the intrufion of the fufible metal in its liquid and penetrating ftate. This tube fo filled, was placed in a frame or cradle of iron ($d f k b$, figs. $3,4,5$, and 6 ,) fixed to the end (m) of a ram-rod ($m n$). The cradle was from fix to three inches in length, and as much in diameter as a gun-barrel would admit with eafe. It was compofed of two circular plates of iron, (d ef g and $/ \operatorname{sik} l$, feen edgewife in the figures,) placed at right-angles to the ram-rod, one of thefe plates ($d e f b$) being fixed to it by the centre (m). Thefe plates were connected together by four ribs or flattened wires of iron ($d b, e i, f k$, and $g l$,) which formed the cradle into which the tube (A), containing the carbonate, was introduced by thrufting the adjacent ribs afunder. Along with the tube juft mentioned, was introduced another tube (B), of iron or porcelain, filled only with air. Likewife, in the cradle, a pyrometer * piece (C) was placed in contact with (A) the tube containing the carbonate. Thefe articles generally occupied.

[^7]the whole cradle ; when any fpace remained, it was filled up by a piece of chalk dreffed for the purpofe. (Fig. 4. reprefents the cradle filled, as juft defcribed).

Things being thus prepared, the gun-barrel, placed erect with its muzzle upwards, was half filled with the liquid fufible metal. The cradle was then introduced into the barrel, and plunged to the bottom of the liquid, fo that the carbonate was placed very near the breech, (as reprefented in fig. 5 , the fufible metal ftanding at o). The air-tube (B) being placed fo as to enter the liquid with its muzzle downwards, retained great part of the air it originally contained, though fome of it might be driven off by the heat, fo as to efcape through the liquid. The metal being now allowed to cool, and to fix round the cradle and ramrod, the air remaining in the air-tube was effectually confined, and all was held faft. The barrel being then filled to the brim with fufible metal, the apparatus was ready for the application of heat to the breech, (as fhewn in fig. 6.)

In the experiments made at this time, I ufed a fquare brick furnace (figs. 7 and 8), having a muffle ($r s$) traverfing it horizontally and open at both ends. This muffle being fupported in the middle by a very flender prop, was expofed to fire from below, as well as all round. The barrel was placed in the muffle, with its breech in the hotteft part, and the end next the muzzle projecting beyond the furnace, and furrounded with cloths which were drenched with water from time to time. (This arrangement is fhewn in fig. 7). In this fituation, the fufible metal furrounding the cradle being melted, the air contained in the air-tube would of courfe feek the higheft pofition, and its firft place in the air-tube would be occupied by fufible metal. (In fig. 6., the new pofition of the air is fhewn at $p q$).

At the conclufion of the experiment, the metal was generally removed by placing the barrel in the tranfverfe muffle, with its muzzle pointing a little downwards, and fo that the heat was applied firft to the muzzle, and then to the reft of the barrel in fucceffion. (This operation is thewn in fig. 8). In fome of the firft of thefe experiments, I loofened the cradle, by plunging the barrel into heated brine, or a ftrong folution of muriate of lime; which lait bears a temperature of 250° of Fahrenheit before it boils. For this purpofe, I ufed a pan three inches in diameter, and three feet deep, having a flat bafon at top to receive the liquid when it boiled over. The method anfwered, but was troublefome, and I laid it afide. I have had occafion, lately, however, to refume it in fome experiments in which it was of confequence to open the barrel with the leaft poflible heat*.

By thefe methods I made a great number of experiments, with refults that were highly interefting in that flage of the bufinefs, though their importance is fo much diminifhed by the fubfequent progrefs of the inveftigation, that I think it proper to mention but very few of them.

On the 3 Ift of March 1801, I rammed forty grains of pounded chalk into a tube of green bottle-glafs, and placed it in the cradle as above defcribed. A pyrometer in the muffle along with the barrel indicated 33°. The barrel was expofed to heat during feventeen or eighteen minutes. On withdrawing the cradle, the carbonate was found in one folid mafs, which had vifibly fhrunk in bulk, the fpace thus left within the tube being accurately

[^8]accurately filled with metal, which plated the carbonate all over without penetrating it in the leaft, fo that the metal was eafily removed. The weight was reduced from forty to thirtyfix grains. The fubftance was very hard, and refifted the knife better than any refult of the kind previoufly obtained; its fracture was cryftalline, bearing a refemblance to white faline marble; and its thin edges had a decided femitranfparency, a circumftance firft obferved in this refult.

On the 3 d of March of the fame year, I made a fimilar experiment, in which a pyrometer-piece was placed within the barrel, and another in the muffle; they agreed in indicating 23°. The inner tube, which was of Reaumur's porcelain, contained eighty grains of pounded chalk. The carbonate was found, after the experiment, to have loft $3 \frac{1}{2}$ grains. A thin rim, lefs than the 20th of an inch in thicknefs, of whitifh matter, appeared on the outfide of the mafs. In other refpects, the carbonate was in a very perfect ftate ; it was of a yellowifh colour, and had a decided femitranfparency and faline fracture. But what renders this refult of the greateft value, is, that on breaking the mafs, a fpace of more than the tenth of an inch fquare, was found to be completely cryftalLized, having acquired the rhomboidal fracture of calcareous fpar. It was white and opaque, and prefented to the view three fets of parallel plates which are feen under three different angles. This fubftance, owing to partial calcination and fubfequent abforption of moifture, had loft all appearance of its remarkable properties in fome weeks after its production; but this appearance has fince been reftored, by a frefh fracture, and the fpecimen is now well preferved by being hermetically inclofed.

III.

Experiments made in Tubes of Porcelain.-Tubes of Wedgwood's Warc. -Methods ufed to confine the Carbonic Acid, and to clofe the Pores of the Porcelain in a Horizontal Apparatus.-Tubes made with a view to thefe Experiments.-The Vertical Apparatus adopted.-View of Refults obtained, botb in Iron and Porcelain. -The Formation of Limeftone and Marble.-Inquiry into the Caufe of the partial Galcinations. -Tubes of Porcelain weighed previous to breaking.-Experiments with Porcelain Tubes proved to be limited.

While I was carrying on the above-mentioned experiments, I was occafionally occupied with another fet, in tubes of porcelain. So much, indeed, was I prepoffeffed in favour of this laft mode, that I laid gun-barrels afide, and adhered to it during more than a year. The methods followed with this fubftance, differ widely from thofe already defcribed, though founded on the fame general principles.

I procured from Mr Wedgwood's manufactory at Etruria, in Staffordhire, a fet of tubes for this purpofe, formed of the fame fubftance with the white mortars, in common ufe, made there. Thefe tubes were fourteen inches long, with a bore of half an inch diameter, and thicknefs of 0.2 ; being clofed at one end (figs. 9, 10, $11,12,13$.)

I PROPOSED to ram the carbonate of lime into the breech (Fig. 9. A) ; then filling the tube to within a fmall diftance of its muzzle with pounded flint (B), to fill that remainder (C) with common borax of the fhops (borat of foda) previoully reduced to glafs, and then pounded ; to apply heat to the muzzle alone, fo as to convert that borax into folid glafs; then, reverfing the operation, to keep the muzzle cold, and apply the requifite heat to the carbonate lodged in the breech.

Vol. VI.-P. I.

I thus expected to confine the carbonic acid; but the attempt was attended with confiderable difficulty, and has led to the employment of various devices, which I fhall now fhortly enumerate, as they occurred in the courfe of practice. The fimple application of the principle was found infufficient, from two caufes: Firft, The carbonic acid being driven from the breech of the tube, towards the muzzle, among the pores of the pounded filex, efcaped from the compreffing force, by lodging itfelf in cavities which were comparatively cold: Secondly, The glafs of borax, on cooling, was always found to crack very much, fo that its tightnefs could not be depended on.

To obviate both thefe inconveniences at once, it occurred to me, in addition to the firft arrangement, to place fome borax (fig. Iо. C) fo near the breech of the tube, as to undergo heat along with the carbonate (A); but interpofing between this borax and the carbonate, a ftratum of filex (B), in order to prevent contamination. I trufted that the borax in a liquid or vifcid ftate, being thruft outwards by the expanfion of the carbonic acid, would prefs againft the filex heyond it (D), and totally prevent the elaftic fubftances from efcaping out of the tube, or even from wandering into its cold parts.
In fome refpects, this plan anfwered to expectation. The glafs of borax, which can never be obtained when cold, without innumerable cracks, unites into one continued vifcid mals in the loweft red-heat; and as the ftrefs in thefe experiments, begins only with rednefs, the borax being heated at the fame time with the carbonate, becomes united and impervious, as foon as its action is neceffary. Many good refults were accordingly obtained in this way. But I found, in practice, that as the heat rofe, the borax began to enter into too thin fufion, and was often loft among the pores of the filex, the fpace in which it had lain being found empty on breaking the tube. It was therefore
therefore found neceffary to oppofe fomething more fubftantial and compact, to the thin and penetrating quality of pure borax.

In fearching for fome fuch fubftance, a curious property of bottle-glafs occurred accidentally. Some of this glafs, in powder, having been introduced into a muffle at the temperature of about 20° of $\mathrm{W}_{\text {e.dgwood ; ; }}$ the powder, in the fpace of about a minute, entered into a fate of vifcid agglutination, like that of honey, and in about a minute more, (the heat always continuing unchanged,) confolidated into a firm and compact mafs of Reaumur's porcelain *. It now appeared, that by placing this fubftance immediately behind the borax, the penetrating quality of this laft might be effectually reftrained; for, Reaumur's porcelain has the double advantage of being refractory, and of not cracking by change of temperature. I found, however, that in the act of confolidation, the pounded bottle-glafs fhrunk, fo as to leave an opening between its mafs and the tube, through which the borax, and, along with it, the carbonic acid, was found to efcape. But the object in view was obtained by means of a mixture of pounded bottle-glafs, and pounded flint, in equal parts. This compound fill agglutinates, not indeed into a mals fo hard as Reaumur's porcelain, but fufficiently fo for the purpofe; and this being done without any fenfible contraction, an effectual barrier was oppofed to the borax; (this arrangement is fhewn in fig. II.) ; and thus the method of clofing the tubes was rendered fo complete, as feldom to fail in practice \dagger. A fill further refinement upon this meM 2
thod

[^9]thod was found to be of advantage. A fecond feries of powders, like that already defcribed, was introduced towards the muzzle, (as fhewn in fig. 12.). During the firft period of the experiment, this laft-mentioned feries was expofed to heat, with all the outward half of the tube $(a b)$; by this means, a folid mafs was produced, which remained cold and firm during the fubfequent action of heat upon the carbonate.

I soon found, that notwithftanding all the above-mentioned precautions, the carbonic acid made its efcape, and that it pervaded the fubftance of the Wedgwood tubes, where no flaw could be traced. It occurred to me, that this defect might be remedied, were borax, in its thin and penetrating ftate of fufion, applied to the infide of the tube; and that the pores of the porcelain might thus be clofed, as thofe of leather are clofed by oil, in an air-pump. In this view, I rammed the carbonate into a fmall tube, and furrounded it with pounded glafs of borax, which, as foon as the heat was applied, fpread on the infide of the large tube, and effectually clofed its pores. In this manner, many good experiments were made with barrels lying horizontally in common muffles, (the arrangement juft defcribed: being reprefented in fig. 13.)

I was thus enabled to carry on experiments with this porcelain, to the utmoft that its ftrength would bear. But I was not fatisfied with the force fo exerted; and, hoping to obtain tubes of a fuperior quality, I fpent much time in experiments with various porcelain compofitions. In this, I fo far fucceeded, as to produce tubes by which the carbonic acid: was in a great meafure retained without any internal glaze. The beft material I found for this purpofe, was the pure por-celain-clay of Cornwall, or a compofition in the proportion of two of this clay to one of what the potters call Cornifh-fone, which I believe to be a granite in a ftate of decompofition. Thefe tubes were feven or eight inches long, with a bore
tapering
tapering from I inch to 0.6 . Their thicknefs was about 0.3 at the breech, and tapered towards the muzzle to the thinnefs of a wafer.

I Now adopted a new mode of operation; placing the tube vertically, and not horizontally, as before. By obferving the thin ftate of borax whilft in fufion, I was convinced, that it ought to be treated as a complete liquid, which being fupported in the courfe of the experiment from below, would fecure perfect tightnefs, and obviate the failure which often happened in the horizontal pofition, from the falling of the borax to the lower fide.

In this view, (fig. 16.); I filled the breech in the manner defcribed above, and introduced into the muzzle fome borax (C) fupported at the middle of the tube by a quantity of filex mixed with bottle-glafs (B). I placed the tube, fo prepared, with its breech plunged into a crucible filled with fand (E), and its muzzle pointing upwards. It was now my object to apply heat to the muzzle-half, whilf the other remained cold. In that view, I conftructed a furnace (fig. 14. and 15.), having a muffle placed vertically ($c d$), furrounded on all fides with fire (e e), and open both above (at c), and below (at d). The crucible juft mentioned, with its tube, being then placed on a fupport directly below the vertical muffle, (as reprefented in fig. 14. at F), it was raifed, fo that the half of the tube next the muzzle was introduced into the fire. In confequence of this, the borax was feen from above to melt, and run down in the tube, the air contained in the powder efcaping in the form of bubbles, till at laft the borax ftood with a clear and fteady furface like that of water. Some of this falt being thrown in from above, by means of a tube of glafs, the liquid furface was raifed nearly to the muzzle, and; after all had been allowed to become cold, the pofition of the tube was reverfed; the muzzle being now plun-
ged into the fand, (as in fig. 17.), and the breech introduced into the muffle. In feveral experiments, I found it anfwer well, to occupy great part of the fpace next the muzzle, with a rod of fand and clay previounly baked, (fig. I9. K K), which was either introduced at firft, along with the pounded borax, or, being made red hot, was plunged into it when in a liquid ftate. In many cafes I affifted the compactnefs of the tube by means of an internal glaze of borax ; the carbonate being placed in a fmall tube, (as fhewn in fig. 18.)

These devices anfwered the end propofed: Three-fourths of the tube next the muzzle was found completely filled with a mafs, having a concave termination at both ends, (f and g figs. 17. 18. 19.), fhewing that it had ftood as a liquid in the two oppofite pofitions in which heat had been applied to it. So great a degree of tightnefs indeed was obtained in this way, that I found myfelf fubjected to an unforefeen fource of failure. A number of the tubes failed, not by explofion, but by the formation of a minute longitudinal fiffure at the breech, through which the borax and carbonic acid efcaped. I faw that this arofe from the expanfion of the borax when in a liquid ftate, as happened with the fufible metal in the experiments with iron-barrels ; for, the crevice here formed, indicated the exertion of fome force acting very powerfully, and to a very fmall diftance. Accordingly, this fource of failure was remedied by the introduction of a very fmall air-tube. This, however, was ufed only in a few experiments.

In the courfe of the years 1801,1802 , and 1803 , I made a number of experiments, by the various methods above defcribed, amounting, together with thofe made in gun-barrels, to one hundred and fifty-fix. In an operation fo new, and in which the apparatus was ftrained to the utmoft of its power, conftant fuccefs could not be expected, and in fact many experiments failed, wholly or partially. The refults, however, upon
the whole, were fatisfactory, fince they feemed to eftablifh fome of the effential points of this inquiry.

These experiments prove, that, by mechanical conftraint, the carbonate of lime can be made to undergo ftrong heat, without calcination, and to retain almoft the whole of its carbonic acid, which, in an open fire, at the fame temperature, would have been entirely driven off: and that, in thefe circumftances, heat produces fome of the identical effects afcribed to it in the Huttonian Theory.

By this joint action of heat and preffure, the carbonate of lime which had been introduced in the fate of the fineft powder, is agglutinated into a firm mafs, poffeffing a degree of hardnefs, compactnefs, and feecific gravity *, nearly approaching to thefe qualities in a found limeftone; and fome of the refults, by their faline fracture, by their femitranfparency, and their fufceptibility of polifh, deferve the name of marble.

The fame trials have been made with all calcareous fubftances; with chalk, common limeftone, marble, fpar, and the fhells of filh. All have thewn the fame general property, with fome varieties as to temperature. Thus, I found, that, in the fame circumftances, chalk was more fufceptible of agglutination than fpar; the latter requiring a heat two degrees. higher than the former, to bring it to the fame pitch of agglutination.

The chalk ufed in my firft experiments, always affumed the character of a yellow marble, owing probably to fome flight contamination of iron. When a folid piece of chalk, whofe bulk had been previounly meafured in the gage of Wedgwood's. pyrometer was fubmitted to heat under compreffion, its contraction was remarkable, proving the approach of the particles during their confolidation; on thefe occafions, it was found

[^10]to flirink three times more than the pyrometer-pieces in the fame temperature. It loft, too, almoft entirely, its power of imbibing water, and acquired a great additional fpecific gravity. On feveral occafions, I obferved, that maffes of chalk, which, before the experiment, had fhewn one uniform character of whitenefs, affumed a ftratified appearance, indicated by a feries of parallel layers of a brown colour. This circumftance may hereafter throw light on the geological hiftory of this extraordinary fubftance.

I have faid, that, by mechanical conftraint, almoft the whole of the carbonic acid was retained. And, in truth, at this period, fome lofs of weight had been experienced in all the experiments, both with iron and porcelain. But even this circumftance is valuable, by exhibitíng the influence of the carbonic acid, as varied by its quantity.

When the lofs exceeded 10 or 15 per cent *. of the weight of the carbonate, the refult was always of a friable texture, and without any ftony character; when lefs than 2 or 3 per cent. it was confidered as good, and poffeffed the properties of a natural carbonate. In the intermediate cafes, when the lofs amounted, for inflance, to 6 or 8 per cent., the refult was fometimes excellent at firft, the fubftance bearing every appearance of foundnefs, and often poffeffing a high character of cryftallization; but it was unable to refift the action of the air ; and, by attracting carbonic acid or moifture, or both, crumbled to duft more or lefs rapidly, according to circumftances. This feems to prove, that the carbonate of lime, though not fully faturated with carbonic acid, may poffefs the properties of limeftone; and perhaps a difference of this

[^11]this kind may exift among natural carbonates, give rife to their different degrees of durability.

I have obferved, in many cafes, that the calcination has reached only to a certain depth into the mafs; the internal part remaining in a ftate of complete carbonate, and, in general, of a very fine quality. The partial calcination feems thus to take place in two different modes. By one, a fmall proportion of carbonic acid is taken from each particle of carbonate; by the other, a portion of the carbonate is quite calcined, while the reft is left entire. Perhaps one refult is the effect of a feeble calcining caufe, acting during a long time, and the other of a ftrong caufe, acting for a fhort time.
Some of the refults which feemed the moft perfect when firft produced, have been fubject to decay, owing to partial calcination. It happened, in fome degree, to the beautiful fpecimen produced on the 3 d of March 180r, though a frelh fracture has reftored it.

A specimen, too, of marble, formed from pounded fpar, on I 5 th May 1801, was fo complete as to deceive the workman employed to polifh it, who declared, that, were the fubftance a little whiter, the quarry from which it was taken would be of great value, if it lay within reach of a market. Yet, in a few weeks after its formation, it fell to duft.

Numberless fpecimens, however, have been obtained, which refift the air, and retain their polifh as well as any marble. Some of them continue in a perfect ftate, though they have been kept without any precaution during four or five years. That fet, in particular, remain perfectly entire, which were fhewn laft year in this Society, though fome of them were made in 1799, fome in 1801 and 1802, and though the firf eleven were long foaked in water, in the trials made of their fpecific gravity.

A curious circumftance occurred in one of thefe experiments, which may hereafter lead to important confequences. Some ruft of iron had accidentally found its way into the tube : 10 grains of carbonate were ufed, and a heat of 28° was applied. The tube had no flaw ; but there was a certainty that the carbonic acid had efcaped through its pores. When broken, the place of the carbonate was found occupied, partly by a black flaggy matter, and partly by fphericles of various fizes, from that of a fmall pea downwards, of a white fubflance, which proved to be quicklime; the fphericles being interfperfed through the llag, as fpar and agates appear in whinftone. The flag had certainly been produced by a mixture of the iron with the fubftance of the tube; and the fpherical form of the quicklime feems to fhew, that the carbonate had been in fufion along with the flag, and that they had feparated on the efcape of the carbonic acid.

The fubject was carried thus far in 1803, when I fhould probably have publifhed my experiments, had I not been induced to profecute the inquiry by certain indications, and accidental refults, of a nature too irregular and uncertain to meet the public eye, but which convinced me, that it was poffible to eftablifh, by experiment, the truth of all that was hypothetically affumed in the Huttonian Theory.

The principal object was now to accomplifh the entire fufion of the carbonate, and to obtain fpar as the refult of that fufion, in imitation of what we conceive to have taken place in nature.
It was likewife important to acquire the power of retaining all the carbonic acid of the carbonate, both on account of the fact itfelf, and on account of its confequences; the refult being vifibly improved by every approach towards complete faturation. I therefore became anxious to inveftigate the caufe of the partial calcinations which had always taken place, to
a greater or a lefs degree, in all thefe experiments. The queftion naturally fuggefts itfelf, What has become of the carbonic acid, feparated in thefe partial calcinations from the earthy bafis? Has it penetrated the veffel, and efcaped entirely, or has it been retained within it in a gafeous, but highly compreffed ftate? It occurred to me, that this queftion might be eafily refolved, by weighing the veffel before and after the action of heat upon the carbonate.

With iron, a conftant and inappreciable fource of irregularity exifted in the oxidation of the barrel. But with porcelain the thing was eafy; and I put it in practice in all my experiments with this material, which were made after the queftion had occurred to me. The tube was weighed as foon as its muzzle was clofed, and again, after the breech had been expofed to the fire; taking care, in both cares, to allow all to cool. In every cafe, I found fome lofs of weight, proving, that even in the beft experiments, the tubes were penetrated to a certain degree. I next wifhed to try if any of the carbonic acid feparated, remained within the tube in a gafeous form; and in that view, I wrapt the tube, which had juft been weighed, in a fheet of paper, and placed it, fo furrounded, on the fcale of the balance. As foon as its weight was afcertained, I broke the tube by a fmart blow, and then replaced upon the fcale the paper containing all the fragments. In thofe experiments, in which entire calcination had taken place, the weight was found not to be changed, for all the carbonic acid had already efcaped during the action of heat. But in the good refults, I always found that a lofs of weight was the confequence of breaking the tube.

These facts prove, that both caufes of calcination had operated in the porcelain tubes; that, in the cafes of fmall lofs, part of the carbonic acid had efcaped through the veffel, and that part had been retained within it. I had in view methods
by which the laft could be counteracted; but I faw no remedy for the firft. I began, therefore, to defpair of ultimate fuccefs with tubes of porcelain *.

Another circumftance confirmed me in this opinion. I found it impracticable to apply a heat above 27° to thefe tubes, when charged as above with carbonate, without deftroying them, either by explofion, by the formation of a minute rent, or by the actual fwelling of the tube. Sometimes this fwelling took place to the amount of doubling the internal diameter, and yet the porcelain held tight, the carbonate fuftaining but a very fmall lofs. This ductility of the porcelain in a low heat is a curious fact, and fhews what a range of temperature is embraced by the gradual tranfition of fome fubftances from a folid to a liquid ftate: For the fame porcelain, which is thus fufceptible of being ftretched out without breaking in a heat of 27°, ftands the heat of 152°, without injury, when expofed to no violence, the angles of its fracture remaining fharp and entire.

[^12]
IV.

Experiments in Gun-Barrels refumed.-The Vertical Apparatus applied to them.-Barrels bored in folid Bars.-Old Sable Iron.-Fufion of the Carbonate of Lime.-Its action on Porcelain.-Additional apparatus required in confequence of that action.-Good refults: in particular, four experiments, illustrating the theory of Internal Calcination, and 乃bewing the efficacy of the Carbonic Acid as a Flux.

Since I found that, with porcelain tubes, I could neither confine the carbonic acid entirely, nor expofe the carbonate in them to ftrong heats; I at laft determined to lay them afide, and return to barrels of iron, with which I had formerly obtained fome good refults, favoured, perhaps, by fome accidental circumftances.

On the 12 th of February 1803 , I began a feries of experiments with gun-barrels, refuming my former method of working with the fufible metal, and with lead; but altering the pofition of the barrel from horizontal to vertical ; the breech being placed upwards during the action of heat on the carbonate. This very fimple improvement has been productive of advantages no lefs remarkable, than in the cafe of the tubes of porcelain. In this new pofition, the included air, quitting the air-tube on the fufion of the metal, and rifing to the breech, is expofed to the greateft heat of the furnace, and muft therefore react with its greateft force; whereas, in the horizontal pofition, that air might go as far back as the fufion of the metal reached, where its elafticity would be much feebler. The fame difpofition enabled me to keep the muzzle of the barrel plunged, during the action of heat, in a veffel filled with water; which contributed
contributed very much both to the convenience and fafety of thefe experiments.
In this view, making ufe of the brick-furnace with the vertical muffle, already defcribed in page 93 . I ordered a pit (a a a , fig. 20.) to be excavated under it, for the purpofe of receiving a water-veffel. This veffel (reprefented feparately, fig. 2I.) was made of caft iron; it was three inches in diameter, and three feet deep; and had a pipe ($d e$) ftriking off from it at right angles, four or five inches below its rim, communicating with a cup (ef) at the diftance of about two feet. The main veffel be:sg placed in the pit (a a) directly below the vertical muffle, and the cup ftanding clear of the furnace, water poured into the cup flowed into the veffel, and could thus conveniently be made to ftand at any level. (The whole arrangement is reprefented in fig. 20.) The muzzle of the barrel (g) being plunged into the water, and its breech (b) reaching up into the muffle, as far as was found convenient, its pofition was fecured by an iron chain $(g f)$. The heat communicated downwards generally kept the furface of the water (at c) in a ftate of ebullition; the wafte thus occafioned being fupplied by means of the cup, into which, if neceffary, a conftant ftream could be made to flow.

As formerly, I rammed the carbonate into a tube of porcelain, and placed it in a cradle of iron, along with an air-tube and a pyrometer; the cradle being fixed to a rod of iron, which rod I now judged proper to make as large as the barrel would admit, in order to exclude as much of the fufible metal as poflible; for the expanfion of the liquid metal being in proportion to the quantity heated, the more that quantity could be reduced, the lefs riks there was of deftroying the barrels.

In the courfe of practice, a fimple mode occurred of removing the metal and withdrawing the cradle: it confifted in pla-
cing the barrel with its muzzle downwards, fo as to keep the breech above the furnace and cold, while its muzzle was expofed to ftrong heat in the muffle. In this manner, the metal was difcharged from the muzzle, and the pofition of the barrel being lowered by degrees, the whole metal was removed in fucceffion, till at laft the cradle and its contents became entirely loofe. As the metal was delivered, it was received in a crucible, filled with water, ftanding on a plate of iron placed over the pit, which had been ufed, during the firft ftage of the experiment, to contain the waterveffel. It was found to be of fervice, efpecially where lead was ufed, to give much more heat to the muzzle than fimply what was required to liquefy the metal it contained ; for when this was not done, the muzzle growing cold as the breech was heating, fome of the metal delivered from the breech was congealed at the muzzle, fo as to ftop the paffage.

According to this method, many experiments were made. in gun-barrels, by which fome very material fteps were gained. in the inveftigation.

Os the 24th February, I made an experiment with fpar and chalk; the fpar being placed neareft to the breech of the barrel, and expofed to the greateft heat, fome baked clay intervening between the carbonates. On opening the barrel, a long-continued hiffing noife was heard. The fpar was in a ftate of entire calcination; the chalk, though crumbling at the autfide, was uncommonly hard and firm in the heart. The temperature had rifen to 3^{2}.

IN this experiment, we have the firft clear example, in iron barrels, of what I call Internal Calcination; that is to fay, where the carbonic acid feparated from the earthy bafis, has been accumulated in cavities within the barrel. For, fubfequently to the action of ftrong heat, the barrel had been completely cooled; the air therefore introduced by means of the air-tube, muft
have refumed its original bulk, and by itfelf could have no tendency to rufh out; the heat employed to open the barrel being barely fufficient to foften the metal. Since, then, the opening of the barrel was accompanied by the difcharge of elaftic matter in great abundance, it is evident, that this muft have proceeded from fomething fuperadded to the air originally included, which could be nothing but the carbonic acid of the carbonate. It follows, that the calcination had been, in part at leaft, internal; the feparation of the acid from the earthy matter being complete where the heat was ftrongeft, and only partial where, the intenfity was lefs.

The chemical principles ftated in a former part of this paper, authorifed us to expect a refult of this kind. As heat, by increafing the volatility of the acid, tended to feparate it from the earth, we had reafon to expect, that, under the fame compreffion, but in different temperatures, one portion of the carbonate might be calcined, and another not: And that the leaft heated of the two, would be leaft expofed to a change not only from want of heat, but likewife in confequence of the calcination of the other mafs; for the carbonic acid difengaged by the calcination of the hotteft of the two, muft have added to the elafticity of the confined elaftic fluid, fo as to produce an increafe of compreffion. By this means, the calcination of the coldeft of the two might be altogether prevented, and that of the hottelt might be hindered from making any further advancement. This reafoning feemed to explain the partial calcinations which had frequently occurred where there was no proof of leakage; and it opened fome new practical views in thefe experiments, of which I availed myfelf without lofs of time. If the internal calcination of one part of an inclofed mafs, promotes the compreffion of other maffes included along with it, I conceived that we might forward our views very much by placing a fmall quantity of carbonate,
nate, carefully weighed, in the fame barrel with a large quantity of that fubftance; and by arranging matters fo that the fmall fiducial part fhould undergo a moderate heat, while a ftronger heat, capable of producing internal calcination, fhould be applied to the reft of the carbonate. In this manner, I made many experiments, and obtained refults which feemed to confirm this reafoning, and which were often very fatisfactory, though the heat did not always exert its greateft force where I intended it to do fo.

On the 28th of February, I introduced fome carbonate, accurately weighed, into a fmall porcelain tube, placed within a larger one, the reft of the large tube being filled with pounded chalk; thefe carbonates, together with fome pieces of chalk, placed along with the large tube in the cradle, weighing in all 195.7 grains. On opening the barrel, air rufhed out with a long-continued hiffing noife. The contents of the little tube were loft by the intrufion of fome borax which had been introduced over the filex, in order to exclude the fufible metal. But the reft of the carbonate, contained in the large tube, came out in a fine ftate, being porous and frothy throughout ; fparkling every where with facettes, the angular form of which was diftinguifhable in fome of the cavities by help of a lens : in fome parts the fubftance exhibited the rounding of fufion ; in many it was in a high degree tranfparent. It was yellow towards the lower end, and at the other almoft colourlefs. At the upper end, the carbonate feemed to have united with the tube, and at the places of contact to have fpread upon it; the union having the appearance of a mutual action. The general mafs of carbonate effervefced in acid violently, but the thin ftratum immediately contiguous to the tube, feebly, if at all.
On the 3^{d} of March, I introduced into a very clean tube of porcelain 36.8 of chalk. The tube was placed in the upper Vol. VI.-P.I.
part of the cradle, the remaining fpace being filled with two pieces of chalk, cut for the purpofe; the uppermoft of thefe being excavated, fo as to anfwer the purpofe of an air-tube. The pieces thus added, were computed to weigh about 300 grains. There was no pyrometer ufed ; but the heat was gueffed to be about 30°. After the barrel had ftood during a few minutes in its delivering pofition, the whole lead, with the rod and cradle, were thrown out with a fmart report, and with confiderable force. The lowermoft piece of chalk had fcarcely been acted upon by heat. The upper part of the other piece was in a ftate of marble, with fome remarkable facettes. The carbonate, in the little tube, had fhrunk very much during the firft action of heat, and had begun to fink upon itfelf, by a further advancement towards liquefaction. The mafs was divided into feveral cylinders, lying confufedly upon each other; this divifion arifing from the manner in which the pounded chalk was rammed into the tube in fucceffive portions. In feveral places, particularly at the top, the carbonate was very porous, and full of decided air-holes, which could not have been formed but in a foft fubftance; the globular form and fhining furface of all thefe cavities, clearly indicating fufion. The fubftance was femitranfparent ; in fome places yellow, and in fome colourlefs. When broken, the folid parts fhewed a faline fracture, compofed of innumerable facettes. The carbonate adhered, from end to end, to the tube, and incorporated with it, fo as to render it impoflible to afcertain what lois had been fuftained. In general, the line of contact was of a brown colour; yet there was no room for fufpecting the prefence of any foreign matter, except, perhaps, from the ironrod which was ufed in ramming down the chalk. But, in fubfequent experiments, I have obferved the fame brown or black colour at the union of the carbonate with the porcelain tubes, where the powder had been purpofely rammed with a piece of
wood;
wood ; fo that this colour, which has occurred in almoft every fimilar cafe, remains to be accounted for. The carbonate effervefced violently with acid; the fubftance in contact with the tube, doing fo, however, more feebly than in the heart, leaving a copious depofite of white fandy matter, which is doubtlefs a part of the tube, taken up by the carbonate in fufion.

Ov the 24th of March, I made a fimilar experiment, in a ftout gun-barrel, and took fome care, after the application of heat, to cool the barrel flowly, with a view to cryftallization. The whole mafs was found in a fine ftate, and untouched by the lead; having a femitranfparent and faline ftructure, with various facettes. In one part, I found the moft decided cryftallization I had obtained, though of a fmall fize : owing to its tranfparency it was not eafily vifible, till the light was made to reflect from the cryftalline furface, which then produced a dazzle, very obfervable by the naked eye : when examined by means of a lens, it was feen to be compofed of feveral plates, broken irregularly in the fracture of the feecimen, all of which are parallel to each other, and reflect under the fame angle, fo as to unite in producing the dazzle. This ftructure was obfervable equally well in both parts of the broken fpecimen. In a former experiment, as large a facette was obtained in a piece of folid chalk; but this refult was of more confequence, as having been produced from chalk previoufly pounded.

The foregoing experiments proved the fuperior efficacy of iron veffels over thofe of porcelain, even where the thicknefs was not great; and I perfevered in making a great many experiments with gun-barrels, by which I occafionally obtained very fine refults : but I was at laft convinced, that their thicknefs was not fufficient to enfure regular and fteady fuccefs: For this purpofe, it appeared proper to employ veffels of fuch ftrength, as to bear a greater expanfive force than was juft neceffary; fince, occafionally, (owing to our ignorance of the re-
lation between the various forces of expanfion, affinity, tenacity, \&c.), much more ftrain has been given to the veffels than was requifite. In fuch cafes, barrels have been deftroyed, which, as the refults have proved, had acted with fufficient ftrength during the firft ftages of the experiments, though they had been unable to refift the fubfequent overftrain. Thus, my fuccefs with gun-barrels, depended on the good fortune of having ufed a force no more than fufficient, to conftrain the carbonic acid, and enable it to act as a flux on the lime. I therefore determined to have recourfe to iron barrels of much greater ftrength, and tried various modes of conftruction.

I had fome barrels executed by wrapping a thick plate of iron round a mandrel, as is practifed in the formation of gun-barrels; and likewife by bringing the two flat fides together, fo as to unite them by welding. Thefe attempts, however, failed. I next thought of procuring bars of iron, and of having a cavity bored out of the folid, fo as to form a barrel. In this manner I fucceeded well. The firft barrel I tried in this way was of fmall bore, only half an inch : Its performance was highly fatisfactory, and fuch as to convince me, that the mode now adopted was the beft of any that I had tried. Owing to the fmallnefs of the bore, a pyrometer could not be ufed internally, but was placed upon the breech of the barrel, as it ftood in the vertical muffle. In this pofition, it was evidently expofed to a much lefs heat than the fiducial part of the apparatus, which was always placed, as nearly as could be gueffed, at the point of greateft heat.

On the 4th of April, an experiment was made in this way with fome fpar ; the pyrometer on the breech giving 33°. The fpar came out clean, and free from any contamination, adhering to the infide of the porcelain tube : it was very much fhrunk, ftill retaining a cylindrical form, though bent by partial adhefions. Its furface bore fcarcely any remains of the impreffion taken by
the powder, on ramming it into the tube : it had, to the naked eye, the roughnefs and femitranfparency of the pith of a rufh fripped of its outer fkin. By the lens, this fame furface was feen to be glazed all over, though irregularly, fhewing here and there fome air-holes. In fracture, it was femitranfparent, more vitreous than cryftalline, though having a few facettes: the mafs, was feemingly formed of a congeries of parts, in themfelves quite tranfparent: and, at the thin edges, fmall pieces were vifible of perfect tranfparency. Thefe muft have been produced in the fire; for the fpar had been ground with water, and paffed through fieves, the fame with the fineft of thofe ufed at Etruria, as defcribed by Mr Wedgwood, in his paper on the conftruction of his Pyrometer.

With the fame barrel I obtained many interefting refults, giving as ftrong proofs of fufion as in any former experiments; with this remarkable difference, that, in thefe laft, the fubftance was compact, with little or no trace of frothing. In the gun-barrels where fufion had taken place, there had always been a lofs of 4 or 5 per cent., connected, probably, with the frothing. In thefe experiments, for a reafon foon to be ftated, the circumftance of weight could not be obferved; but appearances led me to fuppofe, that here the lofs had been fmall, if any.

On the 6th of April, I made another experiment with the fquare barrel, whofe thicknefs was now much reduced by fucceffive fcales, produced by oxidation, and in which a fmall rent began to appear externally, which did not, however, penetrate to the bore. The heat rofe high, a pyrometer on the breech of the barrel giving 37°. On removing the metals, the cradle was found to be fixed, and was broken in the attempts made to withdraw it. The rent was much widened externally : but it was evident, that the barrel had not been laid open, for part of the carbonate was in a flate of faline marble;
marble; another was hard and white, without any faline grains, and fcarcely effervefced in acid. It was probably quicklime, formed by internal calcination, but in a ftate that has not occurred in any other experiment.

The workman whom I employed to take out the remains of the cradle, had cut off a piece from the breech of the barrel, three or four inches in length. As I was examining the crack which was feen in this piece, I was furprifed to fee the infide of the barrel lined with a fet of tranfparent and well-defined cryftals, of fmall fize, yet vifible by the naked eye. They lay together in fome places, fo as to cover the furface of the iron with a tranfparent coat ; in others they were detached, and fcattered over the furface. Unfortunately, the quantity of this fubftance was too fmall to admit of much chemical examination ; but I immediately afcertained, that it did not in the leaft effervefce in acid, nor did it feem to diffolve in it. The cryftals were in general tranfparent and colourlefs, though a few of them were tinged feemingly with iron. Their form was very well defined, being flat, with oblique angles, and bearing a ftrong refemblance to the cryftals of the Lamellated Stylbite of $\mathrm{H}_{\text {aüy. }}$ Though made above two years ago, they ftill retain their form and tranfparency unchanged. Whatever this fubftance may be, its appearance, in this experiment, is in the higheft degree interefting, as it feems to afford an example of the mode in which Dr Hutton fuppofes many internal cavities to have been lined, by the fublimation of fubftances in a flate of vapour; or, held in folution, by matters in a gafeous form. For, as the cryftals adhered to a part of the barrel, which muft have been occupied by air during the action of heat, it feems next to certain that they were produced by fublimation.
The very powerful effects produced by this laft barrel, the fize of which (reduced, indeed, by repeated oxidation) was not
above an inch fquare, made me very anxious to obtain barrels of the fame fubftance, which being made of greater fize, ought to afford refults of extreme intereft. I found upon inquiry, that this barrel was not made of Swedifh iron, as I at firft fuppofed, but of what is known by the name of old Sable, from the figure of a Sable ftamped upon the bars; that being the armorial badge of the place in Siberia where this iron is made *.

A workman explained to me fome of the properties of different kinds of irons, moft interefting in my prefent purfuit; and he illuftrated what he faid by actual trial. All iron, when expofed to a certain heat, crufhes and crumbles under the hammer; but the temperature in which this happens, varies with every different fpecies. Thus, as he fhewed me, caft iron crufhes in a dull-red heat, or perhaps about 15° of Wedgwood; fteel, in a heat perhaps of 30°; Swedifh iron, in a bright white heat, perhaps of 50° or 60°; old fable, itfelf, likewife yields, but in a much higher heat, perhaps of 100°. I merely gueffed at thefe temperatures; but I am certain of this, that in a heat fimilar to that in which Swedifh iron crumbled under the hammer, the old fable withftood a ftrong blow, and feemed to poffefs confiderable firmnefs. It is from a knowledge of this quality, that the blackfmith, when he firft takes his iron from the forge, and lays it on the anvil, begins by very gentle blows, till the temperature has funk to the degree in which the iron can bear the hammer. I obferved, as the ftrong heat of the forge acted on the Swedifh iron, that it began to boil at the furface, clearly indicating the difcharge of fome gafeous matter; whereas, the old fable, in the fame circumftances, acquired the fhining furface of a liquid, and melted away without any effervefcence. I procured, at this time, a confiderable number

[^13]number of bars of that iron, which fully anfwered my expectations.

By the experiments laft mentioned, a very important point was gained in this inveftigation; the complete fufibility of the carbonate under preffure being thereby eftablifhed. But from this very circumftance, a neceffity arofe of adding fome new devices to thofe already defcribed : for the carbonate, in fufion, fpreading itfelf on the infide of the tube containing it, and the two uniting firmly together, fo as to be quite infeparable, it was impoffible, after the experiment, to afcertain the weight of the carbonate by any method previoufly ufed. I therefore determined in future to adopt the following arrangement.

A small tube of porcelain (ik, fig. 23.) was weighed by means of a counterpoife of fand, or granulated tin; then the carbonate was firmly rammed into the tube, and the whole weighed again : thus the weight of the carbonate, previous to the experiment, was afcertained. After the experiment, the tube, with its contents, was again weighed ; and the variation of weight obtained, independently of any mutual action that had taken place between the tube and the carbonate. The balance which I ufed, turned, in a conftant and fteady manner, with one hundredth of a grain. When pounded chalk was rammed into this tube, I generally left part of it free, and in that fpace laid a fmall piece of lump-chalk (i), dreffed to a cylinder, with the ends cut flat and fmooth, and I ufually cut a letter on each end, the more effectually to obferve the effects produced by heat upon the chalk; the weight of this piece of chalk being always eftimated along with that of the powder contained in the tube. In fome experiments, I placed a cover of porcelain on the muzzle of the little tube, (this cover being weighed along with it), in order to provide againft the cafe of ebullition :
ebullition: But as that did not often occur, I feldom took the trouble of this laft precaution.

It was now of confequence to protect the tube, thus prepared, from being touched during the experiment, by any fubftance, above all, by the carbonate of lime, which might adhere to it, and thus confound the appreciation by weight. This was provided for as follows: The fmall tube (Fig. 23. $i k$), with its pounded carbonate (k), and its cylinder of lump-chalk $(i$,$) ,$ was dropt into a large tube of porcelain ($p k$, Fig. 24.). Upon this a fragment of porcelain (l), of fuch a fize as not to fall in between the tubes, was laid. Then a cylinder of chalk (m) was dreffed, fo as nearly to fit and fill up the infide of the large tube, one end of it being rudely cut into the form of a cone. This mafs being then introduced, with its cylindrical end downwards, was made to prefs upon the fragment of porcelain (l). I then dropped into the fpace (n), between the conical part of this mafs and the tube, a fet of fragments of chalk, of a fize beyond what could poffibly fall between the cylindrical part and the tube, and preffied them down with a blunt tool, by which the chalk being at the fame time crufhed and rammed into the angle, was forced into a mals of fome folidity, which effectually prevented any thing from paffing between the large mals of chalk and the tube. In practice, I have found this method always to anfwer, when done with care. I covered the chalk, thus rammed, with a ftratum of pounded flint (0), and that again with pounded chalk (p) firmly rammed. In this manner, I filled the whole of the large tube with alternate layers of filex and chalk; the muzzle being always occupied with chalk, which was eafily preffed into a mafs of tolerable firmnefs, and, fuffering no change in very low heats, excluded the fufible metal in the firft ftages of the experiment.

The large tube, thus filled, was placed in the cradle, fometimes with the muzzle upwards, and fometimes the reverfe. I

Vol. VI.-P.I. P have
have frequently altered my views as to that part of the arrangement, each mode poffefling peculiar advantages and difadvantages. With the muzzle upwards, (as fhewn in fig. 24. and 25.) the beft fecurity is afforded againft the intrufion of the fufible metal; becaufe the air, quitting the air-tube in the working pofition, occupies the upper part of the barrel; and the fufible metal ftands as a liquid (at q, fig. 25.) below the muzzle of the tube, fo that all communication is cut off, between the liquid metal and the infide of the tube. On the other hand, by this arrangement, the fmall tube, which is the fiducial part of the apparatus, is placed at a confiderable diftance from the breech of the barrel, fo as either to undergo lefs heat than the upper part, or to render it neceflary that the barrel be thruft high into the muffle.

With the muzzle of the large tube downwards, the inner tube is placed (as fhewn in fig. 22.), fo as fill to have its muzzle upwards, and in contact with the breech of the large tube. This has the advantage of placing the fmall tube near to the breech of the barrel : and though there is here lefs fecurity againft the intrufion of liquid metal, I have found that a point of little confequence; fince, when the experiment is a good one, and that the carbonic acid has been well confined, the intrufion feldom takes place in any pofition. In whichever of the two oppofite pofitions the large tube was placed, a pyrometer was always introduced, fo as to lie as near as poflible to the fmall tube. Thus, in the firft-mentioned pofition, the pyrometer was placed immediately below the large tube, and, in the other pofition, above it; fo that, in both cafes, it was feparated from the carbonate by the thicknefs only of the two tubes.

Much room was unavoidably occupied by this method, which neceffarily obliged me to ufe fmall quantities of car-
bonate,
bonate, the fubject of experiment feldom weighing more than 10 or $^{i} 12$ grains, and in others far lefs *.

On the IIth of April 1803, with a barrel of old fable iron having a bore of 0.75 of an inch, I made an experiment in which all thefe arrangements were put in practice. The large tube contained two fimall ones; one filled with fpar, and the other with chalk. I conceived that the heat had rifen to 33°, or fomewhat higher. On melting the metals, the cradle was thrown out with confiderable violence. The pyrometer, which, in this experiment, had been placed within the barrel, to my aftonifhment, indicated 64°. Yet all was found. The two little tubes came out quite clean and uncontaminated. The fpar had loft 17.0 per cent.: The chalk 10.7 per cent.: The fpar was half funk down, and run againft the fide of the little tube: Its furface was fhining, its texture fpongy, and it was compofed of a tranfparent and jelly-like fubftance: The chalk was entirely in a ftate of froth. This experiment extends our power of action, by fhewing, that compreffion, to a confiderable degree, can be carried on in fo great a heat as 64°. It feems likewife to prove, that, in fome of the late experiments with the fquare barrel, the heat had been much higher than was fuppofed at the time, from the indication of the pyrometer placed on the breech of the barrel; and that in fome of them, particularly in the laft, it muft have rifen at leaft as high as in the prefent experiment.

$$
\mathrm{P}_{2} \quad \mathrm{ON}_{\mathrm{N}}
$$

[^14]On the 2 Ift of April 1805, a fimilar experiment was made with a new barrel, bored in a fquare bar of old fable, of about two and a half inch in diameter, having its angles merely rounded; the inner tube being filled with chalk. The heat was maintained during feveral hours, and the furnace allowed to burn out during the night. The barrel had the appearance of foundnefs, but the metals came off quietly, and the carbonate was entirely calcined, the pyrometer indicating 63°. On examination, and after beating off the fmooth and even fcale of oxide peculiar to the old fable, the barrel was found to have yielded in its peculiar manner ; that is, by the opening of the longitudinal fibres. This experiment, notwithftanding the failure of the barrel, was one of the moft interefting I had made, fince it afforded proof of complete fufion. The carbonate had boiled over the lips of the little tube, ftanding, as juft defcribed, with its mouth upwards, and had run down to within half an inch of its lower end : moft of the fubftance was in a frothy ftate, with large round cavities, and a fhining furface; in other parts, it was interfperfed with angular maffes, which have evidently been furrounded by a liquid in which they floated. It was harder, I thought, than marble; giving no effervefcence, and not turning red like quicklime in nitric acid, which feemed to have no effect upon it in the lump. It was probably a compound of quicklime with the fubftance of the tube.

With the fame barrel repaired, and with others like it, many fimilar experiments were made at this time with great fuccefs; but to mention them in detail, would amount nearly to a repetition of what has been faid. I fhall take notice of only four of them, which, when compared together, throw much light on the theory of thefe operations, and likewife feem to eftablifh a very important principle in geology. Thefe
four experiments differ from each other only in the heat em. ployed, and in the quantity of air introduced,

The firft of thefe experiments was made on the 27 th of April 1803 , in one of the large barrels of old fable, with all the above-mentioned arrangements. The heat had rifen, contrary to my intention, to 78° and 79°. The tubes came out uncontaminated with fufible metal, and every thing bore the appearance of foundnefs. The contents of the little tube, confifting of pounded chalk, and of a fmall piece of lump-chalk, came out clean, and quite loofe, not having adhered to the infide of the tube in the fmalleft degree. There was a lofs of 4 I per cent., and the calcination feemed to be complete; the fubftance, when thrown into nitric acid, turning red, without effervefcence at firft, though, after lying a few minutes, fome bubbles appeared. According to the method followed in all thefe experiments, and lately defcribed at length, (and fhewn in fig. 24. \& 25.), the large tube was filled over the fmall one, with various maffes of chalk, fome in lump, and fome rammed into it in powder; and in the cradle there lay fome pieces of chalk, filling up the fpace, fo that in the cradle there was a continued chain of carbonate of four or five inches in length. The fubftance was found to be lefs and lefs calcined, the more it was removed from the breech of the barrel, where the heat was greateft. -A fmall piece of chalk, placed at the diftance of half an inch from the fmall tube, had fome faline fubftance in the heart, furrounded and intermixed with quicklime, diftinguifhed by its dull white. In nitric acid, this fubftance became red, but effervefced pretty brifkly; the effervefcence continuing till the whole was diffolved. The next portion of chalk, was in a firm ftate of limeftone; and a lump of chalk in the cradle, was equal in perfection to any marble I have obtained by compreffion: the two laft-mentioned pieces of chalk effervefcing with violence in the acid, and fhewing
no rednefs when thrown into it. Thefe facts clearly prove, that the calcination of the contents of the fmall tube had been internal, owing to the violent heat which had feparated its acid from the moft heated part of the carbonate, according to the theory already ftated. The foundnefs of the barrel was proved by the complete ftate of thofe carbonates which lay in lefs heated parts. The air-tube in this experiment had a capacity of 0.29 , nearly one-third of a cubic inch.

The fecond of thefe experiments was made on the 29 th of April, in the fame barrel with the laft, after it had afforded fome good refults. The air-tube was reduced to onethird of its former bulk, that is, to one-tenth of a cubic inch. The heat rofe to 60°. The barrel was covered externally with a black fpongy fubftance, the conftant indication of failure, and a fmall drop of white metal made its appearance. The cradle was removed without any explofion or hiffing. The carbonates were entirely calcined. The barrel had yielded, but had refifted well at firft; for, the contents of the little tube were found in a complete ftate of froth, and running with the porcelain.

The third experiment was made on the 30 th of April, in another fimilar barrel. Every circumftance was the fame as in the two laft experiments, only that the air-tube was now reduced to half its laft bulk, that is, to one-twentieth of a cubic inch. A pyrometer was placed at each end of the large tube. The uppermoft gave 41°, the other only 15°. The contents of the inner tube had loft 16 per cent., and were reduced to a moft beautiful ftate of froth; not very much injured by the internal calcination, and indicating a thinner ftate of fufion than had appeared.

The fourth experiment was made on the 2d of May, like the reft in all refpects, with a ftill fmaller air-tube, of 0.0318 , being lefs than one-thirtieth of a cubic inch. The upper py-
rometer gave 25°, and the under one 16° : The loweft maffes of carbonate were fcarcely affected by the heat: The contents of the little tube had loft 2.9 per cent. ; both the lump and the pounded chalk were in a fine faline ftate, and, in feveral places had run and fpread upon the infide of the tube, which I had not expected to fee in fuch a low heat. On the upper furface of the chalk rammed into the little tube, which, after its introduction had been wiped fmooth, were a fet of white cryftals, with fhining facettes, large enough to be diftinguifhed by the naked eye, and feeming to rife out of the mafs of carbonate. I likewife obferved, that the folid mafs on which thefe cryftals ftood, was uncommonly tranfparent.

In thefe four experiments, the bulk of the included air was fucceffively diminifhed, and by that means its elafticity increafed. The confequence was, that in the firft experiment, where that elafticity was the leaft, the carbonic acid was allowed to feparate from the lime, in an early ftage of the rifing heat, lower than the fufing point of the carbonate, and complete internal calcination was effected. In the fecond experiment, the elaftic force being much greater, calcination was prevented, till the heat rofe fo high as to occafion the entire fufion of the carbonate, and its action on the tube, before the carbonic acid was fet at liberty by the failure of the barrel. In the third experiment, with ftill greater elaftic force, the carbonate was partly conftrained, and its fufion accomplifhed, in a heat between $4 \mathrm{I}^{\circ}$ and 15°. In the laft experiment, where the force was ftrongeft of all, the carbonate was almoft completely protected from decompofition by heat, in confequence of which it cryftallized and acted on the tube, in a temperature between 25° and 16°. On the other hand, the efficacy of the carbonic acid as a flux on the lime, and in enabling the carbonate to act as a flux on other bodies, was clearly evinced; fince the firft ex-
periment
periment proved, that quicklime by itfelf, could neither be melted, nor act upon porcelain, even in the violent heat of 79°; whereas, in the laft experiment where the carbonic acid was retained, both of thefe effects took place in a very low temperature.

V.

* Experiments in which Water was employed to increafe the Elafticity of
the included Air.-Cafes of complete Comprefloin.-General Obferva-
tions.-Some Experiments affording interefting refults; in particular,
Jhewing a mutual action between Silex and the Carbonate of Lime.

Finding that fuch benefit arofe from the increafe of elafticity given to the included air in the laft-mentioned experiments, by the diminution of its quantity; it now occurred to me, that a fuggeftion formerly made by Dr Kennedy, of ufing water to aflift the comprefling force, might be followed with advantage: That while fufficient room was allowed for the expanfion of the liquid metal, a reacting force of any required amount, might thus be applied to the carbonate. In this view, I adopted the following mode, which, though attended with confiderable difficulty in execution, I have often practifed with fuccefs. The weight of water required to be introduced into the barrel was added to a fmall piece of chalk or baked clay, previoufly weighed. The piece was then dropped into a tube of porcelain of about an inch in depth, and covered with pounded chalk, which was firmly rammed upon it. The tube was then placed in the cradle along with the fubject of experiment, and the whole was plunged into the fufible metal, previounly poured into the barrel, and heated fo as merely to render it liquid. The metal being thus fuddenly cooled,
the tube was encafed in-a folid mafs, before the heat had reached the included moifture. The difficulty was to catch the fufible metal at the proper temperature; for when it was fo hot as not to fix in a few feconds, by the contact of the cradle and its contents, the water was heard to bubble through the metal and efcape. I overcame this difficulty, however, by firft heating the breech of the barrel, (containing a fufficient quantity of fufible metal), almoft to rednefs, and then fetting it into a veffel full of water, till the temperature had funk to the proper pitch, which I knew to be the cafe when the hiffing noife produced in the water by the heated barrel ceafed ; the cradle, during the laft ftage of this operation, being held clofe to the muzzle of the barrel, and ready to be thruft into it.

On the 2 d of May, I made my firft experiment in this way, ufing the fame air-tube as in the laft experiment, which was equal in capacity to one-thirtieth of a cubic inch. Half a grain of water was introduced in the manner juft defcribed. The barrel, after an hour of red-heat, was let down by a rope and pulley, which I took care to ufe in all experiments, in which there was any appearance of danger. All was found. The metals rufhed out fmartly, and a flafh of flame accompanied the difcharge. The upper pyrometer gave 24°, and the lower one 14°. The contents of the inner tube had loft lefs than I per cent., ftrictly 0.84 . The carbonate was in a ftate of good limeftone; but the heat had been too feeble: The lower part of the chalk in the little tube was not agglutinated: The chalk round the fragment of pipe-ftalk (ufed to introduce the water), which had been more heated than the pyrometer, and the fmall rod, which had moulded itfelf in the boll of the ftalk, were in a ftate of marble.

On the 4 th of May, Imade an experiment like the laft, but with the addition of 1.05 grains water. After application of heat, the

Vol. VI.-P.I.
fire was allowed to burn out till the barrel was black. The metal was difcharged irregularly. Towards the end, the inflammable air produced, burnt at the muzzle, with a lambent flame, during fome time, arifing doubtlefs from hydrogen gas, more or lefs pure, produced by the decompofition of the water. The upper pyrometer indicated $3^{6^{\circ}}$, and the lower one 19°. The chalk which lay in the outer part of the large tube was in a fate of marble. The inner tube was united to the outer one, by a ftar of fufed matter, black at the edges, and fpreading all round, furrounding one of the fragments of porcelain which had fallen by accident in between the tubes. The inner tube, with the farry matter adhering to it, but without the coated fragment, feemed to have fuftained a lofs of 12 per cent., on the original carbonate introduced. But, the fubftance furrounding the fragment being inappreciable, it was impoffible to learn what lofs had been really fuftained. Examining the little tube, I found its edges clean, no boiling over having taken place. The top of the fmall lump of chalk had funk much. When the little tube was broken, its contents gave proof of fufion in fome parts, and in others, of the neareft approach to it. A ftrong action of ebullition had taken place all round, at the contact of the tube with the carbonate : in the heart, the fubftance had a tranfparent granular texture, with little or no cryftallization. The fmall piece of lump-chalk was united and blended with the rammed powder, fo that they could fcarcely be diftinguifhed. In the lower part of the carbonate, where the heat muft have been weaker, the rod had acted more feebly on the tube, and was detached from it : here the fubftance was firm, and was highly marked in the fracture with cryftalline facettes. Wherever the carbonate touched the tube, the two fubftances exhibited; in their mixture, much greater proofs of fufion than could be found in the pure carbonate. At one place, a ftream of this compound had penetrated a rent in
the inner tube, which it had filled completely, conftituting a real vein, like thofe of the mineral kingdom : which is fill diftinctly to be feen in the fecimen. It had then fpread itfelf upon the outfide of the inner tube, to the extent of half an inch in diameter, and had enveloped the fragment of porcelain already mentioned. When pieces of the compound were thrown into nitric acid, fome effervefced, and fome not.

I repeated this experiment on the fame day, with two grains of water. The furnace being previoully hot; I continued the fire during one half-hour with the muffle open, and another with a cover upon it. I then let the barrel down by means of the pulley. The appearance of a large longitudinal rent, made me at firft conceive that the experiment was loft, and the barrel deftroyed: The barrel was vifibly fwelled, and in fwelling had burft the cruft of finooth oxide with which it was furrounded; at the fame time, no exudation of metal had happened, and all was found. The metals were thrown out with more fuddennefs and violence than in any former experiment, but the rod remained in its place, being fecured by a cord. The upper pyrometer gave 27°, the lower 23°. The contents of the inner tube had loft 1.5 per cent. The upper end of the little lump of chalk, was rounded and glazed by fufion; and the letter which I have been in the habit of cutting on thefe fmall pieces, in order to trace the degree of action upon them, was thus quite obliterated. On the lower end of the fame lump, the letter is ftill vifible. Both the lump and the rammed chalk were in a good femitranfparent ftate, fhining a little in the fracture, but with no good facettes, and no where appearing to have acted on the tube. This laft circumftance is of confequence, fince it feems to fhew, that this very remarkable action of heat, under compreffion, was performed without the affiftance of the fubftance of the tube, by which, in many other
experiments, a confiderable additional fufibility has been communicated to the carbonate.

These experiments, and many others made about the fame time, with the fame fuccefs, clearly prove the efficacy of water in affifting the compreffion; and refults approaching to thefe in quality, obtained, in fome cafes, by means of a very fmall airtube, fhew that the influence of water on this occafion has been merely mechanical.

During the following fummer and autumn 1803, I was occupied with a different branch of this fubject, which I fhall foon have occafion to mention.

In the early part of laft year, 1804 , I again refumed the fort of experiments lately defcribed, having in view principally to accomplifh abfolute compreffion, in complete imitation of the natural procefs. In this purfuit, I did not confine myfelf to water, but made ufe of various other volatile fubftances, in order to affift compreffion; namely, carbonate of ammonia, nitrate of ammonia, gunpowder, and paper impregnated with nitre. With thefe I obtained fome good refults, but none fuch as to induce me to prefer any of thefe compreffors to water. Indeed, I am convinced, that water is fuperior to them all. I found, in feveral experiments, made with a fimple air-tube, without any artificial compreffor, in which a very low red-heat had been applied, that the carbonate loft one or one and a half per cent. Now, as this muft have happened in a temperature fcarcely capable of inflaming gunpowder, it is clear, that fuch lofs would not have been prevented by its prefence: whereas water, beginning far below rednefs to affume a gafeous form, will effectually refift any calcination, in low as well as in high heats. And as the quantity of water can very eafily be regulated by weight, its employment for this purpofe feems liable to no objection.

On the 2d of January 1804, I made an experiment with marble and chalk, with the addition of I.I grain of water. I aimed at a low heat, and the pyrometer, though a little broken, feemed clearly to indicate 22°. Unluckily, the muzzle of the large tube, which was clofed as ufual with chalk, was placed uppermoft, and expofed to the ftrongeft heat. I found it rounded by fufion, and in a frothy ftate. The little tube came out very clean, and was fo nearly of the fame weight as when put in, that its contents had loft but 0.074 per cent. of the weight of the original carbonate. The marble was but feebly agglutinated, but the chalk was in a ftate of firm limeftone, though it muft have undergone a heat under 22°, or that of melting filver. This experiment is certainly a moft remarkable one, fince a heat has been applied, in which the chalk has been changed to hard limeftone, with a lofs lefs than the rooodth par of its weight, (exactly $\operatorname{r}_{\frac{1}{5} T}$) ; while, under the fame circumffances of preffure, though probably with more heat, fome of the fame fubftance had been brought to fufion. What lofs of weight this fufed part fuftained, cannot be known.

ON the 4 th of January, a fimilar experiment was made, likewife with I.I grain of water. The difcharge of the metal was accompanied with a flath of flame. The pyrometer indicated 26°. The little tube came out quite clean. Its contents had been reduced from 14.53 to 14.46 , difference 0.07 grains, being. 0.47 per cent. on the original carbonate, lefs. than one two-hundredth part of the original weight, (exactly $\left.\frac{-1}{2} \frac{1}{2}\right)$. The chalk was in a fate of firm faline marble, but with no unufual qualities.

These two laft experiments are rendered ftill more interefting, by another fet which I made foon after, which fhewed, that one effential precaution in a point of fuch nicety had been neglected, in not previoufly drying the carbonate. In feveral trials made in the latter end of the fame month,

I found, that chalk expofed to a heat above that of boiling water, but quite fhort of rednefs, loft 0.34 per cent. ; and in another fimilar trial, 0.46 per cent. Now, this lofs of weight equals within 0.01 per cent. the lofs in the laft-mentioned experiment, that being 0.47 ; and far furpaffes that of the laft but one, which was but 0.074 . There is good reafon, therefore, to believe, that had the carbonate, in thefe two laft experiments, been previoufly dried, it would have been found during compreffion to have undergone no lofs.

The refult of many of the experiments lately mentioned, feems fully to explain the perplexing difcordance between my experiments with porcelain tubes, and thofe made in barrels of iron. With the procelain tubes, I never could fucceed in a heat above 28°, or even quite up to it; yet the refults were often excellent. Whereas, the iron-barrels have currently ftood firm in heats of 41° or 51°, and have reached even to 70° or 80° without injury. At the fame time, the refults, even in thofe high heats, were often inferior, in point of fufion, to thofe obtained by low heats in porcelain. The reafon of this now plainly appears. In the iron-barrels it has always been confidered as neceffary to ufe an air-tube, in confequence of which, fome of the carbonic acid has been feparated from the earthy bafis by internal calcination :' what carbonic acid remained, has been more forcibly attracted, according to M. Berthollet's principle, and, of courfe, more eafily compreffed, than when of quantity fufficient to faturate the lime : but, owing to the diminifhed quantity of the acid, the compound has become lefs fufible than in the natural ftate, and, of courfe, has undergone a higher heat with lefs effect. The introduction of water, by furnifhing a reacting force, has produced a ftate of things fimilar to that in the porcelain tubes; the carbonate fuftaining little or no lofs of weight,
weight, and the compound retaining its fufibility in low heats *.

In the early part of 1804 , fome experiments were made with barrels, which I wifhed to try, with a view to another feries of experiments. The refults were too interefting to be paffed over; for, though the carbonic acid in them was far from being completely conftrained, they afforded fome of the fineft examples I had obtained, of the fufion of the carbonate, and of its union with filex.

On the I3th of February, an experiment was made with pounded oyfter-fhell, in a heat of 33°, without any water being introduced to affift compreffion. The lofs was apparently of 12 per cent. The fubftance of the fhell had evidently been in vifcid fufion : it was porous, femitranfparent, fhining in furface and fracture ; in moft parts with the glofs of fufion, in many others with facettes of cryftallization. The little tube had been fet with its muzzle upwards; over it, as ufual, lay a fragment of porcelain, and on that a round mafs of chalk. At the contact of the porcelain and the chalk, they had run together, and the chalk had been evidently in a very foft ftate; for, refting with its weight on the porcelain, this laft had been preffed into the fubftance of the chalk, deeper than its own breadth, a rim of chalk being vifible without the furface of the porcelain; juft as when the round end of a knife is preffed upon

[^15]upon a piece of foft butter. The carbonate had fpread very much on the infide of the tube, and had rifen round its lip, as fome falts rife from their folution in water. In this manner, a fmall quantity of the carbonate had reached the outer tube, and had adhered to it. The black colour frequently mentioned as accompanying the union of the carbonates with the porcelain, is here very remarkable.

On the 26 th of February, I made an experiment, in which the carbonate was not weighed, and no foreign fubftance was introduced to affift the compreflion. The temperature was 46°. The pyrometer had been affected by the contact of a piece of chalk, with which it had united; and fome of the carbonate muft have penetrated the fubftance of the pyrometer, fince this laft had vifibly yielded to preffure, as appeared by a fwelling near the contact. I obferved in thefe experiments, that the carbonate had a powerful action on the tubes of Cornifh clay, more than on the pounded filex. Perhaps it has a peculiar affinity for argil, and this may lead to important confequences. The chalk had vifibly firft fhrunk upon itfelf, fo as to be detached from the fides, and had then begun to run by fucceffive portions, fo as ftill to leave a pillar in the middle, very irregularly worn away; indicating a fucceffive liquefaction, like that of ice, not the yielding of a mafs foftening all at once.

On the 28th of February, I made an experiment with oyfter-fhell unweighed, finely ground, and paffed through the clofeft fieves. The pyrometer gave 40°. The piece of chalk below it had been fo foft, as to fink to the depth of half an inch into the mouth of the iron air-tube, taking its impreffion completely. A fmall part of this lump was contaminated with iron, but the reft was in a fine ftate. The tube had a rent in it, through which the carbonate, united with the matter of the tube, had flowed in two or three places. The
fhell had fhrunk upon itfelf, fo as to fland detached from the fides, and bore very ftrong marks of fufion. The external furface was quite fmooth, and fhining like an enamel. The internal part confifted of a mixture of large bubbles and folid parts: the infide of the bubbles had a luftre much fuperior to that of the outfide, and equal to that of glafs. The general mafs was femitranfparent; but fmall parts were vifible by the lens, which were completely tranfparent and colourlefs. In feveral places this fmooth furface had cryftallized, fo as to prefent brilliant facettes, fleadily fhining in certain afpects. I obferved one of thefe facettes on the infide of an air-bubble, in which it interrupted the fpherical form as if the little fphere had been preffed inwards at that fpot, by the contact of a plane furface. In fome chalk near the mouth of the large tube, which lay upon a ftratum of filex, another very interefting circumftance occurred. Connected with its lower end, a fubftance was vifible, which had undoubtedly refulted from the union of the carbonate with the filex. This fubftance was white and femitranfparent, and bore the appearance of chalcedony. The mafs of chalk having attached itfelf to that above it, had fhrunk upwards, leaving an interval between it and the filex, and carrying fome of the compound up with it. From thence this laft had been in the act of dropping in a vifcid ftate of fufion, as evidently appeared when the fpecimen was entire; having a ftalactite and ftalagmite correfponding accurately to each other. Unluckily I broke off the flalactite, but the flalagmite continues entire, in the form of a little cone. This new fubftance effervefced in acid, but not brifkly. I watched its entire folution; a fet of light clouds remained undiffolved, and probably fome jelly was formed; for I obferved, that a feries of air-bubbles remained in the form of the fragment, and moved together without any vifible connection; thus feeming to indicate a chemical union beVol. VI.-P. I.
tween the filex and the carbonate. The fhell, fufed in the experiment, diffolved entirely in the acid, with violent effervefcence.

In the three laft experiments, and in feveral others made at the fame time, the carbonate had not been weighed; but no water being introduced to affift the compreffion, it is probable there was much lofs by internal calcination ; and owing doubtlefs to this, the carbonates have crumbled almoft entirely to duft, while the compounds which they had formed with filex remain entire.

On the $13^{\text {th }}$ of March, I made a fimilar experiment, in which, befides fome pounded oyfter-fhell, I introduced a mixture of chalk, with 10 per cent. of filex intermixed, and ground together in a mortar with water, in a fate of cream, and then well dried. The contents of the tube when opened, were difcharged with fuch violence, that the tube was broken to pieces; but I found a lump of chalk, then in a fate of white marble, welded to the compound; which laft, in its fracture, fhewed that irregular black colour, interfperfed roughly through a cryftalline mafs, that belongs to the alpine marbles, particularly to the kind called at Rome Cipolline. It was very hard and firm; I think unufually fo. It efferveiced conftantly to the laft atom, in diluted nitric acid, but much more fluggifhly than the marble made of pure chalk. A cloudinefs appeared pervading all the liquid. When the effervefcence was over, a feries of bubbles continued during the whole day in the acid, without any difpofition to burt, or rife to the furface. After ftanding all next day and night, they maintained their ftation; and the folution being ftirred, was found to be entirely agglutinated into a tranfparent jelly, breaking with fharp angles. This experiment affords a direct and pofitive proof of a chemical union having taken place between the carbonate and filex.

VI.

> Experiments made in Platina,-with Spar,-with Sbells,-and with Carbonate of Lime of undoubted purity.

Since I had the honour of laying before this Society a fhort fketch of the foregoing experiments, on the 30th of Auguft laft (1804), many chemifts and mineralogifts of eminence have favoured me with fome obfervations on the fubject, and have fuggefted doubts which I am anxious to remove. It has been fuggefted, that the fufibility of the carbonates may have been the confequence of a mixture of other fubftances, either originally exifting in the natural carbonate; or added to it by the contact of the porcelain tube.

With regard to the firft of thefe furmifes, I beg leave to obferve, that, granting this caufe of fufion to have been the real one, a material point, perhaps all that is ftrictly neceffary in order to maintain this part of the Huttonian Theory, was neverthelefs gained. For, granting that our carbonates were impure, and that their impurity rendered them fufible, ftill the fame is true of almoft every natural carbonate; fo that our experimenats were, in that refpect, conformable to nature. And as to the other furmife, it has been fhewn, by comparing together a varied feries of experiments, that the mutual action between the lime and the porcelain was occafioned entirely by the prefence of the carbonic acid, fince, when it was abfent, no action of this kind took place. The fufion of our carbonates cannot, therefore, be afcribed to the porcelain.

Being convinced, however, by many obfervations, that the fufibility of the carbonate did not depend upon impurity, R 2

I have exerted myfelf to remove, by frefh experiments, every doubt that has arifen on the fubject. In order to guard againft natural impurities, I have applied to fuch of my friends as have turned their attention to chemical analyfis, (a branch of the fcience to which I have never attended,) to furnifh me with carbonate of lime of undoubted purity. To obviate the contamination arifing from the contact of the porcelain tubes, I determined to confine the fubject of experiment in fome fubftance which had no difpofition to unite with the carbonate. I firft tried charcoal, but found it very troublefome, owing to its irregular abforption of water and air.
I then turned my thoughts to the conftruction of tubes or cups of platina for that purpofe. Being unable readily to procure proper folid veffels of this fubftance, I made ufe of thin laminated plates, formed into cups. My firft method was, to fold the plate exactly as we do blotting-paper to form a filter (Fig. 26.) ; this produced a cup capable of holding the thinneft liquid; and being covered with a lid, formed of a fimilar thin plate, bent at the edges, fo as to overlap confiderably (Fig. 23.), the carbonate it contained was fecured on all fides from the contact of the porcelain tube within which it was placed. Another convenient device likewife occurred: I wrapt a piece of the plate of platina round a cylinder, fo as to form a tube, each end of which was clofed by a cover like that juft defcribed (Fig. 27. and 29). (In figure 26. and 27. thefe cups are reprefented upon a large fcale, and in 28. and 29. nearly of their actual fize). This laft conftruction had the advantage of containing eight or nine grains of carbonate, whereas the other would only hold about a grain and a half. On the other hand, it was not fit to retain a thin liquid; but, in moft cafes, that circumftance was of no confequence; and I forefaw that the carbonates could not
thus efcape without proving the main point under confideration, namely, their fufion.

THE reft of the apparatus was arranged in all refpects as formerly defcribed, the fame precautions being taken to defend the platina veffel as had been ufed with the inner tubes of porcelain.
In this manner I have made a number of experiments during this fpring and fummer, the refult of which is highly fatisfactory. They prove, in the firft place, the propriety of the obfervations which led to this trial, by fhewing, that the pute carbonate, thus defended from any contamination, is decidedly more refractory than chalk; fince, in many experiments, the chalk has been reduced to a flate of marble, while the pure carbonate, confined in the platina veffel, has been but very feebly acted upon, having only acquired the induration of a fandftone.

