

TRANSTA'CIONS
OFTHE

ROYAL IRISH ACADEMY.
V O L. VII.

$$
\frac{\text { S.5.B.7. }}{1 . T} \text { n } A \pi
$$

$$
\begin{aligned}
& \text { niv Joy } \\
& \text { 19.2. IV . } 0 \text { \% }
\end{aligned}
$$

THE
 TRANSACTIONS OFTHE ROYALIRISH ACADEMY. V O L. VII.

$D \quad \mathrm{U} \quad \mathrm{B} \quad \mathrm{I} \quad \mathrm{N}:$
GEORGE BONHAM,
PRINTER TO THE ROYAL IRISH ACADEMY.
1800.

THE ACADEMY defire it to be underfood, that, as a body, they are not answerable for any opinion, representation of facts, or train of reafoning, which may appear in the following papers. The authors of the Several effays are alone refponfible for their contents.

4

-

.
-
-
-
$+$
S
E.

C O N T E N T.

I. ON the Preceffion of the Equinoxes. By the Rev. Matthew Young, D.D. S.F.T.C.D. and M. R.I.A. Page 3
II. General Demonfrations of the Theorems for the Sines and Cofines of Mulltiple Circular Arcs, and alfo of the Theorems for expreffing the Powers of Sines and Cofines by the Sines and Cofines of Multiple Arcs; to which is added a Theoren by belp webereof the fame Metbod may be applied to demonftrate the Properties of Multiple Hyperbolic Areas. By the Reverend Fohn Brinkley, A. M. Andrews' Profefor of Aftronomy, and M. R.I.A. 27
III. Remarks on the Velocity with which Fluids ifue from Apertures in the Veffels which contain them. By the Rev. Matthew Toung, D. D. S.F. T. C. D. and M.R.I. A. 53
IV. A new Method of refolving Cubic Equations. By Tho. Meredith, A. B. Trinity College, Dublin 69
V. On the Force of Tefimony in eftabli/Jing Facts contrary to Analogy. By the Rev. Matthew Toung, D. D. S.F.T.C.D. and M. R. I. A. 79
VI. On the Number of the Prinitive Colorific Rays in Solar Light. By the Rev. Mattherw Young, D.D. S.F.T.C.D. and M.R.I.A. - II9
VII. Obfervations on the Theory of Electric Attraction and Repulfon. By the Rev. George Miller, D.D. F.T.C.D. and M.R.I.A. 139
VIII. A general
$\begin{array}{llllllll}\mathrm{C} & \mathrm{O} & \mathrm{N} & \mathrm{T} & \mathrm{E} & \mathrm{N} & \mathrm{T} & \mathrm{S} .\end{array}$
VIII. A general Demonfration of the Property of the Circle difcovered by Mr. Cotes, deduced from the Circle only. By the Reverend Fohn Brinkley, A.M. Andrews' Profeffor of Aftronomy, and M. R. I. A. Page $1{ }^{15}$
IX. Additional Obfervations on the Proportion of Real Acid in the Three Antient known Mineral Acids, and on the Ingredients in various Neutral Salts and other Compounds. By Richard Kirwan, Efq. L.L.D. F.R.S. and M.R.I.A. - - - . 163
X. Efay on Human Liberty. By Ricbard Kirwan, Efq. L.L.D. F. R.S. and M.R.I.A. 305
XI. Synotical View of the State of the Weather at Dublin in the Year 1798. By Richard Kirwan, Efq. L.L.D. F.R.S. and M.R.I.A. - 316
XII. An Abftract of Obfervations of the Weatber of 1798, mrde by Henry Edgervorth, Efq; at Edgeworthfown in the County of Long ford in Ireland - . - - 317
XIII. A Methorl of expreffing, when poffible, the Value of one variable Quantity in integral Powers of another and conftant Quantities, baving given Equations expreffing the Relation of thefe variable Quanities. In wwhich is contained the general Doctrine of Reverfion of Scries, of approximating to the Roots of Equations, and of the Solution of fluxional Equations by Series. By the Rev. Yobn Brinkley, A. M. Andrews' Profeffor of Aftronomy, and M.R.I.A. - 325
XIV. Account of the Weather at Londonderry in the Year 1799. By William Paterfon, M.D. and M.R.I.A. 357
XV. Synoptical Vierw of the State of the Weather at Dublin in the Mear 1799. By Ricbard Kirwan, Efq. L.L.D. Pref. R.I.A. and F.R.S. - 359
POLITE LITERATURE.
XVI. Some Ob fervations upon the Greek Accents. By Artbur Browne, E/q; Senior Fellow of Trinity College, Dublin 359

$$
\begin{array}{lllllll}
S & C & I & E & N & C & E .
\end{array}
$$

$$
906910=
$$

$\left[\begin{array}{ll}{\left[\begin{array}{ll}1\end{array}\right]}\end{array}\right.$

On the PRECESSION of the EQUINOXES. By the Rev. MATTHEW YOUNG, D.D. S.F.T.C.D. E M. R. I. A.

> I_{T} is univerfally acknowledged, that Sir Ifaac Newton has Read April r, fallen into fome error in his calculation of the fun's force to produce the precefion of the equinoxes, making it by one half lefs than the truth : but the particular fource of this error has not been fo generally agreed upon.

Tнотви feveral excellent mathematicians, of whom D'Alambert feems to have been the firft, have given genuine folutions of this problem, by. proceffes entirely different from each ocher, perhaps it ftill may be worth while to endeavour to difcover diftinctly in what confifts the fallacy of New on's reafoning, and whether in :ome of the folutions of this curious queftion, which are recenved as genuine there do not lie fome fecret and unobferved errors, which being equal and contrary, compenfate each other, and thus leave the refult correct, though the premifes from which it is deduced are faulty.

$\left[\begin{array}{ll}4 & 4\end{array}\right]$

TiIe firft Lemma which Newton premifes to the inveftigation of the preceflion is as follows:

Fig. 1. "IF A P E P. reprefent the earth, of uniform denfity, de"fcribed with the centre C, poles P, p, and equator $A E$; and " if with the centre C and radius $\mathrm{P} C$, the fphere $\mathrm{P} a p e$ he fup" pofed to be defcribed; and $Q R$ be a plane perpendicular to " the right line joining the centres of the fun and earth; and " every particle of all the exterior earth $\mathrm{P} a p \wedge \mathrm{P}_{e}$, which is" " higher than the infcribed fphere, endeavour to recede on " either fide from the plane QR , and the effort of each particle " be proportional to its diftance from the plane; I fay, firft, " that the whole force and efficacy of all the particles in the " circle of the equator A E difpofed uniformly without the " fphere, throughout the whole circumference, in the form of a " ring, to turn the earth round its centre, is to the whole force " and efficacy of as many particles placed at the point A of " the equator which is moft remote from the plane $Q R$, to " move the earth round its centre with a like circular motion, "s as one to two. And that circular motion will be performed " round an axis lying in the common interfection of the equator " and the plane QR."

The demonftration of this Lemma is given in the Principia, and allowed to be legitimate.

$\left[\begin{array}{ll}5 & \end{array}\right]$

His fecond Lemma is as follows :
" The fame things being fuppofed, I fay, fecondly, that the " whole force and efficacy of all the particles without the fphere " to turn the earth round its axis, is to the whole force of as " many particles difpofed uniformly in the form of a ring, in " the circumference of the circle AE of the equator, to move "the earth, with a like circular motion, as two to five."

The demonftration of this Lemma is alfo given in the Principles, and is likewife received as unexceptionable.

Lemma 3.

" The fame things being fuppofed, I fay, thirdly, that the " motion of the earth round the axis already defribed, com" pounded of the motion of all its particles, will be to the " motion of the aforefaid ring round the fame axis in a ratio, " which is compounded of the ratio of the quantity of matter " in the earth to the quantity of matter in the ring, and of the " ratio of three fquares of the arch of a quadrant of a circle " to two fquares of the diameter; that is, in a ratio of matter " to matter, and of the number 925275 to the number " 1000000. "

This Lemma I fhall firft demonftrate in Newton's fenfe, and then correct.the conclufion on the principles propofed by Simpfon and Frifi.

[6]

By the revolution of the circle $\mathrm{E} \AA \mathrm{HC}$, and circumferibed fquare (fig. 2.) PQST round the common axis E H , let there be defcribed a fphere and circumferibed cylinder. Let the radius AO be $=1$, the periphery of the circle $A \mathrm{ECH}$ $=p$, the ordinate $\mathrm{BR}=y$, abfciffa $\mathrm{B} \mathrm{O}=x$. Then $\mathrm{I}: p:: x: p x$, the periphery of the circle whole radius is $O B$; therefore $p x \times 2 y$ will be the furface generated by the ordinate R G , in the revolution of the circle $A E C H$ round the diameter EH: but x will be the meafure of the velocity of the point B, therefore $2 \hat{p} x^{2} y$ will be the momentum of all the particles in that furface; and the nuent of the quantity $2 p x^{2} y \dot{x}$ will be the momentum of the entire fphere, when x is equal to the radius $\mathrm{A} O$. But $y=1-x^{2} 7^{\frac{1}{2}}$; therefore the fluxion $x^{2} \dot{x^{2}} y=x^{2} \dot{x} \times \overline{1-x^{2}}=\frac{x^{2} \dot{x}}{1-x^{2} \frac{1}{2}}-\frac{x^{4} \dot{x}}{\left.1-x^{2}\right)^{\frac{1}{2}}}$; and the fluent of $\frac{x^{2}-x}{1-x^{2} \frac{1}{2}}=\frac{1}{2} \times$ circular arc $\mathrm{ER}-\frac{1}{2} \times \times 1-x^{2}!$, and the nluent of $-\frac{x^{4} \dot{x}}{1-x^{2} 1^{2}}=-3 \times \operatorname{circulararcER-2x^{2}+3\times x\times 1-x^{2}\frac {1}{2}} \frac{8}{8} ;$ therefore the whole fluent, when $x=1$, is $\frac{1}{8} \times$ quadrantal arc $\mathrm{EA}=\frac{1}{32} p$; and $2 p x^{2} \dot{x} \times 1$ - $x^{2} ; \frac{1}{2}=\frac{1}{16} p^{2}$, the motion of the entire fphere.

In a cylinder, the ordinate y becomes $=\mathrm{BR}=\mathrm{I}$; therefore the fluxion of the momentum of the cylinder $=2 p x^{2} \dot{x}$, whofe fluent, when $x=1$, is $\frac{\hat{3}}{3} p$. Thercfore the motion of a cylinder is to the motion

[7]

motion of an infcribed fphere, revolving round the fame fixed axis, and with the fame angular velocity, as $\frac{2}{3} p$ to $\frac{-2}{5} p^{2}$, or as I 6 to $\frac{3}{2} p$, that is, as four equal fquares to three circles infcribed in them.

Let the quantity of matter in an indefinitely flender ring, furrounding the fphere and cylinder at their common contact A OC , be reprefented by the letter m, its velocity will be as $\mathrm{A} O=1$; and its motion $=m$, and therefore the motion of the cylinder is to the motion of the ring as $\frac{2}{3} p$ to m, or as $2 p$ to $3 m$.

The motion of the annulus, uniformly continued round the axis of the cylinder, is to its motion revolving uniformly in the fame periodic time round one of its diameters, as the circumference of a circle to twice the diameter.

For (fig. 2) let $A \mathrm{R}=z$, and let its fluxion \dot{z} be given, R B $=y, \mathrm{AB}=x$, and $\mathrm{A} \mathrm{O}=r$; let the motion be performed round the diameter A C, the velocity of the point R will be as $\mathrm{R} \mathrm{B} \mathrm{or} y$; therefore the fluxion of the motion of the annulus round the diameter AC, is to the fluxion of the motion round the center O in an immoveable plane, as $\dot{z} y$ to $\approx \dot{r}$, that is, from the nature of a circle, as x to z; and therefore the motions themfelves are to each other in the fame ratio, that is, when $x=\mathrm{AC}$, as the diameter to half the circumference, or as twice the diameter to the circumference of a circle.

Hence, by compounding all thefe ratios, the truth of the Lemma is manifert.

$\left[\begin{array}{ll}8 &]\end{array}\right.$

But Simpfon in his mifcellaneous tracts has jufly obferved, that though this reafoning be indifputably true in Newton's fenfe, yet there is a difference between the quantity of motion fo confidered, and the momentum, whereby a body revolving round an axis, endeavours to per'evere in its prefent ftate of motion, in oppofition to any new force impreffed, which latter kind of momentum it is that ought to be regarded in computing the alteration of the body's motion in confequence of fuch force. In this cafe, every particle is to be confidered as acting by a lever terminating in the axis of motion; fo that to have the whole momentum, the moving force of fuch particle muft be multiplied into the length of the lever by which it is fuppofed to act; whence the momentum of each particle will be proportional to the fquare of the diffance from the axis of motion, as it is known to be in finding the center of percuffion, which depends on the very fame principles.

The correction arifing from this change in the procefs amounts only to about $I \frac{1}{2}$ ", as will eafily appear in the following manner:

The fluxion of the moment of a fphere, from what has been faid already, is $2 p x^{3} y \dot{x}$; from the nature of the circle, $x^{2}=\mathrm{r}-y^{2}$, as before; therefore $x \dot{x}=-y \dot{y}, x^{3} \dot{x}=y^{3} \dot{y}-$ $y \dot{y}$, and $2 p x^{3} y \dot{x}=2 p \times \overline{y^{4} y-y^{3} \dot{y}}$, whore fluent is $\frac{4}{15} p$, when $y=1$.

[9]

In a cylinder, $y=\mathrm{I}$, therefore the fluxion of the moment $=2 p x^{3} x$; whofe fluent is $\frac{1}{2} p$, when $x=\mathrm{r}$.

The moment of a ring revolving round its center is double the momentum of the fame ring revolving round one of its diameters. For let \dot{z} be the fluxion of the arch, y the ordinate, and x the abfciffa, radius being unity; $\dot{z} y^{2}$ is the fluxion of the moment of the ring revolving round one of its diameters; but, from the nature of the circle, $\dot{z}=\frac{x}{y}$, therefore $\dot{z} y^{2}=\dot{x} y$, which is the fluxion of the area ABR; therefore when $x=1$, that is, when the arch is equal to $\frac{1}{4} p$, the meafure of the moment will be the area of a quadrant; and the meafure of the moment of the entire ring will be equal to the area of the circle, or $\frac{1}{2} p$.
I_{F} the ring revolve round its center, in an immoveable plane, its moment will be equal to the ring multiplied into the fquare of its radius, that is, equal to p Therefore the moment in the former cafe is to that in the latter, as $\frac{1}{2} p$ to p, or as one to two.

Hence, from what has been demonftrated, the momentum of a fphere is to the momentum of a cylinder, revolving round their axes with the fame angular velocity, as $\frac{4}{5}_{5}^{5}$ to $\frac{1}{2}$; the momentum of a cylinder is to the momentum of a ring revolving round its centre, in like manner, as $\frac{1}{2} p$ to m; and the momentum Vol. VII.

B
of

[10]

of a ring revolving round its centre, is to the momentum of the fame ring revolving round one of its diameters, as two to one; therefore compounding thefe ratios, and ex aquo the momentum of a fphere revolving round its axis, is to the momentum of a ring revolving round one of its diameters, as $8 p$ to 15 m , or as $800000 \times$ quantity of matter in the fphere, to $1000000 \times$ the quantity of matter in the ring.

If therefore $9^{\prime \prime} 7^{\prime \prime} 20^{\mathrm{i}}$, viz. the quantity of the preceffion, which according to Newton's calculation arifes from the action of the fun alone, be encreafed in the ratio of 925725 to 800000 , it will become $10^{\prime \prime} 33^{\prime \prime \prime}$.

Bur it is well known, that the true quantity of the preceffion, arifing from the action of the folar force, is nearly double this quantity. Since therefore the correction of this 3d Lemma will not account for the great difference between the refult of Newton's calculation and the truth, we muft look for the caufe of the difference elfewhere. Simpfon is of opinion, that it arifes from this, that the momentum of a very flender ring revolving about one of its diameters, is only the half of what it would be if the revolution were to be performed in a plane, about the centre of the ring ; and therefore, that all conclufions, which do not take this into the account, murt be two litt.'e by juft one half. But it is evident, that this cannot be the true caufe of the difference, becaufe Newton did actually confider, that the motion of a ring round one

[ri]

of its diameters was lefs than when it revolved round its centre, though he has differed from Simpfon in the ratio which he has affigned of their motions in thefe two cafes; and when the ratio of their motions is admitted to be as one to two, and the other corrections propofed by Simpfon are alfo made, the total error on thefe accounts is found to be but $1,5^{\prime \prime}$, as has been already fhewn.

Mr. Milner, in his paper on this fubject in the 6gth vol. of the Philofophical Tranfactions, agrees with Frifi in thinking, that the error lies in Newton's affumption, that the receffion of the nodes of a rigid annulus and a folitary moon, revolving in the perimeter of the annulus, are equal ; whereas in truth, as they affert, (though erroneoully, as we fhall prefently fhew), the receffion of the latter is but one half of that of the former.

Let us therefore examine particularly whether the recefion of the nodes of a rigid annulus be indeed double the receffion of the nodes of a folitary moon, as has been afferted.

Let AE (Fig. I.) reprefent the rigid annulus, indefinitely flender, projected into its own diameter, $\mathrm{P} p$ its axis; let the line of the nodes be at right angles to SC , the line joining the centres of the fun and earth. From C take the arch $C L_{2}$ and draw L M parallel to DB; let $g=$ the gravity of any given quantity of matter, as a cubic inch; " $b=$ the f face defcribed in $\mathrm{I}^{\prime \prime}$ by a

B 2 body

[12]

body falling freely by the force of gravity; $p=$ the periphery of a circle whofe diameter is unity; alfo let $A C=1 ; S$ angle $\mathrm{DCA}=s ;$ Cos. $\mathrm{DCA}=c ;$ arch $\mathrm{CL}=\approx ;$ fine of $\mathrm{CL}=y$. Then $\mathrm{L} \mathrm{M}=c y$, and $\mathrm{C} \mathrm{M}=s y$.

The difturbing force of the fun is equal to f, I M (Cor. 17. Prop. 66. Lib. I. Princip.) and the force of a particle of matter at L to move the annulus about the centre, in the cire ion PQAD, is $C M \times f \times L \mathrm{M}$, acting by the power of the lever CM ; that is, the force of this quantity of matter at I. is $=c s f y^{2}$; therefore the Gluxion of the force of the matter in a quadrant of the annulus is $\operatorname{csf} y^{2} z=\operatorname{csf} \times \frac{y^{2}}{\sqrt{1-y^{2}}}$; but the fluent of $\frac{y^{2} \dot{y}}{\sqrt{1-y^{2}}}$ is $\frac{1}{2} z-\frac{1}{2} y \times \overline{1-y^{2}}$, and therefore the whole fluent is $\frac{1}{2} \operatorname{csf} \approx-\frac{1}{2} \operatorname{csf} y \times \overline{1-y^{2}} \frac{2}{3}$; and when $y=1$, the force of the matter in a quadrant of the annulus is $=\frac{c s f p}{4}$, and the force of the whole annulus is $p c s f=$ to the fimple force $\frac{p c s f}{\sqrt{\frac{1}{4}}}$ acting at the diftance $\sqrt{\frac{1}{2}}$ from the centre, that is, at the diftance of the centre of gyration from the centre of the annulus. This is the force of the fun, to difturb the annulus, when at the greateft diftance from the nodes; call this fimple force Fes.

$\left[\begin{array}{ll}\text { I3 }\end{array}\right]$

The quantity of matter in the annulus is $2 p$, and the diftance of the centre of gyration from the centre of the earth is $\sqrt{\frac{1}{2}}$; and by the property of that centre, if the whole matter of the annulus were collected into that point, any force applied to move it about the centre C, would generate the fame angular velocity, in the fame time, as it would do in the ring itfelf. And fince this force $\mathrm{F} c s$ acts at the fame diftance $\sqrt{\frac{1}{2}}$ from the centre of the annulus, it is the fame thing as if it were directly applicd to the body to move it. Now to find the motion generated, fince the fpace defcribed in a given time, is as the force directly, and the matter moved inverfely, therefore $g: b:: \frac{p c s f}{2 p \sqrt{\frac{1}{2}}}: \frac{b f c s}{2 \sqrt{\frac{1}{2}} g}$ $=$ the fpace defcribed by the centre of gyration in $\mathrm{I}^{\prime \prime}$. And $2 p \sqrt{\frac{1}{2}}$ (the circumference of the circle whofe radius is the diftance of the centre of gy ration from the centre of the annulus): $360^{\circ}:$: $\frac{b f c s}{2 \sqrt{\frac{1}{2}} g}: 360 \times \frac{b f c s}{2 p g}$ the angle through which the ring is drawn in $I^{\prime \prime}$ by the action of the fun, when at the greateft diftance from the nodes.

But the force of the fun when at any other diftance from the nodes, as at H , will be lefs; and the mean quantity of the force may thus be invefligated. Draw the great circle p HGP, and making radius $=1$, let the arch $\mathrm{CH}=z$, fine of $\mathrm{CH}=y$; then in the fpherical triangle $\mathrm{Ci} \mathrm{G}, \operatorname{Rad}(1): \mathrm{S} . \mathrm{CH}(y):: \mathrm{S}$. angle DCA (s): S. HG ${ }^{\prime}=s y$. But it has been already proved,

[I 4$]$

that the force of the fun is equal to $\mathrm{F} \times$ by the product of the fine and cofine of his height above the plane of the annulus, therefore the force of the fun at H is equal to $\mathrm{F} s y \times I-s^{2} y^{22^{\frac{1}{3}}}$. But this force acts entirely in the plane $\mathrm{PGH} p$, therefore we muft refolve it into two forces, one acting in the plane $P Q A$, which is that we are looking for, the other in the plane PC p, perpendicular to the former; this latter force is deftroyed by an equal and contrary force, when the fun is equidiftant on the other fide of the line of the nodes; but the other force always acting in the fame direction, is that only by which the ring is annually affected. The Cos. GH: Cos. angle DCA: Rad. : Sin. angle H (Cas. II. Sph. Trig.) and Rad : Sin. angle H: : Sin. CH: Sin. CG (Cas. 2.) \because Cos. GH $\left(1-s^{2} y^{2} \frac{1}{2}\right):$ Cos. DCA (c): : Sin. CH (y): Sin. CG $=\frac{c y}{I-s y^{\frac{1}{2}}}$. Then, to find the part of the force acting in the plane $\mathrm{PQ} \hat{\mathrm{A}}, \operatorname{Rad} .(\mathrm{I}):. \mathrm{F} s y \sqrt{\mathrm{I}-s^{2} y^{2}}$ (the whole force) : : S. GC $\left(\frac{c y}{\sqrt{1-s^{2} y^{2}}}\right):$ Fcsy y^{2}, the force in the direction $P Q$ And hence to find the mean annual force, we muft find the fum of all the Fcsy in the circle, or the fluent of $\mathrm{Fcs} y^{2} \dot{z}=\frac{\mathrm{Fcs} y^{2} y}{\sqrt{1-y^{2}}}$; whofe fluent, found as before, is $\frac{1}{2} \mathrm{~F} \operatorname{csz}-\frac{1}{2} \mathrm{~F} \operatorname{csy} \sqrt{1-y^{2}}$; and when $y=\mathrm{I}$, the fluent becomes $\frac{1}{4} \mathrm{~F} c s p$, and in the whole circle $=\mathrm{F} \operatorname{csp}$; this divided by the whole circumference $2 p$, the mean force comes out $\frac{1}{2} \mathrm{~F}$ cs,

$\left[\begin{array}{lll}\text { I5 }\end{array}\right]$

that is, half the greateft force, when the fun is at the greateft diftance from the nodes.

Now to compute the force of the fun to produce the anticipation of the nodes of a fingle mnon at A , the nodes of the orbit being in quadrature; the force of the fun $=f c s$; the quantity of matter in the moon is $=\mathrm{r}$. Then $g: b:: f c s: \frac{b f c s}{g}$ the fpace defcribed in $\mathrm{r}^{\prime \prime}$; and $2 p$ (the circumference of a circle whofe radius is unity, or the diftance of the moon from the earth) : $360^{\circ}:: \frac{b f c s}{g}: 360 \times \frac{b f c s}{2 p g}=$ the angle defcribed in $\mathbf{I}^{\prime \prime}$ by the plane of the orbit of a folitary moon in fyzige.

And by a-procefs exactly fimilar to that ufed before in the cafe of a rigid annulus, it may be fhewn, that the mean force of the fun to difturb the moon, conftantly in fyzige, is but half its force when at the greatef diftance from the nodes.

It follows therefore, from what has been demonftrated, that the greateft force of the fun to move the annulus. in the direction PQA is equal to its greateft force to move the plane of the moon's orbit, the moon being conftantly in fyzige, and that the mean force in both cafes is half the greateft force; confequently the mean force of the fun to move the plane of the annulus in the direction PQA is equal to its mean force to move the plane of a folitary moon in fyzige, in the fame direction

$\left[\begin{array}{ll}\text { 16 }\end{array}\right]$

direction. But by Cor 2 Prop 30. Lib. 3. Principia, in any given pofition of the nodes, the mean horary motion of the nodes of a folitary rev lving moon, is juft half the horary motion of the nodes of a moon continually in fyzige. And Mr. Landen, in his memoir, has fhewn, that when a rigid annulus revolves with two motions, one in its own plane, and the other about one of its diameters. half the whole motive foce acting upon the ring is confumed in counteraaing the centrifugal force of the ring, by which it endeavours to revolve round a momentary axis, in confequence of its two motions; and the other half only is eff acious in producing the angular motion of the sing about its diameter; fo that the motion of the nodes of a detached ri id annulus, being produced by half the mean folar force, is exactly equal to that of the orbit of a folitary moon. For in the cafe of a folitary moon no centrifu al force to produce a revolution round a momentary axis can take place, there being nothing for the body to act upon; but in a rigid ring, its two motions compounded will give the ring a tendency to revolve about an axis neither perpendicular to nor in the plane of the ring, and therefore this axis cannot be permanent; fince each particle of the ring will act by its contrifugal force to imprefs on it a new motion about an axis perpendicular to the former. But if the rigid annulus, fo revolving, be attached to the equator of a fphere, the cafe will be widely different; for the whole motive force is here employed in giving motion to the annulus and fphere together

$\left[\begin{array}{ll}\text { [7 }\end{array}\right]$

about a diameter of the equator ; therefore the part of it which is employed in giving motion to the ring, bears a very fmall proportion to the whole force, and it is this fmall part only which is counteracted and rendered inefficient; for the fphere itfelf has no centrifugal force, whereby it endeavours to revolve round a momentary axis. Hence the motive force being given, viz. the force on the ring, the angular motion generated will be inverfely as the inertia of the matter moved; now the inertia of the annulus is $=$ the matter of the annulus $\times \sqrt{\frac{5}{2}}$ (the diftance of its centre of gyration from the centre of the ring) ; and the inertia of the fphere and ring together is = the matter in them $\times \sqrt{\frac{2}{3}}$; therefore the angular velocity of the ring muft be diminifled in the ratio of the inertia of the ring to the inertia of the ring and fphere together, in order to have the angular velocity which now will be produced in the ring, in confeguence of its connection with the fphere, by the counteracting force. That is, if a be the angular velocity of the ring and fphere united, the angular velocity which that part of the force which is counteracted could produce in the ring $\underset{:}{\text { will be }}=a \times \frac{\text { inertia of the ring }}{\text { inertia of the fiphere }}=a \times \frac{1}{250}$. The $25^{\text {th }}$ part therefore of the whole force only is now efficient in moving the ring round its diameter ; but this part is $=$ the centrifugal force, and therefore it is this part only of the whole folar force which is counteracted.

$\left[\begin{array}{lll}{[8} & 1\end{array}\right]$

Hence therefore it appears, that Newton rightly fuppofes the preceffion of the nodes of a rigid, detached annulus, and of a folitary moon to be equal; though the principles on which he argues are infufficient, becaufe he did not, as was neceffary, confider the operation of the counteracting centrifugal force. And when he comes to apply this deduction, his concluion is erroneous, becaufe, omitting the confideration of the centrifugal force as before, he conceived, that the motion of a folitary annulus and of a ring attached to a fphere were produced by the fame efficient force; whereas in this latter cafe, the centrifugal force of the annulus vanilhes, and therefore the whole force of the fun becomes efficient; that is, the efficient force in the cafe of a ring adhering to the equator of a globe, is double the efficient force in the cafe of a folitary ring; and therefore the quantity of the preceflion, eftimated on this falfe hypothefis, comes out too little by juit one half.

Bishop Horsely, in his commentary on this problem, obferves, that if this affertion, to wit, that the motion of the nodes of a rigid annulus and of a folitary moon are the fame, be true, he cannot fee how the quantity of the preceffion of the equinoxes can be different from that which is affiened by Newton; but he refrains from any abfolute decifion: "Si hoc " vere dictum fit (fays he) fc. quod par eft ratio nodormm " annuli lunarum terram ambientis, five lunæ illæ fe mutuo " contingant, five liquefcant, \& in annulum continuum for-

[19]

" mentur, five denique annulus ille rigelcat, \& inflexibilis " reddatur, nefcio qui fieri poffit, ut alius fit punctorum equi" noctialium motus a vi folis oriundus, quam calculi Newtoniani " fuadent. Quem tamen longe alium invenere viri permagni "Eulerus \& Simpfonus noftras, quos velim lector confulas. " Ipfe nil definio." Now from what has been faid it clearly appears, how the motion of the nodes of a folitary moon and rigid annulus may be equal, and yet the quantity of the preceffion affigned by Newton erroneous in the ratio of one to two; the efficient motive force of an attached annulus being double the efficient motive force of a ring revolving folitarily, with a compound motion round its centre and one of its diameters.

If then the corrected quantity of $10^{\prime \prime} 33^{\prime \prime \prime}$, be further corrected, by augmenting it in the ratio of two to one, the refult will nearly agree with the quantity invefligated by other eminent mathematicians; thus Simpfon makes it $21^{\prime \prime} 7^{\prime \prime \prime}$, Landen $27^{\prime \prime} 7^{\prime \prime \prime}$, D'Alambert $23^{\prime \prime}$ nearly; Euler 22"; Frifi $21 \frac{1}{4}^{\prime \prime}$; Milner $21^{\prime \prime} 6^{\prime \prime \prime}$, and Mr. Vince, $21^{\prime \prime} 6^{\prime \prime}$; fee Phil. Tranf. vol. 77.

From this review of the folutions of this problem, it appears that Mr. Landen has the honour of having firft detected the particular fource of Newton's miftake, by difcovering that when a rigid annulus revolves with two motions, one in its own plane and the other round one of its diameters, half the motive force

[20]

acting upon the ring is counteracted by the centrifugal force arifing from this compound motion, and half only is efficacious in accelerating the plane of the annulus round its diameter. As Mr. Landen has not exprefsly demonftrated this propofition, I am perfuaded I fhall afford the mathematical reader much gratification, by here laying before him the following very elegant demonfration, communicated to me by the learned Mr. Brinkley, Profeflor of Aftronomy in the Univerfity of Dublin.

Prop. If a rigid ring $n q \mathrm{~N} Q$ revolves with two motions (fig. 3.), one in its own plane, and the other about the diameter $q \mathrm{~T} \Omega$; and if a motive force, acting at the point Q, be fuppofed equivalent to the whole motive force acting upon the ring, then half this force is efficacious in accelerating the motion of the point Q (in a direction perpendicular to the plane of the ring) and the other half is confumed in counteracting the centrifugal force, arifing from the motion of the particles of the ring about a momentary axis $\mathrm{P} \mathrm{T} p$.

Is the great circle $n b$ let a point b (fig. 3.) be taken indefinitely near to n, and in the ring a point r, fo that $n b$ and $2 r$ may reprefent the angular velocities about the diameter and the centre of the ring. Let d and c reprefent thefe velocities, and r the radius of the ring. Draw $r s$ perpendicular to the - plane of the ring, and meeting the great circle $b \mathrm{Q} s$ in s;

[2 r]

then will $r s$ reprefent the accelerating force of the point 2 perpendicular to the plane of the ring; but $r s: n b:=\mathrm{Q}:$ Rad. (r), therefore $r s=\frac{c d}{r}$.

Consequentix, if $R=$ the matter of the ring, a motive force acting upon the point $\mathrm{Q}=\frac{c d}{r} \times \frac{1}{2} \mathrm{R}$ rill be cquivalent to the whole efficacious motive force on the ring.

The momentary axis $\mathrm{PT} p$ is in a plane perpendicular to the plane of the ring, and which paffes through $2 q \cdot \cdot$ Make P T $=$ the radius of the ring, and draw Pr perpendicular to $Q q$, and we have $\mathrm{P} r: \mathrm{Tr}:: d: c$, or $\mathrm{P} r=\frac{d r}{\sqrt{c^{2}+d^{2}}}$, and $\mathrm{T} r=\frac{c r}{\sqrt{c^{2}+d^{2}}}$. Let PT (in fig. 4.) reprefent the momentary axis, and QEN a quadrant of the ring. From any point E of the ring draw $\mathrm{E} v$ perpendicular to P , and $v w$ perpendicular to QT . The centrifugal force of E : centrifugal force of $\mathrm{N}:: \mathrm{Ev}: \mathrm{NT}$, or the centrifugal force of $E=$ centrifugal force of $N \times \frac{E v}{N T}=\frac{c^{2}+d^{2}}{r} \times$ particle $\mathrm{E} \times \frac{\mathrm{E} v}{\mathrm{NT}}$, becaufe the velocity of $\mathrm{N}=\sqrt{c^{2}+d^{2}}$. Sut the efficacious part of this force in a direction perpendicular to the plane of the ring $=$ whole $\times \frac{v z o}{\mathrm{Ev}}$; and a' force acting at Qequi--

[22]

valent to this $=$ whole $\times \frac{v w}{\mathrm{Ev}} \times \frac{\mathrm{T} x}{\mathrm{TQ}}=\frac{c+a^{z}}{r} \times \mathrm{E} \times \frac{\mathrm{E} v}{\mathrm{NT}} \times \frac{v w}{\mathrm{E} v}$ $\times \frac{\mathrm{T} x}{\mathrm{TQ}}=\frac{c^{2}+d^{2}}{r} \times \mathrm{E} \times \frac{v \mathrm{~T} \times \mathrm{Pr} \times \mathrm{T} 2}{\mathrm{~T} \mathrm{Q}^{3}}$. Now if great circles be conceived drawn through P, Q, and P, E; (by Sph. Trig.) cos. PE $(v \mathrm{~T}) \times \mathrm{Rad} .(\mathrm{TQ})=\cos . \mathrm{PQ}(\mathrm{T} r) \times \cos . \mathrm{QE}(\mathrm{T} x)$. Therefore a motive force at Q equivalent to the motive, efficient, centrifugal force of $\mathrm{E}=\frac{c^{2}+d^{3}}{r} \times \mathrm{E} \times \frac{\mathrm{Tr} \times \operatorname{Pr} \times \mathrm{T} x^{3}}{\mathrm{~T} Q^{4}}$; therefore the fum of all thefe quantities $=$ the motive force at \mathcal{Q} equivalent to the fum of all the efficient centrifugal forces, or the centrifugal force of the ring. But it is eanily fhewn, that the fum of all thefe quantities $=\frac{c^{3}+d^{2}}{r} \times \frac{1}{2} \mathrm{R} \times \frac{\mathrm{T} r \times \operatorname{Pr} \times \mathrm{T} \mathrm{Q}^{2}}{\mathrm{TQ}}=\frac{c^{2}+d^{2}}{r} \times \frac{1}{2} \mathrm{R}$ $\times \frac{c d r^{2} \times T Q^{2}}{c^{2}+d^{2} \times T Q^{4}}=\frac{c d}{r} \times \frac{1}{2} R$. Hence the motive force at Q, equivalent to the, fum of all the efficacious centrifugal forces, is expreffed by the fame quantity $\frac{c d}{r} \times \frac{1}{2} R$, as the force at Q equivalent to the whole motive, efficacious force on the ring. Q.E.D.

- Mr. Simpson has pointed out the miftakes in the folutions of this problem propofed by M. Silvabelle and Walmefley; but neither is his own calculation entirely faultlefs; and his conclufion appears to be correct, only becaufe the errors in the premifes compenfate each other. Thus he fuppofes, that the whole motive force,

$\left[\begin{array}{ll}23\end{array}\right]$

force, acting on a detached rigid ring, revolving with a two-fold motion, one round its centre, the other round a diameter, is equal to the efficient force by which the plane of the ring is moved round its diameter; whereas the former is to the latter as two to one; half the whole motive force being counteracted and rendered inefficient by the centrifugal force. 2dly, He fuppofes, that the whole efficient motive force, acting on a detached rigid annulus, revolving in the fame manner as before, is equal to the whole efficient motive force acting on an annulus, attached to and connecled with a fphere, which is alfo falfe in the ratio of one to two; the centrifugal force in the cafe of an attached annulus vanifhing; and therefore no part of the whole force is rendered ineffectual; and confequently half the motive force in the latter cafe will produce an equal effect as the whole in the former, half of the force in the formcr cafe not contributing in any degree to the motion of the annulus round its diameter, but being totally employed in counteracting the tendency of the ring to revolve round a momentary axis.

Mr. Milner's and Frifi's calculations become likewife correct in the refult, in the fame manner as Simpfon's, by the mutual counteraction of equal and contrary errors. Thus they both hold, that the preceffion of a rigid annulus is double that of a folitary moon, whereas they are equal, as we have already demonfrated, by which the preceffion would come out twice greater than the truth; but they likewife are of opinion, that the preceflion

$\left[\begin{array}{lll}{[} & 24 &]\end{array}\right.$

coffion of an attached and folitary annulus are equal, whereas the former is double that of the latter; this error therefore counterbalances the former.

Mr. Emerson has given two folutions of this queftion, which are both erroneous, one in his Mifcellanies, the other in his Fluxions. In the former he adopts the fame principles with Newton, in fuppofing the preceffion of a folitary moon, a detached rigid annulus, and an attached annulus to be equal. In the latter he determines the direction in which a body would move in confequence of a uniform motion impreffed on it in one direction, and a uniformly accelerated motion in another, to be the diagonal of a parallelogram, whofe two fides reprefent the fpaces defcribed from quiefcence, in the fame time, by the two forces; which, as Mr. Milner has juftly obferved, produces an error of one half in the conclufion. For let $A D$ be the fpace defcribed by the uniform motion (fig. 5.), while the body would defcribe $A B$ by the accelerated motion; fince the time is indefinitely little, the accelerating force may be confidered as conftant, and therefore the body will in fact defcribe the parabola A GC; and the direction of the motion at C will be the tangent EC ; but the angle $\mathrm{DEC}=\mathrm{DAC}+\mathrm{ACE}=2 \mathrm{DAC}$ nearly, becaufe the tangents $A \mathrm{E}, \mathrm{CE}$, are very nearly equal (Ham. Con. Cor. 1. Prop. 3. Lib. 2. and Prop. 3. Lib. 3.); that is, the true angle of deviation DEC , is very nearly double the angle

[25]

of deviation DAC, as determined by the diagonal of the parallelogram.

In this folution Mr. Emerfon fays, "the earth being an oblate " fpheroid, the fphere is encompaffed with a folid cruft going " round the equator in the manner of a ring; now the effect of " the furces of the fun and moon upon this cruft, and the motion " communicated thereby to the whole body of the earth, is what "we are to enquire after." He then calculates the force of the fun upon the annulus, and fuppofes this whole force efficient; he next fuppofes this whole motive force to act at the diftance of the centre of gyration from the centre of the earth, and thence deduces the motion generated in the plane of the equator about one of its diameters. It appears therefore, that he fuppofes the whole motive force of the fun to be efficient on the annulus, feparately confidered: and $\mathbf{2 d l y}$, that this efficient force is equal to the efficient force on the fame annulus, when connected with the earth; which, exclufive of the error detected by Mr. Milner, are the very fame falfe hypothefes with thore adopted by Simpron.

Bur here a queftion naturally arifes, if the error of Newton's calculation be as great as is pretended, whence comes it to pafs that the refult of his calculation agrees fo exactly with phrnomena; for on fuppofition, that the preceffion arifing from the force of the fun alone is but $9^{\prime \prime} 7^{\prime \prime \prime}$, the preceffion caufed by Vox. VII.

D
the

[26]

the moon will be $40^{\prime \prime} 52^{\prime \prime \prime} 52^{\text {ir }}$, and the whole preceffion, arifing from both caufes conjoined, will be $50^{\circ \prime \prime} 0^{\prime \prime \prime} 12^{\text {iv }}$, according to obfervation.

To this objection a fatisfactory anfwer is fuggefted by Newton himfelf, where he fays, that the preceffion will be diminifhed if the matter of the earth be rarer at the circumference than at the centre. The rcafon of which is evident from what has been already demonftrated, for the quantity of matter in the earth being given, the diftance of the centre of gyration from the centre of the earth will be lefs, the more the matter of the earth is accumulated towards the centre, and therefore the lefs will be the angular motion generated by the fun and moon.
rig. s.

Fig. 4.
(a)

[27]

> GENERAL DEMONSTRATIONS of the THEOREMS for the SINES and COSINES of MULTIPLE CIRCULAR ARCS, and alfo of the THEOREMS for expreffing the POWERS of SINES and COSINES by the SINES and COSINES of MULTIPLE ARCS; to which is added a THEOREM by belp whereof the fame METHOD may be applied to demonfrate the PROPERTIES of MULTIPLE HYPERBOLIC AREAS. By the Rev. J. BRINKLEY, A. M. ANDREWS' Profeffor of Afronomy, and M. R.I.A.

Tcular arcs may be found in terms of the chord of the fimple

Read May б $^{\text {, }}$ 1797. arc were firft given by Vieta, and afterwards in a different manner by Mr. Briggs, which are very fully explained in the Trigonometria Britannica, and their ufes in conftructing trigonometrical tables fhewn. From thefe may readily be deduced theorems for the cofines of multiple arcs in terms of the cofine of the fimple arc, and for the fines in terms of the fine of the fimple arc when the multiplier is an odd number, and confequently the feries firft given by Sir Ifaac Newton for the fine of a multiple arc when the multiplier is an odd number, the only cafe in which that feries terninates-Afterwards fimilar

$\left[\begin{array}{ll}28 &]\end{array}\right.$

theorems for the fine and cofine of multiple arcs, when the multiplier is any whole pofitive number even or odd, were given by feveral authors-But all the writers on this fubject that I have feen, except Dr. Waring, have deduced the law of the feries from obfervation in a few inftances without a general demonftration of its truth——Dr. Waring has (Curv. algebr. Propr. Theor. 26 \& Cor.) by help of his admirable theorem for finding the fums of the powers of the roots of an equat. given a general demonftration of the feries for finding the chord of the fupplement of a multiple arc in terms of the chord of the fupplement of the fimple arc, and confequently a general demonfration of the theorem for the cofine of a multiple arc in terms of the cofine of the fimple arc, and alfo of the fine of a multiple arc when the multiplier is an odd number. But in the cafe where the multiplier is an even number no demonftration, as far as I have feen, has ever been given by any author. Dr. Waring's method of demonftration cannot be applied to this cafe-The following demonftration extends to every multiplier whether even or odd. The demonftrations for the fine and cofine of the multiple arc in terms of the cofine of the fimple arc, from whence the other theorems are immediately deducible, are of this kind -The probable law is deduced from obfervation in a few inftances and then the general truth of that conjecture is proved. Dr. Waring's demonftration, although by a very different procefs, being founded upon the properties of algebraical equations, is alfo of this kind, as it depends

[29]

upon his theorem for the fums of the powers of the roots of an equation, of which he has given the fame kind of demon-ftration-Previous to the demonftrations of thefe theorems I have given a demonftration of the theorems for expreffing the fine and cofine of multiple arcs in terms compounded of the fine and cofine-Thefe theorems alfo have been given by many authors, and the only general demonftrations of them have been deduced from the hyperbola and the confideration of impoffible quantities-However ufeful impoffible quantities may be in difcovering mathematical truths they ought never to be ufed in frict demonftration, and it muft feem a very circuitous mode to apply the properties of the hyperbola to demonftrate thofe of the circle-Thefe demonftrations are from the properties of the circle and the theorems for combinations.

The theorems hitherto mentioned are more particularly applicable to the conftruction of trig. tables and the refolution of certain equations-In confequence of the great advances that have been made in phyfical aftronomy fince the time of Sir Ifaac Newton, it has been found neceffary for facilitating the calculation of particular fluents to exprefs the powers of the fine and cofine in terms of the fines and cofines of multiple arcs, and theorems for this purpofe have been given by feveral authors. They have all however either deduced the general law from obfervation without demonftration, or generally demonftrated it by help of impoffible logarithms-The demonftrations

$\left[\begin{array}{ll}{[30}\end{array}\right]$

demonfrations here given are general, and deduced from the circle by help of the do rine of combinations.

As the hype bola has been fo frequently ufed to demonftrate properties of the circle, I have fubjoined a theorem by which the connec ion of multiple circular areas, and multiple hyperbolic areas is more fully apparent than by any other that I have met with, and from whence by the doctrine of combinations, theorems may be deduced for hyperbolic areas fimilar to thofe of the circle.
I. Theorem. Let s and c be the fine and cofine of any arc a, then, radius being unity, and n any whole number,

1. The fine of $n a=n c c^{n-1} s-\frac{n \cdot \overline{n-I} \cdot n-2}{\text { I. }} c^{n-3} s^{3}+\& c$.
2. The cofine of $n a=c-\frac{n \cdot n-1}{1.2} c^{n-2} s^{2}+\& c c$.

In each the powers of s increafe by 2 , and thofe of c diminifh by 2 , till the laft becomes I or O . In the fine the coefficient of $c^{n-v} s=\frac{ \pm n \cdot \overline{n-1} \cdot \overline{n-2} \ldots \text { (to } v \text { terms }}{\text { I. } 2 \cdot 3 \cdots-v}+$ when $\frac{v-1}{2}$ is even and-when odd. And in the cofine the coefficient of $c^{n-v v}= \pm$ $\frac{n \cdot \overline{n-1} \text {. (to } v \text { terms }}{\text { 1. 2. 3. v }}+$ when $\frac{v}{2}$ is even and - when odd.

[3I]

Demonftration-Let $a, a^{\prime}, a^{\prime \prime}, a^{\prime \prime \prime}, \& c$. reprefent any arcs
$s, s^{\prime}, s^{\prime \prime}, s^{\prime \prime \prime}$, their fines
$c, c^{\prime}, c^{\prime \prime}, c^{\prime \prime \prime}$, their cofines

Then by the common theorem for the fine and cofine of the fum of two arcs,
The fine \quad The cofine $\}$ of $a+a^{\prime}=\left\{\begin{array}{c}s c^{\prime}+s^{\prime} c \\ c c^{\prime}-s s^{\prime}\end{array}\right.$
$\left.\begin{array}{l}\text { The fine } \\ \text { The cofine }\end{array}\right\}$ of $a+a^{\prime}+a^{\prime \prime}=\left\{\begin{array}{l}s c^{\prime} c^{\prime \prime}+s^{\prime} c c^{\prime \prime}+s^{\prime \prime} c^{\prime} c-s s^{\prime} s^{\prime \prime} \\ c c^{\prime} c^{\prime \prime}-c s^{\prime} s^{\prime \prime}-c^{\prime \prime} s s^{\prime}\end{array}\right.$

$$
\& c . \quad \& c .
$$

The following obfervations may be readily made by confidering the way which in thefe fucceffive values are formed.
I. In both fine and cofine of the fum of n arcs $\left(\stackrel{a}{a}+a^{\prime}+a^{\prime \prime} \& c\right.$. the number of factors $s s^{\prime}-\ldots c c^{\prime}$ in any term is equal to n and that the fines $s, s^{\prime}, s^{\prime \prime}, \& c$. and alfo the cofines $c, c^{\prime}, c^{\prime \prime}, \& c$. are concerned exactly alike in the whole quantity.
2. IN the fine of the fum of n arcs $\left(a+a^{\prime}+\& c\right.$.) the greateft number of cofines $c, c^{\prime}, c^{\prime \prime}, \& c$. together in any term $=n-\mathrm{I}$. This numt er diminifhes by 2 , and confequently the number of s, s^{\prime}, \&c. increafes by 2 .

$\left[\begin{array}{ll}{[32}\end{array}\right]$

3 . In the cofine of the fum of n arcs the greateft number of $c, c^{\prime}, c^{\prime \prime}$, \&oc. in any term $=n$. the next lefs number $n-2, \& c$. and confequently the number of $s, s, \& x c$. increafes by 2 .
4. With refpect to the figns of the different products-In the fine of n arcs $a+a^{\prime}+a^{\prime \prime}+8 \mathrm{c}$) when $\mathrm{I}, 5$ or $4 p+1$ (p being any number $s, s^{\prime}, s^{\prime \prime} \& c c$. are united together, the fign is + otherwife - In the cofinc of n arcs when 2,6 , 10 or $2 p$ (p being odd) $s, s^{\prime}, s^{\prime \prime}$ are united together the fign will be - otherwife + .
5. In no term can the fine and cofine of the fame arc occur.
6. In any term ssis $s^{\prime \prime}-c c^{\prime} c^{\prime \prime}-$ - whether of the fine or cofine if m be the number of the cofines and confequently m - n the number of the fines: then, becaufe each of the quantities $s, s^{\prime} \& c$. and alfo $c, c^{\prime} \& c$. are concerned exactly alike in the fine of the fum of $n \operatorname{arcs}\left(a+a^{\prime}+a^{\prime \prime}+\& c.\right)$, and alfo in the cofine of the fum of $n \operatorname{arcs}\left(a+a^{\prime}+a^{\prime \prime}+\& c \mathrm{c}\right.$.) and likewife becaufe the fine and cofine of the fame arc cannot occur in the fame term, it follows that the number of terms $s s^{\prime} s^{\prime \prime}$ (m terms) \ldots $c c^{\prime} c^{\prime \prime}-(\overline{m-n}$ terms $)=$ the number of combinations of n things taken m together $=\frac{n \cdot \overline{n-1} \cdot \overline{n-2} \cdots-\overline{n-m}-1}{m}$.

From

$\left[\begin{array}{ll}33\end{array}\right]$

From there observations it immediately follows, if a, d^{\prime}, $a^{\prime \prime}, \& c$. are all equal, that the fine of $n a=n c^{n-1} s-\frac{n \cdot \overline{n \cdot-1} \cdot \overline{n-2}}{1 \cdot 2 \cdot 3 \cdot}$
$c^{n-3}{ }^{3}+\& \mathrm{c}$. and that the confine of $n a=c-n \cdot \frac{n-1}{1.2} c^{n-2} s^{2}+\& \mathrm{c}$. and alfo that the general terms are as fated in the theorem. Q.E.D.
II. ${ }^{n-1 n} n^{n-3 n-2}$
II. Theorem. 1. The corine of $n a=2 \quad c-n .2 \quad c+$ $\frac{n . n-3}{1.2} 2^{n-5} c$. $\& \mathrm{c}$. to be continued by fucceflively diminifhing the index of c by 2 till it becomes I or 0 , and affixing to c^{k-u} the coeff.
$\pm 2^{n-u-1} \cdot \frac{n \cdot n-1}{n} \cdot \overline{n-u+2}-$ to $\frac{u}{2}$ terms of which the firn is

+ when $\frac{u}{2}$ is even, and - when odd.

2. The fine of $n a=2^{n-1 n-1} \overline{n-2} 2^{n-3 n-3} c+8 c . \quad: \sqrt{1-c^{2}}$ continued by diminifhing the index of c by 2 till it becomes 1 or 0 , and affixing to c the coefficient

$$
\begin{aligned}
& \sqrt{n-u} \overline{n-u+\mathrm{I} .} \overline{n-u+2}-\cdots\left(\frac{u-\mathrm{I}}{2} \text { terms }\right) \\
& 2 \times \frac{\text { I. }}{2 .}-\sqrt{\text { I. }}
\end{aligned} \text { of which the fin }
$$

$$
\text { is }+ \text { when } \frac{v+\mathrm{I}}{2} \text { is odd and }- \text { when even. }
$$

Vol. VII.
E
Demonstr.

[34]

Demoxstr. By fubfituting in the values of the fine and cofine of n a found by the laft theoren, for n fucceffively 2,3 , 4, \&cc. and exterminating s it may be conjecturcd that the general terms of the fine and cofine will be as here fated. That this conjecture is true appears in the following manner:

Let $\mathrm{B} c^{n-1-u}$ be a term in the cofine of $\overline{n-1} a$, and $\mathrm{C} c^{n-u}$ $\sqrt{1-c^{2}}$, and $\mathrm{D} c^{n-u-2} \sqrt{1-c^{2}}$ terms in the fine of $\overline{n-1} a$: and that the latter terms will be of this form appears from the former theorem. Applying the common theorem for the fine and cofine of the fum of two arcs, it readily appears that the coeff. of c^{n-u} in the cofine of $n a=\mathrm{B}-\mathrm{C}+\mathrm{D}$.

Now fuppofing the theorem generally true and fubfituting in the general terms for $u, \overline{n-1}$ and for u fubet. $u, u-1$ and $u+$ I fucceffively, the refult is

$$
\begin{aligned}
& \mathrm{B}= \pm 2 \stackrel{n-u-2}{\overline{n-1} \cdot n \overline{n-u} \overline{n-u}+1} \cdots \frac{\text { to } \frac{u}{2} \text { terms }}{\text { 1. } 2.3 \cdots \text { to } \frac{u}{2} \text { terms }} \\
& -\mathrm{C}= \pm 2 \times \frac{n-u \overline{n-u} \overline{1} \overline{1} \overline{n-u} \overline{+2} \cdots \text { - to } \frac{u}{2}-1 \text { terms }}{\text { 1.2.3. } \cdots \cdots \text { to } \frac{u}{2}-1 \text { terms }} \\
& \mathrm{D} \equiv
\end{aligned}
$$

[35]

$\mathrm{D}= \pm 2^{n-u-2} \times \frac{\overline{n-u-\mathrm{I}} \cdot \overline{n-u}-\cdots-\text { to } \frac{u}{2} \text { terms }}{\text { I. } 2 . \quad 3 .-\bar{t} \frac{u}{2} \text { terms }}$

$\frac{\overline{n-u+2}-\text { to } \overline{\frac{u}{2}-2} \text { terms }}{--\frac{u}{2}-1}=$

Let alfo $\mathrm{G} c^{n-u-1} s$ be a term in the fine of $n-\mathrm{I} . a$, and let $\mathrm{H} c^{n-u}$ be a term in the cofine of $\overline{n-1} a$, and it readily appears that $\mathrm{G}+\mathrm{H}=$ coeff. of the term $c^{n-u} s$ in the fine of $n a$. Now fuppofing the general term of the fine truly expreffed.
E 2
$G=$

$$
\begin{aligned}
& {\left[\begin{array}{ll}
& 36
\end{array}\right]}
\end{aligned}
$$

Hence it appears that if the general terms are rightly exprefled for the fine and cofine of $n-1 a$, they are alfo rightly expreffed for the fine and cofine of $n a$, confequently if they are true in the inferior values of n they are true in the fuperior, but they are true in the inferior \because \&c. \&c.
III. Cor. If the feries be arranged in a contrary order :
I. When

$\left[\begin{array}{ll}{[37}\end{array}\right]$

1. WHEN n iscven the cofine of $n a= \pm \pm \mp \frac{n^{2} c}{1.2} \pm \frac{n^{2} \cdot n^{2}-2^{2}}{1 \cdot 2 \cdot 3 \cdot 4 \cdot} c^{4}$
 c where v is always even. When n is of the form $2 p,(p$ being any odd number the fign will be + or - according as $\frac{v}{2}$ is odd or even and when n is of the form $4 p$, (p being any number) it will be + or - according as $\frac{v}{2}$ is even or odd.
2. WHEN n is odd, the cofine of $n a= \pm n c \mp \frac{n \cdot n-1 c^{2-3} \pm}{\text { I. } 2 \cdot 3}$ \&c. and the general term is $\pm \frac{\overline{n \cdot n-1} \frac{n_{2}^{2}-3}{1.2} 3 . \operatorname{to} \frac{v+1}{2} \text { terms } v}{v}$ where v is always odd. When n is of the form $4 P+1$ the fign' will be + or - according as $\frac{v+1}{2}$ is odd or even, when of the form $4 p+3$ it will be + or - according as $\frac{v+1}{2}$ is even or odd. Each feries is to be continued till the coefficient becomes $=0$.

Dem. The general term of the cofine of $n a$.

$$
= \pm
$$

[3^{8}]

or fubftituting for $u, n-v$, the coff. becomes
$\frac{ \pm n \cdot \overline{v+1} \bar{v}+2-\frac{n+\overline{v-4}}{2} \frac{n+\overline{v-2}}{2}}{\mathrm{I}_{2} \cdot 2-\frac{n-v}{2}}{ }_{2}^{v-1}$
$= \pm \frac{\frac{n-\overline{v-2} \cdot n-\overline{v-4}-\frac{n+\overline{v-4}}{2}}{2} \frac{n+\overline{v-2}}{2} n_{0}^{2}}{3} 2^{v-1}$
$= \pm \frac{\overline{n \cdot n-v-2} \cdot \overline{n-v-4}-\overline{n+v-4} \cdot \overline{n+v-2}}{\text { I. 2. } 3-\sqrt{-}}$

1. When n is even and $\because v$ even it is of this form $+\frac{n \cdot n-\overline{v-2}-\sqrt{n-2} \cdot n \cdot \overline{n+2}-\quad n+\overline{v-2}}{\text { I. }} 2.3-\bar{v}$ $= \pm n^{2}-n^{2} \overline{2} n^{2} \quad n-4 \quad-\quad$ to $\frac{v}{2}$ term 8 1.2. $3-v$

The fign is + or - according as $\frac{u}{2}$ or $\frac{n-v}{2}$ is even or odd.

[39]

\therefore If n be of the form $2 p$ (p being odd) the fign is + or according as $\frac{2 p-v}{2}$ is even or odd $\therefore a s \frac{v}{2}$ is odd or even. If π be of the form $4 p$ then it is + or - as $\frac{4 p-v}{2}$ is even or odd and \because as $\frac{v}{2}$ is even or odd.
2. When n is odd and $\because v$ odd the gen. coeff. becomes of

The fign is + or - according as $\frac{u}{2}$ or $\frac{n-v}{2}$ is even or odd.
\therefore If n be of the form $4 p+1$ it is + or $-\frac{4 p+1-v}{2}$ or $\frac{4 p+2-\overline{v+1}}{2}$ is even or odd or \therefore as $\frac{v+1}{2}$ is odd or even. If n be of the form $4 p+3$, it is + or - as $\frac{4 p+3-v}{2}$ or $\frac{4 p+4-v+1}{2}$ or \therefore as $\frac{v+1}{2}$ is even or odd. Whence \&cc. \&c.
IV. Theorem:

$\left[\begin{array}{ll}40\end{array}\right]$

IV. Theorem. I. When n is any even number. The fine of $n a= \pm 2{ }^{n-1} 5 \frac{n-1}{5} \quad$ 2. $\frac{n-3}{n-2} s \quad \stackrel{n-3}{ \pm \& c}: \sqrt{1-s^{2}}$ to be continued by diminifhing the index of s by 2 till it becomes unity. The upper figns take place when n is of the form $2 p$ (p being odd) and the lower when it is of the form $4 p$ (p being any number).

$$
\overline{n-u+1} \overline{n-u+2}-\text { to } \frac{u-1}{2} \text { terms }
$$

The general term is \pm

$$
\text { 1. 2. } 3-\frac{u-1}{2}
$$

$\times 2^{n-u n-u} \times \sqrt{1-s^{2}}:+$ when $\frac{u+1}{2}$ is odd $\}$ and n of the form $2 p$

$$
\left.- \text { when } \frac{u+1}{2} \text { is even }\right\} \text { (} p \text { being odd.) }
$$

+ when $\frac{z+1}{2}$ is even?
- when $\frac{u+1}{2}$ is odd \int
and n of the form $4 p$ (p being any number)

2. When n is any odd number, the fine of $n a= \pm$ $2^{n-1} s^{n} \mp n 2^{n-3} s^{n-2}+\& c$. to be continued by diminifhing the index of s by 2 till it becomes unity. The upper figns take place when n is of the form $4 p+1$, and the under when of the form $4 p+3$.

