
$=-5=-$

$$
\begin{aligned}
& \mathrm{M}_{2}+ \\
& 2 \mathrm{Bi}
\end{aligned}
$$

$\mathbb{C l a r m o n ~ \supsetneqq u r s s ~ S t r i ́ s ~}$

A TREATISE

0 F

ELEOTRICITY AND MAGNETISM

$$
M A X W E L I
$$

㮩Oniont

``` MACMLLLAN AND CO.
```

```
FUBLISHERS TO THE UNJVERSITY OF
```

FUBLISHERS TO THE UNJVERSITY OF
9xOr0

```
    9xOr0
```


A TREATISE

0 N

ELECTRICITY AND MAGNETISM

HY

JAMES CLERR MAXWELJ, M.A.

> YOL , II

```
            Oxfori
```



```
    18%3
    [All wighls reseread]
    Stof. Fonnst FRadh
```


CONTENTS.

PARTIIT.

MAGNFMrs.

CHAPMER J.

SLESENTARY THEGET OF MAGNETISH.

AFt.

3r'2. Defmition of the axis of the magnet and of the ditection of magnetie Corev

1
373. Aetion of magnels on one nather. Lumy of magractic lotce .. $\quad 3$

37. Niture of the eviflente for the law of ranguetie force \&

377. The quantities of the opposite kinds of magretienn in a neagnet are alumy exactly equal
378. leftects wif brealing in maknet 5

380 . "Theory of magnetic "matter"
381. Nagnetization is of the maturo of a weot ="

383. Properties of it matmotic particle .. + $\quad .$.

385. Putential of a mangetized element of folume 9
386. Potential of n nutiget of finte size. Two expressions for this potential, correspouding respectively to the lhegry of pohnt zation, and to that of manghetice 'matter"
F89. Potestial energy of a magnet in any field of forcu 11
390. On the magnetie moment and tuis of a magnet 15

CONTHETE.

391. Fxpansion of the potential of a magnet in spluctical hacturonice
392. Thle eentue of at fugget and the primary ant sccombary axes through the centre
393. The noth end of a magret in this treatise is that which points morth, and the somiln end that which points south. Doreal nuacractisnin is that which is supposed to exist wear the north pule of the earth fund the south end of a magetet fatron maghetism th that which belongy to dre eothe pole of the eanth mul the nowth end of on magnet. Austral marguetism is considered positive
394. The dhection of magnetic foree is that in which nustral magnotism temats to mowe, that is, from sontly to mortit, and this is llat postive lirection of magystic limes of force. A magret is said to be nomgetized from its solath end townts its north eml.. 19

CHAPMPR IT.

MAGNZTLC FOKCE ANJ HAGNETLG IWFUCH1ON

395. Magretiu force defined witls refurence to the magnetic potentith 2
396. Magnetic forge in a cylintric cawity in an mothet uniformy magrantized parullel to the axis of the oglinder + . 22
397. Application to any magnet +* .. ** 22
398. Ar elongated cylinder-MLagretie foree* 23
399. A thin dish - Ingnetie juduction 23
400. Relation between maghetie force, anignelie induction, and mag-
metizathor 2.1
401. Line-integral of majmetic fored, or manchetic potential *. . 24
402. Sunfuce-integml of magnetic inductionr .. 25
403. Sulenoidal distrilution of matruetic induction 26
404. \$urtices fond tulues of margnetic induction
405. Tector-potential of macpuetic induction 27
406. Thehtituss between the senlar and the vectur-protentiall 28

CHAPTER $11 I$.

FARTVCULAR FOHAS OE MAGNHTS.

407. Dofinition of a magnetic solemoid

31
408. Definition of a complex solemond nud expression for its potential at ally proint 32
ATE.
ITamo
ITamo
409. The protent ball of a magrectie sleall nt, any point is the product of its strengeth multiphied by the solive angle its boundary sub) terds at the print
32
32
110. Another methoul of proof 33
411. The protential ut a proint on the positive side of a shell of strength of exceeds that on the nearest peint on the megative
31
31
112. Lanellar distribution of magnetisur
31
31
413. Complex lamellar distribution 3
14. P'otential of a solemoidal magnet 35
41 ci. Potential of a lamellar magret.
35
35
416. Vector-patemian of a latanllar magnet 315
 36
418. The soltil tuggla expressed by the length of n durve whe the eplace 37
119. Solid angle fomm lay tho line-integrations 38
420. Il expressel as a determinatat 39
421. The nolit angle is at cyelie function 40
422. Themy of the wetur-pobential of a closed entre $+1$
423. Potential energy of a magnotic shell pheed in a magnetic fichd 42
CHAPTER IV.
INDURJD MAONFTLZATION:
424. When a hody muder the action of magnetic furce becomes itself magnetized the jhenomeraon is called magnetic moluction 4.
125. Magretie induction in diftirent substances 45
426. Defintion of the corllicient of indured magemetization
47
47
427. Wathematical theory of magnetic induction. Poisson's methorl 47
428. Finaday's muthod 49
429. Case of a hody survounded by an magnetic median
51
51
430. Poisson's physicul theory of tho conne of hathemal magnetism 53
CHAPTER V

431. Thoory of a hollow spherical shell 56
432. Carse whels κ is large
58
58
433. When $i=1$
58
58
134. Corresponding ense in two dinensions. Tig. XY
69
69
435. Case of a solid sulnere, the cocthefents of magrelization leing difernat in diflement directions 60
Art. Juge
436, 'I lue nitae caelficients redaced to six. Frig. XVI 61
437. Theory of an ellipsoid acted on by anaform maghetie lorce 62
438. Cates of wery llat and of very long ellipsimils 6.5
 67
440. Methot of guprosimention to a solution of the general problem when k is very smath, Magoctic botlies tend towatds places of most intenge magnetic Joree, and diamaroetio bodies tend to plinces of weakest forco 169
441. On shiphs magnetism 70
CHAPIER VI.

42. Experiments indicating a maxinum of magnetizal fon $\overline{7} 1$
143. hedren's mathematiat theory of temporary maghetiation 75
Ad A. Bodilicntion of the theory to sceonme for residual magetization 50
445. Expatation of phenomana by the modilied theory 81
446. Mugnetization, demaghetization, and renagnetization 83
447. Fffects of magetization on the dimemsions of the magret - 85
448. Experimente of Jonle 86

CHAPTEE VII.

MAGNETIC MUASURFMEWTS.

440. Suspension of the magnet in 58
441. Methods of observation by mirror mind scale. Photographic \quad method.. 89
442. Frinciple of collimation employed in the Kew magnetometer .. 93
443. Deternination of the axis of at magnet and of the direction of the horizontal eonponent of the magnetic foree +o +o .. 94
444. Mensurement of the momant of a magnet and of the intensity of
the horizantal component of muguetic force..
445. Observations of deflexion 99
446. Methool of tungents ant method of sines 101
447. Onerwation of viluatens 102
448. Filinamation of the effects of marmetice induction o. 105
449. Statical methrod of mensuring the horizontal force 106
450. Bifilur suspensionn 10
451. System of observations in an observatory 111
452. Obserxation of the dip-einele .. +. 111
Art.
4t2. J. H, FBotnis thethsil of corvection РРй - 115 - 115
453. Joule's sukpension 115
454. Balnne pertieal boree maggetoneter+ 117
CHAPTIR V111,

- $16 \sqrt{3}$. Flements of the margictic foreo -. 120
46te. Conthination of the results of the magnetic survey of a conntry 121

467. Deduction of the expamsion of the magnetic potemtial oll the carth in spherical hamonicg 123
468. Detinition of the carth's magnetic Imoles. They mee not at the cxtrenities of the magratio axis. Fialeo poles. They do not exist on the chrth's surface 123
469. Ganss' culenlation of the 24 cochichents of the first four har- menics 121
470. Separation of external from internal canser of maynetic lorco 124
471. The solar and tunar variadions 125
472. The jueriodic wariations 125
473. The disturbances and their periond of II years 124
474. Reflexions on maghetic iuvestimulions 126
PART [V.
BhECTROMACNETISM.
CHAPLER I,
mhettomagemet forch
475. Orstell's cliseovery of the ation of on clectric curment on atmugnct128
476. The space now am elatric curtent is a margetic lield 128
477. Action of a vertiend cterent on a mughet. 129
478. Prow that the tore due to at efright eurrent of indefinituly great length warics inversely is the distance.. 129
479. Electromagutie measure of the curvent 130
Art. I'ugo
 of withy values 130
480. '1"he action of this curreat emanared with that of a matgetic side of thin edge to inflnity 131
481. A small circuit nets at a rament distane like at magnet 131
482. Deduction from this of the ation of of closed circuit of any form aud size on thy point pot, in the current itself 131
483. Comparison between the cirenit and a magaetio shell 132
485, Magnetic potertind uf alosed circuit 133
 133
484. Form of the magnetio equipotential surfaces due to at clesed envuit. Fig. XVII 134
485. Muluad action between ang system of mangets and a elosed current 135
486. Reaction on the circuit 135
487. Fored acting on a wire earying at curvent and placel in the magnetic fiekl 136
488. 'Theory' of electromagnetic rotations 138
489. Action of one clectetic ciruit on the whole or any rortion of thuther 139
490. Our methou of investigation is that of Faraday 140
404, 1llustration of the method apritied to parallel currents 140
491. Dinelesions of the unit of current 141
492. The wire is urged from the side on which its magnetic action strerghthens the magnelic force and towards the side on which it opposes it 141
493. Action of an infonite straight current on duy worvent in its phane 142
494. Statement of the Jaws of electromagnetic fures. Magnetic force due fo a current 142
495. Generality of these lews 143
496. Foree acting on a cireuit phaced in the magnetio field 141
497. Electromagnetic force is a mechanital force acting on the cona- ductor, not on the clectrie curvent itself 141

CHEPTIER II.

502. Amperen investigation of the law of force leeween the clements
of ebectre currents. 146
Arl． 14n里
503．His method of experintenting 146
504．Amperee＇s halance 117
505．Ampere＇s first experiment．Equal and opposito ctrrents net－ tralize eath ather 117
506．Second exproment．A eropket conductor is equixalent to is stmight one darying the same corrent． 148
507．Thind caperiment．The action of in elosed current as en ele－ ment of amother enrent is perjemationat to that element． 118
508．Fonrth experiment．Egual curtents in eystems geometrically similar produce cqual forees 149
 1 あ
510．Both eirenits may，howerer，for mathematicat parposes le con－ceived as consisting of elonurntary partions，athed the netionof the circuita as the resultant of the action of these elements151
511．Necessary form of the redations betwean two elementary portious of lincs 151
512．The geonetrical quantities which detemine their relatite posi－ tion 152
513．Form of the comporsonts of their matual setion 153
514．liesofution of these in three direct lutis，jarallel，respectively，wo the lime fointige them and to the chements themselves 151
515．Geneal expression for the netim ofl \＆fite emrent un the cle－ ment of another 151
516．Conditions furnished by Amperees thiod cafe of ofuthitutun 15
517．Theory of the dipectrix amd the deternitunts of electronymanic actions 354
518．Exprension of the deternimats in terms of the components of the vector－potential of the current 157
519．The part of the Fored which is indeterminate can lo expresseal as the spuce－variation of a potentinl 157
520．Complete expmeswion for the melion beeween wo hinde emments 158
5？ 2 ．Mutual protential of two closed currents ．I5 8
522．Appropriatencss of quateraions in tais iuvestigation －． 158
523．Determination of the form of the finctions lyy Ampere＇s foudfo case of equilibrinar ．． 159
524．The clectrodynmine and electromunetic units of currents － 1 占寊
525．Final expressions for dectromagheth fore betwen two de－ ments 160
526．Fone difftrent ardmissible forms of the theory ．Ifor
527．Or these Ampere＇s is to be preftreal ．．｜lin

CHAPTER III．

TNDUGTYON OF WLPGRTC CUMHEXTS

Art， l＇nyo
528．Faraday＇s discovery．Nuture of his methouls 162
529．The method of this treatise fousted on that of Faradiay ． 163
530．1＇menoment of magneto－dectric induction 164
531．General law of induction of curents － 166
532．Illustrations of the direction of induced currents 166
533．Inthection by the mation of the eath 167
534．The electromutive force due to induction does not depend on the unterial of the conductor 168
585．It has no temalcucy to move the comathetor 168
536．Felici＇s experiments on the laws of induction． 168
537．Use of the gullwanomer to determine the time－integral of the clectromative fore 170
5\％8．Conjugnte positions of two cuils 171
539．Mathenatical expression for the total current of induction ． 172
540．Faraday＇s conception of en clectrotonic state ．． 173
541．His method of stating the laws of induction with reference to the lines of magraetic force 174
542．The law of Lenza，and Neumann＇s theory of inductions 176
543．Helmholtz＇s deduction of induction from the mectamical action of curents ly the principle of conservation of energy ． －． 176
54．Thomson＇s application of the same principle 178
5 5it．Wreber＇s contrilutions to electrical seience 178
CHAPI＇ER IV．
ISDUCTIOX OF A CUMTERT OX ITEDLF：
546．Shock given by an electromarget 180
547．Apprent monnentum of electricity 180
548．Diflerewce betwern llis case and that of as tube contaning a curremt of water 181
549．If there is momentum it is not that of the moring clectricity ．． 181
550．Nevertheless the phenomena ate exactly analagous to these of mionentum 181
551．Au eledric current has energys，which may be called electro－ kinetic energy 182
552．This loads us to form an dymanion theory of clectric cemrents． 182
CHAPTER V.
GPRETAJ EQUATIONS OF DYPAMTCS,
Art.
Innex
Innex
Innex 553. Jagrange's metlowd furnishes nppropriato inleas for the study of the digher dymamical sciences 18.4
-54. These bidens must the transtated from mathematical into dy- ramical langunge 181
555. Degreen of freetiom of a connected system 185
556. Genemalized menning of volthity 186
$5.5 \overline{7}$. Genemalized menning of force 186
558. (Generalizol meaning of momentum and impulse 186
559. Work done hy a emall impulse 187
560. Kinetie energy in ferms of momenta, (T_{p} 188
5(i). Hamilton's equations of motion 189
562. Kinetic energe in terms of the velocities and momen u. $\left(T_{p}\right.$) 190
563. . Kinetie etreggy in terms of pelocities, $\left(T_{9}\right)$ 191
564. Relations between T_{n} and T_{4}, p and $/$ 191
565. Moments and products of itertia anal molility 192
56G. Necossary conditions which these coefliecents must satisfy 103
567 . Relation latween mathematienl, dymmieal, and electrical jdeas 193
CHAPTER VI.

568. The electric enrrent possesses onergy 195
569. The current is a limetic phenomenons
195
195
570. Work done by electromotive forec 196
571. The most general expression for the kinetic energy of a system including electric currents 197
572. The electrical varinhles do not appoar in this expression 198
573. Mechamical force aeting on a conductor 198
574. The part depending on products of ordinary velocities andgtrengthe of currents does mot exist200
575. Another experimental test
202
202
57G. Discussion of the electronnotive force 204
577. If terms involving prohncts of velocities and currents existed they would introduce electromotive forces, which ne not ols- servol 204

CHAPTER VII.

FLTUTROKTAETME

278. The electrokinetic energy of a system of linear circuits 206
279. Fledromotive furce in each circuit 207

581 . Cuse of two civeults 208
280. 'Theory ol' induced aurtents 205
281. All the plenomenat of the mathal aution of two cirenits depend210on a single quantity, the potential of the two circuits210
CHAPTER VIII.

211
282. The elactrokinetic momeutum of the secondiny cireuit 211
283. Expressel as a litu-intergryl- 211
284. Ans system of contighous circuits is equivalent to the circuitformed ly ${ }^{\circ}$ their extcrior boundary212
285. Liectrokinctio momentum expressed as it surface-integral 212
286. A etooked portions of a circuit cquivalent to astraight portion 213
287. Eitectrokinetic momentum at a proin expressed ns a vectur, 5 214
288. Its relation to the magnelit induction, Equations (A) 214
289. Tustification of these momes 215
290. Conventions with respect to the signs of translations and rota-
tions 216
59.4. Theory of a sliding pisue 217
291. Elechomotive force due to the motion of a contuctor 218
292. Plectronagmetic foree on the slithyy piece 218
293. Four defisitions of a line of magnetice induction 219
294. General equations of electronative force, (B) 219
295. Analysis of the electromotive fore 222
296. The general equations refervel to moving axes 223
297. The motion of the axes changes nothing but the apparent value of the electric potential 224
298. Electrumationctic furce on a conductor 224
299. Electromagnetic forco on an clement of a conducting booly. Equations (C) 226
CHAPTER IX.
GFNFRAT HRUAMIONS.
300. Recapitalation 227
301. Equations of maguetization, (D) 228
302. Trelation between magretic force and electric cuments 229
303. Etuations of electric cursemts, (E) 230
304. Equations of electric disphacement, (F^{2}) 232
Art．
pragn
pragn
6o9，Jiquations of electride condentivity，（G） 252
G10．Wquations of total curvents．（H） 232
6］1．Curtents in terme of electromotive force，（l） 233
612．Filume－densiby of free glectricity，（J） 233
（i13．Surface－ilensity of fiee electricity，（K） 233
G14．Espations of mumpetic permeability，（L）． 933
61点．Atupures theory of magnets － 234
GlG．Eloctrig envronts in termes of checrokinetio momentur ．． 231
617．Yedor－potentat of electric enments － 236
018．Quateraion expuressions for electomax gnetic quantitios ．． 235
Q19．Quaternion efpations of the electromargetic fied 237
CHAPILR X．
DHMFNBTONG OF FLTOTRIG THSTS．
020．Thworystems of units 239
gel．IThe twelve primatry pataties 239
622．Fillew melations among thoes quantities ．． 240
623．Dithensions in terms of［e］and［mi］． 嵒 41
624．Reciprocal properder of the two systems － 241
（125．The elechrostatie and the olectromagnetie syetems 2d1
620．Dimembions of the 12 quantities in the two systems －． 242
627．Thesix deriberd units － 243
628．I＇he ratio of the corresponding units in the two systems ． 2.5
629．Practical system of electric units．＇fable of practical units． 244
CHAPTLR XI．
EXEACY ANT ETEFSC
630．The eleatrostatic energy expressed in terms of the frec electri－ city and the potential 2413
5．31．The electrostatio energy expressed in terms of the clectronutiwe force and the clectric displacoment 246
632．Magnetic energy in terms of magnetization mad manmetic force $24 \overline{7}$
 247
Li34．Filectrulsinetie enengy in toms of blectric momentun and electric currevet 248
 notic fores 246
（3）ft．Metliod of this trextise 2」！
637．Marmetic energy nud electrokinetie enexyy comphat 219
638．Mngbetic mergy retheed to electrokiactic euncgy 250

305. Electromagnetie force due to and electric curvent passing through it
Q41. Explamation of these forces hy the lyppothesis of stress in a medium
306. General chnacter of the stress required to produce the phenoтеиа
6al3. When there is no maghetigation the stress is a tension in the direetion of the lines of magretic fore, combined with a pressume in all directions at right angles to these lines, the magnituale of the tension and pressure being $\frac{1}{8 \pi} \sqrt{5}^{2}$ where 5 is the magnetic foree
orce neting ou a comductor carryugg a carrent 257
Q44. Force netine ou a conductor carrywg a carrent "A -.
307. Numerical walue of magnetic temsion 258

CHAPTER XII.

CURTRST-SHELTS.

647. Deflusition of a current-shect *. .. 259
648. Curvent-finction 259
649. Electric potential

260
650. Theory of stemly currents 260

G51. Case of uniform conductivity 260
652. Magnetic action of a current-sheet with closed currents

261
653. Marguetice potential alue to a current-skect i. 262
654. Induction of currents in a shect of infuite conductivity .
655. Such a sheet is impervions to magnelice action

Cā5. Theory of a plane charent-shect

$$
263
$$

65 . The magnetic fanctions expressed ns alerivatives of n single function.
(0088. Action of a varialile magnetic system on the gheet **
(i59. When there is no external netion the curevts decny, and their
fix9. When there is no extermal action the curents decny, and their
magretic action diminishes as if the sheet had moved off with magractise action dimmishes as if the se. .. consthint welocity R
Whe currents, excited by the instantaneone introduction of a magnefic Eystens, produce an effect eguivalent to nu image of that system
661. This junge moves away from its original position with relocity R
D62. Trail of images fomed lay a magnetic system in contimons motion
Art. 10
663. Menthematient wapression hon the efthet of the indubed numernts 264
66-1. Case of the uniform motion of a margetic pentes 869
665. Yalue of the force acting on the magnetic pole 270
66t. Case of enruilinear mution 271
fifi7. Chase of motion hear the elpere of the sheet 271
668. Theory of Aman's motating disk
669. Trail of images in the form of a helix 271
(670. Spheriwal eurment-sheets 275
671. 'Whe vector-potential 27 t
672. 'Tr prothec a field of constumt mugnetion force withite aspherval shell 297
653. Tho produce in comstant limede an anspented cenil 27
d.7. Cursents parallel to a phame 278
(i75. A phane electris cirmit. A apluerical shell, An allipghidnl shell 279
fi76, λ solenoil 280
gī̄̀. A. long eolemid 281
1378. Force mfir the carls 292
lifo. A pair of iarduetion caris 282
li80. Propher thitelaess of wive 28.3
1:81. As andless solenoid 281
CHAPTER XII.
Bathtales ghemerym
G83. Oylimitrical eomhetors 2815
 on the whole corrent through it 287
(i8.1. The vecter-potential 288
685. Tinetic energy of the current 28.8
686. Tepankion hetween the dirent and the retumentent $28!$
687. Tension of the wircs. Ampere's experiment 28.1
the8. Self"iadantion of a wire thonbed on itsell - 290
689. Currents of varyinge intersity in a cylindrie wire 591
 595
891. Geometrital mems diatinse of two figures in athone $3 \mathrm{~m} \mid$
the2, Particular conse $29 \cdot 1$
4993. Appliention of the methorl to at coril of iasulated whes 294
CHAPTLR XIV.

69\%. Solid nagle subtemed lay a circle at noy point 301
rol. 1 It b
Art. Page
G96. Potential energy of two cireular currents 302
697. Moment of the couple acting luctween two eoils 303
698. Walues of Q 303
699. Attraction between two paratlel eircular charents 304
700. Calculation of the coeflicients for at coil of finite section $30 \cdot 1$
701. Potential of two paralle circles expuested by elinptic integrals 305
702. Limes of forec ronnd a circular entrent. Fig. XVLII 307
in3. Differential equation of the potentint of two circles 307
70.s. Approximation when the cireles are very near one wrother 309
705. Futher approximation 310
70f. Coil of maximun elff-iduction 311
CHAPTER XV.
ELECTRORAGNETIC [NGTHUMENTS.
707. Standard galvanometers and sensitive galwanometers 313
708. Construetion of a staudard coil 314
709. Mathematical theory of the galvanometer 315
710. Prineiple of the tangent gralwameter and the fine galvano- meter 316
711. Galvanometer with a single coil 316
712. Gatugain's eceentrit suspension 817
713. Helmholta's double coil. Figy XCX 318
714 . fadmanometer with four coils - 319
7h. Calwanometer with three coils - 319
716. Proper thithess of the wire of a galvanometer - 321
717. Sensitive galwometers 322
718. Theory of the galwamometer of greatest sensilatity - 322
719. Jaw of thickness of the wire 323
720. Galvanometer with wire of uniform thickness. - 325
721. Suepeaded coils. Mode of suspension 326
T22 2 Thomson's sensitive coil 326
723. Determination of magnetic force by means of suspented coil and tangent galvanometer 327
i24. Thomson's suspended eoil and galmonoter combined 328
725. Weber's electrodynamoneter 328
726. Jonle's current-weigher 332
727. Suction of solenvids - 333
728. Uniform forec normal to susponded coil 388
729. Electuolybanometer with torsiot-arm -. 334

CHAPTER XV7.

FDAECTLOMAMEHTIC OASEAVATIONS.
ATL
7.30. Ollambution of vilmations lans
731. Motion in a logartumie spiml 335 335 336
732. Rentilinear occillations in a ressistig medium
733. Talues of successive elongations 587 587
338
338734. Data and !uresita
33.8
735. J'osition of equilibnum deteramed from the sucessive vlon- gationes 338
736. Determination of the fognothanic decrement. - 334
735. Whes to stop the experiment - 339
738. Determitution of the titno ofl vilpration from three transits $+\quad 13!1$
739. Two हeries of ohservations 340
70. Correction for suplithode mand for demping - 311
741. Dend lant galyammeter - 311
742. The mensure at cohssand. current with the gal wamometer 312
813. Best augle of aleilexion of a thagent galvinumeter 213
 313
Thb. Measurement of a current by the first wongation 314
 315
T.17. Wethod of maltijhication for feeble curvents 315
7.98. Measurement of atransient chnrent by firat elangation -. $3-46$
740. Correction for damptug 347
 3.48
F5L. Methoul of multiplication 350

CHAPTER XVII.

752. Electrical measurement fometimes more acenate than direct midesurament
352
352
753. Determantion of θ_{1}. 353
754. Determination of $/{ }_{7}$ 304
755. Determinathors of the mututh ithinction of two coila 354
75G. Determithation of the self-iadaction of a coil 356
756. Compurison of the sell-ituluction of two coils 357

CHAPTER XVIH.

T58. Definition of resistamed 3.8
7.59. Kirelhoff 's methent 358
Art.
Tho. Weber's anethod by thasicnt currents ?Fage
761 . Lis methoul of obsenvation 361 361
762 . Weber"e methocl by danping 361
T63. 'JYhomson's methot by a revolving coil 364
764, Mathematical theory of the revolving coil - 364
765. Galculation ul' the resistanue 30.5
760. Correetions 366
767. Jonles calorimetric methow 367
CHAP'HR XIX.
COMPARISON OF JLLECTROSTATIC WIPTI PLPCTROMAGNETIG UNITG,
768. Nature nud inuortance of the invertigation 368
769 . The ratio of the units is a veloeity 369
770. Current by convection 370
771. Weleer and EKolilrausch's method 370
772. Thomson's method by separate electrometer and electrodyua-moncter ..372thod by combined elcetrometer and electrodyna-773. Maxwell's method by combined elcetrometer and electrodyna-mometer .372
774. Electromagnetic measurement of the capacity of acondenser.Teukin's method373
$8{ }_{3}$
775. Method lay aut intermittent current
37
776. Condenser aud Wippe as an arm of Wheatstone's loridge376
777. Correction whers the netion is too ratid
or a
or a 377
778. Capacity of a condenser compared with the self-induction of a
778. Capacity of a condenser compared with the self-induction of acoil..
759 . Coil and condenser conbined 379
780. Flectrostatic mensure of resistance compared with its electro- magnetic measure 332
CHADTER XX.
ELEOTROMAGEETIC FHEOKY OF TAGIIT:
781. Comparison of the properties of the electromanetic mediumwith those of the medium in the mutalatory theory of light383
789. Energy of light during its prophention 384
783. Equation of promgation of an electromagnetic disturlance 381
784. Solntion wheu the medium is a non-conductor - 386
785. Clamacteristics of ware-propagation 386
786. Velocity of propagation of electromagnetic distrurdances 387
787. Comparison of this welocity with that of light 387
Art.
Prive788. The specifice inductive capacity of a dielectrie is the square ofit: jndex of refraction388
789. Comparison of these quantities ius the eare of parallin 388
700. Theory of plane waves 389
791. Itre electric displacement and the magnetie disthrbmee are in the phane uf the wate-front, and perpendicular to com other 390
792. Energy and stress cluring radiation 391
793. Pressure exerted by light 301
79.4. Tequations of motion in on eryatallizeql medium 392
795. Propagation of phane wayea 39.3
706. Only two wayes are propagnated 393
797. The theory agrees mith that of firesne? 394
708. Redation hetwern electric conductivity mat opacity 394
799. Comparismi with lacts 395
800. Trang parent metals - 395
801. Solutions of the equations wher the medithats an condation 395
802. Cuse of an influite mediam, the juit ial state beidgy givert 396
803. Clatreteristics of diflusion 397
 to flew 397
805. Rapial approximation to an ultianate state 398

CHAPrell XXI.

MAGNETTC ACTIOX OS LIGHT.

80G. Fossible Forrus of the relation hetween manetisan and light 309
807. Tre rotation of the plane of polarization ly magnetic actions 400
B08. The laws of the phenomem
400
809. Verdet's discorery of negrative rotatiors in forromagnetic medin 400
810. Rotation profuced lyy quartz, tappentine, de., inulependently of magnetism J01
811. Kinematical analysis of the phenomem 102
812. 'Ihe velucity' of at circulurly-polarized nuy is diferent aceording to its direction of rotation 402
813. hight and left-Janiled mys 403
814. In media Which of themselves have the rotntory property the whocily is diftereat fur right and lef-handed configurations 103
815. In madin acted on lyy magnetism the relocity is different for opposite directions of rolations 40.1
810. The luminiferouy disturbance, mathematically considereat, is avectur 104
817. Kingmutic equations of circularly-pularized light 405
AtL. 1race
818. Kinetic amd potential coerge of the medimm 406
819. Condition of wave-propagation 406
820. The action of magnetism must depend on a real rotationi about the direction of the magnetic force as an axis 407
821. Statement of the resulds of the amalysis of the phenomenou 407
822. Hypothesto of mulecular vortices 408
823. Wariation of the vortices actorthig to Helmholtz's lnw 409
824. Wariation of the kinetic energy in the disturbed medium 409
825, Lixpreseion in terms of the current and the relocity 410
82 (i. The kinctic energe in the case of plane waves - 410
827. The equations of molion 411
828. Telocity of a circularly polarized tay 411
829. The naygnetic rotation 412
830. Researches of Verdet - 413
831. Note on a mechanical theory of molecular wortices 415
CHAPTER XXI.
RHECTERO TIEORE OF MAGYETSM
832. Magnetisu is a phenomenon of mokenles 418
838. Tlle phemomena of magretic moblecules may be imitated by electrice curvents 419
834. Differmee between the elementary theny of continuous magnets suel the theory of molecular curvents 419
835. Simplicity of the electric theory 420
836. Theory of a eurent in a perfectly combeting civenit 420
837. Case in which the curvent is entirely due to intuction 121
838. Weber's theory of diamagnetism 421
839. Maguecrystallic induction.. 422
840. Theory of a perfect condrector 422
841. A medium containing perfectly conducting spherical molecules 423
812. Meelanical action of magnetic foree on the current which it excites 423
845. Theory of a molecule with a primitive curpent 424
844. Merifications of Weber's theory 125
845. Cunsequences of the theory 425

CHADTER XXIIT.

946. Quantities which enter into Amphre ${ }^{+}$P Cormula -. 426
8.17. Relative motion of two elentric particles 420
$A H_{t}$

947. Tuto new forms of Amper form Thery i. 127
948. Thew torms of Ammere's formulit .o 128
949. Two different exprestons for the fore lietwech iwo aledric
particles in motion 428
950. These are the to Gtatss and to Wher regrectively ..
951. Alt forces must he consistent with the frinciple of the dotzservation of energy
952. Welner's formola is consistent with in 429 Gritues is noth
8.as. Telmbinlte's dedpetion from 424

8iad. Telmbite stednetions from Weter's formulan 430
855. Potential of two elrments.
.. 131
850. Weleer's theory of the imatuction of electrite charrants .. \quad.. 131
857. Segrecratiag force in on comituctorn.
858. Case of moviseg comatuctors

8is. The formula of Gauss leade to an erroneous resilt ...
860. That of Weber agrees with the phenomenat on
860. Meflem of Chuss to Weber .. 8
862. Theory nil lifemman ..
$\begin{array}{llllllllll}\text { B69. Theory of O. Nemmaur } & \text {. } & \text {. } & \text {.. } & 135 \\ \text { Bis. Theory of } & 7 \text { an }\end{array}$
B15. Theory of Tevii

86ig. The filea or a medium cantuot be gat rid of

PART IJ.

MAGNETISM.

CHAPTER I.

BIHEMENTARY THHORY OR MAONETISM,

371.] Cempan bodies, as, for instaner, the iron ore called landstome, the eath itself, aut pieed of sted which have been subjected to ectain freatment, are found to possess the following projerties, aud nee enlled Magmets.

If, near any part of the earth's surface except the Magraetic Poles a magnet be suspended so as to tum Preely almout a vertical axis, it will in genemal bend to set itself in a eertain azimuth, and if disturbed from this pusition it will oseillate alhout it. An ummagnetzenl body lats no such tendeney, but is in equilibrium in all namuthes atike.
379.] It is found that the foree which acts on the body temals to fanse a certain lime in the body, atled the Axis of the Magnet, to become paraldel to a cortain line in space, colled the Direction of the Magrelie Force.

Thet ns suppose the magnet sinspended so as to be freo to turn in all directions abont a fixed pinint. To diminate the action of its Weyht we may suppose this print to he its centre of gravity. Let it come to a position of expalibriam. Mark two points on the magnet, and mote ilomir positions in space. 'Then lof the ansghet be placed in at new position of equilibriom, and mote the frasitions in space of the two marked pointes on the marenct.

Since the axis of the magret comedes will thee diredion of magnetie force in lroth jositions, we have to find that line in the magnet which occrapies the same position in space bofore and

[^0]after the motion. It appears, from the theory of the motion of bodies of invariable form, that such a line always exists, and that a motion duivalend to the netual motion might have taken place by simple rotation round this line.

Tho find the line, join the first ant last positions of each of the marked points, and draw phanes bisecting these lines at right angles. "The intersection of these planes will be the line required, which indteates the direction of the axis of the magnet and the direction of the magratie fores in space.

The mathod just described is not convenient for the practical determination of these directions. We shall return to this subject when we freat of Migmetic Measurements.

The ditwetion of the magnetie fore is found to be diblerent at different parts of the earth's surface. If the end of the axis of the magnet which points in a northerly dircetion be marked, it has been foum that the direction in which it sets itself in general deviates from the true meridian to a considemble extent, and that the marked end points on the whole downands in the northern hemisphere and upwards in the sonthern.

The azimuth of the direction of the magnetio fored, measured from the true moth in a westerly direction, is called the Vathation, or the Magnetic Declination. The angle between the direction of the magnetic force and the horizontal plane is called the Magnetic Dip. These two angles detemine the diection of the magretic force, snd, when the margetie intensity is also known, the magnetic fore is completely determined. "The determination of the values of these three elemunts at different parts of the earth's surface, the disenssion of the manmer is which they vary tecording to the ${ }^{p}$ lace and time oll observation, athd the investigation of the causes of the mannetic force and its wariations, constitute the selence of ${ }^{\text {" }}$ Terrestrial Magnetiem.
373.] Let us now suppose that the axes of several magnets have been determined, and the end of each which points north marked. Then, if one of these be freoly suspended and another bronght noar it, it is lound that two marked ends repel each other, that a marked and aus mmarked end athenct each nother, and that two unmarked ends repel cach other.

If the magnets are in the lorm of long rods or wives, uniformly and longitudimally magnetized, see below, Art. 384, it is found that the greatest manifestation of force occurs when the eut of one magnet is held near the end of the other, and that the
phenomem ean be necomated for loy supposing that tike ende of the magnets repel each other, that mulike ends attract ench otlow, and that the intermediate prits of the magnets have no sensible mukual aetion.
The ends of a long thin magnet are comsmonly enlled its Poles. In the case of an indefinitely thin mangel, unifirmly magnetized throngltont ita length, the extremitios aet. as cemeres of foree, mil the rest of the magnet appears devoid of magnetic action. In all actual magnets the magretization deviates from uniformity, so that no single points can lee akken as the poles. Contonts, hawever, by using long thin rods magnetized with oare, succeeded in establishing the law of force between two magratic poles *.

The rejrubsion between two matyrecic poter is in the struight line joining

 them, and is nomericolly equal to the prodnet of the strengthy of the poter divided by the spuare of the distertece betreen them.374.] This law, of course, nssmemes that the strengeth of cach pole is mensured in terms of a certain mit, the magnitule of which may be deduced from the ferms of the haw.

Tha nuit-pole is a pole which pointe north, and is such that, when phaced at unit clistatice from another unit-pole, it repels it with unit of force, the unit of foree being defined as in Art. G. A pole which points sontlı is reckoned negrative.

If m_{1} and m_{a} aro the strenglhs of (wo magnetic poles, l tho distance between them, and $/$ the forey of repulsion, all expressed mamerically, then

$$
f=\frac{m_{1} m_{2}}{l^{2}}
$$

Bunt if $[m],[L]$ and $[F]$ be the concrete units of magractic pole, length and foree, then

$$
f[H]=\left[\frac{m_{1}}{h_{1}}\right]^{2} \frac{m_{1}}{m_{1}},
$$

whence it follows that

$$
\begin{gathered}
{\left[m^{2}\right]=\left[L^{2} / H^{2}\right]=\left[L^{2} \frac{A / H}{T^{2}}\right]} \\
{\left[m^{2}\right]=\left[L^{2} J^{\prime-1} M^{4}\right] .}
\end{gathered}
$$

The dimensions of the unit pale ate: durefore $\frac{3}{3}$ as regards length,
 ate tho same as those of the electrostatie unit of electricity, which

[^1]375.] Phe accuracy of this han may be considered to bave been estathtishod by the experiments of Coulomb with the Torsion Balance, and confimed by the experiments of Ganss and Weber, and of all observers in magnetic observatories, who are every lay making neasurements of magnetic quantitics, and who obtain results which would be inconsiztent with each other if the law of foree had been erroneonsly assumed. Tt derives additional support from its consistency with the linws of electromagnetic phemoment.
376.] The quantity which we have hitherto ealled the strengily of a pole may also be cailed a "ututity ot "Magnetism.' providet we athibute no properties to "Magnotism' except those olverved in the poles of magnets.

Since the oxpression of the haw of force between griven quantities of 'Aagnetism' has exacty the same mathematical form as the law of torce between "puntities of "Electricity" of cqual mumerical walne, much of the mathematical treatment of magnetism must be simbar to that of ehectricity. There are, howerer, other properties of magnets which must be borne in nind, ant which may throw some light on the electrical properties of bodies.

Nelation bedween the Poles of a Magnet.

377.] The quatity of magnetism at one pole of a magnet is alwnys equal and opposite to that at the othery or more generally tuns:-

In every Magnet the totat quantily of Hagretism (reckoned algebraicalty) is zero.

Hence in a field of force which is uniform and paralled throughouts the space ocenpied by the magnet, the foree acting on the marked end of the magnet is exactly equal, opposite and parallel to that on the ummarked end, so that the resalkant of the fores is a statical couple, tembing to place the nxis of the magret in a detemmate direction, but not to move the magnet as a whole in any direction.

This may be easily proved ly putting the magnet irto a small vessel and floating it in water. The vessel will tum in a eertain direction, so as to lming the axis of the marnet as mear as fossible to the direction of 'Une certh's magnetie force, but there will be no motion of the vessel as a whole in ary direction; so that there can be no excess of the force towards the north over that towards the south, or the reverse. It may also be shewn from the fact that magnetizing in piece of steel does rot altex its weight. It does alter the apmant position of its centre of gravity, eassing it in these
latitudes to shift along the axis towards the nortl. The centre of mertia, as determined ly the phenomera of rotation, romains maltered.
378.] If the mildle of a long thin magnet be examinerl, it is found to possess no magnetic properties, hont if the mapnet be broken at tilat joint, each of the pieces is found to have a magnelie pole at the place of limeture, and this new pole is exactly equal and opposite to the other pole lothaging tor that piece. It is impossible, ether ly magnetization, or by breaking magnets, or by any other means, to procure a magnet whose poles are unequall.

If we breek the loug thim magnet into nomber of short pioces we shatl obtain a sertes of short magrets, each of "which hass polas of nearly tha same strength as thase of the original long mateot. Thas moltiplication of poles is not netessarily a areation of enerayy for wat mast remember that after breationg the maghet we have to
 for one atoliter.
379.] Lat us row pat all the pireces of the magrate togethere as it first. At emeh poind of jumetion there will be two poles exactly equal and of opposite limds, platem in contans, so that ifheir anited rution on any other pole will he mill. The macrent, thos ruhuth, has thewefore the sma" propmeties as ath first, namely two polus, onte at each end, equal and opposite to ench other, and the patt between these poles exhibits un mangetie setion.

Since, in this cuse, wo know the long rangred to bo made up of littlo short magnets, sual simet the fhenomenas fre the same as in the case of the matroken mapmet, wo may regned the makgat, even before being broken, as made up of smatl parlieles, wash of which has two eqnal and opposite poles. If wo suppose all matgets to be mader up of sueh parlieles, it is evident that sinee the algelmateal quantity of marnetism in each partiole is zoros the quantily in the whole magnet will also be zero, or in other words, its poles will lee of equal atrengith lat of opposite kind.

Theory of Mrennetic + Mather.'

380.] Since the form of the law of maghetie action is idextieal with that of clectric action, the sume reasons which can be given for altributing electric phenomena to the action of one "lluid" ar two "Ituids" ean also be next in farous of the existence of a magnetic malter, ot of two kinds of matgetie mater, fluit on
otherarise. In fact, a theory of magnetic matter, if used in a purely mathematioal sense, canmot fail to explain the phenomena, provided new laws are freely introdned to account for the actual facts.

One of these now laws must be that tho magnetie fluids cannot [ass from one molecule or partiche of the magne to another, but that the process of magretization consists in separating to a certain extent the two fluids widhin wach partiole, and eatoing the one fluid to be more concentrated at one end, and the other fluid to be more concentrated at the other end of the partiele. This is the theory of Poisson.

A particle of a magnetizatble body is, on this theory, matogons to a small insuhated conductor without charge, which on the twofluid theory contains indefinitely large but exactly equal quantilies of the two electricities. When an electromotive foree acts on the conduetor, it separates the electricities, causing them to become manifest at opposite sides of tho conductor, In a similar manomer, according to this theory, the magnetizing force canses the two kinds of magnetism, which were origionly in a neutralized state, to be separated, and to appear at opposite sides of the magnetraed particle.

In certain substanees, such as sofi iron and those maghetio substances which cannot be permanently magnetized, this magnetic condition, like the electrification of the condenctor, disappears when the indueing force is removed. In other sulhstances, such as hard steel, the mogretio condition is produced with difticulty, and, when produced, remains after the removal of the inducing foree.

This is expressed by saying that in the latter case there is a Coneive Force, tending to prevent alteration in the magnetization, which mast be overcome before the power of a magnet can be either inereased or diminished. In the ease of the electrified body this would corregpond to a kind of blectric resistance, which, rulike the resistance observed in metals, would be equivalent to complete insulation for electromotive forces below a certain walue.

This theory of magnetism, line the corresponding theory of electricity, is evidently too large for the finets, and requires to be restrieted by artificial conditione. For it not only gives no reason why one body may not differ from suother on account of having more of both fluids, but it enables us to say what would be the properties of a body containing an excess of one matometio flutd. It is true that in reason is given why snch a body cannot exist,
but this renson is only introduced as an after-thought to explain this particular fact. It does not grow out of the theory.
351.] We must therefore seek for a mode of expression which shall not be capable of expressing too much, and which shall leave room for the introduction of new ideas as these are developed from new facts. This, I think, we shall obtain if wo begin by saying that the particles of a magnet are Polarized.

Meaning of the term 'Polarization,'

When a particle of a hody possesses propertios related to a certain line of "lirection in the body, and when the hody, retaining these properties, is turned so that this direction is reversed, then if as regards other lonties these propertien of the particle are reversed, the particle, in reference to these propertises, is said to be polarized, and the properties are said to constitnte a particular kind of polarization.

Thus wo may say that the rotation of a horly abont an axis constitntes a kind of polarization, becence if, white the rotation continues, the direction of the axis is tarmed end for and, the booly will le rolating in the opposite direction as regards space.

A condweting partiele through which there is a emrsent of eloetrieity may he snid to be polarized, because if it were farmed round, and if the carremt continued to flow in the same direction as regerds the particle, its direction in space would be meversed.

In shom, if any mathematieal or physical guantity is of the mature of a vector, ats dedinm in Art. 11, then any booly or particte to which this directed quantity or seetor leelongs may low ssid in ben Dolarized *, because it has opposife properties in the two oppssite directions or poles ol the directed guantity.

The poles of the earth, for example, have reference to its ratation, and have aecordingly different natmes.

[^2]
Meaning of the lerm' 'Magnelic Polarization.'

382.] In spenking of the state of the particles of a magnet as magnetic polarization, we imply that each of the smallest parts into which a magnet may be divided lus certain properties related to a definite direction through the particle, called its Axis of Magnetization, and that the properties related to one end of this axis are opposite to the properties related to the other end.

The properties which we attrithte to the particle are of the same kind as those which we obsurve in the complete magnet, and in assuming that the partieles possess these properties, we only assert What we can prove by breaking the magnet up into small pieces, for each of these is found to be a magnet.

Properties of a Magnetized Particle.

383.] Let the element $d x d y d z$ be a particle of a magnet, and let us assume that its magnetic properties are those of a magnet the strength of whose positive pole is m, and whose lengelh is $d s$. Then if P is any point in space distant r from the positive pole and r^{\prime} from the negative pole, the magnetic potential at P will be $\frac{m}{r}$ due to the positive pole, and $-\frac{m}{r}$ due to the negative pole, or

$$
\begin{equation*}
r=\frac{m}{m r^{\prime}}\left(r^{\prime}-r\right)^{2} . \tag{1}
\end{equation*}
$$

If $d s$, the distance between the poles, is very small, we may put

$$
\begin{equation*}
r^{\prime}-r=d s \cos \epsilon, \tag{2}
\end{equation*}
$$

where ϵ is the angle between the vector drawn from the magnet to I^{\prime} and the axis of the magnet, or

$$
\begin{equation*}
F=\frac{n h^{2} d s}{r^{2}} \cos \epsilon . \tag{3}
\end{equation*}
$$

Magnetic Moment.

384.] The product of the length of a uniformly and longiturlinally magnetized bar magnet into the strength of its positive pole is called its Magnetic Moment.

Iutensity of Maguetivation.

The intensity of magnetization of a magnutic particle is the matio of its magnetic moment to its volume. We shall denote it by I.

The magnetization at any point of a magnet may the defined by its intensity and its direction. Its direction may be defined by its direction-cosines λ, μ, v.

Componeats of Magnetization.

The magnetization at a point of a magnefi (being a vector or directed quantity) may be expressed in terms of its three oomponents referred to the axes of coordinates. Calling these A, B, C,

$$
A=I A, \quad B=I_{\mu}, \quad C=I \nu
$$

and the numerieal value of I is given by the equation

$$
\begin{equation*}
I^{2}=A^{2}+B^{2}+C^{2} . \tag{1}
\end{equation*}
$$

385.] If the protion of the magnet which we consider is the dificrential elenrent of volume dady ifz, and if I denotes the intensity of magnetization of this element, its magnetice moment is I Ifvelyffa. Substituting this for m ds in equation (3), and remembering that

$$
\begin{equation*}
r \cos \varepsilon=A(\xi-x)+\mu(\eta-y)+v(\zeta-z), \tag{0}
\end{equation*}
$$

where ξ, n, ζ tre the coordinates of the extremity of the vector r drawn from the point (x, y, z), we find for the potential tat the point (ε, y, ζ) due to the magnetizel clement at (m, y, z),

$$
\begin{equation*}
\partial T=\{A(\xi-x)+B(\eta-y)+C(\zeta-7)\} \frac{1}{r^{2}} d x d y d z . \tag{7}
\end{equation*}
$$

To ollain the potential at the point (ξ, n, ζ) due to at magnef of finite dimensions, we must find the integral of this expression for every clement of volume included within the space ocempied by the magnet, or

$$
\begin{equation*}
r=\iiint\{A(\xi-x)+B(\eta-y)+C(\zeta-z)\} \frac{1}{r^{2}} d x d y d z \tag{8}
\end{equation*}
$$

Integrating lyy parts, this becomes

$$
\begin{gathered}
I=\iint A \frac{1}{r} d y d z+\iint h \frac{1}{r} d x d x+\iint C \frac{1}{r} d d_{x} d y \\
-\iiint \frac{1}{4}\left(\frac{d A}{d x}+\frac{d b}{d y}+\frac{d C}{d x}\right) d x d y l_{x}
\end{gathered}
$$

where the double integration in the first three temens refers to the surface of the magret, and the triple integration in the fourth to the space within it.

If $l, m, a b$ denote the direction-cosines of the normal drawn outwards from the element of surface $d S$, we may write, ns in Art. 21, the sum of the first three terms,

$$
\iint(l A+m B+n C) \frac{1}{r} d S
$$

where the integration is to be extended over the whole surface of the magnet.

If we now introduce two new symbols of and ρ, defined by the equations

$$
\begin{gathered}
\sigma=t A+m B+n C_{2} \\
\rho=-\left(\frac{d A}{d x}+\frac{d B}{d y}+\frac{d C_{2}}{d \xi}\right)
\end{gathered}
$$

the expression for the potential may be written

$$
I^{\prime}=\iint \frac{\sigma}{x} d S+\iint \frac{\rho}{r} d e d y d x
$$

386.] This expression is identical with that for the electric potential due to a body on the surface of which there is an clectrification whose surface-density is σ, white throughout its substance there is a bodily electrification whose volume-density is ρ. Hence, if we assume σ and p to be the sufface- and volume-densities of the distribution of an imaginary substanee, which we have called 'magnetie matter,' the potential due to this imaginary distribution will be ilentical with that due to the actual magnetization of every element of the magnet.

The surface-density σ is the resolved part of the intensity of magnetization I in the direction of the normal to the surface drawn outwards, and the volume-density ρ is the 'convergenee' (see Art. 25) of the magnetization at a given point in the magnet.

This method of representing the action of a magnet as due to a distribution of 'magnetic matter' is very convenient, but we must always remember that it is only an antificial method of representing the action of a system of polarized particles.

> On the Action of one Naguctic Molecule on wather.
387.] If, as in the chapter on Spherieal Hammones, Art. 129, we make

$$
\begin{equation*}
\frac{d}{d h}=l \frac{d}{d x}+m \frac{d}{d y}+n \frac{d}{d z} \tag{1}
\end{equation*}
$$

where l, m, n are the direction-cosines of the axis h, then the potential due to a magnctic molecule at the origin, whose axis is paralle! to h_{1}, and whose maguetic moment is m_{1}, is

$$
\begin{equation*}
V_{1}=-\frac{d}{d h_{1}} \frac{\mu_{1}}{r}=\frac{m_{2}}{r^{2}} \lambda_{1} \tag{2}
\end{equation*}
$$

where λ_{1} is the cosine of the angle between h_{1} and r.
Again, if a second magnetic moleculu whose moment is m_{2}, mul whose axis is parallel to h_{2}, is placed at the extremity of the radius vector 7 , the potential energy due to the action of the one magnet on the other is

$$
\begin{align*}
W=-m_{2} \frac{d J_{1}}{d h_{2}} & =m_{1} m_{2} \frac{d d^{2}}{d h_{1} d h_{2}}\left(\frac{1}{r}\right) \tag{3}\\
& =\frac{m_{1} m_{3}}{r^{3}}\left(\mu_{12}-3 \lambda_{1} \lambda_{2}\right)_{x} \tag{1}
\end{align*}
$$

where μ_{12} is the cosine of the angle which the axes make with cach other, and λ_{1}, λ_{2} are the cosines of the angles which they make witl r.

Tuet us next determine the moment of the couple with which the first magnet tends to turn the second round its centre.

Let us suppose the second magnet turned through an angle $d_{q} \phi^{2}$ in a plane perpendicular to a third axis $h_{g s}$, then the work dome against the magnetio forces will be $\frac{d F}{d \phi}$ dl ϕ, and the moment of the forces on the magnet in this plane will be

$$
\begin{equation*}
-\frac{d W}{d \phi}=-\frac{m_{1} n_{Q}}{\mu^{9}}\left(\frac{d \mu_{12}}{d \phi}-3 \lambda_{1} \frac{d \lambda_{2}}{d \phi}\right) \tag{5}
\end{equation*}
$$

The actual moment teting on the second magnet may therefore be considered as the resultant of two courles, of which the first. aets in a plane parallel to the axes of both magaets, and tends to inerease the angle between them with a foree whose moment is

$$
\begin{equation*}
\frac{m_{1} h_{2}}{g^{3}} \sin \left(h_{1} h_{2}\right) \tag{i}
\end{equation*}
$$

While the second couple acts in the plane passing through or and the axis of the second magnet, and lends to dimaisf the angle bedween these directions with a coree

$$
\begin{equation*}
\frac{3 m_{1} m_{2}}{m_{2}} \cos \left(r h_{1}\right) \sin \left(r / h_{2}\right), \tag{7}
\end{equation*}
$$

wher $\left(r / h_{1}\right),\left(r h_{2}\right),\left(h_{1} L_{0}\right)$ denote the angles betwen the limes r, h_{1}, h_{2}.

To determine the forec acting on the second magmet in a direetion parallel to a line A_{3}, we have to calealate

$$
\begin{align*}
\frac{d T}{d h_{3}} & =M_{1} m_{2} d \lambda_{1} d \lambda_{2} d h_{3}\left(\frac{1}{r}\right), \tag{8}\\
& =3 \frac{m_{1} w_{2}}{r^{4}}\left\{\lambda_{1} \mu_{23}+\lambda_{2} \mu_{31}+\lambda_{3} \mu_{13}-5 \lambda_{1} \lambda_{3} \lambda_{3}\right\}, \tag{0}\\
& =3 \lambda_{3} \frac{m_{1} \mu_{2}}{r^{4}}\left(\mu_{12}-5 \lambda_{1} \lambda_{0}\right)+\pi \mu_{13} \frac{m_{1} m_{2}}{r^{4}} \lambda_{2}+3 \mu_{23} \frac{M_{1} H_{2}}{r^{4}} \lambda_{1} . \tag{10}
\end{align*}
$$

If we suppose the actual force compounded of three forces, $H_{\text {, }}$, I_{1} and H_{2}, in the directions of r, h_{1} and h_{2} respectively, then the force in the direction of h_{3} is

$$
\begin{equation*}
\lambda_{3} h_{1}+\mu_{13} / I_{1}+\mu_{23} H I_{2} \tag{11}
\end{equation*}
$$

Since the direetion of t_{3} is arbitrary, we mnst have

$$
\left.\begin{array}{c}
R=\frac{3 H_{1}-m_{2}}{r^{4}}\left(\mu_{12}-5 \lambda_{1} \lambda_{2}\right)_{2} \tag{12}\\
H_{1}=\frac{3 M_{1} 2 H_{2}}{r^{4}} \Lambda_{2}, \quad H_{2}=\frac{3 m_{1} M_{2}}{r^{4}} \lambda_{1} \cdot
\end{array}\right\}
$$

The force R is a repulision, tending to increase $r ; H_{1}$ and H_{2} act on the second magnet in the directions of the axes of the first and seeond magrod resprectively.
This analysis of the forees acting between two small magnets was first given in terms of the Quaternion Analysis by Professor Tait in the Quarterly Malh. Journ. for Jan. 1860. See also his work on Quadernions, Art. 414.

Particular Positions.

388.] (1) If λ_{1} and λ_{2} are each equal to 1 , that is, if the axes of the magnets are in one straight line and in the same direction, $\mu_{12}=1$, and the force between the magnets is a repulsion

$$
\begin{equation*}
\vec{n}+M_{1}+H_{2}=-\frac{6 m_{1} m_{2}}{r^{t^{-}}}, \tag{13}
\end{equation*}
$$

The negative sign indieates that the force is an attraction.
(2) If λ_{1} and λ_{2} are zero, and μ_{12} unity, the axes of the magnets are parallel to each other and perpendicular to r and the force is a repulsion

$$
\begin{equation*}
\frac{3 m_{1} m_{2}}{r^{i}} \tag{14}
\end{equation*}
$$

In neither of these cases is there any comple.

$$
\begin{equation*}
\lambda_{1}=1 \text { and } \lambda_{22}=0, \text { then } \mu_{19}=0 \text {. } \tag{3}
\end{equation*}
$$

The force on the second magnet will le $\frac{3 h_{1}}{r^{4}} \frac{\text { has }}{}$ in the direction of its axis, and the couple will le $\frac{2 w_{1}}{r^{3}} \pi_{z}$, tending to turn it parallel to the first magnet. This is equivalent to a single foree $\frac{3 m_{1} m_{2}}{r^{4}}$ acting parallel to the direction of the axis of the second magnet, and cutting of at a point two-thirds of its length from m_{2}.

Fig. 1 ,
Thas in the figure (1) Lwo mngnets tre made to lloat on water, m_{2}
being in the direetion of the nxis of ma, hat laving its own axis at right angles to that of m_{1}. If two points, A, B_{1} rigidly comected will n_{1} and m_{a} respectively, are connected by means of at string T, the sistem will be in equilibrimm, provided 2 euts the line h_{1} wh at right atrgles at a poind one-third of the distance from m_{1} to m_{2}.
(1) If we allow the second magnet to tum freely about its centre till it comes to a position of stable equilibriwn, W^{-}will then lye a minimum as regards h_{2}, and therefore the resolved part of the force due to m_{2}, taken in the divection of h_{1}, will be a maximum. Hence, if we wish to protuce the greatest possible magnetice force ath en given point in a given direction ly means of magrets, the positions of whose centres are given, then, in order to determine the proper directions of the axes of these maguets to produce this effect, we lawe only to place a magret in the given direction at the given point, and to observe the direction of stable equilibrimen of the axis of at second magnet when its centre is placed at cact of the other given points. The maguets must then be placed with their axes in the directions indicated by that of the seeond magnet.

Of course, in performing this experiment we must take account of terrestrial magnetism, iए it exists.

Let the second magnet be in a position of stable equilibrimm as regards its direction, then since the couple acting on it vamishes, the axis of the second maguet must be in the ame plane with that of the first. Hence

$$
\begin{equation*}
\left(h_{1} h_{0}\right)=\left(h_{1} r^{r}\right)+\left(r h_{0}\right) \tag{16}
\end{equation*}
$$

Fins
and the comple being

$$
\begin{equation*}
\frac{H_{1} m_{2}}{r^{3}}\left(\sin \left(h_{1} h_{2}\right)-3 \cos \left(h_{1} r\right) \sin \left(r h_{2}\right)\right), \tag{17}
\end{equation*}
$$

we find when this is zero

0

$$
\begin{align*}
\tan \left(h_{1} r\right) & =2 \tan \left(v h_{2}\right)^{\prime} \tag{18}\\
\text { tan } H_{1} m_{2} H & =2 \text { tan } R M_{2} H_{口^{*}} \tag{19}
\end{align*}
$$

When this position lus been talien up by the second magnet the Walue of 75 becomes

$$
-M_{2} \frac{d Y^{-}}{d L_{2}}
$$

where A_{2} is in the direction of the line of fore due to m_{1} at $m_{2}+$

Hence

$$
\begin{equation*}
W=-m_{2} \sqrt{\left.\frac{\overline{d F}}{d x}\right|^{2}+\left.\frac{\bar{d} \|^{2}}{d y}\right|^{2}+\left.\frac{d T}{d z}\right|^{2}} \tag{20}
\end{equation*}
$$

Hence the second magnct will tend to move towards places of greater resultant force.

The force on the second magnet may be decomposed into a foree R, which in this case is always attractive towards the furst magnet, and a force I_{r} parallel to the axis of the first magnet, where

$$
\begin{equation*}
R=-3 \frac{m_{1} m_{2}}{r^{4}} \frac{4 \lambda_{1}^{2}+1}{\sqrt{3 \lambda_{1}^{2}+1}}, \quad \quad I_{\mathrm{I}}=3 \frac{m_{1} m_{2}}{r^{4}} \frac{\lambda_{1}}{\sqrt{3 \lambda_{1}^{2}+1}} . \tag{21}
\end{equation*}
$$

In Fig. XVII, at the end of this volume, the lines of foree and equipotential surfaces in two dimensions are drawn. The magnets Which produce then are supposed to be two long oylindrient rods the sections of which are represented by the circular blank spaces, and these rods are magnetized transversely in the direction of the arrows.

If we remember that there is a tension along the lines of foree, it is easy to see that each magnet will tend to turn in the direction of the motion of the hands of a wateh.

That on the right hand will also, as a whole, tend to move towards the top, and that on the left land towards the bottom of the pacge.

On the Potential Bnergy of a Magnet placed in a Magnetic Field.

389.] Let V be the magnetic potential due to any system of magnets acting on the magnet under consideration. We shall call Y the potential of the external magnetic foree.
If a small magnet whose strength is m, and whose length is $d s$, be placed so that its prositive pole is at a point where the polential is V, and its negrative pole at a point where the potential is $V^{\prime \prime}$, the potential energy of this magnet will be ${ }^{2}\left(F-V^{\prime}\right)$, or, if $d s$ is measured from the negative pole to the positive,

$$
\begin{equation*}
m \frac{d V}{d s} d s \tag{1}
\end{equation*}
$$

If J is the intensity of the magnetization, and λ, μ, v its direc-tion-cosines, we may write,

$$
\begin{gathered}
3 \text { m } d s=I d x d y d z, \\
\text { and } \quad \frac{d V}{d s}=\lambda \frac{d V}{d x}+\mu \frac{d V}{d y}+v \frac{d V}{d z},
\end{gathered}
$$

and, finally, if A, B, C are the components of magnetization,

$$
A=\lambda I, \quad B=\mu I, \quad C=v I I_{1}
$$

so that the expression (1) for the potential energy of the element of the magnet becomes

$$
\begin{equation*}
\left(A \frac{d V}{d x}+B \frac{d I^{-}}{d y}+C \frac{d I}{d z}\right) d x d y d z \tag{2}
\end{equation*}
$$

To oldain the potential energy of a magnet of finite size, we must integrate this expression for cerery element of the magnet. We thes oltain

$$
\begin{equation*}
W=\iint\left(A \frac{d F}{d x}+B \frac{d Y}{d y}+C^{d y}\right) d x d y d x \tag{3}
\end{equation*}
$$

as the value of the potential energy of the magnet with respect to the magnetic field in which it is placed.

The potential energy is here expressed in terms of the components of magnetization and of those of the magnetic force arising from external causes.
By integration by parts we may express it in terms of the distribation of magnetic matter and of maguetie potential

$$
\begin{equation*}
W=\iint(A l+B n+C n) F d S-\iiint \int\left(\frac{d d}{d x}+\frac{d W}{d y}+\frac{d C}{a z}\right) d x d y d z, \tag{4}
\end{equation*}
$$

where l, m, are the direction-cosines of the normal at the element of surface d $d S$. If we substitute in this equation the expressions for the surfice- and volume-density of magnetic matter ns given in Art. 386, the expression becomes

$$
\begin{equation*}
W=\iint F_{\sigma} d S+\iiint F_{\rho} d S \tag{a}
\end{equation*}
$$

We may write equation (3) in the form

$$
\begin{equation*}
W=-\iiint(A a+B \beta+C y) d y d y d z, \tag{6}
\end{equation*}
$$

Where a, β and γ are the components of the external magnetic force.

On the Magnetic Moment and Axis of a Magnel.

390.] If throughout the whole space occupied by the magnet the external magnetic foree is tuiform in direction and magritude, the compouents a, β, γ will be constiant quantities, and if we write
$\iiint_{A} d x d y d z=l K, \iiint_{B d x} d y d z=n K, \iiint C r d x d y d z=n K_{3}$
the integrations being extended over the whole substance of the magnet, the value of W may be written

$$
\begin{equation*}
W=-K(l a+m \beta+n y) . \tag{8}
\end{equation*}
$$

In this expression l, m, n are the direction-cosines of the axis of the magnet, aud K is the magnetic moment of the magnet. If ε is the angle which the axis of the magnet makes with the direction of the magnetie force $\sqrt{5}$, the value of W^{F} may be written

$$
\begin{equation*}
W^{T}=-K \oint \cos \varepsilon . \tag{9}
\end{equation*}
$$

If the magnet is suspended so ns to be free to furn about a vertieal axis, as in the case of an ordinary compass needle, let the aximnth of the nxis of the magnet be ϕ, and let it be inclined O to the hovizontal plane. Iset the foree of terrestrial magnetism be in a direction whose azimuth is δ and dip δ, then

$$
\begin{align*}
& \quad \begin{array}{ll}
a=5 \cos \zeta \cos \delta, & \beta=5 \cos \zeta \sin \delta,
\end{array} \quad \gamma=\oint \sin \zeta ; \tag{10}\\
& l=\cos \theta \cos \phi, \quad n=\cos \theta \sin \phi, \quad n=\sin \theta ; \tag{11}\\
& \text { Whence } \quad W=-K \delta(\cos \zeta \cos \theta \cos (\phi-\delta)+\sin \zeta \sin \theta) . \tag{12}
\end{align*}
$$

The moment of the force tending to increase ϕ ly turning the magnet rond a vertieal axis is

$$
\begin{equation*}
-\frac{d W}{d \phi}=-K 5 \cos \zeta \cos \theta \sin (\phi-\delta) . \tag{1.3}
\end{equation*}
$$

On the IWopansion of the Potential of a Magnet in Solid Harmanics.
391.] Let F be the potential due to a unit pole placed at the point $\left(\xi_{2}, \eta, \zeta\right)$. The value of F at the point x, y, z is

$$
\begin{equation*}
\Gamma=\left\{(\xi-x)^{2}+(\eta-y)^{2}+(\zeta-z)^{2}\right\}^{-\frac{1}{2}} . \tag{1}
\end{equation*}
$$

This expression may be expanded in terms of spherical harmonies, with their centre at the origin. We have then

$$
\begin{equation*}
\Gamma=F_{0}+F_{1}+\Gamma_{2}+8 c_{0} \tag{2}
\end{equation*}
$$

when $r_{0}=\frac{1}{r}, r$ being the distance of (ξ, y, ζ) from the origin, (3)

$$
\begin{align*}
& F_{1}=\frac{\xi x+\eta y+\xi z}{\gamma^{3}}, \tag{4}\\
& F_{\underline{2}}=\frac{3(\xi x+\eta y+\zeta z)^{2}-\left(x^{2}+y^{2}+z^{2}\right)\left(\xi^{2}+\eta^{2}+\zeta^{2}\right)}{2 r^{4}},
\end{align*}
$$

\&e.
To determine the valuo of the potentinl energy when the magnet is placed in the field of foree expressed by this potential, we have to integrate the expression for H^{-}in equation (3) with respect to x, y and z, considering ξ, n, ξ and r as constants.

If we consider only the terms introduced by F_{10}, r_{2} and F_{2} the result will depend on the following volume-integrals,

$$
\begin{align*}
& l h^{n}=\iiint A d x d y d x, \quad n h=\iiint B d x d y d z, \quad n K=\iiint C d x d y d x ; \quad(6) \\
& h=\iiint A x d x d y d z, \quad M=\iiint B y d x d y d z, \quad N=\iiint C z d y d y d z ;(7) \tag{7}\\
& p=\iiint(B z+C y) d x \cdot d y d z, \quad Q=\iiint(C x+A z) \cdot d x d y d z, \\
& R=\iiint(A y+B x) d x d y d x \cdot(8) \tag{8}
\end{align*}
$$

We thus find for the value of the potential energy of the magnet placed in presence of the unit pole at the point $(\xi,+, \zeta)$,

$$
\begin{gather*}
W=K \frac{l \xi+n \eta+n \xi}{r^{3}} \\
+\frac{\xi^{2}(2 L-M-M)+\eta^{2}(2 M-N-A)+\zeta^{2}(2 N-H-M I)+3(P n \zeta+Q \zeta \xi+R \xi \eta)}{\psi^{2}} . \tag{3}
\end{gather*}
$$

This expression may also be regtuded as the potential energy of the unit pole in presence of the magnet, or note simply as the potential at the point ξ, η, ζ due to the magnet.

On the Centre of a Magnot and its 7 rimary and Secondary $A x e s$.
392.] This expression may be simplified by attering the directions of the coordinates and the position of the origin. In the first place, we shall make the direction of the axis of x parallel to the axis of the magnet. This is equivalent to making

$$
\begin{equation*}
l=1, \quad m=0, \quad n=0 . \tag{10}
\end{equation*}
$$

If we change the origin of coorlinates to the point $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$, the directions of the axes remaining unchanged, the volume-integrals $l K, m A^{\circ}$ and $n K$ will remain unelanged, but the others will be altered as follows:
$I^{\prime}=L-l H^{\prime} x^{\prime}, \quad \quad M^{\prime}=M-M H^{\prime} y, \quad N^{\prime}=N^{\prime}-n R z^{\prime} ;$
$P^{\prime}=P^{\prime}-K\left(m z^{\prime}+u y^{\prime}\right), \quad Q^{\prime}=Q-K\left(n x^{\prime}+l \varepsilon^{\prime}\right), N^{\prime}=R-K\left(l y^{\prime}+n x^{\prime}\right)$.
If we now make the direction of the axis of a parallel to the axis of the magnet, and pot

$$
\begin{equation*}
\infty^{\prime}=\frac{2 L-M-N}{2 K}, \quad y=\frac{\pi}{K}, \quad z=\frac{Q}{K}, \tag{13}
\end{equation*}
$$

then for the new axes M and N have their values unchanged, and the value of L^{\prime} becomes $\frac{1}{2}(M+N)$. P remains unchanged, aud Q and 7 la vaish. We may therefore wite the potential thas,

$$
\begin{equation*}
K \frac{\xi}{r^{3}}+\frac{\frac{3}{2}\left(r^{2}-\zeta^{2}\right)(N-N)+3 P n \zeta}{r} \tag{14}
\end{equation*}
$$

YOI.. II,

We laye thus found a point, fixel with respeet to the magnet, such that the second term of the potential assumes the most simple form when this point is talsen as origin of coordiates. This point we therefore define ns the centre of the maguet, and the axis draw through it in the direction formerly defined as the direction of the magnetie axis may be defined as the prineipal axis of the magnet.

We may simplify the resnlt still more by turning the axes of y and A round that of x through half the angle whose tangent is $\frac{P}{M-N}$, This will canse P to become zeto, mut the final form of the potentinl may be written

$$
\begin{equation*}
X \frac{\xi}{r^{3}}+\frac{\left(y^{2}-\xi^{2}\right)(M-M)}{r^{2}} \tag{15}
\end{equation*}
$$

This is the simplest form of the first two terms of the potuntial of a magnet. When tho axes of y and z are thus placed they mey be called the Secondary ares of the magnet.

We may also determine the eentre of a magnet by finding the position of the origin of coordinates, for which the surface-intergral of the square of the seeond term of the potential, extended ower a sphere of unit radius, is a minimum.

The quantity which is to be made a minimum is, by Art. 141,

$$
\begin{equation*}
4\left(L^{2}+M^{2}+N^{2}-M N-N H-L^{2} M\right)+3\left(P^{2}+Q^{2}+R^{2}\right) \tag{16}
\end{equation*}
$$

The changes in the valnes of this quantity due to a change of position of the origin may be detuced from equations (11) and (I2), Hence the conditions of a minimum are

$$
\left.\begin{array}{r}
2 l(2 L-M-N)+3 n Q+3 n R=0 \\
2 m(2 M-N-L)+3 l R+3 n P=0 \tag{17}\\
2 m(2 N-L-M)+3 m P+3 l Q=0
\end{array}\right\}
$$

If we assume $l=1, m=0, a=0$, these conditions lecome

$$
\begin{equation*}
2 H-M-N=0, \quad Q=0, \quad R=0 \tag{18}
\end{equation*}
$$

which are the conditions mande ase of in the previous investigration.

This investigation may be compared with that by which the potential of a system of gravitating matter is expanded. In the latter case, the most conveniont point to assume sis the origin is the centre of gravity of the system, and the most conmeniont axes are the principal axes of inertia through that point.

In the case of the magnet, the point correspouling to the centre of gravity is at an infinite distance in the direction of the axis,
sunt the point which we call the contre of the magned is a point having different properties from those of the eentre of gravity. The quantities X_{3}, M, N correspond to the moments of inertia, aml J ', Q, R to the prodncts of inctia of a material body, exept that L s M and N are not necessarily positive quantities.

When the centre of the magnet is talien as the origin, the spherieal hamonic of the second order is of the sectorial Corm, having its axis eoinciding with that of the magnet, and this is true of wo other point.

When the magmet is symmetrieal on all sides of this axis, as in the ease of a ligure of revolution, the term involving the hamonic of the second order dismpears entirely.
393.] At all parts of the earth's surface, except some parts of the Polar regions, one end of a magnet peints towards the north, or at least in a northerly direction, and the other in a southerly direction. In speaking of the ends of a magnet we shall adopt the popular method of calling the end which points to the nortly the north end of the magnet. When, howover, we speak in the language of the theory of magnetio fluids we shall nee the words Boreal and Austral. Borenl magnetism is an imaginary kind of matter supposed to bo most abundant in the northera parts of the eneth, and Austral maguetism is the imaginary megnetic matter which prevails in the southern regions of the earth. The magnetism of the north end of a magnet is Austral, and that of the south end is Boreal. When therefore we speak of the north sull south ends of a magnet we do not compate the magnet with the earth as the great magnet, but merely axpress the position which the maghet endeavours to take up when free to move. When, on the other hated, we wish to compare the distribution of imaginary magretic fluid in the magnet with that in the earth we shall use the more gramdiloquont words Boreal and Anstral magretism.
394. In speaking of a fide of magnetio force we shall use the phrase Magnetic North to indiente the direction in which the wortly end of a compass meedle would point if placed in the field of foree.

In speaking of a line of magnetic fore we shall always suppose it to the traced from magnelic south to magnetic north, and shall all this direction positive. In the same why the direction of magnetization of a magnet is indieated by a line drawn from the south end of the magnet towards the morth wht, and the end of the magnet whide points north is reckoned the positive end.

We shall considur Austral magnetimm, that is, the mathetism of that end of' in magnet which points north, as positive. If we denote its numerical valtue by m, then the magnetie potential

$$
J=\Sigma\left(\frac{M}{r}\right)_{3}
$$

and the prositive direction of a line of foree is that in whiely r diminishes.

CHAPTER TI.

MAGNHTIO FOHCE AND MAGNETLC IXDUGTION.
395. W W have alveady (Ant. 386) determined the magnetie potential at a griven point dae to a magnet, the magnetization of which is given at every point of its sulostanee, and we have shewn that the mathenatical result may bu expressed either in tems of the actual magnetization of erey element of the magnet, or in terms of an imaginary distribution of "maguetio mater," partly condensed on the surlace of the magnet and partly diflised diroughout its suldstanec.

The magretic potential, as thus defined, is fond by the same mathematieal process, whether the given point is outside the nagnet or within it. 'Ihe foree exerted on a wnit magnetic pole placed at, any point outside the magnet is deduced from the potential by whe same process of differentiation as in the corresponding electrical problem. If the eomponents of this fored are $a_{1} \beta, \gamma$,

$$
\begin{equation*}
a=-\frac{d V}{d u}, \quad \beta=-\frac{d F}{d y}, \quad \gamma=-\frac{d V}{d y} \tag{1}
\end{equation*}
$$

To determine by experiment the magnetic fove at a point withit the magnet we must hegin by removing part of the nagrotizal sulbstance, so as to form a cavity within which we are to phace the magnetic pole. The force actingr on the pole will depend, in general, in the form of this cavity, and on the inelination of the walls of the eavity to the direction of magretization. Hence it is necessary, in order to avoil ambiguity in speaking of the magnelie foree within a magnet, to specify the form and position of the onvity within which the foree is to be mensured. It is manifest that, When the form and pusition of the eavity is specified, the point within it at which the magnetie pole is placed must be regrarded as
no longer within the substance of the magnet, and therefore the ordinary methots of determining the force beone at ouce applicable.
396.] Let us now consider a portion of a magnet in which the direction mud intensity of the magnetization ave minform. Within this portion let a cavity be hollowed out in the form of a cylinder, the axis of which is paraliel to the direction of magretization, and let a magnetie pole of unit strength be phaced at the makhe point of the axis.

Since the generating lines of this eytinder are in the direction of magnetization, there will be no auperficial distribution of magnetism on the curved surlace, and since the circular ends of the cylinder are perpendicalar to the direction of magnetization, there will be a uniform superficial distribution, of which the surfacedensidy is I for the negative end, and $-I$ for the positive end.

Iet the length of the axis of the cylinder be $2 b$, and its radius a. Then the fore arising from this superficial distribation on a magnetie pole placed at the middle point of the axis is thati due to the attraction of the disk of the positive side, and be repulsion of the disk on the negative side. These two forees are equal and in the same direction, and their sum is

$$
\begin{equation*}
h=4 \pi /\left(1-\frac{b}{\sqrt{a^{2}+b^{2}}}\right) . \tag{2}
\end{equation*}
$$

From this expression it appens that the foree depends, not on the absolute dimensions of the cavity, but on the ratio of the length to the dianeter of the cylinder. Hence, however small we make the catity, the force arising from the surface distribution on its walls will remain, in general, finite.
397.] We have hitherto supposed the magnetization to be uniform and in the same direction throughont the whole of the partion of the magnet from which the eylinder is hollowed otat. When the magnetization is not thus resirictet, there will in genoral be a distribution of imaginary magnetic matter through the substance of the magnet. The enting out of the cylinder will remove parts ot this distribution, but sinee in simitur solid figume the forees ati correffondisg points are proportional to the linear dimensions of the fignres, the alteration of the force on the magnetie pole due to the volmmedensity of magnetie matter will diminish indefinitely ate the size of the envity is diminished, while the eflect dine to the surface-density on the watls of the cavity remains, it general, finite.

If, therefore, we assume the dimensions of the eylinder so small
that the margetiantion of the part removed may be regarded as everywhere parailel to the axis of the cylinder, and of constant magnitude I_{y} the foree on a magnetie pole placed at tho mitlde point of the axis of the eylindrical loblow will be componnded of two forees. The first of these is that due to the distribution of magnetic matter on the outer surface of the magnet, and throughout its interior, exelusive of the jortion hollowed out. The components of this force are a, β and γ, derived from the potential by equations (1). The second is the force h, acting along the axis of the eylinder in the direction of magnetization. The value of this force depends on the ratio of the length to the diameter of the cylindrie cavity.
398.] Case I. Let this yatio be very great, on let the xliameter of the oylinder be small compared with its length. Expanding the expression for R in terms of $\frac{a}{ל}$, it becomes

$$
\begin{equation*}
R=4 \pi I\left\{\frac{1}{2} \frac{a^{2}}{b^{2}}-\frac{3}{8} \frac{a^{4}}{b^{4}}+\& c\right\} \tag{3}
\end{equation*}
$$

a quantity which vanishes when the ratio of \langle to a is made infinite, Hence, when the etwity is a very narrow eylinder with its axis parallel to the direction of magnetization, the magnetie force within the eavity is not atfected by the surfee distribution on the ends of the cylinder, and the components of this force are simply α, β, γ, where

$$
\begin{equation*}
a=-\frac{d V}{d x}, \quad \beta=-\frac{d F}{d y}, \quad \gamma=-\frac{d V}{d z} \tag{1}
\end{equation*}
$$

We shall define the foree within a cavity of this form as the magnetio fore within the magnet. Sir Willian Thomson has called this the Polar defintion of magnetic foree. When we have ocension to eonsider this force as a vector we slatl denote it ly $\sqrt{6}$.
399.] Case II. Let the lengeth of the eylinder be wery smatl compared with its diameter, so that the gylinder becontes a thin dish. Expanding the expression for A in terms of $\frac{b}{a}$, it becomes

$$
\begin{equation*}
R=4 \pi I\left\{1-\frac{b}{a}+\frac{1}{2} \frac{b^{3}}{a^{3}}-8 c\right\} \tag{5}
\end{equation*}
$$

the ultimate value of which, when the ratio ol a to b is made infinite, is $4 \pi I$.

Hence, when the cavity is in the form of a thin disk, whose plane is normal to the direction of magnetization, a mit magnetic pole
placed at the middle of the axis experiences a foree $4 \pi J$ in the direction of magnetization arising from the superficial maguetism on the cireular surlaces of the disk *.

Since the components of I are A, I and C_{3} the components of this fore are $4 \pi A, 4 \pi B$ and $4 \pi C$. This must be compounded with the foree whose components are a, β, γ.
400.] Let the actual force on the unit pole be denotal by the vector $\frac{b}{b}$, and its components ly a, b and c, then

$$
\left.\begin{array}{l}
a=a+4 \pi A_{3} \\
b=\beta+4 \pi B_{3} \tag{6}\\
c=\gamma+4 \pi C
\end{array}\right\}
$$

Wo shall define the foree within a hollow disk, whose plane sides are normal to the direction of magnetization, the the Magnetie Induction withia the magnet. Sir Willam Thomson las ealled this the Electromagnetic delinition of magnetic force.

The three vectors, the magnetization 9 , the magnetic foree 5 , and the magnetio induction 9 are connected by the vector equation

$$
\begin{equation*}
B=5+4 \pi 5 \tag{7}
\end{equation*}
$$

Jine-Integral of Magnedie Foree.
401.] Since the magretic forec, as defined in $\mathrm{Art}, 398$, is that "due to the distribution of free magetism on the surface and through the interior of the magnet, and is not affected by the sumecmagnetism of the envity, it may be derived directly from the general expression for the potential of the magnet, and the lineintegral of the magnetie fore taken along any curve from the point A to the point B is

$$
\begin{equation*}
\int_{A}^{I B}\left(a \frac{d x}{d s}+\beta \frac{d y}{d s}+\gamma_{d s}^{d z}\right) d s=V_{A}-F_{B} \tag{B}
\end{equation*}
$$

where V_{A} and F_{i} denote the potentials at A and B respectively.

* On Her fove within cotuties of ofler forphs.

1. Any Marrow crewasge The force ariaing from the surface-nagnotism is If I I cone it the thremtion of the normal to the phane of the erevase, where et the angle between thin motmat and the direction of magnetigation. When the ereyasse
 the ermonase iz perpondicular to the direction of magentization the force is the mngretice indtaction
F. In am clongated cylinder, the axis of wlicela makes fur angle e with the
 pergundicular to tho atxis in the phace contanhug the sais fowl the direction of magnetigation.
 maguretizations.

Surface-Integrat of Magnetio fuduction.

402.] The magnetic induction through the surface: S is defined as the value of the integral

$$
\begin{equation*}
Q=\iint B \cos \varepsilon d S \tag{9}
\end{equation*}
$$

where $\sqrt[3]{ }$ denotes the inagnituke of the magnetic induction at the element of surface $/ P$, and E the angle between the direction of the induction and the normal to the clement of surface, and the integration is to be extenled over the whole surface, which may be either closed or bounded by it elosed curve.

If a, b, c denote the components of the magnetic induction, and l, π, u the direction-cosines of the normal, the surfaee-integral may be written

$$
\begin{equation*}
Q=\iint(l u+m b+n c) d S \tag{I0}
\end{equation*}
$$

If we sulstitute for the components of the magnetic inductions their values in terns of those of the magnetic force, and the magnetization as given in ArL. 400, we find

$$
\begin{equation*}
Q=\iint(l a+m \beta+n \gamma) d S+4 \pi \iint(l A+m B+n C) d S . \tag{11}
\end{equation*}
$$

We shall now suppose that the surface over which the integration extends is a closed one, and we shall investigate the walue of the two terms on the right-hand side of this equation.
Since the mathemation form of the relation between magnetre force and free magnetism is the same as that between electric foree and free electricily, we maty apply the result given in Art, it to the first term in the value of Q by sulstituting a, β, γ, the components of magnetie force, for X, X, Z, the components of electrie force in Art. 77 , and M, the algelnale sum of the free magnetism within the closed surface, for e, the algelsate sum ol the free electrieity.

We thus obtain the equation

$$
\begin{equation*}
\iint(l a+m \beta+n \gamma) d S=1 \pi M . \tag{12}
\end{equation*}
$$

Since every magnetic particle has two poles, whieh are equal in numerical magnitude but of opposite signs, the algebraic sum of the magnetism of the particle is zeto. Hence, those particles which are entirely within the elosed surffice \& con contribute mothing to the algelurac sum of the magnetism within S. The
value of M must therefore depend only on those magnetic particles which are cut by the surfice S.

Consiler a small element of the magnet of length s and transverse section k^{2}, magnetized in the direction of its length, so that the strength of its poles is m. The moment of this smatl magnet will be ms, aud the intensity of its magnetization, lueing the ratio of the magrnetic monent to the volume, will be

$$
\begin{equation*}
I=\frac{n}{k^{2}} . \tag{18}
\end{equation*}
$$

Let this small magnet be ont by the surface S, so that the direction of magnetization makes an angle ϵ^{\prime} with the normal drawn outwards from the surface, then if $d S$ denotes the area of the section, $\quad h^{2}=d \& \cos \epsilon^{\prime}$.
The negative pole -n of this magnet lies within the surface S.
Hence, if we denote by dM the part of the free magnetism within S which is contributed by this little magnet,

$$
\begin{align*}
d M=-\hat{M} & =-I Z^{2} \\
& =-\lambda \cos \epsilon^{\prime} d S \tag{15}
\end{align*}
$$

To find M, the algelraio sum of the free magnetism within the closed surface S, we minst integrate this expression over the closed surface, 50 that

$$
M=-\iint I \cos \epsilon^{\prime} d S
$$

or writing A, B, C for the components of magnetization, and l, x, th for the direction-cosines of the normal drawn outwards,

$$
\begin{equation*}
M=-\iint(l A+m B+n C) d S \tag{16}
\end{equation*}
$$

This gives us the value of the integral in the sccond term of equation (11). The value of Q in that equation may therefore the found in terms of equations (12) and (16),

$$
\begin{equation*}
Q=4 \pi M-4 \pi M=0, \tag{1.7}
\end{equation*}
$$

or, the surface-integral of the magnetic induction through any ctosed surfuce is zero.
403.] If we assume as the elosed surface that of the differential element of volume diddyidz, we obtain the equation

$$
\begin{equation*}
\frac{d t}{d x}+\frac{d b}{d y}+\frac{d c}{d z}=0 . \tag{18}
\end{equation*}
$$

This is the solenoidal condition which is always satisfied by the compronents of the magnetic induction.

Since the distribution of magnetic induction is solenoidal, the induction through any surface bounded by a closed curve depends only on the form and position of the closed curve, and not on that of the surfice itself:
404.] Surfaces at every point of which

$$
\begin{equation*}
l a+m b+n c=0 \tag{19}
\end{equation*}
$$

are called Surfaces of no induction, and the intersection of two such surfaces is called a Line of induction. The conditious that a curve, x, may be a line of induction are

$$
\begin{equation*}
\frac{1}{a} \frac{d x}{d s}=\frac{1}{b} \frac{d y}{d s}=\frac{1}{c} \frac{d x}{d s} . \tag{20}
\end{equation*}
$$

A system of lines of induction drawn throngh every point of a colosed curve forms a tubular surface called a Tube of induction.

Tho induction across any section of such a tube is the same. If the induetion is unity the tube is called a Unit tabe of induction.

All that Faraday* says about lines of magnetic foreo and magnetic sphondyloids is mathematically true, if understood of the lines and tubes of magnetic induction.

The magnetio force and the magnetio induction are identical outside the magnet, but within the substance of the magnet they must be carefully distinguished. In a straight mniformly magnetized har the magnetie force due to the magnet itself is from the end which points north, which we call the positive pole, towards the south end or negative pole, both within the magnet and in the space without.

The magnetic induction, on the other hand, is from the positive pole to the negative ontside the magnet, and from the negrative pole to the positiwe within the magnet, so that the lines and tules of induction are re-entering or cyclic firgures.

The importance of the magnetic induction as a physical quantity will be more clearly seen when wo study electromagnetic phenomena. When the magnetic field is explored by a moving wire, as in Faraday's Sxp. Res. 3076 , it is the magnetic induction anil not the magnetic force which is directly measured.

The Fector-Potential of Magnetic Induction.

405.] Since, as we have shewn in Art 403 , the magnotic induction through a surface bounded by a closed entrve depends on

[^3]the closed curve, and not on the form of the surtace which is bounded by it, it must be possible to determine the induction through a closed conve by a process depending only on the nature of that curve, and mot involving the eonstruction of a surface forming in diaphragm of the ourve.
'Ihis may he done lyy fituling it weotor 9 melatel to 9 , the masmetie induction, in such a way that the line-integral of की, extended round the closed curve, is equal to the surface-integral of 9 , extended over a surface bounded by the closed curve.
$I N$, in Art, 21 , we write F, G, H for the components of gi, and a, b, c for the components of ${ }^{3}$, we find for the relation between these components
\[

$$
\begin{equation*}
a=\frac{d / I}{d y}-\frac{d G}{d z}, \quad b=\frac{d W}{d z}-\frac{d H}{d x}, \quad \mathrm{c}=\frac{d G}{d x}-\frac{d W}{d y} \tag{21}
\end{equation*}
$$

\]

The wetor ${ }^{\text {St, whe }}$, components we F_{3}, G, H, is called the vectorpotential of magnetie induction. "He vector-potential at a given point, due to a masnetized partiche placed at the origin, is numerically equal to the magnetio moment of the particle divided by the square of the radius weetor net multiptied by the sine of the angle between the axis of magrotization and the ratius vector, and the direction of the vector-potential is perpendieular to the plane of the axis of magnetization and tilae radius vector, and is such that to an oye looking in the positive direction along the axis of magnetization the vector-potential is drewn in the direction of rotation of the bands of a watels.

Hence, for a magnet of any form in which A, B, G are the components of megnetization at the proint $x y *$, the eomponents of the wector-potential at the point ξ 㿽, are

$$
\left.\begin{array}{l}
H=\iiint\left(B \frac{d p}{d z}-C^{d /}\right) d x d y d z \\
A=\iint\left(C^{d / p}-A \frac{d / p}{d /}\right) d x d y d l_{y} \tag{22}\\
H=\iiint\left(A \frac{d / p}{d y}-B^{d / p}\right) d x d y d z
\end{array}\right\}
$$

where p is put, for conciseness, for the reciprocal of the distance hetween the points $(\xi, 7, \zeta)$ and (x, y, z), and the integrations are extended over the space ocelpied by the magnet.
406.] 'llue scalar, or ordiary, potential of magnetic foree, Art. 386, becomes when expressed in the stme notation,

$$
\begin{equation*}
I=\iiint\left(\frac{d l^{\prime}}{d e}+B \frac{d /}{d y}+C \frac{d p}{d z}\right) d x d y d z . \tag{23}
\end{equation*}
$$

Remembering that $\frac{d p}{d x}=-\frac{d p}{d \xi}$, and that the integral

$$
\iint A\left(\frac{d^{2} p}{d x^{2}}+\frac{d^{2} j x}{d y^{2}}+\frac{d^{2} y}{d \bar{z}^{2}}\right) d x d y d z
$$

has the value $-4 \pi(A)$ when the point $(\xi, 7, \zeta)$ is incluted within the limits of integration, and is zero when it is not so includect, (A) being the value of A at the point $\left(\xi, \eta_{2}, \zeta\right)$, we find for the ralla of the x-component of the magnetic induction,

$$
\begin{align*}
& \|=\frac{d H}{d \eta}-\frac{d G}{d \xi} \\
& =\iiint\left\{\left(\frac{d^{2} p}{\sqrt{l} / h_{3}}+\frac{d^{2} p}{d z d \zeta}\right)-b \frac{d^{2} p}{d x d y}-C \frac{d^{4} p}{d x d \zeta}\right\} d x d y d z \\
& =-\frac{d}{d \xi} \iiint_{d} \frac{d p}{d / x}+B^{d / y}+C_{d=}^{d y} \int_{2}^{d y} d d_{y} d x \\
& -\iiint\left(\frac{d^{2} \mu}{d z^{2}}+\frac{d^{2} p}{d y^{2}}+\frac{d^{2} p}{d \alpha^{2}}\right) d d r d \varepsilon . \tag{2.1}
\end{align*}
$$

The first term of this expression is evilently - $\frac{d I^{\prime}}{d \xi}$, on a, the component of the maguetic force.
The quantity under the integral sign in the second term is zero Por cvery element of volume except that in which the point (ξ, n, ζ) is included. If the value of A at the point (ξ, η, ξ) is (A), the walue of the second term is $\mathrm{d} \pi(A)$, where (A) is evidently zero at all points outside the magnet.

We may now write the value of the x-compronent of the magnetie induction

$$
\begin{equation*}
u=a+4 \pi(d), \tag{25}
\end{equation*}
$$

an equation which is identieal with the first of those given in Art 400. The equations for 6 and 0 will also agree with those of Art. 400.

We have already seen that the magnetic force dis derived from the sealar maguetic potential l^{\prime} by the application of Hamilton's operator ∇, so that we may write, as in Apt. $1 \overline{7}$,

$$
\begin{equation*}
5=-\nabla \Gamma \tag{26}
\end{equation*}
$$

and that this equation is true loth without and within the magnet.
It appears from the present investigation that the magnetie induction \mathfrak{B} is derived from the vector-potential if by the application of the same merator, and that the result is true within the magnet as well as without it.

The application of this operator to a vector-function produces,
in general, a sealar quautity as well as a vector. The scalar part, however, which we have called the convergence of the vectorfunction, vanishes when the vector-flumetion satisfies the solenoidal condition

$$
\begin{equation*}
\frac{d W}{d \xi}+\frac{d G}{d \eta}+\frac{d I I}{d \xi}=0 \tag{27}
\end{equation*}
$$

By differentiating the expressions for F, G, H in equations (22), we find that this equation is satisfied by these quantitios.

We may therefore write the relation between the magnetic induction and its vector-potential

$$
\mathfrak{B}=\nabla \mathfrak{T},
$$

which may be expressed in words loy saying that the magnetice induction is the curl of its vector-potential. Sce Art. 2\%,

CHAPICR IIT.

MAGNEHG SOLENOHS AND SHELLS:

On Particular Forms of Magnets.

407.] In a long narrow filament of magnetic mather like a wire is magnetized everywhere in a longitadinal direction, then the product of any tamsverse section of the filament into the mean intensity of the magnetization neross it is called the strength of the magnet at that section. If the filament were ent in two at the section without altering the magnetization, the two surfaces, when separated, would be found to have equal and opposite quantities of superficial magnelization, each ol which is urmerically equal to the strength of the mognet at the section.

A filament of magnetie matter, so magnetized that its strength is the same at every section, at whatever part of its length the section be made, is called a Magnetie Solenoid.

If M is the strengtly of the solenoid, $d s$ an element of its leugth, r the clistance of that element from a given point, and ϵ the angle which $\%$ makes with the axis of megnetization of the clement, the potential at the given print due to the element is

$$
\frac{w_{2} d s \cos \epsilon}{r^{2}}=\frac{n}{r^{2}} \frac{d r}{d s} d s
$$

Integrating this expression with respect to s, so as to take into account all the elements of the solenoid, the potential is found to lue

$$
V=m\left(\frac{1}{r_{1}}-\frac{1}{f_{2}}\right),
$$

r_{1} beting the distance of the posilive ond of the solemod, and r_{2} that of the negative end from the point where V exists.

Hence the potential due to a solenoid, und consequenty all its magretic effects, depend only on its strength and the position of

[^4]its ends, and not at all on its lirm, whether straight or curved, between thest points.

Hence the ends of it solenoid may be entled in a striet sense its proles.

If a solenoid forms a closed curve the potential due to it is zero at every point, so that such a solenoid cen exert no maghetic action, nor can its magnetization be discovered withont breaking it at some point and separating the onds.

If a magnet ean be divided into solenoids, all of which either Form closed curves or have their extremities in the outer surface of the magnet, the magnetization is said to be solenoidal, and, since the action of the magnet depends entirely mpon that of the ends of the colenoids, the distribution of imaginary magnetio matter will be entirely superfictal.

Hence the condition of the magnetization being solenoidal is

$$
\frac{d A}{d x^{k}}+\frac{d B}{d y}+\frac{d C}{d z}=0
$$

where A, B, C are the components of the magnetization at any point of the magnet.
408.] A longitudinally magretized filmont, of which the strength varies ut different parts of its length, may le conceived to be mand rap of thunde of solenoids of diferent lengtre, the sum of the streugthe of all the solenoids which pass through a given seetion being the magnetic strength of the filament at that section. Hence any longitudinally magretized filament may be eatled a Complex Solenoid.

If the strengetl of a complex solenoid at any section is m, then the potential due to its action is

$$
\begin{aligned}
T & =\int \frac{n}{r^{2}} \frac{d l}{d r} d s \text { where } m \text { is variable, } \\
& =\frac{m_{1}}{r_{1}}-\frac{m_{2}}{r_{2}}-\int \frac{1}{r} \frac{d m}{d s} d s
\end{aligned}
$$

This sluews that besides the action of the two ends, which may in this anse be of difforent strengths, there is an action due to the alistribution of imaginary magnetie matter along the filanent with is linear density

$$
\mathrm{A}=-\frac{d m}{d /}
$$

Maguetic Shells.

409.] If a thin shell of magnetic matter is magrotized in a
divection everywhere normal to its surface, the inlensity of the maguetization at any place multiplied by the thiokross of the sheet at that place is called the Strength of the magnotie shall at that place.

If the strongth of a sholl is everywhere equal, it is catled a Simple magnetic shell; if it varies from point to point it may lue coneeived to be made up of a number of simple shells superposed and overlapping ench other. It is therefore called a Complex magnetio shell.

Let $d S$ be an element of the surface of the shell at Q, and of the strengeth of the shell, then the potential at any joint, P, due to the element of the shell, is

$$
d V=\Phi \frac{1}{r^{2}} d \operatorname{Secs} \epsilon_{3}
$$

where $\&$ is the angle between the vector $Q P$, or f and the normal nhan from the positive side of the shell.

But if $d \omega$ is the solid angle subtended by $d S$ at the point f^{P}

$$
\begin{aligned}
r^{2} d \omega & =d S \cos \varepsilon_{0} \\
d V & =\| d \omega
\end{aligned}
$$

whence
and therefore in the ease of a simple magnetic shell

$$
\gamma=\$_{\boldsymbol{\omega}}
$$

or, the poteuticel ane to a magnetic shell at any point is the product of its stromgth itho the sotut cangle sublended by its edye wh the giver poind *.
410.] The same resalt may be obtained in a different way by supposing the magnetic shell placed in any field of magnetic force, and determining the potential energy due to the position of the shell.

If F is the potential at the element $d S$, then the energy due to this element is

$$
\Phi\left(l \frac{d V}{d x}+m \frac{d V}{d y}+n \frac{d V}{d z}\right) d S
$$

or, the product of the strength of the shell into the part of the surficc-integral of V due to the etement is of the stell.

Hence, integrating with respect to all such elements, the energy Whe to the position of the shell in the fied is equal to the product of the strength of the shell aud the surface-integral of the magnetic induction taken over the surdace of the shell.

Siuce this surface-integral is the same for any two surfaces which
 HOL, II.
have the sume hounding edge and do not inelude between them any eentre of foree, the action of the maguetic shell depends only On the form of its edge.

Now suppose the field of force to be that due to a magnetic pole of strength m. We have seen (Art. 76, Cor.) that the surfuceintegral over a surface bounded lyy given edge is the prochact of the strength of the pole and the solid angle subtended by the edge at the pole. Hence the energy due to the matual action of the pole and the sliell is

$$
\text { 中 } m \omega,
$$

and this (by Green's theorem, Art. 100) is equal to the product of the strengeth of the pole into the potential due to the shell at the pole. The potential due to the shell is therefore two.
411.] If a magnetic pole m starts from a point on the negrative surface of a magnetic shell, and travels alongrony path in space so as to corne round the edge to a point cloge to where it started but on the positive gide of the shell, the solid amgle will vary continuously, and will increase by 4π during the process. The work done by the pole will be 4π om, and the potential at any point on the positive side of the shall will erceed that at the neighbouring point on the negative side by 4 m m .

If a magnetie shell forms a closed surfee, the potential outside the shell is everywhere zero, and that in the space within is everywhere $4 \pi \mathrm{c}$, being positive when the positive side of the shell is inward. Hence such a shell exerte no action on any magnet phaced either outside or inside the shell.
412.] If a magrat enn be divided into simple magnetio shells, eiflher closed or laving their edges on the surfate of the magnet, the distribution of magnetism is ealled Lamellar. If ϕ is the sum of the strengths of ath the shells traversed by a point in passing from a given point to a point oyz by a line drawn within the magnet, then the conditions of lamellar nagnetization are

$$
A=\frac{d \phi}{d v^{c}}, \quad D=\frac{d \phi}{d y}, \quad O=\frac{d \phi}{d z} .
$$

The quantity, ϕ, which thus completely determines the maguetjzation at any point may Je callet the Pofentian of Magnetization. It must be carfully distinguished from the Maynetie Potential.
413.] A magnet which ena be divided into complex magnetie shells is sated to have a complex lamellar distribution of magnetism. "The condition of suel a distribution is that the lines of
magnetization must be such that a system of surfaces can be drawn eutting them at right angles. This condition is expressed by the Well-linown equation

$$
A\left(\frac{d C}{d y}-\frac{d B}{d z}\right)+B\left(\frac{d A}{d z}-\frac{d C}{d s}\right)+C\left(\frac{d B}{d x}-\frac{d d}{d y}\right)=0
$$

Forms of the Potentinds of Solenoidal and Lamellar Magnets.

414,] The general expression for the sealar potential of it magnet is

$$
V=\iiint\left(A_{d x}^{d / p}+B \frac{d p}{d y}+C^{d / p}\right) d L^{u} d y d_{m},
$$

where ρ denotes the potemial at (x, y, z) due 10 at mit makemetic: pole phed at ξ, , ζ, or in other words, the reeprocal of the distance between $\left(\xi, m_{9}, \zeta\right)$, the point at which the potential is mensured, and $(x, y, 2)$, the position of the element of the magnet. to which it is due.

This quantity may be integrated by parts, its in Arts, 96, 386 .
where b, n, x are the direction-eosines of the normal drawn nutwards from $d S$, an element of the surlace of the magnet.

When the magnet is solenoidal the expression under the integral sign in the second term is zero for every point within the magnet, so that the triple integral is zero, and the seatar potentiat at any point, whether outside or inside the magret, is given by the surfaceintegral in the first term,

The seatar potential of it solenoidal magnet is therefore comfiletely detemined when the normal component of the magnetization at every point of the surface is known, nud it, is independent of the form of the solenoide within the magnet.
415.] In the case of a lanellar magret the magnetization is determined by w, the potential of inngenctization, so that

$$
A=\frac{d \phi}{d x}, \quad B=\frac{d \phi}{d y}, \quad C=\frac{d \phi}{d x}
$$

The expression for may therefore bo written

$$
F=\iiint\left(\frac{d \phi}{d x} \frac{d p}{d x}+\frac{d \phi d p}{d y}+\frac{d \phi}{d y} d_{z}\right) d d d y d z
$$

Integrating this expression by parts, we find

$$
Y=\iint^{n} \phi\left(l \frac{d p}{d x}+m \frac{d p}{d / y}+n^{d / p}\right) d S-\iint_{0} \phi\left(\frac{d^{5} p}{d x^{2}}+\frac{d^{2} p^{2}}{d y^{2}}+\frac{d^{2} p}{d z^{2}}\right) d d^{d} / y d z
$$

$$
\text { D } 2
$$

The second term is zero milos the point (ξ, η, ζ) is included in the magnet, in which case it beeones in (ϕ) where (ϕ) is the value of ψ at the point ξ, η, ξ. The surface-integral may be expressed in terms of r, the line drawn from (x, y, k) to (ξ, η, ζ), and 0 tlee angle which this line makes with the normal datwa outwards from $d S$, so that the potential may le written

$$
Y=\iint \frac{1}{r^{2}} \phi \cos \theta d S+4 \pi(t p),
$$

where the second term is of course zero when the print (ξ, W, S) is not included in the substanee of the magnet.

The potential, F, erpressed by this equation, is eontinnous even at the surface of tha magnet, where f becomes suddenly zero, for if we write

$$
\Omega=\iint \frac{1}{r^{2}} \phi \cos \theta \cdot l S,
$$

and if Ω, is the value of Ω at a point just within the surfiee, and Ω_{2} that at a point close to the first but ontside the surface,

$$
\begin{aligned}
& \Omega_{2}=\Omega_{1}+4 \bar{u}(\phi)_{2} \\
& \gamma_{\varepsilon}=V_{1} .
\end{aligned}
$$

The quandity Ω is not continuous at the surface of the magnet.
The compronents of magnetic induction are related to Ω by the cquations

$$
a=-\frac{d \Omega}{d w}, \quad b=-\frac{d \Omega}{d y}, \quad c=-\frac{d \Omega}{d z}
$$

416.] In the case of a lamellar distribution of magnetism we may also simplify the vector-potential of magnetie indnction.

Its x-component may be written

$$
A=\iint\left(\frac{d \phi}{d y} \frac{d p}{d z}-\frac{d \phi}{d z} d p\right) d x v d y d z
$$

By integration lyy parts wo may pat this in the form of the surfoce-integral

$$
\begin{aligned}
H & =\iint \phi\left(m \frac{d p}{d z}-x \frac{d p}{d y}\right) d S \\
\text { or } \quad H & =\iint h\left(m \frac{d \phi}{d z}-n \frac{d \phi}{d y}\right) d S
\end{aligned}
$$

The other comporents of the vector-potential may be wriften down from these expressions by making the proper substitutions.

On Solith Angles.

417.] We have alrondy proved that at any point P the potential
due to a magnetic shell is equal to the solid angle sulbended ly the cilge of the shell multiplied lyy the strength of the shell. As we shall have occasion to refer to solid angles in the theory of electric eursente, we shall now explain how they may be mensured.

Definition. The solid angle subtended at a given point by a closed curve is measured by the trea of a spheriet stuffer whose centre is the given point and whose radius is unity, the outline of which is traced by the intersection of the radius vector with the spliere as it traces the closed enve. This area is to be reckoned positive or regative acoording as it lies on the left or the righthand of the patis of the radius vector as seen from the given point.

Leet (ξ, η, ζ) be the given point, and let (x, y, z) be a point on the elosed curve. The comrlinates x, y, z are functions of x_{2} the length of the cnrwe reckoned from a given point. They are periodic functions of s, recurring whenewer s is increased by the whole length of the closed carve.

We may ealeulate the solid angle ω directly from the definition thus. Using spherical coordinates with eentre ot (ξ, m, ζ) and putting

$$
x-\xi=r \sin \theta \cos \phi, \quad y-\eta=r \sin \theta \sin \phi, \quad z-\zeta=r \cos \theta,
$$

we find the area of any chrve on the sphere by integrating

$$
\omega=\int(1-\cos \theta) d \phi
$$

or, using the rectangular coordinates

$$
\omega=\int d \phi-\int_{0}^{x} \frac{z-\zeta}{r^{3}}\left[(w-\xi) \frac{d y}{d x}-(y-\eta) \frac{d x}{d \phi}\right] d x
$$

the integration beng extended rond the curve a.
If the axis of a passes once through the elosed onve the first $^{\text {a }}$ term is $2 \bar{\pi}$. If the axis of z does not pass through it this term is zeto.
4.18.] 'Ihis method of calculating a solid angle involtes a choice of axes which is to some extem arbitrary, nud it does not depend solely on the closed eurve. Hence the following method, in which no surfine is supposed to be constructed, may lue stated for the sake of gemetrienl propriety.

As the ratius vector from the given point traces out the elosed enrve, lat a plane passing throngh the given point roll on the closed curve so as to be a tongent plate at each point of lise curve in sucecsion. Let a line of unit-length he trawn from the given point perpendicular to this plane. As the plane polls round the
closed curve the extremily of the perpendiatla will frace a second closed curve. Teet the lemgth of the second closed curve be σ, then the solid angle subtended by the first closed curve is

$$
\omega=2 \pi-\mathrm{r} .
$$

This follows from the well-known theorem that the area of it closed curve on as sphere of unit rudins, together with the circumFerence of the polar curve, is mmerically equal to the ciremference of a great circle of the sphere.

This constraction is sometimes convenicnt for calculating the solich angle subtended by arectilinear figure. For our own purpose, Which is to form chan ideas of physical phenomena, the following mettrol is to be preferved, as it employs no constructions which do not thow from the physicul datn of the problem.
419.] A closed curve os given in shace, and we have to find the solich angle sulutended ly st a given point I^{2}.

If we consider the solid angle as the protential of a magnetic shell of mit strength whose edge coneides with the elosed curve, we must define it as the work done by a mit magnetic pole against the magnetic force while it moves from an infinite distance to the point f. Hence, if σ is the path of the pole as it approaches the point P, the potential must be the ressalt of a line-integration along this path. It must also lae the result of a line-integration along the elosed curve s. The proper form of the expression for the solid angle must therefore le that of a double integration with respect to the two curves s and as.

When P is at an infinite distance, the solid angle is evidently zero. As the point P^{\prime} appronches, the elosed curve, as seen from the moving point, appenrs to open ont, and the whole solid angle may be conchwed to be generated by the apparent motion of the different dements of the closed curve as the moring point approiches.

As the proint f^{\prime} moves froun P to P^{*} over the element ofr, the whent $Q Q$ of the closed curve, which we denote by $d n$, will dhange its position relatively to 7 , and the line on the motit sphere corresponding to $Q Q$ will sweep over sum area on the splerical surfice, which we may write

$$
\begin{equation*}
d_{\omega}=\Pi d s d \sigma \tag{l}
\end{equation*}
$$

To find II let us suppose IP lixed white the elosed enve is moved parallel to itself through a distance $d a$ equal to $P^{p} p^{\prime}$ but in the oprosite direction. The relative motion of the point P will be the some as in the real case.

During this motion the element $Q Q^{\prime}$ will grencrate am area in the form of a parallelogram whose sides are patalkel and ogual to $Q Q^{\prime}$ and $P J^{Y}$. If we construct a pramid on this parallelogram as base with its vertex at J, the solind angle of this pyramid will be the ingrement, flo which we are in seave of.

The determine the value of this solid] angle, let θ and θ be the angles which $d s$ and do make with $P Q$ respect ively, and let of be the angle luetween the planes of these two angles, then the area of the propection of the paratlelograsm $d s, d \sigma$ on a plane perpendicular to $J^{\prime} Q$ or $\begin{aligned} \\ \text { will be }\end{aligned}$

$$
d s d \sigma \sin \theta \sin \theta^{r} \sin \phi
$$

Fix.
and since this is equat to $r^{2} d$ wo find

$$
\begin{equation*}
\pi \omega=\Pi d s d \sigma=\frac{1}{q^{2}} \sin \theta \sin \theta^{\prime} \sin \phi d s d \sigma_{0} \tag{2}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\Pi=\frac{1}{r^{2}} \sin \theta \sin \theta \sin \phi \tag{3}
\end{equation*}
$$

420.] We mat express the angles θ, θ, and ψ in terms of r, and its differential coefficients with respect to s and σ, for $\cos \theta=\frac{d r}{d s}, \quad \cos \theta^{\prime}=\frac{d r}{d \sigma}, \quad$ and $\sin \theta \sin \theta^{\prime} \cos \phi=r \frac{d^{2} r}{d \theta d \sigma}$.

We thus find the following watue for Π^{2},

$$
\begin{equation*}
\Pi^{2}=\frac{1}{r^{4}}\left[1-\left(\frac{d r}{d s}\right)^{2}\right]\left[1-\left(\frac{d r}{d \sigma}\right)^{2}\right]-\frac{1}{r^{2}}\left(\frac{d^{2} v^{2}}{v / d \sigma}\right)^{2} \tag{5}
\end{equation*}
$$

A thime expression for Π in terms of rectangular coorlinates nay be dednced from the consideration that the volume of the pyramid whose solid angle is $d \omega$ and whose axis is y^{2} is

$$
\frac{1}{3} r^{3} d \omega=\frac{1}{3} r^{3} \mathrm{l} d s d \sigma \text {. }
$$

But the volume of this pyramid may also be expressed in teme of the projections of $r, W s$, and "F on the axis of x, y and z, as a detcrminant formed by these nine projections, of which we must take the third part. We thus find as the value of Π,

$$
\Pi=\frac{1}{r^{3}}\left|\begin{array}{ccc}
\xi-x_{3}, & n-y_{1} & \zeta-\hat{h}_{2} \tag{6}\\
\frac{d \xi}{d \sigma}, & \frac{d \eta}{d \sigma}, & \frac{d \xi}{d \sigma} \\
\frac{d x}{d \psi}, & \frac{d y}{d \xi}, & \frac{d \lambda}{d s}
\end{array}\right|
$$

This expression gives the value of Π free from the ambiguity of sign introduced by equation (5).
421.] The value of ω, the solid angle subtended loy the elosed curve at the point P, may now be written

$$
\begin{equation*}
\omega=\iint \Pi d s d \sigma+\omega_{0} \tag{7}
\end{equation*}
$$

where the integration with respeet to s is to le extended completely round the closed courve, and that with respect to o from A a fixed point on the curve to the point P. I'le constant os is the value of the solid angle at the point A. It is zero if A is at an infunte distance from the closed curve.

The value of wat any point P is independent of the form of the curwe between A and P provided that it does not pass thirough the magnetic sliell itself. If the shell be supposed infintely thin, and if P and P^{\prime} are two points close logether, but P on the positive and P^{y} on the negative surface of the shell, then the curves $A P$ and $A P^{3}$ mast lio on opposite sides of the elge of the shell, so that $P A P^{\prime}$ is a line which with the infintely short tine $P P$ forme a closed circuit embracing the edge. The value of at at exceeds that at P ' ly 4π, that is, by the surface of a sphere of radius unty.

Hence, if a closed carve be drawn so as to pass once through the shell, or in other words, if it be linked once with the edge of the sluell, the value of the integral $\iint \Pi d^{\prime} / d \sigma$ extended vound botle curves will be 4π.

This intogral therefore, considered as dependirg only on the closed ourve s and the arbitrary curve $A P$, is an instance of a function of multiple values, since, if we pass from A to P along different paths the integral will have different values necording to the number of times which the curve $A P$ is fwinet round the curve s.

If ono form of the curve between A and P can be transformed into another by continuous motion without intersecting the curve s, the integral will have the same value for both curves, but if during the transfonnation it intersects the closed curve a times the values of the integral will differ by 4π.
If s and a are any two closed curves in space, then, il they are not limked together, the integral extended oned round both is zero.

If they are intertwithed a times in the same direction, the walue of the integral is $4 \pi \%$. It is passible, however, for two eurves
to be intertwined alternately in opposite directions, so that they are inseparably linked together though the value of the integral is zero. Sce Fig. 4.

It was the discovery by Gauss of this very integral, expressing the work done on a magnetic pole while deseribing a elosed curve in presence of a closed electric current, and indieating the geometrical comexion between the two closed curves, that lod him to lament the smatl progress made in the Geometry of Position since the time of Leibnitz, Euler and Vandermonde. We have now, how

Fig. 4. ever, some progress to report, chiefly due to Riemann, Helmholia and Listing.
422.] Let us now investigate the resall of integrating with respeet to s round the closed enrve.

One of the terms of it in equation (7) is

$$
\begin{equation*}
\frac{\xi-x}{r^{3}} \frac{d \eta}{d \sigma} \frac{d z}{d \xi}=\frac{d \eta}{d \sigma} \frac{d}{d \xi}\left(\frac{1}{r} \frac{d z}{d m}\right) . \tag{8}
\end{equation*}
$$

If we now write for brevity

$$
\begin{equation*}
F=\int \frac{1}{r} \frac{d s}{d s} d s, \quad G=\int \frac{1}{r} d y d s \quad d s=\int \frac{1}{\gamma} d \tilde{d} d v, \tag{9}
\end{equation*}
$$

the integrals being taken onee rotud the closed curve s, this term of Π may be written

$$
\frac{d d^{2}}{d \sigma} \frac{d^{2} /}{d \xi d s}
$$

and the corresponding term of $\int \Pi$ ds will be

$$
\frac{d M}{d \sigma} \frac{d H}{d \xi} .
$$

Collecting all the terms of II, we may now write

$$
\begin{aligned}
-\frac{d w}{d v} & =-\int \Pi d s \\
& =\left(\frac{d H}{d \eta}-\frac{d G}{d \zeta}\right) \frac{d \xi}{d d \tau}+\left(\frac{d F}{d \xi}-\frac{d I T}{d \eta}\right)^{d \eta}+\left(\frac{d G}{d \xi}-\frac{d I^{T}}{d \eta}\right) \frac{d \xi}{d \sigma} \cdot(10)
\end{aligned}
$$

This quantity is evidently the rate of decrement of ω, the magnetic potential. in passing along the curve σ, or in other words, it is the magnetie foree in the divection of dow.

By assuming do sutecessively in the direction of the axes of x, y and z, we obtain for the values of the components of the maghetic furce

$$
\left.\begin{array}{l}
a=-\frac{d \omega}{d \xi}=\frac{d J}{d \eta}-\frac{d G}{d \zeta}, \\
\beta=-\frac{d \omega}{d \eta}=\frac{d H}{d \xi}-\frac{d H}{d \xi}, \tag{11}\\
\gamma=-\frac{d \omega}{d \xi}=\frac{d G}{d \xi}-\frac{d F}{d \eta} .
\end{array}\right\}
$$

"he quantities $F, G, / /$ are the components of the vector-potenthal of the magnetic sloell whose strength is unity, and whose edge is the curve s_{0} They are not, like the sealan potential $\omega_{\text {, fanctions }}$ having a serios of values, but are perfectly determinate for every point in spree.

The vector-potential at a point P due to a magretic shell bounded by a closed curve may be foum by the following grometrical construction:

Let a point Q travel round the closed eurve with a velocity numerieally equal to its distance from P, and let at second point f_{1} start from A and travel with a velocity the direction of whieh is always parallel to that of Q, but whose magnitude is unity. When Q has travelled once round the closed eurve join $A h$, then the line $A f$ represents in divection and in mumerieal magnitude the vector-potential due to the closed curve at P.

Potemind Fnergy of a Magnetic Shell placed in a Metgetic Feld.

423.] We have already shewn, in Art. 410 , that the potential energy of a shell of strength ϕ phaced in a magnetic field whose potential is \bar{T}, is

$$
\begin{equation*}
M=\phi \iint\left(l \frac{d V}{d x}+n \frac{d T}{d y}+n \frac{d V}{d z}\right) d S \tag{12}
\end{equation*}
$$

where l_{1}, on are the direction-cosines of the nomal to the shell drawn from the positive side, and the surfece-integral is extended over the shell.

Now this surface-integral may be transformed into a line-integral ly means of the vector-potential of the magnetic field, and we may write

$$
\begin{equation*}
M=-\phi \int\left(r^{d} \frac{d x}{d s}+G \frac{d y}{d s}+M \frac{d z}{d s}\right) \cdot d s \tag{13}
\end{equation*}
$$

where the integration is extended one romm the closed curve s which forms the edge of the magnetie shell, the direction of ds being opposite to that of the hands of a watch when viowed from the positive side of the shell.

If we now suppose that the magnetic fiold is that due to a
second magnetic shell whose strengthe is ϕ, the values of $F, G_{2} I /$ will be

$$
\begin{equation*}
F=\phi^{\prime} \int \frac{1}{r^{2}} \frac{d x}{d s^{\prime}} d s^{\prime}, \quad G=\phi^{\prime} \int \frac{1}{x} \frac{d y}{d s^{\prime}} d x^{\prime}, \quad H=\phi^{\prime} \int \frac{1}{r} \frac{d z}{d s^{\prime}} d s^{\prime}, \tag{14}
\end{equation*}
$$

where the integrations are extended once rom the curve s^{\prime}, which forms the edge of this shell.

Substituting these values in the expression for whe find

$$
\begin{equation*}
M=-\phi \phi^{\prime} \iint \frac{1}{r}\left(\frac{d x}{d s} \frac{d x}{d s^{\prime}}+\frac{d y}{d s} d y^{d}+\frac{d z}{d s} \frac{d z}{d s}\right) d s d x^{\prime}, \tag{15}
\end{equation*}
$$

where the integration is extended once round $*$ and once round s. This expression gives the potential energy due to the mutual action of the tro shells, and is, as it ought to be, the same when s and s° are interehanged. This expression with its sign revered, when the strength of cach shell is mity, is called the potential of the two closed curves s and x^{\prime}. It is a quanity of great importance in the theory of clectric currents. If we write \in for the angle between the directions of the eloments $d s$ and $d k^{\prime}$, the potential of s and s^{\prime} may lee written

$$
\begin{equation*}
\iint \frac{\cos \varepsilon}{x} d s d x^{\circ} . \tag{16}
\end{equation*}
$$

It is evidently a quantity of the dimension of a line.

CHAPTER IV

INDLCCH MAGNETHATION.