IN other experiments, however, I have been more fuccefsful, having obtained fome refults, worthy, I think, of the attention of this Society, and which I fhall now fubmit to their infpection. The fpecimens are all inclofed, for fafety, in glafs tubes, and fupported on little ftands of wax, (fig. 31, $\left.3^{2}, 33.\right)$. The fpecimens have, in general, been removed from the cup or tube of platina in which they were formed, thefe devices having the advantage of fecuring both the veffel and its contents, by enabling us to unwrap the folds without violence; whereas, in a folid cup or tube, it would have been difficult, after the experiment, to avoid the deftruction either of the veffel or its contents, or both.
April 16. 1805.-An experiment was made with pure calcareous fpar from St Gothard, remarkably tranfparent, and having a ftrong double refraction. A temperature of 40° was applied; but owing to fome accident, the weight was not known. The conical cup came out clean and entire, filled
not quite to the brim with a yellowifh-grey fubftance, having a fhining furface, with longitudinal ftreaks, as we fometimes fee on glafs. This furface was here and there interrupted by little white tufts or protuberances, difpofed irregularly. On the ledge of the cup, formed by the ends of the folded platina, were feveral globular drops like minute pearls, vifible to the naked eye, the number of which amounted to fixteen. Thefe feem to have been formed by the entire fufion of what carbonate happened to lie on the ledge, or had been entangled amongft the extremities of the folds, drawing itfelf together, and uniting in drops; as we fee when any fubftance melts under the blowpipe. This refult is preferved entire, without deranging the tube. I am forry to find that it has begun to fall to decay, in confequence, no doubt, of too great a lofs of its carbonic acid. But the globules do not feem as yet to have fuffered any injury.

April 25.-The fame fpar was ufed, with two grains of water, and a heat of 33°. I have reafon to fufpect, however, that, in this and feveral other experiments made at this time, the metal into which the cradle was plunged; on firft introduction into the barrel, had been too hot, fo as to drive off the water. There was a lofs of 6.4 per cent. The refult lay in the cup without any appearance of frothing or fwelling. The furface was of a clean white, but rough, having in one corner a fpace fhining like glafs. The cup being unwrapt, the fubftance was obtained found and entire: where it had moulded itfelf on the platina, it had a fmall degree of luftre, with the irregular femitranfparency of faline marble : when broken, it preferved that character more completely than in any refult hitherto obtained; the fracture being very irregular and angular, and fhining with facettes in various directions. I much regret that this beautiful fpecimen
no longer exifts, having crumbled entirely to pieces, notwithftanding all the care I took to inclofe it with glafs and wax.

April 26. - An experiment was made with fome.carbonate of lime, purified by my friend Sir George Mackenzie. Two grains of water were introduced, but were loft, I fufpect, as in the laft cafe. The heat applied was 3°. The lofs of weight was 10.6 per cent. Yet, though made but one day after the laft-mentioned fpecimen, it remains as frefh and entire as at firft, and promifes to continue unchanged. The external furface, as feen on removing the lid of the conical cup, was found to fhine all over like glafs, except round the edges; which were fringed with a feries of white and rough fphericles, one fet of which advanced, at one fpot, near to the centre. The fhining furface was compofed of planes, which formed obtufe angles together, and had their furface ftriated; the ftriæ bearing every appearance of a cryftalline arrangement. When freed from the cup, as before, the fubftance moulded on the platina was found to have affumed a fine pearly furface. Some large air-bubbles appeared, which had adhered to the cup, and were laid open by its removal, whofe internal furface had a beautiful luftre, and was full of ftriæ like the outward furface. The mafs is remarkable for fémitranfparency, as feen particularly where the air-bubbles diminifh its thicknefs: a fmall part of the mafs being broken at one end, fhews an internal faline ftructure.

April 29. - A cup of platina was filled with feveral large pieces of a periwinkle * fhell, the fharp point of the fpiral being made to ftand upright in the cup, (fig. 30.). A heat of 30° was applied, and no water was introduced. The carbonate loft no lefs than i6 per cent. The ihell, particularly the

* Turbo terebra, Lin.
the fharp end of the periwinkle, retained its original fhape in a great meafure, fo as to be quite difcernible; but the whole was glazed over with a truly vitreous luftre. This glaze covered, at one place, a fragment of the fhell which had been originally loofe, and had welded the two together. All the angles are rounded by this vitrifaction; the face between the entire fhell and the fragment being filled, and the angles of their meeting rounded, with this fhining fubftance. The colour is a pale blue, contrafted, in the fame little glafs, with a natural piece of periwinkle, which is of a reddifh-yellow. One of the fragments had adhered to the lid, and had been converted into a complete drop, of the fize of a muftardfeed. It is fixed on the wax (at b), along with the other fpecimens of the experiment (fig. 32.). This refult fhews, as yet, no fign of decay, notwithftanding fo great a lofs of weight.

The laft experiment was repeated on the fame day, and prepared in the fame manner, with large fragments of fhell, and the point of the periwinkle ftanding up in the cup. A heat of 34°. was applied; a lofs took place of 13° per cent. All the original form had difappeared, the carbonate lying in the cup as a complete liquid, with a concave furface, which did not fhine, but was ftudded all over with the white fphericles or tufts, like thofe feen in the former refults, without any fpace between them. When detached from the cup, the furface moulded on the platina, was white and pearly, with a llight glofs. The mafs was quite folid; no veftige whatever appearing, of the original form of the fragments, (fig. 33.). A fmall piece, broken off near the apex of the cone, fhewed the internal ftructure to be quite faline. In the act of arranging the fpecimen on its ftand, another piece came off in a new direction, which prefented to view the moft perfect cryftalline arrangement : the fhining plane extended acrofs the whole fpecimen, and was more than the tenth of an inch in all directions. This fracture, likewife,
łikewife, hewed the entire internal folidity of the mafs. Unfortunately, this fpecimen has fuffered much by the fame decay to which all of them are fubject which have loft any confiderable weight. The part next the outward furface alone remains entire. I have never been able to explain, in a fatisfactory manner, this difference of durability ; the laft-mentioned refult having loft more in proportion to its weight than this.

About the beginning of June, I received from Mr Hatchett fome pure carbonate of lime, which he was fo good as to prepare, with a view to my experiments; and I have been conftantly employed with it till within thefe few days.

My firf experiments with this fubftance were peculiarly unfortunate, and it feemed to be lefs eafily acted upon than any fabftance of the kind I had tried. Its extreme purity, no doubt, contributed much to this, though another circumftance had likewife had fome effect. The powder, owing to a cryftallization which had taken place on its precipitation, was very coarfe, and little fufceptible of clofe ramming; the particles, therefore, had lefs advantage than when a fine powder is ufed, in acting upon each other, and I did not choofe to run any rifk of contamination, by reducing the fubftance to a finer powder. Whatever be the caufe, it is certain, that in many experiments in which the chalk was changed to marble, this fubftance remained in a loofe and brittle ftate, though confifting generally of clear and flining particles. I at laft, however, fucceeded in obtaining fome very good refults with this carbonate.

In an experiment made with it on the 18th of June, in a ftrong heat, I ebtained a very firm mafs with a taline fracture, moulded in feveral places on the platina, which was now ufed in the cylindrical form. On the 23 d, in a fimilar experiment, the barrel failed, and the fubject of experiment was found in an entire flate of froth, proving its former fluidity.

VoLe VI,-P. I.

On the 25 th, in a fimilar experiment, a heat of 64° was applied without any water within the barrel. The platina tube, (having been contaminated in a former experiment with fome fufible metal), melted, and the carbonate retaining its cylindrical fhape, had fallen through it, fo as to touch the piece of porcelain which had been placed next to the platina tube. At the point of contact, the two had run together, as a hot iron runs when touched by fulphur. The carbonate itfelf was very tranfparent, refembling a piece of fnow in the act of melting.

On the 26 th of June, I made an experiment with this carbonate, which afforded a beautiful refult. One grain of water was introduced with great care; yet there was a lofs of 6.5 per cent., and the refult has fallen to decay. The pyrometer indicated 43°. On the outfide of the platina cylinder, and on one of the lids, were feen a fet of globules, like pearls, as once before obtained, denoting perfect fufion. When the upper lid was removed, the fubftance was found to have funk almoft out of fight, and had affumed a form not eafily defcribed. (I have endeavoured to reprefent it in fig. 3 I . by an ideal fection of the platina-tube and its contents, made through the axis of the cylinder). The powder, firft fhrinking upon itfelf in the act of agglutination, had formed a cylindrical rod, a remnant of which ($a b c$) ftood up in the middle of the tube. By the continued action of heat, the fummit of the rod (at a) had been rounded in fufion, and the mafs being now foftened, had funk by its weight, and fpread below, fo as to mould itfelf in the tube, and fill its lower part completely ($d f g e$). At the fame time, the vifcid fluid adhering to the fides (at e and d), while the middle part was finking, had been in part left behind, and in part drawn out into, a thin but tapering fhape, united by a curved furface (at b and c) to the middle rod. When the platina tube was unwrapt, the thin edges (at e and d) were preferved all round, and in a
ftate of beautiful femitranfparency. (I have attempted to reprefent the entire fpecimen, as it ftood on its cone of wax, in fig. 34.). The carbonate, where moulded on the platina, had a clean pearly whitenefs, with a faline appearance externally, and in the fun, fhone with facettes. Its furface was interruptted by a few fcattered air-bubbles, which had lain againft the tube. The intervening fubftance was unufually compact and hard under the knife. The whole furface (e bacd, fig. 3 r.), and the infide of the air-bubbles, had a vitreous luftre. Thus, every thing denoted a ftate of 'vifcid fluidity, like that of honey.

These laft experiments feem to obviate every doubt that remained with refpect to the fufibility of the pureft carbonate, without the affiftance of any foreign fubftance.

VII.

Meafurement of the Force required to conftrain the Carbonic Acid.-Apparatus with the Muzzle of the Barrel upwards, and the weight acting by a long Lever.-Apparatus with the Muzzle downwards.-Apparatus with Weight acting directly on the barrel.-Comparifon of various refults.

In order to determine, within certain limits at leaft, what force had been exerted in the foregoing experiments, and what was neceffary to enfure their fuccefs ${ }_{2}$ I made a number of experiments, in a mode nearly allied to that followed by Count Rumpord, in meafuring the explofive force of gunpowder.

I began to ufe the following fimple apparatus in June 1803. I took one of the barrels, made as above defcribed, for the purpofe of compreflion, having a bore of 0.75 of an S_{2} inch,
inch *, and dreffed its muzzle to a fharp edge. To this barrel was firmly fcrewed a collar of iron (a a, fig. 36.) placed at a diftance of about three inches from the muzzle, having two ftrong bars ($b b$) projecting at right angles to the barrel, and dreffed fquare. The barrel, thus prepared, was introduced, with its breech downwards, into the vertical muffle (fig. 35.) ; its length being fo adjufted, that its breech fhould be placed in the ftrongeft heat; the two projecting bars above defcribed, refting on two other bars ($c c$, fig. 35.) laid upon the furnace to receive them ; one upon each fide of the muffle. Into the barrel, fo placed, was introduced a cradle, containing carbonate, with all the arrangements formerly mentioned; the rod connected with it being of fuch length, as. juft to lie within the muzzle of the barrel. The liquid metal was then paured in till it filled the barrel, and ftood at the muzzle with a convex furface; a cylinder of iron, of about an inch in diameter, and half an inch thick, was laid on the muzzle (fig. 35 . and 37 .), and to it a comprefling weight was inftantly applied. This was firf done by the preffure of a bar of iron ($d e, 6 \mathrm{~g} .35$.), three feet in: length, introduced loofely into a hole (d), made for the purpofe in the wall againft which the furnace ftood; the diftance between this hole and the barrel being one foot. A weight was then fufpended at the extremity of the bar (e), and thus a compreffing force was applied, equal to three times that weight. In the courfe of practice, a cylinder of lead was fubftituted for that of iron, and a piece of leather was placed between it and the muzzle of the barrel, which laft being dreffed to a pretty fharp, edge, made an impreffion in the lead : to affift this: effect, one fmart blow of a hammer was ftruck upon the bar, directly over the barrel, as foon as the weight had been hung on.

Ir.

[^16]It was effential, in this mode of operation, that the whole of the metal fhould continue in a liquid ftate during the action of heat; but when I was fatisfied as to its intenfity and duration, I congealed the metal, either by extinguifhing the furnace entirely, or by pouring water on the barrel. As foon as the heat began to act, drops of metal were feen to force themfelvesbetween the barrel and the leather, following each other with more or lefs rapidity, according to circumftances. In fome experiments, there was little exudation; but few of them were entirely free from it. To fave the metal thus extruded, I placed a black-lead crucible, having its bottom perforated, round the barrel, and luted clofe to it, (fig. 3.7.) ; fome fand being laid in this crucible, the metal was collected on its furface. On fome occafions, a found of ebullition was heard during the action of heat; but this was a certain fign of failure.

The refults of the moft important of thefe experiments, have been reduced to a common ftandard in the fecond table placed in the Appendix; to which reference is made by the following numbers.

No. I.-On the 16 th of June 1803 , I made an experiment: with thefe arrangements. I had tried to ufe a weight of 30 lb . producing a preffure of 90 lb ., but I found this not fufficient. I then hung on a weight of I cwt., or II2.lb. ; by which a compreffing force was applied of 3 cwt or 336 lb . Very little metal was feen to efcape, and no found of ebullition was heard. The chalk in the body of the large tube was reduced to quicklime; but what lay in the inner tube was pretty firm, and effervefced to the laft. One or two facettes, of good appearance, were likewife found. The contents of the fmall tube had loft. but 2.6 per cent.; but there was a fmall vifible intrufion of metal, and the refult, by its appearance, indicated a greater lofs. I confidered this, however, as one point gained; that being the firft
firft tolerable compreffion accomplifhed by a determinate force. The pyrometer indicated 22°.

This experiment was repeated the fame day, when a ftill fimaller quantity of metal efcaped at the muzzle; but the barrel had given way below, in the manner of thofe that have yielded for want of fufficient air. Even this refult was fatisfactory, by fhewing that a mechanical power, capable of forcing fome of the barrels, could now be commanded. The carbonate in the little tube had loft 20 per cent.; but part of it was in a hard and firm ftate, effervefcing to the laft.
No. 2.-On the 2 If June, I made an experiment with another barrel, with the fame circumftances. I had left an empty fpace in the large tube, and had intended to introduce its muzzle downwards, meaning that fpace to anfwer as an airtube ; but it was inverted by miftake, and the tube entering with its muzzle upwards, the empty fpace had of courfe filled with metal, and thus the experiment was made without any included air. There was no pyrometer ufed; but the heat was gueffed to be about 25° where the fubject of experiment lay. The barrel, when opened, was found full of metal; and the cradle being laid flat on the table, a confiderable quantity of metal ran from it, which had undoubtedly been lodged in the vacuity of the large tabe. When cold, I found that vacuity ftill empty, with a plating of metal. The tube was very clean to appearance, and, when fhaken, its contents were heard to rattle. Above the little tube, and the cylinder of chalk, I had put fome borax and fand, with a little pure borax in the middle, and chalk over it. The metal had not penetrated beyond the borax and fand, by a good fortune peculiar to this experiment; the intrufion of metal in this mode of execution, being extremely troublefome. The button of chalk, was found in a ftate of clean white carbonate, and pretty hard, but without tranfparency. The little
tube was perfectly clean. Its weight with its contents, feemed to have fuffered no change from what it had been when firft introduced. Attending, however, to the balance with fcrupulous nicety, a fmall preponderance did appear on the fide of the weight. This was done away by the addition of the hundredth of a grain to the fcale in which the carbonate lay, and an addition of another hundredth produced in it a decided preponderance. Perhaps, had the tube, before its introduction, been examined with the fame care, as great a difference might have been detected; and it feems as if there had been no lofs; at leaft not more than one hundredth of a grain, which on 10.95 grains, amounts to 0.0912 , fay 0.1 per cent. The carbonate was loofe in the little tube, and fell out by fhaking. It had a yellow colour, and compact appearance, with a ftony hardnefs under the knife, and a ftony fracture; but with very flight facettes, and little or no tranfparency. In fome parts of the fpecimen, a whitifh colour feemed to indicate partial calcination. On examining the fracture, I perceived, with the magnifier, a fmall globule of metal, not vifible to the naked. eye, quite infulated and fingle. Poflibly the fubftance may have contained others of the fame fort, which may have compenfated for a fmall lofs, but there could not be many fuch, from the general clean appearance of the whole. In the fracture, I faw here and there finall round holes, feeming, though imperfectly, to indicate a beginning of ebullition.

I MADE a number of experiments in the fame manner, that is to fay, with the muzzle of the barrel upwards, in fome of which I obtained very fatisfactory refults; but it was, only by chance that the fubftance efcaped the contamination of the fufible metal; which induced me to think of another mode of applying the compreffing weight with the muzzle of the barrel downwards, by which I expected to repeat, with a determinate weight, all the experiments formerly. made
made in barrels clofed by congealed metal ; and that, by making ufe of an air-tube, the air, rifing to the breech, would fecure the contents of the tube from any contamination. In this view, the barrel was introduced from below into the muffle with its breech upwards, and retained in that pofition by means of a hook fixed to the furnace, till the collar was made to prefs up againit the grate, by an iron lever, loaded with a weight, and refting on a fupport placed in front. In fome experiments made in this way, the refult was obtained very clean, as had been expected; but the force had been too feeble, and when it was increafed, the furnace yielded upwards by the mechanical ftrain.

I Found it therefore neceffary to ufe a frame of iron, (as in fig. 38 .; the frame being reprefented feparately in fig. 39 .), by which the brick-work was relieved from the mechanical ftrain. This frame confifted of two bars ($a b$ and $f c$, figs. 38. and 39.), fixed into the wall, (at a and f,) paffing horizontally under the furnace, one on each fide of the muffle, turning downwards at the front, (in b and e), and meeting at the ground, with a flat bar ($c d$) uniting the whole. In this manner, a kind of ftirrup ($b c d e$) was formed in front of the furnace, upon the crofs bar ($c d$) of which a block of wood (bb, fig. 38.), was placed, fupporting an edge of iron, upon which the lever refted; the working end of the lever (g) acting upwards. A frain was exerted, by means of the barrel and its collar, againft the horizontal bars, ($a b$ and $f e$), which was effectually refifted by the wall (at a and f) at one end of thefe bars, and by the upright bars ($c b$ and $d e$) at the other end. In this manner the whole ftrain was fuftained by the frame, and the furnace ftood without injury.

The iron bar, at its working end, was formed into the fhape of a cup, (at g), and half filled with lead, the fimooth furface of which, was applied to the muzzle of the barrel. The lever, too, was lengthened, by joining to the bar of iron, a beam of wood making
making the whole ten feet in length. In this manner, a preffure upwards was applied to the barrel, equal to the weight of Io cwt.

In the former method, in which the barrel ftood with its muzzle upwards, the weight was applied while the metal was liquid. In this cafe, it was neceffary to let it previoufly congeal, otherwife the contents would have run out in placing the barrel in the muffle, and to allow the liquefaction effential to thefe trials, to be produced by the propagation of heat from the muffle downwards. This method required, therefore, in every cafe, the ufe of an air-tube; for without it, the heat acting upon the breech, while the metal at the muzzle was ftill cold, would infallibly have deftroyed the barrel. A great number of thefe experiments failed, with very confiderable wafte of the fufible metal, which, on thefe occafions was nearly all loft. But a few of them fucceeded, and afforded very fatisfactory refults, which I fhall now mention.

In November 1803, fome good experiments were made in this way, all with a bore of 0.75 , and a preffure of 10 cwt .

No. 3.- O_{N} the 19th, a good limeftone was obtained in an experiment made in a temperature of $2 \mathrm{I}^{\circ}$, with a lofs of only I.I per cent.

No. 4. - On the 22 d , in a fimilar experiment, there was little exudation by the muzzle. The pyrometer gave $3^{1^{\circ}}$. The carbonate was in a porous, and almoft frothy ftate.

No. 5.-In a fecond experiment, made the fame day, the heat rofe to 37° or 41°. The fubftance bore ftrong marks of fufion, the upper part having fpread on the little tube: the whole was very much fhrunk, and run againft one fide. The mafs fparkling and white, and in a very good ftate.

No.6.-ON the 25 th, an experiment was made with chalk, and fome fragments of fnail fhell, with about half a grain of water. The heat had rifen to near 5° or 49°. The barrel had been
Vol. VI.-P. I. T held
held tight by the beam, but was rent and a little fwelled at the breech. The rent was wide, and fuch as has always appeared in the ftrongeft barrels when they failed. The carbonate was quite calcined, it had boiled over the little tube, and was entirely in a frothy ftate, with large and diftinctly rounded air-holes. The fragments of fhell which had occupied the upper part of the little tube, had loft every trace of their original fhape in the act of ebullition and fufion.

No. 7.-On the 26th a fimilar experiment, was made, in which the barrel was thrown open, in fpite of this powerful compreffing force, with a report like that of a gun, (as I was told, not having been prefent), and the bar was found in a ftate of ftrong vibration. The carbonate was calcined, and fomewhat frothy, the heart of one piece of chalk ufed was in a fate of faline marble.

It now occurred to me to work with a compreffing force, and no air-tube, trufting, as happened accidentally in one cafe, that the expanfion of the liquid would clear itfelf by gentle exudation, without injury to the carbonate. In this mode, it was neceffary, for reafons lately ftated, to place the muzzle upwards. Various trials made thus, at this time, afforded no remarkable refults. But I refumed the method, with the following alteration in the application of the weight, on the 27 th of April 1804.
I conceived that fome inconvenience might arife from the mode of employing the weight in the former experiments. In them it had been applied at the end of the bar, and its effect propagated along it, fo as to prefs againft the barrel at its other extremity. It occurred to me, that the propagation of motion in this way, requiring fome fenfible time, a confiderable quantity of carbonic acid might efcape by a fudden eruption, before that propagation had taken effect. I therefore thought, that more effectual work might be done, by
placing a heavy mafs, (fig. 40.), fo as to act directly and fimply upon the muzzle of the barrel; this mafs being guided and commanded by means of a powerful lever, $(a b)$. For this purpofe, I procured an iron roller, weighing 3 cwt .7 lb ., and fufpended it over the furnace, to the end of a beam of wood, refting on a fupport near the furnace, with a long arm guided by a rope ($c c$) and pulley (d), by which the weight could be raifed or let down at pleafure.

Wirn this apparatus I made fome tolerable experiments ; but I found the weight too light to afford certain and fteady refults of the beft quality. I therefore procured at the foundry a large mafs of iron (f), intended, I believe, for driving piles, and which, after allowing for the counterpoife of the beam, gave a direct preffure of 8.1 cwt ; and I could, at pleafure, diminifh the compreffing force, by placing a bucket (e) at the extremity of the lever, into which I introduced weights, whofe effect on the ultimate great mafs, was known by trial. Many barrels failed in thefe trials : at laft, I obtained one of fmall bore, inch 0.54 , which gave two good refults on the 22 d of June 1804.

No. 8. -Wishing to afcertain the leaft compreffing force by which the carbonate could be effectually conftrained in melting heats, I firft obferved every thing ftanding firm in a heat of above 20°; I then gradually threw weights into the bucket, till the comprefling force was reduced to 2 cwt . Till then, things continued fteady; but, on the preffure being ftill further diminifhed, metal began to ooze out at the muzzle, with increafing rapidity. When the preffure was reduced to $1 \frac{1}{2} \mathrm{cwt}$. air rufhed out with a hiffing noife. I then ftopped the experiment, by pouring water on the barrel. The piece of chalk had loft 12 per cent. It was white and foft on the outfide, but firm and good in the heart.

No. 9.-An experiment was made with chalk, in a little tube ; to this, one grain of water was added. I had intended to work with 4 cwt . only; but the barrel was no fooner placed, than an exudation of metal began at the muzzle; awing, doubtlefs, to the elafticity of the water. I immediately increafed the preffure to 8.I cwt. by removing the weight from the bucket, when the exudation inftantly ceafed. I continued the fire for three quarters of an hour, during which time no exudation happened; then all came out remarkably clean, with farcely any contamination of metal. The lofs amounted to 2.58 per cent. The fubftance was tolerably indurated, but had not acquired the character of a complete ftone.

In thefe two laft experiments, the bore being fmall, a pyrometer could not be admitted.
On the $5^{\text {th }}$ of July 1804, I made three very fatisfactory experiments of this kind, in a barrel with the large bore of 0.75 of an inch.

No. Io. -was made with a compreffing force of only 3 cwt. A fmall eruption at the muzzle being obferved, water was thrown on the barrel : the pyrometer gave 21° : the chalk was in a firm ftate of limeftone.

No. if.-with 4 cwt. The barrel ftood without any eruption or exudation, till the heat rofe to 25°. There was a lofs of 3.6 per cent. : the refult was fuperior, in hardnefs and tranfparency, to the laft, having fomewhat of a faline fracture.

No. 12.-with 5 cwt. The refult, with a lofs of 2.4 per sent., was of a quality fuperior to any of thofe lately obtained.

These experiments appear to anfwer the end propofed, of afcertaining the leaft preflure, and loweft heat, in which limeftone can be formed. The refults, with various barrels of different fizes, agree tolerably, and tend to confirm each other. The table fhews, when we compare numbers $\mathrm{I}, 2,8,10,11$, 12 , That a preffure of 5^{2} atmofpheres, or 1700 feet of fea, is
capable
capable of forming a limeftone in a proper heat: That under 86 atmofpheres, anfwering nearly to 3000 feet, or about half a mile, a complete marble may be formed: and laftly, That with a preflure of 173 atmofpheres, or 5700 feet, that is, little more than one mile of fea, the carbonate of lime is made to undergo complete fufion, and to act powerfully on other earths.

VIII.

Formation of Coal.-Accidental occurrence which led me to undertake thefe Experiments.-Refults extracted from a former publication.-Explanation of fome difficulties that bave been fuggefted. -The Fibres of Wood in. fome cafes obliterated, and in fome preferved under comprefion.-Refemblance which thefe Refults bear to a Series of Natural Subftances deforibed by Mr Hatchett.-Thefe refults feem to throw ligbt on the. bifory of Surturbrand.

As I intend, on fome future occafion, to refume my experiments with inflammable fubftances, which I look upon as far from complete, I fhall add but a few obfervations to what I have already laid before this Society, in the fketch I had the honour to read in this place on the 3oth of Auguft laft.

The following incidental occurrence led me to enter upon this fubject rather prematurely, fince I had determined firft to fatisfy myfelf with regard to the carbonate of lime.

Observing, in many of the laft-mentioned clafs of experiments, that the elaftic matters made their efcape between the muzzle of the barrel and the cylinder of lead, I was in the habit, as mentioned above, of placing a piece of leather between the lead and the barrel; in which pofition, the heat to which the leather was expofed, was neceffarily below that of melting lead.
lead. In an experiment, made on the 28 th November 1803 , in order to afcertain the power of the machinery, and the quantity of metal driven out by the expanfion of the liquid, there being nothing in the barrel but metal, I obferved, as foon as the comprefling apparatus was removed, (which on this occafion was done while the lower part of the barrel was at its full heat, and the barrel ftanding brim full of liquid metal,) that all the leather which lay on the outfide of the circular muzzle of the barrel, remained, being only a little browned and crumpled by the heat to which it had been expofed. What leather lay within the circle, had difappeared; and, on the furface of the liquid metal, which ftood up to the lip of the barrel, I faw large drops, of a fhining black liquid, which, on cooling, fixed into a crifp black fubftance, with a fhining fracture, exactly like pitch or pure coal. It burned, though not with flame. While hot, it fmelt decidedly of volatile alkali. The important circumftance here, is the different manner in which the heat has acted on the leather, without and within the rim of the barrel. The only difference confifted in compreffion, to which, therefore, the difference of effect muft be afcribed: by its force, the volatile matter of the leather which efcaped from the outward parts, had within the rim, been conftrained to remain united to the reff of the compofition, upon which it had acted as a flux, and the whole together had entered into a liquid ftate, in a very low heat. Had the preffure been continued till all was cool, thefe fubftances muft have been retained, producing a real coal.

On the 24th April 1803 , a piece of leather ufed in a fimilar manner, (the compreffing force being continued, however, till all was cold,) was changed to a fubftance like glue, owing doubtlefs to compreffion, in a heat under that of melting lead.

These obfervations led me to make a feries of experiments with animal and vegetable fubftances, and with coal;
the refult of which I have already laid before the Society. I fhall now repeat that communication, as printed in Nicholson's fournal for October laft (1804).
" I have likewife made fome experiments with coal, treated in the fame manner as the carbonate of lime: but I have found it much lefs tractable; for the bitumen, when heat is applied to it, tends to efcape by its fimple elafticity, whereas the carbonic acid in marble, is in part retained by the chemical force of quicklime. I fucceeded, however, in conftraining the bituminous matter of the coal, to a certain degree, in red heats, fo as to bring the fubftance into a complete fufion, and to retain its faculty of burning with flame. But, I could not accomplifh this in heats capable of agglutinating the carbonate; for I have found, where I rammed them fucceflively into the fame tube, and where the veffel has withftood the expanfive force, that the carbonate has been agglutinated into a good limeftone, but that the coal has loft about half its weight, together with its power of giving flame when burnt, remaining in a very compact ftate, with a fhining fracture. Although this experiment has not afforded the defired refult, it anfwers another purpofe admirably well. It is known, that where a bed of coal is croffed by a dike of whinftone, the coal is found in a peculiar ftate in the immediate neighbourhood of the whin: the fubftance in fuch places being incapable of giving flame, it is diftinguifhed by the name of blind coal. Dr Hurton has explained this fact, by fuppofing that the bituminous matter of the coal, has been driven by the local heat of whin, into places. of lefs intenfity, where it would probably be retained by diftil. lation. Yet the whole mult have been carried on under the action of a preffure capable of conftraining the carbonic acid of the calcareous fpar, which occurs frequently in fuch rocks. In the laft-mentioned experiment, we have a perfect reprefen-
tation of the natural fact ; fince the coal has lof its petroleum, while the chalk in contact with it has retained its carbonic acid.
" I have made fome experiments of the fame kind, with vegetable and animal fubftances. I found their volatility much greater than that of coal, and I was compelled, with them, to work in heats below rednefs; for, even in the loweft red-heat, they were apt to deftroy the apparatus. The animal fubftance I commonly ufed was horn, and the vegetable, faw-duft of fir. The horn was incomparably the moft fufible and volatile of the two. In a very flight heat, it was converted into a yellow red fubftance, like oil, which penetrated the clay tubes through and through. In thefe experiments, I therefore made ufe of tubes of glafs. It was only after a confiderable portion of the fubftance had been feparated from the mafs, that the remainder affumed the clear black peculiar to coal. In this way I obtained coal, both from faw-duft and from horn, which yielded a bright flame in burning.
" The mixture of the two produced a fubftance having exactly the fmell of foot or coal-tar. I am therefore ftrongly inclined to believe, that animal fubftance, as well as vegetable, has contributed towards the formation of our bituminous ftrata. This feems to confirm an opinion, advanced by Mr Keir, which has been mentioned to me fince I made this experiment. I conceive, that the coal which now remains in the world, is but a fimall portion of the organic matter originally depofited : the moft volatile parts have been driven off by the action of heat, before the temperature had rifen high enough to bring the furrounding fubftance into fufion, fo as to confine the elaftic fluids, and fubject them to compreffion.
" In feveral of thefe experiments, I found that, when the preffure was not great, when equal, for inftance, only to 80 atmofpheres, that the horn employed was diffipated entirely, the
glafs tube which had contained it being left almoft clean : yet undoubtedly, if expofed to heat without compreffion, and protected from the contact of the atmofphere, the horn would leave a cinder or coak behind it, of matter wholly devoid of volatility. Here, then, it would feem as if the moderate preffure, by keeping the elements of the fubftance together, had promoted the general volatility, without being ftrong enough to refirt that expanfive force, and thus, that the whole had efcaped. This refult, which I fhould certainly not have forefeen in theory, may perhaps, account for the abfence of coal in fituations where its prefence might be expected on principles of general analogy."

Since this publication, a very natural queftion has been put to me. When the inflammable fubftance has loft weight, or when the whole has been diflipated, in thefe experiments, what has become of the matter thus driven off?

I must own, that to anfwer this queftion with perfect confidence, more experiments are required. But, in the courfe of practice, two circumftances have occurred as likely, in moft cafes, to have occafioned the lofs alluded to. I found in thefe experiments, particularly with horn, that the chalk, both in powder and in lump, which was ufed to fill vacuities in the tubes, and to fix them in the cradle, was ftrongly impregnated with an oily or bituminous matter, giving to the fubftance the qualities of a ftinkftone. I conceive, that the moft volatile part of the horn has been conveyed to the chalk, partly in a ftate of vapour, and partly by boiling over the lips of the glafs tube; the whole having been evidently in a flate of very thin fluidity. Having, in fome cafes, found the tube, which had been introduced full of horn, entirely empty after the experiment, I was induced, as above ftated, to conceive, that, under preffure, it had acquired a greater general volatility than it had in free-
Vox. VI.-P.I. U dom;
dom; and I find that, in the open fire; horn yields a charcoal equal to 20 per cent. of the original weight. But more expeximents muft be made on this fubject.

Another caufe of the lofs of weight, lay undoubtedly in the excefs of heat employed in moft of them, to remove the cradle from the barrel. With inflammable fubftances, no air-tube was ufed, and the heats being low, the air lodged in interflices had been fufficient to fecure the barrels from deftruction, by the expanfion of the liquid metal. In this view, likewife, I often ufed lead, whofe expanfion in fuch low heats, I expected to be lefs than that of the fufible metal. And the lead requiring to melt it, a heat very near to that of rednefs, the fubject of experiment was thus, on removing the cradle, expofed in freedom to a temperature which was comparatively high. But, obferving that a great lofs was thus occafioned, I returned to the ufe of the fufible metal, together with my former method of melting it, by plunging the barrel, when removed from the furnace, into a folution of muriate of lime, by which it could only receive a heat of 25° of Fahrenheit.

The effect was remarkable, in the few experiments tried in this way. The horn did not, as in the other experiments, change to a hard black fubftance, but acquired a femifluid and vifcid confiftency, with a yellow-red colour, and a very offenfive fmell. This fhews, that the fubftances which here occafioned both the colour and fmell of the refults, had been driven off in the other experiments, by the too great heat applied. to the fubflance, when free from compreffion.

I found that the organization of animal fubftance was entirely obliterated by a flight action of heat, but that a ftronger heat was required to perform the entire fufion of vegetable. matter. This, however, was accomplifhed ; and in feveral experiments, pieces of wood were changed to a jet-black and inflammable fubftance, generally very porous, in which no
trace could be difcovered of the original organization. In others, the vegetable fibres were ftill vifible, and are forced afunder by large and fhining air-bubbles.

Since the publication of the fketch of my experiments, I have had the pleafure to read Mr Hatchett's very interefting account of various natural fubftances, nearly allied to coal ; and I could not help being ftruck with the refemblance which my refults bear to them, through all their varieties, as brought into view by that able chemift ; that refemblance affording a prefumption, that the changes which, with true fcientific modefty; he afcribes to an unknown caufe, may have refulted from various heats acting under preffure of various force. The fubflance to which he has given the name of Retinafpbaltum, feems to agree very nearly with what I have obtained from animal fubftance, when the barrel was opened by means of low heat. And the fpecimen of wood entering into fufion, but fill retaining the form of its fibres, feems very fimilar to the intermediate fubftance of Bovey-coal and Surturbrand, which Mr Hatchett has affimilated to each other. It is well known, that the furturbrand of Iceland, confifts of the ftems of large trees, flattened to thin plates, by fome operation of nature hitherto unexplained. But the laft-mentioned experiment feems to afford a plauible folution of this puzzling phenomenon.

In all parts of the globe, we find proofs of flips, and various relative motions, having taken place amongft great maffes of rock, whilft they were foft in a certain degree, and which have left unequivocal traces behind them, both in the derangement of the beds of ftrata, and in a fmooth and fhining furface, called lickenfide, produced by the direct friction of one mafs on another. During the action of fubterranean heat, were a fingle ftratum to occur, containing trees intermixed with animal fubftances, fhell-fifh, \&c. thefe trees would be reduced, to a foft and unctuous ftate, fimilar to that of the piece of wood
in the laft-mentioned experiment, whilft the fubftance of the contiguous ftrata retained a confiderable degree of firmnefs. In this ftate of things, the ftratum juft mentioned, would very naturally become the fcene of a flip, occafioned by the unequal preffure of the furrounding maffes. By fuch a fliding motion, accompanied by great compreffion, a tree would be flattened, as any fubftance is ground in a mortar, by the combination of a lateral and direct force. At the fame time, the fhells along with the trees, would be flattened, like thofe defcribed by Bergman; while thofe of the fame fpecies in the neighbouring limeftone-rock, being protected by its inferior fufibility, would retain their natural fhape.

1X.

Application of the foregoing refults to Geology. -The fire employed in tje Huttonian Theory is a modification of that of the Volcanoes.-This madification muft take place in a lava previous to its eruption.-An Internal Lava is capable of melting Limeflone.-The effects of Volcanic Fire on fubftances in a fubterranean and fubmarine fituation, are the fame as thofe afcribed to Fire in the Huttonian Theory. -Our Strata were once in a fimilar fituation, and then underwent the action of fire.-All the conditions of the Huttonian Theory being thus combined, the formation of all Rocks may be accounted for in a fatisfactory manner.-Conclus. fion.

Having inveftigated, by means of the foregoing experiments, fome of the chemical fuppofitions. involved in the Huttonian Theory, and having endeavoured to affign a determinate limit to the power of the agents employed; I fhall now apply thefe refults to Geology, and inquire how far the events fuppofed
fuppofed anciently to have taken place, accord with the exifting ftate of our globe.

The moft powerful and effential agent of the Huttonian Theory, is Fire, which I have always looked upon as the fame with that of volcanoes, modified by circumftances which muft, to a certain degree, take place in every lava previous to its eruption.

The original fource of internal fire is involved in great obfcurity; and no fufficient reafon occurs to me for deciding whether it proceeds by emanation from fome vaft central refervoir, or is generated by the local operation of fome chemical procefs. Nor is there any neceffity for fuch a decifion : all we need to know is, that internal fire exifts, which no one can doubt, who believes in the eruptions of Mount Vefuvius. To require that a man fhould account for the generation of internal fire, before he is allowed to employ it in geology, is no lefs abfurd than it would be to prevent him from reafoning about the conftruction of a telefcope, till he could explain the nature of the fun, or account for the generation of light *. But while we remain in fufpenfe as to the prime caufe of this tremendous agent, many circumftances of importance with regard to it, may fairly become the fubjects of obfervation and. difcuffion.

Some authors (I conceive through ignorance of the facts) have alleged, that the fire of Ætna and Vefuvius is merely fuperficial. But the depth of its action is fufficiently proved, by the great diftance to which the eruptive percuffions are felt, and ftill more, by the fubftances thrown out uninjured by fome eruptions

[^17]eruptions of Mount Vefuvius. Some of thefe, as marble and gypfum, are incapable in freedom of refifting the action of fire. We have likewife granite, fchiftus, gneifs, and ftones of every known clafs, befides many which have never; on any other occafion, been found at the furface of our globe. The circumftance of there fubftances having been thrown out, unaffected by the fire, proves, that it has proceeded from a fource, not only as deep, but deeper, than their native beds; and as they exhibit fpecimens of every clafs of minerals, the formation of which we pretend to explain, we need inquire no further into the depth of the Vefuvian fire, which has thus been proved to reach below the range of our fpeculations.

Volcanic fire is fubject to perpetual and irregular variations of intenfity, and to fudden and violent renewal, after long periods of abfolute ceffation. Thefe variations and intermiffions, are likewife effential attributes of fire as employed by Dr Hutton; for fome geological fcenes prove, that the indurating caufe has acted repeatedly on the fame fubftance, and that, during the intervals of that action, it had ceafed entirely. This circumftance affords a complete anfwer to an argument lately urged againit the Huttonian Theory, founded on the wafte of heat which muft have taken place, as it is alleged, through the furface. For if, after abfolute ceffation, a power of renewal exifts in nature, the idea of wafte by continuance is quite inapplicable.

The external phenomena of volcanoes are fufficiently well known ; but our fubject leads us to inquire into their internal actions. This we are enabled to do by means of the foregoing experiments, in fo far as the carbonate of lime is concerned.

Some experiments which I formerly * laid before this Society and the public, combined with thofe mentioned in this
paper,

[^18]paper, prove, that the feebleft exertions of volcanic fire, are of fufficient intenfity to perform the agglutination, and even the entire fufion, of the carbonate of lime, when its carbonic acid is effectually confined by preffure; for though lava, after its fufion, may be made, in our experiments, to congeal into a glafs, in a temperature of 16° or 18° of WEDGWOOD, in which temperature the carbonate would fcarcely be affected; it muft be obferved, that a fimilar congelation is not to be looked for in nature ; for the mafs, even of the fmalleft ftream of lava, is too great to admit of fuch rapid cooling. And, in fact, the external part of a lava is not vitreous, but confifts of a fubftance which, as my experiments have proved, muft have been congealed in a heat of melting filver, that is, in 22° of WEDGwood ; while its internal parts bear a character indicating that they congealed in 27° or 28° of the fame fcale. It follows, that no part of the lava, while it remained liquid, can have been lefs hot than 22° of Wedgwood. Now, this happens to be a heat, in which I have accomplifhed the entire fufion of the carbonate of lime, under preffure. We muft therefore conclude, that the heat of a running lava is always of fufficient intenfity to perform the fufion of limeftone.

IN every active volcano, a communication muft exift between. the fummit of the mountain and the unexplored region, far below its bafe, where the lava has been melted, and whence it has been propelled upwards; the liquid lava rifing through this internal channel, fo as to fill the crater to the brim, and flow over it. On this occafion, the fides of the mountain muft undergo a violent hydroftatical preffure outwards, to which they often yield by the formation of a vaft rent, through which the lava is difcharged in a lateral eruption, and flows in a continued ftream fometimes during months. On 閏tna moft of the eruptions are fo performed; few lavas flowing from the fummit, but generally breaking out laterally, at very elevated ftations.

At the place of delivery, a quantity of gafeous matter is propelled violently upwards, and, along with it, fome liquid lava; which laft, falling back again in a fpongy ftate, produces one of thofe conical hills which we fee in great number on the vaft fides of Mount Ætna, éach indicating the difcharge of a particular eruption. At the fame time, a jet of flame and fmoke iffues from the main crater, proving the internal communication between it and the lava; this difcharge from the fummit generally continuing, in a greater or a lefs degree, during the intervals between eruptions. (Fig. 41. reprefents an ideal fection of Mount Ætna; $a b$ is the direct channel, and $b c$ is a lateral branch).

Let us now attend to the fate of the lava within the mourtain, during the courfe of the eruption ; and let us fuppofe, that a fragment of limeftone, torn from fome ftratum below, has been included in the fluid lava, and carried up with it. By the laws of hydroftatics, as each portion of this fluid fuftains preffure in proportion to its perpendicular diffance below the point of difcharge, that preflure muft increafe with the depth. The fpecific gravity of folid and compact lava is nearly 2.8 ; and its weight, when in a liquid ftate, is probably little different. The table fhews, that the carbonic acid of limeftone cannot be conftrained in heat by a preffure lefs than that of 1708 feet of fea, which correfponds nearly to 600 feet of liquid lava. As foon, then, as our calcareous mafs rofe to within 600 feet of the furface, its carbonic acid would quit the lime, and, affuming a gafeous form, would add to the eruptive effervefcence. And this change would commonly begin in much greater depths, in confequence of the bubbles of carbonic acid, and other fubftances in a gafeous form, which, rifing with the lava, and through it, would greatly diminifh the weight of the column, and would render its preflure on any particular fot extremely variable. With all thefe irregularities, however, and interruptions, the preffure
preflure would in all cafes, efpecially where the depth was confiderable, far furpafs what it would have been under an equal depth of water. Where the depth of the ftream, below its point of delivery, amounted, then, to 1708 feet, the preflure, if the heat was not of exceffive intenfity, would be more than fufficient to conftrain the carbonic acid, and our limeftone would fuffer no calcination, but would enter into fufion; and if the eruption ceafed at that moment, would cryftallize in cooling along with the lava, and become a nodule of calcareous fpar. The mafs of lava, containing this nodule, would then conftitute a real whinftone, and would belong to the kind called amygdaloid. In greater depths ftill, the preffure would be proportionally increafed, till fulphur, and even water, might be conftrained; and the carbonate of lime would continue undecompofed in the higheft heats.

If, while the lava was in a liquid ftate, during the eruption or previous to it, a new rent ($d e$, fig. 41.), formed in the folid country below the volcano, was met by our ftream (at d), it is obvious that the lava would flow into the aperture with great rapidity, and fill it to the minuteft extremity, there being no air to impede the progrefs of the liquid. In this manner, a ftream of lava might be led from below to approach the bottom of the fea ($f f$), and to come in contact with a bed of loofe fhells ($\mathrm{g} g$), lying on that bottom, but covered with beds of clay, interftratified, as ufually occurs, with beds of fand, and other beds of fhells. The firft effect of heat would be to drive off the moifture of the loweft fhell-bed, in a ftate of vapour, which, rifing till it got beyond the reach of the heat, would be condenfed into water, producing a flight motion of ebullition, like that of a veffel of water, when it begins to boil, and when it is faid to fimmer. The beds of clay and fand might thus undergo fome heaving and partial derangement, but would ftill poffers the power of ftopping, or of very much im-

Vol. VI.-P. I.
X
peding,
peding, the defcent of water from the fea above; fo that the water which had been driven from the fhells at the bottom, would not return to them, or would return but flowly; and they would be expofed dry to the action of heat *.

In this cafe, one of two things would inevitably happen. Either the carbonic acid of the fiells would be driven off by the heat, producing an incondenfable elaftic fluid, which, heaving up or penetrating the fuperincumbent beds, would force its way to the furface of the fea, and produce a fubmarine eruption, as has happened at Santorini and elfewhere; or the volatility of the carbonic acid would be reprefled by the weight of the fuperincumbent water $(k k)$, and the fhell-bed, being foftened or fufed by the action of heat, would be converted into a ftratum of limeftone.

The foregoing experiments enable us tọ decide in any particular cafe, which of thefe two events muft take place, when the heat of the lava and the depth of the fea are known.

The table fhews, that under a fea no deeper than 1708 feet, near one-third of a mile, a limeftone would be formed by proper heat; and that, in a depth of little more than one mile, it would enter into entire fufion. Now, the common foundings of mariners extend to 200 fathoms, or 1200 feet. Lord Mulgrave \dagger found bottom at 4680 feet, or nearly nine-tenths of a mile; and Captain Ellis let down a fea-gage to the depth of 5346 feet $\ddagger \cdot$. It thus appears; that

[^19]+ Voyage towards the North Pole, P. 142 .
\ddagger Pbilofophical Tranfactions, 1751, p. 212.
that at the bottom of a $\{e a$, which would be founded by a line much lefs than double of the ufual length, and lefs than half the depth of that founded by Lord Mulgrave, limeflone might be formed by heat ; and that, at the depth reached by Captain Ellis, the entire fufion would be accomplifhed; if the bed of fhells were touched by a lava at the extremity of its courfe, when its heat was loweft. Were the heat of the lava greater, a greater depth of fea would, of courfe, be requifite to conftrain the carbonic acid effectually; and future experiments may determine what depth is required to co-operate with any given temperature. It is enough for our prefent purpofe to have fhewn, that the refult is poffible in any cafe, and to have circumfcribed the neceffary force of thefe agents within moderate limits. At the fame time it muft be obferved, that we have been far from ftretching the known facts; for when we compare the fmall extent of fea in which any foundings can be found, with that of the vaft unfathomed ocean, it is obvious, that in affuming a depth of one mile or two, we fall very fhort of the medium. M. de la Place, reafoning from the phenomena of the tides, fates it as highly probable that this medium is not lefs than eleven Englifh miles *.

If a great part or the whole of the fuperincumbent mais confifted, not of water, but of fand or clay, then the depth requifite to produce thefe effects would be leffened, in the inverfe ratio of the fpecific gravity. If the above-mentioned occurrence took place under a mafs compofed of ftone firmly bound together by fome previous operation of nature, the power of the fuperincumbent mafs, in oppofing the efcape of X_{2} carbonic

[^20]carbonic acid, would be very much increafed by that union and by the ftiffnefs or tenacity of the fubftance. We have feen numberlefs examples of this power in the courfe of thefe experiments, in which barrels, both of iron and porcelain, whofe thicknefs did not exceed one-fourth of an inch, have exerted a force fuperior to the mere weight of a mile of fea. Without fuppofing that the fubftance of a rock could in any cafe act with the fame advantage as that of a uniform and connected barrel ; it feems obvious that a fimilar power muft, in many cafes, have been exerted to a certain degree.

We know of many calcareous maffes which, at this moment, are expofed to a preffure more than fufficient to accomplifh their entire fufion. The mountain of Saleve, near Geneva, is 500 French fathoms, or nearly 3250 Englifh feet, in height, from its bafe to its fummit. Its mafs confifts of beds, lying nearly horizontal, of limeftone filled with fhells. Independently, then, of the tenacity of the mafs, and taking into account its mere weight, the loweft bed of this mountain, muft, at this moment, furtain a preffure of 3250 feet of limeftone, the fpecific gravity of which is about 2.65 . This preffure, therefore, is equal to that of 8612 feet of water, being nearly a mile and a half of fea, which is much more than adequate, as we have thewn, to accomplifh the entire fufion of the carbonate, on the application of proper heat. Now, were an emanation from a volcano, to rife up under Saleve, and to penetrate upwards to its bafe, and ftop there; the limeftone to which the lava approached, would inevitably be foftened, without being calcined, and, as the heat retired, would cryftallize into a faline marble.

Some other circumftances, relating to this fubject, are very deferving of notice, and enable us ftill further to compare the ancient and modern operations of fire.

It appears, at firft fight, that a lava having once penetrated the fide of a mountain, all fubfequent lavas fhould continue, as water would infallibly do, to flow through the fame aperture. But there is a material difference in the two cafes. As foon as the lava has ceafed to flow, and the heat has begun to abate, the crevice through which the lava had been paffing, remains filled with a fubftance, which foon agglutinates into a mafs, far harder and firmer than the mountain itfelf. This mafs, lying in a crooked bed, and being firmly welded to the fides of the crevice, muft oppofe a moft powerful refiftance to any ftream tending to purfue the fame courfe. The injury done to the mountain by the formation of the rent, will thus be much more than repaired; and in a fubfequent eruption, the lava muft force its way through another part of the mountain or through fome part of the adjoining country. The action of heat from below, feems in moft cafes to have kept a channel open through the axís of the mountain, as appears by the fmoke and flame which is habitually difcharged at the fummit during intervals of calm. On many occafions, however, this fpiracle feems to have been entirely clofed by the confolidation of the lava, fo as to fupprefs all emiffion. This happened to Vefuvius during the middle ages. All appearance of fire had ceafed for five hundred years, and the crater was covered with a foreft of ancient oaks, when the volcano opened with frefh vigour in the fixteenth century.

The eruptive force, capable of overcoming fuch an obftacle, muft be tremendous indeed, and feems in fome cafes to have blown the volcano itfelf almoft to pieces. It is impoffible to fee the Mountain of Somma, which, in the form of a crefcent, embraces Mount Vefuvius, without being convinced that it is a fragment of a large volcano, nearly concentric
with the prefent inner cone, which, in fome great eruption, had been deftroyed all but this fragment. In our own times, an event of no friall magnitude has taken place on the fame fpot ; the inner cone of Vefuvius having undergone fo great a change during the eruption in 1794, that it now bears no refemblance to what it was when I faw it in 1785.

The general or partial ftagnation of the internal lavas at the clofe of each eruption feems, then, to render it neceffary, that in every new difcharge, the lava fhould begin by making a violent laceration. And this is probably the caufe of thofe tremendous earthquakes which precede all great eruptions, and which ceafe as foon as the lava has found a vent. It feems but reafonable to afcribe like effects to like caufes, and to believe that the earthquakes which frequently defolate countries not externally volcanic, likewife indicate the protrufion from below of matter in liquid fufion, penetrating the mafs of rock.

The injection of a whinftone-dike into a frail mafs of fhale and fandftone, muft have produced the fame effects upon it that the lava has juft been fated to produce on the loofe beds of volcanic fcoria. One ftream of liquid whin, having flowed into fuch an aflemblage, muft have given it great additional weight and ftrength : fo that a fecond ftream coming like the firft, would be oppofed by a mafs, the laceration of which would produce an earthquake, if it were overcome; or by which, if it refifted, the liquid matter would be compelled to penetrate fome weaker mafs, perhaps at a great diftance from the firft. ..The internal fire being thus compelled perpetually to change the fcene of its, action, its influence might be carried to an indefinite extent: So that the intermittance in point of time, as well as the verfatility in point of place, already remarked as common to the Huttonian and Volcanic fires, are accounted for on our princi-
ples. And it thus appears, that whinftone poffeffes all the properties which we are led by theory to afcribe to an internal lava.

This conection is curioufly illuftrated by an intermediate cafe between the refults of external and internal fire, difplayed in an actual fection of the ancient part of Vefuvius, which occurs in the Mountain of Somma mentioned above. I formerly defcribed this fcene in my paper on Whinftone and Lava; and I muft beg leave once more to prefs it upon the notice of the public, as affording to future travellers a moft interefting field of geological inquiry.

The fection is feen in the bare vertical cliff, feveral hundred feet in height, which Somma prefents to the view from the little valley, in form of a crefcent, which lies between Somma and the interior cone of Vefuvius, called the Atrio del Cavallo. (Fig. 42. teprefents this foene, done from the recollection of what I faw in $1785 . a b c$ is the interior cone of Vefuvius; $d f g$ the mountain of Somma; and $c d e$ the Atrio del Cavallo). By means of this cliff ($f d$ in figure 42. and which is reprefented feparately in fig. 44.), we fee the internal ftructure of the mountain, compofed of thick beds ($k k$) of loofe fcoria, which have fallen in fhowers; between which thin but firm ftreams ($m \mathrm{~m}$) of lava are interpofed, which have flowed down the outward conical fides of the mountain. (Fig. 43. is an ideal feetion of Vefuvius and Somma, through the axis of the cones, fhewing the manner in which the beds of fcoria and of lava lie upon each other; the extremities of which beds are feen edgewife in the cliff at $m m$ and $k k$, fig. 42,43 , and 44 .).

Tuis affemblage of fcoria and lava is traverfed abruptly and wertically, by |ftreams of folid lava (n n, fig. 44.), reaching from top to bottom of the cliff. Thefe laft I conceive to have flowed in rents of the ancient mountain, which rents had acted
as pipes through which the lavas of the lateral eruptions were conveyed to the open air. This fcene prefents to the view of an attentive obferver, a real fpecimen of thofe internal ftreams which we have juft been confidering in fpeculation, and they may exhibit circumftances decifive of the opinions here advanced. For, if one of thefe ftreams had formerly been connected with a lateral eruption, difcharged at more than 600 feet above the Atrio del Cavallo, it might poffibly contain the carbonate of lime. But could we fuppofe that depth to extend to 1708 feet, the interference of air-bubbles, and the action of a ftronger heat than was merely required for the fufion of the carbonate, might have been overcome.

Perbaps the height of Vefuvius has never been great enough for this purpofe. But could we fuppofe Etna to be cleft in two, and its ftructure difplayed, as that of Vefuvius has juft been defcribed, there can be no doubt that internal ftreams of lava would be laid open, in which the preffure muft have far exceeded the force required to conftrain the carbonic acid of limeftone; fince that mountain occafionally delivers lavas from its fummit, placed 10.954 feet above the level of the Mediterranean ${ }^{*}$, which wafhes its bafe. I recollect having feen, in fome parts of Ætna, vaft chafms and crags, formed by volcanic revolutions, in which vertical ftreams of lava, fimilar to thofe of Somma, were apparent. But my attention not having been turned to that object till many years afterwards, I have only now to recommend the inveftigation of this interefting point to future travellers.

What has been faid of the heat conveyed by internal voldanic ftreams, applies equally to that deeper and more general heat by which the lavas themfelves are melted and propelled upwards.

[^21]upwards. That they have been really fo propelled, from a great internal mafs of matter, in liquid fufion, feems to admit of no doubt, to whatever caufe we afcribe the heat of volcanoes. It is no lefs obvious, that the temperature of that liquid muft be of far greater intenfity than the lavas, flowing from it, can retain when they reach the furface. Independently of any actual eruption, the body of heat contained in this vaft mafs of liquid, muft diffufe itfelf through the furrounding fubftances, the intenfity of the heat being diminifhed by flow gradations, in proportion to the diftance to which it penetrates. When, by means of this progreffive diffufion, the heat has reached an affemblage of loofe marine depofites, fubject to the preflure of a great fuperincumbent weight, the whole muft be agglutinated into a mafs, the folidity of which will vary with the chemical compofition of the fubftance, and with the degree of heat to which each particular fpot has thus been expofed. At the fame time, analogy leads us to fuppofe, that this deep and extenfive heat muft be fubject to viciffitudes and intermiffions, like the external phenomena of volcanoes. We have endeavoured to explain fome of thefe irregularities, and a fimilar reafoning may be extended to the prefent cafe. Having fhewn, that finall internal ftreams of lava tend fucceflively to pervade every weak part of a volcanic mountain, we are led to conceive, that the great maffes of heated matter juft mentioned, will be fucceffively directed to different parts of the earth; fo that every loofe affemblage of matter, lying in a fubmarine and fubterranean fituation, will, in its turn, be affected by the indurating caufe; and the influence of internal volcanic heat will thus be circumfcribed within no limits but thofe of the globe itfelf.

A series of undoubted facts prove, that all our ftrata once lay in a fituation fimilar in all refpects to that in which the marine depofites juft mentioned have been fuppofed to lie.

The inhabitant of an unbroken plain, or of a country formed of horizontal ftrata, whofe obfervations have been confiVol. VI.-P. I. Y ned
ned to his native fpot, can form no idea of thofe truths, which at every ftep in an alpine diftrict force themfelves on the mind of a geological obferver. Unfortunately for the progrefs of geology, both London and Paris, are placed in countries of little intereft; and thofe fcenes by which the principles of this fcience are brought into view in the moft ftriking manner, are unknown to many perfons beft capable of appreciating their value. The moft important, and at the fame time, the moft aftonifhing truth which we learn by any geological obfervations, is, that rocks and mountains now placed at an elevation of more than two miles above the level of the fea, muft at one period have lain at its bottom. This is undoubtedly true of thofe ftrata of limeftone which contain fhells; and the fame conclufion muft be extended to the circumjacent ftrata. The imagination ftruggles againft the admiffion of fo violent a pofition; but muft yield to the force of unqueftionable evidence ; and it is proved by the example of the moft eminent and cautious obfervers, that the conclufion is inevitable *.

Another queftion here occurs, which has been well treated by Mr Playfair. Has the fea retreated from the mountains? or have they rifen out of the fea? He has fhewn, that the balance of probability is incomparably in favour of the latter fuppofition; fince, in order to maintain the former, we muft difpofe of an enormous mafs of fea, whofe depth is feveral miles, and whofe bafe is greater than the furface of the whole fea. Whereas the elevation of a continent out of a fea like ours, would not change its level above a few feet; and even were a great derangement thus occafioned,

[^22]fioned, the water would eafily find its level without the affiftance of any extraordinary fuppofition. The elevation of the land, too, is evinced by what has occafionally happened in volcanic regions, and affords a complete folution of the contortion and erection of ftrata, which are almoft univer〔ally admitted to have once lain in a plane and horizontal pofition.

Whatever opinion be adopted as to the mode in which the land and the water have been feparated, no one doubts of the ancient fubmarine fituation of the ftrata.
An important feries of facts proves, that they were likewife fubterranean. Every thing indicates that a great quantity of matter has been removed from what now conftitutes the furface of our globe, and enormous depofites of loofe fragments, evidently detached from maffes fimilar to our common rock, evince the action of fome very powerful agent of deftruction. Analogy too, leads us to believe, that all the primary rocks have once been covered with fecondary; yet, in vaft diftricts, no fecondary rock ap. pears. In fhort, geologifts feem to agree in admitting the general pofition, that very great changes of this kind have taken place in the folid furface of the globe, however much they may differ as to their amount, and as to their caufes.

Dr Hutton afcribed thefe changes to the action, during very long time, of thofe agents, which at this day continue flowly to corrode the furface of the earth ; frofts, rains, the ordinary floods of rivers, \&c. which he conceives to have acted always with the fame force, and no more. But to this opinion I could never fubfcribe, having early adopted that of SausSURE, in which he is joined by many of the continental geologifts. My conviction was founded upon the infpection of thofe facts in the neighbourhood of Geneva, which he has adduced in fupport of his opinion. I was then convinced, Y 2
and I ftill believe, that vaft torrents, of depth fufficient to overtop our mountains, have fwept along the furface of the earth, excavating vallies, undermining mountains, and carrying away whatever was unable to refift fuch powerful corrofion. If fuch agents have been at work in the Alps, it is difficult to conceive that our countries fhould have been fpared. I made it therefore my bufinefs to fearch for traces of fimilar operations here. I was not long in difcovering fuch in great abundance; and, with the help of feveral of my friends, I have traced the indications of vaft torrents in this neighbourhood, as obvious as thofe I formerly faw on Saleve and Jura. Since I announced my opinion on this fubject, in a note fubjoined to my paper on Whinftone and Lava, publifhed in the fifth volume of the Tranfactions of this Society, I have met with many confirmations. of thefe views. The moft important of thefe are derived from the teftimony of my friend Lord Selkirk, who has lately met with a feries of fimilar facts in North America.

It would be difficult to compute the effects of fuch an agent; but if, by means of it, or of any other caufe, the whole mals. of fecondary ftrata, in great tracts of country, has been removed from above the primary, the weight of that mafs alone muit. have been fufficient to fulfil all the conditions of the Huttonian Theory, without having recourfe to the preffure of the fea. But when the two preffures were combined, how great muft have been their united ftrength!

We are authorifed to fuppofe, that the materials of our ftrata, in this fituation, underwent the action of fire. For volcanoes have burnt long before the earlieft times recorded in hiftory, as appears by the magnitude of fome volcanic mountains; and it can fcarcely be doubted, that their fire has acted without any material ceflation ever fince the furface of our globe acquired its. prefent.
prefent form. In extending that fame influence to periods of ftill higher antiquity, when our ftrata lay at the bottom of the fea, we do no more than afcribe permanence to the exifting laws of nature.

The combination of heat and compreffion refulting from thefe circumstances, carries us to the full extent of the Huttonian Theory, and enables us, upon its principles, to account for the igneous formation of all rocks from loofe marine depofites.

The fand would thus be changed to fandfone; the fhells to Fimeftone; and the animal and vegetable fubftances to coal.

Other beds, confifting of a mixture of various fubftances, would be fill more affected by the fame heat. Such as contained iron, carbonate of lime, and alkali, together with a mixture of various earths, would enter into thin fufion, and, penetrating through every crevice that occurred, would, in fome cafes, reach what was then the furface of the earth, and conftitute lava : in other cafes, it would congeal in the internal rents, and conftitute porphyry, bafalt, greenftone, or any other: of that numerous clafs of fubfances, which we comprehend under the name of whinfone. At the fame time, beds of fimilar quality, but of compofition fomewhat lefs fufible, would enter into a ftate of vifcidity, fuch as many bodies pals. through in their progrefs towards fufion. In this ftate, the particles, though far from poffeffing the fame freedom as in a. liquid, are fufceptible of cryftalline arrangement *; and the fubftance

[^23]fubftance, which, in this fluggifh fate, would be little difpofed to move, being confined in its original fituation by contiguous beds of more refractory matter, would cryftallize, without undergoing any change of place, and conftitute one of thofe beds of whinftone, which frequently occur interftratified with fanditone and limeftone.

In other cafes where the heat was more intenfe, the beds of fand, approaching more nearly to a ftate of fufion, would acquire fuch tenacity and toughnefs, as to allow themfelves to be bent and contorted, without laceration or fracture, by the influence of local motions, and might affume the fhape and ${ }^{*}$ character of primary fchiftus: the limeftone would be highly cryftallized, and would become marble, or, entering into thin fufion, would penetrate the minuteft rents in the form of calcareous fpar. Laftly, when the heat was higher ftill, the fand itfelf would be entirely melted, and might be converted, by the fubfequent effects of flow cooling, into granite, fienite, \&c.; in fome cafes, retaining traces of its original ftratification, and conftituting gneifs and ftratified granite; in others, flowing into the crevices, and forming veins of perfect granite.

In confequence of the action of heat, upon fo great a quantity of matter, thus brought into a fluid or femifluid ftate, and in which, notwithftanding the great preffure, fome fubftances would be volatilized, a powerful heaving of the fuperincumbent mafs muft have taken place; which, by repeated efforts, fuc-
ceeding
cryftals of ice, like the blade of a knife, formed in a mafs of clay, of fuch ftiffnefs, that it had juft been ufed to make cups for chemical purpofes. In many of my former experiments, I found that a fragment of glafs made from whinftone or lava, when placed in a muffle heated to the melting point of filver, affumed a cryftalline arrangement, and underwent a complete change of character. During this change, it became foft, fo as to yield to the touch of an iron rod; yet retained fuch ftiffnefs, that, lying untouched in the muffle, it preferved its thape entirely; the fharp angles of its fracture not being in the leaft blunted.
ceeding each other from below, would at laft elevate the ftrata into their prefent fituation.

The Huttonian Theory embraces fo wide a field, and comprehends the laws of fo many powerful agents, exerting their influence in circumftances and in combinations hitherto untried, that many of its branches muft ftill remain in an unfinifhed ftate, and may long be expofed to partial and plaufible objections, after we are fatisfied with regard to its fundamental doctrines. In the mean time I truft, that the object of our purfuit has been accomplifhed, in a fatisfactory manner, by the fufion of limeftone under preffure. This fingle refult affords, I conceive, a ftrong prefumption in favour of the folution which Dr Hutton has advanced of all the geological phenomena; for, the truth of the moft doubtful principle which he has affumed, has thus been eftablifhed by direct experiment.

APPENDIX.

No. I.

SPECIFIC GRAVITY OF SOME OF THE FOREGOING RESULTS.

AS many of the artificial limeftones and marbles produced in thefe experiments, were poffeffed of great hardnefs and compactnefs, and as they had vifibly undergone a great diminution of bulk, and felt heavy in the hand, it feemed to me an object of fome confequence to afcertain their fpecific gravity, compared with each other, and with the original fubftances from which they were formed. As the original was commonly a mafs of chalk in the lump, which, on being plunged into water, begins to abforb it rapidly, and continues to do fo during a long time, fo as to vary the weight at every inftant, it was impoffible, till the abforption was complete, to obtain any certain refult; and to allow for the weight thus gained, required the application of Val, VI.-P. I.

Z
a method different from that ufually employed in eftimating fpecific gravity.

In the common method, the fubftance is firft weighed in air, and then in water ; the difference indicating the weight of water difplaced, and being confidered as that of a quantity of water equal in buik to the folid body. But as chalk, when faturated with water, is heavier, by about one-fourth, than when dry, it is evident, that its apparent weight, in water, muft be increafed, and the apparent lofs of weight diminifhed exactly to that amount. To have a juft eftimate, then, of the quantity of water difplaced by the folid body, the apparent lofs of weight muft be increafed, by adding the abforption to it.

Two diftinct methods of taking fpecific gravity thus prefent themfelves, which it is of importance to keep feparate, as each of them is applicable to a particular clafs of fubjects.

One of thefe methods, confifts in comparing a cubic inch of a fubftance in its dry ftate, allowing its pores to have their fhare in conftituting its bulk, with a cubic inch of water.

The other depends upon comparing a cubic inch of the folid matter of which the fubftance is compofed, independently of vacuities, and fuppofing the whole reduced to perfect folidity, with a cubic inch of water.

Thus, were an architect to compute the efficacy of a given bulk of earth, intended to load an abutment, which earth was dry, and fhould always remain fo, he would undoubtedly follow the firft of thefe modes: Whereas, were a farmer to compare the fpecific gravity of the fame earth with that of any other foil, in an agricultural point of view, he would ufe the fecond mode, which is involved in that laid down by Mr Davy.

As our object is to compare the fpecific denfity of thefe refults, and to afcertain to what amount the particles have approached

Appendix.] MODIFIED by COMPRESSION.

proached each other, it feems quite evident that the firf mode is fuited to our purpofe. This will appear moft diftinctly, by infpection of the following Table, which has been conftructed fo as to include both.

TABLE OF SPECIFIC GRAVITIES.

EXPLANATION.
Column I. contains the number affixed to each of the fpecimens, whofe properties are expreffed in the table.

The firfteleven are the fame with thofe ufed in the paper read in this Society on the 30th of Auguft 1804, and publifhed in Nicholson's fournal for October following, and which refer to the fame fpecimens. No. I2. Is a fpecimen of yellow marble, bearing a flrong refemblance to No . 3. No. I3. A fecimen of chalk. No. 14. Shews the average of three trials with chalk. No. 15. Some pounded chalk, rammed in the manner followed in thefe experiments. In order to afcertain its fpecific gravity, I rammed the powder into a glafs-tube, previoully weighed; then, after weighing the whole, I removed the chalk, and filled the fame tube with water. I thus afcertained, in a direct manner, the weight of the fubftance, as ftated in Column II., and that of an equal bulk of water, ftated in Column VIII.

Column II. Weight of the fubftance, dry in air, after expofure, during feveral hours to a heat of 212° of Fahrenheit.
Column III. Its weight in water, after lying long in the liquid, fo as to perform its full abforption; and all air-bubbles being carefully removed.
Column IV. Weight in air, wet. The loofe external moifture being removed by the touch of a dry cloth; but no time being allowed for evaporation.

Column V. Difference between Columns II. and III., or apparent weight of water difplaced.

Column VI. Difference between Columns II. and IV., or the abforption
Column VII. Abforption reduced to a per centage of the dry fubftance.

Colemn VIII. Sum of Columns V. and VI., or the real weight of water difplaced by the body.

Column IX. Specific gravity, by the common mode, refulting from the divifion of Column II. by Column V.

Column X. Specific gravity, in the new mode, refulting from the divifion of Column II. by Column VIII.

The fpecific gravities afcertained by the new mode, and expreffed in Column X. correfpond very well to the idea which is formed of their comparative denfities, from other circumftances, their hardnefs, compact appearance, fufceptibility of polifh, and weight in the hand.

The cafe is widely different, when we attend to the refults of the common method contained in Column IX. Here the fpecific gravity of chalk is rated at 2.498 , which exceeds confiderably that of a majority of the refults tried. Thus, it would appear, by this method, that chalk has become lighter by the experiment, in defiance of our fenfes, which evince an increafe of denfity.

This fingular refult arifes, I conceive, from this, that, in our fpecimens, the faculty of abforption has been much more decreafed than the porofity. Thus, if a piece of crude chalk, whofe fpecific gravity had previoufly been afcertained by the common mode, and then well dried in a heat of 212°, were dipped in varnifh, which would penetrate a little way into its furface; and, the varnifh having hardened, the chalk were weighed in water, it is evident, that the apparent lofs of weight would now be greater by 23.6 t per cent. of the dry weight, than it had been when the unvarnifhed chalk was weighed in water ; becaufe the varnifh, clofing the fuperficial pores, would quite prevent the abforption, while it added but little to the weight of the mafs, and made no change on the bulk. In computing, then, the fpecific gravity, by means of this laft refult, the chalk would appear very much lighter than at firft, though its denfity had, in fact, been increafed by means of the varnifh.

A similar effect feems to have been produced in fome of thefe refults, by the agglutination or partial fufion of part of the fubftance, by which fome of the pores have been fhut out from the water.

This view derives fome confirmation from an infpection of Columns VI. and VII. ; the firft of which expreffes the abforption; and the fecond, that refult, reduced to a per centage of the original weight. It there appears, that whereas chalk abforbs 23.97 per cent., fome of our refults abforb only 0.5 , or fo low as 0.11 per cent. So that the power of abforption has been reduced from about one-fourth, to lefs than the five hundredth of the weight.

I have meafured the diminution of bulk in many cafes, particularly in that of No. II. The chalk, when crude, ran to the $75^{\text {th }}$ degree of Wedgwood's gage, and fhrunk fo much during the experiment, that it ran to the $16 I^{\text {rt. }}$; the difference amountting to 86 degrees. Now, I find, that Wedgwood's gage tapers in breadth, from 0.5 at zero of the fcale, to 0.3 at the 240 th degree. Hence, we have for one degree 0.000833 . Confequently, the width, at the 75 th degree, amounts to 0.4375^{25}; and at the 16 Ift, to 0.365887 . Thefe numbers, denoting the linear meafure of the crude chalk, and of its refult under heat and compreffion, are as 100 to 83.8 ; or, in folid bulk, as 100 to 57.5. Computing the denfities from this fource, they are as I to $\mathbf{1 . 7 3}$. The fecific gravities in the Table, of the chalk, and of this refult, are as $1.55 \mathrm{I}: 2.435$; that is, as I to I .57 . Thefe conclufions do not correfpond very exactly; but the chalk employed in this experiment, was not one of thofe employed in determining average fpecific gravity in the Table; and other circumftances may have contributed to produce irregularity. Comparing this chalk with refult fecond, we have 1.55 I : 2.575 fo I : I. 6602.

No. FI.

TABEE,

CONTAINING THE REDUCTION OF THE FORCES MENTIONED IN CHAP. VII. TO A COMMON STANDARD.