[4I]

$$
\text { n. } \sqrt[n-u+1 .]{n-u+2}-\operatorname{to} \frac{u}{2} \operatorname{ter} n \sqrt{n-u}
$$

The general term is \pm

$$
\text { I. 2. } 3 \rightarrow \frac{4}{4}
$$

$\mathrm{H}-\mathrm{H}-\mathrm{I}$

$2 s$
$\left.\begin{array}{l}\text { + when } \frac{u}{2} \text { is even } \\ \text {-when } \frac{u}{2} \text { is odd }\end{array}\right\}$ and n of the form $4 \phi+y$

+ when $\frac{u}{2}$ is odd
- when $\frac{\psi}{2}$ is even
and n of the form $4 p+3$.

Demon. The general term of the fine of $n \times \overline{Q-a}=$ (II)

$\times s, \overline{Q-a}$, where Q is a quad.
I. Let n be of the form $2 p, p$ being odd. The fine of $2 p$ $\times \overline{\mathrm{Q}-a}=s, \overline{2 p-2 \mathrm{Q}+2 \mathrm{Q}-2 p a}=$ (becaufe $\overline{2 p-2}$. Q is a multiple of the circumference) fine $\overline{2} \overline{\mathrm{Q}}-2 p a=s, 2 p a \therefore$ when n is of the form $\approx p, p$ being odd the general term of the fine of $n a=$ VoL. VII.

[42]

+ when $\frac{u+1}{2}$ is odd and - when even.
Let n be of the form $4 \beta, p$ being any number.
The fine of $4 p \times \overline{Q-a}=$ (because $4 p \mathrm{Q}$ is a multiple of the circumference $)=$ fine of $-4 p a=-s, 4 p a \therefore$ when n is of the form $4 p$ the general term of the fine of $n a= \pm$

$$
\pm \frac{\overline{n-u+1}-\quad-\text { to } \frac{u-1}{2} \text { terms }}{\mathrm{I} .2-\frac{u-1}{2}} \times 2^{n-u} \mathrm{~s}, a^{n-u} \times \operatorname{cs} a-\text { when }
$$

$\frac{x+1}{2}$ is odd and + when even.
2. When n is odd.

The general term of the confine of $n \times \overline{\mathrm{Q}-a}=$ (II)

$$
=\frac{ \pm \frac{n \cdot \overline{n-u}+1 \cdot 1}{n-u+2}-\text { to } \frac{v}{2} \text { terms }}{\text { 1. } 2 \cdot 3-\frac{n}{0}} 2^{n-1} \text { cs } \overline{\mathrm{Q}-a}{ }^{n-*}
$$

Let n be of the form $4 p+1$.
THE confine of $\overline{4 p+1} \times \overline{Q-a}=$ es $\overline{4 p \mathrm{Q}+\overline{Q-4 \overline{p+I} a}=}$ $e \overline{e s}, \mathrm{Q}-4 \overline{4+1} a=$ fine $\overline{4 p+1} a \therefore$ when n is of the form $4 \overline{p+I}$.

$\left[\begin{array}{ll}43\end{array}\right]$

the gen. term of the fine of $n a=$

$3^{n-\mu-1} \sqrt{n}, a^{n-u} \div$ when $\frac{\psi}{2}$ is even and - when odd.
Let n be of the form $4 p+3$.
The corine of $\overline{4 p+3} \times \overline{Q-a}=$ cs of $\overline{3 Q-4 \bar{p}+3 a}=$ (becaufe adding or fubtracting $\frac{1}{2}$ the circumference changes the fign of the confine $)=-$ cs of $\overline{2-4 p+3} a=-$ s. of $\overline{4 p+3} a$.
\therefore When n is of the form $4 \bar{p}+3$ the general term of the fine of

$$
n a= \pm \frac{n \cdot \overline{n-u+1} \cdot \overline{n-u}+2-\operatorname{to} \frac{u}{2}}{\text { 1. 2. } 3 \cdot-\frac{u}{2}} \operatorname{terms}_{2}^{n-u-1} t_{5}^{n-u} .
$$

_ when $\frac{u}{2}$ is even and + when odd. Whence the truth of the theorem will eafily appear.
V. Cor. If the ferries be arranged in a contrary order.

$$
\text { The fine of } n \mathrm{~A}=n s-\frac{n \cdot n-\mathrm{I}^{3}}{\mathrm{I}_{2} 2 \cdot s^{3}}+\& \mathrm{~F} \text {. when } n \text { is any odd }
$$

[: 44]

$$
-\frac{}{2}
$$

number; and the fine of $n a=n s-\frac{n \cdot n-2}{1 \cdot 2 \cdot 3} s^{3}+\& c$. $\times \sqrt{1-s^{2}}$ when n is any even number.
I_{N} the former cafe the general term is

$$
\pm \frac{n_{n}^{2}-\overline{n^{2}}{ }^{2} \cdot n^{\text {I. }} \cdot \frac{\text { to } \frac{v+1}{2} \text { terms }}{2 \cdot 3} \times s^{v} \text { to v terms }}{}
$$

v being always odd, + when $\frac{v+1}{2}$ is odd and when even. In the latter cafe the general term is \pm
n. $\frac{n-2^{2} \cdot n-3}{2}$. to $\frac{v+1}{2}$ term $8{ }^{2} \times \sqrt{I-s^{2},}+$ when $\frac{v}{2}$ is 1. 2. 3 - - to v terms odd and - when even.

This Cor. may be deduced from the theorem in the fame manner as the Cor. Art. III. was deduced from its theorem.

Theorems for the Powers of the Sines and Comes.

VI. Theorem. If c be the cofine of the arc a and rad. unity then n being any whole pofitive number.

$$
c^{n}=\frac{-n-1}{\frac{n}{2}} x: \operatorname{cs} n a+n \cdot \operatorname{cs} \overline{n-2} a+8 c \text { cont to } \frac{n+1}{2} \text { terms }
$$

when n is odd and when n is even to $\frac{1}{2} n+1$ taking only $\frac{1}{2}$ the

[45]

laft term. The general term is $\frac{n \cdot \overline{n-1} \cdot \overline{n-2}-\cdots \text { to } m \text { terms }}{\text { I. 2. } 3-m}$ cs $\overline{n-2 m} a$.

Dem. Let $a, a^{\prime}, a^{\prime \prime}, \& c$. reprefent any arcs $c, c, c^{\prime \prime}, \& c$. their cofines

Then by trig. cs, $a \times 2 c s, a \prime=c s, \overline{a+a^{\prime}}+c s, \overline{a-a}$
and in like manner $c s, a \times 2 c s, a^{\prime} \times 2 c s, a^{\prime \prime}=\overline{c s,} \overline{a+a^{\prime}}+c s, \overline{a-} a^{\prime} \times 2 c s, a^{\prime \prime}$ $=c s, \overline{a+a^{\prime}+a^{\prime \prime}}+c s, \overline{a+a^{\prime}-a^{\prime \prime}}+c s, \overline{a-a^{\prime}+a^{\prime \prime}}+c s, \overline{a-a^{\prime}-a^{\prime \prime}}, \& c . \& c$. and it is evident that to multiply by twice the cofine of any arc it is only neceffary to encreafe and diminifh each of the former quantities $a+a^{\prime}+\& c . a-a^{\prime}, \& c$. by that arc, and take the fum of the cofines of the arcs fo encreafed and diminifhed : therefore becaufe in the product of the cofines of $a, 2 a^{\prime}, 2 a^{\prime \prime}, \& c$. all the $\operatorname{arcs} a^{\prime}, a^{\prime \prime}, \& c$. muft be involved exactly alike, it follows that
$2^{n-1} \times c s, a \times c s, a^{\prime} \times c s, a^{\prime \prime} \times \& c=$ fum of the cofines of all the arcs formed by adding to a each combination of the $\overline{n-1}$ arches $a^{\prime}, a^{\prime \prime}, \& x$. taken pofitively or negatively. Hence by the theorems for combinations, there will be

1. term the cofine of $a+a^{\prime}+a^{\prime \prime}+8 \mathrm{c}$.

$$
\overline{3-1}
$$

[46.]

22-I terms the confine (fum $\overline{n-1}$ arcs - I arc) (B)
$\frac{n-1 . n-2}{1.2}$. terms the cosine (fum $\overline{n-2}$ arcs - fum 2 arcs) (C)
$\frac{\overline{n-1} \overline{n-2}-n-m}{\text { I } 2 .-\frac{n}{m}}$ terms the confine (fum of $\overline{n-n}$ arcs — fum m arcs) (H)
$\frac{\overline{n-1}--n-m-1}{1.2-m-1}$ terms the confine (fum m arcs - fum $\overline{n-m} \operatorname{arcs})\left(\mathrm{H}^{\prime}\right)$
$\overline{n-1}$ terms the confine (fum 2 arcs - fum $\overline{n-2} \operatorname{arcs}$) (C^{\prime})
I. term the confine (1 arc $(a)-\operatorname{Sum} n-1$ arcs) B^{\prime}.

Now if the arcs be all taken equal, all the B s are equal to each other, all the $\mathrm{C}^{i}, \dot{8}$ c. \& c . and alfo $\mathrm{B}=-\mathrm{B}^{\prime}, \mathrm{C}=-\mathrm{C}^{\prime}$ $\& c . \& c$. and confequently $c s, \mathrm{~B}=c s, \mathrm{~B}^{\prime}, c s, \mathrm{C}=c s, \mathrm{C}^{\prime}, \& \mathrm{c} . \& \mathrm{c}$.

$$
\begin{aligned}
& \because \frac{\overline{n-\mathrm{I}} \cdot \overline{n-m}}{\mathrm{I} \cdot 2 .-m} \operatorname{cs} \mathrm{H}+\frac{\overline{\pi-1}-n-\overline{m-1}}{\mathrm{I} \cdot 2 \cdot 3-m-\mathrm{I}} \text { cs } \mathrm{H}^{\prime} \\
& =\frac{n, \overline{n-1}-\cdots-\bar{m}-1}{1.2-m} \text { cs, } \overline{n-2 m} \text { a. }
\end{aligned}
$$

[47]

WHENCE $c=\frac{n}{=} \overline{1}_{2}^{n-1} \times \operatorname{cs} n a+n . c 5 \overline{n-2} a+\frac{n . n-1}{1 .} \operatorname{cs} \overline{n-4} a+8 x$. continued to $\frac{n+1}{2}$ terms when n is odd: but when n is even there

$$
=\frac{n \cdot \pi-1-\operatorname{to} \frac{n}{2} \text { terms }}{2.1 .2 .3--\frac{1}{2} n} \times \text { cs o a } \because \text { in this cafe }
$$

$$
\stackrel{n}{c}=\frac{\pi}{2}: \times \text { cs } n a+n . \text { cs } \overline{n-2} a+8 c . \text { to } \frac{n}{2} \text { terms }+\frac{7}{2} \times
$$

$$
\text { n.n-1 }-\frac{n}{2} \text { terms }
$$

$$
\text { 1.2. }-\frac{n}{2}
$$

VII. Theorem. I. When n is any odd number, and s the fine of any arc. a, rad. being unity, $s^{n}=\frac{1}{2}{ }^{n-1} \times \pm s, n a \mp n, s, \overline{n-2} a$ $\pm \frac{n_{0} n-1}{\text { r. } 2 .} s, n-4 a \mp \& c$ continued to $\frac{n-1}{2}$ terms \&c. the upper figns taking place when n is any odd number of the form $4 p+1$, and the lower when of the form $4 p+3$.

[48]

 $\left.\begin{array}{l}f \text { when } m \text { is even } \\ \text { - when } m \text { is odd }\end{array}\right\}$ and n of the form $4 p+r$.
$\left.\begin{array}{l}+ \text { when } m \text { is odd } \\ - \text { when } m \text { is even }\end{array}\right\}$ and n of the form $4 p+3$.
2. When n is any even number.

$\frac{n_{2}}{n-1} \times \frac{n \cdot n-1 . n-2}{2 . \text { I. 2. } 3-\frac{y}{2} n \text { terms }-\frac{1}{2} n}$. The upper feigns take place when n is of the form $4 p$, and the lower when of the form $2 p, p$ being any odd number. The $m_{b s w}^{t h}$ term is
$\pm \frac{n \cdot \overline{n-1}-(m \text { terms }}{1.2 \cdot 3-(m \text { terms })}$ cs $\overline{n-2 m a}$
$\left.\begin{array}{l}+ \text { when } m \text { is odd } \\ \text { - when } m \text { is even }\end{array}\right\}$ and n of the form $2 p, p$ being odd.
$\left.\begin{array}{l}\text { + when } m \text { is even } \\ \text { - when } m \text { is odd }\end{array}\right\}$ and n of the form $4 p$.
Dem. Let $Q=$ a quads. then (VI) $\overline{c s, Q-a}=\bar{n}^{n} 7^{n-1} \times \operatorname{csn} \overline{Q-a}$ +8 c . and the general $m^{\text {th. }}$. term is $\frac{n \cdot \overline{n-1}-\text { to } m \text { terms }}{\text { I. 2. } 3-m \text { terms }}$ cs $n-2 m . \overline{2} \bar{a}$.

1. If t

[49]

I. Ift. When n isof the form $4 p+1$, fubft. for $n, 4 p+1$
cs $\overline{n-2}{ }^{2}, \overline{\mathrm{Q}-a}=c s, \overline{4-2 m} \mathrm{Q}+\mathrm{Q}-n=2 m a=$ (becaufe adding or fubtracting the circumference makes no alteration in the value of the cofine and adding or fubtracting $\frac{1}{2}$ the circumference changes the fign of the cofine) $\pm c s \overline{\mathrm{Q}-\overline{n-2 m} a}=$ $\pm s ; \overline{n-2 m} a+$ when m is even and - when odd.

1. 2. When n is of the form $4 p+3$, fubft. for $n, 4 p+3$, $c s, \overline{n-2 m} \cdot \overline{\mathrm{Q}-a}=c s, \overline{4 p+3-2 m \mathrm{Q}-\overline{n-2 m}} a= \pm s, \overline{n-2 m} a$, + when m is odd-and - when even.
1. I. When n is even of the form $2 p, p$ being odd, fubft. for n $2 p, c s \overline{n-2 m}, \overline{\mathrm{Q}-a}=c s \overline{2 p-2 m \mathrm{Q}-\overline{n-2 m} a}= \pm c s \overline{n-2 m} a$, + when m is odd and - when even.
2. 2. When n is of the form, $4 p$; fubflituting for $n, 4 p$, cs $\overline{n-2 m} . \overline{\mathrm{Q}-a}=c s \overline{\overline{p-2 m}, \mathrm{Q}-\overline{n-2 m}, a}= \pm c s \overline{n-2 m_{i} a}$ + when m is even and - when odd.

Whence fubftituring in the general term for the $c s, \overline{Q-a}$, the s, a and for $c s, \overline{n-2 m} a$, the values above found, the truth of the theorem is evident.

[50]

Properties of the Equildteral Hyperbola.

VIII. Theorem. Let $a, a^{\prime}, a^{\prime \prime}$ reprefent abfciffas meafured from the centre on the axis of an equilateral hyperbola, and $o, O^{\prime}, O^{\prime \prime}$ correfponding ordipates: let alfo the hyperbolic area contained by the femi axis ($=$ unity), diftance from the centre to the extremity of the ar ${ }^{\sim}$, and the arc, the abfciffa of which is $a^{\prime \prime}$ and ordinate $o^{\prime \prime}$, be equal to the fum of the areas contained in the fame manner by the femi axi, dift. and arcs the abfciffas and ordinates of which are a, a^{\prime} and $0, o^{\prime}$: then will $a^{\prime \prime}=a a^{\prime}+0 o^{\prime}$ and $o^{\prime \prime}=a o^{\prime}+a^{\prime} 0$.

Dem. Let the area ACV (fee fig.) $=\mathrm{ECV}+\mathrm{BCV}$., let the double ordinates $\mathrm{FE} e, b \mathrm{~GB}, a \mathrm{HA}$ be produced to meet the affymptote $\mathrm{C} w w^{\prime} x^{\prime} y^{\prime} \mathrm{N} \mathrm{Y} \mathrm{X} m n \mathrm{~W} p$, and let fall the perps. $a w^{\prime}, b x^{\prime}, e y^{\prime}$, VN, EY, BX, AW. Becaufe $\mathrm{ACV}=\mathrm{EVC}+\mathrm{BCV}$ and becaufe (by prop. hyperb.) $\mathrm{CVN}=\mathrm{ECY}=\mathrm{BCX}=\mathrm{ACW}$ $\because V N E Y+V N B X=V N A W$ or $V N E Y=B A W X:$ and it has been proved by many writers on conics that when thefe areas are equal
$\mathrm{CN}: \mathrm{CY}: \mathrm{CX}: \mathrm{CW}$
or $\mathrm{VN}: \mathrm{EY}:$: BX: A W

Whence it follows that

$$
\begin{gathered}
\mathrm{CV}: \mathrm{E} m:: \mathrm{B} \pi: \mathrm{A} p \\
\text { or } \mathrm{I}: a-0: a^{\prime}-o^{\prime}: a^{\prime \prime}-0^{\prime \prime}
\end{gathered}
$$

[5^{1}]

in like manner it may be fhewn that CV:: em: $: b n: a p$ or I: $a+0:: a^{\prime}+o^{\prime}: a^{\prime \prime}+0^{\prime \prime}$
hence $a^{\prime \prime}-o^{\prime \prime}=a a^{\prime}-a o^{\prime}-a^{\prime} o+0 o^{\prime}$
and $a^{\prime \prime}+o^{\prime \prime}=a a^{\prime}+a o^{\prime}+a^{\prime} 0+o 0^{\prime}$
and $\because a^{\prime \prime}=a a^{\prime}+0 o^{\prime}$ and $o^{\prime \prime}=a o^{\prime}+a^{\prime} o$. Q.E.D.
From the fimilitude between thefe theorems and thofe for thefine and cofine of the fum of two circular arcs, it is unneceflary to point out how every thing may be deduced for multiple hyperbolic areas in the fame manner as was done for multiple circular arcs.

G 2

REMARKS on the VELOCITY with which FLUIDS ifte from APERTURES in the VESSELS which contain them. By the Rev. MATTHEW YOUNG, D.D. S.F.T.T.C.D. छ M. R. I. A.

> WHEN water iffues from a fmall aperture in the bottom or fide of a veffel, which is kept conftantly full, it has been fuppofed, that the force accelerating the loweft plate of water, of indefinitely little altitude, immediately over the orifice, is the weight of the incumbent water only; and therefore, that after the motion of the plate has once commenced, the preffure of the incumbent column will be diminifhed, and of confequence, the force accelerating the plate, during its defcent through its own altitude, will not be conftant.

Read Jan. 20th, 1798.

But, in fact, it is not the preffure of the incumbent water, which accelerates the loweft plate; for every plate of water immediately incumbent over the hole, abftracting from all lateral preffure, begins to be accelerated equally at the fame moment; and therefore the incumbent column, exclufive of any lateral preffure, could produce no increafe of velocity, in proportion to its increafed height. The force which really accelerates

[54]

accelerates the iffuing plate, is the preffure of the ambient water, which furrounds the cylinder immediately over the aperture; and this lateral preffure being communicated to the upper furface of the plate, mult be as much encreafed by the velocity of the fuperior defcending plate, as it is diminifhed by that of the inferior iffuing plate, fo as to remain conftantly of the fame magnitude.

On this principle it can be eafily demonftrated, that the velocity with which water fpouts from an aperture in the bottom or fide of a veffel, is equal to that which a heavy body would acquire in falling through the height of the fluid above the orifice.

Tiris demonftration, however, as Mr. Atwood obferves, is true only on hypothefis that the water fuffers no refiftance, but iffues in a cylindrical or p ifmatic form correfponding to the hole. But, in fact, the velocity of the water according to theory will be diminifhed by the friction of the particles againft the edges of the orifice; from their mutual attraction, by which the iffuing particles are retarded by thofe which are ftill in the veffel, and have not acquired the velocity of thofe which precede them; but principally from the obliquity of their motions.

For, as Chev. Du Euat obferves, when water iffues from an orifice, the particles will flow from all fides, towa:ds the orifice, with

[55]

with an accelerated motion, and in all directions. If the orifice be horizontal, that filament of particles, which anfwers to the centre of the hole, will defcend in a vertical line, and will fuffer no other refiffance than that of the friction caufed by the excefs of its velocity above that of the collateral filaments, or by the retardation which arifes from the attraction fubfifting between them. The other filaments, after they have defcended vertically for fome time, are compelled to turn from their vertical courfe, and to approach the orifice in different curves; and when they arrive at it, their directions become more or lefs horizontal, according as they pafs nearer to or farther from the edge of the orifice. The motion therefore is decompofed according to two directions, the one horizontal, which is deftroyed by the equal and contrary refiffance of the filaments which are diametrically oppofite; the other vertical, in proportion to which the quantity of water difcharged is to be eftimated. Hence we fee, that the vertical velocity of the filaments decreafes from the centre of the orifice to its circumference; and that the total difcharge is lefs, than if all the filaments had iffued vertically, in the fame manner with that which anfwers to the centre of the aperture. It alfo follows, that the filaments which are nearer to the centre, moving fafter than thofe which are nearer to the edges, the vein of the fluid, after it has iffued from the orifice, will form a cone whofe bafe is the orifice; that is to fay, that its diameter will diminifh, at leaft, to a certain diftance, becaufe the exterior filaments are gradually drawn on, in confequence of their mutual

[56$]$

mutual attraction, by the interior filaments whofe velocity is greater; whence there follows a diminution in the diameter of the vein.

This manner of accounting for the contraction of the vein feems more reafonable than that which is given by Newton; as there appears to be no adequate caufe for the acceleration of the water, after it has been difcharged from the orifice.

The diminution of the mean velocity of the water, caufed folely by the obliquity of the motions of the iffuing particles, exclufive of any other impediment, may be thus determined:

LET $m n$ (fig. I.) be the diameter of the aperture in the veffel ABDC filled with water: in whatever direction the water iffues, its velocity in that direction will, in all cafes, be the fame, becaufe the preffure of fluids is the fame in all direciions; thus, whether a fluid fpouts perpendicularly upwards or downwards, horizontally or obliquely, the fpace through which it is projected, in a given time, is the fame. Now to determine this direction, fince the horizontal and vertical preffures are equal, the iffuing particles will affume the intermediate direction, which will therefore form an angle of 45°. with the plane of the orifice: its vertical velocity therefore will be lefs than its direct or total velocity in the proportion of the diagonal of a fquare to its fide,

[57]

or as 7 to 5 nearly; but the particles of the central filament iffue with the full velocity, due to the entire height of the water; therefore the velocity of the central particles will be to the mean velocity, as 7 to the mean between 7 and 5, or as 7 to 6 . This is the diminution, as has been faid, which takes place in confequence folely of the obliquity of the motions with which the particles iffue from the orifice: if the other caufes of retardation be taken into the account, we may conclude, that the velocity fhould be diminifhed perhaps in the ratio of 8 or even 9 to 6 ; which accords very well with experiments. Thus Polenus makes the ratio of the diameters of the contracted vein and aperture, which is the fame with that of the mean and greateft velocity, to be as $5^{\frac{1}{2}}$ to $6 \frac{1}{2}$; Bernouilli 5 to 7 ; Chev. Du Buat 6 to 9 . When the orifice is infinitely little, the cylinder of iffuing water becomes a fingle filament, which is therefore difcharged without any obliquity, and there will be no diminution of velocity, except fuch as arifes from friction and the tenacity of the particles. If the aperture be encreafed fo as to become equal to the bafe of the veffel, the column of water will then defcend like a falling body, and therefore the velocity will be the fame as before; but it will not acquire this velocity until the uppermoft plate of water has been difcharged. At the beginning of the motion, the firft or loweft plate will flow out with a velocity indefinitely little; the next plate with a greater velocity; and fo on, until the upper plate fhall have defcended to the orifice which will then iffue with the greateft velocity. But if the VoL. VII. H veffel

$\left[\begin{array}{ll}5^{8} &]\end{array}\right.$

veffel be fuppofed to be kept conftantly full, the velocity of the effluent water will encreafe fo as at length to become equal to that which a heavy body would acquire in falling from an infinite height.

Since the middle filament of particles is difcharged with the full velocity due to the entire altitude of the fluid above the orifice, experiments made on the diftance or height to which fluids fpout, will be found to agree very well with theory, but it by no means follows, that all the filaments fhould be difcharged with the fame velocity: the quantity of the fluid therefore difcharged in a given time, may be lefs than that which would be difcharged, if all the filaments were difcharged with the velocity due to the entire altitude; becaufe this quantity depends on the mean velocity of all the filaments. Hence therefore it cannot be inferred from thefe experiments, compared with thofe which relate to the height or diftance to which the fluid fpouts, that the velocity of the water in the orifice is lefs than that which is due to the entire altitude; and that it is accelerated immediately after it gets out of it: becaufe the diftance to which the fluid fpouts, depends on the central filament only, but the quantity difcharged on the mean velocity of the whole.

To bring this queftion to the teft of experiment, if all the particles were equally accelerated at their difcharge from the orifice, and immediately after they leave it, they ought all to be projected

$\left[\begin{array}{ll}{[} & 59\end{array}\right]$

projected horizontally to the very fame diftance upon an horizontal plane; but on experiment I found, that. when the fluid fpouted through an orifice of, 08 of an inch diameter, and was kept conftantly at the fame height, the greateft and leaft diffances at which it ftruck the horizontal plane were nearly 15 and 12 inches; but thefe diffances are proportional to the velocities with which they are difcharged. It follows therefore, that all the particles are not projected with the fame velocity. It is to be obferved, that the particles which are difcharged with the greateft and leaft velocities are few in comparifon of thofe which are difcharged with intermediate velocities, for while the entire fhower extended from 15 to 12 inches on the horizontal plane, the denfer part was found to occupy only the fpace between $14^{\frac{3}{4}}$ and $12 \frac{3}{4}$ inches; fo that the limits of the velocities of the parts of the denfer fhower were as 7 and 6,26 ; but the limits of the whole were 15 and 12 , or as 7 and 5,6 ; and the limits by theory are as 7 and 5. But we may perceive, that when the fluid fpouts horizontally, the particles which iffue from the upper part of the aperture, and which therefore ought to move with the leaft velocity, muft encounter thofe below them moving with a greater velocity, which will encreafe the diftance to which they are projected on an horizontal plane. Likewife, the particles which iffue from the loweft part of the orifice, and which ought to move with a lefs velocity, than that with which thofe in the axis move, in the ratio of 5 to 7 , will have their velocity encreafed by their being at a greater depth. The limit therefore of the ratio of the diftances to which the particles are projected Vol. VII. * H_{2}

[60]

on an horizontai plane, muft be lefs than that which refults from the theory of water iffuing through an horizontal aperture. But it is obvious that the greater depth of the lower particles, when the orifice is vertical, cannot account for the entire difference of diftance to which the particles are projected; for the depth of the orifice being 8,55 inches, and the diameter of the orifice , 08 of an inch, the velocities on account of the difference of depth would be only as $\sqrt{8,55}$ to $\sqrt{8,6}$, or as 14,6 to I 5 nearly: Perhaps it might be faid, that this difference of diftance was caufed, ' not by the diferent velocities, but by the different directions in which the particles are difcharged; fo that thofe which are projected in the axis of the vein, will Arike the horizontal plane at a greater diftance than thofe which are projected from the edges of the orifice with the fame velocity, but in a different direction, But this cannot be the caufe; for when the aperture is horizontal, the particles which iffue from the oppofite fides m, n of the orifice (fig. 2.) meeting each other, deftroy their convergence, and afterwards proceed in the direction of the axis of the vein, and therefore the vein will continue nearly of the fame diameter: whereas, if the particles croffed each other, with the fame velocity, in different directions, they would defcribe interfecting parabolas $n s, m t$, and the diameter of the vein would continually encreafe. In order to determine whether this were the cafe, I caufed the fluid to iffue through an aperture in the bottom of the veffel, and at the diftance of 12 inches I found the diameter of the vein a little encreafed, when the velocity of the efflux was confiderable;

[6i]

fiderable; but not fenfibly augmented, when the velocity was much diminiffed. Since the dilatation of the vein in this cafe depends on the velocity with which the water iffues from the aperture, it is to be inferred, that it is caufed by the refiftance of the air; which producing a retardation of the preceding particles, thofe which follow impinge againtt them, and the thicknefs of the vein is encreafed; for the fame reafon as when the jette is made perpendicularly upwards, a broad head is formed in confequence of the retardation of the uppermoft particles. Now fince it appears, that the dilatation of the vein which arifes either from the different directions of the particles, or the refiftance which they undergo from the air, or both together, cannot account for the difference of diftance to which the particles are projected on an horizontal plane, we muft conclude that this difference is caufed by the different velocities with which they efeape from the orifice.

When a tube murs (fig. 3) is inferted into the veffel A BCD; it is found, that the velocity is increafed nearly in the fub-duplicate. ratio of the length of the pipe, when the tubes are fhort; and that it approaches nearer to that fub-duplicate ratio, according as the length of the pipe is increafed. To account for this increafe of velocity has appeared a matter of fome difficulty, fince the water cannot iffue at $r s$ with a greater velocity than it enters at $m n$; and it does not appear how the velocity at $m n$ can be encreafed by inferting a tube beneath it. In order to explain the caufe

$\left[\begin{array}{ll}62\end{array}\right]$

caufe of this effect, we are to confider, that the whole force with which the plate $m n$ is preffed down, is the weight of a column of water equal to emnf, together with the weight of a column of air of the fame bafe, reaching to the top of the atmofphere; and the whole force with which it is preffed up, is the weight of an equal column of air, diminifhed by the weight of a column of water equal to mnrs; thercfore the actual force with which the plate $m n$ is preffed down, is, the weight of a column of water equal to efrs; the velocity therefore with which the plate $m n$ will iffue through the orifice $m n$, will be the fame as through the orifice $r s$ in the veffel $A b c \mathrm{D}$; that is, equal to the velocity which a heavy body would acquire in falling through the altitude er; and all the plates of water in the tube $m n r s$ will defcend with the fame velocity; for they cannot defcend fafter, becaufe otherwife there would be a vacuum left in the tube, which is prevented by the upward preffure of the atmofphere. And the velocity of the effluent water will be the fame, whatever be the preffure of the atmofphere, provided the weight of a column of air of the fame bafe with $r s$, and whofe height is equal to that of the atmofphere, be either greater than or equal to the weight of the pillar of water $m n r s$. This might be proved experimentally by a veffel of water with a pipe inferted in the bottom, placed under an exhaufted receiver. But as the operation of exhauftion is obftructed more by the evaporation of water than of mercury, it will be better to ufe mercury in thefe experiments. Now if D be the defect of the gage from the ftandard altitude, it

$\left[\begin{array}{ll}{[} & 63\end{array}\right]$

will meafure the preffure of the air on the furface of the mercury in the veffel; let A be the altitude of the mercury in the veffel above the upper orifice of the pipe, and P the length of the pipe; then the whole force preffing downwards the plate of mercury which is immediately in the upper orifice of the pipe, will be $=\mathrm{D}+\mathrm{A}$; and the whole force preffing the fame plate upwards. will be $\mathrm{D}-\mathrm{P}$; and the difference between thefe forces will be the abfolute force preffing the fame plate of mercury downwards; while D is greater than P , this abfolute force will confequently be: equal to $A+P$; when $D=P, D-P$ vanifhes, and the force preffing the plate downwards is $=\mathrm{D}+\mathrm{A}=\mathrm{P}+\mathrm{A}$; hence therefore no variation in the time of the efflux will be perceived, while the altitude of the mercury in the gage is equal to or lefs than the difference between the length of the pipe and the fandard altitude. When D is lefs than P , the force upwards is alfo nothing; and therefore, as before, the whole force preffing the plate downwards is $=\mathrm{D}+\mathrm{A}$; and A being given, it decreafes according as D decreafes; and when D vanifhes, that is, when the receiver is abfolutely exhaufted, the force becomes equal to A, and the time of the efflux will be the fame, as if the pipe had not been inferted in the bottom of the veffel. To try the truth of thefe
1 things by experiment, I inferted a tube 7,8 inches long in a cylindrical veffel, and clofing the orifice of the pipe, I filled the veffel with mercury to the height of 6 inches; then placing the apparatus under the receiver of an air-pump, when the barometer was at 30 inches, and the gage at 28,5 , the time of the efflux

[$\left.64 \begin{array}{ll}6 & \end{array}\right]$

was 26 feconds; when the experiment was repeated precifely in the farme manner, but in the open air, the time of the efflux was only ig feconds. Now as the gage ftood at 28,5 , the defect D was $30-28,5=1,5$, and the preffure on the plate of mercury was $=6+{ }^{\frac{1}{2}}=7 \frac{1}{2}$; in the open air the preffure was $=6+7,8=$ I 3,8 ; therefore the ratio of the velocity of the efflux in both cafes, which is the fame with the reciprocal ratio of the times, was $\sqrt{7^{\frac{1}{2}}}$ to $\sqrt{13,8}$, or as 2,73 to 3,7 ; but 2,73 is to 3,7 as 19 to 26 very nearly. No difference was obferved in the times of the efflux, when in the open air and exhaufted receiver, unlefs the gage ftood higher than $22 \frac{1}{2}$ inches; that is, unlefs the height of the mercury in the gage was greater than the difference between the length of the pipe and the ftandard altitude. In another experiment, when the gage ftood at 27,9 , the height of the barometer was 29,9 ; the defect therefore was $=2$, and the preffure $=8$. But $\sqrt{8}=2,828$, and $\sqrt{\mathrm{I} 3,8}=3,7$ but $2,828: 3,7:: 19: 24$, and by experiment the time of the efflux appeared to be 23 feconds. When the efflux is made in vacuo, it is obvious to obferve, that the pipe is not filled during the efflux, as it is while the difcharge is made in the open air.

Since the column of water in the pipe mnrs adds to the preffure which the plate $m n$ fuftains, by diminifhing the upward preffure of the air through the pipe, it appears that it produces this increafe of preffure in the plate $m n$ alone, without producing

[65]

any lateral preffure in the water which is on a level with $m n$; for it is manifeft, that if an aperture were made in $m \mathrm{~B}$ or $n \mathrm{C}$, the velocity of the water iffuing through it would not be affected by the infertion of the pipe; and confequently that the plate $m n$, which is immediately in the orifice of the pipe, is the only one, on the fame level, whofe tendency downwards is increafed by the infertion of the pipe. Hence, the particles of ivater at the edge of the aperture, having their perpendicular preffure encreafed by the weight of the column $m n r s$, without any increafe of their lateral preffure, they will ifflue through the orifice $m n$ more perpendicularly; the fides alfo of the tube will obftruct the converging motion of the particles, and confequently, on both thefe accounts, the quantity of water difcharged through a pipe thus inferted, will exceed that difcharged through a fimple orifice, in a greater ratio than the fub-duplicate of the height of the water. And according as the length of the pipe encreafes, the ratio of the quantity of water actually difcharged by experiment, to that which fhould be difcharged according to theory, will increare; becaufe the ratio of the perpendicular to the horizontal preffure increafes, in the ratio of the fum of the depth of the veffel and length of the pipe, to the depth of the veffel. It follows therefore, that experiments made in this manner, will approach nearer to. coincidence with theory, than when made with a fimple orifice; except either when the tube is fo long as that the friction of the fluid againft the fides of the tube fhall produce a fenfible effect, or Vol. VII.

[66]

it is fo flort, as not to be fufficient to give the particles a vertical direction. All which axrecs very well with the experiments made by the insenious Mr. Vince, of which he has given us an account in the Phil. Tranf. for the year I795. Thus he tells us, that having inferted a tubc, a quarter of an inch in length, into a cylindrical veffel 12 inches deep, he found that the velocity did not fenfibly differ from that through the orifice; the caufe of which he difonvered to be this, that the flream did not fill the pipe, but that the fluid was contracted, as when it flowed through the fimple orifice. When the pipe was half an inch long, inferted into a veffel of the fame depth as before, the velocity of the water from the pipe and from the orifice, which ought by theory to have been as $\sqrt{12,5}$ to $\sqrt{12}$, or as 49 to 48 , was by experiment found to be nearly in the proportion of 4 to 3 . Now if the ratio of 49 to 48 be increafed in the ratio of 7 to 6 , (becaufe this is the ratio of the diminution of the velocity on account of the contraction of the vein, and this contraction either nearly or entirely vanifhes in a pipe,) we fhall have the ratio of 3,57 to 3 . When the pipe was an inch long, the velocity from the pipe and from the orifice, which, according to theory, ought to have been as $\sqrt{1} 3$ to $\sqrt{12}$, or as 26 to 25 , appeared by experiment, very nearly in the ratio of 4 to 3 ; now if the ratio of 26 to 25 be encreafed in the ratio of 7 to 6 , we fhall have the ratio of 3,64 to 3 . When he made ufe of longer pipes, the velocity of the effluent water by experiment approached nearcr to that which ought to have

$\because\left[\begin{array}{ll}67 &]\end{array}\right.$

been difcharged according to theory; fo that in long pipes, the difference between theory and experiment, he fays, was not greater than what might io expected from the friction of the pipes, and other caufes which may be fuppofed to retard the velocity. When he inferted a pipe of the fame diameter with the aperture, which terminated in a truncated cone fixed in the orifice, (fig. 4.) he expected, that the quantity of water difcharged in a given time would have been diminifhed, becaufe the water, iffuing through the orifice $m n$, would have room to form the verza contracta in the enlarging cone; but he found, that the fame quantity of water was difcharged, as if the pipe had continued throughout of the fame diameter with the orifice. The reafon of this is manifeft from what has been faid, for the preffure of the air will not fuffer the truncated cone to remain partly empty, as it would be if the vena contracta were formed; it will therefore continue full, and confequently the water will pars through it in the fame manner as if the water in the cone, furrounding the pipe $m a b n$, were congealed.

Mr. Vince likewife inferted into the bottom of the veffel a perpendicular pipe, in form of a truncated cone, the narrower part being fixed in the orifice; by which he found the efflux to be encreafed more than if he had inferted a cylindrical pipe of the fame length, whofe diameter was equal to that of the narroweft part of the conical pipe. This effect may be explained on the fame
I. 2 principle

[68]

principle by which we accounted for the augmentation of the diameter of a vertical vein of water, through a fimple orifice, when the velocity of the efflux is confiderable. For when a perpendicular pipe is inferted, the velocity of the difcharge being confiderably encreafed, the refiftance from the air will be fo likewife; and thus the diameter of the vein has a tendency to enlarge itfelf; now in the widening cone, the pipe admits of this augmentation, at the fame time that it encreafes the velocity; but the cylindrical pipe, though it equally encreafes the velocity, yet it does not permit the vein to enlarge itfelf, and by thus confining it, the efflux is obftructed, and the quantity difcharged in a given time is diminifhed. Accordingly, under the receiver of an air-pump, even in a moderate degree of exhauftion, there is no difference perceived between the velocities with which a fluid is difcharged through a conical or cylindrical pipe.

Fig. 3.

-
-

[69]

A new METHOD of reforving CUBIC EQUATIONS. By THOMAS MEREDITH, A. B. Trinity College, Dublin.

T
HE roots of a cubic equation of this form, $x^{3}+3 c \cdot x^{2}+3 c^{2} \cdot x$ Read June roth, 1797. $+c^{3}-a=0$ which differs from a power only in its laft term, can be found, by tranfpofing, a, and extracting the cubic root on each fide, provided, a, is not an impoffible binomial.

Problem. To reduce any cubic equation to this form, $x^{3}+3 c \cdot x^{2}+3 c^{2} \cdot x+c^{3}-a=0$, that is, to reduce it to an equation, in which, the fquare of the co-efficient of the fecond term is triple the co-efficient of the third.

IF the roots of a cubic equation, $x^{3}+p x^{3}+q x+r=0$, are encreafed or diminifhed by any quantity, p^{2} and $3 q$, will be encreafed or diminifhed by an equal quantity, if multiplied, will be multiplied by an equal quantity, therefore their equality or inequality, not affected by thofe transformations.

$$
x=
$$

$$
\begin{aligned}
& {[70] } \\
& \\
x=y+a & \frac{x^{3}+p x^{2}+q x+r=0}{y^{3}+3 a y^{2}+3 a^{2} y+a^{3}} \\
& p x^{2}=
\end{aligned}
$$

$p^{2}=9 a^{2}+6 a p+p^{2}$ and $3 q=9 a^{2}+6 a p+3 q$ therefore p^{2} and $3 q$. encreafed by the fame quantity; viz. $9 a^{2}+6 a p$

$$
x^{3}+p x^{2}+q x+r=0
$$

$$
x=\frac{y}{a} \quad y^{3}+p a y^{2}+q a^{2} y+a^{3} r=0
$$

$p^{2}=p^{2} a^{2}$ and $3 q=3 q a^{2}$ therefore both multiplied by the fame quantity, viz. a^{2}.

Hence it appears that the problem cannot be effected by thofe transformations.

But the equation, $x^{3}+p x^{3}+q x+r=0$ by transforming the roots into their reciprocals, and frecing the firft term from a coefficient becomes, $x^{3}+q x^{2}+p r x+r^{2}=0$ therefore if in the propofed equation $q^{2}=3 p r$, then by transforming the roots into their reciprocals, and freeing the firft term from a co-efficient the equation will be reduced to the required form.

Any cubic equation being propofed, there is a quantity, by which if the roots are encreafed (or diminifhed) q^{2} will become equal

[7 y]

equal $3 p r$, the value of this quantity may be inveftigated by folving a quadratic equation.

Thus let the equation be,

$$
\begin{aligned}
& x^{3}+p x^{2}+q x+r=0 \\
& y^{3}+3 e y^{2}+3 e^{2} y+e^{3} \\
& x=\overline{y+e} \quad p y^{2}+2 p e y+p e^{2} \\
& q y+q e \\
& +r \\
& 3 \times \overline{e^{3}+p \epsilon^{2}+q e} \overline{+r} \times \overline{3 e+p=9 e^{4}+12 p e^{3}+9 q \cdot e^{2}+9 r} \cdot e+3 p r \\
& +3 p^{2}+3 p q \\
& +6 q+9 q+9 r \\
& 9 e^{4}+12 p e^{3}, e^{2} \cdot e^{2}+4 p q e+q^{2}=9 e^{4}+12 p e^{3} \cdot e \cdot e^{2} \cdot \cdot e+3 p r \\
& +4 p^{2} \frac{p^{2}+p q+q^{2}}{}+3 p q \\
& -3 q \quad-9 r-3 p r
\end{aligned}
$$

Let it be required to find the roots of this equation, $x^{3}+6 x^{2}+3 x+2=0$. Subflituting in the formula

$$
\begin{aligned}
& 3^{6}+18+9 \\
& -9 e^{\cdot e^{2}}-18^{\cdot e}-3^{6}=0 \because 27 e^{2}=27 \because e^{2}=1 \because e=1 \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& {[72]} \\
& x^{3}=\frac{x^{3}+6 x^{2}+3 x+2=0}{y^{3}+3 y^{2}+3 y+1} \\
& x=\overline{y+1} \quad 6 x^{2}=\quad 6 y^{2}+12 y+6 \\
& 3 x=\quad 3 y+3 \\
& 2=\quad 2 \\
& y=\frac{1}{v} \\
& y^{3}+9 y^{2}+18 y+12=0 \\
& y=\frac{\pi}{12} \\
& 12 v 3+18 v^{2}+9 v+1=0 \\
& z^{3}+18 z_{1}+108 z+144=0 \\
& \begin{array}{l}
\text { Extract the cubic } \\
\text { root on each fide }\} \quad z^{3}+18 z^{3}+108 z+216=72
\end{array} \\
& z+6=\sqrt[3]{72} \because z=-6+2 \sqrt[3]{9} \\
& v=\frac{-6+2 \sqrt[3]{9}}{12} \because y=\frac{12}{-6+2 \sqrt[3]{9}} \because x=\frac{12}{-6+2 \sqrt[3]{9}}+1
\end{aligned}
$$

fubftituting then for $2 \sqrt[3]{9}$ its 3 values, $2 \sqrt[3]{9}, \overline{-I+\sqrt{-}} 3 \times \sqrt{ } 9$,
$=1-\sqrt{ }-3 \times \sqrt[3]{9}$ the roots of the propofed equation will be

But the roots of the given equation may be found after one transformation, for the roots of the final equation are expreffed in the co-cfficients of the firft transformed equation, and the

$\left[\begin{array}{ll}73 &]\end{array}\right.$

root of the firfe transformed is its abfolute quantity divided by the root of the final equation.
$L_{\text {et }}$ the equation when its roots are encreafed by e, be

$$
\begin{array}{ll}
y=\frac{1}{v} & y^{3}+p y^{2}+q y+r=0 \\
v=\frac{z}{r} & r v^{3}+q v^{2}+p v+1=0 \\
z^{3}+q z^{2}+r p z+r^{2}=0 \\
z=-\frac{q}{3}+\sqrt[3]{\frac{q^{3}}{27}-r^{3}} \quad v=\frac{-\frac{q}{3}+\sqrt[3]{\frac{q^{3}}{27}-r^{2}}}{r} \quad \because y= \\
\frac{r}{-\frac{q}{3}+\sqrt[3]{\frac{q^{3}}{27}-r^{2}}} &
\end{array}
$$

When the value of e, by which the roots are to be encreafed (or diminifhed) is impoffible the coefficients of the transformed equation will be impoffible binomials $\because a=\frac{\overline{q^{3}}}{27}-r^{2}$ an impoffible binome (unlefs in particular cafes the coeff. of the impoffible part vanifhes) hence it appears that a, and e, will be poffible or impoffible in the fame cafes.
Vor. VII.
K

* Since the equation $z^{3}+q z^{2}+r p z+r^{2}$ may be thus expreffed $z!+3 \cdot \frac{q}{3} z^{2}+3 \cdot \frac{q^{2}}{9} z+\frac{q^{3}}{27}=\frac{q^{3}}{27}-r^{2}$. I_{F}

$\left[\begin{array}{ll}{[74}\end{array}\right]$

I_{F} the roots of a cubic equation are encreafed by $-\frac{p}{3}$ the fecond term will vanifh, if by $-\frac{p}{3} \mp \sqrt{\frac{p^{2}}{9}-\frac{q}{3}}$ the third term will vanifh, therefore if $p^{2}=3 q$ the fecond and third terms may be exterminated together, therefore the equation will have two impofible roots; hence it appears that the equation of the required form has two impoflible roots,* confequently the value of e, by which the roots are to be encreafed will be impoffible when all the roots of the propofed equation are real $\because a$, whofe cubic root muft be computed, will be an impoflible binomial, unlefs in the particular cafes where the coefficient of the impoflible part vanifhes.

Ir remains to be proved that when the propofed equation has but one poffible root, the value of e, by which the roots are to be encreafed (or diminifhed) will be poflible and confequently a_{2}

$$
\begin{aligned}
& \text { Let the roots be } \overline{-m+\sqrt{ }-n,-m-\sqrt{ }-n}, \overline{-b} \\
& \qquad \begin{aligned}
2 m+b, & \frac{-b}{m^{2}+n+2 b m}, r=b m^{2}+b n \\
p^{2}+p q+q^{2} & e^{2} \\
& -3 q-e^{2}-3 p r
\end{aligned}
\end{aligned}
$$

* That the equation of the required form has two imponfible roots, appears alfo from this, that two of the cubic roots of a, are impolfible.

$$
\begin{gathered}
{[75]} \\
m^{2} \cdot e^{2}+2 m^{3} \cdot e+m^{4} \\
-2 b m-4 b m^{2}-2 b m^{3} \\
-3 n+2 m n+b^{2} m^{2} \\
b^{2}+2 b^{2} m-2 b m n \\
-8 b n+2 n m^{2} \\
\\
\\
-3 b^{2} n \\
\\
\\
\end{gathered}
$$

Call the coefficients $\beta, \gamma, \delta, \quad e=-\frac{\gamma}{2 \beta} \mp \sqrt{\frac{\gamma^{2}}{4 \beta^{2}}-\frac{\beta \delta}{\beta^{2}}}$
therefore it is to be proved that $\overline{\frac{\gamma^{2}}{4}-\beta \delta}$ is affirmative, and conequaintly the fquare root poffible.

$$
\begin{aligned}
& \frac{\gamma^{2}}{4}=\overline{m^{3}-2 b m^{2}+m n+b^{2} m-4 b n^{2}}= \\
& m^{6}-4 b m^{5}+2 n \cdot m^{4}-12 b n \cdot m^{3}+18 b^{2} n_{0} m^{2}-8 b n^{2} \cdot m+16 b^{2} n^{2} \\
& +6 b^{2}-4 b^{3}+n^{2}-8 b^{3} n \\
& +b^{4} \\
& \beta \delta=\overline{m_{4}-2 b m^{3}+b^{2} m^{2}-2 b m n+2 n m^{2}-3 b^{2} n+n^{2}} \times \overline{m^{2}-2 b m-3 n+b^{2}}= \\
& m^{6}-4 b m^{5}+6 b^{2} \cdot m^{4}-4 b^{3} \cdot m^{3}-5 n^{2} \cdot m^{2}+4 b n^{2} \cdot m+10 b^{2} n^{2} \\
& -n \quad+b^{4} .+4 b^{3} n-3 n^{3} \\
& -3^{b^{+} n} \\
& \frac{\boldsymbol{y}^{2}}{4}-\beta d=\quad 3 n \cdot m^{4}-12 b n \cdot m^{3}+18 b^{2} n \cdot m^{2}-12 b n^{2} \cdot m+6 b^{2} n^{2} . \\
& +6 n^{2}-12 b^{3} n+3 n^{3} \\
& +3^{b^{6} n} \\
& \text { K } 2
\end{aligned}
$$

[76 j

but this remainder may be refolved into thofe parts.

$$
\begin{aligned}
\overline{m^{4}-4 b m^{3}+6 b^{2} m^{2}-4 b^{3} m+b^{4}} \times 3 n & =m-b_{0}^{4} 3 n \\
\overline{m^{2}-2 b m+b^{2}} \times 6 n^{2} & =\overline{m-b^{2}} \cdot 6 n^{2} \\
+3 n^{3} & =3 n^{3}
\end{aligned}
$$

n, is affirmative, and $\overline{m=b^{4}}$ and $\overline{n-b^{2}}$ alfo affirmative therefore the remainder affirmative.

Let the roots be $-m-m-b$

$$
\begin{aligned}
& m^{2} \cdot e^{2}+m^{2} \cdot 2 m \cdot e+m^{2} \cdot m^{2} \\
&-2 b m-2 b m+b^{2}-2 b m \\
&+b^{2}+b^{2}+b^{2} \\
& e^{2}+2 m \cdot e+m^{2}=0
\end{aligned}=0
$$

therefore when two roots of the propofed equation are equal, the value e, by which the roots are to be encreafed will be one of the equal roots, therefore the two laft terms of the transformed equation will vanim, therefore reducible to a fimple equation, which will give the remaining root e.g. $x^{3}+7 x^{2}+16 x+12=0$

$$
\begin{array}{r}
49+\operatorname{II} 2+256 \\
-48^{2}-108^{e}-252=0 \because e^{2}+4 e+4=0 \because e=-2 \mp \sqrt{4-4} \\
x^{3}=
\end{array}
$$

$$
\begin{aligned}
& \text { [} 77 \text {] } \\
& x^{3}=y^{3}-6 y^{2}+12 y-8 \\
& x=y+2 \quad 7 x^{2} \quad 7 y^{2}-28 y+28 \\
& \text { I6x } 16 y-32 \\
& 12 \\
& +12 \\
& y^{3}+y^{2} \quad . \quad=0 \\
& \because y=-1 \because x=-3,-2,-2 \text {. }
\end{aligned}
$$

[79]

On the FORCE of TESTIMONY in eftablifhing FACTS contrary to ANALOGY. By the Rev. MATTHEW YOUNG; D.D. S, F.T.C.D. E M.R.I.A.

Il n'ef pas fig glorieux a l'efprit de Geometrie de regner dans la Phyfique que dans les chofes de Morale, fi cafuelles, fi compliquées, fi changeantes. Plus une matiere lui eft oppofé et rebelle, plus il a d'honneur a la dompter.

Aristotle obferves, that the chief characteriftic of quantity is, that it is. that by which any thing may be denominated equal

Read, Feb,3d 1798. and unequal. Pred. p. 34. Ed. Sylb. Every thing therefore is faid to admit of quantity, which is capable of more and lefs. Hence quantities are reduced to two claffes, thofe which confift of parts, and thofe which are eftimated by degrees: accurately fpeaking, the former alone are quantities, the latter are fo only metaphorically. " Propter fimilitudinem dicuntur quantitates, quantitas perfec" tionis, quantitas virtutis; intenfionis, valoris, \& fimilium. ' In " his enim eft fimilitudo quædam quantitatis, quæ in eo pofita " eft, quod ficut quantitas molis dicit extenfionem quandam par" tium

$\left[\begin{array}{ll}\text { Bo }\end{array}\right]$

"tium extra partes, ita $\&$ dicla quentitates fuo modo quandam " extenfionem partium habent. Smigl. p. 294." This latter fiveries of quantity is therefore called "Quantitas Intenfá Virtutis," Aldrich p. 43; for the efential perfections and virtues of things are compofed of differnt degrees, in the fame manner as quantity, properly fo called, is compofed of parts. Burgefd. p. 2I. Quantities which confifts of parts are alone capable of meafure, and therefore of mathematical comparifon; while the others, though they admit of more and lefs, yet not being meafurable, cannot be mathematically compared. Thus different areas, which confift of parts, are meafurable; but pleafure and pain, heat and cold, probability and improbability, virtue and vice, which are eftimated by degrces, are not meafurable. Crakanthorp therefore defcribes quantity, by faying, that 's it is an abfolute accident, by which things are " meafured primarily and per fe," p. 81. Now to make quantities which confift of degrees, and therefore are not meafurable, the fubjcet of mathematical comparifon, an arbitrary meafure is affigned, by referring them to fome meafurable quantity to which they are related. Thus, in the graduation of the thermometer, an arbitrary meafure is eftablifhed for heat and cold, for the degrees of heat are referred to the expanfion of the fluid contained in the thermometer, which is meafurable, and to which heat is related. In the fame manner, probability has no meafure in itfelf; but an arbitrary meafure is affigned to it, by referring it to the ratio of the number of chances by which the event may happen or fail;

[8r.]

and thus it becomes the fubject of mathematical calculation, in the fame manner as the degrees of heat.

The ratio of thofe quantities which confift of parts, cannot always be accurately afligned; neverthelefs, fince the quantities are finite, they muft have fome finite, determinate ratio to each other. Thus the area of a circle to the circumfcribed fquare cannot be accurately exhibited: in thefe cafes we can, in general, proceed by continual approximations, and affign limits within which the true ratio muft fubfiff.

If there be two things, one of which is greater or lefs than the other, they are quantities of the fame fpecies: thus when a cannon ball is faid to be greater than an orange, the abftract magnitudes of both are quantities of the fame fpecies.

If two things be of the fame fecies, and one of them'can be reprefented by an exponent of a given kind, the other is in its nature capable of being expreffed by an exponent of the fame kind. Thus if the area of a fquare be reprefented by a given right line, the area of the infcribed circle is capable of being reprefented by another right line, though no mathematician has yet been able to fhew what that line is, by any geometrical conftruction.

If the velocity of a ray of light incident on a piece of cryftal be expreffed by a given number, there is a number which will alfo exprefs its velocity within the cryftal.

$\left[\begin{array}{ll}82\end{array}\right]$

The active, efficient caules of events are thus enumerated in the Ethics of Ariftotle, "the feveral caufes appear to be nature, ne" ceffity, and chance, and befides thefe, mind or intellect, and " whatever operates by or through man." L. 3.c. 3. Chance therefore is an active, efficient caufe; but it is alfo an accidental coufe, "ad caufam per accidens revocatur fortuna et cafus," Burgefd. Chance therefore is an efficient, accidental caufe of an event.

The probability of an event, according to De Moivre and Simpfon, is greater or lefs acceording to the number of chances by which it may happen, compared with the whole number of chances by which it may either happen or fail.

As, fuppofing it were required to exprefs the probability of throwing either an ace or duce at the firft throw with a fingle die; then there being in all 6 different chances or ways that the die may fall, and only 2 of them for the ace or duce to come upward, the probability of the happening of one of thefe will be $\frac{2}{6}$ or $\frac{1}{3}$.

Wherefore if we conftitute a fraction, whereof the numerator fhall be the number of chances whereby an event may happen, and the denominator the number of chances whereby it may either happen or fail, that fraction will be a proper exponent of the probability of happening.

$\left[\begin{array}{ll}{[83}\end{array}\right]$

For the fame reafon, the probability of its failing will be equal to the number of chances for its failing, divided by the fum of the number of chances of happening and failing together.

The probability therefore either of the happening or failing of an event is always expreffed by a proper fraction.
I_{F} the number of chances of happening $b e=0$, that is, if the event be impoffible, the numerator, and therefore the fraction will be $=0$; o therefore denotes impoflibility.

IF the number of chances of failing be $=0$, that is, if the event be certain, the numerator will be equal to the denominator, and the fraction $=\mathrm{I}$; unity therefore expreffes certainty.

Probability therefore extends, as Mr. Locke obferves, from certainty to impoffibility.

When the chances for the happening of an event are equal to the chances of its failing, the fraction, expreffing the probability, is $=\frac{1}{2}$, which is the mean between impoffibility and certainty.

One event therefore is faid to be more probable than another when its probability is expreffed by a greater fraction; though, in the common acceptation of the word, that only is faid to be probable, whofe probability exceeds half certainty; for if the proba-

$$
\mathrm{L}_{2}
$$

bility

$\left[\begin{array}{ll}84\end{array}\right]$

bility be equal to half certainty, it is called doubtful; and if the probability be lefs than half certainty it is faid to be improbable.

Since the chances for happening or failing are equal to the whole number of chances, the probabilities of the happening and failing of the event are together $=1$, that is, equal to certainty.

Therefore the probability of happening is equal to the difference between certainty and the probability of failing; and the probabity of failing, equal to the difference between certainty and the probability of happening.

From what has been faid it follows, that the probability that a witnefs tells truth, in a given inftance, will be exprefled by a fraction whofe numerator is the number of chances for his telling. truth, and the denominator the fum of the number of chances for his telling truth, and for his telling falfhood together.

In like manner, the probability that an argument is true, is to be efimated by the ratio of the number of chances for its truth ${ }^{\circ}$ to the number of chances for its truth and falfhoud together.

IT is true, that in neither of thefe latter cafes can we, in general, determine the actual number of chances; neverthelefs in all cafes where a perfon perceives the probability of an event, he mult at the fame time perceive, that there muft be fome finite,

$\left[\begin{array}{lll}8 & 8\end{array}\right]$

determinate ratio between the chances for its happening and failing, though he cannot affign that ratio; for if there were no finite ratio, either the number of chances for its happening murt be infinitely greater, or infinitely lefs than the chances for its failing; in the former cafe, the event would appear certain, in the. latter impoffible, therefore probable in neither.

It may perhaps be objected, that if we cannot determine the actual number of chances, all confideration of the manner of expreffing mathematically, the probability of events is nugatory. But it is by no means fo; becaufe though we cannot determine the exact degree of credit, which we ought to give to each witncfs, yet we can determine according to what law our belief ought to vary in the cafe of concurring witneffes, each of equal credibility. Things that are quite unknown, fays Hartley, have often fixed relations to one another, and fometimes relations to things known; and as, in Algebra, it is impoffible to exprefs the relation of the unknown quantity to other quantities known-or unknown, 'till it has a fymbol affigned to it, of the fame kind with thofe that denote the others; fo in-philofophy, we muft give names to unknown quantities, qualities; caufes, \&ic not in order to refl in them, as the Ariftotelians did, but to have a fixed expreffion, under which to treafure up all that can be known of the unknown caufe, \&cc. in the iinagination, and memory; or in writing, for future enquirers. Vol: I. p. 348.

[86]

We can alfo from thefe principles fhew why after a certain number of witneffes have attefted a fact, any farther evidence is fuperfluous.

These principles likewife, as Dr. Waring obferves, may be applied to the inveftigation of the probability of the trus, the decifion by any number of voters, and many other cales; the probability of each voter voting truly being fuppofed gives. But, as he alfo obferves, it is impolible to determine the innwledze, integrity, and various influences which actuate each perfon, and confequently to determine the probability of their vocing truly.