494.] We have hitherto considered the actual distribution of magnectization in a magnet as given explicitly among the data of the investigation. We have not made any assumption as to whether this maguctization is permanent or temporary, exeept in those parts of our reasoning in which we have supposed the magnet broken up into small portions, or small portions removed from The magnet in such a way as not to alter the magnetizalion of any part.
We have now to consider the magnetization of bodies with respect to the mode in which it may be produced and changed. A bar of iron theld parallel to the direction of the earth's magnetio force is found to lrecone magnetic, with its poles turned the opposite way from those of the earth, or the same way as those of a compass neodle in stable equilibrium.

Any piece of soft iron placed in a magnetic field is found to exhibit marnetic properties. If it be placed in a part of the field where the magnetic force is great, as between the poles of a horse-shee magnet, the magnotism of the iron becomes intense. If the iron is removed from the magnetic field, its magnetic properties are greatly weakened or disappear entirely. If the maguetic properties of the iron depend entively on the magnetie foree of the field in which it is phaced, and wanish when it is removed from the fold, it is called Soft iron. Trons which is soft in the magnetic sonse is also zoft in the literal sense. It is easy to lend it and give it a permanemt set, and difficult to break it.

Iron which retsins its magnetio properties when removed from the magnetie fiekl is called Hard iron. Such iron does not take
up the musretie state so readily as soft iron. The opreration of hammering, or any other kind of vilstation, allows hatd iron under Whe influrnce of magnetic force to assume the magnetic state more readily, aud to part with it more readily when the magnetizing force is removed. Iron which is magnetically hard is also more still to bend and more apt to break.

The processes of hammering, rolling, wire-drawing, and suddeu cooling tend to harden iron, and that of annealing tends to solten it.

The magnetic as well ats the mechanical differences between steel of hard and soft temper are much greater than those between hard and soft iron. Solt steel is almosi us easily magrotized and demagnetized as iron, while the hardest steel is the best material for magnets which we wish to be permanent.

Cast iron, though it contains more carbon than steel, is not so retentive of magnetization.

If a magnet could be constructed so that the distribution of its magnetization is not altered by any magnetic foree brought to act upon it, it might be called a rigidly magnetized bouly. The only known body which fulfis this comdition is a conducting cirenit round which a constant electric coment is made to flow.

Shel at circuit exhibits magnetic properties, and may therefore be ealled an electromagnet, bat these magnetic properties are not affected by the other magretic forces in the field. We shall return to this subject in Part IV.

All actual magnets, whether made of hardened steel or of loadstone, aro found to be aftected ly any magnetio lore which is brought to bear upon them.

It is convenient, for scientifie purposes, to make a distinetion hetween the pemanent and the tempormy magnetivalion, defining the permanent magnetization as that which exists independently of the magnetie foree, and the temporary maguetization as that which depends on this force. Hic must olserve, however, that this distinctions is not founded on a knowkelge of the intimate nature of magnetizable substances : it is only the expression of an lypothesis introduced for the salio of bringing ealenlation to bear on the phemomena. We shall return to the physical theory ol' magnetizntion in Chapter VI.
425.] At present we slall investigate the temporary magnetization on the assumption that the magretization of any prarticle of the substance ilepends solely on the mameretic force acting on
thati particle. This magnetio foree may arise partly from external causes, and partly from the temporary magnetization of neighbouring particles.

A body thas magnetized in virtue of the action of magnetic fore, is said to bo magretized by induction, and the magnetization is satid to be induced by the magnetizing fores.
'The magnetization induced by a given magnetizing force dilfers in different substances. It is greatest in the purest and sofust iron, in which the ratio of the maguetization to the magnetie foree may reach the ralue 32 , or even 45 *.

Other substanees, such as the metals niekel and eobalt, are capable of an inferior degree of magnetization, and all stofstances when sulijected to a sufliciently strong magnetie foree, are found to give indications of polarity.

When the magnetization is in the same direction as the magnetic fored, as in iron, nickel, cohalt, Re, the substance is ealled Panmagnetic, Ferromagnetie, or more simply Magnetie. When the induced magnetization is in the direction opposite to the mugnetic fore, as in bismutle se., the substance is said to be Diamugretic.

In all these sulbstanes the ratio of the magnetization to the magnetie fore which proltees it is exceedingly small, being only
 diamaguetic substance Enown.

In erystallized, strained, and organized substances the direction of the magnelization does not atways conetde with that of tho magnelic force which produces it. The relation between the components of magnetization, referred to axes fixed is the body, and those of the magnetic foree, may be expressed by a system of three linear equations. Of the nine cocflieients involved in these equations we shall shew that only six are independent. The phenomena of bodies of this kind are classed moder the name of Magneerystallic phenomena.

When placed in a feeld or magnetie force, erystals tend to set themselves so that the axis of greatest paramagnetic, or of least dinmagnetie, induction is parallel to the lines of magnetic fored. See trit. 435.

In soft iron, the entrection of the magnetization coneides with that of that magnetic force at the point, and for small values of the magnetic lore the magnetization is nearly proportional to it.

[^5]As the magnetic foree increases, however, the magnetization increases more slowly, and it would appear from experiments deseriled in Chap. VI, that there is a limiting value of the magnetization, beyond which it cannot pass, whatever be the value of the magnetic foree.

In the following outline of the theory of induced magnetism, we shall begin by supposing the magnetization proportional to the magnetic foree, and in the same line with it.

Deffinition of the Coefficient of Inducel Magnetization.

426.] Let 5 be the magnetic force, defined as in Art. 398, at my point of the body, and let ξ be the magnetization at that point, then the ratio of 3 to 50 is called the Coefficient of Iudued Magnetization.

Denoting this coeflicient by κ, the fundamental equation of induced magnetism is

$$
\begin{equation*}
9=\kappa \sqrt{5} . \tag{1}
\end{equation*}
$$

The coefficient x is positive for iron and paranagnetic substances, and negative for bismith and diamagnetic substances. It reaches the value 32 in iron, and it is said to be large in the case of niekel aud cobalt, but in all other enses it is a very small quantity, not greater than 0,00001 .
The foree 55 arises partly from the action of maguets extemal to the body magnetized by induction, and partly from the induced magnetization of the body itself. Both parts satisfy the condition of having a potential.
427. I Let / be the potential due to magnetism extertal to tho body, let Ω be that due to the induced magnetization, then il U is the actual potential due to both eanses

$$
\begin{equation*}
U=V+\Omega \tag{2}
\end{equation*}
$$

Jeet the components of the magnetic force 5 , resolved in the directions of x, y, z, be a_{4}, β, γ, and let those of the magnetization 3 be A, B, C, then by equation (1),

$$
\left.\begin{array}{rl}
t & =\kappa a_{3} \\
B & =\kappa \beta, \tag{3}\\
C & =k \gamma
\end{array}\right\}
$$

Mniltiplying these equations by $d x, d y, d s$ respectively, and audding, we find

$$
A d d+B d y+C d z=\kappa(\alpha d x+\beta d y+\gamma d z) .
$$

Thut since a, β and γ are alerived from the potential θ, we may write the second member $-\kappa d U$.

Hence, if x is constant throughout the substance, the first, member must also be a complete differential of a function of x, y and z, which we shall call ϕ, and the equation becomes

$$
\begin{gather*}
d \phi=-\kappa d U, \tag{4}\\
\text { where } \quad A=\frac{d \phi}{d / x}, \quad B=\frac{d \phi}{d y}, \quad C=\frac{d \phi}{d z}+ \tag{5}
\end{gather*}
$$

The magnetization is therefore lamellar, as delined in Art. 412.
It was shewn in int. 386 that if ρ is the volume-density of free magnetism,

$$
p=-\left(\frac{d A}{d z}+\frac{d l]}{d y}+\frac{d C}{d q}\right)
$$

which becomes in virtue of equations (3),

$$
p=-\kappa\left(\frac{d a}{d x}+\frac{d \beta}{d y}+\frac{d y}{d z}\right) .
$$

But, by Art. 77 ,

$$
\frac{d a}{d u}+\frac{d \beta}{d y}+\frac{d Y}{d x}=4 \pi \rho
$$

Hence

$$
(1+4 \pi \kappa) \rho=0
$$

whence

$$
\begin{equation*}
\rho=0 \tag{6}
\end{equation*}
$$

throughont the substance, and the magnetization is therefore solenoidat as well as lamellar. See Art. 407.
'Hhere is therefore no free magnetism except on the bounding surlace of the body. If y be the nomal drawn inwards from the surfuce, the nagnetio surface-density is

$$
\begin{equation*}
\pi=-\frac{d \phi}{d \nu} \tag{7}
\end{equation*}
$$

The potential Ω che to this magnetization at any point may therefore be found from the surface-integral

$$
\begin{equation*}
\Omega=\iint \frac{\sigma}{r} d S \tag{8}
\end{equation*}
$$

The value of Ω will be linite and continuous crerymbere, and will satisfy Laplace's equation at every point both within and without the surfice. If we distinguisla by an accent the value of Ω outside the surlace, and if ν^{\prime} le the nomal dawn outwards, we have at the surfece

$$
\begin{equation*}
\Omega^{\prime}=\Omega \tag{9}
\end{equation*}
$$

$$
\begin{aligned}
& \frac{d \Omega}{d \mu}+\frac{d \Omega^{\prime}}{d \mu^{\prime}}=-4 \pi \sigma_{2} \quad \ln \quad A r L_{0} 78, \\
& =4 \pi \frac{d \phi}{d y}, \operatorname{ly}(t), \\
& =-4 \pi \kappa \frac{d U}{d y}, \text { by }(d) \\
& =-4 \pi \mathrm{k}\left(\frac{d I^{-}}{d p}+\frac{d \Omega}{d \nu}\right), b_{y}(2) .
\end{aligned}
$$

We may therefore write the surface-condition

$$
\begin{equation*}
\left(1+1 \bar{\pi} \kappa^{\prime}\right) \frac{d \Omega}{d v}+\frac{d \Omega^{\prime}}{d v^{\prime}}+4 \pi \kappa \frac{d H^{\prime}}{d L^{\prime}}=0 \tag{10}
\end{equation*}
$$

Hence the determination of the magnetism induced in a homogroneons isotropie body, bounded by a surface S, and ated upon by external magnetic forces whose potential is Γ^{-}, moy be reduced to the following mathemation problem.

We mast find two functions Ω and Ω satislying the following conditions:

Within the surface S, Ω most be finite and contimuous, and must sufisfy Japlace's equation.

Ontside the surface S, Ω^{\prime} must be finite and continuous, it must wanish at an infinite distance, and must satisfy $\mathrm{I}_{\text {a }}$ place's equation.

At every point of the surface itself, $\Omega=\Omega$, and the derivatives of Ω, Ω^{\prime} and V with respect to the normal must satisfy equation (10).
'This method of treating the problem of induced magnetism is due to Poisson. The quantity 2 which he uses in his memoirs is not the same as k , but is related to it as follows :

$$
\begin{equation*}
4 \pi k(k-1)+3 z=0 \tag{11}
\end{equation*}
$$

Thlee cocflicient x which we have here used was introduced by J. Neumann.
428. The prollem of induced magretism may be treated in a diflerent manner by introdncing the quantity which we have called, with Faraday, the Magnetic Induction.

The relation between 8 , the magnetic induotion, 5 , the magnetic foree, and 3 , the magnetization, is expressed by the equation

$$
\begin{equation*}
\mathfrak{B}=5+4 \pi 9 \tag{12}
\end{equation*}
$$

${ }^{T}$ The equation which expresses the induced magnetization in terms of the magnetie force is

YOL. IT.

$$
\begin{equation*}
3=\kappa 5 \tag{13}
\end{equation*}
$$

Hence, eliminating $\}$, we lind

$$
\begin{equation*}
\mathfrak{V}=(1+1 \pi \kappa) 5 \tag{11}
\end{equation*}
$$

as the retation between the magnetic induction and the magnetic force in sulustances whose magretization is induced by magnotie foree.

In the most general case x mary bo a function, not only of the position of the point in the substanes, bat of the direction of the vector 35 , but in the case which we are now considering x is a mumerical quantity.

If we next write

$$
\begin{equation*}
\mu=1+4 \pi \kappa \tag{15}
\end{equation*}
$$

we may define μ as the ratio of the magnetie induction to the magnetie foree, and we may eall this ratio the magnetie inductive capacity of the sulnstance, thas distinguishing it from k, the coefficient of indued magnetization.

If we write U for the total magnetic jotential componaded of J^{\prime}; the potential due to external eauses, and Ω for that due to the induced mangetization, we may express a, b, c, the emponents of maynetic induction, and a, β, γ, the conpmonents of magretic foree, as follows:

$$
\left.\begin{array}{l}
a=\mu a=-\mu \frac{d U}{d \lambda} \\
h=\mu \theta=-\mu \frac{d U}{d y} \tag{16}\\
\varepsilon=\mu \gamma=-\mu \frac{d U}{d \alpha}
\end{array}\right\}
$$

The components a, b, c eatisfy the solenotdal comation

$$
\begin{equation*}
\frac{d a}{d x}+\frac{d b}{d y}+\frac{d c}{d x}=0 \tag{17}
\end{equation*}
$$

Hence, the potential U must satisfy Laplace's equation

$$
\begin{equation*}
\frac{d^{2} U}{d y^{2}}+\frac{d^{2} U}{d y^{2}}+\frac{d^{2} U}{d z^{2}}=0 \tag{18}
\end{equation*}
$$

at every point where p is constant, that is, at ewery point within the homogenems substance, or in empy space.

At the surface itsolf, if v is a nomal drawn towards the magnelie substanee, and y^{\prime} one drawn outwards, and if the symbols of quantities outside the substance are distinguished by acents, the condition of contimaty of the magnetie induetion is

$$
\begin{equation*}
a \frac{d v}{d x}+b \frac{d \nu}{d y}+c \frac{d v}{d z}+a^{\prime} \frac{d y^{\prime}}{d d^{\prime}}+b^{\prime} \frac{d v}{d y}+e^{\prime} \frac{d v^{\prime}}{d z}=0 \tag{19}
\end{equation*}
$$

or, by equations (16),

$$
\begin{equation*}
\mu \frac{d U}{d v}+\mu^{\prime} \frac{d J^{\prime}}{d s^{\prime}}=0 \tag{20}
\end{equation*}
$$

μ^{\prime}, the coefficient of induction outside the magnet, wall be unity unless the surrounding medium be magnetic or diamargetic.

If we substitute for U its waluo in terms of ρ and Ω_{1} and for μ its value in terms of of we wbtain the same equation (10) as we nrrived at by Poisson's method.

The problem of induced magretion, when considered with respect to the relation betwen magnetie induction and magnetic force, corresponds exactly with the problem of the conduction of electric currents through lipterogencous mediis, as given in Art. 300.

The magnetic force is derived from the matactic potentat, precisely as the electric force is derived from the electric potentitat.

Tho magretic induction is a quantily of the matave of at flow, and sutisfies the same comlitions of continuity as the electric current does.

In isotropie media the magnetic induction depends on the maynetic force in a manver which exactly corresponds with that in which the electrie eurent depends on the electrontive forec.

The specifie magnetic inductive capacity ist the one problem corresponds to the specific conductivity in the other. Hence F"liomson, in his Theory of Indnced Magnetism (heprint, 1872, 1. 484), has called this quantity the perwechility of the medium.

We are now prepared to consider the theory of induced magnetism from what I conceive to be Faraday's point of view.

When magnetic force acts on any medium, whether magnetic or dianagretic, or nentral, it produces within it a phenomenon ealled Magretie Indtelion.

Magnetic induction is a directerl quandity of the mature of a flux, and it satisfies the same condidions of contimuty as electrie currents and other fluxes do.

In isotropic media the magnetic fores and the matractic induction are in the same direction, and the magraetio induction is the product of the magnetic force into a quantity called the couflieient of induction, which we have expressed lyy μ.

In emply sance the coeflicient of induction is unity. In bodies capable of induced magnetization the coeflicient of induction is $1+4 \pi \kappa=\mu$, where κ is the quantity already defined as the coefficient of induced magnetization.
429.] Let μ, μ^{\prime} be the valutes of μ on opposite sides of a surface
separating two metha, thet if $J_{,} 7^{7 /}$ are the potentats in the two media, the magnetic forees towards the surface in the two media are $\frac{d F}{d p}$ and $\frac{d V^{\prime}}{d \nu^{\prime}}$.

The quantities of magnetic induction through the element of surface $d S$ are $\mu \frac{d F}{d y} d S$ and $\mu^{\prime} \frac{d V^{\prime}}{d m^{\prime}} d S$ in the two media respectively reckoned towards $d S$.

Since the total flux towards $d S$ is zero,

$$
\mu \frac{d V}{d v}+\mu^{\prime} \frac{d V^{*}}{d v^{\prime}}=0
$$

But, ly the theory of the potential near a surface of density if,

$$
\begin{aligned}
& \frac{d V}{d \nu}+\frac{d V^{\prime}}{d b^{\prime}}+4 \pi \sigma=0 \\
& \frac{d V}{d v}\left(1-\frac{\mu}{\mu^{\prime}}\right)+4 \pi \sigma=0
\end{aligned}
$$

Herbe
If κ_{1} is the ratio of the superficial magnetization to the nommal force in the first medium whose coeflicient is μ, we have

$$
4 \pi \kappa_{1}=\frac{\mu-\mu^{\prime}}{\mu^{\prime}}
$$

Hence k_{1} will be positive or negative accorling as μ is greater or less than μ^{\prime}. If we put $\mu=4$ ta $\kappa+1$ and $\mu^{\prime}=4 \pi \kappa^{\prime}+1$,

$$
\kappa_{1}=\frac{x-\kappa^{\prime}}{4 \pi k^{\prime}+1} .
$$

In this expression k and x^{\prime} are the coefficients of induced magnetiation of the first and second medinm deduced fiom experiments made in air, and κ_{1} is the coeflieient of induced magnetization of the first medium when survounded by the second medium.

If κ^{\prime} is greater than κ_{2} then κ_{1} is negative, or the apparent magnelization of the first medimm is in the opposite direetion from the magnetizing force.

Thus, if a vessel containing a weak aqueous solution of a paramagnetic salti of iron is suspended in a stronger solution of the sane salt, and acted on by a magnet, the ressel moves as if it were magnetized in the oprosite direetion from that in which a magnet would set itself if snspended in the same place.

This may be explained by the bypothesis that the solution in the ressel is really magnetized in the same direction as the magnetie foree, but that the solution which surround the vessel is magnetized more strongly in the same tirection. Hence the vessel is like a weak magnet placs betwen two strong ones atl mag-
netized in the same direction, so that opposite poles are in contact. ${ }^{\prime}$ Ilite nortll pole of the wenk magnet points in the same direction ass those of the strong ones, but sines it is in confact with the south pole of a stronger magnet, there is an excess of south magnetisn in the neighbourhood of its north pole, which causes the smatl magnet to appear oppositely magnetized.

In some substances, lowever, the apparent magnetization is negative even when they are suspended in what is called a vacun.

If we assume $k=0$ for a vacum, it will be regative for these substances. No substance, however, has been diseoverad for which k has a negative value mumencally greater than $\frac{1}{4 \pi}$, and thereforo for all known substances μ is positive.

Sulnataces fox which κ is megative, and therefore μ less than unty, we called Diamagnetie substances. Those for which κ is positive, and $\mu \mathrm{greater}$ than unity, are called Paramagnetic, Ferromagnetic, or simply magnetic, substances.

We shall consider the physical theory of the diamagretie and pammagretie properties when we come to electromagnetism, Arts, $831-845$.
430.] The mathematical theory of magnetic induction was lirst given by Poisson \%. The plysieal hypothesis on which he founded his theory was that of two magnetic fluids, an lypothesis which has the same mathematical advantages and physical dificultics as the fheory of two electrie fluids. In order, however, to explain the fiet that, though a piece of soft iron can be magnetized by induction, it camot be charged with mequal quantities of the two kinds of magnetism, he supposes that the substance in general is a non-conductor of these fuids, and that only certain small portions of the sulustance contain the thaids ander circumstanees in which they are free to obey the forces whieh aet on them. These small mugnetic elements of the substance contain each preciscly equal quantities of the two flude, and within each clement the fluids move with perfect freedom, but the fluids can never pass from one magnetie element to mother:

The problen therefore is of the same limel as that wating to in mumber of small conductors of electricity disseminated throngh a dielectric insulating medium. The conductors may be of ayy form provided they are small and do not toweh each other.

If they are elongated bodies all turned in the same greneral
direction, or if they are erowded more in ono diredion than another, the median, as Poisson bimself shews, will not be isotropic. Poisson therefore, to awoid meless intricneg, examines the case in which each magnetic element is sphorieal, and the clements are diseeminated without regard to axes. Te supposes that the whole volume of all the magnetic elements in unit of volume of the sulostance is k

We have alrendy considwed in A at. 3 Is the electrie condnetivity of n medium in which small splueres of nother medium are distributed.

If the condnetivity of the medium is μ_{1}, and that of the splaeres μ_{2}, we have found that the conductivity of the composile system is

$$
\mu=\mu_{1} \frac{2 \mu_{1}+\mu_{2}+2 k\left(\mu_{2}-\mu_{1}\right)}{2 \mu_{1}+\mu_{2}-h\left(\mu_{2}-\mu_{1}\right)} .
$$

Putting $\mu_{1}=1$ and $\mu_{0}=\infty$, this becomes

$$
\mu=\frac{1+2 h}{1-h}
$$

This quantity μ is the electrie conductivity of a medum eonsisting of perfecty conducting spheres disseminated through a medium of conductivity unity, the aggregrate volume of the spheres in unit of rolume being. f.

The symbol μ also reprosents the coeficiunt of manetic anduction of a mediam, consisting of spheres for which the permenbility is infinite, disseminated thourgh a medimon for which it is unity.

The symbol ha $_{\text {s }}$ which we shatl call Poisson's Magnetic Coeflicient, represents the ratio of the volume of the magnetie elements to the whole volume of the sulbstance.

The symbol s is known as Neumann's Coefleient of Magnetization by Jnduction, It is more convenient than Poisson's.

The symbol μ we shall all the Coelfieient of Magnetic Indnetion. Its advantroce is that it faciltates the tranformation of magnetio problems into problems relating to electricity and heat.

The relations of these three symbols are as follows :

$$
\begin{array}{ll}
k=\frac{4 \pi k}{4 \pi x+3}, & k=\frac{\mu-1}{\mu+2}, \\
\kappa=\frac{\mu-1}{4 \pi}, & k=\frac{3 k}{4 \pi(1-k)}, \\
\mu=\frac{1+2 k}{1-k}, & \mu=4 \pi \kappa+1 .
\end{array}
$$

If" we put $x=32$, the walne friven by Thalén"s* experiments on

soft iron, we find $t=1 \frac{14}{4}$. This, accoming to Poisson's theory, is the ratio of the volume of the magretie molecules to the whole volume of the iron, It is impossible to pack a space with egual spheres so that the ratio of their volume to the whe espace shatl lse so nearly unity, and it is excedingly jmprobable that so large a proportion of the volume of iron is ocenpied by entid matecules whatever be their form. Thas is one reason why we rust alatudon Poisson's hypothesis. Others will the stated in Chapter VI, Of course the value of Posson's mathenatical investigations remanas umimpuided, ns they do mote rest on his hypothesis, but on the expermental diet of induced magnetiantion.

CHAPTER V.

PARTICULAR PROBMEMS IS MAGNDPIC INDUCTION.

A Hollow Spherical Shotl.

431.] The lirst example of the complete solution of a problem in maguetie induction was that griver by Poisson for the case of a hollow spherical shell acted on ly any magnetic forees whatever.

For simplicity we shald suppose the origin of the magnetic forces to bee in the space ontside the shell.

If V denotes the potenfial dine to the extemal magnetie systent we may expand V in series of solid harmonies of the form

$$
\begin{equation*}
V=C_{0} S_{0}+C_{1} S_{1} r+8 \mathrm{c} \cdot+C_{i} S_{i} r^{t} \tag{1}
\end{equation*}
$$

where r is the distance from the centre of the shell, S_{i} is a sufface harmonic of order $i_{\text {s }}$ and C_{i} is a eveflicient.

This series will be eonvergent provided r is less than the distance of the nearest magnet of the system which produces this potential. Hence, for the hollow spherical shell and the space within it, this expansion is convergent:

Let the extemat radius of the shell be a_{22} and the inuer radius a_{13} and let the potential due to its indueed magnetism be Ω. The form of the fanction Ω will in general be different in the hollow space, in the substance of the shell, athd in the space beyoud. If we expand thege fimetions in hamonic series, then, confiming our attention to those terms which involve the surface hamonic S_{n} we shall find that if Ω_{1} is that which corresponds to the loollow spece within the shell, the expansion of Ω_{1} must be in positive hatr monies of the form $A_{1} S_{i} r^{i}$, because the potential must not become infinite within the sphere whose madius is a_{1}.

In the substance of the shell, where r_{1} lies between a_{1} and a_{2}, the series may eondatn hoth positive and negative powers of r, of the form $\quad A_{2} S_{i} y^{i}+B_{p} S_{i} r^{r(i+1)}$.

Outside the shopl, where r is greater duan z_{2}, simee the sories
mist be convergent however grveat, γ may be, we must have only negative powers of r, of the form

$$
B_{\mathrm{s}} S_{\mathrm{i}} r^{-(i+1)} .
$$

The conditions which must be satisfied by the function Ω are: It must be (1) finite, and (2) continuous, and (3) must wauish at an infinite distance, and it must (4) everywhere satisfy Laplace's equation.
On account of (1) $B_{1}=0$.
On account of (2) when $r=a_{1}$,

$$
\begin{equation*}
\left(A_{1}-A_{2}\right) a_{1}^{2 i+1}-B_{2}=0, \tag{2}
\end{equation*}
$$

and when $r=a_{2}$,

$$
\begin{equation*}
\left(A_{2}-A_{3}\right) \mu_{2}^{2 i+1}+B_{2}-B_{3}=0 . \tag{3}
\end{equation*}
$$

On acconnt of (3) $A_{3}=0$, and the condition (i) is satisfied everywhere, since the functions are harmonic.

But, besides these, there are other conditions to be satisficd in the inner and outer surface in virtue of equation (10), Art. $\$ 27$.

At the inner surfice where $r={ }^{\prime}$,

$$
\begin{equation*}
(1+1 \pi x) \frac{d \Omega_{2}}{d r}-\frac{d \Omega_{1}}{d r}+1 \pi \kappa \frac{d V}{d r}=0, \tag{4}
\end{equation*}
$$

fond at the onter surface where $r=a_{z}$,

$$
\begin{equation*}
-(1+4 \pi k) \frac{d \Omega_{2}}{d r}+\frac{d \Omega_{3}}{d r}-4 \pi \times \frac{d I^{r}}{d r}=0 . \tag{5}
\end{equation*}
$$

From these conditions we obtain the equations

$$
\begin{equation*}
(1+4 \pi \kappa)\left(i A_{2} a_{1}^{2 i+1}-(i+1) B_{n}\right)-i A_{1} u_{1}^{2 i+1}+4 \pi \kappa i C_{1} i_{1}^{2 i+1}=0 \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
(1+4 \pi m)\left(i A_{\mathrm{g}} a_{2}^{2 i+1}-(i+1) B_{2}\right)+(i+1) b_{3}+4 \pi \kappa i U_{5} a_{2}^{2 i+1}=0 \tag{7}
\end{equation*}
$$ and if we put

we find

$$
\begin{equation*}
M_{i}=\frac{1}{(1+1 \pi k)(2 i+1)^{2}+(1 \pi k)^{2} i(i+1)\left(1-\left(\frac{a_{1}}{a_{2}}\right)^{2+1}\right)^{-7}} \tag{8}
\end{equation*}
$$

$$
\begin{align*}
& A_{1}=-(4 \pi \kappa)^{2} i(i+1)\left(1-\left(\frac{a_{1}}{a_{2}}\right)^{2 i+1}\right) M_{i} C_{i} \tag{9}\\
& A_{2}=-4 \pi \kappa i\left[2 i+1+4 \pi \times(i+1)\left(1-\left(\frac{a_{1}}{N_{2}}\right)^{2 i+1}\right)\right] N_{i} C_{i} \tag{10}\\
& D_{2}=4 \pi \kappa i(2 i+1) a_{1}^{2 i+1} N_{i} C_{i}, \tag{11}\\
& B_{3}=4 \pi \kappa i(2 i+1+4 \pi \kappa(i+1))\left(a_{2}^{2 i+1}-a_{1}^{2 i+1}\right) N_{i} C_{i} \tag{12}
\end{align*}
$$

These quautities beings substituted in the harmonie expansions give the part of the potential due to the magnetization of the shell. The quantity N_{i} is always positive, since $1+4 \pi \kappa$ can never bo negative. Hence A_{1} is always negative, or in other worde, the
action of the magnetiact shell on a point within it is always opposed to that of the external magnetic foree whether the shell be parnmagnetic or diamaguetic. The aetual watue of the resultant. potential within the sholl is

$$
\begin{gather*}
\left(C_{i}+A_{1}\right) S_{i} r^{i}, \\
01{ }^{*} \quad(1+4 \pi \kappa)(2 i+1)^{2} A_{i}^{r} C_{i} S_{i} r^{2} \tag{13}
\end{gather*}
$$

432.] When κ is a large numbery as it is in the case of soft irons then, muless the shell is very thin, the magnetic foree within it is but a small fraction of the extermal foree.

In this way Sir W. Thomson has rentered his marine galwanometer independent of extermal magnetie force by anclosing it, in a tube of soft iron.
433.] The case of ereatest practical importase is that in which $i=1$. In this case

$$
\begin{align*}
& N_{1}=\frac{1}{9(1+4 \pi \kappa)+2(4-\kappa)^{2}\left(1-\left(\frac{A_{1}}{N_{2}}\right)^{9}\right)}, \tag{14}\\
& \left.\begin{array}{l}
A_{1}=-2(1 \pi \kappa)^{2}\left(1-\left(\frac{a_{1}}{a_{2}}\right) N_{1}^{2} O_{1}\right. \\
A_{2}=-4 \pi \kappa\left[3+8 \pi \kappa\left(1-\left(\frac{a_{1}}{a_{2}}\right)^{n}\right)\right] N_{1} C_{1},
\end{array}\right\} \tag{15}\\
& B_{m}=12 \pi \kappa a_{1} N_{1} C_{1}, \\
& h_{4:}=1 \pi \kappa(3+8 \pi \kappa)\left(a_{2}^{3}-a_{1}{ }^{2}\right) N_{1} C_{1} . \quad j
\end{align*}
$$

The magnetie foree within the hollow shell is in this case muiform and equal to

$$
\begin{equation*}
C_{1}+A_{1}=\frac{0(1+4 \pi \kappa)}{9(1+4 \pi \kappa)+2(4 \pi \kappa)^{2}\left(1-\left(\frac{a_{7}}{a_{2}}\right)^{3}\right)} C_{1} \tag{16}
\end{equation*}
$$

If we wish to determine on by mensuring the magnetic fores within a bollow shell and comparing it with the external magnetic force, the best value of the thickness of the shell may be found from the equation

$$
\begin{equation*}
1-\frac{u_{1}^{3}}{a_{2}^{3}}=\frac{1}{2} \frac{t+1 \pi \kappa}{(4 \pi \kappa)^{2}} . \tag{17}
\end{equation*}
$$

The magretic force inside the shell is then half of its value outside.
Since, in the case of iron, κ is at momber between 20 and 30 , the thickness of the shell onght to bo about the hundredth part of its rathes. This method is applicable omly when the value of x is large. When it is very small the valne of A_{1} beeomes insensible, since id depends on the squate of κ.

Por a mearly solid sphere with a very small splorical hollow,

$$
\left.\begin{array}{l}
A_{1}=-\frac{2(4 \pi k)^{2}}{(3+4 \pi \kappa)(3+8 \pi x)} C_{1} \tag{18}\\
A_{2}=-\frac{4 \pi \kappa}{3+1 \pi \kappa} C_{1}, \\
B_{3}=\frac{4 \pi \kappa}{3+4 \pi \kappa} C_{1} a_{2}^{3}
\end{array}\right\}
$$

The whole of this inverstigation might have been adeducel direetly from that of conduction throngh a spherieal shell, as given in Ari. 312, by putting $h_{1}=(1+4 \pi k) h_{2}$ in the expmessions theme given, renembering that A_{1} and A_{2} in the problem of conduef ion awe equivalent to $C_{3}+A_{1}$ and $C_{1}+A_{2}$ in the problem of magnetic induction,

43 \%.] The compesponding solntion tur dimensions is fraphically represented in Fig. XV , at the end of this wolme. The lines ol indnotion, which at a distance from the centre of the liynme are menty horizontal, are represented as distorbed by a cylintrit: rod mapnetized transversely atud placed in its prasition of stable equilibrium. The lines whiel eut this system at might angeles reprosent the equipotential surfaces, one of which is a cyluder. Thu latue doted cirde represents the section of a eylinder of a paramagenctice substance, and the dotted horizontal straiggit lines within it, whicla are continong with the oxtermal lines of induction, reppresent the lines of induction within the sulbstance. The datted verticnd linus represent the internal equipotential surfacen and are continuens with the external system. It will loe observed that the liuse of induction are drawn nearer together within the shbstamee, ast the equpolential surfaces are separated farther npart by the paramgnetic cylinter, which, in the language of Faraday, condacts the lines of induction better than the surroundiag medium.

If we consider the system of wertical lites as lines of induction, atm the horizontal gystem as equipotential surfaces, we luwe in the first phace, the case of a cylinder magnetized transursely and placed in the position of unstalde equilibrium amone the lines of Force, which it eatses to diverge. In the secome place, considering the large dotted eirele as the section of a diamagnetio cylinder, the dutted straight lines within it, together with the lives extormal to it, represent the effect of a diamargetie suthstance in sejnanting the lines of induction and drawing together bime oquipencutial surfaces, such a sulastance breing a worse conductor of maphedion indaction than the surmunding medim.

Cave of e Sphere in which the Coeflicients of Magnetization are Difforat in Difieren Directions.
435.] Let a, β, γ be the components of matrutic fores, and A, A, O those of the magnetization at any point, then the most general linear relation between these quantities is given by the equations

$$
\left.\begin{array}{l}
A=r_{1} a+p_{3} \beta+q_{2} \gamma_{2} \tag{1}\\
B=q_{3} a+r_{2} \beta+p_{1} \gamma_{2} \\
C=p_{3} a+q_{1} h_{3}+r_{3} \gamma_{1}
\end{array}\right\}
$$

Where the coefficients r, p, q are the nine coeflicients of magnetization.

Let us now suppose that thuse are the ennditions of magnetization within a sphere of radius a, and that the magratization at every point of the substance is unform and in the same dircetion, laving the components A, B, C.

Let us also suppose that the external magueticing foree is also uniform and parallel to one direction, and las for its components X, J^{T}, Z.

The value of V is therefore

$$
\begin{equation*}
F=-(N x+Y y+Z z) \tag{2}
\end{equation*}
$$

and that of Q^{\prime} the potential of the magnetization outside the sphere is

$$
\begin{equation*}
\Omega^{\prime}=(A x+B y+O z) \frac{4 \pi a^{3}}{3 r^{3}} . \tag{3}
\end{equation*}
$$

The value of Ω, the potential of the magnotization within the sphere, is

$$
\begin{equation*}
\Omega=\frac{4 \pi}{3}(A x+B y+C z) \tag{4}
\end{equation*}
$$

The actual potential within the sphere is $\gamma+\Omega$, so that we shall have for the components of the magnetic force within the sphere

$$
\left.\begin{array}{l}
\alpha=X-\frac{6}{3} \pi \\
\beta=Y-\frac{1}{3} \pi B, \tag{b}\\
\gamma=Z-\frac{4}{3} \pi C
\end{array}\right\}
$$

Hence

$$
\left.\begin{array}{r}
\left(1+\frac{1}{3} \pi r_{1}\right) A+\quad \frac{1}{3} \pi p_{3} B+\quad \frac{4}{3} \pi q_{2} C=r_{1} X+p_{3} Y+q_{2} Z \\
\frac{1}{3} \pi q_{3} A+\left(1+\frac{1}{3} \pi r_{2}\right) B+\quad 4 \pi g_{1} C=q_{3} X+r_{2} Y+p_{1} Z, \tag{6}\\
\frac{4}{3} \pi p_{2} A+\quad \frac{4}{3} \pi q_{1} B+\left(1+\frac{4}{3} \pi r_{3}\right) O=p_{2} X+q_{1} Y+r_{3} Z
\end{array}\right\}
$$

Solving these equations, we find

$$
\left.\begin{array}{l}
A=r_{1}^{\prime} X+p_{3}^{\prime} Y+\eta_{3}^{\prime} Z_{3}^{\prime} \\
B=q_{3}^{\prime} X+r_{2}^{\prime} Y+p_{1}^{\prime} Z_{1} \tag{7}\\
C=p_{2}^{\prime} X+q_{1}^{\prime} Y+r_{3}^{\prime} Z_{3}
\end{array}\right\}
$$

where $\left.D r_{1}^{\prime}=r_{1}+\frac{4}{4} \bar{\pi}\left(r_{3} r_{1}-p_{2} q_{2}+r_{1} r_{2}-p_{9} q_{3}\right)+(4)^{\pi}\right)^{2} D$,

$$
\begin{align*}
& D_{p_{1}^{\prime}}^{\prime}=p_{1}-\frac{1}{\beta} \pi\left(q_{4} q_{s}-p_{1} q_{1}\right) \\
& D_{q_{1}^{\prime}}^{\prime}=q_{1}-\frac{4}{\beta} \pi\left(p_{2} p_{\beta}-q_{1} q_{1}\right)_{5} \tag{B}\\
& \& \mathrm{c}_{2},
\end{align*}
$$

where D is the determinant of the coefficients on the right side of equations (6), and $D^{\prime \prime}$ that of the coulficents on the luft.

The new system of coefficients $p^{\prime}, \not, r^{\prime}$ will be symmetrieal only when the system p, q, r is symmetrien, that is, when the coefficients of the form p^{\prime} are equal to the corresponding ones al the form q.
436.] The moment of the comple tending to thrn the sphere about the axis of x from y towards z is

$$
\begin{align*}
I & =\frac{1}{3} \pi a^{3}(Z B-1 C) \\
& =\frac{4}{3} \pi a^{3}\left\{p_{1}^{\prime} Z^{2}-q_{1}^{\prime} 1^{22}+\left(r_{3}^{\prime}-\gamma_{9}^{\prime}\right) Y Z+X\left(q_{3}^{\prime} Z-p_{2}^{\prime} Y^{\prime}\right)\right] \tag{9}
\end{align*}
$$

If we make

$$
X=0, \quad Y=F \cos \theta, \quad I=F \sin \theta_{y}
$$

this corresponds to a magnetic force P in the plane of $y z$, amd inclined to y at an angle θ. If we now turn the sphere while this force remains constant the work done in tuming the sphere will be $\int_{0}^{2 \pi} I_{A} d \theta$ in each complete revolution. Bat this is equal to

$$
\begin{equation*}
y^{5}-a^{3} F^{22}\left(p_{1}^{\prime}-g_{1}^{\prime}\right) \tag{10}
\end{equation*}
$$

Hence, in order that the rewolving sphere may not beeone an inexhanstible soure of energy, $p_{2}{ }^{\prime}=\eta_{1}^{\prime}$, and similarly $\mu_{2}^{\prime}=q_{2}^{r}$ and $g_{3}{ }^{\prime}=q_{3}$.

These conditions shew that in the original equations the coefficient of B ian the third equation is equal to that of C in the second, and so on. Hence, the system of equations is symuetrical, sum the equations become when referred to the prineipal axes of magnetization,

$$
\left.\begin{array}{l}
A=\frac{r_{1}}{1+\frac{4}{\pi_{2}} r_{1}} X \\
B=\frac{T_{2}}{1+\frac{4}{3} \pi r_{2}} Y_{1} \tag{11}\\
C=\frac{r_{3}}{1+\frac{4}{3} \pi r_{8}} / /
\end{array}\right\}
$$

The momont of the couple tending to thm the sphere rontel that axis of x is

$$
\begin{equation*}
\left.L=\frac{4}{\pi} \pi a^{3} \frac{r_{2}-r_{8}}{\left(1+\frac{4}{4} r_{2}\right)\left(1+\frac{4}{3} \pi r_{3}\right)}\right] Z_{4} \tag{12}
\end{equation*}
$$

In most cnses the diflerences between the couflicients of magnetization in different directions are wery small, so that we may put

$$
\begin{equation*}
L=\frac{4}{3} \pi R^{3 /} \frac{x_{2}-r_{3}}{\left(1+\frac{4}{3} \pi r\right)^{2}} / 2 \sin 20 . \tag{13}
\end{equation*}
$$

llois is the forec tending to turn a erystalline sphere about the axis of w liom y towards \approx. It always tends to place the axis of greatest magretic couffient (or least, diamagnetic coeflictent) patallel to the line of magnetie force.
"lho corresponding case in two dimensions is represented in Fige, XVI.

If we suppose the upper side of the figure to be towards the north, the figure represents the lines of force and equipotential surlaces as thsturbed ly a transversely magnetized oytinder pheed with the nortl side castwards. The resultant force tends to turn the eylinder from east to north. The larye dotted eirele represents a section of a cylinder of arystaline substance which has a hargen cocdlicient of induction along an axis from north-enst to south-west than alonge un axis from north-west to sontheast. "I'lie dotied lines within the circle represent the lines of induction and the equipotential surbees, which in this case are not at right angles to ench other. The resultant fore on the cylinder is evidently to turn it from east to north.
437.] The cast of an cllipsoid placed in a field of uniform and parallel magnetic force has been solved in a very ingenious manner by Poisson.

If f is the potential at the point (x, y, z), due to the gravitation of a borly of any form of uniform density p, then $-\frac{d F}{d x}$ is the potential of the magnetism of the same body if uniformly magnetized in the direction of s with the intensity $I=\rho$.

For the value oll $-\frac{d V}{d /}$ oz at any proint is the exeess of the value of F, the potential of the body, alyove F^{*}, the value of the potential When the body is moved - $x: x$ in the direction of x.

If we supposed the body shilted through the distanee -8 , and its density changed from ρ to $-\rho$ (that is to say, made of repulsive instead of attractive matters, then $-\frac{d V}{d x} \delta x$ would be the potential dre to the two bodies.

Now consider ally elementary portion of the borly containing a volume $\bar{\delta}$. Its quantity is $p \overline{0} v$, and corresponding to it there is
ath element of the shilted body whose quantity is -per at it shatance - ox. The effect of these two elements is equivalent to that of a magnet of shengeth por and length ∂x. Thus intensity of magnetization is found ly dividing the mannetic moneat of an plement by its volume. The vesult is a $8 . r_{\text {. }}$

Hence $-\frac{d V}{d x} \delta x$ is the magretic potential of the boty magnetized with the intensity $\rho \delta x$ in the direction of x, and $-\frac{d V^{r}}{d x}$ is that of Whe body marnetized with intensity $p_{\text {. }}$

This potential may be also considered ist another light. 'Llute body was shifted through the distanee $-8 z^{2}$ and made of dunsity $-\rho$. 'Ihroughont that part of spaed common to the bohly in its two positions the density is zero, for, as lar as attraction is eomcermed, the two equal and opposite densitios ammihiate ened other. There mamins therefore a shell of positive matter on one side and of negative matter on the other, and we may regard the wesultant potential as clue to these. The thickness of the sholl at a phint where the normal drawn outwath makes an angle e with the axis of st is $\delta x \cos \epsilon$ and its density is ρ. The surface-density is therefore $\rho \delta x \cos g$, and, in the ease in which the potential is $-\frac{d F}{d} w^{\prime}$, the surlace-density is pase.

In this way we enn find the magnetic polential of any body uniformly magnetized parallel to a given direction. Now if this uniform magnetization is due to magnetic induction, the magnetizing foree at all points within the lrody must also be uniform and parallel.

This force consists of two parts, owe dare to external canses, and the other due to the magnetization of the body. Il therefore the external magnetie foree is uniform and parallel, the magnotic loreo due to the magnetization must also be uniform anof patallel firr all points within the body,

Hence, in order that this method may lead to a solntion of the problem of magnetic induction, $\frac{d F}{d s}$ must be a linear function of ${ }^{\circ}$ the coordinates x, y, z within the body, and therefore of must he is qualratie function of the coordinates.

Now the only cases with which we sto gequaintad in which f is a quadratic function of the coordimates within the body are those in whith the body is bounded by a complete surface of the second degrec, and the only case in whioh sueh it budy is of finite dimana-
sions is when it is an ellipsoid. We shall therefore mpply the methorl to the case of an ellipsoid.

Let

$$
\begin{equation*}
\frac{a^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1 \tag{1}
\end{equation*}
$$

be the equation of the ellipsoid, and let dro denote the definite integral

$$
\begin{equation*}
\int_{n}^{\infty} \frac{d\left(\phi^{2}\right)}{\sqrt{\left(a^{2}+\phi^{2}\right)\left(b^{2}+\phi^{2}\right)\left(c^{2}+\phi^{2}\right)}} \cdots \tag{2}
\end{equation*}
$$

Then il wo make

$$
\begin{equation*}
h=2 \pi a l e \frac{d \varphi_{0}}{d\left(n^{2}\right)}, \quad M=2 \pi a b e \frac{d 中_{0}}{d\left(b^{2}\right)}, \quad N=2 \pi a b c \frac{\left.d^{2} d\right)_{0}}{d\left(c^{2}\right)} \tag{3}
\end{equation*}
$$

the value of the potential within the ellipsoid will be

$$
\begin{equation*}
f_{0}=-\frac{p}{2}\left(/ x^{2}+M y^{2}+N^{2}\right)+\text { const } \tag{4}
\end{equation*}
$$

If the ellipsoid is magretized with uniform intensity I in a direction making angles whose cosines are l, h^{\prime}, h with the axes of x, y, z, so that the components of magnetization are

$$
A=J l_{1} \quad B=I m, \quad C=I n
$$

the potential due to this magnetization within the ellipsoid will be

$$
\begin{equation*}
\Omega=-I(L l x+M m y+N m z) \tag{5}
\end{equation*}
$$

If the external magnetizing force is $\sqrt{5}$, and if its comporents are a, β, γ, its potential will be

$$
\begin{equation*}
V=X a+I y+Z \pi \tag{6}
\end{equation*}
$$

The components of the actual magnetizing force at any point within the body are therefore

$$
\begin{equation*}
X-A I, \quad Y-M, \quad Z, \quad Z N \tag{7}
\end{equation*}
$$

The most general relations between the magnetization and the magnetizing force are grven by three linear equations, involving nine coeflicients. It is necessary, however, in order to fulfil the condition of the conservation of energy, that in the case of maghetic induetion three of these should be ential respectively to of her three, so that we should have

$$
\left.\begin{array}{l}
A=K_{3}(X-A D)+K_{3}^{\prime}(Y-B M)+K_{2}^{\prime \prime}(Z-C N), \\
B=K^{\prime}(X-A L)+K_{2}(Y-B M)+K_{1}^{\prime}(Z-C N), \tag{8}\\
C=K_{2}^{\prime}(X-A L)+K_{3}^{\prime}(Y-B M)+K_{3}^{\prime}(Z-C N),
\end{array}\right\}
$$

From these equations we may determine A, B and C in terms
 prohlem.

The potential outside the ellipsoid will then be that due to the

magnetization of the ellipsoid together with that due to the extermal magnetic force.
438.] The only case of practical importance is that in which

$$
\begin{equation*}
\kappa_{1}^{\prime}=\kappa_{2}^{\prime}=\kappa_{3}^{\prime}=0 . \tag{9}
\end{equation*}
$$

Wro bave then $\quad A=\frac{\kappa_{1}}{1+\kappa_{2} l_{i}} N_{3}$

$$
\left.\begin{array}{l}
H=\frac{\kappa_{2}}{1+\kappa_{2} M} J \tag{10}\\
O=\frac{\kappa_{3}}{1+\kappa_{3} M} /
\end{array}\right\}
$$

If the ellipsoid hats two axes equal, and is of the planetary or flatiened form,

$$
\left.\begin{array}{c}
\text { Lorm, } \quad b=e=\frac{a}{\sqrt{1-e^{2}}} ; \\
L=4 \pi\left(\frac{1}{e^{2}}-\frac{\sqrt{1-e^{2}}}{e^{3}} \sin ^{-1} e\right) \\
M=N=2 \pi\left(\frac{\sqrt{1-e^{2}}}{e^{3}} \sin ^{-1} e-\frac{1-e^{2}}{e^{2}}\right) \tag{12}
\end{array}\right\}
$$

If the ellipsoid is of the ovary or elongated form

$$
\left.\begin{array}{c}
a=b=\sqrt{1-e^{2}} c \\
I=M=2 \pi\left(\frac{1}{e^{2}}-\frac{1-e^{2}}{2 e^{2}} \log \frac{1+e}{1-e}\right) \\
N=4 \pi\left(\frac{1}{e^{2}}-1\right)\left(\frac{1}{2 e} \log \frac{1+e}{1-e}-1\right)
\end{array}\right\}
$$

In the case of a sphere, when $e=0$,

$$
\begin{equation*}
L=M=N=\frac{4}{5} \pi \tag{15}
\end{equation*}
$$

In the ease of a rery flattened planetoid $/ /$ becomes in the lisnit equal to 4π, and N and N become $\pi^{2} \frac{\alpha}{d}$.

In the case of a very elongated ovoid L and M approximate to the value 2π, while N approximates to the form

$$
4 \pi \frac{a^{2}}{c^{2}}\left(\log \frac{2 c}{a}-1\right)
$$

and vanishes when $e=1$.
It ippears from these results that-
(1) When κ, the cocflicient of magretization, is wery small, whether positive or negative, the induced marguctization is nearly cqual to the margetizing force multiplied by x, and is almost independent of the form of the body.

YoL. II.
(2) When κ is a large positive quantity, the magnetization depends prinepally on the form of the body, and is almost independent of the precise value of κ, except in the case of a longitudinal force acting on an ovoid so elongated that $N \kappa$ is a small quantity though κ is large.
(3) If the walue of k coald be negative and equal to $\frac{1}{4 \pi}$ we should have an infinite value of the maynetization in the case of a magretizing force acting nomally to a flat plate or disk. The absurdity of this result conlirms what we said in Art. 428.

Hence, experiments to determine the value of x may be nade on bodies of any form provided k is very smanll, iss it is in the case of all diamagnetic bolies, and all magnetic bolies except iron, nickel, and colalt.

If, however, as in the case of irou, κ is a large number, expuriments made ons spheres or flatened firgres are not suitable to determine k; for instance, in the ease of a sphere the ratio of the magnetization to the magnetizing force is as 1 to 1 , 22 if $k=30$, as it is in some kinds of iron, and if e were infinite the ratio would be as 1 to $4+19$, so that at wery small error in the determination of the magnetiation wonh introduce a very large one in the value of k .

Buts if we make use of a phece of iron in the form of a very clongated ovoid, then, as long as $N^{T} \kappa$ is of moderate value compared with unity, we may deduce the value of κ drom a determination of the magnetization, and the smaller the value of N the more necurate will be the value of n .

In thet, if N_{κ} be made small enough, a small error in the value of N itself will not introdnce mueh error, so that we may use any elongated body, such ats a wire or long rod, instead of an ovoid.

We must nemember, however, that it is only when the proluch N_{κ} is small compared with unity that this sulstitution is allowable. In fied the distribution of magretism on a long ghtinder with fat ends does not resemble that on a long ovod, for the free magnetism is wery much concentrated towards the ends ol the cyliuder, whereas it waries directly as the distance from the equator in the case of the ovoid.
'The distribution of electricity on a cylinder, however, is really comparable with that on an ovoid, as we have already seen, Art. 152.

These results also enable us to understand why the magnetic moment of a permanent macrnet can bo maule so much yreater wher the magnet las an clougnted form. If we were to magnetize a disk with intensity f in a direction mormal to its surface, and then leave it to itself, the interior particles would axperience a constant demagretizing foree equal to $4 \pi I_{\text {a }}$ and this, if not sufliciont of ${ }^{\circ}$ itself' to destroy purt of the magnetization, would som do so if aided by vibrations or changes of temperature.

If we were to matrotize a dylinder transuersely the demagnetjaing force would be only $2 \pi /$.

If the magnet were a sphere the denaghetizing fovee would be $\frac{4}{3}$ 而 I.

In a disk magnetized tanswersely tho denagnetizing foree is $m^{2} \frac{a}{e} I$, and in an elongated ovoid magnetized longitudinatly it is lenst of all, being $4 \pi \frac{a^{2}}{d^{2}} f \log \frac{2 c}{a}$.

Hence an dongated magret is less bikely to lose its magretism than is short thick one.

The moment of the foree acting on an ellipsoid hasing elifferent magnetic coofficients for the three axes wheth tends to turn it about the axis of a_{y} is

$$
\frac{4}{3} \pi a b c(B Z-C Y)=\frac{4}{3} \pi a b c V Z Z^{K_{3}-n_{2}+k_{2} k_{3}(M-N)} \frac{\left(1-\kappa_{2} M M\right)\left(1-\kappa_{3} M\right)}{}
$$

Hence, if k_{2} and k_{3} are small, this force will depend primejpally on the crystalline quality of the body and not on its shape, jrow vited its dimensions are not very unequal, but if κ_{2} and ka are considerable, as in the case of tron, the foree will depend prinemally un the stape of the body, and it will tarn so as to set its longer axis parallel to the lines of force.

If a sufficiently strong, yet uniform, field of magnetic lorce could feo obtained, an elougrated isotropic diamagretio body wonla also get itself with its longest dimension parallel to the fines of magrotic force.
439.] The question of the "tistribution of the magnetizution of an ellipsoded of revolution under the action of any magnetie lorces has been investigated by J. Neumann*. 象irchhoif + has extended the method to the ease of a cylinder of inlinte leogth acted on by any Coree.

[^6]Green, in the 1 ith section of his Rssay, has given am investigation of the distribution of magnetism in a cylinder of finite length acted on by a uniform external force parallel to its axis. Though some of the steps of this investigation are not very rigorous, it is probable that the result represents roughly the actual magnetization in this most important case. It certainly expresses very failly the transition from the casc of a cylinder for which κ is a large number to that in which it is wery small, but it fails entirely in the conse in which x is negative, as in dianagrgetic substances.

Green finds that the linear density of frce magnetism at a distance y from the middle of a cylinder whose radius is a and whose length is $2 l$, is

$$
\lambda=\pi \kappa X p a \frac{e^{\frac{p r}{\frac{1}{4}}}-e^{-\frac{p x}{a}}}{e^{\frac{p r}{d}}+e^{-\frac{p t}{a}}},
$$

where p is a mmerieal quatity to be found from the equation

$$
0.231863-2 \log _{e} p+2 p=\frac{1}{\pi k p^{2}} .
$$

The following are a few of the corresponding values of p and k.

κ	p	κ	p
∞	0	11.802	0.07
336.4	0.01	9.187	0.08
62.02	0.02	7.517	0.09
48.116	0.03	6.319	0.10
29.475	0.01	0.1427	1.00
20.185	0.05	0.0002	10.00
14.794	0.06	0.0000	∞
		neegative	imagiun

When the length of the cylizder is great compared with its radius, the whole quantity of free magnetism on either side of the middle of the cylinder is, as it ought to be,

$$
M=\pi^{2} \alpha \kappa X .
$$

Of this $\frac{1}{2} p M$ is on the flat ent of the cylinder, and the distance of the contre of gravity of the whole ghantity M from the end of the cylinder is $\frac{a}{p}$.

Whem κ is very small p is large, and nearly the whole free magnetisn is on the ends of the eylinder. As x increases p diminishes, and the free magretism is sprom over a grenter distance
from the ends. Whens x is infinite the free magnetism at any point of the eylister is simply proportional to its distance from the mithle proint the distribution being simatin to that of free etectricity on a conduetor in a field of uniform foree.
440.] In all sulustances exept iron, hiekel, thed coblalt, the enofficient of magnetization is so small that the indued magnetization of the body produces only a very slight alteration of the forcess in the magnetic fiold. We may therefore assume, as at fist approximation, that the actual magretic force withirn the lorly is the same as if the body had not been there. The superficial magnetization of the body is therefore, as a first approximation, $\kappa \frac{d V}{d v}$, where $\frac{d V}{d v}$ is the rate of increase of the magnetic potential due to the external magnet along a normal to the surface drawn inwards if we now ealculate the potential due to this superficial distribution, we may use it in proceding to a second approximation.

To find the mechanical energy due to the distrilpution of magnetism on this first approximation we must find the surfuce-integral

$$
E=\iint \kappa V \frac{d F}{d v} d S
$$

taken over the whole surface of the body, Now we have shewn in Art. 100 that this is equal to the volume-integral

$$
\left.E=-\iiint\left(\frac{\sqrt{V}}{d x}+\frac{\sqrt{W}}{d y}\right)^{2}+\frac{\sqrt{J^{-2}}}{d z}\right) d x d y d z
$$

taken throught the whole space oectuped ly the loody, or, if it is the resultant magnetic force,

$$
y_{n}=-\iint \kappa R^{2} d x d y d z
$$

Now since the work done by the magnetic forec on the body during a displacement $\delta i x$ is $X 8 x$ where X is the meehanical foree in the direction of x, and since

$$
\begin{gathered}
\int X \delta x+B=\text { constant, } \\
X=-\frac{d W}{d x}=\frac{d}{d x} \iiint_{\kappa} R^{z} d x d y d z=\iiint_{\kappa} \frac{d \cdot h^{2}}{d x} d x d y / t,
\end{gathered}
$$

which shows that the force acting on the body is as if every part of it tended to move lion places where R^{2} is less fo plites where it is greater will a foree which on every unit of volume is

$$
\kappa \frac{d . / g^{\underline{2}}}{/ l k^{*}}
$$

If κ is negative, as in diamagnetic bodies, this forec is, as Faraday first slewed, from stronger to weaker parts of the magnetic field. Most of the actions observed in the case of diamagnetic lodies depend on this property.

Sliph's Mragnetism.

441.] Almost every part of magnelice seience finds its use in navigation. The directive action of the earth's magnetism on the compass needle is the ouly method of asoertaining the ship's conrse when the sun and stars are hid. The delination of the needle from the true meridian seemed at first to be a himdrance to the applicalion of the compass to naxigation, but after this difficulty had been overeome by the construction of magnetic charts it appeared likely that the declination itsiff would assist the mariner in determining his ship's place.

The greatest diffeulty in mavigation had always been to ascertain the longitade; but since the declination is different at different paints on the same paratlel of latitude, an observation of the declination together with a knowledge of the latitude would cnable the mariner to fiud his position on the magnetic chart.

But in recent times iron is so largely used in the construction of ships that it has become impossiblo to use the compass at all without taking into aceount the action of the ship, as a magnetic body, on the needle.

To determine the distribution of magnetism in a mass of iron of any form under the influence of the earth's magnetic force, even though not subjected to mechanical strain or other disturbances, is, as we have seen, a very diflieult problem.

In this ease, howerer, the problem is simplified ly the following considerations.
The compass is supprece to be placed with its centre at a fixed point of the ship, and so far from any iron that the magnetism of the needle does not induce any perceptible magnetism in the ship. The size of the compass needle is supposed so small that We may regard the magnctic force at any point of the needle as the same.

The iron of the ship is supposed to be of two kinds mily.
(1) Hard iron, magnetized in a constant mamer.
(2) Soft iron, the magnetization of which is indiced by the ourth or ofther magnets.

In strictness we must admit that the hardest irom is not only
eapable of induction but that it may lose part of its so-malled permanent magnedization in varions ways.

The softest iron is capable of retaining what is callect residual megretiation. The uctual properties of iron cannot be acourately Fepresented lyy supposing it compronded of the land iron and the solt iron albove defined. But thas been found that when a ship is acted on only by the earth's magnetic force, and not subjected to any extraordinary stress of weather, the supposition that tho magnetism of the ship is due partly to permanent magnetization aud partly to induction leads to suffieiently acorate results when applied to the eorrection of the compres,

The equations on which the theory of the variation of the compass is fommed were given by Poiscon in the fifth rolune of the Mémoives de l'Snstinet, $\mathrm{\Gamma} .533$ (1824).

The only assumption redutive to induced magnetism which is involved in these equations is, that if a magnetic foree X due to external magnetism produces in the iron of the ship an indueed magnetization, and if this induced magnetization exerts on the compass nedle a disturbing foreo whose components are $X^{\prime \prime}, Y^{\prime \prime}, Z^{\prime \prime}$, then, if the external magnetic foree is altered in a given ratio, the emponents of the disturbing force will be altered in the same ratio.

It is true that when the magnetic force acting on iron is very great the indued magnetization is no longer proportional to the external magnetio force, but this want of proportionality is quite insensible for magretie forces of the magnitude of those due th the earllu's action.

Hence, in practice we may assume that if a magnetio foreo whose ralue is unity produces through the intervention of the iron of the ship a disturbing foree at the compass needle whose components are a in the direction of x, d in that of y, and g in that of z, the components of the disturbing foree due to a foree X in the direction of a will le $a X, d X$, and $g \lambda$.

If therefore we assume axes fixed in the ship, so that x is towarls the ship's head, y to the starborid side, and z towards the keed, and if X, Y, Z represent the emponents of the oarth's magretic force in these directions, and $X^{\prime \prime}, Y^{\prime \prime}, Z^{\prime}$ the components of the combined magnetic loree of the earth and ship on the nompass

$$
\text { needle, } \left.\quad \begin{array}{l}
X^{\prime \prime}=X+a \bar{\Lambda}+b Y+c Z+I^{\prime} \\
I^{\prime \prime}=Y+d X+e Y+J Z+Q \tag{1}\\
Z^{\prime}=Z+b \bar{X}+\sharp Y+h Z+A .
\end{array}\right\}
$$

In these equations $a, b, c, d, c, f, g, h, b$ are nine constant coefficients depending on the amount, the arrangement, and the capacity for induction of the soft iron of the ship.
P, Q, and T are constant quantities depending on the permanent magnetization of the slip.

It is erident that these equations are sufficiently general if magnetic induction is a linear function of magnetic force, for they are neither more nor less than the most general expression of a vector as a linear frmetion of another vector.
It may also be shewn that they are not too general, for, by a proper arrangement of iron, any one of the cofflicients may be made to vary independently of the others.
Thus, a long thins rod of iron mnder the action of a longitudinal magnetic foree aequires poles, the strength of each of which is numerically equal to the cross section of the rod multiplied by the magnetizing force and by the coefficient of induced magnetization. A magnetie force transverse to the rod produces a much feebler magnetization, the effect of which is almost iusensible at a distance of a few diameters.

If a long iron rod be placed fore and aft with one end at a distance x from the compass reedle, measured towards the slip's head, than, if the section of the rod is A, and its coefficient of magnetization κ, the strength of the pole will be $A \kappa X$, and, if $A=\frac{a x^{2}}{k}$, the force exerted by this pole on the compass needle will be $a X$. The rod may be supposed so long that the effect of the other pole on the compass may be neglected.

We have thus oltained the means of giving any required walue to the coefficient a.
If we place another rod of section B with one extromity at the same point, distant x from the compass toward the head of the vessel, and extending to starboard to such a distance that tho distant prote produces no sensible effect on the compass the disturbing force due to this rof will be in the direction of x, and equal to $\frac{B x}{x^{2}}$, or if $\beta=\frac{b x^{2}}{x^{2}}$, the force will be ∂x.
This rod therefore introluces the coefficient b.
A third rod extending downwards from the same point will introduce the coufficient e.

The coeflicients d, e,f may be produced by three rods extending to head, to starloard, and downward from a point to starboard of
the compass, and g, k, k loy three rods in parallel dircetions from a point below the compass.

Hence ench of the nine coefficients can be separately varied by means of iron rods properly placed.
The quantities $P, Q, I f$ are simply the components of the force on the compass arising from the permanent magratization of the ship together with that part of the indueed magnotization which is due to the action of this permanent magnetization.
A complete discussion of the equations (1), and of the relation between the trae magnetio course of the ship and the course als indicated ly the compass, is given by Mr. Arelifhald Smith in the Admiralty Manual of the Deviation of the Comprass.

A valuable graphic metholl of investigating the problem is inhere given. Jaking a fixed point as origin, a line is dram from this point representing in direction and magnitude the horizontal part. of the actual magnetie force on the compass-needle. As the ship is swung roumd so as to bring her head into different azzimuths in suceession, the extremity of this line describes a mene, ench point of which corresponds to a particular azimuth.

Such a curve, by means of which the direction and magnitude of the force on the compass is given in terms of the magnetic course of the ship, is called a Dygrogram.
There are two varieties of the Dygogran. In the first, the enrye is traced on a plane fixed in space as the ship turns rourd. In the second kiud, the curve is traced on a plane fixed with regpeel to the ship.
The dygogram of the first kind is the Limacgon of Pasoul, that of the second kind is an ellipse. For the construction and use of these curves, and for mary theorems ns interesting to the mathematician as they are important to the navigator, the reader is referred to the Admiralty Manual of the Deriation of the Compass.

CHAPTER VI.

WEBER'S THEORY OF INDUCED MAGNETSM.

442.] We have seen that Poisson supposes the magnetization of iron to consist in a separation of the magmetie fluids within each magnetie molconle. If we wish to avoid the assumption of the existence of magnetie fluids, we may state the anme theory in another form, by saying that vach molecule of the iron, when the magretizing force acts on it, becomes a matnet.

Weler"s theory differs from this in assuming that the molecules of the iron ore always magnets, even before the appliention of f.le magnetizing foree, but that in ordinary iron the magnetic axes of the molecules are turned indifferently in every direction, so that the iron as a whole exhibits no magnetio properties.

When a magnetice force acts on the iron it tends to turn the axes of the molecules all in one direction, and so to cause the iron, as a whole, to become a ningnet.

If the axes of all the molecules were set parallel to each other, the iron would exhibit the greatest intersity of magnetization of which it is eapable. Hence Weber's theory implies the existence of a limiting intersity of magnetization, and the experimental evidence that such a limit exists is therefore nocessary to the theory* Experiments shewing an approneh to a limiting value of magretization lave been made by Joule * and by J. Müller t.

The experiments of Beetz \ddagger on electrotype iron deposited under the action of magnetic force furnish the most complete evidence of this limit, -

A silver wire was varmished, and a rery narrow line on the

+ Porge Ann. lxwix. pa mat 1850.
+ Poger cxi. 16fo.
metal was laid bare by making a fine Iotrgitudinal ecratels on the varnish. The wire was then immersed in a solution of a salt of irom, and placed in a magnetie fied with the serateh in the direction of a line of magnetio foree By making the wire the eallowd of an electric eurrent through the solution, iron was deposited on the narrow exposed surface of the wire, molectile by molente. The filament of iron thus formed was then examined magnelically. Ita magretic moment was found to be wery geat for so stoall a mass of iron, and when a powerful magnetizing force was male for at in the same direction the increase of temporary magnetization wats fonnd to be very small, and the permanent magnetization was not altered. A magnetjang force in the reverse direction at moed reduced the filament to the condition of iron matgetized in the ordinary way.

Weber's theory, which supposes that in this case the magnetiving foree placed the axis of each molecule in the same direction during the instant of its deposition, agrees very woll with what is olserved.

Bectr found that when the electrolysis is continued under the action of the magnetizitg force the intensity oll magnetization of the sulsequently depositeal iron diminishes. The axes of the molecules are probably deflected from the line of magretizing foree when they are being laid down side by side with the moleenles alrendy deposited, so that an mprosimation to prarallelism can be obtaimed only in the ease of a very thim filament of ison.

Il; as Webar supposes, the molecules of iron are alrealy mangels, any maguetic foree sufficient to render their axes parallel as they are electrolytieally deposited will he suflicient to produce the bighest intensity of magnetization is the deposited filament.

If, on the other hand, the moledules of iron are not magnots, but are only capable of magroctization, the magnetization of the deposited filamont will flepend on the magreveraing force in the same way in which that of soft iron in general depends in it. The experiments of Beetz leave no romm for the latter hypothesis.
443.] We shall now assume, with Webor, that in every unit of volume of the iron there are n magnetio molectles, artel that the magnetic moment of each is m. If the axes of all the moticules were placed parallel to one awother, the magnetio monent of the unit of volume wonld be

$$
M=n \cdots,
$$

and this mont the the gratest intensity of magnetization of which the irou is capoble.

In the wmagnetized stato of ordinary imon Wher suppenees the axes of its moleenles to be phaced todifferently in ald directions.

T'o express this, we may suppose a sphere to be described, and a radius drawn from the centre parallel to the direction of the axis of each of the a molecules. The distribution of the extremities of these radti will express that of the axes of the molecules. In the ease of ortinary iron these a points are equally distributed ower every part of the surface of the splete, so that the number of molenules whose axes moke an angle less than a with the axis of x is

$$
\frac{x}{2}(1-\cos a)
$$

and the number of moleenles whose ares make angles with that of a between a and $a+d a$ is therelore

$$
\frac{\pi}{2} \sin a d a .
$$

This is the arrangement of the molecules in a piece of iron which has never been magnetized.

Let us now smppose that a magnetic force X is male to act on the iron in the direction of the axis of x, and let ans consider a molecule whose axis was originally inclined a to the axis of x.

If this molecule is perfectly free to tum, it will place iteelf with its axis parallel to the axis of x, and if atl the moleenles difl sor the very sliglatest magretizing fore would be found sufficient to develope the very highest degree of magretization. This, Low ever, is not the ense.

The nolecules do not turn with their axes parallel to an, and this is either benuse ench molectle is aeted on by a fowe tending to preserve it in its origimal direction, or becanse an equiwalent eftect is pronluced by the matual action of the entire systern of molecules.

Weler adopts the former of these suppositions as the simplest, and supposes that each moleciale, when dellected, tends to rotum to its original position with a force which is the same as that which a magnetic force D, acting in the origmal diretion of ils axis, would prodnce.

The position which the axis actually assumes is therefore in the direction of the resultant of $\lambda^{\prime \prime}$ and D.

Let $A P / 3$ represent a section of it sphere whose radius represents, on at certain sate the foree D.

I, at the radius $O P$ be pratlel to the axis of a partientur mofeculn in its original position.

Let $S O$ represent on the same seale the magnetizing foree it which is supposed to act from S towards 0 . Then, if the molecule is acted on by the foree X in the direction $S O$, and by a loree D in a direction parallel to $O P$, the original direction of its axis, its axis will set itself in the direction $S P$, that of the resultant of X and D.

Since the axes of the molecules are originally in all directions, P may be at any point of the sphere indifferently. In lifg. 5, in which X is less than $D, S P$, the final prosition of the axis, may bo in any direction whatever, but not indifferently, for more of the molecules will have their axes turned towards A than towards B. In Fig. G, in which X is greater than D, the axee of the moleenles will be all confined within the cone $S T T^{\prime \prime}$ touching the sphere.

Fig. 5.

Fitis. bi.

Hence there are two different cases according as X is less or grealer than D.

Let $a=A O P$, the origimal indination of the axis of a molecule to the axis of: r.
$\theta=A S P$, the inclination of the axis when dellected ly the force X :
$\beta=S P O$, the angle of deflexion.
$S O=X$, the magnetizing foree.
$O P=D$, the foree temding towards the origimal position.
$\S P=R$, the resaltant of X and D.
$m^{m}=$ inagnetie moment of the molecule.
Then the moment of the statical conple alue to X_{1} tendingy to diminish the augle 0 , is

$$
m L=m X \sin 0_{1}
$$

and the moment of the couple due to D, tending to jucrense 0 , is

$$
m A=m D \sin \beta
$$

Equating these values, and remembering that $\beta=a-\theta$, wo find

$$
\begin{equation*}
\tan \theta=\frac{D \sin a}{x+D \cos a} \tag{1}
\end{equation*}
$$

to determine the direetion of the axis after dellexion.
We have next to find the intensity of magnetization produced in the mass by the force X, and for this purpose we must resolve the magnetic moment of every molecule in the direction of x, and add all these resolved parts.

The resolved part of the monent of a molecule in the direction of x is meos θ.
'The umber of molecules whose original inclinations lay between a and $a+d a$ is

$$
\frac{n}{2} \sin a d a .
$$

We lave therefore to integrate

$$
\begin{equation*}
J=\int_{0}^{\pi} \frac{n n}{3} \cos \theta \sin a d a, \tag{2}
\end{equation*}
$$

remembering that θ is a tunction of a.
We may express loth θ and a in terms of R, and the expression to be integrated becomes

$$
\begin{equation*}
\frac{m n}{4 X^{2} D}\left(I^{2}+X^{2}-D^{2}\right) d h^{2} \tag{3}
\end{equation*}
$$

the general integral of which is

$$
\begin{equation*}
\frac{m \text { nR }}{12 X^{2} D}\left(R^{2}+3 X^{2}-3 D^{2}\right)+C \tag{4}
\end{equation*}
$$

In the first case, that in which X is less than D, the limits of integration are $R=D+X$ and $R=D-X$. In the second ease in which X is greater than D, the Imits are $A=X+D$ and $R=X-D$.

When X is less than $D, \quad I=\frac{2}{3} \frac{m n}{D} X$.
When X is equal to $D, \quad I=\frac{2}{3} n n$.
When X is greater than $D, \quad I=m\left(1-\frac{1}{3} \frac{D^{2}}{X^{2}}\right)$;
and whers X becomes infinite $\quad I=m$ m.
According to this form of the theory, which is that adopled by Weber*, as the magretizing force increases from o to D, the

[^7]magnetization inerenses in the Eame pronortion. When the magnetizing force attains the value D, the magnetization is two-thirds of its limiting value. When the naghetiking foree is lurther increased, the magnetization, instead of inereasing indefinitely, tends towards a finite limit.

Fig. 7.
The law of magnetization is expressed in Fig. 7, where the magnetizing foree is reckoned from O towards the right and the mannetization is expressed by the vertieal ordinates. Weber's own experiments give results in satisfactory actordance with this law. It is probalide, however, that the value of D is not the sane lor all the molecules of the same piece of iron, so that the transition from the straight line from O to E to the eurve beyond E may mot be so abrupt as is here represented.
444.] The theory in this form gives no acount of the residual magnetization which is found to exist after the magnetiang force is removed. I have therefore thonght it desirable to examine the results of making a further assumption relating to the conditions under which the position of equilibrium of a molecule may be permanently altered.

Let us suppose that t lue axis of a magnetic molecule, if deflected through any angle β less tham β_{0}, will retum to its origimal position when the dellecting fore is remowed, but that if the deflexion β exceeds β_{0}, then, when the deflecting force is renoved, the axis will not return to its origiual position, but will he permanently dellected though an amgle $\beta-\beta_{0,}$, which may be enlled thee permanent sel of the molecule.

Thais assumption with respect to the law of molecular deflexion is for to be regarded as founded on noy exact knowledge of the intimate structure of bodies, but is aulopted, in our igrorances of the true state of the ense, as an mssistance to the imagination in following out the speculation suggested by Weber.

Let

$$
\begin{equation*}
I_{s}=D \sin \beta_{10}, \tag{9}
\end{equation*}
$$

then, if the moment of the comple acting on a molecule is less than $m L$, there will he no permanent deflexion, but if it exceds m A^{\prime} there will bo a permanent change of the prsition of equilbutum.

To trace the results of this supposition, deseribo a sphere whose centre is O and radius $O L=L$.

As long as X is less than A everything will be the same as in the case already considered, Jut as soon as X exceeds L it will begin to produce a permanent dellexion of some of the molecules.

Let us take the case of Fig. 8, in which X is greater than L but less than D. Through S as vertex draw a double cone touching the sphere A. Let this cone meet the sphere D in P and Q. Then if the axis of a molecule in its original position los between $O A$ and $O P$, or between $O B$ and $O Q$, it will be dellected through an angle less than β_{0}, and will not be permanently deflected, But if

Hig. 8.

Fig. 9.
the axis of the molecule lies originally between $O P$ and $O Q$, then a couple whose moment is grater than l will act mon it and will defled it into the position $S P$, and when the force \mathcal{A} ceases to act it will not resume its origimal direction, but will be permanently set in the direction $O P$.

Luet us put

$$
L=X \sin \theta_{0} \text { when } 0=P S A \text { or } Q S B,
$$

then all those molecnles whose axes, on the former hypotheses, would hate values of 0 between θ_{0} and $\pi-\theta_{0}$ will be made to have the value θ_{0} during the action of the foree X.

During the action of the fore X, therefore, those molecules whose axes when deflected lie within either sheet of the double cone whose semivertical angle is θ_{0} will be arranged as in the former case, but all those whose axes on the former theory would lie outside of these sheets will be permanently deffected, so that their axes will form a denge fringe round that sheet of the cone which lies towards A.

As I increases, the mumber of molecules belonging to the cone about B continually diminishos, and whers A becomes equal to D all the molecules have been wrenehed out of their former positions of equilibrium, and have been fored into the fringe of the conw round A, so that when X becomes greater than 7) all the mobectules form part of the cone round A or of its fringe.

When the force A is removed, then in the case in which X is less than L everything retams to its phative state. When f is between I and D then there is a cone ronud A whose ancgle

$$
A O J^{\prime}=\theta_{0}+\beta_{0},
$$

and another cone womd B whose angle

$$
B O Q=0_{0}-\beta_{0}
$$

Within these comes the axes of the molecules are distributed uniformly. But all the molecules, the original direction of whose axes lay outsite of both these cones, lave been wenehed from their primitive positions and form a frimge round the cone about A.

If I is eqreater than D, then the cone romed 73 is completely dispersed, and all the moleenles which formed it are converted into the fringe routud A, and are inclined at the angle $Q_{0}+\beta$.
445.] Treating this case in the same woy as before, we find for the intensity of the tempornty magnetization daring the aetion of the fored A, which is supposed to ate on fron which thas thever before been magrotized,

When X is less than $L_{1} \quad \quad X=\frac{2}{3} M \frac{X}{D}$.
When X is equal to $L_{1} \quad I=\frac{2}{3} M \frac{A}{D}$.
When X is between L atd 7 ,
$I=M\left\{\frac{2}{\overline{3}} \frac{X}{D}+\left(1-\frac{L^{2}}{\Lambda^{2}}\right)\left[\sqrt{1-\frac{J^{2}}{J^{2}}}-\frac{2}{3} \sqrt{\frac{T^{2}}{J^{2}}-\frac{J^{2}}{J^{2}}}\right]\right\}$.
When X is equal to D,

$$
\left.I=M\left\{\frac{2}{3}+\frac{1}{3}\left(1-D^{2}\right)^{2}\right)^{\frac{1}{x}}\right\}
$$

When X is greater than D, $I=M\left\{\frac{1}{3} \frac{X}{D}+\frac{\mathrm{J}}{2}-\frac{1}{6} X+\frac{\left(D^{2}-l^{2}\right)^{\frac{4}{2}}}{6 X^{2}} \frac{\sqrt{X^{2}-} l^{2}}{6 J^{2}}-\left\{2 X^{2}-3 x^{2} \eta+l^{2}\right)\right\}$.

When X is infinite, $\quad I=M$.
When A is less than L the magnetization foflows the lomen law, and is proportional to the magnetiang force As soon no X exceds L the magnetization assunes a more rapid mate of inereasce

YOL. 1 .
on aceount of the molecules beginning to be transferred from the one cone to the other. This rapid increase, however, soon comes to an end as the number of molecules forming the negative cone diminishes, and at last the magnetization renches the limiting value M.

If we were to assume that the values of L and of D are different for different motecules, we should obtain a result in which the different stages of magnetization are not so distinetly marked.

The residual magnetization, I^{\prime}, produced by the magnetizing force X, and olserved after the foree has leen removed, is as follows:

When \mathcal{N} is less than L, \quad No residual magnetization.
When X is letween L and D,

$$
I^{\prime}=M\left(1-\frac{L^{2}}{D^{2}}\right)\left(1-\frac{L^{2}}{X^{2}}\right) .
$$

When X is equal to $D_{\text {s }}$

$$
I^{\prime}=M\left(1-\frac{I^{2}}{D^{2}}\right)^{2} .
$$

When X is greater than D,

$$
I^{\prime}=\frac{1}{4} M\left\{1-\frac{L^{2}}{X D}+\sqrt{1-\frac{L^{2}}{D^{2}}} \sqrt{\left.1-\frac{L^{2}}{X^{2}}\right\}^{2}} .\right.
$$

When X is infinite,

$$
I^{\prime}=\frac{1}{4} M\left\{1+\sqrt{1-\frac{L^{2}}{D^{2}}}\right\}^{2} .
$$

If we make

$$
M=1000, \quad L=3, \quad \eta=5,
$$

we find the following values of the temporary and the residual magnetization :-

Magnetizing Perce.	Terapmaty Magnelization.	Resciltand Maguetizatipr,
I	I	$I^{\prime \prime}$
0	0	0
1	133	0
2	267	0
3	400	0
4	729	280
5	837	410
6	864	485
7	882	537
8	897	574
∞	1000	810

These results aro laid down in Fig. 10.

lĭg. 10.
The curre of temporary magnetization is at first a stratght line from $X=0$ to $\tilde{A}=L$. It thera rises more rapidly till $\dot{X}=/ /$, and as X inerenses it approaches its horizontal asymptote.

The enve of residual magnetization legins when $N=L$, and approaches an asymptote at it distance $=.81 . M_{\text {a }}$

It must be remembered that the residual magnetism thas found corresponds to the case in which, when the external force is removed, there is ro demagnetiaing foree arising from the distubution of magnetisn in the body itself. The ealeulations are therefore applicable only to very elongated bodies margetized longitudinatly. In the case of shorl, thick bohies the residual magnetism will be diminished by the resetion of the free magnetisn in the same way its if an external reversed maguetiong force were made to act upon it.
446.] The scientific value of atheory of this kind, in which we make so many assumptions, and introdnee so many adjustable constants, eanot be estimated merely by its momerieal agrement with certain sets of experments. If it lats any value it is becmese ity enables as to form a mental imege of what takes place in a piece of iron during magretization. To tost the theory, we shall apply it to the ease in which a pieed of iron, alter locing subfected to a magnetizing force X_{0}, is aganin subjected to a magrifing force J_{1}.

If the new force T_{1} acts in the same direction in which T_{0} acted, wheh we shall call the positive direction, then, if X_{1} is less than X_{0}, it will poduce no permanent set of the molecules, and when X_{1} is removed the residual magnetization will be tha same as
that produced by X_{0}. If X_{1}^{-}is greater than X_{0}, then it will produce exactly the same efiect as if X_{0} had not acted.

But let us suppose X_{1} to act in the negative direction, and let us suppose $\quad \tilde{X}_{0}^{-}=h$ cosec θ_{0}, and $X_{1}=-L$ eosec θ_{1}.

As X_{1} increases munerieally, ∂_{1} diminisles. TMye first moleenles on wheh X_{1} will produce at permanent deflexion are those which form the fringe of the one round A, ant thege have an inclination when undeflected of $\theta_{0}+\beta_{0}$.

As soon als $\theta_{1}-\beta_{01}$ becomes less than $\theta_{0}+\beta_{0}$ the process of demagnetization will commence. Since, at lhis instand, $\theta_{1}=\theta_{0}+2 \beta_{0}$, λ_{1}, the force required to begin the demagnetization, is less than x_{0}, the foree which proluced the magnetization.

If the value of $7 /$ and of l were the same for all the molenles, the slightest increase of A_{1} wound wrench the whole of the fringe of molecules whose axes lave the inclination $\theta_{0}+\beta_{0}$ into a position in which their axes are inelined $\theta_{1}+\beta_{0}$ to the negative axis Oft.

Though the demagnetization does not take place in a manner so sudden ag this, it takes place so rappidy as to athord some confirmation of this mode of explaining the process.

Luet us now suppose that by giving a proper value to the reverse fored h_{1} we have exactly demagnetized the piece of iron.

The axes ol the moleenles will not now be arranged indifferently in all directions, is in a piece of iron which has never been magnetized, but will form three groups.
(1) Within a cone of semiangle $0_{1}-\beta_{1}$ sumonding the positive pole, the axes of the molectes remain in their primitire positions.
(2) The same is the case within a cone of semangle $\theta_{0}-\beta_{0}$ surpouding the negative pole.
(3) The ditedtions of the axes of all the other molectles form a conical shect surounding the negative pole, and are att an inclination $\nu_{1}+\beta_{0}$.

When X_{0} is greater than D the second gromp is allsent. When X_{1} is greater than D the first group is also alsent.

Thie state of the iron, therefore, thought apparently demagnetized, is in a different state from that of a piece of iron which has never been magretized,

To slrew this, let us consider the eftect of a magnetizing force X_{2} aeting in either the positive on the negative divection. Ille first permancint eflect of sheln a foree will we on the thind group of molecules, whose axes make angles $=\theta_{1}+\beta_{0}$ with the negative axis.

If the force X_{2} acts in the negative direction it will begin to prodnce a permanent aftect as soon as $\theta_{2}+\beta_{0}$ becomes less than $\theta_{1}+\beta_{0}$, that is, as soon as λ_{2} becomes qreater that \tilde{F}_{1}. But if X_{3} acts in the positive direction it will luegin to remargnetize the iron as soon as $0_{2}-\beta$ becomes less than $\theta_{1}+\beta_{0}$, fhat is, when $O_{2}=\theta_{1}+2 \beta_{0}$, or while \tilde{X}_{2} is still much less than X_{1}.

It appears therefore from our hypothesis that-
When a piece of tron is magnetized by means of a force X_{0}, its magratism eatmot lo moreased without the application of a fored greater tham A_{0}. A reverse forec, less than X_{0}, is sufticient to dimmish its magnetization.

If the iron is exactly demagnetized by reversed force \mathcal{N}_{6}^{-}, then it eannot be magnotized in the reversel direction without the application of a fore greatev than X_{1}, but a positive force less thar X_{1} is sufficient to begin to remagnotize thw iron in its original direction.

These vesults are consistent with what has been netually olverved loy Ritchie *: Jncobit, Marianinit, and Joule §.

A very complete accont of the relations of the marnetization of isom and steel to magnetie forces aud to meelanieat status is given by Wiedemam in his Gatcanismats. By a detailed conparison of the effects of mametiation with those of torsion, lio shews that the ideas of elasticity and plasticity which we derive from experiments on the temporary and permanent torsion of wires can le applied with equal propriefy to the temporaty and permanent magnetization of iron and steel.

44\%.] Mattencei $\|$ fomm that the extension of a hard iron ban during the action of the maynetizing fore inereases its temporary magnetism. This has leen confirmed by Werthein. In the case of soft lars the magnetisn is dimaished by extension.

The permanent magnetism of a bar inereases when it is extendect, aud diminishes when it is eompressed.

Hence, if a prece of iron is first magnetized in one xlirection, and then extended in another direetion, the drection of matyretization will tend to approach the direction of estension. If it lue compresed, the direction of mugnetization will tend to become nomal to the diretion of eompression.

This explains the result of an experiment of Wiedemas's. A

current was passel downward through a vertical wite. If, either during the pasage of the curventi or after it has ceased, the wive be twisted in the direction of a right-landed screw, the lower end becomes a north pole.

1衫, 11 .

Fig 12.

Hore the downmmal curvent magnetizes evory pate of the wire in a langutial direction, as indieated by the letters NG.

The twisting of the wire in the direction of a righthanded serew eanses the pottion $A F C D$ to be axtonded along the diagronal $A C$ and compressed along the diagronal $/ 3 D$. The direction of magnetjzation therctore tends to appronch $A C$ aud to recede from $B D$, and thus the lower end becmes a north pole and the upper end a soath pole.

Fhect of Magnetiation on the Dimensions of the Magnet.

448.] Joule *, in 1842 , foum that an iron but becomes lengtli= ened when it is rondered magnetio by an electric eurrent in a coil which surrounds it. He afterwads + shewed by placing the bar in water within a glass tube, that the volume of the iron is not augmented by this magnetiantion, aut concluded that its transwase dimensions were eontracted.
finally, he passed an electric current throngh the axis of an iron tulve, and back ontsite the tube, so as to make the tube into a etosed magnetio solenoid, the magnetization being at right angles to the axis of the tube. The length of the axis of the tube was lownel in this ease to be shortened.

He found that an iron rod under longitudinal pressme is also elongated when it is magnetized. When, however, the mod is under considemalite longitudinal tension, the effect ol magnetization is to shorten it.

[^8]This was the case with a wire of a quartor of am inch diameter When the tenstion exceeded 600 pounds waght.

In the case of a hard steel wire the effect of the magnetiaing force was in every case to shorteu the wire, whether the wire was under tension or pressure. The change of length lasted orly as long as the magnetizing force was in action, no alteration of lengtly was observed due to the permanent magatization of the ated.

Toule found the elongation of iron wires to be nearly proportional to the square of the actual magnetization, so that the first eflect of a demagnetizing current was to shorten the wire.

On the other hatrd, he found that the shortening effect on wires under tension, and on steel, waried as the protuct of tho magnetization and the magnetizing current.

Wiedemann found that if a vertioal wire is magnetized with its north end uppermost, and if a current is then passed downwards througlt the wire, the lower end of the wire, if frec, twists in the diwetion of the lands of a watch as seen from above or , in other words, the wire beemes twisted like at right-manded serew.

In this anse the nagnetization due to the action of the current on the prewionsly existing magnetization is in the direction of a left-handed serew romal the wire. Hence the twisting would indicate that when the iron is magnetized it contracts in the direction of magnetization amd expands in directions at right angles to the magnctization. This, however, peems not to ngree with Joule"s results.

For further alevelopments of the theory of magnetization, see Arts. 832-845.

CILAPTER VII.

MAGNETM MEASURPMENTS

449. The principal magnetic measurements are the determination of the magnetic axis and magnetic monent of a magnet, and that of the direction and intensity of the magnetic force at a griven place.

Siree these measurements are made notr the surface of the carth, the magncts are always acted on by gravity as well as by terrestrial magnetism, and since the magnets are made of steel their magmetism is partly permanent and partly induced. The permanent magnetism is altered by elanges of temperature, by strong induetion, amd lyy wiolent blows; the indued nagnetism varies with every pariation of the oxtermal magnetie force.

The most conveniont way of olscrwing the force acting on a magnet is ly making the magnet free to torn alont a vertical axis. In ordinary compasses this is done by bataneing the magnets on a vertieal pivot. The finer the print of the pivot the smatler is the montent; of the friction whech interferes with the action of the magnetic foree. For more refined observations the magnet is suspended lyy a thread composed of a sild fibre without twist, either single, or doubled on itself' a sufficient number of times, and so formed into a threal of parallel fibres, eath of which supports as nearly as prossible an equal part of the weight. The foree of torsion of such a thrend is much less than that of a metal wire of equal strergeth, and it may be culentated in terms of the observel azimutly of the magnet, which is not the case with the force arding from the friction of a pirot.

The suspension fibre atm be raised or lowemed by turnitg a horizontal sorew which worts in at fixed nut. The fibre is wound round the thread of the serew, so that when the serw is turned the stepension fibre always hangs in the same vertion liue.

The suspension filure carries a small horizontal divided aircle ealled the Torsion-circle, and a stirrup with an index, whieh can be placed so that the index coincides with any given division of the forsion circle. The stirrup is so shaped that the magnet har can be fitted into if with its axis horizontal, aud with any one of its four siles uppermost.

To ascertain the zero of torsion a non-magnetic body of the same weight as the magnet is placed in the stirrap, and the prosition of the torsion circle when in equilibrium ascertained.

The magnct itself is a piece of lard-tempered steel. According to Gauss and Weber its length ought to be at least cight times its greatest transverse dimension, This is necessary when permanence of the direction of the magnetic axis within the magnet is the most important comsideration, Where promptness of motion is requived the magnet should he shorter, and it may even be alvisable in olserving sudden alterations in magnetic foree to use a bar magnetized transversely and suspended with its longest dimension vertical *.
450.] The magnet is provided with an arrangement for ascertainingy its angular position. For ordinary parposes its ends atre pointed, and a divided eirele is placed below the

Fig. 13. ends, by which their prositions are read of by an cye placed in a plane through the suspension thread and the point of the needle.

For more acentate observations is plane mirror is fixed to the magnet, so that the normal to the mirror coincides ats nemy $\begin{gathered}\text { as }\end{gathered}$ possible with the axis of magnetization. This is the method adopted ly Gamss and Weber.

Another method is to attach to one end of the magnet a lens and to the other enul a seale engraved on glass, the distance of the lems

[^9]from the scale being equal to the principal foal length of the lens. The straight line joining the zero of the scale with the optical centre of the lens ought to coincide as nearly as possible with the magnetio axis.

As these optical methods of ascertaining the angular position of suspended apparatus ure of great importance in many physieal researches, we shall here consider onee for all their mathematical theory.

Theory of the Mirror Method.

We shall suppose that the appatatus whose angular position is to be determiped is capable of revolving about a vertical axis. This axis is in general a fibre or wive by which it is suspended. The mirror should be truly plane, so that a scale of millimetres may be seen distinctly by reflexion at a distance of several metres from the mirror.
The normal throngh the middle of the mirror should pass through the axis of suspension, and should be acenately horizontal. We shall refer to this normal as the line of collimation of the apparatus.

Itaving roughly ascertained the mean direction of the line of collimation during the experiments which are to be made, a telescope is erected at a convenient distance in front of the mirror, and a little above the level of the mirror.

The telescope is capable of motion in a vertical plane, it is directed towards the suspension fibre just above the mirror, and a fixed mark is crected in the line of vision, at a horizontal disfance from the olyect glass equal to twice the distance of the mirror from the object glass. The apparatus should, if possille, lee so arranged that this mark is on a wall or other fixed ohject. In order to see the mark and the suspension fibre at the same time through the telescope, a cap may be placed over the object glass having a slit along a vertical diameter, This should be removed for the other observations. The telescope is then mininsted so that the mark is seen distinctly to coincide with the vertical wire at the focus of the teloseope. A plumb-line is then adjusted so as to pass close in front of the optical eentre of the olyect glass and to hang below the teleseope. Below the teleseope and just behind the phomb-line at seale of equal parts is placed so as to be bisected at right angles by the plane through the mark, the suspension-fibee, and the plumb-line. The sma of the heights of the seale and the
object ghass slould be equal to twice the height of the mirror from the floor. The telescope bemg now directed towards the mintor will see in it the reflexion of the seale. If the part of the seale where the plamb-line erosses it appears to coincide with the vertical wire of the telescope, then the line of collimation of the mirom coincides with the plane throngh the marls and the optical entre of the object glass. If the vertical wire coincites with any other division of the scale, the angren position of the line of collimation is to be found as follows :-

Let the plane of the paper he horizontal, and bet the various points be profected on this plane. Let O be the centre of the olject glass of the teleseope, P the lixed mark, P and the wertical wire of the telescope are conjugate foci with respect to the object glase. Leve W be the pant where $O J^{7}$ euts the plane of the mirror. Jet $M N$ be the normal to the mirror; when $O M N=O$ is the angle which the line of collimation makes with the fixed plane. Luet MS we a line in the plane of $O M /$ and $M N$, snet that $N M S=O . M N$, then S will be the part of the seale whids will be seen by reflexiom to eoincide with the vertical wire of the teleseope. Now since

Fig. 14.
$M N$ is horizontal, the propected angles $O M N$ and $N M S$ in the Purge are opual, and $O M S=20$. Hence $O S=O M$ tan 20 .

We luve therefore to measure Oalf in terms of the divisions of the seale; then, if δ_{0} is the division of the seale which coincides with the plumb-line, and s the observed division,

$$
s-s_{0}=O M \tan 2 \theta_{0}
$$

whence θ may be found. In measuring O, H we must remember that if the mirror is of ghass, silvered at the lack, the wirtmal image of the reflecting surface is at a distance behind the from surface
of the grtass $=\frac{b}{\mu}$, where t is the thickness of the glass, and μ is the inter of refraction.

We musto also remember that if the line of suspension does mont pass flurough the point of reflexion, the position of $M /$ will alter with 0 . Hence, when it is prssible, it is advisable to make the centre of the mirror concide with the line of suspension.

It is also dutvisable, ospecially when large angular motions hawe to be observel, to make the seale in the form of a concave eylindrie suffee, whose axis is the line of suspension. The angles are then observel ati once in cirentar masure without reference to a fable of tangents. The seale shonld he cavelully adjusted, so that the axis of the cylinder coinciles with the suspension fibres the numbers on the senle should always rum from the one end to the other in the stmo direction so as to avoid negative readings, Pig. 15

Fig. 15.
represents the middle portion of a seale to be used witl a mirror and an inverting telesenpe.

This mothon of observation is the best when the motions are slow. The observer sits at the telescope and sees the image of the seale moving to right or to left past the vertien wire of the telescope. With a clock beside him he can note the instant at which a given division of the seate passes the wite, or the division of the seale which is passing at, a given tick of the cloek, and he can also meord the extreme limits of each osciltation.

When the motion is nome rapil it becomes impossible to read the divisions of the scalo except at the insanats of rest at the extremities of an oscillation. A consjricuous mark nay be placed at a known division of the seale, and the instant of transit of this marlk may le noled.

When the apmatatas is wery light, and the foress valiable, the motion is an promptand suift that observation through a teleseone
would be useless. In this case the olsserver looks at the scale directly, and olserves the motions of the image of the vertical wire thrown on the scale by a lamp.

It is manifest that since the image of the scale reflected by the mirror and refractud by the object glass coincides with the vertical wire, the image of the vertical wire, if suffienty illuminated, will concide with the scale. To observe this the room is darkened, and the concentantal rays of a lanp ate thrown on the vertion wive towards the olgeet glass, A bright pateln of lighti crossed lyy the shadow of the wire is seen on the seale. Its motions can be followed by the eye, aud the division of the sate at which it comes to rost can be fixed on by the eye and read oll at leisme. If it be desired to note the instant of the passage of the bright spot prest a biven point on the scale, a pin or a bright metal wire may be pheed there so as to flaslo out at the time of prassuge.
$13 y$ substituting a small hole in a diaphragro for the eross wife the image becomes a small illuminated dot moving to right wr left on the seale, and by substituting for the scale a gylinder revolung by clock work about a horizontal axis and covered will photographic proper, the spot of light traces out a cturve which can be alterwards rendered wisible. Lachabseissat of this curve corresponds to a particular time, and the ordinate indientes the angular position of the mirror at that time. In this way an entomatic system of continnous regristration of ath the elements of tevestrial matenetiom las been established at Kew and other olservatortcs.

In some cases the telescope is dispensed with, is vertian wite is illominated by a lamp placed behind it, and the miror is th concave one, wheh forms the imare of the wire on the seate as a dark line across a patch of light.
451.] In the Kew portable apparatus, the magnet is mate in the form of a tulue, having at one end a lens, and at the other a glass seale, so adjusted ns to be at the prineigal focus of the lens. Tightis is admitied [rom bedind the seale, and after passing llurough the lens it is wiened by means of a telescope.

Since the seale is at the primeipal foens of the lens, ruys from any division of the sale emerge from the Iens parallet, and if the telescope is adjusted for eelestal oljects, it will shaw the seale in optical coneidenee with the eross wires of the teleseope. If at given division of the suale coincides with the intersection of the cross wires, then the lime joining that division with the pptical centre of the lens must be parallel to the line of collimation of
the telescope. 13y fixing the magenet and moving the teleseope, we may ascertain the angular value of the divistons of the seale, and then, when the magnet is suspended amd the position of the telescope known, we may determine the position of the mugnet at any instant by rending of the division of the scale which coinctides with the eross wires.

THie telescope is supported on ant arm whieh is contred in the line of the suspension filde, and the position of the telescope is read ofl by veniers on the azimuth circle of the instrmment.

This artangement is suitable for a matil portable magnetometer ins which the whole apparatus is supported on one tripod, and in Which the oscillations due to aceidental disturbances rapidly subside.

> Determination of the Direction of the Axis of the Magnet, and of the Dircelion of Terrestrial Maquelism.
452.$]$ Let a systen of akes be drawn in the magnet, of which the axis of z is in the direction of the length of the bar, and ar and y perpendicular to the sides of the lar supposed a parallelepiped.

Let l, m, n and λ, μ, ν be the angles which the magretic axis and the line of collimation make with these axes respeetively.

Let M be the magretie moment of the magnet, let $I f$ be the horizontal component of terestrial magnetism, let Z be the vertical component, and let to the aximuth in which $I I$ acts, reckoned from the north townals the west.

Let s be the observed azimuth of the line of collimation, bet a be the azimutl of the stirrup, and β the reading of the index of the torsion circle, then $a-\beta$ is the azimuth of the lower end of the suspension fibre.

Let y be the valne of $\alpha-\beta$ when there is no torsion, then the moment of the fore of torsion tending to diminish a will be

$$
T(\alpha-\beta-\gamma)
$$

where - is a coflieiont of torsion depending on the nature of the fibre.

To determine λ, fix the stirmp so that y is vertical and upwards, z to the north and x to the west, and olserve the aximuth § of the line of collimation. 'Liten remove the magnet, turn it through an augle a about the axis of z and replace it in this inverted position, and olverwe the arimuth so the line of collimation when y is downwads and a to the cast,

$$
\begin{align*}
& \zeta=a+\frac{\pi}{2}-\lambda \tag{1}\\
& \zeta=a-\frac{\pi}{2}+\lambda \tag{2}\\
& \lambda=\frac{\pi}{2}+\frac{1}{2}(\zeta-\zeta) \tag{3}
\end{align*}
$$

Hence
Next, hang the stirrup to the sugpension fibre, and place the magnet in it, adjusting it catefully so that y maty be vertieal and upwards, then the moment of the force tending to fuerase a is

$$
\begin{equation*}
M H \sin m \sin \left(\delta-a-\frac{\pi}{2}+l\right)-r(\alpha-\beta-\gamma) \tag{1}
\end{equation*}
$$

But if ζ is the observed namuth of the liue of eollimation

$$
\begin{equation*}
\zeta=a+\frac{\pi}{2}-\lambda \tag{5}
\end{equation*}
$$

so that the force may lee written

$$
\begin{equation*}
M H \sin m \sin (\delta-\zeta+l-h)-\tau\left(\zeta+\lambda-\frac{\pi}{2}-\beta-\gamma\right) \tag{6}
\end{equation*}
$$

When the apparatus is in equilibrum this quantily is zero lor a particular malue of ζ.

When the apparatus never comes to rest, but nust bo obserwed in a state of vibration, the value of $\$$ conresponding to the position of equilibrium may be eateulated by a method whith will be deseribed in Art. 735.

When the foree of torsion is small compared with the monent of the magnetic fore, we may put $\delta-\zeta+l-\lambda$ lor the sime of that angle.

If we give to β_{y} the reading of the torsion cirele, two diflerent values, β_{1} and β_{2}, and if ζ_{1} and S_{2} are the comesponding values of ζ,

$$
\begin{equation*}
M M I \sin m\left(\zeta_{1}-\zeta_{2}\right)=-\left(\zeta_{1}-\zeta_{2}-\beta_{1}+\beta_{2}\right)^{2} \tag{array}
\end{equation*}
$$

or, if we put

$$
\begin{equation*}
\frac{\zeta_{1}-\zeta_{2}}{\zeta_{1}-\zeta_{2}-\beta_{1}+\beta_{2}}=\tau^{\prime}, \quad \text { then } \tau=M H / \sin m \tau^{\prime} \tag{8}
\end{equation*}
$$

and equation (7) becomes, dividing by $M / H \sin$,

$$
\begin{equation*}
\delta-\zeta+l-\lambda-\tau^{\prime}\left(\zeta+\lambda-\frac{\pi}{2}-\beta-\gamma\right)=0 . \tag{9}
\end{equation*}
$$

If we now reverge the magnet so that y is downards, and adjust the apparatus till y is extectly vertical, fond if ζ ' is the new walue of the azimuth, and 8^{\prime} the corresponding acclination,

$$
\begin{array}{ll}
& \delta^{\prime}-\zeta^{\prime}-l+\lambda-r^{\prime}\left(\zeta^{\prime}-\lambda+\frac{\pi}{2}-\beta-\gamma\right)=0 \\
\text { Whence } & \frac{\delta+\gamma^{\prime}}{2}=\frac{1}{2}\left(\zeta+\zeta^{\prime}\right)+\frac{1}{2} r^{\prime}\left(\zeta+\zeta^{\prime}-2(\beta+\gamma)\right), \tag{11}
\end{array}
$$

'The reating of the forsion civele slould now be adjusted, so that the eofflicient of ' T^{\prime} may le as nuarly as possible zero. For this purpose we must eletemine γ, the value of $a-\beta$ when there is no torsion. I'luis may be done by placing a nom-mathetio bar of the same weight as the magnet in the stirrup, and determining $a-\beta$ When there is equilibrium. Since T^{\prime} is small, great aceumey is not reguired. Arother muthod is to use a forsion bar of the same weight as the magnet, containing within it a very small magnet whose magnetic moment is $\frac{1}{a}$ of that of the principal matroct. Since τ remains the same, τ^{\prime} will locone $u \tau^{\prime}$, and if ξ_{1} and G_{1} are the valnes of' Co as foumd by the torsion bar,

$$
\delta=\frac{1}{2}\left(\zeta_{1}+\zeta_{1}\right)+\frac{1}{\gamma} u \tau^{\prime}\left(\zeta_{1}+\zeta_{1}^{\prime}-2(\beta+\gamma)\right)
$$

Subtracting this equation from (11),

$$
\begin{equation*}
2(n-1)(\beta+\gamma)=\left(x+\frac{1}{\tau^{\prime}}\right)\left(\zeta_{1}+\zeta_{I}\right)-\left(1+\frac{1}{\tau^{\prime}}\right)(\zeta+\zeta) \tag{13}
\end{equation*}
$$

Hating found the value of $\beta+\gamma$ in this way, β, the rending of the torsion cireles, should be altered till

$$
\zeta+\zeta-2(\beta+\gamma)=0
$$

as nearly as possible in the ordinary position of the apparatus.
Then, since T^{\prime} is at wery small mancrieal guantity, and simee its coeflicient is wery small, the whe of the second term in the expression for δ will not vary mach for small errors in the values of τ° and γ, which are the quantities whose values ane least acchately known.

The whe of 8 , the magnetie declination, may be found in this way with considcrable actaracy, provided it remains constant duriug the experiments, so that we may assume $8^{\prime}=\delta$.

When great aceuracy is requived it is necessary to take accontit of the variations of δ during the experiment. Hor this purpose obscrvations of another suspended magnet shoutd he made at the sume instants that the different values of s are observel, and il Th are the observed aximuths of the second magmet corresponding to G and ζ^{*}, and if δ and δ^{\prime} are the eorresponling values of δ, then

$$
\begin{equation*}
\delta^{\prime}-\delta=\eta^{\prime}-\eta \tag{15}
\end{equation*}
$$

Hence, to find the valae of is we must add to (11) a correction

$$
\frac{1}{2}(n-n)
$$

The declitation at the time of the lipst olservation is therefore

$$
\begin{equation*}
\delta=\frac{1}{2}\left(\zeta+\zeta+\eta-\eta^{\prime}\right)+\frac{1}{2} \tau^{\prime}\left(\zeta+\zeta^{\prime}-2 \beta-2 \gamma\right) \tag{16}
\end{equation*}
$$

To find the direction of the magnetic axis within the magnet subtract. (10) from (9) and and (15),

$$
\begin{equation*}
l=\lambda+\frac{1}{2}\left(\zeta-\zeta^{\prime}\right)-\frac{1}{2}\left(\eta-\eta^{\prime}\right)+\frac{1}{2} \pi^{\prime}\left(\zeta-\zeta^{\prime}+2 \lambda-\pi\right) . \tag{17}
\end{equation*}
$$

By repeatiug the experiments with the lar on its two edges, so that the axis of x is vertically upwards and downwards, we can lind the value of m. If the axis of collimation th capable of adjustnent it ought to be made to ecoincide with the magnetic axis as nearly as possible, so that the error arising from the magnet not being exactly inverted may be as small is possible *.

On the Meastrenent of Magnetic Forces.

453.] The most important mensurements of magnetic force are Whose which determine $B I$, the magnetic moment of a magnet, and $/ /$, the intensity of the horizontal component of tervestrial magnetism. This is generally done by combining the results of two experinents, one of wheh determines the ratio and the other the product of these two quantities.
The intensity of the magrietic force due to an infinitely small magnet whose magnetic moment is M, , at a point distant r from the centre of the magnet in the positive direction of the asis of the maguet, is

$$
\begin{equation*}
K=2 \frac{M}{r^{3}} \tag{1}
\end{equation*}
$$

and is in the direction of γ. If the magnet is of finte size but spherieal, aul magnetized uniformly in the direction of its axis, this value of the force will still lye exact. If the magnet is a solenoidal laar magnet of lengetl2 $2 / 2$,

$$
\begin{equation*}
R=2 \frac{M}{r^{3}}\left(1+2 \frac{l^{2}}{r^{2}}+3 \frac{L^{4}}{r^{4}}+\& \mathrm{c} .\right) . \tag{2}
\end{equation*}
$$

If the magnet be of any lind, provided its dimensions are all small compared with r,

$$
\begin{equation*}
R=2 \frac{M}{\gamma^{3}}\left(1+A_{1} \frac{1}{r}+A_{2} \frac{1}{r^{2}}\right)+\& \operatorname{sc} . x \tag{3}
\end{equation*}
$$

where A_{1}, A_{2}, \&e, are coeflicients depending on the distribution of the magnetization of the bas.
Let $I I$ bo the intensity of the horizontal part of terrestrial magnetism at any place. H is directed towards magrutie north. Let r be measured towards magnetio west, then the magnetic fore at the extremity of' r will be $/ I$ towards the norih and $/$ thewards

[^10]the west. The resultant force will make an angle 0 with the magretie meridian, measured lowards the west, and such that
\[

$$
\begin{equation*}
R=\mu \tan \theta, \tag{4}
\end{equation*}
$$

\]

Hence, to determine $\frac{R}{I I}$ we proceed as follows:-
The direction of the magnetio north having been ascertainel, a magnet, whose dimensions should not be too great, is suspended as in the former experiments, and the doflecting magnet It is phacel so that its centre is at a distance r from that of the suspended magnet, in the same horizontal plane, and due magnetic mast.
The axis of M is carefully aljusted so ats to be horizontal and in the direction of r.

The suspended magnet is olsserved before M is brought near and also after it is placed in position. Tf 0 is the ouscrved deflexion, we have, if we use the approximate formula (1),

$$
\begin{equation*}
\frac{M}{/ /}=\frac{r^{2}}{2} \tan \theta ; \tag{5}
\end{equation*}
$$

or, if we nse the formula (3),

$$
\begin{equation*}
\frac{1}{2} \frac{/ I}{M^{2}} r^{3} \tan \theta=1+A_{1} \frac{1}{2}+A_{2} \frac{1}{y^{2}}+\mathbb{k e} \tag{bi}
\end{equation*}
$$

Here we must bear in mind that though the deflexion θ can lee olserved with great acemacy, the distance r between the centres of the magnots is a quantity which camot be precisely determined, unless both magnets are lixed and their centres defined loy marlis.

This diffieulty is overcome thas:
The magnet M is placed on a divided sealo which extends enst and west on both sides of the suspended magnet. The middle point between the cands of M is reckened the centre of the magnet. This point may be marked on the magnet and its position olserved on the seale, or the prositions of the curds may bee observed and the ariflumetio mean taken. Call this g_{1}, and let the line of the suspension fibre of the suspented magnict when produced ent the seate at s_{0}, then $r_{1}=s_{1}-s_{0}$, where s_{1} is known nceurately and s_{0} approximately. Let θ_{1} be the deflexion observed in this position of M.

Nuw reverse M, that is, place it whe scale with its emels reversed, then r_{1} will be the same, but M and A_{1}, A_{3}, \&ce will have their signs changed, so that if 0 , is the deftexion,

$$
\begin{equation*}
-\frac{1}{2} \frac{H}{M} r_{1}^{3} \tan \theta_{2}=1-A_{1} \frac{1}{r_{1}}+A_{z} \frac{1}{r_{1}^{2}}-8 \mathrm{c} . \tag{7}
\end{equation*}
$$

Trking the arithmetical mean of (f) and ($\overline{\text { o }}$),

$$
\begin{equation*}
\frac{1}{4} \frac{M}{M} r_{1}^{3}\left(\tan \theta_{1}-\tan \theta_{2}\right)=1+A_{2} \frac{1}{r_{1}^{2}}+A_{1} \frac{1}{r_{1}^{4}}+\& \sec \tag{B}
\end{equation*}
$$

Now remove H to the west side of the suspented mastret, and place it with its centre at the point marked $2 s_{0}-s$ on the sente. Let fhe deflexion when the axis is in the limst position be $\theta_{y,}$, and when it is in the second ∂_{t}, then, as before,

Luet us suprose that the true position of the centre of the suspended magenet is not s_{0} but $8_{0}+\pi$, then

$$
\begin{gather*}
r_{\mathrm{I}}=r-\sigma_{3} \quad r_{2}=r+w, \tag{10}\\
\frac{1}{2}\left(r_{1}^{\prime \prime}+r_{2}^{\prime \prime}\right)=r^{\prime \prime}\left(1+\frac{n(n-1)}{2}{\sigma^{2}}_{r^{2}}^{2}+8 c \cdot\right) \tag{11}
\end{gather*}
$$

and
and since $\frac{\sigma^{2}}{f^{2}}$ niay le neglected if the meatarements are carefully made, we are sure that we may tale the arithmetion meat of $r_{1}{ }^{n}$ and $r_{2}{ }^{\prime \prime}$ for $y^{\prime \prime}$.

Hence, taking the arithmotienl mean of (8) and (9),

$$
\begin{equation*}
\frac{1}{8} \frac{M}{M} r^{3}\left(\tan \theta_{1}-\tan \theta_{2}+\tan \theta_{3}-\tan \theta_{4}\right)=1+A_{2} \frac{1}{r^{2}}+\sec \tag{12}
\end{equation*}
$$

or, making

$$
\begin{gather*}
\frac{1}{4}\left(\tan \theta_{1}-\tan \theta_{2}+\tan \theta_{3}-\tan \theta_{4}\right)=D, \tag{13}\\
\frac{1}{2} \frac{I I}{M} D r^{3}=1+A_{2} \frac{1}{r^{2}}+\mathbb{S e}
\end{gather*}
$$

454.] We may now regard D and of as apable of exact determination.

The quantity A_{2} can in no ease exceed $2 L^{2}$, where A is hall the length of the magnet, so that when r is considerable compared with H we may neglect the term in A_{2} and determine the ratio of $I I$ to M at onee. We cannot, however, assmene that A is equal to $2 L^{2}$, for it may be lese, and may even be negative for a manget Whose largest dimensions are transyerse to the axis. Thw tum in A_{4}, and all ligher werms, may safely le neglected.

To eliminate A_{2}, repeat the experiment, usiturg distanees F_{7}, F_{2}, r_{3} Ee., and let the values of D be D_{1}, D_{2}, D_{i}, *en, then

$$
\begin{aligned}
& D_{1}=\frac{2 M}{M I}\left(\frac{1}{r_{1}^{3}}+\frac{A_{0}}{r_{1}}\right), \\
& D_{2}=\frac{2 M}{H}\left(\frac{1}{r_{2}^{2}}+\frac{A_{2}}{r_{4}}\right)
\end{aligned}
$$

Se. Se.

If we suppose that the probable enrors of these equations are equal, as they will he if thoy depend ou the determination of D only, and if thore is no meertainty about r_{s}, then, by multiplying each equation by r^{-3} and adding the results, we obtain one equation, and by multiplying ench equation loy r^{-5} ant adding we obtain another, according to the general rule in the theory of the combination of faltible measures when the prohable error of each equation is supposed the shme.

Let us write

$$
\mathrm{\Sigma}\left(D r^{-8}\right) \text { for } D_{1} r_{1}^{-3}+D_{2} r_{2}^{-3}+D_{3} r_{3}^{-2}+8 e_{3}
$$

and the similar expressions for the sums of other groups of symbols, then the two resultant equations may be written

$$
\begin{aligned}
& \mathbf{\Sigma}\left(D r^{-5}\right)=\frac{2 M}{A}\left(\Sigma\left(r^{-6}\right)+A_{2} \Sigma^{-}\left(r^{-8}\right)\right) \\
& \mathbf{S}\left(D r^{-5}\right)=\frac{2 M}{H}\left(\mathbf{S}\left(r^{-8}\right)+A_{2} \Sigma\left(r^{-10}\right)\right),
\end{aligned}
$$

whence

$$
\begin{aligned}
& \text { and } A_{2}\left\{\Sigma\left(D r^{-3}\right) \Sigma\left(r^{-100}\right)-\Sigma\left(D r^{-5}\right) \Sigma\left(r^{-8}\right)\right\} \\
& =\mathbf{\Sigma}\left(D r^{-r}\right) \Sigma\left(r^{-G}\right)-\Sigma\left(D r^{-a y}\right) \Sigma\left(r^{-5}\right) .
\end{aligned}
$$

The value of A_{2} derived from these equations ought to be less than half the egutare of the length of the magnet M. If it is not we may suspect some error in the olservations. This method of ouservation and rednetion was given by Guass in the ' First Report of the Magnetic Association, ${ }^{\text { }}$

When the observer can make only two series of experiments ate distances r_{1} and r_{2}, the value of $\frac{2 M}{I I}$ derived from these experiments is

$$
Q=\frac{2 M}{/ X}=\frac{D_{1} r_{1}^{5}-D_{2} r_{1}^{5}}{\gamma_{1}^{2}-\gamma_{2}^{2}}, \quad A_{0}=\frac{\partial_{2} \gamma_{2}^{3}-D_{1} r_{1}^{3}}{\gamma_{1}^{2}-r_{2}^{2}} r_{1}^{2} r_{2}^{2}
$$

If $8 D_{1}$ and δD_{2} are the actual errors of the observel dellexions D_{1} and D_{2}, the actual error of the caleulated result Q will lre

$$
8 Q=\frac{r_{1}^{6} \delta D D_{1}-r_{2}^{5} 8 D_{2}}{r_{1}^{2}-r_{2}^{2}}
$$

If we suppose the errors δD_{1} and δD_{2} to be independent, and that the probeble value of cither is δD, then the probaljte value of the error in the calculated value of Q will be $8 Q$, where

$$
(\delta Q)^{2}=\frac{r_{1}^{10}+r_{2}{ }^{10}}{\left(r_{1}^{2}-r_{2}{ }^{2}\right)^{2}}(\delta D)^{2}
$$

If we supprose thast one of theso distances, say the smallor, is given, the value of the greater distance may be determined so as to make δQ a minimum. This condition leads to an equation of the filth degree in $r_{1}{ }^{2}$, which has only one real root grenter than r_{2}^{2}. From this the best value of r_{1} is found to be $r_{1}=1.3189 r_{2}{ }^{*}$.

If one observation only is taken the lest distance is when

$$
\frac{\delta D}{D}=\sqrt{3} \frac{\delta r}{r},
$$

where δD is the probable error of a measurement of deflexion, and or is the probable error of a measurement of listance.

Methot of Sines.

455.] The method which we have just deseribed may be called the Method of Tangents, becanse the tangent of the deflexion is at measure of the magnetic lorec.

If the line \dot{r}_{1}, instead of heing measured east or west, is adjusted till it is at right angles with the axis of the deffectod magnet, then h is the same als before, but in order that the suspended magnot may remain perpendiculan to r, the resolved part of the fore $/ /$ in the direction of r must be equal and opposite to R. Hence, if θ is the dellexion, $R=/ / \sin \theta$.

This method is called the Method of Sines. It can be mpplied ouly when R is loss them H.

In the Kew portable apparatus this method is employed. The suspended magnet hangs from a part of the apparatus which revolves alongy with the telescope and the arm for the deflecting magnet, and the rotation of the whole is measured on the azimuth circle.
The apparatus is first adjusted so that the axis of the telescope coincides with the mean prosition of the line of collimation of the magnet in its modisturbed state. If the magnet is vilmating, the true azimuth of magnetic north is found by ohserving the extremities of the oseillation of the transparent seale and making the proper correction of the reading of the azimuth circle.

The deflecting magnet is then placed upon a straight rox which passes through the axis of the revolving apparatus at right angles to the axis of the telescope, and is atjorsted so that the axis of the deflecting maghet is in a line passing through the centre of the suspended magnet.

The whole of the revolving apparatus is then moved till the line

[^11]of roltimation of the surpended magnet again coincides with the axis of the telesoove, and the now azmath reading is corrected, if necesary, by the menn of the seale readings at the extremities of an oscillation.
 which we proceed as in the method ol tancomens, except that in the expressinn for D we jut sin θ instead of tan O.