I. Number of experiment referred to inChap.VII.		III, Preflure in bundred weights.	IV. Tempera. ture by WedgWOOD's pyrometer.	V. Depth of fea in feet.	VI Ditto in mailes.	VII. Preffure, expreffed in atmofpheres
1	0.75	3	22	. 170805	0.3235	51.87
2	0.75	3	25	1708.05	0.3235	51.87
3	0.75	10	20	5693.52	1.0783	172.92
4	0.75	10	31	569352	1.0783	172.92
5	0.75	10	41	5693.52	1.0783	172.92
6	0.75	10	51	5693.52	1.0783	172.92
7	0.75	10	-	5693.52	1.0783	172.92
8	0.54	2	-	2196.57	0.4160	66.71
	0.54	$\{4$	-	4393.14	0.8320	133.43
9	0.54	\{8.1	-	8896.12	1.6848	270.19
10	0.75	3	21	1708.05	0.3235	51.87
11	0.75	4	25	2277.41	0.4313	69.70
12	0.75	5	-	2846.76	0.5396	86.46

Column I. contains the number of the experiment, as referred to in the text. Column II. The bore of the barrel ufed, in decimals of an inch. Column III. The abfolute force applied to the barrel, in hundred-weights. Column IV. The temperature, in Wedgwood's fcale. Column V. The depth of fea at which a force of compreffion would be exerted equal to that fuftained by the carbonate in each experiment, expreffed in feet. Column VI. The fame in miles. Column VII. Compreffing force, expreffed in atmofpheres.

Вотн Tables were computed feparately, by a friend, Mr J. Jardine, and myfelf.

The following data were employed.
Area of a circle of which the diameter is unity, 0.785398 .
Weight of a cubic foot of diftilled water, according to Profeffor Robison, 998.74 ounces avoirdupois.

Mean fecific gravity of fea-water, according to Bladh, 1:0272.
Mean heighth of the barometer at the level of the fea 29.91 I 9 Englifh inches, according to Laplace.

Specific gravity of mercury, according to Cavendish and Brisson, 13.568 .

- VOITAKA.19X3

> bayoughs Aow sue gurvollot zit

. Fiby.

多 2

. Fig. b

h/i2 (Hindeli

fiv- qyth de
ソ

(3)
IV. Of the Solids of Greatest Attraction; or those which, among all the Solids that have certain Properties, Attract with the greatest Force in a given Direction. By John Playfair, F. R.S. Lond. and Edin. and Professor of Natural Philosophy in the University of Edinburgh.

[Read 5th January 1807.]

T'HE inveftigations which I have at prefent the honour of fubmitting to the Royal Society, were fuggefted by the experiments which have been made of late years concerning the gravitation of terreftrial bodies, firft, by Dr Maskilyne, on the Attraction of Mountains, and afterwards by Mr Cavendish, on the Attraction of Leaden Balls.

In reflecting on thefe experiments, a queftion naturally enough occurred, what figure ought a given mafs of matter to have, in order that it may attract a particle in a given direction, with the greateft force poffible? This feemed an inquiry not of mere curiofity, but one that might be of ufe in the fur. ther profecution of fuch experiments as are now referred to. On confidering the queftion more nearly, I foon found, though it belongs to a clafs of problems of confiderable difficulty, which the Calculus Variationum is ufually employed to refolve, that it neverthelefs admits of an eafy folution, and one leading to refults of remarkable fimplicity, fuch as may intereft

Vol. VI.-P.II.
A a
Mathematicians

Mathematicians by that circumftance, as well as by their connection with experimental inquiries.

In the problem thus propofed, no condition was joined to that of the greateft attraction, but that of the quantity of homogeneous matter being given. This is the moft general ftate of the problem. It is evident, however, that other conditions may be combined with the two preceding; it may be required that the body fhall have a certain figure, conical, for example, cylindric, \&c. and the problem, under fuch reftrictions, may be ftill more readily applicable to experiments than in its moft general form.

Though the queftion, thus limited, belongs to the common method of Maxima and Minima, it leads to inveftigations that are in reality confiderably more difficult than when it is propofed in its utmoft generality.

Among the following inveltigations, there are alfo fome that have a particular reference to the experiments on Schehallien. A few years ago, an attempt was made by Lord Webb Seymour and myfelf, toward fuch a furvey of the rocks which compore that mountain, as might afford a tolerable eftimate of their fpecific gravity, and thereby ferve to correct the conclufions, deduced from Dr Maskelyne's obfervations, concerning the mean denfity of the earth. The account of this furvey, and of the conclufions arifing from it, belongs naturally to the Society under whofe direction the original experiment was made; what is offered here, is an inveftigation of fome of the theorems employed in obtaining thofe conclufions. When a new element, the heterogenity of the mafs, or the unequal diftribution of denfity in the mountain, was to be introduced into the calculations, the ingenious methods employed by Dr HuTTon could not always be purfued. The propofitions that relate to the attraction of a half, or quarter cylinder, on a particle placed in its axis, are intended to remedy this inconveni-
ence, and will probably be found of ufe in all inquiries concerning the difturbance of the direction of the plumb-line by inequalities, whether in the figure or denfity of the exterior cruft of the globe.
The firft of the problems here refolved, has been treated of by Boscovich; and his folution is mentioned in the catalogue of his works, as publifhed in the memoirs of a philofophical fociety at Pifa. I have never, however, been able to procure a fight of thefe memoirs, nor to obtain any account of the folution juft mentioned, and therefore am fenfible of hazarding a good deal, when I treat of a fubject that has paffed through the hands of fo able a mathematician, without knowing the conclufions which he has come to, or the principles which he has employed in his inveftigation. In fuch circumftances, if my refult is juft, I cannot reafonably expect it to be new ; and I fhould, indeed, be much alarmed to be told, that it has not been anticipated. The other problems contained in this paper, as far as I know, have never been confidered.

I.

To find the folid into which a mafs of homogeneous matter muft be formed, in order to attract a particle given in pofition, with the greateft force poffible, in a given direction.

Let A (Fig. I. Pl. 6.) be the particle given in pofition, AB the direction in which it is to be attracted; and ACBH a fection of the folid required, by a plane paffing through $A B$.
Since the attraction of the folid is a maximum, by hypothefis, any fmall variation in the figure of the folid, provided the quantity of matter remain the fame, will not change the attraction in the direction $A B$. If, therefore, a fmall portion of matter be taken from any point C , in the fuperficies of the folid, and placed at D , another point in the fame fuperficies, there
will be no variation produced in the force which the folid exerts on the particle A, in the direction AB.

The curve ACB, therefore, is the locus of all the points in which a body being placed, will attract the particle A in the direction AB , with the fame force.

This condition is fufficient to determine the nature of the curve ABC. From C, any point in that curve, draw CE perpendicular to $A B$; then if a mafs of matter placed at C be called $m^{3}, \frac{m^{3}}{\mathrm{AC}^{2}}$ will be the attraction of that mafs on A , in the direction AC , and $\frac{m^{3} \times \mathrm{AE}}{\mathrm{AC}^{3}}$ will be its attraction in the direction AB. As this is conftant, it will be equal to $\frac{m^{3}}{\mathrm{AB}^{2}}$, and therefore. $\mathrm{AB}^{2} \times \mathrm{AE}=\mathrm{AC}^{3}$.

All the fections of the required folid, therefore, by planes paffing through AB , have this property, that $\mathrm{AC}^{3}=\mathrm{AB}^{2} \times \mathrm{AE}$; and as this equation is fufficient to determine the nature of the curve to which it belongs, therefore all the fections. of the folid, by planes that pafs through AB , are fimilar and equal curves; and the folid of confequence may be conceived to be generated by the revolution of ACB , any one of thefe curves, about $A B$ as an axis.

The folid fo generated may be called the Solid of greateft Attraction; and the line ACB, the Curve of equal Attraction.

II.

To find the equation between the co-ordinates of ACB , the curve of equal attraction.

From

From C (Fig. т.) draw CE perpendicular to AB ; let $\mathrm{AB}=a$, $\mathrm{AE}=x, \mathrm{EC}=y$. We have found $\mathrm{AB}^{2} \times \mathrm{AE}=\mathrm{AC}^{3}$, that is, $a^{2} x=$ $\left(x^{2}+y^{2}\right)^{\frac{3}{2}}$, or $a^{4} x^{2}=\left(x^{2}+y^{2}\right)^{3}$, which is an equation to a line of the 6th order.

To have y in terms of $x, x^{2}+y^{2}=a^{\frac{4}{3}} x^{\frac{2}{3}}, y^{2}=a^{\frac{4}{3}} x^{\frac{2}{3}}-x$, , and $y=x^{\frac{1}{3}} \sqrt{a^{\frac{4}{3}}-x^{\frac{4}{3}}}$.

Hence $y=0$, both when $x=0$, and when $x=a$. Alfo if x be fuppofed greater than a, y is impoffible. No part of the curve, therefore, lies beyond B.

The parts of the curve on oppofite fides of the line AB , are fimilar and equal, becaufe the pofitive and negative values of y are equal. There is alfo another part of the curve on the fide of A , oppofite to B , fimilar and equal to ACB ; for the values of y are the fame whether x be pofitive or negative.

III.

The curve may eafily be conftructed without having recourfe to the value of y juft obtained.

Let $\mathrm{AB}=a$, (Fig. 1.) $\mathrm{AC}=2$, and the angle $\mathrm{BAC}=\varphi$. Then $\mathrm{AE}=\mathrm{AC} \times \operatorname{cof} \varphi=z \operatorname{cof} \varphi$, and fo $a^{2} z \operatorname{cof} \varphi=z^{3}$, or $a^{2} \operatorname{cof} \varphi=z^{2}$; hence $z=a \vee \operatorname{cof} \varphi$.

From this formula a value of AC or z may be found, if φ or the angle BAC be given; and if it be required to find z in numbers, it may be conveniently calculated from this expreffion. A geometrical conftruction may alfo be eafily derived from it. For if with the radius AB , a circle BFH be defcribed from the centre A; if $A C$ be produced to meet the circumfe-
ence in F, and if $F G$ be drawn at right angles to $A B$, then
$\frac{\mathrm{AG}}{\mathrm{AB}}=\operatorname{cof} \varphi$, and fo $z=a \times \sqrt{\frac{\mathrm{AG}}{\mathrm{AB}}}=\sqrt{\mathrm{AB} \times \mathrm{AG}}=\mathrm{AC}$.
Therefore, if from the centre A, with the diftance $A B, a$ circle BFH be defcribed, and if a circle be alfo defcribed on the diameter $A B$, as $A K B$, then drawing any line $A F$ from A, meeting the circle $B F H$ in F, and from F letting fall FG perpendicular on $A B$, interfecting the femicircle $A K B$ in K; if $A K$ be joined, and $A C$ made equal to $A K$, the point C is in the curve.

For $A K=\sqrt{A B \times A G}$, from the nature of the femicircle, and therefore $A C=\sqrt{A B \times A G}$, which has been fhewn to be a property of the curve. In this way, any number of points of the curve may be determined; and the Solid of greatef attraction will be defcribed, as already explained, by the revolution of this curve about the axis AB.

IV.

To find the area of the curve ACB.
I. Let ACE, AFG (Fig. 2.) be two radii, indefinitely near to one another, meeting the curve ACB in C and F , and the circle, defcribed with the radius AB , in E and G . Let $\mathrm{AC}=$ z as before, the angle $\mathrm{BAC}=\varphi$, and $\mathrm{AB}=a$. Then $\mathrm{GE}=a \dot{\varphi}$, and the area $\mathrm{AGE}=\frac{1}{2} a^{2} \dot{\varphi}$, and fince $\mathrm{AE}^{2}: \mathrm{AC}^{2}:$: Sect. AEG : Sect. ACF, the fector $\mathrm{ACF}=\frac{1}{2} z^{2} \dot{\varphi}$. But $z^{2}=a^{2} \operatorname{cof} \varphi$, ($($ III.), whence the fector ACF, or the fluxion of the area $A B C=\frac{1}{2} a^{2} \dot{\phi}$ cof φ, and confequently the area $\mathrm{ABC}=\frac{1}{2} a^{2}$ fin φ, to which no conftant quantity need be added, becaufe it vanifhes when $\varphi=0$, or when the area ABC vanifhes.

The

THE whole area of the curve, therefore, is $\frac{1}{2} a^{2}$, or $\frac{1}{2} \mathrm{AB}^{2}$; for when ϕ is a right angle fin $\varphi=1$. Hence the area of the curve on both fides of $A B$ is equal to the fquare of $A B$.
2. The value of x, when y is a maximum, is eafily found. For when y, and therefore y^{2} is a maximum, $\frac{2}{3} a^{\frac{4}{3}} x^{-\frac{1}{3}}=2 x$, or $3 x^{\frac{4}{3}}=a^{\frac{4}{3}}$, that is $x=\frac{a}{3^{\frac{3}{4}}}=\frac{a}{\sqrt[4]{27}}$.

Hence, calling b the value of y when a maximum, $b^{2}=a^{\frac{4}{3}} \times \frac{a^{\frac{2}{3}}}{27^{\frac{1}{6}}}-\frac{a^{2}}{27^{\frac{1}{2}}}=a^{2}\left(\frac{27^{\frac{1}{3}}-1}{27^{\frac{1}{2}}}\right)=\frac{2 a^{2}}{\sqrt{27}}$, nd fo $b=a \frac{\sqrt{ } 2}{\sqrt[4]{27}}$, and therefore $a: b:: \sqrt[4]{27}: \sqrt{2}$, or as II :7 nearly.
3. IT is material to obferve, that the radius of curvature at A : is infinite. For fince $y^{2}=a^{\frac{4}{3}} x^{\frac{2}{3}}-x^{2}, \frac{y^{2}}{x}=\frac{a^{\frac{4}{3}}}{x^{\frac{1}{3}}}-x_{0}$. But when x is very fmall, or y indefinitely near to $\mathrm{A}, \frac{y^{2}}{x}$ becomes the diameter of the circle having the fame curvature with ACB at A , and when x vaniffres, this value of $\frac{y^{2}}{x}$, or $\frac{a^{\frac{4}{3}}}{x^{\frac{1}{3}}}-x$, becomes infinite, becaufe of the divifor $x^{\frac{1}{3}}$ being in that cafe $=0$. The diameter, therefore, and the radius of curvature at A are infinite. In other words, no circle, having its centre in AB produced, and paffing through A , can be defcribed with fo great a radius, but that, at the point A , it will be within the curve of equal attraction.
"The folid of greateft attraction, then, at the extremity of its axis, where the attracted particle is placed, is exceedingly flat, approaching more nearly to a plane than the fuperficies of any fphere can do, however great its radius.
4. To find the radius of curvature at B, the other extremity of the axis, fince $y^{2}=a^{\frac{4}{3}} x^{\frac{2}{2}}-x^{2}$, if we divide by $a-x$, we have $\frac{y^{2}}{a-x}=\frac{a^{\frac{4}{3}} x^{\frac{2}{3}}-x^{2}}{a-x}$. But at B , when $a-x$, or the abfciffa reckoned from B vanifhes, $\frac{y^{2}}{a-x}$ is the diameter of the circle having the fame curvature with ACB in B. But when $a-x=0$, or $a=x$, both the numerator and denominator of the fraction $\frac{a^{\frac{4}{3}} x^{\frac{2}{3}}-x^{2}}{a-x}$ vanifh, fo that its ultimate value does not appear. To remove this difficulty, let $a-x=x$, or $x=a-z$, then we have $y^{2}=a^{\frac{4}{3}}(a-z)^{\frac{2}{3}}-(a-z)^{2}$. But when z is extremely fmall, its powers, higher than the firft, may be rejected; and therefore $(a-z)^{\frac{2}{3}}=a^{\frac{2}{3}}\left(\mathrm{I}-\frac{z}{a}\right)^{\frac{2}{3}}=$ $a^{\frac{2}{3}}\left(\mathrm{r}-\frac{2 z}{3 a}, \& \mathrm{c}.\right)$ Therefore the equation to the curve becomes in this cafe, $y^{2}=a^{\frac{4}{3}} \times a^{\frac{2}{3}}\left(1-\frac{2 z}{3 a}\right)-a^{2}+2 a z=a^{2}-\frac{2}{3} a z-$ $a^{2}+2 a z=\frac{4}{3} a z$.

Hence $\frac{y}{2 z}$, or the radius of curvature at $B=\frac{2}{3} a$. The curve, therefore, at B falls wholly without the circle BKA, defcribed on the diameter $A B$, as its radius of curvature is greater. This is alfo evident from the conftruction.

V.

To find the force with which the folid above defined attracts the particle A in the direction AB .
Let b (Fig. 2.) be a point indefinitely near to B, and let the curve $\mathrm{A} c \delta$ be defcribed fimilar to ACB. Through C draw $\mathrm{C} c \mathrm{D}$ perpendicular te $A B$, and fuppofe the figure thus conftructed to revolve about $A B$; then each of the curves $A C B, A c b$ will generate a folid of greateft attraction; and the excefs of the one of thefe folids above the other, will be an indefinitely thin thell, the attraction of which is the variation of the attraction of the folid $A C B$, when it changes into $A c b$.

Again, by the line DC, when it revolves along with the reft of the figure about AB , a circle will be defcribed; and by the part C c, a circular ring, on which, if we fuppofe a folid of indefinitely fmall altitude to be conftituted, it will make the element of the folid fhell AGc. Now the attraction exerted by this circular ring upon A , will be the fame as if all the matter of it were united in the point C , and the fame, therefore, as if it were all united in B.

But the circular ring generated by $\mathrm{C} c$, is $=\pi\left(\mathrm{DC}^{2}-\mathrm{D} c^{2}\right)$ $=2 \pi \mathrm{DC} \times \mathrm{Cc}$. Now $2 \mathrm{DC} \times \mathrm{C} c$ is the variation of y^{2}, or DC^{2}, while DG paffes into $\mathrm{D} c$, and the curve BCA into the curve $b c \mathrm{~A}$; that is $2 \mathrm{DC} \times \mathrm{C} c$ is the fluxion of y^{2}, or of $a^{\frac{4}{3}} x^{\frac{2}{3}}-x^{2}$,
VoL. VI.-P.II. B b taken
taken on the fuppofition that x is conftant and a variable, viz. $\frac{4}{3} a^{\frac{1}{3}} \dot{a} \times x^{\frac{2}{3}}$. Therefore the fpace generated by $\mathrm{C} c=$ $\frac{4 \pi}{3} a^{\frac{2}{3}} x^{\frac{2}{3}} \cdot$.

If this expreffion be multiplied by \dot{x}, we have the element of the fhell $=\frac{4 \pi}{3} a^{\frac{1}{3}} x^{\frac{2}{3}} a \dot{x}$.

In order to have the folidity of the fhell $\mathrm{ACB} b c$, the above expreffion mult be integrated relatively to x, that is, fuppofing only x variable, and it is then $\frac{3}{5} \times \frac{4 \pi}{3} a^{\frac{1}{3}} x^{\frac{5}{3}} \dot{a}+\mathrm{C}$. But $\mathrm{C}=0$, becaufe the fluent vanifhes when x vanifhes, therefore the portion of the fhell $\mathrm{AC} c=\frac{4}{5} x^{\frac{5}{3}} a^{\frac{1}{3}} \dot{a}$, and when $x=a$, the whole fhell $=\frac{4 \pi}{5} a^{2} \dot{a}$.

Now, if the whole quantity of matter in the fhell were united at B, its attractive force exerted on A, would be the fame with that of the fhell; therefore the whole force of the fhell $=\frac{4 \pi}{5} \dot{a}$. The fame is true for every other indefinitely thin fhell into which the folid may be fuppofed to be divided ; and: therefore the whole attraction of the folid is equal to $\int \frac{4 \pi}{5} \dot{a}$, fuppofing a variable, that is $=\frac{4 \pi}{5} a$.
Of GREATESTATTRACTION.

Hence we may compare the attraction of this folid with that of a fphere of which the axis is $A B$, for the attraction of that fphere $=\frac{\pi}{6} a^{3} \times \frac{4}{a^{2}}=\frac{2 \pi}{3} a$. The attraction of the folid ADBH, (Fig. I.) is, therefore, to that of the fphere on the fame ${ }^{*}$ axis as $\frac{4 \pi}{5}$ a to $\frac{2 \pi}{3} a$, or as 6 to 5 .
VI.

To find the content of the folid ADBH, we need only integrate the fluxionary expreflion for the content of the fhell, viz. $\frac{4 \pi}{5} a^{2} \dot{a}$. We have then $\frac{4 \pi}{1} 5 a^{3}=$ the content of the folid ADBH. Since the folidity of the fphere on the axis a is $=\frac{\pi}{6} a^{3}$, the content of the folid ADBH is to that of the fphere on the fame axis as $\frac{4 \pi}{15} a^{3}$ to $\frac{\pi}{6} a^{3}$; that is, as $\frac{4}{15}$ to $\frac{1}{6}$, or as 8 to 5 .

VII.

Lastly, To compare the attraction of this folid with the attraction of a fphere of equal bulk, let $m^{3}=$ any given mafs of matter formed into the folid ADBH ; then for determining AB , we have this equation, $\frac{4 \pi}{15} a^{3}=m$, and $a=m \sqrt[3]{\frac{1}{4 \pi}}$; and thereB b 2 fore
fore alfo the attraction of the folid, (which is $\left.\frac{4 \pi}{5} a\right)^{\circ}=\frac{4 \pi}{5} m \sqrt[3]{\frac{15}{4 \pi}}$ $=m\left(\frac{4 \cdot 5^{\frac{i}{3}} \cdot 3^{\frac{1}{3}} \cdot \pi^{\frac{2}{3}}}{5 \cdot 4^{\frac{1}{3}}}\right)=m\left(\frac{4^{\frac{2}{3}} \cdot 3^{\frac{1}{3}} \cdot \pi^{\frac{2}{3}}}{5^{\frac{2}{3}}}\right)=m \sqrt[3]{\frac{48 \pi^{2}}{25}}$.

AGAIN, if m^{3} be formed into a fphere, the radius of that fphere $=m \sqrt[3]{\frac{3}{4 \pi}}$, and the attraction of it on a particle at its furface $=\frac{m^{3}}{m^{2}\left(\frac{3}{4 \pi}\right)^{\frac{2}{3}}}=m \frac{\left(16 \pi^{2}\right)^{\frac{1}{3}}}{9^{\frac{1}{3}}}$.

Hence the attraction of the folid ADBH, is to that of a fphere equal to it, as $m\left(\frac{48}{25} \pi^{2}\right)^{\frac{1}{3}}$ to $m\left(\frac{16 \pi^{2}}{9}\right)^{\frac{1}{3}}$; that is, as $(27)^{\frac{1}{3}}$ to $(25)^{\frac{1}{3}}$, or as 3 to the cube-root of 25 .

The ratio of 3 to $\sqrt[3]{25}$, is nearly that of 3 to $3-\frac{2}{27}$, or of 81 to 79 ; and this is therefore alfo nearly equal to the ratio of the attraction of the folid ADBH to that of a fphere of equal magnitude.

VIII.

Ir has been fuppofed in the preceding inveftigation, that the particle on which the folid of greateft attraction exerts its force is in contact with that folid. Let it now be fuppofed, that the diftance between the folid and the particle is given; the folid being
being on one fide of a plane, and the particle at a given diftance from the fame plane on the oppofite fide. The mafs of matter which is to compofe the folid being given, it is required to conftruct the folid.

Let the particle to be attracted be at A (Fig. 3.), from A draw AA^{\prime} perpendicular to the given plane, and let EF be any ftraight line in that plane, drawn through the point A^{\prime}; it is evident that the axis of the folid required muft be in AA^{\prime} produced. Let \mathbf{B} be the vertex of the folid, then it will be demonftrated as has been done above, that this folid is generated by the revolution of the curve of equal attraction, (that of which the equation is $y^{2}=a^{\frac{4}{3}} x^{\frac{2}{3}}-x^{2}$), about the axis of which one extremity is at A, and of which the length mult be found from the quantity of matter in the folid.

The folid required, then, is a fegment of the folid of greateft attraction, having B for its vertex, and a circle, of which $A^{\prime} E$ or $A^{\prime} F$ is the radius, for its bafe.

To find the folid content of fuch a fegment, $\mathbf{C D}$ being $=y$, and $\mathrm{AC}=x$, we have $y^{2}=a^{\frac{4}{3}} x^{\frac{2}{3}}-x^{2}$, and $\pi y^{2} \dot{x}=\pi a^{\frac{4}{3}} x^{\frac{3}{3}} \dot{x}-$ $\pi x^{2} \dot{x}=$ the cylinder which is the element of the folid fegment.

Therefore $\int \pi y^{2} \dot{x}$, or the folid fegment intercepted between B and D muft be $\frac{3}{5} \pi a^{\frac{4}{3}} x^{\frac{5}{3}}-\frac{1}{3} \pi x^{3}+\mathrm{C}$. This muft vanifh when $x=a$, or when C comes to B , and therefore $\mathrm{C}=$
$-\frac{4 \pi}{I_{5}} a^{3}$. The fegment, therefore, intercepted between B and C, the line AC being x, is $\frac{4 \pi}{15} a^{3}-\frac{3 \pi}{5} a^{\frac{4}{3}} x^{\frac{5}{3}}+\frac{\pi}{3} x^{3}$.

This alfo gives $\frac{4 \pi}{15} a^{3}$, for the content of the whole folid, when $x=0$, the fame value that was found by another method at §vi.

Now, if we fuppofe x to be $=\mathrm{AA}^{\prime}$, and to be given $=b$, the folid content of the fegment becomes $\frac{4 \pi}{15} a^{3}-\frac{3}{5} \pi a^{\frac{4}{3}} b^{\frac{5}{3}}+\frac{\pi}{3} b^{3}$, which mult be made equal to the given folidity which we fhall fuppofe $=m^{3}$, and from this equation a, which is yet unknown; is to be determined. If, then, for $a^{\frac{1}{3}}$ we put u, we have $\pi\left(\frac{4}{15} u^{9}-\frac{3}{5} b^{\frac{5}{3}} u^{4}+\frac{1}{3} b^{3}\right)$
$=m^{3}$, or $\frac{4}{15} u^{9}-\frac{3}{5} b^{\frac{5}{3}} u^{4}=\frac{m^{3}}{\pi}-\frac{1}{3} b^{3}$ and $u^{9}-\frac{9}{4} b^{\frac{5}{3}} u$ $=\frac{15 m^{3}}{4 \pi}-\frac{15}{12} b^{3}$.

The fimpleft way of refolving this equation, would be by the rule of falfe pofition. In fome particular cafes, it may be refolved more eafily; thus, if $\frac{15 m^{3}}{\pi}-\frac{15}{12} b^{3}=0$; $u^{9}-\frac{9}{4} b^{\frac{5}{3}} u^{4}=0$, and $u^{5}=\frac{9}{4} b^{\frac{5}{3}}$, that is $a^{\frac{5}{3}}=\frac{9}{4} b^{\frac{5}{3}}$ or $a=$ $b \times\left(\frac{9}{4}\right)^{\frac{3}{5}}=b \sqrt[5]{\frac{729}{64}}$.
IX.
I. IF it be required to find the equation to the fuperficies of the folid of greateft attraction, and alfo to the fections of it parallel to any plane paffing through the axis; this can readily be done by help of what has been demonftrated above.

Let AHB (Fig. 4.) be a fection of the folid, by a plane through $A B$ its axis. Let G be any point in the fuperficies of the folid, GF a perpendicular from G on the plane $A H B$, and $F E$ a perpendicular from F on the axis. Let $\mathrm{AE}=x, \mathrm{EF}=z, \mathrm{FG}=v$, then x, z, and v are the three co-ordinates by which the fuperficies is to be defined. Let $\mathrm{AB}=a, \mathrm{EH}=y$, then, from the nature of the curve $\mathrm{AHB}, y^{2}=a^{\frac{4}{3}} x^{\frac{2}{3}}-x^{2}$. But becaufe the plane GEH is at right angles to AB, G and H are in the circumference of a circle of which E is the centre; fo that $\mathrm{GE}=\mathrm{EH}$ $=y$. Therefore $\mathrm{EF}^{2}+\mathrm{FG}^{2}=\mathrm{EH}^{2}$, that is, $z^{2}+v^{2}=y^{2}$, and by fubftitution for y^{2} in the former equation, $z^{2}+v^{2}=a^{\frac{4}{3}} x^{\frac{2}{3}}-x^{2}$, or $\left(x^{2}+z^{2}+v^{2}\right)^{3}=a_{4} x^{2}$, which is the equation to the fuperficies of the folid of greateft attraction.
2. If we fuppofe EF , that is z, to be given $=b$, and the folid to be cut by a plane through FG and CD , (CD being parallel to AB), making on the furface of the folid the fection DGC ; and if $A K$ be drawn at right angles to $A B$, meeting $D C$ in K, then we have, by writing b for z in either the preceding equations, $b^{2}+v^{2}=a^{\frac{4}{3}} x^{\frac{2}{3}}-x^{2}$, and $v^{2}=a^{\frac{4}{3}} x^{\frac{2}{3}}-x^{2}-b^{2}$ for the equation of the curve DGC, the co-ordinates being GF and $F K$, becaufe $F K$ is equal to $A E$ or x.

This equation alfo belongs to a curve of equal attraction; the plane in which that curve is being parallel to $A B$, the line in which the attraction is eftimated, and diftant from it by the fpace b.

Instead of reckoning the abfcifa from K , it may be made to begin at C. If AL or $\mathrm{CK}=b$, then the value of b is determined from the equation $b^{x}=a^{\frac{4}{3}} b^{\frac{2}{3}}-b^{2}$, and if $x=b+u$, u being put for CF, $v^{2}=a^{\frac{4}{3}}(b+u)^{\frac{2}{3}}-(b+u)^{2}-a^{\frac{4}{3}} b^{\frac{2}{3}}+b^{2}$, or $v^{2}+(b+u)^{2}+b^{2}=a^{\frac{4}{3}}(b+u)^{\frac{2}{3}}$, or $\left(v^{2}+(b+u)^{2}+b^{2}\right)^{3}=$ $a^{4}(b+u)^{2}$.

When b is equal to the maximum value of the ordinate EH, (iv. 2.) the curve CGD goes away into a point; and if b be fuppofed greater than this, the equation to the curve is impoffible.

X.

The folid of greateft attraction may be found, and its properties inveftigated, in the way that has now been exemplified, whatever be the law of the attracting force. It will be fufficient, in any cafe, to find the equation of the generating curve, or the curve of equal attraction.

Thus, if the attraction which the particle C (Fig. I.) exerts on the given particle at A, be inverfely as the m power of the diftance, or as $\frac{\mathrm{I}}{\mathrm{AC}^{m}}$, then the attraction in the direction AE will be $\frac{\mathrm{AE}}{\mathrm{AC}^{m+1}}$, and if we make this $=\frac{\mathrm{I}}{\mathrm{AB}^{m{ }^{n}}}$, we have $\frac{\mathrm{AE}}{\mathrm{AC}^{m+x}}$

$$
=\frac{\mathrm{I}}{\mathrm{AB}^{m \prime}}
$$

$=\frac{\mathrm{I}}{{ }^{m}}$, or making $\mathrm{AE}=x, \mathrm{EC}=y$, and $\mathrm{AB}=a$, as before, AB
$\frac{x}{\left(x^{2}+y^{2}\right)^{\frac{m+1}{2}}}=\frac{\mathbf{I}}{a^{m}}$, or $a^{m n} x=\left(x^{2}+y^{2}\right)^{\frac{m+\mathrm{r}}{2}}$, and $x^{2}+y^{2}=$ $a^{\frac{2 m}{m+1}} x^{\frac{2}{m+1}}$, or $y^{2}=a^{\frac{2 m}{n+1}} x^{\frac{2}{m+1}}-x^{2}$.

If $m=1$, or $n+\mathrm{I}=2$, this equation becomes $y^{2}=a x-x^{2}$, being that of a circle of which the diameter is AB. If, therefore, the attracting force were inverfely as the diftance, the folid of greateft attraction would be a fphere.

If the force be inverfely as the cube of the diftance, or $m=3$, and $m+\mathrm{I}=4$, the equation is $y^{2}=a^{\frac{3}{2}} x^{\frac{1}{2}}-x^{2}$, which belongs to a line of the 4 th order.

IF $m=4$, and $m+\mathrm{I}=5$, the equation is $y^{2}=a^{\frac{8}{5}} x^{\frac{2}{5}}-x^{2}$; which belongs to a line of the 10 th order.

In general, if, m be an even number, the order of the curve is $\overline{m+\mathbf{I}} \times 2$; but if m be an odd number, it is $m+\mathrm{I}$ fimply.

XI.

In the fame manner that the folid of greateft attraction has been found, may a great class of fimilar problems be refolved. Whenever the property that is to exift in its greateft or leaft degree, belongs to all the points of a plane figure, or to all the points of a folid, given in magnitude, the queftion is reduced to the determination of the locus of a certain equation, juft as in the preceding example.

Vol.VI:-P. II.
Ce
Let

Let it, for inftance, be required to find a folid given in mag: nitude, fuch, that from all the points in it, ftraight lines being drawn to any affigned number of given points, the fum of the fquares of all the lines fo drawn fhall be a minimum. It will be found, by reafoning as in the cafe of the folid of greateft at. traction, that the fuperficies bounding the required folid muft be fuch that the fum of the fquares of the lines drawn from any point in it, to all the given points, muft be always of the fame magnitude. Now, the fum of the fquares of the lines drawn from any point to all the given points, may be fhewn by plane geometry to be equal to the fquare of the line drawn to the centre of gravity of thefe given points, multiplied by the number of points, together with a given fpace. The line, therefore, drawn from any point in the required fuperficies to the centre of gravity of the given points, is given in magnitude, and therefore the fuperficies is that of a fphere, having for its centre the centre of gravity of the given points.

The magnitude of the fphere is next determined from the condition, that its folidity is given.

In general, if x, y, and z, are three rectangular co-ordinates that determine the pofition of any point of a folid given in magnitude, and if the value of a certain function Q , of x, y and z, be computed for each point of the folid, and if the fum of all thefe values of Q added together, be a maximum or a minimum, the folid is bounded by a fuperficies in which the function Q is every where of the fame magnitude. That is, if the triple integral $\int \dot{x} \int \dot{y} \int \mathrm{Q} \dot{z}$ be the greateft or leaft poflible, the fuperficies bounding the folid is fuch that $Q=A$, a conftant quantity.

The fame holds of plane figures; the propofition is then fimpler, as there are only two co-ordinates, fo that $\int \dot{x} \int \mathrm{Q} \dot{y}$ is
the quantity that is to be a maximum or a minimum, and the line bounding the figure is defined by the equation $\mathrm{Q}=\mathrm{A}$.

All the queftions, therefore, which come under this defcription, though they belong to an order of problems, which requires in general the application of one of the moft refined inventions of the New Geometry, the Calculus Variationum, form a particular divifion admitting of refolution by much fimpler means, and directly reducible to the conftruction of loci.
In thefe problems alfo, the fynthetical demonftration will be found extremely fimple. In the inftance of the folid of greateft attraction this holds remarkably. Thus, it is obvious, that (Fig. r.) any particle of matter placed without the curve ACBH, will attract the particle at A in the direction $A B$, lefs than any of the particles in that curve, and that any particle of matter within the curve, will attract the particle at A more than any particle in the curve, and more, a fortiori, than any particle without the curve. The fame is true of the whole fuperficies of the folid. Now, if the figure of the folid be any how changed, while its quantity of matter remains the fame, as much matter muft be expelled from within the furface, at fome one place C , as is accumulated without the furface at fome other point H. But the action of any quantity of matter within the fuperficies ACBH on A, is greater than the action of the fame without the fuperficies ACBH. The folid ACBH, therefore, by any change of its figure, muft lofe more attraction than it gains; that is, its attraction is diminifhed by every fuch change, and therefore it is itfelf the folid of greateft attraction. Q. E. D.

XII.

THE preceding theorems relate to the folids, which, of all folids whatfoever of a given content, have the greateft attraction in a given direction. It may be interefting alfo to know, among bodies of a given kind, and a given folid content, for example, among cones, cylinders, or parallelepipeds, given in magnitude, which has the greateft attractive power, in the direction of a certain ftraight line. We fhall begin with the cone.

LET ABC (Fig. 5.) be a cone of which the axis is AD, required to find the angle $B A C$, when the force which the cone exerts, in the direction $A D$, on the particle A at its vertex, is greater than that which any other cone of the fame folid content, can exert in the direction of its axis, on a particle at its vertex.

IT is known, if π be the femicircumference of the circle of which the radius is I , that is, if $\pi=3.14159, \& c$. that the attraction of the cone $A B C$, on the particle A, in the direction $A D$, is $=2 \pi \times\left(A D-\frac{A D^{2}}{A B}\right) . \quad$ (Simpson's Fluxions, vol. ii. Art. 377.)

Let $\mathrm{AD}=x, \mathrm{AB}=z$, the folid content of the cone $=m^{3}$, and its attraction $=A$.

Then $\mathrm{A}=2 \pi\left(x-\frac{x^{2}}{z}\right)$, and $\pi x\left(z^{2}-x^{2}\right)=3 m^{3}$.
The quantity $x-\frac{x^{2}}{z}$, is to be a maximum, and therefore, $\dot{x}-\frac{2 x z \dot{x}-x^{2} \dot{z}}{z^{4}}=0$, or $z^{2}-2 x z+x^{2} \cdot \dot{z}=0$.

Again, from the equation $\pi x\left(z^{2}-x^{2}\right)=3^{m^{3}}$, we have $2 x z \dot{z}+z^{2} \dot{x}-3 x^{2} \dot{x}=0$, and $\dot{\dot{x}}=\frac{3 x^{2}-z^{2}}{2 x z}$, and by fubftituting this value of $\frac{\dot{x}}{\dot{x}}$ in the former equation, we have $z^{2}-\frac{5}{2} x z+\frac{3}{2} \cdot \frac{x^{3}}{z}=0$.

As this equation is homogeneous, if we make $\frac{x}{z}=u$, we will obtain an equation involving u only, and therefore determining the ratio of z to x, or of AB to AD. Subftituting, accordingly, $u z$ for x in the laft equation, we have $z^{2}-\frac{5}{2} u z^{2}+\frac{3}{2} u^{3} z^{2}=0$, and $I-\frac{5}{2} u+{ }_{2}^{3} u^{3}=0$.

This equation is obviouly divifible by $u-\mathrm{I}$, and when fo divided, gives $\frac{3}{2} u^{2}+\frac{3}{2} u-\mathrm{I}=0$, or $u^{2}+u=\frac{2}{3}$, whence $u=-\frac{1}{2} \pm \sqrt{\frac{I I}{12}}$.

This is the value of $\frac{x}{z}$, and as $\frac{x}{z}$ muft be lefs than unity, becaufe AB is greater than AD , the negative value of u, or $-\frac{\mathrm{I}}{2}-\sqrt{\frac{1 I}{12}}$, is excluded; fo that $u=-\frac{1}{2}+\sqrt{\frac{\mathrm{II}}{\mathrm{I} 2}}=.4576 \mathrm{I}$ nearly.

Now $u=\frac{\mathrm{AD}}{\mathrm{AB}}=$ the cofine of the angle BAD , or half the angle of the cone; therefore that angle $=62^{\circ} \cdot 46^{\prime}$ nearly.

As the tangent of $62^{\circ} \cdot 46^{\prime}$ is not far from being double of the radius, therefore the cone of greateft attraction has the radius of its bafe nearly double of its altitude.

To compare the attraction of this cone with that of a fphere containing the fame quantity of matter, we muft exprefs the attraction in terms of u_{2} the ratio of x to x, which has now been found.

Because $\pi x\left(z_{2}-x^{2}\right)=3 m^{3}$, and $z=\frac{x}{u}, \pi x\left(\frac{x^{2}}{u^{2}}-x^{2}\right)=$
$\pi x^{3}\left(\frac{\mathrm{I}-u^{2}}{u^{2}}\right)=3 m^{3}$, and $x=m \cdot \sqrt[3]{\frac{3^{u^{2}}}{\pi\left(\mathrm{I}-u^{2}\right)}}$.
Now, we have $\mathrm{A}=2 \pi\left(x-\frac{x^{2}}{z}\right)$, and fince $\frac{x}{z}=u, \frac{x^{z}}{z}=$ $m u \sqrt[3]{\frac{3 u^{2}}{\pi\left(\mathrm{I}-u^{2}\right)}}$, and $\mathrm{A}=2 \pi\left(m \cdot \sqrt[3]{\frac{3 u^{2}}{\pi\left(\mathrm{I}-u^{2}\right)}}-m u \cdot \sqrt[3]{\frac{3 u^{2}}{\pi\left(\mathrm{I}-u^{2}\right)}}\right)$ $=2 \pi m \cdot(\mathrm{I}-u) \sqrt[3]{\frac{3 u^{2}}{\pi\left(\mathrm{I}-u^{2}\right)}} ;$ wherefore, $\mathrm{A}^{3}=8 \pi^{5} m^{3}(\mathrm{I}-u)^{3}$ $\times \frac{3 u^{2}}{\pi\left(\mathrm{I}-u^{2}\right)}=24 \pi^{2} m^{3} \cdot \frac{u^{2}(\mathrm{I}-u)^{2}}{\mathrm{I}+u}$.

But if A^{\prime} be the attraction of a fphere of which the mals is. m^{3}, on a particle at its furface, $\mathrm{A}^{\prime}=m \sqrt[3]{\frac{16 \pi}{9}}$, and $\mathrm{A}^{\prime 3}=$ $m^{3} \cdot \frac{16 \pi^{2}}{9}$. Therefore $A^{3}: A^{\prime 3}:: \frac{24 u^{2}(1-u)^{2}}{1+u} \quad \frac{16}{9}::$ $\frac{27 u^{2}(\mathrm{I}-u)^{2}}{2(\mathrm{I}+u)}: \mathrm{I}$; and confequently $\mathrm{A}: \mathrm{A}^{\prime}:: 3 \sqrt[3]{\frac{u^{2}(\mathrm{I}-u)^{2}}{2(\mathrm{I}+u)}}: \mathrm{I}$.

If, in this expreffion, we fubftitute 4576 r for u, we thall have $A: A^{\prime}:: .82941: I$, fo that the attraction of the cone, when
when a maximum is about $\frac{4}{5}$ of the attraction of a fphere of equal folidity.

XIII.

Of all the cylinders given in mafs, or quantity of matter, to find that which fhall attract a particle, at the extremity of its axis, with the greateft force.

Let DF (Fig. 6.) be a cylinder of which the axis is AB, if AC be drawn, the attraction of the cylinder on the particle A is $2 \pi \times(\mathrm{AB}+\mathrm{BC}-\mathrm{AC})^{*}$, and we have therefore to find when $A B+B C-A C$ is a maximum, fuppofing $A B \cdot B C^{2}$ to be equal to a given folid.

Let $\mathrm{AB}=x, \mathrm{BC}=y$, then $\mathrm{AC}=\sqrt{x^{2}+y^{2}}$, and the quantity that is to be a maximum is $x+y-\sqrt{x^{2}+y^{2}}$. We have therefore $\dot{x}+\dot{y}-\frac{x \dot{x}+y \dot{y}}{\sqrt{x^{2}+y^{2}}}=0$, and $(\dot{x}+\dot{y})\left(x^{2}+y^{2}\right)^{\frac{1}{2}}=$ $x \dot{x}+y \dot{y}$, or $\left(\mathrm{I}+\frac{\dot{y}}{\dot{x}}\right)\left(x^{2}+y^{2}\right)^{\frac{1}{2}}=x+y \cdot \frac{\dot{y}}{\dot{x}}$.

But fince $\pi x y^{2}=m^{3}, 2 x y \dot{y}+y^{2} \dot{x}=0$, or $2 x \dot{y}=-y \dot{x}$, and $\frac{\dot{y}}{\dot{x}}=-\frac{y}{2 x}$.

Therefore

[^24]Therefore $\left(1-\frac{y}{2 x}\right) \cdot\left(x^{2}+y^{2}\right)^{\frac{1}{2}}=x-y \cdot \frac{y}{2 x}$, or $(2 x-y)\left(x^{2}+y^{2}\right)^{\frac{1}{2}}=2 x^{2}-y^{2}$.

As this equation is homogeneous, if we make $\frac{y}{x}=u$, or $y=u x$, both x and y may be exterminated. For we have by fubftituting $u x$ for $y,(2 x-u x)\left(x^{2}+u^{2} x^{2}\right)^{\frac{1}{2}}=2 x^{2}-u^{2} x^{2}$, or $\left(2 x^{2}-u x^{2}\right)\left(\mathrm{I}+u^{2}\right)^{\frac{1}{2}}=2 x^{2}-u^{2} x^{2}$, and dividing by x^{2}, $(2-u) \cdot\left(I+u^{2}\right)^{\frac{1}{2}}=2-u^{2}$; whence fquaring both fides, $\left(4-4 u+u^{2}\right)\left(\mathrm{x}+u^{2}\right)=4-4 u^{2}+u^{4}$.

From this, by multiplying and reducing, we get $4 u^{2}-9 u$ $=-4$, or $u^{2}-\frac{9}{4} u=-1 ;$ and $u=\frac{9 \pm \sqrt{ } 17}{8}$.
2. The two values of u in this formula create an ambiguity which cannot be removed without fome farther inveftigation. If A be the attraction of the cylinder, then $\mathrm{A}=2 \pi(x+y-$ $\sqrt{\left.x^{2}+y^{2}\right)}$, into which expreffion, if we introduce u, and exterminate both x and y, by help of the equations $\pi x y^{2}=m^{3}$, and $\frac{y}{x}=u$, we get $\mathrm{A}=2 \pi^{\frac{2}{3}} m \frac{\mathrm{I}+u-\sqrt{\mathrm{I}+u^{2}}}{u^{\frac{2}{3}}}$.

Notwithstanding the radical fign in this formula, there is but one value of A , correfponding to each value of u, as the pofitive root of $\sqrt{1-u^{2}}$ is not applicable to the phyfical problem.
blem. This is evident, becaufe the attraction muft vanifh both when $y=0$, and when $x=0$; that is, both when u is nothing, and when it is infinite. This can only happen when $\sqrt{1+a^{2}}$ is negative.
Farther, the value of A is always pofitive (as it ought to be), $\mathrm{I}+u$ being greater than $\sqrt{\mathrm{x}+u^{2}}$, becaufe it is the fquareroot of $\mathrm{I}+2 u+u^{2}$.
3. Perhaps the relation between A and u will be beft conceived, by fuppofing A to be the ordinate of a curve in which the abficiffe are reprefented by the fucceffive values of u. Thus, if OP (Fig. 7.) $=u$, and $\mathrm{PM}=\mathrm{A}$, the locus of M is a curve of the figure OMM^{\prime}, which interfects the axis at O , and has the ordinate PM a maximum, when $\mathrm{OP}=\frac{9-\sqrt{ } 17}{8}$; beyond PM^{\prime} the curve has a point M^{\prime} of contrary flexure, where it becomes convex toward the axis OR, and afterwards approaches OR continually. It has alfo another branch $m m^{\prime} n$, correfponding to the affirmative values of $\sqrt{1+u^{2}}$, which has the perpendicular $O Q$ for an affymptote; and has the ordinate $\mathrm{P}^{\prime} m^{\prime}$ a minimum, when $u=\frac{9+V_{1} 7}{8}$. After paffing the point where $\mathrm{P}^{\prime} m^{\prime}$ is a minimum, this branch of the curve recedes continually from the axis OR. Befides thefe, there are other two branches of the fame curve, on the oppofite fide of OQ, anfwering to the negative values of u. It is, however, only the firft-mentioned of thefe four branches that is connected with the mechanical queftion confidered here.
VoL. VI.-P.II. D d THE

The attraction is a maximum, therefore, when $u=\frac{9-V_{17}}{8}$, that is, when y is to x, or the radius of the bafe of the cylinder, to its altitude, as $9-\sqrt{ } 17$ to 8 , or as 5 to 8 nearly. Therefore allo the diameter of the bafe is to the altitude, when the attraction of the cylinder is greateft, as $9-N_{17}$ to 4 , or as 5 to 4 nearly.
5. The attraction of the cylinder, when a maximum is now to be compared with that of a fphere of equal folid content.

First, to compute the quantity $\frac{1+u-\sqrt{1+u^{2}}}{u^{\frac{2}{3}}}$, when $u=\frac{9-V I 7}{8}=.6096$, fince $u^{2}=.3716 \mathrm{I}, \mathrm{I}+u^{2}=\mathrm{I} .3716 \mathrm{r}_{2}$ and $\sqrt{1+u^{2}}=1.17116$; fo that $1+u-\sqrt{1+u^{2}}=.43844$.

Also becaufe $u^{2}=.37161, u^{\frac{2}{3}}=.718945$; and therefore $\frac{I+u-\sqrt{I+u^{2}}}{u^{\frac{2}{3}}}=\frac{4384}{7189}$. Therefore $\mathrm{A}=2 \pi^{\frac{2}{3}} m \cdot \frac{I+u-\sqrt{I+u^{2}}}{u^{\frac{2}{3}}}$ $=2 \pi^{\frac{2}{3}} m \times \frac{43^{84}}{7189}$.

Now, if A^{\prime} be the attraction of a fphere of the folidity m, $\mathrm{A}^{\prime}=\pi^{\frac{2}{3}} m \times\left(\frac{16}{9}\right)^{\frac{1}{3}}$, and $\mathrm{A}: \mathrm{A}^{\prime}:: \frac{2 \times 4384}{7189}:\left(\frac{16}{9}\right)^{\frac{1}{3}}::$

$$
\frac{8768}{7189}: 1.2114
$$

$\frac{8768}{7189}: 1.2114$, or as 1218 to 121 I. 4 ; fo that the attraction of the cylinder, even when its form is moft advantageous, does not exceed that of a fphere, of the fame folid content, by more than a hundred and eighty-third part.
6. In a note on one of the letters of G. L. Le Sage, publifhed by M. Prevost of Geneva *, the following theorem is given concerning the attraction of a cylinder and a fphere: If a cylinder be circumfcribed about a fphere, the particle placed in the extremity of the axis of the cylinder, or at the point of contact of the fphere, and the bafe of the cylinder, is attracted equally by the fphere, and by that portion of the cylinder which has for its altitude two-thirds of the diameter of the fphere, and of which the folidity is therefore juft equal to that of the fphere.

We may inveftigate this theorem, by feeking the altitude of fuch a part of the circumfcribing cylinder as thall have the fame attraction with the fphere at the point of contact. If r be the radius of the fphere, the attraction at any point of its furface, is $\frac{4 \pi r}{3}$; and if x be the altitude of the cylinder, and the radius of its bafe r, then its attraction on a particle at the extremity of its axis is $2 \pi\left(x+r-\sqrt{\left.\overline{x^{2}+r^{2}}\right) \text {. Since thefe }}\right.$ attractions are fuppofed equal, $2 \pi\left(x+r-\sqrt{x^{2}+r^{2}}\right)=\frac{4 \pi r}{3}$, and $x+r-\sqrt{x^{2}+r^{2}}=\frac{2 r}{3}$, whence $\frac{2 r x}{3}=\frac{8 r^{2}}{9}$, and $x=\frac{4 r}{3}$.

D d 2
The

[^25]The altitude of the cylinder is therefore $\frac{4}{3}$ of the radius, or $\frac{2}{3}$ of the diameter of the fphere, which is Le Sage's Theorem.

This cylinder is alfo known to be equal in folidity to the fphere; but its attraction is not greater than that of the latter, becaufe the proportion of its altitude to the diameter of its bafe is not that which gives the greateft attraction. Its altitude is to the diameter of its bafe, as $\frac{4}{3} r$ to $2 r$, or 4 to 6 ; in order to have the greateft effect, it muft be as 4 to 5 nearly, (§3.).

Notwithstanding, therefore, that the form of the one of thefe cylinders is confiderably different from that of the other, their attractions are very nearly equal; the one of them being the fame with that of the fphere, and the other greater than it by about the 183 d part. On each fide of the form which gives the maximum of attraction, there may be great variations of figure, without much change in the attracting force. A fimilar property belongs to all quantities near their greateft or leaft ftate, but feems to hold efpecially in what regards the attraction of bodies.

XIV.

In confidering the attraction of the Mountain Shehallien, in fuch a manner as to make a due allowance for the heterogeneity of the mafs, it became neceffary to determine the attraction of a half cylinder, or of any fector of a cylinder, on a point fituated in its axis, in a given direction, at right angles
to that axis. The folution of this problem is much connected with the experimental inquiries concerning the attraction of mountains, and affords examples of maxima of the kind that form the principal object of this paper. The following lemma. is neceffary to the folution.

Let the quadrilateral DG (Fig. 8.) be the indefinitely fmall bafe of a column DH , which has every where the fame fection, and is perpendicular to its bafe $D G$.

Let A be a point at a given diftance from D, in the plane $D G$; it is required to find the force with which the column $D H$ attracts a particle at A, in the direction AD.

Let the diftance $\mathrm{AD}=r$, the angle $\mathrm{DAE}=\varphi, \mathrm{DE}$ (fuppofed variable) $=y$, and let EF be a fection of the folid parallel, and equal to the bafe DG; and let the area of $\mathrm{DG}=m^{2}$.

The element of the folid DF is $m^{2} \dot{y}$; and fince DE , or $y=r \tan \varphi, \dot{y}=r \overline{\tan \phi}=r \cdot \frac{\dot{\phi}}{\operatorname{cof} \phi^{2}}$, fo that the element of the folid $=m^{2} r \cdot \frac{\ddot{\varphi}}{\cos \varphi^{2}}$.

This quantity divided by AE^{2}, that is, fince $\mathrm{AE}: \mathrm{AD}:: \mathrm{I}$: $\operatorname{cof} \varphi$, by $\frac{r^{2}}{\operatorname{cof} \varphi^{2}}$, gives the element of the attraction in the direction AE equal to $\frac{m^{2} r \dot{\varphi}}{\operatorname{cof} \varphi^{2}} \times \frac{\operatorname{cof} \varphi^{2}}{r^{2}}=\frac{m^{2} \ddot{\varphi}}{r}$. To reduce this to the direction $A D$, it muft be multiplied into the cofine of the angle DAE or φ, fo that the element of the attraction of the column in the direction AD is $\frac{m^{2}}{r} \dot{\varphi} \operatorname{cof} \phi$, and the attraction itfelf $=$ $\frac{m^{2}}{r} \int \dot{\varphi} \operatorname{cof} \varphi=\frac{m^{2}}{r} \operatorname{fin} \varphi \dot{\sigma}$

When φ becomes equal to the whole angle fubtended by the column, the total attraction is equal to the area of the bafe divided by the diftance, and multiplied by the fine of the angle of elevation of the column.

If the angle of elevation be 30°, the attraction of the column is juft half the attraction it would have, fuppofing it extended to an infinite height.

IN this inveftigation, m^{2} is fuppofed an infinitefimal; but if it be of a finite magnitude, provided it be fmall, this theorem will afford a fufficient approximation to the attraction of the column, fuppofing the diftance AD to be meafured from the centre of gravity of the bafe, and the angle φ to be that which is fubtended by the axis of the column, or by its perpendicular height above the bafe.

Let the femicircle CBG (Fig. 9.), having the centre A, be the bafe of a half cylinder ftanding perpendicular to the horizon, AB a line in the plane of the bafe, bifecting the femicircle, and reprefenting the direction of the meridian; it is required to find the force with which the cylinder attracts a particle at A , in the direction AB , fuppofing the radius of the bafe, and the altitude of the cylinder to be given.

Let DF be an indefinitely fmall quadrilateral, contained between two arches of circles defcribed from the centre A, and two radii drawn to A ; and let a column ftand on it of the fame height with the half cylinder, of which the bafe is the femicircle CBG. Let $z=$ the angle BAD, the azimuth of D; $v=$ the vertical angle fubtended by the column on $\mathrm{DF} ; a=$
the height of that column, or of the cylinder, $\mathrm{AD}=x, \mathrm{AB}$, the radius of the bafe, $=r$.

By the laft propofition, the column ftanding on DF , exerts on A an attraction in the direction AD , which is $=\frac{\mathrm{D} d \times \mathrm{D} f}{\mathrm{AD}}$ $x \operatorname{fin} v$.

Now $\mathrm{D} d=\dot{x}, \mathrm{D} f=x \dot{z}$, and $\mathrm{D} d \times \mathrm{D} f=x \ddot{z} \dot{x}$. Therefore the attraction in the direction AD is $\frac{x x z}{x} \times \operatorname{fin} v=\dot{x} \dot{z}$ fin v, and reduced to the direction AB , it is $\dot{x} \dot{z}$ fin $v \times \operatorname{cof} z$.

This is the element of the attraction of the cylindric fhell or ring, of which the radius is AD or x, and the thicknef \dot{x}; and therefore integrated on the fuppofition that z only is variable, and x and v conflant, it gives $\dot{x} \operatorname{fin} v \int \dot{x} \operatorname{cof} z=\dot{x} \operatorname{fin} v \times \operatorname{fin} z$ for the attraction of the fhell. When $z=90$, and $\operatorname{fin} z=\mathrm{r}$, we have the attraction of a quadrant of the fhell $=\dot{x} \operatorname{fin} v$, and therefore that of the whole femicircle $=2 \dot{x}$ fin v.

Next, if x be made variable, and confequently v, we have $2 \int \dot{x} \operatorname{fin} v$ for the attraction of the femi-cylinder.

Now the angle v would have a for its fine if the radius were $\sqrt{a^{2}+x^{2}}$, and fo $\operatorname{fin} v=\frac{a}{\sqrt{a^{2}+x^{2}}}$; wherefore the above expreffion is $\int \frac{2 a \dot{x}}{\sqrt{a^{2}+x^{2}}}=2 a \mathrm{~L}\left(x+\sqrt{a^{2}+x^{2}}\right)+\mathrm{C}$; and as this muft vadiih when $x=0,2 a \mathrm{~L} a+\mathrm{C}=0$, and $\mathrm{C}=-2 a \mathrm{~L} a$, fo that
the fluent is $2 a \mathrm{~L} \frac{x+\sqrt{a^{2}+x^{2}}}{a}$, which, when $x=r$, gives the attraction of the femi-cylinder $=2 a \mathrm{~L} \frac{r+\sqrt{a^{2}+r^{2}}}{a}$.

This expreffion is very fimple, and very convenient in calculation. It is probably needlefs to remark, that the logarithms meant are the hyperbolic.

XVI.

Let it be required to find the figure of a femi-cylinder given in magnitude, which fhall attract a particle fituated in the centre of its bafe with the greateft force poffible, in the direction of a line bifecting the bafe.

The attraction of the cylinder, as juft demonftrated, is $2 a \mathrm{~L} \frac{r+\sqrt{r^{2}+a^{2}}}{a}$; and becaufe the folid is fuppofed to be given in magnitude, we may put $a r^{2}=m^{3}$, or $a=\frac{m^{3}}{r^{2}} ;$ fo that the formula above becomes $\frac{2 m^{3}}{r^{2}} \mathrm{~L} \frac{r+\sqrt{r^{2}+\frac{m^{6}}{r^{4}}}}{\frac{m^{3}}{r^{2}}}=\frac{2 m^{3}}{r^{2}} \mathrm{~L} \frac{r^{3}+\sqrt{r^{6}+m^{6}}}{m^{3}}$.

Now we may fuppofe $m=1$, and then the attraction of the cylinder $=\frac{2}{r^{2}} \mathbf{L}\left(r^{3}+\sqrt{r^{6}+\mathrm{I}}\right)$.

This formula vanifhes whether r be fuppofed infinitely great or infinitely fmall, and, therefore, there muft be fome magnitude of r in which its value will be the greateft poffible.
If r is very fmall in refpect of $\mathrm{I}, \sqrt{I+r^{6}}=\mathrm{I}+\frac{r^{6}}{2}$, and fo $r^{3}+\sqrt{1+r^{6}}=1+r^{3}+\frac{r^{6}}{2}$, or fimply $=\mathrm{x}+r^{3}$. But $\mathrm{L}\left(\mathrm{I}+r^{3}\right)$, if r is very fmall in refpect of I , is r^{3}; and therefore the ultimate value of the formula, when r is infinitely fmall, is $\frac{2}{r^{2}} \times r^{3}=2 r$, which is alfo infinitely finall.

Again, let r be infinitely great; then $\sqrt{r^{6}+1}=r^{3}$, and fo the formula is $\frac{2}{r^{2}} \mathrm{~L} .2 r^{3}$, or $\frac{2 \times 3}{r^{2}} \mathrm{~L} .2 r$. But the logarithm of an infinitely great quantity r, is an infinite of an order in. comparably lefs than r, as is known from the nature of logarithms, (Greg. Fontane Difquifitiones Phyf. Math. de Infinito Logarithmico, Theor. 4.); fo that $\frac{6}{r^{2}} \mathrm{~L}_{2} r$ is lefs than $\frac{6 r}{r^{2}}$, or than $\frac{6}{r}$. But $\frac{6}{r}$ is infinitely frmall, r being infinitely great, and therefore, when the radius of the cylinder becomes infinitely great, its folid content remaining the fame, its attraction is lefs even than an infinitefimal of the firft order.

The determination of the maximum, by the ordinary method, leads to an exponential equation of confiderable difficulty, if an accurate folution is required. It is, however, eafily found
Vol. VI.-P.II.
Ee
by
by trial, that, when the function $\frac{\mathbf{r}}{r^{2}} \mathrm{~L}\left(r^{3}+\sqrt{\mathbf{I + r ^ { 6 }}}\right)$ is a maximum, r is nearly $=\frac{6}{5}$. Therefore, becaufe $a=\frac{1}{r^{2}}=\frac{25}{36}$, r is nearly to a as $\frac{6}{5}$ to $\frac{25}{36}$, or as 216 to 12.5 ; and this of confequence, is, nearly, the ratio of the radius of the bafe, to the altitude of the half-cylinder, when its attraction, eftimated according to the hypothefis of the problem, is the greateft poffible.

XVII.

To determine the oblate fpheroid of a given folidity which fhall attract a particle at its pole with the greateft force.

Let there be an oblate fpheroid generated by the revolution of the ellipfis ADBE (Pl. 7. Fig. 10.), about the conjugate axis $A B$, and let F be the focus; then if $A F$ be drawn, and the arch CG defcribed from the centre A, the force with which the fpheroid draws a particle at A, in the direction $A C$, is $\frac{4 \pi \cdot \mathrm{AC} \cdot \mathrm{CD}^{2}}{\mathrm{CF}^{3}}(\mathrm{CF}-\mathrm{CG} *$). (Maclaurin's Fluxions, $\S 650$).

Let this force $=\mathrm{F}, \mathrm{AC}=a, \mathrm{CD}=b$, the angle $\mathrm{CAF}=\varphi$; then $\mathrm{CF}=a \tan \varphi$, and $\mathrm{F}=\frac{4 \pi a b^{2}}{a^{3} \tan \varphi^{3}}(\tan \varphi-\varphi), a=$ $\frac{4 \pi b^{2}}{a} \cdot \frac{\tan \varphi-\phi}{\tan \varphi^{3}}$.

Now if m^{3} be the folidity of the fpheroid, fince that folidity is two-thirds of the cylinder, having CD for the radius of its bafe,

[^26]bafe, and AB for its altitude; therefore $m^{3}=\frac{2}{3} \times \pi b^{2} \times 2 a$ $=\frac{4}{3} \pi a b^{2} ;$ fo that $b^{2}=\frac{m^{3}}{\frac{4}{3} \pi a}=\frac{3 m^{3}}{4 \pi a}$, and $\frac{b^{2}}{a}=\frac{3 m^{3}}{4 \pi a^{2}}$.

But becaufe AF:AC:: $\mathbf{I}: \operatorname{cof} \varphi$, or $b: a:: \mathbf{I}: \operatorname{cof} \varphi, b^{2}=$ $\frac{a^{2}}{\operatorname{cof} \varphi^{2}}$, and $\frac{b^{2}}{a}=\frac{a}{\operatorname{cof} \varphi^{2}}$.

Now fince $b^{2}=\frac{a^{2}}{\operatorname{cof} \phi^{2}}$, and alfo $b^{2}=\frac{3 m^{3}}{4 \pi a}$, we have $\frac{a^{2}}{\operatorname{cof} \phi^{2}}=$ $\frac{3 m^{3}}{4 \pi a}$, and $a^{3}=\frac{3 m^{3}}{4 \pi} \cdot \operatorname{cof} \varphi^{2}$, or if $\frac{3 m^{3}}{4 \pi}=n^{3}, a^{3}=n^{3} \cdot \operatorname{cof} \varphi^{2}$, and $a=n \operatorname{cof} \varphi^{\frac{2}{3}}$.

HENCE, as $\frac{b^{2}}{a}=\frac{a}{\operatorname{cof} \phi^{2}}, \frac{b^{2}}{a}=\frac{n \operatorname{cof} \varphi^{\frac{2}{3}}}{\operatorname{cof} \varphi^{2}}=\frac{n}{\operatorname{cof} \varphi^{\frac{4}{3}}}$.
By fubftituting this value of $\frac{b^{2}}{a}$ in the value of F , we have F $=\frac{4 \pi n}{\operatorname{cof} \phi^{\frac{4}{3}}} \cdot \frac{\tan \varphi-\varphi}{\tan \varphi^{3}}$, and becaufe $\tan \varphi^{3}=\frac{\operatorname{fin} \varphi^{3}}{\operatorname{cof} \varphi^{3}}, \mathrm{~F}=$ $\frac{2 \pi n \cdot(\tan \varphi-\phi) \cdot \operatorname{cof} \phi^{3}}{\operatorname{fin} \phi^{3} \times \operatorname{cof} \phi^{\frac{4}{3}}}=\frac{2 \pi n(\tan \varphi-\varphi) \operatorname{cof} \phi^{\frac{5}{3}}}{\operatorname{fin} \varphi^{3}}=$ $2 \pi n(\tan \varphi-\varphi) \cdot \operatorname{cof} \varphi^{\frac{5}{3}} \cdot \operatorname{fin} \varphi^{-3}$.

Now when the product of any number of factors is a maximum, if the fluxion of each factor be divided by the factor itEe 2
felf,
felf, the fum of the quotients is equal to nothing. Therefore

$$
\begin{aligned}
& \frac{\frac{\dot{\varphi}}{\operatorname{cof} \phi^{2}}-\dot{\varphi}}{\tan \varphi-\phi}+\frac{5 \operatorname{cof} \varphi^{\frac{2}{3}} \cdot \frac{\dot{\operatorname{cof} \varphi}}{3 \operatorname{cof} \varphi^{\frac{5}{3}}}}{3}-\frac{3 \operatorname{fin} \varphi^{-4} \cdot \frac{\operatorname{fin} \varphi}{\operatorname{fin} \varphi^{-3}}}{\operatorname{fin}}=0 \text {, ol } \\
& \frac{\dot{\phi}\left(\mathrm{I}-\operatorname{cof} \phi^{2}\right)}{\operatorname{cof} \phi^{2}(\tan \varphi-\phi)}-\frac{5 \dot{\phi} \mathrm{fin} \varphi}{3 \cos \phi}-\frac{3 \dot{\phi} \operatorname{cof} \phi}{\operatorname{fin} \phi}=0, \\
& \text { and } \frac{\operatorname{fin} \varphi^{2}}{\operatorname{cof} \phi^{2}(\tan \varphi-\varphi)}-\frac{5 \operatorname{fin} \varphi}{3 \operatorname{cof} \varphi}-\frac{3 \operatorname{cof} \varphi}{\operatorname{fin} \varphi}=0 \text {; } \\
& \frac{\operatorname{fin} \varphi}{\cos \phi(\tan \varphi-\phi)}=\frac{5}{3}+3 \frac{\operatorname{cof} \phi^{2}}{\operatorname{fin} \phi^{2}} \text {, and } \frac{\tan \varphi}{\tan \varphi-\phi}= \\
& \frac{5}{3}+3 \cot \phi^{2} . \\
& \operatorname{Hence} \frac{3 \tan \varphi}{5+9 \cot \phi^{2}}=\tan \varphi-\phi, \text { and } \varphi=\tan \varphi- \\
& \frac{3 \tan \varphi}{5+9 \cdot \cot \varphi^{2}}=\frac{5 \tan \varphi+9 \tan \varphi \cdot \cot \phi^{2}-3 \tan \varphi}{5+9 \cot \varphi^{2}}= \\
& \frac{2 \tan \varphi+9 \cot \varphi}{5+9 \cot \varphi^{2}} . \\
& \text { Let. } \tan \varphi=t \text {, then } \varphi=\frac{2 t+\frac{9}{t}}{5+\frac{9}{t^{2}}}=\frac{2 t^{3}+9 t}{5 t^{2}+9}=
\end{aligned}
$$

$\frac{t\left(9+2 t^{2}\right)}{9+5 t^{2}}$; which, therefore, is the value of φ when F is a maximum.

The

The value of ϕ, now found, is remarkable for being a near approximation to any arch of which t is the tangent, provided that arch do not exceed 45°. The lefs the arch is, the more near is the approximation; but the expreffion can only be confidered as accurate when $\varphi=0$.

This will be made evident by comparing the fraction $\frac{t\left(9+2 t^{2}\right)}{9+5 t^{2}}$ with the feries, that gives the arch in terms of the tangent t, viz. $\varphi=t-\frac{t^{3}}{3}+\frac{t^{5}}{5}-\frac{t^{7}}{7}+, \& c$. The fraction $\frac{t\left(9+2 t^{2}\right)}{9+5 t^{2}}=t-\frac{t^{3}}{3}+\frac{5 t^{5}}{27}-\frac{5^{2} t^{7}}{3 \cdot 9^{2}}+, \& c$. The two firft terms of thefe feries agree; and in the third terms, the difference is inconfiderable, while t is lefs than unity; but the agreement is never entire, unlefs $t=0$, when both feries vanifh.

The attraction, therefore, or the gravitation at the pole of an oblate fpheroid, is not a maximum, until the eccentricity of the generating ellipfis vanifh, and the fpheroid pafs into a fphere.

From the circumftance of the value of φ above found, agreeing nearly with an indefinite number of arches, we muft conclude, that when a fphere paffes into an oblate fpheroid, its attraction varies at firft exceeding flowly, and continues to do fo till its oblatenefs, or the eccentricity of the generating ellipfis, become very great. This may be fhewn, by taking the value of F , and fubftituting in it that of φ, in terms of $\tan \varphi$.

We have $\mathrm{F}=\frac{4 \pi n}{\operatorname{cof} \varphi^{\frac{4}{3}}} \cdot \frac{\tan \varphi-\varphi}{\tan \varphi^{3}} ;$ and fince $\varphi=\tan \varphi-$

$$
\frac{\tan \varphi}{3}^{3}
$$

$\frac{\tan \varphi^{3}}{3}+\frac{\tan \varphi^{5}}{5}-, \& c . \tan \varphi-\varphi=\frac{\tan \varphi^{3}}{3}-\frac{\tan \varphi^{5}}{5}+, \& c$. and

$$
\mathrm{F}=\frac{4 \pi n}{\operatorname{cof} \varphi^{\frac{4}{3}}}\left(\frac{\tan \varphi^{3}}{3}-\frac{\tan \varphi^{5}}{5}+\frac{\tan \varphi^{7}}{7}\right) \frac{\mathrm{I}}{\tan \varphi^{3}}=
$$

$\frac{4 \pi n}{\operatorname{cof} \varphi^{\frac{4}{3}}}\left(\frac{\mathrm{I}}{3}-\frac{\tan \phi^{2}}{5}+\frac{\tan \phi^{4}}{7}\right)$. When $\varphi=0, \mathrm{~F}=\frac{4 \pi n}{3} ;$
and fince $n=m \cdot \sqrt[3]{\frac{3}{4 \pi}}, \mathrm{~F}=\frac{4 \pi m}{3} \sqrt[3]{\frac{3}{4 \pi}}=m \sqrt[3]{\frac{64 \pi^{3} \cdot 3}{27 \cdot 4 \pi}}=$
$m \sqrt[3]{\frac{16}{9} \pi^{2}}$, which is the attraction at the furface of a fphere of the folidity m^{3}, as was already fhewn. This laft is the conclufion we had to expect, the fpheroid, when it ceafes to have any oblatenefs, becoming of neceflity a fphere.

IT is evident alfo, that the variations of φ will but little affect the magnitude of F, while φ and $\tan \varphi$ are fmall, as the leaft power of $\tan \varphi$ that enters into the value of F is the Square.

For, inftead of cof. $\phi^{-\frac{4}{3}}$, we may, when φ is very fmall, write $\mathrm{I}+\frac{2}{3} \tan \phi^{2} ;$ fo that $\mathrm{F}=4 \pi n\left(\mathrm{I}+\frac{2}{3} \tan \phi^{2}\right)\left(\frac{\mathrm{I}}{3}-\frac{\tan \phi^{2}}{5}\right.$ $\left.+\frac{\tan \varphi^{4}}{7^{*}}-, \& c.\right)$.

If the oblatenefs of a fpheroid diminifh, while its quantity of matter remains the fame, its attraction will increafe till the oblatenefs vanifh, and the fpheroid become a fphere, when the attraction at its poles, as we have feen, becomes a maximum. If the polar axis continue to increafe, the fphe-
roid becomes oblong, and the attraction at the poles again diminifhes. This we may fafely conclude from the law of continuity, though the oblong fpheroid has not been immediately confidered.

XVIII.

To find the force with which a particle of matter is attracted by a parallelepiped, in a direction perpendicular to any of its fides.

First, let EM (Fig. II.), be a parallelepiped, having the thicknefs CE indefinitely fmall, A, a particle fituated anywhere without it, and $A B$ a perpendicular to the plane CDMN. The attraction in the direction $A B$ is to be determined.

Let the folid EM be divided into columns perpendicular to the plane NE , having indefinitely fmall rectangular bafes, and let CG be one of thofe columns.

If the angle $C A B$, the azimuth of this column relatively to AB , be called z, CAD, its angle of elevation from A, e, and m^{2}, the area of the little rectangle CF ; then, as has been already fhewn, the attraction of the column CG, in the direction AC , is $\frac{m^{2}}{\mathrm{AC}}$. fin e; and that fame attraction, reduced to the direction
AB, is $\frac{m^{2}}{\mathrm{AC}} \cdot$ fin $e \cdot \operatorname{cof} z$. This is the element of the attraction of the folid, and if we call that attraction $f, \dot{f}=\frac{m^{2}}{\mathrm{AC}} \cdot \operatorname{fin} e \cdot \operatorname{cof} z_{0}$

$$
\text { Now, if } \mathrm{AB}=a \text {, becaufe } \mathrm{I}: \operatorname{cof} z:: \mathrm{AC}: \mathrm{AB}, \mathrm{AC}=\frac{a}{\operatorname{cor} z} ;
$$

fo that $\dot{f}=\frac{m^{2}}{a} \cdot \operatorname{fin} e \cdot \operatorname{cof} z^{2}$.