Bur though we cannot determine the actual probability, yet fince the voters are to be fuppofed of equal integrity, knoswledge, sc. we can determine the relative probabilities of the truth of the decifions by different majorities; and on thefe principles Mons. Condorcet has enquired into the laws according to which the majorities, which decide queftions in deliberative affemblies, ought to be regulated.

Thus fuppofe the enacting of a new law were propofed to a deliberative affembly, fuch a majority fhould be required as would give a very great probability of the juftice of their decision; for it is much better that no law fhould be enacted than a bad one. A majority of more than one fingle voice feems alfo requifite in fome queflions of a civil nature, as for inftance in long continued poffeffion

$\left[\begin{array}{ll}{[87}\end{array}\right]$

poffeffion; for though length of poffefion fhould not fuperfede right, yet confiderable regard fhould be paid to it, not only for the fake of the public tranquillity, but likewife becaufe in the progrefs of time, there, in many cafes, arifes a greater difficulty of producing the original titles of property. So that perhaps it would be wife to increafe the majority, requifite to decide the queftion, according to the duration of the poffeffion. On the other hand, all queftions which require immediate determination, fhould be decided even by the leaft poffible majority.

It follows therefore, that although we cannot actually affign the fraalion which expreffes the credibility of a given witnefs, yet our reafonings on teftimony will be rendered more clear, determinate, and extenfive by this notation. And accordingly Dr. Waring, after he lays down the principles for determining the probatilities of events obferves that they may be applied to human teftimony. See his Effay on the Principles of Human ${ }^{\circ}$ Knowledge, § 17 .

That probability may juftly be expreffed by a fraction, certainty being denoted by unity, and impoffibility by a cypher, will likewife appear from the following confiderations:

Ir upon the happening of an event, fays De Moivre, I be entitled to a fum of money, my expectation of obtaining that fum has a determinate value before the happening of the event.

$\left[\begin{array}{ll}{[88}\end{array}\right]$

'If a perfon therefore tells me, that an event has happened, by which I am to receive a fum of money, my expectation of receiving that fum has a determinate value, before I certainly know whether that event has actually happened or not.

In all cafes, the expectation of obtaining any fum is eftimated by multiplying the value of the fum expected by the fraction which reprefents the probability of obtaining it. Thus if my probability of obtaining $£ 100$ be $\frac{3}{5}$, my expectation will be $=\frac{3}{5} \times f_{100}=f_{6} 60$.

Therefore it neceflarily follows, that the probability of obtaining the fum is equal to the value of the expectation, divided by the value of the thing expected. And fince the expectation is neceffarily determinate, fo likewile is the probability. Now my expectation, derived from the report of the witnefs, muft be either equal to, greater, or lefs than the expectation derived from an equal chance; the probability will therefore be either equal to, greater, or lefs than an equal chance; therefore the probability in the former cafe is homogeneous with the probability in the latter; but the latter is capable of being expreffed fractionally, therefore fo alfo is the former.

Suppose a perfon of good character tells me, that an event has happened by which I am to receive $£ 100$; there will hence arife an expectation in my mind, which mult be of fome determinate

[89

terminate value: for there is a fum lefs than $f_{1} 100$, for which I would fell my chance, otherwife I muft confider the report of the witnefs as abfolutely certain; alfo, that there is a fum for which I would not fell my chance, is likewife evident, for if not, I muft have no reliance whatfoever on the witnefs. We can therefore affign limits, within which the meafure of my expectation fubfilts; and therefore there muft be fome intermediate, determinate fum, which is the meafure of my expectation. Let this expectation be $=\frac{1}{n} \times £ 100$; then $\frac{1}{n} \times \frac{£ 100}{100}=\frac{I}{n}$ expreffes the probability that the witnefs tells truth; or rather is the meafure of my belief in his veracity.

Thrs expectation is to be refolved, as Hume and Waring obferve, into the conftitution of our nature; the Supreme Being having impreffed on our minds a faculty for the fource of all our knowledge refpecting exiftence, namely, a neceffary or impulfive belief of the future from the paft, viz. that what has, for the time paft of our lives, been joined together or conftantly fucceeded each other, will for the future be joined together, or be found in the fame order to fucceed each other. So that having obferved, that in certain circumftances men tell truth, there arifes, by the conftitution of our nature, or as fome hold, by affociation, an expectation, that, in like circumftances, other men will likewife tell truth.

[90]

But the expectation, in the fame circumftances of an event, will be different according to the conftitution of the expectant; for, according to his antecedent experience, knowledge, prejudices, and paffions, the arguments for or againft the probability of the event will appear more or lefs numerous, more or lefs cogent; fo that in given circumftances of an expefted event, or of a propofed argument, the apparent probability will very much depend on the conftitution of the individual, which therefore muft be confidered as a principal element in the computation.

In like manner, in the courfe of nature, we conclude, by experience, from things paft to the future; and when the analogy is properly inftituted, the events feldom or never differ; the more the preceding qualities are which agree, the greater on that account is the probability that the events will be the fame: and from greater experience we gradually conclude a greater degree of probability, though, in general, we cannot affign a reafon for it. Deinde nec illud quenquam latere poteft, fays Bernouilli, quod ad judicandum hoc modo (nempe empirico) de quopiam eventu, non fufficiat fumpfiffe unum alterumque experimentum, fed quod magna experimentorum requiratur copia; quando \& ftupidiflimus quifque, nefio quo natura infinctu, per fe so nullad prceviâ inflıtutione (quod fanè mirabile ef) compertum habet, quo plures ejufmodi captæ fuerint obfervationes, eò minus 2 fcopo aberrandi periculum fore. Ars Conjectandi, pag. 225.

[9^{I}]

From having obferved, that iron has floated ten thoufand times on quickfilver, there arifes an expectation, that it will likwife float on it in the next trial; but this expectation is not certainty. It does not follow, fays Hartley, that becaufe a thing has happened a thoufand or ten thoufand times, that it never has failed, nor ever can fail. Vol. II. p. 142.

The fources therefore of probability are of two fpecies; the firft comprehends thofe probabilities, which are derived from confidering the number of caufes, which may influence the truth of the propofition : the other is founded folely on experience, from which we conclude, that the future will be like the paft; at leaft when we are affured, that the fame caufes, which produced the paft, ftill exift and are efficient. Thus, firf, let us fuppofe, that 30,000 flips of paper are contained in a wheel, of which 10,000 are black, and 20,000 are white; and that it is required to determine what are the odds, that I fhall at random draw 2 white paper. In this cafe, from the nature of things we perceive, that the number of chances for drawing a white paper is 20,000 , and the whole number of chances is 30,000 , therefore the probability of drawing a white paper is $\frac{20,000}{30,000}$ or $\frac{2}{3}$ of certainty; and the probability of drawing a black paper is $\frac{1}{3}$ of certainty. But fuppofe that I am ignorant of the contents of the wheel, and know only in general, that it contains feveral white M 2
and

$\left[\begin{array}{ll}{[92}\end{array}\right]$

and feveral black papers, in this cafe if it be required to deter. mine the probability of drawing a white paper, we muft proceed by trials, that is, we are to draw out a paper and obferve its. colour, then replacing it, we are to draw out a fecond, which is to be replaced likewife, then a third, a fourth, and fo on. It is clear, fays Diderot, that the firf drawn paper, being white ${ }_{*}$ gives but a very low degree of probability that the number of the white exceeds that of the black; a fecond white one being drawn would encreafe this probability, a third would augment it. At length, if a great number of white papers fhould be drawn out, without interruption, we would conclude that they were all white; and that with fo much the more probability as we fhould have drawn out more papers. But if, of the three firft lips of paper, two fhould appear to be white and one black, we would infer, that there was fome low degree of probability, that there was twice as many white papers as black. If of the fix firft drawn papers, four fhould be white and two black, this probability would encreafe; and it would encreafe fo much the more in proportion, as the number of trials fhould continually confirm the fame proportion of the white papers to the black.

This manner of determining, probably, the ratio of the chances for the happening of an event to thofe of its failing, is applicable to every thing which is contingent in nature.

Ir may be afked, fays Diderot, whether this probability, admitting of infinite increafe by a feries of repeated experiments, can

[. 93$]$

arrive at length at certainty; or whether thefe increments are fo limited, that diminilhing gradually, they can at length produce only a determinate degree of probability.
M. Bernoullli has anfwered this queftion in his Treatife De Arte Conjectandi, Part the Fourth. He there fhews, that the probability which arifes from repeated experiments, encreafes continually in fuch a manner, as to approach without limic towards certainty. His calculation fhews us, provided the queftion relates only to a particular cafe, how many times an experiment muft be repeated in order to arrive at an affigned degree of probability. Thus in the cafe of a wheel which contains an unknown number of white and black flips of paper, fuppofe it were required to determine the ratio of the number of the white to the black; M. Bernouilli finds, that in order that it may be a thoufand times more probable, that there are two black papers for three white, rather than any other ratio, it would be neceffary to make $25,55^{\circ}$ experiments; and in order that it might be 10,000 times more probable, it would be neceffary to make 31,258 trials; and in order that it fliould be soo,000 times more probable, 36,966 trials would be requifite; and fo on ad infinitum, continually adding 5,708 experiments, according as the probability encreafes in a decuple proportion. So that the number of experiments is the logarithm of the degree of probability produced. And fance in ligh numbers the logarithmes

[94]

logarithms encreafe nearly in the fame proportion with the abfolute numbers, it follows, that the probability that a future event will happen in the fame manner as in previous trials, will be nearly proportional to the number of thefe previous experiments.

By this it is demonftrable, that the experience of the paft is a principle of probability for the future; and that the more frequently we have experienced an event to happen, the greater reafon have we to expect, that it will happen in the next trial. Now fince in order that we fhould have a given degree of probability for the events happening in a particular way, a certain number of experiments is requifite, it follows converfely, that a given number of experiments will produce fome determinate degree of probability. This probability, we may perceive, depends merely on the number of experiments; fo that, this number being the fame, the degree of probability will be the fame whatever be the fpecific nature of the event.

Hence therefore, fince the inference which we make with refpect to the mechanical phænomena of nature, as weil as with refpect to the veracity of human teftimony, are both equally derived from experience of the paft; if the teftimony be of fuch 2 nature as has never deceived us, the probabilities in both cafes will bear to each other fome determinate ratio, which, however ignorant we may be of the pr xciples of the calculation, depends

$\left[\begin{array}{ll} & 9.5\end{array}\right]$

on the number of trials which we have refpectively made with refpect to them.
I_{t} is true that Mr. Price, in his Effay on Miracles, p. 39r; feems to think, that our expectation of the future from the paft, is not to be refolved into the conftitution of our nature, but to knowledge; and this knowledge he feems to think is intuitive. " If," fays he, " out of a wheel, the particular contents of which " I am ignorant of, I fhould draw a white paper a hundred " times together, I fhould fee that it was probable, that it had " more white papers than black, and therefore fhould expect to "d draw a white paper the next trial." But here Mr. Price feems, unknowingly, to maintain the principle which he controverts; for we perceive the truth of axioms intuitively, either by the conftitution of our nature, or by affociation which is refolvable into it; and fince we perceive the probability of propofitions refpecting exiftence, as he afferts, in the fame manner, it follows that we muft perceive this probability likewife, either by the confitution of our nature, or by an affociation which is refolvable into it. In fact, all probable propofitions muft be fo either becaufe they are the conclufions of fyllogifms, one of whofe premifes at leaft is probable, or becaufe they are primitive probable. propofitions. That there muft be fuch primitive, probable propofitions, is evident, when we confider that if a propofition is probable only becaufe it is deduced from premifcs, one of which at leaft is probable, then this premife muft likewife be probable

[96]

for the fame reafon; and thus there would be a procefs ad infinitum, which is abfurd. Thefe primitive probable propofitions are thofe only which are the inferences we make of future events from the paft. That thefe inferences are not certain is admitted; that they are alfo primitive inferences is manifeft, becaufe there is no medium by which the inference is made out. There are therefore original and primitive probable propofitions, in the fame manner as there are original and primitive certain propofitions, which are called axioms. But to afcribe the former to intuitive knowledge feems an abufe of language, intuition having been univerfally confined to the perception of axiomatical truths.

I know it has alfo been maintained by fome Metaphyficians, that teftimony does not derive its evidence from experience; but that it has a natural and original influence on belief, antecedent to experience. Let us then proceed to examine the arguments by which they endeavour to eftablifh this pofition.

First, it is to be remarked, fays Mr. Campbell, that the earlieft affent, which is given to teftimony by children, and which is previous to all experience, is in fact the moft unlimited; that by a gradual experience of mankind, it is gradually contracted, and reduced to narrower bounds. To fay therefore, that our diffidence in teftimony is the refult of experience, is more philofophical, becaufe

$\left[\begin{array}{ll}{[} & 97\end{array}\right]$

becaufe more confonant to truth, than to fay, that our faith in teftimony has this foundation. In reply to this arguing, let ris confider the progrefs of the human mind; the firft part of our education confifts in leffons of caution againft danger; take care of this fire, fays the affectionate nurfe, it will burn you; of that knife, it will cut you; if you fall, you will be bruifed, \&c. Thefe cautions are daily and hourly verified by experience; the child puts its hand towards the candle or the fire, and it is foon warned by pain to withdraw it; and fo in other cafes. Our earlient affent therefore is the moft unlimited, becaufe derived from an experience that has never failed to confirm the truth of the witnefs. Soon however this uniform veracity of the witnefs begins to fail; the parent gives medicine to the fick child; in the next inftance; artifice is ufed to induce him to take the bitter draught ; it is faid to be fweet and pleafant to the tafte, the child is deceived and drinks. Here begins dintruft; diftruft therefore and confidence have both the fame origin, to wit experience: nor can any metaphyfician produce an inflance, in which belief in teftimony has preceded all experience.

2dly, Dr. Reid is of opinion, that there is an inftinctive principle in the human mind to fpeak truth; and that there is another inftinctive principle, the counterpart of the former, which he calls the principle of credulity, or a difpofition to confide in the veracity of others, and to believe what they tell us.

$\left[\begin{array}{ll} & 98\end{array}\right]$

That fuch a principle exifts in our own minds, can be determined only by our confcioufnefs of it; that it refides in others can be difcovered only by their words and actions, that is, by experience.

In confirmation of what is here advanced, I fhall tranfcribe the more conclufive argument of Dr. Prieftley.

That any man, fays Dr. Prieflley, fhould imagine, that a peculiar inftinctive principle was neceffary to explain our giving credit to the relations of others, appears to me, who have been ufed to fee things in a different light, very extraordinary; and yet this doctrine is advanced by Dr. Reid, and adopted by Dr. Beattie. But really what our author fays in favour of it, is hardly deferving the flightef notice.
"If credulity," fays he, "were the effect of reafoning and us experience, it mult grow up and gather ftrength in the fame " proportion as reafon and experience do. But if it is the gift " of nature, it will be ftrongeft in childhood, and limited and re": Itrained by experience; and the moft fuperficial view of human " life fhews, that this laft is really the cafe, and not the firf."

This reafoning, continues Dr. Prieftley, is exceedingly fallacious. It is a long time before a child hears any thing but truth, and therefore it can expect nothing elfe. The contrary would be abfolutely

[99]

abfolutely miraculous. Falfhood is a new circumfunce, which he likewife comes to expect, in proportion as he has been taught by experience to expect it. What evidence can we poffibly have of any thing being neceffarily connected with experience, and derived from it, befides its never being prior to it, always confequent upon it, and exactly in proportion to it ?- Triefley's Examination, \&c p. 82.
${ }_{3} \mathrm{dly}$, Mr. Price argues, that experience is not the ground of the regard we pay to human teftimony, for were it fo, this regard would be in proportion to the number of inftances, in whith we have found, that it has given us right information, compared with thofe in which it has deceived us. But this is by no means the truth. One action, fays he, or one converfation with a man may convince us of his integrity, and induce us to believe in his teftimony, though we had never, in a fingle inftance, experienced his veracity. His manner of telling the ftory, its being corroborated by other teftimony, and various particulars in the nature and circumftances of it, may fatisfy us, that it muft be true. See his Effay on Miracles, page 399.

But is not all this confidence the refult of experience? Why fhould the manner of telling a ftory induce us to believe it, unlefs we had previoufly learned by experience, that this manner was an indication of veracity. 2dly, In like manner, the circumflanzes of a ftory induce us to believe it, becaufe we have found by experience, that thefe circumftances difcover the integrity or fkill

$$
\mathrm{N}: 2
$$

of

[100]

of the witnefs. 3 dly, Concurrent teftimony is not juflly introduced into this argument by Mr. Price, becaufe the foundation of the evidence of difcrete teflimony muft be afcertained, before we cin proceed to the eflimation of concurrent teflimony ; and alfo, more particularly, becaufe the greater ftrength of concurrent teftimony is equally admitted both by thofe who deny the dependence of the regard we pay to teflimony on experience, and thofe who affert it. 4thly, In our experience of a courfe of nature, our conviction is not always in proportion to the number of experiments in a given inflance, though it is in proportion to the whole number of experiments on which our belief is founded: thus if a new metal be difcovered which is fpecifically heavier than lead, we conclude from that fingle experiment that it will fink in water, with a confidence as great as that lead itfelf, on which we have made fo many experiments, will fink ir water. And the reafon of this is, becaufe we transfer to this particular inflance the fum of our experiments on other fubfances fpecifically heavier than water, which have always been obferved to fink in it. And in this way it is, that the regard we pay to the report of a witnefs, is not always in propo tion to the number of inflances in which' we have found that be has told truth, namely becaule we apply to him the fum of all thofe indications of veracity, which in previous inflances tive have obferved in others.

4thly, Ma. Price obferves, that we feel in ourfelves that a regard to truth is one principle in human nature; and we know, that there muit be fucti a principle in every reafonable being.

[ror]

But how do we know, that there muft be fuch a principle in every reafonable being?-This implies, that other reafonable beings are like us; and that they are fo is to be difcovered only by experience. When by experience we have difcovered, that in fimilar cafes they act in the fame manner that we do ourfelves, we then infer, that they have the fame tendencies, the fame paffions, the fame regard to truth that we ourfelves have. So that this inference is precifely of the fame nature with that, which we make refpecting the phrnomena of nature. We have found that a piece of lead finks in water ; another piece of metal occurs, which is found by experience or obfervation to refemble lead; whence we infer, that it likewife will fink in water. So that our inference in this cafe is founded on that conflitution of our nature, by which we have a confidence in the future from our experience of the paft: and our confidence in tefimony has no other origin.

Having now fhewn, that our belief in a courfe of nature and in human tefimony is equally derived from experience, that the degree of probability is proportional to the number of previous experiments when they are very numerous, and that any given degree of probability is jufly expreffed by a fraction which denotes the value of our expectation; it follows, that thefe probabilities derived from our experience refpecting any fpecies of natural phxiomena, and the veracity of human teftimony are homogeneous quantities; and therefore may be ju:ily compared with each other.

$[102]$

But the convifion produced by teftimony is capable of being carricd much higher than the conviction produced by other experience; and the reafon is this, becaufe there may be concurrent teft monies with refpect to the truth of the fame individual fact, whereas there can be no concurrent experiments with refpect to an individual experiment. There may indeed be analogous cxperiments, in the fame manner as there may be analogous teftimonies; but in a courfe of nature there is but one continued feries of events, whereas in teftimony, fince the fame cvent may be obferved by different witncffes, their concurrence is capable of producing a conviction more cogent than any which is derived from any other fpecies of events in the courfe of nature. In material phxnomena, the probability of an expected event depends folely on analogous experiments, which have been made previous to the event; and this probability admits of indefinite encreare from the unlimited encreafe of the number of thefe precedent experiments. The credibility of a witnefs arifes likewife from our experience of the veracity of previous witneffes, and admits of unlimited encreafe, according to their number; and the law of its encreafe is, of courfe, the fame with that derived from phyfical events. There is however another fource of the encreafe of teftimony, which is iikewife unlimited, dcrived from the number of concurrent witneffes, and its encreafe on this account follows a law different from the former. The evidence of teltimony therefore admitting of an unlimited encreafe on two different accounts, and the probability of the happening of any fpecific

$\left[\begin{array}{ll}103\end{array}\right]$

fpecific event admitting only of one of them, the former is capable. of indefinitely furpaffing the latter.

Is order to prove this, we muft confider the law which the evidence of concurring witneffes follows, according to the number of the witneffes.

Let there be two dies, of the fame kind, in each of which the number of white faces is m, each alfo having but one black face; and fuppofe, that thefe dies being thrown together, it be required to determine, what is the proportion of the number of chances. that two white faces will turn up to the number of chances that two black faces will turn up together. The number of combinations of two white faces is the fquare of m; and the number of combinations of black faces is unity. Therefore the odds that two white faces will turn up rather than two black faces, is as m^{2} to I . The cafes where a black and a white face turn up. together are excluded by the nature of the queftion, becaufe the witneffes are fuppofed to be concurrent, that is, that the faces of the dies are of the fame colour. In like manner, if there be three dies of the fame kind as before, the odds that three white faces will turn up together rather than three black faces, will be m^{3} to I ; and fo on, the index of m being always equal to the number of dies.

Now if the number of chances that any witneffes refpectively tell truth, to the number of chances of their telling fallhood be as m to I ; the odds that they tell truth rather than falfhood, on fuppofition.

[104]

pofition that they are concurrent, will be determined in the fame manner, that is, will be as that power of the number of chances of their telling truth, whofe index is the number of witneffes, to unity.

The feries of antccedents whofe common confequent is unity, which exprefs the ratio of the probability of the truth and falifhood of the concurring reporters, being the fucceffive powers of a given number greater than unity, encreafe in geometrical progreffion, and therefore will at length exceed any number however great. And if concurring reporters be all of equal credibility, their number may be fo far encreafed as to produce a probability greater than any that can be affigned.

For let any propofed degree of probability be $=\frac{a}{a+1}$; and let the probability that a given witnefs tells truth be expreffed by the fraction $\frac{b}{b+1}, b$ being lefs than a; take fuch a power b^{n} of b as that it fhall excecd a, and let n be the number of witneffes, then will the probability of the veracity of the concurrent witneffes be expreffed by the fraction $\frac{b^{n}}{b^{x}+1}$, which is greater than the fraction $\frac{a}{a+1}$; becaufe unity, the given difference of the numerators and denominators bears a lefs proportion to the greater quantity b^{n}, and therefore

[105]

therefore the quantities b^{n} and $b^{n}+\mathrm{I}$ are more nearly equal than the numerator and denominator of the fraction $\frac{a}{a+1}$.

It is manifeft, that where the credibility of each witnefs is very great, a very few witnefles will be fufficient to overcome the probability derived from the nature of the fact. Thus fuppofe the latter probability $=\frac{6560}{656 \mathrm{I}}$; and let us fuppofe that each witnefs tells truth only nine times for once that he tells falfhood ; that is, let the probability of the truth of his report be equal only to $\frac{9}{10}$; then four fuch concurring witneffes will be fufficient to produce belief.

After a certain number of concurring witneffes have given their teftimony in confirmation of the truth of a fact, any farther encreafe of their number is fuperfluous; becaufe the difference between unity and the fraction expreffing the probability, which is the refult of their concurrent teflimony, is indefinitely little; and all that an indefinite encreafe of the number of witneffes could do, would be to diminifh that indefinitely little defect.

Yet that probability, in cafes of teftimony, admits of an unlimited encreafe, is evident; becaufe the limit of probability is certainty, but the denominator of the fraction, which expreffes probability, always exceeds the numerator by unity; therefore the
Vol. VII.
O
fraction

[106]

fraction can never be equal to unity; that is, no finite number of concurrent reporters can produce abfolute certainty.

By this unlimited encreafe is to be underftood the actual, not fenfible probability; for the indefinitely little defect from certainty is capable of mathematical computation, as well as the greateft quantity, though it be imperceptible by the human mind. We are therefore juftified in concluding, that the evidence of human teftimony effectually attains its maximum, becaufe it arrives at fuch a degree, as that any further increafe of it is imperceptible. And the like takes place in extenfion; fuppofe a yard to be encreafed by the hundred thoufandth part of an inch, and by half that quantity, and by the $\frac{1}{8}$, and $\frac{1}{\frac{1}{6}}$ \&c. ad infinitum; the increment of this line would be imperceptible, and yet the line would never attain its maximum.

If the chances for the truth and falhood of the report of each of any concurrent witneffes be equal, no number whatever of fuch witneffes can render an event probable, by their teftimony. Becaufe the number of chances of their coincidence in falfhood encreafes in the fame proportion with the number of chances for their telling truth. Let their number $=n$, fince the probability that each witnefs tells truth is $=\frac{1}{2}$, the meafure of the probability of the concurrent witneffes will be $=\frac{n}{2 n}=\frac{1}{2}$.

If it be improbable that each witnefs tells truth, that is, if the number of chances that each tells falfhood, be to the number

[107]

of chances of his telling truth, in any ratio greater than the ratio of equality, the greater the number of concurrent witneffes, the lefs will be the probability of the truth of their report; becaufe the greater will be the number of their combinations in falfe report in proportion to the number of their coincidences in truth. Thus if there be three witneffes, each of whofe credibility is meafured: by. $\frac{1}{5}$, that is, if there be one chance only for the veracity, and four chances for the fallhood of each, then will the improbability of the truth of their report be meafured by σ^{\prime}.

This conclufion, as Mons. Condorcet obferves, leads us to a very important remark, which fhews how unfit numerous popular affemblies are for deliberation; for fince in fuch affemblies, when we confider the ignorance and prejudices of the voters, we muft eftimate the probability that each will vote right at lefs than an even chance, it follows, that the more numerous the affembly, the greater will be the probability that their decifions will be falfe. And hence we perceive, what political evils muft follow from the determinations of an ignorant democracy. But in a well informed and impartial affembly, the more numerous the voters, the greater will be the probability of the rectitude of their decifions.

Hence, by the way we may remark, that Dr. Halley's mode of computing the probability of the report of concurrent witneffes is erroneous. According to him, the calculation is to be made in

$$
\mathrm{O}_{2}
$$

the

[108]

- following manner; if the firft witnefs gives $\frac{a}{a+c}$ of certainty, and there is, wanting of it $\frac{c}{a+c}$, the fecond attefter will add $\frac{a}{a+c}$ of that $\frac{c}{a+c}$; and confequently leave wanting only $\frac{c}{a+c}$ of that $\frac{a}{a+c}=\frac{c^{2}}{a+c}$. And in like manner, the third attefter adds his $\frac{a}{a+c}$ of that $\frac{c^{2}}{\overline{a+c}}{ }^{2}$, and leaves wanting only $\frac{c^{3}}{a+c^{2}}, \& c$.

Hence, he obferves, it follows, that if a fingle witnefs fhould be only fo far credible as to give me the half of full certainty; a fecond of the fame credibility, joined with the firf, would give me $\frac{3}{4}$ ths, a third $\frac{7}{8}{ }^{\frac{7}{c} h}$, \&c. which appears to be falfe; for we have fhewn above, that no number of fuch reporters could produce an affurance greater than that of an even chance, for the truth or falfhood of the fact.

The fallacy of his argument lies in this, that he fuppores all the individual concurrent witneffes to produce unequal degrees of affurance, which is evidently a falfe pofition; fince they are all of equal credibility and equally concurrent, and therefore contribute equally in producing our affurance.

Dr. Waring, whofe folution is effentially the fame with Halley's, fays, if there be two different arguments (or witneffes) entirely independent of each other, in fupport of a fakt, whofe probabilities

[109]

let be $\frac{p}{a}$ and $\frac{q}{a}$; then will the probability in fupport of the fact, refulting from both arguments (or witneffes) be 1 -$\frac{(a-p)(a-q)}{a_{z}}$: for if the probabilities in fupport of it are refpectively ${ }_{a}$ and $\frac{q}{a}$, then will the refpective probabilities of its failing be $1-\frac{p}{a}=\frac{a-p}{a}$, and $\mathrm{I}-\frac{q}{a}=\frac{a-q}{a}$; and confequently the probability of failing from both will be $\frac{a-p}{a} \times \frac{a-q}{a}$; whence the probability of the fact refulting from both will be r-$\frac{a-p}{a} \times \frac{a-q}{a}$.

In this argument there is one ftep, which appears inadmiffible; it is affumed, that if the probability of failing from both, or rather of both failing, be $=\frac{a-p}{a} \times \frac{a-q}{a}$, then $\mathrm{r}-\frac{a-p}{a} \times \frac{a-q}{a}=$ the probability of happening from both, which does not appear to be • true; becaufe $1-\frac{a-p}{a} \times \frac{a-q}{a}$ is equal to the probability of both happening, together with the probability of one happening and the other failing. Thus if there be an even chance for both, $\frac{a-p}{a}=\frac{a-q}{a}=\frac{2-1}{2}=\frac{1}{2}$; then $\frac{1}{\frac{1}{2}}=$ the probability that both will fail; alfo $\frac{1}{4}=$ the probability that both will happen, and $\frac{3}{4}=$ the probability that one will happen and the other fail; therefore $1-\frac{1}{4}=\frac{1}{4}+\frac{2}{4}=$ the fum of the probabilities that both will happen, and

[110]

and that one will happen and the other fail. This mode of calculation adopted by Dr. Waring, however it may hold in joint annuities, where the defired end is equally anfwered, whether one or all of the lives attain the propofed period, will not equally apply to the conjoint probability of arguments, or concurring witneffes, where the evidence fails either when the arguments are all falfe, or are oppofed to each other.

If the witneffes that atteft a fact, or the voters that decide on a queftion, contradict each other, and it te required to determine what is the refulting probability of the truth of the fact or of the decifion upon the whole, we are to proceed thus: firft compute the odds that the affirmative witneffes are right, or the ratio of the number of chances of their being right to the number of chances of their being in errror; proceed in the fame manner with the negative witneffes; then the product of the number of chances that the affirmative witneffes are right, into the number of chances that the negative witneffes are miftaken, will be the number of chances for the truth of the fact; and the product of the number of chances that the affirmative witneffes are miftaken, into the number of chances that the negative witneffes are right, will be the number of chances for the falhood of the fact; and confequently the probability of the truth of the fact refulting upon the whole, will be equal to the former product divided by the fum of the two products. For example, let there be feven voters, of which let four be affirmative and three negative; and let the chance

$[$ III $]$

chance that each votes tightly be the ratio of a to b, then the ratio of a^{4} to b^{4} will be the odds that the affirmative voters are right; and the ratio of a^{3} to b^{3} will be the odds that the negative voters are right; and the ratio of $a^{4} b^{3}$ to $b^{4} a^{3}$, or a to b, will be odds refulting that the affirmative voters are right.

If there were eight voters, the loweft majority muft be five and three; and the odds that the affirmative voters were right would be a^{5} to b^{5}; and the odds that the negative voters were right would be a^{3} to b^{3}; and the refulting odds that the queftion was juftly decided would be $a^{5} b^{3}$ to $a^{3} b^{5}$ or a^{2} to b^{2}.

In general therefore it appears, that the odds for the truth of the decifion, will be that power of the odds that each perfon votes juftly, whofe index is the difference between the number of affirmative and negative voters.

And hence we may correct the error of thofe who imagine, that the probability, cateris paribus, is the fame, if the proportion of the number of affirmative witneffes to the number of negative witneffes be the fame; whereas the probability is to be eftimated by the difference of thefe numbers.

We have already remarked, that in the enacting of a new law, we ought to have at leaft that probability for the expediency of the law, below which a perfon cannot act without imprudence. As the manner of determining this degree of probability is ex-

[112]

trem ly ingenious, I cannot avoid mentioning it. The object to be attained is equivalent to this, that in the enacting of a law, the rifk of error fhould not be greater than what we difregard, even where our own life is in queftion. Buffon and Bernouilli have endeavoured to cflimate the value of this rifk, but the follorring method adopted by Condorcet, feems to be the beft. It is obforved, that from the age of thirty-feven years to forty-feven, and from eighteen to thirty-three, the rifk men run of dying by accident or difeafes of fhorter duration than a week, encreafes continually in nearly a regular manner; and it is alfo obferved, that a man of thirty-three years is not more apprehenfive of fuch kind of death than a man of eighteen, nor a man of forty-feven than a man of thirty-feven years; the difference of rifk therefore in thefe cafes is difregarded: norr, from the tables of mortality, it appears, that, in the firft period, the difference of rifk is $=$
 which is the greater, as the limit of that rikk which may be difregarded, and confequently $\frac{14 \frac{4}{4} \frac{4}{4} \frac{5}{7} \frac{5}{8} 8}{8}$ will be the limit of the affurance, which we ought to have in the enacting of a new law.

Ir we fuppofe that the odds that each legiflator votes juftly, is ten to one, then will a majority of fix be requifite to give the affurance required; which in an affembly of three hundred is only a majority of one in fifty.

[II 3]

These principles, which we have laid down above, may be likewife applied, as is manifeft, to determine the probability of the decifions in courts of appeal; where the fame queftion is fucceffively tried before different tribunals.

And here I cannot avoid obferving, that Dr. Waring's method of determining the refulting probability, where different arguments are contradiCtory, is erroneous. Let P , fays he, be $=$ the probability refulting from the arguments in fupport of the fact, and $\mathrm{Q}=$ the probability refulting from all the arguments againft the fact; then the probability of all the arguments for the fact will be $\mathrm{P}-\mathrm{Q}$, if P be greater than Q; or againft it $=Q-P$, if Q be greater than P. See Principles of Human Knowledge, §10. Now, according to thefe principles, if two witneffes of equal veracity fhould contradict each other, the difference between the probabilities for and againft the fact would be $=0$, that is, the fact would be impoffible; which evidently cannot be a true inference. But in reality, in this cafe, there would be an equal chance for the truth and falfhood of the fact; for let the odds that each witnefs tells truth be the ratio of a to b, then the odds refulting that the fact is true, will be the ratio of $a b$ to $b a$, and the refulting probability $=$ $\frac{a b}{a b+a b}=\frac{1}{2}$.

Again, if againft a propofition which is abfolutely certain, there fhould occur an argument for the truth of which there was an Vol. VII.

[114]

even chance; the probability refulting upon the whole, according to Dr. Waring, would be no more than an even chance, for $1-\frac{1}{2}=\frac{1}{2}$; which is manifefly a falfe inference. In fact, fince the odds that the propofition is true are infinite, or as r to o, the refulting odds muft always be as fome finite number to O, that is, infinite, that is, the propofition will ftill be certain.

I have here mentioned fome circumftances relative to the nature of the evidence refulting from concurring and contradictory reporters, not tending directly, it is true, to the eftablifhment of the point I propofed to myfelf, but nearly connected with it; my principal, and I may almoft fay, my fole object being to fhew, that the evidence of teftimony can overcome any degree of improbability however great, which can be derived from the nature of the fact.

Our expectation that a phyfical event, in the courfe of natùre, will happen in a particular manner, is founded on previous experience; which experience may be both perfonal and derived; that is our expectation may be deduced both from our own actual experience, and the reports of others vouching their experience, of the like events in fmilar cafes, Since this expelation muft neceffarily be of fome determinate value, depending in fome

$\left[\begin{array}{ll}115\end{array}\right]$

manner on the number of experiments either actually made by ourfelves or reported by others, we will fuppofe it $=\frac{e}{e+t}$. This argument is founded on an analogy which has never deceived us, and is called, by Mr. Hume, a proof. On the other hand, there is a direct and pofitive teflimony of a fingle witnefs, that the contradictory of this event did actually happen; and this is fuch a teftimony as both perfonal and derived experience affures us has never deceived; the probability of the truth of this teftimony we will call $\frac{t}{t+1}$; this argument Mr. Hume likewife calls a proof, and he fuppofes, that it is equal to the former, that is, $\frac{t}{t+1}=\frac{e}{e+1}$. This however is a mere hypothefis; for they are both probable inferences only, deduced from experience; but it is by no means fhewn, that the number of experiments made in both cafes are the fame, or the circumftances exactly parallel ; t therefore may be either equal to, or greater, or lefs than e, in any affigned proportion. The evidence of a fingle witnefs is to be compared with that probability of an event in phyfical phoenomena, which is derived from a feries of fimilar expcriments only; becaufe the veracity of human teftimony conftitutes one fpecies of events in the courfe of nature, in the fame manner as the finking of lead in water, or the diffolution of gold in aqua regia; and therefore is deduced, in the fame manner as any other fipecific

[146]

phœenomenon, from experience, and appears to arife, in the fame manner, from an effablifhed law. This veracity therefore is confirmed by the analogy of other phonomena, in the fame manner as any given fpecies of phyfical phonomena; inafmuch as thefe other phœenomena contribute to eftablifh the general principle, that all things are conducted according to eftablifhed laws. If now we confider the numerous experiments we make every day on the veracity of human teftimony in certain circumftances, fo that our analogy in this cafe is founded on an indefinitely greater number of inftances than in any other fpecies of events in the courfe of nature, we may perceive, how the evidence even of a fingle witnefs may be fo circumftanced, as to eftablifh an individual phyfical phœenomenon, however contradictory it may appear to our previous experience of fimilar facts. Let us however fuppofe, that the evidence of the fingle witnefs is lefs than the evidence of experience in any affigned proportion, or that t is lefs than e in the proportion of 1 to m; then $m t=c$, and $\frac{c}{e+1}=\frac{m t}{m t+1}$. Take now fuch a power t^{n} of t, as that it fhall be greater that $m t$, and $\frac{t^{n}}{t^{2}+1}$ will be greater than $\frac{e}{e+1}$; thât is, if n be the number of witneffes, each of whofe veracity is $=\frac{t}{t+1}$, their concurrent teflimony will be fufficient to overcome the probability ${ }_{e}^{e}+1$ derived from the nature of the fact. Hence

[147]

therefore it follows, that the evidence of teftimony can approach indefinitely near to certainty; and can at length exceed the evidence of any inference, however cogent, which can poffibly be deduced from perfonal experience, or from perfonal and derived experience conjointly.

IT is to be obferved, however, that the calculation here flated, applies only to the teftimony of different witneffes, who fimply give their evidence as to the truth or falfhood of a propofed fact; or of witneffes each of whom has an opportunity of knowing what teftimony the others have given. This, without doubt, is to take the force of concurrent teftimony at the greateft difadvantage; neverthelefs, even in this cafe we find, that it has no limit. But there are other cafes in which the leaft number of concurrent witneffes, let the degree of their veracity be however fimall, can afford a probability which fhall exceed any given degree of probability however great; namely, where the witneffes have had no means of knowing each others teftimony, and the fact is attended with contingent circumflances, which make a part of their depofition : becaufe the chances of their not concurring in thefe circumftances, may exceed any given chance. In thefe cafes we obferve, that even witneffes who have been obferved to tell fallhood oftener than truth, may yet produce belief; becaufe here the probability of the truth of their report is not derived from the chances of their coinciding, abftractedly, in truth or fallhood, but from the chances of their coinciding in circumfances contingent in their nature, and which have no apparent connecion with each other. As for inftance, if each witnefs Voi. VII.

* P_{3}

Should

[IIS]

fhould declare, that a celeftial phænomenon, even fuch as we had never feen, had appeared in a certain region of the heavens, on a certain day, hour, and fecond; had run over a particular tract, and laftly difappeared with circumftances peculiar and minutely detailed; we muft perceive, that our belief would not be founded on an enquiry into the characters of the witneffes, but folely into the chances of their concurrence in thefe contingent circumftances.

[Fi 9]

On the NUMBER of the PRIMITIVE COLORIFIC RAYS ind SOLAR LIGHT. By tbe Rev. MATTHEW YOUNG, D.D. S.F.T.C.D. छ M. R.I.A.

THE opinion that there are but three primitive colours has Read April been maintained by M. du Fay, and after him by Father Caftell. 7 th, ${ }^{17980}$ See Montucla, Vol. I. p. 630 . ; but they and all others who hold the fame doctrine, defend it merely on the principles of a painter, who fhews how with thefe three colours on his pallet, he can compound all others; for with red and yellow he can form an orange colour; with blue and yellow he forms green; and with blue and red he forms indigo and violet; and thus having compounded the feven prifmatic colours, it is manifeft that all other colours, with their different gradations, can be formed from them likewife. But this pharmaceutical argument is by no means. fufficient to fatisfy us as to the real compofition of folar light.
"Light, in refracting, is decompofed into feven rays, red ,

[120]

"fuppofed," fay Fourcroy, "that three of there colours, the "red, yellow and blue, were fimple; and that the other four 6 were formod each of its two neighbours; that is, the orange " from the red and yellow, the green from the yellow and blue, " the indigo from the blue and violet, and the violet from the " red and indigo. But this fuppofition has never been proved." See his Philofophy of Chem. ch. I. §3. Befides that this is a mere hypothefis, unfupported by any fact, as Fourcroy obferves, we remark, that it is in itfelf inadequate; 1 ft, becaufe in the folar fpectrum, the red and indigo are not neighbeuring colours but are almoft at the greateft poflible diftance from each other. 2dly, According to this hypothefis, indigo is compofed of blue and violet ; but violet is compofed of red and indigo; indigo therefore is compoled of red, blue and indigo, that is, indigo itfelf is one of its own effential ingredients, which is abfurd.

The experiments of the prifm feem to eftablifh, in a very clear manner, the exiftence of feven original and uncompounded colours; and though green, for inftance: may be compounded of blue and yellow, yet it does not directly follow from thence, that it always is fo actually compounded. Accordingly Newton tells us, that green may be exhibited in two different ways, either by primitive, green making rays, which are fimple and not refolvable by any reflection or refraction into different rays; or by a compofition of blue and yellow rays, which are differently refrangible, and which therefore after their union, may again be fepa-

[$12: 1$]

rated by refraction, and exhibit their proper colours of blue and yellow.

Ov this doctrine of the two-fold generation of green, we may in the firft place remark, that the antient, received axiom "Deus " nil agit fuftra" ought not to be too haftily abandoned, as it mult appear to be, if this doctrine be maintained: for if green may be produced by blue and yellow, then blue and yellow being already exiftent, green is a confequence; and therefore peculiar rays formed for the production of green are fuperfluous. Though I acknowledge, that this maxim is not fo cogent or felfevident, as to preclude all objection, yet fince the general obfervation of nature feems to fhew, that this wafte of power or multiplicity of means is not adopted by the Supreme Artift, it certainly feems juftly entitled to our attention, at leaft fo far as this, that we fhould be careful in fhewing, that we are led to thefe different caufes of the fame effect, by a legitimate and cautious analyifis.

IN defence of the doctrine of three primitive colours only, F. Caftelli contents himfelf with faying, that the colours of the prifm are immaterial, accidental, artificial, and therefore unworthy the regard of a philofopher; whereas the colours of painters are fubftantial, natural, palpable. From them, of confequence, the theory of chromatics fhould be deduced; but they Vol. VII.

Q
tell

[122]

tell us, that there are but three parent colours, which give birth to all others.

In reply to this we need only obferve, that Sir I. Newton has proved, that the colours of natural bodies depend on the colorific qualities of the rays of light; and therefore that our theory of colours mult be derived from an enquiry into the conftitution of folar light, for according to that conflitution the colours of bodies will vary: and he farther fhews, that if folar light confifted of but one fort of rays, all bodies in the world would be of the fame colour. However true therefore F. Caftelli's theory may be, the manner in which he deduces it from phænomena is unqueftionably falfe.

I fhall therefore proceed to enquire fcrupuloully into the compofition of the folar fpectrum, from which, without doubt, the true doctrine of the origin of colours is to be derived.
I_{F} the folar light confifted of feven primitive, homogeneal coloured rays, and that thefe homogeneal rays were equally refrangible, the fpectrum would confift of feven circles of different colours, fince the homogeneal rays of each colour would paint a circular image of the fun. But it is manifeft, that feven circles could not compofe an oblong feectrum, with rectilineal fides. Therefore the rays of the fame denomination of colour muft be differently refrangible. Which is alfo made ftill farther evident

[12.3]

evident by obfervation of the fpectrum, fince in it we perceive, that the prifmatic colours are diffufed over fpaces, which are, on the fides, terminated by right lines, and therefore the centers of the circles of the fame denomination of colour are diffured over lines equal to thefe fegments of the reailineal fides of the fpectrum. Newton has fhewn, prop. 4. B. r. Optics, how to feparate from one another theheterogencous rays of compound light, by diminifhing the breadth of the fpectrum, its length remaining unchanged; and when the length of the fpectrum is to its breadth, as 72 to I , the light of the image is feventy-one times lefs compound than the fun's direct light. In the middle of a black paper he made a round hole, about a fifth or a fixth part of an inch in diameter, upon which he caufed this fpectrum fo to fall, that fome part of the light might pafs through the hole of the paper; this tranfmitted part of the light he refracted with a prifm placed behind the paper, and letting the light fall perpendicularly upon a white paper, he found that the fpectrum formed by it was perfectly circular. Hence, therefore, it follows, that the equally refrangible rays occupy a fpace on the retilineal fides of the fpectrum equal at leaft to the fifth or fixth part of an inch; that is, the rays of the fame colour are differently refrangible.

The different quantity of the homogeneous rays of different colours will not account for the different fpaces they occupy in the fpectrum; for this difference in quantity would affect only the intenfity of the colour, not the magnitude of the face which it

$\left[\begin{array}{ll}124\end{array}\right]$

would occupy. All the red light therefore is not homogeneous; but confifts of rays of innumerable, different degrees of refrangibility; and fo of the other colours.

Now fince the rays which are of the fame denomination of colour are differently refrangible, they will either form oblong fpectrums detached from each other ; or they will in part lap over, and fall on each other. The former pofition is manifeftly falfe: therefore the original prifmatic colours will partly lap over and fall on each other, and therefore neceffarily generate the intermediate colours. And fo Sir I. Newton obferves, where he fays, that the original, prifmatic colours will not be difturbed by the intermixture of the conterminous rays, which are intermixed together. This overlapping however, which Newton fpeaks of, arifes only from the fun's having a fenfible diameter, and does not neceffarily imply an equal refrangibility in any differently coloured rays. If there be but three original prifmatic colours, red, yellow and blue, and that the red and yellow lap over, fo as that there flaall be a certain fpace in the fides of the fpectrum equally occupied by yellow and red circles, then will thefe circles by their intermixture compound an orange colour; and this colour as to refrangibility will be homogeneous, becaufe the coincident rays of different colours are equally refrangible. In like manner green may be compounded by the mixture of blue and yellow circles, equally refrangible. Now this is fimple, and conformable to the other phænomena of the fpcctrum ; for if rays of

$\left[\begin{array}{ll}125\end{array}\right]$

the fame denomination of colour be differently refrangible, it is not unreafonable to fuppofe, that rays of a different denomination of colour may be equally refrangible; and therefore fince the red rays are unequally refrangible, and likewife the yellow, there is nothing incongruous in fuppofing that tome of the lefs refrangible of the yellow may be equally refrangible with fome of the more refrangible of the red; and if fo, they will confequently be intermised with them: and the fame may be faid of the green. This hypothefis likewife receives confiderable ftrength from this confideration, that the orange, green, indigo and violet occupy thofe places which they ought to do, in cafe there were but three primitive colours, red, yellow and blue: thus the orange lies between the red and yellow, becaufe it is formed by fome of the extreme rays of red and yellow, which are equally refrangible; in like manner the green lies between the blue and yellow, becaufe it is formed by the mixture of blue and yellow. The indigo and violet muft alfo occupy the extreme part of the fpectrum, where the moft refrangible red and blue rays are united, and gradually becoming more and more dilute, fade away, and at length entirely vanifh. But if the orange, green, indigo and violet be primitive colours, there is no apparent reafon why they fhould have had fuch degrees of refrangibility affigned them, as that they fhould occupy the places they do, rather than any. other.

Moreover, if thefe three colours red, yellow and blue be the primitive colours, they cannot themfelves be generated; and ac-
cordingly we find, that yellow cannot be generated by the mixture of the adjacent prifmatic colours, orange and green; and the reafon of this is evident, becaufe orange is compounded of red and yellow ; and green is compounded of yellow and blue; but red and blue compofe furple; which added to the yellow will generate a new compound colour, viz. a fickly green, differing manifeftly from yellow, the colour which ought to refult according to the analogy of the other primitive colours, in which the extremes, by their mixture, generate that which is intermediate. In the fame manner, blue cannot be generated by the mixture of green and indigo, becaufe green is compofed of yellow and blue, and indigo of blue and violet; therefore the refulting colour is compofed of blue, yellow and violet; but yellow and violet do not compofe blue, therefore neither will blue, yellow and violet compofe a blue colour. Now if orange and green be primitive colours, in the fame manner as red, yellow and blue, we can affign no reafon why blue fhould not be gencrated by the mixture of the adjacent colours, as well as green and orange. But it is a received principle, that an hypothefis fhould folve all the phænomena; of the two hypothefes therefore, namely, that there are feven primitive colours, differently refrangible; or that there are but three, fome of which, of each fpecies, are equally refrangible; the latter alone folves all the phænomena of the folar fpectrum, and therefore is to be preferred.

If it be faid, that thofe rays which are equally refrangible muft excite the fame fenfation on the retina, becaufe they muft

[127]

have the fame momentum; it is replied, Ift, That it has not yet been proved, that the fenfation of different colours depends on the different momentum of the rays. 2dly, The rays may have different momentums, and yet be equally refrangible; for fince refraction is fuppofed to depend on the attractive force of the denfer medium, we muft fuppofe it analogous to the attractive force of gravity, which is proportional to the quantity of matter; and therefore the greater or lefs quantity of matter in a particle of light would produce no alteration in its refraction. Neither can the different refrangibility depend on the different velocity of the rays; becaufe the difference of refrangibility of the red and violet rays is much greater in flint glafs than in crown glafs; and this would require a proportionably greater difference in the original velocities, which cannot be. And this fame argument holds equally againft the former hypothefis, that the difference of refrangibility depends on the different magnitude or denfity of the particles of light. 3 dly, Refraction feems to arife from a fpecies of elective attraction, fince different mediums which act on the mean rays equally, act on the extreme rays unequally: hence rays of the fame quantity of matter and velocity, and therefore of the fame momentnm, may be diverfely refracted; and rays of different momentums equally refracted.

Nor is it to be wondered at that the rays of light fhould be differently refrangible, independent of any regard to their momentum, when we confider, that the different coloured rays ap-

[128 :]

pear to be combined with combuftible bodies, with diferent degrees of attractive force. For in combuftion we find, that different bodies are difpofed to part with different rays with greater facility; but when the combuftion is fufficiently rapid, they part with all the different coloured rays together, and the flame is therefore white; and this is what is called a white heat. Dr. Fordyce in the Phil. Tranf. for ${ }^{177}$, tells us, that when the heated fubftances are colourlefs, they firft emit a red liglit; then a red mixed with yellow, and laftly, with a great degree of heat, a pure white. All this is wonderfully conformable to the refraction of light by tranfparent fubftances, which refract, and therefore attract the red light lefs, and confequently in combuftion part with it more eafily. On the other hand I know it is generally believed, that the light in combuftion proceeds from the air, but this circumftance of the different colour of the light in different cafes, feems to overturn this opinion; for if vital air were oxygen diffolved in caloric and light, then the oxygen being abforbed by the burning body, the light extricated would in all cafes be of the fame nature ; the greater or lefs rapidity of the comburtion would only produce an extrication of a greater or lefs quantity of light, but could not produce any variation in its nature, it being neceffarily the fame in all cafes, to wit, that in which vital air is diffolved. But the truth or fallhood of this reafoning will not affect the validity of the pofition. that the refrangibility of the rays of light cannot depend on the different magnitude, denfity or velocity of the particles.

$\left[\begin{array}{ll}129\end{array}\right]$

Bur though feculation feems thus to render it probable, that there are but three parent colours; fir theory mult ever remain unfatisfactory, unlefs it receives the fanction of direft experiment. In this however there is no fmall difficulty; for fince the rays of light which compofe any given individual point of the colours of orange, green, violet, and indigo are equally refrangible, they will be alfo equally reflexible; and therefore cannot be feparated either by refraction or reflection, fo as to exhibit the different coloured rays of which they are compofed. It feems therefore, that the only way remaining, by which we can experimentally afcertain the compofition of thefe colours, if they be indeed compound, is tranfmiffion. For fince tranfparent coloured bodies are fuch merely by their letting pafs through them either folely, or more copioully, rays of a certain colour, and intercepting all others, fuch tranfparent bodies, applied to compound colours, will afcertain that compofition, by extinguifhing, in a great meafure, all rays except fuch as are fo adapted to its conformation, as to pafs through it, and give it its peculiar denomination of colour.

IN order to try the truth of the hypothefis of feven colours by this teft, I looked through a blue glafs at the red end of the fpectrum : now we are to confider, that if that part of the fpectrum was compofed of red rays, and none other, the only effect of the blue glafs would either be a total or partial fuffocation of the red rays; and therefore that part of the fpectrum, when looked at Vol. VII.

R
through

[130]

through the glafs, would either totally difappear, or become a faint and diluted red. But, on experiment it appeared of a purple colour. The purple in this cafe could not be a primitive and original colour, as is manifeft, becaufe it did not proceed from the purple part of the fpectrum; we muft therefore conclude, that it was a compound colour. But purple, when compound, is made up of blue and red, therefore it follows, that fome blue rays did actually exift in the red part of the fpectrum; which combined with the few, ftraggling red rays which penetrated the blue glafs, compofed that purple colour, which the red extremity of the fpectrum affumed, when viewed by the light tranfmitted through the blue medium.

To try, on the other hand, whether any red rays lay hid amongft the blue, I proceeded in the fame manner, and looking at the blueft part of the fpectrum through a red glafs, it appeared of a purple colour; fome red rays therefore are equally refrangible with the blue; and if the red extends as far as the blue, there is no reafon why we may not fuppofe that it extends fomewhat farther, fo as to compound, with a diluted blue, the extreme colours of the fpectrum, indigo and violet.

But it may be faid, that if blue rays exifted amongft the red, that part of the fpectrum could not appear fo extremely brilliant as it really does; but would put on a purplifh appearance in the fpectrum itfelf, even to the naked eye. In anfwer to this objection

$\left[\begin{array}{ll}\mathrm{I} 3 \mathrm{I}\end{array}\right]$

we may obferve, that the moft intenfe and vivid, natural red bodies do, in fact, reflect a very great proportion of blue rays, becaufe they appear of a ftrong blue colour when placed in the blue part of the fpectrum; and therefore they reflect juft as many when the direct, white folar light falls on them, in which all that blue is involved; though by the predominance of the red rays, they appear of that colour, without any vifible tincture of blue.

In order to determine whether the purple appearance of the red extremity of the fpectrum, when viewed through a blue glafs, was caufed by any of the white folar light, which might perhaps be reflected from the air, or furrounding objects to the fpectrum, and thus throw on that part fuch a quantity of blue as might produce a fenfible effect; I caufed the middle and moft intenfe part of the red to pafs through a hole in a blackened paper, and then fall on an optical fcreen; by which I was fure that I had as pure and uncompounded a red as could be defired ; which alfo underwent the ufual teft of purity by fubfequent refraction, without any change in the form of the fpectrum; I then looked at the body which was illuminated with this red, through the fame blue glafs, and the effect was the fame as before.

To try this doatrine of three parent colours fill farther, I confidered, that if the orange were really compounded of the red and yellow rays, then by looking at the orange through a red glafs, R 2 the

$\left[\begin{array}{lll}1 & 32\end{array}\right]$

the orange would in a great meafure vanifh, and the red would appear to extend much farther than in the original fpectrum; becaufe the yellow rays being confiderably obftructed, the red would become more predominant ; and that part of the fpectrum, which before appeared orange, in confequence of a certain mixture of yellow and red, would now, by the failure of fo confiderable a part of the yellow, lofe its orange appearance, and put on that of red: and, on experiment, I found the cafe to be fo really in fact ; for while an affiftant looked at the fpectrum through the red glafs, I moved an obflacle from the red towards the other end of the fpectrum, defiring him to ftop me, when the obflacle fhould arrive at the confines of red and-orange; but when he did fo, the obftacle had attained the middle of the orange, or rather had paffed beyond it. Now if the orange were really a primitive colour, I dhould fuppofe, that when looked at through the red glafs, it would either appear diluted, without any change of dimenfions; or that if the weak part of the orange, next the red, fhould vanifh, by the obftruction of the glars, a dark interval would appear between the orange and the red; in neither cafe can we account for the apparent extenfion of the red into the region of the orange; nor by any other hypothcfis, as appears to me, than that fome of the red rays are equally refrangible with fome of the orange.

There is another argument derived from the ocular fpectra of Dr. Darwin, which fill further corroborates the doctrine of three primogenial.

$\left[\begin{array}{ll}133\end{array}\right]$

primogenial colours. Place a piece of coloured filk, about an inch in diameter, on a fheet of white paper, about half a yard from your eyes; look fteadily upon it for a minute; then remove your eyes upon another part of the white paper, and a fpectrum will be feen of the form of the filk thus infpected, but of a different colour, thus

Red filk produced a green fpectrum,

Green	-	red,
Orange	-	blue,
Blue	-	orange,
Yellow	-	violet,
Violet	-	yellow,

The reafon of thefe phænomena is very ingenioufly affigned by: Dr. Darwin; he fays, that the retina being excited into a violent and long continued action by the red rays, in the firft experiment, at length is fo fatigued as to become infenfible to them; but that it fill remains fenfible, that is, liable to be excited into action by any other colours at the fame time; and therefore the fpectrum affumes a green appearance, becaufe if all the red rays be takenout of the folar light, the remaining rays will compofe green. See Phil. Tranf. Vol. LXXVI. Converfely, a green object produces a red ocular fpeclrum. Now we may obferve, that if all the green rays be taken out of the folar fpectrum of feven colours, the remaining colours will not compound red. If indced green be not a. primitive colour, but a compofition of blue and yellow, then

$\left[\begin{array}{ll}\text { I } 34\end{array}\right]$

will the cye, in looking on a green object, be at once affected by blue and yellow rays; and therefore become infenfible to them both; and confequently the fpectrum will appear red. But if green be a primitive, original colour, generated by its own peculiar green-making rays, the eye in contemplating a green object, will become infenfible only to the green rays; and therefore the other fix prifmatic colours, which are fpecifically different from the green, ought to be fenfible, and produce their proper compound effect; but this would not be the fenfation of red. In like manner, if the object be yellow, the eye will at length become infenfible to the yellow-máking rays, and the fpectrum will be violet. Now fince on the hypothefis of feven original colours, the orange and green are primitive, though the eye be rendered infenfible to the yellow rays, it will not be fo to the orange and green, which therefore, together with the red, blue, violet and indigo will produce their compound effect; but the colour refulting from this joint action is not violet, which neverthelefs is the colour of the ocular fpectrum. On the other hand, if there be but three primitive colours, red, yellow and blue, when the eye is infenfible to the yellow-making rays, the fpectrum muft neceffarily be violet, which is the colour that refults from the mixture of red and blue. If it be objected, that the eye is not only infenfible to the unmixed yellow rays, but likewife to the yellow of the orange and the green, then it is admitted that orange and green are compound colours. Eefides, fince the colour which would refult from the misture of red, orange, green, blue,

[I35]

blue, indigo and violet is not yellow, the eye ought not to be infenfible to this colour; and confequently, fince by the exemption of the yellow rays from the white folar light, that colour does not refult, but a difinct purple, it follows, that the orange and green are not primitive colours inherent in folar light.

It remains now only for us to fhew, that the three colours of red, yellow and blue are adequate to the folution of all the phænomena of chromatics. But in order to fhew this, few words will be fufficient, for having feen, that the feven prifmatic colours can be generated by thefe three, it follows that all others can be generated from them, as Sir I. Newton has proved at large. However I think it will not be fuperfluous to obferve, that white may be directly produced by thefe three colours, without the previous generation of the other four prifmatic colours, in the fame manner as it is ufually generated with feven. "I could: " never yet," fays Newton, " by mixing only two primary co" lours, produce a perfect white. Whether it may be compofed " of a mixture of three, taken at equal diftances in the circum"ference, I do not know." Now to fhew that white may be thus generated, let an annulus of about four inches diameter be divided into three parts by lines tending towards the centre, and let thefe three divifions be refpectively painted red, yellow and blue, in proportions to be afcertained by trial; then if the annulus be turned fwiftly round its centre, it will appear white. That white may be generated by the mixture of only the three

(136)

colours red, yellow and blue might alfo appear from the rule which Newton himfolf has given us, for determining the colour of the compound which refults from the mixture of any primary colours, the quantity and quality of each being given.