In wis methorl there is wo eorrection for the torston of the suspending filme, since the relative position of the fibre, telescope, and magmet is tho same if owery observation.
'I'he anes of' the two magnets remain always at right angles in this method, so that the correction for length can be more necurately made.
f56.] Having thas measured the ratio of the moment of the weflecting magnet to tho houtizontal component of tormestrial magnetism, we hare next to find the product of these yuantities, by determining the monemt of the emple with which tervestrial magnetism tends to turn the same magned when its axis is deflected from the magretic meridian.

There are two methods of maling this mensument, the dynamieal, in which the time of viluration of the magnet under the action of terrestrial magnetism is observel, and the statical, in which the magnet is kept in equilibrimm between a metsumable statical couple and the magretio fored.

The dymmienl method requires simpler apparatus and is more aceurate for absolute mmenrements, bat takes 41 ${ }^{3}$ a considemale time, the statical method ndmits of alonost instantameons measurement, and is therefore useful in tracing the changes of the intensity of the magnetic force, lant it requires more doliente appuratus, arot is not so accurate for absolate menamemat.

Mellod of Fibwatious.

The magnet is susponded with its magnetie axis horizontal, and is act in wiluration in small ares. The willations are ouserwed ly means of any of the methouls alreaty deseribod.

A point on the seale is ohnsen corvesporting to the middle of the are of vibution. The instant of pascage through this point of the scale in the positive direction is observel. If there is sufficient time before the retarn of the magnet to the same point, the instant of passage through the point in the negative direction is atso observed, and the process is continued till $x+1$ prositive and
n nogative passiges have beet observed. If the witnations ane too rapid to allow of every consentive passage being alserved, overy third on every fifth passage is olserven, care benine taken that the observed passares are alternately positive and negative.

Let the observed times of passage bo T_{1}, T_{2}, J_{5+1}. (han it we put

$$
\begin{aligned}
& \frac{1}{H}\left(\frac{1}{2} T_{1}+T_{3}+T_{5}+80+T_{21-1}+\frac{1}{2} T_{2 M+1}\right)=T_{n+1} \\
& \frac{1}{3}\left(T_{2}+T_{4} \mathrm{sc} . \quad+T_{2+n}\right)=T_{n+1}
\end{aligned}
$$

then η_{n+1} is the mean time of tho positive passages, and maght L.0 agree with $7^{\prime \prime}{ }_{n+1}$, the mean time of the negrative fassuges, if the peint has bect properly chosen. The mean of" these results is to be taken as the mean time of the midele prossuge.

After a large number of wibrations lave taken place, lowt luefore the vibrations have eased to be distinct and regalar, the ofsemver makes another Eeries of observations, from which he dedueds the mean time of the middle passage of the second setics.

By endeulating the period of vibration either from thu first series of olsenvations or from the seconi, he onght to be able to be certain of the number of whole vibutions which have taken phace in the interval betwem the time of midale passage in the two series. Dividing the interval between the mean times of midalde pasenge in the two series by this number of vibuations, the math time of vibration is ohtaned.

The observed time of vilutation is then to be reduced to the time of vibation in infinitely small ares ly of formala of the same kind as that used in pendulum observations, and if the vilumations are fornd to diminish rapidly in mplitute, there is another eonrection for resistance, sec $\Delta \mathrm{rt}$. $\mathbf{7} 40$. Thuse cometions, however, are very smath when die magnet lange by a fibee, nat when the ate of vibration is only ar few degrees.

The equation of motion of the magnet is

$$
A \frac{d^{2} \theta}{d l^{2}}+M / I \sin \theta+M / H \mathrm{r}^{\prime}(\theta-\gamma)=0
$$

wher O is the angle betwen the magnetic axis and the tiwetion of the foree $H_{3} A$ is the moment of inertia of the magnet and suspended apparatus, M^{\prime} is the dagmetio moment of the maymet, /I the intensity of the horizontal maguetio lored, and $/ / / / \mathrm{s}^{\prime}$ the coeflietent of torsion: τ^{\prime} is determined as in Art. Ais, and is at very small quantity. The value of o for equilibrimen is
and the solution of the equation for small values of the amplitude, C is

$$
O=C \cos \left(2 \pi \frac{t}{t}+\pi\right)+\theta_{0}
$$

where P is the periodie time, and C the amplitude, and

$$
T^{2}=\frac{1 \pi^{2} A}{M H\left(1+\tau^{2}\right)}
$$

whence we find the value of $I / / / /$,

$$
M H I=\frac{4 \bar{n}^{2} A}{\left.1+\tau^{2}\right)}
$$

Were T is the time of a complete wibration detemined from observation. A, the moment of inertite, is fruad onco for all for the magnet, citluer by weimhing ancl moasuring it if it is of a regular fignte, on ly a dymamienl process of comparison with a boty whose monetnt of inertia is kinown.
Combining this valle of $M / /$ with that of $\frac{B / T}{} / T$ Comerly olstainel, wo get
and

$$
\begin{aligned}
& M^{2}=(M H)\left(\frac{M}{H}\right)=\frac{2 \pi^{2} A}{T^{2}\left(1+r^{2}\right)} D r^{3} \\
& M^{2}=(M H)\left(\frac{H}{M}\right)=\frac{8 \pi^{2} d}{T^{2}\left(1+\tau^{2}\right) D_{r^{\prime 2}}}
\end{aligned}
$$

457.] We have supposed that $H /$ and $I /$ continue constant duwing the two series of experiments. The Ilmetuations of $/ / \mathrm{may}$ la ascertained by simultancous ofservations of the bifilar magnet. ometer to be presently deseribod, and if the maginet lats been in use for some time, and is not exposed during the experiments to elanges of temperature or to concussion, the part of M which depends on permanent magnetism may lue assumed to be constant. All steel magnets, however, are empable of indaced magnetism depending on the action of external mangetie fovec.

Now the magnet when employed in the deflexion experiments is placed with its axis enst and west, so that the action of terregtrial magnetismi, is transverse to the magnet, and toes not tend to increase or diminish M. When the magnet is made to vilhate, its axis is morth and south, so that the action of terrestrial magrnetism tends to magnetize if in the direction of the axis, and therefore to inerease its magnetic moment by a quantity $K / /$, where K is a coeflicient to be formd by experiments on the magnets.

There are two ways in mhiel this source of error may be awoided withont calculating h, the experimenas locing armanged so that the magnet shall be in the same condition when employed in dellecting another magnet and when itself swinging.

We may place the deflecting magnet with its axis pointing north, at a distance x from the centre of the maspembed magret, the line r making an angle whone easine is $\sqrt{\frac{1}{3}}$ with the magnetic meridian. "Mre ation ol the deflecting magnet on the suspenderl one is then at right ingles to its own direction, and is equal to

$$
A^{\prime}=\sqrt{2} \frac{M}{r^{n}}
$$

Itere M is the magnetic monomb when the axis points north, as in the experment of vibution, so that no correction hats to be makle for induction.
'Ihis method, however, is cxtremely difticull, owing to the large errors which would be introduced by a slight displacement of the deftecting mathet, and as the convention by reversing the deflecting magnet is not applieatge leere, this method is not to be lillowed exeept when the olject is to determine the coeftecient of indaction.
${ }^{T}$ The followinge methorl, in which the matrot while viluntarger is freed from the intuctive action of ferestrial magetism, is due to Dr. N, I'. Joule *.
'l'wo magrots are prepared whose magnetio moments ate as nearly equal as possitble an the deflesion experiments these magnets are used sepmately, or they may he paced simultaneonsly on opposite sides of the suspended magnet to produce a grater deftexion. In these experiments the inductive force of terrestriat magnetism is transverse to the axis.

Let one of these magnets be suspended, and let the other be plated parallel to it with its contre exactly holow that of the suspeuded magnet, and with its axis th the same direction. 'lye loree which the fixed magnet exerts on the suspented one is in the ofnosite direction from that of terestrial magnetism. If the fixed maged be gradually bronght nemer to the suspended ane the time of vibration will inerense, till at a eertaia point the equilibrium will cease to be stalle, and leyond this point the suspended magne will make oscillations in the reverse position. $13 y$ experimenting in this way a position of the lixel magnet is fomm at whith it exaetly nentalizes the effect of terwestrial magretism on the suspended one. The two matrels are firstened togedner sto is to lou parallel, with their axes formed the sume way; and at the distance just found by experiment. Thay are then suspended in the usual way und made to vibrate together through small ares.

[^12]The lower magnet exactly neutralizes the eflect of terwectrial magretism on the npper one, and since the magrets are of equal mowent, the upper one neatralizes the induetive action of the earth on the lower one.
'The value of $J /$ is therefore the same in the experiment of vibration as in the experiment of deflexion, and no correction for incluction is requared.
458.] The most aecumato mothod of asertaning the intensity of the horizontal margetic fore is that which we have just deseribed. 'The whole series of experiments, howeyer, cannot lse performed with sufficient accuracy in much less than in home, so that any chamges in the intensity which take phes in perrods of a few minutes would escape ohservation. Hence a different method is reguired lor ohserwig the intensity of the marnotio foree at any instent.

Tlue statical methoul consists in deflecting the manet by means of' a statieal eonple acting in a horizontal plane. If h be the moment of this couple, M the magnetio moment of the morroct, I/ the horizontal component of terrestrial matyetism, and of the deflexion,

$$
M H \sin 0=I
$$

Hence, if A is linown in terms of 0, M $/$ ean be found.
The couple A may be generated in two ways, by the torsional elasticity of ar wire, ats in the ordinay torsion balamee, on by the weight of the suspended tuparatus, as in the bililar suspension.

In the forsion batane the materet is fastened to the end of a verticul wire, the uprer end of whely can the tumed round, and its rotation measumed by means of a torsion circle.

We hawe then

$$
L=\cdot\left(a-a_{0}-\theta\right)=M H \sin \theta
$$

Here $a_{i n}$ is the walne ulf the racting of the torsion cirele when the axis of the magnet comedes with the maghefie meridian, thut a is the aethal rembing. If the tomion cirele is turned so ans to bring the matamel nearly perpendiendar to the magnetie menidian, so that

$$
\begin{gathered}
0=\frac{\pi}{2}-\theta^{\prime} \text {, then } \quad r\left(a-a_{0}-\frac{\pi}{2}+\theta^{\prime}\right)=M / H\left(1-\frac{1}{2} \theta^{\prime 2}\right), \\
0^{\prime} \quad M H=r\left(1+\frac{1}{2} \sigma^{\prime 2}\right)\left(a-a_{0}-\frac{\pi}{2}+\theta^{\prime}\right) .
\end{gathered}
$$

By ohserving θ, the deflexion of the magnet when in equililuriam, we can calculate M// provided we linow π.

If we only wish to know the relative walue of $/ /$ at diflerent times it is not necessury to know either I/ or T_{o}

We may easily detumine - in aldsolute measure ly suspenting
a non-magnetic lofy from the same wite and observing its time of oscillation, then it A is the moment of inertita of this booly, antit It the time of a complete vibution,

$$
\mathrm{T}=\frac{4 \pi^{2} A}{f^{2}}
$$

? The dief objection the the ase the torsion lalance is that the zerowreading a_{0} is liable to change. Under the constant thisting foree arising from tho bendeney of the maget to tum to the north, the wite gradmally aequires a permanent twist, so that it beemos necessary to determine the zero-reading of the torsion eirele afresh at short jutervals of time.

Biglar Susponsion.

459.] The methot of suspending the magnet lys two whes or fibres was introduced by Gauss ancl Wehor. As the bifilat suspension is used in many electrical instrumente, we shall inwestigate if. more in detait. The genemb appearance ol' the suspension is shewn in Figs. 16, and lige $1 \overline{7}$ represents the progection of the wires on a lerizontal plane.
$A B$ and $A^{r} J^{*}$ are the projections of the two wires.
Ad A^{\prime} and $B^{3} \mathcal{F}^{*}$ are the lines joining the upper and the lowner ends of the wires.
a and b are the lemgling of these lines.
a and β their azimuths.
W^{W} and $W^{\prime \prime}$ the vertical components of the tensions of the wires.
Q and Q^{*} their horizontal eomponents.
A the wartical distance between $A A^{\prime}$ and $h F^{\prime}$.
The foreds whith act on the magnot are-its meight, the comple ansing from terrestrial magnetism, the torsion of the wires (if my) and their tensions. Ol^{\prime} these the effucts of magnetism ant of torsion are of the mature of conples. Hence the reszatant of the tensions must consist of a wertical force, equal to the weight of the magnet, logether with a couple. The resultant of the vertical components of the tensions is therefore along the line whose profeetion is O, the intersection of $A A^{\prime}$ and $B B^{\prime}$, and cither of these lines is divited in O in the ratio of W^{\prime} to W^{\prime}.

The horizontal components of the tensions form a comple, and are therefore equal in magnitude tud paralhel in direction. Calling either of them Q, the monent of the couple which they fom is

$$
\begin{equation*}
L=Q \cdot P^{P^{\prime}} \tag{1}
\end{equation*}
$$

where $D J^{\prime \prime}$ is the distance between the pathel limes $A B$ and of $H^{\prime \prime}$.

To find the walue of I we lave the equations of moments

$$
\begin{equation*}
Q h=W_{+} A B=\|^{\prime} \cdot A^{\prime} B^{\prime} \tag{2}
\end{equation*}
$$

atud the geometrical equation

$$
\begin{equation*}
\left(A B+A^{+} b^{r}\right) P P^{+}=a b \sin (a-\beta) \tag{B}
\end{equation*}
$$

wherce we obtails,

$$
\begin{equation*}
h=Q \cdot P^{\prime} P^{\prime}=\frac{a b}{h} \frac{\| W^{\prime}}{W+W^{\prime}} \sin (\alpha-\beta) . \tag{4}
\end{equation*}
$$

Pיig. IG.

Fig. 17.

If m is the mass of the suspended apparatus, and y the intensily ol' errewity,

$$
\begin{equation*}
W_{+}+W^{r}=m \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
\text { Il' we also write } \quad W^{\top}-\|^{\prime}=\mu m g_{2} \tag{6}
\end{equation*}
$$

we limel $\quad I_{t}=\frac{1}{4}\left(1-x^{2}\right) \cdots g \frac{a b}{4} \sin (\alpha-\beta)$.
The value of h is therefore a maximum with respect to n when n
is zero, that is, when the weight of the suspended mass is edpatly borne by the two wices.

We may adjust the tensions of the wires to cquality by observing the time of vibration, aud making it a minimum, or we may olbain a self-acting adjustment by ataching the ends of the wires, ats in Fig. 1G, to a palley, which turns on its axis till the tensions are egual.
'the distance of the upper ends of the suspension wires is regulated by means of two other pullies. The distance luetween the lower ends of the wares is also capable of adjusinent.

By this adjustment of the tension, the couble arising from the tensions of the wires becomes

$$
L_{i}=\frac{1}{4} \frac{a b}{h} n g \sin (a-\beta)
$$

The moment of the couple arising from the torsion of the wines is of the form

$$
T(\gamma-\beta),
$$

where τ is the sum of the coefficients of torsion of the wires.
The wires ought to be without torsion when $a=\beta$, we may then make $\gamma=a$

The moment of the couple arising from the horizontal magnetio loree is of the form

$$
M H \sin (\delta-0),
$$

where δ is the maguetic declination, and 0 th the azimuth of the axis of the magret. We shall avoid the introdnetion of urneecssary symbols without sacrificing generality if we assume that the axis of the magnet is parallel to $B B^{\prime}$, on that $\beta=0$.

The equation of motion then becomes

$$
\begin{equation*}
A \frac{d^{2} \theta}{d d^{2}}=M H \sin (\delta-\theta)+\frac{1}{4} \frac{a b}{h} \sin g \sin (a-0)+\tau(a-\theta) \tag{8}
\end{equation*}
$$

There are three prinecinal positions of this apparatus.
(1) When a is nearly equal to δ. If T_{1} is the time of a complete osellation in this position, then

$$
\begin{equation*}
\frac{4 \pi^{3} A}{T_{1}^{2}}=\frac{1}{4} \frac{a b}{h} m g+\pi+M M . \tag{9}
\end{equation*}
$$

(2) When a is nemrly equal to $\delta+\pi$. If T_{2} is the time ol a complete oseilation is this position, the north ent of the magnet being now turned towards the sontill,

$$
\begin{equation*}
\frac{4 \pi^{2} A}{T_{2}^{2}}=\frac{1}{4} \frac{a b}{h} n g+\pi-M / I \tag{10}
\end{equation*}
$$

The quantity on the right-hand of this equation may lee made
as small ghs we plase by dininishing a or b, but it must not be made nearative, or the canilibrimo of the magnat will become mastable. The magnet in this position forms an instrument by which small variations in the direckion of the magnetic forec may be remered sensible.

For when $\delta-0$ is nearly equal to $\bar{\pi}$, sin $\left(\frac{8}{}-\theta\right)$ is nearly equal to $0-\delta$, and we find

$$
\begin{equation*}
0=a-\frac{M H}{\frac{1}{4} \frac{d}{h} m g+\tau-M H}(\delta-a) \tag{11}
\end{equation*}
$$

By diminishing the denominator of the fraction in the last term wo may make the variation of O very large compared with drat of δ. Wo should notice that the eofficient of of in this expression is nogrative, so that when the direction of the magnetic force tums in one direction the magnet turns in the opposite atirection.
(3) In the thiml position the upper part of the staspensionapparatus is turned round till the axis of the marget is nemby perpendicular to the monnetic meridian.

Il' we make

$$
\begin{equation*}
\theta-\delta=\frac{\pi}{2}+\sigma^{\prime}, \text { and } \quad a-\theta=\beta-\theta_{3} \tag{12}
\end{equation*}
$$

the equation of notion may be writien

$$
\begin{equation*}
A \frac{d^{2} \theta^{2}}{d l^{2}}=M M \cos \theta^{\gamma}+\frac{1}{4} \frac{a b}{h} M g \sin \left(\beta-\theta^{\prime}\right)+\tau\left(\beta-\theta^{\prime}\right) \tag{13}
\end{equation*}
$$

If there is equilibrium when $/ I=A_{0}$ and $\theta=0$,

$$
\begin{equation*}
M I_{0}+\frac{1}{4} \frac{a b}{/ a} 2 g \sin \beta+\beta t=0 \tag{14}
\end{equation*}
$$

and if $/ /$ is the value of the horizontal forec eoresponiligg to a small angle 0^{\prime},

$$
\begin{equation*}
M=I_{0}\left(1-\frac{\frac{1}{4} \frac{a b}{h} \mu g \cos \beta+\bar{\tau}}{\frac{1}{4} \frac{a b}{h} m g \sin \beta+\tau \beta} \theta^{r}\right) \tag{15}
\end{equation*}
$$

In order that the magnet may he in stable equilibrium it is necessary that the momerator of the fraction in the second member should be positive, but the more nearly it approaches zoro, the more sensitive will be the instument in indicatinge changes in the value of the intensity of the horizontal component of terrestrial magndism.

The statieal method of estimating the intensity of the force depends upon the action of an instrument which of itsell' assumes
different positions of equilibrium for different walues of the fored, Henors, by menns of ambror attached to the magued and therwing as spot of light upon a photographie surlace moved by clockwork. a enrve maty be traced, from which the intensity of the force at any instant may be determinel according to a seate, which we maty for the present consider an arbitrary one.
460. In an observatory, where a continnons system of registration of declination and intensity is teept n口 vither by deye observation or by the antomatio photomraphio melliod, the absolute values of the deelination and of the intensity ys well as the position mod monent of the magnetic axis of a magnet, may be determined to a greater degree of accuracy.

For the dedinometer gives the declination at every instant affected by in constant error, and the bitilar magnetometer gives the intensily at every instant multiplied by a constant coethetent. In the experiments wo substitate for $\hat{\delta}, \bar{\delta}+\delta_{41}$ where δ is the reading of tho dectinomer at the given instant, and δ_{0} is tho unkmown lyut constant error, so that $\delta^{f}+\delta_{0}$ is the true declination at Hiat instand.

In like minner lor H, we substitate $C J^{\prime}$ where $/ I^{\prime}$ is the realinn of the magnetometer on its arbitury scale, and C is an undrown lout eonstant multiplier which converts these readings into absolute measure, so that $O M$ is the horizontal force at a given instant.

The experiments to determine the absolute values of the quantities must be conducted at a suffieient distane from the dechimometer and magnetometer, so that the different magmets may noti sensibly distarl) ench other. The time of every observation must be noted and the corresponding valnes of δ^{\prime} and H^{\prime} inserted. 'The equations are then to be trented so as to find δ_{0}, the constant error of the teelinometer, and O the coufficient to loe applied to the reatings of the magnetometer. When these are fount the readings of both instruments may be expresed in absolate measure. The almsolute mensuremonts, however, mast bo fropuently reputed in order to take account of changes which may ocour in the mushetice axis and monetio moment of the mugnets.
461.] The methods of determining the vertical component of the terrestrial magnetic foree have not been bronght to the same degree of precision. The vertical foree must act on a magnet which turns about a horizontal axis. Now a boty which turns aboul athorizontal axis cannot be made so sensitive to tho action of small lorees as a body which is suspended by a fibro and turns alront a rertical axis. Besides this, the weight of a magnet is so large compared
with the magnetic foree exerted nyon it that a small dispmecment of the eentre of' inertia ly unequal dilatation, \&e produces a greater efleet on the position of the magne than a considerable change of the magnetic foree.

Hence the measurement of the vertical forec, or the comparison of the vertionl and the horizontal forects, is the least perfect pant of the system of magnetic measurements.
The vertical part of the magnetic foree is grencrally deduced from the horizontal force ly determining the direction of the total foree.
If i be the angle which the total foree makes witl its horizontal component, i is called the magnetic Dip or Inclination, and if $/ /$ is the horizontal force already found, then the vertical force is I/ tam i, and the total foree is $/ /$ sece i.

The magnetic dip is foum ly means of the Dip Needle.
The theoretical dip-needle is a magreet with an axis which passes through its centre of inertia perpendicular to the magnetic axis of the needle. The ends of this axis are made in the form of cylinders of small radius, the axes of which are coincident with tho line passing through the centre of inertiat, These eylindrical ends rest on two horizontal phanes and are free to roll on them.

When tre axis is placed maguetio east and west, the needle is free to rotate in the phne of the magnetic meridim, and if the instrument is in perfect adjustment, the magnetic axis will set itself in the direction of the total magnetic force.

It is, however, practically impossible to adjust a dip-needle so that its weight does not influence its position of equilibrium, beenuse its centre of inertia, even if originally in the line joining the centres of the rolling sections of the cylimirical ends, will eatse to be in this line when the needle is impreceptilly bent or uncqually expanded. Besides, the determination of the fruc centre of inertia of a magnet is a very difficult opration, owing to the interlerence of the magnetic force with that of gravity.

Let us suppose one end of the needle and one end of the pivot to lee marked. Juet a line, real or imaginary, be deawn on the needle, which wo shall eall the Jine of Collimation. The position of thits line is read off on a vertical circle. Thet a be the amgle which this line makes with the radius to zero, which we shall suppose to be horizontal. Let A be the angle which the maguetic axis makes with the line of collimation, so that when the needle is in this position the line of collimation is inclined $\theta+\lambda$ to the horizontal.

Set η be the perpendicular from the centre of inertin on the plane on which the axis rolls, then g will be a function of 0 , whatever be the shape of the rolling surfaces. If both the rolling sections of the ends of the axis atre circular,

$$
\begin{equation*}
p=e-a \sin (\theta+a) \tag{1}
\end{equation*}
$$

where a is the distance of the centre of inertia from the line joining the centres of the rolling sections, and a is the angle which this line makes with the line of collimation.

If $M I$ is the magnetic moment, om the mass of the magnet, and I the force of gravity, I the total magnetie force, and i the dip, then, by the conservation of energy, when there is stable equilibrium,

$$
\begin{equation*}
M I \cos (0+\lambda-i)-M g \beta \tag{2}
\end{equation*}
$$

must be a maximum with respect to θ, or

$$
\begin{align*}
M I \sin (0+\lambda-i) & =-m y \frac{d p}{d \theta}, \tag{3}\\
& =-m g a \cos (0+a),
\end{align*}
$$

if the ends of the axis are cyliudrical.
Also, if T be the time of viluration about the position of equilibrium,

$$
\begin{equation*}
M+m g a \sin (\theta+a)=\frac{4 \pi^{2} A}{T^{2}} \tag{4}
\end{equation*}
$$

where A is the moment of inertia of the needle about its axis of rotation.
In determining the dip a reading is taken with the dip eirele in the magnetic meridian and with the graduation towneds the west.

Let $\hat{\theta}_{1}$ be this rending, then we have

$$
\begin{equation*}
M I \sin \left(\theta_{1}+\lambda-i\right)=-m g g t \cos \left(\theta_{1}+a\right) \tag{5}
\end{equation*}
$$

The instrument is now turned about a vertical axis through 180°, so that the graduation is to the east, and if O_{2} is the new reading,

$$
\begin{equation*}
M I \sin \left(\theta_{2}+\lambda-\pi+i\right)=-m g \pi \cos \left(\theta_{2}+a\right) \tag{i}
\end{equation*}
$$

Taking (6) from (5), and remembering that θ_{1} is nearly equal to i, and O_{2} nearly equal to $\pi-i$, and that λ is a small angle, such that ngad may be neglected in comparison with $M I I_{\text {, }}$

$$
\begin{equation*}
M I\left(O_{1}-O_{2}+\pi-2 i\right)=-2 n g k \cos i \cos a . \tag{i}
\end{equation*}
$$

Now take the magnet from its bearings and place it it the neflexion apparatus, Art. 453, so as to indicate its own magnetie moment by the deflexion of a sugpended magnet, then

$$
\begin{equation*}
M=\frac{1}{2} r^{3} H D \tag{8}
\end{equation*}
$$

where D is the tangent of the deflexion.
FOL. II.

Next, reverse the magnetism of the needle and determine its new magnetic momert A^{\prime}, by observing at new deffoxion, the tangent of which is $D^{\prime}, \quad M^{\prime}=\frac{1}{2} r^{3} / I D J^{\prime}$, whence

$$
\begin{equation*}
M H^{\prime}=M^{\prime} D \tag{9}
\end{equation*}
$$

Then plice it on its bearings and take two readings, θ_{5} and θ_{1}, in which θ_{3} is neady $\pi+i$, and θ_{4} nearly $-i$,

$$
\begin{align*}
V^{\prime} I^{\prime} \sin \left(\theta_{3}+\lambda^{\prime}-\bar{n}\right) & =M g a \cos \left(\theta_{3}+a\right), \tag{11}\\
M^{\prime} I^{\prime} \sin \left(\theta_{4}+\lambda^{\prime}+i\right) & =m g a \cos \left(\theta_{4}+a\right), \tag{12}
\end{align*}
$$

whence, as before,

$$
\begin{equation*}
M^{\prime} T\left(\theta_{3}-\theta_{4}-\pi-2 i\right)=2 m g a \cos i \cos a_{7} \tag{13}
\end{equation*}
$$

adding (8),

$$
\begin{align*}
M /\left(\theta_{1}-\theta_{2}+\pi-2 i\right)+J^{\prime} /\left(\theta_{3}-\theta_{4}-\pi-2 i\right) & =0, \tag{1:1}\\
\text { or } \quad D\left(0_{1}-\theta_{2}+\pi-2 i\right)+D^{\prime}\left(\theta_{3}-\theta_{4}-\pi-2 i\right) & =0, \tag{15}
\end{align*}
$$

whence we find the dip

$$
\begin{equation*}
i=\frac{D\left(0_{1}-a_{4}+\pi\right)+D\left(0_{\mathrm{s}}-0_{4}-\pi\right)}{2 I)+2 D)^{\prime}}, \tag{16}
\end{equation*}
$$

Where D and $D D^{\prime}$ are the tangents of the deflexions produced by the needle in its first and second magnetizations respeetively.

In taking olservations with the dip circle the vertical axis is earefolly adjusted so that the plane bearingsy upon which the axis of the magnet vests are horizontal in every azimuth. The magnet being magnetized so that the end A dips, is placed with its axis on the plane bearings, and observations are taken with the plane of the cirele in the magnotic ineridian, mud with the graduated side of the cirele enst. Wach end of the magnet is olserved by means of reading microseopes carried on an arm which moves concentrie with the dip circle. The cross wires of the microsegpe are made to coincile with the imare of at mark on the manget, and the position of the arm is then read off on the dip cirele by menns of a vemier.

We thas obtain an olsesvation of the end A and another of the end 73 when the gradnations are east. It is neesssary to observe both ends in order to oliminate any error arising from the axle of the magnot not being concentrie with the dip cirele.
The graduated side is then turned west, and two more observations are made.

The magnet is then turned rombd so that the ends of the axle are reversed, and fon more observations are made looking at the other side of the magret.

The magnetization of the magnet is then reversed soo that the end If dips, the magnetic moment is ascertained, and eight olservations are taken in this state, and the sixteen olvervations combined to determine the true dip.
4.62. It is found that in spite of the ntmost cate the dip, ns thus dedneed from observations mexde with one dige efrele, ditters perceptibly from that dedneed from observations with another dip civele at the same phace. Mr, Bromm has pointed ont the ellect due to ellipticity of the bearings of the axhe, and how to correet it ly taking olservations with the magret magnetized to dillerent strengths.

The principle of this methot may be stateat thus. We shall suppose that the aror of any one observation is an smalh 'uantity not exceding a degree. We shath also stlprose that some ank nown but regulan force acts upon the mugnet, disturbing it liom its true position.

If h is the moment of thise force, of the true dipt, amal of the olserved dip, then

$$
\begin{align*}
L & =M / \sin \left(0-\theta_{0}\right): \tag{17}\\
& =M I\left(\theta-\theta_{11}\right) \tag{18}
\end{align*}
$$

since $\theta-0_{4}$ is small.
It is evident that the greater M lecomes the neaver does the neente approach its proper position. Now let the operation of taking the dip be performed twice, lirst with the angnetiantion equal to M_{1}, the greatest that the needie is caprable of and next with the magnetization equal to M_{2}, much smaller wahe but suflicient to malie the readiugs distinet and the error still modernte. Let 0_{1} and 0_{2} be the dips deduced from these two sets of observations, and let h be the mean valne of the unknown disturbing foree for the cight positions of each determination, whiel we slatl suppose the same for both deteminations. Theu

$$
\begin{equation*}
h=M_{1} I\left(0_{1}-\theta_{1}\right)=M_{2} I\left(0_{2}-\theta_{0}\right) \tag{10}
\end{equation*}
$$

Hence $\quad e_{4}=\frac{M_{1} \theta_{1}-M_{2} \theta_{2}}{M_{1}-M_{2}}, \quad L=M_{1} M_{2} I \frac{O_{1}-\theta_{2}}{M_{2}-M_{1}}$.
If we find that several experiments give nearly equal values for A, then we may consiter that θ_{41} must be wery mearly the true watue of the dip.
463.] Dr. Toule has recently construeted an new diperiele, in Which the axis of the needle, instead of rolling an dronzontal agate

of the filaments being attached to the arms of a delicate balanee. The axis of the needle that rollis on two loops of sitk fibres, and Dr. Joule finds that its frectom of motion is mach greater than when it rolls on agate planes.

It Fig. 18 , NS is the needle, $O C^{\prime}$ is its axis, eonsisting of a straght oylindrical wire, and $P^{\prime} C Q P^{\prime} C^{\prime} Q^{\prime}$ are the flaments on whels

Fig. 18. thee axis rolls. $P O Q$ is the bulance, ensisting of a double bent lever supported by a wire, 00 , stretched horizontally betweons the prongs of a forked piece, and having a. eounterpoise A which enn be serewed up or down, so that the balance is in neutral equilibrium albont 00 .

In order that the neede may le in neutral equilibrium as the needle rolls on the filaments the centre of gratvity must ueither rise nor fall. Hence the distane $O C$ must remain constant as the needle rolls. This condition will be fulfilled if the arme of the balance $O P$ and $O Q$ are equal, and if the filaments are at right angles to the arms.

Dr. Joule finds that the needle glonald not be more than five inches long. When it is eight inches loug, the bending of the needle tends to diminish the appurent dip by a fraction of a mante. The axis of the neadie was originally of steel wire, staightened lay being brought to a red heat while stretched by a woight, but Dr. Jould foum that with the new smspension it is not necessary to use steel wire, for platinum and even standard gold are have cnought.

The batance is attacled to a wire 00 about a foot loner stretched horizontally between the prongs of a fork. This lork is therned ronnd in azimuth ly means of a cirele at the top of a tripod whel supports the whole. Six complete olyservations of the dip enn be
obtained in one hour, and the average ervor of a single olservation is a fraction of a minule of are.

It is proposed that the dip needle in the Cambridge Physical Labomary shall be observed by means of a donble image instrument, consisting of two totally rellectiug pisms phaced as in Fig. 19 and mounted on a vertical graduated cirele, so that the plane of reflexion may be turned round a horizontal axis nearly coinciding with the prolongation of the axis of the suspented dipneedle. The needle is riewed ly means of a telescope phaced behind the prisms, and the two ends of the needle are seen together as in Fig. 20. By turning the prismo about the axis of the vertical circle, the images of two lines dawn on the needle may be mate to concide. The inclination of the neude is thas determined from the reading of the vertical circle.

Fig. 19.

Fijg. 20.

The total intensity I of the maguetic foree in the line of dip may be deduced as follows from the times of vibration $T_{1}, T_{2}, T_{3}, T_{4}$ in the four positions alrendy described,

$$
I=\frac{4 \pi^{2} A}{2 M+2 M}\left\{\frac{1}{T_{1}^{2}}+\frac{1}{T_{2}^{2}}+\frac{1}{T_{3}^{2}}+\frac{1}{T_{4}^{\prime 2}}\right\} .
$$

The values of M and $\overrightarrow{f^{\prime}}$ must be found lyy the method of deflexion and vibration formerly deseribed, and A is the moment of inertia of the magnet about its axle.
The observations with a magnet suspended loy a fibre are so much more accurate that it is usual to deduce the total forec from the horizontal force from the equation

$$
I=H \sec \theta,
$$

where I is the total force, If the horizontal force, and of the dip.
464.] The process of determining the dip being a tedions one, is not stitable for determining the continuous variation of the magnetic
lorce. The most convenfont instrmant for continaons observations is the wertion force magnetometer, which is simply a magnet bataneed on knife edges so as to be in stable equilibrium with its magnetic axis nearly horizontal.

If $/ /$ is the vertical component of the magnetic forec, JI the magnetie moment, and 0 the small angle which the magretic axis makes with the horizon

$$
M Z=m y a \cos (a-\theta),
$$

Where m is the mass of the magnet, g the force of grawity, a the distance of the contre of gravity from the axis of snsperision, amel a the angle which the plane through the axis and the enntre of gravity makes with the magnetie nxis.

IEene, for the small variation of vertient foree $\delta / 2$, there will lye a varbation of the angular position of the magnet 80 such that

$$
M 8 K=m g a \sin (a-0) 80
$$

In practice this instrument is not used to detemme the absolate value of the vertieal fore, bul only to register its small variations.

For this purpose it is sufficient to linow the absotute valne or $/ 8$ when $\theta=0$, and the value of $\frac{d Z}{d \theta}$.

The ralne of Z, when the horizontal force and the dip are kiown, is cound from the equation $Z=H$ tan $\theta_{0,}$ where θ_{0} is the dip and If the horizontal force.

To find the deflexion due to a given variation of Z, take a magne and plaee it with its axis enst and west, and with its centre at a known distanee y_{1} east or west from the declinometer, an in experiments on deflexion, and let the tamgent of deflexion be D_{1}.

Then place it with its axis reetieal and with its centre at a distance to above or below the contre of the vertical force magnetometer, and lef the tangent of the dullexion prodnced in the magmetometer be D_{2}. 'Then, il' the moment of the deflectings magnet is $1 /$,

Hence

$$
\begin{gathered}
M=\| r_{1}^{3} D_{1}=\frac{d Z}{d \theta} r_{3}^{3} D_{2} \\
\frac{d Z}{d \theta}=H \frac{r_{1}^{3} D_{1}}{r_{2}^{3} D_{2}}
\end{gathered}
$$

The actual valne of the remtical force at any instant is

$$
Z=Z_{0}+0 \frac{d Z}{d 0}
$$

where Z_{0} is the value of Z wher $\theta=0$.
lor continuous olscervations of the variations of magnetic force
at at fixed observatory the Unifilar Declinometer, the Bifilar Howigontal Force Minguetometer, and the Batnace Fertical Foree Magnetometer are the most convenient instruments.

At several obervatorites photographic traces ate now produced on prepared [mper moved by chote work, so that at continnous record of the indications of the dirce instraments at every instant is lomed. These frace indicate the variation of the thare rectanizlar components of the fonce from their standard values. The deelinometer gives the Corce towards mean magnetic west, the biflar magretometer gives the variation of the fore townurds magetio forth, and the balance magmetometer gives the variation of the fertical force. The standard vatues of these torees, or their values when these instruments indicate their several zeros: are deduced lyy treguent observations of the absolute declimation, horizontal force, and dip.

CHAPTER VIII.

ON TERRLSTRIAL MAGNEMEM.

465.] Our knowledge of Terrestrial Magnetism is clerived from the study of the distribution of magnetic force on the carth's surface at any one time, and of the changes in that distribution at different times.

The magnetic foree at any one place and time is known when its thare coordinates are denown. These coordinates may lee given in the form of the declimation on azimuth of the force, the dip or inclination to the borizon, and the total intensity.

The most convenient methor, however, for investigating the general distribution of margetie force on the earth's surface is to consider the magnitudes of the three components of the force,

$$
\left.\begin{array}{l}
X=I \cos \hat{0}, \text { direeted due north, } \\
Y=J \sin \delta, \text { directed due west, } \tag{1}\\
Z=H \tan \theta, \text { directed vertionlly downwards, }
\end{array}\right\}
$$

where $I I$ denotes the horizontal force, δ the declination, and θ the dip.

If P is the magnetie potential at the enrth's surface, and if we consider the earth a sphere of radius a, then

$$
\begin{equation*}
X=\frac{1}{a} \frac{d V}{d l}, \quad Y=\frac{1}{a \cos l} \frac{d V}{d \lambda}, \quad Z=\frac{d V}{d \eta} \tag{2}
\end{equation*}
$$

where l is the latitude, and λ the longitude, and r the distance from the centre of the earth.

A knowledge of V over the surface of the eurth may lee obtained from the observations of horizontal force aloue as follows.

Let V_{0} be the value of F at the true north pole, then, taking the line-integral along any meridian, we find,

$$
\begin{equation*}
V=a \int_{\frac{\pi}{4}}^{t} \tilde{F} d l+F_{0} \tag{3}
\end{equation*}
$$

for the value of the potential on that meridian at latitude l.

Thus the potential may lee found for any point on the enth's surface provided we know the value of λ, the northerly compotent at every point, and V_{0}, the value of V at the pole.
Since the forees depend not on the absolute value of Y but on its derivatives, it is not necessary to fix amy particular value for F_{0}.

The value of f at any point may be ascertained if wo know the value of X along any given meridians, and also that of F ower the whole surfiace.

Let

$$
\begin{equation*}
V_{i}=a \int_{\frac{\pi}{4}}^{l} x d l+r_{0}, \tag{1}
\end{equation*}
$$

where the integration is performed aloug the given meridian from the pole to the parallec l, then

$$
\begin{equation*}
V=J_{i}+a \int_{\lambda_{0}}^{\lambda} Y \cos h d \lambda, \tag{5}
\end{equation*}
$$

where the integration is performed atong the paralel l from the given meridian to the required point.
These methods imply that a complete magnetic survey of the earthrs surface has been made, so that the values of A or of Y^{r} or of both are known for every point of the earth's surface at a given epoch. What we actually know are the magnetie components at a certain number of stations. In the civilized parts of the earth these stations are companatively numerous: in other places there are large tracts of the earth's surface abont whech we have no data.

Magnetic Survey.

466.] Let us suppose that in a country of moderate size, whose greatest dimensions are a few humdred miles, observations of the declination and the horizontal force have been taken at a considerable number of stations distributed lairly over the country.

Within this district we may suppose the value of V to be represented with sufficient accuracy by the formula

$$
\begin{gather*}
\quad Y=F_{0}+a\left(A_{1} l+A_{2} \lambda+\frac{1}{2} B_{1} l^{2}+B_{2} l \lambda+\frac{1}{2} B_{3} \lambda^{2}+d \cdot \cdot\right) \tag{6}\\
x=A_{1}+B_{1} l+\beta_{2} \lambda_{1} \\
\text { whence } \quad Y \cos l=A_{2}+B_{2} l+B_{1} \lambda . \tag{i}
\end{gather*}
$$

Let there be n stations whose latitudes are $l_{1}, l_{2}, \ldots 8 \mathrm{sc}$ and longitudes λ_{1}, λ_{2}, \&e., nud let X and Y be found for each station.

Let

$$
\begin{equation*}
l_{v}=\frac{1}{n} \Sigma(l), \text { and } \lambda_{0}=\frac{1}{n} \Sigma(A) \tag{9}
\end{equation*}
$$

f_{11} and λ_{0} may $l_{\text {se }}$ called the latitude and longitude of the eentral station. Iet

$$
\begin{equation*}
X_{0}=\frac{1}{4} \Xi(X), \quad \text { and } \quad Y_{11} \cos l_{u}=\frac{1}{n} \mathrm{~s}\left(Y^{+} \cos l\right) \text {, } \tag{10}
\end{equation*}
$$

then X_{0} and F_{0} are the values of X and F at the imaginary central station, Uhen

$$
\begin{array}{r}
\lambda=X_{0}+B_{1}\left(l-l_{0}\right)+B_{2}\left(\lambda-\lambda_{0}\right) \\
X \cos l=I_{0} \cos l_{0}+B_{2}\left(l-l_{0}\right)+B_{0}\left(\lambda-\lambda_{0}\right) . \tag{12}
\end{array}
$$

We have n equations of the form of (11) and n of the form (12). If we denote the probable error in the determination of $X \mathrm{ly}$ b, and that of $Y \cos \ell$ by η, then we may calculate ξ and 7% on the supposition that they arise from errors of observation of if and δ.

Let the probable error of H be A, and that of δ, i, then since

$$
\begin{aligned}
d X & =\cos \delta \cdot d I I-H \sin \hat{\delta} \cdot d \delta, \\
\xi^{3} & =h^{2} \cos ^{2} \delta+d^{2} / I^{2} \sin ^{2} \delta . \\
\text { Similarly } \quad 4^{2} & =h^{2} \sin ^{2} \delta+\pi^{2} / I^{2} \cos ^{2} \delta .
\end{aligned}
$$

If the variations of A and Y^{*} from their values as given by equations of the form (11) and (12) considerably exceed the prolvable errors of olservation, we may conchole that they are due to local attractions, and then we heve no reason to give the ratio of ξ to n any other walue than unity.

According to the method of least sequares we multiply the equations of the form (11) by h, and thase of the form (12) by ξ to make their probable error the same. We then multiply each equation by the coefficient of one of the unknown quantities β_{1}, B_{2}, or B_{3} and ald the results, thens obtaining three equations from which to find B_{1}, B_{2}, and B_{3}.

$$
\begin{aligned}
& P_{1}=B_{1} b_{1}+B_{2} b_{2} \\
&\left(\eta^{2} P_{2}+\xi^{2} Q_{1}\right)= B_{1} \eta^{2} b_{2}+B_{2}\left(\xi^{2} b_{1}+\eta^{2} b_{3}\right) \\
& Q_{2}=H_{3} \xi_{3}^{2} b_{21} \\
& B_{2} b_{2}+B_{3} b_{3}
\end{aligned}
$$

in which we write for conersencess,

$$
\begin{aligned}
& u_{1}=\Sigma\left(l l^{3}\right)-u_{n}^{2}, \quad h_{2}=\Sigma(l \lambda)-u l_{0} \lambda_{04} \quad u_{3}=\Sigma\left(\lambda^{2}\right)-r \lambda_{0}^{3}, \\
& P_{1}=\Sigma(l X)-n l_{0} X_{01} \quad Q_{1}=\Sigma(l r \cos l)-u l_{0} I_{n} \cos l_{n}, \\
& P_{2}=\Sigma(\lambda T)-n \lambda_{0} X_{0}, \quad Q_{\mathrm{a}}=\Sigma(\lambda I \cos I)-n \lambda_{0} Y_{n} \cos l_{0} .
\end{aligned}
$$

B_{y} calculating B_{1}, B_{2}, and B_{3}, and substitutinge in oquations (11) and (12), we can oldain the values of X aud Y at any poind within the limits of the survey free from the local disturbanees
which are found to exist where the rock near the station is maguetic. as most igntuons rock a are.

Surveys of this kind can be made only in conutries where magnetie instroments ean be carried about and sed up in a great many stations. For other parts of the workd we must be content to find the distribution of the magnetic elements by interpolation between their values at a fow slations at great distances from cach other.
467.] Let us now suppose that by processes of this kind, or by the equivalent graphienl process of constructing eharts of the lines of equal values of the magretic elements, the values of X and Y_{7} and thence of the potential V, are known uver the whole surface of the globe. The next step is to expand 5 in the form of a series of spherieal surface harmonics.

If the earth weve magnetized unilomly and in the same direction throughout its interior, F would be an harnonie of the first deyrec, the magnetic meridians would be great circles passing through two magnetic poles diametrieally opposite, the maguetio equator would we a great vircle, the horizontal foree would tee equal at all points of the nagnetic equator, and if H_{0} is this constant valne, the value at any other point would be $I J=/ I_{0} \cos l^{\prime}$, where $l^{\prime \prime}$ is the marnetic lationde. The vertical force at any proint would ho $Z=2 / H_{0} \sin /$, and if θ is the dip, $\tan \theta=2 \tan /^{\prime}$.

In the ease of the earth, the magnetic equator is defined to be the line of no dip. It is not a great circle of the sphere.

The magnetic potes are cleflned to be the points where there is 110 horizontal force or where the dip is 90°. There are two such points, one in the northern and one in the southern vegions, but they are not diametrically opposite, and the line joining them is not parallel to the magnetic axis of the earth.
468.] The magnetic poles ate the points where the value of I on the surface of the carth is a maxinum or minmun, of is stationary.
At any point where the potential is a minimum the north end of the dip-needte points vertically downwards, and if a compassneedle to phaced auywhere near such a point, the north ennd with point towards that point.
At points where the potential is a maximum the south "mil of the dip-nedte points downwards, and the south end of the comprissneedle points towards the point.
If there are p minima of f^{\prime} on the carth's surlace there must be $p-1$ other points, where the north ent of the dip-reentle prints
downwards, but where the compass-nedede, when entried in a cirele rond the point, instad of revolving so that its worth ent points conslantly to the enatre, revolves in the opposite direction, so as to turn sometimes ifs north end and sometimes its south end towards the proint.

If we call the points where the potential is a minman true north poles, then these other points may be called false north poles, becanse the compass-needlo is not true to them. If theve nere p true north poles, there must be $p-1$ false nortly poles, and in like manner, if there are q trtwe south proses, there must be $q-1$ filse south poles. The umbler of poles of the same name must be odd, so that the opinion at one time prevalent, that theme are two north poles and two sontly poles, is erroneons. According to Gruss there is in lact only owe true north prole and one true south pole on the enrth's surtace, thed therefore there are no false poles. The lire joining these poles is not a diameter of the earth, and it is not parallel to the earth's magnetio axis.
469.] Most of the early investigators into the anture of the earth's magnetism endenvoured to express it as the result of the action of one or more bar maruets, the position of the poles of which were to be detemmed. Gatuss was the first to express the distribution of the earth's magnetism in a perfectly general way by expauding its potential in a series of solicl thamonies, the coeftienents of which he determined for the first four degrees. Thest coeflicients are 24 iul number, 3 for the first degrees, 5 for the second, 7 for the thitd, nad 9 for the fondh. All these terms are found necessary in order to give a tolembly accurate representation of the actual state of the enrthis magnotism.

> To find what part of the Observed Wagnetio Forec is due to Foternal and what to Internal Causes.
470.] Let us now suppose that we havo obtained an expansion of the magnetic potential of the earth in splerital harmonies, consistent with the actual direction and magnitade of the horizontul force at every point on the earth's surface, then Gamss has shewn how to determine, from the observed vertical foree, whether the magnetic forces are due to eases, such as magnetiontion of electric currents, within the enrlh*s surfoe, or whetler any purb is directly due to causes exterior to the earth's sufface.

Let V be the actual potentinl expanded in a double series of spherical harmonies,

$$
\begin{aligned}
J^{*}= & A_{1} \frac{7}{a}+\mathrm{C} \cdot+A_{i}\left(\frac{d}{a}\right)^{i} \\
& +B_{1}\left(\frac{d}{a}\right)^{-2}+\mathrm{c}_{0}+B_{i}\left(\frac{c}{a}\right)^{-(i+1)}
\end{aligned}
$$

The lirst series represents the part of the potential due to canses axterion to the earth, and the second series represents the part due to causes within the earth.
The obserwations of lorizontal force give 115 the sum of these series when $r=a$, the rodins of the earth. The tem of the order i is

$$
Y_{\mathrm{i}}=A_{\mathrm{i}}+B_{\mathrm{i}^{+}}
$$

The observations of vertion forec give us

$$
Z=\frac{d r}{d r},
$$

and the term of the orler i in $2 Z$ is

$$
a Z_{i}=i A_{i}-(i+1) 7 b_{i}
$$

Hence the part due to extemal eanses is

$$
A_{i}=\frac{(i+1) I_{i}+a Z_{i}}{2 i+1}
$$

and the part due to canses within the carth is

$$
\boldsymbol{H}_{i}=\frac{i T_{i}-a Z_{i}}{2 i+1}
$$

The expansion of V las hitherto been ealculated ony for the mean walte of F at or near certain epochs. No alpreciable part of this mean walue appears to he due to causes external to the cartif.
471.] We do not yet know enough of the form of the expansibn of the solar and lunat parts of the variations of f^{\top} to determine by this mothol whether any part of these variations arises from magnetic Coree acting from withont. It is certain, however, as the caleulations of MM. Stoney and Chambers have shem, that the prineipal part of these varations canoot arise from any divect magretio action of the sun or monn, supposing these bodies te lie magnetic*,
472.] The primeipal changes in the magnetio force to which attention has been directed are as follows.

[^13]1. The more hegular /aniatious.
(1) Thre Solar variations, depending on the hour of the day and the time of the year.
(2) The Lunar variations, depending on the moon's hour angle and on her other elements of position.
(3) Tlsese variations do not repeat themselves in clifferent years, but seem to be sulpect to a variation of longer period of albout cleven years.
(1) Besites this, there is a secular alteration in the state of the earth's magnetism, which has lieen going on ever since maguetic observations have been made, and is producing changes of the magnetic elements of far greater maguitude than any of the wariations of small perinel.

IJ. The Disturlunces.

473.7 Besides the more regular changes, the magnetic elements are surfiget to sudden disturbmices of greater or less amonnt. It is found that these disturtmees are more powerfinl and frequent at one time than at mother, and that at times of great disturbance the laws of the regular variations are masked, though they are very distinct at times of small disturbance. Hence great attention has been pail to these disturbances, and it has been found that disfursances of a particular lind are more likely to oceur at certain times of the day, and at certain seasons and intervals of time, though each iudiwidual dieturbance appears quite integular. Besides these more ordinary disturbances, there are oceasionally times of excessive disturtance, in which the magnetism is strongly disturbed for at day or two. These are called Magnetic Storms. Individual fisturbancts have been sometimes observed at the same instant in stations widely distant.

Mr. Airy has found that a large proportion of the disturbancos nt Greenwich correspend with the electrie eurrents collected by electroles placed in the earth in the neighbourlood, and are such as would be directly produced in the magnet if the earth-current, retainiug its nchual directiont, were conducted through a wire placed wederneall/ the magnet.

It has been fount that there is an epooth of maximom disturbanes every cleven years, and that this appeare to coineide with the epoch of maximum number of spots in the sum.
474.] The fied of investigation into which we are introduced
by the study of terrestrial magnetism is to profound as it is extensive.

Wo know that the sun and mom act on the earth's magnetism. It has been prover that this action camot be explained by sugposing these bodies magnets. The action is therefore indirect. In the case of the sun part of it may be thermal action, but in the case of the moon we enumot attribute it to this cause. Is it possible that the attraction of these bodies, by cmising ztrains in the interior of the earth, produces (Art. 44 7) changes in the magnetism ulready existing in the earth, and so by a kind of tidal action canses the semidiurnal variations?

But the amome of all these changes is very small eompared with the great seeular changes of the carth's magnetism.

What cemse, whether cxterior to the earth or in its intaer clegthes, produces such enormous changes in the earth's magnetism, that its magnetic poles move slowly from one part of the ghtobe to mother? When we consider that the intensity of the magnetization of the great globe of the carth is quite comparable with that whech we froeluce with much diffientey in om sted magnets, these immense changes in so large a body foree us to conclude that we are not yet acquainted with one of the most powerful agents in mature, the secne of whose activity lics in thense imere clepthes of the earth, to the knowledge of which we have so few means of necess.

PARTIV.

MLAETROMAGNEISM.

CHAPTER I.

ERECTROMAGNMTIC FORCL
475.] It had been noticed by many different observers that in eertain enses magnetism is produced or destroyed in weadles by clectric diseliarges through them or near them, and conjectures of narious kinds liad lpeen made as to the relation between magnetism and electricity, lut the laws of these phenomena, and the form of these relations, remained entirely unknown till Hans Christian Orsted *, at a private leeture to at few advanced students at Copenliagen, observed that a wire conneeting the ends of a voltaic battery aflected a magnet in its vicinty. This discovery he published in a tract entitled Eapermonde civea effechm Confledurs Flectrici in Acum Maguetiem, dated July 2F, 1820.

Experiments on the relation of the magnet to bodies eharged with electutoty had been tried without any result till Orsted endeavoned to aseertain the effect of a wire hoted by nn electric enrrent. He discovered, however, that the current itself, and not the leat of the wire, was the cnuse of the action, and that the 'elcetric conflich acts in a revolving manmer,' that is, that a magnet $p^{\text {laced near a wire }}$ imanithing an electrie eurrent tends to set itself perpendienlar to the wime, and with the same end always pointing forwards as the magnet is moved round the wire.
476.] It appears therefore that in the space surrounding a wire

[^14]transmitting an electris enment a magrant is acted on by forews deperding on the position of the wire and on the strength of the enrent. The space in which these foreds net nuty therefore be considered as a magnetio fietd, and we may study it in the same way as we have mrenty studied the fied in the nemghourtiond of ordinary magnets, by tracing the course of the lines of magneties fores, and mensuring the intensily of the foree at every point.
477.] Lect us begim with the case of an indelinitedy londry stratght wire carring an eledrice churent. If a man were to place himsell in imagination in the position of the wire, so that the enrrent Ehonld flow from his head to his feet, then at magret suspended freely before him would set ifself so that the end whict poirnts north would, under the action of the cument, point to his right hatud.

The lines of magnetic foree are pverywhere at right angles to phanes draw throngh the wire, and are thereFore circles each in a plane perpendiondar to the wire, which passes though its centre. The pole of' a margnet which points north, il enred round one of these circtes from left to right, would experichee a lome aeting always in the direction of its motion. The other pole of the sume magnot would experience af fore in the opposite direction.
478.] To compare these forces let the wire be supposed vertieal, and the current on deseanding one, and let at magnet be phaced on ath apparatus which is free to rotate about a reatiend axis coincithing with the wire. It is found that under these cireumstanes the current has no effect in casing the rotation

Fis. 11. of the apparatus as a whole about itself as an axis. Hence the action of the vertical carrent on the two poles of the magned is sued that the statical moments of the two lorcos athout the current as an axis are equal and opposite. Teet M_{1} and m_{2} be the strengths of the two joles, r_{1} and r_{2}, then distanees from the axis of the wire, T_{1} and T_{2} the intensitien of the magretie fored due to the eurrent at the two poles respectively, then the force on m_{1} is $m_{1} f_{1}$, and sume it is at right angles to the axis its moment is $M_{1} T_{1} z_{1}$. Similarly that of the Corce on the other pole is $\mu_{2} f_{2} \gamma_{2}$, and simet there is no motion olverved,

$$
m_{1} T_{1} \tilde{F}_{1}+m_{2} T_{2} H_{2}=0
$$

MOI. 11,

But we kuow that in all magrets

$$
\begin{aligned}
& m_{1}+m_{2}=u_{0} \\
& T_{\mathrm{I}} r_{1}=T_{2} r_{2},
\end{aligned}
$$

Hence
or the clectromarnetic force due to a straight current of infinite lengeth is perpondicalar to the carrent, and varies inversely as the distance from it.
479.] Since the prodted T_{j} depends on the strengeth of the curent it may be employed as a measure of the current. This methor of messtrement is different from that formded upon electrostal ie phemoment, and as it depeads on the magretie phenomena produed by eleatrie currents it is called the Electromagnetic system of measument. In the electromagnetio systen if i is the eurent,

$$
T_{y}=2 i
$$

480.] If the wire be taken for the axis of z, then the reetangular components of 7 are

$$
X=-2 i \frac{y}{r^{2}}, \quad Y=2 i \frac{x}{r^{2}}, \quad Z=0
$$

Here $A d x+Y^{\prime} d y+Z d z$ is a complete differential, being that, of

$$
2 i \tan ^{-1} \frac{4}{x}+C
$$

Hence the magretic force in the field oan be dedned from a potential function, as in severil former instances, Int the polential is in this case a function having an infinte series of values twose eommon dillerenee is 4π. Thit dillerential coeflicients of the potential with respect to the coordinates have, however, clefinite and single values ade every point.

The existence of a protential function in the feld near an electric earrent is not a selferident result of the principle of the conservation of chergy, for in all netual currents there is in continnal expentiture of the clectric encrgy of the battery in overoming the resistance of the wire, so that unless the amount of this expenditare were necurately known, it might loe suspected that part of the tonergy of the battery may be employed in causing work to be alone on a matruct moving in a cyele. In fact, if a maguelio pole, M, moves round a dosed cture whed embraces the wite, work is actaally done to the amonut of 4π m i. It is only for closed patlos which do not embrace the wire that the line-integral of the foree ranishes. We must therefore for the present consider the law of fore and the existence of a potentiat as resting on the evidence of the experiment alretdy deseribed.
481.] If we consider the spmee surrounding sun infinile straight, line we shall see that it is a eyclic space, becanse it returns into itself. If we now conceive is phane, or any other surtice, commencing at the straight line and extending on one side of it to infinity, this surface may be regated ats a diaphuagm which reduces the eyclic space to an acyelic one. If from any fixed point lines loe dawas to any other point withont cutting the diaphragm, and the potential be defined as the line-iutegral of the foree taken along one of these lines, the potential ut my point will then have a single delinite value.

The magnetic field is now identical in all respeets with that due to a magnetic sleell cuineiding with this surface, the strengtly of the shell being i. This shell is lounded on one elge ly the infinite straight line. Thre other parts of its boundary are at an infinite distance from the part of the fied under consideration.
482.] In all actual experiments the ctrreat forms a closed cirent of finite dinensions. We shall therefore compare the magnetie action of a finite cerenit with that of a magnetie shell of which the circuit is the lounding edge.

It has been shewn ly momerots experiments, of which the earliest ate thase of A mperes, and the most aecurate those of Welere, that the magnetic action of it small phane eirenif at distances which are great compared with the dimensions of the circuit is the same as that of a magmed whose axis is normal to the plane of the circuit, and whose magnetic moment is equal to the area of the cireuit multiplied by the strength of the current.

If the cirenit be supposed to be filled up by a surface bounded hy the circuit and thus forming a diaplangm, aurd if a magnetic shell of strength i eoinciling with this surface be substituted for the electric current, then the magnetic action of the slrell on all distant points will be identical with that of the carrent.
483.] Hitherto we lave supposel the amensions of the civentit to be small compared with the distance of any part of it from the part of the field examined. We shall now suppose the efrenit to be of any form and size whatevor, and examine its action at any noint $?$ not in the conducting wire itself. The following method, which has important geometrieal applieations, was introndued by Ampere for this purpose.

Concuive any surface S bounded by the circuit and not passing through the point p_{+}On this surface draw two series of lines erossing each other so as to divide it into elementary portions, the
dimensions of which are small compared with their clistance from l^{\prime}, and with the radii of curvature of the surface.

Round each of theso elements eoneeive a current of strength it to how, the direction of circulation being the samo in all the elements as it is in the original circuit.

Along every line forming the division between two contignons elements two equal currents of strength iflow in opposite directions.

The elfect of two equal aud opposite currents in the same place is athsolutely zero, in whatever aspeet we consider the enrrents. Hence their magnetic efleet is zero. The only portions of the elementary circnits which are not nentralized in this way are those which coineide with the original circuit. "The total effect of the clementary circuits is therefore equivalent to that of the original cireuit.
484.] Now since ench of the elementary cirenits may be considered as a small plane circuit whose distance from P^{P} is great compared with its dimensions, we may substitute for it an clementary magnetie shell of strength i whose bounding edge coineides with the elementary circuit. THue magnetic effect of the elementary shell on P is equivalent to that of the elementary circuit. The whole of the elementary shells eonstitute a magnetic shell of strength i, coinciding with the surface S and bounded by the original circuit, and the magnetic action of the whole shell on P is equivalent to that of the eirenit.

It is manifest that the action of the circuit is independent of the lorm of the surface S, which was drawn in a perfectly aubitrary manner so as to fill it up. Wo see from this that the action of a magnetic shell alepends only on the form of its edge and not on the form of the shell itself. This resuld we obtained leflore, at Art. 410, but it is instructive to see how it may be dehwed from dectromagnetic considerations.

The magnetic force due to the circuit at any point is therefore identieal in magnitude and direction with that due to a magnetio shell bomded by the circuit and not passing through the point, the strength of the shell being numerically eyual to that of the current. The direction of the enrent in the eireait is related to the firection of magnetization of the shell, so that if a man were to stand with his feet on that side of the shell which we call the positive side, and which tends to point to the north, the current in front of hime would be from right to left.
485.] The magnetic potential of the cirenit, lonwevt, diflers from that of the magnetic shell for those points which are in the substance of the magnetie shatl.

If ω is the solid angle sabtended at the point P by the magnetio shedr, reckoned positive when the positive or anstral side of the shell is bext to $P_{\text {s }}$, then the magnetie potential at any point not in the shell itself is who where of is the strengeth of the slem. At any proint in the substance of the shell itself we may soppose the shell divided into two parts whose strengths ave ϕ_{1} fond the where $\phi_{1}+\phi_{2}=\phi_{2}$, such that the point is on the posilive side of ϕ_{1} and on the negative side of ϕ_{2}. The potential at this point is

$$
\omega\left(\phi_{1}+\phi_{2}\right)-4 \pi \phi_{2}
$$

On the negative side of the shell the polential beomes st ($\omega-4$ tis) In this case therefore the potential is contimous, and int every proint has a single determinate value. In the case of the dectrie circuit, on the other hand, the magnetie potential at every point not in the conducting wire itself" is equal to $i \omega$, where i is the Etrength of the ourrent, and ω is the solid angle subtented by the eircuit at the point, and is reckoned positive when the curvert, as seen from \bar{P}, circulates in the direction opposile to that of the lanals of: il watch.

The quantily fow is a function having on infinite series of valus whose common difference is $4 \pi i$. The differential cofliwients of is with reapect to the coordinates have, howevers single und determinate values for cyery point of space.
486.] If a long thin dexible solenoidal magnet were planed in the neighlowrhood of an electric encuit, the nowth and south ends of the solenoid would tend to move in opposite directions rouml the wire, and if they were free to olvey the mandetio fored the maghed would finally become wound romal the wire in a close coil. If th were possible lo obtain a magnet haring ofly one pole, or poles of nequal strength, suelu a magnet would be moved round and round the wite continully in one direction, fat since the poles of every magnet are equal and opposite, this sesult em mever oceur. Faraday, however, has shew in how to protuce the continums rotation of one pole of a magnet round an electric envent by making it possible for owe pole to go round and round the enrent while the other pole does not. Thati this process may be repeated indefinitoly, the body of the magret must the trasserved from one side of the curvent to the othere one in each ravolation. To do

into two lyanches, so that when one limanely is opened to let the magnet pass the current contimes to flow through the other. Famday used for this purpose a circular trough of mercory, as shewn in Fig. 23, Art. 491. The current enters the trough dhrough the wire $A B$, it is divided at B, and after flowing through the ares $B Q P^{\prime}$ and $B A P^{\prime}$ it unites at P^{\prime}, and leaves the trough through the wire $I^{\prime} O$, the cup of merenry O, and a vertical wire beneath O, down which the curreat flows.

The magnet (not shewn in the figmere) is mounted so as to be capable of revolving anont a wertical axis throngh 0 , and the wire OP revolves with it. The body of the magnet passes through the aperture of the trough, one pole, say the north prole, being beneath Whe plane of the trough, and the other above it. As the magnot and the wire $O P$ revolve abont the vertical axis, the current is gradually transferred from the hatuels of the trough which lies in front of the mognet to that which bes behind it, so that in every complete revolution the magnet passes from one side of the curvent. to the other. The north pole of the magnet revolves alout the descending curvent in the direction N.E.S.W. and if" ω, w' are the solid angles (irrespective of signe) sultended by the cireular trough at the two poles, the work done by the electromagnetic foree in a complete revelution is

$$
m \dot{\prime}^{\left(4 \pi-\omega-\omega^{\prime}\right)},
$$

where m is the strength of either pole, and i the strength of the current.
487.] Jet us now endeavour to form a notion of the state of the magnetic fiekf near a linear electric circuit.

Let the value of "a, the solid angle subtended by the cirenit, be found for every point of sprice, and let the surfaces for which क) is constant be described. These surtices will be the equinotential surfaces. Lach of these surfaces will be bounded by the circhit, and any two surfeees, w_{1} and ω_{2}, will meet in the circuit at an angleg $\frac{1}{2}\left(\omega_{1}-\omega_{2}\right)$.

Figuro XV1II, at the end of this volume, represents a section of the equipotential surfaces due to a etreular current. The small circle represents a scetion of the conducting wire, and the horizoutal lime at the bottom of the figure is the perpendicular to the plane of the circular current, through its centre. The equipotential surfices, 24 of white are drawn corresponding to a series of values of o differing by $\frac{\pi}{6}$, are surfaces of revolution, hatying this line for
their common axis they are evidontly oblate firmese, being flattered in the direction of the axis. They meet each other in the lime of the circuit at angles of 15°.

The force acting on a magretic pole placed at any point of an equipmential surface is perpendicular to the surfece, and varies inversely as the distance between consentive surtaces. 'Ilfe eloged curves surcounding the section of the wire in Fits. XVILI are the lines of force. They are copied from Sir W. Thomson's Poper on 'Vortex Motion*.' See also Arl. $\overline{0} 2$.

Action of an Whectrie Circuit on any Magnetice Syston.

488.] We are now able to detuee the action of an electric circuit on ary magnetic system in its meighlopurliood from the theory of magnetic shells. For if we construct a magnetie shicth, whose st rength is mumerically equal to the strenegth of the enment, athe whose edge coincules in position with the circait, white the shell itself does not pass througli any part of the maghetic system, the action of the shell on the magretie system will be iulentieal with that of the electric eireuit.

Theaction of the Magnetic Systom on the Dhectric Cirevit.

489.] From this, applying the principle that action and reaction are equal and opposite, wo conchude that the medratical action of the magnetie system on the electric cirenit is filentical with its action on a magnetic slell having the eiranit for its eflge.
'L'le potential energy of a magnetio shell of strength ϕ phaced in a fled of magnetic loree of which the potential is F, is, ly Art. 410,

$$
M=\phi \iint\left(\frac{d V}{d v}+m \frac{d T^{-}}{d y}+n \frac{d V}{d z}\right) d S_{3}
$$

where 7 , m, an ate the direction-cosines of the normal drawn from the positive side of the element, $/ \mathrm{S}$ of the shell, and the integration is extended over the surface of the shell.

Now the surlace-integral

$$
N=\iint(l a+m b+n c) d S
$$

where a, b, c are the components of the magnetio intuetion, fepresents the quantity of magnetic indaetion through the shell, or,

```
* Thans. R. S. Filum, vel, %xv. In, 217. (1869).
```

in the langrage of Faraday, the number of lines of magnetic induction, reekoned algelmaically, which jass through the shell from the negative to the prositive side, lines which pass through the shefl in the opposite direction leang peekoned negative.

Remembering that the shell does not belong to the magnetic systum to which the potential ${ }_{F}$ is due, and that the magretic foree is therefore equal to the magnetie induetion, we have

$$
a=-\frac{d V}{d x}, \quad b=-\frac{d V}{d y}, \quad c=-\frac{d Y}{d z^{\prime}},
$$

and we may write the valte of M,

$$
M=-\phi N
$$

If δx_{1} represents any displacement of the shecl, and X, the foree arting on the shell so as to aid the displacement, then by the principle of conservation of mergys,
or

$$
\begin{aligned}
& x_{1} x_{1}+\delta M=0, \\
& X=\phi \frac{\delta N}{\delta x} .
\end{aligned}
$$

We have now determined the nature of the force which corresponds to any given displacement of the shell. It aids or resists that displacement accordingly as the displacement increases or diminishes N, the number of lines of induction which pass through the shell.

The same is true of the equivalent electric circuit. Any dispheement of the eirenit will he sided or resisted accordingly as if increases or diminishes the number of lines of induction which pass throngh the circuit in the positive direetion.

We must remember that the pasitive direction of a line of magnetic induction is the direction in which the pole of a magnet which points north tends to move along the line, and that a line of indretion passes throngh the circuit in the positive direction, when the direction of the line of induction is redated to the direction of the current of vitreons electrieity in the cirenit ats the longitudinal to the rotational motion of a right-banded screw. See Art. 23.
490.] It is manifest that the force corresponding to any displacement of the cireuit as at whole may be wollued at once from the theory of the maguetie sluell. But this is not all. If a portion of the ecrenit is flexible, so fhat it may be displaced imdependently of the rest, we may make the edge of the stell capable of the same lind of displacement by eutting up the surface of the shell into
a staflient number of portions commeted by flexible joints. Hemes we conchtele that if by the displacement of any portion of the cirentit in a given direction the anmber of lines of induction which pass through the cirenit ean be ineredsed, this displacement will be aided by the elechonagnetic foree aetimen on the cironit.

Every portion of the circuit themelore is acted on by a foree umging it neross the lines of magnefic induetion so as in include a grater number of these lines within the embrace of the eitent, and the work done by the loree during this displatement is numerically equal to the mumber of the athlitional lines of induetion multiplied by the strength of the enment.

Let the clement ds of a eirenit, in wheh a ctrment of strength i is llowing, be moved parillel to itself through a space of, it will sweg out an area in the form of a parallelogram whose shes ato paralled and equal to $/ s$ ant $\overline{b x}$ respectivel y.

If the magnetic indnctions is denoted by 5 , and if its dimettom makes an antele ϵ with the normal to the parallelogratim, the valuo of the increment of N^{T} corrosponding to the displacement is fond by multiplying the area of the parallelogrom by bens e. The result, of this operation is represented greometrically by the volnme of a parallelepiped whose dgres represunt in matronitude and direction δ w, dhand 9 , and it is to be veckoned positive if when we pouts in these three directions in the order loere gifen the pointer moves round the dingrand of the pamellepped in the direetion of the hauds of a watel. The wolume of this patablelepiped is equal to M 8 x

If O is tho angle bowwen $d \theta$ and 9 , the area of the parallelogram is $A s$. $\sin \theta$, and $i l^{\circ}$ of is the angle which the alisplemement, ∂x makes with the normal to this parallebogram, the volume of the partllelepipert is

$$
\text { An } \cdot \frac{13}{} \sin 0.8 r \text { coss } \eta=8 N_{0}
$$

and

$$
x=i d x+9 \sin 0 \cos 力
$$

is the fore whict meges als, wesolved in the direction of
The direction of this forec is therefore perpendicular the the patheyram, and is cqual to $k \cdot d s$. in $^{\text {sin }} \theta$.
 niduld and direction $i d x$ and 3 . The fored ant mot ond $d s$ is therefore representeal in mognitude loy the area of this paratloborman, and in ditection ly a nomal to its plate drawn in the direction of the longituctial motion of a righthanded serew, the handle of which
is tumed from the direction of the eurrent $i d s$ to that of the magnetic metuction 8 .

Fig. 29.

We may express in the langnage of Quaternions, both the direction and the magnitude of this foree by saying that it is the vector part of the result of multiplyting the vector $i d s$, the clement of the current, Dy the vector s, the magnetic induction.
491.] We have thus completely dotermined the foree which acts on any portion of an electric circuit phaced in a magretic field. If the cireuit is movel in any way so that, alter assuming varions forms amd prositions, it returns to its original place, the strength of the enrent remaining constant during the motion, the whole amonnt of worls done by the electromanetic forees will be zero. Since His is true of any cycle of motions of the circuit, it follows that it is impossible to maintan by electromagnetic forces a motion of continuous rotation in any part of a linear cireuit of constant strengild against the resistance of frietion, \&e.

It is possible, however, to produce contimons rotation provided that at some part of the course of the electric eurrent it passes from one conductor to another whielr slides or glides over it.

When in atrenit flere is sliding oontact of a conductor over
 the surfice of a smooth solid or a fluid, the eirenit can no longel be considered as a simgle linean circuit of constant strength, lont must be regarded as a system of two or of some greater number of cirants of variable strength, Whe eurrent being so distributed among them that those for which N is increasing have cmments in the positive direction, while those for whide M is diminishing have currents in the megrative direction.

Thme, in the apparatus represented in Fig. 23, $O P$ is a moveable conductor's one em of which rests in a cup of mereury O, while the wher alips into a cirala trongh of mereury eoneentate with O.

The current i enters along $A B$, and divides in the circular trough into two patte, one of which, t, llows along the are $B Q P$, while the other, y, flows along B7AP. 'Lhese currents, uniting at P, flow along the movealle condutor $P O$ and the electrode $O Z$ to the zinc end of tho battery. The strength of the current atong OP and $O Z$ is $a+y$ or i.

Here we have two circnits, $A B Q P O Z$, the strength of the current in which is x, flowing in the positive direction, and $A B 7 A P O Z$, the strength of the chrrent in which is y, flowing in the negative Tirection.

Let whe the magnetic induction, and let it be in an upward direction, normal to the plane of the civele.

Wbile $O P$ moves through an tugle θ in the direction opposite to that of the hands of a wateh, the area of the first circuit increases by $\frac{1}{2} O P^{2} .0$, and that of the secoul diminishes by the same quantity. Since the strength of the current in the first circuit is x, the work done by it is $\frac{1}{2}=O P^{2} \cdot 0.0,3$, and since the strength of the second is $-y$, the work done by it is $\frac{1}{2} y .0 P^{3} .0 \mathrm{~B}$. The whole work done is therefore

$$
\frac{1}{2}(x+y) O P^{2} .093 \text { or } \frac{1}{1 . O P^{2}} .0 \mathrm{~B}
$$

depending only on the strength of the current in $P O$. Hence, if i is maintaned constani, the arm of will be catried ronud and
 If, as in northem latitudes, 多 aets downwards, and if the current is inwards, the rotation will be in the negrative direction, that is, in the tireetion $P Q B R$.
402.] We are now able to pass from the mutual action of magmets and currents to the action of one curvent on amother. For we know that the magnetic properties of an electric eirenit C_{1}, with respect to my magnetic हystem M_{2}, are identical with those of a magnetie shell S_{1}, whose edge coincides with the cirenit, turd whose strength is mumerieally equal to that of the clectrice curvent. Let the magnetic system $1 H_{2}$ be a magnetic shell S_{2}, then the mutual action between S_{1} and S_{2} is identical with that between S_{1} and a circuit C_{2}, coinciding with the edge of S_{2} and equal in mmerical strengeth, and this latter action is identical with that between C_{1} and C_{2}.

Hence the mutaral action between two circuits, O_{1} and C_{2}, is identical with that between the corresponding magnetio shells S_{1} athel S_{2}.

We have alrealy investigated, in Art. 123. The motual achion
of two magatio shells whose elges are the closed curves s_{1} and s_{2}.
If we make $\quad M=\int_{0}^{s_{3}} \int_{0}^{s_{1}} \frac{\cos \epsilon}{\gamma} d s_{1} d s_{2}$,
where 6 is the angle between the directions of the elements d_{1} and A x_{2}, amel r is the distance low ween them, the integration boing extended once romd s_{p} and once round s_{1}, and if we call $3 /$ the potential of the two closed curves s_{1} and x_{2}, then the potential energy due to the mutual action of two mapnetio shellis whose strengula are i_{1} and i_{2} hounded by the two circuits is

$$
-i_{1} i_{4} M
$$

and the force A, which aids nny displacement $8 x$, is

$$
i_{1} i_{2} \frac{8 M}{3 x}
$$

The whole theory of the foree acting on any pertion of am electric circuit due to the action of another electric ciretait may be deduced from this result.
493.] The method which we have followed in this chapter is that of Faraday. Instead of beginning, as we shatl do, following Ampere, in the next chapter, with the diret action of a portion of one ciranit on a portion of another, we shew, first, that a circuit prodices the same eflect on a maget is a magnetie shelf, or, in of her words, wo determine the nature of the magnetie field dne to the efrenit. We shew, secondly, that a eirenit when placed in any maghetic lield experiences the shme foree as a magnetic shell. We thons determine the force acting on the circuit placed in any magnetic field. Lastly, by supposing the magnetic fied to be due to in mecond clectric eirent we determine the action of one cirenit on the whole or any portion of the ather.
494.] Let ne ipply this method to the case of a straight current nl infinite length acting on a portion of a parallel stratght conductor.

Tef us suppoge that a curvent i in the first conductor is flowing vertically downwards. In this ease the end of a magnet which points noth will proint to the right-hand of a man looking atr it from the axis of the current.

The lines of marnetio induction are therefore horizontal circles, having their centres in the uxis of the current, aud their positiwe dircetion is north, east, soulli, west.

Tet another alesemding vertical curvent be placed due west ot the finst. The lines of" magnetice intuetion dae to the first current
are here directed fowards the north. The dinection of the lore acting on the second current is to be determined lyy turning the handle of at right-handed serew from the natir, the tireetion al' the current, to the north, the diruction of the magnetic induction. The serew will then move towards the east, that is the force acting on the second current is dirested towards the limst curront, or, in genetal, since the phenomenon depends onty on the relative position of the currents, two parallel currents in the same thededion athent ench other.

In the same way we may show that two paallel ourrents in opposite directions repel one another.
495.] The intensity of the matnotic induction at a distance r from a straght current of strength i is, ass we have shem's in Art. 479,

$$
2 \frac{i}{r} .
$$

Hence, a portion of a second conductor parallel to the first, and earrying a current i in the same direction, will be attrichal towerds the first with a foree

$$
I^{\prime}=2 i^{\prime} \frac{u}{r^{\prime}}
$$

Where a is the length of the portion considered, and r is its distance from the first conductor:

Since the ratio of a to r is atmmerical quantity independent of the absolute walue of either of these lines the protuct of two eurrents measured in the electromagnetio systen must be of the dimensions of a foree, lune the dimensions of the unit currutit are

$$
\left[\begin{array}{l}
i
\end{array}\right]=\left[F^{\frac{1}{2}}\right]=\left[M^{\frac{1}{1}} L^{\frac{1}{3}} T^{-1}\right]
$$

496.] Another method of determining the direction of the lores which acts on a current is to consider the relation of the magnetio action of the eurrent to that of other eurrents and magrets.

If on one side of the wire which earries the current the magnetio action due to the chrment is in the same or nearly the same ditection as that due to ofher curvents, then, on the other side of the wive, these forces will be in oprosite or nearly opposite directions, ame the loree acting on the wire will he from the side ou whigh the forees strengethen each other to the side on which they oppose cuch other.

Thus, if a descending current is pheed in a theld of magnetio force directed towards the morth, its magnetic action will has to the north on the west side, and to the soufle on the east side. Hence the fores strengthen each other on the west side and oppone each
wher on the east side, and the entrent will therefore be neted on by a foree from west to enst. See Fig. 22, p. 138.

In lig. XV1I at the end of this solume the small civele represents at section of the wire carrying a descending eurrent, and phacel in a unibro field of magnetio foree acting towards the left-hand of the firgure. The magnetic foree is greater below the wire than above it. It will therefore be urgel from the bottom towards the top of the figure.
497.] If wo eurents are in the same plato but thot parallel, we may apply this principle. Let one of the conductors be an infinite straight wire in the plane of the paper, supposed horjzontal. On the right side of the current the magetic loree acts downwart, and on the leff side it acts upwards. The same is true of the magnetie foree due to any short portion of a second enrent in the same plane. If the second elremt is on the right side of the first, the magrotie forces will strengthen each other on its right side and opose ach other on its left side. Hence the second current will be acted on by a foree ugiog it from its right side to its left side. The magnitude of this force depends only on the position of the second current and not on its direction. If the second chrrent is on the left side of the first it will be urged fom left to right

Hence, if the second emment is in the same direetion as the first it is attracted, if in the opposite direction it is repelled, if it flows at right angles to the first and away from it, it is urged in the direction of the first eurrent, and if it flows townd the first eurrent, it is urged in the direction opposite to that in which the first current flows.

In considering the mutual notion of two curvents it is not neeessary to bear in mind the relations between electricity and magnetism which we have endatyoured to illustrate by means of a right-landed serew. Even if we have forgotten these relations we shall arrive at correct results, provided we athere consistently to one of the two possible forms of the relation,
498.] Let ns now bring together the mugnatie phenomuna of the electric cireuit so far fog we have investigated them.

We may conceive the electric circnit to consist of a voltaic battery, and a wire comecting its extrenities, or of a themodectric antagement, of of at charged Leden jar with a wive connectiog its positive and negative contings, or of any other arrangement for producing an electric current along it definite path.

The ourrend produecs magnetie phomonema in its neighboubood.

If any closed curve be drawn, and the line-intergral of the magnetic force talen completely rownd it, then, if the closed curve is not linked with the circuit, the line-integral is zero, but if it is linked with the circnit, so that the eurrent i flows throngly the closed curve, the lise-integral is $4 \pi i$, and is positive if the direction of integration ronad the closed curve would comede with that of the hands of a watch as seen by a person passing throngh it in the direction in which the electric current flows. To a person moving along the closed curve in the direction of integration, and passing through the electric circuit, the divection of the current would appear to be that of the hands of a watol. We may express this in another way ly saying that the relation between the directions of the two closell curves may be expressed by descrihing a right-handed serew roum the electric cirentit and a righlithanded serew round the closed eurve. If the direction of rotation of the Ghread of ether, as wo pass along it, coincides with the positive direction in the other, then the line-integral will be positive, and in the opposite case it will be negrative.

Fig. 24.
Relabion between the electrig carrent and the linco of magnetic induction hudicated ly as rightrdanden serew.
499.] Note.-The linc-integral $4 \pi i$ depends solely on the quantity of the current, and not on any other thing whatover. It does not depend on the nature of the conductor through which the current is passing, as, for instance, whether it be a metal or an clectrolyte, or an imperfect conductor. We have reason for lselieving that even when there is no proper conduction, but
merely in variation of electric displacement, as in the grass of a Leyden far during charge or discharge, the magnetic effect of the metric; movement is precisely the same.

Again, the value of the line-integral $4 \pi i$ does not alepend on the mature of the median in which the closed curve is drawn. It is the sane whether the closed carve is drawn entirely throngla air, of passes through a magnet, or soft iron, or any other subsstance, whether pamaynetic or diamagnetic.
500.] When at eirenit is placed ins a matroetic lied the mutual action between the current and the other constituents of the field depends on the surfice-integral of the magnetic induction through any surface bonded by that cisenit. If lay any given motion of the circuit, or of part of it, this surface-integral cars be ind eased, there will be a mechanical force penang to move the conductor on the portion of the conductor in the given manner.

The kind of motion of the conductor which increases the surfaceintegral is motion of the conductor perpendicular to the direction of the current and across the lines of induction.

If a parallelogram be drawn, whose sides are parallel and proportional to the strengele of the current at any point, and to the magnetic induction at the same point, then the fore e on unit of length of the conductor is mumerically equal to the area of this parallelogram, and is perpendicular to its plane, aud acts in the direction in while the motion of turning the handle of a righthanded screw from the direction of the current to the direction of the magnetic induction would cause the screw to move.

Hence we have a new electromagnetic definition of a line of magnetic induction, It is that line to which the force on the conductor ts always perpendicular.

It may also be defined as a line along which, if an electric emend be transmitted, the condmetor earring it will experience no force.

501,] Th must foe carefully remembered, that the mechanien force which urges a conductor carrying a current across the limes of magnetic fore e, acts, not on the electric current, but on the condecor which entries it. If the conductor be at rotating disk on a Hud it, will move in obedience to this Core, mud this notion may or may not lee accompanied with th change of position of the electric current which it carries. But if the errant itself he free to close any path through n a fixed solid conductor or at network of wires, then, when a constant magnetic fore e is make to act on the system, the path of the carman in rough the conductors is not permanently
altered, but after eatain transient phemomemit, ealled induction eurrents, have subsided, the distribution of the carrent will be found to be the same as if no magretic foree were in action.

The only foree which acts on electric curronts is electromotive foree, which must be distinguished from the mednamical foree which is the sulject of this chapter.

Fig. 85.
Rolaikios between the positive ulirections of motion mach of rotatione indicated by there rikelict-hatuled serews.

CHAPTER TI.

AMP'ERE'S IXYPSTIGATION OP THE MUYUAT ACTION OF
FIDETRIC CURREXTS.
502.] Wr have considerel in the last chapter the nature of the magnctic field produced by an electric enrrent, and the mechanical action on a conductor canying an electric carment placed in a maynetic field. From this we went on to consider the aetion of one electric eireut upom another, by determining the action on the lirst due to the magnetie field proflacen by the second. But the action of one enrenit upon another was orminally investigated in a direct manner ly Ampere almost immediately after the pubitication of Orsted's discovery. We shall therelore give an ontline of Ampere"s method, resuming the method of this treatige in the next elupter.

The idens which guded Ampere belong to the system which adnits direct action at a distace, and we shall find that a remarkable course of speculation and investigation founded on these indeas has been carried on by Gauss, Weber, J. Neumanm, Risemann, Betti, C. Netmatm, Jorenz, and others, with very remartable fesules both in the discovery of new facts and in the formation of a theory of electricity. See Arts. $846-866$.

The ideas which I have athempted to follow out ate those of action throngly it medium from one portion to the contignous portion. These ideas were much employed by Faraday, and the development of them in a matlematical form, and the comparison of the results with known facts, have been my aim in several published papers. 'The comparison, from a philosphtieal point of wiew, of the results of two methods so completely' aprosed in thet litst putndiples menst lead to valuable data for the studg of the conditions of scientifio spectation.
503. Ampere's theory of the matual metion of electric envents is founded on four experimental facts and ome assumption.

Ampere's fimbanental oxperiments are all of them examptes of what has heen oalled the mutl methon of emparing fintess. Seo Art. 214 . lustead of measuring the fore by the dynmieal cllte of communieating motion to a lody, or the statical mothod of plating it in equilibrime with the weight of in hody or the elasticity of a fibre, in the null methord two forees, due to the same sonse, are made to act simultanentsly on a loody alveady in equilibrium, and no effect is produced. which shews that these forees are thenselves in equifitrium. This methot is peculiarly valuable for emparing the effeets of the electric current when it phasest (hetugh eirents of different forms. By comenting tall the combetors in one continuous series, we ensure that the strengrth of the current is the same at ascry point of its course, and since the curvent begins everywhere throughont its course almost at the same instant, we nay prove that the forees due to ifs action on a shaspended bouly are in eqnilibrimn by observing that the booty is not at alt alfected by the starting of the stopping of the entrent.
504.] Ampere's balance consists of a Tight frame capralle of revolving abont at vertical axis, and earying a wire which forms two circnits of equal areat, in the same plate or in parallel planes, in which the eurrent flows in apposite direetions. The object of flis arrangement is to gre rid of the effects of terestrial magnetism on the conducting wire. When an electric cireuit is free to move it tends to phace itself so ns to embrace the largest possille number of the lines of induction. If these lines are due to terrestrial magnetism, this position, for a circuit in a vertical plane, will les when the plane of the cirenit is wast and west, and when the direction of the current is opposed to the apparent course of the stm.

By rigidly comecting two circuits of equal area in paratiel planes, in which equal currents rut in opposite directions, a combination is furmed whed is maftected by terestrial magnetism, and is therefore called an Astatic Combinalion, see Fige 2th, 1t is ated on, however, by fores atrising from chreents or magents whids are so near it that they act differently on the two cirenits.
50.3.] Ampere's first experiment is orb the efleet of two expual curvents close together in opposite directions. A wire covered with insulating material is doubled on itself, and plaed near one of the cirenits of the astatic loalance. When a enrent is made fo pass through the wire and the balance, the equilimitut of the halanee rumains madisturbed, shewing that two cgual cmeronts chose toge floer
in opposite directions nentralize each other. If, insteat of two wires side by side, a wire be insulated in the midde of a metal

Fig. 20^{+}
lulne, and if the curvent pass through the wire and back by the tulbe, the action outside the malse is not only approximately but necumbely nuth. This principle is of great importance in the construction of electrie apparatus, as it aflords the meane of conveying the current to and from any galwameter or other instrument in such it way that no eleetromaguetic effect is produced by the current an its pasauge to and from the instument. In practice it is gencratly sufficient to bind the wives together, care being talsen that they are kept perfectly insulated from each other, but where they must pass near any sensitive part of the apparatus it is better to make one of the conductors it tube and the other a wire inside it. Sce Art. 683.
500.] In Ampere's sccond experiment one of the wipes is hent and erooked with a number of small simusities, but so that in every jurt of its course it remains very near the straight wire. A eturent, flowing through the crooked wire and back ugrin throngl the straiglt wire, is found to be without influence on the astatic balace. This prowes that the offect of the current rumning through any erooked part of the wire is equivalent to the same enrent running in the straght line joining its extremities, provided the crooked line is in no part of its eourse far from the straight one. Hence eny small element of a eireuit is equivalent to two or more component elements, the relation between the component elements and the resultant element being the same as that between component and resultant displacements or velocities.
507.] In the third experiment a conductor eapable of moving
only in the dincelion of its lenergh is sulbstituted for the astatio lualance, the enrrent enters the conductor and leaves it at. fixed points of space, and it is fonmed that no closed circuit placed in the neighlyourtiood is able to move the conductor:

Fig. 7 . 7.
The conductor in this experiment is a wire in the form of a eirenbar are suspended on a diane which is capable of rotation about a vertical axis. The circular are is horizontal, and its contre coineides with the wertical axis. Two small troughs are filled with mercury till the convex surface of the mereury rises above the lewel of the troughs. The troughs are placed indet the eiroular fure and adjusted till the mercury touches the wire, which is of copper well amalgamated. The curreat is made to enter one of these trouglis, to traverse the part of the circular are between the troughs, and to escape by the other trough. "Ihus part of the circular are is traversed by the curvent, and the are is at the same time eapable of moving with considerable frectom in the direstion of its lenglh, Any closed currents or magracts may now bet made to approach the moveable conductor withont productuge the slightest tentency to move it in the direction of its lenglit.
508.] In the fondth axperiment with the astatic latance two cireuts are employed, ench similar to one of those in the balanee, but one of them, C, having dimensions on times prater, athe the other, A_{1} at times less. "These are placed on opposite sides olt the circuit of the balance, which we slatll eall $l_{\text {, }}$ so that they aro similarly placed with respect to it, the distatee of C from B being "times greater than the distance of B from A. The direction and
strengeth of the chrrent is the same in A and C. Its divection in B may be the same or apposite. Under these circumstances it is found that B is in equilibrium under the action of A and C, whatever he the forms and distances of the threc civenits, provided they have the velations given above.

Since the actions between the complete eircnits may be considered to lee due to actions between the elements of the circuits, we may wee the following method of determining the law of these actions.

Let A_{1}, B_{1}, C_{1}, Fig. 28, be corresponding elements of the three direuits, and lef A_{2}, B_{3}, C_{2} be also corresponding elements in anwher part of the eirenits. Then the situation of B_{1} with respect to A_{2} is similar to the situation of C_{1} with respect to B_{2}, but the

Fig. 24.
distance and dimensions of C_{1} and B_{0} are u times the distance and dimensions of J_{1} and A_{2}, respectively. If the law of electromagnetie action is a function of the distance, then the action, whetever be its form or quality, between B_{1} und A_{2}, may be writen

$$
F=B_{1} \cdot A_{2} /\left(B_{1} A_{1}\right) a d_{2}
$$

and that between C_{1} and D_{2}

$$
\mu^{\prime \prime}=C_{1} \cdot J_{2} /\left(\overline{C_{1}} J_{2}\right) b c
$$

where a, h_{2} a are the strengeths of the curvents in A, B, C. But ${ }_{n} B_{1}=C_{1}, A_{2}=A_{2}, n, \overline{h_{1} A_{2}}=\bar{C}_{1} B_{2}$, and $a=c$. Hence

$$
F^{\prime}=A^{2} B_{1} \cdot A_{2} f\left(n J_{1} A_{2}\right) a b_{y}
$$

and this is equal to p by expriment, so that we luw

$$
u^{\underline{\nu}} /\left(\mu A_{2} B_{1}\right)=/\left(\bar{A}_{2} B_{1}\right)
$$

or, the /ore varias inversely as the whete of the distatec.
309.] It my be observed with reference to these experiments that every electric eurent forms a elosed eironit. The eurents used by Ampere, being produced ly the voltaic battery, weve of conse in eloged cirenits. It might be supposed that in tho case of the curvent of discharge of a conductor by ar spati we mighl. have a current forming an open finite lime, but according to the views of this thook even this ease is that of a elosed cireait. No experiments on the mutual action of umelosed eurrents fave been made. Hence no statement abont the mutual action of two elements of cirenits can be sad to rest on purely experimental groumds. It is thte we may remder a portion of a cirent moreable, so ats to ascertain the attion of the other eurrents upon it, lont these carrents, together with that in the moweable portion, necessaly form closel circuits, so that the ultimate result ol the axparment is the action of one or more elosed currents upon the whole or a part of it closed current.
510.] In the analysis of the phemonena, however, we may regrard the action of a closed circuit on an clement of itself or of another cirenit as the resultant of a mumber of separate lorena, deprending on the seprate parts into which the first circuit may be conceived, for mathematical parposes, to be divided.

This is a merely mathematical analysis of the action, and is therefore perfectly legitimate, whether these lorecs can really act separately or not.
511.$]$ We shatl begin by considering the pravely geometrical relations between two lines in space repreenting the cirenits, ant between elementary portions of these lines.

Wutt there be two curves in space in each of whinh al lixel point is taken from which the ares are monsured in a deflined direction atong the anrwe. Inct A, A be these points. Let $P^{\prime} Q$ nnd $P^{r} Q^{\prime}$ fre clements of the two enves.

$$
\text { Let } \begin{align*}
A P=s, & A^{\prime} P^{\prime}=s^{\prime}, \\
P Q & =d s, \quad P^{r} Q^{\prime}=N^{\prime}, \tag{1}
\end{align*}
$$

and let the distance $P P$ be de-

Fig. 29. noted ly r. Let the angle $P^{P} P Q$ be denoted by θ, and $P^{P} P^{P} Q^{P}$ by θ^{\prime}, mel let the angle between the planes of these angles be demoned by n.
"The relative position of the two edements is suificient]y defined lyy 1.hein distance r and the three anglas θ, θ^{\prime}, and v, lor il' these low
given their relative prsition is as completely determined as if they formed part of the same rigid body.
512.] If we nee rectangular coordinates and make x, y, z the coordinates of P, and $x^{\prime}, y^{\prime}, z^{\prime}$ those of P^{\prime}, and if we denote by $l_{3} m$, n and by $l^{\prime}, n^{\prime}, n^{\prime}$ the direction-cosines of $P Q$, and of $P^{\prime} Q^{\prime}$ rospectively, then
and

$$
\left.\begin{array}{c}
\ell\left(w^{\prime}-x\right)+n\left(y^{\prime}-y\right)+n\left(z^{\prime}-z\right)=r \cos \theta_{,}^{\prime} \\
l^{\prime}\left(x^{\prime}-x\right)+n^{\prime}\left(y^{\prime}-y\right)+n^{\prime}\left(s^{\prime}-z\right)=-r \cos \theta^{\prime}, \tag{3}\\
l^{\prime}+m^{\prime}+w^{\prime}=\cos \epsilon_{5}
\end{array}\right\}
$$

where $\&$ is the angle between the directions of the clements themselves, and

$$
\begin{equation*}
\cos \varepsilon=-\cos \theta \cos \theta^{\prime}+\sin \theta \sin \theta^{\prime} \cos \eta . \tag{4}
\end{equation*}
$$

Again $r^{2}=\left(x^{\prime}-x\right)^{2}+\left(y^{\prime}-y\right)^{2}+\left(z^{\prime}-z\right)^{2}$,
whence

$$
\left.\begin{array}{rl}
\text { whence } \quad+\frac{d r}{d s} & =-\left(x^{\prime}-x\right) \frac{d x}{d s^{\prime}}-\left(y^{\prime}-y\right) \frac{d y}{d s}-\left(z^{\prime}-z\right) \frac{d z}{d s^{\prime}} \\
& =-r \cos \theta \\
\text { Similarly } \quad r^{d} \frac{d r}{d s^{\prime}} & =\left(r^{\prime}-x\right) \frac{d k^{\prime}}{d s^{\prime}}+\left(y^{\prime}-y\right) \frac{d y^{\prime}}{d s^{\prime}}+\left(z^{\prime}-z\right) \frac{d z^{\prime}}{d s^{\prime}} \tag{fi}\\
& =-r^{\prime} \cos \theta^{\prime} ;
\end{array}\right\}
$$

and diflerentiating $r \frac{l r}{d s}$ with respect to ξ^{\prime},

$$
\begin{align*}
& \begin{array}{l}
=-\left(u l^{\prime}+m m n^{\prime}+u n n^{\prime}\right) \\
=-\mathrm{cos} \epsilon .
\end{array} \tag{7}
\end{align*}
$$

We can therefore express the three angles $0,0^{\prime}$, and η, and the auxiliary angle ϵ in terms of the differential cocflicients of r with respect to s and s^{\prime} as follows,

$$
\begin{gather*}
\cos \theta=-\frac{d r}{d l^{*}} \\
\cos \theta=-\frac{d r}{d s^{\prime}} \tag{B}\\
\cos \epsilon=-r \frac{d^{2} \cdot}{d y d s^{\prime}}-\frac{d r}{d s} \frac{d r}{d s^{\prime}} \\
\sin \theta \sin \theta^{2} \cos \eta=-r \frac{d l^{r}}{d d^{2}} .
\end{gather*}
$$

513.] We shall next onsider in what way to is mathematienlly conceivalle that the elements $P^{P} Q$ and $P^{\prime} Q$ might ate on ench of her, and in doing so we shatl not at first assume that their mutual adtion is necessarily in the line joining then.

We lave seen that we may suppose each element resotvel into other elements, frowidel that these components, when combined according to the rule of atdition of vectors, produce the original element as their resultant.

Wo shall therefore consider $A s$ as resolved into $\cos 0 d s=a$ in the direction of r, and $\sin \theta / / s=\beta$ in a direction perpendicular to r in the plane $P^{\prime} P^{\prime} Q$.

We shall also consider $/ d s^{\prime}$

Piteg. 30. ass resolved into $\cos \theta^{\prime} d^{\prime}=a^{\prime}$ in the direction of y^{\prime} reversed, $\sin \theta^{\prime} \cos \eta d \xi^{\prime}=\beta$ in a clirection parallel to that in whinh β was measured, and $\sin \theta^{\prime} \sin \eta d \sigma^{\prime}=\gamma^{\prime}$ in al dircetiom perpendicular to a^{\prime} and β^{\prime}.

Let us consiter the action between the components a anel β on the one hand, and $a^{\prime}, \beta^{\prime}, \gamma^{\prime}$ on the other,
(1) a and a^{\prime} are in the stme straght line. The foree between them must therefore lre in this line. We shatl suppose it to be an attiaction

$$
=A a a^{\prime} i i^{\prime}
$$

where A is a function of ${ }^{\prime \prime}$, and $i^{\prime} i^{\prime}$, are the intensities of the currents in $d s$ atul $d s$ respectively. This expression sutisfles the condition of changing sign with i and with i^{*}.
(2) β and β^{\prime} are parallel to each other and perpendicatar to the line joining them. The action between them may be written

$$
\beta \beta \beta^{\prime} i i^{\prime}
$$

This foree is uvilenty in the line joining β and β, lor it must lee in the plane in which they both lie, end il we were to measure β and β^{\prime} in the reversed direction, the value of this expression would remath the same, which shows that, if it represents it foree, that force has no component in the direction of β, and must therelore he directed alongs. Let is assume that this exyession, when positive, represents an attraction.
(3) β and γ are perpentionlas to eacls other and to the liaw joining them. The only action possible between elements so colated is at couple whose axis is pafallel to $\%$. We are at present miguged with forees, so we stall leave this ont of accoment.
(4) The action of a and β^{\prime}, ifl whey tet on ench other most be "xpremsed ly. \quad "a, $\beta^{\prime} i^{\prime}$.

The sign of this expression is reversed if we reverse the direction in wheh we measute β^{\prime} '. It must therefore represent either at foree in the clipection of β^{\prime}, or a couple in the plane of a and β^{*}. As we ane not investicmating couples, we shall take it as a foree acting on a in the direction of \exists^{\prime}.
'Thatre is of courae an equal force adting on β ' in the pposite dinetion.

We have for the same reason a fore

$$
C a \gamma^{\prime} \ddot{q}
$$

acting on a in the direction of γ^{\prime}, and a foree

$$
C \beta a^{\prime} i u^{\prime}
$$

ading on β in the opposite direction.
514.] Collecting onr results, we find that the action on ds is compronded of the followints forces,

$$
\left.\begin{array}{rl}
\lambda & =\left(A a a^{\prime}+B \beta \beta^{\prime}\right) h^{\prime} \text { in the divection of } \gamma^{\prime} \\
Y & =C\left(\alpha \beta^{\prime}-a^{\prime} \beta\right) \dot{p}^{\prime} \text { in the direction of } \beta, \tag{9}\\
& \text { and } \quad Z
\end{array}\right\}
$$

Let us suppose that this action on as is the resultant of three forecs, $A z^{\prime \prime} d s d s^{\prime}$ acting in the direction of $s, S i t^{\prime} d d d s^{\prime}$ acting in the direction of $d s$, and $S^{\prime \prime} z^{\prime} d s d s^{\prime}$ acting in the direction of " $d s^{\prime}$, then in terms of $0,0^{\circ}$, and $?$,

$$
\left.\begin{array}{rl}
A & =A \cos \theta \cos \theta^{\prime}+J \sin \theta \sin \theta^{r} \cos \eta, \\
S & =-C \cos \theta^{\prime}, \quad S^{\prime}=O \cos \theta \tag{10}
\end{array}\right\}
$$

In terms of the differential coeflicients of or

$$
\left.\begin{array}{l}
\pi=A \frac{d r}{d l^{-}} \frac{d l^{r}}{d s^{\prime}}-D_{p^{\prime}} \frac{d^{2} b^{r}}{d s d^{\prime}} \tag{11}\\
S=+C \frac{d r}{d s^{\prime}}, \quad S=-C^{d d^{\prime}},
\end{array}\right\}
$$

ln terms of $l_{1} m, n$, and $\ell^{\prime}, m^{\prime}, n^{\prime}$,

Where $\xi, \eta_{\text {, }}$ are written lor $x^{\prime}-x^{\prime}, y^{\prime}-y$, and $z^{\prime}-z$ respectively.
b15.] We have next to calculate the foree with which the finite carrent of acts on the finite cument os. The current s extends from A, where $s=0$, to $P_{\text {, }}$ where it has the value s. Whe ourent, of extencls from A^{\prime}, where $s^{\prime}=0$, to $I^{\prime \prime}$, where it las the value s^{\prime}.

The eoordiates ai points on either entrent are functions of s or oll $n^{\prime \prime}$.

If F^{\prime} is duy function of the prosition of a point, then we shatl use the sulseripte (e, of to denote the exeess of its value at I^{7} ower that at A, Llus

$$
f_{(0, b)}=H_{P^{\prime}}-F_{A}^{\top}
$$

Such functions necessavily disaprear when the cirenit is chased.
 $A A$ be $i E^{\prime} A, H \prime Y$, and $H^{\prime} \%$. Then the eomponent parallel to A° of

Hence

$$
\begin{equation*}
\frac{d^{2} X}{d d d^{\prime}}=n \frac{\xi}{j}+S t+s^{\prime} l^{\prime} \tag{13}
\end{equation*}
$$

 What.

$$
\begin{equation*}
f \xi+\overrightarrow{r^{\prime}} \eta+a^{\prime} \zeta=r^{d} d k^{\prime \prime} \tag{14}
\end{equation*}
$$

and arranging the terms with respeet to l, m, n, we lind

$$
\begin{align*}
& \operatorname{tn}\left\{-(A+B) \frac{1}{r^{2}} \frac{d r}{d s^{\prime}} \xi_{\eta}+C \frac{/ l^{\prime} r}{r}+B \frac{m^{\prime} \xi}{r}\right\} \text {, } \\
& +2\left\{-(A+I) \frac{1}{r^{2}} \frac{d r}{d s^{\xi}} E S+C^{l!} \frac{d}{r}+B \frac{n^{\prime} \xi}{r}!.\right. \tag{15}
\end{align*}
$$

Since A, B, and C are functions of r, we may write

$$
\begin{equation*}
P=\int_{r}^{\infty}(A+B) \frac{1}{r^{2}} d r, \quad Q=\int_{r^{r}}^{+\infty} C n \tag{16}
\end{equation*}
$$

the integration being taken between r atnd ∞ becuse A, A, C vunish when $r=\infty$.

Hence $\quad(A+B) \frac{1}{r^{2}}=-\frac{d T^{2}}{d P^{r}}, \quad$ and $\quad C=-\frac{d Q}{d r}$.
516.] Now we know, ly Ampere's thind case of equilibrium, that when s^{\prime} is a closed circuit, the fore nefing on $/ d s$ is perpemathenar to the direetion of $d^{\prime} s$, ons in other words, the component of the foree in the direction of $d s$ iteself is sero. Jet us tharefore assume the direction of the axis of x so as to the paralle to $d s$ by making $l=1$, $m=0, \pi=0$. Inquation (15) then becomes

$$
\begin{equation*}
\frac{d^{2} X}{d d^{\prime}}=\frac{d J^{\prime}}{d s^{\prime}} \xi^{2}-\frac{d Q}{d k^{\prime}}+(B+C) \frac{l^{\prime} \xi}{T} \tag{18}
\end{equation*}
$$

Ton timel $\frac{d A^{-}}{d,}$, the force on $d x$ referred in unit of lengetli. we must
integrate this expression with respect to \&'. Integrating the first tem by parts, we find

$$
\begin{equation*}
\frac{d A}{d s}=\left(P \xi^{Q}-Q(x, 0)-\int_{0}^{s^{\prime}}\left(2 P^{2} T-B-C\right) \frac{l^{\prime} \xi}{r} d h^{\prime} .\right. \tag{19}
\end{equation*}
$$

When ε^{\prime} is a elosed cireuit this expression must be zero. The livst term will disappear of itself. The second term, however, will not in general disappear in the case of a closed circuit unless the quantity muler the sign of integration is always zero. Hence, to sittisfy Ampère's condition,

$$
\begin{equation*}
p=\frac{1}{2 r}(B+C) \tag{20}
\end{equation*}
$$

517.] We can now eliminate p, and find the general value of $\frac{d \lambda}{d s}$,

$$
\begin{align*}
& \frac{d X}{d_{s}}=\left\{\frac{B+C \xi}{2} \frac{\xi}{r}(l \xi+n \eta+n \zeta)+Q\right\}_{\left(s^{\prime}, n\right)} \\
& +n \int_{0}^{\prime} \frac{B-C n^{\prime} \xi-l^{\prime} \eta}{2} d s^{\prime}-n \int_{0}^{b} \frac{B-C}{2} \frac{b^{\prime} \zeta-n^{\prime} \xi}{r} d s^{\prime} . \tag{21}
\end{align*}
$$

When as is a closed circuit the first term of this expression vmishes, and if we make

$$
\left.\begin{array}{l}
a^{\prime}=\int_{0}^{s} \frac{B-C n^{\prime} n-n^{\prime} \zeta}{2} d s^{\prime}, \\
\beta^{\prime}=\int_{0}^{b^{\prime} B-C l^{\prime} \zeta-n^{\prime} \xi} \frac{2}{r} d s^{\prime}, \tag{22}\\
\gamma^{\prime}=\int_{0}^{b^{\prime} B-C m^{\prime} \xi-l^{\prime} \eta} \frac{2}{2} d s^{\prime},
\end{array}\right\}
$$

where the integration is extended round the closed circuit s^{\prime}, we may write

Similarly

$$
\left.\begin{array}{l}
\frac{d X}{d s}=m y^{\prime}-n \beta^{\prime} \\
\frac{d Y}{d s}=x a^{\prime}-l \gamma^{\prime}, \tag{23}\\
\frac{d y}{d \theta^{\prime}}=l \beta^{\prime}-3 a^{\prime} .
\end{array}\right\}
$$

The quantities $a^{\prime}, \beta^{\prime}, y^{\prime}$ are sometimes called the determinants of the circuit s^{\prime} referred to the peint D. Their resultant is called by Anuère the directrix of the electrodynamie action.

It is evident from the equation, that the force whose components are $\frac{d X}{d s}, \frac{d Y}{d s}$, and $\frac{d Z}{d s}$ is perpendicular both to $d \delta$ and to this directrix, and is represented mumerically by the area of the paralledngram whose sides are $/ s$ and the direet rix.

In the language of quaternions, the resallant loree on $7 / s$ is the wector part of the product of the directrix maltiplied by d.

Since we alrealy know that the directrix is the same thing as the maguetic force dre to a unit current in the circuit x^{\prime}, we shall henceforth speak of the directrix as the magnetic force due to the eircuit.
518.] We shall now complete the calculation of the components of the foree acting between two finte enrents, whether closed or open.

Inet ρ be a new lituction of $;$, such that

$$
\begin{equation*}
\rho=\frac{1}{2} \int_{r}^{\infty}(D-C) d r \tag{24}
\end{equation*}
$$

then $\log (17)$ and (20)

$$
\begin{equation*}
A+B=r \frac{A^{2}}{d r^{2}}(Q+p)-\frac{A}{d r}(Q+p) \tag{25}
\end{equation*}
$$

and equations (11) become

$$
\left.\begin{array}{l}
R=-\frac{l_{p}}{d h^{2}} \cos \varepsilon+r \frac{d^{2}}{d S d_{\delta}}(Q+p) \tag{26}\\
S=-\frac{d Q}{d g^{\prime}}, \quad S=\frac{d Q}{d /},
\end{array}\right\}
$$

With these walues of the component forces, equation (13) Jecomes

$$
\begin{align*}
& \frac{d^{2} X}{d s d s}=-\cos \epsilon \frac{d_{p}}{d T^{2}} \frac{\xi}{r}+\xi \frac{d^{2}}{d s d^{\prime}}(Q+p)-l \frac{d Q}{d s^{\prime}}+h^{\mu} \frac{d Q}{d v}, \\
& =\cos \varepsilon \frac{d \rho}{d d^{\prime}}+\frac{d^{2}(Q+\rho) \xi}{d s d s^{\prime}}+l^{d \rho} \frac{d \xi^{\prime}}{d l^{\prime}} \frac{d \rho}{d \beta} . \tag{27}
\end{align*}
$$

519.] Let.

$$
\begin{align*}
& P=\int_{0}^{*} l \rho d s_{1} \quad G=\int_{0}^{*} m p d s_{2} \quad I t=\int_{0}^{\infty} t \rho \rho d s_{3} \tag{28}\\
& F^{r}=\int_{0}^{n x^{\prime}} l^{\prime \prime} p d_{s^{\prime}}, \quad G^{\prime \prime}=\int_{0}^{s^{\prime \prime}} m m^{\prime} \rho d k^{\prime}, \quad J^{\prime}=\int_{0}^{m} n^{\prime} \rho d d^{\prime} . \tag{2}
\end{align*}
$$

These quantilies lave definite valute for any given point of space. When the cirenits arte closed, they eorrespond to the components of the vector-polentials of the circuits.

Let L be a new limetion of 7 , such that

$$
\begin{equation*}
I s=\int_{0}^{r} r(Q+p) d r \tag{30}
\end{equation*}
$$

and let $A I$ be the dontle integral

$$
\begin{equation*}
M=\int_{0}^{\alpha} \int_{0}^{*} \rho \cos +l_{n} \| v^{\prime}, \tag{31}
\end{equation*}
$$

whielt, when the circuits are olosed, becomes their mutual potential, then (27) may be written
590.] Tntegrating, with respet to n and $s^{\prime \prime}$, hetween the given limits, we find

$$
\begin{align*}
& +H^{\prime}{ }_{H}-H^{T^{\prime}}{ }_{d}-F_{l^{\prime}}+F_{A N}{ }^{n} \tag{38}
\end{align*}
$$

where the subseripts of L indicate the distames, $f_{\text {, }}$ of which the phantity A is a function, and the subsenps of H^{\prime} and f° indieate the moints at which their valnes ame to le takens.

The expressions for y and $\%$ may be written down lirom this. Multiplying the three components by de, fly, amd de respectively, we obtain

$$
\begin{align*}
& +\left(F^{r} d x+G^{\prime} d y+I I^{\prime} d z\right), N-A, \\
& -(F d x+G d y+I I d z)_{\left(y^{\prime \prime}-A\right)^{\prime}}, \tag{34}
\end{align*}
$$

where D is the symbol of a complete differential.
Since $F d x+G d y+J l d z$ is not in greneral a complete differential of a function of $x, y, z, X d y+T d y+Z d z$ is not a complete differential for currents cither of which is not closed.
521.] If, however, loth eurrents we elosed, the terms in L_{3}, \vec{F}, $G, I, H^{\prime \prime}, Q^{\prime}, H^{\prime}$ disappeat, mad

$$
\begin{equation*}
J d x+\Gamma d y+Z d z=D . W \tag{35}
\end{equation*}
$$

where $3 /$ is the mutual potential of two elosed circuits caryinge unit ourcuts. The quantity a/ exprosses the work done by the ebedromagnetio forces on eithur condueting eirent when it is moved pratlel to itaclf from an minite distunce to its actual positions. Any alteration of its position, by which M is increased, will be astisted by the electromagnetic forces.

It may be shewn, as in Arts. 490,596 , that when the motion of the circhit is not parallol to itself the forees acting on it are still determined by the variation of $1 /$, the potential of the one citrout on the other.
522.$]$ The only experimental fact whieh we have nande use of in this investigation is the Fact established lys Ampere that the action of a closed eurrent on any portion of another current is perpendienlar the divection of the latter. Erery other pate of
the investigation alepenils on puredy mathematical emsiderations depending on the properties of limes itu space. 'lhe reasoning therefore may be prosented in at moh more condensed and appropriate form by the use of the ideas and language of tho mathematical method spectally adapted to the expression al steh geometrical relations- the Qualernions of Hamilfon.

This has been done by Probessor Thit in the Quaterly Wothe-
 Ampere's original investigation, ame the sudent can ensily adapt the same mettod to the somenhat more general investigntion given here.
523.] Hitherto we have made no nssumption with respect to the quantities A, B, C, excepe that they are fumetions of r, the clistance between the elements. Wo have noxt to aseertan fhe form of these functions, and for this purpose we make use of Amperces foneth case of equilibrium, Art. 508 , in whieh it is shewn that il at the linear dimensions and distanees of a system of two citentits be athered in the same proportion, the eaments remanimen the same, the forco leetween the two eireuits will remain the same.

Now the force between the circuits for unt curcents is $\frac{d M}{d / w}$, and since this is independent of the dimensions of the system, if must. Je a numerical quantity. Hence M itself, the coetficient of the mutuat potential of the cirenits, must be th quatity of the dimensions of a line. It tollows, from equation (31), that ρ mast ho the reciprocal of a line, fand therefore by ($2 f$), $\beta-C$ must be the inverse square of a line. But since $7 b$ and C are looth functions of $r, B-C$ must be the inverse square of r or some numerion maltiple of it.
524.] The multiple we adopt dements on our system of measurement. If wo adopt the electromagnetie system, so called hretuse it agrees with the system abrealy established for mathebe monsursments, the value of M onght to connede with that of the potential of two maghetic shells of strengtis mity whose boundarios are the
 Art. 123,

$$
\begin{equation*}
M=\iint \frac{\cos \epsilon}{r} d y, \tag{56}
\end{equation*}
$$

the integration boing grevormed roumd both eirenits in the positive direction. Mopting then as the nomerical value of $1 /$, alal comparing with (31), we lind

$$
\begin{equation*}
\beta=\frac{1}{\gamma}, \quad \text { and } \quad \Rightarrow-C=\frac{2}{r^{2}} . \tag{37}
\end{equation*}
$$

525.] We may now express the components of the force on $\boldsymbol{d}_{\text {s }}$ arising from the aetion of w° in the most peneral lom onsistent with experimental facts.

The foree on $d s$ is comprounded of an atimetion
in the direction of \vec{r},

$$
\begin{equation*}
S=-\frac{d Q}{d N^{\prime}}{ }^{\prime} d d s d s^{f} \text { in the direction of } d s, \tag{38}
\end{equation*}
$$

and $\quad S=\frac{d Q}{d R^{\prime}} d S N x^{\prime}$ in the direction of $d s^{\prime}$,
where $Q=\int_{r}^{\infty} C A r$, nud since C is an unknown finction of r, We know only that Q is some function of r.
526.] The quantity Q eamot be determined, without assumpfions of some kind, from expertments in which the active etrrent forms a closed circuit. If we suppose with Ampere that the action letween the elements $d s$ and $d s^{\prime}$ is in the line joining thom, then S and S^{\prime} must disappear, and Q must be constant, or zero. The foree is then relued to motemetion whose value is

$$
\begin{equation*}
R=\frac{1}{r^{2}}\left(\frac{d r}{d s} \frac{h^{n}}{d d^{\prime}}-2 r \frac{d^{2} r}{d d d^{\prime}}\right) i^{\prime} d s d d^{\prime} \tag{39}
\end{equation*}
$$

Ampere, who made this investigation long lefore the magnetic system of units had heen established, uses a formula having a numerical value half of this, namely

$$
\begin{equation*}
R=\frac{1}{r^{2}}\left(\frac{1}{2} \frac{d r}{d s} \frac{d r}{d s^{\prime}}-r^{\prime} \frac{d r}{d s d s^{\prime}}\right) j j^{\prime} d s d w^{\prime} . \tag{40}
\end{equation*}
$$

Here the strength of the current is monsured in what is called clectrodynamic monsure. If $i_{\text {, }} z^{\prime}$ are the strenglth of the cuments in electromagnetic measure, and $y^{\prime} j^{\prime \prime}$ the same in electrodynamic measure, then it is plain that

$$
\begin{equation*}
j j^{\prime}=2 i w^{\prime}, \quad \text { or } \quad j=\sqrt{2} h \tag{41}
\end{equation*}
$$

Hence the unit eurrent adopted in electromagnetic meastre is sreater than that adopted in elentronlynamit measme in the atio of $\sqrt{2}$ to 1 .

The only title of the eleotrodynmie unit to consikemation is that it was originally adopted by Ampere, the discoverer of the liw of action between eurrents. The continuat remmence of $\sqrt{2} / 2$ in ealealations founded on it is inconvenient, and the dectromagnetie system has the great adrantage of comedinus mumerically
with all our magnetic formulace As it is diflimalt for the etudent to bear in mind whethew he is to multiply or to divide by $\sqrt{2}$, we shall henceforth use only the electromaguetie system, as adopted by Weber and most other writers.

Since the form and value of Q have no effect on any of the experiments litherto made, in which the active eurrent at least is always a closed one, we may, il wo please, ndopt any walue of Q Which appears to us to simplify the formulae.