But $B C=a \cdot \tan z$; and therefore $K C$, the fluxion of $B C$, is
$=a \cdot \frac{\dot{z}}{\operatorname{cof} z^{2}} ;$ if, then, $\mathrm{CE}=n, m^{2}=\mathrm{CE} \times \mathrm{CK}=n a \cdot \frac{\dot{z}}{\operatorname{cof} z^{2}}$, and fubftituting this for m^{2}, we get $\dot{f}=n \dot{z}$. fin e.

Next, to exprefs fin e, in terms of z, if we make $\mathrm{E}=\mathrm{BAL}$, the angle fubtended by the vertical columns, when it is greateft, or the inclination of the plane ADM, to the plane ACN, then we may confider the angle CAD, as meafured by the fide of a right angled fpherical triangle, of which the other fide is $90-z$, and E the angle, adjacent to that fide, and therefore $\tan e=\operatorname{fin}(90-z) \cdot \tan \mathrm{E}=\operatorname{cof} z \cdot \tan \mathrm{E}$. But $\tan \mathrm{E}=$ $\tan \cdot \mathrm{BAL}=\frac{\mathrm{BL}}{\mathrm{BA}}=\frac{b}{a}$, fuppofing BL , or $\mathrm{CD}=b$.

Therefore $\tan e=\frac{b}{a} \operatorname{cof} z$, or $\frac{\operatorname{fin} e}{\operatorname{cof} e}=\frac{b}{a} \cdot \operatorname{cof} z$.
$\operatorname{Hence} \frac{\mathrm{fin} e^{2}}{\operatorname{cof} e^{2}}=\frac{b^{2}}{a^{2}} \cdot \operatorname{cof} z^{2}$, or $\frac{\operatorname{fin} e^{2}}{1-\operatorname{fin} e^{2}}=\frac{b^{2}}{a^{2}} \cdot \operatorname{cof} z^{2}$, and $\operatorname{fin} e^{2}=\frac{b^{2}}{a^{2}} \cdot \operatorname{cof} z^{2}-\operatorname{fin} e^{2} \cdot \frac{b^{2}}{a^{2}} \operatorname{cof} z^{2} ;$ and therefore fin $e=$ $\frac{\frac{b}{a} \cdot \operatorname{cof} z}{\sqrt{1+\frac{b^{2}}{a^{2}} \operatorname{cof} z^{2}}}$

If this value of fine be fubstituted for it, we have $\dot{f}=n \dot{x} \cdot \operatorname{fin} e=\frac{b n \dot{z} \operatorname{cof} z}{a \sqrt{I+\frac{b^{2}}{a^{2}} \operatorname{cof} z^{2}}}$.
$\operatorname{LEt} u=\operatorname{fin} z$, then $\dot{u}=\dot{z} \operatorname{cof} z$, and $\operatorname{cor} z^{2}=\mathrm{I}-u^{2} ;$ wherefore, again, by fubftitution, $\dot{f}=\frac{b n \dot{u}}{a \sqrt{\mathrm{I}+\frac{b^{2}}{a^{2}}\left(\mathrm{I}-u^{2}\right)}}=$ $\frac{b n \dot{u}}{\sqrt{a^{2}+b^{2}-b^{2} u^{2}}}$. Let $a^{2}+b^{2}$, or $\mathrm{AL}^{2}=c^{2}$, then $f=$ $\frac{b n \dot{u}}{\sqrt{c^{2}-b^{2} u^{2}}}=\frac{b n \dot{u}}{c \sqrt{\mathrm{I}-\frac{b^{2}}{c^{2}} u^{2}}}$.

IF, therefore, φ be fuch an arch, that $\frac{b u}{c}=\operatorname{fin} \varphi, \frac{b \dot{u}}{c}=$
Q. cor φ, and $\sqrt{1-\frac{b^{2}}{c^{2}} u^{2}}=\operatorname{cor} \varphi$, then $\frac{b, n \dot{u}}{c \sqrt{1-\frac{b^{2}}{c^{2}} u^{2}}}=$ $\frac{n \phi \operatorname{cof} \varphi}{\operatorname{cof} \phi}=n \dot{\varphi} . \quad$ Thus, $\dot{f}=n \dot{\phi}$, and $f=n \varphi+\mathrm{B}, \mathrm{B}$ being a conftant quantity.

Now, fince fin $\varphi=\frac{b u}{c}=\frac{b}{c}$ fin z, φ is nothing when z is nothing; and as f may be fuppofed to begin when z begins, we have likewife $\mathrm{B}=0$; and, $f=n \varphi=n$ multiplied into an arch, the fine of which is to the fine of z, in the given ratio of c to b. Or f is fuch that $=\operatorname{fin} \frac{f}{n}=\frac{b}{c} \times \frac{\mathrm{BC}}{\mathrm{AC}}=\frac{\mathrm{BL}}{\mathrm{AL}} \times \frac{\mathrm{BC}}{\mathrm{AG}}$.

$$
\text { VoL.VI.-P.II. } \quad \text { Ff }
$$

Multiply

Hence this rule, multiply the fine of the greateft elevation, into the fine of the greateft azimuth of the folid; the arch of which this is the fine, multiplied into the thicknefs of the folid, is equal to its attraction in the direction of the perpendicular from the point attracted.

The heighth and the length of the parallelepiped, are, therefore, fimilarly involved in the expreffion of the force, as they ought evidently to be from the nature of the thing.
XIX.

This theorem leads directly to the determination of the attraction of a pyramid, having a rectangular bafe, on a particles at its vertex. For if we confider EM (Fig. IT.) as a flice of a pyramid parallel to its bafe, A being the vertex, then the flice behind EM fubtending the fame angles that it does, will have its force of attraction $=n^{\prime} \varphi, n^{\prime}$ being its thicknefs, and fo of all the reft ; and, therefore, the fum of all thefe attractions, if p denote the whole height of the folid, or the perpendicular from A on its bafe, will be $p \varphi$. But as $n \varphi$ is only the attraction of the part HB , it muft be doubled to give the attraction of the whole folid EM, which is, therefore, $2 n \varphi$; and this muft again be doubled, to give the attraction of the part which is on the fide of AB , oppofite to EM ; thus the element of the attraction of the pyramid is $4 n \varphi$, and the whole attraction correfponding to the depth p, is $4 p$.

If the folid is the fructum of a pyramid whofe depth is p^{\prime}, and vertex A, the angle φ being determined as before, the attraction on A is $4 p^{\prime} \varphi$.

If we fuppofe BC and BL to be equal, and therefore the angle BAL $=$ the angle BAC, calling either of them η, then $\operatorname{fin} \varphi=\operatorname{fin} \eta^{2}$, by what has been already fhewn; and from this equation, as η is fuppofed to be given, φ is determined.

This expreffion for the attraction of an ifofceles pyramid, having a rectangular bafe, may be of ufe in many computations concerning the attraction of bodies.
If the folidity of the pyramid be given, from the equations $f=4 \rho \varphi$, and $\operatorname{fin} \varphi=\operatorname{fin} \eta^{2}$, we may determine η, and p, that is, the form of the pyramid when f is a maximum.

Let the folidity of the pyramid $=m^{3}$, then p, being the altitude of the pyramid, and η half the angle at the vertex $p \tan n=$ half the fide of the bafe, (which is a fquare), and therefore the area of the bafe $=4 p^{2} \tan \eta^{2}$, and the folidity of the pyramid $\frac{4}{3} p^{3} \tan \eta^{2}$; fo that $\frac{4}{3} p^{3} \tan \eta^{2}=m^{3}$.

Now $\tan \eta^{2}=\frac{\operatorname{fin} \eta^{2}}{\operatorname{cof} \eta^{2}}$ and $\operatorname{fin} \varphi=$ fin η^{2}, alfo $I-\operatorname{fin} \varphi=$ $I-\operatorname{fin} \eta^{2}=\operatorname{cof} \eta^{2}$, therefore $\tan \eta^{2}=\frac{\operatorname{fin} \varphi}{I-\operatorname{fin} \varphi} ;$ fo that $m^{3}=$ $\frac{4}{3} p^{3} \cdot \frac{\operatorname{fin} \varphi}{\mathrm{I}-\mathrm{fin} \varphi}$, and $p^{3}=\frac{3}{4} m^{3} \cdot \frac{\mathrm{x}-\mathrm{fin} \varphi}{\operatorname{fin} \varphi}$, or $p=$ $m \cdot \sqrt{\frac{3(\mathrm{I}-\operatorname{fin} \varphi)}{4 \mathrm{fin} \varphi}}$; we have, therefore, f, that is $4 p \varphi=$ $4 m \varphi \sqrt[3]{\frac{3 \cdot(\mathrm{r}-\mathrm{fin} \varphi)}{4 \operatorname{fin} \varphi}}$. This laft is, therefore, a maximum Ff ${ }_{2}$
by hypothefis ; and, confequently, its cube, or $64 m^{3} \varphi^{3} \times$ $\frac{3(\mathrm{I}-\operatorname{fin} \varphi)}{4 \operatorname{fin} \varphi}$, or omitting the conftant multipliers, $\varphi^{3} \cdot \frac{\mathrm{I}-\mathrm{fin} \varphi}{\operatorname{fin} \varphi}$ muft be a maximum.

If we take the fluxion of each of thefe multipliers, and divide it by the multiplier itfelf, and put the fum equal to nothing, we fhall have, $\frac{3 \dot{\varphi}}{\varphi}-\frac{\dot{\phi} \operatorname{cof} \varphi}{I-\operatorname{fin} \phi}-\frac{\dot{\varphi} \operatorname{cof} \phi}{\operatorname{fin} \varphi}=0$, or $\frac{3}{\varphi}=$ $\frac{\operatorname{cof} \varphi}{1-\operatorname{fin} \varphi}+\frac{\operatorname{cof} \varphi}{\operatorname{fin} \varphi}=\frac{\operatorname{cof} \varphi \cdot \operatorname{fin} \varphi+\operatorname{cof} \varphi-\operatorname{cof} \varphi \cdot \operatorname{fin} \varphi}{\operatorname{fin} \varphi(\mathrm{I}-\operatorname{fin} \varphi)}=$ $\frac{\operatorname{cof} \varphi}{\operatorname{fin} \varphi(\mathrm{I}-\operatorname{fin} \varphi)}$, and inverting thefe fractions $\frac{\varphi}{3}=$ $\frac{\operatorname{fin} \varphi(1-\operatorname{fin} \varphi)}{\operatorname{cof} \varphi}=\tan \varphi(1-\operatorname{fin} \varphi)$, or $\varphi=3 \tan \varphi(1-\operatorname{fin} \varphi)$.

The folution of this tranfcendental equation may eafily be obtained, by approximation, from the trigonometric tables, if we confider that I - $\mathrm{fin} \varphi$ is the coverfed fine of φ. Thus taking the logarithms, we have $\mathrm{L} \varphi=\mathrm{L} \cdot 3+\mathrm{L} \cdot \tan \varphi+\mathrm{L} . \operatorname{coverf} . \rho$. From which, by trial, it will foon be difcovered, that φ is nearly equal to an arch of 4°. To obtain a more exact value of φ, let $\varphi=\operatorname{arc}\left(4^{\circ}+\beta\right), \beta$ being a number of minutes to be determined. Becaufe arc $\cdot 48^{\circ}=.83775^{\circ}$, and $\operatorname{arc}\left(48^{\circ}+\beta\right)=.8377580+.0002909 \beta$, therefore \log. $\operatorname{arc}\left(48^{\circ}+\beta\right)=9.9231186+.0001506 \beta$.

In the fame manner,

$$
\mathrm{L} \tan \left(4^{\circ}+\beta\right)=0.0455^{\circ} 26+.0002540 \beta
$$

and L. coverf. $\left(48^{\circ}+\beta\right)=9.4096883-.0003292 \beta$

$$
\begin{aligned}
& \mathbf{L}_{3}=\frac{0.4771213}{9.93^{2} 37^{22}-.000075^{2} \beta} \\
& \mathbf{S u m}
\end{aligned}
$$

Subtract $\log \operatorname{arc}\left(48^{\circ}+\beta\right)=9.9231186+.0001506 \beta$
Remainder $=\frac{.0092536-.000225^{8} \beta}{=0}$.
Whence, $\beta=\frac{92536}{225^{8}}=4 \mathrm{I}^{\prime}$ nearly.
A second approximation will give a correction $=-20^{\prime \prime}$, fo that $\varphi=\operatorname{arc} \cdot 48^{\circ} \cdot 40^{\prime} \frac{2}{3}$; and fince $\operatorname{fin} \varphi=\operatorname{fin} \eta^{2}, \operatorname{fin} \eta=$ $v \operatorname{fin} \varphi$, fo that $\eta=76^{\circ} \cdot 30^{\circ}$, and 2η, or the whole angle of the pyramid $=153^{\circ}$.
An ifofecles pyramid, therefore, with a fquare bafe, will attract a particle at its vertex with greateft force, when the inclination of the oppofite planes to one another is an angle of 153°.

XX.

To return to the attraction of the parallelepiped, it may be remarked, that the theorem concerning this attraction already inveftigated, § xvin. though it applies only to the cafe when the parallelepiped is indefinitely thin, leads, neverthelefs, to fome very general conclufions. It was fhewn, that the attraction which the folid EL (Fig.ri.) exerts on the particle A, in the direction AB , is $n . \varphi, \varphi$ being an arch, fuch that $\operatorname{fin} \varphi=$ fin $B A C$ $X \operatorname{fin} B A L=\operatorname{fin} z . \operatorname{fin} E$; and, therefore, if B be the centre of
a rectangle, of which the breadth is 2 BC , and the height 2 BL , the attraction of that plane, or of the thin folid, having that plane for its bafe, and n, for its thicknefs, is $4 n \cdot \varphi$. Now, φ, which is thus proportional to the attraction of the plane, is alv. fo proportional to the fpherical furface, or the angular fpace, fubtended by the plane at the centre A.

For fuppofe PSQ (Fig. 12.) and OQ to be two quadrants of great circles of a fphere, cutting one another at right angles in Q; let $\mathrm{QS}=\mathrm{E}$, and $\mathrm{QR}=z$. Through S , and O the pole of PSQ, draw the great circle OST, and through P and R , the great circle PTR, interfecting OS in T. The fpherical quadrilateral SQRT, is that which the rectangle CL (Fig. II.) would fubtend, if the fphere had its centre at A, if the point Q was in the line $A B$, and the circle $P Q$, in the vertical plane $A B L$.

Now, in the fpherical triangle PST, right angled at S , cof T $=\operatorname{cof} P S \times$ fin $S P T=$ fin $Q S \times$ fin $Q R=$ fin $E \times$ fin $\%$. But this is alfo the value of fin φ, and therefore φ is the complement of the angle T, or $\varphi=9 \circ-\mathrm{T}$.

But the area of the triangle $P Q R$, in which both Q and R are right angles, is equal to the rectangle under the arch $Q R$, which meafures the angle QPR, and the radius of the fphere. Alfo the area SPT $=\operatorname{arc} .\left(\mathrm{S}+\mathrm{T}+\mathrm{P}-\mathrm{I} 80^{\circ}\right) r$; that is, becaufe S is a right angle, $=\operatorname{arc} \cdot(\mathrm{T}+\mathrm{P}-90) \times r=$ arc. $(\mathrm{T}+\mathrm{QR}-90) \times r$; and taking this away from the triangle PQR , there remains the area $\mathrm{QSTR}=\operatorname{arc} \cdot(\mathrm{QR}-\mathrm{T}-\mathrm{QR}$ $\left.+90^{\circ}\right) \times r=(90-\mathrm{T}) r=\varphi \times r$. The arch φ, therefore, multiplied into the radius, is equal to the fpherical quadrilateral QSTR, fubtended by the rectangle BD.

This propofition is evidently applicable to all rectangles whatfoever. For when the point B, where the perpendicular from A meets the plane of the rectangle, falls anywhere, as in Fig. I5. then it may be fhewn of each of the four rectangles
$\mathrm{BD}, \mathrm{BM}, \mathrm{BM}^{\prime}, \mathrm{BD}^{\prime}$, which make up the whole rectangle DM^{\prime}, that its attraction in the direction $A B$ is expounded by the area of the fpherical quadrilateral fubtended by it, and, therefore, that the attraction of the whole rectangle MD^{\prime}, is expounded by the fum of thefe fpherical quadrilaterals, that is, by the whole quadrilateral fubtended by MD^{\prime}. In the fame manner, if the perpendicular from the attracted particle, were to meet the plane without the rectangle MD^{\prime}, the difference between the fpherical quadrilaterals fubtended by MC and M'C, would give the quadrilateral, fubtended by the rectangle MD^{\prime}, for the value of the attraction of that rectangle.

Therefore, in general, if a particle A, gravitate to a rectangular plane, or to a solid indefinitely thin, contained between two parallel rectangular planes, its gravitation, in the line perpendicular to those planes, will be equal to the thickness of the solid, muttiplied into the area of the spherical quadrilateral subtended by either of those planes at the centre A.

The famer may be extended to all planes, by whatever figure they be bounded, as they may all be refolved into rectangles of indefinitely frimall breadth, and having their lengths parallel to a fraight line given in pofition.

The gravitation of a point toward any plane, in a line perpendicular to it; is, therefore, equal to n, a quantity that expreffes the intenfity of the attraction, multiplied into the area of the fpherical figure, or, as it miay be called, the angular fpace fubtended by the given plane.

Thus, in the cafe of a triangular plane, where the angles fubtended at A , by the fides of the triangle, are a, b and c; fince Euler has demonftrated * that the area of the fpherical triangle contained by thefe arches, is equal to the rectangle under

[^27]der the radius, and an arch Δ, fuch that $\operatorname{cof} \frac{1}{2} \Delta=$ $\frac{1+\operatorname{cof} a+\operatorname{cof} b+\operatorname{cof} c}{4 \cos \frac{1}{2} a \cdot \cos \frac{1}{2} b \cdot \operatorname{cof} \frac{1}{2} c}$; if Δ be computed, the attraction $=n . \Delta$.

In the cafe of a circular plane, our general propofition agrees with what SirIsaac Newton has demonftrated. IfCFD (Fig. I3.) be a circle, BA a line perpendicular to the plane of it from its centre B; A, a particle anywhere in that line; the force with which A is attracted, in the direction $A B$, is $2 \pi\left(I-\frac{A B}{A D}\right)$ *, in which the multiplier 2π is fupplied, being left out in the inveftigation referred to, where a quantity only proportional to the attraction is required. Now $\frac{A B}{A D}$ is the cofine of the angle $B A D$, and, therefore, $I-\frac{A B}{A D}$ is its verfed fine; and, therefore, if the arch GEK be defcribed from the centre A; with the radius I, and if the fine $G H$, and the chord $E G$ be drawn, $H E$ is the verfed fine of $B A D$, and the attraction $=2 \pi \mathrm{EH}$. But 2.EH = EG^{2}, becaufe 2 is the diameter of the circle GEK; therefore the attraction $=\pi . \mathrm{EG}^{3}=$ the area of the circle of which EG is the radius, or the fpherical furface included by the cone, which has A for its vertex and the circle CFD for its bafe.

[^28]
XXI.

From the general propofition, that the attraction of any plane figure, whatever its boundary may be, in a line perpendicular to the plane, is at any diftance proportional to the angular fpace, or to the area of the fpherical figure which the plane figure fubtends at that diftance, we can eafily deduce a demonftration of this other propofition, that whatever be the figure of any body, its attraction will decreafe in a ratio that approaches continually nearer to the inverfe ratio of the fquares of the diftances, as the diftances themfelves are greater. In other words, the inverfe ratio of the fquares of the diftances, is the limit to which the law by which the attraction decreafes, continually approaches as the diftances increafe, and with which it may be faid to coincide when the diftances are infinitely great.

This propofition, which we ufually take for granted, without any other proof, I believe, then, fome indiftinct perception of what is required by the law of continuity, may be rigorounly demonftrated from the principle juft eftablifhed.

Let B (Fig. 14.) be a body of any figure whatfoever, A a particle fituated at a diftance from B vaftly greater than any of the dimenfions of \mathbf{B}, fo that \mathbf{B} may fubtend a very fmall angle at A; from C, a point in the interior of the body, fuppofe its centre of gravity, let a ftraight line be drawn to A , and let A^{\prime} be another point, more remote from B than A is, where a particle of matter is alfo -placed.

The directions in which A and A^{\prime} gravitate to B , as they muft tend to fome point within B, muft either coincide with AC , or make a very fmall angle with it, which will be always the lefs, the greater the diftance.
Vol. VI.-P.II.
G g

Let the body B be cut by two planes, at right angles to AC , and indefinitely near to one another, fo as to contain between them a flice or thin fection of the body, to which A and A^{\prime} may be confidered as gravitating, nearly in the direction of the line AG perpendicular to that fection.

The gravitation of A, therefore, to the aforefaid fection, will be to that of A^{\prime} to the fame, as the angular fpace fubtended by that fection at A, to the angular fpace fubtended by it at A^{\prime}. But thefe angular fpaces, when the diftances are great, are inverfely as the fquares of thofe diftances, and therefore, alfo, the gravitation of A toward the fection, will be to that of A^{\prime}, inverfely as the fquares of the diftances of A and A^{\prime} from the fection. Now thefe diftances may be accounted equal to CA and CA^{\prime}, from which they can differ very little, wherever the fection is made.

The gravitations of A and A^{\prime} toward the faid fection, are, therefore, as $\frac{I}{\mathrm{AC}^{2}}$ to $\frac{\mathrm{I}}{\mathrm{A}^{\prime} \mathrm{C}^{2}}$. And the fame may be proved of the gravitation to all the other fections, or laminæ, into which the body can be divided by planes perpendicular to AC ; therefore the fums of all thefe gravitations, that is, the whole gravitations of A to B, and of A^{\prime} to B, will be in that fame ratio, that is, as $\frac{I}{\mathrm{AC}^{2}}$ to $\frac{I}{\mathrm{~A}^{\prime} \mathrm{C}^{2}}$, or inverfely as the fquares of the diftances from C. Q.E. D.

It is evident, that the greater the diftances $A C, A^{\prime} C$ are, the nearer is this propofition to the truth, as the quantities rejected in the demonftration, become lefs in refpect of the reft, in the fame proportion that $A C$ and $A^{\prime} C$ increafe.

It is here affumed, that the angular fpace fubtended by the fame plane figure, is inverfely as the fquare of the diftance.

This propofition may be proved to be rigoroufly true, if we confider the inverfe ratio of the fquares of the diftances, as a limit to which the other ratio conftantly converges.

It is a propofition alfo ufually laid down in optics, where the visible space fubtended by a furface, is the fame with what we have here called the angular space fubtended by it , or the portion of a fpherical fuperficies that would be cut off by a line paffing through the centre of the fphere, and revolving round the boundary of the figure. The centre of the fphere is fuppofed to coincide with the eye of the obferver, or with the place of the particle attracted, and its radius is fuppofed to be unity.

The propofitions that have been juft now demonftrated concerning the attraction of a thin plate contained between parallel planes, have an immediate application to fuch inquiries concerning the attraction of bodies, as were lately made by Mr Cavendish.
In fome of the experiments inflituted by that ingenious and profound philofopher, it became neceffary to determine the attraction of the fides of a wooden cafe, of the form of a parallel; epiped, on a body placed anywhere within it. (Philofophical Tranfactions, 1798, p. 523.). The attraction in the direction perpendicular to the fide, was what occafioned the greateft difficulty, and Mr Cavendish had recourfe to two infinite feries, in order to determine the quantity of that attraction. The determination of it, from the preceding theorems, is eafier and more accurate.

Let MD' (Fig. 15.) reprefent a thin rectangular plate, A, a particle attracted by it, AB a perpendicular on the plane MD^{\prime}, NBC, LBL', two lines drawn through B parallel to the fides of the rectangle MD'. Let AC, AL, AN, AL', be drawn.

Then, if we find φ fuch that fin $\varphi=\frac{\mathrm{BL}}{\mathrm{AL}} \times \frac{\mathrm{BC}}{\mathrm{AC}}$, the attraction of the rectangle CL is $n . \varphi, n$ denoting the thicknefs of the plate.
So alfo, if fin $\varphi^{\prime}=\frac{\mathrm{BL}}{\mathrm{AL}} \times \frac{\mathrm{BN}}{\mathrm{AN}}$, the attraction of LN is $=$ $n \cdot \varphi^{\prime}$.
I_{F} fin $\varphi^{\prime}=\frac{\mathrm{BN}}{\mathrm{AN}} \times \frac{\mathrm{BL}^{\prime}}{\mathrm{AL}^{\prime}}$ the attraction of NL^{\prime} is $=n \cdot \varphi^{\prime \prime}$.
Lastly, If fin $\phi^{\prime \prime \prime}=\frac{\mathrm{BL}^{\prime}}{\mathrm{AL}^{\prime}} \times \frac{\mathrm{BC}}{\mathrm{AC}}$, the attraction of $\mathrm{L}^{\prime} \mathrm{C}=$ n. $\phi^{\prime \prime \prime}$.

Thus the whole effect of the plane MD^{\prime}, or $f=$ $n\left(\varphi+\phi^{\prime}+\phi^{\prime \prime}+\phi^{\prime \prime}\right)$.

We may either fuppofe $\varphi, \phi^{\prime} \& c$. defined as above, or by the following equations, where $\eta, n^{\prime}, \eta^{\prime \prime}, \& c$. denote the angles fubtended by the fides of the rectangles that meet in B, beginning with BC, and going round by L, N and L^{\prime} to C .

$$
\begin{aligned}
& \operatorname{fin} \varphi=\operatorname{fin} \eta \cdot \operatorname{fin} \eta^{\prime} \\
& \operatorname{fin} \varphi^{\prime}=\operatorname{fin} \eta^{\prime} \cdot \operatorname{fin} \eta^{\prime \prime} \\
& \operatorname{fin} \varphi^{\prime \prime}=\operatorname{fin} \eta^{\prime \prime} \cdot \operatorname{fin} \eta^{\prime \prime \prime} \\
& \operatorname{fin} \varphi^{\prime \prime \prime}=\operatorname{fin} \eta^{\prime \prime \prime} \cdot \operatorname{fin} \eta^{\prime} .
\end{aligned}
$$

If the computation is to be made by the natural fines, it will be better to ufe the following formulx:

$$
\begin{aligned}
& \operatorname{fin} \varphi=\frac{1}{2} \operatorname{cof}\left(\eta-\eta^{\prime}\right)-\frac{1}{2} \operatorname{cof}\left(\eta+\eta^{\prime}\right) \\
& \operatorname{fin} \varphi^{\prime}=\frac{1}{2} \operatorname{cof}\left(\eta^{\prime}-\eta^{\prime \prime}\right)-\frac{1}{2} \operatorname{cof}\left(\eta^{\prime}+\eta^{\prime \prime}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{fin} \varphi^{\prime \prime}=\frac{\mathrm{T}}{2} \operatorname{cof}\left(\eta^{\prime \prime}-\eta^{\prime \prime \prime}\right)-\frac{\mathrm{T}}{2} \operatorname{cof}\left(\eta^{\prime \prime}+\eta^{\prime \prime \prime}\right) \\
& \operatorname{fin} \varphi^{\prime \prime \prime}=\frac{\mathrm{T}}{2} \operatorname{cof}\left(\eta^{\prime \prime \prime}-\eta\right)-\frac{\mathrm{T}}{2} \operatorname{cof}\left(\eta^{\prime \prime \prime}+\eta\right) .
\end{aligned}
$$

By either of thefe methods, the determination of the attraction is reduced to a very fimple trigonometrical calculation.

XXII.

The preceding theorems will alfo ferve to determine the attraction of a parallelepiped, of any given dimenfions, in the direction perpendicular to its fides.
Let BF (Fig. i6.) be a parallelepiped, and A, a point in BK, the interfection of two of its fides, where a particle of matter is. fuppofed to be placed; it is required to find the attraction in the direction AB .

Though the placing of A in one of the interfections of the. planes, feems to limit the inquiry, it has in reality no fuch effect; for wherever A be with refpect to the parallelepiped, by drawing from it a perpendicular to the oppofite plane of the folid, and making planes to pafs through this perpendicular, the whole may be divided into four parallelepipeds, each having $A B$ for an interfection of two of its planes; and being, therefore, related to the given particle, in the fame way that the parallelepiped BF is to A .
Let GH be any fection of the folid parallel to EC, and let it reprefent a plate of indefinitely fmall thicknefs.

Let $A B^{\prime}=x, \mathrm{~B}^{\prime}$ b, the thicknefs of the plate $=\dot{x}$. Then φ being fo determined, that fin $\varphi=$ fin $B^{\prime} A H \times$ fin $B^{\prime} A G$, the attraction of the plate GH is $\varphi \dot{x}$, which, therefore, is the element
ment of the attraction of the folid. If that attraction $=F$, then $\mathrm{F}=\int \varphi \dot{x}$. But $\int \phi \dot{x}=\varphi x-\int x \dot{\varphi}$; and the determination of F depends, therefore, on the integration of $x \dot{\varphi}$.

Now $\dot{\phi} \operatorname{cof} \varphi=\overline{\operatorname{fin} \varphi}$, and, therefore, $x \dot{\varphi}=\frac{\overline{x \sin \varphi}}{\operatorname{cof} \varphi}$.
If $B^{\prime} G=b$, and $B^{\prime} H=\beta$, then fin $B^{\prime} A G=\frac{b}{A G}=\frac{b}{\sqrt{b^{2}+x^{2}}}$, and $\operatorname{fin} \mathrm{B}^{\prime} \mathrm{AH}=\frac{\beta}{\mathrm{AH}}=\frac{\beta}{\sqrt{\beta^{2}+x^{2}}}$; fo that $\operatorname{fin} \varphi=\frac{b}{\sqrt{b^{2}+x^{2}}} \times$

$$
\frac{\beta}{\sqrt{\beta^{2}+x^{2}}}, \text { and } \overline{\operatorname{fin} \phi}=\frac{b^{2} \beta^{2}}{\left(b^{2}+x^{2}\right)\left(\beta^{2}+x^{2}\right)}
$$

Hence, $\operatorname{cof} \varphi^{2}=\mathrm{I}-\operatorname{fin} \varphi^{2}=\mathrm{I}-\frac{b^{2} \beta^{2}}{\left(b^{2}+x^{2}\right)\left(\beta^{2}+x^{2}\right)}=$
$\frac{x^{2}\left(b^{2}+\beta^{2}+x^{2}\right)}{\left(b^{2}+x^{2}\right)\left(\beta^{2}+x^{2}\right)}$, and $\cos \varphi=\frac{x \sqrt{b^{2}+\beta^{2}+x^{2}}}{\sqrt{\left(b^{2}+x^{2}\right)\left(\beta^{2}+x^{2}\right)}}$.
Again, becaufe fin $\varphi=\frac{b}{\sqrt{b^{2}+x^{2}}} \cdot \frac{\beta}{\sqrt{\beta^{2}+x^{2}}}, \frac{\cdot}{\operatorname{fin} \varphi}=\frac{-b x \dot{x}}{\left(b^{2}+x^{2}\right)^{\frac{3}{2}}}$ $\times \frac{\beta}{\left(\beta^{2}+x^{2}\right)^{\frac{1}{2}}}-\frac{\beta x \dot{x}}{\left(\beta^{2}+x^{2}\right)^{\frac{3}{2}}} \times \frac{b}{\left(b^{2}+x^{2}\right)^{\frac{1}{2}}}$.

Hence $\frac{\frac{\dot{f i n} \varphi}{\operatorname{cof} \varphi} \text { or } \dot{\varphi}=}{}$

$$
\left(\frac{-b \beta x \dot{x}}{\left(b^{2}+x^{2}\right)^{\frac{3}{2}} \times\left(\beta^{2}+x^{2}\right)^{\frac{1}{2}}}-\frac{b \beta x \dot{x}}{\left(\beta^{2}+x^{2}\right)^{\frac{3}{2}} \times\left(b^{2}+x^{2}\right)^{\frac{3}{2}}}\right)
$$

$$
\begin{aligned}
& \times \frac{\left(b^{2}+x^{2}\right)^{\frac{1}{2}}\left(\beta^{2}+x^{2}\right)^{\frac{1}{2}}}{x \sqrt{b^{2}+\beta^{2}+x^{2}}}=-\frac{b \beta x}{\left(b^{2}+x^{2}\right)\left(c^{2}+x^{2}\right)^{\frac{1}{2}}}- \\
& \frac{b \beta \dot{x}}{\left(\beta^{2}+x^{2}\right)\left(c^{2}+x^{2}\right)^{\frac{1}{2}}}, c^{2} \text { being put for } b^{2}+\beta^{2} .
\end{aligned}
$$

Therefore $x \dot{\varphi}=-\frac{b \beta x \dot{x}}{\left(b^{2}+x^{2}\right)\left(c^{2}+x^{2}\right)^{\frac{1}{2}}}-$
$\frac{b \beta x x}{\left(\beta^{2}+x^{2}\right)\left(c^{2}+x^{2}\right)^{\frac{1}{2}}}$.
Now, $\int \frac{-b \beta x \dot{x}}{\left(b^{2}+x^{2}\right)\left(c^{2}+x^{2}\right)^{\frac{1}{2}}}=b \log \frac{\beta+\sqrt{c^{2}+x^{2}}}{\sqrt{b^{2}+x^{2}}}+\mathrm{C}$;
(Harmonia Menfurarum, Form. Ix.) ; and $\int \frac{-b \beta x \dot{x}}{\left(b^{2}+x^{2}\right)\left(c^{2}+x^{2}\right)^{\frac{1}{2}}}=$
$\beta \log \frac{b+\sqrt{c^{2}+x^{2}}}{\sqrt{\beta^{2}+x^{2}}}+C$
Therefore $\int x \dot{\phi}=$

$$
\begin{aligned}
& b \log \frac{\beta+\sqrt{c^{2}+x^{2}}}{\sqrt{b^{2}+x^{2}}}+\beta \log \frac{b+\sqrt{c^{2}+x^{2}}}{\sqrt{\beta^{2}+x^{2}}}+C, \text { and } \int \varphi \dot{x}= \\
& \varphi x-b \log \frac{\beta+\sqrt{c^{2}+x^{2}}}{\sqrt{b^{2}+x^{2}}}-\beta \log \frac{b+\sqrt{c^{2}+x^{2}}}{\sqrt{\bar{\beta}^{2}+x^{2}}}-\mathrm{C} .
\end{aligned}
$$

I_{F}, then, we determine C, fo that the fluent may begin at K, and end at B ; if, alfo, we make η the value of φ, that correfponds to AB or a; and η^{\prime}, the value of it that correfponds to

AK

AK or a^{\prime}, we have the whole attraction of the folid, or $\mathbf{F}=$

$$
\begin{aligned}
& n a-n^{\prime} a^{\prime}-b \log \frac{\beta+\sqrt{c^{2}+a^{2}}}{\sqrt{b^{2}+a^{2}}} \times \frac{\sqrt{b^{2}+a^{2}}}{\beta+\sqrt{c^{2}+a^{\prime 2}}} \\
&-\beta \log \frac{b+\sqrt{c^{2}+a^{2}}}{\sqrt{\beta^{2}+a^{2}}} \times \frac{\sqrt{\beta^{2}+a^{\prime 2}}}{b+\sqrt{c^{2}+a^{\prime 2}}}
\end{aligned}
$$

I_{F}, in this value of F , we invert the ratios, in order to make the logarithms affirmative, and write like quantities, one under the other, we have $\mathrm{F}=\eta a-\eta^{\prime} a^{\prime}$

$$
\begin{aligned}
& +b \log \frac{\beta+\sqrt{c^{2}+a^{\prime^{2}}}}{\beta+\sqrt{c^{2}+a^{2}}} \times \frac{\sqrt{b^{2}+a^{2}}}{\sqrt{b^{2}+a^{\prime 2}}} \\
& +\beta \log \frac{b+\sqrt{c^{2}+a^{\prime 2}}}{b+\sqrt{c^{2}+a^{2}}} \times \frac{\sqrt{\beta^{2}+a^{2}}}{\sqrt{\beta^{2}+a^{\prime 2}}}
\end{aligned}
$$

The firft two terms of this expreffion deferve particular attention, as η is an arch, fuch that fin $\eta=$ fin BAE \times fin BAC; therefore, by what has been before demonftrated, x is the meafure of the angular fpace fubtended at A by the rectangle BD. The firft term in the value of F, therefore, is the product of the diftance $A B$, into the angular fpace fubtended by the rectangle BD. In like manner, the fecond term, or $n^{\prime} a^{\prime}$, is the product of the diftance AK, into the angular fpace fubtended by the rectangle KF .

The relation of the quantities expreffing the ratios, in the two logarithmic terms, will be beft conceived by fubftituting for the algebraic quantities the lines that correfpond to them in the diagram. Becaufe $c^{2}=b^{2}+\beta^{2}=\mathrm{EB}^{2}+$ BC^{2}
$\mathrm{BC}^{2}=\mathrm{EC}^{2}$, therefore $c=\mathrm{EC}$ or BD . So alfo, $c^{2}+a^{2}=$ $\mathrm{BD}^{2}+\mathrm{BA}^{2}=A D^{i}$, becaufe ABD is a right angle, \&c. Thus,

$$
\begin{gathered}
\mathrm{F}=\eta a-n^{\prime} a^{\prime}+\mathrm{BE} \cdot \log \frac{(\mathrm{AF}+\mathrm{FN}) \mathrm{AE}}{(\mathrm{AD}+\mathrm{DE})(\mathrm{AN}}+ \\
\mathrm{BC} \cdot \log \frac{(\mathrm{AF}+\mathrm{FM}) \mathrm{AC}}{(\mathrm{AD}+\mathrm{DC}) \mathrm{AM}^{.}}
\end{gathered}
$$

This expreffion for the attraction of a parallelepiped, though confiderably complex, is fymmetrical in fo remarkable a degree, that it will probably be found much more manageable, in inveftigation, than might at firft be fuppofed. That it fhould be fomewhat complex, was to be expected, as the want of continuity in the furface by which a folid is bounded, cannot but introduce a great variety of relations into the expreffion of its attractive force. The farther fimplification, however, of this theorem, and the application of it to other problems, are fubjects on which the limits of the prefent paper will not permit us to enter. The determinations of certain maxima depend on it, fimilar to thofe already inveftigated. It points at the method of finding the figure, which a fluid, whether elartic or unelaftic, would affume, if it furrounded a cubical or prifmatic body by which it was attracted. It gives fome hopes of being able to determine generally the attraction of folids bounded by any planes whatever; fo that it may, fome time or other, be of ufe in the Theory of Chryftallization, if, indeed, that theory fhall ever be placed on its true bafis, and founded, not on an hypothefis purely Geometrical, or in fome meafure arbitrary, but on the known Principles of Dynamicks.

> VoL.VI.—P.II.

Hh
V.

$$
i_{1}+\frac{1+}{4} T^{3} \text { sa }
$$

14.

V. An Account of a very extraordinary Effect of Refraction, observed at Ramsgate, by the Reverend S. Vince, A. M. F.R.S. Plumian Professor of Astronomy and Experimental Philosophy at Cambridge. Communicated by Patrick Wilson, Esq; F.R.S. Edin.

[Read 5th January 1807.]

THE phenomenon about to be defcribed, was feen on Auguft 6. 1806, about feven in the evening; the air being very ftill, and a little hazy. The tops of the four turrets of Dover Caftle ufually appear above the hill, lying between Ramfgate and Dover; but, at the above-ftated time, not only the tops were vifible, but the whole of the Caftle, appearing as if it were fituated on the fide of the hill next to Ramfgate, and rifing as much above the hill as ufual.

Let AB (Plate VIII. Fig. r.) reprefent the termination of the hill; v, x, z, y, the tops of the four turrets of the Caftle, as they ufually appear. But, at the time above mentioned, befides thus feeing the turrets, the whole Cafle $m n r s$ was vifible, and appeared as if it had been brought over and placed on the Ramfgate, fide of the hill, as reprefented in the figure. This phenomenon was fo very fingular and unexpected, that, at firf fight, I thought it to be fome illufion; but, upon continuing my obferHh2 vation,
vation, I was fatisfied that it was a real image of the Caftle. Upon this I gave the telefcope to a perfon prefent, who, upon attentive examination, faw alfo a very clear image of the Caftle, exactly as I had defcribed it. He continued to obferve it for about twenty minutes, during which time the appearance remained precifely the fame; but rain coming on, we were prevented from making any further obfervations. Between us and the land, from which the hill rifes, there was about fix miles of fea; and from thence to the top of the hill about the fame diftance, and we were about feventy feet above the furface of the water.

The hill itfelf did not appear through the image, which, it might have been expected to do. The image of the Caftle appeared very ftrong, and well defined; and although the rays from the hill behind it, muft undoubtedly have come to the eye, yet fo it was, that the ftrength of the image of the Caftle fo far obfcured the back-ground, that it made no fenfible impreffion upon us. Our attention was of courfe principally directed to the image of the Caftle; but if the hill behind had been at all vifible, it could not have efcaped our obfervation, as we continued to look at it for a confiderable time with a good telefcope.
A phenomenon of this kind I do not remember to have feen defcribed; and it muft have been a very extraordinary; ftate of the air to have produced it It is manifet, that a ray of light coming from the top of the hill, muft have come to the eye in a curve lying between the two curves defcribed by the rays coming from the top and botton of the Caftle, in order to produce the effect.

Let AB (Plate VIII. Fig. 2.) reprefent the Cafle, EC the Cliff (at Ramfgate), BTD the Hill, DC the Sea, E the place of the fectator, T the top of the hill, $\mathrm{A} y v \mathrm{E}$ a ray of light coming from the top of the Caftle to the fpectator, BxwE
$\mathrm{B} x w \mathrm{E}$ a ray coming from the bottom, and $\mathrm{T} x \approx \mathrm{E}$ a ray coming from the top of the hill, falling upon the eye at E , in a direction between thofe of the other two rays; then it is manifeft, that fuch a difpofition of the rays will produce the obferved appearance. To effect this, there muft have been a very quick variation of the denfity of the air which lay between the two curves $y v \mathrm{E}, x w \mathrm{E}$, fo as to increafe the curvature of the ray $\mathrm{T} x z \mathrm{E}$, after it cuts $\mathrm{B} w \mathrm{E}$ in x, by which means, the ray $\mathrm{T} x z \mathrm{E}$, might fall between the other two rays. The phenomenon cannot be otherwife accounted for. As there are not, that I know of, any records of a phenomenon of this nature, the conftitution of the air muft have been fuch as but very rarely happens, or fuch an appearance would before have been taken notice of.

The phenomena which I faw at the fame place, and which I defcribed in the Philofophical Tranfactions of the Royal Society for the year 1798, I explained upon the fame principle, that of a quick variation of denfity; and this was afterwards confirmed by fome very ingenious experiments made by Dr Wollaston. Perhaps this phenomenon may afterwards be fubjected to an experimental illuftration.

5

 ine f

Fig. 1.

Fig. 2.

VI. Some Account of the Large Snake Aleafazagur, (Boa Constrictor of Linneus), found in the Province of Tipperah. Communicated by Mr James Russell. Extracted from the Memorandum Book of John Co ${ }^{\text {ans }}$ e Scott, Esq.
[Read 28th April 1807].

February 1. 1787.

ALarge fnake of this fpecies was brought to Comillah. It meafured 15 feet 3 inches in length, and 18 inches in eircumference about the middle. This meafurement, however, varied confiderably by the wreathings and contortions it made, in order to free itfelf from confinement.

The elophagus, from the mouth to the pylorus, or bottom of the ftomach, meafured altogether 9 feet 3 inches, and was fo wide as to take in a man's head with eafe. The ftomach was eafily diftinguilhed by the thicknefs of its coats, or the number of rugæ on its internal furface. But there was no contraction at the cardia or entrance of the flomach. The outlet or pylorus, however, was fo narrow as hardly to admit two fingers.

The head of the faake was fmall in proportion to its body. And I was curions to obferve the mechanifm of the jaw, by which it can fo eafily take into its mouth any fubftance as large as the thickeft part of its body.

The lower jaw confifts of two bones, connected anteriorly by Ifin and liganents, which admit of eonfiderable diftenfori, fo that the anterior ends can be feparated an inch from each other. The pofterior extremity, or condyle of each lower jawbone, is likewife connected to the head in fuch a manner, as to allow of confiderable Teparation. The two bones which compore the uppet jaw, are capable only of a very fmall degree of feparation at the Yymphifis or anterior pait.
AThis fingular degree of laxity in the ftructure of the articulations, permits of a degree of diftenfion which is incompatible with the firmnefs requifite to perform the function of maftication.

$$
\text { July 7. } 1790 .
$$

A snake of the allea fpecies was brought in, of a very uncommon thicknefs in proportion to its length, which induced meito open it. A very large guana was extracted from the gullet and ftomach; for the animal was gorged to the throat. The guana, from the nofe to the tip of the tail, meafured 4 feet 3 inches, and in circumference round the belly 1 foot 6 inches, and yet the fnake, after the guana was taken out, meafured only 8 feet 6 inches in length.

The circumference of this fnake is not given; but if it bore the fame proportion to its length that it did in the former fnake, it would be nearly io inches. In this inftance, therefore, the fnake had fwallowed an animal of greater magnitude than itfelf almoft in the proportion of 9 to 5 .
On_{n} the 16th of the fame month another fnake was brought in, having nearly the fame appearance as the laft, but ftill more diftended. It was opened while yet alive, and an entire fawn of one year old extracted. The fawn meafured if foot 8 inches round the belly; and the extreme length of the fnake was only 9 feet 3 inches.

A snake of the fame fpecies was brought to Comillah and opened, from which a fawn was taken ftill larger than the one juft mentioned ; but the fnake was 10 feet 6 inches in length.

Ir is the general opinion, that fnakes break the bones of their prey before they fwallow it, if the animal be of any confiderable fize. This, however, I am difpofed to doubt, as in none of the above inftances had the animal fuffered fuch offifraction, if I may be allowed the expreffion. The mechanifm of the jaws, and the width of the gullet above defcribed, render fuch violence unneceffary.

The animal is fwallowed very gradually, being firft, I fufpect, well lubricated with flime, with which this kind of large fnake appears abundantly provided.

These circumftances may undoubtedly be deemed rather faw bulous by thofe who have never feen nor examined large fnakes. But they are facts not to be denied, and are well authenticated by every one who has had opportunities of feeing and opening fuch fnakes.

During Mr Leckie's refidence at Comillah, I have learned from undoubted authority, that a fnake of the above mentioned fpecies was found dead, with the horns of a large deer fticking in his throat, fuppofed to be the caufe of his death. The fnake and the horns were both brought to Comillah in this fituation; but in a putrid ftate. The fnake meafured above 17 feet in length; and the bones of it were afterwards fent to Mr Charles Collinson of Banleak.
Vol. VI.—P.II.

I i
VII.

VII. Chemical Analysis of a Black SAnd, from the River Dee in Aberdeenshire; and of a Copper. Ore, from Arthrey in Stirlingshire. By Тhomas Thomson, M.D. Lecturer on Chemistry, Edinburgh.

[Read 18th May 1807.]

THE fpecimen which formed the fubject of the firft of the following analyses, was brought from the banks of the river Dee, about feven years ago, by my friend Mr James Mile, who at that time refided in Aberdeenfhire. By him I was informed, that confiderable quantities of it are found in different parts of the bed of that river,--that it is called by the inhabitants iron-sand,-and that they ufe it for fanding newly written paper. I tried fome experiments in the year 1800, in order to afcertain its nature; but was too little fkilled at that time, both in mineralogy and practical chemiftry, to manage an analyfis of any confiderable difficulty.
The black powder is mixed with a good many fmall whitifh, reddifh, and brownifh grains, which, when examined by means of a glafs, prove to be pieces of quartz, felfpar, and mica. From this it would appear, that the fand of the river Dee confifts chiefly of the detritus of granite or gneifs.
When a magnet is paffed over the fand, fome of the black grains adhere to it, and are by this means eafily obtained fepa-
rate. But after all that can be attracted by the magnet is removed, the greater part of the black powder ftill remains. This refidue is indeed attracted by a powerful magnet, but fo very feebly, that it is not poffible by means of it to feparate it from the grains of fand with which it is mixed. Thus we learn, that the black matter confifts of two diftinct fubftances; one of which is powerfully attracted by the magnet, the other not. As this fecond fubftance was obvioully fpecifically heavier than the grains of fand with which it was mixed, I placed a quantity of the powder on an inclined plane, and by expofing it cautiounly, and repeatedly, to a jet of water, I fucceeded in wathing away moft of the grains of fand, and thus obtained it in a ftate of tolerable purity.

The firft of thefe minerals we may call iron-sand, and the fecond iserine, as they belong to mineral fpecies which oryctognofts have diftinguifhed by thefe names.

I. IRON-SAND.

The iron-fand is much fmaller in quantity than the iferine, and does not exceed one-fourth of the mixture at moft. Its colour is iron-black. It is in very fmall angular grains, commonly pretty fharp-edged, and fometimes having the fhape of imperfect octahedrons. The furface is rough ; the luftre is feebly glimmering and metallic; the fracture, from the fmallnefs of the grains, could not be accurately afcertained, but it feemed to be conchoidal. Opake, femihard, brittle, eafily reduced to powder. Powder has a greyifh-black colour ; powerfully attracted by the magnet ; fpecific gravity 4.765 .
I. As acids were not found to act upon this mineral, 100 grains of it were reduced to a fine powder, mixed with twice
its weight of carbonate of potafh, and expofed for two hours to a red heat, in a porcelain crucible. The mafs, being foftened in water, was digefted in muriatic acid. By repeating this procefs twice, the whole was diffolved in muriatic acid, except a brownifh-white matter, which being dried in the open air, weighed $19 \frac{1}{2}$ grains.
2. The muriatic acid folution, which had a deep yellowihbrown colour, was concentrated almoft to drynefs, and then dilated with water. It affumed a milky appearance; but nothing was precipitated. Being boiled for fome time, and then fet afide, a curdy-like matter fell. It was of a milk-white colour, weighed, when dry, 7 grains, and poffefled the properties of oxide of titanium.
3. The refidual liquid being fuperfaturated with ammonia, a dark reddifh-brown matter precipitated, which being feparated by the filter, dried, drenched in oil, and heated to rednefs, affamed the appearance of a black matter, ftrongly attracted by the magnet. It weighed 93.7 grains, and was oxide of iron.
4. The 19.5 grains of refidual powder, being mixed with four times its weight of carbonate of foda, and expofed for two hours to a red heat, in a platinum crucible, and afterwards heated with muriatic acid, was all diffolved, except about a grain of blackifh matter, which was fet afide.
5. The muriatic folution being concentrated by evaporation, a little white matter was feparated. It weighed $\frac{1}{4}$ th of a grain; and poffeffed the characters of oxide of titanium.
6. When evaporated to drynefs, and rediffolved in water, a white powder remained, which proved to be filica, and which, after being heated to rednefs, weighed one grain.
7. The watery folution being fuperfaturated with potafh, and boiled for a few minutes, was thrown upon a filter, to feparate a reddifh-brown matter, which had been precipitated. The clear liquid which paffed through the filter, was mixed with a folution of fal ammoniac. A foft white matter flowly fubfided. It was alumina, and, after being heated to rednefs, weighed half a grain.
8. The brown-coloured matter which had been precipitated by the potafh, when dried upon the fteam-bath, weighed 20.2 grains. It diffolved with effervefcence in muriatic acid. The folution had the appearance of the yolk of an egg. : When boiled for fome time, and then diluted with water, it became white, and let fall a curdy precipitate, which weighed, when dry, 4.6 grains, and poffeffed the properties of oxide of titanium.
9. The refidual liquor being mixed with an excefs of ammonia, let fall a brown matter, which, after being dried, drenched in oil, and heated to rednefs, weighed 6 grains. It was ftrongly attracted by the magnet, but was of too light a colour to be pure oside of iron. I therefore diffolved it in muriatic acid, and placed it on the fand-bath, in a porcelain capfule. When very much concentrated by evaporation, fmall white needles began to make their appearance in it. The addition of hot-water made them difappear; but they were again formed when the liquor became fufficiently concentrated. Thefe cryftals, when feparated, weighed 1.3 grains, and proved, on examination, to be white oxide of arfenic. During the folution
of the 6 grains in muriatic acid, a portion of black matter feparated. It weighed 0.2 grains, and was totally diffipated before the blow-pipe in a white fmoke. Hence, it muft have been arfenic. Thefe 1.5 gr . are equivalent to rather more than I grain of metallic arfenic. Thus, it appears, that the 6 grains contained I grain of arfenic, which explains the whitenefs of their colour. The relt was iron. It can fcarcely be doubted, that the proportion of arfenic prefent was originally greater. Some of it muft have been driven off when the iron oxide was heated with oil.
10. The infoluble refidue, (No .4 .), was with great difficulty diffolved in fulphuric acid. When the folution was mixed with ammonia, a white powder fell, which weighed 0.8 grains. It was accidentally loft, before I examined its properties. But I have no doubt, from its appearance, that it was oxide of titanium.
II. Thus, from the 100 grains of iron-fand, the following conftituents have been extracted by analyfis :

| Black oxide of iron, | 98.70 |
| :--- | ---: | ---: |
| White oxide of titanium, | 12.65 |
| Arfenic, - | 1.00 |
| Silica and alumina, | 1.50 |
| | Total, 113.85 |

Here there is an excefs of nearly 14 grains, owing, without doubt, to the combination of oxygen with the iron and the titanium during the analyfis.

Had the iron in the ore been in the metallic fate, the excefs of weight, inftead of 14 , could not have been lefs than 30 . For the black oxide is known to be a compound of 100 metal
and 37 oxygen. Hence, I think, it follows, that the iron in our ore muft have been in the ftate of an oxide, and that it mult have contained lefs oxygen than black oxide of iron. A good many trials, both on iron-fand, and on fome of the other magnetic ores of iron, induce me to conclude, that the iron in moft of them is combined with between 17 and 18 per cent. of oxygen. This compound, hitherto almoft overlooked by chemifts, I confider as the real protoxide of iron. Thenard has lately demonftrated, the exiftence of an oxide intermediate between the black and the red; fo that we are now acquainted with four oxides of this metal. But the protoxide, I prefume, does not combine with acids like the others. Analogy leads us to prefume the exiftence of a fifth oxide, between the green and the red.

As to the titanium, it is impoffible to know what increafe of weight it has fuftained, becaufe we are neither acquainted with it in the metallic ftate, nor know how much oxygen its different oxides contain. It is highly improbable, that, in iron-fand, the titanium is in the metallic ftate, if it be made out that the iron is in that of an oxide. The experiments of Vaubuelin and Hecht, compared with thofe of Klaproth, have taught us that there are three oxides of titanium, namely, the blue, the red, and the white. From an experiment of Vaveuelin and Hecht, and from fome of my own, I am difpofed to confider thefe oxides as compofed of the following proportions of metal and oxygen :

METAL. OXYGEN.

| 1. Blue, 100 | 16 |
| :--- | :---: | :---: |
| 2. Red, 100 | 33 |
| 3. White, 100 | 49 |

I find, that when the white oxide of titanium is reduced to the ftate of red oxide, it lofes one-fourth of its weight; and that
red oxide, when raifed to the flate of white oxide, increafes exactly one-third of its weight. It was the knowledge of thefe facts, that led me to the preceding numbers. And I think they may be ufed, till fome more direct experiment lead us to precife conclufions.

Red oxide being the only ftate in which this metal has yet occurred feparate, we may conclude that it combines, in this flate, with metallic oxides, and that the titanium in iron-fand, is moft probably in this ftate. But white oxide, diminifhed by one-fourth, gives us the equivalent quantity of red oxide. On that fuppofition, the titanium prefent, before the analyfis, in the 100 grains of ore, weighed 9.5 grains.

The appearance of the arfenic furprifed me a good deal, as it was altogether unexpected. I am difpofed to afcribe it to fome particles of arfenic pyrites'which might have been accidentally prefent. This conjecture will appear the more probable, when we reflect, that arfenic pyrites very frequently accompanies iron-fand. Before the microfcope, the iron-fand appears to contain fome white fhining particles, which, probably, are arfenic pyrites.

The fmall quantity of filica and alumina, I afcribe, without hefitation, to grains of quartz and felfpar, which had adhered to the iron-fand, and been analyfed along with it. Some fuch grains were actually obferved and feparated. But others, probably, efcaped detection.
12. If thefe fuppofitions be admitted as well founded, the iron-fand was compofed of

Protoxide of iron,	85.3
Red oxide of titanium,	9.5
Arfenic,	$\mathbf{1 . 0}$
Silica and alumina,	$\mathbf{1 . 5}$
Lofs,	2.7
	I00.0

The lofs will not appear exceffive, if we confider, that a portion of the arfenic muft have been fublimed, before the prefence of that metal was fufpected.

Upon the whole, I think we may confider the fpecimen of iron-fand examined, as compofed of 9 parts protoxide of iron, and I of red oxide of titanium. The prefence of titanium in this ore had been already detected by Lampadius, though, as I have not feen his analyfis, I cannot fay in what proportion.

II. ISERINE.

The colour of this ore is iron-black, with a fhade of brown. It confifts of fmall angular grains, rather larger than thofe of the iron-fand, but very fimilar to them in their appearance. Their edges are blunt; they are fmoother, and have a ftronger glimmering luftre than thofe of the iron-fand. Luftre femimetallic, inclining to metallic. The fracture could not be diftinctly obferved, but it feemed to be conchoidal; at leaft nothing refembling a foliated fracture could be perceived. Opake, femihard, brittle, eafily reduced to powder; colour of the powder unaltered; fpecific gravity 4.49I *; fcarcely attracted by the magnet.
I. A hundred grains of the powdered ore were mixed with fix times their weight of carbonate of foda, and expofed for two hours to a red heat, in a platinum crucible. The mafs obtained being foftened with water, diffolved completely in muriatic acid. When the folution was concentrated, it affumed the appearance

[^29]pearance of the yolk of an egg. It was boiled, diluted with water, and fet afide for fome time. A white matter gradually depofited, which, when dried on the fteam-bath, weighed 53 grains, and poffeffed the properties of oxide of titanium.
2. The liquid thus freed from titanium, was evaporated to drynefs, and the refidue rediffolved in water, acidulated with muriatic acid. A white powder remained, which, after being heated to rednefs, weighed 16.8 grains, and poffeffed the properties of filica.
3. The folution was precipitated by ammonia, and the brown matter which had feparated, boiled for fome time in liquid potafh. The whole was then thrown on a filter, to feparate the undiffolved part, and the liquid which came through, was mixed with a folution of fal ammoniac. A white powder fell, which, after being heated to rednefs, weighed 3.2 grains. It was alumina.
4. The brown fubftance collected on the filter, was dried, drenched in oil, and heated to rednefs. It was ftrongly attracted by the magnet, and weighed 52 grains.
5. It was digefted in diluted fulphuric acid; but not being rapidly acted upon, a quantity of muriatic acid was added, and the digeftion continued. The whole flowly diffolved, except a blackifh matter, which became white when expofed to a red heat, and, as far as I could judge from its properties, was oxide of titanium, flightly contaminated with iron. It weighed x .8 grains.
6. The acid folution being concentrated by gentle evaporation, a number of fmall yellowifh-coloured needles made their apKk 2
pearance
pearance in it. By repeated evaporations, all the cryftals that would form were feparated. They weighed 6 grains. I rediffolved them in water, and added fome ammonia to the folution. A fine yellow powder fell, which I foon recognifed to be oxide of uranium. It weighed 4.2 grains.
7. Thus it appears, that the 52 grains (No. 4.), attracted by the magnet, contained 46 grains of iron, and 6 grains of uranium and titanium.
8. The following are the fubftances feparated from 100 grains of iferine, by the preceding analyfis:

Here is an excefs of no lefs than 25 grains, to be accounted for by oxygen, which muft have united to the three metals during the procefs. As to the filica and alumina, there can be little hefitation in afcribing them to grains of fand, which had been mixed with the ore. The pure iferine, in all probability, was compofed of iron, titanium, and uranium. If we fuppofe that each of thefe metals exifted in the fate of protoxide, we muft diminifh the titanium by one-fourth, the iron by one-feventh nearly, and the uranium, according to Bucholz's experiments, by one-fifth. This would give us,

Titanium,

| Titanium, | 41.1 |
| :--- | ---: | ---: |
| Iron, | 39.4 |
| Uranium, | 3.4 |
| Silica and alumina, | 20.0 |
| | -103.9 |

Here, then, is ftill an excefs of nearly 4 per cent. But this I am difpofed to afcribe to the oxides of titanium and uranium, having been only dried upon the fteam-bath. Upon the whole, it appears, that, in the fpecimens of iferine analyfed, the proportions of titanium and iron were nearly equal, and that the uranium did not exceed 4 per cent. The appearance of uranium furprifed me a good deal. I perceive, however, that it has already been detected in this ore, from an analyfis publifhed by Profeffor Jameson, in the fecond volume of his Mineralogy, which, I underftand, was made by Lampadius. The fpecimen examined by Lampadius yielded very nearly 60 parts of titanium, 30 of iron, and 10 of uranium. Whereas, in mine, if the foreign matter be removed, there was obtained, very nearly, - - 48 titanium, 48 iron, 4 uranium,

100
But, there can be no doubt, that the iferine which I analyfed was fill contaminated with a good deal of iron-fand; for it was impoffible to remove the whole.

Analysis of the Grey Copper Ore, from Airthrey.

The copper mine of Airthrey, near Stirling, confifts of a thin vein, which runs through the weft corner of the Ochils. It has been twice wrought, by two different companies. But, in both cafes, was abandoned, after a few years trial. I went to it fome years ago, and examined the ore, at the requeft of one of the proprietors. The fpecimens which were employed for the fubfequent analyfis, were the pureft that I could felect, out of a confiderable quantity. I was told, however, that from the lower level, which was at that time full of water, much richer ore had been extracted. But, afterwards, when the lower level was freed from its water, I went down to it myfelf, and found the ore precifely of the fame kind as in the upper, with this difference, that it was more mixed with calcareous fpar, and perhaps, on that account, more eafily fmelted.

The veinftones in the Airthrey mine are fulphate of barytes, and carbonate of lime, and with thefe the ore is almoft always inore or lefs mixed.

The colour is at firft light fteel-grey; but the furface foon tarnifhes, and becomes of a dark dull leaden-grey, and in fome places affumes a beautiful tempered fteel tarnifh. Maflive and diffeminated. In fome fpecimens, it exhibits the appearance of imperfect cryftals. Internal furface fhining and metallic ; but, by expofure, it foon becomes dull. Fracture fmall-grained, inclining to even. Fragments indeterminate, and rather bluntedged. Semihard, the degree being almoft the fame as that of calcareous fpar; for thefe two minerals reciprocally fcratch
each other. Streak fimilar, opake, brittle, eafily frangible; fpecific gravity 4.878 .
I. To free the ore as completely as poflible from foreign matter, it was reduced to a coarfe powder, and carefully picked. It was then digefted in diluted muriatic acid, which diffolved a quantity of carbonate of lime, amounting to 13 per cent. of the original weight of the ore.
2. Thus purified, it was dried on the feam-bath, and 100 grains of it were reduced to a fine powder, and digefted in diluted nitric acid, till every thing foluble in that menfrumm was taken up. The refidue was digefted in the fame manner, in muriatic acid; and when that acid ceafed to act, the refidue was treated with nitro-muriatic acid till no farther folution could be produced. The infoluble matter was of a white colour ; it weighed 6.9 grains, and was almoft entirely fulphate of barytes. No traces of fulphate of lead, nor of oxide of antimony, could be detected in it by the blow-pipe.
3. The three acid folutions being mixed together, no cloudinefs appeared, nor was any change produced; a proof that the ore contained no filver.
4. The folution being evaporated nearly to drynefs, was diluted with water, and precipitated by muriate of barytes. By this means, the fulphuric and arfenic acids, which had been formed during the long-continued action of the nitric acid on the ore, and the prefence of which had been indicated by reagents, were thrown down ; for nitrate of lead, added to the refidual liquid, occafioned no precipitate; a proof that no arrenic acid was prefent.
5. The
5. The liquid, thus freed from arfenic acid, was mixed with an excefs of ammonia. It affumed a deep blue colour, while a brown matter precipitated. It was feparated by the filter, and being dried, drenched in oil, and heated to rednefs, it was totally attracted by the magnet. It weighed 45.5 grains, and was iron.
6. The ammoniacal liquid was neutralifed by fulphuric acid, and the copper thrown down by means of an iron plate. It weighed 17.2 grains.
7. To afcertain the quantity of fulphur and arfenic, too grains of the purified ore, in the flate of a fine powder, were put into the bottom of a coated glafs-tube, and expofed for two hours to a red heat. When the whole was cold, and the bottom of the tube cut off, the ore was found in a round folid mafs, having the metallic luftre, a conchoidal fracture, and the colour and appearance of variegated copper-ore. It had loft 16 grains of its weight.
8. The upper part of the tube was coated with a yellowifhbrown fubftance, like melted fulphur. It weighed $\mathbf{1 2 . 6}$ grains. Thus, there was a lofs of 3.4 grains. As the tube was long, this lofs can fcarcely be afcribed to fulphur driven off. I rather confider it as water. For towards the beginning of the procefs, drops of water were very perceptible in the tube. Whether this water was a conftituent of the ore, or derived from the previous digeftion in muriatic acid, cannot be determined.
9. When the $\mathbf{x} 2.6$ grains of yellowifh brown matter detached from the tube, were digefted in hot potahh-ley, the whole was diffolved, except a fine blackifh powder, which
weighed
weighed I grain, and was arfenic. The diffolved portion I confidered as fulphur.
ro. The potah folution, being mixed with nitric acid, 4 grains of fulphur fell. The remaining 7.6 grains muft have been converted into fulphuric acid, by the action of the nitric acid. Accordingly, muriate of barytes occafioned a copious precipitate.
if. The 84 grains of roafted ore being reduced to a fine powder, mixed with half their weight of pounded charcoal, and roafted a fecond time in a glafs-tube, one grain of fulphur fublimed. But the tube breaking before the roafting had been continued long enough, the procefs was completed in a crucible. The roafted ore weighed 70 grains.
12. From the preceding analyfis, we learn that the conftituents of the Airthrey ore, are as follows :

If we fuppofe the water and the earthy refidue to be only accidentally prefent, then the only effential conftituents are the firft four, and the ore would be a compound of

Iron,	51.0
Copper,	19.2 Arfenic, Sulphur,
	15.7
	10.8
	100.0

If we compare this analyfis with feveral analyfes of grey copper ore, lately publifhed by Klaproth, we fhall find, that the conftituents are the fame in both; but the proportions of the two firft ingredients are very nearly reverfed. Klaproth obtained from 0.4 to 0.5 of copper, and from 0.22 to 0.27 of iron. This renders it obvious, that the two ores were not in the fame ftate. I have little doubt, that the difference, however, is merely apparent, and that it arofe, altogether, from a quantity of iron pyrites, and perhaps alfo of arfenic pyrites, which I could not feparate from the grey copper ore which I examined. Both of thefe minerals could be diftinctly feen in many of the fpecimens, intimately mixed with the grey copper; and I have no doubt that the fame mixture exifted, even in thofe fpecimens which were felected as pureft. The difference in the proportions of copper and arfenic, obtained by Klaproth * in his various analyfes, is fo confiderable, as to lead to a fufpicion, that even his fpecimens, in all probability, contained a mixture of foreign matter.

[^30]> VIII. Nez Series for the Quadrature of the Conic Sections, and the Computation of Logarithms. By William Wallace, one of the Professors of Mathematics in the Royal Military College at Great Marlow, and F.R.S. Edin.

[Read 27th June 1808.]

1. HE Quadrature of the Conic Sections, and the Computation of Logarithms, are problems of confiderable importance, not only in the elements of Mathematics, but alfo in the higher branches of that fcience. On this account, every fuccefsful attempt to fimplify their refolution, as well as any new formulæ which may be found applicable to that purpofe, muft always be interefting, and muft in fome meafure contribute to the improvement of mathematical knowledge.
2. The object of this Paper, is to give folutions of thefe problems, which fhall be at once fimple and elementary, without employing the fluxional or other equivalent calculus; and it is prefumed, that thofe which follow, will be found to partake fo much of both thefe properties, that they may even admit of being incorporated with the elements of Geometry and Analyfis. Befides, the formulæ which refult from the inveftigations, are, as far as I know, entirely new, while each is appliLl 2
cable to every poffible cafe of the problem to be refolved. Now this laft circumftance is the more remarkable, as it generally happens, that a feries which applies very well to the quadrature of a curve within certain limits, is quite inapplicable beyond them.
3. Although, in a general way, this Paper may be faid to treat of the quadrature of the Conic Sections, yet there is one of them, namely, the Parabola, which I fhall not at all notice; becaufe, although its area may be found in a way analogous to that which is here employed in the cafe of the other two, yet the formula which would thence refult, muft, from its nature, be the fame as would be found by any other mode of proceeding.