The rule is this, the circumference of a circle is diftinguifhed into feven arches proportional to the feven mufical intervals in an octave, that is, proportional to the numbers $45,27,48,60,60$, 40, 80 : the firft part is to reprefent a red colour, the fecond orange, the third yellow, the fourth green, the fifth blue, the fixth indigo, and the feventh violet. Thefe are to be confidered to be all the colours of uncompounded light gradually paffing into one another, as they do when made by prifms, the circumference reprefenting the whole feries of colours from one end of the fun's coloured image to the other. Round the centers of gravity of thefe arches lct circles proportional to the number of rays of each colour in the given mixture be defcribed. Find the common centre of gravity of all thefe circles, and if this common centre of gravity coincide with the centre of the circle, Newton fays that the compound will be white. Join therefore the centers of gravity of the blue and yellow circles, and from the centre of the red circle draw a right line through the centre of the principal circle; from the conftruction it will cut the line which joins the centers of the blue and yellow circles; if therefore the number of the blue and yellow rays be to each other inverfely as their diftances from the point where the line which joins their centers is cut by the line drawn from the centre

[137]

centre of the red circle; and if the number of red rays be to the fum of the yellow and blue rays inverfely as the diffances of the centre of the red circle, and the common centre of the yellow and blue from the centre of the principal circle, the common centre of gravity of the red, blue and yellow circles will coincide with the centre of the principal circle, and therefore the refulting compound will be white.

But it is manifeft that this conftruction cannot be relied on, becaufe the quantities of the rays of any given colour in folar light, do not appear to be proportional to the fpaces which they occupy in the rectilineal fides of the fpectrum. Thus it is known that the yellow making rays are predominant in folar light, yet the fpace they occupy in the fpectrum is to the fpace occupied either by green or blue as four to five, and to the fpace occupied by the violet only as three to five.

$\left[\begin{array}{ll}{[39}\end{array}\right]$

OBSERVATIONS on the THEORY of ELECTRIC ATTRACTION and REPULSION. By the Rev. GEORGE MILLER, F. T. G. D.

BEFORE that the theory of a fingle electric fluid was propored, no difficulty occurred in the explanation of the attractions and repulfions obferved to arife from electricity. If we admit that there are two diftinct electric fluids, each of which ftrongly attracts the other, but confifts of particles mutuaily repulfive; it becomes eafy to account for the attraction fubfifting between bodies in different flates of electricity, and the repulfion between thofe in the fame. But when Dr. Franklin*, obferving that a man, flanding upon a non-conductor, could not electrify himfelf, but that he could electrify another perfon alfo ftanding upon a non-conductor, was induced to regard the operation of exciting electricity only as a transfer of one and the fame fluid from one body to another; it was found to be difficult to reconcile to the new theory the mutual repulfion of bodies in that ftate which is, according to this theory, $S_{2} \quad \therefore$ denominated

[^0]
[140]

denominated negative electricity. Doctor Franklin* acknowledged ${ }^{*}$ that he could not affign a fatisfactory reafon for it; and Doctor Prieftley \dagger has propofed it, as one of the queries remaining to be folved for completing the fcience of electricity. Many attempts have been made to obviate this apparent objection to the fimple theory of a fingle fluid; but the difficulty feems fill to be as great dis it was in the time of Franklin.
\ddagger Efinus has applied a very elaborate fyftem of mathematical reafoning to the folution of electrical phænomena, and has adopted as the bafis of his theory, the fame opinion which Franklin had entertained concerning the nature of the electric fluid; but he has combined with this opinion other principles fo inadmiffible, that his reafonings cannot be regarded as juft explications of the phænomena. He has affumed, apparently without any other reafon than its importance to his conclufions, that the particles of all other fubftances repel each other. His fyffem muft therefore be confidered, not as a phyfical folution agreeable to the known laws of natural operations, but merely as an ingenious exercife of mathematical ability.
M. D_{E} Luc, who rejected the folutions of Æpinus has endeavoured to fupply the deficiency. §Having remarked that the divergence

[^1]
[14 r]

divergence of the balls of an electrometer, included in the receiver of an air-pump, is continually diminifhed during the progrefs of exhauftion; he confiders it as proved, that the caufe of all electrical movements, whether of attraction or of repulfion, is the action of the air. This principle he applies in the following manner. When two bodies are in fimilar ftates of electricity, either pofitive or negative, they will confpire to modify, either by giving or receiving the electric fluid, the fate of the intermediate air, whilf that of the exterior air is only modified by either of them fingly; and therefore the flate of the exterior air will differ more from that of the electrified bodies, than the fate of the intermediate air. In this cafe he contends that a repulfion muft take place, becaufe each body muft move towards that part of the furrounding medium, whofe electrical ftate is moft different from its own. On the other hand, when bodies are in different fates of elearicity, they will mutually counteract the changes, which they might feparately produce in the ftate of the intermediate air; but each will operate on the exterior air without any compenfation. In this cafe the ftate of the intermediate air will continue to differ from that of each body as much as at the firft inftant, whilif the ftate of the exterior air is feparately modified by each body according to its refpective flate of electricity. The two bodies therefore, moving towards that part of the furrounding medium, whofe electrical ftate is moft different from their own, will at the fame time move towards each other.

$\left[\begin{array}{ll}\text { [} 42\end{array}\right]$

This theory very ingenioully avoids the difficulty of explaining the cafe of clectrical repulfion, by refolving it into an attraction towards the furrounding medium. It feems however to be liable to two objections. In the firft place, inftead of affuming unauthorized principles with the preceding theory, it omits the confideration of one whofe exiftence feems to be afcertained by experiments. If a body be in either ftate of electricity, it will induce in an adjacent body the contrary ftate, until it fhall have come within a certain diftance. This property, which has been afcertained by various experiments, indicates a repulfive force fubfifting between the portions of the electric fluid that belong to the adjacent bodies; and this theory makes no allowance for fuch a repulfion. The fundamental principle of it is merely a diffufion of the electric fluid, and is * thus ftated by M. De Luc: " the electric matter tends towards all fubftances, and the more ftrongly in the fame proportion in which they poffefs a fmaller quantity." In the fecond place, it does not appear, when carefully confidered, to afford any affiftance towards the removal of the grand difficulty, the mutual repulfion of bodies negatively electrified. If two bodies negatively electrified be placed at a fmall diftance, they will both, according to M. De Luc's explanation, receive the electric fluid from the intermediate air, which will confequently retain a fmaller portion than the furrounding atmofphere From the law above-mentioned it Shouid follow, that the redundant fluid of the exterior air fhould by diffufion

* "Sa loi fuivante furrtr feule: La matière électrique tend vers toutes les fub"Atirces, d'autant plus fortement, qu'elles en poffèdent moins." Journal de Phyfique, Juini i 79°.

[143]

diffufion be communicated both to the bodies and to the intermediate fpace; but no reafon appears, which would induce us to fuppofe that the bodies themfelves fhould recede to a greater diffance. M. De Luc does indeed endeavour to prove that fuch a motion fhould take place, but by an experiment whofe folution contradicts his own theory. He furpended by a filk thread a large, but light, metallic ball, and prefented it in a ftate of pofitive electricity to a body negatively electrified. The former was attracted towards the latter until it arrived at a certain ditance, at which it difcharged its electricity. Hence he concluded, in general, that when a body has more of the electric fluid than the neighbouring bodies, and is lefs difpofed to refift its own motion than to abandon the excefs of its electric matter, it will move tawards that place which contains lefs of this matter. But in this experiment he confiders the two bodies as acting on each other at a diftance without any reference to the intermediate air. .

Mr. Cavallo*, in the laft edition of his treatife on electricity, has obferved, that the mutual repulfion of two bodies negatively electrified is ftill fuppofed to contradict the theory of Franklin; and has therefore deemed it neceffary to obviate the objection by a very particular detail. For this purpofe he has premifed the following propofitions. Prop. I. No electricity can appear on the furface of a body, or no body can be electrified either pofitively or negatively,

* Vol. III. p. 192.

[I 44]

negatively, unlefs the contrary electricity can take place on other bodies contiguous to it. Prop. 2. There is fomething on the furface of bodies, which prevents the fudden incorporation of the two electricities, viz. of that poffeffed by the electrified body with the contrary electricity poffeffed by the contiguous air, or other furrounding bodies. Prop. 3. Suppofing that cvery particle of a fluid has an attraction towards every particle of a folid; if the folid be left at liberty in a certain quantity of that fluid, it will be attracted towards the common centre of attraction of all the particles of the fluid. To this laft propofition he has fubjoined the two following corollaries: $1 . *$ the fame thing muft happen, when the quantity of fluid is fmaller than the bulk of the body; 2. if the attraction of the particles of the fluid be exerted only towards the furface of the folid, the effect will be the fame when the body is of a regular fhape; but the difference will in any cafe be inconfiderable.

With regard to the folution founded upon thefe principles it muft be remarked, that it is not derived fimply from a confideration of the fuppofed nature of the electric fluid; but from a mixed flatement of that nature and of properties affumed merely from experiments as matters of fact. The firft and fecond propofitions exprefs thofe properties, and, though the experiments to which the former refers, may be explained by afcribing the phænomena to the repuifive nature of the fluid, yet the latter is affumed " without

* Of this corollary Mr. Cavallo does not appear to make any diftinct application.

[145]

.without any fuch reference. "Without examining," fays Mr. Cavallo, " the nature, the extent, and the laws of this property in bodies, " it will be fufficient for the prefent purpofe to obferve, that the " fact is certainly fo; for otherwife a body could not poffibly be " electrified, or it would not remain electrified for a fingle moment." From thefe principles thus affumed, Mr. Cavallo deduces the exiftence of atmofpheres of contrary electricity exifting in the air contiguous to the bodies; and from the attractions which are thereby occafioned he infers the apparent repulfion of the electrified bodies.
I_{F} thefe atmofpheres be conceived to be formed by the repulfive nature of the fluid, fome allowance fhould be made for the mutual repulfion of the two redundant portions belonging to bodies pofitively electrified. This however feems to be neglected for the purpofe of explaining the repulfion of bodies negatively electrified. But the difficulty feems to be only changed. If the negative atmorphere adjacent to a body pofitively electrified be caufed by the repulfion of the redundant fluid of the body, it will be neceffary to fhew that this repulfion is overpowered by the attraction fubfifting between that redundant fluid and the portion of air thus deprived of a part of its electric fluid.

But the reality of thefe atmofpheres of contrary electricity may well be queftioned. It feems to require, that we fhould conceive a portion of air contiguous to each body to be permanently, during Vol. VII.

[. 146]

the mutual repulfion of the bodies, in a ftate of electricity oppofite to that of the bodies. But * it is afcertained experimentally, that the air furrounding any electrified body acquires the fame electricity which had been poffeffed by the body, and retains it even after the removal of the body. This muft be fuppofed, agreeably to the known laws of electricity, to be communicated by the alternate attraction and repulfion of the adjacent particles of air. Each particle muft be firft attracted towards the body, and, when by contact it has acquired the electricity of the body, repelled from it. Inftead therefore of a permanent ftate of contrary electricity conflituting thefe fuppofed atmofpheres, each adjacent fpace muft be occupied by particles, fome of which are attracted and others repelled. The time requifite for thus reducing the electricity of the body to an equilibrium with that of the furrounding air, is fufficient for explaining the continuance of the electricity of the bodies, without the aid of the fecond propofition; and the firft propofition is deduced only froin a confideration of bodies in a folid ftate.

Possibly a more diftinct application of a principle, a'ready in fome degree adopted both by Doctor Priefley and Mr. Cavallo, may remove all the difficu ties of this inquiry. At leait I will hope, that it may lead to fuch a confideration of the queftion, as may fubject the merits of the theory itfeif to a fair and decifive difcuffion.

[^2]difcuffion. This principle is faturation. *Doctor Priefley has explained the communication of the redundant fluid of a body pofitively electrified to another, a part of whofe fluid had been previoully expelled, by fuppofing that it was more ftrongly attracted by the other body, than by its own which had more than its natural fhare; and \dagger Mr. Cavallo has in the fame manner accounted for the mutual attraction of bodies in different ftates of e'ectricity.

I applying this principle to the folution of electric phænomena three forces muft be confidered: ift, the attraction fubfifting between each body and its own portion of the electric fluid; 2dly, the attraction which may fubfift between each body and the portion of fluid belonging to the other; and 3dly, the repulfion fubfifting between the two portions of the electric fluid.

Tнит the attraction fubfifting between two bodies in oppofite ftates of electricity may be explained, it is neceffary to confider previoully the cafe of two bodies in their natural or ordinary flate. In this cafe the force fubfifting between each body and its own portion of the electric fluid is not in a flate of faturation, becaufe it muft be fufficiently ftrong to counterbalance the elafticity of the fluid. Each body is therefore ftill capable of being attracted by the fluid belonging to the other, and each portion of the fluid is alfo capable of fuch attraction. This force, if it fhould operate

[^3]
[148]

alone, would draw the bodies together; but the mutual repulfion of the two portions of the fluid tends to produce the oppofite effect. The quiefcence of the bodies proves the equality of thefe forces.

If two bodies in oppofite fates of electricity be brought together, the body pofitively electrified cannot be attracted towards the remaining electric fluid belonging to the other, becaufe this body may be confidered as faturated with the fluid, and that portion of the fluid as faturated with folid matter. For the oppofite reafons an attraction will take place between the body negatively electrified and the fluid belonging to the former. It remains to be fhewn, that this attractive force may exceed the mutual repulfion of the two portions of fluid. It muft be obferved, that the repulfion remains the fame, becaufe the fum of the two quantities of fluid is not altered; whereas the attraction is augmented by the unequal diftribution of the fluid. The one body is charged with more fluid than that which its own attracting force is capable of retaining, and the redundant fluid will confequently be ftrongly impelled towards the other body, whofe attractive power is at the fame time increafed by the deficiency of its own portion of fluid.

In the cafe of two bodies fimilarly electrified the bodies may be either both pofitively, or both negatively electrified. When they are both pofitively electrified, they are both faturated with the eleciric fluid; and when they are both negatively electrified,

[149]

both remaining portions of the electric fluid are reciprocally faturated with folid matter. In neither cafe therefore can any attraction take place between either body and the fluid belonging to the other. Confequently, the repulfion exifting between the two portions of the fluid muft operate without refiftance, and the two bodies be repelled from each other.

Should this folution of electric attraction and repulfion be admitted, it will perhaps alfo remove the difficulty of magnetic repulfion. In this part of philofophy it has been found difficult to explain the repulfion of the correfponding poles agreeably to the theory of a magnetic fluid. In every magnetical body the equilibrium of this fluid is fuppofed to be difturbed, and one part of the body is conceived to be overcharged with the fluid, whilft the other is undercharged. The difficulty was to explain the repulfion of the undercharged poles, as in electricity to explain the repulfion of bodies negatively electrified. Mr. Kirwan has indeed, in a Memoir contained in the Sixth Volume of the Tranfactions of the Academy, referred the phænomena of magnetifm to cryftallization; but his mention of the term faturated in that Memoir feems to imply, that he does not mean to exclude the fuppofition of a magnetic fluid. If this be adopted, the preceding folution may be applied to the phænomena of magnetifm, in the fame manner in which it has been already applied to thofe of electricity.

The theory, according to which the preceding folution has been propofed, fuppofes the electric fluid a fingle fluid; but it is not ne-

[150]

ceffary that it flould be conceived to be abfoiutely fimple. We know, for inftance, that atmofpheric air is a combination of at leaft two diftinct fluids; and yet explain the phrenomena of the barometer, air-pump, and condenfer, as depending merely on its prefence or abfence, without any reference to the compofition of its nature. In the fame manner fome electric phænomena may be juftly explained by confidering them as the effects of the different diftribution of the fame fluid; whilft its phofphoric fmell, its power of changing blue vegetable colours to red, and its combuftion may poffibly be derived from its decompofition.

[151]

> A GENERAL DEMONSTRATION of the PROPERTY of the CIRCLE dijcovered by Mr. COTES deduced from the CIRCLE only. By the Rev. J. BRINKLEY, A. M. ANDREWS' Profeffor of Aftronomy, and M. R.I.A.

THE very elegant property of the circle difcovered by the cele- Read Nov.4th brated Cotes has for its extenfive ufes always been juftly efteemed among mathematicians. The inventor left no demonftration of it; and although it immediately excited the attention of the moft eminent cultivators of the fcience, yet no general inveftigation has been hitherto given, if we except one derived from the hyperbola and impofible expreffions, which was firft given by De Moivre, afterwards by Maclaurin and other authors. But the elegance of the theorem and the ftrictnefs of mathematical reafoning feem to require a very different kind of demonftration. The author of. "Epiftola ad Amicum de inventis Cotefii," has indeed attempted a demonftration from the circle only; however it will readily appear on examination that it is not general, even conceding the demonftration

$\left[\begin{array}{ll}1 & \\ 52\end{array}\right]$

flration of the theorem for expreffing the cofine of a multiple arc in terms of the cofine of the fimple arc. No author before Dr. Waring has given a general demonftration of this latter theorem, and confequently all demonftrations of Cotes's property by the circle alone previous to his, cannot be general fo far as that theorem is concerned, and it will be found that in another circumftance not lefs important they are all defective. Dr. Waring in his letter to Dr. Powell has from his theorem for the chords of the fupplement of a multiple arc fhewn the truth of Cotes's property in particular inftances, and in his "Propr. Algebr. Curv. Prob. 32," has given the heads of a general folution. But it appears one of the fteps there omitted is the only difficult part of the demonftration after conceding the theorem for the cofine of a multiple arc.

The demonftration here given is general and probably as direct and fimple as the propofition will admit of. The proof of the lemma which it was neceffary to premife is much the moft difficult part of the whole, and it is in that ftep of the demonftration where the Lemma is applied that all demonftrations heretofore have been defective and only applicable to particular inflances.

$\left[\begin{array}{ll}153\end{array}\right]$

Lemma.

If n and n reprefent any affirmative whole numbers: then

Where $I, m, m, \frac{m-1}{2}$, \&c. are formed by the law of the coefficients of a binomial raifed to the $n^{t h}$. power. The number of terms $=m+1$.

Demonstration. Let the terms of the annexed table reprofen the different expreffions for the above quantity, according to the different values of m and n.

Vol. VII.

$$
\left[\begin{array}{ll}
154
\end{array}\right]
$$

Then I. By fubftituting $n-1$ inftead of n in the above expreffion
we have $K^{\prime}=\left\{\begin{aligned} &+\overline{n-2} \cdot \overline{n-3}-\cdots \overline{n-m} \times 1 \\ &-n-3 \cdot n-4-\overline{n-m+1} \times m \\ &+\overline{n-4} \cdot \overline{n-5} \cdots \cdots-\overline{n-m+2} \times \frac{m \cdot m-1}{2} \\ & \& c .-\& c .\end{aligned}\right.$
therefore

But by fubftituting $n-2$ and $n-1$ refpectively inftead of m, and m-I inftead of m we have
 or $\overline{\mathrm{H}+\mathrm{K}} \times m-\mathrm{I}=\mathrm{L}-\mathrm{K}^{\prime}$ or $\mathrm{L}=\overline{m-\mathrm{I}} \times \overline{\mathrm{H}+\mathrm{K}}+\mathrm{K}$.
2. Taking $m=n$ the expreffion becomes

[155]

Whice will be $=0$, becaufe the firft and laft terms are the fame with contrary figns, and becaufe o will be a factor in each of the other terms. That the firft and laft terms will have contrary figns appears from confidering that in the laft term there are $n-1$ negative factors, and confequently when n is even the product will be negative and the fign of the term itfelf will be pofitive becaufe $m+\mathrm{I}(n+\mathrm{I})$ is odd, and when n is odd the product will be pofitive and the fign of the term negative.
3. Substituting for m, 2, the general term of the firft hori$\left.\begin{array}{rl}\text { zontal rank }= & +n-1 \\ & -n-2.2 \\ & +n-3\end{array}\right\}=0$.

From thefe different conclufions we collect: ift, that (becaufe ${ }^{\prime} \mathrm{L}=m-\mathrm{I} . \mathrm{H}+\mathrm{K}+\mathrm{K}^{\prime}$) if each of the terms in any horizontal rank $=0$ the terms in the rank below are equal: 2 dly , therefore it follows becaufe a term in each rank $=0$ (when $m=n$) that if each of the terms in any horizontal rank are equal to 0 , that the terms of the rank beneath are each $=0$, and 3 dly , becaufe thofe of the firft horizontal rank are each $=0$, it follows therefore that each term of the table $=0 . \quad$ 2, E. D.

Theorem.

1. Let the circumference of a circle be divided into n equal parts $\mathrm{OO}^{\prime}, \mathrm{O}^{\prime \prime} \mathrm{O}^{\prime \prime}, \& \mathrm{c}$. and from a point P in the radius OC or

[156]

the radius produced without the circle draw PO, PO, \&cc. then $\mathrm{PC}^{n}-\mathrm{OC}={ }^{n}=\mathrm{PO}_{\times} \mathrm{PO}^{\prime} \times \mathrm{PO}^{\prime \prime} \times \& \mathrm{c}$. when P is without the circle and $\mathrm{OC}^{n}-\mathrm{PC}=\mathrm{PO} \times \mathrm{PO}^{\prime} \times \mathrm{PO}^{\prime \prime} \times 8 \mathrm{c}$. when P is within the circle.
2. Let the circuinference be divided into $2 n$ equal parts $O S$, $\mathrm{SO}, \mathrm{O}^{\prime} \mathrm{S}^{\prime}$ \& c . then $\mathrm{PC}^{n}+\mathrm{OC}^{n}=\mathrm{PS} \times \mathrm{PS}^{\prime} \times \& \mathrm{c}$.

Demonstration.

1. Let OC be unity, $\mathrm{PC}=x ; a, a^{\prime}, a^{\prime \prime}, \& x$. the cofines of o, $\mathrm{OO}^{\prime}, \mathrm{OO}^{\prime \prime}, \& \mathrm{c}$.

Then will $\mathrm{PO}^{2}=x^{2}+1-2 a x$
$\mathrm{PO}^{\prime 2}=x^{3}+1-2 a^{2} x$
\&c. \&c.
or $\mathrm{PO}^{2} \times \mathrm{PO}^{\prime 2} \times \& \mathrm{c}_{0}=\overline{x^{2}+\mathrm{I}-2 a x} \times \overline{x^{2}+\mathrm{I}-2} a^{\prime} \times 8 \mathrm{c}=$
$\left.\left.\overline{x^{2}+1} 1^{n}-\begin{array}{c}a \\ a^{\prime \prime} \\ a^{\prime \prime}\end{array}\right\}\left\{\begin{array}{ll}n-1 & a a^{\prime} \\ x_{0} x^{2}+1 & a a^{\prime \prime} \\ \& \mathrm{c} .\end{array}\right\} 2^{2} x^{2} \cdot \overline{x^{2}+1}\right)^{n-z}$
$\pm 2^{n} a a^{\prime} a^{\prime \prime} 8 c . \times x^{n}$.
Now if c be the cofine of any arc, the cofine of n times that arc will be $2^{n-1} c-n .2 .^{n-3^{n-2}} c^{n+\frac{n-3}{1} \cdot 2} 2^{n-5^{n-4}} c-\& c$. continued by fucceffively diminifhing the index of c by 2 until it becomes o or I,

$\left[\begin{array}{ll}157\end{array}\right]$

and affixing to c^{n-u} the coefficient

I. 2. $3-\frac{-}{2}$

- when odd. Hence becaufe unity is the cone of O, P (Peri phery), $2 \mathrm{P}, 3 \mathrm{P}, \& \mathrm{c}$. it follows that if $2^{n-1 n} c-n \cdot 2^{n-3 n-2} c+\& \mathrm{c}$. $=1$ the different values of c will be $a_{5} a^{\prime}, a^{\prime}, \& c$. the cofines of $o_{\text {, }}$ $\frac{\mathrm{P}}{n}, \frac{2 \mathrm{P}}{n}, \& x c$. or that the roots of the equation

$$
c^{n}-\frac{n c^{n-2}}{2^{2}}+\frac{n \cdot n-3 c^{n-4}}{1 \cdot 2 n}-\frac{1}{2^{4}}-\frac{1}{2^{n-1}}=0 \text { will bc } a, a^{\prime}, a^{n}, \& c
$$

Therefore by the nature of equations

$$
a+a^{\prime}+a^{\prime \prime}+\& \mathrm{c}_{0}=0
$$

$$
a a^{\prime}+a a^{\prime \prime}+\& c=-\frac{n}{2^{2}}
$$

$a d a^{\prime \prime}+a a^{\prime} a^{\prime \prime}+\& c .=0$
$a a^{\prime} a^{\prime \prime} a^{\prime \prime \prime}+\& c$.

$$
=+\frac{n \cdot n-3}{1.2 \cdot 2^{4}}
$$

\&c: \&c.
or generally the fum of the products of u values $a, a^{\prime}, a^{\prime} ; \& c$.
u being even $= \pm \frac{n \cdot n-\frac{u}{2}-1 \cdot n-\frac{u}{2}-2 .-\left(\text { to } \frac{u}{2} \text { terms }\right.}{u}+$ when

$$
\text { 1.2.3 - } \frac{u}{2} \cdot 2
$$

[15^{8}]

$\frac{\pi z}{2}$ is odd and - when even: alpo the product of all the values when n is odd $=\frac{1}{2^{n-1}}$ and when even $= \pm$
$\frac{n \cdot \frac{\pi}{2}-I \cdot \frac{\bar{n}}{2}-2-\left(\text { to } \frac{n}{2} \text { terms }\right)}{1.2 .-\frac{n}{2} \cdot 2^{n}}-\frac{1}{2^{n-1}}$
Whence the value of $\mathrm{PO}^{2} \times \mathrm{PO}^{2} \times \& \mathrm{c}$. above found becomes $\bar{x}^{2}+1^{n}-n x^{2} \cdot\left(x^{2}+1\right)^{n-2}+\frac{n \cdot n-3}{1.2} x^{4} \times{\overline{x^{2}+1}}^{n-4}-+2 x^{n}$ or expanding there terms

Hence

* Mr. Simpson in lis Efrays, page Ir 5 , has arrived by a different procefs at a fimilar conclufion, and afferts without any demonftration that the coefficients deftroy each other. This however is the only difficult ftep in the whole propofition.

$$
\left[\begin{array}{ll}
159
\end{array}\right]
$$

Hence collecting the co-efficients it readily appears by confidering the general value of the fum of u products ftated above, that the coefficient of the term $x^{2 n-2 m}$ the fame as the coeff. of.

or reducing thefe fractions to a common denominator the nume* rator becomes $n \times$ into the expreffion in the Lemma which therefore $=0$ hence
$\mathrm{PO}_{2} \times \mathrm{PO}^{\prime 2} \times \& \mathrm{c} .=x^{2 n}-2 x^{n}+\mathrm{I}$ or $\mathrm{PO} \times \mathrm{PO}^{\prime} \times \& \mathrm{c},=\begin{gathered}n \\ x^{n} \\ \mathrm{I}\end{gathered}$. Q.E.D.

> 2. Because $\mathrm{PO} \times \mathrm{PS} \times \mathrm{PO}^{\prime} \times \mathrm{PS}^{\prime} \times 3 \mathrm{c} .=x^{2 \pi} \mathrm{~N}_{\mathrm{I}}$ and $\mathrm{PO} \times$ $\mathrm{PO}^{\prime} \times \& \mathrm{c} .=x^{n} \mathrm{n}$ 1 $\therefore \mathrm{PS} \times \mathrm{PSS}^{\prime} \times \& \mathrm{c} .=x^{n}+1$. O. E. D.

[163]

ADDITIONAL OBSERVATIONS on the PROPORTION of REAL ACID in the THREE ANTIENT KNOWN MINERAL ACIDS, and on the INGREDIENTS in various NEUTRAL SALTS and other COMPOUNDS. By RICHARD KIRWAN, Efq. L.L.D. F.R.S. and M.R.I.A.

THE fundamental experiments on which the proportion of real acid in the three mineral acids antiently known, and alfo the

Read 1 6th
Dec. 1797. proprortion of ingredients in many neutral- falts, were determined, I have already fet forth in a paper to be found in the IVth Vol. of the Tranfactions of this Academy. In that paper I have inferted tables of the quantity of ftandard acid exifting in 100 parts of each of the acid liquors, of given fpecific gravities, and alfo in each of the neutral falts therein mentioned; the mode of exprefling the quantity of acid I had then adopted I fince difcovered to be very inconvenient, as in fome of thefe neutral falts an acid ftill ftronger than the affumed ftandard was found to exift. But I have there alfo noticed that the ftrongeft vitriolic acid now known, exifted in vitriolated tartarin, the ftrongeft nitrous acid in nitrated foda, and the flrongeft muriatic acid in muriated tartarin; Vol. VII.

X
Acids

[164]

Acids of fuch ftrength I have therefore denominated real, as either containing ro water or containing only as much as is neceffary to their effential compofition, as far as this is at prefent known. The method of transforming the expreffion fandard into that of real, I have there alfo given p. 67, and by it have formed the table I here prefent; this latter expreflion I therefore now employ in every cafe inftead of that of flandard, together with the fubftitution of a more commodious expreffion of the ftrength of acids: The defign of this paper is alfo to exhibit an illuftration or amendment of feveral of the determinations contained in my laft, which being for the moft part fingle, required confirmation by fhewing their agreement with the experiments of feveral of the moft eminent chymifts made fince the publication of mine, that is fince the year I791, with a few made nearly at the fame time. In my former paper I compared my refults with thofe of Bergman and Wenzel, they being almoft the only perfons who had made this fubject the principal object of their enquiry, and had purfued it to a confiderable extent; in each particular inftance I have traced the reafon of the difference of their refults from my own when it was fuch as to deferve notice, and I fhall not here repeat what I have there faid ; but I cannot avoid again mentioning one general fource of error attending the mode of inveftigation adopted by both and yet noticed by neither, namely the lofs that many neutral falts undergo dering evaporation, a lofs whofe difcovery is of confiderable importance, not only to the prefent inquiry, but alfo to

[165]

the conduct of feveral manufactures, particularly to that of faltpetre, and hence noticed by Mr. Lavofier, 15 An. Chy. 254. On this head however I hope the Academy will foon receive the fulleft information, as our worthy member, Mr. Higgins, has at my requeft undertaken to examine its, reality and extent with refpect to a confiderable number of the moft known among thefe falts.

Though Bergman and Wenzel fhould have conducted their experiments nearly in the fame manner, as far as we can judge from the mode prefcribed by Mr. Bergman in his notes on Scheffer, publifhed in 1779, yet his refults differ confiderably in many inftances from thofe of Wenzel, and appear to me far more faulty, the caufe of which feems to me to be, that he has in moft cafes departed from the method he had originally propofed to follow, and fuppofed quantities of water of cryftallization to exift in various fubftances without fufficient reafon, or at leaft without affigning any fuch. Thus he tells us that pellucid cabcareous fpars lofe only 34 per cent. of fixed air by folution in acids, whereas the daily experience of all chymifts fhews them to lofe from 43 to 44 per cent. but in of thefe he fuppofes to be water, becaufe by diftillation he could not obtain more than 34 per cent. of fixed air, a method now well known to be defective, as from the porofity of earthen retorts, the inefficacy of lutes, and the infufficiency of the heat applicable to thofe of glafs, the true quantity of fixed air can never be thus obtained. Mr. Cavendifh could obtain from 3 II grains

[166]

of Carrara marble only I grain of water *, and Florian de Bellevue, who lately has particularly enquired into this matter, fays, marbles contain no water, or fcarce any; and it is of the granularly cryftallized that he fpeaks \ddagger. Dr. Watfon alfo makes the fame remark.

To tartar vitriolate Bergman has alfo affigned 8 grains of water of cryftallization, whereas when dried even in a heat of 70 degrees only, except it contains an excefs of acid, it retains not even i per cent. of water. To nitre he affigns even 18 per cento a quantity fo great that he can fcarce be fuppofed to have meant water of cryfallization. Lavofier, who by profeffion muft have been well acquainted with a property fo obvious, tells us on the contrary that it contains little or none, 15 An. Chy. 256. Mr. Keir allows it when not well dried about 2,5 per cent. Wenzel, on the other hand, took but little notice of the water of cryftallization, and his miftakes are not fo confiderable, moft of them independently of the fource of error already mentioned originated from the fuppofition of a fictitious fubftance which he called Cauficum, the unheeded decompofition of nitre when ftrongly ignited, and the fuppofition that acids, when the compounds into which they enter are heated to rednefs, either retain no water or at leaft a conftant and not a variable quantity of it; this is indeed an error inherent in the method purfued by him,

[167]

Bergman and myfelf in my firft effays. But he alfo followed another method, which preferved him from many miftakes, which was to eftimate the quantity of the ftrongeft acid in a given quantity of vitriolic acid, $\mathrm{v}: \mathrm{z}: 240$ grains by the quantity of it retained during ignition in tartar of vitriolate, and in 240 grains muriatic acid by the quantity retained in muriated tartarin, for in effect thefe acids, as I have found, contain leaft water in thefe compounds; this advantage however he fometimes loft by the decompofitions arifing from ignition, particularly in his experiments on metallie fubftances.

To render this paper fill more ufeful, I fhall lay before the Academy fome important determinations of the proportion of ingredients in compounds of which I had not myfelf treated, and are either not generally known, or fcattered in divers treatifes not eafily collected, to moft of which however I have added my own experiments.

When alkalies or earths combined with fixed air are diffolved in acids, though far the greater part of the fixed air is expelled during the folution, yet fome portion of it is often retained, and may in fome degree alter the fp. grav. of the folution; this circumfance I did not recollect till lately; it was firf noticed by Mr. Cavendifh, Phil. Tranf 1766, p. 172, and afterwards by Bergman in his notes on Scheffer, §. 5 r, but more explicititly by Scheele, Chy. An. 1986,

[168]

p. I3, and by Butini on Magnefia, p. 149. As to the ufe refulting from refearches of this nature it were fupcrfluous to attempt to prove it at this day, the recourfe which the moft eminent analyfts have been obliged to have to it in particular inflances, as will prefently appear, fufficiently evinces it. "Inquiries of this kind (fays " Mr. Fourcroy) are more difficult and delicate than thofe which " have hitherto been made on falts; whatever requires a precife " knowledge of quantities and proportions, prefents difficulties fo " great as often to appear infurmountable, yet without this know" ledge no progrefs can now be made in chymiftry," io An. Chy. 325 ; and according to Bergman, "Ufus cognitæ proportionis prin" cipiorum ingredientium egregius eft et multifarius." I Bergm. 137. chap. I. § I.

T A B L E

OF TIIE

QUANTITY OF REAL ACID

In 100 Parts of Vitriolic, Nitrous and Marine Acid Liquors of different Denfities, at the Temperature of 60°.

The Numbers above the Lines irawn acrofs,
the Tables of vitrictic and nitrous Acids were found by Experiments; thofe under the Lines only by Analogy.

The Alinity of viriolic Acid to Water de.
creales in the Ratio of the Square of the Quan-
rity of Water united to it. 23 Ann. Chy. 195, and 197.

* The Sp. Gravity was 1,374 in the And lolbelieve it does to allother Subftances;

Nute The flandard Quantities of luriase Acid were reduced to Real by multiplying them into 0,8929. of the Nitrus, b; maltiplying them into 0,735 t, and the Marnat ly multiplying them into 0,516 , for the Reafons mentioned in my laft l'aper.

[169]

Of the Alteration arijng from Difference of Temperature.

To difcover this alteration by experiment in each individual inftance would be an endlefs tafk, hence I have felected only 3 cafes with refpect to the vitriolic acid, and 2 of the nitrous, and obferved the changes in each at every 5 degrees above 60° unto temperature 70°, and at every 5 degrees below 60° unto temperature 50° nearly, thefe being the temperatures at which experiments are ufually made.

Of the Vitriolic Acid.

Vitriolic acid	1,8360 at	temperature	60°
Becomes	1,8292 at	-	70°
	1,8317 at	-	65°
	1,8382 at	-	55°
	1,8403 at	-	50°
	1,8403 at	-	49°

hence we fee that vitriolic acid, whofe denfity at 60° is 1,8360 , lofes by a/cending and gains by defcending 0,00c68 for every degree of temperature between 60° and 70° and 0,00043 nearly by each degree between 60° and 49°.

[170]

Again, vitriolic acid	1,7005	at	-	60°
Becomes	1,6969	at	-	70°
	1,6983	at	-	65°
	1,7037	at	-	55°
	1,7062	at	-	50°

hence vitriolic acid, which at 60° is 1,7005 gains or lofes 0,00036 nearly for every degree between 60° and 70°, and $0,0005^{I}$ by every degree between 60° and 50°.

Laftly, vitriolic acid	$\mathrm{I}, 3888$	at	-	60°
Becomes	$\mathrm{I}, 3845$	at	-	70°
	$\mathrm{I}, 3866$	at	-	65°
	1,3898	at	-	55°
	$\mathrm{I}, 3926$	at	-	49°

hence vitriolic acid, which at 60° is $\mathrm{I}, 3888$ gains or lofes 0,00043 nearly by every degree between 60° and 70°, and 0,00034 , nearly by every degree between 49° and 60°, between 49° and 50°, I perceived no difference.

Of the Alteration of Denfity from Difference of Temperature in Nitrous Acid.

Nitrous acid, which was	1,4279	at	-	60°	
Became -	-	1,4178	at	-	70°
		1,4225	at	-	65°

[171]

$\mathbf{r}, 4304$	at	-	55°
$\mathbf{I}, 4336$	at	-	50°
$\mathbf{I}, 4357$	at	-	45°

hence nitrous acid, which at 60° is $\mathrm{r}, 4279$, gains or lopes 0,00101 nearly by every degree between 60° and 70°; and $0,0005_{2}$ by every degree between 45° and 60°.

I formerly found that the flrongeft Spirit of nitre is molt expanded by heat or contracted by cold.

Also, that nitrous acid, whole fp. grave. at 34° was $\mathrm{I}, 4750$, was expanded by heat as follows : became $\left.\begin{array}{rll}1,4750 \\ 1,4653 & \text { at } & 34 \\ \text { at } & 49\end{array}\right\} \begin{gathered}\text { then it gains or lopes } 0,0097 \text { by } 15^{\circ} \\ \text { between } 34^{9} \text { and } 49^{\circ} \text { inclufively. }\end{gathered}$

Again I found that colourlefs nitrous acid whore fp. grave. was

became \begin{tabular}{r}
1,4650 at

1,4587

1,4302

 at

30°

\end{tabular}

hence by the firft 16° from 30° to 46° it gained 0,0063 , and by 40°, that is from 46 to 86°, it gained 0,0285 .

Again, nitrous acid whole denfity was

[172]

1,2384 at -55°
1,2406 at $=50^{\circ}$
1,2417 at -45°
hence nitrous acid, which at 60° is $\mathrm{x}, 2363$, gains or lofes by every degree between 60° and $70^{\circ}, 0,00043$ and 0,00036 by every degree between 60° and 45°; and we may affume 0,0005 as the variation incident to every degree between 60° and 70° in nitrous acid, whofe denfity at 60° is between 1,3 and 1,4 and 0,0004 for the variation between 44° and 60°

Of Marint Acid.

I formerly found that this acid of the denfity 1,196 at 33° became of the denfity $\mathrm{I}, 1820$ at 66°, the alterations of acids of lower fp. grav. I have not examined, but I found that in general its dilatability is greater than that of nitrous acid of the fame denfity.

> OF THE USE OF THESE TABLES.

Problem ift.

An extratabular fpecific gravity being given, but intermediate between fome of thofe in the table, to find the quantity of real acid in 100 parts of fuch acid liquor.

[173]

ift. Find the difference betwixt the next higher and lower tabular denfities $=\mathrm{D}$, and alfo the difference betwixt their acid contents $=\mathrm{D}^{\prime}$.

2d. Find the difference betwixt the extratabular fp. gravity and the next upper or next lower, which ever it is neareft to $=d$, and let the difference betwist its acid contents (or quantity of real acid) and thofe of the next upper or lower $=d^{\prime}$, which is the quantity fought ; then as $\mathrm{D} . \mathrm{D}^{\prime}:: d . d^{\prime}$ then $d^{\prime}=\frac{\mathrm{D}^{\prime} d}{\mathrm{D}}$ confequently d^{\prime} added to the acid contents of the lower tabular f . grav. or fubfracted from the upper, is the quantity fougbt.

Note. In general when d, that is the difference between the extratabular fp. grav. and any tabular fp. grav. does not exceed $\frac{9 \%}{\circ \circ \sigma}$ it is infenfible, and the acid contents of the lower or upper, which ever is neareft, may be afcribed to it.

Problem 2d.

The quantity of real acid in 100 parts of an acid liquor being. given but extratabular, being intermediate between fome of the quantities in the tables, to find the \int p. grav. of fuch acid liquor.

Find $\mathrm{D}, \mathrm{D}^{\prime}$ and $d^{\prime \prime}$ as in the foregoing problem. then $d=\frac{\mathrm{D} \cdot d^{\prime}}{\mathrm{D}^{\prime}}$. then d added to the lower tabular fp . grav. or fubftracted from the upper, gives the fp. grav. fought.

[174]

Bur with regard to the marine acid its fp. grav. is to be inveftigated according to the ordinary mathematical rules.

Problem 3d.
To find how much water muft be added to 100 parts of an acid liquor of a given fp. grav, to bring it down to another lower given fp. grav.

1ft. Frnd by the table the quantities of acid and water in 100 parts of each of the acid liquors refpectively, each being fuppofed to be in the table, let the quantity of water in the denfer be W, and the quantity of acid $=A$, let the quantity of water in the lefs denfe $=w$, and the quantity of acid $=a$, and the quantity of water to be added to I 00 parts of the denfer $=m$
then $\mathrm{W}+m$ muft be to A as w to a And W $a+a m=\mathrm{A} w$. And $a m=\mathrm{A} w-\mathrm{W} a$.
And $m=\frac{\mathrm{A} w-\mathrm{W} a}{a}$

Problem 4th.

Given weights of 2 or more acid liquors of different fp. gravities being mixed, to find the quantity of real acid in 100 parts of the mixt liquor and its fp. grav.

[475]

Find the fum of the quantities of real acid in 100 parts of the mixture, then find the refulting fp. grav. by the ad problem, if the given fp. gravities be extratabular, the operation muft be more tedious, as the acid contents of each muft be found.

Problem 5th.
The quantity of an acid liquor requifite to faturate 100 parts of any bafis being found, to find the fp. grav. of that acid liquor.
ift. Find by the 4th table the quantity of real acid requifite to faturate 100 parts of the given bafis, it is then plain that the given quantity of acid liquor contains the requifite quantity of real acid, fince it is fuppofed to faturate 100 parts of the bafis and hence we may fee how much 100 parts of fuch acid liquor contains of real acid, and if this laft found quantity be in the table, its fp. grav. will be feen, but if extratabular, its fp. grav. muft be fought by the ad problem.

Problem 6th.

The quantity of real acid requifite to faturate 100 parts of any bafis being known, to find how much of one acid liquor of any given fp . grav. is requifite to faturate that, and confequently any other given quantity of fuch bafis.

[196]

If the given f_{p}. grav. of the acid liquor be tabular the quantity of real acid in roo parts of it is apparent, and confequently the quantity of fuch acid liquor containing the required quantity of real acid, is eafily found by the rule of proportion. But if the given fp . grav. is cxtratabular the quantity of real acid in 100 parts of the acid liquor muft be fought by the firft problem.

Problem 9 th.

The quantity of real acid, in a given quantity of an acid liquor being known, and alfo the quantity requifite to faturate 100 parts of any given bafis. To difcover the quantity of fuch bafis contained in any folution, or in any powder, by which the given quantity of acid liquor is faturated.

If the bafis be fingle (that is unmixed with any other bafis to which the acid may unite) or combined only with fixed air the folution is eafy, but if the given bafes be mixed with other bafes combinable with the fame acid, the folution is more complex and varies according to the variety of cafes.

Problem 8th.

To find how much of an acid liquor of one fort will hold as much real acid, as is held by a given weight of an acid liquor of anotber fort whofe fp. grav. is alfo given :-For inftance, how much vitriolic acid will contain the fame quantity of real acid as is contained in 100 grains nitric acid whofe fp. grav. is $1,3925$.

[x_{77}]

1f. Firft find by the table the quantity of real acid contained in the given quantity of the fecond acid, whofe fp. gr. is given, or if not in the table it mult be found by Problem Ift.

2d. It is apparent that the quantity of the firft acid liquor muft vary with its fp . gr. thus, in the inftance given, as 100 parts nitrous aeid of the fp. grav. I 392 contains 50 parts real nitrous acid, fo 100 parts vitriolic acid whofe fp. grav. is 1,5202 contains by the table the fame quantity of real acid, $v . z .50$ parts, but of the vitriolic acid whofe fp. grav. is 1,800 only 64 parts are, requifite to contain 50 parts of real acid, whereas 200 grains are requifite of the vitriolic acid whofe fp. grav. is $1,2320$.

Note, The folution of this problem may hereafter be found of ufe in comparing the quantities and affinities of oxygen in different acids.

Problem 9th.

To find the fp. grav. of fuch vitriolic acid as that 100 parts of. it fhall contain the fame quantity of real acid as 100 parts of the nitrous.

Thrs can be found only by infpection on confulting the tables; an example has been feen in the laft problem, fo alfo 100 parts vitriolic acid 1,3102 contain the fame quantity of real acid as 100 parts nitrous acid whofe fp. gr. is 1,2687 . And. 100 grains vitriolic acid whofe fp. gr. is 1,1746 . contains the
Vol. VII.
Z
fame.

[1y 8]

fame quantity of real acid as roo grains fo. falt whofe fp. gro is 1, 159 .

And 100 grains nitrous acid $\mathrm{r}, 1963$ contains the fame quantity of real acid as 100 grains fpirit of falt whofe f . grav. is $\mathrm{I}, \mathrm{I} 8 \%$

Hence it fhould feem that the fp. grav. of the real marine acid is fmaller than that of the real nitrous, and that of the real nitrous fmaller than that of the real vitriolic, fince when the weight of each acid, and alio the weight of real acid in each is equal, the vitriolic acid is fpecifically heavier than the nitrous, and the nitrous than the marine, but this perhaps may arife from penetration.

Problem io.

To find how much of a neutral falt of one fort holds as much real acid or bafis as a given weight of the fame neutral falt in another ftate, or as a given weight of anotber falt in any given flate.

These queftions are refolved by the 4th and 5 th tables, thus if it be alked, how much nitre contains as much acid as 20 grains of vitriolated tartarin? By the 4th table I fee that 221,48 parts of vitriolated tartarin and 227,22 parts nitre contain equal quantities of acid fince both contain 100 parts, then as 221,48 . 227,22 : : 20.20,5.

[179]

Again, How much deficcated foda will hold as much alkali as 30 parts cryftallized foda? In the 5 th table I fee that $54 \mathrm{I}, \mathrm{I}$ parts of the cryftallized hold as much alkali as 227.4 parts of the deficcated, then as $541,1.227,4:: 30.12,6$.

Problem ifth.

How much of a given bafis will be requifite to faturate the acid contained in a given quantity of a given neutral falt, thus how much deficcated foda will be requifite to faturate the acid containied in 50 parts cryftallized Eprom?

By the 4th table I fee that 100 parts real vitriolic acid are contained in 340 parts cryfallized Eprom. Then if $34 \mathrm{c} .100:: 50,14,7$, then by the 3 d table I fee that 100 grains of real vitriolic acid faturate 78,32 of foda. Confequently if roo faturate $78,32:=14,7$ would faturate 11,51 of foda.

Laftly, In the 6th table I find that 100 grains deficcated foda contains 60 of foda. Then if $100: 60:: x$. II,5 1 , then $x=19,1$ parts deficcated foda. Then 19,I parts deficcated foda will faturate the acid contained in 50 parts cryffallized Epfom.

Note Ift. This problem is of ufe in determining the quantity of any precipitating fubflances to be employed in decompofitions, Z 2
operated.

[180]

operated either by a fingle or double affinity. But in moft cafes more of the precipitant muft be employed than the exact quantity neceffary for faturation, and particularly when decompofitions are attempted in the dry way, as otherwife a complete contact with the fubftance to be decompofed will not be attained, or if volatile it may be fublimed before the decompofition takes place.

Problem 12th.
Some analyfts have denoted the frength of their acids by expreffing the quantities of each neceffary to faturate a certain quantity of alkaline liquor (and fometimes of another bafis) without even telling whether the alkali was mild or caufic, or the quantity of it contained in the alkaline liquor. This problem is confequently indeterminate. However a method of giving fome folutions of it may be underflood from the following example; and circumftances will generally fhew whether the application to particular cafes be juft.

Link tells us that 240 grains of a vitriolic acid which he employed, faturated 6,5 times its weight of tartarin (he muft mean in a liquid ftate, as no vitriolic acid will faturate fix times its weight of real alkali) and that 240 grains of the nitrous acid he employed faturated 2,5 times its weight of the fame alkali. Quere the fpec. gravity of both acids?
rf IT is plain, that fince 240 grs , of the nitrous: acid faturated 2,5 times its weight of the alkali, 624 grs of that acid would fa-

$[181]$

turate 6,5 times its weight of the alkali; and fince 624 grs . of the nitrous acid would faturate as much alkali as 240 of the vitriclic acid, then 260 grs . of it would faturate as much alkali as 100 grs. of the vitriolic acid could faturate. Therefore fuppofing 100 of the vitriolic acid to contain 75 of real acid, fince more real nitrous acid is required to faturate a given quantity of tartarin than of vitriolic acid, in the inverfe ratio of 1214 to 1177 (as appears by the third table,) then denoting the quantity of real nitrous acid in 260 grs. of the nitrous liquor, by x we have the following equation as 1214 . 1177:: x. 75 . and $x=77,55$. Then 260 grs . of the nitrous acid contain 77,55 of real nitrous acid, confequently 100 grs . of it contained 29,82 real acid. And therefore its $\mathfrak{f p}$. grav. was nearly $\mathrm{I}, 234$, and that of the vitriolic about 1,800 . -The quantity of alkali in the alkaline liquor might alfo on this fuppofition be determined.

So if it be required to know how much common falt is requifite to decompofe a folution of nitrated filver containing 176,25 grs. of filver:

Ift. I find by the 6 th table that 75 grs. filver take 16,54 of marine acid, confequently ${ }^{176,25}$ gr. filver take up 38,87 .

2d. By the 4th table, I find that 100 grs . muriatic acid are contained in 257,2 of common falt, confequently 38,87 are contained in 99,973 , that is 100 grs . common falt, then 100 grs. of it are neceffary to precipitate the filver.

$\left[\begin{array}{ll}182\end{array}\right]$

ILLUSTRATION OF THE TABLES.

Few chymifts have made experiments appofite to my prefent purpofe, and thofe that have made any relative to it, have generally neglected marking the temperature, and thus prevented an exact comparifon of the refults they obtained with thofe that fhould be expected from the quantities of real acid and water fet forth in my tables.

The moft accurate of thefe experimenters was Hahn, who has inftituted a confiderable number, of which an account is given in his Differtation De Effcacia Mixtionis in Mutandis Corporum Voluminibus; of thefe I fhall felect a few, which I think by their coincidence with the refults to be obtained, calculating from my tables, furnifh a full proof of their accuracy, at leaft to as great a degree as cars be expected in fubjects of this nature.

Of the Table of Vitriolic Acid.

If Experiment.

Hahn, to 800 grs. of vitriolic acid whofe fp. grav: was 1,8489 at the temperature of 44°, added 400 grs . of water in a veffel that confined the vapours, and when the mixture was cooled down to the temperature of the air he found its fp. grav. 1,545.-p. 48 and 49 .

[883]

Application.

Vitriolic acid of this denfity lofes, as we have feen, ,00043 in denfity, by each degree between 44° and 60°; hence its fp. grav. at 60° fhould be $1,8489-, 00043 \times 16=0,0068=\mathrm{r}, 842 \mathrm{I}$, which differs infenfibly from the next lower tabular fp. grav. r, 8424 , and therefore this may be taken for it.

The quantity of real acid in 100 grs. of the acid liquor, whofe fp. grav. is 1,8424 amounts to 78,57 per cent. per table, then 800 grs. of that acid liquor contains $78,57 \times 8=628,56$ of real acid, and confequently the 1200 gr . of the mixture contain that quantity of real acid, and therefore 100 grs . of the mixed liquor con$\operatorname{tain} 52,38$ of real acid, which we fee differs but little from the tabular real acid, 52,68 which indicates the fp. grav. to be 1,5473, and the difference between this and the fp. grav. found by Hahn is inconfiderable.

However, to obtain a clofer approximation, and to give an example of the mode of folving the 2 d problem, I fhall deduce the Ip . grav. from the rules laid down for the folution of that problem.
iff. The next higher fp. grav. is $\mathrm{I}, 547$, and the next lower is 1,5385 , and the difference between them is $0,0088=\mathrm{D}$. Their acid contents are 52,68 and 51,78 , and their difference $0,9=D^{\prime}$.

$$
\left[\begin{array}{lll}
184
\end{array}\right]
$$

2d. The difference betwixt the given extratabular acid contents, 52,38 , and the next lower tabular acid contents 51,78 is $0,6=d^{\prime}$ then d, the quantity to be added to the lower fp. grav. is found by the formula $d=\frac{D d^{\prime}}{D^{\prime}}=\frac{0,0088 \times 0,6}{0,9}=\frac{0,0528}{0,9}=0,0058$

This it is true would be the fp. grav. at 60°, and after 3 days reft (the time I allowed for the penetration of the mixtures mentioned in my tables,) and it does not appear what the temperature of Hahn's mixture was when he took its §p. grav. if it was 44° (the temperature of his oil of vitriol) it is poffible that the cold without exact penetration might produce an effect equivalent to that which time would produce by penetration.

2d Experiment.

In this Hahn added 400 grs . of water to the 1200 grs. of the foregoing mixture, and confequently the new mixture weighed 1600 grs . and contained the fame quantity of real acid as the foregoing, that is 628,56 grs. he found its fp. grav. when cold to be $1,38,40$.

$\left[\begin{array}{lll} & 185\end{array}\right]$

Application.

Since 1600 grs. of the mixture contained 628,56 real acid, 100 grs. of it fhould contain 39,28 ; now this quantity of real acid is exactly in the table, and correfponds with the fp. grav. I, 3768. Then the difference between Hahn's refult and that of my determinations is $\frac{72}{10000}$.

> 3d Experiment.

To the 1600 grs. of the laft misture Hahn added 800 of water, and when the whole was cooled down to the temperature of the air he found the fp. grav. of the mixture 1,2439 . Ibid. p. 50 .

Application.

This mixture weighed 2400 grs. and contained the fame quantity of real acid as the laft, nameiy, $-628,56$ grs. confequently 100 grs. of it contained 26,19 ; this quantity of real acid is extratabular; the neareft tabular quantity of real acid is 25,89 , which correfponds with the fp. grav. 1,2415 ; though this feems fufficiently near to Hahn's refult, yet I have found it more exactly by the 2d problem. Here $\mathrm{D}=0,0095$ and $\mathrm{D}^{\prime}=0,89$ and $d^{\prime}=0,3$, then by the furmula $d=\frac{\mathrm{D} d^{\prime}}{\mathrm{D}^{\prime}}$ we have $\frac{0,0095 \times 0,3}{0,89}=0,0032$, and the lower fp. grav. $1,2415+0,0032=1,2448$, which differs from Hahn's refult by only $\frac{9}{10000}$.
Vol. VII.

$\left[\begin{array}{ll}186\end{array}\right]$

The 3 firf experiments of Hahn not perfectly agreeing with each other, and not having been made with equal accuracy, I omit.

Morveau's Experinnent on the Quantity of Real Acid in Vitriolic Acid, whofe Sp. Grav. was 1,841. I Eucyclop. 592.

He took 5^{8} grs. vitriolic acid, whofe fp. grav. at $8^{\circ}, 5$ Reaum. ($=5^{1}{ }^{\circ}$ Fahr.) was $1,84 \mathrm{I}$, and poured into it a folution of acetited barytes until a precipitate ceafed to appear. The precipitate wafhed and dried (by ignition as it would feem by what he adds in the 2 d column of the above page) weighed 110,3 grs.

Application.

Vitriolic acid, whofe fp. grav. at 51° of Fahr. is $\mathrm{I}, 84 \mathrm{I}$, would have its fp . grav. lowered to $\mathrm{I}, 83^{8}$ at 60° of Fahr. the degree for which my tables were formed, as I have fhewn in my remarks on the alteration by temperature.

Now the fp. grav. $1,8,8$ is intermediate between the tabular denfities 1,8306 and $\mathrm{I}, 8424$, but nearer to this; then by the firft problem its acid contents will be found to be 78,24 per cent. then if 100 grs. of vitriolic acid of this fp. grav. contain 78,24 per cent. real acid, 58 fhould contain 45,37 of real acid. But 110,3 grs. of ignited barytes contain 36,76 real acid, allowing 100 grs. of fuch barytes to contain 33,33 per cent. the difference then be-

$\left[\begin{array}{lll}{[87}\end{array}\right]$

tween Mr. Morveau's refult and that of my calculation is 961 grs. ; the reafon, however, is"obvious; M rvedu cmployeci acenad barytes, this acid rendered part of the acid fulphureous, as is wril known; the fulphureous acid does not decompofe acetited baryt.s per Bergman's table, his other experiments on the fulphureous acid cannot therefore apply.

Of the Table of Nitrous Acid.

Though this acid was not exanly oxyginated and colourlefs, yet it was far from being fully de-oxyginated, but in that pale red fate in which it commonly appears; what changes the variety of oxyginations may produce I have not experienced; the refults are not quite fo accurate as moft of thofe in the table of vitriolic acid, partly from the eruption of vapour during the weighing, and partly from the diforder the fumes caufe at long run in the fcales; but the error in the quantity of real acid in 100 parts of the acid liquor, ${ }^{*}$ no where, as far as I have had occafion to examine, amounts to i per cent. or at leaft does not exceed that amount; the lower part of the table I found moft faulty, and have rectified the errors to a great degree.

Experiment if.

To 400 grs. of nitrous acid, whofe fp. grav. at 63° was $\mathbf{I}, 4995$, Hahn added 200 of water, and when the whole was cooled down to 64° he found the fp. grav. to be 1,3157 .

$$
\text { A a } 2
$$

[I'88]

Application.

The fp. grave. 1,4995 at 63° would be (by the table of variation already Seen) $1,4995+$ corot $\times 3=1,5025$, which fcarcely iffirs from 1. ${ }_{3} 5070$, a tabular number, which denotes the acid contents 68,39 - and if 100 grs . of this acid liquor contain 68,39 real acid, 400 grs. contain $68,39 \times 4=273,56$, and when 200 grs. of water were added, then 600 grs . contained 273,56 , and conequently 100 grs . of the mixture contained 45,59 , which indicates the tabular fp. grave. $1,362 \mathrm{I}$, which at the temperature of 64° would be 1,3581 .

This density differs much from that found by Hahn, being $\frac{12}{\circ} \frac{2}{0}$, but that the error proceeds from his not having allowed fufficient time for the penetration of the water and acid, and from the lofs of acid by the heat excited will be len in the examination of the 2 d experiment.

Experiment ad.

To the 600 grs . of the mixture of the lat experiment, whole fp. grave. was by him 1,3 157, and at 60° would be 1,317 , he added 200 grs . of water, and found the fp . grave. of this lift mixture at $64^{\circ}, 1,2561$, which at 60° would be $1,257^{8}$, the ${ }^{\circ}$ heat excited amounted to 80°.

Application

[197]

Application.

The fp. grav. 1,317 differs infenfibly from 1,316, which indicates the acidity 38,97 per cent. and if 100 grains contain $38,97:$: 600 fhould contain 233,82 (whereas we have already feen that 600 contains 273,56) and when 200 grains more of water were added, then 800 fhould contain 233,82 , and confequently 100 fhould contain 29,22 real acid, which indicates very nearly the fp. grav. of this 2 d mixture to be $\mathrm{I}, 237$, which differs from Hahn's refult 1,257
by $=\frac{1,237}{0,020}$ by $\frac{20}{1000}$, a difference which, though confiderable, is by the half fmaller than that of the ift experiment, as by the interval of time between the ift and 2 d experiment the penetration of the 200 grains of water firft added had increafed.