Thns Ampere assumes that the loree between two elenents is in the line joining them. This gives $Q=0$,

$$
\begin{equation*}
A=\frac{1}{r^{2}}\left(\frac{d r^{\prime}}{d s \cdot d r}-2 r \frac{d^{\prime} r^{2}}{d s d^{\prime}}\right) i \cdot d s \cdot d s^{\prime}, \quad S=0, \quad S^{\prime}=0 \tag{12}
\end{equation*}
$$

Gtassmam * assumes that two elements in the same staight lime have no mutual action. Thats grives

$$
\begin{equation*}
Q=-\frac{1}{2 r^{2}}, \quad R=-\frac{3}{2 r} d d^{2} \gamma d_{s^{\prime}}, \quad S=-\frac{1}{2 r^{2}} d r, \quad S=\frac{1}{2 r^{2}}, \frac{d r}{d \theta} . \tag{43}
\end{equation*}
$$

We might, if we pleased, assume that the attraction between two elements at, a giwen distaree is proportional to the cosine of the angle between them. In this case

$$
\begin{equation*}
Q=-\frac{1}{r^{2}}, \quad T_{2}^{2}=\frac{1}{r^{2}} \cos \epsilon, \quad S=-\frac{1}{r^{2}} \frac{d r}{d s^{\prime}}, \quad S=\frac{1}{r^{2}} \frac{d r}{d s} . \tag{14}
\end{equation*}
$$

Finally, we might assume that the attraction and the oblique fores depend only on the angles whele the elements make with the line joining them, and then we shonkd lave

$$
\begin{equation*}
Q=-\frac{2}{r^{\prime}}, \quad h=-3 \frac{1}{r^{2}} \frac{d r^{2}}{d s} \frac{d r}{d s^{\prime}}, \quad S=-\frac{2}{r^{2}} \frac{d r}{d s^{\prime}}, \quad S=\frac{2}{r^{2}} \frac{d f^{r}}{d g} . \tag{45}
\end{equation*}
$$

527.] Of these forr different assumptions that of Amperve is undonbtedly the best, since it is the only one which makes the forees on the two dements not only equal and opposite but in the stratght line which joins them.

$$
\text { - Pogtr Anem. lxiv. p. } 1 \text { (} 1845 \text {). }
$$

GHAPTER III.

```
ON JYGR INDUGFION OE ELECTTRTC CURRENTS.
```

5.8.] The discovery by Örsted of the magnetic action of :us electric carrent led by a direct process of reasoning to thati of magnotization by electric enrrents, and of the mochamial action betwecu electric currents. It was not, however, till 1881 that Paralay, who had been lor some time endeavouring to produce electric enrrents by magnetic or electric action, discoverel the conditions of magneto-clectric induction. The methed which Faraday employed in his researches consisted in a constant appeal to experiuent as a menns of testing the trouth of his idens, and a constant cultivation of ideas under the direet influence of experiment. In his published researelues we find these idens expressed in language which is all the better fitted for a maseent scienec, becanse it is somewhat alien from the style of plysicists who have been aceustomed to established mathematieal forms of thoughit.

The experimental investigation by which Ampere established the laws of the mechanical action between electric currents is one of the most brilliant achicyements in sejence.

The whole, theory and experiment, seems as if it had leaped, full grown and full armed, from the larin of the 'Newton of clectricily.' It is perfect in form, and unassailable in accuracy, aud it is summed up in a formula from whieh all the phenomena may be deluced, and which must always remain the cardimal formula of electro-lynamics.

The method of Ampere, however, though cast into an inductive form, does not allow ns to trace the formation of the ideas which guided it. We can scaredy believe that. Amperte really discovered the law of action ly means of the experiments which he descriles. We are led to suspect, what, indeed, he tells us himself*, that he

[^15]disenveret the lank hy some process which he las hut shemn us, and that when ho had afterwats built up a perfeet demonstration he removed all traces of the seaffilding by which he had raisel it.

Farmany, ot the other hand, shews us his unsuccessfol as well as his suecessful experiments, and his erude ideas as well as lifis developed ones, and the reader, however inferior to him in inductive power, feds sympathy even more than chlnitation, and is tempted to berlieve that, if he had the opportunity, he foo would be a discoverer. Every stulent therefore shonlil reat Ampère's resentel as a splendid example of scientifio style in the statement of a discovery, but he should also stualy Faraday for the cultivation of a secentific spinit, by weans of the action and reaction which will take place between newly discovered facts and mascent idens in his own mind.

It was perhaps for the adyantage of science that: Faraday, thouggh 1horoughly monscions of the fundamental forms of space, time, and forec, was not a professed mathematician. He was nol tempted to enter into the many interesting researehes in pure mathematics which his discoverios would have suggested if they hatd been exhibited in a mathematical form, and he diat not feel called upos cither to force his results into a slape acceptable to the mathematioal taste of the time, or to express them in a form which mathematicians might attack. He was thars left at leesure to do his proper worls, to coordinate lis ideas with his faets, and to express them in natural, untechnical language.
It is mainly with the hope of making these idens the basis of a mathematical methond that I lave undertakea this treatise.
529.] We are acenstomed to consider the universe ns made up of parts, and mathenaticiuns ustally locgin by considering a single partiole, and then conceiving its relation to mother partiele, and so on. This hats generally been sapposed the most natural method. To comecive of a particte, however, requires a process of abstraction, sinee fill our perepptions are related to extended bodies, so that the idea of the all that is in our conseionsuess at a given instant is perhaps as primitive an idea as that of any individual thing. Hence there may be a mathematieal method in which we premed from the whole to the parts instead of from the parts to the whole. For example, Juelid, in lris first book, conceives a line as traced out lyy it point, a surface as swept out ly a line, and a solid as genurated by a surface. Bat he also defines a surfice as the
boundary of an solid, a line as the edge of a surface, aud a point as the extremity of a lime.

In like ntaner we may conotive the potential of a material system as a function found by a certain process of integration with respect to the masses of the hodies in the field, or we may sulphose these masses themselves to have no other mathenatienl meaning than the volume-intugrets of $\frac{1}{4 \pi} \nabla^{2} \Psi$, where Ψ is the petential.

In electrical investigations we may use formulae in which the quantitios involved are the distanees of ectain bodies, and the deetrifications or curtents in these bodies, or we may use formulac which involve other quantities, each of which is continnous through all sprace.

The mathematien process emploged in the first metliod is integration along lines, ower surfaces, and thronghout finite spaces, those employed in the second methot are partial differential equations and integrations thoughout oll space.

The method of Faralay seems to be intimately related to the second of these modes of treatment. He never considers bodies as existing with nothing between them but their alistanee, und acting on one another necording to some finction of that distance. He conceives all space as a field of foree, the lines of lowe being in gencral curved, and those due to any booly exteuding from it on all siles, their directions being modified by the presence of other bodies. Ho even spealis* of the lines of fore belonging to a body as in some sense part of tself, so that in its aetion on distant bodies it cannot be satid to act where it is not. This, however, is not a dominant iden whth Fanday. I think he wouk rather hate said that the fied of space is lull of lines of toree, whose arrangement depends on that of the bodies in the field, and that the mechunical aud clectrical action on each body is determined by the lines which abut on it.

PHENOMENA OF MAONETO-BIECTLIC INDUCTION \dagger.

530.] 1. Tuluction by Fariation oy the Primary Curvent.

Jet there be two wonducting eirenits, the Primary and the Scondary eircuito. The primary cisent is connected with a voltaic

[^16]battery by which the primary current may he produced, maintained, stopped, or reversed. Tho secoudary cirenit includes a galvanometer to indiente any currents which may be formed in it. This gralvanometer is placed at such a distance from all parts of the primary cirent that the primary current has no sensible divect intluence on its indications,

Let part of the primaty circuit consist of a straight wire, and part of the seconding circuit of a straight wire near, and patallel to the first, the other parts of the circuits being at a grauter distance from each other.

It is foum that at the instant of sending a current throngh the straight wise of the primary circuit the galvanometer of the secondary circuit indieates a eurrent in the secondary straight wire in the opmasite direction. This is callod the indtreed eurrent. If the primary current is mantanined constant, the indued carrent soon disappears, and the phimary current appears to produce no effect on the secondary cirenit. If now the prinary current is stopped, a seemadary enrent is olservel, which is in the same divection ats the primary curcent. Every variation of the promary current prolluces alectromotive force in the secondary eirenit. When tho primary current increases, the electromotive force is in the opposite direction to the current. When it diminishes, the electronotive force is in the same divection as the current. When the prinary current is constant, there is no electromotive fores.

These effects of induction are hacreased by lringing the two wires nearer togethes. They are also increased by forming them into two circular or spiral coils placed close together, and still more ly placing an iron rod or a bunde of iron wires inside the coils.

2. Iufluction by Aotion of the Primury Citmit.

We have seen that whers the primary current is maintained constant and at rest the secondary curmut rapidly dismpears.
Now let the primary enrent be maintanded constant, late let the primary stratght wiow bo made to approath the secondury straight wire. During the approach there will be at secondary curgent in the opposife direction from the primary.

If the primary cirent, lof moved away from the seconlary, thero will be at secondary current in the same direction as the primary.

3. Intuction by Motion of the Secondary Circruit.

If the secondary cirenit be moved, the scoondary curvani is
ppposite to the primary when the semomery wire is apponehing the primary wire, and in the same direction when it is receding from it.

In all enses the direction of the secondary eurent is such that the medranical action between the two conductors is opposite to the direation of motion, being a repulsion when the wres are apm proaching, and an attaction when they are receding. This wery important fiect was established ly Lenz *.

4. Induction by the Relalive Wotion of a Mragnet and the Secondryy Ctreutl.

If we sulbstitute for the primary circuit a magnetic shegl, whose edge coineides with the circuit, whoge strength is numerically equal to that of the enrent in the circuit, and whose anstaal fice corresponds to the positive faed of the evenity then the phemomena protucel by the relative motion of this shell and the secondary cirenit are the same as those olserved in the ense of the primary cirenit.
531.] The whole of these phenomena may be sammed up in one law. When the number of lines of magnetie induction which pass throngh the secondary circuit in the positive direction is altered, an electromotive force acts round the cirent, which is measured by the rate of dectuase of the magnetic indnction dirough the cireuit.
532.] For instance, let the rails of anthwy be insulated from the earth, but comsected at one termintus through at galwnometer, and let, the edrenit be completed luy the wheels and axte of a railway enriage at a distance x ltam the terminas. Negleating the lieight of the axde alowe the fovel of the rails, the indaction throngh the secondury circuit is the to the vertieal component of the earth's magnetie force, which in norfhem latitudes is elirected downwards. Hence, if b is the gatage of the railway, the horizontal twa of the curcuit is b_{a}, and the surfoc-integral of the magnetic induction thromgh it is $Z 4 x$, where Z is the wertienl component of the magnetic foree of the earth. Since Z is duwnwards, the lower face of the circuit is to be reckoned positive, and the positive (lirection of the circuit itself is north, east, south, west, that is, in the direction of the sm's apprent diamal comme.

Now let the cartage loe set in motion, then a witl yary, and
there will he an dectromotive force in the circuit whose volue is $-2 b^{d x} d d^{2}$

If $\%$ is increasing, that is, if the carriage is moving away from the terminus, this clectromotive force is in the negative direction, or north, west, soulh, east. Heree the direction of this fore through the axle is fiom right to left. If a were diminishing, the allsolute divection of the foree would bee reversed, lont sinee the direction of the motion of the carriage is also reversul, the electromotive force on the axle is still from right to left, thon ohserver in the enrringe being atways supposed to move face forwards. In southern latitudes, where the south end of the needle dips, the electromotive force on a moving body is from left to right.

Hence we have the following rule for determining the clectromotive force on to wire moving through a field of magnetie forec. ${ }^{1}$ lace, in imagination, your head and foet in the position necupiced by the onds oll a compass neenle which point mordi and south respectively; turn your face in the forward direction of motion, then the electromotive fored due to the motion will loe from left to right.
533.] As these directional relations are important, lot us take another illustration. Suppose a metal girde hiad round the earth at the equator, and a metal wire laid along the meridian of Greenwich from the equator to the north pole.

Let a great quadrautal arch of metal bo construeted, of which one extremity is pivoted on the north pole, while the other is carried pound the equator, sliding on the great girdle of the earth, and following the sun in his daily course. There will then be an electronmtive force along the moving guadrant, acting from thie pole towarls the equator,

Fig. 31.

The electromotive force will be the same whether whe suppose the earth at rest and the quadram mowed from east to west, of whet loce we suppose the gruadrant at rest and the cartl tumed from west to east. If we suppose the earth to rotale, the whedromotive foree will be the same whatever bo the form of the part of the circuit fixed in space of which one end tomehes one of the poles
and the other the equator. The current in this part of the eirenit is from the pole to the equator.
'Ihe other part of the circuit, which is fixed witls respeet to the carth, may also be of ouy form, and cither within or withont the cartly. In this jart the current is from the equator to either pole.
534.] The intensity of the electronotive force of magneto-etectric induction is entirely independent of the nature of the sulstance of the conductor in which it acts, and also of the mature of the conductor which earries the inducing enrrent.

To shew this, Faraday* imade a conductor ol two wires of diflerent. metals insulated from one another by a silk covering, but twisted together, and soldered together at one end. The other ends of the wires were connected with a galvanometer. In this way the wires were similarly situated with respect to the primary circuit, hut if the electromotive fore were stronger in the one wire then in the other it would produce a carrent which wond be indicated by the galvanometer. He found, however, that such a combination may be exposed to the most powerful electromotive forees due to inthection without the galvanomoter leeng alleeted. He also found that whether the two branches of the compound conductor consisted of two metals, or of a metal and an electrolyte, the galvanometer was not aftected \dagger.

Hence the clectromotive force on any conductor ilepends only on the form and the motion al that conductor, together with the strength, form, and motion of the electric curventa in the field.
535.] Another negative property of dectromotive foree is that it lars of itself no tenfency to cause the mechanical motion of any boly, but only to cause a current of electricity within it.

If it actually produces a current in the body, there will be mechanical action due to that curvent, but if we prevent the enrent from leing formed, there will be no mechanical action on the hodly itself. If the borly is electrified, however, the eleetromontive force will move the hody, as we have described in Dilectrostatices.
536.] The experimental investigation of the laws of the induetion of electric carrents in tixed cirenits may lie conducted with considerable acenracy ly methols in which the electromotive furee, and therefore the current, in the galvanometer eirenit is rendered zero.

For instance, if we wish to shew that the induction of the coil

* Letp. Then, 刀贝t + Ib., wofl
A on the coil X is equal to that of Z upon Y, we place the first pair of coils A and A at a sufficient distance from the second pair

Fig. 82.
B and F. We thern connect A and B with a woltaic badtery, so What we can make the same prinaty current how through A the that positive direction ant thom throngh A in the negative divection. We also comect \mathcal{S}^{\prime} and J^{\prime} with a galvanometer, so that the secondary curvent, il it exists, sluall flow in the same direction throngh I and J in series.
'Then, il' the induction of A on X is equall to that of A on F, the galvanomeler will indieate no induction enrent whon the battery cincuit is closed or broken.

The secmacy of this method increases with the strength of the [rimary current and the sensitiveness of the galvanometer to inslantaneous eurments, and the experiments are much more easily performed than those relating to electromatnetie attractions, where the conductor itacti las to be delicately suspended.

A very instructive series of well devised experiments of this kind is described by Professor Peltei of Pisi *.

I shall only indicate brefly sone of the laws whel may be proved in this way.
(1) The clectronotive forec of the juduction of one divent on arother is independent of the athen of the section of the conduetors and of the material of whith they are mate.

For we can exthate any ond of the cireuits in the experiment for another of at difleremt section and material, but of the same form, withont attering the result.

[^17](2) The indnction of the circait A on the circait I is equal to that of X upmes A.

For if we pat A in the galvanometer cireuit, and X in the bathery circuit, the equilibrinm ol electronative fore is uot disturbed.
(3) The intuction is proportional to the indacing current.
lor if we lanve secertaned that the induction of A on X^{\prime} is equal to that of h on $J_{\text {, and also to that of } C \text { on } Z} / z_{1}$ we may madie the battery elrment fist flow through A, and ther divide itsell in any proportion between B and C * Then if we eonmed X reversed, γ and $/ /$ rirect, all in series, with the galvanometers the electronotive loree in X will balanee the shm of the electromotive forces in γ and \%
(4) In patis of eirenits forming systems geometrictly similar the ineluetion is proprtional to their linear dimensions.

For if the three pairs of circuits above mentioned are all similat, but if the lisem dimension of the first pair is the sum of the corresponding linenr dimensions of the second and thind pais, then, if A, F_{3}, ond O are connected in series with the lattory, and X reversed, V and Z also in series with the galwanometer, there will be equilibrium.
(5) The electromative fore produedt in a coil of to windings by a current, in a coil of m windings is proportional to the product mo.
537.] For experimuts of the kind we have been considering the folvamometer should be as sensitive as possible, and its needle as lightu as possible, so as to give a sensible indieation of a very small trumsient current. The axperiments on induction the to motion requive the needle to have a somewhat longer period of vibnation, so that there may le time to eflect certan motions of the conductors while the nedle is not far from its position of equilibrium. In the former experiments, the electromotive forces in the gelvanometer ejretait were is equilibrium during the whole time, so that no eurrent paseed thronglt the galvanometer coil. In those now to be duseribed, the chetromotive forees ant first in one direction and then in the other, so as to prodnee in sucerssion two curents in opposite chirechons through the galvanometer, and we lrave to shew that the impulses on the galluanmeter noedu doe to these successive currents are in cortan cases opual and opposite.

The theory of the application of the galwanometer to the measaremont of transiont enrrents will lue considered more at length in Art, 748 . At prement it is sulicint for our purpose to ob-
serve that as long as the gralymometer needle is neme its prosition of equiliturinm the deflecting force of the current is proportional to the enfent itself, and if the whole time of action of the earrent. is suall compared with the period of vibation of the needle, the final velocity of the magnet will be proportional to the total quautity of electricity in the current. Ifenee, if two currents pass in rapiod succession, conveying equal gnantifies of electricity in opposite directions, the needle will be left withont any linal velocity.
Thus, to shew that the induction-curents in the secondary cirenit, due to the closing and the breaking of the primary cirenit, are equal in total quantity but opposite in divetion, we may artange the prinary cirenit in comexion will the lattery, so that thy touching a key the cursent may be sent through the primary circuit, or ly removing the finger the enntact may lo broken at pleasure. If the key is pressed down for some time, the galwanometer in the secondary circuit indientes, at the time of making contect, a tramsent curvent in the opposite difection to the primary curpent. If contact be mantained, the induction current simply passes and disappents, If we now break eontact, another transient enrenf, passes in the opposite direction through the seendary eirenit, and the galvanometer needle receives an impulse in the opposite divection.

But if we make contact only for an instant, and then break contact, the two inducel curvents pass thronght the galvanometer in sueh rapid succession that the weedle, when acted on by the first current, has not time to move a sensible distance from its pasition of equilibriun leftore it is stopped by the seemd, and, on ateemat of the exact equalidy between the quantities of these transienal currents, the weelle is stopped dend.

If the needle is watchet carefilly, it appears to be jerked suddenly from one position of rest to amblier pasition of rest very near the first.

In this way we prove that the grantity of electricity in the induction carrent, when contact is lmokem, is exactly equal amel opposite to that in the induction ennent when contact is made.
538.] Another application of this method is the [ollowing, whith is given by Felici in the sceatul series of his henearehed.
It is always possible to find many different positions of the

positions of the two coils are in such cases suid to be conjugate to eactr other.

Leti B_{1} and D_{2} be two of these positions. If the coil B be suddenly moved from the position B_{1} to the position B_{2}, the algebraical sum of the transient currents in the coil B is exactly zero, so that the galvanometer meedle is left at rost when the motion of $l s$ is completed.

This is trie in whatever way the coil B is moved from B_{1} to B_{2}, and also whether the current in the primary coil A be contsuned constant, or made to vary durimg the motion.

Again, let $f^{\prime \prime}$ be any other position of 73 not conjugate to $A_{\text {s }}$ so that the making or breaking of contact in A produces an induction curmat when B is in the position B^{\prime}.

Let ile contane be made when B is in the conjugate position B_{1}, there will to no indnetion current. Move β to $/ f$, there will he an induction carrent due to the motion, but if B is moved rapid] y to $A 3$, and the primary contact, then loroken, the induction curvent due to breaking contact will exactly annal the effect of that due to the motion, so that the galvanometer needle will be left at rest. Hence the carrent due to the motion from a conjugate position to any other position is equal and opposite to the curvent due to breaking contact in the latter position.

Sinee the effect of making contact is equal and opposite to that of l lrenking it, it follows that the efficet of making contact when the coil D is in amy position $/ J^{\prime}$ is equal to that of bringing the coil from any conjugate prosition B_{1} to f° while the current is flowing through A.

If the change of the relative position of the coils is mate by moving the primary circuit instead of the secondary, the result is found to be the same.
539.] It follows from these experiments that the total induction ofrent in $l f$ during the simulaneous motion of A from A_{1} to A_{2}, and of $l f$ from B_{1} to A_{2}, white the curtent in A changes from γ_{1} to γ_{2}, depends only on the initial state A_{1}, l_{1}, γ_{1}, and the final state A_{0}, B_{n}, γ_{2}, and not at all on the nature of the intermediate states through which the systum may pass
llence the value of the total inductions eurrent must be of the form

$$
I\left(A_{2}, H_{2}, \gamma_{2}\right)-P^{\prime}\left(A_{1}, B_{1}, \gamma_{1}\right),
$$

where F is a function of A, B, and γ.
With respeet to the form of this function, we lnow, by Art. 58e, that when there is no motion, and therefore $A_{1}=A_{2}$ and $B_{1}=B_{2}$,
the indutetion current is proportional to the primary current. Hence γ enters simply as a factor, the other factor being a function of the form and position of the circuits A and B.
We also know that the valne of this function depends on the relative and not on the absolute positions of A and h, so that it must be eapable of being expressel as a function of the distances of the different elements of whicla the cirenits are eomposed, and of the angles which these elements make with eath other.

Let II be this function, then the total induetion current may be written

$$
C\left\{M_{1} y_{1}-M H_{2} y_{2}\right\}
$$

where C is the combetivity of the secondary eirenit, and M_{1}, γ_{1} wre the original, and M_{2}, γ_{2} the final walnes of M and γ.
These experiments, therefore, shew that the total eurrent of induction depends on the elange which takes place in as cutain quantity, M_{γ}, and that this clange may arise sither from variation of the primary curtent γ, or from any motion of the primary or secondary circuit, which alters Mr.
540.] The conception of such a quantity, on the changes of which, and not on its absolute magnitude, the induction envent durnds, occurred to Faraday at an carly stage of his researehes*. He observed that the secondary cirenit, when at rest in an clectromagnetie field which remains of constant intensity, does not shew any electrical eflect, whereas, if the sume state of the fied had been suddenty produced, there would have been a current. Again, if the primary circuit is removed from the field, or the magnetic forees abolished, there is a current of the apposite kind. He therefore recognised in the sceondary circuit, when in the electromagnetie field, a 'peculiar electrical condition of matter,' to which he grave the mame of the Elcetrotonic State. He atterwards found that he could dispense with this idea by means of considerations founded on the lines of magnetio force \dagger, hut even in his latest resenreles ${ }_{4}$, he says, 'Again and again the idea of an electrotomic states has been forced upon my mind.'

The whole history of this idea in the mind of Forraday, as shewn in his published rescarches, is well worthy of study. By a coarso of experiments, guided by intense application of thourht, but withont the aid of mathematical calculations, he was led to reengrise the existence of something which we now know to dee a mathematical quantity, and which may even be called the findamental

[^18]quantity in the theory of electrontigntiom. But as he was led tup to this conception hy a perely experimental path, he ascribed to it a physionl existence, and supposed it to be a peculitur eondition of mater, though he was realy to atbuton this theory as soon as he could explan the phenomena by any more fambilar forme of thought.

Otlow investigators were long afterwats led up to the same idea by a purdy mathomatical path, lut, so far as I linow, none of them reeognised, in the refined mathematical iden of the potential of two cirenits, Fraday's bold hypoilesis of an electrotonio state. 'Ilinse, thorefore, who have apprached this sulyject in the way pointed out by those eminent investigators who lirst reduced its laws to il mathematical form, have sometimes found id diflealt to ippreciate the scientilic neonaty of the statements of laws whidn Faraday, it the first two series of his Researehes, has given with such wonderlinl completencas.
'Thee scientifie valte of Faraday's coneption of an electrotonic state consists in its directing the mind to lay hold of a wertan quantity, on the changes of which the netual phenomena depend. Withond mati greater degree of development than Furalay gave it, this conception does not easily lend itsell to the explanation of the

541.] A mothod which, in Faralay's hands, was far more powerful is that in which he makes ase of those lines of magnetic losed which were always in his mind's eye when contemplating his magnets or electric currents, and the delineation of wheth by menns of iron filings he righty regaried * as a most waluable at to the experimentalist.

Faraday looked on these lines as expressing, not only by their alireetion that of the magnetic force, but by their number and coneentration the intensits of that foree, and in his later resetrehes \dagger he shows how to conceive of unit lines of foree. I hawe explathed in warions parte of this treatise the rolation between the properties which lamay recornised in the lines of toree ant the mathematical conditions of electric ath magnetie forces, and how Fimalay's notion of unit lines and of the mumber of lines within certain limits may be made mathematically precise. See Arts. $8 y_{3}$ 404, 490.

In the first series of his Researches the slews denty lhow the direction of the current in a conducting eirentit, part of wheh is
moverble, depends on the mode tur which the moving prate euts throngh the lines of magnetic lorec.

In the second series \% he shews how the phenomena protheed Jy variation of the strength of a eurrent or a magnet may lee explained, by supposing the system of lines of foree to expand from or contamel towards the wine or magnet as its prower rises or falls.

I am not certain with what degree of cleamess he fhen hedd the doctrine afterwards 50 distinctly laid down by himt, that the moring eondnctor, as it euts the lines of force, sums up the action due to an atrea ou section of the lines of fored. This, howerec, appars no new wiew of the case after the investigations of the second series + have luen taken into necount.

The conception which Paraday lad of the continuty of the lises of foree predtedes the possilitity of their sudtenty startinge into existure in a phee where there were none lefore. If, thereforex the number of lines which pass through a condueting eiverail iss made to wary, it on only bo lyy the cirenit moving atross tho lines of limee, or else by the lines of fore mowing nemess flue cirenit. In either ease a curvent is remerated in the eircuit.

The number of the liues of foree which at any instant pass throngh the circait is mathematically equivalent to Farudays sarlicer concepaim of the electrotonie state of that circuit, and it is represunted by the quantity M_{γ}.

It is only since the definitions of electromative fore, Arts. B0, 274, and its measurement have heen made more precise, that we eat ennenate completely the trme law of magneto-electric induction in the following terms:-

The wotal electromotive force acting' round a circnit at any instant is meabured by the rate of decrense of the number of lines ol' magnetic fore which pass through it.

When integrated with respeet to the time this statement becomes :-

The time-integral of the total ehectrometive force acting round any circuit, together with the mumber of lines of magelic foree which pass through the circuit, is a constand quantity.

Instead of speaking of the number of lines of' mugnetice fored, we may speak of the magrotice induetion throngh the circuit, or the surface-integral of magnetic induction extonded over any surfece bounder by the eirent.

We shall retum again to this methool of Furalay. In the mean time we must enmerate the theories of induction which are founded on other considerations.
Teur's Yave,
542.] In 1834, Lenz* cmunciated the following remarkable relation letween the phonomena of the mechanieal action of eleetric currents, as defined by Ampere's formula, and the induction of electric eurrents by the relative motion of conductors. An earlier attempt at a statement of such a relation was given by Ritchie in the Philesophtad Magrazine for January of the same yeat, but the direction of the induced eurrent was in every case stated wrongly. Yuenz's law is as follow:-

If a constant current flows in the mimary cirenit A, and if, by the motion of A, or of the secondary cirorib B, a cmrent is induced in B, the direction of this induced current will be such chat, by its clectromagnetio aetion on A, it lends to oppose the relative mation of the circuits.

On this haw 3. Netumant founded his mathematical theory of induction, in which he established the mathematienl laws of the induced currents due to the motion of the primary or secondary conluctor. He shersed that the quantity M, which we lave callecf the potential of the one circuit on the other, is the same as the electromagnetice potential of the one circuit on the other, which we have already investigated in connexion with Ampère's formula. We may regard J. Neumann, therefore, as having completed for the induction of currents the mathernatical treatment which Ampere had applied to their meelanical adtion.
543.] A step of still greater scientific importance was soon after made by Helmholtz in his Frsay on the Consercation of Foree \ddagger, and by Sir W. Thomson §, working somewhat later, butt independently of Helminolez. They shewed that the induction of electric eurrents discovered by Faraday contd be mathematically deduced from the electromagnetic actions discovered by Östed and Ampere by the application of the principle of the Conservation of Energy.

Helmholtz takes the case of a conducting circuit of resistance $F_{\text {, }}$, in which an electromotive force A, arising from at voltaic or thermo-

[^19]clectric arrangement, acts. The carrent in the circuit at any instunt is $/$. He supposes that a magnet is in motion in the theighbourhood of the circnit, and that its potential with respect to the conductor is F, so that, during any small interval of time d, the energy commumiented to the magnet by the eleetromagnetic action is $I \frac{d V}{d i d t} d$.

The work done in gencrating leat in the circuit is, by Joules law, Art. 242, I^{3} St th, and the work spent by the eleetromotive force A, in maintainiug the current F during the time $A t$, is $A T$ dlt, Hence, since the total work done must be equal to the work spent,

$$
A I d t=I^{2} \pi d t+I^{d V} d t
$$

whence we find the intensity of the eurrent

$$
I=\frac{A-\frac{d V}{d t}}{R}
$$

Now the value of A may be what we please. Let, therefore, $A=0$, and thent

$$
I=-\frac{1}{R} \frac{d F}{d l}
$$

or, there will be a current due to the motion of the magnet, equal to that due to an electromotive force $-\frac{d P}{d t}$.

The whole induced current during the motion of the magnet from a place where its potential is V_{1} to a place where its potential is F_{2}, is

$$
\int T d l=-\frac{1}{R} \int \frac{d T}{d l} d l=\frac{1}{n}\left(V_{1}-V_{2}\right)
$$

and therefore the total current is independent of the velocity or the path of the magnet, and depends only on its initial and final positions.

In Helmbolta's original investigation he adopted as system of units founled on the measurement of the heat generated in the condructor by the current. Considering the wit of current as arbitrary, the unit of resistance is that of a conductor in which this mit eurrent generates unit of heat in unit of time. The unit of electromotive force in this system is that required to produce the unit of enrrent in the conductor of unit resistance. The aloption of this system of units neeessitates the introduction into the equations of a quantity a, which is the mechanical equisalent of the unit of heat. As we invariably adopt either the electrostatic or wol. II.
the electromagnctic system of units, this factor does not necer in the equations here given.
544.] Helminolta also deduess the current of induction when a conducting eircuit and a circuit oarying a constant carrent are made to move relatively to one another.
Let $R_{1,2} A_{2}$ be the resistances, f_{1}, A_{2} the eurrents, A_{1}, A_{2} the external clectromotive forecs, and V the potential of the one cireuit on the other due to mit current in cach, then we have, as belowe,

$$
A_{1} A_{1}+A_{z} I_{2}=I_{1}^{2} A_{1}+I_{2}^{2} R_{2}+I_{1} I_{2} \frac{d V}{d t} .
$$

If we suppose I_{1} to be the primary current, and I_{9} so much less than I_{1}, that it does not ly its induction produce any sensible alteration in I_{1}, so that we may put $I_{1}=\frac{A_{1}}{X_{\mathrm{T}}}$, then

$$
I_{2}=\frac{A_{2}-J_{1} d J^{r}}{R_{2}}
$$

a result which may be interpreted exactly as in the case of the magnet.

If we suppose I_{2} to be the primary current, and J_{1} to be very much smaller than I_{2}, we get for I_{1},

$$
I_{1}=\frac{A_{1}-I_{2} \frac{d V}{d t}}{h_{1}} .
$$

This shews that for equal eurrents the electromotive force of the first cirenit on the second is equal to that of the second on the first, whatever be the forms of the eirents.

Helmholtz does not in this memoir disenss the case ol' induction due to the strengthening or weakening of the primary current, or the induction of a current on itself. Thomson *applied the same principle to the determination of the mechanical value of a current, and pointed ont that when work is done by the mutual action of two constant currents, their mechanical value is increased by the same amoment, so that, the battery lus to supply donble that anoment of work, in addition to that required to maintain the currents against the resistance of the circuits \dagger.
545.] The introduction, ly W. Weber, of at system of absolute

[^20]Thits for the mengarement or elechrical quatutites is onm of the mont important steps in the progress of the seimos. Having alnewty, in conjunction with Ganss, placed the measurement of magnetic quantities in the first mank of methons of precision, Weher proceeded in his Fhectrodyuamic Merstrements not only to lay down sound priteiples for fixing the units to be employed, but tio malse determinations of partientar electrical quatitios in terms of these mits, with a degree of aceutacy proviously unattempted. Both the electromagnetic aud obe etectuostatie systemen of unts owe their development and practical appliention to these resenches.

Weber has also formed a general theory of electrie action lrom which be deduces both electrostatic and electronagnetic fores, and also the induction of electric currents. Wo shall consider this theory, with some of its more recent developments, in a separate ellapter. Sed Art, 846 .

CHAPTER IV.

```
ON THE INDUCTION OF A CUPRRNT ON ITSELP.
```

546.] Faramay has devoted the nintly series of his Researehes to the investigation of a class of phenomena exhibited by the cherent in a wire whith forms the coil of an electromagnet.

Mr. Jenkin had observed that, although it is impossible to produce a sensible shook by the direct action of a voltaic system consisting of only one pair of plates, yet, if the current is made to pass through the coil of an electromagnet, and if contact is then broken between the extremities of two wires held one in each hand, at smart shock will be felt. No such shock is felt on moking contact.

Faraday shewed that this and other phenomena, which he desoribes, are due to the same inductive action which he had alrendy observed the current to cxert on neighbouring conductors. In this ense, however, the inductive action is exerted on the same conductor which carries the current, and it is so much the more powerful as the wire itself is nearer to the different elements of the current than any other wire can be.
547.] He observes, howover *, that * the first thouglt that arises in the mind is that the electricity circulates with something like momentam or inertia in the wire.' Indeed, when we consider one particular wire orly, the phenomena are exactly analogons to those of a pipe full of water flowing in a continued strenm. If while the strean is flowing we suddenly close the ent of the tube, the momentum of the water produces a sudden pressure, which is much greater then that due to the head of water, and may be suffieient to burst the pipe.

If the water has the means of esceping through a narrow jet

[^21]when the prineipal apertuve is closed, it will be projected with a veloeity mach greater that that dae to the head of waler, and if it oan escape throngh a value into a elamber, it will do so, even when the pressure in the chamber is preater Uhan that due to the head of water.

It is on this primeiple that the hydratio tum is construeteal, by which a small quantity of water may he raised to a great height by menns of a large quantity flowing down from a mueh lower level.
548.] These effects of the inertia of the Haid in the tube depend solely on the quantity of fluid rumuing through the lube, on its length, and on its section in different parts of its Jength. They do not depend on anything outsitle the tube, nor on the form futo whel the folbe may be loent, provided its length remams the sume.

In the ense of the wive conveying a cuntent this is frot the ense, for if" a long wire ts doublest on itsell the effect is very small, il The two prats ate separaied from each onther it is gryenter, if it is coiled up into a helix it is still groater, and gruatest of all ill, when so coited, a piece of soft iron is phaced insinfe the coil.
Again, if a second wire is coiled upr with the first, but insulated from it, then, if the second wire flows not form a closed circuit, the phenomena are as before, but if the second wire forms a closed circuit, an induction emment is formed in the second wire, and the effects of self-induction in the first wire are retarded.
549.] Tluese results shew clearly that, if the phenomena are dete to monentum, the monsentam is certain? y not that of the electricity in the wire, becnuse the same wiro, conveyng the same corrent, exhibits effects which differ atcothing to its lorn ; and even when its form lemains the same, the prosence of other bodies, such as ${ }^{\text {a }}$ phece of iron or a closed metallic circnit, afleets the result.
550. It is diflicult, however, lor the mind which las once recognised the amalopy botween the phemomena of self-intuction ath threse ol' the motion of matemat horlies, to abandon altogether the belp of this analogy, on to admit that ju is entively superficial amd mislending. The fumdamental dynamienl telen of unatter, as capable by its thotion of beoming fhe recipient of momenturn and of energy, is so intermomen with our forms ol thought that, whenexer we cotch a glimpse of it in any part of mature, we feet that, a path is lefore us leading, sooner or later, to the complete understornding of the subject:
5.51.] In the case of the electrie curvent, we find that, when the ulectronative force legins to act, it dues not at once produce the full curtent, but that the current rises gradually. What is the elactumotive fore doing dating the time that the opsosing resistance is not able to balanee it? It is increasing the electric eurrent.

Now an ortinary foree, acting on a loody in the direction of its molion, increases its monomtum, and eommunientes to it kinetie chergy, or the power of choing work on account of its motion.

In like manoer the neneststed part of the electromotive fore has Ween employed in increasing the efectrio curvent. Has the electric cument, when thas proflucel, either momentum or kinetic energy?

We have alrearly shewn that it lase somelthing very like momentnm, that it resists bemg suddenly stopped, and that it oun exert, for in short time, a great electromotive force.

But a conducting cireuit in which a murent has been set mp has the power of donge work in vintue of this curvent, and this frower cannot be said to be something very like energy, for it is really and truly energer.
"lhan, if the eument be left to itself, it will contime to circulate till it is stopped ly the resistance of the cirenit. Refore it is stopped, however, it will have generated a certain quantity of heat, and the amomat of this heat in dymanical measure is erpal to the enorgy originally existing in the earrent.

Aguin, when the curcent is leff to itself, it may lee made to do meelanieal wort by moving magnets, and the indnetive eflect of these motions will, by luenz's litw, stop the eurrent sooner than the resistance of the eircuit alome would lave stopped it. In this way part of the energy of the enmont may be thansformed anto mechanical work ingtead of lueat.
50.2] It apears, therefore, that asstem contaning an clectric ontrent is a seat of energy of some kind; and since we cath form no coneeption of ath eleetrice enment exeepti as a kinetid phenomenor** its energy mist be kinetic energy, that is to say, the energy whigls a moving body has ian ritute of its motion.

We have nipeady shewn that the clectucity in the wive cannot be considered as the moving body in which we are to find this encrgy, for the energy of a moving body thoes not depend ons anything external to itself, whecus the presence of other bodius near the current altern its endyg'.

We nre therefore led to enquire whether there may not be some motion going on in the space ontside the wine, which is not occupied by the electrie current, bat in which the olectronagnetie effects of the current are manifested.

I shall not at prosent, enter on the reasons for looking it ore $p^{\text {place rather than amother for such motions, or for regardiug these }}$ motions as of one kind rather than another.

What 1 propre now to do is to examine the consequenees of the asamption that the phenomem of the electric current are those of th moving system, the motion beinc commoniented limm one part, of the systern to another by forees, the nature and laws of which we to not yet even attempt to deline, beanse we can climinate these forces from the equations of motion by the method given by Lagrauge for any connected system.

In the neat five chapters of this treatise I mopose to dedtuce the main strueture of the thenry of electricty from a dymaneal hypothesis of this kind, insterd of following the path which hisk led Weber and other investigators to many rematable discoverics sum experiments, aud to conceptions, some of which are as beanafin! as they are bold. I have bhosen this method beenuse I wish to shew that there are other ways of wiening the plenomena which appear to me more satisfactory, and at the sume time are more consistent with the methods followed in the preceding parts of this book than those which proceed on the hypothesis of direct action at a distance.

CHAPTER V.

ON THE EQUATHONS OF MOTION OF A CONNFCTED SYSTEM.
553.] In the fourth section of the second part of his Mreanique Analytigue, Lagrange has given a method of reduenge the ordinary dynamical equations of the motion of the parts of at commeted systen to a number equal to that of the degrees of Fredoni of the system.

The equations of motion of a connected system lave been given in a different form lyy Hamilton, and have led to a great extension of the ligher part of pure dynamies .

As we slall find it neecssaty, in our endeavours to bring electrical [heroment within the frowince of dynanies, to have ont dynamieal idens in a state fit for clirect application to physical iphestions, we shatl devote this chapter to an exposition of these dynamien idens fiom a physical point or view.
554.] The aim of Lagrange whe to brimg dymamies under the power of the calculus. He began by axpessing the ebmentary dphamical relations in terms of the corresponding relations of phet algebuacal quantities and from the equations thus obtained he deduced his final equations loy a purely algebracal process. Cortain quantities (expressing the reactions lobween the parts of the system catled into phay by its plysical connexions) appear in the equations of motion of the component parts of the system, and Lagrange's investigation, as seen from a mathematical point of wiew, is a method of eliminating these quantitios fiom the final equations.

In tollowing the steps of this alimantion the mind is exereised in calculation, and shond therefore be kept free from the intersion of dymamient ideas. Onr aim. on the nther hand, is to entivate

[^22]ont dymanical idens. We therefore ayail ourselves of the labons of the mathematicians, aud retranslate their resalts from the language of the calculus into the langrage of dyamies, so that our words maly call up the mental image, not of some alggelraical process, hut of some property of moving bodies.
The language of dynamics has leen eonsiduably extended by those who have expounded in popular terms the thetrine of the Conservation of Energy, and it will he seen that much of the following statement is suggested by the investigation in Thomson and Tait's Naberal Philosophy, especially the methou of begiming with the theory of impalsive forces.
I have applied this method so as to avoid the explicit wonsideration of the motion of any part of the system exeept the coordinates or variables, on which the motion of the whole depmals. It is doubtless imporlant that the stadent shond be able to drace the connexion of the motion of cach parth of the system with that of the variables, but it is by no meams necessary to do this in the process of obtaining the fimal equations, which are indegendent of the particular form of these comexions.

The Furiubles.

555.] The mumber of degrees of freetom of is system is the number of data which must be given in order completely to determine its position. Different forms may be given to these dhata, lut their number depends on the nature of the system ilself, and canuot le altered.
To fix our idens we may conceive the system comected by means of suitalle mechanism with a number of moveable pieces, eachs eapable of motion along a straight line, and of no other kind of motion. The inagenary meelanism which comects ench of these pieces with the system must be conceived to be free firm friction, destitute of inertia, and incapable of heing strained by the action of the applied forees. The nse of this mechanism is merely to assist the imagination in nseribing position, velocity, and momentum to what appear, in Latrange's investigation, as pare algebraical ģuantities.

Let q denote the prasition of one of the moverble pieces as deftene by its distance from a fixed point in its line of motion. We shall distinguish the values of g corresponding to the different pieces by the suffixes $1, \ldots$, \&e. When we are dealing with a set of ${ }^{\circ}$ quatitics bedonging to one piece only we may omit the suffix.

When the values of all the variables (f) are given, the position of each of the moveable pieces is known, and, in virtue of the irnaginary mechamism, the configuration of the entire system is determined.

The Veloeifices.

556.] During the motion of the system the configuration changes in some delinite manner, and since the configuration at each instant is fully delined by the values of the variables (d), the velocity of every part of the system, as well as its configumation, will be completely defined if we know the values of the variables (q), together with their velocities ($/ d$, or, aecording to Newton's notation, \dot{q}).

The Forces.

557.] By a proper regulation of the motion of the varimbles, :uyy motion of the system, consistent with the nature of the connexions, maty be produced. In order to produce this motion by moving the variable pieces, forces must he applied to these pieces.

We shall denote the force which must be applied to any variable q_{0} by 7_{r}. The system of forees (F) is mechanically equivalent (in virture of the connexions of the system) to the system of forees, whatever it may be, which really protuces the motion.

The Momenta.

558.] When a boly moves in such a way that its conliguration, with respect to the force which acts om it, remains always the same, (as, tor instance, in the case of a foree acting on a single particle in the line of its motion, the moving force is mossured by the rate of increase of the momentum. If F^{\prime} is the moving foree, and p the momentam,
whence

$$
F=\frac{d t}{d / t},
$$

$\rho=\int$
The fime-integral of a foree is called the Impulse of the foree; so that we may assert that the momentrm is the impulse of the foree which would bring the body from a state of rest into the given state of motion.

In the ase of a connected system in motion, the configuration is comtinatly changinge at a wate dependiug on the velocities (i), so
that we ean no longet assume that the momentum is the tirnsintegral of the force which nets on it,

But the inerement of of any wariable tamot be greater than $7^{\prime} \delta t$, where δt is the time during which the increment takes $\mathrm{p}^{\text {dace }}$ and z^{\prime} is the greatest walue of the volocity during that time. In the case of a system moving trom rest under the atction oll forces adways it the same direetion, this is evidently the tian velocity.

If the final velocity amb configutation of the system are given. we may concuive the velocity to be communicated to thre systom in a very small time 0 , the originat configumation diflering from the timal configmation lyy quatities $\delta f_{1}, \delta{ }_{2}$, Se., whicls are less than $g_{1} \delta t_{3} \dot{f}_{2} \dot{d} f_{+}$\&ete, respectively.
'The smatler we suppose the inerement of time δt, the eroater mast lee the impressed forces, but the time-integral, or innulse, of each force will reman finite. 'The limiting valne of the impulse, when the tine is diminished and attimately tanishes, is defined as the insfarfaneows impalse, and the monentum p, cormesponding to any variable g, is detined as the impalse corresponding to that variable, when the system is brought instantamonsly from in state of rest into the given state of motion.

This enncention, that the momenta are epmble of being produced by instantaneons impubses on the system at rest, is introduced only ats a mothod of defining the magnitude of the momenta, lot the momenta of the system depend only on the instantaneons state of motion of the systern, and not on the process by which that state was produed.

Ir a connected system the momentum oorresponding to any vaniahle is in genemal at linems function of the welectios of all the variables, instend of being, as in the dynamies of a partiele, simply proportional to the velocity.
'The impralses required to clange the velocities of the system suddenly from \dot{g}_{1}, \dot{f}_{2}, we. to $\dot{q}_{1}^{\prime}, \dot{g}_{2}$, \&e, ave evidently equal to $\beta_{1}{ }^{\prime}-\beta_{1}, n_{2}{ }^{\prime}-\mu_{2}$, the changes of moment um of the steveral variables.

> Work sone by a Small formadse.
559.] The work done ly the force A_{1} during the inpulse is the s.ace-integral of the foree, or

$$
\begin{aligned}
W & =\int \eta_{1} d \eta_{1} \\
& =\int H_{1}^{T} \dot{7}_{1} d l_{2}
\end{aligned}
$$

If \ddot{q}_{1}^{\prime} is the greatest and $\dot{q}_{1}^{\prime \prime}$ the least value of the velocity \dot{q}_{1} during the action of the force, $/ F$ must be less than

$$
\begin{aligned}
& \ddot{q}_{1}^{\prime} \int F d l \text { or } \dot{g}_{1}^{\prime}\left(p_{1}^{\prime}-n_{1}\right), \\
& \dot{q}_{1}^{\prime \prime} \int F d l \text { or } \dot{q}_{1}^{\prime \prime}\left(p_{1}^{\prime}-p_{1}\right)
\end{aligned}
$$

and greater than
If we now suppose the impulse ffidt to be diminished withont limit, the values of \dot{q}_{1}^{\prime} and $y_{1}{ }^{\prime \prime}$ will approach and ultimately coincide with that of \dot{q}_{1}, and we may write $\mu_{1}^{\prime}-p_{1}=\delta \rho_{1}$, so that the work done is ultimately

$$
\delta W_{1}=\dot{g}_{1} \delta p_{1},
$$

or, the urark hone by a Tery small impmise is ulliwately the grodect of the impmese and the retocily.

furrement of the Kinelic whergy.

560.] When work is done in setting a conservative system in motion, encrgy is commuieated to it, and the system becomes capable of doing an equal smount of work against resistances lectere it is reducel to rest.

The energy which a system possesses in viruw of its motion is called its Kinetic Energy, and is communicated to it in the form of the work done lyy the forees which set it in motion.

If t the the kinetic energy of the system, and if it becomes $T_{\square}+3$, on account of the action of an infinitesimal impalse whose comporments are $\delta p_{1}, \delta h_{2}$, \&ee, the increment $\delta \neq 1$ must be the sum of the 'quantities of worls done by the components of the impulse, or in symmens,

$$
\begin{align*}
\delta T & =g_{1} \delta p_{1}+\dot{g}_{2} \delta p_{2}+\& c, \\
& ==(i(i \delta p . \tag{1}
\end{align*}
$$

The instrntancons state of the system is completely deffued if the rariables and the momenta are given. Hence the kinetie encrgy: which depends on the instantaneous state of the sy-utem, cans le expresed in lerms of the variables (q), and the momenta (p). This is the mode of expressing T introutued by Hamilton. When T is expressed in this way we shall distinguish it by the suffix p, thins, T_{k}.
The complete variation of A_{p} is

$$
\begin{equation*}
\delta T_{p}=\Sigma\left(\frac{d T_{p}}{d p} \delta p\right)+\Sigma\left(\frac{d T_{p}}{d q} \delta q\right) . \tag{2}
\end{equation*}
$$

Tha last tom may lat writen

$$
\leq\left(\frac{d \eta_{p}}{d \eta} j \partial t\right)
$$

Which diminishes with δt, and ultimately vanishes with it when the impulse becomes instantaneous.

Hence, equatinur the coefficients of 0 op in equations (1) and (2) we olbtain

$$
\begin{equation*}
\dot{T}=\frac{d T^{i}}{d i} \tag{3}
\end{equation*}
$$

or, the velocity corvesponding to the mariable q in the diflerential cocfletient of T_{p} with respect to the vorrenpording mowentwi 7 .

We have arived at this rosult by the consideration of impulsive forees. By this method we lave avoided the consideration of the change of confighation during the action of the foress. But the instantancons state of the system is in all respeets the sathe, whether the system was brought from a stote of rest to the given stato of motion by the transient application of impulsive forene, or whether it arrived at that state in any manmer, howewer gredual.

In other words, the variables, and the corregponding velocities and momenta, depend on the actual state of motion of the system at the given instart, and not on its previons history.

Hence, the equation (3) is equally valid, whether the state of motion of the system is supposed due to impulsive forees, or to forces acting in aby manner whatever.

We may now therefore dismiss the consideration of impulsive forces, together with the limitations imposed on their time of action, and on the changes of configuration during their action.

> Hamillon's Kquations of Motion.
561.] We have already slewn that

$$
\begin{equation*}
\frac{d_{p}^{\prime} T_{p}}{d p}=\dot{q} \tag{4}
\end{equation*}
$$

Let the system move in ary abitway way, subject to the conditions imposed by its connexions, then the variations of β and a are

$$
\begin{equation*}
\delta g=\frac{d p}{d l t} \delta t, \quad \delta q=\dot{q} \delta t . \tag{5}
\end{equation*}
$$

Hence

$$
\begin{align*}
\frac{d T}{d p} \delta p & =\frac{d p}{d t} i \delta b_{p} \\
& =\frac{d p}{d t} \delta q \tag{6}
\end{align*}
$$

and the complete vatriation of T_{n}, is

$$
\begin{align*}
8 T_{n} & =\mathrm{\Sigma}\left(\frac{d T_{p}}{d p} \delta p+\frac{d T_{p}}{d q} \delta q\right) \\
& =\Sigma\left(\left(\frac{d p}{d l}+\frac{d T_{p}}{d q}\right) d q\right) . \tag{7}
\end{align*}
$$

13ut the inerement of the kinctic entrgy arises from the work rone by thae impressed forecs, or

$$
\begin{equation*}
8 F_{p}=s(f B q) \tag{8}
\end{equation*}
$$

In these two expressions the vatations $8 q$ are all independent of each other, so that we are entited to equate the endicients of each of them in the two expresions (7) and (8). We thme obtain

$$
\begin{equation*}
r_{r}^{1}=\frac{d p_{r}}{d h}+\frac{d T_{w}}{d q_{r}} \tag{9}
\end{equation*}
$$

where the momentum β_{r} and the force F_{r} belong to the variable q_{r}.
There are ats many equations of this form as there are variables. These equations were given by Hamilton. They shew that the force corresponding to may variable is the sum of two parts. The first part is the rate of increase of the momentum of that variathe with respect to the time. The seconkl part is the rate of increase of the linetic energy per unt of inerement of the vartable, the other variables and all the momeuta heing constant.

The Kruelic Whergy warexued in Termw of the Momenta and Felocidies.

 velocities at a given instant, and let $\mathrm{l}_{1}, \mathrm{p}_{2}$, No., \dot{q}_{1}, \dot{q}_{2}, Ne. be another system of momenta and velocitios, such that

$$
\begin{equation*}
p_{1}=n n_{1}, \quad \dot{q}_{1}=n \dot{q}_{1}, \& c_{1} \tag{10}
\end{equation*}
$$

It is manifest that the systems p, qiall be consistent with each other if the systems β, if are so.

Now let x vary by sh. The work done by the fored F_{I} is

$$
\begin{equation*}
f_{1} \delta q_{1}=q_{1} \Delta p_{1}=\dot{q}_{1} p_{1} b \Delta \tag{11}
\end{equation*}
$$

Jet z increase from of to 1 , then the system is brought from a state of rest into the state of motion (70), and the whole worli expended in producing this motion is

$$
\begin{gather*}
\left(i_{1} p_{1}+\dot{\eta}_{2} h_{2}+k c .\right) \int_{n_{11}}^{1} n d h_{0} \tag{12}\\
\int_{n}^{1} w d m=\frac{1}{2}
\end{gather*}
$$

But
and the work spent in producing the motion is eqnivalent to the kinetic entrgy. Hence

$$
\begin{equation*}
T_{p, p}=\frac{1}{1}\left(p_{1} \dot{y}_{1}+p_{2} \dot{q}_{2}+g c\right) \tag{18}
\end{equation*}
$$

where $f_{p d}$ denotes the kinntio energy expressed in terms of the
 this expression.
'The linetic energy is therefore half the sum of the probluets of the momenta into their corrosponding velocitios.

When the kirnetic energy is expressed in this way we shall denote it by the symbol $T_{p a}$. It is a fimetion of the momenta and welo= cities only, and does not involve the wariables themselves.
563.] 'There is athind method of expressing the kinetic cnergy, which is generally, indeed, regarded as the fundamental one. By solving the equations (3) we may express the momenta in terms of the volocitios, and then, introducinge these values in (1a), we shatll have an expression for f involving only the relocitios and the variables. When T is expressed in thits form we shall intiente it ly the symbol F_{i}. This is the form in which the kinetie energy is expressed in the equations of $I_{\text {sagrange. }}$

5 64.] It is manifest that, since η_{p}, γ_{p}, and $T_{p \neq}^{\prime}$ are three diflerent expressions for the same thing,
ur

$$
\begin{gather*}
T_{p}+T_{p}-2 T_{\mathrm{wq}}=0 \\
T_{p}+T_{1}-p_{1} \dot{\eta}_{1}-p_{2} \dot{i}_{2}-\mathbb{\mathrm { c }}=0
\end{gather*}
$$

Hence, if all the quantities $p_{3} q$, aud \dot{q} wary

$$
\begin{align*}
& \left(\frac{d p_{p}}{d p_{1}}-\dot{q}_{1}\right) \delta_{p} p_{1}+\left(\frac{d T_{p}}{d p_{2}}-\dot{q}_{2}\right) \delta_{p_{2}}+\mathbb{k c} . \\
& +\left(\frac{d T_{t}}{d q}-p_{1}\right) \delta_{h_{1}}+\left(\frac{d T_{4}}{d g_{2}}-p_{2}\right) \delta \dot{g}_{2}+\varepsilon c . \tag{15}
\end{align*}
$$

The variations δf are not independent of the variations boq and Bf, so that we camot at once assert that the eonfleturt of ent variation in this equation is zero. Butb we lanow, from equations (3), that

$$
\begin{equation*}
\frac{d T_{p}}{d p_{\mathrm{I}}}-\dot{p}_{1}=0, S_{c} \tag{16}
\end{equation*}
$$

so that the terms involving the variations $8 y$ vanish of themselws.
The remaming varations $\delta \dot{q}$ and δq are now all indeperndent, so that we find, by equating to zero the coeflicients of $8 \% / 8+8 \%$

$$
\begin{equation*}
p_{1}=\frac{d T_{t}}{d g_{1}}, \quad n_{2}=\frac{d T_{t}}{d i_{4}}, \text { ve. } \tag{17}
\end{equation*}
$$

 with respect to the corresponding whecifies.

Again, by efluating to zero the conflicients of δq_{1} \& e ,

$$
\begin{equation*}
\frac{d T_{p}}{d q_{1}}+\frac{d T_{q_{i}}}{d q_{1}}=0 ; \tag{18}
\end{equation*}
$$

or, the differential wofficient of the kinetic energy with respect to rny rariable q_{1} is equal in magnitude tut opposite in sign when T is cxpressel as a fatetion of the velacities instean of as a fuaction of the monchta.

In virtue of equation (18) we may write the equation of inotion (9),

$$
\begin{align*}
& H_{1}=\frac{d p_{1}}{d l}-\frac{d T_{i}}{d q_{1}} \tag{19}\\
& F_{1}=\frac{d}{d l} \frac{d T_{i}}{d \dot{q}_{1}}-\frac{d T_{i}}{d q_{1}} \tag{20}
\end{align*}
$$

which is the form in which the equations of motion were given by Lugrange.
565.] In the preceding investigation we have avoided the consideration of the form of the function which expresses the kinetic energy in terms either of the velocities or of the momenta. The only explicit form which we have assigned to it is

$$
\begin{equation*}
T_{p \dot{q}}=\frac{1}{2}\left(p_{1} \dot{g}_{1}+p_{2} \dot{q}+\xi \mathrm{k} \cdot\right), \tag{21}
\end{equation*}
$$

in which it is expressed as hatf the sum of the products of the momenta each into its corresponding velocity.

We may express the velocities in terms of the differential coeflicients of $T_{p} p$ with respect to the momenta, as in equation (3),

$$
\begin{equation*}
T_{p}=\frac{1}{2}\left(p_{1} \frac{d T_{p}}{d p_{1}}+\oiint_{2} \frac{d T_{p}}{d p_{2}}+\& \mathrm{Cc}\right) \tag{22}
\end{equation*}
$$

This shows that T_{p} is a homogeneons function of the scond degree of the momenta p_{1}, p_{2}, \&c.

We may also express the monenta in terms of $T_{i q}$, and we find

$$
\begin{equation*}
\mathscr{T}_{\dot{i}}=\frac{1}{2}\left(\dot{q}_{1} \frac{d I_{i_{i}}}{d \dot{q}_{1}}+\dot{q_{2}} \frac{d T_{q_{i}}}{d \dot{q}_{2}}+\delta e_{1}\right) \tag{23}
\end{equation*}
$$

which slews that I_{q}^{\prime} is a homogencons function of the second degree with respeet to the velocities \dot{y}_{1}, \dot{q}_{3}, "e.
If we write
and

$$
Q_{11} \text { for } \frac{d^{2} p_{p}}{d p_{1}{ }^{2}}, \quad Q_{12} \text { for } \frac{d^{2} T_{p}}{d p_{1} d p_{z}}, \text { \&e. }
$$

Urent, since looll T_{i} and T_{p} are functions of the secoud degree of $\%$ and of ${ }^{\prime}$ respectively, both the $P^{\prime \prime}$ s and the Q 's will be Cumetions of the variables q oulf, and independent of the relocities sund the momenta. Wo thus ohtain the expressions for T,

$$
\begin{align*}
& { }_{2} T_{i}=P_{12} \dot{q}_{1}^{2}+2 P_{12} \dot{q}_{1} \dot{q}_{2}+\&<. \tag{24}
\end{align*}
$$

The momenta are expressed in terms of the welocties by the linear equations

$$
P_{1}=P_{11} \dot{q}_{1}+P_{12} \dot{q}_{2}+S c
$$

and the velocities are expressed in terms of the momenta by the linear equations $\quad \dot{f}_{1}=Q_{11} p_{1}+Q_{12} P_{2}+\& c$.

In teratises on the dymamies of a rigrid body, the coefficients corresponding to P_{11}, in which the stlixes are the same, are called Moments of Inertia, and those corresponling to $P_{\text {yw }}$, in which the suffixes are diflerent, are called Products of Imomia. We may cxtend these names to the more general problem which is now hefore $u s_{1}$ in which these quantities are not, as in the cise of a rigid body, absolute constants, but are functions of the variables q_{1}, q_{2}, Ke.

In like manner we may call the coufleients of the form Q_{11} Moments of Mobility, and those of the form Q_{12}, Proulnets of Mobility. It is not often, however, that we shall have oceasion to speak of the coeflicionts of mobility.
566.] The kinetic energy of the systom is a quantity essentially positive or zero. Hence, whether itw bexpresed in terms of the velocitics, or ju terms of the momenta, the couflicients must be such that no real walues of the rariables can make T necrative.

We thus obiain a set of necessary conditions which the values of the coefficients P must satisfy.

The quantities $P_{11}, P_{\text {qa }}$, \& c_{n}, and all determinants of the symmetrical form

$$
\left|\begin{array}{cccc}
P_{11} & P_{12} & P_{13} & \cdot \\
P_{13} & P_{02} & P_{23} & \\
P_{13} & P_{23} & P_{33} & \\
1 & , & & .
\end{array}\right|
$$

Which can be formed from the system of coefficients must be positive or zero. The number of sweh eonditions for n variables is $2^{\prime \prime}-1$.

The eqefficients Q are subject to eonditions of the stme limal.
567.] In this outline of the fundamental principles of the dymamies of a connected system, we hatve lopet ont of view tho mechanism by which the parts of the system are connected. We
vol. II.
have not even written down a set of equations to indieate how the motion of any part of the systern depends on the variation of the variables. We have confined onr attention to the variables, their veloeities and momenta, ant the forees which aet on the pieces representing the variables. Our only assumptions are, that the comncxions of the system are such that the time is not explicitly coutained in the equations of condition, and that the primeiple of the conservation of energy is appticalble to the system.

Suell a description of the methods of pure dynamies is not unnecessary, beause Lagrange aud most of his followers, to whom wo are indebted for theze methods, have in generat coufined themselves to a demonstration of them, and, in order to devote their attention to the symbols before them, they lave endeavouret to banish all ideas except those of pure quantity, so as not only to dispense with diagrans, but even to get rid of the ideas of velocity, momentum, and energy, after they have been once for all supplanted by symbols in the original equations. In order to be able to refer to the results of this aualysis in ordinary dymamical language, we have cheleavoured to retranslate the principal equations of the method into language which may be intelligible without the use of symbols.

As the development of the ideas and methods of pare mathematies has rendered it possible, by forming a mathematical theory of dyuamies, to bring to light many truths which could not have been diseowerd without mathematical training, s, if we are to form dynamieal theories of other seiences, we must have on muinds imbued with these dynamical truths as well us with mathematical methods.

In forming the ideas and words relating to any science, which, like electricity, deals with forces and their effects, we must keep constantly in mind the ideas appropriate to the fundamental science of dynamies, so that we may, during the first development of the science, avoid inconsistency with what is already estalsished, and also that when our views becone clearer, the language we have adopited may be a help to us and not a hindrance.

CHAPTER VI.

DYNAMCAL JHEORY OF ELEOTMOMAGNDTYSM.

568.] Wu Lave shewn, in $A r t$, 552 , that, when an electric cument exists in a conducting circuit, it las a capacity for doing it certain amomen of meclanical work, and this indepententy of any external electromotive foree maintaining the current. Now eapacity for performing work is nothing else than energy, in whatever wat it arises, and all energy is the same in kind, however it nay differ in form. The energy of an electrice current is wither of that form which consists in the aetual motion of matter, or of that which consists in the capacity for being set in motions, arising from lorees acting between bodies paced in certain positions relative to cach other.

The first kind of energy, that of motion, is called Kinotic energy, and when once understoon it appaus so fiumamental a fact of mature that we an hardly conceive the possibility of resolving it iuto anything else, The second kimd of energy, what depending on position, is ealled Potential energy, and is due to the action of what we call forces, that is to saty, tendeneles towards change of relative fosition. With respect to these forces, though we may acept their existence is is demonstrated faet, yet wo always deal that every explanation of the mechanism by which bodies are set in motion forms a real addition to onr lnowledge.
569.] The electric cument cannot lre conceived excopt as a Finctic phenomenon. Even Faraday, who eonstantly emdeavoured to emancipate his mind from the influence of those suggestions which the words 'electric cument' and 'electric Itail' are too apt to sarry with them, spenks of the electric current as * something prorressive, and not a mere arrangement'*

$$
\text { * Exp. Hex, } 128 s
$$

The effects of the eurrent, sucl as electrolysis, and the transfer of electrifieation fron one body to another, are all progressive actions which require time for their accomplishment, and are therefore of the nature of motions.

As to the velocity of the current, we have shewn that we know nothing about it, it may be the tenth of an ineh in an hour, or a handred thousand miles in a second *. So far are we from lenowing its alsolute value in any case, that we do not even know whether what we eall the positive direction is the actual direction of the motion or the reverse.

But all that we assume here is that the electric current involves motion of some kind. That which is the cause of electric currents has been called Electromotive Force. This mame las longe been used with great advantage, and has never led to any inconsisteney in the language of science. Electromotive force is always to be understood to act on electricity ouly, not on the bodies in which the electricity resides. It is never to be confounded with ordinary mechanical force, which acts on bodies onty, not on the electricity in them. If we ever come to know the formal relation between eleetricity and ordinary matter, we shall prolably also know the relation between electromotive forec and ordinary force.
570.] When ovdinary force acts on a body, and when the booly yields to the force, the work done by the foree is meatured by the product of the force into the amount by which the body yields. Thus, in the case of water fored through a pipe, the work done at any section is mensured by the lluid pressure at the section multiplied into the quantily of water which crosses the section.

In the same way the work done by an electromotive force is measured by the product of the electromotive force into the quantity of electricity which crosses a seetion of the couluctor under the action of the electromotive force.

The work done by an electromotive force is of exactly the same kind as the work done by an ordinary forec, and both are measured by the same standards or units.

Part of the work done by an clectromotive forec acting on a conducting circuit is spent in overcoming the resistance of the circoit, and this part of the work is thereby converted into heat. Another part of the work is spent in producing the electromagnetic phenomena observed by Ampere, in which conductors are made to move by electromagnetic forces. The rest of the work

[^23]is spent in incrensing the kinetie energy of the current, and the effeets of this part of the action are shewn the thenomena of the induction of currents observed by Faradary.

We therefore linow enough about electric charents to tecognise, in a system of material condenelore antying eurrents, a dynamical system which is the seat of energy, pate of which may lre kinetic and part potential.

The tarture of the comexions of the parts of this systens is miknown to us, but as we have dynamical methots of investigation which do not require a knowhedge of the mechanisn of the system, we shall apply them to this case.

We shafl first examine the consequanees of assuming the most genem form for the turetion which expresses the kinetic enerey of the gystem.
571.] Let the system consist of a mumber of condacting areuts, the form and postion of which ate detemmed by the matues of a system of variables x_{1}, x_{2}, \&e, the mumber of which is equal to the number of degrees of freedum of the system.
If the whole hinetie energy of the system were that ane to the motion of these condteters, it would be expressed in the form

$$
X=\frac{1}{2}\left(x_{1} x_{1}\right) x_{1}^{2}+\& c_{1}+\left(x_{1} x_{2}\right) x_{1}+\frac{b}{2}+\mathrm{c}_{2}
$$

where the symbols $\left(x_{1}, x_{1}, k e\right)$ denote the quatities ulich we have alled moments of inertit, and (x_{1}, x_{2}, \&e.) denote the prodnets of inertia.

If X^{\prime} is the impressed force, tending to inerense the coordinate or, Whiek is required to protuce the actual motion, then, by Lagrange's equation,

$$
\frac{d}{d t} \frac{d T}{d x}-\frac{d T}{d x}=\lambda
$$

When I denotes the energy due to the visible motion only, we shall indicate it by the suffix m, thas, $f_{t n}$.

But in a system of conductors canying electrie currents, part of the kinetie energy is the to the existence of these curvents. Hete the motion of the electricity, atal of anything whose molion is govened by that of the electricity, be determined by another set of coordinates y_{1}, y_{2}, \&ce, then I will be a homogencous fumetion of squares aud products of all the velocities of the two sets of coordinates. We may therefore divide I into three portions in the first of which, $f_{p n}$, the velocities of the coombinates x only ocour, While in the scoond, for the velocities of the coordinates y only oceur, and in the thind, F_{m}, cach term contanes the product of the velocities of two coordinates of which one is x and the other y.

We have therefore

$$
T=T_{\mathrm{m}}+T_{\mathrm{e}}+\eta_{\mathrm{pIC}}
$$

where

$$
\begin{aligned}
& T_{\mathrm{m}}=\frac{1}{2}\left(x_{1} x_{1}\right) \dot{x}_{2}^{2}+\& \mathrm{c}_{\mathrm{c}}+\left(w_{1} x_{2}\right) \dot{x}_{1} \dot{x}_{2}+\& \mathrm{c}, \\
& T_{\mathrm{c}}^{\prime} \\
& =\frac{1}{2}\left(y_{1} y_{1}\right) \dot{y}_{1}^{2}+\& \mathrm{cc}+\left(y_{1} y_{2}\right) \dot{y}_{3} \dot{z}_{2}+\& \mathrm{c}, \\
& T_{m e}^{\prime}=\left(x_{1} y_{1}\right) \dot{x}_{1} \dot{y}_{1}+\& \mathrm{cc} .
\end{aligned}
$$

572.] In the geneval dynamical theory, the coefficients of every term may be functions of all the coordinates, both a and g. In the case of electrie currents, however, it is ensy to see that the coordinates of the class y do not enter into the cocflicients.

For, if all the clectric carrents are meintained constant, and the conductors at rest, the whole state of the field will remain constant. But in this case the coorlinates y are variable, though the velocities y are constant, Hence the coordinates y cannot enter into the expression for T, or into any other expression of what actually takes place.

Besides this, in virtue of the equation of continuity, if the conductors are of the nature of linear circuits, only one variable is required to express the strength of the eurrent in ench conductor. Let the velocities \dot{y}_{1}, \dot{y}_{2}, \&e. represent the strengths of the currents in the several conductors.

All this would be true, if, instead of electric curtents, we liad currents of an incompressille fluid rumning in flexible tubes. In this ease the velocities of these currents would enter into the expression for T, but the coefficients would depend only on the wariables x, which determine the form and position of the tubes.
In the cass of the fluid, the motion of the fluid in one tube does not direetly affect that of any other tube, or of the fluid in it. Hence, in the value of T_{t}, only the squares of the velocities \dot{y}, and not their products, oceur, and in $T_{\text {pu }}$ any velocity y is associated only with those velocities of the form \dot{x} which belong to its own tulbe.
In the case of electrical currents we know that this restriction does not hold, for the currents in different cireuits act ons each other. Hence we must admit the existence of terms involving products of the form $\dot{y}_{1} y_{s=}$ and this involves the existence of something in motion, whase motion depends on the strength of both electrie currents \dot{y}_{1} and \dot{y}_{2}. This moving matfer, whatever it is, is not coufined to the interior of the conduetors earying the two currents, but probably extends throughout the whole space surrounding them.
573.] Let us next consider the form which Lagrange's equations of motion assume in this case. luet X^{2} be the impressed foree
corresponding to the coorlinate and of those which determine the form and position of the condtucting eirenits. This is a foret in the ordinary sense, a tendency towards change of position. It is given by the equation

$$
X^{x}=\frac{d}{d t} \frac{d T}{d w}-\frac{d T}{d x}
$$

We may consider this foree as the sum of thep parts, corrusponding to the thace parts into whieh we divided the kinetie energy of the system, and we may distiugush them by the same suflixes. Thus

$$
X^{\prime \prime}=X_{3 n}^{\prime \prime}+X_{n}^{\prime \prime}+X_{\text {mpe }}^{\prime}
$$

The part X^{*} is tlat which depends on ovelinary dymamien considerations, and we neol not attend to it.

Sinee F_{0} does not contain , ${ }^{\text {i }}$, the first term of the expression for X_{e}^{*} is zoro, and its Falne is reduced to

$$
X^{\prime}=-\frac{d T}{d x} .
$$

This is the expression for the mechanictal foree which must be applied to a conductor to balanee the electromagnetic force, and it asserts that: it is measured by the rate of diminution of the purely clectrokinetic energy due to the variation of the coordinate 2 . The electromagnetie force, X_{n}, which brings this extermal mechanieal foree into play, is equal and opposite to il, and is therefore mensured by the rate of increase of the electrokinetio emerty corresponding to an incrense of the coordinate a. The walue of S_{e}, since it depents on squares and products of the currents, romains the same if we reverse the directions of all the ourrents.

The thind prart of \bar{X}^{\prime} is

$$
X_{x+1}^{*}=\frac{d}{d t} \frac{d T}{d x}-\frac{d T_{m x}}{d x} .
$$

The quantity $T_{\text {me }}$ contains only protuets of the form $\dot{a} \dot{b}_{1}$ so that $\frac{d T_{m e}}{d v^{t}}$ is a linear function of the strengths of the currents \bar{y}. The first term, therefore, ilepents on the rate of wariation of the strengeths of the eurrents, and indicates a mechanical forec on thic conductor, which is zero when the currents ane consfant, and whiel is positive or negative according as the eurrents are increasing" or deareasing in strength.

The second term depends, not on the wariation of the currents, but on their actual strengeth. As it is a linenr fimetion with respect to these eurrents, it elanges sigur when the murmen change
sign. Since every tem jowolyes a velocity x, it is zero when the conductors are at rest.

We may therefore investigate these terms separately. If the conluetors are ad, rest, we have only the first term to deal with. If the currents are constant, we lave only the second.
574.] As it is of great importance to determine whether any part of the kinetie energy is of the form tre, consisting of products of ordinary velocities and strengthe of electric currents, it is desimale that experiments should be made on this sulbject with great care.

The determination of the forees acting on bodies in mapid motion is diffientt. Let us therefore attend to the first term, which depends on the variation of the strength of the current.

If any part of the linetic energy thpends on the product of

Fig. 33. an ordinary velocity and the strength of a curvent, it will probably be most easily observed when the velocity and the current are in the same or in opposite ditections. We therefore take a circular coil of a great many windings, and suspend it by a fino vertical wire, so that its windings are horizontal, and the coil is capable of rotating about a vertical axis, ether in the same direction as the current in the coil, or in the opposite direction.

We shall suppose the crrrent to be conveyed into the coil by medas of the suspending wire, and, after passing round the winlings, to complete its circuit by parsing downwards through a wire in the same line with the suspending wire and dipping into a cup of mereury.

Since the action of the horizontal component of terrestrial magnetism would fend to turn this coil round a borizontal axis when thes eturent flows througlt it, we shall suppose that the horizontal conponent of terrestrial magnetism is exactly netualized by means of fixed maghets, or that the experiment is made at the magnetic pole. A vertical minor is attachel to the coil to detect any motion in azimath.

Now let a current be made to pass through the coil in the direction N.E.S.W. If efectrigity were a that like water, flowing along the wire, then, at the moment of starting the current, and as
loner as its velocity is incrasing, at force would require to be supplied to produce the angralar momentum of the fluid in passints round the coil, and as this must, be supplied by the elasticity of the suspenting wire, the coil would at first rotate in the opposite direction or W.S.E.N., and this would lee detected by means off the mirror. On stapping the current there would ine another movement of the mirror, this time in the same direction th that of the current.

No phenomenom of this limd has yet leeen abserved. Such an action, if it existed, might be easily dishinguished from the alreaty lnown actions of the charent by the following peediarities.
(1) It would oceur only when the strength of the entrent varies, as when contact is made or hroken, and not when the current is constant.

All the linown meehmical actions of the current depend on the strength of the currents, and not on the rate of rariation. The electromotive aetion in the case of indued enryents canfot he confounded with this alectromnghetie actions.
(2) The diroction of this aetion would be reversed when that of all the curments in the field is reversed.

All the known meelanical actions of the curment remain the same When all the currents tre reversed, sinee they depend on siluares and products of these currents.

If any action of this kint were discovered, we slontal be able to regard one of the sa-called kinds of electricity, cither the positiwe gr the negative kind, as a real substance, and we shond be able to deseribe the electric current. as a true motion of this substance in at particular direction. In fact, if electrical motions were in any Hay comparable with the motions of ordinary inatter, turms of the form $T_{\text {me }}$ would exist, and their existence would he manifested by the mechanien force $\lambda_{\text {me }}$.

Acording to Fectner's hypothesis, flut an electric curvon consists of two equal currents of posilve and negative electricity, flowing in opposite directions throngh the same conductor, the terms of the second class $f_{\text {mer }}$ would thish each teran belonging to the positive current being accompanied ly a an equal temm of opposite sign belonging to the negatise current, and the phenomera depending on these terms would have no existence.

It appears to me, however, that while we derve grted admantage from the recornition of the many analogige heoweon the electrio charent and a enorent of a matcrial that, we mote carefully avoid
making any assumption not warranted by experimental eqidence, and that there is, ns yet, no experimental evidence to shew whether the electric eurrent is really a current of a material sulbstance, or a double curvent, or whether its velocity is great or small as measured in feet per second.

A knowlentge of these things would amount to at least tho beginminge of a complete dymamieal theory of electricity, in which we should regmal electrical action, not, as in this treatise, as a phenomenon the to an unlmown eanse, subject only to the greneral laws of dynamies, but as the resuld of known motions of known portions of mattery in whiel not only the total effects and final results, but the whole intermediate mechanism and details of the motion, are taken as the oljects of study.
575. The experimental investigation of the second term of $X_{\text {mee }}$, namely $\frac{d I_{\text {me }}}{d x}$, is move diffictilt, as it involves the olseervation of the effect of forces on a body in xapid motion.

Fig. 3.4.
The apparatus shewn in Fig. 34, which I had constrected in 18:1, 1 , is intended to test the existence of a foree of this kind.

The electromagnet A is capnble of rotating alvont the horizontal axis BBC, within a ring which itself revelves about a vertical axis.

Let A, B, C be the moments of inertia of the electromagnet about the axis of the coil, the horizontal axis $B B^{2}$, and a thind axis $O C^{\prime}$ respectively.
Let θ be the angle which $O C^{\prime}$ makes with the vertieal, of the azimuth of the axis $B B^{\prime}$, and ψ ar variable on which the motion of electricity in the eoil depends.

Then the kinetie energy of the electromagnet may be written

$$
2 T=A \dot{\phi}^{2} \sin ^{2} \theta+B \dot{\theta}^{2}+C \dot{\phi}^{2} \cos ^{2} \theta+E(\dot{\phi} \sin \theta+\dot{\phi})^{2},
$$

where A is a quantity which may be called the moment of inertian of the electricity in the coil.

If Θ is the moment of the impressed force tending to increase O_{1} we have, by the equations of dynamies,

$$
\Theta=h \frac{d^{2} \theta}{d l^{2}}-\left\{(A-C) \dot{\phi}^{2} \sin \theta \cos \theta+E \dot{\phi} \cos \theta(\dot{\phi} \sin \theta+\dot{w})\right\} .
$$

By making Ψ, the impressed foree tending to inerease ψ, equal to zero, we oldain

$$
\dot{\phi} \sin \theta+\psi=\gamma_{3}
$$

a constant, which we may consider as representing the strength of the current in the coil.
If C is somewhat greater that A, Θ will be zero, and the equilibrium about the axis $B 7\}^{\prime}$ will be stahle when

$$
\sin \theta=\frac{K \gamma}{(C-A) \dot{\phi}} .
$$

This value of θ depends on that of γ, the electric current, and is positive or negative aceording to the direction of the current.

The current is passed through the coil by its bearings at B and $\not B^{\prime}$, which are comaceted with the hattery by means of springs rubbing on metal rings placed on the vertical axis.

To determine the value of θ, a disk of paper is placed at C, divided by a diameter parallel to $P B B^{\prime}$ into two parts, one of which is painted red and the other green.

When the instrument is in motion a red circle is seen at C when θ is positive, the radins of which indieates roughly the value of θ. When θ is negative, a green circle is seen at C.

By means of nuts working on serews attached to the dectromagnet, the axis $C C^{\prime}$ is adjusted to be a principal axis laving its moment of inertaia just excending that romend the axis $A_{\text {s }}$ so as
to make the instrument very sensible to the action of the fore if' it exists.

The ehuf difliculty in the experimenls arose from the distubing action of tha earth's magretic force, which cansed the electromatget to act like a dip-neded The results olythand were on this accont very rough, hat no evidence of any change in 0 could le oltaned even when an iron core was inserted in the coil, so as to make il a powerful electromagnet.

Ilf, therefore, a magnet confains matter in rapid rotation, the nngular momentum of this rotation mast be very emall compared with any quantilies which we can measure, and we have as yet no evidence of the existence of the terms $F_{\text {suc }}$ derived from their mechanieal action.
576.] Let us next consider the forees acting on the eurrents of electricity, that is, the electromotive forees.

Luct Y liee the elfective olectromotive foree due to induction, the electromotive fore which must net on the circait from without to batanee it is $Y^{\prime \prime}=-Y_{y}$ and, by Lagrange's equations

$$
Y=-Y^{\prime}=-\frac{d}{d} \frac{d T}{d y}+\frac{d T}{d y}
$$

Since thete are no terms in I involving the coordinate y, the
 electromotive force connot exist in a system at rest, and with constant currents.

Again, if we divide Y into three parts, $Y_{\text {m }} I_{e}$, and $Y_{\text {me }}$ corm responding to the three parts of T, we find that, since T_{n} does not contain $\hat{y}_{2} Y_{m}=0$.

$$
\text { We also find } \quad V_{e}=-d_{d} \frac{d T}{d \dot{d}} .
$$

Here $\frac{d T}{d / f}$ is a linear function of the currents, and this part of the electromotive force is equal to the rate of change of this function. This is the electromotive foree of indnetion discovered by Faraday. We shall consider it more at length alterwards.
577.] From the part of T, depending on velocities multiplied ly eurvents, we lind $\quad Y_{\text {rne }}=-\frac{d}{d d} \frac{d T_{m e}}{d / j}$.

Now $\frac{a l T_{\text {me }}^{1}}{d / f}$ is a linear tumetion of the velocities of the condactors. II', therefore, nuy terms of The have an netual existence, it would lee passiljle fo produce an dedsmotive fore independently of all existing enremts lay simply allering the welocties of the condactors.

For instance, in the case of the suspended coil at Aut, 559, if, when the coil is at rest, we sudidenly set it in rotation about the rertical axis, an electromotive foree would be called into action proportional to the aceeleration of this motion. It wonld vanish when thes motion beame uniform, and be reversed when the motion was retarded.

Now few scientifie observations can be made with greater preeision than that which determines the existence or non-existence of a current by means of a gatwanometer. The delicacy of this method far exceds that of most of the arrangements for measurjug the mechanieal tored acting on a body. 1t, therefore, any eurrents could be producel in this way they would be detected, even ill they were wery feeble. They would be distingushed from ordinary earrents of induction by the following characteristies.
(1) They would depend entirely on the motions of the conductors, and in wo degree on the strength of curcents or mandetio torees already in the field.
(2) They would depend not on the absolute velocities of the conductors, but on their accelerations, and on squares and products of relocities, and they wouk change sign when the necelenation becomes a retardation, though the absolute velocity is the same.

Now in all the cuses actually observed, the indned curpents depend altogether on the strength and the matiation of curments in the field, and cannot be ereited in a field devoid of magretic force and of currents. In so far as they depend on the motion of" conductors, they depend on the absolute velocity, and not on the change of velocity of these motions.

We have thets three mefhots of detecting the existenee of the terms of the form fine, mone of which have hitlaceto led to any positive result. I have pointed them ont with the greater care beenuse it appears to me important that we should attain the greatest amont of certitude within our reach on a point Luming so strongly an the tran theory of electricity.

Since, however, no ervidence has yet been obtained of such turme, I shall now proced on the assumption that they do not exist, or at least that they produce no sensible eflect, ath assumption whioh will considembly simplify our dymamical theory. We shatl huse ocasion, however, in diseussing the relation of magnetism to light, to shew that whe motion which constitutes light may unter as is factor into terns involving the motion which constitutes mathnetism.

CHAPTER VII.

THEORY OF BHECTRIO CIROUTTS.

578.] Wr may now confine our attention to that part of the kinetic energy of the system which depends on squares and products of the strengoths of the electric eurrents. Whe may eall this the Electrokinetic Inergy of the system. The part depending on the motion of the conductors belongs to orlinary dynamies, und we hawe shewn that the part depending on products of velocities and currents does not exist.

Let A_{1}, A_{2}, \&e. denote the different eonducting cironits. Jet their form and relative position be expressed in terms of the variables x_{1}, x_{2}, se. the mumber of which is equal to the number of degrees of freedom of the mechanieal system. We shall call these the Geometrieal Yariables.

Iset y_{1} denote the quatity of eleetricity which has crossed a given section of the conductor A_{1} sinee the lreginning of the time t. The strength of the aurrent will be denoted by \dot{y}_{1}, the floxion of this quantity.

We shall call \ddot{y}_{1} the actual current, and \mathscr{F}_{1} the integral current. There is one variable of this kind for each circuit in the system.

Juct I denote the electrokinetic energy of the system. It is a homogencous function of the secont degree with reppect to the strengthe of the currents, aud is of the form

$$
\begin{equation*}
T=\frac{1}{2} \Lambda_{1} \dot{b}_{1}^{2}+\frac{1}{2} L_{42} \dot{y}_{2}^{2}+\mathbb{E c}+M_{12} \dot{y}_{1} \dot{y}_{2}+\mathbb{E} c_{0}, \tag{1}
\end{equation*}
$$

where the coefticients I, M, \&c. ate functions of the geometrieal variables x_{1}, w_{2}, \&e. The electrical variables y_{1}, y_{2} do not enter into the expression.

We moy call L_{1}, L_{2}, \&e the electric moments of inertin of the cirenits A_{1}, A_{2}, se., and M_{12} the electrie product of inertia of the two circuits A_{1} and A_{2}. When we wish to avoid the language of
the dynamical theory, we shall call I_{1} the coefticient of self-induction of the eirenit A_{1}, and M_{12} the coeffeient of mutual induetion of tha circuits A_{1} and $A_{2} . \quad M_{12}$ is also called the potential of the etreuit, A_{1} with reapect to A_{2}. These guantities depend only on the form and relative position of the cirents. Wre shatl find that in the electromagnetic system of measurement they atre quantities of the dimension of a lize. See Art. 627.

By diflerentiating T with respect to g $_{1}$ we obtain the quantity p_{1}, which, in the dynamical theory, may be called the momentum corresponding to y_{1}. In the electric theory we shall call μ_{1} the electroknetie momentum of the circuit A_{1}. Its walue is

$$
p_{1}=J_{1} \dot{y}_{1}+M I_{12} \dot{y}_{2}+\text { Kc. }
$$

The electrokinetie momentum of the cirenit A_{1} is therefore made up of the product of its own current into its coefficient of solf" induction, together with the sum of the prodnets of the currents in the other circuits, pach into the coefficient of mutuat induction of A_{1} and that other eircuif.

Wtectronolive Force.

579.] Let E be the impressed electromotive force in the citreuid at, arising from some cause, suth as at voltic or thermoelectric lyattery, which would produce a current independently of magreto-dectrie induetion.

Let If be the resistance of the circuit, then, by Ohm's law, an electromotive force R_{7} is required to overcome the resistance, leaving an electromotive force $A-R y$ available for changing the momentum of the circuit. Calling this force Y^{*}, we lave, by the general equations,

$$
y^{\prime \prime}=\frac{d y}{d l}-\frac{d T}{d y},
$$

but sinee T does not imvolve y, the last term disappears.
Hence, the equation of electromotive fores is

1

$$
\begin{gathered}
\vec{B}-R \dot{y}=\Gamma^{\prime}=\frac{d p}{d} \\
H=R \dot{y}+\frac{d j}{d \dot{b}}
\end{gathered}
$$

The impressed electromotive force $A B$ is therelore the sum of (wo parts. The first, $\Rightarrow \dot{F}$, is required to maintain the current \dot{y} ugrinst the resistance R. Tlie second part is required to increase the eleetromagnetic momentum p. This is the dectromotive fores whitu monst to supplied from sources independent of magneto-electric
inlachion, Tho electromotive fore arisinge fron magnetomectric induction alone is evidently $-\frac{d p}{d i t}$, or, the rate of decrease of the dectrokinelic monentem of the civeril.

Whedromagatic Horce.

580.] Let X^{\prime} bo the impressed mechanical foree arising from extermal causes, and temling to increase the variable s. By the genemal equations

$$
\hat{H}^{\prime}=\frac{d}{d l} \frac{d T}{d \vec{w}}-\frac{d T}{d a}
$$

Since the expression tor the electrokinetic energy does not contain the velocity (x), the first term of tho second member disalpears, and we find

$$
X^{\prime}=-\frac{d T}{d \pi}
$$

Here X^{\prime} is the external force required to balance the forces arising from electrieal catses. It is usual to consider this force as the reaction against the electronagnetie loree, which we shall eall $X_{\text {, }}$, and which is equal and opposite to X.

Hence

$$
X=\frac{d x}{d x}
$$

or, the electromagnetic force tending to inerease auy variable is equal to the rate of increase of the clectrokinotic cuergy ner wnit inoterase of that whiable, the cwrends being maindeined conshent.

If the aurents are mandained constant by a battery during a displacement in which a quantity, W, of work is done by electromotive fore, the electrokinetic energy of the system will be at the same time increased by W^{r}. Hence the battery will be drawn upori for a doblele quantity of energy, on $2 W$, in addition to that which is spent in generating heat in the circuit. This was first pointed out by Sir W. Ihomson\%. Compare this result with the electrostatic property in Art. 93.

Case of Two Circuits.

581.] Tet A_{1} be ealled the Primary Ciront, and A_{2} the Secondary Cimuit. The electrokinetie encrgy of the system may be written

$$
T=\frac{1}{2} L_{y_{1}}^{2}+M \dot{y}_{1} \dot{y}_{2}+N_{y_{2}}^{2}
$$

where L and N are the codfietents of self-induction of the primary

[^24]and secondany circuits respectively, and 17 is the coeflicient of their mutnal induction.
Let us suppose that no electronolive force acts on the secondary circuit except that due to the induetion of the primary current. We have then
$$
L_{2}=\prod_{2} \dot{y}_{2}+\frac{d}{d l}\left(M \dot{y}_{1}+N \dot{y}_{2}\right)=0
$$

Integrating this equation with respect to ℓ, we have

$$
I g_{2}+M y_{1}+N \dot{y}_{2}=C, \text { a constant, }
$$

where y_{2} is the integmal coment in the secondary cirenit.
The method of measuring an integrad carrent of short duration will lee deseribed in Art. 748 , and it is easy in most cases to ensure that the duration of the secondary eurent shall be wery short.

Let the values of the variable quantities in the equation at the cond of the time t be accented, then, if y_{2} is the integral current, or the whole cuantity of electricity which llows through a section of the secondary cirenit during the time t_{2}

$$
R_{2} y_{2}=M_{y_{1}}+N^{\top} \dot{y}_{2}-\left(M^{\prime} \dot{y}_{1}^{\prime}+N^{\prime} \dot{y}_{2}\right)
$$

If the secondary current arises entirely from induction, its initial value \dot{y}_{2} must the zero if the primary current is constant, and the conductors at rest before the beginning of the time ℓ.

If the time + is sufficient to allow the secondary current to die away, \dot{y}_{2}^{\prime}, its final value, is also zero, so that the equation becomes

$$
R_{2} y_{2}=M \dot{g}_{1}-M_{y_{1}}^{\prime} .
$$

The integral current of the secondary circuit depends in this case on the initial and final values of $M_{\dot{y}_{3}}$.

Intuced Currents.

582.] Let us begin by supposing the primary circuit broken, or $\dot{y}_{1}=0$, and let a current \ddot{y}_{1}^{\prime} be established in it when contact is mate.
The equation which determines the secondary integral current is

$$
R_{2} y_{2}=-M_{y_{1}}
$$

Whan the circhits are placed side by side, and in the same direction, M is a positive quantity. Henee, when contact is mate in the primary cirenit, a negative current is induced in the secondary circuit.

When the contact is lroken in the primary eirenit, the primary current ceases, and the induced current is y_{2} where

$$
H_{2} y_{2}=M \dot{y}_{1-}
$$

The secondary current is in this case positive.

$$
\text { vol... } 11 .
$$

If the primary eurrent is manatancel constant, and the form or relative position of the circuits altered so that M becomes M, the integral secondary current is y, , where

$$
R_{2} g_{2}=(M-M) \dot{g}_{1}
$$

In the ease of two cireuits placed side by side and in the same direction M diminishes as the distanee between the cireuits inereascs. Hence, the induced eurrent is positive when this distanoe is inerensed and negative when it is diminished.

These are the elementary cases of indeed curronts deseribed in Art. 530.

Mechanteal Aedion belween /he Two Cironids.

583.] Let x be any one of the greonetrical varimbles on which the form and relative position of the cincuits ilppend, the electromagnetic foree tending to inerease is is

$$
X=\frac{1}{1_{2}} \dot{y}_{1}^{2} \frac{d l}{d x}+\dot{y}_{1} \dot{y}_{2} \frac{d M}{d x}+\frac{1}{2} \dot{F}_{2}{ }^{2} \frac{d N}{d l}
$$

If the motion of the system corresponding to the wariation of x is such that each eireuit moves as a rigicd body, L and N will be irdependent of x, and the equation will be reduced to the Form

$$
X=\dot{y}_{1} \dot{y}_{x} \frac{d M}{d x}
$$

Hence, if the primary and secondary eurments are of the same sign, the foree $X_{\text {, }}$, which acts between the cirenits, will tend to move them so as to incrense M.

If the circaits are placed side by side, and the eurrents flow in the same direction, M will lse increased by their being brought nearer together. Hence the foree X is in this ease an attraction.
584. The whole of the phenomen of the mutarl action of two cirenits, whether the induction of currents or the mednanical force between them, depend on the quantity $M S$, which we have called the enefficient of muturl induction. The method of calculating thes puantity from the geometrical relations of the cirents is given in Art. $\overline{\text { E }} 1$, lout in the invostigntions of the next chapter we shall not assome a knowledge of the inathematical form of this quantity. We shall consider it as dedned from experiments on induction, as, for instanee, by olbserving the integral current when the secondary circuit is suddenly moved from a given position to on infinite distance, or to any position in whed we know that $M=0$.

CHAP'TER VIII

EXPRORATIOS OF THE FIELD BY MEAXS OF TIE BRCONDARY chacurf.

585.] We luve proved in Arts. $582,583,584$ that the electromagnetic action betwen the primary and the secondary eireuit depends on the quantity denoted by M, which is andion of that form and relative position of the two cirenits.

Allhough this quantity M is in lact the same as the potential of the two cireute, the mathematical form and properties of which we deduced in Arts. $423,492,521,539$ from magnetio and electro $=$ magnetic phenomena, we shall here meke wo referenoe to these results, but begin again from a new foundation, withoth any assumptions except those of the dymanical theory as stated in Clapter VII.

The electrokinetic momentum of the secondary cirenit consists of two parts (Art. $\bar{\sigma} 8$), one, $M i_{1}$, depending on the primary current i_{1}, while the other, N_{2}, depends on the secondary curmenf i_{2+} We nre now to investigate the first of these parts, which we shall denote by n, where

$$
\begin{equation*}
p=M i_{\mathrm{L}} . \tag{1}
\end{equation*}
$$

We shatl also suppose the primary cirovit fixed, and the primary current constant. The qumatity p, the electrokinetic momentum of the secondary circuit, will in this ense depend only on the form and position of the secondary circuits, so that if any elosed curve be taken for the secondary cirenit, and if the direction along this eltrve, which is to be reckoned positive, be chosen, the value of p p for this closed curve is determimate. If the opposite direction alongr the curve had been chosen as the positive dinection, the sign of the quanity p would have lucen rewersed.
586.] Since the quantity p deperds on the form and position of the circuit, we may suppose that each portion of the circuit
contributes something to the vatue of p, and that the part eontribanted by each portion of the circuit depends on the form and position of that portion only, and not on the position of other parts of the circuit.
This assumption is legitimate, because we are not now considering a current, the parts of which may, and indeed do, act on one another, but a mere circhit, that is, a closed curve along which a current may llow, aud this is a purely geometrieal figure, the parts of which camot be conceived to have any plysical action on ends other.

We maty therefore assume that the part contributed by the element $d s$ of the circuit is $f d s$, where J is a ruantity depending on the prosition and direction of the element d s. Hence, the value of \hat{f} may be expressed as at line-iutegral

$$
\begin{equation*}
n=\int I d s \tag{2}
\end{equation*}
$$

where the integration is to be extended once round the cireuit.
587.] We lave next to determine the form of the quanity J. In the first place, if $d s$ is reversed in direction, J is reversed in

Fig. 35.
sign. Hence, if two cirenits $A B C F$ and $A E C D$ have the are $A E C$ common, but reckoned in opposite directions in the two cirenits, the sum of the values of p for the two circuits $A B C E$ and $A E C D$ will be equal to the valne of p for the cirenit $A B C D$, which is made up of the two circhits.
For the parts of the line-integral lepending on the are $A F C$ are equal but of opposite sign in the two partial cirenits, so that they destroy each other when the sum is taken, leaving only those parts of the line-integral which depend on the external boundary of ABCD.

In the same way we may show that if a surface bounded by a closed curve be diviled into any number of parts, and if the boundary of ench of these parts be considered as a circuit, the positive direction round every circuit heing the same as that round the externat closed curve, then the value of p for the closed curve is equal to the sum of the values of p for all the circuits. See Art. 483.
588.] Let us now consider a portion of a surface, the dimensions of which are so small with respect to the principal radii of curvature of the surface that the variation of the direction of the normal within this portion may be neglected. We shall also stuppose that if any very small cireuit be carried parallel to itself from one part of this surface to another, the value of p for the small circuit is
not sensibly alterel. This will evidently be the case if the dimensions of the portion of surface are small enough compared with its distance from the mimary cirenit.

If any crosed envere be drath om this portion of the smofuce, the watere of n will be proportional to its area.

For the areas of any two cirenits may le divided into small elements all of the same dimensions, and having the same vatue of \Rightarrow. The areas of the two cirenits are as the numbers of these elements which they contain, and the values of g for the two cirenits are also in the same proportion.

Hence, the value of β for the cirenit which bounds any element $d S$ of a surface is of the form $/ d A S$, where T is a quantity deperding on the position of $d S$ and on the direction of its normal. We have therefore a new expression for p,

$$
\begin{equation*}
p=\iint I d S \tag{3}
\end{equation*}
$$

where the donble integral is extended over any surface loonded by the circuit.
589.] Let $A B C D$ be a cirenit, of which $A C$ is an elementary portion, so small that it may be considered straight. Let $A P B A$ and $C Q B$ be small equal areas in the same plane, then the value of p will be the same for the small circnits $A P B$ and $C Q B$, or

Hence

$$
\begin{aligned}
p(A P B) & =p(C Q B) . \\
p(A P B Q C D) & =p(A B Q C D)+p(A P B), \\
& =p(A B Q C D)+p(C Q B), \\
& =p(A B C D),
\end{aligned}
$$

Fig. 30.
n the value of p is not altered by the sulustitntion of the ernoked line $A P Q C$ for the straight line $A O$, provilled the area of the cireuit is not sensibly altered. This, in fact, is the principle established Dy Amperes's second experiment (Art. 5006), in which a erooked portion of a cirenit is shewn to be equivalent to a straight portion provided no part of the erooked portion is at a sensible distance from the straight portion.
If therefore we substitute for the element de three small elements, de, dy, and $d z$, drawn in suceession, so as to form a continuous path from the begiming to the end of the element $A s$, and if FIdx, Fifly, and $/ / f / z$ denote the elcments of the line-integral corresponding to do, ily, and $d z$ respectively, then

$$
\begin{equation*}
J d s=F d x+G d y+H d x \tag{1}
\end{equation*}
$$

500.] We are now able to determine the mote in which due quantity I depends on the direction of the element also+ pron, by (4),

$$
\begin{equation*}
I=H^{\frac{d}{2} s} \frac{d \xi}{d \xi}+H \frac{d s}{d s} \tag{5}
\end{equation*}
$$

This is the expression Cor the resolved part, in the direction of $d s$, of a vector, the components of when, resolved in the directions of the axes of x, H, and z, are l, G_{3} and $/ /$ respectively.

If this vector be denoted by it, and the vector from the origin to a paint of the circuit by ρ, the element of the circuit will be do, and the quaternion expression for of will bee

$$
-S 9 d \rho_{*}
$$

We may now write equation (2) in the form

$$
\begin{align*}
& p=\int\left(F^{d l x}+Q \frac{d y}{d s}+I I \frac{d z}{d l}\right) \cdot d s, \tag{6}\\
& \text { or } p=-\int S \text { sid } \tag{7}
\end{align*}
$$

The vector 9 and its constituents F, G, H depend on the position of $d x$ in the feed, and not on the direction in which it is drawn. They are therefore functions of x, y, z, the coordinates of ass, and not of l, m, n, its direction-cosines.

The vector ar represents in direction and magnitude the timeintegral of the electromotive fores which a particle placed at the point (x, y, z) would experience if the primary current were suddeny stopped. We shall therefore all it the Electrokinetic Momertum ak the point (m, y, z). It is identical with the quantity Which we investigated in Art, 405 nader the name of the vectorpotential of magnetic induction.

The electrokinetic momentary of any finite line on circuit is the line-integral, extended along the line or circuit, of the resolved part of the electrokinetic momentum at each paint of the same.

Fig. 97.
591.] Tick us next determine the value of a for the elementary rectangle ABCD, of Which the sides are d_{y} and $d z$, the positive direction being from the direction of the axis of y to that of z.

Let the coordinates of O, the centre of gravity of the dement, be x_{0}, y_{0}, so, and led G_{0}, H_{0} bee the values of G and of H at this point.
The enordimates of A, the middle point of the first side of the
rectangle, are y_{0} and $z_{0}-\frac{1}{2} d z$. The corresponding value of θ is

$$
\begin{equation*}
G=G_{0}-\frac{1}{2} \frac{d G}{d z} d z+8 \tag{8}
\end{equation*}
$$

and the part of the value of p which arises from the side A is approximately

$$
\begin{equation*}
G_{0} d y-\frac{1}{2} \frac{d G}{d /} d y d x \tag{9}
\end{equation*}
$$

Similarly, for $R_{3} \quad I_{0} d z+\frac{1}{2} \frac{d I I}{d y} d y d z$.

$$
\begin{array}{ll}
\text { For } C, & -G_{0} d y-\frac{1}{2} \frac{d G}{d z} d y d z, \\
\text { For } D, & -I_{0} d z+\frac{1}{2} \frac{d H}{d y} d y d z .
\end{array}
$$

Adlding these four quantities, we find the value of β for the rectangle

$$
\begin{equation*}
p=\left(\frac{\pi I I}{d / y}-\frac{d G}{d z}\right) \cdot d y \cdot d z . \tag{10}
\end{equation*}
$$

If we now assume three new quantities, a, b, c, suel that

$$
\left.\begin{array}{l}
a=\frac{d H}{d y}-\frac{d H}{d b} \\
b=\frac{d F}{d F}-\frac{d H}{d x} \\
a=\frac{d G}{d s}-\frac{d P^{h}}{d y}
\end{array}\right\}
$$

and consider these as the constituents of a new vector B, then, by Theorem IV, Art. 24, we may express the line-integral of if ronnd any cireuit in the form of the surface-integral of \mathfrak{B} over a surface loounded by the cirenit, thus

$$
\begin{gather*}
n=\int\left(P^{N} \frac{d x}{d s}+G^{d y}+M \frac{d x}{d s}\right) d s=\iint(l a+n b+n c) d S_{3} \tag{11}\\
p=\int T श \cos \epsilon d x=\iint T \mathcal{B} \cos n d S_{3} \tag{12}
\end{gather*}
$$

or
Where ϵ is the angle between \mathfrak{V} and $d s$, and η that hetween \mathcal{B} and
 denote the numerieal values of $\boldsymbol{q}_{\text {and }}$ an.

Comparing this result with equation (3), it is evident that the quantity I in that equation is equal to 8 cos n, or the resolved part, of \mathcal{B} normal to $d S$.
592.] We have alrendy seen (Arts, 190, 541) that, acconding in Faraday's theory, the phenomens of electromagnetic force aund
induction in a cirenit depend on the rariation of the number of lines of magnetic induction which pass through the cirenit. Now the number of these lines is expressed mathomatically by the surface-integral of the magnetic induction through any surface boundel by the circuit. Hence, we must regard the veetor B_{3} and its components a, b, c as representing what we are alreally nequainted with as the magnetic induction and its components.

In the present investigation we propose to cleduce the propertios of this vector from the dyramical prineiptes stated in the last chapter, with as few appeals to experiment as possible.
In identifying this vector, which has appeareal as the result of a mathematical investigation, with the magnetic induction, the properties of which we learned from experiments on mangnets, we do not depart from this method, for we introtuce no new fact into the theory, we only give a name to a mallematical cquality, and the propriety of so doing is to be judgel by the agreement of the relations of the mathematical quantity with those of the physical quantity indieated by the name.

The vector ${ }^{9}$, since it occurs in a surface-integral, belongs evidently to the eategory of fluxes deseribect in Art. 13. The wector 9 , on the other hand, belongs to the catagrory of foreens, since it appears in a line-integral.
593.] We must here recall to mind the conventions albout positive and negative quantities and directions, some of which were stated in Art. 23. We adopt the right-handed system of axes, so that if a right-handed serew is phaced in the direction of the axis of x, and a nut on this serew is turned in the positive direction of rolation, that is, from the direction of y to that of z, it will move along the serew in the positive direction of x.

We also considen vitreous clectricity and mustral magnetism as positive, The positive direction of an eleetric current, or of a liue of cleotrie induction, is the direction in which positive electricily moves or tends to move, and the positive lirection of a line of magnetic induction is the direction in which at compass needle points with the end whiel turns to the north. Sue Fig. 24, Art. 498 , and Fig. 25, Art. 501.
The student is recommended to select whatever mothod appears to him most effectual in order to fix these conventions securely in his memory, for it is far more diffent, to remember a rule white determines in which of two previonsly indifferent ways a statement is to be made, than a rule which selects one way out of mayy.
594.] We lave noxt to daluce from dymamical primeiples the expressions for the electromagnetie foree seting ou il conductor carying an electric eurrent through the magnetic fielat, and for the electromotive fore acting on the electricity within a lody moving in the magnetic field. The mathematical mothod whicla we shall adopt may be conipared with the experimental method used by Fanday* ju exploring the field by means of a wire, and with what we have already done at Art. 4no, by a method fommed on experiments. What we hawe now to do is to determine the effect on the valne of p, the electrokinetie momentam of the seondary cirenit, dae to given alterations of the form of that circuit.

Luet $A A^{*}, B D Y^{\prime}$ be two panallel straight contactors connecterd by the conducting are C, whiche may be of any form, atm by a stmight

Fig. 38.
conducton $A B$, which is capable of sliding paralle to itself along the conducting rails $A A^{\prime}$ ami $B B^{2}$.

Tet the cirenit thens formed be eonsidered as the secondary circuit, and let the direction $A B C$ be assumed as the positive direction round it.

Let the slding piece move parallel to itself from the position $A D$ to the position $A^{\prime} J^{\prime}$. We have to determine the watiation of p, the electrokinetic momentum of the cireait, due to this displacement of the sliding piece.

The secondary eivent is changed from $A B C$ to $A^{\prime} B C$, hence, by +1rt. 587

$$
\begin{equation*}
p(A H C)-p(A B C)=p\left(A A^{\prime} H B\right) \tag{1.3}
\end{equation*}
$$

We have therefore to determine the velute of β for the parallelogram $A d^{\prime} B^{\prime} B$. If this parallelogram is so small that we may neglect the variations of the divection and magritude of the magnetic induction at difherent points of its plane, the vatue of p is,

[^25]and of the angle which it makes with the positive direction of the norinal to the parallelogram $A A^{\prime} J^{\prime} B$.

We may represent the result geometrically by the rolume of the parallelepiped, whose base is the parallelogram $A A^{\prime} B A$, and one of whose edges is the line $A M$, which represents in direction tind magnitude the marretie induction 8. If the parallelogram is in the phane of the paper, and if $A J$ is drawn apwards from the paper, the wolume of the parallelepiped is to be taken positively, or more generally, if the directions of the eirenit $A A$, of the magnetic induction $A M$, and of the displacement $A A^{\prime}$, form a right-landed system when taken in this eycligal order.

The volume of this parallelepiped represents the inerement of the valne of y for the secondary cirmit the to the displacement of the sliding piece from $A B$ to $A^{\prime} B^{\prime}$.

Whetromotive Force acting on the Sliding Piece.

595.] The electromotive foree produced in the secondary cirenit by the motion of the sliding piece is, by Ant $\overline{5} 75^{2}$

$$
\begin{equation*}
E=-\frac{d p}{d t} \tag{14}
\end{equation*}
$$

If we suppose $A A^{\prime}$ to be the displacement in unit of lime, then $A A^{*}$ will represent the velocity, tad the parallelepipel will represent Ily, and therefore, by equatiotn (14), the electromotive force in the negative direction $B A_{+}$

Hence, the electromotive force aeting on the sliding piece $A B$, in consequence of its motion throngh the maghetic field, is represented by the volame of the parallelepiped, whose edges represtut in direction and magritude-the velocity, the mugnetie induction, and the sliding piece itself, and is positiwe when these thred directions are in right-handed eyclical order.

Electromagnetic Foree aching on the Sliting Piece.

596.] Let i, denote the curpat in the secondary eiterit in the masitive direction $A B C$, then the worle done by the electromagretie Force on $A B$ while it slides from the position $A B$ to the posilion $A^{\prime} b^{\prime}$ is $\left(M^{\prime}-M\right) i_{1} i_{2}$, where M and M^{\prime} are the values of M_{I} in the initial and final positions of $A B$. But $\left(M I^{\prime}-M /\right)_{1}$ is equal to $p^{\prime}-p_{4}$ and this is represented by the volume of the parallelepiped. on $A B, A M$, and $A A^{\prime \prime}$. Hence, it wo draw a line paralle] to $A B$
to represent the quantity $A B$. i_{2}, the parallelepiped contanem lyy this line, by $A M$, the magnetio intuetion, and by $A A^{\prime}$, the displacement, will repwesent the work done during this displacement.

For a given distance of elisplacement this will be greatest whete He displacement is perpendicalar to the parathelogram whose sides are $A D$ and $A M$. The electromagraetic force is therefore womesented ly the aren of the parallelogram on $A R$ and $A M$ multiplimel by f_{g}. and is in the divection of the normal to this parallelogram, drawn so that $A B, A M$, and the normal are in right-handed eyelieal order"

Fow Defhitions of a line of Wagnethe Induction-

597_{*}] If the direction $A A^{\prime}$, in which the motion of the sliting piece takes place, coineldes with $A M$, the direction of the magnotise induction, the motion of the sliting piece will not eall clectromotive foree into netion, whatever lee the direction of $A D$, and if $A B$ eatrien arm eleetrie curvent there will ly no tembeney to stide along $A A^{\prime}$.

Agann, if $A B$, the sliding pioce, conncides in timection wift $A M /$, the divection of maguetic induction, theme will be no eluetromotive force called into action by" any motion of $A F$, abrla a current through $A B$ will not eause $A B$ to be acted on by medatical forec.
We may therefore define a line of magrotie induction in four different ways. It is a line such that-
(1) If a conductor be movel along it paralled to itself it will experience ro electromative foree.
(2) If a conductor carrying a current be free to move alomg a line of magnetic induction it will experienee no temteney to do so.
(3) If a linear conduetor comeate in direction with it limo of magenctic induetion, and be nowed parallel to itself" in smy rlivection, it will experience no dectromolive foree in the direction of its length.
(4) If a linon" conductor earrying an eleotric etrrent coincide In divection with a line of magnetic indnetion it will not experience any mechanical fored.

General Lipations of Electromative foree.

598.] We have seen that E, the clectromative force due bo induetion acting on the secondary cirenit, is equal to $-\frac{d / p}{d^{\prime}}$, where

$$
\begin{equation*}
y=\int\left(F^{d x}+C_{s}^{d y}+\pi / d s\right) d s \tag{1}
\end{equation*}
$$

To detemmine the value of β_{3} let us differstiate the quantity under the integral sign with respect to t, rememoremgor that if the secondary cireut is in motion, x, y, and z are functions of the time. We olbtain

$$
\begin{align*}
& \mu=-\int\left(\frac{d T}{d t} d \overrightarrow{d s}+\frac{d G}{d t} \frac{d y}{d s}+\frac{d H d z}{d l d \xi}\right) d s \\
& -\int\left(\frac{d L^{t}}{d x} \frac{d x}{d s}+\frac{d G d y}{d u}+\frac{d H}{d w} \frac{d z}{d s}\right) \frac{d x}{d t} d x \\
& -\int\left(\frac{d L^{\top}}{d y} \frac{d x}{d s}+\frac{d G d y}{d y d s}+\frac{d H}{d y} \frac{d z}{d s}\right) d y d s \\
& -\int\left(\frac{d F}{d z} \frac{d x}{d s}+\frac{d G}{d z} \frac{d y}{d z}+\frac{d I}{d z} \frac{d z}{d s}\right) \frac{d z}{d t} d s \\
& -\int\left(I^{d^{d^{2} r}} \frac{d s}{d d}+G \frac{d^{3} y}{d s d l}+H \frac{d^{2} \tilde{d}}{d d d}\right) d s . \tag{2}
\end{align*}
$$

Now consider the second term of the integral, and substilute From equations (A), Art 591 , the values of $\frac{d G}{d i x}$ and $\frac{d I}{d x}$. This term then becomes,

$$
-\int\left(e \frac{d y}{d s}-d \frac{d z}{d s}+\frac{d F}{d x} d s+\frac{d F}{d y} \frac{d y}{d \theta}+\frac{d F d z}{d z} \frac{d w}{d s}\right) d d_{0}
$$

which we may write

$$
-\int\left(c \frac{d y}{d s}-b \frac{d z}{d l_{s}}+\frac{d \sqrt{d s}}{d s}\right) \frac{d x}{d t} d s
$$

Treating the third and fourth terms in the same way, and collecting the terms in $\frac{d x}{d s^{*}} \frac{d y}{d y}$, and $\frac{d x}{d s}$, remembering that

$$
\begin{equation*}
\int\left(\frac{d W}{d x} \cdot d x+b^{+} \frac{d^{2} x}{d x d b}\right) d s=f^{d} d x \tag{3}
\end{equation*}
$$

and therefore that the integral, when taken round the closed curve, vanishes.

$$
\begin{align*}
& D=\int\left(c^{d / d}-b^{d D}-\frac{d W}{d t}\right) \frac{d d^{d}}{d w} d x \\
& \left.+\int\left(a \frac{d x}{d b}-c \frac{d x}{d l}-\frac{d f}{d l}\right)\right)_{d j}^{d / d} \\
& +\int\left(\delta \frac{d x}{d x}-a \frac{d y}{d /}-\frac{d / f}{d /}\right) d_{d z}^{d z} \tag{d}
\end{align*}
$$

We maty write this expression in the lom

$$
\begin{equation*}
h^{\prime}=\int\left(P \frac{d z}{d /}+Q \frac{d /}{d s}+l^{d /} \frac{d z}{d s}\right) \cdot / d \tag{5}
\end{equation*}
$$

Wilere

$$
\begin{aligned}
& P=c \frac{d y}{d t}-b \frac{d \vec{z}}{d l}-\frac{d \Psi^{r}}{d t}-\frac{d \Psi}{d w}, 7
\end{aligned}
$$

$$
\begin{align*}
& h=d^{d x}-a_{d /}^{d / y}-\frac{d I I}{d l}-\frac{d \Psi}{d_{z}} * \tag{B}
\end{align*}
$$

The terms involving the new quantity Ψ are introduced for the sake of giving generality to the expressions for P, Q, R. They dismppear from the integrat when extended rond the closed circuits The quantity Ψ is therefore indetominate as far as regards the problem now before us, in whel the total afectromotive force round the circuit is to be determined. We shall find, however, that when we know all the circumstances of the problem, we can assign a delaise value to Ψ and that it represents, aconding to in certaim definition, the electric polential at the point x, y_{1}, x_{4}

Tlue quantity under the integral sign in equation (5) represents Whe electromotive foree acting on the clement als of the cirenit.

If we denote by T 'E, the numerieal walne of the resultant of P_{y} Q, and F_{*} and by ϵ, the angle between the direction of this resultant aud that of the element α, s, we may write equation (5),

$$
\begin{equation*}
E=\int T \text { C } \cos \epsilon d s \tag{b}
\end{equation*}
$$

The vector ef the elvelromotive force al the moving element ds. Its divection and magniturle depend on the position and motion of als, and on the variation of the magnetic fiedd, lut not on the direction of d. Hence we may now disregard the ciromstance that $A s$ forms pare of a circuit, and consjder it simply as a portion of a moving borly, acted on ly the electromotive loree of. The electromotive fore at a point hats ableady been delined in Art. 68. It is also called the resultant electrieal force, being the force which would be experienced by a unit of positive electricity placed at that point. We have now obtained the most general value of this quantity in the case of a boty moving in an matie fold due to a variable electric system.

If the body is a conductor, the electromotive force will produce a arrent; if it is a dielectrice, the electromotive fored will produce only clectrio displacement.

The electromotive force at a point, or on a particle, must be carefully distingushod fiom the electromotive fored along an are ol' a enrve, the latter quantity lyong the line-integral of the former: See Art. 69.
599.] The clectromotive force, the components of which are definell by equations (B), depends on three cireumstances. The first of these is the motion of the particle though the magnetie field. The part of the fore depending on this motion is expressed by the first two terms on the right of each equation. It depends on the velocity ol the particle transwerse to the lines of magnetic indtuetion. If 6 is a vector representing the welocity, and 9 another represunting the matrotic induction, then if $⿷_{1}$ is the part of the cleetromotive loree depending on the motion,

$$
\begin{equation*}
\mathbb{C}_{1}=y \cdot(6) \tag{7}
\end{equation*}
$$

or, the elcetromotivo fored is the vector part of the product of the magnetic induelion multiplied by the velocity, that is to say, the matanitude of the electromotive foree is represented by the area of the parallelogram, whose sides represent the velocity tha the magnetic induction, men its direction is the nomal to this parallelogram, duawn so that the wolocity, the magnetic induction, and the electromotive force are in right-handed gyelical order.

The thind torm in each of the equations (B) depends on the timevariation of the magnetio field. This may be due cither to the time-variation of the electric enment in the primary circuit, or to motion of the primary circuit. Let e_{2} be the part of the clectromotive fore which depends on these terms. Its components are

$$
-\frac{d F}{d l}, \quad-\frac{d G}{d l}, \text { and }-\frac{d I I}{d l}
$$

and these we the components of the vector, $-\frac{d \dot{2}}{d t}$ or ${ }^{\text {n. }}$. Herce,

$$
\begin{equation*}
\mathrm{E}_{2}=-\mathrm{S} \tag{8}
\end{equation*}
$$

The last term of each equation (B) is due to the variation of the function Ψ in different parts of the field. We may write the that $\mathrm{p}^{\text {ratt of the electromotive force, which is due to this canse, }}$

$$
\begin{equation*}
\mathrm{S}_{3}=-\nabla \Psi \tag{9}
\end{equation*}
$$

The electromotive fore, at idefined by equations (B), may therefore be written in the quaternion form,

$$
\begin{equation*}
6=F \cdot 9 B-44-\nabla \Psi \tag{10}
\end{equation*}
$$

On the Arodificution of the Iquations of Whectromotace Forece inherz the Ares to which they wre refieved we moning in space.
600.] Juet $x^{\prime}, y^{\prime \prime}, z^{\prime}$ be the coordinates of a point refermed to a system of rectangular axes moving in spoce, zund let $x^{2}, y_{y},=$ lue the coordinates of the same point referred to fixed axes.