As the quadratures of the ellipfe, and any hyperbola may be deduced from thofe of the circle and equilateral hyperbola, I fhall, in the following Paper, treat only of the two laft; and as the quadrature of a fector of a circle, and the rectification of its bounding arch, are reducible the one to the other, it is a matter of indifference which of thefe we confider. I fhall, however, confine my felf to the latter.
4. In treating of logarithms, I might, after the example of the earlier writers on this fubject, deduce the formulæ for their computation from thofe which we fhall find for the quadrature of the equilateral hyperbola. I prefer, however, treating this fubject in a manner purely analytical, without adverting at all to the hyperbola, being of opinion, that every branch of mathematics. ought, as much as poffible, to be deduced from its own peculiar principles; and therefore, that it would be contrary to good method, to have recourfe to the properties of geometrical figure, when treating of a fubject entirely arithmetical.
5. To proceed now in the inveftigation of the different feries, for the rectification of an arch of a circle, let A denote any arch, the radius being fuppofed unity. Then, from the arithmetic of fines, we have

$$
\frac{I}{\tan A}=\frac{I}{2 \tan \frac{1}{2} A}-\frac{I}{2} \tan \frac{I}{2} A .
$$

In this formula let each term of the feries of arches

$$
a, \frac{\mathrm{I}}{2} a, \frac{\mathrm{I}}{4} a, \frac{\mathrm{I}}{8} a \ldots \frac{\mathrm{I}}{2^{n-2}} a, \frac{\mathrm{I}}{2^{n-1}} a,
$$

(which is a geometrical progreffion, having the number of its terms n, and its common ratio $\frac{1}{2}$,) be fucceffively fubftituted for A, and let the refults be multiplied by the terms of the correfponding feries of fractions

$$
\mathrm{I}, \frac{\mathrm{I}}{2}, \frac{\mathrm{I}}{4}, \frac{\mathrm{I}}{8} \ldots \frac{\mathrm{I}}{2^{n-2}}, \frac{\mathrm{I}}{2^{n-1}} ;
$$

then we fhall obtain the following feries of equations:

$$
\begin{aligned}
& \frac{I}{\tan a}=\frac{I}{2 \tan \frac{1}{2} a}-\frac{I}{2} \tan \frac{1}{2} a_{2} \\
& \frac{1}{2 \tan \frac{1}{2} a}=\frac{1}{4 \tan \frac{1}{4} a}-\frac{1}{4} \tan \frac{1}{4} a_{2} \\
& \frac{1}{4 \tan \frac{1}{4} a}=\frac{1}{8 \tan \frac{4}{8} a}-\frac{1}{8} \tan \frac{1}{8} a_{2} \\
& \frac{1}{8 \tan \frac{1}{8} a}=\frac{1}{16 \tan \frac{1}{5} a}-\frac{1}{16} \tan \frac{1}{\pi \cdot} a_{,} \\
& \frac{1}{2^{n-2} \tan \frac{a}{2^{n-2}}}=\frac{1}{2^{n-1} \tan \frac{a}{2^{n-1}}}-\frac{1}{2^{n-1}} \tan \frac{a}{2^{n-1}} \\
& \frac{1}{2^{n-1} \tan \frac{a}{2^{n-1}}}=\frac{1}{2^{n} \tan \frac{a}{2^{n}}}-\frac{1}{2^{n}} \tan \frac{a}{2^{n}} .
\end{aligned}
$$

Let the fums of the correfponding fides of thefe equations be taken, and obferving that the feries

$$
\frac{1}{2 \tan \frac{1}{2} a}+\frac{1}{4 \tan \frac{1}{4} a}+\frac{1}{8 \tan \frac{1}{8} a} \cdots+\frac{1}{2^{n-1} \tan \frac{a}{2^{n-1}}}
$$

is found in each fum, let it be rejected from both; and the refult will be

$$
\frac{I}{\frac{I}{2^{n} \tan \frac{a}{2^{n}}}}\left\{\begin{array}{l}
-\left(\frac{1}{2} \tan \frac{1}{2} a+\frac{1}{4} \tan \frac{1}{4} a+\frac{1}{8} \tan \frac{1}{8} a+\frac{1}{16} \tan \frac{1}{16} a \ldots\right. \\
\left.\quad+\frac{1}{2^{n}} \tan \frac{a}{2^{n}}\right)
\end{array}\right.
$$

the number of terms of the feries in the parenthefis being n, and hence we have

$$
\begin{aligned}
& \frac{\mathrm{I}}{2^{n} \tan \frac{a}{2^{n}}}=\frac{\mathrm{I}}{\tan a}+\frac{\mathrm{I}}{2} \tan \frac{\mathrm{I}}{2} a+\frac{\mathrm{I}}{4} \tan \frac{\mathrm{I}}{4} a+\frac{\mathrm{I}}{8} \tan \frac{\mathrm{I}}{8} a+ \\
& \frac{\mathrm{I}}{16} \tan \frac{\mathrm{I}}{16} a \ldots+\frac{\mathrm{I}}{2^{n}} \tan \frac{a}{2^{n}} .
\end{aligned}
$$

6. Now, $2 \tan \frac{1}{2} a$ is the perimeter of a figure formed by drawing tangents at the ends of the arch a, and producing them till they meet; and $4 \tan \frac{1}{4} a$ is the perimeter of a figure formed by bifecting the arch a, and drawing tangents at its extremities and at the point of bifection, producing each two adjoining tangents till they meet; and in general $2^{n} \tan \frac{a}{2^{n}}$ is the perimeter of a figure formed in the fame way, by dividing the arch
arch a into 2^{n+1} equal parts, and drawing tangents at the points of divifion, and the extremities of the arch. Therefore, denoting the perimeter of the figure thus conftructed by P , we have

$$
\begin{aligned}
\frac{\mathrm{I}}{\mathrm{P}}= & \frac{\mathrm{I}}{\tan a}+\frac{\mathrm{I}}{2} \tan \frac{\mathrm{I}}{2} a+\frac{\mathrm{I}}{4} \tan \frac{\mathrm{I}}{4} a+\frac{\mathrm{I}}{8} \tan \frac{\mathrm{I}}{8} a \\
& +\frac{\mathrm{I}}{16} \tan \frac{\mathrm{I}}{\mathrm{I}} a \ldots+\frac{\mathrm{I}}{2^{n}} \tan \frac{a}{2^{n}} ;
\end{aligned}
$$

and this is true; whatever be the number of terms in the feries

$$
\frac{\mathrm{I}}{2} \tan \frac{\mathrm{I}}{2} a+\frac{\mathrm{I}}{4} \tan \frac{\mathrm{I}}{4} a \ldots+\frac{\mathrm{I}}{2^{n}} \tan \frac{a}{2^{n}} *
$$

7. Now fuppofing n the number of terms in the feries, to increafe, then $\mathbf{2}^{n-1}$, the number of equal parts into which the arch is conceived to be divided, will alfo increafe, and may become greater than any affignable number. But it is a principle admitted in the elements of geometry; that an arch being divided, and a polygon defcribed about it in the manner fpecified in article 6., the perimeter of the polygon will continually approach to the circular arch, and will at laft differ from it by lefs than any given quantity. Therefore, if we fuppofe n indefinitely great, fọ that the feries may go on ad infinitum, then, inftead of P in the formula of the laft article, we may fubftitute its limit, namely, the arch a, and thus we flall have

$$
\begin{aligned}
\frac{1}{a}= & \frac{1}{\tan a}+\frac{1}{2} \tan \frac{1}{2} a+\frac{1}{4} \tan \frac{1}{4} a+\frac{1}{8} \tan \frac{1}{8} a+ \\
& \frac{1}{16} \tan \frac{1}{16} a+, \& c .
\end{aligned}
$$

[^31]Thus we have the circular arch, or rather its reciprocal (from which the arch itfelf is eafily found), expreffed by a feries of a very fimple form ; and this is the firft formula which I propofed to give for the rectification of the circle.
8. We now proceed to inquire what is the degree of convergency of this feries. In the firft place, it appears, that the numeral co-efficients of the terms are each one-half of that which goes before it. Again, A being any arch of a circle, we have by a theorem in the elements of geometry, fec $\mathbf{A}: \mathbf{I}:: \tan \mathbf{A}$ $-\tan \frac{1}{2} \mathrm{~A}: \tan \frac{1}{2} \mathrm{~A}$; therefore, $\mathrm{I}+\mathrm{fec} \mathrm{A}: \mathrm{I}:: \tan \mathrm{A}: \tan \frac{1}{2} \mathrm{~A}$, and hence $\tan \frac{1}{2} A=\frac{\tan A}{I+f e c A}$. But as fec A is greater than I, therefore $\mathrm{I}+\mathrm{fec} \mathrm{A}$ muft be greater than 2, and confequently $\frac{\tan A}{1+\sec A}$ lefs than $\frac{\tan A}{2}$; hence it follows, that $\tan \frac{1}{2} A$ muft be lefs than $\frac{1}{2} \tan A$. Thus it appears, that a being any arch lefs than a quadrant, the tangent of any one of the feries of arches $\frac{1}{2} a, \frac{1}{4} a, \frac{1}{8} a, \& c$. is lefs than half the tangent of the arch before it. By combining the rate of convergency of the tangents with that of their numeral co-efficients, it appears, that each term of the feries, after the fecond, is lefs than onefourth of the term before it ; and this is one limit to the rate of convergency of the feries.
9. Again, to find another limit, let us refume the formula $\tan \frac{1}{2} A=\frac{\tan A}{I+\operatorname{fec} A}$, from which it follows, that $\frac{\tan \frac{1}{2} A}{\tan A}$ $=\frac{I}{I+\operatorname{fec} A}$, and fimilarly, that $\frac{\tan \frac{1}{4} A}{\tan \frac{1}{2} A}=\frac{I}{I+\operatorname{fec} \frac{1}{2} A}$. But
fince fec $\frac{1}{2} A<$ fec A, and confequently $\frac{I}{1+\operatorname{fec} \frac{1}{2} A}>\frac{I}{I+\text { fec } A}$, therefore $\frac{\tan \frac{1}{4} \mathbf{A}}{\tan \frac{1}{2} \mathbf{A}}>\frac{\tan \frac{1}{2} \mathbf{A}}{\tan \mathbf{A}}$, and $\tan \frac{1}{4} \mathbf{A}>\frac{\tan \frac{2}{2} A}{\tan \mathbf{A}} \times \tan \frac{1}{2} \mathrm{~A}$. In this expreffion, let $\frac{1}{2} a, \frac{1}{4} a, \frac{1}{8} a$, \&c. be fubftituted for A , and let the refults be divided by $8,16,32, \& c . ;$ then we get:

$$
\begin{aligned}
\frac{1}{8} \tan \frac{1}{8} a & >\frac{\frac{1}{4} \tan \frac{1}{4} a}{\frac{1}{2} \tan \frac{1}{2} a} \times \frac{1}{4} \tan \frac{1}{4} a, \\
\frac{i}{16} \tan \frac{1}{16} a & >\frac{\frac{1}{8} \tan \frac{1}{8} a}{\frac{1}{4} \tan \frac{1}{4} a} \times \frac{1}{8} \tan \frac{1}{8} a,
\end{aligned}
$$

$\& c$.
from which it appears, that in the feries, $\frac{1}{a}=\frac{I}{\tan a}+\frac{1}{2} \tan \frac{T}{2} a$ $+\frac{\mathrm{I}}{4} \tan \frac{\mathrm{I}}{4} a+\frac{\mathrm{I}}{8} \tan \frac{\mathrm{~T}}{8} a+\frac{\mathrm{I}}{\mathrm{I} 6} \tan \frac{\mathrm{I}}{\mathrm{I} 6} a+, \& \mathrm{c}$.
each term after the third (that is, after $\frac{1}{4} \tan \frac{1}{4} a$), is greater than a third proportional to the two terms immediately before it, taken in their order ; and this is another limit to the rate of convergency of the feries.
io. The limits which we have found to the rate of convergency of the feries, enable us alfo to affign limits to the fum of all the terms after any given term. Let the feries be put under this form,

$$
\begin{aligned}
\frac{\mathrm{I}}{a}= & \frac{\mathrm{I}}{\tan a}+\frac{\mathrm{I}}{2} \tan \frac{\mathrm{I}}{2} a+\frac{\mathrm{I}}{4} \tan \frac{\mathrm{I}}{4} a \ldots+\mathrm{T}_{(m)}+\mathrm{T}_{(m+1)} \\
& +\mathrm{T}_{(m+2)}+, \& \mathrm{c} .
\end{aligned}
$$

VoL. VI.-P.II.
Mm
where
where $\mathrm{T}_{(m)}, \mathrm{T}_{(m+1)}, \mathrm{T}_{(m+2)}$, \&c. denote the terms whofe places in the feries are expreffed by the numbers $m, m+\mathrm{I}, m+2$, \&c. Then, becaule

$$
\begin{aligned}
& \mathrm{T}_{(m+2)}<\frac{\mathrm{I}}{4} \mathrm{~T}_{(m+1)}, \\
& \mathrm{T}_{(m+3)}<\frac{\mathrm{I}}{4} \mathrm{~T}_{(m+2)}, \\
& \mathrm{T}_{(m+4)}<\frac{\mathrm{I}}{4} \mathrm{~T}_{(m+3)},
\end{aligned}
$$

\&c.
We have

$$
\begin{aligned}
& \mathrm{T}_{(m+2)}+\mathrm{T}_{(m+3)}+\mathrm{T}_{(m+4)}+, \& \mathrm{cc}<\frac{\mathrm{T}}{4}\left(\mathrm{~T}_{(m+1)}\right. \\
& \left.\quad+\mathrm{T}_{(m+2)}+\mathrm{T}_{(m+3)}+, \& \mathrm{c} .\right)
\end{aligned}
$$

That is, putting S for $\mathrm{T}_{(m+2)}+\mathrm{T}_{(m+3)}+\mathrm{T}_{\left(m_{+4}\right)}+$, \&c. or for the fum of all the terms after $\mathrm{T}_{(m+1)}$,
$\mathrm{S}<\frac{\mathrm{I}}{4}\left(\mathrm{~T}_{(m+1)}+\mathrm{S}\right)$, and hence $\frac{3}{4} \mathrm{~S}<\frac{\mathrm{I}}{4} \mathrm{~T}_{(m+1)}, \& \mathrm{~S}<\frac{\mathrm{I}}{3} \mathrm{~T}_{(m+1)}$ 。
Thus it appears, that the fum of all the terms of the feries following any term after the firft, is lefs than the third part of that term.
ii. Again, from what has been faid in Article 9., we have $\mathrm{T}_{(m+2)}>\frac{\mathrm{T}_{(m+1)}}{\mathrm{T}_{(m)}} \mathrm{T}_{(m+1)}$, and therefore $\frac{\mathrm{T}_{(m+2)}}{\mathrm{T}_{(m+1)}}>\frac{\mathrm{T}_{(m+1)}}{\mathrm{T}_{(m)}}$, and fimilarly $\frac{\mathbf{T}_{(m+3)}}{\mathbf{T}_{(m+2)}}>\frac{\mathbf{T}_{(m+2)}}{\mathbf{T}_{(m+1)}}$, and $\frac{\mathbf{T}_{(m+4)}}{\mathbf{T}_{(m+3)}}>\frac{\mathbf{T}_{(m+3)}}{\mathbf{T}_{(m+2)}}$,
and fo on. From which it follows, that

$$
\begin{aligned}
& \mathrm{T}_{(m+2)}>\frac{\mathbf{T}_{(m+1)}}{\mathbf{T}_{(m)}} \mathrm{T}_{(m+1)}, \\
& \mathbf{T}_{(m+3)}>\frac{\mathbf{T}_{(m+1)}}{\mathbf{T}_{(m)}} \mathrm{T}_{(m+2)}, \\
& \mathbf{T}_{(m+4)}>\frac{\mathbf{T}_{(m+1)}}{\mathrm{T}_{(m)}} \mathbf{T}_{(m+3)}
\end{aligned}
$$

\&c.

Hence, taking the fum of the quantities on each fide of the fign $>$, and putting S for

$$
\mathrm{T}_{(m+2)}+\mathrm{T}_{(m+3)}+\mathrm{T}_{(m+4)}+, \& \mathrm{c}
$$

we get

$$
\mathrm{S}>\frac{\mathbf{T}_{(m+1)}}{\mathbf{T}_{(m)}}(\mathrm{T}(m+1)+\mathrm{S})
$$

Therefore $S-\frac{T_{(m+1)}}{T_{(m)}} \mathrm{S}>\frac{\mathrm{T}^{2}(m+1)}{\mathrm{T}_{(m)}}$, and confequently by reduction,

$$
\mathrm{S}>\frac{\mathrm{T}_{(m+1)}}{\mathrm{T}_{(m)}-\mathrm{T}_{(m+1)}} \mathrm{T}_{(m+1)}
$$

from which it appears, that the fum of all the terms following any affigned term after the third, is greater than a third proportional to the difference of the two terms immediately before it and the latter of the two. But fince this limit will not differ much from the former, which is $\frac{\mathrm{T}^{-}}{3} \mathrm{~T}_{(m+1)}$, it may be more conveniently expreffed thus,

$$
S^{\prime}>\frac{\mathrm{I}}{3} \mathrm{~T}(m+1)-\frac{\mathrm{T}_{(m)}-4 \mathrm{~T}_{(m+1)}}{3\left(\mathrm{~T}_{(m)}-\mathrm{T}_{(m+1)}\right)} \mathrm{T}_{(m+1)}
$$

which formula, by reduction, will be found to be the very fame as the other.
12. The refult, then, of the whole inveftigation, may be briefly ftated as follows: Let a denote any arch of a circle of which the radius is unity, then thall
$\frac{\mathrm{I}}{a}=\left\{\begin{array}{l}\frac{\mathrm{I}}{\tan a}+\frac{\mathrm{I}}{2} \tan \frac{\mathrm{I}}{2} a+\frac{\mathrm{I}}{4} \tan \frac{\mathrm{I}}{4} a+\frac{\mathrm{I}}{8} \tan \frac{\mathrm{I}}{8} a+\frac{\mathrm{I}}{\mathrm{I}} \tan \frac{\mathrm{I}}{16} a \ldots \\ +\mathrm{T}_{(m)}+\mathrm{T}_{(m+1)}+\mathrm{S} ;\end{array}\right.$
where $\mathrm{T}_{(m)}$ and $\Gamma_{(m+1)}$ denote any two fucceeding terms of the feries $\frac{1}{2} \tan \frac{1}{2} a+\frac{1}{4} \tan \frac{1}{4} a+, \& c$, their places in it being expreffed by the numbers m and $m+\mathrm{I}$; and where S is put for the fum of all the remaining terms; and the limits of S are the two quantities

$$
\frac{\mathrm{I}}{3} \mathrm{~T}_{(m+1)} \text { and } \frac{\mathrm{I}}{3} \mathrm{~T}_{(m+1)}-\frac{\left(\mathrm{T}_{(m)}-4 \mathrm{~T}_{(m+1)}\right) \mathrm{T}_{(m+\mathrm{r})}}{3\left(\mathrm{~T}_{(m)}-\mathrm{T}_{(m+1)}\right)} \text { that }
$$

is, S is lefs than the former, but greater than the latter. The expreffions $\tan \frac{\mathbf{I}}{\mathbf{2}} a, \tan \frac{\mathbf{I}}{4} a, \tan \frac{\mathbf{x}}{8} a, \& c$, are eafily deduced from tan a, and from one another, by a well-known formula in the arithmetic of fines, which may be expreffed thus,

$$
\tan \frac{I}{2} A=\sqrt{\frac{I}{\tan ^{2} A}+I}-\frac{I}{\tan A}
$$

13. I Now proceed to the invertigation of a fecond formula for the rectification of the circle; and for this purpofe refume
the equation $\frac{1}{\tan A}=\frac{1}{2 \tan \frac{1}{2} A}-\frac{1}{2} \tan \frac{1}{2} A$, which, by taking the fquare of each fide, is transformed to

$$
\frac{\mathrm{I}}{\tan ^{2} \mathrm{~A}}=\frac{\mathrm{I}}{4 \tan ^{2} \frac{1}{2} \mathrm{~A}}+\frac{\mathrm{I}}{4} \tan ^{2} \frac{\mathrm{I}}{2} \mathrm{~A}-\frac{\mathrm{r}}{2} .
$$

In this formula, let each term of the feries of arches

$$
a, \frac{\mathrm{I}}{2} a, \frac{\mathrm{I}}{4} a, \frac{\mathrm{I}}{8} a \ldots \frac{a}{2^{n-1}},
$$

of which the number of terms is n, be fubftituted fucceffively for a, and let the refults be multiplied by the correfponding terms of the feries of fractions,

$$
\mathrm{I}, \frac{\mathrm{I}}{4}, \frac{\mathrm{I}}{4^{4}}, \frac{\mathrm{I}}{4^{3}} \cdots \cdot \frac{\mathrm{I}}{4^{n-2}}, \frac{\mathrm{I}}{4^{n-1}}
$$

thus there will be formed the feries of equations

$$
\frac{1}{2^{2 n-4} \tan \frac{a}{2^{n-2}}}=\frac{1}{2^{2 n-2} \tan ^{2} \frac{a}{2^{n-1}}}+\frac{1}{4^{n-1}} \tan ^{2} \frac{a}{2^{n-1}}-\frac{1}{2 \cdot 4^{n-2}}
$$

$$
\frac{1}{2^{2 n-2} \tan \frac{a}{2^{n-1}}}=\frac{1}{2^{2 n} \tan ^{2} \frac{a}{2^{n}}}+\frac{1}{4^{n}} \tan ^{2} \frac{a}{2^{n}} \quad-\frac{1}{2 \cdot 4^{n-1}}
$$

$$
\begin{aligned}
& \frac{\mathbf{I}}{\tan ^{2} a}=\frac{\mathbf{I}}{2^{2} \tan ^{2} \frac{1}{2} a}+\frac{\mathrm{I}}{4} \tan ^{2} \frac{1}{2} a \quad-\frac{1}{2}, \\
& \frac{1}{2^{2} \tan ^{2} \frac{1}{2} a}=\frac{1}{4^{2} \tan ^{2} \frac{1}{4} a}+\frac{1}{4^{2}} \tan ^{2} \frac{1}{4} a \quad-\frac{I}{2.4}, \\
& \frac{1}{4^{2} \tan ^{2} \frac{1}{4} a}=\frac{1}{8^{2} \tan ^{2} \frac{1}{8} a}+\frac{1}{4^{3}} \tan ^{2} \frac{1}{8} a-\frac{1}{2 \cdot 4^{2}}, \\
& \frac{\mathbf{I}}{8^{2} \tan ^{2} \frac{1}{8} a}=\frac{\mathbf{I}}{16^{2} \tan ^{2} \frac{1}{16} a}+\frac{1}{4^{4}} \tan ^{2} \frac{1}{16} a-\frac{1}{2.4^{3}},
\end{aligned}
$$

Let the fum of thefe equations be taken, as in the inveftigation of the firft formula, and obferving that the feries

$$
\frac{1}{2^{2} \tan ^{2} \frac{1}{2} a}+\frac{1}{4^{2} \tan ^{2} \frac{1}{4} a}+\frac{1}{8^{2} \tan ^{2} \frac{1}{8} a} \cdots+\frac{1}{2^{2 n-2} \tan ^{2} \frac{a}{2^{n-1}}}
$$

is found on both fides of the refulting equation, let it be rejected from both; then we obtain

$$
\tan ^{2} a=\left\{\begin{array}{l}
\frac{1}{2^{2 n} \tan ^{2} \frac{a}{2^{n}}} \\
+\frac{1}{4} \tan ^{2} \frac{1}{2} a+\frac{1}{4^{2}} \tan ^{2} \frac{1}{4} a+\frac{1}{4^{3}} \tan ^{2} \frac{1}{8} a+\frac{1}{4^{4}} \tan ^{2} \frac{1}{16} a \\
+\frac{1}{4^{n}} \tan ^{2} \frac{a}{2^{n}} \cdots\left(\frac{1}{2}+\frac{1}{2 \cdot 4}+\frac{1}{2 \cdot 4^{2}}+\frac{1}{2.4^{3}} \cdots+\frac{1}{2.4^{n-3}}\right)
\end{array}\right.
$$

Now it appears, that one part of this expreffion, viz.

$$
\frac{1}{2}+\frac{1}{2.4}+\frac{1}{2.4^{2}}+\frac{1}{2.4^{3}} \cdots+\frac{1}{2.4^{n-1}}
$$

is a geometrical feries, the firft term of which is $\frac{1}{2}$, the laft $\operatorname{term} \frac{1}{2 \cdot 4^{n-1}}$, and common ratio $\frac{1}{4}$; therefore its fum is $\frac{2}{3}\left(\mathrm{I}-\frac{\mathrm{I}}{4^{n}}\right)$.
Alfo, fince $2^{n} \tan \frac{a}{2^{n}}$ is the expreffion for the perimeter of a polygon, formed by dividing the arch a into 2^{n-1} equal parts, by drawing tangents at the points of divifion, and producing

शUADRATURE of the CONIC SECTIONS, \&c. 28 r the adjacent tangents until they meet, (Art. 6.); therefore $2^{2 n} \tan ^{2} \frac{a}{2^{n}}$ will be the fquare of that perimeter. Let the perimeter itfelf be denoted by P, then, fubftituting P^{2} in the equation inftead of $2^{2 n} \tan \frac{a}{2^{n}}$, and $\frac{2}{3}\left(1-\frac{1}{4^{n}}\right)$ inftead of the feries to which it is equivalent, and bringing $\frac{\mathbf{5}}{\mathrm{P}^{2}}$ to one fide, we get

$$
\frac{\mathrm{I}}{\mathrm{P}^{2}}=\left\{\begin{array}{l}
\frac{\mathrm{I}}{\tan ^{2} a}+\frac{2}{3}\left(\mathrm{I}-\frac{\mathrm{I}}{4^{n}}\right) \\
-\left(\frac{\mathrm{I}}{4} \tan ^{2} \frac{\mathrm{I}}{2} a+\frac{\mathrm{I}}{4^{2}} \tan ^{2} \frac{\mathrm{I}}{4} a+\frac{\mathrm{I}}{4^{3}} \tan ^{2} \frac{\mathrm{I}}{8} a+\frac{\mathrm{x}}{4^{4}} \tan ^{2} \frac{\mathrm{I}}{\mathrm{I}^{6}} a \ldots\right. \\
\left.+\frac{\mathrm{I}}{4^{n}} \tan ^{2} \frac{a}{2^{n}}\right) .
\end{array}\right.
$$

15. This is true, whatever be the value of n, the number of terms of the feries in the parenthefis. Let us now conceive the feries to be continued indefinitely, then, as upon this hypothefis, n may be confidered as indefinitely great, $\frac{\mathrm{I}}{4^{n}}$ will become lefs than any affignable quantity, and therefore $\frac{2}{3}\left(\mathrm{r}-\frac{1}{4^{n}}\right)$ will become fimply $\frac{2}{3}$; moreover, P will in this cafe become a, (Art. 7.), and P^{2} will become a^{2}. Thus, upon the whole, we
fhall have

$$
\frac{\mathbf{I}}{a^{2}}=\left\{\begin{array}{l}
\frac{\mathbf{I}}{\tan ^{2} a}+\frac{2}{3} \\
-\left(\frac{\mathbf{I}}{4} \tan ^{2} \frac{1}{2} a+\frac{1}{4^{2}} \tan ^{2} \frac{1}{4} a+\frac{\mathbf{I}}{4^{3}} \tan ^{2} \frac{1}{8} a+\frac{1}{4^{4}} \tan ^{2} \frac{1}{16} a\right. \\
+, \& c \cdot)
\end{array}\right.
$$

and this may be confidered as a fecond formula for the rectifieation of any arch of a circle; for the procefs by which an arch is found from the fquare of its reciprocal is fo fimple, that the latter being known, the former may alfo be regarded as known.
16. Instead of expreffing the fquare of the reciprocal of the arch in this manner, by the fquares of the tangents of its fub-multiples, we may exprefs it otherwife by the fquares of their fecants. For fince $\tan ^{2} \frac{1}{2} a=\operatorname{fec}^{2} \frac{1}{2} a-1$, and $\tan ^{2} \frac{1}{4} a$
$=\operatorname{fec}^{2} \frac{I}{4} a-1$, and fo on, therefore the feries
$\frac{1}{4} \tan ^{2} \frac{1}{2} a+\frac{\mathbf{I}}{4^{2}} \tan ^{2} \frac{1}{4} a+\frac{1}{4^{3}} \tan ^{2} \frac{1}{8} a+\frac{1}{4^{4}} \tan ^{2} \frac{1}{16} a+, 8 c$. iş equivalent to

$$
\begin{aligned}
& \frac{1}{4} \operatorname{fec}^{2} \frac{1}{2} a+\frac{1}{4^{2}} \operatorname{fec}^{2} \frac{1}{4} a+\frac{1}{4^{3}} \operatorname{fec}^{2} \frac{1}{8} a+\frac{1}{4^{4}} \operatorname{fec}^{2} \frac{1}{16} a+, \& c \\
& -\left(\frac{1}{4}+\frac{1}{4^{2}}+\frac{1}{4^{3}}+\frac{I}{4^{4}}+, \& c .\right)
\end{aligned}
$$

But the latter part of this expreffion is evidently an infinite geometrical
geometrical feries, of which the firf term is $\frac{r}{4}$, and ratio $\frac{r}{4}$; therefore its fum will be $\frac{1}{3}$; hence, by fubftitution, and putting $\frac{1}{\operatorname{fin}^{2} a}$ for $\frac{1}{\tan ^{2} a}+1$, we have
$\frac{\mathrm{I}}{a^{2}}=\frac{\mathrm{I}}{\mathrm{fin}^{2} a}-\left(\frac{\mathrm{I}}{4} \mathrm{fec}^{2} \frac{\mathrm{I}}{2} a+\frac{\mathrm{I}}{4^{2}} \mathrm{fec}^{2} \frac{\mathrm{I}}{4} a+\frac{\mathrm{Y}}{4^{3}} \mathrm{fec}^{2} \frac{\mathrm{~T}}{8} a+\frac{\mathrm{I}}{4^{4}} \mathrm{fec}^{2} \frac{\mathrm{I}}{\mathrm{I} 6} a\right.$

+ , \&sc.),
which is the feries to be inveftigated.

17. There is, however, another form, under which the feries brought out in Article 15. may be given, and which I confider as the beft adapted of any to the actual calculation of the length of an arch. This transformation will be effected, if, in the well-known formula, $\tan ^{2} A=\frac{1-\operatorname{cof} 2 A}{1+\operatorname{cof} 2 A}$, inftead of A , we fubftitute fucceffively $a, \frac{\mathrm{I}}{2} a, \frac{\mathrm{I}}{4}: a, \& \mathrm{c}$.; we fhall then obtain a feries of fractions of the form $\frac{I-\cos \frac{\mathrm{I}}{n} a}{\mathrm{I}+\cos \frac{\mathrm{I}}{n} a}$ which being fubftituted inftead of their equivalents in the formula

$$
\frac{I}{a^{2}}=\left\{\begin{array}{l}
\frac{I}{\tan ^{2} a}+\frac{2}{3} \\
-\left(\frac{1}{4} \tan ^{2} \frac{1}{2} a+\frac{1}{4^{2}} \tan ^{2} \frac{I}{4} a+\frac{1}{4^{3}} \tan ^{2} \frac{I}{8} a+\frac{1}{4^{4}} \tan ^{2} \frac{1}{16} a\right. \\
+, \& c .),
\end{array}\right.
$$

Vol. VI.-P.II.
it is changed to

$$
\frac{1}{a^{2}}=\left\{\begin{array}{l}
\frac{1+\operatorname{cof} 2 a}{1-\operatorname{cof} 2 a}+\frac{2}{3} \\
-\left(\frac{1}{4} \frac{1-\operatorname{cof} a}{1+\operatorname{cof} a}+\frac{1}{4^{2}} \frac{1-\cos \frac{1}{2} a}{1+\operatorname{cof} \frac{1}{2} a}+\frac{1}{4^{3}} \frac{1-\operatorname{cor} \frac{2}{4} a}{1+\cos \frac{1}{4} a}\right. \\
\left.+\frac{1}{4^{4}} \frac{1-\operatorname{cof} \frac{1}{8} a}{1+\cos \frac{1}{8} a}+, \& c .\right)
\end{array}\right.
$$

or, putting $\frac{I}{2} a$ inftead of a, and $\frac{I}{4} a$ inftead of $\frac{I}{2} a$, and fo on,
in order that the formula may contain only the cofines of the arch and its fub-multiples, and dividing the whole expreffion by 4,

$$
\frac{\mathrm{I}}{a^{2}}=\left\{\begin{array}{l}
\frac{\mathrm{I}}{4} \frac{\mathrm{I}+\operatorname{cof} a}{\mathrm{I}-\operatorname{cof} a}+\frac{\mathrm{I}}{6} \\
-\left(\frac{\mathrm{I}}{4^{2}} \frac{\mathrm{I}-\operatorname{cof}_{\frac{1}{2}} a}{\mathrm{I}+\operatorname{cof} \frac{1}{2} a}+\frac{\mathrm{I}}{4^{3}} \frac{\mathrm{I}-\operatorname{cof} \frac{1}{4} a}{\mathrm{I}+\operatorname{cof} \frac{1}{4} a}+\frac{\mathrm{I}}{4^{4}} \frac{\mathrm{I}-\operatorname{cof} \frac{1}{8} a}{\mathrm{I}+\operatorname{cof} \frac{1}{8} a}\right. \\
\left.+\frac{\mathrm{I}}{4^{5}} \frac{\mathrm{I}-\operatorname{cof}_{\mathrm{T}_{6} \frac{1}{6} a}^{1}+\operatorname{cof}_{\frac{1}{2}} a}{1}+, \& \text { c. }\right)
\end{array}\right.
$$

and this is the fecond feries which I propofed to inveftigate, reduced to its moft convenient form.
18. We may determine two limits to the rate of convergency of the feries juft now found, in the fame manner as we have found the limits of that of our firft feries; and, indeed, the reafoning employed in the one cafe is immediately applicable to the other. For if the firft feries, which is

$$
\frac{I}{a}=\frac{\mathrm{I}}{\tan a}+\frac{\mathrm{I}}{2} \tan \frac{\mathrm{I}}{2} a+\frac{\mathrm{I}}{4} \tan \frac{\mathrm{I}}{4} a+\frac{\mathrm{I}}{8} \tan \frac{1}{8} a+, \& c
$$

be put under this form

$$
\frac{\mathbf{x}}{a}=\frac{1}{\tan a}+\mathrm{T}_{(1)}+\mathrm{T}_{(2)}+\mathrm{T}_{(3)}+\mathrm{T}_{(4)}+, \& \mathrm{c}
$$

where $T_{(1)}$ is put for $\frac{1}{2} \tan \frac{1}{2} a$, and $T_{(2)}$ for $\frac{T}{4} \tan \frac{1}{4} a$, and $T_{(3)}$
for $\frac{\pi}{8} \tan \frac{1}{8} a, \& c$., then, as the formula' given at the conclufion of the laft article, becomes by fubftituting $\tan ^{2} \frac{1}{4} a$ for $\frac{1-\operatorname{cof} \frac{1}{2} a}{1+\operatorname{cof} \frac{1}{2} a}$, and $\tan ^{2} \frac{1}{8} a$ for $\frac{1-\operatorname{cof} \frac{1}{4} a}{I+\operatorname{cof} \frac{1}{4} a}$, and fo on,
$\frac{\mathrm{I}}{a^{2}}=\left\{\begin{array}{l}\frac{\mathrm{I}}{4} \frac{\mathrm{I}+\operatorname{co\rho } a}{\mathrm{I}-\operatorname{co\rho } a}+\frac{\mathrm{I}}{6} \\ -\left(\frac{\mathrm{I}}{4^{2}} \tan ^{2} \frac{1}{4} a+\frac{\mathrm{I}}{4^{3}} \tan ^{2} \frac{1}{8} a+\frac{\mathrm{r}}{4^{4}} \tan ^{2} \frac{\mathrm{I}}{16} a+, \& c \cdot\right)\end{array}\right.$
it may be otherwife expreffed thus,

$$
\frac{x}{a^{2}}=\left\{\begin{array}{l}
\frac{\mathrm{I}}{\mathrm{I}+\operatorname{cof} a} \frac{\mathrm{I}}{\mathrm{I}-\operatorname{cof} a}+\frac{\mathrm{I}}{6} \\
-\left(\mathrm{T}^{2}(2)+\mathrm{T}_{(3)}^{2}+\mathrm{T}^{z}(4)+\mathrm{T}^{2}(\mathrm{~g})+, \& \mathrm{c}_{\bullet}\right)
\end{array}\right.
$$

where it is to be obferved, that the fymbols $\mathrm{T}_{(2)}, \mathrm{T}_{(3)}, \mathrm{T}_{(4)}$, denote the very fame quantities in both feries.

Now, as we have found (Art. 8. and 9.), that each term of the feries of quantities $T_{(2),}, T_{(3)}, T_{(4)}$, \&c. is lefs than $\frac{T}{4}$ of the serm immediately before, but greater than a third proportional to the two terms immediately before it, taken in their order, it Nn 2
manifeft, that each term of the feries in our fecond formula muft be lefs than $\frac{I}{16}$ of the term before $i t$, but greater than a third proportional to the two terms immediately preceding it; and thefe are the limits to the rates of convergency of our fecond feries.
19. We may alfo affign limits to the fum of all terms, after any propofed term : for putting it under this form

$$
\frac{\mathbf{I}}{a^{2}}=\left\{\begin{array}{l}
\frac{1}{4} \frac{1+\operatorname{cof} a}{1-\operatorname{cof} a}+\frac{1}{6} \\
-\left(\mathrm{T}_{(1)}+\mathrm{T}_{(2)} \ldots+\mathrm{T}_{(n)}+\mathrm{T}_{(n+1)}+\mathrm{T}_{(n+2)}+, \& \mathrm{c}\right)
\end{array}\right.
$$

where $\mathrm{T}_{(\mathrm{s})}, \mathrm{T}_{(2), \ldots} \mathrm{T}_{(n)}$, \&c. now denote merely the terms of the feries taken in their order, then becaufe

$$
\begin{aligned}
& \mathrm{T}_{(m+2)}<\frac{\mathrm{I}}{\mathrm{I} 6} \mathrm{~T}_{(m+1)}, \\
& \mathrm{T}_{(m+3)}<\frac{\mathrm{I}}{\mathrm{I} 6} \mathrm{~T}_{(m+2)}, \\
& \mathrm{T}_{(m+4)}<\frac{\mathrm{I}}{\mathrm{I} 6} \mathrm{~T}_{(m+3)},
\end{aligned}
$$

\&c.

Therefore,

$$
\begin{aligned}
& \mathrm{T}_{(m+2)}+\mathrm{T}_{(m+3)}+\mathrm{T}_{(m+4)}+, \& \mathrm{c} .<\frac{\mathrm{I}}{16}\left(\mathrm{~T}_{(m+1)}\right. \\
& \left.\quad+\mathrm{T}_{(m+2)}+\mathrm{T}_{(m+3)}+, \& \mathrm{c} .\right)
\end{aligned}
$$

That is, putting S for $\mathrm{T}_{(m+2)}+\mathrm{T}_{(m+3)}+\mathrm{T}_{(m+4)}+$; \& c .

$$
\mathrm{S}<\frac{\mathrm{I}}{16}\left\{\mathrm{~T}_{(m+1)}+\mathrm{S}\right\}, \text { and hence } \mathrm{S}<\frac{\mathrm{I}}{\mathrm{I}_{5}} \mathrm{~T}_{(m+1)} .
$$

Thus it appears, that the fum of all the terms following any term, is lefs than $\frac{\mathrm{I}}{15}$ of that term.
20. As to the other limit, it muft be the fame as the like limit of our firft feries, on account of their having the fame limit to their correfponding rates of convergency. That is, putting S to denote as above, then

$$
\begin{gathered}
\mathrm{S}>\frac{\mathrm{T}_{(m+1)}}{\mathrm{T}_{(m)}-\mathrm{T}_{(m+1)}} \mathrm{T}_{(m+1)} ; \\
\text { or } \mathrm{S}>\frac{1}{\mathrm{I} 5} \mathrm{~T}_{(m+1)}-\frac{\mathrm{T}_{(m)}-16 \mathrm{~T}_{(m+1)}}{\mathrm{I} 5\left(\mathrm{~T}_{(m)}-\mathrm{T}_{(m+1)}\right)} \mathrm{T}_{(m+1)} .
\end{gathered}
$$

2I. It yet remains for us to confider how the feries of quantities $\frac{\mathrm{I}-\operatorname{cof} a}{\mathrm{I}+\operatorname{cof} a}, \frac{\mathrm{I}-\operatorname{cof} \frac{1}{2} a}{\mathrm{I}+\operatorname{cof} \frac{1}{2} a}$, \&c. are to be found. Now this may be done, either by computing the cofines of the feries of arches $a, \frac{\mathrm{I}}{2} a, \frac{\mathrm{I}}{4} a, \frac{\mathrm{x}}{8} a$, \&c. one from another by means of the formula $\operatorname{cof} \frac{\mathrm{I}}{2} \mathrm{~A}=\sqrt{\frac{\mathrm{I}+\operatorname{cof} \mathrm{A}}{2}}$, and thence computing the feries of fractions $\frac{\mathrm{I}-\operatorname{cof} \frac{1}{2} a}{\mathrm{r}+\operatorname{cof} \frac{1}{2} a}, \frac{\mathrm{r}-\operatorname{cof} \frac{1}{4} a}{\mathrm{I}+\operatorname{cof} \frac{1}{4} a}$, \&c. Or we may compute each fraction at once from that which precedes it, by a formula which may be thus inveftigated.

Put $\frac{I-\cos A}{I+\cos A}=t$, and $\frac{I-\cos \frac{1}{2} A}{I+\cos \frac{1}{2} A}=t^{\prime}$, then $\cos A=\frac{1-t}{I+t^{\prime}}$
and $\frac{\mathrm{x}+\operatorname{cof} \mathrm{A}}{2}=\frac{\mathrm{I}}{\mathrm{I}+t} ;$ alfo $\operatorname{cor} \frac{\mathrm{I}}{2} \mathrm{~A}=\frac{\mathrm{I}-t^{\prime}}{\mathrm{I}+t^{\prime}}$, now $\operatorname{cof} \frac{\mathrm{I}}{2} \mathrm{~A}$

* $=\frac{\sqrt{I+\operatorname{cof} \mathrm{A}}}{2}$, therefore $\frac{I-t^{\prime}}{I+t^{\prime}},=\frac{I}{\sqrt{I+t}}$, and hence

$$
t^{\prime}=\frac{\sqrt{\mathbf{1 + t}}-\mathbf{I}}{\sqrt{\mathbf{I}+t}+\mathbf{I}}
$$

22. UPON the whole, then, the refult of the inveftigation of the fecond feries may be ffated briefly as follows. Let a denote any arch of a circle, its radius being unity, then

$$
\frac{\mathbf{I}}{a^{2}}=\left\{\begin{array}{l}
\frac{1}{4} \frac{1+\operatorname{cof} a}{1-\operatorname{cof} a}+\frac{1}{6} \\
-\left\{\begin{array}{c}
\frac{1}{4^{2}} \frac{1-\operatorname{cof} \frac{1}{2} a}{1+\operatorname{cof} \frac{1}{2} a}+\frac{1}{4^{3}} \frac{\mathrm{I}-\operatorname{cof} \frac{1}{4} a}{1+\operatorname{cof} \frac{1}{4} a}+\frac{1}{4^{4}} \frac{\mathrm{I}-\operatorname{cof} \frac{1}{8} a}{1+\operatorname{cof} \frac{1}{8} a} \cdot \cdot \& \mathrm{c} . \\
+\mathrm{T}_{(m)}+\mathrm{T}_{(m+1)}+\mathrm{S}
\end{array}\right.
\end{array}\right\}
$$

where $\mathrm{T}_{(m)}$ and $\mathrm{T}_{(m+1)}$ denote any two fucceflive terms of the feries in the parenthefis, and S denotes the fum of all the following terms; and here S will always be between the limits

$$
\frac{1}{15} \mathrm{~T}_{(m)} \text {, and } \frac{\mathrm{I}}{15} \mathrm{~T}_{(m+1)}-\frac{\left(\mathrm{T}_{(m)}-16 \mathrm{~T}_{(m+1)}\right) \mathrm{T}_{(m+1)}}{\mathrm{I} 5\left(\mathrm{~T}_{(m)}-\mathrm{T}_{(m+1)}\right)}
$$

that is, it will be lefs than the former, but greater than the latter quantity.

The feries of cofines are to be deduced one from another by means of the formula

$$
\operatorname{cof} \frac{I}{2} A=\sqrt{\frac{I+\operatorname{cof} A}{2}}
$$

Or, compute the feries of quantities $t, t^{\prime}, t^{\prime \prime}, t^{\prime \prime \prime}, \& c$., one from another by means of the formulæ

$$
t=\frac{\mathbf{I}-\operatorname{cof} a}{\mathbf{I}+\operatorname{cof} a}, t^{\prime}=\frac{\sqrt{\mathbf{I}+t}-\mathbf{1}}{\sqrt{\mathbf{I}+t}+\mathbf{I}}, t^{\prime \prime}=\frac{\sqrt{\mathbf{I}+t^{\prime}}-\mathbf{1}}{\sqrt{\mathbf{I}+t^{\prime}}+\mathbf{1}}, \& c
$$

Then will
$\frac{\mathrm{I}}{a^{2}}=\left\{\begin{array}{l}\frac{\mathrm{I}}{4} \frac{\mathrm{I}+\operatorname{cof} a}{\mathrm{I}-\operatorname{cof} a}+\frac{\mathrm{I}}{6} \\ -\left(\frac{\mathrm{I}}{4^{2}} t^{\prime}+\frac{\mathrm{I}}{4^{3}} t^{\prime}+\frac{\mathrm{I}}{4^{4}} t^{\prime \prime \prime}+\frac{\mathrm{I}}{4^{5}} t^{\mathrm{iv}} \ldots+\mathrm{T}_{(m)}+\mathrm{T}_{(m+1)}+\mathrm{S}\right),\end{array}\right.$
where $\mathbf{T}_{(m)}, \mathrm{T}_{(m+1)}$, and S denote the fame as before.
I consider this fecond feries for the rectification of the circle (under either of its forms), as preferable to the other feries given at Article 12. for two reafons; firft, becaufe of its greater rate of convergency, and, next, becaufe the quantities $\operatorname{cof} a, \operatorname{cof} \frac{\mathrm{I}}{2} a, \operatorname{cof} \frac{\mathrm{I}}{4} a, \& \mathrm{c}$., alfo the quantities $t, t^{\prime}, t^{\prime \prime}, \& \mathrm{c}$. can be deduced more eafily one from another than the feries of tangents $\tan a, \tan \frac{\mathrm{I}}{2} a, \tan \frac{\mathrm{I}}{4} a, \tan \frac{\mathrm{I}}{8} a, \& c$.
23. That we may inveftigate another feries, let us refume the formula $\frac{I}{\tan A}=\frac{1}{2 \cdot \tan \frac{1}{2} A}-\frac{1}{2} \tan \frac{1}{2} A$; the cubes of both fides of the equation being now taken, the refult is

$$
\frac{1}{\tan ^{3} A}=\frac{1}{8 \tan ^{3} \frac{1}{2} A}-\frac{3}{8}\left\{\frac{1}{\tan \frac{1}{2} A}-\tan \frac{1}{2} A\right\}-\frac{1}{8} \tan ^{3} \frac{1}{2} A .
$$

To the fides of this equation let the correfponding fides of the equation

$$
\frac{1}{\tan A}=\frac{1}{2}\left\{\frac{1}{\tan \frac{1}{2} A}-\tan \frac{1}{2} A\right\}
$$

be added; then we get
$\frac{I}{\tan ^{3} \mathrm{~A}}+\frac{\mathrm{I}}{\tan \mathrm{A}}=\frac{1}{8}\left(\frac{\mathrm{I}}{\tan ^{3} \frac{1}{2} \mathrm{~A}}+\frac{\mathrm{I}}{\tan \frac{1}{2} \mathrm{~A}}\right)-\frac{1}{8}\left(\tan \frac{1}{2} \mathrm{~A}+\tan ^{3} \frac{1}{2} \mathrm{~A}\right)$.
Now $\frac{1}{\tan ^{3} A}+\frac{1}{\tan A}=\frac{1+\tan ^{2} \mathrm{~A}}{\tan ^{3} \mathrm{~A}}=\frac{\mathrm{fec} A}{\tan ^{3} \cdot \mathrm{~A}}$, and fimilarly, $\frac{I}{\tan ^{3} \frac{1}{2} \mathrm{~A}}+\frac{\mathrm{I}}{\tan ^{\frac{1}{2} \mathrm{~A}}}=\frac{\mathrm{fec}^{2} \frac{1}{2} \mathrm{~A}}{\tan ^{3} \frac{1}{4} \mathrm{~A}}$, alfo $\tan \frac{\mathrm{I}}{2} \mathrm{~A}+\tan ^{3} \frac{\mathrm{I}}{2} \mathrm{~A}=$ $\tan \frac{\mathrm{I}}{2} \mathrm{~A}\left(\mathrm{I}+\tan ^{2} \frac{\mathrm{I}}{2} \mathrm{~A}\right)=\tan \frac{\mathrm{I}}{2} \mathrm{~A} \operatorname{fec}^{2} \frac{1}{2} \mathrm{~A}:$ therefore, by fubftituting, we get

$$
\frac{\operatorname{fec}^{2} \frac{1}{2} \mathrm{~A}}{\tan ^{3} \frac{1}{2} \mathrm{~A}}=\frac{\operatorname{fec}^{2} \frac{1}{2} \mathrm{~A}}{8 \tan ^{3} \frac{1}{2} \mathrm{~A}}-\frac{\mathrm{r}}{8} \tan \frac{\mathrm{r}}{2} \mathrm{~A} \operatorname{fec}^{2} \frac{\mathrm{I}}{2} \mathrm{~A} .
$$

24. From this formula, by fubftituting $a, \frac{\mathbf{I}}{2} a, \frac{\mathbf{T}}{4} a \ldots \frac{a}{2^{n-1}}$ for A, and multiplying the fucceffive refults by the fractions $\mathrm{I}, \frac{\mathrm{I}}{8}, \frac{\mathrm{I}}{8^{2}} \cdots \frac{\mathrm{I}}{8^{n-1}}$, we deduce the following feries of equations, the number of which is n :

$$
\frac{\operatorname{fec}^{2} a}{\tan ^{3} a}
$$

$$
\begin{aligned}
\frac{\operatorname{fec}^{3} a}{\tan ^{3} a} & =\frac{\operatorname{fec}^{2} \frac{1}{2} a}{2^{3} \tan ^{3} \frac{1}{2} a}-\frac{1}{8} \tan \frac{1}{2} a \operatorname{fec}^{2} \frac{1}{2} a \\
\frac{\operatorname{fec}^{2} \frac{1}{4} a}{2^{3} \tan ^{3} \frac{1}{2} a} & =\frac{\operatorname{fec}^{2} \frac{1}{8} a}{4^{3} \tan ^{3} \frac{1}{4} a}-\frac{1}{8^{2}} \tan \frac{1}{4} a \operatorname{fec}^{2} \frac{1}{4} a \\
\frac{\operatorname{fec}^{2} \frac{1}{4} a}{4^{3} \tan ^{3} \frac{1}{4} a} & =\frac{\operatorname{fec}^{2} \frac{1}{8} a}{8^{\tan \frac{1}{8} a}}-\frac{1}{8^{3}} \tan \frac{1}{8} a \operatorname{fec}^{5} \frac{1}{8} a
\end{aligned}
$$

$$
\frac{\sec ^{2} \frac{a}{2^{n-2}}}{2^{3(n-1)} \tan ^{3} \frac{a}{2^{n-2}}}=\frac{\operatorname{fec}^{2} \frac{a}{2^{n-1}}}{2^{3(n-1)} \tan \frac{a}{2^{n-1}}}-\frac{1}{8^{n-1}} \tan \frac{a}{2^{n-1}} \operatorname{fec}^{2} \frac{a}{2^{n-1}}
$$

$$
\frac{\sec ^{2} \frac{a}{2^{n-1}}}{2^{3^{(n-1)}} \tan ^{3} \frac{a}{2^{n-1}}}=\frac{\sec ^{2} \frac{a}{2^{n}}}{2^{3 n} \tan ^{3} \frac{a}{2^{n}}}-\frac{1}{8^{n}} \tan \frac{a}{2^{n}} \sec ^{2} \frac{a}{2^{n}}
$$

Let the fums of the correfponding fides of thefe equations be now taken, and rejecting from both the common feries

$$
\frac{\operatorname{fec}^{2} \frac{1}{2} a}{2^{3} \tan ^{3} \frac{1}{2} a}+\frac{\operatorname{fec}^{2} \frac{1}{4} a}{2^{3} \tan ^{3} \frac{1}{4} a} \cdots+\frac{\operatorname{fec}^{2} \frac{a}{2^{n-1}}}{2^{3(n-1)} \tan ^{3} \frac{a}{2^{n-1}}}
$$

the refult will be

$$
\frac{\operatorname{fec}^{2} a}{\tan ^{3} a}=\left\{\begin{array}{l}
\frac{\operatorname{fec}^{2} \frac{a}{2^{n}}}{3^{3 n} \tan ^{3} \frac{a}{2^{n}}} \\
\left\{\begin{array}{l}
\frac{1}{8} \tan \frac{1}{2} a \operatorname{fec}^{2} \frac{1}{2} a+\frac{\mathrm{I}}{8^{2}} \tan \frac{\mathrm{I}}{4} a \operatorname{fec}^{2} \frac{\mathrm{x}}{4} a \\
+\frac{\mathrm{I}}{8^{3}} \tan \frac{\mathrm{I}}{8} a \operatorname{fec}^{2} \frac{\mathrm{I}}{8} a \ldots+\frac{\mathrm{I}}{8^{n}} \tan \frac{a}{2^{n}} \mathrm{fec}^{2} \frac{a}{2^{n}}
\end{array}\right\}
\end{array}\right.
$$

VoL. VI.-P.II.
Oo
and
and here the number of terms compofing the feries in the parenthefis is n.

Let us now conceive the feries to go on ad infinitum, fo that n may be confidered as indefinitely great, then it is manifef, that $\operatorname{fec}^{2} \frac{a}{2^{n}}$ will become equal to $\operatorname{rad}^{2} ;$ now $2 n \tan \frac{a}{2^{n}}$ will become a, (Art. 6. and 7.) therefore $2^{3 n} \tan ^{3} \frac{a}{2^{n}}$ will become a^{3}; hence, fubftituting $\frac{1}{a^{3}}$ for $\frac{\operatorname{fec}^{2} \frac{a}{2^{n}}}{2^{3 n} \tan ^{\frac{3}{2}} \frac{a}{2^{n}}}$ in our equation, and tranfpofing, we get at laft
$\frac{I}{a^{3}}=\left\{\begin{array}{l}\frac{\operatorname{fec}^{2} a}{\tan ^{3} a}+\frac{\mathrm{I}}{8} \tan \frac{1}{2} a \operatorname{fec}^{2} \frac{1}{2} a+\frac{\mathrm{I}}{8^{2}} \tan \frac{\mathrm{I}}{4} a \mathrm{fec}^{2} \frac{\mathrm{I}}{4} a \\ +\frac{\mathrm{I}}{8^{3}} \tan \frac{\mathrm{I}}{8} a \mathrm{fec}^{2} \frac{1}{8} a+, 8 \mathrm{cc}\end{array}\right.$
and this is the third feries which I propofed to inveftigate for the rectification of an arch of a circle.
25. The feries we have juft now found, is evidently of a very fimple form; it alfo converges pretty falt, each term being lefs than the 16 th of that which precedes it. As, however, to apply it to actual calculation, it will be neceffary to extract the cube root of a number, which is an operation of confiderable labour when the root is to be found to feveral figures, perhaps, confidered as a practical rule, this third formula is inferior to the two former. But if, on the other hand, we regard it merely as an elegant analytical theorem, it does not feem lefs deferving of notice than either of them.
26. The mode of reafoning by which we have found feries exprefling the three firft powers of the reciprocal of an arch, will apply equally to any higher power, but the feries will become more and more complex as we proceed, befides requiring in their application the extraction of high roots. In the cale of the fourth power, however, the feries is fufficiently fimple, and converges fafter that any we have yet inveftigated, while, at the fame time, in its application we have only extractions of the fquare root. On thefe accounts, I fhall here give its inveftigation.

Resuming the expreffion $\frac{I}{\tan A}=\frac{1}{2 \tan \frac{1}{2} A}-\frac{1}{2} \tan \frac{1}{2} A ;$
let the fourth power, and alfo the fquare of each fide of the equation be taken, the refult will be

$$
\begin{aligned}
& \frac{1}{\tan 4}=\frac{1}{16 \tan ^{4} \frac{1}{2} \mathrm{~A}}-\frac{1}{4 \tan ^{2} \frac{1}{2} \mathrm{~A}}+\frac{3}{8}-\frac{1}{4} \tan ^{2} \frac{1}{2} \mathrm{~A}+\frac{1}{16} \tan ^{4} \frac{1}{2} \mathrm{~A}, \\
& \frac{1}{\tan ^{2} \mathrm{~A}}=
\end{aligned}
$$

Let the firf of thefe equations be multiplied by 4 , and the fecond by 3 , and let the refults be added; then, reducing the fractions to a common denominator, we get
$\frac{3+4 \tan ^{2} \mathrm{~A}}{\tan ^{4} \mathrm{~A}}=\frac{1}{16} \frac{3+4 \tan ^{2} \frac{1}{2} \mathrm{~A}}{\tan ^{4} \frac{1}{2} \mathrm{~A}}-\frac{14}{16}+\frac{1}{16}\left\{4 \tan ^{2} \frac{1}{4} \mathrm{~A}+3 \tan ^{4} \frac{1}{2} \mathrm{~A}\right\}$.
Let us, for the fake of brevity, exprefs the complex quanti-
ty $\frac{3+4 \tan ^{2} A}{\tan ^{4} \mathrm{~A}}$ by the fymbol $f \mathrm{~A}$, (which is not to be underftood as the product of two quantities f and A , but as a character denoting a particular function of the arch $A ;$) and, fimilarly, let $\frac{3+4 \tan ^{2} \frac{1}{2} \mathrm{~A}}{\tan ^{4} \mathrm{~A}}$ be denoted by $f \frac{1}{2} \mathrm{~A}$, and fo on. Alfo
let the other complex expreffion $4 \tan ^{2} \frac{1}{2} A+3 \tan ^{4} \frac{1}{2} A$ be denoted by $\mathrm{F} \frac{1}{2} \mathrm{~A}$; and if there were others like it, that is, which only differed by having $\frac{1}{4} \mathrm{~A}, \frac{7}{8} \mathrm{~A}, \& \mathrm{c}$. inftead of $\frac{1}{2} \mathrm{~A}$, they would be denoted by $F \frac{1}{4} A, F \frac{1}{8} A, \& c . ;$ then our laft equation will ftand thus,

$$
f \mathrm{~A}=\frac{1}{16} f \frac{1}{2} \mathrm{~A}-\frac{14}{16}+\frac{1}{16} \mathrm{~F}_{\frac{1}{2}} \mathrm{~A}
$$

and fimilarly, putting $\frac{2}{2} \mathrm{~A}, \frac{1}{4} \mathrm{~A}, \frac{1}{8} \mathrm{~A}$, \&c. fucceffively for A , and multiplying the refults by the feries of fractions $\frac{1}{16^{\prime}}, \frac{1}{16^{2}}, \frac{\mathbf{1}}{16^{3}}$ \& c.

$$
\begin{aligned}
& \frac{\mathrm{I}}{16} f \frac{1}{2} \mathrm{~A}=\frac{\mathrm{I}}{16^{2}} f \div \mathrm{A}-\frac{14}{16^{2}}+\frac{\mathrm{I}}{16^{2}} \mathrm{~F} \frac{1}{4} \mathrm{~A} \\
& \frac{\mathbf{1}}{16} f \div \mathrm{A}=\frac{1}{16^{3}} f \frac{1}{8} \mathrm{~A}-\frac{14}{16^{3}}+\frac{\mathrm{I}}{16^{3}} \mathrm{~F} \frac{1}{8} \mathrm{~A}
\end{aligned}
$$

\& c.
By continuing this feries of equations to n terms, and then taking their fum, and rejecting what is common to each fide of the refult, exactly as in the inveftigations of the three preceding formulæ, we fhall get
$f \mathrm{~A}=\frac{\mathrm{I}}{2^{4 n}} f \frac{\mathrm{~A}}{2^{n}}-14\left\{\frac{\mathrm{I}}{16}+\frac{\mathbf{I}}{16^{2}}+\frac{\mathbf{I}}{16^{3}} \cdots+\frac{1}{16^{n}}\right\}$

$$
+\frac{1}{16} F \frac{1}{2} A+\frac{1}{16^{2}} F \frac{1}{4} A+\frac{1}{16^{3}} F \frac{1}{2} A \ldots+\frac{1}{16^{n}} F \cdot \frac{A}{2^{n}}
$$

and this equation holds true, n being, any whole pofitive number whatever.
27. Let us now, however, fuppofe n indefinitely great, then the quantity $\frac{\mathrm{I}}{2^{4 n}} f \frac{\mathrm{~A}}{2^{n}}$, or $\frac{3+4 \tan ^{2} \frac{\mathrm{~A}}{2^{n}}}{\left(2^{n} \tan \frac{\mathrm{~A}}{2^{n}}\right)^{4}}$, becomes fimply $\frac{3}{\mathrm{~A}^{4}}$, be.
caufe $\tan \frac{A}{2^{n}}$, and confequently $4 \tan ^{2} \frac{A}{2^{n}}$, vanifhes, and $2^{n} \tan \frac{A}{2^{n}}$ becomes A, as we have already had occafion to obferve (Art. 6. and 7.). Alfo the geometrical feries

$$
\frac{1}{16}+\frac{1}{16^{2}}+\frac{1}{16^{3}}+, \& c .
$$

having the number of its terms indefinitely great, and their common ratio $\frac{1}{16}$, will be $\frac{1}{15}$. Therefore, by fubftitution and tranfpofition we have
$\frac{3}{\mathrm{~A}^{4}}=f \mathrm{~A}+\frac{14}{15}-\left\{\frac{\mathrm{I}}{16} \mathrm{~F} \frac{1}{2} \mathrm{~A}+\frac{\mathrm{I}}{16^{2}} \mathrm{~F} \frac{1}{4} \mathrm{~A}+\frac{\mathrm{I}}{16^{3}} \mathrm{~F} \frac{1}{8} \mathrm{~A}+, \& \mathrm{c}.\right\}$ or, fubftituting for $f \mathrm{~A}$, and $\mathrm{F} \frac{1}{\mathrm{~A}}, \& \mathrm{c}$. the quantities which thefe fymbols exprefs,

$$
\frac{3}{A^{4}}=\left\{\begin{array}{l}
\frac{3+4 \tan ^{2} A}{\tan ^{4} A}+\frac{14}{15} \\
-\left\{\frac{1}{16}\left(4 \tan ^{2} \frac{1}{2} A+3 \tan ^{4} \frac{1}{2} A\right)+\frac{1}{16^{2}}\left(4 \tan ^{2} \frac{1}{4} A+3 \tan ^{4} \frac{1}{4} A\right)\right. \\
\left.\quad+\frac{1}{16^{3}}\left(4 \tan ^{2} \frac{8}{8} A+3 \tan ^{4} \frac{1}{8} A\right)+, \& c .\right\}
\end{array}\right.
$$

and this is one form of the feries which we propofed to inveftigate.
28. This
28. This feries, however, admits of being expreffed under another form, better adapted to calculation, and to effect this transformation, let us begin with the term $\frac{3+4 \tan ^{2} A}{\tan ^{4} A}$. In this quantity let $\frac{I-\operatorname{cof} 2 A}{I+\cos 2 A}$ be fubftituted for $\tan ^{2} A$; it then becomes, after proper reduction, $\frac{7+6 \operatorname{cof} 2 A-\operatorname{cof}^{2} 2 A}{1-2 \operatorname{cof} 2 A+\operatorname{cof}^{2} 2 A}$. $A-$ gain, in this expreffion let $\frac{I+\operatorname{cof} 4 A}{2}$ be fubftituted for $\operatorname{cof}^{2} 2 \mathrm{~A}$, we then get

$$
\frac{3+4 \tan ^{2} A}{\tan ^{4} A}=\frac{3-\operatorname{cof} 4 A+12 \operatorname{cof} 2 A}{3+\operatorname{cof} 4 A-4 \operatorname{cof} 2 A}
$$

The remaining terms of the feries, which are fimilar to one another, and of the form $4 \tan ^{2} \frac{\mathbf{I}}{2 n} \mathrm{~A}+3 \tan ^{4} \frac{\mathbf{T}}{2 n} \mathrm{~A}$, admit of a Like transformation; for by fubtituting $\frac{1-\operatorname{cof} \frac{1}{n} A}{n+c o r} \frac{1}{n} A$ $\tan ^{2} \frac{\mathrm{I}}{2 n} \mathrm{~A}$, and again $\frac{\mathrm{I}+\operatorname{cof} \frac{2}{n} \mathrm{~A}}{2}$ for $\operatorname{cof}^{2} \frac{\mathrm{I}}{n} \mathrm{~A}$ in the refult, we get

$$
4 \tan ^{2} \frac{\mathrm{I}}{2 n} \mathrm{~A}+3 \tan ^{4} \frac{\mathrm{I}}{2 n} \mathrm{~A}=\frac{13-\operatorname{cof}_{n} \mathrm{~A}^{2}-12 \operatorname{cof} \frac{\mathrm{I}}{n} \mathrm{~A}}{3+\operatorname{cof} \frac{2}{n} \cos +4 \cos }
$$

By fubftituting thefe transformed expreffions in the feries, it becomes

$$
\begin{aligned}
& \frac{3}{A^{4}}=\frac{13-\operatorname{cof} 4+A+12 \operatorname{cof} 2 A}{3+\operatorname{cof} 4 A-4 \operatorname{cof} 2 A}+\frac{14}{15} \\
& - \\
& \left\{\frac{13}{16} \frac{13 \operatorname{cof} 2 A-12 \operatorname{cof} A}{3+\operatorname{cof} 2 A+4 \operatorname{cof} A}+\frac{1}{16^{2}} \frac{13-\operatorname{cof} A-12 \operatorname{cof} \frac{1}{2} A}{3+\operatorname{cof} A+4 \operatorname{cof} \frac{1}{2} A}\right. \\
& \\
& \left.\quad+\frac{1}{16^{3}} \frac{13-\operatorname{cof} \frac{1}{2} A-12 \operatorname{cof} \frac{1}{4} A}{3+\operatorname{cof} \frac{1}{2} A+4 \operatorname{cof} \frac{1}{4} A}+, \& c .\right\}
\end{aligned}
$$

- Finall x, tet $\frac{1}{4} a$ be now fubftituted for A , and $\frac{1}{8} a$ for $\frac{1}{2} \mathrm{~A}$, and fo on, and let the refult be divided by 3×16; then we have

$$
\begin{aligned}
& \frac{\mathbf{I}}{a^{4}}=\frac{\mathbf{I}}{3.16^{2}} \frac{13-\operatorname{cof} a+12 \cos \frac{1}{2} a}{3+\operatorname{col} a-4 \cos \frac{1}{2} a}+\frac{-7}{8.8 \cdot 9.10} \\
& -\left\{\frac{1}{3.16^{3}} \frac{13-\operatorname{cof} \frac{1}{2} a-12 \operatorname{cof} \frac{1}{4} a}{3+\operatorname{con} \frac{1}{2} a+4 \cos \frac{1}{4} a}+\frac{1}{3.16^{4}} \frac{13-\operatorname{cof} \frac{1}{4} a-12 \operatorname{cof} \frac{1}{8} a}{3+\operatorname{cof} \frac{1}{4} a+4 \operatorname{cof} \frac{1}{8} a}\right. \\
& \left.+\frac{1}{3.16^{5}} \frac{13-\operatorname{cof} \frac{1}{8} a-12 \operatorname{cof}_{\frac{1}{1}} \frac{1}{8} a}{3+\operatorname{cof} \frac{1}{8} a+4 \operatorname{cof}_{\frac{1}{2} \sigma} a}+, \& \operatorname{c}\right\},
\end{aligned}
$$

which is our fourth general feries for the rectification of an arch; and its rate of convergence is very confiderable, for each term is lefs than σ^{\prime} th of the term before it. The feries, however, approaches continually to a geometrical progreffion, of which the common ratio is $\sigma^{\frac{1}{4}}$.
29. The preceding formulæ ${ }_{\text {, }}$ as well as innumerable others, which may in like manner be deduced from the expreffion $\tan A=\frac{1}{2 \tan \frac{1}{2} A}-\frac{1}{2} \tan \frac{1}{2} A$, all agree in exprefling a power of the reciprocal of an arch by an infinite feries, the terms of which
which are like functions of a feries of arches, formed from the arch to be rectified, and from one another, by continual bifection. We may, however, in the very fame way inveftigate the formulx which thatl exprefs the reciprocal of the arch and its powers by like functions of arches deduced from one another by trifection, or any other fection whatever. The moft fimple formula, which expreffes an arch by functions deduced from it by trifection, may be inveltigated as follows :
30. From the known expreffion $\tan A=\frac{3 \tan \frac{6}{3} A-\tan ^{3} \frac{1}{3} A}{I-3 \tan ^{2} \frac{1}{3} A}$ we readily get

$$
\frac{1}{\tan A}=\frac{1}{3 \tan \frac{1}{3} A}-\frac{8}{3} \frac{\tan \frac{1}{3} A}{3-\tan ^{2} \frac{1}{3} A}
$$

and hence, by fubftituting $a, \frac{1}{3} a, \frac{1}{9} a, \& c$. fucceffively for \mathbf{A}, and multiplying by the terms of the feries $\mathrm{I}, \frac{\mathrm{x}}{3}, \frac{1}{9}, \& \mathrm{c}$. we derive the following equations,

$$
\begin{aligned}
& \frac{1}{\tan a}=\frac{1}{3 \tan \frac{1}{3} a}-\frac{8}{3} \frac{\tan \frac{1}{3} a}{3-\tan ^{2} \frac{1}{3} a} \\
& \frac{1}{3 \tan \frac{1}{3} a}=\frac{\mathbf{I}}{9 \tan \frac{1}{9} a}-\frac{8}{3^{2}} \frac{\tan \frac{1}{9} a}{3-\tan ^{2} \frac{x}{9} a} \\
& \frac{1}{9 \tan \frac{1}{9} a}=\frac{\mathbf{x}}{27 \tan \frac{1}{2} \frac{1}{7} a}-\frac{8}{3^{3}} \frac{\tan \frac{1}{25} a}{3-\tan ^{2} \frac{1}{2} a^{\prime} a} . \\
& \& c .
\end{aligned}
$$

Now conceive this feries of equations to be continued, till the number of equations be n, and their fum to be taken, and the quantities common to each fide of the refult rejected, as in the inveftigations of the other formulæ; then we fhall have

$$
\frac{1}{\tan a}
$$

$$
\begin{aligned}
\frac{\mathbf{x}}{\tan a} & =\frac{\mathbf{1}}{3^{n} \tan \frac{a}{3^{n}}}-\left\{\frac{8}{3} \frac{\tan \frac{2}{3} \frac{a}{3-\tan ^{2} \frac{\frac{1}{3} a}{3}}+\frac{8}{3^{2}} \frac{\tan \frac{1}{9} a}{3-\tan ^{2} \frac{1}{9} a}}{}\right. \\
& +\frac{8}{3^{3}} \frac{\left.\tan \frac{8}{5} \frac{1}{3-\tan ^{2} \frac{1}{27} a} \cdots+\frac{8}{3^{n}} \frac{\tan \frac{a}{3^{n}}}{3-\tan ^{2} \frac{a}{3^{n}}}\right\} .}{} .
\end{aligned}
$$

And this is true, n being any number whatever. Now, if we confider that $3^{n} \tan \frac{a}{3^{n}}$ expreffes the fum of the fides of a figure formed by dividing the arch into 3^{n} equal parts, and drawing tangents at the points of divifion, whofe orders, reckoned from one end of the arch, are indicated by even numbers, (that end itfelf being reckoned one of them), and producing each to meet thofe adjoining to it, and the laft to meet a radius of the circle produced through the other end of the arch, it will be obvious, that n being fuppofed to increafe indefinitely, the expreffion $3^{n} \tan \frac{a}{3^{n}}$ will have for its limit the arch a, and in this cafe the feries will go on ad infinitum. Thus we fhall have
$\frac{\mathrm{I}}{\tan a}=\frac{\mathrm{I}}{a}-\left\{\frac{8}{3} \frac{\tan \frac{1}{3} a}{3-\tan ^{2} \frac{1}{3} a}+\frac{8}{3^{2}} \frac{\tan \frac{1}{9} a}{3-\tan ^{2} \frac{1}{9} a}+\frac{8}{3} \frac{\tan \frac{\frac{1}{2} \sqrt{2} a}{3-\tan ^{2} \frac{1}{2} a} a}{3}+\& \mathrm{cc}\right\}$,
and by tranfpofition,

$$
\frac{\mathrm{I}}{a}=\frac{\mathrm{I}}{\tan a_{0}}+\frac{8}{3} \frac{\tan \frac{1}{3} a}{3-\tan ^{2} \frac{1}{3} a}+\frac{8}{3^{2}} \frac{\tan \frac{1}{9} a}{3-\tan ^{2} \frac{1}{9} a}+\frac{8}{3^{3}} \frac{\tan _{\frac{1}{27}}^{3-\tan ^{2}} \frac{1}{2} \frac{1}{7} a}{3}+, \& \mathrm{cc} .
$$

and this is the feries which I propofed to inveftigate.
VOL. VI.-P. II.

3I. The feries we have juft now found, may be prefented under various forms. Thus, by confidering that

$$
\frac{I}{\tan A}=\frac{\operatorname{cof} A}{\operatorname{fin} A}=\frac{2 \operatorname{fin} A \operatorname{cof} A}{2 \operatorname{fin}^{2} A}=\frac{\operatorname{fin} 2 A}{I-\operatorname{cof} 2 A}
$$

and that

$$
\frac{\tan A}{3-\tan ^{2} A}=\frac{\frac{\operatorname{fin} A}{\operatorname{cof} A}}{3-\frac{\operatorname{fin}^{2} A}{\operatorname{cof}^{2} A}}=\frac{1}{2} \frac{2 \operatorname{fin} A \operatorname{cof} A}{4 \operatorname{cof}^{2} A-I}=\frac{1}{2} \frac{\operatorname{fin} 2 A}{1+2 \cos 2 A}
$$

it will appear that by due fubftitution the feries may be otherwife exprefled as follows :

$$
\frac{1}{a}=\frac{1}{2} \frac{\operatorname{fin} a}{1-\operatorname{cof} a}+\frac{2}{3} \frac{\operatorname{fin} \frac{1}{3} a}{1+2 \operatorname{cof} \frac{1}{3} a}+\frac{2}{3^{2}} \frac{\operatorname{fin} \frac{1}{9} a}{1+2 \operatorname{cof} \frac{1}{9} a}+\frac{2}{3^{3}} \frac{\operatorname{fin} \frac{1}{2} \frac{1}{1+2 \operatorname{cof} \frac{1}{2} \frac{1}{7} a}}{1}+\& c
$$

And other forms might be given to it, but they would all converge with the fame quicknefs, and each term would be lefs than $\frac{x}{9}$ th of the term before it. The feries, however, under whatever form it be given, and all others which like it require for their application the trifection of an arch, are, when compared with thofe we formerly inveftigated, of little ufe as practical rules; becaufe it is well known that to determine the fine, or other fuch function of an arch from a function of its triple, is a problem which produces a cubie equation of a form which does not admit of being refolved otherwife than by trials, or by infinite feries, both of which proceffes are fufficiently laborious, and only to be employed where the object in view cannot be attained by eafier means.
32. As from the different feries we have found for the rectification of an arch of a circle, the fpirit of our method muft be fufficiently obvious, I fhall not inveftigate any others at prefent.
fent. Before leaving this part of our fubject, however, it may be proper to obferve, that the fecond feries may be deduced from the firft, and the third from the fecond, and fo on with refpect to innumerable others of the fame kind, by the fluxional or differential calculus.