Tars calculation is grounded on Hahn's refults, which are erroneous from want of reft and the efcape of vapours. We fhall now fee what the fp. grav. of this laft mixture fhould be, if both this and the former experiment were more accurately conducted, and the water fo gradually added that little or no heat would be generated, on which principle my former calculation proceeded. This experiment may, be confidered as a mixture of 600 grains of an acid liquor, whore fp. grav. fhould, by my table, be 1,3621 , and whofe acid contents are 273,54 grains with 200 grains of water, and then 800:

[190']

800 grains (the quantily of this $2 d$ mixture) muft contain $27 \hat{3}, 54$ grains of real acid, and confequently 100 grains of this new mixture contains 34,19 grains real acid, which indicates very near the
 fo much high r.

But this fame experiment may alfo be confidered as a mixture of 400 grains of the frong acid 1,5025 with 400 grains of water, then as the 400 grains acid liquor contains 273,56 grains real acid as already faid, 800 grains of the mixture fhould contain the fame quantity of real acid, and the fame fp. grav. would be found to refult as above.

Experiment 3^{d}.

IN this experiment he added 2 parts water (fuppofe 200 grains) to I part of the f . of nitre $\mathrm{I}, 5025$, much heat and copious red vapours were produced, infomuch that a few grains of the weight of the whole were loft (about 3 per cent.) and the fp. grav. was 1,1723 , the temperature is not mentioned, but it feems probable it was 64°, the temperature at which, he fays, the mixture was made, then at 60° it would be $\mathrm{I}, \mathrm{I} 740$.

Application.

Here the 300 grains of mixed acid liquor contained 68,39 real. acid, then 100 grains of it would contain 22,79 , which is in the table, and indicates the fp. grav. 1,1845 , which exceeds Hahn's

[19 I]

refult by $+\frac{10}{\circ} \frac{0}{\circ}$, a difference which evidently arifes partly from the efcape of the red vapours and partly from want of fufficient time for penetration; it fhould however be remarked, that in large veffels there may fometimes be an increafe of weight from the abforption of oxygen by the nitrous air expelled by the generated heat.

Experiment 4th.

Mr. Richter (Stochymetrie, 3 theile, p. 9.) mixed fpirit of nitre, whofe fp. grav. was 1,5304 with water, in the proportion of 100 parts of the acid with 342 of water, and found the fp. grav. of the mixture $1, \mathrm{I}_{2} 3$; the temperature is not mentioned.

Application.

100 grains nitrous acid 1,530 contains by my table about 70 grains real acid, and when mixed with 342 of water, 442 grains will then contain $\eta 0$ real acid, and confequently roo grains of the mixture will contain 5,83 of real acid, this quantity lies between the tabular acidities 16,17 , and 15,44 , and by the 2 d problem it will be found to correfpond with the fp. grav. 1,120 .

$\left[\begin{array}{ll}192\end{array}\right]$

Of the Marine Acid.

The mixtures of this acid and water are attended with little or no heat, and the fp. gravities are fuch as may be found by calculation. See 33 Roz. 242. Mr. Berthollet, among his experiments on oxyginated muriatic acid, Mem. Par. 1785 , relates that having precipitated a folution of nitrated filver with 500 grains of common muriatic acid, whore fp. grav. was 1,141 , he obtained 547 grains of muriated filver, confequently 100 grains of this acid would have afforded ro9,4 of muriated filver. Now, as we fhall hereafter fee, 100 grains of muriated filver contain 16,54 of real marine acid, therefore 109,4 grains of muriated filver fhould contain 18,02; and by my table 100 grains of the muriatic acid 1,1414 contains 18,57 of real acid.

CHAP.

[193]

C H A P. II.

ILLUSTRATION OF THE PROPORTION OF INGREDIENTS IN VITRIOLIC NEUTRAL SALTS.

Before I treat of thefe falts it will be proper to notice the fate of each of their bafes.

Of Vegetable Alkali or Tartarin:
This alkali may be obtained in threc ftates, the fully aerated and cryftallized, the imperfectly aerated or common mild tartarin, and the cauftic, which may alfo by particular proceffes be cryftallized.

The fully aerated and cryftallized contains, by Mr. Pelletier, 41 per cent. of alkali, 43 fixed air, and 16 water, 15 An. Chym. note, however, that even the cryftallized is not always fully aerated, 1. Bergman, 16, 17.

Common dry falt of tartar contains about 60 per cent. of alkali, 28 or 30 of fixed air, with a few grains of Silex, vitriolated tartarin and argill; common pot-afh generally contains alfo fome grains of vitriolated and muriated tartarin.
Voi. VII.
B b

Section $\mathrm{I} \neq$.

[194]

Sertion $1 /$.

Vitriolated Tartarin.
By my determinations, 86 grains purified and dry tartarin * were faturated by 130 grains of vitriolic acid, whofe fp. grav. at 60° was 1,565 .

Now this f_{p}. grav. indicates by the table 54,46 real acid; confequently 130 grains of it contained 70,79 real acid, and 86 tartarin $+70,79$ real acid $=156,79$ vitriolated tartarin.

Hence 100 parts tartarin take up 82,48 of real vitriolic acid. And ioo parts real vitriolic acid take up 121,48 of tartarin. And IOO grains tartar vitriolate contain 54,8 tartarin, and 45,2 of real vitriolic acid; or in round numbers 55 tartarin, and 45 real. acid; or in the proportion of II to 9 .

Experiment of Dr. Black.
Since the publication of the above mentioned determinations, the highly delicate and accurate experiments of Dr. Black, undertaken with the view of afcertaining the contents of the Geyfer waters have appeared, with one of which I have compared the foregoing

* By tartarin the mere cauftic ftate is indicated; when it contains fixed air "I call it mild; or fully aerated, if it be faturated therewith.

[195]

foregoing determinations, and had the pleafure of finding an almoft perfect coincidence. See 3 Edinb. Tranf. p. ior, Ioz. Dr. Black to vitriolic acid whofe fp. grav. at 60° was 1,798 , added 100 times its weight of water, and found that 112 grs. of this dilute acid faturated exaclly I gr. of tartarin.

Application.

To exclude fractions I fhall multiply Dr. Black's quantities by 500 ; then if 200 grains of vitriolic acid 1,798 were diluted with 20000 grains of water, his dilute acid would confift of 20200 grains, II 200 of fuch dilute acid would faturate 100 grains of tartarin. Now vitriolic acid 1,798 differs infenfibly from 1,7959 which by my table contains 75 grains per cent. real acid. Therefore II200 grains of fuch acid fo diluted would contain 83,16 real acid, which differs from my determinations only by $\frac{68}{680}$ of a grain. $83,16-82,48=0,63$.

Hence we may find the fp. gravity and quantity of real acid in the fp. of vitriol employed by Wenzel, which it will be ufeful to know as he made feveral interefting experiments; and thus alfo the accuracy of the table of vitriolic acid will be fill farther confirmed.

For this inveftigation he has furnifhed us with two data; ift, he tells us that his fp. of vitriol was formed of two parts of Bb 2
highly

[rg6]

highly concentrated vitriolic acid and three parts water, and adiy, that 240 grains of this fp . contained 75.75 of fuch acid as is. found in ignited tartar vitriolate which is what I call real acid.

Whexce I deduce that $\frac{2}{5}$ of his fp . of vitriol confifted of the highly concentrated acid, and $\frac{3}{5}$ of water. Now $240 \times \frac{2}{5}=96$, therefore 96 grains of the concentrated acid contained 75,75 of real acid, then 100 grs . of it would contain 78,9 , which quantity belongs to a fp. grav. intermediate between the tabular denfities $\mathrm{I}, 8542$ and $\mathrm{r}, 8424$, and by the fecond problem will be found to be 1,8467 , therefore when one part of it is mixed with $1 \frac{1}{2}$ of water, or for inftance, when 100 grains of it are mixed with 150 of water, (which is the fame as mixing two parts with three) the compound amounting to 250 grains contain 78,9 real acid, and 100 grains of this dilute acid contain 31,56 of real acid, a quantity which is extratabular, but belongs to a fp grav. which by the fecond problem will be found to be 1,2987 .

Therffore the fp. grav. of Wenzel's oil of vitriol is 1,8467 containing 78,9 real acid per cent and the fp. grav. of his fpirit of vitriol was $1,29.9$, containing $3^{1}, 56$ per cent real acid.- 261,976 (262 grs .) of his fpirit of vitriol would faturate 100 grs . of tartarin.

IOco grains of Dr. Black's dilute vitriolic acid contained 7,425. real acid. As I found it has lately been denied that vitriolated tartarin

[197]

tartarin contained 45 per cent. real vitriolic acid, I diffolved 100 grains of it in fix ounces of water, and precipitated the acid by muriated barytes, the refulting barofelenite weighed after ignition ${ }^{3} 35,25$, which proves as we fhall fhall prefently fee that the vitriolated tartarin contained 45,078 grains of real acid.

Section 3 d.

Of Soda and Vitriolated Soda, or Glauber.

As foda may be had either chryftallized, efflorefced or deficcated, it will be neceffary to examine the proportion of real alkali in each, in order to find the proportion in neutralized compounds.
ift. In its cryftalized fate even when recently formed, I found the proportion of its ingredients fomewhat variable, b ut in the greater number of experiments the cryftals being dried in filtering paper in a temperature not above 66°, and the air not much difpofed to give out moifture. I found 100 parts of the cryftals to contain 64 of water, 21,58 of real foda, and 14,42 of fixed air. 3^{6} Grains therefore of aerated but deficcated foda are equal to 100 grains of the cryftallized, that is, contain the fame quantity of alkali.

$\left[\begin{array}{ll}198\end{array}\right]$

adly, In its fimply efflorefced fate the quantities are variable according to the more or lefs perfect cfflorefcence, the fate and temperature of the air.
$3^{\text {dly, }}$, 00 parts foda fully aerated but thoroughly deficcated in a heat fomewhat below ignition contains 59,85 alkali or mere foda, and 40,05 of fixed air per cent. or nearly 60 of alkali, and 40 of fixed air. In the experiments in my former paper the foda was heated to ignition, and thus part of the fixed air was probably expelled, for I found only 3^{6} per cent. of fixed air.

Of Glauber.*

By my determinations, 100 parts of foda (that is, mere foda, dry and free from fixed air) are faturated by 127,68 of real vitriolic acid. And 100 parts of real vitriolic acid are faturated by 78,32 of foda. Hence if Glauber contained no zoater, 100 parts of it would contain 4392 of foda and 56,08 of real vitriolic acid, or nearly 44 /oda and 56 real asid; and this is the fate of glauber thoroughly deficcated.

But cryfallized Glauber contains a large proportion of water, for 100 parts of it lofe 58 by a heat fomewhat below ignition, thcrefore 42 parts only remain which contain alkali and acid in the proportion above mentioned of 44 to 56 , that is, 18,48 of alkali and 23,52 of acid.

- This falt being long known by the name of Glauber's falt, I fhall fimply call Glauber, this being forter, and ferving as a memorial of the antient denomination. It claims by the fame (but a much elder) title, as Scbechitm and Witherite.

[199]

Hence iff. 42 grains of deficcated Glauber are equivalent to 100 of the cryftallized.

Hence 2dly, roo grains deficcated Glauber fhould give, or are equivalent to, 238 of the cryflallized, that is, they contain the fame quantity of alkali and acid as 238 of the cryftallized.

Hence 3 dly, ioo grains of foda faturated with vitriolic acid fhould give 541 + of cryftallized Glauber, or 227 of deficcated Glauber, and ioo parts cryftallized foda fhould give 116,77 of cryftallized Glauber ; or 49 deficcated Glauber, and $\mathbf{1 0 0}$ grains real vitriolic acid fhould give when faturated with foda (whether cryftallized or not) $425+$ of cryftallized Glauber or 178,5 of deficcated.

But thefe quantities of deficcated or cryftallized falt are never sxactly obtained, on account of the lofs by evaporation, and of what remains in the mother liquor.

Application.

On the Proportions in aerated Soda.
Experiment If. Dr. Black's. 3 Edinb. Tranf. 106.
His quantities being fractionary to render the calculation clearer, I multiply all into 1000.

$[200]$

He found 2380 grains cryftallized foda to contain 514 of mere cauftic alkali, then 100 fhould contain 21,17 of alkali, which differs from my refult by lefs than $\frac{1}{2}$ a grain. Hence 21,17 grains of mere foda are equivalent to 100 grains of the cryftallized.

Again, he found that 2380 grains of cryflallized foda lofe by thorough deficcation 5523 grains, and confequently are reduced to 857 grains, therefore 100 grains of the cryftallized are reduced to, and are equivalent, as to real alkaline contents, to 36 grains, lofing therefore 64 grains of mere water.

And, laftly, he found that 857 grains of deficcated foda contain 514 of mere cauftic foda, and confequently 100 grains of the deficcated contain nearly 60 of mere foda, and confequently 40 of fixed air. All thefe refults agree almoft exactly with mine.

Experiment 2d. I Klaproth, 333.

In his experiment 1000 grains of dry cryftallized foda loft when thoroughly deficcated in a fand-heat, 6_{37} grains of water, confequently 100 fhould lofe 63,7 , which fcarcely differs from Dr. Black's refult, then the dry refiduum amounts to 36,3 grains.

[201]

Of the Proportions in Glauber.

If Experiment. Dr. Black's, 3 Ed. Tranf. 106.

514 grains of mere foda were faturated by 88180 of the dilute vitriolic acid before mentioned in treating of vitriolated tartarin.

Application.

Since 514 grains of mere cauftic foda require 88180 of the dilute acid, 100 grains of foda would require ${ }^{17155}$, and fince 1000 grains of this acid contains 7,425 of real acid, 17155 contains 127,37 grains. A refult which differs from mine by lefs than $\frac{1}{3}$ of a grain.

2d Experiment. I Klapr. 333.
100 grains of the thoroughly deficcated foda above mentioned require for their faturation 382 of a dilute vitriolic acid, formed of a misture of I part vitriolic acid, whofe fp. grav, was 1,850 and 3 parts water, and the refulting neutral falt weighed 132,5 grains.

He alfo found that 1000 parts newly cryftallized Glauber, dried betwixt filtering paper, afforded by thorough deficcation in a fandheat only 420 grains, and therefore loft 580.

Vol. VII.
Cc
Application.

$\left[\begin{array}{ll}202\end{array}\right]$

Application.

The fp. grav. 1,850 is extratabular, lying between the tabular fp. gravities $\mathrm{I}, 8542$ and $\mathrm{I}, 8424$, but nearer to the former ; its acid contents are 79,14 per cent. then if 200 grains of this acid be diluted with 3 times that weight of water, we fhall have 800 grains of a dilute acid, which will contain $79,14 \times 2=158,28$ grains of real acid; then 382 grains (the quantity employed by Klaproth) contain 75,57 of real acid, now 100 grains of deficcated foda contain, as we have feen, 60 of mere cauftic foda, and fince 100 grains of mere foda require 127,68 for their faturation, 60 grains of fuch foda fhould require 76,60 ; the difference then between Klaproth's refult and my determination is only $\mathbf{1}, 03$ grains.

Lastly, it may naturally be expected, that the refulting neutral falt fhould amount to the joint weight of the real acid and mere alkali, and confequently fhould in this cafe weigh $75,57+60$ $={ }^{1} 35,57$ grains, which differs from Klaproth's refult only by 3,07 grains, a lofs which may well be imputed to that which the falt fuffers by evaporation.

These concordant experiments fully prove the accuracy of the table of vitriolic acid to a large extent, and of the proportion of ingredients I have affigned to foda, vitriolate tartarin and Glauber; for as Klaproth's experiments were made with an acid whofe fp .

[203]

grav. was $\mathbf{x}, 8 \mathrm{j}^{\circ}$, Dr. Black's with an acid whofe fp. grav. was 1,798 , and mine with an acid whofe fp. grav. was 1,565 , we may be affured that to that extent (which includes 25 determinations) no material error exifts.

We muft not however imagine, that all mineral alkali contains the fame proportion of ingredients as foda; for the natural mineral alkali found in Africa, and called trona, contains a fomewhat larger proportion of fixed air and a much fmaller of water. 195,6 grains of trona, which Dr. Black had the goodnefs to fend me, were faturated by 260,5 of vitriolic acid 1,383 , and gave out 66,5 grains of fixed air, therefore 100 grains of trona would require 133,18 of this acid for their faturation, and would lofe 34 grains of fixed air.

Now this acid differs infenfibly from the tabular, whofe fp. grav. is $\mathrm{I}, 387$, which contains 40,18 grains per cent. real acid, and therefore $\mathrm{I} 33,18$ grains of it contains 53,5 of real acid. But we have fhewn that 100 parts real vitriolic acid faturate 78,32 of mere mineral alkali, therefore 53,5 grains of this acid faturate 41,9 ; this therefore is the quantity contained in 100 grains of trona, then $4 \mathrm{r}, 9+34$ of fixed air $=75,9$ and $\mathrm{I}, 8$ grains of reddifh earth, confequently the remainder, that is 22,3 grains, were water.

Here we fee the alkali takes up more fixed air than ufual, for fince ufually 60 of the alkali take up 40 of fixed air, 41,9 of the

[204]

pure trona fhould take up but 27,91, or nearly 28, whereas here it takes up 34 , which is owing to its retaining but a fmall portion of water during its cryftallization.

Hence alfo we find the proportions in Mr. Keir's efflorefced but dry foda, for he tells us, that roo grains of fuch foda were faturated by 90 grains of vitriolic acid, whofe fp. grav. was 1,800 ; now this acid differs infenfibly from the tabular, whofe fp. grav. is 1,807 , which contains 75,89 real acid, confequently 90 grains of this acid contains 71,9 real acid; and fince 1 27,68 real vitriolic acid take up 100 of mere foda, $7 \mathrm{I}, \mathrm{g}$ fhould take up $56,3 \mathrm{I}$; and as 60 of mere foda take up 40 of fixed air, 56,31 fhould take up 37,53 , the fum of both is 93,84 , then the remainder of the 100 , that is 6,16 parts, are water, which remained as it was not dried by ignition.

Mr. Keir alfo found that ioo parts of an impure Indian foffil alkali contained as much real alkali as 58,8 grains of the above efllorefced and dry foda, and were faturated by 53 grains of the vitriolic acid $\mathrm{I}, 800$. Now, from the proportions above ftated, it will be feen that 58,8 of his foda contain 33 . II of mere alkali, and that 53 grains of the acid contained 40,22 of real acid, and that thefe fhould faturate, and thereby indicate 31,5 of mere alkáli, which differs from his refult by 1,6 I grains 米.

Lastly, the proportions affigned to cryffallized tartarin and to cryftallized foda, and alfo the proportions of mere tartarin and mere

[^4]
[205]

mere foda taken up by a given weight of real vitriolic acid, are confirmed by an experiment of Mr. Fourcroy's, 2 Ann. Chy. 289. for he found that the fame quantity of vitriolic acid which faturated 193 grains of the cryftallized foda alfo faturated 188 of cryftallized tartarin. Now I have affigned 21,58 per cent. of mere alkali to cryftallized foda, therefore 193 grains of it contain 41,6 , and as the cryflallized tartarin contains 41 per cent. of alkali, 188 grains of it contain 77. I have alfo fhewn that 100 grains real vitriolic acid take up 78,32 of mere foda, and 121,48 of mere tartarin, then the harmony of thefe proportions with Fourcroy's experiments will thus appear: as $78,32,121,48:: 41.76,36$; the difference between us is only 0,64 of a grain.

Section 3d.

Barolite and Baroselenite.

100 parts barytic earth precipitated from its folution in acids by a mild alkali, whether fixed or volatile, and heated to gentle ignition, contains 78 or 79 parts of earth, 21 or 22 of fixed air, about $\mathbf{r}, 5$ are fronthian earth, a quantity which in this cafe deferves little attention. See I Klapr. 27 T. 2 Klapr. 82 and 86. 2 Chy. Ann. 1793, 196. I Chy. Ann. 1795, III. Hence 100 grains * barytic lime take up 28,2 of fixed air, and 100 grains of fixed air' would precipitate 354,5 of bary ic earh, and probably mure, as the earth may not be faturated.

[206]

Baroselenite or Vitriolated Barytes.

Barytic Solutions being the moft delicate teft of vitriolic acid as yet known, the determination of the proportion of real vitriolic acid taken up in the artificial compound of both is of the greateft importance, and its agreement with the foregoing determinations will tend to their mutual eftablifhment.

I have already mentioned that by real vitriolic acid I mean acid of fuch ftrength or concentration as exifts in well-dried and neutralized vitriolated tartarin. If therefore I can fhew in what proportion the acid contained in a given weight of this falt enters into the compofition of a given weight of thoroughly dried barofelenite, the proportion of real acid in this laft will of courfe be demonftrated. Now this may very nearly be afcertained by the experiment of Dr. Withering, Phil. Tranf. 1784, p. 304. But firft I muft premife that by the experiments of the moft accurate analyfts, IOO parts barofelenite when fufficiently dried contain very nearly 33 of vitriolic acid.

The refults obtained by Dr. Withering were as follow:
Ift. 480 grains of barofelenite being fufed with 960 of falt of tartar, 428 grains of the barofelenite were decompofed, end 52 remained undecompofed.

$\left[\begin{array}{ll}207\end{array}\right]$

2diy. The decompofed part neverthelefs weighed after decompofition only 360 grains.

3dly. 300 grains of vitriolated tartarin were alfo obtained.
In this experiment we are only to attend to the 428 grs. which were decompofed, as the 52 that efcaped decompofition were no way altered.

IN the firft place it is plain that the 428 grains that were decompofed contained at leaft as much vitriolic acid as they imparted to the alkali in forming 300 grains of vitriolated tartarin : Now 300 grains of vitriolated tartarin contain $45 \times 3=135$ of real vitriolic acid therefore 428 grains of barofelenite contain at leaft I 35 of real vitriolic acid, that is, $3 \mathrm{I}, 5$ per cent. a quantity that already approaches pretty nearly to the direct refults of moft analyfts. But in the next place it is equally evident, that the quantity of acid was greater than here ftated, and the quantity of mere barytic earth much below 360 grains, the quantity expreffed in the 2 d refult; for if this quantity were juft, the fum of its weight and of that of the acid would furpafs the weight of the decompofed part. As infiead of 428 the fum would amount to $360+{ }_{1} 35=495$, which is impolible. The truth then is, that thofe 360 grains of refiduary earth comprehend the weight not only of the mere earth, but alfo of the fixed air, which it had taken from the alkali in exchange for the acid it had imparted

$\left[\begin{array}{ll}208\end{array}\right]$

imparted to it; confequently to find the true quantity of acid we muft find out how much of the refiduary 360 grains were mere earth, for by deducting this quantity from 428, the remainder will exprefs the quantity of acid in the 428 grains.

Then let the quantity of earth in the 360 grains $=x$, and the quantity of fixed air $=y$, then $x+y=360$. and $x: y:: 7^{8}$: 2I * nearly ; and therefore $21 x=78 y$, and $x=\frac{78 y}{2 I}$, then $y+\frac{78 y}{21}=\overline{360 \times 21}=7560$, and $21 y+78 y=7560$ or $99 y$ $=7560$, and $y=\frac{7560}{99}=76,36$ grains of fixed air ; and deducting this from 360 , we have the quantity of mere earth $=360$ $-76,36=283,64$; and deducting this quantity from 428 , we have the quantity of vitriolic acid $=144,36$ grains; and lafly, if 428 barofelenite contain 144,36 of vitriolic acid, 100 grains barofelenite floould contain 33,64.

Thrs laft quantity of acid fomewhat exceeds the ufual centenary proportion obtained by chymifts, yet I believe the faturating proportion of acid to be ftill higher, for the following reafons: There are three ways of adding to each other an acid and earth or metal, the one by dropping the acid to be combined into the folution of the earch in an acid to which the earth hath a weaker affinity, and the other by inferting the earth immediately into the

[^5]
[209]

the acid with which it is to be combined, or by dropping its folution in a weaker acid into the acid with which it is intended to be combined. In the ift mode of combination the faturation is fcarce ever complete, becaufe the new compound in many cafes precipitates before it is fully faturated, and even though there fhould be an excefs of the acid to be combined in the liquor, yet the inferior part of the precipitate feldom receives it, being fheltered by the fuperior, and becaufe its affinity to its laft complement of acid is much weaker than that to its mean proportion of acid.

But in the 2d or 3 d mode of addition, the earth being furrounded by the acid with which it is to be combined, and thus expofing a greater furface, takes up more of it and even frequently an excefs, as I have often experienced.

This explains the difference which may be obferved in the experiments I fhall now fate:
ift. Dr. Withering having made a folution of 100 parts native aerated barytes in muriatic acid, dropped vitriolic acid into it until a precipitation ceafed to appear ; this artificial barofelenite weighed 117 grs. Phil. Tranf. ibid. 405. Now this native barytes contained but 78,6 of pure barytic earth, as he had proved in a former experiment; therefore 78,6 of barytic earth took up as much real vitriolic acid as raifed its weight to $I_{1} 7$ grs. namely 38,4 grs.; and if ${ }_{11} 7$ grs. barofelenite contain 38,4 grs. of vitriolic acid, IOO parts barofelenite muft contain 32,8 .

Vox. VII.
D d
So

$\left[\begin{array}{ll}210\end{array}\right]$

So alfo Klaproth tells us, that a barofelenite which he had formed by dropping vitriolic acid into a muriated folution of aerated barytes contained barytic earth and acid nearly in the proportion of 2 to 1 , confequently 100 parts of it contained 66,66 of earth and 33,33 of real vitriolic acid. 2 Klapr. 72.* And p. 97 he tells us, he found the fame proportion in another experiment, as 126 barofelenite contained 42 of real acid.

On the other hand, Fourcroy having diffolved 100 grs. native aerated barytes with the affiftance of heat in very dilute vitriolic acid, found it to afford $\mathrm{I}_{3} 8$ grs. of barofelenite, (inftead of II_{7} which Dr. Withering had found by the ift method) and that the barytic earth had taken up 48 parts vitriolic acid. Now if ${ }_{1} 38$ parts brofelenite contain 48 of acid, 100 muft contain 34,78 . 4 Ann. Chym. 65.

Klaproth found that 85,5 grs. vitriolic acid whofe fp. grav. was $\mathrm{I}, 850$, entered into the compofition of 194 grs. barofelenite, and by his own rule $\frac{1}{3}$ of thefe 194 grs. were real acid $=6466$; therefore 100 grs . of barofelenite fhould contain 33,33 grs. real acid. I Klapr. 153. By my table, as already faid, 100 grs. vitriolic acid, whofe fp. grav. is 1,850 , contains 79,14 grs. real acid, therefore $85,5 \mathrm{grs}$. of this acid hould contain 67,7 real acid, and if
T94

[^6]
[211]

194 grs. barofelenite contain $67,7,100 \mathrm{grs}$. of the barofelenite hould contain 34,92, which differs from Klaproth's refults by 1,59 grs.

Again, Dr. Black, in the analyfis of Geyfer Waters, p. iI7, tells us that 170 grs. barofelenite contain as much acid as 100 of fully deficcated Glauber. Now I have already fhewn by my own experiments that 100 grs . of deficcated Glauber contain 56,08 of real vitriolic acid, therefore 170 of barofelenite contain the fame quantity, and if fo, 100 grs. barofelenite muft contain 32,98 , very nearly 33 , which we fee fcarcely differs from Klaproth's proportion, the quantity of real acid being computed from my table.

Lastly, Klaproth found that 100 grs . of deficcated Glauber decompofed by acetited barytes gave 168 grs. of barofelenite. r Klapr. 333. Then 168 grs. barofelenite contain 56,08 of real vitriolic acid, and 100 fhould contain 33,38 of this acid. The confonance of thefe refults with my table may hereby be eafily difcerned. In general then the quantity of real acid in any quantity of ignited barofelenite may be difcovered by dividing it by 3 , it being $\frac{1}{3}$ of the whole weight.

Hence 100 parts barytic earth take up 50 of real vitriolic acid, and would give 150 of barofelenite. And 100 grs. real vitriolic acid take up 200 of barytic earth, and afford 300 of barofelenite.

[212]

Setion 4 th.

Aerated Stronthian.

100 parts native aerated ftronthian, or of the artificial fufficiently dried, contain 31 of fixed air and 69 of earth.

Hence the quantity of air in any given quantity is found by multiplying this quantity into 0,31 , and the quantity of earth by multiplying it into 0,69 ; then 100 parts of this earth are faturated by 45 of fixed air, and 100 parts of fixed air by 222,5 of this earth.

According to Dr. Hope, 100 grs. of cryftallized ftronthian lime contain 32 of earth and 68 of water.

Lowitz found 100 grs. of the artificially aerated ftronthian to contain, when dried in heat, 32,5 per cent. of fixed air. I Chy. Ann. 1796.128.

Per Pellitier, 100 grs. native aerated fronthian calcined with 10 grs. charcoal loft only 28 grs. 21 Ann. Chy. 124.

Vitriolated Stronthian.

100 Parts vitriolated ftronthian contain 42 of real vitriolic acid, for this is the quantity which muriated barytes feparated from the tartarin

$\left[\begin{array}{ll}213\end{array}\right]$

tartarin which decompofed 100 parts of vitriolated fronthian, confequently the earthy part amounts to 58 grs. 2 Klap. 96, 97. Then 100 of this earth take up $72,4 \mathrm{I}$ of real vitriolic acid; and Ioo grs. real vitriolic acid would take up i38 of fronthian earth.

Section 5 th.

Aerated Lime and Selenite.

In artificial aerated lime formed by precipitation, by foda or even by common tartarin, if added to excefs, the proportion of lime to fixed air is conftant, being as 55 of the lime to 45 of the air, that is, as i I to 9 , fo that the quantity of air being given that of the lime in the compound may be known; and if the compound be free from any other ingredient, and heated to rednefs to free it from water, then its weight being given the quantity of lime it contains is found by multiplying it into 0,55 , and the quantity of air by multiplying it into 0,45 ; but whether dry or not, the weight of the air being found, the weight of lime is found by the ift analogy.

Mr. Bergman repeatedly afferts, that 100 grs. of calcareous fpar contain 55 of mere lime, II of water, and only 34 of fixed air. It always gives me concern to find my refults different from thofe of this great man, but on this occafion I am happily able to detect the caufes of this difference.

[214]

Ift. He tells us that by flow folution of 100 grs . of the fpar in acids he found the lofs of weight to amount to 34 grs. only, though by applying a ftrong heat he found it to amount to 45. Hence he concludes that in folution the fixed air fingly was expelled, but that both fixed air and water were expelled by heat. Now to obtain a flow folution in acid he muft have ufed a very dilute acid, and have employed a very narrow mouthed veffel. In this cafe much of the fixed air is reabforbed by the folution, as daily experience fhews, and thus muft have prevented his perceiving the real quantity of the air expelled from its combination with the earth.

Again Lavoifier computes 100 grs. of chalk to have loft about 34 grs. of air by folution in nitrous acid ; but this lofs he inferred not from a direct trial, but from the weight of the volume of air found by comparifon with that of common air, calculated according to Mr. De Luc's rules. This concurrence muft undoubtedly have confirmed Mr. Bergman in this erroneous eftimation.

So alfo in natural lime-ftones, the quantity of fixed air being found that of the lime is in the above proportion, except in a few cafes where magnefia exifts in them or the lime not faturated. Hence 100 grains lime take up $8 \mathrm{r}, 8 \mathrm{r}$ of fixed air, but 100 grains of it are precipitated by fomewhat lefs. Klapreth eftimates the proportion in this at 4 of fixed air to 5 of lime. And 100 grains fixed air faturate 122,24 of lime, but would precipitate 125 .

Section

[215]

Section $6 t b$.

Selenite.

There are two ways of combining vitriolic acid with lime and and fome other fubflances; one by direct folution or addition of the bafis unto perfect faturation, fo as no longer to difcolour the ufual tefts, the other hy precipitation from another menftruum; in this laft method the bafis takes up an excefs of acid, which as it is wafhed off in other purfuits occafions no miftake, though it does in this.-The Ift experiment in my laft paper I followed the ift method, in it I found that 439 grains of a mixture of 225 grains of vitriolic acid whofe fp.grav. at 60° was 1,5654 , with 225 of water, faturated ${ }^{152}$ grains of marble which contained (at the rate of 55 per cent.) 83,6 of lime. By the table it appears, that the vitriolic acid before dilution contained 54,46 real acid, then 439 of the dilute acid contained I 19,5 of real acid, confequently $8_{3}, 6$ of lime took up i 19,5 of real vitriolic acid, therefore if the compound of both were free from water, we fhould have its weight equal $83,6+119,54=203,14$ nearly, and 100 parts of it would contain $4 \mathrm{I}, \mathrm{I} 5$ lime and 58,84 of real acid.-But unlefs the compound be expofed to a high heat this weight cannot be expected; the refulting felenite will always retain a proportion of water, varying with the degree of heat to which it was expofed; and it is this that occafions the variety of determinations of the pro-

$$
\left[\begin{array}{ll}
2: 6
\end{array}\right]
$$

portion of ingredients in felenite, when, as in this experiment, its ingredients are directly combined; yet the proportion taken from the quantity of precipitate is more fallacious, as will prefently be fhewn.

IN this direct experiment the quantity of felenite obtained after deficcation in a heat not exceeding 170°, amounted to 237.25 grains, of thefe 203,14 were lime and real acid; the remainder then $v: \approx 34, \mathrm{II}$ were water; then by the rule of proportion 100 grains of this felenite flould contain 14,38 of water, confequently 85,62 were lime and acid. And if roc parts of fuch compound contain 41,15 of lime, as already feen, 85,62 fhould contain 35,23 , and deducting this from 85,62 , we have 50,39 for the acid part, confequently the centenary proportion of ingredients in felenite dried at about 165° is as follows:

Real vitriolic acid	-	50,39	
Lime	-	55,23	
Water	-	-	$\mathbf{1 4 , 3 8}$

If the felenite were dried by mere expofure to the air, the quantity of water in 100 parts of the felenite would be greater, and that of the lime and acid fmaller, and if it were ignited the proportion of thefe laft would be greater, and that of the water fmaller,

[217]

finaller, as is evident; but by expofing any quantity of it to a ftrong red heat the water will, for the moft part at leaft, be expelled, and the proportion of the other ingredients may be determined very nearly by the above analogy, if the felenite be faturate and free from foreign ingredients.

The experiments I made in precipitating lime from the nitrous and marine acids by the vitriolic, and alfo by vitriolated tartarin, I found to be fallacious, as much of the felenite remains in folution in thefe acids, and confequently it is not poffible to limit or difcover the proper addition of the precipitant. Hence 100 grains lime take up 143 nearly of real vitriolic acid, and afford about 284 of felenite thus dried and formed. And roo grains real vitriolic acid take up nearly 70 of lime, and afford 198 of felenite thus dried and formed.

100 grains lime precipitated by vitriolic acid take about 15,8 per cent. excefs of real acid, and vitriolated tartarin does not precipitate the whole of it without repeated evaporations and additions.

Experiment It. Klaproth, 195.

According to Klaproth 100 grs. of vitriolic acid, whofe fp. grav. was $\mathrm{I}, 850$ (neglecting he fays infignificant fractions) were faturated by 55 of lime or 100 of aerated lime, and afforded 160 grs. felenite.

Vol. VII. E e
Application.

$[218]$

Application.

100 grs. of the vitriolic acid 1,850 contain 79,14 grs. per cent. of real acid as already feen; then if there were no water in the compound its weight would be $79,14+55=134,74$ grs. but he found the weight to be 160 , then the difference or $160-134$ muff be water $=26$ grs.

This proportion we fee fcarcely differs from mine and therefore his felenite was probably expofed to nearly the fame heat.

Experiment ad. 2 Klaproth, 124.

IN this experiment he tells us the felenite was heated to ignition, and confoquently we may fee the difference of proportion produce by that heat. 38 grs . of it contained 14,75 of lime; the quantity of acid is not mentioned.

Application.

[219]

Application.
By his own proportion 14,75 lime fhould take up 21,22 of real acid, for as $55: 79,14:: 14,75: 21,22$ nearly, then $1745,+21,22$ $=3597$, confequently the remainder v.z. 2 grs. were water, then the centenary proportion fhould be

$$
\begin{array}{lc}
\text { as } 38: 14,75:: 100 \text { to } & 38,8 \mathrm{r} \text { lime } \\
38: 2 \tau, 22:: 100 \text { to } & 55,84 \text { real acid } \\
\text { then the remainder is } & \frac{5,35 \text { water }}{}
\end{array}
$$

Experiment 3d. I Bergm. I 35.

Bergman's felenite is cryfallized and contains fo much water that it is plain he fuppofes it dried by mere expofure to the heat of the atmofphere.
according to him 100 grs. contain

Hence ift, we have the proportion of felenite dried in 3 different degrees of heat, that of ignition, that of the atmofphere, and that between 130° and 170°.

$$
\mathrm{E} \mathrm{e}_{1}
$$

2dly. We

[220]

2dly. We may now explain and do juftice to the firf experiment of Mr . Wenzel on this fubject. He diffolved 240 grs . of clean oyfter Thells in his fpirit of nitre, and precipitated the lime contained in them by dilute vitriolic acid, he then evaporated the whole, firft to drynefs and afterwards by gentle ignition to expel the excefs of acid, and laftly expofed the felenitic mafs to a more intenfe heat for one hour, then weighing it in the fame veffel found the felenite to weigh 309,75 grs.

Application.

The 240 grs. of purified oyfter thells contained 126,72 grs. of lime, which I prove thus, he tells us p. Ior, that 81 grs. of the fame oyfter fhells gave out during folution 35 grs. of fixed air, confequently 100 grs . would give out 43,2 ; now we have already feen that 45 grains of fixed air denote the prefence of 55 of real calcareous earth in 100 parts aerated lime, therefore 432 denote 52,8 of lime and therefore 240 parts of thefe fhells contained 126,72.

Now as to the acid, fince 100 parts lime take up 143. 126,72 fhould take up $18 \mathrm{r}, 20$ and the felenite being fo ftrongly heated fhould weigh only the fum of both $v . \approx: 181,20+126.72=30792$ or 308 , grains which wants only $\mathrm{I}, 75$ of the weight found by Wenzel, this increafe found by him I impute to fome phofporated lime originally in the fhells, the acid of which was not expelled in the above experiment.

Wenzel

[22 I]

Wenzel was fet aftray by his 2 d experiment; for having calcined 240 grains of his fhells for 4 hours he concluded they were wholly converted into lime and he found their weight 133,5 , but here lay the miftake, he had no proof that 3 or 4 grains did not remain uncalcined, and the prefence of phofphorated lime he did not fufpect. In a third experiment he camé very near the truth for he concluded the quantity of lime to be 125 grains, but the difference between this and 133,5 he attributed to the cauficum.

Section 7.

Of Magnesia and Epsom.

This earth may be obtained in three ftates, either fully aerated and cry fallized, and then from its great folubility in water it may be called a falt; or imperfectly aerated, fuch as common magnefia; or perfectly ceaerated and freed from water by a white heat.

The proportion of ingredients even in cryftallized magnefia are differently ftated, probably from having undergone fome unperceived efflorefence; according to Fourcroy who feems to have beftowed moft attention to this object, 100 parts cryftallized magnefia contain

50 fixed air
25 magnefia
25 water

$\left[\begin{array}{ll}222\end{array}\right]$

hence they lofe 75 per cent. of their weight when ftrongly heated 2 An. Chy. 297, 298.

But according to 1 Bergm. 29 and 373 , the chryftallized contains but 30 per cent. of fixed air, with whom Butini agrees, but he afterwards found even common magnefia to contain a larger proportion, fee p. 23 and 146 of his treatife; of the other ingredients neither mentions the proportion.

In common magnefia the proportions are, according to Bergman 45 of earth
25 fixed air
30 of water
100
And according to Butini p. 146, 40,62 earth

> 37,5 fixed air
> 21,88 water

100,00
According to Fourcroy 100 parts of common magnefia contain 40 earth
48 fixed air
12 water
100
confequently they fhould lofe 60 per cent. in a white heat.

$[223]$

Consequently per Bergman 100 gis. common magnefia fhould lofe 55 per cent. in a ftrong heat, and per Butini it fhould lofe nearly 60 , and with this determination two experiments of Klaproth's agree. See 2 Klapr. 9 and 20; yet in another experiment the lofs was but $\frac{46}{100}, 2$ Klap. 174 .

Hence we fee the proportions of air and water are variable, but the fum of both generally amounts to 55 per cent. at the leaft, and and hence if rate the mere earthy part in common magnefia at 45 per cent. when by a ftrong heat lefs is found I believe the difference to have been volatilized. The various proportions of fixed air arife from the various proportions of it contained in the different precipitants ufed in obtaining magnefia.

Note however, the water may gradually be expelled from common magnefia in a heat much below ignition.

Epsom.

In my former paper I have flated that 35 grains of common magnefia, containing 15,75 of mere earth, were faturated by 50 grains of vitriolic acid, whofe fp. grav. was 1,5654 , diluted with a large proportion of water, but containing, as appears by the table, 27,23 real acid, and from this and a comparative experiment, I deduced that 100 parts of cryfallized Epfom contained 17 of mere earth,

[224]

earth, 29,35 of real vitriolic acid, and 53,65 of water, it was ftandard acid that I had before mentioned, but its quantity of real acid is as I now flate it, as may be feen by calculation.

Hence 100 parts perfectly deficcated Epfom fhould contain 36,68 nearly of earth, and 63,32 nearly of real acid.

And 100 grains mere magnefia take 172,64 real vitriolic acid, and fhould afford 590 nearly of cryftallized Epfom.

And 100 parts real vitriolic acid fhould take up 57,92 of magnefia, and afford 340 nearly of cryftallized Epfom.

According to Bergman 100 grains of magnefia take up 173 of real vitriolic acid.

According to Wenzel roo grains magnefia take up $18 \mathrm{r}, 8$ real acid, this arifes from his rating the mere earthy part of common magnefia at $4 \mathrm{I}, 2$ per cent. which, as I think, arifes from volatilization of part of the magnefia.

Experiment If. Fourcroy, 2 An. Chy. 285,282.

He found that cryftallized tartarin taken in the proportion of 80 parts to 100 of cryftallized Epfom operate an almof total decompofition of the Epfom.

[225]

Application.

As 100 parts cryftallized tartarin contain, as already faid, 41 of vegetable alkali, 80 parts of it muft contain 32,8 , but as 100 parts of this alkali take 82,48 of real vitriolic acid, 32,8 fhould take 27,05 , which is nearly the whole of what 100 parts of Epfom contain.

Experiment 2d. Fourcroy, 2 An. Cby. 288.

Crystallized foda, applied in the proportion of 108,8 to roo of cryftallized Epfom, perfectly decompofed the Epfom.

Application.

100 parts cryftallized foda contain, as already fhewn, 21,58 of mere alkali, confequently 108,8 parts contain 23,479. Now 100 parts of this alkali take up 127,68 of real vitriolic acid; therefore 23,479 fhould take 29,97 , which differs from the quantity of acid I have affigned to 108 parts cryftallized Epfom only by 0,62 of a grain.

Vol. VII.
Ff

[226]

Section $8 t$ b.

Alum.

The combinations of argill with vitriolic acid are fo diverfified, as Mr. Vauquelin has lately fhewn in a feries of curious and interefting experiments, that to afcertain the limits of each would require a particular examination which the generality of the prefent inquiry does not at prefent permit to enter into.

The refult of my former effay was, that 100 parts alum con$\operatorname{tain} 31,34$ of earth dried at $465^{\circ} ; 17,66$ of real vitriolic acid, and 5 I of water ; but the acid contained in vitriolated tartarin, of which alum may contain 6 or 7 per cent. is not noticed; but being counted the whole amounts to 20 per cent.

The earth heated to wobitene/s may be reduced to 18 , or fill fewer parts. Wenzel and others fay II, 7, and I believe this to be moft exact.

Hence 100 grains burnt alum, that is alum from which its water was expelled, fhould contain 35,4 of real acid. But the alums of different countries differ much. See Vauquelin in An. Chy. \& Pref. to I Laborant. ViI.

[227]

Section gith.

Vitriol of Iron.
100 parts of this vitriol newly cryftallized contain by my determination 28 calx of iron in the ftate of othiops, equal nearly 22 of metallic iron, 26 real vitriolic acid, 38 water of cryftallization, and 8 water of compofition, that is which adheres to the acid. This determination I lately confirmed ; for from a folution of 100 grains of this vitriol decompofed by muriated barytes I obtained 77,25 of ignited barofelenite, which at the rate of 33,3 per cent. contained 25,747 of real vitriolic acid.

Hence 100 parts vitriol of iron calcined to rednefs contain 41,93 of real acid, and 12,9 of water; but the calr of iron will weigh more than 45 , as it attracts oxygen during the calcination.

The water of compofition is for the moft part expelled with the acid during diftillation. Then 22 grains metallic iron fhould afford 100 grains of cryftallized vitriol; and 100 grains of the beft iron would give 454,54 of vitriol.

The vitriol above examined was of a full grafs green colour. I have met with another which is of a pale fea green colour, and contains much lefs acid, for 100 grains of it treated as above afforded only 56,7 of barofelenite, and confequently contained but 18,59 of real acid.

[228]

Section 1oth.

Vitriol of Lead.

By the experiments of Klaproth, 100 grains vitriol of lead fhould contain about 7I of metallic lead ;* by thofe of Bergman and Wenzel nearly 70 ; but as the lead, being precipitated from the nitrous acid, is in a calcined ftate, we may add 4 of oxygen.

Again, Wolfe found 120 grains vitriol of lead decompofed by tartarin to afford 65 of vitriolated tartarin; therefore 100 grains of this vitriol would afford 54,16 of vitriolated tartarin. Now this quantity of vitriolated tartarin contains $2 \hat{3}, 37$ of real vitriolic acid; therefore juft fo much is contained in roo grains of vitriol of lead. Phil. Tranf. i779. and io Roz. 368.

Hence the quantity of ingredients in roo parts of this falt are 75 calx of lead, $(=71$ of metallic lead) 23,37 real vitriolic acid, and 1,63 water.

Hence 100 grains metallic lead (with the addition of oxygen) take up 32,9 I of real vitriolic acid, and afford 140 of vitriolated lead.

And ico parts real vitriolic acid, unite to 303,8 of metallic lead, (when calcined) and afford 425,49 of vitriol of lead.

* See 1 Klapr. p. 169, and 173; and 2 Klapr. P. 219.

[229]

According to Bergman, 100 grains metallic lead would afford r43 of vitriol of lead.

According to Wenzel 143,33 .
According to Wolfe $\mathbf{1} 37,5$. He precipitated the nitrous folution of lead by vitriolated tartarin, and probably did not apply enough, or this falt did not difengage the laft portions of the nitrated lead, or fome part of the vitriol of lead remained in the nitrous acid. This laft fuppofition is highly probable.

Vitriol of Copper.

100 grains of this falt, perfectly cryftallized, loft 28,5 by expofure to a heat of 370°.

By precipitation with muriated barytes they afforded 9r of ignited barofelenite, and hence contain 28,5 of water of cryftallization and 30,33 of real vitriolic acid; and confequently about 40 of calx of copper $=32$ of metallic copper.

Vitriol of Zinc.

100 grains of vitriol of zinc, cryftallized in needles, loft in a heat of $375^{\circ} 39$ grains; and 100 grains of the fame cryftals, being diffolved and treated with muriated barytes, afforded 61,24 of ignited barofelenite, and hence contain 20,414 grains of real vitriolic acid.

[230]

C H A P. III.

OF NITRO NEUTRAL SALTS.

Section $1 / 2$.

Of Nitre.

From the different refults of various experiments, I am led to think that 100 parts of cryftallized, but dry nitre, contain $5_{1,8}$ parts mere alkali, 44 of acid and 4 of water of compofition.

Hence 100 parts tartarin take up 84,96 of real acid with 8,1 of water, and would afford $193+$ of dry nitre.

And 100 grains real nitrous acid take up 117,7 of tartarin, and would afford 227,24 of nitre, by reafon of 9,54 of water of compofition, which in this cafe accompanies the acid.

This is the beft account I am at prefent enabled to give of nitre, the inveltigation of the proportion of the acid contained in fp. of nitre, being attended with peculiar difficulties, as much as the acit efarpes, when, in its concentrated ftate, water is added to it, and fomuch the more as it is more highly mephitized and the temperature

[23 I]

temperature higher. The more it is mephitized the more alkali it appears to faturate, but afterwards the falt extracts oxygen from the air; when melted it alfo lofes part of its oxygen and of its water of compofition, but in time feems to regain them.

According to Wenzel, 83,5 parts tartarin were faturated by 90 of his ftrongeft acid, and the compound heated to rednefs weighed 173,5 .

Then 100 grains tartarin fhould take up 107,78 of his ftrongeft acid ($=87,51$ of my real acid) and afford 207,78 of dry nitre.

And roo parts nitre contain, by his account, 48,13 of alkali, and 51,87 of his ftrongeft acid, $=42,118$ of my real acid.

Accorninc to Bergman, 49 parts tartarin afford, when faturated with nitrous acid, 100 parts nitre, confequently 100 parts tartarin would afford 204.

Lavosier * allows nearly 49 per cent. of alkali and 5 I of acid (including water) to 100 grains of nitre.

Berthollet, in the Memoirs of the Royal Academy for ${ }_{1} 78 \mathrm{I}$, obferves, that 480 parts of nitre afford, by diftillation, 714 cubic inches of fomewhat impure oxygen air, then 100 parts of nitre

* P. 157 of the Englifh Edition of his Elements of Chymiftry.

$\left[\begin{array}{ll}232\end{array}\right]$

would afford 148,7 (Englifh meafure), there at the rate of 33 per cent. would weigh 49,07 grains, including water loft, which differs but little from my account.

KIER found 22,5 grains dry nitre were faturated by 12,54 grains vitriolic acid, 1,844. Phil. Tranf. by my determination 22,5 grains nitre contain $1_{1}, 655$ grains tartarin (for if 100 grains nitre contain $51,8:: 22,5,11,655$) and 11,655 grains tartarin require 9,61 of real vitriolic acid for their faturation.

Now the fp. grav. 1,844 is intermediate between the tabular gravities 1,8542 and 1,8424 , but nearer to the latter; then by the Ift problem its centenary acidity will be found to be 78,58 , and if 100 grains of this acid contains 78,58 real acid, 12,54 flould contain 9,85 , the difference is not quite $\frac{1}{4}$ of a grain. Mr. Kier required 12,54 of this acid, by my determination 12,23 are fufficient, the difference is not $\frac{t}{3}$ of a grain. Phil: Tranf.

Klaproth found 200 grains of Leucite, treated with marine acid, to afford 70 of muriated tartarin; and that 300 of that ftone, treated with nitrous acid, afforded 123 of nitre. Now by Bergman's calculation 100 grains muriated tartarin contains 61 of alkali, therefore 70 grains fhould contain 42,7.

By my calculation 100 grains muriated tartarin contains 64 of alkali, therefore 70 fhould contain 44,8 of alkali.

[233]

Then 100 grains Leucite fhould contain, per Bergman, 21,35, and by my calculation, 22,4 .

By Bergman's calculation there is a deficit of 0,27 of a grain, and by mine an excefs of 0,77 of a grain. See 2 Klaproth, 50.

But with refpect to nitre, my calculation has the advantage both over his and Wenzel's, for fince 300 grains Leucite afford 123 of nitre, 100 grains of this ftone fhould afford 4 I . Then by Bergman's account, 41 grains fhould contain 20,09 of alkali, which leaves a deficit of 2,16 grains; by my determination 41 grains of nitre contain 21,238 , which leaves a deficit of only 1,012 grains:

For the calculation flands thus: $\begin{cases}\text { Silex } & 53,50 \\ \text { Argil } & 24,25 \\ \text { Tartarin } & 20,09 \\ \underline{97,84} & \begin{array}{ll}\text { Silex } & 53,50 \\ \text { Argill } & 24,25 \\ \text { Tartarin } & 21,238 \\ \hline \mathbf{9 8 , 9 8 8}\end{array} \\ \hline\end{cases}$

Section $2 d$.

Nitrated Soda.
In my former experiment 36,05 grains of mere foda were faturated by 145 of nitrous acid, whofe fp. grav. at 60° was $\mathrm{r}, 2574$; this denfity is intermediate between the tabular fp . Vol. VII.

Gg
gravities

[234]

gravities $\mathrm{I}, 2779$ and $\mathrm{I}, 2687$, but nearer to the former, and by the folution of the ift problem will be found to denote 33,8 grains real acid; confequently ${ }^{1} 45$ grains of this liquor contained 49 grains of real acid. The quantity of nitrated foda formed was found by a ftandard experiment to be 85,142 grains, which is very nearly the fum of the weights of the real acid and mere alkali, as $36,05+49=85,05$; this trifling difference may be water.

Hence 100 parts deficcated nitrated foda fhould contain 57,57 real acid and 42,34 foda.

Then 100 parts foda fhould take up 135,71 of real nitrous acid. And 100 parts nitrous acid thould take up 73,43 of foda.

Surprised at finding no water in this neutral falt, I lately examined its compofition by my antient method. I diffolved 200 grains of pure and well deficcated foda, and faturated the folution with 1225 grains of dilute nitrous acid, of which $\frac{1}{4}$ confifted of the concentrated acid 1.416, of which confequently 306,2 were employed; the lofs of fixed air was 75 grains, and confequently the quantity of real alkali was 125 grains.

The fp. grav. 1,416 lies between the tabular gravities 1,417 and $1,4{ }^{12}$, and by the folution of the ift problem its centenary quantity of acid will be found to be 53,53 ; and 100 grains of

$\left[\begin{array}{ll}235\end{array}\right]$

this acid liquor being diluted with 300 of water, then 400 grains of the dilute acid contain 53,53 real acid; and confequently 1225 grains of it contained 163,9 grains; this quantity therefore was taken up by 125 of foda; if therefore the falt thuif formed contained no water the fum of both thefe quantities fhould exprefs its weight, namely, $163,9+125=288,9$ grains; but having very gently evaporated the folution, namely, in a heat not exceeding 120°, and then drying the refiduum in 2 heat of 400° for fix hours, I found it to weigh in the evaporating difh (from which I could not feparate it without lofs) 308 grains, confequently thefe 308 grains contained 19,1 of water, however it is evident that in 2 greater heat even thefe would be evaporated.

And then very nearly the fame proportion of acid and alkali would be found as in the preceding experiment, for 308 - 19,1 $=\mathbf{2 8 8}, 9$, and if 288,9 grains contain 125 of alkali, 100 grains of the nitrated foda fhould contain 43,27 , and confequently 56,73 of acid; and allowing 19 grains of water in 308 of this falt dried at 400°, then 100 grains nitrated foda fhould contain 40,58 of foda, $53,2 \mathrm{I}$ of real nitrous acid, and $6,2 \mathrm{I}$ of water.

And 100 grains mere foda faturated with nitrous acid fhould afford 246,42 of nitrated foda dried at that heat. And 100 grains real nitrous acid faturated by foda fhould give 188 nearly of nitrated foda dried as above.

[236]

Bergman, Vol. I. p. 20, allows to roo parts foda very nearly the fame quantity of real nitrous acid as I do, namely, 135,5 parts.

Havina re-difolved the above 308 grains and expofed the folution to fpontaneous evaporation, I found the cryftals dried at 70° to weigh ${ }_{3} 17$ grains; hence this falt contains 2,8 per cent. of water of cryftallization, but in a ftrong heat it would lofe much more.

Thovgh Wenzel's determinations feemingly differ confiderably from the foregoing, yet on a clofer infpection the difference will be found not greater than the ufual imperfection of weights and weighing, and the varying nature of the acid may admit.

He found $7 \mathrm{I}, 5$ grains mere foda faturated with nitrous acid to afford 190,75 of thoroughly deficcated nitrated foda, and hence concluded that it contained no water, and confequently 190,75 grains of this falt to contain 71,75 of alkali and 119,25 of real acid.

Hence ico grains of this falt fhould contain 37,48 of alkali and $62,5^{2}$ of acid; it is plain then that this acid contained the 6,21 grains of water which I found in 100 parts of this falt, for if we add 6,21 to the quantity of acid I afcribe to 100 parts of this falt, we fhall find very nearly Wenzel's weight of acid, for $53,2 \mathrm{I}+6,2 \mathrm{I}=59,42$.

[237]

According to Wenzel, then, roo grains mere foda take up 166,7 of this aqueous acid, and fhould afford 266 of nitrated foda thoroughly deficcated; and 100 grains of the aqueous acid fhould take up 59,9 of foda.

From the experiment on nitrated foda Wenzel deduces the ffrength of his fp. of nitre, which being the fame as he employed in his fubfequent numerous experiments it is important to difcover.

As he faturated 71,5 grains foda with 347 grains of this fp . of nitre and found the foda to take up 119,25 of what he thought the ftrongeft nitrous acid, he concluded that 240 grains of it contained 82,5 of the ffrongeft acid, and confequently 100 grains of it fhould contain 34,375 of his ftrongeft acid. Now to compare the quantity of his real acid in his fp . of nitre with that which I judge his to poffefs, I muft obferve that to faturate 71,5 grains mere foda, 96,933 grains of my real acid would be requifite, and confequently that 347 grains of his fpirit of nitre contained no more ; therefore 240 grains of his fpirit of nitre contained but 67,04 of my real acid, and 100 grains of it contained 28 of my real acid; the difference is water contained in his ftrongeft acid. 'Then 1000 grains of his flrongeft acid is only equal to $8 \mathrm{I} 2,6$ of my real acid; the remainder $v . z .187,4$ being water contained in his ftrongeft acid.

$\left[\begin{array}{ll}23^{8}\end{array}\right]$

Morveau faturated 485 grains of cryftallized foda ($=104,66$ of mere foda) with 545 grains of (pirit of nitre, whofe fp. grav. at 4° of Reaumur ($=41^{\circ}$ of Fahrenheit) was $\mathrm{I}, 2247$, which at 60° of Fahren. would be 1,219, and this by my calculation contains about 27,29 per cent. real acid; confequently 545 grains contained 148,73; then 100 grains mere foda fhould take up 142 of real nitrous acid. 2d Old Mem. Dijon 184.

Lavosier alfo faturated a given quantity of foda with nitrous acid, but as there was an excefs of acid no ftrefs can be laid on his experiment.

I found nitrated foda to attract moifture in a moderate degres.

Nitrated Barytes.

As barytic earth cannot well be diffolved in nitrous acid without the affiftance of heat, I was obliged to attempt the analyfis of this falt by indirect methods, namely, precipitation by cryftallized foda and vitriolated tartarin.

The foda I employed contained 15 per cent. of fixed air, and 21,5 of mere alkali; and 100 grains of aerated barytes ignited contains about 21,5 of fixed air.

Now I found that 'soo grains of cryfallized nitrated barytes were precipitated by 105 nearly of this foda, and that the earth after

[239]

after edulcoration, deficcation and ignition, weighed 70,25 grains nearly; but at the rate above-mentioned thefe 70,25 grains are reducible, deducting the fixed air to 55,10 of pure barytic earth.
O_{N} the other hand 108 grains of cryftallized foda contain 23,22 grains of mere foda, and thefe we have already feen are capable of taking up $3 \mathrm{r}, 4 \mathrm{I}$ of real nitrous acid, therefore by this experiment 100 grains of cryftallized nitrated barytes contain 31,41 of acid and 55,10 of earth ; the remainder then is water of cryftallization, $=13 ; 49$ grains.

Again, 100 grains of cryftallized nitrated barytes were diffolved in 2400 of water, and precipitated by the gradual addition of a folution of vitriolated tartarin; the precipitate which was flowly and difficultly formed and collected weighed after ignition about 88 grains; thefe (at the rate of 33,33 per cent.) contained 29,33 of real vitriolic acid, and confequently 58,67 of mere earth.

Taking a mean, then, of thefe two experiments, 100 grains of nitrated barytes contain 56,88 grains of mere earth.

Lastly, 308 grains of native aerated barytes diffolved in 240 of nitrous acid, whofe fp. grav. was 1,45 1, diluted with 5 times its weight of water in a gentle heat affirded 384 grains of cryftallized nitrated barytes, befides a fmall refiduum.

$\left[\begin{array}{ll}240\end{array}\right]$

Now this acid contains 58 per cent. real acid, and confequently 240 grains of it contained 139,2 of real acid; and if 384 grains of the cryftals contain 139,2 , then 100 grains fhould contain 36,25 . But it muft be confidered.that fome was contained in the mother liquor, fome in the cryftals that were not wafhed, but dried on filtering paper, and fome was difperfed by the heat applied.