Let the components of the velocity of the origin of the movinge system be ψ, η, w_{2} and those of its ungular velocity $\cos _{1}+\omega_{2}, \omega_{3}$ refered to the fixed system of ames, and hat has choose the fixed ases so as to cotncide at the given instant with the moving onem, then the only quantites which will be dilferent for the dwo systems of axes will be those diflerentiated witlo respect to the time. 10° δx denotes a component welocity of a point moving in rigid connexion with the moving axes, and $\frac{d i c}{d / l}$ and $\frac{d x^{\prime}}{d /}$ that of any moving foint, having the same instantanenos position, relerver fo the fixed and the moving axes respectively, then

$$
\begin{equation*}
\frac{d x}{d t}=\frac{8 x}{8 d}+\frac{d x^{2}}{d t}, \tag{1}
\end{equation*}
$$

with similar equations for the ather components.
By the theory of the motion of a loody of invariable form,

$$
\left.\begin{array}{l}
\frac{\delta z}{\partial t}=x+\omega_{2} z-\omega_{3} y \\
\delta y \tag{2}\\
\delta b=n+\omega_{3} z-\omega_{1} z_{3} \\
\frac{\delta z}{\delta t}=w+\omega_{1} y-\omega_{2} z
\end{array}\right\}
$$

Since F is a components of a diected quantity parallel to x^{\prime} s if $\frac{d F^{\prime}}{d /}$ be the valne of $\frac{d f}{d /}$ referred to the moving axes,

Substituting for $\frac{d P}{d / y}$ and $\frac{d F}{d z}$ their values as deduced from the equations (A) of magrelic indnetion, and remembering that, by (2),

$$
\begin{align*}
& \frac{d}{d w} \frac{\delta t}{\partial t}=0, \quad \frac{d}{d x} \frac{\delta y}{\partial t}=\omega_{y *} \quad \frac{d}{d x} \frac{\partial z}{\partial b}=-\omega_{2}, \tag{1}
\end{align*}
$$

If we now put

$$
\begin{align*}
& -\Psi=H^{4} \frac{8 t}{8 t}+G \frac{8 y}{8 t}+71 \frac{8 z}{84}, \tag{i}\\
& \frac{d b^{*}}{d l}=-\frac{d \Psi^{\prime}}{d x}-\frac{\delta y}{\delta t}+b \frac{8 z}{\delta d}+\frac{d F^{\prime}}{d b} * \tag{7}
\end{align*}
$$

The epuation for $]^{3}$, the component of the electromotive fored paallel to 2 , is, by (B),

$$
\begin{equation*}
P=c \frac{d y}{d l}-b \frac{d x}{d l}-\frac{d F}{d l}-\frac{d \Psi}{d x} \tag{8}
\end{equation*}
$$

referred to the fixed axes. Sulstituting the values of the guantibies as referred to the moving axes, we hate

$$
\begin{equation*}
P=c \frac{d g^{\prime}}{d l}-b \frac{d z^{\prime}}{d l}-\frac{d l^{w}}{d l}-\frac{d(\Psi+\Psi)}{d x} \tag{9}
\end{equation*}
$$

for the value of P referved to the moving ases.
601.] It appears from this that the electromotive foree is expressed by at formala of the same tyje, whether the motions of the conductors be referred to fixed axes or to axes moving in space, the only difference between the formalae being that in the case of moving axes the clectric potential ψ must be changed into $\psi+\Psi^{\prime}$.

In all cases in which a current is produced in a conducting eircuit, the electromotive fore is the line-integral

$$
\begin{equation*}
W=\int\left(P^{d d s}+Q \frac{d /}{d s}+n \frac{d z}{d s}\right) d s \tag{10}
\end{equation*}
$$

faken rome the curve. The value of Ψ disnppears from this integral, so that the introdnction of Ψ^{\prime} has no inflaeneg on its vatue. In all phenomema, therefore, relating to cloged circuits anul the currents in them, it is indiflerent whether the axes to which we refer the system be at rest or in motion. See Art. 668 .

On lhe Eletromagnetic Fore activg an a Condretor which carries (ax Electric Ctrreut Hrowg a Magnotic Ficld.
602.] We have seen in the general investigation, Art. 583 , that if x_{1} is onte of the variables which letermine the position and form of the secondary cirenit, and if λ_{1} is the foree acting on the secondary cirenit teading to increase this wariable, then

$$
\begin{equation*}
X_{1}=\frac{d M}{d i_{1}} i_{1} i_{2} \tag{1}
\end{equation*}
$$

Sinee \dot{i}_{1} is independent ol i_{1}, we may write

$$
\begin{equation*}
M i_{1}=p=\int\left(\mu^{d i x}+G \frac{d y}{d d_{s}}+H_{d s}^{d z}\right) d s_{3} \tag{2}
\end{equation*}
$$

and we have for the walue of A_{1},

$$
\begin{equation*}
X_{\mathrm{T}}=i_{2} \frac{d}{d s_{1}} \int\left(l^{\mu} d_{d}+G \frac{d y}{d s}+H f_{d s}^{d s}\right) / l_{s} \tag{3}
\end{equation*}
$$

Now let: us suppose that the displacement eonsists in moving every point of the eircuit throngh a distance 80 in the direction of $x, 8$ if being any continnous function of ${ }^{\prime}$, so that the dillerent parts of the cirenit move independently ol weh other, while the circuit venains continuthas and closed.

Aso let λ^{-}be the total force in the direction of ateting on the prate of the cirenit from $s=0$ to $s=s$, then the pat corresponding to the element dy will be $\frac{d X}{d s} d s$. We shatl then have the following expresston for the worl done by the fore during the displacement,
where the integration is to $h_{\text {se }}$ extended rond the closed arve, remembering that δ, is an armitrary function of's. We may therefore perform the diflerentation with respect $L 0$ o δx in the same Why that we difterentinted with respect to 6 in A wt. 598 , remembering that

$$
\begin{equation*}
\frac{d x}{d \delta, x}=1, \frac{d y}{d \delta x}=0, \text { and } \frac{d / t}{d \delta x}=0 \tag{5}
\end{equation*}
$$

We thus find

$$
\begin{equation*}
\int \frac{d \lambda}{d_{s}} \delta_{i x} d_{s}=i_{2} \int\left(c \frac{d y}{d s}-b \frac{d z}{d /}\right) \delta x d s+\int \frac{d}{d n}(F \partial x) d s \tag{6}
\end{equation*}
$$

${ }^{\prime}$ The last term vanishes when the integration is extended round the closed carve, and shee the equation most hold for all forms of the function $8, v^{\text {, }}$, we must have

$$
\begin{equation*}
\frac{d \Lambda}{d d_{v}}=i_{2}\left(e^{c} \frac{d y}{d s}-b^{d} \frac{d z}{d s}\right) \tag{7}
\end{equation*}
$$

an equation whel gives the foree parallel to w on any element of the circuit. The forees pratel to y ind z are

$$
\begin{align*}
& \frac{d Y}{d s}=i_{d}\left(d \frac{d z}{d s}-t \frac{d d_{s}}{d /}\right) \tag{8}\\
& \frac{d Z}{d s}=i_{2}\left(b \frac{d w}{d_{s}}-d \frac{d /}{d v}\right) . \tag{o}
\end{align*}
$$

The resultant foree on the element is given in ditection and margnitudey by the quatemion expression iof ob ${ }^{3}$, where i_{s} is the numerical mensume of the enrront, and apond whe setors
representiog the element of the eirenit and the magretic induction, and the muldiplieation is to be anderstond in the Hamiltoniar sense.
603.] If the conchotor is to loe treated not as a line tut as a body, we must; express the force on the element of length, and the eurrent through the complete section, in terms of symbols denoting the foree per unt of wolume, and the enurent per whit of area.

Let $A_{1} y, Z$ now represent the eamponents of the lince referved to unit of volume, and N, x, z those of the current veferred to miti of area. 'Then, if' S represents the section of the conductor, which we shatl suppose smatl, the whume al the element a_{s} will be S ds, and $x=\frac{i_{2}}{S} \frac{d x}{d}$. Home, equation (\bar{d}) will heemme

$$
\begin{equation*}
\frac{x S d s}{d s}=S(n c-w b)_{1} \tag{10}
\end{equation*}
$$

Fere X, γ, Z are the components of the electromagnetic force on an element of a condnetor tivided by the wolnme of that element; \because, v, w are the components of the electric current througsl the dement referted to units of aren, and a, b, e are the components of the marnetic inductim at the element, which are also referred to unit of area.

If the vector 家 represents in magnitade and direction the foree acting on umit of volnme of the conductor, and if © repuesents the electric current fowing through ith,

$$
\begin{equation*}
f=T .69 . \tag{11}
\end{equation*}
$$

CHAPTER 1X.

GRNERAL EQUATHONS OF THE ELECHROMGNETLC FLELD,
604.] In our theoretical diseassion of electrodynamies we begran by assuming that a system of circuits carrying electric currents is in dymanical system, in which the onvents may be regarded as relocities, and in whieh the coominates corresponding to these velacities do not themselves appear in the equations. It follows from this that the kinctic energy of the system, son fus it depends on the enments, is a homogeneous quadratic lunction of the currents, in when the coefficients depend only on the form and relative position of the circuits. Assuming these coeficients to be known, by experiment or otherwise, we deduced, by purely dynamical reat soning; the laws of the induction of eurrents, and of electromagmetio attraction. In this investigation we introdaced the conceptions of the electrokinctic energy of a system of currents, of the eleetrom magnetic momentum of a cireuit, amd of the mutual potential of two circuits.

We then proceded to explore the fied by means of varions sonfigurations of the secondary direnit, atul were thas led to the conception of a rector $\$$, having a determinate magnitude and divection at any given point of the fieht. We catled this vector the electromagnetic momentum at that point. 'I'his quantity may lim considered os the time-integrat of the electronotive force whiel would be producet at that point lyy the sudden removal of atl the eurvents from the field. It is identical with the quantity olready investigated in Ant. A0.5 as the vector-potential of magrectie induction. Its components parallel to a, y, and a are $F ; G$, and $/ Z$. The electromagnetic momentum of a cirenit is the lime-integral of 9 round the eirenit.

We then, by mears of 'Jheorem IV, Art. 24, transformel the 22
line-integral of 2 into tho suffec-integial of another weetor, ${ }^{3}$, whose components are $a_{y}, b_{2} c$, and we found that the phenomenab of iaduction due to motion of a comluctor, and thase of electromagnedic fore can le expressed in terms of 9 . We gave to 8 the name of the Magnotice induetion, since its properties are identical with those of the lines of magreve induetion as investigated by I'manday.

We also established thee sets of equations: the first set, (A), are those of magnctic imbluction, expressing it in terms of the eleetromagnetic momentirm. The second set, (B), wre those of electromotive loree, uxpressing it in terms of the motion of the coneluetor acmoss the lines of magnetic indnetion, and of the rate of variation of the electromatenefie momentum. The thind get, (C), are the cquations of electromagnotic force, expressing it in temos of the current and the magnetic indaction.

The current in all these eases is to be understood as the actual current, which inchules not ouly the curment of conduction, but the eurrent dae to wariation of the electric displacement.

The magnetic induction 9 is the quantity which we have already considered in Art. 400. In an mmagnetized booly it is ithentioal witly the force on a unit magrontio pole, but if the body is magnetized, either permanontly or by induction, it is the foree which would be exerted on a unit pole, if placed in a nalrow erevasse in the lrody, the walls of which are perpendientar to the divection of magnetization. The emponents of b are a, b, a

It follows from the equations (A), lyy which a, b, c are delined, that

$$
\frac{d a}{d d x}+\frac{d b}{d y}+\frac{d d}{d z}=0
$$

'This was shewn at Art. 403 to be a property of the magnotic induction.
605. We have defined the magnetic force within a marnet, as distinguished from the magnetio induction, to be the foree an a imite pole placed in a marow erevasse out paratlel to the divection of matnotzation. Ihis quantity is donented by sh, and its components by a, β, γ. Soe Art. 398.

If \bar{g} is the intensity of magretization, und A, B, O its components, then, by Art. 400,

$$
\left.\left.\begin{array}{l}
a=a+4 \pi A \tag{1}\\
b=\beta+4 \pi B_{3} \\
a=\gamma+4 \bar{\pi} a_{4}
\end{array}\right\} \quad \text { (Eqpuations of Margnectization. }\right)
$$

We may eall these the equalions of magretization, and they indicate that in the electromagnetic system the magnelie induetion b, considered as a veetor, is the sum, it the Hamiltonian sense, of two wectors, the magnetic foree s, and the magnetization it mult plied by $4-\pi$ or $\quad \Rightarrow=53+4-3$.
In eortain substances, the magnetization deperuds on the magmetio force, and this is expressed by the system of equations of induced magretism given at Arts. 420 and 185.
606.] Up to this point of our investigation we have deduced overything from purely dynamieal considerations, without any relerence to quantitative experiments in electricity or magnefism, The only nee we havo mate of experimental knowledge is to recognise, in the abstact quantitios deduced from the theory, the comerete quantities discovared by axperment, and to demote them by names which indicate their physical relations mother than their mathemationl generation.

In this may we have pointed out the existence of the electromagrotic momentum of as a vector whose dimetion and magnitude wary from one part of space to mother, aml from this we have dedued, by a mathematieal process, the magnetic induction, ob, as a derived vector. We have noty howewer, obtataed any data for determiniug either 9 or 9 from the distribution of currents in that fied. l'or iThis purpose we must find the mathematieal connexion between these quantitios and the eurrents.

We begin by admitting the axisfone of permanent magnets, the mutual action of which satisfies the prineiple of the conservation of energy. We make no ascumption with respect to the laws of magnetic force except that which follows from this prineiple, namely, that the fore acting on a magnetie pole must be cabrable of being derived from a potential.

We then ofserve the action between curvents and magnels, and We find that a curtert ates on a magrast in a manner apparently the same as another magnet would act if its strengeth, form, und position were properly adjusted, and that the magret acts on the current. in tho same way as mother enment. I'hese olservations nued not be stipposed to be accompanied with actual measumments of fhe forces. They are not therefore to bo considered as furnishing momerieal data, but are useful only in suggesting rfustions fon oler considenation.
The question these observalions suggest is, whetloer the mangnetic fied producen ly electric entrents, as il is similat to that prodnced
by permanent magnets in many respects, resembles it also in being related to a potential?

The evidenee that an electric circuit produces, in the space surrounding it, marnetic effeets precisely the same as those produed by a magnetics shell bounded loy the circuit, has been stated in Arts. 482-485.

We know that in the case of the magnetie slell there is a potential, which has a determinate walue for all points outside the sabstance of the shell, but that the values of the potential at two neighbouring points, on opprosite siles of the shell, differ by a finite quantity.

If the magnetic field in the neighbourlood of an electrie current resembles that in the neighbourlnood of a magnctic shell, the magnetie potertial, as found by a line-integration of the magnetio force, will be the same for any two linus of iutegration, provited one of theee lines can be thatsformed into the other by continuons motion without cutting the electris eurrent.

If, however, one line of integration cannot lse trapsformed into the other without eatting the current, the line-integral of the magretic doree along the one fine will differ from that along the other by a quantity depexding on the strength of the current. The magnetic potential due to an electric current is therefore a function having an iufinite series of values with in common tifference, the particular value depending on the course of the line of integration. Within the sulstance of the conductor, there is no such thing as a magnetic potential.
607.] Assuming that the magretio action of a current hats : magnetie potential of this kind, we proceed to express this result mathematically.

In the first place, the line-integral of the magnetic force round any closed enve is zero, provided the closed curve does not surround the electric eurrent.

In the next place, if the current passes once, and only once, through the closel curve in the positive dixection, the line-integral has a determinate value, which may be ased as a measure of the strength of the currem. For if the closed eurve alters its form in any continuous manmer withont eutting the corrent, the Fincintegral will remain the same.
In electromagnetic measure, the line-integral of the maguetio force round a closed entwe is mumerically equal to the corrent throngh the elosed curve maltiplied lyy 14 .

If we take for the closel cture the parallelogram whose sides are d and d, the line-integral of the magnetic force romel the parallelogram is

$$
\left(\frac{d \gamma}{d y}-\frac{d \beta}{d z}\right) d y d z
$$

tund if $x, x, z o$ ate the components of the flow of electricity, the current through the parallelogram is

$$
u d y d z
$$

Multiplying this lyy 4 m, and equating the rusult to the lineintegral, we olstain the equation
with the similar equations

$$
4 \pi n=\frac{d \gamma}{d y}-\frac{d \beta}{d d^{2}}
$$

$$
\left.\left.\begin{array}{l}
4 \pi v=\frac{d / a}{d / z}-\frac{d / \gamma}{d,}, \\
4 \pi v=\frac{d / \beta}{/ / x}-\frac{d / \alpha}{d / y},
\end{array}\right\} \quad \begin{array}{r}
\text { Electric Currvints.) }
\end{array}\right\}
$$

which determine the magnitude and livection of the electrice curonts when the magnetic fore at every point is given.

When there is no curacols, these equations are equivalemt to the condition that

$$
a d x+\beta d y+\gamma d x=-D \Omega
$$

or that the nagnetic fore is alerivable from a magretic putential in all points of the field where there are no enrments.

By differentiating the equations (1) with respeet to a, y, and z respectively, and adding the results, we obtan the wation

$$
\frac{d z}{d x}+\frac{d v}{d y}+\frac{d w}{d z}=0
$$

which indicates that the current whose components are $\%, c^{2}$, is sulfiect to the condition of motion of an incompressible fand, and that it must necessanily flow in alosed cireuits.

This equation is troe only if we take $u_{3} v$, and was tho components of that electrie flow which is due to the variation ol electrie displacement as mell as to true conduction.

Te have very little experimental eviduce relating to the direet electronagnctic action of chments dae to the variation of electrice displacement in dielectries, but the extreme tiflicully of reconcilimg the daws of clectromagnetism with the existence of chetrie cmarembs Which atre not closed is one reason amonge many why we menst andmil the existenee of tramsient chrenas due to the rariation of displace ment. Their importance will be seen when we come to the chethemagnetic theory of light.
608.] The have now detemined the relations of the mimemal quantities concerned in the phonoment disooved by Örsted, Ampere, and l'adaly, To connect these with the phenomena described in the former jurts of this treatise, some adiditonal relations are necossary.

When elcetromotive force aots on a material body, it producos in it two electrienl effects, called by Faraday Induction and Conduction, the first being most conspienous in dielectries, and the second in comductors.

Iat this treatise, statie deetric indachion is measured by what we lave called the electrie displacement, a divected quantity or vecton Whieh we lave denoted by D, mid its components by f, f, d.

In isotropie substances, the displacement is in the same direction as the clectromotive foree whieh prodnces it, and is proportional to it, at least for small values of this foree. This may be expressed by we equation

$$
D=\frac{1}{4 \pi} A\left(\xi, \quad \begin{array}{c}
\text { (ispation of Electric } \tag{F}\\
\text { Dispulacememt. }
\end{array}\right.
$$

where K is the diclectric eapacity of the substance. See Art. 69.
In substances which are not isotropie, the compenents f, f, b of the electric displacement (D) are linear functions of the components P, Q, h of the electromotive force B.

The form of the equations of electric displacement is similar to that of the equations of conchetion as given in Art. 298.

These relations may be expressed by snying that π_{i} is, in isotropic bodios, a sealar quantity, lut in other hooties it is a linear and vector function, operating on the wector \&
609.] The other eflect of electromotive force is couduetion. The jaus of conuluction as the result of electromotive force were established by Ohm, and are explaineal in the seend part of this treatise, Art. 241. They may lye summed up in the equation

$$
\begin{equation*}
\pi=C 0, \quad \text { Wquation of Conduetivity }) \tag{G}
\end{equation*}
$$

where fe is the intensity of the electromotive fore the the point, \tilde{f} is the density of the curvent of conduetion, the components of which are p, q, x^{2}, and C is the conductivity of the sulnstance, which, In the case of isotropic substances, is a simple sonlar quantity, but in other substanees becomes a linen and vector function operating on the vector (e. 'J.he form of this function is given in Cartestan coordinates in Art. 298.
610.] One of the chief pretriarities of thits treatise is the ulactrine which it ascerts, that the true eleetrie current (S, that on which the
clectromagnetic phenomene depenel, is not the same thang as fi, the eurent of conduction, but that the time-varation of D, the chetrete displacement, mast be taken into acount in estimating the total movement of electricity, so that we must write,

$$
\begin{equation*}
\bar{E}=\sqrt[S]{ }+\dot{D}, \quad \text { (Equation of True Curventw }) \tag{Ғ}
\end{equation*}
$$

or, in terms of the emponente,

$$
\left.\begin{array}{l}
n=p+\frac{d j}{d l} x \\
v=q+\frac{d g}{d l}, \tag{*}\\
w=r+\frac{d h}{d l}
\end{array}\right\}
$$

611.] Sine looth find D depend on the electromotive fotee E, we may express the twe arrent (6 in terms of the electromptive force, thus

$$
\begin{equation*}
6=\left(C+\frac{1}{1 \pi} \kappa^{-d}\right) 6 \tag{1}
\end{equation*}
$$

or, in the case in which O and K are constants.

$$
\left.\begin{array}{l}
w=C P+\frac{1}{4 \pi} K \frac{d R}{d /} \\
z=C Q+\frac{1}{4 \pi} K^{d Q} \frac{d Q}{N /} \tag{*}\\
w=C h+\frac{1}{4 \bar{u}} N^{n / R}
\end{array}\right\}
$$

612.] 'The volume-density' of the free electricity at any point is Cound from the components of electeric displacement by the equation

$$
\begin{equation*}
\rho=\frac{d f}{d x}+\frac{d g}{d g}+\frac{d h}{d s}+ \tag{J}
\end{equation*}
$$

613.] The surface-density of electricity is

$$
\begin{equation*}
\sigma=l+m g+u h+\theta^{\prime} j^{\prime}+m^{\prime} g^{\prime}+n^{\prime} h^{\prime} \tag{K}
\end{equation*}
$$

where l, an, n are the divection-cosines of the nomal drawn from the surface into the medium in which f, z, f are the components of ${ }^{\prime}$ The displacement, and l^{\prime}, m^{\prime}, n^{\prime} are those ol the nomal drawn from the surtheo into the median in which they ate $f^{\prime \prime}, y^{\prime \prime} h^{\prime}$.
614.] When the magnetzation of the medium is entively inducerl by the magmetic force anting on it, we may write the equation of induced magnetization, $\quad B=\mu 9$, Where μ is the coefliesent of magedie permeabitity, which may be considered a sealar quatity, or alimat amel weetor fanction operating on fin, according as the medinm is isotropic or not.
615.] These may be regaled ats the principal relations among the quantities we lave been considering. They may be combined so as to eliminate some of these quantities, but our object at present is not to obtain compactness in the mathematienl formulae, lat to express every relation of which we have any knowledge. To eliminate a quantity which express a useful idea would bo rather a loss than o gain in this stage of our enquiry.

There is one result, however, which we may obtain by combining equations (A) and (C), and when is of very great importance.

If we suppose that no magnets exist in the field except in the form of electric eirenits, the distinction which we have hitherto maintained between the magnetic force and the magnetic induction Famishes, because it is only in magnetized matter that these quintitis differ from enol m other.

According to Ampere's hypothesis, which will be explained in Arb. 833 , the properties of what wo enl magnetized matron are due to molectar clectictectuts, so that it is only when we regard the substance in large masses that our theory of magnetization is applicable, and if our mathematical methods are supposed capable of taking account of what goes on within the individual molecules, they will discover nothing but electric cirenits, and we shall find the magnetic force and the magnetic induction everywhere identical. In order, however, to le able to male use of the electrostatic or of the electromagnetic system of measurement at pleasure we shat retain the coeffeient μ, remembering that its value is wily in the electromagnetic system.
616. The components of the magnetite induction are by equalLions (A), Alt. 591,

$$
\left.\begin{array}{l}
a=\frac{d / l}{d /}-\frac{d G}{d z} \\
\Delta=\frac{d F}{d /}-\frac{d / I}{d x} \\
a=\frac{d G}{d k}-\frac{d F}{d y}
\end{array}\right\}
$$

The components of the electric current are by equations (E$)^{2}$ Art. 60 ,

$$
\left.\begin{array}{l}
4 \pi x=\frac{d \gamma}{d y}-\frac{d \beta}{d z} \\
1 \pi v=\frac{d a}{d z}-\frac{d y}{d x} \\
4-w=\frac{d \beta}{d x}-\frac{d \alpha}{d y}
\end{array}\right\}
$$

According to our hypothesis a, b, c are identical wjuth $\mu a, \mu \beta$, py respectively. We therefore obtain

$$
\begin{equation*}
4 \pi \mu \psi=\frac{d^{2} G}{d x d y}-\frac{d^{2} b^{2}}{d y^{2}}-\frac{d^{2} l^{\prime}}{d a^{*}}+\frac{d^{2} h}{d / \sqrt{2} x} \tag{1}
\end{equation*}
$$

If we wrile $\quad J=\frac{d F}{d x}+\frac{d G}{d y}+\frac{d I I}{d z}$,
and *

$$
\begin{equation*}
\nabla^{2}=-\left(\frac{d^{2}}{d x^{2}}+\frac{d^{2}}{d y^{2}}+\frac{d^{2}}{d z^{2}}\right) \tag{2}
\end{equation*}
$$

We may write equation (1),

$$
\left.\begin{array}{l}
4 \pi \mu u=\frac{d J}{d x}+\nabla^{2} F \\
\text { Similarly }_{*} \tag{d}\\
4 \pi \mu v=\frac{d J}{d y}+\nabla^{2} G_{5}^{\prime} \\
4 \pi \mu w=\frac{d J}{d z}+\nabla^{2} / J
\end{array}\right\}
$$

Il' we writu $\quad h^{*}=\frac{1}{\mu} \iiint \frac{w}{\mu} d x d y d z$

$$
\begin{align*}
& G^{\prime}=\frac{1}{\mu} \iiint_{r}^{v} d x d y d z_{3} \tag{5}\\
& M^{\prime}=\frac{1}{\mu} \iiint_{r} d d d y d z,
\end{align*}
$$

$$
\begin{equation*}
x=\frac{4 \pi}{\mu} \iiint \frac{d}{\mu} d v d y d z \tag{6}
\end{equation*}
$$

where y is the distance of the given point from the element : y y and the inlegrations are to be extended over all spene, then

$$
\left.\begin{array}{l}
H=F^{v}+\frac{d x}{d x} \\
G=G^{\prime}+\frac{d x}{d y} \tag{7}\\
H=H^{\prime}+\frac{d x}{d z}
\end{array}\right\}
$$

The quantity x disuppenss from the equations (A), and it is not related to any physteal phenomenon, If we suppose it to he zero everwwhere, of will also be zero everywhere, and entations (o), omithag the aceents, will give tho trite values of the componemts of 9.
 With these in which lituatatiane are employed.
617.] We may therefore atopt, as it defintion of 9 , that it is the vector potential of the electric current, standing in the same relation to the electric ourent that the sealar potential stands to the matter of which it is the potential, and ofotained by a similar process of integration, which may be thus described.-

From a given point let a vector lo drawn, bepresentinig in magnitade and rirection in given element of an electric curvent, divided by the mumerical value of the distance of the elemant from the given point. Jet this be done for exery element of the electric chrrent, 'The regultant of all the vectors thass found is the potential of the whole current. Since the enrent is a vector rumity, its potential is atso arector. See Att. 422 .

When the distribution of electsto etarents is given, there is one, anal only one, distribution of the values of et such that it is everywhere finite and continuons, and satisfies the equationg

$$
\nabla^{2} 9=4 \pi \mu[5, \quad S \nabla \sqrt{9}=0
$$

and varishos at an infinte distance from the electric systum. This value is that given by equations (b), which may be writen

$$
Q_{1}=\frac{1}{\mu} \iiint \frac{5}{r} d x d y d t
$$

618. In this treatise wo linve entenvoured to avoid any proens demanding From the reader a knowledge of the Caleallos of Quattemions. At the same time we have not serppled to introdnce the idea of a vector when it was necesary to do so. When we have: had occasion to donofe a vector lyy a symbol, we liave nsed a German leters, the mumber of difterent vectors leing so great that Hamiltons: firourite symbols would theve been exhansed at onee. Whenever therefore, acman letter is used it denotes an IrmilLonian wectory and indieates not only its magritude but its flivection. ${ }^{\text {t The constitisents of at wector are denoted by Roman or Greek lelters. }}$

The principal vectors which we have to consider are:-

	syimbly of Vector:	Cusstituentes.
The electromotive force	(P Q 1
The mechanieal foree	\%	x r
The velocity of a point	(93) or $\dot{\rho}$	¢ ${ }^{\text {y }}$
The magnotic force	6	a β
The intensity of magnetization	3	$A B C$
The current of conduction	8	p \% r
We lave also the following scalar funetions:-		
The electric potertial Ψ.		
The inatgnetio potential (where it exists) Ω.		
The eleetric density e.		
The dunsity of magnetie 'matter' ${ }^{\text {a }}$.		

Thesides these we have the following ghantities, indicating physical proprerties of the mediam at each point: -
C, the conductivity for dectrie cinrents.
R, the dielotric inductive capmeity.
μ, the magnetio inductive capacity.
These quantities are, in isolropic mudia, mere senlar functions of β, but in general they are linear and vector operators on the vector functions to which they are applied. κ and μ are certainly always self-eonjugate, and C is probably so also.

G19.] The equations (A) of magnetic inductim, of which the first is,

$$
a=\frac{d I I}{d y}-\frac{d G}{d x},
$$

may now lee written

$$
\mathfrak{B}=\eta \nabla \geqslant \mathbb{V},
$$

where ∇ is the operator

$$
i \frac{d}{d x}+j \frac{d}{d y}+k \frac{d}{d z}
$$

and V indicates that the vector part of the result of this operation is to be takem.

Since If is sutject to the contition $S \nabla 9=0, \nabla 9$ is a purs yector, and the symbol I^{\prime} is unnecessary.
'The equations (B) of electromotive fored, of which the first is
become

$$
P=c \dot{g}-b \dot{y}-\frac{d P^{\prime}}{d l}-\frac{d \Psi}{d u},
$$

The equations (C) of mechamical foree, of which the first is
berone

$$
I=c n-h w-e^{d \psi} \frac{d,}{d x} \frac{d Q}{d x}
$$

$$
\bar{W}=\Gamma(\mathbb{S}-e \nabla \Psi-m \nabla \Omega .
$$

The equations (D) of magnctization, of which the first is

$$
\begin{aligned}
& a=a+1 \pi A, \\
& B=5+4 \pi,
\end{aligned}
$$

become
The equations (F) of electric curvents, of which the first is
become

$$
4 \pi k=\frac{d \gamma}{d y}-\frac{d \beta}{d z},
$$

The equation of the eurrent of conduction is, ly Ohm's Law,

$$
\mathfrak{\Omega}=C \hat{0} .
$$

That of clectrie displacement is

$$
\mathcal{D}=\frac{1}{4 \pi} K 6 .
$$

The equation of the total current, arising from the variation of the electric displacement as well as from conduction, is

$$
\sqrt{5}=\mathfrak{x}+\mathfrak{D}
$$

When the magnetization arises from magnetie induction,

$$
\mathfrak{B}=\mu \mathfrak{y} .
$$

We have also, to determine the electric volume-lensity,

$$
\theta=S \nabla \mathfrak{D} .
$$

To determine the magnetic volume-density,

$$
m=s \nabla 3
$$

When the magnetic force can be derived from a polential

$$
5=-\nabla!.
$$

CHAPMER X .

```
DIMPMSIONS OF BLPCTRIC UNITS.
```

620.] Perky electromagnetic quantity may be defined with refurence to the fundamental units of Thength, Mass, and Time. If we begin with the definition of the unit of electricity, as given itn Art. 65, we may obtain definitions of the units of every other electromagretie quantity, in virtue of the equations into which they enter along with quantities of electricity. The system of units thess obtained is called the Electrostatio System.

If, on the ather land, we begin with the definition of the unit magnetic pole, as given in Art. 374, we oldain a dillerent system of" units of the same set of quantities. This system of units is not consistent with the former system, and is called the Electromagnetic Systern.

We shall begin by stating those relations between the diflerent units which are common to hoth systems, and we shall then form a table of the dimensions of the units according to each system.
621.] We shall arrange the primary quantities which we have to consider in pairs. In the first three pairs, the froduct of the two quantities in each pair is a quantity of energy or work. In the second three pairs, the proluct of each pair is at quantity of enorgy refered to unit of volume.

First Turef Paiks.

Plectrostatio Pair.

(1) Quantity of electricity

Simblal.
(2) Line-integral of electromotive force, or electrie potential Fi

Moquetic Patir.
(3) Quantity of frea maghetism, or strengtli of a pote. Wh
(4) Maguetic potential

- 5

Weetrukimatic Pair.
(5) Tilectrokinctio momentum of a circuit
(6) Pileetrie carrent.

Second Turez Pales.

Blectrontatic Pair.

(i) litectrid displacement (measured by surface-tensity) . D
(8) Ehect romotive fore at a point \&

Magnetic Pair.
(9) Magnetic inalaction B
(10) Magretic force 5

Alectrokinctic Pair.

(11) Tntensity of electric enurent at a point . . . (5
(12) Tector polential of electric enrrente . . . 21
622.] The following relations exist between these quantitics. In the first place, since the dimensions of energy are $\left[\frac{L^{2} M}{T^{2}}\right]$, and those of energy refered to ranit of volume $\left[\frac{M}{T T^{2}}\right]$, we have the following equations of dimensions:

$$
\begin{align*}
& {[e W]=[m \Omega]=[p C]=\left[\frac{L^{2} M}{T^{2}}\right]} \tag{1}\\
& {[D G]=[3,6]=[\mathrm{G} ?]=\left[\frac{M}{W W^{2}}\right]} \tag{2}
\end{align*}
$$

Seondly, since $c_{2} \Rightarrow$ and श are the time-integrals of G, E, and e respectively.

$$
\left[\begin{array}{c}
c \tag{3}\\
\bar{C}
\end{array}\right]=\left[\frac{p}{\vec{l}}\right]=\left[\frac{3}{6}\right]=\left[y^{\prime}\right]
$$

Wllirdly, since E, Ω, and p are the line-integrals of 6, , and ${ }_{6}$ respectively,

$$
\left[\begin{array}{c}
L^{\prime} \tag{9}\\
(5
\end{array}\right]=\left[\begin{array}{c}
\Omega \\
5
\end{array}\right]=\left[\begin{array}{l}
2 \\
9
\end{array}\right]=[/ /] .
$$

Finally, since $e_{3} C$, ard tare the surfece-integrals of \mathfrak{D}, 6 , and \mathfrak{b} respectively,

$$
\left[\begin{array}{c}
e \tag{5}\\
D
\end{array}\right]=\left[\begin{array}{l}
C \\
6
\end{array}\right]=\left[\begin{array}{l}
m \\
\frac{M}{4}
\end{array}\right]=\left[l^{2}\right]
$$

623.] These fifteen equations are not independent, and in order to deluce the dimensions of the twelve units involved, we refuire one additional equation. In, however, we take cither e or m as an independent unit, we can deduce the dimensions of the rest in lerms of either of these.

$$
\begin{equation*}
[e] \quad=[e] \quad=\left[\frac{l^{2} M}{m T}\right] \tag{1}
\end{equation*}
$$

$$
[H] \quad=\left[\begin{array}{c}
L^{2} M \tag{2}\\
e^{2} T^{2}
\end{array}\right]=\left[\begin{array}{l}
m \\
T
\end{array}\right]
$$

$$
\text { (3) and (j) }[\mu]=[m]=\left[\frac{l^{v} M}{e T}\right]=[m] \text {. }
$$

$$
\text { (1) and (6) }[C]=[\Omega]=\left[\begin{array}{c}
c \\
T^{\top}
\end{array}\right]=\left[\frac{I^{2} 1 /}{m T^{m}}\right]
$$

(i) $[D] \quad=\left[\begin{array}{c}c \\ / i^{2}\end{array}\right]=\left[\begin{array}{c}M \\ m T\end{array}\right]$.
$[G] \quad=\left[\frac{L M}{e^{2}}\right]=\left[\begin{array}{c}M \\ M T\end{array}\right]$.
$\left[B^{2}\right]=\left[\begin{array}{c}M I \\ t^{2} T^{\prime}\end{array}\right]=\left[\begin{array}{l}2 \pi \\ L^{2}\end{array}\right]$.
$[5] \quad=\left[\frac{e}{L T}\right]=\left[\frac{L M}{n J^{2}}\right]$.
$[\S] \quad=\left[\begin{array}{c}c \\ L^{2} T\end{array}\right]=\left[\begin{array}{c}M I \\ m T^{2}\end{array}\right]$.
$\left[8[] \quad=\left[\frac{L M M}{e T}\right]=\left[\frac{m}{L}\right]\right.$.
624.] The relations of the first ten of these puantities may be exhibited by menns of the following arrangement:-

The quantities in the first line ate derived frome by the same operations as the corresponding quatities in the second line ure derived from ons. It will be seen that the order of the ghantities in the first line is exally the reverse of the order in the second line. The first four of ench lime twave the first symbol in the numerator. The second forn in each line lave it in the denominatol.

All the relations given above are trate whatever system of unts we adopt.
625.] The only systems of amy solentific watuo are the electrostatic and the stectromgnetio system. The ulectrostatio system is VOL, 1f,

$$
\begin{aligned}
& \text { M and } p, \text { B, } \quad \sigma, \quad C \text { and } \Omega, 5, \quad D, \quad e .
\end{aligned}
$$

founded on the rlefinition of the unit of electricity, Auts. 41, 42, and may loe dedued from the equation

$$
Q=\frac{e}{L^{2}}
$$

which expuesses that the resultant fore © at ay point, due to the netion of a guantity of electricily e at a distance L, is foumd by dividing e by L^{2}. Substitnting the equations of dimension (1) and (8), we find

$$
\left[\frac{L M}{e^{T} T^{2}}\right]=\left[\frac{c}{L^{2}}\right], \quad\left[\frac{m}{M T}\right]=\left[\frac{M}{M T}\right]
$$

Whence

$$
[e]=\left[/^{\frac{3}{2}} M^{1} T^{-1}\right], \quad n=\left[L^{\frac{1}{2}} M^{\frac{1}{2}}\right],
$$

in the electrostatic system.
The electromagretie system is founded on a preciscly similar definition of the unit of strengh of a magnetic pole, Art. 374 , leading to the equation

$$
5=\frac{m}{h^{2}}
$$

and $\quad[c]=\left[S^{\frac{1}{2}} M^{\frac{1}{2}}\right], \quad[m]=\left[L^{3} M^{\frac{1}{2}} T^{-1}\right]$, in the electromagnetic system. From these results we find the dimensions of the other quantities.

627.] We have altedy considered the prothets of the paise of these quantities in the order in which they stand. Their ratios are in certain cases of scientific importance. Thus

Elentrostatic Electronaggnetic Symbol

> Syytem. Systern.
$\frac{e}{F^{2}}=$ eapacity of an mecmulator $\quad . \quad q \quad[L] \quad\left[\frac{T^{2}}{h}\right]$.
$\frac{P}{C}=\left\{\begin{array}{c}\text { eoeftienent of self-induction } \\ \text { of a cincuit, or electro- } \\ \text { magnetic empacity }\end{array}\right\} \quad / \quad\left[\frac{J^{3}}{h}\right] \quad[/ /]$
$\left.\frac{D}{\sqrt{6}}=\left\{\begin{array}{c}\text { specifie inductive capacity } \\ \text { of dielectric }\end{array}\right\} . K^{\pi} \quad[0]\right]\left[\begin{array}{c}y^{r 2} \\ L^{2}\end{array}\right]$.
$\frac{3}{5}=$ magnetie inductive calyaty $+\mu\left[\begin{array}{l}\frac{9}{2} \\ l^{2}\end{array}\right] \quad[0]$.
$\frac{F}{C}=$ resistanee of in conductor $\ldots . \quad 7 \quad\left[\begin{array}{l}R \\ H\end{array}\right] \quad\left[\frac{H}{T}\right]$.
$\frac{C}{C}=\left\{\begin{array}{c}\text { specific resistance of } a \\ \text { substance }\end{array}\right\} \ldots r^{2} \quad[T] \quad\left[\frac{L^{2}}{T^{2}}\right]$.
628.] If the mits of length, mass, and time are the same in the two systems, the number of electrostatic units of electricity contained in one electromagnetic matit is numerically equal to a certaim whocity, the absolnte vathe of which dons not depend on the magnitude of the fundamental mits employed. 'This velocity is tu important physical quantity, which we shall denote by the symbol \boldsymbol{v}.

Mumber of Wectrosfatic Urits in one Ilectromagnetic Unit.

For $e, C, \Omega, D, 6,6, \ldots \ldots v$.

For electrostatio eapacity, dielectric inductive oapacit γ, and conductivity, v^{2}.

For electromagnetic eapacity; magnetic inductivo eapacity, :nn] resistance, $\frac{1}{x^{2}}$.

Several methous of determining the velocity v will be givelr in Arts. $768-\overline{\mathrm{r}} 80$.

In the clectrostatio system the specifie dielectrie juductive caphcily of air is assumed equal to mity. This quandity is therefore represented by $\frac{1}{e^{2}}$ in the electromagnetic system.

In the electromagnetie system the specifie magnetic induetive capacity of air is assumed equal to unity. This quantity is therefore represented by $\frac{1}{w^{2}}$ in the electrostatic system.

Practical Systom of Electric Unils.

629.] Of the two systems of units, the electromagnetic is of the greater use to those practical electricians who are ocenpied with electronagnetic telographs. If, however, the units of length, time, and mass are those commonly used in other scientific work, such as the mètre or the cendimètre, the second, and the gramme, the units of resistance and of electromotive force will be so small that to express the quantities occurving in practice enormous numbers most be used, and the units of quantity and capmity will be so large that only excectingly small fractions of them can ever ocour in practice. Practical electricims have therefore adopted a set of eleetrical units deduced by the electromagnetic system from a large nuit of lengtly and a small unit of mass.

The unit of length used for this purpose is ten million of mètres, or approximately the length of a quadrant of a meridian of the earth.

The unit of time is, as before, one second.
The unit of mass is 10^{-11} gramme, or one hundred milliontls part of a milligramme.

The electrieal units derived from these fundamental mite have been nauned after eminent electrical disooverers. Thus the practical unit of resistance is called the Ohm, and is represented by the resistance-coil issued by the British Association, and described in Art. 340. It is expressed in the electromagnetie system by a velucity of $10,000,000$ metres per second.

The practical unit of electromotive foree is selled the Volt, and is not very iliflerent from that of a Daniell's cell. Mr. Jatimer Clark has recently invented a very constant cell, whose electromotive foree is almast exactly 1.157 Volts.
The practical unit of capacily is called the Farad. The quantity of eleetricity which flows througl oue Ohm under the electromotise force of one Volt duriug one second, is equal to the charge produced in a condenser whose capacity is one laral by an clectronotive force of one Volt.
The nse of these names is found to be more convenient in practice than the constant repetition of the words 'clectromagnetie units,'
with the odditional statement of the particulare Fundamentel units on which they are bounded.

When very large quatities are to be measured, a large unit is formed by multiplying the original unit by one million, and placing before its name the profix moga.

In like manner by prefixing wiero a small tanit is formed, one milliontla of the original mait.

The tollowing table gives the values of these practical mits in the different systens which have been at varions times alopted.

frimidatemtald Usitus.	Practicht Sysiem.	$\begin{gathered} \text { F. A. Terrolet } \\ 1863 . \end{gathered}$		hempit.
Arroth, Thmet Mres.	Envth'z Qureirant. serome d, 10-12 Growne.	Metre, stermuls Gromme.	Owhimetron, Sreond ${ }^{2}$ firctimane	Milliner tut Soccuad Midtipprcanale
Tiesistance	Ohm	$10^{\text {t }}$	19^{9}	10^{1}
Electronotire Fored	Tolt	10°	$11)^{4}$	10^{11}
Caprecily	Tarsul	10^{-5}	110-9	10^{-10}
Quaratity	Fatmat (ehargerl tio an Mrolt.)	10^{-7}	10^{-1}	10

CHAPTER XI.

ON ENERGY AND GTRESS IN THE RLAETJOMAGAETIC FIRLD.

Itectrostutic Bhergy.

630.] Thas energy of the system may le divided into the Potential Energy and the Kinetic Energy.
'I'le potential encray due to electrification bas been already considered in A ri. 85 . It, may be written

$$
\begin{equation*}
W=\frac{1}{2} \Sigma(e \Psi), \tag{1}
\end{equation*}
$$

where e is the charge of efectricity at a place where the electrie potential is Ψ, and the summation is to be extended to every place where there is olectrification.

If f, g, h are the components of the electric displacement, the quantity of electrieity in the element of velume de dy $l /$ is

$$
\begin{equation*}
e=\left(\frac{d f}{d t}+\frac{d q}{d y}+\frac{d h}{d z}\right) d w d y d z, \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
W=\frac{1}{t} \iiint\left(\frac{d j}{d x^{x}}+\frac{d g}{d y}+\frac{d h}{d z}\right)+d x d y d s, \tag{3}
\end{equation*}
$$

where the integration is to be extended throughome all space.
631.] Integrating this expression by parts, and rememboring that when the distance, r, from a given point of a finte electified system becomes infinite, the potential Ψ becomes an infinitely small quantity of the ordur F^{-x}, and that f, f, h become infonitely small quantities of the oriler r^{-2}, the expression is reduced to

$$
\begin{equation*}
W=-\frac{1}{2} \iiint\left(f \frac{d \Psi}{d x}+g \frac{d \Psi}{d y}+h \frac{d \Psi}{d /}\right) d x d y d z \tag{4}
\end{equation*}
$$

where the integration is to be extended throuthout all space.
If we now write P, Q, R for the components of the electromotive force, instond of $-\frac{d \Psi}{d x},-\frac{d \Psi}{d y}$, and $-\frac{d \Psi}{d t}$, we find

$$
\begin{equation*}
W=\frac{1}{4} \iint(P /+Q q+A \pi) d x d y d z \tag{b}
\end{equation*}
$$

Hence, the electrostatie cnergy of the whole field with be the sane if we suppose that it resiles in every part of the fielit were electrical fore and electrical displacement oeent, instead of being confined to the places where free electricity is fommal.

The energy in untit of volume is latf the product of the electromotive fore and the electrie displacement, multiphied lyy the cosine of the angle whiel these vectors incude.

In Quaternion language it is $-\frac{1}{2} S(5$.

Magnetic Farcog.

Q32.] We may treat the energy due to magnetization in a similar way. $1 \Gamma A_{3} B, C$ are the eomponents of magnotization and α, β, γ the components of magnetic force, the potential cnergy of the system of magrets is, by Art. 38 n ,

$$
\begin{equation*}
-\frac{1}{2} \iiint(A a+\beta \beta+C y) d \mu \cdot d y d z, \tag{6}
\end{equation*}
$$

the integration being extended over athe sinace ocotided by magnetizel matter. 'Jlus part of the energy, however, will be inelnded in the kinetic energy in ille form in which we shall presently obtain it.
633.] We may transform this expression when there are no dedtric currents by the following method.

We linow that

$$
\begin{equation*}
\frac{d \alpha}{d x}+\frac{d b}{d y}+\frac{d c}{d y}=0 \tag{i}
\end{equation*}
$$

Hence, by Art. 97 , if

$$
\begin{equation*}
a=-\frac{d \Omega}{d x^{2}}, \quad \beta=-\frac{d \Omega}{d / /}, \quad \gamma=-\frac{l \Omega}{d /}, \tag{8}
\end{equation*}
$$

as is always the ense in magnetic plenomema where there are no chrrents.

$$
\begin{equation*}
\left.\iint(u a+b \beta)+c \gamma\right) / \Delta d y d z=0 \tag{9}
\end{equation*}
$$

the indegral heing extemted thronghout all spince, or

$$
\begin{equation*}
\iiint_{0}\{(a+4 \pi A) a+(\beta+4 \pi h) \beta+(\gamma+4 \pi C) y \cdot d x+y d z=0 \tag{10}
\end{equation*}
$$

Hence, the enargy duo to a magnet io system

$$
\begin{align*}
-\frac{1}{2} \iiint(A a+\beta \beta+C \gamma) d u d y d z & =\frac{1}{8 \pi} \iiint\left(a^{2}+\beta^{n}+\gamma^{4}\right) d d d y d z \\
& =-\frac{1}{8} \iiint \int^{2} d x d y d x \tag{11}
\end{align*}
$$

Blectrofinatic Finergy.

634.] We have already, in Art 5 578, expressed the kinetic energy of a system of eurrents in the form

$$
\begin{equation*}
T=\frac{1}{2} \mathbf{E}(p i), \tag{12}
\end{equation*}
$$

where p is the electromagnetic momentum of a circuit, and z is the strength of the current flowing round it, and the summation extemds to all the cirenits.

But we have proved, in Art. 590 , that p may be expressed as a line-integral of the form

$$
\begin{equation*}
p=\int\left(F_{d x}^{d x}+G_{d y}^{d / y}+I I \frac{d q}{d s}\right) d s_{s} \tag{13}
\end{equation*}
$$

where $F, G, I f$ are the components of the eluctromagnetio momentum, \because, at the point $(x y z)$, and the integration is to be extenuled mound the closed circhits. We therefore find

$$
\begin{equation*}
T=\frac{1}{y} \sum \int\left(F^{d x}+G \frac{d y}{d s}+H \frac{d z}{d s}\right) d s \tag{14}
\end{equation*}
$$

If u, z, ware the components of the density of the current at any print of the couducting circuit, and if δ is the transwerse section of the circuit, then we may write

$$
\begin{equation*}
i \frac{d x}{d s}=u S_{3} \quad i \frac{d y}{d s}=v S_{1} \quad i \frac{d z}{d s}=w S_{j} \tag{15}
\end{equation*}
$$

and we may also write the volume

$$
S d s=d x d y d z_{x}
$$

and we now find

$$
\begin{equation*}
T=\frac{1}{d} \iiint(F u+Q u+\Pi w) d x d y d z, \tag{16}
\end{equation*}
$$

where the integration is to be extended to cvery part of space where there are electric currents.
635.] Let us now substitute for u, x, w theiry walues as tiven by the equations of electric currents (IV), Art. 607, in terms of the comporents α, β, γ of the magnetic force. We then have

$$
\begin{equation*}
T=\frac{1}{8 \pi} \iiint\left\{F\left(\frac{d \gamma}{d y}-\frac{d \beta}{d z}\right)+G\left(\frac{d a}{d z}-\frac{d \gamma}{d u}\right)+I I\left(\frac{d \beta}{d x}-\frac{d a}{d y}\right)\right\} d x d y d z \tag{17}
\end{equation*}
$$ where the integration is extended over a portion of space including all the currents.

If we intugrate this by parts, and remember that, at a great distance from the system, α, β, and γ are of the order of magnitude r^{-3}, we fimit that when the intergration is extended throughout all space, the expression is reduced to

$$
\begin{equation*}
\left.T=\frac{1}{8 \pi} \iiint a\left(\frac{d \|}{d y}-\frac{d G}{d z}\right)+\beta\left(\frac{d F}{d z}-\frac{d I I}{d x}\right)+\gamma\left(\frac{d G}{d x}-\frac{d F}{d y}\right)\right\} d v d y d z, \tag{18}
\end{equation*}
$$

By the equations (A), Ant. 591 , of magnetie imhection, we may substitute for the quautities in small brackets the emmponents of mamnetic induction $a, b, c, 80$ that the kinetie energy may be Written

$$
\begin{equation*}
T=\frac{1}{8 \pi} \iiint(a d a+b \beta+c \gamma) d x d y d z \tag{19}
\end{equation*}
$$

where the intepration is to be extended throughont overy part of space in which the marnetic foree and magnelic induction have values differing from zero.

The quantity within brackets in this expression is the prodhet of
 in its own direction.

In the langratge of quaternions this may lue written more simply,

$$
-S .93 .9
$$

Where $\frac{3}{}$ is tha magnetic induction, Whose componemts are a, b, c, and 5 is the magnetic lore, whose compments are a, β, γ.

Q36.] The eleetrokinctie energy of the system may thorefore lee expressed cither as an intugral to be taken where there are clectrio carrents, or as ath integral to be taken over overy part of the feed in which magnetic force exists. 'The first integral, however, is the natoral expression of the theory which supposes the curtents to act upon ench other directly at a distance, while the second is appropriate to the theory whid, endearours to explain the action between the currents ly moans of some intomediato nction in the space between them. As in this treatise we live adopted the hatter method of imrestigation, we natmally adopt the second expression ns giving the most signifient form to the kinetic energy.

According to out lypothesis, we assume the kinetie enorgy to exist wherever there is magnefie fore, that is, in general, in every part of the field. The ancount of this energy per unite of volume is $-\frac{1}{8 \pi} S 35$, and this energy exists in the lorm of some lind of motion of the matter in every protion of space.

When we come to consulev liaraday's diseovery of the eflect of magnetism on polarized light, we shall point ont reasons fus helieving that wherever there are lines of mametio foree, there is a rotatory motion of matter round those lines. Ser firt. 821 .

Magnelic and Blectrokinatic linergy compard.

637.] We foum in Art. 128 that the mutnal potential energy
of two magnetio shells, of strengeths ϕ and ϕ^{\prime}, and boundel ly the closed curves s and g^{\prime} xespectively, is

$$
-\phi \phi^{\prime} \iint \frac{\cos \epsilon}{r} d s d b^{\prime}
$$

 is the distanee between thern.

We also found in Art. 521 that the mntual energy of two cireuits s and i^{\prime}, in which currents i and i^{\prime} flow, is

$$
i i^{\prime} \iint \frac{\cos \epsilon}{r} d s d s^{\prime}
$$

If i, b^{\prime} are equal to ϕ, ϕ ' respectively, the mechamical action letween the magnetie sheils is equal to that between the corresponding electric circuits, and in the same direotion. Ins the case of the magnetic shells, the force tends to eliminish their mutual potential chergy, in the ense of the circuits it tends to inercase their mutual energy, becanse this energy is kinetie.

It is impossible, by any arrangement of magnetized matter, to produce a system corresponding in all respects to an eleetric circuit, for the protential of the magnetic system is single valued at every point of space, whereas that of the electric system is many-valued.

Buti it is always possible, by a proper arrangement of infinitely smatl electrie civenits, to produce a system corresponding in all respects to any magnetic system, provided the line of integration Which we follow in calculating the potential is prevented from passing throngh any of these smatl circuits. This will be more fully exphaned in Art. 833.
The action of maghets at a distance is perfectly identical with that of electric currents. We therefore encearour to trace both to the samo cause, and since we emmat explain electrie currents by means of magnets, we must adont the other alternative, and explain magnets by means of molecular electric enerents.
658.] In our investigation of magnetic phenomema, in Tart III of this treatise, we made no attempt to account for magnetie action at, a distance, luat treated this aetion as a Cumdamental fact of experience. We therefore assumel that the encrgy of a magnetic system is potential energy, and that this energy is diminisheof whens the pirts of the eystem yield to the magnetic forces which act on them.

If, however, we regaval magnets as deriving their properties from electric currents circulating within their molecnles, their energy
is kinetic, and the foree between them is sueh that it temels to move them in a direction such that if the strengths of the currents were maintained constant the kinetic energy would increase.

This mode of explaining magnetism requires us also to abandon the methoul followed in Part III, in which we regarded the magneti as a contimous and homogeneons loody, the minulest part of whith leas magnetic properties of the same kind as the whole.

We must now regard a magnet as containing a fiaite, thonugh very great, number of electric circuils, so that it las essentially a molecnlar, as distinguished from a continuous structure.

If we suppose our mathematical machinery to be so coarse that our line of integration camot thread : molecular cirenit, and that an imnense number of magnotic molecules are contained in our element of volume, we shall still arrive at results similar to those of Part III, but if we suppose our machinery of a liner order, and capable of investigating all that groes on in the interior of the molecules, we must give up the old theory of magnetism, atud adept that of Ampere, which almits of no magnets except those which consist of electric currents.

We must also regard both magnetio and eleetromagnctie energy as kinetic energy, and we must ntidibute to the proper sign, as given in Art, 635.

In what follows, though we may oceasionally, as in Ayt. 639 , \&ec, nttempt to earry out the old theory of magnetism, we shall find that we obtain a perfectly consistent system only when we albandon that theory and adopt Ampere's theory of molecular curvents, as in Art, 644.

The energy of the field therefore consists of two parts only, the electrostatic or potential energy

$$
\left.W^{-}=\frac{1}{2} \iiint(P)+Q q+R / t\right) d x d y d z
$$

and the electromagnetic or kinetic energy

$$
T=\frac{1}{8 \pi} \iiint(a a+b \beta+c y) d x d y d z .
$$

on the voliche wtich act on an paeatest of a bod maced EM THM ELECTROMAGXTTU FIFIN.
Forees acting on a Magnetic Element.
639.] The potential energy of the clement dudy da of a body marnetized with an isternsity whose components ate A, B, C and
placed in a ficld of magnetic foree whose componente are $a_{3} \beta, \gamma_{1}$ is

$$
-\left(A \alpha+B \beta+C_{\gamma}\right) d x d y d z
$$

Hence, if the foree urging the element to move without rotation in the direction of x is $\lambda_{1} d x d y d x$,

$$
\begin{equation*}
X_{1}=A \frac{d a}{d x}+D \frac{d \beta}{d x}+C \frac{d \gamma}{d x} \tag{1}
\end{equation*}
$$

and if the moment of the conple tending to turn the etement about the axis of n from y towards z is $L d x \cdot d y d x$,

$$
\begin{equation*}
h=A_{\gamma}-C \beta \tag{2}
\end{equation*}
$$

The forces and the mombents corresponding to the nxes of y and z may be written down ly making the proper substitations.
640.] If the magnetized body earmes an electric curgent, of which the compoments are u, v, x, then, by equations C, Art, 60.3 , there will be an additional electromagnetic foree whose components are $\lambda_{2}^{-} \mathcal{I}_{2}^{-}, Z_{2}$, of which $X_{\underline{0}}$ is

$$
\begin{equation*}
\dot{X}_{2}=m-w d \tag{3}
\end{equation*}
$$

Hence, the total force, X, arising from the magnetism of the molecule, as well as the current passing through it, is

$$
\begin{equation*}
x=A \frac{d a}{d w}+B \frac{d \rho}{d x}+C \frac{d \gamma}{d x}+w-w d \tag{4}
\end{equation*}
$$

The quantities a, b, are the components of magnetic induction, and are related to a, β, γ, the components of magretic lorce, by the equations given in ${ }^{\text {drta }} 400$,

$$
\left.\begin{array}{l}
a=a+4 \pi A \\
b=\beta+4 \pi B \tag{5}\\
c=\gamma+4 \pi C
\end{array}\right\}
$$

Whe components of the current, x, v, x, , can be expressed in terms of α, β, γ by the equitions of Art. 007 ,

Hence

$$
\left.\begin{array}{l}
4 \pi z=\frac{d \gamma}{d y}-\frac{d \beta}{d z} \tag{6}\\
4 \pi==\frac{d a}{d z}-\frac{d \gamma}{d x} \\
1 \pi *=\frac{d /}{d /}-\frac{d a}{d y}
\end{array}\right\}
$$

$$
\begin{align*}
I & =\frac{1}{4 \pi}\left\{(\alpha-a) \frac{d a}{d x}+(b-\beta) \frac{d \beta}{d n}+(c-\gamma) \frac{d \gamma}{d x}+b\left(\frac{d \alpha}{d y}-\frac{d \beta}{d x}\right)+c\left(\frac{d a}{d z}-\frac{d \gamma}{d x}\right)\right\} \\
& =\frac{1}{4 \pi}\left\{a \frac{d a}{d x}+d^{d a} \frac{d a}{d \gamma}+c \frac{d a}{d z}-\frac{1}{2} \frac{d}{d x}\left(a^{2}+\beta^{2}+\gamma^{2}\right)\right\} \tag{7}
\end{align*}
$$

By Art. 403,

$$
\begin{equation*}
\frac{d t}{d x}+\frac{d b}{d y}+\frac{d c}{d \xi}=0 . \tag{B}
\end{equation*}
$$

Multiplying this equations, (8), by a, and dividing by 4π, wo may add the result to (7), aud we find

$$
\begin{align*}
& X=\frac{1}{4 \pi}\left\{\frac{d}{d x}\left[a a-\frac{1}{z}\left(a^{3}+\beta^{2}+\gamma^{3}\right)\right]+\frac{d}{d y}[b a]+\frac{d}{d z}[c a]\right\}, \tag{0}\\
& \text { also, by }(2), \quad \begin{aligned}
L & =\frac{1}{4 \pi}((b-\beta) \gamma-(c-\gamma) \beta), \\
& =\frac{1}{4} \frac{-}{\pi}(b \gamma-c \beta),
\end{aligned} \tag{10}
\end{align*}
$$

where X is the forec referred to unit of volume in the direction of x, mud A_{h} is the moment of the forces about this axis.

On the Explunation of these Forces by the Ifypolhesis of a Meelinem in a Stule of Stress.
641.] Let us denote a stress of any kind referved to wnit of area by a symbol of the form P_{h}, , where the first suflix, s, indicates that the nomal to the surface on which the stress is supposed to ate is paralled to the axis of h, and the second suffix, b, indicales that the direction of the stress with which the part of the body on the positive side of the surface acts on the part on the negative side is parallel to the axis of k.

The directions of h and k may be the same, in which cose the stress is a normal stress. They may be oblique to each other, in which ense the stress is an oblique stress, or they may be perjendicular to each other, in which case the stress is a tangential stress.

The condition that the stresses slatl not produce any tendency to rotation in the elementary portions of the body is

$$
P_{b k}=P_{k h} .
$$

In the case of a magnetized boly, however, there is such a tendency to rotation, and therefore this condition, which holds in the ordinary theory of stress, is not fulfilled.

Inet 115 consider the effeet of the stresses on the six sides of the elementary portion of the body dedy dz, laking the origin of enordinates at its centre of gravity.

On the positive lace dy for, for which the valae of it is $\frac{1}{2} / 4 x$, the forces atre-

Pravallel to $x, \quad\left(P_{x x}+\frac{1}{2} \frac{d P_{x x}}{d x} d x\right) d y d x=X_{+x,}^{-}$
Parallel to $\left.y, \quad\left(P_{x y}+\frac{1}{2} \frac{d P_{x y}}{d x} d x\right) d y d z=I_{+x,}\right\}$
Parallel to $\left.z_{1} \quad\left(P_{x s}+\frac{1}{2} \frac{d P_{x x}}{d x} d d x\right) d y d z=Z_{+\alpha x}\right]$
The forees acting on the opposite side, $-X_{-x},-Y_{-x}$, and $-Z_{-x}$, may be found from these by clanging the sign of $d x$. We may express in the same wry the systems of three forecs acting on each of the other faces of the elenrents, the direction of the foree being indicited by the capital letter, and the face on which it acts by the suffix.

If x dridyd is the whole force parallel to x acting on the element,

$$
\begin{aligned}
X d v d y+d & =X_{+x}+X_{+w}+X_{+x}+X_{-x}+X_{-w}+X_{-z s} \\
& =\left(\frac{d P_{2 x}}{d e}+\frac{d P_{v x}}{d x}+\frac{d P_{z x}}{d x}\right) d t d y d z,
\end{aligned}
$$

whence

$$
\begin{equation*}
X=\frac{d}{d x z} P_{x x}+\frac{d}{d y} P_{v z}+\frac{d}{d z} P_{x=} \tag{1.3}
\end{equation*}
$$

If L frulydz is the moment of the forees about the axis of : tending to turn the clement from y to z,

$$
\begin{align*}
\text { Ldxdydz} & =\frac{1}{2} d y\left(Z_{+y}-Z_{-v}\right)-\frac{1}{2} d z\left(Y_{ \pm=}-Y_{-\infty}\right), \\
& =\left(P_{y z}-P_{t y}\right) d x d y d z, \\
\text { whence } \quad L_{y} & =P_{y z}-P_{z y} . \tag{14}
\end{align*}
$$

Comparing the values of It and Is given by equations (9) and (11) with those given by (13) and (14), we find that, if we make

$$
\left.\begin{array}{l}
P_{x x}=\frac{1}{4 \pi}\left(a a-\frac{1}{2}\left(a^{2}+\beta^{2}+\gamma^{2}\right)\right), \\
P_{v y}=\frac{1}{4 \pi}\left(b \beta-\frac{1}{2}\left(a^{2}+\beta^{2}+\gamma^{2}\right)\right), \\
P_{x z}=\frac{1}{4 \pi}\left(c \gamma-\frac{1}{2}\left(a^{3}+\beta^{2}+\gamma^{2}\right)\right), \\
p_{v z}=\frac{1}{4 \pi} b \gamma, \quad P_{z y}=\frac{1}{4 \pi} c \beta, \tag{15}\\
P_{x x}=\frac{1}{4 \pi} c a, \quad P_{x z}=\frac{1}{4 \pi} a \gamma, \\
P_{x y}=\frac{1}{4 \pi} a \beta, \quad P_{y s}=\frac{1}{4 \pi} b a,
\end{array}\right\}
$$

the foree arising from a system of stress of which these are the components will be statically equivalent, in its effects on each
clement of the boly, with the forees nrising from the magnetization and electric entrents.
642. The nature of the stress of which these are the components may be casily found, by making the axis of x bisect the angle letween the directions of the magnetic forec and the magnetio induction, and taking the axis of y in the plane of these directions, and measured towards the side of the magnetic force.

If we put for the numeriual value of the magnetie foree, \mathfrak{b} for that of the magnetic induction, and 2ε eor the angle between their directions,

$$
\begin{align*}
& \left.\alpha=5 \cos \epsilon, \quad \beta=5 \sin \varepsilon_{,} \quad \gamma=0, \quad\right\} \\
& \left.\begin{array}{lll}
n=3 \cos \varepsilon, & b=-3 \sin \epsilon, & c=0, \\
0 & =0
\end{array}\right\} \tag{15}\\
& \left.P_{x x}=\frac{1}{4 \pi}\left(\sqrt{3} \sqrt[5]{5} \cos ^{2} \varepsilon-\frac{1}{2} \sqrt[5]{2}\right)^{2}\right), 7 \\
& P_{v y}=\frac{1}{4 \pi}\left(-35 \operatorname{Sin}^{2} \epsilon-\frac{1}{2} \operatorname{cin}^{2}\right\}_{\mu} \\
& P_{\mathrm{za}}=\frac{1}{4 \pi}\left(-\frac{1}{2} \sqrt[3]{2} j^{2}\right), \\
& P_{y z}=P_{i \pi}=P_{s i t}=P_{x i}=0, \tag{17}\\
& P_{x \psi}=\frac{1}{4 \pi} 3 \sqrt{4} \sqrt{2} \cos \varepsilon \sin \mathrm{E}, \\
& P_{v z}=-\frac{1}{4 \pi} \mathfrak{B} \operatorname{SE}_{\cos } \cos \varepsilon \sin \epsilon . \quad \text {, }
\end{align*}
$$

Hence, the state of stress may lxe considered ats comprounded of -
(1) A presstre equal in all ditections $=\frac{1}{8 \pi} 5^{2}$.
(2) A tension along the line biseoting the angle between the directions of the magnetic fores and the magnetic induction

$$
=\frac{1}{4 \pi} 3.5 \cos ^{2} \epsilon .
$$

(3) A pressure aloug the line lisecting the exterion angle between these direetions $=\frac{1}{4 \pi} \sqrt[3]{3} \sqrt{3} \sin ^{2} \epsilon$.
(4) A couple tending to turn every element of the sulstance in the plane of the two elirections from the direction of magnetic induction to the direction of magnetic force $=\frac{1}{4 \pi} 95 \sin 2 \varepsilon$.

When the magnetio induction is in the same direction as the magnetic force, ass it always is in thuids and inom-magnetized solids, then $\epsilon=0$, and making the axis of a concide with the direction of the magnetic force,

$$
\begin{equation*}
P_{x *}=\frac{1}{4 \pi}\left(\mathfrak{W} 5-\frac{1}{2} 5^{2}\right), \quad P_{v y}=P_{\mathrm{zz}}=-\frac{1}{8 \pi} \mathfrak{5}^{2}, \tag{18}
\end{equation*}
$$

and the fangential stresses disappear.
The stress in this casce is therefore a hyidrostatie pressure $\frac{1}{8 \pi} 5^{2}$, combined with a longitudinal tension $\frac{1}{4 \pi} \mathfrak{B}$ S $\}$ along the lines of force.
643.] When there is no magnetization, $B=5$, and the stress is still further simpliticu, being a tension along the lines of foree equal to $\frac{1}{8 \pi} 5^{2}$, combined with a pressure in all directions at right angles to the lines of force, numerically equal also to $\frac{1}{8 \pi} 9^{2}$. The compronents of stress in this inportant case are

$$
\begin{align*}
& P_{x x}= \frac{1}{8 \pi}\left(\alpha^{2}-\beta^{2}-\gamma^{2}\right) \\
& P_{b y}= \frac{1}{8 \pi}\left(\beta^{2}-\gamma^{2}-a^{2}\right) \\
& P_{\mathrm{c}:}= \frac{1}{8 \pi}\left(\gamma^{2}-a^{2}-\beta^{2}\right) \\
& \rho_{y z}=P_{x y}=\frac{1}{4 \pi} \beta \gamma \tag{19}\\
& f_{z x}=P_{x z}=\frac{1}{4 \pi} \gamma a, \\
& P_{x y}=P_{p x}=\frac{1}{4 \pi} a \beta
\end{align*}
$$

The foree arising from these stresses on an element of the medium referred to unit of volume is

$$
\begin{aligned}
& X=\frac{d}{d x} p_{x x}+\frac{d}{d y} p_{\psi x}+\frac{d}{d z} p_{x, x}, \\
& =\frac{1}{4 \pi}\left\{a \frac{d \alpha}{d x}-\beta \frac{d \beta}{d x}-\gamma \frac{d \gamma}{d x}\right\}+\frac{1}{4 \pi}\left\{a \frac{d \beta}{d y}+\beta \frac{d a}{d y}\right\}+\frac{1}{4 \pi}\left\{a \frac{d \gamma}{d z}-\gamma \frac{d \alpha}{d z}\right\}, \\
& =\frac{1}{1 \pi} a\left(\frac{d \alpha}{d x}+\frac{d \beta}{d y}+\frac{d \gamma}{d \beta}\right)+\frac{1}{1 \pi_{\pi}} y\left(\frac{d \alpha}{d x}-\frac{d \gamma}{d x}\right)-\frac{1}{4 \pi} \beta\left(\frac{d \beta}{d x}-\frac{d \alpha}{d y}\right) . \\
& \text { Now } \\
& \frac{d a}{d d x}+\frac{d \beta}{d y}+\frac{d \gamma}{d z}=4 \pi m, \\
& \frac{d \alpha}{d /}-\frac{d \gamma}{d d x}=4 \pi v_{0} \\
& \frac{d \beta}{d w}-\frac{d \alpha}{d y}=4 \pi w,
\end{aligned}
$$

where m is the tensily of austmal magnetie mater eferred, to mut.
of volume, and θ and ware the components of electric cirrents referred to unit of area perpendicular to y and a respectively. Hence,

Similnrly
644.] If we adopt the theorjes of Ampere nad Welser as to the nature of magnetic and diamagnetic loodies, and assume that matgnetic and diamagretic polarity ave due to molecular electric curvents, we gat rid of imaginary magnetic matter, and find that everywhere $m=0$, and

$$
\begin{equation*}
\frac{d a}{d d}+\frac{d \beta}{d y}+\frac{d y}{d z}=a_{r} \tag{21}
\end{equation*}
$$

so that the equations of electromagnetic foree become,

$$
\left.\begin{array}{rl}
x & =v \gamma-k \beta_{2} \tag{22}\\
Y & =v a-u \gamma_{k} \\
Z & =u \beta-v a_{n}
\end{array}\right\}
$$

These are the components of the meclanical force refered to nuit of wolme of the sulustance. The components of the magnetic foree are a, β, γ, and those of the electric chrrent are $2, x, w$. These equations are identieal with those already established. (Wiquations (C), Art, f03.)
645.] In explaining the electromagnetic force by means of a state of stress in a medinm, we are only following out the conception of Faralay *, that the lines of magnetic foree tend to shorten themselves, and that they repel eneh other when placel side by side. All that we have done is to express the value of the tension along the lines, and the fressure at: right angles to them, in mathematical language, and to prove that the state of stress thas assumed to exist in the medium will actually proluce the observed forces on the condactors which earry electrio currents.

We have asserted nothing as yet with respect to the mote in which this state of stress is origimated and manamed in the medinm. We have merely shewn that it is possille to conceive the mutual action of electric curvents to depend on a particularo kind of stress in the surrounding medium, instead of being a direct and immediate retion at a distance.

Any firther explanation of the state of stress, by means of the motion of the medium or ofherwise, must be regariled as a separate and independent part of the theory, which may sland or fall without affecting our present position. Sce Art, 832 .

[^26]YOI 11.

In the first part of this trentise, Ast. 108 , we shetred that the olserved electrostatic forces thay be conexived as oprating through the intervention of a state of stress it the surrounding madinm. We have now done the same for the elvetromagnetic forees, and it romains to be seen whether the conception of a medium capalte of supprorting these states of strese is consistent with olluer known phemomena, or whether we shall luare to put it aside as unfruitful.

In a fichl in which clectrostatice as well ats electromagnetic action is taking phace, we must supprose the elcetrostatic stress described in Part I to be superpased on the electromagnetic stress which wo have lieen considering.
646.] If we suppose the total terrestrial magnetic firce to the 10 British maita (grain, foot, second), as it is nearly in Britain, then Hhe tension perpendicular to the lines of force is 0.128 grains weight, per square foot. The greatest magretic fension prodaced by Joule* by metns of electromagnets was about 1 10 pounds weight om the square inch.

[^27]
CHAPTER XII.

CURRENT-STHETS.

647.] A cumbintwineet is an infinitoly thin statam of conducting matter, hounded on both sides by insulating modia, so that electric cuments mary flow in the sheal, but enmote espope from it rxeept at certain points ealled blectrodes. whene enrrends are made to enter on to leaw the sheet.

In order to conduct a linite electric eturent, a real sheet must have at finite thickitess, and ought therefore to be considered a combuctor of three dimensions. In many cases, however, it is practionlly convenient to dedteo the wectrie jropertics of a mal condueting sheet, or of thin layer of coiled wire, lirom those of a chrrent-sheet as defined above.

We may therefore regard it surlice of any form an a curent-sheet. Jhaing selected one side of this surface as the positive side, we shall always smppose any lines drawn on the surface to bo looked at from the josilive side of the surface. The the ense of a dosed sufface we shall comsider the ontside as postive. Sed Art. 2 on, where, howewr, the diredion of the curvent is defaed as sers from the negutime side of the shert.
The Curren-/untion.
648.] Lut a fixed point A om the surfect be chosen as origim, aud let a line be drawn on tho surface from f to anowher poind f^{\prime}, Inet the quantity of electricity whel in muit of time erosses this line from left to right be ϕ, then ϕ is called the Current-fumetion ant, the joint 7 ?

The enremt-function depende only on the pasition of the point $P_{\text {s }}$, and is the stime for any 1 we forms of the line $A P$, provided this
line can be transformed hy contiunous motion from one form to the other without passing through an electrode. For the two forms of the line will enclose an area widtrin which there is no electrode, and therefore the same quantity of electricity which enters the area across one of the liness must issme teross the other.

If denote the length of the line $A P$, the current across ds from left to right will be $\frac{d d}{d s} d s$.

If ϕ is constant for any curve, there is no onrent across it. Such theurve is called a Current-line or a Stream-line.
649.] Let ψ be the electric potential at any point of the sheet, then the electromotive foree along any element da of a curve will be

$$
-\frac{d \psi}{d s} \cdot d s,
$$

proviled no electromotive foree exists except thete which arises from diderences of potentiant.

If ψ is constant for any enve, the enrwe is enlled inn Equipotential Linc.
650.] We may now suppose that the position of a point on the sheet is definced ly the values of ϕ and ψ at that point. Lect d k_{1} be the length of the element of the equipotential live ψ intereepted belween the two eurent lines ϕ and $\phi+\sqrt{ } \phi \phi$, and let dow be the length of the element of the curvent line ϕ interepted between the two equipotential lines ψ ard $\psi+d \psi$. We may consider des and d_{2} as the sides of the element $d \phi d \psi$ of the sheet. The electromotive force $-d \psi$ in the direction of $d s_{2}$ produces the current $/ \phi_{\text {across }} d_{1}$.

Let the resistance ol a portion of the sheet whose lengrth is $d s_{2}$, and whose breadth is ds 1 , be

$$
\sigma \frac{d s_{2}}{d s_{1}}
$$

Where of the sperfie resistance of the sheet referm to unit of area, then
whence

$$
\begin{aligned}
& d \psi=\sigma \frac{d s_{2}}{d \beta_{1}} d \psi_{2} \\
& \frac{d s_{1}}{d \psi}=\sigma \frac{d s_{2}}{d \psi}
\end{aligned}
$$

6a1.] If the sheet is of' a sulustance which conducts equally well in all directions, $d k_{1}$ is perpendioular to dra $_{2}$. In the ease of a sheet of uniform resistance σ is constant, and if we make $\psi^{\prime}=a \psi$, we shatl have

$$
\frac{d s_{1}}{d s_{2}}=\frac{d \phi}{d \psi^{\prime}},
$$

and the stream-Fines and equipotential lines will ent Whe surface into little sumares.

It follows thom this thent if ϕ_{1} and ψ_{1}^{\prime} are conjugste functions (Art. 783) of ψ and ψ, the enrves ϕ_{1} may be stream-lines in the sheet for wheln the eurtes wro $^{\prime}$ are the correspondingernipotential lines. One case, of course, is that in whieh $\phi_{1}=\psi^{\prime}$ and $\psi_{1}{ }^{r}=-\phi$. In this ease the equipotential lines become enrent-lines, and the encrent-lines cquipotential Iines *.

If we have olntamed the solution of the distribution of "llectric carrents in a uniform sheet of any form for any partiontar case, we may deduee the distribution in any other ease by a proper transformation of the comjugate functions, acoming to the methorl given in Art. 190.
652.] We have noxt to determina tha maghatio action of a cursent-sheel in which the current is entively confined to the sheet, there loning no electrodes to convey the curvent to or from the sliect.

In this ense the curment-fumetion w has a determinate watue at every point, and the stream-lines are closed ourves whieh ilo wot intersect meh other, thongh any one strenm-line may intersect itself.

Consider the ammane portion of the sheet between the stremalinas ϕ and $\phi+\delta \phi$. This phert of the shect is a conduetimgencuit. in whel a coment of strengeth of encolates in the positive divection round that prate of the sheet for wheh of is grater than the given value. The magnetio eflect of this circuit is the same as that of a magnetic shell of strengiln 0 d at any point not included in the sulstance of the shell. Let us suppose that the shell coineides with that part, of the enrent-sheet for which ϕ hats a grater matue that it has at the given stream-lime.

By drawing all the shecessive strean-lines, hoginnmg with that for which op has the greatest, value, and ending with that hor which its malue is least, we shall divide the current-shoet into a series of eincuits. Sulustituting for etely cirent its corresponding magnetic shell, we find that the magnetie eflect of the combent-Elseet at any point not incluted in the thickness of the sheet is the same as that of a coniplex magnetic shell, whose strength at any point is $C+d$, where C is a constant.

If the current-sheet is bounded, then we must malse $C+\psi=0$ at the bounding curve. If the sheet forms a closed or an infinite surface, there is nothinge to determine the valne of the constant C.

[^28]653.] The magnetic potential at any point on either side of the current-sheet is given, as in Art 41 , by the expression
$$
\Omega=\iint \frac{1}{y^{2}} \psi \cos \theta d S
$$
where r is the distanee of the given ${ }^{\text {w }}$ wint from the element of surface $A S$, and 0 is tho angle between bise direction of r, and that of the nomath drawar from the positive side of a $/ S$.

This expression gives the magnelie potential bor all points not inchuded in the thickress of the current-sheet, and we know that for points within a conmetor entrying a enerent there is no such thing as a magnelie potentinh.

The value ol Ω is discontinumes ate current-sheet, for if Ω_{1} is its ralue at a proint finst within the chremt-shect, and 0_{2} its value at, a proint close to the tirst but just ontaide the current-shoot,

$$
\Omega_{2}=\Omega_{1}+4 \pi d,
$$

where of is the enment-fnmetion at that point of the sluet.
Tllue value of the component of magnotic force normal to the slueet is continuons, betrge the same on both sides of the shect. The eomponent of the magnetie torce parallel to the eurrent-lines is also continnous, but the tangential eomponent perpondicalar to the eurrent-lines is eliseontinuous ate the sheet. It's is the lengetly of a curve drawn on the sheet, the component of magnetic lorce in the direction of $d x$ is, for the megrative side, $\frac{d \Omega_{4}}{d / s}$, and for the positive side, $\frac{d \Omega_{2}}{d /}=\frac{d \Omega_{1}}{d w}+1-\frac{d d s}{d / d}$.

The component of the maghetio foree on the positive side therelore exceeds that on the negative side by in $\frac{d \phi}{d / s}$. At a given point Wis quandity will be an maximan when dis is perpendientar to the curvent-lines.

On the Induction of Wectore Gurvento has a Sheed of Jofnite Conductivily.
654.] It was shewn in Art. 579 that in any circuits

$$
K=\frac{d p}{d t}+n i
$$

where A is the impressed electromotive fore, η the electrokinetie momentum of the cirenit, R the resistance of the circait, and i the eurrent ronnd it. If there is no inpressed electronotive foree and no resistance, then $\frac{d /}{} / / l=0, \mu^{2} \mu^{\prime}$ is constant.

Now is, the electrokinetic monentum of the circuit, was shown in Art. 588 to he measured by the surface-integral of magnetic indaction throngh the circuit. Henee, in the case of a currentshect of no resistance, the surface-integral of magnetie induction through any closed curve dawn on the surtice must he constant, and this implies that the normal component of magnetie induction remains constant at every point of the earrent-shect.
(035.] If', therefore, ly the motion ot magnets of variations of curpents in the neighbounthool, the magnetic field is in any way altered, electric currents will be set up in the current-sheet, such that their maginetie effect, combined with that of the magronts or currents in the lield, will maintain the nomal component of magnetic induction at every puint of the sluect melangred. If at furst there is no maguctic action, aud no eurrents in the sheet, then the nommal component of magnotic induction will always be zero it every point of the shees.

THee sheet may thercfore be regarded as impervious to magnetic inductions, and the lines of magnetie induetion will be deflected by the steet exactly in the same way as the lines of flow of an electric curtent in an infinite and uniform eondneting mass would be deflected by the intraduetion of a sheet of the same form mate of in substance of intinite resistance.

If the sheet furms a closed or an infinite surface, no magnetic actions which may take place on one side of the sheet will produce any magnetie eflect on the other side.

Theory of th Plane Curcont-shued.

Gã6.] We have seen that the extermal magnetio action of a eurrent-sheet is equivalent to that of a maguet ic stoell whose strength at any point is numericaily equal to , the current-finetion. When the sheet is a phatue one, we may express all the quantities required for the determination of electronagretic eflects in terms of a single function, p, which is the protential due to at shect of inuginary matter spread over the phane with a surface-density \&. The value of 13 is of comese

$$
\begin{equation*}
P=\iint \frac{\phi}{f} d x^{\prime} d y^{\prime}, \tag{1}
\end{equation*}
$$

where r is the distane from the pint (x, y, z) for which P is calculated, to the point $x^{\prime}, y^{\prime}, 0$ in the phane of the sheet, at which the clement $d x^{\prime} d y^{\prime}$ is taken.

To find the macruetic potentala, we may regard the magnetic

Shell as consisting of two surfaces parallel to the plane of $x y$, the first, whose equation is $z=\frac{1}{2} c$, laving the surface-density $\frac{\phi}{c}$, and the second, whose equation is $z=-\frac{1}{3} c$, having the surface-density $-\frac{t}{c}$.

The potentials che to these surflees will be

$$
\frac{1}{c} P^{\prime}\left(=-\frac{a}{2}\right) \quad \text { and }-\frac{1}{c} P^{\prime}\left(s+\frac{e}{2}\right)
$$

respectively, where the sulixes indiente that $z=\frac{e}{2}$ is put lor z in the first expression, and $z+\frac{c}{2}$ for \approx in the second. Expanding these expressions Jy Thaylor's 'Theorem, adding them, and then making o infinitely small, we obtain for the magnetie potential due to the sheet at any point external to it,

$$
\begin{equation*}
\Omega=-\frac{d P}{d x} \tag{2}
\end{equation*}
$$

657. The quantity P is symmetrical with respect to the plane of the sheet, and is therefore the same when $-z$ is substituted for z.
Ω, the magnetio potential, changes sigu when $-z$ is put for z.
At the positive surfice of the sleet

$$
\begin{equation*}
\Omega=-\frac{d p}{d x}=2 \pi d \tag{3}
\end{equation*}
$$

At the negrative surface of the sheet

$$
\begin{equation*}
\Omega=-\frac{d P}{d w}=-2 \pi \phi \tag{4}
\end{equation*}
$$

Within the sheet, if its magnetio eflects arise from the magnetization of its substance, the magnetic potential warics continuously from $2 \pi \phi$ at the positize surface to -2π of at the negrative surface.

If the sheet contains electrie eurrents, the magnetic foree within it does not satisfy the condition of hasisg a potential. The magnetic force within the sheet is, however, perfectly determinate.

The normal conzponent,

$$
\begin{equation*}
\gamma=-\frac{d \Omega}{d x}=\frac{d^{2} P}{d z^{2}} \tag{5}
\end{equation*}
$$

is the same on both sides of the sheet and throughout its sulsstance.

If a and β bo the componeats of the magnetic force paralkit to
x mad to y at the positive surface, and a^{\prime}, β^{\prime} those on the negrative surface

$$
\begin{align*}
& a=-2 \pi \frac{d \phi}{d x}=-a^{\prime} \tag{6}\\
& \beta=-2 \pi \frac{d \phi}{d y}=-\beta^{\prime \prime} \tag{7}
\end{align*}
$$

Within the sheet the components vary continuonsly from a and β to a^{\prime} ithd β^{\prime}.

The equations $\frac{d / f}{d y}-\frac{d \cap}{d z}=-\frac{d \Omega}{d x}$, ?

$$
\left.\begin{array}{l}
\frac{d F}{d z}-\frac{d H}{d x}=-\frac{d \underline{d}}{d y} \tag{8}\\
\frac{d Q}{d x}-\frac{d l}{d y}=-\frac{d \underline{d}}{d y}
\end{array}\right\}
$$

Which comnect the eomponents F_{*}, G, H of the vector-potatial due to the curcent-sheet with the sealat potential Ω, are satisfied if we make

$$
\begin{equation*}
F=\frac{d l}{d y}, \quad G=-\frac{d P}{d x}, \quad H=0 \tag{9}
\end{equation*}
$$

We may also oblain these walues by direct integration, thas for A,

$$
\begin{aligned}
H & =\iint \frac{x}{r} d x^{\prime} d y=\iint^{\prime} \frac{1}{r} \frac{d \phi}{d y} d x^{\prime} d y^{\prime} \\
& =\int \frac{\phi}{r} d x^{\prime}-\iiint_{d y^{\prime}} d \frac{1}{r} d x^{\prime} d y^{\prime}
\end{aligned}
$$

Since the integration is to lye estimated ower the infinite plane sheet, and since the first term wamishes at infinity, the expression is reduced to the second term; and dy sulbstituting

$$
\frac{d}{d y} \frac{1}{r} \text { for }-\frac{d}{d y^{\prime}} r^{r}
$$

and remembering that ϕ depends on w^{\prime} and y^{\prime}, and not on $x, y=z^{\prime}$ we obtatin

$$
\begin{aligned}
F & =\frac{d}{d y} \iint \frac{d}{d} d x^{\prime} d y \\
& =\frac{d P}{d / y}, \operatorname{ly}(1)
\end{aligned}
$$

If Ω^{\prime} is the magnetic potential due to any magnetic or dectric bystem cxtermal to the sheet, wo may write

$$
\begin{equation*}
P^{\prime}=-\int \Omega^{\prime} v z_{p} \tag{10}
\end{equation*}
$$

and we slatl then have

$$
\begin{equation*}
h^{v}=\frac{d P^{y}}{d y}, \quad Q^{\prime}=-\frac{d P^{\prime}}{d x}, \quad H^{\prime}=0 \tag{11}
\end{equation*}
$$

for the components of the wector-potential due to His systum.
658.1 Let ns now determine the elechomotive force atb any point of the slucet, suppoingeg the sheet fixed.

Let X and I be the components of the clectromotive fored paralled to ar and to y respectively, then, by Art. sys, we hare

$$
\begin{align*}
& X=-\frac{d}{d}(F+F)-\frac{d \psi}{d x} \tag{12}\\
& y=-\frac{d}{d b}(G+G)-\frac{d \psi}{d y} \tag{18}
\end{align*}
$$

If the clectrie resistance of the sheet is uniform and equal to σ,

$$
\begin{equation*}
\lambda=a n, \quad Y=\sigma r \tag{1.1}
\end{equation*}
$$

Where x and p are the components of the cument, and if ϕ is the turrenk-function,

$$
\begin{equation*}
n=\frac{d \phi}{d y}, \quad a=-\frac{d \phi}{d x} \tag{15}
\end{equation*}
$$

But, by ectuation (3),

$$
2 \bar{\pi} \phi=-\frac{d p}{d z}
$$

at the jusitive surface ol the current-sheet. Hence, eqtitions (12) ind (13) may be written

$$
\begin{align*}
-\frac{\pi}{2 \pi} \frac{d^{2} P}{d y d z} & =-\frac{d z}{d y d l}\left(d^{3}+P\right)-\frac{d \psi}{d L} \tag{16}\\
\frac{i r}{2 \pi} \frac{d^{2} l^{2}}{d d^{2}} d z & =\frac{d^{2}}{d d d}\left(l^{2}+P^{\mu}\right)-\frac{d \psi}{d y} \tag{17}
\end{align*}
$$

where the values of the expressions are those comesponding to the $p^{\text {rasitive surfee of the sheet. }}$

If we differentiate the first of those equations with respect to ur, and the second with respuct to y, and add the results, we obtain

$$
\begin{equation*}
\frac{d^{2} \psi}{d x^{2}}+\frac{d^{2} \psi}{d y^{2}}=0 \tag{18}
\end{equation*}
$$

The only value of ${ }^{p}$ which satisfies this equation, and is finite and dontimuse therery point of the plane, and ramsles at an infinite distance, is

$$
\begin{equation*}
\psi=0 \tag{19}
\end{equation*}
$$

Hesen the induction of clectric carrents in m infinite plare sheob of unfthrm condadivity is not accompanied with diflerences of electrie polentias in dillerent parts of the sheet.

Sulustituting this value of ψ, and intugrating equations (16)s (17), we obtain

$$
\begin{equation*}
{ }_{2 \pi}^{a} \frac{d P}{d z}-\frac{d l^{3}}{d b}-\frac{d l^{r}}{d b}=/(z, d) \tag{20}
\end{equation*}
$$

Since the values of the carrents in the slacet are found by
differentiating wilh respect to w or y, the arbitrary function of z and f will disappers. We shall therefore leave it out of account.

If we also write for $\frac{\pi}{2 \pi}$, the single symbol R, which represents a certain velocity, the equation between P and P^{\prime} becomes

$$
\begin{equation*}
h \frac{d P}{d x}=\frac{d P}{d l}+\frac{d P}{d t} \tag{21}
\end{equation*}
$$

659.] Let us first suppose that there is no external marguetio system acting on the eurrent sheet. We may therefore suppose $P=0$. The case then becomes that of in system of electric exurents in the shect left to themselves, but actirg on one another hy their mutual induction, and at the same time losing their energy on account of the resistance of the sheet. Tlue result is expressed by the equation

$$
\begin{equation*}
h^{d / P} \cdot \frac{d P}{d z}=\frac{d}{d l} \tag{29}
\end{equation*}
$$

the solution of whiel is

$$
\begin{equation*}
J^{s}=J^{\prime}\left(x, y,\left(w+l^{\prime} y\right)\right) \tag{23}
\end{equation*}
$$

Hence, the value of P on any point on the positive site of the sheet whose coordinates are A, y, z, and at a thme A_{3} is equal to the value of P^{\prime} abe the point $x, y,(z+R l)$ at the instant when $t=0$.

If therefore as syten of curvents is excited in a milorm phane sheet of infinite extert and then beft bo itgelf, its magnetio effecte sit any point on the positive side of the sheet will lee the stan? as if the system of currents hed been matintaned constant in the shect, aud the sheet moved in the direction of a normall from its negative side with the consiant velocity h. The dimiontion of the electromagnetic forees, whith arises from a deny of the enurents in the real ense, is acomately mepresented by the diminntion of else force on account of the inereasing distance in the inaginaty dase.
660.] Integratienge equation (2 1) with respect to $/$, we ohtain

$$
\begin{equation*}
I^{\prime}+I^{\prime}=\iint_{d}^{d I^{p}} d l \tag{21}
\end{equation*}
$$

If we suppose that ati first F^{\prime} and P^{2} are hoth zere, and that a magonet or electromarnet is suddenty magnetized or thought from an infinite distanec, so as to change the value of y^{2} suddenty from zero to P^{*}, then, since the time-integral in the secomb member of (24) vanishus with the time, we mast have at the tiret instant

$$
p=-P
$$

at the surface of the sheet.
Henter, the system of enrrents exeited in the sleet ly the suduth
introduction of the system to whinh p^{3} is due is steh that at. the surface of the sleet it exaetly nentalizes the magnetic affect of this system.

At the surface of the shect, therefore, and consequently at all points on the negative side of it, the intial systen of earrents produces an ellect exaetly equal and opposite to that of the magrotic system on the positive side. We may express this by saying that the eflect of the currents is equivalent to that of an image of the magnetic systen, coineiding in position with that system, but opposite as regards the direction of its magnetization and of its electrice curreuts. Sueh an image is called a megative image.

The eftect of the currents in the sheet on a point on the prositive side of it is equivalent to that of a positive image of the magnetice system on the negative side of the shet, the lnes joining corresponding points being bisected at right angles by tho sheet.

The action at : point on either side of the sluect, due to the curronts in the sheet, may therofore be regurded as due to an image of the magnetic system on the side of the sheet opposite to the point, this inage being a positive or a negatiwe image aceording as the point is on the positive or the negative side of the sheet.
661.] If the shect is of infmite conductivity, $f=0$, mof the second term of (2-1) is zero, so that the image will reprosent the fflectio the currents in the sheet at any time.

In the ease of a real sheet, the rexistance R has some finite walne. "The image just described will therefore represent the effect of the curtents only during the first instant after the suden introdnetion of the magnetic system. The curvents will imanediately begin to decty, and the effect of this decy will be aceuntely represented if We suppose the two images lo move from their original positions, in the direction of normals drawn from the sheet, witls the constant velooity $/ R$.
662.] Ye are now prepared to investigate the system of earrents induced in the sheet by any system, M, of magnets or electromagnets on the positive side of the sleet, the position and strength of which vary in any manmer.

Let y^{*}, as before, be the function from which the tivect action of this system is to be dedued by the equations (3) (9), \&e. Wha $\frac{d P^{\prime}}{d P^{\prime}}$ है will be the function corresponding to the system re-
presented by $\frac{d M}{d t} \delta 1$. This quantity, which is the increment of M in the time $\delta /$, may be regardel as itself representing a magnetie system.
If we surpose that at the time t a positive imare of the system $\frac{d M}{d / 6} \delta t$ is formed on the negative side of the sheet, the magnetio action at any point on the prsitive side of the sheet due to this image will be equivalent to that due to the eurrents in the sheet excited by the change in $1 I$ during the lirst instanf alter the change, and the image will eontinne to be equivalent to the currents in the shcet, if, ats soon as it is formed, it begins to move in the negative direction of z with the constant velocily A.

If we stuppose that in every successive elenent of the time an image of this Find is formed, and that as soon ats it is formed it begins to move away from the shect with velocity A, we shall obtain the conception of a trail of images, the last of which is in process of formation, white all the rest are moving like a rigid body away from the sheet witla velocity R.
(663.] If p^{\prime} denotes any function whatever arising from the action of the magnetic system, we may find P, the corresponding finction arising from the currents in the sheet, by the following process, which is merely the symbolical expression for the theory of the trail of images.

Set P_{7} denote the value of l " (the finction arising from the curvents in the shect) at the point ($x, y, z+N \sigma$), and at the time $\left\langle-\tau\right.$, and let P_{τ}^{\prime} denote the value of P^{\prime} (the function arising from the magnetie system) at the point $(n, y,-(z+h+))$, and at the time t-t. Them

$$
\begin{equation*}
\frac{d P_{\tau}}{d \tau}=R \frac{d P_{\tau}}{d \tau}-\frac{d P_{\tau}}{d l^{2}} \tag{25}
\end{equation*}
$$

aud equation (21) hecomes

$$
\begin{equation*}
\frac{d P_{\mathrm{T}}^{2}}{d \mathrm{~T}}=\frac{d B_{\mathrm{T}}^{\prime}}{d l_{\mathrm{T}}} \tag{26}
\end{equation*}
$$

and we oblain by integrating with respect to τ from $\tau=0$ to $\tau=\infty$

$$
\begin{equation*}
P=\int_{0}^{\infty} \frac{d I_{\tau}^{2}}{d l} d \tau \tag{27}
\end{equation*}
$$

as the value of the function P ', whence we whain all the propertios of the eurrent sheet by diflerentiation, as in equations (3), (9), \&e.
664.] As an example of the process here indieated, let us take the case of a single magnetic jole of strength unity, movinig with uniform velocity in a straight line.

Sel the convinates of the pole at the time f he

$$
\xi=u t, \quad \eta=0, \quad \xi=c+m \ell
$$

The coordinates of the image of the pole lomed at the time /-rate

$$
\xi=\mathfrak{n}(t-\tau), \quad \uparrow=n, \quad \zeta=-(c+n(b-\tau)+h \tau),
$$

and if r is the distamee of this image from the poind (a, y, z),

$$
r^{2}=(t-11(l-r))^{2}+(z+c+M(t-\tau)+R \tau)^{2}
$$

To oblain the fotential the to the trail of images we have to calculate

If we write $\quad Q^{2}=11^{2}+(h-m)^{2}$,

$$
\int_{0}^{x} \frac{d \tau}{r}=\frac{1}{Q} \log \{Q r+11(x-11 Q)+(A-10)(x+c+19 h\}
$$

the walue of r in this expression being fond by malsing $5=0$.
Differentiating this expression with respect to $/$, and putding $l=0_{+}$wo obtain the magnetic potential clue to the tratil of images,

$$
\Omega=\frac{1}{Q} \frac{Q \frac{\mathrm{~m}(x+c)-u x}{r}-\mathrm{n}^{2}-\mathrm{w}^{2}+/ h \mathrm{w}}{Q x+11 x+(R-n)(z+c)}
$$

By differentiating this expression with respect to $a \mathrm{or}_{\mathrm{g}} \vec{z}_{2}$ we obtain the components parallel to or or z respectively of the magnetie force at any point, and by putting $x=0, z=c$, and $\gamma=2 c$ in the exprossions, we obtain the following watues of the conponents of the force acting on the mowing pole treelf,

$$
\begin{aligned}
& X=-\frac{1}{4 c^{2}} \frac{u}{Q+h-n}\left\{1+\frac{m}{Q}-\frac{1 n^{2}}{Q(Q+h-10)}\right\}, \\
& Z=-\frac{1}{4 c^{2}}\left\{\frac{n^{\prime}}{Q}-\frac{n^{2}}{Q(Q+N-m)}\right\} .
\end{aligned}
$$

66ă. In these expressions we must remember that flie motion is supposed to have been going on for an infnite time before the timn considered. Inwee we must not take wh positive quantity, for in that casb the pole must have passed through the sheet within a finite time.

If we make a $=0$, and megative, $X=0$, and

$$
Z=\frac{1}{4 c^{2}} \frac{n+w}{h+w}
$$

or the pole as it appronches the sheet is repelled from it.
IV we malie to $=0$, we find $Q^{2}=11^{2}+h^{2}$,

$$
X=-\frac{1}{1 e^{2}} \frac{1 d}{Q(Q+h)} \text { and } \quad Z=\frac{1}{4 e^{2}} \frac{1 t^{2}}{Q(Q+h)} .
$$

The component \bar{X} represents a metarding forct acting on the proter in the direction opposite to that of its own motion. Fon' a givern wale of h, A is in maximum whell $t=1.27 h$.

When the sheet is a mon-rombactor, $A^{2}=x$ numl $X^{2}=0$.
When the sheet is a perfect conductor, $R=0$ and $N=0$.
The component Z represents a repulsion of the pole lirom the slicet, It jucreases as the velecity inereases, and nitimately beomes $\frac{1}{40^{2}}$ when the relocity is inflisite. It has the same forlue when h is zero.
666.] When the magnetic pole moves an a corve paralled to the shect, the caleulation beomes more compliented, hut it is easy to see that the effect of the nearest portion or the trait of imiges is to produce a foree acting on the pole in the diruction opposito to that of its motion. The effect of the porlion of the trat itmmediately belbind this is of the samb kind as that of a magned with its axis parallel to the direction of motion of the proke at some time before. Since the nearest polle of this magnet is of the same nomb with the moving polo, He foree will cousist partly wit at repulsion, and pantly of of fore paralled to fles formen rireetion of motion, but buekwards. This may be resolved into a rutarling force, and a foree towards the concave side of the pathe of "d we moving pole.
667. I Our investigation don's not enalile us to salve the case in which the system of currents entuot lue completaly formed, on account of a discontinuity or boundiny of the comanting sheet.

It is ensy to see, however, that if the jole is moving parallel to the edge of the sheet, the emrents on the side next hae oflace will lxe enfeebled. Ficnee the fores due to these earments will be less, and there will not only be a smaller retareling forme, bat, since the repulsive force is least on the side next the digu, the powe will be attractex towards the edge.

> Whory of Aragos Rotuting Disk.
668.7 Amago discovered * that a marmati placed near a rotating motallie disk axpriences a foree temding to malie it follow the motion of tho disk, althongh when the disk is at rest there is no action butween it and the magnet.
'Thas artinn of a rotatiogrg rlisk was attributad to a now kitul

[^29]of induced magnetiztion, till Faraday* oxplained it by means of the electrie cturents indneed in the disk on aceount of its motion throngh the fied of magnetic foree.

To determine the distribution of these indued cunents, and their effect on the mannet, we might make nse of the results already found for a conducting sheet at rest acted on by a moving magnet, avalling muselves of the method given in Art. ©00 for treating the electromagnefic equations when relemed to mownerg systems of axes. As this case, howover, has a special importanee, we shall treat it in a direct manmer, beginming by assuming that the poles of the magnet tre so far from the odge of the disk that the effect of the limitation of the conducting shect may be neglected.

Making use of the same notation as in the preceding artieles ($656-607$), we find fin the components of the electromotive fore pamallel to x and y respectively

$$
\left.\begin{array}{l}
a v=\gamma \frac{d y}{d l}-\frac{d \psi}{d i} \tag{1}\\
a v=-\gamma \frac{d x}{d / l}-\frac{d \psi}{d y}
\end{array}\right\}
$$

where γ is the resolved part of tho magnetic force nommal to the disk.

If we now express onal of terms of 解, the current-function,

$$
\begin{equation*}
w=\frac{d \phi}{d y}, \quad z=-\frac{d \phi}{d w}, \tag{2}
\end{equation*}
$$

and if the disk is rotating about the axis of z with the angular velocily ω,

$$
\begin{equation*}
\frac{d y}{d b}=\omega i, \quad \frac{d x}{d t}=-\theta y \tag{3}
\end{equation*}
$$

Substitnting these values in equations (1), we find

$$
\begin{align*}
\omega \frac{d \psi}{d y} & =\gamma \omega x-\frac{d \psi}{d x} \tag{4}\\
-\frac{d \psi}{d x} & =\gamma \omega y-\frac{d \psi}{d / y} \tag{5}
\end{align*}
$$

Multiplying (4) by of and (5) by y, and addings we obtain

$$
\begin{equation*}
\pi\left(x^{d \phi}-y^{d y} \frac{d \phi}{d d}\right)=\gamma \omega\left(x^{2}+y^{2}\right)-\left(x \frac{d \psi}{d x}+y \frac{d \psi}{d y}\right) \tag{6}
\end{equation*}
$$

Multpulying (4) by y and (i) by -a , and ddding, we obtain

$$
\begin{gather*}
\sigma\left(x^{\prime \prime} \frac{d x}{d x}+y \frac{d d}{d y}\right)=x: \frac{d \psi}{d y}-y \frac{d \psi}{d x} . \tag{7}\\
* H y n \cdot \operatorname{cs}, 81 .
\end{gather*}
$$

If we now express these equations in terms of t and 0 , where

$$
\begin{equation*}
x=r \cos 0, \quad y=r \sin \theta, \tag{8}
\end{equation*}
$$

they lecome

$$
\begin{align*}
&{ }^{d} d \phi=y \omega \gamma^{2}-r \frac{d \psi}{d r} \tag{?}\\
& \sigma g^{\prime} \tag{10}\\
& \frac{d d}{d r}=\frac{d \psi}{d \theta}
\end{align*}
$$

Equation (10) is satisfied if we assume any anbitary finction x of 8 and θ, and made

$$
\begin{align*}
& \psi=\frac{d x}{d \theta} \tag{11}\\
& \psi=\sigma \cdot \frac{d X}{d /} \tag{12}
\end{align*}
$$

Substituting these values in equation (9), it becomes

$$
\begin{equation*}
\sigma\left(\frac{d^{2} x}{d d^{2}}+\frac{d}{l r}\left(r \cdot \frac{d X}{d r}\right)\right)=\gamma \omega \psi^{2} \tag{1,8}
\end{equation*}
$$

Dividing by of y°, and restoring the coordineten a and y, this becomes

$$
\begin{equation*}
\frac{d^{2} x}{d d^{2}}+\frac{d^{2} x}{d y^{2}}=\frac{\omega}{a} y \tag{11}
\end{equation*}
$$

This is the fundamental equation of the theory, and expresese the relation betweon the finction, x, and the compment, γ, of the magnetic foree resolved normal to the disks.

Set Q be the potential, at any point on the positive side of the diski, due to imaginary mather distributed over the disk with the surface-density X.

At the pesstive surface of the tisk

$$
\begin{equation*}
\frac{\| Q}{d 2}=-2 \pi x \tag{15}
\end{equation*}
$$

Hence the first member of equation (14) becomes

$$
\begin{equation*}
\frac{d^{2} x}{d x^{2}}+\frac{d^{2} x}{d y^{2}}=-\frac{1}{2 \pi} \frac{d}{d z}\left(\frac{d^{2} Q}{d x^{2}}+\frac{d^{2} Q}{d y^{2}}\right) \tag{10}
\end{equation*}
$$

But since Q satisfies Laplace's equation at all points extermal to the disk,

$$
\begin{equation*}
\frac{d^{2} Q}{d x^{2}}+\frac{d^{2} Q}{d y^{2}}=-\frac{d^{2} Q}{d^{2}} \tag{17}
\end{equation*}
$$

and eruation (14) becomes

$$
\begin{equation*}
\frac{a}{2 \pi} \frac{d^{3} Q}{d z^{3}}=\omega 7 \tag{18}
\end{equation*}
$$

Again, since Q is the potentitl due to the distrilmution X, the potential due to the distribution ϕ, or $\frac{d x}{d \theta}$, will le $\frac{d Q}{d U}$. P'rom this we oblain for the magnetic potential due to the currents in the disk,

$$
\begin{equation*}
\Omega_{1}=-\frac{d^{2} Q}{d \theta} \tag{19}
\end{equation*}
$$

yor., I\%,
and for the componente of the magnetic Core hormal to the disk due to the eurrents

$$
\begin{equation*}
\gamma_{1}=-\frac{d Q}{d z}=\frac{d R^{3} Q}{d(d)^{2}} . \tag{20}
\end{equation*}
$$

If Ω_{2} is the magnetic potential due to external magnets, and if we write

$$
\begin{equation*}
\eta=-\int \Omega_{2} d z_{\mathrm{a}} \tag{21}
\end{equation*}
$$

the compment of the maghetio fores nommal to the disk dhe to the mognets will he

$$
\begin{equation*}
\gamma_{2}=\frac{d^{2} l^{3}}{d s^{2}} \tag{22}
\end{equation*}
$$

We may now write equation (18), remembering that

$$
\begin{gather*}
\gamma=\gamma_{1}+\gamma_{2} \\
\frac{\sigma}{2} \frac{d^{33} Q}{d z^{2}-\omega}-\omega \frac{d^{3} Q}{d \theta d z^{2}}=\omega \frac{d^{2} \eta}{d z^{2}}
\end{gather*}
$$

Integrating twice with respect to \approx, and writing $f /$ for $\frac{\sigma}{2 \pi}$,

$$
\begin{equation*}
\left(\lambda \frac{d}{d z}-\omega \frac{d}{d \psi}\right) Q=\omega P^{2} \tag{21}
\end{equation*}
$$

If the walues of 7 and Q are expressed in turms of r, θ, and ξ where

$$
\begin{equation*}
\zeta=z-\frac{\Pi}{\varphi} 0_{1} \tag{25}
\end{equation*}
$$

eguation (21) beemus, by integration with respect to of

$$
\begin{equation*}
Q=\int \frac{\omega}{\pi} P d \zeta \tag{26}
\end{equation*}
$$

669.] The form ol this expression shews that the magnetic action of the enrrents in the disk is eguivalent to that of at trail of images of the magnetiesystem in the form of a helix.

If the magnutie sytum consists of a single magnetio prole of strength unity, the helix with lie on the cylinker whose axis is that of the dislos and which pases through the magretic pole. The helix will lrgin at the prosition of tha optioal image of the pole in the disk. The distruce, parallel to the axis letween consecutive coils of the helix, will be $2 \pi \frac{\pi}{\omega}$. The mapyetio eflect of the tatil will be the same as if this hatix lud been magnetizen evergwhere in the direction of a tangent to the cylinder perpendicular to its axis, with ar indensity suold that the magretie moment of any sumall portion is momerically equal to the length of its projection on the disk.

The ealculation of the effect on the magnetie prole woukd be complicated, lnut it is ensy to see that it will consist. of -
(1) A dragging foree, parallel to the direction of motion of the disk.
(2) A repulsive foree acting from the disk.
(3) A foree towarls the axis of the disk.

When the pole is nem the edger of the disk, the thited of these fores may be overeome by the foree towards the enge of the disk, incliented in Art. (igiz.

All these forces were observed by Arago, and described by him int the Avwales de Chimic for 1896. See also Felici, in Tortolini's Amats, iv, P. 173 (1853), and 8. p. 35 ; and E. Jochmann, in Crelle's Souraal, Ixiii, pp. 158 and 329 ; aud Pogg. Anu. cxxii, p. 214 (1864). In the latter payer the equations necessary for deturmining the induction of the currents on themselves are given, Lut this part of the action is omitued in the sulusequent ealculation of results. The method of imarres given here was published in the Proceuthys of the Roynt Somiety for Ful. 15, 1872.

Silherical Curvoul-Sheel.

670.] Let 中 be the current-function at any peint Q of a spherical eurrent-sheet, and lef P be the potential at a given point, flue to a sheet ol imaginary matter distributed over the splere with surface-density ϕ, it is required to fiud the magnetic potential and the vector-potential of the current-sheet in terms of P.

Jet a denote the radites of the sphere, r the distance of the given point from the centre, and p the

Fig. 42. reciprocal of the distance ol the given point from the point Q on the splure at which the eurent-linetion is ϕ.

The action of the current-slect at aryy point not in its sulstance is identical with that of a magnetie sluell whose strenghth at any point is numerienlly equal to the eurrent-fimetion.

The mutual potential of the marnetie shell nad a unit polo pheed at the point P is, ly Art. 410 ,

$$
\Omega=\iint \phi \frac{d p}{d n} d S
$$

Since p is a homogeneons function of the degree -1 in r and a_{2}

$$
\begin{gathered}
a \frac{d p}{d a}+r \frac{d p}{d r}=-p, \\
\text { or } \frac{d p}{d a}=-\frac{1}{d} \frac{d}{d r}(p r), \\
\text { and } \quad \Omega=-\iint \frac{d}{a} \frac{d}{d r}(p r) d S .
\end{gathered}
$$

Siuce r and a are constant during the surface-integration,

$$
\Omega=-\frac{1}{d} d d_{i}\left(r \iint_{\phi p d S}\right) .
$$

But if P is the potential due to a sheet of imagimary matter of surface-density ϕ,

$$
P=\iint \phi_{p} d S
$$

and Ω, the magnetic potential of the eurrent-sheet, may be expressed in terms of P^{2} in the form

$$
\Omega=-\frac{1}{a} \frac{d}{d r}(P r) .
$$

671.] We may determine F, the x-component of the vectorpotential, from the expression given in Art. 416,

$$
F=\iint \phi\left(m \frac{d p}{l \zeta}-h_{d} \frac{d p}{d \eta}\right) d S
$$

where ξ, η, ξ are the coordinates of the clement $d S$, and l, m, n are the direction-eosiues of the normal.

Since the shect is a sphere, the direction-cosines of the normal are

$$
t=\frac{\xi}{a}, \quad m=\frac{\eta}{a}, \quad n=\frac{\xi}{G} .
$$

But

$$
\frac{d p}{d \zeta}=(z-\zeta) p^{3}=-\frac{d p}{d z},
$$

mud

$$
\frac{d p}{d \eta}=(y-\eta) p^{3}=-\frac{d p}{d y}
$$

$$
\text { so that } m \frac{d p}{d \bar{\zeta}}-u^{d p} \frac{d \eta}{d \eta}=(\eta(z-\zeta)-\zeta(y-p)) \frac{p^{3}}{d z} \text {, }
$$

$$
=(z(\eta-y)-y(\zeta-z)) \frac{p^{3}}{\frac{3}{6}},
$$

$$
=\frac{z}{a} \frac{d p}{d y}-\frac{y}{a} \frac{d p}{d z} ;
$$

multiplying by $\phi d S$, and integrating over the surface of the sphere, we find

$$
H^{\prime}=\frac{z}{a} \cdot \frac{d P}{d y}-\frac{y}{a} d l^{3} d z
$$

Similanly

$$
\begin{aligned}
& a=\frac{a d P}{a} d x-\frac{s d]^{3}}{a d x^{2}}, \\
& H=\frac{y}{a} \frac{d I}{d x}-\frac{x}{a} d \overrightarrow{d y} .
\end{aligned}
$$

The vector 9 , whose components are $F_{3} a_{1} I_{2}$ is evidently perpendicular to the radius veetor ar, and to the vector whose components are $\frac{d P}{d / b}, \frac{d P}{d y}$, and $\frac{d P}{d z}$. If we determine the lines of intersections of the sylherical surface whose radins is r, with the series of equipotential surfaces corresponding to values of P^{\prime} in arithmetical progression, these lines will indicate lyy their direction the direet ion of in, and by their proximity the magnitude of this vector"
In the language of Quaternions,

$$
w_{1}=\frac{1}{a} V_{\rho} \nabla P_{0}
$$

6i72.] If we assume ats the value of P^{P} within the sphere

$$
P^{\prime}=A\left(\frac{V}{i}\right)^{i} Y_{i}
$$

where Y_{i} is a spherienl lammonic of degree i, then outside the sphere

$$
I^{p}=A\left(\frac{q}{p^{2}}\right)^{i+1} Y_{i}
$$

The enrrent-function ϕ is

$$
\phi=\frac{2 i+1}{4 \pi} \frac{1}{a} A Y_{i}
$$

The magnetic potential within the sphere is

$$
\begin{aligned}
& \Omega=-(i+1) \frac{1}{a} \Lambda\left(\frac{a}{v}\right)^{i} I_{i} \\
& \text { andel outside } \Omega \\
& \Omega^{\prime}=\frac{1}{a} A\left(\frac{a}{i}\right)^{i+1} I_{i}
\end{aligned}
$$

For example, let it be required to produce, by mentis of a wire coiled into the form ol a spherical shefl, a uniform magnetic foree M within the shell. The marreetic potential within the shell is, in this ease, a solid hamonic of the first degrice of the form

$$
\Omega=M_{r} \cos \theta,
$$

where M is the magnetio force. Hence $A=-\frac{1}{2} u^{2} M$, and

$$
\phi=\frac{3}{8 \pi} M a \cos \theta
$$

The current-function is therefore proportional to tho distance fiom the equatorial plane of the silhere, and therefore the number of windings of the wire between any two small cireles must he proportional to the distance hetween the planes of these circles.

If N is the whole namber of windings, amb if γ is the strength of the cerrent in cacl winding,

$$
\phi=\frac{1}{1} N \gamma \cos 0
$$

Hence the magnetic force within the coil is

$$
M=\frac{4 \pi}{3} \frac{N^{\psi} \gamma}{u}
$$

673.] Let us next find the method of coiliner the wive in ovder to prodned within the sphere a magnetie potental of the form of a solid zomal harmonic of the second degree,

$$
\Omega=A \frac{t^{2}}{a^{2}}\left(\frac{3}{2} \cos ^{2} 0-\frac{1}{2}\right)
$$

Here

$$
\psi=\frac{5}{12 \pi} A\left(3 \cos ^{2} \theta-\frac{1}{2}\right)
$$

If the whole namber of windings is N, the ntmber befween the pole and the potar distane θ is $\frac{1}{2} N^{2}$ sin ${ }^{2} d$.

The windings are elasest at latitude 45°. At the equator the direction of winding changes, and in the other hemispluere the windinges are in the eontrary direction.

Tet γ be the strength of the current in the wire, then within the shell

$$
\Omega=\frac{4 \pi}{6} N \gamma \frac{v^{2}}{a^{2}}\left(\frac{4}{2} \cos ^{2} d-\frac{1}{2}\right)
$$

Let ug now consider a conductor in the form of a platie elosed curve placed anywhere within the shell with its plane perpendientar to the axis. To determine its coefferent of induction we lawe to find the surfece-integret of $\frac{d \Omega}{d z}$ over the phane bounded by the curwe, puting $\gamma=1$,

$$
\begin{aligned}
\text { Now } \quad \Omega= & \frac{4 \pi}{5 a^{2}} N^{T}\left(a^{2}-\frac{1}{s}\left(u^{2}+y^{2}\right)\right), \\
\text { und } \quad & \frac{d \Omega}{d z}=\frac{8 \pi}{5 a^{2}} N s .
\end{aligned}
$$

Hence, if S is the area of the closed ourve, its coeflicient of induction is

$$
M=\frac{8 \pi}{5 a^{2}} M^{T} S
$$

If the eurrent in this conductor is $\gamma_{\%}$ there will be, hy Art. 583, a force Z, urying it in the direction of z, where

$$
Z=\gamma \gamma^{d M} d_{z}^{\bar{z}}=\frac{8 \pi}{5 u^{2}} N^{N} S \gamma \gamma^{\prime}
$$

and, since this is indepondent of $2, y, z$, the foree is the sume in whaterer part of the shat] (lie wirenit is phaced.

may be applied to curent-sheets by substituting for the body supposed to be uniformy magetized in the direetion of $\&$ will inteusity 7 , a curvent-shed hawing the lom of its surfice, ind foo which the curent-function is $\psi=J z$.
'I'lec carrents in the sloet will be in planes parallel to that off x yg and the strenglt of the eurrent pound atice of thelaness dz will lom $7 d z$

The mangetio potential date to this curment-sheet at any point outside it will be

$$
\begin{equation*}
\Omega=-J^{\mu} \frac{I^{\circ}}{d x} \tag{2}
\end{equation*}
$$

At any paint inside the elnect it will los

$$
\begin{equation*}
\Omega=-1 \pi I z-1 / \frac{d V}{d / z} \tag{3}
\end{equation*}
$$

The components of the vector-potential are

$$
\begin{equation*}
H=-I \frac{d V}{\sqrt{4}}, \quad \theta=J^{h} / x^{x}, \quad H=0 \tag{1}
\end{equation*}
$$

675.] (1) A 1 hate electrice enenit of any form.

Let I he the potantial due to at plane sheet of any form of which the surface-density is mity, then, if for this shent we salstitute either a magnetio shell of strengeth $/$ or an elvetrie current of
 be those griver above.
(2) F'or a solide splaere of ratios at,

$$
\begin{align*}
\quad V & =\frac{4 \pi}{3} \frac{a^{8}}{r} \text { when } \gamma \mathrm{j} \text { greater than } a_{3} \tag{5}\\
\text { and } \quad J & =\frac{2 \pi}{3} \cdot\left(3 a^{2}-\gamma^{*}\right) \text { when } \gamma \text { is less than } a \tag{i}
\end{align*}
$$

Hence, if such a shatere is magnetized parallel to z with intensity I, the maguetic potendial will be

$$
\begin{equation*}
\Omega=\frac{4 \pi}{3} I \frac{a^{3}}{n^{3}} x \text { outside the sphere, } \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\Omega=\frac{\pi}{3} X z \text { inside the splace. } \tag{8}
\end{equation*}
$$

If, insterd of being magretizel, the sphere is eniled with wate in equidistant circles, the total strength of current Fedwoun two small cireles whose planes are at unit distance leing /, then outside the sphere the valne of a is as belore, fote within the sphere

$$
\begin{equation*}
\Omega=-8_{3} / \delta \tag{1}
\end{equation*}
$$

'This in the case already dischssed in Art. 672.
(3) The case of an ellipsoid uniformly magnetized parallet to a given line has leen disenssed in Art. 437.