For refuming the firft feries

$$
\frac{\mathrm{I}}{a}=\frac{\mathrm{I}}{\tan a}+\frac{\mathrm{I}}{2} \tan \frac{\mathrm{I}}{2} a+\frac{\mathrm{I}}{4} \tan \frac{\mathrm{I}}{4} a+\frac{\mathrm{I}}{8} \tan \frac{\mathrm{I}}{8} a+, \& \mathrm{c} .
$$

if we take the fluxion of each term, confidering a as a variable quantity, we have
$\frac{-d a}{a^{2}}=\frac{-d a \mathrm{fec}^{2} a}{\tan ^{2} a}+\frac{\mathrm{I}}{4} d a \operatorname{fec}^{2} \frac{\mathrm{I}}{2} a+\frac{\mathrm{x}}{4^{2}} d a \operatorname{fec}^{2} \frac{\mathrm{I}}{4} a+\frac{\mathrm{x}}{4^{3}} d a \operatorname{fec}^{2} \frac{\mathrm{I}}{8} a+, \& c$.
and hence, changing the figns, and rejecting $d a$ from each term, and putting $\mathrm{I}+\tan ^{2} \frac{\mathrm{I}}{n} a$ for $\operatorname{fec}^{2} \frac{\mathrm{I}}{n} a$, we find
$\frac{I}{a^{2}}=\left\{\begin{array}{l}\frac{\mathrm{I}}{\tan ^{2} a}+\mathrm{I}-\left(\frac{\mathrm{I}}{4}+\frac{\mathrm{I}}{4^{2}}+\frac{\mathrm{I}}{4^{3}}+, \& \mathrm{c} .\right) \\ -\left(\frac{\mathrm{I}}{4} \tan ^{2} \frac{\mathrm{I}}{2} a+\frac{\mathrm{I}}{4^{2}} \tan ^{2} \frac{\mathrm{I}}{4} a+\frac{\mathrm{I}}{4^{\tan }} \tan ^{2} \frac{\mathrm{I}}{8} a+, \& \mathrm{c} .\right)\end{array}\right.$
In this expreffion, inftead of the numeral feries $\frac{1}{4}+\frac{\mathrm{T}}{4^{2}}+\frac{\mathrm{I}}{4^{3}}+, \& \mathrm{c}$.
(which is a geometrical progreffion having its common ratio $\frac{1}{4}$)
fubftitute its value, viz. $\frac{1}{3}$, and the refult is
$\frac{1}{a^{2}}=\frac{1}{\tan ^{2} a}+\frac{2}{3}-\left\{\frac{1}{4} \tan ^{2} \frac{1}{2} a+\frac{1}{4^{2}} \tan ^{2} \frac{1}{4} a+\frac{1}{4^{3}} \tan ^{2} \frac{1}{4} a+, \& c.\right\}$
which is identical with the formula found at Art. 15.

$$
\mathrm{P}_{\mathrm{p} 2}
$$

From

From this feries, by a like mode of proceeding, we may deduce our third feries, and thence, again, our fourth, and fo on : but this mode of inveftigation, although very fimple, is certainly lefs elementary than that which we have followed. And it muft be kept in mind, that one principal object of this paper is to employ only the firft principles of geometry and analyfis in treating of the fubjects announced in its title.
33. By a mode of deduction differing but little from that employed in the laft article, we may even derive our firft feries from a known formula, the invention of which is attributed to Euler. It is this,

$$
a=\operatorname{fin} a \operatorname{fec} \frac{\mathrm{I}}{2} a \operatorname{fec} \frac{\mathrm{I}}{4} a \operatorname{fec} \frac{\mathrm{I}}{8} a+, \& \mathrm{c} . *
$$

From this expreffion, by the theory of logarithms, we get $\log a=\log \operatorname{fin} a+\log \operatorname{fec} \frac{\mathrm{I}}{2} a+\log \operatorname{fec} \frac{\mathrm{I}}{4} a+\log \operatorname{fec} \frac{\mathrm{I}}{8} a+, \&_{\mathrm{c}}$. we have now only to take the fluxions of all the terms, and reject $d a$, which is found in each, and the refult is

$$
\frac{\mathrm{I}}{a}=\frac{\mathrm{I}}{\tan a}+\frac{\mathrm{I}}{2} \tan \frac{\mathrm{I}}{2} a+\frac{\mathrm{I}}{4} \tan \frac{\mathrm{I}}{4} a+\frac{\mathrm{I}}{8} \tan \frac{\mathrm{I}}{8} a+, \& \mathbf{c}
$$

which is the feries in queftion.
34. I now proceed to the inveftigation of formulæ for the quadrature of the hyperbola, and as the principles from which they

[^32]they are to be deduced are in effect the fame as we have had occafion to employ when treating of the circle, it will be proper to ufe the fame form of reafoning, and the fame mode of notation, in the one cafe as in the other.

Therefore, in the equilateral hyperbola ABB^{\prime}, of which C is the centre, (Plate IX.Fig. r.), and CA the femitranfverfe axis; let CB be drawn to any point B of the curve, and BD perpendicular to CA ; then, in imitation of the notation commonly ufed in the arithmetic of fines, which we have followed in the former part of this paper, we fhall confider the co-ordinates CD, DB, as functions of the hyperbolic fector ACB and putting S to denote its area, we fhall denote the abfciffa CD by ab S, and the ordinate BD by ord S.

Draw AE touching the curve at its vertex, and meeting CB in E ; then, from fimilar triangles, we have $\mathrm{AE}=\frac{\mathrm{DB}}{\mathrm{CD}} \times \mathrm{CA}$; therefore fuppofing the femitranfverfe axis AC to be unity, $\mathrm{AE}=\frac{\operatorname{ord} \mathrm{S}}{\mathrm{ab} \mathrm{S}} . \quad$ Now this expreflion for the tangent correfponding to a hyperbolic fector S, being analogous to $\frac{\operatorname{fin} A}{\operatorname{cof} A}$, the expreffion for the tangent of an angle A , we may fimilarly denote AE by the abbreviation $\tan \mathrm{S}$. In like manner, if CB^{\prime} be drawn to a point B^{\prime} of the curve, bifecting the fector ACB, and meeting $A E$ in E^{\prime}, and $B^{\prime} D^{\prime}$ be drawn perpendicular to $C A$; then, as the fector ACB^{\prime} will be $\frac{1}{2} \mathrm{~S}$, it follows, that $\mathrm{CD}^{\prime}=\mathrm{ab} \frac{\mathrm{I}}{2} \mathrm{~S}, \mathrm{~B}^{\prime} \mathrm{D}^{\prime}=$ ord $\frac{\mathrm{I}}{2} \mathrm{~S}$, and $\mathrm{AE}^{\prime}=\tan \frac{\mathrm{I}}{2} \mathrm{~S}$; and fo on.
35. From the nature of the hyperbola, we have

$$
a b S=a b^{2} \frac{1}{2} S+\operatorname{ord}^{2} \frac{1}{2} S, \text { ord } S=2 a b \frac{1}{2} S \text { ord } \frac{I}{2} S ;
$$

therefore, by divifion,

$$
\begin{aligned}
\frac{a b S}{\operatorname{ordS}} & =\frac{a b \frac{1}{2} S}{2 \operatorname{ord} \frac{1}{2} S}+\frac{1}{2} \frac{\operatorname{ord} \frac{1}{2} S}{a b \frac{1}{2} S}, \\
\text { that is, } \frac{I}{\tan S} & =\frac{I}{2 \tan \frac{1}{2} S}+\frac{1}{2} \tan \frac{1}{2} S .
\end{aligned}
$$

This laft formula expreffes a property of the hyperbola perfectly analogous to that of the circle (Art. 5.), from which we have deduced our firft four feries for the rectification of an arch. Therefore fimilarly, putting $s, \frac{1}{2} s, \frac{1}{4} s, \& c$. fucceffively inftead of S, and multiplying by the feries of numbers $\mathbf{I}, \frac{1}{2}, \frac{1}{4}$, \&c. we have as in that article

$$
\begin{aligned}
& \frac{I}{\tan s}=\frac{I}{2 \tan \frac{1}{2} s}+\frac{1}{2} \tan \frac{1}{2} s, \\
& \frac{1}{2 \tan \frac{1}{2} s}=\frac{1}{4 \tan \frac{1}{4} s}+\frac{1}{4} \tan \frac{1}{4} s, \\
& \frac{I}{4 \tan \frac{1}{4} s}=\frac{1}{8 \tan \frac{1}{8} s}+\frac{1}{8} \tan \frac{1}{8} s, \\
& \& c .
\end{aligned}
$$

This feries of equations being fuppofed continued until their number be n, by proceeding exactly as in Art. 5. when treating of the circle, we obtain

$$
\frac{1}{2^{n} \tan \frac{s}{2^{n}}}=
$$

$\frac{\mathrm{I}}{2^{n} \tan \frac{s}{2^{n}}}=\left\{\begin{array}{c}\frac{\mathrm{I}}{\tan s}-\left(\frac{\mathrm{I}}{2} \tan \frac{\mathrm{I}}{2} s+\frac{\mathrm{I}}{4} \tan \frac{\mathrm{I}}{4} s+\frac{\mathrm{I}}{8} \tan \frac{\mathrm{I}}{8} s+\frac{\mathrm{I}}{\mathrm{I} 6} \tan \frac{\mathrm{I}}{\mathrm{I}^{6}} s \ldots\right. \\ \left.+\frac{\mathrm{I}}{2^{n}} \tan \frac{s}{2^{n}}\right) .\end{array}\right.$
36. Let us now fuppofe the hyperbolic fector ACB to be divided into 2^{n} equal parts, by lines drawn from the centre to the points $1,2,3,4, \ldots 7$ in the curve, and tangents to be drawn at the extremities of the hyperbolic arch AB , and at the alternate intermediate points of divifion $2,4,6, \& c$. fo as to form the polygon $A F F^{\prime} F^{\prime \prime} F^{\prime \prime \prime} B C$. Then, by a known property of the hyperbola, the triangles $\mathrm{ACF}, \mathrm{FC}_{2}, 2 \mathrm{CF}^{\prime}, \mathrm{F}^{\prime} \mathrm{C}_{4}, \ldots \mathrm{~F}^{\prime \prime \prime} \mathrm{CB}$ are all equal, and as their number is 2^{n}, the whole polygon bounded by the tangents, and by the ftraight lines AC, CB will be equal to the triangle ACF taken 2^{n} times. But the area of this triangle is $\frac{1}{2} \mathrm{AC} \times \mathrm{AF}=\frac{1}{2} \tan \frac{s}{2^{n}}$ (becaufe $\mathrm{AF}=\tan \frac{s}{2^{n}}$), therefore $2^{n} \tan \frac{s}{2^{n}}$ expreffes twice the area of the polygon
$\mathrm{AFF}^{\prime} \mathrm{F}^{\prime \prime} \mathrm{F}^{\prime \prime} \mathrm{BC}$. Let Q denote this area, then, fubftituting $\frac{\mathrm{I}}{2} \mathrm{Q}$
for $2^{n} \tan \frac{5}{2^{n}}$, and multiplying all the terms of the feries by 2 , we have

$$
\frac{I}{Q}=\left\{\begin{array}{l}
\frac{2}{\tan s}-\left(\tan \frac{I}{2} s+\frac{I}{2} \tan \frac{I}{4} s+\frac{I}{4} \tan \frac{1}{8} s+\frac{1}{8} \tan \frac{I}{16} s \ldots\right. \\
\left.+\frac{I}{2^{n}} \tan \frac{s}{2^{n}}\right) .
\end{array}\right.
$$

Now, the rectilineal fpace Q is evidently lefs than the hyperbolic fector s; but n may be conceived fo great that the difference between Q and s fhall be lefs than any affignable fpace, as it is eafy to demonftrate upon principles ftrictly geometrical ; therefore, if we fuppofe n indefinitely great, then Q becomes s; and as, upon this hypothefis, the feries goes on ad infinitum, we have

$$
\frac{1}{s}=\frac{2}{\tan s}-\left(\tan \frac{\mathrm{I}}{2} s+\frac{\mathrm{I}}{2} \tan \frac{\mathrm{I}}{4} s+\frac{\mathrm{I}}{4} \tan \frac{\mathrm{I}}{8} s+\frac{\mathrm{I}}{8} \tan \frac{1}{16} s+, \& \mathrm{c} .\right)
$$

which is our firft feries for the quadrature of an hyperbolic fector. And as $\frac{I}{\tan S}=\frac{I}{2 \tan \frac{1}{2} S}+\frac{1}{2} \tan \frac{1}{2} S$, by refolving this equation in refpect of $\tan { }_{2}^{I} S$, we get the formula

$$
\tan \frac{I}{2} S=\frac{I}{\tan S}-\sqrt{\frac{I}{\tan ^{2} S}-I},
$$

by which the feries of quantities $\tan \frac{1}{2} s, \tan \frac{1}{4} s, \& c$. may be deduced from $\tan s=\frac{\operatorname{ord} s}{\mathrm{ab} s}$, and from one another.
37. This expreffion for an hyperbolic fector is perfectly fimilar in its form to that given in Art. 7. for an arch of a circle. It may, however, be transformed into another better adapted to calculation, by means of a property of the hyperbola to which there is no correfponding property of the circle, or at leaft none that can be exprefled without employing the fign $\sqrt{-1}$. The property alluded to may be deduced from the
known formulæ

$$
\begin{aligned}
& 2 \mathrm{ab} \frac{s}{n}=(\operatorname{ab} s+\operatorname{ord} s)^{\frac{1}{n}}+(\operatorname{ab} s-\operatorname{ord} s)^{\frac{1}{n}} \\
& 2 \operatorname{ord} \frac{s}{n}=(\operatorname{ab} s+\operatorname{ord} s)^{\frac{1}{n}}-(\operatorname{ab} s-\operatorname{ord} s)^{\frac{1}{n}}
\end{aligned}
$$

by proceeding as follows. Let each fide of the latter of thefe equations be divided by the correfponding fide of the former, the refult is

$$
\frac{\operatorname{ord} \frac{s}{n}}{\operatorname{ab} \frac{s}{n}}=\frac{(\mathrm{ab} s+\operatorname{ord} s)^{\frac{1}{n}}-(\mathrm{ab} s-\operatorname{ord} s)^{\frac{1}{n}}}{(\mathrm{ab} s+\operatorname{ord} s)^{\frac{1}{n}}+(\mathrm{ab} s-\operatorname{ord} s)^{\frac{\frac{1}{n}}{n}}}
$$

which expreffion is equivalent to this other one,

$$
\frac{\operatorname{ord} \frac{s}{n}}{\operatorname{ab} \frac{s}{n}}=\frac{\left(\frac{\operatorname{ab} s+\operatorname{ord} s}{\mathrm{ab} s-\operatorname{ord} s}\right)^{\frac{x}{n}}-\mathrm{I}}{\left(\frac{\mathrm{ab} s+\operatorname{ord} s}{\mathrm{ab} s-\operatorname{crd} s}\right)^{\frac{1}{n}}+\mathrm{I}}
$$

LeT us now put p for the fraction $\frac{\mathrm{ab} s+\operatorname{ord} s}{\mathrm{ab} s-\operatorname{ord} s}$, then, re-
marking that $\frac{\operatorname{ord} \frac{s}{n}}{\operatorname{ab} \frac{s}{n}}=\tan \frac{s}{n}$, we have

$$
\tan \frac{s}{n}=\frac{p^{\frac{1}{n}}-1}{p^{\frac{1}{n}}+1}
$$

an equation which expreffes the property we propofed to inveftigate.
38. We have now only to fuppofe n in this formula to have thefe values, $2,4,8$, \&c. fucceffively, and to fubftitute inftead of the terms of our feries

$$
\frac{1}{s}=\frac{2}{\tan s}-\left(\tan \frac{1}{2} s+\frac{1}{2} \tan \frac{1}{4} s+\frac{1}{4} \tan \frac{1}{8} s+, \& c\right)
$$

their values as given by the formula, putting alfo $\frac{\text { ord } s}{\mathrm{ab} s}$ inftead of $\tan s$, and the feries becomes

$$
\frac{1}{s}=\frac{2 \mathrm{ab} s}{\text { ord } s}-\left\{\frac{p^{\frac{1}{2}}-1}{p^{\frac{1}{2}}+1}+\frac{1}{2} \frac{p^{\frac{1}{4}}-1}{p^{\frac{1}{4}}+1}+\frac{1}{4} \frac{\frac{1}{8}-1}{\frac{1}{8}}+, \& \mathrm{c} .\right\}
$$

and this is the new form under which we propofed to exhibit it.
39. Let us now inquire what are the limits of the rate of convergency of this feries; and in doing this, it will be moft convenient to refer to the firft of its two forms. Now, from the formula $\frac{I}{\tan S}=\frac{I}{2 \tan \frac{1}{2} S}-\frac{I}{2} \tan \frac{I}{2} S$, we get $\tan \frac{\mathrm{I}}{2} \mathrm{~S}=\frac{\mathrm{I}}{2} \tan \mathrm{~S}\left(\mathrm{I}+\tan ^{2} \frac{\mathrm{I}}{2} \mathrm{~S}\right)$. But $\mathrm{I}+\tan ^{2} \frac{\mathrm{I}}{2} \mathrm{~S}>\mathrm{I}$, and therefore $\frac{1}{2} \tan S\left(I+\tan ^{2} \frac{I}{2} S\right)>\frac{1}{2} \tan S$, hence it follows, that $\tan \frac{\mathrm{I}}{2} \mathrm{~S}>\frac{\mathrm{I}}{2} \tan \mathrm{~S}$. Thus it appears, that each term of the fe-
ries of quantities $\tan \frac{1}{4} s, \tan \frac{1}{8} s, \& c$. is greater than half the term before it ; and as thefe, multiplied by the fractions $\frac{I}{2}, \frac{I}{4}$, \&c. refpectively confitute the terms of the feries, each term of the feries, under either of its forms, is greater than one-fourth of the term before it.
40. AGAIN, from the formula $\tan \frac{\mathrm{I}}{2} \mathrm{~S}=\frac{\mathrm{I}}{2} \tan \mathrm{~S}\left(\mathrm{I}+\tan ^{2} \frac{\mathrm{I}}{2} \mathrm{~S}\right)$
we find $\frac{2 \tan \frac{1}{2} S}{\tan S}=1+\tan ^{2} \frac{I}{2} S$, and fimilarly, $\frac{2 \tan \frac{1}{4} S}{\tan \frac{1}{2} S}=$ $I+\tan ^{2} \frac{I}{4} \mathrm{~S}$. But from the nature of the hyperbola $I+\tan ^{2}{ }_{4}^{I} S<I+\tan ^{2} \frac{I}{2} S ;$ therefore $\frac{2 \tan \frac{1}{4} S}{\tan \frac{i}{2} S}<\frac{2 \tan \frac{1}{2} S}{\tan S}$, and hence $\tan \frac{\mathrm{I}}{4} \mathrm{~S}<\frac{\tan ^{2} \frac{1}{2} \mathrm{~S}}{\tan \mathrm{~S}}$. Therefore, putting $\frac{\mathrm{I}}{2 n} s$ inftead of S , and multiplying by $\frac{1}{4^{n}}$, we have

$$
\frac{\mathrm{I}}{4 n} \tan \frac{\mathrm{I}}{8 n} s<\frac{\frac{\mathrm{I}}{2 n} \tan \frac{\mathrm{I}}{4 n} s}{\frac{\mathrm{I}}{n} \tan \frac{\mathrm{I}}{2 n} s} \times \frac{\mathrm{I}}{2 n} \tan \frac{\mathrm{I}}{4 n} s
$$

from which it appears, that each term of the feries, following the fecond, is lefs than a third proportional to the two terms immediately before it. So that, upon the whole, it appears, that the limits of the rate of convergency of our firft feries for an hyperbolic fector, are the fame as thofe of our firft for an arch Qq 2
of a circle, (fee Art. 8. and 9.), only the greater limit in the one cafe correfponds to the leffer limit in the other, and vice versa.

4r. We might now, from thefe limits to the rate of convergency, determine two limits to the fum of all the terms of the feries following any given term, by the mode of inveftigation employed at Art. 10. and Art. Ir. in the cafe of the circle; but the refult in both cafes would be found to be the fame, with the difference, of the fign $<$ for $>$, and $>$ for $<$; that is, we would find the fum of all the terms following any term of the feries, to be greater than one-third of that term, but lefs than a third proportional to the difference between the two terms immediately before it and the latter of the two.
42. Upon the whole, then, our firft formula, for the quadrature of an hyperbolic fector, may be expreffed as follows.

Let s denote the area of the fector, and put p for $\frac{\mathrm{ab} s+\operatorname{ord} s}{\mathrm{ab} s \text {-ord } s}$. Then,

$$
\begin{aligned}
& \frac{\mathrm{I}}{s}=\frac{2 \mathrm{abs} s}{\operatorname{Ord} s}-\left\{\begin{array}{l}
p^{\frac{\mathrm{I}}{2}}-\mathbf{I} \\
\frac{p^{\frac{1}{4}}-\mathbf{I}}{p^{\frac{1}{2}}+\mathbf{I}}+\frac{\mathbf{1}}{2} \frac{p^{8}-\mathbf{1}}{p^{\frac{1}{4}}+\mathbf{I}}+\frac{1}{4} \frac{p^{\frac{1}{16}}-\mathbf{1}}{p^{\frac{1}{8}}+\mathbf{I}}+\frac{\mathbf{1}}{8} \frac{\frac{1}{16}}{p^{\frac{16}{2}}+\mathbf{I}} \ldots
\end{array}\right. \\
& \left.+\mathrm{T}_{(m)}+\mathrm{T}_{(m+1)}+\mathbf{R}\right\}
\end{aligned}
$$

where $\mathrm{T}_{(m)}$ and $\mathrm{T}_{(m+1)}$ denote any two fucceeding terms of the feries, and R the fum of all the following terms *. And here

[^33]here
\[

$$
\begin{aligned}
\mathrm{R} & >\frac{\mathrm{I}}{3} \mathrm{~T}_{(m+1)} \\
\text { but } \mathrm{R} & <\frac{\mathrm{T}_{(m+1)}}{\mathrm{T}_{(m)}-\mathrm{T}_{(m+1)}} \times \mathrm{T}_{(m+1)}
\end{aligned}
$$
\]

As thefe limits to R differ but little when the terms $\mathrm{T}_{(m)}$, $\mathrm{T}_{(m+1)}$ are confiderably advanced in the feries, the latter may be expreffed more conveniently for calculation thus

$$
\mathrm{R}<\frac{\mathrm{I}}{3} \mathrm{~T}_{(m+1)}+\frac{\left(4 \mathrm{~T}_{(m+1)}-\mathrm{T}_{(m)}\right) \mathrm{T}_{(m+1)}}{3\left(\mathrm{~T}_{(m)}-\mathrm{T}_{(m+1)}\right)}
$$

43. Let us next inveftigate a feries for the quadrature of the hyperbola, which may be analogous to our fecond feries for the rectification of the circle. For this purpofe, proceeding as at Art. 13. we refume the formula $\frac{I}{\tan S}=\frac{I}{2 \tan \frac{1}{2} S}+\frac{1}{2} \tan \frac{1}{2} S$, and taking the fquare of each fide of the equation, get

$$
\frac{1}{\tan ^{2} S}=\frac{-1}{4 \tan ^{2} \frac{1}{2} S}+\frac{1}{4} \tan ^{2} \frac{1}{2} S+\frac{1}{2}
$$

Inftead
be deduced one from another by the help of the common trigonometrical tables. It is this,

$$
\left.\frac{\mathrm{x}}{s}=\frac{2 \mathrm{ab} s}{\text { ord } s}-\left(\text { fin } \alpha^{\prime}+\frac{1}{2} \operatorname{fin} \alpha^{\prime \prime}+\frac{1}{4} \operatorname{fin} \alpha^{\prime \prime \prime}+\frac{\mathrm{I}}{8} \operatorname{fin} \alpha^{\mathrm{iv}} \ldots+\mathrm{T}_{(m)}+\mathrm{T}_{m+1}\right)+\mathrm{R}\right)
$$

The arches $a^{\prime}, a^{\prime \prime}, a^{\prime \prime \prime}, a^{\text {tv }}, \& c$. are to be deduced one from another as follows. Take a fuch that $\operatorname{fin} \alpha=\frac{\operatorname{ord} s}{\mathrm{ab} s}$, then, $\operatorname{fin} a^{\prime}=\tan \frac{1}{2} \alpha, \operatorname{fin} \alpha^{\prime \prime}=\tan \frac{1}{2} \alpha^{\prime} \operatorname{fin} \alpha^{\prime \prime \prime}=$ $\tan \frac{\mathbf{I}}{2} \alpha^{\prime \prime}$, fin $\alpha^{\text {iv }}=\tan \frac{\mathbf{x}}{2} \alpha^{\prime \prime \prime}, \& \mathrm{cc}$. The fymbols $\mathbf{T}_{(m)}, \mathbf{T}_{(m+1)}$ and \mathbf{R}, denote the fame things as in the other form of the feries.

Inftead of S, we now fubftitute in this expreffion $s, \frac{I}{2} s, \frac{T}{4} s, \frac{T}{8} s$, \&c. fucceffively, and multiply the refults by the terms of the feries $\mathrm{I}, \frac{\mathrm{I}}{4}, \frac{\mathrm{I}}{4^{2}}, \frac{\mathrm{I}}{4^{3}}$, \&c. fo as to form the following feries of equations, the number of which is n.

$$
\begin{aligned}
& \frac{I}{\tan ^{2} s}=\frac{I}{2^{2} \tan ^{2} \frac{1}{2} s}+\frac{I}{4} \tan ^{2} \frac{I}{2} s+\frac{I}{2} \\
& \frac{I}{2^{2} \tan ^{2} \frac{1}{2} s}=\frac{I}{4^{2} \tan ^{2} \frac{1}{4} s}+\frac{I}{4^{2}} \tan ^{2} \frac{I}{4} s+\frac{I}{2 \cdot 4} \\
& \frac{I}{4^{2} \tan ^{2} \frac{1}{4} s}=\frac{I}{8^{2} \tan ^{2} \frac{1}{8} s}+\frac{I}{4^{3}} \tan ^{2} \frac{I}{8} s+\frac{I}{2 \cdot 4^{2}} \\
& \frac{I}{8^{3} \tan ^{2} \frac{1}{8} s}=\frac{I}{I^{2} \tan ^{2} \frac{1}{1} s}+\frac{I}{4^{4}} \tan ^{2} \frac{I}{16} s+\frac{I}{2 \cdot 4^{3}}
\end{aligned}
$$

\&c.
From thefe, by proceeding in all refpects as in the article above quoted, that is, by adding, and rejecting what is common to each fide of the fum, we get

Now,

Now, as we have found (Art. 36.) that $2^{n} \tan \frac{a}{2^{n}}$ expreffes twice the area of the polygon $\mathrm{AFF}^{\prime} \mathrm{F}^{\prime /} \mathrm{F}^{\prime \prime \prime}$ (Plate IX.), the numerical value of which we have there denoted by Q, it follows, that $2^{2 n} \tan ^{2} \frac{s}{2^{n}}=\frac{1}{4} \mathrm{Q}^{2}$. Moreover, the geometrical feries $\frac{I}{2}+\frac{I}{2 \cdot 4}+\frac{I}{2 \cdot 4^{2}} \cdots+\frac{I}{2 \cdot 4^{n-1}}$ is equivalent to $\frac{2}{3}\left(I-\frac{I}{4^{n}}\right)$, therefore, by fubftitution and tranfpofition, we get
$\frac{I}{4 Q^{2}}\left\{\begin{array}{l}\frac{I}{\tan ^{2} s}-\frac{2}{3}\left(I-\frac{I}{4^{n}}\right) \\ -\left(\frac{I}{4} \tan ^{2} \frac{I}{2} s+\frac{I}{4^{2}} \tan ^{2} \frac{I}{4} s+\frac{I}{4^{3}} \tan ^{2} \frac{I}{8} s \ldots+\frac{I}{4^{n}} \tan ^{2} \frac{s}{2^{n}}\right) .\end{array}\right.$
44. Let us now conceive n to be indefinitely great, then, as upon this hypothefis, Q becomes s, and $\frac{2}{3}\left(\mathrm{I}-\frac{\mathrm{I}}{4^{n}}\right)$ becomes fimply $\frac{2}{3}$, and the feries whofe terms were n in number, now goes on ad infinitum, we have at laft, after multiplying the whole expreffion by 4 ,
$\frac{\mathbf{I}}{\mathrm{Q}^{2}}=\left\{\begin{array}{l}\frac{4}{\tan ^{2} s}-\frac{8}{3} \\ -\left(\tan ^{2} \frac{I}{2} s+\frac{I}{4} \tan ^{2} \frac{I}{4} s+\frac{I}{4^{2}} \tan ^{2} \frac{I}{8} s+\frac{I}{4} \tan ^{2} \frac{I}{I \sigma} s+, \& c .\right) .\end{array}\right.$
And this is one form of the feries to be inveftigated.
45. The fame feries, however, may be given under another form, better adapted to calculation. For fince, by the nature of the hyperbola

$$
a b^{2} S+\operatorname{ord}^{2} S=a b_{2} S, \text { and } a b^{2} S-\operatorname{ord}^{2} S=1
$$

therefore, taking the fum and difference of the correfponding fides of thefe equations, we get

$$
2 a^{2} S=a b 2 S+i, 2 \operatorname{ord}^{2} S=a b 2 S-1 ;
$$

and hence, by dividing the latter of thefe equations by the former, and putting $\tan S$ inftead of $\frac{\operatorname{ord} S}{a b S}$, we find

$$
\tan S=\frac{\mathrm{ab} 2 \mathrm{~S}-\mathrm{I}}{\mathrm{ab} 2 \mathrm{~S}+\mathrm{I}} .
$$

From this formula, by fubftituting $s, \frac{1}{2} s, \frac{1}{4} s, \& c$. inftead of S, we obtain expreflions for $\tan ^{2} s, \tan ^{2} \frac{1}{2} s, \tan ^{2} \frac{1}{4} s, \& c$. Thefe being fubftituted in the feries, and afterwards s put inftead of $2 s, \frac{1}{2} s$ inftead of $s, \frac{1}{4} s$ inftead of $\frac{1}{2} s, \& c$. (fo as to produce a refult involving only the abfciffæ correfponding to the fector s, and its fub-multiples) ; and, finally, the whole being divided by 4, we fhall get

and this expreffion is analogous to our fecond feries for an arch of a circle, as given at Art. 17.
46. We may now inveftigate what are the limits to the rate of convergency of this feries, as alfo the limits to the fum of all its terms following any afligned term. With refpect to the firft
of thefe inquiries, it appears, that the terms of the feries, under its firft form, (Art. -3) are exactly the fquares of the correfponding terms of the former feries. under its firft form (Art 36.), fo that the one being written thus,
$\frac{\mathrm{I}}{s}=\mathrm{P}-\left(\mathrm{T}_{(\mathrm{r})}+\mathrm{T}_{(2)} \ldots+\mathrm{T}_{(m)}+\mathrm{T}_{(m+1)}+\mathrm{T}_{(m+2)}+, \& \mathrm{c}.\right)$ the other will be
$\frac{\mathrm{I}}{\mathbf{s}^{2}}=\mathrm{P}^{\prime}-\left(\mathrm{T}^{2}(\mathrm{I})+\mathrm{T}^{2}(2) \ldots+\mathrm{T}^{2}(m)+\mathrm{T}^{2}(m+1)+\mathrm{T}^{2}(m+2)+, \& \mathrm{c}.\right)$,
and here P and P^{\prime} are put for the parts of the two expreffions which do not follow the law of the remaining terms, but $\mathrm{T}_{(1)}$, $\mathrm{T}_{(2)}$, \&c. denote the fame quantities in both. Now, as each term in the former feries has been proved to be greater than one-fourth of the term immediately before it (Art. 39), each term of the latter mult be greater than one-fixteenth of the term immediately before it ; and this is one limit to the rate of convergency.

Again, as it has been proved (Art. 40.), that in the firft feries $\mathrm{T}_{(n+2)}<\frac{\mathrm{T}^{2}(n+1)}{\mathrm{T}_{(n)}}$, therefore, fquaring, we have $\mathrm{T}^{2}(n+2)<\frac{\mathrm{T}^{+}(n+1)}{\mathrm{T}^{2}(n)}$. Now this quantity is a third proportional to $\mathrm{T}^{2}{ }_{(n)}$ and $\mathrm{T}_{(n+1)}^{2}$; hence it follows, that the greater limit of the rate of convergency in the two feries is the very fame; that is, each term is lefs than a third proportional to the two terms immediately before it.

As thefe limits to the rate of convergency differ from thofe of our fecond feries for an arch of a circle (Art. I8.), only by the leffer limit in the one cafe correfponding to the greater in the other, and the contrary, it is fufficiently evident,
Vor. VI.-P.II. R r that
that by proceeding, as in the cafe of the circle, to determine limits to the fum of all the terms following any affigned term, we would obtain an analogous refult, namely, that the fum of all the terms following any affigned term is greater than T_{5}^{\prime} th of that term, but lefs than a third proportional to the difference of the two terms immediately before it, and the latter of the two.
47. It now only remains to be confidered, how the numerical values of the terms of the feries are to be found. Now, this may evidently be done by computing the values of the quantities $\mathrm{ab} \frac{1}{2} s, \mathrm{ab} \frac{1}{4} s, \mathrm{ab} \frac{1}{8} s, \& c$. from the abfciffa correfponding to the whole fector, and from one another by the known formula

$$
\mathrm{ab}_{\frac{1}{2}} \mathrm{~S}=\sqrt{\frac{\mathrm{abS}+\mathrm{I}}{2}}
$$

and thence the values of the quanties $\frac{\mathrm{ab} \frac{1}{2} s-\mathrm{I}}{\mathrm{ab} \frac{\mathrm{I}}{2} s+\mathrm{r}}, \frac{\mathrm{ab} \frac{1}{4} s-\mathrm{I}}{\mathrm{ab} \frac{1}{4} s+\mathrm{I}}, \& \mathrm{c}$.
Or we may deduce each of thefe from that which precedes it, by a formula analogous to that found at Art. 2I. in the cafe of the circle, and which may be inveftigated as follows. Let $\frac{\mathrm{abS}-\mathrm{I}}{\mathrm{abS}+\mathrm{I}}=t$, and $\frac{\mathrm{ab} \frac{1}{2} \mathrm{~S}-\mathrm{I}}{\mathrm{ab} \frac{1}{2} \mathrm{~S}+\mathrm{I}}=t^{\prime}$, then we have ab S $=\frac{\mathrm{I}+t}{\mathrm{I}-t}$, and $\frac{\mathrm{abS}+\mathrm{I}}{2}=\frac{I}{I-t}$; we have alfo $a b \frac{1}{2} \mathrm{~S}=\frac{1+t^{\prime}}{\mathrm{I}-t^{\prime}}$; and fince by the nature of the hyperbola $a b \frac{1}{2} S=\sqrt{\frac{a b S+1}{2}}$;
therefore
therefore $\frac{I}{\sqrt{I-t}}=\frac{I+t^{\prime}}{I-t^{\prime}}$, and hence

$$
t^{\prime}=\frac{\mathrm{I}-\sqrt{\mathrm{I}-t}}{\mathrm{I}+\sqrt{\mathrm{I}-t}}
$$

which is the formula required.
48. The refult of the whole inveftigation of this fecond feries, for the area of an hyperbolic fector, may now be collected into one point of view, as follows.

Putting s for the area of the fector, let its correfponding abfciffa be denoted by the abbreviated expreffion $\mathrm{ab} s$; alfo let the abfciffæ correfponding to the other fectors which are its fub-multiples be denoted fimilarly.

Compute the feries of quantities $a b \frac{1}{2} s, a b \frac{1}{4} s, a b \frac{1}{2} s, \& c$. from $\mathrm{ab} s$, and one another, by the formula

$$
a b \frac{1}{2} S=\sqrt{\frac{a b S+I}{2}}
$$

Then Shall

$$
\frac{\mathbf{I}}{s^{2}}=\left\{\begin{array}{c}
\frac{\mathrm{ab} s+\mathbf{I}}{\mathrm{ab} s-\mathrm{I}}-\frac{2}{3} \\
-\left\{\begin{array}{c}
\frac{\mathrm{I}}{4} \frac{\mathrm{ab} \frac{1}{2} s-\mathbf{I}}{\mathrm{ab} \frac{1}{2} s+\mathbf{I}}+\frac{\mathbf{I}}{4^{2}} \frac{\mathrm{ab} \frac{1}{4} s-\mathbf{I}}{\mathrm{ab} \frac{1}{4} s+\mathrm{I}}+\frac{\mathbf{I}}{4} \frac{\mathrm{ab} \frac{1}{8} s-\mathbf{I}}{\mathrm{ab}} \frac{1}{8} s+\mathbf{I} \\
\cdots+\mathrm{T}_{(m)}+\mathrm{T}_{(m+1)}+\mathrm{R}
\end{array}\right\}
\end{array}\right.
$$

where R denotes the fum of all the terms following the term $\mathrm{T}_{(m+\mathrm{r})}$, and this fum is always contained between the limits

$$
\frac{\mathrm{I}}{\mathrm{I}_{5}} \mathrm{~T}_{(m+1)} \text {, and } \frac{\mathrm{T}^{2}(m+1)}{\mathrm{T}_{(m)}-\mathrm{T}_{(m+1)}}
$$

being greater than the former, but lefs than the latter. This laft limit may alfo be otherwife expreffed thus,

$$
\frac{1}{1_{5}} \mathrm{~T}_{(m+1)}+\frac{\left(16 \mathrm{~T}_{(m+1)}-\mathrm{T}_{(m)} \mathrm{T}_{(m+1)}\right.}{\mathrm{I}_{5}\left(\mathrm{~T}_{(m)}-\mathrm{T}_{(m+1)}\right)}
$$

Or compute the feries of quantities $t, t^{\prime}, t^{\prime \prime}, \& c$. one from another by thefe formulæ

$$
t=\frac{\mathrm{ab} s-\mathrm{I}}{\mathrm{ab} s+\mathrm{I}}, t=\frac{\mathrm{I}-\sqrt{\mathrm{I}-t}}{\mathrm{I}+\sqrt{\mathrm{I}+t}}, t^{\prime \prime}=\frac{\mathrm{I}-\sqrt{\mathrm{I}-t^{\prime}}}{\mathrm{I}+\sqrt{\mathrm{I}+t^{\prime}}}, \& \mathrm{c} .
$$

Then fhall

$$
\frac{\mathrm{I}}{\mathrm{~s}^{2}}=\frac{\mathrm{ab} s+\mathrm{I}}{\mathrm{ab} s-\mathrm{I}}-\frac{2}{3}-\left(\frac{\mathrm{I}}{4} t^{\prime}+\frac{\mathrm{t}}{4^{2}} t^{\prime}+\frac{\mathrm{Y}}{4^{3}} t^{\prime \prime} \ldots+\mathrm{T}(m)+\mathrm{T}_{(m+1)}+\mathrm{R}\right),
$$

the fymbols $\mathrm{T}_{(m)}, \mathrm{T}_{(m+1)}$, and R , being put to denote the fame as before.
49. We might now inveftigate other feries for the quadrature of an hyperbolic fector, fimilar to the third and fourth feries we have found for the rectification of an arch of a circle; but this inquiry would extend the Paper to too great a length. For this reafon, and alfo becaufe the manner of proceeding in the one cafe is exactly the fame as has been followed in the other, it feems unneceffary, in the cafe of the hyperbola, to extend our inquiries farther. I fhall therefore now proceed to the third and laft object propofed in this Paper, namely, the inveftigation of formulæ for the calculation of logarithms, beginning with a few remarks that may ferve to connect thefe formulæ with the common theory.
50. It is ufually fhewn by writers on this fubject, that all numbers whatever are confidered as equal, or nearly equal, to
one or other of the terms of a geometrical feries whofe firft term is unity and common ratio, a number very nearly equal to unity, but a little greater; and any quantities proportional to the exponents of the terms of the feries, are the logarithms of the numbers to which the terms are equal.

Logarithms, then, being not abfolute but relative quantities, we may affume any number whatever as that whofe logarithm is unity; but a particular number being once chofen, the logarithms of all other numbers are thereby fixed.

Hence it follows, that there may be different fyftems, according as unity is made the logarithm of one or another number; the logarithms of two given numbers, however, will always have the fame ratio to each other in every fyftem whatever; thefe properties which are commonly known, are mentioned here only for the fake of what is to follow, as we have already premifed.
51. Taking this view of the theory of logarithms as the foundation of our inveftigations,

Let us put r for the common ratio of the geometrical feries, x for any number or term of the feries, b for the number whofe logarithm is unity,
y for the exponent of that power of r which is equal to x,
m for the exponent of the power of r which is equal to b.
Then we have $x=r^{y}$, and $b=r^{m}$, and becaufe by the nature of \log arithms $\log x: \log b:: y: m$, therefore $\log x=\frac{y}{m} \times \log b$; but by hypothefis $\log b=1$, therefore $\log x=\frac{y}{m}$.
52. Let v denote any number greater than unity, and p and n any two whole pofitive numbers; then, by a known formula

$$
\begin{aligned}
& v^{p}-\mathrm{I}=\frac{v-\mathrm{I}}{v}\left\{v+v^{2}+v^{3}+v^{4} \ldots+v^{p}\right\} \\
& v^{n}-\mathrm{I}=\frac{v-\mathrm{I}}{v}\left\{v+v^{2}+v^{3}+v^{4} \ldots+v^{n}\right\} ;
\end{aligned}
$$

therefore, dividing each fide of the firft of thefe equations by the correfponding fide of the fecond, we get

$$
\frac{v^{p}-\mathbf{I}}{v^{n}-\mathbf{I}}=\frac{v+v^{2}+v^{3}+v^{4} \ldots+v^{p}}{v+v^{2}+v^{3}+v^{4} \ldots+v^{n}},
$$

Now, v being by hypothefis greater than unity, the fraction on the right hand fide of this equation is lefs than this other fraction

$$
\frac{v^{p^{\prime}}+v^{p}+v^{p}+v^{p} \cdots+v^{p}(\text { to } p \text { terms })}{\mathrm{I}+1+1+1 \text { (to } n \text { terms })}=\frac{p v^{p}}{n},
$$

becaufe it has manifeftly a lefs numerator, and at the fame time a greater denominator. The fame fraction is, however, greater than this fraction

$$
\frac{1+1+1+1 \ldots+1 \text { (to } p \text { terms })}{v^{n}+v^{h}+v^{n}+v^{n} \cdots+v^{n}(\text { to } n \text { terms })}=\frac{p}{n v^{n}},
$$

becaufe it has a greater numerator, and a lefs denominator. Therefore,

$$
\frac{v^{p}-\mathrm{I}}{v^{n}-\mathrm{I}}<\frac{p v^{p}}{n}, \frac{v^{p}-\mathrm{I}}{v^{n}-\mathrm{I}}>\frac{p}{n v^{n}},
$$

and hence, dividing the firt of thefe expreffions by τp, and multiplying the fecond by v^{n},

$$
\frac{p}{n}>\frac{v^{p}-\mathrm{I}}{v^{p}\left(v^{n}-\mathrm{I}\right)}, \frac{p}{n}<\frac{v^{n}\left(v^{\prime}-\mathrm{I}\right)}{v^{n}-\mathrm{I}}, \quad(\alpha)
$$

53. Putting v and p to denote, as in laft article, it is manifeft that the feries

$$
1+v^{\frac{1}{p}}+v^{\frac{2}{p}}+v^{\frac{3}{p}} \ldots+v^{\frac{p-1}{p}}
$$

is greater than this other feries

$$
\mathrm{I}+\mathrm{I}+\mathrm{I}+\mathrm{I} \ldots+\mathrm{I}(\text { to } p \text { terms })=p
$$

but lefs than this feries

$$
v+v+v+v \ldots+v(\text { to } p \text { terms })=p v ;
$$

but by a known formula, the fum of the firft of thefe three leries is

$$
\begin{aligned}
& \frac{v-\mathrm{I}}{\frac{1}{p}}, \text { therefore } \\
& v^{\frac{1}{2}-1} \\
& \frac{v-1}{v^{\bar{p}}-1}>p, \frac{v-\mathbf{1}}{v^{\frac{1}{p}}-1}<p v,
\end{aligned}
$$

and hence it follows, that

$$
\left.\begin{array}{l}
v_{p}^{x}<\mathbf{I}+\frac{v-\mathrm{I}}{p}, p\left(v^{\frac{1}{p}}-\mathrm{I}\right)<v-\mathrm{I}, \\
v_{p}^{\frac{1}{p}}>\mathbf{I}+\frac{v-\mathrm{I}}{p v}, p\left(v_{v}^{\frac{x}{p}}-\mathbf{I}\right)>\mathbf{I}-\frac{\mathrm{I}}{v}
\end{array}\right\}
$$

54. Let us now recur to the fymbols r, x, b, y and m, whofe values are affigned in Art. 5I. and let us affume $y=p$, and $r=v^{n}$; then, from the two expreffions (α) in Art. 52, we have

$$
\underset{\bar{n}}{y}>
$$

$$
\frac{y}{n}>\frac{-\mathrm{I}}{\frac{y}{n}} \cdot \frac{\frac{y}{n}-\mathbf{I}}{r-\mathrm{I}}, \frac{y}{n}<r \cdot \frac{\frac{y}{n}-\mathrm{I}}{r-\mathrm{I}}
$$

and hence, multiplying by n, and dividing by m,

$$
\frac{y}{m}>\frac{\mathrm{I}}{\frac{y}{n}} \cdot \frac{n\left(r^{\frac{y}{n}}-\mathrm{I}\right)}{m(r-\mathrm{I})}, \frac{y}{m}<r \cdot \frac{n\left(r^{\frac{y}{n}}-\mathrm{I}\right)}{m(r-\mathrm{I})}
$$

But $r^{y}=x$, and $r^{m}=b$, (Art. 5 I.), from which it follows, that $r^{\bar{n}}=x^{\frac{\mathrm{x}}{n}}$, and $r=b^{\frac{\mathrm{x}}{n}}$; moreover, $\frac{y}{m}=\log x$; therefore, fubftituting, we get

$$
\log x>\frac{\mathrm{I}}{\frac{n}{\frac{1}{n}} \cdot \frac{n\left(x^{\frac{\mathrm{x}}{n}}-\mathrm{I}\right)}{m\left(b^{\frac{1}{m}}-1\right)}, \log x<b^{\frac{\mathrm{x}}{m^{n}}} \cdot \frac{n\left(x^{\frac{1}{n}}-\mathbf{1}\right)}{m\left(b^{\frac{1}{m}}-\mathbf{1}\right)},}
$$

and in thefe expreffions n denotes any whole pofitive number whatever.
55. By fubtracting the leffer of thefe limits to the lagarithm of x from the greater, we find their difference to be

$$
\frac{\mathrm{I}}{x^{\frac{1}{n}} \frac{n\left(x^{\frac{1}{n}}-\mathrm{I}\right)}{m\left(b^{\frac{1}{n}}-\mathrm{I}\right)} \times\left(b^{\frac{\mathrm{I}}{m^{n}}} x^{\frac{\mathrm{I}}{n}}-\mathrm{I}\right) .}
$$

Now we have found, that one factor of this expreflion, viz.

$$
n\left(x^{\bar{n}}-\mathrm{I}\right)
$$

$\frac{1}{3}$ \qquad cannot exceed the logarithm of x; with re$x^{\bar{n}} m\left(b^{\overline{n \pi}}-\mathrm{I}\right)$
fpect to the other factor $b^{\frac{1}{m i}} x^{\frac{1}{n}}-\mathrm{I}$, fince it appears from the firft of the four formulæ (β), (Art. 53.), that $b^{\frac{\Sigma}{m i n}}<\mathrm{I}+\frac{b-\mathbf{I}}{m}$,
and $x^{\frac{\mathrm{x}}{n}}<\mathrm{I}+\frac{x-\mathrm{I}}{n}$; therefore, multiplying $b^{\frac{x}{m}} x^{\frac{\mathrm{x}}{n}}<\left(1+\frac{b-\mathrm{I}}{m}\right)$ $\left(\mathrm{I}+\frac{x-\mathrm{I}}{m}\right)$, and hence

$$
b^{\frac{1}{m n}} x^{\frac{1}{n}}-\mathrm{I}<\frac{b-\mathrm{I}}{m}+\frac{x-\mathrm{I}}{n}+\frac{(b-\mathrm{I})(x-\mathrm{I})}{m^{n}} .
$$

Now as we may conceive m and n to be as great as we pleafe, $i t$ is evident that this quantity, which exceeds the factor $b^{\frac{\mathrm{x}}{m}} x^{\frac{\mathrm{r}}{n}}-\mathrm{r}$, may be fmaller than any affignable quantity ; therefore the product of the two factors, or the difference between the limits to the value of $\log x$, may, by taking m and n fufficiently great, be lefs than any affignable quantity.

Upon the whole, then, it appears, that the logarithm of x is a limit to which the two quantities

$$
\frac{\mathrm{I}}{x^{\frac{\mathrm{I}}{n}}} \frac{n\left(x^{\frac{\mathrm{I}}{n}}-\mathrm{I}\right)}{m\left(b^{\frac{\mathrm{I}}{m}}-\mathrm{I}\right)}, b^{\frac{\mathrm{I}}{n_{2}}} \frac{n\left(x^{\frac{\mathrm{I}}{n}}-\mathrm{I}\right)}{m\left(b^{\frac{1}{m 2}}-\mathrm{I}\right)}
$$

Vol VI.-P. II. S s continually
continually approach when m and n are conceived to increare indefinitely, and to which each at laft comes nearer than by any affignable difference, juft as a circle is the limit to all the polygons which can be infcribed in it, or defcribed about it.
56. The two expreffions $n\left(x^{\frac{1}{n}}-\mathrm{I}\right), m\left(b^{\frac{1}{\overline{i n}}}-\mathrm{I}\right)$, which enter into thefe limits to the logarithm of x, and which are evidently functions of the fame kind, have each a finite magnitude even when m or n is confidered as greater than any affignable number; for fince when v is greater than unity, and p any whole pofitive number, we have

$$
\begin{equation*}
p\left(v^{\frac{1}{p}}-\mathbf{1}\right)<v-\mathbf{1}, p\left(v^{\frac{1}{p}}-1\right)>1-\frac{1}{v} . \tag{Art.53.}
\end{equation*}
$$

Therefore, fuppofing x and b both greater than \mathbf{I}, (which may always be done in the theory of logarithms), the expreffion $n\left(x^{\frac{1}{n}}-1\right)$ is neceffarily contained between the limits $x-1$ and $\mathrm{I}-\frac{\mathrm{I}}{x}$; and in like manner, $m\left(b^{\frac{1}{n}}-1\right)$ is between $b-\mathrm{I}$ and $\mathrm{I}-\frac{\mathrm{I}}{\mathrm{b}}$.
57. As the expreffion $m\left(b^{\frac{1}{1 n}}-1\right)$ depends entirely upon the value of b, the number whofe logarithm is affumed $=r$, (and which is fometimes called the basis of the fyftem), the limit to which it approaches when m increafes indefinitely will be a conftant quantity in a given fyftem; but the limit to
which $n\left(x^{\frac{1}{n}}-\mathrm{I}\right)$ approaches, when n is conceived to be indefinitely increafed, will be variable, as it depends upon the particular value of the number x.

Let us therefore denote the limit of $m\left(b^{\frac{1}{m i n}}-\mathrm{I}\right)$, or that of $m\left(b^{\frac{\mathrm{x}}{12}}-\mathrm{I}\right)$
(for they are evidently the fame), by B, and then in the fyftem whofe bafis is b, the logarithm of x will be the limit of either of thefe two expreflions

$$
\frac{\mathbf{x}}{x^{\frac{1}{n}}} \frac{n\left(x^{\frac{1}{n}}-\mathbf{1}\right)}{\mathbf{B}}, \frac{n\left(x^{\frac{1}{n}}-\mathbf{1}\right)}{\mathrm{B}}
$$

when n is conceived to increafe indefinitely, or to §peak brief$\operatorname{ly}, \log x=\frac{n\left(x^{\frac{1}{n}}-1\right)}{\mathrm{B}}$, when n is indefinitely great.

The conftant multiplier $\frac{\mathbf{I}}{\mathrm{B}}$ is what writers on the fubject of logarithms have denominated the modulus of the fyftem. As in Napier's fyftem it is unity, we have, n being indefinitely great, Nap. $\log x=n\left(x^{\frac{1}{n}}-\mathrm{I}\right)$, and fince in any fyftem whatever $\mathrm{B}=m\left(b^{\frac{\mathrm{I}}{m^{m}}}-1\right)$, or $\mathrm{B}=n\left(b^{\frac{1}{n}}-\mathrm{I}\right)$, for we may put m or n S s 2 indifcriminately;
indifcriminately ; therefore $\mathrm{B}=\mathrm{Nap} . \log b$, and confequently

$$
\log x(\text { to bafis } b)=\frac{\text { Nap. } \log x}{\text { Nap. } \log b} \text {, }
$$

as is commonly known.
58. Since, therefore, the logarithms of any propofed fyftem may be deduced from thofe of Napier's fyftem, I fhall throughout the reft of this Paper attend only to the formula

Nap. $\log x=n\left(x^{\frac{1}{n}}-\mathrm{r}\right), n$ being indefinitely great.
Let us then, agreeably to the mode of proceeding employed in the former part of this paper, affume the identical equation

$$
\frac{X^{2}+1}{X^{2}-r}=\frac{X+1}{2(X-1)}+\frac{1}{2} \frac{X-I}{X+1}
$$

In this expreffion let $x^{\frac{1}{2}}, x^{\frac{1}{4}}, x^{\frac{1}{8}}, x^{\frac{1}{7} \delta}, \& c$. be fubftituted fucceffively for X , and let the refults be multiplied by the correfponding terms of the feries, $I, \frac{I}{2}, \frac{I}{4}$, \&c. Thus there will be formed a feries of equations, which, putting n for their number, and m for 2^{n}, may ftand as follows:

$$
\frac{x+1}{x-1}
$$

$$
\begin{aligned}
& x^{\frac{1}{2}}+1 \quad x^{\frac{1}{2}}-1 \\
& \frac{x+1}{x-1}=\frac{}{2\left(x^{\frac{1}{2}}-1\right)}+\frac{\mathrm{I}}{2} \frac{1}{x^{\frac{1}{2}}+\mathrm{I}}, \\
& x^{\frac{1}{2}}+\mathbf{I} \quad x^{\frac{1}{4}}+\mathbf{I} \quad x^{\frac{x}{4}}-\mathbf{I} \\
& \overline{2\left(x^{\frac{1}{2}}-1\right)}=\frac{1}{4\left(x^{\frac{1}{4}}-1\right)}+\frac{1}{4} \overline{x^{\frac{1}{4}}+1}, \\
& x^{\frac{x}{4}}+\mathbf{I} \quad x^{\frac{1}{8}}+\mathbf{I} \quad x^{\frac{1}{8}}-\mathbf{1} \\
& \frac{}{4\left(x^{\frac{1}{4}}+1\right)}=\frac{1}{8\left(x^{\frac{1}{8}}-1\right)}+\frac{1}{8} \frac{1}{x^{\frac{7}{8}}+1}, \\
& x^{\frac{1}{8}}-1 \quad x^{\frac{1}{16}}+1 \quad x^{\frac{1}{16}}-1 \\
& \overline{8\left(x^{\frac{1}{8}}+1\right)}=\frac{1}{16\left(x^{\frac{1}{16}}-1\right.}+\frac{1}{16} \overline{x^{\frac{1}{16}}+1}, \\
& \frac{2\left(x^{\frac{2}{m}}+\mathrm{I}\right)}{m\left(x^{\frac{2}{m}}-\mathrm{I}\right)}=\frac{x^{\frac{1}{m}}+\mathrm{I}}{m\left(x^{\frac{1}{m}}-\mathrm{I}\right)}+\frac{\mathrm{I}}{2^{n}} \frac{x^{\frac{1}{m}}-\mathrm{I}}{x^{\frac{1}{m}}+\mathrm{I}},
\end{aligned}
$$

Let the fum of thefe equations be now taken, and the quantities found on both fides of the refult rejected, then, after
ter tranfpofing, we get

This equation, which is identical, holds true whatever be the value of n. Let us now, however, fuppofe, that n is indefinitely great, then the feries will go on ad infinitum, and $n=2^{n}$ will become indefinitely great; but this being the cafe, $x^{\frac{x}{m}}+\mathrm{I}$, which is always lefs than $2+\frac{x-\mathbf{I}}{m}$, (Art. 53 .), will become fimply 2 ; and $m\left(x^{\frac{1}{m}}-1\right.$) will become Nap. $\log x$, (Art. 57.) ; therefore fubftituting thefe limits, and dividing by 2, we have
and this is the firft feries which I propole to inveltigate for the calculation of logarithms.
59. The feries juft now found agreeing exactly in its form with our firft feries for an hyperbolic fector, (Art. 40.), as it ought to do, will of courfe have the fame limits to the rate of its convergency, and to the fum of all its terms, following any propofed term. As the latter of thefe have been deduced from the former, in the cafe of the hyperbola, by a procefs purely analytical, and the fame as we have followed in treating of the rectification of the circle, it is not neceflary to repeat their inveftigation in this place. The limits to the rate of convergency, however, having been made to depend partly upon the nature of the curve, it may be proper, in the prefent inquiry, to deduce them entirely from the analytical formula which has been made the bafis of the inveftigation.

Let any three fucceffive terms of the feries of quantities
$x^{\frac{1}{2}}-1 \quad x^{\frac{1}{4}}-\mathrm{I}$
$\widetilde{x^{\frac{t}{2}}+\mathbf{I}}, \overline{x^{\frac{t}{4}}+\mathbf{I}}$, \&c. be denoted by t, t^{\prime} and $t^{\prime \prime}$; then it is
evident from the formula, (Art. 58.), that the relation of thefe quantities to one another will be expreffed by the equations

$$
\frac{2}{t}=\frac{\mathbf{1}}{t^{\prime}}+t^{\prime}, \quad \frac{\mathbf{2}}{t^{\prime}}=\frac{\mathbf{1}}{t^{\prime \prime}}+t^{\prime \prime}
$$

From the firft of thefe we get $2 t^{\prime}=t\left(1+t^{\prime 2}\right)$, now each of the quantities $t, t^{\prime}, \& c$. being evidently lefs than unity, it follows, that $\mathrm{I}+t^{\prime 2}<2$, but $>\mathrm{I}$, and therefore that $2 t^{\prime}<2 t$, and $t^{\prime}<t$; alfo that $2 t^{\prime}>t$, and $t^{\prime}>\frac{1}{2} t$. Hence it appears,
in the firft place, that each term of our feries, taking its co-efficient into account, is greater than one-fourth of the term before it.

Again, becaufe $\frac{t^{\prime}}{t}=\frac{\mathrm{I}}{2}\left(\mathrm{I}+t^{\prime 2}\right)$; and, fimilarly, $\frac{t^{\prime \prime}}{t^{\prime}}=\frac{\mathrm{I}}{2}\left(\mathrm{I}+t^{\prime / 2}\right)$,
and it having been proved that $t^{\prime}<t$, fo that fimilarly, $t^{\prime \prime}<t^{\prime}$, therefore $\frac{\mathrm{I}}{2}\left(\mathrm{I}+t^{\prime 2}\right)<\frac{\mathrm{I}}{2}\left(\mathrm{I}+t^{\prime 2}\right)$, and confequently $\frac{t^{\prime \prime}}{t^{\prime}}<\frac{t^{\prime}}{t^{\prime \prime}}$, and
$t^{\prime \prime}<\frac{t^{n \prime}}{t}$. Thus it appears, that each of the quantities $t^{\prime \prime}, \& c$. is lefs than a third proportional to the two immediately before it, and the fame muft alfo be true of the terms of the feries.
60. Upon the whole, then, our firf feries for the calculation of logarithms may be expreffed as follows :

$$
\begin{gathered}
\frac{\mathrm{I}}{\log x}=\frac{\mathrm{I}}{2} \frac{x+\mathrm{I}}{x-\mathrm{I}}-\left(\frac{\mathrm{I}}{4} \frac{x^{\frac{1}{2}}-\mathrm{I}}{x^{\frac{1}{2}}+\mathrm{I}}+\frac{\mathrm{I}}{8} \frac{x^{\frac{1}{4}}-\mathrm{I}}{x^{\frac{1}{4}}+\mathrm{I}}+\frac{\mathrm{I}}{\mathrm{I} 6} \frac{x^{\frac{1}{8}}-\mathrm{I}}{x^{\frac{1}{3}}+\mathrm{I}} \ldots\right. \\
\left.\quad+\mathrm{T}_{(m)}+\mathrm{T}_{(m+1)}+\mathrm{R}\right)
\end{gathered}
$$

and here, as in the former feries, $\mathrm{T}_{(m)}$ and $\mathrm{T}_{(m+1)}$ denote any two fucceeding terms, and R is a quantity greater than $\frac{\mathbf{I}}{3} \mathrm{~T}_{(m+1)}$, but lefs than a third proportional to $\mathrm{T}_{(m)}-\mathrm{T}_{(m+1)}$ and $\mathrm{T}_{m+1)}$; or it is lefs than

$$
\frac{1}{3} \mathrm{~T}_{(m+1)}+\frac{4 \mathrm{~T}_{(m+1)}-\mathrm{T}_{(m)}}{3\left(\mathrm{~T}_{(m)}-\mathrm{T}_{(m+1)}\right.} \mathrm{T}_{(n+1)}
$$

6r. That we may inveftigate a fecond feries, we muft take the fquare of the formula, (Art. 58.), which will be

$$
\left(\frac{X^{2}+I}{X^{2}-I}\right)^{2}=\frac{(X+1)^{2}}{4(X-1)^{2}}+\frac{I}{4}\left(\frac{X-I}{X+I}\right)^{2}+\frac{I}{2}
$$

From this expreffion, proceeding exactly as in Art. 58. we form the following feries of equations,

$$
\begin{aligned}
& \frac{(x+1)^{2}}{(x-1)^{2}}=\frac{\left(x^{\frac{1}{2}}+\mathrm{I}\right)^{2}}{4\left(x^{\frac{1}{2}}-\mathrm{I}\right)^{2}}+\frac{\mathrm{I}}{4}\left(\frac{x^{\frac{1}{2}}-\mathrm{I}}{x^{\frac{1}{2}}+\mathrm{I}}\right)^{2}+\frac{\mathrm{I}}{2}, \\
& \frac{\left(x^{\frac{1}{2}}+1\right)^{2}}{4\left(x^{\frac{1}{2}}-1\right)^{2}}=\frac{\left(x^{\frac{1}{4}}+1\right)^{2}}{4^{2}\left(x^{\frac{1}{4}}-1\right)^{2}}+\frac{1}{4^{2}}\left(\frac{x^{\frac{1}{4}}-1}{x^{\frac{1}{4}}+1}\right)^{2}+\frac{1}{2.4}, \\
& \frac{\left(x^{\frac{1}{4}}+1\right)^{2}}{4^{2}\left(x^{\frac{1}{4}}-1\right)^{2}}=\frac{\left(x^{\frac{1}{8}}+1\right)^{2}}{4^{3}\left(x^{\frac{1}{8}}-1\right)^{2}}+\frac{1}{4^{3}}\left(\frac{x^{\frac{1}{8}}-1}{x^{\frac{1}{8}}+1}\right)^{2}+\frac{1}{2.4^{2}}, \\
& \frac{4\left(x^{\frac{1}{m}}+1\right)^{2}}{m^{2}\left(x^{\frac{2}{m}}-1\right)^{2}}=\frac{\left(x^{m}+1\right)^{2}}{m^{2}\left(x^{\frac{1}{n}}-1\right)^{2}}+\frac{\mathrm{I}}{4^{n}}\left(\frac{\frac{\mathrm{I}}{\frac{x^{n}}{n}}-\mathrm{I}}{x^{\frac{1}{m}}+1}\right)^{2}+\frac{\mathrm{I}}{2 \cdot 4^{n-1}},
\end{aligned}
$$

Here n denotes the number of equations, and m is put for 2^{n}. Let the fum of the correfponding fides of thefe equations be taken, and the quantities common to each rejected, as ufual, and Vol. VI.-P.II.
the refult, after tranfpofition, will be

This equation holds true when n is any whole pofitive number whatever. But if we fuppofe it indefinitely great, then the two feries will go on ad infinitum, and the limit of the numerical feries will be $\frac{2}{3}$, alfo the limit of $\left(x^{\frac{1}{m}}+1\right)^{2}$ will be 4 , and the limit of $m^{2}\left(x^{\frac{1}{m}}-1\right)^{2}$ will be $\log ^{2} x$, (Art. 57.) ; therefore, fubftituting thefe limits, and alfo putting $\frac{4 x}{(x-1)^{2}}+\frac{1}{3}$ for $\left(\frac{x+1}{x-1}\right)^{2}-\frac{2}{3}$, and dividing the whole expreflion by 4 , we get

$$
\frac{1}{\log ^{2} x}=
$$

$$
\frac{I}{\log ^{2} x}=\left\{\begin{array}{l}
\frac{x}{(x-1)^{2}}+\frac{I}{I 2} \\
-\left\{\frac{1}{4^{2}}\left(\frac{x^{\frac{1}{2}}-1}{x^{\frac{1}{2}}+1}\right)^{2}+\frac{1}{4^{3}}\left(\frac{x^{\frac{1}{4}}-1}{x^{\frac{x}{4}}+1}\right)^{2}+\frac{1}{4^{4}}\left(\frac{x^{\frac{1}{8}}-I}{x^{\frac{1}{8}}+I}\right)^{2}+\right. \\
\& \mathrm{c} .\}
\end{array}\right.
$$

and thus we have obtained a fecond feries for the logarithm of a number, which, by putting $t, t^{\prime}, \& c$. inftead of the fractions $x^{\frac{1}{2}}-1 x^{\frac{1}{4}}-1$
$\overline{x^{\frac{1}{2}}+\mathbf{I}}, \overline{x^{\frac{1}{4}}+\mathbf{I}}, \& c$. and remarking that the relation which
the quantities $t, t^{\prime}, \& c$. have to one another is identical with that of the quantities $\tan s, \tan \frac{1}{2} s, \& \mathrm{c}$. (Art. 35.), it will appear to be the fame as our fecond feries for the area of an hyperbolic fector, (Art. 43.). Of courfe it will have the fame limits to the rate of its convergency, and to the fum of all its terms following any given term. Now thefe have been found without any reference to the geometrical properties of the curve, therefore it is not neceffary to repeat their inveftigation.
62. We muft now transform our feries upon principles purely analytical, fo as to fuit it to calculation. And, in the firft place, becaufe $\left(\frac{x-\mathrm{I}}{x+\mathrm{I}}\right)^{2}=\frac{x^{2}-2 x+\mathrm{I}}{x^{2}+2 x+\mathrm{I}}=\frac{\frac{1}{2}\left(x+\frac{\mathrm{I}}{x}\right)-\mathrm{I}}{\frac{1}{2}\left(x+\frac{1}{x}\right)+1^{2}}$ if Tt 2
we put $\frac{1}{2}\left(x+\frac{1}{x}\right)=X$, it follows, that $\left(\frac{x-1}{x+1}\right)^{2}=\frac{X-I}{X+I}$. In like manner, putting $\frac{1}{2}\left(x^{\frac{1}{2}}+\frac{\mathrm{I}}{x^{\frac{1}{2}}}\right)=\mathbf{X}^{\prime}$, and $\frac{\mathrm{I}}{2}\left(x^{\frac{1}{4}}-\frac{\mathrm{I}}{x^{\frac{1}{4}}}\right)$
$=\mathrm{X}^{\prime \prime}$, we have $\left(\frac{x^{\frac{1}{2}}-\mathrm{I}}{x^{\frac{1}{2}}+\mathrm{I}}\right)^{2}=\frac{\mathrm{X}^{\prime}-\mathrm{I}}{\mathrm{X}^{\prime}+\mathrm{I}}$, and $\left(\frac{x^{\frac{1}{4}}-\mathrm{I}}{x^{\frac{1}{4}}+\mathrm{I}}\right)^{2}=\frac{\mathrm{X}^{\prime \prime}-\mathrm{I}}{\mathrm{X}^{\prime \prime}+1}$,
\&c. Again, becaufe $\mathrm{X}^{\prime}=\frac{1}{2}\left(x^{\frac{1}{2}}+\frac{\mathrm{I}}{x^{\frac{1}{2}}}\right)$, therefore $2 \mathrm{X}^{2}=$ $\frac{1}{2}\left(x+\frac{1}{x}\right)+1$, but $\frac{1}{2}\left(x+\frac{1}{x}\right)=X$, therefore $2 X^{\prime 2}=X+1$ and $X^{\prime}=\sqrt{\frac{X+I}{2}}$. In like manner, it will appear, that $X^{\prime \prime}=\sqrt{\frac{\overline{X^{\prime}+1}}{2}}, \& c$.
63. From the preceding inveftigation it appears, upon the whole, that our fecond feries for the calculation of a logarithm may be expreffed as follows.
Putting x for any number, let a feries of quantities \mathbf{X}, \mathbf{X}, $\mathrm{X}^{\prime \prime}, \mathrm{X}^{\prime \prime}, \& \mathrm{c}$. be found fuch that

$$
\mathrm{X}=\frac{1}{2}\left\{x+\frac{1}{x}\right\}, \mathrm{X}^{\prime}=\sqrt{\frac{\overline{X+1}}{2}}, X^{\prime \prime}=\sqrt{\frac{\overline{X^{\prime}+1}}{2}}, \& c .
$$

Then will

$$
\frac{1}{\log ^{2} x}=
$$

$$
\frac{\mathbf{I}}{\log ^{2} x}=\left\{\begin{array}{l}
\frac{x}{(x-1)^{2}}+\frac{1}{12} \\
-\left\{\frac{I}{4^{2}} \frac{X^{\prime}-\mathbf{I}}{X^{\prime}+I}+\frac{\mathbf{I}}{4^{3}} \frac{X^{\prime \prime}-\mathbf{I}}{X^{\prime \prime}+\mathbf{I}}+\frac{\mathbf{I}}{4^{4}} \frac{\mathbf{X}^{\prime \prime \prime}-\mathbf{I}}{\mathbf{X}^{\prime \prime \prime}+\mathbf{I}} \ldots\right. \\
\left.+\mathrm{T}_{(m)}+\mathrm{T}(m+1)+\mathrm{R}\right\}
\end{array}\right.
$$

and here $\mathrm{T}_{(m)}, \mathrm{T}_{(m+1)}$, are put for any two fucceflive terms of the feries, and R for the fum of all the following terms: And in every cafe R is greater than $\frac{\mathrm{I}}{\mathrm{I}_{5}} \mathrm{~T}_{(m+1)}$, but lefs than

$$
\frac{\mathrm{I}}{\mathrm{I} 5} \mathrm{~T}_{(m+1)}+\frac{\mathrm{I} 6 \mathrm{~T}_{(m+1)}-\mathrm{T}_{(m)}}{\mathrm{I} 5\left(\mathrm{~T}_{(m)}-\mathrm{T}_{(m+1)}\right)} \mathrm{T}_{(m+1)} .
$$

64. From the analogy of the two formulæ from which we have deduced the feries for the rectification of an arch of a circle, and for the calculation of logarithms, it is eafy to infer that there will be correfponding feries for the refolution of each of thefe problems. And as the two preceding feries for a logarithm have been inveftigated in the very fame way as the firft two feries for an arch of a circle, fo, by proceeding exactly as in the inveftigation of the third and fourth feries for the circle, we may obtain a third and fourth feries for a logarithm. The mode of deduction, then, being the fame in both cafes, and alfo fufficiently evident, I fhall fimply fate the refult of the inveftigation of a feries for logarithms which is analogous to our fourth feries for an arch of a circle, (Art. 28.).

Let x be any number, and $\mathbf{X}, \mathbf{X}^{\prime}, \mathbf{X}^{\prime \prime}, \mathbf{X}^{\prime \prime \prime}, \& c$. a feries of quantities formed from x, and one another, as fpecified in the beginning of the laft article. Then

$$
\frac{\mathrm{r}}{\log ^{4} x}=
$$

$$
\frac{I}{\log ^{4} x}=\left\{\begin{array}{l}
\frac{x\left(x^{2}+4 x+1\right)}{6(x-1)^{4}}-\frac{1}{8 \cdot 9 \cdot 10} \\
+\frac{1}{3 \cdot 16^{2}} \frac{X+12 X^{\prime}-13}{X+4 X^{\prime}+3}+\frac{1}{3 \cdot 16^{3}} \frac{X^{\prime}+12 X^{\prime \prime}-13}{X^{\prime}+4 X^{\prime \prime}+3} \\
+\frac{1}{3 \cdot 16^{+}} \frac{X^{\prime \prime}+12 X^{\prime \prime \prime}+13}{X^{\prime \prime}+4 X^{\prime \prime \prime}+3}+, \& c .
\end{array}\right.
$$

The terms of this feries approach continually to thofe of a geometrical feries, of which the common ratio is $\frac{1}{64}$: and hence it follows, that the fum of all the terms after any affigned term, approaches the nearer to $\frac{1}{6_{3}}$ of that term, according as it is more advanced in the feries.
65. Besides the foregoing, our method furnifhes yet another kind of expreffion for the logarithm of a number, namely, a product confifting of an infinite number of factors, which approach continually to unity. Such an expreffion may be inveftigated as follows. From the identical equation

$$
X-1=\left(X^{\frac{1}{2}}-1\right)\left(X^{\frac{1}{2}}+1\right)
$$

Ler there be formed the feries of equations

$$
\begin{aligned}
& x-1=2\left(x^{\frac{1}{2}}-1\right) \frac{x^{\frac{1}{2}}+1}{2}, \\
& 2\left(x^{\frac{1}{2}}-1\right)=4\left(x^{\frac{1}{4}}-1\right) \frac{x^{\frac{1}{4}}+1}{2}, \\
& 4\left(x^{\frac{1}{4}}-1\right)=8\left(x^{\frac{1}{8}}-1\right) \frac{x^{\frac{1}{8}}+1}{2}, \\
& \cdots \cdots \cdots \\
& \frac{m}{2}\left(x^{\frac{2}{m}}-1\right)=m\left(x^{\frac{1}{m}}-1\right) \frac{x^{\frac{1}{m}}+1}{2},
\end{aligned}
$$

here m is put for any integer power of 2. Let the product of the correfponding fides of thefe equations be now taken, and the common factors rejected, and the refult will be

$$
x-\mathbf{I}=m\left(x^{\frac{\mathbf{x}}{1 m}}-1\right) \frac{x^{\frac{1}{2}}+\mathbf{I}}{2} \frac{x^{\frac{1}{4}}+\mathbf{1}}{2} \frac{x^{\frac{1}{8}}+\mathbf{1}}{2} \ldots \frac{x^{\frac{1}{n}}+\mathbf{I}}{2}
$$

and hence

$$
m\left(x^{\frac{1}{m}}-\mathrm{I}\right)=(x-\mathrm{I}) \frac{2}{x^{\frac{1}{2}}+\mathrm{I}} \frac{2}{x^{\frac{1}{4}}+\mathrm{I}} \frac{2}{x^{\frac{1}{8}}+\mathrm{I}} \cdot \cdots \frac{2}{x^{\frac{1}{m}}+\mathrm{I}}
$$

This equation holds true, m being any power of 2 whatever.
Let us, however, conceive it indefinitely great. Then the number of factors will become infinite, and $m\left(x^{\frac{1}{m}}-1\right)$ will become Nap. $\log x$ (Art. 57.). Therefore,

$$
\text { Nap. } \log x=(x-1) \frac{2}{x^{\frac{1}{2}}+1} \frac{2}{x^{\frac{1}{4}}+1} \frac{2}{x^{\frac{1}{8}}+1} \frac{2}{x^{\frac{1}{1} \sigma}+1}, \& \mathrm{c}
$$

ad infinitum.
The product of any finite number of thefe factors being always a function of this form $m\left(x^{\frac{1}{12}}-\mathrm{I}\right)$ will of courfe be greater than $\log x$, (Art. 54.). However, the function $\underset{x^{\frac{1}{n i n}}}{\frac{1}{\frac{1}{n}}} m\left(x^{\prime \prime \prime}-1\right)$ or $m\left(\mathrm{I}-\frac{\mathrm{I}}{\overline{\bar{m}}}\right)$, being in like manner expanded into an infi-
nite product, we get from it

$$
\log x=\left(\mathrm{I}-\frac{1}{x}\right) \frac{2}{\frac{1}{x^{\frac{1}{2}}}+\mathrm{I}} \frac{2}{\frac{\mathrm{I}}{\frac{1}{4}}+\mathrm{I}} \frac{2}{\frac{\mathrm{I}}{\frac{1}{4}}+1} \frac{2}{x^{\frac{1}{8}}} \frac{1}{x^{\frac{1}{\mathrm{~T}} \sigma}}+\mathrm{I} \quad \text {, } \quad \text { c. }
$$

ad infinitum.
and the product of any finite number of factors of this expreffion will always be lefs than $\log x$.