This experiment alfo gives fome, though not an accurate information of the proportion of earth in nitrated barytes, for 308 grains of aerated barytes (at the rate of 21,5 per cent.) contain 66,22 of fixed air, and confequently 241,78 of mere earth. Suppofing then 384 grains of nitrated barytes to contain this quantity of earth, 100 grains of this falt fhould contain 62. But this fuppofition is inadmiffible by reafon of the loffes juft mentioned.

Upon the whole we may ftate the centenary proportion of this falt at 57 of earth, 32 real acid, and 11 of water.

Hence 100 grains barytic earth take up 56 of real nitrous acid, and fhould afford $\mathbf{1 7 5 , 4 3}$ of nitrated barytes. And 100 grains real nitrous acid fhould take up 178,12 grains of barytic earth, and fhould afford 3 12,5 of nitrated barytes.

100 grains of this falt loft only $\frac{1}{2}$ a grain of its weight by expofure to a heat of 300° for half an hour. It is alfo difficultly foluble. Its folution when faturated does not redden Litmus.

[24 I]

Nitrated Stronthian.

100 grains of perfectly cryftallized nitrated ftronthian, diffolved in 480 of water, were precipitated by about 107 of cryftallized foda, containing 16 per cent. of fixed air and 21,5 of mere alkali, the precipitate, after ignition, weighed 53,25 grains, and contained 17,04 of fixed air, and confequently 36,21 of mere earth.-Alfo the 107 grains of foda (at the rate of 21,5 per cent.) contained 22,9 of mere alkali, which (at the rate of 35,71 per cent.) took up $3^{1,07}$ of real nitrous acid ; then by this experiment 100 grains cryftallized nitrated ftronthian contain $36,2 \mathrm{I}$ of earth, $3 \mathrm{I}, 07$ of acid, and 32,72 of water.

Then 100 grains of pure ftronthian earth take up 86 nearly of real nitrous acid, and fhould afford 276 of cryftallized, or about 92 of thoroughly deficcated nitrated fronthian.

And 100 grains real nitrous acid fhould take up 116,5 of mere ftronthian earth, and afford 321 of cryftallized, or 107 of thoroughly deficcated nitrated ftronthian.

Sertion 3 d.

Nitrated Lime.
In my experiment ${ }^{2} 36$ grains Carrara marble were faturated by 400 of nitrous acid, whofe fp. grav. was 1,2754 , and which confe-

Vou. Vil. Hh

$\left[\begin{array}{ll}242\end{array}\right]$

quently contained (at the rate of 33,59 per cent.) $1 \approx 4,36$ real acid. The $\mathrm{I}_{3} 6$ grains Carrara marble contained (at the rate of 55 per cent.) 74,8 of lime.

Consequeatly 100 parts lime take up 179,5 of real nitrous acid, and 100 parts real nitrous acid take up 55,7 of lime.

Lavosier diffolved 972 grains of flacked lime, dried in a heat of about 600°, in 3456 grains of nitrous acid, whofe fp. grav. was 1,2989 , and confequently contained (at the rate of 36,7 per cent.) 1268 grains real acid; from the 972 grains lime we muft deduct (at the rate of 28,7 per cent. water abforbed in the flacking) 268,9 of water, and alfo 35 grains of fixed air, abforbed while - flacking and drying, there remain then 668 of mere lime, and thefe took up 1268 of real acid, then 100 grains of lime would take up 190 of real acid. I Lavofier, 198. Perhaps the difference arifes from my computing the quantity of real acid from a fpecific gravity taken at 60°, whereas his might have been taken at a higher degree.

Bergman found ioo grains of nitrated lime, zoell dried (that is dried in air) to contain 32 of lime; by the above analogy the proportion of the other two ingredients may be found, for fince 100 parts lime take 179,5 of real acid, 32 hould take 57,44 , confequently the remainder, viz. 10,56 are water; if the nitrated lime could be perfectly dried, it would contain about 36 per cent. of lime and 64 of real acid.

According

[243]

According to Wenzel 122,66 grains of lime take up 240 of his ftrongeft acid, confequently ioo of lime would take up 195,64 of fuch acid, but this quantity is equivalent to only 159 of my real acid, this difference I cannot account for.

Secrion 4th.

Nitrated Magnesia.
By my experiment 100 parts mere magnefia require 210 of real nitrous acid for their faturation.

And too grains real nitrous acid take up 47,64 of mere magnefia. 100 grains cryftallized nitrated magnefia contain 46 real acid, $22 \ldots$ magnefia, and 32 of water, as I found.

According to Wenzel 77 grains of the magnefia he employed contained but 32,13 mere earth, and yet required 240 of his fp. of nitre for their faturation, which fp . of nitre, by my calculation, contained but 67,2 real acid, and confequently 100 grains mere magnefia would require 209 real nitrous acid; by his own calculation 240 of his fp. of nitre contained 82,5 of his ftrongeft nitrous acid, and confequently 100 grains mere magnefia fhould take up 256 of fuch acid, $=207,87$ of my real acid.

[244]

According to Fourcroy, 4 An. Chy. 214, 150 grains aerated magnefia, containing 48,66 per cent. mere magnefia, and confequently in all 73 grains, were faturated by 222 grains of nitrous acid, whofe fp. grav. appears to have been 1,5298 , of which 100 , by my table, contain 69,88 real acid, and confequently 222 contain 155 ; and if 73 grains mere magnefia take up 155 real acid, 100 grains mere magnefia fhould take up 212.

[245]

C HAP. IV.

OF MURIATIC NEUTRAL SALTS.

Section $\mathrm{I} /$ t.

Of Muriated Tartarin.
In my laft paper I have flated that 86 grains of mere tartarin were faturated by 254 grains of muriatic acid, whofe fp. grav. at 60° was 1,1466 ; this is extratabular, but intermediate between the tabulated fpecific gravities 1,147 and 1,1414 , but nearer to the higher, and its centenary acid contents will be found by the ift problem to be 19,06; confequently 254 grains of this acid liquor contained 48,412 real acid; the "fum of the acid and alkaline parts then amounts to $48,412+86$, $=134,412$ of muriated tartarin; and fince $\mathrm{r} 34,412$ of this falt contained 86 of alkali, 100 parts of the dry falt fhould contain 64 nearly of tartarin, and the remainder or 36 parts are real marine acid.

Hence 100 grains tartarin take up 56,3 of real marine acid, and fhould afford 156,3 of well dried muriated tartarin. And 100 grains real marine acid fhould take up ${ }^{1} 77,6$ of mere tartarin, and afford 277,6 of deficcated muriated tartarin.

> Wenzel,

[246]

WiNZEL found 83,5 grains of tartarin to afford him 129 of muriated tartarin, confequently 100 parts of this falt fhould contain 64,7 of alkali, and 35,3 of acid, and ioo parts tartarin fhould take up 54,491 of real acid, and afford 154,49 I of muriated tartarin, all which determinations differ very little from mine, and afford no inconfiderable proof of the accuracy of the table.

Hence we may deduce the quantity of real acid in Wenzel's fp. of falt and its f . gravity.

By his own account 202 grains of his f . of falt contained 45,5 of his ftrongeft acid, confequently 100 grains of it fhould contain 22,52 , and 240 grains of it 54 , and its Sp. gravity about $:, 174$

Br my calculation 202 grains of his fp. of falt contained 46,44 of my real acid, and 100 grains of it contained nearly 23 of my real acid, and 240 of it contained 55,17 , and its fp. gravity fhould be about 1,176 .

Another proof of the accuracy of my determination will be found in the $2 \mathrm{~d} \delta$.

Klaproth's determination agrees fully with mine, for to 116 grs . of fylvian he afcribes 42 of concentrated muriatic acid, confequently 100 grains of fylvian fhould contain 36,2. I Klapr. 34 .

[247]

Selition $2 d$.

Common Salt.
It has been feen in my laft paper that 30,05 grains of mere foda were faturated by 129 grains of muriatic acid or fp . of falt. whofe fp. gravisy in the temperature of 60° was $\mathrm{r}, \mathrm{I} 355$; this by the table contains about ${ }^{7} 7,5$ real acid per cent. confequently 129 grains of it contained 22,07 grains real acid, if thercfore the neutral falt here formed contained nothing elfe but mere foda and real acid, its weight fhould be $30,05+22,07=52,12$. Yet by the laft experiment it appeared that the weight of the falt thus formed amounted to $56,74 \mathrm{gr}$. the furplus 4,62 grains muft therefore have been water, and fince 56,74 grains of common falt contain alkali, real acid and water in the above proportions, 100 grains of common falt (well dried and deprived of the water interfperfed between its pores) muft contain 52,96 foda, 38,88 real acid, and 8,16 water of compofition that always accompanies the acid when this falt is formed, and therefore muft in all other ways of examining the compofition of this falt, have been confounded with it. In this fenfe therefore I may fay that 100 parts common falt contain in round numbers 53 parts alkali and 47 of acid.

Hence 100 parts mere foda take up 73,41 of real marine acid, or 88,74 of the aqueous acid, and then afford 188,74 of common falt. And 100 parts of the aqueous acid fhould take up in 2,688

$\left[\begin{array}{ll}248\end{array}\right]$

of foda, and afford 212,688 of common falt, and 100 grains real marine acid fhould take up 136,31 of foda, and afford 257,2 of common falt.

100 grains of the aqueous acid contain 15,33 of water.
According to Wenzel 131,5 of ignited common falt contain 71,5 of alkali, and 60 of his ftrongeft marine acid; confequentiy 100 grains common falt flould contain 54,3 of alkali, and 45,7 of that acid. And 100 parts mere foda fhould afford 184 nearly of ignited common falt. This flatement differs very little from mine, and from Weigleb's ftill lefs, for he found 100 parts common falt to contain 53,5 of alkali, and 46,5 of acid, and 100 parts foda fhould take up 87,5 of acid, and afford 187,5 of common falt.

But Mr. Bergman's ftatement differs widely from the foregoing, both Wenzel and I have found the alkaline part to exceed the acid, he on the contrary found the acid to exceed by much the alkaline, for to 100 parts common falt he affigns 52 of acid, 6 of water and only 42 of alkali. From the great refpect I have ever entertained for this excellent man, this circumftance always gave me much uneafinefs. To inveltigate the truch by dire t experiment otherwife than was always done appeared dificult. I therefore endeavoured to difcover it by an indiret experiment, namely, by finding how much cauftic foda might be obtained from the decompofition of a given quantity of common falt this

[249]

decompofition I effected by tartarin, but the exact feparation of the foda from the fylvian was fo difficult that I defpaired of obtaining fatisfaction in that w y l luckily, however, a more patient and flkilful experimenter, Mr. Hahneman has fince performed this experiment, and found that II parts mere tartarin were requi te to feparate 7 of mere foda from common falt.* We may the efore now examine with which of the two oppofite flatements this proportion is beft fuited.

By my determination 7 grains foda enter into the compofition of $\mathrm{I}_{3}, 2 \mathrm{I}$ of common falt, and this quantity of common folt contains alfo 5,13 grains real acid, which muft be taken up by the tartarin to fet the 7 grains of foda free. Now fince 100 parts tartarin take up 56,3 of real marine acid, 9,12 of tartarin fhould take up 5, 12 of this acid, which falls flhort of Hahneman's refult by r. 88 grains. But it is well known that fomewhat more of any divellent agent muft be applied to effect an intire feparation of any principle than would be neceffary to faturate that principle if it were in a free difengaged ftate.

By Bergman's determination 7 grains of foda enter into the compofition of 16,66 of common falt, and this quantity of common falt contains alfo 8 of real marine acid, now, as according to him soo parts tartarin take up 51,5 of the flrongen or real marine acid, 15,53 would be requifite to take up 8 of that acid, which exceeds Hahneman's refult by 4,53 grains, whereas by the above reafon it fhould rather fall fhort of it.
Vol. VII.

[250]

$\mathrm{BuT}_{\mathrm{T}}$ there are two other experiments which fet the inaccuracy of his determination in a fill clearer light, the one executed by Mir. Violfe, aud the other by Dr. Black \dagger.

Mr. Wolfe found that 1 zo parts muriated filver or luna cornua, when decompofcd by tartarin, afforded 55 grains of fylvian or muriated tartarin; thefe 55 grains therefore contained all the acid that exifted in 120 of muriated filver. Now Dr. Black found that 235 grains of muriated filver contain all the acid that exifts in 100 grains of common falt, and corfequently 120 grains of the muriated filver contain all the acid that exifts in $5 \mathrm{I}, 06$ of common falt, whence it follows that 55 grains of fylvian and $5 \mathrm{I}, \mathrm{c} 6$ of common falt contain the fame quantity of acid, fince the firft received and the latter gave out ail the acid that exifts in I20 parts muriated filver.

We may now fee in which of the 2 difierent flatements this equality is found, or whether in neither or in both.
iff. According to Eergman ico grains of muriated tartarin contain 31 of real acid, then 55 grains of that falt fhould contain. 17, 05.
Again, ico grains of common falt contain by his fatement 52 of rcal acid, then 5 r.c. 6 of this falt flowld contain 27,55 ; thefe quantities are evidently very diffant from an equality.

[25 I]

2d. By my fatements 100 parts fylvian contain 36 of real acid, then 55 parts of this falt fhould contain 19,8; alfo 100 parts common falt contain 38,88 real acid, then $5 \mathrm{r}, 06$ parts of this falt fhould contain 19,85 .

Section 3 d.

Muriated Barytes.
The proportion of ingredients in this falt may be inveftigated from the following facts:
ift. Klaproth found that 73 grains of aerated native barytes (which contained an inconfiderable proportion of ftronthian) faturate 100 grains of muriatic acid, whofe f p. grav. was 1,140 diluted with 200 grains of water, and that 100 grains of aerated barytes contain 22 of fixed air, 2 Chy. An. 1793, p. 195 and 1,0 , and I Klapr. 269, therefore 73 grains of aerated barytes contain 56,94 of barytic lime:

2dly, He found that 56,59 pure aerated barytes diffolved in this acid afforded 6850 of cryftallized muriated barytts. 2 Klapr. 84.

Then 100 grains of aerated barytes, or 78 of mere barytes, would give $2 \mathrm{I}, 04$ of muriated barytes. And 100 grains of mere barytic earth fhould give 155 nearly of cryifallized muriated barytes.

According to Fourcroy, 4 An. Chy. 71, 100 grains native barytes afford but II2 of deficcated muriated barytes; yet Pelle fier

[252]

tells us, that roo grains native aerated barytes afforded him 138 of cryftallized muriated barytes, but moft probably it retained fome of the mother liquor.

Hence I deduce, ift, that as roo grains muriatic acid, 1,140 contain 18, II real acid, 56,94 of barytes took up that quantity.

Consequently 100 grains mere barytic earth take up 31,8 of real marine acid, and afford 555 of cryftallized muriated barytes.

AND 100 grains real marine acid fhould take up 314,46 of barytes.
We may alfo remark, that the muriatic acid whofe denfity is $1, r 40$, being mixed with twice its weight of water, will have its fp. grav. 1,0+27 which is nearly the fame as that which Fourcroy found beft adapted to fuch folution, namely, 1,0347 ; and perhaps if the temperature were equal would approach each other ftill more nearly. It appears then that the real acid fhould be accompanied with 16 times its weight of water.
adly, It follows, that 121,04 parts cryftallized muriated barytes contain 78 earth, 24.8 acid, and 18,24 water, confequently 100 parts of the cryfullized falt contain 64,44 earth, 20:45 acid, and 15,06 water.

And 100 grains of the deficated contain about 70 of earth, 22 - of acid, and 8 of water.

[253]

(Per Crawford, quoted by Schmeiffer in Phil. Tranf. 179, 42I, muriated barytes is nearly as foluble in hot as in cold water, and three times lefs foluble than muriated ftronthian.)

To confirm this conclufion I muft add, that having precipitated a folution of 100 grains of cryftallized muriated barytes by a folution of nitrated filver, I found the precipitate duly dried to weigh 118 grains, which as we fhall prefently fee argues the prefence of 19,5 I of real marine acid. I alfo found that 100 parts muriated barytes expofed to a heat of 300° for two hours, loft r6 grains of water of cryftallization, hence we may rate in round numbers the proportion of ingredients in this, falt, at 64 of earth, 20 of acid, and 16 water of cryftallization.

Section 4 th.

Muriated Stronthian.
Klaproth obferved, that 55 grains of native mild ftronthian faturated 100 of marine acid, whofe fp. grav. was 1,140 , this being diluted with 50 grains of water, 100 grains marine acid of this fp. grav. contain, computing from my table $18,1 \mathrm{I}$ grains of real acid, and 55 grains mild fronthian, (at the rate of 69 per cent.) contain 37,95 of mere earth.

[254]

Heyce I conclude, that 100 grains mere fronthian earth take up 47.79 of real acid (fince 37.95 take 18, II of real acid) and would afford, as we fhall prefently fee, 254,84 of cryftallized muriated ftronthian, or 147,79 of deficcated fironthian*.

And 100 grains real marine acid enter into the comprfition of 209 grains of deficcated ftronthian, or of 360 of the cryftalized.

Again, Dr. Hope found, that ioo grains cryfallized muriated Aronthian contain 42 of water of cryftallization, and confequently 58 of deficcated which contain earth and acid in the proportion above mentioned or 100 earth to 47,79 acid) that is, 39,24 of carth and 18.76 of acid, this proportion agrees very exaclly with that obferved by Pellitier \dagger, for he found 100 grains of native aerated ffronthian (which contain 69 of earth) to afford 176 of cryftallized muriated ftronthian.

And fince, in Dr. Hope's experiment, 39,24 of this earth afforded 100 grains of muriated ftronthian, 69 fhould afford I $_{75}, 8$. Some experiments however of Mr. Lowitz vary confiderably from the above flatements, it app ared to him that in muriated ftronthian the quantity of acid exceeded that of earth in the proportion of 54 to $+6 \ddagger$; if fo, 100 grains of muriatic acid of the fp. grav. r, 140 fhould contain 44,54 of real acid, for it took up 37,95 of earth

[^7]
[2.55]

earth in Klaproth's experiment already quoted, which is inconfiftent with the proportion of real acid. I have found in muriatic acid in a multitude of experiments, and contrary to all analogy, as we fee that by barytes and fixed alkalis betwixt which this earth undoubtedly ftands, take up lefs than their own weight of real marine acid: it is alfo contradicted by Pellitier's experiment, for fince 100 grains native aerated fronthian contain 69 of earth, there at the rate of 46 to 54 fhould take up 80 grains of real muriatic acid, and the fum of both would be 149 grains: and fince by Dr. Hope's experiment 58 grains of united earth and acid take 42 grains of water of cryftallization, 149 grains fhould take 107; and hence inftead of 176 grains of cryftallized muriated ftronthian we fhould have 256 grains from 100 of aerated flronthian.

Kiaproth informs us, that from a folution of 100 grains of aerated fronthian in muriatic, precipitated by the addition of concentrated vitriolic acid, as long as any precipitate appeared, he obtained no more than II4 grains of vitriolated ftronthian, and that dried only in air*; whereas the precipitate thould amount, if the whole of it were obtained, to 118 grains; for fince 58 grains of this earth, as he elfewhere relates, \dagger afford 100 of vitriolated. ftronthian, 69 fhould afford II8; it is plain therefore that the ma-

[^8]
$\left[\begin{array}{ll}256\end{array}\right]$

rine acid retaincel fome, or that a fufficiency of the vitriolic acid was not added. This earth is not therefore a proper teft of vitriolic acid, at leaft not as proper as the barytic.

To obtain a lefs circuitous proof of the proportion of ingredients in 100 parts of this falt, I precipitated a folution of 100 grs . of cryftallized muriated flronthian by mild foda; the precipitate after ignition weighed 56,75 grains, but thefe being diffolved in marine acid gave out 17 grains of fixed air, and therefore contained only 39,75 of mere earth.

2dly. I precipitated a folution of another 100 grains of this cryfallized falt by a folution of nitrated filver, and found the precipitate duly dried to weigh IIo grains, a weight which indicates the prefence of 18,19 grains real marine acid. The weight of the 3d ingredient, namely water, muft therefore amount to 42,06 grains nearly, as Dr. Hope has fated.

Hence we may rate the proportion of ingredients in 100 parts of this falt at 40 of earth, 18 of acid, and 42 of water. And to 100 parts of the deficcated fait we may allow about 69 of earth and 3 r of acid.

Hence 100 parts frontbian earth take up 45 or more, exactly 46 of real marine acid, and fhould afford 250 of cryftallized, or 145 of deficcated muriated ftronthian. And 100 farts real marine

[257]

acid fhould take 222 , or more exaclly 216,21 of fironthian earth, and afford 540 of cryftallized, or 313,5 deficcated muriated ftronthian.

Section 5th.
Muriated Lime.
In my experiment already mentioned 158 grains of powdered Carrara marble were faturated by 402 of muriatic acid, whofe fp. grav. was 1,1355 , which contained 17,5 per cent. real acid; therefore 402 grains of it contained 70,55 real acid. The 158 grains marble (at the rate of 53 per cent.) contained $8_{3,74}$ of lime. Then 83,74 grains lime took up 70,55 of real marine acid. To effect a faturation a heat of 160° was employed towards the end of the folution.

Hence roograins of lime would faturate 84,488 of real marine acid. And ioo grains real marine acid would faturate 118,3 of lime.

In Wenzel's experiment the acid was not faturated, and hence the refult differs from that of mine. To 240 grains of his f_{p}. of falt he added 120 grains of fragments of purified oyfter-fhells (which, as we have already feen in treating of felenite, contained 52,8 per cent. of lime,) and at the latter end expofed them Vol. VII.

K k
to

[25^{8}]

to a gentle heat, and when no fenfible folution appeared he feparated what remained undiffolved, and found that after wafhing and drying it, it weighed 19,625 grains; hence he concluded that 100,375 grains of thefe fhells were diffolved; but then he had no reafon to think the acid was faturated, or that in a longer time it would not take up more, efpecially as the flhells were not in a fine powder, nor did he apply any teft as I did. Having evaporated the folution to drynefs and heated the dry mafs to fufion, he found it to weigh whilft fill red hot 106, 125 grains.

This fhews the folution not to have been faturated, for 100,375 grains of the fhells contained 53 of lime, and the 240 grains f. of falt contain 54 of real acid by his own account; therefore, as faturated muriated lime lofes no acid in a melting heat, the falt fhould weigh even by his eftimation 107 grains, and by my calculation 112 grains; the remainder therefore of the unfaturated acid was expelled by the heat of fufion.

Accordivg to him 100 grains lime fhould take up 102 grains of the flrongeft marine acid.

It muft be remarked, alfo, that this falt though in a melting heat ftill retains fome water, and Wenzel's experiment fhews how much; for by my determination 53 grains lime take up only 44,75 of real acid; and the fum of the ingredients in Wenzel's experiment amounts only to 97,75 grains; yet he found the weight 106,125; then 8,375 grains were water.

[259]

Then 100 grains muriated lime, weighed red hot, contain nearly 50 of lime, 42 of acid and 8 water.

Bergman agrees with me fo far as fating the proportion of lime in this falt to be fuperior to that of acid; to 100 parts of this falt he affigns 44 of lime and 3 I of acid, but the proportion of acid is higher, for to 44 of lime 37 of acid appertains, by the proportion above fated then that of water is 19 .

Note. His falt was weighed at far a lower temperature than Wenzel's, and hence the quantities but not the proportions in 100 grains of it are altered, as it powerfully attracts water.

Section 6th.

Muriated Magnesia.
The proportions of acid and bafis in this falt are difficultly determined, as it powerfully attracts moifture and eafily lofes its acid if. ftrongly heated, and without fuch heat will retain much water.

In my experiments it appeared that 100 grains mere magnefia took up 215,8 of ftandard, or 111,35 of real marine acid.

And 100 grains real marine acid take up 89,8 of mere magnefia.

K k 2

Klaproth

[260]

Klaproth * found 420 grains of muriated magnefia evaporated to drynefs to contain 290 of magnefia; as it was precipitated by foda he probably meant mild magnefia, which generally contains but 0,45 of earth; if fo, 290 contained but 130,5 of mere magnefia; confequently 100 grains of muriated magnefia gently but fenfibly dried Mould contain 31,07 mere magnefia, and this by my computation fhould take up 34,59 of real acid. The remainder is therefore water.

Wenzel's experiments accord with mine with refpect to the fuperiority of the proportion of earth to that of acid in a given weight of muriated magnefia. According to him 100 grains of mere magnefia take up 122 of real marine acid; but by my com. putation of the quantity of real acid in his fp. of falt, v. z. 23 per cent. allowing his mild magnefia 45 per cent. of earth, 100 grains of it fhould take up if 5,8 real muriatic acid.

Bergman's refults differ from thefe very widely, for according to him 41 grains mere magnefia take up only 34 of the ftrongeft marine acid.

$\left[\begin{array}{ll}261\end{array}\right]$

Section $\gamma^{7 t b}$.

Muriated Silver.
It is now well known from the experiments of Margraff, Bergman, Klaproth, Wolfe, Wenzel, \&c. to which I need not add my own, that 100 grains of muriated filver contain very nearly 75 of filver when dried in a heat of 80°, or 75,235 when heated more but not fufed, as in Wenzel's and Wolfe's experiments; but it muft not be inferred that the remaining 25 grains are mere marine acid, for filver diffolved in nitrous acid takes up ro, 8 per cent. of oxygen; therefore 75 grains of it take up 8,1 , which fubftracted from 25 , leaves the quantity of acid 16,9 ; or if the muriated filver were much heated, the acid and oxygen would amount only to 24,76 ; and deducting the oxygen, the acid fingly would be 16,6 grains; this agrees exactly with Wolfe's experiment, for he found as al-ready faid that 120 grains of this metallic falt decompored by tartarin afford 55 of muriated tartarin. Now 120 grains contain by this computation 19,92 of real acid; and as 100 grains muriated tartarin contain 36 of real acid, 55 grains of it fhould contain 19,8 ; the difference is infignificant.

Hence 100 grains filver take up 22,133 of real marine acid, and afford 133 of muriated filver by the addition of oxygen.

And 100 grains real marine acid unite to 451,87 of filver, and afford 602,4 of muriated filver.

$$
\left[\begin{array}{ll}
262
\end{array}\right]
$$

100 grains pure cryftallized comonon falt precipitate from a folution of nitrated filver 233.5 grains of muriated filver by Klaproth's, 235 by Dr. Black's, and 237 by Arrhenius's experiments *; Dr. Black's is a medium between both; the difference arifes only from the degree of deficcation.

100 grains of muriated tartarin hould produce 216,86 of muriated filver.

Section 8 th.

Muriated Lead.
This falt may be obtained in two ftates, either in acicular cryftals or thoroughly deficcated. The proportion of ingredients in each I deduce from the following facts:
ift. Klaproth having diffolved 100 grains lead in dilute nitrous acid, and precipitated the lead by cauftic tartarin, found the precipitate fharply dried until it began to grow yellow, to weigh II5 grains. I Klaproth, 274.

2d. Having precipitated a folution of 100 grains of lead in nitrous acid by dropping muriatic acid as long as any precipitate appeared, and evaporated the whole to drynefs in a fand heat, he found the muriated lead to weigh I 33 grains. Ibid.

$\left[\begin{array}{ll}263\end{array}\right]$

3d. He alfo found that 22,5 grains of cryfallized acicular muriated lead, well drained and dried by expofure to the air, contained 16 grains of metallic lead, therefore 100 grains of fuch cryftals fhould afford 7 I , II of metallic lead.

First, to thefe facts I muft farther add, that in muriated lead, whether cryftallized or deficcated, the lead is in a calcined flate.

Hence I infer, that fince 100 grains of metallic lead give 133 of calx of lead, the 71, II grains of metallic lead in 100 parts cryftallized muriated lead amount to $8 \mathrm{r}, 77$ of calx of lead. The calx, including not only the metallic lead, but alfo oxygen and water, as we fhall prefently fee; the remainder therefore is real marine acid, amounting to 18,23 grains.

Again, as I_{33} grains of the thoroughly deficcated muriated lead contain 100 of metallic lead, 100 grains of this muriated lead muft contain 75,12 , but 75,12 metallic lead form 83 of calx; the remainder therefore muft be real marine acid $=17$ grains.

These conclufions are farther confirmed by the experiment of Mr. Wolfe. Phil. Tranf. and to Roz. 370. Having decompofed 120 grains of muriated lead dried by expofure to the air by a fufficient quantity of tartarin, he found them to produce 61 grains of muriated tartarin. Therefore both the 120 grains muriated

$$
\left[\begin{array}{ll}
264
\end{array}\right]
$$

riated lead and the 6 I grains of muriated tartarin fhould contain the fame quantity of real marine acid. Now if 100 grains muriated lead dried in air contain 18,23 real acid, 120 grains of it fhould contain 21,87 real acid.

And fince 100 grains muriated tartarin contain by my former determination ${ }_{\mathrm{g}} 6$ grains real acid, 6 I grains of this falt fhould contain 21,96 ; the difference is only 0,09 of a grain.

As to the 115 grains calx of lead produced in the precipitation of a folution of 100 grains of lead in nitrous acid by cauftic tartarin, I have already fhewn in the 2 d vol. of my Mineralogy, p. 497, that 100 parts lead, when diffolved in nitrous acid, take up 5,8 of oxygen*, therefore the remainder is water, $=9,2$ grains.

Hence 100 parts metallic lead take up about 25,63 of real marine acid, and afford 140,62 of cryftallized muriated lead, or ${ }^{1} 33,12$ of the deficcated.

And 100 grains real marine acid unite to 394,06 of metallic lead, and afford 548,64 of cryftallized muriated lead.

And

[^9]
$\left[\begin{array}{lll}265\end{array}\right]$

And 100 parts cryftallized muristed lead contain 81,77 calx of lead ($=71,11$ metallic lead,) and 18,23 of real marine acid.

And ioo grains thoroughly deficcated muriated lead contain 83 calx of lead ($=75,12$ metallic lead,) and 17 of real marine acid.

According to Wenzel, roo grains metallic lead fhould afford ${ }^{1} 37,5$ of deficcated muriated lead; he probably dried it fomewhat lefs than Klaproth had done. The proportions of lead and acid he could not well determine, the exiftence and proportion of oxygen not being known when he wrote.

Note. The quantity of metallic lead obtained from 100 parts cryftallized muriated lead by fufion with black flux is much fmaller than that above ftated. (fee I Klapr. I 7 I ,) as much is retained by that flux. Yet fee 3 Weftrumb. Phyfical and Chem. Abhandl: 383.

Of Aerated Vol-Alqali and Ammoniacal Salts.

The former experiments which I made with a view of afcertaining the proportion of ingredients in thefe falts were defective in feveral refpects:

Vọ̣. VII.

[266]

Ift. For want of a due eftimate of the quantity of mere volalkali in a given quantity of aerated alkali, the fubftance to be faturated with the three other mineral acids. Dr. Prieftly's experiments, the bafis of the eftimate I then formed, not exhibiting the temperature and preffure of the atmofphere when the volumes of fixed and alkaline airs were combined, afforded an opportunity for forming rather an approximation than an accurate determination of their feveral weights.

2d. I was not then aware of the difficulty of finding the exact point of faturation of the aerated vol-alkali with the mineral acids; a difficulty however mentioned by Macquer *, and fo great that Du Hamel judged it impoffible to vanquifh it \dagger. Wenzel very fagacioully abforbed the excefs of acid by oyfter fhells, but in my mode of experimenting this teft could not be applied; hence there was an excefs of acid in all of them. Thefe errors induced me to analyze rather than compore thefe falts.

Of Aerated Vol-Alfali.

By diflilling 100 grains of aerated vol-alkali with 300 of dry flacked lime in a pneumatic apparatus and a fand heat I obtained 129 cubic inches of alkaline air, barometer 30,2 , and thermometer

[^10]
$\left[\begin{array}{ll}267\end{array}\right]$

at a medium 62,5 . 100 grains of alkaline air weigh 18,16 grains, as I have fhewn in a former treatife, barometer 30 , thermometer 61. Then at that barometrical height 129 cubic inches would become 130; but as the heat in the prefent experiment exceeded 6I, the expanfion refulting from it muft be fubftracted; and according to Mr. Morveau, 2 An . Chy. a volume of this air at 32° being. taken as I becomes at 77° 1,2791, and confequently gains 0,0062 by each intermediate degree, confequently the volume of this would at 6I be only 129,1; its weight therefore is nearly 24 grains. This falt contained 52 per cent. of fixed air, confequently its ingredients were 52 grains fixed air, 24 of mere alkali, and 24 of water.

The proportion of vol-alkali in aerated vol-alkalis vary, increafing or decreafing with the proportion of fixed air they contain.

Mr. Gavendish in the Philofophical Tranf. for 5766 , p. 169. found that 1643 grains of aerated vol-alkali, containing 53,8 per cent. of fixed air, faturated the fame quantity of marine acid as 1680 of another parcel, which contained but 52,8 per cent. of fixed air.

Hence the quantities of mere alkali in each were reciprocally as 1680 to 1643 , and thefe are nearly to each other as 53,8 to 52,8 ; and as the aerated vol-alkali that contained 52,8 per cent. of fixed air contained 24 per cent. of mere vol-alkali; that which contained 53,8 per cent. of fixed air fhould have contained 24,83 per cent.

Ll2 Hence

[268]

Hence the proportion of fixed air in acrated vol-alkalis is to that of mere alkali in thofe falts as I3 to 6 , and the remainder is water of compofition.

Wenzel, p. ioo, alfo perceived that the proportion of mere alkali in aerated vol-alkali was very fmall, and ftates it nearly as low as I do; for to 240 grains of this falt, containing 53,75 per cent. of fixed air he afcribes 129 of fixed air, 31,125 of water, and confequently 79,875 of mere alkali. Hence 100 grains fhould contain 53,75 fixed air, 33,28 of alkali and 12,97 of water.

Common Sal Ammoniac.
By diffilling in a pneumatic apparatus and a fand heat, 100 grains of fublimed fal ammoniac and 300 grains of quick lime, I found it to yield as much alkaline air as amounted to 25 grains, with fome few drops of water; the remainder of the water being probably detained by the lime or by the muriated lime which is known to retain water moft obftinately.

By treating 100 parts of this falt in folution with a folution of nitrated filver, I found it to afford 258,5 of muriated filver heated to fufion, and confequently to contain 42,75 of real marine acid.

$\left[\begin{array}{ll}2 \sigma_{9} &]\end{array}\right.$

Hence 100 parts of this falt contain 42,75 of real marine acid, 25 , or making allowance for loffes, 28 of mere vol-alkali, and 29,25 of water of cryftallization and compofition.

Hence 100 parts mere vol-alkali take up 152,68 of real marine acid, and fhould afford, if there were no lofs, 357,14 parts of fublimed fal ammoniac. And 100 parts marine acid take up 65,4 nearly of mere volalkali, and fhould afford 233,9 parts of fublimed fal àmmoniac; but in fubliming fal ammoniac there is always fome lofs.

Mr. Cavendifh, in the Philofophical Tranfactions for 1766 tells us; that 168 parts aerated vol-alkali, containing 52,8 per cent. of fixed air, faturated as much marine acid as 100 grains of marble, which contained 40,7 per cent. of fixed air ; now 100 grains of this marble contain, by the analogy formerly given, (45 of fixed air to 55 of lime) 50 grains of lime, by the 2 d table, take up 42,2 of real marine acid, and 100 grains of the aerated vol-alkali there mentioned, contain 24 per cent. of mere alkali, and confequently 168 grains of it fhould contain 40 of mere alkali, which by the above ftatement would require for faturation 61 of real marine acid. This experiment would have made me doubt of the propriety of the above conclufions, had not Mr. Cavendifh exprefsly ftated that his foiution of marble was faturate, (and confequently as a faturate folution cannot be obtained without heat, which he did not apply, he muft have added an excefs of marble, and judged the folution

[270]

folution faturate when no more air was expelled) and on the other hand he tells us, that the alkaline folution contained an excefs of acid, and this excefs exifting in every particle of a large folution mult be confiderable.

IN the experiment related in my laft paper, I fated that 100 grains of aerated vol-alkali were faturated by 246 of marine acid, whofe f . grav. was $\mathrm{I}, \mathrm{I} 355$, which appears by the firft table to contain 7,5 per cent. real acid, and confequently the quantity in 246 grains was 43 grains; on the other hand, the vol-alkali, containing but 43 per cent. of fixed air, contained, by my actual experiments, only $19 ; 85$ grains of mere alkali, and this quantity fhould take up but 30 of real marine acid. Hence in my former experiments there was an excefs of 1_{3} grains of acid, which made the fp. grav. equal to that of the teft folution, and thus induced me to think the quantity of fal ammoniac formed greater than it really was.

Wenzel found 168,4 grains of vol-alkali, containing 53,75 per cent. of fixed air, to require 240 grains of his \lceil p. of falt to faturate them, and this quantity of his marine acid we have already feen to contain 55,17 of real acid, and 168,4 of the aerated alkali contained, by the analogy already flated, $4 \mathrm{I}, 7 \mathrm{I}$ of mere vol-alkali, the fum of both was 96,88 ; yet having evaporated the folution to drynefs, and expofing the refiduum to a heat of 212° for four hours, he found

$\left[\begin{array}{ll}271\end{array}\right]$

found it to weigh 110,125 grains, as he knew 55 of thefe to be acid (or according to him 54), he naturally fuppofed the remainder to be vol-alkali ; hence according to him 100 parts of fal ammoniac thus dried contain 49 parts of acid and 51 of vol-alkali, The difference between us feems to arife from the lofs always experienced during evaporation, and if this had not happened, the dry refiduum would have amounted to 128 grains; as to the quantity of vol-alkali he had no method of eflimating, it.

Cornette perfectly decompofed 2304 grains of fal ammoniac by an equal quantity of lime, which he flacked after weighing it, examining the refiduum, he threw it on a filter, and edulcorated it with repeated effufions of water, and what remained undiffolved he found to weigh, when dry, 756 grains, and hence he judged the remainder, viz. 1548 grains to have been diffolved by the acid of the fal ammoniac, and to confirm this conclufion, he precipitated the folution which had paffed the filter with a fixed alkali, and drying the precipitate, found it to weigh 1542 grains*; whence it feems to follow, that the acid contained in 2034 of fal ammoniac had diffolved 1542 of lime, whereas, by my calculation, it fhould diffolve but 1272,46 of lime, for fince 100 grains of fal ammoniac contain 42,75 of real marine acid, 2304 fhould contain 1008; and fince by the third table 100 grains real marine acid take up. $\mathrm{F} 18,3$ of lime, 1008 fhould take up but $127.2,46$ of lime.

[^11]
[272]

Bur the lime I ufed was pure and perfecily free from fixed air; can that be faid of the common lime of Marly, which he employed and does not fay he had prepared? Befides, by his edulcorations, much pure lime muft have been diffolved, and have mixed with the folution of muriated lime, and if his alkali were not cauftic, the quantity of lime precipitated by it muft have been at leaft partially aerated, and confequently the mere earthy part apparently greater than it would have been if pure. However, as this experiment forms a cumulative proof both of the proportion of acid contained in fal ammoniac, and of the quantity of it taken up by a given weight of lime, I thought it incumbent upon me to repeat it, hence I mixed 50 grains of fal ammoniac with 150 of flacked lime, and heated the mixture in a large glafs phial until all the alkali was driven off and the mixture ceafed to fmell, I then added a fufficient proportion of water, and digefted the whole in a gentle heat for fome hours, then filtered and edulcorated the mafs on the filter, as I judged the folution to contain lime as well as muriated lime, I paffed a ftream of fixed air into it, which inflantly turned it milky, and then filtered it off; the folution now free from lime I precipitated by a folution of an aerated foda, which contained ${ }_{17}$ per cent. of fixed air, as much of the folution was requifite as contained 123 grains of foda. The precipitate collected, edulcorated and dried for fome hours on the filter, in a heat of 150°, weighed 46,75 grains, though no more could be feparated than 41,62 , thefe after ignition weighed 35 grains, fome fluck to the

$\left[\begin{array}{ll}273\end{array}\right]$

glafs, and 5,25 remained in the filter; 123 grains of the foda gave out $20,9{ }^{1}$ of fixed air, and, as I afterwards found, kept about a a grain of the lime in folution, now 21 grains of fixed air are abforbed by 23,44 of lime; this then was the quantity of lime taken up by the acid contained in 50 grains of fal ammoniac, that is, $2 \mathrm{~T}, 37$ real marine acid, whereas by my calculation, fince 100 grains marine acid take 118,3 of lime, 21,37 fhould take up 25,28 , the difference is 1,84 grains, and even this I believe to procced from the whole of the fal ammoniac not having been decompofed, 19,8 grains of the acid appear to have been taken up by the lime, and about 3,6 of the ammoniac efcaped decompofition, this alfo clearly appears by tie acti n (f the foda, for 100 grains of this foda contain 22 of mere alkali, then 123 grains of it contains 27 ; as 100 grains mere mineral alkali take up 73,41 of marine acid, then 27 fhould take up 19,82.

Hence we fee that in Rigour 100 parts fal ammoniac may be decomprfed by ico parts chalk, for 100 parts chalk generally afford 42 of fxed air, and confequently contain $5 \mathrm{I}, 3$ of lime, and 100 parts fal ammoniac contains 42,75 real acid, and fince 100 grains real marine acid are faturated by 118,3 of lime, 42,75 of this acid req "ire but 49,57 of earth; but in all fuch cafes the medium of decompofition is always taken in greater quantity than is abfolutely requifite, otherwife the mixture would never be perfect, and in this cafe part of the falt might fublime without decompofition; hence 200 parts chalk are moft commonly ufed, : Vol. VII. , M m
though

[274]

though 125 are faid to be fufficient. Doffre Elab. laid open rio, I Labor. in Grofs 68, in note per Weigleb. and in effect 125 grains. chalk, at the above rate, would furnifh 52 grains of fixed air, which would faturate 24 of vol-alkali, and the ammoniac contains a fufficiency of water.

Hence alfo we fee how it happens that 100 parts fal ammoniac decompofed by 200 parts chalk frequently afford 89 , nay, according to Baumé, even 94 parts aerated vol-alkali, for if there were no lofs 125 parts of chalk were fufficient, but then this large quantity of fixed air is expelled, not by the acid of the fal ammoniac, but by the heat applied, as Pellitier de la Sale has noticed, 2 Pharmacopie de Londres 427 , and on this account magnefia, as it parts with its fixed air much more eafily, and contains more water, affords a quantity of aerated vol-alkali, when ufed as a medium for decompofing fal ammoniac, nearly double that of the fal ammoniac employed. Thus Weftrumb from 100 grains of fublimed fal ammoniac and $3 c 0$ of magnefia obtained 193 grains aerated vol-alkali, 2 Chy. An. 1788, p. 15; his magnefia muft have contained a very large proportion both of fixed air and water, for he fays that 1920 grains of it being calcined loft only 600 of earth, ibid. I7.

Hence alfo, Dolfuz having treated 100 parts fal ammoniac with 125, and even with 200 of chalk, in a glafs retort, obtained no more than 50 of aerated vol-alkali; the fame thing happened when

[275]

he ufed an earthen retort, as he fimply heated it to rednefs, whereas a ftrong white heat is requifite to expel fixed air from chalk, 2 Crell. Beytr. 199. I believe unpurified fal ammoniac would yield more acrated vol-alkali than the purified, on account of the oil it contains, which affords fixed air. Another certain proof that 125 grains chalk are not acted upon by the acid contained in the 100 parts fal ammoniac, but contribute to the increafed quantity of aerated alkali merely by the fixed air expelled from them by heat, is that the refiduum contains fome calcareous earth which the acid had not attacked, as Richter has obferved, i Stock. 2 Theile 98 and 99 .

Several important deductions may be deduced from the knowledge of the compofition of fal ammoniac, for inftance, an eafy explanation of its great refrigerating power, \&c. which being improper for this place, I omit.

Vitriolic Ammoniac.

100 grains of cryftallized vitriolated vol-alkali and 300 dry flacked lime, pneumatically diffilled in a pneumatic apparatus and a ftrong fand heat, Bar. 30,2 , Therm. 66°, afforded 78,41 cubic inches of alkaline air, $=14,24$ grains.

$[276]$

From a folution of vitriolated vol-alkali, precipitated by a folution of muriated barytes, 164 grains of ignited barofelenite were obtained, hence the falt contained 54,66 grains real vitriolic acid.

Hence 100 grains vitriolated vol-alkali contain 14,24 of mere vol-alkali, 54,66 of real acid, and $31, \mathrm{I}$ of water.

In my former paper I fated the quantity of vitriolic acid in 100 grains of cryftallized vittiolated vol-alkali to be 62,47 fandard, $=55,7$ real acid, the variation is not confiderable, but of the alkali I could not then form a proper eftimate.

Hence 100 parts mere vol-alkali take up 383,8 of real vitriolic acid, and afford 702,24 of vitriolated volalkali.

2dly, roo parts real vitriolic acid fhould take up 26,05 of mere vol-alkali, and afford 182,94 of vitriolated vol-alkali.

According to Wenzel, alfo, 100 parts vitriolic ammoniac contain 58,8 of real acid, hence of all cryftallized falts it contains the greateft proportion of this acid, as Glauber does the leaft.

Nitrated Vol-Alfali.

From 50 grains of cryftallized nitrated vol-alkali, mixed with twice its weight of flacked lime, I obtained, in a pneumatic apparatus, 40 cubic inches of alkaline air, Bar. 30,06 , Therm. 61°, by

[277]

by the fimple heat of a candle; fome water aHfo paffed, which undoubtedly abforbed fome air, a greater heat could not be applied without rifking a decompofition of the alkali itfelf; hence 100 grains of this falt would yield 80 of air, which in thefe circumftances would weigh 14,52 grains. In another experiment I obtained ftill lefs of this air, for 50 grains of this falt afforded only 34,962 cubic inches, the barometer indeed ftood higher, namely at 30,26 , and the thermometer only at 58 .

Finding this method inadequate to the difcovery of the exact quantity of vol-alkali in this falt, I tried the effect of fpontaneous evaporation on a misture of this falt with lime and water, but foon found the quantity evaporated fo great that it was very evident it did not proceed from the mere volatilization of the alkaline part, but in a great meafure from that of the water alfo, hence I was obliged to content myfelf with detecting the proportion of the acid part.

For this purpofe I made a folution of 400 grains cryflallized nitrous ammoniac, and to this added a fmall proportion of a folution of tartarin flightly aerated; as the point of faturation could not be afcertained by any teft, I added but little of the tartarin, and fet the liquor to evaporate in a very gentle heat. The next day I found fome cryftals of nitre, which I carefully picked out, wafhed and dried, then added more tartarin to the mother liquor, fet it to evaporate and cryftallize as before. Thus I proceeded for feveral.

$\left[\begin{array}{lll}278 &]\end{array}\right.$

feveral days and at laft obtained 412 grains cryfallized, well dried nitre. Now 412 grains nitre contain, by my account, 181,28 grains real nitrous acid, this quantity therefore exifted in 400 grains of the nitrous ammoniac, confequently 100 grains of this falt fhould contain 45,3 of real nitrous acid.

There are however ftrong reafons to think that this falt contains much larger proportion of acid; for in the firf place the falt volatilizes without decompofition with the water that holds it in folution, as Berthollet obferved in an experiment I fhall prefently relate, and confequently it is reafonable to fuppofe that fome efcaped this way in my experiment, and moreover nitre is itfelf in fome meafure volatile during the evaporation of its folution, and laftly, both Wenzel, Cornette and myfelf found a larger proportion of acid taken up by vol-alkali during the combination of both.

Is my laft paper I ftated the proportion of ingredients in nitrous ammoniac at 24 vol-alkali 78,75 ftandard, which quantity is equivalent to 57,8 grains real acid, but noticed that there was' an excefs of acid. At prefent all due corrections made from this experiment, I infer that 100 grains cryftallized nitrous ammoniac contain 57 nitrous acid, 23 of vol-alkali and 20 of water.

Hence 100 grains vol-alkali take up 247,82 of nitrous acid, and thould afford 435 of cryftallized nitrated vol-alkali, if there were no lofs in evaporation or no decompofition.

[279]

Avd 100 grains nitrous acid fhould take up 40,35 of vol-alkali, and afford 175,44 of ammoniac, if no lofs \&c.

As experiment of my own, related in my laft paper, feems to contradict thefe refults, for I there ftated that 200 grains aerated vol-alkali, which contained 50 per cent. of fixed air, and confequently the whole, 46 of vol-alkali, having been faturated with nitrous acid, to have afforded 296 of nitrated ammoniac, whereas by calculating from the above ftatements they fhould afford but 200: but the reafon is, that the mafs of falt then procured was not wholly cryftallized, but contained much of the mother liquor and an excefs of acid which increafed its weight. The only object I had then in view was to fhew that the weight obtained was lefs than could be expected from the theory I had then formed; for this purpofe it was not neceflary to pufh the deficcation very. far-a decompofition alfo took place as will prefently be feen.

According to Wenzel 240 grains of dry uncryftallized nitrated vol-alkali contain 155,9 of his ftrongeft acid, 77,5 mere volalkali and 6,6 water: then 100 grains of this falt fhould contain 64,95 acid, 32,29 vol-alkali, and 2,76 water. 123 grains of his aerated vol-allali which contained 53,75 of fixed air, being faturated with nitrous acid, afforded him in one experiment 127 of nitrated vol-alkali, and in another 123; by my calculation, this quantity of vol-alkali fhould afford ' 32,6 of the cryffallized. falt.

Cornette:

[280]

Cornette faturated 2304 grains of nitrous acid whofe fp . grav. was to that of water as 10 to 8 , that is, $\mathrm{s}, 250$ (he does not mention the temperature) with it52 of an aerated vol-alkali extracted from fal ammoniac by a fixed alkali (he does not tell how much air it contained), and evaporating to drynefs obtained 1476 of uncryftallized nitrated vol-alkali, Mem. Par. 1783 , p. 74 .

If the f p. grav. of the acid were taken at 60° it would contain by my table 31,62 per cent. real acid, but if at 10° of Reuamur, as is ufual in France, it would contain 32 per cent. the concrete alkali being extracted by a fixed alkali which yields moft, cannot be fuppofed to contain lefo than 52 per cent. of fixed air, and confequently 24 per cent. of mere vol-akali, then 2304 grains of his acid contained 737,28 real nitrous acid, and 1152 of the aerated volalkali contained 281,48 of mere vol-alkali; and if 737,28 real nitrous acid take up 281,48 of mere vol-alkali, 100 grains of the acid fhould take up 39,2 nearly of vol-alkali which approaches nearly to my conclufion.

But as to the quantities of nitrated vol-alkali the difference is far greater; for if 737,28 grains of real acid faturated with vol-alkali afford 1.76 of nitrated vol-alkali, 100 grains of this acid thould afford 200 of this falt; whereas by my computation it fhould afford but IT5,44.

These difcordant refults evidently fhew that a decompofition takes place in evaporating this falt in a heat even of 80°; the hydrogen

$$
\left[\begin{array}{ll}
28 \mathrm{r}
\end{array}\right]
$$

drogen of the vol-alkali partially decompores the nitrous acid, and converts it either into nitrous air, which by contact with the atmofphere reforms nitrous acid, is reabforbed, and attracting more moifture forms the excefs of acid and increafe of weight which is fometimes found; or the acid is fo far decompofed as to become rudimental nitrous air, which is the fubftance Dr. Priefly calls depblogificated nitrous air, which refufing all combination, flies off and occafions a lofs of weight; fometimes both changes take place.

Berthollet * diftilled 1152 grains of dry nitrated vol-alkali in a hydro-pneumatic apparatus, confifting of a retort, two enfiladed receivers, and a jar to receive air, 1080 grains paffed out of the retort into the receiver, confequently 72 grains only remained in the retort.

The enfiladed receivers contained 619 grains of a liquor highly acid, and much rudimental nitrous air (what Dr. Priefly calls dephlogifticated nitrous air) was produced, the weight of this or other air and water, produced and loft, confequently amounted to 46 I grains, for $1080-619=461$.

To difcover the contents of the 619 grains of acid liquor he diftilled it in a water bath, there remained in the retort 320 grains

[^12]
[282]

of ammoniac, which had not been decompofed by the ift diftiliation, but had paffed with the water into the enfiladed receivers, which proves that much of this falt is volatilized during the evaporation of its folution.

By this 2d diffillation an acid liquor paffed into the receiver, its. weight muft have been $619-320=299$ grains, thefe 299 grains he faturated with tartarin, the addition of which produced no fmell of vol-alkali, confequently no undecompofed vol-alkali remained. He then difilled off the water and found it perfectly pure, there remained in the retort 54 grains of nitre, whence, depending on Bergman's calculation, he fuppofes the 299 grains of the acid "liquor to have contained 18 grains of real nitrous acid, and that the remainder, viz. 28 I grains muft have been water formed; hence he concludes, Ift, that 760 grains of nitrated ammoniac were decompofed, for $72+320=392$ efcaped during decompofition, and thefe being fubftracted from 1152 , leave 760 . 2dly, That from this decompofition 28 I grs. of water had been produced, and even more, for fome was loft, p. 318. All thefe changes were effected by the Ift diftillation.

I Shall now examine this curious experiment on the grounds of the foregoing theory.

[283]

iA, 760 grains of nitrated vol-alkali contain, by my account, 57 per cent. nitrous acid, 23 per cent. vol-alkali, and 20 per cent. water.
Confequently of acid
vol-alkali

water \quad| 433,2 |
| :--- |
| 174,8 |
| 152,00 |

Again, 54 grains nitre contain, by my account, 23,76 real acid, and thefe, fubftracted from 433,2 , leave 409,24 to form water and the rudimental nitrous air.

Hence $760-23,76=736,24$ grains form the quantity to be accounted for; we muft alfo affign the reafon why rudimental nitrous air, and not mere nitrous air, was left.

2dly, Of the 281 grains of water, found by Berthollet, 152 pre-exifted by my theory, confequently the formation of 129 , and of the additional quantity loft, muft be accounted for. To effect this we are to obferve,
$3^{\mathrm{d} l y}$, That according to Berthollet's analyfis 100 grains vol-alkali confift of 19,34 of hydrogen, and 80,66 of mephite, confequently that 178,4 grains of vol-alkali contain 33,8 of hydrogen.

4thly, 100 grains water, by the moft exact experiment, require for their compofition ${ }^{1} 4,338$ grains of hydrogen, confequently 129 grains of water require i8,497 of hydrogen, 9 Ann.

$\left[\begin{array}{lll} & 284\end{array}\right]$

Chy. p 45 ; confequently 129 grains water require 18,497 of hydrogen, confequently there remained 15,3 grains of hydrogen for the formation of about 100 grains more of water, which were loft.

5th. Lavosier affigns to 100 grains of fully oxyginated nitrous acid about 64 of nitrous air and 36 of acidifying oxygen; but in its common flate of oxygination we may affign it 25 only of fuperadded oxygen; and confequently 100 grains of the common acid contain 75 of nitrous air and 25 of acidifying oxygen. Nitrous air itfelf contains about $\frac{2}{3}$ of its weight of oxygen, and $\frac{2}{3}$ mephite. I Lav. Elem. 235, and Mem. Par. 178 1.

Now 100 grains water require for their formation 85,662 of oxygen, therefore 229 grains of water would require 196,16 ; but 409 grains nitrous acid, fuppofing it even fully oxyginated, contain no more than $4_{4}, 24$ of acidifying oxygen, therefore the remainder $v . z$. 48,92 muft have been extracted from the nitrous air, and much more, if we fuppofe the nitrous acid to contain but 25 per cent. of acidifying oxygen; for then the nitrous acid would fupply but 102,25 and confequently 93,9r fhould be taken from the nitrous air.

Now, according to the experiments of Dr. Prieftly and Dieman, if much oxygen be fubftracted from nitrous air it will be converted into rudimental nitrous air; thus this converfion, and the quantity of water found, are adequately accounted for on the theory above laid down.

$$
[: 285]
$$

The account of the refults of this operation may be rendered ftill clearer by the following table.

1080 grains paffed into the receivers at the firf diftillation, namely,
Grs.

undecompofed ammoniac	-	320,
undecompofed nitrous acid	-	23,76
water of compofition	-	152,
water produced -	229,	
mephite of the vol-alkali -	$-\quad 141$,	

Of 409 nitrous acid, 7 from which its acidifying oxygen, namely, 102,25 grains, were extracted, there remained 306,95 grains of nitrous air; and of this, after the extraction of 93,9 1 of oxygen, there remained 212,84 of rudimental nitrous air.

Remarks

[286]

Remarks on Mr. Ricbter's Calculation of the Rroportion of Ingredients in Neutral Salts.

Since the publication of my laft paper Mr. Richter, an able German Mathematician and natural philofopher, has publifhed an elaborate treatife on the fame fubject, in which infinite labour and great mathematical ingenuity is difplayed; his conclufions, however, difier confiderably from tnine; leaft this difference among fo many experiments fhould fuggeif a doubt concersing the determinations I have endeavoured to effablifh, I feel myfeli oblized to inveftigate the fource of this difference, and to fhew the inaccuracy of feveral of his fundamental induations.

Section $1 / 2$.

Stochyometry, 2 Theile.
By his firft experiment, the foundation of feveral of his fubfequent conclufions, he endeavours to difcover the real quantity of calcareous earth in chalk, he found 2400 grains of chalk expofed in an earthen veffel to the greateft heat of a wind furnace (how long?) to weigh, when cool, only 1342 grains, therefore 1000 grains of this chalk would weigh 559 grains, and this without firther proof he talkes to be the true quantity of lime contained in it.

[287]

On this experiment I remark, that it does not clearly appear that the chalk was thoroughly calcined, but on the contrary there is great reafon to think it was not, becaufe chalk has never been known to contain fo large a proportion of lime as $\frac{559}{\frac{5}{0} \%}$, it is true, he fays, it did not effervefce with acids, but furely it heated and bubbled, and fuch bubbles are not diftinguifhable from real effervefcence, where the quantity of fixed air is fmall, but by weighing before and after the addition of an acid, which he does not fay he had done.

Dr. Beack found it impoffible to calcine any confiderable quantity of lime in an earthen crucible, but was obliged to ufe one of black-lead to avoid vitrifaction, 2 Ed. Eflays, 2r9. Smith found the fame difficulty to effect the entire expulfion of fixed air, Differt. de Aere fixo, p. 40, 43. Chalk in general contains no more than 49 or 5° per cent. of fixed air, and the chalk he ufed, if it was purified, as he mentions in the $2 d$ fection, muft have contained abundance of moifture; it commonly contains but 41 per cent. of fixed air, and the proportion of earth in fuch care is only 50 per cent. or $\frac{50 \%}{10 \%}$, therefore $\frac{59}{10} 0$ grains of fixed air remained unexpelled.

Section 3d.

5760 grains of fp. of falt were faturated with 2393 of the aforementioned chalk, and the whole being evaporated to dryners and heated

[288]

heated to thin fufion, weighed 2544 grains, now at the rate he had before laid down, the 2393 grains of chalk contained 1337 of lime, and deducting this from the falited mafs, he concludes the remainder, viz. 1207 to have been mere, or what I call real marine acid ${ }^{*}$. There the error committed in ftating the quantity of lime is important, as from this the proportion of real acid in the fp . of falt is deduced, and applied in calculating its proportion in other muriatic falts. If the chalk contained 50 per cent. of lime, as I ftate it, then 2393 grains of it contained 1196 of lime, and deducting this from the 2544 of falited lime, the remainder, viz. 1348 is the quantity of real muriatic acid contained in that mafs, and confequently that which is contained in 5760 grains of his fp . of falt, and 1000 grains of it contained 234,03 nearly, inftead of 209 , as he flates it.

Sefiion 33d.

I pass to this fection, as it is here that the defect of his determination will more clearly appear. In this he tells us, that he faturated 1760 grains of a folution of mild vegetable alkali with 2740 grains of the above mentioned f . of falt, evaporated and fufed the neutral falt thus formed, and found it to weigh 1856 grains, whence, as by his fatement, 2740 grains of that $\mathfrak{f p}$. of falt contained

[^13]
$\left[\begin{array}{ll}289\end{array}\right]$

tained 573 of real acid, and this quantity entered into the 1856 grains of neutral falt, it follows that by fubftracting 573 from 1856 the remainder will exhibit the weight of the alkali, namely, 1283 grains.