If the ellipsoid is coiled with wire in parallel and equitistant planes, the maguetie force withia the ellipsoid will be uniform.

(4) A Cylinutric Mugnel or Solenoid.

676.] If the body is a cylinder laving any form of section and bounded ly planes perpendicular to its generating lines, and if f_{1} is the potential at the point (x, y, z) duc to a plane area of surface-density unity coinciding with the positive end of the solenoid, and V_{2} the potential at the same point due to a plane areat of surface-density mity coinciding with the negative eut, then, if the cylinder is uniformly and longitudinatly magnetized with intensity unity, the potential at the point (x, y, z) will be

$$
\begin{equation*}
\Omega=F_{1}-F_{2} . \tag{10}
\end{equation*}
$$

If the cylinder, instead of being a magnetized borly, is uniformly lapped with wire, so that there are n windings ol wire in muit of length, and if a current, $\%$, is made to flow through this wire, the magnetie potential outside the solenoid is as before,

$$
\begin{equation*}
\Omega=u \gamma\left(T_{1}-\Gamma_{2}\right)_{s} \tag{11}
\end{equation*}
$$

but within the space bounded by the solenoid and its plane ends

$$
\begin{equation*}
\Omega=n \gamma\left(1 \pi z+I_{1}-\Gamma_{2}\right) \tag{12}
\end{equation*}
$$

The magnctic potential is discontinnous at the plane ends of the solenoid, but the magnetic fore is continuons.

If r_{1}, r_{2}, the distames of the centres of inertia of the positive and negative phane end respectively from the point (x, y, z), are very great compared with the transverse dimensions of lle solenoil, we may urite

$$
\begin{equation*}
\Gamma_{1}=\frac{A}{r_{1}}, \quad \Gamma_{2}=\frac{A}{r_{2}}, \tag{13}
\end{equation*}
$$

where A is the area of cither section.
The magnetic force outside the solenoid is therefore very small, and the foree inside the solenoid approximates to a foree parallel to the axis in the positive direction and equal to $4 \pi n \gamma$.
If the section of the solenoid is a cirele of radius a, the valnes of F_{1} and F_{2} may be expressed in the series of spherieal harmonics given in Thomson and 'Tait's Nutural Philusoghy, Apt. 540, Ix. II.,

$$
\begin{align*}
& I=2 \pi\left\{-\eta Q_{1}+a+\frac{1}{2} \frac{r^{2}}{a} Q_{2}-\frac{1.1}{2.1} \frac{r^{4}}{a^{3}} Q_{4}+\frac{1 \cdot T .33^{-6}}{2 \cdot 4.6 a^{4}} Q_{6}+\text { \&e. }\right\} \text { when } x<a, \text { (1.4) } \tag{15}
\end{align*}
$$

Th thee expressions x is the distance of the point (x, y, z) from the eentre of one of the circular ends of the solenoid, and the zonal harmonies, Q_{1}, Q_{2}, Eve, are those corresponding to the angle 0 which y makes with the axis of the eylituter.

The first of these expressions is diseontimons when $\theta=\frac{\pi}{2}$, but we must remenber that within the snfenoid we must add to the magretie loree deluced from this expression a longitudinal foree $4 \pi n \gamma$.
677.] Let ns now consider a solenoid so long that in the part. of space wheln we consider, the teme depending on the distance from the ends may be neglected.

The magnetie induction throngh any elosed curve drawn within the solenoti is $4 \pi n y A^{\prime}$, where A^{\prime} is the aren of the projection of the curpe on a plane nomal to the axis of the solemod.

If the efused curve is outside the solenomi, then, if it enctoses the solenoil, the magretic induction through it is $4 \pi \frac{\pi}{2} \gamma A$, where A is the aren of the suction of the solenods. In the closed curve atos not suround the solenoid, the magretie indaction through it is zem.

If a wive be wound x^{\prime} times mome the solenoid, the woflicient ol indaction between it and the solenoid is

$$
\begin{equation*}
M=4 \bar{\pi} H^{\prime} A \tag{16}
\end{equation*}
$$

By supposing these windings to cancirle with n windings of the solenoid, we find that the cofficient of self-induction of unt of length of the solenoil, takens ath anfleme distance from its axLemilies, is $\quad \lambda=4 \pi n^{2} A$.

Near the ends of a solenoid we must tuke into account the terms depending on the imaginary distribufion of magnetism on the phane ents of the solenoicl. The effect of these terms is to make the coefficient of induction between the solenoid and tit cirentit whed sur-
 surrounds a very long solenoul at a great distance from cither ent.

Let us take the ase of two circalar and conall solenoids of the same length \%. Let the radins of the onter solenoid be for fud let it be wound with wire so as to have β_{1} wimatinge in mat of length. leet the radius of the inner solnoid be e_{2}, and let the mandere of windings in unit of lenget l_{1} be x_{2}, then the coeftecent of induction hetween the solenoids, neglecting the offect of the ends, is
where

$$
\begin{align*}
& M=G \eta \tag{18}\\
& G=4 \pi \tag{19}\\
& y=-n_{2}^{2} l H_{2} . \tag{211}
\end{align*}
$$

nud
678. To determine the effect of the mositive enel of the solum ide we must caleulate the coeflicient of induetion on the onfer sohmond due to the circular disk which forms the end of the inner solurotit. For this purpose we take the second exprassion for F, as refren in equation (1 b), and diflerentjate it with respect to r. This gives the magnetie force in the divection of the rading. We then multiply this expression by $2-y^{2} d \mu$, and intugrate it with respect to μ from $\mu=0$ to $\mu=\frac{z}{\sqrt{s_{2}+c_{1}}}$. This gives the coefficient of induction with respect to a single winding of the outer solemoid at a distance z from the positive oud. We then maltiply this hyr $d z$, and intograte with ropect to z from $z=?$ to $z=0$. Finally, we multiply whe result $\mathrm{by}^{\circ} n_{1} n_{2}$, and so find the effect of one of the ends in dimiashing the coeflicient of indtretion.

We thats find for the valae of the coefficient of matual induetion between the two oylinders,

$$
\begin{equation*}
M I=4 \pi^{2} n_{1} \mu_{2} c_{2}^{2}\left(l-2 t_{1} a\right), \tag{21}
\end{equation*}
$$

where $a=\frac{1}{2} \frac{c_{0}+l-r}{c_{2}}+\frac{1.3}{2+1} \cdot \frac{1}{2.3} c_{2}^{c_{1}^{2}}\left(1-\frac{c_{1}^{2}}{r^{2}}\right)$

$$
\begin{equation*}
+\frac{1.3 .5}{2.4 .6} \cdot \frac{1}{4.5} \frac{c_{9}^{4}}{c_{1}^{4}}\left(r^{5}-\frac{c_{3}^{3}}{c^{3}} \frac{1^{3}}{4}+4 \frac{c_{1}^{5}}{r^{5}}-\frac{18}{4} \frac{c_{1}^{7}}{r^{7}}\right)+80 \tag{22}
\end{equation*}
$$

Where r is put, for brevity, for $\sqrt{l^{2}+c_{1}{ }^{2}}$.
It appears from this, that is calenlating the mutual inctuetion of two eonall solenoids, we must use in the expression (20) instead of the true lengtily the corrected length $l-2 c_{1} \alpha_{3}$ in which a portion equal to $a t_{1}$ is supposed to be cut off at each end. When the solenoid is very long compared with its extermat radias,

$$
\begin{equation*}
a=\frac{1}{2}+\frac{1_{0}^{1}}{T_{2}} c_{2}^{2} c_{1}^{2}+\frac{5}{y_{1}} c_{3}^{2} c_{1}^{4}+\& c^{2} \tag{23}
\end{equation*}
$$

679.] When a solenoid consists of a number of layers of wire of such a diameter that where are a loyers in mits of hongth, the number of layers in the thickness ol T^{\prime} is $n d r$, and we have

$$
\begin{equation*}
G=4 \pi \int x^{2} d r_{+} \quad \text { and } \quad g=\pi l \int x^{2} r^{2} d r \tag{24}
\end{equation*}
$$

If the theleness of the wire is constant, and if the induetion take place between an external coil whose outer and inmer madio are and y respectively, and an inner coil whose outer and inner ratit are y and z, then, neglecting the eflect of the conds,

$$
\begin{equation*}
G y=\frac{4}{n} \bar{m}^{2} l H_{1}^{2} u_{2}^{2}(x-y)\left(y^{3}-z^{3}\right) . \tag{25}
\end{equation*}
$$

That this may loe an maximm, x aud a being givon, amal y variable,

$$
\begin{equation*}
x=\frac{1}{3} y-\frac{1}{3} \frac{z^{3}}{y^{2}} . \tag{275}
\end{equation*}
$$

This equation gives the best relation between the depths of the primary and secondary coil for an induction-machine without an iron core.

If there is an iron core of radius z, then G romains as before, but

$$
\begin{align*}
y & =\pi \iint x^{2}\left(y^{2}+1 \pi x x^{3}\right) d t \tag{27}\\
& =\pi l x^{2}\left(\frac{y^{3}-\pi^{3}}{3}+1 \pi \times z^{2}(y-z)\right) . \tag{28}
\end{align*}
$$

If y is given, the value of z which gives the maximum value of g is

$$
\begin{equation*}
z=\frac{18 \pi x}{3} y \frac{18 \pi x+1}{18} . \tag{29}
\end{equation*}
$$

When, as in the case of irou, x is a latge number, $z=\frac{9}{3} y$, nearly.
If we now nake x constant, and y and z warialite, we obtain the maximum value of Gy when

$$
x: y:::: 4: 3: 2
$$

The coeflement of self-induction of a long solmonid whose outer and inner radii are x and y, and having a long iron core whine madius is z, is

$$
\begin{equation*}
x_{1}=\frac{9}{3} \pi^{2} \ell x^{4}(x-y)^{2}\left(x^{2}+2 x y+3 y^{2}+24 \pi x z^{2}\right\} . \tag{31}
\end{equation*}
$$

680.] We have hitherto supposed the wire to be of uniform thickness. We shall now dutermine the law according to which the thickness munst vary in the different layers in order that, for a given value of the resistance of the primary or the secondary conif, the value of the coeflicient of mutuat induction may be a maximum.
Let the resistance of unit of length of a wire, sueli that a windings ocenpy mit of tength of the solenoid, he ρx^{2}.

The resistance of the whole solenoid is

$$
\begin{equation*}
R=2 \pi l \int n^{1} r d r . \tag{32}
\end{equation*}
$$

The coudition that, with a given value of R, G may bo maximnom is $\frac{d G}{d t}=C \frac{d R}{d r}$, where C is sone constant.

This gives n^{2} proportional to $\frac{1}{r}$, or the diameter of the wite of the exterior coil must be proportional to the square root of the ratius.

In order that, for a given value of f, y may be a maximum

$$
\begin{equation*}
x^{2}=C\left(x+\frac{4 \pi t^{2}}{y^{2}}\right) \tag{33}
\end{equation*}
$$

Wence, if there is no iron enre, the diameter of the wire of the interior coil should be inversely as the square root of the ratius, but if thure is a core of iron laving a ligh eapacity for magnedization, the diameter of the wire should be more nearly directly proportional to the square root of the radius of the layer.

An Endeless Solenoid.

681.] If a solud be generated by the revolution of a plane area A about an axis in its own plane, not cutting it, it will have the form of a a ring. If this ring be coited with wire, so that the withlings of the coil are in planes passing through the axis of the ring, then, if z is the whole number of windings, the current-function of the layer of wire is $\phi=\frac{1}{2 \pi} n \gamma \theta$ where θ is the angle of aximuth about the axis of the ring.

If Ω is the magnetic potential inside the ring and Ω^{\prime} that outside, them

$$
\Omega-\Omega^{\prime}=4 \pi 4+C=2 n \gamma 0+C
$$

Oufgide the ring S^{\prime} must satisfy Laplace's equation, aud must vanish at an infinite distarce. Fron the nature of the prohlem it must be a function of only. The only value of Ω^{\prime} whied fulfils these conditions is zero. Henco

$$
\Omega=0, \quad \Omega=2 n \gamma \theta+0
$$

The magnetic force at any point within the ring is perpendicular to the $p^{\text {tane }}$ passing throughs the axis, and is equal to $2 x \gamma \frac{1}{\gamma}$ where r is the distance from the axis. Outside the ring there is no magnetic force.

If the form of a closed eurve be given by the coordinates z, r, and θ of' its tracing mint as functions of 8 , its lengeth, from al fixat point, the maguctic induction through the closed enve is

$$
2 a \gamma \int_{0}^{\infty} \frac{z}{\gamma} \frac{d r}{d \beta} d s
$$

taken round the curve, provided the curve is wholly inside the ring. If the curve lies wholly withont the ring, hat embraces it, the magnetic induetion through it is

$$
2 n y \int_{0}^{\sigma^{\circ} \frac{z^{\prime}}{r^{\prime}} d r^{*}} d r^{\prime}=2 n \gamma a
$$

where the aceented coordinates refer not to the closed curve, but to at siugle winding of the solenoid.

The magnelic induction through any closed enrve embracing the
ring is therefore the same, and equal to $2 \pi y a$, wherg a is the limear gunatity $\int_{0}^{A^{\prime}} \frac{z^{\prime}}{r^{\prime}} \frac{d l^{\prime}}{d s^{\prime}}$ ds. If the closed curve does not embrace the ring, the mugnetic induction through it is zero.

Let a second wire be coiled is amy manner round the ring, not necessarily in contact with it, so as to embrace it at times. The induction through this wive is 2 mit $^{\prime} y a_{4}$, and therefore M, the coefiefent of juduction of the one coil on the other, is $M=2 n w^{\prime}$ a

Since this is quite tudependent of the partientar form or position of the second wire, the wires, if treversed ly electric eturvents, will experience no mechmical force aeting betwen them. By naking thes second wire coincide with the first, we oldatin for the coeflicient of self-induetion of the ring-coil

$$
L=2 n^{3} f_{x}
$$

CHAP'TER XIII.

1RARALLAL CURRENTS.

Cylindrical Conductors.

682. I Ix a very important class of electrical arpangements the current is conducted throngh rousd wires of nearly uniform section, and cither stanight, or such that the radins of curvature of the axis of the wire is very great compared with the madius of the thansverse section of the wire. In order to tre prepared to deal mathematically with such arrangements, we shall begin with the case in which the circuit consists of two very long inarallel conductors, with two pieces joining their ends, and we shall confine our attention to a part of the cirenit which is so far from the ends of the conductors that the fact of their not being infinitely long does not introluce any sensible change in the distrilution of force.

We shall take the axis of z parallel to the direction of the conductors, then, from the symmetry of the arrangements in the part of the field considered, everything will depend on $I I$, the component of the wector-potential parallel to z .

The companents of magnetic induction becone, by erquations (A),

$$
\begin{align*}
& a=\frac{d / I}{d / 3}, \tag{1}\\
& b=-\frac{d H}{d / k}, \tag{2}\\
& c=0 .
\end{align*}
$$

For the sake of generality we shall suppose the coefficient of magnectic induction to be α, so that $a=\mu a, b=\mu \beta$, where a and β are the components of the maphetic foree.

The eguations (E) of electric curvents, Art. 607, give

$$
\begin{equation*}
n=0, \quad v=0, \quad 4 \pi w=\frac{\lambda \beta}{d i}-\frac{d a}{d j} . \tag{3}
\end{equation*}
$$

688.] If the amrent is a finction of \quad, , the distance fiom the axis of z, and if we write

$$
\begin{equation*}
r=r \cos \theta, \quad \text { aud } \quad y=r \sin \theta_{2} \tag{4}
\end{equation*}
$$

and β for the magnetic foree, the the diection in whind 0 is meanared perpentientar to the phane through the axis of ε, we have

$$
\begin{equation*}
d \pi w=\frac{d \beta}{d r^{*}}+\frac{1}{r} \beta=\frac{1}{r} \frac{d}{d}(\beta r)^{2} \tag{5}
\end{equation*}
$$

If C is H_{t} whole current flowing through a section bonded by a civele in the phane aty, whose eontre is the origin and whase radius is ?

$$
\begin{equation*}
C=\int_{n}^{r} 2 \pi r \cdot r l r=\frac{1}{2} \beta r . \tag{6}
\end{equation*}
$$

It appeanis, therefore, that, the magnetie foree at a given point. due to a emrent arranged in cylindrieal strata, whose common axis is the axis of an depends only on the total slerenght of the caurent lowing though the strata which lie between the giver point. and the axis, and not on the distribution of the enment thong the diflerent cylindrical strata.

For instanct, lat, the contuctor be a uniform wire of radits a, and let the total murent through it be C, then, if the emrent is milornty distrilputed throngh all parts of the section, will he constant, and $O=\pi$ 和 a^{2}.
'The current flowing through a cirwalal' scetion of radius f_{s} p heing less than a_{3} is $O^{\prime}=\pi t^{2}$. IVonee at ang point within lie wire,

$$
\begin{align*}
\beta & =\frac{2 C^{\prime}}{\gamma}=2 C \frac{\gamma}{a^{2}} \tag{8}\\
\text { Out ide the wire } & \beta=2 \frac{C}{r} . \tag{9}
\end{align*}
$$

In the sulstatice of the wire there is no magnetic polential, fir within a conductor carying an electric current the magenetic luree dres not lialtil the eondition of having a potential.

Oulside the wire the magretic potential is

$$
\begin{equation*}
\Omega=2 C 0 \tag{10}
\end{equation*}
$$

Let ros suppose that instand of a wire the conductro is a mefal tube whose axternal and internal rudii are ${ }_{4}$ and a_{2}, then, if C^{r} is the emreut through the tubular conductor,

$$
\begin{equation*}
C=\pi w\left(u_{1}^{2}-a_{2}{ }^{2}\right) \tag{11}
\end{equation*}
$$

The magnetie foree within the tube is zero. In the metal of the Lube, where $\%$ is luetween a_{1} and a_{2},

$$
\begin{equation*}
\beta=2 C_{-} \frac{1}{\pi_{1}^{2}-a_{2}^{2}}\left(7-\frac{\pi_{1}^{2}}{r^{2}}\right)_{2} \tag{12}
\end{equation*}
$$

and outside the tule,

$$
\begin{equation*}
\beta=2 \frac{C}{x} \tag{13}
\end{equation*}
$$

the same as when the emrent flows througly a solid wire.
684.] The magnetic induction at any point is $\langle=\mu \beta$, and since, by equation (2),

$$
\begin{align*}
h & =-\frac{A H}{h_{n}} \tag{14}\\
H & =-\int \mu \beta d H^{2} \tag{15}
\end{align*}
$$

The value of $/ /$ ontside the tube is

$$
\begin{equation*}
A-2 \mu_{4} C \log r_{7} \tag{16}
\end{equation*}
$$

Whare μ_{0} is the value of μ in the space outside the tube, and A is a constant, the value of which depemis on the position of the return eurrent.

In the substance of the tulue,

$$
\begin{equation*}
\Pi I=A-2 \mu_{11} C \log a_{1}+\frac{\mu C}{a_{1}^{3}-u_{2}^{2}}\left(a_{1}^{2}-r^{2}+2 a_{2}^{2} \log \frac{\gamma}{a_{1}}\right) . \tag{17}
\end{equation*}
$$

In the space within the tulve $I I$ is constant, and

$$
\begin{equation*}
H=A-2 \mu_{0} C \log a_{1}+\mu C\left(1+\frac{2 \alpha_{2}^{2}}{a_{1}^{q}-a_{2}^{2}} \log \frac{a_{2}}{a_{1}}\right) \tag{18}
\end{equation*}
$$

685.] Tee the cireuit be completed by a return current, flowing in a tube or wire parallel to the first, the axes of the two ourrents being at a distance Z. To aletermine the linetic energy of the system we have to caleulate the iutegral

$$
\begin{equation*}
T=\frac{1}{\Sigma} \iiint \| w d z d y d z \tag{10}
\end{equation*}
$$

If we confine our attention to that part of the system which lies led ween two planes perpertieular to the axes of the conductors: and distant l from each other, the expression beeomes

$$
\begin{equation*}
T=\frac{1}{2} l \iint H x d x d y \tag{20}
\end{equation*}
$$

If we distinguish by nu aecent the quantities belonging to the return current, we may write this

$$
\begin{equation*}
\frac{27}{7}=\iint I I w^{\prime} d x^{\prime} d y^{\prime}+\iiint I^{\prime} w d x d y+\iint I W d x d y+\iint I^{\prime} w^{\prime} d x^{\prime} d y^{\prime} . \tag{21}
\end{equation*}
$$

Since the action of the current on any point outside the tube is the same as if the same current had been concentrated at the axis of the tube, the mean value of $/ /$ for the section of the return current is $A-2^{2} \mu_{0} C \log b$, and the mean value of $H I^{\prime}$ for the section of the positive current is $A^{\prime}-2 \mu_{0} C^{\prime} \log b$.

Hence, in the expression for T, the first two temm may be writen $A C^{\prime}-2 \mu_{0} C C^{\prime} \log b$, ami $A^{\prime} C-2 \mu_{0} C C^{\prime} \log b$.
Integrating the two latter terms in the ordinary way, and adding the results, remembering that $C+C^{*}=0$, wo oltain the watne on the kinctic energy 7 . Writing thiss $\frac{1}{3} / L C^{2}$, where L is the coefficient of self-imduction of the system of two conductors, we find as the value of I lor unit of length of the system

$$
\begin{align*}
\frac{T}{l}=2 \mu_{0} \log \frac{b^{2}}{a_{1} a_{1}^{\prime}} & +\frac{1}{2} \mu_{1}^{a_{1}^{2}-3 a_{2}^{2}} \frac{4 a_{2}^{2}}{a_{1}^{2}-a_{2}^{2}}+\frac{a_{1}^{2}}{\left(a_{1}^{2}-a_{2}^{2}\right)^{2}} \log \frac{a_{1}}{a_{3}} \\
& +\frac{1}{2} \mu^{\prime} a_{1}^{2}-3 a_{1}^{\prime 2} \tag{22}\\
a_{1}^{\prime 2}-a_{2}^{2} & +\frac{4 a_{2}^{\prime 2}}{\left(a_{1}^{2}-a_{4}^{2}\right)^{2}} \log \frac{u_{1}^{\prime}}{a_{2}^{\prime \prime}}
\end{align*}
$$

If the conductors are solid wires, a_{2} and $\alpha_{2}{ }_{2}$ are zero, and

$$
\begin{equation*}
\frac{h}{l}=2 \mu_{0} \operatorname{lig} \frac{b_{1}^{2}}{a_{1} a_{1}^{\prime}}+\frac{1}{2}\left(\mu+\mu^{\prime}\right) \tag{23}
\end{equation*}
$$

It is only in the ense of iron wires that we need take aceonnt of the magnetic induction in calcalating their self-induction. In other cases we may make μ_{0}, μ, suad μ^{\prime} all equal to unity. 'Ehw smaller the radii of the wires, and the greater the distanco between them, the greater is the self-induction.

To fond the Hepulsion, N , helween the Tro Ponthons of Hire.

686. $]$ By $A x .580$ we oldain for the fore tending to inerense $b_{\text {, }}$

$$
\begin{align*}
N & =\frac{1}{2} \frac{d}{d b} C^{2} \\
& =2 \mu_{0} \frac{l}{b} C^{2} \tag{24}
\end{align*}
$$

which agrees with Ampere's lormula, when $\mu_{0}=1$, as in air.
687.] If the length of the wires is great eompared with the distance between them, wo may use the eoefficient of self-induction to determine the tension of the wires arising from the action of the current.

If Z is this tension,

$$
\begin{align*}
Z & =\frac{d}{\frac{d}{M}} C^{a} \\
& =C^{2}\left\{\mu_{0} \log _{\frac{g}{}}^{c_{1} a_{1}}+\frac{\mu}{2}\right\} \tag{25}
\end{align*}
$$

In one of Ampere's experments the prablel conductors consist of two troughs of mercary connected with each other by a floating bridge of wire. When a curvent is mate to enter at file extremity of one of the troughs, to flow alongr it till it reaches one extremity vor.. it.
of the floating wire, to pass into the other trough through the flouting bridge, and so to return alnig the second trough, the floating bifdge moves along the troughs so as to lengthen the parto of the mercury traversed by the current.

Professon Tait has simplified the electrical conditions of this experiment by substituting for the wire a floating siphon of glass filled with merenry, so that the curvent llows in mereury throughout its course.

Fig. 10.
This experiment is sometimes adduced to prove that two clements of a current in the sume stritight line repel one another, and thus to shew that Ampere's formula, which indicates such a repulsion of collinear clements, is more correct than that of Grassmam, which gives no action between two clements in the same straight line; Arl. 526.

But it is manifest that since the formulae both of Ampere and of Grassmann give the same results for closed circuits, and since we have in the experiment only a closed circuit, no result of the experiment can favour one more than the other of these theories.

In fact, both formulae lead to the very same value of the repulsion as that already given, in which it appears that b, the distance lectween the parallel conductors is an important element.

When the lengeth of the conductors is not. very great compared with their distance apart, the form of the value of l, becomes somewhat more complicated.
688.] As the distance leetween the enductors is dimimished, the value of L diminishes. The limit to this diminution is when the wires are in contact, or when $b=t_{1}+a_{2}$. In this case

$$
\begin{equation*}
L=2 l \log \left(\frac{\left(a_{1}+a_{2}\right)^{2}}{a_{1} a_{2}}+\frac{1}{2}\right) . \tag{26}
\end{equation*}
$$

This is a minimum when $u_{1}=u_{1}$, and then

$$
\begin{align*}
I & =2 l\left(\log 4+\frac{1}{2}\right)^{\prime} \\
& =2 /(1.8863) \\
& =3.7524 \% \tag{T}
\end{align*}
$$

This is the smallest value of the self-induction of a round wire doubled on itself, the whole length of the wire being $2 / 4$.

Since the two parts of the wire must be insulaten from each ofther, the self-induction can never actually reach this limiting walue. Aly using broad flat sitips of melal instend of round wires the self-induction may be diminished indelinitely.

On the Electromotive Force requived to protuec a Crrent of Iarying Fulensity along a Cylindrical Comituctor.

689.] When the current in a wire is of varying intensity, the clectromotive force arising from the induction of the current on itedf is different in different parts of the seetion of the wire, being in general a function of the distance from the axis of the wire as well as of the time. If we suppose the eylimdrieal condactor to consist of a Imudle of wires all Poming pant of the same circuit, so that the curemt is compelled to be of uniform strength in every part of the section of the bundle, the methot of calculation which we have hitherto nsed would be strietly applieable. If; however, we consider the cylindrical conductor as a solid mass in which electrie eurrents are free to dow in obedience to clectromotive foree, the intensity of the current swill not be the same at different distances from the axis of the eylizuder, and the electromotive forees thenselves will depend on the distribution of the eurrent in the diflerent cylindrie strata of the wire.

The vector-potential $/ /$, the density of the current , mand the electromotive fore at any point, must be considered as linetions of the time and of the distance from the axis of the wire.

The total current, C, througls the seetion of the wire, nud the total electromotive force, E, acting round the cireuit, are to be regarded us the variables, the relation between which we have to find.

Tent us assume as the walue of H,

$$
\begin{equation*}
H=S+T_{0} \psi_{1} T_{1} r^{2}+\sum c_{0}+T_{n} r^{2 n}, \tag{1}
\end{equation*}
$$

where S, T_{0}, T_{1}, Ee. ate functions of the time.
Then, from the erpuation

$$
\begin{array}{ll}
& \frac{d^{2} H}{h^{2}}+\frac{1}{r} \frac{d H}{d r}=-4 \pi u^{2} \\
\text { We find } & -\pi w^{2}=7_{1}+80+u^{2} T_{n} r^{2 n} n-2
\end{array}
$$

If p denotes the specific resistanee of the sulbstance per unit of volnme, the eledromotive force at ary point is $\rho w_{\text {, }}$ and this may be exprosed in terms of the electric potential and the vector potential // by equations (B), Art. 598 ,

$$
\begin{gather*}
\rho w=-\frac{d \Psi}{d z}-\frac{d J}{d l} \tag{4}\\
-\rho v=\frac{d \Psi}{d z}+\frac{d S}{d b}+\frac{d T_{0}}{d b}+\frac{d T_{1}}{d l} r^{2 z}+\mathbb{d e}+\frac{d T_{n}}{d d} r^{2 n} \tag{i}
\end{gather*}
$$

01
Comparing the coefficients of like powers of γ in eqpuations (3) and (5),

$$
\begin{align*}
& T_{1}=\frac{\pi}{\rho}\left(\frac{d \Psi}{d \psi}+\frac{d S}{d b}+\frac{d T_{0}}{d l}\right) \tag{6}\\
& T_{2}=\frac{\pi}{\rho} \frac{d T_{1}}{d l} \tag{7}\\
& T_{n}=\frac{\pi}{\rho} \frac{1}{d t^{2}} \frac{d T_{n-1}}{d l^{1}} \tag{8}
\end{align*}
$$

Hence we may write $\frac{d S}{d d}=-\frac{d \Psi}{d z}$,

$$
\begin{equation*}
t_{0}=\eta_{1}, \quad q_{1}^{t}=\frac{\pi}{\rho} \frac{d T^{\prime}}{d t^{2}}, \ldots \quad T_{n}=\frac{\pi^{n}}{\rho^{n}} \frac{1}{(\underline{n})^{2}} \frac{d l^{n} \eta}{d t^{n}} \tag{9}
\end{equation*}
$$

690.] To find the total current C, we must integrate wover the section of the wire whose radius is a,

$$
\begin{equation*}
C=2 \pi \int_{\pi}^{a} w v_{i} d \tag{11}
\end{equation*}
$$

Substituting the value of mo from equation (3), we obtain

$$
\begin{equation*}
C=-\left(T_{1} a^{2}+\text { de. }+n T_{n} a^{n}\right) \tag{12}
\end{equation*}
$$

The value of $I I$ at any point outside the wire depends only on the total eurrent $C_{\text {}}$ and not on the mote in which it is distributed within the wire. Hence we may assume that the value of $/ I$ at the surlace of the wire is $A C$, where A is as constant to be determined by calcalation from the general form of the eireait. Pathing $I T=A C$ when $y=a$, we obtain

$$
\begin{equation*}
A C=S+T_{0}+F_{1} a^{2}+8 C+T_{n} \cdot a^{2 n} \tag{13}
\end{equation*}
$$

If we now write $\frac{\pi a^{2}}{\rho}=a_{3} a$ is the value of the condnctivity of unit of length of the wire, and we heve

$$
\begin{align*}
& A C-S=T+a \frac{d T}{d l}+\frac{a^{2}}{1^{2} 2^{2}} \frac{d^{2} T}{d b^{2}}+\mathbb{N c}+\frac{a^{\prime \prime}}{\left(\frac{n}{2}\right)^{2}} \frac{d^{n} T}{d b^{n}}+\& c . \tag{14}
\end{align*}
$$

Thiminating T from these two equations, we find

$$
\begin{align*}
& a\left(A \frac{d C}{d l}-\frac{d S}{d l}\right)+C+\frac{1}{2} a \frac{d C}{d b}-\frac{1}{1^{2}} \frac{a^{2}}{d d^{2} C}+\frac{1}{d d^{2}} a^{2} \frac{d^{3} C}{d l^{3}} \\
& -\frac{1}{18} \frac{a^{4}}{} \frac{d^{4} C}{d t^{4}}+80=0 . \tag{16}
\end{align*}
$$

If b is the whole length of the eirenit, R its resistance, and E the electromotive force due to other eauses than the induction of the current on itself,

$$
\begin{equation*}
\frac{d S}{d l}=-\frac{E}{l}, \quad a=\frac{l}{h}, \tag{17}
\end{equation*}
$$

The first term, $R C$, of the right-hand member of this equation expresses the elcetromotive foree required to overcome the resistance according to Ohm's law.

The second term, $l\left(A+\frac{1}{2}\right) \frac{d C}{d l}$, expresses the electromotive foree which would le employed in increasing the electrolinetic momentum of the circuit, on the hypothesis that the current is of uniform strength ate every point of the section of the wire.
The remaining terms express the correction of this value, arising from the fact that the current is not of uniform strengith at diflurent distances from the axis of the wire. The actual system of enerents has a greater degree of freedom than the hypothetical system, in which the current is constrained to be of uniform strength throughout the section. Hence the electromotive force reguired to produce a rapid clange in the strength of the current is somewhat less than it would be on this hypoinesis.

The relation between the time-iategral of the clectrometive force and the time-integral of the current is

$$
\begin{equation*}
\int E d l=I \int C d l+l\left(A+\frac{1}{2}\right) C-\frac{1}{1} \frac{d^{2}}{d} d C+d c \tag{19}
\end{equation*}
$$

If the eurrent before the beginning of the time has a constant value C_{0}, and in during the time it rises to the value C_{1}, and remains constant at that value, then the terms involving the differential coeffieients of C vanisla at both limits, and

$$
\begin{equation*}
\int X d t=R \int C d l+l\left(A+\frac{1}{2}\right)\left(C_{1}-C_{0}\right) \tag{20}
\end{equation*}
$$

the same value of the electromotive impulse as if the current luad leen miform throughont the wire.

On the Geometrieal Mean Distance of Tho ITperes in a Plane.*

691.] In caleulating the clectromaguetic action of a current flowing in a straight conductor of any given section on the eurrent in a paratlel conductor whose section is also given, we have to find the integral

$$
\iiint \int \log r d x d y d w^{\prime} d y^{\prime}
$$

where dedy is in element of the area of the first section, de'ify an element of the second section, and r the listance between these elements, the integration being extended first over every element of the first scetion, and then over every element of the second.

If we now determine a line h, suel that this integrat is oqual to

$$
A_{1} A_{2} \log h,
$$

where A_{1} and A_{2} ate the areas of the two sections, the length of f will be the same whatever unit of lengeth we alopt, and whatever system of lograthos we use. If we suppose the sections diviled into clements of cqual size, then the logarithm of \notin, multizilied by the number of pairs of clements, will be equal to the stom of the lograithms of the distances of all the pairs of elements. Here R may be considered as the geometrical mean of all the distances between pairs of clements. It is evident that the value of R musi lee intermediate hetween the greatest amd the least values of r.

If F_{A} and R_{n} are the grometrie mean distances of two figures, A and B, from a third, C_{2} and if R_{A+1} is that of the sum of the two figures from C, then

$$
(A+B) \log R_{A+H}=A \log R_{A}+B \log h_{B}
$$

By means of this relation we can determine R for a compound figure when we know $7 l$ for the parts of the figure.

> 602.]

Jexamplis.

(1) Let If be the mean distance from the point O to the line AB. Let $O P$ be perpendicular to $A B$, then

$$
A B\{\log Z A+1\}=A P^{P} \log O A+P B \log O B+O P A \widehat{O B}
$$

1Fis. 41.

(2) For two lines (Figg 42) of lenghtis a and b drawn porpontioulaw the extremities of a line of length es and om the same side of it.

$$
\begin{aligned}
a(2 \log R+3)= & \left(c^{2}-(a-b)^{2}\right) \log \sqrt{c^{2}+(a-b)^{-2}}+c^{2} \log c \\
& +\left(a^{2}-c^{2}\right) \log \sqrt{a^{2}+c^{2}}+\left(b^{2}-c^{2}\right) \log \sqrt{b^{2}+c^{2}} \\
& -c(a-b) \tan ^{-1} \frac{a-b}{c}+a c \tan ^{-1} a+b c \tan ^{-1} \frac{b}{e}
\end{aligned}
$$

(3) For two lines, $P Q$ and $R S$ (F"g. 43), whose directions int $u^{*}-$ sect at 0.
$P Q \cdot h S(2 \log \pi+3)=\log P A\left(2 O P \cdot O A \sin 2 O-P^{2} h^{2} \cos O\right)$
$+\log Q S\left(2 O Q, O S \sin ^{-2} O-Q S^{2} \cos O\right)$
$-\log P S\left(2 O P^{2} \cdot O S^{2} \sin ^{-1} O-P^{2} \cos O\right)$
$-\log Q R\left(20 Q .0 R^{2} \sin ^{2} O-Q R^{2} \cos O\right)$
$-\sin O\left\{O P^{2} \cdot S P^{P}-O Q^{2} \cdot S Q R+O R^{2} \cdot \beta^{2} Q-O S^{2} \cdot P S Q\right\}$.

Fig. 43.
(4) Fow a point O and a rectangle ABCD (Tig. 14). Lee OP, $O Q, O R, O S$, te perpendienlars on the sides, them
$A B . A D(2 \log A+3)=2 . O P^{2} . O Q \log O A+2 . O Q . O R \log O A$

$$
\begin{aligned}
& +2.07 . O S \log O C+2 . O S .0 P \log O D \\
& +07^{22} \cdot \sqrt{O A}+O Q^{2} \cdot \sqrt{O} \\
& +1) \sqrt{2} \cdot B O C+0 S^{2} \cdot 00 D
\end{aligned}
$$

Fig. 4.
(5) It is not necossary that the two figmes should be diflerent, for we may find the geometrio mean of the distances between evory pair of points in the sante figure. Thas, for a straight line of length a,

$$
\begin{aligned}
\log R & =\log a-\frac{3}{2} \\
R & =a e^{-\frac{3}{2}} \\
R & =0.22313 a
\end{aligned}
$$

(b) For a rectangle whose sides are a and b,

$$
\begin{aligned}
& \log 7 b=\log \sqrt{a^{2}+b^{2}}-\frac{1}{6} \frac{a^{2}}{b^{2}} \log \sqrt{1+\frac{b^{2}}{a^{2}}-\frac{b}{b} \frac{b^{2}}{a^{2}} \log } \sqrt{1+\frac{a^{2}}{b^{2}}} \\
&+\sqrt{3} \frac{a}{b} \tan ^{-1} \frac{b}{a}+\frac{2}{3} \frac{b}{a} \tan ^{-1} \frac{a}{b}-\frac{2 \pi}{5} .
\end{aligned}
$$

When the rectangle is a square, whose side is a,

$$
\begin{aligned}
\log h & =\log a+\frac{1}{3} \log 2+\frac{\pi}{3}-\frac{2}{1} \frac{2}{2} \\
h & =0.44705
\end{aligned}
$$

(7) The geometric metn distance of a point from a circular line is equal to the greater of the two quanities, its distanee from the centre of the cirele, and the radius of the circle.
(8) Henee the geometric mean distance of any figure from at ring bounded by two concentric circles is equal to its greometrie mean distance from the eentre if it is entirely outside the ring, but if it is entirely within the ring

$$
\log \not z=\frac{a_{1}^{2} \log \mu_{1}-a_{2}^{2} \log \sigma_{2}}{\alpha_{1}^{2}-a_{2}^{2}}-\frac{1}{t_{1}}
$$

where a_{1} and f_{2} we the outer and inner radii of the ring. A is in this case independent of the fom of the figure within the ring.
(9) The grometric mear distance of all pairs of points in the ring is found from the equation

$$
\log H=\log a_{1}-\frac{a_{2}^{4}}{\left(d_{1}^{2}-a_{2}^{2}\right)^{2}} \log \frac{a_{1}}{a_{2}}+\frac{3 a_{2}^{2}-a_{1}^{2}}{a_{1}^{2}-a_{2}^{2}} .
$$

For a circular area of radius a, this becomes

$$
\begin{aligned}
\log R & =\log a-\frac{1}{4} \\
R & =a e^{-\frac{1}{\alpha_{2}}} \\
h & =0.7788 a
\end{aligned}
$$

For at cincular line it becomess

$$
A=a_{t}
$$

693.] In eulculating the conffecent of self-ituduction of a coil of uniform seotion, the rathus of curvature being grent compareal with
the dimensions of the transerse section, we linst determine the geometric mean of the distances of every prair of points of the section by the method alrealy deseribed, and then we enlenfate the coeflicient of motual induction between two linear conductors of the given form, plated at this distance inpart:

This will be the cofliegent of self-induction when the total eurrent in the coil is mity, and the current is uniform at all points of the section.

But if there are x windings in the conl we must maltiply the cocfficient altwady obtained by μ^{2}, and thus we stath obtatn the cocflicient of self-induetion on the supposition that the windings of the condacting wire fill the whole section of the coil.

But the wire is cylindric, and is covered with insulating material, so that the current, instead of beng mifomly distributed over the secton, is concentrated in certain parts of it, and this inereases the coefficient of eelf-induction. Besides this, the curments in the nejghbouring wires lave not the game action on the entrent in a given wire as a miformly distributel current.
'Tho corrections arisiug from these considerations maty bo detemined by the method of the geometrie mean distance. 'Ilhey are proportional to the length of the whole wire of the eoil, and nay be expressed as numerical quantitios, by which we must multiply the length of the wire in order to obtain the conection of the coedticient of self-induction.

Let the clianeter of the wire be d. It is covered with insulating material, and wound into a coil. We slatl suppose that the sections of the mires aro in square order, as in Fig. 45 , and that the distance between the axis of each wire and that of the next is D, whether in the direction of the breadth or the depthe of the coil. D is evidently greater then d.

7ig. 40.

We have first to determine the exects of sell-induction of unit of length of n cytindrie wire of cliameter a over that of unit of length of a square wire of side D, om

$$
\begin{aligned}
& 2 \log \frac{l l}{l l} \text { for the square the circle } \\
= & 2\left(\log \frac{D}{d}+\frac{d}{3} \log 2+\frac{\pi}{3}-x_{0}^{1}\right) \\
= & 2\left(\log \frac{D}{d}+0.1380606\right) .
\end{aligned}
$$

The inductive action of the eight nearest round wires on the wire monder consideration is less than that of the corresponding eight equare wires on the sfuare wire in the middle by $2 \times(01971)$.

The eorrections for the wires at a greater distance nay be nespleeted, and the total correction may bo written

$$
2\left(\log _{\mathrm{E}} \frac{b}{d}+0.11835\right)
$$

The final value of the self-iudnetion is therefore

$$
L=n^{2} A+2 l\left(\log _{6} \frac{D}{d}+0.11835\right)
$$

Where h is the number of windings, and b the lengtl of the wire, M the matual induction of two circuits of the form of the mean wire of the eoil placed at a distance f from ench other, where R is the mean geometrie distance betwoen pirs of points of the section. D is the distance between consentive wires, and d the diameter of the wire.

CHAPTER XIV.

CIRLLLAH ELPRTHNTE

Magnotic Potentiat due to a Civerdar Cument-

G94.] Tus magnetie potential at a given point, due to a circuit carrying a unit current, is numerienly equal to the solid angle sul)tended by the circuit at that point; see Arts. 409, 485.

When the cirenit is eirenlar, the solid angle is that of a cone of the second degree, which, when the given point is on the axis of the cirele, becomes a right cone. When the paint is not on the axis, the cone is an clliptice cone, and its solid angle is numerically equal to the area of the spherien ellipse which it traces on a sphere whose radius is unity,

This area can be expressed in fimite terms hy meens of elliptic integrafs of the thiral lind. We shall fitad it more conventent to expand it in the form of an infinite series of spherical larmonice, for the facility with which mathematical operations may foe performed on the general term of such at series more than connterbalances the trouble of centeulating in mumber of terms suflicient io chesure practical acentacy:

For the sake of generality we sluall assume the origin at any point on the axis of the cirele, that is to say, on the line through the centre perpendienkiar to the plane of the circle.
Jet O (1ig. 46) be the centre of the circle, C the point on the axis which we assume as origitu, H a point on the circle.

Deserine a sphere with C as centre, and CH as radius. The circle will lie

F'ig. 44. on this sphere, and will form a small eirele of the sphore of angalar ractius a.

Let

$$
\begin{aligned}
& C H=c, \\
& O O=b=c \cos a, \\
& O H=a=c \sin \alpha .
\end{aligned}
$$

Let A be the pole of the sphere, and Z any point on the axis, and let $C Z=z$.

Let R be any point in space, and let $C R=r$, and $A C T=0$.
Let P be the point when $O R$ ents the sphere.
The magnetic potential due to the circular eturrent is equal to that due to a magnetic shell of strength unity bounded by the current. As the form of the surface of the shell is indifferent, provided it is lounded by the circle, we may suppose it to coincide with the surface of the sphere.

We have shewn in Art. G70 that if P is the potential dure to a siratum of matter of surface-density unity, spread over the surface of the sphere within the small circle, the potential due to a magnetic shell of strength unity mod bounded by the same circle is

$$
\omega=\frac{1}{c} \frac{d}{d r}(r P) .
$$

We have in the first place, therefore, to find P.
Let the given point be on the axis of the cirele at Z, then the part of the potential at Z due to an element $d S$ of the salherical surface at P is

$$
\frac{d S}{Z P^{2}} .
$$

This may be expanded in one of the two series of spherical harmonics,

$$
\begin{aligned}
& \quad \frac{d S}{c}\left\{Q_{0}+Q_{1} \frac{z}{c}+8 \mathrm{c} \cdot+Q_{i} \frac{\hat{z}^{i}}{e^{i}}+\& \mathrm{cc} .\right\}, \\
& \text { or } \frac{d S}{z}\left\{Q_{0}+Q_{1} \frac{c}{z}+\& \mathrm{c}+Q^{\frac{2^{i}}{2^{i}}}+\mathbb{E c}\right\},
\end{aligned}
$$

the first series being convergent when z is less than c, and the second when z is greater than c.

Writing

$$
d S=-c^{2} d \mu d d_{1}
$$

and integrating with respect to $\%$ between the limits 0 and $2 \pi_{3}$ and with respect to μ between the limits $\cos a$ and 1 , we find

$$
\begin{align*}
\quad P & =2 \pi c \tag{1}\\
\text { or } \quad \int_{\mu} & =2 \pi \frac{e^{2}}{z}\left\{\int_{\mu}^{1} Q_{0} Q_{\mu} d \mu+\& c \cdot+\frac{\varepsilon^{i}}{c^{i}} \int_{\mu}^{1} Q_{i} d \mu\right\},
\end{align*}
$$

By the characteristic equation of Q_{i},

$$
i(i+1) Q_{i}+\frac{d}{d \mu}\left[\left(1-\mu^{2}\right) \frac{d Q_{i}}{d / k}\right]=(1)
$$

Hence

$$
\begin{equation*}
\int_{\mu}^{1} Q_{i} d \mu=\frac{1-\mu^{2}}{i(i+1)} \frac{d Q_{i}}{d \mu} \tag{2}
\end{equation*}
$$

This expression fails when $i=0$, but since $Q_{0}=1$.

$$
\begin{equation*}
\int_{u t}^{1} Q_{0} d \mu=1-\mu \tag{3}
\end{equation*}
$$

As the function $\frac{d Q_{i}}{d \mu}$ oceurs in every part of this investigation we shall denote it by the abbreviated symbol $Q_{i}^{\prime \prime}$. The values of Q_{i} contesponding to several valnes of i are given in Art. 698.

We are now able to write down the value of P for any point $F_{\text {, }}$ whether on the axis or not, by sulbstituting r for z, and multiplying pach tem by the zonal hamonic of of the same order. For f must be capable of expansion in a series of zonal harmonics of θ with proper cooflicients. When $\theta=0$ each of the ronal harmonics becomes equal to unity, and the point A lies on the axis. Hence the coeflimints are the terms of the expansion of P for a point on the axis. We thus obtan the two series

$$
\begin{align*}
P^{\prime} & =2 \pi c\left\{1-\mu+\operatorname{sc}+\frac{1-\mu^{2}}{i(i+1)} \frac{r^{i}}{c^{i}} Q_{i}^{\prime}(a) Q i(\theta)\right\} \tag{d}\\
\text { or } \quad p^{2} & =2 \pi \frac{c^{2}}{r}\left\{1-\mu+\& c+\frac{1-\mu^{2}}{i(i+1)} \frac{e^{g}}{r^{\prime}} Q_{i}^{\prime}(a) Q_{i}(\theta)\right\} .
\end{align*}
$$

695. We may now find ω, the magnetic potential of the circuit, by the method of Art, 670 , from the equation

$$
\begin{equation*}
\omega=\frac{1}{e} \frac{d}{d r}(P r) . \tag{5}
\end{equation*}
$$

We thus obtain the two series

$$
\begin{align*}
& \omega=-2 \pi\left\{1-\cos a+\operatorname{Ac} \cdot+\frac{\sin ^{2} a}{i} \frac{r^{i}}{e^{i}} Q_{i}^{\prime}(a) Q_{i}(\theta)+\mathbb{N e}\right\}, \tag{6}\\
& \text { or: } \omega^{\prime}=2 \bar{\pi} \sin ^{2} \alpha\left\{\frac{1}{2} \frac{c^{2}}{r^{2}} Q_{1}^{\prime}(\alpha) Q_{1}(0)+\& c+\frac{1}{i+1} \frac{c^{i+1}}{r^{i+1}} Q_{i}^{\prime}(a) Q_{i}(\theta)\right\} .
\end{align*}
$$

The series (6) is convergent for all values of r less than c, and the serios (f ') is convergent for all values of r greater that c. At the surface of the splere, where $\gamma=c$, the two series give the same value for ω when θ is greater than α, that is, for points not oceupied by the magnetie shell, but when θ is less than a, that is, at points on the magnetio shell,

$$
\begin{equation*}
\omega^{\prime}=\omega+1 \pi \tag{7}
\end{equation*}
$$

If we assume O, the centre of the circle, the the origin of coordinates, we must put $a=\frac{\pi}{2}$, and the series become

$$
\begin{align*}
& \omega=-2 \pi\left\{1+\frac{y^{2}}{c} Q_{1}(\theta)+8 c_{0}+(-)^{1} \frac{3 \cdot(2 g-1) 2^{2 n+1}}{2 \cdot 1.28} e^{2 n+1} Q_{2+1}(\theta)\right\} \tag{8}
\end{align*}
$$

where the otlers of all the harmonies are odd **.

On the Poleatial Budrgy of two Cimatar Curreats.

696. $]$ Let us begin by supposing the two magnetic shells which are equivalent to the curents to be portions of two concentrie spheres, their radii leing c_{1} and c_{y}, of which c_{1} is the greater (17s. 45). Let us also suppose that the axes of the two slrels coincide, and

Tig. 47. that a_{1} is the angle subtemded lyy the ratius of the dirst shell, and a_{2} the angle subtended by the ratins of the seeond shell at the centre C.

Let ω_{1} be the protential due to the first shell at any point within it, then the work required to carry the secoud shell to an intinite distance is the value of the surface-integral

$$
M=-\iint \frac{d \omega_{1}}{d r} d S
$$

cxtended aver the second slrell. Hence

$$
\begin{aligned}
& A=\int_{\mu 2}^{1} \frac{d \omega_{1}}{d r} 2 \pi c_{2}^{2} d H_{2}, \\
& 4 \pi^{2} \sin ^{2} \alpha_{1} c_{2}^{2}\left\{\frac{1}{c_{1}} Q^{\prime}\left(\alpha_{1}\right) \int_{\mu_{2}}^{1} Q\left(a_{2}\right) d \mu_{2}+\mathbb{\mu _ { 2 }}+\frac{c_{-1}^{i-1}}{e^{i}} Q_{i}^{\prime}\left(a_{1}\right) \int_{\mu_{2}}^{1} Q\left(\alpha_{2}\right) d \mu_{2}\right\}, \\
& \text { or, substituting the value of the integrabs from equation (2), Art. } 694 \text {, } \\
& \left.M=4 \pi^{2} \sin ^{2} a_{1} \sin ^{2} \alpha_{2} c_{2}^{2}\left\{\frac{1}{2} \frac{c_{2}}{c_{1}} Q_{1}^{\prime}\left(a_{1}\right) Q_{1}^{\prime}\left(a_{2}\right)+\text { se. }+i(i+1) \frac{c_{2}^{\prime}}{c_{1}^{\prime}} Q_{i}^{\prime}\left(a_{1}\right) Q_{i}^{\prime}\right) a_{2}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \text { - The walue of the solid tugle saldended by ar circle may be tholined in at more } \\
& \text { direct way na follows - } \\
& \text { The solid nagle sult) anded by the circle at the point } Z \text { in the axis is ensthy shewn } \\
& \text { to bre } \\
& \omega=2 \pi\left(1-\frac{z-\cos a}{/ / Z}\right) \text {. } \\
& \text { Expanding this expression in splierical hamborice we find }
\end{aligned}
$$

for the wapasions of w for poink on the sxis for which z is lesa than of greater than e reppectively. Iemembering the equatione (42) and (43) of A rt, 132 (vol: j_{7}
 now abtained in a more conveatient fortar for computation.
697.] Let us rext supprose that the axis of one of the shells is turned about C as a centre, so that it now makes an angle θ with the axis of the other shell (Fig, i8). We have only to introduce the zonal harmonies of θ into this expression for M, and we find for the move generat value of M,

$$
\begin{aligned}
& M=4 \pi^{2} \sin ^{2}\left(a _ { 1 } \operatorname { s i n } ^ { 2 } a _ { 2 } c _ { 2 } \left\{\frac{1}{2} \frac{c_{2}}{c_{1}} Q_{1}^{\prime}\left(a_{1}\right) Q_{1}^{\prime}\left(a_{2}\right) Q_{2}(0)+\mathbb{Q}^{2}\right.\right. \\
&\left.+\frac{1}{i(i+1)} c_{1}^{\prime} Q_{i}^{\prime}\left(a_{1}\right) Q^{\prime}\left(a_{2}\right) Q_{i}(\theta)\right\}
\end{aligned}
$$

This is the value of the potential energy due to the mutual action of two circutar eurrents of unit strengeth, placed so that. the normats through the centres of the circles meet in a point C in an angle θ, the distances of the cirennferences of the circles from the point C being c_{1} and c_{2}, of which c_{1} is the greater*

If any displaecment dow alters the value of M, then the force acting" in the direction of the displacement is $X=\frac{d M}{d v}$.

Por instance, if the axis of one of the shells is free to turn about the point $C_{\text {, }}$ so as to catrse 0 to vary, them de moment of the foree tending to increase θ is ρ, where

$$
\Theta=\frac{d M I}{d \theta}
$$

Fig. 48.

Performing the differentiation, and remembering that

$$
\frac{d Q_{i}(\theta)}{d \theta}=-\sin \theta Q_{i}^{\prime}(\theta),
$$

where Q_{1} " has the same signiffetion as in the former equations,

$$
\begin{aligned}
\Theta=-1 \pi^{2} \sin ^{2} a_{1} \sin ^{2} a_{2} \sin \theta c_{2}\{ & \frac{1}{2} \frac{c_{2}}{c_{1}} Q_{1}^{\prime}\left(a_{1}\right) Q_{1}^{\prime}\left(a_{1}\right) Q_{1}^{\prime}(\theta)+\mathbb{c} \\
& \left.+\frac{1}{i(i+1)} \frac{c}{2}_{i}^{c_{1}} Q_{1}^{\prime}\left(a_{1}\right) Q_{i}^{\prime}\left(a_{2}\right) Q_{i}^{\prime}(\theta)\right\}
\end{aligned}
$$

698.] As t'e values of Q_{i}^{\prime} oecur frequently in these enleulations the following table of values of the lirst six degrees may be neeful. In this fatble μ stands for $\cos \theta$, and i for sin 0 .

$$
\begin{aligned}
& Q_{i}=1, \\
& Q_{2}{ }_{2}=3 \mu_{2} \\
& Q_{i}^{f}=\frac{3}{2}\left(5 \mu^{2}-1\right)=6\left(\mu^{2}-\frac{1}{3} \nu^{2}\right), \\
& Q_{4}{ }^{\prime} \quad \frac{5}{4} \mu\left(7 \mu^{n}-3\right)=10 \mu\left(\mu^{2}-y^{2} \nu^{2}\right), \\
& Q_{5}{ }^{\prime}={ }^{5}{ }^{5}\left(21 \mu^{4}-14 \mu^{2}+1\right)=15\left(\mu^{4}-\frac{9}{2} \mu^{2} \nu^{2}+\frac{1}{5} \mu^{4}\right) \text {, } \\
& Q_{1}={ }^{23} \mu\left(33 \mu^{4}-30 \mu^{2}+5\right)=21 \mu\left(\mu^{4}-\frac{5}{3} \mu^{2} w^{2}+\frac{\pi}{4} v^{4}\right) .
\end{aligned}
$$

699. 7 It is sometimes conveniont to express the series for M in terms of linear quantities as follows:-

Let a be the ralius of the smaller circuit, l the clistance of its plate from the origin, and $c=\sqrt{a^{2}+b^{2}}$.

Let A, B, and O be the corresponding quantities for the larger circuit.

The serieg for may then be witten,

$$
\begin{aligned}
J= & 1.2 \cdot \pi^{2} \frac{A^{2}}{C^{3}} a^{2} \cos \theta \\
& +2 \cdot 3 \cdot \pi^{2} \frac{A^{2} D}{C^{3}} a^{2} b\left(\cos ^{2} \theta-\frac{1}{2} \sin ^{2} \theta\right) \\
& +3 . A \cdot \pi^{2} \frac{A^{2}\left(B^{2}-\frac{1}{1} A^{2}\right)}{C^{7}} a^{2}\left(y^{2}-\frac{1}{4} A^{2}\right)\left(\cos ^{3} \theta-\frac{2}{2} \sin ^{2} \theta \cos \theta\right) \\
& + \text { \&ce. }
\end{aligned}
$$

If we make $0=0$, the two circles become parallel and on the stme axis. To determine the attraction between them we may differentiate $A M$ with respect to b. We thus find

$$
\frac{d M}{A / b}=\pi^{2} \frac{A^{2} a^{2}}{C^{4}}\left\{2.3 \frac{B}{C}+2.3 .4 B^{2}-\frac{1}{4} A^{2} b+8 \mathrm{C}^{3}\right\}
$$

700.] In ealeulating the effect of a coil of rectangular section we have to integrate the expressions alrendy found with respect to A_{r} the radius of the coil, amd B, the distance of its plane from the origin, and to extend the integration over the breadth and deptll of the coil.

In some enses direct integration is the most convenient, but there are others in whel the following method of appoximation leads to more useful results.

Let I^{3} be any fumetion of x and y, and let it be required to find the value of \bar{P} where

$$
\bar{P} x y=\int_{-\frac{1}{2} x}^{+\frac{1}{2} x} \int_{-\frac{1}{2} y}^{+\frac{1}{y}} P d x d y
$$

In this expression F is the mean value of P within the limits of integration.

Let P_{0} be the walue of P when $a:=0$ and $y=0$, then, expanding P ly 'Laylor's 'Theorem,

$$
P=P_{0}+x \frac{d P_{0}}{d x}+y \frac{d P_{0}}{d y}+\frac{1}{2} x^{2} \frac{d^{2} P}{d x^{2}}+8 \mathrm{e}
$$

Integrating this expression between the limits, and dividing the result by $x y$ we olvatin as the value of \bar{P},

$$
\begin{aligned}
\bar{P}= & P_{0}+y^{1}\left(x^{2} \frac{d^{2} P_{0}}{d x^{2}}+y^{2} \frac{d^{2} P_{0}}{d y^{2}}\right) \\
& +\frac{3}{\pi 0} \pi\left(x^{4} \frac{d^{4} P_{0}}{d x^{4}}+y^{4} \frac{d^{4} P_{0}^{3}}{d y^{4}}\right)+\frac{1}{y^{4} \pi} x^{2} y^{2} \frac{d^{4} P_{0}}{d x^{2}} \frac{d y^{2}}{d x c} .
\end{aligned}
$$

In the ense of the coll, let the outer and inner radii be $A+\frac{t}{2} \xi$, and $A-\frac{1}{2} \xi$ respectively, and let the distance of the phanes of the windings from the origis lie between $\lambda+\frac{1}{2}$ mand $\beta-\frac{1}{2} p$, then the Jreadth of the coil it m, and its depth ξ these quantities being small compared with A or C.

In order to ealeulate the magnetic effect of such a coil we may write the suecessive terms of the series as follows :-
\&e, Be. ;

$$
\begin{array}{ll}
g_{1}=\pi a^{2} & +1^{1}-\bar{z} \xi^{2} \\
g_{2}=2-a^{2} b & +\frac{1}{\pi} b \xi^{2} \\
g_{3}=3 \pi a^{2}\left(b^{2}-\frac{1}{4} a^{2}\right)+\frac{\pi}{8} \xi^{2}\left(2 b^{2}-3 a^{2}\right)+\frac{\bar{\pi}}{4} \eta^{2} a^{2},
\end{array}
$$

Se., \&e.

The quantities G_{0}, G_{1}, G_{2}, \&e. belong to the large coil. 'Ithe value of a at prints for which r is less than C is

$$
\omega=-2 \pi+2 G_{0}-G_{1} r^{2} Q_{1}(\theta)-G_{\mathrm{e}} r^{2} Q_{2}(\theta)-d e
$$

The quantities g_{1}, g_{2}, \&e. belong to the small coil. The walue of w at points for which r is greater than c is

$$
\omega^{\prime}=g_{1} \frac{1}{r^{2}} Q_{1}(\theta)+g_{Q} \frac{1}{r^{3}} Q_{s}(\theta)+\mathbb{N} .
$$

'The potential of the one coil with respect to the other when the total current through the section of each coil is maity is

$$
\begin{aligned}
& M=G_{1} g_{1} Q_{1}(0)+G_{2} g_{2} Q_{2}(0)+\text { de } \\
& \text { To foud } M \text { by Jlliphice Integrals. }
\end{aligned}
$$

701.] When the distance of the circumferences of the two circles vol.. [1.

$$
\begin{aligned}
& C_{0}=\pi \frac{h^{2}}{C}\left(1+\frac{1}{5} \frac{2 A^{2}-D^{2}}{C^{4}} \xi^{2}-\frac{1}{8} \frac{A^{2}}{C^{4}} \eta^{2}\right), \\
& G_{1}=2 \pi \frac{A^{2}}{C^{2}}\left(1+\frac{y}{4}\left(\frac{2}{A^{2}}-15 \frac{B^{2}}{C^{4}}\right) \xi^{2}+\frac{4}{4} \frac{4 B^{2}-A^{2}}{C^{4}} \eta^{2}\right) \text {, } \\
& G_{2}=3 \pi \frac{A^{2} B}{C^{6}}\left(1+\frac{1}{2}\left(\frac{2}{A^{2}}-\frac{25}{C^{2}}+\frac{35 A^{2}}{C^{4}}\right) \xi^{2}+\frac{4}{A^{4}} \frac{4 D^{2}-3 A^{9}}{C^{4}}-\eta^{2}\right), \\
& G_{3}=4 \pi \frac{A^{2}\left(B^{2}-\frac{1}{1} A^{2}\right)}{C^{7}}+\frac{\pi}{24} \frac{\xi^{2}}{C^{15}}\left\{C^{1}\left(8 B^{2}-12 A^{2}\right)+35 A^{2} D^{2}\left(5 A^{2}-4 B^{2}\right)\right\} \\
& +\frac{\pi}{24} \frac{\eta^{2}}{C^{1 I}}\left\{3 A^{2} C^{2}\left(5 A^{2}-44 J^{2}\right)+63 A^{2} B^{2}\left(1 B^{2}-A^{2}\right)\right\}
\end{aligned}
$$

is moderate as compared with the radii of the smaller, the serves alkendy given do not converge rapidly. In overy case, however, we may find the value of $A /$ for two parallel eircles by elliptic integrals.

For let b be the length of the line joining the centres of the circles, and Let this lime be perpendicular to the planes of the two circles, and let A and a be the radii of the circles, then

$$
M=\iint \frac{\cos \varepsilon}{\gamma} d \theta d v^{\prime},
$$

the integration being extended round both curves.
In this case,

$$
\begin{gathered}
r^{2}=A^{2}+a^{2}+b^{2}-2 A a \cos \left(\phi-\phi^{\prime}\right) \\
\epsilon=\phi-\phi_{3}^{\prime} \quad d \beta=a d \phi, \quad d s^{\prime}=A d \phi^{\prime} \\
M=\int_{0}^{2 \pi} \int_{0}^{2 \pi} \frac{A a \cos \left(\phi-\phi^{\prime}\right) d \phi d \phi^{\prime}}{\sqrt{A^{2}+a^{2}+b^{2}-2 A a \cos \left(\phi-\phi^{\prime}\right)}} \\
=2 \pi \sqrt{A a}\left\{\left(c-\frac{2}{0}\right) P^{2}+\frac{2}{c} A^{2}\right\} \\
e=\frac{\sqrt{A a}}{\sqrt{(A+a)^{2}+b^{2}}}
\end{gathered}
$$

and F and E are complete elliptic integrals to modulus c.
From this we get, by differentiating with respect to b and remembering tuat e is a function of b,

$$
\frac{d M}{d / b}=\frac{4-b e^{\frac{1}{2}}}{\sqrt{A a\left(1-c^{2}\right)^{2}}}\left\{E\left(1+c^{2}\right)-P\left(1-c^{2}\right)\right\}
$$

If r_{1} and r_{2} denote the greatest and least values of r,

$$
x_{1}^{2}=(A+a)^{2}+b^{2}, \quad r_{2}^{2}=(A-a)^{2}+b^{2}
$$

and if an angle y be taken such that $\cos \gamma=\frac{y_{d}}{r_{1}}$,

$$
\frac{d M}{d b}=\pi \frac{b \sin \gamma}{\sqrt{A a}}\left\{2 F_{\gamma}^{\prime}-\left(1+\varepsilon e^{2} \gamma\right) F_{\gamma}\right\}
$$

where F_{γ} and F_{γ} denote the complete elliptic integrals of the first and second kind whose modulus is sin γ.

$$
\begin{aligned}
\text { If } A=a, \cot \gamma & =\frac{\partial}{2 e}, \text { and } \\
\frac{d M}{d l} & =2 \pi \cos \gamma\left\{2 A_{\gamma}-\left(1+\sec ^{2} \gamma\right) E_{\gamma}\right\}
\end{aligned}
$$

The quantity $\frac{d M}{d b}$ represents the attraction between two parallel citcular enrrents, the current in cad being mity.

Second Exprastion for M.

An expression for $M_{\text {a }}$, which is sometimes more conventent, is frot by malking $c_{1}=\frac{r_{1}-r_{2}}{r_{1}+r_{2}}$, in which case

$$
M=4 \pi \sqrt{A u}-\frac{1}{\sqrt{c_{1}}}\left(F_{w_{1}}-D_{c_{2}}\right)
$$

To drad the Fiwes of Magnetic Forec for a Cirentor Crorent.
702.] The lines of magretic force ne evedenty in planes passing though the axis of the eirole, and in wach of these lines the valuo of M is constant.

Calculate the value of $A_{\theta}^{*}=\frac{\text { sin } 0}{\left(F_{\text {sing }}-E_{\text {sin }} \theta\right)^{2}}$ from Legendre's tables lor a sufficient anmander of ralues of 0 .

Dran rectangular axes of of and z on the paper, and, with centre at the point $x=\frac{1}{3} a($ sin $\theta+\operatorname{cosec} \theta)$, draw a circle wilh rathes $\frac{1}{2}$ a (cosco $\left.\theta-\sin \theta\right)$. Fior all proints of this cirele the wathe ul'e will be $\sin \theta$. Hence, for all prints of this circle,

$$
M=4 \pi \sqrt{A R}-\frac{1}{\sqrt{h_{\theta}}}=, \quad \text { mad } A=\frac{1}{10 \pi^{3}} \frac{M^{2} K_{\theta}}{\theta} .
$$

Now A is the value of : for which the value of M was found. Hence, if we draw a line for which $x=A$, it will ent the circle in two points hawing the given walue of $J T$.

Giving M a series of values in arithmetical progressions, the values of a will be as a series of squares. 1 Drwing therelom a series of lines parallel to z, tor which x has the walues foumel for A, the points where these lises eat the cirele will be the points where the corresponding lines of force eut the eirele.

If we pat, miz $=\| \bar{\pi} a_{3}$ and $N=m, m$, then

$$
A=r=n^{2} K_{\theta} a
$$

We may call n the index of the line of foree.
The foms of these lines are given in Fig. XVIII at the end of this volume. 'They are copied from a drawing given by Sir W, Thomson in hiss naper on "Vorkex Motion*"
703. Il the position of a eirele laving a given aris is regarded ats defined by b, the distance of its contre from a fixel point on the axis, and a, the radius of the circle, then $1 /$, the coeflicient of induction of the circle with respect to any system whatever

```
* Trons. M. S., Lidin., vol, xxf. p. 217 (1869).
```

of magnets or enrents, is subject to the following equation

$$
\begin{equation*}
\frac{d^{2} J}{d a^{2}}+\frac{d^{2} M}{d d^{2}}-\frac{1}{a} \frac{d M}{d a}=0 \tag{1}
\end{equation*}
$$

To prove this, let us consider the mumber of lines of magnetic force cut by the circle when a or b is made to wary.
(1) Let a become $a+\delta a, b$ remaining constant. During this variation the circle, in expanding, sweeps over an anmalar surface in its own platne whose breadth is sa.

If r is the magnetio potential at any point, and if the axis of y be parailel to that of the circle, then the magnetic force perpendienlar to the plane of the ring is $\frac{d V}{d y}$.

To find the magnetic induction thongh the anmular sturface we have to integrate

$$
\int_{0}^{2 \pi} a b a \frac{d V}{d y} d \theta
$$

where 0 is the angular position of a point on the ring.
But this quantity represents the variation of M due to the variation of a, or $\frac{d I f}{d a} \delta a$. Henee

$$
\begin{equation*}
\frac{d M}{d a}=\int_{0}^{2 \pi} a \frac{d F}{d y} d 0 . \tag{2}
\end{equation*}
$$

(2) Let b become $b+b b, a$ remaining constant. During this variation the cincle sweeps over a cylindrie surface of radius a and length 83.

The magnetic fore perpendicular to this surface at any point is $\frac{d F}{d r}$ where r is the distance from the axis. Hence

$$
\begin{equation*}
\frac{d M}{d b}=-\int_{0}^{2 \pi} \pi \frac{d V}{d r} d d \tag{3}
\end{equation*}
$$

Differentinting equation (2) with regiect to a, and (3) with respect to b, we get

$$
\begin{align*}
& \frac{d^{2} M}{d b^{-}}=-\int_{0}^{2 \pi} a \frac{d^{2} V}{d r d y} d \theta, \tag{5}\\
& \frac{d^{2} M}{d d^{2}}+\frac{d^{2} M}{d b^{2}}=\int_{0}^{2 \pi} \frac{d V}{d y} d \theta, \tag{6}\\
& =\frac{1}{a} \frac{d M}{J / a}, b y(2) . \\
& \text { Hence } \quad \begin{aligned}
\frac{d^{2} M}{d d^{2}}+\frac{d^{2} M}{d b^{2}} & =\int_{0}^{2 \pi} \frac{d V}{d y} d \theta, \\
& =\frac{1}{a} \frac{d M}{d / a}, \text { by }(2) .
\end{aligned}
\end{align*}
$$

Transposing the last term we olvain equation (1).

Coefticient of Induction of Two Parafla Cirches whon the Distance between the Ares is Small compared suith the Ihadizes of eiWher Circte.
704.] We might deduce the value of $3 l$ in this case from the expansion of the elliptic integral already given when its moduhas is nearly unty. The following method, howewer, is a more direct application of electrical principles.

First Approximution.

Let A and a be the radii of the ciseles, and ψ the distanee between their planes, then the shortest distance between the ares is

$$
r=\sqrt{(A-a)^{2}+b^{2}}
$$

We have to find M_{1}, the magnetic instuction through the cirele A, due to a unit curpent is a on the supposition that r is small compared with A or a.

We shall begin by ealoulating the magnetio induction through a eircle in

Figa 49. the plane of a whose radius is $a-c, c$ being a quantity small compared with a (Fig .49).

Consider a small elenent af of the circle a At an point in the plane of the circle, distant p from the middle of $d s$, mensured in A dinection making an angle θ with the divection of ds, the magnetic foree due to de is perpendieular to the plane, and equal to

$$
\frac{1}{\rho^{2}} \sin \theta d s
$$

1l" wo now calonlate the surface-integtal of this foree over the Fpace which lies within the circle a, but outside of a circle whose centre is $d s$ and whose radius is c, we find it

$$
\int_{0}^{\pi} \int_{0}^{2 \pi \cos n} \frac{1}{\rho^{2}} \sin \theta \cdot \operatorname{ta} d \theta d \rho=\{\log 8 \theta-\log c-2\} d N_{0}
$$

If 0 is small, the surfece-integral for the part of the annular space outside the small circle e may le neglected.

We then find for the induction throngh the eircle whose radius is a-c, by integrating with respect to do

$$
J H_{t e}=4 \pi a\{\log 8 a-\log e-2\}
$$

provided c is very smald comprared with a_{4}
Since the magnetis foree at any proint, the distance of which from a chrved wire is smadi compared with the radius of curvature,
is nearly the sume as if the wire had been straight, we enn ealonlate the difference between the induction through the circle whose radius is $a-c$, and the circle A by the formula

$$
M_{a A}-M U_{u c}=4 \pi a\{\log c-\log r\} .
$$

Hence we find the value of the induction between A and a to be

$$
M_{A a}=4 \pi a(\log 8 a-\log v-2)
$$

approximately, provided r is small comared with a.
705. . Since the mutual induction between two windings of the same coil is a sery important quantity in the caloulation of experimental results, I slatil now describe a methol by which the approximation to the value of $M /$ for llis case can be earried to any required degree of acouracy.

We shall assume that the value of M is of the form

$$
M=4 \pi\left\{A \log \frac{8 a}{z^{2}}+B\right\}
$$

where $A=a+A_{1} x+A_{2} \frac{x^{2}}{a}+A_{2}+\frac{y^{2}}{a}+A_{3} \frac{x^{x}}{a^{2}}+A_{3}^{\prime} \frac{x y^{2}}{a^{2}}+\& \mathrm{a}^{2}$,
and $\quad B=-2 a+B_{1} w+B_{z} \frac{x^{2}}{a}+B_{1}^{\prime} \frac{y^{2}}{a}+B_{3} \frac{x^{3}}{a^{3}}+H_{3}^{\prime} \frac{x y^{2}}{a^{2}}+8 \mathrm{se}$,
where a and $a+a$ are the radii of the circles, and y the distance between their planes.

We have to determine the values of the coefficients A and B. It is manifest that only even powers of y can occur in these quantities, because, if the sign of y is reversed, the value of M must remain the same.

We get another set of conditions from the reciprocal property of the coeflieient of induction, which remains the same whichever circle we take as the primary circnit. The value of it must therefore remain the same when we substitute $a+x$ for a_{2}, and $-x$ for x in the above expression.

We thus find the following conditions of reciprocity by equating the coeflicients of similar combinations of is and y,

$$
\begin{aligned}
& A_{1}=1-A_{1}, \quad A_{1}=1-2-A_{1}, \\
& A_{3}=-A_{2}-A_{3} \quad B_{3}=\frac{1}{3}-\frac{1}{4} A_{1}+A_{2}-B_{2}-A_{3 ;} \\
& A_{3}^{\prime}=-A_{2}^{\prime}-A_{3}{ }^{\prime}, \quad A_{3}^{\prime}=\quad A_{2}^{\prime}-D_{2}^{\prime}-D_{3}^{\prime} ; \\
& (-)^{n} A_{n}=A_{2}+(n-2) A_{5}+\frac{(n-2)(n-3)}{1.2} A_{n}+8 \mathrm{cc}+A_{n,} \\
& (-)^{n} B_{n}=-\frac{1}{n}+\frac{1}{n-1} A_{1}-\frac{1}{n-2} A_{2}+\mathcal{E}_{n}+(-)^{n} A_{n-1} \\
& +B_{3}+(n-2) B_{3}+\frac{(n-2)(n-3)}{1.2} B_{i}+\text { \&ce }+B_{n} .
\end{aligned}
$$

From the general equation of H, Art. 703 ,

$$
\frac{d^{2} M}{d x^{2}}+\frac{d^{2} M}{d y^{3}}-\frac{1}{a+x} \frac{d M}{d x}=0
$$

we obtain another set of condilions,

$$
\begin{gathered}
2 A_{2}+2 A_{2}^{\prime}=A_{1} \\
2 A_{2}+2 A_{n}^{\prime}+6 A_{3}+2 A_{9}^{\prime}=2 A_{4} ; \\
n(n-1) A_{n}+(n+1) n A_{n+1}+1.2 A_{n}^{*}+1.2 A_{n+1}^{\prime}=n A_{n} \\
(n-1)(n-2) A_{n}+n(n-1) A_{n+1}^{\prime}+2.3 A_{n}^{\prime \prime}+2.3 A_{n+1}^{\prime \prime}=(n-2) A_{n}{ }_{n}^{\prime}
\end{gathered}
$$

\&c.;

$$
\begin{aligned}
& 4 A_{2}+A_{1}=2 B_{2}+2 F_{2}^{\prime}-B_{1}=4 A_{2}^{\prime} ; \\
& { }_{6} A_{3}+3 A_{2}=2 D_{2}^{\prime}+6 B_{3}+2 D_{3}^{\prime}=6 A_{3}^{\prime}+3 A_{27}^{\prime \prime} \\
& =n(n-2) B_{n}+(n+1) u B_{n+1}+1.2 B_{n}+1.2 B_{n+1} .
\end{aligned}
$$

Solving these equations and sulsstituting the values of the coefficients, the series for Theeomes

$$
\begin{aligned}
& M=4 \pi a \log \frac{8 a}{r}\left\{1+\frac{1}{q} \frac{w}{a}+\frac{n^{2}+3 y^{2}}{16 a^{2}}-\frac{x^{3}+3 a y^{2}}{32 u^{3}}+\mathbb{K c}\right\} \\
& +1 \pi a\left\{-2-\frac{1}{2} \frac{x^{2}}{a}+\frac{3 x^{2}-y^{2}}{16 a^{2}}-\frac{x^{3}-6 x y^{2}}{18 a^{3}}+\mathbb{N c}\right\} .
\end{aligned}
$$

To find the jom of a coil for which the confticiend of self-inn dretion is a maximom, the lotal longth and thechers of the wire leing giren.
706.] Omitting the corrections of Art. 705 , we find by Art. 673

$$
J=4 \pi n^{2} a\left(\log _{n}^{8} n-2\right)
$$

where n is the rumber of windings of the wite, a is the menn radins of the coil, and h is the geometrical mean distance of the transwerse section of the coil from iteelf. See Art. 690. If this section is always similar to itseff: R is proportional to its linear dimensioniz, aud waries as A^{3}.

Since the total length of the wire is $2 \pi a n$, a warios inversely as x. Hence

$$
\frac{d u}{n}=2 \frac{d R}{A}, \quad \text { and } \quad \frac{r d}{a}=-2 \frac{d M}{h}
$$

and we find the condition that $I f$ may le a maximan

$$
\log \frac{8 t}{R}=\frac{1}{2}
$$

If the transwetse section of the coil is cireulary of radins c, then, by Art. 692,

$$
\begin{aligned}
\log \frac{R}{c} & =-\frac{1}{4} \\
\text { and } \log \frac{8 a}{c} & =\frac{14}{4}
\end{aligned}
$$

whence
$a=3.22 c ;$ or, the mean radius of the coil slould be 3.22 times the radius of the transwerse section of the coil in order that such at coil may have the greatest coefficient of self-induction. This result was found by Gilugs *.

If the ehmacl in which the coil is wound las a squate transverse section, the mean diameter of the coil should be 3.7 times the side of the square section.
*Wche, Götingen edition, 1867, vin. ₹. P. 62

CIIAPTER XV.

BLACRROMAGNETYG INGIRUMENTY.

Galvunometers.

707.] A Galwanometer is an instrument by means of which an electric current is indieated or mensured by its magnetic action.

When the instrument is intendel to indicate the existence of a feeble current, it is ealled a Sensitive Galvanometer.

When it is intended to measure a current with the greatest accuracy in terms of standard units, it is called a Standard Galvnnometer,

All galvanometers are founded on the Imineiple of Schweigger's Multipher, in which the current is made to pass through a wire, which is coiled so as to pass many times round an open space, within which a magnet is suspended, so as to produce within this space an electronagnetic force, the intensity of which is indicated by the magnet.

In sensitive galvanometers the coil is so arramged that its windings oceupy the positions in which their influence on the magnet is greatest. They are therefore packed closely together in order to be near the magnet.

Standard galyanometers are constructed so that the dimensions and relative prositions of all their fixed parts may be aceurately known, and that any small uneertainty alout the position of the moveable parts may introtuce the smallest possible error into the calculations.

In corstrueting a sensitive galvanometer we aim at making the field of electromagnetie force in which the maguet is suspended as intemse as possible. In designing a standard galyanometer we Wish to malee the field of electromagnetic foree near the marnet as uniform as possible, and to know its exact intensily in terms of the strength of the current.

On Standard Galvanometers.

708. I In a standard galvanometer the strength of the ourrent las to be determined from the fore which it exerts on the suspended magnet: Now the distribation of the maguetism within the magnet, and the position of its centre when suspended, are not capable of being determined with thy groat degree of aceuracy. Hence it is neessary that the coil should be mitanged so as to produce a field of fore which is very nearly uniform throughont the whole space oceupied by the marget during its possible motion. The dimensions of the coil nast therefore in genemal be meli larger than thoge of the magnet.

By a proper arrangement of several coils the fied of foree within them may be made much more miform than when one coil only is used, and the dimensions of the instrument may be thus reduced and its sensibility increased. The errors of the linear neasurements, however, introduce greatere uncertainties into the values of the electrienl constants for small instruments than for large oncs. It is therefore best to determine the electrical constants of small instruments, not by direct measurement of their dimensions, but by melectrical comparison with a large standard instrument, of whieh the dimensions are more achutely known; see Art. 752.

In all standard gal wanometers the coils are circular. The chanmel in which the coil is to be wounal is carefully turned. Its lyendth

Mg. wo.
is madu equal to some maltiple, $y_{\text {, of the then of the covered }}$ wire. A hole is bored in the side of the chanmet where the wire is
to enter, and one end of the covered wire is pushed ont through this hole to form the iuner connexion of the coil. The channel is plaed on a lathe, and it wooden axis is fastened to it; see Fig. 50 . The end of a long string is mailed to the wooden nxis at the same part of the cirenmference as the entranee of the wive. The whole is then turned round, and the wire is smoothly and regularly laisl on the bottom of the channel till it is completely covered by u windings. During this process the string has been wound n times round the wooden axis, and a nail is duven into the string at the nth turn. The wiudings of the string should be kept exposed so that they can casily be counted. The external cirenmerence of the first layer of windings is then measured and a new layer is begun, and so on till the proper number of layers has been wound on. The use of the string is to count the munber of windings. If for any reason we have to unwint part of the coil, the string is also unwound, so that we do not lose our reckoning of the actual number of windings of the coil. The mails serve to distinguish the number of windings in each layer.

The mensure of the circumlerence of each layer furnishes at test of the regularity of the winding, and enables us to caloulate the electrical constants of the coil. For it we take the arithmetic mean of the circumferences of the channel and of the onter layer, and then add to this the circmmferences of all the intermediate layers, and divide the sum by the number of layers, we shatl obtain the mean circumference, and from this we can dednee the mean ratits of the coil. The circumference of each layer may be measured by means of a steel tape, or better by means of a graduated wheel which rolls on the coil as the coil revolves in the process of winding. The value of the divisions of the tape or wheel must be ascertained by comparison with a stanght seale.
709.] The moment of the force with which a unit currunt in the coil aets upon the suspended apparatus may be expressed in the series $\quad G_{1} y_{1} \sin \theta+G_{2} f_{2} \sin \theta Q_{2}^{\prime}(\theta)+i c^{\prime}$.
where the confficients O refler to the coil, and the coellicients g io the suspeuded apparatus, o being the angle between the axis of the coil and that of the suspended apparatus; see Art. 700 .

When the suspended apparatus is a thin uniformly atmel longitudinally magnetized bar magnet of length $2 l$ and strength unity, susperuled by its middle,

$$
y_{1}=2 l, \quad y_{2}=0, \quad g_{3}=2 l^{3}, \mathrm{kc} .
$$

The values of the coeflicients for at magnet of length $2 l$ magnetizel in any other way are smaller than when it is mugnetized uniformly.

710] When the apparaturs is used as a tangent gralvanometer, the coil is fixed with its phane vertical and parallel to the direction of the curth's magnetic force. The equation of equilibrium of the magnet is in this case

$$
m g_{1} H \cos \theta=m \gamma \sin \theta\left\{G_{1} g_{1}+G_{2} g_{2} Q_{1}^{\prime}(\theta)+\varepsilon c \cdot\right\},
$$

where $m_{1} g_{1}$ is the magnetic moment of the magnet, $I I$ the horizontal component of the terrestrial magnetic force, and γ the strength of the current in the coil. When the length of the magnet is small compared with the radius of the coil the terms after the first in G and g may be wegleeted, and we find

$$
\gamma=\frac{H I}{G_{1}} \cot \theta .
$$

The angle usually measwred is the deflexion, δ, of the magnet which is the complement of θ, so that $\cot \theta=\tan \delta$.
The curvent is thus proportional to the tangent of the deviation, and the instrument is therefore called a 'langent Galvanometer.

Another method is to make the whole apparatus moveable about a vertical axis, and to turn it till the magnet is in equilibrium with its axis praallel to the plane of the coil. If the angle between the plane of the coil and the magnetic meridian is δ, the equation of equilibrium is
whence

$$
\begin{aligned}
m g_{\mathrm{t}} I I \sin \delta & =M \gamma \frac{1}{g}\left\{G_{1} g_{1}-\frac{3}{2} G_{3} g_{3}+\& c \cdot\right\} \\
\gamma & \left.=\frac{H}{\left(G_{1}-\& \overline{\mathrm{c}} .\right.}\right)^{\sin \delta}
\end{aligned}
$$

Since the curent is measured by the sine of the devietion, the instrument when used in this way 犃called a Sine Galvamometer.

The method of sines can be applied only when the curvent is so steady that we eam regard it as constant during the timu of adjusting the instrament and bringing the magnet to equilibrium.
711.] We have next to consider the arrangement of the coils of a slandard galvanometer.

The simplest form is that in which there is a single coil, and the magnet is stasperded at its centre.

Let A be the mean radius of the coil, ξ its depth, η its breadth, and n the number of windings, the values of the coefficients are

$$
\begin{aligned}
& G_{1}=\frac{2 \pi n}{A}\left\{1+\pi^{2} \frac{\xi^{2}}{A^{2}}-\frac{1}{5} \frac{\eta^{2}}{A^{2}}\right\} \\
& G_{2}=0 \\
& G_{3}=-\frac{\pi x}{A^{3}}\left\{1+\frac{1}{2} \frac{\xi^{2}}{A^{2}}-\frac{n^{2}}{A^{2}} \frac{\eta^{2}}{A^{2}}\right\} \\
& G_{4}=0, k c
\end{aligned}
$$

The principhl correction is that arising from G_{3}. The series

$$
\begin{array}{ll}
& G_{1} g_{1}+G_{a} g_{3} Q_{3}^{\prime}(\theta) \\
\text { lyecomes } & G_{1} g_{1}\left(1-\frac{3}{2} \frac{1}{d^{2}} \frac{g_{3}}{g_{1}}\left(\cos ^{2} \theta-\frac{1}{4} \sin ^{2} \theta\right)\right)
\end{array}
$$

The factor of correction will differ most from unity when the magnet is uniformly magnetized and when $\theta=0$. In this case it. becomes $1-\frac{1+1}{l^{2}}$. It vanishes wheln tom $0=2$, or when the deflexion is tan ${ }^{-1} \frac{1}{2}$, of $26^{\circ} 34^{\prime}$. Some olsservers, therefore, armange their experiments so as to make the observed deflexion as near this angle is possible. The best methot, however, is to use a magnet so sloort compared with the radius of the coil that the correction may be altogether negrected.

Tlas suspended magnet is carefully adjusted so that its contre shall coincide as nearly as possible with the centre of the coil. In, howerer, this ndjustment is not perfeets, and if the coordinates of the centre of the magnet relative to the centre of the coil are e, y, z, z being measured parallel to the axis of the coil, the factor of correction is $\quad\left(1+\frac{2^{3}}{2}+y^{2}-2 z^{2}\right)$.

When the radius of the coil is large, and the adjustment of the magnet earefully made, we may assme that this correction is insensible.

Gawfin's Arrangement.

712.] In order to get rid of the eorrection depending on G_{3} Gaugain constructed a galvanometer in which this term was rendered zero by suspending the magnet, not at the centre of the coil, but at a point on the axis at a distance from the centre equal to half the radins of the coil. The form of G_{a} is

$$
G_{a}=4 \pi \frac{A^{2}\left(B^{2}-\frac{1}{4} A^{4}\right)}{C^{7}}
$$

and, since in this arrangement $B=\frac{1}{2}, A_{3}=0$.
This arrangement would be an improvement on the first form if we conld bo sure that the centre of the suspended magnet is
exactly at the point thus defined. The position of the centre of the magnet, however, is always aneertain, and this uncertainty introduces a factor of correction of unknown amount depending on G_{2} and of the form ($1-\frac{1}{4}$), where z is the mimown excess of distance of the centre of the magnet from the plane of the coil. This correction depends on the first power of $\frac{z}{A}$. Hence Grugain's coil with eecentrically suspended magnet is sulyject to far greater uncertainty than the old form.

Holmholdz's Airangement.

713.] Helmholtz converted Gaugnin's galvanometer into a trustworthy instrument by placing a second coil, equal to the first, at an equal distance on the other side of the magnet.

By placing the coils symmetrically on both sides of the magnet. we get rid at once of all terms of even order.

Tet A be the mean radius of cither coil, the distance between their mean phnes is made equal to A, and the magnet is suspended at the middle point of their common axis. The coefticients are

$$
\begin{aligned}
& G_{1}=\frac{16 \pi n}{5 \sqrt{5}} \frac{1}{A}\left(1-\frac{1}{\pi N} \frac{\xi^{2}}{A^{2}}\right) \\
& G_{2}=0, \\
& G_{3}=0,0512 \frac{\pi n}{3 \sqrt{5} A^{6}}\left(31 \xi^{2}-36 \eta^{2}\right) \\
& G_{4}=0, \\
& G_{5}=-0.737 \frac{28}{\sqrt{2}} \frac{\pi n}{\sqrt{5} A^{5}},
\end{aligned}
$$

where n denotes the number of windings in both coils together.
It appears from these results that if the section of the coils be rectangutar, the depth being ξ and the breadth n, the value of G_{3}, as corrected for the finite size of the section, will be small, and will vanish, if ξ is to 7 as 36 to 31 .

It is therefore fuite unnecessary to attempt to wind the coits upon a comical surface, as has heen done by some instrument makers, for the conditions may be satisfied by coils of rectangular section, which can be constructed with far greater aceuracy thatr coils wound upon an obtuse cone.
The arrangement of the coils in Helmholtz's double galvanometer is represented in Fig. 54 , Art. 725.

The fietd of force due to the double coil is represented in eection in Fig. XIX at the end of this volume.

Galtanometor of Fow Coils.

714.] By combining four coils we may get rid of the coeflicients $G_{2}, G_{3}, G_{4}, G_{5}$, and $G_{5^{4}}$. For by any symmetrical combinations we get ricl of the coeflicients of even orders Let the four coils be parallel circles helouging to the same splere, corresponding to angles $\theta, \phi, \pi-\phi$, and $\bar{m}-0$.

Set the number of windings on the first and fourth coil be w, and the number on the sceond and third p n. Then the condition that $G_{3}=0$ for the combination gives

$$
\begin{equation*}
n \sin ^{2} \theta Q^{\prime}(\theta)+p h \sin ^{2} \psi Q_{3}^{\prime}(\phi)=0 \tag{1}
\end{equation*}
$$

and the condition that $G_{5}=0$ gives

$$
\begin{array}{cc}
& \quad \sin ^{2} \theta Q_{5}^{\prime}(\phi)+m \sin ^{2} \phi Q_{5}^{\prime}(\phi)=0 \\
\text { Pintting }^{2} & \sin ^{2} \theta=a \text { and } \sin ^{2} \phi=y \tag{3}
\end{array}
$$

and expressing Q^{\prime} and Q_{j}^{\prime} (Atw. 698) in terms of these quantitics, the equations (1) and (2) become

$$
\begin{gather*}
4 x-5 x^{2}+1 y y-5 p y^{2}=19 \tag{d}\\
8 x-28 x^{2}+21 x^{3}+8 p y-28 p y^{2}+21 p y^{3}=0 \tag{5}
\end{gather*}
$$

'laking twice (4) from (5), and dividing by a, we get

$$
\begin{equation*}
6 x^{2}-7 x^{3}+6 p y^{2}-7 p y^{3}=0 \tag{6}
\end{equation*}
$$

Hence, from (4) and (6),
and we oltain

$$
p=\frac{x}{y} \frac{5 x-4}{4-5 y}=\frac{x^{2}}{y^{2}} \frac{7 x-6}{6-7 y},
$$

$$
y=\frac{4}{7} \frac{7 x-6}{5 x-4}, \quad y=\frac{32}{49 x} \frac{7 x-6}{(5 x-4)^{3}}
$$

Both x and 3 are the squares of the sines of angles anul must therefore lie between 0 and 1 . Henee, eillier x is between 0 and $\frac{4}{5}$ in which ense y is between $\frac{7}{7}$ and 1 , and p between oo and 0 , or else as is between $\frac{p_{3}}{3}$ and 1 , in which case y is botween 0 and t, and p between 0 and 3 昔.

Gatranometer of Three Coils.

715.] The most convenient arrangement is that in which $x=1$. Two of the coits then coincide and form a great cirele of the spluere whose radiass is G_{t} The number of windings in thats ennpound coil is 64. The other two coils form small circles of the sphere. The rudius of ench of them is $\sqrt{4}$ C. 'The distanee of whthe of
them [rom the plane of the first is $\sqrt{3} G_{0}$. The number of windings on each of these coils is 49.

The walue of G_{1} is $\frac{120}{C}$.
This arrangement of coils is represented in Fig. 51.

Fig. 51.
Since in this threc-coiled galvanometer the first term after G_{1} which lias a linite value is G_{T}, a large portion of the sphere on whose surface the eoils lie forms a field of foree sensilly untorm.

If we could wind the wire over the whole of a spherical surface, as deseribed in Art. 627, we should obtain a field of perfectly uniform force. It is practically impossible, however, to distribute the windings on a spherical surface with sufficient aceuracy, even if such a coil were not liable to the objection that it forms a closed surfice, so that its interior is insceessible.

By putting the middle coil out of the circuit, and mang the current flow in opposite directions through the two side coils, we obtain a field of foree which exerts a nearly uniform atetion in the direction of the axis on a magnet or coil suspended within it, with its axis coinciding witl that of the coils; see Art. 073. For in this case all the coefficients of ohd orders disnppear, and since

$$
\mu=\sqrt{\bar{y}}, \quad Q_{4}^{\prime}=\frac{5}{L} \mu\left(7 \mu^{2}-3\right)=0 .
$$

Hence the expression for the magnetie potential nenr the centre of the coil lecomes

$$
\omega=\sqrt{\frac{3}{y}} \pi \mu \gamma\left\{3 \frac{r^{2}}{O^{2}} Q_{2}(0)+\frac{1}{\gamma^{1}} \frac{r^{6}}{O^{0}} Q_{0}(0)+\mathbb{Q c c}\right\}
$$

On the Proper Thicaness of the Wire of a Gatuanometcr, the Futernat Resistance being given.

716.] Leet the form of the chammel in which the galvanometer coil is to be wound lee given, and let it the reguired to determine whether it ought to lie filled with a long thin wire or with a shorter thick wire.

Let $/$ be the length of the wire, y its radins, $y+b$ the radius of the wire when covered, ρ its specifio resistance, g the walue of G for mit of length of the wire, and r the part of the resistance: which is independent of the galvanometer.
The resistance of the galvanometer wire is

$$
7=\frac{p}{\pi} \frac{l}{y^{2}} .
$$

The relume of the coil is

$$
J^{\prime}=4 /(y+b)^{2} .
$$

The electromagnatic force is $y G$, where y is the strmgth of the ewrent and

$$
G=y l .
$$

If E is the electromotive foree acting in the cireuil whowe resistance is $h+\eta, \quad \quad \pi=\gamma(R+\eta)$.

The electromagnetic foree tue to this eleetromotive foree is

$$
N_{B+r}^{G},
$$

which we have to make a maximum ly the variation of g and $\%$.
Inverting the fraction, we find that

$$
\frac{\beta}{\pi y} \frac{1}{y^{\underline{2}}}+\frac{r}{g l^{\prime}}
$$

is to be made a minimun. Henee

$$
2 \frac{p}{\pi} \cdot y^{3} y+\frac{r \cdot 7}{p^{2}}=0
$$

If the volune of the coil remains constant

$$
\frac{a l}{l}+2 \frac{d y}{y+b}=a
$$

Sliminating ofl and dy, we ohtain

$$
\frac{p}{\pi} \frac{y+b}{y^{3}}=\frac{r}{l},
$$

or

$$
\frac{r}{R}=\frac{y+b}{y}
$$

Hence the thickness of the wire of the galvanomefer should lye such that the external resistance is to the resistance of the gatvanometer coil as the diameter of the covered wise to the diancter of the wire itself.

For.s ti.

On Sensiliere Gudvenometers.

717.] In the construction of a sensitive galvanometer the aim of every part. of the arrangement is to protuce the greatest possible deflexim of the magnet by means of a given small electromotive force acting between the electroles of the coil.

The enrrent through the wire produces the greatest effect when it is placed as near as possible to the suspended magnet. The magnet, however; must be left free to oscillate, and Heerefore there is a certain space which must be left empty within the eoil. This defines the internal boundary of the coil.

Ontside of this space cach winding must be placed so as to have the greatest possille effect on the marget. As the number of windings increases, the most advantageons positions beeme filfed up, so that at last the increased resistance of a new winding diminishes the eftect of the current in the former windings more than the now winding itself odds to it. By making the outer wimlings of thicker wire than the inner ones we oltain the greatest magnetice effect from a given electromotive foree.
718.] We shall suppose that the windings of the galvanometer are circles, the axis of the galvanometer passing through the centres of these cireles at right angles to their planes.

Let $r \sin \theta$ be the radius of one of these eireles, and $r \cos 0$ the distance of its centre from the centre of the galsanometer, then, it l is the length of a portion of wire coinciding with this circle,

Fig. 52. and γ the earrent which flows in it, the magnetie force at the eentre of the gatvamometer resolvel in the direction ol the axis is

$$
\begin{equation*}
\gamma^{\frac{\sin \theta}{x^{2}}} \tag{1}
\end{equation*}
$$

If we write $\quad r^{2}=u^{2} \sin \theta$,
this expression becomes $\gamma \frac{l}{x^{3}}$.
Hence, if a surface be constructed similar to those represented in section in Fig. 52, whose polar equation is

$$
\begin{equation*}
r^{2}=x_{1}^{2} \sin \theta, \tag{2}
\end{equation*}
$$

Where x_{2} is aty constant, a given length of wire bent into the form of a circular are will produce it greater magnetio effect when it lies within this surface than when it lies outside it.

It follows from this that the outer surface of any layer of wire ought to have a constant value of x, for il is is greater at one phace than zuother a portion of wire might be transferved from the first place to the second, so as to increase the foree at the centre of inde gatranometer.

The whole foree due to the coil is $y G$, where

$$
\begin{equation*}
G=\int \frac{d l}{x^{2}}, \tag{3}
\end{equation*}
$$

the integration being extended over the whole length of the wire, x leing considered as a function of ℓ.
719. Thet y be the radius of the wire, its transverse section will be πy^{2}. Leet p be the specifie resistance of the material of which the wire is made referred to unit of volume, then the resistance of : length b is $\frac{p p}{\pi y^{2}}$, and the whole resistance of the coil is

$$
\begin{equation*}
R=\frac{p}{\pi} \int \frac{d l}{y^{g}}, \tag{1}
\end{equation*}
$$

where \bar{y} is considered a function of $\%$.
Let Y^{2} be the area of the quadriateral whose angles are the sections of the axes of four neighbourng wires of the coil by a plane through the axis, then $y^{2} l$ is the volume occupied in the coil ly a Jength b of wire together with its insulating covering, and including any vacant space nceessarily left between the windings of the coil. Hence the whole volume of the coil is

$$
\begin{equation*}
Y=\int Y^{2} d l \tag{5}
\end{equation*}
$$

where Y is considered a function of l.
But since the coil is a figure of revolution

$$
\begin{equation*}
r=2 \pi \iint_{r^{2}} \sin \theta d r 7 \theta, \tag{f}
\end{equation*}
$$

or, expressing r in terms of x, by equation (2),

$$
\begin{equation*}
r=2 \pi \iint_{x^{2}}(\sin \theta)^{\frac{1}{2}} d x d \theta \tag{7}
\end{equation*}
$$

Now $2 \pi \int_{0}^{\pi}(\sin \theta)^{\frac{5}{2}} d \theta$ is an numerical quantity, call it A, then

$$
\begin{equation*}
V=\frac{1}{y} N x^{3}-V_{0} \tag{8}
\end{equation*}
$$

Where F_{0} is the volume of the interior space left for the manglet.
Tet us now consider a layer of the coil contained between the surfacer x and $x+d x$.

The volume of this layer is

$$
\begin{equation*}
d I^{\top}=N^{2} z^{2} d x=J^{2} d l \tag{9}
\end{equation*}
$$

where dhis the Jughth of wire in this layer.
This gives us $a l$ in terms of dx. Suhstituting this in equations (3) and (4), we find

$$
\begin{align*}
& A G=N^{N} \frac{d z}{\gamma^{2}} \tag{10}\\
& d / R=N \frac{p^{2}}{\pi} x^{2} d z \tag{11}
\end{align*}
$$

where $d G^{\top}$ and $d l^{\prime}$ represent the portions of the values of G and of Ar due to this layer of the coil.

Now it A be the given clectromotive lores,

$$
h=\gamma(h+r)
$$

where r is the resistance of the extemal pate of the einenit, independent of that galwanometer, and the fore at the centre is

$$
\gamma G=h^{\prime} A_{1+r}^{a}
$$

We haw thetefore to make $\frac{t}{h} \frac{y}{x}$ a maximum, by properly adjusting tho section of the wire in each layer. This also necessarily involwes a variation of Y bectuse Y depends on y.

Let G_{0} and R_{0} be the values of G and of $A+\gamma$ when the given layer is excluded from the calculation. We have then

$$
\begin{equation*}
\frac{G}{h+m}=\frac{G_{0}+d G}{h_{0}+d h} \tag{12}
\end{equation*}
$$

and to make this a nuaximum by the variation of the value of y for the given layer we must have

$$
\begin{equation*}
\frac{\frac{d}{d y} \cdot d G}{\frac{d}{d y} \cdot d d}=\frac{G}{h+r} \tag{13}
\end{equation*}
$$

Since $d x$ is very small and ultimately vanishes, $h_{0}{ }_{0}$ will be sensibly, and ultimately exactly, the same whiehewer layen is exeluded, and we may therefore regand it as conslant. We have therefore, by (10) and (11),

$$
\begin{equation*}
\frac{x^{2}}{y^{2}}\left(1+\frac{y}{y} \cdot \frac{d y}{d Y}\right)=\frac{\rho}{\pi} \frac{R+p^{2}}{G}=\text { constant. } \tag{1.1}
\end{equation*}
$$

If the method of covering the wire and of winding it is such that the proportion between the spuce occupied by the metal of
the wire harg the same proportion to the space betwoun the wires whather the wire is thick of thin, them

$$
\frac{y}{y} \cdot \frac{l y}{d y^{*}}=1
$$

and we must make bothy and \bar{y} proportional to a, that is to say, the diameter of the wire in any layer must be proportional to the linear dimension of that layer.

If the thiekness of the insulating coveringe is constatnt anal equal to d and if the wites are artanged in sciuare order,
and the comlition is

$$
\begin{equation*}
Y=\underline{a}(y+h)_{1} \tag{10}
\end{equation*}
$$

$$
\begin{equation*}
\frac{x^{2}(2 y+b)}{y^{3}}=\text { constant } \tag{16}
\end{equation*}
$$

In this case the dianeter of the wive inereasas with the diameter of the layer of which it forms part, but not in so high a mata,

If we adopt the first of these two hypotheses, which will tre mently true if the wire itselt nearly (ills up the whole space, then we may put $\quad y=a x, \quad Y=\beta y$, where α and β are constant nomerical quantities, and

$$
\begin{aligned}
& n=N \frac{1}{a^{2} \beta^{a}}\left(\frac{1}{a}-\frac{1}{a}\right) \\
& A=N \frac{1}{a} \frac{1}{a^{1} \beta^{2}}\left(\frac{1}{a}-\frac{1}{a}\right),
\end{aligned}
$$

where a is a constant depending upou the size and lom of the the space left inside the coil.

Hence, if we make the thekness of the wire way in the same ratio as a_{y}, we obtain wery little advantage by inereasing the extemal size of the coil after the externat dimensions have becone a large untiple of the internal dimensions.
720.] It increase of resistance is mot wegarded ns a ulefuet, as when the external resistance is far emater that that: of the galvanometer, or when our only ohject is to produed a lied of intense forec, we may make y and I constant. We have then

$$
\begin{aligned}
& G=\frac{N}{V^{2}}(x-a)^{2} \\
& R=\frac{1}{\sqrt{y^{2}}} \frac{\rho}{\pi}\left(x^{3}-a_{\mathrm{t}}{ }^{H}\right),
\end{aligned}
$$

where a is a constant depernding ist the vonant space iuside the ooil. In this cese the value of if inereases mitornaly as the Jimensions of the cotl ate increased, so that there is mo limit to the walte of of execpt the latome and experne of making the eoil.

7 71.] In the ordinary galvanometer a suspended magnet is acted on ly a fixed coil. But if the coil ean be suspended with sullicient delicacy, we may determine the action of the maghed, or of amother coil on the suspended coil, by its deflexion from the position of eguilibrum.

We cannot, however, introduce the electric current into the cail imless there is metallic conmexion leetween the electrodes of the batiery and those of the wire of the woil. This connexion may be mate in two different ways, by the Bifilar Sirepension, and by wires in opposile directions.

The bifilar suspeusion has alrealy been described in Art. two as applied to magnets. The arrangement of the upper pate of the suspension is shewn in Pig. 5.5 . When applied to coits, the two fibres are no longet of sill lout of metal, and since the torsion of a metal wire capmble of supporting the coil and transmitting the current is much groater than that of a sitk libre, it mast be taken specially into aceount. This suspurion hes been brought to great pertuction in the instruments construeded by M. Weber,

The other method of sutspension is ly means of a single wite which is comnected to me extremity of the coil. The other extremity of the coil is conmeted to mother wive which is made to hung down, in the same rertical strathold line with the first whe, into at eup ol mercury, as is shown in lig. 57, Art, 720 . In certatn chas it is convenient to fasten the extremities of the two wires to pieces by which they may be tightly stretehed, care boing taken

Fig. 58. thet the liage of these wires passes through the centre of gravity of the coil. The appanatus in this form may be ased when the axis is not vertical ; see Fiy. 53.
79.2.] The snspended coil may be used as ath exceedingly scnsitive gal vatonteter, for, by ineresing the intensity of the monguetic fore in the fred in which it hange, the foren due to a feelle current in the coil may be groatly increased without aidding to the manss of the coil. The magnetic force for this purpose nay be produced by means of permanent magnets, or by electromagnets
exeited by an anxiliary ourent, and it may pe potwerfilly conemtrated on the suspended coil by means of soft iron armatures. Thas, in Sir W. Thomson's reeorling appantus, Fige s.3, the coil is sumpended between the opposite poles of the electromagrets in and $\delta_{\text {, }}$ and in order to concentrate the tines of magnetie fonce on the vertien sides of the coil, a priece of soft iron, D, is bixed between the poles of the magnets. This iron locoming magneliged by indmetion, produces a wery ponerfal liend of foree, in the intervids betwern it and the two magrets, throughl which ilsu vertical siules of the coil are free to move, so fhat the coil, even when the current Horough it is very leeble, is netad of by a considerable finee fonding to turn it almat its revilical axis.
793.] Another application of the suspended coll is to determine, ly eomparison with a tangent gatwanometer, the lanzantal eomponent of terrestrib] mangelism.

The eoil is suspended so that it is in stable equilithoum wher its plane is parallel to the imaghetio meridian. A eatrent γ is passed throngh the eoil and eamses it to be deflected into a new pasition of equilibrium, making an angle θ with the nationtiut meridian. If the suspension is lifikar, the monent of the eotuple which produces this deflexion is P sino , and this must be erpual to
 netism, y is the curent in the coil, whe η is the sum of the areas ot t° all the wimbings of the eoil. Henes

$$
H \gamma=\frac{F}{\theta} \text { tand }
$$

If A is the moment of inertia of the coil about its axis of sumpronsion, and 7 the time of a singte vilumation,

$$
F^{\prime} T^{12}=\pi^{2}+t
$$

and we olytatr

$$
/ / \gamma=\frac{\pi^{2} A}{\pi^{2} g} \tan \theta
$$

If the same curvent passes through we coil of a tangent gralvanometer, and deflects the magnet throngh an angle ψ_{n}

$$
\gamma=\frac{1}{6} \cdot \tan \phi
$$

Wherers is the priteipal constant of the tangent gat wanoneter, AM. - 10.
F'rom these two equations we ubtain

$$
\text { - lioger, Arn, exxxwif, Fwid, } 180
$$

724.] Sil William Themson has constracted as single instrument by means of which the observations required to determine $/ /$ and 7 may be made simuldaneonsly by the same observer-
'the eoil is suspended so as to be in equilibrinm with its pame in the magnetic meridian, and is deflected fiom this position when the current flows through it. A very small magret is suspended at the centre of the coil, and is defleeted by the etrrent in the direction omposite to that of the dellexion of the coil. Jeet the dullexion of the coil be 0 , and that of the maysuct the then the energy of the system is

$$
/ / \gamma g \sin \theta+m \gamma G \sin (0-\phi)-H m \cos \phi-H^{\top} \cos \theta
$$

Differentiating with respect to 0 and ϕ, we obtain the equations of eguitibrium of the coil and of the magnet respettively,

$$
\begin{aligned}
& H \gamma g \cos \theta+m \gamma(\theta \cos (\theta-\phi)+H \sin \theta=0 \\
& \quad-m \gamma \cos (\theta-\phi)+I / m \sin \phi=0 .
\end{aligned}
$$

Fronn these equations we find, by eliminating $/ I$ or γ, a quadiatic equation from which γ or $/ / /$ may be found. If ma the magnetic moment of the suspended maghet, is very small, we obtain the followng approximate values

$$
\begin{aligned}
& H=\frac{\pi}{T} \sqrt{\frac{-A G \sin \theta \cos (\theta-\phi)}{g \cos \theta \sin \phi}}-\frac{1}{2} \frac{m \cos (\theta-\phi)}{\theta}, \\
& \gamma=\frac{\pi}{T} \sqrt{\frac{-A \sin \theta \sin \phi}{G_{g} \cos \theta \cos (\theta-\phi)}}-\frac{1}{2} \frac{m \sin \phi}{y \cos \theta} .
\end{aligned}
$$

In these expressions G and g tre the prineipal electrie constants of the coil, x its moment ol inertia, 2 its time of vilutation, me the magnetie moment of the magnot, H the intensity of the horizontal nagnetie force, γ the strengith of the eurrent, 0 the deflexion of the coil, and ϕ that of the magnet.

Since the deflexion of the coil is in the opposite direction to the dethexion of the magnet, these values of $/ / /$ and γ will always be real.

Weler's Alechorlyaamoneter.

795.] J'n this instrument anall enil is suspemeded by tho wires within a latrger coil wheh is fixed. When a curront is made to How through both coils, the suspembed coil tends to phace itself parallel to the fixal woil. 'Ihis temtency is counteracted by the monent of the foreds arising from the bifilar suspension, and it is also affected by the action of terrestrial maguetism on the suspended coil.

In the ordinary use of the instroment the phanes of the two coils are nearly at right angles to each other, so that the mutual action of the enrents in the coils may be as great as possilthe and the plane of the suspended wil is nearly atid right angleg to the marnotio mertidian, so that the netion of torvestrial magetion may bee as small as possible.

Let the magnetic azimuths of the plane of the fixed coil loe a, and let the angle which the axis of the shepended coil makes with the phace of the lixed coil be $\theta+\beta$, where β is the watne of this angle when the coil is in equitbrim and no curent is dlowing and 0 is the deflexion due to the eurrent 'The equation of equilibriam is

$$
G_{g \gamma,} \gamma_{2} \cos (0+\beta)-/ / g \gamma_{2} \sin (\theta+\beta+a)-h \sin \theta=1 .
$$

Tuet us suppose that the instmment is atjonstat so that an and β are both very small, and that $/ /_{y} \gamma_{2}$ is small compared witl $F_{\text {a }}$. We have in this case, approximately,
$\tan 0=\frac{G g \gamma_{2} \gamma_{2} \cos \beta}{H^{1}}-\frac{H g \gamma_{2} \sin (a+\beta)}{H^{i}}-\frac{H G g^{2} \gamma_{1} \gamma_{2}{ }^{2}}{h^{2}}-\frac{C_{2}^{2} g^{2} \gamma_{1}{ }^{2} \gamma_{2}{ }^{2} \sin \beta}{h^{2}}$.
If the deflexions when the signs of γ_{t} and γ_{p} ane changral are as Collows:

$$
\begin{array}{ccccc}
\theta_{1} & \text { when } & \gamma_{1} \text { is }+ \text { and } & \gamma_{2}+ \\
\theta_{2} & \% & - & \because & - \\
\theta_{3} & \because & + & 3 & - \\
\theta_{4} & 3 & - & , & +;
\end{array}
$$

thesm tre find

$$
\gamma_{1} \gamma_{2}=\frac{F}{G g \cos \beta}\left(\tan \theta_{1}+\tan \theta_{2}-\operatorname{tath} \theta_{n}-\tan \theta_{i}\right)
$$

If it is the same cutrent which flows through lroth coils wet may put $\gamma_{1} \gamma_{2}=\gamma^{2}$: and thas obtan the value of γ.

When the currents are not very constant it is hest to adopt Lhis metron, which is called the Method ot 'langents.

If the currents are so conslant that we on adjust the anmle of the torsion-heal of the instmment, wo may get rid of the correction lor terrestrial magnetism at one by the methosd of wines. In this methot β is matiusted till the deflexion is zem, so that

$$
0=-\beta .
$$

 betore:

$$
\begin{aligned}
& H \sin \beta_{1}=-F^{\prime} \sin \beta_{3}=-G y \gamma_{1} \gamma_{2}+H y \gamma_{2} \sin a, \\
& H \sin \beta_{2}=-H \sin \beta_{4}=-G y \gamma_{1} \gamma_{2}-H y \gamma_{2} \sin a,
\end{aligned}
$$

and

$$
\gamma_{1} \gamma_{m}=-\frac{l^{\prime}}{4 C_{y}}\left(\sin \beta_{1}+\sin \beta_{2}-\sin \beta_{0}-\sin \beta_{1}\right)
$$

- *is. 5.

This is the method adopted by Mr. Latimer Clark in his mee of the instrument constructed by the Electrien Comanitues of the British Association. We are indebted to Mr, Clark for the drawing of the electrodynmometer in Figure 5 . 1 , in which Helmholtz's arrangement of two coils is adopted both for the fixed and for tho suspended coil \%. The torsion-heud of the instement, by whith the bifilar suspension is aubustad, is represented in [ig. 55 . The

Fig. 㱜號
equality of the tension of the suspension wires is ensured ly their Ineing attiched to the uxtronities of a silk thread whelt passus owe at weel, ant their distance is regulated by two thide-wheels, which dan be set at the proper distance. 'I're sompended coil cen be mused vertically lyy mens of a serew acting on the stopension-whet, and hompontally in two divetions by the stuting pieces shewn at
 wosion-serew, which furns the torsion-head round a vortical axis
 by ohserving the retlexion of a seale in the mirror, shewn just boytenth the axis of the sumpended coil.

[^30]The instrument originally constructed by Webor is deserited in his Elehtrodynamisehe Moushestimmungen. It was intended for the measurement of small currents, and therefore looth the fixed and the suspended coils consisted of many windings, and the suspendert coll occupied a larger part of the space with the fixed coil than in the instrumemt of the British Association, which was primarily intended as an standard instrument, with which move sensitive instruments might be eompared. The experinents which be made witls it furnish the most complete experimental proof of the aecuracy of Ampere's formula as applied to closed currents, and form an important part of the researches by which Weber has raised the numerical determination of electrical quantities to :s very high rank as regards precision.

Weleers's form of the electrolynamometer, in which one easil is suspended within another, and is ated on ly a conple tending to turn it about a vertical axis, is probably the best fitted for absolute measurements. A method of calculating the comstants of such an arrangement is given in Art . 697.
726.] If, however, we wish, by ments of a fecble current, to produce a considerable electromagnetic foree, it is better to place the suspended coil pravalel ten the fixerl eoil. and to make it cupable of motion to or from it.

Fig. 酸.

The suspented coil in Dr. Joule's curvent-weigher, Fig. 56, is homizonta), and caprable of wertical motion, and the loren leetween it and the fixed coil is estimated loy the weight which must be adderl to or removed from the cail in order to lyring it to the same relative position with respect to the lixed coil that it has when no curvent passes.

The suspended coil may abo be fastened to the extremity of the horizontal arm of a torsion-lyanace, and may be placed between two fixed coils, me of which attracts it, white the other repels it, as in Fige. $\overline{6}$.

By arranging the coils as sleseribed in Art. 729 , the furce acting (1n) the suspended cril may be made nearly milorm within a smatl distance of the position of equilibritam.

Another coil may be fixed to the other extremity of the arm of the torson-talatee and placed letween two fixed coils. If the
two suspended coils are similar, but with the enrent flowing in opposite directions, the effect of terrestrial magnetism on the

Fig. 67.
posilion of the arm of the torsion-batane will be completely elimintted.
727.] If the suspendeck coil is in the shape of a long solenoid, and is capable of moving parallel to its axis. so as to pass into the iuterior of a larger fixed solenod having the same axis, then, if the eurrent is in the same divection in both solenoids, the suspended solmoid will be sucked into the fixed one by a forectwhich will be nearly uniform as long as none of the extremitits of the solemoids are near one another.
728.] To produce a unilorm lungitudinal foree on it small wind placed betwedn two equal coils of mach larger dimensions, we shoutd make the ratio of the diameter of the large crils to the distaneo between their planes that of 2 to $\sqrt{ } \sqrt{5}$. Il we send the same current through these coils in opposite direetions, then, in the expression for ω, the terms involving odd powers of r disappear, and since $\sin ^{2} a=4$ and $\cos ^{2} a=\%$, the term involving r^{4} disappenrs also, and we lave

$$
\omega=\frac{y}{\gamma} \pi n \gamma\left\{3 \frac{r^{2}}{e^{2}} Q_{0}(\theta)+\frac{1}{1} \frac{r^{6}}{e^{\beta}} Q_{0}(\theta)+\operatorname{sc}\right\}
$$

which inticates a nernly turform force on a small suspended coil. The arrangement of the coils iu this case is that of the two outer eoils in the gralvanometer with thee eoils, deseribed at Art. 715. See lige 51.
789.] If we wish to :uspend a coil letween two coils placed so noar it that the distance between the matually acting wires is small compred with the radias of the coils, the most nuiform foree is obtained by making the radius of ether of the outer coils execed thet of the middle one by $\frac{1}{\sqrt{3}}$ of the distance betmeen the planes of the middle and outer coils.

CHAP'TER XV.

BLECTHOMAGNETIC OHSERVATIUNS.

730.] So many of the masturements of eleetrieal quantibies depend on observations of the motion of a viluating bedy that we shall devote some attention to the mature of this motion, and the hest methorls of olserving it.