These formulæ, which are analogous to that given by EuLER for an arch of a circle, (fee Art. 33.), are not inelegant, confidered as analytical transformations. It does not feem, however, that without fome analytical artifice, they can be applied with advantage to the actual calculation of logarithms, by reafon of the great labour which would be neceflary to obtain a refult tolerably accurate.
66. I shall now conclude this Paper, with fome examples of the application of the formulæ to the computation of the length of one-fourth the circumference of a circle whofe radius is unity, (which is the extreme and the moft unfavourable cafe), and to the computation of a logarithm; as alfo of the modulus of the common fyftem of logarithms, which is the reciprocal of NAPIER's logarithm of IO .

Example I. The length of an arch of 90°, computed to 12 places of decimals, by means of the firft feries, (Art. 12.). Here $a=90^{\circ}$.

$$
\frac{1}{a}=\overline{63661977^{2} 3677}
$$

Arch of 90°, or $a=1.570796326795$ 。

$$
\begin{aligned}
& \frac{\mathbf{1}}{\tan a}=\cot a=0 \quad \tan _{\frac{1}{6} \frac{1}{4} a}=0.0245486221089 \\
& \tan \frac{1}{2} a=\mathbf{I} \\
& \tan \frac{1}{4} a=0.4142135^{62373 I^{-}} \\
& \tan \frac{1}{8} a=0.1989123673796 \\
& \tan \frac{\operatorname{t}_{\delta} \sigma}{} a=0.0984914033571 \\
& \tan _{\frac{1}{32}} a=0.0491268497694 \\
& \tan _{\mathrm{T}^{\prime} \frac{1}{5} \delta} a=0.01227^{2462379} \text {. } \\
& \tan _{\frac{5}{5} \frac{1}{5} 8} a=0.0061_{36000157} \text {. }
\end{aligned}
$$

Example II. The length of an arch of 90°, computed by the fecond feries, (Art. 22.).

$$
\begin{aligned}
\operatorname{cof} a & =0 \\
\operatorname{cof} \frac{1}{2} a & =0.70710678 \times 1865 \\
\operatorname{cof} \frac{4}{4} a & =0.9238795325113 \\
\operatorname{cof} \frac{1}{8} a & =0.980785280403 .
\end{aligned}
$$

$$
\operatorname{cof} \frac{1}{\mathrm{I}^{\prime} \sigma} a=0.99518472667 \ldots
$$

$$
\operatorname{cof} \frac{1}{3} \frac{1}{2} a=0.9987954562 \mathrm{I} .
$$

$$
\operatorname{cof}_{\sigma^{\prime}}^{\prime} a=0.9996988187 \ldots
$$

Amount of pofitive $\frac{1}{4} \frac{\mathrm{I}+\operatorname{cof} a}{\mathrm{I}-\operatorname{cof} a}+\frac{1}{8}=\frac{5}{12}=\underline{.4166666666667}$
terms,
$S<.00000000061287$
$S>.0000000006126$
Hence
$S=.0000000006127$
Amount of negative terms, $\overline{.0113819320972}$
$\left.\begin{array}{l}\text { Difference between the pofitive } \\ \text { and negative terms, }\end{array}\right\}$ or $\frac{1}{a^{2}}=\frac{.4052847345695}{}$

$$
\frac{1}{a}=.63661977^{2} 3677
$$

Arch of 90°, or $a=1.570796326795$.

$$
\begin{aligned}
& \frac{1}{4^{2}} \frac{1-\operatorname{cof} \frac{1}{2} a}{I+\operatorname{cof} \frac{1}{2} a}=.0107233047034 \\
& \frac{1}{4^{3}} \frac{1-\operatorname{cof} \frac{1}{4} a}{I+\operatorname{cof} \frac{1}{4} a}=.0006182207796 \\
& \frac{\mathbf{x}}{4^{4}} \frac{\mathbf{x}-\operatorname{cof} \frac{1}{8} a}{\mathrm{I}+\operatorname{cof} \frac{1}{8} a}=.0000378927990 \\
& \frac{\mathbf{I}}{4^{5}} \frac{\mathbf{I}-\operatorname{cof}_{\frac{2}{6} \frac{1}{2} a}^{1+\operatorname{cof}_{\frac{1}{\top} \sigma} a}=.0000023568822}{} \\
& \frac{1}{4} \frac{1-\operatorname{cof}_{\frac{1}{3} \frac{1}{2} a}^{1+\operatorname{cof}_{\frac{1}{2} \frac{1}{2} a} a}=.0000001471276}{} \\
& \frac{\mathrm{I}}{4^{7}} \frac{\mathrm{I}-\operatorname{cof}_{6^{\prime}-\frac{1}{4} a}^{\mathrm{I}+\operatorname{cof}_{\frac{1}{4}} a}=.0000000091927}{}
\end{aligned}
$$

Example III. The length of an arch of 90°, calculated from the fourth feries, (Art. 28.).

$$
\begin{aligned}
\operatorname{cof} a & =0 & \operatorname{cof} \frac{1}{8} a & =0.980785280 \ldots . \\
\operatorname{cof} \frac{1}{2} a & =0.7071067811865 & \operatorname{cof} \frac{1}{16} a & =0.9951847 \ldots \ldots \\
\operatorname{cof} \frac{1}{4} a & =0.92387953251 . & \operatorname{cof} \frac{1}{3} \frac{1}{2} a & =0.99880 \ldots . .
\end{aligned}
$$

$$
\begin{aligned}
\frac{1}{3.16^{2}} \frac{13-\operatorname{cof} a+12 \operatorname{cof} \frac{1}{2} a}{3+\operatorname{cof} a-4 \operatorname{cof} \frac{1}{2} a} & =.1630539020108 \\
\frac{7}{8.8 \cdot 9 \cdot 10} & =.0012152777778
\end{aligned}
$$

Amount of pofitive terms, $\overline{.1642691797886}$

$$
\begin{aligned}
& \frac{1}{3 \cdot 16^{3}} \frac{13-\operatorname{cof} \frac{1}{2} a-12 \operatorname{cof} \frac{1}{4} a}{3+\operatorname{cof} \frac{1}{2} a+4 \operatorname{cof} \frac{1}{4} a}=.0000132617965 \\
& \frac{1}{3 \cdot 16^{4}} \frac{13-\operatorname{cof} \frac{1}{4} a-12 \operatorname{cof} \frac{1}{8} a}{3+\operatorname{cof} \frac{1}{4} a+4 \operatorname{cof} \frac{1}{8} a}=.0000001987942 \\
& \frac{1}{3 \cdot 160^{2}} \frac{13-\operatorname{cof} \frac{1}{8} a-12 \operatorname{cof} \frac{1}{\frac{1}{6}} a}{3+\operatorname{cof} \frac{1}{8} a+4 \operatorname{cof} \frac{1}{8} \frac{1}{8} a}=.0000000030744 \\
& \frac{1}{3.16^{6}} \frac{13-\operatorname{cof} \frac{1}{7} a-12 \operatorname{cof} \frac{1}{3} \frac{1}{2} a}{3+\operatorname{cof} \frac{1}{1} \frac{1}{5} a+4 \operatorname{cof} \frac{1}{3} a}=.0000000000478
\end{aligned}
$$

Each of the remaining terms, being near-7
 will be nearly r'з $^{\prime}$ of the laft term, or

Amount of negative terms, $\overline{.0000134637137}$ Difference between the pofitive $\}$

$$
\begin{aligned}
& \frac{1}{a^{4}}=\overline{.1642557160749} \\
& \frac{1}{a^{2}}=.4052847345693 \\
& \frac{1}{a}=.6366197723676
\end{aligned}
$$

Arch of 90°, or $a=\mathrm{I} .570796326795$.

Example IV. The reciprocal of Napier's logarithm of 10, (which is the modulus of the common fyftem), calculated by the fecond feries for logarithms. (See Art. 63.).

$$
\begin{array}{ll}
x=10, \text { and hence } X=5.05 & X^{1 \mathrm{v}}=1.01037315420 . \\
X^{\prime}=1.73925^{2} 7130927 & X^{\mathrm{v}}=1.0025899346 \ldots \\
X^{\prime \prime}=1.1703103676146 & X^{\mathrm{vi}}=1.000647274 \ldots \\
X^{\prime \prime \prime}=1.04170782074^{8} . & X^{\mathrm{vin}^{11}}=1.000161805 \ldots .
\end{array}
$$

$$
\begin{aligned}
\frac{x}{(x-I)^{2}}= & .1234567901235 \\
\frac{1}{12}= & .0833333333333 \\
\text { Sum of pofitive terms, } & .2067901234568
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\mathbf{I}}{4^{2}} \frac{\mathbf{X}^{\prime}-\mathbf{I}}{\mathbf{X}^{\prime}+\mathbf{I}}=.0168671164758 \\
& \frac{1}{4^{3}} \frac{X^{\prime \prime}-I}{X^{\prime \prime}+I}=.0012261377606 \\
& \frac{\mathbf{I}}{4^{4}} \frac{\mathbf{X}^{\prime \prime \prime}-\mathbf{I}}{\mathbf{X}^{\prime \prime \prime}+\mathbf{I}}=.00007979^{6} 5180 \\
& \frac{\mathbf{I}}{4^{5}} \frac{X^{1 V}-I}{X^{1 V}+I}=.0000050388826 \\
& \frac{1}{4^{0}} \frac{X^{v}-1}{X^{v}+1}=, 0000003157452 \\
& \frac{1}{4^{7}} \frac{X^{V I}-I}{X^{V I}+I}=.0000000197469 \\
& \frac{I}{4^{8}} \frac{X^{\text {VII }}-I}{X^{\text {II }}+I}=.0000000012344
\end{aligned}
$$

R > .0000000000822,9
R < .0000000000823,I
$R=.0000000000823$
Sum of negative terms, $\overline{.0181784264458}$
Difference of the pofitive? and negative terms, $\} \frac{1}{\log ^{2} 10}=\overline{.1886116970110}$

$$
\frac{\mathrm{i}}{\log 10}=.43429448 \mathrm{I} 903
$$

Example V. Napier's logarithm of 10 , calculated by the third feries for logarithms; (See Art. 64.).

$$
\begin{array}{rlrl}
x & =10, & X=5.05 & X^{\prime \prime}=1.0417078207 . \\
X^{\prime}=1.739252713093 . & X^{v v} & =1.01037315 \cdots . \\
X^{\prime \prime}=1.1703103676 \mathrm{r} . . & X^{v}=1.0025^{8} 99 . \ldots .
\end{array}
$$

$$
\begin{aligned}
\frac{x\left(x^{2}+4 x+1\right)}{6(x-1)^{4}} & =.0358177107148 \\
\frac{1}{3 \cdot 16^{2}} \frac{X+12 X^{\prime}-13}{X+4 X^{\prime}+3} & =.0011210934214 \\
\frac{1}{3 \cdot 16^{j}} \frac{X^{\prime}+12 X^{\prime \prime}-13}{X^{\prime}+4 X^{\prime \prime}+3} & =.0000240411229 \\
\frac{1}{3 \cdot 16^{\prime}} \frac{X^{\prime \prime}+12 X^{\prime \prime}-13}{X^{\prime \prime}+4 X^{1 / 1}+3} & =.0000004092394 \\
\frac{1}{3 \cdot 16^{5}} \frac{X^{\prime \prime}+12 X^{1 v}-13}{X^{\prime \prime \prime}+4 X^{1 v}+3} & =.0000000065357 \\
\frac{1}{3 \cdot 16^{0}} \frac{X^{1 v}+12 X^{v}-13}{X^{1 v}+4 X^{v}+3} & =.0000000001027
\end{aligned}
$$

$\left.\begin{array}{c}\delta^{\prime} z \text { of laft term }=\text { fum of the re- } \\ \text { maining terms nearly, }\end{array}\right\}$
.0000000000016
From fum of pofitive terms, $=\overline{.0369632611385}$

- Subtract $\frac{1}{8.9 .10}=.0013888888889$

There remains $\frac{\mathrm{I}}{\log ^{4} \mathrm{IO}}=\overline{.0355743722496}$

$$
\begin{aligned}
& \frac{1}{\log ^{2} 10}=.1886 \text { II } 697 \text { OII } 3 \\
& \frac{1}{\log 10}=.4342944^{81903}
\end{aligned}
$$

Example VI. To fhew that the feries inveftigated in this Paper are applicable in every cafe, whether the number whofe logarithm is required be large or fmall, let it be required to calculate the common logarithm of the large prime number 1243 to feven decimal places, by the fecond feries, (Art. 63.).
$x=1243$
$\mathrm{X}^{\prime \prime \prime}=1.42356148$
$\mathrm{X}=62 \mathrm{I} .50040225$
$\mathrm{X}^{\text {IV }}=1.10080913$
$X^{\prime}=17.64228446$
$X^{\prime \prime}=3.053^{\circ} 5457$
$X^{v_{1}}=1.006204 .$.

$$
\frac{x}{(x-\mathrm{I})^{2}}=.00080580 \mathrm{I}
$$

$$
\frac{1}{12}=.083333333 .
$$

$$
\text { Sum of pofitive terms, } \quad .
$$

$$
\left.\begin{array}{l}
\mathrm{R}>.000000012,6 \\
\mathrm{R}<.000000012,7
\end{array}\right\} \quad \mathrm{R}=.000000013
$$

Sum of negative terms, $\overline{.06444233 \mathrm{I}}$

$$
\frac{1}{\text { Nap. } \log ^{2} x}=.019696803
$$

$$
\frac{1}{\text { Nap. } \log x}=.140345300
$$

Common \log of $1243=\frac{.434294482}{.140345300}=3.09447 \mathrm{II}$.
No. IX.

$$
\begin{aligned}
& \frac{1}{4^{2}} \frac{X^{\prime}-I}{X^{\prime}+\mathrm{I}}=.0557948 \mathrm{I} 3 \\
& \frac{1}{4^{3}} \frac{\mathbf{x}^{\prime \prime}-1}{\mathbf{X}^{\prime \prime}+\mathbf{I}}=.007914766 \\
& \frac{\mathbf{I}}{4^{4}} \frac{\mathbf{X}^{\prime \prime \prime}-\mathbf{I}}{\mathbf{X}^{\prime \prime}+\mathbf{I}}=.000682688 \\
& \frac{I}{4^{5}} \frac{\mathrm{X}^{1 V}-\mathrm{I}}{\mathrm{X}^{\mathrm{IV}}+\mathrm{I}}=.00004686 \mathrm{I} \\
& \frac{1}{4^{6}} \frac{X^{v}-1}{X^{v}+1}=.000003001 \\
& \frac{1}{4^{7}} \frac{\mathrm{X}^{\mathrm{vx}}-\mathrm{I}}{\mathrm{X}^{\mathrm{xt}}+\mathrm{I}}=.000000189
\end{aligned}
$$

PLATEIX.

-
IX. Remaris on a Mineral from Greenland, supposed to be Crystalifise Gadolinite. By Thomas Allan, Esq. F. R.S. Ed.

[Read 21st November 1808].

AMONG a parcel of minerals which I procured laft fpring, there are fpecimens of two very rare foffils; one of them, the Cryolite, the other I believe a variety of the Gadolinite. The former, is accurately defcribed in the different mineralogical works, and I have little to add to the information contained in them. But the Gadolinite appears to be very imperfectly known, and has never yet been defcribed as a crystallifed foffil.

The minerals in queftion were found on board a Danifh prize, captured on her paffage from Iceland to Copenhagen, and were fold with the reft of her cargo at Leith. On examination, I was furprifed to find they correfponded fo little with the foffils which are ufually brought from that illand, and confequently endeavoured to trace from the fhip's papers, any particulars that might lead to the knowledge of their geographic origin. All I could learn was, that they were fent from Davis? Straits by a Miffionary:

I consider this limited information, however, fufficient to fix on the coaft of Greenland as the place from whence they had
had been brought; the only.Cryolite known in Europe having been fent by a Miffionary from Greenland to Copenhagen.

The Gadolinite, from its extreme fcarcity, is a mineral to be found in very few cabinets; and when this collection fell into my hands, was one of thofe I knew only by defcription. I was led to fufpect that fome of the minerals in this parcel belonged to that fpecies, by obferving, imbedded in a piece of granite, fome fmall fhapelefs maffes, whofe external characters appeared to correfpond entirely with thofe affigned to the gadolinite ; but on reference to the mineralogical works which treat of this ftone, I found more difficuilty than could have been fuppofed in afcertaining whether they did fo or not. The inveftigation, however, furnifhed a ftrong proof of the fuperiority of chemical teft over external character; for although the fhape, luftre, fracture, and geognoftic relations, left me fcarcely any room to doubt, yet on applying the blow-pipe and acids, it was quite evident, that the ftone I firft tried could not be gadolinite. I examined with great care the reft of the parcel, and picked out feveral, which, though very different, refembled in various refpects the one that originally attracted attention; and with a view to fatisfy myfelf, I fent duplicates to a friend in London, from whom I learnt, that one of thofe which I fuppofed to be gadolinite was certainly that mineral. Notwithftanding the very refpectable authority I had obtained, to which I was inclined to pay the utmoft deference, it was not till after minute and repeated inveftigations that I found myfelf difpofed to fubmit to it; the phyfical characters of the fpecimen in queftion differed fo very widely from thofe I was taught to expect.

It is more than twenty years fince the gadolinite was firft obferved by M. Arrhenius, in an old quarry at Roflagié, near Ytterby in Sweden. It was defcribed by Mr Geyer, and by him confidered as a black zeolite.

In i794, M. Gadolin analyfed it; and found that it contained 3^{8} per cent. of an unknown earth, whofe properties approached alumine in fome refpects, and to calcareous earth in others; but that it effentially differed from both, as well as from every other known earth.
In 1797 M. Ekeberg repeated the analyfis of M. Gadolin, and obtained $47 \frac{1}{2}$ per cent. of the new earth. This increafe of quantity he attributed to the greater purity of the fpecimens he fubmitted to experiment, and in confequence of having confirmed the difcovery of Gadolin, he called the ftone after him, and gave the name of Yttria to the earth.

Analyses by Vauquelin and Klaproth have fince appeared. The quantity of yttria obferved by the former amounted only to 35 per cent.; but the latter flates $59^{\frac{3}{4}}$ per cent.

The fmall portions of this mineral, which, from its rarity, it is natural to conclude were at the difpofal of thefe celebrated chemifts, may in fome meafure account for the diverfity of their refults; but it is likewife by no means impoffible, that the mineral itfelf may have varied in the proportions of its chemical ingredients.
The difference which we find in the mineralogical deferiptions of this foffil; hitherto only found in one fpot, is much more difficult to account for. If the information I have otherwife obtained be correct, of which I have not the flighteft doubt, we cannot help attributing a certain degree of careleffnefs to fome of the authors, particularly the French writers, who have fuch opportunities at command ${ }^{*}$, of inveftigating every point relative to natural hiftory. The great veneration

$$
\text { VoL. VI. P.II. } \quad \mathrm{X} \times \text { they }
$$

[^34]they entertain for the talents and accuracy of the celebrated Haïy, may induce them to think his obfervations require no concurring teftimony; and, on the other hand, the pupils of the German School, confider no mineral deferving a place in their fyftem, till it has been examined and claffed by their illuftrious mafter, whofe authority will be handed down by them with equal refpect to pofterity.

IT is unneceffary to occupy the time of the Society, in giving a comparative view of the different defcriptions of the Gadolinite. I fhall only notice a few prominent features.

It is deferibed by every one of the authors, as poffeffing a fpecific gravity of upwards of 4 , and as acting powerfully upon the magnet. This laft character is noticed by Profeffor Jameson, in the firf account he gives of the gadolinite; but in the fecond it is omitted, along with fome others. Klaproth takes no notice of its magnetic power, but ftates the feccific gravity at 4.237 .

The French writers defcribe the colour as black and reddifh black. The German as raven or greenifh black. Thele variations, with feveral others which may be obferved on referring to the different authors, fhew that fome incorrectnefs muft exift. But the moft remarkable of all is, that the gadolinite, if ever magnetic, is not always fo; for the fecimens in the pofferfion of the Gount de Bournon are not, nor, as he informs me, are any that he has ever feen. It is therefore reafonable to conclude, that magnetifm in the gadolinite may depend on accidental caulés.

The following is the defcription of the foffil, which I fuppofe to be that fubftance in a cryftallifed ftate; although nothing fhort of analyfis can afford indifputable teftimony of the identity of any mineral fo little known.

Specific Gravity, 3.4802 . The fecimen weighed Ir 36.39 grains. Its furface is a little decompofed, and it has alio fome minute particles of telfpar intermixed with it; both of which would affect the refult in fome degree; but neither were of fuch amount as to do fo in any confiderable degree.
Hardness: fufficient to refift fteel, and fcratch glafs, but not quartz.
LuSTRE: fhining, approaching to refinous.
Fracture: uneven, verging to flat conchoidal.
Colour : pitch black which I confider velvet black with a fhade of brown; when pounded, of a greenilh grey colour.
Figure: it occurs cryftallifed. The fimpleft figure, and perhaps the primitive form, is a rhomboidal priim, whofe planes meet under angles of 120° and 60°. In fome of the fpecimens, the acute angle is replaced by one face, in others by two, thereby forming fix and eight fided prifms. All the fpecimens I poffets are only fragments of cryftals, none of which retain any part of a termination. They occur imbedded in felfpar, probably granite.
Chemical Characters: before the blow-pipe froths up, and melts but only partially, leaving a brown fcoria; with borax it melts into a black glafs. When pounded, and heated in diluted nitric acid, it tinges the liquid of a ftraw colour ; and, fome time after cooling, gelatinates.

The principal diftinguihing character of the gadolinite, is its forming a jelly with acid, a character belonging to few other minerals. The Mezotype Lazulite, Apophilite, 門delite, and Oxide of Zinc, fo far as I know, alone poffers the fane quality ; aid it cannot eafily be miftaken for any of them.

$$
\mathrm{X} \times 2
$$

It has not the fmalleft attraction for the magnet; it does not decrepitate and difperfe when expofed to the blow-pipe ; it is not in any thape tranfparent.

The Swedifh foffll occurs in roundifh amorphous maffes, imbedded and diffeminated in a granitic rock, having the external furfaces covered with a flight whitifh coating, perhaps from the attachment of micaceous particles. There is no fuch appearance on the furface of the cryftallifed gadolinite.

The fituation which this mineral fhould hold in the fyftem has been a matter of difficulty among mineralogifts. Haüy has placed it in the clafs of Earthy Foffils, immediately after his Anatafe and Dioptafe,-rather an unfortunate fituation, both thefe having been recognifed as ores of known metals, titanium and copper, fince the publication of his admirable treatife.

Werner, on account of its weight, has claffed it among the metals; and from its natural alliances, and chemical compofition, has given it a place among the irons *. If weight entitled it to be claffed apnong the metals, feveral other minerals have an equal claim to the fame fituation. Of its natural alliances we know very little, farther than that the Swedifh diftrict where it is found abounds in iron; and as to its chemical compofition, if $17 \frac{1}{2}$ per cent. of iron be fufficient to counterbalance $59 \frac{3}{4}$ ths of a new earth, it would be right to arrange it accordingly. The analyfes of fo many chemifts of known celebrity, are certainly fufficient to juftify the conftitution of a new fpecies for its reception. Werner, however, may feel himfelf licenfed in this arrangement, as he does not confider it neceffary that a mineral compound fhall preferve the characters of its components; but that any of the components may give to the compofition characters fufficiently marked, to determine its relations. It is upon this diftinction that he founds the difference between the predominant and characteriftic principles \dagger.

[^35]The arrangement of Brongniart appears much more judicious; he has placed it at the commencement of the Earthy Minerals, and affigns as a reafon, that it is unique in its compofition ; and if placed in any other fituation, it would interrupt: the feries, either in refpect to its compofition or external characters.

Of the Cryolite I have very little to obferve, in addition to the defcriptions given in the different mineralogical works. The fpecific gravity I found to be 2.96I; Haüy ftates it at 2.949. Among the various maffes I examined, there was no trace of cryftallization, farther than the cleavage, which is threefold, and nearly at right angles. The maffes broke in two directions, (which may be fuppofed the fides of the prifm), with great facility, leaving a very fmooth furface; but the tranfverfe cleavage was more difficult, and by no means fo fmooth. Several of the fpecimens being mixed with galena, pyrites, and cryftals of Sparry iron-ore, it would appear that the cryolite is a vein-ftone; but I was not fo fortunate as to find any of it attached to a rock fpecimen, fo as to throw light on its geognoltic relations.

Ha y andition

> X. On the Progress of Heat when communicated to Spherical Bodies from their Centres. By John Playfair, F. R.S. Lond. Secr. R.S. Edin. and Professor of Natural Philosophy in the University of Edinburgh.

「Read March 6. 1809.]

I. AN argument againft the hypothefis of central heat has been ftated by an ingenious author as carrying with it the evidence of demonftration.
" The effential and characteriftic property of the power " producing heat, is its tendency to exift every where in a ftate " of equilibrium, and it cannot hence be preferved without lofs " or without diffufion, in an accumulated ftate. In the theory " of Hutton, the exiftence of an intenfe local heat, acting for " a long period of time, is affumed. But it is impoffible to pro" cure caloric in an infulated fate. Waving every objection " to its production, and fuppofing it to be generated to any ex" tent, it cannot be continued, but mult be propagated to the " contiguous matter. If a heat, therefore, exifted in the cen" tral region of the earth, it muft be diffufed over the whole " mafs; nor can any arrangement effectually counteract this " diffufion. It may take place flowly, but it muft always con" tinue progreffive, and muft be utterly fubverfive of that fy"ftem of indefinitely renewed operations which is repreVol.VI. P.II. Yy " rented
"-fented as the grand excellence of the Huttonian Theory *." " Again, he obferves, in giving what he fays appears to him a demonftration of the fallacy of the firft principles of the Huttonian Syftem, " it will not be difputed, that the tendency of " caloric is to diffufe itfelf over matter, till a common tempe" rature is eftablifhed. Nor will it probably be denied, that a " power conftantly diffufing itfelf from the centre of any mafs " of matter, cannot remain for an indefinite time locally accu" mulated in that mafs, but muft at length become equal or " nearly fo over the whole \dagger."
2. I muft confefs, notwithftanding the refpect I entertain for the acutenefs and accuracy of the author of this reafoning, that it does not appear to me to poffefs the force which he afcribes to it; nor to be conffiftent with many facts that fall every day under our obfervation. A fire foon heats a room to a certain degree, and though kept up ever fo long, if its intenfity, and all other circumftances remain the fame, the heat continues very mequally diftributed through the room; but the temperature of every part continues invariable. If a bar of iron has one end of it thruft into the fire, the other end will not in any length of time become red-hot; but the whole bar will quickly come into fuch a ftate, that every point will have a fixed temperature, lower as it is farther from the fire, but remaining invariable while the condition of the fire, and of the medium that furrounds the bar, continues the fame. The reafon indeed is plain : the equilibrium of heat is not fo much a primary law in the diftribution of that fluid, as the limitation of another law which is general and ultimate, confifting in the tendency of heat to pafs with à greater or a lefs velocity, according to circumftances, from bodies where the temperature

[^36]is higher, to thofe where it is lower, or from thofe which contain more heat, according to the indication of the thermometer, to thofe which contain lefs. It is of this general tendency, that the equilibrium or uniform diftribution of heat is a confe-quence,-but a confequence only contingent, requiring the prefence of another condition, which may be wanting, and actually is wanting, in many inflances. This condition is no other, than that the quantity of heat in the fyfem fhould be given, and fhould not admit of continual increafe from one quarter, nor diminution from another. When fuch increafe and diminution take place, what is ufually called " the equilibrium of heat" no longer exifts. Thus, if we expofe a thermometer to the fun's rays, it immediately rifes, and continues to ftand above the temperature of the furrounding air. The way in which this happens is perfectly underftood: the mercury in the thermometer receives more heat from the folar rays than the air does; it begins therefore to rife as foon as thofe rays fall on it; at the fame time, it gives out a portion of its heat to the air, and always the more, the higher it rifes. It continues to rife, therefore, till the heat which it gives out every inftant to the air, be equal to that which it receives every inftant from the folar rays. When this happens, its temperature becomes ftationary; the momentary increment and decrement of the heat are the fame, and the total, of courfe, continues conftant. The thermometer, therefore, in fuch circumftances, never acquires the temperature of the furrounding air ; and the only equilibrium of the heat, is that which fubfifts between the increments and the decrements juft mentioned : thefe indeed are, ftrictly fpeaking, in equilibrio, as they accurately balance one another. This fpecies of equilibrium, however, is quite different from what is implied in the uniform diffufion of heat.
3. In order to ftate the argument more generally, let $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \& \mathrm{c}$. be a feries of contiguous bodies; or let them be parts of the fame body; and let us fuppofe that A receives, from fome caufe, into the nature of which we are not here to inquire, a conftant and uniform fupply of heat. It is plain, that heat will flow continually from A to B, from B to $C, \& c$; and in order that this may take place, A muft be hotter than B , B than C , and fo on; fo that no uniform diftribution of heat can ever take place. The ftate, however, to which the fyftem will tend, and at which, after a certain time, it muft arrive, is one in which the momentary increafe of the heat of each body is juft equal to its momentary decreafe; fo that the temperature of each individual body becomes fixed, all thefe temperatures together forming a feries decreafing from A downwards. To be convinced that this is the fate which the fyftem muft affume, fuppofe any body D , by fome means or other, to get more heat than that which is required to make the portion of heat which it receives every moment from C, juft equal to that which it gives out every moment to E ; as its excefs of temperature above E is increafed, it will give out more heat to E , and as the excefs of the temperature of C above that of D is diminifhed, D will receive lefs heat from C; therefore, for both reafons, D muft become colder, and there will be no ftop to the reduction of its temperature, till the increments and decrements become equal as before.
4. If, therefore, heat be communicated to a folid mafs, like the earth, from fome fource or refervoir in its interior, it muft go off from the centre on all fides, toward the circumference. On arriving at the circumference, if it were hindered from proceeding farther, and if fpace or vacuity prefented to heat an impenetrable barrier, then an accumulation of it at the furface, and at laft a uniform diftribution of it through the whole mafs, would inevitably be the confequence. But if heat
heat may be loft and diffipated in the boundlefs fields of vacuity, or of ether, which furround the earth, no fuch equilibrium can be eftablihned. The temperature of the earth will then continue to augment only, till the heat which iffues from it every moment into the furrounding medium, become equal to the increafe which it receives every moment from the fuppofed central refervoir. When this happens, the temperature at the fuperficies can undergo no farther change, and a fimilar effect muft take place with refpect to every one of the fpherical and concentric ftrata into which we may conceive the folid mafs of the globe to be divided. Each of thefe muft in time come to a temperature, at which it will give out as much heat to the contiguous ftratum on the outfide, as it receives from the contiguous ftratum on the infide ; and, when this happens, its temperature will remain invariable.
5. That we may trace this progrefs with more accuracy, let us fuppofe a fpherical body to be heated from a fource of heat at its centre ; and let $b, b^{\prime}, b^{\prime \prime}$, be the temperatures at the furfaces of two contiguous and concentric ftrata, the diftances from the centre being $x, x^{\prime}, x^{\prime \prime}$; and let it alfo be fuppofed, that the thicknefs of each of the ftrata, to wit, $x^{\prime}-x$, and $x^{\prime \prime}-x^{\prime}$, is very fmall.

Then fuppofing the body to be homogeneous, the quantity of heat that flows from the inner ftratum into the outward, in a given time, will be proportional to the excefs of its temperature above that of the outward fratum multiplied into its quantity of matter, that is, to $\left(b-b^{\prime}\right)\left(x^{\prime 3}-x^{5}\right)$.
6. In the fame manner, the heat which goes off from the fecond ftratum in the fame time, is proportional to ($b^{\prime}-b^{\prime \prime}$) ($x^{\prime \prime 3}-x^{\prime 3}$) ; and thefe two quantities, when the temperature of the fecond ftratum becomes conftant, muft be equal to one another, or $\left(b-b^{\prime}\right)\left(x^{\prime 3}-x^{3}\right)=\left(b^{\prime}-b^{\prime \prime}\right)\left(x^{\prime \prime 3}-x^{\prime 3}\right)$.

But becaufe $b-b^{\prime}$, and $x^{\prime}-x$ are indefinitely fmall, $b-b^{\prime}=\dot{b}$, and $x^{\prime 3}-x^{3}=3 x^{2} \dot{x}$; therefore $\dot{b} \times 3 x^{2} \dot{x}=\mathrm{a}$ given quantity; which quantity, fince \dot{x} is given, we may reprefent by $a^{2} \dot{x}^{2}$; fo that $\dot{b}=\frac{a^{2} \dot{x}^{2}}{3 x^{2} \dot{x}}=\frac{a^{2} \dot{x}}{3 x^{2}}$, or, becaufe \dot{b} is negative in refpect of \dot{x}, being a deccrement, while the latter is an increment, $\dot{b}=-\frac{a^{2} \dot{x}}{3 x^{2}}$, and therefore $b=\mathrm{C}+\frac{a^{2}}{3 \dot{x}}$.
7. To determine the conftant quantity C , let us fuppofe that the temperature at the furface of the internal nucleus of ignited matter is $=\mathrm{H}$, and $r=$ radius of that nucleus. Then, in the particular cafe, when $x=r$ and $b=H$, the preceding equation gives $\mathrm{H}=\mathrm{C}+\frac{a^{2}}{3 r}$; fo that $\mathrm{C}=\mathrm{H}-\frac{a^{2}}{3 r^{2}}$, and confequently $b=\mathrm{H}-\frac{a^{2}}{3 r}+\frac{a^{2}}{3 x^{x}} ;$ or $b=\mathrm{H}+\frac{a^{2}}{3}\left(\frac{\mathrm{I}}{x}-\frac{\mathrm{I}}{r}\right)$.
8. IT is evident, from this formula, that for every value of x there is a determinate value of b, or that for every diftance from the centre there is a fixed temperature, which, after a certain time, muft be acquired, and will remain invariable as
long as the intenfity and magnitude of the central fire continue the fame.
9. It remains for us to determine the value of a^{2}, which, though conftant, is not yet given, or known from obfervation.

At the furface of the globe we may fuppofe the mean temperature to be known : let T be that temperature, and let $\mathrm{R}=$ the radius of the globe. Then, when $x=\mathrm{R}, b=\mathrm{T}$, and by fubftituting in the general formula, we have $\mathrm{T}=\mathrm{H}+\frac{a^{2}}{3}\left(\frac{\mathrm{I}}{\mathrm{R}}-\frac{\mathrm{I}}{r}\right)$, and $a^{2}=\frac{3(\mathrm{~T}-\mathrm{H})}{\frac{\mathrm{I}}{\mathrm{R}}-\frac{\mathrm{I}}{r}}=\frac{3 \mathrm{R} r(\mathrm{H}-\mathrm{T})}{\mathrm{R}-r}$.

$$
\begin{aligned}
& \text { Thus } b=\mathrm{H}+\frac{\mathrm{R} r(\mathrm{H}-\mathrm{T})}{\mathrm{R}-r}\left(\frac{\mathrm{I}}{x}-\frac{\mathrm{I}}{r}\right) \\
& =\mathrm{H}-\frac{\mathrm{R} r(\mathrm{H}-\mathrm{T})}{\mathrm{R}-r}\left(\frac{\mathrm{I}}{r}-\frac{\mathrm{I}}{x}\right)
\end{aligned}
$$

Hence alfo by reduction

$$
\begin{gathered}
b=\frac{\mathrm{R} \mathrm{~T}-r \mathrm{H}}{\mathrm{R}-r}+\frac{\mathrm{R} r(\mathrm{H}-\mathrm{T})}{x(\mathrm{R}-r)} \\
\text { or } b=\frac{\mathrm{I}}{\mathrm{R}-r}(\mathrm{R} \mathrm{~T}-r \mathrm{H})+\frac{\mathrm{R} r(\mathrm{H}-\mathrm{T})}{x} .
\end{gathered}
$$

From this equation, it is evident, that $b-\frac{\mathrm{RT}-r \mathrm{H}}{\mathrm{R}-r}$, or the excels of the temperature at any diftance x from the centre, above a certain given temperature, is inverfely as x. But the conftruction of the hyperbola which is the locus of the preceding
preceding equation, will exhibit the relation between the temperature and the diftance, in the way of all others leaft fubject to mifapprehenfion.

Let the circle (Plate X. fig. 3.) defcribed with the radius A B, reprefent the globe of the earth; and the circle defribed with the radius AH an ignited mafs at the centre. Let HK, perpendicular to A B , be the temperature at H , the furface of the ignited mafs ; and let F D be the temperature at any point whatever, in the interior of the earth, B M reprefenting that at the furface. Then AB being $=\mathrm{R}$ in the preceding equation, $\mathrm{A} \mathrm{H}=r, \mathrm{HK}=\mathrm{H}, \mathrm{B}=\mathrm{T} ; \mathrm{AF}=x$, and $\mathrm{FD}=h$, thefe two laft being variable quantities; fince
$\left(b-\frac{\mathrm{RT}-r \mathrm{H}}{\mathrm{R}-r}\right) x=\frac{\mathrm{R} r(\mathrm{H}-\mathrm{T})}{\mathrm{R}-r}$ we have, (taking AE
$=\frac{\mathrm{RT}-r \mathrm{H}}{\mathrm{R}-r}$, and drawing EL parallel to AB , meeting HK in N , and FD in O , $\mathrm{OD} \times \mathrm{OE}=\frac{\mathrm{BA} \cdot \mathrm{AH}(\mathrm{HK}-\mathrm{BM})}{\mathrm{BH}}$, which is a given quantity.

Therefore D is in a rectangular hyperbola, of which the centre is E , the affymptotes E G and EL , and the rectangle of the coordinates, equal to BA.AH $\times \frac{\mathrm{HK}-\mathrm{BM}}{\mathrm{BH}}$, or, which amounts to the fame, to K N.NE.
I_{T} is evident from this, that if the fphere were indefinitely extended, the temperature at the point B and all other things remaining the fame, the temperature at its fuperfices would not be lefs than A E , or than the quantity $\frac{\mathrm{RT}-r \mathrm{H}}{\mathrm{R}-r}$.

The quantity AE , or $\frac{\mathrm{R} \mathrm{T}-r \mathrm{H}}{\mathrm{R}-r}$, is fuppofed here to be fubtracted ; if $\mathrm{R} T$ be lefs than $r \mathrm{H}$, it will change its fign, and muft be taken on the other fide of the centre A.
10. The refults of thefe deductions may be eafily reprefented numerically, and reduced into tables, for any particular values that may be affigned to the conftant quantities. Thus, if the radius of the globe, or $\mathrm{R}=100$, that of the ignited nucleus or $r=\mathrm{I}$; the temperature of the nucleus, or $\mathrm{H}=\mathrm{r} 000$, and T the temperature at the furface $=60$, the formula becomes $b=50.505+\frac{949 \cdot 494}{x}$.

Values of x	
10	Values of b
$145^{\circ} .454$	
30	98.423
40	82.599
50	74.686
60	69.938
70	66.330
80	63.926
90	62.361
100	61.055
	60.

Vol. VI. P. II.
Z_{z}
II. Other
11. Other things remaining as before, if we now make $r=\mathrm{I} 0$, then $b=-44 \cdot 444+\frac{10444}{x}$

$$
\begin{array}{|c|c|}
x & b \\
20 & 477^{\circ} \cdot 556 \\
30 & 303.556 \\
40 & 226.556 \\
50 & 164.556 \\
60 & 145.556 \\
70 & 104.56 \\
80 & 85.056 \\
90 & 64.556 \\
100 & 60.000
\end{array}
$$

12. Ir $R=10, r=1, H=10000$, and $T=60$,

$$
b=-1044 \cdot 44+\frac{11044 \cdot 44}{x}
$$

Values of x	Values of b
1	$10000^{\circ} .00$
2	4477.70
3	2637.04
4	1716.67
5	1164.44
6	796.30
7	533.33
8	346.16
9	182.72
10	60.00

13. 14. The general conclufions which refult from all this are, that when we fuppofe an ignited nucleus of a given magnitude, and a given intenfity of heat, there is in the fphere to which it communicates heat a fixed temperature for each particular ftratum, or for each fpherical fhell, at a given diftance from the centre; and that a great intenfity of heat in the interior, is compatible with a very moderate temperature at the furface.
1. However great the fphere may be, the heat at its furface cannot be lefs than a given quantity; $\mathrm{R}, r, \mathrm{H}$ and T remaining the fame. It muft be obferved, that though R is put for the radius of the globe; it fignifies in fact nothing, but the diftance at which the temperature is T , as r does the diftance at which the temperature is H .

Therefore were the fphere indefinitely extended, the temperature at its fuperficies would not be lefs than the quantity $\frac{\mathrm{RT}-r \mathrm{H}}{\mathrm{R}-r}$, that is, not lefs than 50.5 in the firft of the-preceding examples, than - 44.4 in the fecond, or - 1044.4 in the third.
14. In all this the fphere is fuppofed homogeneous; but if it be otherwife, and vary in denfity, in the capacity of the parts for heat, or in their power to conduct heat, providing it do fo as any function of the diftance from the centre, the calculus may be inftituted as above. For example, let the denfity be fuppofed to vary as $\frac{b_{n}}{b+x}$, then we have as before $\left(b-b^{\prime}\right)\left(x^{\prime 3}-x^{3}\right) \frac{b}{b+x}$ for the momentary increment of heat in a ftratum placed at the diftance x from the centre, Zz 2
or
or $\dot{b} \times 3 \times 2 \times \frac{b}{b+x}=$ to a given quantity, or to $a^{2} \dot{x}^{2}$, and therefore $\dot{b}=-\frac{a^{2}(b+x) \dot{x}}{3 b x^{2}}=-\frac{a^{2} \dot{x}}{3 x^{2}}-\frac{a^{2} \dot{x}}{b x}$. Hence $b=$ $\mathrm{C}+\frac{a^{2}}{3 x}-\frac{a^{2}}{b} \log x . \quad$ Suppofe that when $x=r$, the radius of the heated nucleus, $b=\mathrm{H}$; then $\mathrm{H}=$

$$
\begin{aligned}
& \mathrm{C}+\frac{a^{2}}{3 r}-\frac{a^{2}}{b} \log r, \text { and } \mathrm{C}= \\
& \mathrm{H}-\frac{a^{2}}{3 r}+\frac{a^{2}}{b} \log r ; \text { therefore } b= \\
& \mathrm{H}-\frac{a^{2}}{3 r}+\frac{a^{2}}{3 x}+\frac{a^{2}}{b} \log \frac{r}{x} .
\end{aligned}
$$

In this expreffion a^{2} will be determined, if the temperature at any other diftance R from the centre is known. Let this be T; then by fubftitution we have

$$
\begin{gathered}
\mathrm{T}=\mathrm{H}-\frac{a^{2}}{3 r}+\frac{a^{2}}{3 \mathrm{R}}+\frac{a^{2}}{b} \log \frac{r}{\mathrm{R}}, \\
\text { and } a^{2}=\frac{\mathrm{T}-\mathrm{H}}{\frac{\mathrm{I}}{3 \mathrm{R}}-\frac{\mathrm{I}}{3 r}+\frac{\mathrm{I}}{b} \log \frac{r}{\mathrm{R}}} . \\
\text { Hence } b=\mathrm{H}+\left(\frac{\mathrm{T}-\mathrm{H}}{\frac{\mathrm{I}}{3 \mathrm{R}}-\frac{\mathrm{I}}{3 r}+\frac{\mathrm{I}}{b} \log \frac{r}{\mathrm{R}}}\right) \times \\
\left(-\frac{\mathrm{I}}{3 r}+\frac{\mathrm{I}}{3 x}+\frac{\mathrm{I}}{b} \log \frac{r}{x}\right) .
\end{gathered}
$$

15. This
16. This is given merely as an example of the method of conducting the calculus when the variation of the denfity is taken into account, and not becaufe there is reafon to believe that the law which that variation actually follows, is the fame that has now been hypothetically affumed.
17. The principle on which we have proceeded, applies not only to folids, fuch as we fuppofe the interior of the earth, but it applies alfo to fluids like the atmofphere, provided they are fuppofed to have reached a fteady temperature. The propagation of heat through fluids is indeed carried on by a law very different from that which takes place with refpect to folids; it is not by the motion of heat, but by the motion of the parts of the fluid itfelf. Yet, when we are feeking only the mean refult, we may fuppofe the heat to be fo diffufed, that it does not accumulate in any particular ftratum, but is limited by the equality of the momentary increments and decrements of temperature which that ftratum receives. This is conformable to experience; for we know that a conftancy, not of temperature, but of difference between the temperature of each point in the atmofphere and on the furface, actually takes place. Thus, near the furface, an elevation of 280 feet produces, in this country, a diminution of one degree. The ftrata of our atmofphere, however, differ in their capacity of heat, or in the quantity of heat contained in a given fpace, at a given temperature. Concerning the law which the change of capacity follows, we have no certain information to guide us; and we have no refource, therefore, but to affume a hypothetical law, agreeing with fuch facts as are known, and, after deducing the refults of this law, to compare them with the obfervations made on the temperature of the air, at different heights above the furface of the earth.
18. Let us then fuppofe, that the ftrata of the atmofphere have a capacity for heat, which increafes as the air becomes rarer, fo as to be proportional to $m b^{-r}, x$ denoting, as before, the diftance from the centre of the earth, r the radius of the earth, m and b determinate, but unknown quantities, fuch that $m b^{-I}$ or $\frac{m}{b}$, expreffes the capacity of air for heat, when of its ordinary denfity, at the furface of the earth. The formula thus affumed, agrees with the extreme cafes; for, when $x=r$, the capacity of heat $=\frac{m}{b}$, a finite quantity; when x increafes, $\frac{r}{x}$ diminifhes, and fo alfo does $b^{\frac{r}{x}}$, if b is greater than unity, and therefore $\frac{m}{b^{\frac{r}{x}}}$ increafes continually. It does not, however, increafe beyond a certain limit, for when x is infinite $\frac{m}{b^{\frac{T}{x}}}$ becomes $\frac{m}{I}$, or m.
19. Hence, by reafoning as in $\S 6$. the momentary increment of the temperature, or fenfible heat, of any ftratum, is as $-\frac{a^{2} \dot{x}}{3 x^{2}}$ directly, and its capacity for heat, or $m b^{-\frac{\pi}{x}}$ inverfely, that is, $\dot{b}=-\frac{a^{2} \dot{x}}{3^{x^{2}}} \times \frac{b^{\frac{r}{x}}}{m}=-\frac{a^{2} b^{\frac{r}{x}} \ddot{x}}{3^{m x^{2}}}$.

$$
\operatorname{LET} \frac{r}{x}=y \text {, then }-\frac{r \dot{x}}{x^{2}}=\dot{y} \text {, fo that }-\frac{a^{2} \dot{x}}{3^{m x^{2}}}=\frac{a^{2} \dot{y}}{3 m \text {, and }}
$$

therefore $\dot{b}=\frac{a^{2} b^{y}}{3^{m r}} \dot{y}$. Hence $b=\mathrm{C}+\frac{a^{2}}{3 \operatorname{mrLog} b} b^{y}=$ $\mathrm{C}+\frac{a^{2}}{3^{m r \mathrm{~L} \log b}} b^{\frac{r}{x}}$.
19. To determine C , if T be the temperature of the air at the furface, when $x=r, \mathrm{~T}=\mathrm{C}+\frac{a^{2} b}{3 m r \log b}$, and $\mathrm{C}=$ $\mathrm{T}-\frac{a^{2} b}{3^{m \mathrm{~L} \log b}}$.
HENCE $\quad b=\mathrm{T}-\frac{a^{2} b}{3^{m r \log b}}+\frac{a^{2} b^{\frac{r}{x}}}{3^{m r \log b}}=$

$$
\mathrm{T}-\frac{a^{2}\left(b-b^{\frac{r}{x}}\right)}{3^{m r} \log b} .
$$

This formula, when $x=r$ gives $b=\mathrm{T}$, and when x is infinite, it gives $h=\mathrm{T}-\frac{a^{2}(b-\mathrm{I})}{3 m r \log b}$. In all intermediate cafes,
cafes, as x is greater than $r, b^{\frac{r}{x}}$ is lefs than $b,(b$ being a number greater than 1) and therefore $b-b^{\frac{r}{x}}$ is pofitive, fo that b is lefs than T, as it ought to be.
20. We may obtain an approximate value of this formula, without exponential quantities, that will apply to all the cafes in which x and r differ but little in refpect of r, that is, in all the cafes to which our obfervations on the atmofphere can poffibly extend.
I_{F}, in the term $b^{\frac{r}{x}}$ we write $r+z$ for x, z being the height of any ftratum of air above the furface of the earth, we have $b^{\frac{r}{x}}=b^{\frac{r}{r+x}}$.
21. But, from the nature of exponentials, we know $b^{\frac{v}{x}}=$ $1+\frac{r}{x} \log b+\frac{r^{2}(\log b)^{2}}{2 x^{2}}+\frac{r^{3}(\log b)^{3}}{2 \cdot 3 x^{3}}, \& c=$ $1+\frac{r}{r+z} \log b+\frac{r^{2}(\log b)^{2}}{2(r+z)^{2}}+, \& c$.

$$
\text { Now } \frac{r}{r+z}=1-\frac{z}{r}+\frac{z^{2}}{r^{2}}-\text { \&c. And if we leave }
$$

out the higher powers of z, we have nearly

$$
\frac{r}{r+x}
$$

$$
\begin{aligned}
& \frac{r}{r+z}=1-\frac{z}{r} \\
& \frac{r^{3}}{(r+z)^{2}}=1-\frac{2 z}{r} \\
& \frac{r^{3}}{(r+z)^{3}}=1-3-\frac{z}{r}, \& c .
\end{aligned}
$$

Therefore, by fubftitution, we have $b^{\frac{r}{r+z}}=$
$\mathrm{I}+\left(1-\frac{z}{r}\right) \log b+\left(1-\frac{2 z}{r}\right) \frac{(\log b)^{2}}{2}+, \& c .=$
$\left\{\begin{array}{c}1+\log b+\frac{(\log b)^{2}}{2}+\frac{(\log b)^{3}}{2 \cdot 3}+, \& c . \\ -\frac{z}{r} \log b-\frac{z}{r}(\log b)^{2}-\frac{z}{r} \frac{(\log b)^{3}}{2}, \& c .\end{array}\right\}$
Now, from the nature of exponential,

$$
\begin{aligned}
& \quad b=1+\log b+\frac{\log b^{2}}{2}+\frac{\log b^{3}}{2 \cdot 3}+, \& c \\
& \text { And } \frac{z}{r} \log b+\frac{z}{r}(\log b)^{2}+\frac{z}{r} \frac{(\log b)^{3}}{2}, \& c . \\
& =\frac{z}{r} \log b\left(1+\log b+\frac{(\log b)^{2}}{2}+, \& c \cdot\right)=
\end{aligned}
$$

$\frac{z}{j} b \log b ;$ therefore when z is very final, $b^{\frac{x}{r+x}}=$

$$
\begin{gathered}
b-\frac{z b}{r} \log b, \text { and therefore }(\S 19 \cdot), a^{2} \frac{\left(b-b^{\frac{r}{r+\infty}}\right)}{3 m r \log b}= \\
a^{2} \frac{\left(b-b+\frac{b z \log b}{r}\right)}{3^{m r \log b}}=\frac{a^{2} b z}{3^{m r^{2}}} ; \text { hence when } z \text { is very }
\end{gathered}
$$

$$
\text { fmall, } b=\mathrm{T}-\frac{a^{2} b z}{3 m r^{2}}
$$

22. Tuerefore when \approx, or the height above the furface is fmall, b diminifhes in the fame proportion that the height increafes, which is conformable to experience.

In our climate, when $z=280$ feet, $\frac{a^{2} b \times 280}{3 m r^{2}}=I^{\circ}$; fo. that the co-efficient $\frac{a^{2} b}{3 m r^{2}}=\frac{1}{280}$, and therefore $b=\mathrm{T}-\frac{2}{280^{\circ}}$.

When the conftant quantities are thus determined, the formula agrees nearly with obfervation. In the rule for barometrical meafurements, it is implied, that the heat of the atmofphere decreafes uniformly; but the rate for each particular cafe is determined by actual obfervation, or by thermometers obferved at the top and bottom of the height to be meafured.
XI. Experiments on Allanite, a new Mineral from Greenland. By Тhomas Thomson, M.D.F.R.S.E. Fellow of the Imperial Chirurgo-Medical Academy of Petersburgh.

[Read Nov. 5. 1810.]

ABOÚT three years ago, a Danifh veffel * was brought into Leith as a prize. Among other articles, fhe contained a fmall collection of minerals, which were purchafed by Тномаs Allan, Efq; and Colonel Imrie, both members of this Society. The country from which thefe minerals had been brought was not known for certain; but as the collection abounded in Cryolite, it was conjectured, with very confiderable probability, that they had been collected in Greenland.

Among the remarkable minerals in this collection, there was one, which, from its correfpondence with Gadolinite, as defcribed in the different mineralogical works, particularly attracted the attention of Mr Allan. Confirmed in the idea of its being a variety of that mineral, by the opinion of Count Bournon, added to fome experiments made by Dr Wollaston, he was induced to give the defcription which has fince been publifhed in a preceding part of the prefent volume.

About a year ago, Mr Allan, who has greatly diftinguifhed himfelf by his ardent zeal for the progrefs of mineralogy in all

$$
\mathrm{A}_{2}
$$

its

[^37]its branches, favoured me with fome fpecimens of this curious mineral, and requefted me to examine its compofition,-a requeft which I agreed to with pleafure, becaufe I expected to obtair from it a quantity of yttria, an earth which I had been long anxious to examine, but had not been able to procure a fufficient quantity of the Swedifh Gadolinite for my purpofe. The object of this paper, is to communicate the refult of my experiments to the Royal Society,-experiments which cannot appear with fuch propriety any where as in their Tranfactions, as they already contain a paper by Mr Allan on the mineral in queftion.

I. Description.

I AM fortunately enabled to give a fuller and more accurate defcription of this mineral than that which formerly appeared, Mr Allan having, fince that time, difcovered an additional quantity of it, among which, he not only found frefher and better characterifed fragments, but alfo fome entire cryftals. In its compofition, it approaches moft nearly to Cerite, but it differs from it fo much in its external characters, that it muft be confidered as a diftinct fpecies. I have therefore taken the liberty to give it the name of Allanite, in honour of Mr Allan, to whom we are in reality indebted for the difcovery of its peculiar nature.

Allanite occurs maflive and diffeminated, in irregular maffes, mixed with black mica and felfpar; alfo cryftallifed; the varieties obferved are,
I. A four-fided oblique prifm, meafuring 117° and 63°.
2. A fix-fided prifm, acuminated with pyramids of four fides, fet on the two adjoining oppofite planes. Thefe laft are fo minute as to be incapable of meafurement. But, as nearly as the eye can determine, the form refembles Fig. I.; the prifm of which has two right angles, and four meafuring 135°.

3. A flat prifm, with the acute angle of 63° replaced by one plane, and terminated by an acumination, having three principal facettes fet on the larger lateral planes, with which the centre one meafures 125° and 55°. Of this fpecimen, an engraving is given in the annexed Plate, Fig. 2.
Specific gravity, according to my experiments, 3.533. The fpecimen appears to be nearly, though not abfolutely, pure. This fubftance, however, is fo very much mixed with mica, that no reliance can be placed on any of the trials which have been made. Count Bournon, furprifed at the low fpecific gravity noted by Mr Allan, which was 3.480 , broke down one of the fpecimens which had been fent him, in order to procure the fubftance in the pureft ftate poffible, and the refult of four experiments was as follows,

$$
4.001
$$

$$
3.797
$$

$$
3.654
$$

$$
3.119
$$

In a fubfequent experiment of Mr Allan's, he found it 3.665. From thefe it appears, that the fubftance is not in a pure ftate. Its colour is fo entirely the fame with the mica, with which it is accompanied, that it is only by mechanical attrition that they can be feparated.

Colour, brownifh-black.
External luftre, dull ; internal, fhining and refinous, flightIy inclining to metallic.

Fracture, fmall conchoidal.
Fragments, indeterminate, fharp-edged.
Opake.
Semi-hard in a high degree. Does not fcratch quartz nor felfpar, but fcratches hornblende and crown-glafs.

Brittle.

Easily frangible.
Powder, dark greenifh-grey.
Before the blow-pipe it froths, and melts imperfectly into a brown fcoria.

Gelatinises in nitric acid. In a ftrong red heat it lofes 3.9^{8} per cent. of its weight.

II. Experiments to ascertain its composition.

My firft experiments were made, on the fuppofition that the mineral was a variety of gadolinite, and were pretty much in the ftyle of thofe previoully made on that fubftance by Ekeberg, Klaproth, and Vauquelin.
I. Io0 grains of the mineral, previoufly reduced to a fine powder in an agate mortar, were digefted repeatedly on a fand bath in muriatic acid, till the liquid ceafed to have any action on it. The undiffolved refidue was filica, mixed with fome fragments of mica. When heated to rednefs, it weighed 33.4 grains.
2. The muriatic acid folution was evaporatel almoft to drynefs, to get rid of the excefs of acid, diffolved in a large quantity of water, mixed with a confiderable excefs of carbonate of ammonia, and boiled for a few minutes. By this treatment, the whole contents of the mineral were precipitated in the ftate of a yellowifh powder, which was feparated by the filtre, and boiled, while ftill moift, in potafh-ley. A fmall portion of it only was diffolved. The potafh-ley was feparated from the undiffolved portion by the filtre, and mixed with a folution of fal ammoniac, by means of which a white powder precipitated from it. This white matter being heated to rednefs, weighed 7.9 grains. It was digefted in fulphuric acid, but 3.76 grains refufed to diffolve. This portion poffeffed the properties of filica. The diffolved portion being mixed with a few drops of fulphate
fulphate of potafh, fhot into cryftals of alum. It was therefore alumina, and amounted to 4.14 grains.
3. The yellow matter which refufed to diffolve in the pot-afh-ley, was mixed with nitric acid. An effervefcence took place, but the liquid remained muddy, till it was expofed to heat, when a clear reddifh-brown folution was effected. This folution was evaporated to drynefs, and kept for a few minutes in the temperature of about 400°, to peroxidize the iron, and render it infoluble. A fufficient quantity of water was then poured on it, and digefted on it for half-an-hour, on the fandbath. The whole was then thrown upon a filtre. The dark red matter which remained on the filtre, was drenched in oil, and heated to rednefs, in a covered crucible. It was then black, and attracted by the magnet; but had not exactly the appearance of oxide of iron. It weighed 42.4 grains.
4. The liquid which paffed through the filtre, had not the fweet tafte which I expected, bat a flightly bitter one, fimilar to a weak folution of nitrate of lime. Hence it was clear, that no yttria was prefent, as there ought to have been, had the mineral contained that earth. This liquid being mixed with carbonate of ammonia, a white powder precipitated, which, after being dried in a red heat, weighed 17 grains. It diffolved in acids with effervefcence; the folution was precipitated white by oxalate of ammonia, but not by pure ammonia. When diffolved in fulphuric acid, and evaporated to drynefs, a light white matter remained, taftelefs, and hardly foluble in water. Thefe properties indicate carbonate of lime. Now, I_{7} grains of carbonate of lime are equivalent to about 9.23 grains of lime.
5. From the preceding analyfis, fuppofing it accurate, it followed, that the mineral was compofed of

Silica,	-	-	37.16
Lime,	-	-	9.23
Alumina,	-	-	4.14
Oxide of iron,	-	-	42.40
Volatile matter,	-	-	3.98
			96.91
Lofs,	-	-	3.09

But the appearance of the fuppofed oxide of iron, induced me to fufpect, that it did not confift wholly of that metal. I thought it even conceivable, that the yttria which the mineral contained, might have been rendered infoluble by the application of too much heat, and might have been concealed by the iron with which it was mixed. A number of experiments, which it is needlefs to fpecify, foon convinced me, that, befides iron, there was likewife another fubftance prefent, which poffeffed properties different from any that I had been in the habit of examining. It poffeffed one property at leaft in common with yttria ; its folution in acids had a fweet tafte; but few of its other properties had any refemblance to thofe which the chemifts to whom we are indebted for our knowledge of yttria, have particularifed. But as I had never myfelf made any experiments on yttria, I was rather at a lofs what conclufion to draw. From this uncertainty, I was relieved by Mr Allan, who had the goodnefs to give me a fmall fragment of gadolinite, which had been received directly from Mr Ekeberg. From this I extracted about Io grains of yttria; and upon comparing its properties with thofe of the fubftance in queftion, I
found them quite different. Convinced by thefe experiments, that the mineral contained no yttria, but that one of its conftituents was a fubftance with which I was fill unacquainted, I had recourfe to the following mode of analyfis; in order to obtain this fubftance in a pure ftate.

III. Analysis of allanite.

1. 100 grains of the mineral, previoufly reduced to a fine powder, were digefted in hot nitric acid till nothing more could be diffolved. The undiffolved refidue, which was filica, mixed with fome fcales of mica, weighed, after being heated to rednefs, 35.4 grains.
2. The nitric acid folution was tranfparent, and of a lightbrown colour. When ftrongly concentrated by evaporation, to get rid of the excefs of acid, and fet afide in an open capfule, it concreted into a whitifh folid matter, confifting chiefly of foft cryftals, nearly colourlefs, having only a flight tinge of yellow. Thefe cryftals being left expofed to the air, became gradually moift, but did not fpeedily deliquefce. The whole was therefore diffolved in water, and the excefs of acid, which was ftill prefent, carefully neutralifed with ammonia. By this treatment, the folution acquired a much deeper brown colour ; but ftill continued tranfparent. Succinate of ammonia was then dropped in with caution. A copious reddinh-brown precipitate fell, which being wafhed, dried, and heated to rednefs in a covered crucible, weighed 25.4 grains. It poffeffed all the characters of black oxide of iron. For it was attracted by the magnet, completely foluble in muriatic acid, and the folu.. tion was not precipitated by oxalate of ammonia.
3. The liquid being ftill of a brown colour, I conceived it not to be completely free from iron. On this account, an ad-
Vol. VI. P. II.
3 B
ditional
ditional quantity of fuccinate of ammonia was adde. And we precipitate fell; but inftead of the dark reddifh-brown colour, which characterizes fuccinate of iron, it had a beautiful flefhred colour, which it retained after being dried in the open air. When heated to rednefs in a covered crucible, it became black, and had fome refemblance to gunpowder. It weighed 7.2 grains.
4. This fubftance attracted my peculiar attention, in confequence of its appearance. I found it to poffers the following characters :
a. It was taftelefs, and not in the leaft attracted by the magnet, except a few atoms, which were eafily feparated from the reft.
b. It was infoluble in water, and not fenfibly acted on when boiled in fulphuric, nitric, muriatic, or nitro-muriatic acid.
c. Before the blow-pipe it melted with borax and microcofmic falt, and formed with both a colourlefs bead. With carbonate of foda it formed a dark-red opake bead.
d. When heated to rednefs with potafh, and digefted in water, fnuff-coloured flocks remained undiffolved, which gradually fubfided to the bottom. The liquid being feparated, and examised, was found to contain nothing but potafh. When muriatic acid was poured upon the fnuff-coloured flocks, a flight effervefcence took place, and when heat was applied, the whole diffolved. The folution was tranfparent, and of a yellow colour, with a flight tint of green. When evaporated to drynefs, to get rid of the excefs of acid, a beautiful yellow matter gradually feparated. Water boiled upon this matter diffolved the whole. The tafte of the folution was aftringent, with a flight metallic flavour, by no means unpleafant, and no fweetnefs was perceptible.

32e. A portion of the black powder being expofed to a red heat for an hour, in an open crucible, became reddifh-brown, and loft fomewhat of its weight. In this altered ftate, it was foluble by means of heat, though with difficulty, both in nitric and fulphuric acids. The folutions had a reddifh-brown colour, a flight metallic aftringent tafte, but no fweetnefs.
f. The folution of this matter in nitric and muriatic acid, when examined by re-agents, exhibited the following phenomena :
(I.) With pruffiate of potafh, it threw down a white precipitate in flocks. It foon fubfided; readily diffolved in nitric acid; the folution was green.
(2.) Pruffiate of mercury. A light yellow precipitate, foluble in nitric acid.
(3.) Infufion of nut galls. No change.
(4.) Gallic acid. No change.
(5.) Oxalate of ammonia. No change.
(6.) Tartrate of potafh. No change.
(7.) Phofphate of foda. No change.
(8.) Hydro-fulphuret of ammonia. Copious black flocks. Liquor remains tranfparent.
(9.) Arfeniate of potafh. A white precipitate.
(io.) Potafh. - - - Copious yellow-coloured (II.) Carbonate of foda. - flocks; readily diffolved in (I2.) Carbonate of ammonia. J nitric acid.
(I3.) Succinate of ammonia. A white precipitate.
(14.) Benzoate of potafh. . A white precipitate.
(15.) A plate of zinc being put into the folution in muriatic acid, became black, and threw down a black powder, which was infoluble in fulphuric, nitric, muriatic, ni-tro-muriatic, acetic, and phofphoric acids, in every $3 \mathrm{~B}_{2}$ temperature,
temperature, whether thefe acids were concentrated or diluted.
(16.) A plate of tin put into the nitric folution, occafioned no change.
(17.) A portion being inclofed in a charcoal crucible, and expofed for an hour to the heat of a forge, was not reduced to a metallic button, nor could any trace of it be detected when the crucible was examined.

These properties were all that the fmall quantity of the matter in my poffeffion enabled me to afcertain. They unequivocally point out a metallic oxide. Upon comparing them with the properties of all the metallic oxides known, none will be found with which this matter exactly agrees. Cerium is the metal, the oxides of which approach the neareft. The colour is nearly the fame, and both are precipitated white by pruffiate of potain, fuccinate of ammonia, and benzoate of potafh. But, in other refpects, the two fubftances differ entirely. Oxide of cerium is precipitated white by oxalate of ammonia and tartrate of potafh; our oxide is not precipitated at all: Oxide of cerium is precipitated white by hydro-fulphuret of ammonia; while our oxide is precipitated black: Oxide of cerium is not precipitated by zinc, while our oxide is thrown down black. There are other differences between the two, but thofe which I have juft mentioned are the moft ftriking.

These properties induced me to confider the fubftance which I had obtained from the Greenland mineral as the oxide of a metal hitherto unknown; and I propofed to diftinguifh it by the name of Junonium.

In the experiments above detailed, I had expended almoft all the oxide of Junonium which I had in my poffeffion, taking it for granted that I could eafily procure more of it from the Greenland
land mineral. But, foon after, I was informed by Dr Wollaston, to whom I had fent a fpecimen of the mineral, that he had not been able to obtain any of my fuppofed Junonium in his trials. This induced me to repeat the analyfis no lefs than three times, and in neither cafe was I able to procure any more of the fubftance which I have defcribed above. Thus, it has been out of my power, to verify the preceding details, and to put the exiftence of a new metal in the mineral beyond doubt. At the fame time, I may be allowed to fay, that the above experiments were made with every poffible attention on my part, and moft of them were repeated, at leaft a dozen times. I have no doubt myfelf of their accuracy ; but think that the exiftence of a new metal can hardly be admitted, without ftronger proofs than the folitary analyfis which I have performed.
5. The liquid, thus freed from iron and junonium, was fuperfaturated with pure ammonia. A greyifh-white gelatinous matter precipitated. It was feparated by the filtre, and became gradually darker coloured when drying. This matter, after being expofed to a red heat, weighed about 3^{8} grains. When boiled in potafh-ley, 4.I grains were diffolved, of a fubftance which, feparated in the ufual way, exhibited the properties of alumina.
6. The remaining 33.9 grains were again diffolved in muriatic acid, and precipitated by pure ammonia. The precipitate was feparated by the filtre, and allowed to dry f pontaneoufly in the open air. It affumed an appearance very much refembling gum-arabic, being femi-tranfparent, and of a brown colour. When dried upon the fand-bath, it became very darkbrown, broke with a vitreous fracture, and filll retained a frall degree of tranfparency. It was taftelefs, felt gritty between the teeth, and was eafily reduced to powder. It effervefced in fulphuric, nitric, muriatic, and aceticacids, and a folution of it
was effected in each by means of heat, though not without confiderable difficulty. The folutions had an auftere, $a^{n_{d}}$ flightly fwectifh tafte. When examined by re-agents, they exhibited the following properties:
(r.) Pruffiate of potafh. A white precipitate.
(2.) Oxalate of ammonia. A white precipitate.
(3.) Tartrate of potafh. A white precipitate.
(4.) Hydrofulphuret of potafh. A white precipitate.
(5.) Phofphate of f da. A white precipitate.
(6.) Arfeniate of potaifh. A white precipitate.
(7.) Potafh and its carbonate. A white precipitate.
(8.) Carbonate of ammonia. A white precipitate.
(9.) Ammonia. A white gelatinous precipitate.
(io.) A plate of zinc. No change.
These properties indicated Oxide of Cerium. I was therefore difpofed to confider the fubftance which I had obtained as oxide of cerium. But on perufing the accounts of that fubftance, given by the celebrated chemifts to whofe labours we are indebted for our knowledge of it, there were feveral circumftances of ambiguity which occurred. My powder was diffolved in acids with much greater difficulty than appeared to be the cafe with oxide of cerium. The colour of my oxide, when obtained from oxalate, by expofing it to a red heat, was much lighter, and more inclined to yellow, than the oxide of cerium.

In this uncertainty, Dr Wollaston, to whom I communicated my difficulties, offered to fend me down a fpecimen of the mineral called cerite, that I might extract from it real oxide of cerium, and compare my oxide with it. This offer I thank-
fully accepted *; and upon comparing the properties of my oxide with thofe of oxide of cerium extracted from cerite, I was fully fatisfied that they were identical. The more difficult folubility of mine, was owing to the method I had employed to procure it, and to the frong heat to which I had fubjected it; whereas the oxide of cerium from cerite had been examined in the ftate of carbonate.
7. In the many experiments made upon this powder, and upon oxide of cerium from cerite, I repeated every thing that had been eftablifhed by Berzelius and Hisinger, Klaproth and Vauguelin, and had an opportunity of obferving many particulars which they have not noticed. It may be worth while, therefore, without repeating the details of there chemifts, to mention a few circumftances, which will be found ufeful in examining this hitherto fcarce oxide.
a. The precipitate occafioned by oxalate of ammonia is at firft in white flocks, not unlike that of muriate of filver, but it foon affumes a pulverulent form. It diffolves readily in nitric acid, without the affiftance of heat. The fame remark applies to the precipitate thrown down by tartrate of potafh. But tartrate of cerium is much more foluble in acids than the oxalate.
b. The

* The fpecimen of cerite which I analifed, was fo much mixed with actinolite, that the ffatement of the refults which I obtained cannot be of much im. portance. The fpecific gravity of the fpecimen was 4.I49. I found it compofed as follows:

A white powder, left by muriatic acid, and prefumed to be filica, 47.3

b. The folution of cerium in acetic acid is precipitated grey by infufion of nut-galls. Cerium is precipitated likewife by the fame re-agent from other acids, provided the folution contain no excefs of acid. This fact was firft obferved by Dr Wollaston, who communicated it to me laft fummer. I immediately repeated his experiments with fuccefs.
c. Ceriom is not precipitated from its folution in acids by a plate of zinc. In fome cafes, indeed, I have obtained a yel-lowifh-red powder, which was thrown down very flowly. But it proved, on examination, to confift almof entirely of red oxide of iron, and of courfe only appeared when the folution of cerium was contaminated with iron.
d. The folutions of cerium in acids have an aftringent tafte, with a perceptible fweetnefs, which, however, is different from the fweetnefs which fome of the folutions of, iron in acids poffefs.
e. The muriate and fulphate of cerium readily cryftallife; but I could not fucceed in obtaining cryftals of nitrate of cerium.
f. The beft way of obtaining pure oxide of cerium, is to precipitate the folution by oxalate of ammonia, wafh the precipitate well, and expofe it to a red heat. The powder obtained by this procefs is always red; but it varies very much in its fhade, and its beauty, according to circumftances. This powder always contains carbonic acid.
g. I consider the following as the effential characters of cerium. The folution has a fweet aftringent tafte : It is precipitated white by pruffiate of potafh, oxalate of ammonia, tartrate of potafh, carbonate of potafh, carbonate of ammonia, fuccinate of ammonia, benzoate of potarh, and hydrofulphuret of ammonia: The precipitates are re-diffolved by nitric or muriatic
acids: Ammonia throws it down in gelatinous flocks: Zinc does not precipitate it at all.
b. The white oxide of cerium, mentioned by Hisinger and Berzelius, and defcribed by Vauquelin, did not prefent itfelf to me in any of my experiments; unlefs the white flocks precipitated by ammonia from the original folution be confidered as white oxide. They became brown on drying, and when heated to rednefs, were certainly converted into red oxide.

As cerium, as well as iron, is precipitated by fuccinate of ammonia, the preceding method of feparating the two from each other was not unexceptionable. Accordingly, in fome fubfequent analyfes, I feparated the cerium by means of oxalate of ammonia, before I precipitated the iron. I found that the proportions obtained by the analyfis above defcribed, were fo near accuracy that no material alteration is neceffary.
8. The liquid, thus freed from iron, alumina, and cerium, was mixed with carbonate of foda. It precipitated a quantity of carbonate of lime, which amounted, as before, to about 17 grains, indicating 9.2 grains of lime.