It muft be allowed that this is a very indirect and improper method of difcovering the real quantity of mild alkali in the alkaline folution, for it comes loaded with the inaccuracies attending the two previous determinations, that of the real quantity of lime, from which that of the marine acid is inferred, and that of the marine acid, from which this laft determination is deduced; befides, if any muriated tartarin exifted in the alkaline folution, as it often does, it would efcape this method and could not be detected.

But a more apparent objection lies to it; if 1586 grains of muriated tartarin contain only 573 of real acid, then 100 grains of this falt would contain only 30,86 ; now if any thing be well proved in my effay, it is affuredly the affertion, that 100 grains of this falt contain nearly 36 of real acid, being confirmed by the experiments on falited filver, and the decompofition of common falt, therefore Richter's determination is erroneous, by allowing to this falt too fmall a proportion of acid.

Bur if we determine the quantity of alkali in the 5760 grains of alkaline folution by the quantity of real marine acid it was able Vol. VII.

[$\left.29^{\circ}\right]$

to faturate, calculated as I mentioned in the above experiment on lime, it will be found very exactly; for there I fated that 5760 grains of his fp . of falt contained 1348 of real acid, and confequently 2740 contained 641,25 . Now as 3^{6} of acid take up 64 of vegetable alkali, 641,25 take up 1140 of that alkali, and the fum of both $v . z .178 \mathrm{~s}$, will be the quantity of muriated tartarin thus formed. It is true he found its weight to be 1856 grains, that is 75 grains more than by my calculation, but this excefs moft probably was caufed by the muriated tartarin previoully exifting in his alkaline folution. His mode of obtaining what he calls a pure alkaline folution renders this highly probable.

To obtain a pure alkali (\$33) he fimply pours cold water on common pot-afh, and leaves them together, frequently agitating them for 24 hours; the folution thus obtained he evaporates to drynefs, and then again treats the faline mafs with cold water, but with a quantity of it too fmall to re-diffolve the whole; fuch was the alkaline folution he employed. Now though much of the neutral falts contained in pot-afh may thus remain undiffolved, yet fome certainly will be taken up, and among the reft muriated tartarin, which is frequently found in vegetable afhes * and does not require above three times its weight of water to diffolve it. 'To this, then, the excefs of 75 grains may well be afrribed.

The juftnefs of this conclufion is ftill further confirmed by examining his experiment on vitriolated tartarin. He faturated another

[^14]
[291]

ther pound of the alkaline folution with 3647 grains of dilute vitriolic facid, and after evaporation and ignition found the falt to weigh 2090 grains, and as he thinks he has proved the quantity of alkali in 5760 grains of the alkaline folution to be 1283 grains, hence he concludes the quantity of acid in the 2090 grains to be $2090-1283=807$ grains; if fo, vitriolated tartarin hould contain but 38,6 grains per cent. of acid, whereas it has been proved to contain much more-_But allowing the quantity of alkali in the pound of alkaline folution to be, as I ftated it, II 40 grains, then as 55 parts alkali take up 45 of real vitriolic acid, II40 will take up 933 of this acid, and the fum of both will be 2073, which differs from 2090 only by 17 grains, owing probably to the muriated tartarin contained in his alkaline folution, which may even have been decompofed by the vitriolic acid. He determined, it is true, the quantity of vitriolic acid by another operation, $\oint 18$, but here a material and evident error occurs, as I fhall prefently fhew:
rft, To 8460 grains of vitriolic acid, whofe fp. grav. was 1,8553 , he added 19200 of water, or, which is the fame thing, to 84,6 of the concestrated acid he added 592 of water, and found the fp. grav. of the mixture 1,214 .

2dly, He faturated 9075 grains of this dilute acid with 3215 grains of the chalk above-mentioned, and as by his account 1000 parts of that chalk contained 559 of lime, he concluded that

[292]

3215 grains of it contained 1596 of lime. Then having heated the felenite thus formed to a degree fufficient to convert lime-ftone into lime, he found it to weigh 3600 grains, and deducting from this weight that of the lime, he found the remainder, v. \approx 2004 grains to be the weight of the vitriolic acid which was contained in 9075 grains of the dilute acid liquor, and confequently that the 3647 grains of it which he had employed in faturating the alkali in the former experiment contained 806 grains.

Here, not to repeat with refpect to the chalk what I have already fuggefted, I fhall confine myfelf to a fingle error, becaufe it is manifeft :

As roco parts chalk (he fays) contain 559 of lime, 3215 grains of it fhould contain 1596 , whereas by the rule of proportion it fhould be 1797,185 ; then deducting 1797 from 3600, the remainder, $v . \approx .1803$, and not 2004, fhould be the weight of the acid part of the felenite; and 3647 grains of the dilute acid employed in faturating the alkali fhould contain, by his own account, 722 , and not 806 grains. It would ill become me to reproach Mr. Richter with this overfight, as many of fuch have often efcaped my notice in my own calculations, and occafioned me infinite labour in rectifying their numerous fpurious confequences.

[293]

T A B L E II.

Quantity of Real Acid taken up by mere Alkalis and Earths.

100 Parts.		Vitriolic.	Nitrous.	Marine.	Fixed Air.
Tartarin	-	82,48	84,96	56,3	105 almoft
Soda	-	127,68	135,7 1	73,4I	66,8
Vol-alkali	-	383,8	247,82	171	Variable
Barytes	-	50	56	\% 1,8	282
Stronthian		72,41	85,56	46	43,2
Lime	-	143	179,5	84,488	81,8I
Magnefia		172,64	210	111,35	200 Fourcroy
Argill	-	150,9			335 nearly Berg.

[294].
TA B LE III.
Of the Quantity of Alkalis and Earths taken up by 100 Parts of Real Vitriolic, Nitrous, Muriatic and Carbonic Acids, faturated.

TABLE IV.
Quantity of Neutral Salts afforded by 100 Parts of the above-named Acids when faturated with the above-named Bales.

the Marine, or Carbonic Acid.
\oplus
A
T

Of the Proportion of Ingredients in the following Saline Compounds:

[305]

ESSAY on HUMAN LIBERTY. By RICHARD KIRWAN, E/q. L. L.D. F.R.S. and M. R.I.A.

1. POWER denotes the principle of action. Action denotes $\begin{aligned} & \text { Read July } \\ & 28 \mathrm{ch} 1798 .\end{aligned}$ the exercife of power.
2. Neceffity denotes the conceived impofibility of the non-exiftence of any thing.
3. Hence neceffity is of three kinds, metaphyfical, phyfical and moral.

An object is faid to be metaphyfically neceffary when its abfence involves a contradiction; and to be phyfically neceffary when its non-exiftence contradicts the eftablifhed laws of corporeal nature, or when it cannot fail to exift, or cannot exift otherwife than it does, without a miracle.
Vox. VII.
2q
Laftly,

[306]

Laftly, That is faid to be morally neceffary whofe nonexiftence is contrary to the laws by which moral ágents conftantly and univerfally govern their conduct. On the other hand we call that future object certain, which will not fail to come to pafs.
4. Hence certainty differs from neceffity in this, that what is neceffary cannot, and what is certain roill not, fail to happen. What is neccflary is certain, but not vice verfa.
5. A power is faid to be free when its exercife in every fenfe is morally poflible.
6. Will or the power or faculty of weilling is faid to be free, when it may act or not ach, or elect, without the conftraint of moral neceflity; for no other can be applied to the will. The application of this definition requires fome farther obfervations.
7. Ift, We muft obferve, that the will can form no volition, but with a view of obtaining fome good either real or apparent. For all rational agents neceffarily covet happinefs, and efteem that to be good which promotes or conflitutes any degree of happinefs, and confequently purfue it, with an ardour proportioned to the degree it expofes to their view. A volition like every action requires a fufficient reafon for its exiftence, and in this cafe

$\left[\begin{array}{lll} & 307\end{array}\right]$

cafe none can be adduced but the attainment of fome degree of happinefs. The good or advantage thus held forth to the mind is called the motive or final caufe of its action. But the efficient caufe of the volition is the mind itfelf; the term motive is in fome degree improper as it conveys the idea of activity, whereas it is in reality paffive, being the term towards which the mind moves, or from which it recedes.
8. 2 d , As the will can never act without a motive, the connexion between a volition and fome motive is metaphyfically neceffary, it being grounded on the very nature of the mind, or of an intelligent agent, which cannot act but with a view of obtaining happinefs. But with refpect to particular motives the following diftinctions are to be obferved :
9. IF the good prefented to the mind be apparently infinite, its connexion with a correfpondent volition is then morally neceflary, but if the good prefented be finite, the connexion mult be weaker; but fill, as it is no lefs real fince it exifts, it is certain.

Note-Certainty is an ambiguous term, as it fometimes denotes the reality of an object, fometimes the foundation or caufe of that reality, and fometimes the firm perfuafion of the mind of the reality of an object. Here it is employed in the firft fenfe, and fometimes in the fecond, but never in the laft. In

$\left[\begin{array}{lll} & 308\end{array}\right]$

the firft fenfe it is oppofed to unreality, or non-exiffence, in the third, it is oppofed to uncertainty or mere probability.
10. Necessity and contingency are oppofed to each other, as cortingency denotes the mere poffible exiftence or nonexifterice of an object in any future time, but the oppofite of certainty is unreality.
if. Hence we may obferve a gradation in the frength of the tendency of the mind towards the motives tilat are prefented to it from that which is infinitely ftrong, and thervfore produces a moral neceffity, to that which is indefinitely weak, but whofe connexion with volition is neverthelef; certain. To attribute a purfuit equally flrong to motives of apparently unequal appetibility is evidently abfurd, yet this the neceffitarians are forced to maintain, as neceffity admits of no degrees. The ftrength or force of motives, or more properly fpeaking their appetibility, evidently refults from the degree of apparent good which they prefent.
12. But it may be replied that neither can reality admit of different degrees, nor confequently can certainty. This is true with refpect to the firft fenfe, but not with refpect to the fecond fenfe of that word. For the foundation of certainty is fo much the fironger as it approaches more to neceffity.

$\left[\begin{array}{ll}309\end{array}\right]$

13. If ends or motives, apparently equally defirable, but fuggefting different or oppofite volitions, be prefented to the mind, and if both prefent a greater good than that refulting from remaining in its actual ftate by embracing neither, in that cafe the mind may tend to either, that is, may form a volition to obtain the good prefented by either. For though there is no reafon for preferring either, yet the good prefented by each is a fufficient reafon for purfuing that prefented by any of them, and the impoffibility of purfuing both is a fufficient reafon for purfuing one of them. Yet probably fome extrinfic reafon generally fuggefts the choice, fuch as that one of them was firlt thought of, or laft thought of, \&c.
14. If motives, apparently unequally defirable, be prefented to the mind, then if the inequality be infnite the mind will neceffarily purfue the moft defirable for the reafons already given.
${ }^{15}$. If the inequality be finite, it frequently happens that by confidering them in different points of view their appetibility may be inverted, the mof defirable being in fome refpects the leaft fo, and the leaft defirable appearing in fome lights the moft fo. Hence the mind is free to purfue either from the intrinfic good each holds to its view.

[310]

16. This inverfion becomes fo much the eafier as the inequality betwist the propofed motives is apparently fmaller, and fo much the more difficult as the apparent inequality is greater. And hence we perceive the benefit of inftruction, as by its means the apparent inequality approaches indefinitely to the real.
17. Motives are prefented to the mind either by fenfation, imagination, pafion, fenfe of duty, fear of remorfe, or moral inftincts. In general thofe prefented by the three firft modes of perception are moft purfued, becaufe in receiving them the mind is entirely paffive, and their rejection is attended with a greater or leffer degree of pain; whereas the comprehenfion of the latter, in their full fuaforial view, requires attention and felf command, which are oppofed by the natural indolence of the mind, though the importance of the determination to be taken ftrongly indicate the propriety of applying them, and though the underfanding pronounce the purfuit of the object they fuggeft to be in fome refpects the greater good. Hence the faying of Medea, Video meliora, \&c.
18. The difficulties in which this fubject has hitherto been involved have arifen in great meafure from the improper expreffions ufed in treating it, moft of which are in their literal fenfe applicable only to corporeal nature which is paflive, and therefore fuggeft falfe conceptions when applied to mind, which is ef-
fentially

[311]

fentially active. Thus motives feem to imply fomething active, whereas they are in reality paffive, being the ends which the mind purfues or may purfue. They are faid to impel the mind to action, which again falfely denotes activity, whereas the mind naturally purfues them in proportion to the apparent good they prefent. Thus alfo force and frength are improperly applied to them.

I shall now proceed to obviate the objections to human liberty advanced by Dr. Prieftley, who of all others has ftated them with moft clearnefs and precifion, occafionally noticing any thing farther relevant to the fubject that has been advanced by other writers.

The Doctor, in p. 7 of his Illuftrations of Philofophical Neceffity, tells us, " that the liberty he denies to man is that of do"ing feveral things, when all the previous circumftances (in" cluding the \neq ate of bis mind and his views of things) are precife" ly the fame; and afferts, that in the fame precife ftate of mind, " and with the fame views of things, he would always voluntari" ly make the fame choice and come to the fame determina"tion."

By views of things the Doctor evidently means motives, and confequently in fome cafes, namely, thofe mentioned in Nos. 9

$\left[\begin{array}{ll}352\end{array}\right]$

and 14, his affertion is perfectly juft, the motive being there fuppofed to be infinitely defireable, but in moft cafes, as thofe mentioned in Nos. I 3 and I5, it may be true, and it may alfo be falfe; for as in thofe cafes the reafons for oppofite determinations are apparently equal, the mind may at one time form one choice and at another time another, or it may always form the fame, or each time a different.

The Doctor alfo fays, "he allows to man the liberty of doing " whatever he pleafes," but the liberty here meant is not the liberty of performing any external action, but the liberty of willing or chufing.

Mr. Locke feems to think that the will cannot properly be faid to be free, becaufe liberty (he fays) " is but a power belong" ing to agents, and cannot be an attribute or modification of "will which is alfo a power;" but liberty is not mercly a power but a fpecies of power, as power may be exerted either neceffarily or freely.

To eftablifh his conclufion, Dr. Prieftley lays down fome obfervations relative to caufe and effect. which being folely applicable to corporeal nature, I omit. He then tells us, p. I3, "that a "particular determination of the mind could not be otherwife " than it was, if the laws of nature be fuch as that the fame de" termination

[313]

" termination fhall conftantly follow the fame fate of mind and " the fame view of things, and it could not be poffible for the " fame determination to have been otherwife than it bas been, is, " or is to be, unlefs the laws of nature had been fuch, as that " though both the ftate of the mind and the views of things were " the fame, the determination might or might not have taken "place. But in this cafe the determination muft have been an "effect without a caufe, becaufe in this cafe, as in that of a " balance, there would have been a change of fituation without " any previous change of circumftances, and there cannot be any " other definition of an effect without a caufe."

To this reafoning I reply, that the laws of nature, with refpect to intellectual agents, are fuch, that though the fate of mind and the views of things be exactly the fame, one and the fame determination might not have taken place in the cafes mentioned Nos. I_{3} and I_{5}, and yet whether the fame or a different determination take place it will not be an effect without a caufe; for as in thofe cafes different motives or final caufes, equally attractive, are fuppofed to occur, which ever of them the mind purfues, its determination will not want a final caufe. The comparifon of a balance, which will remain in æquilibrio when the fcales are loaded with equal weights, is inapplicable, as the balance does not act, but is acted upon, whereas the mind is evidently poffeffed of an active power of purfuing a propofed end.

Vol. VII.
R r
The

$\left[\begin{array}{ll}314\end{array}\right]$

The Doctor further adds, in his reply to Mr. Palmer, p. 7. " that certainty or univerfality is the only poffible ground of " concluding that there is a neceffity in any cafe whatever," which is true as far as refpects corporeal nature; but with refpect to intelligent beings the perceived connexion betwixt their actions and a fupreme degree of apprehended happinefs is the true ground of the neceffity of their volitions when they are neceffary, as fhewn Nos. 9 and 14, which indeed may be indicated by conftancy and univerfality; and where this ground does not exift, certainty (with refpect to our knowledge) cannot be obtained.

The next argument in proof of the neceffity of human actions is derived from divine prefcience. Dr. Priefley ftates it thus: "As it is not in the compafs of power in the author of any " fyftem, that an event fhould take place without a caufe, or " that it hhould be equally poffible for two events to follow the " fame circumftances, fo neither, fuppofing this to be poffible, "would it be within the compafs of knowledge to forefee " fuch a contingent event; for as nothing can be known to "exif, but what does exift, fo certainly nothing can be known "to aije from zobat does exift, but what does arife from it, or " depend upon it; but according to the definition of the terms, " a contingent event does not depend upon any previous known "circumfances, fince fome other event might have arifen in the "fame

$\left[\begin{array}{lll}3 & 3\end{array}\right]$

" fame circumftances. All that is in the compafs of knowledge " in this cafe is, to forefee all the different events that might " take place in the fame circumftinces, but which of them will " actually take place cannot poffibly be known." P. 19.

IN anfwer to this argument we muft obferve, that not only the immenfely complicated feries and concatenation of events which we denominate the actual fyltem of the world, was originally barely poffible, but alfo an infinite number of other fyftems differently arranged and equally complicated. In fome of thefe the contingent act appeared linked with one of the motives with which, in the fame circumftances, it might poffibly be connected, and in another fyftem a very different event might arife from the equally poffible connexion with the oppofite motive, as in the cafes Nos. 13 and ${ }_{5}$. Each of thefe events would give room to a totally different feries of fubfequent events, for the greateft and moft important arife from others feemingly the leaft important. Among thefe different fyftems God has chofen the beft, or at leaft one of the beft, and upon this choice his fore knowledge of that determinate contingent object which is to happen, to which the Doctor alludes, and where apparently unequal motives do not determine it, is grounded.

To this argument Mr. Crombie, in his Treatife on Philofophic Necefinty, p. 73. farther adds, that fince the Deity forefees future events they muft neceffarily take place. But as knowledge of

$\left[\begin{array}{lll} & 3 \times 6\end{array}\right]$

any kind is perfectly extrinfic to the events known, and exerts no fort of influence over them, all that can juftly be inferred from the infallibility of divine prefcience is, that the event forefeen will certainly and infallibly, but not neceffarily happen; for to fecure the infallibility of divine fore-knowledge, the future exiftence of the event forefeen, and not the impoffibility whether phyfical or moral of its non-exiftence, or in other words its certainty, but not its impoffibility, muft be fuppofed.

All the objections hitherto made to human liberty feem to me reducible to thofe I have here noticed. It is needlefs to adduce any argument in proof of it, as the confcioufnefs of our being ourfelves the active principle from which our determinations originate, and the remorfe incident to the abufe of this felf-determining power imprefs the fulleft conviction of this important truth.

I 798.

Synoptical View of the State of the Weather in the Year 1798.

By RICHARD KIR WAN, E/g. L.L.D.F.R.S. and M.R.I.A.

3998.	BAROMETER.					THERMOMETER.			R A I N.		STORMS.
	Highett.	Day it happened.	Lowelt.	Day it happened.	Mean of the Month.	Hirhef in the Diy.	Loweft at Night.	Mean of the Month.	Days.	Inches.	
$\mathrm{fanu}^{\text {a }}$	30,62	Sth, E. by S.	20,00	18th, W. \& N. by W	30,038	51,50	28,50	40.85	18, on 2 of which fell Snow	2,52222	5, N. to W. \& S.to W.
Fetruars	30,98	7th, N. greas * Fog	29,27	$22 \mathrm{~d}, \mathrm{NW}$.	30,194	$5_{5}{ }^{6}$	259	41,03	12, on 6 of wlich fell Snow and Hal	1,57639	5, SW. to W. 2 NW.
Masch	30,46	24th, E.	29.46	17th, Var. W. to N.	30,124	57,	29,	43,11		1,33993	
Arril	30.48	2sth, E.	25,80	4th, S, \& SE.	30,29.)	65,50	32.	30.4	1, on 2 w wank tric Hul	1,655:3	t, S. to SE.
May	30,63	21tt, S. tosw	29.25	${ }^{\text {t }}$ + th, S. S S S. by E.	30,175	73.	41.	- + +	:1, on 3 of which fell $\mathrm{Hal}_{\text {a }}$	0,486047	
June	30,65	Sth, E. er X F	- $4 .-5$		37.2า.6	8 t ,	44.	\%,	12	0,577496	
July	30,47	$220^{+3,} \mathrm{~W}$.	$=0,5$	20th, We the is F		73.	4*,	- -	29, on 2 of whenh Hail	$\therefore 310+14$	t, W. to W. by N.
Auguft	30,63	27.th, W. and NW.	29,94	oth, W. \& NW,	;-	t.4.,	+ + : ${ }^{\text {a }}$	く,'	${ }^{17}$	$2.5-1 .{ }^{-r}$	1, W. to NW.
September	30.31	18th, SW.	$29.30 \quad 1$	12th, W, to N.	29\%...	' ${ }^{\text {, }}$; .,	$35: 2$	17	C+, - , 1^{-}	t, S.to W.
Oftober .	:5.0	ad and 3d, W. to E.	24, 22	30th, N. 10 E	$2 \cdots \ldots$	C2, 4^{14}		$4^{2}+1$	19		3, S. SW. \& W.
Norember -	30.47	itath, W:	28,42	8ith, wr	$\pm \mu^{*}$,	5	二	, 5 ,	- I, on t of which fill Snow	2,897502	8, S. SW. W. \& NW.
December -	30,66	24th, joth, and 3 , ft E .	- 1.13	1^, SW.	3 . ${ }^{\text {i }}$ +	;2.	,	\cdots	\therefore un 3 of whin tell Snow	1.471290	2, SW ${ }^{\text {che }}$, E .
Mian of the Yeur	3, 5		$\therefore \quad: 3$	-	$\because \because \cdot \rightarrow$			$1+12$	191, of 12 of whath fell Snow		27 Total in the Year

$\left[\begin{array}{ll}317\end{array}\right]$

An ABSTRACT of OBSERVATIONS of the WEATHER of 1798, made by HENRY EDGEWORTH, Efq. at Edgerworthfown in the County of Long ford in Ireland.

	BAROMETER.			THERMOMETER.			RAIN.	
	Highef.	Loweft.	Mean.	Highert.	Loweft.	Mean.	Days.	Inches,
January	29-98	28.24	29-58	49	30	39	14	5-80.
February	3-25	28.75	29-49	49	25	38	10	1-91
March	29-83	29-26	29-54	54	31	42	7	1.27
April	29.70	28-10	29.50	64	38	. 50	8	2.80
May	2993	28.61	29-70	72	46	50	6	0.99
June	30-06	29.10	2953	7^{6}	51	60	11	$2 \cdot 40$
July	29.76	28-72	29.34	69	50	58	23	6-37
Augut	2996	29.17	29-62	73	51	61	9	2-27
September	29-70	2860	29-48	70	42	50	$1!$	2.67
October	29-90	28.55	29-42	62	32	46	11	3.63
November -	29.92	28-25	39.46	55	26	39	13	$3 \cdot 62$
December -	3000	28.73	29-44	49	18	38	9	1-83
Mean of the Year -	30.25	28-10	29-50	76	18	48	$\begin{aligned} & \text { Total } \\ & 132 \end{aligned}$	$\begin{aligned} & \text { Total } \\ & 35.56 \end{aligned}$
Vol. V	II.			Rr3				Ans:

An Absralt of the Quantity of Wind in $1796,179 \%, 1798$.

$\left[\begin{array}{ll}310\end{array}\right]$

> Of the Inftruments that are ufed at Edgervortbfown for keeping. Diaries of the Weatber.

The barometer is placed in the corner of a drawing-room, the windows of which have a fouth and eaft afpect. The floor of the room is about three feet above the furface of the. earth.

The thermometer is hung at the outfide of a NW. by \mathbf{N}. window, about twenty feet from the furface of the earth.

The rain-gage is a funnel one foot fquare at the bafe, with a: lip of an inch and a half deep.

$$
\bullet
$$

$$
\cdot
$$

-

[32 F]

A METHOD of expreffing, when poffible, the VALUE of ONE VARIABLE QUANTITY in IN TEGRAL POWERS of ANOTHER and CONSTANT QUANTITIES, baving given EQUATIONS expreffing the RELATION of thofe VARIABLE QUANTITIES. In which is contained the GENERAL DOCTRINE of REVERSION of SERIES, of APPROXIMATING to the ROOTS of EQUATIONS, and of the SOLUTION of FLUXIONAL EqUATIONS by SERIES. By the Rev. J. BRINKLEY, M. A. ANDREUS' Profeflor of Aftronomy, and M.R.I.A.

THE mof general and ufeful problem in analytics is, from a given relation between two variable quantities to exprefs one of

Read Nov. 3. 1798. thofe quantities in terms of the other and conflant quantities. The cafes however in which this can be completely performed are few in comparifon of thofe in which it can be only partially done. Among the partial folutions are thofe by feries not terminating. When fuch feries converge they afford the folution required. Various methods have been given by authors for obtaining thefe feries principally derived from thofe given by Sir I. Newton. Of thefe the method of affuming a feries with coefficients to be deVox. VII. S s
termined

$\left[\begin{array}{ll}322\end{array}\right]$

termined from a comparifon of homologous terms is, perhaps, the beft where it can be practifed; yet the cafes are very numerous where without other affiffance it is difficult and almoft impoffible to practice it with any advantage. A method, therefore, which befides being in all cafes as fimple as any of the others is as general as can be defired, and is often attended with the fuperior advantage of demonftrating the law of the feries, mult be an object for the confideration of mathematicians. Such a method is attempted in the following pages. Its foundation is built upon a theorem firf given by that excellent mathematician Dr. Brooke Taylor. This theorem, given in Cor. 2. Prop. 7. page 23, of his method of Increments, is well known, and is in purport as follows:

If x and z be two variable quantities, the relation of which is given, then while x by flowing uniformly is increafed by \dot{x}, z will be increafed by $\dot{z}+\frac{\ddot{z}}{\text { I. 2. }}+\frac{\stackrel{3}{z}_{\text {I. 2. .3. }}^{-}}{}+8 \mathrm{cc}$. In which the vaIues of $\dot{z}, \ddot{z}, \& x$. are to be determined from the given equation.

IT readily occurs that this theorem contains a method of deriving the values of one quantity by a feries afcending by powcrs of the other: and accordingly fome authors have ufed it in a few fimple cafes, but have not attempted a general ufe. And upon confideration it is obvious that without farther affiftance it cannot

$\left[\begin{array}{ll} & 323\end{array}\right]$

be pracifed in cafes at all complex. For if in an equation expreffing the relation of x and z the fucceffive fluxions be derived one from the other generally and without having regard to particular values of x and z, almoft infuperable trouble would arife except in the moff fimple cafes, and the method be very far inferior to others. This farther affiftance I have endeavoured to give in the following pages, principally by theorems for taking fluxions of different orders per faltum, that is, without finding the fluxions of the inferior orders. There will render the theorem of Taylor of the moft extenfive utility, as will beft be feen by the examples hereafter given.
M. De la Grange is the only author I know of who has attempted to fimplify the computation of $\dot{z}, \ddot{z}, \& \mathrm{c}$. This he has done by a moft elegant theorem for an equation of a particular form (See Coufin's "Afton. Phyfique, Art. 20, p. 15 .") But no ure can be made of this theorem except in equations of that particular form. The theorems for taking fluxions per faltum will enable us to compute the values of $\dot{z}, \ddot{z}, \& c \mathrm{c}$. by fubfituting the values of x and z when they begin to flow, and as in that cafe it ofien happens that the problem is fuch that x and \approx begia from nothing, the conclufions are then derived in the moft fimple manner.

The method of affuming a feries with undetermined coefficients for the quantity to be found, befides the objections in every par-

$\left[\begin{array}{ll}324\end{array}\right]$

ticular cafe to the legality of fuch an affumption not being felfevident, often requires perplexing confiderations to avoid introducing unneccfincy terms. Indeed the greateft difficulty often occurs in that part. In this method no feries is to be affumed. The feries derived follows from the nature of the problem. Oftentimes its law even in very complex cafes can be derived, in which by the method of affuming a feries it would be almoft impoffible to demonftrate it. Thus the truth of the law of the Multinomial Theorem, when the power is negative or fractional, is demonflrated by this method. It was done by De Moivre for integral powers, and I know of no author who has generally demonftrated it for all powers. The examples given to illuftrate -the meihod are moft of them fuch as are well known, and may be compared with the fame as done by other methods. Among them are two feries firft given by Mr. James Gregory (See Comm. Epift.) the inveftigation of the latter of which has been confidered by mathematicians as very difficult.

Demonftration of Dr. Brooke Taylor's Theorem*.
Theo. If z and x be cotemporaneous values of twis quantities any how related, and z and $x=$ flux. of x, cotemporaneous increments, of which x is uniformly generated, then will

$$
z+z=z+\frac{\dot{z}}{1}+\frac{\ddot{z}}{1 \cdot 2}-\frac{\ddot{z}}{1.2 \cdot 3 .}+\quad-\frac{\ddot{m}}{1 \cdot 2 \ldots m}+;
$$

when this fories terminates or converges.
Demonstration.

[^15]
$\left[\begin{array}{lll}325 &]\end{array}\right.$

Demonstration.

Let $\quad x, x+x, x+2 x-\cdots, \dot{x}\}$ be contemporaneous $\left.z, \quad z^{\prime}, \quad z^{\prime \prime}, \quad z^{3}, z^{4} \quad-z+x\right\}$ values of x and z
$\left.\begin{array}{cccccc}\text { Let alfo } a, \quad a^{\prime}, & a^{\prime \prime}, & \begin{array}{l}a_{1}^{\prime} \\ a^{\prime \prime}\end{array} & \& c . \\ b, & b^{\prime}, & b^{\prime \prime}, & \& c .\end{array}\right]$ be differences of the refpec$\left.\begin{array}{ccc}c, & c^{\prime \prime}, & \& c . \\ d, & \& c .\end{array}\right\}$ live orders.

Then by the theorem for differences.
 n is the number of fucceffive values from x to $x+\dot{x}$, or from z to $z+z$. Now if n be increafed fine limite, any affigned number of terms of this quantity approaches to the fame number of terms in the fries,
$z+n a+\frac{n^{2} b}{1.2 .}+\frac{n^{3} c}{\text { I.2.3. }}+, \& \mathrm{c}$. as its limit, or becaufe $n=\frac{\dot{x}}{x}$, to its' equal $x+\frac{a}{x} \dot{x}+\frac{b}{x^{2}} \times \frac{\dot{x}^{2}}{I .2 .}+, \& c$. But when n is fo increafed, the limiting ratio of $a: x$ or the limiting ratio of the increments

[326]

of z and x is the ratio of the fluxions of z and x, and it follows therefore that when n is increafed fine limit, the limiting value of $\frac{a}{x}=\frac{\dot{z}}{\dot{x}}$. Also for the fame reafon $\frac{b}{x}=\frac{\dot{a}}{\dot{x}}, \frac{c}{x}=\frac{\dot{b}}{\dot{x}}$, \&c. Whence the limiting value of $\frac{b}{x_{0}^{2}}=\frac{\dot{a}}{\dot{x} x}=\frac{\ddot{z}}{\dot{x}^{2}}$, because $\frac{\dot{a}}{x}=\frac{\ddot{z}}{\dot{x}}$

$$
\text { of } \frac{c}{x^{5}}=\frac{\dot{b}}{\dot{x} x^{2}}=\frac{\stackrel{3}{z}}{\dot{x^{3}}} \text {, because } \frac{\dot{b}}{x^{2}}=\frac{\stackrel{3}{z}}{\frac{x^{2}}{x^{2}}} \text {, }
$$ \&c. \&c.

Whence the limiting value of $z+n a+\frac{n \cdot \overline{n-1}}{\mathrm{I} \cdot} \frac{2 \cdot}{2 \cdot}+$ $\frac{n \cdot n=1}{1 .} \frac{n-2}{2} c+\& c$. when n is increafed fine limite is $z+$ $\frac{\dot{z}}{1}+\frac{\ddot{z}}{\text { 1.2. }}+, \& \mathrm{c}$. And because when the former feries terminates its value is $z+z:$ and when it converges its limit is alfo $z+z$ $\because z+\underset{0}{ }=z+\frac{\dot{z}}{1}+\frac{\ddot{z}}{1_{0} z_{0}}+$ scr. when the feries terminates or converges. When it does not converge, nothing can be afferted of it, because we cannot reafon concerning a limit which does not exit.

$\left[\begin{array}{ll}327\end{array}\right]$

Problems for finding Fluxions per Saltum.
Рrob. r. To find the $n^{t b}$ fluxion of x^{m} when x does not flow uniformly, and m denotes any whole, fractional or negative number.

Solution. Let $a, b, c, d-x$ - $\delta, \gamma, \beta, \alpha$ be the

$$
\mathrm{I}^{\mathrm{nt}}, 2^{\mathrm{d}}, 3^{\mathrm{d}}, 4^{\text {th }},-\mathrm{k}^{\text {th }}-n-4, n-3, n-2, n-\mathrm{s}
$$

fluxions of x.
Then the $n^{t / 2}$ fluxion of $x^{m}=$

The following are the laws of this feries:
r. The index of x diminifhes in each term by unity, and is to be continued till it becomes 0 or $m-n$.
2. The coefficient of x^{m-v} is the product of $m \overline{m-1} \quad$ -$m-v=\mathrm{I}$, into the fum of quantities, with numeral coefficients annexed, deduced from the different fluxions of x.
3. These

[328]

3. These quantities are formed by multiplying together a number v of the feveral fluxions of x, fo that the fum of their exponents flall be n. Thus if $a b{ }^{p}{ }^{q} c d$ be one of thefe quantities $p+2 q+$ $3^{r}+4 s=n$ and $p+q+r+s=v$.

Note-By exponent of a fluxion is meant its order. Thus the exponent of d or of the fourth fluxion of x is 4 .
4. To the quantity $\begin{aligned} & \dot{p} q q^{q} r \\ & b \\ & d\end{aligned}$ - x^{σ} is to be annexed, for a coefficient, a fraction the numerator of which is $n . n-1 . \overline{n-2}$ $\overline{k+1}$, and the denominator $p \times \overline{p-1}{ }^{1}$ - $\times 2 . q \cdot \overline{q-1}-$ $\mathrm{I} \times \overrightarrow{3 \cdot 2} \cdot r_{0} \overline{r-1}-1 \times \overline{4 \cdot 3 \cdot 2 i} \times s . \overline{s-1}-\quad \mathrm{I} \times$ $\sqrt{k . k-1-1} \times \sigma \times \overline{\sigma-1}-$ I. The law of continuation of which is evident*.

The Demonftration, as far as regards the $1^{\text {A }}, 2^{d}$ and 3^{d} laws of the feries, is readily deduced from confidering the manner in which the fucceffive fluxions of x_{x}^{m} are derived. The demonftration of the fourth law is fomewhat more difficult, but may be deduced as
 rived by taken the 'fluxion of $x, \overline{p+q}$ times, and of a, q times in cvery

[^16]
$\left[\begin{array}{lll} & 329 &]\end{array}\right.$

every different order, with the exception that each a muft be taken before the b, which is derived from it. Confequently the coefficient of ${ }_{a}^{p} b_{b}^{q}$ muft be the number of thefe different orders. This coefficient may therefore be deduced either from the doctrine of permutations or from that of probabilities. The former method is certainly the moft natural, and at firft fight may appear horter: but the latter is more readily applicable to general expreffions. And from it the coefficient of $a^{p} b^{q}$ is deduced by finding the probability of taking $a, a, a,-(p)$ $a,{ }_{n},{ }_{l \prime}-(p) b, b_{n}, b_{n}-(q$ terms $)$ in the order in which 'they are written. The marks underneath fhewing the as from which the correfponding $b s$ are derived. The inverfe of the fraction expreffing this probability is the number of different orders, and confequently the coefficient of $\stackrel{p}{a} b^{q}$. The prob. that an a, from which $a b$ is not derived is taken firf is $\frac{p}{n}$, that another a of the fame defcription is taken next is $\frac{p-1}{n-1}, \& c$. fo that the probability that all the a^{s} of that defcription are taken previounly to any of the $a s$, from whence the b are derived is $\frac{p}{n} \times \frac{p-1}{n-1} \times \frac{p-2}{n-2} \times$ $\frac{1}{n-p-1}$. That an a is taken next is certainty or Vol. VII. T t

$[330]$

$\frac{2 q}{n-p}$. The Prob. that another a is taken next is $2 \times \frac{q-1}{n-p-1}$ becaufe each a, befides its own chance, has the chance of the b, which is derived from it, \&xc. \&c. Whence it follows that the probability that all the a^{s} will be taken before any of the b^{5} is $\frac{p}{n} \times \frac{p-1}{n-1} \times \frac{p-2}{n-2}, \quad-\frac{1}{n-p-1} \times \frac{2 q}{n-p} \times \frac{2 \times q-1}{n-p-1} \times$ $\frac{2 \times \overline{q-2}}{n-p-2} \times-\frac{2}{n-p+q-1}$. The probability that the b derived from the firt a is taken next is $\frac{1}{n-p+q}, \& c$.

Whence the prob. that the whole will be taken in the order in which they are written is

ciprocal of which fraction is the coefficient of $a p$. And by the fame procefs the general coeff. of $a^{p} b^{q} c^{d} d^{\sigma}-x^{\sigma}$ as given in the $4^{\text {th }}$ law is readily deducible.

The dem. by the method of permutations is concifely as follows. If the quantities $a, a, a,(p) a, b, a, b$ ($2 q$) were all different, the number of orders is $n . \overline{n-1}-\quad-I$, but as p quantities are the fame, the number mult be reduced by dividing by $p \cdot \overline{p-1}-1$, or the number of permutations

[33 I]

of p things, and becaufe the permutations of two things are two without regard to order, when the order is fixed the whole number of permutations muft be alfo divided by the number of permutations in each order that is fixed, that is by' $2 \times 2 \times 2 \times 8$ c. $(q)=2^{q}$,-alfo becaufe $q a^{\prime}$ are the fame, it muft be divided by $q \times q-1 \times-\mathrm{r}$. Whence the number of permutations or the coefficient of $a^{p} b^{7}$ is as above flated, \&c. \&c.

Example I. The $6^{\text {th }}$ fluxion of $x^{m}=$

$\left.15 \dot{x^{4}} \ddot{x}\right|_{m \ldots \ldots}=\overline{m-4} x^{m-5}+m, \cdots \overline{m=5} x^{4} x^{m=6}$.

Example II. The $8^{\text {th }}$ fluxion of x^{2} when $x=0$, and the $1^{\text {n }}, 3^{\text {d }}, 5^{\text {th }}$, and $7^{\text {th }}$, or the fluxions of the uneven orders are alfo $=0$ is
 56 , and the coeff. of $\frac{4}{x^{2}}=\frac{\frac{8 \cdot 7 \cdot 6 \cdot 5}{4 \cdot 5 \cdot 2 \cdot 1}+\frac{1}{2} \times 11}{2}=70$.

Example III. The coeff. of x^{5} in the $7^{\text {th }}$ fluxion of x_{8}, when the even fluxions are $=0$ is

$\left[\begin{array}{ll}332\end{array}\right]$

7.6.5.4 $\cdot x^{3} x^{2}$
I. 3.2.I. 2
$\frac{7.6}{2.1 . I} \cdot x^{3} x$
8. $7.6=70 x^{3}+21 x^{2} \times 8.7 .6$.

COR. If $a^{\prime}=a, b^{\prime}=\frac{b}{1.2}, c^{\prime}=\frac{c}{1.2 .3} \& c$. The denominator of the coefficient to be affixed to $a^{p} b^{q} c^{r}-\quad-x^{\sigma}$ is $p \cdot p-1-1$. q. $q-1 .-1-1-\quad-\sigma \times \overline{\sigma-1}-1$ and the numerator n. $\overline{n-1} \overline{n-2}-\quad-1$,

Problem 2. To find the $n^{t h}$ fluxion of $x y z$ (m quantities.)
Solution. The $n^{t h}$ fluxion of $x y z$ (m quantities).
$\stackrel{n}{x} y z, \delta c_{0}+x \stackrel{n}{y} \dot{z}, \& c_{0}+x \stackrel{n}{y} \dot{z}, \& c_{0}$.
$+n \stackrel{n-1}{\dot{x}} \dot{y} z, \& c_{1}+n \dot{x} \dot{y} \dot{n}^{-1} z \& c_{0}+\& c$.
$+\pi \cdot n-1 \stackrel{m-2}{x} \dot{y} \dot{z}, \& c .+8 c$. To form this quantity the fum of \&c.
${ }^{*}{ }^{\beta} \gamma$.
all the $x \dot{y} z, \& c$. muff be taken where $\alpha+\beta+\gamma+, \delta c=n$. Affixing when α or β_{2} or $\gamma, \& c .=0$, inftead of \dot{x}, x, inftead

[333]

of $y, y, \&$. The coefficient of $\dot{x} y^{\alpha} \dot{z}, \& c$. is readily deducible by the methods in the former problem, and is $=$

Problem 3. To find the $n^{\text {th }}$ fluxion of the fine of an arch x taken m times when the arch does not flow uniformly.

Solution. Radius being unity. The $n^{\text {th }}$ fluxion of the fine of $m x$

$$
\begin{aligned}
& \text { \&c. }
\end{aligned}
$$

The following are the laws of this feries:

1. The quantities to which the products of the fluxions and their coefficients are affixed are fucceffively mes, mx: $m^{3} s, m x: m^{s}$ $c s, m x:$: $c \mathrm{c}$. The fign is + or - according as the number of preceding terms of cofines is even or odd.
2. Tun

[334]

2. The number of fluxional factors to be affixed to the r^{\prime} term is r, and the fum of their exponents is to be n. Thus if $\dot{x}^{2} \times \dot{x}^{2} \times \& \mathrm{c}$. be one of thefe products $p+2 q+\& c .=n$, and $p+q+\& \mathrm{c} .=r$.
3. The coefficient of $\dot{x}^{p} \times \stackrel{2}{\dot{x}^{q}}, \&<c$. is as ftated in Prob. I.

Example. The fourth fluxion of the fine of $3 x$, when $x=0$ is $3 \stackrel{4}{\dot{x}}-3 \cdot 2 \cdot \dot{x}^{2} \stackrel{2}{\dot{x}}$.

Cor. The $n^{\text {th }}$ fluxion of the cofine of $m x$ is had by fubflituting in the above fcries for the cofine of $m x,-s$, of $m x$, and for s, $m x, c s, m x$.

The Application of the preceding Problems.

Problem 5. The relation of two quantities being expreffed by one or more cquations to find the value of one of them in a feries afcending by integral powers of the other.

Solution. Let x and y be the two quantities to find x in a feries, afcending by integral powers of y. Compute from the given equations, by help of the preceding problems, the values of $x(A)$, $\dot{x}(\mathrm{~B}), \ddot{x}(\mathrm{C}), \& \mathrm{c}$. when $y=$ a given value as a and $\dot{y}=y \rightarrow a$ making y

[335]

flow uniformly. Then by Taylor's theorem whilf y changes its value from a to y, x will from A become $A+\frac{B}{\mathrm{I}}+\frac{\mathrm{C}}{\mathrm{I} \cdot 2}+\frac{\mathrm{D}}{\mathrm{I} \cdot 2 \cdot 3}$, \&c.

For more readily ufing the preceding problems, it will generally be of ufe to clear the given equations from fractions, furds, \&c. and fometimes alfo to take the $2 \mathrm{~d}, \& \mathrm{c}$. fluxions generally, in order to have a more convenient equation, from which the particular fluxions of the higher orders are to be deduced. The particular fluxions of the different orders are to be taken per faltum by the preceding problems, fubftituting at the fame time whenever convenient the values of $x, \dot{x}, \ddot{x}, \& c$. previoufly found.

THe utility and practice of this method will beft appear by examples.

Example I. From the cubic equation $x^{3}+q x+r=0$, to deduce the values of x in a feries afcending by the powers of r.

Solution. Let the fucceffive fluxions of this equation be taken by Cor. Prob. I. making $a=\dot{x}, b=\frac{\dddot{x}}{1.2}, c=\frac{\dot{x}}{1.2 .3}$ ' $\& \mathrm{c}$. and \dot{r} conftant.

[336]

$$
\begin{aligned}
& I_{R^{*}} \cdot \overline{3 x^{2}}+q \cdot a+r=0 . \\
& 2^{\text {d }} \cdot \overline{3 x^{3}+q} \cdot 1 \cdot 2 \cdot b+a^{3} \cdot 3 \cdot 2 \cdot x=0 . \\
& 3^{\text {d }} \cdot \overline{3 x^{2}+q} \cdot 1 \cdot 2 \cdot 3^{c}+3 \cdot 2 \cdot 1 \cdot a b \cdot 3 \cdot 2 \cdot x+a^{3} \cdot 3 \cdot 2=0 \text {. } \\
& \begin{array}{r}
4^{\text {th }} \cdot \overline{3 x^{z}+q} \cdot 1 \cdot 2 \cdot 3 \cdot 4^{d}+4 \cdot 3 \cdot 2 \cdot 1 a d \\
4 \cdot 3 \quad b^{2} \mid 3 \cdot 2 x+4 \cdot 3 \cdot a^{2} b \cdot 3 \cdot 2=0 .
\end{array} \\
& \begin{array}{r}
5 \cdot \overline{3 x^{2}+q} \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 a+\left.5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 a d\right|^{\text {th }} \cdot \\
5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 b c\left|\begin{array}{r}
5 \cdot 4 \cdot 3 a^{2} c \\
5 \cdot 4 \cdot 3 a b^{2}
\end{array}\right| 3 \cdot 2=0
\end{array} \\
& \text { \&c. } \quad \& c . \\
& \text { \&c. }
\end{aligned}
$$

or $a=-\frac{\dot{r}}{3 x^{2}+q}, b=-\frac{3 a^{2} x}{3 x^{2}+q}, c=-\frac{3 \cdot 2 a b x+a^{3}}{3 x^{2}+q}, \quad d=-$ $\frac{3 \cdot 2 a c x+3 b^{2}}{3 x^{2}+q}, c=-\frac{\overline{a d+b c} \cdot 3 \cdot 2 \cdot x+3 \cdot a^{2} c+a b^{2}}{3 x^{3}+q}$

Calling the exponents of the quantities $a, b, c, \& c$. their places in the series, and the exponents of $a_{a}^{p}, p:$ of $b_{,}^{p}, 2 p, 8 x$. the law of continuation is eafily had. For the numerator of the quantity, the exponent of which is m, confifts of two terms, the firft of which is 3.2 . x into a coeff. which is the fum of the products of every two quantities, the fum of the expoponents of which is m, and when m is even, $\frac{1}{2}$ the fquare of the quantity

[337]

quantity, the exponent of which is $\frac{1}{2} m$ is to be added. The fecond term is the fum of all the quantities $3 \alpha^{2} \beta, 3 \cdot 2 \gamma \delta \varepsilon$, fo that the fum of the exponents of each quantity $=m$: and when m is a multiple of 3 , the cube of the term, the exponent of which is $\frac{\pi r}{2}$ is to be added. 2

Now when $r=0, x^{3}+q x=0$, and the values of x are 0 , $+\sqrt{-q}$, fubltituting thefe values in the values of $a, b, c, 8 x c$. found above, and r for \dot{r}, we have the three values of $a+b+c+\& c$. $=\dot{x}+\frac{\ddot{x}}{2}+\& x$. the three increments of x, while r from o becomes r. Let thefe values be $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and the values of x are $\mathrm{A}, \sqrt{ } \overline{-q}+\mathrm{B},-\sqrt{-q}+\mathrm{C}$.

The preceding is given as an example of the method, and not to fhew its fuperiority to others. Since by affuming a feries for x, and making ufe of the multinomial theorem, the fame conclufion will be derived by a procefs equally fhort. Yet it muft be obferved, that the multinomial theorem is only a particular theorem far lefs extenfive indeed in its ufes than the method here given, and not at all more ready in practice.

[338]

Example II. Given the fine of an arch (A) to find the fine of n times that arch.

Solution. Let $x=$ fine of $A, y=$ fine of $n A$. Then $\sqrt{\frac{\dot{y}}{1-y^{2}}}=\frac{n \dot{x}}{\sqrt{I-x^{2}}}$ or $\dot{y}_{2} \times \overline{I-x^{2}}=n^{2} \dot{x}^{2} \times \overline{I-y^{2}}$, taking the fluxions generally making x flow uniformly, and dividing by y.

$$
\ddot{y} \times I \overline{-x^{2}}-\dot{y} \dot{x}=-n^{2} \dot{x}^{2} y
$$

The $\overline{n-2}$ fluxion of this equation being taken by Prob. I and 2, when $x=0$ and $y=0$,

$$
\begin{aligned}
& \dot{y^{\prime}}+\overline{m-2} \overline{2} \overline{m-3} y^{m} \times-2 \dot{x}^{2}-n-2 \dot{y} \dot{x}^{2}=-n^{2} \dot{x^{2}} \dot{y} \\
& \text { or } \dot{y}=-\dot{x}^{2} \dot{y} \times \overline{y^{2}-2} \overline{n^{2}-2} .
\end{aligned}
$$

Now becaufe when x and $y=0, \dot{y}=n \dot{x}$ and $\ddot{y}=0$; it follows therefore that all the even fluxions of y are $=0$; and taking for m the odd numbers $3,5,7, \& c$. and x for \dot{x}, we have
 \&c. being the preceding terms. Alfo if k and l ive the $p-1$, and p terms $l=($ becaufe $m=2 \overline{p-1})=-k x^{2} \times \frac{2 p^{2}-\overline{2 p-2} \times 2}{2 \overline{2 p-1}}$.

[339]

The above folution affords a confpicuous inftance of the advantage of this method, in the ready manner in which the general law of the feries is derived. This feries has been inveftigated by feveral authors fince Sir I. Newton, who firft invented it. But all have only deduced a few of the firft. terms, without any proof whatever of the law of the feries. Indeed to have deduced by any of their methods even the $10^{\text {th }}$ term would have been an almoft infuperable labour.

Example III. To exprefs the hyperbolic logarithmic fecant by a feries afcending by powers of the arch.

Solution. Let a, s, and l be the arc, fecant, and logarithmic fecant, rad. being unity. By the nature of the circle
$\dot{a}=\frac{\dot{s}}{s \sqrt{s^{2}-1}}$, and alfo $\dot{i}=\frac{\dot{j}}{s}$
$\because \dot{l}^{2}=\dot{a}^{2} \times \overrightarrow{s^{2}}-1$, or taking the fluxions and making a conftant,

$$
2 \dot{l} \ddot{l}=\dot{a}^{2} \times 2 s^{2}=\dot{a}^{2} \times 2 s^{2} \times \dot{l} \text { or } \ddot{l}=\dot{a}^{2} s^{2}=\dot{b}^{2}+\dot{a}^{2}(A) .
$$

But when $a=0, s=\mathrm{I}, \because l=0$ and $i=a \sqrt{s^{2}-1}=0$: whence from the equation A it follows that all the uneven fluxions of l are $=0$, becaufe any odd fluxion of the equation muft contain in each term the inferior odd fluxions of l. For the conveniency

$$
\mathrm{Uu}_{2}
$$

$[340]$

of applying Prob. I. let $x=\dot{i}$, and (A) $\ddot{l}=\dot{a}^{2}+x^{2}$, taking the $n-2$ fluxion of this equation by Prob. 1. $\stackrel{n}{i}_{n}=2 \dot{x} \stackrel{n}{x} \cdot n_{n-2}^{n-2}+$ $2 \dot{x} \dot{x} \dot{n-5} \frac{n-2 \cdot \overline{n-3}}{3 \cdot} \cdot \frac{n-4}{1}+2 \stackrel{5}{x}_{x}^{n-1} \frac{\overline{n-2}-\overline{n-6}}{5 \cdot 4-\cdots}+\& c$.
fubftituting for the fluxions of $x, \ddot{i}, \stackrel{3}{3}, \& c c$. and dividing by $\mathrm{r}, 2$ - n we get the general equation
$\frac{n}{1-\frac{n}{-n}}=2.2 \frac{\ddot{i}}{1.2} \times \frac{i_{i}^{2}}{1.2-n-2} \times \frac{n-2}{n-1 . n}+2.4 \frac{\frac{4}{i}}{1--4} \times$
$\frac{i_{i}^{n-4}}{1--n-4} \times \frac{n-4}{n-1 . n}+\& \mathrm{c}$. when $\frac{n}{2}$ is odd to be continued
to $\frac{n-2}{4}$ terms. When $\frac{n}{2}$ is even, the lat term is $\frac{i}{1 \cdot 2^{n}--n^{2}} *$
$\frac{\frac{n}{2} \times \frac{n}{2}}{n-1 \cdot n}$.
Whence taking $n=4,6,8,8 c \mathrm{c}$.
$t=\frac{i}{2}+\frac{l^{4}}{1 \cdot 2 \cdot 3 \cdot 4}+, \& c,=\frac{a^{2}}{1 \cdot 2}+\frac{a^{4}}{1 \cdot 3 \cdot 4}+\frac{a^{6}}{1 \cdot 3 \cdot 3 \cdot 5}+\frac{17 a}{1 \cdot 3 \cdot 3 \cdot 5 \cdot 7 \cdot 8}$ $+\frac{31 a^{20}}{1 \cdot 3 \cdot 3 \cdot 5 \cdot 7 \cdot 9 \cdot 5}+8 c$.

$[34 \mathrm{l}$]

Example IV. Having given the logarithmic fecant of 45° to the modulus radius $(r)=s$, and the logarithmic. fecant of any arch $a=s+l$ to find a in a feries afcending by the powers of l.

Solution. Let $n=$ the fecant of a. Then by the circle $a=\frac{n r^{3}}{n \sqrt{n}-r^{2}}$ alfo becaufe $s+l=\log . n$ to the modulus $r, i=$ $\frac{r \dot{n}}{n} \because \dot{a}=\frac{r \dot{l}}{\sqrt{n^{2}-r}}$ 质 (A) $\dot{a}^{2} \times \overline{n^{2}-r^{2}}=r^{2} \dot{L_{2}}$. To facilitate the computations of $\dot{a}, \vec{a}, \stackrel{3}{a}, \& \mathrm{c}$. from the equat. A , when $l=0$, $a=$ the arc of 45 , and when alfo $n^{2}=2 r^{2}$, let $a^{\dot{2}}=x^{2}=B$. Now becaufe $\dot{n}=\frac{n i}{r}$.

1ft. Fluxion of $n^{2}=2 n \dot{n}=\frac{2 \dot{l} n^{2}}{r}=2^{2} r l$, fubftituting for l, \dot{l}.
2d. Fluxion of $n^{2}=\frac{2 l}{r} \times \frac{2 \ln n^{2}}{r}=2^{3} l_{\text {. }}$.
$m^{t 2}$ Fluxion of $n^{2}=$

$[342]$

Whence from the equation (A) $B \times \overline{n^{2}-r^{2}}=r^{2} \dot{i}$, we have by Prob. 2.
(A) $\dot{\mathrm{B}} r^{2}+\mathrm{B} 2^{2} r l=0$ or $\dot{\mathrm{B}}=-\frac{4^{l^{3}}}{r}$.
($\dot{\mathrm{A}}) \ddot{\mathrm{B}} r^{2}+2 \dot{\mathrm{~B}} 2_{2} r l+\mathrm{B} 2^{3} l^{2}=0$ or $\ddot{\mathrm{B}}=\frac{24 l^{2}}{r^{2}}$.
($\stackrel{3}{A}) \quad \dot{\ddot{B}} r^{2}+3 \ddot{B} 2^{2} r l+3 \dot{\mathrm{~B}} 2^{2} r l_{2}+\mathrm{B} \frac{2^{4} l_{3}}{r}=0$ or $\stackrel{3}{\mathrm{~B}}=-$ $208 \frac{25}{r^{5}}$.
($\stackrel{4}{\mathrm{~A}}) \stackrel{4}{\mathrm{~B}} r^{2}+4 \stackrel{3}{\dot{B}} 2^{2} r^{l}+6 \stackrel{2}{\mathrm{~B}} 2^{3} l^{2}+4 \dot{\mathrm{~B}} \frac{2^{4} l}{r}+\mathrm{B} \frac{2^{5} l^{4}}{r^{2}}=0$ or $\stackrel{4}{\mathrm{~B}}=2400 \frac{I_{6}}{r^{4}}$.
($\dot{5}) \stackrel{5}{\mathrm{~B}} r^{2}+5 \stackrel{4}{\mathrm{~B}} 2^{2} r r^{2}+10 \stackrel{3}{\mathrm{~B}} 2^{2} l^{2}+10 \stackrel{2}{\mathrm{~B}} \frac{2^{4} l^{3}}{r}+5 \dot{\mathrm{~B}} \frac{25 l^{4}}{r^{2}}+\mathrm{B}$ $\frac{2^{6} l_{5}}{r^{3}}=0$ or $\stackrel{5}{\mathrm{~B}}=-\frac{3462+l^{7}}{r^{5}}$. $\& c$.

Now when $a=45^{\circ}, x=\dot{a}=\dot{i}$, whence taking the fluxions of the equation $x^{2}=B$ by Prob. I, and fubftituting for l, l, we get

$$
2 l \dot{x}=\dot{\mathrm{B}}=-\frac{4 l^{3}}{r}, \text { or } \ddot{a}=\dot{x}=-\frac{2 l^{2}}{r} .
$$

$$
\begin{aligned}
& \text { [} 343 \text {] } \\
& 2 l \ddot{x}+2 \dot{x}^{2}=\ddot{\mathrm{B}}=\frac{24 l^{4}}{r^{2}} \text { or } \stackrel{3}{a}=\ddot{x}=\frac{8 l^{3}}{r^{2}} \\
& 2 l^{\frac{3}{x}}+2 \cdot 3 \dot{x} \ddot{x}=\stackrel{3}{\mathrm{~B}}=-\frac{208 l^{5}}{r^{3}} \text { or } \stackrel{4}{a}=\stackrel{3}{x}=-\frac{56 l^{4}}{r^{3}} \\
& 2 l^{4}+{\underset{4}{x}}_{2.3^{2} \dot{x}^{2}}^{3_{x}^{x} \dot{x}}=\stackrel{4}{\mathrm{~B}}=\frac{2400 l^{6}}{r^{4}} \text { or } \stackrel{5}{a}=\stackrel{4}{x}=\frac{560 l_{5}}{r_{4}}
\end{aligned}
$$ $\& c . \& c$.

Hence while l by flowing from 0 becomes l, a from a femiquadrant becomes $=$
a femiquadr. $+l-\frac{l^{2}}{r}+\frac{4 l^{3}}{3 r^{2}}-\frac{7^{24}}{3^{3}}+\frac{14 l^{5}}{3^{r^{4}}}-\frac{452 l^{6}}{45 r^{5}}+\& \mathrm{c}$.
The two laft examples are feries of Gregory's from the Comm. Epift. For an account and different methods of inveftigating them fee Scrip. Log. Vol. III. preface and pages 443 , \&c. 480, \&c.

Example V. To expand the multinomial, $\overline{a+b z+c z^{2}+d} z^{3}+b c$..n where n is of any denomination whole, negative or fractional. (De Moivre Mifcell. Analytica, p. 87).

[344]

Let $A=B^{n}=\overline{a+b z+c z^{2}+d z^{3}+\& \bar{c} . \mid}$ Then making $z^{n}=0$, and fubftituting for z, z

$$
\begin{aligned}
& \dot{\mathrm{B}}=b z \\
& \ddot{\mathrm{~B}}=\mathrm{r} .2 c z^{2} \quad \text { or } \\
& \frac{\ddot{B}}{1.2}=c z^{2} \\
& \ddot{\ddot{\mathrm{~B}}}={ }_{\text {I. }} 2.3 d z^{3} \\
& \frac{\dot{B}^{3}}{1 \cdot 2 \cdot 3}=d z^{3} \\
& \stackrel{4}{\mathrm{~B}}=\text { r. } 2 \cdot 3 \cdot 4 e \mathrm{z}^{+} \\
& \text {\&c. \&c. } \\
& \frac{\stackrel{4}{\mathrm{~B}}}{1 \ldots .4}=e z^{4} \\
& \text { \& } c .
\end{aligned}
$$

Whence from the equation $A=B^{n}$ we have by Cor. Prob. I.
$\dot{A}=n a^{n-1} b z$
$\ddot{A}=2 \cdot n a^{n-2} c z^{2}+\bar{n} \cdot n=1 a^{n-2} b^{2} z^{2}$
$\AA^{3}=3 \cdot 2 n a^{n-1} d z_{3}+3 \cdot 2 \cdot n \cdot \overline{n-1} a^{n-2} b c z+n \cdot n=1 \cdot n=-2 b^{3} z^{3}$ $\& c$. \& c.

$$
\text { n. } \begin{array}{cc}
a^{n-1} c z^{2}+n \cdot n-1 & a b c z^{3}+\& c . \\
+n a^{n-1} & d z^{3}+\& c . \\
\& c . & \& c .
\end{array}
$$

The

[345]

Tre law of continuation as far as regards the products of z, and its coefficients $a, b, c, \& c$. is evident from Prob. I. and agrees with that given by De Moivre. The law of the coefficients of there products is alfo immediately derived. For let $a^{n-p} b^{q} c^{n} \quad d^{d}$ $q+2 r+3 s$ be any product, then becaufe it occurs in the terms A, it follows from Taylor's Theorem and Prob. I. that its coefficient is

 been demonftrated by De Moivre for integral values of n.