The small oscillations of a body about a position of slablat muilibrimm are, in general, similar to chase of a paint neted on ly a force varying directly as the distance from a fixed point. In the case of the wibrating bodies in ont experiments there is also a resistance to the motion, depending on a varicty of canses, sueh as the wiscosity of the air, and that of the suspension filme. In maty electrien instruments there is nomother case of resistamee, mamely, the reflex action of currents induced in ennductiny cirents pheed near vibrating magnets. These currents are induced by the motion of the magmet, ant when aetion on the marenet is, by the law of Lenz, imvariably opposed to its motion. This is ins many cases the principal part of the resistance.

A metalic circuit, called a Dimper, is shmetimes placed near a magnet for the express purpese of dimping or deadening ils vibrations. We shath therefore speat of this kime of resistance as Damping.

In the case of slow vibutions, sueh as ean be easily observed, the whole resistance, from whatever chuses it may arise, appears to le proportional to the velocity. It is only when the welocity is mude greater than in the ordinary viluations of electromagnetic instruments that we hawe evidence of a resistanee propertional to the equare of the velocity.

We lave therefore to investigate the notion of a body subjuet to an attrnction warying as the distance, and to a resistance varying as the relocity.
731.] The following application, ly Professor Tait *, of the principle of the Hodograph, enalles us to investigate this kind of motion in a very simple mamer ly means of the equiangular spiral

Let it be required to lind the acceleration of a particle which describes a logarithmic or equiangular spiral with uniform angular welocity w about the pole.
The property of this spiral is, that the tangent $P T$ makes with the mdius vector $P S$ a constant angle a.

If v is the velocity at the point P, then

$$
v \cdot \sin a=a, S P^{p} .
$$

Hence, if we draw $S P^{\prime}$ parallel to $P T$ and equal to $S P$, the velocity at l " will be given both in magnitude attd direction by

$$
v=\frac{\omega}{\sin a} S P^{r} .
$$

Fiz. 5.
Hence P^{r} will be a point in the hodograph. But $S P^{x}$ is $S P$ turned through a constant angle $\bar{\pi}-a$, so that the fodograph deseribed by P^{p} is the same as the original spiral turned about its pole through an angle $\pi-a$.

The accelcration of P is represented in magnitude and direction ly the velocity of P^{x} maltiplied by the same factor, $\frac{(b)}{\sin a}$.

Hence, il we perform on $S 7^{y}$ the same pperation of turning it

[^31]theough ans angle of $-a$ into the position spen the arceletation of p will be equal in magnitude and direction to
$$
\frac{\omega^{2}}{\sin ^{2} a} S p^{\mu}
$$

Where $S P^{\prime \prime}$ is equal to $S P^{\prime}$ turned though an angle $2 \pi-2$ a.
If we draw $P F$ equal and parallel to $S P^{\prime \prime}$, the neceleration will be $\frac{\omega^{2}}{\sin ^{2} a} P T$, which we may resolve into

$$
\frac{\omega^{2}}{\sin ^{2} a} P S \operatorname{and} \frac{\omega^{2}}{\sin ^{2} a} P K
$$

The first of these components is a central forec towards s proprortional to the distance.

The second is in a direction opposite to the velocity, and since

$$
P K=2 \cos a P S=-2 \frac{\sin a \cos a}{\omega} u_{1}
$$

this force may be written

$$
-2 \frac{\omega \cos a}{\sin a} b
$$

The acceleration of the particle is therefore compounded of two parts, the first of which is an attractive force μr, directed towards S, and proportional to the distance, and the second is $-2 k w_{\text {a }}$ a resistance to the motion propertional to the velocity, where

$$
\mu=\frac{\omega^{2}}{\sin n^{2} a} \text {, and } k=\omega \frac{\cos a}{\sin a} .
$$

If in these expressions we make $a=\frac{\pi}{2}$, the orbit becomes a circle, and we have $\mu_{0}=\omega_{0}{ }^{2}$, and $k=0$.

Hence, if the law of attraction remains the same, $\mu=\mu_{0}$, ind

$$
\omega=\omega_{0} \sin \dot{\alpha},
$$

or the angular velocity in different spirals with the same law of attraction is proportional to the sine of the angle of the spiral.
732.] If we now consider the motion of a point which is the projection of the moving point P on the horizontal line $X Y$, we shall find that its distance from s and its velocity are the horizontal components of those of P. Hence the acceleration of this point is also an attraction towards S, equal to μ times its distance from S, together with a retardation equal to 2 times its velocity.
We have therefore a complete construction for the rectilinear motion of a proint, sulject to an attraction proportional to the distance from a fixed point, and to is resistance propertional to the velocity. The motion of such a point is simply the horizontal voi.. ir.
part of the motion of another point which moves with uniform angular velocity in it logarithuice spiral.
733.] The equation of the spiral is

$$
t=C e^{-\phi \cot t} .
$$

To determine the horizontal motion, we put

$$
\phi=\omega t, \quad x=a+r \sin \phi,
$$

where a is the value of x for the point of erquilibrium.
If we draw $B S D$ making an angle a with the vertical, then the tangents BIN D Y, GZ, \&e will be vertical, and X, Y, Z_{s} \&ec. will be the extromities of successive osedlations.
734.] The observations which are made on vibrating foolies are-
(1) The scale-reading at the stationary points. These are called Elongations,
(2) The time of passing a definite division of the scale in the positive or negative direction.
(3) The seale-reading at certain definite times. Olservations of this kind are not often made except in the case of vibrations of loug pericul \%.
The quantities which we have to determine are-
(1) The seale-reading at the position of equililuium.
(2) The logarithmic decrement of the vilyations.
(3) The time of vibration.

To determine the Reading at the Posilion of Equilluriwa foon Three Consecutive Dlongatious.
735.] Let x_{1}, x_{2}, x_{3} be the observed scale-readings, corresponding to the elongations X, Y, Z, and let a be the reading at the position of equilibrium, S, and let r_{1} lye the value of $S B$,

$$
\begin{aligned}
& r_{1}-a=r_{1} \sin a, \\
& x_{2}-a=-r_{1} \sin a e^{-a \cot a}, \\
& x_{3}-a=r_{1} \sin a e^{-a \pi a t a} .
\end{aligned}
$$

From these values we find

$$
\begin{aligned}
& \quad\left(x_{1}-a\right)\left(x_{3}-a\right)=\left(x_{2}-a\right)^{2}, \\
& \text { Whence } \quad a=\frac{x_{1} x_{9}-x_{2}^{2}}{x_{1}+x_{3}-2 x_{2}} .
\end{aligned}
$$

When x_{3} does not differ much lrom x_{1} we may use as an anproximate formula

$$
a=\frac{1}{1}\left(x_{1}+2 e_{2}+x_{3}\right) .
$$

- See Gapes, Resultate des Magnetiotlen Tercints, 1836. II.

To delermine the hoqrorilhmic IVecrement.

736.] The logarithm of the ratio of the amplitude of a viluration to that of the next following is catled the Lograrithmic Decrement. If we write p for this matio

$$
\rho=\frac{x_{1}-x_{2}}{x_{3}-x_{2}}, \quad L=\log _{10} p, \quad \lambda=\log _{\mathrm{e}} \rho .
$$

f_{1} is called the common lognaithmie decrement, and λ the Napierian logarithmie decrement. It is manifest that

$$
\lambda=L \log _{8} 10=\pi \cot \cdot a_{0}
$$

Hence

$$
a=\cot ^{-1} \frac{\lambda}{\pi},
$$

which determines the angle of the logatithmic spiral.
In making a special determination of λ we allow the body to perform a considerable number of vibrations. If c_{1} is the amplitude of the first, and c_{n} that of the ath vibration,

$$
\lambda=\frac{1}{n-1} \log _{e}\left(\frac{c_{1}}{c_{\mathrm{n}}}\right)
$$

If we suppose the alceuracy of olsservation to be the same for small wilurations as for large ones, then, to obdain the best value of λ, we should allow the vibrations to subsside till the ratio of c_{1}, to c_{n} becomes most nenrly equal to ε, the lase of the Nupierian logarithms. This gives n the nearest whole number to $\frac{1}{\lambda}+1$.

Since, however, in most cases time is walualde, it is best to take the second set of observations before the diminution of amplitude lans proceeded so far.
737.] In certain cases we may have to determine the position of equibibrium from two consectaive elongations, the logaritlimie decrement being known from a special experiment. We lave then

$$
a=\frac{x_{1}+e^{d} x_{2}}{1+e^{n}} .
$$

The of ribraton.

738.] Having determined the scale-reading of the point of equilibrum, a conspicuous mark is placed at that point of the seale, or as near it as possille, and the times of the passage of this mark are noted for several successive viluations.

Let us suppose that the mark is at an unlmown but very small distance \boldsymbol{x} on the pasitive side of the point of equilibrimm, tud that
t_{1} is the observed time of the first transit of the mark in the positive direction, and t_{2}, l_{3}, \&e. the times of the following transits.
If T be the time of vibration, and P_{1}, P_{2}, P_{3} \& . the times of transit of the true point of equilibrium,

$$
t_{1}=P_{1}+\frac{x_{1}}{i_{1}}, \quad t_{2}=P_{2}+\frac{x}{v_{2}},
$$

where v_{1}, v_{2}, \&e. are the successive velocities of transit, which we may suppose uniform for the wery small distance a.

If ρ is the ratio of the amplitude of a vibration to the next in succession,

$$
v_{2}=-\frac{1}{\rho} v_{1}, \quad \text { and } \frac{x}{v_{2}}=-\rho \frac{w}{v_{1}} .
$$

If three transits are observed at times t_{1}, t_{2}, t_{3}, we find

$$
\frac{x}{x_{1}}=\frac{t_{1}-2 t_{2}+t_{3}}{(\rho+1)^{2}} .
$$

The period of vibuation is therefore

$$
T=\frac{1}{2}\left(t_{3}-t_{1}\right)-\frac{1}{2} \frac{p-1}{p+1}\left(t_{1}-2 t_{2}+t_{3}\right) .
$$

The time of the second prassage of the trae point of equilibrium is

$$
P_{2}=\frac{1}{s}\left(t_{1}+2 t_{2}+t_{3}\right)-\frac{1}{2} \frac{(p-1)^{2}}{(p+1)^{2}}\left(t_{1}-2 t_{2}+t_{3}\right)
$$

Three transits are sufficient to determine these three quantities, but any greater number may be combined by the method of least squares. Thus, for five transits,

$$
T=\frac{1}{1 \sigma}\left(2 t_{6}+t_{4}-t_{2}-2 t_{1}\right)-\frac{1}{10}\left(t_{1}-2 t_{2}+2 t_{3}-2 t_{4}+t_{6}\right) \frac{\rho-1}{\rho+1}\left(2-\frac{\rho}{1+\rho^{2}}\right) .
$$

The time of the third transit is,
$P_{3}=\frac{1}{8}\left(t_{1}+2 t_{2}+2 l_{3}+2 t_{4}+t_{5}\right)-\frac{1}{5}\left(t_{1}-2 l_{2}+2 t_{3}-2 t_{4}+t_{5}\right) \frac{(p-1)^{2}}{(p+1)^{2}}$.
730.] The same method may be extended to a series of any number of vilrations. If the viluations are so rapid that the time of every transit cannot be recorded, we may record the time of every third or every fiftr transit, taking eare that the directions of sucecssive transits are opposite. If the vibrations continue regular for a long time, we need not observe during the whole time. We may begin by obscrving a sufficient number of transits to determine rpproxinately the period of vibration, 7 , and the time of the middle transit, P_{3} noting whether this transit is in the positive or the negative direction. We may then either go on counting the vibrations without recording the times of transit, or we may leave the apparatus unwatched. We then observe a
second series of transits, and deluce the time of vibration T^{\prime} and the time of middle transit P^{\prime}, noting the directiou of this transit.

If T and $T \prime$, the periods of viluration as deduced from the two sets of observations, are nearly equal, we may proceed to a more accurate determination of the period by combining the two series of observations.

Dividing $P^{\prime}-P$ by T, the quoticnt ought to be very nearly an integer, even or odd aceording as the transits P and P^{\prime} aro in the same or in opposite directions. If this is not the ense, the series of observations is worthless, but if the result is very nearly a whole number n, we divide $P^{x}-P^{2} b y$, and thes find the mean value of t for the whole time of swinging.

740 .] The time of vibration T thus found is the nctual mean time of vibration, and is sulbject to corrections if we wish to dechuce from it the time of vibration in inflnitely small ares and without damping.
To reduce the observed time to the time in infinitely small ares, we observe that the time of a vibration of amplitude a is in general of the form

$$
T=T_{1}\left(1+\kappa c^{2}\right),
$$

where κ is a cocficient, which, in the cense of the ordinary jendulum, is $\frac{1}{0 .}$. Now the amplitudes of the successive viluations are c, $c p^{-1}, c p^{-2}, \ldots c \rho^{1-4}$, so that the whole time of n viluations is

$$
n T=T_{1}\left(n+\kappa \frac{p^{2} c_{1} e^{2}-c_{2}{ }^{2}}{\rho^{2}-1}\right),
$$

where T is the time deduced from tho observations.
Hence, to find the time T_{1}^{\prime} in infinitely small aros, we have approximately,

$$
T_{\mathrm{t}}=T\left\{1-\frac{\kappa}{v} \frac{c_{1}^{2} p^{2}-c_{n}^{2}}{\rho^{2}-1}\right\} .
$$

To find the time T_{0} when there is no damping, we thave

$$
\begin{aligned}
T_{0} & =T_{1} \sin a \\
& =T_{1} \frac{\pi}{\sqrt{\pi^{2}+\lambda^{2}}}
\end{aligned}
$$

741.] The equation of the rectilinear motion of a body, attracted to a fixed point and resisted ly a force varying as the velocity, is

$$
\begin{equation*}
\frac{d^{2} x}{d k^{2}}+2 k^{d x} d d^{2}+\omega^{2}(x-a)=0 \tag{1}
\end{equation*}
$$

where x is the coordinate of the boly at the time t, and a is the coordinate of the point of equilibrium.

To solve this equation, let

$$
\begin{gather*}
x-a=e^{-k} y ; \tag{2}\\
\frac{d^{2} y}{d l^{2}}+\left(\omega^{2}-k^{2}\right) y=0 ; \tag{3}
\end{gather*}
$$

the solution of which is

$$
\begin{align*}
& y=C \cos \left(\sqrt{w^{2}-h i n} t+a\right) \text {, when } k \text { is less than } \omega \text {; } \tag{d}\\
& y=A+B t, \text { when } k \text { is equal to } \omega \text {; } \tag{5}
\end{align*}
$$

aud $y=C^{\prime} \cos h\left(\sqrt{h^{2}-\omega^{2}} d+a^{\prime}\right)$, when h is greater than w. (6)
The walue of x may be olbtaned firm that of y lyy equation (2). When $\&$ is less than w, the motion consists of an infinite series of oscillations, of constant periodic time, but of continually decreasing amplitude. As k increases, the periodic time becomes longer, and the diminution of amplitude becones more rapid.

When \& (half the coeflicient of resistanee) beemes equal to or greater than wo, the square root of the atceleration at unit distance from the point of equilibrium,) the motion ceuses to be osellatory, and during the whole motion the body can only once pass through the point of equilibrium, after which it reaches a position of greatest elongation, and then returns towards the point of equilibrium, continually approaching, but never reaching it.

Galvanometers in which the resistance is so great that the motion is of this kind are called dead beal gal vanometers. They are useful in many experiments, but especially in telegraphic signalling, in which the existence of free wilrations would quite disguise the movements which are meant to be olservod.

Whatever be the values of k and ω, the value of a, the scalereading at the point of equilibium, may be deduced from five sealereadings, p, q, r, s, t, tuken at equal intervals of time, by the formula

$$
a=\frac{q(r-q t)+r\left(\mu t-r^{2}\right)+s(q-p s)}{(p-2 q+r)(r-2 s+h)-(q-2 r+s)^{2}} .
$$

On the Observation of the Gitennometer.
742.] To measure a constant enremt with the kangent galvanometer, the instrument is adjusted with the plane of its coils parallel to the magnetio meridian, and the zoro reading is taken. The curvent is then made to pass through the coils, and the deflexion of the magnet corresponding to its new insition of equilibrium is observed. Let this be denoted by ϕ.
Then, if H is the horizontal magnetic force, G the coefficient of the galvanometer, aul γ the strength of the current,

$$
\begin{equation*}
y=\frac{I I}{G} \tan \phi . \tag{1}
\end{equation*}
$$

If the cooflicient of torsion of the suspension libre is $\mathrm{T} . \mathrm{MH}$ (see Art. 452), we must use the corrected fomma

$$
\begin{equation*}
\gamma=\frac{7 I}{6}(\tan \phi+\tau \phi \sec \phi) \tag{2}
\end{equation*}
$$

Best Ialue of the Deglexion.

743.] I_{12} some gatwanometers the number of wiodings of the eoil through which the curvent flows ean he atored able plensure. In others a linown fraction of the current can be divetted from the galyanometer ly a conductor enlled a Shumb. In etther ease the value of \vec{G}, the etlect of a unit-cument on the magret, is made to vary.

Luet us determine the walue of G, for which a given evrou in the olservation of the dellexion corresponds to the smatlest error of the deducal balue of the strength of the enrmit.

Differentiating equation (1), we lind

$$
\begin{equation*}
\frac{d \gamma}{d \phi}=\frac{I I}{Q} \sec ^{2} \psi . \tag{3}
\end{equation*}
$$

J Sliminating $G, \quad \frac{d \phi}{d y}=\frac{1}{2 \gamma} \sin 2 \phi$.
This is a maximum for a given value of γ when the deflexion is 45. The wate of G shonld therefore be adjusted till $G y$ is as nearly equal to $/ 7 \mathrm{as}$ is possible; so that for strong entrents it is better not to use too sensitive a galwanmeter.

On the Best Hethod of cumping the Crurent.

744.] When the observer is able, by means of a ley, to make or break the connexions of the circuit at any instant, it is adwisalse to operate with the key in such a way ns to malie the mapued arrive at its position of equilibrium with the least gussible velocity. The following method was derised by Ganss for this purpose.

Suppose that the manoet is in te position of equililuium, and that there is no eurrent. The observer now makes emtact for a short time, so that the magnet is sef in motion towarls its new position of equilibrium. He then breaks contaet. 'Ithe loree is now towards the orighat position of equilibriam, and the motion is retarded. If this is so managed that the manget comes to rest exnctly atw the now position of equibhum, and if the olserver agran makes contact at that instant and maintains the contact, the magnet will remain at rest in its nexf position.

If wo neglect the effect of the resistances and also the inequality of the total Foree neting in the new and the old positions, then, since we wish the now force to generate as much linetic energy during the time of its first action an the original force destroys while the cirenit is broken, we must prolong the firstaction of the current till the magnet has moved over half the distance from the first position to the second. Then if the original force acts while the magnet moves orer the other half of its course, it will exactly stop it. Now the time required for pass from a point of greatest elongation to a point latf way to the position of equilibrium is one-sixth of a complete period, or one-third of a single viluation.

The operator, therefore, having previously ascertained the time of a singrle vibration, makes contact for one-thard of that time, breaks eontact for another third ol the same time, ant then makes contact agatin furing the continuane of the experiment. The magnet is then either at rest, or its vibrations are so small that observations may be taken at once, without waiting for the motion to die away. For this purpose a metronome muy be adjusted so as to beat three times for each siugle viluration of the magreb.

The rule is somewhat more complicatel when the resistance is of sufficient magnitude to lse talsen into accommt, but in this case the vibrations die away so fast that it is umecessary to apply any corrections to the rulle.

When the magnet is to be restored to its origimel position, the cirouit is broken for one-third of a viluation, made agrain for an equal time, and fually broken. This leaves the magret at rest in its former position.

If the reversed reading is to be taken immediately after the aliveet one, the cireuit is lroken for the time of a single vibration and then reversed. This brings the magnet to rest in the rewersed position.

Measurment by the First Swing.

745.] When there is no time to make move than one observation, the curvent may be mensured by the cxtreme elongation olverved in the first swing of the maymet. If there is no resistance, the permanent detlexion ϕ is half the extreme elongation. If the resistance is such that the ratio of one vibration to the next is p, and if θ_{0} is the zero reading, and θ_{1} the extreme elongation in the first swing, the deflexion, ψ, corresponding to the point of equililyum is

$$
\phi=\frac{\theta_{0}+\mu \theta_{1}}{1+\rho}
$$

In this way the dellexion may be calenlated without wating for the magnet to come to rest ins its position of equilibrium.

To make a Series of Odswations.

746.] 'The best way of making a considerable ntmper of measures of a eonstant current is by ouserving three elongations while the current is in the positive direction, then breaking contact for about the time of a single vibration. so as to let the magnet swing into the position of megative deflexion, then reversing the current and obscrving three successive elongations ou the wegrative side, then bretking contact for the time of a single vibration and repenting the observations on the posilive side, and so on till a suflicient number of olyservations have been olvatined. In this way the errors which may arise fom ehange in the dimetion of the cathe's magnotic force daring the time of olpservation are utiminated, Tho operator, by carefully timing the making amd brating of rontact, ean easily regulate the extent of the vibrations, so nts to make them shffeciently small without being indistinct. The motion of the magnet is graphieally represented in Fig. 59, where the abscissa represente the time, and the ordinate the dedtexion of the magret. If $\theta_{1} \ldots \theta_{6}$ be the observed elongations, the deflexion is piven by the equation

$$
8 \phi=\theta_{1}+2 \theta_{2}+\theta_{3}-\theta_{4}-2 \theta_{0}-\theta_{0}
$$

Fig. 57

Method of Mreliphiwation.

747.] In certanin cases, in which the deflexion of the galwanometer magnet, is very smath, it may be advisable to increase the visiblo effect by reversing the current at proper intervals, so as to set mp a swinging motion of the magnet. For this purpose, after ascerinang the lime, 7 , of a single vibuation of the magnet, the current is sent in the positive direction for a time 7 , then ins the reversed direction for an equal time, and so on. When the motion of the magnet has become wisible, we may mate the reversal of the carrent at the observed times of gratest elongation.

Let the magnet be at the positive elorgation 0_{0}, and lat the current be sent through the coil in the negative direction. The
pinit of equilibrium is then - ϕ and the magnet will swing to a negative elongation θ, such that

$$
\begin{array}{ll}
& -\rho\left(\phi+\theta_{1}\right)=\left(\rho_{0}+\phi\right)_{1} \\
\text { or } \quad & -\rho \theta_{1}=\theta_{0}+(\rho+1) \phi .
\end{array}
$$

Similarly, it the current is now made prositive while the magnet swings to 0 ,

$$
\begin{aligned}
p \theta_{\underline{a}} & =-0_{3}+(\rho+1) \phi_{3} \\
\rho^{2} \quad \theta_{2} & =\theta_{0}+(\rho+1)^{2} \phi ;
\end{aligned}
$$

and if the current is reversed u times in succession, we find

$$
(-1)^{n} \theta_{n}=\rho^{-\pi} \theta_{0}+\frac{\rho+1}{p-1}\left(1-\rho^{-n}\right) \phi,
$$

whence we may find ϕ in the form

$$
\phi=\left(\theta_{n}-\rho^{-n} \theta_{0}\right) \frac{\rho-1}{\rho+1} \frac{1}{1-\rho^{-n}} .
$$

If n is a mumber so great that p^{-n} may be neglected, the expression becomes

$$
\psi=\theta_{m} \frac{p-1}{p+1} .
$$

The applieation of this method to exact measurement requires an acemate knowledge of p, the ratio of one vibration of the magnet to the next under the influence of the resistances which it experiences. The uncortainties arising from the difficulty of avoiding irregularities in the value of ρ generally outweigh the advantages of the large angular elongation. It is only whero we wish to establish the existence of a very small ourrent by causing it to produce a visible movement of the needle that this mothod is really valuable.

On the Mreastrenent of Trusient Crrvents.

748.] When a current lasts only during a very small fraction of the time of viluation of the galvanometer-magnet, the whole quantity of electricity transmitted by the current may be measured by the angular velocity emmunicated to the maghet itiring the passage of the current, and this may tre determined from the elengention of the first pibsation of the magnet.

If we neglect the resistance which damps the vilynations of the magnet, the investigation beenmes very simple.

Let y be the intensity of the current at any instant, and Q the quantity of electricity which it trammits, then

$$
\begin{equation*}
Q=\int \gamma d l \tag{1}
\end{equation*}
$$

Ieft Afle the magnetic moment, and A the moment of inertia of the magnet and suspended apparatus,

$$
\begin{equation*}
d \frac{d^{2} \theta}{d l^{2}}+M I I \sin \theta=M C \gamma \cos \theta . \tag{2}
\end{equation*}
$$

If the time of the passage of the elurent is wery small, we may integrate with respect to d during this short time without regarding the change of θ, and we find

$$
\begin{equation*}
A \frac{d \theta}{d l}=M G \cos \theta_{0} \int_{\gamma} d l+C=M C Q \cos \partial_{0}+C . \tag{3}
\end{equation*}
$$

This shews that the passage of the quantity Q produces an angular momentum MGQ $\cos \theta_{0}$ in the magnet, where θ_{0} is the value of θ at the instant of pasagre of the current. If the magret is initially in equilibrium, we may make $\theta_{0}=0$.

The maguet then swings freely and reaches an elongation θ_{1}. If there is no resistance, the work done against the magnetic force during this swing is $M M\left(1-\cos \theta_{1}\right)$.

The energy commaniented to the magnet lyy the curvent is

$$
\left.\frac{1}{2} A \overline{d \theta}^{2}\right)^{2}
$$

Fquating these quantities, we find
whence

$$
\begin{align*}
\frac{A 0}{A l} & =2 \sqrt{A H}-\sin \frac{1}{2} 0_{1} \tag{4}\\
& =\frac{M I G}{A} Q b_{y}(3) \tag{5}
\end{align*}
$$

But if T he the time of a single viluation of the magnet,

$$
\begin{equation*}
t=\pi \sqrt{\frac{A}{M / H}}, \tag{ii}
\end{equation*}
$$

and we find

$$
\begin{equation*}
Q=\frac{\mu}{U} \frac{T}{\pi} 2 \sin \frac{1}{2} \theta_{1}, \tag{7}
\end{equation*}
$$

where $/ /$ is the horizontal misgetic force, Q the coeflicient of the galvanoneter, P the time of a single vibration, and θ_{1} the first elongation of the magnel.
\%49.] In many actum experiments the elongation is a smalt angle and it is then easy to take into account the elfect of resistance, for we may treat the equation of motion as a linear equation.

Let the magnet be at rest at its position of equilibrium, Jet an angular velveity r be communiented to it instantanonusly, and let its first clongation be θ_{1}.

The equation of motion is

$$
\begin{align*}
\theta & =C e^{-\omega_{1} t \tan \phi} \sin \omega_{\mathrm{I}} t_{3} \tag{8}\\
\frac{d \theta}{d t} & =C \omega_{1} \sec \beta c^{-\omega_{1} t \tan \beta} \cos \left(\omega_{1} t+\beta\right) \tag{9}
\end{align*}
$$

When $t=0, \theta=0$, and $\frac{d \theta}{d l}=O \omega_{1}=$.
When $\omega_{1} l+\beta=\frac{\pi}{2}$,

Hence

$$
\begin{equation*}
\theta=C e^{-\left(\frac{\pi}{2}-\beta\right) \tan \beta} \cos \beta=\theta_{1} \tag{10}
\end{equation*}
$$

$$
\begin{equation*}
Q_{1}=\frac{v}{\omega_{1}} e^{-\left(\frac{\pi}{2}-\beta\right) \tan \dot{\beta}} \cos \beta \tag{11}
\end{equation*}
$$

Now

$$
\begin{align*}
\frac{M I I}{A} & =\omega^{2}=\omega_{1}^{2} \sec ^{2} \beta \tag{12}\\
\tan \beta & =\frac{\lambda}{\pi}, \quad \omega_{1}=\frac{\pi}{I_{1}^{\prime}}, \tag{13}\\
v & =\frac{M G}{A} Q . \tag{11}
\end{align*}
$$

Hence

$$
\begin{equation*}
\theta_{1}=\frac{Q G}{/ /} \frac{\sqrt{\pi^{2}+\lambda^{2}}}{T_{1}} e^{-\frac{h}{\pi} \tan ^{-1} \frac{\pi}{\lambda}} \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
Q=\frac{H}{G} \frac{T_{1}}{\sqrt{\pi^{2}+\lambda^{2}}} e^{\frac{\lambda}{\pi} \tan ^{-1} \frac{\pi}{\lambda}} \theta_{1} \tag{16}
\end{equation*}
$$

which gives the first elongation in terms of the quantity of electricity in the transient current, and conversely, where T_{1} is the observed time of a single vibution as aflected by the actual resistance of damping. When λ is small we may use the approximate formula

$$
\begin{equation*}
Q=\frac{H}{G} \frac{T}{T_{i}}\left(1+\frac{1}{2} \lambda\right) \theta_{1} \tag{17}
\end{equation*}
$$

Method of Recoil.

700.] The method given above supposes the magnet to be at rest in its position of equilibum when the transient current is passen through the coil. If we wish to repent the experiment we monst wait till the magret is again at rest. In certain eases, however, in which we are able to produce transient currents of equal intensity, and to do so at any desired instant, the following method, described by Wefer *, is the most convenient for making a continued series of observations.

[^32]Suppose that we set the magnet swinging by means of a transient curent whose value is Q_{0}. If, for brevity, we write

$$
\begin{equation*}
\frac{G}{\Pi} \frac{\sqrt{\pi^{2}}+\lambda^{2}}{T_{1}^{1}} e^{-\frac{\lambda}{\pi} \tan -1 \frac{\pi}{\lambda}}=K ; \tag{18}
\end{equation*}
$$

then the first elongation

$$
\begin{equation*}
\theta_{1}=\tilde{K} Q_{0}=a_{1}(\operatorname{say} y) . \tag{19}
\end{equation*}
$$

The velocity instantanconsly communicated to the magnet at starting is

$$
\begin{equation*}
v_{0}=\frac{M G}{\Delta} Q_{0} \tag{20}
\end{equation*}
$$

When it returns throught the point of equilibrium in a negative direction its velocity will be

$$
\begin{equation*}
v_{1}=-v \epsilon^{-\lambda} \tag{21}
\end{equation*}
$$

The next negative elongation will be

$$
\begin{equation*}
o_{2}=-y_{1} e^{-\lambda}=b_{1} . \tag{22}
\end{equation*}
$$

Wher the magnet returns to the point of equilibrium, its welocity will be

$$
\begin{equation*}
r_{2}=r_{0} e^{-2 \cdot} \tag{23}
\end{equation*}
$$

Now let an instantaneors current, whose total quantity is $-Q$, be transmitud through the coil at the instant when the magnet is at tlie zero point. It will change the velocity t_{2} into $v_{2}-c$, where

$$
\begin{equation*}
z=\frac{M G}{4} Q . \tag{24}
\end{equation*}
$$

If Q is greater than $Q_{0} e^{-2 \lambda}$, the new velocity will the negative and equal to

$$
-\frac{M G}{A}\left(Q-Q_{0} e^{-2 A}\right)
$$

The motion of the magnet will thus be reversed, and the next elongation will be negative,

$$
\begin{equation*}
o_{\beta}=-K\left(Q-Q_{0} e^{-2 \lambda}\right)=c_{1}=-K Q+\theta_{1} e^{-2 \lambda} . \tag{25}
\end{equation*}
$$

The magnet is then allowed to come to its positive elongation

$$
\begin{equation*}
\theta_{1}=-\theta_{3} e^{-\lambda}=d_{1}=e^{-\lambda}\left(K Q-a_{1} e^{-2 \lambda}\right), \tag{26}
\end{equation*}
$$

and when it again reaches the point of equilibrium a positive enrent whose quantity is Q is transmitted. This throws the magnet back in the positive direction to the positive dongation

$$
\begin{equation*}
\theta_{5}=K Q-\theta_{3} e^{-\underline{ } A} ; \tag{2i}
\end{equation*}
$$

or, calling this the first elongation of a second series of four,

$$
\begin{equation*}
a_{2}=\kappa Q\left(1-e^{-\underline{ } \lambda}\right)+a_{1} e^{-1 \lambda} \tag{28}
\end{equation*}
$$

Proeceding in this way, by observing two clongations + and - , then sending a positive current and observing two elongations

- nod + , then sending th positive current, and so on, we obtain a series consisting of sets of four elongations, in ench of which

$$
\begin{gather*}
\frac{a-b}{a-c}=e^{-\lambda} ; \tag{20}\\
\text { and } \quad K Q=\frac{(a-b) e^{-2 \lambda}+d-e}{1+e^{-A}} ; \tag{30}
\end{gather*}
$$

If n series of elonghtions have been observed, then we find the logatithmie decrement from the equation

$$
\begin{equation*}
\frac{\mathbf{\Sigma}(d)-\mathbf{\Sigma}(b)}{\mathbf{\Sigma}(d)-\mathbf{\Sigma}(c)}=e^{-\lambda} \tag{31}
\end{equation*}
$$

and Q from the equation

$$
\begin{align*}
& \operatorname{AQ}\left(1+e^{-\lambda}\right)(2 n-1) \\
& =\Sigma_{n}(a-b-c+d)\left(1+e^{-2 \lambda}\right)-\left(a_{1}-b_{1}\right)-\left(d_{n}-c_{n}\right) e^{-2 \lambda} . \tag{32}
\end{align*}
$$

lig. 60.
The motion of the magnet it the method of recoil is graphically represented in Fig . 60 , wlere the abscissa represents the time, and Whe ordinate the deflexion of the magnet at that time. See Art. 760 .

Mether of Mruliplication.

751.] If we make the transient oument pase every time that the magnet passes througl2 tho zero point, and always so as to increase the relocity of the magnet, then, if $0_{1}, 0_{2}$, \& E . wre the successive elongations,

$$
\begin{align*}
& \theta_{2}=-N Q-e^{-\lambda} \theta_{1}, \tag{33}\\
& \theta_{3}=-K Q-e^{-\lambda} \theta_{2} . \tag{34}
\end{align*}
$$

The ultimate walne to which the elongation temeds after a great many wibations is found by putting $\theta_{n t}=-\theta_{n-1}$, whence we find

$$
\begin{equation*}
\theta= \pm \frac{1}{1-e^{-\lambda}} \pi Q \tag{35}
\end{equation*}
$$

If A is small, the value of the ultimate elongation may be large, but since this involves a long contimed experiment and a carefal determination of λ, and since a small error in λ introduces a largo error in the detemination of Q, this method is ravely useful for
numerien iletermination, and shond be reserved for oblatuing eriderne of tha existence or non-cxistence of curtents too small to loy observed directly.

In all experiments in which transient currents ate made to act on the noving maguet of the galvanometer, it is essential that the wholo eurrent shonld pass while the distamee of the machet fiom the zero point remains a small fration oll the total dongation. The time of withation shonld therefore be large eompated with the time reguired to prodace the curvent; and the merator should have his eye on the motion of the magnet, so as to regulate flee instant of passage of the current hy the instunt of passame of the magnet through its point of equilibutum.
'To estimate the error introduced by a lailure of the operather to protuce the cutrent, at the proper instant, we olserve that the effect of a foree in increasing the elongation varids as

$$
e^{\text {क } \tan \beta} \cos (\beta+\beta),
$$

and that this is a maximnin when $\phi=0$. Hence the errar arising from a mistiming of the cursent will aduats lead to an undern cotimation of its value, and the amount ol' the error may be estimated ly comparing the ensime of the phase of the viluation at the time of the passage of the current with unity:

CHAPTER XVIt.

COMPARIEON OF COLLS.
Faperimental Determination of the Dhectrical Constants of a Coil.

7os.] We have seen in Art. 717 that in a sensitive galvanometer the coils should be of small radins, and shoud contain many windings of the wire. It would be extrencly dificuld to delermine the elegtrical constants of such a coil by direct measurement of its form and dimensions, ever if we could obtain aceess to every winding of the wire in order to measure it. But in fhet the greater number of the windings are not only completely bidden by the outer windings, but we are uncertain whether the pressure of the onter windings may not have altered the form of the inner ones after the eoiling of the wive.

It is better therefore to determine the electrical constants of the coil by direct olectrical comparison with a standard coil whose constants are known.

Since the dimensions of the standard coil must bo determined by aeturl measurement, it must lue made of considerable size, so that the unavoidable error of measurement of its diancter or eircumference may be as small as possible compared with the quantity measured. The channel in which the coil is wound glould be of rectangular section, and the dimensions of the section should be small compared with the radins of the coil. This is necessary, not so much in order to diminish the correction for the size of the section, as to prevent any uncertanty about the position of those windings of the coil which are hatden by the external windings.

[^33]The principal constants which we wish to determine are-
(1) The magnetic foree at the centre of the coil dae to a minteurrent. This is the quantity denuted by G_{1} in Art. 70 of
(2) The magnetic moment of the coil due 10 a ment-enrent. This is the quandity g_{1}.
773.] To deternime G_{1}. Since the coils of the working galvanometer are much smaller than the standard coil, we place the galvanometer within the standard coil, so that their centres coincide, the planes of loth coils being vertical and parallel to the carth's magnetie foree. We have thas obtained a dilltrential gal wanommer one of whose coils is the standard coil, for which the value of G_{t} is krown, while that of the other enil is G_{1}^{\prime}, the walue of which we have to determine.

The magnet swsyented in the centre if the galvanometer coit is acted on ly the currents in both coils. If the strengith of the current in the standard coil is γ and that in the galvanometer coil γ^{\prime}, then, il these onsrents llowing in opposite directions produce a deflexion ô of the magnet,

$$
\begin{equation*}
I \tan \delta=G_{1}^{\prime} \gamma^{\prime}-G_{1} \gamma \tag{1}
\end{equation*}
$$

Where $/ /$ is the horizontal magnetic foree of the carth.
If the currents are so arranged as to produce no deflexion, we nay find G_{1}^{\prime} lay the equation

$$
\begin{equation*}
G_{1}^{\prime}=\frac{\gamma}{\gamma} \sigma_{1} \tag{2}
\end{equation*}
$$

We may determine the ratio of y to y^{\prime} in several ways. Sine 1 lue value of G_{1} is in general greater for the gelvanometer than for the standard coil, we may arrange the circuit so that the whole current γ flows through the standard coil, and is then divided so that γ^{\prime} flows through the galvanometer and resistance coils, the combined resistance of which is h_{1}, while the remainder $y-y^{\prime}$ llows through another set of resistance coils whose combined rusistance is Π_{2}.
of its rarions pirts. Hence any poncealeal fat in the ematinnity of the metal maty

 curcent seem. Le have Enena altugether lost kight of.

 is zero, lis Art. 6tik.

รOT. IT*

Wo have thom, by Art. 276,

$$
\begin{align*}
& \gamma^{\prime} h_{\mathrm{T}}^{\prime}=\left(\gamma-\gamma^{\prime}\right) h_{2} \tag{3}\\
& \text { or } \quad \gamma_{1}=\frac{R_{1}^{\prime}+R_{2}}{\gamma^{\prime}} \tag{4}\\
& \text { and } \quad R_{2} \tag{5}\\
& Q_{1}^{\prime}=\frac{R_{1}+R_{2}}{R_{\mathrm{y}}} G_{1} .
\end{align*}
$$

If theme is any umertainty about the actual resistance of the galvanometer coil (on tocount, say, of su imeertainty as to its temperature) we may add resistance coils to it, so that the resistance of The galvanometer itself forms lut a small park of h_{1}, and thus intronlaces but litele nucertanty into the final restite
754.] To fotersine f_{1}, the magnetio moment of a small cotl due to a nnit-chrent fowing through it, the magnet is still suspended at the eentre of the standarl coil, but the small coil is moved parallel to itself along the comanon axis of both coils, titl the same carrent, flowing in opposite directions romad the coils, no longer deffects the magnet. If the distance between the centres of the coils is r, we have now

$$
\begin{equation*}
G_{1}=2 \frac{g_{1}}{7^{4}}+3 \frac{g_{2}}{x^{4}}+4 \frac{g_{g}}{r^{6}}+\& \mathrm{Ec} \tag{G}
\end{equation*}
$$

By repeating the experiment with the small coil on the opposite side of the standart coil, and measuring the distance between the positions of the small coil, we diminate the uncertan entro in the determination of the position of the centres of the magnet and of the small coil, and we get rid of the terms in g_{2}, g_{4}, \&e.

If the standad coil is so armoged that we can send the corvent through hall the number of windings, so as to give a different value to G_{f}, we may determine a new value of r, and thes, is in Art. 1.5t, We may climinate the tem involvinge g_{3}.

It is often possible, however, to determine a_{3} by direat mensurement of the small coil with sufficient accuracy to make it awalable in calculating the value of the correction to be appled to g_{1} in the equation

$$
\begin{align*}
& g_{1}=\frac{1}{r_{2}} G_{1} r^{3}-2 \frac{g_{3}}{r^{2}} . \tag{7}
\end{align*}
$$

$$
\begin{aligned}
& \text { Comparisors of Coeflicients of /hduction. }
\end{aligned}
$$

wherw
755.7 It is only in a small number of eases that the direct onalenation of the conflicients of induetion from the form and
position of the cireuits can be easily performed. In ombley to atain a sufficient degree of acouracy, it is necossary that the distance between the circuits should be caproble of exact mastarement. But wheu the distance between ithe oirents is sufficient to prevent errors of measurement from introdncing largo etrors into the result, the coeffeient of induction itself' is necessarily wery much redneed in magritude. Not for many experiments it is necessay to make the cocflicient of induction large, and we can only do so by bringing the circuits close together, so that the method of direct measurement becomes impossible, and, in order to tetermine the coeflicent of induction, we must compare it with that of a pair of coils arranged so that their coeflicient may he obtamed by direct measurement aud calculation.

This may be done as follows:
Leet A and a be the stardard pair of eoils, B and b the eoils to be compared with thera. Connect A and B in one eirexit, and place the electrodes of the galFanometer, Q, at P and Q, so that the resistance of $P A Q$ is R, and that of $Q B P$ is $S_{3} K^{2}$ boing the resistance of the gatvarometer. Connect a and b in one circuit with the battery.

Let the current in A be 2 ,

Fig. 61. that in $B_{r} \dot{y}$, and that in the gratwometer, $\dot{x}-\dot{y}$, that in the battery eirouit being γ.

Then, if M_{1} is the coefficient of induction betweens A and a_{y} and M_{3} that between B and b, the jntegral induction curtent through the galvanometer at breaking the battery circuit is

$$
\begin{equation*}
x \rightarrow y=y \frac{\frac{M_{1}}{A^{h}}-\frac{M_{2}}{S}}{1+\frac{K}{h^{2}}+\frac{K}{S}} \tag{8}
\end{equation*}
$$

By adjusting the resistances R and S till there is mo efrrent through the galvanometer at making or freaking the galvanometer circuit, the ratio of M_{2} to $A I_{1}$ may be determined by mensuring that of S to R.

Comparison of a Coethaient of Self-induction with a Confticul of Mutual Judzotion.
756.] In the branels $A F^{r}$ of Wheatstone's Bridge let a coil be inserted, the coefficient of self-indne-

Fig. ${ }^{2}$. ton of which we wish to lind. Let us call it L.

In the connecting wire between A and the battery another coil is inserted. 'The coefficient of mutual induction betwee this coil and the coil in $A H^{2}$ is M. It. may be measured by the method described in Art. 75.5 .

If the current from A to F is a, and that from A to $/ /$ is $~ Z$, that from Z to A, through A, will be $x+y$. The external electromotive force from A to \vec{F} is

$$
\begin{equation*}
A-H^{2}=P x+/ \frac{d x}{d l}+M\left(\frac{d x}{d l}+\frac{d g}{d l}\right) . \tag{9}
\end{equation*}
$$

The external electromotive fore along $A T$ is

$$
\begin{equation*}
A-I I=Q y \tag{10}
\end{equation*}
$$

If the galvanometer placed between F and H indicates no current, cither transient or permanent, then $\operatorname{loy}(9)$ and (10), since $H-\lambda=0$,

$$
\begin{equation*}
P x=Q y \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
M_{i} \frac{d x}{d d}+M\left(\frac{d u}{d b}+\frac{d y}{d l}\right)=0 \tag{12}
\end{equation*}
$$

whence

$$
\begin{equation*}
I=-\left(1+\frac{P}{Q}\right) M \tag{13}
\end{equation*}
$$

Since L is al was positive, M must be negative, and therefore the coherent must flow in opposite directions through the coils placed in P and in 7, In making the experiment we may either begin by adjusting the resistances so that

$$
\begin{equation*}
P S=Q R \tag{1.1}
\end{equation*}
$$

which is the condition that there may be no permanent current, and then auliust the distance between the coils till the gal wattmeter erases to indicate a transient entreat on making and breaking the battery connexion; or, if this distance is not capable of adjustment, we may get rid of the transient entrant by altering the resistances Q and S in such a way that the ratio of Q to S remains constant.

If this double adjustinent is Count too troublesome, we may adopt
a third method，Beginning with an arrangement in which the tramsient current due to self－induction is slightly in exeess of that due to mutual induction，we may get rid of the inequality ly in－ serting a conductor whose resistance is $\#$ between A and $\%$ ．The condition of no permanent enrrent through the galvanometer is not affected by the introluction of H^{D} ．We may therefore get rith of the transient current by adjusting the resistance of W atone．When this is done the value of h is

$$
\begin{equation*}
H_{1}=-\left(1+\frac{p}{Q}+\frac{P+\pi}{W}\right) M . \tag{15}
\end{equation*}
$$

Comparison of the Coefficients of Self－indruction of Theo Cuits．
757．］Tnsent the coils in two aljacent branches of Wheatstone＇s Bridge．Let L and N be the coeffecients of self－irduction of the coils inserted in P and in R respectively，then the constition of no galvanometer current is

$$
\begin{equation*}
\left(P x+d \frac{d x}{d t}\right) 5 y=Q y\left(R x+N \frac{d y}{d l}\right) \tag{16}
\end{equation*}
$$

whence $P S=Q R$ ，for ho permanent currmb，
and

$$
\begin{equation*}
\frac{L}{P}=\frac{N}{P}, \text { for no tramsient curregrt. } \tag{17}
\end{equation*}
$$

Hence，by a proper adjustment of the resistances，boolh the per－ manent and the transient current pan be got rid of，and thon the ratio of L_{s} to N can be determined by a comparison of the resistances．

CHAPTER XVIII.

BLACrROMAGNETIC UNIT OF RUSISTANCE.

On the Determination of the Resistance of a Coil in Dlectromagnetic Measure.

758.] The resistance of a condnctor is defined as the ratio of the numerical value of the electromotive force to that of the current whiel it produces in the conductor. The determination of the value of the curvent in electromagnetic measure can be made by means of a standard galvanometer, when we know the value of the earth's magnetic force. The determination of the value of the electromotive foree is more difficult, as the only case in which we can directly calculate its value is when it ariges from the relative motion of the circuit with respect to a known magnetic system.
750.] The first determination of the resistance of a wire in electromagnetic measure was made ly Kirchloff*, He employed two coils of known form, A_{1} and A_{2}, and calculated their coefficient of mutual induction from the geo-

Fig fin metrical data of their form and position. These coils were placed in circuit with a galvanometer, Q, and a battery; B, and two points of the eirenit, P, between the coils, and Q, between the lattery and galvanometer, were joined by the wire whose resistance, h, was to be measured.
When the current is stemdy it is divided between the wive and the galvanometer circuit, and produces a certain permanent deHexion of the galvanometer. If the coil A_{1} is now removed quiekly

[^34]from A_{2} and pheed in at prosition in which the coefficient of mutual induction between A_{1} and A_{2} is zero (Art. 538), a curvent of induction is prodneed in beth circuits, and the galsanometer needle receives an impulse which produces a comann transient deflexion.

The resistance of the wire, R, is defnced from at comparison between the permanent dedexion, due to the stendy cureent, and the transient deflexion, dhe to the current of induction.

Let the resistance of $Q Q A_{1} P$ be R, of $P A_{2} B Q, B$, and of $P Q, A$.
Let L, M and N be the coeflicients of induction of A_{1} and A_{2}.
Jet ax be the eurrent in G, and \dot{y} that in B, then the current from P to Q is $\dot{x}-\dot{y}$.

Wet E be the electromotive foree of the lattery, theen

$$
\begin{align*}
& (N+M) \dot{x}-R \dot{y}+\frac{d}{d l}(H \dot{x}+M y)=0 \tag{1}\\
& R \dot{x}+(b+M) \dot{y}+\frac{d}{d t}\left(M \dot{x}+M^{M} \dot{y}\right)=A_{0} \tag{2}
\end{align*}
$$

When the currense are constand, and exty thing at rest,

$$
\begin{equation*}
(K+h) \dot{\varepsilon}-h \dot{y}=0 \tag{3}
\end{equation*}
$$

If M now sudidenly becomus zero on account of the separation of A_{1} from A_{2}, then, integrating with respect to t,

$$
\begin{gather*}
(A+M) x-M y-M y=0 \tag{4}\\
-M x+(B+A) y-M i=\int h d t=0 \tag{5}\\
x=M \frac{(B+M) \dot{y}+M \dot{w}}{(b+A)(N+h)-h^{2}} \tag{in}
\end{gather*}
$$

whence

$$
\begin{align*}
\frac{M}{M} & =\frac{M}{h} \frac{(B+M)(M+M)+R^{2}}{(B+M)(h+h)-A^{2}} \tag{7}\\
& =\frac{M}{h}\{1+(B+h)(K+h)+k \cdot\} \tag{8}
\end{align*}
$$

When, as in Kirchmof's experiment; both $J=$ and K ane large compared with R, the equation is reduced to

$$
\begin{equation*}
\frac{a}{x}=\frac{M}{M} \tag{9}
\end{equation*}
$$

Of these quatities, x is found from the Hirow of the gatrmometer due io the induction eurreut. Sed Art. 768 . 'Ihe pemanent eurreat, \dot{x}, found fion the permanent, duthon due to the stanly ourcent; see Art. $746 . M$ is foum ellder by divect calcolation

these three quantities $l d$ can be determined in electromagnetic measure.

These methods involve the determination of the period of vilration of the galvanometer maguet, and of the logarithmie deerement of its oscillations.

> Hcber's Aethod by Transient Currents*.
760.] A coil of consideralde size is mounted on an axle, so as to be capable of revolving abont a vertical diameter. The wire of this coil is connected with that of a tangent galvanometer so as to form a single cirenit. Lett the resistance of this circait be A. Let the latge coil be placed with its positive face perpendicular to the magnetie meridian, and let it be quickly turned round half a revolution. There will lee an induced current due to the earth's magnetic foree, und the total quantity of clectricity in this current in electromagnetic measure will be

$$
\begin{equation*}
Q=\frac{2 g_{1} H}{h}, \tag{1}
\end{equation*}
$$

Where g_{L} is the magnetic moment of the coil for unit current, which in the case of a large coil may be determined directly, by meat suring the dimensions of the coil, and ettenlating the sum of the areas of its windings. $I /$ is the horizontal component of terrestrial magnetism, and R is the resistance of the circuit formed by tho coil and galvanometer together. This current sets the magnet of the galvanometer in motion.

If the magnet is origitually at reet, and if the motion of the coil oceupies but a small fraction of the time of a vibration of the magnet, then, if' we noglect the resistance to the motion of the magnet, we have, by Art. 748 ,

$$
\begin{equation*}
Q=\frac{M}{G} \frac{T}{\pi} 2 \sin \frac{1}{2} \theta \tag{2}
\end{equation*}
$$

where G is the constant of the galvanometer, T is the time af vilyation of the magnet, and θ is the observed elongation. From these equations we oldain

$$
\begin{equation*}
h=\pi d g \frac{1}{2 \sin \frac{1}{2}} . \tag{浪}
\end{equation*}
$$

The value of If does not aprear in this result, provided it is the same at the position of the coil and at that of the galvanometer. This should not be assumed to be the ense, but should be tested by comparing the time of vibration of the same magnet, first at one of these places and then at the other.
761.] To make a scrics of observations Weber begon with the coil parallel to the magnetic meriditu. He then turned it with its positive lace north, and olserved the first elongation due to the negative enrrent. He then observed the second clongation of the freely swinging magnet, and on the return of the magnet through the point of equilibrime he turned the coil with its positive fiee sonth. This eausel the magnet to recoil to the positive side. The series was continued as in Art. 7 no, and the result corveted for resistance. In this way the value of the resistance of the combined circuit of the coil and galwanometer was aseertained.

In all such experiments it is necessary, in order to oltain sulficiently large deflexions, to make the wire of copper, a metal which, though it is the best condnctor, has the disadvantage of alturing considerably in resistance with alterations ol temperature. It is also very difficull to ascertain the temperature of every part of the apparatus. Hence, in order to obtain a result of permatent walne from such an experiment, the resistance of the experimental circhit should he compared with that of a earefully construeted resistanceconit, both before and after each experiment.

Weher's Hethod by observing the Decrement of the Oseillatious of a Magnet.

762.] A magnet of cousiderable magnetie moment is suspended at the centre of a galvanometer coil. The period of vilsation and the logarithmic deerement of the oscillations is observed, first with the cirenit of the galvamometer open, and then with the circuit closed, aud the conductivity of the galvanometer coil is dellued from the effect which the currents induced in it lay the motion of the magnet have in resisting that motion.

If t ' is the observed time of a sibgle viluation, and λ the Napierian logarithmie decrement for each single wibration, then, if we write

$$
\begin{align*}
\omega & =\frac{\bar{\pi}}{T}, \tag{1}\\
a & =\frac{\lambda}{T},
\end{align*}
$$

the equation of motion of the magnet is of the form

$$
\begin{equation*}
\phi=C e^{-a t} \cos (\omega t+\beta) . \tag{3}
\end{equation*}
$$

This expresses the nature of the motion as determined ly olservation. We must compre this with the dymanical equation of motion.

Let 31 be the coefficient of induction between the galvanometer coil and the suspended magnet. It is of the form

$$
\begin{equation*}
M=G_{1} g_{1} Q_{1}(\theta)+G_{2} g_{2} Q_{2}(\theta)+\& c_{1} \tag{4}
\end{equation*}
$$

where G_{1}, G_{2}, \&e, ate coeflicionts belonging to the coil, y_{1}, y_{2}, \&e. to the magnet, and $Q_{1}(\theta), Q_{z}(\theta)$, Ace, are zonal hamonics of the angle between the axes of the coil and the magnet. Sec Art. 700. By a proper arrangement of the coils of the galvanometer, and by lyilding up the suspended magnet of several magnets placed side by side at proper distances, we maty canse all the ternss of M after the first to become insensible compred with the first. If we also pul $\phi=\frac{\pi}{2}-\theta$, we may write

$$
\begin{equation*}
M=G m \sin \phi \tag{5}
\end{equation*}
$$

where G is the principal coefficient of the galvanometer, m is the magnetic moment of the magnet, and ϕ is the angle between the axis of the magnet and the plane of the coil, which, in this experiment, is always a small angle.
If L is the coefficient of selfindaction of the coil, and h its resistance, and y the current in the coil,

$$
\begin{gather*}
\frac{d}{d l}(I \gamma+M I)+R \gamma=0 \tag{6}\\
L \frac{d \gamma}{d l}+\pi \gamma+G m \cos \phi \frac{d \phi}{d l}=0 . \tag{7}
\end{gather*}
$$

The moment of the force with which the current γ acts on the magnet is $\gamma \frac{d M}{d \phi}$, or $G M y \cos \phi$. The angle ϕ is in this experiment so small, that we may suppose cos $\phi=1$.

Let us suppose that the equation of motion of the magnet when the circuit is broken is

$$
\begin{equation*}
A \frac{d^{2} \phi}{d l^{2}}+B \frac{d \phi}{d l}+C \phi=0 \tag{8}
\end{equation*}
$$

where A is the moment of inertis of the suspended apparatus, $B \frac{d \phi}{d \bar{t}}$ expresses the resistance arising from the viscosity of the air and of the suspension fibre, Ace., and $C \phi$ expresses the moment of the foree arising from the earth's magnetism, the torsion of the suspension apparatus, \&e, tending to bring the magnet to its position of equilibrium.
The equation of motion, as affected by the current, will be

$$
\begin{equation*}
A \frac{d^{2} \phi}{d d^{2}}+i \frac{d \phi}{d l}+c^{\prime} \phi=6 m \tag{0}
\end{equation*}
$$

To determine the motion of the magnet, we have to cumbine this equation with ($\vec{r})$ and eliminate γ. The result is

$$
\begin{equation*}
\left(h+L \frac{d}{d l}\right)\left(A \frac{d^{2}}{d l^{2}}+B \frac{d}{d l}+C\right) \phi+G^{2}-m^{2} \frac{d \phi}{d l}=0 \tag{10}
\end{equation*}
$$

a linear differential equation of the third order.
We have uo oceasion, however, to solve this equation, beentse the data of the problem are the observed elements of the motion of the magnet, and from these we lave to determine the walue of R.

Let a_{0} and ω_{0} be the values of a and ω in equation (2) when the cirenit is broken. In this case $f l$ is infinite, and the equation is reduced to the form (8). We thins find

$$
\begin{equation*}
B=2 A a_{n}, \quad O=A\left(a_{0}{ }^{2}+\omega_{0}^{2}\right) \tag{11}
\end{equation*}
$$

Solving equation (10) for r, and writing

$$
\begin{equation*}
\frac{d}{d \bar{l}}=-(a+i \omega), \quad \text { where } i=\sqrt{-1}, \tag{12}
\end{equation*}
$$

we find
$A=\frac{a^{2} m^{2}}{A} \frac{a+i \omega}{a^{2}-\omega^{2}+2 i a \omega-2 a_{0}(a+i \omega)+a_{0}^{2}+\omega_{0}^{2}}+\lambda(a+i \omega)$,
Since the value of ω is in general much greater thum that of α, the best value of $l l$ is found by equating the terms in $i \omega_{\text {, }}$

$$
\begin{equation*}
R=\frac{G^{2} m^{2}}{2 A\left(a-a_{0}\right)}+\frac{1}{2} L\left(3 a-a_{0}-\frac{\omega^{2}-\omega_{0}^{2}}{\alpha-a_{0}}\right) . \tag{1.5}
\end{equation*}
$$

We may also oltain a value of R by equating the terms not involving i, but as these terms are small, the equation is useful only as a means of testing the accuracy of the olservations. From these equations we find the following terting equation,

$$
\begin{align*}
a^{2} m^{2}\left\{a^{2}\right. & \left.+\omega^{2}-a_{0}{ }^{2}-\omega_{0}{ }^{2}\right\} \\
& =L A\left\{\left(a-a_{0}\right)^{2}+2\left(a-a_{0}\right)^{2}\left\{\omega^{2}+\omega_{0}^{3}\right)+\left(\omega^{2}-\omega_{0}^{2}\right)^{2}\right\} . \tag{15}
\end{align*}
$$

Since $h_{1} \omega^{2}$ is very small compared with $C^{2} m^{2}$, this equation gives

$$
\begin{equation*}
\omega^{2}-\omega_{0}^{2}=a_{0}{ }^{2}-\pi^{2} ; \tag{16}
\end{equation*}
$$

and equation (14) may be written

$$
\begin{equation*}
R=\frac{G^{2} n^{2}}{2 A\left(a-a_{0}\right)}+2 / a \tag{1i}
\end{equation*}
$$

In this expression G may be determined either from the linear measurement of the galwatometer coil, or better, by comparison with a slaudard coil, atcording to the method of Art, 753 . A is the moment of inertia of the maguet and its suspended apparatus, which is to be foum by the proper dynamionl method. w. wa, a and a_{0}, we given by observation.

The determination of the value of m, the magnetic moment of the suspended magnet, is the most difficult part of the investigations, because it is affected by temperature, by the earth's magnetic force, and by mechanical riolence, so that great care must be taken to measure this quantity when the magnet is in the very same circumstances as when it is vibrating.

The second term of R, that which involves A, is of less importane, as it is generally small compared with the first term. 'Ilo value of L may be themed either by ealentation from the known form of the coils or by an experiment on the extmacurrent of intaction. See Art. 750.

Thomson's Melton ty a hewolving Coil.

763.] This method was suggested by Thomson to the Committee of the British Association on Electrical Standards, and the exferment was made by M. M. Balfour Stewart, Fleming Jenkins, and the author in 1803^{*}.

A circular coil is made to revolve with uniform velocity about a vertical axis. A small magnet is suspended by a silk fibre at the centre of the coil. An electric enment is induced in the coil by the earth's magnetism, and also by the suspended magnet. This event is periodic, flowing in opposite directions through the wire of the coil during different parts of each revolution, but the effect of the current i on the suspended magnet is to produce a deflexion from the megrotie meridian in the direction of the rotation of the coil.
764.] Let $/ /$ be the horizontal component of the earth's magnetism.

Let γ be the strength of the current in the coil.
g the total area enclosed by all the windings of the wire.
Q the magnetic fore at the centre of the coil the to unitcurrent.
f the coefficient of self-induetion of the coil.
M the magnetic moment of the suspended magnet.
0 the angle between the plane of the coil and the magnetic meridian.
\$ the angle between the axis of the suspended magnet and the magnetic meridian
A. the moment of inertia of the suspended magnet.

WITs the epeflicient of torsion of the suspension fibre.
a the azimuth of the magnet when there is no torsion.
/R the resistance of the coil.

The kinetic energy of the system is

$$
I=\frac{1}{2} L \gamma^{2}-I I g \gamma \sin \theta-M G \gamma \sin (0-\phi)+M H \cos \psi+\frac{1}{2} \Delta \dot{\phi}^{2} \cdot(1)
$$

The first term, $\frac{1}{2} L y^{*}$, expresses the energy of the current as depending on the coll itself. 'The second term thepents on the mutual metion of the curvent and terrestrial magnetism, the third on that of the curvent and the magnetism of the suspended magroet, the fourth on that of the magretism of the suspended magnet nud ferrestrial machetism, and the last expresses the kinetio energy of the matter composing the marnete and the saspended apparatus which moves with it.

The potential energy of the suspended appatatus arising from the torsion of the fibre is

$$
\begin{equation*}
F^{*}=\frac{M H H}{2} \pi\left(\phi^{2}-2 \phi a\right) \tag{2}
\end{equation*}
$$

The electromagnetic monentum of the current is

$$
\begin{equation*}
h=\frac{d T}{d \gamma}=L_{\gamma}-H_{\gamma} \sin \theta-M G_{\gamma} \sin (0-\phi) \tag{3}
\end{equation*}
$$

and if R is the resistane of the coil, the equation of the current is

$$
\begin{gather*}
R \gamma+\frac{d^{2} T}{d \gamma \cdot d l}=0 \tag{4}\\
0=\omega t \\
\left(R+l \frac{d}{d l}\right) \gamma=I_{J /} \omega \cos \theta+M G(\omega-\phi) \cos (0-\phi) \tag{5}
\end{gather*}
$$

765 . It is the result alike of theory and olservation that p, the azimuth or the magnet, is subject to two kinds of periodic variations. One of these is a free oscillation, whose periodic time depends on the intensity of tervestral magnetism, amd is, in the experiment, several seconds. The other is a forcel vilaration whose pertion is hatf that of the revolving coil, and whose amplitude js, as we shall see, insensible. Hence, in determining γ, we may trent ϕ as sensibly constant.

We thus find

$$
\begin{align*}
& \gamma=\frac{J I_{g} \phi}{\left.h^{2}+h^{2} \omega^{2}\right)^{2}}\left(\pi \cos \theta+I_{i} \sin \theta\right) \tag{7}\\
& +\frac{M I_{g}(\omega-\phi)}{R^{2}+L^{2}(\omega-\phi)^{2}}(R \cos (0-\phi)+L(\omega-\phi) \sin (0-\phi)), \tag{8}\\
& +C e^{-\frac{R}{L}{ }^{\prime}} \text {. } \tag{t}
\end{align*}
$$

The last term of this expression soon dies away when the rotation is continned uniform.

The equation of motion of the suspended magnet is

$$
\begin{equation*}
\frac{d^{2} T}{d \phi d t}-\frac{d T}{d \phi}+\frac{d V}{d \phi}=0 \tag{10}
\end{equation*}
$$

whence $A \ddot{\phi}-M(\gamma \gamma \cos (\theta-\phi)+M H I(\sin \phi+\tau(\phi-a))=0$.
Sulbstituting the value of γ, and arranging the terms aceording to the functions of multiples of θ, then we know from nbservation that.

$$
\begin{equation*}
\phi=\phi_{0}+b e^{-h t} \cos n t+c \cos 2(\theta-\beta), \tag{12}
\end{equation*}
$$

where ϕ_{0} is the moan ralue of ϕ, and the second term expresses the free vibrations gradually decaying, and the third the foreed wibrations arising from the wariation of the deflecting current.

The value of n in equation (12) is $\frac{H / X}{A} \sec \phi$. That of c, the amplitude of the foreed vibrations, is $\frac{1}{3} \frac{n^{2}}{\omega^{2}} \sin \phi$. Hence, when the coil makes many revolutions during one free vibration of the magnet, the amplitude of the forced vibrations of the magnet is very small, and we may neglect the terms in (11) which involve e.
Beginning withs the terms in (11) which do not involve θ, we find

$$
\begin{align*}
\frac{M H I g \omega^{2}}{R^{2}+L^{2} \omega^{2}}\left(R \cos \phi_{0}+I \omega \sin \phi_{0}\right)+ & \frac{M L^{2} G^{2}(\omega-\phi)}{R^{2}+I^{2}(\omega-\phi)^{2}} \pi
\end{aligned} \quad \begin{aligned}
& =M H I\left(\sin \phi_{0}+\tau\left(\phi_{0}-\alpha\right)\right) .
\end{align*}
$$

Remembering that $\dot{\phi}$ is small, and that L is generally small compared with G_{g}, we find as a sufficiently approximate value of h,

$$
\begin{equation*}
R=\frac{G g \omega}{2 \tan \phi_{0}\left(1+\tau \frac{\phi-a}{\sin \phi}\right)}\left\{1+\frac{G M}{g H} \sec \phi-\frac{2 L}{g f}\left(\frac{2 L}{G g}-1\right) \tan ^{2} \phi\right\} . \tag{14}
\end{equation*}
$$

766.] The resistance is thus determined in electromagnetic measure in terms of the velocity θ and the deviation ϕ. It is not necessary to determine $I T$, the horizontal tercestrial magnetie foree, provided it remains constant during the experiment.
To determine $\frac{M I}{I /}$ we must make use of the suspended magnet to deflect the magnet of the magnetometer; as deseribed in Art. 454. In this experiment M should be small, so that this correction becomes of secoudary importance.

For the other corrections required in this experiment seo the Report of the Rilish Assaciation for 1863, p. 168.

Joule's Calorimetric Methorl.

767.1 The leat generated by a emrent y in passing through a conductor whose resistance is R is, by Joule's law, Art. 242 .

$$
\begin{equation*}
h=\frac{1}{J} \int R y^{2} d l \tag{1}
\end{equation*}
$$

where J is the equivalent in dynamieul measure of the unit of heat employed.

Hence, if $\boldsymbol{l l}$ is constant during the experiment, ifs value is

$$
\begin{equation*}
R=\frac{A h}{\sqrt{y^{2} d b}} \tag{2}
\end{equation*}
$$

This method of delormining R involves the determination of A, the heat generated by the curreut in at given time, and of y^{8}, the square of the strength of the chirent.

In Joule's experments *, h was determined ly the rise of temperature of the water in a vessel in which the conducting wire was immersed. It was corrected for the effects of radiation, \&e. by alternate experiments in whichs two current was passed through the wirc.
The strexgth of the current was measured by means of a tangent galvanometer. This method involves the determination of the intensity of terrestrinl magnetism, which was done by the method described in Art. 457. These moasurements were also tested by the current weigher, deseribed in Act, 726 , which measures y^{2} directly. The most direct method of measuring $\int \gamma^{2} d l$, however, is to pass the cument through a self-acting electrodyumometer (Art. $\bar{i} 25$) with a seale which gives readings proportional to y^{2}, and to make the observations at equal intervals of time, which may be done approximately ly taking the realing at the extremities of every vibration of the instrument during the whole course of the experiment.

[^35]
CIIAPTER XIX.

MAGNETHC UXPMS

Detomiation of the Number of Dlectrostatic Units of Whecrivily in one Wlectromagntlic Unit,
768.] Tate absolute magnitudes of the electrieal mits in both systems depend on the muits of length, time, and mass which we adopt, and the mode in which they depend on these units is difterent in the two systems, so that the matio of the dectrient unts witi be expressed by a differmt namber, according to the different units of lengetly and time.

It appears from the table of dimensions, Arto 628 , that the number of electrostatie units of electricity in one electromagnetic unit waries inversely as the magnitude of the unit of length, atul directly as the magnidude of the unit of time which we adopt.

If, therefore, we determane a velocity which is represented numerically by this number, then, even if we adopt new mits of lengll and of time, the number representing this velocity will still lee the number of electrostatic unite of electricity in one electromagnetic unt, according to the new system of measurement.

This velocity, therefore, wheh indicates the relation between electrobtatic and electromarnetic phenomena, is a natural quantity of definito magnitute, and the measurement of this cuantity is one of the most inportant resereclues in electricity.

Tho shew that the guntity we are in sench of is really a velocity, we may observe that in the case of two parallel currents the attraction experienced lyy a length of of one of them is, ly Art. 686,

$$
H^{T}=200^{\prime} \frac{a}{b},
$$

where C, O^{\prime} are the mumerical walaes of the enments in electromag-
netic metsure, and b the distance hetween them. If we make $b=2 a$, then

$$
P=C C^{\prime}
$$

Now the quantity of electricity transmitted by the enrent C in the tine t is Cl in electromagnetic measure, or 3 Ct in electrostatic mensure, if 2 is the number of electrostatic amits in one electromagnetic unit.

Let two small conductors be chargel with the quantities of eleetricity transmitted by the two currents in the time t_{3} and placed at a distance r from cuch other. The repulsion between them will be

$$
F^{\prime}=\frac{C C^{\prime} u^{2} t^{2}}{r^{2}}
$$

Let the distance + be so chosen that this repulsion is equal to the attraction of the currents, then

$$
\frac{C C^{\prime} n^{2} t^{2}}{y^{2}}=C C^{\prime}
$$

Hence

$$
r=u b ;
$$

or the distance r^{2} must incrense with the time l at the rate u. Hence n is a velocity, the absolute magnitude of whith is the same, whatever units we assmme.
769.] To oldain a plysical conception of this velocity, let us imagine a plane surface charged with electricity to the eleetrostatio sur-face-density x, and moving in its own plane with a wollocity t. This moving electrified surface will be equivalent to an electrie cherentshect, the strength of the current llowing through anit of breadth of the surface being σv in electrostatic measure, or $\frac{1}{x} \sigma v$ in electromagnetie measure, if n is the number of electrostatic units in one eleetromagnetic unit. If another plane sarface, parallel to the first, is electrified to the surface-densily a', and moves in the same direction with the velocity v^{\prime}, it will be equivalent to a secomd chrent-sheet.

I'Le electrostatio repulsion between the two electrified surfaces is, by Art. 124, $2 \pi \sigma \sigma^{\prime}$ for every unit of area of the opposed surfaces.

The dectronagnetic attraction between the two curpent-sheets is, by A rt. $653,2 \pi u u^{\prime}$ for every unit of area, wo and z^{\prime} being the surlace-densities of the currents in electromaynotic measurc.

$$
\begin{aligned}
& \text { But } w_{z}=\frac{1}{n} a v, \text { and } w^{\prime}=\frac{1}{n} \sigma^{\prime} v^{\prime} \text {, so that the attraction is } \\
& 2 \pi \sigma \sigma^{\prime} \frac{c \eta^{\prime}}{n^{\prime \prime}} .
\end{aligned}
$$

YoL. JI. n 1

The ratio of the attraction to the repulsion is equal to that of $v v^{\prime}$ to n^{2}. Hence, sinee the attraction and the repulsion are quantities of the same kind, 2 must be a quantity of the same kind as u, that is, a velocity. If we now suppose the velocity of each of the moving planes to be equal to n, the attraction will be equal to the repulsiou, and there will be no mechanical action between them. Hence we may define the ratio of the electric units to be a velocity, such that tro electrified surfaees, moving in the same direction with this velocity, have no mutual action. Since this velocity is about 288000 lilometres per secoud, it is impossible to make the experiment above deseribed.
770.] If the electric surface-density and the velocity can be made so great that the magnetic force is a measurable quantity, we may at least verify our supposition that a moving electrified body is equivalent to an electric curvent.

It appears from Art. 57 that an electrified surface in air would begin to discharge itself by sparks when the electric foree $2 \pi \sigma$ reaches the value 130 . The magnetic force due to the current-sheet is $2 \pi \sigma \frac{\ddot{n}}{n}$. The horizontal magnetic force in l3ritain is about $0.1 \overline{1} \overline{5}$. Hence a surface electrified to the lighest degree, and moving with a velocity of 100 metres per second, wonld act on a magnet with a foree equal to about one-four-thousand th part of the earth's horizontal force, a quantity which ean be measured. The clectrified surface may be that of a non-conducting disk revolving in the plane of the magnetic meridian, and the marget may be placed close to the ascending or descending portion of the disk, and protected from its electrostatic action by a screen of metal. I am not aware that this experiment has been hitherto attempted.

I. Comparison of Units of Dlectricity.

771.] Since the ratio of the electromagnetie to the electrostatio unit of electricity is represented by a velocity, we shall in future denote it by the symbol v. The first numerical determination of this velocity was made by Weber and Kohlrausch \%

Their method was founded on the measurement of the same quantity of electrieity, first in electrostatic and then in clectromagnctic measure.

The quantity of clectricity measured was the charge of a Leyden jar. It was measured in electrostatic measure as the product of the

[^36]eapacity of the jar into the diflerence of potential of its coatings. The capacily of the jer was determined by comparison with that of a splere suspended in an open space at a distance from other bodies. The capacity of such a sphere is expressed in electrostatic measure by its radius. Thus the capacity of the jar may be found and expressed as a certain length. See Art. 227.

The difference of the potentials of the contings of the jar was measured hy connecting the coatings with the electrodes of an electrometer, the constants of which were carefully determined, so that the diflerence of the potentials, E, became known in electrostatic measure.

By multiplying this by c, the capacity of the jar, the charge of the jar was expressed in electrostatic measure.

To determine the value of the charge in electromagnetic measure, the jar was disecharged through the coil of a galvanometer. The effect of the transient current on the magnet of the galvanometer communieated to the magnot a certain angular velocity. The magret then swung round to a certain deviation, at which its velocity was entively destroyed by the opposing action of the earth's magnetism,

By observing the extreme deviation of the magnot the quantity of electricity in the current may be determined in electromagnetic measure, as in Art. 748 , ly the formula

$$
Q=\frac{I I}{G} \frac{T}{\pi} 2 \sin \frac{1}{2} \theta_{3}
$$

where Q is the quantity of electricity in eleotromagnetic measure. We have therefore to determine the following quantities:-
H, the intensity of the horizontal component of terrestrial magretism; see Arti. 456.
at the prineipal constant of the galvanometer; sec Apt. 700.
T, the time of a single viluration of the magnet; and
0 , the deviation due to the tramsient current.
The walue of v obtained by MMI. Welver and Kohlrausch was

$$
v=310740000 \text { metres per second. }
$$

The property of solid dielectries, to which the name of Electric Absorption has been given, renders it difficult to estimate correctly the capacity of a Leyden jar. The apparent capacity varies according to the time which elapses between the charging or discharging of the jar and the measurement of the potential, and the longer the time the greater is the value obtained for the capacity of the jar.

Hence, since the time ocoupied in obtaining a reading of the electrometer is large in comparison with the time during which the discharge through the gratwanometer takes phaee, it is probable that the estimate of the discharge in eleetrostatic meastre is too high, and the value of v, derived from it, is probably also too high.

1I. vexpressed as a Resistanve.

772.$]$ Two other methols for the determination of v lend to an expression of its value in terms of the resistance of a given conductor, which, in the electromagnetie systen, is also expressed as a velocity.

In Sir William Thomson's form of the experiment, a constant curvent is made to flow through a wire of great resistance. The electromptive fore which urges the enrent through tho wire is measurod electrostatically by connecting the extrenities of the wire with the eleetrodos of an absolute electrometer", Arts. 217, 218. The strengtli of the eurrent in the wire is measured in electromagnetic mensure by the dellexion of the suspended coil of an electrodynamometer througlx which it passes, Ant. 725 . The resistamee of the eirent is known in electromanetic measure by comparison with a standard coil or Ohm. By multiplying the strength of the eurrent by this resistance we obtais the electromotive fore in electromagnetic measure, and from a comparison of this with the electrostatic measure the walne of v is obtained.

This method requires the simultaneous determination of two forces, by meaus of the elcetrometer and clectrodynamometer respectively, and it is only the ratio of these forees which appears in the result,
773.] Another method, in whieh these forces, insted of betng separately measured, are dinectly opposed to ench other, was employed by the present writer. The ends of the great resistance coil are conmeted with two parallel disks, one of which is noveable. The same diference of potentials which sents the entrent brough the areat resistance, also causes an attroction between these disks. At the same time, an electric cmrent which, in the actual experiment, was distinet from the primary ourient, is sent through two coils, lastened, one to the back of the fixed disk, and the other to the back of the moreable disk. The cturent flows in opposite directions through these eoils, so that they repel one another. By adjustiog the distance of the two disks the attraction is exaetly balanced by the repulsion, while at the same time another olverver,
by menns of a differential gelvanometer with shants, determines the ratio of the primary to the secondary elurent.

In this experiment the only measurement which must be referred to a material standard is that of the great resistance, which must be determined in alsolute mensure by comparison witlit the Ohm. The other mensurements are required only for the determination of ratios, and may therefone be determined is terms of my arbitrary unit.

Thus the ratio of the two forces is ar ratio of equality.
The ratio of the two currents is found by a comparison of resistances when there is no deffexion of the differential galvanometer.

The attractive force depends on the square of the ratio of the diameter of the disks to their clistance

Tho repulsive force depends on the ratio of the diameter of the coils to their distance.

The walue of y is therefore expressed direetly ${ }^{*}$ in terms of the ressistance of the great coil, which is itsell compared with the Ohm.

The value of $\%$, as fonm by Thomson's method, was 28.2 Ohms *; by Maxwell's, 28.8 Olmst.

III. Whecrostatic Capacity in Whetromaghetic Measure.

774.] The capacity of a condenser may be nseertained in electromagnetie masure by a comparison of the electromotive force which produces the charge, and the quantity of electrieity in the oursent of dischatge. By means of a voltaic lathery a entrent is maintained tlorough a cireuit containing a coil of great resistance. The condenser is charged by putting its chectrodes in contact with those of the resistance coil. The current through the coil is measured by the deflexion which it produces in th galvanometer. Let ϕ be this deflexion, then tue current is, by $\mathbf{A} t \mathrm{t} .742$,

$$
\bar{\pi}=\frac{\beta^{\prime}}{\beta} \tan \phi,
$$

Where $J I$ is the horizontal component of terrestrial magnetism, and Q is the principal constant of the galvanometer.

If f is the resistance of tho coil through which flais current is made to flow, the difference of the potentials at the crds of the coil is

$$
H=R \gamma
$$

[^37]and the charge of electricity produced in the condenser, whose capacity in electronaguetic measure is O, will be
$$
Q=A C .
$$

Now let the electrotles of the condenser, and then those of the galvanometer, be disconnected from the circuit, and let the magnet of the galvanometer be brought to rest at its position of equitibrium. Then let the electroles of the coudenser be connected with those of the galyanometer. A transient current will flow throngh the gatvanometer, and will cause the magnet to swing to an extreme deflexion 0 . Then, by Art. 748 , if the discharge is equal to the charge,

$$
Q=\frac{W}{G} \frac{T}{\pi} 2 \sin \frac{1}{2} \theta
$$

We thus oldtain as the value of the capacity of the condenser in electromagnetic measure

$$
C=\frac{T}{T_{v}} \frac{1}{R^{2}} \frac{2 \sin \frac{1}{2} \theta}{\tan \phi}
$$

The capacity of the condenser is thus determined in terms of the following quantities :-
T, the time of wibration of the magnet of the galvanometer from rest to rest.
R, the resistance of the coil.
θ, the extreme limit of the swing produced by the discharge.
ϕ, the constant deflexion due to the current through the coil R.
This method was employed by Professor Fleeming Jenkin in determining the capacity of condensers in electromagnetic measure *.

If c be the capacity of the same condenser in electrostatic mensure, as determined by comparison with a condenser whose eapacity can be calculated from its geometrical data,

Hence

$$
c=\vartheta^{2} C .
$$

$$
v^{2}=\pi R \frac{c}{T} \frac{\tan \phi}{2 \sin \frac{1}{2} \theta^{\circ}} .
$$

The quantity 0 may therefore be found in this way. It depends on the determination of R in eleetromagnetic measure, but as it involves only the square root of R, an exror in this determination will not affeet the value of y so much as in the method of Arts. 772, 773.

> Intermillent Current.
775.] If the wire of a battery-circuit be broken at any point, and

[^38]the broken ends comected with the electrodes of a condenser, the current will flow into the condenser with a strength which diminishes as the difference of the potentials of the condenser increnses, so that when the condenser has received the full charge corresponding to the electromotive fore acting on the wire the current ceases entirely.

If the electrodes of the condenser are now disconnected from the ends of the wire, and then again eonnected witly them in the reverse order, the condenser will discharge itself through the wire, and will then becomo reclarged in the opposite way, so that a transient current will flow through the wire, the total quantity of which is equal to two charges of the condenser.

By means of a piece of mechanisn (commonly called a Commutator, or wappe) the operation of reversing the commexions ol the condenser can be repented at regular intervals of time, ench interval being equal to 7 . If this interval is sufliciently long to allow of the complete discharge of the condenser, the quantity of electricity transmitted by the wite in ench interval will be $2 E C$, where E is the electromotive foree, and C is the caparity of the condenser.

If the magnet of a galvanometer included in the circuit is loaded, so as to swinge so slowly that a great many discharges of the condenser accur in the time of one fres vibration of the magnet, the snecession of diselarges will act on the magnet like a steady curvent whose strength is $\quad \frac{2 J C}{T}$.

If the condenser is now removed, and aresistance coil substituted for it and adjusted till the steady carrent through the galvarometer produces the same deflexion as the succession of discharges, and if π is the resistance of the whole circuit when this is the case,

$$
\begin{align*}
& \frac{E}{A}=\frac{2 B C}{T} \tag{1}\\
& A=\frac{T}{2 C} \tag{2}
\end{align*}
$$

We may thas compare the condenser with its commutator in motion to a wire of a cortain electrical resistance, and we may make use of the different methods of mensuring resistance deseriber in Arts, 345 to 357 fin order to determine this resistance.
776.] For this purpose we may substitute for any one of the wiues in the method of the Differential Galsanometer, Art. 346 , or in that of Wheatstome's Bridge, Art. 347, a condenser with its commutator. Led us suppose that in cither ense a zero deflexion of the
galvanometer hans boen obtained, first with the condenser and commutator, and then with a coil of resistance R_{1} in its place, then the quatity $\frac{T}{2 C}$ will be measured ly the resistance of the cirenit of which the coil R_{1} forms part, and which is completed by the rematuler of the conducting system including the battory. Hence the resistance, R, which we have to calculate, is equal to R_{1}, that of the resistance coil, tngethor with R_{2}, the resistance of the romainder of the system (including the battery), the extremities of the resistance enil being taken as the electrodes of the system.

In the cases of the diflicrential gralvanometer and Wheatsone's Bridge it is not neeessary to make a second experiment by substituting a resistance coil for the condenser. The value of the resistance required for this purnose may be found by ealeulation from the other known resistances in the system.

Using the notation of Art. 347, and supposing the condenser and commutator substituted for the conductor $A C$ in Wheatstone's Bridge, and the galwanometer inserted in $O A$, and that the defexion of the galwanometer is zero, then we know that the resistance of a coil, which placed in $A C$ would give a zero dellexion, is

$$
\begin{equation*}
\frac{c \gamma}{\beta}=h_{1} . \tag{3}
\end{equation*}
$$

The other part of the resistance, R_{2}, is that of the system of conductors $A O, O C, A B, B C$ and $O B$, the points A and C being considered as the electrodes. Hence

$$
\begin{equation*}
f_{2}=\frac{\beta(c+a)(\gamma+a)+c a(\gamma+a)+\gamma a(c+a)}{(c+a)(\gamma+a)+\beta(c+a+\gamma+a)} . \tag{4}
\end{equation*}
$$

In this expression a denotes the internal resistance of the battery and its connexions, the value of which cannot be determined with certainty; but by making it small compared with the other resistances, this uncertainty will only slightly affeet the value of h_{2}.

The value of the coprecity of the condenser in electromagnetie measure is

$$
\begin{equation*}
C=\frac{t}{2\left(R_{1}+R_{2}\right)} . \tag{5}
\end{equation*}
$$

77\%.] If the condenser has a large cupacity, and the commatator is very rapid in its action, the condenser may not be fully discharged at each reversal. The equation of the electric eurrent during the diselarge is

$$
\begin{equation*}
Q+R_{2} C \frac{d Q}{d t}+E C=0 \tag{6}
\end{equation*}
$$

where Q is the charge, C the capacity of the condenser, R_{2} the
resistanco of the rest of the system between the electrontes of the condenser, and E the electromotive fores due to the connexions with the battery.

Hence

$$
\begin{equation*}
Q=\left(Q_{0}+F O\right) e^{-\frac{t}{R_{2}}}-N C, \tag{7}
\end{equation*}
$$

where Q_{0} is the initial value of Q.
If τ is the time during which contact is mantained during each disolarge, the fuantity in each discharge is

$$
\begin{equation*}
Q=2 F C \frac{1-e^{-\frac{7}{R_{2}!}}}{1+e^{-\frac{T}{R_{e}}}} \tag{8}
\end{equation*}
$$

By making c nnd γ in equation (1) large compared with β, a, or a, the time represented by ${T_{2}}_{2} C$ maty be made so small compared with τ, that in calculating the value of the exponential expression we maty use the value of C in equation (s). We thus find

$$
\begin{equation*}
\frac{\tau}{R_{2} C}=2 \frac{R_{1}+R_{2}}{R_{2}} \frac{\tau}{T} \tag{9}
\end{equation*}
$$

where R_{1} is the resistance which must loe sulbstituted for the condeuser to produce an equivalent effect. R_{2} is the resistance of the rest of the system, T is the interval hetween the leginning of a discharge and the beginnitg of the next discharge, and τ is the dration of contact for each diseharge. We thus obtain for the corrected value of C in electromagnetie measure
IV. Comparison of the Blectrostatic Capacity of a Condenser with We Electromagnetic Canacily of Selfinduation of a Coil.
778.] If two points of a conducting circuit, between which the resistance is f_{x} are connected with the electroles of a condenser whose eapacity is O, then, when an electromotive force acts on the cireuit, part of the enrent, instead of passing through the resistance h, will be employed in elatginge the condenser. The curcent through f will therefore rise to its final walue from zero in a gradual manner. It appears from the

Fig. 酎。 mathematical theory that the manner in which the curvent through

R rises from zero to its fimal walue is expressed by a cormula of exactly the same kind as that which expresses the value of a current urged by a coustant electromotive force throngh the coil of an electromaguet. Hence we may place a condenser and an electromagnet on two opposite members of Wheatstone's Bridge in sueh a way that the current through the galwameter is always zero, even at the instant of making or lreaking the lattery cirenit.

In the figure, let $P, Q, R_{3} \&$ be the resistances of the four members of Wheatstone's Bridge respectively. Let a coil, whose coefficient of self-induction is L_{2}, be made part of the member $A I I$, whose resistance is Q, and let the electrodes of a coudenser, whose enpacity is C, be comnected by picces of small resistance with the points F and $\%$. For the salke of simplicity, wo shall assume that there is no earrent in the galvanometer G, the electrodes of which are connected to F and $I /$. We have therefore to determine the condition that the potential at F may be equal to that at $I F$. It is only when we wish to estimate the degree of accuracy of the method that we require to calculate the current through the galvanometer when this condition is not fulfilled.
Let a be the total quantity of electricity which has passed through the member $A F$, and z that which has passed through $F Z$ at the time t, then $x-z$ will be the charge of the condenser. The clectromotive force acting between the electrodes of the condenser is, by Ohm's law, $R_{d z}^{d t}$, so that if the capacity of the condenser is C,

$$
\begin{equation*}
x-z=\lambda C \frac{d z}{d t} \tag{1}
\end{equation*}
$$

Let y be the total quantity of electricity which has passed through the member $A I I$, the electromotive force from A to H must be equal to that from A to F, or

$$
\begin{equation*}
Q \frac{d y}{d l}+L \frac{d^{2} y}{d l^{2}}=P \frac{d x}{d l} . \tag{2}
\end{equation*}
$$

Since there is no current throngla the galvanometer, the quantity Which has passed througln $H Z$ must be also y, and we find

$$
\begin{equation*}
s^{d y}=R \frac{d z}{d \bar{l}} . \tag{3}
\end{equation*}
$$

Sulstituting in (2) the value of x, derived from (1), and comparing with (3), we find as the condition of no eurrent through the galvanometer

$$
\begin{equation*}
R Q\left(1+\frac{L}{Q} \frac{d}{d l}\right)=S P\left(1+R C \frac{d}{d l}\right) . \tag{4}
\end{equation*}
$$

The condition of no final current is, as in the ordinary form of Wheatstone's Bridge, $\quad Q R=S P$.
The condition of no enrent at making and breaking the battery connexion is

$$
\begin{equation*}
\frac{L}{Q}=R C . \tag{6}
\end{equation*}
$$

Here $\frac{L}{Q}$ and $R C$ are the time-constnats of the members Q and R respectively, and if, by warying Q or R, we can adjust the members of Wheatstone's Bridge till the galvanometer indicates $n 0$ current, either at making and breaking the cireuit, or when the current is steady, then we know that the time-constant of the coil is equal to that of the condenser.

The cofflicient of self-induction, I, can be determined in electromarructic measure from a comparison with the coeffeiont of mutual induction of two circrits, whose geometrical data are known (Art. 756). It is a quantity of the dimensions of a line.

The capacity of the condenser can be determined in electrostatio measure by comparison with a condenser whose geometrical data are known (Art. 229). This quantity is also a length, c. The electromagnetic mensure of the capacity is

$$
\begin{equation*}
c=\frac{c}{v^{2}} . \tag{7}
\end{equation*}
$$

Substifuting this value in equation (9), we obtain for the value of x^{2}

$$
\begin{equation*}
v^{2}=\frac{c}{L} Q R \tag{8}
\end{equation*}
$$

where c is the capacity of tho condenser in electrostatic measure, L the coeflicient of self-induction of the coil in electromagnetio mensure, and Q and R the resistances in electromagnetic measure. The value of $y_{\text {, }}$ as determined by this method, depents on the determination of the unit of resistance, as in the second method, Arts. 772, 773.

V. Combination of the Electrostatic Capacity of a Condenser with the Electromagnetic Capacity of Self-induction of a Coil.

779.] Let C be the capacity of the conlenser, the surfaces of which are connected by a wire of resistance π. In this wire let the coils L and L^{\prime} be inserted, and let L denote the sunn of their capacities of self-iuduction. The coil h is hung by a bifilar suspension, and consists of two coils in vertical phanes, between which
passes a vertieal axis which carries the magnet $M T$, the n is of which revolves in a horizontal plane between the eoils $/ f / /$. I'he coil $/$ has a large coeflicient of self-induetion, and is fixed. The stis-

Fig. 6.5 pended coil $/$ is protected from the currents of air cansed by the rotation of the magnet by enclosing the rotating parts in a hollow case.

The motion of the magnet enuses currents of induction in the coil, and these are acted on by the magnet, so that the plane of the suspended coil is deflected in the direction of the rotation of the magnet. Let us determine the strengtly of the induced curronts, and the magnitude of the deflexion of the suspended coil.

Let x be the charge of electricity on the upper surface of the condenser C, then, if X is the electromotive force wheh produces this charge, we have, by the theory of the condenser,

$$
\begin{equation*}
=C D \tag{1}
\end{equation*}
$$

We lave also, by the theory of electric eturents,

$$
\begin{equation*}
R \hat{x}+\frac{d}{d t}(H \dot{x}+M \cos \theta)+E=0 \tag{2}
\end{equation*}
$$

where M is the electromagnetic momentum of the circuit L^{\prime}, when the axis of the magnet is normal to the plane of the coil, and θ is the angle between the axis of the magnet and this normal.

The equation to determine a is therefore

$$
\begin{equation*}
C L \frac{d^{2} a}{d d^{2}}+C N \frac{d x}{d l}+x=C M \sin \theta \frac{d \theta}{d l} \tag{3}
\end{equation*}
$$

If the eoil is in a position of equilibrium, and if the rotation of the magnet is uniform, the angrular velocity being n_{x}

$$
\begin{equation*}
\theta=w t \tag{4}
\end{equation*}
$$

The expression for the current consists of two parts, one of whiel is independent of the term on the right-hand of the equation, and diminishes according to an exponential Function of the time. The other, which may be called the fored curvent, depends entirely on the term in θ, and may be written

$$
\begin{equation*}
x=A \sin \theta+B \cos \theta \tag{b}
\end{equation*}
$$

Finding the values of A and B by sulstitnation in the equation (3), we obtain

$$
\begin{equation*}
a=M C n \frac{A C n \cos \theta-\left(1-C L n^{2}\right) \sin \theta}{h^{2} C^{2} n^{2}+\left(1-C \operatorname{Ln} n^{2}\right)^{2}} \tag{6}
\end{equation*}
$$

The moment of the force with which the magnet acts on the coil I^{\prime}, in which the current \dot{x} is flowing, is

$$
\begin{equation*}
\Theta=\dot{x} \frac{l}{d \theta}(M \cos \theta)=M \sin \theta \frac{d x}{d l} . \tag{r}
\end{equation*}
$$

Integrating this expression with respect to t, and dividing by t, we find, for the mean value of θ,

$$
\begin{equation*}
\bar{\Theta}=\frac{1}{2 h^{2} C^{2} n^{2}+\left(1-C L C^{2} n^{2}\right)^{2}} . \tag{s}
\end{equation*}
$$

If the coil has a considerable nroment of inertia, its forced wilstations will be very small, and its mean deflexion will be proportional to $\overline{\text { a }}$.

Let D_{1}, D_{2}, D_{3} be the observed deflexions corresponding to angular velocities n_{1}, n_{2}, n_{3} of the magnet, then in greneral

$$
\begin{equation*}
P \frac{n}{D}=\left(\frac{1}{n}-C L / n\right)^{2}+R^{2} C^{2}, \tag{9}
\end{equation*}
$$

where P is a constant.
Rliminating P and R from three equations of this form, we find

If n_{2} is such that $O L n_{2}^{2}=1$, the value of $\frac{n}{D}$ will be a minimurn for this walue of n. The other values of n should be taken, one greater, and the other less, than n_{2}.

The value of $C f$, determined from this equation, is of the dimensions of the square of a time. Let us call it \mathbf{T}^{-2}.

If $C_{\text {a }}$ be the electrostatic mensure of the eapacity of the condenser, and $L_{0 n}$ the electromagnetic measure of the self-induction of the coil, hoth C_{u} and $I_{f_{n}}$ are lines, and the product
and

$$
\begin{gather*}
C_{\mathrm{a}} L_{\mathrm{m}}=v^{2} C_{\mathrm{s}} L_{\mathrm{s}}=v^{2} C_{\mathrm{n}} L_{\mathrm{m}}=v^{2} \tau^{2} ; \tag{11}\\
v^{2}=\frac{C_{n} L_{m}}{\tau^{2}}, \tag{12}
\end{gather*}
$$

where T^{2} is the value of $C^{2} L^{2}$, determined by this experiment. The experiment here suggested as a method of determining v is of the same nature as one described by Sir W. N. Grove, Phil. Mag,

March 1868, p. 184. See also remarks on that experiment, by the present writer, in the number for May 1868.
VI. Whelrostatic Measnrement of Resistance. (Sec Art. 355.)
780.] Let a condenser of capacity O be discharged throngh a conductor of resistance R, then, if x^{2} is the charge at any instant,

$$
\begin{equation*}
\frac{x}{c^{\prime}}+R \frac{d x}{d l}=0 \tag{1}
\end{equation*}
$$

Hence

$$
\begin{equation*}
x_{x}=x_{0} e^{-\frac{t}{R C}} \tag{2}
\end{equation*}
$$

If, by any method, we can make contact for a short time, which is accurately known, so as to allow the current to flow through the conductor for the time l, then, if E_{0} and E_{1} are the readings of ans electrometer put in conmexion with the condenser before and after the operalion, $\quad \pi C\left(\log _{e} F_{i}-\log _{\mathrm{t}} D_{1}\right)=t$.

If C is known in electrostatic measure as a linear quantity, R may be found from this equation in electrostatic measure as the reciprocal of a velocity.

If R_{n} is the numerien walne of the resistance ns thas determined, and T_{m} the wumerical walue of the resistance in electromagnetic measure,

$$
\begin{equation*}
y^{2}=\frac{\pi_{m}}{h_{n}} \tag{4}
\end{equation*}
$$

Since it is wecessary for this experiment that R should be wery great, and since R must be small in the electromagnetic experiments of Arts. 763 , Se., the experiments must be made on separate conduetors, and the resistance of these conductors compared by the ordinary methods.

CHAPTER XX.

```
BLEGTROMAGNLTIC THEORY OF LIGHT.
```

781.] Is several parts of this treatise an attempt has been made to explain electromagnetic plenomena by means of mechanical action transmitted from one body to another by means of a medium occupying the space between them. The undulatory thoory of light also assumes the existence of a medium. We have now to shew that the properties of the electromaguetie medium are identical with those of the laminiferous medium.

To fill all space with a new medium whenever any new phenomenon is to be explained is by no means philosophical, but if the study of two different hranches of seience has independently suggested the idea of a medim, and if the properties which must be attributed to the medium in order to account for electromagnetic plenomena are of the same kind as those which we attribute to the luminiferous medium in order to account for the phenomena of light, the evidence for the physical existence of the medium will be considerably strengthenei.

But the propertios of bodics are capable of quantitative measurewent. We therefore obtain the numerical walue of some property of the mediam, such as the welocity with which a disturbance is propagated throughl it, which can be calculated from electromagnetic experiments, and also obserfed directly in the case of light. If it should be found that the velocity of propagation of electromagnetie disturbances is the same as the velocity of light, and this not only in air, but in obler transparent media, we shall have strong reasons for believing that light is an electromagnetic phenomenon, and the combination of the optieal with the electrical evidence will produce a conviction of the reality of the medium similan to that which we obtain, in the ease of other kinds of matier, from the combined evidence of the senses.
789.] When light is emitted, at certan amona of energy is expended by the laminons body, and if the light is absorbed by another loody, this body lecomes heated, showing that thas received energy from without. During the interval of time after the light left the first body and before it reached the second, it must have existed as energy in the intervening space.

According to the theory of emission, the transmission of energy is elfected ly the actual tramslerence of light-corpusenles from the luminous to the illuminated body, carrying with them their kinetic energy, together with any other kind of energy of which they may be the receptacles.

Aecording to the theory of undulation, there is a material medium which fills the space between the two bodies, and it is by the action ol" contiguous parts of this medium that the energy is passed on, from one portion to the next, till it reaches tho illuminated body.

The luminiferous medium is therefore, during the passnge of light through it, a receptacle of energy. In the undutatory theory, as developed lyr Huygens, F'resnel, Young, Green, \&e., this energy is apposed to be partly potential and partly kinetic. The potential energy is supposed to be due to the distortion of the elementary portions of the medium. We must therefore regard the medium as elastie. The linetic energy is supposed to be due to the vibratory motion of the medium. Wo must therefore regard the methum as having a finite density.

In the theory of electricity and magnetism adopted in this treatise, two forms of energy are recorgnised, the electrostatie and the electrokinetic (see Arts, 630 and 636), and these are supposed to have their seat, not morely in the electrified or magnetized bodies, but in every put of the surounding space, where electric or magnetic foree is olserved to act. Hence our thenry agrees with the undulatory theory in assuming the existence of a medium which is capable of becoming a receptacle of two forms of encrgy *.
783.] Let us next determine the eonditions of the proprgation of an electromagnetic disturbance through a uniform medium, which we shall suppose to be at rest, that is, to have no motion exeept that which may be involved in clectromaguetic distumbences.

[^39]Luet O be the specifie conductivity of the medinm, K its specife erpacity for elcetrostatic induction, and μ its magnetic "permeability."

To obtain the general equations of electromagnetic disturbance, we shall express the true errent (s in terms of the vector potential Fif and the electric poteotial Ψ.

The the curvent (5 is made up of the conduction curent $\sqrt{\sqrt{8}}$ and the variation of the electric displacement $\dot{(1)}$, and since both of these depend on the electromotive force (8 , we find, as in Art. 611 ,

$$
\begin{equation*}
\Theta=\left(C+\frac{1}{4 \pi} \pi \frac{d}{d l}\right) \cdot(\epsilon \tag{1}
\end{equation*}
$$

But since there is no motion of the meditn, we may express the clectromotive forec, as in Art. 599,

$$
\begin{equation*}
\bar{c}=-2 \tag{2}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\left(5=-\left(C+\frac{1}{4 \pi} h^{-d}\right)\left(\frac{d W}{d l}+\nabla \Psi\right)\right. \tag{3}
\end{equation*}
$$

But we may determine a relation between (5 and of in a different way, is is shewn in Att. 616 , the equations (4) of which may be written $\quad 4 \pi \mu 3=\nabla^{2} 29+\nabla J_{3}$
where

$$
\begin{equation*}
J=\frac{d W}{d b}+\frac{d G}{d y}+\frac{\sqrt{7} / /}{d z} \tag{4}
\end{equation*}
$$

Combiningr equations (3) and (4), we obtain

$$
\begin{equation*}
\mu\left(4 \pi C+K \frac{d}{d i}\right)\left(\frac{d 9}{d l}+\nabla \Psi\right)+\nabla^{2} 9+\nabla J=0 \tag{6}
\end{equation*}
$$

which we may express in the form of three equations as follows-

$$
\left.\begin{array}{l}
\mu\left(4 \pi C+K \frac{d}{d l}\right)\left(\frac{d F}{d l}+\frac{d \Psi}{d x}\right)+\nabla^{2} \mu^{\mu}+\frac{d J}{d x}=0 \\
\mu\left(4 \pi C+h \frac{d}{d l}\right)\left(\frac{d G}{d l}+\frac{d \Psi}{d /}\right)+\nabla^{2} G+\frac{d J}{d /}=0 \tag{7}\\
\mu\left(4 \pi C+K \frac{d}{d}\right)\left(\frac{d I}{d /}+\frac{d \Psi}{d z}\right)+\nabla^{2} h+\frac{d J}{d /}=0
\end{array}\right\}
$$

These are the general equations of electromagnetic disturbanees.
If we diflerentiate these equations with reapect to x, y_{3} and ε respectively, and ould, we obtain

$$
\begin{equation*}
\mu\left(4 \bar{\pi} C+A^{d} d\right)\left(\frac{d y}{d l}-\nabla^{2} \Psi\right)=0 \tag{8}
\end{equation*}
$$

If" the medium is a non-conductor, $C=0$, and $\nabla^{2} \Psi$, whiek is proportional to the volume-density of free electricity, is independend of ℓ. Hence I must be a linear function of t, or a constant, or zuro, and we may therefore leave J and w ont of theont in considuring periodie disturlances.
vot. 11 .

Propagalion of Undulutions in a Non-comduching Aterlmon.
784.] In this case $C=0$, and the equations become

$$
\left.\begin{array}{l}
N_{\mu} \frac{d^{2} l^{2}}{d L^{2}}+\nabla^{2} F=0 \\
N_{\mu} \frac{d^{2} Q}{d^{2}}+\nabla^{2} G=0 \tag{9}\\
A \mu \frac{d^{2} H}{d l^{2}}+\nabla^{2} H=0
\end{array}\right\}
$$

The equations in this form are similar to those of the motion of an elastie solid, sud when the initial condtions are given, the solution can be expressed in a form given by Poisson*, and applied by Stokes to the Theory of Diffraction t.

Let us write

$$
\begin{equation*}
V=\frac{1}{\sqrt{K} \mu} \tag{10}
\end{equation*}
$$

If the values of $F, G_{2} H$, atul of $\frac{d F}{d t}, \frac{d G}{d t}, \frac{d / l}{d t}$ are given at every point of space at the epoels ($t=0$), then we can determine their values at any sulsequent time, t, as follows.

Let O be the point for which we wish to determine the value of γ at the time t. Witlis O as centre, and with radius $7^{\prime} \ell$, deseribe at sphere. Find the initial value of F at every point of the spherical surface, and take the merm, \bar{F}, of all these values. Find also the initial values of $\frac{d F}{d h}$ at every point of the spherieal surface, and let the mear of these values be $\frac{d \bar{F}}{d l}$.

Then the value of P at the point O, at the time t, is

$$
\left.\left.\begin{array}{ll}
F & =\frac{d}{d t}(\bar{F} t)+t \frac{\overline{d F}}{d t} \\
\text { Similarly } & G \tag{11}
\end{array}\right)=\frac{d}{d t}(\bar{G} t)+t \frac{d \vec{d}}{d l},\right\}
$$

785.] It appears, therefore, that the condition of things at the point O at any instant depends on the condition of things at a distance T^{\prime} and at an interval of time b previously, so that any disturbanee is propagated through the medium with the velocity f.

Let us suppose that when 6 is zero the quantities of and ig are 2

[^40]zero except within a corfan space 9 . Then their values it O at the time t will be zero, unless the spherical sutfee deseribed about O as eentre with radius $/ \ell$ lies in whole or in part within the space S. If O is ontside the space S there will be no disturbance at Ountil $T^{\prime} t$ becomes equal to the shorlest distanee from O to the space S. The disturbace at O will then begin, ased will gro on till $F \ell$ is equal to the groatest distance from O to any part of S. The disturlanee at O will then ecase for ever.
786.] The quantity T, in Art. 793 , which expresses the velocity of propagntion of electromagmetic disturbances in a moti-conducting medium is, by equation (9), equal to $\frac{1}{\sqrt{h \mu}}$.

If the medium is air, and ir we idopt the electrostatic systom of measurement, $h=1$ and $\mu=\frac{1}{v^{2}}$, so that $\Gamma=v$, or the velocity of propagation is numerically equal to the number of electrostatie units of electricity in one clectromagrotio unit. If we adopt the eflectromagnetic system, $K=\frac{1}{p^{2}}$ and $\mu=1$, so that the equation $\gamma^{\prime}=v$ is still true.

On the theory that light is an electronagnetie disturbanee, proprgated in the same medimem through which other electromagnetic thetions are transmitted, F monst be the velocity of light, a quitutity the value of which has been estimated by several methods, On the other land, " is the number of electrostatic units of electricity in onn electronagnetic unit, and the methorls of determining this quantity have been described in the last elnopter. They are rutite independent of the methods of Finding the velocity of light, Hence the agreement or disngrement of the values of F and of 4 furnisles a test of the electromagnetic thery of light.
787. In the following table, the principal results oll direct observation ol the velocity of lighty either through the sit on throngh the planetary spaces, are compared with the principal results of the comparison of the electric units:-

Velucity of Ligha (mètrex per gecend). Hationf Pilectrac Usints.
Hizeau , 131000000
$\left.\begin{array}{c}\text { Abertation, Re., and } \\ \text { Sun's Parallax }\end{array}\right\} \ldots 308000000$
Foutant 298300000
It is manifest that the velocityr of light and the ratio of the units are quantities of the same order of magnaturle. Nether of them

$$
r \subset z
$$

can be sated to be determined as yet with shell a degree of acematy as to enable us to assort that the one is grater or less than the other. It is to be hoped that, by further experiment, the relation leetween the magnitudes of the two quantities may be more accurately determined.

In the meantime our theory, which asserts that these two guantitis are equal, and assigns a plysiend reason for this equality, is certainly not contradicted by the comparison of these results such as they ire.
788. In other media than ans, the velocity F is inversely proprotional to the square root of the product of the dielectric and the magnetic inductive capacities. According to the undulatory theory, The velocity of hight in different media is inversely proportional to their indices of refraction.

There are no transparent medit for which the magnetic capacity differs from that of ais more than by a very small fractions. Hence the principal part of the difference between these media must depend on their dielectric capacity. According to mar theory, therefore, the dielectric capacity of a transparent medium should be equal to the square of its index of refraction.

But the value of the index of refraction is different for light of different kinds, being greater for light of more rapid vibrations. We must therefore select the index of refraction which corresponds to waves of the longest periods, hearse these are the only waves whose motion can be compared with the slow processes by which we determine the capacity of the dielectric.
789.] The only dielectric of which the capacity has been hitherto determined with sufficient accuracy is paraffin, Cor which in the solid Form M.M. Gibson and Barclay found *

$$
\begin{equation*}
K=1,975 \tag{12}
\end{equation*}
$$

Dr. Gladstone has found the following values of the index of refraction of melted paraffin, siege. 0.8 , 9 , for the lines A, D and $H:-$

Temperature	A	D	J
$54^{\circ} \mathrm{C}$	1.4306	1.4357	1.4499
$57^{\circ} \mathrm{C}$	1.429 .4	1.4343	$1.4493 ;$

from which I find that the index of refraction for waves of infinite length would be trout 1.423.
"The square root of K is 1.40 s.

The difference between these numbers is greater than can be are-

[^41]countel for by errors of observation, and shews beat our theories of ${ }^{4}$ the structure of bodies must be much improved before we can feduce their optical from their electrical properties. At the same time, I think that the agreement of the mambers is such that if no groater diserepney were found betwen the numbers derived from the optieal and the electrical propertios of a considermble number of substances, we shoukd be waranted in conchuding that the square root of K, though it may not be the complete expression for the index of refraction, is at least the most importanf term in it.

Prowe Waves.
790.] Let us now couline on attention to plame wryes, the fromb of which we shall suppose normal to the axis of z. All the quantities, the variation of which constitutes such waves, tre functions of z and t only; and are independent of x and y. Hence the equaLions of magnetic induction, $(\Delta), A r t$, 591 , awe rednced to

$$
\begin{equation*}
a=-\frac{d G}{d z}, \quad t=\frac{d F^{x}}{d d^{2}}, \quad e=0^{2} \tag{13}
\end{equation*}
$$

or the magnetie distarbance is in the plane of the wave. This agrees with what we linow of that disturbance which constitutes light.

Putting $\mu \alpha, \mu \beta$ and $\mu \gamma$ for α, b and o respeatively, the equations of clectric eurrents, Art. 607, become

$$
\left.\begin{array}{l}
4 \pi \mu v=-\frac{\|^{2}}{d^{2}}=-\frac{d^{2} f}{d b^{2}} \\
\pm \pi \mu v=\frac{d u}{\sqrt{2}}=-\frac{d^{2} G}{\sqrt{z^{2}}} \tag{11}\\
4 \pi \mu v=0 .
\end{array}\right\}
$$

Hence the electric disturtmee is also in the plane of the wave, and if the magnetic disturlance is confined to one direction, saty that of x, the electrice disturbanee is confinel to the perpendicular directions or that of y.

But we may eateulate the clectrie disturbance in another way, for if f, g, h are the components of electric displacement in a nomcondueting medimm

$$
\begin{equation*}
w=\frac{d /}{d l}, \quad \psi=\frac{d g}{d t}, \quad v=\frac{d / b}{d l} \tag{15}
\end{equation*}
$$

If P, Q, are the components of the electromotive foree
and since there is no motion of the medium, equations (13), Art. 598 , become $P=-\frac{d F}{d t}, \quad Q=-\frac{d G}{d t}, \quad R=-\frac{d H}{d t}$.
Hence $\quad u=-\frac{K}{4 \pi} \frac{d^{2} F}{d l^{2}}, \quad v=-\frac{K}{1 \pi} \frac{d^{2} f}{d l^{2}}, \quad v=-\frac{K}{4 \pi} \frac{d^{2} b^{2}}{d l^{2}}$.
Comparing these values with those given in equation (14), we find

$$
\left.\begin{array}{rl}
\frac{d^{2}-}{d z^{2}} & =\kappa_{\mu} \frac{d^{2} \mu}{d l^{2}}, \\
\frac{d^{2} G}{d z^{2}} & =K_{\mu} \frac{d^{2} G}{d t^{2}} \tag{19}\\
0 & =K_{\mu s} \frac{d d^{2} I}{d b^{2}}
\end{array}\right\}
$$

The first and second of these equations are the equations of propagation of a plame wave, and their solution is of the well-known form

$$
\left.\begin{array}{l}
H=f_{3}\left(z-F \eta+f_{2}(z+F t),\right. \\
G=f_{3}(z-F)+f_{4}(z+F) . \tag{20}
\end{array}\right\}
$$

The solution of the third equation is

$$
\begin{equation*}
K_{\mu} \mu=A+B u \tag{21}
\end{equation*}
$$

where A and B are functions of z. $I I$ is therefore either constant or varies directly with the time. In neither case can it take part in the propagation of waves.
791.] It appears from this that the directions, both of the mag.
 netie and the electrie disturbances, lie in the plane of the wave. The mathematical form of the disturlance therefore, agrees with that of the disturbance which constitutes lights, in beiug transverse to the direction of propragation.

If we suppose $G=0$, the disturbance will eorrespond to a plane-polarized ray of light.

The maguetic force is in this case parallel to the axis of y and equal to $\frac{1}{\mu} \frac{d F}{d z}$, and the electromotive foree is parallel to the axis of x and equal to $-\frac{d F}{d t}$. The magrnetic force is therefore in a plane perpendicular to that which contains the electric foree.

The values of the magnetio force and of the electromotive foree at a given instant at dilferent points of the ray are represented in Fig. 66,
for the cmse of a simple harmonie disturbanee in one plane. This corresponds to a ray of plane-polarized light, but whether the plane of polarzation corresponds to the phane of the magnetic disturlance, or to the phane of the eleetric disturbanee, remains to be seen. See Ast. 797.

Energy and Steras of Ratiation.

702.] The deetrostatic energy per unit of wolume at any point of the wave in a non-conducting modium is

$$
\begin{equation*}
\frac{1}{2}, f P^{\prime}=\frac{K}{8 \pi} P^{2}=\left.\frac{K}{8 \pi} \frac{d p^{\prime}}{d l}\right|^{2} . \tag{22}
\end{equation*}
$$

The electrokinetic energy at the same point is

$$
\begin{equation*}
\frac{1}{8 \pi} l \beta=\frac{1}{8 \pi \mu} l^{2}=\frac{1}{8 \pi \mu} \frac{\pi^{2} H^{2}}{d \pi} . \tag{23}
\end{equation*}
$$

In virtne of equation (8) these two expressions are equal, so that at every point of the wave the intrinsic energy of the medium is batr electrostatic and half electrokinctic.

Let p be the value of either of these quantities, that is, either the electrostatic or the electrokinetio energy per unit of volumie, then, in virtue of the electrostatic state of the medim, there is a fension whose magnitude is p, in a direction parallel to $: x$, combined with it pressure, also equal to p, parallel to y and z. See Art. 107.
In wirtue of the electrokinetic state of the medium there is a tension equal to p in a direction parallel to y, combined with a pressure cequal to p in directions parallel to x and z. See Art.gi3.

Hence the combinel effeet of the clectrostatic and the electrokinetic stresses is a pressure equal to $2 p$ in the direction of the propagation of the wave. Now 2_{2} also expresses the whole energy in unit of volune.

Hence in a medium in which waves are propagated there is : pressure in the direction normal to the waves, and numerically equal to the energy in unit of volume.
793.] Thus, if in strong sunlight the energy of the light which fatls on one square 「oot is 83.4 foot pounds per secont, the mean energy in one cubic foot of sumlight is about 0.0000000882 of a foot pound, and the mean pressure on a squate loot is 0,0000000882 of a pound weight. A flat body exposed to smlight would experience this pressure on ifs illuminated side only, and would therefore be repelled from the side on which the light falls. It is probable that at meh greater energyr of radiation might be oltained by means of
the conemtrated rays of the electrie lamp. Such rays fallimg on n thin metallic disk, delientely suspended in a wemum, might pernajus produce an observable mechanieal effect. Whea a disturbance of any kind consists of terms involving sines or cosines of angles which wary with the time, the maximmenergy is douthle of the mean energy. Hence, if γ is the maximum electromotive foree, and β the maximum magnetic force which are called into play dming the propagation of light,

$$
\begin{equation*}
\frac{K}{8 \pi} p^{2}=\frac{\mu^{4}}{8 \pi} \beta^{2}=\text { mean cnergy in unit of volume. } \tag{24}
\end{equation*}
$$

With Pouillet's data for the energy of sunlight, as quoted by Thomson, Trars. $72 . S . X ., 1854$, this gives in olectromagnetic measure
$P=60000000$, or about 600 Daniell's cells per mètre;
$\beta=0.193$, or mather move tham a tenth of the borizontat magnetic tore in Britain.

Propagation of a Plane Wrue in a Ciystallized Medinm.

794.] In entonating, from data fumished by ordinary electromagnetic experiments, the electrieal phonomena which would result from periodic disturbunces, milhons of millions of which oceur in a second, we have already put our theory to a very severe test, even when the madium is supposed to be air or vacurm. But if we attempt to extend oun theory to the case of dense medin, we hecome involved not only in all the ordinary difficulties of molecular theories, but in the deeper mystery of the relation of the molecules to the eleetromagnetic medium.

To evade these clifficulties, we shatl assume that in certain media the specifie eapacity for electrostatic induction is different in different directions, or in other words, the electric displacement, insteat of being in the same direction as the electromotive force, and proportional to it, is related to it by a gystem of linear equations similan to those given in Art. 297. It may be shewn, as in Art. 4 BG, that the system of coeffecients must be symmetrical, so that, by a propue choice of axes, the equations become

$$
\begin{equation*}
f=\frac{1}{4 \pi} K_{1} P_{0} \quad g=\frac{1}{4 \pi} K_{2} Q, \quad A=\frac{1}{4 \pi} K_{3} R_{7} \tag{1}
\end{equation*}
$$

where K_{1}, K_{2}, and \mathcal{K}_{3} are the principal inductive capacities of the mediun. 'Tlie equations of propagation of disturbanes are therefore

$$
\begin{align*}
& \frac{d^{2} F}{d y^{2}}+\frac{d^{2} F}{d x^{2}}-\frac{d^{2} G}{d x d y}-\frac{d^{2} I I}{d x}=R_{1}^{2} \mu\left(\frac{d^{2} F}{d l^{2}}-\frac{d^{2} \Psi}{d x d l}\right), \\
& \frac{d^{2} G}{d z^{2}}+\frac{d^{2} G}{d x^{2}}-\frac{d^{2} I I}{d y d z}-\frac{d^{2} F}{d x d y}=R_{2} t^{2}\left(\frac{d^{2} G}{d l^{2}}-\frac{d^{2} \psi}{d y d t}\right), \tag{2}\\
& \left.\frac{d^{2} / I}{d x^{2}}+\frac{d^{2} H}{d y^{2}}-\frac{d^{2} F}{d z d x}-\frac{d^{2} G}{d y d z}=K_{3} \mu\left(\frac{d^{2} I I}{d L^{2}}-\frac{d^{2} \Psi}{d x d t}\right) .\right]
\end{align*}
$$

705.] If l, 解, z are the direction-cosines of the normal to the wave-front, and V the velocity of the wave, and if

$$
\begin{equation*}
l x+m y+n z-I t=w_{2} \tag{3}
\end{equation*}
$$

and if we write $F^{\prime \prime \prime}, G^{\prime \prime}, H^{\prime \prime}, \Psi^{\prime \prime}$ for the second diflerential conficients of F, G, H, Ψ respectively with respect to w, and put

$$
\begin{equation*}
K_{1} \mu=\frac{1}{a^{2}}, \quad K_{2} \mu=\frac{1}{b^{2}}, \quad K_{3} \mu=\frac{1}{e^{2}}, \tag{4}
\end{equation*}
$$

where a, b, c are the three primeipal velocities of propagntion, the equations become

$$
\begin{align*}
& \left(m^{2}+n^{2}-\frac{V^{2}}{a^{2}}\right) L^{\prime \prime \prime}-l m Q^{\prime \prime}-n l I^{\prime \prime}-P \Psi^{\prime \prime} \frac{b}{a^{2}}=0,7 \\
& \left.-\ln F^{\prime \prime}+\left(x^{2}+l^{2}-\frac{T^{2}}{b^{2}}\right) G^{\prime \prime}-m I^{\prime \prime}-T^{\prime \prime} \Psi^{\prime \prime} \frac{n}{l^{n}}=0,\right\} \tag{5}\\
& -n l F^{\prime \prime \prime}-m n G^{\prime \prime}+\left(l^{2}+m^{2}-\frac{V^{2}}{G^{\prime 2}}\right) H^{\prime \prime}-l \Psi^{\prime \prime} \frac{n}{b^{2}}=0 . \quad .
\end{align*}
$$

706.] If we write

$$
\begin{equation*}
\frac{l^{2}}{l^{2}-a^{2}}+\frac{m^{2}}{l^{2}-b^{2}}+\frac{n^{2}}{V^{2}-c^{2}}=U_{1} \tag{6}
\end{equation*}
$$

we obtain from these equations

$$
\left.\begin{array}{l}
F U\left(F P^{\prime \prime \prime}-l \Psi^{\prime \prime}\right)=0 \\
F U\left(F G^{\prime \prime}-m \Psi^{\prime \prime}\right)=0, \\
F U\left(F / l^{\prime \prime}-n \Psi^{\prime \prime}\right)=0 .
\end{array}\right\}
$$

Hence, either $V=0$, in which case the wave is not propagated at all : or, $U=0$, which leads to the equation for ${ }^{\prime}$ 'given by Fresuel ; or the quantities within brackets wanish, in which case the vector whose components are $F^{\prime \prime \prime}, G^{\prime \prime}, A^{\prime \prime}$ is normal to the wave-front and proportional to the electrie volume-density. Since the medium is a non-conductor, the electrie density at any given point is constant, and therefore the disturbance indicated by these equations is not periodic, and cannot constitute a wave. We may theretore consider $\Psi^{\prime \prime}=0$ in the investigation of the wave.
797.] The velocity of the propagation of the wave is therefore completely determined from the equation $U=0$, or

$$
\begin{equation*}
\frac{l^{2}}{l^{2}-i^{2}}+\frac{m^{2}}{J^{2}-b^{2}}+\frac{n^{2}}{f^{2}-c^{2}}=0 \tag{8}
\end{equation*}
$$

There are therefore two, and only two, values of J^{2} corresponding to a given direction of wave-front.