From the preceding analyfis, which was repeated no lefs than three times, a different method being employed in each, the conftituents of allanite are as follows :

Silica,		-	35.4
Lime,	-	-	9.2
Alumina,	-	-	4.1
Oxide of iron,	-	-	25.4
Oxide of cerium,	-	-	33.9
Volatile matter,	-	-	4.
			III2.0

Nol. VI. P. II.
3 C

I omit the η grains of junonium, becaufe I only detected it in one fpecimen of allanite. The excefs of weight in the preceding numbers, is to be afcribed chiefly to the carbonic acid combined with the oxide of cerium, from which it was not completely freed by a red heat. I have reafon to believe, too, that the proportion of iron is not quite fo much as 25.5 grains. For, in another analyfis, I obtained only 18 grains, and in a third 20 grains. Some of the cerium was perhaps precipitated along with it in the preceding analyfis, and thus its weight was apparently increafed.
XII. A Chemical Analysis of Sodalite, a new Mineral from Greenland. By Thomas Thomson, M.D. F.R.S.E. Fellow of the Imperial Chirurgo-Medical Academy of Petersburgh.

[Read Nov. 5. 1810.]

THE mineral to which I have given the name of Sodalite, was alfo put into my hands by Mr Allan. In the Greenland collection which he purchafed, there were feveral fpecimens of a rock, obvioufly primitive. In the compofition of thefe, the fubftance of which I am about to treat, formed a conftituent, and, at firft appearance, was taken for felfpar, to which it bears'a very ftriking refemblance.

This rock is compofed of no lefs than five different foffils, namely, garnet, hornblende, augite, and two others, which form the pafte of the mafs. Thefe are evidently different minerals; but in fome fpecimens, are fo intimately blended, that it required the fkill of Count Bournon to make the difcrimination, and afcertain their real nature. Even this diftinguifhed mineralogift was at firft deceived by the external afpect, and confidered the pafte as common lamellated felfpar, of a greenifh colour. But a peculiarity which prefented itfelf to Mr Allan, in one of the minerals, induced him to call the attention of Count Bournon more particularly to its conftraction.

On a clofer examination of the mineral, M. de Bournon found that fome fmall fragments, which he had detached, pre-
fented rectangular prifms, terminated by planes, meafuring, with the fides of the prifm, 110° and 70° or nearly $\mathrm{fo},-\mathrm{a}$ form which belongs to a rare mineral, known by the name of Sahlite, from Sweden. He further obferved, intermixed along with this, another material ; and after fome trouble, fucceeded in detaching a mafs, prefenting a regular rhomboidal dodecahedron. It was to this form that Mr Allan had previoully requefted his attention.

Some time before this inveftigation, M. de Bournon had examined a mineral from Sweden, of a lamellated ftructure, and a greenifh colour, which, he found, indicated the fame form. From this circumftance, together with fome external refemblance, which ftruck him, he was induced to conclude, that our mineral was a variety of that fubftance.

To that fubftance the name of Swedifh natrolite had been given, in confequence of the inveftigation of Dr Wollaston, who found that it contained a large proportion of foda.

There are few minerals, however, that are fo totally diftinct in their external characters as the natrolite of Klaproth, and the fubftance we are now treating of. The mineral examined by Klaproth occurs at Roegan *, on the Lake of Conftance, in porphyry-flate, coating the fides of veins and cavities in a mamellated form, the texture of which is compact, fibrous, and radiated; the colour pale yellow, in fome places paffing into white, and marked with brown zones. Hitherto it had never been found in a ftate fufficiently perfect to afford any indications of form. Lately, however, M. de Bournon was fo fortunate as to procure fome of it, prefenting very delicate needleform cryftals, which, by means of a ftrong magnifier, he was able to afcertain, prefented flat rectangular prifms, terminated by planes, which, he thought, might form angles of

[^38]60° and r 20 with the fides of the prifm. With this, neither our mineral nor the Swedifh can have any connection, farther than fome analogy which may exift in their compofition.
Concerning the Swedifh mineral, I have not been able to obtain much fatisfactory information. There is a fpecimen of it in Mr Allan's cabinet, which he received directly from Sweden, fent by a gentleman who had juft before been in London, and was well acquainted with the collections of that city, from which it is inferred, that the fpecimen in queftion is the fame as that examined by Count Bournon and Dr Wollaston.

Werner has lately admitted into his fyftem a new mineral fpecies, which he diftinguifhes by the name of Fettstein. Of this I have feen two defcriptions; one by Haüy, in his Tableau Comparatif, publifhed laft year; and another by Count Dunin Borkowski, publifhed in the 69th volume of the Journal de Physique, and tranflated in Nicholson's Journal, (vol. 26. p. 384). The fpecimen, called Swedish Natrolite, in Mr Allan's poffeffion, agrees with thefe defcriptions in every particular, excepting that its fpecific gravity is a little higher. Borkowski flates the feecific gravity of fettstein at 2.563 ; Haiiy at 2.6138 ; while I found the fpecific gravity of Mr Allan's fpecimen to be 2.779 , and, when in fmall fragments, to be as high as 2.790 . This very near agreement in the properties of the Swedifh natrolite, with the characters of the fettftein, leads me to fuppofe it the fubflance to which Werner has given that name. This opinion is ftrengthened, by a fact mentioned by Haüy, that fettftein had been at firft confidered as a variety of Wernerite. For the fpecimen fent to Mr Allan, under the name of Compact Wernerite, is obvioufly the very fame with the fuppofed natrolite of Sweden. Now, if this identity be admitted, it will follow, that our mineral conftitutes a feecies apart. It bears, indeed, a confiderable refemblance to it; but neither the cryftalline form, nor the conftituents of fettfein,
as ftated by Hauy, are fimilar to thofe of the mineral to which I have given the name of Sodalite. The conftituents of fettftein, as afcertained by Vaueuelin, are as follows:

Silic̄a,	-	44.00	
Alumina,	-	-	34.00
Oxide of iron,	-	-	4.00
Lime,	-	-	0.12
Potafh and foda,	-	-	16.50
Lofs,	-	1.3^{8}	
		100.00	

II. Description of sodalite.

Sodalite, as has been already mentioned, occurs in a primitive rock, mixed with fahlite, augite *, hornblende, and garnet \dagger.

It occurs maffive ; and cryftallifed, in rhomboidal dodecahedrons, which, in fome cafes, are lengthened, forming fix-fided prifms, terminated by trihedral pyramids.

ITS colour is intermediate between celandine and mountain green, varying in intenfity in different fpecimens. In fome cafes it feems intimately mixed with particles of fahlite, which doubtlefs modify the colour.

External luftre glimmering, internal fhining, in one direction vitreous, in another refinous.

Fracture foliated, with at leaft a double cleavage; crofs fracture conchoidal.

Fragments indeterminate; ufually fharp-edged.
Translucent.

* Thss fituation of the augite deferves attention. Hitherto it has been, with a few exceptions, found only in flætz trap rocks.
+ The particular colour and appearance of this garnet, fhews that the rock came from Grecnland : For fimilar garnet has never been obferved, except in Decimens from Greenland.

Translucent.

Hardness equal to that of felfpar. Iron fcratches it with difficulty.

Brittle.
Easily frangible.
Specific gravity, at the temperature of $60^{\circ}, 2.37^{8}$. The fpecimen was not abfolutely free from fahlite.

When heated to rednefs, does not decrepitate, nor fall to powder, but becomes dark-grey, and affumes very nearly the appearance of the Swedifh natrolite of Mr Allan, which I confider as fettfein. If any particles of fahlite be mixed with it, they become very confpicuous, by acquiring a white colour, and the opacity and appearance of chalk. The lofs of weight was 2.1 per cent. I was not able to melt it before the blowpipe.

II. Chemical analysis.

I. A hUndred grains of the mineral, reduced to a fine powder, were mixed with 200 grains of pure foda, and expofed for an hour to a ftrong red heat, in a platinum crucible. The mixture melted, and affumed, when cold, a beautiful grafs-green colour. When foftened with water, the portion adhering to the fides of the crucible acquired a fine brownifh-yellow. Nitric acid being poured upon it, a complete folution was obtained.
2. Suspecting, from the appearance which the fufed mafs affumed, that it might contain chromium, I neutralifed the folution, as nearly as poffible, with ammonia, and then poured into it a recently prepared nitrate of mercury. A white precipitate fell, which being dried, and expofed to a heat rather under rednefs, was all diflipated, except a fmall portion of grey matter,
matter, not weighing quite 0.1 grain. This matter was infoluble in acids; but became white. With potafh it fufed into a colourlefs glafs. Hence I confider it as filica. This experiment fhews that no chromium was prefent. I was at a lofs to account for the precipitate thrown down by the nitrate of mercury. But Mr Allan having fhown me a letter from Ekeberg, in which he mentions, that he had detected muriatic acid in fodalite, it was eafy to fee that the whole precipitate was calomel. The white powder weighed 26 grains, indicating, according to the analyfis of Chenevix, about 3 grains of muriatic acid.
3. The folution, thus freed from muriatic acid, being concentrated by evaporation, gelatinifed. It was evaporated nearly to drynefs; the dry mafs, digefted in hot water acidulated with nitric acid, and poured upon the filter. The powder retained upon the filter was wafhed, dried, and heated to rednefs. It weighed 37.2 grains, and was filica.
4. The liquor which had paffed through the filter, was fuperfaturated with carbonate of potafh, and the copious white precipitate which fell, collected by the filter, and boiled while yet moift in potafh-ley. The bulk diminifhed greatly, and the undiffolved portion affumed a black colour, owing to fome oxide of mercury with which it was contaminated.
5. The potafh-ley being paffed through the filter, to free it from the undiffolved matter, was mixed with a fufficient quantity of fal-ammoniac. A copious white precipitate fell, which being collected, wafhed, dried, and heated to rednefs, weighed 27.7 grains. This powder being digefted in fulphuric acid, diffolved, except 0.22 grain of filica. Sulphate of potanh being added, and the folution fet afide, it yielded alum cryftals to the very laft drop. Hence the 27.48 grains of diffolved powder weré alumina.
6. The black refidue which the potafh-ley had not taken up, was diffolved in diluted fulphuric acid. The folution being evaporated to'drynefs, and the refidue digefted in hot water, a white foft powder remained, which, heated to rednefs, weighed 3.6 grains, and was fulphate of lime, equivalent to about 2 grains of lime.
7. The liquid from which the fulphate of lime was feparated, being exactly neutralifed by ammonia, fuccinate of ammonia was dropped in; a brownifh-red precipitate fell, which, being heated to rednefs in a covered crucible, weighed I grain, and was black oxide of iron.
8. The refidual liquor being now examined by different reagents, nothing farther could be precipitated from it.
9. The liquid (No. 4.) from which the alumina, lime, and iron had been feparated by carbonate of potarh, being boiled for fome time, let fall a finall quantity of yellow-coloured matter. This matter being digefted in diluted fulphuric acid, partly diffolved with effervefcence; but a portion remained undiffolved, weighing I grain. It was infoluble in acids, and with potafh melted into a colourlefs glafs. It was therefore filica. The fulphuric acid folution being evaporated to drynefs, left a refidue, which poffeffed the properties of fulphate of lime, and which weighed I. 2 grains, equivalent to about 0.7 grains of lime.
10. The conftituents obtained by the preceding analyfis being obvioufly defective, it remained to examine whether the mineral, according to the conjecture of Bournon, contained an alkali. For this purpofe, 100 grains of it, reduced to a fine powder, and mixed with 500 grains of nitrate of barytes, were expofed for an hour to a red heat, in a porcelain crucible. The fufed mafs was foftened with water, and treated with muriatic acid. The whole diffolved, except 25 grains of a white pow-

Vol. VI. P. II.
3 D
der,
der, which proved on examination to be filica. The muriatic acid folution was mixed with fulphuric acid, evaporated to drynefs ; the refidue, digefted in hot water, and filtered, to feparate the fulphate of barytes. The liquid was now mixed with an excefs of carbonate of ammonia, boiled for an inftant or two, and then filtered, to feparate the earth and iron precipitated by the ammonia. The liquid was evaporated to drynefs, and the dry mafs obtained expofed to a red heat in a filver cru. cible. The refidue was diffolved in water, and expofed in the open air to fpontaneous evaporation. The whole gradually fhot into regular cryftals of fulphate of foda. This falt being expofed to a ftrong red heat, weighed 50 grains, indicating, according to Berthollet's late analyfis, 23.5 grains of pure foda. It deferves to be mentioned, that during this procefs, the filver crucible was acted on, and a fmall portion of it was afterwards found among the fulphate of foda. This portion was feparated before the fulphate of foda was weighed.

The preceding analyfis gives us the conftituents of fodalite as follows :

Silica, -	-	-	38.52
Alumina,	-	-	27.48
Lime,	-	-	2.70
Oxide of iron,	-	-	1.00
Soda,	-	-	23.50
Muriatic acid,	-	-	3.00
Volatile matter,	-	-	2.10
Lofs,	-	-	1.70
		100.00	

Mr Allan fent a fpecimen of this mineral to Mr Eireberg, who analifed it in the courfe of laft fummer. The conftituents which he obtained, as he fates them in a letter to Mr Allan, are as follows :

Silica,	-	-	36.
Alumina,	-	-	-
Soda,	-	-	-
Muriatic acid,	-	-	6.75
Oxide of iron,	-	-	0.25
			100.00

' H is refult does not differ much from mine. The quantity of muriatic acid is much greater than mine. The lime and the volatile matter which I obtained, efcaped his notice altogether. If we were to add them to the alumina, it would make the two analyfes almoft the fame. No mineral has hitherto been found containing nearly fo much soda as this. Hence the reafon of the name by which I have diftinguifhed it.

Fachost and
Niñ

cos. in (n) -20n+
ete x^{2} 品

 xex- $x+3$

 dict

XIII. Demonstration of the Fundamental Property of the Lever.

 By David Brewster, LL. D. F. R.S. Edin.
[Read December 3. 1810.]

IT is a fingular fact in the hiftory of fcience, that, after all the attempts of the moft eminent modern mathematicians, to obtain a fimple and fatisfactory demonftration of the fundamental property of the lever, the folution of this problem given by Archimedes, fhould ftill be confidered as the moft legitimate and elementary. Galileo, Huygens, De la Hire; Sir Isaác Newton, Maclaurin, Landen, and Hamilton, have directed their attention to this important part of mechanics; but their demonftrations are in general either tedious and abftrufe, or founded on affumptions too arbitrary to be recognifed as a proper bafis for mathematical reafoning. Even the demonftration given by Archimedes is not free from objections, and is applicable only to the lever, confidered as a phyfical body. Galileo, though his demonftration is fuperior in point of fimplicity to that of Archimedes, reforts to the inelegant contrivance, of fufpending a folid prifm from a mathematical lever, and of dividing the prifm into two unequal parts, which act as the power and the weight. The demonftration given by Huygens, affumes as an axiom, that a given weight
removed from the fulcrum, has a greater tendency to turn the lever round its centre of motion, and is, befides, applicable only to a commenfurable proportion of the arms. The foundation of Sir Isaac Newton's demonftration is ftill more inadmiffible. He affumes, that if a given power act in any direction upon a lever, and if lines be drawn from the fulcrum te the line of direction, the mechanical effort of the power will be the fame when it is applied to the extremity of any of thefe lines; but it is obvious, that this axiom is as difficult to be proved as the property of the lever itfelf. M. De la Hire has given a demonftration which is remarkable for its want of elegance. He employs the reductio ad absurdum, and thus deduces the propofition from the cafe where the arms are commenfurable. The demonftration given by Maclaurin has been highly praifed ; but if it does not involve a petitio principii, it has at leaft the radical defect, of extending only to a commenfurable proportion of the arms. The folutions of LANDEN and Hamilton are peculiarly long and complicated, and refemble more the demonftration of fome of the abftrufeft points of mechanics, than of one of its fimpleft and moft elementary truths.

In attempting to give a new demonftration of the fundamental property of the lever, which fhall be at the fame time fimple and legitimate, we fhall affume only one principle, which has been univerfally admitted as axiomatic, namely, that equat and opposite forces, acting at the extremities of the equal arms of a lever, and at equal angles to these arms, will be in equilibrio. With the aid of this axiom, the fundamental property of the lever may be eftablifhed by the three following propofitions.

In Prop. F. the property is deduced in a very fimple manner, when the arms of the lever are commenfurable.

In Prop. II., which is totally independent of the firft, the demonftration is general, and extends to any proportion between the arms.

In Prop. III. the property is eftablifhed, when the forces act in an oblique direction, and when the lever is either rectilineal, angular, or curvilineal. In the demonftrations which have generally been given of this laft propofition, the oblique force has been refolved into two, one of which is directed to the fulcrum, while the other is perpendicular to that direction. It is then affumed, that the force directed to the fulcrum bas no tendency to disturb the equilibrium, even thougb it acts at the extremity of a bent arm; and hence it is eafy to demonftrate, that the remaining force is proportional to the perpendicular drawn from the fulcrum to the line of direction in which the original force was applied. As the principle thus affumed, however, is totally inadmiffible as an intuitive truth, we have attempted to demonfrate the propofition without its affiftance.

Prop. I.-If one arm of a straight lever is any multiple of the other, a force acting at the extremity of the one will be in equilibrio with a force acting at the extremity of the other, when these forces are reciprocally proportioned to the length of the arms to wobich they are applied.

Let AB (Plate XI. fig. i.) be a lever fupported on the two fulcra F, f, fo that $\mathrm{A} f=f \mathrm{~F}=\mathrm{FB}$. Then, if two equal weights C, D, of 1 pound each, be fufpended from the extremities A, B, they will be in equilibrio, fince they act at the end of equal arms $\mathrm{A} f, \mathrm{BF}$; and each of the fulcra $f, \mathrm{~F}$, will fupport an equal part of the whole weight, or I pound. Let the fulcrum f be now removed, and let a weight E, of 1 pound, act upwards at the point f; the equilibrium will ftill continue; but the weight E , of I pound, acting upwards at f, is equivalent to a weight G of I pound, acting downwards at B. Remove, therefore, the weight
E, and fufpend the weight G from B; then, fince the equilibrium is ftill preferved after thefe two fubftitutions, we have a weight C, of one pound, acting at the extremity of the arm AF , in equilibrio with the weights D and G, which together make two pounds, acting at the extremity of the arm FB. But FA is to FB as 2 is to 1 ; therefore an equilibrium takes place, when the weights are reciprocally proportional to the arms, in the particular cafe when the arms are as 2 to \mathbf{I}. By making Ff fucceffively double, triple, \&c. of FB, it may in like manner be fhewn, that, in thefe cafes, the propofition holds true.

Lemma.

If any weight $B C c b$, (fig. 2. No. 1.), of uniform shape and density, is placed on a lever $A \varphi$, whose fulcrum is φ, it has the same tendency to turn the lever round φ, as if it were suspended from a point G, so taken that $b \mathrm{G}=\mathrm{G} c$.
If a weight W, of the fame magnitude with $B C$, acts upwards at the point G, it will be in equilibrium with the weight $B C$, and will therefore deftroy the tendency of that weight to turn the lever round φ. But the weight W, acting upwards at the point G, has the fame power to turn the lever round ϕ, as an equal weight w, acting downwards at G. Confequently the tendency of the weight BC to turn the lever round φ, is the fame as the tendency of an equal weight w, acting downwards at G.

> Prop. II.

If two forces applied to a lever, and acting at right angles to it, bave the same tendency to turn the lever round its centre of motion, they are reciprocally proportional to the distances of the points at which they are applied from the centre of motion.
Let A φd, (fig. 2. No. 2.) be a lever whofe fulcrum is φ, and let it be loaded with a weight $\mathrm{BD} d b$ of uniform fhape and den-
fity. Then by the lemma, this weight has the fame tendency to turn the lever round, as if it were fufpended from the point n, fo taken that $b n=d n$. Make $\phi c=\phi d$, and let the weight $\mathrm{BD} d b$ be divided at the points C and F , by the lines $\mathrm{C} c, \mathrm{~F} \varphi$. The weights $\mathrm{CF} \varphi c, \mathrm{DF} \varphi d$, being in equilibrio, by the axiom, have no tendency to turn the lever round φ, confequently the remaining weight $\mathrm{BC} c d$, has the fame tendency to turn the lever round φ as the whole weight $\mathrm{BD} d b$. Hence if $b m=c m$, the weight BCcb acting' at the point m, will have the fame tendency to turn the lever round φ, as the weight $\mathbf{B D} d b$ acting at n. Now $\mathrm{BD} d b: \mathrm{BC} c b=b d: b c=n d: m c$; and fince $b c=b d-c d$, we have $m c=\frac{1}{4} b d-\frac{1}{2} c d=n d-\frac{1}{1} c d=n \varphi$, and $n d=n \varphi+\frac{1}{2} c d=m c+\frac{1}{2} c d=m \varphi$. Confequently,

$$
\mathrm{BD} d b: \mathrm{BC} c b=m \varphi: n \varphi .
$$

Lemma.

Two equal forces acting at the same point of the arm of a lever, and in directions which form equal angles with a perpendicular drawn through that point of the arm, will bave equal tendencies to turn the lever round its centre of motion.

Let AB (fig. 3.) be a lever with equal arms AF, FB. Through the points A, B, draw $A D, B E$, perpendicular to $A B$, and $A P$, $\mathrm{A} p, \mathrm{BW}, \mathrm{B} w$, forming equal angles with the lines AD, BE. Produce PA to M. Then, equal forces acting in the directions $A P, B w$, will be in equilibrio. But a force M equal to P, and acting in the direction $A M$, will counteract the force P, acting in the direction $A B$, or will have the fame tendency to turn the lever round F; and the force W, acting in the direction $B W$, will have the fame tendency to turn the lever round F as
the
the force M : Confequently the force W will have the fame tendency to turn the lever round F as the force w; and this will hold true, whether the arms AF, FB, are ftraight or curvilineal, provided that they are both of the fame form.

Prop. III.-If a force acts in different directions at the same point in the arm of a lever, its tendency to turn the lever round its centre of motion, will be proportional to the perpendiculars let fall from that centre on the lines of direction in which the force is applied.

Let AB, (fig. 4.) be the lever, and let the two equal forces $\mathrm{BM}, \mathrm{B} m$, act upon it at the point B , in the direction of the lines $\mathrm{BM}, \mathrm{B} m$. Draw $\mathrm{BN}, \mathrm{B} n$, refpectively equal to $\mathrm{BM}, \mathrm{B} m$, and forming the fame angles with the line $\mathrm{PB} \omega$ perpendicular to AB . To BM, B $m, \mathrm{BN}, \mathrm{B} n$, produced, draw the perpendiculars AY, A y, $\mathrm{AX}, \mathrm{A} x$. Now, the fide $\mathrm{AX}=\mathrm{AY}$, and $\mathrm{A} x=\mathrm{A} y$, on account of the equality of the triangles $\mathrm{ABX}, \mathrm{ABY}$; and if $\mathrm{Ml}, \mathrm{M} \lambda$, be drawn perpendicular to $B \omega$, the triangles $A B Y, B M l$, will be fimilar, and alfo the triangles $\mathrm{AB} y, \mathrm{~B} m \lambda$: Hence we obtain

$$
\begin{aligned}
& \mathrm{AB}: \mathrm{AY}=\mathrm{BM}: \mathrm{B} l, \text { and } \\
& \mathrm{AB}: \mathrm{A} y=\mathrm{BM}: \mathrm{B} \lambda
\end{aligned}
$$

Therefore, ex aquo, AY: A $y=\mathrm{B} l: \mathrm{B} \lambda$.
Complete the parallelograms $\mathrm{BM} \circ \mathrm{N}, \mathrm{B} m \omega n$, and $\mathrm{B} l, \mathrm{~B} \lambda$ will be refpectively one-half of the diagonals $\mathrm{B} o, \mathrm{~B}$ 山.

Now let two equal forces $B M, B N$, act in thefe directions upon the lever at B, their joint force will be reprefented by the diagonal Bo , and confequently one of the forces BM will

Fig.2. N^{o}.
Fig.2...70. 2.

Fig. 4.

be reprefented by $\mathrm{B} l=\frac{1}{\mathrm{I}} \mathrm{B} o$. In the fame manner, if the two equal forces $\mathrm{B} m, \mathrm{~B} n$, act upon the lever at B , their joint force will be reprefented by $\mathrm{B} \omega$, and one of them, $\mathrm{B} m$, will be reprefented by $B \lambda=\frac{1}{2} B \omega$. Confequently the power of the two forces $\mathrm{BM}, \mathrm{B} m$, to turn the lever round its centre of motion, is reprefented by $\mathrm{B} l, \mathrm{~B} \lambda$, refpectively; that is, the force BM is to the force $\mathrm{B} m$ as $\mathrm{B} l$ is to $\mathrm{B} \lambda$; that is, as AY is to $\mathrm{A} y$, the perpendiculars let fall upon the lines of their direction.

XIV. On the Rocks in the vicinity of Edinburgh. By Thomas Allan, Esq; F. R.S. Edin.

[Read March 4. 1811.]

ALTHOUGH fcience has only within thefe few years acknowledged the importance of Geology, the eagernefs with which it has been cultivated, affords fufficient proof of the intereft it is capable of creating. Of this we have a recent example in the laborious undertaking of Sir George Mackenzie and his friends, who, notwithftanding all the dangers prefented by a voyage through the moft tempeftuous ocean, and the deprivations to which they were expofed, in a journey through a country deftitute of the flighteft trace to guide the route of the traveller, were not deterred from exploring the inhofpitable fhores of Iceland. :Thefe, and other travellers, have extended our knowledge of various diftricts on the furface of the globe; but we have ftill to lament the extreme imperfection of the fcience, which, as yet, has affumed no decided character or form. This appears principally owing to the want of fome fimple method, grounded on clear and intelligible princi-
ples; perhaps alfo, to its having always been the object of thofe who have treated the fubject, to accommodate their obfervations to a particular theory; and when this is the cafe, it is obvious, that the mind cannot refufe itfelf the fatisfaction, of dwelling with comparative enthufiafm on facts which appear favourable to the adopted fyftem ; while others of a different tendency, are either reluctantly, and therefore fuperficially confidered, or what is yet worfe, even ftudioully avoided.

In the prefent ftate of our knowledge, to divelt geology of theory, would be to deprive it of all its intereft. We muft not defpair, however, that by the multiplication of particular facts, and the expofition of others, with which we are ftill unacquainted, a fyftem of geology may yet be formed, founded exclufively on the phenomena of nature, or at leaft on reafoning much lefs hypothetical than is now required.

The moft obvious means of attaining this object, feems to be a careful, minute, and candid examination of every circumflance which appears to convey an explanation of itfelf, without reference to any theory; and from thefe we may ultimately hope to obtain fome data, equally certain and comprehenfive.

IT is with this view, that I have always formed my collections of geological fpecimens; and although it will appear, that the arguments I have deduced are favourable to one fet of opinions, yet I can affert with confidence, that the diftrict which it is the object of the prefent paper to examine, has been faithfully explored, and, I hope, candidly defcribed.

Ir is generally admitted, that no city in Europe is more favourably fituated than the metropolis of Scotland, for the ftudy and purfuit of geology : even the ground which it occupies, when laid open for the erection of buildings, has occafionally prefented fome very interefting phenomena. The hills in the immediate neighbourhood, always at command, afford a never-failing fource of refearch; and in the furrounding country, a greater variety of foffils is to be met with, than almoft in any fpace of the fame extent.

The importance of a complete acquaintance with the phenomena which furround this city, cannot therefore, I think, be confidered of a trivial nature. Indeed, by the number of ingenious works already before the public, it may be thought that the fubject is exhaufted. But this is an error I am very defirous to combat, not only becaufe in my own experience I have found it to be one, but becaufe, as fcience advances, our habits of inveftigation improve, phenomena become more familiar, we learn to trace and to feize not only the objects we are in purfuit of, but alfo to detect others, which our lefs practifed eye had originally paffed over unnoticed.

We all think ourfelves perfectly acquainted with the rock, on which our Caftle ftands. But I fufpect there are many members of this Society, who will be furprifed to learn, that fandAtone occurs near its fummit, and alfo at its bafe. Sa-
lifbury Craig and Arthur's Seat appear perfectly familiar to us; there are phenomena belonging to both, however, of which, I have no doubt, many are yet ignorant. That any circumftance of an interefting nature, fhould remain unobferved, can only be accounted for, by its, being taken for granted, that thefe confpicuous objects, having already undergone much critical examination, nothing farther remains to be noticed. This is an opinion, which I hall prove in the fequel, to be without foundation.

Artbur's Seat and Salisbury Craig, are naturally the objects, which firft attract the attention of the geological traveller, on his arrival in Edinburgh; and to thefe places he is generally conducted by fome one of our amateurs, when the favourite theory is introduced, and each corroborative fact dwelt upon, with all the ufual keennefs of theoretic difcuffion. This was the ground which, in all probability, firf fuggefted the Theory of Hutton ; and it was perhaps here, that his comprehenfive mind originally laid the foundation, of the ftructure which he afterwards fo fuccefsfully reared. But that theory, in itfelf fo beautiful, and in many points fo perfect, I am very far from embracing entirely. I am very far, indeed, from following him through his formation and confolidation of ftrata, or the tranfportation and arrangement of the materials, of which they are compofed. There are other circumftances alfo, which, though totally irreconcilable with any ether hypothefis, are yet but imperfectly explained by his. I particularly allude to the fingular contortions, exhibited in what are termed Transition ftrata, fo finely exemplified on the coaft of Berwickfhire. I wifh to carry my inductions, juft as far as facts will bear them out. It is therefore, only in the regions of unftratified rocks, or in their immediate vicinity, that I have as yet, been able to
difcover a language, which, if ftudied with due attention, cannot fail, I think, to become intelligible, and carry conviction to thofe, who choofe to reafon impartially on the fubject.

In the writings of Dr Hutton, we do not meet with defcriptions of particular diftricts, his object being rather to eftablifh a general theory, by the particular facts which thefe diftricts afforded.

We cannot, therefore, look to him for a mineralogical account of the neighbourhood of Edinburgh; and we have to regret, that no other geologift has yet undertaken that tafk.

In a Chort notice, in the Appendix of a work on another county, by Profeffor Jameson, this vicinity is mentioned as principally belonging, to what is termed the Coal Formation by Werner, which, according to the fyftem of that celebrated naturalift, forms part of the Fleet\% rocks.

To render thefe terms intelligible to the general reader, it is neceffary to give fome explanation, as, without a confiderable knowledge of the fyftem to which they exclufively belong, they muft be totally incomprehenfible.

WERNER is the only perfon, who has attempted a regular arrangement of rocks; an arduous undertaking, which I have no doubt he has accomplifhed, with all the accuracy the fubject was fufceptible of, and fo far as the country he examined allowed *.

But it appears very evident, that the facts he met with were fuch, that, in confequence of the hypothefis he had previoufly thought proper to adopt, it became neceffary to invent a theo-

Vol. VI. P. II.
3 F
ry

[^39]ry capable of embracing all the phenomena, which the conftruction of his fyftematic arrangement led him to obferve. A peculiar language was therefore indifpenfable; and as this language has been conftructed with fo much regard to his theory, unlefs that is underftood and adopted, his terms become ufelefs.

By a formation is meant, any feries or fuite of rocks which ufually occur together; hence the Coal Formation is compofed of

I. Sandftone,	6. Limeftone,
2. Coarfe Conglomerate,	7. Marl,
3. Slate-clay,	8. Clay-ironftone,
4. Bituminous Shale,	9. Porphyritic Stone,
5. Indurated Clay,	I0. Greenftone *,

with which the Coal occurs in numerous beds, varying extremely in thicknefs. Thefe, however, never all occur together, and it is no detriment to the Coal Formation fuite, even if Coal itfelf fhould not be found among them.

Agarn, the term Floetz is given to all the formations, contained between the tranfition and alluvial rocks, and implies that they are diftinguifhed by their frequent occurrence in beds, which are much more nearly horizontal, than the primitive and tranfition

[^40]tranfition rocks. If directly tranflated, the word fignifies flat, and may be correctly defcriptive of the diftricts originally examined by Werner; but as this conftruction will not apply univerfally to this clafs of rocks, and as it is particularly at variance with thofe belonging to it in this country, it would be better to follow the example of Profeffor Davy, and ufe the term parallel rocks, which is much lefs liable to objection.

The Huttonian Theory has no language peculiar to itfelf, having nothing to defcribe, that cannot be done in the ufual phrafeology of any country. This, by the zealous admirers of that doctrine, may no doubt be lamented, as depriving it of an apparent fyftematic arrangement, to which the oppofite theory is fo deeply indebted.

In forming a collection from the rocks in the neighbourhood of Edinburgh, the circumftances above narrated, induced me to begin with thofe of Salifbury Craig and its vicinity. The collection I have now the honour of prefenting to the Society, I began fome years ago: it is only part of a feries, which, as completed, I hope may be found worthy of a place in their cabinet. I confider it of very great importance, that every geological paper, fhould be accompanied with fpecimens, in order that if the former be found deferving of publication in your Transactions, thofe who perufe the defcription may know, that the fpecimens referred to, are to be feen in the repofitories of this eftablifhment.

Salisbury Craig is fituated on the north fide of Arthur's Seat, againft which its fouthern extremity refts: from this it extends, in a northern direction, and rounds towards the eaft, fo as to form the fegment of a circle, about half a mile in length It is furmounted by a magnificent façade, which is loweft at the extreme points; towards the middle, the perpendicular rock may be from 80 to 90 feet high. From the bafe of this precipice, a floping bank, covered with debris, reaches to the valley below, altogether forming an elevation of nearly 400 feet. From the upper edge of it, a regularly inclined plane, flopes gently, on the oppofite fide, at an angle of about 15°, in a north-eaft direction, and forms the left bank of the valley, called the Hunters Bog. On the right of this valley, the rocks again rife rapidly, affording indications of two or three feparate façades. Thefe are not characterized in the diftinct manner of Salifbury Craig, but are furmounted by a furface, which, though a little rounded, prefents an inclination correfponding with that of the Craig, in a very ftriking manner.

From the bafe of Salifbury Craig, or rather from the bafe of the debris by which it is encircled, towards the fouthern extremity, the ground again rifes, and prefents an inclined plane, fimilar to its own, but of lefs magnitude. This is known by the name of St Leonard's Hill.

Hence it appears, that there are three fimilarly inclined planes or terraces, of which Salifbury Craig forms the intermediate one, each of them having a different elevation. From this ftructure we may eafily conceive the origin of the Swedifh word Trap, which has been employed as a generic term, for
the clafs of rocks to which this appearance may generally be attributed *.

If we imagine a vertical plane, to pafs from St Leonard's Hill in an E.N.E. direction, which fhall cut Salifbury Craig, and continue through the right bank of the Hunters Bog, we fhall find the rocks difpofed in the following manner :

St Leonard's Hill.
Sandftone.
Porphyritic Greenftone.
Sanditone.
Salisbury Craig.
Sandítone.
Greenftone.
Sandftone.
Hunters' Bog.
Greenftone.
Sandftone.
Porphyritic Greenftone.
Trap-Tuff.
Bafalt.

The

* One of the greateft difficulties which geology as well as mineralogy has laboured under, is the multitude of fynonymous terms which have been applied to every individual foffil. Trap has fuffered from this difadvantage, perhaps more than any other variety of rocks; as above noticed, that name is derived from the fimilarity to the fteps of a ftair, which may generally be traced in the outline of a country, in which this rock abounds; and as it has been employed as a generic term by mineralogitts throughout Europe, I think it proper to use it, to the exclufion of whinfone, the name it bears in the writings of Dr Hutton;

The two laft of thefe are not comprehended in the Coal Formation fuite; they are confidered as members of another formation, denominated the Neweft Flœetz-Trap.

The upper fandftone of St Leonard's Hill, and the lower fandftone of Salifbury Craig, are, fo far as we know, continuous; but as thefe, fuppofing the lines of the ftrata to be projected, would form a bed of 450 feet thick, it is poffible alternations of greenftone may occur in it. Above, I have only mentioned fuch as are vifible.

Those on the right of the Hunters' Bog, are not fo diftinctly expofed as the reft; but the foffils are all found in the order I have ftated. Occafionally fmall feams of reddifh-brown coloured flaty clay, and clay-ironftone occur, principally intermixed with the fandfone; but they are fo thin, and fo unconnected, that they can fcarely be confidered as Atrata.

The feries of fpecimens I am now about to defcribe, are thofe of St Leonard's Hill and Salifbury Craig.

No. i. is a fpecimen of the Sandftone of St Leonard's Hill ; it is of a reddifh-white colour, and extremely coarfe-grained. It was taken from the middle of the quarry, and preients a fpecies of conglomerate, the fragments of fandftone being agglutinated by a dark-red ferruginous pafte.

No. 2. from the fame quarry, is more compact, and prefents a ftreaked appearance, correfponding with the direction of the ftratum. There is a confiderable degree of irregularity to be obferved, in tracing the line of junction at St Leonard's Hill. In fome places, two or three folds of the ftrata are cut off abruptly
a name which, though perfectly underfood in this country; is not received abroad, and ought therefore to be relinquifhed.
abruptly at each end by the greenftone; in another, that fubftance finks fuddenly as it were into a gap in the ftrata, and being loft in rubbifh, has fomewhat the appearance of a dike. Beyond this a double horizontal wedge of greenftone, with the ends turned downwards, appears among the ftrata; and a little farther, towards the north, a roundifh mafs of the fame fubftance alfo occurs; this has very much the appearance of an included fragment, but the decompofition of the fandftone has juft begun to expofe its connection with the rock above.
O_{N} the fandftone, Porphyritic Greenftone (No. 3.) refts. The colour of this is reddifh-brown; the texture is fine-grained; and it contains finall fpecks of flefh-coloured calcareous fpar. It is traverfed in various places by veins of Hematitic Iron-ore (N 0.4 .) accompanied with fulphate of barytes. Thefe two fpecimens have very much the character of fome varieties of porphyry-flate, and on breaking one mafs, I obferved a tendency to a flaty arrangement. In different places of this quarry , the greenftone affumes a variety of appearances ($\mathrm{N} \circ .{ }_{5}$. and 6.), fome of which might be attributed to decompofition. I do not conceive, however, that any external caufe has ever had much effect upon this rock, although in fome places it has entirely loft its luftre, (No. 7.), and might be miftaken for trap-tuff, were it not for the fhape of the cryftals.

Above this, the rock graduates into a highly cryftalline Porphyritic ftone, (No.8.) the pafte of which is of a brownifh-grey colour, very clofe-grained, with an uneven fplintery fracture, containing both cryftals of felfpar and hornblende.

In this quarry there are feveral inftances of slikensides, one of which is rather remarkable, it occirs in an inclined rent in the fandftone: the traces of the flip, (No.9.), are horizon-
tal, and extremely well defined; but immediately over it, in the greenfone, the appearance of the hip is not continued. Some indications of a flip appear a little to the right of it.

In a part of the Greenftone which is confiderably decompofed, a vein, ftretching horizontally, of a dark-green fibrous fubfance occurs, ($\mathrm{N} O . \mathrm{IO}$.) ; it is foft, and has a flining fatiny luftre, like afbeftus. I have not anywhere in this vicinity met with any fimilar fubftance.

We now proceed to Salifbury Craig, where the circumftances I fhall principally notice, are,
I. The texture of the greenftone rock, with the foffils it contains.
2. The vein of greenftone by which the Craig is interfected.
3. The included mafs of fandftone which occurs in the greenftone; and,
4. The indurations and interruptions of the ftrata.

NO. II. is a fpecimen of the greenftone taken from the lower edge of the bed, at the great quarry, where it touches the fandftone; the point of contact being marked by a fmall remaining fragment of the latter, at which the grain of the ftone is much finer than at the other extremity. The colour is iron-grey, with fmall fpecks of calcareous matter interfperfed.

Nos. I2, I $3, \& 14$. are different gradations of texture, taken in a vertical line, from the edge towards the centre, where the ftone is always moft perfectly cryftallifed; from hence it again declines in grain towards the upper furface, where we find it in the fame earthy and uncryftallifed ftate (No. I5.) obferved at the bottom. In the laft fpecimen, there is a fmall detached fragment
fragment of the fratified matter imbedded in the greenftone, a circumftance connected with a very important clafs of facts.
No. 16. This fpecimen of greenftone is remarkable, as exhibiting a variety of colours; thefe are not blended, but diftinctly divided from each other. The colours are iron-grey, lightgrey, dark-red, and brick-red.

No. 17. This fpecimen is a ftrong example of the impropriety of the name which it bears; it is a greenftone, decidedly of a red colour. The fingular penetration of ferruginous matter, which is exhibited in various parts of this rock, is not eafily accounted for ; but fuppofing it to have been once in a fate of fufion, it may have obtained this fuperabundance of iron by abforption, as the adjoining ftrata frequently abound in that mineral.
In various parts of the Craig, veins of a peculiar nature may be obferved; they are compofed precifely of the fame ingredients as the rock, and are diftinguifhable only by the red colour of the felfpar, (N 0.18). Thefe are termed contemporaneous weins, or veins of secretion; they are deeply waved, and genetally follow the direction of the bed. Some of them prefent a very bright brick-red colour, (No. 19.), mixed with fpecks of calcareous fpar.

Nos. 20, 21. in thefe fpecimens, are fmall globules of a black earthy fubftance, which I am at a lofs to name. I fhould have confidered it Amphibole, but for the next fpecimen, (No. 22.), in which the fame fubftance appears to occur in irregular fragments.

No. 23. Analcime with cryftallifed Calcareous Spar. I before noticed, that it was in the heart of the bed where the fubftance of the greenflone prefented the cryftalline texture in

Vol. VI. P. II.
3 G
the
the higheft perfection. The occurrence of the analcime is connected with the fame fact. I have never been able to find it on Salifbury Craig, excepting at one period, when an entire fection of the bed was quarried off, and about the middle of this the analcime occurred.

No. 24. with fulphate of barytes, with calcareous fparry ironore.

No. 25. part of a very irregular vein. Its fides are formed of calcareous fparry iron-ore, which is followed by a coating of hematitic iron. Here the regular ftratification, as it is called, of the vein ends, and calcedony, firf femitranfparent, then opake, and common calcareous fpar, occupy the reft.

No. 26. calcareous fparry iron-ore cryftallifed, with fome tranfparent cryftals of quartz.

No. 27. large cryftals of calcareous fpar, with cryitallifed. and radiated tufts of quartz.

No. 28. red axide of iron, with a vein of calcareous fparry iron-ore.

No. 29. green coloured quartz, with a coating of cryftallifed quartz.

No. 30. cryftallifed quartz, with amethyf.
Such are the minerals which occur on Salifbury Craig. Some of them are rare, and others to be found only when the rock is working in particular places.

The next circumftance I have to notice, is the vein of greenftone *. It occurs a little to the north of the fpot, to which

[^41]which the cart-road, along the bafe of the rock extends, a few feet beyond a gap, known by the name of the Cat's Nick.

I Do not think this vein attracted the attention of geologifts in any particular manner, prior to 1805 . It certainly was obferved long before that period, but was not known to extend through the bed of greenftone, till Sir James Hall and myfelf noticed, that after cutting the fandfone, it continued its courfe uninterrupted to the top. This obfervation contributed very much to increafe our curiofity, and a man was employed to clear away the foil and rubbifh, which had accumulated on the furface. A confiderable pertion of the rock was foon laid open, below the point from which it was at that time vifible. Nothing, however, of much intereft, was by this means difcovered. The dike, after bending a little to one fide, continued its courfe downwards.

The fpace which this dike occupies, may be from fix to eight feet wide; its width varies a little in fome parts, and thefe variations are apparently increafed, if the fection which is obferved be not at right angles with the walls. That portion embraced by the ftrata, which we found principally covered with debris, was very much decompofed, prefenting on the furface a certain degree of nodular exfoliation, of a rufty-

$$
3 \mathrm{G}_{2}
$$

brown
ly underftand by mineral veins. The firft are formed of one uniform rock, compofed in all their parts of the fame conftituents, and differing only in pofition, from the beds thefe materials more ufually form; while the latter, though fometimes formed only of one fubftance, fuch as quartz or calcareous fpar, are generally compofed of a feries of foffils, arranged in lines parallel to the walls. No fuch appearance ever prevails in rock veins, or conftituting mountain maffes; therefore, in ufing the term vein, when applied to greenftone, granite, or the like, it muft be underftood as a generic term, of which these lat. ser, fpecify the variety.
brown colour. On breaking into the rock, it exhibited (No. 31.) * the concentric lines fo common in decompofing greenftone; and beyond this, the ftone prefented a degree of frefhnefs, with a very coarfe grain of a peculiarly light: afh-grey colour, and a very dull earthy texture, (No. 32.) Between this portion of the vein and that embraced by the greenftone, there is a very remarkable difference, the latter being of the ufual iron-grey colour, and otherwife perfectly characteriftic. Before it leaves the fandfone ftrata, it feems to contain an unufually large proportion of calcareous matter. This may have aided the decompofition, together with the moifture retained by the debris, fo lately removed from its furface, and which has left it in a ftate eafily affected by the weather. Since I commenced writing this paper, I made an excurfion to the fpot, and was greatly furprifed to obferve the devaltation of laft winter.

Before the vein rifes above the level of the ftrata, a portion of it, ftill more decompofed than the reft, of a dark-purple colour, branches off, and embraces a wedge-fhaped mafs of the fandftone (No. 33. and 34.) indurated in a very high degree. Juft at the top of this indurated mafs, the whole dike changes its colour, and, I may alfo fay, its confiftence. It here prefents a light-greyih afpect; deeply ftained, with red ferruginous marks, of a dull earthy texture, an even fracture, and a tolerably fine grain, (No. 35.) That portion correfponding with, and immediately over the included fandftone, I found much coarfer in the grain, (No. 36.), and in a more decompofed ftate;

[^42]
(1
ftate; while it differed from No. 37., the fone on the fides, which were perfectly fimilar to each other in compofition.

Tracing the friable purple-coloured portion upwards, I found it gradually became harder, and, of a fudden, chan ge to a fine-grained blue-coloured greenftone; and the part correfponding with the included mafs, alter to a hard coarfe-grained rock, (No . 38.) I foon obferved, that this coarfe-grained mafs, which is about ten inches thick, continued upwards, maintaining an uniform dimenfion and pofition, in refpect to the walls of the vein, as high as the eye could trace it in the rock, thus dividing it into two portions; that on the left fide being about eighteen inches wide, while the other is about five feet.
On comparing the texture of the included ftripe, with that: of the walls on each fide, (No .39 . left fide; No .40 . included ftripe; No. 41. right fide,) taken in a horizontal line, about fix feet above the ftrata, I found as clofe a refemblance as it is poffible to conceive; they are all coarfe-grained, and highly cryftallifed. This fimilarity is not more remarkable, than the difference between the fubftance of the vein and the included mafs. Specimens taken from the junction of thefe, mark this in a ftriking manner. No. 42. is from the left fide of the right portion of the vein, to which the fine-grained part belongs. No. 43. is from the middle of this portion; and No. 44. from the fide next the right wall. Thefe were alfo taken in a horizontal line, and exhibit the fame gradation of grain noticed as exifting in the great bed. Even in the narrow portion of eighteen inches, on the left fide, this circumftance is quite vifible; but the fpecimens taken from the other are highly illuftrative of the fact.

I have had an opportunity of examining many veins of greenftone ; but I know of none more interefting in a geological point of view than this.

I think it can fcarcely be doubted, that the fame effort which feparated the included portion of fandftone, cleft the correfponding ftripe of greenftone from the great bed. This, as well as the gradation of grain, everywhere obfervable in beds and veins of trap, are remarks, in my opinion, of confiderable value to the Huttonian hypothefis. On a former occafion, when I had the honour of fubmitting fome remarks on the north of Ireland to the Society, I took an opportunity of dwelling particularly on the laft circumftance. Like the charring of coal, when that fubftance is found in contact with whin, as has been ably remarked by Profeffor Playfair, " few facts in the hiftory of foffils fo directly af" finilates the operations of the mineral regions with thofe " which take place on the furface of the earth *." This gradation of texture has a ftrong analogy to many accidental facts obfervable in furnaces, of glafshoufes and the like, and ftill more fo to thofe experiments made exprefsly for the purpofe of afcertaining the effects of flow cooling, by Sir James Hall and others. One additional argument for the igneous origin of thefe veins, has been added by the obfervations of Sir George Mackenzie and his friends, in Iceland, in perfect correfpondence with the above fact. He there found many veins of this fubftance, coated on the fides with a glafly covering, exactly fimilar to melted greenftone, when rapidly cooled.

I should expect the fame circumftance would be met with in veins of porphyry and gramite; but I have not been able to ex-

[^43]tend my obfervations fo widely, as to embrace the facts refpecting thefe rocks. One remark I fhall, however, hazard in this place, refpecting an effential difference between veins of granite and thofe of greenftone. The former feem to be of fimultaneous formation with the great body of that rock, to which they may generally be traced, and, fo far as I have hitherto obferved, are never found to cut it. Veins of greenftone, on the other hand, I have never feen connected with the great beds of that fubftance; they traverfe thefe juft as they do every other kind of rock, and confequently are in all inftances of a pofterior formation. I am aware, that thefe ideas are very much at variance with certain received opinions. I therefore wifh to be underftood as fpeaking folely upon my own experience.

I have now to mention the well-known included mafs of fanditone. Along the edge of the ftrata, a number of inftances occur on Salifbury Craig, affording the moft unequivocal marks of difturbance; but it prefents only one example; of a mafs totally enveloped in the fubftance of the greenftone *.

- This fpot has been the fcene of much controverfy, between contending geologifts. While the Huttonian confiders it as a moft incontrovertible proof of violence and of heat, the Wernerian contends, that there is nothing in the leaft extraordinary in the appearance, and afferts, that the fuperficies of the apparently included mafs, is no more than the fection of fome part of the ftratum, which, if traced, would be found to connect with the reft; that it had been enveloped in the fluid menftruum of the greenftone, when in this elevated pofition; and that the rock be-

[^44]ing cut in a certain direction, a fection having the appearance of an infulated mafs, would of courfe be expofed to view. There is no doubt that fuch a circumftance is perfectly poffible; but, in the prefent inftance, this explanation will not be found at all applicable. In every other cafe, where the ftrata appear difplaced, they are not torn from the reft, nor has the greenftone infinuated itfelf, except as a wedge, fupporting the lifted maffes. The included mafs is of a light greenifh-grey colour, in fhape quadrangular, and, when minutely examined, will be found fhivered into numerous diftinct fragments, with veins of greenftone running through it in every direction. It partly retains its original ftratified texture (No . 45.) although indurated in a very high degree, and is fo firmly welded to the greenftone, that it is no difficult matter to obtain fpecimens (N 0.46 .) of the conjoined rocks ; one fmall fpecimen (No. 47.) in the collection, is twice interfected by that fubftance. It, therefore, has no refemblance whatever to thofe pieces of ftrata, which are only in part detached, and which, if cut in a tranfverfe direction, would, in all probability, exhibit an infulated fection. That fection, however, would not difplay the broken and diftorted appearance defcribed above, at leaft if we may be allowed to judge by the integrity of the longitudinal fections, of which there are fo many examples in this vicinity. Befides, the colour of the included mafs is totally different from that of any of the ftrata near it, which are here of a deep red (No. 48.), and at this particular fpot are remarkable for their apparent derangement. I therefore conclude, that there is every reafon to confider this, as a fragment detached from fome other part of the fandftone, and left fufpended in its prefent fituation, when the greenftone affumed a folid confiftence, as was originally conjectured by Dr Hutton.

I now come, as propofed, to that divifion of the fubject which relates to indurations. By induration is meant, a greater degree of compactnefs, obfervable in particular parts of ftratified rocks, than is ufual throughout their mafs. One part of a bed may be harder than another, confequently more indurated. But the induration here alluded to, is that which is fuppofed to have been effected, by an alteration in the denfity of the ftone, in confequence of the action of heat.

These phenomena are of a very ftriking nature, and were firft brought into notice by Dr Hutton ; in them, he found evidence, to him perfectly conclufive, of the igneous formation of whin, and, with that ingenuity and perfeverance which characterife the whole of his works, he did not fail to generalife his obfervations, and to place the facts, firft noticed in this fpot, in fuch a light, as to render them effentially ufeful to his theory.

The anxiety which the difciples of the Wernerian fchool have always evinced, to undervalue the merit of this obfervation, is a fure mark of the eftimation in which they hold it; and it is, therefore, very properly confidered by the fupporters of the oppofite doctrine, as one of their ftrongeft holds. In the following lift, are comprehended moft of the varieties, which this indurated fandftone prefents on Salifury Craig.

No. 49. is a junction fpecimen *, taken near the fouthern extremity of the Craig; here the greenftone is of the deep red tinge noticed at No. I7.

Vol. VI. P.II.
3 H
No.

[^45]No. 50 . is another fpecimen of the fame kind; the greenfone is here of the ufual colour, and the line of junction moft admirably defined. This was taken from the great quarry. The next, (No. 5r.), is a fpecimen of the fandftone in its fuppofed unaltered ftate. Nos. 49, and 50. are both from the lower junction. No. 52. is from the upper edge, taken about halfway between the higheft part of the Craig and Holyroodhoufe. Here the fandfone prefents a facetted appearance, an arrangement which may be owing to the fuperabundance of calcareous matter.

No. 53. is highly indurated, of a deep red colour, with a conchoidal fracture, and a facetted texture.

No. 54, has the fame facetted appearance.
No. 55., extremely clofe-grained, is from one of the contortions north of the dike.

Nos. 56 , \& 57 . Thefe are the varieties of the fandfone which have been called jasper. This is an improper name, as it confounds two fubftances totally different. The moft compact contains a large proportion of lime, and in afpect is very fimilar to fome of the limeftones of Gibraltar.

Nos. 5^{8}, to 61 . are varieties of the fandftone, found near the greenftone.

No.62. Although this fpecimen was taken very near the greenftone, ftill it does not exhibit the ufual induration. This exception occurs in different places on Salifbury Craig; and it even fometimes happens, that the fone next the whin is lefs indurated than the one below it.

No. 63. Containing a large proportion of ferruginous matter.

No. 64, to 66. Different fhades and varieties of the fandfone, in an indurated ftate.

No. 67. In this fpecimen there is fomething very like the appearance of an agate; it, however, is not contained in the fubftance of the greenftone, but in the ftratified matter below it.

No. 68. Another fpecimen of the fandfone, in its unaltered ftate, taken about thirty feet from the greenftone.

Dr Huttan conceives, that the induration, fo very remarkable in the above fpecimens, was occafioned by the heat of the whin, when it was injected between the ftrata of fandftone, caufing it to undergo a certain degree of fufion; and, to this idea, the facetted texture of fome of the feecimens adds confiderable weight, fuch arrangements being very familiar in ftones which have undergone fufion.
The Wernerian fchool, to account for the fame phenomenon, afferts, that as fandftone is generally porous, the fluid folution of the trap being introduced into the fiffure, naturally percolated to a greater or lefs extent *. Again, that it is owing to the intermixture of the matter of the vein, with the rock that forms its walls \dagger; and, as a proof of this, it is added, that no induration appears, where the traverfed rock is poffeffed of a quartzy bafe.
These arguments occur in different works, but they appear to me very little calculated to fupport the point in difpute, if not in fome refpects contradictory. On Salifbury Craig, and generally throughout the neighbourhood of Edinburgh, whereever we find fandftone coming in contact with greenftone, either in beds or veins, we are almoft certain, that an induration will be exhibited along the edge of the ftrata.

[^46]It has already been obferved, that there are fpots on Salifbury Craig, where this is not fo apparent as in others, and it very often happens, that fmall feams of clay occur, in a perfectly foft ftate. In Ineland, at Scrabo, in the county of Down, and at Fairhead in that of Antrim, I found fandftone in the former, cut by veins, and in the latter, overlayed by a bed 300 feet thick, where no induration was to be feen. Now, it appears conclufive, that there could not have been a deficiency of induration in any fpeck of Salifbury Craig, far lefs a total abfence, as in the cafes quoted in Ireland, had it in any inftance been effected either by percolation, or by the intermixture of the matter of the vein. The fuperincumbent or included matter, if in a fluid ftate, whatever its chemical powers were, would, to a certain extent, act mechanically, and be, in all circumftances, pofleffed of the fame power of communicating its moifture to the furrounding maffes. It is therefore impoffible to conceive, how it fhould have withheld it in one inftance, and parted with it fo amply in another, how it fhould have indurated the fandftone, and left the thin feams of clay in a foft and friable ftate. It is quite unimportant, of what bafe the fandftone may be formed; it is a fubftance, allowed as above to be generally porous, (and, in the cafes alluded to, it certainly was fo) ; into that porofity, therefore, the fluid muf have percolated, whatever the bafe may have been.

On the contrary, according to the Huttonian hypothefis, induration diftinctly depends, on the compofition of the ftrata expofed to the influence of heat. Some ftrata may either wholly, or in part, be capable of refifting much higher temperatures than others. It is confequently to the ingredients of which they are formed, that we muft look either for the caufe of induration, or the abfence of it. This remark originated in ob-
ferving,
ferving, that all the indurated fandftones of this country, contained more or lefs calcareous matter, while the unindurated fpecimens from Ireland, did not afford the flighteft indication of that fubftance, when fubjected to the fame feft.

Before I take leave of Salifbury Craig, I muft notice one more circumitance, which, fo far as I have hitherto feen, is quite peculiar to the fpot. I mean the occurrence, in veins, of a fubftance in all refpects fimilar to the indurated fandfones, I have juft been defcribing. The firft of thefe I obferved, is about thirty paces north of the vein. The ground being cut away, in order to fee its connection with the frata, it branched out like the prongs of a fork, and had the interftice filled with a red decompofed fubftance (No. 69.), fimilar to that which occurred at the extremity of the included ftripe of greenitone in the vein. Where the prongs join, it is about three or four inches wide, and is there, partly compofed of indurated fandftone, and partly of hematitic iron-ore and calcareous fpar. (No. 70.) Higher up, where the vein is narrower, it is wholly compofed of fandftone, the fpecimen, No. 7I., being the entire thicknefs of it. - Here the grain is finer than at firft, and, higher up, it becomes ftill more fo, (No. 72.) It ftill contiliues to taper upwards, and even when reduced to lefs than half an inch, the fubftance retains the ufual afpect of indurated fandftone, (No. 73.) This vein rifes about twenty to thirty feet into the rock, always diminifhing, and about that height difappears. I have remarked other veins, alfo containing fubftances fimilar to indurated fandftone ($\mathrm{N} 0,74$.), one was of a much larger fize than that above defcribed (NO.75.), but the grain not near fo compact, (N 0.76 .)

These veins all fet off from the lower furface, and fo long as they are of any confiderable thicknefs, the including rock is
ftained with ferruginous matter. This fact feems connected with the fingular appearances, which occur in the vein of greenftone, at the level of the junction of the fandftone ftrata with the incumbent bed.

Withour offering any remarks on a fact as yet fo infulated, I content myfelf with merely mentioning it, in hopes that fimilar appearances may prefent themfelves to geologifts in other quarters, and perhaps throw fome light on a phenomenon, which by farther elucidation may prove interefting.

Before I clofe this paper, I fhall take the opportunity of prefenting to the-Society, two fpecimens which were given to me by Sir George Mackenzie, and which I efteem of confiderable value; one of then, a fragment of the rock of Salifbury Craig; the other, of the Calton Hill, marked in the handwriting of the late Dr`Kennedy, as the fubitances he analyfed, and of which an account was given in the 5 th volume of thefe Transactions. The great variety in the rock, both of Saliibury Craig and Calton Hill, makes it of importance to afcertain with precifion the kind employed in the refearch of that celebrated chemift; and as the moft proper place for their reception, I depofite them in the cabinet of this Society, along; with my own collection, under the Nos. 7.7, and 78 .

I 9 th March.

Sincei had the honour of reading the foregoing paper to the Society, a ftrong cafe in illuftration of what is mentioned in the commencement of it, has prefented itfelf; I mean, with refpect to the conftant occurrence of new and interefting matter, even in the moft frequented ground.

A few days ago, Profeffor Playfair mentioned to me, that by the cutting down of a fection of the Craig, within thirty paces of the fouthern extremity, feveral mafles of fandftone had made their appearance, imbedded in the greenftone. I loft no time in vifiting the fpot, and was greatly pleafed to find, a confiderable addition to the interefting facts, already exhibited on Salifbury Craig.

At this part of the rock, the greenfone becomes very thin, being no more than twenty to twenty-five feet thick; it has the appearance, however, of having once been of greater extent, the upper part being apparently cut away by fome operation of nature, of which we have now only to obferve the effects. It nlopes rapidly towards the fouth, and is covered to a confiderable depth with foil and travelled ftones. It is at the upper furface of this, that the imbedded maffes occur; they appear to be portions of ftrata, which obferve the general inclination of the fandftone of Salifbury Craig, that is, dipping towards the north-eaft, while the expofed fections are parallel to each other, and nearly horizontal; confequently, being near the furface, they are cut off, or crop out, on the fouth fide. Their
appearance, however, befpeaks their having been, at fome former period, totally included in the greenftone. One mafs, indeed, a little towards the north, is unequivocally fo; at leaft we know with certainty, that a fhort time ago it was inclofed in the greenftone, and not to be feen; and there is at prefent, great apparent probability, that the next fection taken from the fame. part of the rock, will carry it away altogether.

Till now, we only knew of one included mafs in the greenftone of Salifbury Craig; and with this, thefe now difcovered have confiderable analogy; they are of the fame colour, and although they appear to be only four or five diftinct maffes, thefe maffes are all interfected vertically and diagonally, and are fplit through the whole length of the horizontal line; fo that in examining a fection of about ten feet perpendicular, no lefs than nine different alternations of fandfone may be reckoned. Some of them are no doubt very minute; but ftill they were all obfervable when I examined the rock. .

From the moft northern mafs of included fandfone, I was enabled to procure a few fpecimens, which I have added to the above collection. The rock rifes fo rapidly from the fouth, that although this mafs is nearly in the fame horizontal line with the others, all of which crop out to the furface, and although it is not diftant more than four or five yards, yet it appears to be fituated nearly about the middle, between the fandftone and the upper furface, from which it may naturally be inferred, that the maffes which now crop out, were like this, once entirely included in the fubstance of the greenftone. It is highly indurated, and at the extremities, is drawn out into minute veins. The thicknefs of the principal mafs may be from ten to twelve inches, and in length from fix to eight feet. This body, as above noticed, is cut in all directions by the
greenftone. The fecimen $\mathrm{N} \circ$. 79. Thews a portion of the -fandftone, with that fubftance traverfing its ftratified lines diagonally. No. 80. is a mafs of the fandftone, containing a finall portion of greenftone, much of the fame fhape as the double wedge of St Leonard's Hill, and formed, as I conceive, exactly in the fame manner. This wedge, on one fide of the fpecimen, is two inches long, but, on the oppofite, it is not one; and in the counter part of the fame fecimen, ($\mathrm{N} \circ .8 \mathrm{I}$.) it is only to be feen on one furface; it does not penetrate to the other fide, though fcarcely an inch thick.

I am glad to find, that intereft has been made to prevent this valuable fet of facts from being foon deftroyed, as, in a few weeks, the rock in which thefe are contained would have been broken down, and carried off for the repair of the neighbouring roads.

Ir is on this account, that much activity is requifite to keep thefe perifhable phenomena from being loft, in the neighbourhood of fuch a town as Edinburgh. Similar things are prefenting themfelves conftantly, but they are opened only for a day, and if not feized and recorded on the inftant, will be fhut up, and loft for ever.

END OF THE SIXTH VOLUME.

cety

$$
\text { anusor fresta THT } 90 \text { ahy }
$$

DIRECTIONS TO THE BINDER.

The sheets marked a and \mathbf{b}, containing the History of the Society and the Laws, to be placed in front of the volume, immediately after the general title-page and general table of Contents.
The temporary title-pages and tables of Contents for Parts I. and II. to be cancelled, as now unnecessary.
The last leaf of signature $3 \mathrm{D}, \mathrm{pp} .390,400$, and the first leaf of $3 \mathrm{E}, \mathrm{pp} .401$, 402, are to be cancelled, and two new leaves substituted.
Plate I. fronting p. 18.
II. and III. fronting p. 70.

Sir James Hall's Plates, marked with small numerals, Pl. i, iI, $\mathbf{H}, \mathbf{T V}, \mathrm{v}$. to front: p. 186.

Plates VI, and VII. fronting p. 244.

- VIII. - . 248.
- IX. - - 344.
- X. - $\quad 376$.
- XI. - \quad - 402.
- XII. - 420.
*** The Binder will take notice that the Plates must fold out
$\frac{12}{8}$
- hoy eo where

[^0]: a 2
 ratum.

[^1]: * "A.B. a gentleman well skilled in many branches of Philosophy and Polite Learning, (Mathematics, Chemistry, Natural History, \&c.) being to our knowledge desirous of becoming a Member of the Royal Society of Edinburgh, we whose names are subscribed, do recommend him as deserving of that honour, and as likely to prove an useful and valua able Member."

[^2]: * Illuftrations of the Huttonian Theory, by Mr Profeflor Playfair, 430.

[^3]: * On one occafion, the importance of this precaution was ftrongly felt. Having inadvertently introduced a confiderable quantity of moifture into a welded barrel, an explofion took place, before the heat had rifen to rednefs, by which, part of the barrel was fpread out to a flat plate, and the furnace was blown to pieces. Dr Kennedy, who happened to be prefent on this occafion, obferved, that notwithftanding this accident, the time might come when we fhould employ water in thefe experiments to affift the force of compreffion. I have fince made great ufe of this valuable fuggeftion: but he fcarcely lived, alas! to fee its application; for my firft fuccefs in this way, took place during his laft illnefs.-I have been expofed to no rifk in any other experiment with iron barrels; matters being fo arranged, that the ftrain againft them has only commenced in a red heat, in which the metal has been fo far foftened, as to yield by laceration like a piece of leather.

[^4]: * Eight parts of bifmuth, five of lead, and three of tin.

[^5]: * Efays of Natural Experiments made in the Academie del Cimento, tranflated by Waller, London, 1684, page II7. The fame in Musschenbroek's Lastin tranlation, Lugd. Bat. 1731, p. 6.3.

[^6]: + I have fince conftantly ufed tubes of common porcelain, finding glafs much too fufible for this purpofe.

[^7]: * The pyrometer-pieces ufed in the fe experiments were made under my owneye. Neceflity compelled me to undertake this laborious and difficult work, in. which I have already fo far fucceeded as to obtain a fet of pieces, which, though far from complete, anfiwer my purpofe tolerably well. I had lately an opporz tunity of comparing my fet with that of Mr Wedgwood, at various temperatures, in furnaces of great fize and fteadinefs. The refult has proved, that my: pieces agree as well with each other as his; though with my fet each tempera-. ture is indicated by a different degree of the fcale. I have thus been enabled to conftruct a table, by which my obfervations have been corrected, fo that the temperatures mentioned in this paper are fuch as would have been indicated by Mr Wedgwood's pieces. By Mr Wedgwoon's pieces, I mean thofe of the only fet which has been fold to the public, and by which the melting heat of pure filver is indicated at the 22d degree. I am well aware, that the late Mr Wedgwood, in his Table of Fufibilities, has fated that fufion as taking place at the 28th degree; but I am convinced that his obfervations muft have been mede. with fome fet different from that which was afterwards fold,

[^8]: * In many of the following experiments, lead was ufed in place of the fufible metal, and often with fuccefs; but I loft many good refults in this way: for the heat required to liquefy the lead, approaches fo near to rednefs, that it is difficult to difengage the cradle without applying a temperature by which the carbonate is injured. I have found it anfwer well, to furround the cradle and a few inches of the rod, with fufible metal, and to fill the reft of the barret with lead.

[^9]: * In the fame temperature, a mafs of the glafs of equal bulk would undergo the fame change; but it would occupy an hour.
 \dagger A fubftance equally efficacious in reftraining the penetrating quality of borax, was difcovered by another accident. It confifts of a misture of borax and common fand, by which a fubftance is formed, which, in heat, affumes the ftate of a very tough pafte, and becomes hard and compact on cooling.

[^10]: - See Appendix.

[^11]: * I have found, that, in open fire, the entire lofs fuftained by the carbonate varies in different kinds from 42 to $45 \cdot 5$ per cent.

[^12]: * I am neverthelefs of opinion, that, in fome fituations, experiments with compreffion may be carried on with great eafe and advantage in fuch tubes. I allude to the fituation of the geologifts of France and Germany, who may eafily procure, from their own manufactories, tubes of a quality far fuperior to any thing made for fale in this country.

[^13]: * I was favoured with this account of it by the late Profeffor Robison.

[^14]: * I meafured the capacity of the air-tubes by means of granulated tin, acting as a fine and equal fand. By comparing the weight of this tin with an equal bulk of water, I found that a cubic inch of it weighed 1330.6 grains, and that each grain of it correfponded to 0.00075 of a cubic inch. From thefe data I was able, with tolerable accuracy, to gage a tube by weighing the tin required to fill it.

[^15]: * The retentive power here afcribed to the procelain tubes, feems not to accord with what was formerly mentioned, of the carbonic acid having been driven through the fubftance of the tube. But the lofs by this means has probably been fo fmall, that the native properties of the carbonate have not been fenfibly changed. 'Or, perhaps, this penetrability may not be fo univerfal as' I have been induced to think, by having met with it in all the cafes which I tried. In this doubt, I ftrenuoufly recommend a further examination of this fubject to gentlemen who have eafy accefs to fuch procelains as that of Drefden or of Seve.

[^16]: * This was the fize of barrel ufed in all the following experiments, where the: fact is not otherwife expreffed.

[^17]: * This topic, however, has of late been much urged againft us, and an unfair advantage has been taken of what Mr Plapfair has faid upon it. What he gave as mere conjecture on a fubject of collateral importance, has been argued upon as the bafis and fundamental doctrine of the fyftem.

[^18]: * Edinburgb Iranfactions, Vol. V. Part I. p. 60-66.

[^19]: * This fituation of things, is fimilar to what happens when fmall-coal is moiftened, in order to make it cake. The duft, drenched with water, is laid upon the fire, and remains long wet, while the heat below fuffers little or no abatement.

[^20]: * "On peut donc regarder au moins comme très probable, que la profondeur " moyenne de la mer n'eft pas au-deffous de quatre lieues." De la Pláce, Hift. de l'Acad. Roy. des Sciences, année 1776.

[^21]: * Pbil. Tranf. 1777, p. 595.

[^22]: * Saussure, Voyages dans les Alpes, tom. ii. p. 99.-104.

[^23]: * This ftate of vifcidity, with its numberlefs modifications, is deferving of great attention, fince it affords a folution of fome of the moft important geological queftions. The mechanical power exerted by fome fubftances, in the act of affuming a cryftalline form, is well known. I have feen a fet of large and broad cryitals

[^24]: * Princip. Lib. I. Prop. 9r. Alfo Simpson's Fluxions, vol. II. §379. In the former, the conftant multiplier 2π is omitted, as it is in fome other of the theorems relating to the attraction of bodies. This requires to be particularly attended to, when thefe propofitions are to be employed for comparing the attraction of folids of different fpecies.

[^25]: * Notice de la vie de G. L. Le Sage de Genève, par P. Prevost, p. 39y.

[^26]: * The multiplier 2π, omitted by Maclaurin, is reftored as above, § xill.

[^27]: * Nov. Acta Petrop. 1792, p. 47 .

[^28]: * Princip, Lib. i. Prop. go.

[^29]: * Ir, as the following analyfis would lead us to expect, the fpecimen examined was a mixture of four parts iferine, and one part quartz and felfpar, the fpecific gravity of pure iferine hould be 4.964 .

[^30]: - Gehlen's Jour. vol. v. p.9.11. 13.

[^31]: * We may here obferve, that this formula may be confidered as the analytic expreffion of a general theorem (which is not melegant) reating to regular figures defcribed about any arch of a circle; and others analogous to it will occur in the following inveftigations.

[^32]: * This formula, although very elegant as an analytical transformation, does not feem to admit of being applied with advantage to the rectification of an arch, on account of the great number of factors of the product which would be required to give a refult tolerably correct.

[^33]: * The fame feries may alfo be put under another form, which it may not be improper to notice briefly, on account of the facility with which the terms may

[^34]: * Lucas notes the Gadolinite as one of the minerals in the collection at the Jardin de Plantes.

[^35]: * Jameson, vol, ii. p. 613.
 + Brochant, vol. i. p. 44.

[^36]: * Murray's Syfeem of Cbsmistry, vol. iii. Appendix, p. 49.
 + Page 5 I.

[^37]: * Der Fruhling, Captain Jacob Ketelson, captured, on her passage from Iceland to Copenhagen.

[^38]: * Ir has been obferved alfo by Profeffor Jamison, in the floetz-trap rocks behind Burntilland.

[^39]: * Links from other quarters, having been fubfequently added to his formae tion-fuites, by his pupils.

[^40]: * Greenftone is a literal tranflation from the German ; it is an extremely improper name; but as we have no other by which we can distingaish this variety of trap, we muft ufe it till a more appropriate is found, even at the expence of fuch language as red and blue greenfones. In the mean time, it muft be underftood merely as an arbitrary term.

[^41]: * The term dyke has been very generally applied to veins of this defcription, and I am not fatisfied that it is the leaft proper of the two; as there certainly is a marked diftinction between veins comnofed of rocks, and what we general-

[^42]: * Correfponding numbers will be found in the annexed engraving, which will explain more fully the relative pofition of the fpecimens.

[^43]: * Illuftrations of the Huttonian Theory, § 68.

[^44]: * Since this paper was fent to prefs, others have been obferved in different parts of the rock.

[^45]: * By junction Specimen is meant; a fpecimen which exhibits the greenfone and the fandflone conjoined.

[^46]: * Comparative View of the Huttonian and Neptunian Theory, p. x_{3}.
 t System of Mineralogy, vol. iii. p. 365.