Example VI. From the equation (m) $a z+b z^{2}+c^{3} z+d^{4} z+$ $\& \mathrm{c} .=g y+h y^{2}+i y^{3}+k y^{4}+8 \mathrm{c}$. to find the value of z when z and y begin together.

Solution. Taking by Cor. Prob. I. the fucceffive fluxions when z and $y=0$, and y is fubftituted for y.
$(\dot{m}) \dot{a} \dot{z}=g y$ or $z=\frac{g y}{a}=A y$ putting $A=\frac{g}{a}$

Vol. VII.
X x

[346]

$$
\begin{aligned}
& (m) a^{3} \tilde{z}^{2}+1.2 .3 .2 .1 \mathrm{ABb} y^{3}+1.2 .3 A_{3} c y^{5}=1.2 .3 i y_{3} \\
& \text { or } \frac{\ddot{z}}{1.2 .3}=\frac{i-1.2 A B b-A^{3} c}{a} y^{3}=\mathrm{C} y^{3} \\
& \text { (in) } a \stackrel{4}{z}+1.2 .4 .3 .2 .1 \text { A C } b y^{4}+1.2 .4 .3 B^{2} b y^{4}+1.2 .3 .4 .3 \\
& \mathrm{~A}^{2} \mathrm{~B} c y^{4}=4.3 .2 . \mathrm{I} h y^{4} \text { or } \frac{\stackrel{4}{z}}{\mathrm{I} .2 \cdot 3 \cdot 4}=\frac{k-\mathrm{I} .2 \mathrm{AC} b-\mathrm{B}^{2} b-3 \mathrm{~A}^{2} \mathrm{~B} c}{a} y^{4}=\mathrm{D} y^{4} \\
& \text { \&c. \&c. } \\
& \text { or } z=\frac{g}{a} y+\frac{h-b A^{2}}{a} y^{2}+\frac{i-\mathrm{r} .2 \mathrm{AB} b-\mathrm{A}^{3}{ }^{3}}{a} y^{3}+ \\
& \frac{k-\mathrm{I} .2 \mathrm{AC} b-\mathrm{B}^{2} b-3 \mathrm{~A}^{2} \mathrm{BC}}{a} y^{4}+\& c \text {. A, B, C, \&c. being the }
\end{aligned}
$$ coefficients of the preceding terms.

The laws of continuation are readily derived by help of Prob. r. for calling the exponent of $a, 1$ of $b, 2 \& c$. and of $A, 1$ of $B, 2 \& c$. the coefficient of y^{m} is a fraction the denominator of which is a, and the numerator the difference between the coefficient of y^{m} in the given equation, and the fum of products of the capital and fall letters with numeral coefficients derived by the following laws:

1. To the fall letter the exponent of which is n are to be affixed n capital letters, fo that the fum of their exponents fall be m : this is to be done as often as poffible with each fall letter.

[347]

2. The numeral coefficient of any product $\mathrm{A}^{p} \mathrm{~B}^{q} \mathrm{C}^{r}=$
r. $2 \cdots-\overline{p+q+r} \times \overline{p+2 q+3 r} \times p+2 q+3 r-1 \cdots 1$
$1.2=--p+2 q+3 r \times p \cdot p-1 \times--1 \times q \times q-1 \times q-2=--1 r \times r-\mathrm{I}-\mathrm{I}$
$=\frac{\mathrm{I} .2 \cdots-\cdots \overline{+}+r}{p \cdot \overline{p-1} \cdots \mathrm{I}+q \times \overline{q-1}-\mathrm{I} \times r \times \overline{r-1-1}}=$ the number of permutations of AAA (p things) B B (q) CC (r). Thefe laws of continuation are the fame as ftated by De Moivre*, and deduced by him from the application of the multinomial theorem.

Example VII. From the mean anomaly of a planet to deduce the eccentric anomaly in a feries afcending by the powers of the excentricity.

Solution. Let APB be the femi-elliptic orbit defcribed about the focus S and centre C , and P the planet: then drawing R PD perp. to A B meeting the circle defcribed on the diameter A B, the $\ulcorner A C R$ will be the eccentric anomaly. Let the mean anomaly $=m$ (rad. $=\mathbf{r}$) the eccentric anomaly $=c, A C=1$, and CS the eccentricity $=e$. Then m : circumference:: area ASP: area of the ellipfe:: area ASR: area of the circle \because becaufe $\mathrm{CR}={ }_{1}, m=2$ area $\mathrm{ASR}=2 \mathrm{ACR}+{ }_{2} \mathrm{CSR}=\mathrm{BR} \times \mathrm{CR}+$ CS $\times \mathbf{D R}=c+e s, c$ or $n=c+e s, c$.

$$
\mathrm{Xxe}
$$

Let

* Philofophical Tranfactions, Vol. XX. p. 190.

[348]

Let the fucceffive fluxions of this equation be taken by Prob. 2 and 3 , when $e=0$, and $c=m$

```
    \(\dot{c}+\dot{e} s, m=0\)
    \(\ddot{c}+2 \dot{e} \dot{c} c s, m=0\)
    \(\dot{c}^{3}+3 \dot{e} \ddot{c} c s, m-3 \dot{e}^{2} s, m=0\)
    \(\dot{c}+4 \dot{e} \dot{c^{3}} c s, m-4 \dot{e} \cdot 3 \dot{e}^{2} \dot{c} \dot{s}, m-4 \dot{e} \dot{c}^{3} c s, m=0\)
```

 whence fubflituting for \(\dot{e}, e\)
 \(\dot{i}=-e s, m . \ddot{c}=-2 \dot{c} c c s, m=2^{2} s, m \times c s, m=e^{2} s, 2 m\)
 \(\stackrel{3}{c}=-3 e^{2} \stackrel{\stackrel{2}{c}}{\dot{c}}=, m+3 e \dot{c} \dot{c} s, m=-3 e^{3} \times s, \overline{2 m \times c s, m-s^{3}, m}=\)
 \(-\frac{3}{4} e^{3} \times 35,3 m-s, m\).
 \({ }^{4}=14 \dot{c} \dot{e} \times \stackrel{3}{c} c s, m-3 \dot{c} \dot{c} \dot{c}, m-{ }^{3} \dot{c} c s, m=4 e^{4} \times \overline{2 s, 4 m-s, 2 m}\)
 \&c. \&c.
 $\because c=m+\dot{c}+\frac{\ddot{c}}{1.2}+\& c_{0}=m-c s, m+\frac{e_{2}}{1.2} s, 2 m-\frac{e_{3}}{1.2 \cdot 4} \times$
$\overline{3 s, 3 m-s, m}+\frac{c^{4}}{1.2 .3} \times \overline{2 s,} \overline{4 m} \overline{-s, 2 m}+8 c$.
This feries is in effect the fame as the feries given by Keil, but is much better adapted for computation, and befides has the advantage of being applicable to phyfical aftronomy; which the feries of Keil is not.*

Example
M. De la Grange has given a moft elegant theorem for cxpreffing in a feries afcending by the powers of t any function of x, when $x=$ any function of $u+t$, , X being a function of x. By help of his beautiful theorem, the value of c is immediately deduced from the equation $m=c+e s, c$. Bat as the theorem is only adapted to equations of that particular form, it appears equally eligible to deduce the value of c by the above method, becaufe including the demonffration the method of De la Grange is not dhorter. See Coufin's Aftro. Phyf. Art. 20, page 15.

[349]

Example VIII. From the mean anomaly of a planet to deduce the true anomaly in a feries afcending by the powers of the eccentricity.

Solution. Let the femi-axis major $\mathrm{AC}=\mathrm{I}$. The eccentricity $\mathrm{CS}=e$, the anomaly $\mathrm{AST}=a, m=$ the correfponding mean Fig. anomaly meafured in the circle the rad. of which $=1$, and the periphery P . Then as the areas are proportional to the times, and therefore to the mean anomalies:
Flux. area AST : area of the ellipfe: : $\dot{m}: \mathrm{P} \cdot \because \frac{1}{2} \mathrm{ST}_{x}^{2}$ flux. \angle $\operatorname{AST}(\mathrm{a})=$ flux. area $\operatorname{AST}=\frac{m \times \text { area of the ellipfe }}{\mathrm{P}}=\dot{n}$ $x^{\frac{1}{2}} \sqrt{I-e_{2}}$ or $\dot{a} \times \mathrm{ST}^{2}=m \sqrt{\mathrm{I}-e_{2}^{2}}$. But by the prop. of the ellipfe ST $=\frac{\mathrm{I}-e^{2}}{\mathrm{I}-e c s, a} . \quad$ Hence $e^{\dot{a} \times \overline{\left.\overline{1-e^{2}}\right)^{\frac{1}{2}}}} \underset{\overline{1-e c s, a)^{2}}}{ }=\dot{m}$ or $\overline{\mathrm{I}-e^{\left.2\right|^{2}}} \times \dot{a}$ $\times \overline{1+2 e c s, a+3 e^{2} c s^{2}, a+4 e^{3} c s^{3}, a+\& c .}=\dot{m} . \quad$ Let $A=\mathrm{fl}$ $\dot{a} c s a, \mathrm{~B}=\mathrm{f} \dot{\mathrm{a}} \mathrm{cs}^{2}, a, \mathrm{C}=\mathrm{f} \dot{a} c s^{3}, a, \& \mathrm{cc}$. and $\mathrm{L}=\overline{\left.\mathrm{I}-e^{2}\right\}^{-\frac{3}{2}} \text {. Then }}$ $a+2 e \mathrm{~A}+3 e^{2} \mathrm{~B}+4 e^{3} \mathrm{C}+8 \mathrm{c} .=\mathrm{L} m$. From this equation the feries is to be deduced by fucceffively taking its fluxions by Prob. 2. making e flow uniformly $\& c . e=0$

$$
\begin{aligned}
& \text { 1. } \dot{a}+2 \dot{e} \mathrm{~A}=\dot{\mathrm{L}} m=0 \\
& \text { 2. } \ddot{a}+2 \cdot 2 \dot{e} \dot{\mathrm{~A}}+3 \cdot 2 \dot{e^{2}} \mathrm{~B}=3 \dot{e} m
\end{aligned}
$$

[350]

3. $\stackrel{3}{a}^{3}+3 \cdot 2 \dot{e} \ddot{\mathrm{~A}}+3 \cdot 3 \cdot 2 \dot{e^{2}} \dot{\mathrm{~B}}+4 \cdot 3 \cdot 2 \dot{e_{3}} \mathrm{C}=\stackrel{3}{\mathrm{~L}} m=0$
4. $\stackrel{4}{a^{2}}+4 \cdot 2 \cdot \stackrel{3}{\dot{\mathrm{~A}}}+6 \cdot 3 \cdot 2 \dot{e}^{2} \dot{\mathrm{~B}}^{\mathrm{B}}+4 \cdot 43 \cdot 2 \dot{e^{3}} \dot{\mathrm{C}}+5 \cdot 4 \cdot 3 \cdot 2 \cdot \dot{e}^{4} \mathrm{D}=\ddot{\mathrm{L}} m=45 \dot{e}^{4}$ \&c. \&c.

Now fince $\mathrm{A}=s, a$

$$
\begin{aligned}
& \text { By Prob. } 3 \cdot \dot{A}=\dot{a} c s, a \quad B=\frac{1}{2} a+\frac{1}{4} s, 2 a \\
& \ddot{\mathrm{~A}}=\ddot{a} c s, a-\dot{a}^{2} s, a \quad \dot{\mathrm{~B}}=\frac{1}{2} \dot{a}+\frac{1}{2} \dot{a} c s, 2 a \\
& \dot{B}_{\dot{A}}=\stackrel{3}{a} c s, a-3 \ddot{a} \dot{a} s, a-\dot{a} c s s, a \quad \ddot{B}=\frac{1}{2} \ddot{a}+\frac{1}{2} \ddot{a} c s, 2 a-\dot{a^{2}} s, 2 a \\
& \mathrm{C}=\frac{3}{4} s, a+\frac{1}{8} 5,3 a \quad \text { and } \mathrm{D}=\frac{3}{8} a+\frac{1}{4} s, 2 a+\frac{1}{32} \\
& \dot{\mathrm{C}}=\frac{3}{4} \dot{a} c s a+\frac{1}{4} \dot{a} c s, 3 a \\
& \text { \&c. } \\
& \& c .
\end{aligned}
$$

Let thefe values be fubfituted in the above equations, and we deduce making $\dot{e}=e$ from the
I $^{\text {f. }}$. Equat. $\dot{a}=-2 e s, m$
$2{ }^{\text {d }}$.

$$
\ddot{a}=\frac{s}{2} e^{2} s, 2 m
$$

$3^{\text {d. }}$

$$
\stackrel{3}{a}=-e^{3} \times \frac{\sqrt{3} s^{3} s, 3 m+\frac{3}{2} s, m}{}
$$

$4^{\text {th. }}$.

\&c. \&c.
Whence $\left.\left.a=m+\begin{array}{c}2 e \\ \frac{1}{4} e^{3}\end{array}\right\} s, m \begin{array}{l}\frac{5}{\frac{3}{2}} e^{2} e^{4}\end{array}\right\} s, 2 m-\frac{33}{12} e^{3} s, s m+\frac{103}{96}$ $e^{4}, 4 m+2 r c$.

The

[35 I]

The fecond power of the eccentricity or two terms of the feries will be fufficient for the orbits of the Earth and Venus. The third power of the eccentricity or three terms for Jupiter, Saturn, and the Georgium Sidus, and four for Mars. But fix or feven are neceffary for Mercury. It is more tedious than difficult to continue this feries to a greater number of terms. The above folution of this ufeful and celebrated problem, befides being direct is greatly fhorter than any before given: Even than the method of Cagnioli, given by De La Lande, in the third volume of his Aftronomy, edition 1792, where the feries is continued to the ninth power of the eccentricity. Byavery ingenious artifice there given the folution by indeterminate coefficients is very confiderably fhortened. The legality of that artifice might however be juftly doubted, and the truth of the conclufion deduced fufpected, unlefs verified by other methods.

Example IX. From the equation

$c x^{n} \dot{x}+y \dot{x}=a \dot{y}$ to find y by a feries afcending by the powers of x, n being a whole pofitive number (Simpfon's Fluxions, Vol. II. 293).

Solution. When $x=0$, let $y=\mathbf{Y}$. Then taking the fluxions of the given equation when $x=0$, and x flows uniformly.

$$
\begin{aligned}
& \text { 1 } \begin{array}{l}
\text { f. } \dot{y} x=a \ddot{y} \\
2^{\text {d. }} \ddot{y} \ddot{x}=a y^{3}
\end{array} .=\text {. }
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{ll}
352
\end{array}\right]} \\
& n^{2} \cdot n \cdot \overline{n-1}-\cdots c \dot{x}^{n+1}+\stackrel{n}{y} \dot{x}=a y^{n+1}
\end{aligned}
$$

$$
\begin{aligned}
& \text { \&c. } \\
& \text { \&c. }
\end{aligned}
$$

Then becaufe when $x=0$, and $y=\mathrm{Y}, \dot{y}=\mathrm{Y} \dot{x}$ we immediately deduce

\because fubftituting for $\dot{x}, x ; y=\mathrm{Y}+\mathrm{Y} \times \frac{x}{a}+\frac{x^{2}}{1.2 a^{2}}+\cdots-\frac{x^{n}}{1.2-n a^{a}}$
$+\frac{x+1}{1 \cdot 2 \cdot \overline{n+1} a^{n}}+\& c .+\frac{c x+1}{n+1 a}+\frac{c x^{n+2}}{n+1 . n+2 a_{2}}+\& c$.
This example was given to remark that fometimes by this method we may derive a general folution from the particular one. For although the above folution is only a particular one viz. when x is fuch that the feries will converge, yet becaufe we know that $1+\frac{x}{a}+\frac{x^{2}}{J \cdot 2 \cdot a_{2}}+\& c .=$ no. the hyp. log. of which is $\frac{x}{a}$, and alfo becaufe $\frac{\frac{c x^{n+1}}{n+1_{0} a}+\frac{c x^{n+2}}{n+1 . n+2 a_{2}}+8 c_{0}=}{n+1}=$ $c a^{n} \times 1.2-n<1+\frac{x}{a}+\cdots-\frac{x}{\text { 1. } 2-\frac{n+1}{n+1} a^{n+1}}+\& c_{1}+\frac{x}{a}+\cdots$

$$
\frac{x^{n}}{1.2 .--n a_{n}}
$$

[353]

$\frac{x}{1.2}-n a^{14}=c a_{n} \times 1.2-\cdots n \times$ no. hy. $\log \frac{x}{a}-1+\frac{x}{a}+\cdots$
$\frac{x}{\text { I. 2. }--12 a^{n}}$; if $\mathrm{M}=$ no. hyp. log. of which is $\mathrm{I}, y=\mathrm{Y} \stackrel{a}{\mathbf{M}}^{\boldsymbol{a}}+\mathrm{I} \cdot 2--$
$n \quad \frac{x}{a} \quad n=n-1$
 $n-2$
$x^{2}+\cdots$
$+\quad-\quad x^{n}$ is the general equation of the fluents.

As the above examples have confiderably extended the length of this tract, the fubject fhall be concluded by a few obfervations.

The Theorem of Taylor may be more generally expreffed, for if z be a quantity compofed of two or more independent quantities $x, y, v, \& c$. then while $x, y, v, \& x$. by flowing uniformly become $x+\dot{x}, y+\dot{y}, v+\dot{v}, \& c . z$ will become $\dot{z}+\frac{z}{1,2}+\& c$. There can be no difficulty in applying what has been before done to cafes of this kind. It may be worthy of remark, however, that by this method when fluxions are fuch that the fluents are expreffed in integral powers, they may be found a priori: for if z be a function of $x, y, \& c$. where $x, y, \& c$. are independent quantities, and Z the value of z when $x, y, \& c .=0$, then becaufe $z=Z+\dot{z}+$ $\frac{z}{\text { I. } 2}+\&$ c. and becaufe $\frac{z}{\text { I. } 2}, \& c$. are derived from \dot{z} by taking

[354]

the fluxions, making $\dot{x} \dot{y} \dot{y}$, \&c. conflant, it follows that z may be deduced from z by taking the fucceffive fluxions of z by the former problems.

Examples. The fluent of $x^{\prime} \dot{x}=$ Cor. $+\frac{n_{n} \overline{n-1}-\cdots 1}{1.2-n+1}{ }^{n+1}=\frac{x^{n}}{n+1}+$ Cor
The fluent of $3 x^{2} y \dot{x}+x^{3} \dot{y}+2 x y^{2} \dot{x}+2 x^{2} y \dot{y}=$ (taking x and $y=0$, and fubflituting for \dot{x} and \dot{y}, x and y) $\frac{\text { 3. } 3.2 x^{3} y+3.2 x^{3} y+2 \cdot 3 \cdot 2 x^{2} y^{2}+2 \cdot 3 \cdot 2 x^{2} y^{2}}{\text { I. 2. } 3 \cdot 4}=x^{3} y+x^{2} y^{2}$.

The fourth example when n is odd is an inftance of finding fluents a prior i by this method. If $\dot{x}=\mathrm{Y} \dot{y}$, where Y is an algebraic function of y, then by common algebra reducing this equation to integral values, and taking the fluxions particularly by the former rules, it will be known whether x the fluent can be had in finite terms; in fome cafes, very readily, in many, however, the difficulty will greatly exceed the inverfe method, but this difficulty may be probably obviated by given the fubject that attention it feems to deferve.

But it ought to be remarked when these are two or more independent variable quantities, that the given fluxion muft be poffible, that is, muft have originated from a fluent. Thus for inftance $y \dot{x}$ is not a poffible fluxion, for it cannot have originated from any flowing quantity wherein x and y are independent.

[355]

The above method may alfo be applied with confiderable advantage to the finite variations of fpherical triangles, and in many inftances feries may be deduced more convenient in aftronomical computations than the theorems for finite differences.

Y $\mathbf{y} 2$

［ 357 ］

ACCOUNTOFTHEWEATHER

At Londonderry in the Year 1799，

－By william Paterson，M．D．and M．R．I．A．

Months．	苞菏			莒
January	S W	10	18	3
Fehruary	W	11	14	3
March	W	2	18	I
April	N	15	15	－
May	N W	8	18	5
June	N	16	12	2
July	W	12	15	4
Auguft	W	1	25	5
September	SE	6	21	3

in the latter part，it foftened in its rigour，it was often bluftry－ Manch，equally as February，was remarkable for blowing weather， with feveral fqually gales at night and heavy flowers．－Although the warm winds exceeded the cold in number，in the points taken fingly，yet taken together，－the cold were to the warm as 22 to 19 ； and upon the whole it was a rigorous unpleafant month．－April was remarkably keen and bluftry；＇the oldeft pérfon living did not remember fo much fnow in this month ；the greateft part of it fell on the 5 th，which was little fhort of the 8th of the preceding February with refpect to the degree of wind from the SE．the piercing cold，and drifing fnow．－May was alfo cold，with fome fevere blowing weather，particularly the 23 d and 24 th，which were moit formy at night；and the temperature did not foften till the 28th．－ 7 une was cola in the beginning，but afterwards contained a good deal of bright，fair，warm weather．－During the

$\begin{aligned} & \text { 要 } \\ & \text { B } \end{aligned}$	㞼	$\begin{aligned} & \text { 言 } \\ & \text { 品 } \end{aligned}$	边		－
31	0	6	14	\bigcirc	
28	4	9	9	I	
31	4	4	4	－	
30	－	2	5	－	
31	2	\bigcirc	\bigcirc	0	
30	2	0	\bigcirc	1	
31	－	\bigcirc	\bigcirc	1	
31	\bigcirc	－	0	\bigcirc	
30	1	\bigcirc	\bigcirc	－ 1	

field work might have been better performed by a little attention．－ In October the rain was moftly in frequent heavy fhowers；there were feveral fair intervals；and there were feveral very ufeful frefh breezes．－Hail of an unufual fize fell the 14 th，about 3 miles S．E．of Derry．－Novembcr was a cold，blowing month，with much denfe fog，and frequent fevere flowers of both rain and hail；－yet the cold and windy weather，together with feveral fair days and dry intervals，anfwered an excellent purpofe to the farmer．－In one of the ftormy nights，the 6th，the large metal vane was blown from the cupola of the Exchange， but no perfon was hurt．－－Though the prevalent winds in Deccriber were from the cold points，E．and S．E．with fome fimart gales，yet the degree of congelation was nct proportionably keen．－Little rain fell；but there，was a good deal of foggy and hazy weather．

Note．－The greatof degrce of heat zuas on the 8 th of $\mathcal{F u n e}$ ，when the thermometer rofe to 74° ；barometcr 30.31 ；hygrometer $35 \frac{\frac{1}{2}}{2}$ ； wind S．calm，fair，and bright．＇The greateft degree of cold took place on the 30 th of Fanuary，when the thermometer dropped 1021 ； barometer 29．60；hygrometer 38 3－4；W．fair，froft，and fog．The annual quantily of rain was about 36 inches，wibich rexcecads thast of 3798,3 inches，and that of 1797 ， 5 inches．

Voǐ，VII．

ACCOUNTONTUEWEATHER At Londonderry in the Year 1799，

By WIlliam Paterson，M．D．and M．R．I．A．

Months．		呇	号	号	¢	垔	言	蠈	
January	S W	10	18	3	31	0	6	14	0
Fehrwary	W	1 1	14	3	28	4	9	9	1
March	W	12	18	1	31	4	4	4	0
April	N	15	35	\bigcirc	30	0	2	5	0
May	N W	8	18	5	31	2	0	\bigcirc	－
June	N	16	12	2	30	2	0	\bigcirc	t
July	w	12	15	4	31	0	\bigcirc	\bigcirc	1
Auguft	W	1	25	5	31	0	0	0	－
September	SE	6	21	3	30	1	－	0	1
October	S W	5	20	6	31	4	0	2	4
Noveraber	W	1	13	6	30	5	0	6	1
December	E	21	9	1	\％ 1	\bigcirc	4	13	\bigcirc
Total	W	128	198	39	365	22	25	53	9
1798	W	126	207	32	365	23	14	29	2

1）The greater part of the numbers in the 10th column denote Lightning alone，particularly in the nonths of September，October，and November，when it took place molly in the night，and in the ufual nonths for Thunder very little occurred；the caufe of which may be afcribed to the atmofpherical elec－ ricity having been conveyed to the earth by the conductor，rain，before it had time to accumulate in the tmorphere and form thunder clouds．

GENERAL REMARKS．

Tunnary a good deal of hazy and foggy weather，with both mo－ lerate and keen froft，whilat the winds were chiefly from the nildeft points；the barometer was many days，at the beginning of the month，above 30 ，and varied latte，though fometimes here was heavy rain；and the frongeff freezing took place with he wind at weft．－The winds were in general not only foft in emperature，but moderate in force，there nor being more than 4 or 5blowing day 5．－Thefe circumftances point out the character of his munth as unufual for the feafon of the year；it feems to be cmarkable for a mixtare of gentle winds，fharp froff，and damp， ogsy air－－Februay contained a great proportion of blowing weather，parcicularly on the 7 th and 8th at night，when there nerc eatroordinary high and penetrating fqualy gales with confi－ derable quantities of round fnow ；betwcen this and the preceding month there were 12 diyy of uninterrupted freezing；and whilft， on the latter part，it foftened in its rigour，it was often bluftry－ March，equally as February，was eemarkable for blowing weather， wizh feveral fqually gales at night and heavy flowers．－Although he warm winds exceeded the cold in number，in the poinst taken fingly，yet taken tngether，the cold were to the warm as 22 to 10 ； and upon the whole it was a rigorous unpleafant month．一siprut was remarkably keen and thuitry；the oldefl perfon living did not eemember fo much fnnw in this month；the greatelt part of it fell on the $j^{\text {th }}$ ，which was lierle fhort of the 8 th of the preceding lebruasy with retpect to the degree of wind frons the SE．the Frercing cold，and drifing fnow．－Mry was sifio cold，with fome fevere blowing weatler，porticularly the azd and 24 th，whach were mudt formy at mught and the temperaure did not foften enl the aSeh．－Jume wis coll in the beginanngo bat afterwarls contained a goad deal of bright，fair，warm weather．－During thic
greater part of the fair weather there was a frelh breeze from the N ．and fometimes there was a covered $\mathfrak{k y}$ ，threaning rain， though nove fell；whita upon the whole the air poileffed a conli－ derable drying quality．－Yuly produced a quantity of rain，prin－ cipally in heavy thowers，yet hay was well faved，owing to great abforption and evaporation going on at the fame time，in conjunc－ tion with frequent fre勋 breezes－The leading clarracter of $A u g u / t$ was wetnefs；but as there were feveral freh breezes and mony fair intervals，more might have been done in works of hufbandry than was really effected．－The beginning of Sepember was re－ markably warm；and there were fome fuir days，though a dufty like hazinets of the air indicared much difengaged moifture，which ＂as confirmed by the hygronieter．Yet the rature of the weather was fuch in general，with refpeft to exemption from the moifture colleating in clouds，and good circulation by the winds，that ficid work might have been better performed by a little attention．－ In Oifcoer the rain was montly in frequent heavy fhowers；there were feveral fuir incervals；and there were feveral very ufeftul frefle lreezes－Hal of an unufual Gize fell the 1 the about 3 miles S．E．of Derry．－November was a cold，blowing month，with much denfe fogg，and frequent fevere fhowers of both rain and hail，yet the culd and windy weather，together with feveral fir dhys and diry intervals，anfwered an excellent purpofe to che f．rmer．－In one of the formy nights，the Grth，the large mpall wane was blown from the cupold of the Exchange， Lut no perfon was lurt－－Though the prevalent winds in Deronfer were from the cold poines，E．and S．E．with fome firart gates，et the degree of congelation was net proportionably keen－Gitele ran fed，but there was a good teal of furgy and hazy weather．

-
[359]

[^17]
POLITE LITERATURE.

[359].

Some OBSERVATIONS upon the GREEK ACGENTS. By - ARTHUR BROWNE, E/q. Senior Fellow of Trinity College, Dublin, and M. R. I. A.

HAVING lately had an "opportunity of converfing with fome modern Greeks, it appeared to me, that it might not be unacceptable to the Academy to communicate fome obfervations which I made as to their mode of ufing and applying the accents, about the proper meaning and application of which fo. much controverfy has arifen.

To make thefe obfervations intelligible, I muft briefly recal to the recollection 'of the Academy fome of the moft celebrated opinions which have been urged concerning thefe accents, both as to their ancient exiftence and as to their ufe.

Grefvius, Stevens, and Ifaac Voffius in an exprefs treatife on the fubject endeavoured to prove them of modern invention, infifting that none are to be found in either infcriptions or manufcripts antecedently to the period of about 170 years before Chrift. Hennin imagines that they were the invention of the Arabians

[360]

fo late as the eighth century, and were ufed only in poetry, and intended to afcertain the pronunciation of the Greeks, and to oppofe the barbarifm of nations who raifed and depreffed the tone of the voice according to the cuftom of their own language without any regard to the true quantity of fyllables.* Wetfein, the learned profeffor of Bafle, in his Differtatio de Accentruum Græcorum antiquitate \& ufu, argues for the ufe of accents from the earlieft days, and thinks that when the mode of writing was in capital letters equi-diftant from each other, without diftinction either of words or phrafes, that accents noted by vifible marks were abfolutely neceffary to diftinguifl ambiguous words, and to point out their proper meaning.

The writers of the laft century were no lefs divided as to the ufe of the accents than as to their antiquity ; fome infifting that they marked tones or intonation-the raifing or lowering of the voice in pronouncing certain fyllables of words; while others confound them with quantity, or at leaft afferted that quantity was influenced or affected by them.

These difputes have been revived with no fmall ardour in our own times. About 1754 , a learned anonymous treatife appeared
upon

[^18]
[36 r]

upon accents, denying their antiquity and fupported by numerous arguments and quotations. About fix years afterwards Mr. Fofter's celebrated work appeared, ftriving to prove that they were only marks of intonation, and in 1764 was publifhed the Accentus Redivivi of Mr. Primatt, afferting their antiquity, and admitting that they do affect metrical quantity, in fo much, according to his opinion, as to be deftructive of it.

From this laft opinion it neceffarily followed, in his opinion, and that of many others, that however it may be right to ufe them in profe, they are not calculated to regulate the recitation of verfe; and hence the common dictum which is fo often heard from the fons of Oxford and Cambridge, that we are to read by accent in profe and by quantity in verfe.

About ten years fince a fmall work appeared, but of great erudition, fuppofed, and now I believe not denied, to be written by 2 learned prelate of the Englifh church, entitled De Rhythmo Græcorum; and at a much later period, a Treatife on the Profodies of the Greek and Latin Languages, afcribed to another celebrated prelate on the Englifh bench, and fraught with abundant learning, and intimate knowledge of Greek literature. In the firft work I would only at prefent refer the reader to the fifth chapter, where the author oppugns the opinion aliam effe in foluta oratione fcanfonem rbytbmicam, aliam in metris, in oppofition to Vol. VII. Z 2 Faber,

$\left[\begin{array}{lll} & 362\end{array}\right]$

Faber, Dacier, Pearce, Clarke and others; but from the latter it is neceffary to quote an obfervation or two to prepare us for an application of the facts hereafter to be mentioned. The very learned author, after contending for the antiquity of the accents, totally condemns the rule which has been mentioned, that we are to read by accent in profe and quantity in verfe, obferving truly, that it is not very probable that any people fhould bave had two pronunciations effentially different, one for profe, and another for verfe. He equally condemns the pofition that profe as well as verfe in Greek muft be read by quantity, that is, as he fays, by the Latin accent, and thinking that the Greek accentual marks exprefs the true fpeaking tones of the language, propofes rules of recitation on the bold fuppofition that tone was not always laid on connected words, where the accentual marks appear; whofe pofition however was not changed, to prevent the confufion which would follow from making the pofition of the written mark different in connected, from what it is in ifolated words: and he juftly cenfures the printing of books unaccented, one of which, an edition of Theocritus, had efcaped from the Clarendon prefs. He holds that though in placing accent, regard is had to quantity*, euphonix gratia, and though it therefore may be a fymptom of quantity, it is never a caufe

[^19]
[363]

of it, and never creates it ; and he calls the opinion of Mr. Primate and others, that the acute accent lengthens the tone of the fyllable on which it falls, a common prejudice. But he doth not deny. that accent will often be at war with quantity, unlefs tranfpofed in the manner by him recommended. Thus in the line

Althoveh I never could affent to a pofition fo ftrongly contradictory to the teftimony of my ear as that of the acute accent not lengthening the fyllable upon which it falls; and although my mind was much impreffed with a faying of Mr. Primatt, that it is one of the extraordinary powers of the acute accent, even to change the real quantity, and with his affertion, that the opinion of Meffieur de Port Royal, that the accent only raifes the voice but gives no duration in pronouncing, is falfe; I found myfelf difpofed to acquiefce in the fentiment that the accents denoted only tone, or elevation and depreffion of the voice: and this theory feemed to complete the perfection of the Greek language, apparently aiming at more accuracy, and greater freedom from ambiguity than any other language ever did; as to the time of an action by the variety of its tenfes, as to the number of agents by its addition of the dual, as to the object of the act by its three voices, as to the varying pronunciation of its tribes by its analyfis of the dialects, and as to the diftinction of words written and fpelt in the fame manner, by its accents. We know that fome nations, particularly the Chinefe, have fo ufed the accents. They have, fay

[364]

the miffionaries, but about three hundred and fifty words in their language.* Confufion is avoided by the accents, though thefe are not eafily diftinguifhed by an European ear; we knew that this muft fometimes have been the cafe in Greece. as in the inftances of Avà \& $\Delta \alpha_{0}$. The illuftration from our national and provincial accents is obvious \dagger.

It occurred to me, however, that it was very furprifing that no author on the fubject feemed to have taken the pains to enquire what was the pronunciation of the modern Greeks, or their mode of ufing the accents: is it that no inference can be drawn from their ufage, as to that of the ancients? this is eafily faid, but it has not been faid by any of thefe writers. The argument from the Italian pronunciation of Latin giving us no infight into that of the Romans, doth not apply; for the incurfions of barbarous fwarms, like fucceffive overflowings of the ocean, have wafhed away every trace of connection between the ancient and modern inhabitants of Italy, and perhaps there are more defcendants of the Romans to be found

* Others fay twelve hundred, and that the nouns are only three hundred and twenty.fix-all monofyllables. From the combination of thefe all their compounds arife. The Greek language has but about three hundred radicals. The Greeks, it has been faid, had but two accents; the acute never rifung above a fifth higher than the grave, thoogh it might lefs: the Chinefe many, with intervals much fmaller, and more exactly marked and limited.
+E.G. a vulgar Scotchman would fay whence cáme you, how yó you: a common
Irifhman, whence came you , how do you -and an Englih farmer perhaps would
cãame fay whence you. The firlt puts the acute accent on the middle word, the fecond on the laft, and the drave of the English farmer is marked by the circumflex.

[$3 \sigma_{5}$]

in other countries, for inftance, in Spain, than in Italy itfelf. Certainly the Spanifh language has more obvious affinity to the Latin than the Italian has. But the hiftory of Greece has been far different. Twelve hundred years have elapied fince the Weftern or Latin empire was overturned, but we muft remember that the Eaftern or Greek empire exifted till about 300 years fince, and down as late as the reign of Henry VII; and the Grecian people has not been exterminated, but remained ever fince, ufing its own religion and language, though in fubjection to the Turkifh yoke. It is the fame people, as mŭch as the Welch are fince they were cinquered by Edward the Firft, and I do not fee why their mode of pronunciation fhould be more altered. Twelve hundred years have elapfed fince Latin was a living language, but Greek is a living language to this day. I fpeak from my own knowledge when I fay, that the prayer books ufed by the Greek failors, the only defcription of men of that nation whom we can expect to fee here, are in ancient Greek,-they are able to read the ancient Greek authors, though from want of education not able to tranflate them fluently, and their letters written in modern Greek are eafily to be underftood by us, and differ from ancient Greek, allowing for the ignorance and uncouth ftile of a mariner, little more than one ancient dialect did from another. I fhall produce one to the Academy, now in my poffeffion.

Impressed with thefe fentiments I felt myfelf interefted, when I heard that a Grecian fhip, whofe feizure has fince been the occafion of a remarkable fuit in the Court of Admiralty, and of the confequent detention of the feamen for a confi-

[366]

derable time, had been driven by ftrefs of weather into the port of Dingle in this kingdom. This fhip, called La Madona del Cafo San Speridione, Captain Demetrio Antonio Polo, belonged to Patrafs, a town fituated not far from the ancient Corinth. The bufinefs of their fuit brought the captain and feveral of the crew to Dublin, and was the occafion of their remaining in this metropolis for a confiderable time. I took the opportunity of frequently converfing with thein, and though their want of erudition and information might feem an argument againft drawing any inference from their practice, to me it appeared the contrary, becaufe it gave me the unprejudiced and unpremeditated modes of pronunciation of perfons who could not underftand or know the reafons of my enquiries, or purport of my obfervations. The refult was, to my great furprife, that the practice of the modern Greeks is different from any of the theories contained in the books I have mentioned: it is true they have not two pronunciations for profe and for verfe, and in both they read by accent, and fo far confirm the theory of the learned bifhop, the lateft writer I have mentioned; But they make accent the caufe of quantity; they make it govern and control quantity; they make the fyllable long on which the acute accent falis, and they allow the acute accent to change the real quantity: in thefe latter refpects therefore they agree with Mr. Primatt, but they defert him when he therefore concludes that poetry is not to be - read by accent-they always reading poetry as well as profe by accent. Whether any inference can hence be drawn as to the pronunciation of the ancients, I muft leave, after what I have premifed

$\left[\begin{array}{ll}367 &]\end{array}\right.$

mifed above, to men of more learning, but I think it at leaft fo probable as to make it worth while to communicate to the Academy the inflances which occurred in proof of this affertion more particularly. Of the two firft perfons whom I met, one, the fteward of the fhip, an inhabitant of the inland of Cephalonia, had had a fchool education: he read Euripides and tranllated fome eafier paffages without much difficulty. By a flay in this country of near two years he was able to fpeak Englifh very tolerably, as could the captain and feveral of the crew, and almof all of them fpoke Italian fluently. The companion however of the fleward could fpeak only modern Greek, in which I could difcover that he was giving a defcription of the diftrefs in which the fhip had been, and though not able to underfand the context could plainly diftinguifh many words, fuch as $\delta_{\text {Evo }}{ }^{\circ} \alpha \sim-\xi \cup \lambda_{0 \nu}$, and amongft the reft the found of $A v \theta_{\rho} \omega \bar{\omega} \pi o s$ pronounced fhort; this awoke my curiofity, which was ftill more heightened when I obferved that he faid Av $\theta \rho \bar{\omega} \pi \pi \omega$ long, with the fame attention to the alteration of the accent with the variety of cafe, which a boy would be taught to pay at a fchool in England.*. Watching therefore more clofely,
and

[^20]
[368]

and afking the other to read fome ancient Greek, I found that they both uniformly pronounced according to accent, without any attention to long or Chort fyllables where accent came in the way; and on their departure, one of them having bade me good day, by faying $K \alpha \lambda \eta \mu \bar{\xi} \rho \alpha$, to which I anfwered $K \alpha \lambda \eta \mu \xi \xi_{\rho} x$, he with ftrong marks of reprobation fet me right, and repeated $K \alpha \lambda \mu \mu \varepsilon \rho \alpha$; and with like cenfure did the captain upon arother occafion obferve upon my faying Socrătes inftead of Socrātes.

I Now felt a vehement wifh to know whether they made the diftinction in this refpect ufually made between verfe and profe, but from the little fcholarmip of the two men with whom I had converfed, from the ignorance of a third whom I afterwards met, (who however read Lucian with eafe, though he did not feem ever to have heard of the book,) and on account of my imperfect mode of converfing with them all, I had little hopes of fatisfaction on the point, nor was I clear that they perfectly knew the difference between verfe and profe.

At length having met with the commander of the fhip, and his clerk Athanafius Kõoouos, and finding that the latter had been a fchoolmafter in the Morea, and had here learnt to fpeak Englifh fluently, I put the queftion to them in the prefence of a very learned College friend, and at another time, to avoid any error, with

[$\left.3^{69}.\right]$

with the aid of a gentleman who is perfectly mafter of the Italian language. Both the Greeks repeatedly affured us that verfe as well as profe was read by accent, and not by quantity; and exemplified it by reading feveral lines of Homer, with whofe name they feemed perfectly well acquainted.

I shall give an inflance or two of their mode of reading:

But when they read

They made the fecond fyllable of the firft word Kıves fhort, notwithftanding the acute accent: on my aking why, they defired me to look back on the circumflex on the firft fyllable, and faid it thence neceffarily followed, for it is impoffible to pronounce the firft fyllable with the great length which the circumflex denotes, and not to fhorten the fecond. The teftimony of the fchoolmafter might be vitiated, but what could be ffronger than that of there ignorant mariners as to the vulgar common practice of modern Greece, and it is remarkable that this confirms the opinion of Bifhop Horfley, that the tones of words in connection are not always the fame with the tones of folitary words, though in thofe of more than one fyllable the accentual marks do not change their pofition. I muft here add that thefe men confirmed an obfervation of Vol. VII.

[370]

our late revered and lamented Prefident, that we are much miftaken in our idea of the fuppofed lofty found of wo入uproíGaoro ${ }^{\top}$ Wa $\alpha \sigma \sigma v 5$; that the Borderers on the coaft of the Archipelago take their ideas from the gentle laving of the fhore by a fummer wave, and not from the roaring of a winter ocean, and they accordingly pronounced it Polyphlifveo Thalaffes.

I own that the obfervations made by me on the pronunciation of thefe modern Greeks brought a perfectly new train of ideas into my mind. I propofe them, with humility, for the confideration of the learned, but they have made a ftrong impreffion upon me, and approached, when compared with other admitted facts, nearly to conviction. In fhort, I am ftrongly inclined to believe, that what the famous treatife fo often mentioned on the profodies of the Greek and Latin languages mentions as the peculiarity of the Englifh, that we always prolong the found of the fyllable on which the acute accent falls, is true, and has been true of every nation upon earth. We know it is true of the modern Italians-they read Latin in that refpect juft as we do, and fay, Arma virūmqŭe cānŏ, and, In nōvă fert animus, as much as we. And when we find the modern Greeks following the fane practice, furely we have fome caufe to fuppofe that the ancients did the fame. In the Englifh language, indeed, quantity is not affected, becaufe accent and quantity always agree.* Biihop Horfley endeavoured

[^21]
[37 I]

endeavoured to prove that they did fo in Greek, but this is on the bold fuppofition that the accent doth not fall where the mark is placed. The objection to this hypothefis, which feems to have been admitted by all writers, and confidered as decifive by fome as to profe, by all as to verfe, is that fuch a mode of pronunciation or reading muft deftroy metre, or Rbutbmos. From this pofition, however univerfal, or however it may have been taken for granted, I totally diffent. 'That it will oppofe the metre or quantity I readily agree, but that it will deftroy the Rhythmos, by which, whatever learned defcriptions there may have been of its meaning, I underftand nothing more than the melody or fmooth flowing of the verfes or their harmony if you pleafe, if harmony be properly applied to fucceflive and not fynchronal founds. On the contrary, nothing can be more difagreeable or unmelodious than the reading verfe by quantity, or fcanning of it, as it is vulgarly called. Let us try the line fo often quoted-

Armă virrūmqŭe cănō, Trŏjǣ qui primŭs ăb ōris, inftead of Armă virūmqūe cānǒ, Trōjæ qūi prīmŭs ăb ōris, or, In nŏvă, \&c.

No man ever defined Rhuthmos better than Plato, ordinem guendam qui in motibus cernitur; the motion or meafure of the 3 A 2
verfe
hearing a native of Lucknow, but born of Perfian parents, who was lately in Dublin, Aburalib Khan, read an ode of Hafiz; accent and quantity always went together: Bedéh Sakée mei Bakée, \&c. \&xc. : with refpect to the pofition of the accent, Sir W. Jones remarks, that the Perfians, like the French, ufually accent the laft fyllable of the word, and the frength of accent which he has noted was remarkable in the gentleman I have mentioned, and almoft amounted to recitative.

[372]

verfe may be exact, and yet the order, arrangement and difpofition of the letters and fyllables, fuch as to be grating and unmelodious to the ear. In like manner the feet of the verfe may be exact, but the ftrefs laid upon particular fyllables of it which follows the quantity may totally deffroy the melody: in fhort, the radical error feems to be the confufion of quantity with melody, and the fuppofition that whatever is at war with quantity and metre muft be at war with melody.* I ardently agree with the praifes of the author of the Accentus Redivivi on the Scholiaftes ad Hephæftionem, that Rhythmus trahit tempora ut vult, \& fæpe breve tempus facit, ut fit longum; on which the treatife de Rhythmo Grecorum obferves, if this be true, plane actum eft de metris. I admit it if they come in oppofition to Rhythmos or melody. With refpect to profe I think this is acknowledged, why not with refpect to verfe? That it is acknowledged with refpect to profe, Dacier and Pearce argue from the famous paffage of Longinus, where he fays, that the paffage of Demofthenes fo
 dactyl rhythms. $\Psi \bar{\eta} \phi \sigma \mu \alpha$ then as pronounced by him was a dactyl, not a dactyl meafure, but a dactyl rhythm, and it is remarkable

* Ifpeak with much hefitation, however, when I recollect, that a moft revered and molt beloved, and truly great man*, who honoured me with his friendhip, and whofe lofs the world deplores, was of a totally different opinion, and once repeated to me, to oppofe mine, with much emphafis, thefe lines of the third book of the Odyffey:。

- The late Primate.

[373]

markable that the modern Groeks pronounced it in the fame way; how can it be otherwife if the acute accent be laid on the firft fyllable, $\psi \dot{\eta} \phi \sigma \mu a$. There is a daclyl then in written metre, and a dactyl in pronunciation, and the fame word hall when written, and when pronounced, be of different meafure. Apply the fame to verfe. $\Psi \boldsymbol{\eta} p r \sigma \mu=$ is an Antibacchius for the putpofe of the poet in meafuring his verfe, but it doth not follow that he may not pronounce it as a dactyl. I dare to fay if Longinus had been fpeaking, not of the mode in which Demothenes and all Grecians pronounced the word, but of the pes of the word, he would not have faid it was a dactyl. The poet in conftructing his verfe muft take the ryllables as he finds them, and has no power to alter beyond a very little poetic licenfe, for nude conftruction doth not admit of emphafis; but the fpeaker, or the writer are not fo confined, and it was probably to mark their variaens to the barbarous nations which overwhelmed Greece that accents were introduced, if they realiy were introduced at fo late a period.

To illuftrate what has been faid, let any man try how eafy it is to make a verfe in perfect meafure that thall be grating or unmufical to the ear, and another without meafure, agrecable and mufical. For inftance, who can difcover mufic in this line,

O Fortunati Mercatores, gravis annis, or who would know it was poetry without being told fo.

$\left[\begin{array}{ll}374\end{array}\right]$

Colitur Hybernia Divis virifque dilecta.
is a nonfenfe verfe which has juft occurred to my fancy, in quantityperfectly falie, but in found, perhaps, not unmufical; and this is the reafon why the Englith have wifely and properly chofen to read Latin verfe by accent and not by quantity, as I verily believe the old Romans did, becaufe they could not bear the found of the verfe when otherwife pronounced; would the profaic line before mentioned be improved by reading

O Fōr tūnātī Mēr cātō rēs gravis annis, ?
The French, though they apply the word accent differently from other nations, may, in my fenfe of the word, illuftrate my meaning; the reafon why the heroic verfe of the French appears fo intolerable to us, is, that we attempt to read it by quantity; it then comes out exactly like our twelve fyllable verfe, ufually with us confined to ballads, and the famous verfe of Corneille

Rome, l'objet unique de mon raffentiment.
dances on the ear exactly like
Ye belles and ye flirts, and ye pert little things.
But whoever vifits the French theatre will perceive no fuch ridiculous faltation of meafure, but a folemn and ferious cadence governed by accent, adapted to the fubject and to the fcene, which almoft prevents the auditors from perceiving that it is verfe.

IT will be here immediately faid, that I confound accent with emphafis: I do not; I include in the idea inflection of voice, but

[375]

in a fecondary manner. No perfon can, in my humble opinion, lay a ftrefs or emphafis on any fyllable without making it long, nor is it ever made long (I will not fay it is abfolutely impoffible, I fpeak of the fact) without either elevating or depreffing the voice. Let any man try to exprefs ftrongly the negative, I cannot, he will fpeak with an acute accent, elevate his voice, lay an emphafis, and prolong the fyllable. I remember a celebrated member of a houfe of parliament, not long ago, remarkable for his circumflex on this very word. Mr. Primatt highly commends an author on the accents, who fays, no elevation of the voice can be made fenfible in pronouncing, whatever may be done in finging, * without fome ftrefs or paufe, which is always able to make a flort fyllable long. I fay, converfely, that no ftrefs or paufe is ever made without fome elevation of the voice, either purely, i. e. in an acute tone, or mixed, that is, in an acute tone ending in a grave, and commonly called a circumflex.

It will be afked ${ }^{-}$then what is the ufe of metre or meafure in verfe, if we are not to read by it; and here is the grand diffculty, and I own with candor I cannot anfwer it with perfect fatisfaction to my own mind: to thofe indeed who fay we are to read by accent in profe, it may be equally alked what is the ufe

- The treatife on the profodies argues, that in mufic length of found and acutenefs of tone are not always united, and endeavours to confute Mr. Primatt, who attempts to account for this, without admitting that it can be fo in fpesking.

[376]

ufe of long or fhort fyllables in profe, if we are not to attend to them when accent comes in the way: but to gentlemen on the other fide, I can only anfwer, that in the firft place accent doth not always interfere, and then quantity is our guide, and accent often accords with quantity. Secondly, metre determines the number of feet or meafures in each verfe, and thereby produces a general analogy and harmony through the whole, and it is to be obferved, that, as I apprehend, accent doth not change the number of feet, though it doth the nature or fpecies of them. Thus when we read

Arma virumque cãno, Tröjr qui primus ab oris, we do not make more feet than when we fcan the line, nor employ more time than in pronouncing the next line in which the accent happens to accord with the quantity, viz. Italiam fato profugus, Lavinaque venit. Thirdly, The poet in meafuring his verfe certainly muft be confined to fome certain number and order of long and chort fyllables, in order to produce a concordance through the whole, and even to regulate the pofition of accent. which though not fubducd by quantity will certainly have fome relation to it, euphonix gratia; but furely the length or Chortnefs of a fyllable cannot determine where emphafis fhall be placed-that mult depend on the meaning and the thou ht; and it would be moft abfurd for the poet to fay to the reader, you flall not reft upon this emphatic and fignificative word becaufe its fyllables are fhort, and wherever there is a reft, there muft be length and intonation.

[377]

O_{N} the whole, then, I am inclined to conclude, not only that the ancient Greeks as well as the modern read both verfe and profe by accent, which, indeed, the learned bifhop before alluded to always infifts, but alfo, which he denies, that they fuffered the accents to control and alter the quantity; he does not indeed deny this, if the tones are given where the accentual marks are placed, but he denies that they were fo given. Dacier, Pearce and Clarke admit that they read profe by accent, not by quantity. The learned prelates contend that they could not have had a different mode of reading profe and verfe. I accept both propofitions, though without admitting their inferences,* and the combination of thofe propofitions proves my opinion, which however I do not advance dogmatically or decidedly, but with that feeling which I think becomes every member of this Academy, of wifhing to advance ufeful or ornamental knowledge by free difcuffion and the fuggeftion of fuch ideas as feem to him worthy at leaft of the confideration of the literary world. In the idea that accent muft affect quantity I have numerous fupporters as well as opponents. I only differ from the former in thinking that verfe muft ftill be read by accent. I fhall not trouble the fociety further but by the addition of a copy of a letter written by a Greek failor belonging to the fhip I have mentioned to the agent fent over here by the

Vol. VII.
Turkifh

* Of the former that verfe is not to be read by accent: of the latter, that though it is, its quantity is not thereby affected.

$\left[\begin{array}{ll}375\end{array}\right]$

Turkifh ambaffador to watch the intereft of the cargo, written in the prefent year, which the latter was fo good as to give to me to fhew the analogy between the modern and ancient language of Greece. It will be obferved that this humble maiiner ufes the accents with as much attention as any fcholar.

This letter fo much refembles ancient Greck, that we might almoft fuppofe it was fo, and that the writer had at fchool acquired this faculty; but Mr. Barthold, to whom it was addreffed, who perpetually converfed with the failors in modern Greek, affured me that it was entirely modern, and that he could not have correfponded or converfed in ancient Greek. Mr. Barthold had refided a long time in Conftantinople and in the Morea, and was perfectly well acquainted with the language of the modern Greeks. I never faw any book in modern Greek, but I know the New Teftament in that language was publifhed at Oxford in the prefent century, at the time when fome modern Greeks were brought there for education, who, however, by their exceffive idlenefs, difappointed expectation. But what fuppofition can be more ftrange than that a parcel of Greek failors, or any one of them, fhould choofe to correfpond in ancient Greek. And I have the pofitive teftimony of Barthold, that this letter is written in the common language of the country, and indeed he defired me to obferve the words introduced from the Italian, fuch as ton interefon; and if he had written it from his education at fchool, the termi-

[379]

nations and cafes would not be fo entirely foreign from the ancient. I cannot, therefore, doubt, efpecially when I compare it with the language I heard fpoken by all the crew, and when I mention that I faw the log-book of the fhip written in Greek which I could underfand, that this is a fpecimen of modern Greek: the dates and days of the month in the log-book differed from the ancient Greek in the fmalleft circumftance only, thus the
 I have another of thefe letters in my poffeffion much longer, with which I therefore have not troubled the Academy. I flall conclude with obferving, that thefe modern Greeks 'always for accents ufed the word $O_{\xi \in x}$, thereby confirming the opinion that there is properly no accent but the acute, the grave being the negative of accent; and we muft remember that the word $\pi \rho 0 \sigma \omega \delta i a$, in the ancient Greek language, is the term ufed for accents: which word, when tranlated into Latin, is accentus or ad cantus, implying elevation of voice, or a kind of fong, fuperadded or raifed on the common tone of the voice, and cannot apply to the grave, which is negation of any departure from the ufual level.

[380]

Tranflation of the Greck Letter on the oppofite Page: * Cork, 1799, Auguft 3d.

To the noble, rich merchant, Signior Barthold, humbly, worfhipingly, and lovingly.

On the 17th of the laft month I wrote to you a letter from Dingle, writing and exhorting you, that you would take care and better the intereft of me deflitute. That you might know how the other men grieved or held me, often fignifying to me, where againft me they fpoke every day at their mefs, that they would not have me; and I again appeafed them, calling and crying out, and to me they gave ear. I exhort you, if you love God, and for the fake of your children, to write me a letter, as how you know of your generofity, that I may have and know how I fhall conduct myfelf, and that I may convey the men to London, or may carry them to Dublin, and beg that I may have an anfwer how I fhall conduct myfelf, and I fhall as you may direct.

Thefe, and I remain an outcaft among the mountaineers,

> Your fervant, CONSTANTINE ANDRIA.

> The oppofite is a Fac Simile of the original.

Kıpuns- 279 H: angiss: 3 -
 Siniuas,' Seoourni, Kri' a
$" .7$ g' las: 27 - foे à

Fair to Kon usive, oeodvposs g's las seisa fáovas..-Dryoovas, wor garlin's

 návosogign, libuount, igr leabo wige ispuerr -

1

 \square
\square
 －路
．
\qquad

（P）

\square

\square
\square
\square

[^0]: * Dr. Prieftley's Hiftory of Electricity, p. 161.

[^1]: * Dr. Prieftley's Hiftory of Electricity, p. 165. + Ibid. p. 492.
 \ddagger Journal de Phyfique, Dec. 1787. §Journal de Phyfique, Juin 1790.

[^2]: * Cavallo's Complete Treatife on Electricity, Vol. I. p. 326.

[^3]: * Hiftory of Electricity, p. 253.
 \dagger Vol. I. p. 109.

[^4]: * Tranf. of the Society of Arts and Manufactures. Vol. 6, p. 130, \&c.

[^5]: * I fay 21 rather than 22, as Dr. Withering himfelf ftates it at 20,8.

[^6]: * The barofelenite in all thefe cafes was ignited, and he found that 185 grs . merely dried weighed after ignition 180 , confequently 100 parts of the merely dry lofe about 2,7 or 2,8 by ignition.

[^7]: * ${ }_{2}$ Chy. An. 1793 , p. 194. +21 An. Chy. P. 128. \ddagger ift. Chy. An. 1796, p. 128, 129.

[^8]: *. 2. Cliy. An. 1793, p. 200. . + 2 Klapr. p. 97.

[^9]: * Fourcroy, 2 An. Chy. 213 , flates the quantity of oxygen at 12,5 in 100 of muriated lead, but this is contradicted by the experiment of Mr. Wolfe, \&c. He moft probably means the muriated lead fctnied in the folution of a calciform ore.

[^10]: *Macquer's Elem. 389, Englifh. † Mem. Par. 1735, p. 664, in 8vo.

[^11]: * Mem. Par. 1786, p. 533.

[^12]: Vol. VII.
 Nn
 of

[^13]: * By an error of the prefs it is ftated in the original that $1207,2544:: 1000,1107$.

[^14]: * Wiegleb, uber die Alkalifche Salze 98.

[^15]: * Authors who have given this theorem have not been fo attentive to accuracy of demonftration as the importance of the theorem feems to require.

[^16]: * Since writing the above I find that Dr. Waring, at the end of his "Meditationes Analytice," fpeaking of " methodus deductionis \& reductionis," mentiuns this problem, and gives the three firf laws, in which indeed there is no dificulty; the fourth, the only one dificult to inveftigate, he does not give, nor does he mentior any ufe to which the problem may be applied.

[^17]: By RICHARD KIRWAN, E/q. L.L.D. Pref. R.I.A. and F.R.S.

[^18]: * This feems abfurd, becaufe the accents do not accord with quantity, and therefore would fo have fet them wrong inftead of right. No, the ufe of the accents mult have been to prevent their pronouncing always according to the quantity of the fyllable, and to thew them when the Greeks did not do fo.

[^19]: * For, fays he, the general found of the word will be more or lefs agreeable, according as fyllables at certain diftances from the feat of the acute accent are long or thort. Hence, if accent were placed without any regard to quantity, it would often feduce the fpeaker into a violation of quantity, for the fake of the general euphony of the word.

[^20]: * It will not be fuppofed that this man knew the rule, fi ultima fit longa, acuitur penultima, fi brevis, antepenultima. I cannot avoid here lamenting the total inattention to the rules of accent in our fchools in Ireland. Suppofe it to be an ufelefs part of learning, if cuftom in England has made it thought ornamental and neceffary, the Irih fcholar who is ignorant of it will be cenfured, however undefervedly. I have known men of high literary name in this country who did not know the meaning of the marks which diftinguilh encliticks, and gave to oxytones the very converfe of their real meaning. An Englifh fcholar who publibes a Greek clafic, could accent it without looking on an accented copy.

[^21]: * The great refemblance between the Perfian and Englifh languages, in many refpects, has been obferved by Sir W, Jones.-Here is another: I had the pleafure of hearing