If λ, μ, ν are the direction-cosines of the electric courent whose components are n, x, z,

$$
\begin{equation*}
\lambda: \mu: v:: \frac{1}{u^{\prime}} p^{\prime \prime \prime}: \frac{1}{b^{2}} \sigma^{\prime \prime \prime}: \frac{1}{c^{2}} / l^{\prime \prime}, \tag{0}
\end{equation*}
$$

then

$$
\begin{equation*}
\lambda+m \mu+u \nu=0 ; \tag{10}
\end{equation*}
$$

or the current is in the plane of the wave-front, and its direction in the wave-front is determined by the equation

$$
\begin{equation*}
\frac{l}{\lambda}\left(l^{2}-c^{2}\right)+\frac{p h}{\mu}\left(c^{2}-a^{2}\right)+\frac{n}{2}\left(a^{2}-b^{2}\right)=0 . \tag{11}
\end{equation*}
$$

These equations are identical with those given by Fresmel if we define the plane of polarization as a plane throngh the ray perpendicular to the plane of the electric disturbance.

According to this electromagnetic theory of double refraction the wave of normal disturbance, which constitutes one of the chief difliculties of the ordinary theory, does not exist, and no new assumption is required in order to account for the fact that a ray polarized in a prinespal plane of the crystal is refrasted in the ordinary maner *.

Relation between Llectric Conductrity and Opacity.

798.] If the medirm, instead of being a perfect insulator, is a conductor whose conductivity per unit of volume is C, the disturlance will consist not only of electric displacements but of currents of conduction, in which electric energy is transformed into heat, so that the undulation is absorbed by the melinum.
, If the disturbance is expressed by a circular function, we may write

$$
\begin{equation*}
F=e^{-y z} \cos (n t-q z), \tag{1}
\end{equation*}
$$

for this will satisfy the equation

$$
\begin{gather*}
\frac{d^{2} F}{d z^{2}}=\mu K \frac{t^{2} R}{d l^{2}}+4 \pi \mu C \frac{d F}{d t}, \tag{2}\\
q^{2}-p^{2}=\mu K n^{2}, \tag{3}\\
2 p l=4 \pi \mu C n . \tag{4}
\end{gather*}
$$

provided

[^42]The velocity of propagation is

$$
\begin{equation*}
\Gamma=\frac{n}{q}, \tag{i}
\end{equation*}
$$

and the coeflicient of alsorption is

$$
\begin{equation*}
y=2 \pi \mu C l . \tag{b}
\end{equation*}
$$

Let R loe the resistance, in electromagnetic measure, of a plate whose length is $b_{\text {, beealth } b} b$, and thickness n,

$$
\begin{equation*}
h=\frac{l}{b x C} . \tag{7}
\end{equation*}
$$

The propurtion of the incident light which will be tramemitted by this plate will be

$$
\begin{equation*}
e^{-2 \mu \mu}=e^{-i m \mu \frac{i}{b} \frac{v}{\bar{u}}} \tag{8}
\end{equation*}
$$

799.] Most transparent solid bodies are good insulators, and all good conductors are very opaque. There are, however, many exceptions to the law that the opracity of a body is the greater, the greater its comluctivity.

Electrolytes allow an electric current to pass, and yet many of them are transparent. We may suppose, however, that in the case of the rapidly alternating forees which come into play during the propagation of light, the electromotive force acts for so short a time in one direction that it is unable to effect a complete separation between the combined molecules. When, during the other half of the vibration, the electromotive force acts in the opposile direction it sinuply reverses what it did during the first half. There is thus no trac conduction through the electrolyte, no loss of electric energy, and consequently no absorption of light.
800.] Gold, silver, and phatinum are good conductors, and yet, when formed into wery thin plates, they allow light to pass through them. litom experiments which I have made on a piece of geld leaf, the resistance of which was determined by Mr. Hockin, it appears that its transparency is very much greater tham is consistent with our theory, unless we supprse that there is less loss of encrgy when the electromotive forees are reversed for every semivibration of light than when they act for sensible times, as in our ordinary experiments.
801.] Let us next consider the case of a medium in which the conductivity is large in proportion to the inductive eapacity.

In this ease we may leave out the term involving K in the equations of Art. 783, and they then become

$$
\left.\begin{array}{l}
\nabla^{2} F+1 \pi \mu C \frac{d h^{\prime}}{d L}=0 \\
\nabla^{2} G+1 \pi \mu C \frac{d G}{d l}=0 \tag{1}\\
\nabla^{2} H+1 \pi \mu C \frac{d I}{d}=0
\end{array}\right]
$$

Wach of these dquations is of the same form as the equation of the diffusion of leat given in lourier's Traté de Clefew.
802.] Taking the first as an example, the conponeat f^{7} of the vector-potential will wary according to time and position in the sane way as the temperature of a homogeneous solid varies according to time mod position, the initial and the surfueconditions heing made to eorrespond in the two cases, and the quantity i $\pi \mu C$ being mumerically equal to the reciprocal of the thermonetric conductivity of the sulbstance, that is to sty, the number of wits of wolne of the whstunce achich would be hewled one degree by the heat which prexses through a mit cutbe of the sutstunce, two opporite fuces of which difter by one dogree of tomperatwe, while the oher faes ape impermeable to heat*。

The different problems in themal conduction, of which Pourice luts given the solution, may be thasformed into probtems in the diffusion of electromagnetie quantities, rememberiug that $F^{\prime}, G_{1} / /$ are the components of a vector, wherens the temperature, in Fonter's problem, is a senlar quantity.

Let wis take one of the cases of whech Dourior hats given an complete colution ts that of an infinite mexlimms the initial state of wheh is given.

The state of any point of the modium at the time b is foumd by taking the average of the state of erery part of the medium, Whe woight assigned to each part in taking the average being

$$
e^{-\frac{\pi_{\mu} \mu r^{t} t}{t}},
$$

Where y is the distance of that part from the point eonsidercd. This average, in the case of vector-quantities, is most conveniently taken by consitering onel component of the vector separately.

* See Maxwell's Theory of Actad p. 285.

 the wiete $\left(\alpha_{3}, a_{1} y\right)$, is
where it is the thermometric

803. Th have to menarte in the first place, thate in this prolylem tho thermil conductivity of Jourder's moditu is to be taken inwersely proportiond to the clectric contuctivity of our menlinm, so that the time required in order to roach an assigned stage in the process of diffusion is greater the hishen the clectric combedivity. This statement will not appear paradoxical if we remember the result of Art. 65 s. that a medium of infinite conductivity forms a complete lanrier to the process of diflision of magnetic force.

In the next place, the time requisite for the production of no assigned etate in the process of difition is proportional to the square of the linear dimensions of the system.

There is no determinate relosity which can be defined as the tulocity of tifliusion. If we attempt to measure this belooity by ascertaining the time requisite for the production of'ta given amount of distumbace at a given distance Irom the origin of disturbunce. we find that the smallor the selected value of the disturbance the greater the welonity will appear to be, for howerer great the distanee, and howewer small the time, the value of the disturbete will difler matliemationlly from zero.

This pecalianity of diftusion distitugushes il from whe-propagation, which takes place with a definite welocity. No disturbance takes place at a given point till the wave raches that point, and When the wave las passed, the disturbance ceases for ever.
804.] Let us now investigate the proeres which takes place when tu fectric enment begins and eontinues to flow through a limend cireut, the medium surronding the ciremit betug of finite dectrie conductivity. (Compare with Art. Gif0).

When the curront begins, its first effect is to produce a eurrent, of" induction in the parts of the medium close to thas wire. 'Jliog diection of this current is opposite to that of the original current, and in the first instant its total quantity is equal to that of the orginal envent, so that the electromaguetie eflect on more distant frats of the medimm is initially zero, and onty rises to its linal value as fhe induction-murent dies away on nccount of the electric resistance of the medium.

But as the indaction-current close to the wire dies away, it new induction-enrmont is generafed in the modium beyond, so that the space ocenpied by the induction-current is confinully lemoming wider, while its intensity is continually diminishing.

This diffusion and decay of the inductionerement is a phemomerom precisely andogous to the difision of heat from a part of
the modium initially hottor or colder than the rest. We must remember, however, that sine the enrent is a vector quantity, and since in a cirenit the ourent is in opposite directions at opposite points of the circuit, we must, in calentating any given component of the induction-curxent, compare the problem with one in which equal guantities of heat and of cold are diffised from neighbouring places, in which ease the effeet on clistant proints will be of a smaller order of magnitude.
805.] If the carrent in the linear circuit is maintaned constant, the induction currente, which depend on the initial change of state, will gradually le diflused and die away, leaving the medum in its permanent state, which is analogous to the permanent state of the flow of heat. In this state we have

$$
\begin{equation*}
\nabla^{2} h^{7}=\nabla^{2} G=\nabla^{2} / /=0 \tag{2}
\end{equation*}
$$

throughont the medium, cxeept at the pate oechpied by the circuil, in which

$$
\left.\begin{array}{l}
\nabla^{2} H=4 \pi u, \tag{3}\\
\nabla^{2} G=4 \bar{m} \\
\nabla^{2} H=4 \pi w
\end{array}\right\}
$$

These equations are sulficient to determine the values of $F, G, 7$ flronghout the medium. They indiente that there are no curments except in the cireut, and that the maguetio forces are simply those due to the oursent in the cirenit according to the ordinary theory. The rapidity with which this permanemt state is eatablished is so great that it could not be measured by our experimental methods, except perthap in the ense of a very large mass of it highly conducting medium such as epper.

Note.-In a paper published in Poggendorfl's Analen, Tume 1867, M. Lorenz has deduced from Kiveliboft's equations of electrie currents (Pogg. Ahn cii. 1856), by the addition of certain terms which do not affect any experimental result, a new set of equations, indicating that the distribution of force in the clectromagnetio field may be conecived as arising from the mutual action of contiguous elements, and that wares, consisting of transverse electrie eurrents, may be proprogted, with a velocity comparable to that of light, in non-eonducting media. He therefore regards the disturbance which constitutes light as identical with these electric eurrents, and he shews that conducting media must be opratue to such radtations.

These conchsions are similar to those of this chapter, though obtained by an entirely different methoul. The theory given in this chapter was first pululished in the Phil. Trman, for 1865 .

CHAP'TER XXI.

MGNDTC ACTMON ON LIGITM.

806.] Ture most important step in establishing a relation between eleetric and magnetic phenomena and those of light must lye the discovery of some instance in which the one set of phenomena is alfected by the other. In the stareh for such phenomena we inust be groded by any knowledge we nay lave alrenty obtained with respect to the mathematical or geometrieal form of the quantities which we wish to compare. Thus, if we endenvour, as Mrs, Somerville did, to magnetize a needle by means of light, we must remember that the distinction leetween magnetic north and south is a mere matter of direction, and would be at once reversed if we reverse certain conventions about the use of mathematical signs, There is nothing in magnetism analogons to those phenomena of electrolysis which enable us to distiuguish positive lrom negative electrieity, by observing that oxygen appears at one pole of a cell and hydrogen at the other.

Hence we must not expect that if we make light fall on one end of a needle, that end will become a pole of a certain name, for the two poles do not differ as light does from darkness.

We might expect a better result if we caused ciroularly polarized light to fall on the needle, right-landed light falling on one end and left-handed on the other, for in some respects these kinds of light may be said to be related to ench other in the same way as the poles of a magnet. The analogy, however, is faulty even leere, for the two rays when combined do not neutralize each other, but produce a plane polarized tay,

Faraday, who was aequainted with the method of studying the strains produced in transparent solids by means of polarized light, made nany experiments in hopes of detecting some netion on polarized light white passing through a medium in which olectrolytio conduction or dielectric induction exists*. He was not, howerus,

[^43]alle to detect any action of this kind, though the experiments were avenged in the way loest adapted to diseover effects of tension, the electric force or current lowiug at right angles to the direction of the ray; and at an angle of forty-five degrees to the plane of polarization. Faraday varied these experiments in many ways without discovering any action on light due to electrolytic eurreats or to static electric induetion.

He suceeded, however, in establishing a relation between light and magnetism, and the experiments by which he did so are described in the nineteenth series of his Fiperimental Researches. We shall take Faraday's discovery ns our starting point for further investigation into the nalure of magnetism, nad we shall therefore deseribe the phenomenon whict he observed.
807.] A ray of plane-polarized light is transmitted thronglı a tramsparent diamagnetic medium, and the plane of its polarization, when it emerges from the medium, is ascertained by observing the position of an analyser when it outs off the ray. A magnetic foree is then made to act so that the clirection of the force within the transparent medium coincides with the direction of the ray. The light at once reappears, but if the amalyser is turned round through a certain angle, the light is again cut off. This slews that the effect of the magnetic foree is to turn the plane of polarization, round the direction of the ray as an axis, through a certain angle, measured by the angle through which the analyser must be turned in order to cut off the light.
808.] The augle through which the plane of polarization is turned is proportional -
(1) To the distance which the ray travels within the melium. Hence the plane of polarization clanges continuously from its position at incidence to its position at emergence.
(2) To the intensity of the resolvel prort of the magnetic force in the direction of the ray.
(3) The amount of the rotation tlepends on the nature of the medium. No rotation has yet been olservod when the medium is ail or any ofhor gats.

These fliree statements are included in the more general one, that the angular rotation is numerically equal to the amomet by which the magneticepotential increases, from the point at which the my enters the medium to that at which it leaves it, multiplied by a coeflicient, which, for dimugnetic media, is generally positive.
80.). In diamagnetic sulstanees, the direction in whid the phare
of polarization is made to rotate is the same as flae direction in which at positive corrent must circulate ronat the may in order to produce a maguetic force in the same direction as that which actually exists in the medium.

Terdet, howewer, discoverod that in certain ferromagyetic medin, as, for instance, a strong solution of perchloride of iron in woon, spirit ar ether, the rotation is in the ofposite divection to the current which would produce the magnetic force.
'I'lis shews that the difference between ferromagretic and dia= magnetic substances does not arise mevely from the ' magnefie permenbility' being in the liset ease greater, and in the secomel less, than tilat of and, Dut that the properties of the two elases of hoolles are really opposite.

The power acquired by a sulustance unter the action of magnetio foree of rotating the plane of polarization of light is not exactly proportional to its dinmognetic or ferromagmetie manelisabitity. Indeed there are exceptions to the rale that the rotation is positive for diamagnetie and negatiwe for ferromagnetie sulstaness, for nemftral rhromate of potashis ditanagnetic, luf produces a negative rotarion.
810.] 'There are other substances, whieh, independenty of the: applation of mencotio forec, cause the phate of polarization to turn to the right or to the left, as the ray travels through the sulsstance. In some of theng the property is related to dun axis, its in the ease of quartz. In others, the property is independent of the direction of the ray within the medium, as in turpentine, solution of sugaty, se. In all these sumstances, lowever, if the plano of polarization of any may is twisted within the modiun like a rightlanded serew, it will still be twisted like a right-handed surew il' the ray is transmitted through the medjum in the opposite direstion. The direction in which the observer has to turn his analyser in order to extiaguida the ray alter introducing the modium into its path, is the same with reference to the observer whether the my comes 1.0 him from the north or from the sonth 1_{+}'The direction of the rotation in space is of conrse rewersed when the direction of the may is reversed. But when the rotation is produced lyy magnetio action, its direction in space is the same whether the ray lee travelling north 0r soullh. The rotation is always in the same direction as that, of the electric eument which prorluces, or wond prombee, the actuat magnetie state of the field, if the melina belongs to the positive Nass, or in the opposite direction if the median belonges to the negrtive class.

It follows [rom this, that il the raty ol' light, after passing throngh the modium from norilh to south, is reltected by a mirror, so as to return through the meditum from sonth to north, the rotation will be doubled when it results from magnetie action. When the rotation depends on the nature of the medium atone, as in turpentine, se., the ray, when reflected back through the mothum, emerges in the same phane ag it entered, the rotation durimg the first passage through the medium having been exactly reversed during the seemel.

8LI.] The physical aphanation of the phenomenon presents considerable dillieulties, whieh ean havdly be suid to lave leen hitherto overome, either for the maguetie rotation, or for that whela certain media exhibit of themselves. We may, however; prepare the way for such an cxplanation hy atn analysis of the oloserved liacts.

It is a well-known theorem in kinematies that two uniform circular vibutions, of the same amplitude, having the same periodic time, and in the same plane, bat revolving in opposite diretious, are equivalent, when compouded together, to a redilineme vibration. The pariodie time of this vilamation is equal to that of the circulat vibrations, its amplitude is donble, and its clirection is in the line joining the proints at which two particles, describing the circular fibrations in opposite directions round the same efrele, would meet. Henee if one of the cireular vibrations las its phase accelerated, the direction of the rectilinear vilmation wibl be turned, in the same direction as that of the cirealar vilatation, through an angle efual to latif the acceleration of phase.

It can also be proved by direct optical experinent that tron rays of light, eireularly-polarized in opposite divections, and of the same intensity, become, when united, a phane-polarized may, and that in' by any means the phase of one of the ciroularly-polarized rays is acelerated, the plane of polarization of the resultant ray is tumed round hall the angle of accelumation of the phase.
812.] We may therefore express the permonenom of the rotation of the plate of polarization in the toltowing manaes:-A planepolarized ray falls on the medium. This is equivalent to two eir-cularly-polarized mys, one right-handed, the other lelt-handed (ns regards the observer). Alter passing through the medinm the raly is still fane-polarized, but the plane of polarization is turned, saly, to the right (as regurds the ohserver). Hence, of the two circularlymolarized rays, that which is right-handed nost have hat its fhase
aceelerated with respect to the other during its passigne through the medium.

In otleer words, the right-handal my has performed a greater number of vibrations, and therefore has a smaller wave-length, within the medium, than the left-lamded ray which has the same periodic time.

This mode of stating what takes place is quite independent of any thenry of light, for though we use such terms as wave-lengeth, circular-polurization, \&e, which may be associated in our minds with a particular form of the mudulatory theory, the reasoning is indepement of this association, and tlepends only on tacts proved by experiment.
813.] Let us nest consider the confleguration of one of these rays at a given instant. Any undulation, the motion of which at each point is cireular, may be represented by a lulix or serew. If the serew is made to revolve abond its axis withont any longitudinal motion, each particle will describe a circle, and at the same time the propagation of the uadulation will be represented by the apparemt. longitudinal motion of the similarly sitnated parts of the thread of the screw. 16 is easy to see that if the seemw is right-lianded, and the observer is placed at that end towards whiel the undulation travels, the motion of the serew will appar to him left-handed, that. is to say, in the noposite direction to that of the hands of a watch. Hence such a ray has been called, oniginally ly French writers, lint now by the whole scrientific world, a left-handed cir-eularly-polarized ray.

A riglit-handed circularly-polarized ray is represented in like mamer by a left-handed helix. In Fig. 67 the right-handed helix A, on the right-land of the figure, represents a lefthandel ray, and the left-handed helix B, on the leftlamd, represents a right-hanted ray.
814.] Let us now consider two such rays which have the fame wavolength within the meltium.

Fig. 6%
They are renmotricatly alike in D) 12
all respects, except that one is the perversion of the other, like jts inage in a looking-glass. One of them, howeser, say A, has a shorter period of rotation than the other. If the motion is entirely due to the forces called into play by the displacenent, this shews that greater forces are called into play by the same displacement when the configuration is like A thrm when it is like B. Inence in this case the left-handed ray will be aceelerated with respect to the right-handed ray, and this will be the ease whether the rays are travelling from N to S or from S to N.

This therefore is the explamation of the phenomenon as it is produced by turpentine, se. In these media the displacement caused by a circularly-polarized ray eatls into play greater forces of restitution when the configmation is like A than when it is like B. The forces thas deprend on the configuration alone not on the direction of the motion.

But in a dianagnelic medium aeted ou ly magnetism in the direction $S N$, of the two serews A and B, that one always rotates with the greatest velocily whose motion, as seen by an eye looking from St to N, appears like that of a watch. Hence for rays from \mathcal{S} to N the right-handed ray B will travel quickest, but for rays from λ to S the left-handed may A wifl travel quickest.
815.] Confining our attention to one ray only, the helix B has exactly the same conliguration, whether it represents a ray from $\$$ to N^{T} or one from A to S. That in the first instance the ray travels faster, and therefore the helix rotates more ratpitly. Hence greater forces are cenled into play when the helix is going round one way than when it is soing round the other way. The forees, therefore, do not depend solely ou the configuration of the ray, but also on the direction of the motion of its indiwidual parts.
816.] The disturlance which constitutes light, whatever its physical nature anay be, is of the nature of a vector, perpendicular to the direction of the ray, 'This is proved from the fact of the interference of two rays of light, which under certain coulitions produces darkness, combined with the fact of the non-interference of two rays polarized in planes perpendicular to cen other. For since the interference depends on the angular position of the plames of pelarization, the disturbance must be a directed guantity or vector, and since the interfercmen ceases when the planes of pelarization are at right angles, the vector representing the disturbance must he perpendicular to the line of intersection of these planes, that is, to the direction of the ray:
817. T The ilisturbance, being a wector" can lye resolyed into components parallel to x and y, the axis of z being parallel to the direction of the ray. Let ξ and n be these components, then, in the case of a my of homogeneous citcularly-polarized light,
where

$$
\begin{gather*}
\xi=r \cos \theta, \quad \eta=r \sin \theta, \tag{1}\\
\theta=n d-\theta z+\alpha .
\end{gather*}
$$

To these expressions, ir denotes the magnitude of the vector, and Q the angle which it madies with the direction of the axis of we.

The periodic time, τ, of the disturtance is such that

$$
\begin{equation*}
n_{T}=2 \pi \tag{b}
\end{equation*}
$$

'The ware-lengeth, $\lambda_{\text {, of }}$ the disturnance is suel that

$$
\begin{equation*}
q \lambda=2 \overline{2} \tag{4}
\end{equation*}
$$

The velocity of propagration is $\frac{n}{7}$.
The phase of the disturbance when t and a are both zero is a
The circularly-polarized light is right-handed or left-handed according as 7 is megative or positive.

Its vibrations are in the pesitive or the negative direction of rotation in the plane of (x, y), nceording as x is positive or negative.

The light is propagmed in the positive or the megmtive direction of the axis of z, according as μ and q are of the same or of opposite sigus.

In all media 4 warjes when $\frac{I}{}$ waries, and $\frac{d / d}{d q}$ is always of the same sign with $\frac{4}{q}$.

Hence, if for a given humerical value of n the wathe of $\frac{x}{7}$ is sreater when n is positive than when n is negrative, it Collowe that for a value of a, given both in magnitude and sigu, the positive value of n will be greater than the negative value.

Now this is what is observed in on dianngretic medium, actod on by a magnetie force, γ_{1} in the dixection of z. Of the two cirenlarlypolarized rays of a given priod, that is accelerated of which the direction of rotation in the plane of (x, y) is positive. Hence, of two ehroularly-polarized rays, both loft-handed, whose waro-length within the medinm is the same, that has the shortest periond whose direction of rotation in the plane of $x y$ is positive, that is, the ray which is propagated in the positive direction of \approx from sonth to north, We trave therefore to account for the fact, that when in the equations of the systen g and 7 are given, two values of n will
satisly the equations, one positive and the other negative, the positive value being numerically greater than the negrative.
818.] We may oltan the equations of motion from a consideration of the potential and kinetic energies of the medinm. The potential cenergy, γ, of the system depends on its configuration, that is, on the relative position of its purts. In so far ns it depends on the disturtance due to circularly-polarized light, it must lee a function of r, the amplitude, and q, the cocflieient of torsion, only. It, may be diflerent for positive and negative walues of q of equal numerienl value, and it probally is so in the case of media which of thenselves rotate the plane of polarization.
The kinetic energy, T, of the system is a homogeneous function of the second degree of the velocities of the system, the coeflicients of the different terms being fanetions of the coordinates.
819.] Let us consider the dynumical condition that the ray may lee of constant intensity, that is, that r may be constant.

Lagrange's equation for the force in r becomes

$$
\begin{equation*}
\frac{d}{d l} \frac{d T}{d T}-\frac{d T}{d r}+\frac{d r}{d r}=0 \tag{5}
\end{equation*}
$$

Since r is constant, the first term vanishus. We have therefore the equation

$$
\begin{equation*}
-\frac{d T}{d r}+\frac{d V^{r}}{d r^{\prime}}=0 \tag{6}
\end{equation*}
$$

in which q is supposed to be given, and we are to determine the value of the angular velocity $\dot{\theta}_{2}$, which we may denote by its actual valute, $\%$.
The kinetic energy, T, contains one term involving \varkappa^{*}; other: terms may contain prolucts of n with other velocities, and the rest of the terms are independent of n. The potential energy, V, is entirely independent of n. The cquation is therefore of the form

$$
\begin{equation*}
A n^{2}+B_{n}+C=0 \tag{i}
\end{equation*}
$$

This beng a quadratic equation, gives 1 wo values of n. It appears from experiment that both values are real, that one is positive and the other negative, and that the positive yalue is umnerically the greater. Hence, if A is positive, both B and O are negative, for, if π_{8} and n_{s} are the roots of the equation,

$$
\begin{equation*}
A\left(n_{1}+n_{k}\right)+B=0 . \tag{8}
\end{equation*}
$$

The coefficient, 73 , therefore, is not zoro, at least when magnetic foree acts on the medium. We have therefore to consider the expression B, which is the part of the kinetic energy involving the first power of n, the angular velocity of the disturbance.
820.] Ivery term oll T is of two dimensions as regards wheity. Hence the terms involving n mast involve some other welocity. Ihts velocity emmot he \dot{r} or \dot{q}, becanse, in the ease we consider, r and q are constant, Hence it is a weheity which exists in the medium inteperdently of that motion which constitutes lighat. It must also be a velocity related to u in sueln a why thet when it is multiplied by a the result is a sealar quantity, bor only sealar quanLities can oecmi as terms in the walue of T_{z} which is itself sealar, Hence this velocify mast be in the same dicection as n, or in the orposite direction, that is, it must be aur angutay velocily abont the ixis of" a.

Agrin, this velocity eamot be imdependent of the magretic force, for if it were relatel to a direction fixel in the medime the planomenon would be diflerent if we thened the median end for cod, which is not the entis.

We are therefore leal to tho conclusion that this welocity is an inwariable accompathment of the maguetic fore in those media whicls exhibit, the mirgutie motation of the phane ol polarization.
821.] We have been hitherto obliged to use language whiel is perhaps too sugrgestive of the ordinary hypothesis of motion in the modulatory thoory. It is casy, howerer, to state our result in a form free from this hypothesis.

Whatever light is, at each pesint of space there is something groing on, whether displacenent, or rotation, or something not yet imagined, but which is ecertaiuly of the nature of a veetor or directed ratutaty, the diredion of which is normal to the direction of the ray: This is completoly 1 rowod by the phenomens of interferchee.

In the ease of cirenlarly-polanized light, the magnitude of this vector remains always the same, but its diveetion rotates round the wircefion of the ray so as to complete a revolation in the periodie time of the ware. The uncertninty which uxists as to whether this wetor is in the plane of polarization or perpendicular to it, does not extend to onr knowledge of the divection is which it rotates in righthanded and in left-handed eireularly-polarized light respectivety. 'The direction and the mengar velocity of this vector are perfectly known, though the physical nature of the vector and its absolute divection at a given instant are uncertain.

When atay of citcularly-polarized light falls on a meditum under the action of magnetie fores, its propagation withan the medium is affected by the relation of the direction of rotation of the light to
the direction of the magretic foree. From this we conclude, by the reasoning of Art. 821 , that in the medium, when under the action of magnetic fores, some rolatory motion is going on, the axis of rotation leeing in the direction of the magnetic forces; and tlat the rate of propagation of circularly-polarized light, when the direction of its vibratory rotation and the direction of the magnetic rotation of the meditum are the same, is different from the rate of propagation when these directions are opposite.
The only resemblance which we can trace between a medium through which circularly-polarized light is propagated, and a medium throligh which lines of magnetic foree pass, is that in lyoth there is a motion of rotation about an axis. But here the resemWhance stops, for the rotation in the optical plenomenon is that of the vector whiel represents the disturbance. This vector is always perpendicular to the direction of the ray, and rotates about it a known mumber of times it a second. In the magnetic phenomenon, that which rotates has no properties ly which its sides can be distinguished, so that we cannot determine how many limes it rolates in a second.
There is nothing, therefore, in the magnetic phenomenon which corresponds to the wave-length and the wave-propagation in the optical phenomenon. A medium in which a constant magnetic foree is acting is not, in consequence of that foree, filled with waves traveling in one direction, as when light is propagated through it. The only resemblance between the optieal aud the magnetic phenomenon is, that, at each point of the medium something exists of the nature of an angular velocity about an axis in the direction of the magnetic force.

On the Hypothesis of Moleculur Forlices.

892.] The consideration of the action of magnetism on polarized light leads, as we have seen, to the conclusion that, in a medium under the action of magnetie foree something lyelonging to the same mathematical class as an angular velocity, whose axis is in the direction of the magnetic forec, forms a part of the phenomenon.

This angular velocity cannot be that of amy portion of the medium of sensilble dimensions rotatiug as a whole. We must therefore conceive the rotation to be that of very small portions of the medium, each rotating on its own nxis. This is the lypothesis of molecular vortices.

The motion of these vortices, thoughl, as we have shewn (Arl. anta),
it does not sensibly affect the visible motions of large bodies, may be such as to alfeet that vibratory motion on which the propagention of light, according to the mudulatory theory, depends. The displacements of the medirm, during the propagation of light, will produce on disturbance of the vortices, and the vortices when so dis* turbed may react on the medirm so as to affect the mode of propagration of the ray.
828.] It is impossible, in our present state of ignorame ans to the nature of the vortices, to assign the form of the law which connects the displacement of the medium with the variation of the vortiees. We shall therefore assume that the variation of the vortices caused by the displacement of the medium is subject to the same conditions which Helmholtz, in his great memoir on Vortex-motion *, has shewn to regulate the variation of the vortices of a perfect licuid,

Hedmholtz's law may be stated as follows:- Leet P and Q be two neighbouring particles in the axis of a vortex, then, if in consequence of the motion of the flnid these particles arrive an the points $P^{\prime} Q^{\prime}$, the line $P^{\prime} Q^{\prime}$ will represent the new direction of the axis of the vortex, and its strengtly will be altered in the ratio of $P^{\prime} Q^{\prime}$ to $P Q$.

Hence if a, β, γ denote the components of the strength of a wortex, and if ξ_{2} i, ζ denote the displacements of the medium, the value of a will become

$$
\left.\begin{array}{l}
a^{\prime}=a+a \frac{d \xi}{d x}+\beta \frac{d \xi}{d y}+\gamma \frac{d \xi}{d z} \\
\beta^{\prime}=\beta+a \frac{d \eta}{d x}+\beta \frac{d \eta}{d y}+\gamma \frac{d \eta}{d z} \tag{1}\\
\gamma^{\prime}=\gamma+a \frac{d \xi}{d b}+\beta \frac{d \xi}{d y}+\gamma \frac{d \xi}{d z}
\end{array}\right\}
$$

We now assume that the same condition is satisfied during the small displacements of a medium in which α, β, y represent, not the components of the strength of an ordinary vortex, but the components of magnetic force.
824.] The components of the angular velocity of an clement of the medtum are $\omega_{1}=\frac{1}{2} \frac{d}{d l}\left(\frac{d \zeta}{d y}-\frac{d \eta}{d z}\right)$,

$$
\left.\begin{array}{l}
\omega_{2}=\frac{d}{2} \frac{d}{d l}\left(\frac{d \xi}{d z}-\frac{d \xi}{d x}\right) \tag{2}\\
\omega_{3}=\frac{1}{2} \frac{d}{d l}\left(\frac{d \eta}{d x}-\frac{d \xi}{d y}\right) \cdot
\end{array}\right\}
$$

[^44]The next step in our lypollesis is the assumplion that the Linctic energy of the medium contains at term of the form

$$
\begin{equation*}
2 C\left(\omega \omega_{1}+\beta \omega_{2}+\gamma \omega_{3}\right) . \tag{3}
\end{equation*}
$$

This is cquitalent to supposing that the angular velocity acefuired by the dement of the medium during the propagation of light is at quamtity which may enter into conspination with that motion by which magnetic phenomena are explained.
In order to form the equalions of motion of the mediun, we must express its linetic energy in lemms of the velocity of its parts, the components of which are $\dot{\xi}, \dot{y}, \dot{\zeta}$. We therefore integrate by paris, and find

$$
\begin{align*}
& 2 C \iiint\left(\alpha \omega_{1}+\beta \omega_{2}+\gamma\left(\omega_{3}\right) d x d y d z\right. \\
& \quad=C \iint(\gamma \dot{\eta}-\beta \dot{C}) d y d z+C \iint(\alpha \dot{\zeta}-\gamma \dot{\xi}) d z d x+C \iint(\beta \dot{\xi}-a \dot{\eta}) d x d y \\
& \quad+C \iiint\left\{\dot{\xi}\left(\frac{d y}{d y}-\frac{d \beta}{d z}\right)+\dot{n}\left(\frac{d a}{d z}-\frac{d y}{d y}\right)+\dot{\zeta}\left(\frac{d \beta}{d z}-\frac{d a}{d y}\right)\right\} d v d y d z, \quad(1) \tag{1}
\end{align*}
$$

The double integrals sefer to the bounding surface, which nay be supposed at an inlinite distance. We may, therefore, while investigating what takes place in the intertor of the medium, confine our attention to the triple integral.
825.] The paty of the kinetic energy in unit of volume, expressed by this triple integral, may be written

$$
\begin{equation*}
1 \pi C\left(\dot{\xi} u+\dot{\eta} v+\dot{\zeta}(u)_{x}\right. \tag{5}
\end{equation*}
$$

where w, v, we the compronents of the electrie anrent as given in equations (İ), Art. 607.

It appears from this that our hypothesis is ecguivalent to the assumption that the velocity of a particle of the metium whose components are $\dot{\xi}, \dot{n}, \dot{\zeta}$ is a quantity which may enter into combination wits the electric current whose components are u, v, w.
826.] Returning to the expression under the sign of triple integration in (d), substituting for the values of α, β, γ, those of $a^{\prime}, \beta^{\prime}, \gamma^{\prime}$, as given by equations (1), and writing

$$
\begin{equation*}
\frac{d}{d k} \text { fior } a \frac{d}{d x}+\beta \frac{d}{d y}+\gamma \frac{d}{d x} \tag{6}
\end{equation*}
$$

the expression under the sigu of integration becomes

$$
\begin{equation*}
c\left\{\xi \frac{d}{d h}\left(\frac{d \zeta}{d y}-\frac{d \eta}{d z}\right)+\dot{\eta} \frac{d}{d h}\left(\frac{d \xi}{d z}-\frac{d \zeta}{d x}\right)+\dot{d} \frac{d d}{d x}\left(\frac{d \eta}{d \eta}-\frac{d \xi}{d y}\right)\right\} \tag{7}
\end{equation*}
$$

In the cuse of waves in planes normal to the axis of a the disphace-
ments are functions of $=$ and t only, so that $\frac{d}{d / h}=\gamma \frac{d}{d z}$, and this expression is redaced to

$$
\begin{equation*}
C y\left(\frac{d^{2} \xi}{d z^{2}} n-\frac{l^{2} v^{2}}{d x^{2}}\right) \tag{8}
\end{equation*}
$$

The kinctie energy per unit of volume, so far as it depends m the velocities of displicement, may now be written

$$
\begin{equation*}
T=\frac{1}{2} \rho\left(\xi^{2}+\dot{\eta}^{2}+\dot{\zeta}^{2}\right)+C \gamma\left(\frac{d^{2} \xi}{d z^{2}} \dot{\eta}-\frac{d^{2} \eta}{d z^{2}} \dot{\xi}\right) \tag{9}
\end{equation*}
$$

where ρ is the density of the meditm.
827.] The components, X^{*} and 5 , of the impressed force, referved to unit of volume, may be deduced from this by 重agrange's oguttions, Art. 564.

$$
\begin{align*}
& X=\rho \frac{d^{2} \xi}{d l^{2}}-C_{\gamma} \frac{d^{3} \eta}{d \xi^{2} d l}, \tag{10}\\
& Y=\rho \frac{d^{2} \eta}{d d^{2}}+C_{Y} \frac{d^{3} \xi}{d \varepsilon^{2} d t} \tag{11}
\end{align*}
$$

These lorees arise from the attion of the remaiteder of the mediunt on the element under consideration, and must in the case of an isotroper medium be of the form indieated by Couchy,

$$
\begin{align*}
& I=A_{0} \frac{d^{2} \xi}{d k^{2}}+A_{1} \frac{d^{4} \xi}{d \xi^{4}}+\& e^{2} \tag{12}\\
& Y=A_{0} \frac{d^{2} v_{\eta}}{d z^{2}}+A_{1} \frac{d^{4} \eta}{d \varepsilon^{4}}+\& \mathrm{Ec} \tag{13}
\end{align*}
$$

828.] If we now take the case of at circularly-polarized ray for which $\quad \xi=r \cos \left(n t-A^{2}\right) ; \quad \eta=r \sin \left(n t-A^{*}\right)$,
we find for the kinetic energy in unit of volume

$$
\begin{equation*}
T=\frac{1}{2} p r^{2} n^{2}-C y v^{2} q^{2} n \tag{15}
\end{equation*}
$$

and for the potential energy in tutit of volume

$$
\begin{align*}
F & =r^{2}\left(A_{0} q^{2}-A_{I} q^{4}+\text { \&e. }\right) \\
& =r^{2} Q \tag{16}
\end{align*}
$$

where Q is a function of y^{2}.
The condition of free propagation of the ray given in Art 880_{3} equation (6), is

$$
\begin{equation*}
\frac{d T}{d r}=\frac{d V^{r}}{d r} \tag{r}
\end{equation*}
$$

which gives

$$
\begin{equation*}
\rho n^{2}-2 C \gamma q^{2} n=Q_{1} \tag{18}
\end{equation*}
$$

whenee the value of a may be found in terms of q.
But in the ease of at ray of given wave-period, acted on by
magnetie foree, what we want to determine is the walue of $\frac{d q}{d \gamma}$, when n is constant, int terms of $\frac{d q}{d \mu}$, when γ is constant. Differentialing (18)

$$
\begin{equation*}
\left(2 p u-2 C_{\gamma} q^{3}\right) d n-\left(\frac{d Q}{d q}+4 C_{\gamma} n\right) d q-2 C_{q^{2}} n d y=0 . \tag{19}
\end{equation*}
$$

We thers lind $\quad \frac{d q}{d \gamma}=-\frac{C_{q}^{2} u}{p a-C_{\gamma} q^{3}} \frac{d q}{d n}$.
829.] If A is the wave-length in air, and it the corresponding index of reflaction in the medimm,

$$
\begin{equation*}
\eta \lambda=2 \pi i, \quad u \lambda=2 \pi v . \tag{21}
\end{equation*}
$$

Wre change in the value of q, dte to magnetie action, is in every ense an exceedingly small firction of its own value, so that we may write

$$
\begin{equation*}
q=q_{0}+\frac{d q}{d y} \tag{22}
\end{equation*}
$$

where q_{0} is the value of q when the magnetic force is zero. The angle, O_{3}, through which the plane of polarization is turned in passing through a thickness c of the medium, is half the sum of the positive and negative values of q, the sign of the result being changed, leemase the sign of q is negative in equations (14). We thus obtain

$$
\begin{align*}
\theta & =-c \gamma \frac{d q}{d \gamma} \tag{29}\\
& =\frac{4 \pi C}{v_{p}} c \gamma \frac{i^{2}}{\lambda^{2}}\left(i-\lambda \frac{d i}{d \lambda}\right) \frac{1}{1-2 \pi C \gamma \frac{i^{2}}{v_{p} h}} \tag{24}
\end{align*}
$$

The second term of the denominator of this fraction is approximately equal to the angle of rotation of the plane of polarization during its passage through a thickness of the medium equal to half a wave-lengeth. It is therefore in all actual eases a quantity which we may neglect in comparison with unity.

Writing

$$
\begin{equation*}
\frac{4 \pi C}{v_{\rho}}=m, \tag{25}
\end{equation*}
$$

we may call m the coeflicient of magnetic rotation for the medium, in quantity whose value must be determined by ohservation. It is fornd to be positive for most diamagnetic, sud negative for some paramargetic media. We have therefore as the final result of our theory

$$
\begin{equation*}
\theta=m c \gamma \frac{i^{2}}{\lambda^{3}}\left(i-\lambda \frac{d i}{d \lambda}\right), \tag{26}
\end{equation*}
$$

where θ is the angular rotation of the plane of polatications, m at
constant determined by observation of the medium, γ the intensity of the magnetic force resolved in the direction of the ray, a the length of the ray within the medium, a the wave-lengetls of the light in air, and i its index of refraction in the medium.
830.] The only test to which this theory has hitherto been subjected, is that of compring the values of 0 for different kinds of light passing througl the same medium and acted on by the same magnetic force.

This has leen done for at considerable number ol media by M. Verdet \%, who has arrived at the following results:-
(1) The magnetic rotations of the planes of polatization of the rays of diflerent colours follow approximately the law of the inverse square of the wave-length.
(2) The exact law of the phenomena is always such that the product of the rotation by the squatre of the wave-lengeth increases from the least reftangilde to the most refrangible end of the spectrum.
(3) The substances for which this increase is most sensible are also those whid have the greatest dispersive power.

He also found that in the solution of tatarie acid, whech of itself produces a rolation of the plane ol polarzation, the magnetie rotation is by no means proportional to the natural retation.

In maddition to the same memoir \dagger Verdet has griven the results of very careful experinents on bismiphide of carbon and on creosote ${ }_{5}$ two substances in whicl the departure from the law of the inverse square of the wave-lengtl was very apparent. He has also compared these results with the numbers given by three different formule,
(I) $\quad 0=\operatorname{me\gamma } \frac{\lambda^{2}}{\lambda^{z}}\left(i-N \frac{d i}{d A}\right)$;

$$
\begin{align*}
& \theta=m c \gamma \frac{1}{\lambda^{2}}\left(i-\lambda \frac{d i}{d \lambda}\right) \tag{II}\\
& 0=m c \gamma \quad\left(i-\lambda \frac{d i}{d \lambda}\right) \tag{III}
\end{align*}
$$

The first of these formulx, (\mathbf{I}), is that which we have alrealy of tained in Art, 829, equation (26). The second, (1I), is that which results from substituting in the equations of motion, Ari. 826, equations (10), (1 $)$, terms of the form $\frac{d^{3} \eta}{d l^{3}}$ and $-\frac{d^{3} \xi}{d l^{3}}$, instend of $\frac{d^{3} \eta}{d z^{2} d l}$

[^45]and - $\frac{d^{3} y}{d z^{2} d d^{2}} \cdot$ I amm noware that this form of the equations has been suggested ly any physical theory. The thind formula, (III), results from the plysical theory of M. C. Nemman *, in which the equations of motion contain terms of the form $\frac{d \eta}{d l}$ and $-\frac{d \xi}{d l} \dagger$.

It is exident that the values of θ given by the formula (III) are not even approximately proportional to the inverse square of the wave-length, Those given by the formule (T) and (II) satisfy this condition, and give values of θ which agree tolerably well with the onserved values for medin of moderate dispersive power. For bisulphide of cartou and ereosote, however, the values siven by (II) differ very much from those observed. Those given by (I) agree better with observation, but, though the agreement, is somewhat close for hisulphide of earbon, the numbers for creosote still differ ly quanfities mach greater than ean be accounted for by any errors of observation.

Wagnetic Ratation of lhe Plane of Polarization (from Ferted).

Pimply hide of Cartuer at P4. 2 C .					
Thises of the ppoctran	C	ग	E	17	6
Sbseryed lotatints	592	703	1000	1234	1501
Calculaterd lyy 1.	589	760	1000	1234	1713
. IT.	f003	72	1000	1218	1640
. I1I.	943	$96 \overline{7}$	1000	1034	1091
Ikotation uf the ray $x^{2}=25^{2}$, 23^{\prime},					
Creamote ne 21^{3}. 3 C .					
Linera of the spectram	C	1)	E	P	Q
Oluerwed cotation	513	758	1000	1211	1503
Crlculatect ly I	67	780	1000	1 190	160%
$\square 11$	693	759	1009	12190	1505
.. 1II.	976	993	1000	101\%	10.1
Rotation of the ray $E=21^{\circ} \mathrm{s}^{\prime}$.					

We are so little acquainted with the details of the molecular

[^46]constitution of bodies, that it is not probable that any satisfactory theory can be formed relating to at particular phemomenon, sueh as that of the magnetic atction on light, until, by an indactorn founden on a number of difierent cases in which visible phenomena are dound to depend upon actions in which the molecules are concervest, we lourn something more definite about the propeties which must be attributed to a molegule in ordur to satisly the conditions of observed facts.

Whe theory proposed in the precaling pages is evidently of a provisional kime, rusting us it dous on momowed hypotheses relating to the nature of moleenlar vortiees, and the mote in which they are affected by the displacement of the mediam. We must theredore regard any eoincidence with olysured focts as of muell less seiontife value in the thoory of the magnetic rotation of the pham of polarization than in the electromagretie theory of light, which, thongh it involves hypotheses abont the electrice properties of media, domen mot. spentate as to the constitation of their moleenles.
831.] Nort.- The whole of this chapher may be regarded as an expansion of the execedingly importand remants of Sir Willianm Thomson in the Procediags of the Fopul Socety, Tume 1850:-T'The magnetio intluence on light discovered \ln Thambay depundss on the direction of motion of moving particles. For instance, in a medinm possessing it, paticles in atroight line patallet to the limes of magretic force, displated to a helix round this line as axis, and da'm profected tangentially with such velocitios as to aleseritre eircles, wall have dilferent velocities according is thejo motions are romml in one diucetion (the same as the nominal direetjon of the gatrande earent in the magatizing coil), or in the contany divection, But, the elastic reation of the medium must be the same for the same displadements, whatever be the velocities and divections of the partheles; that is to say, the forees which are balawed lyy entrifugril lonce of the ctixalan motions are equal, white the hminifuras motions are unegual. The alasolute circular motions being theretore either equal on sueh as to trammite equat contribural forees fo the particles inititlly considered, it follows that the luminiferous motions are only componeuts of the whole motion; and that a lest hamiaiferoms component in one direction, compountal widn at mortion existing in the median when transmitting no lighte grives an equal resultant to that of a greater lmminiferous motion in the worntaty diretion componndel with the smme nor-luminous motion. I think it is not only impssible to conecive any uhber than this
dynamical explanation of the fact that cireularly-polarized light transmittel through magnetized glass parallel to the lines of magnetizing force, with the same quality, right-lumed always, or leftlanded always, is propagated at different rates accorling as its conrse is in the direction or is contary to the direction in which at nortli magrutie pole is duawn ; but I believe it can be demonstrated that no other explanation of that fact is possible. Hence it appears that Faraday's optical discovery alfords a demonstration of the reality of Ampere's explanation of the ultimate nature of magnetism; and gives a definition of magnetization in the dymamical theory of heat. The introluction of the principle of moments of momenta (" the conservation of areas") into the mechanicall treatment of Mr. Remkine's hypothesis of " molecular vortices," appears to indicate a line perpundicular to the plane of resultant rotatory momentum ("the invariable plane") of the thermal motions as the magnetic axis of a magnetized body, and suggests the resultant moment of momenta of these motions as the definite measure of the "magnetie moment." The explatuation of all phenomena of" electromagnetic attractiou or repulsion, and of electromagnetic induetion, is to be looked for simply in the inertia and pressure of the matter of which the motions constitute heat. Whether this matter is or is not electricity, whether it is a continnous fluid interpermeating the spaces leetween molecular nuclei, or is itself molecularly grouped; or whether all matter is continuons, and molecular heterogeneonsness consists in finte vortical or other relative motions of contignous parts of at body; it is impossible to deende, and perlaps in vain to speculate, in the present state of science.'

A theory of molecular vortices, which I worked out at considorable length, was published in the Phil. Mag. For March, April, and May, 18(61, Jan. and Fel. 1862.

I think we have grood evidence for the opinion that some phenomenon of rotation is groing on in the magnetic field, that this rotation is performed lyy at grat number of very small portions of matter, each rotating on its own axis, this axis leeing parallel to the divection of the magnetie fores, and that the rotations of these different vortices are made to depend on one another by means of some kind of mechanism eonnecting them.

The attempt which I then made to imagine a working model of this mechanism must be taken for no more than it really is, a demonstration that mechanism may be inasined capable of producing a comexion mechanically equivalent to the actual comexion of the
parts of the electromagnetic field. The problem of determining the moelrantan required to establish a given species of connexion butween the motions of the parts of a system always udnits of an infinite number of solntions. Of these, some may be more clamsy or more complex than others, but all must sutisfy the couditions of mechasism in general.

The following results of the theory, however, are of hitgher value:--
(1) Magnetic foree is the eflect of the centrifugal foree of the vorlices.
(2) Electronagnetic induction of currents is the effect of the forees ealled into play when the velocity of the vortices is chanting.
(3) Electromotive force arises from that stress on the connecting mechanism.
(4) Electric displacement arises from the dastie yielding of the connecting mechanism.

CHAPTER XXIT.

WERROMAGNTTISM AND DHMAGNETISM EXPGATXEL BY
MOLECUTAR CUREENTS.

On Flectromaquetio Theories of Magnelisw.

839. We have sem (Art. 380) that the action of magrets ant one another can be accuately represented by the attractions and repulsions of an imaginaty substance ctled 'magnetio matter.' We lave shewn the reasons why we must not supprose this magnetic matter to move from one part of a magnet to another through a sensible distance, as at first sight it appens to do when we magnetize a bur, and we were led to Poisam's ly pothesis that the magnetic matter is strictly confined to single molecales of the magnetie sulbstance, so that a magnetized molecule is one in which the opposite kinds of maghetic matter are more or leas sepmated towards opposite poles of the molecule, but so that no part of either can ever be actually separated from the molecule (Art. 480).

These argiments completely establish the fret, that magnetization is at phenomenon, not of large masses of iron, but of moleenles, that is to say, of portions of the substance so small that we cannot by any mechanical method eat one of thern in two, so as to obtain a nortly pote separate from a sontly pole. But the nature of a magnotic molecule is by no means determined without furthor juwestigation. We have seen (Art. 442) that there ave strong reasons for bolioving that the act of magnetizing irom or sted does not consist in imparting magnetization to the molecules of which it is composed, lmat that these molecties are alrendy magnetic, oven in ummagnetized iron, lout with their axes placed indiflerently in all disections, and that the net of magnetization consists in turning the molecules so that their axes are either rendered atl parallel to one diredion, or at Jeast are deflected towards that direction.
883. Still, however, we have arrixed at no oxplanation of the nature of a magnetic molecule, that is, we have not recognized its fikeness to any ofler thing of which we know more. We hive therefore to consider the hypothesis ol' Ampere, that the magnetism of the molecule is due to an electric current constantly ciredating in some closed path within it.

It is possible to protuce an exact imitation of the action of any magnet, on points external to it, lyy means of a sleet of clectric eurrents properly distributed on its outer surface. That the action of the magnet or points in the interion is quite difletent from the action of the electric entrents on eorrosponding points. Henee A mpere concluted that if magretism is to be explained by meats of electrie currents, these currents most eirculate withon the molecules of the magret. and must not flow from one molembe to anothert. As we cammot experimentally moasure the mayretic action at at point in the interior of a molecule, this hypothesis canmot be disproved in the same way that we enn disprove the hypothesis of currents of sensille extent within the maget.

Besides this, we know that an dectric current, in passing from one part of a conductor to another, meets with resistance anil granerates heat; so that if there were enrents of the ordiary lind romed protions of the magnet of sensible size, there would lie a constanb expenditure of energy required to manain them, and a magnet. would be a perpetual soluce of heat. By confining the citeuits to the molecules, within which nothing is known abont resistance, we may asserts, withont fear of contradietion, thet the earrent, in circalating within the molecule, meets with no resistance.

According to Ampere's theory, therelore, all the phenomena of magnetism are due to electrie currents, and if we conld make olsservations of the maguetide force in the interior of a mugnetic molecole, we shoutd lind that it wheyed exnetly the same laws the force in a region surrounded by ary of her electric eirenit.
834.] In trenting of the force in the interior of magnets, we hate supposed the measurenents to be made in a small crevasse hollowed mint of the sumstance of the magnet, Art. 39. Wo wore thus Fix to consider tuo different quantities, the magnetic foree and the magnetie induction, both of which are supposed to be observed in a space from which the margetic matior is removed. We were not supposed to to able to ponetrate into the interion of at angmelie molecule and to observe the force within it.

If we tulopt Ampere's theory, we consider a magnet, not as a F: 02
continuous substance, the magnetization of which wartes from point to point according to some easily coneepived law, but as a multitude of tnolecules, within each of which circulates a system of electric currents, giving rise to adistribution of magnotie force of extreme complexity, the direction of the foree in the interior of a molecule leing gencrally the reverse of that of the aworage force in its neight bourlood, and the magnetic potential, where it exists att all, being a fanction of as many degrees of multiphicity as there are molecules in the magreet.
835.] But we shall find, thats in spite of this apparent complexity, which, however, arises merely from the coexisterne of a multitude of simpler parts, the mathematieal theory of magnetism is greatly sumplitied by the adoption of Ampere's theory, and ly extending our madhematical vision into the interior of the molecules.

In the first place, the two definitions of magnetio foree are reduced to one, both beeoming the same as that for the space outside the magnuct. In the next place, the components of the magnetic force every where satisfy the condition to which those of induction are subject, namely,

$$
\begin{equation*}
\frac{d a}{d d}+\frac{d \beta}{d y}+\frac{d \gamma}{d z}=0 \tag{i}
\end{equation*}
$$

In other words, the distribution of magnetie force is of the same nature as that of the velocity of an incompressible fluid, or, as we have expresed it in Art. 25 , the magnetic force has no convergence.

Finally, the three veetor functions- the electronagnetic momentum, the magnetic tores, and the electric current-lecome more simply related to each other. They are all vector functions of no convergence, and they are derived one from the other in order, by the same process of taking the space-variation, which is denoted by Hamilton ly the symbol ∇.
836.] But we are now considering magnetism from at physical point of view, and we raust enquire into the physical properties of the motecular currents. We assume that a elurent is cirenlating in a molecule, and that it meets with no resistance. If l is the coefficient of self-induction of the molectar cirent, and M the coefficient of mutnal induction between this cirenit and some other circuit, then if y is the corrent in the molecule, and y^{\prime} that in the other cirenit, the equation of the current γ is

$$
\begin{equation*}
{ }_{\mu}^{d}\left(L_{\gamma}+M \gamma^{\prime}\right)=-H_{\gamma} \tag{2}
\end{equation*}
$$

and since lyy the lypothesis there is no resistanee, $R=0$, and we get by integration

$$
\begin{equation*}
L^{\prime} \gamma+M \gamma^{\prime}=\text { eonstant },=L_{0}, \text { say } \tag{3}
\end{equation*}
$$

Set us suppose that the area of the projection of the molecalay circutit on a plane perpondienlar to the axis ol the molecule it A, this axis being detined as the normal to the plane on which the projection is greatest. If the action ol other cuments proluces a magnelie fore, \mathcal{L}^{\prime}, in in direction whose inclination to the axis of the molecute is θ, the quantity $M \gamma^{\prime}$ beemes $\lambda^{\prime} A \cos \theta$, and we hewe ass the eruation of the eurrent

$$
\begin{equation*}
L_{i}+X A \cos \theta=L_{2} \gamma_{0} \tag{1}
\end{equation*}
$$

where γ_{0} is the value of γ when $\mathrm{X}=0$.
It appears, therefore, that the strength of the molecular aument depends entirely on its primitive valute γ_{0}, and on the internity of Whe magnelic force due to other currents.
837. If we suppose that there is no primitive entremb, but that the eurrent is entirely due to induetion, then

$$
\begin{equation*}
y=-\frac{T A}{/} \cos 0 . \tag{i}
\end{equation*}
$$

The regative sign shews that the direction of the indteed current is opposite to that of the indueing corrent, and its maguetie: action is steh that in the imterior of the virenit, it acts in the expprosite diredion to the magretic force. In other words, the molecolar current aots like a small magnet, whose poles are turned townals the poles of the same name of the indueng magnot.

Now this is an action the rewerse of that of the molecules of iron wher mangetic action. The molecular ourrents in iron, therefore, are not exeited by induction. But in diamuchetie substaners an action of this lind is ofserved, and in fact this is the explanation of diamarnetie polarity which was first given by theber.
Weber's Theory of Liamagnetian.
838.] According to Weber"s theory, there exist in the molemen of diamagnetic substances cetain chanmels round which an electrie eurrent can cirenkate withoub resistance. It is manilest llat if we supose these chanmels to traverse the molecule in ewery divection, this amounts to making the moteenle a perfeet conthetor.

Buginning with the assumption of a linear eirenit within the molecule, we have the strenstlo of the ourent given by equation (5).

The magractic moment of the enrent is the prodnet of its strength by the area of the eirenit, or γA, and the resolved part of this in the divection of the magnetizing foree is $\gamma A \cos \theta$, or, by (5),

$$
\begin{equation*}
-\frac{X A^{2}}{L} \cos ^{2} \theta . \tag{i}
\end{equation*}
$$

If there are a sneh molecules in unit of volume, and il their axes are distributed indilierently in all directions, then the average value of $\cos ^{2} \theta$ will be $\frac{1}{3}$, and the intensity of magnelization of the substance will be

$$
\begin{equation*}
-\frac{1}{3} \frac{n A^{2}}{i} . \tag{7}
\end{equation*}
$$

Neumam's coefficient of magnetization is therefore

$$
\begin{equation*}
\kappa=-\frac{1 n}{3} \frac{n A^{2}}{l} . \tag{8}
\end{equation*}
$$

The magnetization of the substance is therefore in the opposite direction to the magnetizing force, or, in other words, the sulsistance is diamagnetic. It is also exactly proportional to the maghetizing force, and does not tend to a finite limit, as in the ense of ordinary magretie induction. See Arts. 442, \&e.
839.] If the directions of the axes of the molecular chamels are arranged, not indifferently in all directions, but with a preponderating number in certain directions, then the sum

$$
\Sigma \frac{A^{2}}{h} \cos ^{2} \theta
$$

extended to all the molecules will have dillerent values aceording to the direction of the line from which 0 is measured, and the distribntion of these values in different directions will be simitar to the distribution of the values of moments of inertia about axes in different direetions through the same point.

Such a distribution will explain the maguetic phenomena related to axes in the body, deseribed loy Plueker, which Faraday has called Magre-crystallio phenomena. Sce Art. 435.
840.] Let us now consider what would be the ellect, if, instead of the electric carrent being confined to a certain chamel within the molecule, the whole molecule were supposed a perfect conductor.

Let us begin with the case of a body the form of which is acyelic, that is to say, which is not in the form of a ring or perforated boty, and let us suppose that this body is everywhere surrounded by a thin shell of perfectly conducting watter.

We have proved in Art. 65t, that a closed shoet of perfectly conducting matter of any form, originally free from cmerents, br-
comes, when exposed to external magnetic foree, a curwent-sheet, the action of which on overy point of the interior is such as to make the magnetic fore zero.

It may assist us in understanding this ense ill we observe that the dishilhotion of magnetio force in the uelghbourhood of sath a body is similar to the distribution of velocity in an incompressible fluid in the neighbourhood of in impervious body of the same form,

It is obvious that if other combeting shells are phated within the first, since they dre not exposed to maynetie forec, no emrents will be excited in them. Huree in a solish of perfecty comelnetiog material, the effect of matnetice fore is to arenctate a system of currents which are entirely confinal to the surfice ol the body.
841.] If the condueting body is in the form of a sphere of radius r, its magnetic moment is

$$
-\frac{1}{4} r^{3} x
$$

and if a number of such spleres are distributed in a medimm, so that in unit of volume the wolume of the conducting matter is k, ther, by puiting $\mu_{1}=1$, and $\mu_{2}=0$ in equation (17), Art. 314 , wo find the coeflewent of maguetic permeability,

$$
\begin{equation*}
\mu=\frac{2-2 k}{2+k^{\prime}} \tag{9}
\end{equation*}
$$

whence we obtain for Poisson's magnotide coefficient

$$
\begin{equation*}
k=-\frac{1}{1} H^{\prime} \tag{10}
\end{equation*}
$$

and for Neumam's coeflieient of magnetization by induction

$$
\begin{equation*}
x=-\frac{3}{4 \pi} \frac{H^{\prime}}{2+k^{2}} \tag{11}
\end{equation*}
$$

Sine the mathematieal conception of pertectly conducting bodies leads to results exceedingly different lionn any phenomena which we ean olsemes in ordinary conductors, let us pursto the sthject somewhat further.
842.] Returning to the case of the condueting chanel in the form of a closed curve of atea A, is in Art. 836 , we lave, for the moment of the electronagretice fore tending to incrense the angre 0 ,

$$
\begin{align*}
\gamma^{\prime} \frac{d M}{d \theta} & =-\gamma M A \sin \theta \tag{12}\\
& =\frac{A^{2} A^{2}}{l^{2}} \sin \theta \cos \theta \tag{13}
\end{align*}
$$

This force is positive or megative according as 0 is less or than a right angle. Heace the effee of magretio forme on a perfeetly conducting chanmel temels to turn it with its axis at right
angles to the line of magnetic foree, that is, so that the phane of the chameil becomes parallet to the liwes of foree.

An eflect of a similar kind may be olserved by placing a penny or a copper ring between the poles of an electromagnet. At the instant that the magret is excited the ring turns its plane towards the axial direction, but this force vanishes as soon as the currents are dendened by the resistance of the copper ${ }^{*}$.
843.] We have hitherto considered only the case in which the molecular currents are entirely excited by the external magnetio force. Let us next examise the bearing of Webers's theory of the magneto-electric induction of moleenlar currents on Ampere's theory of ordimary magnetism. According to Ampere and Weber, the molecular currents in magnetic sulstances are not exeited by the external magnetic foree, lut are already there, and the molecule itself is acted on and deflected by the eleetromagnetic action of the magnetie foree on the conducting cirenit in which the current flows. When Ampere devised this hypothesis, the induction of electric currents was not known, and he made no lypothesis to account for the existence, or to determine the strength, of the molecular currents.

We are now, however, bound to apply to these currents the same laws that Weber applied to his currents in diamagnetic molecules. We have only to suppose that the primitive value of the current γ, when no magnetic foree acts, is not zero huf γ_{0}. The strength of the current when a magnetic force, X, atets on at molecular current. of area A, whose axis is inclined 0 to the line of magnetic foree, is

$$
\begin{equation*}
\gamma=\gamma_{0}-\frac{X_{A} A}{L_{1}} \cos \theta, \tag{14}
\end{equation*}
$$

and the moment of the couple tending to turn the molecule so as to increase θ is

$$
\begin{equation*}
-\gamma_{0} X A \sin \theta+\frac{X^{2} A^{2}}{2 l} \sin 2 \theta \tag{15}
\end{equation*}
$$

Henee, putting

$$
\begin{equation*}
A \gamma_{0}=m_{s} \quad \frac{A}{L \gamma_{0}}=7 \beta_{3} \tag{16}
\end{equation*}
$$

in the investigation in Art, 443, the equation of equilibrium becomes

$$
\begin{equation*}
X \sin \theta-A X^{2} \sin \theta \cos \theta=D \sin (a-\theta) . \tag{17}
\end{equation*}
$$

The resolved part of the magnetic moment of the carrent in the clirection of x is

$$
\begin{align*}
& \gamma A \cos \theta=\gamma_{1} A \cos \theta-\frac{X A^{2}}{L} \cos ^{2} \theta, \tag{18}\\
& =m \cos \theta(1-D X \cos \theta) . \tag{10}
\end{align*}
$$

84.] These conditions differ from those in Weler's theory of magnetic induction ly the terms insolving the coefficient A. If $W X$ is small compared with unity, the resulls will approximate to those of Weler's theory of magnetism. If $B X$ is laver compered with unity, the results will approximate to those of Weber's theory of diamagnetism.
Now the greater γ_{0}, the primitive walue of the molecular eurremt, the smaller will B become, and if J is also large, this will also diminish B. Now if the eurent flows in a ring chamel, the valne of f depends on $\log \frac{h}{\gamma}$, where R is the radius of the mean line of the channel, and r that of its section. The smaller therefore the section of the channel compared with its area, the grevater will he L, the coefficient of self-imenction, and the more mesuly will the phenomena agree with Weber's oriminal theory. There will be this difference, howeyer, that as X, the maguetizing foree, increases, the temporary magnetic moment will not only reach a maximum, lnot will : ufterwards diminisll as X increnses.

If it should ever be experimentally proved that the temporary magnetization of any substance first increases, and then diminishes as the magnetizing force is continually increased, the evidence of the existence of these molecular currents would, 1 think, be raised almost to the rank of it demonstration,
845.] If the molecular eurents in dimagnetic substances are confined to definite clamness, and if the molecules are capable of being dellected like those of magnetic substances, then, as the magnetizing force increases, the diamagnetic polavity will always inerease, but, when the force is great, not quite so fast as the magnelixing force. The small absolute value of the diamagnetic coeflicient shows, however, that the deflecting force on ench mofeenle must be small compared with that exerted on a magnetic motecule, so that any result due to this deflexion is not likely to be pererptible.

If, on the other hand, the moleeular enrrents in diamagnetic bodies are free to flow through the whole sulstance of the molecnles, the diamonetie polarity will lee strictly proportional to the magnetizing foree, and its amomb will leal to a detemination of the whole space oecupiel lyy the perfectly condneting masses, and, if we know the number of the molecules, to the tetermination of the sise of each.

CHAPTER XXIIT.

THEORLES OF ACRIOX AT A DISTANCE.

On the Explanation of dmprece's Formala given by Gausis aud Weber.
846.] The attraction between the clements as and dse of two circnits, carrying electric currents of intensity i and $i^{\prime}=$ is, by Ampere's formula,
$01{ }^{\circ}$

$$
\begin{align*}
& -\frac{i^{\prime} d s s^{r}}{r^{2}}\left(2 \cos \mathrm{E}+3 \frac{d r}{d s} \frac{d r}{d s}\right) ; \tag{1}\\
& \frac{u i^{\prime} d s}{x^{2}} d s^{*}\left(2 r^{2} \frac{d^{2} r^{x}}{d s d s^{\prime}}-\frac{d r}{d s} d r\right) ; \tag{2}
\end{align*}
$$

the curents leing estimated in electromarnetic units. Ste Art. 52 ti.
The quantities, whose meaning as they ippear in these express sions we lave now to interpret, are

$$
\cos \epsilon, \quad \frac{d r}{d s} \frac{d r}{d s^{\prime}}, \quad \text { and }-\frac{d t^{2}}{\sqrt{2} / d d^{\prime}} ;
$$

and the most obwious phenomenon in which to seek for :un interpretation founded on a direet relation between the currents is the relative velocity of the electricity in the two clements.
847.] Let us therefore consider the relative motion of two partieles, moving with constant welocities v and v along the elements ds and $d r^{\prime}$ respectively. The square of the relative velocity of these particles is

$$
\begin{equation*}
u^{2}=v^{2}-2 v v^{\prime} \cos \epsilon+t^{2} ; \tag{3}
\end{equation*}
$$

and if we tenote by r the distance between the praticles,

$$
\begin{align*}
& \frac{\partial r}{\partial b}=v^{d r} \frac{d r}{d v^{\prime}}+v^{\prime} \frac{d r}{d v^{\prime}}, \tag{1}\\
& \left(\frac{d r}{d v}\right)^{2}=v^{2}\left(\frac{d r}{d b}\right)^{2}+2 v v^{d} \frac{d r}{d r}+v^{2}\left(\frac{d r}{d v}\right)^{2}, \tag{5}\\
& \partial^{2} r=v^{2} \frac{d^{2} r}{d s^{2}}+2 w \frac{d v^{2}}{d d^{2}}+v^{2}+\frac{d v^{2} r}{d s^{2}}, \tag{6}
\end{align*}
$$

where the symbol ∂ indieates that, in the quantity dillerentiated, the coorlinates of the particles are to be expressed in temes of the time.

It appears, the fofore, that the terms involting the product bo $^{\circ}$ in the equations (3), (5), and (6) contain the quantities occuming in (1) and (2) which we have to interpmet. We therefore endeavon to express (1) and (2) in terms of $m^{2}, \overline{\partial y^{2}}{ }^{2}$, and $\frac{a^{2} t^{2}}{\partial t^{2}}$. But in order to do so we mast get rid of the firet and third terms of each of these expressions, lor they involve guantities whieh do not appear in the Cormula of Ampere. Hence we canol explain the eledric current as a transfer of electrity in one direction only, but we mast combine two opposite strants in cacle eurrent, so that the combined effect of the terms inwolving x^{2} and y^{2} may be zeto.
848. Luet us therefore suppose that in tho first element, als? we have one deetric particle, e^{5} moving with velocily ${ }^{\text {b }}$, and another, e_{1}, moving with velocity p_{1}, and in the same way two priticles, and e_{1}^{\prime}, in ds, moving with velocitios v^{\prime} and p_{1} respectively.

The tern involving e^{2} for the combined netion of these puticles is

$$
\begin{equation*}
\mathrm{\Sigma}\left(v^{2} e e^{7}\right)=\left(v^{2} e+v_{1}^{2} e_{1}\right)\left(e^{t}+e_{j}^{\prime}\right) \tag{7}
\end{equation*}
$$

Similany $\quad \Sigma\left(v^{\prime \prime 2} e^{\prime}\right)=\left(v^{2} e^{\prime}+v_{1}^{\prime 2} e_{1}\right)\left(c+e_{1}\right) ;$
and $\quad-\left(w^{\prime} e e^{*}\right)=\left(z e+v^{2} e^{2}\right)\left(v^{\prime} e^{\prime}+v_{1} b_{0}\right)$.
In order that $\Sigma\left(b^{2} e e^{2}\right)$ may be gero, we must have eitiler

$$
e^{\prime}+e_{1}^{\prime}=0, \quad \text { or } \quad e^{2} e+v_{1}^{2} e_{1}=0
$$

According to Fechner's hypothesis, the chectric current consists of a curnent of positiwe electricity in the positive directions, comband with a current of negative electricity in the negative direction, the two ourrents being exaetly equal in numerieal magnituile, boll as respeets the guantity of electrieity in motion and the velocity with which it, is moving. Hence both the conditions of (10) are satisfied by lechaer's lypothesis.

But it is suffecent for our pupose to assume, either-
That the quatity of positive eloctricity in adele element is mumerically equal to the quantity of negative electricity; or-
"Hat the ghantities of the two kinds of electricity are inversely as the squares of their velocities.

Now we know that by eharging the second conducting wire as a whole, we chn make $e^{\prime}+\mathcal{E}_{1}$ either positive or negrative. Such a adrargel wite, ceros withont a current, aceording to this formatia,

has a value differing from zero. Such an action has never been observed.

Therefore, since the quantity $\epsilon^{\prime}+\ell_{1}^{\prime}$ may lre shewn experimentally not to be always zero, and since the quantity $z^{2} e+v_{1}^{2} e_{1}$ is not capable of being experimentally testert, it is better for these speenLations to assume that it is the latter quantity which invariandy vanislies.
849.] Whatever hyyothesis we adopt, there can be no doubt that the total transfer of cleetrieity, reckoned algelmaically, along the first circuit, is represented by

$$
v e+v_{1} \dot{d}_{1}=c i d l_{s} ;
$$

Where c is the number of units of statical electricity which are transmitted by the unit electric enrrent in the unit of time, so that we may write equation (9)

$$
\begin{equation*}
\Sigma\left(v^{\prime} e c^{\prime}\right)=c^{2} i^{\prime} d s d s^{\prime} . \tag{11}
\end{equation*}
$$

Henee the sums of the four values of (3), (5), and (6) become

$$
\begin{align*}
& \pm\left(e e^{\prime} u^{2}\right)=-2 c^{2} i \partial^{\prime} d s d s^{\prime} \cos \varepsilon ; \tag{12}\\
& \leq\left(e e^{\prime}\left(\frac{\partial r^{\prime}}{\partial t}\right)^{2}\right)=2 c^{a} i u^{\prime} d \overrightarrow{d s^{\prime}} \frac{d r}{d s} \frac{d r}{d s^{\prime}}, \tag{13}\\
& \Sigma\left(c e^{\prime} r \frac{\partial^{2} r}{\partial t^{2}}\right)=20^{2} \ddot{i^{\prime}} d \delta d s^{\prime} r \frac{d^{2} r}{d s} d d^{\prime}, \tag{14}
\end{align*}
$$

and we may write the two expressions (1) and (2) for the attration het ween d / s and $d s$

$$
\begin{equation*}
-\frac{1}{e^{2}} \Sigma\left[\frac{c e^{\prime}}{r^{2}}\left(w^{2}-\frac{3}{2}\left(\frac{b r}{\partial l}\right)^{2}\right)\right] \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{c^{2}} \Sigma\left[\frac{c^{2}}{r^{2}}\left(r \frac{\partial^{2} x}{\partial t^{2}}-\frac{1}{2}\left(\frac{d r}{\partial t}\right)^{2}\right)\right] \tag{10}
\end{equation*}
$$

850.] The ordinary expression, in the theory of statict etectricily, for the repulsion of two electrion particles e and e^{\prime} is $e^{2} e^{2}$, and

$$
\begin{equation*}
\Sigma\binom{e e^{\prime}}{r^{\prime}}=\frac{\left(e+e_{1}\right)\left(6+e_{1}^{\prime}\right)}{r^{2}} \tag{17}
\end{equation*}
$$

which gives the electrostatie repulsion between the two elements if they are charged as wholes.

Hence, if we assume for the repulsion of the two particles either of the modificul expressions

$$
\begin{align*}
& \frac{c e^{\prime}}{r^{2}}\left[1+\frac{1}{c^{2}}\left(x^{2}-\left(\frac{\partial r}{\partial r}\right)^{2}\right)\right], \tag{18}\\
& \frac{c c^{2}}{r^{2}}\left[1+\frac{1}{e^{2}}\left(r^{2} \frac{\partial^{2} r}{\partial t^{2}}-\frac{1}{2}\left(\frac{\partial r}{d t}\right)^{2}\right),\right. \tag{19}
\end{align*}
$$

we may deduce from them both the ordinary eleetrostatie formees, and fhe foreds athig totween curvents as detemaned by Ampere.
851.] The first of these expressions, (18), was discovered lyy Gauss ${ }^{*}$ in July 1835 , atul interpreted by lam as a lumdamental haw of electrieal action, that "Two dements of electricity in a state of" relative motion attract or repel orve another, but not in the same way as if they are in a state of relative rest.' 'This discovery was not, so far as I linowf published in the lifetime of Ganss, so that the second expression, which was discovered independently ly W. Weber, and pulbished in the lirst part of his celebrated F/chlorlymombehe Mockhetmangeat, wats the first restult of the kind made known to the scientifie world.
852.] The two expressions lead to procisely the same result when they are applid to the determanation of the mechanical foree lestween two dectrie enrents, and this resnlt is julenticul with that of Ampere. But when they are considered as expressinns of the physical haw of the action between two electrien parteles, wo ate led to enguire whether they are consistent with other known fitela of nature.

Both of these expressions involve the relative volocity of the particles. Now, in establishing by mathematical remsoning the well-known prineiple of the conservation of enctgy, it is generally assumed that the force acting hetween two patecters is a function of the distance only, and it is commonly stated that if it is a fumetion of anythinge clse such as the time, or the velocity of the particles, the proof would not hold.

Hence a law of electrical action, involving the relocity of the particles, has sometimes been supposed to be ineonsistent with the principle of the conservation of energy*
853.] The formula of Gauss is inconsistent with this prinefipe, and must therefore be almadoned, as it luads to the conchenion Hat encrgy might be indefintely gencrated in a finite system by physienl means. 'This objection does not apply to the formula of Weher, for he bas shewnt that if we assume as the potential energy of at system consisting of two elactrio particles,

$$
\begin{equation*}
\psi=\frac{e^{t}}{r}\left[1-\frac{1}{2 e^{2}}\left(\frac{\partial r}{\partial t}\right)^{2}\right], \tag{20}
\end{equation*}
$$

the repalsion between them, which is fonnd by differentiating this frantily with respect tor $x_{\text {a }}$ and changing the sign, is that given by the Formaliat (19).

$$
\begin{aligned}
& + \text { Abl. Feilrezem Gex, Leipsig (1aldi). }
\end{aligned}
$$

Hence the worl tone on a moving particle ly the repulsion of a fixed particle is $\psi_{n}-\psi_{1}$, where ψ_{n} and ψ_{1} are the values of ψ ne the logiming and at the end of its path. Now ψ depends only on the distance, r, and on the velocily resolved in the direction of r. If, therofore, the particle describes any closed path, so that its position, velocity, and direction of motion are the same at the end as at the legriming, ψ_{1} will be equal to ψ_{0}, and no work will be done on the whole during the cyete of operations.

Hence an indefinite anownt of work camot be generated ly a particle moring in a periodic manner under the action of the force assumed hy Welser.
854.] But Fildmholta, in his very powerfol memeir on the 'Equations of Motion of Etectricity in Conductors at Rest 'w, while he shews that Welser's formula is not ineonsistent with the principle of the conservation of energy, as regards only the work done during a complete eyclieal operation, peints out that it leads to the conclusion, that two electrified parlicles, which move aceording to Weber's law, may have at first finite velocities, and yet, while still at a finite distance from each other, they may neqnire an inftite linotic energy, and may perfirm an infinite amount of work.

To this Welert replies, that the initial relative velocity of the particles in Helmholtz's cxample, though finite, is greater than the relacity of light; and tlat the distance at which the kinetic energy becomes infinite, though finite, is smaller than any magnitude which we can perecive, so that it may be physically impossible to bring two molecules so near together. The exampte, therefore, camot be testect by any experimental method.

Helmholta \ddagger has therefore stated a case in which the distances are not too small, nor the velocitios too great, for experinental verification. A fixed non-condtreting spherienl surface, of ratius os, is miformly charged with electricity to the surface-density σ. A particle, of mass m and carryiug a charge e of electricity, moves within the sphere with velocity x. The electrodynamie potentinl enleulated from the formula (20) is

$$
\begin{equation*}
4 \pi \alpha \sigma c\left(1-\frac{v^{2}}{6 c^{2}}\right) \tag{21}
\end{equation*}
$$

and is iudependent of the position of the particle within the sphere. Alding to this $F_{\text {; }}$, the remainder of tho polential energy arising

[^47]from the action of other forees, sund $\frac{1}{2} n^{2}$, the kinelie chergy of the partiele, we find as the equation of energ?
\[

$$
\begin{equation*}
\frac{1}{2}\left(m-\frac{4}{3} \frac{\pi \pi \sigma c}{c^{2}}\right) r^{2}+4 \pi a d e+y^{-2}=\text { const. } \tag{22}
\end{equation*}
$$

\]

Since the second term of the conffient of r^{2} may be incrensed indefinitely by inerensinge the radins of the spluete, while the surfacodensity o remans consfant, the coeflicient of y^{2} may be made negat ive. Acceleration of the motion of the particle would then eorrespond to diminution of its vis mira, and a borly moving in a closed path and acted on by a Coree like frietion, always opposite in chirection to its motion, would continually inerease in velocity, amd that withont limit. This impossible resull is a neessary consequence of assuming any formala for the potential which introduces negative terms into the coetticient of x^{2}.
855.] Bat we have now to consider the aplication of Weher" Acory to phenoment which can be realized. We have senu how it gives Ampere's oxpression for the force of attraction between taro elements of electric currents. 'The potential of ore of these clo ments on the other is found by taking the sum of the values of the potential \& for the Cour combinations of the positive and necrative currents in the two clements. The result is, by cquation (20), haking the sum of the four values of $\frac{\partial^{2}}{\sqrt{2}}$,

$$
\begin{equation*}
-i^{\prime} d s d s^{\prime} \frac{1}{r} \frac{d r}{d r} \frac{d r^{\prime}}{d s^{T}}, \tag{23}
\end{equation*}
$$

and the potential of one elosed curvent on another is
where $\quad M=\iint \frac{\cos e}{p} d r d r^{\prime}$, as in $A+t s, 423,524$.

$$
\begin{equation*}
-\ddot{u^{\prime}} \iint \frac{1}{r} \frac{d v}{d n} \frac{d r}{d b^{\prime}} d s d s^{\prime}=\ddot{n} M \tag{24}
\end{equation*}
$$

In the ense of closed curvents, this expression ngrees with that Which we lave already (Arte 524) olatained $\%$.

> Webter's Theory of the thritetion of Thectria Curents.
856.] Alter dedncing from Amperes formula for the action between the elements of currents, his own formula for the action between moving electric particles, Weber procected to apply his formulat to the explanation of the production of eleotrie curvents ly

[^48]magneto-electric induction. In this he was eminently suceessful, and we slall indicate the method by which the laws of indueed currents may be deduced from Weber's formula. But wo must observe, that the cireumstance that a haw dedticel from the phenomena discovered by Ampere is able also to account for the phenomena afterwards discovered by Faraday does not give so much additional weight to the evilence for the physieal truth of the law as we might at first suppose.

For it has been slewn by Helmholtz and Thromson (see Art, 543), that if the phenomena of Ampere are true, and if the principle of the eonservation of energy is almitted, then the phemomena of indretion discovered by Faraday follow of necessity. Now Weler's law, with the varions assumptions about the nature of electric mrrents which it involves, leads by mathematical transformations to the formula of Ampere. Weber's law is also consistent with the principle of the conservation of energy in so far that a potential exists, and this is all that is required for the application of the princinle by IIelmholtz and Thomson. Hence we may assert, even lefore making any caleulations on the sulpieet, that Weler's law will explain the induction of electric currents. The fact, therefore that it is fomd ly calculation to explain the induction of eurrents, leaves the exidence for the plysieal truth of the law exactly where it was.

On the other hand, the formula of Gauss, though it explains the phenemena of the attraction of carrents, is ineonsistent with the principle of the conservation of energy, and therefore we canot assert that it will explain all the phenomena of induction. In fact, it fails to do so, as we shall see in Art. 859.

85\%] We must now consider the electromotive force teading to produce a carrent in the element $d s$, due to the envent in is, when $d s$ is in motions, and when the current in it is variable.

According to Weber, the action on the material of the conductor of which $l^{\prime} s^{*}$ is an clement, is the stan of all the actions on the electricity which it curries. The electromotive foree, on the other hand, on the eleetricity in dr', is the rifference of the clectrie forwes acting on the pasitive and the negative electricity within it. Stince all these fores act in the line joining the elements, the electromotive forece on ds' is also in this line, and in orver to obtain the electromotive forec in the divection of ds' we must resolve the fore in that direction. To :apply Weberss formula, we must calculate the varions terms which ocen' in it, on the sumposition that the
element ds is in motion relatively to ds', and that the curvents in both elements vary with the time. The expressions thus found will contain terms involying $y^{2}, r r^{\prime}, x^{\prime 2}, x, r^{\prime}$, and terms not involving x or v^{\prime}, all of which are maltiplicil ly e^{\prime}. Examining, as we did before, the four walucs of caeh term, and considering first the mechanienl foree which arises from the sum of the four values, we find that the only term which we must take into account is that involving the prodnct re' ece'.

If we then consider the force tending to produce a current in the second element, arising from the difference of the action of the first element on the positive and the negative electricity of the sceond element, we find that the only term which we have to examine is that which involves reet. We may write the four terms inchudel in $\Sigma\left(r e e^{\prime}\right)$, thas

$$
e^{\prime}\left(r e+w_{1} e_{1}\right) \text { and } e_{1}\left(r e+i_{1} e_{1}\right) .
$$

Since $d+\epsilon_{1}^{\prime}=0$, the mechanical force arising from these terms is zero, but the electromotive force acting on the positive electricity é is ($v e+v_{1} e_{1}$), and that acting on the negative clectricity e_{1}^{\prime} is equal and opposite to this.
858.] Iect us now suppose that the first, element fo is moving relatively to $d s^{\prime}$ with velocity F^{T} in a certain direction, and let us denote by f As and I As s°, the angle between the direction of V and that of $d s$ and of $d s^{\prime}$ respectively, then the square of the relative velocity, t, of two electric particles is

$$
\begin{equation*}
u^{2}=t^{2}+v^{\prime 2}+V^{2}-2 x v^{\prime} \cos \epsilon+2 F o \cos V_{d s}-2 F v^{\prime} \cos A A_{t^{\prime}} . \tag{25}
\end{equation*}
$$

The term in $v v^{\prime}$ is the same as in equation (B). That in r, on which the electromotive force depends, is

$$
2 F v \cos \hat{F} d f_{1}
$$

We have also for the value of the time-variation of r in this case

$$
\begin{equation*}
\frac{\partial r}{\partial t}=v_{d r}^{d r}+w^{\prime} \frac{d r}{d r^{\prime}}+\frac{d r}{d l^{\prime}}, \tag{26}
\end{equation*}
$$

where $\frac{\partial r}{\partial t}$ refers to the motion of the electric particles, and $\frac{d r}{d l}$ to that of the material conductor. If we form the square of this quantity, the term involving er', on which the mechanieal force depends, is the same as before, in equation (0), and that involving θ, orl which the electromotive force depends, is

$$
2 v \frac{d,}{d s} \frac{d r}{d t} .
$$

VOL, II.

$$
\mathrm{Fi}^{\prime}
$$

Diflerentiating (26) with respect to t, we Cind

$$
\begin{align*}
& \frac{\partial^{n} r}{\partial d^{2}}=v^{2} \frac{d^{2} r}{d s^{2}}+2 w^{\prime} \frac{d d^{2} r}{d s d v^{\prime}}+v^{2} \frac{d^{2} r}{d s^{2}}+\frac{d v}{d d} \frac{d r}{d s}+\frac{d v^{\prime}}{d d^{2}} \frac{d s^{2}}{d s^{\prime}} \tag{27}\\
& +v \frac{d v}{d g} \frac{d r}{d s}+o^{\prime} \frac{d b^{\prime}}{d b} \frac{d b^{\prime}}{d s^{\prime}}+\frac{d^{2} b^{3}}{d t^{3}} .
\end{align*}
$$

We find that the term involving c^{\prime} is the same as before in (6). Hlle term whose sign alters with that of x is $\frac{d v}{d d} \frac{d x}{d s}$,
859.] If we now calculate by the formula of Ganes (equation (18)), the resultant electrical fore in the direction of the second element Af, arising from the action of the first eloment de, we obtain

As in this expression thene is mo term involving the rate of variation of the enrent i, and since we know that the vantian of the primary current produces an inductive netion on the secondary circuit, we eannot acept the formula of Gauss as a tue expression of the action between chectrie particles.
860.] If, however, we employ the formula of theber, (197), we obtain

$$
\begin{gather*}
\frac{1}{r^{2}} d d s^{3}\left(r^{d r} \frac{d i}{d l}-i \frac{d r}{d s} \frac{d r}{d d}\right) \frac{d r}{d s^{\prime}} \tag{29}\\
\text { or } \quad \frac{d r}{d s} \frac{d r}{d s^{\prime}} \frac{d}{d l}\left(\frac{i}{r}\right) d s d s^{\prime} . \tag{30}
\end{gather*}
$$

If we intergate this expression with respect to s and $s^{\prime \prime}$, we obtain for the electromotive foree on the sccond circuit

$$
\begin{equation*}
\frac{d}{d d^{2}} \iint \frac{1}{r} \frac{d x^{x}}{d d} \frac{d d^{x}}{d b^{\prime}} \| s d s^{\prime} \tag{31}
\end{equation*}
$$

Now, when the first circait is elosed,

$$
\int \frac{d^{2} r}{d / d d^{s}} d \delta=0
$$

Dut $\iint \frac{\cos \varepsilon}{r} d d_{2}=M$, by A rta. 123, 521.
Hence we may write the eleatromotive fore on the second circait

$$
\begin{equation*}
-\frac{d}{d l}(i M) \tag{34}
\end{equation*}
$$

Which degrees with what we howe already estalitished by experiment; Art. 539.

On Weler's Formula, cousidered as resulting from an Action Imonsmitted from one Electric Paviche to the other with a Constant Velocitg.
861.] Ln a very interesting letter of Gauss to W. Weber* he refers to the electrodynamic speculations with which the had been oecupied long. lefore, and which the twoutd have publisted if he could then have established that which he considered the real keystome of electrodynamics, namely, the deduetion of the foree acting lretween electric particles in motion from the consideration of an action between them, not instantaneous, but propagated in time, ir a similar manner to that of light. He had not steceeded in makinge this deduction when he gave up his electrodynamic researches, and he had a subjective conviction that it would be necessary in the first place to form is consistent representation of the manner in which the propagation tukes place.

Three eminent mathematicians have endeavoured to sumply this keystone of electrod ynamics.
86..] In a memoir presented to the Royal Society of Cüttingen in 1858 , bat afterwarts withdrawis, and only puldished in Poggendortl"s Ansalen in 1867, after the denth of the author, Bernhard Rieman deduces the phenomena of the induction ot chectric currents from a modified form of Poisson's equation

$$
\frac{d^{2} V}{d x^{2}}+\frac{d^{2} V}{d y^{3}}+\frac{d^{2} V}{d z^{2}}+4 \pi \rho=\frac{1}{u^{2}} \frac{d^{2} F}{d b^{2}},
$$

where V is the clectrostatic potential, and a a velocity.
This equation is of the same form as those which express the propagation of waves and other disturbances in elastic media. The anthor, however, seems to avoill making explicit mention of any medium througls which the propagation takes place.
The mathematical investigation given by Riemann has been examined by Clausius \dagger, who does not ndmit the sourndtess of the mathematical processes, and strews that the hypothesis that protential is propagated like light does not lead either to the formula of Weber, or to the known laws of electrodynamics.
863.] Clausius has also examined a far more claborate investigntion by C. Nenmann on the 'Trinciples of Electrodyramies' \ddagger 。Neumann, however, has pointed outs that his theory of the transmission of potential from one electric particle to another is quite diflerent from that propmed by Gauss, adopted by Riemann, and criticized

[^49]\pm Tubinger, 1868.
5. Wothematische Ammien, i. 817.
by Clausius, in which the propagation is like that of light. There is, on the contrayy, the greatest passible clifference between the transmission of potential, according to Neumanm, and the propagaz tion of light.

A luminons boly sends forthe light in all directions, the intensity of which depends on the luminous body alone, and not on the presence of the body which is enlightened by it.

An electric particle, on the other hand, sends forth a potential, the value of which, $\frac{e e^{\prime}}{r}$, depends not only on e, the emitting particle, but on e^{\prime}, the receiving partiele, and on the distance r between the particles at lhe instant of cuntsion.

In the case of light the intensity diminishes as the light is propagated further from the luminous boty; the emitted potential flows to the body on whiel it acts without the slightest alteration of its original value.

The light received by the illuminated body is in general only a fraction of that which falls on it; the potential as received by the attracted body is identical with, or equal to, the potential which arrives at it.

Besiles this, the velocity of transmission of the potential is not, like that of light, constant relative to the rether or to space, but rather like that of a projectile, constant relative to the velocity of the emitting particle at the instant of emission.

It appears, therefore, that in order to understand the theory of Neumann, we must form a very different representation of the process of the transmission of potential from that to which we have been accustomed in considering the propagation of light. Whether it ean ever be accepted as the 'construirlar Vorstellung' of the process of transmission, which appeared necessary to Ganss, I cannot say, but I have not myself been able to construct a consistent mental representation of Neumann's theory.
864.] Professor Betti *, of Pisa, has treated the subjeet in a different way. He supposes the elosed circuits in which the electrie eurrents flow to consist of elements each of which is polarized periodically, that is, at equidistant intervals of time. These polatized elements act on one another as if they were little magnets whose axes are in the direction of the tangent to the circuits. The periodic time of this polarization is the same in all electric circuits. Betti supposes the action of one polarized element on an-

[^50]othor at a distance to take place, not instantaneonsly, but after a time proportional to the distance between the elements. In this way he obtains expressions for the action of one electric circuit on another, which coincide with those which are known to be trme. Clausius, however, has, in this case also, criticized some parts of the mathematical calculations into which we shall not lere enter.
865.] There appears to be, in the minds of these eminent men, some prejudice, or at priori objection, against the bypothesis of a medium in which the pheromena of radiation of light and heat, and the clectric actions at a distance lake place. It is true that at one time those who speculated as to the canses of physical phenomena, were in the habit of accounting for cach kind of action at a distance by means of a special whereal haid, whose function and property it was to produce these actions. They filled all space three and four times over with eethers of different liinds, the moperties of which were invented mocrely to 'save appearances,'s so that more rational endurers were willing rather to accept not only Nuwton's definite law of attraction at a distance, bat even the dogma of Cotes*, that action at a distance is one of the primary properties of matter, and that no explatation can be more intelligible than this fret. Hease the undulatory theory of light has met with much orposition, directed not against, its failare to explain the phenomena, but against its assumption of the existence of a medium in which light is propagated.
866.] We have scen that the mathematical expressions for elvetrodymamie action led, in the mind of Gauss, to the conviction that a theory of the propagation of electric action in time would be foumd to be the very ley-stone of electrodynamics. Now we are mable to conecive of propagation in time, except either as the flight of it material sulstance through space, or as the propagation of a condition of motion or stress in a medium already existing in space. In the theory of Nemmann, the mathematioal conception called Potential, which we arte unalle to conceive as a material sulstunce, is supposed to be projected from one particle to another, in a manner which is quite independent of a medium, atrd which, as Nemmann has himself pointed out, is extrenely different from that of the propagation of light. In the theorres of Riemann and Betti it would "hpear that the netion is supposed to be propagated in a manaer somewhat more similar to that of light.

But in all of these theories the question maturally occurs:-1f

[^51]somelhing is transmittod from one particle to another at a distmee, what is its conclition after it has lelt the one particle and before it has reached the other? If this something is the potential energy of the two particles, as in Nemmann's theory, how are we to conceive this energy as existing in a point of space, coinciding neither with the one particle nor with the olfer? In fact, whenever energy is transmitted from one body to another in time, there must be a medium or substance in which the energy exists after it leaves one body and lefore it reaches the other, for encrgy, as Torvicelli * remarked, 'is a quintessence of so subtile a nature that it cannot be contained in any vessel except the inmost substance of material things.' Hence all these theories lead to the conception of a medium in which the propagation takes place, and if we admit this medium as an lypothesis, I think it ought to oceupy a prominent place in our investigrations, and that we ought to endeavour to construct a mental representation of all the details of its action, and this has been my constant aim in this treatise.

[^52]
I N D E X.

The Reformoes are the Artiches.

Abeorptien, electric, $58,22 \overline{4}, 8$ gen
—of light, 798.
Accumulators or curalensers, 50, 236-2g8.
Action at fatistance, 105, 641-640, 8468 B 4.
Acyelic rerions, 19, II3.
Ather, 482π.
Airy, Bir G. Ty, tat, Sion,
Ampire, Andre Marie, 482, 502-bog,

Arion, 297.
Anorle, $2 \$ \mathrm{~F}$
Aragot clisk, 608, 669.
Astatic balanee, 504.
Atmosplasic utcetricity, 221.
Attination, electric, $27,38,10 \%$

- explained by streth in an aterliusu, 1 nit.

Barclity and Gilomin won, jge
Battery, voltaic, 2 2ge.
Heetz, WT. $2055,208,422$.
Beatir lis, 173864.
Bibilar rluspensiok, 4 E9,

Thorda, T, C. d

- electrostatic, 353.

Bremlie, Sir IA, C., \$ar.
Izroun, John Allatk, 4 ,
[twh, 56 .
Puff. Meinrich, $271,868$.

Caprety (elecimatatic). 50.22 t .
—of a comienser 50, 87 . $102,194,227$ 299, $771,754=750$

- mensurvment of 227 -209.
- its elcetronangrictits monaties, 7/1, 75

Cathode, get.
Gntion, 23 ?
Crucliy, A. I_{t}, sat $\overrightarrow{\text { r }}$
Covemdish, Ienty, 38.

Cembulsarian, 101.
Circtita, eluctric, th8-5
Cirmular curretule. 694-70年
- anlid mame sultitented by, 6nti.

Charge, olectrie, 31.

Chasilicution of efectrical qุuantititus, fozo 629.

Clatior, 13., 70, 256, 56t
Clifforel, wi, K., 188.
Coelticients of electrostatic captrcity amb induction, \boldsymbol{n}_{7}. 102.

- of juatertind, 87 .
- of resistance and comblactivity. 207. 298.
- of hatuced magmetiantion. 426.

Gurcive foree, 4 努, 44.

- menturement oft 708.
- comparisin of $55^{2}-75 \%$

Comparision of eaptoitice, gav.

- of resinnuces, 345-358.

Concentration, $26,7$.
Condernser, 5n, 220-7298.

[^53]

Contuction, 95, $292 \mathrm{t}=254$.
Gmatuction, linear. 278-2si,

- sulperbicial, 204.

- tectrolytic, $250-20$ O.

Conductiridy, equations of $208,609$.
-and macity, 598.
Conductor, 25, Sy 1 S , 8,

Confocal quadric surfacer, 117-154, 192.
Compgate circuita, tras. 7 . 5

-- hartuonias. 183.
Constanta, prineignl, of a coil, 700,753, 754

Contact fispe, :36.
Continuity in lime anti papec, 7 .
- Equation of 36, 2085.

Comvelion, 55, 238, 215.
Convergencen
Copper, 51, 360 308,761 .
Coher, Ragrer, 8 g 5.
Comlomb, C. A. $3 \mathrm{~S}, 74,215,293,373$.
Conlomb's law, TI, 80
Cospatal, emuluction in, yot.

- magnetic properties of, 435, 426, 438.
- jropagation of light in $\mathrm{a}_{4} 79 \mathrm{~d}-797$.

Chmmitye tamer, 25:.
Curl, 95.
Current, cleciric, 23n.

- best mecthol of Arpilying, 74.
- -function
- induced, 582.
- stemly, 232.

 $748,758,760+771,776$.
Corrent-wei-gher, Fob.
Cyalice negiven. 18, 113, 181.
Cylimura electrification of, Is9.
- anterimetization of $480,138,430$.
- eurrants in. $683-69^{2} 9$.

1 minictrs mell 283,27 .
Dead leat gathunutheter, itl.
Decrennent, lugatitanic, 7su.
Deflexion, 453 , 4 H .

Density, electric, is 1 .
— af a curtut, 255

Jhamagyetivan, $42 \pi, 40,858$.

1 Hiffusion of marenetic force, 801.
Dipt, 461.
Thipolic, 173. 381.
Timentoms, $2,42, ~ 87,278,820-629$.
Directed quantities (or vecturs), 10.
Disectrix, 517 .
Dischatge, big.
Discontinuity, 8.
Disk, 177.

- Amgo's, 468, Big.

Disulacement, electric, $30,75,76,111$, $328-354,608,783,791$.

1) ygor riln, 411.

Eartishat 8., 116.

Flemeric lurublir th.

- charge, B1.
- eotulaction, 95.
- converim, 211, 208, 248, 255, 259 .

- discharge, 5.5-57.
- displactment, 60, 75, 74, 111, $228-$ \$24, 008, $785, \mathrm{r} 41$.
- mergy, 35

- imbetton, 28.
- machine 20%.
- jotesthal, 70.
- smatk, 57.
- temsion, 18, 59, 107, 10s, 11.1.
- wind, 5 5.

Electrode, 9 an.
Electrudymauice systena of measurtement, 5, wh
Flectradynamonacter, 755

Flectulyte, 237, 20.
Filectrolytic ephduction, $255-2 j 29,343$,「99,

- mensumemme, 195.

- aberwations, $730-780$.
- and electrontatie nuita conngurdi, Fis780.
- rubations, 491.
 $568-5.57$.

Flectranotive lioreg, 49, 6T1, 111, 211, $316-204,358,569,549$.
Wlectryphoru, 308.

- fallarization, s9, 111.
- athraction I 0 3-111.
- Bystem of units, de , 2e.

Beelromonie state, tith.

Filip oid, 150, $302,43 \%$, 1*2.
NAtiptie inturym, 149, 487, 707.

Equations ne coralmettrity， 298 ，bons，
－of montinuity， 3 ．
－of electric currenta， $60 \bar{\gamma}$
－of total currents， 610.
－of electroungutice foree，fors
－of electrombine force，bos．
－nf Traplace， 74.
－of Jnargatizations，400，005i．
－－of maghotic induction，5ftl．
－of Poissonn，ī＂．
－of rowishnner， 297.

Talae maynetic pules， 498.
F＇aramy．ML．，his disweveries， $52,55,26$ ， 6,

－his methods， $37.82,122,143,548$, $539,541,502,544,604$.
－his spectationa，51， $60,83,107,109$, $245,124,502,510,547,509,645, ~ F 82$,
Fardel， 690.
Fechner，Lra＇J＂，201，274，别8

Ferromaguetic， $125, ~ 小 29,844$.
Fiell，electric．it，
－electrontignetic．585－ 519.
－of utulfoma force， $6 \overline{2}$ ．
First swing 715.
Fisenv，H．L． 18 年．
J＇ludid etectric， 8 届， $8 \overline{7}$ ．
－incompressilik，\＆1， $111,305,320,331$ ．
－mataetic， 380.

Pores，electromagnewtic， $455_{1} 580,583$.
$=$ alectrmmotike，49，69，111，233，211， $246-451,358,469,50,505,508$.
－mechaneal，92，93，103－111．174．580， 602．
－measarement of， 6.
－acting at a distance，tob

- linear of $\$ 2,117-123,404$.

Foucault， $\mathrm{L} ., 78 \mathrm{~F}$ ．
 80\％．

Galwamometer，240， 707.
－differential，316．
－gensitive， 717.
－standarti， i ag．
－observatim of t42－75L
Grasen，electric discharge in，iblo－s $\overline{\mathrm{X}}, 370$ ．
\triangle reaisthnce of， 360 ．
Gansint，J．以＇， 5

Gaug elcetrometar＂， 218 ．
Gtthes，O．In，18， $70,131,140,144,409$ $421,454,459,470,706,733,744,551$.
Geometric mear distance，691－69\＄，
Gcometry of position，4P1．
Gituon nud Tarclay，gea，Tso．
Gludatome，Dr，J．H．， 7 SO ．

Glow，electric． 55.

Grating electrice eftect of，203．
Gruen，Crame， $0,80,31 s_{2}, 139$.
Green＇si fivtotion， $5 \mathrm{~S}_{3}$ 101．
－thoerent． 100.
Groove，electripe etrect of 190.
Growe sir w，IR，gre，5r，
Gumal－ring，201，217，220．
Guttit－percha， 11,367 ．

Hated ition，ted，444．
Muтis，Sir W，\＆inew，38，21d，
11 tuta，coniluctian of， 301 ．
－genumated by tle eurrerat．242，285， 209.
－specifie，of electridity，2rat．
Heltx，S13，
 713，5245，354．
Heterostatic elpetmmeters，218．
Hockith，Charles，352，300， 810 ．
Holta w，electrital menchine， 212.
Hornstein．Karl， 471 m
Huygrars，lurintiant， 7 gis．
Hydranlic pan，550．
Hypraine， 1 1．

Ifiostatic electroneters， 018 ．
Ininges，clectrie， 1 T0，10
－Jognatit 318
－unv\％iมg，669．

－in a phate alrett，05iti－6f？．
－WF cher＂s theory of， 856.
Induced magretization， $48.1-448$ ．
Infuction，electrontatic， 29, 与a， 70.111.
－margetie， 100.
Inertita，eleetrice，who．
－momenta atul proflucts of，fits．
Jtanlators， 29.
Inversion，electric，102－181，188，316．

Iram，ati．
－perchluride of s09．
Irrequcileable curves， 20 ， 4 21．

Jacohi，M．H．， 33 ．
Wenkins，Wrilliam， 54 ．Soe phit．Mag， 1834，pt，í，p． 351.
Jenkin，Flesming，－ 93, 7． 7.
Joclernaw， E_{t} G（99．
Joule，T，Tm $449,262,448,457,463,726$ ， 767.
＂Kepatane of clectronlynamice，＂
Kituetics，50．5－505．

Lagrange't (n) L.) ulynanien equations. $553-545$.
Iatme, G. $17,14 \overline{7}$.
Imatellat yuxatery 419.
Laplace, 1. S. 70.
Isplace"s cucflicient, 125-140.

- exparniten, ldy.

Ifenz If, $965,580,512$
Light, thter rommgotice lieoty of, 781-80

Line-ctersity. B4, 31.
- -iuterma 16 -30.
- of elewtric force, 69, 622.
- of matuetic firec, $411,181,198,492$,

Lines of ennilils inam, IIq.
- की How, 22, 393.
- off elactric induction, $82,117-123$.
- of magnetie induction, $404,489,529$, $541,527,702$
1.1nemens, C., 别

Liouville, , $5.173,176$.
Listing $4.13,18,28,421$.

Jubchnublt, $J_{n,}{ }_{0}$
 889.

Magnety its properdies, 371 .

- direction of axis. 378-790.
- magretic moment of, 384,390
- ceatre and priacipulaxes, 3ye.
- potential enorgy of ges.

Marnetic action of light, 80 of.

- force, law of, 374.

- - julumaity of 4 dss.
- induetion, 400.

Magnctic "matter," 880

- poles, 568.
- survey diti.
- watiations, 472.

Magrecizalion, compurnents of, 381,
- induesd, 424-130.
- Amperets theory oft, b85, 833 .
- Pomsson's theory of, 429 .
- Weberss theory of, 4.42, s38.

Magrus (G,) luw, ty,
Mantee Memyy, mecthok, 357.

Mensurement, theory of, 1.

- of result of electric firce, 0 .
- of chectoostatic capacity, $220-2029$.
- of alectronotive force or potential, $216,359$.
- of resisthtee, 3a5-857.
- of consinnt currenth, $\overline{1} 40$.
- of tragsinent curruts 748 .

Hensurcmert of coils, $708,759-757$.

- matnetic, 49 - 4 (4.

Midinn, electromangetic, 80t.

- luminierous, 806.

Meremry, fegibtance of, 36t.
Metals, resiatameo of 968.
Mintell, It wha, 08.

NEirrur method, 4 . 0 .
Molecular chare of electricity. $2 \operatorname{Din}^{2}$

- currentiz, gis
- standincils, 5.
- vorticen 8in?

Malecthes, size of, bu

- electric, 269).
- martuelic. 430, 880-845.

Moment, maghetic, 884.

- of inertis, Ext5.

Mondentapme 6 .

- clewrokinetic, 558,585.

Moving nxess, 000.
- cothinctus dos.
- inarges, 6fin.

Mnltiphe conductors, $276,344$.

- fimetiores, 9.

Notamann, F. E., coeflicient of magretization, 430.

- magenetization of ellitysuich, 430.
- therry of induced currente, 引h2.

Nekกมarin, C. G., 190, 880, 86\%
Nichatzon's Fterolving Joubler, 200.
Nickel, 45.
F5u! methonly, 214, 316, 503.

Grated H_{4} C. 239, 475.

Olmis Law, 241.
Ohm, the, $188,440,699$.
0 matily, $\bar{f} 98$.
Owary ellipsoid, 152.

Pralmow, A, 201.
Patraboloicha: confoeal, 1 ,54.
 $425,409.844$.

Periolic functionth, 9.
1'erijulianctic region, 23,118 .
Eermeability, magmetion 128, 01J.

Flan of this 'trentiac, thlt.
Platme ctirrent-shem, 65t5-669.
Flatuetary ellifisoicl, 151 .
Platymeter, electro-, 209,
Placker, dulius, 539.
Print of er uilititum, 1 I2.

Puisum":

Trensen＇s thenry of furgnetism， 487,190 ． 431．441， 822 ，
－theory of wave－propmyation， 781.

Polarity， 381.
1＇olarizatida，electrostatie，50，111，
－electrofytic， $257,464-272$,
－mantuctic， 8 s 1.
－of tixtit，381，791．
－cirenlar，818，
Poles virta tuagnet， 970 ．
－गmagnetie of the sarth， 468 ．
F＇ositive atad nedgative，conventions alsont， $24,23,34,87,63,68-81,241,37 h_{1}, 34$, 47 ． $489,403$.
1 ＂oteratial， 16.
－electric， $45,70,200$.
－ingrotic． $853,391$.
－of magneliestios 412.
－of two cireuito，423．
－of twid circlita，645．
Potatial，veotor，405， 122,500 ． 814, 1597．

－electrolinamantic，sud－383．
－mingretic，NBI－441．
－allectronagnetic，6it Tou．
Proof of the law of the Yaveried siguare， 7.

Proof plance

Quadrant elcelcometer， 219

Quantity，expreswion for a plyatical， 1 ．
Quantititiea elamsification of electroming－ netict， $4200-629$.
Quatermions， $11,303,490,522,618$,
Quinke G． 310 n．

Thadiation，borees concerrted itt， 792
Rankine，W．J，M．．， 1 lob， $8 \$ 1$ ．
Rey of electodmagretic disturbmee，791．

— electrokinethntic：281， 318
－magertic，f2l， 420 ．
－eltectronagumetio， 53 ．
－kimetic．Des．
Recoil，anothod of， 750
Residunl chargu，327－33s．

Hephonixher， 210 ．
Irasistance of eoraductors，51．275．

－equatione of 307．
－unit of，708－＂67．

Piematra，Eermantl，421，802
Stipht and luft－bandoul syrstente of axes $23,409,501+$
－croularly－polarized mbs，81，
1Ritchie，W， 542

Rotatiar of piane of palarization， 800°
－aragretisun，a jhentmenon of，E2l．

 $49+105$.

Soalar， 11.
Seale for mirnor ubservations，itwo．
Sectorial harmunic， 132,148

sclenimu，$\$ 1,303$.
Edfinduction， 7 ．
－thersuretnent ort， $556_{4} 778,7 \%$ ．
－cuil of maxikum， 706
Sonsitive galvanometer， 717 ．
Series of olgervitiona， 740 ， 7 rob．
shell，mametic， $109,484,455,604,652$, 0704 694． 696

Sinea，inethow of，455，Tlo．
Bingular puinta， 1 害落。
slope， 7 ．
SHew，A．，27？

Emith，W，R，lew， 3 G ．
Soup buble，125．
Folenaid，mametie， 107.
－elowtromatyontic， $576=651,207$
Soteneidrl dintribution，21，B2，suf，
［ylid angle，404，417－128， 485,095
Spmee－waridtion， $17,71,850$
Sparda \quad os． 370.

— corductivity，278， 927 ．
－14＊istance，277， 697.
－theat of electricity， 25% ．
Shhere，125．
Siferical hatmonics，128－150，801， 431.
spiral，lugarithmic，$\overline{\text { IN }}$ I
53 trandajed electrometer， 217.
－galvanameter，708．
Stowes，G．G．t． $4,115,78 \%$ ．
Stomey，G．I，단．
Stratified monductors， 312.
Strusa，clectroatatic， $10 \overline{7}, 111$.

Strate，ITum d．MF．102，Jug．
Surface－interras，15，21， $7 \pi, 402$.
－denaity，04，78，223．
Burfiee，sipuprotertind， 40.
－electrifimet， 78 ，
Suspunded coni $721-729$
Stuplenstan，bifilar， 450.
－Jinale＇s， 463.
－＂Homson＇s． 7 \％1．
－mifilarvdde．

Titbles of coelficients of a coil， 700 ．

－of electromative foren， 358.
－of magretic rabation， 830.
＇T＇ibles for magnctiantion of a cylinder， $45_{0} 4$
－uf reaistance，363－365．
－of welocity of light and of electronary－ netie tinturbanie， 7 E 7.
－of tax morary and resudtul mignetivan Lion， 145
Tait，P．（4，25，254，357，522，1687， 7 7．
ITangent gilynometer， 510 ．

T＇ELeraph embe，8＊＊2， 180.
＇L＂emfirary magmetization，dut．
Tren＊ion，electsistatic，48，54，106， 209.
－elechrmatygintie，645．65（b．
＂herrestral matmetism，tith ity．

Thearem，Grecuras 100 ，
－Firthanw＊is， 110.
－Contipnals＂s． 80 ．
－ 7^{4} honmsinn 98.
－Gmbist，I44， 40 d
Theory of ofte lizil， 37 ．
－of two fluder， 30.
－of utarnctic manter， 3 So．

－af milecular enrents， 883 ．
－of molecular vortines， 822.
 $840-\$ 06$.
F＇hermo－electrje currents，249－254．
＂Thicknesg of thambmeter wise，if6， 719.

Thomen，Sir witliant．
－electrie images，43，121，1050 -181, 178．

－instiutuents，127，201，210，211，21，6－ $222,272,722,724$.
－magnetistu， $198,398,400,40 \overline{7}-415$, 428.
－rexistance，338，3i51，356， 763.
－thernumedectricity，207，240，249，259， 253.
－theorents， 08,128 ，208，299， 201, 652.
－theory of electricity， $27,87,548,881$. $\$ 555$.
－rortex molion，20，100，487． 102.
Thtomanon and＇utit＇s Natural Philogô－
 670
Tune，periodic or witmation， 450,738 ．
T＂ine－integral．541， 558.
Torricelil，Lumpelista，866．
Torsion－lahate，38，215，373， 726.

Titmpient currents． 582, 5月，538， 53 ，

Limits of playsical quantities， 2.
－tliree fiuddinental． 3.
－ilerives，fi．

－magnetic， 3 解， 6 些品
－clectrorlymamice，5i20．
－electromimpetite 506,620
－classification nf． 1020 －629．
－practical， 620.

－Iatios of alie two systems， 568 － 780.

Tariakion of macractic elementa 4 is．
Yarley，C．17．．210，271，832， 369.
Vector，ID．
Fecturspotential，405，129，590， $617,657$.
Vulucily represented by the patit of re－ 4istathce， $389,028+753$.
－－by the matio of electrie unite， $709-$ 780.
－of olectrommgnetio diaturlbanee， 78.
－of light， 755°
－of the clectrie cutrent， $5 f 0$ ．
Ferden，M，IN，800， 830 ．

Foll，dieq．
Volta，A．． 246.
Voltanmerer， $23 \bar{j}=$
Vortices，moleenlat， $82-$ sin．

Mrater，resistance of，Shas．
Waye－propration，78t， 885 ，

－clectrodyramometer，725．
— induced magmetianm，442－44，838．
－mit of resutatace，760－762．
－matio of etectric mnits， 227.771.
－clectredytamaic formula，846－861．
Wertheim，w．， $4 \overline{7}$ ．
Whemtatore＇s Iridge，Wh

wind，electric， 55.
Wippe， 7 等。
Work， 6.

Zonal harmonic， 132.

Vol. II.

Fid TH
Are 388

Tho Givindos: mudynnded trenswenvely.

Fis X X
Ar: 4.34.

$$
\begin{array}{lc}
\text { Fig } & \mathrm{B} \cdot \mathrm{l} \\
\text { Art } & 136
\end{array}
$$

Givineles nergmeflased bramswerwels phered Eiast and Hish


```
A'n\mp@code{M}
```


> Fita $\quad x$ vill
> Ars $487,702$.

?

$$
\begin{aligned}
& \mathrm{Fi} \mathrm{Ei} \quad \mathrm{TXX} \\
& \text { Ars 71: }
\end{aligned}
$$

Tho Circular Currembs

Fig XX
Ar: $2 \% 5$

Gircular Ciurrewe in urifurn fold of lime.
(1)

andele

[^0]: vol. II,

[^1]:

[^2]:

 ara dipolar upuatilies.

[^3]: * Exp. Rce., serjes xxyìi,

[^4]: or Aegratid.

[^5]:

[^6]: - Crefre lul. xxxili (181s).
 + Cralle, ma. xlwiii (185d).

[^7]:
 the uteps of which are not given lyy hini. His formula ig

[^8]:

[^9]:

[^10]: rol xxi (1855), p. 340.

[^11]: - Seo Airy's sugmedran.

[^12]: - Pros. Thit. S., Mandegter, March 10, 1867.

[^13]:

 equator. This methard of discovering the time of rotation of the aturech wolld landy of

[^14]:

[^15]:

[^16]:

[^17]:

[^18]: * Exp, IRE., serien i, G0.
 $\pm \mathrm{Ih}_{4}$ 320

 S $10,60,1114,1061,1729,17345$

[^19]: * Poge., Aum. xxxi. 488 (1834).
 + Berlia Acad., 1805 and 1817.
 \# Fead before the Physical bocioty of Berlia, July 23, 1817. Thathstated in "Tyylor"s - haleatidic MEemoins, part it. po 114.

[^20]: * Mechanient Theory bf Electrolysis Fhat. Magh Dhee., BEst.

[^21]:

[^22]:

[^23]: - Engr Rest, 1648.

[^24]: namical Relations of.'

[^25]:

[^26]:

[^27]: Die., 1851.

[^28]:

[^29]:

[^30]:

[^31]: * Proc. Ad. S. Lithe, Dec. 10, 1867.

[^32]: * Restatefe dea Mughetiochen Fereing, 183s, p. 98.

[^33]: * Targe tangent galwhometers are anometime made with a sitgle circular conducting ring of coasiderable thick ness, which is kufficient when mo maintain its form
 tribution of the current withim the conduetor depends ou the relative conductivity

[^34]:

[^35]: - Reprart of the Mritioh Ansorverthon for 1807.

[^36]:

[^37]: - Meport of Jretisli Association, 1869, ग-434.

[^38]: * Aeport of Britisif Association, 1867.

[^39]: * "low my ort fart, conadering the relation of a wacuta to the matratie force,
 inclined to the botion that in the transmission of the forte there is eubh an action, extermal to the magnet, than that the effects are merely attraction and repulsion at a flistatacs. Suchan action may be a function of the arther; for it is sot at ath malikely

[^40]: = Hem. de ${ }^{7} 4$ earl, toms. itis, pro 130.

[^41]: * Ph ut. Trans. 1871, 1 , 578.

[^42]:

[^43]:

[^44]:

[^45]:

[^46]: * Explicare tentatur quomolio fiat ut tuoiz flanump pilarizationis faer vires elce-

 mancle。"

[^47]: - Crelle": Jorsmal, ${ }^{2}$ (150

[^48]:

[^49]: * Warch 19, 1545, Merlic. Inl. w, G90. + Piynro, lmj cxaxy di2.

[^50]: * Nrowe Cimento, xxvit (1868).

[^51]: * Prerace tu Newton' Principite, End editimh.

[^52]:

[^53]:
 of the original invertor. Hr \& . Hunter Clristies who had describod it in his papict out

 May 8,1872 .

